А. Д. Коваленко

Введение в термоупругость

^о Институт механики

В книге приводится краткое изложение теорин термоупругости. В ней содержатся основные положения и методы термоупругости, необходимые для исследования тепловых напряжений в элементах конструкций при стационарных и нестационарных температурных полях; приводятся решения ряда задач о тепловых напряжениях в дисках, пластинах, оболочках и телах вращения в статической и квазистатической постановках; рассматриваются динамические задачи термоупругости, а также термоупругие эффекты, вызванные процессамн деформирования.

Предназначена для научных работников, проводящих исследования в области термоупругости, а также может быть полезна студентам механико-математических факультетов университетов, специализирующихся по механике деформируемых сред.

Предисловие

В основу книги положен спецкурс термоупругости, читавшийся автором в течение последних лет студентам механико-математического факультета Киевского госуниверситета им. Т. Г. Шевченко.

В книге изложены основные положения и методы термоупругости, включающие теплопроводность, тепловые напряжения, возникающие вследствие теплообмена с окружающей средой, и термоупругие эффекты, вызванные процессами деформирования.

Содержание книги подчинено следующему плану: сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда учитывается связь между полями деформаций и температурными полями. и динамические эффекты при нестационарных процессах деформирования; затем излагается постановка квазистатической задачи термоупругости и приводятся основные сведения по теории теплопроводности, необходимые для исследования температурных полей; далее разбираются основные классы задач термоупругости в квазистатической постановке (плоская задача термоупругости, термоупругость оболочек вращения и осесимметричная задача термоупругости); в последней главе обсуждаются динамические и связанные задачи термоупругости.

В книге использованы результаты исследований автора и его сотрудников в области квазистатических задач термоупругости и теории теплопроводности. Для чтения этой книги требуется знание основ термодинамики, тензорной алгебры и теории дифференциальных уравнений.

Автор выражает благодарность своим ученикам кандидатам наук Л. А. Ильину, И. А. Мотовиловцу, А. Ф. Улитко, В. Т. Гринченко, В. Г. Карнаухову и младшему научному сотруднику Н. А. Лобковой, оказавшим ему помощь при написании книги.

Введение

Термоупругость в последние годы получила существенное развитие в связи с важными проблемами, возникающими при разработке новых конструкций паровых и газовых турбин, реактивных и ракетных двигателей, высокоскоростных самолетов, ядерных реакторов и др.

В результате подвода тепла от газового потока в тепловом двигателе, аэродинамического нагрева в высокоскоростном самолете, выделения тепла в атомном реакторе и т. д. элементы этих конструкций работают в условиях неравномерного нестационарного нагрева, при котором изменяются физико-механические свойства материалов и возникают градиенты температуры, сопровождающиеся неодинаковым тепловым расширением отдельных частей конструкций.

Неравномерное топловое расширение, вообще, не может происходить свободно в сплошном теле и вызывает тепловые (термические, температурные) напряжения.

Знание величины и характера действия тепловых напряжений необходимо для всестороннего анализа прочности конструкции.

Тепловые напряжения сами по себе и в сочетании с механическими напряжениями от внешних сил могут вызвать появление трещин и разрушение конструкций из материалов с повышенной хрупкостью.

Чекоторые материалы при быстром появлении напряжений, обусловленном действием резкого градиента нестационарного температурного поля, становятся хрупкими и не выдерживают теплового удара. Повторное действие тепловых напряжений приводит к термоусталости элементов конструкций. В результате действия тепловых напряжений может возникнуть существенная пластическая деформация, ведущая к полному или прогрессирующему разрушению конструкции, произойти термовыпучивание тонкостенных конструкций и т. п.

В общем случае изменение температуры тела происходит не только за счет подвода тепла от внешних источников, но также и за счет самого процесса деформирования. При деформациях тела, протекающих с конечной скоростью, имеют значение термомеханические эффекты другого рода: образование и движение тепловых потоков внутри тела, возникновение в нем связанных упругих и тепловых волн, термоупругое рассеяние энергии и др.

Настоящая книга посвящена теории термоупругости, основанной на применении принципов термодинамики к процессу деформирования.

Книга не содержит исчерпывающего изложения основ термоупругости. Целью книги является сжатое изложение основных принципов и методов термоупругости, охватывающих следующие ее разделы: теплопроводность, термоупругие деформации и напряжения, вызванные передачей тепла от внешних источников, и термоупругие эффекты, обусловленные процессом деформирования.

Книга состоит из семи глав.

Первая глава посвящена термодинамическим основам термоупругости. Изложение начинается с основных положений классической термодинамики. При рассмотрении второго закона термодинамики предпочтение дается новой его формулировке, разработанной профессором Киевского университета Н. Н. Шиллером в 1897—1901 гг., немецким математиком Каратеодори в 1909 г. и Т. А. Афанасьевой-Эренфест в 1925—1928 гг. Эта формулировка устанавливает общий эмпирический принцип о невозможности определенных процессов — принцип адиабатической недостижимости, удобный для математического выражения второго закона термодинамики в случае термодинамических систем, состояние которых определяется большим числом независимых переменных (деформируемых твердых тел и др.).

Теория необратимых процессов изложена в объеме, необходимом для изучения термодинамики деформирования неравномерно нагретого тела, обладающего свойствами идеальной упругости, однородности и изотропии.

Для вывода соотношений между напряжениями и деформациями, выражений для энтропии и связанного уравнения теплопроводности используется метод термодинамических функций, разработанный Гиббсом в 1875—1878 гг.

Вывод основных уравнений, постановка и представление общего решения задачи термоупругости даются для самого общего случая: учитываются связь между полями деформаций и температурными полями, являющаяся следствием законов термодинамики, а также силы инерции, возникающие от действия нестационарного нагрева или внешних сил.

Вывод уравнения теплопроводности с членом, зависящим от деформации, приводится в рамках термодинамики линейных необратимых процессов, т. е. в предположении небольшого отклонения термодинамической системы от равновесного состояния.

В заключение первой главы на основе термодинамики линейных необратимых процессов рассматривается вариационный принцип для связанной задачи термоупругости, позволяющий развить приближенные методы решения связанных задач динамической теории упругости и нестационарной теплопроводности.

Во второй главе рассматриваются основные уравнения задачи термоупругости в квазистатической постановке, когда не учитываются связывающий член в уравнении теплопроводности и инерционные члены в уравнениях равновесия. Рассмотрение этого вопроса в специальной главе оправдывается тем, что квазистатическая задача термоупругости имеет наибольшее практическое значение; в обычных условиях теплообмена тепловые потоки, образующиеся вследствие деформации, и динамические эффекты, обусловленные нестационарным нагревом, настолько невелики, что соответствующие члены в уравнениях могут быть отброшены и система уравнений распадается на обычное уравнение нестационарной теплопроводности и уравнения, описывающие статическую задачу о термоупругих напряжениях при заданном температурном поле, вызванном внешними источниками тепла. Здесь при изложении постановки квазистатической задачи термоупругости в перемещениях представление общего решения выбрано в форме, полученной П. Ф. Папковичем в 1932—1937 гг. В этой форме решение однородного уравнения для вектора перемещения содержит произвольные гармонические вектор и скаляр, а частное решение соответствующего неоднородного уравнения, отвечающего заданному температурному полю, определяется через скалярную функцию, получившую название термоупругого потенциала перемещений, которая удовлетворяет уравнению Пуассона.

Формулировка квазистатической задачи термоупругости в напряжениях дается как для односвязных, так и для многосвязных тел.

В связи с методами исследования тепловых напряжений во второй главе рассматривается аналогия между задачей термоупругости и соответствующей задачей изотермической теории упругости при фиктивных объемных и поверхностных силах, излагаются вариационные принципы для задач термоупругости, являющиеся обобщениями вариационного уравнения Лагранжа и вариационного принципа Кастильяно для изотермической теории упругости, и дается обобщение теоремы о взаимности работ на случай задачи термоупругости, полученное В. М. Майзелем в 1941 г.

Третья глава содержит основные сведения по теории теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической постановке. В ней рассматриваются способы теплопередачи на поверхности тела, выводятся основные уравнения стационарной и нестационарной теплопроводности при отсутствии и наличии источников тепла, формулируются идеализированные граничные условия и исследуются отдельные задачи о стационарных и нестационарных температурных полях в пластинах, дисках и цилиндрах, имеющие практическую целенаправленность и иллюстрирующие применение основных методов теории теплопроводности.

Четвертая, пятая и шестая главы относятся к отдельным классам квазистатических задач термоупругости.

В четвертой главе излагается общая постановка плоской задачи термоупругости в перемещениях и напряжениях; при этом особое внимание уделяется формулировке плоской задачи термоупругости в напряжениях для многосвязной области в связи с изучением термонапряженности плоских многосвязных тел. Здесь дается подробный вывод условий однозначности для перемещений и углов поворота, выясняется связь их неоднозначности с дислокационными напряжениями и приводится аналогия между плоской задачей термоупругости для многосвязных тел при стационарном температурном поле и соответствующей плоской задачей изотермической теории упругости с дислокациями, установленная Н. И. Мусхелишвили в 1916 г.

В качестве примеров, иллюстрирующих применение методов решения плоских задач термоупругости, рассматривается определение тепловых напряжений в диске и цилиндре при плоском осесимметричном (стационарном и нестационарном) температурном поле и при плоском неосесимметричном стационарном температурном поле.

Четвертая глава завершается точным решением задачи об осесимметричном растяжении и изгибе круглой пластины, вызванных стационарным осесимметричным температурным полем, при нахождении которого используется аналогия между задачей о плоском осесимметричном напряженном состоянии и задачей об осесимметричном изгибе круглой пластины.

Пятая глава посвящена термоупругости оболочек вращения. В ней рассматривается общая теория оболочек вращения при температурном поле, симметричном относительно оси оболочки, но изменяющемся по любому закону вдоль ее меридиана и по толщине; при этом используются результаты изотермической теории оболочек, содержащиеся в известных монографиях А. Л. Гольденвейзера, А. И. Лурье, В. В. Новожилова и др.

Для оболочек вращения, обладающих постоянной кривизной меридиана, рассматриваемая задача с помощью статико-геометрической аналогии и комплексного преобразования уравнений оболочек сводится к нахождению комплексной разрешающей функции, удовлетворяющей дифференциальному уравнению второго порядка. В случаях конической и сферической оболочек приводятся точные решения в специальных функциях для всех усилий, моментов и перемещений, необходимые для расчета тепловых напряжений.

В шестой главе на основе представления общего решения уравнений теории упругости в перемещениях в форме П. Ф. Папковича исследуются осесимметричные задачи термоупругости для цилиндра и полой сферы при заданных температурных полях (стационарных или нестационарных). Функциональный произвол в представлении общего решения здесь используется так, чтобы наиболее просто удовлетворить граничным условиям.

В случае цилиндра конечной длины применяется наложение решений для бесконечного цилиндра и слоя; удовлетворение граничных условий на цилиндрической поверхности и торцах цилиндра приводит к бесконечной системе линейных алгебраических уравнений, эффективное решение которой может быть получено методом Б. М. Кояловича.

В случае сферы нахождение функций, входящих в представление общего решения, сводится к решению векторного уравнения Лапласа, которое в отличие от уравнения в декартовых и цилиндрических координатах не распадается на отдельные уравнения относительно компонентов вектора. Для произвольного температурного поля решение задачи о тепловых напряжениях в сфере приводится к решению систем алгебраических уравнений, каждая из которых состоит из четырех уравнений.

Наконец, в седьмой главе рассматриваются динамические задачи термоупругости о динамических эффектах в телах, подверженных действию импульсивных тепловых потоков, и связанные задачи термоупругости о колебательных процессах, сопровождающихся выделением тепла, распространением связанных упругих и тепловых волн и термоупругим рассеянием энергии. Оба указанных класса задач сводятся к исследованию волновых уравнений.

В качестве основной динамической задачи термоупругости выбирается задача о тепловом ударе на поверхности полупространства, впервые исследованная методами операционного исчисления В. И. Даниловской в 1950 г. Эта задача, обладающая сравнительно простым решением, охватывает особенности распространения динамических тепловых напряжений, типичных для рассматриваемого типа задач (тепловой удар на поверхности цилиндра, сферы и др.). Приводится также решение характерной для тонкостенной конструкции задачи о колебаниях прямоугольной пластины, вызванных тепловым ударом на ее поверхности.

В качестве основной связанной задачи термоупругости рассматривается распространение плоских гармонических волн расширения в неограниченном сплошном теле. Здесь для модифицированной под влиянием тепла упругой волны приводятся соотношения, выражающие изменение ее фазовой скорости, затухание амплитуды и относительное рассеяние энергии.

Другая связанная задача термоупругости, рассмотренная в этой главе и требующая привлечения кроме потенциальной также и соленоидальной части общего решения, относится к движению продольных волн в бесконечно длинном сплошном цилиндре.

Термодинамические основы термоупругости

§ 1.1. Общие замечания. Обозначения

Термоупругость занимается вопросами равновесия тела как термодинамической системы, взаимодействие которой с окружающей средой заключается лишь в механической работе внешних сил и теплообмене.

Тело, как и в классической теории упругости, рассматривается в виде материального континуума, обладающего свойствами идеальной упругости, однородности и изотропии.

В термоупругости используются положения механики континуума, известные из линейной теории упругости. В сжатой форме они излагаются в § 1.2.

Состояние термодинамической системы определяется конечным числом независимых переменных — макроскопических величин, называемых термодинамическими параметрами.

Одним из независимых макроскопических параметров термодинамической системы, отличающим ее от механической, является температура как мера интенсивности теплового движения.

Изменение температуры тела может происходить как в результате подвода тепла от внешнего источника, так и за счет самого процесса деформирования.

Связь деформации с температурой устанавливается с помощью законов термодинамики.

Непосредственное применение законов классической термодинамики для изучения процесса деформирования тела возможно только для обратимых процессов.

Реальный процесс термоупругого деформирования тела, строго говоря, является неравновесным процессом, необратимость которого обусловливается градиентом температуры. Созданная в последние годы макроскопическая теория необратимых процессов позволяет более строго поставить задачу о необратимом процессе деформировании.

Так как термодинамика необратимых процессов основана на обобщении классической термодинамики, то в настоящей главе сначала (§ 1.3) рассматриваются основные положения термодинамики обратимых процессов, а затем (§ 1.4) — принципы термодинамики необратимых процессов.

Далее (§ 1.5) излагается термодинамический подход к выводу соотношений между напряжениями и деформациями, содержащих температурные члены. С другой стороны, в рамках термодинамики линейных необратимых процессов дается вывод уравнения теплопроводности с членом, зависящим от деформации. Полученная система уравнений описывает так называемую связанную задачу термоупругости, в которой температурное поле и поле деформаций рассматриваются связанными между собой.

Постановка и представление общего решения связанной задачи термоупругости рассматриваются в § 1.6.

В общем случае нахождение точных решений связанных задач термоупругости, представляющих собой сочетание задач динамической теории упругости и нестационарной теплопроводности, наталкивается на значительные математические затруднения.

Вариационный принцип (§ 1.7), разработанный на основе термодинамики необратимых процессов, позволяет развить приближенные методы решения этих задач. В этой и в следующей главах для упрощения записи применяются индексное обозначение и правило суммирования по повторяющимся индексам, принятые в тензорном анализе.

Оси x, y, z в декартовой системе координат обозначаются через x_1 , x_2 , x_3 или в более компактной форме через x_i (i=1,

2, 3). Вектор *a* с компонентами a_1 , a_2 , a_3 обозначается через a_i . В этом смысле вектор перемещения u_i в упругом теле означает вектор с компонентами u_1 , u_2 , u_3 . Напряженное и деформированное состояния упругого тела определяются соответственно тензорами второго ранга σ_{ij} и ε_{ij} (*i*, *j*=1, 2, 3). Символы σ_{ij} , ε_{ij} означают величины с девятью компонентами.

Индексы обозначаются малыми латинскими буквами. Повторяющийся индекс называется немым. Индекс, который в одночленном выражении не повторяется, называется свободным. Для них вводятся следующие два условия.

1. Повторяющийся индекс означает суммирование от 1 до 3.

Например, скалярное произведение двух векторов а и в

$$\vec{a} \cdot \vec{b} = a_1 \cdot b_1 = a_1 b_1 + a_2 b_2 + a_3 b_3,$$
 (1.1.1)

инвариант тензора напряжения

$$\sigma_{ii} = \sigma_{11} + \sigma_{22} + \sigma_{33}.$$
 (1.1.2)

Применение для повторяющихся индексов какой-нибудь специальной буквы не требуется; для удобства ее можно заменить любой малой латинской буквой.

2. Свободные индексы пробегают значения от 1 до 3. Например, символ он означает любой из девяти компонентов

$$\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}.$$
 (1.1.3)

Антисимметричный единичный тензор третьего ранга обозначается через e_{ijk} . Он является антисимметричным тензором относительно трех индексов, т. е. таким тензором, у которого при перемене мест любых двух индексов составляющие изменяются по знаку, но не по абсолютному значению.

Из 27 его компонентов отличны от нуля только те шесть, у которых индексы *i*, *j*, *k* образуют какую-либо перестановку чисел 1, 2, 3. Составляющие могут иметь только три следующих значения: 0, когда любые два индекса равны; +1, когда *ijk* является четной (цикличной) перестановкой чисел 1, 2, 3; —1, когда *ijk* является нечетной перестановкой чисел 1, 2, 3. На основании этого определения устанавливаются равенства

$$e_{123} = e_{231} = e_{312} = 1, \quad e_{132} = e_{213} = e_{321} = -1.$$
 (1.1.4)

Если образовать произведение двух единичных тензоров третьего ранга $e_{ijk}e_{lmn}$, а затем свернуть результат произведения по индексам k и n (приравнять их), то получим единичный тензор четвертого ранга

$e_{ijk}e_{lmk},$

компоненты которого имеют следующие значения:

0, когда i = j или l = m;

+1, когда *ij* и *lm* представляют собой одни и те же перестановки одних и тех же двух чисел $(i=l \ u \ j=m, \ ho \ i\neq j);$

—1, когда *ij* и *lm* представляют собой противоположные перестановки одних и тех же двух чисел $(i=m \text{ и } j=l, \text{ но } i\neq j)$.

Этот результат записывается в виде

$$e_{ijk}e_{lmk} = \delta_{ll}\delta_{jm} - \delta_{im}\delta_{jl}, \qquad (1.1.5)$$

где δ_{ij} — символ Кронекера, обладающий следующим свойством:

$$\delta_{11} = \delta_{22} = \delta_{33} = 1, \quad \delta_{ij} = 0 \quad (i \neq j).$$
 (1.1.6)

13

С помощью единичного вектора e_{ijk} можно определять векторное произведение двух векторов. Например, векторное произведение $\vec{a} \times \vec{b}$ является вектором \vec{c} с компонентами

$$c_i = e_{ijk} a_j b_k \tag{1.1.7}$$

или в развернутом обозначении

$$c_1 = a_2 b_3 - a_3 b_2, \quad c_2 = a_3 b_1 - a_1 b_3, \quad c_3 = a_1 b_2 - a_2 b_1.$$

Дифференцирование по определенной координате обозначается запятой на уровне индексов с одновременным индексным обозначением соответствующей координаты. Например,

$$u_{i,j} = \frac{\partial u_i}{\partial x_j} \quad (i, j = 1, 2, 3), \tag{1.1.8}$$

$$\varepsilon_{ij, kl} = \frac{\partial^2 \varepsilon_{ij}}{\partial x_k \partial x_l} \quad (i, j, k, l = 1, 2, 3). \tag{1.1.9}$$

Частные производные по времени обозначаются точками сверху. Например,

$$\ddot{u}_{i} = \frac{\partial^{2} u_{i}}{\partial t^{2}} \cdot$$
(1.1.10)

Начиная с третьей главы индексное обозначение и правило суммирования по повторяющимся индексам не применяются.

Все формулы пишутся в развернутом виде. Координаты x_1 , x_2 , x_3 обозначаются соответственно через x, y, z; эти же обозначаются в качестве индексов для компонентов тензора напряжения и деформации. Например, вместо $\sigma_{11}, \ldots, \sigma_{12}, \ldots, \varepsilon_{11}, \ldots, \varepsilon_{12}, \ldots$ пишутся соответственно $\sigma_x, \ldots, \sigma_{xy}, \ldots, \varepsilon_x, \ldots, \varepsilon_{xy}, \ldots$. Компоненты вектора перемещения u_1 , u_2 , u_3 обозначаются через u, v, w. Другие обозначения приводятся в процессе изложения.

§ 1.2. Деформация. Уравнения равновесия (движения). Работа внешних сил

В настоящем параграфе рассмотрим в сжатой форме те основные положения механики сплошной среды [20, 36, 44], которые устанавливаются в линейной теории упругости и используются в термоупругости.

Предполагаем, что перемещения и их производные являются малыми величинами. Дифференцируя вектор u_i по переменной x_j , получаем тензор второго ранга $u_{i,j}$, который можно предста-

вить в виде суммы симметричного ε_{ij} и антисимметричного ω_{ij} тензоров:

$$u_{i,j} = \frac{1}{2} (u_{i,j} + u_{j,i}) + \frac{1}{2} (u_{i,j} - u_{j,i}) = \varepsilon_{ij} + \omega_{ij}. \quad (1.2.1)$$

Симметричный тензор є_і называется тензором деформации; его компоненты связаны с компонентами вектора перемещения u_i следующим соотношением:

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}),$$
 (1.2.2)

где $\varepsilon_{ij} = \varepsilon_{li}$.

Антисимметричный тензор ω_{ij} обладает тем свойством, что для любых индексов *i* и *j*

$$\omega_{ij} = \frac{1}{2} (u_{i,j} - u_{j,i}) = -\omega_{ji} \qquad (i, j = 1, 2, 3).$$

Он имеет таблицу компонентов

$$\begin{cases} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{cases},$$
 (1.2.3)

т. е. определяется тремя величинами ω_k (k = 1, 2, 3), являющимися компонентами аксиального вектора ω .

Вектор ω называется вектором поворота; он равен по величине среднему значению угла поворота объемного элемента и направлен в сторону поступательного движения винта с правой нарезкой в правой системе координат.

Применяя единичный вектор e_{ijk} (см. § 1.1), можно установить следующую зависимость между вектором поворота ω_k и антисимметричным тензором ω_{ij} :

$$\omega_k = \frac{1}{2} e_{kjl} \omega_{lj}. \tag{1.2.4}$$

Умножая обе части уравнения (1.2.4) на единичный вектор и используя тождество (1.1.5), получаем

$$\omega_{sr} = e_{rsk} \omega_k. \tag{1.2.5}$$

Рассмотрим упругое тело, внутри которого выделим объем V, ограниченный поверхностью Ω (рис. 1). Пусть P — точка граничной поверхности Ω , а $d\Omega$ — элемент этой поверхности, содержащий точку P. Положение элемента $d\Omega$ поверхности зада-

ется единичным вектором n внешней нормали к поверхности Ω в точке P. На рассматриваемый объем действуют внешние силы, которые разделяются на поверхностные и объемные.

На элемент поверхности $d\Omega$ в точке P со стороны внешней нормали n действует вектор поверхностной силы $fd\Omega$, где f вектор плотности поверхностной силы, величина которого называется напряжением.

На элемент объема dV в точке P_1 действует вектор объемной силы $\vec{F}dV$, где \vec{F} вектор плотности объемной силы.

Если элемент объема, содержащий точку P_1 , будет совершать движение с ускорени-

ем *и,* то, кроме силы *FdV*, на него будет действовать сила

инерции $-\rho u dV$, где ρ — плотность массы тела в точке P_1 ,

а — *ри* — вектор плотности объемной силы инерции.

Выделим элемент объема в точке *P* в виде бесконечно малого тетраэдра, три грани которого параллельны координатным плоскостям, а четвер-

тая грань площадью $d\Omega$ имеет внешнюю нормаль \vec{n} (рис. 2).

Условие равновесия всех сил, действующих на тетраэдр, имеет вид

$$\vec{f} = \vec{f}_j n_j$$
 (j=1, 2, 3)
(1.2.6)

(объемные силы не учитываются, так как они являются величинами более высокого порядка малости), где \vec{f}_j — векторы плотности поверхностных сил на пло f_{2} $d\Omega_{2} = n_{2}d\Omega$ $d\Omega_{1} = n_{1}d\Omega$ $d\Omega_{2} = n_{3}d\Omega$ $d\Omega_{3} = n_{3}d\Omega$

Рис. 2.

щадках, перпендикулярных осям x_j ; n_j — компоненты единичного вектора \vec{n} , равные косинусам углов, составляемых вектором \vec{n} с осями x_j .

Пусть разложения векторов \vec{f} и \vec{f}_j по ортам \vec{e}_1 , \vec{e}_2 , \vec{e}_3 (см. рис. 2) определяются выражениями

$$\vec{f} = \vec{e}_i f_i, \quad \vec{f}_j = \vec{e}_i \sigma_{ji}. \tag{1.2.7}$$

Тогда, учитывая (1.2.16), векторное равенство (1.2.6) можно представить тремя скалярными

$$f_i = \sigma_{ij} n_j$$
 (*i*, *j*=1, 2, 3), (1.2.8)

где f_i — компоненты вектора плотности поверхностной силы; σ_{ij} — компоненты тензора напряжения.

В системе декартовых координат тензор напряжения определяется таблицей (1.1.3) своих компонентов. Диагональные элементы таблицы (1.1.3) являются нормальными напряжениями на соответствующих площадках, а недиагональные — касательными (рис. 3).

Рассмотрим условия равновесия произвольного объема V тела, ограниченного поверхностью Ω . Для этого необходимо приравнять нулю главный вектор и главный момент (относительно произвольной точки) внешних

объемных и поверхностных сил; при движении тела в соответствии с принципом Даламбера в объемные силы должны включаться силы инерции. Указанные условия равновесия дают следующие уравнения:

$$\int_{V} (F_{i} - \rho \ddot{u}_{i}) \, dV + \int_{\Omega} f_{i} d\Omega = 0, \qquad (1.2.9)$$

$$\int_{V} e_{ijk} x_j \left(F_k - \rho \ddot{u}_k \right) dV + \int_{\Omega} \dot{e}_{ijk} x_j f_k d\Omega = 0, \qquad (1.2.10)$$

где x_i — радиус-вектор точки приложения силы.

Подставляя в уравнения (1.2.9) и (1.2.10) выражение (1.2.8) для f_i и применяя формулу Остроградского — Гаусса, интегралы по поверхности преобразуем к виду

$$\int_{\Omega} f_i d\Omega = \int_{\Omega} \sigma_{ij} n_j d\Omega = \int_{V} \sigma_{ij, j} dV, \qquad (1.2.11)$$

Рис. 3.

$$\int_{\Omega} e_{ijk} x_j f_k d\Omega = \int_{\Omega} e_{ijk} x_j \sigma_{kl} n_l d\Omega =$$
$$= \int_{V} (e_{ijk} x_j \sigma_{kl})_{,l} dV = \int_{V} e_{ijk} \sigma_{kj} dV + \int_{V} e_{ijk} x_j \sigma_{kl,l} dV = 0. \quad (1.2.12)$$

При выводе равенства (1.2.12) учитываем, что $x_{i,l} = \delta_{il}$ и $\delta_{jl}\sigma_{kl} = \sigma_{kj}$, где δ_{jl} — символ Кронекера. Подставляя равенство (1.2.11) в уравнение (1.2.9), а равен-

ство (1.2.12) — в уравнение (1.2.10), получаем

$$\int_{V} (\sigma_{ij, j} + F_{i} - \rho \ddot{u}_{i}) dV = 0, \qquad (1.2.13)$$

$$\int_{V} e_{ijk} [\sigma_{kj} + x_j (\sigma_{kl, l} + F_k - \rho u_k)] \, dV = 0.$$
 (1.2.14)

В силу произвольности объема V из уравнения (1.2.13) получаем следующие три уравнения равновесия (движения):

$$\sigma_{ij,j} + F_i = \rho u_i$$
 (*i*=1, 2, 3). (1.2.15)

Учитывая уравнение (1.2.15), из уравнения (1.2.14) находим

$$\int_{V} e_{ijk} \sigma_{kj} dV = 0$$

$$\sigma_{kj} = \sigma_{jk}, \qquad (1.2.16)$$

или

т. е. тензор напряжения является симметричным тензором.

В заключение этого параграфа рассмотрим скорость работы внешних сил при деформации упругого тела объемом V

$$\dot{L} = \int_{V} (F_i - \rho \ddot{u}_i) \dot{u}_i dV + \int_{\Omega} f_i \dot{u}_i d\Omega. \qquad (1.2.17)$$

Подставляя в уравнение (1.2.17) выражение (1.2.8) для f_i и преобразуя поверхностный интеграл по формуле Остроградского — Гаусса в объемный, получаем вместо (1.2.17) следующее **уравнение**:

$$\dot{L} = \int_{V} \dot{W} dV = \int_{V} \left[\left(\sigma_{ij, j} + F_{i} - \rho \ddot{u}_{i} \right) \dot{u}_{i} + \sigma_{ij} \dot{u}_{i, j} \right] dV. \quad (1.2.18)$$

Принимая во внимание уравнение (1.2.15) и тождество (1.2.1), находим скорость работы внешних сил, отнесенной к единице объема упругого тела:

$$\dot{W} = \sigma_{ij} \left(\dot{\varepsilon}_{ij} + \dot{\omega}_{ij} \right) = \sigma_{ij} \dot{\varepsilon}_{ij}.$$
(1.2.19)

При выводе этого выражения учитываем, что $\sigma_{ij}\omega_{ij}=0$, так как σ_{ij} — симметричный, а ω_{ij} — антисимметричный тензор.

§ 1.3. Основные положения классической термодинамики

Вспомним некоторые основные понятия термодинамики [3, 24].

Всякое материальное тело, состоящее из большого числа частиц и взаимодействующее с окружающей средой, называется термодинамической системой.

Состояние термодинамической системы характеризуется рядом макроскопических величин, называемых термодинамическими параметрами.

Параметры системы разделяются на внешние, характеризующие внешние условия, в которых находится термодинамическая система, и внутренние, зависящие от движения и взаимодействия входящих в систему микрочастиц (молекул). В этом смысле деформации упругого тела являются внешними параметрами. К внутренним параметрам относятся плотность, внутренняя энергия и др.

Совокупность независимых термодинамических параметров полностью определяет состояние системы. Другие величины, определяемые состоянием системы в рассматриваемый момент, являются функциями состояния.

Термодинамическая система, предоставленная самой себе при неизменных внешних условиях, приходит в состояние равновесия, характеризуемое постоянством всех параметров и отсутствием макроскопических движений. Такое состояние системы называется состоянием термодинамического равновесия.

С понятием о термодинамическом равновесии связано понятие о температуре.

Опыт показывает, что две системы, каждая из которых при тепловом контакте с третьей находится в состоянии термодинамического равновесия, будут находиться в состоянии термодинамического равновесия между собой независимо от различия или равенства их внешних параметров (свойство транзитивности термодинамического равновесия). Из этого свойства следует, что состояние термодинамического равновесия системы определяется не только ее внешними параметрами, но и еще одной величиной, характеризующей ее внутреннее состояние. Эта величина, имеющая одно и то же значение для всех систем, находящихся в состоянии термодинамического равновесия, называется температурой. Положение о существовании температуры как особой величины, характеризующей состояние равновесной системы, называется нулевым законом термодинамики.

При термодинамическом равновесии все внутренние параметры системы являются функциями внешних параметров и температуры.

Если макроскопические свойства системы изменяются со временем, то говорят, что в такой системе происходит процесс.

Процесс называется равновесным *, когда изменение всех параметров системы происходит бесконечно медленно, так что система в каждый момент времени находится в состоянии термодинамического равновесия.

Равновесный процесс является обратимым процессом, т. е. таким процессом, который может пройти в обратном направлении через те же состояния, что и прямой процесс, не вызвав в окружающей среде никаких изменений.

Процесс, сопровождающийся существенным нарушением равновесного состояния, называется нестатическим. Характерной особенностью такого процесса является его необратимость, т. е. невозможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде не произошли какиелибо изменения. С этой точки зрения процесс теплопередачи при конечной разности температур необратим.

Полная энергия системы состоит из внешней энергии, связанной с движением системы как целого (кинетической энергии движения системы и изменения ее потенциальной энергии), и внутренней энергии, являющейся энергией всех видов движения и взаимодействия микрочастиц, из которых состоит система.

Внутренняя энергия *U* является функцией состояния и в равновесном процессе определяется внешними параметрами и температурой.

Взаимодействие термодинамической системы с окружающей средой заключается в обмене энергии между окружающей средой и системой путем совершения работы и путем передачи тепла. Работа есть способ передачи энергии, связанный с изменением внешних параметров. Количество энергии, полученное системой таким образом, называется также работой и обозначается через W.

Способ передачи энергии без изменения внешних параметров, обусловленный изменением температуры, называется процессом теплообмена. Переданное при этом системе количество энергии называется теплотой и обозначается через Q.

^{*} В термодинамике [3, 24] равновесный процесс называется также квазистатическим. Во избежание путаницы с понятием квазистатической задачи термоупругости (глава вторая) мы в настоящей книге отказываемся от применения этого названия.

Ни работа, ни теплота не являются функциями состояния системы и имеют смысл только тогда, когда совершается процесс, при котором происходит изменение состояния системы.

Если состояние системы изменяется только за счет изменения внешних параметров, а обмен энергией с окружающей средой в форме теплоты не происходит, то система называется адиабатически изолированной, или адиабатической.

В адиабатической системе работа не зависит от пути перехода от одного состояния системы в другое, а зависит только от начального и конечного состояния системы: при адиабатическом процессе работа совершается лишь за счет изменения энергии системы. Энергия системы аддитивна, т. е. энергия системы равна сумме энергий ее частей.

В общем случае адиабатически неизолированной системы изменение энергии происходит не только за счет макроскопической работы, но также и посредством теплообмена.

На основании закона сохранения энергии первый закон термодинамики, определяющий превращение энергии при механических и тепловых процессах (как обратимых, так и необратимых), для конечного процесса имеет вид

$$U_2 - U_1 = Q + W,$$
 (1.3.1)

где $U_2 - U_1$ есть изменение внутренней энергии при переходе системы из состояния 1 в состояние 2; Q — теплота, полученная при этом системой; W — работа внешних сил, приложенных к системе.

Первый закон термодинамики для элементарного процесса определяется выражением

$$dQ = dU + dW', \tag{1.3.2}$$

где dW' = -dW.

В этой форме уравнение (1.3.2) гласит: теплота, переданная системе, идет на увеличение ее внутренней энергии и на работу, совершаемую системой.

В термодинамике доказывается, что в случае обратимого процесса выражение для элемента теплоты можно представить в виде пфаффовой формы:

$$dQ = X_1 dx_1 + X_2 dx_2 + \ldots + X_n dx_n, \qquad (1.3.3)$$

где x_i (i=1,...,n) — независимые параметры состояния, а X_i (i=1,...,n) — функции от этих параметров.

Второй закон термодинамики, являющийся обобщением опытных данных, гласит: невозможно осуществить вечный двигатель второго рода, т. е. создать машину, которая превращала бы теплоту в работу, пользуясь одним резервуаром тепла постоянной температуры.

В новой независимой формулировке второго закона термодинамики устанавливается более общий эмпирический принцип о

невозможности определенных процессов, позволяющий более просто дать математическое описание второго закона термодинамики.

Впервые новую формулировку второго закона термодинамики дал в 1898 г. профессор Киевского университета Н. Н. Шиллер [50, 51], которым был приведен вывод интегрирующего множителя для dQ, в основном совпадающий с выводом немецкого математика Каратеодори. Каратеодори в 1909 г. развил эту формулировку второго закона термодинамики, связав ее с теорией пфаффовых форм [56], и она вошла в науку под названием принципа адиабатической недостижимости Каратеодори.

Т. А. Афанасьева-Эренфест, критически анализируя работу [56] Каратеодори, впервые показала в своих работах [2, 60], что второй закон термодинамики состоит из двух независимых утверждений, из которых первое относится к обратимым процессам, а второе — к нестатическим (необратимым) процессам, и четко установила различие между понятием об адиабатической недостижимости определенного состояния из другого состояния с помощью обратимого перехода и понятием о необратимости термодинамического процесса.

В настоящее время формулировка принципа адиабатической недостижимости состоит из следующих двух частей (см. [3, 28, 55] и др.):

1) в окрестности каждого состояния термодинамической системы существуют такие состояния, которые недостижимы из него адиабатическим обратимым процессом;

2) в окрестности каждого состояния термодинамической системы существуют такие состояния, которые недостижимы из него любым адиабатическим необратимым процессом.

Первая часть формулировки принципа адиабатической недостижимости приводит к существованию новой однозначной функции состояния — энтропии S. Действительно, если система адиабатическая, а процесс обратимый, то пфаффова форма (1.3.3) переходит в уравнение Пфаффа

$$dQ = X_1 dx_1 + X_2 dx_2 + \ldots + X_n dx_n = 0, \qquad (1.3.4)$$

в котором параметры x_i ($i=1,\ldots,n$) удобно рассматривать как координаты точки n-мерного пространства.

Из теории уравнений Пфаффа с n переменными известна следующая теорема [28]: если уравнение Пфаффа (1.3.4) интегрируемо (т. е. существует интегрирующий множитель), то, перемещаясь из данной точки $P(x_i)$ по кривым, являющимся решениями дифференциального уравнения, нельзя достичь каждой точки в окрестности точки $P(x_i)$.

Каратеодори доказал [56], что справедлива и обратная теорема: если в окрестности данного состояния, определяемого параметрами x_i, существуют состояния с параметрами x_i, которые недостижимы из него при помощи уравнения (1.3.4), то это уравнение является интегрируемым. Но так как наличие недостижимых точек в случае адиабатического обратимого процесса, описываемого уравнением (1.3.4), установлено на основании обобщения данных опыта, то уравнение (1.3.4) интегрируемо.

На основании факта интегрируемости уравнения (1.3.4) в термодинамике затем доказывается существование полного дифференциала

$$dS = \frac{dQ}{T}, \qquad (1.3.5)$$

где S — энтропия; T — абсолютная температура. Из второй части формулировки принципа адиабатической недостижимости вытекает положение о неуклонном возрастании энтропии в случае адиабатического необратимого процесса, т. е.

$$dS > 0.$$
 (1.3.6)

§ 1.4. Основные положения термодинамики необратимых процессов в связи с термоупругим деформированием неравномерно нагретого тела

Для изучения реального процесса термоупругого деформирования тела, подвергающегося действию внешних сил и неравномерного нагрева, должна быть привлечена термодинамика необратимых процессов.

Основные идеи термодинамики необратимых процессов заключаются в понятиях локального равновесия и медленных процессов.

Значения термодинамических параметров определяются для внезапно выделенной макроскопически малой части тела, которую можно рассматривать в состоянии локального равновесия.

Такое обобщение классической термодинамики основано на предположении, что равновесное состояние устанавливается прежде всего в макроскопически малых частях системы, когда она в целом еще не находится в равновесии.

Значительно медленнее наступает термодинамическое равновесие в большом объеме вследствие теплопроводности.

Термодинамическая теория необратимых процессов предполагает, что основные уравнения термодинамики обратимых процессов (1.3.2) и (1.3.5) сохраняются справедливыми и для локально равновесных макроскопически малых частей системы [3, 10].

Связывая на основании закона сохранения энергии величину илотности теплового потока, представляемого вектором q с компонентами q_i, со скоростью подводимой к телу удельной (отнесенной к единице объема) теплоты Q по формуле

$$-q_{i,i} = \dot{Q} \tag{1.4.1}$$

и определяя в связи с равенством (1.2.19) скорость удельной (отнесенной к единице объема) работы упругого тела выражением

$$\dot{W}' = -\dot{W} = -\sigma_{ij}\varepsilon_{ij}, \qquad (1.4.2)$$

первый и второй законы термодинамики можно записать в виде

$$-q_{i,i} = T\dot{S} = \dot{U} - \sigma_{ij} \varepsilon_{ij}, \qquad (1.4.3)$$

где S и U — плотности (объемные) энтропии и внутренней энергии.

Ќ уравнениям (1.4.3) добавляется феноменологический закон, описывающий необратимый процесс теплопроводности закон Фурье о пропорциональности вектора теплового потока градиенту температуры:

$$q_i = -\lambda_{\mathrm{T}} T_{,i}, \qquad (1.4.4)$$

где $\lambda_{\rm T}$ — коэффициент теплопроводности.

Одним из важных принципов термодинамики необратимых процессов является возникновение энтропии как определенно положительной величины.

Из уравнений (1.4.3) и (1.4.4) следует

$$\dot{S} = -\frac{q_{i,i}}{T} = \dot{S}_{I} + \dot{S}_{II},$$
 (1.4.5)

где

$$\dot{S}_{I} = -\left(\frac{q_{i}}{T}\right)_{,i} - (1.4.6)$$

изменение энтропии, обусловленное подводом тепла из окружающей среды;

$$\dot{S}_{\Pi} = -\frac{1}{T^2} q_i T_{,i} = \frac{1}{T^2} \frac{q_i q_i}{\lambda_{\rm r}} > 0 -$$
 (1.4.7)

локальное образование энтропии в единицу времени, вызванное градиентом температуры.

§ 1.5. Термодинамические функции. Уравнения состояния. Уравнение теплопроводности

Для исследования термодинамики деформирования, кроме плотности внутренней энергии U и плотности энтропии S, вводятся следующие термодинамические функции: плотность свободной энергии

$$F = U - TS \tag{1.5.1}$$

$$G = F - \sigma_{ij} \varepsilon_{ij}. \tag{1.5.2}$$

Функции U, F, G являются функциями состояния; изменения этих функций при изменении состояния упругого тела являются полными дифференциалами. Эти функции называются термодинамическими потенциалами.

Исходя из выражения для полного дифференциала плотности внутренней энергии

$$dU = TdS + \sigma_{ij}d\varepsilon_{ij}, \qquad (1.5.3)$$

находим с помощью уравнений (1.5.1) и (1.5.2)

$$dF = -SdT + \sigma_{ij}d\varepsilon_{ij}, \qquad (1.5.4)$$

$$dG = -SdT - \varepsilon_{ij}d\sigma_{ij}. \tag{1.5.5}$$

Так как dU, dF и dG являются полными дифференциалами, то

$$\frac{\partial U}{\partial S} = T, \qquad \frac{\partial U}{\partial \varepsilon_{ij}} = \sigma_{ij},$$
 (1.5.6)

$$\frac{\partial F}{\partial T} = -S, \quad \frac{\partial F}{\partial \varepsilon_{il}} = \sigma_{il},$$
 (1.5.7)

$$\frac{\partial G}{\partial T} = -S, \quad \frac{\partial G}{\partial \sigma_{ij}} = -\varepsilon_{ij}.$$
 (1.5.8)

Знание хотя бы одного термодинамического потенциала позволяет определить все термодинамические параметры (абсолютную температуру, тензор напряжения, тензор деформации, энтропию).

Напомним физический смысл введенных термодинамических потенциалов.

Как видно из уравнений (1.5.3) и (1.5.4), для изотермических процессов (T = const) работа деформации совершается за счет изменения свободной энергии F подобно тому, как при адиабатическом процессе (S = const) работа деформации происходит за счет изменения внутренней энергии U.

Из уравнений (1.5.4) и (1.5.5) следует, что при изотермическом процессе дополнительная работа, совершаемая упругим телом, равна возрастанию термодинамического потенциала Гиббса, тогда как при этом же процессе работа упругого тела равна уменьшению свободной энергии.

Для установления соотношений между напряжениями и деформациями необходимо составить выражение для плотности свободной энергии F как функции компонентов тензора деформации и температуры T. Учитывая малость деформаций и предполагая, что чисто тепловая деформация, отвечающая разности температур $T-T_0$ (T_0 — температура тела в ненапряженном состоянии), является величиной одного порядка малости по сравнению с ε_{ij} , сохраняем в разложении F в ряд относительно параметров ε_{ij} и Tлишь члены второго порядка малости: квадратичные члены для компонентов деформации ε_{ij} и члены, являющиеся произведениями ε_{ij} на чисто тепловую деформацию.

Плотность свободной энергии *F* как скалярная величина не зависит от принятой системы координат и определяется через инварианты тензора деформации и температуру.

Из тензорной алгебры известно, что из компонент симметричного тензора деформации может быть образован один линейный инвариант ε_{kk} и два инварианта второй степени ε_{kk}^2 и $\varepsilon_{ij}\varepsilon_{ij}$. Указанному отвечает следующее выражение для плотности свободной энергии [20]:

$$F = \frac{\lambda}{2} \varepsilon_{kk}^2 + \mu \varepsilon_{ij} \varepsilon_{ij} - (3\lambda + 2\mu) \alpha_{\tau} (T - T_0) \varepsilon_{kk} + F_0, \qquad (1.5.9)$$

где λ, μ, α_т — постоянные величины; F₀ — функция T.

На основании формул (1.5.7) находим плотность энтропии

$$S = (3\lambda + 2\mu) \alpha_{\tau} \varepsilon_{kk} - \frac{dF_0}{dT}$$
(1.5.10)

и соотношения между напряжениями и деформациями

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} - (3\lambda + 2\mu) \alpha_{T} (T - T_0) \delta_{ij}. \qquad (1.5.11)$$

При дифференцировании F по ε_{ij} принимаем во внимание, что $\frac{\partial \varepsilon_{kk}}{\partial \varepsilon_{ij}} = \delta_{ij}$, где δ_{ij} — символ Кронекера.

В соотношениях (1.5.11) величины λ и μ являются известными коэффициентами Ляме для изотермической деформации.

Полагая в соотношениях (1.5.11) i=j=k, находим относительное изменение объема (первый инвариант тензора деформации)

$$\varepsilon_{kk} = \frac{\sigma_{kk}}{3\lambda + 2\mu} + 3\alpha_r (T - T_0), \qquad (1.5.12)$$

где учитываем, что $\delta_{kk} = 3$.

Приравнивая в уравнении (1.5.12) _{«kk} нулю, получаем относительное изменение объема при свободном тепловом расширении.

Следовательно, величина α_{τ} , введенная в выражение (1.5.9), является коэффициентом линейного теплового расширения.

Подставляя выражение (1.5.12) для ε_{kk} в соотношение (1.5.11) и определяя из него ε_{ij} , находим соотношения между

деформациями и напряжениями в виде

$$\varepsilon_{ij} = \frac{(1+\nu)\sigma_{ij}}{E} - \frac{\nu\sigma_{kk}}{E}\delta_{ij} + \alpha_{\tau}(T-T_0)\delta_{ij}, \qquad (1.5.13)$$

где модуль упругости *E* и коэффициент Пуассона v связаны с коэффициентами Ляме следующими зависимостями:

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}. \quad (1.5.14)$$

Рассматривая соотношения (1.5.13), видим, что полная деформация ε_{ij} в каждой точке упругого тела складывается из двух частей:

1) деформации

$$\varepsilon_{ij} = \frac{1}{E} \left[(1+\gamma) \,\sigma_{ij} - \gamma \sigma_{kk} \delta_{ij} \right], \qquad (1.5.15)$$

возникающей как от действия внешних сил, так и от действия тех напряжений, которые необходимо приложить для обеспечения сплошности тела при его неравномерном нагреве; эта деформация связана с напряжением обычным соотношением, вытекающим из обобщенного закона Гука;

2) деформации

$$\varepsilon_{ij}^{\prime\prime} = \alpha_{\rm T} \left(T - T_0 \right) \delta_{ij}, \qquad (1.5.16)$$

отвечающей свободному тепловому расширению упругого тела при повышении его температуры на $T - T_0$; эта деформация для термически изотропного тела является шаровым тензором.

Зная F, по формуле (1.5.2) определяем плотность термодинамического потенциала Гиббса. Заменяя в этой формуле F и ε_{ij} их выражениями (1.5.9) и (1.5.13), находим

$$G = -\frac{1+\nu}{2E} \sigma_{ij}\sigma_{ij} + \frac{\nu}{2E} \sigma_{kk}^2 - \alpha_{\rm T} (T-T_0) \sigma_{kk} - \frac{3E}{2(1-2\nu)} \alpha_{\rm T}^2 (T-T_0)^2 + F_0. \qquad (1.5.17)$$

Применяя первую из формул (1.5.8), находим другое выражение для плотности энтропии:

$$S = \alpha_{T} \sigma_{kk} + \frac{3E\alpha_{T}^{2}}{1-2\gamma} (T-T_{0}) - \frac{dF_{0}}{dT}. \qquad (1.5.18)$$

С помощью выражений (1.5.10) и (1.5.18) для плотности энтропии можно определить удельные объемные теплоемкости при постоянном тензоре деформации c_{ε} и постоянном тензоре

напряжения с. Вычисляя в соответствии с определением теплоемкостей эти величины по формулам

$$c_{\varepsilon} = T \frac{\partial S\left(\varepsilon_{kk}, T\right)}{\partial T} = -T \frac{d^{2}F_{0}}{dT^{2}},$$

$$c_{\sigma} = T \frac{\partial S\left(\sigma_{kk}, T\right)}{\partial T} = \frac{3E\alpha_{T}^{2}T}{1-2\nu} - T \frac{d^{2}F_{0}}{dT^{2}},$$
(1.5.19)

находим

$$c_{\sigma}-c_{\epsilon}=\frac{3Ea_{\tau}^{2}T}{1-2\nu}=3(3\lambda+2\mu)a_{\tau}^{2}T.$$
 (1.5.20)

Будем понимать под теплоемкостью с. теплоемкость при отсутствии деформаций. Тогда, используя первую из формул (1.5.19), находим

$$F_{0} = -\int_{T_{0}}^{T} \int_{T_{0}}^{T} \frac{c_{\varepsilon}}{T} dT dT, \qquad (1.5.21)$$

где постоянные интегрирования выбираем из условия F=0 и S=0 при $\varepsilon_{ij}=0$ и $T=T_0$.

В дальнейшем предполагаем, что теплоемкость *с*_ε и коэффициент теплопроводности λ_τ не зависят от температуры.

Выражение (1.5.10) для плотности энтропии после подстановки зависимости (1.5.21) для функции F₀ принимает вид

$$S = (3\lambda + 2\mu) \alpha_{\tau} \varepsilon_{kk} + c_{\varepsilon} \ln \frac{T}{T_0}. \qquad (1.5.22)$$

Теперь в дополнение к известным уравнениям линейной теории упругости (§ 1.2) и соотношениям между напряжениями и деформациями (1.5.11) или (1.5.13) можно получить уравнение теплопроводности.

Подставляя в уравнение (1.4.3) вместо плотности теплового потока q_i и плотности энтропии S их выражения (1.4.4) и (1.5.22) и учитывая, что на основании (1.5.20)

$$(3\lambda+2\mu)\alpha_{\rm T}T = \frac{c_{\sigma}-c_{\varepsilon}}{3\alpha_{\rm T}}, \qquad (1.5.23)$$

находим следующее уравнение теплопроводности:

$$\lambda_{\mathrm{T}}T_{,\,ii} = c_{\varepsilon}\dot{T} + \frac{c_{\sigma} - c_{\varepsilon}}{3\alpha_{\mathrm{T}}}\dot{\varepsilon}_{kk}.$$
(1.5.24)

Указанная система уравнений является связанной членами $\frac{c_{\sigma}-c_{\varepsilon}}{3\alpha_{\tau}} \stackrel{\cdot}{\epsilon_{kk}}$ в уравнении (1.5.24) и членами — (3 λ +2 μ) α_{τ} (T— T_{0}) \hat{c}_{ij} в уравнении (1.5.11) или α_{τ} (T— T_{0}) \hat{b}_{ij} в уравнении (1.5.13).

Рассмотрим случай, когда разности температур $T - T_0$ малы по сравнению с T. В этом случае можно ограничиться в выражении (1.5.22) линейным членом относительно $T - T_0$ и положить в равенстве (1.5.23) $T \approx T_0$. Тогда выражение (1.5.22) для плотности энтропии и уравнение теплопроводности (1.5.24) получают вид

$$S = (3\lambda + 2\mu) \alpha_{\tau} \varepsilon_{kk} + c_{\varepsilon} \frac{T - T_0}{T_0}, \qquad (1.5.25)$$

$$\lambda_{\mathrm{r}} T_{,\,ll} = c_{\epsilon} T + T_{0} (3\lambda + 2\mu) \, \alpha_{\mathrm{r}} \varepsilon_{kk}. \qquad (1.5.26)$$

Заметим, что в случае аднабатической деформации, когда S = const, из уравнения (1.5.25), которое удовлетворяет условию

$$S=0$$
 при $T=T_0$ и $\varepsilon_{kk}=0$,

получаем

$$T - T_0 = -\frac{(3\lambda + 2\mu) \alpha_{\tau} T_0}{c_{\varepsilon}} \varepsilon_{kk}. \qquad (1.5.27)$$

Подставляя (1.5.27) в уравнение (1.5.11), находим

$$\mathbf{v}_{ij} = \lambda_{a} \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}, \qquad (1.5.28)$$

где λ_а — постоянная Ляме в случае адиабатической деформации:

$$\lambda_{a} = \lambda + \frac{(3\lambda + 2\mu)^{2} \alpha_{\tau}^{2} T_{0}}{c_{\varepsilon}}.$$
 (1.5.29)

Вторая постоянная Ляме µ остается без изменения.

§ 1.6. Постановка и представление общего решения задачи термоупругости

В общем случае постановка задачи термоупругости заключается в следующем.

Необходимо определить 16 функций координат x_k и времени t, а именно: шесть компонентов тензора напряжения σ_{ij} , шесть компонентов тензора деформации ε_{ij} , три компонента вектора перемещения u_i и температуру T, удовлетворяющих:

1) трем уравнениям движения

$$\sigma_{ij,j} = \rho u_i; \qquad (1.6.1)$$

2) уравнению теплопроводности

$$T_{,\,\mu} - \frac{1}{a} \dot{T} - \frac{T_{0} \left(3\lambda + 2\mu\right) \boldsymbol{a}_{\mathrm{T}}}{\lambda_{\mathrm{T}}} \dot{\boldsymbol{\varepsilon}}_{kk} = 0, \qquad (1.6.2)$$

где $a = \frac{\lambda_{\rm T}}{c_{\rm s}}$ — коэффициент температуропроводности;

3) шести соотношениям между напряжениями и деформациями

$$\sigma_{ij} = 2\mu \varepsilon_{ij} + [\lambda \varepsilon_{kk} - (3\lambda + 2\mu) \alpha_{r} (T - T_{0})] \delta_{ij}; \qquad (1.6.3)$$

4) шести соотношениям между деформациями и перемещениями

$$\epsilon_{ij} = \frac{1}{2} \left(u_{l, i} + u_{i, j} \right)$$
 (1.6.4)

при начальных и граничных условиях, заданных, например, через перемещения u_i и температуру T следующим образом:

1) начальные условия (t=0)

$$u_i = g_i^{(1)}(x_k), \quad u_i = g_i^{(2)}(x_k), \quad T = G^{(1)}(x_k);$$
 (1.6.5)

2) граничные условия (t>0)

$$u_i = g_i^{(3)}(x_k, t), \quad T = G^{(2)}(x_k, t).$$
(1.6.6)

Здесь и дальше обозначения $g(x_k)$, $G(x_k)$ и т. п. являются функциями всех переменных x_k (k=1, 2, 3).

Для этой задачи доказывается теорема единственности [69]. Составим теперь уравнения движения в перемещениях. Вы-

ражая в уравнениях (1.6.1) напряжения через деформации по формулам (1.6.3) и учитывая, что члены, содержащие ε_{kk} и T, сохраняются только при i=j, получаем *

$$2\mu\varepsilon_{ij,j}+\lambda\varepsilon_{kk,i}-(3\lambda+2\mu)\,\alpha_{T}T_{,i}-\rho u_{i}=0.$$

В этом уравнении деформации заменяем перемещениями по формуле (1.6.4). Внося при этом вместо *j* немой индекс *k* и учитывая, что *u*_{k, ik}=*u*_{k, ki}, находим

$$\mu u_{i,kk} + (\lambda + \mu) u_{k,kl} - (3\lambda + 2\mu) \alpha_{\mathrm{T}} T_{,i} = \rho u_{i}. \qquad (1.6.7)$$

Три уравнения (1.6.7) совместно с четвертым уравнением (1.6.2) при определенных начальных и граничных условиях описывают изменение в пространстве и во времени поля деформаций и температурного поля. Представим эти уравнения в векторной форме:

$$\mu \nabla^2 u + (\lambda + \mu) \operatorname{grad} \operatorname{div} u - (3\lambda + 2\mu) \alpha_{\mathrm{T}} \operatorname{grad} T = \rho u,$$

$$\nabla^2 T - \frac{1}{a} \dot{T} - \frac{T_0 (3\lambda + 2\mu) \alpha_{\mathrm{T}}}{\lambda_{\mathrm{T}}} \operatorname{div} u = 0.$$
(1.6.8)

^{*} Здесь и в дальнейшем во всех соотношениях, где $T-T_0$ находится под знаком дифференцирования, величину T_0 опускаем.

~

Вектор перемещения и может быть разложен на потенциальную и соленоидальную части и представлен в виде

$$u = \operatorname{grad} \Phi + \operatorname{rot} A,$$
 (1.6.9)

где Ф — скалярный потенциал; A — векторный потенциал.

После подстановки выражения (1.6.9) в уравнения (1.6.8) получаем ряд уравнений, решения которых можно представить [35, 59, 65]

$$\nabla^2 \Phi - \frac{1}{c_1^2} \ddot{\Theta} - \frac{(3\lambda + 2\mu) \alpha_{\mathrm{T}}}{\lambda + 2\mu} (T - T_0) = 0, \qquad (1.6.10)$$

$$\nabla^2 \vec{A} - \frac{1}{c_2^2} \vec{A} = 0, \qquad (1.6.11)$$

$$\nabla^2 T - \frac{1}{a} \dot{T} - \frac{T_0 (3\lambda + 2\mu) \alpha_{\mathrm{T}}}{\lambda_{\mathrm{T}}} \nabla^2 \dot{\Phi} = 0, \qquad (1.6.12)$$

$$c_{1}^{2} = \frac{\lambda + 2\mu}{\rho}, \quad c_{2}^{2} = \frac{\mu}{\rho}.$$

Здесь c_1 — скорость распространения упругой безвихревой волны (волны расширения); c_2 — скорость распространения упругой волны искажения (поворотов), вызывающей изменение формы без изменения объема; T_0 =const — температура тела в ненапряженном состоянии, при котором Φ =0.

Исключая T из уравнений (1.6.10) и (1.6.12), получаем одно уравнение для функции Ф:

$$\left(\nabla^2 - \frac{1}{a}\frac{\partial}{\partial t}\right) \left(\nabla^2 - \frac{1}{c_1^2}\frac{\partial^2}{\partial t^2}\right) \Phi - \frac{T_0 (3\lambda + 2\mu)^2 \alpha_\tau^2}{(\lambda + 2\mu) a c_\varepsilon} \nabla^2 \dot{\Phi} = 0.$$
(1.6.13)

Если пренебречь взаимодействием поля деформаций и температурного поля, то получаем представление общего решения (1.6.9) динамической задачи термоупругости, в котором скалярный потенциал \vec{A} определяются из уравнений

$$\Box_{1}^{2} \Phi = \frac{(3\lambda + 2\mu) \, \alpha_{T}}{\lambda + 2\mu} (T - T_{0}) = \frac{1 + \nu}{1 - \nu} \alpha_{T} (T - T_{0}), \quad (1.6.14)$$

$$\Box_{\mathbf{s}}^{2}\vec{A}=0,$$
 (1.6.15)

где $\square_n^2 = \nabla^2 - \frac{1}{c_n^2} \frac{\partial^2}{\partial t^2}, \quad n=1, 2.$

31

Решение связанной задачи термоупругости в общем случае представляет значительные математические трудности. Для приближенного решения этой задачи целесообразно использовать вариационный принцип.

§ 1.7. Вариационный принцип для связанной задачи термоупругости

Исходя из основных положений термодинамики необратимых процессов, Био [52] установил вариационный принцип для связанной задачи термоупругости. Здесь приводится вывод этого принципа, несколько отличающийся от предложенного Био.

Ограничиваясь небольшими отклонениями термодинамической системы от равновесного состояния ($T \approx T_0$), вводим в рассмотрение два векторных поля: поле вектора перемещения \vec{u} и поле вектора энтропии \vec{s} . Вектор энтропии \vec{s} определяет количество тепла, прошедшего в данном направлении, деленное на абсолютную температуру. Он связан с вектором потока \vec{q} тепла следующим равенством:

 $\vec{q} = T\vec{s} \approx T_0\vec{s}$

или

$$q_i \approx \mathcal{I}_0 s_i, \qquad (1.7.1)$$

где s_i — компоненты вектора энтропии.

На основании уравнения (1.4.1) и равенства (1.4.7) имеем

$$\dot{s}_{i,\ l} = \frac{\dot{Q}}{T_0} = \dot{S},$$
 (1.7.2)

$$\dot{S}_{\rm H} = \frac{1}{\lambda_{\rm r}} \dot{s}_i \dot{s}_i, \qquad (1.7.3)$$

где S — плотность энтропии.

Варьированию подвергаются компоненты вектора перемещения u_i и компоненты вектора энтропии s_i . Сообщая им шесть независимых вариаций δu_i , δs_i (i=1, 2, 3) и используя уравнения (1.6.1), (1.4.4) и (1.7.1), составляем следующее очевидное равенство:

$$\int_{V} (\sigma_{ij,j} - \rho u_i) \,\delta u_i dV - \int_{V} \left(T_{,i} + \frac{T_0 s_i}{\lambda_{\rm r}} \right) \,\delta s_i dV = 0, \qquad (1.7.4)$$

где интегрирование распространяется по всему объему тела.

С помощью формулы Остроградского — Гаусса уравнение (1.7.4) преобразуем к виду

$$\int_{\Omega} \sigma_{ij} n_j \delta u_i d\Omega + \int_{V} (-\rho \dot{u}_i) \delta u_i dV - \int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV - \int_{V} (T - T_0) n_i \delta s_i d\Omega + \int_{V} (T - T_0) \delta s_{i,i} dV - \int_{V} \frac{T_0 \dot{s}_i}{\lambda_T} \delta s_i dV = 0. \quad (1.7.5)$$

Применяя формулы (1.6.3), (1.7.2) и (1.5.25), преобразуем третий и пятый интегралы в уравнении (1.7.5) к виду

$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = \delta \int_{V} \left(\frac{\lambda}{2} \varepsilon_{kk}^{2} + \mu \varepsilon_{ij} \varepsilon_{ij} \right) dV - \\ - \int_{V} (3\lambda + 2\mu) \alpha_{\tau} (T - T_{0}) \delta \varepsilon_{kk} \partial V, \qquad (1.7.6)$$
$$\int_{V} (T - T_{0}) \delta s_{i,i} dV = - \int_{V} (T - T_{0}) \delta S dV = \\ = -\delta \int_{V} \frac{c_{\epsilon} (T - T_{0})^{2}}{2T_{0}} dV - \int_{V} (3\lambda + 2\mu) \alpha_{\tau} (T - T_{0}) \delta \varepsilon_{kk} dV. \qquad (1.7.7)$$

При преобразовании интегралов (1.7.6) и (1.7.7) учитываем, что $\delta_{lj} \varepsilon_{ij} = \varepsilon_{kk}$. Подставляя эти интегралы в уравнение (1.7.5) и принимая во внимание равенство (1.2.8), сформулируем вариационный принцип для связанной задачи термоупругости в следующем виде:

$$\delta V_{\rm B} + \delta D = \int_{\Omega} \left[f_i \delta u_i - (T - T_0) \, n_i \delta s_i \right] d\Omega + \int_{V} \left(-\rho u_i \right) \delta u_i dV, \, (1.7.8)$$

где

$$V_{\rm B} = \int_{V} \left[\frac{\lambda}{2} \varepsilon_{kk}^2 + \mu \varepsilon_{ij} \varepsilon_{lj} + \frac{c_{\iota} (T - T_0)^2}{2T_0} \right] dV, \qquad (1.7.9)$$

$$D = \frac{1}{2} \int_{V} \frac{T_0 s_i s_i}{\lambda_{\rm T}} dV. \qquad (1.7.10)$$

Скалярный инвариант V_в называется термоупругим потенциалом Био, а скалярный инвариант D — функцией рассеяния.

Инвариант D, как видно из равенства (1.7.3), пропорционален скорости образования энтропии всего объема тела. Правую часть уравнения (1.7.8) можно интерпретировать как обобщенную виртуальную работу; при этом величина $-(T-T_0)n_i$ (n_i — единичный вектор внешней нормали к поверхности) аналогична силе, а δs_i — виртуальному перемещению.

В случае несвязанной задачи термоупругости вариациям подвергаются только компоненты вектора перемещения u_i . Игнорируя при этом в равенстве (1.7.7) связывающий член $\int_{V} (3\lambda + 2\mu) \alpha_{\rm T} (T - T_0) \delta \varepsilon_{kk} dV$, из вариационного принципа (1.7.5)

получаем вариационное уравнение Лагранжа для случая термоупругого равновесия (§ 2.3). Если, наоборот, в уравнении (1.7.8) приравнять механические члены нулю, то получим вариационное уравнение теплопроводности

$$\delta V_{\mathbf{B}} + \delta D = -\int_{\Omega} (T - T_0) n_i \delta s_i d\Omega, \qquad (1.7.11)$$

где

$$V_{\rm B} = \frac{1}{2} \int_{V} \frac{c_{\bullet} (T - T_0)^2}{T_0} \, dV, \qquad (1.7.12)$$

$$D = \frac{1}{2} \int_{V} \frac{T_0 \dot{s}_i \dot{s}_i}{\lambda_{\rm T}} dV, \quad \dot{s}_i = \frac{q_i}{T_0}.$$
(1.7.13)

Основные уравнения квазистатической задачи термоупругости

§ 2.1. Общие замечания

В зависимости от условий теплообмена в постановку связанной задачи термоупругости (§ 1.6) можно внести упрощающие предположения.

При неравномерном нагреве, обусловленном внешним источником тепла, можно считать, что температурное поле не зависит от вызываемых им деформаций; тогда в уравнении теплопроводности (1.6.2) не учитывается член механической связи

 $-\frac{T_{0}(3\lambda + 2\mu)a_{\tau}}{\lambda_{\tau}} \varepsilon_{kk}$ Если же изменение температуры упру-

гого тела вызывается не внешним источником тепла, а исключительно изменением его деформаций, то для изучения такого необратимого процесса, сопровождающегося термоупругим рассеянием энергии, в уравнении (1.6.2) следует учитывать член механической связи; при этом в связи с небольшими изменениями температуры, вызванными деформациями от внешних сил, можно не учитывать член — $(3\lambda + 2\mu)\alpha_{\rm T}$ $(T-T_0)\hat{\sigma}_{ij}$ в соотношениях (1.6.3). В том и другом случаях задача термоупругости становится несвязанной; поле деформаций определяется независимо от температурного поля.

В обычных условиях теплообмена скорость изменения температуры мала по сравнению со скоростью распространения звука в материале, а поэтому тепловые напряжения в упругом теле в определенный момент можно определять исходя из температурного поля в рассматриваемый момент (стационарного или нестационарного) без учета сил инерции, соответствующих движению частиц тела при переменном тепловом расширении; это равносильно отбрасыванию в уравнении (1.6.1) инерцион-

ного члена - ри.

Постановка задачи термоупругости, в которой не учитываются член механической связи в уравнении теплопроводности и инерционные члены в уравнениях равновесия, называется квазистатической.

Первый этап в решении этой задачи заключается в нахождении температурного поля T. Он сводится к решению уравнения (1.6.2), в котором отбрасывается член, зависящий от деформации, при начальном условии, определяющем распределение температуры в момент времени t=0, и при граничных условиях, устанавливающих закон теплообмена между окружающей средой и поверхностью тела (глава третья).

После нахождения температурного поля определяется соответствующее термоупругое напряженное состояние. Так как в термоупругих уравнениях игнорируются инерционные члены, то время *t* здесь играет роль параметра.

Задача заключается в определении 15 функций σ_{ij} , ε_{ij} , u_i , удовлетворяющих трем уравнениям равновесия

$$\sigma_{il,l} + F_i = 0,$$
 (2.1.1)

в которых учитывается действие статических объемных сил, шести соотношениям между напряжениями и деформациями (1.5.11) или (1.5.13) и шести соотношениям между деформациями и перемещениями (1.2.2). Граничные условия на одной части поверхности упругого тела Ω_1 могут быть заданы в перемещениях

$$u_l = g_i(x_k),$$
 (2.1.2)

а на другой части его поверхности Ω_2 — в напряжениях

$$\sigma_{ij}n_j = f_i(x_k), \qquad (2.1.3)$$

где $\Omega_1 + \Omega_2 = \Omega$.

При решении отдельных задач термоупругости удобно принимать в качестве основных неизвестных компоненты вектора перемещения u_i или компоненты тензора напряжения σ_{ij} . В соответствии с этим различают постановку задачи термоупругости в перемещениях (§ 2.2), при которой раньше всех других неизвестных находятся неизвестные u_i , и постановку задачи термоупругости в напряжениях (§ 2.3), когда начинают решение задачи с определения неизвестных σ_{ij} .

Для представления общего решения задачи термоупругости в перемещениях (§ 2.2) используются формулы П. Ф. Папковича [40], которые являются наиболее удобными для применения, так как они содержат функции, подчиняющиеся сравнительно простым дифференциальным уравнениям, и имеют функ-
циональный произвол, который можно эффективно использовать при удовлетворении граничных условий.

Постановка задачи термоупругости в напряжениях, излагаемая в § 2.3, предусматривает, кроме односвязной, также и случай многосвязной области; при этом устанавливаются условия однозначности для перемещений и углов поворота.

Определение тепловых перемещений и напряжений в теле путем непосредственного интегрирования соответствующих дифференциальных уравнений и удовлетворения неоднородных граничных условий, вообще говоря, является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости, рассматриваемые в § 2.4, с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам изотермической теории упругости [23]:

методы, основанные на обобщенном на случай задачи термоупругости вариационном уравнении Лагранжа совместно с выражениями, аппроксимирующими возможные перемещения, и

методы, основанные на обобщенном на случай задачи термоупругости принципе минимума потенциальной энергии деформации совместно с выражениями, аппроксимирующими возможные напряжения.

Один из прямых методов решения задачи термоупругости — метод В. М. Майзеля [29], основанный на обобщении теоремы о взаимности работ, приводится в § 2.5.

§ 2.2. Постановка и представление общего решения задачи термоупругости в перемещениях

Для постановки квазистатической задачи термоупругости в перемещениях используется первое из уравнений (1.6.8). Отбрасывая в нем инерционный член $-\rho u$ и внося в него дополнительный член — вектор объемной силы \vec{F} , получаем основное уравнение рассматриваемой задачи в виде

$$\mu \nabla^2 \vec{u} + (\lambda + \mu) \operatorname{grad} \operatorname{div} \vec{u} - (3\lambda + 2\mu) \alpha_{\mathrm{T}} \operatorname{grad} T + \vec{F} = 0. \quad (2.2.1)$$

В этом уравнении функция *T* предполагается известной из решения соответствующей задачи теплопроводности.

Граничные условия в перемещениях (2.1.2) остаются без изменения, а граничные условия в напряжениях (2.1.3) можно с помощью соотношений (1.5.11) представить также в перемещениях

$$\{\mu(u_{i,j}+u_{j,l})+[\lambda u_{k,k}-(3\lambda+2\mu)\alpha_{\tau}(T-T_{0})]\delta_{ij}\}n_{j}=f_{l}(x_{l}). (2.2.2)$$

Общее решение уравнения (2.2.1) имеет вид

$$\vec{u} = \vec{u}^* + \vec{u}^{(T)} + \vec{u}^{(F)},$$
 (2.2.3)

где \vec{u}^* — общее решение однородного уравнения, соответствующего уравнению (2.2.1); $\vec{u}^{(T)}$ — частное решение неоднородного уравнения (2.2.1), взятого при $\vec{F}=0$; $\vec{u}^{(F)}$ — частное решение неоднородного уравнения (2.2.1), взятого при $T-T_0=0$.

Общее решение однородного уравнения u^* найдено П. Ф. Папковичем [38] в следующем виде:

$$\vec{u}^* = 4(1-v)\vec{B} - \operatorname{grad}(\vec{B}\cdot\vec{r} + B_0),$$
 (2.2.4)

где *В* — гармонический вектор, удовлетворяющий уравнению

$$\nabla^2 B = 0; \qquad (2.2.5)$$

 B_0 — гармонический скаляр, удовлетворяющий уравнению

$$\nabla^2 B_0 = 0;$$
 (2.2.6)

r — радиус-вектор.

Заметим, что без ограничения общности гармонический скаляр B_0 в решении (2.2.4) может быть опущен; однако его сохранение в ряде случаев упрощает решение задачи.

Частное решение $u^{(F)}$ исследуется в теории упругости; здесь ограничимся рассмотрением частного решения $u^{(T)}$. Это частное решение, полученное одновременно П. Ф. Папковичем [39] и Гудьером [61], имеет вид

$$u^{(T)} = \operatorname{grad} \Phi, \qquad (2.2.7)$$

где скалярная функция Ф удовлетворяет уравнению Пуассона

$$\nabla^{2} \Phi = \frac{1+\nu}{1-\nu} \alpha_{r} (T-T_{0}). \qquad (2.2.8)$$

Функция Ф носит название термоупругого потенциала перемещений.

В работах Мелана и Паркуса [31], Новацкого [35] и др. определение термоупругого потенциала перемещений Ф является основным этапом при исследовании тепловых напряжений. В этих работах принят следующий метод решения отдельных квазистатических задач термоупругости.

Сначала при известном температурном поле находится частное решение уравнения (2.2.8) для термоупругого потенциала перемещений Ф, первые производные которого по координатам определяют соответствующие частные решения для перемещений.

Далее вычисляются отвечающие термоупругому потенциалу перемещений Ф тепловые напряжения, которые, вообще говоря, не удовлетворяют заданным условиям на поверхности.

Затем на это решение накладывается решение соответствующей краевой задачи изотермической теории упругости, содержащее необходимое число постоянных интегрирования для удовлетворения граничных условий.

Заметим, что решение (2.2.7) является окончательным только для неограниченного тела.

Рассмотренные постановка и представление решения квазистатической задачи термоупругости в перемещениях справедливы как для односвязных, так и для многосвязных тел; при этом перемещения должны быть однозначными функциями, имеющими непрерывные производные до второго порядка включительно.

В заключение этого параграфа упомянем аналогию между квазистатической задачей термоупругости и задачей изотермической теории упругости с фиктивными объемными и поверхностными силами.

Сравнивая уравнения (2.2.1) и (2.2.2) с соответствующими уравнениями изотермической теории упругости, можно сделать заключение о том, что постановка квазистатической задачи термоупругости в перемещениях сводится к постановке задачи изотермической теории упругости, если рассматривать в качестве

вектора плотности объемной силы F величину — $(3\lambda + 2\mu) \alpha_{\tau}$ grad T, а к заданным внешним поверхностным силам f_i добавить равномерное нормальное к поверхности растяжение величиной $(3\lambda + 2\mu) \alpha_{\tau} (T - T_0)$. Указанная аналогия нашла широкое применение при исследовании термоупругих напряжений в книге С. П. Тимошенко [47] и др.

§ 2.3. Постановка задачи термоупругости в напряжениях

При решении задач термоупругости, в которых граничные условия заданы в напряжениях (2.1.3), удобно пользоваться системой уравнений в напряжениях, которые получаются, если из уравнений (2.1.1), соотношений (1.5.11) или (1.5.13) и соотношений (1.2.2) исключить перемещения и деформации, выбрав в качестве неизвестных шесть компонентов тензора напряжения σ_{ij} .

Рассмотрим сначала эту задачу для односвязного упругого тела.

Уравнения равновесия (2.1.1) и граничные условия (2.1.3) уже представлены в напряжениях.

Для полной формулировки задачи термоупругости в напряжениях необходимо из соотношений (1.2.2) по известным компонентам тензора деформации ε_{ij} определить компоненты вектора перемещения u_i .

В соответствии с равенством (1.2.5) запишем тождество (1.2.1) в виде

$$u_{i,j} = \varepsilon_{ij} + e_{jik} \omega_k. \tag{2.3.1}$$

Условие интегрируемости уравнений (2.3.1) имеет вид

$$\boldsymbol{e}_{pmj}\left(\varepsilon_{ij}+\boldsymbol{e}_{jik}\boldsymbol{\omega}_{k}\right), \ \boldsymbol{m}=\boldsymbol{e}_{pmj}\varepsilon_{ij,\ \boldsymbol{m}}+\boldsymbol{e}_{pmj}\boldsymbol{e}_{jik}\boldsymbol{\omega}_{k,\ \boldsymbol{m}}=0. \tag{2.3.2}$$

Используя соотношение (1.1.5), второй член правой части равенства (2.3.2) преобразуем к виду

$$e_{pmj}e_{jik}\omega_{k,m} = (\delta_{pi}\delta_{mk} - \delta_{pk}\delta_{mi})\omega_{k,m} = \delta_{pi}\omega_{k,k} - \omega_{p,i}, \qquad (2.3.3)$$

Подставляя выражение (2.3.3) в условие (2.3.2) и учитывая, что $\omega_{k,k} = 0$, получаем

$$\omega_{p,i} + e_{pmj} \varepsilon_{ij,m}. \tag{2.3.4}$$

Применяя к уравнениям (2.3.4) еще раз условие интегрируемости, находим соотношение

$$e_{ani}e_{pmj}\varepsilon_{ij,mn}=0. \tag{2.3.5}$$

Соотношение (2.3.5) имеет два свободных индекса p и q и симметрично относительно этих индексов; таким образом, оно определяет шесть уравнений, которые называются уравнениями совместности деформаций.

Полагая

$$p=3, q=3, n=m=1, i=j=2$$

И

$$p=2, q=3, m=3, n=1, i=2, j=1,$$

получаем соответственно два следующих типичных уравнения из шести уравнений совместности деформаций:

 $\varepsilon_{11,22} + \varepsilon_{22,11} = 2\varepsilon_{12,12},$

$$\varepsilon_{11,23} + \varepsilon_{23,11} = \varepsilon_{12,13} + \varepsilon_{13,12}.$$

Остальные четыре уравнения получаются посредством циклической перестановки индексов.

При выполнении условий (2.3.5) величины

$$du_i = u_{i, j} dx_j,$$

$$d\omega_i = \omega_{i, j} dx_j$$

являются полными дифференциалами.

Используя выражения (2.3.1) и (2.3.4) соответственно для производных $u_{i,j}$ и $\omega_{i,j}$ и интегрируя, получаем следующие компоненты вектора перемещения u_i и угла поворота ω_i в точке P:

$$u_i = u_i^0 + \int_{P_0}^{P} (\varepsilon_{ij} + e_{jik}\omega_k) dx_j, \qquad (2.3.6)$$

$$\omega_{k} = \omega_{k}^{0} + \int_{P_{0}}^{P} e_{kmn} \varepsilon_{ln, m} dx_{l}, \qquad (2.3.7)$$

где интегралы берутся по любому пути между точками P_0 и P в рассматриваемой области V, а u_i^0 и ω_i^0 — компоненты перемещения и угла поворота в точке P_0 .

Интеграл (2.3.6) можно представить также в следующем виде *:

$$u_{l} = u_{l}^{0} - e_{jik} (x_{j}^{0} - x_{j}) \omega_{k}^{0} + \int_{P_{0}}^{P} [\varepsilon_{il} + e_{jik} e_{kmn} (x_{j} - x_{j}^{'}) \varepsilon_{ln, m}] dx_{l}^{'}. \qquad (2.3.8)$$

Для односвязной области интегралы (2.3.6) и (2.3.7) не зависят от пути интегрирования, а, следовательно, представляют собой однозначные функции; при этом перемещения должны иметь непрерывные производные до третьего порядка включительно.

Найдем теперь уравнения совместности деформаций в напряжениях.

Переписываем соотношение (2.3.5) в виде

$$\varepsilon_{ij,\ mn} - \varepsilon_{im,\ jn} - \varepsilon_{nj,\ ml} + \varepsilon_{nm,\ jl} = 0. \tag{2.3.9}$$

Полагая m = n, получаем

$$\boldsymbol{\varepsilon}_{ij,nn} - \boldsymbol{\varepsilon}_{in,jn} - \boldsymbol{\varepsilon}_{nj,ni} + \boldsymbol{\varepsilon}_{nn,ji} = 0.$$
(2.3.10)

Выражая в уравнении (2.3.10) деформации через напряжения по формуле (1.5.13) и заменяя затем величины $\sigma_{in, jn} \mu \sigma_{nj, ni}$ на основании уравнения (2.1.1) величинами $-F_{i, j} \mu -F_{j, i}$, находим

$$(1+\nu)\sigma_{ij,nn} - \nu\sigma_{kk,nn}\delta_{ij} + \sigma_{nn,ij} + (1+\nu)(F_{i,j} + F_{j,i}) + E\alpha_{T}(T_{nn}\delta_{ij} + T_{j,i}) = 0.$$
(2.3.11)

^{*} В тождественности выражений (2.3.6) и (2.3.8) легко убедиться, принимая во внимание уравнение (2.3.4) н выполняя интегрирование (2.3.8) по частям.

При i=j равенство (2.3.11) дает следующее соотношение:

$$(1-\nu)\sigma_{kk,nn}+(1+\nu)F_{i,i}+2E\alpha_{T}T_{,nn}=0. \qquad (2.3.12)$$

При выводе этого соотношения полагаем

$$\sigma_{ii,nn} = \sigma_{nn,ii} = \sigma_{kk,nn}, \quad T_{,ii} = T_{,nn}.$$

Наконец, подставляя выражение для σ_{kk, пл}, определяемое из соотношения (2.3.12), в равенство (2.3.11), находим следующие уравнения совместности деформаций в напряжениях:

$$(1+\nu)\sigma_{ij,nn} + \sigma_{nn,ij} + \frac{\nu(1+\nu)}{1-\nu}F_{n,n}\delta_{ij} + (1+\nu)(F_{i,j} + F_{j,i}) + E\alpha_{T}\left(\frac{1+\nu}{1-\nu}T_{,nn}\delta_{ij} + T_{,ij}\right) = 0.$$
(2.3.13)

Полагая i=j=1 и i=1, j=2, получаем соответственно следующие типичные уравнения совместности деформаций в напряжениях:

$$(1+\nu)\sigma_{11,nn} + \sigma_{nn,11} + \frac{1+\nu}{1-\nu} [(2-\nu)F_{1,1} + \nu (F_{2,2} + F_{3,3})] + E\alpha_{\rm T} \left(\frac{1+\nu}{1-\nu}7, nn + T, 11\right) = 0, \qquad (2.3.14)$$

 $(1+\nu)\sigma_{12,nn}+\sigma_{nn,12}+(1+\nu)(F_{1,2}+F_{2,1})+E\alpha_{T}T_{,12}=0. \quad (2.3.15)$

Остальные четыре уравнения получаются посредством циклической перестановки индексов.

В постановке задачи термоупругости в напряжениях решение сводится к нахождению шести функций σ_{ii} , удовлетворяющих трем уравнениям равновесия (2.1.1), шести уравнениям совместности деформаций в напряжениях (2.3.13) и трем граничным условиям (2.1.3).

Зная напряжения, с помощью соотношений (1.5.13) определяем деформации, а затем из уравнения (2.3.6) — перемещения.

Если рассматриваемая область многосвязна, то функции *u*_i и ω_k, определяемые уравнениями (2.3.6) и (2.3.7), могут оказаться многозначными.

Дополнительные условия однозначности для функций u_i и ω_k устанавливаются на основании свойств функции, определяемой по ее полному дифференциалу в многосвязной области [34].

Рассмотрим (N+1)-связную область, которую мысленно посредством N разрезов (внутренних поверхностей) можно превратить в односвязную (рис. 4).

Для однозначности функции u_i необходимо и достаточно, чтобы наряду с условиями (2.3.13) выполнялось условие о равенстве нулю интеграла в уравнении (2.3.8), взятого по каждому замкнутому контуру $L_K K = 1, ..., N$), охватывающему только одну K-тую полость, т. е.

$$\int_{L_{K}} [\varepsilon_{il} + e_{jik} e_{kmn} (x_{j} - x'_{j}) \varepsilon_{ln, m}] dx'_{l} = 0, \qquad (2.3.16)$$

$$K = 1, \dots, N.$$

Аналогичные условия должны существовать для однозначности функции ω_k, определяемой уравнением (2.3.7).

Учитывая, что в уравнениях (2.3.16) величины

$$x_j \int\limits_{L_K} e_{jlk} e_{kmn} \varepsilon_{ln, m} dx_l$$

равны нулю на основании условий для однозначности функции ω_k , указанные условия для однозначности функций u_i и ω_k можно представить в виде

$$\int_{L_{K}} (\varepsilon_{il} - e_{jik} e_{kmn} x_{j} \varepsilon_{ln, m}) dx_{l} = 0,$$

$$K = 1, \dots, N; \quad (2.3.17)$$

$$\int_{L_{K}} e_{kmn} \varepsilon_{ln, m} dx_{l} = 0, \quad (2.3.18)$$

$$K = 1, \dots, N.$$

Этот результат с помощью соотношения (1.5.13) записывается в напряжениях следующим образом:

$$\frac{1+v}{E}\int_{L_{K}}^{\cdot} (\sigma_{il}-e_{jik}e_{kmn}x_{j}\sigma_{ln,m}) dx_{l} - \frac{v}{E}\int_{L_{K}}^{\cdot} (\sigma_{pp}\delta_{il}-e_{jik}e_{kml}x_{j}\sigma_{pp,m}) dx_{l} + \frac{v}{E}\int_{L_{K}}^{\cdot} [(T-T_{0})\delta_{il}-e_{jik}e_{kml}x_{j}T,m] dx_{l}=0, \qquad (2.3.19)$$

$$\frac{1+v}{E}\int_{L_{K}}^{\cdot} e_{kmn}\sigma_{ln,m}dx_{l} - \frac{v}{E}\int_{L_{K}}^{\cdot} e_{kml}\sigma_{pp,m}dx_{l} + \frac{v}{E}\int_{L_{K}}^{\cdot} e_{kml}T,mdx_{l}=0, \qquad (2.3.20)$$

§ 2.4. Вариационные принципы для задач термоупругости

Во многих случаях является эффективным применение вариационных методов для приближенного расчета тепловых напряжений. Рассмотрим в связи с этим соответствующие вариационные принципы, предполагая, что тело находится под действием поверхностных f_i и объемных F_i сил при известном температурном поле $T(x_k, t)$.

Обобщение вариационного уравнения Лагранжа на случай задачи термоупругости.

Сообщим телу виртуальные перемещения δ*u*₁, удовлетворяющие всем кинематическим граничным условиям.

На основании уравнений равновесия справедливо следующее равенство:

$$\int_{V} (\sigma_{ij,j} + F_i) \,\delta u_i dV = 0, \qquad (2.4.1)$$

где интегрирование выполняется по всему объему тела *V*. Применяя формулу Остроградского — Гаусса, получаем

$$\int_{\Omega} \sigma_{ij} n_j \delta u_i d\Omega + \int_{V} F_i \delta u_i dV - \int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = 0, \qquad (2.4.2)$$

где Ω — замкнутая поверхность, ограничивающая объем V.

Учитывая формулы (1.5.7) и условия на поверхности (1.2.8), а также принимая во внимание, что при виртуальных перемещениях температурное поле предполагается неизменным, находим

$$\delta \left[\int_{V} F dV - \int_{V} F_{i} u_{i} dV - \int_{\Omega} f_{i} u_{i} d\Omega \right] = 0, \qquad (2.4.3)$$

где *F* — плотность свободной энергии; *f_i* — компоненты вектора плотности поверхностных сил.

Уравнение (2.4.3) является обобщением известного начала возможных перемещений Лагранжа для случая упругого равновесия [23]; вместо плотности потенциальной энергии деформации здесь вносится плотность свободной энергии [62].

Обобщение принципа минимума потенциальной энергии деформации на случай задачи термоупругости.

Подвергнем напряженное состояние рассматриваемого тела такой произвольной вариации, при которой новые компоненты тензора напряжения $\sigma_{ij} + \delta \sigma_{ij}$ удовлетворяли бы уравнениям равновесия (2.1.1), т. е.

$$\delta \sigma_{ij, j} = 0.$$
 (2.4.4)

Для удовлетворения граничных условий (2.1.3) необходимо вариации внешних поверхностных сил подчинить условию

$$\delta f_i = \delta \sigma_{ll} n_j. \tag{2.4.5}$$

Естественно, что при такой вариации напряженного состояния тела должны быть удовлетворены все условия кинематических связей.

На основании формул (1.5.8) можно записать следующее равенство:

$$\int_{V} \left(\varepsilon_{ij} + \frac{\partial G}{\partial \sigma_{ij}} \right) \delta \sigma_{ij} dV = 0.$$
 (2.4.6)

В этом равенстве по формулам (1.2.2) заменяем компоненты тензора деформации ε_i^j через компоненты вектора перемещения u_i , а затем применяем формулу Остроградского---Гаусса. Замечая при этом, что индексы i и j расположены симметрично, находим

$$\int_{\Omega} u_i \delta \sigma_{ij} n_j d\Omega - \int_{V} u_i \delta \sigma_{ij, j} dV + \int_{V} \delta G dV = 0.$$
 (2.4.7)

На основании равенств (2.4.4) и (2.4.5) окончательно получаем

$$\delta\left(\int_{V} GdV + \int_{\Omega} u_{i}f_{i}d\Omega\right) = 0, \qquad (2.4.8)$$

где поверхностный интеграл распространяется на всю поверхность тела.

Уравнение (2.4.8) обобщает известную вариационную формулу Кастилиано [23]; роль плотности энергии деформации в формуле (2.4.8) играет плотность термодинамического потенциала Гиббса, взятая со знаком «минус» [62]. Если при вариации напряженного состояния выполняется условие о неизменяемости внешних поверхностных сил ($\delta f_i = 0$), то

$$\delta \int_{V} GdV = 0. \tag{2.4.9}$$

Эта формула обобщает известный принцип минимума потенциальной энергии деформации.

§ 2.5. Обобщение теоремы о взаимности работ на случай задачи термоупругости

Рассмотрим два напряженных состояния упругого тела, из которых первое состояние характеризуется напряжениями σ_{ij} , деформациями ε_{ij} и перемещениями u_i , возникающими под действием внешних сил F_i , f_i и температурного поля T, а второе — напряжениями σ'_{ij} , деформациями ε'_{ij} и перемещениями u'_i , возникающими под действием внешних сил F'_i , f'_i и температурного поля T'.

Определяя работу сил первого состояния на перемещениях второго состояния, применяя формулу Остроградского — Гаусса и используя уравнения равновесия и граничные условия в напряжениях, находим

$$L_{12} = \int_{V} F_{i} u_{i}' dV + \int_{\Omega} f_{i} u_{i}' d\Omega = \int_{V} (\sigma_{ij, i} + F_{i}) u_{i}' dV + \int_{V} \sigma_{ij} u_{i, j}' dV = \int_{V} \sigma_{ij} \varepsilon_{ij}' dV.$$
(2.5.1)

Аналогичным образом можно получить выражение для работы сил второго состояния на перемещениях первого состояния:

$$L_{21} = \int_{V} F'_{i} u_{i} dV + \int_{\Omega} f'_{i} u_{i} d\Omega = \int_{V} \sigma'_{ij} \varepsilon_{ij} dV. \qquad (2.5.2)$$

Сравнивая работу сил первого состояния на перемещениях второго состояния с работой сил второго состояния на перемещениях первого состояния, после замены с помощью соотношений (1.5.11) и (1.5.13) напряжений через деформации или, наоборот, деформаций через напряжения, приходим к следующей формуле:

$$L_{12} - L_{21} = (3\lambda + 2\mu) \alpha_{T} \int_{V} [(T' - T_{0}) \varepsilon_{kk} - (T - T_{0}) \varepsilon_{kk}'] dV =$$

= $\alpha_{T} \int_{V} [(T' - T_{0}) \sigma_{kk} - (T - T_{0}) \sigma_{kk}'] dV.$ (2.5.3)

Полученная формула обобщает известную теорему о взаимности работ на случай статической и квазистатической задач термоупругости. Это обобщение принадлежит В. М. Майзелю [29, 30].

Рассмотрим теперь применение формулы (2.5.3) для определения перемещений, возникающих в определенной точке тела при неравномерном нагреве. Для этого предположим, что $F_i = 0$, $f_i = 0$, $T' = T_0$, а система внешних сил F'_i и f'_i сводится к сосредоточенной единичной силе, приложенной в точке x_r° и направленной параллельно оси x_i . Пусть при действии такой единичной силы, приложенной в точке x_r^0 , в точке x_r упругого тела возникают напряжения $\sigma_{ij}^*(x_r^0, x_r)$ и деформации $\varepsilon_{ij}^*(x_r^0, x_r)$. В этом случае из формулы (2.5.3) получаем формулы В. М. Майзеля для определения перемещений в точке x_r^0 от действия температурного поля T:

$$u_{i}(x_{r}^{0}) = (3\lambda + 2\mu) \alpha_{T} \int_{V} (T - T_{0}) \varepsilon_{kk}^{*}(x_{r}^{0}, x_{r}) dV =$$

= $\alpha_{T} \int_{V} (T - T_{0}) \sigma_{kk}^{*}(x_{r}^{0}, x_{r}) dV,$ (2.5.4)

где $\sigma_{kk}^*(x_r^0, x_r)$ и $\varepsilon_{kk}^*(x_r^0, x_r)$ — суммы диагональных компонентов (первые инварианты) тензора напряжения σ_{ij}^* и тензора деформации ε_{ij}^* .

Формулы (2.5.4) допускают обобщение на тот случай, когда модуль упругости E и коэффициент Пуассона ν (или коэффициенты Ляме λ и μ) зависят от температуры и, следовательно, являются заданными функциями координат x_r ; в этом случае они имеют вид

$$u_{i}(\mathbf{x}_{r}^{0}) = \int_{V} (3\lambda + 2\mu) \, \boldsymbol{a}_{r} (T - T_{0}) \, \varepsilon_{kk}^{*} (\mathbf{x}_{r}^{0}, \, \mathbf{x}_{r}) \, dV =$$
$$= \int_{V} \alpha_{r} (T - T_{0}) \, \sigma_{kk}^{*} (\mathbf{x}_{r}^{0}, \, \mathbf{x}_{r}) \, dV. \qquad (2.5.5)$$

Здесь под $\sigma_{kk}^*(x_r^0, x_r)$ и $\varepsilon_{kk}^*(x_r^0, x_r)$ следует понимать суммы диагональных компонентов тензора напряжения σ_{ij}^* и тензора деформации ε_{ij}^* , соответствующих действию единичной силы на такое упругое тело, для которого переменные E и \vee изменяются в зависимости от координат по тому же закону, что и при действии температурного поля T.

Таким образом, метод решения задачи термоупругости, основанный на теореме взаимности, заключается в том, что определение напряженного состояния в упругом теле под действием температурного поля сводится к задаче изотермической теории упругости о напряженном состоянии упругого тела под действием единичной сосредоточенной силы.

При осесимметричной деформации задача термоупругости сводится к задаче о напряженном состоянии равномерно нагретого тела, находящегося под действием сосредоточенных сил, равномерно распределенных вдоль окружности. Совершенно ясно, что применение этого метода требует наличия готовых решений задач изотермической теории упругости для тел, подверженных действию сосредоточенных сил.

§ 2.6. Криволинейные координаты

Основные положения термоупругости рассматривались выше с привлечением прямоугольных координат. Однако для решения ряда задач термоупругости удобно применение ортогональных криволинейных координат.

Рис. 5.

Рассмотрим основные уравнения в цилиндрических и сферических координатах; при этом предположим, что правило суммирования по повторяющимся индексам для криволинейных координат не имеет места.

В цилиндрических координатах положение точки P определяется тремя координатами r, θ , z (рис. 5). Координатными поверхностями являются цилиндры r = const, полуплоскости $\theta = -\text{const}$ и плоскости z = const.

Декартовы координаты связаны с цилиндрическими соотношениями

$$x_1 = r \cos \theta$$
, $x_2 = r \sin \theta$, $x_3 = z$.

Введем в рассмотрение трехгранник единичных взаимно ортогональных векторов $\vec{e_r}, \vec{e_\theta}, \vec{e_z}$, образующих правую систему; $\vec{e_r}$ является единичным вектором радиуса, $\vec{e_\theta}$ — единичным вектором касательной к окружности, $\vec{e_z}$ — единичным вектором образующей. Каждый из единичных векторов направлен в сторону возрастания соответствующей координаты (см. рис. 5). Из векторного анализа известно, что основные векторные операции в цилиндрических координатах можно выразить следующим образом:

grad
$$\psi = \vec{e}_r \frac{\partial \psi}{\partial r} + \vec{e}_{\theta} \frac{1}{r} \frac{\partial \psi}{\partial \theta} + \vec{e}_z \frac{\partial \psi}{\partial z},$$
 (2.6.1)

div
$$\vec{a} = \frac{1}{r} \frac{\partial (ra_r)}{\partial r} + \frac{1}{r} \frac{\partial a_{\theta}}{\partial \theta} + \frac{\partial a_z}{\partial z},$$
 (2.6.2)

$$\operatorname{rot} \vec{a} = \vec{e}_{r} \left(\frac{1}{r} \frac{\partial a_{z}}{\partial \theta} - \frac{\partial a_{\theta}}{\partial z} \right) + \vec{e}_{\theta} \left(\frac{\partial a_{r}}{\partial z} - \frac{\partial a_{z}}{\partial r} \right) + \\ + \vec{e}_{z} \left[\frac{1}{r} \frac{\partial (ra_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial a_{r}}{\partial \theta} \right], \qquad (2.6.3)$$

$$\nabla^2 \Psi = \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} \right] \Psi.$$
 (2.6.4)

В системе цилиндрических координат соотношения между компонентами тензора деформации ε_r , ε_{θ} , ε_z , $\varepsilon_{r\theta}$, ε_{gz} , ε_{rz} , и компонентами вектора перемещений u_r , u_{θ} , u_z записываются следующим образом:

$$\varepsilon_{r} = \frac{\partial u_{r}}{\partial r}, \quad \varepsilon_{\theta} = \frac{1}{r} \left(\frac{\partial u_{\theta}}{\partial \theta} + u_{r} \right), \quad \varepsilon_{z} = \frac{\partial u_{z}}{\partial z},$$

$$\varepsilon_{r\theta} = \frac{1}{2} \left[\frac{1}{r} \left(\frac{\partial u_{r}}{\partial \theta} - u_{\theta} \right) + \frac{\partial u_{\theta}}{\partial r} \right],$$

$$\varepsilon_{\theta z} = \frac{1}{2} \left(\frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial u_{z}}{\partial \theta} \right),$$

$$\varepsilon_{zr} = \frac{1}{2} \left(\frac{\partial u_{z}}{\partial r} + \frac{\partial u_{r}}{\partial z} \right).$$
(2.6.5)

Уравнения движения приобретают вид

$$\frac{\partial \sigma_{r}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{r\theta}}{\partial \theta} + \sigma_{r} - \sigma_{\theta} \right) + \frac{\partial \sigma_{rz}}{\partial z} + F_{r} = \rho \frac{\partial^{2} u_{r}}{\partial t^{2}},$$

$$\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\theta}}{\partial \theta} + 2\sigma_{r\theta} \right) + \frac{\partial \sigma_{\theta z}}{\partial z} + F_{\theta} = \rho \frac{\partial^{2} u_{\theta}}{\partial t^{2}},$$

$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\theta z}}{\partial \theta} + \sigma_{rz} \right) + \frac{\partial \sigma_{z}}{\partial z} + F_{z} = \rho \frac{\partial^{2} u_{z}}{\partial t^{2}},$$
(2.6.6)

где σ_r , σ_{θ} , σ_z , $\sigma_{r\theta}$, $\sigma_{\theta z}$, σ_{zr} — компоненты тензора напряжения (рис. 6); F_r , F_{θ} , F_z — компоненты вектора плотности объемной силы \vec{F} .

В сферических координатах положение точки P определяется тремя координатами r, φ , θ (рис. 7). Координатными поверхностями в этой системе координат являются сферы r = const, конусы $\varphi = \text{const}$ и полуплоскости $\theta = \text{const}^*$.

Рис. 6.

Декартовы координаты связаны со сферическими соотношениями

 $x_1 = r \cos \theta \sin \varphi$, $x_2 = r \sin \theta \sin \varphi$, $x_3 = r \cos \varphi$.

Вводя трехгранник единичных взаимно ортогональных векторов $\vec{e}_r, \vec{e}_{\varphi}, \vec{e}_{\theta}$ (см. рис. 7), основные векторные операции в сферических координатах представляем в виде

grad
$$\psi = \vec{e}_r \frac{\partial \psi}{\partial r} + \vec{e}_{\varphi} \frac{1}{r} \frac{\partial \psi}{\partial \varphi} + \vec{e}_{\theta} \frac{1}{r \sin \varphi} \frac{\partial \psi}{\partial \theta}$$
, (2.6.7)

$$\operatorname{div} \vec{a} = \frac{1}{r^2} \frac{\partial (r^2 a_r)}{\partial r} + \frac{1}{r \sin \varphi} \frac{\partial (\sin \varphi a_{\varphi})}{\partial \varphi} + \frac{1}{r \sin \varphi} \frac{\partial a_{\theta}}{\partial \theta}, \quad (2.6.8)$$
$$\operatorname{rot} \vec{a} = \vec{e}_r \frac{1}{r \sin \varphi} \left[\frac{\partial (a_{\theta} \sin \varphi)}{\partial \varphi} - \frac{\partial a_{\varphi}}{\partial \theta} \right] +$$
$$+ \vec{e}_{\varphi} \left[\frac{1}{r \sin \varphi} \frac{\partial a_r}{\partial \theta} - \frac{1}{r} \frac{\partial (ra_{\theta})}{\partial r} \right] + \vec{e}_{\theta} \frac{1}{r} \left[\frac{\partial (ra_{\varphi})}{\partial r} - \frac{\partial a_r}{\partial \varphi} \right], \quad (2.6.9)$$

* В целях единообразия обозначений эдесь, в отличие от общепринятых обозначений, угол между плоскостью x_1Ox_3 и плоскостью меридиана (в плоскости параллели) обозначается через θ , а угол между радиусом сферы и осью x_3 — через φ ; аналогичные обозначения для углов приняты при изложении термоупругости круглых дисков и пластин, оболочек и тел вращения.

$$\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial \psi}{\partial \varphi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 \psi}{\partial \theta^2}.$$
(2.6.10)

Ограничиваясь случаем осесимметричного температурного поля и поля напряжений, когда деформации и напряжения не зависят от координаты θ, в системе сферических координат по-лучаем следующие зависимости (рис. 8): соотношения между компонентами тензора деформации и

компонентами вектора перемещения

$$\varepsilon_{r} = \frac{\partial u_{r}}{\partial r}, \quad \varepsilon_{\varphi} = \frac{1}{r} \left(u_{r} + \frac{\partial u_{\varphi}}{\partial \varphi} \right),$$

$$\varepsilon_{\theta} = \frac{1}{r} \left(u_{r} + u_{\varphi} \operatorname{ctg} \varphi \right), \quad (2.6.11)$$

$$\varepsilon_{r\varphi} = \frac{1}{2} \left[\frac{\partial u_{\varphi}}{\partial r} + \frac{1}{r} \left(\frac{\partial u_{r}}{\partial \varphi} - u_{\varphi} \right) \right];$$

уравнения движения

$$\frac{\partial \mathfrak{z}_{r}}{\partial r} + \frac{1}{r} \left(\frac{\partial \mathfrak{z}_{r\varphi}}{\partial \varphi} + 2\mathfrak{z}_{r} - \mathfrak{z}_{\varphi} - \mathfrak{z}_{\theta} + \mathfrak{z}_{r\varphi} \operatorname{ctg} \varphi \right) + F_{r} = \rho \frac{\partial^{2} u_{r}}{\partial t^{2}},$$

$$\frac{\partial \mathfrak{z}_{r\varphi}}{\partial r} + \frac{1}{r} \left[\frac{\partial \mathfrak{z}_{\varphi}}{\partial \varphi} + (\mathfrak{z}_{\varphi} - \mathfrak{z}_{\theta}) \operatorname{ctg} \varphi + 3\mathfrak{z}_{r\varphi} \right] + F_{\varphi} = \rho \frac{\partial^{2} u_{\varphi}}{\partial t^{2}}.$$
(2.6.12)

Основные законы и задачи теплопроводности

§ 3.1. Общие замечания. Основные уравнения

Температурное поле и поле напряжений в твердом теле, вообще говоря, взаимосвязаны (см. первую главу). Однако при обычной теплопередаче, происходящей в неравномерно нагретом твердом теле за счет внешних источников тепла, влияние напряжений и деформаций на распределение в нем температуры можно игнорировать. Это позволяет распределение температуры в твердом теле, соответствующее определенным условиям теплопередачи, изучать независимо от его напряженного состояния.

В твердом теле перенос тепла осуществляется одной только теплопроводностью, имеющей молекулярно-атомный характер, без макроскопических движений в теле.

Теплопередача на поверхности тела может происходить тремя способами: теплопроводностью, конвекцией и излучением.

При конвективном теплообмене перенос тепла осуществляется за счет движения неравномерно нагретой жидкости (газа), омывающей тело; при этом под конвективным теплообменом понимается суммарный перенос тепла частицами жидкости и теплопроводностью.

Теплообмен излучением (лучистый теплообмен) происходит между удаленными друг от друга телами (или частями тела) посредством электромагнитных волн.

Уравнение теплопроводности, необходимое для исследования температурных полей в упругих телах, можно получить из уравнения теплопроводности (1.5.26), отбрасывая в нем член, зависящий от деформации. Здесь приведем независимый вывод этого уравнения. Количество тепла, поглощаемое единицей объема тела в единицу времени, равно $c \frac{\partial T}{\partial t}$, где c — удельная объемная теплоемкость вещества тела.

С другой стороны, количество тепла, теряемое единицей объема тела в единицу времени, равно div q, где q — вектор плотности потока тепла.

Предполагая в теле наличие источников тепла, выделяющих в единице объема в единицу времени количество тепла q_0 , и принимая во внимание уравнение (1.4.4), на основании баланса тепла находим уравнение теплопроводности

div
$$(\lambda_{\rm T} \operatorname{grad} T) + q_0 = c \frac{\partial T}{\partial t}$$
. (3.1.1)

Если принять коэффициент теплопроводности $\lambda_{\rm T}$ постоянным, то уравнение (3.1.1) принимает вид

$$\nabla^2 T + \frac{q_0}{\lambda_{\tau}} = \frac{1}{a} \frac{\partial T}{\partial t}, \qquad (3.1.2)$$

где $a = \frac{\lambda_{r}}{c}$ — коэффициент температуропроводности.

При отсутствии в теле источников тепла $(q_0=0)$ уравнение (3.1.2) превращается в уравнение

$$\nabla^2 T = \frac{1}{a} \frac{\partial T}{\partial t} \,. \tag{3.1.3}$$

Решение уравнения (3.1.3) определяет нестационарное температурное поле. Для стационарного температурного поля уравнение (3.1.3) переходит в уравнение Лапласа

$$\nabla^2 T = 0.$$
 (3.1.4)

Для однозначности решения уравнения (3.1.2) необходимо его дополнить соответствующими начальным и граничными усло. виями.

В качестве начального условия задается распределение температуры тела в фиксированный момент времени.

Граничные условия обычно связаны со сложным теплообменом на поверхности тела, где могут иметь место все три способа теплопередачи одновременно.

В теории теплопроводности применяются следующие основные идеализированные граничные условия.

1. Задана температура поверхности

$$T(x_k, t) = f(x_k, t),$$
 (3.1.5)

где x_k — точка на поверхности тела и $f(x_k, t)$ — заданная функция.

2. Задана плотность теплового потока, выходящего из тела в окружающую среду:

$$q(\mathbf{x}_k, t) = -\lambda_r \frac{\partial T(\mathbf{x}_k, t)}{\partial n}, \qquad (3.1.6)$$

где *п* — внешняя нормаль к поверхности тела в точке *x_k*.

В частном случае, когда q=0, имеет место адиабатическое граничное условие для тела, идеально изолированного от внешнего теплообмена:

$$\frac{\partial T(x_k, t)}{\partial n} = 0. \tag{3.1.7}$$

3. Заданы температура окружающей среды в и закон конвективного теплообмена между поверхностью тела и окружающей средой

$$-\lambda_{\mathbf{r}} \frac{\partial T(\mathbf{x}_{k}, t)}{\partial n} = \alpha [T(\mathbf{x}_{k}, t) - \vartheta], \qquad (3.1.8)$$

где а — коэффициент теплоотдачи.

Коэффициент теплоотдачи α зависит от термических и физических характеристик поверхности тела и окружающей среды.

Различают теплообмен при свободной конвекции, возникающей при естественном перемещении частиц жидкости за счет неравномерной ее плотности, обусловленной неравномерным нагрсвом, и при вынужденной конвекции, создаваемой движением жидкости посредством внешних механических воздействий (нагнетанием жидкости от насоса, движением высокоскоростного воздушного потока относительно самолета и др.); теплообмен при вынужденной конвекции происходит более интенсивно, чем при свободной конвекции.

Для конвективного теплообмена важным является состояние так называемого пограничного слоя, под которым понимается область потока жидкости, прилегающая к поверхности обтекаемого тела, с резким изменением скорости и температуры (от скорости и температуры свободного потока до скорости и температуры на поверхности тела).

Течение жидкости в пограничном слое может быть ламинарное, когда частицы жидкости перемещаются слоями, и турбулентное, при котором частицы жидкости совершают пульсационные движения, приводящие к интенсивному перемешиванию слоев движущейся жидкости. Турбулентное течение происходит в результате потери устойчивости ламинарного течения. Условия перехода из ламинарного течения в турбулентное определяются некоторым (критическим) числом — так называемым числом Рейнольдса $\operatorname{Re} = \frac{\rho v l}{\eta}$, где ρ — плотность; v — средняя скорость течения; l — линейный размер; η — коэффициент вязкости.

Теплообмен при ламинарном течении осуществляется в основном теплопроводностью, а теплообмен при турбулентном течении происходит в основном за счет пульсационных макроскопических движений частиц жидкости.

При турбулентном течении коэффициент теплоотдачи может быть во много раз больше, чем при ламинарном.

Из указанного ясно, что коэффициент α изменяется в очень широких пределах и его следует каждый раз выбирать в зависимости от условий конвективного теплообмена на основании экспериментальных данных.

При больших скоростях газа (например, в случае аэродинамического нагрева) в уравнение (3.1.8) вместо температуры свободного потока ϑ следует подставить так называемую адиабатическую температуру поверхности ϑ_a .

Вследствие трения в пограничном слое кинетическая энергия свободного потока переходит в теплоту; при этом повышается температура в пограничном слое и на теплоизолированной поверхности конструкции устанавливается адиабатическая температура поверхности ϑ_a , определяемая по формуле

$$\vartheta_a = \vartheta + r \frac{\upsilon^2}{2c_p}, \qquad (3.1.9)$$

где ϑ и v — температура и скорость свободного потока газа; c_p — удельная массовая теплоемкость газа при постоянном давлении; r — коэффициент восстановления, показывающий, какая часть кинетической энергии свободного потока переходит в теплосодержание потока на поверхности.

Коэффициент восстановления *r* при определенном состоянии пограничного слоя определяется в основном числом Прандтля $\Pr = \frac{\eta c_p}{\lambda_r}$, которое для воздуха в широком интервале темпера-

туры почти не изменяется; например, $Pr = 0.72 \div 0.65$ при $T = 250 \div 1300^{\circ}$ K.

Теоретические исследования установили, что в случае ламинарного пограничного слоя на плоской пластине $r = \Pr r^{1/3}$, а при турбулентном пограничном слое $r = \Pr r^{1/3}$.

Для решения дифференциальных уравнений в частных производных (3.1.2), (3.1.3) применяются методы разделения переменных; методы, основанные на интегральных преобразованиях; методы, использующие наложение решений для источников тепла и других решений; численные методы и др. Они излагаются в монографиях, посвященных теории теплопроводности, как, например, в монографиях [27, 57] и др., а также в специальной литературе [1].

Исследование уравнений теплопроводности (параболического и эллиптического типа) содержится в курсах математической физики [43, 46, 49]. Здесь рассматриваются задачи теплопроводности, имеющие наибольшее практическое значение и иллюстрирующие применение основных методов теории теплопроводности. К ним относятся задача о нестационарном теплообмене пластины произвольного профиля, решение которой основано на аппроксимации температуры по толщине пластины по степенному закону (§ 3.2); задачи о стационарном и нестационарном осесимметричном плоском температурном поле диска (§ 3.3 и § 3.6); задача о нестационарном осесимметричном теплообмене полого цилиндра конечной длины с окружающей средой, исследованная с помощью интегрального преобразования Лапласа и метода разделения переменных (§ 3.7), и др.

§ 3.2. Уравнения нестационарной теплопроводности для пластин

Расположим срединную поверхность тонкой пластины толщиной *h* в плоскости *xOy* декартовой системы координат.

Рассмотрим пластину при нестационарном конвективном теплообмене на ее контуре L и поверхностях $z = \pm \frac{h}{2}$ (рис. 9).

При значительной разности температур среды, омывающей поверхности пластины z = 4z

по ее толщине возникают существенные градиенты температуры, вызывающие, кроме растяжения, также тепловой изгиб плас-Определение тины. нестационарного температурного поля такой пластины при постоянных теплофизических характеристиках сводится к

решению уравнения (3.1.3), которое в декартовых координатах принимает вид

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{a} \frac{\partial T}{\partial t}.$$
(3.2.1)

Решение уравнения (3.2.1) должно удовлетворять следующим начальному и граничным условиям:

$$T = T_0$$
 при $t = 0,$ (3.2.2)

$$\frac{\partial T}{\partial n} = -\frac{\alpha_0}{\lambda_{\rm T}} (T - \vartheta_0)$$
 на контуре пластины *L*,

$$\frac{\partial T}{\partial z} = -\frac{\alpha_3}{\lambda_{\rm T}} (T - \vartheta_3)$$
 при $z = \frac{!h}{2}$,

$$\frac{\partial T}{\partial z} = \frac{\alpha_4}{\lambda_{\rm T}} (T - \vartheta_4)$$
 при $z = -\frac{h}{2}$.
(3.2.3)

В уравнениях (3.2.1)—(3.2.3) введены следующие обозначения: T — температура пластины; T_0 — начальная температура пластины; ϑ_0 , ϑ_3 и ϑ_4 — температуры среды соответственно на контуре пластины, на поверхности $z = \frac{h}{2}$ и поверхности $z = -\frac{h}{2}$; a_0 , a_3 и a_4 — коэффициенты теплоотдачи соответственно на контуре пластины, на поверхности $z = \frac{h}{2}$ и поверхности $z = -\frac{h}{2}$; λ_{τ} и a — коэффициенты теплопроводности и температуропроводности материала пластины; n — внешняя нормаль на контуре пластины.

Ищем приближенное решение этой задачи. Аппроксимируя изменение температуры *Т* вдоль толщины пластины по степенному закону

$$T = \sum_{i=0}^{m} T^{(i)}(x, y, t) z^{i}, \qquad (3.2.4)$$

сводим рассматриваемую задачу к двумерной.

Для составления уравнений, которым удовлетворяют функции $T^{(l)}$, умножаем уравнение (3.2.1) на z^p ($p=0, 1, \ldots, m$) и интегрируем его по z от $-\frac{h}{2}$ до $\frac{h}{2}$; при этом выполняем интегрирование по частям, принимая во внимание тождество $z^p \frac{\partial^2 T}{\partial z^2} = \frac{\partial}{\partial z} \left(z^p \frac{\partial T}{\partial z} - p z^{p-1} T \right) + p (p-1) z^{p-2} T$ и граничные условия (3.2.3). В результате получаем следующее уравнение:

$$\nabla^{2}\Theta_{p} - \frac{h^{p-1}}{2^{p}} \left\{ 2p\theta_{p} + \gamma_{3} \left[T\left(\frac{h}{2}\right) - \vartheta_{3} \right] + (-1)^{p} \gamma_{4} \left[T\left(-\frac{h}{2}\right) - \vartheta_{4} \right] \right\} + p(p-1)\Theta_{p-2} = \frac{1}{a} \frac{\partial\Theta_{p}}{\partial t} \qquad (p=0, 1, \dots, m), \quad (3.2.5)$$

 $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$ $\Theta_p = \int_{-\frac{h}{2}}^{\frac{h}{2}} z^p T dz, \quad \Theta_p = T\left(\frac{h}{2}\right) + (-1)^p T\left(-\frac{h}{2}\right),$ $\gamma_3 = \frac{\alpha_3 h}{\lambda_7}, \quad \gamma_4 = \frac{\alpha_4 h}{\lambda_7}.$

Подставляя выражение (3.2.4) в условие (3.2.2) и первое из условий (3.2.3), находим начальные и граничные условия для функций $T^{(i)}$ ($i=0, 1, \ldots, m$). В случае, когда T_0 и ϑ_0 не зависят от z, эти условия принимают вид

$$T^{(0)} = T_{0}, \quad T^{(i)} = 0 \quad (i = 1, ..., m) \text{ при } t = 0,$$

$$\frac{\partial T^{(0)}}{\partial n} = -\frac{\alpha_{0}}{\lambda_{r}} (T^{(0)} - \vartheta_{0}), \quad \frac{\partial T^{(i)}}{\partial n} = -\frac{\alpha_{0}}{\lambda_{r}} T^{(i)} \text{ на контуре}$$

$$(i = 1, ..., m).$$

$$(3.2.6)$$

Применяя уравнение (3.2.5) и условия (3.2.6) при разных значениях *p*, можно составить необходимую систему уравнений, описывающую нестационарную теплопроводность пластины при разных степенных законах изменения температуры по толщине пластины.

Предполагая температуру постоянной по толщине пластины $T = T^{(0)}$ (3.2.7)

и полагая p=0, получаем уравнение теплопроводности

$$\nabla^2 T - \frac{2\gamma}{h^2} (T - \vartheta) = \frac{1}{a} \frac{\partial T}{\partial t}, \qquad (3.2.8)$$

где

$$\gamma = \frac{(\alpha_3 + \alpha_4) h}{2\lambda_r}, \quad \vartheta = \frac{\alpha_3 \vartheta_3 + \alpha_4 \vartheta_4}{\alpha_3 + \alpha_4}$$

при условиях

$$T = T_0$$
 при $t = 0$,
 $\frac{\partial T}{\partial n} = -\frac{\alpha_0}{\lambda_r} (T - \vartheta_0)$ на контуре пластины L. $\left. \right\}$ (3.2.9)

Предполагая линейный закон изменения температуры по толщине пластины

$$T = T^{(0)} + T^{(1)} z,$$
 (3.2.10)

59

где

отвечающий значениям p = 0, 1, находим систему двух уравнений теплопроводности

$$\nabla^{2} T^{(0)} - \frac{2\gamma}{h^{2}} (T^{(0)} - \vartheta) - \frac{\gamma_{3} - \gamma_{4}}{2h} T^{(1)} = \frac{1}{a} \frac{\partial T^{(0)}}{\partial t},$$

$$\nabla^{2} T^{(1)} - \frac{6(\gamma_{3} - \gamma_{4})}{h^{3}} T^{(0)} - \frac{6(2 + \gamma)}{h^{2}} (T^{(1)} - \mu) = \frac{1}{a} \frac{\partial T^{(1)}}{\partial t},$$
(3.2.11)

где

$$\mu = \frac{\gamma_3 \vartheta_3 - \gamma_4 \vartheta_4}{(2+\gamma)h}$$

при начальных и граничных условиях

$$T^{(0)} = T_{0}, \quad T^{(1)} = 0 \quad \text{при } t = 0,$$

$$\frac{\partial T^{(0)}}{\partial n} = -\frac{\alpha_{0}}{\lambda_{T}} (T^{(0)} - \vartheta_{0}), \quad \frac{\partial T^{(1)}}{\partial n} = -\frac{\alpha_{0}}{\lambda_{T}} T^{(1)} \quad \text{на контуре}$$
пластины $L.$ (3.2.12)

Предполагая квадратичный закон изменения температуры по толщине пластины

$$T = T^{(0)} + T^{(1)}z + T^{(2)}z^2, \qquad (3.2.13)$$

соответствующий значениям p=0, 1, 2, находим систему трех уравнений теплопроводности

$$\nabla^{2} T^{(0)} + \frac{3\gamma}{h^{2}} (T^{(0)} - \vartheta) + \frac{3(\gamma_{3} - \gamma_{4})}{4h} T^{(1)} + \frac{3\gamma + 20}{4} T^{(2)} = \frac{1}{a} \frac{\partial T^{(0)}}{\partial t},$$

$$\nabla^{2} T^{(1)} - \frac{6(2 + \gamma)}{h^{2}} (T^{(1)} - \mu) - \frac{6(\gamma_{3} - \gamma_{4})}{h^{3}} \left(T^{(0)} + \frac{h^{2} T^{(2)}}{4} \right) = \frac{1}{a} \frac{\partial T^{(1)}}{\partial t}, \quad (3.2.14)$$

$$\nabla^{2} T^{(2)} - \frac{60\gamma}{h^{4}} (T^{(0)} - \vartheta) - \frac{15(\gamma_{3} - \gamma_{4})}{h^{3}} T^{(1)} - \frac{15(4 + \gamma)}{h^{2}} T^{(2)} = \frac{1}{a} \frac{\partial T^{(2)}}{\partial t}$$

при начальных и граничных условиях

В случае одинаковых коэффициентов теплоотдачи $\alpha_3 = \alpha_4 = \alpha$, а, следовательно, и одинаковых параметров $\gamma_3 = \gamma_4 = \gamma$ уравнения (3.2.11) и (3.2.14) принимают соответственно вид

$$\nabla^{2} T^{(0)} - \frac{2\gamma}{h^{2}} (T^{(0)} - \vartheta) = \frac{1}{a} \frac{\partial T^{(0)}}{\partial t},$$

$$\nabla^{2} T^{(1)} - \frac{6(2+\gamma)}{h^{2}} (T^{(1)} - \mu) = \frac{1}{a} \frac{\partial T^{(1)}}{\partial t};$$
(3.2.16)

$$\nabla^{2} T^{(0)} + \frac{3\gamma}{h^{2}} (T^{(0)} - \vartheta) + \frac{3\gamma + 20}{4} T^{(2)} = \frac{1}{a} \frac{\partial T^{(0)}}{\partial t},$$

$$\nabla^{2} T^{(1)} - \frac{6(2+\gamma)}{h^{2}} (T^{(1)} - \mu) = \frac{1}{a} \frac{\partial T^{(1)}}{\partial t},$$

$$\nabla^{2} T^{(2)} - \frac{60\gamma}{h^{4}} (T^{(0)} - \vartheta) - \frac{15(4+\gamma)}{h^{2}} T^{(2)} = \frac{1}{a} \frac{\partial T^{(2)}}{\partial t}.$$
(3.2.17)

§ 3.3. Стационарное плоское осесимметричное температурное поле диска и цилиндра

Определим стационарное плоское температурное поле диска постоянной толщины h с центральным отверстием. Обозначим радиус наружного контура через r_2 , а радиус внутреннего контура (центрального отверстия) через r_1 (рис. 10).

Предполагаем, что на поверхности диска $z = \pm \frac{h}{2}$ одинаковый конвективный теплообмен. Переходя к полярным координатам и учитывая симметрию температурного поля, уравнение теплопроводности этой задачи получаем из уравнения (3.2.8) в виде

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} - \frac{2\gamma}{h^2}(T - \vartheta) = 0, \qquad (3.3.1)$$

где $\gamma = \frac{\alpha h}{\lambda_{\rm r}}; \vartheta$ н α — температура среды и коэффициент теплоотдачи на поверхностях диска $z = \pm \frac{h}{2}$.

Вместо условий (3.2.9) для рассматриваемой задачи имеют место следующие граничные условия *:

$$\frac{dT}{dr} - \frac{\alpha_1}{\lambda_{\rm T}} (T - \vartheta_1) = 0 \quad \text{при} \quad r = r_1, \\
\frac{dT}{dr} + \frac{\alpha_2}{\lambda_{\rm T}} (T - \vartheta_2) = 0 \quad \text{при} \quad r = r_2,$$
(3.3.2)

где ϑ_1 и α_1 — температура среды и коэффициент теплоотдачи на контуре центрального отверстия диска $r = r_1$; ϑ_2 и α_2 — тем-

^{*} При составлении первого из граничных условий (3.3.2) учитываем, что положительное направление *г* на контуре центрального отверстия противоположно положительному направлению внешней нормали.

пература среды и коэффициент теплоотдачи на наружном контуре диска $r = r_2$.

Вводя вместо r относительную координату $\rho = \frac{r}{r_2}$, переписываем уравнение (3.3.1) и условия (3.3.2) в виде

$$\frac{d^{2}T}{d\rho^{2}} + \frac{1}{\rho} \frac{dT}{d\rho} - \delta^{2}(T - \vartheta) = 0; \qquad (3.3.3)$$

$$\begin{cases} \frac{dI}{d\rho} - \gamma_1 (T - \vartheta_1) = 0 & \text{при } \rho = \rho_1, \\ \frac{dT}{d\rho} + \gamma_2 (T - \vartheta_2) = 0 & \text{при } \rho = 1, \end{cases}$$
(3.3.4)

где $\delta^{2} = \frac{2\gamma r_{2}^{2}}{h^{2}}, \quad \gamma_{1} = \frac{\alpha_{1}r_{2}}{\lambda_{\tau}}, \quad \gamma_{2} = \frac{\alpha_{2}r_{2}}{\lambda_{\tau}}, \quad \rho_{1} = \frac{r_{1}}{r_{2}}.$ Решением уравнения (3.3.3) является выражение

 $T = \vartheta + C_1 I_0(\delta \rho) + C_2 K_0(\delta \rho), \qquad (3.3.5)$

где $I_0(x)$ и $K_0(x)$ — функции Бесселя нулевого порядка первого и второго рода от чисто мнимого аргумента.

Постоянные интегрирования определяем из условий (3.3.4); при этом учитываем известные из теории функций Бесселя формулы

$$\frac{d}{dx}I_0(x) = I_1(x), \quad \frac{d}{dx}K_0(x) = -K_1(x),$$

где $I_1(x)$, $K_1(x)$ — функции Бесселя первого порядка первого и второго рода. Находим

$$C_{1} = \frac{1}{\Delta} [\gamma_{1} (\vartheta_{1} - \vartheta) v_{1} (\delta) + \gamma_{2} (\vartheta_{2} - \vartheta) v_{2} (\delta\rho_{1})],$$

$$C_{2} = \frac{1}{\Delta} [\gamma_{1} (\vartheta_{1} - \vartheta) u_{1} (\delta) + \gamma_{2} (\vartheta_{2} - \vartheta) u_{2} (\delta\rho_{1})],$$
(3.3.6)

где

$$u_{1}(\delta) = I_{1}(\delta) + \frac{\gamma_{2}}{\delta} I_{0}(\delta),$$

$$u_{2}(\delta\rho_{1}) = I_{1}(\delta\rho_{1}) - \frac{\gamma_{1}}{\delta} I_{0}(\delta\rho_{1}),$$

$$v_{1}(\rho) = K_{1}(\delta) - \frac{\gamma_{2}}{\delta} K_{0}(\delta),$$

$$v_{2}(\delta\rho_{1}) = K_{1}(\delta\rho_{1}) + \frac{\gamma_{1}}{\delta} K_{0}(\delta\rho_{1}),$$

$$\Delta = u_{2}(\delta\rho_{1}) [\gamma_{2}K_{0}(\delta) - \delta K_{1}(\delta)] + v_{2}(\delta\rho_{1}) [\gamma_{2}I_{0}(\delta) + \delta I_{1}(\delta)].$$

При $\gamma_1 = \gamma_2 = \infty$ условия (3.3.4) принимают вид $T = \vartheta_1$ при $\rho = \rho_1$, $T = \vartheta_2$ при $\rho = 1$. (3.3.7)

Уравнение (3.3.3) и условия (3.3.7) описывают задачу об осесимметричном температурном поле диска в случае, когда на внутреннем $r=r_1$ ($\rho=\rho_1$) и наружном $r=r_2$ ($\rho=1$) его контурах заданы соответственно температуры ϑ_1 и ϑ_2 при конвективном теплообмене на поверхностях диска $z=\pm \frac{h}{2}$.

Решение этой задачи получаем из решения (3.3.5), устремляя в нем γ_1 и γ_2 к бесконечности; при этом постоянные интегрирования (3.3.6) принимают значения

$$C_{1} = \frac{-(\vartheta_{1} - \vartheta) K_{0}(\delta) + (\vartheta_{2} - \vartheta) K_{0}(\delta\rho_{1})}{I_{0}(\delta) K_{0}(\delta\rho_{1}) - I_{0}(\delta\rho_{1}) K_{0}(\delta)},$$

$$C_{2} = \frac{(\vartheta_{1} - \vartheta) I_{0}(\delta) - (\vartheta_{2} - \vartheta) I_{0}(\delta\rho_{1})}{I_{0}(\delta) K_{0}(\delta\rho_{1}) - I_{0}(\delta\rho_{1}) K_{0}(\delta)}.$$
(3.3.8)

Полагая в уравнении (3.3.3) $\delta = 0$ (отсутствие теплообмена на поверхностях диска $z = \pm \frac{h}{2}$), получаем уравнение теплопроводности, которое при граничных условиях (3.3.4) или (3.3.7) описывает задачу об осесимметричном температурном поле длинного цилиндра при заданном конвективном теплообмене на его внутренней $r = r_1$ ($\rho = \rho_1$) и наружной $r = r_2$ ($\rho = 1$) цилиндрических поверхностях или при заданных температурах на этих поверхностях. В том и другом случаях температурное поле определяется выражением

$$T = C_1 + C_2 \ln \rho; \tag{3.3.9}$$

при этом в случае граничных условий (3.3.4)

$$C_{1} = \frac{1}{\Delta} [\gamma_{2}\vartheta_{2} + \gamma_{1}\rho_{1}(\vartheta_{1} - \gamma_{2}\vartheta_{2}\ln\rho_{1})],$$

$$C_{2} = \frac{1}{\Delta} [\gamma_{1}\gamma_{2}\rho_{1}(\vartheta_{2} - \vartheta_{1})],$$
(3.3.10)

где

 $\Delta = \gamma_2 + \gamma_1 \rho_1 (1 - \gamma_2 \ln \rho_1),$

а в случае граничных условий (3.3.7)

$$C_1 = \vartheta_2, \quad C_2 = \frac{\vartheta_1 - \vartheta_2}{\ln \rho_1}.$$

§ 3.4. Стационарное осесимметричное температурное поле круглой пластины при линейном изменении температуры по ее толщине

Определим стационарное температурное поле в круглой пластине постоянной толщины h с центральным отверстием. Обозначим радиус наружного контура пластины через r_2 , а радиус внутреннего контура (центрального отверстия) пластины через r_1 .

Рис. 11.

Пусть температура по толщине пластины изменяется по линейному закону (3.2.10) (рис. 11). Предполагаем также, что на поверхностях пластины $z = \pm \frac{h}{2}$ происходит конвективный теплообмен при одинаковых коэффициентах теплоотдачи α .

Для решения этой задачи используем систему уравнений (3.2.11) при граничных условиях (3.2.12). В рассматриваемом случае они принимают вид

$$\frac{d^2 T^{(0)}}{d\rho^2} + \frac{1}{\rho} \frac{d T^{(0)}}{d\rho} - \delta^2 (T^{(0)} - \vartheta) = 0, \qquad (3.4.1)$$

$$\frac{d^2 T^{(1)}}{d\rho^2} + \frac{1}{\rho} \frac{dT^{(1)}}{d\rho} - \delta_1^2 (T^{(1)} - \mu) = 0; \qquad (3.4.2)$$

$$\frac{dT^{(0)}}{d\rho} - \gamma_1 (T^{(0)} - \vartheta_1) = 0 \quad \text{при } \rho = \rho_1,
\frac{dT^{(0)}}{d\rho} + \gamma_2 (T^{(0)} - \vartheta_2) = 0 \quad \text{при } \rho = 1;$$
(3.4.3)

$$\frac{dT^{(1)}}{d\rho} - \gamma_{1}T^{(1)} = 0 \quad \text{при } \rho = \rho_{1}, \\
\frac{dT^{(1)}}{d\rho} + \gamma_{2}T^{(1)} = 0 \quad \text{при } \rho = 1,$$
(3.4.4)

ıде

$$\begin{split} \vartheta &= \frac{\vartheta_3 + \vartheta_4}{2}, \quad \mu = \frac{\gamma \left(\vartheta_3 - \vartheta_4\right)}{\left(2 + \gamma\right)h}, \\ \delta^2 &= \frac{2\gamma r_2^2}{h^2}, \quad \delta_1^2 = \frac{6\left(2 + \gamma\right)r_2^2}{h^2}, \quad \gamma = \frac{\alpha h}{\lambda_{\rm T}}, \\ \gamma_1 &= \frac{\alpha_1 r_2}{\lambda_{\rm T}}, \quad \gamma_2 = \frac{\alpha_2 r_3}{\lambda_{\rm T}}. \end{split}$$

Решение уравнения (3.4.1) при граничных условиях (3.4.3) определяется выражением (3.3.5). Полагая в этом выражении $\delta = \delta_1$, $\vartheta = \mu$, $\vartheta_1 = \vartheta_2 = 0$, получаем решение для уравнения (3.4.2) при граничных условиях (3.4.4).

Таким образом, для искомого температурного поля находим следующее решение:

$$T = \vartheta + z\mu + C_1 I_0(\delta\rho) + C_2 K_0(\delta\rho) + z\mu \left[C_1' I_0(\delta_1\rho) + C_3' K_0(\delta_1\rho)\right]. \quad (3.4.5)$$

В этом решении постоянные интегрирования C_1 и C_2 имеют значения (3.3.6), а постоянные C'_1 и C'_2 — значения

$$C_{1}^{'} = -\frac{1}{\Delta_{1}} [\gamma_{1} v_{1} (\delta_{1}) + \gamma_{2} (\delta_{1} \rho_{1})],$$

$$C_{2}^{'} = -\frac{1}{\Delta_{1}} [\gamma_{1} u_{1} (\delta_{1}) + \gamma_{2} (\delta_{1} \rho_{1})],$$
(3.4.6)

где $\Delta_{1} = u_{2} (\delta_{1} \rho_{1}) [\gamma_{2} K_{0} (\delta_{1}) - \delta_{1} K_{1} (\delta_{1})] + v_{2} (\delta_{1} \rho_{1}) [\gamma_{2} I_{0} (\delta_{1}) + \delta_{1} I_{1} (\delta_{1})].$

§ 3.5. Стационарное неосесимметричное плоское температурное поле длинного цилиндра

Определим стационарное плоское температурное поле длинного полого цилиндра, когда температуры среды ϑ_1 и ϑ_2 соответственно на внутренней цилиндрической поверхности ($r=r_1$) и наружной цилиндрической поверхности ($r=r_2$) являются функциями угла θ (см. рис. 5). Эта задача сводится к решению уравнения (3.1.4), которое в цилиндрических координатах принимает вид

$$\frac{\partial^2 T}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 T}{\partial \theta^2} = 0.$$
 (3.5.1)

Решение уравнения (3.5.1) должно удовлетворять граничным условиям

$$\frac{\partial T}{\partial \rho} - \gamma_1 (T - \vartheta_1) = 0 \quad \text{при } \rho = \rho_1, \\ \frac{\partial T}{\partial \rho} + \gamma_2 (T - \vartheta_2) = 0 \quad \text{при } \rho = 1,$$
 (3.5.2)

где

$$\gamma_1 = \frac{\alpha_1 r_2}{\lambda_T}, \quad \gamma_2 = \frac{\alpha_2 r_2}{\lambda_T}.$$

θ, и θ, являются периодическими функциями θ с периодом 2π, а поэтому их можно представить в виде рядов Фурье

$$\vartheta_{1} = \frac{1}{2} \vartheta_{1}^{(0)} + \sum_{k=1}^{\infty} \vartheta_{1}^{(k)} f_{k},$$

$$\vartheta_{2} = \frac{1}{2} \vartheta_{2}^{(0)} + \sum_{k=1}^{\infty} \vartheta_{2}^{(k)} f_{k},$$
(3.5.3)

где

$$f_k = \begin{cases} \cos m\theta, & \text{когда } k = 2m, \\ \sin m\theta, & \text{когда } k = 2m - 1 \\ (m = 1, 2, \ldots). \end{cases}$$

Коэффициенты в разложениях (3.5.3) определяются по формулам

$$\vartheta_n^{(k)} = \frac{1}{\pi} \int_0^{2\pi} \vartheta_n f_k d\theta \qquad (3.5.4)$$

(n=1, 2; k=0, 1,...; f_0=1).

В связи с выражениями (3.5.3) ищем решение уравнения (3.5.1) в виде

$$T = \frac{1}{2} T^{(0)} + \sum_{k=1}^{\infty} T^{(k)} f_k, \qquad (3.5.5)$$

где $T^{(0)}$ и $T^{(k)}$ — функции координаты р. Подставляя решение (3.5.5) в уравнение (3.5.1) и в граничные условия (3.5.2), находим для определения функций $T^{(0)}$ и $T^{(k)}$ следующие уравнения:

$$\frac{d^2 T^{(0)}}{d\rho^2} + \frac{1}{\rho} \frac{d T^{(0)}}{d\rho} = 0, \qquad (3.5.6)$$

$$\frac{d^2 T^{(k)}}{d\rho^2} + \frac{1}{\rho} \frac{d T^{(k)}}{d\rho} - \frac{m^2}{\rho^2} T^{(k)} = 0$$
(3.5.7)

$$\left(m = \frac{k}{2}$$
 при *k* четном, $m = \frac{k+1}{2}$ при *k* нечетном, $k = 1, 2, ...\right)$

при граничных условиях

$$\frac{dT^{(0)}}{d\rho} - \gamma_1 (T^{(0)} - \vartheta_1^{(0)}) = 0 \quad \text{при } \rho = \rho_1,$$

$$\frac{dT^{(0)}}{d\rho} + \gamma_2 (T^{(0)} - \vartheta_2^{(0)}) = 0 \quad \text{при } \rho = 1;$$

$$\frac{dT^{(k)}}{d\rho} - \gamma_1 (T^{(k)} - \vartheta_1^{(k)}) = 0 \quad \text{при } \rho = \rho_1,$$

$$\frac{dT^{(k)}}{d\rho} + \gamma_2 (T^{(k)} - \vartheta_2^{(k)}) = 0 \quad \text{при } \rho = 1.$$
(3.5.9)

Для уравнения (3.5.6) при граничных условиях (3.5.8) ранее найдено решение (3.3.9) с постоянными интегрирования (3.3.10). Уравнение (3.5.7) при граничных условиях (3.5.9) имеет сле-

дующее решение:

$$T^{(k)} = C_1 \rho^m + C_2 \rho^{-m}, \qquad (3.5.10)$$

гле

$$C_{1} = \frac{1}{\Delta} \left[\rho_{1} \gamma_{1} \left(m - \gamma_{2} \right) \vartheta_{1}^{(k)} + \rho_{1}^{-m} \gamma_{2} \left(m + \rho_{1} \gamma_{1} \right) \vartheta_{2}^{(k)} \right],$$

$$C_{2} = \frac{1}{\Delta} \left[\rho_{1} \gamma_{1} \left(m + \gamma_{2} \right) \vartheta_{1}^{(k)} + \rho_{1}^{m} \gamma_{2} \left(m - \rho_{1} \gamma_{1} \right) \vartheta_{2}^{(k)} \right], \qquad (3.5.11)$$

$$\Delta = \rho_{1}^{-m} \left(m + \rho_{1} \gamma_{1} \right) \left(m + \gamma_{2} \right) - \rho_{1}^{m} \left(m - \rho_{1} \gamma_{1} \right) \left(m - \gamma_{2} \right).$$

§ 3.6. Нестационарное плоское осесимметричное температурное поле диска

Определим нестационарное плоское температурное поле сплошного диска постоянной толщины h и радиуса r2 при одинаковом конвективном теплообмене на поверхностях $z = \pm \frac{h}{2}$.

Применяя в случае полярных координат уравнение (3.2.8) и вводя относительную координату $\rho = \frac{r}{r_2}$ и безразмерное время получаем для рассматриваемой задачи уравнение теплопроводности

$$\frac{\partial^2 T}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T}{\partial \rho} - \delta^2 (T - \vartheta) = \frac{\partial T}{\partial \tau}$$
(3.6.1)

при условиях

$$T = T_{0} \quad \text{при } t = 0, \\ \frac{\partial T}{\partial \rho} + \gamma_{2} (T - \vartheta_{2}) = 0 \quad \text{при } \rho = 1, \end{cases}$$
(3.6.2)

где

$$\delta^2 = \frac{2\gamma r_2^2}{h^2}, \quad \gamma = \frac{\alpha h}{\lambda_{\tau}}, \quad \gamma_2 = \frac{\alpha_2 r_2}{\lambda_{\tau}}.$$

Здесь введены следующие обозначения: ϑ и α — температура среды и коэффициент теплоотдачи на поверхностях диска $z = \pm \frac{h}{2}$; ϑ_2 и α_2 — температура среды и коэффициент теплоотдачи на контуре диска $r = r_2$ ($\rho = 1$) (ϑ_2 является функцией τ).

Для решения уравнения теплопроводности (3.6.1) применяем интегральное преобразование Лапласа.

Интегральное преобразование Лапласа функции $f(\tau)$ состоит в умножении ее на экспоненциальную функцию $e^{-s\tau}$, где s некоторая комплексная величина, и интегрировании в пределах от 0 до ∞ . Получаем некоторую новую функцию

$$f^*(\mathbf{s}) = \int_0^\infty f(\tau) e^{-s\tau} d\tau, \qquad (3.6.3)$$

которая называется изображением.

Выполняя такое преобразование в уравнении (3.6.1) при условиях (3.6.2), от дифференциального уравнения в частных производных для неизвестной функции *T* переходим к обыкновенному дифференциальному уравнению для ее изображения *T**

$$\frac{d^2 T^*}{d\rho^2} + \frac{1}{\rho} \frac{dT^*}{d\rho} - \varepsilon^2 \left(T^* - \frac{\Theta}{\varepsilon^2}\right) = 0 \qquad (3.6.4)$$

при условии

$$\frac{dT^{*}}{d\rho} + \gamma_{2} (T^{*} - \vartheta_{2}^{*}) = 0 \quad при \rho = 1, \qquad (3.6.5)$$

где

$$T^* = \int_{0}^{\infty} Te^{-s\tau} d\tau, \quad \vartheta_2^* = \int_{0}^{\infty} \vartheta_2 e^{-s\tau} d\tau, \qquad (3.6.6)$$
$$\Theta = \delta^2 \vartheta + sT_0, \quad \varepsilon^2 = \delta^2 + s,$$

Уравнение (3.6.4) по форме совпадает с уравнением (3.3.3). По аналогии с решением последнего находим решение уравнения (3.6.4) при граничном условии (3.6.5) в виде

$$T^* = \frac{\Theta}{s\varepsilon^2} + C_1 I_0 (\varepsilon \rho), \qquad (3.6.7)$$

где

$$C_1 = \frac{\gamma_2 (s \varepsilon^2 \vartheta_2^* - \Theta)}{s \varepsilon^2 [\gamma_2 I_0(\varepsilon) + \varepsilon I_1(\varepsilon)]}$$

Пусть температура ϑ_2 среды, омывающей наружный контур диска ($\rho = 1$), изменяется во времени по экспоненциальному закону

$$\vartheta_2 = \vartheta_{21} + \vartheta_{22} e^{-k\tau}, \tag{3.6.8}$$

где ϑ_{21} и ϑ_{22} — постоянные величины.

Вычисляя величину

$$\vartheta_2^* = \frac{\vartheta_{21}}{s} + \frac{\vartheta_{22}}{s+k}$$

и подставляя ее в решение (3.6.7), находим следующее решение для изображения:

$$T^* = \frac{\Theta}{s\varepsilon^2} + \frac{\gamma_2 \left\{ \varepsilon^2 \left[\vartheta_{21} \left(s+k \right) + \vartheta_{22} s \right] - \left(s+k \right) \Theta \right\}}{s \left(s+k \right) \varepsilon^2 \left[\gamma_2 I_0 \left(\varepsilon \right) + \varepsilon I_1 \left(\varepsilon \right) \right]} \frac{I_0 \left(\varepsilon \rho \right)}{s} \,. \tag{3.6.9}$$

Зная изображение, находим по нему искомую функцию. Переход от изображения к оригиналу функции составляет основную трудность рассматриваемого решения дифференциального уравнения. Этот переход осуществляется с помощью известной в теории операционного исчисления теоремы разложения, которая впервые была установлена М. Е. Ващенко-Захарченко [4] *.

Обобщенная теорема разложения гласит: если изображение $f^*(s)$ есть отношение трансцендентных функций $\Phi(s)$ и $\psi(s)$

$$f^*(s) = \frac{\Phi(s)}{\psi(s)},$$

где функция $\Psi(s)$ имеет только простые корни s_n (n=1, 2, ...), то искомая функция

$$f(\tau) = \sum_{n=1}^{\infty} \frac{\Phi(s_n)}{\psi'(s_n)} e^{s_n \tau},$$
(3.6.10)

где

$$\psi'(s_n) = \frac{\partial \psi(s_n)}{\partial s} \,.$$

^{*} Профессор Киевского университета М. Е. Ващенко-Захарченко заложил основы операционного исчисления. В своей монографии [4], вышедшей в 1862 г., он дал систематическое изложение операционного исчисления и вывел основные соотношения для решения дифференциальных уравнений операционным мстодом.

Теорема разложения им выведена как для простых, так и для кратных корней.

Позже О. Хевисайд в своих работах в 1893 и 1894 гг. применил метод операционного исчисления к решению некоторых задач электротехники.

Существует аналогичная теорема разложения и для кратных корней *.

Для применения формулы (3.6.10) к рассматриваемому случаю определяем корни уравнения

$$\psi(s) = s(s+k) \varepsilon^2 [\gamma_2 I_0(\varepsilon) + \varepsilon I_1(\varepsilon)] = 0. \qquad (3.6.11)$$

Корнями уравнения (3.6.11) являются

$$s_1 = 0, \quad s_2 = -k, \quad s_3 = -\delta^2$$

и корни β_л уравнения

$$\gamma_2 I_0(\varepsilon) + \varepsilon I_1(\varepsilon) = \gamma_2 J_0(\beta) - \beta J_1(\beta) = 0,$$

где $\beta = i\varepsilon; J_0(\beta), J_1(\beta)$ — функции Бесселя первого рода нулевого и первого порядка.

Учитывая значения этих корней и выполняя переход от изображения (3.6.9) к оригиналу с помощью формулы (3.6.10), после проведения необходимых преобразований получаем следующее выражение для температуры диска:

$$T = \vartheta + \frac{\gamma_2 (\vartheta_{21} - \vartheta) I_0(\delta \rho)}{\gamma_2 I_0(\delta) + \delta I_1(\delta)} + \frac{\gamma_2 \vartheta_{22} I_0(\rho \rho) e^{-k\tau}}{\gamma_2 I_0(\rho) + \rho I_1(\rho)} - \sum_{n=1}^{\infty} A_n B_n J_0(\beta_n \rho) e^{-(\delta^2 + \beta_n^2)\tau}, \qquad (3.6.12)$$

где

$$A_{n} = \frac{2\gamma_{2}}{(\gamma_{2}^{2} + \beta_{n}^{2}) J_{0}(\beta_{n})},$$

$$B_{n} = \frac{\beta_{n}^{2} \vartheta_{21} + \delta^{2} \vartheta}{\beta_{n}^{2} + \delta^{2}} - T_{0} + \frac{\beta_{n}^{2} \vartheta_{22}}{\beta_{n}^{2} + \delta^{2} - k},$$

$$p = \sqrt{\delta^{2} - k}.$$

В случае мгновенного приложения среды с температурой ϑ_2 находим температурное поле из решения (3.6.12), полагая в нем $\vartheta_{21} = \vartheta_2$ и $\vartheta_{22} = 0$:

$$T = \vartheta + \frac{\gamma_2(\vartheta_2 - \vartheta) I_0(\delta\rho)}{\gamma_2 I_0(\delta) + \delta I_1(\delta)} - \sum_{n=1}^{\infty} A_n B_n J_0(\beta_n \rho) e^{-(\delta^2 + \beta_n^2)\tau}, \quad (3.6.13)$$

^{*} Отметим, что не для всякой функции $f(\tau)$ существует изображение. Обратное преобразование Лапласа в общем случае также не есть оригинал функции. Условия, необходимые для перехода от функции к ее оригиналу и обратно, рассматриваются в монографиях, посвященных основам операцион-

где

$$B_n = \frac{\beta_n^2 \vartheta_2 + \delta^2 \vartheta}{\beta_n^2 + \delta^2} - T_0.$$

§ 3.7. Нестационарное осесимметричное температурное поле цилиндра конечной длины

Определим нестационарное осесимметричное температурное поле полого цилиндра конечной длины *l* с радиусами цилиндрических поверхностей *r*₁ и *r*₂ (рис. 12), который находится в

условиях конвективного теплообмена с окружающей средой.

Предполагаем, что температуры среды, омывающей поверхности цилиндра, являются функциями соответствующей координаты и времени, т. е.

$$\vartheta_1 = \vartheta_1(z, t), \quad \vartheta_2 = \vartheta_2(z, t),$$

$$\vartheta_3 = \vartheta_3(r, t), \quad \vartheta_4 = \vartheta_4(r, t).$$

Коэффициент теплопроводности материала цилин-

дра $\lambda_{\rm T}$ и коэффициенты теплоотдачи α_n (n=1, 2, 3, 4) считаем постоянными. Начальная температура цилиндра T_0 также принимается постоянной.

Эта задача описывается дифференциальным уравнением (3.1.3) при соответствующих начальном и граничных условиях.

Вводя относительные координаты

$$\rho = \frac{r}{r_2}, \quad \rho_1 = \frac{r_1}{r_2}, \quad \zeta = \frac{z}{r_2}, \quad \zeta_1 = \frac{l}{r_2}$$

и обозначения

$$x = \frac{at}{r_2^2}, \quad \gamma_n = \frac{\alpha_n r_2}{\lambda_r} \quad (n = 1, 2, 3, 4),$$

сводим рассматриваемую задачу к решению уравнения

$$\frac{\partial^2 T}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T}{\partial \rho} + \frac{\partial^2 T}{\partial \zeta^2} = \frac{\partial T}{\partial \tau}$$
(3.7.1)

Рис. 12.

ного исчисления. Применение операционного исчисления к решению задач теплопроводности подробно освещается в монографии А. В. Лыкова [27] (глава XIV). Там же содержится обширная таблица для изображений функций, отвечающих определенным оригиналам.

В рассматриваемых здесь задачах предполагается, что указанные условия выполняются.

при начальном условии

$$T = T_0$$
 при $t = 0$, (3.7.2)

и граничных условиях

$$\frac{\partial T}{\partial \rho} - \gamma_1 (T - \vartheta_1) = 0 \quad \text{при } \rho = \rho_1, \\
\frac{\partial T}{\partial \rho} + \gamma_2 (T - \vartheta_2) = 0 \quad \text{при } \rho = 1, \\
\frac{\partial T}{\partial \zeta} - \gamma_3 (T - \vartheta_3) = 0 \quad \text{при } \zeta = 0, \\
\frac{\partial T}{\partial \zeta} + \gamma_4 (T - \vartheta_4) = 0 \quad \text{при } \zeta = \zeta_1.
\end{cases}$$
(3.7.3)

Без ограничения общности можно положить $T_0 = 0$. Решение уравнения (3.7.1) ищем в виде

$$T = T_1 + T_2, \tag{3.7.4}$$

где функция T₁ является решением уравнения

$$\frac{\partial^2 T_1}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T_1}{\partial \rho} + \frac{\partial^2 T_1}{\partial \zeta^2} = \frac{\partial T_1}{\partial \tau}$$
(3.7.5)

при условиях

$$T_1 = 0$$
 при $\tau = 0;$ (3.7.6)

$$\frac{\partial T_1}{\partial \rho} - \gamma_1 T_1 = 0 \qquad \text{при } \rho = \rho_1, \\ \frac{\partial T_1}{\partial \rho} + \gamma_2 T_1 = 0 \qquad \text{при } \rho = 1, \\ \frac{\partial T_1}{\partial \zeta} - \gamma_3 (T_1 - \vartheta_3) = 0 \qquad \text{при } \zeta = 0, \\ \frac{\partial T_1}{\partial \zeta} + \gamma_4 (T_1 - \vartheta_4) = 0 \qquad \text{при } \zeta = \zeta_1, \end{cases}$$

$$(3.7.7)$$

а функция T₂ удовлетворяет уравнению

$$\frac{\partial^2 T_2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T_2}{\partial \rho} + \frac{\partial^2 T_2}{\partial \zeta^2} = \frac{\partial T_2}{\partial \tau}$$
(3.7.8)
и условиям

$$T_{2}=0 \operatorname{прu} \tau=0; \qquad (3.7.9)$$

$$\frac{\partial T_{2}}{\partial \rho} - \gamma_{1} (T_{2}-\vartheta_{1})=0 \operatorname{пpu} \rho=\rho_{1},$$

$$\frac{\partial T_{2}}{\partial \rho} + \gamma_{2} (T_{2}-\vartheta_{2})=0 \operatorname{пpu} \rho=1,$$

$$\frac{\partial T_{2}}{\partial \zeta} - \gamma_{3}T_{2}=0 \operatorname{пpu} \zeta=0,$$

$$\frac{\partial T_{2}}{\partial \zeta} + \gamma_{4}T_{2}=0 \operatorname{пpu} \zeta=\zeta_{1}.$$

Решения уравнений (3.7.5) и (3.7.8) находим с помощью интегрального преобразования Лапласа и метода разделения переменных. Применяя к этим уравнениям и соответствующим граничным условиям преобразование Лапласа (3.6.3), приходим к решению уравнения

$$\frac{\partial^2 T_1^*}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T_1^*}{\partial \rho} + \frac{\partial^2 T_1^*}{\partial \zeta^2} = s T_1^*$$
(3.7.11)

при условиях

$$\frac{\partial T_1^*}{\partial \rho} - \gamma_1 T_1^* = 0 \qquad \text{при } \rho = \rho_1,$$

$$\frac{\partial T_1^*}{\partial \rho} + \gamma_2 T_1^* = 0 \qquad \text{при } \rho = 1;$$

$$\frac{\partial T_1^*}{\partial \zeta} - \gamma_3 (T_1^* - \vartheta_3^*) = 0 \qquad \text{при } \zeta = 0,$$

$$(3.7.12) \qquad (3.7.12) \qquad (3.7.13) \qquad ($$

$$\frac{\partial T_1^*}{\partial \zeta} + \gamma_4 \left(T_1^* - \vartheta_4^* \right) = 0$$
 при $\zeta = \zeta_1 \int (0.110)$

и уравнения

$$\frac{\partial^2 T_2^*}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial T_2^*}{\partial \rho} + \frac{\partial^2 T_2^*}{\partial \zeta^2} = s T_2^*$$
(3.7.14)

при условиях

$$\frac{\partial T_2^*}{\partial \rho^2} - \gamma_1 (T_2^* - \vartheta_1^*) = 0 \quad \text{при } \rho = \rho_1, \\
\frac{\partial T_2^*}{\partial \rho} + \gamma_2 (T_2^* - \vartheta_2^*) = 0 \quad \text{при } \rho = 1;$$
(3.7.15)

$$\begin{cases} \frac{\partial T_2^*}{\partial \zeta} - \gamma_3 T_2^* = 0 & \text{при } \zeta = 0, \\ \frac{\partial T_2^*}{\partial \zeta} + \gamma_4 T_2^* = 0 & \text{при } \zeta = \zeta_1, \end{cases}$$
(3.7.16)

где

$$\vartheta_n^* = \int_0^\infty \vartheta_n e^{-s\tau} d\tau \quad (n=1, 2, 3, 4).$$

Для решения уравнений (3.7.11) и (3.7.14) применяем метод разделения переменных. Рассмотрим подробно этот метод для определения функции T_1^* . Подставляя решение для функции T_1^* в виде

$$T_1^* = F(\rho) \Phi(\zeta)$$
 (3.7.17)

в уравнение (3.7.11) и вводя обозначение

$$\frac{1}{F}\left(\frac{d^2F}{d\rho^2}+\frac{1}{\rho}\frac{dF}{d\rho}\right)=-\beta^2,$$

получаем для определения функций F и Ф уравнения

$$\frac{d^2F}{d\rho^2} + \frac{1}{\rho}\frac{dF}{d\rho} + \beta^2 F = 0,$$
$$\frac{d^2\Phi}{d\zeta^2} - (s+\beta^2)\Phi = 0,$$

решения которых имеют вид

$$F = A_1 J_0 (\beta \rho) + A_2 Y_0 (\beta \rho),$$

$$\Phi = B_1 \operatorname{ch} \delta \zeta + B_2 \operatorname{sh} \delta \zeta,$$
(3.7.18)

где $J_0(x)$ и $Y_0(x)$ — функции Бесселя нулевого порядка первого и второго рода; $\delta^2 = s + \beta^2$.

Используя выражения (3.7.18), представляем решение (3.7.17) в виде

$$T_{1}^{*} = (C \operatorname{ch} \delta \zeta + D \operatorname{sh} \delta \zeta) [J_{0} (\beta \rho) + p Y_{0} (\beta \rho)], \qquad (3.7.19)$$

где $C = A_1 B_1$, $D = A_1 B_2$, $p = \frac{A_2}{A_1}$.

Решение (3.7.19) содержит четыре величины *p*, β, *C*, *D*, подлежащих определению из граничных условий.

Используя граничные условия (3.7.12) и принимая во внимание известные из теории бесселевых функций формулы

$$\frac{d}{dx}J_{0}(x) = -J_{1}(x), \quad \frac{d}{dx}Y_{0}(x) = -Y_{1}(x),$$

находим

$$T_1^* = \sum_{n=1} (C_n \operatorname{ch} \delta_n \zeta + D_n \operatorname{sh} \delta_n \zeta) \, u_0 \, (\beta_n \rho), \qquad (3.7.20)$$

где $\delta_n^2 = s + \beta_n^2$.

Величины β_n являются корнями трансцендентного уравнения

$$\frac{\beta u_1\left(\beta\right)}{u_0\left(\beta\right)} = \gamma_2, \qquad (3.7.21)$$

а функции $u_0(\beta \rho)$ и $u_1(\beta \rho)$ имеют следующие выражения:

$$u_{0}(\beta \rho) = \left[Y_{1}(\beta \rho_{1}) + \frac{\tilde{\gamma}_{1}}{\beta}Y_{0}(\beta \rho_{1})\right]J_{0}(\beta \rho) - \left[J_{1}(\beta \rho_{1}) + \frac{\tilde{\gamma}_{1}}{\beta}J_{0}(\beta \rho_{1})\right]Y_{0}(\beta \rho), \quad (3.7.22)$$
$$u_{1}(\beta \rho) = \left[Y_{1}(\beta \rho_{1}) + \frac{\tilde{\gamma}_{1}}{\beta}Y_{0}(\beta \rho_{1})\right]J_{1}(\beta \rho) - \left[J_{1}(\beta \rho_{1}) + \frac{\tilde{\gamma}_{1}}{\beta}J_{0}(\beta \rho_{1})\right]Y_{1}(\beta \rho).$$

Постоянные C_n и D_n находим из условий (3.7.13). Представляем величины $s\vartheta_3^*$ и $s\vartheta_4^*$ в виде рядов по ортогональным функциям $u_0(\beta_n \rho)^*$

$$s\vartheta_3^* = \sum_{n=1}^{\infty} A_n u_0(\beta_n \rho), \qquad s\vartheta_4^* = \sum_{n=1}^{\infty} B_n u_0(\beta_n \rho), \qquad (3.7.23)$$

* Свойство ортогональности функций и₀ (β_nρ)

$$\int_{\rho_1}^{i} \rho u_0(\beta_i \rho) u_0(\beta_j \rho) d\rho = 0 \qquad (i \neq j)$$
⁽¹⁾

можно доказать следующим образом. Функция u_0 ($\beta_n \rho$) (n=i, j) удовлетворяет уравнению (3.7.26). Умножая это уравнение, взятое при n=i и n=j, соответственно на u_0 ($\beta_j \rho$) и u_0 ($\beta_i \rho$), а затем из первого произведения вычитая второе, находим

$$(\beta_{i}^{*}-\beta_{j}^{2})\int_{\rho_{1}}^{1}\rho u_{0}(\beta_{i}\rho) u_{0}(\beta_{j}\rho) d\rho = u_{0}(\beta_{i}) u_{0}(\beta_{j}) \left[\frac{\beta_{i}u_{1}(\beta_{i})}{u_{0}(\beta_{i})} - \frac{\beta_{j}u_{1}(\beta_{j})}{u_{0}(\beta_{j})} \right] - \rho_{1}u_{0}(\beta_{i}\rho_{1}) u_{0}(\beta_{j}\rho_{1}) \left[\frac{\beta_{i}u_{1}(\beta_{i}\rho_{1})}{u_{0}(\beta_{i}\rho_{1})} - \frac{\beta_{j}u_{1}(\beta_{j}\rho_{1})}{u_{0}(\beta_{j}\rho_{1})} \right].$$

$$(2)$$

В силу уравнения (3.7.21) и тождества

$$\frac{\beta_n u_1 \left(\beta_n \rho_1\right)}{u_0 \left(\beta_n \rho_1\right)} = -\gamma_1$$

заключаем, что правая часть выражения (2) равна нулю, т. е. является справедливым свойство ортогональности (1).

где коэффициенты в разложениях (3.7.23) имеют значения

$$A_{n} = \frac{s}{q_{n}} \int_{\rho_{1}}^{1} \vartheta_{3}^{*} \rho u_{0} (\beta_{n} \rho) d\rho,$$

$$B_{n} = \frac{s}{q_{n}} \int_{\rho_{1}}^{1} \vartheta_{4}^{*} \rho u_{0} (\beta_{n} \rho) d\rho;$$

$$q_{n} = \int_{\rho}^{1} \rho u_{0}^{2} (\beta_{n} \rho) d\rho = \frac{1}{2} \left[u_{0}^{2} (\beta_{n}) + u_{1}^{2} (\beta_{n}) - \rho_{1}^{2} u_{0}^{2} (\beta_{n} \rho_{1}) - \rho_{1}^{2} u_{1}^{2} (\beta_{n} \rho_{1}) \right]. \quad (3.7.25)$$

Интеграл (3.7.25) легко вычисляется следующим образом. Так как функция *u*₀ (β_{*n*}ρ) является решением уравнения

$$\frac{d}{d\rho} \left[\rho \, \frac{du_0 \, (\beta_n \rho)}{d\rho} \right] + \beta_n^2 \rho u_0 \, (\beta_n \rho) = 0, \qquad (3.7.26)$$

$$\frac{d}{d\rho} \left[\rho \frac{du_0\left(\beta_n \rho\right)}{d\rho} \right]^2 = -\beta_n^2 \rho^2 \frac{du_0^2\left(\beta_n \rho\right)}{d\rho}$$

или

$$\int_{\rho_1}^1 \rho^2 du_0^2(\beta_n \rho) = - \left[\rho^2 u_1^2(\beta_n \rho)\right]_{\rho_1}^1.$$

Интегрируя по частям, получаем формулу (3.7.25). Определяя постоянные С_n и D_n из граничных условий (3.7.13) и подставляя их в решение (3.7.20), находим

$$T_{1}^{*} = \sum_{n=1}^{\infty} \frac{\gamma_{3}A_{n}X_{1}(\delta_{n}\zeta) + \gamma_{4}B_{n}X_{2}(\delta_{n}\zeta)}{s[(\gamma_{3}+\gamma_{4})\delta_{n} \operatorname{ch} \delta_{n}\zeta_{1} + (\gamma_{3}\gamma_{4}+\delta_{n}^{2}) \operatorname{sh} \delta_{n}\zeta_{1}]} \delta_{n}u_{0}(\beta_{n}\rho), \quad (3.7.27)$$

где

$$X_{1}(\delta_{n}\zeta) = \operatorname{ch} \delta_{n}(\zeta_{1}-\zeta) + \frac{\gamma_{4}}{\delta_{n}}\operatorname{sh} \delta_{n}(\zeta_{1}-\zeta),$$

$$X_{2}(\delta_{n}\zeta) = \operatorname{ch} \delta_{n}\zeta + \frac{\gamma_{3}}{\delta_{n}}\operatorname{sh} \delta_{n}\zeta.$$
(3.7.28)

Аналогичным образом определяем функцию Т₂. Ищем решение уравнения (3.7.14) в виде

$$T_{2}^{*} = F(\rho) \Phi(\zeta).$$
 (3.7.29)

Подставляя решение (3.7.29) в уравнение (3.7.14) и вводя обозначение

$$\frac{1}{\Phi}\frac{d^2\Phi}{d\zeta^2}=-\mu^2,$$

получаем для определения функций F и Ф уравнения

$$\frac{d^{2}F}{d\rho^{2}} + \frac{1}{\rho} \frac{dF}{d\rho} - \varepsilon^{2}F = 0,$$

$$\frac{d^{2}\Phi}{d\zeta^{2}} + \mu^{2}\Phi = 0,$$
(3.7.30)

где $\epsilon^2 = s + \mu^2$.

Интегрируя эти уравнения и подставляя выражение для функций *F* и Ф в решение (3.7.29), после перехода к новым постоянным интегрирования получаем

$$T_{\mathtt{s}}^{*} = [AI_{0}(\varepsilon \rho) + BK_{0}(\varepsilon \rho)] (\cos \mu \zeta + p \sin \mu \zeta), \qquad (3.7.31)$$

где $I_0(x)$ и $K_0(x)$ — функции Бесселя нулевого порядка первого и второго рода от чисто мнимого аргумента.

Определяя величины *р* и µ из граничных условий (3.7.16), находим

$$T_{\mathbf{2}}^{*} = \sum_{j=1}^{\infty} \left[A_{j} I_{0} \left(\varepsilon_{j} \rho \right) + B_{j} K_{0} \left(\varepsilon_{j} \rho \right) \right] Z \left(\mu_{j} \zeta \right), \qquad (3.7.32)$$

где

$$Z(\mu\zeta) = \cos \mu\zeta + \frac{\Upsilon_3}{\mu}\sin\mu\zeta, \qquad (3.7.33)$$

а µ; являются корнями уравнения

$$tg \,\mu\zeta_1 = \frac{\tilde{\gamma}_3 + \tilde{\gamma}_4}{\mu^2 - \tilde{\gamma}_3 \tilde{\gamma}_4} \,\mu. \tag{3.7.34}$$

Представив в виде рядов по ортогональным функциям Z (µ, ζ)*

* Свойство ортогональности функций
$$Z(\mu_j \zeta)$$

$$\int_{0}^{\zeta_1} Z(\mu_n \zeta) Z(\mu_m \zeta) d\zeta = 0 \qquad (1)$$

устанавливается аналогичным образом, как и свойство ортогональности функций u_0 ($\beta_n \rho$).

С помощью уравнения (3.7.38) находим

$$(\mu_n^{\mathbf{z}}-\mu_m^{\mathbf{z}})\int_{0}^{\zeta_1} Z(\mu_n\zeta) Z(\mu_m\zeta) d\zeta = \left[Z(\mu_n\zeta) \frac{dZ(\mu_m\zeta)}{d\zeta} - Z(\mu_m\zeta) \frac{dZ(\mu_n\zeta)}{d\zeta} \right]_{0}^{\zeta_1}.$$

Принимая во внимание зависимости (3.7.43), убеждаемся в справедливости свойства ортогональности (1).

величины ϑ_1^* и ϑ_2^* , определим постоянные A_j и B_j из условий (3.7.15):

$$s\vartheta_1^* = \sum_{j=1}^{\infty} C_j Z\left(\mu_j \zeta\right), \qquad s\vartheta_2^* = \sum_{j=1}^{\infty} D_j Z\left(\mu_j \zeta\right), \qquad (3.7.35)$$

где коэффициенты в разложениях (3.7.35) имеют значения

$$C_{j} = \frac{s}{p_{j}} \int_{0}^{\zeta_{1}} \vartheta_{1}^{*} Z\left(\mu_{j}\zeta\right) d\zeta, \quad D_{j} = \frac{s}{p_{j}} \int_{0}^{\zeta_{1}} \vartheta_{2}^{*} Z\left(\mu_{j}\zeta\right) d\zeta, \quad (3.7.36)$$

$$p_{j} = \int_{0}^{\zeta_{1}} Z^{2}(\mu_{j}\zeta) d\zeta = \frac{\zeta_{1}(\mu_{j}^{2} + \gamma_{3}^{2})(\mu_{j}^{2} + \gamma_{4}^{2}) + (\gamma_{3} + \gamma_{4})(\mu_{j}^{2} + \gamma_{3}\gamma_{4})}{2\mu_{j}^{2}(\mu_{j}^{2} + \gamma_{4}^{2})}.$$
 (3.7.37)

Интеграл (3.7.37) вычисляется следующим образом. Функция Z (µ_nζ) удовлетворяет уравнению

$$\frac{d^2 Z\left(\mu_n \zeta\right)}{d\zeta^2} + \mu_n^2 Z\left(\mu_n \zeta\right) = 0. \tag{3.7.38}$$

Полагая в этом уравнении n=j, находим

$$\mu_{j}^{2}\int_{0}^{\zeta_{1}} Z^{2}\left(\mu_{j}\zeta\right)d\zeta = -\left[Z\left(\mu_{j}\zeta\right)\frac{dZ\left(\mu_{j}\zeta\right)}{d\zeta}\right]_{0}^{\zeta_{1}} + \int_{0}^{\zeta_{1}} \left[\frac{dZ\left(\mu_{j}\zeta\right)}{d\zeta}\right]^{2}d\zeta.(3.7.39)$$

С помощью выражения (3.7.33) определяем

$$\mu_{j}^{2}Z^{2}(\mu_{j}\zeta) + \left[\frac{dZ(\mu_{j}\zeta)}{d\zeta}\right]^{2} = \mu_{j}^{2} + \gamma_{3}^{2} \qquad (3.7.40)$$

И

$$\mu_{j}^{2} \int_{0}^{\zeta_{1}} Z^{2}(\mu_{j}\zeta) d\zeta = (\mu_{j}^{2} + \gamma_{3}^{2})\zeta_{1} - \int_{0}^{\zeta_{1}} \left[\frac{dZ(\mu_{j}\zeta)}{d\zeta} \right]^{2} d\zeta. \quad (3.7.41)$$

Складывая выражения (3.7.39) и (3.7.41), получаем

$$2\mu_j^2 \int_0^{\zeta_1} Z^2\left(\mu_j\zeta\right) d\zeta = \left(\mu_j^2 + \gamma_3^2\right) \zeta_1 - \left[Z\left(\mu_j\zeta\right) \frac{dZ\left(\mu_j\zeta\right)}{d\zeta}\right]_0^{\zeta_1}.$$
 (3.7.42)

Функция Z (µ, С) удовлетворяет условиям (3.7.16), из которых вытекают зависимости

$$Z(\mu_{j}\zeta)\frac{dZ(\mu_{j}\zeta)}{d\zeta} = \gamma_{3}Z^{2}(\mu_{j}\zeta) \qquad \text{при } \zeta=0,$$

$$Z(\mu_{j}\zeta)\frac{dZ(\mu_{j}\zeta)}{d\zeta} = -\gamma_{4}Z^{2}(\mu_{j}\zeta) \qquad \text{при } \zeta=\zeta_{1}$$
(3.7.43)

или

$$\begin{bmatrix} \frac{dZ(\mu_{j}\zeta)}{d\zeta} \end{bmatrix}^{2} = \gamma_{3}^{2}Z^{2}(\mu_{j}\zeta) \qquad \text{при} \quad \zeta = 0, \\ \begin{bmatrix} \frac{dZ(\mu_{j}\zeta)}{d\zeta} \end{bmatrix}^{2} = \gamma_{4}^{2}Z^{2}(\mu_{j}\zeta) \qquad \text{при} \quad \zeta = \zeta_{1}. \end{bmatrix}$$
(3.7.44)

Сравнивая выражения (3.7.43) с выражением (3.7.40), имеем

$$Z^{2}(\mu_{j}\zeta) = 1 \qquad \text{при } \zeta = 0, Z^{2}(\mu_{j}\zeta) = \frac{\mu_{j}^{2} + \gamma_{3}^{2}}{\mu_{j}^{2} + \gamma_{4}^{2}} \qquad \text{при } \zeta = \zeta_{1}.$$
 (3.7.45)

На основании (3.7.43) и (3.7.45) находим

$$\left[Z\left(\mu_{j}\zeta\right)\frac{dZ\left(\mu_{j}\zeta\right)}{d\zeta}\right]_{0}^{\zeta_{1}} = -\frac{\left(\gamma_{3}+\gamma_{4}\right)\left(\mu_{j}^{2}+\gamma_{3}\gamma_{4}\right)}{\mu_{j}^{2}+\gamma_{4}^{2}}.$$
 (3.7.46)

Наконец, подставляя выражение (3.7.46) в (3.7.42), получаем выражение (3.7.37).

Подставляя найденные из граничных условий значения постоянных A_j и B_j в решение (3.7.32), окончательный результат представляем в виде

$$T_{2}^{*} = \sum_{j=1}^{\infty} \frac{\gamma_{1}C_{j}w_{0}\left(\varepsilon_{j}\rho\right) + \gamma_{2}D_{j}v_{0}\left(\varepsilon_{j}\rho\right)}{s\left[\gamma_{2}v_{0}\left(\varepsilon_{j}\right) + \varepsilon_{j}v_{1}\left(\varepsilon_{j}\right)\right]} Z\left(\mu_{j}\zeta\right), \qquad (3.7.47)$$

где

$$\begin{split} \boldsymbol{\upsilon}_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) &= \left[K_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right) + \frac{\Upsilon_{1}}{\varepsilon}K_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right)\right]I_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) + \left[I_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right) - \frac{\Upsilon_{1}}{\varepsilon}I_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right)\right]K_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right),\\ \boldsymbol{\upsilon}_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) &= \left[K_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right) + \frac{\Upsilon_{1}}{\varepsilon}K_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right)\right]I_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) - \left[I_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right) - \frac{\Upsilon_{1}}{\varepsilon}I_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}_{1}\right)\right]K_{1}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right),\\ \boldsymbol{\upsilon}_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) &= \left[K_{1}\left(\boldsymbol{\varepsilon}\right) - \frac{\Upsilon_{2}}{\varepsilon}K_{0}\left(\boldsymbol{\varepsilon}\right)\right]I_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right) + \left[I_{1}\left(\boldsymbol{\varepsilon}\right) + \frac{\Upsilon_{2}}{\varepsilon}I_{0}\left(\boldsymbol{\varepsilon}\right)\right]K_{0}\left(\boldsymbol{\varepsilon}\boldsymbol{\rho}\right),\\ I_{1}\left(\boldsymbol{x}\right) &= I_{0}^{'}\left(\boldsymbol{x}\right),\quad K_{1}\left(\boldsymbol{x}\right) = -K_{0}^{'}\left(\boldsymbol{x}\right). \end{split}$$

Используя теоремы разложения операционного исчисления, для различных законов изменения температур среды ϑ_n (n=1, 2, 3, 4) от времени можно из выражений для изображений (3.7.27) и (3.7.47) получить соответствующие решения для температурного поля в цилиндре.

В качестве примера рассмотрим случай, когда температуры среды $\vartheta_n (n=1, 2, 3, 4)$ имеют постоянные значения. Применяя для перехода от изображения к оригиналу формулу (3.6.10), можно найти следующее выражение для температурного поля цилиндра:

$$T = T_{\rm I} - T_{\rm II},$$
 (3.7.48)

где функция T_{I} не зависит от времени, а функция T_{II} носит затухающий характер и уменьшается со временем. Эти функции имеют следующие выражения:

$$T_{1} = \sum_{n=1}^{\infty} \frac{\gamma_{3}A_{n}X_{1}(\beta_{n}\zeta) + \gamma_{4}B_{n}X_{2}(\beta_{n}\zeta)}{(\gamma_{3}+\gamma_{4})\beta_{n}\operatorname{ch}\beta_{n}\zeta_{1} + (\gamma_{3}\gamma_{4}+\beta_{n}^{2})\operatorname{sh}\beta_{n}\zeta_{1}}\beta_{n}u_{0}(\beta_{n}\rho) + \sum_{j=1}^{\infty} \frac{\gamma_{1}C_{j}w_{0}(\mu_{j}\rho) + \gamma_{2}D_{j}v_{0}(\mu_{j}\rho)}{\gamma_{2}v_{0}(\mu_{j}) + \mu_{j}v_{1}(\mu_{j})}Z(\mu_{j}\zeta), \qquad (3.7.49)$$

$$T_{\mathrm{II}} = \sum_{n=1}^{\infty} u_0(\beta_n \rho) e^{-\beta_n^2 \tau} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 B_n Z(\mu_j \zeta) \right] e^{-\mu_j^2 \tau} + \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} M_{nj} \left[\gamma_3 A_n Z_1(\mu_j \zeta) + \gamma_4 \sum_{j=1}^{\infty} \sum_{j=1}^{\infty}$$

$$+\sum_{j=1}^{\infty} Z\left(\boldsymbol{\mu}_{j}\boldsymbol{\zeta}\right) e^{-\boldsymbol{\mu}_{j}^{2}\tau} \sum_{n=1}^{\infty} N_{nj} [\gamma_{1}C_{j}w_{1}(\boldsymbol{\beta}_{n}\boldsymbol{\rho}) + \gamma_{2}D_{j}\boldsymbol{\mu}_{0}(\boldsymbol{\beta}_{n}\boldsymbol{\rho})] e^{-\boldsymbol{\beta}_{n}^{2}\tau}, \quad (3.7.50)$$

где

$$Ac \qquad A_{n} = \vartheta_{3}q'_{n}, \quad B_{n} = \vartheta_{4}q'_{n}, \\q'_{n} = \frac{1}{q_{n}\vartheta_{n}} [u_{1}(\beta_{n}) - \rho_{1}u_{1}(\beta_{n}\rho_{1})], \\C_{j} = \vartheta_{1}p'_{j}, \quad D_{j} = \vartheta_{2}p'_{j}, \quad p'_{j} = \frac{\mu_{j}\sin\mu_{j}\zeta_{1} + \gamma_{3}(1 - \cos\mu_{j}\zeta_{1})}{p_{j}\mu_{j}^{2}}, \\w_{1}(\beta_{n}\rho) = \left[Y_{1}(\beta_{n}) - \frac{\gamma_{2}}{\beta_{n}}Y_{0}(\beta_{n})\right]J_{0}(\beta_{n}\rho) - \left[J_{1}(\beta_{n}) - \frac{\gamma_{2}}{\beta_{n}}J_{0}(\beta_{n})\right]Y_{0}(\beta_{n}\rho), \\Z_{1}(\mu_{j}\zeta) = \cos\left[\mu_{j}(\zeta_{1} - \zeta)\right] + \frac{\gamma_{4}}{\mu_{j}}\sin\left[\mu_{j}(\zeta_{1} - \zeta)\right], \\M_{nj} = \frac{2\mu_{j}^{2}}{(\beta_{n}^{2} + \mu_{j}^{2})} \times \\\times \frac{1}{\left[(\gamma_{3} + \gamma_{4})\zeta_{1} + 2\right]\mu_{j}\sin\mu_{j}\zeta_{1} - \left[\gamma_{3} + \gamma_{4} + \zeta_{1}(\gamma_{3}\gamma_{4} - \mu_{j}^{2})\right]\cos\mu_{j}\zeta_{1}}, \\N_{nj} = \frac{(1 - \gamma_{1}\rho_{1}\ln\rho_{1})\beta_{n}^{2}q'_{n}}{(\beta_{n}^{2} + \mu_{j}^{2})\left[\gamma_{2}(1 - \gamma_{1}\rho_{1}\ln\rho_{1}) + \gamma_{1}\rho_{1}\right]}.$$

Остальные обозначения указаны выше.

i=1

Для сплошного цилиндра ($\rho_1 = 0$) выражения (3.7.49) и (3.7.50) принимают вид

$$T_{1} = \vartheta_{1} - \sum_{n=1}^{\infty} \frac{A_{n}\beta_{n} [\gamma_{3} (\vartheta_{1} - [\vartheta_{3}) X_{1} (\beta_{n}\zeta) + \gamma_{4} (\vartheta_{1} - \vartheta_{4}) X_{2} (\beta_{n}\zeta)]}{(\gamma_{3} + \gamma_{4}) \beta_{n} \operatorname{ch} \beta_{n}\zeta_{1} + (\gamma_{3}\gamma_{4} + \beta_{n}^{2}) \operatorname{sh} \beta_{n}\zeta_{1}} J_{0} (\beta_{n}\rho),$$

$$T_{11} = \sum_{n=1}^{\infty} A_{n}J_{0}(\beta_{n}\rho) e^{-\beta_{n}^{2}\tau} \sum_{n=1}^{\infty} M_{nj} \gamma_{3}\vartheta_{3}Z_{1} (\mu_{j}\zeta) +$$

где

$$A_{n} = \frac{2J_{1}(\beta_{n})}{\beta_{n}[J_{0}^{2}(\beta_{n}) + J_{1}^{2}(\beta_{n})]},$$

а β_n — корни уравнения

$$\frac{\beta J_1(\beta)}{J_0(\beta)} = \gamma_2. \tag{3.7.53}$$

Другие частные случаи нестационарной теплопроводности цилиндра рассмотрены в работе [32].

Плоская задача термоупругости

§ 4.1. Основные уравнения плоской задачи термоупругости

Рассмотрим в квазистатической постановке две типичные плоские задачи термоупругости, возникающие при плоском температурном поле T(x, y, t): о плоской деформации и плоском напряженном состоянии.

Плоская деформация возникает в длинном цилиндрическом или призматическом теле, когда его ось совпадает с осью Oz (рис. 13).

Для плоской деформации характерными являются перемещения

$$u = u(x, y), \quad v = v(x, y), \quad w = 0,$$
 (4.1.1)

при которых обращаются в нуль деформации є_z, є_{xz}, ε_{yz} и напряжения σ_{xz}, σ_{vz}.

Полагая в соотношении (1.5.13) $\varepsilon_{lj} = \varepsilon_z = 0$, получаем

$$\sigma_z = \nu (\sigma_x + \sigma_y) - \alpha_{\mathrm{T}} E (T - T_0). \qquad (4.1.2)$$

Зная σ_z , находим соотношения между деформациями ε_x , ε_y , ε_{xy} и напряжениями σ_x , σ_y , σ_{xy} в следующем виде:

$$\varepsilon_{x} = \frac{1}{E_{1}} (\sigma_{x} - \nu_{1} \sigma_{y}) + \alpha_{\tau 1} (T - T_{0}),$$

$$\varepsilon_{y} = \frac{1}{E_{1}} (\sigma_{y} - \nu_{1} \sigma_{x}) + \alpha_{\tau 1} (T - T_{0}),$$

$$\varepsilon_{xy} = \frac{1 + \nu_{1}}{E_{1}} \sigma_{xy},$$
(4.1.3)

где

$$E_1 = \frac{E}{1 - \nu^2}, \quad \nu_1 = \frac{\nu}{1 - \nu}, \quad \alpha_{\tau 1} = \alpha_{\tau} (1 + \nu).$$
 (4.1.4)

Плоское напряженное состояние возникает в тонкой пластине, когда ее срединная поверхность расположена в плоскости xOy; при этом поверхности пластины $z = \pm \frac{h}{2}$ должны быть свободными от внешних усилий (см. рис. 13).

Рис. 13.

При плоском напряженном состоянии напряжения σ_x , σ_y , σ_{xy} равномерно распределены по толщине пластины, а остальные напряжения отсутствуют:

$$\sigma_2 = \sigma_{xz} = \sigma_{yz} = 0. \tag{4.1.5}$$

Деформации ε_x , ε_y , ε_z , ε_{xy} определяются по формулам

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu \sigma_{y}) + \alpha_{r} (T - T_{0}), \qquad (4.1.6)$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu \sigma_{x}) + \alpha_{r} (T - T_{0}), \qquad (4.1.7)$$

$$\varepsilon_{xy} = \frac{1 + \nu}{E} \sigma_{xy}; \qquad (4.1.7)$$

Общая постановка плоской задачи термоупругости в декартовых координатах сводится к нахождению восьми функций о_x, σ_y , σ_{xy} , ε_x , ε_y , ε_{xy} , *u*, *v*, удовлетворяющих в случае отсутствия объемных сил двум уравнениям равновесия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} = 0,$$

$$\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0,$$
(4.1.8)

трем соотношениям между деформациями и напряжениями (4.1.6) (плоское напряженное состояние) или (4.1.3) (плоская деформация) и трем соотношениям между деформациями и перемещениями

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right).$$
 (4.1.9)

После решения этой основной задачи в случае плоского напряженного состояния определяется ε_z по формуле (4.1.7), а в случае плоской деформации — σ_z по формуле (4.1.2). Граничные условия на наружном контуре задаются либо в напряжениях

$$\sigma_x n_x + \sigma_{xy} n_y = f_x(x, y),$$

$$\sigma_{xy} n_x + \sigma_y n_y = f_y(x, y),$$
(4.1.10)

либо в перемещениях

$$u = g_1(x, y), \quad v = g_2(x, y).$$
 (4.1.11)

Здесь f_x , f_y — компоненты вектора плотности поверхностной силы; n_x , n_y — компоненты единичного вектора внешней нормали к контуру.

Если граничные условия плоской задачи термоупругости заданы в перемещениях, то целесообразно решать плоскую задачу термоупругости в перемещениях.

Полагая в уравнении (2.2.1) $u_3 = w = 0$, получаем следующие два уравнения, к решению которых сводится решение задачи термоупругости о плоской деформации в перемещениях:

$$\mu \nabla^{2} u + (\lambda + \mu) \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - (3\lambda + 2\mu) \alpha_{T} \frac{\partial T}{\partial x} = 0,$$

$$\mu \nabla^{2} v + (\lambda + \mu) \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - (3\lambda + 2\mu) \alpha_{T} \frac{\partial T}{\partial y} = 0,$$

(4.1.12)

где

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} -$$

оператор Лапласа для двумерной задачи.

Для получения соответствующих уравнений в случае плоского напряженного состояния поступаем следующим образом. Из равенств (4.1.4) определяем

$$E = E_1 \frac{1 + 2\nu_1}{(1 + \nu_1)^2}, \quad \nu = \frac{\nu_1}{1 + \nu_1}, \quad \alpha_{\tau} = \alpha_{\tau 1} \frac{1 + \nu_1}{1 + 2\nu_1}. \quad (4.1.13)$$

Этим величинам соответствуют

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} = \frac{E_1\nu_1}{1-\nu_1^2}, \quad \mu = \frac{E_1}{2(1+\nu_1)},$$

$$(3\lambda+2\mu)\,\alpha_{\tau} = \frac{\alpha_{\tau 1}E_1}{1-\nu_1}.$$
(4.1.14)

Подставляя величины (4.1.13) в уравнение (4.1.12) и заменяя затем E_1 , ν_1 , α_{τ_1} на E, ν , α_{τ} , получаем основные уравнения в перемещениях для плоского напряженного состояния.

Частное решение системы уравнений (4.1.12) в соответствии с решением (2.2.7) имеет вид

$$u^{(T)} = \frac{\partial \Phi}{\partial x}, \quad v^{(T)} = \frac{\partial \Phi}{\partial y}, \quad (4.1.15)$$

где на основании уравнения (2.2.8) термоупругий потенциал перемещений Ф для плоской деформации удовлетворяет уравнению

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \frac{1+\nu}{1-\nu} \alpha_{\rm T} (T-T_0). \qquad (4.1.16)$$

Подставляя в это уравнение значения v и α_{τ} из равенств (4.1.13) и заменяя затем v_1 и $\alpha_{\tau 1}$ на v и α_{τ} , находим соответствующее уравнение для плоского напряженного состояния:

$$\nabla^2 \Phi = (1+\nu) \alpha_{\tau} (T-T_0). \qquad (4.1.17)$$

К частному решению (4.1.15) системы уравнений (4.1.12) необходимо присоединить общее решение соответствующей однородной системы уравнений, содержащее необходимое число постоянных интегрирования для удовлетворения граничных условий в перемещениях (4.1.11). Такая постановка задачи пригодна как для односвязных, так и для многосвязных тел.

Не останавливаясь больше на этом вопросе, перейдем к постановке плоской задачи термоупругости в напряжениях.

Рассмотрим сначала случай односвязных тел.

Для двумерной задачи шесть уравнений совместности деформаций переходят в одно уравнение

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = 2 \frac{\partial^2 \varepsilon_{xy}}{\partial x \partial y}.$$
(4.1.18)

Заменяя в этом уравнении по формулам (4.1.6) деформации напряжениями и принимая во внимание уравнения равновесия

(4.1.8), получаем для плоского напряженного состояния следующее уравнение совместности деформаций в напряжениях:

$$\nabla^2 \left(\sigma_x + \sigma_y\right) + E \alpha_{\mathrm{T}} \nabla^2 T = 0. \tag{4.1.19}$$

Вводим функцию напряжений F по формулам

$$\sigma_x = \frac{\partial^2 F}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 F}{\partial x^2}, \quad \sigma_{xy} = -\frac{\partial^2 F}{\partial x \partial y};$$
 (4.1.20)

при этом уравнения равновесия (4.1.8) удовлетворяются тождественно.

Подставляя выражения (4.1.20) в уравнение (4.1.19), находим, что для плоского напряженного состояния функция напряжений должна удовлетворять уравнению

$$\nabla^4 F + E \boldsymbol{\alpha}_{\mathrm{T}} \nabla^2 T = 0, \qquad (4.1.21)$$

где

$$\nabla^4 F = \nabla^2 (\nabla^2 F) = \frac{\partial^4 F}{\partial x^4} + 2 \frac{\partial^4 F}{\partial x^2 \partial y^2} + \frac{\partial^4 F}{\partial y^4}. \quad (4.1.22)$$

Заменяя в этом уравнении E, $\alpha_{\rm T}$ на E_1 , $\alpha_{\rm T1}$ и подставляя их в выражения (4.1.4), получаем соответствующее уравнение для функции F в случае плоской деформации:

$$\nabla^4 F + \frac{E}{1-\nu} \alpha_{\mathrm{r}} \nabla^2 T = 0. \qquad (4.1.23)$$

Общее решение уравнения (4.1.21) или (4.1.23) имеет вид

$$F = F^* + F^{(T)}, \qquad (4.1.24)$$

где функция F* является общим решением бигармонического уравнения

$$\nabla^4 F^* = 0,$$
 (4.1.25)

а функция $F^{(T)}$ в случае плоского напряженного состояния — частным решением уравнения

$$\nabla^2 F^{(T)} + E \alpha_{\rm T} (T - T_0) = 0, \qquad (4.1.26)$$

а в случае плоской деформации — частным решением уравнения

$$\nabla^2 F^{(T)} + \frac{E}{1-\nu} \alpha_{\tau} (T-T_0) = 0. \qquad (4.1.27)$$

Сформулируем граничные условия для функции напряжений в системе ортогональных криволинейных координат *s*, *n* для односвязного тела.

Пусть в некоторой точке *Р* контура удовлетворяются граничные условия (4.1.10) (рис. 14). Выражая напряжения через

функцию напряжений по формулам (4.1.20) и учитывая равенства

$$n_{x} = \cos(n, x) = \cos(s, y) = \frac{dx}{dn} = \frac{dy}{ds},$$

$$n_{y} = \cos(n, y) = -\cos(s, x) = \frac{dy}{dn} = -\frac{dx}{ds},$$
(4.1.28)

переписываем условия (4.1.10) в виде

$$f_{x} = \frac{\partial^{2} F}{\partial y^{2}} \frac{dy}{ds} + \frac{\partial^{2} F}{\partial x \partial y} \frac{dx}{ds} = \frac{\partial}{\partial s} \left(\frac{\partial F}{\partial y} \right),$$

$$f_{y} = -\frac{\partial^{2} F}{\partial x \partial y} \frac{dy}{ds} - \frac{\partial^{2} F}{\partial x^{2}} \frac{dx}{ds} =$$

$$= -\frac{\partial}{\partial s} \left(\frac{\partial F}{\partial x} \right). \quad (4.1.29)$$

Интегрируя равенства (4.1.29), получаем

$$\frac{\partial F}{\partial x} = -\int_{0}^{s} f_{y} ds + \alpha, \quad \frac{\partial F}{\partial y} = \int_{0}^{s} f_{x} ds + \beta, \quad (4.1.30)$$

Рис. 14.

где а и β — постоянные.

=

Зная частные производные от функции напряжений в двух взаимно перпендикулярных направлениях, находим функцию напряжений (интегрированием по частям) и ее нормальную производную

$$F = \int_{0}^{s} \left[-\frac{dx}{ds} \int_{0}^{s} f_{y} ds + \frac{dy}{ds} \int_{0}^{s} f_{x} ds \right] ds + \alpha x + \beta y + \gamma =$$

= $-x \int_{0}^{s} f_{y} ds + y \int_{0}^{s} f_{x} ds + \int_{0}^{s} (f_{y} x - f_{x} y) ds + \alpha x + \beta y + \gamma, \quad (4.1.31)$

$$\frac{\partial F}{\partial n} = \frac{dx}{dn} \left(-\int_{0}^{s} f_{y} ds + \alpha \right) + \frac{dy}{dn} \left(\int_{0}^{s} f_{x} ds + \beta \right).$$
(4.1.32)

Так как добавление линейной функции к функции напряжений F не влияет на распределение напряжений, то постоянные α , β , γ можно принять равными нулю.

При отсутствии поверхностных сил ($f_x = f_y = 0$) граничные условия для функции напряжений F в случае односвязного тела будут следующими:

$$F = \frac{\partial F}{\partial n} = 0 \quad \text{ на контуре } L. \tag{4.1.33}$$

Таким образом, плоская задача термоупругости в напряжениях сводится к нахождению общего решения (4.1.24) для функции напряжений F, т. е. к нахождению общего решения F^* бигармонического уравнения (4.1.25) и частного решения $F^{(T)}$ уравнения Пуассона (4.1.26) или (4.1.27), при удовлетворении граничных условий (4.1.33).

Зная частные решения $F^{(T)}$, можно плоскую задачу термоупругости свести к плоской задаче изотермической теории упругости, для которой разработаны эффективные методы решения, основанные на применении теории функций комплексного переменного [34].

При стационарном температурном поле без источников тепла, удовлетворяющем уравнению

$$\nabla^2 T(x, y) = 0,$$
 (4.1.34)

плоская задача термоупругости для односвязного свободного тела на основании уравнения (4.1.21) или (4.1.23) описывается уравнением

$$\nabla^4 F = 0 \tag{4.1.35}$$

при граничных условиях (4.1.33). В этом случае задача становится полностью однородной. Ее единственное решение

$$F \equiv 0$$
,

и все напряжения в плоскости хОу $\sigma_x, \sigma_y, \sigma_{xy}$ равны нулю.

При плоской деформации единственный компонент тензора напряжения σ_z , отличный от нуля, на основании формулы (4.1.2)

$$\sigma_z = -\alpha E \left(T - T_0 \right).$$

Таким образом, в односвязном свободном теле, находящемся в условиях плоской деформации или плоского напряженного состояния, стационарное температурное поле без источников тепла не вызывает напряжений σ_x , σ_y , σ_{xy} . Это свойство впервые было указано Н. И. Мусхелишвили [33].

Для постановки плоской задачи термоупругости в напряжениях в случае многосвязных тел необходимы дополнительные уравнения, определяющие однозначность перемещений (§ 4.2). В многосвязных телах, находящихся в стационарном плоском температурном поле, в связи с неоднозначностью перемещений напряжения в плоскости *хОу*, вообще говоря, не равны нулю.

В заключение этого параграфа приведем основные соотношения плоской задачи в полярных координатах *r*, θ: соотношения (4.1.9) между деформациями и перемещениями

$$\varepsilon_r = \frac{\partial u_r}{\partial r}, \quad \varepsilon_{\theta} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}, \quad \varepsilon_{r\theta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r} \right); \quad (4.1.36)$$

соотношения между напряжениями и деформациями в случае плоского напряженного состояния

$$\sigma_{r} = \frac{E}{1 - v^{2}} [\varepsilon_{r} + v\varepsilon_{\theta} - (1 + v) \alpha_{r} (T - T_{0})],$$

$$\sigma_{\theta} = \frac{E}{1 - v^{2}} [\varepsilon_{\theta} + v\varepsilon_{r} - (1 + v) \alpha_{r} (T - T_{0})]. \qquad (4.1.37)$$

$$\sigma_{r\theta} = \frac{E}{1+\nu} \varepsilon_{r\theta};$$

выражения для напряжений (4.1.20)

$$\sigma_r = \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2}, \quad \sigma_{\theta} = \frac{\partial^2 F}{\partial r^2}, \quad \sigma_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial F}{\partial \theta} \right); \quad (4.1.38)$$

оператор Лапласа

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}.$$
 (4.1.39)

§ 4.2. Постановка плоской задачи термоупругости в напряжениях для многосвязных тел

Рассмотрим плоское напряженное состояние *N*+1-связного тела в плоском температурном поле.

Пусть плоское тело ограничено несколькими замкнутыми контурами, из которых наружный контур *L* охватывает все остальные (пластина с *N* отверстиями) (рис. 15). Разрешающее уравнение рассматрива-

щее уравнение рассматриваемой задачи (4.1.21) содержит функцию *F*, которая имеет непрерывные производные до четвертого порядка.

Так как напряжения σ_x , σ_y и σ_{xy} есть однозначные функции, то производные от функции *F*, начиная с производных второго порядка, являются гакже однозначными. Для односвязного тела однозначность вторых производных определяет однозначность и самой функции.

В случае многосвязного тела перемещения могут стать многозначными функциями. Поэтому постановка плоской задачи термоупругости в напряжениях, данная в § 4.1 для односвязной области, для многосвязной области должна быть дополнена тремя условиями однозначности: двумя для перемещений *и* и *v* и одним для угла поворота ω_z.

Указанные условия однозначности можно было бы получить как частный случай соответствующих условий однозначности для пространственной задачи теории упругости (§ 2.3). Однако в целях лучшего уяснения существа рассматриваемого вопроса здесь приводится независимый вывод этих условий в системе ортогональных криволинейных координат *s*, *n*.

Начнем с вывода условия однозначности для угла поворота

$$\omega_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right). \tag{4.2.1}$$

Так как деформации являются однозначными функциями, то на основании формулы

$$\omega_z = \varepsilon_{xy} - \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} - \varepsilon_{xy}, \qquad (4.2.2)$$

вытекающей из соотношения (4.2.1) и третьего из соотношений (4.1.9), следует, что условие однозначности для угла поворота сводится к условию однозначности для производной $\frac{\partial u}{\partial y}$ или для производной $\frac{\partial v}{\partial x}$.

Условие однозначности для производной $\frac{\partial u}{\partial y}$ можно записать в следующем виде:

$$\int_{L_{K}} d\frac{\partial u}{\partial y} = \int_{L_{K}} \left[\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) dx + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) dy \right] = 0, \quad (4.2.3)$$

$$K = 1, \dots, N,$$

где интегрирование выполняется по каждому замкнутому контуру L_K , обходящему только одно K-е отверстие (K=1, 2, ..., N) (см. рис. 15).

Вводя в подынтегральное выражение по формулам (4.1.9) деформации и выражая их с помощью формул (4.1.6) и (4.1.20) через функцию напряжений, получаем

$$\int_{L_{K}} d\frac{du}{\partial y} = \int_{L_{K}} \left[\frac{\partial \varepsilon_{x}}{\partial y} dx + \left(2 \frac{\partial \varepsilon_{xy}}{\partial y} - \frac{\partial \varepsilon_{y}}{\partial x} \right) dy \right] =$$
$$= -\frac{1}{E} \int_{L_{K}} \left[\frac{\partial}{\partial x} \nabla^{2} F dy - \frac{\partial}{\partial y} \nabla^{2} F dx + (1+v) \left(\frac{\partial}{\partial x} \frac{\partial^{2} F}{\partial x \partial y} dx + \frac{\partial}{\partial y} \frac{\partial^{2} F}{\partial x \partial y} dy \right) + E \alpha_{T} \left(\frac{\partial T}{\partial x} dy - \frac{\partial T}{\partial y} dx \right) \right].$$

Принимая во внимание равенства (см. равенства (4.1.28))

$$\frac{\partial}{\partial s} = \frac{\partial}{\partial x} \frac{dx}{ds} + \frac{\partial}{\partial y} \frac{dy}{ds},$$

$$\frac{\partial}{\partial n} = \frac{\partial}{\partial x} \frac{dx}{dn} + \frac{\partial}{\partial y} \frac{dy}{dn} = \frac{\partial}{\partial x} \frac{dy}{ds} - \frac{\partial}{\partial y} \frac{dx}{ds};$$

$$-\frac{1+v}{E} \int_{L_K} \left(\frac{\partial}{\partial x} \frac{\partial^2 F}{\partial x \partial y} dx + \frac{\partial}{\partial y} \frac{\partial^2 F}{\partial x \partial y} dy \right) = -\frac{1+v}{E} \int_{L_K} d\frac{\partial^2 F}{\partial x \partial y} = 0,$$
(4.2.4)

находим условие однозначности для угла поворота в виде

$$-\int_{L_{K}} d\left(\frac{\partial u}{\partial y}\right) = \frac{1}{E} \int_{L_{K}} \frac{\partial}{\partial n} \nabla^{2} F ds + \alpha_{T} \int_{L_{K}} \frac{\partial T}{\partial n} ds = 0, \qquad (4.2.5)$$
$$K = 1, \ 2, \dots, \ N.$$

Условие однозначности для перемещения *и* записываем в виде

$$\int_{L_K} du = \int_{L_K} \left(\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) = 0.$$
 (4.2.6)

Интегрируя по частям, получаем

$$\int_{L_K} du = \left[\frac{\partial u}{\partial x}x\right]_{P_0}^{P_0} + \left[\frac{\partial u}{\partial y}y\right]_{P_0}^{P_0} - \int_{L_K} \left[xd\left(\frac{\partial u}{\partial x}\right) + yd\left(\frac{\partial u}{\partial y}\right)\right].$$
 (4.2.7)

Считая, что условие однозначности для производной $\frac{\partial u}{\partial y}$ уже выполнено, и вводя деформации, имеем

$$\int_{L_K} du = -\int_{L_K} x \left(\frac{\partial^2 u}{\partial x^2} dx + \frac{\partial^2 u}{\partial x \partial y} dy \right) + y \left(\frac{\partial^2 u}{\partial x \partial y} dx + \frac{\partial^2 u}{\partial y^2} dy \right) =$$
$$= -\int_{L_K} \left\{ \left(x \frac{\partial \varepsilon_x}{\partial x} + y \frac{\partial \varepsilon_x}{\partial y} \right) dx + \left[x \frac{\partial \varepsilon_x}{\partial y} + y \left(2 \frac{\partial \varepsilon_{xy}}{\partial y} - \frac{\partial \varepsilon_y}{\partial x} \right) \right] dy = 0.$$

Выражая деформации через функцию напряжений и принимая во внимание равенства (4.2.4), находим

$$\int_{L_K} du = -\frac{1}{E} \int_{L_K} \left[x \left(\frac{\partial \nabla^2 F}{\partial x} \, dx + \frac{\partial \nabla^2 F}{\partial y} \, dy \right) - y \left(\frac{\partial \nabla^2 F}{\partial x} \, dy - \frac{\partial \nabla^2 F}{\partial y} \, dx \right) \right] -$$

$$-\alpha_{T}\int_{L_{K}} \left[x \left(\frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} \partial y \right) - y \left(\frac{\partial T}{\partial x} dy - \frac{\partial T}{\partial y} dx \right) \right] + \\ + \frac{1+\nu}{E} \int_{L_{K}} \left\{ x \left[\frac{\partial}{\partial x} \left(\frac{\partial^{2} F}{\partial x^{2}} \right) dx + \frac{\partial}{\partial y} \left(\frac{\partial^{2} F}{\partial x^{3}} \right) \partial y \right] + \\ + y \left[\frac{\partial}{\partial x} \left(\frac{\partial^{2} F}{\partial x \partial y} \right) dx + \frac{\partial}{\partial y} \left(\frac{\partial^{2} F}{\partial x \partial y} \right) dy \right] \right\} = \\ = -\frac{1}{E} \int_{L_{K}} \left(x \frac{\partial \nabla^{2} F}{\partial s} - y \frac{\partial \nabla^{2} F}{\partial n} \right) ds - \alpha_{T} \int_{L_{K}} \left(x \frac{\partial T}{\partial s} - y \frac{\partial T}{\partial n} \right) ds + \\ + \frac{1+\nu}{E} \int_{L_{K}} \left[x d \left(\frac{\partial^{2} F}{\partial x^{2}} \right) + y d \left(\frac{\partial^{2} F}{\partial x \partial y} \right) \right] = 0.$$

Наконец, преобразуя в этом равенстве с помощью первого из граничных условий (4.1.30) последний интеграл

$$\frac{1+v}{E}\int_{L_{K}}\left[xd\left(\frac{\partial^{2}F}{\partial x^{2}}\right)+yd\left(\frac{\partial^{2}F}{\partial x\partial y}\right)\right] =$$

$$=\frac{1+v}{E}\left\{\left[x\frac{\partial^{2}F}{\partial x^{2}}\right]_{P_{0}}^{P_{0}}+\left[y\frac{\partial^{2}F}{\partial x\partial y}\right]_{P_{0}}^{P_{0}}-\int_{L_{K}}\left(\frac{\partial^{2}F}{\partial x^{2}}dx+\frac{\partial^{2}F}{\partial x\partial y}dy\right)\right\} =$$

$$=-\frac{1+v}{E}\int_{L_{K}}d\left(\frac{\partial F}{\partial x}\right)=\frac{1+v}{E}\int_{L_{K}}f_{y}^{(K)}ds,$$

окончательно получаем условие однозначности для перемещения *и* в виде

$$\int_{L_{K}} du = -\frac{1}{E} \int_{L_{K}} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) \nabla^{2} F ds - \alpha_{T} \int_{L_{K}} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) T ds + \frac{1 + \gamma}{E} \int_{L_{K}} f_{y}^{(K)} ds = 0 \qquad K = 1, 2, \dots, N.$$

$$(4.2.8)$$

Аналогичным образом составляем третье условие однозначности для перемещения v:

$$\int_{L_K} dv = \left[\frac{dv}{dx}x\right]_{P_0}^{P_0} + \left[\frac{\partial v}{\partial y}y\right]_{P_0}^{P_0} - \int_{L_K} \left[xd\left(\frac{\partial v}{\partial x}\right) + yd\left(\frac{\partial v}{\partial y}\right)\right] =$$

$$= -\frac{1}{E} \int_{L_{K}} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) \nabla^{2} F ds - \alpha_{\mathrm{T}} \int_{L_{K}} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) T ds - \frac{1 + v}{E} \int_{L_{K}} f_{x}^{(K)} ds = 0, \quad K = 1, 2, \dots, N, \qquad (4.2.9)$$

где $f_x^{(K)}$, $f_y^{(K)}$ — компоненты вектора плотности поверхностной силы на внутреннем контуре L_K (K=1, 2, ..., N) (см. рис. 15). Если в условиях (4.2.5), (4.2.8), (4.2.9) заменить величины E, v, $\alpha_{\rm T}$ на величины E_1 , v_1 , $\alpha_{\rm T1}$, определяемые выражениями (4.1.4), то получим соответствующие условия однозначности для плоской деформации (длинного цилиндра).

Условия однозначности для перемещений в плоской задаче упругости впервые выведены Мичеллом [64].

Таким образом, постановку плоской задачи термоупругости в напряжениях можно резюмировать следующим образом.

Необходимо определить функцию напряжений F(x, y), удовлетворяющую дифференциальному уравнению (4.1.21) (плоское напряженное состояние) или дифференциальному уравнению (4.1.23) (плоская деформация), граничным условиям (4.1.31) и (4.1.32) на наружном контуре L и соответствующим граничным условиям на каждом внутреннем контуре L_K ($K=1, 2, \ldots, N$) (рис. 15), условиям однозначности для перемещений u, v и угла поворота ω_z на каждом внутреннем контуре L_K , определяемым уравнениями (4.2.5), (4.2.8), (4.2.9) (плоское напряженное состояние) или теми же уравнениями, но содержащими вместо величин E, v, $\alpha_{\rm T}$ величины E_1 , v_1 , $\alpha_{\rm T1}$ (плоская деформация).

В граничные условия входят постоянные α , β , γ (наружный контур) и α_K , β_K , γ_K (K=1, 2, ..., N) (внутренние контуры). Одна из групп этих постоянных выбирается произвольно.

Как указано в § 4.1, постоянные α , β , γ можно положить равными нулю; тогда остальные 3N постоянных определяются из удовлетворения 3N условий однозначности для перемещений и углов поворота.

Пример, иллюстрирующий применение указанной постановки плоской задачи термоупругости, рассматривается в § 4.4.

Можно дать физическое толкование неоднозначности перемещений и углов поворота в многосвязных телах. Оказывается, что эта неоднозначность связана с дислокационными напряжениями, т. е. с такими напряжениями, которые возникают в многосвязных телах не от действия внешних сил, а за счет образования особого рода деформаций, называемых дислокациями. Образовать такую деформацию (дислокацию) можно, например, посредством соединения двух краев тела, получившихся в результате того, что после разреза по линии $a_{\kappa}b_{\kappa}$ из него удалена или, наоборот, в него вставлена узкая полоса (рис. 15).

Совершенно ясно, что при такой операции для соединения различных участков краев приходится посредством внешних воздействий этим участкам давать различные перемещения и углы поворота. После жесткого соединения краев и удаления внешних воздействий тело останется в напряженном состоянии, и по линии $a_{\kappa}b_{\kappa}$ будет иметь место скачкообразное изменение перемещений и углов поворота.

Из формул (4.2.1), (4.2.5), (4.2.7)—(4.2.9) следует, что в результате такой деформации при обходе замкнутого контура L_K в точке P_0 возникают (при отсутствии температурного поля) следующие изменения перемещений Δu , Δv и угла поворота $\Delta \omega_z$:

$$\Delta u = u^{+} - u^{-} = -y \Delta \omega_{z} - \frac{11}{E} \int_{L_{K}} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) \nabla^{2} F ds,$$

$$\nabla v = v^{+} - v^{-} = x \Delta \omega_{z} - \frac{1}{E} \int_{L_{K}} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) \nabla^{2} F ds, \qquad (4.2.10)$$

$$\Delta \omega_{z} = \omega_{z}^{+} - \omega_{z}^{-} = \frac{1}{E} \int_{L_{K}} \frac{\partial}{\partial n} \nabla^{2} F ds,$$

где u^+ , v^+ , ω_z^+ — перемещения и угол поворота в точке P_0 одного края, а u^- , v^- , ω_z^- — перемещения и угол поворота в точке P_0 другого края (рис. 15).

Существует аналогия между плоской задачей термоупругости для многосвязных тел при стационарном температурном поле и плоской задачей изотермической теории упругости с дислокациями, которая установлена Н. И. Мусхелишвили в 1916 г. [33]. Действительно, при наличии дислокаций и отсутствии поверхностных сил ($f_x = f_y = 0$) постановка задачи изотермической теории упругости сводится к нахождению функции напряжений, удовлетворяющей дифференциальному уравнению

$$\nabla^4 F = 0,$$
 (4.2.11)

граничным условиям

$$F = \frac{\partial F}{\partial n} = 0$$
 ($\alpha = \beta = \gamma = 0$) на контуре L, (4.2.12)

$$F = \alpha_{K} x + \beta_{K} y + \gamma_{K}$$

$$\frac{\partial F}{\partial n} = \alpha_{K} \frac{dx}{dn} + \beta_{K} \frac{dy}{dn}$$
 Ha KOHTYPE $L_{K}, K = 1, 2, ..., N$ (4.2.13)

и условиям

$$-\frac{1}{E}\int_{L_{K}} \left(x\frac{\partial}{\partial s} - y\frac{\partial}{\partial n}\right) \nabla^{2}F ds = \Delta u + y\Delta\omega_{z},$$

$$-\frac{1}{E}\int_{L_{K}} \left(y\frac{\partial}{\partial s} + x\frac{\partial}{\partial n}\right) \nabla^{2}F ds = \Delta v - x\Delta\omega_{z},$$

$$\frac{1}{E}\int_{L_{K}} \frac{\partial}{\partial n} \nabla^{2}F ds = \Delta\omega_{z},$$

(4.2.14)

вытекающим из выражений (4.2.10).

В случае плоской деформации в условиях (4.2.14) необходимо E заменить на $E_1 = \frac{E}{1-v^2}$.

Постановка плоской задачи термоупругости при стационарном температурном поле без источников тепла, удовлетворяющем уравнению (4.1.34), сводится к решению того же дифференциального уравнения (4.2.11) при тех же граничных условиях (4.2.12) и (4.2.13) и при условиях однозначности перемещений u, v и угла поворота ω_z

$$\frac{1}{E} \int_{L_{K}} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) \nabla^{2} F ds = -\alpha_{T} \int_{L_{K}} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) T ds,$$

$$\frac{1}{E} \int_{L_{K}} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) \nabla^{2} F ds = -\alpha_{T} \int_{L_{K}} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) T ds, \quad (4.2.15)$$

$$\frac{1}{E} \int_{L_{K}} \frac{\partial}{\partial n} \nabla^{2} F ds = -\alpha_{T} \int_{L_{K}} \frac{\partial}{\partial n} ds.$$

Здесь опять заметим, что в случае плоской деформации в условиях (4.2.15) следует величины E и $\alpha_{\rm T}$ заменить на $E_1 = \frac{E}{1-\nu^2}$ и $\alpha_{\rm T1} = \alpha_{\rm T} (1+\nu)$.

Из сравнения условий (4.2.14) и (4.2.15) вытекают равенства

$$a_{\rm T} \int_{L_K} \left(x \frac{\partial}{\partial s} - y \frac{\partial}{\partial n} \right) T ds = \Delta u + y \Delta \omega_z,$$

$$a_{\rm T} \int_{L_K} \left(y \frac{\partial}{\partial s} + x \frac{\partial}{\partial n} \right) T ds = \Delta v - x \Delta \omega_z, \qquad (4.2.16)$$

$$a_{\rm T} \int_{L_K} \frac{\partial T}{\partial n} ds = -\Delta \omega_z, \quad K = 1, 2, \dots, N,$$

устанавливающие те величины дислокаций Δ*u*. Δ*v*. Δω. которые должны быть приняты во внимание при решении плоской задачи изотермической теории упругости для многосвязного тела. чтобы получить такое же распределение напряжений, как и в соответствующей плоской задаче термоупругости при стационарном температурном поле.

Для исследования плоских задач термоупругости для многосвязных тел может быть эффективно применен метод, основанный на теории функций комплексного переменного. Этот метод детально разработан Н. И. Мусхелишвили [34]. По вопросу применения теории функций комплексного переменного для изучения плоских задач термоупругости следует отметить также работу Н. Н. Лебедева [21].

§ 4.3. Тепловые напряжения в диске и цилиндре при плоском осесимметричном температурном поле

Рассмотрим сначала задачу о плоском осесимметричном напряженном состоянии тонкого круглого диска с радиусом наружного контура r_2 и радиусом центрального отверстия r_1 . Такое напряженное состояние диска возникает при плоском осесимметричном температурном поле T(r, t).

Температурное поле T(r, t) предполагается известным из опыта или из решения соответствующей задачи теплопроводности. Используя первое из уравнений (4.1.12) и заменяя в нем в соответствии с равенствами (4.1.13) и (4.1.14) µ, у и а, на $\frac{1}{\nu}$, $\alpha_{\mathrm{T}} \frac{1+\nu}{1+2\nu}$ E получаем следующее разрешающее $\overline{2(1+\nu)}$, $\overline{1+\nu}$ уравнение рассматриваемой задачи:

$$\frac{d}{dr}\left(\frac{1}{r}\frac{dru_r}{dr}\right) = \alpha_{\tau}(1+\nu)\frac{dT}{dr}, \qquad (4.3.1)$$

где *u_r* — радиальное перемещение диска.

Общее решение уравнения (4.3.1) имеет вид

$$u_r = C_1 r + \frac{C_2}{r} + \frac{(1+\nu)a_{\tau}}{r} \int_{r_1}^{r} (T-T_0) r dr, \qquad (4.3.2)$$

где C₁ и C₂ — постоянные интегрирования.

Зная и, вычисляем по формулам (4.1.36) и (4.1.37) соответствующие напряжения

$$\sigma_{r} = C_{1} \frac{E}{1-v} - C_{2} \frac{E}{(1+v)r^{2}} - \frac{\alpha_{r}E}{r^{2}} \int_{r_{1}}^{r} (T-T_{0}) r dr, \qquad (4.3.3)$$

$$\sigma_{\theta} = C_{1} \frac{E}{1-\nu} + C_{2} \frac{E}{(1+\nu)r^{2}} - \alpha_{T}E(T-T_{0}) + \frac{\alpha_{T}E}{r^{2}} \int_{r_{1}}^{r} (T-T_{0})r dr.$$

При отсутствии контурных усилий постоянные интегрирования определяем из условия

$$\sigma_r = 0$$
 при $r = r_1$ и $r = r_2$. (4.3.4)

Определяя постоянные интегрирования, находим

$$\sigma_{r} = \frac{\alpha_{T}E}{r^{2}} \left[\frac{r-r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}} \int_{r_{1}}^{r_{2}} (T-T_{0}) \dot{r} dr - \int_{r_{1}}^{r} (T-T_{0}) r dr \right],$$

$$\sigma_{\theta} = \frac{\alpha_{T}E}{r^{2}} \left[\frac{r^{2}+r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}} \int_{r_{1}}^{r_{2}} (T-T_{0}) r dr + \int_{r_{1}}^{r} (T-T_{0}) r dr - (T-T_{0}) r^{2} \right], \quad (4.3.5)$$

$$u_{r} = \frac{\alpha_{T}}{r} \left\{ (1+\nu) \int_{r_{1}}^{r} (T-T_{0}) r dr + \frac{(1-\nu)r^{2}+(1+\nu)r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}} \int_{r_{1}}^{r_{2}} (T-T_{0}) r dr \right\}.$$

Полагая в решениях (4.3.5) $r_1 = 0$, получаем соответствующие решения для сплошного диска. Возникающие в этих решениях неопределенности раскрываются по правилу Лопиталя следующим образом:

$$\lim_{r \to 0} \frac{1}{r^2} \int_0^r (T - T_0) r dr = \frac{1}{2} (T - T_0)_{r=0},$$

$$\lim_{r \to 0} \frac{1}{r} \int_0^r (T - T_0) r dr = 0;$$
(4.3.6)

при этом температура в центре диска предполагается конечной. Заменяя в решениях (4.3.5) E, ν , α_{τ} на $E_1 = \frac{E}{1 - \nu^2}$, $\nu_1 = \frac{\nu}{1 - \nu}$,

 $\alpha_{r_1} = \alpha_r (1+\nu),
 получаем выражения для тепловых напряжений <math>\sigma_r,
 \sigma_8$ и радиального перемещения u_r в длинном полом цилиндре в случае его плоской осесимметричной деформации, обусловленной плоским температурным полем T(r, t).

Тепловое напряжение σ_z в полом цилиндре определяем по формуле (4.1.2) в виде выражения

$$\sigma_{z} = \frac{2\alpha_{\rm T}E\nu}{(1-\nu)(r_{2}^{2}-r_{1}^{2})} \int_{r_{\rm I}}^{r_{2}} (T-T_{0}) r dr - \frac{\alpha_{\rm T}E}{1-\nu} (T-T_{0}). \quad (4.3.7)$$

Это напряжение возникает в цилиндре в том случае, когда его торцевые поверхности закреплены от осевого перемещения

(w=0). Если торцевые поверхности цилиндра свободны от напряжений, то в соответствии с принципом Сен-Венана тепловое напряжение в осевом направлении определяется по формуле

$$\sigma_z' = E \varepsilon_z + \sigma_z, \qquad (4.3.8)$$

где ε_z — постоянная продольная деформация цилиндра; σ_z — напряжение в цилиндре при $\omega = 0$, определяемое выражением (4.3.7).

Деформация є, подбирается так, чтобы равнодействующая напряжений, действующих на торцевой поверхности цилиндра, обращалась в нуль. Она имеет значение

$$\varepsilon_{z} = \frac{2\alpha_{T}}{r_{2}^{2} - r_{1}^{2}} \int_{r_{1}}^{r_{2}} (T - T_{0}) r dr. \qquad (4.3.9)$$

Подставляя величины (4.3.7) и (4.3.9) в формулу (4.3.8), получаем

$$\sigma_{z}^{\prime} = \frac{\alpha_{T}E}{1-\nu} \left[\frac{2}{r_{g}^{*}-r_{1}^{2}} \int_{r_{1}}^{r_{g}} (T-T_{0}) r dr - (T-T_{0}) \right] = \sigma_{r} + \sigma_{\theta}. \quad (4.3.10)$$

Исключая перемещения цилиндра как твердого тела, для цилиндра, у которого торцевые поверхности свободны от напряжений, из равенства (4.3.9) находим следующую величину перемещения в осевом направлении:

$$u_{z} = \frac{2\alpha_{T}z}{r_{2}^{2} - r_{1}^{2}} \int_{r_{1}}^{r_{2}} (T - T_{0}) r dr. \qquad (4.3.11)$$

Исследованиям тепловых напряжений в дисках и цилиндрах посвящена обширная литература. Ранними работами в этой области являются работы Лоренца [63] и А. Н. Динника [11]. Современное состояние исследований по напряжениям в дисках и цилиндрах излагается в книге [54].

§ 4.4. Тепловые напряжения в диске и цилиндре при плоском неосесимметричном стационарном температурном поле

Пусть под действием плоского стационарного неосесимметричного температурного поля $T(r, \theta)$ в тонком круглом диске с центральным отверстием возникает плоское неосесимметричное напряженное состояние. Диск предполагаем свободным от поверхностных сил на внутреннем ($r = r_1$) и наружном ($r = r_2$) контурах. Рассмотрим решение этой задачи, используя ее постановку в напряжениях (§ 4.2).

Температурное поле, удовлетворяющее уравнению Лапласа в полярных координатах

$$\nabla^2 T(r, \theta) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} = 0, \qquad (4.4.1)$$

представляем в виде ряда Фурье

$$T(r, \theta) - T_0 = \sum_{k=0}^{\infty} T^{(k)}(r) \cos k\theta + \sum_{k=1}^{\infty} T_1^{(k)}(r) \sin k\theta, \qquad (4.4.2)$$

где коэффициенты T^(k) и T₁^(k) являются решениями уравнений

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT^{(k)}}{dr}\right) - \frac{k^2}{r^2}T^{(k)} = 0 \qquad (k=0, 1, \ldots),$$

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT^{(k)}_1}{dr}\right) - \frac{k^2}{r^2}T^{(k)}_1 = 0 \qquad (k=1, 2, \ldots).$$
(4.4.3)

В соответствии с выражением (4.4.1) для температурного поля $T(r, \theta)$ выбираем решение для функции напряжений $F(r, \theta)$ в виде

$$F(r, \theta) = \sum_{k=0}^{\infty} F^{(k)}(r) \cos k\theta + \sum_{k=1}^{\infty} F_1^{(k)}(r) \sin k\theta.$$
(4.4.4)

На основании результатов § 4.2, где для рассматриваемого случая следует учесть, что $x=r\cos\theta$, $y=r\sin\theta$, $ds=rd\theta$, dn=dr, функция напряжений $F(r, \theta)$ должна удовлетворять следующим соотношением:

дифференциальному уравнению

$$\nabla^4 F + \alpha_{\mathrm{T}} E \nabla^2 T = 0; \qquad (4.4.5)$$

граничным условиям

$$F = \frac{\partial F}{\partial r} = 0 \quad \text{при} \quad r = r_2, \tag{4.4.6}$$

$$\left. \begin{array}{l} F = \alpha_1 r \cos \theta + \beta_1 r \sin \theta + \gamma_1 \\ \frac{\partial F}{\partial r} = \alpha_1 \cos \theta + \beta_1 \sin \theta \end{array} \right\} \quad \text{при } r = r_1; \qquad (4.4.7)$$

9H)

условиям однозначности для перемещений и угла поворота

$$\int_{0}^{2\pi} \left(r \sin \theta \frac{\partial \nabla^{2} F}{\partial r} - \cos \theta \frac{\partial \nabla^{2} F}{\partial \theta} \right) r d\theta =
= -E \alpha_{T} \int_{0}^{2\pi} \left(r \sin \theta \frac{\partial T}{\partial r} - \cos \theta \frac{\partial T}{\partial \theta} \right) r d\theta
\int_{0}^{2\pi} \left(r \cos \theta \frac{\partial \nabla^{2} F}{\partial r} + \sin \theta \frac{\partial \nabla^{2} F}{\partial \theta} \right) r d\theta =
= -E \alpha_{T} \int_{0}^{2\pi} \left(r \cos \theta \frac{\partial T}{\partial r} + \sin \theta \frac{\partial T}{\partial \theta} \right) r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$= -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$= -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

$$\prod_{n=1}^{2\pi} r d\theta = -E \alpha_{T} \int_{0}^{2\pi} \frac{\partial T}{\partial r} r d\theta$$

Подставляя выражения (4.4.2), (4.4.3) и (4.4.4) в уравнения (4.4.5)—(4.4.8), получаем следующие соотношения: дифференциальное уравнение для $F^{(k)}(r)$

$$\frac{d^{4}F^{(k)}}{dr^{4}} + \frac{2}{r}\frac{d^{2}F^{(k)}}{dr^{3}} - \frac{1+2k^{2}}{r^{2}}\frac{d^{2}F^{(k)}}{dr^{2}} + \frac{1+2k^{2}}{r^{3}}\frac{dF^{(k)}}{dr} + \frac{k^{2}(k^{2}-4)}{r^{4}}F^{(k)}=0 \qquad (k=0, 1, \ldots); \qquad (4.4.10)$$

граничные условия для F^(k)

$$F^{(k)}(r_2) = \frac{dF^{(k)}}{dr}(r_2) = 0 \qquad (k=0, 1, \ldots), \qquad (4.4.11)$$

$$F^{(0)}(r_{1}) = \gamma_{1}, \quad F^{(1)}(r_{1}) = \alpha_{1}r_{1}, \quad F^{(k)}(r_{1}) = 0 \quad (k \ge 2), \qquad (4.4.12)$$

$$\frac{dF^{(0)}}{dr}(r_{1}) = 0, \quad \frac{dF^{(1)}}{dr}(r_{1}) = \alpha_{1}, \quad \frac{dF^{(k)}}{dr}(r_{1}) = 0 \quad (k \ge 2);$$

условия однозначности для $F^{(k)}$ на контуре $r=r_1$

$$\left(\frac{1}{r} - \frac{d}{dr}\right) \left[-\frac{F^{(1)}}{r^2} + \frac{1}{r} \frac{d}{dr} \left(r \frac{dF^{(1)}}{dr} \right) \right] = -\alpha_{\rm T} E \left(\frac{1}{r} - \frac{d}{dr} \right) T^{(1)}(r), \quad (4.4.13)$$

$$\frac{d}{dr}\left[\frac{1}{r}\frac{d}{dr}\left(r\frac{dF^{(0)}}{dr}\right)\right] = -\alpha_{\rm r}E\frac{dT^{(0)}}{dr}.$$
(4.4.14)

Аналогичным образом находим соответствующие уравнения для $F_1^{(k)}(r)$ (k=1, 2,...).

При составлении условий однозначности (4.4.13) и (4.4.14) используются свойства ортогональности тригонометрических функций.

Рассматривая условия (4.4.13) и (4.4.14), замечаем, что они возникают только для функций $F^{(0)}$ и $F^{(1)}$, а следовательно, и для функции $F_1^{(1)}$; для функций $F^{(k)}$ и $F_1^{(k)}$ ($k \ge 2$) условия однозначности удовлетворяются автоматически.

В связи с нулевыми граничными условиями (4.4.12) для функций $F^{(k)}$ ($k \ge 2$) и $F_1^{(k)}$ ($k \ge 2$) заключаем, что

$$F^{(k)} \equiv F_1^{(k)} = 0 \quad (k \ge 2). \tag{4.4.15}$$

Отсюда можно сделать вывод о том, что тепловые напряжения вызываются только стационарным температурным полем

$$T(r, \theta) - T_0 = T^{(0)}(r) + T^{(1)}(r) \cos \theta + T_1^{(1)}(r) \sin \theta; \quad (4.4.16)$$

при этом они отвечают следующей форме решения для функции напряжений:

$$F(r, \theta) = F^{(0)}(r) + F^{(1)}(r) \cos \theta + F^{(1)}(r) \sin \theta. \qquad (4.4.17)$$

Отсутствие тепловых напряжений, соответствующих температурным полям вида $T^{(k)}(r) \cos k\theta$ ($k \ge 2$), может быть легко объяснено с помощью аналогии между плоской задачей термоупругости и задачей изотермической теории упругости с дислокациями.

Рассматривая уравнения (4.2.16) и учитывая равенства $x=r\cos\theta$, $y=r\sin\theta$, замечаем, что в ненагретом диске с центральным отверстием отсутствуют дислокации, эквивалентные температурным членам, содержащим гармоники с k=2, 3, ..., и поэтому не возникают и соответствующие напряжения σ_r , σ_{θ} , $\sigma_{r\theta}$.

Определим тепловые напряжения $\sigma_r^{(0)}$, $\sigma_{\theta}^{(0)}$ и $\sigma_r^{(1)}$, $\sigma_{\tau\theta}^{(1)}$, $\sigma_{\tau\theta}^{(1)}$, отвечающие соответственно температурным полям $T^{(0)}(r)$. $T(r)^{(1)}\cos\theta$.

Решения для функций $T^{(0)}(r)$, $T^{(1)}(r)$, удовлетворяющих дифференциальному уравнению (4.4.3), имеют вид

$$T^{(0)}(r) = \Theta_0 \ln \frac{r}{r_1} + \Theta'_0, \qquad (4.4.18)$$

$$T_{1}^{(1)}(r) = \frac{\Theta_1}{r} + \Theta_1' r,$$
 (4.4.19)

где Θ_0 , Θ'_0 , Θ'_1 , Θ'_1 — постоянные, определяемые из граничных условий соответствующей задачи теплопроводности.

Заметим, что температурные поля Θ'_0 и $\Theta'_1 r \cos \theta = \Theta' x$ тепловых напряжений не вызывают.

Тепловые напряжения $\sigma_r^{(0)}$, $\sigma_{\theta}^{(0)}$ при осесимметричном температурном поле (4.4.18) можно было бы определить с помощью непосредственной подстановки в формулы (4.3.5) вместо $T - T_0$ выражения (4.4.18) для функции $T^{(0)}(r)$. В целях иллюстрации метода приводим решение для тепловых напряжений $\sigma_r^{(0)}$, $\sigma_{\theta}^{(0)}$, используя постановку плоской задачи термоупругости в напряжениях.

Решение уравнения (4.4.10) при k=0 принимает. вид

$$F^{(0)} = C_1 + C_2 \left(\frac{r}{r_1}\right) + C_3 \left(\frac{r}{r_1}\right)^2 + C_4 \left(\frac{r}{r_1}\right)^2 \ln \frac{r}{r_1}.$$
 (4.4.20)

Для определения пяти постоянных C_1 , C_2 , C_3 , C_4 и γ_1 имеем пять уравнений: два граничных условия (4.4.11), два из граничных условий (4.4.12) и одно условие однозначности (4.4.14). Постоянные C_1 и γ_1 не влияют на величину напряжений. Определяя постоянные

$$C_{2} = -\frac{\alpha_{1} E \Theta_{0} r_{2}^{2} r_{1}^{2}}{2(r_{2}^{2} - r_{1}^{2})} \ln \frac{r_{2}}{r_{1}},$$

$$C_{3} = \frac{\alpha_{1} E \Theta_{0} r_{1}^{2}}{8(r_{2}^{2} - r_{1}^{2})} \left[\left(1 + 2 \ln \frac{r_{2}}{r_{1}} \right) r_{2}^{2} - r_{1}^{2} \right], \quad (4.4.21)$$

$$C_{4} = -\frac{\alpha_{1} E r_{1}^{2} \Theta_{0}}{4}$$

и подставляя их в выражения для напряжений, вычисленных по формулам (4.1.38), находим

$$\sigma_{r}^{(0)} = \frac{\alpha_{\tau} E \Theta_{0}}{2} \left[\left(\frac{r_{2}}{r} \right)^{2} \frac{r^{2} - r_{1}^{2}}{r_{2}^{2} - r_{1}^{2}} \ln \frac{r_{2}}{r_{1}} - \ln \frac{r}{r_{1}} \right],$$

$$\sigma_{\theta}^{(0)} = \frac{\alpha_{\tau} E \Theta_{0}}{2} \left[\left(\frac{r_{2}}{r} \right)^{2} \frac{r^{2} + r_{1}^{2}}{r_{2}^{2} - r_{1}^{2}} \ln \frac{r_{2}}{r_{1}} - \ln \frac{r}{r_{1}} - 1 \right].$$
(4.4.22)

Аналогичным способом определяем тепловые напряжения $\sigma_r^{(1)}$, $\sigma_{A}^{(1)}$, $\sigma_{rA}^{(1)}$.

При k=1 решением уравнения (4.4.10) является выражение

$$F^{(1)} = C_1 \frac{r}{r_1} + C_2 \frac{r_1}{r} + C_3 \left(\frac{r}{r_1}\right)^3 + C_4 \frac{r}{r_1} \ln \frac{r}{r_1}. \qquad (4.4.23)$$

Для определения постоянных интегрирования, входящих в выражение для функции напряжений $F^{(1)}$, составляем систему пяти уравнений относительно пяти неизвестных постоянных C_1 , C_2 , C_3 , C_4 , α_1 , используя два граничных условия (4.4.11), два из граничных условий (4.4.12) и условие однозначности (4.4.13):

$$C_{1} \frac{r_{2}}{r_{1}} + C_{2} \frac{r_{1}}{r_{2}} + C_{3} \left(\frac{r_{2}}{r_{1}}\right)^{3} + C_{4} \frac{r_{2}}{r_{1}} \ln \frac{r_{2}}{r_{1}} = 0,$$

$$C_{1} \frac{1}{r_{1}} - C_{2} \frac{r_{1}}{r_{2}^{2}} + C_{3} \frac{3r_{2}^{2}}{r_{1}^{3}} + C_{4} \left(\frac{1}{r_{1}} \ln \frac{r_{2}}{r_{1}} + \frac{1}{r_{1}}\right) = 0,$$

$$C_{1} + C_{2} + C_{3} = \alpha_{1} r_{1},$$

$$C_{1} \frac{1}{r_{1}} - C_{2} \frac{1}{r_{1}} + C_{3} \frac{3}{r_{1}} + C_{4} \frac{1}{r_{1}} = \alpha_{1};$$

$$C_{4} = -\frac{\alpha_{1} \mathcal{E} \Theta_{1} r_{1}}{2}.$$
(4.4.25)

Так как постоянные C_1 и α_1 не влияют на распределение напряжений, то в дополнение к постоянной C_4 , имеющей значение (4.4.25), из системы (4.4.24) определяем

$$C_{2} = -\frac{\alpha_{T} E \Theta_{1} r_{1} r_{2}^{2}}{4 (r_{1}^{2} + r_{2}^{2})}, \quad C_{3} = \frac{\alpha_{T} E \Theta_{1} r_{1}^{3}}{4 (r_{1}^{2} + r_{2}^{2})}. \quad (4.4.26)$$

Выражая тепловые напряжения $\sigma_r^{(1)}$, $\sigma_{\theta}^{(1)}$, $\sigma_{r\theta}^{(1)}$ с помощью формул (4.1.38) через функцию напряжений $F^{(1)}\cos\theta$, где $F^{(1)}$ определяется выражением (4.4.23), и подставляя в полученные выражения значения постоянных интегрирования (4.4.25) и (4.4.26), получаем окончательный результат в виде

$$\sigma_{r}^{(1)} = \frac{\alpha_{\tau} E r \Theta_{1}}{2 \left(r_{1}^{2} + r_{2}^{2} \right)} \left(1 - \frac{r_{1}^{2}}{r^{2}} \right) \left(1 - \frac{r_{2}^{2}}{r^{2}} \right) \cos \theta,$$

$$\sigma_{\theta}^{(1)} = \frac{\alpha_{\tau} E r \Theta_{1}}{2 \left(r_{1}^{2} + r_{2}^{2} \right)} \left(3 - \frac{r_{1}^{2} + r_{2}^{2}}{r^{2}} - \frac{r_{1}^{2} r_{2}^{2}}{r^{4}} \right) \cos \theta, \qquad (4.4.27)$$

$$\sigma_{r\theta}^{(1)} = \frac{\alpha_{\tau} E r \Theta_{1}}{2 \left(r_{1}^{2} + r_{2}^{2} \right)} \left(1 - \frac{r_{1}^{2}}{r^{2}} \right) \left(1 - \frac{r_{2}^{2}}{r^{2}} \right) \sin \theta.$$

Заменяя в формулах (4.4.27) величины *E*, $\alpha_{\rm T}$ на $E_1 = \frac{L}{1 - \nu^2}$ и $\alpha_{\rm T1} = \alpha_{\rm T} (1 - \nu)$, получаем формулы для тепловых напряжений $\sigma_r^{(1)}$, $\sigma_{0}^{(1)}$, $\sigma_{r0}^{(1)}$ в длинном полом цилиндре, находящемся в состоянии плоской деформации под действием плоского стационарного температурного поля $T^{(1)}(r) \cos \theta$.

Полные тепловые напряжения, возникающие в тонком круглом диске с центральным отверстием и в длинном полом цилиндре при стационарном температурном поле $T^{(0)}(r) + T^{(1)}(r) \cos \theta$, определяются выражениями

$$\sigma_{r} = \sigma_{r}^{(0)} + \sigma_{r}^{(1)},$$

$$\sigma_{\theta} = \sigma_{\theta}^{(0)} + \sigma_{\theta}^{(1)},$$

$$\sigma_{r\theta} = \sigma_{r\theta}^{(1)}.$$

$$(4.4.28)$$

В случае плоской деформации к этим напряжениям добавляются осевые тепловые напряжения, вычисляемые по формуле (4.1.2).

Рассмотренная в настоящем параграфе задача явилась предметом исследования ряда авторов. Впервые решение этой задачи с помощью метода, основанного на исследовании вспомогательной задачи о дислокации цилиндра и применении теории функций комплексного переменного, получено Н. И. Мусхелишвили [33, 34]. Позже метод, использующий теорию функций комплексного переменного, был применен для исследования указанной задачи Гейтвудом [5].

Решение аналогичной задачи дано Меланом и Паркусом без использования функций комплексного переменного; в их методе применяется комбинация термоупругого потенциала перемещений и функции напряжений [31].

Приведенный здесь метод решения позаимствован из книги [54].

§ 4.5. Термоупругость круглых пластин

В этом параграфе рассматриваются в квазистатической постановке осесимметричное растяжение и изгиб круглой сплошной пластины, обусловленные стационарным осесимметричным температурным полем

$$T(r, z) = T^{(0)}(r) + zT^{(1)}(r),$$
 (4.5.1)

где координата *z* отсчитывается от срединной поверхности пластины (см. рис. 11); при этом влияние растяжения на изгиб не учитывается.

Предполагается, что на наружном контуре пластины $r=r_2$ и на ее поверхностях $z=\pm \frac{h}{2}$ происходит осесимметричный стационарный конвективный теплообмен, при котором температура среды, омывающей поверхность пластины $z=\frac{h}{2}$, существенно отличается от температуры среды, омывающей ее поверхность $z=-\frac{h}{2}$. При таких условиях теплообмена температурное поле изменяется как влоль радиуса, так и по толщине пластины вы-

изменяется как вдоль радиуса, так и по толщине пластины, вызывая, кроме растяжения пластины, также ее тепловой изгиб.

Решение соответствующей задачи теплопроводности приводится в § 3.4. Если предположить, что температурное поле вдоль толщины пластины изменяется по линейному закону, то решение для стационарного осесимметричного температурного поля определяется выражением (3.4.5). Полагая в этом выражении постоянные C_2 и C'_2 равными нулю (пластина сплошная), получаем температурное поле (4.5.1), в котором функции $T^{(0)}(r)$ и $T^{(1)}(r)$ имеют следующие выражения:

$$T^{(0)}(r) = \vartheta + C_1 I_0 \, (\delta \rho), \tag{4.5.2}$$

$$T^{(1)}(r) = \mu \left[1 + C'_1 I_0(\delta_1 \rho) \right], \qquad (4.5.3)$$

где

$$\begin{split} \vartheta &= \frac{\vartheta_3 + \vartheta_4}{2}, \quad \mu = \frac{\gamma \left(\vartheta_3 - \vartheta_4\right)}{(2 + \gamma)h}, \\ \delta^2 &= \frac{2\gamma r_2^2}{h^2}, \quad \delta_1^2 = \frac{6(2 + \gamma) r_2^2}{h^2}, \quad \gamma = \frac{ah}{\lambda_2}. \end{split}$$

Здесь ϑ_3 и ϑ_4 — температуры среды, омывающей поверхности пластины $z = \frac{h}{2}$ и $z = -\frac{h}{2}$; α — коэффициент теплоотдачи на поверхностях пластины $z = \pm \frac{h}{2}$; λ_{τ} — коэффициент теплопроводности материала пластины; $\rho = \frac{r}{r_2}$ — относительный радиус пластины.

Постоянные C_1 и C'_1 имеют значения, определяемые первыми из равенств (3.3.6) и (3.4.6); при этом в связи с отсутствием в пластине центрального отверстия в этих равенствах следует положить $\gamma_1 = 0$.

Определим тепловые напряжения растяжения и изгиба пластины, соответствующие температурному полю (4.5.1).

Выведем, опираясь на теорию тонких круглых пластин [15], основные уравнения, описывающие рассматриваемую задачу.

Обозначим радиальное перемещение и прогиб срединной плоскости пластины через u_r и u_z .

Относительные удлинения срединной плоскости пластины в радиальном є, и окружном є, направлениях

$$\varepsilon_r = \frac{du_r}{dr}, \quad \varepsilon_{\theta} = \frac{u_r}{r}.$$
 (4.5.4)

Кроме удлинений, срединная плоскость пластины получает искривление. При нахождении параметров, характеризующих это искривление ,в соответствии с гипотезой о неизменяемости нормального элемента считаем, что элемент пластины PP_1 после деформации получает направление нормали к деформированной срединной плоскости, поворачиваясь на малый угол ϑ_r в плоскости rOz (рис. 16).

Малый угол поворота 8, связан с прогибом uz равенством

$$\vartheta_r = -\frac{du_z}{dr}.$$
 (4.5.5)

На основании принятой гипотезы о характере деформации пластины составляем следующие зависимости между перемеще-

Рис. 16.

ниями $u_r^{(z)}$, $u_z^{(z)}$ в точке P_1 на расстоянии z от срединной поверхности и перемещениями u_r , u_z в соответствующей точке P срединной поверхности: $u(z) = u + z_0$

$$u_r^{(z)} = u_r + z \vartheta_r, \tag{4.5.6}$$
$$u_z^{(z)} = u_z.$$

Заменяя в формулах (4.5.4) u_r , u_z на $u_r^{(z)}$, $u_z^{(z)}$, находим относительные удлинения $\varepsilon_r^{(z)}$, $\varepsilon_{0}^{(z)}$ в точке P_1 на расстоянии z от срединной поверхности

где

$$x_r = \frac{d\vartheta_r}{dr} = -\frac{d^3u_z}{dr^2}, \quad x_\theta = \frac{\vartheta_r}{r} = -\frac{1}{r}\frac{du_z}{dr}. \quad (4.5.8)$$

Величины х, и х_е представляют собой кривизну срединной поверхности в радиальном и окружном направлениях.

На элемент пластины, выделенный двумя радиальными (плоскими) и двумя цилиндрическими сечениями, действуют нормальные напряжения σ_r, σ_g и касательное напряжение σ_{rz} (рис. 17). Введем вместо напряжений статически им эквивалентные усилия и моменты по формулам

$$N_{r} = \int_{-h/2}^{h/2} \sigma_{r} dz, \quad N_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} dz, \quad Q = \int_{-h/2}^{h/2} \sigma_{rz} dz,$$

$$M_{r} = \int_{-h/2}^{h/2} \sigma_{r} z dz, \quad M_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} z dz.$$
(4.5.9)

Здесь N_r , Q и M_r — соответственно нормальное усилие, поперечное усилие и изгибающий момент, действующие в цилиндрическом сечении; N_{θ} и M_{θ} — нормальное усилие и изгибающий момент, действующие в радиальном сечении.

Рис. 17.

Внутренние усилия и моменты отнесены к единице длины соответствующей координатной линии (окружности или полярного радиуса).

Введение внутренних усилий и моментов позволяет задачу о равновесии пространственного элемента пластины свести к задаче о равновесии соответствующего элемента ее срединной поверхности. Рассматривая равновесие элемента срединной поверхности (рис. 18), составляем следующие уравнения равновесия пластины:

$$\frac{dN_{r}r}{dr} - N_{\theta} = 0, \qquad (4.5.10)$$

$$\frac{dQr}{dr} = 0, \qquad (4.5.11)$$

$$\frac{dM_r r}{dr} - M_{\theta} - Qr = 0. \tag{4.5.12}$$

Деформации (4.5.7) состоят из упругих деформаций, связанных с напряжениями известными соотношениями, и чисто тепловых деформаций.

Если температура пластины возрастает на Т-То, то при тепловом расширении относительное удлинение линейного эле-

Рис. 18,

мента в любом направлении равно $\alpha_{\rm r} (T-T_0)$, где $\alpha_{\rm r}$ — коэффициент линейного теплового расширения.

Получаем

$$\varepsilon_r^{(z)} = \frac{\sigma_r - \nu \sigma_{\theta}}{E} + \alpha_r (T - T_0),$$

$$\varepsilon_{\theta}^{(z)} = \frac{\sigma_{\theta} - \nu \sigma_r}{E} + \alpha_r (T - T_0),$$
(4.5.13)

где *Е* — модуль упругости, а v — коэффициент Пуассона.

Обе части равенств (4.5.13) умножаем сначала на dz, а затем на zdz и интегрируем в пределах от $z = -\frac{h}{2}$ до $z = \frac{h}{2}$. Вводя вместо напряжений усилия и моменты по формулам (4.5.9) и используя выражения (4.5.7), находим

$$\varepsilon_r = \frac{N_r - \nu N_{\theta}}{Eh} + \varepsilon_{\tau}, \quad \varepsilon_{\theta} = \frac{N_{\theta} - \nu N_r}{Eh} + \varepsilon_{\tau}, \quad (4.5.14)$$

$$\boldsymbol{x}_{r} = \frac{12 \left(M_{r} - \boldsymbol{v} M_{\theta}\right)}{Eh^{3}} + \boldsymbol{x}_{\tau}, \quad \boldsymbol{x}_{\theta} = \frac{12 \left(M_{\theta} - \boldsymbol{v} M_{r}\right)}{Eh^{3}} + \boldsymbol{x}_{\tau}, \quad (4.5.15)$$

где

$$\varepsilon_{\rm r} = \frac{1}{h} \int_{-h/2}^{h/2} \alpha_{\rm r} (T - T_0) \, dz, \quad \varkappa_{\rm r} = \frac{12}{h^3} \int_{-h/2}^{h/2} \alpha_{\rm r} (T - T_0) \, z \, dz. \quad (4.5.16)$$

Величины ε_т и ^χ можно рассматривать как обобщенные чисто тепловые деформации.
При линейном изменении температуры Т-Т₀ по толщине пластины и при постоянном коэффициенте линейного теплового расширения а, величины є и х, принимают вид

$$\boldsymbol{\varepsilon}_{\mathrm{T}} = \boldsymbol{\alpha}_{\mathrm{T}} \left(\boldsymbol{T}_{*} - \boldsymbol{T}_{\mathrm{0}} \right), \qquad (4.5.17)$$

$$\boldsymbol{x}_{\mathrm{r}} = \frac{\boldsymbol{\alpha}_{\mathrm{r}}}{h} \Delta T, \qquad (4.5.18)$$

где

$$T_* = \frac{1}{2} \left[(T)_{z - \frac{h}{2}} + (T)_{z = -\frac{h}{2}} \right], \qquad (4.5.19)$$

$$\Delta T = (T)_{z = \frac{h}{2}} - (T)_{z = -\frac{h}{2}}.$$
(4.5.20)

В этом случае є, есть чисто тепловое относительное удлинение срединной плоскости, а ж, — кривизна срединной плоскости, обусловленная тепловым расширением.

Подставляя в равенства (4.5.19) и (4.5.20) выражение (4.5.1) для температурного поля, определяем величины T_{\star} и ΔT , а затем по формулам (4.5.17) и (4.5.18) — чисто тепловые деформации:

$$\varepsilon_{\mathbf{r}} = \alpha_{\mathbf{r}} \left[\vartheta - T_0 + C_1 I_0(\delta \boldsymbol{\rho}) \right], \qquad (4.5.21)$$

$$\boldsymbol{\varkappa}_{\mathrm{T}} = \boldsymbol{\alpha}_{\mathrm{T}} \boldsymbol{\mu} \left[1 + C_{1}^{\prime} I_{0} \left(\delta_{1} \boldsymbol{\rho} \right) \right]. \tag{4.5.22}$$

Определяя из выражений (4.5.14) и (4.5.15) усилия и моменты, получаем следующие соотношения между усилиями, моментами и деформациями:

$$N_{r} = D_{N} [\varepsilon_{r} + v\varepsilon_{\theta} - (1 + v)\varepsilon_{r}],$$

$$N_{\theta} = D_{N} [\varepsilon_{\theta} + v\varepsilon_{r} - (1 + v)\varepsilon_{r}],$$
(4.5.23)

$$M_{\mathbf{r}} = D_{M} [\mathbf{x}_{\mathbf{r}} + \mathbf{v} \mathbf{x}_{\mathbf{\theta}} - (1 + \mathbf{v}) \mathbf{x}_{\mathbf{r}}],$$

$$M_{\mathbf{\theta}} = D_{M} [\mathbf{x}_{\mathbf{\theta}} + \mathbf{v} \mathbf{x}_{\mathbf{r}} - (1 + \mathbf{v}) \mathbf{x}_{\mathbf{r}}],$$
 (4.5.24)

где $D_N = \frac{Eh}{1-v^2} -$ цилиндрическая жесткость растяжения плас-*Fh*³

 $D_{M} = \frac{Eh^{3}}{12(1-v^{2})}$ — цилиндрическая жесткость изгиба пластины.

Поперечное внутреннее усилие Q, входящее в уравнения равновесия (4.5.11) и (4.5.12), вследствие отсутствия внешних поперечных сил следует положить равным нулю.

Формулы для вычисления напряжений получаем следующим образом. Из соотношений (4.5.13) определяем напряжения

$$\sigma_{r} = \frac{E}{1-\nu^{2}} \left[\varepsilon_{r}^{(z)} + \nu \varepsilon_{\theta}^{(z)} - (1+\nu) \alpha_{T} (T-T_{0}) \right],$$

$$\sigma_{\theta} = \frac{E}{1-\nu^{2}} \left[\varepsilon_{\theta}^{(z)} + \nu \varepsilon_{r}^{(z)} - (1+\nu) \alpha_{T} (T-T_{0}) \right].$$
(4.5.25)

Заменяя деформации $\varepsilon_r^{(z)}$ и $\varepsilon_{\theta}^{(z)}$ их выражениями (4.5.7) и выражая затем деформации ε_r , ε_{θ} и \varkappa_r , \varkappa_{θ} по формулам (4.5.14) и (4.5.15) через усилия и моменты, находим

$$\sigma_{r} = \frac{N_{r}}{h} + \frac{12M_{r}z}{h^{3}} + \frac{E\varepsilon_{\tau}}{1-\nu} + \frac{E\varkappa_{\tau}z}{1-\nu} - \frac{E\alpha_{\tau}(T-T_{0})}{1-\nu},$$

$$\sigma_{\theta} = \frac{N_{\theta}}{h} + \frac{12M_{\theta}z}{h^{3}} + \frac{E\varepsilon_{\tau}}{1-\nu} + \frac{E\varkappa_{\tau}z}{1-\nu} - \frac{E\alpha_{\tau}(T-T_{0})}{1-\nu}.$$
(4.5.26)

При изменении $T - T_0$ вдоль толщины по линейному закону температурные члены в формулах (4.5.26) сокращаются. В этом случае суммарные тепловые напряжения находятся по формулам

$$\sigma_r = \sigma_r^{I} + \sigma_r^{II}, \qquad (4.5.27)$$
$$\sigma_{\mathfrak{g}} = \sigma_{\mathfrak{g}}^{I} + \sigma_{\mathfrak{g}}^{II}, \qquad (4.5.27)$$

где

$$\sigma_r^{\rm I} = \frac{N_r}{h}, \quad \sigma_{\theta}^{\rm I} = \frac{N_{\theta}}{h} - \tag{4.5.28}$$

тепловые напряжения растяжения;

$$\sigma_r^{\rm II} = \frac{12M_r z}{h^3}, \quad \sigma_{\theta}^{\rm II} = \frac{12M_{\theta} z}{h^3} - \qquad (4.5.29)$$

тепловые напряжения изгиба.

Предполагаем, что на контуре $r = r_2$ отсутствуют радиальные силы и изгибающие моменты; в соответствии с этим граничные условия получают вид

$$N_r = 0, \quad M_r = 0 \quad \text{при} \ r = r_2.$$
 (4.5.30)

Если не учитывать влияние растяжения пластины на ее изгиб, то рассматриваемая задача распадается на две независимые задачи: первая из них является задачей о плоском осесимметричном напряженном состоянии пластины, соответствующем чисто тепловой деформации (4.5.19); вторая — задачей об осесимметричном тепловом изгибе круглой пластины, обусловленном чисто тепловой деформацией (4.5.20). Между этими двумя задачами существует полная аналогия, которая проявляется как в основных уравнениях, так и в граничных условиях.

Величинам N_r , N_{θ} , u, Eh, ε_{τ} первой задачи соответствуют величины M_r , M_{θ} , ϑ_r , $\frac{Eh^3}{12}$, \varkappa_{τ} второй задачи.

Величинам $\vartheta = T_0$, C_1 , δ в выражении (4.5.21) для ε_r соответствуют величины μ , $\mu C'_1$, δ_1 в выражении (4.5.22) для \varkappa_r .

Решение первой задачи исследовано в § 4.3. Полагая в формулах (4.3.5) $r_1=0, T=C_1I_0(\delta \rho)$ и учитывая соотношение

$$\int xI_0(x)\,dx=xI_1(x)+C,$$

получаем искомые тепловые напряжения растяжения

$$\sigma_{r}^{I} = \frac{N_{r}}{h} = \frac{\alpha_{\tau} E C_{1}}{\delta} \left[I_{1}(\delta) - \frac{r_{2}}{r} I_{1}(\delta\rho) \right],$$

$$\sigma_{\theta}^{I} = \frac{N_{\theta}}{h} = \frac{\alpha_{\tau} E C_{1}}{\delta} \left[I_{1}(\delta) + \frac{r_{2}}{r} I_{1}(\delta\rho) - \delta I_{0}(\delta\rho) \right].$$
(4.5.31)

Заменяя в формулах N_r , N_0 , Eh, C_1 , δ на M_r , M_0 , $\frac{Eh^3}{12}$, $\mu C'_1$, δ_1 , получаем следующие выражения для изгибающих моментов:

$$M_{r} = \frac{\alpha_{r} E h^{3} \mu C_{1}}{12 \delta_{1}} \left[I_{1}(\delta_{1}) - \frac{r_{2}}{r} I_{1}(\sigma_{1} \rho) \right],$$

$$M_{\theta} = \frac{\alpha_{r} E h^{3} \mu C_{1}}{12 \delta_{1}} \left[I_{1}(\delta_{1}) + \frac{r_{2}}{r} I_{1}(\delta_{1} \rho) - \delta_{1} I_{0}(\delta_{1} \rho) \right].$$
(4.5.32)

Соответствующие этим изгибающим моментам тепловые напряжения изгиба вычисляются по формулам (4.5.29).

Более сложные задачи термоупругости круглых пластин (тепловой изгиб круглых пластин переменной толщины при неосесимметричном температурном поле, тепловые напряжения в круглой пластине при переменном модуле упругости и др.) рассматриваются в работе [15].

Термоупругость оболочек вращения

§ 5.1. Общие замечания. Основные формулы теории поверхностей

Рассмотрим тонкостенную оболочку вращения постоянной толщины под действием внешних контурных сил и температурного поля, распределенных симметрично относительно ее оси.

Срединная поверхность такой оболочки представляет собой поверхность вращения, линиями главных кривизн которой являются меридианы $\theta = \text{const}$ и параллели s = const, где θ — угол между плоскостями рассматриваемого и начального меридиана, а s — длина меридиана, отсчитываемая от некоторой начальной точки (рис. 19).

Первый главный радиус кривизны срединной поверхности *R*₁ является радиусом кривизны меридиана. Второй главный радиус кривизны *R*₂ равен длине отрезка нормали к срединной поверхности, заключенного между этой поверхностью и ее осью. Радиус параллели *r* связан с радиусом кривизны *R*₂ соотношением

$$r = R_2 \sin \varphi, \tag{5.1.1}$$

где φ — угол между нормалью к срединной поверхности и осью вращения (см. рис. 19).

Температурное поле предполагается двумерным и в общем случае нестационарным $T \equiv T(s, z, t)$ (s — меридиональная координата; z — координата, отсчитываемая от срединной поверхности в сторону ее внешней нормали).

Задача термоупругости оболочки рассматривается в квазистатической постановке, а поэтому время t здесь играет роль параметра. Применяя гипотезу о неизменяемости нормального элемента, можно задачу о деформации оболочки свести к задаче о деформации ее срединной поверхности. Исследование такой задачи удобно проводить методами дифференциальной геометрии.

Положение какой-либо точки P срединной поверхности определяется координатами *s*, θ (рис. 19).

Рис. 19.

Введем в рассмотрение так называемый сопровождающий точку P трехгранник единичных взаимно ортогональных векторов $\vec{e_s}$, $\vec{e_{\theta}}$, $\vec{e_z}$, образующих правую систему; $\vec{e_s}$ является единичным вектором касательной к меридиану, направленным в сторону возрастания \vec{s} , $\vec{e_{\theta}}$ — единичным вектором касательной к параллели, направленным в сторону возрастания θ , и $\vec{e_z}$ — единичным вектором внешней нормали к срединной поверхности.

Между векторами $\vec{e_s}$, $\vec{e_\theta}$ и $\vec{e_z}$ существуют соотношения

$$\vec{e}_s = \vec{e}_{\theta} \times \vec{e}_z, \qquad (5.1.2)$$

$$\vec{e}_{\theta} = \vec{e}_z \times \vec{e}_s, \qquad (5.1.3)$$

$$\vec{e}_z = \vec{e}_s \times \vec{e}_{\theta}, \qquad (5.1.4)$$

где косой крест обозначает векторное произведение.

Учитывая, что первая производная радиуса-вектора по длине дуги равна единичному вектору касательной, получаем

$$\vec{e}_s = \frac{\partial \vec{R}}{\partial s}, \quad \vec{e}_{\theta} = \frac{1}{r} \frac{\partial \vec{R}}{\partial \theta}.$$
 (5.1.5)

В дальнейшем нам понадобятся формулы для производных единичных векторов по длине дуг линий главных кривизн.

Из дифференциальной геометрии известно, что первая производная единичного вектора по длине дуги есть вектор, который имеет модуль, равный кривизне кривой, и направлен по главной нормали этой кривой в сторону ее вогнутости.

Предполагаем, что в рассматриваемом случае меридиан обращен вогнутостью к оси оболочки. Тогда, учитывая, что главная нормаль плоской кривой лежит в ее плоскости, находим

$$\frac{\partial \vec{e}_s}{\partial s} = -\frac{1}{R_1} \vec{e}_z, \quad \frac{\partial \vec{e}_\theta}{\partial \theta} = -\vec{e}_r, \quad (5.1.6)$$

где $\vec{e_r}$ — единичный вектор, направленный по радиусу параллельного круга (рис. 19).

Вектор $\vec{e_r}$ может быть разложен на две составляющие по направлениям векторов $\vec{e_s}$ и $\vec{e_z}$ и представлен в виде

$$\vec{e}_r = \cos \vec{\varphi e_s} + \sin \vec{\varphi e_z}.$$

Подставляя выражение для $\vec{e_r}$ во вторую из формул (5.1.6), имеем

$$\frac{\partial \vec{e}_{\theta}}{\partial \theta} = -\cos \vec{\varphi e_s} - \sin \vec{\varphi e_z}. \tag{5.1.7}$$

При движении вершины трехгранника по меридиану вектор $\vec{e_{\theta}}$ не изменяет своего направления. Следовательно,

$$\frac{\partial \vec{e}_{\theta}}{\partial s} = 0. \tag{5.1.8}$$

Дифференцируем векторное произведение (5.1.4) по координате s:

 $\frac{\overrightarrow{\partial e_z}}{\partial s} = \frac{\overrightarrow{\partial e_s}}{\partial s} \times \overrightarrow{e_{\theta}} + \overrightarrow{e_s} \times \frac{\overrightarrow{\partial e_{\theta}}}{\partial s}.$

Применяя первую из формул (5.1.6) и формулу (5.1.8) и учитывая, что от перестановки множителей векторное произведение меняет знак, переписываем последнее равенство в виде

$$\frac{\overrightarrow{\partial e_z}}{\partial s} = \frac{1}{R_1} \overrightarrow{e_\theta} \times \overrightarrow{e_z} = \frac{1}{R_1} \overrightarrow{e_s}.$$
(5.1.9)

Дифференцируя векторное произведение (5.1.2) по координате в и используя формулу (5.1.7), получаем

$$\frac{\vec{\partial e_s}}{\partial \theta} = \frac{\vec{\partial e_\theta}}{\partial \theta} \times \vec{e_z} + \vec{e_\theta} \times \frac{\vec{\partial e_z}}{\partial \theta} = -\cos \vec{\varphi e_s} \times \vec{e_z} - -\sin \vec{\varphi e_z} \times \vec{e_z} + \vec{e_\theta} \times \frac{\vec{\partial e_z}}{\partial \theta}.$$

Принимая во внимание, что векторы $\overrightarrow{e}_{\theta}$ и $\overrightarrow{\frac{\partial e_z}{\partial \theta}}$ параллельны, и учитывая свойства векторных произведений, находим

$$\frac{\overrightarrow{\partial e_s}}{\partial \theta} = \cos \varphi \overrightarrow{e_{\theta}}. \tag{5.1.10}$$

Аналогичным образом определим

$$\frac{\partial \vec{e}_z}{\partial \theta} = \sin \vec{\varphi e_{\theta}}.$$
 (5.1.11)

Полная таблица производных единичных векторов принимает вид

$$\frac{\partial \vec{e}_s}{\partial s} = -\frac{1}{R_1} \vec{e}_z, \quad \frac{\partial \vec{e}_s}{\partial \theta} = \cos \vec{\varphi e}_{\theta},$$

$$\frac{\partial \vec{e}_{\theta}}{\partial s} = 0, \quad \frac{\partial \vec{e}_{\theta}}{\partial \theta} = -\cos \vec{\varphi e}_s - \sin \vec{\varphi e}_z, \quad (5.1.12)$$

$$\frac{\partial \vec{e}_z}{\partial s} = \frac{1}{R_1} \vec{e}_s, \quad \frac{\partial \vec{e}_z}{\partial \theta} = \sin \vec{\varphi e}_{\theta}.$$

Выведем еще дифференциальное соотношение между радиусами кривизны R_1 и R_2 оболочки вращения, которое потребуется в дальнейшем.

Из рис. 20 видно, что $\frac{dr}{ds} = \cos \varphi$. Подставляя в это равенство $ds = R_1 d \varphi$ и $r = R_2 \sin \varphi$, получаем известное условие Кодации — Гаусса для поверхности вращения:

$$\frac{dR_2\sin\phi}{d\phi} = R_1\cos\phi. \tag{5.1.13}$$

Теория деформаций и вывод уравнений равновесия оболочек зращения, опирающиеся на методы дифференциальной геометрчи, рассматриваются в § 5.2 и 5.3. Соотношения между усилиями, моментами и деформациями, учитывающие температурные члены, приводятся в § 5.4.

Вывод разрешающего уравнения, описывающего задачу о термоупругом равновесии оболочек вращения канонических форм (конической, сферической, торообразной), дается в § 5.5.

Рис. 20.

С помощью статико-геометрической аналогии и комплексного преобразования уравнений теории оболочек рассматриваемая задача сводится к решению одного комплексного дифференциального уравнения второго порядка относительно ком-

плексной функции $N_s = N_s + k_0 \varkappa_{\theta}$ (N_s — меридиональное усилие; \varkappa_{θ} — изменение кривизны в направлении параллели; k_0 — комплексная постоянная).

Анализ граничных условий излагается в § 5.6.

Построение решений разрешающих уравнений приводится только для конической и сферической оболочек вращения (§ 5.7 и 5.8). Термоупругая задача для цилиндрической оболочки, детально освещенная в работах [31, 42] и др., здесь не рассматривается.

Для конической и сферической оболочек выводятся частные решения для всех усилий, моментов и перемещений, необходимые для расчета тепловых напряжений; при этом особое внимание уделяется построению точных решений в специальных функциях (бесселевых, гипергеометрических).

§ 5.2. Деформации оболочки

При температурном поле и внешних контурных силах, симметричных относительно оси оболочки вращения, ее срединная поверхность при деформации остается поверхностью вращения; все точки поверхности перемещаются в своих меридиональных плоскостях.

Деформация срединной поверхности в этом случае характеризуется четырьмя величинами: относительными удлинениями є, и є, в направлениях меридиана и параллели и изменениями кривизны ж, и ж, в направлениях меридиана и параллели.

Установим зависимости между деформациями и перемещениями срединной поверхности.

Обозначим проекции вектора перемещения на направления единичных векторов $\vec{e_s}$ и $\vec{e_z}$ в произвольной точке срединной поверхности через u_s и u_z . Положение этой точки до деформации определяется радиусом-вектором \vec{R} , а после деформации радиусом-вектором

$$\vec{R}' = \vec{R} + u_s \vec{e_s} + u_z \vec{e_z}.$$
(5.2.1)

Единичные векторы касательных к меридиану и параллели деформированной срединной поверхности в соответствии с выражениями (5.1.5)

$$\vec{e'_s} = \frac{\partial \vec{R'}}{\partial s'}, \quad \vec{e'_{\theta}} = \frac{1}{r'} \frac{\partial \vec{R'}}{\partial \theta}, \quad (5.2.2)$$

где *ds'* и *r'd θ* — элементы дуг меридиана и параллели после деформации. Эти элементы можно представить выражениями

$$ds' = ds (1 + \varepsilon_s), \quad r' d\theta = r d\theta (1 + \varepsilon_{\theta}), \quad (5.2.3)$$

где ε_s и ε_θ — относительные удлинения в направлениях меридиана и параллели.

Подставляя выражение (5.2.1) в (5.2.2) и принимая во внимание выражения (5.2.3), получаем

$$(1+\varepsilon_{s})\vec{e}_{s}' = \frac{\partial \vec{R}'}{\partial s} = \frac{\partial \vec{R}}{\partial s} + u_{s}\frac{\partial \vec{e}_{s}}{\partial s} + u_{z}\frac{\partial \vec{e}_{z}}{\partial s} + \frac{\partial u_{s}}{\partial s}\vec{e}_{s} + \frac{\partial u_{z}}{\partial s}\vec{e}_{z},$$

$$(1+\varepsilon_{\theta})\vec{e}_{\theta}' = \frac{1}{r}\frac{\partial \vec{R}'}{\partial \theta} = \frac{1}{r}\left(\frac{\partial \vec{R}}{\partial \theta} + u_{s}\frac{\partial \vec{e}_{s}}{\partial \theta} + u_{z}\frac{\partial \vec{e}_{z}}{\partial \theta}\right).$$
(5.2.4)

При написании второго из равенств (5.2.4) учитываем, что в силу симметричной деформации

$$\frac{\partial u_s}{\partial \theta} = \frac{\partial u_z}{\partial \theta} = 0.$$

Заменяя в равенствах (5.2.4) производные единичных векторов их выражениями (5.1.12) и учитывая формулы (5.1.5), получаем

$$\frac{\partial \vec{R}'}{\partial s} = \left(1 + \frac{\partial u_s}{\partial s} + \frac{u_z}{R_1}\right) \vec{e}_s + \left(-\frac{u_s}{R_1} + \frac{\partial u_z}{\partial s}\right) \vec{e}_z,$$

$$\frac{1}{r} \frac{\partial \vec{R}'}{\partial \theta} = \left(1 + \frac{u_s}{r} \cos \varphi + \frac{u_z}{r} \sin \varphi\right) \vec{e}_\theta.$$
(5.2.5)

Из равенств (5.2.4) видно, что величина $1 + \varepsilon_s$ является длиной вектора $\frac{\partial \vec{R'}}{\partial s}$, величина $1 + \varepsilon_{\theta}$ — длиной вектора $\frac{1}{r} \frac{\partial \vec{R'}}{\partial \theta}$. Так как квадрат длины вектора $\frac{\partial \vec{R'}}{\partial s}$ равен сумме квадратов его проекций на направления \vec{e}_s и \vec{e}_z , то

$$(1+\varepsilon_s)^2 = \left(1+\frac{\partial u_s}{\partial s}+\frac{u_z}{R_1}\right)^2 + \left(-\frac{u_s}{R_1}+\frac{\partial u_z}{\partial s}\right)^2.$$

Отбрасывая величины второго порядка малости, находим

$$\varepsilon_s = \frac{\partial u_s}{\partial s} + \frac{u_z}{R_1},\tag{5.2.6}$$

$$\vec{e_s} = \frac{1}{1 + \varepsilon_s} \frac{\partial \vec{R'}}{\partial s} = \vec{e_s} + \left(-\frac{u_s}{R_1} + \frac{\partial u_z}{\partial s} \right) \vec{e_z}.$$
 (5.2.7)

Из сравнения вторых из равенств (5.2.4) и (5.2.5) получаем

$$\varepsilon_{\theta} = \frac{1}{r} (u_s \cos \varphi + u_z \sin \varphi), \qquad (5.2.8)$$

$$\vec{e'_{\theta}} = \frac{1}{r\left(1 + \varepsilon_{\theta}\right)} \frac{\partial \vec{R'}}{\partial \theta} = \vec{e_{\theta}}.$$
(5.2.9)

Линейный элемент оболочки, имеющий до деформации направление $\vec{e_z}$, после деформации получает направление единичного вектора внешней нормали к деформированной поверхности $\vec{e_z}$. Этот вектор может быть найден как векторное произведение векторов $\vec{e_s}$ и $\vec{e_{\theta}}$. Используя при вычислении векторного произведения выражения (5.2.7), (5.2.9) и (5.1.2), (5.1.4) и учитывая, что от перестановки сомножителей векторное произведение изменяет знак, находим

$$\vec{e}_{z} = \vec{e}_{s} \times \vec{e}_{\theta} = \vec{e}_{s} \times \vec{e}_{\theta} + \left(-\frac{u_{s}}{R_{1}} + \frac{\partial u_{z}}{\partial z}\right) \vec{e}_{z} \times \vec{e}_{\theta} = \vec{e}_{z} + \vartheta \vec{e}_{s}, \quad (5.2.10)$$

где

$$\vartheta = \frac{u_s}{R_1} - \frac{\partial u_z}{\partial s}.$$
 (5.2.11)

Величина ϑ является проекцией единичного вектора нормали к деформированной срединной поверхности $\vec{e_z}$ на направление $\vec{e_s}$ и равна малому углу поворота нормали к срединной поверхности вокруг осн $\vec{e_g}$. Положение любой точки P_1 тела оболочки определяется координатами s. θ , z. где координата z, равная отрезку PP_1 , отсчитывается от срединной поверхности в направлении единичного вектора $\vec{e_z}$. Поверхность z = const представляет собой поверхность вращения, равноотстоящую от срединной поверхности, так называемую параллельную поверхность. Радиусы кривизны параллельной поверхности равны R_1+z и R_2+z .

Рис. 21.

Зная угол поворота (5.2.11) нормали к срединной поверхности при ее деформации, находим в соответствии с исходными допущениями теории тонких оболочек следующие зависимости между перемещениями $u_s^{(z)}$, $u_z^{(z)}$ в точке P'_1 на расстоянии z от срединной поверхности и перемещениями в соответствующей точке P' срединной поверхности (рис. 21):

$$u_s^{(z)} = u_s + z\vartheta,$$

 $u_z^{(z)} = u_z.$
(5.2.12)

Заменяя в формулах (5.2.6) и (5.2.8) u_s , u_z , R_n (n=1, 2) на $u_s^{(z)}$, $u_z^{(z)}$, $R_n\left(1+\frac{z}{R_n}\right)$ (n=1, 2), получаем следующие выражения для относительных удлинений $\varepsilon_s^{(z)}$ и $\varepsilon_a^{(z)}$ в точке P_1 на рас-

стоянии z от соответствующей точки Р срединной поверхности

$$\boldsymbol{\varepsilon}_{s}^{(\boldsymbol{z})} = \frac{1}{1 + \frac{z}{R_{1}}} (\boldsymbol{\varepsilon}_{s} + \boldsymbol{z}\boldsymbol{\varkappa}_{s}),$$

$$\boldsymbol{\varepsilon}_{\boldsymbol{\theta}}^{(\boldsymbol{z})} = \frac{1}{1 + \frac{z}{R_{2}}} (\boldsymbol{\varepsilon}_{\boldsymbol{\theta}} + \boldsymbol{z}\boldsymbol{\varkappa}_{\boldsymbol{\theta}}),$$
(5.2.13)

где

$$\varkappa_{s} = \frac{\partial \vartheta}{\partial s} = \frac{\partial}{\partial s} \left(\frac{u_{s}}{R_{1}} \right) - \frac{\partial^{2} u_{z}}{\partial s^{2}}, \qquad (5.2.14)$$

$$\boldsymbol{x}_{\boldsymbol{\theta}} = \frac{1}{r} \,\vartheta \cos \,\boldsymbol{\varphi} = \frac{1}{r} \left(\frac{\boldsymbol{u}_s}{\boldsymbol{R}_1} - \frac{\partial \boldsymbol{u}_z}{\partial s} \right) \cos \,\boldsymbol{\varphi}. \tag{5.2.15}$$

Известно, что исходные допущения теории оболочек вызывают погрешность $\frac{h}{R}$ по сравнению с единицей [37]. Поэтому при вычислении деформаций нет смысла принимать во внимание члены порядка $\frac{z}{R}$ по сравнению с единицей.

Пренебрегая в формулах (5.2.13) членами указанного порядка, получаем выражения для деформаций в более простом виде:

С точностью до погрешности исходных допущений теории оболочек величины ж_s и ж_в представляют собой изменения кривизны срединной поверхности соответственно в меридиональном сечении и в другом главном нормальном сечении, проходящем через касательную к параллели и нормаль к меридиану.

Положительные значения изменений кривизны соответствуют положительным значениям ε_s и ε_{θ} на поверхности оболочки $z = \frac{h}{2}$.

Для осесимметрично деформированной оболочки вращения существуют два уравнения совместности деформаций, являющиеся частным случаем уравнений совместности деформаций общей теории оболочек [6]:

$$\frac{d}{ds}(r\varkappa_{\theta}) - \cos \varphi\varkappa_{s} - \frac{1}{R_{1}} \left[\frac{d\varepsilon_{\theta}r}{ds} - \cos \varphi\varepsilon_{s} \right] = 0,$$

$$(R_{1}\varkappa_{s} + R_{2}\varkappa_{\theta}) \sin \varphi + R_{1} \frac{d}{ds} \left[\frac{d\varepsilon_{\theta}r}{ds} - \cos \varphi\varepsilon_{s} \right] = 0.$$
(5.2.17)

Уравнения (5.2.17) удовлетворяются тождественно при замене деформаций срединной поверхности их выражениями в перемещениях u_s , u_z по формулам (5.2.6), (5.2.8), (5.2.14), (5.2.15).

§ 5.3. Уравнения равновесия оболочки

Выделим из оболочки элемент двумя меридиональными сечениями $\theta = \text{const}$ и $\theta + d\theta = \text{const}$ и двумя коническими поверхностями s = const и s + ds = const, нормальными к срединной поверхности. Пусть σ_s , σ_{θ} — нормальные напряжения, действую-

щие по площадкам, ограничивающим элемент; σ_{sz} — касательные напряжения, действующие по тем же площадкам в направлении единичного вектора $\vec{e_z}$ (рис. 22).

В теории оболочек вместо напряжений вводятся статически эквивалентные им усилия и моменты по формулам

$$N_{s} = \int_{-h/2}^{h/2} \sigma_{s} dz, \quad N_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} dz, \quad Q = \int_{-h/2}^{h/2} \sigma_{sz} dz,$$
$$M_{s} = \int_{-h/2}^{h/2} \sigma_{s} z dz, \quad M_{\theta} = \int_{-h/2}^{h/2} \sigma_{\theta} z dz.$$
(5.3.1)

Рис. 22.

 $s = \text{const}; N_{\theta}, M_{\theta}$ — нормальное усилие и изгибающий момент в сечении $\theta = \text{const}.$

Внутренние усилия и моменты отнесены к единице длины соответствующей координатой линии срединной поверхности (параллели или меридиана).

Положительные направления внутренних сил и моментов указаны на рис. 23.

Задача о равновесии пространственного элемента оболочки сводится к задаче о равновесии соответствующего элемента срединной поверхности. Этот элемент ограничен параллелями s = const и s + ds = const и меридианами $\theta = \text{const}$ и $\theta + d\theta = = \text{const}$.

На сторону элемента s=const действует усилие

$$-(N_{s}\vec{e}_{s}+Q\vec{e}_{z}) rd\theta$$
,

а на сторону элемента s + ds = const — усилие

$$(N_{s}\vec{e}_{s}+Q\vec{e}_{z}) rd\theta + \left(\frac{\partial N_{s}\vec{re}_{s}}{\partial s}+\frac{\partial Q\vec{re}_{z}}{\partial s}\right) ds d\theta.$$

Равнодействующая этих двух усилий равна

$$\left(\frac{\partial N_s \vec{re_s}}{\partial s} + \frac{\partial Q \vec{re_z}}{\partial s}\right) ds d\theta.$$
 (5.3.2)

Таким же образом находим равнодействующую усилий, действующих на стороны элемента $\theta = \text{const}$ и $\theta + d\theta = \text{const}$:

$$\frac{\partial N_{\theta} \vec{e}_{\theta}}{\partial \theta} \, ds d\theta; \tag{5.3.3}$$

равнодействующую изгибающих моментов, действующих на стороны элемента s = const и s + ds = const:

$$\frac{\partial M_s r e_{\theta}}{\partial s} ds d\theta \tag{5.3.4}$$

и равнодействующую изгибающих моментов, действующих на стороны элемента $\theta = \text{const}$ и $\theta + d\theta = \text{const}$:

$$-\frac{\partial M_{\theta} \vec{e}_s}{\partial \theta} ds d\theta.$$
 (5.3.5)

Кроме этого, с точностью до величин того же порядка малости учитываем момент действующих на элемент усилий

$$-Q\vec{re}_{\theta}dsd\theta. \tag{5.3.6}$$

Из условий равенства нулю главного вектора и главного момента всех сил, действующих на элемент срединной поверхности, получаем два векторных уравнения равновесия элемента оболочки:

$$\frac{\partial N_{s} \vec{re_{s}}}{\partial s} + \frac{\partial Q \vec{re_{s}}}{\partial s} + \frac{\partial N_{\theta} \vec{e_{\theta}}}{\partial \theta} = 0,$$

$$\frac{\partial M_{s} \vec{re_{\theta}}}{\partial s} - \frac{\partial M_{\theta} \vec{e_{s}}}{\partial \theta} - Q \vec{re_{\theta}} = 0.$$
(5.3.7)

Дифференцируем произведения скалярных множителей на векторы, используя при этом формулы (5.1.12) для производных единичных векторов и принимая во внимание, что

$$\frac{dN_{\theta}}{d\theta} = 0 \quad \mathbf{H} \quad \frac{dM_{\theta}}{d\theta} = 0.$$

Приравнивая затем нулю коэффициенты при $\vec{e}_s, \vec{e}_{\theta}, \vec{e}_z$, находим из двух векторных уравнений (5.3.7) три скалярных уравнения равновесия элемента оболочки:

$$\frac{dN_{s}r}{ds} - N_{\theta}\cos\varphi + \frac{Qr}{R_{1}} = 0,$$

$$\frac{dQr}{ds} - N_{\theta}\sin\varphi - \frac{N_{s}r}{R_{1}} = 0,$$

$$\frac{dM_{s}r}{ds} - M_{\theta}\cos\varphi - Qr = 0.$$
(5.3.8)

§ 5.4. Соотношения между усилиями, моментами и деформациями

Деформации оболочки слагаются из упругих деформаций, обусловленных напряжениями, и деформаций, вызванных изменением температуры, т. е. так называемых чисто тепловых деформаций. Чисто тепловая деформация в некоторой точке оболочки, возникающая при изменении температуры в этой точке на величину $T - T_0$ (T_0 — температура оболочки в ненапряженном состоянии), характеризуется чисто тепловым относительным удлинением $\alpha_{\rm T}$ ($T - T_0$), где $\alpha_{\rm T}$ — коэффициент линейного теплового расширения.

Если необходимо учесть зависимость α_{τ} от температуры, то α_{τ} ($T-T_0$) рассматриваем как заданную функцию координат в фиксированный момент времени; при этом под α_{τ} понимаем среднее значение коэффициента линейного теплового расширения в интервале между T_0 и T.

Из гипотезы о неизменяемости нормального элемента следует, что соотношения теории упругости, связывающие деформацию сдвига $\varepsilon_{sz}^{(z)}$ и относительное удлинение $\varepsilon_{z}^{(z)}$ с соответствующими напряжениями, могут быть с учетом чисто тепловой деформации заменены равенствами

$$\varepsilon_{sz}^{(z)} = 0, \quad \varepsilon_{z}^{(z)} = \alpha_{\mathrm{T}}(T - T_{\mathrm{O}}).$$

Касательное напряжение σ_{sz} и соответствующее ему поперечное усилие Q являются чисто статическими факторами и определяются из уравнений равновесия.

В соответствии с исходными допущениями теории оболочек предполагается, что нормальные напряжения σ_z на площадках z = const пренебрежимо малы по сравнению с другими напряжениями.

Таким образом, применяя для упругих деформаций известные соотношения, вытекающие из закона Гука для двумерного напряженного состояния, и учитывая чисто тепловые относительные удлинения, имеем следующие соотношения между деформациями $\varepsilon_s^{(z)}$, $\varepsilon_{\theta}^{(z)}$ на расстоянии z от срединной поверхности и соответствующими напряжениями:

$$\varepsilon_{s}^{(z)} = \frac{\sigma_{s} - \nu \sigma_{\theta}}{E} + \alpha_{\tau} (T - T_{0}),$$

$$\varepsilon_{\theta}^{(z)} = \frac{\sigma_{\theta} - \nu \sigma_{s}}{E} + \alpha_{\tau} (T - T_{0}),$$
(5.4.1)

где *E* — модуль упругости; v — коэффициент Пуассона.

Обе части равенств (5.4.1) умножаем сначала на dz, а затем на zdz и интегрируем в пределах от $z = -\frac{h}{2}$ до $z = \frac{h}{2}$, предполагая модуль упругости E постоянным по толщине оболочки. Вводя вместо деформаций $\varepsilon_s^{(z)}$, $\varepsilon_{\theta}^{(z)}$ их выражения (5.2.16)

через деформации срединной поверхности, а вместо напряжений — усилия и моменты по формулам (5.3.1), находим

$$\varepsilon_{s} = \frac{N_{s} - \nu N_{\theta}}{Eh} + \varepsilon_{\tau}, \quad \varepsilon_{\theta} = \frac{N_{\theta} - \nu N_{s}}{Eh} + \varepsilon_{\tau}; \quad (5.4.2)$$

$$\varkappa_{s} = \frac{12(M_{s} - \nu M_{\theta})}{Eh^{3}} + \varkappa_{\tau}, \quad \varkappa_{\theta} = \frac{12(M_{\theta} - \nu M_{s})}{Eh^{3}} + \varkappa_{\tau}, \quad (5.4.3)$$

гле

$$\varepsilon_{\mathrm{T}} = \frac{1}{h} \int_{-h/2}^{h/2} \alpha_{\mathrm{T}} (T - T_{0}) dz, \quad \varkappa_{\mathrm{T}} = \frac{12}{h^{3}} \int_{-h/2}^{h/2} \alpha_{\mathrm{T}} (T - T_{0}) z dz. \quad (5.4.4)$$

Величины ε_т и κ_τ являются обобщенными чисто тепловыми деформациями; в случае линейного изменения $\alpha_{\rm T} (T - T_{\rm o})$ по толщине оболочки е, — чисто тепловое относительное удлинение срединной поверхности, а *, — изменение ее кривизны, обусловленное тепловым расширением.

Определяя из выражений (5.4.2) и (5.4.3) усилия и моменты, получаем следующие соотношения между усилиями, моментами и деформациями срединной поверхности:

$$N_{s} = D_{N} [\varepsilon_{s} + \nu \varepsilon_{\theta} - (1 + \nu) \varepsilon_{\tau}],$$

$$N_{\theta} = D_{N} [\nu \varepsilon_{s} + \varepsilon_{\theta} - (1 + \nu) \varepsilon_{\tau}];$$
(5.4.5)

$$M_{s} = D_{M} [\varkappa_{s} + \varkappa_{\theta} - (1 + \nu) \varkappa_{\tau}],$$

$$M_{\theta} = D_{M} [\varkappa_{s} + \varkappa_{\theta} - (1 + \nu) \varkappa_{\tau}],$$
(5.4.6)

где $D_N = \frac{Eh}{1-v^2}$ — цилиндрическая жесткость растяжения оболочки; $D_M = \frac{Eh^3}{12(1-v^2)}$ — цилиндрическая жесткость изгиба обо-лочки.

На основании формул (5.2.16) и (5.4.1) — (5.4.3) получаем выражения для напряжений в оболочке:

$$\sigma_{s} = \frac{N_{s}}{h} + \frac{12M_{s}z}{h^{3}} + \frac{E}{1-\nu} [\varepsilon_{T} + z\varkappa_{T} - \alpha_{T}(T-T_{0})],$$

$$\sigma_{\theta} = \frac{N_{\theta}}{h} + \frac{12M_{\theta}z}{h^{3}} + \frac{E}{1-\nu} [\varepsilon_{T} + z\varkappa_{T} - \alpha_{T}(T-T_{0})].$$
(5.4.7)

§ 5.5. Разрешающее уравнение

Исключая из первых двух уравнений равновесия (5.3.8) vсилие N_{θ} , получаем

$$\frac{d}{ds}(N_s r \sin \varphi) - \frac{d}{ds}(Qr \cos \varphi) = 0.$$

После интегрирования находим

$$Q = N_s \operatorname{tg} \varphi + \frac{C}{r \cos \varphi}, \qquad (5.5.1)$$

где С — постоянная интегрирования.

Подставляя выражение (5.5.1) для Q в первое и третье уравнения равновесия (5.3.8), находим следующие два уравнения равновесия:

$$\frac{d}{ds}\left(N_{s}\frac{r}{\cos\varphi}\right) - N_{\theta} + \frac{C}{R_{1}\cos^{2}\varphi} = 0,$$

$$\frac{dM_{s}r}{ds} - M_{\theta}\cos\varphi - N_{s}r \operatorname{tg}\varphi - \frac{C}{\cos\varphi} = 0.$$
(5.5.2)

Механический смысл постоянной С определим, рассматривая величину равнодействующей силы Р, направленной вдоль оси оболочки:

$$P = 2\pi r \left(N_s \sin \varphi - Q \cos \varphi \right). \tag{5.5.3}$$

Принимая во внимание соотношение (5.5.1), находим

$$C = -\frac{P}{2\pi}.$$
 (5.5.4)

Таким образом, постоянная C с точностью до множителя $-\frac{1}{2\pi}$ равна осевой силе P, растягивающей оболочку.

К аналогичной (5.5.2) форме можно привести уравнения совместности деформаций (5.2.17).

На основании соотношений (5.2.14) и (5.2.15) имеем

$$(R_1 \varkappa_s + R_2 \varkappa_{\theta}) \sin \varphi = R_1 \frac{d\vartheta \sin \varphi}{ds} = R_1 \frac{d}{ds} (\varkappa_{\theta} r \operatorname{tg} \varphi).$$

Подставляя это выражение во второе из уравнений (5.2.17) и выполняя интегрирование, получаем

$$\varkappa_{\theta} r \operatorname{tg} \varphi + \frac{d \varepsilon_{\theta} r}{d s} - \cos \varphi \varepsilon_{s} + C' = 0.$$
 (5.5.5)

В уравнении (5.5.5) постоянная C' равна нулю; в этом можно убедиться, заменяя деформации перемещениями по формулам (5.2.6), (5.2.8), (5.2.15).

Учитывая выражение (5.5.5) при C'=0, уравнения совместности деформаций (5.2.17) представляем в следующем виде:

$$\frac{d}{ds} \left(\varkappa_{\theta} \frac{r}{\cos \varphi} \right) - \varkappa_{s} = 0,$$

$$\frac{d \varepsilon_{\theta} r}{ds} - \varepsilon_{s} \cos \varphi + \varkappa_{\theta} r \operatorname{tg} \varphi = 0.$$
(5.5.6)

При сравнении уравнений (5.5.2) и (5.5.6) обнаруживается известная статико-геометрическая аналогия: величины N_s , N_{θ} , M_s , M_{θ} в уравнениях (5.5.2) соответствуют величинам \varkappa_{θ} , \varkappa_s , $-\varepsilon_{\theta}$, $-\varepsilon_s$ в уравнениях (5.5.6) [6]. Сравнивая соотношения (5.4.2) и (5.4.6), можно указанную

Сравнивая соотношения (5.4.2) и (5.4.6), можно указанную аналогию расширить: величины ν , $-\frac{1}{Eh}$, $\varepsilon_{\rm r}$ в соотношениях (5.4.2) соответствуют величинам $-\nu$, D_M , $(1+\nu) \varkappa_{\rm r} D_M$ в соотношениях ношениях (5.4.6).

В качестве основных неизвестных, относительно которых будем составлять разрешающие уравнения, выбираем N_s и \varkappa_{θ} . Заменяя во втором из уравнений (5.5.6) деформации ε_s и ε_{θ} усилиями по формулам (5.4.2) и исключая затем усилие N_{θ} с помощью первого из уравнений (5.5.2), получаем первое разрешающее уравнение

$$\frac{R_{1}r}{\cos\varphi}\frac{d^{2}N_{s}}{ds^{2}} + \left[\frac{R_{1}}{r}\frac{d}{ds}\left(\frac{r^{2}}{\cos\varphi}\right) + R_{1}\frac{d}{ds}\left(\frac{r}{\cos\varphi}\right)\right]\frac{dN_{s}}{ds} + \left\{\frac{R_{1}}{r}\frac{d}{ds}\left[r\frac{d}{ds}\left(\frac{r}{\cos\varphi}\right)\right] - \frac{R_{1}\cos\varphi}{r} + v \operatorname{tg}\varphi\right\}N_{s} + EhR_{1}\operatorname{tg}\varphi\varkappa_{\theta} + \frac{Eh}{r}\left[R_{1}\frac{d}{ds}(\varepsilon_{\tau}r) - \varepsilon_{\tau}R_{1}\cos\varphi\right] + \left\{\frac{C}{r}\left[R_{1}\frac{d}{ds}\left(\frac{r}{R_{1}\cos^{2}\varphi}\right) + \frac{v}{\cos\varphi}\right] = 0.$$
(5.5.7)

Принимая R_1 = const и используя соотношение (5.1.13), уравнение (5.5.7) преобразуем к виду

$$\frac{r}{\cos\varphi}\frac{d^2N_s}{ds^2} + \left(3 + \frac{2r\operatorname{tg}\varphi}{R_1\cos\varphi}\right)\frac{dN_s}{ds} + \left[2\frac{\operatorname{tg}\varphi}{R_1} + \frac{r\left(1 + 2\operatorname{tg}^2\varphi\right)}{R_1^2\cos\varphi}\right]N_s + \frac{\operatorname{v}\operatorname{tg}\varphi}{R_1}N_s + Eh\operatorname{tg}\varphi\varkappa_{\theta} + Eh\frac{d\varepsilon_r}{ds} + \frac{C}{R_1\cos\varphi}\left(\frac{1 + \operatorname{v}}{r} + \frac{2\operatorname{tg}\varphi}{R_1\cos\varphi}\right) = 0.$$
(5.5.8)

С помощью статико-геометрической аналогии находим второе разрешающее уравнение

$$\frac{r}{\cos\varphi}\frac{d^{2}\varkappa_{\theta}}{ds^{2}} + \left(3 + \frac{2r\operatorname{tg}\varphi}{R_{1}\cos\varphi}\right)\frac{d\varkappa_{\theta}}{ds} + \left[2\frac{\operatorname{tg}\varphi}{R_{1}} + \frac{r(1+2\operatorname{tg}^{2}\varphi)}{R_{1}^{2}\cos\varphi}\right]\varkappa_{\theta} - \frac{\operatorname{v}\operatorname{tg}\varphi}{R_{1}}\varkappa_{\theta} - \frac{\operatorname{tg}\varphi}{D_{M}}\varkappa_{s} - (1+\operatorname{v})\frac{d\varkappa_{\tau}}{ds} - \frac{C}{rD_{M}\cos\varphi} = 0. \quad (5.5.9)$$

Выбирая в качестве разрешающей функции комплексную функцию ~

$$N_{s} = N_{s} + k_{0} \varkappa_{\theta},$$

$$k_{0} = \frac{Eh^{3}}{c_{0}^{2}R_{1}} (\nu \pm i\mu), \quad \mu = \sqrt{\frac{c_{0}^{2}R_{1}^{2}}{h^{2}} - \nu^{2}}, \quad c_{0}^{2} = 12 (1 - \nu^{2}), \quad (5.5.10)$$

преобразуем два разрешающих уравнения (5.5.8) и (5.5.9) к одному комплексному уравнению второго порядка

$$\frac{d^{2}\widetilde{N}_{s}}{ds^{2}} + \frac{\cos\varphi}{r} \left(3 + \frac{2r \operatorname{tg}\varphi}{R_{1}\cos\varphi}\right) \frac{d\widetilde{N}_{s}}{ds} + \frac{\cos\varphi}{r} \left[(2\mp i\mu)\frac{\operatorname{tg}\varphi}{R_{1}} + \frac{r\left(1+2\operatorname{tg}^{2}\varphi\right)}{R_{1}^{2}\cos\varphi}\right] \widetilde{N}_{s} + \frac{\cos\varphi}{r} \frac{d}{ds} \left[Eh\varepsilon_{\mathrm{T}} - (1+\nu)k_{0}\kappa_{\mathrm{T}}\right] + C\frac{1}{r} \left[\frac{1}{R_{1}} \left(\frac{1+\nu}{r} + \frac{2\operatorname{tg}\varphi}{R_{1}\cos\varphi}\right) - \frac{k_{0}}{rD_{M}}\right] = 0.$$
(5.5.11)

§ 5.6. Форма решений и граничные условия

Общее решение уравнения (5.5.11) можно представить в такой форме:

$$\widetilde{N}_{s} = \widetilde{C}_{1} \widetilde{N}_{s}^{(1)} + \widetilde{C}_{2} \widetilde{N}_{s}^{(2)} + \widetilde{N}_{s}^{(s_{T})} + \widetilde{N}_{s}^{(x_{T})} + \widetilde{N}_{s}^{(C)}.$$
(5.6.1)

Этому решению соответствуют следующие решения для N_s и х_в:

$$N_{s} = \sum_{n=1}^{4} C_{n} N_{s}^{(n)} + N_{s}^{(\varepsilon_{T})} + N_{s}^{(x_{T})} + N_{s}^{(C)},$$

$$\varkappa_{\theta} = \sum_{n=1}^{4} C_{n} \varkappa_{\theta}^{(n)} + \varkappa_{\theta}^{(\varepsilon_{T})} + \varkappa_{\theta}^{(x_{T})} + \varkappa_{\theta}^{(C)}.$$
(5.6.2)

Здесь $C_n N_s^{(n)}$ и $C_n \varkappa_{\theta}^{(n)}$ (n=1, 2, 3, 4) — определенные с точностью до постоянных интегрирования C_n частные решения однородного уравнения, соответствующего уравнению (5.5.11). Так как это однородное уравнение не содержит членов, обусловленных действием осевой силы и неравномерного нагрева, то его частные решения соответствуют такому напряженному состоянию оболочки, которое вызывается в ней действием самоуравновешенных контурных нагрузок: изгибающих моментов M_s и радиальных усилий $N_r = N_s \cos \varphi + Q \sin \varphi$. Такое напряженное состояние принято называть краевым эффектом.

Четыре линейно независимые решения краевого эффекта позволяют путем соответствующего выбора постоянных интегрирования C_n осуществить любую комбинацию краевых самоуравновешенных нагрузок M_s и N_r на двух ограничивающих оболочку контурах.

Входящие в решения (5.6.2) $N_{s}^{(\epsilon_{T})}$, $N_{s}^{(\kappa_{T})}$, $N_{s}^{(c)}$ и $\kappa_{\theta}^{(\epsilon_{T})}$, $\kappa_{s}^{(\epsilon_{T})}$, $\kappa_{s}^{(\epsilon_{T})}$, $\kappa_{\theta}^{(\epsilon_{T})}$, $\kappa_{\theta}^{(c)}$, представляют собой частные решения уравнения (5.5.11), соответствующие свободному члену, содержащему слагаемые ε_{τ} , κ_{τ} и C_{4} Эти частные решения отвечают таким видам напряженного состояния оболочки, которые обусловлены действием соответственно неравномерного нагрева, вызывающего обобщенные чисто тепловые деформации ε_{τ} и κ_{τ} , и осевой силы $P = -2\pi C$.

Зная N_s и \varkappa_{θ} , из уравнений (5.5.2) и (5.5.6) можно определять N_{θ} и \varkappa_s , а затем из соотношений упругости (5.4.2) и (5.4.6) — ε_s , ε_{θ} и M_s , M_{θ} . Поперечная сила Q определяется по формуле (5.5.1).

Перемещение *u_z* можно определить из дифференциального уравнения

$$\frac{du_z}{ds} + \frac{\mathrm{tg}\,\varphi}{R_1}\,u_z + \frac{r}{\cos\varphi}\left(\varkappa_\theta - \frac{\varepsilon_\theta}{R_1}\right) = 0, \qquad (5.6.3)$$

полученного из уравнений (5.2.8) и (5.2.15) путем исключения u_s . Из этих же уравнений получаем следующее выражение для определения перемещения u_s :

$$u_s = \frac{1}{\cos\varphi} (r \varepsilon_{\theta} - u_z \sin\varphi). \tag{5.6.4}$$

Так как для определения перемещений надо интегрировать дифференциальное уравнение первого порядка (5.6.3), то форма нх общих решений будет отличаться от формы решений (5.6.2) для усилий, моментов и деформаций наличием дополнительного частного решения, т. е. она представляется так:

$$u_{z} = \sum_{n=1}^{4} C_{n} u_{z}^{(n)} + u_{z}^{(\epsilon_{T})} + u_{z}^{(x_{T})} + u_{z}^{(C)} + C_{5} u_{z}^{(5)},$$

$$u_{s} = \sum_{n=1}^{4} C_{n} u_{s}^{(n)} + u_{s}^{(\epsilon_{T})} + u_{s}^{(x_{T})} + u_{s}^{(C)} + C_{5} u_{s}^{(5)}.$$
(5.6.5)

Здесь $C_5 u_z^{(5)}$ — решение однородного уравнения, соответствующего уравнению (5.6.3), а $u_s^{(5)} = -u_z^{(5)} \operatorname{tg} \varphi$.

Рассматривая однородную систему двух уравнений, соответствующих уравнениям (5.2.8) и (5.2.15), легко убедиться, что

$$C_5 u_s^{(5)} = C_5 \sin \varphi, \quad C_5 u_z^{(5)} = -C_5 \cos \varphi.$$
 (5.6.6)

Из этих выражений ясен простой механический смысл постоянной C_5 : C_5 представляет собой смещение оболочки в целом как жесткого тела вдоль ее оси.

Наличие в решениях для усилий, моментов и деформаций пяти постоянных интегрирования C и C_n (n=1, 2, 3, 4) и шестой постоянной C_5 в решениях для перемещений позволяет удовлетворять любые граничные условия на контурах, ограничивающих оболочку.

Граничные условия представляют собой условия загружения или закрепления краев оболочки. Они формулируются при составлении расчетной схемы рассматриваемой конкретной задачи.

Задаются граничные условия в виде силовых или кинематических факторов. Силовые факторы характеризуют загружение краев оболочки, а кинематические — их закрепление или перемещения.

В весьма общем случае граничные условия могут быть заданы в виде следующих трех силовых и четырех кинематических факторов:

Силовые факторы	Кинематические факторы
1. Меридиональный изгибающий момент <i>Ms</i> .	1. Угол поворота $\vartheta = \frac{u_s}{R_1} - \frac{du_z}{ds} = \frac{r}{\cos \varphi} x_{\theta}.$
2. Радиальное усилие N _r = N _s cos φ + Q sin φ.	2. Радиальное перемещение $\xi = u_s \cos \varphi + u_z \sin \varphi = r \varepsilon_{\mu}.$
3. Осевая сила $P = 2\pi r N_{\zeta} =$	3. Взаимное осевое смещение краев оболочки
$= 2\pi r \ (N_s \sin \varphi - Q \cos \varphi).$	$\Delta \zeta = \zeta_2 - \zeta_1 = (u_s \sin \varphi - u_z \cos \varphi)_2 - (u_s \sin \varphi - u_z \cos \varphi)_1.$ 4. Осевое перемещение на одном из контуров $\zeta = u_s \sin \varphi - u_z \cos \varphi.$

На каждом граничном контуре могут быть заданы независимо первые два из указанных силовых или кинематических факторов.

Если из условия равновесия оболочки в целом можно определить осевую силу *P*, то задается третий силовой фактор. Если закрепление оболочки не позволяет определить осевую силу *P* из условий статики, т. е. оболочка является статически неопределимой относительно этой силы, то задается третий кинематический фактор.

Четвертый кинематический фактор фиксирует положение начала отсчета осевых перемещений оболочки. Он может быть задан лишь на одном из контуров. Таким образом, всего может быть задано шесть граничных условий, из которых можно определить входящие в частные решения шесть постоянных интегрирования.

Если оболочка статически определима относительно осевой силы *P*, то определение постоянных интегрирования выполняется в такой последовательности.

1. Находится сила *P*, и по формуле (5.5.4) определяется постоянная *C*.

2. На основании заданных первых двух силовых или кинематических факторов (по два на каждом краю оболочки) составляется система четырех уравнений, из которой определяются постоянные интегрирования C_n (n=1, 2, 3, 4), входящие в частные решения краевого эффекта.

3. Для контура с известным осевым перемещением (четвертый кинематический фактор) записывается одно уравнение, из которого определяется постоянная интегрирования C₅.

§ 5.7. Тепловые напряжения в конической оболочке

В конической оболочке $R_1 = \infty$ и $\varphi = \frac{\pi}{2} - \alpha = \text{const}$ (α —

угол между осью и образующей срединной поверхности оболочки). Тогда разрешающее уравнение (5.5.11) (для определенности берем верхний знак) принимает вид

$$\frac{d^2 \tilde{N}_s}{ds^2} + \frac{3 \sin \alpha}{r} \frac{d \tilde{N}_s}{ds} - i \frac{c_0 \cos \alpha}{hr} \tilde{N}_s + \frac{\sin \alpha}{r} \frac{d}{ds} [Eh \varepsilon_{\rm T} - (1+\nu) k_0 \varkappa_{\rm T}] - i \frac{c_0}{hr^2} C = 0, \qquad (5.7.1)$$

где $c_0 = \sqrt{12(1-v^2)}, k_0 = i \frac{E\hbar^2}{c_0}.$

Вводя новую переменную

$$y = i \frac{c_0 \operatorname{ctg} \alpha}{h} s, \qquad (5.7.2)$$

вместо (5.7.1) получаем

$$y^2 \frac{d^2 N_s}{dy^2} + 3y \frac{dN_s}{dy} - y \tilde{N}_s + \tilde{f} = 0,$$
 (5.7.3)

где

$$\tilde{f} = y \frac{d}{dy} [Eh\varepsilon_{\mathrm{T}} - (1+\nu)k_{0}\varkappa_{\mathrm{T}}] - i \frac{c_{0}}{h \sin^{2} \alpha} C.$$

Построим сначала решения для краевого эффекта.

Посредством замены независимой переменной и функции по формулам ~ ~ ~

$$N = yN_s, \quad \eta = 2i\sqrt{y} \tag{5.7.4}$$

однородное уравнение, соответствующее уравнению (5.7.3), приводим к уравнению Бесселя

$$\eta^{2} \frac{d^{2}N}{d\eta^{2}} + \eta \frac{dN}{d\eta} + (\eta^{2} - 4) \tilde{N} = 0.$$
 (5.7.5)

Уравнение (5.7.5) имеет общий интеграл

$$\widetilde{N} = \widetilde{A}_1 J_2(\eta) + \widetilde{A}_2 Y_2(\eta), \qquad (5.7.6)$$

где $J_2(\eta)$ и $Y_2(\eta)$ — функции Бесселя второго порядка первого и второго рода; \tilde{A}_1 , \tilde{A}_2 — постоянные интегрирования (вообще говоря, комплексные).

Учитывая формулы (5.7.4), находим общее решение \tilde{N}_{s}^{*} однородного уравнения, соответствующего (5.7.3):

$$\widetilde{N}_{s}^{*} = \widetilde{A}_{1} \frac{1}{y} J_{2}(2i\sqrt{y}) + \widetilde{A}_{2} \frac{1}{y} Y_{2}(2i\sqrt{y}).$$
(5.7.7)

Возвращаясь к переменной *s* и вводя

$$\mathbf{x} = 2 \sqrt{\frac{c_0 \operatorname{ctg} \alpha}{h}} s, \qquad (5.7.8)$$

общее решение \tilde{N}_s^* переписываем следующим образом:

$$\widetilde{N}_{s}^{*} = -4i\widetilde{A}_{1}\frac{1}{x^{2}}J_{2}(ix\sqrt{i}) - 4i\widetilde{A}_{2}\frac{1}{x^{2}}Y_{2}(ix\sqrt{i}). \qquad (5.7.9)$$

Функции $J_{\mathbf{s}}(ix\sqrt{i})$ и $Y_{\mathbf{s}}(ix\sqrt{i})$ выражаются через функции Бесселя от мнимого аргумента $I_{\mathbf{s}}(x\sqrt{i})$ и $K_{\mathbf{s}}(x\sqrt{i})$:

$$J_{\mathbf{2}}(i\mathbf{x}\sqrt{i}) = -I_{\mathbf{2}}(\mathbf{x}\sqrt{i}),$$

$$Y_{\mathbf{2}}(i\mathbf{x}\sqrt{i}) = -iI_{\mathbf{2}}(\mathbf{x}\sqrt{i}) + \frac{2}{\pi}K_{\mathbf{2}}(\mathbf{x}\sqrt{i}).$$
 (5.7.10)

Используя эти выражения, находим

$$\widetilde{N}_{s}^{*} = \widetilde{C}_{1} \frac{1}{x^{2}} I_{2} \left(x \sqrt{i} \right) + \widetilde{C}_{2} \frac{1}{x^{2}} K_{2} \left(x \sqrt{i} \right), \qquad (5.7.11)$$

где

$$\widetilde{C}_1 = 4i \, (\widetilde{A}_1 + i \widetilde{A}_2), \quad \widetilde{C}_2 = - \frac{8i}{\pi} \widetilde{A}_2.$$

Переходя от функций Бесселя второго порядка к функциям Бесселя нулевого порядка по формулам

$$I_{2}(xV\overline{i}) = I_{0}(xV\overline{i}) + \frac{2i}{x} \frac{dI_{0}(xV\overline{i})}{dx},$$

$$K_{2}(xV\overline{i}) = K_{0}(xV\overline{i}) + \frac{2i}{x} \frac{dK_{0}(xV\overline{i})}{dx},$$
(5.7.12)

вместо (5.7.11) получаем

$$\widetilde{N}_{s}^{*} = \widetilde{C}_{1} \frac{1}{x^{2}} \left[I_{0} \left(x \sqrt{i} \right) + \frac{2i}{x} \frac{dI_{0} \left(x \sqrt{i} \right)}{dx} \right] + \widetilde{C}_{2} \frac{1}{x^{2}} \left[K_{0} \left(x \sqrt{i} \right) + \frac{2i}{x} \frac{dK_{0} \left(x \sqrt{i} \right)}{dx} \right].$$
(5.7.13)

Разделяя $I_0(xV\bar{i})$ и $K_0(xV\bar{i})$ на действительные и мнимые части с помощью функций Томсона

$$I_0(xV\bar{i}) = \text{ber } x + i \text{ bel } x,$$

$$K_0(xV\bar{i}) = \ker x + i \ker x$$
(5.7.14)

и заменяя комплексные постоянные интегрирования \tilde{C}_1 и \tilde{C}_2 выражениями *

$$\tilde{C}_1 = 4 (C_1 + iC_2),$$

 $\tilde{C}_2 = \frac{8i}{\pi} (C_3 + iC_4),$

можно записать следующие четыре частных решения однородного уравнения для усилия N_s и деформации ж_e:

$$N_{s}^{(1)} = \frac{Eh^{2}}{c_{0}} \varkappa_{\theta}^{(2)} = \frac{4}{x^{2}} \left(\psi_{1} + \frac{2}{x} \psi_{2}^{\prime} \right),$$

$$N_{s}^{(2)} = -\frac{Eh^{2}}{c_{0}} \varkappa_{\theta}^{(1)} = \frac{4}{x^{2}} \left(\psi_{2} - \frac{2}{x} \psi_{1}^{\prime} \right),$$

$$N_{s}^{(3)} = \frac{Eh^{2}}{c_{0}} \varkappa_{\theta}^{(4)} = \frac{4}{x^{2}} \left(\psi_{3} + \frac{2}{x} \psi_{4}^{\prime} \right),$$

$$N_{s}^{(4)} = -\frac{Eh^{2}}{c_{0}} \varkappa_{\theta}^{(3)} = \frac{4}{x^{2}} \left(\psi_{4} - \frac{2}{x} \psi_{3}^{\prime} \right),$$
(5.7.15)

^{*} Эти выражения выбраны так, чтобы получить известные решения для усилий, момеитов и перемещений, приведенные в работах [12, 25, 48].

где

$$\psi_{1} = \operatorname{ber} x, \qquad \psi_{2} = -\operatorname{bei} x, \psi_{3} = -\frac{2}{\pi} \operatorname{kei} x, \qquad \psi_{4} = -\frac{2}{\pi} \operatorname{ker} x, \psi_{n} = \frac{d\psi_{n}}{dx} \quad (n = 1, 2, 3, 4).$$
(5.7.16)

По известным решениям N_s и x₀ определяются все остальные усилия, моменты и перемещения.

Как описано в § 5.6, из первого уравнения (5.5.2) находим

$$N_{\theta} = N_s + s \frac{dN_s}{ds} . \qquad (5.7.17)$$

Выражая деформацию ж, через ж, по первой из формул (5.5.6), из соотношений (5.4.6) получаем

$$M_{s} = D_{M} \left[(1+\nu) \varkappa_{\theta} + s \frac{d\varkappa_{\theta}}{ds} - (1+\nu) \varkappa_{T} \right],$$

$$M_{\theta} = D_{M} \left[(1+\nu) \varkappa_{\theta} + \nu s \frac{d\varkappa_{\theta}}{ds} - (1+\nu) \varkappa_{T} \right],$$
(5.7.18)

где

$$D_M = \frac{Eh^3}{12\left(1-\nu^2\right)}.$$

Перемещение *u_z* определяется из дифференциального уравнения (5.6.3) (постоянную интегрирования опускаем — она учтена в общем решении (5.6.5)):

$$u_z = -\int \varkappa_0 s ds. \tag{5.7.19}$$

Получаем следующие частные решения для усилий $N_{\theta}^{(n)}$, моментов $M_s^{(n)}$, $M_{\theta}^{(n)}$ и перемещения $u_x^{(n)}$ (n = 1, 2, 3, 4):

$$N_{\theta}^{(1)} = \frac{2}{x} \psi_{1}' - N_{s}^{(1)},$$

$$N_{\theta}^{(2)} = \frac{2}{x} \psi_{2}' - N_{s}^{(2)},$$

$$N_{\theta}^{(3)} = \frac{2}{x} \psi_{3}' - N_{s}^{(3)},$$

$$N_{\theta}^{(4)} = \frac{2}{x} \psi_{4}' - N_{s}^{(4)};$$
(5.7.20)

$$M_{s}^{(1)} = -\frac{h}{c_{0}} (v N_{s}^{(2)} + N_{\theta}^{(2)}),$$

$$M_{s}^{(2)} = \frac{h}{c_{0}} (v N_{s}^{(1)} + N_{\theta}^{(1)}),$$

$$M_{s}^{(3)} = -\frac{h}{c_{0}} (v N_{s}^{(4)} + N_{\theta}^{(4)}),$$

$$M_{s}^{(4)} = \frac{h}{c_{0}} (v N_{s}^{(3)} + N_{\theta}^{(3)});$$

$$M_{\theta}^{(1)} = -\frac{h}{c_{0}} (N_{s}^{(2)} + v N_{\theta}^{(2)}),$$

$$M_{\theta}^{(2)} = \frac{h}{c_{0}} (N_{s}^{(1)} + v N_{\theta}^{(1)}),$$

$$M_{\theta}^{(3)} = -\frac{h}{c_{0}} (N_{s}^{(4)} + v N_{\theta}^{(4)}),$$

$$M_{\theta}^{(4)} = \frac{h}{c_{0}} (N_{s}^{(4)} + v N_{\theta}^{(3)});$$

$$u_{z}^{(1)} = \frac{\mathrm{tg}^{2} \alpha}{Ec_{0}} \left(\frac{x}{2} \psi_{1}^{'} - \psi_{1}\right),$$

$$u_{z}^{(2)} = \frac{\mathrm{tg}^{2} \alpha}{Ec_{0}} \left(\frac{x}{2} \psi_{2}^{'} - \psi_{2}\right),$$

$$u_{z}^{(3)} = \frac{\mathrm{tg}^{2} \alpha}{Ec_{0}} \left(\frac{x}{2} \psi_{3}^{'} - \psi_{3}\right),$$

$$u_{z}^{(4)} = \frac{\mathrm{tg}^{2} \alpha}{Ec_{0}} \left(\frac{x}{2} \psi_{4}^{'} - \psi_{4}\right),$$
(5.7.23)

где

$$c_0 = \sqrt{12(1-\gamma^2)}.$$

Остальные перемещения определяются следующим образом. Перемещение u_s находится из соотношения (5.6.4), где деформация ε_{θ} выражается через усилия по второй из формул (5.4.2):

$$u_s = s \left[\frac{N_{\theta} - v N_s}{Eh} + \varepsilon_{\tau} \right] - \operatorname{ctg} \alpha u_z.$$
 (5.7.24)

Радиальное ξ и осевое ζ перемещения, которые связаны с u_s н u_z зависимостями

$$\xi = u_s \sin \alpha + u_z \cos \alpha, \qquad (5.7.25)$$

$$\xi = u_s \cos \alpha - u_z \sin \alpha,$$

имеют следующие частные решения:

$$\xi = s \sin \alpha \left[\frac{N_{\theta} - \nu N_s}{Eh} + \varepsilon_{\tau} \right],$$

$$\zeta = \operatorname{ctg} \alpha \xi - \frac{u_z}{\sin \alpha}.$$
(5.7.26)

Угол поворота в определяется на основании формул (5.2.15) и (5.4.3)

$$\vartheta = s \left[\frac{12 \left(M_{\theta} - \nu M_{s} \right)}{Eh^{3}} + \varkappa_{\tau} \right].$$
 (5.7.27)

Для построения частных решений неоднородного уравнения (5.7.3) достаточно рассмотреть частные решения этого уравнения при свободных членах

$$f = A s^{\lambda}, \qquad (5.7.28)$$

$$f = A_0.$$
 (5.7.29)

При свободном члене (5.7.28) частное решение определяется рядом ~ 4 од

$$\widetilde{N}_{s*}^{(p)} = -\frac{As^{\lambda}}{\lambda(\lambda+2)}F(y) \quad (p = \varepsilon_{\mathrm{T}}, \varkappa_{\mathrm{T}}), \qquad (5.7.30)$$

где

$$F(y) = 1 + \lambda! (\lambda + 2)! \sum_{n=1}^{\infty} \frac{y^n}{(\lambda + n)! (\lambda + 2 + n)!}$$

При свободном члене (5.7.29) частное решение принимает вид $\widetilde{N}_{*}^{(C)} = -A_{\alpha} \Phi(\mathbf{y}).$ (5.7.31)

$$\Phi(y) = I_2(xV\overline{i})\frac{\ln y}{y} -$$

$$-\sum_{n=1}^{\infty}\frac{1}{n!\,(n+2)!}\left(\frac{1}{1}+\ldots+\frac{1}{n}+\frac{1}{3}+\ldots+\frac{1}{n+2}\right)y^{n},$$

 $I_{2}(xV\bar{i}) = \sum_{n=0}^{\infty} \frac{1}{n! (n+2)!} \left(\frac{xV\bar{i}}{2}\right)^{2n+2} - функция Бесселя вто-$

рого порядка первого рода от мнимого аргумента,

$$y=i\left(\frac{x}{2}\right)^2$$
.

Составляя определенным образом линейные комбинации частных решений (5.7.30) и (5.7.31) с соответствующими част-

ными решениями однородного уравнения, можно получить частные решения неоднородного уравнения в виде полиномов

$$\widetilde{N}_{s}^{(2)}=\frac{8i}{\pi x^{2}}K_{2}(x\sqrt{i}),$$

γ_E=0,5772157 — постоянная Эйлера.

При неравномерном нагреве, соответствующем чисто тепловой деформации

$$\varepsilon_{\tau} = \varepsilon_j s^j (\varepsilon_j = \text{const}, j=1, 2, 3, 4, 5), \quad \varkappa_{\tau} = 0,$$

постоянная А в свободном члене (5.7.29) имеет вид

$$A = Ehj\varepsilon_j, \tag{5.7.34}$$

и частные решения неоднородного уравнения записываются следующим образом:

при *j*=1

$$N_{s}^{(\epsilon_{T})} = N_{\theta}^{(\epsilon_{T})} = 0,$$

$$M_{s}^{(\epsilon_{T})} = M_{\theta}^{(\epsilon_{T})} = -\frac{(1+\nu)Eh^{3}\epsilon_{1} \operatorname{tg} \alpha}{c_{0}^{2}},$$

$$u_{z}^{(\epsilon_{T})} = \frac{\epsilon_{1}h^{2} \operatorname{tg}^{3} \alpha}{32c_{0}^{3}} x^{4};$$
(5.7.35)

при *j*=2

$$N_{s}^{(\epsilon_{T})} = N_{\theta}^{(\epsilon_{T})} = -\frac{6\epsilon_{2}Eh^{3} \operatorname{tg}^{2} \alpha}{c_{0}^{2}},$$

$$M_{s}^{(\epsilon_{T})} = -\frac{(2+\nu)\epsilon_{3}Eh^{4} \operatorname{th}^{2} \alpha}{2c_{0}^{3}} x^{2},$$

$$M_{\theta}^{(\epsilon_{T})} = -\frac{(1+2\nu)\epsilon_{2}Eh^{4} \operatorname{tg}^{2} \alpha}{2c_{0}^{3}} x^{2},$$

$$u_{z}^{(\epsilon_{T})} = \frac{1}{96} \frac{\epsilon_{2}h^{3} \operatorname{tg}^{4} \alpha}{c_{0}^{3}} x^{6};$$
(5.7.36)

при j=3 $N_{s^{\tau}}^{(\epsilon_{\tau})} = \frac{1}{2} N_{\theta}^{(\epsilon_{\tau})} = -\frac{6\epsilon_{3}Eh^{4} tg^{3} \alpha}{c_{0}^{3}} x^{2},$ $M_{s^{\tau}}^{(\epsilon_{\tau})} = \frac{72 (1+\nu)\epsilon_{3}Eh^{5} tg^{3} \alpha}{c_{0}^{4}} \left[1 - \frac{3+\nu}{384 (1+\nu)} x^{4}\right],$ (5.7.37) $M_{\theta}^{(\epsilon_{\tau})} = \frac{72 (1+\nu)\epsilon_{3}Eh^{5} tg^{3} \alpha}{c_{0}^{4}} \left[1 - \frac{1+3\nu}{384 (1+\nu)} x^{4}\right],$ $u_{z^{\tau}}^{(\epsilon_{\tau})} = -\frac{9\epsilon_{3}h^{4} tg^{5} \alpha}{4c_{0}^{4}} x^{4} \left(1 - \frac{1}{768} x^{4}\right);$ при j=4

$$\begin{split} J = \mathbf{x} \\ N_{s}^{(\epsilon_{T})} &= \frac{1440\epsilon_{4}Eh^{5} \operatorname{tg}^{4} \alpha}{c_{0}^{4}} \left(1 - \frac{1}{384} \mathbf{x}^{4}\right), \\ N_{\theta}^{(\epsilon_{T})} &= \frac{1440\epsilon_{4}Eh^{5} \operatorname{tg}^{4} \alpha}{c_{0}^{4}} \left(1 - \frac{1}{128} \mathbf{x}^{4}\right), \\ M_{s}^{(\epsilon_{T})} &= \frac{120\left(2 + \nu\right)\epsilon_{4}Eh^{6} \operatorname{tg}^{4} \alpha}{c_{0}^{5}} \mathbf{x}^{2} \left[1 - \frac{4 + \nu}{1920\left(2 + \nu\right)} \mathbf{x}^{4}\right], \quad (5.7.38) \\ M_{\theta}^{(\epsilon_{T})} &= \frac{120\left(1 + 2\nu\right)\epsilon_{4}Eh^{6} \operatorname{tg}^{4} \alpha}{c_{0}^{5}} \mathbf{x}^{2} \left[1 - \frac{1 + 4\nu}{1920\left(1 + 2\nu\right)} \mathbf{x}^{4}\right], \\ u_{z}^{(\epsilon_{T})} &= -\frac{5\epsilon_{4}h^{5} \operatorname{tg}^{6} \alpha}{2c_{0}^{5}} \mathbf{x}^{6} \left(1 - \frac{1}{3200} \mathbf{x}^{4}\right); \end{split}$$

$$\begin{split} N_{s}^{(\epsilon_{\rm T})} &= \frac{3600\varepsilon_{5}Eh^{6}\,{\rm tg}^{5}\,\alpha}{c_{0}^{5}}\,x^{2}\left(1-\frac{1}{1920}\,x^{4}\right),\\ N_{\theta}^{(\epsilon_{\rm T})} &= \frac{7200\varepsilon_{5}Eh^{6}\,{\rm tg}^{5}\,\alpha}{c_{0}^{5}}\,x^{2}\left(1-\frac{1}{960}\,x^{4}\right),\\ M_{s}^{(\epsilon_{\rm T})} &= -\frac{43200\,(1+\nu)\,\varepsilon_{5}Eh^{7}\,{\rm tg}^{5}\,\alpha}{c_{0}^{6}}\left[1-\frac{3+\nu}{384\,(1+\nu)}\,x^{4}+\right.\\ &\left.+\frac{5+\nu}{2211840\,(1+\nu)}\,x^{8}\right],\,(5.7.39)\\ M_{\theta}^{(\epsilon_{\rm T})} &= -\frac{43200\,(1+\nu)\,\varepsilon_{5}Eh^{7}\,{\rm tg}^{5}\,\alpha}{c_{0}^{6}}\left[1-\frac{1+3\nu}{384\,(1+\nu)}\,x^{4}+\right.\\ &\left.+\frac{1+5\nu}{2211840\,(1+\nu)}\,x^{8}\right],\,(5.7.39)\\ M_{\theta}^{(\epsilon_{\rm T})} &= \frac{1350\varepsilon_{5}h^{6}\,{\rm tg}^{7}\,\alpha}{c_{0}^{6}}\,x^{4}\left[1-\frac{1}{768}\,x^{4}+\frac{1}{6635520}\,x^{8}\right]. \end{split}$$

При неравномерном нагреве, соответствующем чисто тепловой деформации

$$\varepsilon_{\rm r}=0, \quad \varkappa_{\rm r}=\frac{\mu_j}{h}s^j \quad (\mu_j={\rm const}, \ j=0, \ 1, \ 2, \ 3, \ 4, \ 5),$$

постоянная А в свободном члене (5.7.28) имеет вид

$$A = -i \frac{(1+v) Ehj\mu_j}{c_0}, \qquad (5.7.40)$$

и частные решения неоднородного уравнения записываются следующим образом:

при ј=0

$$N_{s}^{(\mathbf{x}_{\tau})} = N_{\theta}^{(\mathbf{x}_{\tau})} = \mathbf{0},$$

$$M_{s}^{(\mathbf{x}_{\tau})} = M_{\theta}^{(\mathbf{x}_{\tau})} = -\frac{(1+\nu)\mu_{0}Eh^{2}}{c_{0}^{2}},$$

$$u_{z}^{(\mathbf{x}_{\tau})} = 0;$$
(5.7.41)

при j=1

$$N_{s}^{(\mathbf{x}_{T})} = N_{\theta}^{(\mathbf{x}_{T})} = -\frac{(1+\nu)\mu_{1}Eh^{2}\operatorname{tg}\alpha}{c_{0}^{2}},$$

$$M_{s}^{(\mathbf{x}_{T})} = M_{\theta}^{(\mathbf{x}_{T})} = -\frac{(1+\nu)\mu_{1}Eh^{3}\operatorname{tg}\alpha}{4c_{0}^{3}}x^{2},$$

$$u_{z}^{(\mathbf{x}_{T})} = 0;$$
(5.7.42)

при j=2

$$N_{s}^{(\mathbf{x}_{T})} = \frac{1}{2} N_{\theta}^{(\mathbf{x}_{T})} = -\frac{(1+\nu)\mu_{2}Eh^{3} \operatorname{tg}^{2} \alpha}{2c_{0}^{3}} \mathbf{x}^{2},$$

$$M_{s}^{(\mathbf{x}_{T})} = M_{\theta}^{(\mathbf{x}_{T})} = \frac{6 (1+\nu)^{2} \mu_{2}Eh^{4} \operatorname{tg}^{2} \alpha}{c_{0}^{4}} \left[1 - \frac{1}{96 (1+\nu)} \mathbf{x}^{4} \right], \quad (5.7.43)$$

$$u_{z}^{(\mathbf{x}_{T})} = -\frac{3 (1+\nu)\mu_{2}h^{3} \operatorname{tg}^{4} \alpha}{16c_{0}^{4}} \mathbf{x}^{4};$$

при j=3

$$N_{s}^{(x_{T})} = \frac{72(1+\nu)\mu_{3}Eh^{4} tg^{3} \alpha}{c_{0}^{4}} \left(1 - \frac{1}{384}x^{4}\right),$$

$$N_{\theta}^{(x_{T})} = \frac{72(1+\nu)\mu_{3}Eh^{4} tg^{3} \alpha}{c_{0}^{4}} \left(1 - \frac{1}{128}x^{4}\right),$$

$$M_{s}^{(x_{T})} = \frac{6(1+\nu)(2+\nu)\mu_{3}Eh^{5} tg^{3} \alpha}{c_{0}^{5}}x^{2} \left[1 - \frac{1}{384(2+\nu)}x^{4}\right], (5.7.44)$$

$$M_{\theta}^{(\mathbf{x}_{T})} = \frac{6(1+\nu)(1+2\nu)\mu_{3}Eh^{5} tg^{3} \alpha}{c_{0}^{5}} x^{2} \left[1 - \frac{1}{384(1+2\nu)}x^{4}\right],$$
$$u_{z}^{(\mathbf{x}_{T})} = -\frac{(1+\nu)\mu_{3}h^{4} tg^{5} \alpha}{8c_{0}^{5}} x^{6};$$

при j=4

$$\begin{split} & \text{прн } j = 5 \\ & N_s^{(\mathbf{x}_T)} = -\frac{43200\,(1+\nu)\,\mu_5 E h^6\,\text{tg}^5\,\alpha}{c_0^6} \left(1 - \frac{1}{384}\,x^4 + \frac{1}{2211840}\,x^8\right), \\ & N_{\theta}^{(\mathbf{x}_T)} = -\frac{43200\,(1+\nu)\,\mu_5 E h^6\,\text{tg}^5\,\alpha}{c_0^6} \left(1 - \frac{1}{128}\,x^4 + \frac{1}{442368}\,x^8\right), \\ & M_s^{(\mathbf{x}_T)} = -\frac{3600\,(1+\nu)\,(2+\nu)\,\mu_5 E h^7\,\text{tg}^5\,\alpha}{c_0^7}\,x^3 \left[1 - \frac{4+\nu}{1920\,(2+\nu)}\,x^4 + \frac{1}{3686400\,(2+\nu)}\,x^8\right], \quad (5.7.46) \\ & M_{\theta}^{(\mathbf{x}_T)} = -\frac{3600\,(1+\nu)\,(1+2\nu)\,\mu_5 E h^7\,\text{tg}^5\,\alpha}{c_0^7}\,x^2 \left[1 - \frac{1+4\nu}{1920\,(1+2\nu)}\,x^4 + \frac{1}{3686400\,(1+2\nu)}\,x^8\right], \\ & u_z^{(\mathbf{x}_T)} = \frac{75\,(1+\nu)\,\mu_5 h^6\,\text{tg}^7\,\alpha}{c_0^7}\,x^6\left(1 - \frac{1}{3200}\,x^4\right). \end{split}$$

При нагрузке оболочки контурными осевыми силами постоянная A₀ в свободном члене (5.7.29) имеет вид

$$A_0 = -\frac{ic_0}{h}C, \qquad (5.7.47)$$

и частные решения неоднородного уравнения записываются следующим образом:

$$N_{s}^{(C)} = -\frac{4c_{0}}{hx^{2}}C,$$

$$N_{\theta}^{(C)} = 0,$$

$$M_{s}^{(C)} = -M_{\theta}^{(C)} = \frac{4c_{0}^{2}}{3(1+v)x^{4}}C,$$

$$u_{z}^{(C)} = \frac{2 \operatorname{tg}^{2} \alpha \ln x}{Eh}C.$$
(5.7.48)

§ 5.8. Тепловые напряжения в сферической оболочке

В случае сферической оболочки

$$R_1 = R_2 = r_0, \quad r = r_0 \sin \varphi, \quad ds = r_0 d \varphi.$$

Разрешающее уравнение (5.5.11), взятое с верхним знаком перед *i*, для сферической оболочки принимает вид

$$\frac{d^2 \tilde{N}_s}{d \varphi^2} + (3 \operatorname{ctg} \varphi + 2 \operatorname{tg} \varphi) \frac{d \tilde{N}_s}{d \varphi} + (2 \operatorname{tg}^2 \varphi + 3 - i \mu) \tilde{N}_s + + \operatorname{ctg} \varphi \frac{d}{d \varphi} [Eh \varepsilon_{\tau} - (1 + \nu) k_0 \varkappa_{\tau}] + + C \left[\frac{2}{r_0 \cos^2 \varphi} + \frac{(1 + \nu) D_M - r_0 k_0}{D_M r_0 \sin^2 \varphi} \right] = 0, \quad (5.8.1)$$

где

$$k_{0} = \frac{D_{M}}{r_{0}} (\nu + i\mu), \quad \mu = \sqrt{\frac{c_{0}^{2}r_{0}^{2}}{h^{2}} - \nu^{2}} \approx \frac{c_{0}r_{0}}{h},$$

$$D_{M} = \frac{Eh^{3}}{c_{0}^{2}}, \quad c_{0}^{2} = 12 (1 - \nu^{2}).$$
(5.8.2)

Вводя новую переменную

$$x = \cos \varphi, \tag{5.8.3}$$

вместо (5.8.1) получаем уравнение

$$(1-x^{2})\frac{d^{2}\tilde{N_{s}}}{dx^{2}} - 2\frac{1+x^{2}}{x}\frac{d\tilde{N_{s}}}{dx} + \left(\frac{2}{x^{2}}+1-i\mu\right)\tilde{N_{s}} - x\frac{d}{dx}\left[Eh\varepsilon_{T}-(1+\nu)k_{0}x_{T}\right] + \frac{2C}{r_{0}x^{2}} + \frac{\left[(1+\nu)D_{M}-r_{0}k_{0}\right]C}{D_{M}r_{0}(1-x^{2})} = 0. \quad (5.8.4)$$

Выполняя подстановки

$$\widetilde{N}_s = x\widetilde{N}, \quad \xi = \frac{1-x}{2}, \tag{5.8.5}$$

переписываем уравнение (5.8.4) в виде

~

$$\frac{d^{2}N}{d\xi^{2}} + \frac{c - (a+b+1)\xi}{\xi(1-\xi)} \frac{dN}{d\xi} - \frac{ab}{\xi(1-\xi)} \tilde{N} + F(\xi) + \frac{A}{\xi(1-\xi)(1-2\xi)^{3}} + \frac{B}{\xi^{2}(1-\xi)^{2}(1-2\xi)} = 0, \quad (5.8.6)$$

где

$$a, b = \frac{3}{2} \pm \delta, \quad \delta = \frac{1}{2}\sqrt{5-4i\mu}, \quad c=2;$$
 (5.8.7)

$$F(\xi) = \frac{1}{2\xi (1-\xi)} \frac{d}{d\xi} [Eh\varepsilon_{\rm T} - (1+\nu)k_0 \varkappa_{\rm T}],$$

$$A = \frac{2C}{r_0}, \quad B = \frac{[(1+\nu)D_M - r_0 k_0]C}{4D_M r_0}.$$
(5.8.8)

Соответствующее уравнению (5.8.6) однородное уравнение

$$\xi (1-\xi) \frac{d^2 \tilde{N}}{d\xi^2} + [c - (a+b+1)\xi] \frac{d \tilde{N}}{d\xi} - ab \tilde{N} = 0 \qquad (5.8.9)$$

является уравнением Гаусса, частные решения которого $\tilde{N}^{(1)}$ и $\tilde{N}^{(2)}$ определяются в гипергеометрических функциях. Используя теорию гипергеометрических функций *, находим следующие частные решения этого уравнения:

$$N^{(1)} = F(a, b; c; \xi), \qquad (5.8.10)$$

$$N^{(2)} = F(a, b; a+b+1-c; 1-\xi),$$
 (5.8.11)

^{*} Основные свойства гипергеометрических функций, используемые при выводе решений для сферической оболочки, излагаются, например, в книге [15] (см. стр. 280—294).

где F(a, b; c; x) — гипергеометрическая функция. Здесь в качестве частного решения $\widetilde{N}^{(1)}$ выбирается частное решение уравнения (5.8.9) в окрестности $\xi = 0$, а в качестве частного решения $\widetilde{N}^{(2)}$ — частное решение этого уравнения в окрестности $\xi = 1$.

Выделяя в решениях (5.8.10) и (5.8.11) особенности по известной формуле [15]

$$F(a, b; c; x) = (1-x)^{c-a-b}F(c-a, c-b; c; x)$$
(5.8.12)

н учитывая подстановки (5.8.5) и значения параметров (5.8.7), находим общее решение однородного уравнения, соответствующего уравнению (5.8.1)

где

$$\tilde{N}_{s}^{*} = \tilde{C}_{1} \tilde{N}_{s}^{(1)} + \tilde{C}_{2} \tilde{N}_{s}^{(2)}, \qquad (5.8.13)$$

$$\widetilde{N}_{s}^{(1)} = \frac{1-2\xi}{1-\xi} F\left(\frac{1}{2}+\hat{\circ}, \frac{1}{2}-\delta; 2; \xi\right), \qquad (5.8.14)$$

$$\widetilde{N}_{s}^{(2)} = \frac{1-2\xi}{\xi} F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; 2; 1-\xi\right).$$
(5.8.15)

Частные решения (5.8.14) и (5.8.15) имеют особенности соответственно в точках $\xi = 1$ и $\xi = 0$. Для расчета замкнутой сферической оболочки с вершиной в точке $\xi = 0$ или в точке $\xi = 1$ следует пользоваться соответственно частным решением (5.8.14) или (5.8.15).

Зная два линейно независимых частных решения (5.8.10) и (5.8.11), с помощью метода вариации произвольных постоянных находим частное решение неоднородного уравнения (5.8.6), соответствующее свободному члену $F(\xi)$, в следующем виде:

$$\widetilde{N}^{(\epsilon_{\mathrm{T}}, z_{\mathrm{T}})} = \widetilde{N}^{(1)} \int \frac{\widetilde{N}^{(2)} F(\xi)}{\Delta(\widetilde{N}^{(1)}, \widetilde{N}^{(2)})} d\xi - \widetilde{N}^{(2)} \int \frac{\widetilde{N}^{(1)} F(\xi)}{\Delta(\widetilde{N}^{(1)}, \widetilde{N}^{(2)})} d\xi.$$
(5.8.16)

Здесь $\Delta(\widetilde{N}^{(1)},\ \widetilde{N}^{(2)})$ — определитель Вронского решений $\widetilde{N}^{(1)}$ и $\widetilde{N}^{(2)}$:

$$\Delta(\tilde{N}^{(1)}, \tilde{N}^{(2)}) = \Delta_{0} \exp \int_{\xi}^{\xi_{0}} \frac{c - (a + b + 1)\xi}{\xi(1 - \xi)} d\xi =$$

= $\Delta_{0} \left(\frac{\xi_{0}}{\xi}\right)^{c} \left(\frac{1 - \xi}{1 - \xi_{0}}\right)^{c - a - b - 1},$ (5.8.17)

где Δ_0 — постоянная, равная значению $\Delta(\tilde{N}^{(1)}, \tilde{N}^{(2)})$ при $\xi = \xi_0$. Подставляя выражение (5.8.17) в решение (5.8.16) и учитывая подстановки (5.8.5), преобразование по формуле (5.8.12) и значения параметров (5.8.7), находим следующее частное решение неоднородного уравнения (5.8.1), соответствующее температурному члену:

$$\widetilde{N}_{s}^{(\epsilon_{T}, x_{T})} = \frac{1-2\xi}{\Delta_{0}\xi_{0}^{2}(1-\xi_{0})^{2}} \left[\frac{F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; 2; \xi\right)}{1-\xi} \times \int F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; 2; 1-\xi\right) F\left(\xi\right)\xi\left(1-\xi\right)^{2}d\xi - \frac{F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; 2; 1-\xi\right)}{\xi} \int F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; 2; \xi\right) \times F\left(\xi\right)\xi^{2}\left(1-\xi\right)d\xi \right].$$
(5.8.18)

Заменяя в решении (5.8.18) F(ξ) через

$$\frac{A}{\xi(1-\xi)(1-2\xi)^3} + \frac{B}{\xi^2(1-\xi)^2(1-2\xi)},$$

получаем частное решение неоднородного уравнения $\tilde{N}_{s}^{(C)}$, соответствующее осевой силе $P = -2\pi C$. (см. § 5.6).

Частное решение $\widetilde{N}_{s}^{(C)}$ можно найти без квадратур следующим образом. ~

Вводя новую переменную x_1 и функцию N_1 по формулам

$$x_1 = \cos^2 \varphi, \quad \tilde{N}_s = \frac{x_1}{1 - x_1} \tilde{N}_1,$$
 (5.8.19)

преобразуем уравнение (5.8.1), взятое при с_т=x_т=0, к виду

$$\mathbf{x}_{1}^{2}(1-\mathbf{x}_{1})\frac{d^{2}\widetilde{N}_{1}}{dx_{1}^{2}} + \mathbf{x}_{1}[c_{1}-(a_{1}+b_{1}+1)\mathbf{x}_{1}]\frac{d\widetilde{N}_{1}}{dx_{1}} - a_{1}b_{1}\mathbf{x}_{1}\widetilde{N}_{1} + A_{0}+A_{1}\mathbf{x}_{1}^{-1} = 0,$$
(5.8.20)

где

$$a_1, b_1 = \frac{1}{4} \pm \delta_1, \quad \delta_1 = \frac{1}{4} \sqrt{5 - 4i\mu}; \quad c_1 = \frac{3}{2}, \quad (5.8.21)$$

$$A_{0} = \frac{C}{4} \left(\frac{-1+\nu}{r_{0}} - \frac{k_{0}}{D_{M}} \right), \quad A_{-1} = \frac{C}{2r_{0}}.$$
 (5.8.22)
Для определения частного решения уравнения (5.8.20) используем следующие известные результаты теории гипергеометрических уравнений *.

Частное решение уравнения

$$\left[z\frac{d}{dz}\left(z\frac{d}{dz}+\beta_{1}-1\right)-z\left(z\frac{d}{dz}+\alpha_{1}\right)\left(z\frac{d}{dz}+\alpha_{2}\right)\right]W+Az^{\lambda}=$$

= $z^{2}(1-z)\frac{d^{2}W}{dz^{2}}+z\left[\beta_{1}-(\alpha_{1}+\alpha_{2}+1)z\right]\frac{dW}{dz}-\alpha_{1}\alpha_{2}zW+Az^{\lambda}=0, (5.8.23)$

когда $\lambda = -m$ (m = 0, 1, ...), имеет вид

$$W = -\frac{A [\alpha_{1} - m]_{m} [\alpha_{2} - m]_{m}}{[-m]_{m} [\beta_{1} - m]_{m} (\beta_{1} - m - 1)} \times \\ \times_{3} \Phi_{2} (\alpha_{1}, \alpha_{2}, 1 + m; 1 + m, \beta_{1}; z), \qquad (5.8.24)$$
$$[\alpha]_{m} = \alpha (\alpha + 1) \dots (\alpha + m - 1), \quad [\alpha]_{0} = 1.$$

Функция

 $_{3}\Phi_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}; 1+m, \beta_{2}; z)$

определяется выражением

$${}_{3}\Phi_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}; 1+m, \beta_{2}; z) = {}_{3}F_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}; 1+m, \beta_{2}; z) \ln z -$$

$$-\sum_{n=1}^{m} \frac{(n-1)! \left[-m\right]_{n} \left[1-\beta_{2}\right]_{n}}{\left[1-\alpha_{1}\right]_{n} \left[1-\alpha_{2}\right]_{n} \left[1-\alpha_{3}\right]_{n}} z^{-n} + \sum_{n=1}^{\infty} \frac{\left[\alpha_{1}\right]_{n} \left[\alpha_{2}\right]_{n} \left[\alpha_{3}\right]_{n}}{n! \left[1+m\right]_{n} \left[\beta_{2}\right]_{n}} z^{n} \times$$

$$\times \sum_{s=1}^{n} \left(\frac{1}{\alpha_{1}+s-1} + \frac{1}{\alpha_{2}+s-1} + \frac{1}{\alpha_{3}+s-1} - \frac{1}{m+s} - \frac{1}{\beta_{2}+s-1} - \frac{1}{s}\right),$$
(5.8.25)

где

$${}_{3}F_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}; \beta_{1}, \beta_{2}; z) = \sum_{n=0}^{\infty} \frac{[\alpha_{1}]_{n} [\alpha_{2}]_{n} [\alpha_{3}]_{n}}{n! [\beta_{1}]_{n} [\beta_{2}]_{n}} z^{n}.$$
(5.8.26)

Функции (5.8.25) и (5.8.26) являются частными решениями гипергеометрического уравнения третьего порядка

$$\left[z\frac{d}{dz}\left(z\frac{d}{dz}+\beta_{1}-1\right)\left(z\frac{d}{dz}+\beta_{2}-1\right)-z\left(z\frac{d}{dz}+\alpha_{1}\right)\left(z\frac{d}{dz}+\alpha_{2}\right)\left(z\frac{d}{dz}+\alpha_{3}\right)\right]W=0,\qquad(5.8.27)$$

* См. Коваленко А. Д., Про узагальнення розв'язків Ломеля, ДАН УРСР, 1964, № 4.

$$\beta_1 = 1 + m$$
 (*m*=0, 1,...).

Принимая во внимание решение (5.8.24) и значения параметров (5.8.21), находим следующее частное решение неоднородного уравнения (5.8.20):

$$\widetilde{N}_{1}^{(C)} = -2A_{03}\Phi_{2}\left(\frac{1}{4} + \delta_{1}, \frac{1}{4} - \delta_{1}, 1; 1, \frac{3}{2}; x_{1}\right) - 4\left(\frac{3}{4} + \delta_{1}\right)\left(\frac{3}{4} - \delta_{1}\right)A_{-13}\Phi_{2}\left(\frac{1}{4} + \delta_{1}, \frac{1}{4} - \delta_{1}, 2; 2, \frac{3}{2}; x_{1}\right).$$
(5.8.28)

Наконец, учитывая зависимость

$${}_{3}\Phi_{2}\left(\frac{1}{4}+\delta_{1},\frac{1}{4}-\delta_{1},2;2,\frac{3}{2};x_{1}\right) =$$
$$={}_{3}\Phi_{2}\left(\frac{1}{4}+\delta_{1},\frac{1}{4}-\delta_{1},1;1,\frac{3}{2};x_{1}\right) + \frac{1}{2\left(\frac{3}{4}+\delta_{1}\right)\left(\frac{3}{4}-\delta_{1}\right)}\frac{1}{x_{1}} (5.8.29)$$

и подстановки (5.8.19), получаем частное решение неоднородного уравнения (5.8.1), соответствующее осевой силе $P = -2\pi C$, в виде

$$\tilde{N}_{s}^{(C)} = -\frac{x_{1}}{1-x_{1}} \left\{ \left[2A_{0} + 4\left(\frac{3}{4} + \delta_{1}\right)\left(\frac{3}{4} - \delta_{1}\right)A_{-1} \right] \times \right\}$$

$$\times {}_{3}\Phi_{2}\left(\frac{1}{4} + \delta_{1}, \frac{1}{4} - \delta_{1}, 1; 1, \frac{3}{2}; x_{1}\right) + \frac{2A_{-1}}{x_{1}} \right\}.$$

На основании тождества $2A_0 + 4\left(\frac{3}{4} + \delta_1\right)\left(\frac{3}{4} - \delta_1\right)A_{-i} = 0$ окончательно получаем

$$\widetilde{N}_{s}^{(C)} = -\frac{2A_{-1}}{1-x_{1}}.$$
(5.8.30)

Зная решение (5.6.1) для функции \tilde{N}_s , определяем решение для функции

$$N_{\theta} = N_{\theta} + k_0 \varkappa_s, \qquad (5.8.31)$$

где постоянная k_0 имеет значение (5.8.2). Необходимую для этого зависимость получаем, умножая уравнение (5.5.6) на k_0 и складывая его с уравнением (5.5.2).

В случае сферической оболочки имеем

$$\widetilde{N}_{\theta} = \frac{d}{d\varphi} \left(\widetilde{N}_{s} \operatorname{tg} \varphi \right) + \frac{C}{r_{o} \cos^{2} \varphi} \,. \tag{5.8.32}$$

Подставляя в уравнение (5.8.32) решение (5.8.13) и применяя формулы преобразования и дифференцирования для гипергеометрических функций [15], находим общее решение однородного уравнения для функции \tilde{N}_{\bullet} :

$$\tilde{N}_{\theta}^{*} = \tilde{N}_{s}^{*} + \left(\frac{9}{4} - \delta^{2}\right) \left[\tilde{C}_{1} \frac{\xi}{1-\xi} F\left(\frac{1}{2} + \delta, \frac{1}{2} - \delta; 3; \xi\right) - \tilde{C}_{2} \frac{1-\xi}{\xi} F\left(\frac{1}{2} + \delta, \frac{1}{2} - \delta; 3; 1-\xi\right).$$
(5.8.33)

Разлагая решения (5.6.1) и (5.8.32) на действительные и мнимые части, находим решения для усилий N_s , N_{θ} и деформаций κ_s , κ_{θ} , а затем по формулам (5.4.6) вычисляем решения для изгибающих моментов.

Необходимые для определения перемещений формулы составляем следующим образом.

Полагая в соотношениях (5.2.6) и (5.2.8) $R_1 = R_2 = r_0$ и исключая в них перемещение u_z , находим

$$u_{s} = \sin \varphi \left[r_{0} \int \frac{1}{\sin \varphi} (\varepsilon_{s} - \varepsilon_{\theta}) \, d\varphi + C_{5} \right]. \quad (5.8.34)$$

С помощью соотношений (5.4.2) и уравнения (5.5.2) определяем

$$\varepsilon_{s} - \varepsilon_{\theta} = \frac{(1+\nu)(N_{s} - N_{\theta})}{Eh} = \frac{1+\nu}{Eh} \left[N_{s} - \frac{d(N_{s} \operatorname{tg} \varphi)}{d\varphi} - \frac{C}{r_{0} \cos^{2} \varphi} \right] = \frac{1+\nu}{Eh} \left[-\sin \varphi \frac{d}{d\varphi} \left(\frac{N_{s}}{\cos \varphi} \right) - \frac{C}{r_{0} \cos^{2} \varphi} \right].$$
(5.8.35)

Подставляя выражение (5.8.35) в (5.8.34), получаем

$$u_{s} = \sin \varphi \left\{ -\frac{(1+\nu)r_{0}}{Eh} \left[\frac{N_{s}}{\cos \varphi} + \frac{C}{r_{0}} \left(\frac{1}{\cos \varphi} + \ln \operatorname{tg} \frac{\varphi}{2} \right) \right] + C_{5} \right\}. (5.8.36)$$

Зная перемещение u_s, из соотношения (5.2.6) находим

$$u_{z} = r_{0}\varepsilon_{s} - \frac{du_{s}}{d\varphi} = \frac{r_{0}}{Eh}(N_{s} + N_{\theta}) + r_{0}\varepsilon_{\tau} + \frac{1+\nu}{Eh}C\left(1 + \cos\varphi \ln \operatorname{tg}\frac{\varphi}{2}\right) - C_{5}\cos\varphi.$$
(5.8.37)

Заметим, что C₅ есть перемещение оболочки как жесткого тела в направлении ее оси.

Для определения частных решений однородных уравнений для всех усилий, моментов и перемещений в вещественных функциях полагаем

$$\tilde{C}_1 = C_1 + iC_2, \quad \tilde{C}_2 = C_3 + iC_4,$$
(5.8.38)

$$F\left(\frac{1}{2}+\delta, \frac{1}{2}-\delta; c; \xi\right) = \varphi_c(\xi) + i\psi_c(\xi)$$
(5.8.39)
(c=2, 3),

где C_n (n=1, 2, 3, 4) — вещественные постоянные; $\phi_c(\xi)$, $\psi_c(\xi)$ (c=2, 3) — вещественные функции, определяемые бесконечными рядами

$$\varphi_c(\xi) = 1 + \sum_{n=1}^{\infty} a_{nc} \xi^n,$$
(5.8.40)

$$\psi_{c}(\xi) = \sum_{n=1}^{\infty} b_{nc} \xi^{n}.$$
 (5.8.41)

Коэффициенты a_{nc} , b_{nc} вычисляются с помощью рекуррентных формул

$$a_{nc} = \frac{n(n-1)-1}{n(n+c-1)} a_{(n-1)c} - \frac{\mu}{n(n+c-1)} b_{(n-1)c},$$

$$b_{nc} = \frac{n(n-1)-1}{n(n+c-1)} b_{(n-1)c} + \frac{\mu}{n(n+c-1)} a_{(n-1)c}$$

$$(c=2, 3; n=1, 2, ...; a_{oc}=1; b_{oc}=0).$$
(5.8.42)

Разлагая решения (5.8.13) и (5.8.33) на действительные и мнимые части и принимая при этом во внимание выражения (5.8.38) и (5.8.39), находим частные решения $N_s^{(n)}$, $N_{\theta}^{(n)}$, $\mathbf{x}_s^{(n)}$, $\mathbf{x}_s^{(n)}$, (n=1, 2, 3, 4), входящие в общие решения однородных уравнений

$$N_{s}^{*} = \sum_{n=1}^{4} C_{n} N_{s}^{(n)}, \quad N_{\theta}^{*} = \sum_{n=1}^{4} C_{n} N_{\theta}^{(n)},$$

$$x_{s}^{*} = \sum_{n=1}^{4} C_{n} x_{s}^{(n)}, \quad x_{\theta}^{*} = \sum_{n=1}^{4} C_{n} x_{\theta}^{(n)}.$$
 (5.8.43)

После проведения необходимых преобразований получаем

$$\begin{split} N_{s}^{(1)} &= \frac{1-2\xi}{1-\xi} \left[\varphi_{2}\left(\xi\right) - \frac{v}{\mu} \psi_{2}\left(\xi\right) \right], \\ N_{s}^{(2)} &= -\frac{1-2\xi}{1-\xi} \left[\psi_{2}\left(\xi\right) + \frac{v}{\mu} \varphi_{2}\left(\xi\right) \right], \\ N_{s}^{(3)} &= \frac{1-2\xi}{\xi} \left[\varphi_{2}\left(1-\xi\right) - \frac{v}{\mu} \psi_{2}\left(1-\xi\right) \right], \\ N_{s}^{(4)} &= -\frac{1-2\xi}{\xi} \left[\psi_{2}\left(1-\xi\right) + \frac{v}{\mu} \varphi_{2}\left(1-\xi\right) \right], \\ N_{\theta}^{(4)} &= N_{s}^{(1)} + \frac{\xi}{1-\xi} \left[(1-v) \varphi_{3}\left(\xi\right) - \left(\mu + \frac{v}{\mu}\right) \varphi_{3}\left(\xi\right) \right], \\ N_{\theta}^{(2)} &= N_{s}^{(2)} - \frac{\xi}{1-\xi} \left[(1-v) \psi_{3}\left(\xi\right) + \left(\mu + \frac{v}{\mu}\right) \varphi_{3}\left(\xi\right) \right], \\ N_{\theta}^{(3)} &= N_{s}^{(3)} - \frac{1-\xi}{\xi} \left[(1-v) \psi_{3}\left(1-\xi\right) - \left(\mu + \frac{v}{\mu}\right) \psi_{3}\left(1-\xi\right) \right], \\ N_{\theta}^{(4)} &= N_{s}^{(4)} + \frac{1-\xi}{\xi} \left[(1-v) \psi_{3}\left(1-\xi\right) + \left(\mu + \frac{v}{\mu}\right) \varphi_{3}\left(1-\xi\right) \right]; \\ x_{s}^{(1)} &= x_{\theta}^{(1)} + \frac{\xi}{1-\xi} \left[\psi_{3}\left(\xi\right) + \mu\varphi_{3}\left(\xi\right) \right] \frac{r_{0}}{\mu D_{M}}, \\ x_{s}^{(2)} &= x_{\theta}^{(2)} + \frac{\xi}{\xi} \left[\psi_{3}\left(\xi\right) - \mu\psi_{3}\left(\xi\right) \right] \frac{r_{0}}{\mu D_{M}}, \\ x_{s}^{(4)} &= x_{\theta}^{(4)} - \frac{1-\xi}{\xi} \left[\psi_{3}\left(1-\xi\right) - \mu\psi_{3}\left(1-\xi\right) \right] \frac{r_{0}}{\mu D_{M}}, \\ x_{\theta}^{(4)} &= \frac{1-2\xi}{\xi} \psi_{2}\left(\xi\right) \frac{r_{0}}{\mu D_{M}}, \\ x_{\theta}^{(3)} &= \frac{1-2\xi}{1-\xi} \psi_{2}\left(\xi\right) \frac{r_{0}}{\mu D_{M}}, \\ x_{\theta}^{(4)} &= \frac{1-2\xi}{\xi} \psi_{3}\left(1-\xi\right) \frac{r_{0}}{\mu D_{M}}, \\ x_{\theta}^{(4)} &= \frac{1-2\xi}{\xi} \psi_{2}\left(\xi\right) \frac{r_{0}}{\mu D_{M}}, \end{aligned}$$

Подставляя решения (5.8.43) в формулы (5.4.6), (5.8.36) и (5.8.37), взятые при $\varepsilon_r = 0$, $\varkappa_r = 0$, $\mathcal{C} = 0$, $C_5 = 0$, находим

$$M_{s}^{*} = \sum_{n=1}^{4} C_{n} M_{s}^{(n)}, \qquad M_{\theta}^{*} = \sum_{n=1}^{4} C_{n} M_{\theta}^{(n)},$$

$$u_{s}^{*} = \sum_{n=1}^{4} C_{n} u_{s}^{(n)}, \qquad u_{z}^{*} = \sum_{n=1}^{4} C_{n} u_{z}^{(n)},$$
(5.8.48)

где

$$\begin{split} \mathcal{M}_{s}^{(1)} &= \left\{ (1+\nu) \frac{1-2\xi}{1-\xi} \varphi_{1}(\xi) + \frac{\xi}{1-\xi} [\psi_{3}(\xi) + \mu \varphi_{3}(\xi)] \right\} \frac{r_{0}}{\mu}, \\ \mathcal{M}_{s}^{(2)} &= \left\{ (1+\nu) \frac{1-2\xi}{1-\xi} \varphi_{2}(\xi) + \frac{\xi}{1-\xi} [\varphi_{3}(\xi) - \mu \psi_{3}(\xi)] \right\} \frac{r_{0}}{\mu}, \\ \mathcal{M}_{s}^{(3)} &= \left\{ (1+\nu) \frac{1-2\xi}{\xi} \psi_{2}(1-\xi) - \frac{1-\xi}{\xi} [\psi_{3}(1-\xi) + \mu \varphi_{3}(1-\xi)] \right\} \frac{r_{0}}{\mu}, \\ \mathcal{M}_{s}^{(4)} &= \left\{ (1+\nu) \frac{1-2\xi}{\xi} \varphi_{2}(1-\xi) - \frac{1-\xi}{\xi} [\varphi_{3}(1-\xi) - \mu \psi_{3}(1-\xi)] \right\} \frac{r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(4)} &= \mathcal{M}_{s}^{(1)} - \frac{\xi}{1-\xi} [\psi_{3}(\xi) + \mu \varphi_{3}(\xi)] \frac{(1-\nu)r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(2)} &= \mathcal{M}_{s}^{(2)} - \frac{\xi}{1-\xi} [\varphi_{3}(\xi) - \mu \psi_{3}(\xi)] \frac{(1-\nu)r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(2)} &= \mathcal{M}_{s}^{(2)} - \frac{\xi}{1-\xi} [\psi_{3}(1-\xi) + \mu \varphi_{3}(1-\xi)] \frac{(1-\nu)r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(3)} &= \mathcal{M}_{s}^{(4)} + \frac{1-\xi}{\xi} [\varphi_{3}(1-\xi) - \mu \psi_{3}(1-\xi)] \frac{(1-\nu)r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(4)} &= \mathcal{M}_{s}^{(4)} + \frac{1-\xi}{\xi} [\varphi_{3}(1-\xi) - \mu \psi_{3}(1-\xi)] \frac{(1-\nu)r_{0}}{\mu}, \\ \mathcal{M}_{\theta}^{(4)} &= (1+\nu) \lg \varphi N_{s}^{(n)} \frac{r_{0}}{Eh} = (1+\nu) \frac{\sqrt{1-(1-2\xi)^{2}}}{1-2\xi} N_{s}^{(n)} \frac{r_{0}}{Eh} (5.8.51) \\ (n=1, 2, 3, 4), \\ u_{z}^{(n)} &= (N_{s}^{(n)} + N_{\theta}^{(n)}) \frac{r_{0}}{Eh} (n=1, 2, 3, 4). \end{split}$$

Выполняя аналогичные разложения решений (5.8.18) и (5.8.30) и применяя затем формулы (5.4.6), (5.8.36) и (5.8.37), определяем частные решения неоднородных уравнений

$$N_s^{(\varepsilon_{\mathrm{T}}, x_{\mathrm{T}})}, \ldots, u_z^{(\varepsilon_{\mathrm{T}}, x_{\mathrm{T}})}, \\N_s^{(C)}, \ldots, u_z^{(C)},$$

которые необходимо добавить к общим решениям однородных уравнений (5.8.43) и (5.8.48), чтобы получить общие решения для усилий N_s , N_{θ} , деформаций \varkappa_s , \varkappa_{θ} , изгибающих моментов M_s , M_{θ} и перемещений u_s , u_z :

Для определения частных решений, отвечающих чисто тепловым деформациям $\varepsilon_{\rm T}$ и $\varkappa_{\rm T}$, в вещественных функциях ограничимся случаем, когда температурное поле $T-T_0$ изменяется только по толщине оболочки. В этом случае $\varepsilon_{\rm T}={\rm const}$, $\varkappa_{\rm T}={\rm const}$ и соответствующий свободный член в уравнении (5.8.1) отсутствует. Тогда $\widetilde{N}_s^{(\varepsilon_{\rm T}, \varkappa_{\rm T})}=0$ и на основании формулы (5.8.32), взятой при C=0, $\widetilde{N}_{\mathfrak{g}}^{(\varepsilon_{\rm T}, \varkappa_{\rm T})}=0$. Учитывая эти равенства и применяя формулы (5.4.6), (5.8.36) и (5.8.37), находим

$$N_{s}^{(\epsilon_{T}, \mathbf{x}_{T})} = N_{\theta}^{(\epsilon_{T}, \mathbf{x}_{T})} = 0,$$

$$\mathbf{x}_{s}^{(\epsilon_{T}, \mathbf{x}_{T})} = \mathbf{x}_{\theta}^{(\epsilon_{T}, \mathbf{x}_{T})} = 0,$$

$$M_{s}^{(\epsilon_{T}, \mathbf{x}_{T})} = M_{\theta}^{(\epsilon_{T}, \mathbf{x}_{T})} = -(1+\nu) D_{M} \mathbf{x}_{T},$$

$$u_{s}^{(\epsilon_{T}, \mathbf{x}_{T})} = 0,$$

$$u_{z}^{(\epsilon_{T}, \mathbf{x}_{T})} = r_{0} \epsilon_{T}.$$
(5.8.54)

Разделяя выражения (5.8.30) и (5.8.32) на действительные и мнимые части, в связи с формулами (5.5.10), (5.8.31) определяем

$$N_{s}^{(C)} = -N_{\theta}^{(C)} = -\frac{C}{r_{0}\sin^{2}\varphi}, \qquad (5.8.55)$$

$$\kappa_s^{(C)} = \kappa_{\theta}^{(C)} = 0.$$
 (5.8.56)

Применяя затем формулы (5.4.6), (5.8.36) и (5.8.37), находим

$$M_s^{(C)} = M_{\theta}^{(C)} = 0,$$
 (5.8.57)

$$u_{s}^{(C)} = \left(\operatorname{ctg} \varphi - \sin \varphi \ln \operatorname{tg} \frac{\varphi}{2}\right) \frac{(1+\nu)C}{Eh} + C_{5} \sin \varphi,$$

$$u_{z}^{(C)} = \left(1 + \cos \varphi \ln \operatorname{tg} \frac{\varphi}{2}\right) \frac{(1+\nu)C}{Eh} - C_{5} \cos \varphi.$$
(5.8.58)

Зная частные решения для N_s , по формулам (5.4.2) и (5.5.1) находим соответствующие частные решения для ε_s , ε_{θ} и Q. Используя частные решения для усилий N_s , N_{θ} , изгибающих моментов M_s , M_{θ} , деформаций ε_s , ε_{θ} , \varkappa_s , \varkappa_{θ} и перемещений u_s , u_z и удовлетворяя необходимым граничным условиям, рассмотренным в § 5.6, определяем постоянные интегрирования C_n (n = 1, 2, 3, 4, 5), входящие в решения (5.8.43), (5.8.48) и (5.8.53). После этого решение задачи термоупругости для сферической оболочки, находящейся в осесимметричном температурном поле, может считаться законченным.

Осесимметричная задача термоупругости

§ 6.1. Основные уравнения

Рассмотрим тепловые напряжения в телах вращения, обусловленные симметричным относительно оси вращения температурным полем. Осесимметричному температурному полю в телах вращения отвечает осесимметричное напряженное состояние.

Напряженное состояние таких тел вращения, как цилиндр или сфера, удобно изучать в цилиндрических или сферических координатах (см. рис. 5 и 7).

Если ось вращения совпадает с осью z, то в силу симметрии термоупругой деформации относительно оси z все компоненты тензора напряжения не зависят от угла θ .

Для исследования таких задач в квазистатической постановке используем представление общего решения в форме Папковича (§ 2.2)

$$\overrightarrow{u} = \overrightarrow{u^{(T)}} + \overrightarrow{u}^* = \operatorname{grad} \Phi + 4(1-\nu)\overrightarrow{B} - \operatorname{grad} (\overrightarrow{B} \cdot \overrightarrow{r} + \overrightarrow{B}_0), \quad (6.1.1)$$

в котором скалярная функция Φ , гармонический вектор B и гармонический скаляр B_0 , определяемые соответственно формулами (2.2.8), (2.2.5) и (2.2.6), являются функциями только двух координат. При использовании этого решения следует иметь в виду, что в системе криволинейных координат компоненты гар-

монического вектора \hat{B} не удовлетворяют уравнениям Лапласа. Применяя известное из векторного анализа [18] тождество, определяем их из векторного уравнения

$$\nabla^2 \vec{B} = \text{grad div } \vec{B} - \text{rot rot } \vec{B} = 0.$$
 (6.1.2)

Ниже приводим формулы, необходимые для исследования осессимметричной задачи термоупругости в цилиндрических и сферических координатах.

Цилиндрические координаты. При осевой симметрии напряженного состояния компоненты вектора перемещения u_{θ} , тензора деформации $\varepsilon_{r\theta}$ и $\varepsilon_{\theta z}$ и тензора напряжения $\sigma_{r\theta}$ и $\sigma_{\theta z}$ обращаются в нуль (§ 2.6).

Компоненты вектора перемещения u_r и u_z в направлениях единичных векторов $\vec{e_r}$ и $\vec{e_z}$ (рис. 5) имеют вид

$$u_{r} = u_{r}^{(T)} + u_{r}^{*},$$

$$u_{z} = u_{z}^{(T)} + u_{z}^{*},$$
(6.1.3)

где

$$u_r^{(T)} = \frac{\partial \Phi}{\partial r}, \quad u_z^{(T)} = \frac{\partial \Phi}{\partial z},$$
 (6.1.4)

$$u_{r}^{*} = 4 (1 - \nu) B_{r} - \frac{\partial}{\partial r} (rB_{r} + zB_{z} + B_{0}),$$

$$u_{z}^{*} = 4 (1 - \nu) B_{z} - \frac{\partial}{\partial z} (rB_{r} + zB_{z} + B_{0}).$$
(6.1.5)

Уравнение Пуассона (2.2.8) для скалярной функции Ф в рассматриваемом случае принимает вид

$$\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1+\nu}{1-\nu} \alpha_{\rm r} (T-T_0), \qquad (6.1.6)$$

где То — температура тела в ненапряженном состоянии.

Функции B_r и B_z в решении (6.1.4) являются компонентами гармонического вектора \vec{B} в направлениях единичных векторов $\vec{e_r}$ и $\vec{e_z}$ (рис. 5).

Выполняя в уравнении (6.1.2) векторные операции по формулам (2.6.1)—(2.6.3) и учитывая, что все производные по θ обращаются в нуль, получаем для определения B_r и B_z следующие уравнения:

$$\frac{\partial^2 B_r}{\partial r^2} + \frac{1}{r} \frac{\partial B_r}{\partial r} - \frac{B_r}{r^2} + \frac{\partial^2 B_r}{\partial z^2} = 0, \qquad (6.1.7)$$

$$\frac{\partial^2 B_z}{\partial r^2} + \frac{1}{r} \frac{\partial B_z}{\partial r} + \frac{\partial^2 B_z}{\partial z^2} = 0.$$
 (6.1.8)

Заметим, что уравнение (6.1.7), которому удовлетворяет B_r, не является уравнением Лапласа.

Уравнение Лапласа для гармонического скаляра B₀ (2.2.6) в цилиндрических координатах имеет вид

$$\frac{\partial^2 B_0}{\partial r^2} + \frac{1}{r} \frac{\partial B_0}{\partial r} + \frac{\partial^2 B_0}{\partial z^2} = 0.$$
 (6.1.9)

Используя соотношения (2.6.5) и (1.5.11) и принимая во внимание уравнение (6.1.6), находим следующие выражения для деформаций и напряжений:

$$\begin{aligned} \varepsilon_r &= \varepsilon_r^{(T)} + \varepsilon_r^*, \\ \cdot & \cdot & \cdot \\ \varepsilon_{rz} &= \varepsilon_{rz}^{(T)} + \varepsilon_{rz}^*; \end{aligned} \tag{6.1.10}$$

где

$$\varepsilon_r^{(T)} = \frac{\partial^2 \Phi}{\partial r^2}, \ \varepsilon_{\theta}^{(T)} = \frac{1}{r} \frac{\partial \Phi}{\partial r}, \ \varepsilon_z^{(T)} = \frac{\partial^2 \Phi}{\partial z^2}, \ \varepsilon_{rz}^{(T)} = \frac{\partial^2 \Phi}{\partial r \partial z};$$
 (6.1.12)

$$\varepsilon_r^* = \frac{\partial u_r^*}{\partial r}, \ \varepsilon_{\theta}^* = \frac{1}{r} u_r^*, \ \varepsilon_z^* = \frac{\partial u_z^*}{\partial z}, \ \varepsilon_{rz}^* = \frac{1}{2} \left(\frac{\partial u_r^*}{\partial z} + \frac{\partial u_z^*}{\partial r} \right); \quad (6.1.13)$$

$$\begin{aligned} \sigma_{r}^{(T)} &= 2\mu \left(\frac{\partial^{2} \Phi}{\partial r^{2}} - \nabla_{1}^{2} \Phi \right), \quad \sigma_{\theta}^{(T)} &= 2\mu \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} - \nabla_{1}^{2} \Phi \right), \\ \sigma_{z}^{(T)} &= 2\mu \left(\frac{\partial^{2} \Phi}{\partial z^{2}} - \nabla_{1}^{2} \Phi \right), \quad \sigma_{rz}^{(T)} &= 2\mu \frac{\partial^{2} \Phi}{\partial r \partial z}, \end{aligned}$$

$$(6.1.14)$$

$$\nabla_{1}^{2} &= \frac{\partial^{2} \Phi}{\partial r^{2}} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{\partial^{2} \Phi}{\partial z^{2}}; \\ \sigma_{r}^{*} &= 2\mu \left(\varepsilon_{r}^{*} + \frac{\nu}{1 - 2\nu} \widetilde{e}^{*} \right), \quad \sigma_{\theta}^{*} &= 2\mu \left(\varepsilon_{\theta}^{*} + \frac{\nu}{1 - 2\nu} e^{*} \right), \end{aligned}$$

$$\sigma_{z}^{*} = 2\mu \left(\varepsilon_{z}^{*} + \frac{\gamma}{1 - 2\nu} e^{*} \right), \quad \tau_{rz}^{*} = 2\mu \varepsilon_{rz}^{*}, \quad (6.1.15)$$
$$e^{*} = \varepsilon_{r}^{*} + \varepsilon_{\theta}^{*} + \varepsilon_{z}^{*}.$$

Сферические координаты. При осесимметричном напряженном состоянии компоненты вектора перемещения u_{θ} , тензора деформации $\varepsilon_{r\theta}$ и $\varepsilon_{\theta \gamma}$ и тензора напряжения $\sigma_{r\theta}$ и $\sigma_{\theta \gamma}$ равны нулю (§ 2.6).

Компоненты вектора перемещения и, и и и инеют вид

$$u_{r} = u_{r}^{(T)} + u_{r}^{*}, u_{\varphi} = u_{\varphi}^{(T)} + u_{\varphi}^{*},$$
 (6.1.16)

где

$$u_r^{(T)} = \frac{\partial \Phi}{\partial r}, \quad u_{\varphi}^{(T)} = \frac{1}{r} \frac{\partial \Phi}{\partial \varphi};$$
 (6.1.17)

$$u_{r}^{*}=4(1-\nu)B_{r}-\frac{\partial}{\partial r}(rB_{r}+B_{0}),$$

$$u_{\varphi}^{*}=4(1-\nu)B_{\varphi}-\frac{1}{r}\frac{\partial}{\partial \varphi}(rB_{r}+B_{0}).$$
(6.1.18)

Здесь B_r и B_{φ} — компоненты гармонического вектора \vec{B} в направлениях единичных векторов $\vec{e_r}$ и $\vec{e_{\varphi}}$ (рис. 7).

Используя выражение (2.6.10) для оператора Лапласа в сферических координатах, для определения термоупругого потенциала Ф получаем следующее уравнение:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Phi}{\partial r}\right) + \frac{1}{r^2\sin\varphi}\frac{\partial}{\partial\varphi}\left(\sin\varphi\frac{\partial\Phi}{\partial\varphi}\right) = \frac{1+\nu}{1-\nu}\alpha_{\rm T}\left(T-T_0\right). \ (6.1.19)$$

Для составления уравнений для B_r и B_{φ} используем опять векторное уравнение (6.1.2). Выполняя в нем векторные операции по формулам (2.6.7)—(2.6.9), получаем следующие уравнения:

$$\frac{\partial e_B}{\partial r} - \frac{1}{r \sin \varphi} \frac{\partial}{\partial \varphi} (\sin \varphi \omega_B) = 0,$$

$$\frac{\partial e_B}{\partial \varphi} + \frac{\partial}{\partial r} (r \omega_B) = 0,$$

(6.1.20)

где

$$e_{B} = \operatorname{div} \vec{B} = \frac{1}{r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r^{2}B_{r}) + \frac{1}{\sin \varphi} \frac{\partial}{\partial \varphi} (\sin \varphi B_{\varphi}) \right],$$

$$\omega_{B} = \operatorname{rot}_{\theta} \vec{B} = \frac{1}{r} \left[\frac{\partial (rB_{\varphi})}{\partial r} - \frac{\partial B_{r}}{\partial \varphi} \right].$$
(6.1.21)

Уравнения (6.1.20) для функций е_в и ω_{B} оказались связанными.

С помощью несложных преобразований можно решение системы уравнений (6.1.20) свести к решению двух независимых уравнений относительно e_{B} и ω_{B} . Применяя операцию div () к уравнению (6.1.2) и учитывая, что

div grad ()=
$$\nabla^2$$
 (),
div rot ()=0,

находим, что е_в является гармонической функцией, удовлетворяющей уравнению

$$\nabla^2 e_B = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial e_B}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial e_B}{\partial \varphi} \right) = 0. \quad (6.1.22)$$

Операция rot (), примененная к уравнению (6.1.2), приводит к следующему уравнению для функции ω_{B} :

$$r\frac{\partial^2}{\partial r^2}(r\omega_B) + \frac{\partial}{\partial \varphi} \left[\frac{1}{\sin\varphi} \frac{\partial}{\partial \varphi} (\sin\varphi\omega_B) \right] = 0.$$
 (6.1.23)

При нахождении уравнения (6.1.23) операцию rot rot rot () вычисляем с помощью формулы (2.6.9) и учитываем, что

rot grad ()=0.

Найдя решения уравнений (6.1.22) и (6.1.23), для определения B_r и B_{φ} получаем систему двух уравнений первого порядка (6.1.21). Уравнение для гармонической функции B_0 , входящей в решение (6.1.18), принимает вид

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial B_0}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \varphi} \left(\sin \varphi \frac{\partial B_0}{\partial \varphi} \right) = 0.$$
(6.1.24)

Деформации и напряжения определяются по формулам

$$\begin{aligned} \varepsilon_r = \varepsilon_r^{(T)} + \varepsilon_{r}^*, \\ \cdot \cdot \cdot \cdot \cdot \\ \varepsilon_{r\varphi} = \varepsilon_{r\varphi}^{(T)} + \varepsilon_{r\varphi}^*; \\ \sigma_r = \sigma_r^{(T)} + \sigma_r^*, \\ \cdot \cdot \cdot \\ \sigma_{r\varphi} = \sigma_{r\varphi}^{(T)} + \sigma_{r\varphi}^*, \end{aligned}$$
(6.1.26)

где

$$\varepsilon_{r}^{(T)} = \frac{\partial^{\mathbf{a}} \Phi}{\partial r^{\mathbf{a}}}, \quad \varepsilon_{\varphi}^{(T)} = \frac{1}{r} \left(\frac{\partial \Phi}{\partial r} + \frac{1}{r} \frac{\partial^{2} \Phi}{\partial \varphi^{2}} \right),$$
$$\varepsilon_{\varphi}^{(T)} = \frac{1}{r} \left(\frac{\partial \Phi}{\partial r} + \frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \operatorname{ctg} \varphi \right),$$
$$\varepsilon_{r\varphi}^{(T)} = \frac{1}{2} \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \right) + \frac{1}{r} \left(\frac{\partial^{2} \Phi}{\partial r \partial \varphi} - \frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \right) \right]. \quad (6.1.27)$$

$$\begin{split} \varepsilon_{r}^{*} &= \frac{\partial u_{r}^{*}}{\partial r}, \quad \varepsilon_{\varphi}^{*} &= \frac{1}{r} \left(u_{r}^{*} + \frac{\partial u_{\varphi}^{*}}{\partial \varphi} \right), \\ \varepsilon_{\theta}^{*} &= \frac{1}{r} \left(u_{r}^{*} + u_{\varphi}^{*} \operatorname{ctg} \varphi \right), \\ \varepsilon_{r\varphi}^{*} &= \frac{1}{2} \left[\frac{1}{r} \left(\frac{\partial u_{r}^{*}}{\partial \varphi} - u_{\varphi}^{*} \right) + \frac{\partial u_{\varphi}^{*}}{\partial r} \right]; \\ \sigma_{r}^{(T)} &= 2\mu \left[\frac{\partial^{2} \Phi}{\partial r^{2}} - \nabla_{1}^{2} \Phi \right], \\ \sigma_{\varphi}^{(T)} &= 2\mu \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \varphi} - \nabla_{1}^{2} \Phi \right), \\ \sigma_{\theta}^{(T)} &= 2\mu \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial \Phi}{\partial \varphi} \operatorname{ctg} \varphi - \nabla_{1}^{2} \Phi \right), \\ \sigma_{r\varphi}^{(T)} &= \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \right) + \frac{1}{r} \left(\frac{\partial^{2} \Phi}{\partial r \partial \varphi} - \frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \right) \right], \\ \nabla_{1}^{2} \Phi &= \frac{\partial^{2} \Phi}{\partial r^{2}} + \frac{2}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^{2}} \frac{\partial \Phi}{\partial \varphi} \operatorname{ctg} \varphi + \frac{1}{r^{2}} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}; \\ \sigma_{r}^{*} &= 2\mu \left(\varepsilon_{r}^{*} + \frac{\nu}{1 - 2\nu} e^{*} \right), \\ \sigma_{\theta}^{*} &= 2\mu \left(\varepsilon_{\theta}^{*} + \frac{\nu}{1 - 2\nu} e^{*} \right), \\ \sigma_{r\varphi}^{*} &= 2\mu \varepsilon_{r\varphi}^{*}, \\ e^{*} &= \varepsilon_{r}^{*} + \varepsilon_{\varphi}^{*} + \varepsilon_{\theta}^{*}. \end{split}$$
(6.1.30)

В качестве примеров, иллюстрирующих применение общего решения (6.1.1), в настоящей главе рассматривается определение тепловых напряжений в цилиндре конечной длины (§ 6.2) и в полой сфере (§ 6.3) при заданных температурных полях.

§ 6.2. Тепловые напряжения в цилиндре конечной длины

Рассмотрим метод определения тепловых напряжений в сплошном цилиндре радиуса r_2 и длиной 2l, подвергающемся действию осесимметричного нагрева, при котором температурное

поле T = T(r, z) является симметричным относительно оси z и плоскости z=0 (рис. 24).

Цилиндрическая (r=r₂) и торцевые поверхности цилиндра свободны от внешней нагрузки.

Задача нестационарной теплопроводности для цилиндра конечной длины рассмотрена в § 3.7.

В фиксированный момент времени температурное поле цилиндра аппроксимируем выражением

$$T(r, z) - T_0 = \sum_{n=0}^{\infty} a_n(r) \cos k_n z, \qquad (6.2.1)$$

где T₀ — начальная температура, соответствующая ненапряженному состоянию цилиндра

Зная температурное поле, вы-

бираем выражение для термоупругого потенциала перемещений, являющееся частным решением уравнения (6.1.6), в виде

$$\Phi(r, z) = \frac{1+\nu}{1-\nu} \alpha_{\rm T} \sum_{n=0}^{\infty} b_n(r) \cos k_n z.$$
 (6.2.3)

Подставляя выражения (6.2.1) и (6.2.3) в уравнение (6.1.6), получаем следующее уравнение для определения функций $b_n(r)$:

$$r\frac{d}{dr}\left[r\frac{db_{n}(r)}{dr}\right] - k_{n}^{2}r^{2}b_{n}(r) = r^{2}a_{n}(r) \qquad (6.2.4)$$

$$(n = 0, 1, \ldots).$$

При n=0 $(k_n=0)$ из уравнения (6.2.4) определяем

$$b_0(r) = \int_0^r \frac{1}{r} \int_0^r ra_0(r) \, dr \, dr. \qquad (6.2.5)$$

При $n \ge 1$ однородное уравнение, соответствующее уравнению (6.2.4), является уравнением Бесселя нулевого порядка.

Определяя при $n \ge 1$ частное решение неоднородного уравнения (6.2.4) методом вариации произвольных постоянных, находим *

$$b_{n}(r) = I_{0}(k_{n}r) \int rK_{0}(k_{n}r) a_{n}(r) dr - K_{0}(k_{n}r) \int rI_{0}(k_{n}r) a_{n}(r) dr$$
(6.2.6)
(n=1, 2,...).

При нахождении частного решения (6.2.6) используем известное из теории функций Бесселя соотношение

$$I_0(x)\frac{dK_0(x)}{dx} - K_0(x)\frac{dI_0(x)}{dx} = -\frac{1}{x}.$$
 (6.2.7)

Соответствующие термоупругому потенциалу (6.2.3) перемещения и напряжения, вычисленные по формулам (6.1.4) и (6.1.14), имеют выражения

$$u_{r}^{(T)} = \frac{1+\nu}{1-\nu} \alpha_{T} \frac{db_{0}(r)}{dr} + \frac{1+\nu}{1-\nu} \alpha_{T} \sum_{n=1}^{\infty} \frac{db_{n}(r)}{dr} \cos k_{n} z,$$

$$u_{z}^{(T)} = -\frac{1+\nu}{1-\nu} \alpha_{T} \sum_{n=1}^{\infty} k_{n} b_{n}(r) \sin k_{n} z;$$
(6.2.8)
$$\frac{\sigma_{r}^{(T)}}{2\mu} = \frac{1+\nu}{1-\nu} \alpha_{T} \left[\frac{d^{2}b_{0}(r)}{dr^{2}} - a_{0}(r) \right] + \left[\frac{1+\nu}{1-\nu} \alpha_{T} \times \sum_{n=1}^{\infty} \left[\frac{d^{2}b_{n}(r)}{dr^{2}} - a_{n}(r) \right] \cos k_{n} z,$$
(6.2.9)
$$\frac{\sigma_{\theta}^{(T)}}{2\mu} = \frac{1+\nu}{1-\nu} \alpha_{T} \left[\frac{1}{r} \frac{db_{0}(r)}{dr} - a_{0}(r) \right] + \frac{1+\nu}{1-\nu} \alpha_{T} \times \sum_{n=1}^{\infty} \left[\frac{1}{r} \frac{db_{n}(r)}{dr} - a_{0}(r) \right] + \frac{1+\nu}{1-\nu} \alpha_{T} \times \sum_{n=1}^{\infty} \left[\frac{1}{r} \frac{db_{n}(r)}{dr} - a_{n}(r) \right] \cos k_{n} z,$$

$$\frac{\sigma_{rz}^{(T)}}{2\mu} = -\frac{1+\nu}{1-\nu} \alpha_{T} \sum_{n=1}^{\infty} \left[k_{n}^{2} b_{n}(r) + a_{n}(r) \right] \cos k_{n} z,$$

$$\frac{\sigma_{rz}^{(T)}}{2\mu} = -\frac{1+\nu}{1-\nu} \alpha_{T} \sum_{n=1}^{\infty} k_{n} \frac{db_{n}(r)}{dr} \sin k_{n} z.$$

^{*} В этом параграфе используются обозначения и формулы дифференцирования функций Бесселя, приведенные в главе третьей.

Переходим к построению общих решений однородных уравнений рассматриваемой задачи.

В силу симметрии температурного поля относительно плоскости z=0 общее решение (6.1.5), очевидно, должно удовлетворять условиям

$$u_r^*(-z) = u_r^*(z), \quad u_z^*(-z) = -u_z^*(z).$$
 (6.2.10)

Решение (6.1.5) считаем состоящим из двух частей:

$$u_r^* = u_r^{\rm I} + u_r^{\rm II}, u_z^* = u_z^{\rm I} + u_z^{\rm II}.$$
(6.2.11)

Первая часть решения u_r^l и u_z^l строится таким образом, чтобы с ее помощью удовлетворить произвольные граничные условия в напряжениях на поверхности цилиндра $r=r_2$; вычисленные напряжения для этой части решения должны иметь вид рядов по полной на интервале $-l \leq z \leq l$ системе ортогональных функций. В связи с этим для функций B_r и B_0 , входящих в решение (6.1.5), выбираем следующие выражения, удовлетворяющие уравнениям (6.1.7) и (6.1.9) и условиям (6.2.10):

$$B_{r} = g_{0}(r) + \sum_{n=1}^{\infty} g_{n}(r) \cos k_{n} z,$$

$$B_{0} = h_{0}(r) + \sum_{n=1}^{\infty} h_{n}(r) \cos k_{n} z.$$
(6.2.12)

Функцию B_z удобно при этом положить равной нулю:

$$B_z = 0.$$
 (6.2.13)

Подставляя выражения (6.2.12) в уравнения (6.1.7) и (6.1.9), получаем следующую систему уравнений для определения $g_0(r)$, $h_0(r)$, $g_n(r)$, $h_n(r)$:

$$\frac{d^2 g_0(r)}{dr^2} + \frac{1}{r} \frac{dg_0(r)}{dr} - \frac{g_0(r)}{r^2} = 0,$$

$$\frac{d^2 h_0(r)}{dr^2} + \frac{1}{r} \frac{dh_0(r)}{dr} = 0,$$

$$\frac{d^2 g_n(r)}{dr^2} + \frac{1}{r} \frac{dg_n(r)}{dr} - \left(\frac{1}{r^2} + k_n^2\right) g_n(r) = 0,$$
(6.2.14)

$$\frac{dr^2}{dr^2} + \frac{1}{r} \frac{dh_n(r)}{dr} - k_n^2 h_n(r) = 0$$
(6.2.15)

(6.2.15)

(6.2.15)

Общие решения этих уравнений имеют вид

$$g_{0}(r) = \alpha_{0}r + \alpha'_{0}\frac{1}{r}, \quad h_{0}(r) = \beta_{0} + \beta'_{0}\ln r,$$

$$g_{n}(r) = \alpha_{n}I_{1}(k_{n}r) + \alpha'_{n}K_{1}(k_{n}r), \quad (6.2.16)$$

$$h_{n}(r) = \beta_{n}I_{0}(k_{n}r) + \beta'_{n}K_{0}(k_{n}r) \quad (n = 1, 2, ...),$$

где $\alpha_0, \ldots, \beta'_n$ — произвольные постоянные.

Так как цилиндр является сплошным, то следует положить

$$\alpha'_0 = 0, \dots, \beta'_n = 0.$$
 (6.2.17)

Учитывая (6.2.17) и используя формулы (6.2.12) и (6.1.5), находим

$$u_{r}^{1} = 2 (1 - 2\nu) \alpha_{0} r + \sum_{n=1}^{\infty} \left\{ \alpha_{n} \left[4 (1 - \nu) I_{1}(k_{n}r) - k_{n}r I_{0}(k_{n}r) \right] - \beta_{n}k_{n}I_{1}(k_{n}r) \right\} \cos k_{n}z, \quad (6.2.18)$$

$$u_z^{\mathrm{I}} = \sum_{n=1} \left[\alpha_n k_n r I_1(k_n r) + \beta_n k_n I_0(k_n r) \right] \sin k_n z.$$

При построении второй части решения u_r^{II} и u_z^{II} удобно принять

$$B_r = 0.$$
 (6.2.19)

На основании аналогичных соображений представляем гармонические функции B_z и B_0 в виде

$$B_{z} = p_{0}(z) + \sum_{j=1}^{\infty} p_{j}(z) J_{0}(\lambda_{j}r),$$

$$B_{0} = q_{0}(z) + \sum_{j=1}^{\infty} q_{j}(z) J_{0}(\lambda_{j}r).$$
(6.2.20)

В выражении (6.2.20) λ_j являются корнями трансцендентного уравнения

$$J_1(\lambda r_2) = 0. \tag{6.2.21}$$

При этом обеспечивается ортогональность функций

$$J_0(\lambda_j r)$$
 и $J_1(\lambda_j r) = -\frac{1}{\lambda_j} \frac{dJ_0(\lambda_j r)}{dr}$

и необходимое условие для разложения любой функции в ряды по функциям $J_0(\lambda_j r)$ и $J_1(\lambda_j r)$ на интервале $0 \le r \le r_2$.

Подставляя выражения (6.2.20) в уравнения (6.1.8) и (6.1.9), получаем

$$\frac{d^2 p_0(z)}{dz^2} = 0, \qquad \qquad \frac{d^2 q_0(z)}{dz^2} = 0, \qquad (6.2.22)$$

$$\frac{d^2 p_j(z)}{dz^2} - \lambda_j^2 p_j(z) = 0, \qquad \frac{d^2 q_j(z)}{dz^2} - \lambda_j^2 q_j(z) = 0. \quad (6.2.23)$$

Учитывая условия (6.2.11), решения уравнений (6.2.22) и (6.2.23) выбираем в виде

$$p_0(z) = \gamma_0 z, \qquad q_0(z) = \delta_0, \qquad (6.2.24)$$

$$p_j(z) = \gamma_j \operatorname{sh} \lambda_j z, \qquad q_j(z) = \delta_j \operatorname{ch} \lambda_j z \qquad (j = 1, 2, \ldots),$$

где γ_0 , δ_0 , γ_i , δ_j — произвольные постоянные.

Найденные выражения для функций B_z и B_0 позволяют вторую часть решения u_i^{II} и u_z^{II} представить в виде

$$u_{r}^{\mathrm{H}} = \sum_{j=1}^{\infty} \{\gamma_{j}\lambda_{j}z \operatorname{sh}\lambda_{j}z + \delta_{j}\lambda_{j} \operatorname{ch}\lambda_{j}z\} J_{1}(\lambda_{j}r),$$

$$u_{z}^{\mathrm{H}} = 2(1-2\nu)\gamma_{0}z + \sum_{j=1}^{\infty} \{\gamma_{j}[(3-4\nu)\operatorname{sh}\lambda_{j}z - (6.2.25) -\lambda_{j}z \operatorname{ch}\lambda_{j}z] - \delta_{j}\lambda_{j} \operatorname{sh}\lambda_{j}z\} J_{0}(\lambda_{j}r).$$

Подставляя выражения (6.2.18) и (6.2.25) в равенства (6.2.11), получаем общее решение однородных уравнений для перемещений:

$$u_r^* = 2 (1-2\nu) \alpha_0 r + \sum_{n=1}^{\infty} \{ \alpha_n [4 (1-\nu) I_1(k_n r) - k_n r I_0(k_n r)] - \beta_n k_n I_1(k_n r) \} \cos k_n z + \sum_{j=1}^{\infty} \{ \gamma_j \lambda_j \operatorname{sh} \lambda_j z + \delta_j \lambda_j \operatorname{ch} \lambda_j z \} J_1(\lambda_j r),$$

$$u_z^* = 2 (1-2\nu) \gamma_0 z + \sum_{n=1}^{\infty} [\alpha_n k_n r I_1(k_n r) + \beta_n k_n I_0(k_n r)] \sin k_n z +$$

$$+ \sum_{j=1}^{\infty} \{ \gamma_j \{ (3-4\nu) \operatorname{sh} \lambda_j z - \lambda_j z \operatorname{ch} \lambda_j z] - \delta_j \lambda_j \operatorname{sh} \lambda_j z \} J_0(\lambda_j r).$$

Соответствующие напряжения, вычисленные по формулам (6.1.13) и (6.1.15), получают выражения

$$\begin{split} \frac{\mathfrak{s}_{r}^{*}}{2\mu} &= 2\mathfrak{a}_{0} + 2\mathfrak{v}_{10} + \sum_{n=1}^{\infty} \left\{ \mathfrak{a}_{n} \left[-4\left(1-\mathfrak{v}\right) \frac{1}{r} I_{1}\left(k_{n}r\right) - k_{n}^{2}rI_{1}\left(k_{n}r\right) + \right. \\ &+ \left(3-2\mathfrak{v}\right)k_{n}I_{0}\left(k_{n}r\right) \right] + \beta_{n}k_{n} \left[\frac{1}{r} I_{1}\left(k_{n}r\right) - k_{n}I_{0}\left(k_{n}r\right) \right] \right\} \cos k_{n}z - \\ &- \sum_{j=1}^{\infty} \left(\gamma_{j}\lambda_{j}z \sh \lambda_{j}z + \delta_{j}\lambda_{j} \cosh \lambda_{j}z \right) \frac{J_{1}\left(\lambda_{j}r\right)}{r} + \sum_{j=1}^{\infty} \left\{ \gamma_{j}\left(\lambda_{j}^{2}z \sh \lambda_{j}z + \frac{1}{2}\mathfrak{v}\lambda_{j}z + \frac{1}{2}\mathfrak{v}\lambda_{j}\cosh \lambda_{j}z \right) + \delta_{j}\lambda_{j}^{2} \cosh \lambda_{j}z \right\} J_{0}\left(\lambda_{j}r\right), \\ &+ 2\mathfrak{v}\lambda_{j} \cosh \lambda_{j}z \right) + \delta_{j}\lambda_{j}^{2} \cosh \lambda_{j}z \right\} J_{0}\left(\lambda_{j}r\right), \\ &\frac{\mathfrak{a}_{0}^{*}}{2\mu} = 2\mathfrak{a}_{0} + 2\mathfrak{v}\gamma_{0} + \sum_{n=1}^{\infty} \left\{ \mathfrak{a}_{n} \left[4\left(1-\mathfrak{v}\right) \frac{1}{r} I_{1}\left(k_{n}r\right) - \left(1-2\mathfrak{v}\right)k_{n}I_{0}\left(k_{n}r\right) \right] - \\ &- \beta_{n}k_{n}\frac{1}{r} I_{1}\left(k_{n}r\right) \right\} \cos k_{n}z + \sum_{j=1}^{\infty} \left(\gamma_{j}\lambda_{j}z \sh \lambda_{j}z + \delta_{j}\lambda_{j}\cosh \lambda_{j}z\right) \times \\ &\times \frac{J_{1}\left(\lambda_{j}r\right)}{r} + 2\mathfrak{v}\sum_{j=1}^{\infty} \left(\gamma_{j}\lambda_{j}z \sh \lambda_{j}z J_{0}\left(\lambda_{j}r\right), \quad (6.2.27)\right) \\ &\times \frac{J_{1}\left(\lambda_{j}r\right)}{r} + 2\mathfrak{v}\sum_{j=1}^{\infty} \left\{\gamma_{j}\left[2\left(1-\mathfrak{v}\right)\lambda_{j}\cosh \lambda_{j}z - \lambda_{j}^{2}z \sh \lambda_{j}z\right] - \\ &- \delta_{j}\lambda_{j}^{2} \cosh \lambda_{j}z\right\} J_{0}\left(\lambda_{j}r\right), \\ &- \delta_{j}\lambda_{j}^{2} \cosh \lambda_{j}z\right\} J_{0}\left(\lambda_{j}r\right), \\ &\frac{\mathfrak{a}_{r,r}^{*}}{2\mu} = \sum_{n=1}^{\infty} \left\{\mathfrak{a}_{n}k_{n}\left[-2\left(1-\mathfrak{v}\right)I_{1}\left(k_{n}r\right) + k_{n}rI_{0}\left(k_{n}r\right)\right] + \\ &+ \beta_{n}k_{n}^{2}I_{1}\left(k_{n}r\right)\right\} \sin k_{n}z + \sum_{j=1}^{\infty} \left\{\gamma_{j}\lambda_{j}\left[\lambda_{j}z \cosh \lambda_{j}z - \left(1-2\mathfrak{v}\right) \sh \lambda_{j}\lambda_{j}z\right\} + \\ &+ \delta_{j}\lambda_{j}^{2} \sh \lambda_{j}z\right\} J_{1}\left(\lambda_{j}r\right). \end{split}$$

Выражения (6.2.27) для компонентов тензора напряжений содержат необходимый функциональный произвол для удовле-

творения произвольных симметричных относительно плоскости z=0 граничных условий.

Для цилиндра, у которого поверхности $r = r_2$ и $z = \pm l$ свободны от напряжений, граничные условия имеют вид

при
$$r = r_2$$
 $\sigma_r^* + \sigma_r^{(T)} = 0$, $\sigma_{rz}^* + \sigma_{rz}^{(T)} = 0$,
при $z = \pm l$ $\sigma_z^* + \sigma_z^{(T)} = 0$, $\sigma_{rz}^* + \sigma_{rz}^{(T)} = 0$. (6.2.28)

Подставляя решения однородных уравнений для напряжений (6.2.27) в граничные условия (6.2.28), получаем следующую систему функциональных уравнений для определения постоянных α_0 , γ_0 , α_n , β_n , γ_i , β_i :

$$\begin{aligned} \frac{1}{2\mu} (\sigma_{r}^{*} + \sigma_{r}^{(T)})_{r=r_{s}} &= 2\alpha_{0} + 2\nu\gamma_{0} + \sum_{n=1}^{\infty} \left\{ \alpha_{n} \left[-4\left(1-\nu\right) \frac{1}{r_{s}} I_{1}\left(k_{n}r_{s}\right) - \right. \\ &\left. -k_{n}^{2} r_{s} I_{1}\left(k_{n}r_{s}\right) + \left(3-2\nu\right) k_{n} I_{0}\left(k_{n}r_{s}\right) \right] + \beta_{n} k_{n} \left[\frac{1}{r_{s}} I_{1}\left(k_{n}r\right) - \right. \\ &\left. -k_{n} I_{0}\left(k_{n}r_{s}\right) \right] \right\} \cos k_{n} z + \sum_{j=1}^{\infty} \left\{ \gamma_{j} \left[\lambda_{j}^{2} z \operatorname{sh} \lambda_{j} z + 2\nu\lambda_{j} \operatorname{ch} \lambda_{j} z \right] + \right. \\ &\left. + \delta_{j} \lambda_{j}^{2} \operatorname{ch} \lambda_{j} z \right\} J_{0}\left(\lambda_{j}r_{s}\right) + \frac{1}{2\mu} \left(\sigma_{r}^{(T)}\right)_{r=r_{s}} = 0, \quad (6.2.29) \\ &\left. \frac{1}{2\mu} \left(\sigma_{z}^{*} + \sigma_{z}^{(T)} \right)_{z=\pm l} = 2 \left(1-\nu \right) \gamma_{0} + 4\nu\alpha_{0} + \sum_{n=1}^{\infty} \left(-1 \right)^{n} \left\{ \alpha_{n} \left[k_{n}^{3} r I_{1}\left(k_{n}r \right) + \right. \\ &\left. + 2\nu k_{n} I_{0}\left(k_{n}r\right) \right] + \beta_{n} k_{n}^{3} I_{0}\left(k_{n}r\right) \right\} + \sum_{j=1}^{\infty} \left\{ \gamma_{j} \left[2\left(1-\nu \right) \lambda_{j} \operatorname{ch} \lambda_{j} l - \right. \\ &\left. - \lambda_{j}^{2} l \operatorname{sh} \lambda_{j} l \right] - \delta_{j} \lambda_{j}^{2} \operatorname{ch} \lambda_{j} l \right\} J_{0}\left(\lambda_{j}r\right) + \frac{1}{2\mu} \left(\sigma_{z}^{(T)} \right)_{z=\pm l} = 0; \\ \\ &\left. \frac{1}{2\mu} \left(\sigma_{rz}^{*} + \sigma_{rz}^{(T)} \right)_{r=r_{2}} = \sum_{n=1}^{\infty} \left\{ \alpha_{n} k_{n} \left[-2\left(1-\nu \right) I_{1}\left(k_{n}r_{2}\right) + k_{n}r_{2} I_{0}\left(k_{n}r_{2}\right) \right] \right\} \\ &\left. + \beta_{n} k_{n}^{3} I_{1}\left(k_{n}r_{2}\right) \right\} \sin k_{n} z + \frac{1}{2\mu} \left(\sigma_{rz}^{(T)} \right)_{r=r_{3}} = 0, \\ \\ &\left. \frac{1}{2\mu} \left(\sigma_{rz}^{*} + \sigma_{rz}^{(T)} \right)_{z=\pm l} = \pm \sum_{n=1}^{\infty} \left\{ \gamma_{j} \lambda_{j} \left[\lambda_{j} l \operatorname{ch} \lambda_{j} l - \left(1-2\nu \right) \operatorname{sh} \lambda_{j} l \right] + \right. \\ &\left. + \delta_{j} \lambda_{j}^{2} \operatorname{sh} \lambda_{j} l \right\} J_{1}\left(\lambda_{j}r\right) + \frac{1}{2\mu} \left(\sigma_{rz}^{(T)} \right)_{z=\pm l} = 0. \end{aligned}$$

Из граничных условий для касательных напряжений (6.2.30) получаем следующую зависимость между искомыми постоянными:

$$\beta_{n}k_{n}^{2} = -\alpha_{n}k_{n}\left[-2(1-\nu)+k_{n}r_{2}\frac{I_{0}(k_{n}r_{2})}{I_{1}(k_{n}r_{2})}\right] - \frac{1+\nu}{1-\nu}\alpha_{\tau}k_{n}\frac{db_{n}}{dr}(r_{2})\frac{1}{I_{1}(k_{n}r_{2})}, \quad (6.2.31)$$
$$\delta_{j}\lambda_{j}^{2} = -\gamma_{j}\lambda_{j}\left[-(1-2\nu)+\lambda_{j}l\operatorname{ctg}\lambda_{j}l\right].$$

Используя известные разложения

$$ch \lambda_{j} z = \frac{sh \lambda_{j} l}{\lambda_{j} l} + \frac{2\lambda_{j} sh \lambda_{j} l}{l} \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos k_{n} z}{k_{n}^{2} + \lambda_{j}^{2}},$$

$$\lambda_{j} z sh \lambda_{j} z = ch \lambda_{j} l - \frac{sh \lambda_{j} l}{\lambda_{j} l} + \left(\frac{2\lambda_{j} sh \lambda_{j} l}{l} + 2\lambda_{j}^{2} ch \lambda_{j} l\right) \times \qquad(6.2.32)$$

$$\times \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos k_{n} z}{k_{n}^{2} + \lambda_{j}^{2}} - \frac{4\lambda_{j}^{3} sh \lambda_{j} l}{l} \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos k_{n} z}{(k_{n}^{2} + \lambda_{j}^{2})^{2}}$$

и первое из выражений (6.2.9) для напряжения $\sigma_r^{(T)}$, вместо первого функционального уравнения системы (6.2.29) получаем эквивалентные ему на интервале $-l \leqslant z \leqslant l$ алгебраические уравнения

$$2\alpha_{0} + 2\nu\gamma_{0} = -C_{0}, \qquad (6.2.33)$$

$$\alpha_{n}k_{n}^{2}r_{2}l_{1}(k_{n}r_{2})\left[\frac{I_{0}^{2}(k_{n}r_{2})}{I_{1}^{2}(k_{n}r_{2})} - \frac{2(1-\nu)}{k_{n}^{2}r_{2}^{2}} - 1\right] =$$

$$= -\sum_{j=1}^{\infty} (-1)^{n}\gamma_{j}J_{0}(\lambda_{j}r_{2})\frac{4k_{n,j}^{2}(\lambda_{j}r_{2})}{l(k_{n}^{2}+\lambda_{j}^{2})^{2}} - C_{n}, \qquad (6.2.34)$$

где

$$C_{0} = -\frac{1+\nu}{1-\nu} \alpha_{T} \left[\frac{d^{2}b_{0}}{dr^{2}}(r_{2}) - a_{0}(r_{2}) \right], \qquad (6.2.35)$$

$$C_{n} = -\frac{1+\nu}{1-\nu} \alpha_{T} \left\{ \frac{d^{2}b_{n}}{dr^{2}}(r_{2}) - k_{n} \frac{db_{n}}{dr}(r_{2}) \left[\frac{I_{0}(k_{n}r_{2})}{I_{1}(k_{n}r_{2})} - \frac{1}{k_{n}r_{2}} \right] - a_{n}(r_{2}) \right\}.$$

Аналогично с помощью разложений

$$I_{0}(k_{n}r) = 2 \frac{I_{1}(k_{n}r_{2})}{k_{n}r_{2}} + \frac{2k_{n}}{r_{2}}I_{1}(k_{n}r_{2}) \sum_{j=1}^{\infty} \frac{J_{0}(\lambda_{j}r)}{(k_{n}^{2} + \lambda_{j}^{2})J_{0}(\lambda_{j}r_{2})}, \quad (6.2.36)$$

$$k_{n}rI_{1}(k_{n}r) = -4 \frac{I_{1}(k_{n}r_{2})}{k_{n}r_{2}} + 2I_{0}(k_{n}r_{2}) + 2k_{n}^{2}I_{0}(k_{n}r_{2}) \times \times \sum_{j=1}^{\infty} \frac{J_{0}(\lambda_{j}r)}{(k_{n}^{2} + \lambda_{j}^{2})J_{0}(\lambda_{j}r_{2})} - \frac{4k_{n}^{2}}{r_{2}}I_{1}(k_{n}r_{2}) \sum_{j=1}^{\infty} \frac{J_{0}(\lambda_{j}r)}{(k_{n}^{2} + \lambda_{j}^{2})^{2}J_{0}(\lambda_{j}r_{2})} :$$

$$\frac{1}{2\mu} (\sigma_{z}^{(T)})_{z=\pm l} = D_{0} + \sum_{j=1}^{\infty} D_{j}J_{0}(\lambda_{j}r), \qquad (6.2.37)$$

где

$$D_{0} = \frac{2}{r_{2}^{2}} \int_{0}^{r_{3}} (\sigma_{z}^{(T)})_{z=\pm l} r dr,$$

$$D_{j} = \frac{2}{r_{2}^{2} J_{0}^{2} (\lambda_{j} r_{2})} \int_{0}^{r_{3}} (\sigma_{z}^{(T)})_{z=\pm l} r J_{0} (\lambda_{j} r) dr,$$

вместо второго функционального уравнения системы (6.2.29) получаем эквивалентные ему на интервале $0 \leq r \leq r_2$ алгебраические уравнения

$$2(1-\nu)\gamma_{0}+4\nu\alpha_{0}=-D_{0}, \qquad (6.2.38)$$

$$\gamma_{j}\lambda_{j}\left(\operatorname{ch}\lambda_{j}l+\frac{\lambda_{j}l}{\operatorname{sh}\lambda_{j}l}\right) = -\sum_{n=1}^{\infty} (-1)^{n} \alpha_{n} \frac{4k_{n}^{2}\lambda_{j}^{2}l_{1}\left(k_{n}r_{2}\right)}{r_{2}\left(k_{n}^{2}+\lambda_{j}^{2}\right)^{2}J_{0}\left(\lambda_{j}r_{2}\right)} - D_{j}.$$
(6.2.39)

Система двух уравнений (6.2.33) и (6.2.38) для определения γ_0 и α_0 отвечает элементарным решениям задачи о равновесии цилиндра конечной длины [26].

Исследуем парную бесконечную систему линейных алгебраических уравнений (6.2.34) и (6.2.39) относительно неизвестных постоянных α_n и γ_j .

Вводя новые неизвестные по формулам

$$4 (-1)^{n} \alpha_{n} k_{n}^{2} \frac{I_{1} (k_{n} r_{2})}{r_{2}} = X_{n},$$

$$4 J_{0} (\lambda_{j} r_{2}) \gamma_{j} \lambda_{j}^{2} \frac{\sinh \lambda_{j} l}{l} = -Y_{j},$$
(6.2.40)

вместо системы алгебраических уравнений (6.2.34) и (6.2.39) получаем более удобную для исследования систему вида

$$Y_{j} = \frac{1}{s_{j}} \sum_{n=1}^{\infty} X_{n} \frac{\lambda_{j}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} + \frac{D_{j}J_{0}(\lambda_{j}r_{2})}{s_{j}},$$

$$X_{n} = \frac{1}{t_{n}} \sum_{j=1}^{\infty} Y_{j} \frac{k_{n}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} - \frac{C_{n}(-1)^{n}}{t_{n}},$$
(6.2.41)

где

$$s_{j} = \frac{l \left[\operatorname{ch} \lambda_{j} l + \frac{\lambda_{j} l}{\operatorname{sh} \lambda_{j} l} \right]}{4 \lambda_{j} \operatorname{sh} \lambda_{j} l}, \qquad (6.2.42)$$
$$t_{n} = \frac{r_{2}^{2}}{4} \left[\frac{I_{0}^{2} (k_{n} r_{2})}{I_{1}^{2} (k_{n} r_{2})} - 1 - \frac{2 (1 - \nu)}{k_{n}^{2} r_{2}^{2}} \right].$$

Рассмотрим сумму коэффициентов каждой строки в бесконечной системе (6.2.41). Исходя из свойств равномерной сходимости рядов (6.2.32) и (6.2.36), получаем следующие равенства:

$$\frac{1}{s_j} \sum_{n=1}^{\infty} \frac{\lambda_j^2}{(k_n^2 + \lambda_j^2)^2} = 1 - \frac{1}{2\lambda_j^2 s_j},$$

$$\frac{1}{t_n} \sum_{j=1}^{\infty} \frac{k_n^2}{(k_n^2 + \lambda_j^2)^2} = 1 - \frac{1 + \nu}{2k_n^2 t_n}.$$
(6.2.43)

Можно показать, что функции

$$\boldsymbol{\varphi}_{j} = \frac{1}{2\lambda_{j}^{2}s_{j}},$$

$$\boldsymbol{\psi}_{n} = \frac{1+\boldsymbol{\nu}}{2k_{n}^{2}t_{n}}$$
(6.2.44)

определенно положительные и каждая из них не превосходит единицы для всех j=1, 2, ...; n=1, 2, ... Это обстоятельствоуказывает на то, что система уравнений (6.2.41) является регулярной [13].

Для существования ограниченного решения регулярных бесконечных систем определенные ограничения налагаются на их свободные члены; они должны иметь такой же порядок убывания на бесконечности, как и функции φ_j и ψ_n . Для системы (6.2.41) последнее обеспечивается, если справедливы оценки

$$C_{n} = O\left(\frac{1}{n^{2}}\right),$$

$$D_{j} = O\left(\frac{1}{\lambda^{\frac{3}{2}}}\right).$$
(6.2.45)

Для рассматриваемых температурных полей указанные условия обычно выполняются.

Если оценки (6.2.45) выполняются, то с помощью метода редукции [13] можно находить приближенные значения некото-

рого числа первых неизвестных X_n и Y_j в регулярной бесконечной системе (6.2.41).

Используя результаты работы [19], можно существенно улучшить метод редукции. На основании их можно доказать, что для системы (6.2.41) справедлив так называемый закон асимптотических выражений

$$\lim_{n \to \infty} X_n = \lim_{j \to \infty} Y_j = K. \tag{6.2.46}$$

Полагая при достаточно большом N в связи с равенствами (6.2.46)

$$Y_{N+1}=Y_{N+2}=\ldots, \quad X_{N+1}=X_{N+2}=\ldots,$$

представляем конечную систему 2(N+1) уравнений, отвечающую системе (6.2.41), в виде

$$Y_{j} = \frac{1}{s_{j}} \sum_{n=1}^{N} X_{n} \frac{\lambda_{j}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} + X_{N+1} \left[1 - \varphi_{j} - \sum_{n=1}^{N} \frac{\lambda_{j}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} \right] + \frac{D_{j} J_{0} (\lambda_{j} r_{2})}{s_{j}},$$

$$X_{n} = \frac{1}{t_{n}} \sum_{j=1}^{N} Y_{j} \frac{k_{n}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} + Y_{N+1} \left[1 - \psi_{n} - \sum_{j=1}^{N} \frac{k_{n}^{2}}{(k_{n}^{2} + \lambda_{j}^{2})^{2}} \right] - \frac{C_{n} (-1)^{n}}{t_{n}}.$$

Такой подход позволяет значительно повысить точность нахождения первых N неизвестных в бесконечной системе (6.2.41), а также найти приближенное значение K. В качестве K можно взять одно из двух чисел Y_{N+1} , X_{N+1} .

Другими методами (методами, основанными на использовании принципа Сен-Венана, методом однородных решений и др.) задача термоупругости для цилиндра конечной длины рассматривалась в работах [41, 67].

§ 6.3. Тепловые напряжения в полой сфере

Исследуем термонапряженное состояние полой сферы под действием осесимметричного температурного поля $T(r, \varphi)$. Предполагаем, что сфера свободно деформируется; при этом внутренняя $(r=r_1)$ и наружная $(r=r_2)$ поверхности ее свободны от внешней нагрузки (рис. 25).

Определим сначала частное решение уравнения (6.1.19) для термоупругого потенциала перемещений Ф.

Однородное уравнение, соответствующее уравнению (6.1.19), является уравнением Лапласа в сферических координатах; его решение, как известно, находится методом разделения переменных в виде суммы слагаемых

const
$$r^n P_n(\cos \varphi)$$
,

где n — целое число (положительное или отрицательное); $P_n(\cos \varphi)$ — полином Лежандра n-го порядка. $P_n(\cos \varphi)$ является решением уравнения [46]

$$\frac{d^2 P_n(\cos\varphi)}{d\varphi^2} + \operatorname{ctg}\varphi \,\frac{dP_n(\cos\varphi)}{d\varphi} + n(n+1)P_n(\cos\varphi) = 0. \quad (6.3.1)$$

Для целочисленных значений *n* полиномы Лежандра образуют полную ортогональную сис-

Рис. 25.

тему функций в интервале $0 \le$ $\le \phi \le \pi$, так что $\int_{0}^{\pi} P_{n}(\cos \phi) P_{m}(\cos \phi) \sin \phi d\phi =$ $= \begin{cases} 0 \quad \text{при } n \ne m, \\ \frac{2}{2n+1} \quad \text{при } n = m. \end{cases}$ (6.3.2)

В анализе доказывается [22], что разложение функций в ряд по полиномам Лежандра обладает теми же свойствами, что и разложение функций в ряд Фурье.

Для построения частного решения уравнения (6.1.19) представим температуру $T(r, \varphi) - T_0$ в виде ряда по полиномам Лежандра

$$T(r, \varphi) - T_0 = \sum_{n=0}^{\infty} a_n(r) P_n(\cos \varphi).$$
 (6.3.3)

Коэффициенты разложения находятся по формуле

$$a_n(r) = \frac{2n+1}{2} \int_0^r [T(r, \varphi) - T_0] P_n(\cos \varphi) \sin \varphi \, d\varphi. \qquad (6.3.4)$$

Частное решение уравнения (6.1.19) ищем в виде ряда

$$\Phi(r, \varphi) = \sum_{n=0}^{\infty} b_n(r) P_n(\cos \varphi). \qquad (6.3.5)$$

Подставляя разложения (6.3.3) и (6.3.5) в уравнение (6.1.19) и используя уравнение (6.3.1), получаем следующее уравнение для определения неизвестных функций $b_n(r)$:

$$\frac{d}{dr}\left(r^2\frac{db_n}{dr}\right) - n\left(n+1\right)b_n = \frac{1+\nu}{1-\nu}\alpha_{\mathrm{T}}r^2a_n\left(r\right). \tag{6.3.6}$$

Так как общее решение однородного уравнения, соответствующего уравнению (6.3.6), имеет вид $C_1r^n + C_2r^{-n-1}$ ($C_1, C_2 -$ постоянные интегрирования), то частное решение неоднородного уравнения (6.3.6), найденное методом вариации произвольных постоянных, можно представить выражением

$$b_n(r) = \frac{1+\nu}{1-\nu} \frac{\alpha_r}{2n+1} \left[r^n \int r^{1-n} a_n(r) \, dr - r^{-n-1} \int r^{n+2} a_n(r) \, dr \right].$$
(6.3.7)

В случае стационарного теплообмена без источников тепла выражение для температурного поля, являющееся решением уравнения Лапласа в сферических координатах, имеет выражение

$$T(r, \varphi) - T_0 = \sum_{n=0}^{\infty} (\alpha_n r^n + \beta_n r^{-n-1}) P_n(\cos \varphi),$$
 (6.3.8)

где коэффициенты α_n и β_n предполагаются известными; они определяются в каждом конкретном случае на основании заданных условий теплообмена.

Частное решение для $b_n(r)$ (6.3.7) в этом случае приобретает вид

$$b_n(r) = \frac{1+\nu}{1-\nu} \alpha_r \left[\frac{\alpha_n}{2(2n+3)} r^{n+2} - \frac{\beta_n}{2(2n-1)} r^{-n+1} \right]. \quad (6.3.9)$$

Зная частное решение (6.3.5) для термоупругого потенциала перемещений $\Phi(r, \varphi)$, по формулам (6.1.27) и (6.1.29) определим соответствующие частные решения для компонентов тензора деформации и тензора напряжения; при этом используем уравнение (6.3.1).

Ниже приводим результаты вычислений для компонентов тензора напряжений в случае температурного поля (6.3.3):

$$\begin{aligned} \frac{\sigma_r^{(T)}}{2\mu} &= -\frac{1}{r} \sum_{n=0}^{\infty} \left[2 \frac{db_n(r)}{dr} - \frac{n(n+1)b_n(r)}{r} \right] P_n(\cos\varphi), \\ \frac{\sigma_r^{(T)}}{2\mu} &= -\frac{1}{r^2} \sum_{n=0}^{\infty} \left\{ r \frac{d}{dr} \left[r \frac{db_n(r)}{dr} \right] P_n(\cos\varphi) + b_n(r) \frac{dP_n(\cos\varphi)}{d\varphi} \operatorname{ctg} \varphi \right\}, \\ \frac{\sigma_{\theta}^{(T)}}{2\mu} &= -\frac{1}{r^2} \sum_{n=0}^{\infty} \left\{ r \frac{d}{dr} \left[r \frac{db_n(r)}{dr} \right] P_n(\cos\varphi) - n(n+1)b_n(r) P_n(\cos\varphi) - \\ & - b_n(r) \frac{dP_n(\cos\varphi)}{d\varphi} \operatorname{ctg} \varphi \right\}, \end{aligned}$$

$$\frac{5\binom{r}{r\varphi}}{2\mu} = \frac{1}{r} \sum_{n=1}^{\infty} \left[\frac{db_n(r)}{dr} - \frac{b_n(r)}{r} \right] \frac{dP_n(\cos\varphi)}{d\varphi};$$

в случае стационарного температурного поля (6.3.8):

$$\frac{\sigma_{r}^{(T)}}{2\mu} = \frac{(1+\nu)\alpha_{T}}{2(1-\nu)} \sum_{n=0}^{\infty} \left(\frac{n^{2}-n-4}{2n+3} \alpha_{n}r^{n} - \frac{n^{2}+3n-2}{2n-1} \beta_{n}r^{-n-1} \right) P_{n}(\cos\varphi),$$

$$\frac{\sigma_{\varphi}^{(T)}}{2\mu} = -\frac{(1+\nu)\alpha_{T}}{2(1-\nu)} \sum_{n=0}^{\infty} \left[\left(\frac{(n+2)^{2}}{2n+3} \alpha_{n}r^{n} - \frac{(n-1)^{2}}{2n-1} \beta_{n}r^{-n-1} \right) P_{n}(\cos\varphi) + \left(\frac{\alpha_{n}r^{n}}{2n+3} - \frac{\beta_{n}r^{-n-1}}{2n-1} \right) \frac{dP_{n}(\cos\varphi)}{d\varphi} \operatorname{ctg} \varphi \right], \quad (6.3.11)$$

$$\frac{\sigma_{\varphi}^{(T)}}{2\mu} = -\frac{(1+\nu)\alpha_{T}}{2(1-\nu)} \sum_{n=0}^{\infty} \left[\left(\frac{3n+4}{2n+3} \alpha_{n}r^{n} + \frac{3n-1}{2n-1} \beta_{n}r^{-n-1} \right) P_{n}(\cos\varphi) - \left(\frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} - \frac{\alpha_{n}r^{n}}{2n-1} \right) - \frac{\alpha_{n}r^{n}}{2n-1} \left[\left(\frac{3n+4}{2n+3} \alpha_{n}r^{n} + \frac{3n-1}{2n-1} \right) P_{n}(\cos\varphi) - \left(\frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} \right) P_{n}(\cos\varphi) - \frac{\alpha_{n}r^{n}}{2n-1} \left[\left(\frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} \right] P_{n}(\cos\varphi) - \frac{\alpha_{n}r^{n}}{2n-1} \left[\left(\frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n}r^{n}}{2n-1} \right] P_{n}(\cos\varphi) - \frac{\alpha_{n}r^{n}}{2n-1} + \frac{\alpha_{n$$

$$-\left(\frac{\alpha_n r^n}{2n+3}-\frac{\beta_n r^{-n-1}}{2n-1}\right)\frac{dP_n\left(\cos\varphi\right)}{d\varphi}\operatorname{ctg}\varphi\right],$$

$$\frac{\sigma_{r\varphi}^{(T)}}{2\mu} = \frac{(1+\nu)\alpha_{T}}{2(1-\nu)} \sum_{n=1}^{\infty} \left(\frac{n+1}{2n+3} \alpha_{n} r^{n} + \frac{n}{2n-1} \beta_{n} r^{-n-1} \right) \frac{dP_{n}(\cos\varphi)}{d\varphi}$$

Для сплошной сферы в выражениях (6.3.11) следует положить $\beta_n = 0$, а для пространства со сферической полостью — $\alpha_n = 0$.

["]Переходим к определению решений u_r^* и u_{φ}^* . Для этого сначала найдем функции e_B и ω_B , входящие в систему уравнений (6.1.21) относительно функций B_r и B_{φ} . Эти функции являются решениями уравнений (6.1.22) и (6.1.23).

Методом разделения переменных решение уравнения (6.1.22) представляется в виде суммы слагаемых

$$e_{Bn} = C'_n r^n P_n (\cos \varphi), \qquad (6.3.12)$$

а решение уравнения (6.1.23) — в виде суммы слагаемых

$$\omega_{Bn} = D'_n r^n \frac{dP_n(\cos \varphi)}{d\varphi}.$$
 (6.3.13)

Постоянные C'_n и D'_n не могут быть независимыми, так как e_{Bn} и ω_{Bn} связаны уравнениями (6.1.20).

Подставляя выражения для евл и швл в эти уравнения, находим

$$C'_n = -(n+1)D'_n.$$
 (6.3.14)

Заменяя теперь в уравнениях (6.1.21) функции е_{Вп} и ш_{Вп} их выражениями (6.3.12) и (6.3.13) и принимая во внимание равенство (6.3.14), для определения B_{rn} и $B_{\varphi n}$ получаем следующую систему уравнений:

$$\frac{1}{r}\frac{\partial}{\partial r}(r^{2}B_{rn}) + \frac{1}{\sin\varphi}\frac{\partial}{\partial\varphi}(\sin\varphi B_{\varphi n}) = -(n+1)D'_{n}r^{n+1}P_{n}(\cos\varphi),$$

$$\frac{\partial(rB_{\varphi n})}{\partial r} - \frac{\partial B_{rn}}{\partial\varphi} = D'_{n}r^{n+1}\frac{dP_{n}(\cos\varphi)}{d\varphi}.$$
(6.3.15)

Частное решение этой системы уравнений представляется в виде

$$B_{rn} = -(n+1) A_n r^{n+1} P_n(\cos \varphi), \quad B_{\varphi n} = A_n r^{n+1} \frac{d P_n(\cos \varphi)}{d \varphi}, \quad (6.3.16)$$

где введены новые постоянные интегрирования по формуле

$$A_n = \frac{D'_n}{2n+3}.$$

Из-за функционального произвола, существующего в решении (6.1.18), общее решение системы уравнений (6.3.15) не используется; соответствующая часть решения может быть охвачена функцией B_0 . Эту функцию представляем в виде суммы слагаемых

$$B_{0n} = -B_n r^n P_n(\cos\varphi). \tag{6.3.17}$$

Подставляя выражения (6.3.16) и (6.3.17) для функций B_r , B_{φ} и B_0 в формулы (6.1.18) и суммируя по целочисленным n от — ∞ до ∞ , с учетом рекуррентной зависимости для полиномов Лежандра $P_n(\cos \varphi) = P_{-(n+1)}(\cos \varphi)$ получаем

$$u_{r}^{*} = \sum_{n=0}^{\infty} \left[(n+1) \left(n-2+4\nu \right) A_{n} r^{n+1} + n B_{n} r^{n-1} + n \left(n+3-4\nu \right) C_{n} r^{-n} - (n+1) D_{n} r^{-n-2} \right] P_{n} \left(\cos \varphi \right), \quad (6.3.18)$$

$$u_{\varphi}^{*} = \sum_{n=0}^{\infty} \left[\left(n+5-4\nu \right) A_{n} r^{n+1} + B_{n} r^{n-1} + (4-n-4\nu) C_{n} r^{-n} + D_{n} r^{-n-2} \right] \frac{dP_{n} \left(\cos \varphi \right)}{d\varphi}.$$

Здесь введены постоянные $C_n = A_{-n-1}$, $D_n = B_{-n-1}$.

Применяя далее формулы (6.1.28) и (6.1.30), вычисляем напряжения

$$\frac{\sigma_r^*}{2\mu} = \sum_{n=0}^{\infty} \left[(n+1) \left(n^2 - n - 2 - 2\nu \right) A_n r^n + n \left(n - 1 \right) B_n r^{n-2} - \frac{n}{n} \left(n^2 + 3n - 2\nu \right) C_n r^{-n-1} + (n+1) \left(n + 2 \right) D_n r^{-n-3} \right] P_n(\cos \varphi),$$

$$\begin{split} \frac{\sigma_{\varphi}^{*}}{2\mu} &= -\sum_{n=0}^{\infty} \left\{ \left[(n+1) \left(n^{2} + 4n + 2 + 2\nu \right) A_{n} r^{n} + n^{2} B_{n} r^{n-2} - \right. \\ &\left. - n \left(n^{2} - 2n - 1 + 2\nu \right) C_{n} r^{-n-1} + \left(n + 1 \right)^{2} D_{n} r^{-n-3} \right] P_{n} \left(\cos \varphi \right) + \right. \\ &\left. + \left[(n + 5 - 4\nu) A_{n} r^{n} + B_{n} r^{n-2} + (4 - n - 4\nu) C_{n} r^{-n-1} + \right. \\ &\left. + D_{n} r^{-n-3} \right] \frac{dP_{n} \left(\cos \varphi \right)}{d\varphi} \operatorname{ctg} \varphi \right\}, \end{split}$$

$$\begin{aligned} &\frac{\sigma_{\theta}^{*}}{2\mu} = \sum_{n=0}^{\infty} \left\{ \left[(n+1) \left(n - 2 - 2\nu - 4n\nu \right) A_{n} r^{n} + n B_{n} r^{n-2} + \right. \\ &\left. + n \left(n + 3 - 4n\nu - 2\nu \right) C_{n} r^{-n-1} - \left(n + 1 \right) D_{n} r^{-n-3} \right] P_{n} \left(\cos \varphi \right) + \right. \\ &\left. + \left[(n + 5 - 4\nu) A_{n} r^{n} + B_{n} r^{n-2} + \left(4 - n - 4\nu \right) C_{n} r^{-n-1} + \right. \\ &\left. + D_{n} r^{-n-3} \right] \frac{dP_{n} \left(\cos \varphi \right)}{d\varphi} \operatorname{ctg} \varphi \right\}, \end{aligned}$$

+
$$(n^2-2+2\nu)C_nr^{-n-1}-(n+2)D_nr^{-n-3}]\frac{dP_n(\cos\varphi)}{d\varphi}$$

Для определения постоянных интегрирования A_n , B_n , C_n , D_n используем условия отсутствия напряжений на внутренней $(r=r_1)$ и наружной $(r=r_2)$ поверхностях сферы

$$\sigma_r^* + \sigma_r^{(T)} = 0$$
 при $r = r_1, r = r_2,$
 $\sigma_{r\varphi}^* + \sigma_{r\varphi}^{(T)} = 0$ при $r = r_1, r = r_2.$
(6.3.20)

Остановимся отдельно на случаях n=0, n=1 и $n \ge 2$.

Для n=0 $\frac{dP_0}{d\varphi} \equiv 0$ и согласно (6.3.11) и (6.3.19) $\sigma_{r\varphi} \equiv 0$; остальные напряжения являются функциями только радиуса r; при этом $\sigma_{\varphi} = \sigma_{\theta}$. Из четырех постоянных интегрирования остаются только две: A_0 и D_0 . Для их определения получаем систему двух алгебраических уравнений

$$2(1+\nu)A_{0}-2D_{0}r_{1}^{-3}=-\frac{2}{r_{1}}\frac{db_{0}}{dr}(r_{1}),$$

$$2(1+\nu)A_{0}-2D_{0}r_{2}^{-3}=-\frac{2}{r_{2}}\frac{db_{0}}{dr}(r_{2}),$$
(6.3.21)

откуда

$$A_{0} = \frac{1}{(1+\nu)(r_{1}^{3}-r_{2}^{3})} \left[r_{2}^{2} \frac{db_{0}}{dr}(r_{2}) - r_{1}^{3} \frac{db_{0}}{dr}(r_{1}) \right],$$

$$D_{0} = \frac{1}{r_{1}^{3}-r_{2}^{3}} r_{1}^{2} r_{2}^{2} \left[r_{1} \frac{db_{0}}{dr}(r_{2}) - r_{2} \frac{db_{0}}{dr}(r_{1}) \right].$$
(6.3.22)

Определяя в случае стационарного температурного поля по формуле (6.3.9)

$$b_{\mathbf{0}}(\mathbf{r}) = \frac{(1+\nu)\sigma_{\mathbf{\tau}}}{2(1-\nu)} \left(\frac{\alpha_{0}}{3}\mathbf{r}^{2} + \beta_{0}\mathbf{r}\right),$$

получаем напряжения

$$\sigma_{r} = -4\mu \left[\frac{1}{r} \frac{db_{0}(r)}{dr} + (1+\nu)A_{0} - \frac{1}{r^{3}}D_{0} \right],$$

$$\sigma_{\varphi} = \sigma_{\theta} = -2\mu \left[\frac{d^{2}b_{0}(r)}{dr^{2}} + \frac{1}{r} \frac{db_{0}(r)}{dr} + 2(1+\nu)A_{0} + \frac{2D_{0}}{r^{3}} \right].$$
(6.3.23)

Рассмотрим решение для сплошной сферы, когда температурное поле T(r) обладает центральной симметрией. На основании формул (6.3.6) и (6.3.10) находим

$$\sigma_{r}^{(T)} = -2\mu \frac{1+\nu}{1-\nu} \alpha_{\tau} \frac{2}{r^{3}} \int_{0}^{r} r^{2}T(r) dr = -\frac{4\mu}{3} \frac{1+\nu}{1-\nu} \alpha_{\tau} T_{\star}(r),$$

$$\sigma_{\varphi}^{(T)} = \sigma_{\theta}^{(T)} = \frac{2\mu}{3} \frac{1+\nu}{1-\nu} \alpha_{\tau} [T_{\star}(r) - 3T(r)],$$
(6.3.24)

где $T_{*} = \frac{3}{r^{3}} \int_{0}^{r} r^{2} T(r) dr$ — средняя температура сферы радиуса

r. Добавляя к решениям (6.3.24) выражение равномерного напряженного состояния

$$\sigma_r = \sigma_{\varphi} = \sigma_{\theta} = \frac{4\mu}{3} \frac{1+\nu}{1-\nu} \alpha_{\mathrm{T}} T_* (r_2),$$

получаем известное решение термоупругой задачи для сплошной сферы в случае центральной симметрии при отсутствии напряжений на ее поверхности [41]:

$$\sigma_{r} = \frac{4\mu}{3} \frac{1+\nu}{1-\nu} \alpha_{r} [T_{*}(r_{2})-T_{*}(r)],$$

$$\sigma_{\varphi} = \sigma_{\theta} = \frac{2\mu}{3} \frac{1+\nu}{1-\nu} \alpha_{r} [2T_{*}(r_{2})+T_{*}(r)-3T(r)].$$
(6.3.25)

В случае n=1 коэффициенты при постоянной B_1 в равенствах (6.3.19) обращаются в нуль, и для определения оставшихся трех постоянных A_1 , C_1 , D_1 имеем систему четырех алгебраических уравнений

$$-4(1+v)r_{1}A_{1} - \frac{2(2-v)}{r_{1}^{2}}C_{1} + \frac{6}{r_{1}^{4}}D_{1} = \frac{2}{r_{1}}\left[\frac{db_{1}}{dr}(r_{1}) - \frac{b_{1}(r_{1})}{r_{1}}\right] = \sigma_{1},$$

$$2(1+v)r_{1}A_{1} - \frac{1-2v}{r_{1}^{2}}C_{1} - \frac{3}{r_{1}^{4}}D_{1} = \frac{1}{r_{1}}\left[\frac{b_{1}(r_{1})}{r_{1}} - \frac{db_{1}}{dr}(r_{1})\right] = \tau_{1},$$

$$(6.3.26)$$

$$-4(1+v)r_{2}A_{1} - \frac{2(2-v)}{r_{2}^{2}}C_{1} + \frac{6}{r_{2}^{4}}D_{1} = \frac{2}{r_{2}}\left[\frac{db_{1}}{dr}(r_{2}) - \frac{b_{1}(r_{2})}{r_{2}}\right] = \sigma_{2},$$

$$2(1+v)r_{2}A_{1} - \frac{1-2v}{r_{2}^{2}}C_{1} - \frac{3}{r_{2}^{4}}D_{1} = \frac{1}{r_{2}}\left[\frac{b_{1}(r_{2})}{r_{2}} - \frac{db_{1}}{dr}(r_{2})\right] = \tau_{2}.$$

Для существования решения системы уравнений (6.3.26) необходимо, чтобы определитель четвертого порядка, составленный из ее коэффициентов и правых частей, был равен нулю. В рассматриваемом случае он оказывается

$$\Delta = \frac{36 \left(r_2^5 - r_1^5\right)}{r_1^6 r_2^6} \left(1 - \nu^2\right) \left[r_1^2 \left(\sigma_1 + 2\tau_1\right) - r_2^2 \left(\sigma_2 + 2\tau_2\right)\right] \quad (6.3.27)$$

и, как следует из выражений для правых частей (6.3.26), действительно обращается в нуль.

Заметим, что существование решения системы уравнений (6.3.26) становится очевидным, если положить $C_1=0$; система четырех уравнений (6.3.26) при этом превращается в систему двух уравнений относительно постоянных A_1 и D_1 .

Решение системы уравнений (6.3.26) записывается в виде

$$C_{1}=0, A_{1}=\frac{\left[r_{2}\frac{db_{1}}{dr}(r_{2})-b_{1}(r_{2})\right]r_{2}^{2}-\left[r_{1}\frac{db_{1}}{dr}(r_{1})-b_{1}(r_{1})\right]r_{1}^{2}}{2(1+\nu)(r_{1}^{5}-r_{2}^{5})}, (6.3.28)$$

$$D_{1}=\frac{r_{1}^{4}r_{2}^{4}}{3(r_{1}^{5}-r_{2}^{5})}\left\{\frac{r_{1}}{r_{2}}\left[\frac{db_{1}}{dr}(r_{2})-\frac{b_{1}(r_{2})}{r_{2}}\right]-\frac{r_{2}}{r_{1}}\left[\frac{db_{1}}{dr}(r_{1})-\frac{b_{1}(r_{1})}{r_{1}}\right]\right\}.$$

Можно показать, что определитель системы четырех алгебраических уравнений для каждого $n \ge 2$ отличен от нуля.

Таким образом, задача термоупругости для осесимметрично деформированной сферы может считаться решенной. Эта задача рассматривалась рядом авторов [66, 68].

Динамические и связанные задачи термоупругости

§ 7.1. Общие замечания

Если условия нестационарного теплообмена таковы, что скорость изменения температуры во времени весьма велика, то при исследовании тепловых напряжений в конструкциях следует учитывать динамические эффекты, обусловленные движением частиц твердого тела при быстром тепловом расширении. В этом случае возникает динамическая задача термоупругости.

Динамическая задача термоупругости в перемещениях сводится к решению первого из уравнений (1.6.8), в котором температурное поле *T* предполагается известным из решения соответствующей нестационарной задачи теплопроводности (глава третья). Для получения общего решения этого уравнения в форме (1.6.9) требуется исследование волновых уравнений (1.6.14) и (1.6.15).

Здесь ограничимся рассмотрением простейших динамических задач термоупругости, связанных с оценкой динамических эффектов в одномерных задачах нестационарного теплообмена, задач о тепловом ударе на поверхности полупространства (§ 7.2) и на поверхности прямоугольной пластины (§ 7.3). Исследования этих и других аналогичных динамических задач термоупругости, приведенные в книге [41] и др., показывают, что значительные динамические эффекты в конструкциях могут возникнуть лишь при мгновенном изменении температуры их поверхностей или окружающей среды.

Реально осуществимый быстро протекающий нестационарный теплообмен сопровождается изменением температуры в течение весьма малого, но всегда конечного интервала времени, при котором динамические эффекты существенно уменьшаются. В связи с указанным установилось мнение, что при исследовании термонапряженности конструкций учет динамических напряжений, вообще говоря, практического значения не имеет и для определения тепловых напряжений в условиях нестационарного теплообмена возможно применение квазистатических решений. Тем не менее исследования динамических задач термоупругости нуждаются в дальнейшем развитии в связи с условиями работы новых конструкций, подвергающихся действию импульсивных теплопотоков; здесь важным является также изучение условий возникновения и распространения в конструкциях термоупругих волн напряжений.

В последнее время наметилось новое направление исследований задач термоупругости, учитывающее взаимодействие полей деформации и температуры [52, 58, 59].

Законы термодинамики гласят, что изменение деформаций упругого тела сопровождается изменением его температуры, при котором возникает теплопоток, приводящий в свою очередь к увеличению энтропии термодинамической системы, а, следовательно, к термоупругому рассеянию энергии. Этот процесс описывается системой дифференциальных уравнений (1.6.8).

Нахождение общего решения (1.6.9) системы дифференциальных уравнений (1.6.8) сводится к решению уравнения (1.6.13) относительно скалярного потенциала Φ и уравнения (1.6.11) относительно векторного потенциала \vec{A} .

При изучении распространения безвихревых волн следует в решении (1.6.9) положить $\vec{A} = 0$.

Выбирая решение для функции Ф в виде

$$\Phi = \varphi(x, y, z) e^{pt}, \qquad (7.1.1)$$

находим для функции ф уравнение

$$(\nabla^2 + \delta_1^2) (\nabla^2 + \delta_2^2) \varphi = 0,$$
 (7.1.2)

где

$$\delta_{1}^{2}, \, \delta_{2}^{2} = -\frac{p^{2}}{2c_{1}^{2}} \left\{ \left(1 + \frac{1 + \varepsilon}{\Omega'}\right) \pm \left[1 - \frac{2(1 - \varepsilon)}{\Omega'} + \left(\frac{1 + \varepsilon}{\Omega'}\right)^{2}\right]^{\frac{1}{2}} \right\}.$$
(7.1.3)

В равенствах (7.1.3) введены следующие обозначения:

$$\varepsilon = \frac{T_0 (3\lambda + 2\mu)^2 \alpha_{\tau}^2}{\rho c_1^2 C_{\epsilon}}, \quad \Omega' = \frac{a\rho}{c_1^2}. \quad (7.1.4)$$

Если предположить, что термоупругая связь отсутствует ($\varepsilon = 0$), а волны являются гармоническими с частотой $\frac{\omega}{2\pi}(p = i\omega)$, то из уравнения (7.1.3) получаем

$$\delta_1^2 = \frac{\omega^2}{c_1^2}, \quad \delta_2^2 = -\frac{i\omega}{a}.$$
 (7.1.5)

Следовательно, уравнением (7.1.2) описывается распространение двух видов волн расширения, из которых один, связанный с δ_1 , близок к чисто упругой волне, а другой, связанный с δ_2 , сходен по своему характеру с чисто тепловой волной.

На основании уравнений (7.1.1) и (7.1.2) общее решение уравнения (1.6.13) можно представить в виде

$$\Phi = \sum_{j=1}^{2} \varphi_j e^{pt}, \qquad (7.1.6)$$

где ф, удовлетворяет уравнению

$$(\nabla^2 + \delta_j^2) \phi_j = 0, \ j = 1, 2.$$
 (7.1.7)

Таким образом, при безвихревом движении $(\vec{A}=0)$ общее решение связанной термоупругой задачи (1.6.9) в связи с уравнениями (7.1.6) и (1.6.10) принимает вид

$$\vec{u} = \sum_{j=1}^{2} \operatorname{grad} \varphi_j e^{pt}, \qquad (7.1.8)$$

$$T - T_0 = - \frac{\rho c_1^2}{(3\lambda + 2\mu) \alpha_{\rm T}} \sum_{j=1}^2 \left(\frac{p^2}{c_1^2} + \delta_j^2 \right) \varphi_j e^{\rho t}.$$
(7.1.9)

Учитывая, что

$$\varepsilon_{kk} = \operatorname{div} \vec{u} = \sum_{j=1}^{2} \nabla^2 \varphi_j e^{pt} = -\sum_{j=1}^{2} \delta_j^2 \varphi_j e^{pt},$$

и принимая во внимание формулу (7.1.9), получаем из соотношений (1.6.3) следующие решения для напряжений:

$$\sigma_{kl} = 2\mu \left[\varepsilon_{kl} + \delta_{kl} \sum_{j=1}^{2} \left(\delta_{j}^{2} + \frac{\rho p^{2}}{2\mu} \right) \varphi_{j} e^{pt} \right], \qquad (7.1.10)$$

где δ_{kl} — символ Кронекера.

Для иллюстрации теории в § 7.4 рассматриваются плоские волны расширения в неограниченном сплошном теле.

Применение решения (1.6.9), учитывающего кроме потенциальной и соленоидальную часть, рассматривается в § 7.5 в связи с изучением влияния термоупругого рассеяния энергии на распространение продольных волн в бесконечно длинном сплошном цилиндре.

§ 7.2. Тепловые напряжения в упругом полупространстве, возникающие при тепловом ударе на его поверхности

Задача о тепловом ударе на поверхности полупространства является одной из первых динамических задач термоупругости, подвергшихся детальному исследованию.

Впервые эта задача рассмотрена В. И. Даниловской [8, 9]. Пусть начальная температура упругого полупространства $x \ge 0$ равна T_0 .

В момент времени t=0 температура среды внезапно повышается до значения ϑ ; при этом на границе полупространства происходит конвективный теплообмен со средой.

Нестационарное одномерное температурное поле полупространства T(x, t) в соответствии с уравнениями (3.1.3) и (3.1.8) должно удовлетворять уравнению теплопроводности

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{a} \frac{\partial T}{\partial t}$$
(7.2.1)

и условиям

$$T = T_0$$
 при $t = 0$, (7.2.2)

$$\frac{\partial T}{\partial x} - \frac{\alpha}{\lambda_r} (T - \vartheta) = 0$$
 при $x = 0.$ (7.2.3)

Применяя к уравнению (7.2.1) и условию (7.2.3) преобразование Лапласа (3.6.3), приходим к решению уравнения

$$\frac{d^2 T^*}{dx^2} - \frac{s}{a} \left(T^* - \frac{1}{s} T_0 \right) = 0$$
 (7.2.4)

при условии

$$\frac{dT^*}{dx} - \frac{\alpha}{\lambda_{\rm T}} \left(T^* - \frac{1}{s} T_0 - \frac{\vartheta - T_0}{s} \right) = 0$$
 при $x = 0.$ (7.2.5)

Решение уравнения (7.2.4), удовлетворяющее условию (7.2.5), а также условию ограниченности T^* при $x \to \infty$, имеет вид

$$T^* - \frac{1}{s} T_0 = \frac{\gamma \left(\vartheta - T_0\right) e^{-s \sqrt{\frac{s}{a}}}}{s \left(\gamma + \sqrt{\frac{s}{a}}\right)}, \qquad (7.2.6)$$

где $\gamma = \frac{\alpha}{\lambda_{\rm r}}$ (α — коэффициент теплоотдачи от среды к границе полупространства; $\lambda_{\rm r}$ — коэффициент теплопроводности).
Переходя от изображения T* к оригиналу T с помощью правил, указанных в книге [27], находим

$$T - T_0 = (\vartheta - T_0) \left[\operatorname{erfc} \frac{x}{2\sqrt{at}} - \exp(\gamma x + \gamma^2 at) \operatorname{erfc} \left(\frac{x}{2\sqrt{at}} + \gamma \sqrt{at} \right),$$
(7.2.7)

где

 $\operatorname{erfc} u = 1 - \operatorname{erf} u$,

erf $u = \frac{2}{\sqrt{\pi}} \int_{0}^{u} e^{-u^{2}} du$ — интеграл вероятности Гаусса, а символ

ехр означает экспоненциальную функцию.

В случае $\gamma = \frac{\alpha}{\lambda_{\tau}} \to \infty$ температура поверхности, как это видно из условия (7.2.3), мгновенно принимает значение температуры окружающей среды ϑ . В этом случае решение (7.2.7) принимает вид

$$T - T_0 = (\vartheta - T_0) \operatorname{erfc} \frac{x}{2\sqrt{at}}.$$
 (7.2.8)

Переходим к решению одномерной динамической задачи термоупругости, в которой перемещения v = w = 0 и все производные по координатам y и z равны нулю, а, следовательно,

$$\varepsilon_y = \varepsilon_z = \varepsilon_{xy} = \varepsilon_{xz} = \varepsilon_{yz} = 0.$$

Из соотношений (1.5.13) имеем

$$\sigma_{\mathbf{y}} = \sigma_{z} = \frac{\nu}{1-\nu} \sigma_{x} - \frac{1}{1-\nu} \alpha_{\mathbf{y}} E \left(T - T_{0}\right), \qquad (7.2.9)$$

$$\varepsilon_{x} = \frac{(1+\nu)(1-2\nu)}{(1-\nu)E} \sigma_{x} + \frac{1+\nu}{1-\nu} \alpha_{x} (T-T_{0}), \qquad (7.2.10)$$

а из первого уравнения движения (1.2.15) получаем

$$\frac{\partial \sigma_x}{\partial x} = \rho \, \frac{\partial^2 u}{\partial t^2} \,. \tag{7.2.11}$$

Дифференцируя обе части уравнения (7.2.11) по x и подставляя вместо производной $\frac{\partial u}{\partial x}$ деформацию ε_x , определяемую выражением (7.2.10), находим следующее уравнение движения:

$$\frac{\partial^2 \sigma_x}{\partial x^2} - \frac{1}{c_1^2} \frac{\partial^2 \sigma_x}{\partial t^2} = \frac{1+\nu}{1-\nu} \rho \alpha_{\rm T} \frac{\partial^2 T}{\partial t^2}, \qquad (7.2.12)$$

где $c_1^2 = \frac{\lambda + 2\mu}{\rho} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)\rho}$ — скорость распространения упругой продольной волны.

Решение уравнения (7.2.12) ищем при следующих начальных и граничном условиях:

$$\sigma_x = \frac{\partial \sigma_x}{\partial t} = 0$$
 при $t = 0$, (7.2.13)

Применяя к уравнению (7.2.12) и граничному условию (7.2.14) преобразование Лапласа, приходим к решению уравнения

$$\frac{d^{2}\sigma_{x}^{*}}{dx^{2}} - \frac{s^{2}}{c_{1}^{2}}\sigma_{x}^{*} = \frac{1+\nu}{1-\nu}\rho \mathbf{a}_{\tau}s^{2}\left(T^{*} - \frac{1}{s}T_{0}\right)$$
(7.2.15)

при граничном условии

Подставляя в уравнение (7.2.15) изображение (7.2.6) для температуры, получаем

$$\frac{d^{2}\sigma_{x}^{*}}{dx^{2}} - \frac{s^{2}}{c_{1}^{2}}\sigma_{x}^{*} = \frac{(1+\nu)\rho a_{\tau}\gamma \left(\vartheta - T_{0}\right)s}{(1-\nu)\left(\gamma + \sqrt{\frac{s}{a}}\right)}e^{-x\sqrt{\frac{s}{a}}}.$$
 (7.2.17)

Решение уравнения (7.2.17) при условии (7.2.16) с учетом ограниченности функции σ_x^* при $x \to \infty$ имеет вид

$$\sigma_x^* = \frac{E\alpha_{\tau}(\vartheta - T_0)}{(1 - 2\nu)\left(s - \frac{c_1^2}{a}\right)\left(1 + \sqrt{\frac{s}{a\gamma^2}}\right)} \left(e^{-\frac{xs}{c_1}} - e^{-x\sqrt{\frac{s}{a}}}\right). \quad (7.2.18)$$

С целью облегчения перехода к оригиналу приводим это выражение к виду

$$\sigma_{x}^{*} = \frac{Ea_{\tau}(\vartheta - T_{0})}{1 - 2\nu} \gamma a^{3/2} \left[\frac{1}{2c_{1}(c_{1} + a\gamma)} \cdot \frac{1}{\sqrt{s} - \frac{c_{1}}{\sqrt{a}}} + \frac{1}{2c_{1}(c_{1} - a\gamma)} \frac{1}{\sqrt{s} + \frac{c_{1}}{\sqrt{a}}} + \frac{1}{a^{2}\gamma^{2} - c_{1}^{2}} \frac{1}{\sqrt{s} + \gamma \sqrt{a}} \right] \left(e^{-\frac{xs}{c_{1}}} - e^{-x} \sqrt{\frac{s}{a}} \right).$$
(7.2.19)

182

Используя теорему запаздывания и таблицу изображений, помещенную в книге [27], находим

$$\sigma_{x} = \sigma'_{x} + \begin{cases} 0 & \text{при } t < \frac{x}{c_{1}}, \\ \sigma''_{x} & \text{при } t > \frac{x}{c_{1}}, \end{cases}$$
 (7.2.20)

где

$$\begin{aligned} \sigma'_{x} &= -\frac{Ea_{r}(\vartheta - T_{0})}{1 - 2v} \Big\{ \frac{1}{2\left(1 + \frac{c_{1}}{a\gamma}\right)} \exp\left[\frac{c_{1}^{3}}{a}\left(t - \frac{x}{c_{1}}\right)\right] \times \\ & \times \operatorname{erfc}\left(\frac{x}{2\sqrt{at}} - c_{1}\sqrt{\frac{t}{a}}\right) - \frac{1}{2\left(1 - \frac{c_{1}}{a\gamma}\right)} \exp\left[\frac{c_{1}^{2}}{a}\left(t + \frac{x}{c_{1}}\right)\right] \times \\ & \times \operatorname{erfc}\left(\frac{x}{2\sqrt{at}} + c_{1}\sqrt{\frac{t}{a}}\right) - \frac{1}{1 - \frac{c_{1}^{2}}{a^{2}\gamma^{2}}} \exp\left(\gamma x + \gamma^{2}at\right) \times \\ & \times \operatorname{erfc}\left(\frac{x}{2\sqrt{at}} + \gamma\sqrt{at}\right) \Big\}, \quad (7.2.21) \\ \sigma''_{x} &= \frac{Ea_{r}(\vartheta - T_{0})}{1 - 2v} \frac{1}{1 - \frac{c_{1}^{2}}{a^{2}\gamma^{2}}} \Big\{ \exp\left[\frac{c_{1}^{2}}{a}\left(t - \frac{x}{c_{1}}\right)\right] \Big[1 - \frac{c_{1}}{a\gamma} \times \\ & \times \operatorname{erf}\left[\sqrt{\frac{c_{1}^{*}}{a}\left(t - \frac{x}{c_{1}}\right)}\right] - \exp\left[a\gamma^{2}\left(t - \frac{x}{c_{1}}\right)\right] \operatorname{erfc}\left[\gamma\sqrt{a\left(t - \frac{x}{c_{1}}\right)}\right] \Big\}. \end{aligned}$$

В случае мгновенного повышения температуры поверхности полупространства от T_0 до $\vartheta = T\left(\gamma = \frac{\alpha}{\lambda_r} \to \infty\right)$ функции (7.2.21) в решении (7.2.20) получают следующие выражения:

$$\sigma'_{x} = -\frac{1}{2} K e^{\frac{c_{1}^{2}t}{a}} \left[e^{-\frac{c_{1}x}{a}} \operatorname{erfc}\left(\frac{x}{2\sqrt{at}} - c_{1}\sqrt{\frac{t}{a}}\right) - e^{\frac{c_{1}x}{a}} \operatorname{erfc}\left(\frac{x}{2\sqrt{at}} + c_{1}\sqrt{\frac{t}{a}}\right) \right], \quad (7.2.22)$$

$$\sigma''_{x} = K \exp\left[\frac{c_{1}^{2}}{a}\left(t - \frac{x}{c_{1}}\right)\right],$$

где

$$=\frac{E\alpha_{\mathrm{T}}(T-T_{0})}{1-2^{\nu}}.$$

Κ

183

Зная σ_x , определяем нормальные напряжения σ_y , σ_z по формулам (7.2.9).

Если в уравнении (7.2.11) пренебречь силами инерции, т. е. положить $\frac{\partial^2 u}{\partial t^2} = 0$, то на основании граничного условия (7.2.14) и формул (7.2.9) получим решение рассматриваемой задачи в квазистатической постановке:

$$\sigma_x = 0, \quad \sigma_y = \sigma_z = -\frac{E\alpha_{\tau}(T - T_0)}{1 - \gamma}.$$
 (7.2.23)

Из рассмотрения формул (7.2.9) и (7.2.23) можно сделать заключение о том, что решение динамической задачи (7.2.20)

Рис. 26.

совпадает с решением в квазистатической постановке во всех тех случаях, когда $\sigma_x = 0$, а именно: в начальный момент времени t = 0 для всей области полупространства $x \ge 0$; при t > 0 на поверхности полупространства x = 0.

В. И. Даниловская исследовала изменение динамического напряжения σ_x в фиксированном сечении $\xi = \frac{xc_1}{a}$.

На рис. 26 для случая $\frac{\alpha}{\lambda_r} \to \infty$ приводится график изменения относительного напряжения $\frac{\sigma_x}{K} \left(K = \frac{E\alpha_r (T - T_0)}{1 - 2\nu} \right)$ в зависимости от безразмерного времени $\frac{tc_1}{x}$ в сечении $\xi = 1$. Здесь динамическое напряжение σ_x сначала возрастает от нуля при t = 0 до некоторого отрицательного значения σ_x при $t = \frac{x}{c_1}$. В момент

времени $t = \frac{x}{c_1}$ продольная волна напряжения σ'_x , движущаяся от поверхности x=0 внутрь полупространства со скоростью ε_1 , достигает сечения $\xi=1$ и в нем происходит скачкообразное изменение напряжения σ_x на величину $\sigma''_x = \frac{E\alpha_{\tau}(T-T_0)}{1-2\nu}$ с переходом в область положительных значений. После этого динамическое напряжение быстро уменьшается до нуля, приближаясь к квазистатическому.

В случае $\frac{\alpha}{\lambda_{\tau}} < \infty$ характер изменения динамического напряжения σ_x будет зависеть от параметра $\beta = \frac{c_1}{a\gamma} = \frac{c_1\lambda_{\tau}}{a\alpha}$.

Для малых значений параметра β ($\beta \ll 1$) напряжение J_x растет от нуля до некоторого отрицательного значения, затем переходит плавно без скачка в область положительных значений, достигает максимального положительного значения и после этого быстро убывает до нуля.

Для больших значений параметра β ($\beta \gg 1$) напряжение • возрастает в области положительных значений и, достигнув некоторого максимума, быстро уменьшается до нуля.

Исследование теплового удара на поверхности полупространства с конечной скоростью изменения температуры приводится в книге [41].

Установлено, что динамический эффект существенно уменьшается, если изменение температуры поверхности происходит не мгновенно, а в течение малого, но конечного интервала времени. Так, например, даже при весьма малой продолжительности нагрева $t_0 = 10^{-12}$ сек максимум динамического напряжения, указанный на рис. 26, снижается на 86%.

§ 7.3. Колебания прямоугольной пластины, обусловленные тепловым ударом

Рассмотрим свободно опертую прямоугольную пластину, занимающую область (рис. 27):

$$-a \leqslant x \leqslant a, \quad -b \leqslant y \leqslant b, \quad -\frac{h}{2} \leqslant z \leqslant \frac{h}{2}$$

Пусть к поверхности пластины $z = \frac{h}{2}$ внезапно подводится тепловой поток, плотность которого * равна q' = -q.

^{*} Положительное направление вектора плотности теплового потока q совпадает с направлением внешней нормали к поверхности.

Нижняя поверхность пластины $z = -\frac{h}{2}$ и края пластины

 $x = \pm a$, $y = \pm b$ предполагаются идеально теплоизолированными. Исследование динамического поведения пластины при скачкообразном изменении температуры ее поверхности проведено в работе [53].

Рис. 27.

При указанных условиях теплообмена нестационарное температурное поле будет зависеть только от координаты z и времени t.

Задача нестационарной теплопроводности на основании уравнений (3.1.3), (3.1.6) и (3.1.7) описывается уравнением *

$$\frac{\partial^2 T}{\partial z^2} = \frac{1}{a'} \frac{\partial T}{\partial t}$$
(7.3.1)

при начальном условии

$$T = T_0$$
 при $t = 0$ (7.3.2)

и граничных условиях

$$\lambda_r \frac{\partial T}{\partial z} = q' = -q$$
 при $z = \frac{h}{2}$, (7.3.3)

$$\frac{\partial T}{\partial z} = 0$$
 при $z = -\frac{h}{2}$. (7.3.4)

^{*} Здесь для коэффициента температуропроводности принято обозначение а' во избежание путаницы с обозначением стороны пластины 2a.

Решение этой задачи посредством преобразования Лапласа приводится в книге [57] в виде выражения

$$T - T_0 = \frac{q'h}{\lambda_{\rm r}} \left[\frac{\beta t}{\pi^2} + \frac{12z^2 + 12hz - h^2}{24h^2} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} e^{-n^2\beta t} \cos \frac{n\pi}{2} \left(\frac{2z}{h} + 1 \right) \right], \qquad (7.3.5)$$

где

$$\beta=\frac{a'\pi^2}{h^2}.$$

Используя известное уравнение термоупругого изгиба пластины [15]

$$\nabla^2 \nabla^2 w - \frac{q_z}{D_M} + (1+\nu) \nabla^2 \varkappa_{\mathrm{T}} = 0 \qquad (7.3.6)$$

и заменяя в соответствии с принципом Даламбера интенсивность новерхностных сил силами инерции — $\rho h \frac{\partial^3 w}{\partial t^2}$, получаем следующее уравнение движения:

$$\nabla^{2}\nabla^{2}w + \rho \frac{h}{D_{M}} \frac{\partial^{3}w}{\partial t^{2}} + (1+\nu) \nabla^{2}\varkappa_{\tau} = 0, \qquad (7.3.7)$$

гле

$$\kappa_{\tau} = \frac{12}{h^3} \int_{-h/2}^{h/2} z \alpha_{\tau} (T - T_0) dz, \qquad (7.3.8)$$

ат — коэффициент линейного теплового расши-

 $D_{M} = \frac{Eh^{3}}{12(1-v^{2})}$ — цилиндрическая жесткость изгиба пластины.

Решение уравнения (7.3.7) должно удовлетворять следующим начальным и граничным условиям *:

$$w=0, \quad \frac{\partial w}{\partial t}=0$$
 при $t=0,$ (7.3.9)

$$w=0, \quad \frac{\partial^2 w}{\partial x^2} + (1+v) \varkappa_{\tau} = 0$$
 при $x = \pm a,$ (7.3.10)

$$w=0, \quad \frac{\partial^2 w}{\partial y^2} + (1+v) \varkappa_{\tau} = 0$$
 при $y=\pm b.$ (7.3.11)

^{*} Граничные условия (7.3.10) и (7.3.11) соответствуют граничным условиям (5.16) в книге [15], записанным в полярных координатах.

Подставляя выражение (7.3.5) в равенство (7.3.8), получаем для чисто тепловой деформации и следующее выражение:

$$\kappa_{\rm T} = \frac{q' \alpha_{\rm T}}{2\lambda_{\rm T}} \left(1 - \frac{96}{\pi^4} \sum_{n=1, 3, \dots}^{\infty} \frac{1}{n^4} e^{-n^4 \beta t} \right).$$
(7.3.12)

Так как x_{T} не зависит от координат *x* и *y*, то

$$\nabla^{\mathbf{s}} \boldsymbol{x}_{\mathrm{r}} = 0. \tag{7.3.13}$$

Учитывая равенство (7.3.13), переписываем уравнение (7.3.7) в виде

$$\nabla^2 \nabla^2 w + \frac{\rho h}{D_M} \frac{\partial^2 w}{\partial t^2} = 0.$$
 (7.3.14)

Решение уравнения (7.3.14) представляем в виде суммы квазистатической *w*, и динамической *w*₁₁ частей:

$$w = w_1 + w_{11}.$$
 (7.3.15)

Квазистатическая часть решения *w*₁ должна удовлетворять уравнению

$$\nabla^2 \nabla^2 w_{\mathrm{I}} = 0 \tag{7.3.16}$$

при граничных условиях (7.3.10) и (7.3.11), в которых следует w заменить на w_1 .

Подставляя решение (7.3.15) в уравнение (7.3.14) и учитывая уравнение (7.3.16), получаем следующее уравнение для динамической части решения:

$$\nabla^{2} \nabla^{2} w_{\mathrm{II}} + \kappa^{2} \left(\frac{\partial^{2} w_{\mathrm{II}}}{\partial t^{2}} + \frac{\partial^{2} w_{\mathrm{I}}}{\partial t^{2}} \right) = 0, \qquad (7.3.17)$$

где

 $\kappa^2 = rac{
ho h}{D_M}.$

Так как квазистатическая часть решения w_{I} удовлетворяет всем граничным условиям пластины (7.3.10) и (7.3.11), то динамическая часть решения должна удовлетворять начальным условиям

$$w_{\rm H}=0, \quad \frac{\partial w_{\rm H}}{\partial t}=0$$
 при $t=0$ (7.3.18)

и однородным граничным условиям

$$w_{\Pi} = 0$$
 $\nabla^2 w_{\Pi} = 0$ при $x = \pm a$, $y = \pm b$. (7.3.19)

Решение уравнения (7.3.16) выбираем в виде

$$w_{\rm I} = -\frac{1}{2} (1+\nu) \,\varkappa_{\rm r} \, (x^2 + y^2) + w_{\rm I}' + w_{\rm I}'', \qquad (7.3.20)$$

где функции w'ı и w'i' являются бигармоническими функциями, которые подчиняем следующим граничным условиям:

$$w'_{\mathbf{i}} = 0, \quad \frac{\partial^2 w'_{\mathbf{i}}}{\partial x^2} = 0$$
 при $x = \pm a, \quad (7.3.21)$

$$w'_{\rm I} = \frac{1}{2} (1+v) \varkappa_{\rm T} (b^2 + x^2), \quad \frac{\partial^2 w'_{\rm I}}{\partial y^2} = 0$$
 при $y = \pm b$, (7.3.22)

$$w_{I}^{''} = \frac{1}{2} (1+\gamma) \varkappa_{T} (a^{2}+y^{2}), \quad \frac{\partial^{2} w_{I}}{\partial x^{2}} = 0$$
 при $x = \pm a,$ (7.3.23)

$$w_{\rm I}''=0, \quad \frac{\partial^2 w_{\rm I}}{\partial y^2}=0$$
 при $y=\pm b.$ (7.3.24)

При этих граничных условиях для функций $w'_{\rm I}$ и $w'_{\rm I}$ полностью выполняются граничные условия для функции $w_{\rm I}$.

Выражения для бигармонических функций выбираем в виде

$$w'_{I} = \sum_{n=1,3,...} (A_{n} \operatorname{ch} \alpha_{n} y + \alpha_{n} y B_{n} \operatorname{sh} \alpha_{n} y) \cos \alpha_{n} x,$$

$$w''_{I} = \sum_{n=1,3,...} (C_{n} \operatorname{ch} \beta_{n} x + \beta_{n} x D_{n} \operatorname{sh} \beta_{n} x) \cos \beta_{n} y, \qquad (7.3.25)$$

где

$$\alpha_n = \frac{n\pi}{2a}, \quad \beta_n = \frac{n\pi}{2b}.$$

Выражение для w'_{I} автоматически удовлетворяет условиям (7.3.21), а выражение для w'_{I} — условиям (7.3.24).

Для удовлетворения остальных граничных условий разлагаем в ряды Фурье следующие величины, входящие в граничные условия (7.3.22) и (7.3.23):

$$-\frac{1}{2}(1+\nu) \varkappa_{T}(b^{2}+x^{2}) = \sum_{n=1,3,...} a_{n} \cos \alpha_{n} x,$$

$$-\frac{1}{2}(1+\nu) \varkappa_{T}(a^{2}+y^{2}) = \sum_{n=1,3,...} b_{n} \cos \beta_{n} x,$$

(7.3.26)

где

$$a_{n} = -\frac{(1+\nu) \varkappa_{T}}{\alpha_{n}a} \left(a^{2} + b^{2} - \frac{2}{\alpha_{n}^{2}}\right) \sin \frac{n\pi}{2},$$

$$b_{n} = -\frac{(1+\nu) \varkappa_{T}}{\beta_{n}b} \left(a^{2} + b^{2} - \frac{2}{\beta_{n}^{2}}\right) \sin \frac{n\pi}{2}.$$
(7.3.27)

189

Внося выражения (7.3.25) и (7.3.26) в граничные условия (7.3.22) и (7.3.23), находим постоянные

$$A_{n} = \frac{-a_{n}}{\operatorname{ch}^{2} \alpha_{n} b} \left(\operatorname{ch} \alpha_{n} b + \frac{\alpha_{n} b}{2} \operatorname{sh} \alpha_{n} b \right),$$

$$B_{n} = \frac{a_{n}}{2 \operatorname{ch} \alpha_{n} b},$$

$$C_{n} = \frac{-b_{n}}{\operatorname{ch}^{2} \beta_{n} a} \left(\operatorname{ch} \beta_{n} a + \frac{\beta_{n} a}{2} \operatorname{sh} \beta_{n} a \right),$$

$$D_{n} = \frac{b_{n}}{2 \operatorname{ch} \beta_{n} a}.$$
(7.3.28)

Переходим к нахождению динамической части решения.

Условия (7.3.19) удовлетворяются, если динамическую часть решения выбрать в виде выражения

$$w_{11} = \sum_{n=1, 3, \dots} \sum_{m=1, 3, \dots} q_{nm}(t) \cos \alpha_n x \cos \beta_m y.$$
(7.3.29)

Представляя функцию w_i , определяемую выражением (7.3.20), в виде двойного тригонометрического ряда

$$w_{I} = x_{T} \sum_{n=1, 3, \dots, m-1, 3, \dots} k_{nm} \cos \alpha_{n} x \cos \beta_{m} y,$$
 (7.3.30)

где

$$k_{nm} = -\frac{16(1+\nu)(-1)^{2}}{\pi^{2} nm (\alpha_{n}^{2} + \beta_{m}^{2})},$$

и подставляя ряды (7.3.29) и (7.3.30) в уравнение (7.3.17), получаем следующее дифференциальное уравнение для определения коэффициентов q_{nm} ;

$$\frac{\partial^2 q_{nm}}{\partial t^2} + \omega_{nm}^2 q_{nm} + k_{nm} \frac{\partial^2 \kappa_{\tau}}{\partial t^2} = 0, \qquad (7.3.31)$$

 $n \perp m$

где

$$\omega_{nm} = \frac{\alpha_n^2 + \beta_m^2}{\kappa}$$

с начальными условиями

$$q_{nm} = 0, \quad \frac{\partial q_{nm}}{\partial t} = 0 \quad \text{при } t = 0. \tag{7.3.32}$$

Применяя преобразование Лапласа и учитывая условия (7.3.32) и равенство

$$\varkappa_{\tau}(0)=0,$$

находим следующее алгебраическое уравнение для изображения q_{nm}^* :

$$(s^{2}+\omega_{nm}^{2})q_{nm}^{*}+k_{nm}\left[s^{2}\varkappa_{T}^{*}-\frac{d\varkappa_{T}}{dt}(0)\right].$$
 (7.3.33)

После обратного преобразования, выполненного с учетом выражения (7.3.12) для ж_т и равенства

$$\frac{d\varkappa_{\mathrm{T}}}{dt}(0) = \frac{q'\alpha_{\mathrm{T}}}{2\lambda_{\mathrm{T}}} \frac{96\beta}{\pi^4} \sum_{n=1,3,\ldots} \frac{1}{n^2} = \frac{6q'\beta\alpha_{\mathrm{T}}}{\pi^2\lambda_{\mathrm{T}}},$$

получаем окончательный результат для динамической части решения в виде

$$w_{\mathrm{II}} = \frac{6q'\beta\alpha_{\mathrm{T}}}{\lambda_{\mathrm{T}}\pi^{2}} \sum_{n=1,3,\dots} \sum_{m=1,3,\dots} \left\{ k_{nm} \left[\frac{1}{\omega_{nm}} \sin \omega_{nm} t - \frac{8\beta}{\pi^{2}} \sum_{j=1,3,\dots} \frac{1}{j^{4}\beta^{2} + \omega_{nm}^{2}} \left(\cos \omega_{nm} t + \frac{\omega_{nm}}{\beta} \frac{1}{j^{2}} \sin \omega_{nm} t - e^{-j^{2}\beta t} \right) \right] \right\} \times \\ \times \cos \alpha_{n} x \cos \beta_{m} y.$$
(7.3.34)

Авторами работы [53] были проведены вычисления отношения максимального динамического прогиба в центре пластины к наибольшему квазистатическому прогибу $\frac{w_{max}}{w_{lmax}}$ при различных значениях параметра

$$B = \frac{h}{2a\sqrt{a'}} \sqrt[4]{\frac{\overline{D}_M}{\rho h}}$$

и отношениях $\frac{a}{b}$.

На рис. 28 приводится кривая изменения отношения $\frac{w_{\text{max}}}{w_{\text{I}_{\text{max}}}}$ в зависимости от параметра *В* для балки $\left(\frac{a}{b}=0\right)$.

Аналогичные кривые получаются при других отношениях:

$$0 < \frac{a}{b} < 1.$$

Результаты исследования показывают, что динамический эффект увеличивается по мере уменьшения значения параметра *B*; при $B \rightarrow 0$ отношение $\frac{w_{\text{max}}}{w_{\text{Imax}}}$ становится равным 2.

§ 7.4. Плоские волны расширения в неограниченном сплошном теле

Пусть в неограниченной термоупругой среде возникают плоские гармонические волны расширения с круговой частотой ω . Предполагая в связи с этим, что в решении (7.1.6) φ_j являются функциями только координаты *x*, т. е. $\varphi_j = \varphi_j(x)$, получаем вместо (7.1.7) уравнение

$$\left(\frac{d^2}{dx^2} + \delta_j^2\right)\varphi_j = 0, \qquad (7.4.1)$$

решение которого имеет вид

$$\varphi_j = C_j^{\prime \prime} e^{\pm i \delta_j x}. \tag{7.4.2}$$

Внося выражение (7.4.2) в (7.1.8) и полагая для случая гармонических волн $p = i\omega$, находим искомое решение

$$u_{x} = \sum_{j=1}^{2} C_{j} \exp[i(\pm \delta_{j}x + \omega t)], \qquad (7.4.3)$$
$$u_{y} = u_{z} = 0,$$

где величины δ_j после замены *p* на *i* ω определяются выражениями (7.1.3), а $C'_i = \pm i \delta_j C'_j$ (*j*=1, 2).

Рассмотрим распространение преимущественно упругой волны, связанной с б₁.

Для определения величины δ₁ имеем формулу

$$\delta_1^2 = \frac{\omega^2}{2c_1^2} \left\{ \left(1 + \frac{1+\varepsilon}{i\Omega} \right) + \left[1 - \frac{2(1-\varepsilon)}{i\Omega} + \left(\frac{1+\varepsilon}{i\Omega} \right)^2 \right]^{1/2} \right\}, \quad (7.4.4)$$

где

Безразмерный коэффициент
$$\Omega$$
 для большинства материалов
в области частот, встречающихся в инженерной практике, очень
мал; в дальнейшем будем считать, что $\Omega \ll 1$.

 $\Omega = \frac{a\omega}{c_1^2} \, .$

Разложим выражение для δ_1 в ряд по степеням Ω . Выполняя необходимые преобразования, находим

$$\delta_1 = m_1 + i l_1, \tag{7.4.5}$$

где

$$m_1 = \frac{\omega}{c_s} \left[1 + \frac{\varepsilon (4 - 3\varepsilon)}{8 (1 + \varepsilon)^4} \Omega^2 \right], \qquad (7.4.6)$$

$$l_{1} = -\frac{\varepsilon \omega \Omega}{2c_{s}(1+\varepsilon)^{2}};$$

$$c_{s} = c_{1}(1+\varepsilon)^{1/2}.$$
(7.4.7)

Величина c_s является адиабатической фазовой скоростью безвихревых волн в неограниченной среде. Этот физический смысл c_s устанавливается следующим образом.

Полагая в случае адиабатического процесса $a = \frac{\lambda_{T}}{c_{\epsilon}} = 0$ и принимая во внимание обозначение (7.1.4) для величины ϵ , из уравнения (1.6.13) получаем волновое уравнение

$$\nabla^2 \Phi - \frac{1}{c_s^2} \frac{\partial^2 \Phi}{\partial t^2} = 0,$$

где адиабатическая скорость c_s связана с изотермической скоростью распространения волны расширения $c_1 = c_{\tau}$ соотношением (7.4.7). Этот же результат получается при подстановке в выражение

$$c_{S}^{2} = \frac{\lambda_{a} + 2\mu}{\rho}$$

значения (1.5.29) для постоянной Ляме λ_a в случае адиабатической деформации.

Подставляя (7.4.5) в решение (7.4.3), взятое при j=1, и выбирая знак «минус» перед m_1 (рассматриваем волну, распространяющуюся в направлении возрастания x), находим решение для перемещения преимущественно упругой волны

$$u_{x} = [C_{1} \sin(\omega t - m_{1}x) + C_{2} \cos(\omega t - m_{1}x)] e^{l_{1}x}, \quad (7.4.8)$$

где

$$C_1 = iC'_1, \quad C_2 = C'_1.$$

Коэффициент l₁ является отрицательной величиной; поэтому амплитуда волны подвергается затуханию в теплопроводящей среде по экспоненциальному закону. Фазовая скорость распространения этой волны

$$v = \frac{\omega}{m_1}$$

Подставляя значение m_1 и учитывая, что для большинства материалов $\epsilon \ll 1$, находим следующую величину фазовой скорости:

$$v = c_s \left(1 + \frac{\varepsilon \Omega^2}{2} \right)^{-1} = c_s \left(1 - \varepsilon \frac{\Omega^2}{2} \right). \tag{7.4.9}$$

Определим теперь для рассматриваемой волны относительное рассеяние энергии $\frac{\Delta W}{W}$, где ΔW — энергия, рассеянная в течение цикла напряжений, а W — упругая энергия, накопленная телом в момент достижения наибольшей деформации.

Обозначим через u_1 и u_2 последовательные значения амплитуд перемещения по одну и ту же сторону от положения равновесия.

Если относительное рассеяние энергии мало по сравнению с единицей, то

$$\frac{\Delta W}{W} = \frac{u_1^2 - u_2^2}{u_1^2} \approx \frac{2(u_1 - u_2)}{u_2} \approx 2 \ln \frac{u_1}{u_2}.$$

Так как на основании формулы (7.4.8)

$$\frac{u_1}{u_2} = e^{-l_1 L_1}$$

где

$$L=\frac{v2\pi}{\omega}=\frac{2\pi}{m_1},$$

то, учитывая значения коэффициентов (7.4.6), находим

$$\frac{\Delta W}{W} = -\frac{4\pi l_1}{m_1} = \frac{2\pi\varepsilon\Omega}{(1+\varepsilon)^2}.$$
(7.4.10)

§ 7.5. Продольные волны в бесконечно длинном сплошном цилиндре

Рассмотрим влияние термоупругого рассеяния энергии на распространение продольных волн в бесконечно длинном сплошном цилиндре.

Общее решение рассматриваемой задачи в перемещениях (1.6.9) состоит из потенциальной и соленоидальной частей.

Для определения потенциальной части решения используем метод, рассмотренный в § 7.4.

Предполагая движение осесимметричным и происходящим в плоскости rz, полагаем пространственное изменение скалярного потенциала в цилиндрических координатах $\phi_j = \phi_j(r, z)$. Тогда уравнение (7.1.7) принимает вид

$$\left(\frac{\partial^{\mathbf{3}}}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2} + \delta_i^2\right)\varphi_j = 0.$$
 (7.5.1)

Применяя метод разделения переменных (см. § 3.7), находим для сплошного цилиндра следующее решение:

$$\mathbf{\varphi}_{j} = C_{j} J_{0}(h_{j}r) e^{i\gamma z}, \qquad (7.5.2)$$

где $J_0(x)$ — функция Бесселя нулевого порядка первого рода, $h_i^2 = \delta_i^2 - \gamma^2$.

Внося решение (7.5.2) в (7.1.6), получаем

$$\Phi = \sum_{j=1}^{2} C_{j} J_{\mathbf{0}}(h_{j}r) e^{i\gamma z + pt}.$$
(7.5.3)

Переходя к соленоидальной части решения, замечаем, что вектор $\nabla^2 \vec{A}$ следует вычислять после замены \vec{B} через \vec{A} по формуле (6.1.2); при этом без ограничения общности можно положить [18]

$$\operatorname{div} \overrightarrow{A} = 0, \tag{7.5.4}$$

где вектор \vec{A} носит название векторного потенциала.

Принимая во внимание формулы (2.6.3) и (7.5.4) и учитывая, что rot₀ \overrightarrow{A} =0 и все производные по координате θ равны нулю, находим

$$\nabla^{2} \vec{A} = -\operatorname{rot} \left[-\vec{e}_{r} \frac{\partial A_{\theta}}{\partial z} + \vec{e}_{z} \frac{1}{r} \frac{\partial (rA_{\theta})}{\partial r} \right] =$$
$$= \vec{e}_{\theta} \left\{ \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (rA_{\theta}) \right] + \frac{\partial^{2} A_{\theta}}{\partial z^{*}} \right\}.$$
(7.5.5)

Учитывая равенство (7.5.5), из векторного уравнения (1.6.11) получаем следующее скалярное уравнение для определения А_в:

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c_2^2}\frac{\partial^2}{\partial t^2}\right)A_{\theta} = 0.$$
(7.5.6)

Решением уравнения (7.5.6) для сплошного цилиндра является выражение

$$A_{\boldsymbol{\theta}} = iCJ_1(kr) e^{i\gamma z + pt}, \qquad (7.5.7)$$

где J₁(x) — функция Бесселя первого порядка первого рода;

$$k^2 = -\frac{p^2}{c_2^2} - \gamma^2.$$

195

Решения (7.5.3) и (7.5.7) подставляем в (1.6.9). Применяя при этом формулу (2.6.3) и формулы для дифференцирования функций Бесселя, при $A_r = A_z = 0$ находим

$$u_{r} = -\left[\sum_{j=1}^{2} C_{j}h_{j}J_{1}(h_{j}r) - C_{\gamma}J_{0}(kr)\right]e^{i\gamma z + pt},$$

$$u_{0} = 0, \qquad (7.5.8)$$

$$u_{z} = i\left[\sum_{j=1}^{\infty} C_{j}\gamma J_{0}(h_{j}r) + CkJ_{0}(kr)\right]e^{i\gamma z + pt}.$$

Так как тепловые эффекты не связаны с поперечными волнами, то выражение температурного поля определяем по формуле (7.1.9)

$$T - T_{0} = -\frac{\rho c_{1}^{2}}{(3\lambda + 2\mu)\alpha_{r}} \sum_{j=1}^{2} C_{j} \left(\frac{p^{2}}{c_{1}^{2}} + \delta_{j}^{2}\right) J_{0}(h_{j}r) e^{i\gamma z + pt}.$$
 (7.5.9)

Компоненты тензора напряжения на поверхности r = const определяем по формулам (7.1.10) в виде

$$\sigma_{r} = 2\mu \left\{ \sum_{j=1}^{2} C_{j} \left[\frac{h_{j}}{r} J_{1}(h_{j}r) + \left(\gamma^{2} + \frac{p^{2}}{2c_{2}^{2}} \right) J_{0}(h_{j}r) \right] + \gamma C \left[kJ_{0}(kr) - \frac{1}{r} J_{1}(kr) \right] \right\} e^{i\gamma z + pt}, \quad (7.5.10)$$

$$\sigma_{rz} = -i\mu \left[2\gamma \sum_{j=1}^{2} C_{j}h_{j}J_{1}(h_{j}r) + C(k^{2} - \gamma^{2}) J_{1}(kr) \right] e^{i\gamma z + pt}, \quad \sigma_{r\theta} = 0.$$

Для получения единственного решения рассматриваемой задачи необходимо удовлетворить как граничным условиям для напряжений, так и граничным условиям для теплообмена на цилиндрической поверхности.

Предполагаем, что цилиндр на своей поверхности (r=r₂) свободен от внешних сил и теплоизолирован.

Удовлетворяя граничные условия

$$\sigma_r = 0, \quad \sigma_{rz} = 0, \quad \frac{\partial T}{\partial r} = 0 \quad \text{при} \quad r = r_2, \quad (5.7.11)$$

получаем для гармонических волн ($p = i\omega$) следующие уравнения:

$$C_{1}\left[\frac{h_{1}}{r_{2}}J_{1}(h_{1}r_{2})+\left(\gamma^{2}-\frac{\omega^{2}}{2c_{2}^{2}}\right)J_{0}(h_{1}r_{2})\right]+C_{3}\left[\frac{h_{2}}{r_{2}}J_{1}(h_{2}r_{2})+\right.\\\left.+\left(\gamma^{2}-\frac{\omega^{2}}{2c_{2}^{2}}\right)J_{0}(h_{2}r_{2})\right]+C\gamma\left[kJ_{0}(kr_{2})-\frac{1}{r_{2}}J_{1}(kr_{2})\right]=0,$$

$$C_{1}2\gamma h_{1}J_{1}(h_{1}r_{2})+C_{3}2\gamma h_{2}J_{1}(h_{2}r_{2})+C(k^{2}-\gamma^{2})J_{1}(kr_{2})=0,$$

$$C_{1}h_{1}\left(\frac{\omega^{2}}{c_{1}^{2}}-\delta_{1}^{2}\right)J_{1}(h_{1}r_{2})+C_{2}\left(\frac{\omega^{2}}{c_{1}^{2}}-\delta_{2}^{2}\right)J_{1}(h_{2}r_{2})=0.$$

Пусть радиус цилиндра r_2 достаточно мал, чтобы $h_j r_2$ (j = 1, 2) и kr_2 были малы по сравнению с единицей, т. е. длина гармонической волны велика по сравнению с радиусом цилиндра. Тогда

$$J_0(h_j r_2) \approx J_0(kr_2) \approx 1,$$

$$J_1(h_j r_2) \approx \frac{1}{2} h_j r_2, \quad J_1(kr_2) \approx \frac{1}{2} kr_2.$$

Подставляя эти приближенные значения в систему уравнений (7.5.12) и приравнивая определитель этой системы нулю, находим следующее частотное уравнение:

$$h_{1}^{2} \left(\frac{\omega^{2}}{c_{1}^{2}} - \delta_{1}^{2}\right) \left[\left(\frac{h_{2}^{2}}{2} + \gamma^{2} - \frac{\omega^{2}}{2c_{2}^{2}}\right) (k^{2} - \gamma^{2}) - \gamma^{2} h_{2}^{2} \right] - h_{2}^{2} \left(\frac{\omega^{2}}{c_{1}^{2}} - \delta_{2}^{2}\right) \left[\left(\frac{h_{1}^{2}}{2} + \gamma^{2} - \frac{\omega^{2}}{2c_{2}^{2}}\right) (k^{2} - \gamma^{2}) - \gamma^{2} h_{1}^{2} \right] = 0. \quad (7.5.13)$$

Учитывая, что

$$\frac{h_j^2}{2} + \gamma^2 - \frac{\omega^2}{2c_2^2} = \frac{\delta_j^2}{2} + \frac{\gamma^2}{2} - \frac{\omega^2}{2c_2^2},$$

$$k^2 - \gamma^2 = \frac{\omega^2}{c_2^2} - 2\gamma^2, \quad \gamma^2 h_j^2 = \gamma^2 \delta_j^2 - \gamma^4 \quad (j = 1, 2),$$

преобразуем частотное уравнение (7.5.13) к виду

$$\left(\gamma^2 - \frac{\omega^2}{c_0^2}\right) \left(\gamma^2 + \frac{i\omega^2}{\Omega c_1^2}\right) + \frac{i\omega^2}{\Omega c_0^2} \frac{\varepsilon}{(e^2 - 1)} \left(3\gamma^2 - \frac{\omega^2}{c_2^2}\right) = 0, \quad (7.5.14)$$

где

$$\varepsilon = \frac{T_0(3\lambda + 2\mu)^2 \alpha_{\tau}^2}{\rho c_1^2 c_{\varepsilon}}, \qquad \Omega = \frac{a\omega}{c_1^2},$$

$$e^2 = \frac{c_1^2}{c_2^2} = \frac{\lambda + \mu}{\mu}, \qquad c_0^2 = \frac{E}{\rho}.$$
(7.5.15)

При отсутствии теплового эффекта ($\varepsilon = 0$) фазовая скорость распространения продольных волн равна величине $v = \frac{\omega}{\gamma} = c_0$, т. е. скорости распространения продольных волн в стержне, найденной по элементарной теории.

Тот факт, что уравнение (7.5.14) является комплексным, свидетельствует о том, что амплитуды волн затухают в пространстве.

Находим следующие корни уравнения (7.5.14):

$$\gamma_1^2, \gamma_2^2 = \frac{\omega^2}{2c_0^2} \left\{ \left(1 - \frac{\alpha}{Q_1} \right) \pm \left[1 + \frac{\beta}{Q_1} + \left(\frac{\alpha}{Q_1} \right)^2 \right]^{\frac{1}{2}} \right\}, \quad (7.5.16)$$

где

$$\alpha = i\alpha_{1}\Omega_{1}, \quad \alpha_{1} = \frac{1}{\Omega_{1}} [1 + (1 + k')\sigma],$$

$$\beta = i (4\beta_{1} - 2\alpha_{1})\Omega_{1}, \quad \beta_{1} = \frac{1}{\Omega_{1}} (1 + \sigma), \quad (7.5.17)$$

$$\Omega_1 = \Omega \frac{c_1^2}{c_0^2}, \quad k' = \frac{1-2\nu}{2(1+\nu)}, \quad \sigma = 2(1-\nu)\varepsilon.$$

Легко показать, что уравнение (7.5.16) отвечает волнам двух видов, из которых один, связанный с γ_1^2 , близок к чисто упругой волне, а второй, связанный с γ_2^2 , по своему характеру сходен с чисто тепловой волной.

Ограничимся изучением распространения преимущественно упругой волны.

. Предполагая, что $\mathfrak{Q}{\ll}1$, получаем

$$\gamma_1^2 = \left(\frac{\omega}{c_0}\right)^2 (\psi_1 - i\psi_2), \qquad (7.5.18)$$

где

$$\psi_{1} = \frac{\beta_{1}}{\alpha_{1}} \left[1 - \frac{1}{\alpha_{1}^{2}} \left(1 - \frac{\beta_{1}}{\alpha_{1}} \right) \left(1 - \frac{2\beta_{1}}{\alpha_{1}} \right) \right],$$

$$\psi_{2} = \frac{1}{\alpha_{1}} \frac{\beta_{1}}{\alpha_{1}} \left(1 - \frac{\beta_{1}}{\alpha_{1}} \right).$$
(7.5.19)

Если теперь положить

$$\gamma_1 = \gamma_r + i \gamma_l$$

где ү, и ү_і — вещественные величины, и ввести безразмерную фазовую скорость по формуле

$$V = \frac{\omega}{\gamma_r c_0}, \qquad (7.5.20)$$

то уравнение (7.5.18) приводит к следующему уравнению:

$$V^{2} = (1 - \tau^{2}) \psi_{1}^{-1}, \qquad (7.5.21)$$

где величина $\tau = \frac{\gamma_i}{\gamma_r}$ удовлетворяет алгебраическому уравнению

$$\tau^2 - \frac{2\psi_1}{\psi_2}\tau - 1 = 0. \tag{7.5.22}$$

Отрицательный корень этого уравнения, соответствующий затухающей в пространстве волне, равен

$$\tau = -\frac{\psi_2}{2\psi_1}.\tag{7.5.23}$$

Подставляя значение величины (7.5.23) в уравнение (7.5.21), при $\Omega \ll 1$ и $\varepsilon \ll 1$ получаем следующее выражение для безразмерной фазовой скорости:

$$V = V_{S} \left[1 - \frac{(1-\nu)(1-2\nu)}{2(1+\nu)} \epsilon \Omega_{1}^{2} \right], \qquad (7.5.24)$$

где $V_{S} = \left(\frac{\alpha_{1}}{\beta_{1}}\right)^{1_{a}}$ — безразмерная фазовая скорость волн расши-

рения в стержне, соответствующая адиабатическому процессу. Скорость V_S можно получить, решая рассматриваемую задачу при $a = \frac{\lambda_{\rm r}}{c_{\rm s}} = 0.$

Литература

1. Авдуевский В. С. и др. Основы теплопередачи в авиационной

и ракетной технике. Оборонгиз, М., 1960. 2. Афанасьева-Эренфест Т. А. Необратимость, односторонность и второе начало термодинамики. — Ж. прикл. физ., 1928, 5, 3—4.

 Базаров И. П. Термодинамика. Физматгиз, М., 1961.
 Ващенко-Захарченко М. Е. Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений, K., 1862.

5. Гейтвуд Б. Е. Температурные напряжения применительно к самолетам, снарядам, турбинам и ядерным реакторам. ИЛ, М., 1959.

6. Гольденвейзер А. Л. Теория упругих тонких оболочек. Гостехиздат, М., 1953.

7. Грей Э. и Метьюз Г. Б. Функции Бесселя и их приложения к физике и механике. ИЛ, М., 1953.

8. Даниловская В. И. Температурные напряжения в упругом полупространстве, возникающие вследствие внезапного нагрева его границы. — ПММ, 1950, 14, 3.

9. Даниловская В. И. Об одной динамической задаче термоупругости. — ПММ, 1952, 16, 3.

10. Де Гроот С. Р. Термодинамика необратимых процессов. Гостехиздат, М., 1956.

11. Динник А. Н. Приложение функций Бесселя к задачам теории упругости. Ч. 2, гл. V1. Температурные напряжения в цилиндре. — Изв. Екатериносл. горн. ин-та, 1915.

12. Канторович З. Б. Основы расчета химических машин и аппаратов. Машгиз, М., 1952.

13. Канторович Л. В. и Крылов В. И. Приближенные методы высшего анализа. Физматгиз, М.-Л., 1962.

14. Коваленко А. Д. Пластины и оболочки в роторах турбомашин. Изд-во АН УССР, К., 1955. 15. Коваленко А. Д. Круглые пластины переменной толщины. Физ-

матгиз, М., 1959.

16. Коваленко А. Д., Григоренко Я. М., Ильин Л. А. Теория тонких конических оболочек и ее приложение в машиностроении. Изд-во АН УССР, К., 1963. 17. Коваленко А. Д. Точні аналітичні розв'язки для оболонок обер-

тання. — Прикл. мех., 1964, 10, 3. 18. Кочин Н. Е. Векторное исчисление и иачала тензорного исчисления.

Изд-во АН СССР, М., 1961. 19. Коялович Б. М. Исследования о бесконечных системах линейных

уравнений. — Изв. ФТИ им. В. А. Стеклова, 1931, 3. 20. Ландау Л. Д. и Лифшиц Е. М. Механика сплошных сред.

Гостехиздат, М., 1954. 21. Лебедев Н. Н. Температурные напряжения в теории упругости.

ОНТИ, М.—Л., 1937.

22. Лебедев Н. Н. Специальные функции и их приложения. Гостехиздат, М., 1958. 23. Лейбензон Л. С. Теория упругости. Собр. тр., т. 1. Изд-во АН

СССР, М., 1951. 24. Леонтович М. А. Введение в термодинамику. Гостехиздат, М.—Л.,

1951.

25. Лурье А. И. Статика тонкостенных упругих оболочек. Гостехиздат, M., 1947.

26. Лурье А. И. Пространственные задачи теории упругости. Гостехиздат, М., 1955.

27. Лыков А. В. Теория теплопроводности. Гостехиздат, М., 1962.

28. Маделунг Э. Математический аппарат физики. Физматгиз, М., 1961.

29. Майзе\ль В. М. Обобщение теоремы Бетти—Максвелла на случай термического напряженного состояния и некоторые его приложения. — ДАН СССР, 1941, 30, 2. 30. Майзель В. М. Температурная задача теории упругости. Изд-во

АН УССР, К., 1951.

31. Мелан Э. и Паркус Г. Термоупругие напряжения, вызываемые

скінченної довжини. — У кн.: Задачі термопружності в енергомашинобуду-ванні, Вид-во АН УРСР, К., 1960.

33. Мусхелишвили Н. И. О тепловых напряжениях в плоской задаче теории упругости. — Изв. электротехн. ин-та. Пгр., 1916, 13.

34. Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. Изд-во АН СССР, М.—Л., 1949. 35. Новацкий В. Вопросы термоупругости. Изд-во АН СССР, М., 1962.

Новожилов В. В. Теория упругости. Судпромгиз, Л., 1958.
 Новожилов В. В. Теория тонких оболочек. Судпромгиз, Л., 1962.

38. Папкович П. Ф. Выражение общего интеграла основных уравнений теории упругости через гармонические функции. — Изв. АН СССР. Сер.

мат. и естеств. наук, 1932, 10. 39. Папкович П. Ф. Об общем интеграле тепловых напряжений (по поводу статьи Лебедева). — ПММ, 1937, 1, 2.

40. Папкович П. Ф. Теория упругости. Оборонгиз, Л.-М., 1939.

41. Паркус Г. Неустановившиеся температурные напряжения. Физ-

матгиз, М., 1963. 42. Підстригач Я. С., Ярема С. Я. Температурні напруження в оболонках. Вид-во АН УРСР, К., 1961.

43. Положий Г. Н. Уравнения математической физики. «Высшая школа», М., 1964.

44. Прагер В. Введение в механику сплошных сред. ИЛ, М., 1963.

45. Седов А. И. Введение в механику сплошной среды. Физматгиз, M., 1962.

46. Соболев С. Л. Уравнения математической физики. Гостехиздат, М.—Л., 1947.

47. Тимошенко С. П. Теория упругости. ОНТИ, Л.—М., 1937.

48. Тимошенко С. П., Войновский-Кригер С. Пластинки и оболочки. Физматгиз, М., 1963.

49. Тихонов А. Н. и Самарский А. А. Уравнения математической физики. Гостехиздат, М.—Л., 1953. 50. Шиллер Н. Н. О втором законе термодинамики и об одной новой

его формулировке. — Киев. унив. изв., 1898.

51. Шиллер Н. Н. Опытные данные и определения, лежащие в основании второго закона термодинамикн. — Киев. унив. изв., 1900, 3. 52. Biot M. A. Thermoelasticity and irreversible thermodynamics. —

Appl. Phys., 1956, 27, 3.

53. Boley B. A. a. Barber A. D. Dynamic response of beams and plates to rapid heating. - J. Appl. Mech., 1957, 24, 3.

54. Boley B. A. a. Weiner H. J. — Theory of thermal stresses. John Wiley, New York — London, 1960.

55. Buchdahl H. A. On the unrestricted theorem of Carathéodory and its application in the treatment of the second law of thermodynamics. ---

Amer. J. Phys., 1949, 17, 4. 56. Carathéodory C. Untersuchungen über die Grundlagen der Ther-modynamik. Math. Ann. 1909, 67.

57. Carslaw H. S. a. Jaeger J. C. Conduction of heat in solids. Ed. 1. Clarendon Press, Oxford, 1947.

58. Chadwick P. a. Sneddon I. N. — Plane waves in an elastic solid conducting heat. - J. Mech. a. Phys. Solids, 1958, 6, 3.

59. Deresiewicz H. Solution of the equations of thermoelasticity. — Proc. 3rd Nat. Congr. Appl. Mech. ASME, 1958, June. 60. Ehrenfest-Afanassjewa T. Zur Axiomatisierung des zweiten

Hauptsatzes der Thermodynamik. - Zs. Phys., 1925, 33.

61. Goodier I. N. On the integration of the thermoelastic equations. — Phil. Mag., 1937, 7, 23. 62. Hemp W. S. Fundamental principles and theorems of thermoelasti-

city. - Aeronaut. Quart., 1956, 7, Aug.

63. Lorenz R. Temperaturspannungen in Hohlzylinder. — Z.V.D.I. 1907, 51. 743.

64. Michell J. H. On the direct determination of stress in an elastic solid, with application to the theory of plates. - Proc. Ld. Math. Soc., 1899, 31.

65. Nowacki W. Thermoelasticity. Pergamon Press, Oxford — London — New York — Paris, 1962.

66. Trostel R. Instationäre Wärmespannungen in einer Hohlkugel. -

Ing. Arch., 1956, 24. 67. Trostel R. Instationäre Wärmespannungen im Hohlzylinder mit Kreisringquerschnitt. — Ing. Arch., 1956, 24, 1.

68. Warren W. E. A transient axisymmetric thermoelastic problem for the hollow sphere. - A.I.A.A.J., 1963, 1, 11.

69. Weiner J. H. A uniqueness theorem for the coupled thermoelastic problem. - Quart. Appl. Math., 1957, 15, 1.

Оглавление

Предисловие
Введение
Глава первая. Термодинамические основы термоупругости 11
§ 1.1. Общие замечания. Обозначения
 § 1.3. Основные положения классической термодинамики § 1.4. Основные положения термодинамики необратимых процессов в связи с термоупругим деформированием неравномерно нагретого тела 23
§ 1.5. Термодинамические функции. Уравнения состояния. Уравнение теплопроводности
§ 1.6. Постановка и представление общего решения задачи термоупругости
§ 1.7. Вариационный принцип для связанной задачи термо- упругости
Глава вторая. Основные уравнения квазистатической задачи термо- упругости
 § 2.1. Общие замечания § 2.2. Постановка и представление общего решения задачи термоупругости в перемещениях 37
 § 2.3. Постановка задачи термоупругости в напряжениях. 39 § 2.4. Вариационные принципы для задач термоупругости. 44 § 2.5. Обобщение теоремы о взаимности работ на случай задачи термоупругости.
§ 2.6. Криволинейные координаты
Глава третья. Основные законы и задачи теплопроводности 53
 § 3.1. Общие замечания. Основные уравнения
§ 3.4. Стационарное осесимметричное температурное поле круг- лой пластикы при линейном изменении температуры по ее толщине
§ 3.5. Стационарное неосесимметричное плоское температурное поле длинного цилиндра
§ 3.6. Нестационарное плоское осесимметричное температурное поле диска 67
§ 3.7. Нестационарное осесимметричное температурное поле цилиндра конечной длины

Глава четвертая. Плоская задача термоупругости	82
§ 4.1. Основные уравнения плоской задачи термоупругости . § 4.2. Постановка плоской задачи термоупругости в напряже-	82
ниях для многосвязных тел	89
осесимметричном температурном поле	96
неосесимметричном стационарном температурном поле . § 4.5. Термоупругость круглых пластин	98 104
Глава пятая. Термоупругость оболочек вращения	112
§ 5.1. Общие замечания. Основные формулы теории поверхностей. § 5.2. Деформации оболочки § 5.3. Уравнения равновесия оболочки	112 116 121
 \$ 5.4. Соотношения между усилиями, моментами и деформациями. \$ 5.5. Разрешающее уравнение \$ 5.6. Форма решений и граничные условия. \$ 5.7. Тепловые напряжения в конической оболочке. \$ 5.8. Тепловые напряжения в сферической оболочке. 	123 125 128 131 141
Глава шестая. Осесимметричная задача термоупругости	153
§ 6.1. Основные уравнения	153 158 169
Глава седьмая. Динамические и связанные задачи термоупругости.	177
§ 7.1. Общие замечания § 7.2. Тепловые напряжения в упругом полупространстве, возни- кающие при тепловом ударе на его поверхности	177
7.3. Колебания прямоугольной пластины, обусловленные теп- ловым ударом	185
§ 7.4. Плоские волны расширения в неограниченном сплош- ном теле	192
§ 7.5. Продольные волны в бесконечно длинном сплошном	194
Литература	200

Анатолий Дмитриевич Коваленко ВВЕДЕНИЕ В ТЕРМОУПРУГОСТЬ

Печатается по постановлению ученого совета Института механики Академии наук Украинской ССР

Редактор В. И. Гилелах Младший редактор В. Н. Дикий Художественный редактор И. П. Антонюк Оформление художника Б. А. Ануфриенко Технический редактор Д. В. Вирич БФ 02300. Зак. № 1121. Изд. № 327. Тираж 2500. Формат бумаги 60×90¹/16. Печ. физ. листов 12,75. Условных печ. листов 12,75. Учетно-изд. листов 10,3. Подписано к печати 19. VII 1965 г. Цена 82 коп. Т. п. 1965. поз. 132.

Издательство «Наукова думка», Кнев, Репина, 3.

Областная книжиая типография Львовского областного управления по печати, Львов, Стефаника, 11.