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Finally, with the new experimental data we are now in a position to
calculate for the first time the changes in the specific heat of a metal at
high pressures. It appears that the specific heat at constant volume de-
creases under pressure by an amount of the same order of magnitude as
the change of volume under the same pressure, but in most cases by a factor
several fold greater.

1 Bridgman, P. W., Proc. Amer. Acad., Boston, 44, 1909 (255-279), and 47, 1911
(362-368).

2 Kraus, C. A., J. Amer. Chem. Soc., Easton, Pa., 44, 1922 (1216-1238).
3 Born, M., Verh. Deut. Phys. Ges., Brauschweig, 21, 1919 (533-538).
Schottky, W., Phys. Zs., Leipzig, 21, 1920 (232-141).

A FURTHER NOTE ON THE MATHEMATICAL THEORY OF
POPULATION GROWTH1

By RAYMOND PZARL AND LOWILL J. RZZD

In an earlier paper in these PROCIMDINGS we2 showed that the expression

be ax

Y 1 + ceax (i)
gives an excellent fit to the known population growth of the United States
since 1790. Since the first paper was published, we have extended and
generalized our ideas on population growth with the results herein presented
in skeleton outline. A more extended paper, giving a full discussion of our
new results and of the pertinent literature is in press in Metron.

Considered generally, the curve

by=
e-, + c

may be written
k

- 1 + meka'X (11)
where

k=b/c, m=1/c, and ka'= -a. k

Now the rate of change of y with respect to x is given by

dy
dx = -ay (k-y)
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or
dy
dx =_a'. (iii)

y (k-y)

If y be the variable changing with time x (in our case population)
equation (iii) amounts to the assumption that the time rate of change of y
varies directly as y and as (k -y), the constant k being the upper limit of
growth, or, in other words, the value of the growing variable y at infinite
time. Now since the rate of growth of y is dependent upon factors that
vary with time, we may generalize (iii) by using f (x) in place of -a',
f (x) being some as yet undefined function of time.
Then

dy _=f(x)dx.
y (k-y)

whence
k-y -k f(x) dx,
my

and
k _ k

- 1 + me- ff(x)dx 1 + meF(x) (iV)

where

F(x) = -k f(x)dx.

Then the assumption that the rate of growth of the dependent variable
varies as (a) that variable, (b) a constant minus that variable, and (c) an
arbitrary function of time, leads to equation (iv), which is of the same form
as (i), except that ax has been replaced by F(x). If now we assume that
f(x) may be represented by a Taylor series, we have

k
Y 1 + meal+x + aX2 + aaX3 .......... + anxn (V)

If
a2= a3 = a4 = an = 0

then (v) becomes the same as (i).
If m becomes negative the curve becomes discontinuous at finite time.

Since this cannot occur in the case of the growth of the organism or of
populations, nor indeed so far as we are able to see, for any phenomenal
changes with time, we shall restrict our further consideration of the equa-
tion to positive value only of m. Also since negative values of k would
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give negative values of y, which in the case of population or individual
growth are unthinkable, we shall limit k to positive values.
With these limitations as to the values of m and k we have the follow-

ing general facts as to the form of (v). y can never be negative, i.e., less
than zero, nor greater than k. Thus the complete curve always falls
between the x axis and a line parallel to it at a distance k above it. Further
we have the following relations:

If F(x)5- 0 y=O
F(x) -oo y=k

kF(x) _ 0 y= from below

kF(x) _ + 0 y= from below.
+m

The maximum and minimum points of (v) occur where-Y= 0.
dx

But Y = y(k-y) . F'(x),
dx

therefore we have maximum and minimum points wherever F' (x) = 0.

The fact that -= 0 when either y =0 or y - k =0 -shows that the
dx

curve passes off to infinity asymptotic to the lines y = 0 and y = k.

The points of inflection of (v) are determined by the intersections of (v)
with the curve.

k k F'(x)

Since we are seldom justified in using over five arbitrary constants in
any practical problem, we may limit equation (v) still further by stopping
at the third power of x. This gives the equation

k
= ~ i'+ax.(vii)+ meaix + a2x2 + aanx (il

If an is positive the curve of equation (v) is reversed and becomes
asymptotic to a line A B, at x =-so and to the x axis at x = + o . Thus
in equation (vii) a3 negative is a case of growth, and a3 positive is a case
of 'decay.

Equation (vii) has several special forms that are of interest, among them
being a form'similar in shape to the autocatalytic curve (i.e., with no
maximum or minimum points and only one point of inflection) except
that it is free from the two restrictive features mentioned in our first
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paper, that is, location of the point of inflection in the middle and symmetry
of the two limbs of the curve. Asymmetrical or skew curves of this sort
can only arise when the equation, F'(x) = 0, has no real roots. While
any odd value of n may yield this form of curve the simplest equation
that will do it is that in which n = 3, so that the equation of this curve
becomes that of (vii).
Having determined that the growth within any one epoch or cycle may

be approximately represented by equation (i), or more accurately by (vii),
the next question is that of treating several epochs or cycles. Theoreti-
cally, some form of (v) may be found by sufficient labor in the adjustment
of constants so that one equation with say 5 or 7 constants would describe
a long history of growth involving several cycles. Practically, however,
we have found it easier and just as satisfactory in other respects to treat
each cycle by itself. Since the cycles of any case of growth are additive,
we may use for any single cycle the equation

k
d +

+mekax (viii)

or more generally

y = d+ 1 +mea1X + a2X2l+aa (ix)

where in both of these forms d represents the total growth attained in all the
previous cycles. The term d is therefore the lower asmptote of the cycle
of growth under consideration and d + k is its upper asymptote.

In treating any two adjacent cycles, it should be noted that the lower
asymptote of the second cycle is frequently below the upper asymptote
of the first cycle, due to the fact that the second cycle is often started be-
fore the first one has had time to reach its natural level. This for instance
would be the cale where a population entered upon an industrial era before
the country had reached the limit of population possible under purely
agricultural conditions.
The theory presented in this paper has been found to be entirely suc-

cessful in fitting the population growth of many different countries, and
in a subsequent publication this fact will be demonstrated with examples.
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