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PREFACK

YHE publication of this tract has heen delayed by a variety of
causes, and I am now compelled to issue it without Dr Riess’s
help in the final correction of the proofs. 'This has at any rate one
advantage, that it gives me the opportunity of saying how conscious
I am that whatever value it possesses is due mainly to his contributions
to it, and in particular to the fact that it contains the first systematic
account of his beautiful theory of the summation of series by ‘typical
means’.

The task of condensing any account of so extensive a theory into
the compass of one of these tracts has proved an exceedingly diflicult
one.  Many important theorems are stated without proof, and many
details are left to the reader. [ believe, however, that onr account, is
full enongh to serve as a guide to other mathematicians researching
in this and allied subjects. Such readers will be familiar with Landau’s
Handbuch der Lebre vcon der Verteilung der Primzablen, and will
lardly need to be told how muelc we, in common with all other
investigators in this ficld, owe to the writings and to the personal

encouragement of its author.

G. H. H.

19 My 1915,
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THE GENERAL THEORY OF
DIRICHLET’'S SERIES

I
INTRODUCTION

1. The series whose theory forms the subject of this tract are of
the form

S(8)= ? @™ (1),

where (A,) is a sequence of real increasing numbers whose limit is
infinity, and s = o + #7 is a complex variable whose real and imaginary
parts are o and ¢ Such a series is called a Dirichlet’s series of
type N, If A, =n, then f(s) is a power seriesin e*. If A, =log n, then

f(s) = ? AuP™8 i (2)

is called an ordinary Dirichlet’s series.

Dirichlet’s series were, as their name implies, first introduced into
analysis by Dirichlet, primarily with a view to applications in the theory
of numbers. A number of important theorems concerning them were
proved by Dedekind, and incorporated by him in his later editions of
Dirichlet’s Vorlesungen iiber Zahlentheorie. Dirichlet and Dedekind,
however, considered only real values of the variable s. The first
theorems involving complex values of s are due to Jensen*, who
determined the nature of the region of convergence of the general
series (1); and the first attempt to construct a systematic theory of the
function f(s) was made by Cahent in a memoir which, although much
of the analysis which it contains is open to serious criticism, has

* Jensen, 1, 3. References in thick type are to the bibliography at the end
of the tract. + Cahen, 1.

H & R. 1



2 INTRODUCTION

served—and possibly just for that reason—as the starting point of
most of the later researches in the subject*.

It is clear that all but a finite number of the numbers A, must be
positive. It is often convenient to suppose that they are all positive,
or at any rate that A, = 0.1

2. It will be convenient at this point to fix certain notations
which we shall regard as stereotyped throughout the tract.

(i) By [#] we mean the algebraically greatest integer not greater
than 2. By

3/ (a)

we mean the sum of all values of f(n) for which asn=g, ie
for [a] =n =[B] or [¢] <n =[B], according as « is or is not an integer.
We shall also write

A (w)=%an, A (2, g/)=§an,;t

Aay=an—Anp.

(ii) We shall follow Landau in his use of the symbols o, O.§
That is to say, if ¢ is a positive function of a variable which tends
to a limit, we shall write

S=0(¢)

f=0(¢)

if | f|/¢ remains less than a constant K. We shall use the letter X to
denote an unspecified constant, not always the samel||.

if fl¢ -0, and

* Fuller information as to the history of the subject (up to 1909) will be found
in Landau’s Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 2, Book 6,
Notes and Bibliography, and in the Encycl. des sc. math., T. 1, Vol. 8, pp. 249 et seq.
We shall refer to Landau’s book by the letter H. The two volumes are paged
consecutively.

t It is evident that we can reduce the series (1) to a series satisfying this
condition either (a) by subtracting from f(s) a finite sum Ea,‘e"'\"" or (b) by multi-

plying £ (s) by an exponential ¢~ %,

type of the series.

T We shall use the corresponding notations, with letters other than a, without
further explanation.

§ Landau, H., p. 883, states that the symbol O seems to have been first used by
Bachmann, Analytische Zahlentheorie, Vol. 2, p. 401.

| For fuller explanations see Hardy, Orders df infinity (Camb. Math, Tracts,
No. 12), pp. 5 et seq.

These operations would of course change the
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II

ELEMENTARY THEORY OF THE CONVERGENCE OF
DIRICHLET'S SERIES

1. Two fundamental lemmas. Much of our argument will be
based upon the two lemmas which follow.

Lemma 1. We have identically

y y=1

50,60)="3 A@nAs0)+ 4 (09)4[1)
This is Abel’s classical lemma on partial summation *,

LemMA 2. If o %0, then
|Ag M8 = l——:jl AT+

A
];\ "ee ™ du

n

For
|Ae M| =

A
= [sl/ "+le_wdu='—1g~—lAe“)‘"”.
A o

2. Fundamental Theorems. Region of convergence, ana-
lytical character, and uniqueness of the series. We are now in
a position to prove the most important theorems in the elementary
theory of Dirichlet’s series.

THEOREM 1. If the series is convergent for s=o + ti, then it is
convergent for any value of s whose real part is greater than o.

This theorem is included in the more general and less elementary
theorem which follows.

THEOREM 2. If the series is convergent for s =s,, then it is uniformly
convergent throughout the angular region in the plane of s defined
by the inequality

lam (s—8,) | <a<3m |

* Abel, 1.
t This lemma seems to have been stated first in this form by Perron, 1, but
is contained implicitly in many earlier writings.

118 s=re?, we write r=|s|,0=ams, Theorem 1 is due to Jensen, 1, and
Theorem 2 to Cahen, 1

1—2



4 ELEMENTARY THEORY
We may clearly suppose s,=0 without loss of generality, We
have K

n A n-1 A
2a,6 M =3 A(mv)Ae™M 1+ A (m,n)e ™,
m m

by Lemma 1. If ¢ is assigned we can choose m, so that A, >0 and
IA (m, v)|<£COSa
for vz m Zm,. If now we apply Lemma 2, and observe that
|s|/o =seca

throughout the region which we are considering, we obtain

n—1
< e( 3 ag e +e')‘”"> —ea M < ¢
m

n
S a6 ™8
m

for n Zm Zm,. Thus Theorem 2 is proved*, and Theorem 1 is an
obvious corollary.

There are now three possibilities as regards the convergence of the
series. It may converge for all, or no, or some values of s. In the
last case it follows from Theorem 1, by a classical argument, that we
can find a number o, such that the series is convergent for o> g
and divergent or oscillatory for ¢ <a,.

TaEOREM 8. The series may be convergent for all values of s, or for
none, or for some only. In the last case there is @ number o, such that
the series is convergent for o > oo and divergent or oscillatory for o <a,.

In other words the region of comvergence is « half-planet. We
shall call o, the abscissa of convergence, and the line o=a, the line
of convergence. It is convenient to write ¢y=— or o,= when the
series is convergent for all or no values of s. On the line of con-
vergence the question of the convergence of the series remains open,
and requires considerations of a much more delicate character.

* It is possible to substitute for the angle considered in this theorem a wider
region ; e.g. the region
c20, |t|=eX7-1
(Perron, 1; Landau, H., p. 789). We shall not require any wider theorem than
2. It may be added that the result of Theorem 1 remains true when we only
assume that = a, is at most finitely oscillating : in fact, with this hypothesis, the
result of Theorem 2 holds for the region

|am (8 -3, | Sa<im, &=>=G>0,
a8 is easily proved by a trifling modification of the argument given above.
1 Jensen, 1.
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3. Examples. (i) The series = a™n~* where |a| < 1, is convergent for all
values of s.

(ii) The series 3 a*n~%, where |a| > 1, is convergent for no values of s.

(ili) The series S#~* has o =1 as its line of convergence. It is not
convergent at any point of the line of convergence, diverging to +« for s=1,
and oscillating finitely* at all other points of the line.

(iv) The series% (log n)~2n~* has the same line of convergence as the last
series, but is convergent (indeed absolutely convergent) at all points of the line.

(v) The series °goz,,n‘t’, where a,=(—1)*+(log »)~2, has the same line of
convergence, and is ionvergent (though not absolutely) at all points of it +.

4. THEOREM 4. Let D denote any finite region in the plane of s

for all points of which

o Zo,+ 98>0,
Then the series is uniformly comvergent throughout D, and its sum
f(s) s a branch of an analytic function, reqular throughout D.
Further, the series

Sa Ao ™
where p is any number real or complex, and N,° has its principal value,
is also uniformly convergent in D, and, when p is a positive integer,
represents the function

(=1)ef® ().

The uniform convergence of the original series follows at once from
Theorem 2, since we can draw an angle of the type considered in that
theorem and including D}. The remaining results, in so far as they
concern the original series and its derived series, then follow immediately
from classical theorems of Weierstrasss§.

When p is not a positive integer, we choose a positive integer m so
that the real part of p — m is negative. The series :

Sa ML (1)
may be written in the form
3 by M8 M e, (@),
where b, =a, Regarding (2) as a Dirichlet’s series of type log A,,
and applying Theorem 1, we. see that (1) is convergent whenever

¢S,

* See, e.g., Bromwich, 2. _

1 We are indebted to Dr Bohr for this example.

1 The vertex of the angle may be taken at o,, if the series is convergent for
§=¢,, and otherwise at sy+ 7, where 0 <7 <3.

§ Bee, e.g., Weierstrass, Abhandlungen aus der Funktionentheorie, pp. 712 et seq. ;
Osgood, Funktionentheorie, Vol 1, pp. 257 et seq.
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Sa,6™ is convergent. The proof of the theorem may now be
completed by a repetition of our previous arguments,

THEOREM 5. If the series is convergent jfor s=s,, and has the sum
S (80), then f(s)—f(s,) when s—>s, along any path whick lies entirely
within the region
: lam (s-8)) | < a<im
This theorem* is an immediate corollary from Theorem 2. It is of
course only when s, lies on the line of convergence that it gives us any
information beyond what is given by Theorem 4.

5. TaEOREM 6. Suppose that the series is convergent for s =0, and

let E denote the region

cZ8>0, |ams|Sa<im
Suppose further thut f (s) =0 for an infinity of values of s lying inside E.
Then a, =0 jor all values of n.

The function f(s) cannot have an infinity of zeros in the
neighbourhood of any finite point of Z, since it is regular at any such
point. Hence we can find an infinity of values s,=o, +4,i, where
On41> Oy, lim o, = @, such that f(s,)=0.

But g(s)=e7\18f(s): @ + gane—(Aﬂ—)\l)s
2

is convergent for s=0 and so uniformly convergent in £. Hence
g(s)~a
when s— o along any path in K. This contradicts the fact that

9 (8,)=0, unless @,=0. It is evident that we may repeat this
argument and so complete the proof of the theorem t.

~ 8. Determination of the abscissa of convergence. Let us
suppose that the series is not convergent for s=0, and let

il Ao,
n

* The generalisation of the ¢ Abel-Stolz’ theorem for power series (Abel, 1 ;
8tolz, 1, 3).

+ This theorem, like Theorem 2 itself, may be made wider: see Perron, 1;
Landau, H., p. 745. Until recently it was an open question whether it were possible
that f(8) could have zeros whose real parts surpass all limit: all that Theorem 6
and its generalisations assert is that the imaginary parts of such zeros, if they
exist, must increase with more than a certain rapidity, The question has however
been answered affirmatively by Bohr, 4. But if there is a region of absolute con-
vergence, the answer is negative (see III, § 5).

t By lim u,, we denote the ‘ maximum limit’ of the sequence u,: cf. Bromwich,
Infinite series, p. 13,
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It is evident that y Z0*. We shall now prove that o, =7.

(i) Let & be any positive number. We shall prove first that the
series is convergent for s=1y + 4.
"Choose € 5o that 0<e<8. Then, by the definition of y, we have

log|A(v)|<(y+8=€A\, |4 (y)|<e(’)’+5—e))\,
for sufficiently large values of v. Now
an _Rvs 2 A (V)A "xv8+A (72)8‘-)\”8.

The last term is, for sufﬁmently large values of n, less in absolute

value than ¢ 6)‘", and so tends to zero; and everything depends on
establishing the convergence of the series

Ee('y«l d-€)\y Ae"‘(‘)"’ra))\v
Now, since y + & — € is positive, we have

e(‘y+5--e))\yA e—('y+5))\v =(7+8) /)‘v+le(‘y+6—e))\u—(’y+5):t da

xv+l

<(‘y+8)/ o da;
Ay
and the series (y+8)3 / e g
is obviously convergent. It follows that
gy = Y.
(ii) Suppose Sa,e™=3b, (s>0)

convergent. Then
n n-~1
A(m)=3b,e™ =3 B(v) A + B(n) M.
1 1

It follows that |4 (n)|< Ko,

and therefore that
log| 4 (n)|<X,s+ K <(s+d) Ay,

for any positive 8, if # is large enough. Hence
sz lim 21— =y,
and therefore g Z .

* We can determine a constant K such that log| 4 (n)|> - K for an infinity of
values of n. ~This would still be true if = a, converged to a sum other than zero :
but if the sum were zero we should have

log|A(n) |-,
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From the results of (i) and (ii) we deduce
THEOREM 7. If the abscissa of comvergence of the series is positive,
it 18 given by the formula
o= lim ELA )]
n
7. Absolute convergence of Dirichlet’'s series. We can
apply the arguments of the preceding sections to the series

S| anl€™ i veereen(1).
We deduce the following result :

ToeoreM 8. There is a number & such that the series (1) is

absolutely convergent if o> and is not absolutely convergent if o <7.
This number, if positive, is given by the formula

7T 84 (™),
where Am)=|a,|+|ag|+ ... +|an].

In other words a Dirichlet’s series possesses, besides its abscissa,
line, and half-plane of convergence, an abscissa, line, and half-plane of
absolute convergence. It should however be observed that the theorem
which asserts the existence of a half-plane of absolute convergence is in
reality more elementary than Theorem 3, as it follows at once from the
inequality

™=l (ez0),
and does not depend on Lemma 1.

It is evident that @=o,. We may of course have = or
d=—oo. In general there will be a strip between the lines of
convergence and absolute convergence, throughout which the series
is conditionally convergent. This strip may vanish (if #=0,) or
comprise the whole plane (if oy=—- o, @ =w) or a half-plane (if

* Cahen, 1. Dedekind, lc. p. 1, and Jensen, 2, had already given
results which together contain the substance of the theorem. The result holds
when ¢¢=0, unless Z a,, converges to zero. If ¢,<0 the result is in general untrue.
It is plain that in such a case we can find ¢, by first applying to the variable s
such a linear transformation as will make the abscissa of convergence positive.
But there is a formula directly applicable to this case, viz.

o= Tim Rl4=4 ]
Mt
where 4 is the sum of the series Za, (obviously convergent when ¢,<0). This

formula was given (with a slight error,” viz. A, for A,.,) by Pincherle, 1: see
also Knopp, 6; Schnee, 8. Formulae applicable in all cases have been founds
by Knopp, 6 (for the case A\,=logn only); Kojima, 1; Fujiwara, 1; and
Lindh (Mittag-Leffler, 1).
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Tp=—®, —W<F<® O —w<o,<®, =) For Dirichlet’s
series of a given type, however, its breadth is subject to a certain
limitation.

= logn

THEOREM 9. We have d—0p=<lim S
n

We shall prove this theorem on the assumption that ¢, > 0; its truth is
obviously independent of this restriction. Given 8, we can choose 7, so that

| A (n)| < elot M (n > ny),

and accordingly
|ty |=] 4 (n)— A (n—1) | < 26T0+8)Mn < (70F2) An %
Hence A (n)= ;j lay] < A (ng)+me@t®rncp £lTot38) A
1

if n 2 », and », is sufficiently large in comparison with n,. Thus
log 4 (n) _logn
T S
from which the theorem follows immediately.

If logn=o0(A,), the lines of convergence and absolute convergence coincide:
in particular this is the case if A\,=n. In this case our theorems become,
on effecting the transformation e—%=uz, classical theorems in the theory of
power series. Thus Theorems 1 and 3 establish the existence of the circle of
convergence, and 7 gives a slightly modified form of Cauchy’s formula for the
radius of convergence. Theorems 2, 4, 5, and 6 also become familiar results.
If A, =log n, the maximum possible distance between the lines of convergence
is 1. This is of course an obvious consequence of the fact that S2-1-% is
convergent for all positive values of 8.

It is not difficult to construct examples to show that every logically
possible disposition of the lines of convergence and absolute convergence,
consistent with Theorem 9, may actually occur. We content ourselves with
mentioning the series

'*'0'0+38 (n ;nl)’

3 52 togny-s

n
which is convergent for all values of s, but never absolutely convergent.

8. It will be well at this point to call attention to the essential
difference which distinguishes the general theory of Dirichlet’s series
from the simpler theory of power series, and lies at the root of the
particular difficulties of the former. The region of convergence of a
power series is determined in the simplest possible manner by the
disposition of the singular points of the function which it represents :
the circle of convergence extends up to the nearest singular point. As
we shall see, no such simple relation holds in the general case; a
Dirichlet’s series convergent in a portion of the plane only may
represent a function regular all over the plane, or in a wider region of

« 1f =2 for n=n,, as we can obviously suppose.
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it. The result is (to put it roughly) that many of the peculiar
difficulties which attend the study of power series on the circle of
convergence are extended, in the case of Dirichlet’s series, to wide
regions of the plane or even to the whole of it.

There is however one important case in which the line of con-
vergence necessarily contains at least one singularity.

TrreoreM 10. If all the coefficients of the series are positive or
zero, then the real point of the line of convergence is o singular point of
the function represented by the series*.

We may suppose that o,=3=0. Then, if s=0 is a regular point,
the Taylor’s series for f(s), at the point s=1, has a radius of con-

vergence greater than 1. Hence we can find a negative value of s
for which

J(8)= 2 (5= 1)f<")(1) 2 (1 S) zanxne M

But every term in thls repeated series is posmve. Hencet the
order of summation may be inverted and we obtain

(s)=§ae

Thus the series is convelgent for some negatlve values of s, which
contradicts our hypotheses.

In the general case all conceivable hypotheses may actually be
realised. Thus the series

17 ~2"%+ 3"~
whxch converges for o > 0, represents the functlon

(1-2"9L(s), 1

which is regular all over the plane. 'The series
3972
has the imaginary axis as a line of essential singularitiess.

* This theorem was proved first for power series by Vivanti, 1, and
Pringsheim, 1. It was extended to the general case by Landau, 1, and H., p. 880.
Further interesting generalisations have been made by Fekete, 1, 2.

1 Bromwich, Infinite series, p. 78.

1 For the theory of the famous ¢function of Riemann, we must refer to
Landau’s Handbuch and the Cambridge Tract by Messrs Bohr and Littlewood which,
we hope, is to follow this.

§ Landau, 2. General classes of such series have been defined by Knopp
4. Schnee, 1, 8, and Knopp, 1, 8, 8, have also given a number of interesting
theorems relating to the behaviour of f(s) as s approaches a singular point on the
line of convergence, the coeflicients of the series being supposed to obey cerfain
asymptotic laws. These theorems constitute a generalisation of the work of
Appell, Cesaro, Lasker, Pringsheim and others on power series.
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9. Representation of a Dirichlet's series as a definite integral.
We may mention here the following theorem, which is interesting in itself
and useful in the study of particular series. We shall not use it in this
tract, and therefore do not include a proof.

THEOREM 11. Let p,=logh,. Then

1 ®
s 'I‘ﬂ* L 8—1 , - A dz
a,e =r 4(3) .z (Zaze )dz

if 0 >0 and the series on the left-hand szde s convergent*.
We have, for example,

§(8)=2n"ﬂ—Fl(s) oef_ dz, (1 =21-8) ¢(8)=3 (= 1)"1p~ B_F(_s—) ;"+11 -

Here ¢ >1 in the first formula, and ¢>0 in the second; and ¢ (s) is the
Riemann ¢-function.

I1I

THE FORMULA FOR THE SUM OF THE COEFFICIENTS OF A
DIRICHLET'S SERIES: THE ORDER OF THE FUNCTION
REPRESENTED BY THE SERIES

1. We shall now prove a theorem which is of fundamental
importance for the later developments of the theory.

THEOREM 121. Suppose A, Z 0 and the series convergent or finitely
oscillating for s =B. Then

S, A
Sa,e " =0|t|
1

uniformly for o Z B+ e>B and all values of n; that is to say, given
any positive numbers 8, €, we can find t, so that

.lg‘,av P

Jor o ZB+¢ |[t]| Z ¢, and all values of n. In particular we have,
for m= o,
S(s)y=o]¢]
uniformly for o Z B+ e
* See Cahen, 1; Perron, 1; Hardy, 6; the last two authors give rigorous

proofs.
+ Landau, H., p. 821.
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.

We may take 8 =0 without loss of generality. Then
lay| <K, |A(pv)|<K
for all values of [L and v. Also, if 1 <N <n, we have
Ea PR z a6y 2 A(N,v)Ae™ + 4 (N, n)e ™
) = S] + Sg + S3,
say ; and since | & ™*| <1 if o Z ¢, we have
|8y |< KN, |8|<K, 8 +8;=0(N).
We have moreover, by Lemma 2 of I, § 1,
8|23l -, A
18, <K Yach e K /(145
Sa,6™ =0 (N)+ 0 (ta7¢)
1
if 1 <N <n. On the other hand it is evident that
Sa,e ™ = O(N)
1

if NZn. If now we suppose that IV is a function of |¢| which tends
to infinity more slowly than ||, we see that in any case

n
?ave_)‘"*’:olt].

2. We now apply Theorem 12 to prove an important theorem
first rigorously and generally established by Perron*.

THEOREM 13. If the series is convergent for s=f3 + iy, and
>0, ¢>B, M<o<Ayy,

1 c+1i0 s ds _ n

577 o i S(s)e ;_?“v,

tke path of integration being the line o =c. At a point of discontinuity
= A, the integral has a value holf-way between z'ts limits on either

szde, but in this case the integral must be regarded as bgmg defined by
its principal valuet. ’

then

* Perron, 1. See also Cahen, 1; Hadamard, 1 (where a rig‘@ proof is
given for series which possess & half-plane of absolute convergence); Landau, H.
pp. 820 et seq.

+ The principal value is the limit, if it exists, of

1 c+iT ws 8 .
Smi S(8)é g
c-1T
which may exist when the integral, as ordinarily defined, does not.

*y
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This theorem depends upon the following lemma.

LemmMa 8. If z is real, we have

, =1 (2>0)

1 [et+io d )
21Ti i % (‘T O))
'-O (w<0)!

it being understood that in the second case the principal value of the
integral is taken.

We may leave the verification of this result as an exercise to the
reader*.
Let A, <0 <Ay, and

g(s) =evs {f(s) - % a.,e-)\"s} = g ave"‘()\v - w)8
1

n+1
< 8
= ?by@ My ,

where b, =@y, gy =Auyy — o, so that u,>0. It is clear from the
lemma that what we have to show is that

ctio d
/ _ g(s)—sf=0 ........................ (1).
cC—1®
Applying Cauchy’s theorem to the rectangle whose vertices are
c—iTy, c+iTy, y+iTs, y—1iTh,
where 7; and 7, are positive, and y > ¢, we obtain
c+iT, ds fy—iTl ds fy+iT2 f7+sz ds
s)— = $)— — —+ 8)—.
fc—m g( ) s e~iT, g( ) s e+iT, ) ( ) §
Keeping 7} and 7, fixed, we make y tend to 1nﬁn1ty. By Theorem 2,
the upper limit of |g(s)| in the last integral remains, throughout this
process, less than a number independent of y. Hence the last integral
tends to zero, and

[ra@%= [ eoF - [ e® S

c-2T -1 c+iTy

if the two integrals on the right-hand side are convergent. Now, if
we write

g(8)=¢""h(s),

* The easiest method of verification is by means of Cauchy’s Theorem. Full
details will be found in Landau, H., pp. 342 et seq.
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we can, by Theorem 12, choose 7 so that |A(s)]<eT), for s=0 + 1T,
o2¢ T,>T. Hence the second integral on the right-hand side of
(2) is convergent, and

w+iT, ds
[ 9@

c+iTy S

€l, © €
< o T22)/c htdg <t
Thus the integral in question tends to zero as 7, - . Similarly for
the integral involving 77. Hence (1) is established and the theorem
is proved, except when w is equal to one of the X’s. The reader will
have no difficulty in supplying the modifications necessary in this
case.

3. The order of f(s) for s=8 and for s= 8. Theorem 12
suggests the introduction of an idea which will be prominent in the
rest of this tract.

Suppose that /(s) is a function of s regular for o>y, If 8>, and
¢ is any real number, it may or may not be true that

S@+t)=0(¢t1f) covvrriiiiiiniins (1),
when o= and |¢|— . If this equation is true for a particular
value of ¢, it is true for any greater value. It follows, by a classical
argument, that there are three possibilities. The equation (1) may be
true for all values of ¢ or for some but not all, or for none. In the
second case there is a number p such that (1) is true for é>p and
untrue for £ <p. In the first case we may agree to write conventionally
p=-o, and in the third case p=o. We thus obtain a function
p (o) defined for o>y ; and we call u(B) the order of f(s) for o=p.
When it is not true that u (8) = o, we say that /(s) is of finite order
for o=p.

Again, the equation (1) may or may not hold uniformly for o = B.
If we consider it from this point of view, and apply exactly the same
arguments as before, we are led to define a function v (B) which we
call the order of f (s) for o Z B. Evidently v Z n. When it is not true
that v(B8)= o, we say that f(s)is of finite order for o Z 8. And if
J(8) is of finite order for o Z B+¢ for every positive ¢ but not
necessarily for o = B, we shall say that it is of finite order for o> .
Finally, the equation (1), without holding uniformly for ¢ Z B3,, may
hold uniformly for B, <o < B,. We are thus led to define the order of
f(8) for By =c=p,. The reader will find no difficulty in framing a
formal definition, or in giving precise interpretations of the phrases
‘f(s) is of finite order for Bi=o=pB,’, ‘f(s) is of finite order for
Bi<o<py.
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4. Lindelsf’s Theorem. In order to establish the fundamental
properties of the function u (o) associated with a function f(s), defined
initially by a Dirichlet’s series, we shall require the following theorem,
which is due to Lindelof, and is one of a class of general theorems the
first of which were discovered by Phragmén *.

TuroreM 14. If (1) f(s) is regular and of finite order for
Bizo =By (i) £(5)=0(t k) foro=py (i) F(5)=0(¢[4) for

U=B2) t}w
" F(€)=0( ¢ ko),

untformly for B, =0 =B, k() being the linear function of x which
assumes the values ky, k, for =, B..

The special case in which £, =%,=0 is of particular interest; we
have then the result that ¢f f(s) ¢s of finite order for B, <o <p,,
and bounded on the lines o = B, and o = f3,, then it is bounded in the
whole strip between them.

In proving this theorem we may evidently confine our attention to
positive values of 2.

First, suppose £, as well as £, to be zero, so that £ () is identically
zero and /' (s)=0 (1) for o =B, and o =B;,. Let M be the upper bound
of the values of | /| on these two lines and the segment (8,, B,) of the
real axis. Also let

g@)=esf(s)  (e>0)
Then lg(s)|=e<t|f(s)[ =|f(s)],

so that g (§)=0 (1) for =B, and o =p,. Also, as fis of finite order,
g -0 as ¢ - », uniformly for 8, <o =pB,. Hence, when ¢is given, we
can determine £, so that |g| <M for B, = o <, ¢>1¢,. It follows that
any point whose abscissa lies between B, and 8, can be surrounded by a
contour at each point of which | g | < M, the contour being a rectangle
formed by the lines o=p,, o = f3,, the real axis, and a parallel to it at a
sufficiently great distance from the origin. Hence, by a well-known
theorem, | g | < M at the point itself, and so

|f(s)] < Met.
This is true for all positive values of ¢ and therefore | /| = M.

Thus the theorem is proved. It should be observed that, if we had

* Lindeldf, 1. See also Phragmén, 1; Phragmén and Lindelof, 1; Landau,
H., pp. 849 et seq.
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used the factor ¢** instead of e+, we could have proved a little more,
viz. that if | £(s)| is less than M for o =B, and o = B,, it is less than
M for B, =0 = fB;. We leave the formal proof of this as an exercise
for the reader.

Next, suppose % (¢) not identically zero, and consider the function*

h (s) — (.._ si)k(a) = ek(a) 108(““.),
where the logarithm has its principal value. This function is regular
in the region B,=o=p,, t21,1 and, within this region, may be
expressed in the form
ok (@) oti) o8 £+ 00},

where c is a real constant. Thus

|k ()| =tk gOW),
so that the ratio of |%2(s)| to ¢¥@ remains throughout the region
between fixed positive limits. Hence the function

F(s)=f (s)/h (s)
satisfies the conditions which we supposed before to be satisfied by
J(s). Thus

F(s5)=0(1), f(s)=0{tk},

uniformly throughout the region; and the theorem is completely
proved. -

6. Properties of the funetion u (o) associated with a
Dirichlet’s series which has a domain of absolute con-
vergence. We shall now apply Lindelof’s Theorem to establish the
fundamental properties of the function u (o), when f(s) is defined by a
Dirichlet’s series. In order to obtain simple and definite results, we
shall limit ourselves to the case in which there is a domain of absolute
convergence.

_TueoreM 15. Suppose that the series Sane ™ s absolutely

convergent for o>, and that the function f(s), defined by the series
when o >, is regular and of finite order for o>y, where y <. Then
the function p(o), defined for o>y, has the following properties.
Either it is always zero; or it is zero for o Z y,, where y <y, =T, while

* This auxiliary function (introduced by Landau, ®©) is a little simpler than
that used by Lindelsf. .

+ We suppose ¢t=1 instead of, as before, =0, to avoid the singularity of & (s)
for s=0 even when 3,<0<8,. Inproving the theorem it is evidently only necessary
to consider values of ¢ greater than some fixed value.
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Jor y<o<y, it 18 a positive, decreasing, convexr*, and continuous
Junction of . Further, v(o) is tdentical with n (o).t
Suppose that u = p, for o =B,>y, and p=p, for ¢ =B, >B;,. Then
S(Bu+ti)=0([t|mra), f(B+t])=0(|t]|rwte)

where ¢, ¢; are any positive numbers. Applying Lindeléf’s Theorem
we obtain at once
< B

I‘-'“IB B (f"l + ‘1) + ﬁ ;8 (i‘-‘z'*‘ &),

or, as ¢ and e, are arbitrarily small,

<(ﬁ-a"'°‘)l¢1+(‘f“ﬁl)_lf2
s BB rerereeieeaas (1),

for B, =0 =< B,. This relation expresses the fundamental property of
the function pu.

A similar argument shows that, if u=— o for any o, the same
must be true for every o. We shall see in a moment that this
possibility may, in the present case, be ignored.

It is clear that u = 0 for o> &; for if 8> & then

. ORI A
for o = 8. But it is easy to see also that u = 0 for sufficiently large

values of 0. For, if a,, is the first coefficient in the series which does
not vanish, we may write /(s) in the form

(I/m6~)\ms + e—)‘ms 2 ane"()‘n_)‘m) 3.

n>m
The series here written is absolutely and uniformly convergent for
a>7, and so tends uniformly to zero as o — . Hence we can so
choose o that

f(5'> Uy € =P (L +p),

* We say that f (z) is convex if it satisﬁes the inequality

floz+(1-0)y}= +(1-6)1(y)

for 0=6=<1. The theory of such functxons has been investigated systematically by
Jensen, 8. If we put =13 we obtain the inequality

U @+ yl=f(@)+/(y);
and Jensen has shown that, if f (x) is continuous, the more general inequality can
be deduced from this. A continuous funection is certainly convex if

hm f (z+ h) - 2f (x) +f (z - h)
h—»0 L

exists for all values of x and is never negative. See Harnack, 1, and Hélder, 1.
+ The results comprised in Theorem 15 are in the main due to Bohr, 8.

H &R . 2
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where |p|<4 for 0 >w. Thus |f| has a positive lower bound when
o has a fixed value greater than wand |¢|— o ; and so » = 0, and
therefore p =0, for o> o

We can now show that u can never be negative. For if u were ever
negative we could suppose, in (1), that s, <0, while 8, and ¢ are both
greater than o, so that u,=0, p=0. This obviously involves a con-
tradiction. We thus see that u =0 for o >7.

Again, if in (1) we suppose g, > 0, and B, > 7, so that u, =0, we see
that w<p, if o>B,. Thus p, in so far as it is not zero, is a decreasing
function of o, in the stricter sense which forbids equality of values.

The only property of u (o) which remains to be established is its
continuity. If B, is a particular value of o, the numbers

p(Bi=0)=p', p(B)=pm, p(Bi+0)=p"

all exist (since p is monotonic) and w, Z w; Z p,”". But since u is
convex, we have the inequalities

p(Bi—8) = pu (B, —28) — pu (By=3) + p (By),
l"(ﬁl)‘f"(ﬁl'*‘8)§l‘<:81_3)‘l‘(ﬁl)s

where 8 is positive. Making 8 -0, we obtain from the first p,' = p,,
and then from the second u; = u,". It follows that p," = p, = p,", so that
1 18 continuous.

Finally, in order to estabhsh the equivalence of the functions w and
v, it is only necessary to apply Theorem 14 to a strip whose right-hand
edge lies in the domain of absolute convergence, and to take account
of the uniformity asserted by the theorem. 'This we may leave to the
reader.

We may remark that it follows from Theorem 12 that p =1 for
o >0,, where o, is the abscissa of convergence.

6. The actual determination of the function u(o) associated with a given
Dirichlet’s series is in general a problem of extreme difficulty Consider for
‘example the series

‘ 1-8—2-8 4375 =(1-21-8) ¢ (s).

The series is convergent for ¢ > 0, and absolutely convergent for ¢>1 ; the
function is regular all over the plane. Obviously u(¢)=0 for o =1, while it
may easily be shown, by means of Riemann’s functional equation for the
{-function, that p(oc)=%4—-0c for ¢=<0. All that is known about p(s) for
0=c=1 is that its graph does not rise above the line joining the points
(0, 3) and (1, 0)*. It has however been proved by Littlewood+ that, if it be
true that all the complex roots of ¢ (s) have the real part %, then

plo)=3—0 (¢<3), u(a)=0 (cZ})
* Lindelof, 1 ; Landau, H., p. 868. 1 Littlewood, 2.
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7. Let us consider now a Dirichlet’s series with distinct lines of con-
vergence and absolute convergence. To fix our ideas let us suppose o(y=0,
=1, and the function regular and of finite order for some negative values
of . Then p=0 for ¢=1, and p=1 for ¢=0. It follows at once, from the
convexity of g, that p=<1-¢ for 0=¢=1. It will be proved later on* that
p>0 for ¢<0. Thus the final range of invariability of u, which cannot begin
later than o=1, cannot begin earlier than ¢=0. Bohr+ has constructed
examples which show that the two extreme cases thus indicated can actually
occur. He has shown that it is possible to find two ordinary Dirichlet’s series
for each of which o(=0, =1, while for one series u=0 for 6>0 and for the
other p=1- ¢ for O<o<1. He has also shown] that it is possible for two
ordinary Dirichlet’s series to have the same u-function but different regions of
convergence, and so that it is futile to attempt to define the region of con-
vergence of a Dirichlet’s series in terms merely of the associated p-function.

So far we have assumed the existence of a domain of absolute convergence.
Some of our arguments remain valid in the general case, but it is no longer
possible to obtain such simple and satisfactory results. We shall content
ourselves, therefore, with mentioning one further interesting result of Bohr.
Suppose that the indices A, are linearly independent §, that is to say that there
are no relations of the type

Eyh+kode+ ...+ N, =0,
where the &’'s are integers, not all zero, holding between them. Then Bohr||
has shown that, if £(s) is regular and bounded for o =3, the series is absolutely
convergent for ¢=B. Thus if there is no region of absolute convergence, the
function cannot be bounded in any half-plane. He has also shown by an

example that this conclusion is no longer necessarily correct when the restric-
tion of the linear independence of the N’s is removed.

IV
THE SUMMATION OF SERIES BY TYPICAL MEANS

1. So far we have considered only convergent Dirichlet’s series.
We have seen that such a series defines an analytical function which
may or may not exist outside of the domain of convergence of the series.

* See VII, § 10, Theorem 50. 1 Bohr, 6, pp. 30 et seq.

1 lLc. supra p. 36.

§ This is in a sense the general case. The condition is satisfied, for example,
when A\,=logp,, where p, is the n-th prime, but not when A,=n or A,=logn.
The result of course still holds when A, =n.

|| Bohr, 7.

2—2
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In the modern developments of the theory of power series a
great part has been played by a variety of methods of summation of
oscillating series, which we associate with the names of Frobenius,
Holder, Cesaro, Borel, Lindelof, Mittag-Leffler, and Le Roy*. Of these
definitions the simplest and the most natural is that which defines the
sum of an oscillating series as the limit of the arithmetic mean of its
first # partial sums. This definition was generalised in two different
ways by Holder and by Cesaro, who thus arrived at two systems of
definitions the complete equivalence of which has been established only
recently by Knopp, Schnee, Ford, and Schurt.

The range of application of Cesiro’s methods is limited in a way
which forbids their application to the problem of the analytical con-
tinuation of the function represented by a Taylor’s series. A power
series, outside its circle of convergence, diverges too crudely for the
application of such methods: more powerful, though less delicate,
methods, such as Borel’s {, are required. But Cesiro’s methods have
proved of the highest value in the study of power series on the circle
of convergence and the closely connected problems of the theory of
Fourier’s series§. And it 1s natural to suppose that in the theory of
Dirichlet’s series, where we are dealing with series whose convergence
or divergence is of a much more delicate character than is, in general,
that of a power series, they will find a wider field of application.

- The first such applications were made independently by Bohr and
Riesz|, who showed that the arithmetic means formed in Cesaro’s
manner from an ordinary Dirichlet’s series may have domains of
convergence more extensive than that of the series itself 9. But it
appeared from the investigations of Riesz that these arithmetic means

* For a general account of some of these methods and the relations between
them, see Borel, Legons sur les séries divergentes, Ch. 3 ; Bromwich, Infinite series,
Ch. 11; Hardy and Chapman, 1 ; Hardy and Littlewood, 1, 2.

+ Knopp, 1; Schnee, 2; Ford, 1; Schur, 1. Seealso Bromwich, 1 ; Faber, 1;

--Landau, 18 ; Knopp, 7.

1 Cf. Hardy and Littlewood, 1.

§ We need only mention Fejér’s well-known theorem (Fejér, 1) and its
generalisations by Lebesgue, 1; Riesz, 8 ; Chapman, 1, 2; Young, 1, 2; Hardy
and Littlewood, 8 ; and Hardy, ©. We should say here that when referring to
Marcel Riesz we write simply ¢ Riesz’.

|| Bohr, 1, 2, 8, 6; Riesz, 1, 2, 8, 4.

9 Thus, as was shown in a very simple manner by Bohr, 5, the series

= (-1)n-ln-e
is summable by Cesdro’s k-th mean if o> - k. In so far as.real values of s are
concerned, this had already been proved by Cesaro, in a somewhat less elementary
way (see Bromwich, Infinite series, p. 317). The general result follows from this
and Theorem 29 below.
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are not so well adapted to the study of the series as certain other
means formed in a somewhat different manner. These logarithmic
means’*, as well as the arithmetic means, have generalisations
especially adapted to the study of the general series Sa,e™ ™. We
shall begin by giving the formal definitions of these meaust; we shall

then indicate “shortly how they form a natural generalisation of
Cesaro’s.

2. Definitions. We suppose A, Z 0, and we write

A -\, 8 -8
€=ty e M =a, ln =Cny
CA (T) = 3 Cn, C11 (t) = 3 Cn-
N <7 ln<t
Thus Cr(t)=e+ e+ ... +¢, M <1 =M50).

If A.=m, Cy(7) is identical with the function C(7) defined in I, § 2,
except when = is an integer », when the two functions differ by ¢,.

Further, we shall write

0:(“’): S (0=N) e = K/wOA(T)("’_T) w1 dr,
M<w 0

where « is any positive number, integral or not§. We leave it to the

reader to verify the equivalence of the two expressions of Cj (w). Ina

precisely similar way we define C; (w) : thus
Crwy= 3 (w-1)e,=x f1 “0,(8) (w -2yt .|
l,<w

We shall call the functions
Cr (0o, O (w)fw,
introduced by Riesz, the typical means (moyennes typiques¥) of order «,

* Riesz, 2.

+ Riesz, 8. The definitions of this note, which are those which we adopt as
final, differ from those of the earlier note.

+ If A (z) is an increasing function of x, which assumes the value A, for z=n,
then C, (M), regarded as a function of , is, except for integral values of z, the same
function as C (z).

§ The theory of non-integral orders of summation by means of Cesdro’s type
has been developed by Knopp, 1, 2, and by Chapman, 1. These writers consider
also negative orders of summation (greater than ~1): but we shall not be concerned
with such negative orders here. It should be observed that C: (0) =0 if wKA;.

|| We have C;(t)=0 if t=I;; and ll=e)“ 21. Thus we may take 1 as the lower
limit. And C}(w) =0if wgl.
9 Riesz, 8. The type is the type of the associated Dirichlet’s series (I, § 1).
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o the first and the second kind, associated with the series Ea,,e'x"s-
It should be observed that, so long as we are thinking merely of the
problem of summing a numerical series Sc,, the word ‘typical’ is
devoid of significance; it only acquires a significance when we are
summing a Dirichlet’s series of a special type by means specially
.defined with reference to that type. We shall frequently omit the
suffixes A, /, when no ambiguity can arise from so doing. The reader
must however bear in mind the distinction already referred to between
the function C'(7) thus defined and the function C(7) of Section I.

Ir 0 " Cx(0) > C

as w — o, we shall say that the series 3¢, is summable (A, «) to sum C*,
If the typical mean oscillates finitely as w - o, we shall say that the
series is finite (A, «). Similarly we define summability and finitude

(¢4 «).
We add a few remarks+t to show the genesis of these definitions. If \,=n,
the typical mean of the first kind is
0 "3 (0-n)cp=k0o " /0 C(r)(w—1)"'dr

n<w
If in particular k=1, and o is an integer, we obtain
1o-1 C1+Cy+...+C, _,

- f (w—7n)Cp=— -

(where Cp=c; 4¢3+ ... + ¢,), which is practically Cesaro’s first mean. If « is
an integer greater than unity, we have

m-*ﬂ(:(r)(m-rr-‘dr:x!w'*(/o d-r>"0(r).1

Now Cesiro’s x-th mean is
k!n"" C;,
where C;; is the «-th repeated sum formed from the numbers C,, and it is

plain that, as soon as we replace C, by a function C(r) of a continuous variable
, we are naturally led to the definitions adopted here. And it is then also
natural to abandon the restriction that « is an integer. The integrals to
which we are thus led are of course of the type employed by Liouville and
Riemann in their theories of non-integral orders of differentiation and
integration §.

* This is substantially the notation introduced by Hardy, 4. Hardy writes
‘summable (R, N, k) ’—i.e. summable by Riesz’s means of type A and order «.

+ Compare Hardy, 6.

I See, e.g., Jordun, Cours d’analyse, Vol. 3, p. 59.

§ Liouville, 1, 2 ; Riemann, 1. See also Borel, Legons sur les séries & termes
positifs, pp. T4 et seq.
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It has in fact been shown by Riesz* that these definitions are completely
equivalent to Cesiro’s, and to the generalisations of Cesiro’s considered by
Knopp and Chapmant. It is this which justifies our calling the typical
means of the first kind, when \,, ==, aritAmetic means. In this case the means
of the second kind are not of any interest }.

So much for the case when A,=n. If in the general definition we put
«=1, o=X\,, we obtain

(I"l G +F'2 Cot... +Mn—1 Cn—l)/km
where p =X\ ., =X, . This is the natural generalisation of Cesaro’s first mean

which suggests itself when we try to attach varying weights to the successive
partial sums C,.

When A,=logn, the series Sa,e”™® is an ordinary Dirichlet’s series.

The means of the first kind are then what Riesz has called logarithmic means§,
and it is the means of the second kind that are arithmetic means. From the
theoretical standpoint, the former are in general better adapted to the study
of ordinary Dirichlet’s series|| On the other hand, arithmetic means are
simpler in form and often easier to work with. Hence it is convenient and
indeed necessary to take account of both kinds of means ; and the same is
true, of course, in the general theory.

3. Summable Integrals. It is easy to frame corresponding definitions
for integrals. We suppose that A () is a positive and continuous function of
2, which tends steadily to infinity with #, and that X (0)=0, and write

O (2)= e (u) du=/§ ® ¢ (u) du,

Alu)<x
where A is the function inverse to A. Further we write

C: () = & /: O (z) (a)-x)"ld.'v.

Then 3f 0 05 (0) =0,
as o = o, we shall say that the integral
o
) d.
/ o c(x)dx

s summable (A, k) to sum C.
This definition may be applied to the theory of integrals of the type

/ a () ™M@ dg
0

* Riesz, 4.

+ Knopp, 1, 2; Chapman, 1. T See § 4 (3).

§ Riesz, 2.

|| It may also be observed that the form of the arithmetic means which we have
adopted is better adapted for this purpose than that of Cesaro. Thus, for example,
Schnee (7, pp. 393 et seq.), working with Cesiro’s means, was able to avoid
an unnecessary restriction only by using the result of Riesz cited above as to the
equivalence of Cesaro’s means and our ‘arithmetic ’ means. See p. 56, footnote (*).
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in the same way that the definitions of § 2 may be applied to the theory of
Dirichlet’s series*.

Most of the theorems which we shall prove for series have their analogues
for integrals. When this is so, the proofs are in general easier for integrals
than for series, and we have not thought it worth while to give the details of
any of them. We have not even stated the theorems themselves explicitly,
except one theorem (V, § 3) of which we shall make several applications.

4. In this paragraph we shall state, withdut detailed proofs, a number of
special results which may be regarded as exercises for the reader. Some of
them are in reality special cases of general theorems which we shall give later
on. They are inserted here, partly because they are interesting in themselves,
and partly in order to familiarise the reader with our notation and to give
him a general idea of the range of our definitions.

(1) If 3a, is convergent and has the sum 4, then

0
Sa,e” M =4 + /0 se” s {A, (u)- A} du
for all values of s for which the series is convergent. If in addition >0, then
0
Eane"‘ns=fo se~% A, (u) du.

These formulae are simple examples of a mode of representation of Dirichlet’s
series by integrals which we shall often have occasion to use.

(2) Every convergent series is summable ; more generally, the limits of
oscillation of the typical means associated with a series are at most as wide
as those of the series itself. When the series is given, it is possible to choose
a sequence (\,) in such a way that the series shall be summable (A, 1) and
have as its sum any number which does not lie outside its limits of oscillation.

(83) When A\, =e" a series is summable (), «) if and only if it is convergent.
It follows from Theorem 21 below that this is true whenever A\, /A, Z£k>1
for all values of n.

(4). The series 1-8-2-84378— |
is summable (#, «) if and only if k> —o. In other words, it is summable by
Cesaro’s k-th mean if and only if k> —o. For references to proofs of this
proposition, when « is an integer, see the footnote () to p. 20. The general
result is distinctly more difficult to prove ; a direct proof has been given by
Chapman, and another indicated by Hardy and Chapman+.

* The integral may obviously be reduced, by the substitution A (r)=£, to one in

which the exponential factor has the simpler form ¢~%. There is no such funda-
mental distinction of integrals into types as there is with series. But an integral
may be summable (A, ) for one form of A and not for another.

+ Chapman, 1 ; Hardy and Chapman, 1.
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Exactly the same result holds for the more general series* se*n-¢
(provided a is not a multiple of 27) and for the integral t

L] .
/ e 275 dr.
0
(5) The series Sedin®n-¢  (O<a<l, 4+0)
is summable (n, «) if (k+1)a+o>1.1
(6) The series Sq-l-t (t+0)

is not summable (%, k) for any value of «, but is summable (log#, «) for any
positive « however small§. The series

sn~1(logn)~1-#
is not summable (log %, «) for any value of «, but is summable (log log 7, )

for any positive «x however small||; and so on generally.

(7) The series Sc, is summable (log n, 1) to sum C'if and only if
1 1
(01 +§ 02+ +1—1’ C,,>/10g7z—>0.1T

(8) If sa,is summable (A, ) to sum 4, and S, is summable (A, «) to
sum B, then 3 (pa,+¢b,) is summable (A, «) to sum pd +¢B.

9) Ifsa,e” M8 is summable (A, k) to sum f(s), then

am+lew)\m+ls+a’m+23—)\m+28+--'

is summable (p, k), where p, =X, ,n, to sum
t

f(s)—ale')“s—-... —ape A3,
(10) If Sa,e”™M*is summable (), «) to sum f(s), then Sa,e~ (=M
is summable (g, k), where u,=\, -7, to sum eM 87 (s).

The last two cxamples will be used later (VII, § 2). The first is a
corollary of (8). The second follows from the identity

2 (1_ )\_”..__h>xane_ ()‘n"xl)s
(2]

)‘n - 7\1 <w
_ (f’jll)K ME S (1 _ 7\n)\ )" e,
@ 7\”<w+>\1 o+ 1

* Chapman, 1. 1 Hardy, 6.

+ Hardy, 6 (where 4 is taken to be 1), This paper contains a number of
general theorems concerning the relations, from the point of view of convergence
and summability, between the series  f(n) and the integral [ f (z) dz.

§ Riesz, 1. See also Hardy, 4, and Theorems 19, 42, and 47.

| Hardy, 4. 9 Riesz, 3.
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(11) The summability of the series

¢ +cet+c3+...
does not, in general, involve that of the series

cotc3tceyt...;
nor is the converse proposition true. It may even happen that both series
are summable and their sums do not differ by ¢;. Both propositions are true,
however, if the increase of A, is sufficiently regular, and in particular if A, is
a logarithmico-exponential function*, 7.e. a function defined by any finite
combination of logarithms and exponentials.

v

GENERAL ARITHMETIC THEOREMS CONCERNING
TYPICAL MEANS

1. The general theorems which we shall prove concerning the
summation of series by typical means may be divided roughly into two
classes, There are, in the first place, theorems the validity of which
does not depend upon any hypothesis that the series considered are
Dirichlet’s series of any special type. Such theorems we may call
‘arithmetic’. There are other theorems in which such a hypothesis is
essential. Thus Theorem 23 of Section VI depends upon the fact that
we are applying methods of summation of type A to a series of the same
type. Such a theorem we may describe as typical’ +.

The theorems of this section are all ‘arithmetic’, those of the
following sections mainly (though not entirely) ¢typical’.

2. Five lemmas. We shall now give five lemmas which will
be useful in the sequel.

LemmMa 4. If ¢ isa positive function of x such that
f ¢ dz
ts divergent, and f=o (), then

/xfdm=o<fx¢dx>.

The proof may be left to the reader.

* Hardy, Orders of infinity, p. 17.
+ We make this distinction merely for the sake of convenience in exposition and
lay no stress upon it. T
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Lemuma 5. Let ¢ (), ¢ (@) be continuous functions of x suck that
¢ (@) eo Aa®, ¢ (@)oB2® (a2 0, B20)

asx - o, Then

X (#) = f ()Y (@-t)dt~s AB" (;Ulgiﬁ; 1) atp+ly

We can write
b ()= At + by, ¥ ()= B +y,,
where é.=0(t%), ¢,=0(P).

If we substitute these forms of ¢ and ¢ in x, we obtain a sum of four
integrals, the first, of which gives us

4B [* e @-tfar=apT GTIEESD ot

It remains to prove that the other three integrals are of the form

o(wd.“'ﬂ'f'l)-

Let us take, for example, the integral
A f: (@ ~-t)dt=A jm (@—=8)" ¢, (2) dt.
0

Given ¢, we can choose ¢ so that
[ (@) <et®  (=t=a)

Between 0 and ¢, |¢,(2)| is less than a number M (¢) which depends
only on ¢&.  Hence our integral is in absolute value less than

|A[{ef(w—t)“xﬂdHeM(m“},
and is therefore of the form o (2*#*1). The other integrals may be
proved similarly to be also of this form, and thus the proof of the

lemma is completed.
LeMMA 6. If k>0, u> 0, then
T(k+p+1)
K+ @ I A L
= p )y T W
And if k>0, p <1, p <k, then

‘- _ P(k—p+1) © g 0" (u) -
¢ #(w)_l‘(x+1)1‘(l~p.)/; du (w-—’u) “du.

ﬁ“’ C* () (0 —)*~ L du.

* Chapman, 1. The result is true fora> -1, 8> - 1: we state it in the form
in which we shall use it. By ¢ (z) ~Az" we mean that ¢/z* >4 88 s+,
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To prove the first formula, we substitute for C* (4) its expression
as a definite integral*. We thus obtain

[:0" (u) (m—u)#*l du:K_/:(w—u)#_ldu/ouC(T) (u_T)K'l ’

:K/‘“O(f)dr/"' =7 "V(w—-ul1du

I‘("+1)P(l’“) /W k+u-1
- TD(k+p) 0 Clr)(w=1) ar,
which is the formula required. The legitimacy of the inversion of
the order of integration follows at once from classical theorems f.

When p is a positive integer, we have the simpler formula

0K+“(w)=(x+l)(x+2) Ak +p) f d'r> C" (v).
To prove the second formula of the lemma, we observe that

OO
T (k—p+1)
T+ )T (1—p) do fC (u) (0 —u) " * du,

by the first formula. Integratmg by parts, we find
[or@@-uy* = f dc’ 9 (0wt du,
0

Differentiating with respect to w3 we obtam the second formula.
LeMMA 7. Ifc,is real, 0 = £ = o, and 0 <k =1, then

|g(§ w)|=|« /‘fC(T)(w-—T)K—ld‘r

The truth of the lemma is evident when «x=1, and we may
therefore suppose x <1. Substituting in the integral which defines
g (§, ») the expression of C (r) as an integral given by the second
formula of Lemma 6, with p=«, we obtain

g(g )_%lnmr/( T)K ld.’ ac” (u)( )—Kdu

/0 d dCdK O ),

* It is also easy to prove the lemma by means of the expression of C* (u) in
terms of ¢;, ¢y, ....

+ See, for example, de la Vallée-Poussin, Cours d’analyse infinitésimale, Vol. 2,
ed. 2, Ch. 2.

1 See the last footnote.

et (o)

< Max |C* (7).
07
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where h(u)= sin / f(m —n) Yr—u)y " dr

= 1_@_’2/ (0—7)" 1 (r—u) " dr.

Now if = has any fixed value between ¢ and o, and 0 < < ¢, then
(r—u)”" increases with w. Hence 4 (u) is a positive decreasing function
of u, always less than 1. Applying the second mean value theorem to
the integral (1), we obtain

g o) =h0)C () (0=9=9),
and this proves the result of the lemma*. In the same way we
can prove

LeMMA 8. Ifc,isreal, 0 =& = o, pu>0, and 0 <« =1, then

f————-P(f,,“f{‘E(lZ, f C* (1) (@ = 7)" " Ldr | = Max |05 (7)|

We would recommend the reader to pay close attentlon to Lemmas
7 and 8, and in particular the former. We shall appeal to these
lemmas repeatedly in what follows, the part which they play in the
theory of integrals of the ¢ Liouville-Riemann’ type being analogous to
that played by the classical mean value theorems in the theory of
ordinary differential coefficients.

It should be observed that, in the proof of Lemma 7, no appeal is
made to the particular structure of the function C'(r): an analogous
result holds for any function which possesses an absolutely convergent
integral over any finite interval. Further, the result may be extended
to apply to complex functions; but as we shall only make use of it
when C'(7) is real, we have given a proof which applies to this case only.

3. First theorem of consistency. We can now prove

THREOREM 16. If the series 3 c, is summable (A, k) to sum C, ¢t s
summable (\, ') to the same sum, for every «' greater than .

Writing « = « + p, and applying Lemma 6, we obtain

K P(/‘L+K+1)
O (w) = T(x+1)T () Jo

But C*(u) ~ Cu*. Hence the theorem follows immediately from
Lemma 5. In particular a convergent series is summable (A, «) for all
positive values of

* () (0 -y " du.

* The argument is that used by Riesz, 4
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The following proposition, which we shall have occasion to use later on,
is easily established by the same kind of argument : if

e P4 (0)=0(1),

then e"(f’*"s)“’A"l(w):—.o(l) '

for any positive 8 and any &' greater than «.

It is important to observe that the theorem of comsistency holds also
Jor integrals (IV, § 3). 'The proof is practically the same as for series.

4. Second theorem of consistency. Theorem 16 states a
relation between methods of summation of the same type A and of
different orders «, . There is a much deeper theorem which concerns
methods of the same order but of different types.

THEOREM 17. [f the series 3¢, is summable (I, x), where I, =™,
then it is summable (N, ) to the same sum.

The proof of this theorem is somewhat intricate, and we shall
confine ourselves, for the sake of simplicity, to two cases, viz. (i) that
in which « is integral, (i1) that in which 0 <x<1.* These are the
cases of greatest interest; and this course is one which we shall adopt
in regard to a number of the theorems which follow. Further, it is
easy to see that we may without loss of generality suppose C, the sum
of the series, to be zero: this can always be secured by an alteration
in the first term of the series.

We are given that

/lel ) (w—t)*"Ydt =0 (W) i (1),
and we have to prove that
'/:C)\('r) (w—T)Kﬁld'r=0(mK) ............ ceern(2).

If we put o=logw, r=1log¢, and observe that Ci (logt)= Ci(¢), we
see that (2) may be written in the form

[ 610 tog w-1og O o log ) e (3).

* We shall indicate summarily (see § 7) the lines of the proof in the most
general case.
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5. (a) Proof when  is an integer. In this case
L4
a0 =5 (%) cro.

We substitute this expression for C; (¢) in (3), and integrate x times
by parts. We can then show that both the terms integrated out and
the integral which remains are of the form required.

In the first place, all the integrated terms vanish except one,
which arises from the last integration by parts and is a constant
multiple of

" d\* ! (logw—logt)~!
or | (%) ]

=(= D)L k=1) 1w OF (w) = 0 (1).
Thus we need only consider the residuary integral, which is a
constant multiple of

w o rd\(logw—log £) !
j; O( (t) <(,Zt> —= ,_._...?«__,____ dt ............... (4).
Now it is easily verified that

K k-1
(2) (ogw—logt) =, 13/, ,(logwy (log ey ...(5),

¢
where H, , is a constant, and

But, using Lemma 4 and the inequality (6), we have
(log w)’ f * 0% () (log ) ¢~ dt = (log w)" / “(log )0 G) dt
] 1

=0 (log w)+*+' =0 (log w)*~.

Hence the integral (4) is of the form required, and the theorem is
proved when « is an integer.

6. (b) Proof when 0<x<1. In this proof we shall suppose
the ¢’s real. There is plainly no loss of generality involved in this
hypothesis, as we can consider the real and imaginary parts of
the series separately.

We have again to establish equation (3) of § 4. By Theorem 16,
0; (t)=o0(¢). Hence we can choose v so that

CL@)|<e  (tzv),

and evidently we may suppose »>1. We then choose a value of w
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greater than 3v, and denote by M the upper limit of C; (¢) in (1, v);
and we write the integral (3) of § 4 in the form

v w/3 w
f +/ +f =J,+Jy+J;.
1 v w8

In the first place
k-1
|Jy| < My (log%]) =o(logw)y .....couvennn. (1).

Secondly, integrating by parts, we obtain
3 K- 1 -
Ji== (log3) 1 €} Gu)—; (log¥) €} )

(o) T,

The first two terms are in absolute value less than a constant multiple
of ¢, and the last than*

[ o) () < S

Hence, for sufficiently large values of w, we have

2 c
| J. | <7‘ (108 W)* vevvrereeiiiieeeeii (2).

+ W/SC; (%) {(x -1) (log ?)

v

Finally, by the second mean value theorem,
k-1

- ,3) /:/3 Ci(t) (log %”) dt

3 (¢ c-1 (logw—log#\* ™!
=2 —t e W 080
o, GO =i )

w—1
where w = ¢ =w. Now it will easily be verified that the function
logw—logt\"'1
increases steadily from ¢=1 to ¢{=w, and that its limit when
t-—=w is w' . Hence, using the second mean value theorem
again, we obtain

|7y1= 2 (LB aty’ ’/:a(t)(w*t)x_ldt

/ﬁo, t)(w—t)"'ldtl,

* Here we use the facts that 0<1-—x<1 and that, as log 3 >1,

w k=2 w k—1
(log 7) < <log ?>

=3w "

for v <t<}w.
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where 4w = ¢ =¢é=w. But, by Lemma 7,
¢
Ue Ci(t) (w—o"1de| <2 Max |C5(0)).

K Jw<t<w
Hence, as Cj (¢) =0 (¢%), we have

Js=o(1)=0(log W) «cccvereineiiiniinrannnn (3).
From (1), (2), and (8) the result of the theorem follows.

7. We have thus proved Theorem 17 when « is an integer and
when 0 <k <1. If « is non-integral, but greater than 1, it is necessary
to combine our two methods of demonstration. We write k =[«], and
integrate the integral (3) of § 4 by parts until we have replaced C,(¢)
by C¥ (¢), which then plays in the proof the part played by C, ()
in § 6.

A particularly interesting special case of Theorem 17 is

THEOREM 18. If a series is summable by arithmetic means, it is
summable by logarithmic means of the same order*.

That the converse is not true is shown by the first example
of IV, §4 (6). The examples there given suggest as a general
conclusion that the efficacy of the method (A, k) increases as the rate of
increase of the function N decreases. This general idea may be made
more precise by the following theorem, which includes Theorem 17 as a
special case, and may be established by reasoning of the same character.

THEOREM 19. Let p be any logarithmico-exponential function
of A, which tends to infinity with A, but more slowly than N. Then, if
the series 3 ¢, is summable (A, «), it is summable (n., «)t.

Thus, if we imagine A as running through the functions of the loga-
rithmico-exponential scale of infinity, such as ", », logn, log logn, ... 1,
we obtain a sequence of systems of methods (A, «) of gradually
increasing efficacy.

8. THEOREM 20. If \\>0, and Sc, is summable (A, ), then 2 e\, ™" is
summable (I, «).

This theorem is interesting as a companion to Theorem 17. Its proof is
very similar, though slightly more complicated. We shall suppose as before
that C=0.

* This theorem was published without proof by Riesz, 2.

+ We can in reality say rather more, viz. that summability (A, «) implies sum-
mability (u, ) if u=0 ()\A), where A is any constant however large. A special case
of this theorem has been proved by Berwald, 1.

+ The result of IV, § 4, (3) shows that it is useless to consider types higher
than e™.

H &R. 3
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We are given that
K f’\ ON(r) (@ =1 dr=0(0) cevrreeeeerrrreeeens 1);

and we have to show that

w "]
xw-"fl D, (t) (w—2t)* " dt=xe™"® / Dy (1) (e* - ) lemdr ...(2)
1 Al
tends to a limit as w» . Here D, (t), D) (r) denote sum-functions formed
from the series =d,, where d,=c,\,,”". It will easily be verified that

Dx (")"Kf O (u) — K+1 + 9_"_(’.',)

‘We substitute this expression for Da(r) in (2), zmd 80 obtain

e~ = T d -K © s P
x (e e’) ler'r/A C)\(u)—'(—?_:—l+xe "’f (e* =)< ! C')\('r)——
1 U A

The first term, when we invert the order of integration, and perform the
integration with respect to r, becomes

(a) We suppose first that « is an integer. We integrate « times by parts,
as in the proof of Theorem 17. All the integrated terms vanish, so that we

obtain o
(?,‘111) I /A. (N <%L> {(e u:*‘el) } AU eereeinnninnn. (4).

It will be easily verified that the differential coefficient may be expressed in
the form

(=1 (k1) (k+2) oo 2c u™ 27104 3G, 0TI UTS, L (5),

where G, ,; is a constant, and
k—7Z1, 8—kZ1 .iviinriiiiiiiiiniiniiann, ves(6).

If we substitute this expression in (4), and observe that
u? Cx(w)=0 (" ~)=0(1),
we find that the coefficient of &, , is

w
c""("'r)/ 0 {e(""r) “ du=o (1).
A
Hence all these terms may be neglected, and it appears that the expression
(4) tends, as w - o, to the limit

2! © x du
K!_(K_;I—)—l A A (u) ST eesecescesssscscescescecans (7).

There remains the second term of {3), which may be discussed in the same
manner. In this case, when we perform the integration by parts, there is
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one integrated term which does not vanish, as in § 5. It is however easily
seen that this term has the limit zero*. The integral which remains can then
be divided into a number of parts all of which can be shown to tend to
zero by an argument practically identical with that employed above. Thus
our final conclusion is that 3¢\, ™" is summable (/, k), and that its sum is
given by the integral (7).

We have supposed C=0. In order to extend our result to the general
case, we have only to show that the sum of the series is given by (7) in the
particular case when ¢, =0, c,=c;=...=0. This we may leave as an exercise
for the reader. Finally we may observe that the theorem gives us the
maximum of information possible. This may be seen by considering the
cage in which \,=n, l,=¢"* k=1. Then summability (/, ) is equivalent to
convergence, and the theorem asserts that if = ¢, s summable by Cesaro’s first
mean, then = (c,/n) 18 convergent. In this proposition the factor 1/» cannot
be replaced by any factor which tends more slowly to zero.

(b) Suppose next that 0<x<1. Asin § 6, we suppose the ¢’s real. We
have again to show that the expression (2) tends to a limit as w =o. By

Theorem 16, C}\ (r)=o0(7); and as

w kC) (o ool
th G @)% = ';;f-f-(f"')““"("*“l)fh 7\357) dr
it follows that the integral
I=« f ” Cx (1) ilr—
AL Tx+1
is convergent. And from this it follows, by the analogue of Theorem 16 for
integrals, that

dr
-""’/ Ox (1) (¥ —e™)" ——+~i—>l
as w—=> .
It remains only to show that the second term of (3) tends to zero. We
separate it into two parts corresponding to the ranges of integration (A;, 1),

(1, w)t; and it is evident that the first part tends to zero. The second may
be written in the form.

T=e [Cx ) G 0=
w T™NK—-1 7
where x(r)= ( —¢ ) ‘.

T~

Now it may easily be verified that, as r increases from 1 to w, x () increases
towards the limit o “¢““. Hence, by the second mean value theorcm, we
obtain

J=kew~ f O, (M) (e=7)"ldr, (0={<w);
* It is owing to the presence of this term that the series Zc,\,”* is not

necessarily summable (A, «’) for any «’ less than «.
t If \;Z1, this is unnecessary.
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and it follows at once from Lemma 7 and the equation (1) that the limit of

J is zero.
We leave it as an exercise for the reader to show that

= T+ (7 ey A
]——I‘(K)I‘(K'f'l) /0 C’\ (u)z¢2"+l.

9. TueoreM 21. If 2c¢, is summable (N, k) to sum C, then
e At )“
C.-C=o (MH iw
The proof of this theorem is extremely simple when « is integral.

In the equation
Ce(w)= 3 e (0= A<= Cur +0 (o)

we write 0=\, )\,, +hy, Ny + 2k oy N, + kb,
where k&= A,,, — A,, and form the «-th difference of the x + 1 equations
thus obtained. Since the «-th difference of (w—A,)¢ is a numerical
multiple of %%, the result of the theorem follows at once.

Now let us suppose that 0 <x<1; and let us assume that the
¢,’s are real and C=0, as evidently we may do without loss of
generality. Then

[ Apsa =)7L C (1) dr =0 (A y1*).
By Lemma 7, we have also
[ w710 dr=0 (v
0

and so the same is true of the integral taken between the limits
A\, and A,,;. But C(r)=C, for \,<7<A,,,, and so
(A"nn n)K =0 ()tn+l )
which proves the theorem *.
A more general theorem is
THEOREM 22. Suppose that 3c, is summable (N, ) to sum C, and
that 0 <K' S x, My S w=N . Then
Ax )\n
C¥ (0)— Co¥' =0 { ,+ v } ...... 1).
((D) @ ()\n )\w,—l)x_ ()‘n+l - Aﬂ)" x ( )
If ' 1is integral, then we may write simply
< < A )
0 ((D) - Cw =0 {(An_ﬂ _ An:)"‘:?} ............... (2) >
and this result holds for ' =0, provided X, < 0. t

* The proof for the case in which « is non-integral and greater than 1 is con-

tained in that of Theorem 22.
+ This distinction arises from the fact that C (w) is discontinuous for w=A\,,.
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We shall as usual take (=0, and assume that c, is real. First suppose
that «’ is an integer, and let us write k=[«x].* Let us also write

Q=Np+4, ..., Qx =\ +k&, Rk +1=An+1
where h=Ans1=A)/(K+1).

If @ denotes any one of these numbers, we have, by Lemma 6,

I'(x+1) 0 ket o
mmfo C*(r)(@-r) "% 1dr=C*(@).

Using Lemma 8 and the equations o (2)=0(2%)=0(\, +1%), we obtain

o
f C¥(r) (@ - Rl A1) oo (3).
)\n

Integrating k times by parts, and observing that C(r) is constant in the range
of integration, we can express the integral in (3) as the sum of constant
multiples of the k+1 functions

()\n+1 - )\n)‘(—k Ck ()‘n)a ()\n+l - )\n)x—k%.l Ck—l ()‘n)’
very Mua 1 =A) CAn+0)......... “t.

This process leads, for the k41 different values of Q, to k+1 different linear
combinations of the functions (4), each of which is of the form o (A,, ). But
it is easy to verify that these k41 linear combinations are linearly inde-
pendent, the determinant of the system being a ¢ Vandermonde-Cauchy’}
determinant, different from zero; and so the functions themselves are of
this form.

The last function iy (A, ,;—2,)" C(w), and so the theorem is proved for
«'=0. The last function but one is \y41—A) " 1C*(A,); and so C! (An) 18 of
the form prescribed by the theorcm. Hence

w w A K N
Ol (@)=Ct )+ [ C(r)dr=C" (x,)+f o{‘ﬁ. e g
( ( ) An <T & An O\w,+l_)\n)}

A K
=0 {_ “.vpl]_;_:]} .
()‘n +1~ )‘n)
Hence the theorem is proved for «’=1. Repeating the argument we establish

it for «'=0, 1, 2, ..., k.
We pass now to the case in which «’ is not integral, and we write k' =[«'].§

* We shall in this case give a complete proof for all values of «, integral or not.
The method of proof is that used by Riesz, 4, in proving the equivalence of the
‘arithmetic ’ means with Cesiro’s.

1 In the last function we must write A\, +0 and not \,, on account of the
discontinuity of C (r).

1 See Pascal, I Determinanti (Manuali Hoepli), pp, 166 et seq.

§ It is very curious that the simpler result which holds when «’ is integral
should not hold always; but it is possible to show by examples that this is so.
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By Lemma 6, we have

Ck'(w)___ I‘(“’+1)

I S et A © k' RY ) A
P(k’+l)l‘(x’-—k’)/ CF () (@=-n)" "  dr

T (f a / ) it

say. We begin by considering J/,. Dividing the mterval (A1, @) into the
two parts (A\u_1, Ay), (A, @), and using the result (2) for C¥' (), we find

Ak An ~-K-1
e e N

n—1

A @ e
+0{ —— "liLA ’}f L\ mk—ld .
{O‘n-rl n)x —Kk An (w T) T

Now «’'—k’ -1 is negative and x'— k' positive. Hence

A . A o -k
I e I

)‘n—l d >‘n—1 _kl ’
™ K -k’ /- K
N (@=2)" 7" (Aas1—AR)"
R
Thus Jy=0 { B K;;-,} +0{ asre ;7} .............. (5).
(An"xn—l) ()‘VH‘I_A )

In order to obtain an upper limit for J;, we integrate k ~ k' times by parts.

We find that
k;:'k'—"w I‘(K’+1)7‘
p=1 T +p+1)T (k- K —pu+1
I'(«'+1 )‘ﬂ-l =K -
+————-F(k+§)F(K2_k) /o Ok(r)(m—r) k-1 g,

Since k' — k'~ p<0, we may replace the powers of @ —\, _; in the first line
by the corresponding powers of A, —X, ;. If we do this, and at the same
time apply the result (2) to the factors O®'** (A,_)), we find at once that
every term in the first line is of the form

Ak
]m} .............................. (6).

On the other hand, the integral which occurs in the second line may, by
the second mean value theorem, be expressed in the form

. 7\11—-
(0" [E L 0% (r) (0—r) %,

J‘=

j (o= Auor) KR ORI, )

where 0 < £ = 2\,_;. Replacing o by A, in the external factor, and applying
Lemma 8 to the integral, in the same way in which we used Lemma 7 in the
proof of Theorem 21, we see that this part of J is also of the form (6). The
proof of Theorem 22 is thus completed.

In the particularly important case in which A,=n, Theorem 22 shows
that if the series Sc, vs summable (n, k), and 0 = &' <«, then

C* (w)=0(a").
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VI
ABELIAN AND TAUBERIAN THEOREMS

1. Generalisations of Theorem 2 and its corollaries. We
pass now to an important theorem which occupies the same place in
the theory of the summability of Dirichlet’s series as does Theorem 2
in the elementary theory of their convergence. But first we shall
prove a subsidiary proposition which will be useful to us.

LeMMA 9. If f (w) is integrable, and f (u) = o (ux), then
st““ e f (u) du

tends to a limit as w — o, uniformly for all values of s in the angle
a defined by |ams| = a<im

Choose ¢ so that
Then

|f ()| < eur (wz¢).

@0
<€ [ [s|**1e™o% u* du
JO

{ fwzs"“ e~ f (u) du

= er(er ) (27 2 emer 1 (eoay

ag
if only w,>0, Z¢  As £ is independent of the position of s in the
angle, the lemma is proved*.

2. Tueorem 23. If Sa, is summable (N, k), then S ape ™ s

uniformly summable throughout the angle a.

TureoREM 24. The sum of the series S a,e” L) equal to
] =]
e K41 ,—8T 4
I‘(x+1)/0 st A* () dr
at all points of a other than the origin ; and to

1 co.:tl—sn'j 3 — 3
A+1—‘G'¥])}; getlg=m L A% (1) — A7} dr,

where A is the sum of 3 a,, at all points of a.t
* The presence of the factor 8“1 is of course essential for the truth of the result.

+ Compare IV, § 4, (1) for the simplest case of such a representation of a
Dirichlet’s series by an integral.
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We shall, as usual, prove this in the cases in which (i)  is integral

and (ii) 0 <k <1. We observe first that, if ¢, =ane” )‘"’, and A, denotes
the last A less than o, then

-1
" (@) " 2 op(w- ’\")K:p? N (w=A,)}+ Ape_)‘p”(w—- Ap)

-~ ["4 ) L e ) dr (1).

(@) Proof when « is integral. We suppose first that
A=0, A% (0)=0(w*).

Integrate (1) « times by parts. All the integrated terms vanish
save one, which is

e A (0)=0(0) v (2),

uniformly throughout a. Thus we need only consider the integral
remaining over, which, when divided by o~, is

- 1):11 o™ : A~ (1) (%)Hl {e (=7} dr eeuninnn. (3).

Now it will easily be verified that

d\** .
(a;) {e-sr (m — 'r)“} = (_ 1)x+1 e T L K 8T S Hi.j,kvsa w’ 1"‘,
where H, ; , is a constant, and

P=j+k+1, JEk—1 .o, (4).

When we substitute this expression in (3), the first term, which we
may call the principal term, gives rise to the integral

1 w
- L S A% (2 dr e, (5).

As o— o, this integral, by Lemma 9, tends uniformly to a limit,
viz. the first integral of Theorem 24. Thus, when A4 =0, all that is
necessary to complete the proof is to show that

o " 0 =)

uniformly in a; ¢, j, £ being subject to the inequalities (4). We divide
this integral into the two parts

1 4 w
w""”/ +w“"+jf =Jy+dJy,
0 v

choosing v so that | A4 (r) | < er= throughout the range of integration
in J,. Further we observe that there is a constant M such that
| A% (v) | < Mx* for all values of =
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The function
x
F(z)=a*+ / TR dr
0
has (for positive values of ) a maximum p.* And

AR AN |ifme"" rhre dr
0

= ew~ Xt l,s_i io-i- —-k-1 7 -y I3
= j ( : ) k L e~V g+ dy
=e(|s|/o) F(ow)T = en(seca)’ ............ (6).
Also | ;] <Mu—|s|t f o hx iy
0
=Moo (|s|/a) v~ F (va)
= Mp (seca)' (viw)) oo, (7).

From (6) and (7) it follows that, by taking first v and then o
sufficiently large, we can make J,+.; as small as we please. This
completes the proof of Theorems 23 and 24, when « is an integer
and 4=0.

Now suppose 4 +0. Then the series

A A8

-N$ - -
(A +aye” ™) ra,e” M vaze M4 L

is, in virtue of what has just been proved, uniformly summable in a,

with sum
1 , e {Ax (1) — A<} dr. |

K !
And the series
A+0+0+...
is, as may be seen at once by actual formation of the typical means,

or inferred from the theorem of consistency, also uniformly summable
in a. Moreover its sum is 4, which, ezcept when s =0, is equal to

oD
{1_ L =87 ok
«!Jo ’

Combining these results we obtain Theorems 23 and 24. It should be
observed that, when A #0, the first integral in Theorem 24 is not
uniformly convergent, or even continuous for s=0.

* Since —ktjthktr+l=j+k+1=i>0,
the function has the limit 0 when = - 0 a8 well as when z —» o .
+ Since i-k-k~-1=—«k+j.
1 The sum function of the modified series is equal to 4 (1) - 4.
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3. (b) Proof when 0<x<1. As before, we begin by supposing
A=0. We have, by (1) of § 2, to discuss the limit of

—w X f:A (‘r) % {e“"' (w - ‘r)"} dr = ko~ ke~ f:A ('r) (w —1‘)“‘1 dr

o [T A @) A=) (0= dr
The first term on the right-hand side is
e o A% (w)=0(1)

uniformly in a. Thus we need only consider the second term, which,
when we integrate by parts, takes the form

-« /:A‘(r) & e =) (o} dr=Jy+ Jur dy (D)
where J,, J,, J; are three integrals containing, under the sign of
integration, the function A'(r) multiplied respectively by

() #er(=rr,
(1) 2kse™* (o—7)<1,  } (2).
(1) k(k—-1) (e —e ™) (0 —7)<?
In the first place
Ji=ow* fmsg e T AN () (w—T)dT . (3).
0
Now Za, is summable (A, 1), and so A'(r)=o(r). Hence, by
Lemma 9, the integral
f e A1 (7)dr
0
tends to a limit, as o> o, uniformly in a. And hence, by the

analogue for integrals* of Theorem 16, the integral (3) does the same.
Further, the value of the limit is

® 2 ,—8T 1 — . Sz,v I3
Ase A(r)dr—F(l_l_K)r(l_K)/o df/ () 2 u)
s . ’ —sr dr
B PP (T [ arwrau [ E—

(* ;_“"5/ Lok “”‘A“(u)du T

* See theend of V, § 3.
+ In the first line we use Lemma 6. The inversion of the order of integration
presents no difficulty, all the integrals concerned being absolutely convergent.



LINES OF SUMMABILITY 43

It remains to prove that J, and J; tend uniformly to zero.
We write

Jp= 2xw“‘/0wse‘" (0 —7)-1 A (1) dr = 2kw™" (fv + ]w>=.f2'+ oy
0 v

say. We can choose v so that | 4'(r)| <er for > v, and we can suppose
w—v>1. Further, thereis a constant M such that | 4'(r)| < M~ for
all positive values of . Also me-7<1 for all values of =, and
|s|/c =seca throughout the angle a. Hence, denoting by K the
constant 2« seca, we have

|2 | < KMo~ [“ore=or (0 —r)-1 dr < KDMvo~ ......(4).
J0

Similarly we have
€

| T, | < Kewx f’m—«r (m-f)x-ld«!g ......... (5).
From (4) and (5) it follows that we can make J, as small as we
please, uniformly throughout a, by making first v and then o
sufficiently large.
In order to discuss J, we observe that, by Lemma 2,
|e=s7—e¢=%9| = (e~o7— ¢~ 7®)sec a < (w—7T) Te~ T sec a.

The discussion is then almost exactly the same as in the case of J,.
The proof of the theorems is thus completed.

4. Lines of summability. Analytic character of the sum.
From Theorem 23 we can at once deduce a series of important
corollaries, analogous to those deduced from Theorem 2 in II, §§ 2
et seq.

THEOREM 25. If the series is summable (X, «)* for a value of s
whose real part is o, then it is summable (N, k) for all values of s whose
real part is greater than o.

THREOREM 26. There is a number o« such that the series is summable
when ¢ > o, and not summable when o <. We may have ce=— o or
oc=o.1

We now define the abscissa o«, the line o =0, and the half-plane
o > o of summability (A, «), just as we did in I, § 2 when «=0. It is
evident (from the first theorem of consistency) that

CZo 20 20,2 ...

* It should be added that the result of Theorem 25 remains true if we assume
only that Za, is finite (\, «) : cf. the first footnote to p. 4. The first representa-
tion of the sum as an integral is also valid in this case, as may easily be shown by a
trifling moditication of the proof of Theorem 24.

+ See p. 4 for an explanation of the meaning to be attached to this phrase.
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Treorem 27. If D is any finite region for all points of whick
o Z ox + 8> o, then the series is uniformly summable (N, «) throughout D,
and its sum represents a branch f(s) of an analytic function regular
throughout D. Further, the series

2 anknp e—l\ns’
where p is any number real or complex, and A\, has its principal

value, is also uniformly summable (N, ) throughout D, and, when p is
@ positive integer, represents the function

(=15® (s).

The proof of this theorem is similar to that of Theorem 4. One additional
remark is however necessary. When we prove that the summability of =a,
involves that of

S A =S a, e 108,
whenever the real part of p is negative, we must appeal, not to Theorem 23,
but to its analogue Theorem 29 below ; for the means (A, «) are the means of
the second kind for the series Sa,\,~*.

THEOREM 28. If the series is summable (\, k) for s=s,, and has the sum
S (), then f(3)> f(sy) when s s, along any path lying entirvely inside the
angle whose vertex 18 at 8, and whick vs similar and similarly situated to the
angle a.

There is also an obvious generalisation of Theorem 6 which we shall not
state at length.

5. Summability by typical means of the second kind. In §§ 1—4
we have considered exclusively typical means of the first kind. All the
results of these sections, however, remain true when we work with means of
the second kind, except that Theorems 23 and 24 must be replaced by

THEOREM 29. If the series Sa, i3 summable (I, k), then the series Sa,l, *
18 uniformly summable (I, k) in the angle a. Its sum s (except for s=0) equal
to the tntegral

T(s+x+1)
T (xk+1)T(s)

It is not necessary that we should do more than indicate the lines of the
proof when 0<k<1. The «-th mean formed from 2 «,{,~* may be expressed,
by the same transformation as was used at the beginning of § 2, in the form

—w"‘/:oAl(t)(%{t""(w—-t)"} dt.

Arguing as at the beginning of § 3, we replace this expression by

w"‘f;”A} 0 g; {(¢=2 —w=%) (w—12)} dt.

fw 4; () w”S T gy *
1

* As L=¢"21, and A7 (w)=0 for u S Y, the lower limit may be 0, 1, or },
indifferently.
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Finally, as w - w0, this tends uniformly to the limit

) e +1
8(84-1)]1 A; He-e 2dt—f‘—(ﬂ-—(l—c‘?§—_r()i—-x) t—8- 2dtf )( u)"

s(s+1) 0 g=e-2
ru%-x)r(l—x)/ A7) du/ (_u)xdt
T (s+x+1)

“Tlertir fr A

We add one more theorem.

THEOREM 30. The lines of summability are the same for the means of the
first and the second kind.

We shall content ourselves with sketching the proof of this theorem. In
the first place, if the series is summable ({, «) for s=s,, it is, by Theorem 17,
summable (A, k) for s=g,, and a fortiori for c>0. On the other hand, if it
is summable (A, «) for 8=g,, the series

S dghy P M8,

where p is any integer greater than «, is, by Theorem 20, summable (I, «) for
3=s,, and a fortiori for 0 >0,. Hence, by the analogue of Theorem 27 for
means of the second kind, the original series is summable (I, «) for o >g,.*

6. Explicit formulae for o,. The actual values of the abscissae of
summability are given by the following generalisation of Theorem 8.

THEOREM 31. The abscissu of summability o, if positive, is given by

=l1m

- K.

,._loglA (@) _ Iog,|A (w) |
—_ 2 =lim —
w logw
The proof of these results follows the general lines of that of Theorems 23
and 24, but is easier, as no question of uniformity is involved. As the proof
is not very interesting in itself, we shall confine ourselves to indicating the
general line of the argument for means of the first kind.

We assume first that
A% (r)y=o0{e” O e (1)

for a definite positive 5 and every positive 8. If now we follow the argument
of §§ 2, 3, we can show without difficulty that the series is summable (A, «)
if o>7, and that its sum is the first integral of Theorem 24. If on the other
hand the series is summable (A, x) when s=7+38, and

—An$ An $

Cp=0Qn € y An==0Cy€

we have obviously
C* ()=0(¢),

* It is also possible to give a direct proof of this theorem similar to, but rather
easier than, that of Theorem 20. We have to prove that the summability (\, «) of

z a,,‘e""“ ¢ involves the summability (I, «) of £ a,e ™" (81+8) gor any positive &,
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for every positive e. Hence, performing the same arguments with —s in the
place of s, we deduce (1) with 8+ ¢ in the place of 8. It follows that if (1)
holds for 7, but for no smaller number than 7, then the series is summable
when ¢>n but not when <. This proves the first equation in Theorem 31.

7. Tauberian Theorems. In this section we shall state a
number of theorems whose general character is ‘Tauberian’; that is
to say, which are developments of an idea which appeared first in
Tauber’s well-known ‘converse of Abel’s Theorem’*. In spite of the
great intrinsic interest of these theorems we omit the proofs, as we
shall not have occasion to make any applications of the results.

TueoreM 321. 1If
(1> An =0 {(An" )‘n—l)/)‘n}

and (11) the series 3 a, 6™ then certainly convergent for o> 0, tends
to @ limit A as s—0 through positive values, then the series 3 a, is
convergent and has the sum A.

TueoreM 3381. The conclusion of Theorem 32 still holds if the
condition (1) is replaced by the more general condition
() May+ Mo+ .o+ Ma=0(N).
Moreover the conditions (') and (ii) are necessary and sufficient for the
convergence of the series Sa,,.

THEOREM 34§. I A—Ai=0(\,), then the condition (i) of

Theorem 32 may be replaced by the more general condition
Uy = 0 {(A;L - An—l)/>‘n}-
TreoREM 35(|. If
(1) an=0{A=N0)/N)
and (ii) S a, is summable (A, k) to sum A, then 3a, is convergent
to sum A.
* THEOREM 36. If
An =0 (An - )‘n—l);

then mo series can be summable (A, k) unless it is convergent.

The last theorem is an immediate consequence of Theorem 21. It
contains as a particular case the result of IV, § 4, (8); viz. that the

* Tauber, 1. For a general explanation of the character of a ¢ Tauberian’
theorem see Hardy and Littlewood, 1.

+ Landau, 8. I Schnee, 8. § Littlewood, 1. See also Landau, 11, 13.

| Hardy, 8. If \,-\,_;=0(),), this may be deduced as a corollary from
Theorems 28 and 34. See also Hardy, 4.



TAUBERIAN THEOREMS 47

means (¢", ) are ‘trivial’ in the sense that no non-convergent series is
summable by means of them.

The theorems of this section are capable of many interesting
generalisations for which we must refer elsewhere*. We add however
one important theorem which resembles Theorems 32—36 in that its
conditions include a condition as to the order or average order of the
coefficient a,, but differs from them fundamentally in that it depends
on the theory of functions of a complex variable.

TaeorEM 37F. If
() Ap=ai+az+...+a,=0("°)  (cZ0)

and (i) the series Saye™ ™', then certainly comvergent for o>c,
represents a function f(s) reqular for s=s,=c+t,i, then the series is
convergent for s = sy, and its sum is f ().

It should be observed that (i) is certainly satisfied if ¢>0 and

(1) an=0{(ru— ) e)\,‘_,c}.
This is no longer true if ¢=0. But it is easy to see, by applying a
linear transformation to the variable s, that the theorem obtained by
putting ¢ =0 in (i), viz. ‘¢f
y=0(Ny —Nyy)

then the series Sane ™™ is convergent at every reqular point of the line
o=0" is certainly true in all cases in which A, —A,_,=0 (1). This
theorem is the direct generalisation of a well-known theorem of
Fatou}, to which it reduces when A, =#. It should also be observed
that Fatou’s theorem and its extension become false when O (A,—A,_,)
is substituted for o (A,—A,_;).

8. Examples to illustrate §§ 4—7. (1) For the series Sn~% we have
&=00=Ul=0'2= =1L
See 1V, § 4, (6).
(2) For the series 3 (—1)*n~% we have ox= —«x. SeelV, § 4, (4).

(8) For the series Sedin®n-3 where 0<a<1 and 4 +0, we have
ox=1-(x+1)a. SeelV,§ 4, (5).

* See in particular Landau, 8 ; Hardy and Littlewood, 3, 4, 8. In reference

to the original theorem of Tauber see Pringsheim, 2, 8; Bromwich, Infinite series,
. 251,

b + Riesz, 4. The proof of the general theorem is still unpublished. For the
case A\, =n see Riesz, 5; for the case \,=log n see Landau, 8. The condition (i) is
a necessary condition for the existence of any points of convergence on the line
o¢=c (Jensen, 2).

+ Fatou, 1; Riesz, 6. The latter paper contains a number of further
theorems of a similar character.
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(4) Each of the series (2) and (3) is summable, by typical means of some
order, all over the plane, and consequently represents an integral function of
8. It is of some interest to obtain an example of a series which represents an
integral function, but cannot, for some values of s, be summed by any typical
mean. Such an example is afforded by the series

s ei (log n)2 n=s.

Here all the lines of summability coincide in the line ¢ =1. None the less
the series represents an integral function. So does the series

S(=1)re-m* (0 <a<l),
all of whose lines of summability coincide in the line ¢=0.
(5) For the series
179—2-944-9_5-94.97-9 9884

in which ¢, =1 if n=m™, a,,= =1 if n=m™+1, and «, =0 otherwise, we have

F=0y=0, ox=-—x*
. (-1)"n"
(6) The series (log )" (a>0)

is summable (A, «), where x > a, for all values of s, but is never summable
A\, k) if k<a It is summable (A a) if ¢Z—a, and summable (I, a)
ifo>—a

71«_1‘ ai( ﬂ
(7) The series Do VR (a0, B>0)

is summable everywhere by typical means of the first or second kind (or
indeed by ordinary logarithmic means) of order greater than 8, but is never
summable by arithmetic means of any order.

* Bohr, 2.
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VII

FURTHER DEVELOPMENTS OF THE THEORY OF FUNCTIONS
REPRESENTED BY DIRICHLETS SERIES

1. We shall now use the idea of summation by typical means to
obtain generalisations of some of the most important theorems of
Section III.

THEOREM 38. Suppose the series 3 ane ™° summable or finite
(A, k) for s=B. Then
S()=o0(e[*h
uniformly for o Z B + > .
We may plainly suppose, without loss of generality, that 8=0.
There is a constant M such that
| A% (7)| < M+~
for all positive values of . Now, by Theorem 24,

F&)=stt [ dx(myeran
for o > 0. Hence l
x+1 oo
|f(s)|<M|s|"+1/ v g0t d-r=M(!—s—|> e dv

A1 g 0
= M(seca) ™' T (x + 1) =0 (1) =0 (|t [,
uniformly in any angle of the type a of Lemma 9. Hence, in proving
the theorem, we may confine ourselves to the parts of the half-plane

o = e which lie outside this angle ; and so we may suppose |s/¢]| less
than a constant cosec a. This being so, we have

F(s) = set+1 (/ + f‘”) Ax(r)e- dr=J, + J,
say. o

Now 1J2|<IVI[3|'<+1f T™® =T dr

< M (cosec a)t1|g|x+1 f ™e~erdr;
v

and so if & is any positive- number, we have |J;|<8|¢|*+1 for all
values of v greater than a number v, which depends on € and 8 but not
H &R, 4
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on 5. When v, has been chosen so that this inequality may hold, we
have, by integration by parts,
Ji=—sce-v 4* (v) + s“/:e'" di%}(f) dr*;
and so, since [¢~*7| <1,
|Jil<H@)|s|<= H(v)(coseca)|t],
where H (v) depends on v alone. Accordingly
|/ ()| < H (v) (cosec a)< [£] + 8| ¢ [<+1 < 28] ¢ [+,
if | ¢| is large enough. 'Thus the theorem is proved t.

2. Generalisation of Theorem 13. We proceed next to a
generalisation of Perron’s formula discussed in § 2 of Section III.

TurorEM 39. If the series is summable (M, ), where x>0, for
s=B, and ¢>0, ¢c>B, then

1 1 c+1 o )
TrD) '\”E< K (0=N)e= 2—;"2.,/;-'500 ‘{;% e*Sds ...... (1).

This theorem depends on a generalisation of Lemma 3.

Lemma 10. We have

To  Lus = _ j’ti _ >
ATy EO
e =0 (u=0),
¢ and « being positive.

We leave the verification of this lemma to the reader. It may be
deduced without difficulty, by means of Cauchy’s Theorem, from
Hankel's expression of the reciprocal of the Gamma-function as a
contour integral {.

Let us suppose§ that A,, < <X,,,,, and write

» m Y o A
g(s)=ews {f (S)~2ane‘ ns} =3 ane-( n—w)s.
1 m+1
Then what we have to prove reduces, in virtue of the lemma, to

showing that
c+ion
[ 80
c—iw §
* The subject of integration may (if k<1) have isolated infinities across which
it is absolutely integrable, but the integration by parts is permissible in any case.
t+ The result of the theorem is true, a fortiori, if (I, «) be substituted for (\, «).
It was given in this form, for integral values of «, and for ordinary Dirichlet’s
series, by Riesz, 1, and Bohr, 2, 5.
+ Hankel,1; see also Heine, 1, and Whittaker and Watson, Modern Analysis(ed. 2),
p. 238. For a proof of results equivalent to those of Lemma 10, without the use
of Cauchy’s Theorem, see Dirichlet’s Vorlesungen iiber die Lehre von den einfachen
und mehrfachen bestimmten Integralen (ed. Arendt), pp. 166 et seq. The formulae
may, in substance, be traced back to Cauchy.
§ Cf, 1II, § 2.
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We have g(s)=e ) (s),
where B ()= Amyr + Agyyg 6~ Ptz = Ama) 8
This series is summable (u, «), where p,=A,,n—Ap,:, for s=B.%
Hence 4(s)=o(|¢[<*!), uniformly for o Z¢. This relation replaces
the equation £(s)=0(|¢|) used in the proof of Theorem 13; and the
proof of Theorem 39 now follows exactly the same lines as that of the
latter theorem. The final formula is valid even when w=2X,, as the
left-hand side is a continuous function of w, and the integral is
uniformly convergent.

More generally we have

1
Iy (K + 1) An<
ifc>0y, c> ,8.

It is important for later applications to observe that the range of
validity of the formulae (1) and (2) may be considerably extended.
Let us suppose only that the series is summable (A, «) for some values
of s, say for o>d, and that the function f(s) thus defined is regular
for o> 8, where B <d, and satisfies the equation

S =0(2[F) oo (3)

uniformly for o = B+ e>p, however small ¢ may be. Then the
theorem tells us that
1 . rHie f(s)
T (e ) (@M= é;z e L) o s

if y>0, y>d. But, applying Cauchy’s '1‘heorem to the rectangle
formed by the points on the lines o=¢, o=y whose ordinates are
— T, and T,, and observing that, in virtue of (3), the contributions of
the sides of the rectangle parallel to the real axis tend to zero when
T, and T, tend to infinity, we see that the equation (1) still holds.
A similar extension may be given to (2).

Y %o K__‘L c+i o _f@)‘ (s -50)
2 ey [ L e o o)

3. Analogous formulae for means of the second kind. There is a
companion theorem to Theorem 39, viz.

THEOREM 40. If Sa,e ™ =3 a,l,~* i3 summable (I, «) for s=B, and

>0, ¢>P, then
f+wf( o TEADTO) 0ge )4

w3 a,(w-0)"= F(k+1+s)

ln<w
* See IV, § 4, (9), (10). '
+ The quotient of I'-functions which figures under the sign of integration
reduces, when « is integral, to the x-th difference of 1/s.

o

4—2
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As Theorem 39 depends on Lemma 10, so Theorem 40 depends upon
Lemma 11, If ¢>0 then

_}_[c+iwF.(ii-l)r(s)v‘ds=(l—%>x (v21),
2% ¢—jo T'(k+1+43)

=0 (v=1).
If we write (1—-2)*=SByar
0
LD _ [ 1 aydte§ B
we have Fletids) = Ox" (1-z) dx_§8+r ............... (2).
If we observe that
1

¢+ 2 1
— —_— =p~ 7" = - =1)* = <
2ﬂifc—iw3+7'd8 7T (v>1), 5 (v=1)%, 0 (v=1),

we see that the result of the lemma follows by substituting the series (2)
under the sign of integration and integrating term by term. The details of
the proofs of the lemma, and then of the theorem, present no particular
difficulty, and we content ourselves with indicating the necessary formulae.

There is a generalisation of (1) corresponding to (2) of § 2, viz.

. _ 1 ferie | T(k+1)T (s~8,
w lnfwanln %o (w_ln) ~9m c-iaof(s> P((K T 1>+§—80))
where ¢>a,, ¢c>8. Both of the formulae (1) and (8), established
originally on the hypothesis that 3a, ,~® is summable (/, «) for =8,
may then be extended to the case in which the series is only known tc
be summable (/, «) for some values of s, and f(s) satisfies the conditions
stated at the end of § 2.

we=%ds...(3),

4. We are now in a position to consider an important group of
theorems which differ fundamentally in character from those which we
have considered hitherto. In such theorems as, for example, 23, 24,
27, 29, or 38, we start from the assumption that our series is summable
for some particular value of s, and deduce properties of the function
represented by the sum of the series. We shall now have to deal with
theorems in which, to put the matter roughly, properties of the series
are deduced from those of the function f.

One preliminary remark is necessary. When we speak of ‘the
function’ we mean, of course, ‘the function defined by means of, or
associated with, the series.” That is to say, we imply that, for some
values of s at any rate, some method of summation can be applied to

* If v=1 the principal value of the integral (in the sense explained in III, § 2)
must be taken,

1 The classical example of such a theorem is Taylor's Theorem, as proved by
Cauchy for functions of a complex variable.
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the series so as to give rise to the function. It is obv.ously, for our
present purposes, the natural course to suppose that for sufficiently
large values of o, say for o > d, the series is summable by typical means
of sufficiently high order. 'There is thus an analytic function f(s)
associated with the series, and possibly capable of analytical con-
tinuation outside the known domain of summability of the series. In
the theorems which follow we suppose that this is the case, and assume
certain additional properties of f(s). We then deduce from these
properties more precise information as to the summability of the
series.

5. THEOREM 41*. Suppose that f(s) is reqular for o>, where
n<d. Suppose further that « and « are positive numbers such that
&' <k, and that, however small be o,

S()=0(sl)

uniformly for o Zn+38>n. Then [f(s) is summable (I, ), and a
Jortiori summable (N, ), for o>1.

If the series = a,/,~* is, for any values of s, summable (A, «), we
know, by Theorem 40 and its extensions given at the end of § 3,
that

w* 3 ayl, 5 (w-1,)=
n<w

1 c+io
A H s — ) wsseds... (1),

2m e 4

where H is a certain product of Gamma-functions, provided only
¢>c,and ¢>7.  We can however free ourselves in this case from the
assumption of the existence of a half-plane of summability (A, ). The
series is summable (A, £) somewhere, for some value of £, and therefore,
if m is a sufficiently large positive integer, somewhere summable
(A, x+m). Hence we deduce the formula (1), with «+ = in the place
of x. Now it will easily be verified that if we multiply (1) by w*,
differentiate with respect to w, and divide by xw<-1, we obtain a
formula which differs from (1) only in the substitution of x—1 for «.
Hence, by m differentiations, we can pass from «+m to x. That the
process of differentiation under the integral sign is legitimate follows
at once from the relations

Tep e RO g g -en, 7(5)=0(1e1),
where « <k and p=0,1,...,m~1; for the integrals obtained by
differentiation are all absolutely and uniformly convergent.

* For A\, =log n, Riesz, 1 : in the general case, Riesz, 2. Theorem 2 of the
latter note includes Theorem 41 in virtue of Theorem 30.
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Suppose now that y<o,<c. Choose a number y such that y>7
and o,—1 <y <a,, as is obviously possible. Then between the lines
o =1v,0=c lies one pole of H (s-s,), viz. s=s,, with residue 1. Hence,
by a simple application of Cauchy’s Theorem, we obtain *

+1% @
0o 3 oLy =S )= [T @ H =8 ds.2),

lu<'w

But it is easy to see that the modulus of the integral is less than a
constant multiple of w¥-%, and so tends to zero. Thus the theorem
is established.

We add some remarks which will be of importance in the sequel.
Let us suppose that f(s) is bounded in every half-plane o Z n+ 8> 1.
Then, if y=0,—6, where 0 <6 <1, we have, for values of s situated
on the line o=4y,

| H(s— )| <K ls—s, [ = K (¢~ t;) + 62} bte,

where K denotes a number which depends on « and 6 but not on
o, or ¢,. Hence it follows that, throughout the domain o, Z 5+ 8>,
the integral on the right-hand side of (2) is less than a constant

multiple of
o f . dt
—w {(t— tp)? + G241’
This integral has obviously a value independent of #.f Hence it
follows that if f(s) is limited in every half-plane o Z n+8>, the
series is uniformly summable (I, k) in every such half-plame, for any
assigned positive value of «.

The same remarks apply as regards summability (A, «): they are not,
as is the mere assertion of simple summability, immediate corollaries of the
corresponding remarks concerning summability (7, ) ; but it would be easy
to complete Theorem 17 in such a way that they would become so. As we

shall only make use of these remarks in the case of means of the second
kind, it will not be necessary for us to go into this point in detail.

6. With Theorem 41 must be associated the following two more precise
theorems.

* We apply Cauchy’s Theorem to a rectangle whose shorter ends are made to
tend to infinity. Since f(5)=0 (| "),

H(s~8)=0(s[7*77),

and x’' <k, the contributions of these ends tend to zero.

+ It is important to observe that the argument would fail at this point if «* were
not zero.
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THEOREM 42%. If f(s) is regular for o Zn, except that it has, on the line
o=n, a finite number of poles or algebraical infinities of order less than
k+1; if further

F6)=0(s[),
where 0 S k' <k, for o Zn; then the series is uniformly summable (A, ) on any
Jinite stretch of the line o=n which does not include any singular point.

THEOREM 43.  If the conditions of the preceding theorem are fulfilled,
and the singularities on the line ¢ = n are all algebraical infinities of order less
than 1, then we may substitute (I, x) for (, ).

We do not propose to insert proofs of these theoremst. We may add,
however, that the results are capable of considerable generalisation. Thus
the nature of the singularities permissible is considerably wider than appears
from the enunciations. And in both theorems the hypothesis of regularity
on the line o = 5 (except at a finite number of points) is quite unnecessarily
restrictive. Thus in Theorem 42 this hypothesis might be replaced by that of
continuity for ¢ = 5. In Theorem 43 this would not be sufficient ; it would be
necessary to impose restrictions similar to those which occur in the theory of the
convergence of Fourier’s series. The reader will find it instructive to consider
the forms of the theorems when \,=n, remembering that summability ({, )
is then equivalent to convergence (IV, § 4, (3)), and to compare them with the
well-known theorems in the theory of Fourier’s series to which they are then
substantially equivalent.

The differences betwecen Theorems 42 and 43 arise as follows. The
formula (3) of § 3 represents the typical mean of the second kind with s
denominator w-x, whereas the corresponding formula of § 2 represeats that
of the first kind without its denominator. Before studying the convergence
of the latter mean the integral which occurs in (2) of § 2 must be divided by
w* ; and it is owing to the presence of this factor that the means of the first
kind converge under more general conditions. That the factor occurs in
one case and not in the other is in its turn a consequence of the fact that the
subject of integration has, for s=s;, an infinity of order x+1 in the one case
and order unity in the other.

There is another theorem which is also an interesting supplement to
Theorem 41.

THEOREM 44. If the series has a half-plane of ubsolute convergence, we can
replace &'y tn the enunciation of Theorem 41, by «.

‘We have F®=0(¢t]"
for c=19+38, and f(s)=0(1) for o=+, & being the abscissa of absolute

* Riesz, 2.

+ The proofs depend on a combination of the arguments used in the proof
of Theorem 41 with others similar to, but simpler than, those used by Riesz,
& (pp. 98, 99), in proving and generalising Fatou’s theorem (see VI, §7,
Theorem 37).
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convergence, and 8 any positive number. Hence by Lindeléf’s Theorem
(Theorem 14) we have
F@=0(t]")

where x'=(c ~n—8)x/(¢—n) <«, for 0 Z7+28. The result now follows from
Theorem 41*.

7. From Theorems 38 and 41 we can deduce an important
theorem first stated explicitly, for ordinary Dirichlet’s series, by
Bohr.

Since o, is a decreasing function of «, the numbers o, tend to a
limit, which may be — », as k = . We write

Iim o= 8.

If §’ is any number greater than &S, the series is summable (A, ), for
some value of «, for o =8"; and so, by Theorem 38, f(s) is regular and
of finite order (III, § 3) for o> 8. Conversely, if £(s) is regular and
of finite order for o> &', it follows from Theorem 41 that the series is
summable (A, «), for sufficiently large values of «, for o> 8"; and so
S’z 8. Hence we deduce

THEOREM 45t. If 7w is the least number such that f(s) is regular
and of finite order for o>n, then n==..

8. The following two theorems are in a sense converses of Theorems 42
and 43. -

THEOREM 46. If Say,e™** is summable (A, «) for s=s,, then
lim (0—00)* "1 f(5)=0

>0,
uniformly throughout any finite interval of values of ¢.

THEOREM 47. If the series ©s summable (I, «) for s=sy, we may replace
(c=oo) ! by o -0,

The proofs of these theorems are simple. We indicate that of the first.
‘We may obviously suppose, without loss of generality, that sy=0 and 4 =0.

* This theorem includes a result given by Schnee, 7 (Theorems 3 and 3’).
Schnee considers ordinary Dirichlet’s series and Cesaro’s means of integral order
only. See the footnote (||) to p. 23.

+ This theorem was first enunciated in this form by Bohr, 2. It is however,
as shown above, an immediate consequence of Theorem 41 (or Theorem 3 of
Riesz’s note 1). See also Bohr, 6, 6.

It follows from this theorem, for example, that if the Riemann hypothesis
concerning the roots of the {-function is true, then the series = u (n) 8 is summable
by arithmetic or logarithmic means for o>} (Bohr, 2). As a matter of fact more
than this is true: for it has been shown by Littlewood, 3, that the Riemann’
hypothesis involves the convergence of the series for ¢>%. The best previous
result in this direction was due to Landau, 8, and H., p. 871.
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We can then choose v so that
[ 4% (r)| <er” (rzv).
By Theorem 24, we have =
K+l k+l roo
+1 " 8| -
o 'f(3)l<~—-—1‘—(xTr)——fo IA"(T)IG G'rdr’

and |s| is less than a constant throughout the region under consideration.
Hence the preceding expression is less than a constant multiple of

a_x+1 v 4 i ‘ﬂ_x+1 © « —or el
1_;—(-K—+l—)f0 | (7) | 'r+'1:(:'+1) . T e dr=0o M(v)+e,
where M (v) depends only on »; and so is less than 2¢ when ¢ is small
enough. This proves the theorem : the proof of Theorem 47 is similar,
starting from the integral representation of Theorem 29.

From Theorem 47 it follows that the series 2 ~# cannot be summable by
any arithmetic mean on the line o =1, since the function ¢ (s) has a pole of
order 1 at s=1.*% On the other hand it follows from Theoren 42, and from
the fact that ¢ (1 4-¢) = O (log|¢|),* that it is summable by any logarithmic
mean of positive order at all points of the line save s=1.1 Compare IV,

§ 4 (6).

9. Some theorems concerning ordinary Dirichlet’s series.
All the theorems of this section have been theorems concerning
the most general type of Dirichlet’s series. We pass now to a few
theorems of a more special character. These theorems are valid for
forms of A, whose rate of increase is sufficiently regular and not too
much slower than that of logn: we shall be content to prove them
in the simplest and most interesting case, that in which A, =log n.

THEOREM 488. If Sa,n~® is summable (n, k)| for s=s, it s
uniformly summable (n, &), where « is the greater of the numbers
k=B and 0, in the domain

cZo,+B [t|<T.1

The proof of this theorem is very similar to that of Theorems 23
and 29. We shall consider the case in which 0 <k <1. We suppose,
as we may do without loss of generality, that s,=0 and 4=0. We
choose a value of 8 such that «— 8 Z 0, and we consider the arithmetic

* Landau, H., p. 161.

+ Landau, H., p. 169.

1 For further results relating to the series for {{(s)}¢ see Riesz, 1, 2.

§ For integral orders of summation, and o>g,+8, Bohr, 1; in the general
form, Riesz, 1.

|| I.e. by arithmetic means of order «.

4T These inequalities might be replaced by o 2o+, |ams|Sa<jm.
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mean of order «— 83 at a point s for which o = 8. This mean is easily
seen to be (cf. VI, §§ 2 and 5)

—wK*B /lwA (u)%{u“‘ (w—u)P}du
=~ [Ta ) &t = 0m) (0= )} du

— (k=B wr+F-s [lwA () (w = w)<~F-1 du.
The second term is
—_ w"K+ﬁ"8 _AK—ﬂ (w),
and, by Theorem 22, A*~# (w)=o0(w*). Hence this term is of the form

0(1), uniformly for ¢ = 3. The first term we integrate by parts,
obtaining

2
w8 /1 “ A () ;%2 1= —0-%) (0 — w8} du =, + o+ T,
say, where J;, J;, and J; contain under the sign of integration
respectively factors
s(s+ Du*2(w—u)8, 2s(k—PB)u(w—u)F7,
(<= B) (x = B = 1) (@ = 0~) (w0 — w6
We can now show, by arguments resembling those of VI, §3 so

closely that it is hardly necessary to set them out at length, that J;
tends to the limit

s(s+ 1)/ A (w)uw™*"* du,
1
and J, and J; to zero, uniformly in the region o Z 8, |¢| = T.
THEOREM 49. If the series is summable (n, k), uniformly for o= a,,
it is summable (n, ), uniformly for o = o, + .

We apply the argument used in the proof of Theorem 48 to pass
from the point o, + ¢¢ to the point o +¢¢ with the same ordinate, and
take account of the uniformity postulated on the line o =0,. 'The
result then follows substantially as before.

10. By combining Theorems 41 and 48 we arrive at the following
theorem,

TuEOREM 50. If, however small 8 and € may be, we have

S()=0(¢t[)
in the half-plane o Z v + 8, then the series is convergent in every such
half-plane, i.e. for o> .
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For, by Theorem 41, the series is summable (, ¢,), where ¢, is any
number greater than e, for o> +8. Hence, by Theorem 48, it is
convergent for o >7n+38 + ¢, i.e. for o>,

Theorem 50 is but a particular case of an important theorem
generally known as the ‘Schnee-Landau’ Theorem.

TueoREM 51.  If @, = O (nd) for all positive values of 8, so that the
series is absolutely convergent for o> 1, and
S)=0(tF)  (k>0)
uniformly for o>v, then the series is convergent for o>{, where { is
the lesser of the numbers
n+k
1+4
To deal with this theorem and its generalisations would require
more space than is at our disposal here, and we must be content to
refer to Landau’s Handbuck and to the original memoirs by Landau
and Schneet. If the second condition is satisfied for all positive
values of £, then the series is convergent for ¢ >%. The first condition
then becomes unnecessary, as may be seen at once by applying a linear
transformation to the variable s; and so we obtain Theorem 50.

n+k*

11. We can obtain another important theorem by combining
Theorem 49 with the result proved at the end of § 5. Suppose that
f(s) is bounded in every half-plane ¢ Z 7 + 8>». Then, if 8 and € are
chosen arbitrarily, the series is uniformly summable (%, €) for ¢ Z 7 +3,
and therefore, by Theorem 49, uniformly convergent for o Z n+3+e.
We thus obtain

TueoreM 52. If f(s) is bounded in every half-plane o Z n+ 38>,
then the series is uniformnly convergent in every such half-plane.

"This theorem was first given by Bohr}. Its converse is obviously
trivial.

Before leaving these theorems we may make a few additional remarks.

Theorems 48—52 may be extended§ to any type of series Sa,e **=3a,1,”*
for which a positive constant ¢ exists such that

bt _g (Ta?) e vvreenennrnnnereeaenaeeeesnannes .
ln +17 'n
* The first number gives the better result if n+ k>0, the second if 7+ k <0,
+ Landau, H., pp.853 et seq. SeealsoLandau, 8, 7; Schnee, 4, 7; Bohr, 2, 5, 10.
1 Bohr, 8, 8.
§ See the memoirs cited in footnote (t).
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This hypothesis ensures that the increase of [, is not foo slow; it is
satisfied, for instance, if /,=n or /,=e", but not if /,=logn. It is easy to
show that the condition (1) is equivalent to either of the following :

P =0(lr1=0n) cereiiriiiiiiiiiniieinennn, (2),

PR R/ 10 NURED W RO (3),
where % and £ are positive*.

Considerations of space forbid us from giving details of these generalisa-
tions. We would only warn the reader that the proofs, involving as they do
in some places an appeal to the delicate Theorem 22, are not entirely simple,
especially when the increase of [, is very rapid and irregular.

The line ¢ =17 such that the series is uniformly convergent for ¢ Zn + 8,
but not for o = 5 — §, however small be §, has been called by Bohr the line of
uniform convergence. It has been shown by Bohrt that, when the numbers A,
are linearly independent, the line of uniform convergence is identical with
the line of absolute convergence : but he has given an example of a series
(naturally corresponding to a non-independent sequence of A’s) which

possesses a half-plane of uniform convergence and no half-plane of absolute
convergence,

12. Convexity of the abscissa o,, considered as a function
of x. It was shown by Bohr{ that the abscissa of summability o,, of
integral order, belonging to an ordinary Dirichlet’s series, satisfies
the inequalities

a0, S0+l (1),

O — O] Z Opy 1= Cppd  cernreennneneniennnnn (2).
Of the inequalities (1), the first is an obvious corollary of Theorem 16
(cf. VI, §4); and the second is an obvious corollary of Theorem 48.
The inequalities (2) lie deeper.

The property which is expressed by the inequalities (2) was then
considered by Hardy and Littlewood§, who proved more precise
theorems of which Bohr’s inequalities are corollaries. Their results
have since been extended by Riesz i, so as to apply to the most general
type of Dirichlet’s series and to all orders of summation integral or
non-integral. In particular it has been proved that the abscissa o, is
in all cases a convex function of «.

It was also shown by Bohr® that the conditions (1) and (2) are

* These conditions are rather wider than that adopted by Schnee and Landau,
and are substantially the same as that adopted by Bohr. It is natural to suppose
h and k positive, but not necessary ; for if (3), for example, is satisfied with k<0,
it is plainly satisfied with %> 0.

+ Bohr, 7: cf. III, § 7. 1 Bohr, 2, 8. § Hardy and Littlewood, 2.

|| In a memoir as yet unpublished. 9 Bohr, s.
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necessary and sufficient that a given sequence o, should be the
abscissae of summability of some ordinary Dirichlet’s series*,

13, Summation of Dirichlet's Series by other methods. It is
natural to enquire whether methods of summation different in principle from
those which we have considered may not be useful in the theory. The first
to suggest itself is Borel's exponential method. The application of this
method to ordinary Dirichlet’s series hus been considered by Hardy and by
Feketet+. It has been shown, for example, that the regions of summability,
and of absolute summability, are half-planes ; and that the method at once
gives the analytical continuation all over the plane of certain interesting
classes of series. But the method is not one which seems likely to render
great services to the general theory.

Riesz} has considered methods of summation related to Borel’s, and its
generalisation by Mittag-Leffler, somewhat as the typical means of this
section are related to Cesiro’s original means. These methods lead to
representations of the function associated with the series which differ
fundamentally in one very important respect from those afforded by the
theory of typical means. Their domains of application may, like Borel’s
polygon of summability, or Mittag-Leffler’s étoile, be defined simply by
means of the singular points of the function, and necessarily contain singular
points on their frontier.

VIII

THE MULTIPLICATION OF DIRICHLET'S SERIES

1. We shall be occupied in this section with the study of a special
problem, interesting on account of the variety and elegance of the
results to which it has led, and important on account of its applications
in the Analytic Theory of Numbers§.

* The construction given by Bohr (l.c. pp. 127 et seq.), for a series with given
abscissae may be simplified by using the series Sedn" yms of IV, §4, (5) as a ‘simple
element’ in place of the series which he uses.

1 Hardy, 8; Fekete, 1.

1 Riesz, 6.

§ In this connection we refer particularly to Landau, 4, and H., pp. 750 et
seq.
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We denote by A and B the series
A+ U+ .y b+by+ ...,
and by C the ‘product-series’
G+ 0+ ..,
where ¢, is a function of the a’s and 4’s, to be defined more precisely
in a moment. We shall also use 4, B, C to denote the sums of the

series, when they are convergent or summable.
When C is formed in accordance with Cauchy’s rule*, we have

Cp=by+ by +...+a,b= 3 ay,b,.
m+n=p+1
Cauchy’s rule for multiplication is, however, only one among an
infinity. We are led to it by arranging the formal product of the
power series 3 @, 2", 20,a" in powers of # and putting =1, or, what
is the same thing, by arranging the formal product of the Dirichlet’s
series
Sa,e", Zb,e™
according to the ascending order of the sums m +n, associating
together all the terms for which m + n has the same value, and then
putting s=0. It is clear that we arrive at a generalisation of our
conception of multiplication by considering the general Dirichlet’s
series
Sdape M Sbe et
and arranging their formal product according to the ascending order
of the sums A, + p,. Let (v,) be the ascending sequence formed by
all the values of A, +pu,t. Then the series C'=Z2¢,, where
== apby,
Am+un=Vp

will be called tke Diricklet’s product of the series A, B, of type (N, u).

Thus if A, =log m, p, =log n, so that we are dealing with ordinary
Dirichlet’s series, then v, =log p and

Cp = 3 ambnzzadbp/d,
mn=p d

the latter summation extending to all the divisors & of p.

* See e.g. Bromwich, Infinite series, p. 83.

t It is generally the case in applications that the X and u sequences are the
same. Any case can be formally reduced to this case by regarding all the numbers
M and p, as forming one sequence and attributing to each series a number of
terms with zero coefticients (Landau, H., p. 750). In the most important cases
(e.9. \y=m, \,,=log m) the » sequence is also the same, but of course this iz not
generally true. In the theoretically general case no two values of \,,+u, will be
equal.
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2. The three classical theorems relating to ordinary multiplication

(Cauchy’s, Mertens’, and Abel’s) have their analogues in the general
theory.

THEOREM 53. If A and B are absolutely convergent, then C is
absolutely convergent and AB = C.
This theorem is merely a special case of the classical theorem

which asserts that the absolutely convergent double series 3 anb, may
be summed indifferently in any manner we please*.

THEOREM 54. If A is absolutely convergent and B convergent, then
C is convergent and AB = C.t

We shall prove that = a,, 6, converges to the sum A B when arranged
as a simple series so that «,,b, comes before @b, if A, + p, < Ay + T
(the order of the terms for which A, + u, has the same value being
indifferent). Theorem 54 then follows by bracketing all the terms for
which A,, + u, has the same value.

Suppose first that B=0. Let S, be any partial sum of the new
series, and let @, be the @ of highest rank that occurs in it. Then

S, = g a, B,,
pr=1

where » is a function of 4 and p. Suppose that S, contains a term
ayby. Then it contains a/ the terms

apb, (p=y, ¢=v).1
Thus kzyandrzyforp=1,2, ...y.
Now we can choose vy so that
|Br[<e  (rZzy)

and %la,,[<e.
y+1 X
Y
Then ]S,,I<e§|ap[+M§1|a,,|<e(A+ZV[),
Y

where A denotes the sum of the series 2 |a,| and M is any number
greater than the greatest value of | B,|. Thus S, =0 as y = o, that
1s to say as £ — .

* See e.g. Bromwich, Infinite series, p. 81. This theorem is not merely a spe(:,ia.l
case of Theorem 54, because it asserts the absolute convergence of the product series.

+ Stieltjes, 2 ; Landau, 4, and H., p. 752. See also Wigert, 1. .

+ This is the kernel of the proof. The reader will find that a figure will help to
elucidate the argument.
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Secondly, suppose B+0. We form a new series B’ for which
bl’ = bl b .B, bal = ba, b3, = b8) ceee

Then, by what precedes, = a,b, converges to zero, and so = a,b,
converges to AB.

3. THEOREM 55. If the series A, B, C are all convergent,
then AB=C.

This is the analogue of Abel’s theorem for power series*. We
shall deduce it from a more general theorem, the analogue for
Dirichlet’s series of a well-known theorem of Cesarot.

THEOREM 56. If A is summable (A, o) and B is summable (p, B),
then C is summable (vya+ B+ 1), and AB = C.

If y=a+ B +1 we have
A% (0) = 3@ (0= N), BE(0)=3b, (0- ), CY(0)=3g,(0-w),
the summations being limited respectively by the inequalities A, <o,
Pp < 0, Vp <O, Then

AR

w a ﬁ
P(a+1)P(B+l)j;) Ay(r)By(w=1)dr ...... (1).

For consider the term an,b,. It occurs in C7(w) if A,+p, <o,
and its coefficient is

("’ —Ap— P‘n)y-

The term a, occurs in A} (r) if N, <7, with coefficient (v - Az),
and b, occurs in Bi (0 —7) if p,<w—r7, with coefficient (v —7- u,)P.
Hence a,,b, occurs on the right-hand side of (1) if A, + u, <, and its
coefficient is

P(y+1) ©kn o (0 o A —
T(a+1)T(B+1) Jan (r=Aw)* (@ =7 — )P dr = (0 = Xy — ).

* The theorem was first given by Landau, 4, in the case in which at least one

of the series 2 amed”", Zb,e ~ M8 possesses a region of absolute convergence. His
proof depended on considerations of function-theory. A purely arithmetic and
completely general proof was then discovered independently by Phragmén, Riesz,
and Bohr. This proof depends on the particular case of Theorem 56 in which
a=8=0. See Landau, H., pp. 762, 904 ; Riesz, 2 ; Bohr, 2.

+ Cesaro, 1 ; see also Bromwich, Infinite series, p. 316. Cesaro and Bromwich
consider only integral orders of summability. The extension to non-integral
orders is due to Knopp, 3, and Chapman, 1.
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Thus (1) is established. But
A2 ()~ Are, BP ()~ Bré;
and therefore, by Lemma 5,
C? (0) ~ AB ",

This proves the theorem. In particular, if 4 and B are con-
vergent, the product series is summable (v,1). Theorem 55 then
follows from Theorems 56 and 16.

4. The following generalisation of Theorem 54 provides an interesting
companion theorem to Theorem 56.

THEOREM 57. If A s absolutely convergent, and B is summable (u, B),
then C is summable (v, B) and C= AB.*

In this theorem the \-sequence is at our disposal. It is evidently enough
(cf. § 2) to prove the theorem in the particular case when B=0.

‘We have
Cf ("’): 2 a'mbn ("’-)‘m"}‘n)ﬂ= p ame (“’ —)m)‘
Amtup<o Anm<w

There is a constant M such that
| B ()| < M=P

for all values of r; and we can choose w so that (1) the # on the right-hand
side of this inequality can be replaced by e if 7,, = 3, and (2)
3 |, |<e

A<
Then we have

1@ <M 2 Janl@-N)Pte 2 [anl(@=An)P,

Fway, <w m<w

0™ POl @) <M 3 Jaul+eA<e(U+A),
3 <w

WAy,
and so m"SCf(w)—-O:
which proves the theorem.

5. The next theorem which we shall state is one whose general idea is
analogous to those of the ¢Tauberian’ theorems of VI, § 7, and in particular
Theorem 35. We therefore omit the proof.

* For the special case of multiplication in accordance with Cauchy’s rule,
gee Hardy and Littlewood, 2 (Theorem 35), where further theorems on the
multiplication of series will be found. The particular theorem proved there is
however a special case of one given previously by Fekete, 3.

H. & R. 5
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THEOREM 58. If
am=0<)\m—)\m—l)’ bn=0(_£l"n—l>’
Am HBn
then the convergence of A and B s enough to ensure that of C.*

6. Our last two theorems are of a different character.

THEOREM 591, If

(1) 720, P20, 7+7'>0, p+rZp, p'+7 Zp

(2) the series Sa, e

for s=p+7,

m$ gs convergent for s=p, and absolutely convergent

“(3) the series Sbye”""® is convergent for s=p', and absolutely convergent
for s=p' +1';
then the series = cye™"?® is convergent for
s PT T
T+71 ’
We shall give a proof of this theorem only in the simplest and most
interesting case, viz. that in which
Am=logm, p,=logn, v,=logp,
so that the series are ordinary Dirichlet’s series, and
p=p'=0.
We can then suppose that r and 7’ are any numbers greater than 1, so that
pr'+p'r+rr
T+7
may be any number greater than 4. The theorem therefore asserts that, if
A and B are convergent, and

= 3 apb,

then Sc¢,p~% is convergent for ¢ >4. In this case, however, it is possible
to prove rather more.

* This theorem is not a corollary of Theorem 35. The conditions do not
ensure that ¢p=0 {(vp—vp_)/vp}. The theorem was proved, in the particular case
Ap=m, p,=n, by Hardy, 2; and in the general case by Hardy, 7. Hardy
however supposed the indices \,,, u,, subject to the conditions

M= An=1=0 (Ng)y Mo = fgmy =0 ().

That these conditions are unnecessary was shown by Rosenblatt, 2.
+ Landau, 4, and H., p. 755.
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THEOREM 60. If A and B are convergent, then S 31’1—) 18 convergent®,
We shall prove, in fact, that Sc,p=¢ is uniformly convergent along any
finite stretch of the line s=3}4-z.

Let us write A= 2 ap, A=A4(z)+A4,,
m>z
and similarly for B. We have

@0 -]
Sayr 3= (4y-1—-d))v~¢
m n

=Apym- 8+2A =+ = O<J*rr>

as m-s=0<~/im), 2[ —(v+1)" a|=o(~/m> Ap=0(1).

Similarly 3 bvt=o ( Jn)
and these relations all hold umformly as regards & 'We observe now that
; Cpp~®
1
includes all products of pairs of terms a,,m~%, b,n~* for which mn <[], and

Ve N
Sa,mExX 2 b,n"8
1 1

all for which m = /2, » <./z; and that, if mn <[], one at least of m and
7 i3 not greater than /. It follows that

x Nz v
Scpp -2 a,,m % 2 b,n"?
1 1 1
Vi z/m vz z/n
—2 Amm~™% 3 b,v=84 2 byn—% 2 ayv-?
NT v

-yl NN :
=o0(z™%) ? :/7—7—1-*.0(0/ ) f ;/7é=0(1)’+
which proves the theorem.

It was suggested by Cahen] that the convergence of A and B should
involve the convergence of Sc,p~* for >0, and not merely for ¢ =3 (as is
shown by Theorem 60). This question, the answer to which remained for
long doubtful, was ultimately decided by Landau§, who showed by an
example that Cahen’s hypothesis was untrue.

* Stieltjes, 1, 2. See also Landau, 4, and H., pp. 759 et seq.

x/m y
+ Since b b,,v—s—-o(x"*)—0<\/E):o(z‘*);
vz z
. x/n -1
and similarly 2 ayv~i=o(r73).
NZ
I Cahen, 1. § Landau, 5, and H., p. 773.
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This may be seen very simply by means of Bohr'’s example (III, § 7) of a
function f(s), convergent for >0, for which p(0)=1-0¢ for 0<o<1. If we
square this function, we obtain a function for which p (o) =2 - 2¢ for 0<o <1,
so that u(0)>1if o<4. It follows from Theorem 12 that the squared series
cannot converge for o <4, and hence that the number 4 which occurs in
Theorem 60 cannot possibly be replaced by any smaller number¥*.

* Bohr, s.
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