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GENERAL PREFACE

During the active life of the Guggenheim Fund for the Promotion
of Aeronautics, provision was made for the preparation of a series of
monographs on the general subject of Aerodynamic Theory. It was
recognized that in its highly specialized form, as developed during the
past twenty-five years, there was nowhere to be found a fairly comprehen-
sive exposition of this theory, both general and in its more important
applications to the problems of aeronautic design. The preparation and
publication of a series of monographs on the various phases of this
subject seemed, therefore, a timely undertaking, representing, as it is
intended to do, a general review of progress during the past quarter
century, and thus covering substantially the period since flight in heavier
than air machines became an assured fact.

Such a present taking of stock should also be of value and of interest
as furnishing a point of departure from which progress during coming
decades may be measured.

But the chief purpose held in view in this project has been to provide
for the student and for the aeronautic designer a reasonably adequate
presentation of background theory. No attempt has been made to cover
the domains of design itself or of construction. Important as these
are, they lie quite aside from the purpose of the present work.

In order the better to suit the work to this main purpose, the first
volume is largely taken up with material dealing with special mathe-
matical topics and with fluid mechanics. The purpose of this material
is to furnish, close at hand, brief treatments of special mathematical
topics which, as a rule, are not usually included in the curricula of
engineering and technical courses and thus to furnish to the reader,
at least some elementary notions of various mathematical methods and
resources, of which much use is made in the development of aerodynamic
theory. The same material should also be acceptable to many who from
long disuse may have lost facility in such methods and who may thus,
close at hand, find the means of refreshing the memory regarding these
various matters.

The treatment of the subject of Fluid Mechanics has been deve-
loped in relatively extended form since the texts usually available to
the technical student are lacking in the developments more especially
of interest to the student of aerodynamic theory. The more elementary
treatment by the General Editor is intended to be read easily by the
average technical graduate with some help from the topics comprised
in Division A. The more advanced treatment by Dr. Munk will call
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for some familiarity with space vector analysis and with more advanced
mathematical methods, but will commend itself to more advanced
students by the elegance of such methods and by the generality and
importance of the results reached through this generalized three-dimen-
sional treatment.

In order to place in its proper setting this entire development during
the past quarter century, a historical sketch has been prepared by Pro-
fessor Giacomelli whose careful and extended researches have resulted in
a historical document which will especially interest and commend itself
to the study of all those who are interested in the story of the gradual
evolution of the ideas which have finally culminated in the developments
which furnish the main material for the present work.

The remaining volumes of the work are intended to include the
general subjects of: The aerodynamics of perfect fluids; The modi-
fications due to viscosity and compressibility ; Experiment and research,
equipment and methods; Applied airfoil theory with analysis and dis-
cussion of the most important experimental results; The non-lifting
system of the airplane; The air propeller; Influence of the propeller
on the remainder of the structure; The dynamics of the airplane; Per-
formance, prediction and analysis; General view of airplane as com-
prising four interacting and related systems; Airships, aerodynamics
and performance; Hydrodynamics of boats and floats; and the Aero-
dynamics of cooling.

Individual reference will be made to these various divisions of the
work, each in its place, and they need not, therefore, be referred to in
detail at this point.

Certain general features of the work editorially may be noted as
follows:

1. Symbols. No attempt has been made to maintain, in the treatment
of the various Divisions and topics, an absolutely uniform system of
notation. This was found to be quite impracticable.

Notation, to a large extent, is peculiar to the special subject under
treatment and must be adjusted thereto. Furthermore, beyond a few
symbols, there is no generally accepted system of notation even in any
one country. For the few important items covered by the recommen-
dations of the National Advisory Committee for Aeronautics, symbols
have been employed accordingly. Otherwise, each author has developed
his system of symbols in accordance with his peculiar needs.

At the head of each Division, however, will be found a table giving
the most frequently employed symbols with their meaning. Symbols
in general are explained or defined when first introduced.

2. General Plan of Construction. The work as a whole is made up
of Divisions, each one dealing with a special topic or phase of the general
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subject. These are designated by letters of the alphabet in accordance
with the table on a following page.

The Divisions are then divided into chapters and the chapters into
sections and occasionally subsections. The Chapters are designated by
Roman numerals and the Sections by numbers in bold face.

The Chapter is made the unit for the numbering of sections and the
section for the numbering of equations. The latter are given a double
number in parenthesis, thus (13.6) of which the number at the left of
the point designates the section and that on the right the serial number
of the equation in that section.

Each page carries at the top, the chapter and section numbers.

W. F. Durand

Stanford University, California
January, 1934
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NOTATION

The following table comprises a list of the principal notations employed in
the present Volume. Notations not listed are either so well understood as to
render mention unnecessary, or are only rarely employed and are explained as
introduced. Where occasionally a symbol is employed with more than one meaning,
the local context will make the significance clear.

DIVISION A

The complex quantity (x + 7 y): The vector (z + 7 ¥)
Radius of curvature, VI 8

Radius vector

Surface or area

Any angle, usually the vector angle with X
Velocity in the direction of the axis X
Velocity in the direction of the axis Y
Velocity in the direction of the axis Z

Any function of z

Usually resultant or total velocity

Velocity along radius vector

Velocity | to radius vector

Laplacian, I2 VII 3

The scalar part of w. Also potential

The imaginary part of w

A non-dimensional function Iv3
Coefficient of viscosity, IV 4

Coefficient of kinematic viscosity IV 4
Line integral, VI3

Density
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DIVISION B

X, Y,Z Coordinate axes

x,y,2 Coordinates along X, Y, Z

The complex quantity (z -+ ¢ y)

Radius vector

Angle, usually vector angle with X

Velocity in the direction of X

Velocity in the direction of ¥

Velocity in the direction of Z, Induced velocity, III 2
Potential function = (¢ + 7 y)

Resultant or total velocity

Velocities in the directions of X and Y with axes fixed relative to the
indefinite mass of fluid, VII 1

Component velocity in the direction of »

Component velocity | to the direction of r

Angular velocity

Circulation or vorticity, III1

Difference

Laplacian, AVII3
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NOTATION XV

Potential
Stream function

Potential, Stream function and potential function with axes fixed relative
to the indefinite mass of fluid, VII 3

Pressure

Energy

Moment or momentum, also = 2 a u, IV 10
Used for I'/27, o1 3

Strength of source or sink, ;7

Used for m/2x

Line or direction along a normal

Density

Time

DIVISION C

Coordinate axes

Coordinates along X, Y, Z

Distance | to X along an axial plane, v 4
Semi-elliptic coordinates, VII 2
Elliptic coordinates, VIII 2
Radius vector

Radius

Surface or area

Angle, usually the vector angle with X
Component velocities along X, Y, Z
Velocity, usually total velocity
Angular velocity, axial angle, IV 4
Circulation, vorticity

The Operator ‘“Del”, I (23)
Laplacian, I3

Potential

Stream function

Pressure

Energy

Strength of Source, Ivi1

Strength of Doublet, v 3

Elliptic integrals, VIII 5

Direction along a normal

Density

Time



DIVISION A
MATHEMATICAL AIDS
By
W. F. Durand,

Stanford University, California

PREFACE

Reference has been already made in the general preface to the pur-
pose of this Division of the work as a whole. The choice of topics has
been such as will promise the most immediate aid to those whose mathe-
matical preparation may not have included all the methods conveniently
and usefully employed in the development of various phases of aero-
dynamic theory. In all cases the treatment has, of necessity, been
partial and confined to the more elementary phases of the subject. No
attempt has been made to include the subject of differential equations,
this for the two reasons: first, the very considerable space which would
be required for a treatment covering in any reasonable degree the use
of this mathematical discipline in its many applications to the various
problems arising in aerodynamic theory and second, the growing extent
to which this subject is now found in engineering and technical curricula
and the many excellent text books which are available for the interested
reader.

The subjects of elliptic integrals and of elliptical functions has also
been omitted by reason of lack of space for any reasonably adequate
treatment and for the further reason that readers interested in those
phases of the subject in which this discipline would be of special signi-
ficance would, presumably, already be acquainted with them.

CHAPTER 1
THE COMPLEX VARIABLE (x+iy)

1. Introductory. In the present section we are concerned primarily
with the symbol 7 as the equivalent of Y—1 and with the mathematical
results which follow from the use of the complex form (x + ¢y) con-
sidered as a single variable z, and as such, made the subject of various
functional operations. Thus, we put

2=« + ty, and then write (1.1)
w=f() (1.2)

Aerodynamic Theory I 1



2 AL THE COMPLEX VARIABLE (x + iy)

This means that the complex variable (x + iy) is to be made the
subject of a development in functional form and thus subject to exami-
nation in the same manner as any simple function f(z).

Thus as an illustration let

w =22 = (x + 1y)%. Expanding we have
w= (2 —y) + 212y

The developed form is thus seen to consist of two parts, one real,
(22 — y*) and the other, 2¢ xy, containing the imaginary i. This form
of the development of a function of (x + iy) is typical and general.
The development will consist of a real part (scalar) and of a part
affected by the factor ¢ and these two parts may be viewed analytically
simply as the real and vmaginary parts of the development. To designate
these we adopt the notation

@ = scalar or real part
w = imaginary part
We then have w=g@+ iy (1.3)

It will be noted that the two functions @ and y cannot arise sepa-
rately. They always appear together, one as the correlative or comple-
ment of the other, and the peculiar properties and relations of these
two functions will be found to have important applications in the
study of the problems of fluid mechanics.

2. Properties of the Functions ¢ and ®. From the equation

z = x + 1y we have

0z ox
ox oz 1
oz oy _ &b
6y_ v 8—z_~—l
Then taking w=f()=f(x+iy)=¢+ iy (2.2)
dw _ 0w 0z _ 0¢ .0y
we have iz~ b 0z 0z T 'ox 05
dw _ 0w 0y _ _ ;00 , Ov &9
dz ~ 0y 0z o0y oy
Then from (2.1) and (2.3)
ow  dw 0z _ dw
ox  dz o0z  dz ] 9.4
aw_dwaz__.fi_w_l (2.4)
By~ dz oy 'dz
Whence by comparison of these two equations:
ow . Ow ow _ .O0w
?—x—:——@a—y—'andw—zﬁ (2-5)
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Again in (2.3) equating real to real and imaginary to imaginary:

op __ Oy l

ox = 0y 6
op oy I (2.6)
oy oz

These relations are of great importance and lie at the foundation
of the special significance of the functions ¢ and 9 in the problems of
fluid mechanics.

Again from (2.3) and (2.6) dw _ 09 ) o9

dz ox 0y

. (2.7)
dw 0y . Oy
dz 0y + ox '

Attention may be called to (2.7) as having important applications
in the later development of the subject of fluid mechanics.

Again from the pair of derivatives dg/éx and d¢/oy we have:
o ( op\ ¢
oy W) T oyox
0 op\ 0%
oz W) T ozoy
But if ¢ is a function expressible in terms of x and y, we know that

ol¢p  0O%¢
0x0y  Oyoz

(2.8)

That is, the order in which the partial derivatives are taken is in-
different. This is furthermore readily verified by taking the partial
derivatives of any function of « and y, first with reference to = and
then y and then in the inverse order. Hence,

0 op 0 op\
Er (Tx) %z (a7> =0 (2.9)
And similarly, aiy (g—‘i) - (%—) —0 (2.10)

Now going back to (2.6), take partial derivatives in the first with
respect to x and in the second with respect to .

o%¢ %y
0 Oyozx
¢ Oy
oy* ozoy
But as above, the expressions on the right are equal, and with opposite
. 0? 02
signs. Hence, azq; -+ 'ayf =0 (2.11)
In a similar manner by taking partial derivatives in the inverse
*y | Oy
order, we have 22 T oy = 0 (2.12)

l*
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. 2w 2w (022 2w
Agam from (21) a2 622 (Tx) =%z
0w _ o*w (0z\® 02w
oy: = 02 Fy) T T o2
Fw 02w

This result might have been foreseen as a consequence of the relation
w=¢@ -+ iyp.

As an operator, the expression on the left in (2.11), (2.12), (2.13)
is sometimes called the Laplacian of the function (¢, v, or w) and is
indicated by the symbol /2. Thus

Vig =0, Viyp =0, Viw=0

The physical meaning of this symbol will appear in VII 3.

w, ¥ % v 2 It thus appears in general that the

“ development of the complex variable,

—— % 2= (x -+ ty), as a function, w = f(z), will

always lead to the two correlative functions

@ and v with mutual relations as expressed

k'—% in (2.6) and each with the characteristic

property as expressed in (2.11) and (2.12).

It will be noted that the property

expressed in (2.8) is common to any and all functions expressed in terms

of # and y while the property expressed in (2.11) or (2.12) is not general,

but is peculiar as a distinguishing characteristic of the two functions,

@ and g, which result from the expanded form of a function of the
complex variable (x -+ 7).

Next, suppose, as in Fig.1 a series of curves determined by the
equation @ = @;, @, @i, etc. and a second series determined by the
equations p = y,, s, Y, etc. and assume any one of one series to intersect
any one of the other. Then at the point of intersection, apply (2.6)
and divide one of these by the other. This will give

%L - ﬁ]w (2.14)

— %>

Fig. 1.

But dy/dx is the tangent of the angle of slope to the axis of X and
this equation shows that one such tangent is the negative reciprocal
of the other and hence that the curves are at right angles to each other
at the point of intersection. This will be true for every such intersection
and the two sets of such curves will therefore always have their mutual
intersections at 90°. One set of curves is therefore orthogonal to the
other. We thus reach the interesting result that if (z - 7y) be expanded
into any form of algebraic function, giving the two correlative functions ¢
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5

and o as above, and if then ¢ = ¢;, @y, @5, ete. and p = yy, ,, ps, ete.
be taken as equations to two sets or families of curves, such curves

will form an orthogonal system.

IMlustration: w =22 = (x4 1y)? = a2 + 252y — y2

Hence p=2a2—yt

y=2zy

The series of curves for ¢ = ¢;, @,, etc. will be a series of hyper-
bolas symmetrical about X and Y as shown in Fig. 2 while the series

Y =y, y, etc. will be a series
of rectangular hyperbolas lying
in the first and third quadrants
as shown. These two sets will

then always intersect at an angle
of 90°.

%,

Yr V2 ¥
Y

} /%

%

N4
N\

\N

\\

7/%

\

N

\

\

1/
3.TheInverse Relationz=F(w). X
If w is a function of 2, it follows Zz :} \
inversely that z will be a function \ \
of w; and it is sometimes advan- N \
tageous to make use of this inverse /[ \\
relation. Similar to 2 we shallthen [// AVAN] A\
have Fig. 2.
z=Fw)=F(p+iy)=2a+1y
dw Gy
op ow
ow oy
oy w "
dz 0z 0p _ Ox oy (3.1)
dw = 59 tw — bp T' Ty
dz oz Oy . Oz oy
o oy tw - YTy Ty
d oz oz 0z . 0z
an T 0w oy = ow
oz _ . 0z oz 0z
g ’ oy oy do
Then parallel to (2.6) o= _ oy
op oy (3.2)
cy oz ’
e T oy
And again parallel to (2.7) —ji 2:;— 3 g;
dz oy .0y (3.3)
w = oy TV,
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In the same manner as for w = f (z) we may show also that the
two sets of curves, derived from putting ¢ = const. and ¢ = const. will
intersect always at right angles and will, therefore, form an orthogonal
field.

By way of illustration, assume

z=ccosw =ccos (p + ¢typ). Whence (see 11)
x = ¢ cos @ cosh y
y = — ¢ stn @ sinh p. Whence
x2 y2
c? cosh? + c® sinh® y
2 2
i Y —1 (see 10)

ctcosPp  cEsin?e

=1

The curves for g = const. are ellipses and those for ¢ = const. are
hyperbolas. These conics will have common foci at + (¢, 0) and inter-
sect always at right angles as shown in Division B
Fig. 52.

4. The Complex x + iy as the Location of a Point
in a Plane. Anticipating in some small degree the
application of the complex variable to the treatment
of vectors and to the subject of vector algebra, we
next proceed with the development of certain
important relations growing out of the use of the complex = 4 ¢ty as
the designation of a point in a plane. Thus in Fig. 3 we take x as the
abscissa and y as the ordinate and thus locate a point P in the plane
XY. In terms of polar coordinates, the point might also be located by
the length r laid off at the angle § where

2= a2 4 42

0 —tan—1L
x

If then we take the equation z = x + 7y and substitute for x and
y in terms of r and 0 as in Fig. 3 we shall have

z =1 (cos 0 + i sin 0) (4.1)
Now the application of Maclaurin’s theorem to the expansion of
¢ gives: e0=1+0+§+$+%+§+....
If instead of § we put ¢ 0, we may write the result in the form:

: 62 0t . 03 65
ew= l—*‘g—{—?..]—‘—l[e-—?“{_?..
But the expression within the first bracket is known to be the expansion
of cos 0, and similarly that in the second bracket is the expansion of
sin 6, both in ascending powers of 6. Hence as an algebraic identity
we may write: ¢t% = cos O + 186 (4.2)
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This is to be understood simply as a statement of the equivalence
of these two algebraic forms, or of their identity when expanded in
terms of 0.

Comparing (4.1) and (4.2) it is clear that we may write the complex
variable z = « + 7y in the form

z = ret? (4.3)
and in whatever way z = (x + ¢y) may be used as the representation
of a point in a plane, or as a vector or otherwise, we may equally well
employ the expression 7¢!®. It should be clearly noted that at this
point we are only concerned with the establishment of the analytical
equality of the three expressions:

z=x+ 1y =7 (cos B + isin ) = ret® (4.4)
all under the conventions expressed in Fig. 3.

5. Results Growing Out of the Expression of the Complex Variable
in the Exponential and Circular Function Forms. The series of equalities
2= (x + 1y) = r (cos 0 + 4 sin §) = re*? leads to many interesting and
important relations. Among these a few are selected as of major im-
portance for our present purpose. Most of these are self evident, or
follow directly from the preceding sections.

(cos O + 1 sim O)™ = (ei0)m — im0
whence (cos 6 + 1 sin 0)™ = cosm 6 + ¢ sitn m 0 (a)
This is the well known de Moivre’s theorem.
;:‘cose—l—isinezew (b)
%:cos@—isin@:e—“’ (e)

Putting — 0 for 0 in (b) gives the last two expressions in (c). But
e~%% is the reciprocal of ¢!°. Hence the first term must be the reci-
procal of zfr or r/z. Then from (b) and (c)

2 cos = % %:ei"—i-e—“’ (d)
2’587:7’“9:;—% = glf — ¢—10 (e)

Whence cos§ = & " (f)
18in 0 = ﬁii':;—w (8)

Again from (b) and (c)
(cos O + ¢ sin 0) (cos 0 — i sin ) =1 (h)
This is readily verified by direct multiplication.

% = :—(cos 6 —isinf) = —if e—t0 (1)
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6. The Integration of Functions of a Complex Variable. The complex
variable z may appear in integral expressions the same as a real variable.
Thus we may be concerned with integrals of the general form:

/1) dz (6.1)

If f (2) is expanded, it will take the form u 4 ¢» where « and v are
real functions of x and y. The expanded integral will thus take the form:

[ (w+iv) (dz + idy) = [(wdx—ovdy) + i [ (vdx + udy) (6.2)

The integral is thus reduced to the form of four integrals, each in-
volving real functions % and v.

It now becomes a matter of interest to inquire under what conditions
the values of the two integrals in (6.2), when the path of integration
is carried around a closed contour, will become zero.

Assume the existence of a function ¢ of x and y and put

c ¢
P=-"and Q= E:L (6.3)
Then we shall have

B
o o B

[Paz+Qiy = [((Laat (Lay)=g]) (64
4

where 4 and B denote the two points between which the integration
is carried. Now if the function ¢ is real, single valued and without
singularities (the effect of which will be considered later), it is clear
that if the integration is carried around a closed path, the point B comes
to A4, the two values of ¢ become the same and the value of the integral
becomes zero. The condition that an integral of the form (6.4) shall
vanish when the integration is carried around a closed path is therefore
the existence of a function ¢ of the character indicated. But for any
such function it is known that we must have

e 0%

oxoy  Oyox

And from (6.3) this is equivalent to
oP _ 2Q
0y oz (6.5)
If we then consider the two integrals of (6.2) respectively parallel
to (6.4) and apply to them the condition of (6.5), we shall have the
u ov - d ov _ Ou 6.6
Ty = oz M 5y T e (6.6)
These are sometimes known as the Cauchy-Riemann equations and are
fulfilled when » and v are the two conjugate parts of f (z) as assumed
above; that is where we have

f(2)=u+ v

conditions

See also 1, 2.
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So far as formal integration is concerned we may integrate Eq. (6.1)
directly in terms of z, thus giving a result, F (z), which if expanded

would take the form F@y=U+1<¢V
We should then have from (6.2)
U oU
T Y Ty T Y
ev ov
Tz Y oy T

These again fulfil the Cauchy-Riemann equations and thus show
that U and V, related in this way to (6.2) are the conjugate parts of
the expansion of some function, F (2).

7. Influence of Singularities. A singular point with reference to
a particular function f(z), may, for present purposes, be defined as
a point at which the derivative f’ () has no definite or finite value, no
matter from what direction the point is approached. Thus the function
1/z has a singular point at the origin and similarly the function 1/(z—z)
has a singular point at z = z,.

Now from the preceding section it appears that, in general, the
value of [f (z) dz taken around a closed path will vanish. If, however,
this path should inclose a singular point, this result no longer holds.

Take for example the function

23

I— [ 2= (7.1)

2z
Z

for which the origin is a singular point. Integrating we have
I =log z] .

If now we express z in the form z = 7¢*® the integral takes the form

log (rei")} = log —{— i 6]
If then a complete circuit is made around a closed path, the value
becomes
I=zogi+ie]2"=;ni (7.2)
7y 0
If instead of integrating directly, we put z = r¢%® in (7.1) the same
result develops.

Take again the integral I = 9§z .
— ~0

around a closed path containing the point z,. It is readily seen that
this case is similar to the preceding except that the singular point is
not at the origin.

1 The symbol 56 implies a line integration carried around a closed contour.
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Integrating as before we have I = log (z — z,)
But here we may write z = zy -4 ret® or z — z, = ret?
Hence I = log (r¢*%) = 2 m i as before.

8. Cauchy’s Theorem. We have seen that the value of the integral
[ f (2) dz carried around a closed path will vanish if the path does not
inclose a singular point, but will not vanish if a singular point is within
the circuit. Suppose now that we have a field as in Fig.4 in which
there are two singular points P and ¢ with a closed path A BC D A
inclosing both of these points. The integral of f (z) dz around this path
will not then be zero. Next assume the points P and @ isolated from
the remainder of the region by closed paths abc and def. If then
we trace the path A BCfedCDAcba A,
that is in such manner that the region within
A BCD and without abc and def always
lies on the left, the path will not inclose the
points P and . We may, if we wish, assume
an infinitesimal separation between A a and
¢4 and the same for C'd and fC, or otherwise,
we may assume A a and ¢4 to lie, one on one
side of the line and the other on the other side,
and the same for C'd and fC. In either case, identity of the two paths
stands simply as the limit toward which these conditions approach.

Fig. 4.

For such a path, then, the integral will have zero as its value. But
over such a path the values for 4 @ and ¢ 4 will cancel and the same
for Cd and fC. We may then write

9§ABCDA+§,'M+ eba =0 (8.1)
or 554 BCDA ggdef + 9§abc (8.2)

This important result is known as Cauchy’s Theorem. It will be
noted that in the form (8.1) the cyclical direction followed in traversing
the paths about P and @ is the opposite of that for the outer path
A BC D A; while in (8.2) the cyclical directions are all the same. This
general result will evidently hold for any number of singular points
within the outer closed boundary. If there is but one singular point,
we have simply the equality of values of two integrals about a point
such as P, the two paths not being the same.

For any point such as P, the expression
1
s $1()d2 (8.3)

carried around a closed path about P is called by Cauchy the residue
of f (2) at the point P.
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9. Cauchy’s Integral Formula. Consider the integral
1 =§tedz (9.1)

2—2,

carried around a closed contour inclosing the point z,. Take again the
companion integral where f(z) becomes f(z,) and substract the two.

This gives A = §IA=@) 4, (9.2)

2—2,
But f (z2) — f (#p), assuming the function expressible in algebraic form,
is readily seen to be exactly divisible by (2 —z,) and the result will
be a polynomial in z and 2z, This will have no singularity at the point
z, and the integral of (9.2) will therefore be zero. This gives us, see 7
f@dz _ f1Edz _ g 9571% =27 f(z) (9.3)

0

z2—2, z2—2,

This shows then that the value of any integral of the form (9.1) carried
around a closed path inclosing a singular point at z, is given simply by
27 times f(z). In this case, f(z,) is Cauchy’s residue for the point z,.

For a circle of indefinitely small radius 7 surrounding the point, this
result may be otherwise reached as follows. For such a circle, any point
on the circumference is given by z = z, + re*® [see V11(f)]. The ex-
pression f (z) becomes at the limit f (z,) and the integral thus becomes

dz
I'= f(zo)jg i—z
But the integral form, as we have already seen, is equal to 2 7z s.
Hence we have I = 2 mif (z,) as before.

Since, moreover, as shown in 6, the integral around any one singular
point is the same regardless of the path, this same value will hold for any
other path and the result has, therefore, the same generality as in (9.3).

It should be noted that the relation

56 = _ 27y

z—2,

only holds for expressions in this exact form. In particular it does not
hold for expressions in the more general form.
dz
I=0¢ 77— 9.4
&) —1 (a0 04
For any such form, the substitution z = z, 4 r¢t%, is to be made,
retaining only the lowest powers of 7, followed by reduction and inte-

gration.
As an illustration take the form
dz
I= 55;;;;':;‘3;;“
Making the substitution, retaining only the first power of r and
reducing we find

1 . 1 .
I = M‘Ffﬁzdezmﬁnl)
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10. Hyperholic Functions. In relations 5 (f), (9), put 1 2 for 6. This

. . e+ e ”
will give, cos (tx) = +
L,z
sim (tx) =1 o 2i— whence
T __ ,—Z
tan (tx) =1 ¢ —¢
% 4 e

It will be noted that cos (ix) is real while sin (iz) and tan (i) are
imaginary since they have the factor s. The expression for cos (1z) and
the real part of the expressions for sin (¢z) and tan (1) are known as
the hyperbolic cosine, hyperbolic sine and hyperbolic tangent of x.

They are written:

coshx, sinhx and tanh z

Thus sin (tx) = ¢ sinhx
cos (1) = coshx (10.1)

tan (ix) = i tanh x

. eF—e %

Then sinhx = 3

xZ —
cosha = £ 1° (10.2)

tanhx = ef—e”®

e re T

and their values may be computed from these exponential expressions.

The reciprocal functions are defined as with the common circular
functions: 1/sinh & = cosech x
1/cosh x = sech x
1/tanh x = coth x

The following relations are readily established

cosh? x —sinh? x =1
1 —tanh? x = sech? x

sinh (x 4 y) = sinh x cosh y + cosh x sinh y
cosh (x 4 y) = cosh x cosh y + sinh x sinh y

By combination of the values of sinh x and cosh x we have

 _ .
R bbb a3
and by dividing one of these by the other,
— V 1+ tanh x
1 —tanh & (10.4)

e 1—tanh
1+ tanh x
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11. Hyperbolic Functions of Imaginaries and Complexes. In the ex-
pression sinhx = ex*—;_ﬁ put iz for x

exr —e—ix

We shall then have sinhiz=——73——
Then referring to 5 this becomes

sinhix =1 sinx
Similarly we find cosh 1x = cos x

tanh ix = itan x

. . . ex+Hiy —e—(x+ 1Y)
Again we have sinh(x 4 1y) = 3

etV = ¢% (cos y - 1 sin y)
e~ (@+1Y) — ¢~% (cos y — 1 sin y) [see b (c)] Whence

sinh (x + 1 y) = sinh x cos y + ¢ cosh x sin y
In a similar manner we find

cosh (x + 1y) = cosh x cosy -+ ¢ sinh x sin y
tanh x + i tan y
1+ ttanh x tany

Again take the usual formulas for sin (x 4+ y) and cos (x 4 y) and

for y put iy. Then putting for sin iy and cosiy as in (10.1) we have

tanh (x + 1y) =

stn (x + ty) = sin x cosh y + 1 cos x stnh y
cos (x 4+ 1y) = cos x cosh y F 1 sin x sinh y

‘Whence tan (x +iy) = tanx & i tanh y

1Fitanztanhy
12. Inverse Relations. Let wu, = sinh x
Uy = cosh x
ug = tanh x
Then keeping everything in terms of u, we have
' ud = sinh® x
u? + 1 = cosh? x and from (10.3)
& = log (cosh x 4 sinh x) whence

x=log(u, + ¢/ ud +1) (12.1)
Similarly for u, & = log (uy + 1/ u3 — 1) (12.2)
Then for u; we have again from (10.3) by division
14 tanh 2z 1+ uy

e2m: =
1—tanh x 1—u,
1 14 ug
or T = -, log ( 1_%) (12.3)

These give, therefore, the values of x in terms of the sinh x, cosh x
and tanh x.
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13. Derivatives of Hyperbolic Functions. If we express the values
of sinh x, cosh x, tanh z, etc. in terms of % and e~% and then apply the
usual rules for differentiation, we shall find immediately

(dsimha) _ b
dx

d (cosh @) _ sinh x
dx

damhz) _ soon2x
dx

14. Ilustrations of Complex Functions. At this point, some ex-
amples of functions in the form of (2.2) will be of interest, both in them-
selves and as showing the manner of dealing with different types of
functions of this character. Later reference will be made to several
of these functional forms.

1 1 .
(a) w= =Ty =0+iy
1 o x—iy
x+iy 2P 4y?

=@ + ty. Hence

_ x
A

w:}% and

x 7 .
W= e xzj—/yz or if we put a? 4 y% = 2
w= —;—-—i—ij or again transforming wholly to polar
coordinates: w=00_ dsm® 1,0 1'e .
r r r ret 2
(b) w = log z = log (x + ©y) = log re*®
or w=logr+i0=¢p+typ
whence @ =logr=log 1/ 2 + y?
p=0=tan"! %
and w:logz:logr—}—itan*%
(e) w=smz=sn(r+iy) =@+ iy
Expanding: SN XTCOSTLY +cosTSMTIY =@ + 1y
or sin x cosh y 4- 1 cos x sinh y = ¢ + 1y (see 10)
whence @ = stn x cosh y
P = €08 T sinh y
(d) w=cosz=cos(x+1y) =@+ 1ty

COSTCOS LY —SinTsmiy=e¢41iy



whence as before

()
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@ = cos x cosh y
Y = —sin x sinh y

w=lanz=tan (x4 1y) =@ +1iyp
lanx taniy .
1—tanxtaniy =ptry
lan x i tank y
1—itan x tanhy
(tan x + itanh y) (1 + i tan = tanh y)

¢y = 1 + tan? x tanh? y

tan x + @ tan? x tanh y + i tanh y — tan x tanh? y
1+ tan? z tanh? y
__ tan x (1 —tanh? y)
Y= 1 fanwiani? y
_ tanhy (1 + lan’ z)
T 1+ tan®x tanh®y

w:ezze(x+iﬂ)=¢+iw
eCeV =@ +iy

eC(cosy +isimy) =@ +iy
@ = eTcos y

py=¢eTsiny

w=logsin(x+i1y) =@+ iy

$in T cos 1Y + cos x sin iy = eP etV

sin x cosh y 4 1 cos x sinh y = €% (cos p + ¢ sin )
e% cos yp = sin x cosh y

e sin p = cos x sinh y

v = tan~1 (cot x tanh y)

Q= —%log sin® x cosh?® y + cos? x sinh? y

CHAPTER II

INTEGRATION OF PARTIAL DERIVATIVE

EXPRESSIONS

1. The integration of partial differential expressions is best approached

through a study of the manner in which such expressions are formed.

If we take a function z=aady?

we have
Then with the accepted notation we put 0z/0x for 3aa?y? and

dz2=3a22y2dx+ 2a23ydy

02/0y for 2 a x® y and write in symbolic form:

oz oz
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0z
i —_ 2 42
If now we are given 5o — Saxty

it is clear that to find the expression giving rise to this partial differential
coefficient, we must simply reverse the process which gave it birth. We
must integrate with reference to x and « alone. This will obviously give

z=aqx%y?
If likewise we should be given
oz 3
?‘?7 =2azx Y

we shall naturally find the primitive of this expression in the same
way by integrating solely with reference to y. Carrying this out, we
have a x3 y? as before.

Thus in the case of a term or terms in z, such as that above, involving
both = and y, the integration of either partial derivative relative to
the variable appearing in the denominator of its symbolic form, will
give the complete expression for z, insofar as such terms are concerned.

Suppose, however, that we have

z=2a?+ g
Then taking partial derivatives we have:
oz
Tz =27
oz 5
oy —3Y

Here it is obvious that by integrating 6z/0x we can only get the
term 2% while by integrating 0z/0y we get only 3.

In such case, therefore, we cannot get the complete function from
either partial derivative above, but must have both and use both.

Otherwise, we may say that a partial derivative may be a complete
specification of its primitive and from which the primitive may be
derived, but it is not necessarily so; and in order to be sure that we
have the complete function, 2, we must have partial derivatives from
both variables and we must integrate both, each with respect to its
own variable, and then omitting duplicates, we can write the complete
function.

Thus for illustration: g; =4az® 4 2bxy?+ 2¢xy
2—;=2bx2y—{—cx2—{—3dy2—{—e

Then integrating first with reference to « we have:
z=ax* 4 ba?y? + ca?y and then with reference to y,
zp="ba%y? 4 ca’y + dy’® + ey
Then omitting duplicates we have
z=azt4 ba?y? + caty +dyd+ey
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Or again g% = ’alcf + 2z
oz 1
a—=;+ 2y

Then 2, = log x + «?

zp=1logy + y*

=2 +2,=Ilogxy+ 2?4 92

CHAPTER 1II
FOURIER SERIES

1. Fourier Series. In many of the problems of mechanics, especially
those involving periodic phenomena, it is found possible to represent
a desired quantity, to a continually increasing degree of approximation,
as the sum of a series of terms involv-
: : ; . e
ing functions of successive multiples ’ c
of an angular quantity defined by ﬁ
the conditions of the problem. - - — 0_ ______ ps— = +”X

Thus the complete development Fig. 5.
takes the form

FO)=Ay+ Aycos0 + Aycos20 4 Azcos 36 +
+ B,sin 0 4 Bysin2 0 + Bysin3 6 +

The right hand side of this equation will evidently have equal values
for 0 = —ax and + 7.

It is, in fact, suited to the expression of any such function as in
Fig. 5, where the values for —a and + 7 are equal. If this should
be a periodic function repeating the pattern C E D indefinitely, then
the series as determined for this pattern will hold indefinitely. If, how-
ever, the function changes to a different pattern outside the range
— ... + 7, then the series as developed will hold only between
these limits.

Assuming, however, that the series is applicable in any particular
case, our present interest lies in the methods for the determination of
the coefficients 4 and B in the expansion.

This will be found to depend on the integration between limits of
—m and + 7, of a series of expressions as follows:

(1.1)

cosn 0do (a)
sinn@do (b)
cosznGdO:—; (1 4+ cos2n0)dl (c)
sin2n6d0=%(l——cos2n0)d0 (d)
siancosdeO:%sin2m0d6 (e)

Aerodynamic Theory I 2
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sinmﬁsinnﬁdﬂ:*;*[cos(m——n)0——608(m+n)6]d6 (f)
cosmﬂcosnﬂd@————;—[cos(m—n)ﬁ-{—cos(m—l-n)GJdG (2)
sinm@cosn@d@:%[sin(m+n)9+sin(m——n)0]d0 (h)

The equality in (c) and (d) follows from the expression of cos 6/2
and sin 0/2 in terms of cos 0; that in (¢) from the expression of sin 2 6
in terms of sin 6 and cos . The equalities in (f), (g), and (h) are readily
established by expanding the right hand members in the form:

cos (m —n) 0 = cos (mO — nB) = cos m0 cos nh + sinmb sinnb
and similarly for the other expressions.

Expressions (a) and (b) integrate respectively as (sinn6)/n and
— (cos n 6)/n and these will vanish between the limits of —z and + 7.

Expressions (¢) and (d) will each evaluate as 7.

Expressions (e), (f), (g), and (h) will all integrate and evaluate as
zero for the same reason as in (a) and (b).

Having these results in mind, we may then proceed as follows:

To determine A,, integrate (1.1) between the limits of —z and + 7.
All terms will vanish except the first and we shall have

+ 7 +7
/f(@)d@:znAo or A(,:%/f 0)d 0 (1.2)

To determine 4,, any coefficient in the 4 series, multiply (1.1) by
cosn 0 and integrate as before between limits of —z and -+ 7.
Again all terms will vanish except that in cos?n 0 and this will give
+ 7 +7
/f(@)cosn@d(?:ﬂAn or An=?1[~/f(0)cosn0d6 (1.3)
—n -7
Similarly, multiplying (1.1) by sin n0 we shall have
-!; T +
[16)sinn0d6 =z B, or Bn:%/f(O)sinanB (1.4)
—7 —7TT
If, therefore, the function is known between limits of — =z and + x
for 6 (corresponding to — x and + z as in Fig.5) the various coeffi-
cients may be found by any suitable process of integration.

2. Fourier Series Continued. We have seen that a Fourier expansion
as in (1.1) is applicable only when the values at C and D Fig. 5 are the
same. This is obvious from the form of the equation.

Let us now consider two special cases as represented in Fig. 6. First
take the function represented by C E D, symmetrical about y. Evidently
in such case, f (0) = f (— 0). Likewise we have sin n = — sin (— n0).
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Hence in the formula for a B coefficient, the elements in the integration
will form pairs equal in value and opposite in sign and thus cancelling
out in the summation. Hence each B coefficient will vanish. Again
since cos nf = cos (—nf), the elements in the integration for an
A coefficient will form pairs equal in value and of the same sign and
thus combining in the summation. The result for the entire integration
from — 7z to - m will be, therefore,

twice that from 0 to m. Hence for the "
A4 coefficients we shall have Vj
2 X

2 ! I
Ay :;/f@(cos)nﬂd@ (2.1) FL _____ !

0 TT4e

Due to the symmetry about Y we Fig. 6.

shall also have for the A4, term:
+ 7
1 1
4, :27;/;(0)40 :;/f(e)de 2.2)
- 0

In such case, therefore, and between the limits for 6 of 0 and =, we
may write

1 - 2 y
FO)=—_[1(0)a0+ 2| [[(0)cosnb db |cosnb (2.3)
fias3[2 fiormn o)

where n is given successive values as may be required by the nature
of the approximation desired.

Suppose again a discontinuous form of the function as represented
by C EGF, the branch G F being symmetrical about X with E D.
Then with reference to the relation on the two sides of the y axis, we
shall have f(0) = —f(—0). In such case, in the formula for an
A coefficient, the elements in the integration will form pairs equal in
value and with opposite signs and hence the A coefficients will vanish.
On the other hand the elements for the B coefficients will form pairs
equal in value and with the same sign, and hence they will combine
in the summation.

In like manner as for (2.1), this will give, between the limits 0 and + 7,

1 g 2 - . .
f(0)= - f(0)do+ 2 o 71(0)sinnbd0 |sinnb (2.4)
0/ { b/

We have thus, three forms of expansion as in (1.1), (2.3), (2.4).

In (1.1) the coefficients are to be determined as in (1.3) and (1.4) and
its application is limited to cases where the two end ordinates are equal.

In (2.3) and (2.4) the end ordinates need not be equal and these
forms are therefore applicable to any form or pattern of function be-
tween these limits.

2*
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We have next to show how we may adjust any limits of a function
y = f () in such manner as to suit these limits for 6.

Suppose, as in Fig. 7, we have given any function

y=1I(z)
between limits x; and xz,. We wish x; to correspond to 0 = 0 and
%, to 6 = . We have then simply,

0 =nlE=" (2.5)

We may then take successive values of z
and determine 0 or vice versa as we choose.

7 z, @ Z; X

Fig. T This makes possible, therefore, the application

of a Fourier expansion over any range and
for any function the values of which are known over the range in
question.

The application of these methods of expansion may be illustrated
by a simple example.

Given the equation Y= ]/x?:g —1
This is, of course, an arc of a parabola, see the full line, Fig. 8. Let
us now attempt to re-

7 present this line between
28 = the values for x of 0 and
24 _ 10 by a Fourier series,
s as in (2.3).

a We must first estab-
16 = -~ lish the relation between
727*7/ z and 6 in the formula.
’ This we do by (2.5) giv-
28, ing 0 = 7z 2/10.
o4 ——Lquation: y+1=Yz+5 ] We next find, either
’ ——Lquation : y~2127-06671cos 6-00461 cos 20 .

T | —aomcesa8 by planimeter or by nu-
07 2 & 4 s 6 7 & 9 w X merical integration, the

Fig. 8. Comparison of actual values with development : :
NS mean ordinate of this

curve. This will give 4,,.
Numerical integration by the trapezoidal rule gives 4, = 2.127.
We next multiply each value of y=f (0) by the value of cos 6. Thus
for x = 3 we have y = 1.828 and 0 = 54°. This gives y cos § = 1.074
and similarly for the others.

Summing these as in (2.1) we find 4; = — .6611. We then repeat
for 20. In this case 26 = 108° and for « = 3, ycos 2 0 = — .5649.
Summing again as in (2.1) we find 4,= — .0461 and similarly

Ay = — 0778,
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Without carrying the series further, we may write:

y = f(0) = 2.127 — 0.6611 cos 6 — 0.0461 cos 20 — 0.0778 cos 3 0

A computation and summation of these several terms will then give
the values of y as represented by this equation. These values are shown
in Fig. 8 by the dotted line. The approximation is seen to be very good
except at the ends. This is due to the fact at x = 10, for instance,
there is control, so to speak, only on one side. That is, if the range

of 7 had extended on to x = 12, the approximation at 10 would doubtless
have been much better.

Continued terms in the equation will, of course, give a continuously
closer approximation.

CHAPTER 1V
THEORY OF DIMENSIONS

1. Introductory. In the domain of mechanics we are called on to
deal with various aspects of Nature to which we give such names as
length, mass, time, force, velocity, momentum, energy, etc. By common
consent we take the first three of these as basic and independent. They
are accepted, so to speak, as Nature’s independent variables. If then
we fix units for the measurement of these three basic quantities, we are
immediately in a position to express the measure of any other quantity
with which we may have to deal, in terms of these basic units. Or
otherwise, we are able to express in algebraic form the manner in which
these basic units enter into the make-up of the units required for the
measure of all other concepts and quantities which may enter into our
problems.

The fundamental units for length, mass and time are denoted respec-
tively by L, M, T. The expression for the unit of velocity will then
follow immediately from its definition. The basic concept in velocity
is a ratio of length to time. The relation of the unit of velocity to the
basic units of length, mass and time is, therefore, I, < 7'. This expression
is said to give the ‘“dimensions” of velocity. In a similar manner, by
an expression of its basic concept or definition, we may write the dimen-
sions of any and all quantities with which we have to deal in the problems
of mechanics. Thus we have:

Quantity Dimension
Length L
Mass M
Time T
Area: length X length L?
Volume: length X length X length L3
Statical Mom. of area: area X length L3
Statical Mom. of volume: volume X length Lt

Density: mass == volume ML-3
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Quantity Dimensions
Velocity: length =~ time LT-1
Angular Velocity T-1
Revolutions in unit time: number = time T
Acceleration: velocity -~ time LT-2
Momentum: mass X velocity MLT
Force: mass X acceleration MLT-?
Moment of momentum: momentum X length MI2T-!
Moment of force (Torque): force X length MI2T-2
Energy, Work: force X length MI2T-2
Power: Work per unit of time MI2T-3
Pressure: force < area ML T-2
Pressure gradient along a length: pressure -~ length ML-2T-2
Viscosity: force per unit area - rate of shear ML-T-!
Kinematic Viscosity: viscosity -~ density L:7-1!
Vorticity: velocity X length T

Of these various items, viscosity may require a word of further
explanation. To develop the basic concept in the measure of viscosity,
picture an indefinite plane parallel to which a plane of area @ is moving
with a velocity v and with a separation of k between the planes, the
space between being filled with the fluid of which the viscosity is to
be measured. The force due to viscosity varies directly as the area
and as the relative velocity of sliding (rate of shear) between adjacent
layers, and the latter is assumed to be distributed uniformly through
the thickness of the film of fluid. The total relative velocity between
the two sides of the film is v and the thickness is 4. Hence the rate
of shear is v/h. Since then the total force varies as the area and as the
rate of shear, the unit force will be that for a unit area moving with
a unit rate of shear. This will be given by dividing the total force F
by the area a and by the rate of shear v/h. Hence the unit of viscous
force involves the operations expressed by the formula

F Fh
avlh  av
and putting in the dimensions of a force, a length, an area, and
a velocity, we find the dimensions as in the table.

The theory of dimensions has several important applications in
connection with the various problems of mechanics.

It serves to determine the relation between the magnitude of the
various units of velocity, acceleration, force, pressure, work, etc. as
dependent on different values of the fundamental units of length, mass
and time, as for example, between the English and the metric systems
of measure.

It may be used as a means of testing the consistency of equations
involving physical quantities. Thus in the case of an equation in alge-
braic form expressing the relation between physical quantities and per-
haps involving several terms, it is clear that if the equation is rational
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and consistent, all of these terms must imply the same physical quantity.
Thus we cannot have momentum and energy as terms in the same
equation. We cannot add together velocity and density or force and
mass. It results that all terms in such an equation must have the same
dimensions and the application of this test is often useful for the detection
of errors in transformation or manipulation?.

2. Kinematic Similitude. The most important application of the
theory of dimensions to the problems of aeronautics is found in the
development of the theory of kinematic similitude. Of this we shall
give here only a brief outline.

We must first note the characteristics of a dimensionless quantity.
Algebraically, when the expression of the dimensions reduces to unity,
the quantity is dimensionless. Thus

Length = Length = L+ L
Volume - Statical Moment of Area = L3 - L3
Moment of force = Energy = M L2T—2 -~ M L2 T2

Thus a ratio is always dimensionless and generally the quotient
of two quantities each of which has the same dimensions.

Again take the expression Lgv—2 in which L is a length, g is accele-
ration and v is velocity. If the dimensions are put in, they will be found
to reduce to zero, showing the quantity to be dimensionless.

Again if any quantity is dimensionless, it is clear that its reciprocal
will be so likewise, and also the quantity or its reciprocal affected by
any exponent m.

Thus the expressions:

97, _— (__ 3 R
v Lg v Lg)
]] ]. . ]

3. The 11 Theorem. The basic theorem ypon which rests the application
of the principles of kinematic similitude to problems in mechanics is
often known as the II theorem. It is in effect a special form of statement
of the principle of dimensional homogeneity in all the terms of a physical
equation. A statement and form of proof of this important theorem
follow.

We assume a natural phenomenon as depending on a number of
parameters or conditions. Thus with a fluid moving through a pipe
or tubular channel, the loss of head will depend upon:

length of pipe density of fluid
diameter of pipe viscosity of fluid
velocity of flow

1 In this statement, no consideration is given to equations which may be
formed by adding together two separate consistent physical relations such as
v=gt and s = (1/2) g3 as in the laws of falling bodies. In such a case we shall
have v+ s=g¢t (1 +1¢2), a true but not a normal homogeneous equation.
BripemaN, P. W., “Dimensional Analysis”, p. 42.
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These are all quantities which admit of measure in terms of known
units. The loss of head will also depend on the character of the surface
of the pipe — its degree of roughness or smoothness — but for this
we have no direct measure and we must, therefore, assume simply
a standard or corresponding degree of roughness over the field to
which the principles of kinematic similitude are to be applied.

In any such case involving a relation between physical quantities,
there will be a certain minimum number which will be necessary and
sufficient for the definition of all the others. These must, of course,
be independent. The selection of the particular group (composed of
this minimum number) to be taken for this purpose, is usually a matter
of choice.

In mechanics, in the broad sense, the number is three.
For the present assume such number and suppose, for example,
the total number five.
Let these be denoted by
Qlﬁ Qz’ T, Y, 2
the three latter representing the fundamentals.

Suppose now the relation between these five variables to be express-
ible in the form of a general algebraic equation. This expression may
consist of any number of terms, but from the law of dimensional homo-
geneity, all terms must have the same dimensions.

The equation may be expressed in the form

f(Ql’ Qz’ z, Y, 2)=0

Suppose it all written out. Then divide through by any one term,
say the first. The result will be a general form of the physical equation
with unity for the first term followed by a series of terms in @,, @,, =,
Y, 2, all of dimension zero.

A typical term in such an equation will be

QF QY o yf 27 (3.1)
Consider the three expressions

Q?l % ygl N (32)

Qo a% yP 2 (3.3)

Qe 2yt (34)

Of these, (3.2) and (3.3) contain four variables each, viz., the three
fundamental reference variables z, y, z, with, in each case, one of the
remaining variables @; while (3.4) is the typical term as in (3.1), and
must be of zero dimension. Let us assume, for the moment, that (3.2)
and (3.3) are also of zero dimension.
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Again let the exponents of L, M, T, in the dimensional expressions
for @y, @,, x, ¥y, 2, be as follows:

L M T
o my me mg
Qs " Ny Ng
x P1 2 Ps
Y % 42 ES
z 7 Ty Tg

That is, the dimensions of ¢, are L™ M™: T™ and similarly for
the others. Then in order that the dimensions of an expression such as
those above shall be zero, it is necessary that the resultant exponents
of L, M, T in the final dimensional form shall each independently be
zero. This condition applied to (3.2) (3.3) (3.4) will give rise to three
sets of simultaneous equations as follows:

P+ @ trp=—ma
Doty + @y + 129 = —myay (3.5)
P30+ qsPy + 13y = —myay
P+ @ Bt 1y =—mb
DPos + @o o+ Ty =—1my by (3.6)
D3y + @3 s + T3y = — 3 by

e+ qpf+ny=—ma-+mnbd)
Do+ @ f+ 1oy =—(mya+ nyb) (3.7)
s+ g3 + 13y = — (mya + nyb) l

In each of these sets of equations, the first is formed for the fun-
damental dimension L, the second for M and the third for 7. We have
so far simply assumed (3.2) and (3.3) to be of zero dimension. We
must now show that it is always possible to write at will such expressions
with dimensions zero.

In expression (3.2) for example, suppose a, taken arbitrarily at any as-
sumed or convenient value. Then in (3.5), the quantities on the right will
be known and we shall have a set of three simultaneous equations with
a;, fy and p; as the unknowns. These equations may be solved in the
usual manner and will give values of ¢, 8, and p, which will fulfill the
conditions of (3.5) and hence will give zero dimension for expression
(8.2). The same is obviously true for expression (3.3). We may there-
fore conclude that it is always possible to write such expressions with
four variables and with exponents such that the dimensions of the
expression will be zero. We then assume definitely that the various
exponents in (3.2) and (3.3) are determined in accordance with (3.5)
and (3.6), and hence that the expressions (3.2) and (3.3) are of zero
dimension. Expression (3.4) is already of zero dimension, the conditions
for which are expressed in (3.7)
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Consider next the two factors and their product:

(@ &y aen (@ s yfe 1P = Q2 QR Y2 (38)
where U = ( aaml + E;Z‘)

a bB,
o= ()
a by,
w= ()

It will be noted that the exponents afa, and b/b, are so chosen as to
give, in the product, the exponents ¢ and b for @, and @,, the same as
in expression (3.4). We have now to show that the exponents u, v, w,
with values as above, will also be equal to the exponents ¢, f, ¢ of ex-
pression (3.4). That is, we wish to show that the product of the two
factors (3.2) and (3.3), the first affected by the exponent a/a, and the
second by the exponent b/b;, will reproduce the entire expression (3.4)
or (3.1), as representing any given term in the general equation of zero
dimension.

To this end we shall state, as below, certain properties of groups
of equations such as (3.5), (3.6), (3.7). These properties are either self
evident, or the interested reader will readily supply a proof. It may
be noted that with an elementary acquaintance with the properties of
determinants and their relations to the solution of such equations, the
various statements made will be, in effect, self evident.

(1) Considering the quantities a, 8, and y as the variables, the coeffi-
cients, represented by the subscript letters p, ¢, and », are the same
in all three sets.

(2) The relative values of any set of the variables, such as ¢;, a,, «,
will therefore depend only on the differences in the known quantities
on the right hand side of the equation.

(3) If the known terms on the right hand side of such a set of equations
be multiplied by any factor, at will, the value of all the unknowns will
be multiplied by the same factor.

(4) If therefore the knowns on the right of set (3.5) are made — m, a,
— mya, — mya, the values of the unknowns will be increased in the
ratio afa,.

(5) Similarly if the knowns on the right of set (3.6) are made — n,b,
— nyb, — m3b, the values of the unknowns will be increased in the
ratio 0/b,.

(6) In a set of equations such as (3.7), with the knowns made up
of two parts, the values of the unknowns will be the sum of the two
values which would result from two sets of equations, one with the terms
in a for the knowns and the other with the terms in b.
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(7) It follows that the value of any root, such as e, of (3.7) will be
the sum of the two corresponding roots of two sets such as (3.5) and (3.6),
but with a instead of @, and b instead of b,.

(8) Hence for the values of the unknowns in (3.7) we shall have
aoy boy
ay b,

_ 8B | bb
p= a, + b
_on by
v % + b,
Hence the term resulting from the product of the two factors as
g P

in (3.8), will, in fact, reproduce the term (3.1) of the general equation
of zero dimension.

Factors of the form of (3.2) and (3.3), comprising the three fundamental
variables z, ¥, z, with one of the other variables @, and of zero dimension,
may be represented by the symbol I and thus we may denote the two
factors in (3.8) by (II#/*, II}/®) or more generally by (I} II¥) where
A and u are chosen according to the particular term of the general
equation which is to be represented. It thus appears that the general
equation, consisting of a series of terms all of zero dimension, may be
also represented as a series of terms all of the form (II? IT¥), with the
exponents A and u varying according to the exponents of @, and @,
in the individual term. But any such series of terms, and hence
the general equation, may be represented mathematically in the form
f (1, 11,) = 0.

This is the so-called II theorem which plays so important a part
in many problems involving dimensions and kinematic similitude. It
is the equivalent in mathematical language of the statement that any
algebraic form expressing a relation between and among a related series
of physical quantities, may be adequately and fully represented as a
series of terms involving /7 functions as defined above, and in the manner
indicated in (3.8). Or otherwise, it is equivalent to the statement that
each of the terms in a physical equation consisting of a series of terms
all of zero dimension may be broken up into II factors as in (3.2) and
(3.3), affected with suitable exponents as the individual term may
require. It will be noted that the general form of the physical equation
of zero dimension will contain unity as one of its terms, resulting from
dividing through the general equation, not of zero dimension, by some
one of its terms. This term unity, however, is, of course, of zero dimension
and admits of representation by a term of the form (/7? II¥) simply
by making 4 and u both zero.

as follows: o=

Furthermore, it is clear that in any such mathematical expression
as f (I, Il,) = 0, we may always assume some form of solution for /I,
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in terms of II, or of I, in terms of II; and therefore we may write the
equation with equal generality in the form I, = f; (I,) or II, = f, (II,).
Or otherwise, any such form of statement as f (I, Il,) = 0 implies
a relation between II; and II, which may be expressed in either
form II, = f, (II) or II, = f, (II}).

It will also be noted that the number of II factors will equal the
number of ¢ variables in the general term and this will be three less
than the total number of variables involved in the problem. If there-
fore the problem involves in general n variables, there will be (n — 3)
II factors and the general II equation may be written in the form

flly, Iy, I, . .. ... )=20 (3.9)

And here again any such relation may be expressed with equal gene-
rality in the form

I, =fl, I,, I, . . . . .. ) or (3.10)

Iy=fl, Il;, I, . . .... ) ete. (3.11)

Equations (3.9), (3.10), (3.11), may be considered as expressions of
the II theorem in its general form.

4. Non-Dimensional Coefficients. The application of these general
principles may be illustrated by a simple example using the flow of
water in a conduit as referred to in 3. Listing again the factors and
elements with which we are concerned in a problem of this character
we have

Loss of head or pressure in conduit

Length of conduit

Diameter (conduit assumed circular in section)
Density of fluid

Viscosity of fluid

Velocity of flow

CTTEO NS

Here are six quantities, but we see immediately (assuming the conduit
uniform in section) that % will vary directly with L. We can therefore
substitute for these two terms their ratio, the loss per unit length which
we denote by G. We have then the five quantities denoted by @, D,
0, u, v. The relation between and among these, in its most general
form, may then be represented by

F(& D, o, p, v) =0
In accordance with the principles of the /I theorem, we shall have,

in such case, two /I functions. The general equation, whatever its form
or character, must then admit of expression in the form:

f(Hl’ Hz) =0

We must now select three of these quantities as our fundamental
variables, represented by the x, y, z, of 3. For this purpose we may
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select any three so long as they are independent. Let D, v, o be the
group chosen. We shall then have our two I factors as in (3.2), (3.3)
in the form (G%, D™, vfy, o”) (u%, D%, vf:, o).

As noted in 3 we are at liberty to give to @, and b; any arbitrary
or assumed value, since with the expression once adjusted with exponents
giving zero dimension, the expression as a whole may be affected by
any exponent at choice or such as to give to G or y any particular ex-
ponent as may be desired. We shall therefore take a; and b, equal to 1.
We then set up a table for the first of these expressions as follows,

M L T
G....... 1o....... —2.. ... —2
D............ ..., 1
Voo 1....... —1
0 ....... 1........ —3
and from this table form dimensional equations as in (3.5):
1 + =0
—24a+p—3n=0
—2 - 51 =0
Solving these we find o, =1, fj=—2, y;=—1
We thus have I, = %‘;

In the same manner, for the second expression we find:

__ K
I, = Dwo

Hence the general form of the relation between these various
quantities may be put in the form

Da L -
g ] =0 D
. D@
or otherwise o = f ( D"Z 9) (4.2)
oo GD
Dog =1 ( Py ) (4.3)
Taking the first of these we have
2
6=h(des) % (44)

Since moreover we may affect either of these /I expressions with
any exponent, we may take the reciprocal and thus write

a=t, (DTZ)@,) 91;‘2 (4.5)
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It may be of interest to note results in the case of another selection
of variables as basic. Thus assume the group, G u, v. Then following
through in the same way as before we should find as follows:

f[DZG gzvs]

po > Gu
D¢, (g
or e = f ( Gu )
¢ (DG
Gu T 2\ v
no 293
or =4 1 ()
(& D@
and 92: v‘"iu fz(l‘”)

Returning now to (4.2) we remember that since u/Dvp is of zero
dimension, so also will be Dvg/u and likewise any function of either
of these. Any such function may be represented by a single letter and

we may therefore write G=C"5 (4.6)
or I o
=G+ (4.7)

Any quantity such as C representing the values of some function
of a II or non-dimensional expression of the variables, or again as in
(4.6) or (4.7) standing as a factor in an equation in which it must be
of zero dimension in order to render the equation homogeneous as to
dimensions, is known as a ‘“‘non-dimensional coefficient”.

Such coefficients play a large part in the application of dimensional
analysis to the problems of mechanics and engineering and in fact
represent the chief agency for the application of these principles to
practical problems in these domains.

The particular I expression (Dvgju), as developed above, is found
to play a role of primary importance in connection with all problems
involving the relative motion of fluids and solids. It is commonly called
the “Reynolds number”’ from Osborne Reynolds who first drew special
attention to its significance in problems of this character. It is sometimes
written as above, but more frequently in the form

Reynolds Number = ij{
where », called the “kinematic viscosity” is put for the ratio u/p.

As a further example, suppose that we have a family of airfoils,
all of the same geometrical form and character but differing in absolute
size. Let these be tested for lift in a wind tunnel, all at the same angle
of attack. Then assuming that the tunnel is of such size that the airflow
about the foil is in no case sensibly affected by the boundary walls of
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the tunnel, or otherwise neglecting such influence, we may say that
in this entire set of tests, the geometry will be the same throughout,
including the form of the foil and the form and character of the fluid
flow. Broadly speaking, then, the geometry will be similar throughout
and will involve only one variable representing size.

The remaining elements of the problem are clearly as follows:

Lift (force), velocity, density of air, viscosity of air. We may there-
fore represent the variables as follows:

Force F Velocity v
Dimension L Viscosity u
Density o

As in the previous case we have five variables and hence there will
be two II functions. We shall take L, v, p as the fundamental variables.
This will give the two II expressions in the form:

F L% vﬂx 971 and U L& ven 972

where, as before, we take the exponents of F and u as unity. Then by
the same procedure as before we find for the general expression in terms

of II functions: 1 [ﬁ%: g‘%} -0
L
or F=f1( :Q)QLzzﬂ

Here, as before, we might substitute for the first expression a single
letter C'y, for example, and write the relation in the form
F=Cjp9lL?v?
Or, again, since L2 is proportional to area, which we may denote by S,
we may write
F=Crp8 (4.8)

Here again, (' represents a non-dimensional coefficient (really the
values of the functions of the Reynolds number) and thus serves to
express the value of the force F in terms of the three variables o, S
and .

One item of special importance in connection with non-dimensional
coefficients such as a function of the Reynolds number, is that the
value of the function, that is, the value of the coefficient, depends
in no wise on the individual values of L, v, 0, u entering into its
composition, but only on their group value as given by the expression
Lvg/u. Hence no matter how widely the individual values may vary
in a series of cases, if the group value is the same, so also will be the
value of the coefficient. Thus for example, supposing g/u to remain
the same, we might have a large value of L and small value of » in one
case and a small value of L and large of v in the other, both giving the
same product Lv and hence the same Reynolds number and hence the

b
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same value of the coefficient. Or otherwise, any value of the coefficient
corresponding to a given value of the Reynolds number will apply to
all cases which have the same number, regardless of the individual
values of L, v, g, and u. Still otherwise, the application of these coeffi-
cients may be stated as follows. Given a particular case with specified
values of L, v, o, and u. This will give a definite value of the number Lv g/u.
If then from measurements perhaps with other substances, other dimen-
sions and other velocities, but with the same value of Lvp/u, we have
at hand the values of the coefficient for the latter case, the same coeffi-
cient may be employed for the case in hand.

While coefficients arising out of the Reynolds number, Lvg/u, have
been used here by way of illustration of the character and significance
¢ of such coefficients, the same significance

and the same wide character of use attach
8 to all coefficients of this nature, 1. e.,
T to all quantities representing the values
! of functions of non-dimensional or I/
T groups of variables as developed in 3.
v Another feature of non-dimensional
A coefficients of very great importance
Fig. 9. and utility arises from the fact that being
non-dimensional, the value is independent
of the particular system of units employed—metric or English. The
value of 7, the relation between ten feet and two feet, twelve meters and
four meters, six per cent—these and other like values are independent
of any system of units of measurement, so long as a single consistent
system is used in each case. So it is with all non-dimensional quantities.
It thus develops that values derived from measurements made with the
English system of units and expressed in the form of non-dimensional
coefficients, will be identical in numerical value with the results of the
same measurements made with the metric system of units, but expressed
likewise in the non-dimensional form. In this manner the results of
experiments made with one system of units become directly available
for use in another system, without the sometimes tedious process of
transformation from one system to the other.

One further illustration will be of value. The blade of a propeller
is a special form of airfoil moving in a helical path as the plane moves
forward in a straight line. Suppose then that we have two propellers
of the same geometrical form and proportion but different in size and
moving at different speeds. The condition for similarity of air flow in
the two cases must first be examined.

In Fig. 9 let P denote any element of the blade looking from the tip
toward the hub. Let r denote the radius of this element and N the
revolutions in unit time. Then the speed of the element in rotation
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will be 227 N. Let this be represented in direction and magnitude by
OA. Let V be the speed of advance, represented likewise by 4 B. Then
the relative speed of the element through the air will be represented
in direction and magnitude by OB, and in particular, the angle of attack
e will be measured by COB. Now in order that similar elements on
propellers of different diameters may have the same angle of attack,
it will be necessary and sufficient to have the angle COB, the same
in each case. The condition for this may be expressed as 4 B/40 =
constant or V/2nND = constant. In such an expression, however, the
constant 27z may be omitted, leaving the condition in the form

|4
ND=— constant

This is the condition for any element of the blade and for the propeller
as a whole. The especially significant and important feature of this
expression is that it is non-dimensional. The use made of this feature
will appear in other Divisions of this work.

Turning now to the element or to the blade as a whole, considered
as an airfoil, it is clear that the force reaction between the blade and
the air will be of the same character as in the preceding case and that
the dimensional equation must be of the same general form.

We shall then be concerned with quantities as follows:

Diameter = D Thrust (force) =T
Velocity =V Torque =Q
Density =0 Power =P

Then for the thrust equation we may write

T=CroD%*V?
where Cp is a non-dimensional coefficient representing the function of
the Reynolds number for this particular case.

We can now derive immediately the form of the corresponding
equations for torque and for power. Thus torque is the moment of
a force and will have the dimensions of force multiplied by a length.
Again power has the dimensions of force multiplied by velocity. If
Cg and Cp denote similarly non-dimensional coefficients for torque and

for power, we may write Q=Cpo D3V2
P=CppD2V3
Solving for the various coefficients, we have
T
Cr1 = gpye
Q
Co1= oD3VE
P
On = pipe

Aerodynamic Theory I 3



34 AV. VECTOR ALGEBRA: TWO-DIMENSIONAL VECTORS

Now any non-dimensional coefficient may be multiplied or divided
by any other non-dimensional coefficient without changing its basic
character. We may therefore multiply any or all of the above coeffi-
cients by the non-dimensional expression V/ND affected by any ex-
ponent at choice. We thus find

T T N2
Cre = owepe Crs = Gyt
Q Qs
Cor = s aps Cos =5
P P N2
Cps NP OP3:W5‘

It will be noted that the coefficients with 1 in the subscript are in
terms of D and V, those with 2, in terms of N and D and those with 3,
in terms of N and V.

Again any of these forms of coefficient may be affected by any
exponent, whole or fractional, without in any way changing its basic
character. In this way, an indefinite number of such coefficients may
be developed, in terms of any pair of the three variables D, V, N, as
desired, and of any range of numerical values as may be convenient
for the purpose in hand. Thus for example a given coefficient might
show values ranging from some moderate numerical value off to oc.
This would be inconvenient for graphical representation. In such case
we have only to invert the expression, giving values from some con-
venient number down to 0. This, to a suitable scale will then give
a convenient form of graph.

By making use of these various possibilities, non-dimensional coeffi-
cients of the widest range of form and character may be developed
according to special choice or convenience.

CHAPTER V
VECTOR ALGEBRA: TWO-DIMENSIONAL VECTORS

Vectors and the algebra of the imaginary ]/ —1 find frequent and
important application in the theory of aerodynamics.

In the mathematical development of the vector concept, two measur-
ably distinct systems or methods have been followed, according as the
vectors are two-dimensional or three-dimensional. Two-dimensional
vectors have certain special and important applications in the various
problems of aeronautical science. Three-dimensional vectors furnish a most
convenient and effective means of approach to the general problems
of fluid mechanics and to many of its applications in aeronautic science.
The present Division deals with the subject of two-dimensional vectors
only. The subject of three-dimensional vectors will be found briefly
treated in Division C. :
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Only the bare outlines of the more fundamental features of the
subject can, of course, in either case be presented within the limits of the
space here available.

1. Definition of Vector and Sealar. The physical concepts, force,
velocity, movement, imply, intrinsically, two specifications each —
magnitude and direction. The term vector is used to specify quantities
and concepts of this character. They are vector quantities.

Now it is seen that a right line furnishes exactly the means for
representing geometrically such physical qualities or concepts. Such
a line has two specifications—Ilength and direction. The length of the
line may represent magnitude to any arbitrary scale and the direction
of the line may represent the direction of the line of action of the physical
quantity, in space or in y
a plane, as the case may _—Z
require. ' . p ]

‘A line used in this 4
manner and for this pur- X9 »_—7
pose is known as a vector. o< Z-—ms X
From the geometrical view- 6/ £
point, therefore, we may Fig. 10.
simply consider a vector
as a line characterized by the two specifications, length and direction.
It must be especially noted that a vector has this complex make-up.
It cannot be represented or defined by either of its specifications
taken singly.

A space vector is a length having a specified direction in space.
A plane vector is a length having a specified direction in a plane.

In contradistinction to the term wvector, the term scalar is used to
imply a number, or geometrically, a length, without reference to direction.
The scalar value of a vector is simply its length measured in any con-
venient unit.

Thus in Fig. 10 if the length of OP is 10 units, then as a scalar,
OP is a line 10 units long and that is all; while as a vector, OP is a line
10 units long and inclined at an angle 6 with the XX direction.

It may also be noted that the specification direction implies something
more than line of action. It implies also a sense or direction of action.
Thus the vector A B would imply action or movement from A towards
B, while the vector BA would imply action or movement from B to-
wards A.

It should also be noted that neither length nor direction, as a speci-
fication, will serve to locate the vector in a plane such as XY. A vector
as such, therefore, is not located and may lie anywhere in its plane
of action. If it is to be located as to position or point of action, this

3*
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must be done by locating some specified point on the vector, as for
example, the initial end—the end from which the action is assumed
to start. Thus in the strict vector sense, in Fig. 10, OP, AB, CD, EF
are all equal as vectors provided they have the same length and the
same direction.

2. Algebraic Representation of a Vector. While, therefore, the geo-
metrical representation of a vector is thus very simply and completely
realized, there is needed something further if we are to realize any par-
ticular advantage from the introduction of this concept into the study
of physical problems. This must be furnished by an algebra of vectors
based upon some mode of algebraic representation. We have need,
in fact, for two types of representation, the first of which should be
merely a symbol or tag, so to speak, indicating simply that the thing
thus designated is a vector; while the second should, in some way,
contain within itself the two characteristics of

z T the vector, length and direction, and combined
/J_”_Aj’ or represented in such algebraic form as to
#  permit of the consistent application of certain

algebraic operations.
7 Fig. 11. o For the first type of representation we may
use a single letter such as # or § or two letters
indicating the vector geometrically such as AB Fig. 10. Where a single
letter is used it -is customary to employ a special type such as # or
some other typographical indication. Again the numerical or scalar
value of a vector may be indicated by writing the designation between

vertical lines thus:

|#| =10 or |OP|=10

This is read, scalar value of vector # or of vector OP equals ten.

For the second type of vector representation, two forms are available
which we now proceed to develop.

3. Representation by Rectangular Components. The reader is al-
ready familiar with the sense in which a force, a velocity, a right line
movement, may all be decomposed into components, such as the X
and Y components of the line 4B, Fig. 11, or again with the sense in
which we may recombine such components into the original vector
or line.

We may thus say that so far as the action of the physical concept
(force, velocity, or right line movement) is concerned, there is a com-
plete equivalence between the force and its components, the velocity
and its components or the right line movement and its components.
In this same sense, therefore, we may say that there is a complete
equivalence between the vector 4B and its component vectors 4R
and RB or otherwise between the vector # and its components x and y.
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This equivalence expressed in algebraic form will serve the purpose

of complete vector representation. Usage has developed the form:
z=x+1/:~lnyorz’=x+iy (3.1)
The symbol 4 is to be here understood simply as an operator or as
an indicator of direction. As an operator it implies a rotation through
+ 90°. Any letter used as a scalar, that is, simply as a measure of
length, is understood to be laid off in the direction of the scalar axis
which we here take as the axis of X. A vector expressed as z + 7y
is therefore to be understood as directing that a length x be laid off
along the direction of X followed by a length y laid off at + 90° to
the same axis. It should be noted that here, y does not, in itself, imply
a length laid off in the direction of y, but simply a length, while the ¢
operator tells us that this length is to be laid off at + 90° to the axis
of scalars, or here in the direction of + Y. In the same way a vector

a + ib means a length a laid off in any 2 y 2

direction chosen as the axis of scalars, ZI\M b’

followed by a length b laid off at 4 90° to 6 a a

such axis. bl/Nb
The representation of the vector is com- 4

plete in this form, since we can derive there- Fig. 12.
from its two essential characteristics, thus:

Length = ]/ z2 + y2 or ]/a2 4+ b2
Tangent of the angle of inclination to the axis of scalars
tan 0 = y/z or bja
Regarding the operator i, the following relations may be noted:

tXi=-—1lor —iXxi=1and /i =—31
Powers of ¢ of the series 0, 4, 8, etc. are + 1
Powers of 7 of the series 2, 6, 10, etc. are — 1
Powers of i of the series 1, 5, 9, etc. are + 4
Powers of ¢ of the series 3, 7, 11, etc. are — 4.

Taking then # = a + i b as the general characterization of a vector
and referring to Fig. 12, with the usual convention regarding algebraic
signs it will be clear that we shall have (taking a and b intrinsically
positive) as follows: OP,=a+ b

OP,=—a-+1b
OPy=—a—1ib

OP,=a—1b
Comparing the first and the third of these or the second and the fourth,
it is clear that OP;= —O0P,

OP,=—O0P,

But OP; is OP, reversed and similarly for OP, and OP,. It thus
appears that changing the sign of a vector reverses it in direction leaving
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it otherwise unchanged. This is, of course, entirely consistent with the
usual conventions of analytical geometry since + x and — x are equal
in amount and reversed in direction. The present development extends
this same relation to lines having any direction in the plane. If therefore
in Fig. 10, A B means a vector taken in the sense 4 to B, then — AB
means the same vector reversed or taken in the sense B to 4. Hence
with this understanding regarding the significance of the order of the
letter designating a vector, we may write — AB = B4 or — B4 = AB.
Attention may be here drawn to the distinction between the desig-
nation of a vector in the form
Z=z-+11y and
F=ux, 9
where the latter gives merely the x and y components of the scalar
length, but without algebraic relation between them. The latter form
specifies, indeed, the vector itself as completely as does the former,
but that is as far as it goes. It does not make possible the use of the
vector in algebraic operations, while the former, as we shall see, does
provide for such use and makes possible the effective entry of the
vector in this form into algebraic operations of the most varied character.
We now proceed to develop a second mode of representation for
a vector.
4. Exponential Representation of a Vector. Referring to I 4, we have,
as analytical equivalents
cos O + i sin O = €'
or 7 (cos 0 + 4 sin 0) = ret®
But rcos 0 and r sin 0 are the direct geometrical equivalents of z and
y. Hence we may write the continued equation,
Z=x41y=r(cos0 + ismnb) = re?
in the full vector sense, affirming the equality of the three forms in
which # is expressed.
It is of interest to note that the equivalence of (z + ¢y) and
7 (cos § 4 i sin 0) is of the nature of a direct geometrical identity, as
above noted, while the equivalence of (cos 6 + i sin 0) to ¢ is of an
analytical character, requiring, as shown in I 4, the expansion of these
terms by Maclaurin’s theorem in order for the equivalence to become
apparent.
We may write, therefore, in the vector sense
z = ret® (4.1)
This is then an alternate form for the representation of a vector,
in which 7 is the scalar value or actual length while 0 gives the direction
angle.
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The representation is thus complete and the two characteristics are
related algebraically in such manner, again, as to permit of the entry
of the vector in this form into algebraic operations of varied and extended
character.

We shall now, through these forms, proceed to develop the more
common algebraic operations involving vectors.

5. Addition of Vectors. Taking form (1) in Fig. 13 we have
AB=uz,+ 11y,
BC=ux,+ 1y,
We now apply the usual rules of algebra to the addition of these
two vectors. We may evidently do this under the condition that we

are able to interpret our results in a manner consistent with the geometry
of the diagram. We shall then have:

. 4
AB + BC = (%, + %) + i (41 + %) 5
On the right the interpretation is clear. _;:
It directs us, starting from A4 to go a S

distance (x, 4+ x,) in the X direction and s Ly <z~
then a distance (y; + ¥,) in the Y direction. ¢ Fig. 13.
This will obviously take us from A4 to C.

Now AB alone implies going from A4 to B or otherwise it implies
A and B as the initial and terminal points of some operation or ex-
perience. Likewise BC implies similarly for B and C. Then AB + BC
should imply the result of combining these operations in sequence, and
this clearly should take us from A4 to C or otherwise would give 4 and C
as the initial and terminal points of the joint operation.

The interpretation is then consistent since each side of the equation
implies the same overall result, or otherwise the same initial and final
points. But as a vector we may clearly write also

AC = (21 + 25) + 1 (Y1 + ¥2)
Hence AC=AB + BC (5.1)

It should be especially noted that this equation can be interpreted
only in the vector sense. In the numerical or in the usual algebraic
sense, 4 C does not equal AB + BC. But in the vector sense, or in the
sense in which 4 C represents a force, a velocity, a right line movement,
while 4 B and BC represent component forces, velocities or movements,
we may write, AC=AB + BC

It is, of course, seen that this is only an algebraic expression of the
parallelogram of forces, velocities, or right line movements. It also

simply generalizes the particular case of Fig. 11 which we agreed to
write as AB= AR + RB

or r=x+1y
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Law of commutation. In an algebraic sense, we know that:
A+B=B+ 4
or again the sum of A + B+C + ..... is the same regardless of
which one of the various different sequences we may take in associating

these letters in a sum. With algebraic quantities, associated in a sum,
therefore, the order or sequence is indifferent.

To examine the case for vector quantities we first ask whether, in
the vector sense AB+ BC = BC + AB

The meaning of this is: Starting from an initial point 4 and executing
first a vector with the specifications of A B and then in sequence a vector
with the specifications of BC, thus arriving at C, will the result be the

same if instead we should take the
" . .
vectors in the inverse order ?
0 In Fig. 14 let AB and BC denote
4 the vectors in question. Complete the
parallelogram 4 BCD. Then from the
addition theorem:
Fig. 14. o AC=AB+ BC
AC = AD + DC
But as vectors, AD = BC and DC = AB.
Hence AB + BC = AD + DC = BC + AB.

By similar reasoning, this result may be generalized for any number
of vectors and taken in any order.

Otherwise we may reach the same result by taking the X and Y
components of the various vectors: Thus denoting any vector in general
by # we may write: Zi=x+ 1y

By =y + 1Y,
Fg= a3+ 1Ys
Ry= 4+ 1Y,

Then Zz =Xz +i2y.

But in the numerical sense the value of X2 x will be the same what-
ever the order in which the individual valiues are taken, and the same
for 2 y. Hence no matter what the order of the vectors, the values
of Xz and X y will be the same. But these are the X and ¥ com-
ponents of the final vector sum 2% and hence the resultant vector
2z =Xx+ i2y will be the same no matter in what order the indi-
vidual vectors may be taken.

6. Subtraction of Vectors. To the vector equation
AC = AB+ BC
let us apply the usual rules for algebraic transposition:
AC—BC=AB (6.1)
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This may be rewritten AC + (— BC) = AB (6.2)
AC+ CB=AB } ’

But, as we have seen, CB means BC reversed or referring to Fig.14
if BC means from B to C then CB means from C to B.

Equation (6.2)is then to be interpreted as stating that the com-
bination of AC and CB is equivalent to 4B and in the vector sense
this is obviously correct.

Equation (6.1) as a vector subtraction, is therefore correct since
it leads to a result consistent with our previous definitions and con-
ventions.

Again suppose instead of (6.1) we write

AC—AB = BC
This may be rewritten: AC + BA = BC
or BA + AC = BC
which is obviously correct as a vector equation. The equation AC — 4B
= BC, from which this is derived, is therefore correct and consistent
as an expression of vector subtraction.

In general we can always write any vector equation involving com-
binations in sequence in the form

AB 4+ PQ+EF +~MN +..... = some resultant vector RS
or AB+ PQ+EF 4+ MN + ..... + SR =0.
Then in any such equation the elements are subject to the usual algebraic
rules of transposition and of association in any manner whatever.

We have thus established the rules for vector addition and
subtraction through the use of the first form of vector representation
# =z + ty. The second or exponential form is not well suited to the
discussion of these particular operations. It will, however, find effective
application in operations involving multiplication, division, roots and
powers, to which we now proceed.

7. Multiplication of a Vector by a Scalar. Let

r=x41y (7.1)
Multiply by a number m. Then
m&=mz+imy (7.2)

It is seen that (7.2) is a vector as in (7.1), only on a scale m times
as large. Thus the multiplication of a vector by a scalar simply multiplies
the linear dimensions of the vector leaving the direction unchanged.

If m is a multiplier, therefore, the scalar value of the resultant vector
will be multiplied by m and the direction angle left the same.

8. Multiplication of a Vector by a Veetor. Let us write the vectors:
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Then applying the usual algebraic rules for multiplication we shall
have: BpRy =2 % — Y1 Yo + 1 (T2 Yo + T2 Yy) (8.1)
This product has the form

P=Q+iR

It has therefore the general form of a vector of which @ is the X com-
ponent and R the Y component.

¢ IT " K3 We can readily interpret the right
Yo [ hand side of (8.1) by substituting as
8T | follows, see Fig. 15.
e 3 Y 7 X, =rcos b Yy =rysim 0,
= "F:;’I; """" Ty = 74 €08 Oy Yo = 7y Sin O,

Then (8.1) becomes:
&y &y =117y (cos O, cos Oy — sin 0, sin 0,) + 17 1y (cos 0y sin by + sin 0, cos0y)
or By Ry =1r175¢08 (0; + 0p) + tryresin (0, + 6,) (8.2)

This is obviously a vector of which the X component is r; r, cos (0, + 0)
and the Y component, r, r, sin (0; + 0,).

But for any vector, such as #; in Fig. 16, the X component is the
scalar value times the cosine of the direction angle 6, and the Y com-
v ponent is the scalar value times the sine
of the direction angle 6,.

Hence in (8.2) the result on the right
must be a vector whose scalar value is
r, 7, and whose direction angle is (0, -+ 0,).

We have, therefore, the general result
that the product of two vectors is a vector
of which the scalar value is the product
of the scalar value of the two vector
factors, and the direction angle is the sum of the direction angles of
the two factors.

It is sometimes convenient to consider a vector #; as operating on
a vector #,. In such case we may say that the result of the operation
is to stretch the vector #, from a length r, to a length r; r, and to turn
it through a positive angle 6, thus making the new vector angle (6, + 6s).
Similarly we may consider #, as operating upon #, with the final result
the same. In fact, if the preceding detail is followed through, it is readily
seen that the order of the factors is indifferent and that

_ B R=%7
Likewise since the product of two vectors is a vector with speci-
fications as noted, it follows that the product of any number of vectors

BBy ... .. will be a vector with scalar value equal to the scalar product
TyTelg ... and with a direction angle X 0; and furthermore that this
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result will be the same independent of the order in which the individual
vectors are taken as factors.

9. Division of a Vector by a Vector. Let us indicate the operation

+iy

r2+ 1Y,

Now the result of this division must be either a vector or a scalar. The

most general assumption is that it will be a vector. Let us write then:
&tin
Ty + 1Ys

Then from the basic concept of multiplication we shall have

Ty + 1y = (T, + 1) (@ + 10)

But this equation describes the vector x; + 7y, as the result of the
multiplication of the two vectors (x, + ty,) and (@ + 7b). Hence the
scalar value of (x; +¢y,) is the product of the scalar values of the two
vectors (%, + 1y,) and (@ + 9b). It follows that the scalar value of
(@ + ¢b) will be the quotient of the scalar value of (x; + 7y,) divided
by the scalar value of x, 4+ ¢y, Again the direction angle of (x; + 7y,)
is the sum of the direction angles of (x, + ¢y,) and (@ 4 ¢b). Hence
the direction angle of (a 4 7b) will equal the direction angle of (x; + ¢ y,)
decreased by that of (x, + 7 ¥,).

It follows then, similarly as for multiplication, that the quotient
of a vector #; divided by a vector 2, will be a vector whose scalar value
will be r; =7, and whose direction angle will be that of #, diminished
by that of z,.

Again as in multiplication, it is often convenient to consider the
divisor as an operator; and from this viewpoint we may say that the
result of operating on a vector #; by a vector #, as a divisor will be to
divide the scalar value r; by r, and to swing the vector through an angle
— 0.

Multiplication by a vector therefore revolves the vector operated on
through a + angle and division by a vector revolves it through a — angle.
This is all consistent with the mutually reciprocal relations of multi-
plication and division. As in algebra, multiplication and division by
the same factor will cancel; so here with vectors, multiplication and
division by the same vector leave the original vector unchanged.

It will be instructive to deduce the result for the case of division
in a somewhat different manner as follows: We have

z +1y — (@ +iy) (22— 1Y) — (% +291) (Fa—19s) (9.1)
Zg+ 1Y, (%2 + T y2) (T2 —1 %) 73+ y3

In Fig. 16 the two vectors are represented as #; and #,. Likewise
the vector x,— 7y, is represented by OP. Then in the final member
of (9.1) the numerator is the product of two vectors #; and OP. But

in the form

=a+1b
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we know that such a product will be a vector having a scalar value
equal to the product of the scalars of the two factors. The scalar of
#, is the length r, and the scalar of OP is evidently the length r,. Hence
the scalar of the numerator will be r, 7, But the denominator is 73.
Hence the final scalar will be r, 7, =13 = r; =17, as before. Again
the direction angle of the numerator will be the sum of 6, and — 0,,
again the same as before.

From either of these two points of view we can determine the value
of the reciprocal of a vector. Thus put

1
z 41y,

where x, + ¢y, simply indicates the un-

known result in its most general form.

7 L7 Then 1= (2y + iyy) (2, + ig)

y b2 : ¥ Here 1 is the result of operating on 2,
% ‘ by some at present unknown vector z,.
From the rules of multiplication we known
that scalar r;7,=1. Hence r,=1-+r,.
The scalar 7, is therefore the reciprocal of
the scalar r,. Again the direction angle of the product r;7, = 1 is 0.

=2, + 1Y,

Fig. 17.

Hence 6, 4 0, =0 or 6, = —0,. Hence the vector #, will have a scalar
value 1+ 7, and a direction angle 6, = — ;. See Fig. 17.
Or again, following the method indicated in (9.1).
1 _x—iy z 1y (9.2)

ahiy Swty T St E By
Vector interpretation of the right hand side will give the same
results as before.
We may now develop these same results for multiplication and division
by the use of the second or exponential form of a vector.
Given & = retf
Then mz = mret®
which interprets in exactly the same manner as by the use of the com-
ponent form, 2 = x + 1 y.
Again take: =1, €0
Ry =ryet
Then 2z, 2, = r, 7, 81+ )
The product is, therefore, a vector with scalar value r,7, and angle
(6, + 0,), the same result as before.
Again: F1 "M ,i(0,—06,)
?2 T2
_l_ — _l_ e—io
2 r
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These interpret exactly the same as by the use of the component
form # = (x + v y).
Again: zl ,%’2 =177y ei(ex + 6.)
BBy =11, et (02 +61)
But 7,7, =ry7; and (0, + 0,) = (6, + 6,)

Hence BBy =R %
This is readily extended to any number of factors:
By Ry .. .. S el Ot Ot 0t ..
And since the values of ry7y7rg.. ... and of 0; + 0,4+ 05.....

are the same regardless of the order of the terms, it follows that the
value of the product of any number of vectors y

will be the same regardless of the order of the T i
individual factors. )
These results for multiplication and division ¢ 1 7
are thus reached more simply and directly by
the use of the exponential vector form than 7 2
2

by the component form. The derivation of the Fig. 18.
results by the use of both forms, however, has
served to illustrate some of the more simple algebraic manipulations to
which these forms may be subject, and the double proof of these basic
operations is thus justified.

One or two other relations of interest may be developed.

Thus, given the vectors:

, = ret®and &, = re%?

These are evidently vectors with length » and angle 4 6 and — 6
as represented by OP, and OP,, Fig. 18. A change in the sign of the
angle 6 has, then, the effect of reflecting the vector in the axis of X,
but without change otherwise.

Again re?® x re=*% =120 = 72, This shows that the product of
a vector and its image in the axis of X is a real quantity 2 laid off
along the axis X.

10. Powers and Roots of a Veetor. Given the vector

z = ret®
Then 2n = rneind

That is, the scalar part of 2* will be the scalar of # raised to the nth
power and the angle of #” will be »n times that of #.

This simple relation holds, furthermore, whether » is whole or frac-
tional so that we may put likewise:

2l _ gl gi0m
amn__ Fmin eimom
Thus the square root of a vector
2 = ret?
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will have a scalar value of V;and an angle /2. And similarly for other
values of =.

Since a power is the result of a continued multiplication by the
same factor, the rule for powers may be derived directly from that for
multiplication, as is obvious.

Similarly and inversely the root used as a continued factor will
produce the base number and this relation applied to the rule for multi-
plication will obviously lead to the same result as found otherwise for
roots.

11. Vector Equations of Common Curves. It will be instructive as
well as useful to note here the forms which are taken by the vector
equations to some of the more common lines and curves in a plane.

(a) Straight Line Parallel to Axzis of X.

= x4 b
It is evident that if x be given values from — oo to + oo the points

given by such a vector will trace a line parallel to X and at a constant
distance b above it.

(b) Straight Line Parallel to Axis of Y.
R=a-t1iy
Similarly it is clear that this will give a line parallel to Y and at a con-
stant distance a from it.
(c) The General Straight Line y = mx + b.

In the vector equation # = x + iy substitute as above for y and
we have
#=x + i (mz + b) or otherwise if we substitute for z,

. __(y—b)
~ i — + 1Yy

(d) Any Line with a Polar Equation in the Form r = f (0)
z = f(6)e?®

This will be clear by remembering that the polar form means a length
r = f(0) laid off at an angle of § with the axis of X while the vector
form put into words means the same thing.

(e) Circle with Center at the origin and Radius a.

z=ac?®

The polar form of such an equation is r = ¢ and hence from (d)
the vector equation will be as above.

(f) Circle with Center at the Point Determined by the Vector z, and
with radius a. 2 =2, + ae'

This is evidently the vector location of any point on the circum-
ference of such a circle.
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(9) Any Curve Having an Equation in the General Form y = f (x)

=z 1if (2)
This is obvious by substitution in # = x +1 y.
(k) The Parabola. y = ax?

2=ux+ iax?
This is merely as an illustration of (g).

12. Differentiation of a Vector. Vectors may vary in the same con-
tinuous way as ordinary functions and hence should be subject to the
operations of the differential calculus.

It must not be forgotten, however, that the geometrical meaning
of a differential is not the same with
vectors as when dealing with scalar quan-
tities. Thus in the latter case we have

Xy— Ty = AT
That is, A x is the numerical difference
between the values x; and x, of a variable

z; or geometrically, it is the difference
in linear length between two lengths x;
and z,. And then at the limit where this difference becomes very
small, we may denote it by dz instead of A=.

On the other hand with vectors, as in Fig. 19, we have 2, — 2z, = P@Q
or at the limit, d# = P Q. This follows immediately from the subtraction
theorem for vectors. Thus if AB is any line or path in the plane XY
and P, @ are two points near together on this line, then d # is an element
of the line or path.

It follows, therefore, that the element of the path lying between
the ends of the two vectors #, and #, (assumed very near together) will
represent the differential of the vector at this point.

Again, as with differentiation in the usual case, we may here suppose
the total d# made up of two parts d and idy as shown. Then as
a vector equation we have:

de—do+idy (12.1)
This again is consistent with the differentiation of
F=2x4 1y

The operation of differentiation may also be developed from the ex-
ponential form
z=ret
Thus: dz = ire®d0 + P dr
In the first of these two parts, rdf is a length equal to PR, Fig. 20.
Then rd0e is a vector of this length directed along OP, (PR;). This
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multiplied by ¢ turns it through 90° or into PR. The first part thus

represents the vector PR.
The second part is evidently a vector of the length dr at an
angle 6 with X. This is represented by R@. The two together give
therefore the sum of the two vectors

81° PR+ RQ = PQ or
dz = PQ
In the following chapters will be found
some further development of certain pro-
perties of the complex variable (z 4 ¢y)
in its relation to vectors and vector fields.

CHAPTER VI
VECTOR FIELDS

1. Introductory. Picture a space, three-dimensional in the general
case, throughout which, at every point, some physical characteristic
has a definite magnitude and direction. Such a space with reference
to the distribution of the vector representing such physical magnitude
may be termed a ‘‘vector field”. Thus if we imagine an indefinite space,
void except for a single sphere of matter at its center, then the distri-
bution of gravity throughout such space will constitute a vector field.
At every point the direction will lie toward the center of the sphere
and the magnitude will vary inversely as the square of the distance
from this center. At every point in such a space, therefore, there could
be drawn a vector representing the force of gravity in direction and
magnitude. If instead of one body there are two or more, the same
general conditions will hold, but the field will be more complex in cha-
racter. Nevertheless at each and every point the force of gravity will
have a single definite value and a single definite direction, and will
constitute a vector field.

A vector field in general is single-valued; that is at any one point
the vector will have a single value and a single direction.

Again picture a fluid medium of indefinite extent moving through
a space in which are anchored solid bodies as obstructions and around
which the fluid must flow. In such a space, assuming a steady condition
of movement, there will be, in general, at every point, a single definite
value of the velocity, both as to magnitude and direction. The distribution
of the velocity of flow throughout such a space constitutes, therefore,
a vector field®.

Velocity vector fields play an important part in many problems
in the domain of aerodynamics, and a study of the more important

1 The existence of certain singular points where this single-valued condition
is not fulfilled will be noted in later chapters.
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properties of such fields will form the subject matter of the present and
following chapters. For the development of these properties two general
methods are employed.

(1) The development of various properties and relations through
the use of the analytical geometry of three or of two dimensions.

(2) The development of various properties and relations, especially
in two-dimensional fields, through the use of the complex variable
(z + 1y).

We shall develop the early part of the subject in the order as stated.

2. Vector Components. In Fig.21 let P be any point in space referred
to coordinate axes X, Y, Z, with origin at O. Let P4 denote the length
and direction of a vector at P, and let «, 3, y denote the angles between
PA and the directions of the axes X, Z
Y, Z, respectively. Then putting V for
the value of the vector and «, v, w, for
its three components along the direc-
tions of X, Y, Z, we shall have

u = Vcosa
v= Vecosf (2.1) /)

w="Vcosy
In accordance with the well known " Fig. 21.
theorems of kinematics and mechanics
we may take a vector as fully represented by its components and
inversely the three components conjointly as fully represented by the
resultant vector. In other words the vector and its components are
mutually equivalent. The vector is the resultant of its components and
the components are the individual directional effects of the resultant.
Also we know that the resultant of three components u, v, w, may be
expressed in two ways: V = 1/ u? 4 o? + w? (2.2)
and V=wucosa + vcosfi + wcosy (2.3)
Hence if we put for %, v, and w as above we shall have:
V="Vcos®a + Vcos®f + V cos?y
or cos?a + cos? B + cos*y =1 (2.4)
Again suppose at P that we have another line PB inclined at angles
A, u, v to the X, Y, Z, directions. Denote the angle between PB and
the vector PA by 0.
Then for the component of V along PB we have
Vep= Vecosh
But remembering that V may always be replaced by its components
u, v, w, we shall have for V p 5 the sum of the components of u, v, and w,
along PB. Hence
Vepp=1ucos A+ vcosu + wcosv (2.5)
Aerodynamic Theory I 4
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Putting for u, v, and w their values as components of V, we then
have: Vpp= VcosO = Vcosacos A+ V cosfcosu + V cosy cos v
or cos § = cos a cos A + cos  cos u + cosy cos v
a well know result in the analytical geometry of three dimensions.
In a two-dimensional space, taking 6 for the inclination with X,
(2.1) becomes
u ="V cosf

2.
v="Vsnb (2.6)
whence V=1 ut+v? (2.7)
and (2.3) reduces to
V=ucosO +vsinh (2.8)
. £ . z 4 7
N
14 0 (A
s
r (4
/)
(4% X
3 x4
Fig. 22. Fig. 23.

In polar coordinates as in Fig. 22 let now 6 denote the angle of the
radius vector to a point P and 0, the angle be