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PREFACE

Ta1s book forms the first volume of the new edition of my book
on Fourier’s Series and Integrals and the Mathematical Theory of the
Conduction of Heat, published in 1906, and now for some time out
of print. Since 1906 so much advance has been made in the Theory
of Fourier’s Series and Integrals, as well as in the mathematical
discussion of Heat Conduction, that it has seemed advisable to
write a completely new work, and to issue the same in two volumes.
The first volume, which now appears, is concerned with the Theory
of Infinite Series and Integrals, with special reference to Fourier’s
Series and Integrals. The second volume will be devoted to the
Mathematical Theory of the Conduction of Heat. -

No one can properly understand Fourier’s Series and Integrals
without a knowledge of what is involved in the convergence of
infinite series and integrals. With these questions is bound up
the development of the idea of a limit and a function, and both
are founded upon the modern theory of real numbers. The first
three chapters deal with these matters. In Chapter IV. the Definite
Integral is treated from Riemann’s point of view, and special
attention is given to the question of the convergence of infinite
integrals. The theory of series whose terms are functions of a
single variable, and the theory of integrals which contain an arbi-
trary parameter are discussed in Chapters V. and VI. It will be
seen that the two theories are closely related, and can be developed
on similar lines.

The treatment of Fourier’s Series in Chapter VII. depends on
Dirichlet’s Integrals. There, and elsewhere throughout the book,
the Second Theorem of Mean Value will be found an essential part
of the argument. In the same chapter the work of Poisson is
adapted to modern standards, and a prominent place is given

to Fejér’s work, both in the proof of the fundamental theorem
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and in the discussion of the nature of the convergence of Fourier’s
Series.  Chapter IX. is devoted to Gibbs’s Phenomenon, and the
last chapter to Fourier’s Integrals. In this chapter the work of
Pringsheim, who has greatly extended the class of functions to
which Fourier’s Integral Theorem applies, has been used.

Two appendices are added. The first deals with Practical Hor-
monic Analysis and Periodogram Analysis. In the second a biblio-
graphy of the subject is given.

The functions treated in this book are °‘ordinary’ functions.
An interval (a, b) for which f(x) is defined can be broken up into a
finite number of open partial intervals, in each of which the function
is monotonic. If infinities occur in the range, they are isolated
and finite in number. Such functions will satisfy most of the
demands of the Applied Mathematician.

The modern theory of integration, associated chiefly with the
name of Lebesgue, has introduced into the Theory of Fourier’s
Series and Integrals functions of a far more complicated nature.
Various writers, notably W. H. Young, are engaged in building up
a theory of these and allied series much more advanced than any-
thing treated in this book. These developments are in the meantime
chiefly interesting to the Pure Mathematician specialising in the
Theory of Functions of a Real Variable. My purpose has been to
remove some of the difficulties of the Applied Mathematician.

The preparation of this book has occupied some time, and much
of it has been given as a final course in the Infinitesimal Calculus
to my students. To them it owes much. For assistance in the
revision of the proofs and for many valuable suggestions, I am
much indebted to Mr. E. M. Wellish, Mr. R. J. Lyons and Mr. H.
H. Thorne of the Department of Mathematics in the University
of Sydney. | H. S. CARSLAW.

[4

EummanvieL CoLLEGE,
CAMBRIDGE, Jan. 1921.
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HISTORICAL INTRODUCTION

IN the middle of the eighteenth century there was a prolonged
controversy as to the possibility of the expansion of an arbitrary
function of a real variable in a series of sines and cosines of
multiples of the variable. The question arose in connection with
the problem of the Vibrations of Strings. The theory of these
vibrations reduces to the solution of the Differential Equation
%Y _ 2%
ot " e
and the earliest attempts at its solution were made by D’Alem-
bert,* Kuler,i and Bernoulli.f Both D’Alembert and Euler
obtained the solution in the functional form

y=¢(x+at)+yr(x—at).

The principal difference between them lay in the fact that
D’Alembert supposed the initial form of the string to be given
by a single analytical expression, while Euler regarded it as
lying along any arbitrary continuous curve, different parts of
which might be given by different analytical expressions.
Bernoulli, on the other hand, gave the solution, when the string
starts from rest, in the form of a trigonometrical series

y=Asinxcosat+4,sin 2x cos 2at+...,

and he asserted that this solution, being perfectly general, must
contain those given by Euler and D’Alembert. The importance
of his discovery was immediately recognised, and Euler pointed
out that if this statement of the solution were correct, an
arbitrary function of a single variable must be developable in
an infinite series of sines of multiples of the variable. This he

* Mém. de I’ Académie de Berlin, 3, p. 214, 1747.
tloc. cit., 4, p. 69, 1748. tloc. cit., 9, p. 173, 1753.
a1 A
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held to be obviously impossible, since a series of sines is both
periodic and odd, and he argued that if the arbitrary function
had not both of these properties it could not be expanded in
such a series.

While the debate was at this stage a memoir appeared in 17597
by Lagrange, then a young and unknown mathematician, in
which the problem was examined from a totally different point of
view. While he accepted Euler’s solution as the most general, he
objected to the mode of demonstration, and he proposed to obtain
a satisfactory solution by first considering the case of a finite
number of particles stretched on a weightless string. From the
solution of this problem he deduced that of a continuous string by
making the number of particles infinite.t In this way he showed
that when the initial displacement of the string of unit length is
given by f(x), and the initial velocity by F(x), the displacement
at time ¢ is given by

1 o
Y = 2] (sin na’ sin nre cos nwat) f(x))da’
6 1

2 (P&, , , o
+— j Z — (sin n7e’ sin ne sin nwat) F(x")da’.
amJe T N

This result, and the discussion of the problem which Lagrange
gave in this and other memoirs, have prompted some mathe-
maticians to deny the importance of Fourier’s discoveries, and to
attribute to Lagrange the priority in the proof of the development
of an arbitrary function in trigonometrical series. It is true
that in the formula quoted above it is only necessary to change
the order of summation and integration, and to put ¢=0, in order
that we may obtain the development of the function f(x) in a
series of sines, and that the coeflicients shall take the definite
‘integral forms with which we are now familiar. Still Lagrange
did not take this step, and, as Burkhardt remarks,i the fact that
he did not do so is a very instructive example of the ease with
which an author omits to draw an almost obvious conclusion
from his results, when his investigation has been undertaken
with another end in view. Lagrange’s purpose was to demon-

* Cf. Lagrange, uvres, T. 1., p. 37. tloe. cit., §37.

+ Burkhardt, ¢ Entwicklungen nach oscillirenden Functionen,” Jahresber. 1).
Math. Ver., Leipzig, 10, Hft. I1., p. 32, 1901,
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strate the truth of Euler’s solution, and to defend its general
conclusions against 1’Alembert’s attacks. When he had obtained
his solution he therefoce proceeded to transform it into the func-
tional form given by Euler. Having succeeded in this, he held
his demonstration to be complete.

The further development of the theory of these series was due
to the astronomical problem of the expansion of the reciprocal
of the distance between two planets in a series of cosines of
multiples of the angle between the radii. As early as 1749
and 1754 D’Alembert and Euler had published discussions of this
question in which the idea of the definite integral expressions
for the coefficients in Fourier’s Series may be traced, and Clairaut,
in 1757,* gave his results in a form which practically contained
these coefficients. Again, Euler,T in a paper written in 1777 and
published in 1793, actually employed the method of multiplying
both sides of the equation

f(x)=a,+2a,cos z+ 2a,c08 2+ ... 2a,c08 N +- ...

by cosna and integrating the series term by term between the
limits 0 and 7. In this way he found that

Uy = lr f(x) cos nx du.
TJo

It is curious that these papers seem to have had no effect
upon the discussion of the problem of the Vibrations of Strings
in which,*as we have seen, D’Alembert, Euler, Bernoulli, and
Lagrange were about the same time engaged. The explanation
is probably to be found in the fact that these results were not
accepted with confidence, and that they were only used in deter-
mining the coeflicients of expansions whose existence could be
demonstrated by other means. It was left to Fourier to place
our knowledge of the theory of trigonometrical series on a firmer
foundation, and, owing to the material advance made by him in
this subject the most important of these expansions are now
generally associated with his name and called Fourier’s Series.

His treatment was suggested by the problems he met in the
Mathematical Theory of the Conduction of Heat. It is to be

* Paris, Huist. Acad. sci., 1754 [59], Art. iv. (July 1757).
+ Petrop. N. Acta., 11, 1793 [98], p. 94 (May 1777).



4 HISTORICAL INTRODUCTION

found in various memoirs, the most important having been
presented to the Paris Academy in 1811, although it was not
printed till 1824-6. These memoirs are practically contained in
his book, Théorie mathématique de la chaleur (1822). In this
treatise several discussions of the problem of the expansion of a
function in trigonometrical series are to be found. Some of
them fail in rigour. One is the same as that given by Euler.
However, it 1s a mistake to suppose that Fourier did not estab-
lish in a rigorous and conclusive manner that a quite arbitrary
function (meaning by this any function capable of being re-
presented by an arc of a continuous curve or by successive
portions of different continuous curves), could be represented
by the series we now associate with his name, and it is equally
wrong to attribute the first rigorous demonstration of this
theorem to Dirichlet, whose earliest memoir was published in
1829.% A closer examination of Fourier’s work will show that
the importance of his investigations merits the fullest recogni-
tion, and Darboux, in the latest complete edition of Fourier’s
mathematical works,T points out that the method he employed in
the final discussion of the general case is perfectly sound and
practically identical with that used later by Dirichlet in his
classical memoir. In this discussion Fourier followed the line
of argument which is now customary in dealing with infinite
series. He proved that when the values

1 " 4 /
“ozﬂj_wf@)dm=

1( , ‘
Uy = ;j f(x") cos na’ dm’,l
B n=1

™

b, = }Jﬂ 7 (a;’) sin na’ cloc’,J

™

are inserted in the terms of the series
o+ (a4, cos w4 b, sin @) + (a, cos 2z + b, sin 2z) + ...,

the sum of the terms up to cos ne and sin nx is
%J" f(cc’)Sin 1@2n41)(z' —x)

sin & (2 — )

7

dax’.

He then discussed the limiting value of this sum as n becomes

* Dirichlet, J. Math., Berlin, 4, p. 157, 1829.
+ Gluvres de Fourier, T. 1., p. 512, 1888,
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infinite, and thus obtained the sum of the series now called
Fourier’s Series.
Fourier made no claim to the discovery of the values of the

coeflicients I A
“o:gj_ fla)dx',

1 ,
= —j f(x") cos n da;’,]
) -
- m== 1.
1{= . . ,
b, = ~7—J f(&') sin na daz’,J

™

We have already seen that they were employed both by Clairaut
and Euler before this time. Still there is an important differ-
ence between Fourier’s interpretation of these integrals and
that which was current among the mathematicians of the
eighteenth century. The earlier writers by whom they were
employed (with the possible exception of Clairaut) applied them
to thé determination of the coefficients of series whose existence
had been demonstrated by other means. Fourier was the first
to apply them to the representation of an entirely arbitrary
function, in the sense in which we have explained this term.
In this he made a distinet advance upon his predecessors.
Indeed Riemann* asserts that when Fourier, in his first paper to
the Paris Academy in 1807, stated that a completely arbitrary
tunction could be expressed in such a series, his statement so
surprised Lagrange that he denied the possibility in the most
definite terms. It should also be noted that he was the first to
allow that the arbitrary function might be given by different
analytical expressions in different parts of the interval; also that
he asserted that the sine series could be used for other functions
than odd ones, and the cosine series for other funections than
even ones. Further, he was the first to see that when a function
is defined for a given range of the variable, its value outside
that range is in no way determined, and it follows that no one
before him can have properly understood the representation of
an arbitrary function by a trigonometrical series. -

The treatment which his work received from the Paris Academy
is evidence of the doubt with which his contemporaries viewed

* Cf. Riemann, ¢ Uber die Darstellbarkeit einer IFunction durch eine trigono-
metrische Reihe,” Géttengen, Abh. Ges. Wiss., 13, §2, 1867.
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his arguments and results. His first paper upon the Theory of
Heat was presented in 1807. The Academy, wishing to en-
courage the author to extend and improve his theory, made the
question of the propagation of heat the subject of the grand
prie  de mathématiques for 1812.  Fourier submitted his
Mémoire sur la propagation de la Chalewr at the end of 1811
as a candidate for the prize. The memoir was referred to
Laplace, Lagrange, Legendre, and the other adjudicators; but,
while awarding him the prize, they qualified their praise with
criticisms of the rigour of his analysis and methods,* and the
paper -was not published at the time in the Mémoires de
UAcadémaie des Sciences. Fourier always resented the treatment
he had received. When publishing his treatise in 1822, he
incorporated in it, practically without change, the first part of
this memoir; and two years later, having become Secretary of
the Academy on the death of Delambre, he caused his original
paper, in the form in which it had been communicated in 1811,
to be published in these Mémoires.T Probably this step was
taken to secure to himself the priority in his important discoveries,
in consequence of the attention the subject was receiving at
the hands of other mathematicians. It is also possible that he
wished to show the injustice of the criticisms which had been
passed upon his work. After the publication of his treatise,
when the results of his different memoirs had become known, it
was recognised that real advance had been made by him in the
treatment of the subject and the substantial accuracy of his
reasoning was admitted.}

* Their report is quoted by Darboux in his Introduction (p. vii) to Buwvres de
Fourier, T. 1. :—* Cette piéce renferme les véritables équations différentielles de la
transmission de la chaleur, soit & Pintérieur des corps, soit 4 leur surface ; et la
nouveauté du sujet, jointe a son importance, a déterminé la Classe 4 couronner cet
Ouvrage, en observant cependant que la maniére dont I’Auteur parvient a ses
équations n’est pas exempte de difficultés, et que son analyse, pour les intégrer,
laisse encore quelque chose & désirer, soit relativement & la généralité, soit méme
du c6té de la rigueur.”

t Mémorvres de I’ Acad. des Se., 4, p. 185, and b, p. 153.

1 It is interesting to note the following references to his work in the writings
of modern mathematicians :

Kelvin, Coll. Works, Vol. IIL., p. 192 (Article on ‘“ Heat,” Knc. Brit., 1878).

¢ Returning to the question of the Conduction of Heat, we have first of all to
say that the theory of it was discovered by Fourier, and given to the world
through the French Academy in his Théorie analytique de la Chalewr, with
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The next writer upon the Theory of Heat was Poisson. He
employed an altogether different method in his discussion of the
question of the representation of an arbitrary function by a
trigonometrical series in his papers from 1820 onwards, which
are practically contained in his books, Traité de Mécanique
(T.1. (2° éd.) 1838),and Théorie mathématique de la Chaleur (1835).
He began with the equation

1- A2
1—2h cos (2’ —a)+h?

=1+42> hrcosn (e —ax),
1

solutions of problems naturally arising from it, of which it is difficult to say
whether their uniquely original quality, or their transcendently intense mathe-
matical interest, or their perennially important instructiveness for physical
science, is most to be praised.”

Darboux, Introduction, Fuvres de Fourver, T. 1., p. v, 1888.

““ Par 'importance de ses découvertes, par 'influence décisive qu’il a exercée sur
le développement de la Physique mathématique, Fourier méritait I'hommage qui
est rendu aujourd’hui & ses travaux et & sa mémoire. Son nom figurera digne-
ment 4 cOté des noms, illustres entre tous, dont la liste, destinée & s’accroitre
avec les anndes, constitue dés & présent un véritable titre d’honneur pour notre
pays. La Théorie analytique de la Chalewr . . ., que 'on peut placer sans
injustice & coté des écrits scientifiques les plus parfaits de tous les temps, se
recommande par une exposition intéressante et originale des principes fonda-
mentaux ; il éclaire de la lumiere la plus vive et la plus pénétrante toutes les
idées essentielles que .nous devons & Fourier et sur lesquelles doit reposer
désormais la Philosophie naturelle ; mais il contient, nous devons le reconnaitre,
beaucoup de négligences, des erreurs de calcul et de détail que Fourier a su éviter
dans d’autres écrits.”

Poincaré, Théorie analytique de la propagation de la Chaleur, p. 1, § 1, 1891,

¢ La théorie de la chaleur de Fourier est un des premiers exemples de appli-
cation de l'analyse & la physique; en partant d’hypothéses simples qui ne.sont
autre chose que des faits expérimentaux généralisés, Fourier en a déduit une
série de conséquences dont ’ensemble constitue une théorie compléte et cohérente.
Les résultats qu’il a obtenus sont certes intéressants par eux-mémes, mais ce qui
Pest plus encore est la méthode qu’il a employée pour y parvenir et qui servira
toujours de modéle a tous ceux qui voudront cultiver une branche quelconque de
la physique mathématique. J’ajouterai que le livre de Fourier a une importance
capitale dans I’histoire des mathématiques et que Panalyse pure lui doit peut-étre
plus encore que l'analyse appliquée.”

Boussinesq, Théorie analytique de la Chaleur, T. L., p. 4, 1901.

“ Les admirables applications qu’il fit de cette méthode (z.e. his method of inte-
grating the equations of Conduction of Heat) sont, a la fois, assez simples et assez
générales, pour avoir servi de modele aux géometres de la premiere moitié de ce
siécle ; et elles leur ont été d’autant plus utiles, qu'elles ont pu, avec de 1égéres
modifications tout au plus, étre transportées dans d’autres branches de la
Physique mathématique, notamment dans 'Hydrodynamique et dans la Théorie
de D'élasticité.”
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h being numerically less than unity, and he obtained, by
integration,
—h?

™ , 1
j_ ﬂf(ac =%, cos (=) + 12

= j‘i f@)yda' + 2§3h”r f(@') cos n(a’ — ) da'.

While it is true that by proceeding to the limit we may
deduce that

da’

f@) or 3[f=0)+f+0)]

is equal to

Lt [~~j f@') da’ + - Zh”J f(@) cos (' — ) (l%}

i1 -

we are not entitled to assert that this holds for the value h=1,
unless we have already proved that the series converges for this
value. This is the real difficulty of Fourier’s Series, and this
limitation on Poisson’s discussion has been lost sight of in some
presentations of Fourier’s Series. There are, however, other
directions in which Poisson’s method has led to most notable
results. The importance of his work cannot be exaggerated.®

After Poisson, Cauchy attacked the subject in different memoirs
published from 1826 onwards,t using his method of residues, but
his treatment did not attract so much attention as that given
about the same time by Dirichlet, to which we now turn.

Dirichlet’s investigation is contained in two memoirs which
appeared in 1829 { and 1837.§ The method which he employed
we have already referred to in speaking of Fourier’s work. He
based his proof upon a careful discussion of the limiting values
of the integrals

“ sin ux
jf(w) e dw...c¢>0,

sin s
sin z

Wb >a>0,

|/ @)

* For a full treatment of Poisson’s method, reference may be made to BScher’s
paper, ‘‘ Introduction to the Theory of Fourier’s Series,” Ann. Math., Princeton,
N. J. (Ser. 2), 7, 1906.

1 See Bibliography, p. 303. 1J. Math., Beriin, 4, 1829.

§ Dove’s Repertorium der Physik, Bd. 1., p. 152, 1837.
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as u increases indefinitely. By this means he showed that the
sum of the series

ay+ (@, cos z+b,sin @) 4 (aycos 2+ b, sin 2x)4-...
where the coefficients «,, etc., are those given by Fourier, is

HAz=0)+f(240)]... =7 <ol
HA(—7+0)+f(m=0)]...0==£m,
provided that, while — 7 <2<, f(z) has only a finite number
of ordinary discontinuities and turning points, and that it does
not become infinite in this range. In a later paper,* in which he
discussed the expansion in Spherical Harmonics, he showed that
the restriction that f(z) must remain finite is not necessary,

provided that J-wf(ac) dx converges absolutely.

The work of Dirichlet led in a few years to one of the most
important advances not only in the treatment of trigonometrical
series, but also in the Theory of Functions of a Real Variable:
indeed it may be said to have laid the foundations of that theory.
This advance is to be found in the memoir by Riemann already
referred to, which formed his Habilitationsschrift at Gottingen
in 1854, but was not published till 1867, after his death.
Riemann’s aim was to determine the mnecessary conditions which
f(x) must satisfy, if it can be replaced by its Fourier’s Series.
Dirichlet had shown only that certain conditions were sufficient.
The question which Riemann set himself to answer, he did not
completely solve: indeed it still remains unsolved. But in the
consideration of it he perceived that it was necessary to widen
the concept of the definite integral as then understood.

Cauchy, in 1823, had defined the integral of a continuous
function as the limit of a sum, much in the way in which it is
still treated in our elementary text-books. The interval of in-
tegration (a, b) is first divided into parts by the points
x, =0.

W=Xy, Ty, Tgy oo Tpyoq,

The sum :
S= (2, —we)f () + (2 — ) f(2) + ... + (20—, ) f(2,)
b
is formed. And the integral j f(z)dx is defined as the limit of

*®.J, Math., Berlin, 17, 1837.
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this sum when the number of parts is increased indefinitely and
their length diminished indefinitely. On this understanding
every continuous function has an integral.

For discontinuous functions, he proceeded as follows :

If a function f(z) is continuous in an interval (¢, b) except at
the point ¢, in the neighbourhood of which f(z) may be bounded
or not, the integral of f(x) in («, b) is defined as the sum of the

two limits el b
Lt j f(x)de, Lt j f(x) de,
c+h

h—>0Ja L—>0
when these limits exist.

Riemann dismisses altogether the requirement of continuity,
and in forming the sum S multiplies each interval (z,—,_,) by
the value of f(x), not necessarily at the beginning (or end) of the
interval, but at a point £, arbitrarily chosen between these, or by
a number intermediate between the lower and upper bounds of

b
f(@) in (x,_,, 2,). The integral j f(x)da 1s defined as the limit

of this sum, if such exists, when the number of the partial
intervals is increased indefinitely and their length tends to zero.

Riemann’s treatment, given in the text in a slightly modified
form, is now generally adopted in a scientific treatment of the
Calculus. It is true that a more general theory of integration
has been developed in recent years, chiefly due to the writings
of Lebesgue,* de la Vallée Poussin and Young; that theory is
mainly for the specialist in certain branches of Pure Mathe-
matics. But no mathematician can neglect the concept of the
definite integral which Riemann introduced.

One of the immediate advances it brought was to bring within
the integrable functions a class of discontinuous functions whose
discontinuities were infinitely numerous in any finite interval.
An example, now classical, given by Riemann, was the function
defined by the convergent series: ‘

xl |22 nw

4l 2,
where [nz] denotes the positive or negative difference between
na and the nearest integer, unless na falls midway between two
consecutive integers, when the value of [nz] is to be taken as

*See footnote, p. 77.
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zero. The sum of this series is discontinuous for every rational
value of 2 of the form p/2n, where p is an odd integer prime
to n.

With Riemann’s definition the restrictions which Dirichlet had
placed upon the function f(x) were considerably relaxed. To
this Riemann contributed much, and the numerous writers who
have carried out similar investigations since his time have still
further widened the bounds, while the original idea that every
continuous function admitted of such an expansion has been
shown to be false. Still it remains true that for all practical
purposes, and for all ordinary functions, Dirichlet’s investigation
established the convergence of the expansions. Simplifications
have been introduced in his proof by the introduction of the
Second Theorem of Mean Value, and the use of a modified form
of Dirichlet’s Integral, but the method which he employed is still
the basis of most rigorous discussions of Fourier’s Series.

The nature of the convergence of the series began to be ex-
amined after the discovery by Stokes (1847) and Seidel (1848) of
the property of Uniform Convergence. It had been known since
Dirichlet’s time that the series were, in general, only conditionally
convergent, their convergence depending upon the presence of
both positive and negative terms. It was not till 1870 that
Heine showed that, if the function is finite and satisfies
Dirichlet’s Conditions in the interval (—m, =), the Fourier’s
Series converges uniformly in any interval lying within an
interval in which f(x) is continuous. This condition has, like
the other conditions of that time, since been somewhat modified.

In the last thirty or forty years quite a large literature has
arisen dealing with Fourier’s Series. The object of many of the
investigations has been to determine sufficient conditions to be
satisfied by the function f(z), in order that its Fourier’s Series
may converge, either throughout the interval (—m, 7), or at
particular points of the interval. It appears that the convergence
or non-convergence of the series for a particular value of « really
depends only upon the nature of the function in an arbitrarily
small neighbourhood of that point, and is independent of the
general character of the function throughout the interval, this
general character being limited only by the necessity for the
existence of the coefficients of the series. These memoirs—
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associated chiefly with the names of Du Bois-Reymond, Lipschitz,
Dini, Heine, Cantor, Jordan, Lebesgue, de la Vallée Poussin,
Hobson and Young—have resulted in the discovery of sufficient
conditions of wide scope, which suffice for the convergence of the
series, either at particular points, or, generally, throughout the
interval. The necessary and sufficient conditions for the con-
vergence of the series at a point of the interval, or throughout
any portion of it, have not been obtained. In view of the general
character of the problem, this is not surprising. Indeed it is not
improbable that no such necessary and sufficient conditions may
be obtainable.

In many of the works referred to above, written after the
discovery by Lebesgue (1902) of his general theory of integra-
tion, series whose terms did not exist under the old definition of
the integral are included in the discussion.

The fact that divergent series may be utilised in various
ways in analysis has also widened the field of investigation, and
indeed one of the most fruitful advances recently made arises
from the discussion of Fourier’s Series which diverge. The word
“sum,” when applied to a divergent series, has, of course, to be
defined afresh; but all methods of treatment agree in this, that
when the same process is applied to a convergent series the
“sum,” according to the new definition, is to agree with the
“sum ” obtained in the ordinary way. One of the most important
methods of “summation” is due to Cesaro, and in its simplest
form is as follows:

Denote by s, the sum of the first n terms of the series

U+ Wy +Ug+ ... .
Let 5=t ntde

When Lt S,=S8, we say that the series is “summable,” and

N—>w
that its “sum ” is S.

It is not difficult to show that if the series

Uy + Wy +Ug+ ...
1s convergent, then Lt S,= Lt s,,
NnN—>w0 N—>w

so that the “ condition of consistency ” is satisfied. [Cf. £ 102.]
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Fejér was the first to consider this sequence of Arithmetic
Means,
5718 S S+

9 3 A
for the Fourier's Series. He established the remarkable thporem
that the sequence is convergent, and its limit is

5(f@+0)+f(z—0))
at every point in (—7, ) where f(z+40) and f(x—0) exist, the
only conditions attached to f(z) being that, if bounded, it shall

“be integrable in ( —7, 7), and that, if it is unbounded, r () dx
shall be absolutely convergent. -
Later, Hardy showed that if a series

U+ Ug+Us ...
is summable by this method, and the general term w, is of the

order 1/n, the series is convergent in the ordinary sense, and thus
the sum S (= Lt S,) and the sum s (= Lt s,) will be the same.

nN—>w0 nN—>®D
[CL. §102.]

Hardy’s theorem, combined with Fejér’s, leads at once to a
new proof of the convergence of Fourier’s Series, and it can also
be applied to the question of its uniform convergence. Many of
the results obtained by earlier investigators follow directly from
the application to Fourier's Series of the general theory of
summable series.?

Recent investigations show that the coefficients in Fourier’s
Series, now frequently called Fourier’s Constants, have im-
portant properties, independent of whether the series converges
or not. For example, it is now known that if f(x) and ¢(2)
are two functions, bounded and integrable in (—m, ), and «,
a,, b, are Fourier’s Constants for f(x), and «,, «,’, b, those
for ¢(z), the series

2a,a 0/ + Z (CLnCLn + bnbn )
T

converges, and its sum is lj f(@)p(x)de. To this theorem,
T n

* Math. Anwn., Leipzig, 58, 1904.

tChapman, Q. J. Math., London, 43, 1912 ; Hardy, London, Proc. Math. Soc.
(Ser. 2), 12, 1913.
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and to the results which follow from it, much attention has
recently been given, and it must be regarded as one of the most
important in the whole of the theory of Fourier’s Series.*

The question of the approximation to an arbitrary function by
a finite trigonometrical series was examined by Weierstrass in
1885.1 He proved that if j(z) is a continuous and periodic
function, given the arbitrary small positive quantity e, a finite
Fourier’s Series can be found in a variety of ways, such that the
absolute value of the difference of its sum and f(z) will be less
than e for any value of # in the interval. This theorem was
also discussed by Picard, and it has been generalised in recent
memoirs by Stekloftf and Kneser.

In the same connection, it should be noted that the application
of the method of least squares to the determination of the
coeflicients of a finite trigonometrical series leads to the Fourier
coefficients. ~ This result was given by Topler in 1876.f As
many applications of Fourier’s Series really only deal with a
finite number of terms, these results are of special interest.

From the discussion of the Fourier’s Series it was a natural
step to turn to the theory of the Trigonometrical Series

o+ (a, cos & + b,sin &)+ a,cos 2z + b,sin 2x)+ ...,
where the coefficients are no longer the Fourier coefficients.
The most important question to be answered was whether such an
expansion was unique; in other words, whether a function could
be represented by more than one such trigonometrical series.
This reduces to the question of whether zero can be represented
by a trigonometrical series in which the coefficients do not all
vanish. The discussion of this and similar problems was carried
on chiefly by Heine and Cantor,§ from 1870 onwards, in a series
of papers which gave rise to the modern Theory of Sets of Points,
another instance of the remarkable influence Fourier’s Series have
had upon the development of mathematics.|| In this place it will

*Cf. Young, London, Proc. R. Soc. (A), 85, 1911.

+J. Math., Beriin, T1, 1870.

+ Topler, Wien, Anz. Ak. Wiss., 13, 1876. § Bibliography, p. 305.

[ Van Vleck, ““The Influence of Fourier’s Series upon the Development of Mathe-
matics,” American Association for the Advancement of Science (Atlanta), 1913,

See also a paper with a similar title by Jourdain, Seientiz, Bologna (Ser. 2), 22,
1917.
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be sufficient to state that Cantor showed that all the coefficients
of the trigonometrical series must vanish, it it is to be zero for
all values of « in the interval (—m, ), with the exception of
those which correspond to a set of points constituting, in the
language of the Theory of Sets of Points, a set of the o™ order,
for which points we know nothing about the value of the series.
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CHAPTER 1

RATIONAL AND IRRATIONAL NUMBERS
THE SYSTEM OF REAL NUMBERS

1. Rational Numbers. The question of the convergence of
Infinite Series is only capable of satisfactory treatment when
the difficulties underlying the conception of irrational number
have been overcome. For this reason we shall first of all give a
short discussion of that subject.

The idea of number is formed by a series of generalisa-
tions. We begin with the positive integers. The operations
of addition and multiplication upon these numbers are always
possible; but if « and b are two positive integers, we cannot
determine positive integers « and ¥, so that the equations
a=b+x and a=>by are satistied, unless, in the first case, @ is
greater than b, and, in the second case, a is a multiple of b.
To overcome this difficulty fractional and negative numbers are
introduced, and the system of rational numbers placed at our
disposal.* |

The system of rational numbers is ordered, t.e. if we have two
different numbers « and b of this system, one of them is greater
than the other. Also, if «>0b and b>¢, then a>¢, when «, b
and ¢ are numbers of the system.

Further, if two different rational numbers a and b are given,
we can always find another rational number greater than the
one and less than the other. It follows from this that between

*The reader who wishes an extended treatment of the system of rational
numbers is referred to Stolz und Gmeiner, Theoretische Arithmetik, Leipzig,
1900-1902, and Pringsheim, Vorlesungen idiber Zahlen- wnd Funktionenlehre,
Leipzig, 1916.

16
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any two different rational numbers there are an infinite number
of rational numbers.*

2. The introduction of fractional and negative rational num-
bers may be justified from two points of view. The fractional
numbers are necessary for the representation of the subdivision
of a unit magnitude into several equal parts, and the negative
numbers form a valuable instrument for the measurement of
magnitudes which may be counted in opposite directions. This
may be taken as the argument of the applied mathematician.
On the other hand there is the argument of the pure mathe-
matician, with whom the notion of number, positive and negative,
integral and fractional, rests upon a foundation independent
of measurable magnitude, and in whose eyes analysis is a
scheme which deals with numbers only, and has no concern
per se with measurable quantity. It is possible to found mathe-
matical analysis upon the notion of positive integral number.
Thereafter the successive definitions of the different kinds of num-
ber, of equality and inequality among these numbers, and of the
four fundamental operations, may be presented abstractly.t

3. Irrational Numbers. The extension of the idea of number
from the rational to the irrational is as natural, if not as easy, as
is that from the positive integers to the fractional and negative
rational numbers.

Let a and b be any two positive integers. The equation 2’=a
cannot be solved in terms of positive integers unless « is a perfect
b" power. To malke the solution possible in general the irrational
numbers are introduced. But it will be seen below that the system
of irrational numbers is not confined to numbers which arise as
the roots of algebraical equations whose coefficients are integers.

So much for the desirability of the extension from the abstract
side. From the concrete the need for the extension is also evident.
We have only to consider the measurement of any quantity to

*When we say that a set of things has a finite number of members, we mean
that there is a positive integer n, such that the total number of members of the
set is less than n.

When we say that it has an infinite number of members, we mean that it has
not a finite number. In other words, however large = may be, there are more
members of the set than n.

1 Cf. Hobson, London, Proc. Math. Soc. (Ser. 1), 35, p. 126, 1913 ; also the same
author’s Theory of I'unctions of @ Real Variable, p. 13.

C. 1 B
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which the property of unlimited divisibility is assigned, e.g. a
straight line L produced indetfinitely. Take any segment of this
line as unit of length, a definite point of the line as origin or
zero point, and the directions of right and left for the positive
and negative senses. To every rational number corresponds a

| !
| | !

1
-2 -1 0 1 2

Fia. 1.

definite point on the line. If the number is an integer, the point
is obtained by taking the required number of unit segments one
after the other in the proper direction. If it is a fraction +p/q,
it is obtained by dividing the unit of length into ¢ equal parts
and taking p of these to the right or left according as the sign is
positive or'negative. These numbers are called the measures of
the corresponding segments, and the segments are said to be
commensurable with the unit of length. The points correspond-
ing to rational numbers may be called rational points.

There are, however, an infinite number of points on the line
L which are not rational points. Although we may approach
them as nearly as we please by choosing more and more
rational points on the line, we can never quite reach them in
this way. The simplest example is the case of the points coin-
ciding with one end of the diagonal of a square, the sides of
which are the unit of length, when the diagonal lies along the
line L and its other end coincides with any rational point.

Thus, without considering any other case of incommensur-
ability, we see that the line L is infinitely richer in points than
the system of rational nwmbers in numbers.

Hence it is clear that if we desire to follow arithmetically all
the properties of the straight line, the rational numbers are
insufficient, and it will be necessary to extend this system by the
creation of other numbers.

4. Returning to the point of view of the pure mathemaﬁcian,
we shall now describe Dedekind’s method of introducing the
irrational number, in its most general form, into analysis.*

* Dedekind (1831-1916) published his theory in Stetigheit und irrationale
Zahlen, Braunschweig, 1872 (Fnglish translation in Dedekind’s Hssays on Naumber,
Chicago, 1901). ‘
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Let us suppose that by some method or other we have divided
all the rational numbers into two classes, a lower class A and an
upper class B, such that every number « of the lower class 13 less
than every number 3 of the upper class.

When this division has been made, if a number a belongs to
the class A, every number less than o does so also; and if
a number (3 belongs to the class B, every number greater than
does so also.

Three different cases can arise:

(D) The lower class can have a greatest number and the wpper
class no smallest nwmber.
This would occur if, for example, we put the number 5 and
every number less than 5 in the lower class, and if we put in the
upper class all the numbers greater than 5.

(I1) The wpper class can have a smallest number and the

lower class no greatest number.

This would occur if, for example, we put the number 5 and
all the numbers greater than 5 in the upper class, while in the
lower class we put all the numbers less than 5.

It is impossible that the lower class can have a greatest
number m, and the upper class a smallest number n, in the
same division of the rational numbers: for between the rational
numbers m and n there are rational numbers, so that our hypo-
thesis that the two classes contain all the rational numbers is
contradicted.

But a third case can arise:

(IIT) The lower class can have no greatest number and the

wpper class no smallest number.

For example, let us arrange the positive integers and their
squares in two rows, so that the squares are underneath the
numbers to which they correspond. Since the square of a frac-
tion in its lowest terms is a fraction whose numerator and deno-
minator are perfect squares,* we see that there are not rational
numbers whose squares are 2, 3, 5,6, 7, 8, 10, 11, ...,

1 2 3 4 ...
1234567891011 1213 14 15 16 ....

*If a formal proof of this statement is needed, see Dedekind, /oc. cit., Knglish
translation, p. 14, or Hardy, Course of Pure Mathematics (2nd Ed.), p. 6.
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However, there are rational numbers whose squares are as near
these numbers as we please. For instance, the numbers

2, 1'5, 142, 1415, 14143, ...,

I, 14, 1'41, 1'414, 14142, ...,
form an upper and a lower set in which the squares of the terms
in the lower are less than 2, and the squares of the terms in the
upper are greater than 2. We can find a number in the upper
set and a number 1n the lower set such that their squares differ
from 2 by as little as we please.® -

Now form a lower class, as described above, containing all
negative rational numbers, zero and all the positive rational
numbers whose squares are less than 2; and an upper class
containing all the positive rational numbers whose squares are
oreater than 2. Then every rational number belongs to one class
or the other. Also every number in the lower class is less than
every number in the upper. The lower class has no greatest
number and the upper class has no smallest number.

5. When by any means we have obtained a division of all the
rational numbers into two classes of this kind, the lower class
having no greatest number and the upper class no smallest
number, we create a new number defined by this division. We
call it an wrrational number, and we say that it is greater than
all the rational numbers of its lower class, and less than all the
rational numbers of its upper class. |

Such divisions are usually called sections.t The irrational
number ,/2 is defined by the section of the rational numbers
described above. Similar sections would define the irrational
numbers /3, /5, ete. The system of irrational numbers is
~given by all the possible divisions of the rational numbers into a
lower class A and an upper class B, such that every rational
number is in one class or the other, the numbers of the lower
class being less than the numbers of the upper class, while the
lower class has no greatest number, and the upper class no
smallest number.

In other words, every irrational number is defined by its
section (A, B). It may be said to “correspond ” to this section.

* Cf. Hardy, loc. cit., p. 8.
1 French, coupure ; German, Sehnitt.
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The system of rational numbers and 4rrational numbers
together make up the system of real numbers.

The rational numbers themselves ‘correspond” to divisions of rational
numbers.

For instance, take the rational number m. In the lower class A put
the rational numbers less than m, and m itself. In the upper class B put all
the rational numbers greater than . Then m corresponds to this division
of the rational numbers.

Extending the meaning of the term section, as used above in the definition
of the irrational number, to divisions in which the lower and upper classes
have greatest or smallest numbers, we may say that the rational number
corresponds to a rational section (A, B),¥ and that the irrational numbers
correspond to ¢rrational sections. When the rational and irrational numbers
are defined in this way, and together form the system of real numbers, the
real number which corresponds to the rational number m (to save confusion
1t is sometimes called the rational-real number) is conceptually distinct from
m, However, the relations of magnitude, and the fundamental operations
for the real numbers, are defined in such a way that this rational-real number
has no properties distinct from those of m, and it is usually denoted by the
same symbol.

6. Relations of Magnitude for Real Numbers. We have extended our
conception of number. We must now arrange the system of real numbers
in order; <e we must say when two numbers are equal or unequal to,
greater or less than, each other.

In this place we need only deal with cases where at least one of the
numbers is irrational.

An irrational number is never equal to a rational number. They are
always different or unequal.

Next, in § 5, we have seen that the rrational number given by the section
(A, B)is said to be greater than the rational number ., when m is a member
of the lower class A, and that the rational number m is said to be greater than
the rational number given by the section (A, B), when m is a member of
the upper class B.

Two irrational numbers are equal, when they are both given by the same
section. They are different or unequal, when they are given by different
sections. :

The rrational number o given by the section (A, B) is greater than the
arrational number o given by the section (A’, B'), when the class A contains
numbers of the class B. Now the class A has no greatest number. But if
a certain number of the class A belongs to the class B, all the numbers of A

*The rational number m could correspond to two sectiong: the one named in
the text, and that in which the lower class A contains all the rational numbers
less than m, and the upper class B, m and all the rational numbers greater than m.
To save ambiguity, one of these sections only nmust be chosen.
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greater than this number also belong to B. The class A thus contains an
infinite number of members of the class B, when a>«'.

If a real number « is greater than another real number «/, then o is less
than .

Tt will be observed that the notation >, =, < is used in dealing with real
numbers as in dealing with rational numbers.

The real number f3 is said to lie between the real numbers o and 7y, when
one of them is greater than 3 and the other less.

With these definitions the system of real numbers is ordered. If we have
two different real numbers, one of them is greater than the other ; and if we
have three real numbers such that a > 3 and 3>, then a>1v.

These definitions can be simplified when the rational nunbers themselves
are given by sections, as explained at the end of § 5.

7. Between any two different rational numbers there is an infinite number
of rational numbers. A similar property holds for the system of real
numbers, as will now be shown :

(1) Between any two different real numbers a, a' there are an infinite number

of rational numbers.

If ¢ and o are rational, the property is known.

If e is rational and o irrational, let us assume o >a’. Let o’ be given by
the section (A’, B'). Then the rational number « is a member of the upper
class B, and B’ has no least number. Therefore an infinite number of
members of the class B’ are less than «. It follows from the definitions
of §5 that there are an infinite number of rational numbers greater than o
and less than a.

A similar proof applies to the case when the irrational number o is greater
than the rational number a.

There remains the case when o and « are both irrational. Let « be
given by the section (A, B) and « by the section (A, B’). Also let
a>a.

Then the class A of a contains an infinite number of members of the
class B" of o’ ; and these numbers are less than o and greater than o',

A similar proof applies to the case when a < o'

The result which has just been proved can be made more general :—

(I1) Detween any two different real nuwmbers there are an infinste number of

vrrational numbers. ,

Let a, ¢’ be the two given numbers, and suppose a<<a'.

Take any two rational numbers /3 and 3, such that a<fS<f'<a’. If we
can show that between 3 and [3' there must be an irrational number, the
theorem is established.

Let 7 be an irrational number. TIf this does not lie between 3 and (3, by
adding to it a suitable rational number we can make it do so. For we
can find two rational numbers m, 2, such that m<<i<n and (n-m) is
less than (B —). The number —m+7 is irrational, and lies between

3 and 3.
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8. Dedekind’s Theorem. We shall now prove a very im-
portant property of the system of real™ numbers, which will be
used frequently in the pages which follow. |

If the system of real numbers is divided into two clusses A
and B, in swch « way that
(i) each class contains «t least one number,
(1) every number belongs to one cluss or the other,
(ii1) every number in the lower class A is less than every
nwmber in the wpper class B ;
then there is a number a such that
every number less than a belongs to the lower cluss A, and
every number greater than o belongs to the wpper class B.-
The separating number a itself may belong to either class.
Consider the rational numbers in A and B.
- These form two classes—eg. A’ and B—such that every
rational number is in one class or the other, and the numbers in
the lower class A" are all less than the numbers in the upper
class B'. |
As we have seen in § 4, three cases, and only three, can arise.

(1) The lower cluss A" can hawve « greatest number m and the

wpper class B’ no smallest nwmber.

The rational number m 1s the number « of the theorem. For
it is clear that every real number a less than m belongs to the
class A, since m is a member of this class. Also every real
number b, greater than m, belongs to the class B.  This is evident
if b is rational, since b then belongs to the class B’, and B’ is part
of B. If b is irrational, we can take a rational number n between
m and b. Then 7 belongs to B, and therefore b does so also.

(1) The wpper class B can have « smallest number m and
the lower class A" no greatest nwmber. ,
It follows, as above, that the rational number m 1s the number
a of our theorem.

(ii1) The lower class A" cam have no greatest number and the
wpper class B no smallest number.

Let m be the irrational number defined by this section (A’, B).

Every rational number less than m belongs to the class A,

* It will be observed that the system of ratzona/ numbers does not possess this
property.
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and every rational number. greater than m belongs to the
class B.

We have yet to show that every irrational number less than m
belongs to the class A, and every irrational number greater than
m to the class B.

But this follows at once from §6. For if m’ is an irrational
number less than m, we know that there are rational numbers
between m and m’. These belong to the class A, and therefore
m’ does so also.

A similar argument applies to the case when m'>m.

In the above discussion the separating number a belongs to
the lower class, and is rational, in case (i); it belongs to the
upper class, and is again rational, in case (ii); it is irrational,
and may belong to either class, in case (iii).

9. The Linear Continuum. Dedekind’s Axiom. ,We return
now to the straight line L of § 3, in which a definite point O has
been taken as origin and a definite segment as the unit of length.

We have seen how to effect a correspondence between the
rational numbers and the “rational points” of this line. The
“rational points” are the ends of segments obtained by marking

| 1 ]
T T ]
0 1 A
Fra, 2.

off from O on the line lengths equal to multiples or sub-multiples
of the unit segment, and the numbers are the measures of the
corresponding segments.

Let OA be a segment incommensurable with the unit segment.
The point A divides the rational points of the line into two
classes, such that all the points of the lower class are to the left
of all the points of the upper class. The lower class has no last
point, and the upper class no first point. |

We then say that A is an irrational point of the line, and
that the measure of the segment 04 is the irrational number
defined by this section of the rational numbers.

Thus to any point of the line L corresponds a real number, and
to different points of the line correspond different real numbers.

There remains the question—70 cvery real nuwmber does there
correspond a point of the line?
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For all rational numbers we can answer the question in the
affirmative. When we turn to the irrational numbers, the
question amounts to this: If all the rational points of the line
are divided into two classes, a lower and an wpper, so that the
lower class has no last point and the upper class no first point,
18 there one, and only one, point on the line which brings about
this separation ?

The existence of such a point on the line cannot be proved.
The assumption that there is one, and only one, for every section
of the rational points is nothing less than an axiom by means of
which we assign its continuity to the line.

This assumption is Dedekind’s Axiom of Continuity for the
line. In adopting it we may now say that to every point P of
the lime corresponds a mumber, rational or irrational, the
measure of the segment OP, and that to every real number
corresponds « point P of the line, such that the measwre of O
18 that nwmber.

The correspondence between the points of the line L (the linecr
continuum) and the system of real numbers (the arithmetical
continuum) is now perfect. The points can be taken as the
images of the numbers, and the numbers as the signs of the
points. In consequence of this perfect correspondence, we may,

in future, use the terms number and point in this connection as
identical. |

10. The Development of the System of Real Numbers. It
is instructive to see how the idea of the system of real numbers,

as we have described it, has grown.® The irrational numbers,
belonging as they do in modern arithmetical theory to the
realm of arithmetic, arose from the geometrical problems which
required their aid. They appeared first as an expressicn for the
ratios of incommensurable pairs of lines. In this sense the Fifth
Book of Kuclid, in which the general theory of Ratio is
developed, and the Tenth Book, which deals with Incom-
mensurable Magnitudes, may be taken as the starting point of
the theory. But the irrationalities which Kuclid examines are
only definite cases of the ratios of incommensurable lines, such

*Cf. Pringsheim, ¢ Irrationalzahlen u. Konvergenz unendlicher Prozesse,”
Enc. d. math. Wiss., Bd. L, TL 1., p. 49 et seq., 1898.
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as may be obtained with the aid of ruler and compass; that
is to say, they depend on square roots alone. The idea that
the ratio of any two such incommensurable lines determined
a definite (irrational) number did not occur to him, nor to any
of the mathematicians of that age.

Although there are traces in the writings of at least one of
the mathematicians of the sixteenth century of the idea that
every irrational number, just as much as every rational number,
possesses a determinate and unique place in the ordered sequence
of numbers, these irrational numbers were still considered to
arise only from certain cases of evolution, a limitation which is
partly due to the commanding position of Euelid’s methods in
Geometry, and partly to the belief that the problem of finding
the nthroot of an integer, which lies between the nth powers of
two consecutive integers, was the only problem whose solution
could not be obtained in terms of rational numbers.

The introduction of the methods of Coordinate Geometry by
Descartes in 1637, and the discovery of the Infinitesimal Calculus
by Leibnitz and Newton in 1684-7, made mathematicians regard
this question in another light, since the applicability of number
to spatial magnitude is a fundamental postulate of Coordinate
Geometry. “The view now prevailed that number and quantity
were the objects of mathematical investigation, and that the two
were so similar as not to require careful separation. Thus
number was applied to quantity without any hesitation, and,
conversely, where existing numbers were found inadequate to
measurement, new ones were created on the sole ground that
every quantity must have a numerical measure.” *

It was reserved for the mathematicians of the nineteenth
century-—notably Weierstrass, Cantor, Dedekind and Heine—to
establish the theory on a proper basis. Until their writings
appeared, a number was looked upon as an expression for the
result of the measurement of a line by another which was
regarded as the unit of length. To every segment, or, with the
natural modification, to every point, of a line corresponded a
definite number, which was either rational or irrational ; and by
the term irrational number was meant a number defined by an

* Cf. Russell, Principles of Mathematics, Ch. XIX., p. 417, 1903.
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infinite set of arithmetical operations (e.g. infinite decimals or
continued fractions). The justification for regarding such an
unending sequence of rational numbers as a definite number was
considered to be the fact that this system was obtained as the
equivalent of a given segment by the aid of the same methods of
measurement as those which gave a definite rational number for
other segments. However it does not in any way follow from
this that, conversely, any arbitrarily given arithmetical represen-
tation of this kind can be regarded in the above sense as an
irrational number ; that is to say, that we can consider as evident
the existence of a segment which would produce by suitable
measurement the given arithmetical representation. Cantor *
has the credit of first pointing out that the assumption that a
definite segment must correspond to every such sequence is
neither self-evident nor does it admit of proof, but involves an
actual axiom of Geometry. Almost at the same time Dedekind
showed that the axiom in question (or more exactly one which is
equivalent to it) first gave a meaning, which we can comprehend,
to that property which, so far without any suflicient detinition,
had been spoken of as the continuity of the lne.

To make the theory of number independent of any geometrical
axiom and to place it upon a basis entirely independent of
measurable magnitude was the object of the arithmetical theories
assoclated with the names of Weierstrass, Dedekind and Cantor.
The theory of Dedekind has been followed in the previous pages.
Those of Weierstrass and Cantor, which regard irrational
numbers as the limits of convergent sequences, may be deduced
from that of Dekekind. In all these theories irrational numbers
appear as new numbers, to each of which a definite place in
the domain of rational numbers is assigned, and with which we
“can operate according to definite rules. The ordinary operations
of arithmetic for these numbers are defined in such a way as to
be in agreement with the ordinary operations upon the rational
numbers. They can be used for the representation of definite
quantities, and to them can be ascribed definite quantities, ac-
cording to the axiom of continuity to which we have already
referred.

* Math. Ann., Léipziy, 5, p. 127, 1872.
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CHAPTER 1I
INFINITE SEQUENCES AND SERIES

11. Infinite Aggregates. We are accustomed to speak of the
positive integral numbers, the prime numbers, the integers which
are perfect squares, etc. These are all examples of infinite sets
of numbers or sets which have more than a finite number of terms.
In mathematical language they are termed aggregates, and the
theory of such infinite aggregates forms an important branch of
modern pure mathematics.®

The terms of an aggregate are all different. Their number
may be finite or infinite. In the latter case the aggregates are
usually called infinite aggregates, but sometimes we shall refer to
them simply as aggregates. After the discussion in the previous
chapter, there will be no confusion if we speak of an aggregate
of points on a line instead of an aggregate of numbers. The
two notions are identical. We associate with each number the
point of which it is the abscissa. It may happen that, however
far we go along the line, there are points of the aggregate further
on. In this case we say that it extends to infinity. An aggregate
is said to be bounded on the right, or bounded above, when
there is no point of it to the right of some fixed point. It is
said to be bownded on the left, or bounded below, when there
18 no point of it to the left of some fixed point. The aggregate

* Cantor may be taken as the founder of this theory, which the Giermans call
Menge-Lehre. In a series of papers published from 1870 onward he showed its
importance in the Theory of Functions of a Real Variable, and especially in
the rigorous discussion of the conditions for the development of an arbitrary
function in trigonometric series.

Reference may be made to the standard treatise on the subject by W. H. and
Girace Chisholm Young, Theory of Sets of Points, Cambridge, 1906,

29
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of rational numbers greater than zero is bounded on the left.
The aggregate of rational numbers less than zero is bounded on
the right. 'The aggregate of real positive numbers less than
unity is bounded above and below; in such a case we simply
say that it is bounded. The aggregate of integral numbers is
unbounded.

12. The Upper and Lower Bounds of an Aggregate. When
an aggregate (E)* is bounded on the right, there is a nwmber M

which possesses the following properties :

no nwmber of (E) is greater than M ;
however small the positive number ¢ may be, there is a number
of (E) greater than M —e.

We can arrange all the real numbers in two classes, A and B,
relative to the aggregate. A number @ will be put in the class A
if one or more numbers of (&) are greater than x. It will be put
in the class B if no number of () is greater than @.  Since the
aggregate is bounded on the right, there are members of both
classes, and any number of the class A is smaller than any
number of the class B.

By Dedekind’s Theorem (§8) there is a number } separating
the two classes, such that every number less than M belongs to
the class A, and every number greater than M to the class B,
We shall now show that this is the number M of our theorem.

In the first place, there is no number of (#) greater than A7,
For suppose there is such a number M7 (2>0). Then the
number M+ 3%, which is also greater than M, would belong to
the class A, and M would not separate the two classes A and B.

In the second place, whatever the positive number ¢ may be, the
number M —¢ belongs to the class A. It follows from the way
in which the class A is defined that there is at least one number
of (&) greater than M —e. ,

This number M is called the wpper bownd of the aggregate (K).
It may belong to the aggregate. This occurs when the aggregate
contains a finite number oi terms. But when the aggregate
contains an infinite number of terms, the upper bound need not
belong to it. For example, consider the rational numbers whose

* This notation is convenient, the letter # being the first letter of the French
term ensemble.
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squares are not greater than 2. This aggregate is bounded on
the right, its upper bound being the irrational number ,/2, which
does not belong to the aggregate. On the other hand, the aggre-
gate of real numbers whose squares are not greater than 2 is
also bounded on the right, and has the same upper bound. But
/2 belongs to this aggregate.

If the upper bound M of the aggregate () does not belong to
it, there must be an infinite number of terms of the aggregate
between M and M —e, however small the positive number ¢ may
be. If there were only a finite number of such terms, there
would be no term of (£) between the greatest of them and A,
which is contrary to our hypothesis. |

It can be shown in the same way that when an aggregate (1)
18 bounded on the left, there 1s « nuwmber m possessing the follow-
g properties :

no number of () vs smaller than m ;

lowever small the positive number e may be, there 1s « number

of () less than m+e.

The number m defined in this way is called the lower bound
of the aggregate (£). As above, it may, or may not, belong to
the aggregate when it has an infinite number of terms. But
when the aggregate has only a finite number of terms it must
belong to it.

13. Limiting Points of an Aggregate. Consider the aggregate
1 1 1

A

There are an infinite number of points of this aggregate in any
interval, however small, extending from the origin to the right.
Such a point round which an infinite number of points of an
aggregate cluster, is called a lvmating point* of the aggregate.
More definitely, a will be a limating point of the aggregate (K)
of, however small the positive number e may be, there 1s in (E)
a pownt other than a whose distance from a is less than e If
there be one such point within the interval (a—e, a+¢), there
will be an infinite number, since, if there were only . of them,

1,

*Sometimes the term point of condensation is used 5 French, point-limite, point
d’accumulation 5 German, Hdvfungspunkt, Verdichtungspunkt.
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and «, were the nearest to «, there would not be in () a point
other than « whose distance from « was less than |a —«,|.* In
that case a would not be a limiting point, contrary to our
hypothesis.

An aggregate may have more than one limiting point. The
rational numbers between zero and unity form an aggregate with
an infinite number of limiting points, since every point of the
segment (0, 1) is a limiting point. It will be noticed that some
of the limiting points of this aggregate belong to it, and some,
namely the irrational points of the segment and its end-points,
do not.

In the example at the beginning of this section,

1 1 1

SRS URITISPITRy

the lower bound, zero, is a limiting point, and does not belong to
the aggregate. The upper bound, unity, belong% to the aggregate,
and is not a limiting point.

The set of real numbers from 0 to 1, 1n0]u81ve, 1s an aggregate
which is identical with its limiting points.

1,

14. Weierstrass’s Theorem. An wnfinite aggregate, boundecd
above and below, hus at least one limiting point.

Let the infinite aggregate (&) be bounded, and have M and m
for its upper and lower bounds.

We can arrange all the real numbers in two classes relative to
the aggregate (£). A number « will be said to belong to the
class A when an infinite number of terms of (£) are greater than
a. It will be said to belong to the class B in the contrary case.

Since m belongs to the class A and M to the class B, there are
members of both classes. Also any number in the class A is less
than any number in the class B.

By Dedekind’s Theorem, there is a number u separating the
two classes. However small the positive number e may be, u—e
belongs to the class A, and wu+4e to the class B. Thus the
interval (u—e, u-+e¢) contains an infinite number of terms of the
aggregate.

* Tt is usual to denote the difference between two real numbers @ and b, taken
positive, by |a@ -], and to call it the absolute value or modulus of (¢ —0). With
this notation |@-+y| = || +|y|, and |xy|=|x||y].
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Hence w is a limiting point. 4
- As will be seen from the example of § 13, this point may
coincide with 3 or m. |
An infinite aggregate, when unbounded, need not have a limit-
ing point; e.g. the set of integers, positive or negative. But if
the aggregate has an infinite number of points in an interval of
finite length, then it must have at least one limiting point.

15. Convergent Sequences. We speak of an infinite séquence

of numbers Wy, Uy, Ugy eon Uyy oo

when some law 18 given according to which the general term w,,
may be written down.
The sequence Uy Uy, Ug, oo

ts saad to be convergent and to have the limit A, when, by
indefinitely increasing mn, the difference between A and w,
becomes, and thereafter remains, as small as we please.

This property is so fundamental that it is well to put it more
precisely, as follows: The sequence is said to be convergent and
to have the limit A, when, any positive number e¢ having been
chosen, as small as we please, there 18 a positive integer v such that

|A —u,| <e, provided that n=v.
For example, the sequence

1 1 1
1, =, -, ... = ..
| ’ 27 3; n,
has the limit zero, since 1/n is less than ¢ for all values of n
greater than 1/e.

The notation that is employed in this econnection is
Lt w,=A4,

n—>w
and we say that as n tends to infinity, v, has the limit A.*

The letter e is usually employed to denote an arbitrarily small
positive number, as in the above definition of convergence to a
limit as n tends to infinity. Strictly speaking, the words as
small as we please are unnecessary in the definition, but they are
inserted as making clearer the property that is being defined.

We shall very frequently have to employ the form of words
which occurs in this definition, or words analogous to them, and

*The phrase ‘1, tends to the limit 4 as n tends to infinity 7 is also used,
C. 1 ¢
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the beginner is advised to make himself familiar with them by
formally testing whether the following sequences are convergent
or not:

1 1 1 1 1
((L) 1, 2, QE’ cen s (C) 1, 1+§,, 1+~2—+?, -
1 1 :
() 1, —gr g (dy 1, =1, 1, —1,....
A sequence cannot converge to two distinct limits 4 and B.

)A B\

If this were possible, let e<'~-—'. Then there are only

a finite number of terms of the sequence outside the interval
(A —e, A +e), since the sequence converges to the value 4. This
contradicts the statement that the sequence has also the limit 3,
for we would only have a finite number of terms in the interval
of the same length with B as centre.

The application of the test of convergency contained in the
definition involves the knowledge of the limit A. Thus it will
frequently be impossible to use it. The required criterion for
the convergence of a sequence, when we are not simply asked to
test whether a given number is or is not the limit, is contained
in the fundamental general principle of convergence . —*

A mecessary and sufficient condition for the existence of «

Limat to the sequence Wy, Uy, Uy, ...

18 that « positive integer v exists sweh that |, 1, —1u,| becomes as
small as we please when n =y, for every positive integer p.
More exactly :

A mecessary and sufficient condition for the existence of «

Limit to the sequence Uy, Uy, Uy,

s that, of any positive number e has been chosen, as small as
we please, there shall be a positive integer v such that

[ pp— | <&, when n=v, for every positive integer p.

*This is one of the most important theorems of analysis. In the words of
Pringsheim, ‘“Dieser Satz, mit seiner Ubertragung auf beliebige (z.B. stetige)
Zahlenmengen—von du Bois-Reymond als das ‘allgemeine Convergenzprinzip’
bezeichnet (Allg. Funct.-Theorie, pp. 6, 260)—ist der eigentliche Fundamentalsatz
der gesamten Analysis und sollte mit geniigender Betonung seines fundamentalen
Characters an der Spitze jedes rationellen Lehrbuches der Analysis stehen,”
loc. cit., Eme. d. math. Wiss. p. 66, ‘
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We shall first of all show that the condition is necessary
t.e. if the sequence converges, this condition is satistied ; secondly
that, if this condition is satisfied, the sequence converges; in
other words, the condition is sufficient.

(i) The condition is necessary.

Let the sequence converge to the limit 4.

Having chosen the arbitrary positive number ¢, then take Je.
We know that there is a positive integer v such that

| A —wu,| <}e, when n=v.
Bllt (u.n_*_p _ /ll//n) = (/lljn_*_z) - A) + (A - 71/7)/).
Therefore |1, ,— 1, = |y p— A+ |4 — 10y
< 17 € + "ETG’
if n =y, for every positive integer v,
<e.
(i1) The condition 1s sufficient.
We must examine two cases; first, when the sequence contains
an infinite number of terms equal to one another; second, when

it does not.
(a) Let there be an infinite number of terms equal to A.
Then, if
|tpsp—1,| < e, when n =y, and p is any positive integer,
we may take w,.,=4 for some value of p, and we have
| A —1,| <e when n=vw.

Therefore the sequence converges, and has A for its limit.

(0) Let there be only a finite number of terms equal to-one
another.

Having chosen the arbitrary positive number e, then take le.

We know that there is a positive integer IV such that

|2 p— 2y | < e, when n = N, for every positive integer .
It follows that we have
|10y—wy| < e, when n Z IV,
Therefore all the terms of the sequence
Uy, WUyps, Uyis, «-.

lie within the interval whose end-points are 1 y—Le and wy + le.
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There must be an infinite number of distinet terms in this
sequence. Otherwise we would have an infinite number of
terms equal to one another.

Consider the infinite aggregate (&) formed by the distinect

terms 1n
Wy, Uy, AUy, oee .

This aggregate is bounded and must have at least onme
limiting point A within, or at an end of, the above interval.
(Cf. §14.)

There cannot be another limiting point A4’, for it there were,
we could choose e equal to |4 —4’| say, and the formula

|24 p— | < e, when n —v, for every positive integer p,
shows that all the terms of the sequence
Wy, Uy, Usgyeen

except a finite number, would lie within an interval of length
1]A—A’|. This is impossible if 4, A" are limiting points of the
aggregate.
Thus the aggregate (#) has one and only one limiting point 4.
We shall now show that the sequence

Wy, Wy, U, oo

converges to A as n tends to .

We have Wp— A = (w,—wy) + (wy—A4).

Therefore |wn—A| = |wn—10y] + |y —A|
< e + e when n —_ N,
< €, when n = N.

Thus the sequence converges, and has 4 for its limit.
We have therefore proved this theorem :

A mecessary and sufficient condition for the convergence of

the sequence ,
quenc Uy, Uy, Ug, .o

is that, to the arbitrary positive number e, there shall correspond
a positive integer v such that
|21 p— Un| < &, when nZv, for every positive integer p.

It is easy to show that the above condition may be replaced by the
following :

In order that the sequence
Uy Uy, Usgy e
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may converge, it s necessary and sufficient that, to the arbitrary positive
number €, there shall correspond a positive integer n such that
|20 4p— | < € for every positive integer p.
It is clear that if the sequence converges, this condition is satisfied by n=v.
Further, if this condition is satisfied, and € is an arbitrary positive number,
to the number fe there corresponds a positive integer n such that
|04+ — .| < Fe for every positive integer p.
But | Wit pr = Uy | = | W = | + [y = U
< oz + 36
when p/, p” are any positive integers.
Therefore the condition in the text is also satisfied, and the sequence
converges. ‘

16. Divergent and Oscillatory Sequences.* When the

sequence Wy, Uy, Uy, ..

does not converge, several different cases arise.
(i) In the first place, the terms may have the property that

if any positive number A, however large, is chosen, there is
a positive integer v such that

w, > A, when 5 =v.

In this case we say that the sequence is divergent, and that it
diverges to + oo, and we write this

Lt w,=+ .

N>R
(ii) In the second place, the terms may have the property that
if any negative number —A is chosen, however large 4 may
be, there is a positive integer v such that
U, < —A, when n=v.

In this case we say that the sequence is divergent, and that it
diverges to — 0 , and we write this

Lt w,= —w.
e J72]

The terms of a sequence may all be very large in absolute
value, when 7 is very large, yet the sequence may not diverge
to 4+ orto —c. A sufficient illustration of this is given by
the sequence whose general term is (—1)"n.

*In the first edition of this book, the term divergent was used as meaning
nmerely not convergent. In this edition the term is applied only to the case of
divergence to +w or to - w, and sequences which oscillate infinitely are placed
among the oscillatory sequences.
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After some value of n the terms must all have the same sign,
if the sequence is to diverge to 4o or to — o, the sign being
positive in the first alternative, and negative in the second.

(ii1) When the sequence does not converge, aund does not diverge

0 + =% orto —w, it 18 sard to oscillate.

An oscillatory sequence is said to oscillate finitely, if there is
a positive number A such that [un|<'A, Jfor all valwes of n;
and it 18 said to oscillate infinitely when there is no such nuwmber.
For example, the sequence whose general term is (—1)" oscillates
finitely ; the sequence whose general term is (—1)"n oscillates
infinitely.

We may distinguish between convergent and divergent se-
quences by saying that a convergent sequence has « finite limit,

1.e. Lt w,= 4, where 4 is a definite number ; @ divergent sequence
n~—>w0

has an infinite limit, v.e. Lt w,= 4o or Lt u,=—ow,
' —> N—>n

But it must be remembered that the symbol », and the terms
infinite, infinity and tend to infinity, have purely conventional
meanings. There is no number infinity. Phrases in which the
term is used have only a meaning for us when we have previously,
by definition, attached a meaning to them.

When we say that n tends to infinity, we are using a short
and convenient phrase to express the fact that u assumes an
endless series of values which eventually become and remain
greater than any arbitrary (large) positive number. So far we
have supposed 7, in this connection, to advance through integral
values only. This restriction will be removed later.

A similar remark applies to the phrases divergence to + o or
to —ow, and oscillating infinitely, as well as to our earlier
use of the terms an wnfinite number, infinite sequence and
nfinite aggregates. In each case a definite meaning has
been attached to the term, and it is employed only with that

meaning.
It is true that much of our work might be simplified by the
introduction of new numbers 4o, —oo, and by assuming the

existence of corresponding points upon the line which we have
used as the domain of the numbers. But the creation of these
numbers, and the introduction of these points, would be a matter

for separate definition.



INFINITE SEQUENCES AND SERIES 39

17. Monotonic Sequences. If the terms of the sequence
Uy, Wy, AUy, ..
satisfy either of the following relations
Wy = Uy = Uy oo = Uy, oo
or Wy = Uy = Uy o =W,y ee
the sequence is swid to be monotonic.

In the first case, the terins never decrease, and the sequence
may be called monotonic increasing; in the second case, the
terms never increase, and the sequence may be called monotonic
decreasing.® |

Obviously, when we are concerned with the convergence or
divergence of a sequence, the monotonie property, if such exist,
need not enter till after a certain stage.

The tests for convergence or divergence are extremely simple
in the case of monotonic sequences.

If the sequence Wy, Uy, U, ..

18 monotonic ineredsing, and its terims are all less than some fixed
nwmber B, the sequence is convergent and has for its limit «
number B such that w, = B =B for every positive integer .

Consider the aggregate formed by distinet terms of the
sequence. It is bounded by u, on the left and by B on the
right. Thus it must have an upper bound 5 (cf. §12) equal to or
less than B, and, however small the positive number ¢ may be
there will be a term of the sequence greater than 8—e.

Let this term be w,. Then all the terms after w,_, ave to the:
right of 8—e and not to the right of 5. If any of them coincide
with 3, from that stage on the terms must be equal.

Thus we have shown that

|B—1w,|<e when n=y, |

and therefore the sequence is convergent and has 8 for its limit.
The following test may be proved in the same way :

If the sequence Wy, Wy, U,y o
18 monotonic decreasiny, and its terms are all greater than some
Jixed mumber A, then the sequence is convergent and has for

*The words steadily increasing and steadily decreasing are sometimes employed
in this connection, and when none of the terms of the sequence are equal, the
words i the stricter sense are added.
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its limit @ number a such that w,Za=A for every positive
wnteger n. | |
It is an immediate consequence of these theorems that a

monotonic sequence either tends to a limit or diverges to 4+ » or
to —».

18. Let Ay, A,, A, ... be an infinite set of intervals, each lying
entirely within the preceding, or lying within it and having
with it a common end-point; also let the length of A, tend to
zero as m tends to infinity. Then there is one, and only one,
pownt which belongs to all the imtervals, either as an internal
povnt of all, or from and after o definite stage, as a common
end-point of all.

Let the representative interval 4, be given by

Uy :t: v :é bn'
Then we have U =dy=a, ... <b,
and bi=b,=b; ... >aq,.

- Thus the sequence of end-points

PPN ¢ §
has a limit, say a, and «, = « for every positive integer n (§ 17).

| !
= 1 T
a, a, a,

!
} i

B by, b, ,b1

+—
a
Fia. 3.

Also the sequence of end-points

by by Dy ooy o (2)

has a limit, say @, and b,=8 for every positii*e integer =
($17)
Now it is clear that, under the given conditions, 8 cannot be
less than a.
Therefore, for every value of n,
by—cty, > B—a=0.
But Lt (by—ay,)=0.

N>

It follows that a=(3.*

*This result also follows at once from the fact that, if Lt a,=a and Lt b,=j,
then Lt (#), —by)=a . (Cf. §26, Theorem I.)
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Therefore this common limit of the sequences (1) and (2)
satisties the inequalities
a, =a=b, for every positive integer 7,
and thus belongs to all the intervals.

Further, no other point (eg. v) can satlsfy ca,,,__'y — b, for
all values Of n.

Since we would have at the same time
Lt , =y and Lt b,=1y

N—> D N> w0

which is impossible unless v =a.

~19. The Sum of an Infinite Series.
Let . Uy, Wy, Usg, oo
be an infinite sequence, and let the successive swms
S1=ul’
Sy =1, + u,,

....................

‘ Sy=uy+ w2+ ... F 1w,
be formed.

If the sequence ISTTR R A
18 convergent and has the limat S, then S s called the suwm of the
nfinite series Wy A+ Uy .

and this series is suid to be convergent.

It must be carefully noted that what we call the sum of the
infinite series is « limat, the limit of the sum of n terms of

U+ Uy +Ug+ ..
as n tends to infinity. Thus we have no right to assume without
proof that familiar properties of finite sums are necessarily true
for sums such as S.
When Lt S,= -4 or Lt S,= —w, we shall say that the

L~ 00 n—> &L
infinite series is divergent, or diverges to +ow or — =« ,as the case
may be.

If S, does not tend to a limit, or to +w or to —w, then it
oscillates finitely or infinitely according to the definitions of these
terms in §16. In this case we shall say that the series oscillates
Sfinitely or infinitely.*

* Cf. footnote, p. 37.
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The conditions obtained in §15 for the convergence of a
sequence allow us to state the criteria for the convergence of the
series in either of the following ways:

(1) The series converges and has S for its sum, if, any
positive number e having been chosen, aus small as we please,
there is « positive integer v such that

1S =8| <e when n=w.

(11) A mecessary and sufficient condition for the comvergence
of the series 1s that, if any positive number e hus been chosen,
as small as we please, there shall be « positive integer v such
that

|Shap—Su| <6, when n=v, for every positive integer p.*

It is clear that, iof the series converges, Lt w,=0. This is con-
0-—>»w

tained in the second ecriterion. It is a necessary condition for
convergence, but it is not a sufficient condition; e.g. the series

14+14+5+...
is divergent, though Lt w,=0.

If we denote

W41 +un+2+ s +/U’7L+2)7 or Sn‘w'-}) o Sn? by ])Rn

the above necessary and sufficient condition for convergence of
the series may be written

|, 0| <e, when n =y, for every positive integer p.

Again, if the s‘ewles U+ Wy 2+

converges and has S for its swm, the series
Ungy g+ Wy g+

converges and has S—8,, for its sum.

For we have Spyp =8+, 1,

Also keeping n fixed, it 1s clear that
Lt S,.,=-8.
—>w

»

Therefore Lt (,R,)=8-1S,.

p—>L

* As remarked in §15, this condition can be replaced by: 7o the arbitrary
positive number e there must correspond « positive mteger n such that

| Ship = Sn| < € for every positive integer p.
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Thus if we write R, for the sum of the series
Wy T Wiy + -
we have S=8,+R,.
The first criterion for convergence can now be put in the form
|R,| <e when n=v.

R, is usually called the remainder of the series after n terms,
and R, a partial remainder.

20. Series whose Terms are all Positive,.
Let U+ g+ttt
be a series whose terms are ull positive.  The sum of n terms of
this series either tends to a lamat, or it daverges to 4 o .
Since the terms are all positive, the successive sums
S =,
S,=u,+u,,
Sy =, + 1, +usg,

form a monotonic increasing sequence, and the theorem stated
above follows from § 17.

When a series whose terms are all positive 1s convergent, the
series we obtain when we take the terms vn any order we please
18 also convergent and has the sume suwmn.

This change of the order of the terms is to be such that
there will be a one-one correspondence between the terms of the
old series and the new. The term in any assigned place in the
one series is to have a definite place in the other.

f —_—
Let S =14,
J
S, =1, + 10y,
Sy =, + Uy + Us,

----------------------

Then the aggregate (U), which corresponds to the sequence
S R
is bounded and its upper bound S is the sum of the series.
Let (U’) be the corresponding aggregate for the series ob-
tained by taking the terms in any order we please, on the
understanding we have explained above. Every number in
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(U’) is less than S. In addition, if 4 is any number less than
S, there must be a number of (U) greater than A4, and « fortiort
a number of (U’) greater than 4. The aggregate (U’) is thus
bounded on the right, and its upper bound is S. The sum of
the new series is therefore the same as the sum of the old.

It follows that if the series

Uy Uy +Ug ..o,
whose terms are wll positive, diverges, the series we obtain by
changing the order of the terms must also diverge.
The following theorems may be proved at once by the use
of the second condition for convergence (§19):

Lf the series Uy U+ U+ ..

18 convergent and all its terms are positive, the series we obtain
Jrom this, either
(1) by keeping only a part of its terms,
or (2) by wreplacing certain of its terms by others, either
positive or zero, which are respectively equal or in
ferior to them,
or (3) by changing the signs of some of its terms,
are «lso convergent.

21. Absolute and Conditional Convergence. The trigono-
metrical series, whose properties we shall investigate later, belong
to the class of series whose convergence is due to the presence of
both positive and negative terms, in the sense that the series
would diverge if all the terms were taken with the same sign.

A series with positive and negative terms s said to be
absolutely convergent, when the series im which all the terms
are taken with the same sign converges.

In other words, the series

Ui+ Uy +Us+ ...
is absolutely convergent when the series of absolute values
) oy | 4 Jag| + |uy] + ..
18 convergent,
It is obvious that an absolutely convergent series is also con-
vergent in the ordinary sense, since the absolute values of the
partial remainders of the original series cannot be greater than
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those of the second series. There are, however, convergent
series which are not absolutely convergent:

ey. 1—1+% ... 1s convergent.
1+2142...18 divergent.

Series wn which the convergence depends wpon the presence
of both positive and negative terms are sard to be conditionally
convergent.

The reason for this name is that, as we shall now prove, an
absolutely convergent series remains convergent, and has the
same sum, even although we alter the order in which its terms
are taken; while a conditionally convergent series may con-
verge for one arrangement of the terms and diverge for another.
Indeed we shall see that we can make a conditionally convergent
series have any sum we please, or be greater than any number
we care to name, by changing the order of its terms. There is
nothing very extraordinary in this statement. The rearrange-
ment of the terms introduces a new function of m, say S’

instead of the old function S, as the sum of the first 2 terms.
There is no @ prior: reason why this function S, should have
a limit as n tends to infinity, or, if it has a limit, that this

should be the same as the limit of S, .*

22. Absolutely Convergent Series. The sum of an absolutely
convergent series remains the same when the order of the
terms 1s changed.

Let (S) be the given absolutely convergent series; (S’) the
series formed with the positive terms of (S) in the order in
which they appear; (S”) the series formed with the absolute
values of the megative terms of (8), also in the order in which
they appear.

If the number of terms either in (S) or (S”)is limited, the
theorem requires no proof, since we can change the order of
the terms in the finite sum, which includes the terms of (S) up to
the last of the class which is limited in number, without altering
its sum, and we have just seen that when the terms are of the
same sign, as in those which follow, the alteration in the order
in the convergent series does not affect its sum.

*Cf. Osgood, Introdwuction to Infinite Series, p. 44, 1897.
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Let 2 be the sum of the infinite series formed by the absolute
values of the terms of (S).

Let S, be the sum of the tirst n terms of (S):

In this sum let %" terms be positive and n” negative.

Let S,, be the sum of these n’ terms.

Let S, be the sum of the absolute values of these n” terms,
taking in each case these terms in the order in which they
appear in ().

Then S,=8, =8,

Sy < 2,
Sy <X

Now, as m increases S,, S, never diminish. Thus, as =
increases without limit, the successive values of S, S, form two
infinite monotonic sequences such as we have examined in §17,
whose terms do not exceed the fixed number 2. These sequences,
therefore, tend to fixed limits, say, S” and S”.

Thus Lt (S)=8"—8"

nN—>w

Hence the sum of the absolutely convergent series (S) is equal
to the difference between the sums of the two infinite series
formed one with the positive terms in the order im which they
appear, and the other with the absolute valwes of the megative
terms, also wn the order in which they appear in (S).

Now any alteration in the order of the terms of (S) does
not change the values of S”and S”; since we have seen that in
the case of a convergent series whose terms are all positive we do
not alter the sum by rearranging the terms. It follows that
(S) remains convergent and has the same sum when the order of
its terms is changed wn any way we please, provided that a one-
one correspondence exists between the terms of the old series
and the new. |

We add some other results with regard to absolutely con-
vergent series which admit of simple demonstration :

Any series whose terms ave either equal or inferior in
absolute wvalue to the corresponding terms of an  absolwtely
convergent series is also absolutely convergent.

An absolutely convergent series remains absolutely ('oowe?“gent
when we suppress a certain number of its terms.
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1f 1w+, + ..
U+ V4o
wre two absolutely convergent series whose sums wre U and V,

the series (1, 4,) (1, - )+ ..
and (g —v) + (g —vy) ...

are also absolutely convergent and their sums are equal to
U=V respectively.

923, Conditionally Convergent Series. 1Te sum of « condi-
tionally convergent series depends essentially on the ovder of ats
terms.

Let (S) be such a series. The positive and negative terms
must both be infinite in number, since otherwise the series
would converge absolutely.

TFurther, the series formed by the positive terms in the order
in which they occur in (S), and the series formed in the same
way by the negative terms, must both be davergent.

Both could not converge, since in that case our series would
be equal to the difference of two absolutely convergent series,
some of whose terms might be zero, and therefore would be
absolutely convergent (§22). Also (S) could not converge, if
one of these series converged and the other diverged.

We can therefore take sufficient terms from the positive
terms to make their sum exceed any positive number we care
to name. In the same way we can take sufficient terms from
the negative terms to make the sum of their absolute values
exceed any number we care to name.

Let @ be any positive number.

First take positive numbers from (S) in the order in which
they appear, stopping whenever the sum is greater than «.
Then take negative terms from (S§), in the order in which they
appear, stopping whenever the combined sum is less than a.
Then add on as many from the remaining positive terms as
will make the sum exceed «, stopping when the sum first exceeds
«; and then proceed to the negative terms; and so on. |

In this way we form a new series (S') composed of the same
terms as (), in which the sum of = terms is sometimes greater
than « and sometimes less than «.
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Now the series (S) converges. Let its terms be Wy Wy, W,y e
Then, with the usual notation,
l2,] <e, when n=2y.
Let the points B, and A, (Fig. 4) correspond to the sums
obtained in (S), as described above, when groups of positive
terms and v groups of negative terms have been taken.

1
Ay a
Fia. 4. .

o1
<

Then it is clear that («—4,) and (B,—a) are each less than
lw,|, since each of these groups contains at least one term of (S),
and («—4,), (B,—«) are at most equal to the absolute value of
the last term in each group.

Let these 2v groups contain in all /' terms.

The term 2/, in (S’), when #'=)/, is less in absolute value
than e. Thus, if we proceed from A,, the sums S8, lie within
the interval (@ —e¢, ¢ +¢), when n' =V

In other words, |87, —a|<<e, when n' =y,

Therefore Lt 8, =a.

N>
- A similar argument holds for the case of a negative number,
the only difference being that now we begin with the negative
terms of the series.
We have thus established the following theorem :

If a conditionally convergent series s given, we ca
arrange the order of the terms as to make the sum of the
serves converge to any valwe we care to name.
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CHAPTER III

FUNCTIONS OF A SINGLE VARIABLE
LIMITS AND CONTINUITY

24. The Idea of a Function. In Elementary Mathematics,
when we speak of a function of z, we usually mean a real
expression obtained by certain operations, eg. a? /x, logz,
sin“'2z. In some cases, from the nature of the operations, the
range of the variable x is indicated. In the first of the above
examples, the range is unlimited ; in the second, £=0; in the
third @ > 0; and in the last 0 = =1.

In Higher Mathematics the term “ function of ” has a much
more general meaning. Let a and b be any two real nwmbers,
where b>«. If to every value of x im the interval a =x =0

2 corresponds « (real) number 1y, then we say that y 1s «
‘ttion of @ in the interval (a, b), and we write y=f (z).

'‘Sometimes the end-points of the interval are excluded from
the domain of «, which is then given by a <<« <b. In this case
the interval is said to be open at both ends; when both ends
are included (i.e. @ =x =) it is said to be closed. An interval
may be open at one end and closed at the other (e.g. « <<z =0).

Unless otherwise stated, when we speak of an interval in the
rest of this work, we shall refer to an interval closed at both
ends. And when we say that = lies in the interval (a,b),
we mean that a =x =05, but when =z is to lie between « and b,
and not to coincide with either, we shall say that = lies in
the open interval (a, b).*

*In Ch. IL., when a point « lies between « and b, and does not coincide with
either, we have referred to it as within the interval (a, ). This form of words is
convenient, and not likely to give rise to confusion.

C.o I 49 D



50 FUNCTIONS OF A SINGLE VARIABLE

Consider the aggregate formed by the values of a function
f(x), given in an interval («, b). If this aggregate is bounded
(cf. §11), we say that the function f(z) is bounded in the interval.
The numbers M and m, the wpper and lower bounds of the
aggregate (cf. §12), are called the wpper and lower bounds of
the function in the interval. And a function can have an upper
bound and no lower bound, and »ice versc.

The difference (M —m) is called the oscillation of the function
i the interval.

It should be noticed that a function may be determinate
in an interval, and yet not bounded in the interval,

ll.g. let f(0)=0, and f(a;):%} when 2> 0.

Then f(x) has a definite value for every 2 in the interval
0 =z =a, where « 1s any given positive number. But f(z) is
not bounded in this interval, for we can make f(z) exceed any
number we care to name, by letting = approach sufficiently near
to zero.

Further, a bounded function need not attain its upper and
lower bounds ; in other words, M and m need not be members of
the ageregate formed by the values of f(x) in the interval.

fig. let f(0)=0, and f(x)=1—2 when 0 <<a=1.

This function, given in the interval (0, 1), attains its lower
bound zero, but not its upper bound unity.

25. Lt f(x). In the previous chapter we have dealt with the
>
limit when n—w of a sequence u,, u,, Ug, .... In other words,
we have been dealing with a function ¢ (n), where n is a positive
integer, and we have considered the limit of this function as
N—>0 .

We pass now to the function of the real variable z and the
limit of f(x) when x—a. The idea is familiar enough. The
Differential Calculus rests upon it. But for our purpose we
must put the matter on a precise arithmetical footing, and a
definition of what exactly is meant by the limit of a function
of z, as x tends to a definite value, must be given.

Jf(x) 1s sard to have the limit b as x tends to a, when, any
positive number e having been chosen, as small as we please,
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there is « positive nuwmber y such that |f(x)—b] <e, for all
valwes of x for which 0 < |z —a| =y,

In other words |f(z)—b| must be less than ¢ for all points in
the interval («—»n, a+2#) except the point a.

When this condition is satisfied, we employ the notation
Lt f(z) =0, for the phrase the limit of f(x), us @ tends to a, is b,
2>

and we say that f(x) converges to b as = tends to «.
One advantage of this notation, as opposed to Lt f(x)=b,

is that it brings out the fact that we say nothing about
what happens when x is equal to a. In the definition it will be
observed that a statement is made about the behaviour of f(z)
for all values of « such that 0 <|z—a|=# The first of these
inequalities is inserted expressly to exclude z=a.

Sometimes  tends to ¢ from the right hand only (i.e. z > «),
or from the left hand only (i.e. @ << ).

In these cases, instead of 0 <|z—a|=y, we have 0<(z —a) =y
(right hand) and 0 < (¢ —a) =y (left hand), in the definition.

The notation adopted for these right-hand and left-hand limits

18 Lt f(x) and Lt f(m)
a~>a-+0 >~
The assertion that Lt f(oc)-_- b thus includes
o—>0
Lt flx)= Lt f(m)—b
x>0 x>0t —

It is convenient to use f(a+0) for Lt f(oc) when this limit

e—>a+40

exists, and similarly f(«—0) for Lt f(x) when this limit exists.

> -0

When f(x) has not a limit as z—«, it may happen that it

diverges to 4+, or to — o, in the sense in which these terms

were used in §16. Or, more precisely, it may happen that if

any positive number A, however large, is chosen, there corre-
sponds to it a positive nwmber y such that

In this case we say that 1t f(z)= 4.

>
Again, it may happen that if any megative number — A is
chosen, however large A may be, there corresponds to it a positive

nuwmber y such that flry <<—A4, when 0 <|x—a| =2,
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In this case we say that 1Lt f(x)= —oc.
r>

The modifications when f(«+0)= %o are obvious.
When Lt f(z) does not exist, and when f(x) does not diverge

to +w,or to —w, as z—q, it is said to oscillate as x—>a. It
oscillates finitely if f(x) is bounded in some neighbourhood of
that point.* It oscillates infinitely if there is no neighbourhcod
of ¢ in which f(x) is bounded. (Cf. §16.)

The modifications to be made in these definitions when z—s«
only from the right, or only from the left, are obvious.

26. Some General Theorems on Limits. I. The Limit of a Sum.
If 1t f(x)=a and Lt g(z)=p, then Lt [ f(x)+g(x)]=a+ B4

> x—=>a r—=>a

Let the positive number ¢ be chosen, as small as we please.
Then to ¢/2 there correspond the positive numbers y,, 5, such that

x—a| =,

(@) —a < —26—, when 0 <

|g(x)— 3] <g, when 0 <|x—a|=7,.

Thus, if 5 is not greater than y, or #,,

f@)+9@)—a=B =] (@) —al +[g)—B],

< g + %, when 0 <|z—a|=y,
< & when 0 <<|z—a|=y.
Therefore Lt [ f(z)+g(x)]=a+B.

This result can be extended to the sum of any number of

functions. The Limit of « Swm is equal to the Sum of the
Limats.

*f(x) 1s said to satisfy a certain condition in the neighbourhood of x=a
when there is a positive number /& such that the condition is satisfied when

Sometimes the neighbourhood is meant to include the point w=a itself. In
this case it is defined by |x - a|=h.

The corresponding theorem for functions of the positive integer n, as n—so
o b
is proved in the same way, and is useful in the argument of certain sections of
the previous chapter.
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I1. The Limit of a Product. /f Lt f(z)=a and Lt g(x)=4,

then Lt [f(@)g(@)]=aB. | o
Let f(@)=a+¢(x) and g(x)=B+ ()
Then Lt ¢p(x)=0 and Lt gb(w) =0(.

T—>

Ao f(e) o) = i+ Bp@) + ap(e) - $(0) (@)
From Theorem L our result follows if Lt [¢(2)y (z)]=0.

x>
Since ¢(x) tends to zero as x—¢ and  (2) tends to zero as
x—>, a proof of this might appear unnecessary. But if a formal
proof is required, it could run as follows:
Given the arbitrary position number ¢, we have, as in I,

|p (2)] < Se, when 0 <|z—a|=y
()] < Se, when 0 < |z —a|=y,.
Thus, if 5 1s not greater than », or »,,
|p(x) Yr(x)] <e, when 0 < |z
Therefore I:)t [p(2) Y (2)]=0.

This result can be extended to any number of functions. The
Lamat of a Product is equal to the Product of the Limits.

III. The Limit of a Quotient.

() If It f@)=a=0, then Lt f(@) =
This follows easily on puttlng f(@)=¢(@)+a and examining
the expression 1 1
AT e
3 “_7 o Y — Q= , ]L(@}JU
(i1) If xI;taj(m)—-a, cmdwnL:b g(@)=B=0, then J;I;tw [g(m) 5

This follows from IL and IIL (i).
This result can obviously be generalised as above.

1V. The Limit of a Function of a Function. Lt f[¢X)].

T—>

Let Tt p(a)=b and Lt f(0)=f(b).
Then Lt fld@)]=f] Lt $(a)].

We are given that Lt f(u)=7(b).
u—>b
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Therefore to the arbitrary positive number € there corresponds a positive
number 7, such that

| flp(@)]—F(D)| < e when |Pp(2)—b]| =21 cveeveinininnnnnnn (1)
Also we are given that Lt ¢(z)=b.

Therefore to this positive number 7; there corresponds a positive number
7 such that |p(@)—b]l < ny, when 0 < | —a|=n. .ccocoveviniiinnis (2)

Combining (1) and (2), to the arbitrary positive number e there corre-
sponds a positive number 7 such that

| /T(@)]~F(B)| < & when 0< |o—a|=n.
Thus Lt Fl$=fB)=/T Lt ()]

EXAMPLES.

1. If »n is a positive integer, Lt 2"=0.
x—>0

2. If n is a negative integer, Lit a"=+w ; and Lt 2= -« or +w
) )
. . x—>+40 x>0
according as 7 is odd or even.
[If =0, then 2"=1 and Lt 2"=1.]

x—>0

3. Lt (aqz"+a " +.. .+ a1+ a,)=a,.

x—>0

4 Tt (aqx’"‘ + @™ L +a,n> y,

bo;'l,‘n—l'— blxn—l + S Z)‘)L—-1x+ bn _ZTn, ullless bn:‘:O_

x—>0

5. Lt a"=«", if n is any positive or negative integer.

6. If Px)=a@™+ax™ + ...+ dpya1l + U,
then Lt P(x)=P(a).
7. Let P(@)=a@™+a2™ o ey @ iy,
and  Q@)=b"+ b L+ b+ Dy,
P(x)y Pa) .
Theun Lt =" if Q(a)+0.
RO ORI
8. If Lt f(x) exists, it is the same as Lt f(z+«).
T—ra —>0
9. If f@)< g@) for a-h<e<a+h,
and Lt f(@)=a, Lt g(x)=p,
then a=p.
10. If Lt f(2)=0, then Lt |f(2)] =0, and conversely.

1. It Lt f(2)=L=0, then Lt |f(2)|=|lI

x—>ra

The converse does not hold.
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12. Let 7(x) be defined as follows :
fla)=wsinl/z, when o=0)
J(0)= 0 '
Then Lt f(x)=f(a) for all values of «.

T—>

27. Lt f(x). A precise definition of the meaning of the term
L—D

“the limit of f(x) when « tends to 4+ (or to —w)” is also
needed. f

f(@) is said to have the limat b as x tends to +o0, if, any
positive number e having been chosen, as small as we please,
there is a positive number X such that

| f(x)=b] <e, when =X

When this condition is satisfied, we write

Lt f(z)=».
L=> 40
A similar notation, Lt f(x)=0,

is used when f(x) has the limit b as 2 tends to —oo, and the
precise definition of the term can be obtained by substituting
“a negative number —X ” and “2=—X " in the corresponding
places in the above.

When it is clear that only positive values of & are in question the notation
Lt f(x)is used instead of Lt f().

L0 Xx—>+w

From the definition of the limit of f() as @ tends to + w0, it follows that
Lt f(a)=0
x—>4->
carries with it Lt f<]—> =0.
x->40" \W
And, conversely, if Lt f(x)=0,
x—>-+0
71\ .
then - Lt J(—)zb.
T—>+w v
Similarly we have Lt f(v)= Lt f (1>
T x>0 X
The modifications in the above definitions when
(i) Lt f(#)=+w or -,
L=}
and (i) Lt fa)=+w or -—ow,

will be obvious, on referring to § 25.
And oscillation, finite or infinite, as # tends to + o or to —w, is treate
as before.
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28. A necessary and sufficient condition for the existence
of a limit to f(x) as x tends to a. The general principle of
convergence.*

A mnecessary and sufficient condition for the existence of «
Limit to f(x) as x tends to a, is that, when any positive nuwmber
¢ has been chosen, as small as we please, there shall be a positive
number y such that |f(x")—f(@)| <e for all values of «, ”
Jor which 0 < |a" —a| <|2'—a| =3

(1) The condition s necessary.

Let Lt f(x)=0.

r—>a
Let € be a positive number, as small as we please,

Then to ¢/2 there corresponds a positive number » such that
)f(m)—b|<§~, when 0 < x—a|=y.

Now let «’, 2" be ahy two values of @ satisfying
0<la'—a| <] —u|=

Then |f(@)—f@) | =] f(@")=b +]f(a) D]
< 5 o+ 5
< €.

(i1) The condation is sufficient.
Let €15, €95 €3, -0

be a sequence of positive numbers such that

€1 < €6, and Lt e,=0.

N—>P0
Let Ny, Mgy Mgy ee
be corresponding positive numbers such that
@) =f@)] < eny when 0< [af'—a] < [/ =a| Zn) )
(n=1,2,3,...).
Then, since ¢,1, < e,, We can obviously assume that »,=», ;.
Now take ¢, and the corresponding #,.
In the inequalities (1) put @' =a+y, and 2" =w.
Then we have

0 < |f(z)—fla+n)| <e, when 0 <|z—a| <n,.

* See footnote, p. 34.
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Therefore

Jlatn) —e, < f(w) < fa+mn)+e, when 0 <|z—af <. (2)
In Fig. 5 f(z) lies within the interval 4, of length 2¢,, with
centre at f(a+y,), when 0 <|z—a| <u,.

A,
/ A \
Fatm)-e Farn) ) Flati e,
F1a. b.

Now take e, and the corresponding #,, remembering that
My =y

We have, as above,

fla4n,)—e, < f(x) < f(a4n,)+e, When 0 < |x—a| <n, (3)

Since #,=3,, the interval for « in (3) cannot extend beyond
the interval for  in (2), and f(a+,) 1s in the open interval 4.

Therefore, in Fig. 6, f(x) now lies within the interval A4,,
which lies entirely within 4, or lies within it and has with it a
common end-point. An overlapping part of

{flatn)—e, flatn)+e}
could be cut off, in virtue of (2).

A,
- A
/ / A—— \
f(al’i‘”‘)'ﬁ f(“iﬂz)'ez f(a41-772)f(a+?7,)f(a+772)+62 fﬁz+?7")+€’
: Fic. 6.

In this way we obtain a series of intervals
4,, 4,, 4., ...,
each lying entirely within the preceding, or lying within it and
having with it a common end-point; and, since the length of

A, = 2¢,, we have Lt 4,=0, for we are given that Lt ¢,=0.
N—>w0 N—>0

If we denote the end-points of these intervals by a,, a,, g, ...
and 8;, B,, B, ..., where 8, > a,, then we know from 18 that

Lt a,= 1t B,.

N—>w0 N—>n0
Denote this common limit by a.
We shall now show that « is the limit of f(z) as z—«.
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We can choose ¢, in the sequence e, €,, €, ... 80 that 2¢, <e,
where ¢ is any given positive number.
Then we have, as above in (2) and (3),

an < f(2) < By, when 0< | —a] <.

But a = a =P8,
Therefore |f(z)—ua| < Br— ay
< 2,
< when 0 < |z—a| <y,.
It follows that It f(z)=a.
>

As a matter of fact, we have not obtained
| f(#)—a| <€ when 0<
in the above, but when 0 < | —a| < 1,,.

However, we need only take % smaller than this N, and we obtain the
inequalities used in our definition of a limit.

v =l =y,

29. In the previous section we have supposed that @ tends to
@ from both sides. The slight moditication in the condition for
convergence when it tends to « from one side only can easily
be made.

Similarly, « necessary and sufficient condition for the existence
of @ limil to f(x) as @ tends to +w, is that, vf the positive
nwmber e has been chosen, as small as we please, there shall be
positive nwmber X such that

| f(@")—f(a)| <e, when o' >a' = X.

In the case of Lt f(x), we have,in the same way, the condition
T—> -0

|f(a)—f(x)] <e when "< 2’ = — X.

The conditions for the existence of a limit to £(z) as @ tends
to 4o or to —o can, of course, be deduced from those for the
existence of a limit as « tends to +0 or to — 0.

Actually the argument given in the preceding section is simpler
when we deal with 4+« or — o * and the case when the variable
tends to zero from the right or left can be deduced from these

two, by substituting a:=}b; when it tends to «, we must sub-

] 1
stitute x=a + "

* Cf. Osgood, Lehrbuch der Funktionentheorie, Bd. 1., p- 27, Leipzig, 1907.
The generul principle of convergence of § 15 can also be established in this way.
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30. Continuous Functions. The function f(x) is said to be
continuous when =, if f(x) has a limit as = tends to @, from
either side, and each of these limits is equal to f(x,).

Thus f(x) s continuous when x=uw,, if, to the arbitrary posi-
trwe number e, there corresponds a positive number y such that

|f(2)=f(z)| < e when |w—a)]=n.

When f(x) is defined in an interval («, b), we shall say that it
18 continuous 1n the interval (a, b), if it is continuous for every
valwe of « between a and b (o <ax <b), and if f(a+0) exists
and 8 equal to f(a), and f(b—0) exists and is equal to f(b).

In such cases it is convenient to make a slight change in our
definition of continuity at a point, and to say that f(x) is con-
tinuous at the end-points @ and b when these conditions are
satisfied.

It follows from the definition of continuity that the sum or
product of any number of functions, which are continuous at a
point, is also continuous at that point. The same holds for the
quotient of two functions, continuous at a point, unless the
denominator vanishes at that point (cf. § 26). A continuous
function of a continuous function is also a continuous function
(cf. § 26 (IV.)).

The polynomial

Ple)y=a@ "+ aa " +... +a,_xc+a,
is continuous for all values of a.

The rational function
B(x)=P(x)/Q(x)
1s continuous in any interval which does not include values
of @ making the polynomial @Q(z) zero.
The functions sinz, cosz, tanz, etc. and the corresponding
functions sin~'z, cos~'w, tan~'z, efc. are continuous except, in
certain cases, at particular points.

e¢* 18 continuous everywhere; log ¢ is continuous for the in-
terval « > 0. '

31. Properties of Continuous Functions.* We shall now
prove several important theorems on continuous functions, to

* This section follows closely the treatment given by Goursat (loc. cit.), T. I.
(3¢éd.), §8.
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which reference will frequently be made later. It will be seen
that in these proofs we rely only on the definition of continuity
and the results obtained in the previous pages.

TaroreM 1. Let f(x) be continwous in the interval (a, b)¥,
and let the positive number e be chosen, as small as we please.
Then the imterval (a, b) can always be broken wp into a fiwite
number of partial intervals, such that |f(x")—f(x")] <e when
x" and &" are any two points in the same partial interval.

Let us suppose that this is not true. Then let c=(a+b)/2.
At least one of the intervals (a, ¢), (¢, b) must be such that it
is impossible to break it up into a finite number of partial inter-
vals which satisfy the condition named in the theorem. Denote
by (a,, b;) this new interval, which is half of (@, b). Operating
on («¢,, b)) in the same way as we have done with (a, b), and
then proceeding as before, we obtain an infinite set of intervals
such as we have met in the theorem of §18. The sequence of
end-points «, @, ¢,, ... converges, and the sequence of end-
points b, b, by, ... also converges, the limit of each being the
same, say a. Also each of the intervals («,, b,) has the property
we have ascribed to the original interval («, b). It is im-
possible to break it up into a finite number of partial intervals
which satisty the condition named in the theorem.

Let us suppose that « does not coincide with « or b. Since the
function f(x) is continuous when & =a, we know that there is a
positive number 5 such that | f(x)—f(a)] < e/2 when |x—a|=1.
Let us choose 2 so large that (b, —a,) is less than 5. Then the
interval (a,, b,) is contained entirely within (a —#, a+7), for we
know that a,=a=b,. Therefore, if o and «” are any two
points in the interval (a,, b,), it follows from the above that

€

@) =f@)] <& and | f@)—f@)] <5

But [ /(@)= f") | = [ /(@)= a) [+ /(") = fla) |
Thus we have | fa)—fx")]| < &

and our hypothesis leads to a contradiction.

*In these theorems the continuity of f(x) is supposed given in the closed
interval (¢ =« =10), as explained in § 30.
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There remains the possibility that « might coincide with either
« or b. The slight modification required in the above argument
is obvious.

Hence the assumption that the theorem is untrue leads in
every case to a contradiction, and its truth is established.

Cororrany 1. Leta,z, z,, ... x b be a mode of subdivision

n-1’
of (a, ) into partial intervals satisfying the conditions of
Theorem 1I.

Then

@) [ =[fe) [+]f(@)—f(a)]
<[ f(e) [+ e,  when 0 <(z—a) =(x,—a).
Therefore

In the same way

A |2 1f@) 1+ ) —F@)]
<|fle) |+ € when 0 < (z—a,) = (x,—z,)
<|f(a) |+ 2e, when 0 < (x—a)) = (2, — o).
Therefore

)| <|f(@) [+  2e

Proceeding in the same way for each successive partial interval,
we obtain from the ™ interval

[f@)| <[ f(a)|+ne, when 0 <(z—a, ) =(D—2,)

Thus we see that in the whole interval (a, )

| f) | <| fla)[+mne.

It follows that a function which is continwons 1 « given
interval is hounded in that interval.

CoroLLARY II. Let us suppose the interval (a, b) divided up
into n partial intervals (a, @,), (2, @,), ... (x,_4, D), such that
| f(2)—f(x")| < e/2 for any two points in the same partial inter-
val. Let 5 be a positive number smaller than the least of the
numbers (¢, —a), (€, —x,), ... (b—wx,_,). Now take any two points

o’ and x” in the interval («, b), such that |@'—a"| =». If these
two points belong to the same partial interval, we have

/@)= f(a")| < ef2.
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On the other hand, if they do not belong to the same partial
interval, they must lie in two consecutive partial intervals. In
this case it is clear that |f(2)—f(z")] <e/2+¢/2=¢.

Hence, the positive number e having been chosen, as small «s
we please, there is a positive number y such that | f(x") —f(2")| <,
when o, 2" are any two valwes of « in the interval (a, b) for
whach (o' —a"| =4,

We started with the assumption that f(x) was continuous in
(a, b). It follows from this assumption that if x/is any point in
this interval, and ¢ any arbitrary positive number, then there is
a positive number » such that

f@)=f@)| < e, when | —o| =,

To begin with, we have no justification for supposing that the
same # could do for all values of @ in the interval. But the
theorem proved in this corollary establishes that this is the case.
This result is usually expressed by saying that f(x) is uniformly
continuous in the interval (a, b).

We have thus shown that a function which is continuwous in
an wnterval is also uniformly continwous in the interval.

TurorEM II.  If f(a) and f(b) are wnequal and f(x) is con-
tinwous wn the wnterval (a, b), as « passes from « to b, f(x) takes
at least once every value between f(a) and f(D).

First, let, us suppose that f(a) and f(b) have different signs,
e.g. f(a)<<0 and f(b) >0. We shall show that for at least one
value of = between a and b, f(x)=0.

From the continuity of f(z), we see that it is negative in the
neighbourhood of « and positive in the neighbourhood of b.
Consider the set of values of @ between ¢ and O which make
F(z) positive. Let A be the lower bound of this aggregate.
Then « <A <b. From the definition of the lower bound
f(z) is negative or zero in a« =z <X. But Lt f(x) exists and

2—>A-0
is equal to f(\). Therefore f(A) is also negative or zero. But
f(\) cannot be negative. For if f(A)= —m, m being a positive
number, then there is a positive number 5 such that

| /(@)= /)| <m, when [z—A[=7,
since f(x) is continuous when #=X. The function f(x) would
then be negative for the values of @ in (a, b) between A\ and A+
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and A would not be the lower bound of the above agglegate'
We must therefore have f(A)=0.

Now let N be any number between f(a) and f(b), which nmy
be of the same or different signs. The continuous function
¢(r)=f(z)— N has opposite signs when 2=« and z=0. By the
case we have just discussed, ¢(z) vanishes for at least one value
of @ between « and ), 7.e. in the open interval (a, b).

Thus our theorem is established.

Again, if f(x) is continuous in («a, b), we know from Corollary I.
above that it is bounded in that interval. In the next theorem
we show that it attains these bounds.

THEOREM I1I. If f(x) vs continwous wn the interval (a, b), and
M, m are its wpper and lower bounds, then f(x) takes the valwe
M and the value m at least once wn the interval.

We shall show first that f(x)=/ at least once in the interval.

Let ¢c=(a+0)/2; the upper bound of f(x) is equal to A/, for at
least one of the intervals (¢, ¢), (¢, b). Replacing («, b) by this
interval, we bisect it, and proceed as before. In this way, as in
Theorem I., we obtain an infinite set of intervals (a, ), (a,, b)),
(tty, by), ... tending to zero in the limit, each lying entirely
within the preceding, or lying within it and having with it a
common end-point, the upper bound of f(«) in each being .

Let A be the common limit of the sequences «, a,, a,, ... and
b, b, by, .... We shall show that f(A\)= M.

For suppose f(\)=M—1., where L >0. Since f(x) is continuous
at @ =N\, there is a positive number » such that

| f(x) f(>\)|<2, when |z —\|=7.

Thus f(z) < M———Z—), when |z—\|=y.

Now take n so large that (b,—«,) will be less than 5. The
interval («,, b,) will be contained wholly within (A —y, X4 y).
The upper bound of f(x) in the interval (a,, b,) would then be
different from M, contrary to our hypothesis.

Combining this theorem with the precedmg we obtain the
following additional result:

TuroreM IV. If f(x) s continwous in the interval (a, b),
and M, m are its wpper and lower bownds, then it takes at least
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once 1w, this interval the valwes M, m, and cvery value between
M and m.

Also, since the oscillation of a function in an interval was
defined as ‘the difference between its upper and lower bounds
(cf. §24), and since the function attains its bounds at least once
in the interval, we can state Theorem I. afresh as follows:

If f(x) is continwows im the interval (a, D), then we can divide
(«t, b) mnto « finite number of partial intervals

(@, ), (g, Zg)y «on (®yq, D),

wm each of whicl the oscillation of f(@) 18 less than any given
positive number.

And a similar change can be made in the statement of the
property known as uniform continuity.

32. Continuity in an Infinite Interval. Some of the results of the last
section can be extended to the case when f(z) is continuous in w = «, where

@ is some definite positive number, and Lt f(2) exists.
]

Let u=a/z. When z& «a, we have 0 <u =1.
With the values of » in 0 < w =1, associate the values of f(«) at the corre-
sponding points in # = «, and to ©=0 assign Lt f(x).

X—>0

‘We thus obtain a function of u, which is continuous in the closed interva
(0, 1).

Therefore it is bounded in this interval, and attains its bounds X
Also it takes at least once every value between 4/ and m, as u passes over ..
interval (0, 1). '

Thus we may say that f(x) is bounded in the range * given by # =« and
the new “point” #=q0, at which f(2) is given the value Lt f(x).

X—>0

Also f(x) takes at least once in this range its upper and lower bounds
and every value between these bounds.

D)

a

For example, the function —s— is continuous in (0, ). It does n
, a?+ z?

attain its upper bound—unity-—when x>0, but it takes this value when
x=w, as defined above.

33. Discontinuous Functions. When f(z) is defined for
z, and the neighbourhood of =z, (eg. 0<|z—=zo|=h), and
f(xy+0)=f(2,—0)=f(z,), then f(z) is continuous at .

On the other hand, when f(z) is defined for the neighbourhood
of z,, and it may be also for z,, while f(z) is not continuous at

*It is convenient to speak of this range as the interval (@, o), and to write

Sf(ee) for Lt f(x)

A=
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Ty, 1t 1s natural to say that f(z) is discontinuous ab x,, and to
call z, a point of discontinwity of f(x).
Points of discontinuity may be classified as follows:

L f(zy+0) and f(x,—0) may exist and be equal. If their
common value is different from f(=,), or if f(z)is not defined
for z,, then we have a point of discontinuity there.

Ex. Jx)=(x—a2)sin 1 /(z — ), when x=ux,.

Here f(#,+0)=/(2,—0)=0, and if we give f(z,) any value other than
zero, or if we leave f(«,) undefined, 2, is a point of discontinuity of f(x).

IL. f(xy+0) and f(x,—0) may exist and be unequal. Then
is a point of discontinuity of f(z), whether f(x,) is defined or not.

1
EX. f((l}) :m, when & z g

Here Sf(we+0)=0 and flz,—0)=1.

In both these cases f(z) is said to have an ordinary or simple
discontinuity at z,. And the same term is applied when the
point z, is an end-point of the interval in which f(x)is given,

and f(z,+0), or f(z,—0), exists and is different from f(z,), if f(z)
is defined for x,. '

"II. f(z) may have the limit +w, or — w0, as x—>x, on either

% and it may oscillate on one side or the other. Take in this

wetion the cases in which there is no oscillation. These may be
arranged as follows:

(1) flag+0) =f(2e—0)= 4 (or —o0).

Ex. fl2)=1/(z —x,)3, when z=a,.
(1) f(wg+0)=+ o (or —w ) and f(x,—0)=—» (or +=x).
Ex. f(x)=1/(z— 2,), when 2= z,.

(1) f(wy+0)=+ o (or —cw )} or f(xy—0)=+w (or —w )}
f(xo—0) exists | f(@y+0) exists '

Ex. f(@)=1/(x—-x,), when x> z,)|

flo)y=a—xy,  when o=unx,)

In these cases we say that the point z, is an nfinity of f(x),
and the same term is used when 2, is an end-point of the interval
in which f(x) is given, and f(z,+0), or f(z,—0), is +x or —w.

It is usual to say that f(x) becomes infinite at a point z, of
the kind given in (i), and that f(z,)= +w (or —w ). But this

E

C. I
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must be regarded as simply a short way of expressing the fact
that f(z) diverges to + o (or to —o0 ) as x—w,.

It will be noticed that tanz has an infinity at I=, but that
tan 17 is not defined. On the other hand,

tan (J7—0)=40o and tan(}v—0)=—w.

IV. When f(z) oscillates at z, on one side or the other, z, is
said to be a point of oscillatory discontinuity. 'The oscillation
is finite when f(z) is bounded in some neighbourhood of %,; it is
infinite when there is no neighbourhood of z, in which f(z) is
bounded (cf. § 25).

Ex. (i) f(z)=sin1/(z — z,), when x = z,.
(i1) f(#)=1/(x — @) sin 1/(x — 2,), When x=ux,.

In both these examples , is a point of oscillatory disecon-
tinuity. The first oscillates finitely at z,, the second oscillates
infinitely. The same remark would apply if the function had
been given only for one side of .

The infinities defined in III. and the points at which f(x)
oscillates infinitely are said to be points of infinite discontinwily.

34. Monotonic Functions. The function f(x), given in the
wnterval (a, b), is said to be monotonic in that interval if

either (1) f(@)=f(a”), when a=a' <az"=Db;
or (1) f(&)=f(2"), when a=a' <az"=Db.

In the first case, the function never decreases as x increases
and 1t is said to be monotonic increasing ; in the second case, it
never increases as « increases, and it is said to be monotonic
decreasing.®

The monotonic character of the function may fail at the end-
points of the interval, and in this case it is said to be monotonic
mn the open interval.

The properties of monotonic functions are very similar to those
of monotonic sequences, treated in §17, and they may be estab-
lished in precisely the same way :

(i) If f(x) is monotonic increasing when x— X, and f(x) s
less than some fixed number A when =X, then Lt f(x) exists
and s less than or equal to 4. o

* The footnote, p. 39, also applies here.
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(ii) If f(z) s monotonic increusing when x= X, and f(x) is
greater than some fized number A when ¢ =X, then 1t f(x)
exists and is greater than or equal to A. v

(iii) If f(z) s monotonic increasing im an open interval
(a, b), and f(z) is greater than some fixed number 4. wn that
open anterval, then f(a+0) exists and is greater than or equal
to A.

(iv) If f(x) is monotonic increasing in an open interval
(a, b), and f(x) is less than some fixzed nuwmber A in that open
interval, then f(b—0) exists and s less than or equal to A.

These results can be readily adapted to the case of monotonic
decreasing functions, and it follows at once from (iii) and (iv)
that if f(z) is bounded and monotonic in an open interval, it
can only have ordinary discontinwities n that interval, or at
its ends..

It may be worth observing that if f(«) is monotonic in a closed
interval, the same result follows, but that if we are only given
that it is monotonic in an open interval, and not told that it
is bounded, the function may have an infinity at either end.

E.g. f(x)=1/z is monotonic in the open interval (0, 1), but
not bounded.

At first one might be inclined to think that a function which
is bounded and monotonic in an interval can have only a finite
number of points of discontinuity in that interval.

The following example shows that this is not the case:

Let f(x)=1, when % <ax=1;

ooy 1 1 _1.
let ](m),—é, when % <w:§ ;
and, in general,

1 1 1
let f(x)= g when Gu <ax= o
(n being any positive integer).
Also let f(0)=0.
Then f(«) is monotonic in the interval (0, 1),
This function has an infinite number of points of discontinuity,

namely at oc=2l1i (n being any positive integer).
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Obviously there can only be a finite number of points of dis-
continuity at which the jump would be greater than or equal
to k, where & is any fixed positive number, if the function is
monotonic (and bounded) in an interval.

35. Inverse Functions. Let the function f(x), defined in the interval
(ct, b), be continuous and monotonic in the stricter sense* in (a, D).

For example, let y=/#(«) be continuous and continually increase from A
to B as & passes from « to b.

Then to every value of y in (4, B) there corresponds one and only one
value of # in (@, b). [§ 31, Theorem I1.]

This value of # is a function of y—say ¢(z), which is itself continually
increasing in the interval (4, B).
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The function ¢(y) is called the vnverse of the function f(z).

We shall now show that ¢(y) @s « continuous function of # in the interval
in which it is defined.

For let 7, be any number between 4 and B, and =z, the corresponding
value of #. Also let € be an arbitrary positive number such that x,—e and
2o+ ¢ lie in (a, b) (Fig. 7).

Let 5 —; and y,+7; be the corresponding values of .

Then, if the positive number 7 is less than the smaller of %, and 1), it is

clear that || < ¢, when |y—yo| = .

Therefore D7) — P (o)l < € when |y—y|=.
Thus ¢ (y) is continuous at z,.
A similar proof applies to the end-points 4 and B, and it is obvious that

the same argument applies to a function which is monotonic in the stricter
sense and decreasing.

* Cf footnote, p. 39.
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The functions sin~la, cos~lx, ete., thus arise as the inverses of the functions
sin 2 and cos #, where 0 =& = £, and so on.

In the first place these appear as functions of g, namely sin~ly, where
0=y=1, cos™ly, where 0 =y =1, etc. The symbol y is then replaced by
the usual symbol # for the independent variable.

In the same way log # appears as the inverse of the function e

There is a simple rule for obtaining the graph of the inverse function
7~1(«) when the graph of f()is known. f~1(x) is the vmage of f(x) in the
line y=ax. The proof of this may be left to the reader.

The following theorem may be compared with that of §26 (IV.):

Let f(w) be a continuous jfunction, monotonic in the stricter sense, und let
Lt [l (2)]=f(0).
T—>a

Then Lt ¢(x) exists and is equal to b.

x>
A strict proof of this result may be obtained, relying on the property
proved above, that the inverse of the function f(u) is a continuous function.
The theorem is almost intuitive, if we are permitted to use the graph
of f(uw). The reader is familiar with its application in finding certain
limiting values, where logarithms are taken. In these cases it is shown
that Lt log w=1log b, and it is inferred that Lt «=0.*

36. Let the bounded function f(#), given in the interval («, b), be such that
this interval can be divided up into a finite number of open partial
intervals, in each of which P
f(2) is monotonic.

Suppose that the points

L1y Xgy ... &p—y divide this in- /f\
terval intotheopen intervals : ‘

(a, 21), (%, Zg)y «.. (Tu1, D),
in which f(«) is monotonic.
Then we know that f(z) can
only have ordinary discon-
tinuities, which can occur at
the points a, 2,, #g, ... ¥p_1, b,
and also at any number of
points within the partial
ntervals. (§34.) 0
I. Let us take first the
case where f(r) is con-
tinuous at @, %y, ... &,-1, b, and alternately monotonic increasing and
decreasing. To make matters clearer, we shall assume that there are
only three of these points of section, namely 2, ,, 25, f(z) being monotonic
inereasing in the first interval (a, ), decreasing in the second, (wy, ),
and so on (Iig. 8).

X

%_____..____.._____._

i

t

i

|
a X, X, X

* Cf Hobson, Plane Trigonometry, (3rd Ed.), p. 130.
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It is obvious that the intervals may in this case be regarded as closed,
the monotonic character of f(x) extending to the ends of each.
Consider the functions /'(z), G'(») given by the following scheme :

F(x) ()

o ; v
S () Sy = f(x) 2 ==
S @) = [ (o) + /(@) | f(wy)—[(wy) Wy S0 =2y
J@y) =g +f(wg) | f(w) = f@y) + /() = f(@) | w=2=0

It is clear that F(r) and G(2) are monotonic tncreasing in the closed
interval («, b), and that f(z)=F(2)— G(z) in (a, b).

If f(x)is decreasing in the first partial interval, we start with

F)=f(a), G@)=fa)~f(x), when a=s=a,,
and proceed as before, 7.e. we begin with the second line of the above
diagram, and substitute « for x,, etc.

Also, since the function f(2) is bounded in (a, b), by adding some number
to both F'(z) and G/(z), we can make both these functions positive if, in the
original discussion, one or both were negative.

It is clear that the process outlined above apphes equally well to n partial
intervals.

We have thus shown that when the bounded function f(x), given in the
wnterval (a, b), ts such that this interval can be divided up into a finite number
of partial intervals, f(x) being alternately monotonic increasing and mono-
tonic decreasing in these intervals, and continuous at thevr ends, then we can

express [(x) as the difference
Y ;\ of two (bounded) functions,

which are positive and mono-

/ : :/\ tonec vnereasing i the inter-
1 ' 1 !
{

! val (a, b).
: I1. There remains the case
: when some or all of the
! points a, 2y, %2, ... £,_1, b
1 are points of discontinuity
| of f(z), and the proviso that
: the function is alternately
- x X, % 2 monoto.nic .increasing and
Tic. o, decreasing is dropped.
We can obtain from f(x)
a new function ¢(r), with the same monotonic properties as f(2) in the open
partial intervals (a, o), (z, @), ... (%,-1, b), but continuous at their ends.
The process is obvious from Fig. 9. We need only keep the first part of
the curve fixed, move the second up or down till its end-point (2, f(x;+0))

X




LIMITS AND CONTINUITY 71

coincides with (#,, f(2, —0)), then proceed to the third curve and move it up
or down to the new position of the second, and so on.
If the values of f(x) at «, 2y, 24, ... 2,—1, b are not the same as

Aa+0), fley+0) or fz,~0), etc,
we must treat these points separately.

In this way, but arithmetically,* we obtain the function ¢(z) defined as
follows : |

In o =Zx <2, $@)=F(x), supposing for clearness f(a)=f(a+0).

At @) —f) .
In » <2<, P@)=Ff(2)+0,+a,.
At Zy 5 P@)=fw)+ o+ agtas.

And so on,
1y Oy, O, ... being definite numbers depending on f(xy +0), f(x), ete.

We can now apply the theorem proved above to the function ¢(z)and
wite b(2)=(2)— ¥ (2) in (, D),
®(x) and W (2) being positive and monotonic increasing in this interval.

It follows that :

In o =<, fl2)=P(z) - ¥ ().

At a, AD=P@)-W(@)-a,.

In 2z <o <, J(@)=P(2)—-F(v) - o, — a,.

And so.on.

If any of the terms a;, a,, ... are negative we put them with & (x):
the positive terms we leave with W (). Thus finally we obtain, as before,

that J(@)=F(z)=-G(z) in (a,b),
where I'(x) and G/(z) are positive and monotonic increasing in this interval.
We have thus established the important theorem :

If the bounded function f(x), giwen in the tnterval (a, b), is such that this
wnterval can be divided wp into a finite number of open partial intervals,
i each of which f(x) is monotonic, then we can express f(x) as the difference of
two (bounded) functions, which are positive and monotonic increasing in the
interval (a, b).

Also it will be seen from the above discussion that the discontinuities of
F(x) and G'(2), which can, of course, only be ordinary discontinuities, can
occur only at the points where f(2) is discontinuous.

It should, perhaps, also be added that, while the monotonic properties
ascribed to f(x) allow it to have only ordinary discontinuities, the number
of points of discontinuity ma