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TRANSLATOR’S PREFACE.

IN preparing this translation of Professor Reye's Geometrie der
Lage, my sole object has been to place within easy reach of the
English-speaking student of pure geometry an elementary and
systematic development of modern ideas and methods. The in-
creasing interest in this study during recent years has seemed to
demand a text-book at once scientific and sufficiently comprehensive
to give the student a fair view of the field of modern pure geometry,
and also sufficiently suggestive to incite him to investigation. The
recognized merit of Professor Reye’s work in all these regards is my
only apology for offering this translation as an attempt to satisfy our
present needs.

It has been my aim to present in fair readable English the
geometric ideas contained in the text, rather than to hold myself, at
all points, to a literal translation; yet I trust that I have not alto-
gether destroyed the charm of the original writing. Some changes
have been made ; the articles have been numbered, the examples
set at the end of the lectures to which they are related and a few new
ones added, explanatory notes have been inserted where they seemed
necessary or helpful, and an index has been compiled. I have not
deemed it advisable to omit from this edition any part of the original
prefaces or introduction, even though, at this distance from their
first publication, they might not be demanded in their entirety.

For the most part T have endeavoured to hold rigorously to well-
established terminology. A few instances of deviation from this
principle, however, may be mentioned. I have preferred the terms
¢sheaf of rays,” ‘sheaf of planes,” and ‘bundle of rays or planes,’ to
the more common though I think less expressive terms, ‘flat pencil,’
‘axial pencil,’ and ‘sheaf of lines or planes’; instead of the expression
“conformal representation’ as an equivalent for the German ‘conforme
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Abbildung, 1 have ventured ¢ conformal depiction.” The term ‘ideal”
has elsewhere been applied to infinitely distant points and lines ;
with this I have associated the word ‘actual’ to apply to points and
lines of the finite region.

I desire to acknowledge my indebtedness to my colleague
Professor Henry S. White for valuable assistance; my thanks also
and the gratitude of all who may profit by the use of this translation
are due to Dr. M. C. Bragdon of Evanston whose interest and
generosity made its publication possible.

What is commonly known as Modern Synthetic Geometry has
been developed for the most part during the present century. It
differs from the geometry of earlier times, not so much by the
subjects dealt with and the theorems propounded, as by the processes
which are employed and the generality of the results which are
attained.

Geometry was to the ancients a subject of entrancing interest.
Its progress is prominently connected with the names of Thales
of Miletus (640-546), Pythagoras (569-500), Plato (429-348), who
cultivated geometry as fundamental to the study of philosophy,
Menaechmus (375-325), the first to discuss the conic sections, Euclid
of Alexandria (330-275), Archimedes (287-212), and Apollonius of
Perga (260-200) ; these among others before the Christian era.

Of the numerous writings of Euclid, the Zlements,* in which was
collected and systematized much of the geometrical knowledge of
that time, has remained for two thousand years a marvellous monument
to his skill. Whatever may be its defects, and these have been the
subject of much discussion, it “certainly possesses some excellent
features ; it accustoms the mind to rigor, to elegance of demon-
stration, and to the methodical arrangement of ideas; in these
regards it is worthy of our admiration.”? His Porisms, which
unfortunately have been lost, are said to have contained many of
. the principles that have formed the basis of modern geometry.

Ancient geometry reached its highest perfection under Archimedes.
and Apollonius, the former of whom devoted much study to physical
problems by means of geometry, and the latter carried his investi-

1For a convenient summary and characterization of Euclid’s Elements, see
Professor Henrici’s article on Geometry in the Kncyclopedia Britannica.

2 Poncelet, Propriétés Projectives, etc., p. 15.
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gations upon the conic sections so far as to leave few of their
important properties undiscovered. He produced a systematic
treatise on conic sections containing his own discoveries, and
including also all previous knowledge of these curves.l

The great geometer and commentator of the early centuries of
the Christian era was Pappus of Alexandria. In his Mathematicae
Collectiones, written toward the end of the fourth century, he collated
the scattered works of the earlier celebrated geometers and a
multitude of curious theorems from many sources, to which he
added so much of original work as to place him among the most
illustrious of ancient geometers. This work is the chief source of
information on ancient geometry. It comments so fully upon
Euclid’s book of porisms that frequent efforts have been made to
restore the latter, notably by Chasles in 1860.

The work of the ancient geometers was fragmentary. Truly
remarkable discoveries were made, but general principles were not
brought into prominence; theorems were announced disconnectedly
as though they had been received by their authors ready made ; the
method of their discovery was rarely, if ever, indicated ; the demons-
trations were given in the most polished and systematic form,
but the relations existing among different theorems were not shown,
and no suggestions were offered for further investigation; special
cases of general theorems were as a rule treated as though they
were separate and independent theorems.

But, scattered here and there, throughout the great volume of
geometrical knowledge accumulated by these early geometers, is to
be found the material upon which the beautiful and symmetrical
structure of modern geometry has been founded. For example,
the property of perspective triangles of which use is made in the
geometrical definition of harmonic points, though usually credited
to Desargues, was in fact announced by Euclid.? Harmonic division
itself was known to Apollonius, and the fact that the anharmonic
ratio of four collinear points is unaltered by projection was demon-
strated by Pappus,® and was probably. known much earlier. The
theorem upon which Carnot based the theory of transversals was
discovered and published by Menelaus early in the second century.

1 An edition of Apollonius’ Conic Sections, with notes, etc., by T. L. Heath,
M.A., has recently been published by Macmillan & Co., London.

2 Pappus, Matkhematicac Collectiones, preface to book VIL

3 Mathematicae Collectiones, V1., 129.
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As has already been suggested, modern geometry is characterized
by generality both in its processes and in its results. The founding of
modern pure geometry is usually accredited to Monge (1746-1818),
whose lectures in the Polytechnic School at Paris were published
under the title of Géométrie Descriptive. These lectures, by utilizing
the theory of transversals and the principle of parallel projection,
called attention to the advantages to be gained through the applica-
tion of geometrical' methods, and served to revive the interest in
pure geometry, which had been dormant for so many years.

But the generalizing processes which characterize modern geometry
were begun much earlier than the time of Monge. Desargues (1593-
1662), a contemporary of Descartes, introduced the .notion of
infinitely distant points and lines, with its far reaching results,
and announced the doctrine of continuity. The methods of Pascal
(1623-1662) too, so far as it is possible to judge from the few remaining
fragments of his mathematical work, partook of the broadest
generality, and it is fair to assume that had not the work of these two
great geometers been almost entirely lost, and had not their ideas
been wholly pushed aside through the overwhelming influence of
Descartes’ discoveries, many of the geometrical theories and results
of the present century would have been developed long ago, and the
so-called modern geometry would have been of much earlier date.

As it was, however, pure geometry was but little cultivated for
over a hundred years before the time of Monge. Geometrical know-
ledge was truly increased during this period, especially by Newton
(1642-1727), Maclaurin (1698-1746), Robert Simson (1687-1768),
and Matthew Stewart (1717-1785), but their methods could scarcely
be said to partake of the spirit of modern geometry, and differed
but little, if at all, from the methods of the ancient geometers.

The illustrious names in connection with the development of
modern pure geometery are Poncelet (1788-1867), Steiner (1796-
1863), Von Staudt (1798-1867), and Chasles (1793-1880); and if
it were permissible to add the names of living men I should mention
Cremona and Reye.

Poncelet’s great work, Z7aité des propriétés projectives des figures,
etc., appeared in 1822, and at once clearly justifies any claim
that may be set up in his behalf as the leader in the so-called
modern methods. In this work the principle of continuity, the
principle of reciprocity or duality, and the method of projection
are the chief factors. ‘
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There has been much discussion from time to time upon the
question of priority in the establishment of the principle of duality.
Poncelet used the method of polar reciprocity with respect to a
conic, and thus derived the dual of any geometrical figure, but
it is claimed for Gergonne that it was he who first established
duality as an independent principle. The name ‘duality’ is clearly
due to Gergonne.!

The principle of continuity, which was first assumed by Kepler and
later by Desargues, demands of the geometer as well as the analyst
the consideration of imaginary quantities. Monge discovered that
the results obtained from a geometrical construction would not be
invalidated if in a different phase of the construction certain of the
points and lines disappeared. Poncelet devoted much attention to
imaginary solutions of geometrical problems, but it remained for
Von Staudt to build up and to bring to a fair degree of perfection
a general theory of geometrical imaginaries.

A conception of the geometer’s notion of imaginary quantities
can probably be best obtained from the following quotation from
Professor H. J. S. Smith:2

“All attempts to construct imaginaries have been wholly abandoned
in pure geometry; but, by asserting once for all the principle of
continuity as universally applicable to all the properties of figured
space, geometers have succeeded, if not in explaining the nature
of imaginaries, yet, at least, in deriving from them great advantages.
They consider it a consequence of the law of continuity that if we
once demonstrate a property for any figure in any one of its general
states, and if we then suppose the figure to change its form, subject
of course to the conditions in accordance with which it was first
traced, the property we have proved, though it may become un-
meaning, can never become untrue, even if every point and every
line by means of which it was originally proved should disappear.”

The line of demarcation which was visible as early as the time
of Archimedes and Apollonius between the geometers whose theories
rest upon metric properties and those whose basal notions are
purely positional was very prominent during the foundation period
in the development of modern pure geometry. Steiner and Chasles
based their investigations upon metric properties, defining the pro-

Y Annales de Mathématiques, T. XVL., 1826.
2 Collected Papers, Vol. 1. p. 4.
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jective relation by means of the anharmonic ratio; Von Staudt, on
the other hand, and after him Reye, define this relation by reference
to harmonic division, and this in turn is defined purely geometrically.
Upon such a definition of projectivity they have been able to perfect
a complete theory without any reference to metric properties what-
soever. Cremona avoids metric properties in his foundations by
defining two projective forms as the first and last of a series of
forms in perspective. '

In all the recent development of synthetic geometry the effect
of contact with analysis is clearly seen. Through its influence the
foundations upon which the science rests have been carefully ex-
amined, while characteristic methods of investigation have been
acquired. The tendency toward generalization may likewise be
attributed largely to the influence of analysis, though it is true
that some progress had been made in this direction before the
analytical methods had attained such universal sway. But, on the
other hand, geometry has done much to enliven and heighten the
interest in analysis, so that it may fairly be said that neither pure
geometry nor pure analysis can any longer boast an isolated
existence, or hope to attain its highest development independently
of the other.

THOMAS F. HOLGATE.

EVANSTON, ILLINOIS,
December 1897.

A NOTE FROM THE AUTHOR.

Dear Sir,—It is with great pleasure and satisfaction that I
greet your English translation of my Geometrie der Lage, which
henceforth will take its place along with the French and Italian
translations. I trust that it may help to win for pure Geometry
many friends and investigators in the broad English-speaking
countries.—I am, yours faithfully,

TH. REYE.

STRASSBURG, September 1896.
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THE AUTHOR’S PREFACE TO THE FIRST
EDITION OF PART L

‘THE Lectures upon the Geometry of Position, which I now offer to
the public, have been written at intervals during the last two years.
I have been induced to publish them by a need which has been felt
for a long time in the technical schools of this country, and perhaps
in wider circles. The important graphical methods with which
Professor Culmann has enriched the science of engineering, and
which are published in his work, Die graphische Statik, are based
for the most part upon modern geometry, and a knowledge of this
subject has therefore become indispensable to students of engineer-
ing in our institutions. In the present work I attempt to supply the
want of a text-book which offers to the student the necessary material
in concise form, and which will be of assistance to me in my oral
instruction. ’

I was obliged, as a matter of course, to make use of the termin-
ology adopted by Culmann, and, to a certain extent, to follow the
subject matter of that complete work bearing the same title as this,
namely,— 7%e Geometry of Position, by Professor Von Staudt.
The new terms which Von Staudt added to the older ones of Steiner
are so happily chosen that I have preferred a different one in but a
single instance, the term “range of points” (Punktreite), first used
by Paulus (and Gdpel) instead of “line form” (gerades Gebilde).
The way in which Von Staudt establishes this science in contrast
with all other writers upon Modern Geometry appears to me to
afford advantages so important that, laying aside all other consid-
erations, I should prefer it to every other. Permit me, in a few
words, to assign my reasons for this preference.

To the engineer as well as to the mechanic and architect, the ability
to form beforehand a mental picture of his structure as it will appear
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in space is of great service in designing it. Suppose, for example, a
bridge is to be built across a stream. From among the different
possible modes of construction, that one must be chosen at the
outset which is best adapted to the given conditions. To this end
the engineer compares the long iron girders with the boldly swung
arch or the freely hanging suspension bridge, and endeavours to
conceive how the pressure would be exerted at this point and at that
point, and how distributed among the different members of the huge
structure. Again and again he examines and compares, goes more
and more deeply into all the details, until the whole structure stands
complete in clear outline before his mind’s eye. And now the second
part of his creative work begins. The project is transferred to paper;
all details as to form and strength are completely determined. But
still the engineer, and everybody else who wishes to become familiar
with his ideas, must continually exert his power of imagination in
order actually to see the object intended to be represented by the
lines of a drawing which is not at all intelligible to the uninitiated.
So also the mathematician and in fact any one who concerns
himself with the natural sciences must, like the technologist, bring
the imagination very frequently into play. At one time he tries to
understand a complicated. piece of apparatus from an insufficient
sketch ; at another, from a scanty description, to make intelligible
remotely connected processes of nature or complicated motions.

One principal object of geometrical study appears to me to be the
exercise and the development of the power of imagination in the
student, and I believe that this object is best attained in the way in
which Von Staudt proceeds. That 1s to say, Von Staudt excludes
all calculations whether more or less complicated which make no
demands upon the imagination, and to whose comprehension there is
requisite only a certain mechanical skill having little to do with
geometry in itself; and instead, arrives at the knowledge of the
geometric truths upon which he bases the Geometry of Position by
direct visualization. It cannot be denied that this method, like
every other, presents its peculiar difficulties; and, what is more, Von
Staudt’s own work, evidently not written for a beginner, embodies
peculiarities which are praiseworthy enough in themselves, but which
essentially increase the difficulties of the study. It is especially
marked by a scantiness of expression, and a very condensed, almost
laconic, form of statement ; nothing is said except what is absolutely
necessary, rarely is there a word of explanation given, and it is left to
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the student to form for himself suitable examples illustrative of the
theorems, which are enunciated in their most general form. The
material, however, is very clearly and systematically arranged; for
example, the subjects of projectivity, of the collinear and the recipro-
cal relation, and of forms in involution, are completely treated before
the theories of conic sections and surfaces of the second order are
introduced, and Von Staudt thus gains the advantage of being able
to prove the properties of forms of the second order all at once; but,
on the other hand, the presentation is so abstract that ordinarily the
energies of a beginner are quickly exhausted by his study. These
features, which, unfortunately, appear to have stood in the way of the
well-merited circulation and the general recognition of Von Staudt’s
work, stamp it as a treatise on Modern Geometry of superior merit,
to which we may very appropriately refer, as did the ancient geometers
to Euclid. In my lectures written for beginners, however, I must
avoid such peculiarities in order not to become unintelligible.

There is one other difficulty inherent in the course itself which I
have purposely not avoided, since it must sooner or later be overcome
by everybody who desires to comprehend the properties of three-
dimensional figures. I refer to the difficulty already mentioned of
getting a mental picture of such figures in space, a difficulty with
which the beginner has to struggle in the study of descriptive
geometry and analytical geometry of space, the surmounting of which,
as I have already remarked, I hold to be one of the principal objects
of geometrical instruction. In order to make the accomplishment of
this end easier for the student, I have added plates of diagrams to
my lectures. Von Staudt did not make use of such expedients; in
fact, we should not be far from the truth in ascribing to him views
similar to those expressed at one time by Steiner, *that stereometric
ideas can be correctly comprehended only when they are contem-
plated purely by the inner power of imagination, without any means
of illustration whatever.” By disdaining to make use of these
instruments of illustration, which so far as planimetric ideas are con-
cerned, are not at all likely to lead to an incorrect conception, I
should unnecessarily have increased the difficulty, on the part of the
student, of comprehending my lectures.

Since the method introduced by Von Staudt excludes numerical
computations, and invéstigates the metric properties of geometrical
figures apart from the general theory, it presents still another ad- .
vantage to which I should like to call especial attention. That
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is, it turns to account most beautifully, in all its clearness and
to its full compass, the important and fruitful principle of duality or
reciprocity, by which the whole Geometry of Position is controlled.
No method making use of the idea of measurement can boast of this
merit,’and for the simple reason that in metric geometry this principle
is not in general applicable. But it must be admitted that geometry
offers nothing which is so stimulating to the beginner, and which
so spurs him on to independent research as the principle of re-
ciprocity, and the earlier he is made acquainted with it the better.
The fact that this principle stands out so clearly, particularly in
geometry of three dimensions, was for me a determinative reason for
not separating the stereometric discussions from the planimetric.

Metric relations, I must add, especially those of the conic sections,
have by no means been neglected in my lectures; on the contrary,
I have throughout developed these relations to a greater exterit
than did either Steiner or Von Staudt, wherever they could naturally
present themselves as special cases of general theorems.

I proceed to the study of the conic sections and other forms of the
second order treated in this first part of my lectures, by a route
different from that of Steiner or Von Staudt, the latter of whom
based the theory of these forms upon the doctrine of collineation
and reciprocity. By introducing the forms of the second order
directly from a study of projective one-dimensional primitive forms,
I hope to have made the comprehension of the projective relation
easier ; at the same time, I secure the advantage of being able to
prepare the beginner by degrees for the more difficult study of
collineation and reciprocity. In his highly suggestive pioneer work,
Systematische Entwickelung, etc., Steiner has furnished us with
the model which I have preferred to follow in my lectures from the
fifth to the tenth. For reasons already referred to, however, I was
obliged to refrain from defining conic sections, as did Steiner, by
means of circles.

THE AUTHOR.

ZURICH, March 8k, 1866.



THE AUTHOR'S PREFACE TO THE THIRD
EDRFIONTOF *PART 1.

THis new edition exceeds the first in extent by about two-thirds of its
number of pages. The most significant changes made in the second
edition consisted in the addition of a collection of two hundred and
twenty-three problems and theorems. A part of this collection was
originally to be found in the appendix to the second volume, but this
has been considerably enlarged by the addition of new problems and
useful theorems. The first eleven sections of this collection, with the
exception of the two upon the principle of reciprocal radii and the
ruled surface of the third order, correspond to the lectures with
the same headings, and problems and theorems which are com-
paratively easy to be proved have been selected mainly with a view to
furnishing exercise for the student. I urgently advise every beginner
to actually solve the problems of construction graphically, since the
comprehension of the Geometry of Position is made very much easier
by the free use of pencil and paper.

The last four sections of the problems and theorems contain new
investigations which were not found in the first edition, and which in
more than one essential feature have been carried out by means
of synthetic geometry for the first time so far as I know in this book.
In order that the investigations upon self-polar quadrangles and
self-polar quadrilaterals and upon linear nets and webs of conic
sections might not become too voluminous, I have chosen for them
a form of statement as brief as possible. By this means and by the
introduction of a single elementary notion, I have been able, within
the narrow compass of twenty-one pages, to present the important
theories of sheaves, ranges, nets, and webs of conic sections in an
entirely new connection. By means of Stephen Smith’s theorem,
the synthetic proof of which I acquired only after many fruitless
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attempts, and by the principle of reciprocity, these theories are
developed in a manner remarkable for simplicity and clearness.

I have replaced the proof of the fundamental theorem of the
Geometry of Position as given by Von Staudt by one free from
objections, making use of the remarks in that connection of F. Klein
and Darboux (Math. Annalen, Vol. xviL). It was expressly assumed
in the second edition by the definition of ‘correlation,” that in two
projective primitive forms a continuous succession of elements in
the one form corresponds to a continuous succession of elements in
the other. This has now been proved upon the basis of Von
Staudt’s definition of projectivity.

It is due to the kindly co-operation of the new publishers that this
book, like its Italian and French translations, is supplied with
engravings of the diagrams inserted in the text.

THE AUTHOR.

STRASSBURG IN ALSACE,
September 8th, 1886.
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INTRODUCTION.

I. Most of my hearers will have heard till now scarcely more
than the name of the Geometry of Position; for, unfortunately,
the knowledge of this significant creation of recent times, dis-
tinguished alike by abundance of contents, clearness of form, and
simplicity of development, has been diffused but very little;
and notwithstanding the fact that modern geometry must be
accounted among the most stimulating branches of mathematical
science and admits of many beautiful applications to the technical
and natural sciences, it has not as yet found its way generally
into the schools. Perhaps, therefore, it will not be amiss if I pre-
face my lectures with a word upon the place which the Geometry
of Position occupies among other branches of geometry, and if
afterwards I mention some theorems and problems which will serve
still further to characterize this science for you.

2. The pure Geometry of Position is mainly distinguished from
the geometry of ancient times and from analytical geometry, in
that it makes no use of the idea of measurement; in contrast
with this feature the ancient geometry may be called the ‘geometry
of measurement,’” or ‘metric geometry.” In the pure Geometry of
Position nothing whatever is said about the bisection of segments
of straight lines, about right angles and perpendiculars, about ratios
and proportions, about the computation of areas, and just as little
about trigonometric ratios and the algebraic equations of curved
lines, since all these subjects of the older geometry assume measure-
ment. In these lectures, however, at the end of each main division,
I shall make applications of the Geometry of Position to metric
geometry, in which I shall assume a knowledge of planimetry as well

as, in a few instances, a knowledge of the sine of an angle. We
A
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shall be concerned as little with isosceles and equilateral triangles
as with right-angled triangles; the rectangle, the regular polygon,
and the circle are also excluded from our investigations, except
in the case of these applications to metric geometry. We shall
treat of the centre, the axes, and the foci of so-called curves of the
second order, or cenic sections, only as incidental to the general
theory ; but, on the other hand, shall become acquainted with many
properties of these curves more general and more important than
those to which most text-books upon analytical geometry are
restricted. 'We shall be obliged to mark out a new way of approach
to the conic sections themselves, since in the Geometry of Position
we dispense with the help of the circular cone by means of which
the ancient geometers defined these curves, and also of the algebraic
equation through which they are viewed by disciples of Descartes.
After what has been said it is scarcely necessary for me to mention
the fact that no computations will appear in my lectures; only
once in a while in the applications to metric geometry shall we
employ the sign of equality.

3. Of the knowledge of geometry acquired in the elementary
schools, I shall therefore make very little use. On the other hand,
a certain skill in producing mental images of geometric forms without
pictorial representations would be of great service to you, inasmuch
as it will not be practicable for me to illustrate every theorem by
diagrams, especially if the theorem refers to a form in space;
. I shall often be compelled to make demands upon your imagina-
tion.

Since the imagination is brought much into play in descriptive
geometry, a knowledge of this latter science would likewise stand
you in good stead ; the converse is equally true, that the Geometry
of Position makes an excellent preliminary study for descriptive
geometry. And in general, I may say that of all branches of
geometry the descriptive is most helpful in facilitating the study
of the Geometry of Position—in the first place, because it is very
closely related to the latter; and in the second place, because in
descriptive geometry relations of magnitude come less under con-
sideration than do the positions of forms relatively to one another
or to the plane of projection; this relativity, to be sure, often
being defined by the use of circles and right angles.

Above all, however, you will find that perspective or central
projection plays an important part in the Geometry of Position,
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and that many forms of expression used in the latter subject are
derived from the former.

4. Pure geometry stands in a certain antithetical relation to
analytical geometry on account of its method, which, as you know
from the geometry of ancient times, is synthetic. In our study we
shall start out with a small number of ‘primitive forms’; the simple
relations which may be established among these will bring us to the
so-called forms of the second order, among which are found the
conic sections, and will at the same time permit the principal
properties of these forms to be easily recognized. We shall then
be able to proceed in the same way from the forms of the second
order to still other new forms. During our investigations we clearly
must avoid all processes of analysis, that powerful instrument of
modern mathematics, since we make no use of measurement, and
in order to be able to compute with forms in space, we should first
be obliged to express them in numbers, 7.e. measure them.

On account of its methods pure geometry as distinguished from
analytical is often designated by the name ‘synthetic geometry.’

5. Since in the pure Geometry of Position metric relations are
not considered, its theorems and problems are very general and
comprehensive. For example, the most important of the properties
of conic sections which are proved in text-books on analytical
geometry are merely special cases of theorems with which we shall
become acquainted later. A few illustrations will serve more
exactly to characterize the material with which we shall be con-
cerned in these lectures.

6. In designing architectural structures, and in drawing generally,
it is not infrequent that a solution is required of the problem: *“To
draw a third straight line through the inaccessible point of inter-
section of two (convgrging) straight lines.” Metric geometry fur-
nishes us with any desired number of points of such a third line
by the aid, for instance, of the property that proportional segments
are formed upon parallel lines by any three transversals which meet
in one point. The Geometry of Position affords a simpler solution,
as follows: Choose some point 2 outside the two given straight
lines @ and & (Fig. 1) and pass through it any number of
transversals. Then ascertain the point of intersection of the
diagonals in each of the quadrangles formed by two of these
transversals taken with the lines ¢ and #4; all these points of
intersection lie upon one straight line which passes through the
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intersection of @ and 4.* The proof follows very simply from the
important harmonic properties of a quadrangle, which may be stated
in the following form:

FiG, 1.

If we choose three points 4, B, C, upon a straight line (Fig. 2),
and construct any quadrangle such that two opposite sides pass
through 4, one diagonal through B, and the other two opposite
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sides through C, then the second diagonal meets the straight line
ABC in a perfectly definite fourth point 2. The points 4, B,

*I strongly recommend the beginner to draw the figure illustrating this
theorem for himself, according to the statement of the text, without first having
seen the one drawn by me, and especially to do so for the subsequent
theorems which are not so simple. A diagram built up by degrees is far
easier to be comprehended, and illustrates most of the theorems to be
represented far better than does one with all its auxiliary lines ready drawn.
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C, D are called four harmonic points, and D is.said to be har-
monically separated from B by the points 4 and C.

By constructing different quadrangles satisfying the stated
conditions, you can easily obtain a confirmation of the fact that
all second diagonals do pass through this fixed fourth point .D.

The problem stated above can be made use of in surveying when
it is required to extend a straight line beyond an obstacle, for
example, beyond a forest, inasmuch as it affords a means of evading
the obstacle.

7. Of theorems relating to triangles I shall mention only the
following :

F1G. 3.

If two triangles 4BC and 4,B,C, are so situated (Fig. 3) that
the straight lines joining similarly named vertices, viz. 44,, BB,
CC,, intersect in one and the same point S, then the pairs of
similarly named sides 42 and 4,5,, BC and B,C,, CA and C4,,
intersect in three points C,, A,, B,, which lie upon one straight line
#«; and conversely.

The diagram illustrating this theorem is worthy of notice as
representing a class of remarkable configurations characterized by
a certain regularity of form. It consists of ten points and ten
straight lines ; three of the ten points lie upon each of the straight
lines, and three of the ten lines pass through each of the points.

8. Another series of theorems is connected with curves of the
second order or conic sections. You know from analytical geometry,
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and will be able later to prove synthetically, that a curve of the
second order is completely determined by five points or five
tangents. But you also know the difficulty which is met with in the
actual computation and construction of a conic section determined
in this way. The Geometry of Position establishes two very im-
portant theorems concerning curves of the second order, which
render it possible for us to construct with ease from five given
points or tangents of such a curve any required number of new
points or tangents, and so readily to draw the curve itself. Those of
you who are already acquainted with these two theorems will remem-
ber how much preliminary knowledge is demanded for their proof
by analytical methods. The first of these, originally established by
Pascal, states that the three pairs of opposite sides of any hexagon
inscribed in a curve of the second order intersect in three points
which lie upon one straight line; according to the second, which
was first enunciated by Brianchon, the three principal diagonals
(i.e. the straight lines joining pairs of opposite vertices) of any
circumscribed hexagon pass through one and the same point. Both
theorems may easily be verified in the case of the circle. You will
notice that in these theorems nothing is said concerning the size of
the conic section, or concerning its centre or its axes or its foci. But
just on that account the theorems are of the greatest generality and
significance, so that the whole theory of conic sections can be based
upon them. In particular, the important problem of drawing a
tangent at a given point admits of solution by means of Pascal’s
theorem, even when the conic section is given by only five of its
points, without supposing the whole curve to be drawn.

9. The problem of constructing tangents to a curve of the second
order may be solved in many cases by the aid of a theorem which
expresses one of the most important properties of these curves, but
which is frequently not to be found in text-books on analytical
geometry, since its analytical proof is quite complicated and is
scarcely capable of setting forth this property in its true light.

Namely, if through a point 4 (Fig. 4) which lies in the plane of
a curve of the second order but not on the curve, secants be drawn
to the curve, any two such secants determine four points, as X, Z,
M, N, upon the curve. Each pair of straight lines, other than the
secants, joining four such points two and two, for example, LA/
and VK, or KM and ZJV, intersect in a point of a fixed straight
line @, which is called the polar of the given point 4. If the point
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A lies outside the curve, its pdlar a intersects the curve in the points
of contact of the two tangents which can be drawn from A to the
curve ; if 4 lies inside the curve, the latter is not cut by the polar.
You can apply this theorem in drawing tangents to a conic
section from a given point with the use of the ruler only.

FIG. 4.

Upon any secant passing through 4, there are four points worthy
of notice; first, 4 itself ; next, the first point of intersection 5 with
the curve ; then follows the point of intersection C with the polar a
of 4 ; and finally, the second point of intersection 2 with the curve.
These four points 4, B, C, D are harmonic points, and the polar a
thus contains every point which is harmonically separated from A4
by two points of the curve.

The important theorems relating to centres and conjugate dia-
meters of conic sections are merely special cases of the theorems
just mentioned. These latter may easily be extended to surfaces of
the secend order, since such surfaces are in general intersected by
planes in curves of the second order.

From these few examples, which I might multiply indefinitely, you
will doubtless have observed how different from the theorems
treated in analytical geometry, for instance, are those with which
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the Geometry of Position is concerned, but certainly they are not
less important. I would remind you still further in this connection
that analytical geometry seeks to determine the positions of tangents
to a conic section, especially by means of the angles which they
form with the focal rays, or by means of the intercepts which they
determine upon the axes, thus referring the whole matter to metric
properties. Of course, reference is made here only of the elements
of analytical geometry to which most text-books on the subject are
confined, and not of the exceedingly fruitful modern methods, for
whose existence we are indebted above all to the ingenious Pliicker.



LECTURE 1.

THE METHODS OF PROJECTION AND SECTION. THE SIX
PRIMITIVE FORMS OF MODERN GEOMETRY.

10. As is well known, the great number of concepts which are
advanced in the ancient geometry, in trigonometry, and in analytical
geometry are based for the most part upon measurement ; accord-
ingly, they can find no place in the pure Geometry of Position. It
ought not, therefore, to be surp{'ising that modern geometry has
set forth for its purposes a considerable number of characteristic
concepts. With these you will be made acquainted in this and
in the following lecture, and thereafter they must constantly be
employed. :

11. The point, the straight line, and the plane are the simple
‘elements’ of modern geometry.* As a rule, we shall designate)
points by capital letters, lines by small italics, and planes by Greek
letters.  Straight lines (or rays, as they will frequently be called)
and planes will always be considered as unlimited in extent unless
the opposite is expressly stated. We are able to combine these
elements into systems by looking upon one of them as the ‘base
or support’ (Triger) of an infinite number of elements of another
sort. By this means we arrive at the so-called ‘primitive forms’
of modern geometry. Before explaining these, 1 shall, by way of
mntroduction, give a brief account of the important methods of
Projection and Section, of which frequent use is made.

12. If we look at an object, say a tree, every (visible) point of
it sends to the eye a ray which is called the ‘projector,” or the
¢ projecting ray’ of this point. The projector of the whole tree
is compounded out of many rays, each of which ‘projects’ one

* It is worthy of notice that no attempt is made to define a ¢ point,’ ¢ straight
line,” or “plane.” A knowledge of these as fundamental ideas is assumed.—H.
P £
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or more points to the eye. If a number of points lie in a straight
line not passing through the eye, all their projecting rays lie in
that plane which can be passed through the eye and this straight
line; every such straight line is projected to the eye by a plane
which is called the ‘projector, or the ‘projecting plane’ of this
line. Similarly, a curve is in general projected by a conical surface.
We can now intercept, or ‘intersect,’ the projector of the tree by
a plane, each projecting ray being cut in a point and each pro-
jecting plane in a straight line. By this means we obtain in the
plane, as the ‘section’ or ‘trace’ of this projector, a perspective
picture, 4 ‘projection’ of the tree, and this projection evidently
throws the same projector into the eye as the tree itself, and is
therefore quite competent to convey a notion of the latter to us.
Ordinary photographs of three-dimensional objects are essentially
such perspective, plane pictures of the objects.

Upon this kind of projection, which is known by the name of
‘central projection,’ is based the theory of perspective; and all
other varieties of projection which are in use in descriptive geometry
may be looked upon as special cases of this one. In orthogonal
projection, for example, in order that the projecting rays may be
parallel we need only to imagine the eye removed to an.infinite
distance. The shadows which objects throw upon planes, when
they are illuminated from a finite or infinitely distant point, are
nothing else than projections of these objects in which the illumi-
nating point takes the place of the eye. s

13. A simple example may show how we are able to discover,
and at the same time can prove, important theorems through mere
visualization, with the help of these methods of projection and section.
A system of parallel lines is projected from the eye by planes, all
of which intersect in one and the same straight line, namely, in
that parallel which passes through the eye; these projecting planes
are intersected by an arbitrary picture plane in straight lines, all
passing through one point, namely, through the trace of the line
in which the projecting planes intersect. Consequently, in the
perspective view of ,a tree or other objéct the projections of
parallel edges converge toward one point, their so-called vanishing
point, and only in one particular case, which you will at once
recall, are these projections also parallel. We have thus incident-
ally established and proved a well-known fundamental theorem of
central projection.
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14. Leaving aside all optical references, let us now further employ
the expressions just used, viz. ‘projector,” ‘ray,” ‘to project, ‘to
intersect,’ etc., where instead of the eye we shall choose an arbitrary
point .S, and instead of the definite object or tree, an arbitrary
system £ of points and straight lines in space. This system 2 is
projected from .S by a system of rays and planes, namely, each
point by a ray and each ray, not passing through .S, by a plane.
The point .S is regarded as the ‘ base’ of all these rays and planes
which together form the projector of the system Q. If we choose
in space an arbitrary system 2 of planes and straight lines, then
any new plane e would ‘intersect’ this in a system of straight
lines and points, namely, in general, each plane in a straight line
and each straight line in a point. The plane € appears in this case
as the ‘base’ of all these straight lines and points which together
make up the ‘section’ (the ‘trace’) of the system =.

15. We can also project from and make sections by straight
lines. Thus every point lying outside a straight line g together
with g, determines a plane, or is ‘projected’ from g by a plane;
and similarly, every plane which does not contain g is ‘inter-
sected’ by this straight line in a point. The straight line appears,
in the first case, as the base of planes which intersect in it; in the
second case, as the base of points which lie upon it.

16. Through such considerations as these we obtain the following
so-called primitive forms, which occupy an important place in
modern geometry.

The totality of points lying upon one straight line is called a ‘range
of points’ (Punktreihe) or a ‘line form’ (gerades Gebilde); the
individual points of the straight line are the elements of the
range of points. We consider these points to be rigidly connected
with one another, so that their relative positions remain unaltered
if the straight line, their base, be moved out of its original position.
A portion of a range of points bounded by two points of the range
is called a ‘segment.’

The totality of rays passing through one point and lying in one
and the same plane we shall call a ‘sheaf of rays’ (Strahlenbiischel).
The common point of intersection of the rays is called the ‘centre’
of the sheaf; the single rays, unlimited on either side of the centre,
are the elements of the sheaf. Here again we imagine the elements
to be rigidly connected with one another.

Either the centre or the plane in which the rays lie may be
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looked upon as the ‘base’ of the sheaf of rays. A portion. of a
sheaf of rays bounded by two rays of the sheaf as ‘sides’- is
called a ‘complete plane angle’ This consists of two ‘simple’
angles which are vertically opposite to each other. In any sheaf
of rays S (Fig. 5), if four rays a, 4, ¢, & are chosen at random,
then among these there are two pairs
of separated rays, for instance, a and
¢ are separated from each other by
6 and 4, so that we cannot pass in
the sheaf from @ to ¢ without cross-
ing either & or 4.

The totality of planes, unlimited in
all directions, which pass through one
straight line we shall speak of as a
‘sheaf of planes’ (Ebenenbiischel) and
the straight line shall be called the
‘axis’ of the sheaf. As in the range of points, so here, we consider
the elements of the sheaf, that is its planes, to be rigidly connected
in unalterable relative positions. A portion of a sheaf of planes
bounded by two planes as ‘faces’ is called a ‘complete dihedral
angle,” and consists of two ‘simple’ dihedral angles which are
vertically opposite to each other. Among four planes of a sheaf
two pairs again are separated.

If no confusion is likely to be caused, a form which consists
only of discrete points and the intervening segments of a straight
line will often be called a range of points. In the same way, a form
which comprises only discrete elements and the included angles of
a sheaf will often be spoken of as a sheaf. In doing so we must
constantly bear in mind that, deviating from the ordinary definition,
we have included angles as part of a sheaf. | 3

17. We designate the range of points, the sheaf of lines and
the sheaf of planes as one-dimensional primitive forms or primitive
forms of the fizst grade. The elements of a one-dimensional
primitive form, for example the planes of a sheaf, are to be
looked upon as simple elements, 7. they are to be viewed apart
from the forms (geometrical figures, and the like) whose bases they
might be. In the case of the sheaf of rays this view is facilitated
if we distinguish the straight lines whose totality makes up the
sheaf by the name ‘rays.”’ For, by a ray is ordinarily meant a
straight line in itself, viewed apart from the points lying on it

F1G. s.
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or the planes passing through it. Unfortunately, there is no
corresponding second designation for the plane available.

Of the primitive forms of the first grade, moreover, we can
imagine any one to be generated by either of the others. Thus
a range of points ABCD (Fig. 6) is projected from an outside

¢
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point .S by a sheaf of rays adcd, of which the range 4BCD is a
section. In the same way the range ADCPHB is projected by the
sheaf adch. A sheaf of planes a8y8 is intersected by any plane not
passing through its axis in a sheaf of rays adcd whose centre lies
upon the axis; every sheaf of rays is projected from a point not
lying in -its plane by a sheaf of planes. Finally, every sheaf
of planes is intersected by a straight line which does not lie in a
plane with its axis, in a range of points ; and every range of points is
projected from an axis which does not lie in a plane with it, by
a sheaf of planes. From these relations it is certainly permissible
to characterize the range of points, the sheaf of rays, and the
sheaf of planes as primitive forms of the same, namely, of the
first grade. For, from what has been said, it is clear that a range
of points contains just as many points as a sheaf contains rays or
planes.

18. There are two varieties of primitive forms which are
said to be of the sewnd grade, namely, the plane field and the
bundle of rays. The totality of points and lines which are
contained in a plane we name a ‘plane system or field’;
the plane is the ‘base’ of the system of points and
lines. In the plane field there are contained, consequently, not
only points and straight lines as elements, but also indefinitely
many ranges of points and sheaves of rays; for all the points
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lying on a straight line of the field taken together form a range
of points, and all the lines of the field passing through one
point form a sheaf of rays. The plane field is, therefore, justly
characterized as a primitive form of higher grade than the one-
dimensional primitive forms. .

Further, we call the totality of rays and planes which pass
through any point in space (as centre) a ‘bundle of rays’
(Strahlenbiindel). In this there are contained as elements not
only straight lines and planes, but also indefinitely many
sheaves of rays and sheaves of planes. For all planes of the
bundle which intersect in one and the same axis form a sheaf
of planes; and, in the same way, all straight lines of the bundle
which lie in one and the same plane form a sheaf of rays. Thus
the bundle of rays is in reality a primitive form of higher grade
than the one-dimensional primitive forms.

‘The term ‘bundle,” which is appropriate to denote a multiplicity
of higher grade than the term ‘sheaf,’ was very happily chosen
by Von Staudt; we can, however, name the foregoing primitive
- form ‘a bundle of planes’ (Ebenenbiindel) with the same
propriety as a ‘bundle of rays,’ since it contains planes for
elements as well as rays. According also as the points or the
straight lines come more into consideration, is the plane field -
designated as a ‘field of points’ or a ‘field of rays.’

It is scarcely necessary to mention that in the plane field and in
the bundle of rays, we imagine the elements of which they consist
to he rigidly connected with one another, so that in the bundle, for
example, the relative positions of the rays, planes, and sheaves con-
tained therein are unaltered when the centre, which is the base of
the bundle, is moved from its original position.

We may further assert that a bundle of rays contains just as many
rays and planes as a plane field contains points and rays, and we are
therefore wholly justified in considering the two primitive forms as of
the same, viz., the second grade, since we can imagine the bundle
of rays to be generated from the plane field, and conversely. If we
project, for instance, a plane field 2 from an outside point .S, so that
each point 2 of 2 is projected by a ray .SP of S, and each ray
of ¥ by a plane of .S, then we obtain a bundle of rays .S which
is called a projector of the field Z, and of which the field is a
section.

To aid your imagination, suppose that Z is a plane landscape
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spread out at your feet, unlimited in extent and sparkling in
variegated colours, and that the outside point S is your eye. Each
point of the landscape, then, sends into your eye a ray of light,
each straight line of the landscape a plane of light. If now you
consider these rays and planes as unlimited in all directions, you
obviously have a bundle of rays as projector of the whole
landscape.

We may further conclude that each range of points of the plane
field is projected from S by a sheaf of rays, each sheaf of rays by
a sheaf of planes, each curve by a conical surface belonging to
the bundle ; or, in other words, the projectors of a range of points,
a sheaf of rays, and a curve lying in the plane field are respectively
a sheaf of rays, a sheaf of planes, and a conical surface in the
bundle of rays. Just so, each segment is projected by a plane
angle, each plane angle by a dihedral angle, etc.

Conversely, if we consider the bundle of rays as the original
form and imagine its centre to be, say, a luminous point which
sends out coloured rays on all sides, then the field may be looked
upon as a section of this bundle. In this case, each ray of the
bundle is cut in a point of the field, each plane in a straight
line, each sheaf of rays in a range of points and each sheaf of
planes in a sheaf of rays.

19. Finally, there exists a primitive form of the #rd grade,
namely, the space system, or unbounded space with all possible
points, lines,* and planes in it. The space system contains as
elements indefinitely many primitive forms of the first and second
grades, since each of its planes is the base of a field, each point
the centre of a bundle of rays, each straight line the base of a
range of points and at the same time the axis of a sheaf of
planes.

20. To each of the six primitive forms which I have just defined
there corresponds a distinct geometry. It will be readily conceded
that there must be just as complete a geometry for the bundle of
rays as for the plane field ; for, corresponding to every plane geome-
trical figure we immediately construct a form in the bundle by
projecting the plane field from an outside point. The theorems
which may be enunciated concerning plane figures can be carried

* Properly speaking, the space system viewed as consisting of lines is of four
dimensions.—H.
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over in some manner to their projectors in the bundle of rays.
We shall have occasion to make frequent use of this process.

It is more difficult to perceive that there is also a geometry for
the one-dimensional primitive forms, for example, for the range of
points, ze. the points of a straight line; but I need only to
recall the theorem upon harmonic points cited in the introduction,
in order to convince you of this fact. The statement I made
there was that the position of a fourth harmonic point is deter-
mined by three points of a straight line. To show, further, that
in reality something of a geometry of one-dimensional primitive
forms can be established without the aid of measurement, let me
recall the fact that among four rays of a sheaf there are two
pairs of rays which are separated by the others.

21. The discussions up to this point make it possible for me
now to indicate the principal contents of the Geometry of Position
in a very few words. That is to say, the Geometry of Position
treats of the six primitive forms mentioned in this lecture and of
their mutual relations.



LECTURE IL

INFINITELY-DISTANT ELEMENTS. CORRELATION OF
THE PRIMITIVE FORMS TO ONE ANOTHER.

22. In the ancient geometry two straight lines are said to be
parallel if they lie in the same plane and have no point in common.
Likewise, two planes or a plane and a straight line are parallel
if no point of the one lies at the same time in the other. Modern
geometry establishes parallelism in a different manner, and it
will be my next object to make you familiar with this modern
conception which Von Staudt has called the perspective view of
parallelism. We are brought directly to this when we derive one
primitive form from another by considering the first a section
or a projector of the second.

2L T
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If a straight line # (Fig. 6) lies in a plane with a sheaf of
rays .S without passing through its centre, then it intersects the
sheaf in a range of points, namely, each ray a, 4, ¢,...of S is
cut in a point 4, B, C,...of ». If now by rotating about S in

a fixed sense ads, any ray describes the sheaf S, its trace upon
B
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the straight line # at the same time describes the range of points
# in the sense ABC. The point of intersection moves from
the position 4 farther and farther out beyond A until it is lost
to view, and then returns, from an infinite distance on the
opposite side back to its original position. According to the
ancient notion the rotating ray no longer intersects the line =
in the one particular position # in which it is said to be parallel
to #, and on this account the general statement that every straight
line which lies in a plane with # has one point in common with
it is not allowable. In modern geometry the exceptional case is
removed by attributing also to two .parallel lines a common point,
namely, an infinitely distant point.

23. From the perspective point of view, moreover, any straight
line has only onme infinitely distant point, since, in accordance
with one of Euclid’s axioms, only one straight line p can be
drawn parallel to # through a given outside point .S, and to this
parallel line is attributed but one point in common with #, just as
every other ray of the sheaf .S has only one point in common with
#.¥ This conception of parallelism presents distinct advantages
over the ancient one in that, first, many theorems can be enunciated
in a perfectly general form for which, otherwise, exceptions would
need always to be cited, and second, many apparently different
theorems can in accordance with this view be comprised in a
single statement. You have already become familiar with this
idea in analytical geometry. There we are accustomed to call
straight lines which lie in one plane parallel if the coordinates
of their point of intersection are infinitely great, the point thus lying
at an infinite distance. '

24. The infinitely distant point of a straight line is approached
by a point which moves continually forward upon the line either
in the one sense or in the other. Thus the infinitely distant
point lies out in both directions { upon the line, or as properly
in the one direction as in the other, and the straight line appears
to be closed, its extremities meeting in the infinitely distant

*The assumption of a single infinitely distant point on a straight line and
the definition of parallel lines as lines which intersect in a common infinitely
distant point is equivalent to the assumption of Euclid’s twelfth axiom. With
this axiom as starting point, Euclid proves that one and only ¢oe straight line
can be drawn through a given point parallel to a given straight line.—H.

+The term ‘direction’ is used here in its colloquial sense.—H.
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point. We are forced to this conclusion as soon as we admit
the assumption that every straight line contains one and only
one infinitely distant point. We shall see later that the two
branches of a hyperbola are to be considered as connected at
infinity in just the same way. Analysis leads to similar conclusions,
. pointing out by frequent examples that we can pass from the
positive to the negative not only through zero but also through
infinity.

25. Since, then, we can go from one point of a straight line
to another by passing over the infinitely distant point of the
line, the following statement is true: Among four points of a
range there are only two pairs whose elements are separated
by the remaining points of the quadruple. This is strictly
analogous to the fact that among four elements of a sheaf only
two pairs of elements can be so chosen that the elements com-
posing a pair are separated by the other two; and just as a
sheaf is divided by two of its elements into two complete angles
(these being supplementary angles), so a range of points is divided
by two of its points into two segments of which each is called
the ‘supplement’ of the other. One of these two segments contains
the infinitely distant point of the line unless this point itself forms
one of the boundaries of the segments. In the latter case each
of the two segments may be called a Zalf-ray.

26. In order to distinguish the infinitely distant point of a straight
line from ‘the points of the line which lie in the finite region, we
shall call the former an ‘ideal’ point and the latter ‘actual’
points. The modern conception of parallelism, explained at the
opening of this lecture, might also be characterized as ideal. All
the parallel lines which may be drawn in a plane in any one
direction have but one infinitely distant or ideal point in common,
namely, that point which any one of them has in common with
each of the others. These parallels may therefore be considered
as forming a sheaf whose centre is an infinitely distant point of
the plane, and such a system we shall hereafter designate as a
sheaf of parallel rays, whenever a distinction from other sheaves of
rays is desirable. Likewise under the name ‘bundle of parallel
rays’ are to be comprehended all possible parallel rays in space,
having a given direction, together with all planes passing through
them. I would remind you at this point that the statements
“parallel lines have the same direction” and ‘parallel lines con-
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tain the same infinitely distant point,” mean exactly the same thing.
Any given direction determines one infinitely distant point, and
conversely, each ideal point in space determines a single direction ;
moreover, every actual straight line determines both a direction
and an infinitely distant point, namely, the ideal point lying
upon it.

27. It is assumed of all the infinitely distant points of a plane
that they lie in an infinitely distant or ideal line.¥* This line must
be looked upon as a straight line, since it is intersected by every
actual straight line of the plane in only one point—the infinitely
distant point of that line—while curved lines may have, in common
with a straight line, more than one point.

Another reason for this view is the fact that in accordance with
the perspective idea two parallel planes must have all their infinitely
distant points in common. For, if these planes are cut by any
third plane in two actual straight lines, these lines can. intersect
in no actual point; they are therefore parallel, since they lie in
one plane, and consequently have in common an infinitely distant
point of both planes. In this manner it may be shown that every
infinitely distant point of the one plane lies also in the other.
But since, in general, any two intersecting *planes have a single
straight line in common, we attribute also to two parallel planes
a single common straight line.

28. As it is said of parallel lines that they have the same
direction, so we say of parallel planes that they have the same
aspect ; just as, then, in every direction there lies an infinitely
distant point, so for every aspect there is an infinitely distant
straight line. All parallel planes in space of any one aspect pass
.through one and the same infinitely distant straight line, namely,
through that straight line in which some one of these planes is
intersected by each of the others. Parallel planes may therefore
be considered as forming a sheaf of planes whose axis is an
infinitely distant straight line; this we shall call a ‘sheaf of
parallel planes.’

29. Of the infinitely distant points and lines of space it is
assumed that they lie in an infinitely distant or ideal surface;

* That is, that the infinitely distant points of a plane form a continuum. If
an actual straight line of the plane be rotated about one of its actual points
every other actual point will describe a continuous line. The same is assumed
of the infinitely distant point.—H.
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this surface must be considered plane, since it is intersected by
every actual straight line in only one point and by every actual
plane in a straight line. The infinitely distant or ideal plane is
common to all bundles of parallel rays and to all sheaves of
parallel planes, since it passes through the centre of the former
and through the axis of the latter.

In the same way, the infinitely distant line in any plane is a
ray common to all sheaves of parallel rays lying in that plane,
since it passes through the centre of each of them. No definite
direction can therefore be assigned to the infinitely distant straight
line of a plane, but it possesses the direction (contains the infinitely
distant point) of every straight line of the plane.

30. Some light is thrown upon the question of infinitely distant
or ideal elements by the relations which may be established between
two primitive forms. Two forms are said to be ‘correlated’ to
each other if with every element of the one is associated an element
of the other. Two elements of the forms which so appertain to
each other are called ‘corresponding’ or ‘homologous’ elements.
If two primitive forms are correlated to a third, then are they also
correlated to each other. For to every element of the third there
‘corresponds an element of each of the other two forms, and these
two elements are by this means associated with each other.

31. Two primitive forms of different kinds are correlated to each
other in the simplest and clearest manner by making the one a
section or a projector of the other. For example, if a sheaf of
rays .S (Fig. 6) lies in a plane with a range of points # not passing
through its centre, we may assign to each ray of the sheaf that
point of the range which lies upon it. To the parallel ray p of S
corresponds, then, the infinitely distant point of z.

Again, if a plane field 2 is considered as being a section of a
bundle of rays .S whose centre lies outside =, then ¥ and .S are
correlated to each other in such a manner that to each point of
2 corresponds the ray of S passing through it, and to each straight
line of X the plane of S passing through it. The plane of §
parallel to 2 corresponds therefore to the infinitely distant line of
2 and to each ray of .S lying in this plane corresponds its infinitely
distant point lying in 2. To each sheaf of planes in .S corresponds
the sheaf of rays in which it is cut by 2; the latter is a sheaf
of parallel rays if the axis of the sheaf of planes is parallel to =.
If S is a bundle of parallel rays, its centre lying infinitely distant,
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then to each actual point of = corresponds an actual ray of .S,
and to each ideal element of = an ideal element of S. If 2 is
the infinitely distant plane and S a point of the finite region, then
to each ray of .S corresponds its infinitely distant point; to each
plane, its infinitely distant line; to each sheaf of rays, an infinitely
distant range of points; and to each sheaf of planes, an infinitely
distant sheaf of rays.

32. Two primitive forms of the same kind may be correlated
most simply by considering them to be sections or projectors of
one and the same third primitive form.) Thus, in two sheaves of

Fi1G. 7.

rays, or ranges of points, which are sections of one and the same
sheaf of planes, those two rays, or points, correspond which lie
in the same plane of the sheaf. On the other hand, two sheaves
of rays .S and S; (Fig. 7) can easily be so correlated that they
are projectors of one and the same range of points #, Ze. so that
those pairs of rays a and a;, 4 and &,, ¢ and ¢,... which intersect
in points of the range are corresponding rays. If two ranges of
points # and #, (Fig. 8) lying in one plane be considered sections
of one sheaf of rays .S, then it is worthy of notice that to the
infinitely distant point 2 (Q,) of one range corresponds, in general,
a point 2, (Q) lying in the finite portion of the other.
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Two plane fields are correlated to each other if they are sections
of one and the same bundle of rays. For example, an extended
plane landscape and the perspective picture of it which we obtain
by intercepting its projector from the eye by any plane, a vertical
one, say, are so correlated that those points of the landscape and
picture correspond which lie upon the same ray of the bundle
having the eye for centre, that is, any two points of the landscape
and picture correspond which are found in a straight line with the
eye. To each straight line of the landscape corresponds a straight
line ®f the picture, and the two straight lines lie in a plane with
the eye. To the infinitely distant straight line of the landscape

F1a, 8,

(the horizon) corresponds, in general, an actual straight line of the
picture, another reason or warrant for considering the infinitely
distant line of a plane to be a straight line. Of two plane fields
correlated to each other in this manner we appropriately say that
one is a ‘projection’ of the other, and the centre of the bundle
which is at once a projector of both fields is called the ‘centre
of projection.” If the centre lies infinitely distant, the bundle is
a bundle of parallel rays, in which case the process of projection
becomes the ordinary parallel projection of descriptive geometry.
Two bundles of rays are correlated to each other if we conceive
them to be projectors of one and the same plane field. Each
ray of the one bundle intersects, then, the corresponding ray
of the other in a point of the field; likewise, every two homo-
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logous planes of the bundles have a straight line of the field as
their intersection. The projectors of a plane landscape viewed
from two different points constitute such bundles.

33. I must leave the immediate discussion of the correlation of
primitive forms to each other for the time being to your own
efforts ; I remark, however, that the primitive forms may be corre-
lated in other and more complicated ways. For example, it is
possible to correlate two plane fields to each other by correlating
them to one and the same third field. Referring again to an
illustration which has been frequently used, you may imagine
perspective pictures of a landscape to be constructed from two
different centres of projection. Two such pictures or plane fields,
then, are correlated to each other, since each is correlated to the
landscape ; and clearly, two points of these correspond if they are
projections of the same point of the landscape. A straight line
of the one picture would correspond always to a straight line of
the other. But such plane fields, in general, have no longer the
particular position with respect to each other which was previously
discussed, that namely, in which corresponding lines lie in a plane
and the joining lines of pairs of homologous points all intersect
‘in one point. Later, we shall have to investigate more minutely
the mutual relations of the two fields so correlated to each other.
Two fields may be so correlated that each straight line -of the
one corresponds to a curve in the other, or that to each point
of the one field corresponds a straight line of the other, and
conversely, to each straight line of the former, a point of the
latter. For the present, however, it is left to your own ingenuity
to work out these more diverse relations of primitive forms.



LECTURE IIL

THE PRINCIPLE OF RECIPROCITY OR DUALITY. SIMPLE AND
COMPLETE #-POINTS, #»-SIDES, n-EDGES, ETC.

34. Before developing further the correlations which may be
established among the primitive forms of modern geometry, I
must make mention of a geometrical principle which will occupy
an important place in these lectures. This principle very greatly
simplifies the study of the Geometry of Position, in that it divides
the voluminous material of the subject into two parts, and sets
these over against each other in such a way that the one part
arises immediately out of the other. This principle of reciprocity
or duality as it is called was first established in an elementary way
by Gergonne,* Poncelett having previously shown by means of
the polar theory that to every figure in space there can be con-
structed one which corresponds to it in the dualistic sense.

35. Although the principle of duality cannot be generally
applied in metric geometry, yet there are many theorems in metric
geometry which point directly toward this principle, and which
I need only to call to mind in order to make you aware of its
existence. In three-dimensional space; the point and the plane
stand opposed to each other as ‘reciprocal elements,” so that
every theorem of the Geometry of Position finds its complement
in another which we may deduce from the first by interchanging
the terms ‘point’ and ‘plane,” and hence also ‘range of points’
and ‘sheaf of planes, ‘segment’ and ‘dihedral angle,” etc. Ordin-
arily we shall write two such ‘reciprocal’ theorems side by side
as the two members of one theorem. For example:

* Gergonne, Annales de Mathématiques, T. XVI., 1826.
*+ Poncelet, Traité des propriétés projectives des figures, Paris, 1822.
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Two points 4 and B determine
a straight line 425, namely, the
line joining them.

A straight line @ and a point B
not lying upon it determine a plane
aB which passes through both.

Three points 4, B, C, which do
not lie in one straight line, deter-
mine a plane AZBC (the joining
plane).

Two straight lines @ and 4, which

Two planes a and B determine
a straight line of3, namely, their
line of intersection.

A straight line @ and a plane 3
not passing through it determine
a point @3 which lies upon both.

Three planes a, 3, y, which do
not pass through one straight line,
determine a point afBy (the point
of intersection).

Two straight lines @ and 4, which

have one point in common, lie in
one plane ab.

lie in one plane, have one point a6
in common.

36. Incidentally you will notice from these few theorems how
useful the introduction of the infinitely distant or ideal elements
into geometry proves to be. Without these we should not have
been able to enunciate all the above theorems in a general form, but
must have called particular attention to special cases as exceptions.
The first theorem on the right for example would have read: ‘“ Two
planes « and B either determine a straight line f, or they are
parallel,” while from the new point of view a straight line is also
determined in the latter case, namely, the infinitely distant straight
line of the planes. In the same way we should have been obliged to
distinguish several cases of the first theorem on the left, according
as the two given points 4 and B are actual points or not. It would
have read: “A straight line is determined by two given (actual)
points or by one point and a given direction ” ; from the perspective
point of view, however, the latter case is included in the former,
since among the given points infinitely distant points may also be
considered. You can yourselves easily make similar observations
upon each of the other theorems.

37. For the sake of brevity we shall call two straight lines
‘incident’ if they intersect; a straight line, or plane, and a point
are ‘incident’ if the latter lies in the former; and finally, a ray, or
point, and a plane, if the latter passes through the former. Straight
lines not incident are called ‘gauche.’ :

38. The foregoing theorems lead now to the following problems,
the solutions of which we shall always in future consider possible :

Through two points to pass a
straight line.

To find the line of intersection
of two planes.
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Through a straight line and a
point not incident with it to pass
a plane.

Through three points to pass a
plane.

Through two incident straight
lines to pass a plane.

To find the point of intersection
of a straight line and a plane not
incident with it.

To find the common point of
three planes.

To find the common point of
two incident straight lines.

39. For the sake of practice, I shall cite a few double theorems

which are in frequent use.

I strongly urge you to deduce for

yourselves, from the one half of each of these, the other reciprocal

half.

If four points A4, B, C, D are
given, and the lines 48 and CD
intersect, then the four points lie
in one and the same plane, so that
the lines 4C and BD, as well as
AD and BC, must also intersect.

If four planes a, B, v, & are
given, and the lines of intersection
af3 and 3 intersect, then the four
planes pass through one and the
same point, so that the lines ay and
B3, as well as ad and By, must also
intersect.

If of any number of straight lines each intersects every other

one while they do not all

pass through one point, then they
must all lie in one plane.

lie in one plane, then they must all
pass through one point.

Frequently, a theorem is reciprocal to itself as when point and
plane appear in it symmetrically ; for example, the problem: In
a plane, to draw through a given point a straight line to meet a
given straight line which neither lies in the given plane nor passes
through the given point.

Here two solutions stand reciprocally opposed to each other:

We may either join the point of
intersection of the straight line
and plane, with the given point;

or may pass a plane through the
straight line and the given point,
and find its line of intersection
with the given plane.

The following problem may easily be reduced to the one just

stated :

Through a given point to draw
a straight line which intersects two
given straight lines not lying in
one and the same plane with the
given point.

In a given plane to draw a
straight line which intersects two
given straight lines not having one
and the same point in common
with the given plane.
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Pass a plane through the given
point and one of the given straight
lines,

Determine the point of inter-
section of the given plane with
one of the given straight lines,

and the problem becomes identical with the preceding one.

The problem, “To draw a straight line which intersects three
given straight lines,” is likewise reciprocal to itself. We may either
choose a point in one of the straight lines or pass a plane through
one of them, and then under the conditions of the preceding
problem find a straight line which passes through this point, or
lies in this plane, and intersects the other two given straight lines.

40, The primitive forms can also be opposed reciprocally to one
another ; for example, the plane field and the bundle of rays are
clearly reciprocals, since their bases, namely, the plane and the

point, are reciprocal elements.

Hence,
the point, the range of points,
the ray considered as joining two
points, the sheaf of rays, etc., in
the plane field,

are reciprocal to

the plane, the sheaf of planes, the
ray considered as the intersection
of two planes, the sheaf of rays,
etc., in the bundle of rays.

The observation will press itself upon you here, as in many
previous theorems, that in space of three dimensions the straight

line (or ray) is reciprocal to itself.

In reality, the straight line

occupies an intermediate position between the reciprocal elements

point and plane.

41. The following serves as an example of a double theorem in
which the plane field and the bundle of rays are opposed to each

other as reciprocal forms :

If two plane fields are correlated
to each other by considering them
as sections of one and the same
bundle, then pairs of corresponding
elements (points or lines) of the
fields lie upon one and the same
element (ray or plane) of the bundle.

The line of intersection of the
two planes coincides with its cor-
responding line, and hence cor-
responds to itself. The same is
true of each point found in this
line. The two plane fields there-

If two bundles are correlated to
each other by considering them
as projectors of one and the same
field, then pairs of corresponding
elements (rays or planes) of the
bundles pass through one and the
same element (point or straight
line) of the field.

The common ray of the bundles,
z.e. the ray which joins their centres,
coincides with its corresponding
ray, and hence corresponds to itself.
The same is true of each plane
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tore have a ‘self-corresponding’ passing through this ray. The two
range of points. bundles therefore have a °¢self-

corresponding ’ sheaf of planes.

42. If two forms are correlated to each other, and an element
of one coincides with (Z.e., is identical with) its corresponding element
in the other, then we say that this element (double element) is a
self-corresponding element in the two forms. —

43. As the point and the plane are reciprocal elements in space
of three dimensions, so in space of two dimensions, the point and
the straight line, also the range of points and the sheaf of rays,
the segment and the angle, are opposed to each other as reciprocal
forms ; and similarly in the bundle of rays, the ray and the plane,
the sheaf of rays and the sheaf of planes, etc., are reciprocal forms.
For example :

(a,) Any two points of a plane (ay;) Any two straight lines of a
determine a straight line. plane determine a point.

(az) Any two rays of a bundle (ay) Any two planes of a bundle
determine a plane. determine a ray.

A plane curve may be looked upon
(B,) As the aggregate of the (B,) As the aggregate of the
points lying upon it. straight lines (tangents) enveloping
it (Fig. 9).

F1G. q.

And you will find that in the modern geometry the latter con-
ception is brought into use just as frequently as the former. In
the same way, a conical surface (in the bundle of rays) can be
looked upon
(Bs) As the aggregate of the (By) As the aggregate of the
rays lying upon it. planes (tangent planes) envelop-
ing it.
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44. Of four theorems related to one another as are those of the
last article, the two relating to the bundle of rays can always be
deduced from the other two by projecting the plane field from
any centre, As a rule, therefore, I shall in future state only
the two planimetric theorems, and will leave you to seek out the
others for yourselves. In space, where point and plane are re-
ciprocal to each other, the first and last (o, and «,), also the
second and third (e, and a«;) of any four such theorems offset
each other as reciprocal theorems.

45. The principle of reciprocity will become clearer and more
familiar to you in the course of our investigations; but only after
a series of developments upon the one-dimensional primitive forms,
can I demonstrate that it has general validity in the Geometry
of Position, or that in reality to every theorem there corresponds
a reciprocal theorem. In the meantime, I shall so adjust my
lectures that theorems associated reciprocally with each -other will
be placed side by side, and I shall so carry out their demon-
strations that the dualism will stand out very clearly. To this
end, it is necessary that I should develop beforehand some
reciprocal ideas, and in particular modify some of those geo-
metrical notions which you have brought over with you from
metric geometry.

46. 1 refer here particularly to the conception of the polygon.
In modern geometry we understand by a ‘simple plane #-point’
not as a rule a portion of the plane which is bounded on all sides
by 7 intersecting straight lines, but a set of 7 points of a plane
and the # straight lines or sides, each of which joins two consecutive
points ‘or vertices. We look upon the points as being arranged
in a definite order, and specify that no three consecutive points
shall lie in one straight line.

The simple #z-point might also be named a ‘simple #-side,’
since a simple z-side is a set of » straight lines of a plane (the
sides of the figure), and the z points in which two consecutive
sides intersect.

The #z-point and #»-side are reciprocal figures. To the lines
joining two non-consecutive vertices (Ze. to the diagonals) of a
simple z-point, the points of intersection of non-consecutive sides
in the n-side are reciprocal, each to each.

47. In metric geometry where by an #z-point is meant a portion
of a plane enclosed by #-sides, the re-entrant z-point, such as the
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pentagon ABCDE (Fig. 10), or the hexagon ABCDEF (Fig. 11)
is generally excluded from consideration.

The #-point and the z-side of modern geometry give very little
occasion for distinction between re-entrant figures and others, since
the sides are supposed unlimited in extent. We may in fact
call any two of the 27 elements (vertices and sides taken together)
of a simple »-point or z-side, ‘opposite’ elements, which are
separated from each other by half the number of remaining elements ;
consequently, the 7™ and (z+ )" elements, these being reckoned
from any one element round the figure in either order, are opposite
to each other.

e

Fi1G. 10, FiG. 11.

For example, in the pentagon 4BCDE (Fig. 10) a vertex and
a side lie opposite to each other in pairs, namely, the vertex 4 and
the side CO, B and DE, C and Ed, etc.; in the hexagon or
hexalateral 4BCDEF (Fig. 11), on the other hand, the vertices in
pairs, and the sides in pairs, as for instance the vertices 4 and D,
the sides 48 and DE, the vertices B and Z, etc., are opposite
elements.

48. Modern geometry, however, deals not only with ‘simple
n-points and #z-sides,” but also with ‘complete x-points and
n-sides,’ and in these figures the principle of reciprocity may again
be distinctly recognized. We define as follows:

A complete plane n-point: a set A complete plane n-side: a set
of 7 points of a plane together with of 7 straight lines of a plane
all straight lines (sides) joining together with all their points of
them two and two, or what is the intersection (vertices), or what is
same thing, a simple n-point to- the same thing, a simple n-side
gether with all its diagonals. together with all the points of

intersection of its sides.
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In these definitions it is assumed that no three vertices of the
n-point lie upon the same straight line, and that no three sides
of the z-side pass through the same point.

In each vertex of the com-
plete z-point, (7 — 1) sides intersect.
These pass through the remain-
ing (7z—1) vertices (each of them
through a second vertex). Hence
the total number of sides of the
complete 7-point is % 7 (72— 1).

Upon each side of the com-
plete 7-side lie (z-1) vertices ;
through these pass the remaining
(72—1) sides (through each vertex
a second side). Hence the total
number of vertices of the complete
n-side is § 7 (n—1).

49. It is readily seen that many simple zpoints and z-sides
are contained in the complete figures whenever # is greater than

three. For example:

A

A

Fi1G, 12,

A complete quadrangle ABCD
(Fig. 12) has six sides ; any two of
these sides as 4B and CD, or
AC and BD, or finally, 4D and
BC, which do not pass through one
and the same vertex are ‘opposite
sides’ of the quadrangle, so that
in a quadrangle there are three
pairs of opposite sides. Moreover,
the complete quadrangle contains
three simple quadrangles ABCD,
ACDB, and ADBC, the sides of
each consisting of two pairs of op-
posite sides of the complete figure,

F1G. 13.

A complete quadrilateral aécd
(Fig. 13) has six vertices ; any two
of these as @b and ¢4, or ac and
bd, or finally, ad and éc, which do
not lie upon one and the same
side are ‘opposite vertices’ of the
quadrilateral, so that in a quad-
rilateral there are three pairs of
opposite vertices. Moreover, the
complete quadrilateral contains
three simple quadrilaterals aécd,
acdb, and adbe, the vertices of each
consisting of two pairs of opposite
vertices of the complete figure.

50. The forms in the bundle of rays which correspond to these
plane figures are most easily obtained by projecting the latter from

a point lying outside their plane.

Each plane 7-point gives rise by

projection to an z-edged figure, or, more briefly, to an ‘z-edge,
and each plane #z-side, to an z-faced figure, or an ‘zn-face.’
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Accordingly,

A ‘complete z-edge’ is a set of
#n rays of a bundle, together with
all planes (faces) passing through
them, two and two, assuming that
no three of the » rays or ‘edges’
lie in one plane.

A ‘complete n-face’ is a set of
7 planes of a bundle, together with
all their lines of intersection (edges),
assuming that no three of the
n planes or ‘faces’ pass through
one and the same ray.

It would be an easy matter for you to define the ‘simple #-edge’
and ‘simple #-face,’ and to develop properties of these forms in the
bundles analogous to those of the corresponding plane figures.

51. I shall conclude this series of definitions with those of the

analogous space configurations.

A ‘complete three-dimensional
n-point’ consists of » points (ver-
tices) of which no four lie in one
plane, the straight lines each of
which joins two of the # points, and
the planes each of which passes
through three of the 7 points.

A ‘complete three-dimensional
n-face’ consists of 7 planes (faces)
of which no four pass through one
point, the straight lines (edges) in
each of which two of the #~ planes
intersect, and the points (vertices),
in each of which three of the
n planes intersect.

I leave the determination of the number of edges and faces of
a three-dimensional 7z-point, as also the edges and vertices of a three-

dimensional n-face, to your own inquiry.

I remark, however, that

the three-dimensional tetragon and the tetrahedron do not differ

from
in the plane.

h other any more than do the triangle and the trilateral
That the principle of reciprocity is applicable to

the tetrahedron the following theorems among others will show :

The four vertices and six edges
of a tetrahedron are projected from
any point which lies in none of its
faces by the four edges and six
faces of a complete four-edge.

You

The four faces and six edges of
a tetrahedron are intersected by
any plane which passes through
none of its vertices, in the four
sides and six vertices of a complete
quadrilateral.

vill here observe that in space of three dimensions the

complete plane #-point is reciprocal to the complete z-face in a
bundle, and the complete plane #-side to the complete 7-edge,
since point and plane are reciprocal elements.



LECTURE IV.

THE CORRELATION OF COMPLETE #-POINTS, 2-SIDES, AND
#2-EDGES TO ONE ANOTHER. HARMONIC FORMS.

52. In my lectures thus far I have sought to solve but one of
the problems lying before me, namely, to make you-acquainted
with the most important concepts peculiar to modern geometry.
I have no doubt that you have many times wearied of this multitude
of definitions following in quick succession, but it was necessary
to place these before you in a connected form, so that later we
might bring to light with less interruption the rich treasures which
the Geometry of Position affords.

Let us now proceed to the first real theorem of modern geometry.
The very simple propositions heretofore stated have been mentioned
as occasion might offer, more with a view to familiarizing ﬁ;} with
the new concepts and for completeness than because they were
all necessary for the establishment of our science.

I shall first call particular attention to the theorems upon harmonic
points, rays, and planes ; in a word, to the theorems upon harmonic
forms in general, which I shall now develop as essentially funda-
mental in the Geometry of Position.

53- The properties of harmonic forms, of which mention was
made in the Introduction, can be proved most simply by making
use of some elementary theorems upon the correlation of ‘points,
n-sides, and #-edges to one another.

In a way similar to that by which we have already correlated the
primitive forms, we can associate in certain figures, to each vertex,
side, or edge of one a corresponding element of anotherg One
quadrangle, for example, can be correlated to a second by associat-
ing with each vertex of the first a vertex of the second; and in
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consequence of this, to each side of the first there will correspond

a side of the second.

FlG.‘l 3

We may now state the following self-evident theorem :

If two correlated triangles 4BC
and 4,B,C, (Fig. 3) lie in different
planes, and each of the three pairs
of homologous sides 48 and 4,58,
AC and A4,C,, BC and B,(C, inter-
sect (necessarily upon the common
line # of the planes of the two
triangles), then the planes of the
three pairs of corresponding sides
determine a three-edged figure, of
which the two triangles are sections.
The joining lines AA4,, BB,, and
CC; of the pairs of homologous
vertices intersect therefore in one
point, namely, in the vertex .S of
the three-edge.

If two correlated three-edged (or
three-faced) figures belong to differ-
ent bundles, and each of the three
pairs of homologous edges inter-
sect, then the three points of inter-
section determine a triangle of
which the two three-edges are pro-
jectors. The lines of intersection
of the three pairs of homologous
planes (faces) of the three-edges
lie therefore in the plane of this
triangle, whose sides they form.

54. It would be an easy matter for you to enunciate the converse
of either half of this double theorem. By the help of these we find that

If two complete quadrangles
ABCD and A,B\C\D, (Fig. 14)
lying in different planes whose line
of intersection # passes through

If two complete four-faced figures
belonging to different bundles of
rays whose common ray lies in
none of the eight faces, are cor-
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none of the eight vertices are cor-
related to each other, and five sides
a, b, ¢, d, ¢ of the one quadrangle
intersect (upon ) the correspond-
ing sides @y, &y, ¢y, @y, ) respectively
of the other, then are the two
quadrangles sections of one and
the same complete four-edge, and
therefore their remaining two sides
fand /] also intersect upon z.
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related to each other, and five
edges of the one intersect the
corresponding edges of the other,
then are the two four-faced figures
projectors of one and the same
complete plane quadrilateral, and
therefore their two remaining edges
also intersect.

Fi1G.

According to the theorem of the
last article the lines 44,, BB;, CCy,
and likewise the lines DD;, BB,
CC,, intersect in one point; the
straight lines 44, and DD, there-
fore meet in the point of intersection

14.

The five edges of the one com-
plete four-face which are intersected
by the corresponding edges of the
other determine in that four-face
two three-faced figures, the faces
of each of which are intersected by
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Sof BB, and CC,, the vertex of the
four-edge mentioned in the theorem;
and since the straight lines fand £
lie in the plane determined by 44,
and DD, they must intersect.

the homologous faces of the other
in the three sides of a triangle
But these two triangles have two
sides in common. They lie there-
fore in one plane, and determine

the plane quadrilateral, of which
the given four-faces are projectors.

55. In order not to become too profuse I shall at this point
drop the investigations of the right-hand column and only make
use of a result obtained in the left-hand column in establishing
the theory of harmonic elements. But even so we shall very soon
reach new theorems which offset each other in just the same way
as do those already denoted as reciprocals.

56. We have just now found that—

1, in two complete quadrangles whick are correlated fo eack other,
JSive pairs of homologous sides intersect in points of a straight line
u which passes through none of the eight vertices, then the sixth pair
also intersect in a point of this straight line.

This theorem holds true for the case in which the quadrangles
lie in the same plane, as well as when they lie in different planes.
For if they lie in the same plane, we can immediately reduce to
the case already treated either by rotating one of the quadrangles
about the line #, out of the given plane, or by projecting it from
an arbitrary centre upon a second plane through ». In either
case it happens that through the point of intersection of #
with the sixth side of the one quadrangle, the sixth side of the
other quadrangle also passes. It may be remarked incidentally
that if # is an infinitely distant straight line our theorem would
read :

If, in two complete quadrangles which are correlated to each other,
Sive pairs of homologous sides are parallel, then the remaining fwo
sides are also parallel. |

57. We may now announce the following definition :

Lour points A, B, C, D of a straight line are called ‘ harmonic
points’ (and form a harmonic range of points) if they are so situated
that in the first and in the third of them a pair of opposite sides of
a quadrangle may intersect, while through the second and fourth
points the two diagonals of the quadrangle pass.

From what has already been said the following important theorem
immediately presents itself:
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Three points A, B, C of a straight line and the order of their
succession completely determine the jfourth harmonic point D.

For example, we find 2 by constructing any quadrangle KZMN
(Fig. 15), of which a diagonal Z/V passes through the second point
B, two opposite sides KZ and MLV intersect in the first point 4,
and the other two opposite sides ZA/ and NK intersect in the
third point C'; the second diagonal KA/ will then determine .D.

Fi1G. 15,

If we construct another quadrangle A Z,A/,V, which is related
to the points 4, B, C in a manner similar to that of the quadrangle
KLMUY, then, in accordance with the theorem of the preceding
article, its second diagonal KM (being sixth side of the complete
quadrangle K| Z, M /V}) must also pass through 2, the point of
intersection of AWM and ABC.

The points £ and O through which the diagonals pass, are
separated from each other by the points 4 and C, in which pairs
of opposite sides intersect, and are therefore said to be ¢ harmonically
separated by 4 and C’
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58. That the points B and D are in reality separafed by the
points 4 and C may be demonstrated as follows:

If we project the points .4, B, C, D from an arbitrary centre
upon a different straight line, then the projectors, and consequently
also the projections, of one pair of separated points are separated
from each other by the projectors (and also the projections) of the
other pair. If now Q (Fig. 15) is the point of intersection of the
diagonals KM and LV of the quadrangle KXZA/N, then is KQAMD
a projection of ABCD from the point Z, and MQKD, a pro-
jection of the same range from the point . If 4 were not
separated from C, but from B, say, by the remaining two points,
then, in the one projection, Q would be separated from A, but
in the other projection, from A7, which is impossible, since Q can
be separated from only one of the three points A, M, D, by the
other two. If again 4 were separated from 2, then would D be
separated from X and at the same time from A7, which likewise
is impossible. Consequently 4 must be separated from C by
the points B and D.

59. From a point not lying in the plane of the quadrangle (from
your eye for instance), a complete quadrangle is projected by a
complete four-edge, the harmonic range of points by a sheaf of
four rays which shall be called ¢four harmonic rays,” or a ‘harmonic
sheaf of rays.” These have the property of being intersected by
any plane not passing through the centre, in four harmonic points
4,, B,, Gy, D,. For every such plane cuts the complete four-edge
in a quadrangle of which two opposite sides intersect in 4;, two
others in (), and whose remaining two sides pass respectively
through B, and D,.

60. If four harmonic points are projected from an axis which
does not lie in a plane with them, we obtain ‘four harmonic
planes,” or a ‘harmonic sheaf of planes’ Any fifth plane which -
contains the four harmonic points intersects the fou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>