Die Berechnung von kreisförmig begrenzten Pilzdecken bei zentralsymmetrischer Belastung

Von der Technischen Hochschule zu Darmstadt zur Erlangung der Würde eines Doktor-Ingenieurs genehmigte

Dissertation

von

Koloman Hajnal-Kónyi

Dipl.-Ing. aus Budapest (Ungarn)

Verlagsbuchhandlung Julius Springer. Berlin 1929

ISBN-13:978-3-642-89791-7 e-ISBN-13:978-3-642-91648-9 DOI: 10.1007/978-3-642-91648-9

Eingereicht am 11. Mai 1928

Tag der mündlichen Prüfung: 21. Juli 1928

Referent: Professor Dr.-Ing. Kammer Korreferent: Professor Dr. Schlink

Inhalt.

		Seite
	• • •	. 1
II. Beschreibung des allgemeinen Rechnungsganges. Grundlagen und	Voraus.	-
setzungen		. 10
III. Ermittlung der Formänderungsgrößen δ		. 20
A. Die Durchbiegungen $\delta_{ii}, \ \delta_{ik}$. 20
1. Superposition der Föpplschen Reihe		. 20
2. Die Funktionen R_0 , R_n bzw. η_0 , η_n		. 23
3. Konvergenz der Reihen für δ		. 28
4. Berechnung der δ-Werte		. 31
B. Die Durchbiegungen δ_{i_0}		. 35
1. Vollbelastung		. 35
2. Teilweise (kreis- oder kreisringförmige) Belastung		. 35
Zahlenbeispiel		. 41
IV. Ermittlung der Momente		. 44.
A. Die Momente m_{α}		. 44
1. Vollbelastung		. 44
2. Teilweise Belastung		. 44
B. Die Momente m_1, \ldots, m_n		. 46
1. Reihenentwicklung		. 46
2. Einfluß des Gliedes R		. 48
3. Einfluß der Glieder $R_n \cos n\varphi$, $R'_n \cos n\varphi$.		. 50
4. Der Grenzfall $\vartheta = 1$. 66
V Verallgemeinerung der Lösung. Schlußbetrachtungen		69
A. Die am Bande fest eingespannte kreisförmig begrenzte Pilzdecke	•••	. 69
B. Berücksichtigung einer elastischen Einspannung	•••	. 70
C. Berücksichtigung einer biegungsfesten Verbindung mit den Innens	tützen	73
D. Der Einfluß der Breite der Stützfläche	cuthon	. 73
E. Querkräfte	•••	. 74
F Der Fall einer exzentrischen Einzellast	•••	75
G Das Verfahren von Dr. Flügge Vergleich an Hand eines Zahlent	 neisniel	ls 75
H. Kurze Zusammenfassung des Rechnungsganges	, cropror	. 87
VI. Tahellen		. 89
		. 137

I. Einleitung.

In der neueren Zeit gewinnen im Eisenbetonbau die trägerlosen Pilzdecken immer mehr an Bedeutung. Während die in Platten und Balken aufgelösten Eisenbeton-Deckenkonstruktionen letzten Endes die im Eisenund Holzbau übliche und der Eigenart dieser viel älteren Baustoffe entsprechende mittelbare Lastübertragung verkörpern, ist das Pilzdeckensystem mit seiner unmittelbaren Lastübertragung auf die Stützpunkte diejenige Bauweise, welche in ihrer Kräftewirkung dem monolithischen Charakter des Eisenbetons am besten gerecht wird. Die zahlreichen, sehr mannigfaltigen Vorteile der Pilzdecken sind bereits in weiten Kreisen bekannt und sollen hier nicht näher erörtert werden; die großen Pilzdecken-Ausführungen der letzten Jahre im In- und Ausland liefern dafür den besten Beweis.

Die rasche Verbreitung der Pilzdecken wäre in Deutschland trotz ihrer Vorzüge sicher nicht möglich gewesen, wenn es nicht gelungen wäre, den Spannungsverlauf derartiger Konstruktionen theoretisch zu erfassen. Dank der Entwicklung der Elastizitätslehre, insbesondere der Plattentheorie, besitzt man heute schon mehrere Verfahren, welche das Pilzdeckenproblem lösen und die Ermittlung der an einer beliebigen Stelle der Platte auftretenden Beanspruchungen mit mehr oder weniger Genauigkeit gestatten. Grundlegend sind auf diesem Gebiete die Arbeiten von Dr.-Ing. Marcus und Dr.-Ing. Dr. Lewe¹). Eine bedeutende Förderung haben die Pilzdecken durch die "Bestimmungen des Deutschen Ausschusses für Eisenbeton" vom September 1925 erfahren, welche leicht auszuwertende Näherungsformeln für die der Bemessung zugrundezulegenden Momente enthalten.

Alle die bestehenden Theorien und Rechenverfahren beschränken sich lediglich auf den Fall, daß der Grundriß des zu überdeckenden Raumes rechteckig ist, und daß die Stützen in den Schnittpunkten eines rechteckigen Netzes stehen. Es kommt aber auch oft vor, daß kreisrunde

¹) Beide Verfasser haben über die Berechnung von Pilzdecken und über damit zusammenhängende Probleme zahlreiche Aufsätze in verschiedenen Zeitschriften veröffentlicht. Ihre vor den Jahren 1924 bzw. 1926 erschienenen Abhandlungen wurden in den folgenden zwei Büchern verwertet: Dr.-Ing. H. Marcus, Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten (Berlin 1924, Verlag von Julius Springer); Dr.-Ing. Dr. Lewe, Pilzdecken und andere trägerlose Eisenbetonplatten (Berlin 1926, Verlag von Wilhelm Ernst & Sohn).

I. Einleitung.

Grundflächen überdeckt werden müssen. Ein Rechenverfahren, welches die kreisförmige Umrandung einer Pilzdecke berücksichtigt, war jedoch bisher noch nicht vorhanden. Darauf ist es wohl zurückzuführen, daß man bei kreisrunder Grundrißform von der trägerlosen Bauweise auch heute noch vielfach absieht und manchmal recht umständliche, schwieriger ausführbare, wirtschaftlich weniger günstige Konstruktionen vorzieht. Dies möge nachstehend an Hand von einigen Beispielen besprochen werden, die zugleich auch die Anwendungsmöglichkeiten von kreisförmig begrenzten Pilzdecken zeigen sollen. Für das letztere System können bereits ebenfalls Ausführungsbeispiele genannt werden.

1. Wasserbehälter des Wasserwerkes Rothenburg o. d. T.²).

Der Behälter besteht aus 2 getrennten zylindrischen Kammern, die je einen lichten Durchmesser von 13,80 m haben (Abb. 1). Die Decke wird von

Abb. 1. Wasserbehälter Rothenburg o. d. T. Grundriß.

12 radialen Rippen getragen, welche von einer breiten Mittelstütze ausgehen. Ein Blick auf das in "Beton u. Eisen" 1924 S. 293 wiedergegebene Lichtbild der eingeschalten Behälterdecke mit der Bewehrung der Rippen genügt, um sich von der Unzweckmäßigkeit dieser Anordnung zu überzeugen (Abb. 2). Über der Mittelstütze kreuzen sich 6(!) Scharen von Eiseneinlagen. Das Einbringen der Betonmasse verursacht an dieser wichtigen Stelle große Schwierigkeiten, auch ist der Schalungsverbrauch für die vielen Rippen beträchtlich.

³) Söllner, Der Wasserbehälter des Wasserwerkes Rothenburg o. d. T., "Beton u. Eisen" 1924 Heft 22 S. 293. Derselbe Aufsatz ist auch in der "Deutschen Bauzeitung", Konstruktion und Bauausführung 1926 Nr. 27/28 S. 49, erschienen.

2. Zwei von Dr.-Ing. Enyedi entworfene Wasserbehälter.

Abb. 2. Wasserbehälter Rothenburg o. d. T. Eingeschalte Behälterdecke.

2. Zwei von Dr.-Ing. Enyedi entworfene Wasserbehälter⁸). Bei den in "Beton u. Eisen" 1926 S. 78 dargestellten beiden kreiszylindrischen Tiefbehältern mit einem lichten Durchmesser von 11,50 m (Abb. 3)

Abb. 3. Wasserbehälter nach dem Entwurf von Dr.-Ing. Enyedi.

³) Dr.-Ing. Enyedi, Eisenbetonkonstruktionen im Mühlenbau, "Beton—u. Eisen 1926 Heft 5 S. 75.

I. Einleitung.

bzw. 10,20 m wurden die Fundamentplatten bereits als umgekehrte Pilzdecken ausgeführt, während die Behälterdecken kreuzweise bewehrte, auf Rippen aufliegende Platten sind. Es ist nicht zu verstehen, wozu hier die Rippen nötig waren — durch eine kleine Verbreiterung der Stützen nach oben (durch die Anordnung von Stützköpfen) wären sie leicht zu vermeiden gewesen. Bei der Betrachtung der Grundrisse dieser Behälter drängt sich die Pilzdecke als die einfachste und natürlichste Lösung von selbst auf.

Ähnliches gilt für die von Santo Rini entworfenen Melassebehälter der Fabrikanlage "Kronos" in Eleusis bei Athen, "Beton u. Eisen" 1924 Heft 15 S. 193.

3. Behälter Wernhalde des Städt. Wasserwerkes Stuttgart⁴).

Die Behälterdecke wurde in derselben Weise konstruiert, wie diejenigen von Dr. Envedi, ihr lichter Durchmesser beträgt etwa 12,80 m. Die Tatsache, daß hier keine Pilzdecke zur Ausführung gelangte, ist um so bemerkenswerter, als das Städt. Wasserwerk etwa gleichzeitig 5 große rechteckige Behälter erbauen ließ, die alle Pilzdecken erhalten haben. Nur ein rechteckiger Behälter (Uhlandshöhe), der als erster schon im Winter 1924/25 fertiggestellt wurde, ist mit einer Trägerdecke versehen worden, weil die damals gültigen, aus dem Jahre 1916 herrührenden deutschen Bestimmungen über die Berechnung von Pilzdecken noch keinerlei Vorschriften enthalten haben. Der unten angeführte Bericht hebt die Vorteile der Pilzdeckenbauweise gegenüber den Plattenbalkendecken ausdrücklich hervor, so daß die Wahl der letzteren Konstruktion bei dem kreisrunden Behälter Wernhalde auf dieselbe Ursache zurückzuführen sein dürfte, wie bei dem rechteckigen Behälter auf der Uhlandshöhe, nämlich auf das Fehlen eines Rechenverfahrens, welches auch durch die neuen "Bestimmungen des Deutschen Ausschusses für Eisenbeten" vom September 1925 für kreisförmig begrenzte Pilzdecken noch nicht gegeben wurde. Die Verfasser weisen ausdrücklich darauf hin, daß bei freier Formgebung des Behälters, d. h. wenn die örtlichen Verhältnisse die Wahl zwischen der rechteckigen und kreisrunden Form zulassen, die letztere wirtschaftlich erheblich günstiger ist. Diese Behauptung wird durch Vergleich des Massenbedarfs zahlenmäßig belegt. Nur bei sehr großem Nutzinhalt (über 2000 m³) soll der rechteckige Behälter billiger werden, doch erscheint diese Grenze in Anbetracht von kreisrunden Ausführungen bis zu 22 700 m³ Fassungsraum (wofür nachfolgend ein Beispiel genannt wird) auch schon aus dem Grunde zweifelhaft, weil bei dem Vergleich eine, vom Inhalt unabhängige konstante Wasserhöhe von 4 m angenommen wurde, während die wirtschaftlich günstigste Wasserhöhe mit dem Nutzinhalt zunimmt. Dies geht u. a. aus allgemeinen wirtschaftlichen Betrachtungen hervor, die für diesen Behälter-

⁴) Stadtbaurat Ruß und Reg.-Baumeister Landel, Die Behälterbauten des Städt. Wasserwerkes Stuttgart, "Bauzeitung" Stuttgart 1927 Heft 34 S. 285, Heft 37 S. 321, Heft 41 S. 357. Der Aufsatz ist auch als Sonderdruck erschienen.

typus mit Pilzdecken angestellt worden sind, um bei gegebenem Nutzinhalt das wirtschaftlich günstigste Verhältnis zwischen Grundfläche und Höhe zu finden ⁵).

4. Ausgeführte kreiszylindrische Behälter mit Pilzdecken.

Obgleich nämlich ein Rechenverfahren für Pilzdecken mit kreisförmiger Begrenzung noch nicht besteht, sind solche in Anbetracht ihrer Wirt-

schaftlichkeit trotzdem schon mehrfach ausgeführt worden. So beschreibt Lewe (a. a. O. S. 152) einen kreiszylindrischen Nutzwasserbehälter für 1500 m⁸ in Diósgyör mit einem lichten Durchmesser von 20.80 m (Abb. 4); ferner Marcus⁶) einen solchen mit einem Fassungsraum von 6000 m³ und 36,00 m lichtem Durchmesser (Abb. 5). Beide Behälter haben eine guadratische Stützenteilung. Es ist klar, daß der Momentenverlauf in den Randfeldern, die einen beträchtlichen Teil der ganzen Fläche bilden, ganz anders sein muß, als bei gradliniger Begrenzung der Pilzdecke. Ganz abgesehe von dieser "theoretischen" Schwierigkeit wird bei der bisher üblichen quadratischen Stützenteilung die Ausbildung der Randfelder auch infolge der wechselnden Spannweite erschwert. wie das Marcus besonders bemerkt (S. 223). Bei dem von Marcus beschriebenen großen Behälter wurde daher auch eine radiale Anordnung der Stützen in Erwägung gezogen, was jedoch nicht weiter verfolgt wurde, weil nach seiner Ansicht die Herstellung der Ringbewehrung mit wechselnden Krümmungshalb-

Grundriß und Querschnitt.

messern in diesem Falle zu umständlich gewesen wäre. Dieses Bedenken darf je-

⁵) Küster, Der billigste Behälter, "Beton u. Eisen" 1927 Heft 18 S. 340.

⁶) Dr.-Ing. H. Marcus, Zwei Beispiele für die Verwendung trägerloser Decken, "Beton u. Eisen" 1926 Heft 13 S. 221.

I. Einleitung.

doch nichtverallgemeinert und als für alle Fälle maßgebend eingeschätzt werden. Einerseits können Ringeisen mit veränderlichem Durchmesser bei maschineller Biegung mit entsprechenden Einrichtungen ohne Schwierigkeit hergestellt werden, andererseits kann man bei großer Ausdehnung des zu

Abb. 5. Wasserbehälter nach dem Entwurf von Dr.-Ing. Marcus. Grundriß.

überdeckenden kreisförmigen Grundrisses die Ringbewehrung polygonal verlegen, also kürzere gerade Eiseneinlagen verwenden. Die radiale Stützenteilung bietet den Vorteil gleichmäßiger Randfelder und einer besseren Raumeinteilung, was bei Wasserbehältern an sich allerdings nicht wichtig ist. Bei zwei- oder mehrkammerigen Behältern kann man aber durch eine radiale Stützenteilung konzentrische Kammern erhalten, wodurch eine - im allgemeinen ungünstige — Biegungsbeanspruchung der Zwischenwände ausgeschlossen wird. Bei Zerlegung des Grundrisses in zwei Halbkreise⁷) oder in mehrere Sektoren müssen die Zwischenwände auf Biegung bemessen werden, im Falle von konzentrischen Kammern nur auf Ringzug und -druck. Derartige Behälter sind als Hochbehälter schon ausgeführt worden⁸) und dürften sich auch als Tiefbehälter gut bewähren.

⁷) Als Beispiel für eine solche Teilung eines großen Behälters (2500 m³ Nutzinhalt) möge genannt werden: Lucan, Der Reinwasserbehälter zu Falkenstein i. V., "Beton u. Eisen" 1927 Heft 6 S. 101.

⁸) Vgl. z. B.: Behälter im Wasserturm zu Rötha, beschrieben im "Handbuch für Eisenbetonbau" Bd. V 3. Aufl. S. 219; ferner Heißwasserbehälter des Güntzbades in Dresden.

Schließlich sei noch als größtes Bauwerk dieser Art ein Wasserbehälter von 22 700 m³ Nutzinhalt in Madison erwähnt⁹). Hier wurde als wirtschaftlich günstigste Grundrißform der Kreis gewählt, mit einem Durchmesser von 62,48 m und einer Wasserhöhe von 7.6 m. Diese Decke ist eine Pilzdecke mit quadratischer Stützenteilung. Der Raum wurde durch eine in Rippen aufgelöste Mittelwand in 2 Kammern geteilt (ähnlich wie bei dem Behälter in Falkenstein), so daß eine radiale Stützenteilung nicht gut gepaßt hätte. Günstiger wäre aber vermutlich die Anordnung einer inneren Ringmauer gewesen, also die Zerlegung des Behälters in eine innere kreisförmige und in eine äußere Ringkammer, in welchem Falle man zwangsläufig zu einer radialen Stützenteilung gekommen wäre.

5. Wassertürme.

Die besprochenen Behälter sind Tiefbehälter, bei welchen nur die obere Decke als Pilzdecke in Frage kam (und die Sohle bei schlechtem Baugrund als umgekehrte Pilzdecke). Bei Wassertürmen kann aber oft auch die, die ganze Wasserlast tragende Behälterschle zweckmäßigerweise als Pilzdecke ausgebildet werden. Von größeren Bauwerken, bei welchen diese Lösung (anstatt der Plattenbalkendecke) mit Vorteil Anwendung hätte finden können, seien genannt:

Wasserturm in Ingolstadt für 1000 m³ ¹⁰),

"

- auf dem Güterbahnhof Osnabrück für 1000 m³,
- der Reichsstickstoffwerke Piesteritz bei Wittenberg für " 2200 m³.

In dem Ingolstädter Turm befinden sich 2, in dem Osnabrücker 4 Geschoßdecken unter dem Behälter, für welche Decken dasselbe gilt, wie für die tragenden Sohlen.

6. Planetarium in Mannheim¹¹).

Hier handelt es sich um eine kreisförmige Kellerdecke mit einem lichten Durchmesser von 26,36 m (Abb. 6). Im Gegensatz zu den vorerwähnten Beispielen wurde bei diesem Bau der Grundriß in einen inneren Kreis und in konzentrische Ringe zerlegt, was die natürlichste Grundrißgestaltung von größeren zylindrisch begrenzten Räumen ist.

Die Anordnung von lauter vollen, durchgehenden tragenden Mauern ist meistens nicht möglich, auch ist eine solche Lösung wegen des großen Massenaufwandes, besonders bei hohen Räumen, nicht wirtschaftlich. Es ist meistens vorteilhafter, wenn die Mauern durch Stützen ersetzt werden, welche konzentrische, regelmäßige Vielecke bilden. Die Stützen können durch kreisförmig oder polygonal geführte Träger verbunden werden, wodurch eine Plattenbalkendecke entsteht, bzw. man kann auch in diesem

⁹) Der Bau eines gedeckten 22 700 m³-Eisenbeton-Wasserbehälters in Madison (Wisc.), "Beton u. Eisen" 1927 Heft 20 S. 389.

 ¹⁰ "Handbuch für Eisenbetonbau" a. a. O. S. 234-240.
 ¹¹ Das Planetarium in Mannheim, "Deutsche Bauzeitung" Konstruktion und Ausführung 1927 Nr. 15 S. 101; ferner "Handbuch für Eisenbetonbau" 3. Aufl., Bd. XII S. 306.

I. Einleitung.

Fall, wie bei rechteckiger Grundrißteilung auf eine solche Zwischenkonstruktion verzichten und zu der in vieler Hinsicht günstigeren Pilzdecke übergehen.

Abb. 6. Planetarium Mannheim. Querschnitt.

Aus den angeführten Beispielen, die noch weiter fortgesetzt werden könnten, geht hervor, daß die Überdeckung großer kreisförmiger Grundflächen mittels Flachdecken hauptsächlich in folgenden Fällen vorkommt:

- 1. Bei kreisrunden Flüssigkeitsbehältern, und zwar sowohl bei Tiefbehältern, als auch bei Wassertürmen;
- 2. unter Kuppeln (Planetarien und dergl.).

Querschnitt.

In diesem Zusammenhang sei auf die großen Fortschritte hingewiesen, welche in den letzten Jahren durch das neue Kuppelbau-System ZeißDywidag erzielt worden sind ¹²). Dieses System eröffnet große Zukunftsmöglichkeiten für den Bau von Massivkuppeln, welche in vielen Fällen die ebene Überdeckung von kreisförmigen Grundflächen mit sich bringen. Es kommen sogar unter solchen Kuppeln auch mehrere übereinanderliegende Decken vor, wofür als Beispiel die Schottkuppel in Jena (aus dem Jahre 1923) dienen möge (bei welcher natürlich noch Rippendecken zu sehen sind). (Abb. 7). Dieser Bau ist in den in Fußnote 12 angegebenen Quellen beschrieben.

Die vorstehenden Erörterungen dürften genügen, um nachzuweisen, daß die Berechnung kreisförmig begrenzter Pilzdecken ein praktisches Bedürfnis ist. Die nachfolgende Arbeit hat den Zweck, die Berechnung solcher Systeme in einer für die Ingenieurpraxis geeigneten Weise zu ermöglichen.

¹²) Dischinger, Fortschritte im Bau von Massivkuppeln, "Der Bauingenieur" 1925 Heft 10 S. 362; ferner "Handbuch für Eisenbetonbau" 3. Aufl. Bd. XII S. 302.

II. Beschreibung des allgemeinen Rechnungsganges. Grundlagen und Voraussetzungen.

Das System, welches den Gegenstand dieser Arbeit bildet: die kreisförmig begrenzte, am Rande stetig, im Innern an den Eckpunkten von konzentrischen, regelmäßigen Vielecken unterstützte Pilzdecke ist eine, im allgemeinen statisch mehrfach unbestimmt gelagerte elastische Kreisplatte. Am Rande kann die Decke frei aufliegen oder elastisch bzw. fest eingespannt sein. Die freie Auflagerung (mit einer entsprechenden Randverdrehung der elastischen Fläche) und die feste Einspannung (mit horizontaler, unverdrehbarer Tangentialfläche am Rande) bilden die Grenzfälle, innerhalb welcher jede Randneigung der elastischen Fläche möglich ist.

Bevor das Problem in seinen Einzelheiten behandelt wird, soll kurz der allgemeine Rechnungsgang, welcher dem bei statisch unbestimmten Systemen üblichen Verfahren genau entspricht, geschildert werden. Der Zweck ist die Ermittlung der Biegungsmomente an einer beliebigen Stelle der Platte infolge einer gegebenen Belastung. Zunächst sei frei drehbare Auflagerung vorausgesetzt. Der Fall einer festen oder teilweisen Randeinspannung wird im V. Abschnitt besprochen.

Als Grundsystem wird die am Rand frei aufliegende elastische Kreisplatte eingeführt, indem jede innere Stütze beseitigt gedacht wird. Die Überzähligen, welche aus den Elastizitätsgleichungen ermittelt werden müssen, sind die Auflagerkräfte dieser Stützen (X_1, X_2, \ldots, X_n) . Die Elastizitätsgleichungen besagen: Die Durchbiegung der Platte in den Stützpunkten ist null, oder — bei nachgiebiger Auflagerung — gleich der von der Nachgiebigkeit des Baugrundes und von der Längenänderung der Stützen abhängigen Senkung der Auflagerpunkte. Die Gleichungen lauten mit den üblichen Bezeichnungen:

$$\begin{array}{c} X_{1} \delta_{11} + X_{2} \delta_{12} + \ldots + X_{n} \delta_{1n} = \delta_{10} \\ X_{1} \delta_{21} + X_{22} \delta_{22} + \ldots + X_{n} \delta_{2n} = \delta_{20} \\ \hline & & \\ \hline & & \\ X_{1} \delta_{n1} + X_{2} \delta_{n2} + \ldots + X_{n} \delta_{nn} = \delta_{n0} \end{array}$$

$$(1)$$

Unter den Größen $X_1, X_2, \ldots X_n$ sind im allgemeinen nicht einzelne Stützenkräfte zu verstehen, die Unbekannten bedeuten vielmehr die Gesamtkraft einer Stützengruppe, auf deren jede Einzelstütze aus Symmetriegründen dieselbe Kraft entfällt. Der Belastungszustand $_{X_i} = -1^{"}$ ist somit derjenige Belastungsfall, in welchem die Gesamtkraft der zur Gruppe X_i gehörenden Stützen = -1 ist, während das Grundsystem im übrigen unbelastet ist. Die Zusammenfassung der Stützen in eine Gruppe ist einerseits vom System selbst, andererseits von der jeweiligen Belastung abhängig. Ist überhaupt keine Symmetrie vorhanden, so bildet als Grenzfall jede Stütze eine Gruppe für sich. Als anderer Grenzfall kann es bei manchen Systemen vorkommen, daß alle Stützen zusammen zu einer einzigen Gruppe gehören. Der Grad der statischen Unbestimmtheit hängt also nicht nur vom System, sondern auch von der Art der Belastung ab, wie dies ja auch bei anderen Tragwerken der Fall ist. Die Anzahl der Stütze entfallenden Auflagerkräfte sind dann $\frac{X_1}{h_1}, \frac{X_2}{h_2}, \cdots, \frac{X_n}{h_n}$. Bei der Berechnung der Platte wird immer eine ganze Gruppe als Einheit betrachtet. Die Bedeutung der Beiwerte ist folgende:

- $\delta_{11} =$ Durchbiegung der Angriffspunkte der Gruppe X_1 im Grundsystem infolge der Belastung $X_1 = -1$, desgl. für X_2 usw.
- infolge der Belastung $X_1 = -1$, desgl. für X_2 usw. $\delta_{12} =$ Durchbiegung der Angriffspunkte der Gruppe X_1 infolge $X_2 = -1$, während
- $\delta_{21} =$ Durchbiegung der Angriffspunkte der Gruppe X_2 infolge $X_1 = -1$ usw. Für die δ -Werte mit gemischten Indizes gilt der Satz von Betti

$$\sum_{1}^{h_{a}} \frac{1}{h_{a}} (\delta_{a b}) = \sum_{1}^{h_{b}} \frac{1}{h_{b}} (\delta_{b a}),$$

woraus $\delta_{ab} = \delta_{ba}$, d. h. die Vertauschbarkeit der Indizes folgt.

 $\delta_{10}, \delta_{20}, \ldots \delta_{n0}$ bedeuten die Durchbiegungen der Angriffspunkte der einzelnen Gruppen im Grundsystem infolge einer gegebenen äußeren Belastung.

Die Vorzeichen werden so gewählt, daß die Belastungen sowie die Durchbiegungen von oben nach unten gerichtet positiv, während bei den Auflagerkräften die von unten nach oben wirkenden positiv bezeichnet werden. Sämtliche Kräfte und Durchbiegungen sind lotrecht. Die Momente sind positiv, wenn sie an der unteren Seite der Platte Zug erzeugen negativ, wenn die Zugspannungen an der Plattenoberfläche entstehen.

Bei der vorstehend angeschriebenen Form der Elastizitätsgleichungen (1) wird stillschweigend vorausgesetzt, daß die Stützpunkte unnachgiebig sind. Soll auch der Einfluß von Stützensenkungen berücksichtigt werden, so sind 2 Fälle zu unterscheiden, je nachdem die Senkungen elastisch oder unelastisch sind.

1. Bei elastisch nachgiebiger Auflagerung seien die Senkungen der Angriffspunkte $X_1, X_2, \ldots X_n$ in den Zuständen $X_1 = -1, X_2 = -1, \ldots$ $X_n = -1$ je $\delta_{1\varepsilon}, \delta_{2\varepsilon}, \ldots \delta_{n\varepsilon}$. Dann muß in den Elastizitätsgleichungen anstatt $\delta_{11}, \delta_{22}, \ldots \delta_{nn}$ gesetzt werden: $\overline{\delta}_{11} = \delta_{11} + \delta_{1\varepsilon}, \ldots \overline{\delta}_{nn} = \delta_{nn} + \delta_{n\varepsilon}$. Alles andere bleibt unverändert.

Hajnal-Kónyi 2

II. Beschreibung des allgemeinen Rechnungsganges.

2. Handelt es sich um unelastische Senkungen, so ermittelt man die daraus entstehenden Stützenkräfte getrennt von dem Einfluß der äußeren Belastung, indem auf der rechten Seite der Elastizitätsgleichungen die einer gegebenen äußeren Belastung entsprechenden Werte $\delta_{10}, \delta_{20}, \ldots, \delta_{n0}$ durch die geschätzten Senkungen der einzelnen Gruppen: $\delta_{1v}, \delta_{2v}, \ldots, \delta_{nv}$ ersetzt werden. Diese Werte sind, wie aus der Theorie der statisch unbestimmten Systeme bekannt, mit negativem Vorzeichen einzuführen.

Ist auch die kreisförmige Umfassung der Pilzdecke nachgiebig (wobei eine gleichmäßige Nachgiebigkeit vorausgesetzt wird), so bedeuten die Werte $\delta_{i_{\varepsilon}}$, $\delta_{i_{v}}$ den Unterschied, um welchen sich die Angriffspunkte der Gruppe X_i gegenüber der Umfassungsmauer senken.

Praktisch dürfte eine Senkung der Auflager kaum in Frage kommen, da bei Pilzdecken für eine möglichst unverschiebliche Auflagerung gesorgt werden muß, es sollte jedoch darauf hingewiesen werden, daß die rechnerische Erfassung des Einflusses von Auflagersenkungen keinerlei Schwierigkeiten verursacht und im Rahmen des hier zu entwickelnden Verfahrens ohne weiteres möglich ist.

Die Elastizitätsgleichungen sind so aufgebaut, daß in der Regel in jeder Gleichung jede Unbekannte vorkommt. Ihre Auflösung erfolgt nach einem der verschiedenen, in der Literatur bekannten Verfahren.

Sind einmal die Überzähligen ermittelt, so ergeben sich die Momente der Pilzdecke nach folgender Gleichung:

$$M = m_g - X_1 m_1 - X_2 m_2 - \dots - X_n m_n \tag{2}$$

Hier bedeutet m_g^{13}) das Moment im Grundsystem infolge der gegebenen Belastung. m_1, m_2, \ldots, m_n sind die Momente im Grundsystem infolge der Belastungszustände $X_1 = -1, X_2 = -1, \ldots, X_n = -1$. Unter den Momenten sind zu unterscheiden:

1. Radiale Biegungsmomente (m_r) ,

2. Tangentiale Biegungsmomente (m_t) ,

3. Drillungsmomente (m_{rt}) .

Über den Stützen wird bei der Berechnung der Stützkräfte Punktlagerung vorausgesetzt, während bei der Ermittlung der Momente in der Nähe der Stützen, insbesondere im Bereich der Stützenköpfe zu beachten ist, daß in Wirklichkeit eine Flächenlagerung vorliegt, worauf noch näher eingegangen wird.

Um den dargestellten Rechnungsgang durchführen zu können, ist es nötig, einerseits die Beiwerte δ der Elastizitätsgleichungen, andererseits die Momente $m_1, \ldots m_n$ infolge der Belastungszustände $X_1 = -1, \ldots X_n = -1$ zu bestimmen.

Die Beiwerte δ_{io} sind die Durchbiegungen des Grundsystems infolge der gegebenen Lasten. Es wird dabei vorausgesetzt, daß die Belastung der Kreisplatte zentralsymmetrisch, d. h. kreis- oder kreisringförmig

¹³) Die sonst im allgemeinen mit dem Index "o" bezeichneten Momente im Grundsystem, die von den äußeren Lasten herrühren, sollen in dieser Arbeit zum Unterschied von später einzuführenden Momenten mit dem Index "g" versehen werden.

ist. Auch Einzelkräfte nach Art der Belastungszustände $X_1 = -1$, ... $X_n = -1$ können zwar auf diese Weise behandelt werden, doch dürften solche Belastungsfälle kaum einen praktischen Wert haben. Die bei der Berechnung von Kreisplatten sehr häufig gemachte Annahme der Zentralsymmetrie der Belastung¹⁴) bedeutet zwar auch hier eine gewisse Einschränkung, die jedoch praktisch kaum ins Gewicht fällt, wie das die im I. Abschnitt betrachteten Beispiele bestätigen. Für Decken von Flüssigkeitsbehältern kommt so gut wie keine Nutzlast in Frage, nur eine zentralsymmetrisch verteilte ständige Last (Erdauflast). Der Schnee ist auch zentralsymmetrisch verteilt und wird allgemein zur ständigen Last zugeschlagen. Bei Tragsohlen von Flüssigkeitsbehältern mit konzentrischen Kammern oder ohne Zwischenteilung des Innenraumes ist die Nutzlast ebenfalls immer zentralsymmetrisch verteilt. Nur bei Decken in gewöhnlichen Hochbauten (unter Kuppeln und dergl.) ist auch eine andere Verteilung der Nutzlast möglich. Für die radialen Biegungsmomente sind bei solchen Decken gleichfalls zentralsymmetrische Belastungsfälle maßgebend.

Für die tangentialen Biegungsmomente sowie für die Drillungsmomente sind bei einer derartig benutzten Decke andere Fälle allerdings ungünstiger. Der Einfluß einer teilweisen, sektorförmigen Belastung gegenüber der Vollbelastung dürfte sich aber praktisch nur dann bemerkbar machen, wenn die Nutzlast im Verhältnis zur ständigen Last groß ist. In Räumen, welche lediglich zur Versammlung von Menschen dienen (Planetarien und die meisten sonstigen Kuppelbauten) beträgt die Nutzlast höchstens 500 kg/m², die ständige Last (Eigengewicht der Decke + Verputz + Belag) kann nie kleiner als 400 kg/m² sein, da ja das Eigengewicht allein mindestens $15.24 = 360 \text{ kg/m^2}$, in den meisten Fällen aber noch mehr ist¹⁶). Das Verhältnis p:g ist also bei solchen Decken im allgemeinen nicht größer als 1,25, vielfach sogar kleiner als 1.

Größere Nutzlasten als 500 kg/m², die nicht zentralsymmetrisch verteilt sind, kommen nur bei Industrie- und Speicherbauten vor, für solche wird aber das hier behandelte System kaum Anwendung finden, weil die Grundrisse im allgemeinen rechteckig sind. Die Berücksichtigung von nicht zentralsymmetrisch verteilten Belastungen tritt demnach bei der Lösung von praktischen Aufgaben hinter der Bedeutung von zentralsymmetrischen Lasten weit zurück. Theoretisch bieten natürlich auch solche Belastungsfälle, bei welchen keine zentrale Symmetrie vorhanden ist, viel Interesse, doch ist ihre Untersuchung eine Aufgabe für sich und würde den Rahmen dieser Arbeit überschreiten. Es ist nur selten möglich, die Probleme gleich in ihrer allgemeinsten Form zu lösen, man muß sich meistens auf Sonderfälle beschränken und das Gesamtproblem in einzelne Teilaufgaben zerlegen.

¹⁴) Dr.-Ing. Schleicher, Kreisplatten auf elastischer Unterlage. Theorie zentralsymmetrisch belasteter Kreisplatten und Kreisringplatten auf elastisch nachgiebiger Unterlage (Berlin 1926, Verlag von Julius Springer).

¹⁵) Nach den "Bestimmungen des Deutschen Ausschusses für Eisenbeton" vom September 1925 A § 14 Ziff. 9 Abs. 3 darf die Plattendicke nicht kleiner als 15 cm sein.

Die Ermittlung der δ_{io} -Werte für einen kreis- oder kreisringförmigen Belastungsfall macht an sich keine Schwierigkeiten, da die Gleichungen der zugehörigen elastischen Flächen bekannt sind ¹⁶). Für die vollbelastete Kreisplatte werden die Durchbiegungen tabellarisch zusammengefaßt.

Durch die Annahme, daß die Belastung zentralsymmetrisch ist, wird die Gruppeneinteilung der Stützen und somit auch der Grad der statischen Unbestimmtheit für ein gegebenes System eindeutig festgelegt.

Die Beiwerte δ_{ii} , δ_{ik} sind die Durchbiegungen des Grundsystems infolge der verschiedenen Belastungszustände $X_1 = -1, \ldots X_n = -1$, also infolge von Einzelkräften, welche in den Eckpunkten von regelmäßigen, konzentrischen Vielecken angreifen. Die Aufgabe ist in dieser Form in der Literatur noch nicht behandelt worden. Sie läßt sich aber auf den Fall einer exzentrischen Einzellast zurückführen, aus welchem man den Gesamteinfluß der vorhandenen Lasten auf die Formänderung durch Superposition erhält. Die Gleichung der elastischen Fläche einer frei aufliegenden, durch eine exzentrische Einzellast beanspruchten Kreisplatte hat A. Föppl¹⁷) abgeleitet. Diese in Form einer Fourierschen Reihe gegebene Lösung wird als Ausgangspunkt der hier anzustellenden Untersuchungen gewählt¹⁵).

Es wird gezeigt, daß die Superposition zu wesentlichen Vereinfachungen führt, welche die zahlenmäßige Anwendung sehr erleichtern. Dabei wird vorausgesetzt, daß die Stützen, welche außerhalb des Kreismittelpunktes liegen, zu Gruppen von mindestens je 4 Stützen zusammengefaßt werden können, eine Annahme, die bei allen praktischen Ausführungen zutrifft. Die durch Superposition gebildete Reihe konvergiert viel schneller als die ursprüngliche von Föppl, da ein großer Teil der Glieder wegfällt. Zur raschen Berechnung der Beiwerte δ_{ii} , δ_{ik} werden mehrere Hilfstafeln aufgestellt. Aus der ersten dieser Hilfstafeln, die dem ersten Glied der er-

¹⁶) Die Gleichungen sind u. a. in folgenden Werken zu finden: A. und L. Föppl, Drang und Zwang Bd. I 2. Aufl. 1924 (Verlag von R. Oldenbourg); Dr.-Ing. Lewe, Pilzdecken (vgl. Fußnote 1); Dr.-Ing. Nádai, Die elastischen Platten (Berlin 1925, Verlag von Julius Springer).

¹⁷) A. Föppl: Die Biegung einer kreisförmigen Platte. Sitzungsberichte der Kgl. bayrischen Akademie der Wissenschaften 1912 S. 155. Die Abhandlung ist auszugsweise wiedergegeben in "Drang und Zwang" Bd. I S. 204. Föppl hat in dieser Arbeit auch die Gleichung der elastischen Fläche einer am Rand fest eingespannten Kreisplatte abgeleitet, was hier der Vollständigkeit halber gleich zu erwähnen ist. Den letzteren Fall hat bereits Clebsch in seinem Buche "Theorie der Elastizität fester Körper" (Leipzig bei Teubner, 1862) behandelt, doch steckt in seinen Formeln ein Rechenfehler, den erst Föppl bemerkt hat.

¹⁸) Eine weitere sehr elegante Lösung für die am Rande fest eingespannte Platte wurde auch von Ing. Dr. techn. Ernst Melan gefunden (Die Durchbiegung einer exzentrisch durch eine Einzellast belasteten Kreisplatte, "Der Eisenbau" 1920 Nr. 10 S. 190). Melan arbeitet mit orthogonalen Kreiskoordinaten und stellt für die Durchbiegung eine einzige, für die ganze Platte gültige geschlossene Formel auf. Obgleich diese Gleichung sehr einfach ist, wenn nur eine einzige Last wirksam ist, eignet sich die Föpplsche Reihe viel besser zu einer Superposition von mehreren, symmetrisch verteilten Einzellasten. Außerdem ist es zweifelhaft, ob man auf dem von Melan eingeschlagenem Weg auch bei freier Auflagerung zu so einfachen Ergebnissen gelangen würde, wie bei fester Einspannung.

wähnten Fourierschen Reihe entspricht und die Hauptwerte von δ_{ii} , δ_{ik} liefert, kann leicht eine weitere gebildet werden, welche die Berechnung von δ_{io}^{\sim} für teilweise Belastung erleichtert und einfacher gestaltet als die unmittelbare Anwendung der zugehörigen Durchbiegungsgleichung.

Für zentralsymmetrische Belastungsfälle sind auch die Formeln der Biegungsmomente m_g bekannt, die Drillungsmomente sind im Grundsystem null. Durch weitere Hilfstafeln wird die zur Auswertung von m_g erforderliche Rechenarbeit auf ein Mindestmaß beschränkt.

Den schwierigsten Teil der ganzen Aufgabe bildet die Ermittlung der Momente $m_1, \ldots m_n$. Hier kann man nicht von bereits bekannten Formeln ausgehen, um durch Superposition den Gesamteinfluß von mehreren gleichen, gleichzeitig wirkenden Einzellasten zu erfassen (wie dies bei der Berechnung der δ_{ii} , δ_{ik} geschieht), da der Momentenverlauf in einer, durch eine exzentrische Einzellast beanspruchten Kreisplatte in der Literatur noch nicht in befriedigender Weise behandelt worden ist. Der Schwerpunkt der nachstehenden Arbeit liegt in der Aufstellung von übersichtlichen, leicht zu handhabenden Formeln für diese Momente, aus welchen sich die gesuchten Biegungsmomente der Platte (M) nach Gl. (2) ohne weiteres ergeben.

Vor der Erörterung des einzuschlagenden Weges erscheint es nötig, den von Föppl unternommenen Versuch zur Momentenermittlung im Falle einer exzentrischen Einzellast kritisch zu besprechen.

In der in Fußnote 17 erwähnten Abhandlung weist Föppl auf den Umstand hin, daß die strenge Lösung der Differentialgleichung in der nächsten Umgebung der belasteten Stelle unendlich große Biegungsspannungen liefert. Da dieses Ergebnis offenbar nicht richtig ist, so folgert Föppl, "daß die Differentialgleichung keinen brauchbaren Ausgangspunkt für eine Theorie bildet, die zur Berechnung der Biegungsspannungen führen soll" (S. 160). Anstatt der strengen Lösung stellt Föppl eine Näherungslösung für die elastische Fläche auf, die aus nur 3 Gliedern besteht. Die zugehörigen drei von den Randbedingungen unabhängigen Konstanten werden aus der Bedingung bestimmt, daß bei der wahren Gestalt der elastischen Fläche die virtuelle Arbeit der Last für jede virtuelle Formänderung der virtuellen Änderung der in der Platte aufgespeicherten Formänderungsarbeit (der Änderung der potentiellen Energie) gleich ist. Auf diese Weise ergibt sich nach einer sehr langwierigen Rechnung eine recht gute Näherungsgleichung für die elastische Fläche. Der Unterschied in dem Biegungspfeil nach der strengen und nach der Näherungslösung beträgt im ungünstigsten Fall nur 7º/o. Zur Berechnung der Durchbiegungen wäre also die Näherungslösung an sich brauchbar, Föppl erblickt aber ihre Bedeutung darin, daß die Krümmung auch an der Lastangriffsstelle nicht unendlich wird, also die Näherungslösung in dieser Hinsicht der Wirklichkeit eher entspricht als die strenge. Infolgedessen betrachtet er seine Näherung als eine "Verbesserung" der strengen Lösung, die sich nach seiner Ansicht "jedenfalls mehr als diese für die Festigkeitsberechnung eignet". Die aus der Näherungslösung abgeleiteten Formeln für die Biegungsspannungen haben sich jedoch bei Versuchen mit Platten aus Fensterglas nicht genügend bewährt, weshalb auf ihre Wiedergabe in "Drang und Zwang" (wo die strenge Lösung für die fest eingespannte Platte mitgeteilt wird) verzichtet wurde.

Daß die von Föppl angewendete Methode nicht zum gewünschten Ergebnis geführt hat, ist nicht überraschend. In der Tat kommt es bei der Momentenermittlung auf die Krümmungsverhältnisse und nicht auf die Durchbiegungen der Platte an, und es ist nicht zu erwarten, daß eine Gleichung, die von der "theoretisch strengen Lösung" diesbezüglich in ziemlich willkürlicher Weise abweicht, Werte liefert, welche mit der Wirklichkeit trotzdem übereinstimmen.

Der wahre Grund, warum die "strenge Lösung" in ihrer ursprünglichen Form zur Ermittlung der Biegungsspannungen in unmittelbarer Nähe der Lasteintragungsstelle nicht geeignet ist, liegt darin, daß die Lasteintragung in Wirklichkeit niemals "punktförmig" ist, wie bei der Differentialgleichung vorausgesetzt wird, sondern auf einer Fläche geschieht, deren Breite im allgemeinen (bei Pilzdecken immer) größer ist, als die Plattenstärke. Dieser Umstand wird durch die Lösung von Föppl nicht erfaßt. Aus dem Widerspruch zwischen Wirklichkeit und Berechnung schließt er auf die Unbrauchbarkeit der strengen Lösung, anstatt deren Voraussetzungen zu prüfen¹⁹).

Die Richtigkeit der Differentialgleichung als solcher und ihre Brauchbarkeit für die Momentenermittlung kann aber nicht bezweifelt werden, sofern die Voraussetzungen den wahren Verhältnissen entsprechen. Die genaue Lösung kann in der Tat an keiner Stelle der Platte zu unendlich großen Spannungen führen, wenn sie wirklich "genau" ist, d. h. wenn bei der Spannungsberechnung die tatsächliche Größe der Lasteintragungsfläche eingeführt und die Annahme einer "punktförmigen" Belastung verlassen wird. Die Berücksichtigung der Art der Lasteintragung ist jedoch nur in unmittelbarer Nähe der Lastangriffsstelle nötig, schon in verhältnismäßig geringer Entfernung ist es gleichgültig, ob die Last "in einem Punkt konzentriert" oder auf eine kleine Fläche verteilt angenommen wird. Diese Tatsache wurde bereits von de Saint-Venant erkannt und von ihm als das Prinzip "der elastischen Gleichwertigkeit statisch gleichwertiger Lastensysteme" ausgesprochen. Bei der Untersuchung des elastischen Verhaltens eines Körpers in einiger Entfernung von der Lastangriffsstelle kann nach diesem Prinzip der Unterschied zwischen der Wirkung der wirklichen Lasten und ihrer Resultierenden vernachlässigt werden. Die Größe der Entfernung, außerhalb welcher diese Vernachlässigung zulässig ist, hängt von der

¹⁹) In seinen späteren Arbeiten, insbesondere in "Drang und Zwang" Bd. I S. 150, § 30 S. 196 ff., sowie Bd. II § 83 S. 155 ff. beschäftigt sich Föppl eingehend mit den Spannungsverhältnissen einer Platte in der Nähe der Lastangriffsstelle. In § 32 jedoch, wo die Kreisplatte mit einer exzentrischen Einzellast besprochen wird, gibt er keine Erklärung dafür, warum die von ihm abgeleitete Näherungsformel für die Biegungsspannungen durch Festigkeitsversuche nicht bestätigt wurde. Es erschien daher notwendig, diese Frage hier etwas ausführlicher zu erörtern, denn es mußte begründet werden, daß trotz der widersprechenden Ansicht Föppls die strenge Lösung der Differentialgleichung als Grundlage der Momentenermittlung gewählt werden konnte.

Eigenart der einzelnen Fälle ab und kann nicht ein für alle Male angegeben werden, im allgemeinen ist sie sehr klein.

Das Prinzip von de Saint-Venant hat auf die Entwicklung der Elastizitätstheorie sehr befruchtend gewirkt. Bei der vorliegenden Aufgabe ist dasselbe ebenfalls mit gutem Erfolg anwendbar, indem man die Föpplsche Durchbiegungsgleichung einer durch eine exzentrische Einzellast beanspruchten elastischen Kreisplatte zum Ausgangspunkt der Ermittlung der Momente $m_1, \ldots m_n$ wählt und die nahe Umgebung der Lastangriffsstellen, den Bereich der Stützenköpfe, von dem Gültigkeitsbereich der Lösung ausschließt. Wie die Bereiche innerhalb der Stützenköpfe zu behandeln sind, hat Nádai²⁰) in einem Sonderfall gezeigt. Bei der Untersuchung der durch eine Einzelkraft in der Mitte belasteten Kreisplatte hat er zunächst vorausgesetzt, daß die Last innerhalb eines Kreises gleichmäßig verteilt auf die Platte übertragen wird. Auf diese Weise wird die Kreisplatte in ein inneres, belastetes Kreisgebiet und in ein äußeres, unbelastetes Ringgebiet zerlegt. Im äußeren Gebiet gilt die homogene, im inneren die inhomogene Plattengleichung, welche durch die Stetigkeitsbedingung am Randkreis miteinander verknüpft sind. Daraus ergeben sich in beiden Gebieten verschiedene Ausdrücke für die Momente. Der Halbmesser des Druckkreises (c) kann gegenüber dem Halbmesser des Randkreises (a) beliebig klein angenommen werden und die Momente bleiben auch im inneren Bereich endlich, solange das Verhältnis der beiden Halbmesser $\frac{c}{a}$ nicht zu 0 (bzw.

der reziproke Wert nicht zu ∞) wird.

Die zahlenmäßigen Ergebnisse, zu welchen Nadai gelangt, indem er seine Lösung für das äußere (Ring-)Gebiet mit derjenigen für eine "punktförmig" angreifende Einzellast vergleicht, bestätigen den sehr guten Annäherungsgrad des de Saint-Venantschen Prinzips schon unmittelbar am Rand der Lasteintragungsfläche, wenn das Verhältnis $\frac{c}{a}$ klein, z. B. 0,1 ist. Man beherrscht also den Spannungszustand einer durch eine Einzellast beanspruchten Platte außerhalb der Lasteintragungsfläche mit völlig ausreichender Näherung durch die für die Einzelkraft gültige Lösung. Innerhalb der Lasteintragungsfläche können die Momente ebenfalls mit Hilfe dieser Lösung ermittelt werden, wenn man die Angriffsfläche der Einzellast mit einem kreisförmigen Schnitt aus der Platte herausschneidet, die "konzentrierte" Kraft auf die herausgeschnittene Fläche nach irgendeinem Gesetz zentralsymmetrisch verteilt und am Rande der abgetrennt gedachten Lasteintragungsfläche diejenigen Momente anbringt, welche in diesem Schnitt bei Punktbelastung wirken würden.

Die Art der Druckverteilung innerhalb der Lastangriffsfläche ist von verhältnismäßig untergeordneter Bedeutung. Nádai untersucht die in Abb. 8 dargestellten 4 Fälle (a. a. O. S. 65). Das Zusatzmoment, welches aus der Belastung des Druckkreises entsteht, ist im Fall 4 zwar doppelt so groß, wie im Fall 1, das Gesamtmoment aber, welches sich nach Anbringen der

²⁰⁾ Nádai a. a. O. S. 58.

Randmomente ergibt, nimmt bei einem Verhältnis $\frac{c}{a} = 0,1$ im Fall 4 gegenüber dem Fall 1 nur um etwa $25^{0}/_{0}$ zu.

Die vorstehend an dem Beispiel einer durch eine zentrische Einzellast beanspruchten Kreisplatte erläuterte Methode läßt sich weitgehend verallgemeinern. Nádai sagt hierüber folgendes (S. 65-66):

"Nachdem der Spannungszustand einer beliebigen Platte in der Umgebung der Angriffsstelle einer (nicht auf dem Rande angreifenden) Einzelkraft sich nur um einen stetigen Spannungszustand mit den Momenten m_x , m_y , m_{xy} von dem obigen unterscheidet, kann die Regel zur Ermittlung der Biegungsbeanspruchung von Platten auf beliebige Randbedingungen und Randkurven erweitert werden, wenn die Kraft genügend stark konzentriert ist, um

die Abmessungen ihrer Angriffsfläche als klein gegen die übrigen Abmessungen ansehen zu dürfen, und wenn die Druckverteilung nicht zu stark von einer der Umdrehungsflächen (Abb. 8) abweicht."

Die hier ausgesprochenen Voraussetzungen treffen für die kreisförmig begrenzte Pilzdecke im allgemeinen zu.

Der Halbmesser der Lastangriffsfläche ist meistens nicht nur im Verhältnis zum Halbmesser der Gesamtfläche, sondern auch im Verhältnis zum gegenseitigen Stützenabstand (worauf es hauptsächlich ankommt) sehr klein. Der Einfluß einer Stützenkraft im Bereich des betr. Stützenkopfes ist gegenüber allen anderen Einflüssen so überwiegend, daß die Nádaische Näherung nach Anbringen der aus der allgemeinen Lösung erhaltenen Momente am Rande der herausgeschnitten gedachten Stützenkopffläche genügt. Die wirkliche Form der Stützenkopffläche und der Stützenkopfplatte (Kreis, Achteck, Quadrat usw.) ist dabei gleichgültig, was von Lewe (a. a. O. S. 115) nachgewiesen wurde²¹).

Praktisch ist übrigens die Momentenermittlung im Bereiche der Stützenköpfe gar nicht notwendig, weil für die Bemessung der Platte über den Stützen die Momente in den Randquerschnitten der Stützenköpfe maßgebend sind. Infolge des monolithischen Zusammenhanges zwischen Platte und Stütze ist der wirksame Querschnitt der Pilzdecke im Bereich der Stützenköpfe bedeutend höher, als die eigentliche Plattenstärke, so daß in diesen Bereichen bei normaler Ausbildung der Stützenköpfe die Beanspruchungen der Platte trotz der größeren Momente kleiner bleiben, als am Stützenkopfrand, wie das verschiedene eigene Untersuchungen von gewöhnlichen Pilzdecken zeigen, die der Verfasser durchgeführt hat.

Auf Grund der in diesem Abschnitt entwickelten Überlegungen gelangt man zu folgendem Wege für die Ermittlung der Momente m_1, \ldots, m_n :

Die Gleichung der elastischen Fläche einer, durch eine exzentrische Einzellast beanspruchten, am Rande frei aufliegenden Kreisplatte ist durch

²¹) Die Lösung von Lewe ist nicht einwandfrei, eine Ergänzung bzw. Berichtigung hat Dr.-Ing. Craemer veröffentlicht (Die Beanspruchung von Pilzdecken in der Nähe des Stützenkopfes, "Der Bauingenieur" 1926 Heft 27 S. 534).

die Lösung von Föppl in Form einer Fourierschen Reihe gegeben. Aus dieser Gleichung wird durch Superposition die Gleichung der elastischen Fläche infolge einer Gruppe von zentralsymmetrisch verteilten, gleichen Einzellasten (Belastungszustände $X_1, X_2, \ldots X_n$) abgeleitet, welche zur Berechnung der δ_{ii} , δ_{ik} -Werte, der Koeffizienten der Elastizitätsgleichungen dient. Die durch Superposition erhaltene Reihe ist im ganzen Bereich der Platte einschließlich der Lastangriffspunkte absolut und gleichmäßig konvergent (sie konvergiert viel schneller als die ursprüngliche von Föppl). Ihre ersten und zweiten Ableitungen sind, mit Ausnahme der Lastangriffsstellen, ebenfalls absolut und gleichmäßig konvergent. Die aus der Plattentheorie bekannten Ausdrücke für die Momente (s. S. 46) sind also in dem zu untersuchenden Bereich, aus welchem die Stützenkopfflächen ausgeschlossen sind, auch als absolut und gleichmäßig konvergente Reihen darstellbar²²). Diese Reihen sind jedoch in der Form, wie sie sich aus der Ableitung ergeben, zur unmittelbaren zahlenmäßigen Anwendung wenig geeignet, da sie in einem großen Gebiet der Platte, insbesondere am Rand der Stützenköpfe, nur langsam konvergieren. Durch einige Kunstgriffe ist es möglich. zu geschlossenen Formeln zu gelangen, welche bequem ausgewertet und tabellarisch zusammengefaßt werden können. In gewissen Teilen der Platte konvergieren die Reihen so schnell, daß teilweise auch Vereinfachungen möglich sind.

Sind die Überzähligen $X_1, \ldots X_n$ aus den Elastizitätsgleichungen ermittelt worden und sind andererseits die Momente $m_1, m_2, \ldots m_n$ bekannt, so ist die gestellte Aufgabe gelöst, die Momente können nach Gl. (2) an einer beliebigen Stelle der Platte — mit Ausnahme der Bereiche der Stützenköpfe — berechnet werden. Innerhalb der Stützenköpfe kann die Berechnung nach Nádai durchgeführt werden, was sich jedoch meistens erübrigen dürfte.

²²) Die Konvergenz der Reihen bleibt natürlich auch innerhalb der Stützkopfflächen erhalten, nur die theoretischen Lastangriffspunkte selbst bilden singuläre Stellen. Es ist aber im Sinne der vorangegangenen Erörterungen zu beachten, daß der einer theoretischen Punktlagerung entsprechende Momentenverlauf im Bereich der Stützenköpfe gestört wird, daß also die Reihen, welche außerhalb der Stützenköpfe die Momente darstellen, innerhalb derselben trotz der Konvergenz ihre Bedeutung als Momente verlieren.

III. Ermittlung der Formänderungsgrößen δ.

A. Die Durchbiegungen δ_{ii} , δ_{ik} .

1. Superposition der Föpplschen Reihe.

Die Gleichung der elastischen Fläche einer durch eine exzentrische Einzellast belasteten Kreisplatte lautet nach der von Föppl gegebenen Reihenentwicklung wie folgt:

 $w = R_0 + R_1 \cos \varphi + R_2 \cos 2\varphi + \dots + R_n \cos n\varphi + \dots$ (3) Es werden dabei auf der Kreisplatte folgende Bezeichnungen gewählt (s. Abb. 9):

a = Halbmesser der Kreisplatte

r =der veränderliche Abstand der untersuchten Stelle Q vom Kreismittelpunkt

Abb. 9.

p = Abstand der Lastangriffsstelle P vom Kreismittelpunkt.

Durch den Kreis mit dem Halbmesser p wird die Kreisplatte in zwei Teilgebiete zerlegt, in ein inneres mit $r \leq p$ und in ein äußeres mit $r \geq p$. In der Reihenentwicklung (3) bedeutet w die Durchbiegung der elastischen Fläche, φ den von r und p gebildeten Winkel. Die "R" sind Funktionen des veränderlichen r. Die Ausdrücke für "R" werden später (S. 23) ausgeschrieben. Sie sind für die beiden Teilgebiete der Kreisplatte verschieden, für $r \ge p$ werden sie mit R, für $r \le p$ mit R' bezeichnet und gehen auf dem Grenzkreis r = p ineinander über (was eine selbstverständliche Stetigkeitsbedingung ist). Diese "R"-Funktionen müssen den Randbedingungen angepaßt werden, sie sind also verschieden, je nachdem die Platte am Rande frei aufliegt oder eingespannt ist. Nachstehend wird am Rande freie Auflagerung vorausgesetzt.

Greifen gleichzeitig h gleiche, zentralsymmetrisch verteilte Einzellasten an, so ergibt sich die Gleichung der elastischen Fläche der Kreisplatte durch Superposition:

$$w = \sum_{k=0}^{h-1} (R_0 + R_1 \cos \varphi_k + R_2 \cos 2\varphi_k + \dots + R_n \cos n\varphi_k + \dots)$$
(4)

wo mit $k=0, 1, 2, \dots (h-1)$ die Eckpunkte des regelmäßigen Vieleckes bezeichnet werden, in welchen die Lasten wirken. Sämtliche Funktionen R enthalten die Einzelkraft P als Faktor in der ersten Potenz. In dem Zustand $X_i=-1$ betragen die Einzelkräfte (die nach unten gerichtet und somit für die Platte als positiv einzuführen sind) je $\frac{1}{h_i}$, wo einfachheitshalber der Index *i* weggelassen werden kann, da hier eine beliebige symmetrische Lastengruppe betrachtet wird. Die Funktionen R seien für P=1 mit \overline{R} bezeichnet (also $R=P\overline{R}$), dann kann Gl. (4) wie folgt umgeformt werden:

$$w = \overline{R}_{0} + \frac{1}{h} \overline{R}_{1} \sum_{k=0}^{h-1} \cos \varphi_{k} + \frac{1}{h} \overline{R}_{2} \sum_{k=0}^{h-1} \cos 2 \varphi_{k} + \cdots + \frac{1}{h} \overline{R}_{n} \sum_{k=0}^{h-1} \cos n \varphi_{k} + \cdots$$

$$(4 a)$$

Nun ist

$$\varphi_k = \varphi + k \frac{2\pi}{h} \tag{5}$$

Das n-te Glied von Gl. (4 a) lautet daher in allgemeinster Form:

$$\frac{1}{h} \overline{R}_n \sum_{k=0}^{h-1} \cos n \left(\frac{2 \pi k}{h} + \varphi \right)$$

Von diesem Summenglied läßt sich nachweisen, daß

$$\frac{1}{h} \overline{R}_{n} \sum_{k=0}^{h-1} \cos n \left(\frac{2 \, k \, \pi}{h} + \varphi \right) = \frac{0}{\overline{R}_{n} \cos n \, \varphi}, \text{ wenn } n \stackrel{\pm}{=} p \, h, \qquad (6)$$

$$n = 1, 2, 3, \ldots$$

$$h = 2, 3, 4, \ldots$$

$$p = 1, 2, 3, \ldots$$

wobei

Der Beweis läßt sich unter Zuhilfenahme von komplexen Größen sehr einfach wie folgt führen:

Es sei vorübergehend gesetzt:

$$\frac{2\pi n}{h} = \alpha, \ n \varphi = \beta$$

Dann ist

$$\sum_{k=0}^{h-1} [\cos (\alpha k + \beta_{l} + i \sin (\alpha k + \beta)] = \sum_{k=0}^{h-1} e^{i(\alpha k + \beta)} = e^{i\beta} \sum_{k=0}^{h-1} e^{i\alpha k} = e^{i\beta} \left[1 + e^{i\alpha} + e^{2i\alpha} + \dots + e^{(h-1)i\alpha}\right] = e^{i\beta} \frac{1 - e^{i\alpha h}}{1 - e^{i\alpha}} = e^{i\beta} \frac{e^{i\alpha} \frac{1}{2} \left(\frac{i\alpha h}{2} - e^{-\frac{i\alpha h}{2}}\right)}{e^{i\alpha} \left(\frac{i\alpha}{2} - e^{-\frac{i\alpha h}{2}}\right)} = e^{i\beta} \cdot e^{i\alpha} \frac{h-1}{2} \frac{\sin \frac{\alpha h}{2}}{\sin \frac{\alpha}{2}} = e^{i\left[\frac{\alpha h-1}{2} + \beta\right]} \cdot \frac{\sin \frac{\alpha h}{2}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} \frac{\sin \frac{\alpha h}{2}}{\sin \frac{\alpha}{2}}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} - e^{-\frac{i\alpha}{2}}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} - e^{-\frac{i\alpha}{2}}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} - e^{-\frac{i\alpha}{2}}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} - e^{-\frac{i\alpha}{2}}}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} = e^{i\beta} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} + \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} \cdot \frac{e^{i\alpha} \frac{h-1}{2} + \beta}{\sin \frac{\alpha}{2}} + \frac{e^{i\alpha} \frac{h-1}{2}$$

Trennt man wieder den reellen und den imaginären Teil voneinander, so wird

$$\sum_{k=0}^{h-1} \cos \left(\alpha k + \beta \right) = \cos \left[\frac{\alpha}{2} \left(h - 1 \right) + \beta \right] \frac{\sin \frac{\alpha h}{2}}{\sin \frac{\alpha}{2}}$$
(7)

$$\sum_{k=0}^{h-1} \sin\left(\alpha \, k + \beta\right) = \sin\left[\frac{\alpha}{2} \left(h - 1\right) + \beta\right] \frac{\sin\frac{\alpha \, h}{2}}{\sin\frac{\alpha}{2}} \tag{8}$$

oder mit den ursprünglichen Bezeichnungen:

$$\sum_{k=0}^{h-1} \cos n \left(\frac{2k\pi}{h} + \varphi\right) = \cos n \left[\pi - \frac{\pi}{h} + \varphi\right] \frac{\sin n\pi}{\sin \frac{n\pi}{h}}$$
(7a)

$$\sum_{k=0}^{h-1} \sin n \left(\frac{2 k \pi}{h} + \varphi\right) = \sin n \left[\pi - \frac{\pi}{h} + \varphi\right] \frac{\sin n \pi}{\sin \frac{n \pi}{h}}$$
(8 a)

Der Zähler des zweiten Faktors ist immer null, so daß der ganze Ausdruck null ist, wenn der Nenner $\neq 0$, d. h. wenn $n \neq ph$. Damit ist der erste Teil des Satzes und auch der entsprechende Sinussatz bereits bewiesen. Ist dagegen n = ph, so wird auch der Nenner null und

$$\frac{\sin n \pi}{\sin \frac{n \pi}{h}} = \pm h$$

Das positive Vorzeichen gilt, wenn $\left(n-\frac{n}{h}\right) = (n-p)$ eine gerade Zahl ist, das negative, wenn (n-p) eine ungerade Zahl ist. Somit ist

$$\sum_{k=0}^{h-1} \cos n \left(\frac{2 k \pi}{h} + \varphi\right) = \pm h \cos \left[(n-p)\pi + n\varphi\right] = h \cos n\varphi^{23}$$

$$\sum_{k=0}^{h-1} \sin n \left(\frac{2 k \pi}{h} + \varphi\right) = \pm h \sin \left[(n-p)\pi + n\varphi\right] = h \sin n\varphi$$

was zu beweisen war.

²³) cos $[(n-p)\pi + n\varphi] = \frac{\cos n\varphi}{-\cos n\varphi}$, wenn (n-p) eine gerade ungerade Zahl ist. Dasselbe gilt für sin $[(n-p)\pi + n\varphi]$.

Aus Gl. (6) folgt, daß in Gl. (4a) sämtliche Glieder verschwinden, deren Indizes nicht Vielfache von h sind. Die Reihe (4a) reduziert sich also auf folgende Glieder:

 $w = \overline{R}_0 + \overline{R}_h \cos h\varphi + \overline{R}_{2h} \cos 2h\varphi + \dots + \overline{R}_{ph} \cos ph\varphi + \dots$ (4b)

h=2 und h=3 kommen praktisch kaum vor. h=4 ist der bei weitem wichtigste Fall.

2. Die Funktionen R_0 , R_n bzw. η_0 , η_n .

Föppl gibt sowohl für das innere Gebiet $(r \leq p)$ als auch für das äußere $(r \geq p)$ 3 verschiedene Ausdrücke an: R_0, R_1, R_n . Von diesen kann R_1 nachstehend ganz außer acht gelassen werden, da dieses Glied bei der Superposition herausfällt. Bei der Ermittlung der δ_{ii}, δ_{ik} -Werte kann man sich auf das äußere Gebiet beschränken, da $\delta_{ik} = \delta_{ki}$, zu der Momentenberechnung müssen jedoch beide Gebiete herangezogen werden.

Bei freier Auflagerung ist nach Föppl a. a. O. S. 177 für $r \ge p$ (äußeres Gebiet)

$$R_{0} = \frac{Pa^{2}}{8K\pi} \left\{ \frac{3m+1-(m-1)\frac{p^{2}}{a^{2}}}{2(m+1)} \left(1-\frac{r^{2}}{a^{2}}\right) - \frac{r^{2}+p^{2}}{a^{2}} \ln \frac{a}{r} \right\}^{24} \right\}$$
(9a)

$$R_{n} = \frac{Pa^{2}}{8K\pi} \cdot \frac{1}{n(n-1)} \left\{ \left(\frac{p}{r}\right)^{n} \left(\frac{r^{2}}{a^{2}} - \frac{n-1}{n+1} \frac{p^{2}}{a^{2}}\right) + \right\}$$
(10a)

$$+\left(\frac{r}{a}\cdot\frac{p}{a}\right)^{n}\frac{(m+1)(n-1)\frac{p^{2}}{a^{2}}-(3m+1)n+(m+1)(n-1)\frac{r^{2}}{a^{2}}+(m-1)\frac{n(n-1)}{n+1}\frac{p^{2}r^{2}}{a^{4}}}{m(2n+1)+1}\right)$$

für
$$r \leq p$$
 (inneres Gebiet)

$$R_{0}' = \frac{Pa^{2}}{8K\pi} \left\{ \frac{3m+1-(m-1)\frac{r^{2}}{a^{2}}}{2(m+1)} \left(1-\frac{p^{2}}{a^{2}}\right) - \frac{r^{2}+p^{2}}{a^{2}} \ln \frac{a}{p} \right\}$$
(9b)

$$R_{n}' = \frac{Pa^{2}}{8K} \cdot \frac{1}{n(n-1)} \left\{ \left(\frac{r}{p}\right)^{n} \left(\frac{p^{2}}{a^{2}} - \frac{n-1}{n+1} \frac{r^{2}}{a^{2}}\right) + \right.$$
(10 b)

$$\left. + \left(\frac{r}{a} \cdot \frac{p}{a}\right)^n \frac{(m+1)(n-1)\frac{p^2}{a^2} - (3m+1)n + (m+1)(n-1)\frac{r^2}{a^2} + (m-1)\frac{n(n-1)}{n+1}\frac{p^2r^2}{a^4}}{m(2n+1)+1} \right|$$

In diesen Formeln bedeutet:

m die Poissonsche Verhältniszahl, $K = \frac{m^2 E h^3}{12 (m^2 - 1)}$ die "Plattensteifigkeit", h^{25}) die Plattenstärke,

²¹) Mit $ln^{"}$ wird nachstehend stets der natürliche Logarithmus bezeichnet. Das Argument des $ln^{"}$ wird immer so geschrieben, daß es ≥ 1 ist, damit der ln positiv bleibt.

²⁵) Es ließ sich nicht vermeiden, manchen Buchstaben, so z.B. h, i, m, p für zwei verschiedene Begriffe zu verwenden, der Unterschied ist jedoch so offensichtlich, daß kein Mißverständnis entstehen kann.

- E den Elastizitätsmodul des Plattenmaterials,
- P die angreifende Einzellast. In den Gl. (4a) und (6) wurde P = 1 vorausgesetzt,
- p, r, a sind aus der Abb. 9 zu erkennen.

Im folgenden sei der reziproke Wert von m eingeführt $v = \frac{1}{m}$ und die Plattensteifigkeit nach Nádai mit N bezeichnet:

$$N = \frac{Eh^3}{12\left(1 - \nu^2\right)}.$$

Die Rechenarbeiten werden wesentlich vereinfacht, wenn anstatt der Längen Verhältniszahlen eingeführt werden. Es wird daher in dieser ganzen Arbeit grundsätzlich immer nur mit Verhältniszahlen gerechnet und alles auf eine Kreisplatte mit dem Halbmesser 1 bezogen. Es sei

$$\frac{p}{a} = \varrho, \quad \frac{r}{a} = a, \quad 0 \leq \varrho < 1, \quad 0 \leq a \leq 1,$$

ferner für das äußere Gebiet

$$a \ge \varrho, \left(\frac{\varrho}{a}\right)^h = \xi^h = \vartheta \quad 0 \le \vartheta \le 1$$

analog für das innere Gebiet

$$\begin{split} a &\leq \varrho, \left(\frac{a}{\varrho}\right)^h \Longrightarrow \xi'^h \Longrightarrow \vartheta' \quad 0 \leq \vartheta' \leq 1\\ (a \, \varrho)^h &\equiv \zeta^h \Longrightarrow \lambda \quad \vartheta \geq \lambda \end{split}$$

und

(das Gleichheitszeichen gilt nur am Rande, wo $\alpha = 1$).

h bedeutet die Anzahl der zu einer Gruppe gehörenden Stützen. Außerdem sei $h \varphi = \psi$, wovon erst später Gebrauch gemacht wird. Durch Einsetzen der Verhältniszahlen ergeben sich folgende Formeln:

für $\alpha \geq \varrho$ (äußeres Gebiet)

$$R_{0} = \frac{Pa^{2}}{8N\pi} \left\{ \frac{3+\nu-(1-\nu)\varrho^{2}}{2(1+\nu)} \left(1-a^{2}\right) - \left(a^{2}+\varrho^{2}\right) \ln \frac{1}{a} \right\}$$
(9a')

$$R_{n} = \frac{Pa^{2}}{8N\pi} \left\{ \frac{1}{n} \left(\frac{\varrho}{a} \right)^{n} \left(\frac{a^{2}}{n-1} - \frac{\varrho^{2}}{n+1} \right) + \frac{(a\,\varrho)^{n}}{2\,n+1+\nu} \left[\frac{1+\nu}{n} (a^{2}+\varrho^{2}) - \frac{3+\nu}{n-1} + \frac{1-\nu}{n+1} (a\,\varrho)^{2} \right] \right\}$$
(10 a')

für $\alpha \leq \rho$ (inneres Gebiet)

$$R_{a'} = \frac{Pa^2}{8N\pi} \left\{ \frac{3 + \nu - (1 - \nu)a^2}{2(1 + \nu)} (1 - \varrho^2) - (a^2 + \varrho^2) \ln \frac{1}{\varrho} \right\}$$
(9b')

$$R_{n}' = \frac{Pa^{2}}{8N\pi} \left\{ \frac{1}{n} \left(\frac{a}{\varrho} \right)^{n} \left(\frac{\varrho^{2}}{n-1} - \frac{a^{2}}{n+1} \right) + \frac{(a\,\varrho)^{n}}{2\,n+1+\nu} \left[\frac{1+\nu}{n} (a^{2}+\varrho^{2}) - \frac{3+\nu}{n-1} + \frac{(1-\nu)(a\,\varrho)^{2}}{n+1} \right] \right\}$$
(10 b')

 $\mathbf{24}$

Nach Gl. (6) verschwinden bei der Superposition alle Glieder R_n , deren Index *n* nicht ein Vielfaches von *h* ist. Es kann also gesetzt werden: n = hp, wo p = 1, 2, 3, ... und h = 4, 6, usw. (je nachdem wieviel Stützen zu einer Gruppe gehören). Auf diese Weise umgeformt wird

$$R_{n} = R_{hp} = \frac{Pa^{2}}{8N\pi} \left\{ \frac{\vartheta^{p}}{hp} \left(\frac{a^{2}}{hp-1} - \frac{\varrho^{2}}{hp+1} \right) + \frac{\lambda^{p}}{2hp+1+\nu} \left[\frac{1+\nu}{hp} \left(a^{2} + \varrho^{2} \right) - \frac{3+\nu}{hp-1} + \frac{1-\nu}{hp+1} \left(a \varrho \right)^{2} \right] \right\} (10a'')$$

$$R_{n}' = R'_{hp} = \frac{Pa^{2}}{8N\pi} \left\{ \frac{\vartheta'^{p}}{hp} \left(\frac{\varrho^{2}}{hp-1} - \frac{a^{2}}{hp+1} \right) + \frac{\lambda^{p}}{2hp+1+\nu} \left[\frac{1+\nu}{hp} \left(a^{2} + \varrho^{2} \right) - \frac{3+\nu}{hp-1} + \frac{1-\nu}{hp+1} \left(a \varrho \right)^{2} \right] \right\} (10b'')$$

$$p = 1, 2, 3, \dots$$

Die letztere Schreibweise wird nur mit Rücksicht auf die Momentenermittlung eingeführt, vorerst wird davon kein Gebrauch gemacht.

Läßt man die Anzahl der Stützen h unendlich werden, so muß win die Gleichung einer mit einer kreisförmigen Schneidenlast belasteten Kreisplatte übergehen. Da in diesem Fall laut Gl. (6) alle R_n verschwinden, wird $w = R_0$, so daß R_0 die Durchbiegungsgleichung der Kreisplatte für eine kreisförmige Schneidenlast darstellt.

Diese Identität wird durch einen Vergleich mit den aus der Literatur bekannten Formeln bestätigt, wobei natürlich die Verschiedenartigkeit der Bezeichnungen zu beachten ist. So ist z. B. dieser Belastungsfall zu finden: 1. In "Drang und Zwang" Bd. I S. 183 Gl. 106;

2. Lewe a. a. O. S. 113 Gl. 21-23²⁶).

Mit $\varrho = 0$ geht R_0 in die Gleichung der elastischen Fläche einer mit einer Einzellast in ihrem Mittelpunkte belasteten Kreisplatte über (Gl. 11 auf S. 112 bei Lewe, Gl. 24 auf S. 60 bei Nádai).

$$w = \frac{Pa^2}{16 N \pi} \left\{ \frac{3+\nu}{1+\nu} \left(1-a^2 \right) - 2 a^2 l n \frac{1}{a} \right\}$$

Die Funktion bleibt auch für $a = \rho = 0$ stetig, da bekanntlich

$$\lim_{x=0} x^2 \cdot \ln \frac{1}{x} = 0.$$

 R_0 und R_n enthalten die Poissonsche Konstante m bezw. deren reziproken Wert ν . Diese Zahl schwankt bei Beton innerhalb ziemlich weiter Grenzen, zu ihrer zuverlässigen Ermittlung müßten noch weitere Versuche durchgeführt werden. Marcus schreibt in seinem bereits erwähnten Buche (S. 36) über die Zahl m wie folgt:

²⁶) Bei Lewe ist allerdings zu bemerken, daß er für das innere Gebiet eine anders gruppierte Formel als Gl. 21 mitteilt, die aber leicht umgestellt werden kann. In der für das äußere Gebiet gültigen Gl. 23 ist im Nenner ein Druckfehler, anstatt 2 $(1 + \mu R^2)$ müßte es heißen: 2 $(1 + \mu) R^2$.

"Obgleich die Ergebnisse der Bachschen Versuche die Vermutung rechtfertigen, daß unmittelbar vor dem Bruch die Zahl m nicht allein von der Grenze $m = \infty$ weit entfernt ist, sondern eher den niedrigsten Werten m = 5 bis m = 2 zustrebt und daß weiterhin in Übereinstimmung mit der alten Bruchtheorie die Plattenfestigkeit k_p höher als die Balkenfestigkeit k_b sein muß, dürfte es vorerst richtiger sein, die für den ungünstigsten Fall $m = \infty$ errechneten Grenzwerte der Hauptbiegungsmomente als maßgebend für die Anstrengung der Platte und somit auch für ihre Querschnittsbemessung zu betrachten."

Auch andere Verfasser ²⁷) machen diese Annahme, deren Zulässigkeit grundsätzlich auch in den "Bestimmungen des Deutschen Ausschusses für Eisenbeton" vom September 1925 dadurch anerkannt wird, daß nach § 17 Ziff. 9 Abs. 4 die trägerlosen Decken durch sich kreuzende Scharen von Längs- und Querbalken ersetzt werden können, die im Zusammenhang mit den Stützen die sog. "stellvertretenden Rahmen" bilden. Die Berechnung dieser "stellvertretenden Rahmen" geschieht ohne Rücksicht auf die Querdehnung des Materials, als ob $\nu = 0$ wäre. Man wird daher in der Praxis auch das hier vorliegende System unter dieser Voraussetzung berechnen, was eine wesentliche Vereinfachung der Formeln ermöglicht.

Mit $\nu = 0$ wird

Äußeres Gebiet:

$$R_{0} = \frac{Pa^{2}}{8 N \pi} \left\{ \frac{3 - \varrho^{2}}{2} (1 - a^{2}) - (a^{2} + \varrho^{2}) l n \frac{1}{a} \right\} (0 \leq \varrho \leq a \leq 1)$$
(11 a)

$$R_{n} = \frac{Pa^{2}}{8 N \pi} \left\{ \frac{1}{n} \left(\frac{\varrho}{a} \right)^{n} \left(\frac{a^{2}}{n - 1} - \frac{\varrho^{2}}{n + 1} \right) + \frac{(a \varrho)^{n}}{2 n + 1} \left[\frac{1}{n} (a^{2} + \varrho^{2}) - \frac{3}{n - 1} + \frac{1}{n + 1} (a \varrho)^{2} \right] \right\} =$$

$$R_{hp} = \frac{Pa^{2}}{8 N \pi} \left\{ \frac{\vartheta^{p}}{h p} \left(\frac{a^{2}}{h p - 1} - \frac{\varrho^{2}}{h p + 1} \right) + \frac{\lambda^{p}}{2 h p + 1} \left[\frac{a^{2} + \varrho^{2}}{h p} - \frac{3}{h p - 1} + \frac{1}{h p + 1} (a \varrho)^{2} \right] \right\}$$
(12 a)

Inneres Gebiet:

$$R_{0}' = \frac{Pa^{2}}{8N\pi} \left\{ \frac{3-a^{2}}{2} (1-\varrho^{2}) - (a^{2}+\varrho^{2}) \ln \frac{1}{\varrho} \right\} (0 \le a \le \varrho < 1)$$
(11 b)
= $Pa^{2} \left\{ \frac{1}{a} (a)^{n} (-\varrho^{2}) - a^{2} (a^{2}+\varrho^{2}) + (a^{2}\rho)^{n} \right\} = \frac{1}{2} \left\{ \frac{1}{a} (a)^{n} (-\varrho^{2}) - a^{2} (a^{2}+\varrho^{2}) + (a^{2}\rho)^{n} \right\} = \frac{1}{2} \left\{ \frac{1}{a} (a)^{n} (-\varrho^{2}) - a^{2} (a^{2}+\varrho^{2}) + (a^{2}\rho)^{n} \right\} = \frac{1}{2} \left\{ \frac{1}{a} (a)^{n} (-\varrho^{2}) - a^{2} (a^{2}+\rho^{2}) + (a^{2}\rho^{2}) + (a^{2}\rho^{2}) + (a^{2}\rho^{2}) + (a^{2}\rho^{2}) + (a^{2}\rho^{2}) \right\}$ (11 b)

$$R_{n}' = \frac{Pa^{2}}{8 N\pi} \left\{ \frac{1}{n} \left(\frac{a}{\varrho} \right)^{n} \left(\frac{\varrho^{2}}{n-1} - \frac{a^{2}}{n+1} \right) + \frac{(a \varrho)^{n}}{2 n+1} \left[\frac{1}{n} (a^{2} + \varrho^{2}) - \frac{3}{n-1} - \frac{1}{n+1} (a \varrho)^{2} \right] \right\} = R_{hp}' = \frac{Pa^{2}}{8 N\pi} \left\{ \frac{\vartheta'^{p}}{hp} \left(\frac{\varrho^{2}}{hp-1} - \frac{a^{2}}{hp+1} \right) + \frac{\lambda^{p}}{2 hp+1} \left[\frac{a^{2} + \varrho^{2}}{hp} - \frac{3}{hp-1} + \frac{1}{hp+1} (a \varrho)^{2} \right] \right\}$$
(12 b)

²⁷) Lewe a. a. O. S. 74; Nádai a. a. O. S. 22.

Bei der Reihenentwicklung für w kann der gemeinschaftliche Faktor $\frac{Pa^2}{8N\pi}$ ausgeklammert werden und es müssen bei der Summation nur die Klammerausdrücke beachtet werden. Es sei der zweifache Wert dieser Klammerausdrücke (der Faktor 2 wird mit Rücksicht auf R_0 eingeführt) mit η_0 bezw. η_n bezeichnet²⁸), d. h.

$$\eta_{0} = (3 - \varrho^{2})(1 - a^{2}) - 2(a^{2} + \varrho^{2}) ln \frac{1}{a}$$

$$\eta_{n} = \frac{2}{n} \left(\frac{\varrho}{a}\right)^{n} \left(\frac{a^{2}}{n-1} - \frac{\varrho^{2}}{n+1}\right) + \frac{2(a\varrho)^{n}}{2n+1} \left[\frac{1}{n}(a^{2} + \varrho^{2}) - \frac{3}{n-1} + \frac{1}{n+1}(a\varrho)^{2}\right]$$

$$0 \leq \varrho \leq a \leq 1.$$

$$(13)$$

$$n = hp$$

Dann wird

$$w = \frac{Pa^2}{16 N\pi} \sum_{n=0}^{\infty} \eta_n \cos n \varphi = \frac{Pa^2}{16 N\pi} \sum_{p=0}^{\infty} \eta_{hp} \cos hp \varphi.$$

Für die Zustände $X_1 = -1, X_2 = -1, \ldots X_n = -1$ ist P = 1, so daß

$$w = \frac{a^2}{16 N \pi} \sum_{p=0}^{\infty} \eta_{hp} \cos h p \varphi = \frac{a^2}{16 N \pi} \delta$$

wird.

Diese Formel dient zur Berechnung der Durchbiegungen, also der Beiwerte δ der Elastizitätsgleichungen. Der konstante Faktor $\frac{a^3}{16 N \pi}$ kann noch weggelassen werden, wenn man beachtet, daß die Elastizitätsgleichungen in den Beiwerten δ homogen sind. Bei nachgiebiger Lagerung, wenn also ein inhomogenes Glied in der Gleichung auftritt, muß dieses dann natürlich mit dem Faktor $\frac{16 N \pi}{a^2}$ multipliziert werden.

Somit erhalten wir die Beiwerte δ^{29}) in Form der folgenden unendlichen Reihen:

$$\delta = \sum_{p=0}^{\infty} \eta_{hp} \cos h p \varphi \tag{14}$$

wo η_{hp} die in (13) ausgeschriebenen Funktionen sind.

²⁸) Die Funktionen η_0 und η_n werden hier einfachheitshalber nur für $\nu = 0$ angeschrieben, da. wie vorstehend begründet, praktisch mit $\nu = 0$ gerechnet wird. Diese Vereinfachung bedeutet aber keine Einschränkung der Allgemeingültigkeit der Gleichungen (13) und der damit zusammenhängenden Untersuchungen. Letztere werden für $\nu \neq 0$ nur umständlicher, ohne daß sich an dem Gedankengang etwas ändern würde. Im IV. Abschnitt wird wieder allgemein $\nu \neq 0$ gesetzt.

²⁹) Diese δ -Werte bedeuten also hier die $\frac{16 N \pi}{a^2}$ -fachen Durchbiegungen. Zur Vereinfachung wurde dafür keine neue Bezeichnung gewählt, woraus kein Mißverständnis entstehen dürfte.

Hajnal-Konyi 3

Die den Funktionen R'_0 , R'_n entsprechenden η'_0 , η'_n wurden vorläufig nicht eingeführt, da aus dem Satze von Betti (s. S. 11) bewiesen wurde, daß $\delta_{ik} = \delta_{ki}$ ist, d. h., daß die Werte α und ϱ vertauschbar sind. Aus dieser Vertauschbarkeit von ϱ und α folgt, daß man sich auf das Gebiet $\alpha \ge \varrho$ — also auf die Funktionen R_0 , R_n — beschränken kann. — (Bei der Momentenermittlung gilt diese Vereinfachung nicht mehr, dort werden die R_0' , R_n' ebenso benötigt, wie R_0 , R_n .)

3. Konvergenz der Reihen für δ.

Föppl hat die Reihe für die Durchbiegung aufgestellt, ohne auf den Beweis der Konvergenz einzugehen. Das erscheint jedoch umso notwendiger, als im weiteren Verlauf dieser Arbeit auch mit den Ableitungen dieser Reihen gerechnet werden muß.

Die Reihe (14) konvergiert sicher, wenn die Reihe $\Sigma |\eta_n|$ konvergiert. Diese letztere kann — wie aus dem Aufbau der η_n -Funktionen (Gl. 13) hervorgeht — in zwei Teilen ausgeschrieben werden. Wird wieder $\frac{\varrho}{\alpha}$ mit ξ bezeichnet, $\varrho \alpha$ mit ζ , so wird

$$\sum_{n=2}^{\infty} |\eta_n| \leq \sum_{n=2}^{\infty} \frac{\xi^n}{n} \left(\frac{\operatorname{const}}{n-1} + \frac{\operatorname{const}}{n+1} \right) + \sum_{n=2}^{\infty} \frac{\zeta^n}{2n+1} \left(\frac{\operatorname{const}}{n} + \frac{\operatorname{const}}{n-1} + \frac{\operatorname{const}}{n+1} \right)^{30}$$

was die Konvergenz für $\varrho < \alpha$ in Evidenz setzt, da dann beide Reihen schneller (und zwar wesentlich schneller) konvergieren, als die für |x| < 1konvergente Potenzreihe $\sum_{n=1}^{\infty} \frac{x^n}{n}$. — Für $\alpha = \varrho$ bleibt die Konvergenz der zweiten Teilreihe evident, während sie für die erste Teilreihe nachgewiesen werden muß.

Das allgemeine Glied der ersten Teilreihe lautet für $a = \varrho$

$$\frac{\varrho^2}{hp} \frac{2}{[(hp)^2 - 1]} = \frac{2 \, \varrho^2}{h^3} \cdot \frac{1}{p^3 - \frac{p}{h^2}}, \text{ wo } p = 1, 2, 3, \dots$$

Mit zunehmendem p nähert sich der vorstehende Ausdruck immer mehr dem Wert $\frac{2 \varrho^2}{h^3} \frac{1}{p^3}$, da das zweite Glied im Nenner gegenüber dem ersten mit wachsendem p immer mehr zurücktritt. Setzt man

$$\frac{1}{p^{3} - \frac{p}{h^{2}}} = \frac{\mu_{p}}{p^{3}} \text{ so ist } 1 < \mu_{p} < \mu_{p-1} \quad p > 1.$$

Es ist demnach

$$\frac{2 \varrho^2}{h^3} \sum_{p=1}^{\infty} \frac{1}{p^3 - \frac{p}{h^2}} = \frac{2 \varrho^2}{h^3} \sum_{p=1}^{\infty} \frac{\mu_p}{p^3} < \frac{2 \mu_1 \varrho^2}{h^3} \sum_{p=1}^{\infty} \frac{1}{p^3}.$$

³⁰) Der Ausdruck "const" soll nur andeuten, daß die betr. Glieder bei der Summation konstant, d. h. von n unabhängig sind, von α und ϱ sind sie natürlich abhängig.

Nun ist aber $\sum_{p=1}^{\infty} \frac{1}{p^3}$ konvergent, da ganz allgemein $\sum_p \frac{1}{p^{\beta}}$ für $\beta > 1$ konvergent ist³¹), so daß die Konvergenz von $\sum_{n=0}^{\infty} \eta_n$ und somit der Reihen (14) auch für $\alpha = \varrho$ bestehen bleibt. Die Reihe für δ ist also im ganzen Bereich der Kreisplatte, einschließlich der Lastangriffsstellen konvergent, und zwar, wie aus dem Beweis hervorgeht, absolut und gleichmäßig konvergent.

 μ ist von 1 nur wenig verschieden, sein Höchstwert ist $\mu_1 = \frac{16}{15}$ (für p = 1, h = 4). Geht man in der Reihe für h = 4 nur bis zum dritten Glied, (η_{12}) , so wird $\mu_3 = \frac{432}{429}$, woraus man die Geringfügigkeit des Fehlers erkennt, wenn bei i > 3 für $\sum_{i=1}^{\infty} \frac{-1}{n}$ einfach $\sum_{i=1}^{\infty} \frac{1}{n^3}$ gesetzt wird.

erkennt, wenn bei
$$i>3$$
 für $\sum_{p=i}^{\infty}rac{1}{p^3-rac{p}{h^2}}$ einfach $\sum_{p=i}^{\infty}rac{1}{p^3}$ gesetzt wird.

In den praktisch wichtigsten Fällen lautet die Reihe (14) wie folgt: $\varphi = 0$

$$\delta = \eta_0 + \eta_h + \eta_{2h} + \cdots \tag{14a}$$

$$\varphi = \frac{\pi}{h}$$

$$\delta = \eta_0 - \eta_h + \eta_{2h} - \eta_{3h} + \dots + (-1)^p \eta_{ph} + \dots$$
(14b)

$$2\pi$$

$$\varphi = \frac{1}{3h}$$

$$\delta = \eta_0 - \frac{1}{2} (\eta_h + \eta_{2h}) + \eta_{3h} - \frac{1}{2} (\eta_{4h} + \eta_{5h}) + \cdots + \eta_{3ph} - \frac{1}{2} (\eta_{\overline{3p+1}h} + \eta_{\overline{3p+2}h}) + \cdots$$
(14c)

$$\varphi = \frac{\pi}{2h}$$

$$\delta = \eta_0 - \eta_{2h} + \eta_{4h} - \dots + (-1)^p \eta_{2ph} + \dots$$
(14d)

$$\varphi = \frac{\pi}{3h}$$

$$\delta = \left(\eta_{0} + \frac{1}{2}\eta_{h}\right) - \left(\frac{1}{2}\eta_{2h} + \eta_{3h} + \frac{1}{2}\eta_{4h}\right) + \left(\frac{1}{2}\eta_{5h} + \eta_{6h} + \frac{1}{2}\eta_{7h}\right) - + \cdots + (-1)^{p}\left(\frac{1}{2}\eta_{\overline{3p-1h}} + \eta_{3ph} + \frac{1}{2}\eta_{\overline{3p+1h}}\right) + \cdots$$
(14e)

³¹) Der Zahlenwert von $\sum_{p=1}^{\infty} \frac{1}{p^3}$ wurde berechnet zu $\sum_{p=1}^{\infty} \frac{1}{p^3} = 1,20205690315959428540...;$ Cesaro-Kowalewski, Lehrbuch der algebraischen Analysis (Leipzig 1904, Verlag B. G. Teubner) S. 308.

3*

$$\varphi = \frac{1}{4h}$$

$$\delta = \left(\eta_0 + \frac{\sqrt{2}}{2}\eta_h\right) - \left(\frac{\sqrt{2}}{2}\eta_{3h} + \eta_{4h} + \frac{\sqrt{2}}{2}\eta_{5h}\right) + \left(\frac{\sqrt{2}}{2}\eta_{7h} + \eta_{8h} + \frac{\sqrt{2}}{2}\eta_{9h}\right) - + \cdots + (-1)^p \left(\frac{\sqrt{2}}{2}\eta_{\overline{4p-1}h} + \eta_{4ph} + \frac{\sqrt{2}}{2}\eta_{\overline{4p+1}h}\right) + \cdots$$
(14f)

Abb. 10.

Mit Hilfe einer genauen mathematischen Untersuchung, die hier wegen ihrer Langwierigkeit nicht wiedergegeben werden soll, kann nachgewiesen werden, daß die Funktionen η_n für sämtliche Werte von n im ganzen Bereich der Kreisplatte positiv sind. Da hier φ immer einen rationalen Bruchteil von 2π bedeutet, wechseln nach der Multiplikation mit cos $ph \varphi$ für ein bestimmtes $\varphi \pm 0$ positive und negative Glieder periodisch ab. Wird die Reihe nach einer solchen periodischen Gruppe abgebrochen, so gilt für den begangenen Fehler die für alternierende Reihen bekannte Fehlerabschätzung, daß der Fehler kleiner ist als das erste weggelassene Glied bzw. Gruppe, also a fortiori kleiner als das letzte berechnete Glied bzw. Gruppe. Dabei kann die Abschätzung der Gruppe auf das Abschätzen des ersten Gliedes der Gruppe beschränkt werden, da die Glieder monoton abnehmen und somit bei dem Abschätzen immer das erste Glied der Gruppe für die folgenden genommen werden kann.

Für $\varphi = 0$ ist cos $n \varphi = 1$, so daß sämtliche Glieder der Reihe (14) positiv sind. In diesem Fall kann die Potenzreihe $\sum \frac{x^n}{n}$ zur Fehlerabschätzung herangezogen werden. Der Fall x = 1 wurde bereits behandelt, für x < 1 ist die Konvergenz noch besser.

30

 π

Aus den nachstehend noch näher zu besprechenden Tabellen I-VI geht die sehr rasche Konvergenz der Reihe (14) klar hervor. Der begangene Fehler bleibt bei Vernachlässigung der Glieder höherer Ordnung sehr bald unter einer, den praktischen Bedürfnissen vollkommen genügenden Grenze, so daß es immer genügt, sich auf die ersten 3-5 Glieder zu beschränken. Infolgedessen hat es keinen Zweck, durch mathematische Kunstgriffe nach geschlossenen Formeln zu suchen, wie dies bei der Momentenberechnung geschieht (S. 53 ff.).

4. Berechnung der δ -Werte.

Die Auswertung von η_0 und η_n nach Gl. (13) in jedem Einzelfall würde zwar grundsätzlich gar keine Schwierigkeiten bieten, wäre aber recht umständlich. Zur Vereinfachung dieser Arbeit wurden folgende Hilfstafeln aufgestellt:

Tabelle I: η_0 , II: η_4 , III: η_6 , IV: η_8 , V: η_{12} VI: η_7 , η_{12} , $\eta_$

" VI: $\eta_4, \eta_8 \ldots \eta_{36}$ für alle $\varrho = a = 0.05$; $0.10 \ldots 0.95$. Die Tabellenzahlen sind mit 5 Dezimalstellen angegeben, wobei die letzte Ziffer um höchstens 2 Einheiten ungenau sein kann. Dieser Genauigkeitsgrad ist auch bei einer sehr großen Zahl von Unbekannten mehr als ausreichend.

Aus den Tabellen ist u. a. zu erkennen, daß der überhaupt auftretende Größtwert von η_n sich mit zunehmendem *n* immer mehr dem Rand nähert. Die Tabelle VI veranschaulicht am deutlichsten die schnelle Abnahme von η_n , nicht nur für kleine Werte von ϱ , sondern auch für solche Laststellungen, die in der Nähe des Randes sind, und für welche die Reihe $\sum_n R_n \cos n\varphi$ verhältnismäßig langsamer konvergiert. Die zu einer Laststellung ($\varrho =$ konst) gehörenden η_n -Funktionen haben ihr Maximum in unmittelbarer Nähe von ϱ . Die Stelle des Maximums nähert sich mit zunehmendem *n* immer mehr zu ϱ und kann für $n \ge 12$ praktisch in ϱ selbst angenommen werden ($\alpha = \rho$).

Nachfolgend soll die Anwendung der Tabellen I—VI gezeigt werden. Unter den δ -Werten ist zu unterscheiden zwischen solchen, deren beide Indizes gleich sind (δ_{ii}) und zwischen solchen, die zwei verschiedene Indizes haben (δ_{ik}) . Sind die Indizes verschieden, so ist ferner zu unterscheiden, je nachdem $\varrho = a$ oder $\varrho < a$

a) δ_{ii} .

Da $\varphi = 0$, so ist hier Gl. (14 a) gültig, d. h. $\eta = \eta_0 + \eta_h + \eta_{2h} + \dots$ $\eta_{ih} + \dots$

Es genügt fast immer, nur bis zum 3. Glied zu gehen und den Rest der Reihe durch $\frac{4\varrho^2}{h^3} \sum_{p=3}^{\infty} \frac{1}{p^3}$ zu ersetzen. Der letztere Wert ist:

$$\frac{4\varrho^2}{h^3} \sum_{p=3}^{\infty} \frac{1}{p^3} = \frac{4\varrho^2}{h^3} (1,2020569 - 1,00000 - 0,125000) = \frac{4\varrho^2}{h^3} 0,0770569.$$
(15)
Mit $h = 4$ wird also die Restsumme = 0,004816 ϱ^2 . (15a)

Mit h = 4 wird also die Restsumme $= 0,004816 \varrho^2$. (15a)

Zu den Näherungsgleichungen (15) und (15 a) ist folgendes zu bemerken: Die Funktionen η_n können in der nachstehenden Form angeschrieben werden:

$$\eta_n = f_1(\xi) - f_2(\zeta),$$

wo sowohl f_1 als f_2 positive Funktionen sind. Für $\varrho = a$ wird $\xi = 1$. Dieser Fall wurde auf S. 28 bereits behandelt. Die Näherung in Gl. (15), (15 a) besteht darin, daß in den einzelnen η -Werten bei f_1 im Nenner pgegenüber p^3 und das Glied $f_2(\zeta)$ vernachlässigt wurde. Die erste Vernachlässigung bedeutet eine sehr kleine Verringerung der η -Werte (siehe S. 29), die zweite eine Vergrößerung. Die Geringfügigkeit dieses zweiten Einflusses wird klar, wenn man bedenkt, daß $\zeta = \varrho^2$ und daß wenn $h = 4, \lambda = \varrho^8$. Mit p = 3 ist das erste vernachlässigte Glied $f_2(\zeta) < \frac{\varrho^{24}}{45}$ wobei praktisch auch bei sehr großen Grundflächen $\varrho < 0.85$ sein wird. Die beiden "Fehler" heben sich also teilweise gegenseitig auf und sind schon an sich so klein, daß die sich aus Gl. (15), (15 a) ergebenden Zahlenwerte praktisch als genau angesprochen werden können.

So ist z. B. für $\rho = 0.70$

$$\sum_{p=3}^{\infty} \eta_{4p} = 0,004816.0,70^2 = 0,00237$$

Aus Tabelle VI ergibt sich für $\sum_{p=3}^{p} \eta_{4p}$: $\eta_{12} = 0,00114$ $\eta_{16} = 0,00048$ $\eta_{20} = 0,00025$ $\eta_{24} = 0,00014$ $\eta_{28} = 0,00009$ $\eta_{82} = 0,00006$ $\eta_{86} = 0,00004$ $\sum_{3}^{9} = 0,00220$

Durch Gl. (15) werden alle Glieder der Reihe erfaßt, während die obenstehend berechnete Summe sich nur bis zu p = 9 erstreckt. Man sieht auch aus η_{36} , daß die in der Tabelle nicht mehr enthaltenen Glieder noch einen Einfluß auf die Summe haben müssen, der allerdings nicht mehr erheblich ist, der aber die Summe weiter vergrößert.

Bei kleineren ρ -Werten liefert die Tab. VI fast genau dieselbe Zahl wie die Gl. (15 a). So ist z. B. für $\rho = 0.35$

$$\sum_{p=3}^{\infty} \frac{1}{p^3} = 0,004816.0,35^2 = 0,00059,$$

32

während nach Tab. VI

 $\begin{array}{l} \eta_{12} = 0,00\,029\\ \eta_{16} = 0,00\,012\\ \eta_{20} = 0,00\,006\\ \eta_{24} = 0,00\,004\\ \eta_{28} = 0,00\,002\\ \eta_{32} = 0,00\,001\\ \underline{\eta_{36}} = 0,00\,001\\ \underline{\eta_{36}} = 0,00\,0055 \end{array}$

Der Gesamtwert δ_{ii} ist also unter Benutzung von Gl. (15):

$$\delta_{ii} = \eta_0 + \eta_h + \eta_{2h} + 0,3082276 \frac{\varrho^2}{h^3} \tag{16}$$

Für h = 4 ist

$$\delta_{ii} = \eta_0 + \eta_4 + \eta_8 + 0,004816 \,\varrho^2 \,. \tag{16 a}$$

Ist $h \ge 6$, so kann man sich sogar auf η_h beschränken und η_{2h} in das Restglied aufnehmen, für welchen Fall die Formel wie folgt lautet:

$$\delta_{ii} = \eta_0 + \eta_h + 0,8082276 \frac{\varrho^2}{h^3} \tag{16 b}$$

Die Tabellen sind für h = 4, 6, 8 unmittelbar benutzbar.

Die Gesamtwerte δ_{ii} ergeben sich in den beiden behandelten Fällen nach Gl. (16 a) (mit Hilfe der Tabellen).

$$arrho = 0,70, \; \delta_{ii} = 0,58\,102 + 0,02\,361 + 0,00\,378 + 0,00\,237 = 0,61\,078 \ arrho = 0,35, \; \delta_{ii} = 2,01\,059 + 0,00\,813 + 0,00\,097 + 0,00\,059 = 2,02\,027 \,.$$

Aus diesen Zahlen ist der überwiegende Einfluß des ersten Gliedes η_0 , sowie die rasche Konvergenz zu ersehen. Jedes der angeschriebenen Glieder ist größer als die Summe der sämtlichen darauffolgenden. Das erste Glied η_0 , welches einer schneidenförmigen Lagerung bzw. Belastung der Kreisplatte entspricht, wird als Hauptwert von δ bezeichnet. Eine etwaige Ungenauigkeit in der letzten oder auch in der vorletzten Ziffer (und nur um eine solche kann es sich hier handeln), spielt praktisch gar keine Rolle und ist prozentual verschwindend klein.

b) δ_{ik} mit $\varrho = a$.

Im allgemeinen wird die Säulenteilung soweit regelmäßig sein, daß die zu demselben ϱ gehörenden, also auf demselben Kreis liegenden Säulen alle ein regelmäßiges Vieleck bilden. Es ist also $\varphi = \frac{\pi}{h}, \frac{\pi}{2h}, \frac{\pi}{3h}, \frac{\pi}{4h}$ usw., so daß eine der Gl. (14 b)—(14 f), oder eine ähnliche in Frage kommt. Hier leistet die Tabelle VI besonders gute Dienste.
III. Ermittlung der Formänderungsgrößen δ .

1. Beispiel: $h = 4$, $\varrho =$	$\alpha = 0,70, \varphi = \frac{\pi}{4}$
Positive Glieder:	Negative Glieder:
$\eta_0 = 0,58102$	$-\eta_{\pm} = -0.02361$
$\eta_8 = 0,00378$	$-\eta_{12} = -0,00114$
$\eta_{16} = 0,00048$	$-\eta_{20} = -0,00025$
$\eta_{24} = 0,00014$	$-\eta_{28} = -0,00009$
$\eta_{32} = 0,00006$	$-\eta_{36} = -0.00004$
$\delta = 0,58548$	-0,02513 = 0,56035
_	

Aus dem Bildungsgesetz der Reihe folgt, daß 0,56035 < δ < 0,56035 + $|\eta_{36}|$ = 0,56039, man setzt also

$$\begin{split} \delta &= \frac{1}{2} \left(0,56\,035 + 0,56\,039 \right) = 0,56\,037 \\ \text{2. Beispiel: } h &= 4, \ \varrho = a = 0,35, \ \varphi = \frac{\pi}{4} \\ \text{Positive Glieder: Negative Glieder: } \\ \eta_0 &= 2,01\,059 \qquad -\eta_4 = -0,00\,812 \\ \eta_8 &= 0,00\,097 \qquad -\eta_{12} = -0,00\,029 \\ \eta_{16} &= 0,00\,012 \qquad -\eta_{20} = -0,00\,006 \\ \eta_{24} &= 0,00\,004 \qquad -\eta_{28} = -0,00\,002 \\ \underline{\eta_{32}} &= 0,00\,001 \qquad -\eta_{36} = -0,00\,001 \\ \delta &= 2,01\,173 \qquad -0,00\,850 = 2,00\,323 \end{split}$$

In ähnlicher Weise wird man bei anderen Werten von φ vorgehen und δ zwischen zwei nahe zueinanderliegende Zahlen einschränken.

c) δ_{ik} mit $\varrho \pm a$.

Man kann sich, wie bewiesen wurde, auf den Fall $a > \rho$ beschränken. Ist $\varphi = 0$, so muß aus praktischen Gründen ein ziemlicher Unterschied zwischen a und ρ bestehen, da sonst die Stützen zu nahe zueinander kämen. So wäre bei einem Kreishalbmesser von 30 m und einem Säulenabstand von 4,5 m $a - \rho = 0,15$. Nun nimmt aber η mit wachsender Entfernung von ρ bei größeren Werten immer rascher ab und so haben hier die höheren Glieder der Reihe einen noch viel geringeren Einfluß auf δ_{ik} , als bei δ_{ii} für $a = \rho$. Ist $\varphi \pm 0$, so wird wieder $\varphi = \frac{\pi}{h}, \frac{\pi}{2h}, \frac{\pi}{3h}$ usw., die Reihe ist alternierend und die Glieder heben sich teilweise auf. Es ist zu beachten, daß der größte ρ -Wert, welcher in diesem Fall in Frage kommt, zu der von außen gerechnet zweiten Säulenreihe gehört, und somit auch bei sehr großem Halbmesser kaum über 0,80 steigen wird. Im allgemeinen wird es also nicht notwendig sein, über η_{12} hinauszugehen, so daß die Tab. II—V genügen, und zwar für alle Werte von φ .

Es sei h = 4, $\varrho = 0.35$, a = 0.70

$$\begin{array}{c} \varphi = 0 \\ \eta_0 = 1,03060 \\ \eta_4 = 0,00367 \\ \eta_8 = 0,00005 \\ \eta_{12} = 0,00001 \\ \delta = 1,03433 \end{array}$$

$$\begin{array}{c} \varphi = \frac{\pi}{4} \\ \eta_0 = 1,03060 \\ \eta_8 = 0,00005 \\ \eta_8 = 0,00005 \\ \delta = 1,03065 \end{array}$$

$$\begin{array}{c} -\eta_4 = -0,00367 \\ -\eta_{12} = -0,00001 \\ -0,00368 = 1,02697 \end{array}$$

Hier hätte man schon η_{12} vernachlässigen können. Der Einfluß von η_n ist bei gemischten Indizes noch kleiner als bei gleichen Indizes. So ist $\sum_{n=1}^{\infty} \eta_n$ in Prozenten von δ

	$\varphi = 0$	$\varphi = \frac{\pi}{4}$
$\varrho = a = 0,70$	4,87 º/o	4,50 º/o
$\varrho = a = 0.35$	0,48 %	0,37 %
q = 0,35, a = 0,70	$0,36^{\circ}/_{0}$	0,36%

Daraus erkennt man die Geringfügigkeit des Fehlers, der bei δ_{ik} durch Vernachlässigung der η_n mit $n \ge 16$ entsteht.

Die gewählte Teilung des Halbmessers in 20 gleiche Teile dürfte in den meisten praktischen Fällen genügen. Ist man jedoch gezwungen, die Säulenstellungen anders anzuordnen, als es der Tabellenteilung entspricht, so können die zugehörigen Werte aus den Tab. III—VI und zum größten Teil auch aus Tab. II durch Interpolation gewonnen werden. Nur die Tab. I eignet sich nicht zu einer Interpolation, η_0 muß also dann unmittelbar aus Gl. (13) ausgerechnet werden.

B. Die Durchbiegungen δ_{i0} .

1. Vollbelastung.

Die Gleichung der elastischen Fläche lautet³²)

$$w = \frac{p_0}{64(1+\nu)N} \left[(5+\nu) a^4 - 2(3+\nu) a^2 r^2 + (1+\nu) r^4 \right] \dots \quad (17)$$

Setzt man $P = p_0 a^2 \pi$ und führt man wieder Verhältniszahlen ein, so wird

$$w = \frac{Pa^2}{(1+\nu)\,64\,N\pi} \left[5 + \nu - 2\,(3+\nu)\,a^2 + (1+\nu)\,a^4 \right]$$
(17a)

Mit v = 0 wird

$$w = \frac{Pa^2}{64N\pi} (5 - 6a^2 + a^4) = \frac{Pa^2}{16N\pi} \eta_g,$$

wenn

$$\eta_g = \frac{1}{4} \left(5 - 6 \, a^2 + a^4 \right) \tag{17b}$$

gesetzt wird.

Tab. VII enthält die η_g -Werte für $\alpha = 0, 0,05 \dots 0,95$. Zwischenwerte müssen aus Gl. (17b) rechnerisch ermittelt werden.

2. Teilweise (kreis- oder kreisringförmige) Belastung.

Die hierfür von Föppl abgeleiteten Formeln sind zwar für die unmittelbare Auswertung etwas umständlich und können auch entbehrt werden, sie seien jedoch der Vollständigkeit halber wiedergegeben.

³²) Siehe z. B. Nádai a. a. O. S. 57 Gl. 19.

In "Drang und Zwang" Bd. I S. 178 ff. ist der Fall behandelt, daß die Platte in der Mitte von r = 0 bis r = b eine gleichförmig verteilte Belastung p_0 und darüber hinaus von r = b bis r = a eine andere, ebenfalls gleichförmig verteilte Last p_1 zu tragen hat. Setzt man in den Föpplschen Formeln $p_1 = 0$ bzw. $p_0 = 0$, so ergeben sich die Formeln für beliebige teilweise Kreisbelastung bzw. kreisringförmige Belastung, welche innen beliebig, außen vom Plattenrand begrenzt wird. Durch Superposition von zwei entgegengesetzt wirkenden teilweisen Kreisbelastungen können dann auch beliebige Ringbelastungen erledigt werden.

Die Föpplschen Gleichungen lauten mit seinen Bezeichnungen:

Für das innere Gebiet $r \leq b$

$$w_{i} = k \left\{ b^{2} (p_{0} - p_{1}) \left[\frac{(12m+4)a^{2} - (7m+3)b^{2}}{m+1} - 4b^{2}ln \frac{a}{b} \right] + \frac{5m+1}{m+1} p_{1}a^{4} - \frac{8b^{2} (p_{0} - p_{1})r^{2} \left[\frac{4ma^{2} - (m-1)b^{2}}{4(m+1)a^{2}} + ln \frac{a}{b} \right] - \frac{6m+2}{m+1} p_{1}a^{2}r^{2} + p_{0}r^{4} \right\}$$
(18)

Für das äußere Gebiet:

$$w_{a} = k \left\{ 4b^{2}(b^{2} + 2r^{2})(p_{0} - p_{1})ln\frac{r}{a} + \frac{2b^{2}(a^{2} - r^{2})(p_{0} - p_{1})}{m+1} \left[6m + 2 - (m-1)\frac{b^{2}}{a^{2}} \right] + \frac{5m+1}{m+1}p_{1}a^{4} + p_{1}r^{4} - 2\frac{3m+1}{m+1}p_{1}a^{2}r^{2} \right\}$$
(19)

Hier ist $k = \frac{3(m^2 - 1)}{16m^2Eh^3}$, die Bedeutung der anderen Buchstaben ist bereits bekannt.

Es seien wieder Verhältniszahlen eingeführt $\frac{1}{m} = v$, $\frac{r}{a} = a$, $\frac{b}{a} = \varrho$ (ϱ soll die Grenze der Belastung bezeichnen und somit, wie früher, die Laststellung charakterisieren), ferner sei

$$N = \frac{Eh}{12(1-\nu^2)} = \frac{1}{64k}, \ k = \frac{1}{64N}$$
$$P_0 = p_0 b^2 \pi, \ P_1 = p_1 b^2 \pi.$$

Für teilweise Kreisbelastung $(F_1 = 0)$ wird

$$w_{i} = \frac{P_{0} a^{2}}{16 N \pi} \left\{ \left[\frac{4(3+\nu) - (7+3\nu) \varrho^{2}}{4(1+\nu)} - \varrho^{2} ln \frac{1}{\varrho} \right] - a^{2} \left[\frac{4 - (1-\nu) \varrho^{2}}{2(1+\nu)} + 2ln \frac{1}{\varrho} \right] + \frac{a^{4}}{4 \varrho^{2}} \right\}$$
(20)

$$w_{a} = \frac{P_{0} a^{2}}{16 N \pi} \left\{ -(\varrho^{2} + 2 a^{2}) \ln \frac{1}{a} + \frac{1 - a^{2}}{2(1 + \nu)} \left[6 + 2\nu - (1 - \nu) \varrho^{2} \right] \right\}$$
(21)
Für Binghelastung von a his 1 (P - 0) wird:

$$w_{i} = \frac{P_{1}a^{2}}{16N\pi} \left\{ -\frac{4(3+\nu)-(7+3\nu)\varrho^{2}}{4(1+\nu)} + \varrho^{2}ln\frac{1}{\varrho} + \frac{5+\nu}{4(1+\nu)}\frac{1}{\varrho^{2}} + a^{2}\left[\frac{4-(1-\nu)\varrho^{2}}{2(1+\nu)} + 2ln\frac{1}{\varrho}\right] - \frac{3+\nu}{2(1+\nu)}\frac{a^{2}}{\varrho^{2}} \right\}$$
(22)

2. Teilweise (kreis- oder kreisringförmige) Belastung.

$$w_{a} = \frac{P_{1}a^{2}}{16N\pi} \left\{ (\varrho^{2} + 2a^{2}) ln \frac{1}{a} - \frac{1 - a^{2}}{2(1 + \nu)} \left[6 + 2\nu - (1 - \nu) \varrho^{2} \right] + \frac{5 + \nu}{4(1 + \nu)} \frac{1}{\varrho^{2}} + \frac{a^{4}}{4\varrho^{2}} - \frac{3 + \nu}{2(1 + \nu)} \frac{a^{2}}{\varrho^{2}} \right\}$$
(23)

Die unmittelbare Auswertung dieser Formeln ist recht unbequem, auch wenn $\nu = 0$ gesetzt wird. Man ist aber auf die Gl. (18)—(23) nicht angewiesen, die δ_{i0} -Werte können auch einfacher berechnet werden. Dieser Vereinfachung liegt folgender Gedanke zugrunde:

Die stetige, ringförmige Belastung kann durch entsprechend kleine Zerlegung auf eine Summe von Schneidenlasten zurückgeführt werden, für welche der Maxwellsche Satz anwendbar ist. Die Durchbiegung der Kreisplatte infolge der gesamten ringförmigen Belastung wird auf diese Weise als die Summe von, durch Schneidenlasten hervergerufenen Durchbiegungen erzeugt, was den Gebrauch von Tab. I bzw. einer sich daraus ergebenden weiteren Tab. (VII) ermöglicht.

Die rechnerische Durchführung dieses Gedankens gestaltet sich folgendermaßen:

Es sei die Durchbiegung δ_{α} an der Stelle α infolge einer gleichmäßig verteilten Ringbelastung p gesucht, die sich von ϱ_1 bis ϱ_2 erstreckt (Abb. 11). Die Durchbiegung infolge eines kreisringförmigen Laststreifens mit dem Halbmesser $\alpha \varrho$ und der Breite $\alpha \varDelta \varrho$ ist

$$\varDelta \, \delta_{\alpha} = p \, a^2 \, 2 \pi \, \delta_{\alpha \varrho} \, \varDelta \, \varrho \, . \varrho$$

wo $\delta_{\alpha \varrho}$ die Durchbiegung an der Stelle α infolge einer Schneidenlast P=1an der Stelle ϱ bedeutet. Es ist also

$$\delta_{\alpha \varrho} = \begin{cases} \frac{a^2}{16 N \pi} \eta_0 & \text{wenn } a > \varrho \\ \\ \frac{a^2}{16 N \pi} \eta_0' & \text{wenn } a < \varrho \end{cases}$$

Nach dem Satz von Maxwell können α und ρ vertauscht werden: $(\eta_0)_{\alpha\rho} = (\eta_0')_{\rho\alpha}$, wenn $\alpha > \rho$ (und umgekehrt).

37

Somit ist

$$\int \frac{a^4 p}{16N} 2 \int_{\varrho_1}^{\varrho_2} (\eta_0')_{\varrho \alpha} \varrho \, d\varrho \qquad a \ge \varrho_1, \, \varrho_2$$
 (24 a)

$$\delta_{\alpha} := \begin{cases} \frac{\varrho_1}{2} \\ \frac{a^4 p}{16 N} 2 \int_{\varrho_1}^{\varrho_2} (\eta_0)_{\varrho \alpha} \varrho \, d\varrho \qquad \alpha \leq \varrho_1, \, \varrho_2 \end{cases}$$
(24 b)

Fällt α in das Intervall $\varrho_1 \ldots \varrho_2$, so gilt von ϱ_1 bis α das erste, von α bis ϱ_2 das zweite Integral.

Die Gleichungen (24a), (24b) stellen das Volumen eines Rotationskörpers mit der Meridiankurve $\frac{p a^2}{16 N \pi} \eta_0$ dar, oder, anders ausgedrückt, das 2π -fache statische Moment der durch diese Kurve begrenzten Fläche i. B. auf den Kreismittelpunkt.

Setzt man z. B. in die Gl. (24a) die Grenzen 0 und ϱ ein, so ergibt sich ³³) (mit $p a^2 \varrho^2 \pi = P$):

$$\begin{split} \delta_{\alpha} &= \frac{a^{4}p}{8N} \int_{0}^{\varrho} \left[\frac{3+\nu-(1-\nu)\varrho^{2}}{(1+\nu)} \left(1-a^{2}\right) - 2\left(a^{2}+\varrho^{2}\right) \ln \frac{1}{a} \right] \varrho \, d\varrho = \\ &= \frac{a^{4}p}{8N} \int_{0}^{\varrho} \left\{ \left[\frac{3+\nu}{1+\nu} \left(1-a^{2}\right) - 2a^{2}\ln \frac{1}{a} \right] \varrho - \left[\frac{1-\nu}{1+\nu} \left(1-a^{2}\right) + 2\ln \frac{1}{a} \right] \varrho^{3} \right\} d\varrho = \\ &= \frac{a^{4}p}{8N} \left\{ \left[\frac{3+\nu}{1+\nu} \left(1-a^{2}\right) - 2a^{2}\ln \frac{1}{a} \right] \frac{\varrho^{2}}{2} - \left[\frac{1-\nu}{1+\nu} \left(1-a^{2}\right) + 2\ln \frac{1}{a} \right] \frac{\varrho^{4}}{4} \right\} = \\ &= \frac{Pa^{2}}{16N\pi} \left\{ - \left(\varrho^{2}+2a^{2}\right)\ln \frac{1}{a} + \frac{1-a^{2}}{2\left(1+\nu\right)} \left[6+2\nu - \left(1-\nu\right) \varrho^{2} \right] \right\} \end{split}$$

Das ist die bereits bekannte Gl. (21).

Geht man von der vollbelasteten Kreisplatte aus (Gl. 17) und superponiert man dazu den vorstehenden Belastungsfall mit negativem Vorzeichen, so gelangt man zu Gl. (23). Klammert man aus Gl. (17 a) ϱ^2 aus, so läßt sich die Formel ohne jede Zwischenrechnung unmittelbar anschreiben:

$$w_{a} = \frac{Pa^{2}}{16 N\pi} \left\{ \frac{5+\nu}{4(1+\nu)} \frac{1}{\varrho^{2}} - \frac{3+\nu}{2(1+\nu)} \frac{a^{2}}{\varrho^{2}} + \frac{a^{4}}{4\varrho^{2}} + \frac{6!}{6!} \frac{1}{(17 a)} + \frac{(\varrho^{2}+2a^{2}) ln \frac{1}{a} - \frac{1-a^{2}}{2(1+\nu)} [6+2\nu - (1-\nu) \varrho^{2}]}{-6!} \right\}$$
(23)

Auf ähnlichem Wege könnten auch die Gl. (20), (22) abgeleitet werden.

38

³³) $(\eta_0')_{\varrho\alpha}$ bedeutet die Durchbiegung an der Stelle ϱ infolge der Belastung P = 1an der Stelle α , während in den Gl. (11)–(13) α die Durchbiegungsstelle, ϱ die Laststelle bedeutet. Infolgedessen müssen die Werte ϱ und α gegenüber der Gl. (13) vertauscht werden.

Föppl hat seine Formeln aus 6 Bedingungsgleichungen nach einer sehr umständlichen Rechnung erhalten, während sich dieselben auf Grund der hier angestellten Überlegungen in der denkbar einfachsten Weise ergeben. Es war jedoch nicht der Zweck der vorstehenden Entwicklungen, eine neue Ableitung von bereits bekannten Formeln zu geben, es soll dadurch nur die Möglichkeit geboten werden, bei der Ermittlung der δ_{io} -Werte die unmittelbare Auswertung der unbequemen Formeln (20)—(23) zu vermeiden. Dieses Ziel wird erreicht, wenn man auf den Ursprung des Integrals — vor dem Grenzübergang — zurückgreift und die Durchbiegung als eine Summe von endlichen Gliedern darstellt. Mit $p a^2 \pi = P$ wird

$$\delta_{\alpha} = \frac{Pa^{2}}{16 N\pi} \sum_{\varrho_{1}}^{\varrho_{2}} (\eta_{0})_{\varrho \alpha} \varrho . 2. \varDelta \varrho$$
(24 c)

Wird $\Delta \varrho$ genügend klein gewählt, so kann das Integral mit beliebiger Näherung berechnet und der begangene Fehler leicht abgeschätzt werden. Die Bildung dieser Summe ist außerordentlich einfach. Die Werte η_0 liegen in der Tab. I vor, durch Multiplikation mit den zugehörigen *a*-Werten ergibt sich die Tab. VII. Diese enthält somit die statischen Momente der durch die η_0 -Kurven gebildeten Flächenstreifen von der Breite 0,05, bezogen auf den Kreismittelpunkt (Abb. 12)³⁴).

Zum Gebrauch der Tab. VII ist folgendes zu bemerken:

multipliziert werden.

Durch den Betrag $\eta_0 \varrho_i \varDelta \varrho$ wird der Streifen zwischen $\varrho_i - \frac{\varDelta \varrho}{2}$ und $\varrho_i + \frac{\varDelta \varrho}{2}$ erfaßt. An den Grenzen ϱ_1 und ϱ_2 ist daher mit guter Annäherung zu setzen: $\frac{1}{2} \varrho_1 \varDelta \varrho$ und $\frac{1}{2} \varrho_2 \varDelta \varrho$, wenn ϱ_1 und ϱ_2 mit der Tabellenteilung zusammenfallen. Stimmen ϱ_1 und ϱ_2 mit der Tabellenteilung nicht überein, $\frac{34}{2}$ Es ist auch hier zu beachten, daß die Bedeutung von α und ϱ bei der Anwendung des Maxwellschen Satzes vertauscht wurde. Eine Verwechslung kann aber daraus nicht entstehen, wenn man sich nur vergegenwärtigt, daß immer die, zu einer an der Durchbiegungsstelle gedachten Einheits-Schneidenlast gehörige η_0 -Kurve zwischen den Belastungsgrenzen zu betrachten ist, deren Ordinaten mit den laufenden Abszissen

so ergeben sich die zu den Randstreifen gehörenden Beträge ohne weiteres durch Interpolation. Da in den Tabellen $\Delta \varrho = 0.05$, so ist $2 \Delta \varrho = 0.1$, die aus Tab. VII gebildete $\Sigma \alpha \eta_0$ ist also mit 0,1 zu multiplizieren.

Für $\varrho_1 = 0$ und $\varrho_2 = 1$ können die zugehörigen Beiträge, die nachher ebenfalls noch mit 0,1 multipliziert werden müssen, in folgender Weise berechnet werden:

 $\varrho_1 = 0, \varrho_1 \eta_0 = 0,0125 \eta_0, \text{ wo } \eta_0 \text{ für } a = 0 \text{ zu nehmen ist},$

 $\varrho_2 = 1, \varrho_2 \eta_0 = 0.9875 \eta_0, \text{ wo } \eta_0 \text{ für } \alpha = 0.9875 \text{ zu nehmen ist.}$ Da die η -Kurven in der Nähe des Randes so gut wie gradlinig verlaufen, so kann gesetzt werden

$$(\eta_0)_{\alpha=0,9875} = \frac{1}{4} (\eta_0)_{\alpha=0,95}.$$

Ferner ist zu beachten, daß $\Delta \varrho_1 = \Delta \varrho_2 = \frac{\Delta \varrho}{2}$.

Also ist

der Beitrag von $\varrho_1 = 0: 0.0125 \eta_0 \frac{1}{2} = 0.00625 \eta_0 (\alpha = 0)$ der Beitrag von $\varrho_2 = 1: 0.9875 \eta_0 \frac{1}{2} \cdot \frac{1}{4} = 0.1234375 \eta_0 (\alpha = 0.95)$

Der Ersatz des Integrals durch eine endliche Summe hat eine gewisse Ungenauigkeit zur Folge.

Die stetige η_0 -Kurve wird durch eine Treppenlinie ersetzt und so anstatt der Fläche A die Fläche B in Rechnung gestellt. Da die Funktionen η_0 gegen den Rand $\alpha = 1$ zu stetig abnehmen, so summiert sich der auf diese Weise begangene Fehler, kann aber leicht abgeschätzt werden. Bei jedem Betrag $2\pi p \eta_0 \varrho_i \varDelta \varrho$ ist der Unterschied in erster Annäherung (vgl. Abb. 13).

$$2\pi p a^2 \left(\varrho_i + \frac{\varDelta \varrho}{3}\right) \frac{\varDelta \varrho}{2} \frac{\varDelta \eta_0}{2} \frac{1}{2}$$
$$-2\pi p a^2 \left(\varrho_i - \frac{\varDelta \varrho}{3}\right) \frac{\varDelta \varrho}{2} \frac{\varDelta \eta_0}{2} \frac{1}{2}$$
$$Differenz = + p a^2 \pi \frac{\varDelta \varrho^2}{6} \varDelta \eta_0.$$

Da $p a^2 \pi$ aus der Summe ausgeklammert wurde, so muß dieselbe in erster Annäherung um $\sum \frac{\varDelta \varrho^2}{6} \varDelta \eta_0$ herabgemindert werden. Für $\varDelta \eta_0$ kann der Mittelwert $\frac{\eta_0}{20} = 0.05 \eta_0$ gesetzt werden, wo η_0 für den Kreismittelpunkt zu nehmen ist. Die Korrektur ist somit

2. Teilweise (kreis- oder kreisringförmige) Belastung.

$$\sum 0,00833 \ \varDelta \ \varrho^2 \ \eta_0 \max = \frac{k}{20} \ 0,0004167. \eta_0 \max, \ (\varDelta \ \varrho = 0,05)$$

wo k die Anzahl der Intervalle $\Delta \varrho$ bedeutet, auf welche sich die Summation erstreckt.

Würde man auch auf die Differenzen zweiter Ordnung eingehen, so würde sich zeigen, daß auch diese Differenz positiv ist, daß also die Korrektur noch etwas größer werden müßte, als vorstehend angegeben. Schon das erste Korrekturglied genügt aber reichlich, da eine übertriebene Genauigkeit keinen Sinn hat. Eine kleine Abweichung von dem theoretisch genauen Wert der Summe (d. h. von dem Integralwert) bedeutet nichts anderes als eine kleine Verschiebung der Lastgrenzen.

Mit Bezug auf die Tab. VII ist:

$$\delta = 0.1 \left[\sum_{\varrho_1}^{\varrho_2} \alpha \eta_0 - \frac{k}{20} \ 0.004167 \ \eta_{0 \max} \right]. \tag{24 d}$$

Es empfiehlt sich, die berechneten Werte so zu kontrollieren, daß auch der Beitrag der Intervalle $0...q_1, q_2...1$ ermittelt wird, die Summe für das ganze Intervall 0...1 muß mit den aus Tab. VII zu entnehmenden Zahlen η_g übereinstimmen. Anstatt des obigen Korrekturgliedes kann auch der sich bei dieser Kontrolle notwendigerweise ergebende kleine Unterschied proportional auf die Intervalle verteilt werden. Die so ermittelten Werte stellen die $\frac{16N\pi}{a^2}$ — fachen Durchbiegungen dar und können in Übereinstimmung mit S. 27, Fußnote 29 unmittelbar in die rechte Seite der Elastizitätsgleichungen eingesetzt werden.

Im übrigen sei auf das nachfolgende Zahlenbeispiel verwiesen, welches die außerordentliche Einfachheit und die sehr große Genauigkeit der hier entwickelten Berechnungsart der Durchbiegungen δ_{io} bestätigt. Die ganze Arbeit besteht in der Addition von einigen Zahlen, welche der Tab. VII unmittelbar entnommen, bzw. für die Grenzen ϱ_1 und ϱ_2 mittels Rechenschieber berechnet werden. Die Vereinfachung gegenüber den Gl. (20)—(23) ist also erheblich. Die Abweichung der auf das ganze Intervall 0...1 erstreckten Summen von den genauen Werten nach Tab. VII beträgt ohne Berücksichtigung des Korrekturgliedes nur 1,14 bzw. 1,10 bzw. 1,13°/₀₀, sie könnte also ruhig außer acht bleiben. Durch das Korrekturglied wird die Abweichung auf rd. 1°/₀₀₀ ermäßigt.

Zahlenbeispiel (vgl. Abb. 14).

Die Beiwerte δ_{1i} der Elastizitätsgleichungen ergeben sich unmittelbær aus Tab. I, die übrigen sind auf S. 33–34 bereits ermittelt worden. Die linken Seiten der Elastizitätsgleichungen lauten wie folgt:

	X_1	X_{2}	X_{a}	X_4
[3,00,000	$2,\!37529$	1,18046	1,18046
Π	, <u> </u>	2,02027	1,03433	1,02697
III	_	·	0,61078	0,56037
IV				0,61078

Der Stellung der Säulen entsprechend seien folgende 3 Belastungsfälle angenommen.

- 1. Belastungsfall. Innerer Kreis belastet $\varrho_1 = 0$, $\varrho_2 = 0.35$ 2. Belastungsfall. Mittlerer Ring belastet $\varrho_1 = 0.35$, $\varrho_2 = 0.70$ 3. Belastungsfall. Äußerer Ring belastet $\varrho_1 = 0.70$, $\varrho_2 = 1.00$

Unter Verwertung der Tabelle VII erhält man δ_{i_0} in den einzelnen Belastungsfällen :

1. Belastungsfall.					
α	[10]	[20]	[30] = [40]		
Kreismitte: 0,00625	$\eta_0 = 0.01875$	0,01484	0,00737		
0,05	0,14888	0,11839	0,05887		
0,10	0,29239	0,23455	0,11682		
0,15	0,42707	0,34625	0,17294		
0,20	0,55025	$0,\!45124$	0,22630		
0,25	0,65980	0,54731	0,27600		
0,30 1	0,75398	$0,\!63221$	0,32111		
$0,35:\frac{1}{2}\cdot 0,35\cdot \eta_0$	0,41567	0,35185	0,18036		
-	3,26679	2,69664	1,35977		
	2. Belastungsf	all.			
1	[10]	[20]	[30] = [40]		
$0,35:\frac{1}{2}\cdot 0,35\cdot \eta_0$	0,41568	0,35186	0,18036		
0,40 2	0,89072	0,75976	0,39389		
0,45	0,93110	0,79910	0,41,973		
0,50	0,95172	0,82087	0,43731		
0,55	0,95195	0,82439	0,44572		
0,60	0,93 133	0,80919	0,44403		
0,65 ₁	0,88952	0,77493	0,43133		
$0,70:\frac{1}{2}\cdot 0,70\cdot \eta_0$	0,41316	0,36071	0,20335		
2	6,37518	5,50081	2,95572		
3. Belastungsfall.					
1	[10]	[20]	[30] = [40]		
$0,70:\frac{1}{2}\cdot 0,70\cdot \eta_0$	0.41316	0.36071	0.20336		
0,75 2	0.74165	0.64859	0.36941		
0,80	0,63550	0.55649	0.31944		
0,85	0,50801	0,44527	0,25706		
0,90	0,35 939	0,31521	0,18266		
0,95	0,18992	0,16664	0,09678		
Äußerer Ring	•	,	,		
$0,\!1234375~\eta_{0,95}$	0,02468	0,02165	0,01258		
	2,87231	2.51436	1.44129		

2. Teilweise (kreis- oder kreisringförmige) Belastung.

			•	
$-\frac{1}{3} \cdot 0,004167 \eta_{0 \max} =$		- 0,00330	0,00165	
Damit wird im				
	[10]	[20]	[30] = [40]	
1. Belastungsfall	3,26262	$2,\!69334$	1,35812	
2«. "	6,37101	$5,\!49751$	2,95407	
3. "	2,86814	2,51106	1,43964	
Daraus für Vollast	12,50177	10,70191	5,75183	
Sollwerte nach Tab. VII	12,50000	10,70000	5,75030	

Zu den obigen Werten gehört nach S. 41 als erste Korrektur je

Die Genauigkeit ist weit größer, als es praktisch je verlangt werden könnte. Verteilt man die noch verbliebenen kleinen Differenzen gleichmäßig auf die einzelnen Glieder, so ergeben sich die δ_{i_0} -Werte nach Multiplikation mit 0,1 (siehe S. 40):

	[10]	[20]	[30] = [40]
1. Belastungsfall	0,32620	0,26927	0,13576
2. "	0,63704	0,54969	$0,\!29536$
3. "	0,28676	0,25104	0,14391

Die Abweichungen von den mit der ersten Korrektur versehenen Werten sind völlig belanglos. Nach Auflösung der Elastizitätsgleichungen können die Stützkräfte wie folgt zusammengestellt werden:

		Belastungsfall		
	1	2	3	Σ
Anteil an der				1
Gesamtlast $P = a^2 \pi$	0,12250	036750	0,51000	1,00000
X_1	+0,04551	-0,00811	-0,00042	+0,03698
X_2	+0,08166	+0,15672	-0,01039	+0,22799
X_3	-0,00787	+0,11105	+0,13333	+0,23651
X_4	+0,00423	+0,13387	+0,13155	+0,26965
Äußere Ringmauer	-0,00103	-0,02603	+0,25593	+0,22887
D	. TT 1	1 1		

Damit ist die statische Unbestimmtheit beseitigt.

IV. Emittlung der Momente.

A. Die Momente m_g .

1. Vollbelastung.

Die Biegungsmomente einer freiaufliegenden, auf ihrer ganzen Fläche gleichmäßig belasteten Kreisplatte ergeben sich nach folgenden Formeln³⁵):

$$m_{rg} = \frac{(3+\nu)p_0}{16} \left(a^2 - r^2\right) = \frac{P}{4\pi} \frac{3+\nu}{4} \left(1-a^2\right)^{36}$$
(25)

$$m_{tg} = \frac{p_0}{16} \left[(3+\nu) a^2 - (1+3\nu) r^2 \right] = \frac{P}{4\pi} \frac{1}{4} \left[3+\nu - (1+3\nu) a^2 \right].$$
(26)

Mit $\nu = 0$ wird

$$m_{rg} = \frac{P}{4\pi} \frac{3}{4} (1 - \alpha^2)$$
 (25 a)

$$m_{tg} = \frac{P}{4\pi} \frac{1}{4} (3 - a^2) \tag{26 a}$$

Hier bedeutet m_r das radiale, m_t das tangentiale Biegungsmoment, auf die Längseinheit des Schnittes bezogen.

2. Teilweise Belastung.

Zur Momentenermittlung sind die von Föppl³⁷) für den auf S. 36 ff. besprochenen Belastungsfall abgeleiteten Formeln sehr geeignet (im Gegen-

satz zu den Durchbiegungsformeln), wenn in denselben $p_1 = 0$ gesetzt wird, wie das Nádai a. a. O. S. 59 getan hat. Die gleichmäßig verteilte Belastung p soll sich auf einen Kreis mit dem Halbmesser qa erstrecken, die Schnittstelle,

in welcher das Moment gesucht wird, sei im Abstand aa vom Kreismittel-

³⁵) Nádai a. a. O. S. 57.

³⁶) Mit Rücksicht auf weitere Formeln ist es zweckmäßig, nicht $\frac{P}{16\pi}$, sondern $\frac{P}{4\pi}$ auszuklammern.

⁸⁷) Drang und Zwang Bd. I S. 178 ff.

punkt. Dann lauten die Formeln, wenn $Q = p_0 a^2 \pi$ und $P = Q \varrho^2$, ferner $\frac{\varrho}{a} = \beta$, wenn $\varrho < a$ bzw. $\frac{a}{\varrho} = \beta'$, wenn $\varrho > a$ eingeführt wird ³⁸), wie folgt:

Unbelastetes (äußeres) Ringgebiet: $a \ge \varrho$

$$m_{rg} = \frac{P}{4\pi} \left[(1+\nu) l n \frac{1}{a} + \frac{1-\nu}{4} (\beta^2 - \varrho^2) \right]$$
(27)

$$m_{tg} = \frac{P}{4\pi} \left[(1+\nu) l n \frac{1}{a} + (1-\nu) \left(1 - \frac{\beta^2 + \varrho^2}{4} \right) \right]$$
(28)

Belastetes (inneres) Kreisgebiet: $a \leq \varrho$

$$m'_{rg} = \frac{P}{4\pi} \left[(1+\nu) \ln \frac{1}{\varrho} + 1 - \frac{1-\nu}{4} \varrho^2 - \frac{3+\nu}{4} \beta'^2 \right]$$
(29)

$$m'_{tg} = \frac{P}{4\pi} \left[(1+\nu) \ln \frac{1}{\varrho} + 1 - \frac{1-\nu}{4} \varrho^2 - \frac{1+3\nu}{4} \beta'^2 \right]$$
(30)

Mit $\nu = 0$ wird

$$m_{rg} = \frac{P}{4\pi} \left[ln \frac{1}{a} + \frac{\beta^2 - \varrho^2}{4} \right] = \frac{Q \varrho^2}{4\pi} \left[ln \frac{1}{a} + \frac{\beta^2 - \varrho^2}{4} \right]$$
(27a)

für $a \ge \varrho$

$$m_{tg} = \frac{P}{4\pi} \left[ln \frac{1}{a} + 1 - \frac{\beta^2 + \varrho^2}{4} \right] = \frac{Q \varrho^2}{4\pi} \left[ln \frac{1}{a} + 1 - \frac{\beta^2 + \varrho^2}{4} \right] \quad (28a)$$

$$m_{tg} = m_{rg} + \frac{P}{4\pi} \left(1 - \frac{\beta^2}{2} \right)$$

$$m'_{rg} = \frac{P}{4\pi} \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + 3\beta'^2}{4} \right] = \frac{Q \varrho^2}{4\pi} \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + 3\beta'^2}{4} \right]$$
(29a)

$$m'_{tg} = \frac{P}{4\pi} \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + \beta'^2}{4} \right] = \frac{Q \varrho^2}{4\pi} \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + \beta'^2}{4} \right]$$
(30a)

$$m'_{tg} = m'_{rg} + \frac{P}{8\pi} \beta'^2$$

Die in den Klammern der Gl. (27a)—(30a) stehenden Werte seien mit μ_{rg} , μ_{tg} , μ'_{rg} , μ'_{tg} bezeichnet.

Mit $\varrho = 1$, $\beta' = a$ gehen die Gl. (29), (30) und (29a), (30a) in die Gl. (25), (26) und (25a), (26a) über (Vollbelastung). Mit $\varrho = 0$, $\beta = 0$ wird aus Gl. (27) u. (28)

$$m_{rg} = \frac{(1+\nu)P}{4\pi} ln \frac{1}{a} \tag{31}$$

³⁸) Q bedeutet also die der Flächenbelastung p_0 entsprechende Gesamtbelastung der ganzen Kreisfläche, während P die auf die belastete Fläche entfallende tatsächliche Gesamtlast ist.

IV. Ermittlung der Momente.

$$m_{tg} = \frac{P}{4\pi} \left[(1+\nu) \ln \frac{1}{a} + 1 - \nu \right]^{89}$$
(32)

Dieser Fall entspricht einer im Kreismittelpunkt angreifenden konzentrierten Einzellast P, die Formeln sind, wenn die Druckeintragungsfläche im Verhältnis zur Gesamtfläche sehr klein ist, bis zum Rand der Lasteintragungsfläche gültig, wie das von Nádai nachgewiesen wurde. In Wirklichkeit findet die Lasteintragung immer auf einer Fläche statt, so daß strenggenommen immer die Gl. (27), (28) und (27a), (28a) Anwendung finden müßten, doch ist der Unterschied, wenn $\varrho < 0.1$, so gering, daß die einfacheren Formeln (31) und (32) auch genügen.

Die Gl. (27), (28) bzw. (31), (32) liefern also auch die Momente m_1 , falls X_1 die in einer Mittelstütze auftretende Auflagerkraft bedeutet.

Die Gl. (27)—(32) sind zwar an sich leicht auszuwerten, doch wäre die erforderliche Rechenarbeit in jedem Einzelfall sehr groß, da die Momente an verhältnismäßig vielen Stellen untersucht werden müssen. Um die Momentenermittlung nach Möglichkeit zu erleichtern, sind die Tab. VIII, IX berechnet worden, welche die Werte $\varrho^2 \mu_{rg}$, $\varrho^2 \mu'_{rg}$; $\varrho^2 \mu_{tg}$, $\varrho^2 \mu'_{tg}$ enthalten. Dabei sind die Intervalle für die Begrenzung der Belastung $\Delta \varrho = 0,05$, wie in den Tab. I—VII, während die Intervalle für die Schnittstellen zu $\Delta a = 0,01$ gewählt wurde. Die Biegungsmomente ergeben sich durch Multiplikation der Zahlen aus den Tab. VIII und IX mit $\frac{p_0 a^2}{4}$.

Bei Ringbelastungen, die sich von ϱ_1 bis ϱ_2 erstrecken, sind die zugehörigen Tabellenwerte voneinander zu subtrahieren. Die Tabellen sind in den vertikalen Spalten interpolierbar, so daß die Momente an beliebiger Stelle berechnet werden können. Diese Möglichkeit ist deshalb wichtig, weil man das Intervall zwischen zwei Säulen $\varrho_1 \cdots \varrho_2$ oft so unterteilen wird, daß es nicht der Dezimalteilung der vollen Kreisplatte entspricht. In den Reihen dagegen kann nicht interpoliert werden, was aber auch nicht nötig ist, weil es nicht so sehr darauf ankommt, ob die Belastungsgrenzen mit den Säulenstellungen genau übereinstimmen. Bei der Teilung

von 0,05 kann die Abweichung höchstens 0,025 $a = \frac{a}{40}$ betragen.

B. Die Momente $m_1 \ldots m_n$.

1. Reihenentwicklung.

Die Biegungsmomente m_r , m_t und das Drillungsmoment m_{rt} ergeben sich nach der Plattentheorie nach folgenden Formeln:

$$m_r = -N \left[\frac{\partial^2 w}{\partial r^2} + \nu \left(\frac{\partial w}{r \partial r} + \frac{\partial^2 w}{r^2 \partial \varphi^2} \right) \right]$$
(33)

⁸⁰) Vgl. Nádai a. a. O. S. 61, Gl. 27. Bei Nádai ist in der ersten Formel der Gl. 27 ein Druckfehler: der Nenner muß 4π heißen (anstatt wie bei ihm 2π).

1. Reihenentwicklung.

$$m_t = -N \left[v \frac{\partial^2 w}{\partial r^2} + \frac{\partial w}{r \partial r} + \frac{\partial^2 w}{r^2 \partial \varphi^2} \right]$$
(34)

$$m_{rt} = -(1-r) N \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial w}{\partial \varphi} \right)$$
(35)

wist dabei durch die im ganzen Bereich der Platte absolut und gleichmäßig konvergenten Reihen

$$w = R_0 + \sum_{p=1}^{\infty} R_{hp} \cos hp \varphi \quad (a > \varrho)$$

$$w = R_0' + \sum_{p=1}^{\infty} R'_{hp} \cos hp \varphi \quad (a < \varrho)$$
(4 b)

gegeben. Für R_{hp} , R'_{hp} gelten die Gl. (10 a''), (10 b'').

Die unteren Grenzen: $\vartheta = 0$ und $\lambda = 0$ kommen nur dann vor, wenn entweder $\rho = 0$ oder $\alpha = 0$, d. h. wenn entweder die Belastung in dem Mittelpunkt angreift, oder das Moment im Mittelpunkt gesucht wird. In beiden Fällen reduzieren sich die Gl. (4b) auf $w = R_0$ bzw. R_0' . Für $\vartheta = 1$, d.h. für den Kreis, auf welchem die Angriffspunkte der Lasten liegen $(\alpha = \varrho)$, müssen die durch Ableitungen gebildeten Reihen besonders untersucht werden. Schließen wir die obere Grenze $\vartheta = 1$ zunächst aus, so sind die aus w durch gliedweise Differentiation nach α erhaltenen Reihen im ganzen Bereich $0 < \vartheta < 1$, $0 < \vartheta' < 1$ und $0 < \lambda < 1$ absolut und gleichmäßig konvergent und die Summen der Reihen geben $\frac{\partial w}{\partial a}$ an. Durch weitere gliedweise Differentiation erhält man $\frac{\partial^2 w}{\partial a^2}$. Die Konvergenz der nach φ ein- bzw. zweimal differenzierten Reihen (vgl. die Gl. 33-35) ist ebenfalls leicht festzustellen; denn die Funktionen R_n enthalten im Nenner n in der dritten Potenz, die Reihen (4b) bleiben also selbst nach Multiplikation mit n^2 (welcher Faktor durch die zweimalige Ableitung nach φ entsteht) noch immer konvergent.

Die Ausdrücke (Gl. 33—35), in denen jetzt r = aa, dr = ada bedeutet, ergeben sich somit als Summen von im ganzen Bereich der Kreisplatte (aus welchem vorerst, wie gesagt, $a = \rho$ ausgeschlossen wird) absolut und gleichmäßig konvergenten Reihen. Vereinigt man aus diesen Reihen die Glieder, die aus den Ableitungen der Funktionen R_n entstehen, zu einem Glied m_{rn} , m_{tn} , m_{rtn} , so können die unendlichen Reihen (Gl. 33—35) in der folgenden Form geschrieben werden:

$$m_r = m_{r_0} + m_{r_1} + \dots + m_{r_n} + \dots$$
 (33 a)

$$m_t = m_{t_0} + m_{t_1} + \dots + m_{t_n} + \dots \qquad (34a)$$

$$m_{rt} = m_{rt} + \dots + m_{rtn} + \dots \tag{35a}$$

Es werden dadurch die Momente in Form von unendlichen Reihen dargestellt, deren Glieder in einem eindeutigen Verhältnis zu den Gliedern der Durchbiegungsreihe w stehen (Gl. 14), und zwar so, daß jedes Glied

47

der Reihe aus dem entsprechenden Glied der Durchbiegungsreihe — und nur aus dem — durch Ableitung gebildet wird.

In diesen Reihen wird das erste (von φ unabhängige) Glied jeweils für sich berechnet, die übrigen werden zusammengefaßt und mit

$$\sum_{n=h,2h,\ldots} m_{rn} = m_{r\Sigma}, \qquad \sum_{n=h,2h,\ldots} m_{tn} = m_{t\Sigma}, \qquad \sum_{n=h,2h,\ldots} m_{rtn} = m_{rt\Sigma}$$

bezeichnet. Das Gesamtmoment infolge einer Gruppe von zentralsymmetrisch verteilten Einzellasten ist dann

$$m_r = m_{r_0} + m_{r\Sigma}, \ m_t = m_{t_0} + m_{t\Sigma}, \ m_{rt} = m_{rt\Sigma}.$$

2. Einfluß des Gliedes R_0 .

 R_0 liefert die Durchbiegung der Platte infolge einer schneidenförmigen Belastung und bildet das erste Glied der *w*-Reihe, ohne mit einer (trigonometrischen) Funktion von φ multipliziert zu werden. Infolgedessen vereinfachen sich die Gl. (33)—(35):

$$m_{r_0} = -N \left[\frac{d^2 R_0}{dr^2} + \frac{\nu}{r} \frac{d R_0}{dr} \right]$$
(36)

$$m_{t_0} = -N \left[\frac{\nu d^2 R_0}{dr^2} + \frac{1}{r} \frac{d R_0}{dr} \right]$$
(37)

$$m_{rt} = 0 \tag{38}$$

$$R_{0} = \frac{Pa^{2}}{8N\pi} \left\{ \frac{3 + \nu - (1 - \nu)\varrho^{2}}{2(1 + \nu)} (1 - a^{2}) - (a^{2} + \varrho^{2}) ln \frac{1}{a} \right\}$$
(9a')

$$\frac{dR_0}{dr} = \frac{1}{a} \frac{dR_0}{da} = \frac{Pa}{8N\pi} \left[-\frac{3+\nu-(1-\nu)\varrho^2}{1+\nu} a - 2a\ln\frac{1}{a} + \frac{a^2+\varrho^2}{a} \right]$$
$$\frac{d^2R_0}{dr^2} = \frac{1}{a^2} \frac{d^2R_0}{da^2} = \frac{P}{8N\pi} \left[-\frac{3+\nu-(1-\nu)\varrho^2}{1+\nu} - 2\ln\frac{1}{a} + 3 - \frac{\varrho^2}{a^2} \right]$$

Daraus wird für $a \ge \varrho$

$$m_{r_{0}} = \frac{P}{4\pi} \left[\frac{\varrho^{2}}{2} (1-\nu) \left(\frac{1}{\alpha^{2}} - 1 \right) + (1+\nu) \ln \frac{1}{\alpha} \right]$$
(39)
$$m_{t_{0}} = \frac{P}{4\pi} \left\{ (1-\nu) \left[1 - \frac{\varrho^{2}}{2} \left(1 + \frac{1}{\alpha^{2}} \right) \right] + (1+\nu) \ln \frac{1}{\alpha} \right\} =$$
$$= m_{r_{0}} + \frac{P}{4\pi} (1-\nu) \left(1 - \frac{\varrho^{2}}{\alpha^{2}} \right)$$
(40)

Mit $\alpha = \varphi$ wird

$$m_{r_0} = m_{t_0} = \frac{P}{4\pi} \left[\frac{1}{2} \left(1 - \nu \right) \left(1 - \varrho^2 \right) + \left(1 + \nu \right) ln \frac{1}{\varrho} \right]$$
(41)

Diese Gleichung ist für das ganze innere Gebiet $a \leq \varrho$ gültig, wie man sich auch durch unmittelbare Ableitung aus R_0' überzeugen kann.

Gl. (41) ist mit Gl. (107) in "Drang und Zwang" S. 184 identisch, wenn aus den von Föppl angegebenen Spannungen die resultierenden Momente gebildet werden. Mit $\rho = 0$ ergeben sich

$$m_{r_0} = \frac{P}{4\pi} (1+\nu) \ln \frac{1}{a}, \ m_{t_0} = \frac{P}{4\pi} \left[1 - \nu + (1+\nu) \ln \frac{1}{a} \right]$$

d. h. die bereits auf anderem Wege gefundenen Gl. (31), (32), die einer im Kreismittelpunkt angreifenden Einzellast entsprechen (vgl. S. 45---46).

Abgesehen von der einzigen Stelle $\rho = 0$, $\alpha = 0$, d. h. also vom Kreismittelpunkt unter dem Einfluß einer dort angreifenden Last, liefern die aus der Teildurchbiegung R_0 abgeleiteten Formeln für die Teilmomente überall, d. h. für alle anderen Wertepaare ϱ und α eindeutig bestimmte endliche Werte. Die Singularität $a=0, \rho=0$ kann als ein Sonderfall von $\vartheta=0$ aufgefaßt werden. An der unteren Grenze des Konvergenzintervalls der durch die Gleichungen (4 b) bestimmten Funktion w bleiben also die durch Ableitung nach Gl. (33)—(35) gebildeten Reihen ebenfalls "konvergent", indem sie sich auf ein einziges Glied von endlichem Wert beschränken, nämlich auf die Ableitungen von R_0 . Alle anderen Glieder der Reihe verschwinden. Nur für a=0, g=0 wird die zweite Ableitung von R_0 (und somit auch das Biegungsmoment $m_{r_0} = m_{t_0}$) unendlich, wie das aus den Gl. (31) und (32) ohne weiteres zu ersehen ist. Es ist klar, das dieses Ergebnis nicht mit der Wirklichkeit übereinstimmt, was bereits im II. Abschnitt S. 15 ff. erörtert wurde. Da es an dieser Stelle, bezüglich der Singularität der Momente m_{r_0} , m_{t_0} in $\alpha = \varrho = 0$, nur auf die mathematischen Zusammenhänge zwischen (Gl. 4 b) und zwischen den aus ihren Ableitungen gebildeten Ausdrücken für die Momente ankommt, genügt es, auf die auf S. 17-18 besprochene Lösung von Nádai zu verweisen.

Mit $\nu = 0$ vereinfachen sich die Momentenausdrücke wie folgt:

$$m_{r_0} = \frac{P}{4\pi} \left[\frac{\varrho^2}{2} \left(\frac{1}{a^2} - 1 \right) + \ln \frac{1}{a} \right] \qquad (39 a)$$

$$m_{t_0} = \frac{P}{4\pi} \left[1 - \frac{\varrho^2}{2} \left(1 + \frac{1}{a^2} \right) + \ln \frac{1}{a} \right] \right]$$
(40 a)

$$m_{r_0} = m_{t_0} = \frac{P}{4\pi} \left[\frac{1-\varrho^2}{2} + ln \frac{1}{\varrho} \right] \alpha \leq \varrho$$
(41 a)

$$m_{r_0} = \frac{P}{4\pi} ln \frac{1}{a} \qquad \left| a = 0 \right|$$
(31 a)

$$m_{t_0} = \frac{P}{4\pi} \left(1 + l n \frac{1}{\alpha} \right)$$
(32 a)

Die Klammerausdrücke in (39 a), (40 a), (41 a), seien mit μ_{r_0} , u_{t_0} bezeichnet. Diese Werte wurden in den Tabellen X und XI zusammengefaßt, wobei die Intervalle für ϱ je 0,05, für α je 0,01 betragen. Obgleich die Differenzen in den auf 5 Dezimalstellen ausgerechneten Tabellen im allgemeinen 4zifferig sind, so ist eine geradlinige Interpolation in dem größten Teil der Tabellen mit ausreichender Genauigkeit doch möglich, weil die zweiten Differenzen durchweg sehr klein bleiben, so daß sich der bei einer solchen Interpolation begangene Fehler kaum über die vierte Dezimalstelle auswirkt. Die Momente nach den Gl. (39)—(41) würden bei schneidenförmiger Belastung bzw. Auflagerung entstehen. Setzt man in Gl. (1)

$$M = m_g - X_1 m_1 - X_2 m_2 - \cdots - X_n m_n$$

für $m_1, \ldots m_n$ die se Werte ein, so ergibt sich der von φ unabhängige Teil der gesuchten Biegungsmomente. Dieser Teil sei als Hauptwert der Biegungsmomente (M_{H}) bezeichnet.

3. Einfluß der Glieder $R_n \cos n\varphi$, $R'_n \cos n\varphi$.

Die sich aus $R_{ph} \cos p h \varphi$, $R'_{ph} \cos p h \varphi$ ergebenden Glieder der nach den Gl. (33)—(35) zu bildenden Momentenreihen lauten, wenn zur Vereinfachung der Schreibweise vorerst wieder n = p h eingesetzt wird:

$$m_{rn} = -N \left[\frac{d^2 R_n}{dr^2} + \frac{r}{r} \frac{d R_n}{dr} - \frac{r^2 n^2}{r^2} R_n \right] \cos n \varphi \tag{42}$$

$$m_{tn} = -N \left[\frac{\nu d^2 R_n}{d r^2} + \frac{1}{r} \frac{d R_n}{d r} - \frac{n^2}{r^2} R_n \right] \cos n \varphi$$
(43)

$$m_{rt} = -(1-r)N\frac{n}{r}\left[\frac{R_n}{r} - \frac{dR_n}{dr}\right]\sin n\varphi$$
(44)

Die Gl. (42)—(44) gelten natürlich auch für R_n' . Die in den Klammerausdrücken vorkommenden Funktionen lauten:

Im äußeren Gebiet $a > \varrho$:

$$R_{n} = \frac{Pa^{2}}{8N\pi} \frac{1}{n(n-1)} \left\{ \left(\frac{\varrho}{a}\right)^{n} \left(a^{2} - \frac{n-1}{n+1}\varrho^{2}\right) + \frac{1}{n(n-1)} \left(\frac{(1+\nu)(n-1)(\varrho^{2} + a^{2}) - (3+\nu)n + (1-\nu)\frac{n(n-1)}{n+1}(a\varrho)^{2}}{2n+1+\nu} \right) \right\}$$

$$= \frac{Pa^{2}}{8N\pi} \varrho^{n} \left\{ -\frac{\varrho^{2}}{n(n+1)} a^{-n} + \frac{1}{n(n-1)} a^{-(n-2)} + \left[\frac{1+\nu}{(2n+1+\nu)n} \varrho^{2} - \frac{3+\nu}{(2n+1+\nu)(n-1)}\right] a^{n} + \left[\frac{1+\nu}{(2n+1+\nu)n} + \frac{1-\nu}{(2n+1+\nu)(n+1)} \varrho^{2}\right] a^{n+2} \right\}$$

$$\frac{dR_{n}}{dr} = \frac{1}{a} \frac{dR_{n}}{da} = \frac{Pa}{8N\pi} \varrho^{n} \left\{ \frac{\varrho^{2}}{n+1} a^{-(n+1)} + \frac{2-n}{(n-1)n} a^{-(n-1)} + \left[\frac{1+\nu}{2n+1+\nu} \varrho^{2} - \frac{(3+\nu)n}{(2n+1+\nu)(n-1)}\right] a^{n-1} + \left[\frac{1+\nu}{2n+1+\nu} \varrho^{2} - \frac{(3+\nu)n}{(2n+1+\nu)(n-1)}\right]$$

$$+\left[\frac{(1+\nu)(n+2)}{(2n+1+\nu)n} + \frac{(1-\nu)(n+2)}{(2n+1+\nu)(n+1)}\varrho^{2}\right]a^{n+1}\right\}$$
(46)

3. Einfluß der Glieder R_n .

$$\frac{d^{2} R_{n}}{d r^{2}} = \frac{1}{a^{2}} \frac{d^{2} R_{n}}{d a^{2}} = \frac{P}{8 N \pi} \varrho^{n} \left\{ - \varrho^{2} a^{-(n+2)} + \frac{n-2}{n} a^{-n} + \frac{(1+\nu)(n-1)\varrho^{2} - (3+\nu)n}{2n+1+\nu} a^{n-2} + \frac{(1+\nu)(n+1)(n+2) + (1-\nu)(n+2)n\varrho^{2}}{(2n+1+\nu)n} a^{n} \right\}$$
(47)

 $\begin{array}{l} \text{Im inneren Gebiet } a < \varrho: \\ R_{n}' = \frac{Pa^{2}}{8\,N\,\pi} \frac{1}{n\,(n-1)} \Big\{ \Big(\frac{a}{\varrho} \Big)^{n} \Big(\varrho^{2} - \frac{n-1}{n+1} a^{2} \Big) + \\ & + \frac{(1+\nu)\,(n-1)\,(\varrho^{2}+a^{2}) - (3+\nu)\,n + (1-\nu)\,\frac{n\,(n-1)}{n+1}\,(a\,\varrho)^{2}}{2\,n+1+\nu} \\ R_{n}' = \frac{Pa^{2}}{8\,N\pi} \Big\{ \Big[\frac{1}{n\,(n-1)} \,\varrho^{-(n-2)} + \frac{1+\nu}{(2\,n+1+\nu)\,n} \,\varrho^{n+2} - \\ & - \frac{3+\nu}{(2\,n+1+\nu)\,(n-1)} \,\varrho^{n} \Big] a^{n} + \Big[\frac{1+\nu}{(2\,n+1+\nu)\,n} \,\varrho^{n} + \\ & + \frac{1-\nu}{(2\,n+1+\nu)\,(n-1)} \,\varrho^{n+2} - \frac{1}{n\,(n+1)} \,\varrho^{-n} \Big] a^{n+2} \Big\} \quad (48) \\ \frac{d\,R_{n}'}{d\,r} = \frac{1}{a} \frac{d\,R_{n}'}{d\,a} = \frac{Pa}{8\,N\pi} \Big\{ \Big[\frac{1}{n-1} \,\varrho^{-(n-2)} + \frac{1+\nu}{2\,n+1+\nu} \,\varrho^{n+2} - \\ & - \frac{n(3+\nu)}{(2\,n+1+\nu)\,(n-1)} \,\varrho^{n} \Big] a^{n-1} + \Big[\frac{(n+2)\,(1+\nu)}{(2\,n+1+\nu)\,n} \,\varrho^{n} + \\ & + \frac{(n+2)\,(1-\nu)}{(2\,n+1+\nu)\,(n+1)} \,\varrho^{n+2} - \frac{n+2}{n\,(n+1)} \,\varrho^{-n} \Big] a^{n+1} \Big\} \quad (49) \\ \frac{d^{2}\,R_{n}'}{d\,r^{2}} = \frac{1}{a^{2}} \frac{d^{2}\,R_{n}'}{d\,a^{2}} = \frac{P}{8\,N\pi} \Big\{ \Big[\varrho^{-(n-2)} + \frac{(n-1)\,(1+\nu)}{2\,n+1+\nu} \,\varrho^{n+2} - \\ & - \frac{n(3+\nu)}{2\,n+1+\nu} \,\varrho^{n} \Big] a^{n-2} + \Big[\frac{(n+1)\,(n+2)\,(1+\nu)}{(2\,n+1+\nu)\,n} \,\varrho^{n} + \\ & + \frac{(n+2)\,(1-\nu)}{2\,n+1+\nu} \,\varrho^{n+2} - \frac{n+2}{n\,(2\,n+1+\nu)\,n} \,\varrho^{n} \Big\}$

Setzt man die Ausdrücke (45) – (47) bzw. (48)–(50) in die allgemeinen Momentengleichungen (42)–(44) ein, so erhält man die zu $R_n \cos n\varphi$, $R_n' \cos n\varphi$ gehörenden Teilmomente nach Ordnen der Glieder wie folgt: Äußeres Gebiet $a > \rho$:

$$m_{rn} = \frac{P}{8\pi} \varrho^{n} \Big\{ (1-\nu) \varrho^{2} a^{-(n+2)} + \frac{\nu (n^{2}+n-2) - (n-1) (n-2)}{n(n-1)} a^{-n} + \frac{(3+\nu) (1-\nu) n - (n-1) (1-\nu^{2}) \varrho^{2}}{2n+1+\nu} a^{n-2} + \frac{\nu (n^{2}-n-2) - (n+1) (n+2)}{2n+1+\nu} \Big[\frac{1+\nu}{n} + \frac{1-\nu}{n+1} \varrho^{2} \Big] a^{n} \Big\} \cos n \varphi^{-}$$
(51)

$$m_{tn} = \frac{P}{8\pi} \varrho^{n} \left\{ -(1-\nu) \varrho^{2} a^{-(n+2)} + \frac{(n^{2}+n-2)-\nu(n-1)(n-2)}{n(n-1)} a^{-n} + \frac{(1-\nu^{2})(n-1) \varrho^{2} - (3+\nu)(1-\nu)n}{2n+1+\nu} a^{n-2} + \frac{(n^{2}-n-2)-\nu(n+1)(n+2)}{2n+1+\nu} \left[\frac{1+\nu}{n} + \frac{1-\nu}{n+1} \varrho^{2} \right] a^{n} \right\} \cos n\varphi \quad (52)$$

$$m_{rtn} = (1-\nu) \frac{P}{8\pi} \varrho^{n} \left\{ -a^{-n} + \varrho^{2} a^{-(n+2)} - \frac{-\frac{n(3+\nu)-(1+\nu)(n-1) \varrho^{2}}{2n+1+\nu} a^{n-2}}{2n+1+\nu} a^{n-2} + \frac{(1+\nu)(n+1)+(1-\nu)n \varrho^{2}}{2n+1+\nu} a^{n} \right\} \sin n\varphi \quad (53)$$
Inneres Gebiet $a < \varrho$:
$$m'_{rn} = \frac{P}{8\pi} \left\{ \left[-(1-\nu) \varrho^{-(n-2)} + \frac{n(3+\nu)(1-\nu)}{2n+1+\nu} \varrho^{n} - \frac{-(1-\nu^{2})(n-1)}{2n+1+\nu} \varrho^{n+2} \right] a^{n-2} + \left[\frac{1+\nu}{(2n+1+\nu)n} \varrho^{n} + \frac{1-\nu}{(2n+1+\nu)n} \varrho^{n} + \frac{1-\nu}{(2n+1+\nu)(n+1)} \varrho^{n+2} - \frac{1}{n(n+1)} \varrho^{-n} \right]$$

$$[n^{2}\nu - (n+2)(n+1+\nu)] a^{n} \right\} \cos n\varphi \quad (54)$$

$$m'_{tn} = \frac{P}{8\pi} \left\{ \left[(1-\nu) \varrho^{-(n-2)} - \frac{n(3+\nu)(1-\nu)}{(2n+1+\nu)(n+1)} \varrho^n + \frac{(1-\nu^2)(n-1)}{2n+1+\nu} \varrho^{n+2} \right] a^{n-2} + \left[\frac{1+\nu}{(2n+1+\nu)n} \varrho^n + \frac{1-\nu}{(2n+1+\nu)(n+1)} \varrho^{n+2} - \frac{1}{n(n+1)} \varrho^{-n} \right] \right] \\ = \left[n^2 - (n+2)(n\nu + \nu + 1) \right] a^n \right\} \cos n\varphi$$
(55)

$$m'_{rtn} = (1-\nu) \frac{P}{8\pi} \left\{ \left[\varrho^{-(n-2)} - \frac{n(3+\nu) - (1+\nu)(n-1)\varrho^{n-2}}{2n+1+\nu} \right] a^{n-2} + \left[-\varrho^{-n} + \frac{(1+\nu)(n+1)\varrho^{n} + (1-\nu)n\varrho^{n+2}}{2n+1+\nu} \right] a^{n} \right\} \sin n\varphi \quad (56)$$

Man kann sich leicht überzeugen, daß die obigen Ausdrücke folgende Bedingungen erfüllen:

1. Mit $a = \rho$ geht die Gleichungsgruppe (51)—(53) in die Gleichungsgruppe (54)—(56) über.

2. Für $\alpha = 1$ wird aus Gl. (51) $m_{rn} = 0$.

Bedenkt man aber, daß die Formeln (51)—(56) für sämtliche Kombinationen ϱ und a, die einerseits durch die Säulenteilung, andererseits durch die zu untersuchenden Schnitte gegeben sind, für $n = h, 2h, 3h, \ldots$ ausgewertet werden müßten, so erscheinen die abgeleiteten Ausdrücke praktisch zunächst wertlos, da eine solche Rechenarbeit kaum zu bewältigen wäre. Es ist auch zu beachten, daß die Reihen $\sum m_{rn}$ usw. für solche Wertepaare von ϱ und a, die nur wenig voneinander verschieden sind, ziemlich langsam konvergieren (viel langsamer, als die ursprüngliche Reihe $\sum R_n \cos n \varphi$). Um also zu praktisch brauchbaren Ergebnissen zu gelangen, müssen die Gl. (51)—(56) umgeformt werden.

Außeres Gebiet
$$a > \varrho$$
.

Gl. (51) kann wie folgt angeschrieben werden:

$$\begin{split} m_{rn} &= \frac{P}{8\pi} \left\{ \left(\frac{\varrho}{a} \right)^{n} \left[\left(\frac{\varrho}{a} \right)^{2} (1-v) - 1 + \frac{2}{n} + v + \frac{2v}{n} \right] + (a\varrho)^{n} \left[\left(\frac{\varrho}{a} \right)^{2} \frac{1-v^{2}}{2n+1+v} - \\ &- \left(\frac{\varrho}{a} \right)^{2} \frac{n(1-v^{2})}{2n+1+v} + \frac{(3+v)(1-v)}{a^{2}} \frac{n}{2n+1+v} + \frac{v(1+v)n}{2n+1+v} - \frac{v(1+v)}{2n+1+v} - \\ &- \frac{2v(1+v)}{(2n+1+v)n} + \frac{n(1-v)v}{2n+1+v} \varrho^{2} - \frac{2(1-v)v}{2n+1+v} \varrho^{2} - \frac{n(1+v)}{2n+1+v} - \\ &- \frac{3(1+v)}{2n+1+v} - \frac{2(1+v)}{(2n+1+v)n} - \frac{(1-v)n}{2n+1+v} \varrho^{2} - \frac{2(1-v)}{2n+1+v} \varrho^{2} \right] \right\} \cos n\varphi. \\ \text{Setzt man wieder } n = ph, \left(\frac{\varrho}{a} \right)^{h} = \vartheta, (\varrho a)^{h} = \lambda, h\varphi = \psi, \text{ so ist} \\ m_{rn} &= \frac{P}{8\pi} \left\{ \vartheta^{p} \left[(1-v) \left(\frac{\varrho}{a} \right)^{2} - 1 + v \right] + \frac{\vartheta^{p}}{hp} 2(1+v) + \\ &+ \lambda^{p} \frac{hp}{2hp+1+v} \left[- \left(\frac{\varrho}{a} \right)^{2} (1-v^{2}) + (3+v) (1-v) \frac{1}{a^{2}} + v(1+v) + \\ &+ (1-v) v \varrho^{2} - (1+v) - (1-v) \varrho^{2} \right] + \\ &+ \lambda^{p} \frac{1}{(2hp+1+v) hp} \left[- 2(1+v)^{2} \right] \right\} \cos p\psi. \\ \text{Setzt man ferner} \\ A = (1-v) \left(\frac{\varrho}{a} \right)^{2} - 1 + v = (1-v) \left[\left(\frac{\varrho}{a} \right)^{2} - 1 \right] \end{aligned}$$

$$= \frac{(3+\nu)(1-\nu)}{\alpha^{2}} - (1-\nu^{2})\left[\left(\frac{\varrho}{\alpha}\right)^{2} + \varrho^{2} + 1\right]$$
(58)

$$C_r = (1 - \nu^2) \left[\left(\frac{\varrho}{\alpha} \right)^2 - 2 \varrho^2 \right] - (1 + \nu) (3 + \nu)$$
(59)

so wird

$$m_{r\Sigma} = \frac{P}{8\pi} \left\{ A \sum_{p=1}^{\infty} \vartheta^p \cos p \, \psi + \frac{2(1+\nu)}{h} \sum_{p=1}^{\infty} \frac{\vartheta^p}{p} \cos p \, \psi + B \sum_{p=1}^{\infty} \frac{\lambda^p h p}{2hp + 1 + \nu} \cos p \, \psi + C_r \sum_{p=1}^{\infty} \frac{\lambda^p}{2hp + 1 + \nu} \cos p \, \psi - 2(1+\nu)^2 \sum_{p=1}^{\infty} \frac{\lambda^p}{(2hp + 1 + \nu)hp} \cos p \, \psi \right\}$$
(60)

In derselben Weise ergibt sich

$$m_{t}\Sigma = \frac{P}{8\pi} \left\{ -A \sum_{p=1}^{\infty} \vartheta^{p} \cos p \,\psi + \frac{2(1+\nu)}{h} \sum_{p=1}^{\infty} \frac{\vartheta^{p}}{p} \cos p \,\psi - B \sum_{p=1}^{\infty} \frac{\lambda^{p} h p}{2hp + 1 + \nu} \cos p \,\psi + C_{t} \sum_{p=1}^{\infty} \frac{\lambda^{p}}{2hp + 1 + \nu} \cos p \,\psi - 2(1+\nu)^{2} \sum_{p=1}^{\infty} \frac{\lambda^{p}}{(2hp + 1 + \nu) hp} \cos p \,\psi \right\}$$
(61)

$$m_{rt\Sigma} = \frac{P}{8\pi} \Biggl\{ A \sum_{p=1}^{\infty} \vartheta^p \sin p \, \psi - B \sum_{p=1}^{\infty} \frac{\lambda^p h p}{2hp + 1 + \nu} \sin p \, \psi + \\ + (1 - \nu^2) \Biggl[1 - \left(\frac{\varrho}{a}\right)^2 \Biggr] \sum_{p+1}^{\infty} \frac{\lambda^p}{2hp + 1 + \nu} \sin p \, \psi \Biggr\}$$
(62)

Hier ist

$$C_{t} = -(1-\nu^{2})\left[\left(\frac{\varrho}{a}\right)^{2}+2\varrho^{2}\right]-(1+\nu)(1+3\nu) = C_{r}+(1-\nu^{2})\left[1-\left(\frac{\varrho}{a}\right)^{2}\right]$$
(63)

$$C_r + C_t = -4 \left[\varrho^2 \left(1 - \nu^2 \right) + (1 + \nu)^2 \right]$$
(64)

Inneres Gebiet $a < \varrho$.

Aus den Gl. 53-55 erhält man:

$$m'_{r\Sigma} = \frac{P}{8\pi} \Biggl\{ -A \sum_{p=1}^{\infty} \vartheta'^p \cos p\psi + \frac{2(1+\nu)}{h} \sum_{p=1}^{\infty} \frac{\vartheta'^p}{p} \cos p\psi + \\ +B \sum_{p=1}^{\infty} \frac{\lambda^p hp}{2hp+1+\nu} \cos p\psi + C_r \sum_{p=1}^{\infty} \frac{\lambda^p}{2hp+1+\nu} \cos p\psi - \\ -2(1+\nu^2) \sum_{p=1}^{\infty} \frac{\lambda^p}{(2hp+1+\nu)hp} \cos p\psi \Biggr\}$$
(65)

3. Einfluß der Glieder R_n .

$$m'_{t\Sigma} = \frac{P}{8\pi} \left\{ A \sum_{p=1}^{\infty} \vartheta'^{p} \cos p \psi + \frac{2\left(1+\nu\right)}{h} \sum_{p=1}^{\infty} \frac{\vartheta'^{p}}{p} \cos p \psi - B \sum_{p=1}^{\infty} \frac{\lambda^{p} h p}{2hp + 1 + \nu} \cos p \psi + C_{t} \sum_{p=1}^{\infty} \frac{\lambda^{p}}{2hp + 1 + \nu} \cos p \psi - 2\left(1+\nu\right)^{2} \sum_{p=1}^{\infty} \frac{\lambda^{p}}{(2hp + 1 + \nu)hp} \cos p \psi \right\} (66)$$
$$m'_{rt\Sigma} = \frac{P}{8\pi} \left\{ A \sum_{p=1}^{\infty} \vartheta'^{p} \sin p \psi - B \sum_{p=1}^{\infty} \frac{\lambda^{p} h p}{2hp + 1 + \nu} \sin p \psi + \left(1-\nu^{2}\right) \left[1-\left(\frac{\varrho}{\alpha}\right)^{2}\right] \sum_{p=1}^{\infty} \frac{\lambda^{p}}{2hp + 1 + \nu} \sin p \psi \right\} (67)$$

Es ist besonders darauf hinzuweisen, daß die Funktionen $A, B, C_r C_t$ im inneren Gebiet dieselbe Form haben, wie im äußeren, daß also ϱ und α nicht vertauscht werden, wie dies z. B. bei ϑ und ϑ' der Fall ist. A, B, C_r, C_t sind nur von α und ϱ abhängig, ihre Berechnung ist sehr einfach. Dagegen muß noch ein Weg zur Auswertung der in den Gl. (60)—(62), (65)—(67) vorkommenden Summenausdrücke gefunden werden. Es handelt sich dabei um folgende fünf verschiedene Reihen, in welchen die Veränderlichen mit den Buchstaben r und x, die Ordnungszahlen mit n bezeichnet werden.

Die Reihen (4) und (5) können wie folgt zerlegt werden:

4.
$$\sum_{n=1}^{\infty} \frac{n r^n}{2n+1+\nu} \cos nx = \underbrace{\frac{1}{2} \sum_{n=1}^{\infty} r^n \cos nx}_{(1)} - \underbrace{\frac{1+\nu}{2} \sum_{n=1}^{\infty} \frac{r^n}{2n+1+\nu} \cos nx}_{(3) (68)}$$

IV. Ermittlung der Momente.

5.
$$\sum_{n=1}^{\infty} \frac{r^{n}}{n(2n+1+\nu)} \cos nx = \underbrace{\sum_{n=1}^{\infty} \frac{r^{n}}{n} \cos nx - 2}_{n=1} \underbrace{\sum_{n=1}^{\infty} \frac{r^{n}}{2n+1+\nu}}_{(3)} \cos nx - \underbrace{\sum_{n=1}^{\infty} \frac{r^{n}}{n(2n+1+\nu)}}_{(5)} \cos nx}_{(5)}$$
5.
$$\sum_{n=1}^{\infty} \frac{r^{n}}{n(2n+1+\nu)} \cos nx = \frac{1}{1+\nu} \left[\underbrace{\sum_{n=1}^{\infty} \frac{r^{n}}{n} \cos nx - \frac{1}{(2)}}_{(2)} - 2 \underbrace{\sum_{n=1}^{\infty} \frac{r^{n}}{2n+1+\nu} \cos nx}_{(3)} \right]$$
(69)

Die Reihe (4) wurde also auf die Reihen (1) und (3), die Reihe (5) auf die Reihen 2 und 3 zurückgeführt. Die Momente können somit durch die Reihen (1), (2), (3) ausgedrückt werden.

Nachstehend wird gezeigt, daß es möglich ist, alle drei Reihen geschlossen zu summieren, indem man sie als reellen (bzw. imaginären) Teil von Reihen mit komplexen Veränderlichen z = r (cos $x + i \sin x$), deren Grenzwert bekannt ist, auffaßt. Die gesuchten Grenzwerte der Reihen (1), (2) sind dann die reellen (bzw. imaginären) Teile der bekannten komplexen Grenzwerte.

1. Reihe (1) ist der reelle (bzw. imaginäre) Teil der komplexen Reihe

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \quad \text{mit } z = r \quad (\cos x + i \sin x), \quad r < 1.$$
Es ist demnach

$$\sum_{n=0}^{\infty} r^n \cos nx = \frac{1-r \cos x}{1-2r \cos x+r^2} \quad \text{und somit}$$

$$\sum_{n=1}^{\infty} r^n \cos nx = \frac{1-r \cos x}{1-2r \cos x+r^2} - 1 = r \frac{\cos x - r}{1-2r \cos x+r^2} = \underline{f_1}(r,x) \quad (70)$$

$$\sum_{n=1}^{\infty} r^n \sin nx = \frac{r \sin x}{1-2r \cos x+r^2} = \underline{f_2}(r,x)$$
2. Für die Reihe (2) ist die komplexe Hilfsreihe:

$$\frac{z}{1} + \frac{z^2}{2} + \frac{z^3}{3} + \dots + \frac{z^n}{n} + \dots = ln \frac{1}{1-z} = -ln (1-z)$$
Andererseits ist

$$-ln (1-z) = -ln |1-z| + i\varphi$$

56

Also erhält man für die reellen und imaginären Teile:

$$\sum_{n=1}^{\infty} \frac{r^n}{n} \cos nx = -\ln\left(1 - 2r\cos x + r^2\right)^{\frac{1}{2}} = \underline{g_1(r,x)}$$
(72)

$$\sum_{n=1}^{\infty} \frac{r^n}{n} \sin n \, x = \operatorname{arctg} \left(\frac{r \sin x}{1 - r \cos x} \right) = \underline{g_2(r, x)} \tag{73}$$

3. Die Reihe (3) läßt sich wie folgt umformen: Es sei n = hp, $z^h = y$, $(z^n = y^p)$.

$$\sum_{n=h,2h,\dots} \frac{z^n}{2n+1+\nu} = \frac{1}{2h} \sum_{p=1}^{\infty} \frac{y^p}{p+\frac{1+\nu}{2h}} = \frac{1}{2h} S_p = 1$$

Einfachheitshalber sei ferner $\frac{1+\nu}{2h} = \gamma$ wo $0 \leq \nu < \frac{1}{2}, \ \gamma < 1$

$$S_{p=0} = \sum_{p=0}^{\infty} \frac{y^p}{p+\gamma}$$

Wir führen folgende Funktion ein:

$$u = \sum_{p=0}^{\infty} y^{p+\gamma-1} = y^{\gamma-1} \sum_{p=0}^{\infty} y^{p}$$

Dann ist

$$\int_{0}^{y} u \, dy = \sum_{p=0}^{\infty} \frac{y^{p+\gamma}}{p+\gamma} = y^{\gamma} \sum_{p=0}^{\infty} \frac{y^{p}}{p+\gamma} = y^{\gamma} S_{p=0}$$

 \mathbf{somit}

$$S_{p=0} = y^{-\gamma} \int_{0}^{y} u \, dy = y^{-\gamma} \int_{0}^{y} \frac{y^{\gamma-1}}{1-y} \, dy$$

Hier ist $\gamma - 1$ ein echter Bruch mit negativem Vorzeichen, es kann also gesetzt werden $\gamma - 1 = -\frac{s}{t}$, wo (s, t) = 1, s < t,

$$S_{p=0} = y^{-\gamma} \int_{0}^{y} \frac{y^{-\frac{s}{t}}}{1-y} dy$$

Wir substituieren $y = v^t$, $dy = tv^{t-1}dv$

$$\int_{0}^{y} \frac{y - \frac{s}{t}}{1 - y} dy = t \int_{0}^{v^{t}} \frac{v^{t - s - 1}}{1 - v^{t}} dv$$

Sowohl Zähler, als auch Nenner enthalten nur ganze Potenzen von v, der Integrand läßt sich also in Partialbrüche zerlegen und die Integration kann in geschlossener Form ausgeführt werden. Trennt man nachher den reellen und imaginären Teil voneinander, so ergibt sich die Summe der cos- bzw. sin-Reihe in geschlossener Form.

Es sind somit alle drei Reihen auf geschlossene Form gebracht, wodurch bewiesen ist, daß sich für die Momente theoretisch strenge, geschlossene Formeln angeben lassen.

Der zur genauen Summierung der Reihe (3) erforderliche Rechnungsgang ist aber für die praktische Durchführung zu langwierig. Mit Hilfe der Reihe (2) kann eine sehr gute Näherung gefunden werden, deren Genauigkeit weit größer ist, als es praktisch nötig wäre.

Die Summe der cos-Reihe sei mit L bezeichnet. Ferner sei $r^h = \lambda$, $h x = \psi$. Der größte Wert dieser Summe wird mit x = 0 erreicht und ist

$$\sum_{p=1}^{\infty} \frac{\lambda^p}{2hp+1+\nu} = L_0$$

Da diese Reihe aus lauter positiven Gliedern besteht und jedes Glied zwischen den Gliedern der beiden Reihen

$$rac{1}{2\,h} \sum rac{\lambda^p}{p}$$
 und $rac{1}{2\,h+1+
u} \sum rac{\lambda^p}{p}$

liegt, so liegt auch L_0 zwischen den Summen dieser beiden Reihen. Es sei

$$d = \frac{1}{2h} \sum_{p=1}^{\infty} \frac{\lambda^p}{p} - \frac{1}{2h+1+\nu} \sum_{p=1}^{\infty} \frac{\lambda^p}{p} = \frac{1+\nu}{4h^2+2(1+\nu)h} \sum_{p=1}^{\infty} \frac{\lambda^p}{p}$$

und $\varepsilon = \frac{1+\nu}{4h^2+2(1+\nu)h}$ (74)

Mit h = 4 ist also der Fehler, den man begeht, wenn man anstatt L_0 eine dieser Summen in Rechnung stellt, sicher kleiner als

$$\frac{1+\nu}{64+8(1+\nu)}\sum_{p=1}^{\infty}\frac{\lambda^p}{p} < \frac{1.5}{76} \stackrel{40}{\longrightarrow} \sum_{p=1}^{\infty}\frac{\lambda^p}{p} < \frac{1}{100}\sum_{p=1}^{\infty}\frac{\lambda^p}{p} < \frac{1}{100}$$

d. h. kleiner als $2^{0}/_{0}$. Mit $\nu = 0$ ist $\varepsilon = \frac{1}{72}$, so daß der Fehler kleiner als $1,4^{0}/_{0}$ ist.

Es ist also

$$\left|\frac{1}{2h}\sum_{p}\frac{\lambda^{p}}{p}-\sum_{p}\frac{\lambda^{p}}{2hp+1+\nu}\right| < d$$

$$\left|\frac{1}{2h+1+\nu}\sum_{p}\frac{\lambda^{p}}{p}-\sum_{p}\frac{\lambda^{p}}{2hp+1+\nu}\right| < d$$

Da bei konvergenten Reihen auch gliedweise subtrahiert werden kann, so können die Ungleichungen auch in folgender Weise geschrieben werden:

$$\frac{\left|\sum\left[\frac{1}{2hp}-\frac{1}{2hp+1+\nu}\right]\lambda^{p}\right|^{41}}{=}\sum\left|\left[\frac{1}{2hp}-\frac{1}{2hp+1+\nu}\right]\lambda^{p}\right| < d$$

⁴¹) Der Klammerausdruck ist immer positiv.

3. Einfluß der Glieder R_n .

$$\begin{split} \left| \sum \left[\frac{1}{(2h+1+\nu)p} - \frac{1}{2hp+1+\nu} \right] \lambda^{p} \right|^{4^{2}} = \\ = \sum \left| \left[\frac{1}{(2h+1+\nu)p} - \frac{1}{2hp+1+\nu} \right] \lambda^{p} \right| < d \end{split}$$

Durch gliedweise Multiplikation mit cos $p \psi$ vermindern sich die Absolutwerte der einzelnen Glieder (oder sie bleiben höchstens unverändert), so daß a fortiori

$$\sum \left| \left[\frac{1}{2hp} - \frac{1}{2hp+1+\nu} \right] \lambda^{p} \cos p \psi \right| < d$$
$$\sum \left| \left[\frac{1}{(2h+1+\nu)p} - \frac{1}{2hp+1+\nu} \right] \lambda^{p} \cos p \psi \right| < d$$

Kehrt man die Reihenfolge von Summation und Subtraktion wieder um, so erhält man

$$\left| \frac{1}{2h} \sum \frac{\lambda^{p}}{p} \cos p \psi - L \right| < d$$

$$\left| \frac{1}{2h+1+\nu} \sum \frac{\lambda^{p}}{p} \cos p \psi - L \right| < d$$
st

Nun ist

$$\frac{1}{2h} \sum_{p=1}^{\infty} \frac{\lambda^p}{p} \cos p \, \psi = -\frac{1}{2h} l n \left(1 - 2\lambda \cos \psi + \lambda^2\right)^{\frac{1}{2}} = \frac{1}{2h} g_1(\lambda, \psi)$$

Dieser Wert sei mit *U* bezeichnet.
$$\frac{1}{2h+1+\nu} \sum \frac{\lambda^p}{p} \cos p \, \psi = -\frac{1}{2h+1+\nu} l n \left(1 - 2\lambda \cos \psi + \lambda^2\right)^{\frac{1}{2}} = \frac{1}{2h+1+\nu} g_1(\lambda, \psi)$$

Dieser Wert sei mit *U* bezeichnet.

Dieser Wert sei mit T bezeichnet. Somit ist

$$\begin{vmatrix} U - L &| < d = \varepsilon U \\ &| T - L &| < d = \varepsilon U \\ &\left| \frac{U + T}{2} - L \right| < d = \varepsilon U$$

Es ist also mit hinreichender Genauigkeit zulässig, die Reihen (3) durch den Näherungswert U zu ersetzen. Mit gleicher Annäherung ist es auch zulässig, die Reihe (5) gleich null zu setzen oder, m. a. W., das letzte Glied der Gleichungen (60), (61), (65), (66) zu vernachlässigen. Führt man nämlich U in Gl. (69) ein, so wird

$$\sum_{p=1}^{\infty} \frac{\lambda^p}{h \, p \, (2 \, h \, p + 1 + \nu)} \cos p \, \psi \sim \frac{1}{1+\nu} \left[\frac{1}{h} \sum_{p=1}^{\infty} \frac{\lambda^p}{p} \cos p \, \psi - \frac{1}{h} \sum_{p=1}^{\infty} \frac{\lambda^p}{p} \cos p \, \psi \right] = 0$$

⁴²) Der Klammerausdruck ist immer negativ Hajnal-Kónyi 5

Unter Verwertung der bei der Untersuchung der Reihen gewonnenen Ergebnisse lauten die Momentengleichungen:

Äußeres Gebiet
$$a > \varrho$$

 $m_{r\Sigma} = \frac{P}{8\pi} \left\{ A f_1(\vartheta, \psi) + \frac{2(1+\nu)}{h} g_1(\vartheta, \psi) + \frac{B}{2} f_1(\lambda, \psi) + \frac{1}{2h} \left(C_r - \frac{1+\nu}{2} B \right) g_1(\lambda, \psi) \right\}$
(75)

$$m_{t\Sigma} = \frac{P}{8\pi} \left\{ -A f_1(\vartheta, \psi) + \frac{2(1+\nu)}{h} g_1(\vartheta, \psi) - \frac{B}{2} f_1(\lambda, \psi) + \frac{1}{2h} \left(C_t + \frac{1+\nu}{2} B \right) g_1(\lambda, \psi) \right\}$$
(76)

$$m_{r\,t\Sigma} = \frac{P}{8\pi} \left\{ A f_{2}(\vartheta, \psi) - \frac{B}{2} f_{2}(\lambda, \psi) + \frac{1}{2h} \left[(1 - \nu^{2}) \left(1 - \frac{\varrho^{2}}{\alpha^{2}} \right) + \frac{1 + \nu}{2} B \right] g_{2}(\lambda, \psi) \right\}$$
(77)

Inneres Gebiet:

$$m'_{r \Sigma} = \frac{P}{8\pi} \left\{ -A f_1(\vartheta', \psi) + \frac{2(1+\nu)}{h} g_1(\vartheta', \psi) + \frac{B}{2} f_1(\lambda, \psi) + \frac{1}{2h} \left(C_r - \frac{1+\nu}{h} B \right) g_1(\lambda, \psi) \right\}$$
(78)

$$m'_{t\Sigma} = \frac{P}{8\pi} \left\{ A f_1(\vartheta', \psi) + \frac{2(1+\nu)}{h} g_1(\vartheta', \psi) - \frac{B}{2} f_1(\lambda, \psi) + \frac{1}{2h} \left(C_t + \frac{1+\nu}{2} B \right) g_1(\lambda, \psi) \right\}$$
(79)

$$m'_{rt\Sigma} = \frac{P}{8} \left\{ A f_2(\vartheta', \psi) - \frac{B}{2} f_2(\lambda, \psi) + \frac{1}{2h} \left[(1 - \nu^2) \left(1 - \frac{\varrho^2}{a^2} \right) + \frac{1 + \nu}{2} B \right] g_2(\lambda, \psi) \right\}$$
(80)

Zur Vereinfachung der Formeln seien noch folgende Bezeichnungen eingeführt:

$$\frac{1}{4}\left(C_{r}-\frac{1+\nu}{2}B\right) = \frac{1-\nu^{2}}{8}\left[-\frac{1-\nu^{2}}{a^{2}}(3+\nu)-\varrho^{2}(3-\nu)\right] - \frac{1}{8}(5+7\nu+3\nu^{2}+\nu^{3}) = D \quad (81)$$

$$\frac{1}{4}\left(C_{t}+\frac{1+\nu}{2}B\right) = \frac{1-\nu^{2}}{8}\left[\frac{1-\varrho^{2}}{a^{2}}(3+\nu)-\varrho^{2}(5+\nu)\right] - \frac{1}{8}\left[\frac{1-\nu^{2}}{a^{2}}(3+\nu)-\varrho^{2}(5+\nu)\right] - \frac{1}$$

$$-\frac{1}{8}(3+9\nu+5\nu^2-\nu^3) = E \quad (82)$$

3. Einfluß der Glieder R_n .

$$D + E = -\left[(1 - \nu^{2}) \varrho^{2} + 1 + 2\nu + \nu^{3} \right]$$

$$\frac{1}{4} \left[(1 - \nu^{2})\left(1 - \frac{\varrho^{2}}{\alpha^{2}}\right) + \frac{1 + \nu}{2}B\right] = \frac{1 - \nu^{2}}{8} \left\{\frac{1 - \varrho^{2}}{\alpha^{2}}(3 + \nu) - \varrho^{2}(1 + \nu) + 1 - \nu\right\} = F$$

$$(83)$$

$$+ 1 - \nu = F$$

$$(84)$$

In den früher abgeleiteten Momentenformeln m_g , m_0 wurde $\frac{P}{4\pi}$ ausgeklammert (Gl. 25, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41). Die endgültige Form der Momente m_{Σ} lautet dementsprechend:

$$\begin{array}{c} \text{Äußeres Gebiet } a > \varrho \\ m_{r\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_1(\vartheta, \psi) + \frac{1+\nu}{h} g_1(\vartheta, \psi) + \frac{B}{4} f_1(\lambda, \psi) + \frac{D}{h} g_1(\lambda, \psi) \right\} \\ \end{array} \right| (85)$$

$$m_{t\Sigma} = \frac{P}{4\pi} \left\{ -\frac{A}{2} f_{1}(\vartheta, \psi) + \frac{1+\nu}{h} g_{1}(\vartheta, \psi) - \frac{B}{4} f_{1}(\lambda, \psi) + \frac{E}{h} g_{1}(\lambda, \psi) \right\}$$
(86)

$$m_{rt\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_2(\vartheta, \psi) - \frac{B}{4} f_2(\lambda, \psi) + \frac{F}{h} g_2(\lambda, \psi) \right\}$$
(87)

Inneres Gebiet $\alpha < \varrho$

$$m'_{r\Sigma} = \frac{P}{4\pi} \left\{ -\frac{A}{2} f_{1}(\vartheta',\psi) + \frac{1+\nu}{h} g_{1}(\vartheta',\psi) + \frac{B}{4} f_{1}(\lambda,\psi) + \frac{D}{h} g_{1}(\lambda,\psi) \right\}$$
(88)

$$m'_{t\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_1(\vartheta', \psi) + \frac{1+\nu}{h} g_1(\vartheta', \psi) - \frac{B}{4} f_1(\lambda, \psi) + \frac{E}{h}(\lambda, \psi) \right\}$$
(89)

$$m'_{rt\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_2(\vartheta', \psi) - \frac{B}{4} f_2(\lambda, \psi) + \frac{F}{h} g_2(\lambda, \psi) \right\}$$
(90)

Setzt man $\nu = 0$, so vereinfachen sich die Gl. (85)-(86), (88)-(89) in der Schreibweise nur insofern, als das zweite Glied anstatt $\frac{1+\nu}{h}$ den Beiwert $\frac{1}{h}$ erhält. Die Gl. (87), (90) bleiben formal unverändert. Dagegen sind die Ausdrücke für *A*, *B*, *D*, *E*, *F* wesentlich einfacher, und zwar

$$A = \frac{\varrho^2}{a^2} - 1 \tag{57 a}$$

$$B = \frac{3}{a^2} - \left[\frac{\varrho^2}{a^2} + \varrho^2 + 1\right] = \frac{3 - \varrho^2}{a^2} - (1 + \varrho^2)$$
(58 a)

$$D = -\left[\frac{3}{8}\left(\frac{1-\varrho^2}{a^2} + \varrho^2\right) + \frac{5}{8}\right]$$
(81 a)

$$E = \frac{3}{8} \left[\frac{1 - \varrho^2}{a^2} - 1 \right] - \frac{5}{8} \varrho^2$$
 (82 a)

$$D + E = -(1 + \varrho^2)$$
(83 a)

$$F = \frac{1}{8} \left(1 - \varrho^2 \right) \left(1 + \frac{3}{a^2} \right)$$
(84 a)

 5^*

Die Vorzeichen der Funktionen A - F sind die folgenden: sgA = -1 wenn $a > \varrho$ (äußeres Gebiet) sgA = +1 wenn $a < \varrho$ (inneres Gebiet) sgB = +1 sgD = -1 sgE = +1 wenn a, ϱ klein, d. h. wenn $a^2 + \varrho^2 + \frac{5}{3}(a \varrho)^2 < 1$ sgE = -1 wenn a, ϱ groß, d. h. wenn $a^2 + \varrho^2 + \frac{5}{3}(a \varrho)^2 > 1$ sgF = +1.

Zur Vereinfachung der Auswertung der Gl. (85)—(90) wurden folgende Tabellen aufgestellt:

Tab. XII
$$\xi, \xi^2, \xi^3, \xi^4, \frac{1}{\xi^2}, \xi^{\frac{3}{2}}$$

"XIII $f_1(\xi^4, \psi)$
"XIV $\frac{A}{2} f_1(\vartheta', \psi)$
"XV $\frac{A}{2} f_1(\vartheta, \psi)$
"XVI $f_2(\xi^4, \psi)$
"XVII $\frac{A}{2} f_2(\vartheta', \psi)$
"XVII $\frac{A}{2} f_2(\vartheta, \psi)$
"XVII $\frac{A}{2} f_2(\vartheta, \psi)$
"XXI $g_1(\xi^4, \psi)$
"XXI $g_2(\xi^4, \psi)$
"XXI $B(\alpha, \varrho)$
"XXII $D(\alpha, \varrho)$
"XXIII $E(\alpha, \varrho)$
"XXIV $F(\alpha, \varrho)$

Die in den Gleichungen (85)-(90) und in den Tabellen XII-XXIV vorkommenden Bezeichnungen sollen nachstehend noch kurz besprochen werden.

Die Lage einer Säulengruppe ist durch ϱ , die Anzahl der zugehörigen Stützen durch h festgelegt. Die Schnittstellen, in welchen die Momente gesucht werden, haben die Koordinaten α und $\varphi = \frac{\psi}{h}$. Bezüglich φ und ψ genügt es auf Abb. 10 (S. 30) hinzuweisen. Für jede Kombination α, ϱ ist der Wert $\frac{\varrho}{\alpha}$ bzw. $\frac{\alpha}{\varrho}$ zu bilden, je nachdem $\alpha > \varrho$ bzw. $\alpha < \varrho$, ferner der Wert $\alpha \varrho$. In den Funktionen f_1, f_2, g_1, g_2 kommen als Argumente nur die h-ten Potenzen dieser Werte vor, und zwar: 3. Einfluß der Glieder R_n .

$$\vartheta = \left(\frac{\varrho}{a}\right)^{h} \text{ wenn } a > \varrho$$
$$\vartheta' = \left(\frac{a}{\varrho}\right)^{h} \text{ wenn } a < \varrho$$
$$\lambda = (a \varrho)^{h}.$$

und

Die Ausrechnung der Werte ϑ , ϑ' , λ ist aber gar nicht nötig. Die Tabellen XIII, XVI, XIX, XX geben die Funktionswerte f_1, f_2, g_1, g_2 für den praktisch wichtigsten Fall h = 4 un mittelbar in Abhängigkeit von $\xi = \frac{\varrho}{a}$ bzw. $\xi = \frac{a}{\varrho}$ und $\xi = a \varrho$ an. Ist $h \neq 4$, so sind als Leitwerte $\overline{\xi} = \frac{\xi}{4}$ einzuführen, also z. B. für h = 6

$$\left(\frac{\varrho}{\alpha}\right)^{\frac{3}{2}}$$
 bzw. $\left(\frac{\alpha}{\varrho}\right)^{\frac{3}{2}}$ und $(\alpha \varrho)^{\frac{3}{2}}$

für h = 8

$$\left(\frac{\varrho}{\alpha}\right)^2$$
 bzw. $\left(\frac{\alpha}{\varrho}\right)^2$ und $(\alpha \varrho)^2$ usw.

Die Umrechnung geschieht am einfachsten mit Hilfe der Tab. XII. Da also die Tab. XIII, XVI, XIX, XX für alle drei Veränderlichen ϑ , ϑ' , λ verwendbar sind, wurde in der Überschrift dieser 4 Tabellen das erste Argument der Funktionen f_1 , f_2 , g_1 , g_2 allgemein mit ξ^4 bezeichnet.

Zur Ermittlung von B, D, E, F, die nicht von einer Zahl $\frac{\varrho}{\alpha}$ bzw. $\frac{\alpha}{\rho}$ oder $a \varrho$, sondern von a und ϱ je für sich abhängig sind, dienen die Tab. XXI—XXIV. Diese 4 Tabellen sind von h unabhängig. Zahlenmäßig treten die beiden letzten, nur von λ (und nicht von ϑ bzw. ϑ') abhängigen Glieder der Gl. (85)-(90), in welchen B, D, E, F vorkommen, in dem größten Teil der Pilzdecke neben den ersten Gliedern (mit den Argumenten ϑ bzw. ϑ') zurück. In allen 6 Formeln enthält das erste Glied den Faktor A, der (im Gegensatz zu B, D, E, F) nur vom Verhältnis $\frac{\varrho}{a}$ abhängt, ebenso, wie die Funktionen f_1 , f_2 . Die Zahlenwerte $\frac{A}{2} f_1(\vartheta', \psi), \frac{A}{2} f_1(\vartheta, \psi),$ $\frac{A}{2} f_2(\vartheta', \psi), \frac{A}{2} f_2(\vartheta, \psi)$ können also auch mit Hilfe der Leitwerte $\xi = \frac{a}{\varrho}$ bzw. $\xi = \frac{\varrho}{a}$ angeschrieben werden und sind für h = 4 in den Tab. XIV, XV, XVII, XVIII zusammengestellt. Für $h \neq 4$ sind diese letzten 4 Tabellen nicht verwendbar. Ist $h \neq 4$, so sind f_1 , f_2 aus den Tab. XIII und XVI zu entnehmen (wobei, wie nochmals erwähnt sei, als Leitwerte $\overline{\xi} = \xi^{\overline{4}}$ eingeführt werden müssen), während sich A aus Tab. XII ergibt, wenn man nur von den Quadratzahlen 1 subtrahiert. Für die Funktionen mit dem Argument ϑ gilt, wie leicht einzusehen, die Spalte ξ^2 , für die Funktionen mit dem Argument ϑ' die Spalte $\frac{1}{\xi^2}$.

Die Tabellen XII—XX haben für ξ eine Teilung von 0,01, während für ψ das Intervall $\frac{\pi}{8}$ gewählt wurde. Außerdem wurde auch $\psi = \frac{\pi}{16}$ und $\frac{3}{16}\pi$ aufgenommen, um die Bereiche neben den Stützen, wo sich die Momente verhältnismäßig rasch ändern, genauer untersuchen zu können. Die Teilung dürfte allen praktischen Anforderungen genügen. Eine Interpolation zwischen den einzelnen Spalten ψ wird kaum in Frage kommen, um so wichtiger ist aber eine Interpolation für die Leitwerte ξ , welche in dem für den praktischen Gebrauch wichtigsten Teil der Tabellen sehr gut durchführbar ist.

Die Tabellen XIII—XX enthalten auch den Grenzfall $\vartheta = 1$, welcher noch näher erörtert wird.

In einem ziemlich großen Gebiet der Kreisplatte wird es genügen, sich auf die ersten Glieder der zu summierenden Reihen zu beschränken. Aus den Tabellen geht hervor, daß unbedenklich

 $f_{1}\left(\xi^{h},\,\psi\right)=\!\!=\xi^{h}\,\cos\,\psi$ gesetzt werden kann, wenn $\xi\!<\!0,\!35$

 $g_1(\xi^h,\psi) = \xi^h \cos \psi$ gesetzt werden kann, wenn $\xi < 0,40$ usw. Bezüglich der Glieder mit λ gilt dies also,

wenn $\varrho \leq 0.35$ für die ganze Fläche, wenn $0.35 < \varrho \leq 0.60$ für das ganze innere Gebiet

und bei größerem ρ auch für einen großen Teil des inneren Gebietes. Dadurch können, wenn h = 4 und $\nu = 0$ in den Gl. (85)—(90) die beiden letzten Glieder wie folgt vereinfacht werden:

$$\frac{B}{4}f_1(\lambda,\psi) + \frac{D}{h}g_1(\lambda,\psi) \sim \frac{1}{32} \left[\frac{21 - 5\varrho^2}{\alpha^2} - (11\varrho^2 + 13) \right] \lambda \cos \psi = G \lambda \cos \psi \quad (91)$$

$$-\frac{B}{4}f_1(\lambda,\psi) + \frac{E}{h}g_1(\lambda,\psi) \sim \frac{1}{32} \left[\frac{5\varrho^2 - 21}{a^2} + 3\varrho^2 + 5 \right] \lambda \cos \psi = H\lambda \cos \psi \quad (92)$$

$$-\frac{B}{4}f_2(\lambda,\psi) + \frac{F}{h}g_2(\lambda,\psi) \sim \frac{1}{32} \left[\frac{5\varrho^2 - 21}{\alpha^2} + 7\varrho^2 + 9 \right] \lambda \sin \psi = K\lambda \sin \psi \quad (93)$$

Ähnliche Vereinfachungen ergeben sich für h = 6, 8 usw., mit zunehmendem h wird der Geltungsbereich der Näherungsformeln größer.

Es gelten somit in einem großen Bereich der Platte folgende Formeln mit ausreichender Genauigkeit:

Äußeres Gebiet $\alpha > \varrho$:

$$m_{r\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_1(\vartheta, \psi) + \frac{1+\nu}{h} g_1(\vartheta, \psi) + G\lambda \cos \psi \right\}$$
(94)

$$m_{t\Sigma} = \frac{P}{4\pi} \left\{ -\frac{A}{2} f_1(\vartheta, \psi) + \frac{1+\nu}{h} g_1(\vartheta, \psi) + H\lambda \cos \psi \right\}$$
(95)

$$m_{rt\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_2(\vartheta, \psi) + K\lambda \sin \psi \right\}$$
(96)

3. Einfluß der Glieder R_n .

Inneres Gebiet $\alpha < \varrho$:

$$m'_{r\Sigma} = \frac{P}{4\pi} \left\{ -\frac{A}{2} f_1(\vartheta', \psi) + \frac{1+\nu}{h} g_1(\vartheta', \psi) + G\lambda \cos \psi \right\}$$
(97)

$$m'_{t}\Sigma = \frac{P}{4\pi} \left\{ \frac{A}{2} f_{1}(\vartheta', \psi) + \frac{1+\nu}{h} g_{1}(\vartheta', \psi) + H\lambda \cos \psi \right\}$$
(98)

$$m'_{rt\Sigma} = \frac{P}{4\pi} \left\{ \frac{A}{2} f_2(\vartheta', \psi) + K\lambda \sin \psi \right\}$$
(99)

Die Werte $G\lambda$, $H\lambda$, $K\lambda$ sind in den Tab. XXV—XXVII enthalten. Die Klammerausdrücke der Gl. (85)—(90) bzw. (94)—(99) sind Funktionen

von ϱ , α und ψ , aber unabhängig von der Belastung. Hält man ϱ fest, so ergeben sich die "Einflußzahlen" für die Momente $m_{r\Sigma}$, $m_{t\Sigma}$, $m_{rt\Sigma}$ infolge der gegebenen Last- bzw. Säulenstellung, welche Einflußzahlen für die zu untersuchenden Stellen α , ψ zweckmäßigerweise im voraus berechnet werden. Man gelangt unter Benutzung der Tabellen XII—XXVII zu ähnlichen Einflußzahlen für $m_{r\Sigma}$, $m_{t\Sigma}$, $m_{rt\Sigma}$, wie die Tabellen X und XI für m_{r_0} , m_{t_0} .

Sind die Teilmomente m_0 und m_{Σ} ermittelt, so ist das Moment infolge des Belastungszustandes $X_i = -1$

$$n_i = m_{i0} + m_{i2}$$

und das gesuchte Gesamtmoment ergibt sich nach Gl. (1) zu

$$M = m_g - X_1 m_1 - X_2 m_2 - \cdots - X_n m_n$$

Bei der Auswertung ist es sehr vorteilhaft, dieses Moment in zwei Teile zu zerlegen, u. zwar in einen von φ (bzw. ψ) unabhängigen und in einen von φ abhängigen Teil. Der erste Teil wurde bereits (S. 50) als "Hauptwert" bezeichnet und ergibt sich aus Gl. (1), wenn an Stelle von m_i das zugehörige m_{i_0} gesetzt wird, als ob eine Schneidenlagerung vorliegen würde.

$$M_H = m_g - X_1 m_{10} - X_2 m_{20} - \cdots - X_n m_{n_0}$$

Der zweite Teil enthält den Einfluß der Punktlagerung und lautet wie folgt:

$$M_{\Sigma} = -X_1 m_1 \Sigma - X_2 m_2 \Sigma - \cdots - X_n m_n \Sigma$$
$$M = M_H + M_{\Sigma}.$$

Zum praktischen Gebrauch sei allgemein noch folgendes bemerkt:

Für die Überzähligen $X_1, X_2 \cdots X_n$ liefern die Elastizitätsgleichungen Verhältniszahlen, welche den Anteil der Stützenkräfte an der Vollbelastung der Platte angeben. Dies ist auch dann der Fall, wenn die Platte nur teilweise belastet ist. Die Tabellen VIII und IX sind andererseits so zusammengestellt, daß $m_g = \frac{p a^2}{4} \times$ Tabellenzahl. Multipliziert man die Einflußzahlen $m_1, m_2 \cdots m_n$ zunächst nur mit den die Überzähligen bestimmenden Verhältniszahlen, so ist am Schluß ebenfalls der Faktor $\frac{p a^2}{4}$ beizufügen. Man richtet also den ganzen Rechnungsgang so ein, daß sich für die Momente reine Zahlen ergeben, die mit $\frac{p a^2}{4}$ zu multiplizieren sind.

65

Auf diese Weise bewahrt man bis zum Endergebnis die Unabhängigkeit von der absoluten Größe und Belastung der Kreisplatte.

4. Der Grenzfall $\vartheta = 1$.

Bei der Ableitung der Momentenformeln wurde vorerst der Fall $\vartheta = 1$ ausgeschlossen, da die Gleichmäßigkeit der Konvergenz der Ableitungsreihen für die Grenzen des Intervalls nicht gesichert ist (S. 47). Nun soll dieser Fall näher untersucht werden. Es wird sich dabei zeigen — um das Ergebnis vorwegzunehmen —, daß die Momentenformeln auf dem Kreise $\vartheta = 1, \psi$ beliebig, endliche, bestimmte Werte liefern, bis auf den einen Punkt (Lastangriffspunkt) $\vartheta = 1, \psi = 0$, wo die Formeln bestimmt unendlich ergeben.

Die m_0 sind von ϑ unabhängig, es genügt also die m_{Σ} , d. h. die Formeln (60), (61), (62) (welche die unendlichen Reihen enthalten) bzw. die Formeln (85) bis (90) zu betrachten, in denen die Reihen — deren Konvergenz nur für $\vartheta < 1$ bewiesen ist — auf geschlossene Form gebracht sind. In beiden Formelngruppen kommt ϑ nur in den ersten zwei Gliedern vor.

1. Das erste Glied von $m_{r\Sigma}$ und $m_{t\Sigma}$ ist

$$\sum_{n=1}^{\infty} A \vartheta^p \cos p \psi, \text{ mit } A = (1-\nu) \left[\left(\frac{\varrho}{a} \right)^2 - 1 \right].$$

Der Koeffizient A wird für $\vartheta = 1$ gleich 0, es hat somit die Summe $\sum_{p=1}^{\infty} A \vartheta^p \cos p \psi$ für beliebiges ψ und beliebig großes p den Wert 0, d. h. die angeschriebene Reihe konvergiert für $\vartheta = 1$ und hat daselbst den Grenzwert 0. Dasselbe gilt für die Reihe $\sum_{p=1}^{\infty} A \vartheta^p \sin p \psi$, die das erste Glied vom $m_{rt\Sigma}$ bildet.

Betrachtet man des mathematischen Interesses halber nun auch die Funktion

$$Af_1(\vartheta, \psi) = (1 - \nu) \left[\left(\frac{\varrho}{a} \right)^2 - 1 \right] \vartheta \frac{\cos \psi - \vartheta}{1 - 2 \vartheta \cos \psi + \vartheta^2}$$

welche für $\vartheta < 1$ definiert wurde und die Summe der obigen Reihe darstellt, für $\vartheta = 1$, so ergibt sich für alle $\psi \neq 0$ auch hier

$$\left| (1-\nu) \left[\left(\frac{\varrho}{\alpha} \right)^2 - 1 \right] \vartheta \frac{\cos \psi - \vartheta^2}{1 - 2 \vartheta \cos \psi + \vartheta^2} \right|_{\substack{\varrho = \alpha \\ (\vartheta = 1)}} = 0 \cdot \left(-\frac{1}{2} \right) = 0.$$

Für $\psi = 0$ hingegen nimmt der zweite Faktor die Form $\frac{0}{0}$ an, der Ausdruck wird unbestimmt. Es ergibt sich durch Anwendung der L'Hospitalschen Regel (nachdem Zähler und Nenner durch den gemeinschaftlichen Faktor $1 - \vartheta$ dividiert werden), wenn man sich vom äußeren Gebiet der Stelle $\varrho = a$ nähert und für $\frac{\varrho}{a} = \vartheta^{\frac{1}{h}}$ einsetzt

$$\lim_{\vartheta=1} \frac{\left(\frac{2}{\vartheta^{\overline{h}}-1}\right)_{\vartheta}}{1-\vartheta} = \lim_{\vartheta=1} \frac{\left(\frac{2}{h}+1\right)^{\frac{2}{h}}-1}{-1} = -\frac{2}{h}$$

Berechnet man den unbestimmten Ausdruck vom inneren Gebiet aus, $\frac{\varrho}{a} = \vartheta' \frac{1}{h}$ ein-

setzend, so findet man den Grenzwert $=\frac{2}{h}$. Das heißt also, die Stelle $\vartheta = 1$, $\psi = 0$ ist ein singulärer Punkt der Funktion $Af_1(\vartheta, \psi)$, welche für alle anderen Wertepaare ϑ, ψ die Summe der Reihe darstellt.

Bezüglich der Momente ist aus dieser Betrachtung nur von Belang, daß das erste Glied von m_{Σ} für $\vartheta = 1$ und alle Werte von ψ einen endlichen Beitrag liefert, und zwar Null.

2. Das zweite Glied von m_{Σ} ist

$$\frac{2(1+\nu)}{h} \sum_{p=1}^{\infty} \frac{\vartheta^p}{p} \cos p \, \psi$$

Für $\vartheta = 1$ wird diese Reihe, abgesehen vom konst. Faktor, gleich

$$\sum_{p=1}^{\infty} \frac{\cos p \ \psi}{p} = -\ln\left(2\sin\frac{\psi}{2}\right)^{43}$$

Zu derselben Formel führt die geschlossene Form der Reihe

$$g_1 (\vartheta, \psi)_{\vartheta=1} = -ln (2 - 2\cos\psi)^{\frac{1}{2}}$$
$$= -ln \left(2\sin\frac{\psi}{2}\right)$$

für alle $\psi \pm 0$ erhält man also endliche Werte. Für $\psi = 0$ wird die Reihe

$$\sum_{p=1}^{\infty} \frac{1}{p} = \infty$$

Das zweite Glied von m_{Σ} liefert also für $\vartheta = 1, \psi \neq 0$ einen endlichen, für $\psi = 0$ einen unendlichen Beitrag.

3. Das zweite Glied der Gl. (87), (90) führt mit $\lambda = 1$ zu der Reihe $\pi - w$ $0 < w < 2\pi^{44}$

$$\sum_{p=1}^{\infty} \frac{\sin p \psi}{p} = \frac{\pi - \psi}{2}, \text{ wenn} \quad \psi = 0 \text{ und } 2\pi.$$

Dieser Fall kommt zwar praktisch nicht vor, sei aber der mathematischen Vollständigkeit halber erwähnt.

Daraus folgt, daß die Momentengleichungen auch im Falle $\varrho = a$ endliche Momentenwerte ergeben, mit der einzigen Ausnahme der Lastangriffsstelle selbst ($\psi = 0$), in welcher (wie zu erwarten war) die Voraussetzung der punktförmigen Kraftübertragung zu einem unendlich großen Radial- und Tangentialmoment führt. Es ist bereits erörtert worden, daß dieses unzutreffende Ergebnis durch die unzutreffende Annahme der Übertragung der Stützkräfte auf die Platte bedingt wird, welche Annahme zwar schon in verhältnismäßig kleiner Entfernung von der Lastangriffsstelle mit der Wirklichkeit gut übereinstimmende Ergebnisse liefert, in deren unmittelbarer Nähe aber notwendigerweise versagen muß.

Die Verfolgung der Momentenformeln Gl. (85)—(90) bis zur Stelle $\rho = a$, $\psi = 0$ bietet eigentlich nur mathematisches Interesse. Im Bereich der

67

⁴⁸) Knopp, Theorie und Anwendung der unendlichen Reihen (2. Auflage, Berlin 1924, Verlag von Julius Springer) S. 378.

⁴⁴) Knopp a. a. O. S. 376.

Stützenköpfe gelten die Formeln nicht mehr, da ihre Voraussetzungen nicht gelten. Man kann nach den Gl. (85)—(90) nur bis zum Rand der Stützenköpfe gehen. Die Ermittlung der Momente innerhalb der Stützkopffläche ist praktisch an sich nicht nötig, da der gefährliche Querschnitt, wie dies verschiedene, vom Verfasser aufgestellte Pilzdeckenberechnungen (mit rechteckiger Säulenteilung) und wie vor allem amerikanische und schweizer Versuche an ausgeführten Pilzdecken bestätigen, am Stützkopfrande liegt. Für die Bemessung der Bewehrung über der Stütze sind also die am Stützkopfrand auftretenden Momente ausschlaggebend. Innerhalb der Stützkopffläche erhält die Platte durch den mit ihr monolithisch zusammenhängenden Stützenkopf eine solche Verstärkung, daß die Beanspruchung des Materials kleiner bleibt als am Rand, wenn auch die Biegungsmomente als solche größer sind.

Will man diese Biegungsmomente aber trotzdem erfassen, so kann man nach der Methode von Nádai vorgehen, wie das auf S. 17—18 dargelegt wurde.

In den an der Schnittfläche anzubringenden Randmomenten ist der Einfluß aller außerhalb der betrachteten Stützkopffläche wirkenden Kräfte enthalten. Wenn also diese Momente an dem herausgeschnittenen Plattenstück angreifen, so ersetzen sie vollkommen den Einfluß der übrigen Platte und es ist an sich gleichgültig, aus welchem Teil der Platte die näher zu untersuchende kleine Kreisfläche abgetrennt wird. Ein Unterschied besteht nur insofern, als die auf diese Weise erhaltene kleine Kreisplatte an ihrem Rande nicht genau zentralsymmetrisch belastet ist. Diese Abweichung ist aber unbedeutend, da man schon durch eine geringe Abweichung von der Kreisform zu einem solchen Schnitt gelangen kann, in welchem überall dasselbe Biegungsmoment angreift. Da es sich bei dieser Momentenermittlung nur um eine Näherungsberechnung handeln kann (u. a. schon wegen der Unsicherheit der Art der Lasteintragung), so erscheint es unbedenklich, für den gedachten Kreisschnitt den Mittelwert der Momente einzuführen, welche sich an den verschiedenen Stellen des Kreisschnittes nach der Plattenberechnung ergeben.

Die größere Steifigkeit der durch den Stützkopf verstärkten Platte ist auf die Momente zweifellos auch von Einfluß, doch würde eine weitere Untersuchung dieser Frage den Rahmen der vorliegenden Arbeit überschreiten und wäre auf die praktische Berechnung und Bemessung der Pilzdecken kaum von nennenswertem Einfluß.

Sind die Momente M_r , M_t , M_{rt} an einer beliebigen Stelle bekannt, so können daraus die Hauptspannungsmomente nach Größe und Richtung analytisch oder graphisch (mit Hilfe des dem Mohrschen Spannungskreis entsprechenden Momentenkreises)⁴⁵) ermittelt werden, worauf hier nicht weiter eingegangen wird. Nach Bestimmung der Hauptspannungsmomente in einer genügenden Anzahl von Punkten erhält man auch die Spannungstrajektorien der Pilzdecke als zwei zueinander orthogonale Kurvenscharen.

⁴⁵) S. z. B. Nádai a. a. O. S. 16-18.

V. Verallgemeinerung der Lösung. Schlußbetrachtungen.

A. Die am Rande fest eingespannte kreisförmig begrenzte Pilzdecke.

In den vorangegangenen Abschnitten wurde, wie auf S. 10 erwähnt, der Grenzfall der am Rande frei drehbar gelagerten Pilzdecke untersucht. Es ist gelungen, für die Momente geschlossene Formeln zu finden, die als strenge Lösung angesprochen werden dürfen. Der Einfluß der bei der Summierung eines Teiles der unendlichen Reihen gemachten vereinfachenden Annahmen bleibt weit unter der Genauigkeitsgrenze, die auch bei der schärfsten Berechnung verlangt werden kann.

Den anderen wichtigen Grenzfall bildet die am Rande fest eingespannte Pilzdecke. Die Durchbiegungsgleichung einer derartig gelagerten, durch eine exzentrische Einzellast beanspruchten elastischen Kreisplatte hat Föppl in seiner in Fußnote 17 angeführten Abhandlung ebenfalls in Form einer Fourierschen Reihe angegeben, worauf bereits hingewiesen wurde. Die Föpplschen Funktionen lauten für volle Randeinspannung unter Beibehaltung der ursprünglichen Bezeichnungen wie folgt⁴⁶):

⁴⁶) Das Glied R_1 (bzw. R'_1) kann auch hier, wie früher, außer acht gelassen werden.
Umgeformt (mit den in dieser Arbeit benutzten Bezeichnungen):

$$\begin{split} R_{0} &= \frac{Pa^{2}}{8 N \pi} \left\{ \frac{(1+\varrho^{2})(1-a^{2})}{2} - (a^{2}+\varrho^{2}) \ln \frac{1}{a} \right\} (a \geq \varrho) \\ R_{0}' &= \frac{Pa^{2}}{8 N \pi} \left\{ \frac{(1+a^{2})(1-\varrho^{2})}{2} - (a^{2}+\varrho^{2}) \ln \frac{1}{\varrho} \right\} (a \leq \varrho) \end{split}$$
(100a)

$$\begin{split} R_{n} &= \frac{Pa^{2}}{8 n (n-1) N \pi} \left\{ \left(\frac{\varrho}{a} \right)^{n} \left[a^{2} - \frac{n-1}{n+1} \varrho^{2} \right] + \\ &+ (a \varrho)^{n} \left[(n-1) (a^{2}+\varrho^{2}) - n - \frac{n (n-1)}{n+1} (a \varrho)^{2} \right] \right\} \end{aligned}$$
(101a)

Diese Ausdrücke können in derselben Weise behandelt werden, wie die entsprechenden bei freier Auflagerung. Die Formeln sind sogar insofern von vornherein einfacher, als die Funktionen R_0 , R_n usw. von ν unabhängig sind. Natürlich müßte der gan ze Rechnungsgang wiederholt werden, auch müßten zur praktischen Verwertung der Ergebnisse die entsprechenden Tabellen aufgestellt werden, grundsätzlich bietet aber dieser Fall, gegenüber dem ersten, nichts Neues. Für alle Werte bleibt die absolute und gleichmäßige Konvergenz der Reihen erhalten und man könnte durch ähnliche Kunstgriffe, wie die im IV. Abschnitt angewendeten, ebenfalls zu geschlossenen Formeln gelangen.

Im folgenden Unterabschnitt wird jedoch gezeigt, daß es gar nicht nötig ist, den einmal durchgeführten Rechnungsgang zu wiederholen, da man auf Grund der für die am Rande frei aufliegende Platte gegebenen Lösung auch die am Rande fest eingespannte Platte mit praktisch völlig ausreichender Annäherung beherrscht.

B. Berücksichtigung einer elastischen Einspannung.

In der Wirklichkeit liegt meistens weder eine freie Auflagerung, noch eine feste Einspannung vor, vielmehr besteht infolge des monolithischen Zusammenhanges der Decke mit den zylindrischen Wänden oder mit den Randsäulen (die durch biegungs- und torsionsfeste Randträger verbunden werden müssen) die Elastizitätsbedingung, daß die Verdrehung des Plattenrandes der Auflagerverdrehung gleich ist. Diese Verdrehung kann mit guter Annäherung am ganzen Umfang gleichmäßig vorausgesetzt werden. Der Beweis läßt sich wie folgt führen:

Der Tangentendrehwinkel setzt sich aus dem Einfluß der zentralsymmetrischen Belastung und aus dem Einfluß der Überzähligen $X_1, X_2, \dots X_n$ zusammen. Die zentralsymmetrische Belastung verursacht eine am ganzen Umfang gleichmäßige Verdrehung, während der Einfluß der Stützenkräfte wieder in einen Hauptteil τ_0 (dem Gliede R_0 entsprechend) und in einen zusätzlichen Teil $\tau_{n\Sigma}$ (den Gliedern $R_n \cos n\varphi$ der Durchbiegungsreihe entsprechend) zerlegt werden kann. Diese ergeben sich aus den Ableitungen $\frac{dR_o}{d\alpha}$ (S. 48), $\frac{dR_n}{d\alpha}$ (Gl. 46 S. 50) mit $\alpha = 1$ zu

$$\left(\frac{dR_o}{da}\right)_{a=1} = \frac{Pa^3}{4N\pi} \frac{(\varrho^2 - 1)}{1 + \nu} = \tau_o, \qquad (102)$$

$$\left(\frac{d R_n}{d a}\right)_{a=1} = \frac{P a^2}{8 N \pi} \varrho^n \left\{\frac{(4-\nu) \varrho^2 - 4}{2n+1+\nu}\right\}.$$
(103)

Die gesamte Randverdrehung ist infolge einer Gruppe X_1

$$\tau = \tau_o + \tau_{n\Sigma}$$

wobei

$$\tau_{n\Sigma} = \Sigma \tau_n = \sum_{n=h,2h,\ldots} \frac{dR_n}{da} \cos n\varphi$$

Zur Vereinfachung der Beweisführung soll $\nu = 0$ gesetzt werden. Dann ist

$$\left| rac{dR_n}{da}
ight| < rac{Pa^2}{8\,N\pi} \left| 2\left(arrho^2 - 1
ight) \cdot rac{arrho^n}{n}
ight| \cdot$$

Setzt man n = hp, $\varrho^h = \vartheta$, so ist mit sehr guter Annäherung

$$\tau_{n \Sigma} \sim \frac{Pa^2}{4 N \pi} \cdot (\varrho^2 - 1) \frac{1}{h} \sum_{p=1}^{\infty} \frac{\partial^p}{p} \cos p \psi = \frac{Pa^2}{4 N \pi} (\varrho^2 - 1) \frac{1}{h} g_1(\vartheta, \psi)$$

und

$$\tau = \frac{Pa^2}{4N\pi} \left(\varrho^2 - 1 \right) \left[1 + \frac{1}{h} g_1 \left(\vartheta, \psi \right) \right]. \tag{104}$$

Das zweite Glied des Klammerausdruckes ist gegenüber 1 sehr klein. Nimmt man z. B. in sehr ungünstiger Weise folgende Verhältnisse an: a = 0.70 k = 4 so wird (vol. Tab. XIX)

$$\varrho = 0.70, h = 4$$
, so wird (vgl. Tab. X
 $\frac{1}{4}g_1(\vartheta, 0) = 0.06864,$
 $\frac{1}{4}g_1(\vartheta, \pi) = -0.05380,$

d. h. die größte Abweichung vom Hauptwert bleibt auch in diesem Falle unter 7 ${}^{0}/_{0}$. In Wirklichkeit wird bei $\varrho = 0,70$ h > 4 sein (bei dieser Untersuchung dürfen alle zu demselben ϱ gehörenden Stützen in eine Gruppe zusammengefaßt werden). Nimmt man z. B. als äußersten, praktisch nie vorkommenden Fall $\varrho = 0,9$, h = 8 an, so muß in Tab. XIX als Leitwert $\varrho^{2} = 0,81$ gewählt werden, und es wird

$$\begin{split} &\frac{1}{8}\,g_{1}\,(\vartheta\,,0)=0,\!07037\,,\\ &\frac{1}{8}\,g_{1}\,(\vartheta\,,\pi)=-0,\!04475 \end{split}$$

Die größte Abweichung ist also auch hier nur 7 $^{\rm o}/_{\rm o}$. Normalen Verhältnissen würden etwa

$$\varrho = 0,50, h = 4$$
 entsprechen.
 $\frac{1}{4} g_1 (\vartheta, 0) = 0,01613,$
 $\frac{1}{4} g_1 (\vartheta, \pi) = -0,01516,$

also eine größte Abweichung von $1,61 \, {}^{\rm o}/_{\rm o}$.

Man kann daher bei der Ermittlung der Randverdrehung den Einfluß der Glieder R_n vernachlässigen und den Hauptwert τ_o als Mittelwert einsetzen. Mit dieser Vereinfachung verursacht die Berücksichtigung der elastischen Einspannung keine Schwierigkeiten, wenn der elastische Widerstand des Auflagers, d. h. die Verdrehung des Auflagers infolge eines Momentes $X_r = -1$, bekannt ist. Das Einspannmoment kann als weitere Überzählige X_r^{47} in die Elastizitätsgleichungen eingeführt werden. Aus dem Maxwellschen Satz folgt, daß dann die Koeffizienten δ_{ir} der Elastizitätsgleichungen nach Gl. (102) berechnet werden können, wobei zu beachten ist, daß die übrigen Koeffizienten mit dem Faktor $\frac{16N\pi}{a^2}$ multipliziert sind.

Die Erfassung einer elastischen Randeinspannung verursacht also nach der hier entwickelten Methode nicht die geringste Schwierigkeit, sie erhöht lediglich den Grad der statischen Unbestimmtheit um 1.

Auf diese Weise kann man natürlich von der freien Auflagerung auch zu der vollen Einspannung gelangen, während es umgekehrt genau so gut möglich wäre, von der vollen Einspannung auszugehen und daraus zur teilweisen Einspannung bzw. zur freien Auflagerung zu kommen. Nachdem für freie Auflagerung fertige Tabellen ausgewertet wurden, hätte also die Wiederholung dieser großen Rechenarbeit für einen in der Praxis kaum vorkommenden Grenzfall wenig Zweck, da man durch Hinzufügung einer weiteren Elastizitätsgleichung das Randeinspannmoment aus der Lösung für freie Auflagerung sofort erhalten kann.

Aus Gl. (102) ergibt sich (durch Ableitung nach ϱ , Einsetzen der Grenze $\varrho = 1$, Ausklammerung des Faktors $\frac{Pa^2}{16 N\pi}$) $\delta_{rr} = 8$. Hierzu kommt aus der elastischen Verdrehung des Randes $\delta_{r\varepsilon}$ (vgl. S. 11). Bei voller Einspannung ist $\delta_{r\varepsilon} = 0$. δ_{r_0} ergibt sich bei Vollbelastung aus Gl. (17b) durch Ableitung nach α zu -2 (für $\nu = 0$).

⁴⁷) X_r bedeutet das auf den Kreisumfang gleichmäßig verteilte Gesamtmoment. Das auf die Längeneinheit entfallende Moment ist also $\frac{X_r}{2a\pi}$ bzw. mit a=1 ist $m_r=\frac{X_r}{2\pi}$ für die ganze Platte. $m_t=m_r$. Da aus sämtlichen Momentenformeln der Faktor $\frac{P}{4\pi}$ ausgeklammert wurde, so ist der Beitrag eines Randmomentes X_r zu den eingeklammerten Momentenwerten $2X_r$. Bei teilweiser Belastung könnte man von der Ableitung der Gl. (21) u. (22) ausgehen, einfacher ist es jedoch, in derselben Weise zu verfahren, wie bei der Ermittlung der Beiwerte δ_{i_0} (S. 37ff.). Hierauf soll jedoch nicht weiter eingegangen werden.

C. Berücksichtigung einer biegungsfesten Verbindung mit den Innenstützen.

Bisher wurde der Einfluß der biegungsfesten Verbindung der Stützen mit der Decke auf den Spannungszustand der Platte außer acht gelassen. Aus der monolithischen Verbindung zwischen der Decke und den Stützen folgt aber, daß beide Teile dieselbe Verdrehung erleiden müssen, daß also die Stützen von der Platte nicht nur Achsialkräfte, sondern auch Biegungsspannungen erhalten (und umgekehrt), wenn die Tangentialebene der elastischen Fläche der Platte über den Stützen nicht wagrecht bleibt. Ist der Biegungswiderstand der Stützen bekannt und wird das von der Stütze aufgenommene Biegungsmoment als weitere Überzählige gemäß Abb. 16 eingeführt, so macht es grundsätzlich keine Schwierigkeiten, den Einfluß des biegungsfesten Zusammenhanges mit den Innensäulen zu erfassen, lediglich der Grad der statischen Unbestimmtheit des Systems wird mit jedem Moment X_s um 1 erhöht. Der Zustand $X_s = -1$ kann in erster Annäherung als schneidenförmig gleichmäßig verteiltes Moment angenommen werden, mit Hilfe einer Fourierschen Reihe könnte man dann auch eine Konzentration der Momente auf die Säulen zu erfassen. Diese Möglichkeit sei hier nur als Anregung mitgeteilt, ohne auf ihre formelmäßige Auswertung einzugehen.

D. Der Einfluß der Breite der Stützfläche.

Obgleich das auf S. 16 ff. erwähnte Prinzip von de Saint Vernant mit guter Annäherung gültig ist, so hat eine breite Stützkopffläche, wie aus der Theorie der gewöhnlichen Pilzdecken bekannt und insbesondere aus den Leweschen Tabellen (in dem bekannten, in Fußnote 1 angeführten Werk) zu erkennen ist, doch einen gewissen, wenn auch verhältnismäßig kleinen Einfluß auf die Biegungsmomente außerhalb der Lasteintragungsfläche. Dieser Einfluß dürfte hinreichend genau erfaßt werden können, wenn man die nach Abschnitt III ermittelten Stützenkräfte bei der Momentenberechnung nicht als Einzellasten in der Stützenachse wirkend annimmt, sondern in derselben Weise, wie dies Dr. Marcus tut⁴⁸), in Teilkräften auf beiden

⁴⁸) Dr.-Ing. H. Marcus, Die wirksame Stützfläche der trägerlosen Pilzdecken, "Beton u. Eisen" 1926 Heft 19/20.

Seiten der Stützenachse wirken läßt (vgl. die Abb. 2 und 3 des Marcusschen Aufsatzes). Diese Verfeinerung der Berechnung wird sich nur bei

größeren Stützkopfflächen lohnen, es dürfte dann eine Konzentration in den Viertelspunkten (in einem gegenseitigen Abstand von $\frac{1}{2}$ *d*, wo *d* die Breite der wirksamen Stützfläche bedeutet) bzw. (nach der Abb. 10 von Marcus) in einem gegenseitigen Abstand von $\frac{2}{3}d$ zutreffend sein (Abb. 17).

Die zahlenmäßige Durchführung dieses Gedankens verursacht zwar einen größeren Aufwand an Rechenarbeit, bietet jedoch grundsätzlich keinerlei Schwierigkeiten.

E. Querkräfte.

Die Verteilung der Querkräfte wurde nicht untersucht, da dies ohne praktische Bedeutung ist. Es genügt, wie bei rechteckig aufgeteilten, gradlinig begrenzten Pilzdecken üblich, die Stützenkräfte auf den Umfang der Säulenkopfplatten bzw. der Säulenköpfe gleichmäßig zu verteilen, wobei die Schubspannungen bei Anwendung von gewöhnlichem Handelszement den Wert von 4 kg/cm², bei Anwendung von hochwertigem Portlandzement den Wert von 5,5 kg/cm² nicht überschreiten dürfen, wenn die Deckung der gesamten Schubspannungen durch abgebogene Eiseneinlagen vermieden werden soll⁴⁹). Wenn also diese Grenzen von vornherein bei der mit Rücksicht auf die Biegungsmomente erforderlichen Plattenstärke nicht eingehalten sind, so muß mit Rücksicht auf die Schubspannungen die Deckenplatte entweder entsprechend verstärkt oder die Säulenkopfplatte bzw. der Säulenkopf entsprechend verbreitert werden, da die Deckung der gesamten Schubfläche bei Pilzdecken zu einem großen Eisengewirr führt und sowohl in bezug auf Materialverbrauch als auch in bezug auf den Arbeitsaufwand sehr unwirtschaftlich ist. Diese Notwendigkeit kommt aber nur bei sehr großen Spannweiten und Nutzlasten vor und bildet eine seltene Ausnahme, im allgemeinen genügen die auf Grund der Biegungsmomente gewählten Betonabmessungen auch für die Schubspannungen. In keinem Falle ist eine nähere Verfolgung der Querkräfte von praktischem Interesse, weshalb auf die Ableitung dieser Formeln verzichtet werden kann. Dieselben

⁴⁹) "Bestimmungen für Ausführung von Bauwerken aus Eisenbeton" vom 9. September 1925 § 18 Ziff. 4 Abs. 4.

ergeben sich ohne weiteres durch Einsetzen der Ausdrücke R_n bzw. ihrer Ableitungen in die aus der Plattentheorie bekannten allgemeinen Formeln:

$$p_r = -N \frac{\partial \Delta w}{\partial r}, \ p_t = -N \frac{\partial \Delta w}{r \, \partial \varphi}.$$

F. Der Fall einer exzentrischen Einzellast.

Auf S. 14 der vorliegenden Arbeit wurde erwähnt, daß mindestens 4 Stützen auf einem Kreis $\varrho \neq 0$ vorausgesetzt werden. Es ist jedoch zu bemerken, daß die abgeleiteten Formeln ihre Gültigkeit restlos behalten, wenn h = 2 oder 3 ist (nur die aufgestellten Tabellen würden nicht ausreichen). Die Ermittlung der Momente aus einer exzentrischen Einzellast wäre nach der vorstehenden Methode ebenfalls ohne weiteres möglich, es müßten dann nur das bisher vernachlässigte Glied R_1 (bzw. R'_1) der Föpplschen Reihe und seine Ableitungen in die Berechnung aufgenommen werden. Darauf sei hier weiter nicht eingegangen, da der Fall einer exzentrischen Einzellast außerhalb der Problemstellung dieser Arbeit liegt und nach Ansicht des Verfassers theoretisch zwar sehr interessant, praktisch jedoch im allgemeinen ohne besondere Bedeutung ist.

G. Das Verfahren von Dr. Flügge. Vergleich an Hand eines Zahlenbeispiels.

Die vorangehenden Abschnitte waren bereits abgeschlossen, als (im März 1928) das Buch von Dr.-Ing. W. Flügge erschienen ist ⁵⁰). Die Flüggesche Arbeit ist der Lösung derselben Aufgabe gewidmet, wie die vorstehende, es ist daher nötig, an dieser Stelle kurz darauf einzugehen.

In Fußnote 18 (S. 14) wurde auf die Lösung von Melan hingewiesen, die für die am Rande fest eingespannte Platte ebenfalls als Ausgangspunkt hätte gewählt werden können. Wie dort weiter ausgeführt wurde, hat der Verfasser von der Anwendung dieser Lösung abgesehen, weil die Föpplsche Reihe zu einer Superposition viel geeigneter ist und weil Melan nur den Grenzfall der festen Einspannung behandelt hat und auf die freie Auflagerung, die für die Praxis viel wichtiger ist, gar nicht eingegangen ist.

Herr Dr. Flügge hat seine Arbeit auf die Lösung von Melan aufgebaut und dadurch einen interessanten Beitrag zur Plattenliteratur geliefert. Es ist nicht der Zweck der folgenden Zeilen, die theoretischen Einzelheiten seines Verfahrens zu besprechen, hier ist lediglich die Frage zu prüfen, inwiefern seine Methode zur praktischen Anwendung auf Pilzdecken geeignet ist.

⁵⁰) Dr.-Ing. Wilhelm Flügge, Die strenge Berechnung von Kreisplatten unter Einzellasten mit Hilfe von krummlinigen Koordinaten und deren Anwendung auf die Pilzdecke (Verlag von Julius Springer, Berlin).

Hajnal-Kónyi 6

Um diese Frage beantworten zu können, verfolgt man zweckmäßigerweise die S. 47-54 des Flüggeschen Buches, wo der überhaupt mögliche einfachste Typus einer Pilzdecke zahlenmäßig behandelt wird.

Herr Dr. Flügge arbeitet mit orthogonalen Kreiskoordinaten (λ, ω) , welche von der jeweiligen Last- (Stützen)-Stellung abhängig sind. In einem solchen Koordinatensystem ist die Superposition bei mehreren Lasten (Stützen) nicht möglich und so ist Herr Flügge (S. 10—11) genötigt, "alles in den verschiedenen $\lambda - \omega$ — Systemen Gerechnete zur Superposition in ein Polarkoordinatensystem" zu übertragen. Nachdem also die Stützkräfte bestimmt sind, müssen die Momente M_{λ} , M_{ω} für jede untersuchte Stelle, infolge einer jeden Stützenkraft für sich (!) ermittelt und daraus die Momente M_r , M_{φ} , $M_{r\varphi}$ (in der vorliegenden Arbeit mit M_t , M_{rt} bezeichnet) berechnet werden. Die Abb. 21a, b des Büchleins und die folgende tabellarische Zusammenstellung zeigen am besten, wie außerordentlich umständlich dieses Verfahren schon in dem

allereinfachsten praktischen Fall ist. Nach der Flüggeschen Methode lassen sich die Symmetrieeigenschaften der Pilzdecke gar nicht ausnützen und so kommt es, daß der von ihm behandelte Fall bei freier Auflagerung nach seinem Verfahren "als fünffach statisch unbestimmtes System" (S. 54) zu untersuchen ist, während es nach der hier entwickelten Methode nur einfach statisch unbestimmt ist!

Zur Ermöglichung eines Vergleiches zwischen den beiden voneinander in allen Einzelheiten grundverschiedenen Verfahren sei nachstehend die von Herrn Flügge berechnete Decke eben-

falls untersucht, und zwar sowohl für freie Auflagerung als auch für feste Einspannung.

Beispiel von Dr. Flügge. (Siehe Abb. 18.)

Gegeben: a = 10 m, $\rho = 0.5$, h = 4, p = 1 t/m² Vollbelastung.

1. Zunächst sei freie Auflagerung vorausgesetzt. Mit Hilfe der Tabellen I, VI, VII erhält man

$$\eta_0 = 1,36935$$
 $\delta_{10} = 0,89063$
 $\eta_4 = 0,01592$
 $\eta_8 = 0,00198$
 $0,004816.0,5^2 = 0,00121$
 $\delta_{11} = 1,38846$.

Kontrolle des Restgliedes von
$$\delta_{11}$$
 nach Tabelle VI:

$$\sum_{p=3}^{9} = 10^{-5} (58 + 25 + 13 + 7 + 5 + 3 + 2) = 0,00113 < 0,00121$$

$$X_1 = \frac{0,89063}{1,38846} = 0,64145 P, P = 10^2 . \pi . 1 = 314,159 t$$

$$A = \frac{X_1}{4} = \frac{0,64145 . 314,159}{4} = 50,3785 t^{51}).$$

2. Volle Einspannung am Rande.

Das Einspannmoment sei mit X_2 bezeichnet:

Die Elastizitätsgleichungen lauten:

$$\begin{array}{c} 1,38846 \ X_1 - 3 \ X_2 = 0,89063 \\ -3 \ X_1 + 8 \ X_2 = -2. \end{array}$$

Hieraus $X_1 = \frac{8.0,89063 - 2.3}{1,38846.8 - 3.3} = \frac{1,12504}{2,10768} = 0,53378 \\ A = \frac{0,53378.314,159}{4} = 41,9229 \ t^{51}) \\ (\text{nach Flügge } 42,0714) \\ \text{Differenz } 0,35 \ 0/_0. \end{array}$

Diese Übereinstimmung ist als außerordentlich gut zu bezeichnen.

Vorstehend wurde absichtlich jede Zahl wiedergegeben, welche zur Ermittlung der Stützkräfte nötig ist. Hätte Herr Dr. Flügge sein Beispiel ebenfalls so ausführlich gehalten, so wäre der diesbezügliche Teil seiner Berechnung viel umfangreicher geworden, er verweist aber nur auf die zweimalige Auswertung seiner Gl. 64, ohne die Zwischenwerte anzuschreiben. Es ist auch zu beachten, daß man bei seinem Verfahren Hyperbelfunktionen, trigonometrische Funktionen, Potenzen von e aufsuchen muß, eine an sich einfache, aber bei vielen Stützen sehr zeitraubende Arbeit.

Das Randeinspannmoment ergibt sich zu

$$X_2 = -\frac{1}{4} + \frac{3}{8} X_1 = -0,04983.$$

Auf die Längeneinheit entfällt

$$m_r = -\frac{0,04983 \cdot 314,159}{2 \pi} = -2,4915 \text{ mt/m}.$$

6*

⁵¹) Diese "Genauigkeit" ist natürlich übertrieben, denn es hat gar keinen Zweck, Stützkräfte von der Größenordnung von 50 t auf 0,1 kg auszuwerten. Es geschieht dies hier lediglich deshalb, um im Falle 2 den Vergleich mit dem Flüggeschen Ergebnis zu ermöglichen.

Nach Flügge ist der Durchschnittswert des Randeinspannmomentes (vergl. seine Abb. 23) etwa — 7 mt/m.

Während also bei den Stützkräften die Übereinstimmung geradezu überraschend ist, zeigt sich bei dem Randeinspannmoment ein großer Widerspruch. Da sich die vorstehend berechneten Werte X_1 und X_2 durch die Auflösung eines Gleichungssystems ergeben und miteinander verknüpft sind, so ist es äußerst unwahrscheinlich, daß der eine richtig, der andere falsch sein könnte. Es ist also die Vermutung naheliegend, daß das in Abb. 23 von Flügge dargestellte Momentenbild nicht richtig ist.

Das Randeinspannmoment läßt sich in einfachster Weise kontrollieren, wenn man von der voll eingespannten Kreisplatte als Grundsystem ausgeht und den Einfluß der gleichmäßig verteilten Belastung p und der als Schneidenlast gedachten nunmehr bekannten Stützkräfte X_1 superponiert.

Aus der gleichmäßig verteilten Vollbelastung entsteht am Rande

$$m_{rg} = -\frac{P}{8\pi}^{52}$$
(105)

Der Einfluß der Stützen X_1 ergibt sich aus dem Glied R_0 der Föpplschen Reihe (Gl. 100a) durch zweimalige Ableitung (mit $\nu = 0$) zu

$$m_r = \frac{P}{8\pi} \left\{ \varrho^2 + 2 \left(l \, n \, \frac{1}{a} - 1 \right) + \frac{\varrho^2}{a^2} \right\} = \frac{P}{4\pi} \left\{ \frac{\mu_{rf} + \varrho^2 - 1}{\mu_{re}} \right\}$$
(106)

wo μ_{rf} den Beiwert für freie Auflagerung bedeutet. Es ist also für $\varrho = 0.5$, a = 1.0 $\mu_{re} = -0.75$. Hieraus ergibt sich das Randeinspannmoment zu

$$m_r = \frac{P}{4\pi} \left(-\frac{1}{2} + 0.53378 \cdot 0.75 \right) = \frac{P}{4\pi} \left(-0.9966 \right)$$
$$m_r = -\frac{1 \cdot 10^2}{4} \cdot 0.09966 = -2.4915 \text{ mt/m}$$

in genauer Übereinstimmung mit dem vorstehend ermittelten Werte.

Nachdem die Überzähligen X_1 und X_2 bekannt sind, wird die weitere Berechnung am besten tabellarisch zusammengefaßt. Während Herr Flügge den Halbmesser in 8 Teile teilt, wurden hier die Momente in den Schnitten $a=0;0,05;0,10;\ldots 0.95;1,00$ und außerdem neben den Stützen in a=0,475und 0.525 ausgewertet. Die Wiedergabe der Tabellen erscheint nicht notwendig, da aus der graphischen Darstellung der Momente alle Ergebnisse in sehr anschaulicher Weise zu erkennen sind. Es genügt vielmehr die Momentenermittlung für je einen Punkt im inneren und äußeren Bereich in allen Einzelheiten mitzuteilen. Es sei z. B. $a_i=0,25$ und $a_a=0,75$. $\psi=0$.

⁵²⁾ Siehe z. B. Nádai a. a. O. S. 57.

1.
$$a = 0.25$$
, $\frac{a}{\varrho} = 0.50$, $a\varrho = 0.125$,
 $m'_r \Sigma$ nach Gl. (94):
 $-\frac{A}{2} f_1(\vartheta', \psi) = -0.10000 \text{ (nach Tab. XIV)}$
 $\frac{1}{4} g_1(\vartheta', \psi) = +0.01613 (,,,, XIX)$
 $G \cdot \lambda \cos \psi = +0.00228 (,,,, XXV)$
 $m'_r \Sigma = -0.08159$
 $m'_t \Sigma$ ergibt sich aus Gl. (95). Mit den bereits aufgesuchten Werten ist

$$\begin{array}{ll} +\frac{A}{2}f_{1}\left(\vartheta',\,\psi\right)+\frac{1}{4}g_{1}\left(\vartheta',\psi\right) &=+0,11613\\ \\ H\lambda\cos\psi &=-0,00237 \text{ (nach Tab. XXVI)}\\ \\ m't\Sigma &=+0,11376 \end{array}$$

Bei freier Auflagerung ist

$$\begin{array}{rcl} m_{rg} & = + 0,70313 (, , , , VIII) \\ -X_{1}m_{r_{1}} = -0,64145.1,06815 & = -0,68515 (, , , , X) \\ M_{rH} & = + 0,01798 \\ -X_{1}m'_{r\Sigma} = + 0,64145.0,08159 & = + 0,05236 \\ M_{r} & = + 0,07034 \\ m_{tg} & = + 0,73438 (, , , , IX) \\ -X_{1}m_{t_{1}} = -0,64145.1,06815 & = -0,68515 (, , , , XI) \\ M_{tH} & = + 0,04923 \\ -X_{1}m'_{t\Sigma} = -0,64145.0,11376 & = -0,07292 \\ M_{t} & = -0,02369 \end{array}$$

Bei voller Einspannung ist

$$m_{rg} = +0.70313 \text{ (wie vor)}$$

$$-X_{1}m_{r_{1}} = -0.52378.1,06815 = -0.57015$$

$$-X_{2}m_{r_{2}} = -0.04983.2 = -0.09966 \text{ (vgl. Fußnote 47)}$$

$$M_{rH} = +0.03332$$

$$-X_{1}m'_{r}\Sigma = +0.53378.0,08159 = +0.04345$$

$$M_{r} = +0.07677$$

$$m_{tg} = +0.73438 \text{ (wie vor)}$$

$$-X_{1}m_{t_{1}} = -0.53378.1,06815 = -0.57015$$

$$-X_{2}m_{t_{2}} = -0.04983.2 = -0.09966 \text{ (vgl. Fußnote 47)}$$

$$M_{tH} = +0.06457$$

$$-X_{1}m'_{t}\Sigma = -0.53378.0,11376 = +0.06069$$

$$M_{t} = +0.00388$$

2.
$$a = 0.75$$
, $\frac{\varrho}{a} = 0.66667$, $a\varrho = 0.375$,
 $m_{r \Sigma}$ nach Gl. (85):
 $\frac{A}{2} f_1 (\vartheta, \psi)_{\xi=0.66} = -0.06609$
 Δ für 0.00667 = -0.00230
 $\frac{1}{4} g_1 (\vartheta, \psi)_{\xi=0.68} = +0.05260$
 Δ für 0.00667 = +0.00244
 $+ 0.05504$ (,, ,, XIIX)
 $\frac{B}{4} f_1 (\lambda, \psi) = 0.09097.0.02020$ = +0.01836 (,, ,, XIII und XXI)
 $\frac{D}{4} g_1 (\lambda, \psi) = -0.03048.0.02000 = -0.00609$ (,, ,, XIX ,, XXII)
 $m_r \Sigma = -0.00108$

 $m_{t \Sigma}$ ergibt sich nach Gl. (86). Mit den bereits aufgesuchten Werten ist

$$\begin{aligned} &-\frac{A}{2}f_{1}(\vartheta,\psi) + \frac{1}{4}g_{1}(\vartheta,\psi) - \frac{B}{4}f_{1}(\lambda,\psi) = +0,10507 \\ &+\frac{E}{4}g_{1}(\lambda,\psi) = -0,00782.0,02000 \qquad \underbrace{= -0,00016}_{= +0,10491} \text{ (nach Tab. XIX und XXIII)} \\ &m_{t} \Sigma \qquad = +0,10491 \end{aligned}$$

Aus diesen Hilfswerten folgen dann M_r , M_t genau so wie vor.

Die Drillungsmomente sind für $\psi = 0$ und $\psi = \pi$ null. Für $\psi = \frac{\pi}{2}$ und $\alpha = 0.25$, $\frac{\alpha}{\rho} = 0.50$ ergibt sich $m'rt\Sigma$ nach Gl. (99) wie folgt:

$$\frac{A}{2} f_{3}(\vartheta', \psi) = + 0,09339 \text{ (nach Tab. XVII)}$$

$$K\lambda \sin \psi = -0,00233 \text{ (} , , , , XXVII)$$

$$m'rt \Sigma = +0,09106$$

Die so berechneten Zahlen müssen noch mit $\frac{pa^2}{4} = 25$ multipliziert werden, was jedoch beim graphischen Auftragen ohne weiteres durch Änderung des Maßstabes geschehen kann. Bei $m_{rt\Sigma}$ ist auch die Ausmultiplikation mit X_1 überflüssig, da dies ebenfalls durch Maßstabänderung erledigt wird (siehe Abb. 25). Abb. 19 veranschaulicht die $m_{r\Sigma}$ -, Abb. 20 die $m_{t\Sigma}$ -Linien, die Abb. 21—24 geben die Momentenlinien der drei untersuchten Schnitte wieder ⁵⁸). Die Randbedingung bei voller Einspannung ($M_{tH} = 0$) ist erfüllt.

80

⁵⁸) Die Abb. 23 und 24 haben hier und bei Herrn Flügge dieselbe Bedeutung, abgesehen von den Kurven $\psi = \frac{\pi}{2}$ bzw. $\varphi = 22^{0} 30'$. Es ist nur zu beachten, daß hier der Kreismittelpunkt links, der Rand rechts steht, während dies bei Herrn Flügge umgekehrt ist.

Abb. 19.

Abb. 20.

Abb. 22.

Abb. 24.

V. Verallgemeinerung der Lösung.

Für $\psi = 0$ und π sind M_r und M_t die Hauptspannungsmomente, für $\psi = \frac{\pi}{2}$ ist auch die Kenntnis von M_{rt} nötig, die drei Werte bestimmen den Spannungszustand eindeutig. Würde man jedoch auch in diesem Schnitt die Hauptspannungsmomente auftragen, wie dies Herr Flügge tut, so wären zwar die Größtwerte bekannt, nicht aber die Richtungen, in welchen sie auftreten.

Der Vergleich der hier dargestellten Momentenlinien mit denjenigen von Herrn Flügge zeigt durchweg eine wesentliche Abweichung. Die Kurven M_a in Abb. 23 (Flügge) für $\varphi = 0^{\circ}$ und $\varphi = 45^{\circ}$ müßten mit den Kurven M_r der vorstehenden Abb. 23 für $\psi = 0, \psi = \pi$ übereinstimmen, was jedoch nicht der Fall ist. Auch die Kurven nach Abb. 24 stimmen mit den Kurven M_t keineswegs überein. Die Abweichungen sind durch die verschiedenen Annahmen der Zahl ν (hier 0, bei Flügge $\frac{1}{6}$) nicht zu erklären, so daß auf Grund der hier wiedergegebenen Kurven festgestellt werden muß, daß die Flüggeschen Momentenwerte unrichtig sind. Ob der Fehler auf das Verfahren selbst zurückzuführen oder lediglich in der zahlenmäßigen Auswertung zu suchen ist, wurde nicht nachgeprüft. Ein Blick auf die Flüggeschen Abb. 23 und 24 genügt, um die Unwahrscheinlichkeit der dort dargestellten Kurven zu erkennen⁵⁴).

⁵⁴) Der Wert des Hauptspannungsmomentes M_{α} ergibt sich bei Herrn Flügge aus Abb. 21b auf S. 51 zu -2,35 mt/m. Auf S. 52 ist dieses Moment mit -1,35 mt/m angegeben, was ein Druckfehler sein dürfte.

Die Fehlerquellen des Flüggeschen Verfahrens sind in der Tat sehr zahlreich und sehr groß. Was nützt eine große Genauigkeit in den Formeln, wenn man nachher auf die mehrfache Anwendung eines graphischen Verfahrens angewiesen ist. Das Ergebnis der Superposition von fünf Werten ist u. U. eine Zahl von einer viel geringeren Größenordnung, als die einzelnen Teilbeträge, so daß ganz geringe Ungenauigkeiten dieser Teilbeträge das Endergebnis vollkommen verfälschen können. Aus diesem Grunde scheint die Kombination von analytischen und graphischen Verfahren wenig glücklich zu sein, denn auf graphischem Wege läßt sich die erforderliche Genauigkeit gar nicht erreichen ⁵⁵).

Das wesentliche Merkmal der kreisförmig begrenzten, zentralsymmetrisch belasteten Pilzdecken, nämlich eine sehr weitgehende Symmetrie, wird von Herrn Flügge gar nicht ausgenützt. Das vom Verfasser entwickelte Verfahren beruht gerade auf dieser Symmetrie. Die Superposition der Einflüsse der zu einer Gruppe zusammenfaßbaren Kräfte wird von vornherein erledigt, und darin besteht der sehr wesentliche Vorteil der vorliegenden Arbeit. Der Rechnungsgang ist bequem und übersichtlich, wie das die Seiten 76-80 bestätigen, alle Hilfswerte können aus Tabellen entnommen werden, die Wahrscheinlichkeit eines Fehlers ist gering, die Kontrolle von einzelnen Werten sehr einfach. Durch die Trennung der Momente in Hauptwerte (welche einer schneidenförmigen Lagerung entsprechen) und in Zusatzwerte wird auch die Anschaulichkeit erheblich gesteigert.

Die Vorteile des hier ausgearbeiteten Verfahrens sind um so größer, je mehr Stützen eine Pilzdecke besitzt. So ist z. B. das in Abb. 26 dargestellte System mit 4+8+12=24 Stützen nur 4-fach statisch unbestimmt und kann bequem ohne einen besonderen Aufwand an Rechenarbeit erledigt werden, während nach Herrn Flügge ein solches System

⁵⁵) Selbstverständlich genügt das graphische Verfahren vollkommen zur Ermittlung der Hauptspannungsrichtungen und der zugehörigen Momente, wenn einmal $M_{r_{+}}$ M_t , $M_r t$ bekannt sind. Vor der Superposition ist aber eine größere Genauigkeit notwendig.

bei freier Auflagerung 25-fach (!) statisch unbestimmt ist. Das von Dr. Marcus in "Beton u. Eisen" 1926 S. 224 beschriebene System ist nach dem Verfahren des Verfassers 9-fach statisch unbestimmt, wobei aber wesentliche Vereinfachungen möglich sind — nach Herrn Flügge ist der Grad der Unbestimmtheit 46-fach. Es erscheint daher völlig ausgeschlossen, daß man bei einer größeren Anzahl von Stützen nach seiner Methode vorgehen könnte.

Interessant ist auch der Vergleich zwischen den beiden Grenzfällen. Es folgt daraus, daß die Annahme einer Einspannung zu einer sehr gefährlichen Unterschätzung der positiven Radialmomente im Endfeld führen kann, während im Mittelfeld das Moment durch die Einspannung nur unwesentlich größer wird. Das maximale Radialmoment im Endfeld ist bei freier Auflagerung rund 2,5 mal so groß wie bei voller Einspannung, während im Mittelfeld das Moment durch die Einspannung nur um rund 12,5% zunimmt. Die negativen Momente über den Stützen $\varrho = 0,50$ sind bei freier Auflagerung ebenfalls größer als bei Einspannung.

Der gewissenhafte Konstrukteur wird einen Teil der Radialbewehrung am Rande immer aufbiegen. Führt man z. B. bei dem hier behandelten System die Hälfte der im Randfeld vorhandenen Bewehrung nach oben, so kann damit schon beinahe die Hälfte des bei vollkommener Einspannung entstehenden Randmomentes aufgenommen werden. Ein höherer Einspannungsgrad dürfte aber äußerst selten, nur in besonderen Ausnahmefällen vorliegen. Die Sicherheit einer kreisförmigen Pilzdecke ist also in keiner Weise gefährdet, wenn man am Rand freie Auflagerung annimmt und die Bewehrung am Rande nach den im Eisenbetonbau üblichen Grundsätzen anordnet. Ist der tatsächlich vorhandene Einspannungsgrad größer, als es der aus konstruktiven Gründen vorhandenen Randbewehrung entspricht, so können wohl am Rande Risse entstehen, diese bedeuten aber keine Gefahr für den Bestand der Decke. Umgekehrt ist bei der Annahme voller Einspannung die größte Vorsicht geboten, denn in diesem Falle kann eine etwaige Verdrehbarkeit des Randes den Einsturz der Decke zur Folge haben. Aus diesem Grunde ist es also zumindest unzweckmäßig, den Fall der vollen Einspannung als "Hauptfall" zu wählen.

In der Abb. 23 des Herrn Flügge treten im Endfeld überhaupt keine positiven Radialmomente auf, danach wäre also zwischen dem Rand und den Stützen überhaupt keine untere Radialbewehrung erforderlich. Eine solche Konstruktion widerspricht offensichtlich jedem statischen Gefühl. Auf Grund des vorstehend berechneten Momentenverlaufes muß die Folgerung ausgesprochen werden, daß eine nach der Abb. 23 des Herrn Flügge bemessene Pilzdecke einstürzen würde, wenn die Zugfestigkeit des Betons zufällig nicht ausreicht, um die positiven Momente in den Randfeldern aufzunehmen. Auf die Zugfestigkeit des Betons darf man sich aber nicht verlassen.

Zum Schluß sei noch kurz auf eine grundsätzliche Frage eingegangen, welche Herr Dr. Flügge in seinem Vorwort anschneidet. Es wird dort gewissermaßen die Lösung "nur durch Reihenentwicklungen" der "strengen Berechnung" gegenübergestellt, wie Herr Dr. Flügge seine Arbeit im Titel bezeichnet. Unter dem letzteren Begriff dürfte Herr Dr. F. die Aufstellung von geschlossenen Formeln verstehen.

Man kann die Ansicht vertreten, daß eine geschlossene Formel gegenüber einer unendlichen Reihe eine gewisse mathematische Schönheit besitzt. Für den praktisch tätigen Ingenieur kann aber u. U. ein Reihenansatz viel brauchbarer und viel leistungsfähiger sein als eine geschlossene Formel. Bei der Auswertung der letzteren ist man ja meistens auch auf Tabellen angewiesen, die, aus irrationalen oder transzendenten Zahlen bestehend, in theoretischem Sinne nur eine beschränkte Genauigkeit haben und im allgemeinen mit Hilfe von unendlichen Reihen berechnet werden. Zahlenmäßig kann durch eine unendliche Reihe derselbe Genauigkeitsgrad erzielt werden wie durch eine geschlossene Formel, welche Logarithmen, hyperbolische Funktionen oder sogar nur Wurzelzeichen enthält. Die Behauptung des Herrn Flügge, daß "jeder Ingenieur, der einmal gezwungen gewesen ist, mit solchen Reihenansätzen zu arbeiten, unbefriedigt bleibt", erscheint also wenig begründet. Die Reihenentwicklung ist eine der fruchtbarsten Methoden, welche die moderne Mathematik hervorgebracht hat. Sie bietet die besten Anpassungsmöglichkeiten an die Eigenarten eines Problems und führt auch dann zum Ziele, wenn eine geschlossene Lösung überhaupt nicht besteht. Die Elastizitätslehre und insbesondere die Plattentheorie verdanken ihre schönsten Erfolge diesem mathematischen Hilfsmittel.

H. Kurze Zusammenfassung des Rechnungsganges.

Um den praktischen Gebrauch des hier entwickelten Verfahrens zu erleichtern, seien die einzelnen Schritte, die bei der Durcharbeitung eines gegebenen Systems zu befolgen sind, kurz wiederholt.

1. Ermittlung der Beiwerte der linken Seiten der Elastizitätsgleichungen $(\delta_{ii}, \delta_{ik})$ mit Hilfe der Tabellen I—VI nach den Formeln (14), (16) (S. 27—35).

2. Ermittlung der rechten Seiten der Elastizitätsgleichungen (δ_{io}) . Für Vollbelastung sind die δ_{io} -Werte aus der letzten Zeile der Tabelle VII unmittelbar zu entnehmen, für teilweise Belastung aus derselben Tabelle durch einfache Addition der Tabellenwerte innerhalb der gegebenen Lastgrenzen, unter Hinzufügung eines Korrekturgliedes (S. 41). Die so erhaltene Summe ist mit 0,1 zu multiplizieren. Kontrolle mit Hilfe der letzten Zeile.

3. Auflösung der Elastizitätsgleichungen nach einem in der Statik üblichen Verfahren (z. B. Müller-Breslau, Gaußscher Algorithmus).

4. Ermittlung der Werte m_g , die aus den Tabellen VIII, IX unmittelbar entnommen werden können.

5. Ermittlung der Werte — $X_i m_{i_0}$. Die Momente m_{i_0} sind aus den Tabellen X, XI unmittelbar zu entnehmen.

6. Bildung der Hauptwerte der Momente $M_H = m_g - X_1 m_{10} - X_2 m_{20}$ $- \cdots - X_n m_{n_0}$, welche einer Schneidenlagerung entsprechen. (Für die Drillungsmomente ist $M_H = 0$.) 7. Ermittlung der Einflußzahlen m_{Σ} für $X_1, X_2 = -1$ usw. nach den Formeln (85)—(90). Für $\vartheta, \lambda \leq 0.35$ können die vereinfachten Formeln (94)—(99) angewendet werden (S. 61, 64). Die einzelnen Glieder dieser Formeln können aus den Tabellen XIII—XX bzw. XXI—XXVII entnommen werden. Wenn h = 4, so sind die Leitwerte bei Funktionen von ϑ bzw. ϑ' unmittelbar $\frac{\varrho}{\alpha}$ bzw. $\frac{\alpha}{\varrho}$, bei Funktionen von $\lambda: (\alpha \varrho)$. Ist h = 6, 8, 12, so sind bei den Tabellen XIII, XVI, XIX, XX die Potenzen $\frac{3}{2}, 2, 3$ von $\frac{\varrho}{\alpha}, \frac{\alpha}{\varrho}, \alpha \varrho$ als Leitwerte einzuführen. Bei der Umrechnung leistet die Tabelle XII gute Dienste. Die Tabellen XIV, XV, XVII, XVIII gelten nur für h = 4.

- 8. Bildung der Werte $X_i m_{i\Sigma}$
- 9. Bildung der Momentenwerte

$$M_{\Sigma} = -X_1 m_{1\Sigma} - X_2 m_{2\Sigma} - \dots - X_n m_{n\Sigma}$$

10. Aus 6 und 9 ergibt sich $M = M_H + M_{\Sigma}$

Bei der ganzen Berechnung ist die allgemeine Bemerkung auf S. 65 zu beachten. Die Schritte 4—10 werden zweckmäßigerweise tabellarisch zusammengefaßt. Der Arbeitsgang kann so eingerichtet werden, daß man das ganze Rechnungsschema von vornherein entwirft. Jeder zu untersuchenden Stelle α entspricht eine Zeile, jedem Glied, bzw. jedem Faktor der auszuwertenden Formeln eine Spalte. Das Schema wird dann spaltenweise ausgefüllt, so daß jede Tabelle nur einmal aufgeschlagen werden muß.

VI. Tabellen.

Die nachfolgenden Tabellen sind in den Abschnitten III—V besprochen worden, ihre Anwendung wurde an mehreren Beispielen gezeigt. Aus drucktechnischen Gründen mußten die Tabellen je in 2—4 Teilen wiedergegeben werden. Die Tabellen I—VII, XII—XXVII bestehen aus 2 Teilen, welche mit den Indizes "1" und "2" versehen und jeweils auf 2 gegenüberliegenden Seiten (links und rechts) abgedruckt sind. Dabei wurde die Spalte bzw. Zeile 0,50 für jede Hälfte wiederholt. Die Tabellen I—VI sind in bezug auf die Hauptdiagonale symmetrisch, so daß das ganze Gebiet $\alpha < \rho$ zwecks Vermeidung von Wiederholungen leer gelassen wurde, was der Übersichtlichkeit zugute kommt. Die Tabellen VIII u. IX wurden in 4, die Tabellen X u. XI in 3 Teile geteilt. (Siehe das nachstehende Schema.)

Bei den letzteren konnte das Feld "3" weggelassen werden, weil bei schneidenförmiger Belastung in ϱ die Momente im inneren Gebiet $a < \varrho$ konstant, d. h. von a unabhängig sind. Die Werte der Hauptdiagonale $a = \varrho$ gelten also im ganzen inneren Gebiet. Da den Feldern "4" kein zweites zugeordnet ist, stehen ausnahmsweise die Felder "4" der Tab. X u. XI auf der linken und rechten Seite einander gegenüber.

Es war ferner aus technischen Gründen zweckmäßig, die Zahlen ohne Vorzeichen zu lassen. In allen denjenigen Tabellen, welche sowohl positive als auch negative Werte enthalten, sind die beiden Gebiete durch eine starke Linie getrennt und es wird jedesmal angegeben, welches Gebiet negativ ist. Die Tabellen XVIII, XXII, XXVI, XXVII enthalten nur negative Zahlen, was ebenfalls überall vermerkt ist, während die Tabellen I—XII, XVI, XVII, XX, XXI, XXIV aus lauter positiven Zahlen bestehen, so daß bei den letzteren eine besondere Bemerkung nicht erforderlich erschien.

Τa	a b	el	le	1	ι.
----	-----	----	----	---	----

η_0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

ex	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α_{ϱ}
0,00	3,00000	2,97752	2,92395	2,84713	2,75124	2,63921	2,51328	2,37529	2,22679	2,06910	1,90343	0,00
0,05 0,10 0,15 0,20		2,96005	90996 2,86800	83520 79941 2,73977	74080 70946 65722 2,58409	62994 60211 55574 49081	50499 48011 43863 38057	36785 34552 30831 25621	22011 20006 16665 11988	06312 04516 2,01523 1,97 332	89809 88206 85536 81797	0,05 0,10 0,15 0,20
0,25						2,40733	2,30591	2,18922	2,05975	1,91945	1,76991	0,25
0,30 0,35 0,40 0,45							2,21467	10735 2,01059	1,98625 89940 1,79917	85360 77578 68598 1,58422	71116 64173 56162 47083	0,30 0,35 0,40 0,45
0,50											1,36935	0,50

$$\eta_0 = (3 - \varrho^2) (1 - a^2) - 2 (a^2 + \varrho^2) ln \frac{1}{a}$$

Tabelle II 1.

 η_4

						and the second se			and both and whether the second		CONTRACTOR OF THE OWNER	
2 Q	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α_{ϱ}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20		0,00017	9 0,00067	4 54 0,00150	3 35 140 0,00267	2 24 106 263	1 17 80 217	1 13 61 175	1 10 48 141	1 8 38 115	0 6 31 94	0,05 0,10 0,15 0,20
0,25						0,00416	0,00421	0,00368	0,00309	0,00259	0,00216	0,25
0,30 0,35 0,40 0,45							0,00599	614 0,00812	555 837 0,01053	482 774 1087 0,01317	413 688 1020 1355	0,30 0,35 0,40 0,45
0.50											0,01592	0,50

$$\eta_{4} = \frac{1}{2} \left(\frac{\varrho}{a} \right)^{4} \left(\frac{a^{2}}{3} - \frac{\varrho^{2}}{5} \right) + \frac{2 (a \varrho)^{4}}{9} \left[\frac{1}{4} (a^{2} + \varrho^{3}) - 1 + \frac{(a \varrho)^{2}}{5} \right]$$

Tabelle I2.

n	1
1	U.
	•

X	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ℓ}
0,00	1,90343	1,73081	1,,55221	1,36849	1,18046	0,98886	0,79438	0,59766	0,39932	0,19992	0,00000	0,00
0,05 0,10 0,15 0,20	89809 88206 85536 81797	72608 71188 68821 65508	54805 53559 51482 48574	36489 35410 33611 31093	1,17740 1,16823 1,15293 1,13152	0,98633 0,97873 0,96607 0,94834	79236 78631 77623 76212	59615 59163 58410 57356	39831 39531 39030 38329	19942 19791 19541 19191	0000	0,05 0,10 0,15 0,20
0,25	1,76991	1,61249	1,44835	1,27855	1,10400	0,92555	0,74398	0,56000	0,37427	0,18741	0,00000	0,25
0,30 0,35 0,40 0,45	71116 64173 56162 47083	56042 49889 42790 34744	40266 34865 28634 21572	23897 19220 13824 07708	1,07036 1,03060 0,98472 0,93273	0,89770 0,86478 0,82680 0,78375	72181 69561 66537 63110	54343 52385 50125 47565	36325 35023 33520 31817	18191 17541 16790 15 9 40	00000	0,30 0,35 0,40 0,45
0,50	1,36935	1,25752	1,13679	1,00872	0,87462	0,73564	0,59280	0,44703	0,29914	0,14989	0,00000	0,50
0,55 0,60 0,65 0,70		1,15812	1,04956 0,95401	0,93317 0,85042 0,76048	0,81040 0,74005 0,66359 0,58102	0.68247 0,62423 0,56092 0,49255	55047 50411 45372 39930	41539 38075 34309 30242	27810 25506 23001 20296	13939 12788 11538 10187	0000	0,55 0,60 0,65 0, 70
0,75						0,41912	0,34084	0,25873	0,17391	0,08737	0,00000	0,75
0,80 0,85 0,90 0,95							0,27835	21204 0,16233	14285 10980 0,07473	7186 5535 3785 0,01934	000000000000000000000000000000000000000	0,80 0,85 0,90 0,95
1,00											0,00000	1,00

Tabelle II 2.

η	4
•	-

X	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ϱ}
0,00	0,00000	0,00000	0.00000	0.00000	0.00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0 6 31 94	0 5 26 78	0 4 21 65	0 4 17 54	0 3 14 44	0 2 12 36	0 2 9 28	0 1 7 21	0 1 4 14	0 0 2 7	0000	0,05 0,10 0,15 0,20
0,25	0,00216	0,00181	0,00152	0,00127	0,00105	0,00085	0,00067	0,00050	0,00033	0,00016	0,00000	0,25
0,30 0,35 0,40 0,45	413 688 1020 1355	352 599 917 1280	298 515 806 1158	251 438 695 1018	209 367 588 872	170 301 485 726	134 237 385 580	99 177 287 435	66 117 191 290	33 59 96 145	0000	0,30 0,35 0,40 0,45
0,50	0,01592	0,01628	0,01539	0,01389	0,01211	0,01020	0,00822	0,00620	0,00415	0,00208	0,00000	0,50
0,55 0,60 0,65 0,70		0,01862	1886 0,02104	1771 2101 0,02283	1583 1945 2235 0,02361	1354 1701 2019 2245	1103 1406 1702 1949	838 1078 1321 1541	563 729 901 1062	283 368 456 541	0 0 0 0	0,55 0,60 0,65 0,70
0,75						0,02292	0,02088	0,01696	0,01188	0,00610	0,00000	0,75
0,80 0,85 0,90 0,95							0,02037	1733 0,01581	1245 1188 0,00964	647 632 537 0,00328	0 0 0	0,80 0,85 0,90 0,95
1,00											0,00000	1,00

Tabelle III 1.

 η_6

X	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	\sim
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20		0,00005	1 0,00019	0 9 0,00043	0 3 28 0,00076	0 2 14 59	0 1 36	0 0 4 22	0 0 3 14	0 0 2 9	0 0 1 6	0,05 0,10 0,15 0,20
0,25						0,00119	0,00101	0,00069	0,00046	0,00031	0,00021	0,25
0,30 0,35 0,40 0,45							0,00171	154 0,00233	11 <u>4</u> 217 0,00305	81 170 290 0,00385	58 127 237 372	0,30 0,35 0,40 0,45
0,50											0,00474	0,50

$$\eta_{6} = \frac{1}{3} \left(\frac{\varrho}{a} \right)^{6} \left(\frac{a^{2}}{5} - \frac{\varrho^{2}}{7} \right) + \frac{2}{13} (a \varrho)^{6} \left[\frac{1}{6} (a^{2} + \varrho^{2}) - \frac{3}{5} + \frac{(a \varrho)^{2}}{7} \right]$$

Tabelle IV 1.

 η_8

ea	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α_{Q}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20		0,0002	1 0,00008	0 2 0,00018	0 0 0,00032	0 0 2 19	0 0 1 8	0 0 0 4	0 0 0 2	0 0 0 1	0 0 0 1	0,05 0,10 0,15 0,20
0,25						0,00050	0,00034	0,00018	0,00009	0,00005	0,00003	0,25
0,30 0,35 0,40 0,45							0,00071	55 0,00097	32 79 0,00127	19 51 137 0,00161	11 32 75 142	0,30 0,35 0,40 0,45
0,50											0,00198	0,50

$$\eta_{8} = \frac{1}{4} \left(\frac{\varrho}{a} \right)^{8} \left(\frac{a^{2}}{7} - \frac{\varrho^{2}}{9} \right) + \frac{2}{17} (a \varrho)^{9} \left[\frac{1}{8} (a^{2} + \varrho^{2}) - \frac{3}{7} + \frac{(a \varrho)^{2}}{9} \right]$$

Tabelle III 2.

 η_6

a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ℓ}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0 0 1 6	0 0 1 4	0 0 1 3	0002	0002	0 0 0 1	0 0 0	0 0 0	0000	0000	0000	0,05 0,10 0,15 0,20
0,25	0,00021	0,00015	0,00011	0,00008	0,00006	0,00004	0,00003	0,00002	0,00001	0,00001	0,00000	0,25
0,30 0,35 0,40 0,45	58 127 237 372	42 95 185 314	31 71 142 253	23 53 109 199	17 40 84 155	13 30 64 120	9 22 47 90	7 16 34 64	4 10 22 42	2 5 11 21	0000	0,30 0,35 0,40 0,45
0,50	0,00474	0,00463	0,00400	0,00328	0,00263	0,00206	0,00156	0,00113	0,00073	0,00036	0,00000	0,50
0,55 0,60 0,65 0,70		0,00571	560 0,00670	490 658 0,00767	407 579 747 0,00848	327 480 654 812	252 379 532 694	184 280 401 538	120 185 268 365	60 92 134 184	0000	0,55 0,60 0,65 0,70
0,75						0,00892	0,00828	0,00671	0,00466	0,00238	0,00000	0,75
0,80 0,85 0,90 0,95							0,00872	763 0,00753	551 586 0,00516	287 315 298 0,00199	0 0 0 0	0,80 0,85 0,90 0,95
1,00											0,00000	1,00

Tabelle IV 2.

 η_{8}

-												
α	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ℓ}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05	0000	0000	0000	0000	000	0000	0000	0000	0000	0000	0000	0,05
0.25	0.00003	0.0002	0.00001	0.00001	0 0000	0 0000	0 00000	0 00000	0 00000	0 0000	0 00000	0,20
0,30 0,35 0,40 0,45	11 32 75 142	7 90 50 104	4 13 33 72	3 8 22 50	2 6 15 35	1 4 10 24	1 3 7 16	1 2 5 11	0 1 3 7	0 1 1 3	0 0 0 0 0	0,30 0,35 0,40 0,45
0,50	0,00198	0,00180	0,00138	0,00099	0,00071	0,00050	0,00035	0,00023	0,00015	0,00007	0,00000	0,50
0,55 0,60 0,65 0,70		0,00240	221 0,00285	175 266 0,00332	130 215 312 0,00378	95 164 255 355	67 120 195 289	46 83 139 214	29 57 89 140	14 26 44 69	0 0 0 0	0,55 0,60 0,65 0,70
0,75						0,00417	0,00384	0,00303	0,00205	0,00103	0,00000	0,75
0,80 0,85 0,90 0,95							0,00434	401 0,00408	273 324 0,00309	141 174 154 0,00134	0 0 0 0	0,80 0,85 0,90 0,95
11,00			1	1	1						0,00000	11,00

Т	\mathbf{a}	b	e	1	1	е	V	1.
---	--------------	---	---	---	---	---	---	----

712

a	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α_{ϱ}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20		0,00001	0,00002	0 0,00005	0 0 1 0,00009	0 0 0 3	0 0 0 1	0000	0000	0000	0000	0,05 0,10 0,15 0,20
0,25						0,00015	0,00006	õ,00002	0,00001	0,00000	0,00000	0,25
0,30 0,35 0,40 0,45							0,00021	11 0,00029	4 17 0,00037	2 7 25 0,00047	1 3 12 34	0,30 0,35 0,40 0,45
0,50											0,00058	0,50

$$\eta_{12} = \frac{1}{6} \left(\frac{\varrho}{a}\right)^{12} \left(\frac{a^2}{11} - \frac{\varrho^2}{13}\right) + \frac{2 (a \varrho)^{12}}{25} \left[\frac{1}{12} (a^2 + \varrho^2) - \frac{3}{11} + \frac{(a \varrho)^2}{13}\right]$$

Tabelle VI 1. η_n für $a = \varrho$

n n	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	₽¤α/n
4 6 8 12	0,00000	0,00017 5 2 0,00001	0,00067 19 8 2	0 ,0015 0 43 18 5	0,00267 76 32 9	0,00416 119 50 15	0,00599 171 71 21	0,00812 233 97 29	0,01053 305 127 37	0,01317 385 161 47	0,01592 474 198 58	4 6 8 12
16 18 20 24			1 1 0,00001	2 2 0,00001	4 3 2 1	6 4 3 2	9 6 5 3	12 8 6 4	16 11 8 5	20 14 10 6	25 17 13 7	16 18 20 24
28 30 32 36					1 0,00001	1 1 0,00001	2 1 0,00001	2 2 1 0,00001	3 2 2 0,00001	4 3 2 0,00002	5 4 0,00002	28 30 32 36

 $\eta_n = \frac{4 \, \varrho^2}{n \, (n^2 - 1)} + \frac{2 \, \varrho^{2n}}{2 \, n + 1} \left[\frac{2 \, \varrho^2}{n} - \frac{3}{n - 1} + \frac{\varrho^4}{n + 1} \right]$

Tabelle V₂.

1/12

α	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ϱ}
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0000	0000	00000	0000	0000	0 0 0 0	0 0 0 0	0 0 0 0	0000	0000	0000	0,05 0,10 0,15 0,20
0,25	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,25
0,30 0,35 0,40 0,45	1 3 12 34	0 1 6 18	0 1 3 9	0 0 1 5	0 0 1 2	0 0 0 1	0 0 0 1	0000	0000	0000	00000	0,30 0,35 0,40 0,45
0,50	0,00058	0,00044	0,00025	0,00014	0,00007	0,00004	0,00002	0,00001	0,00001	0,00000	0,00000	0,50
0,55 0,60 0,65 0,70		0,00071	56 0,00084	34 68 0,00099	20 44 82 0,00114	11 27 56 97	6 16 35 68	4 9 21 43	2 5 12 25	1 2 5 12	0000	0,55 0,60 0, 65 0, 70
0,75						0,00130	0,00112	0,00078	0,00048	0,00023	0,00000	0,75
0,80 0,85 0,90 0,95							0,00144	123 0,00150	82 120 0,00133	40 63 82 0,00071	0000	0,80 0,85 0,90 0,95
1,00											0,0000	1,00

Tabelle VI 2.

 η_n für $a = \varrho$

n	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	e-a n
4 6 8 12	0,01592 474 198 58	0,01862 571 240 71	0,02104 670 285 84	0,02283 767 332 99	0,02361 848 378 114	0,02292 892 417 130	0,02037 872 434 144	0,01581 753 408 150	0,00964 516 309 133	0,00328 199 134 79	0,00000 0 0 0	4 68 12
16 18 20 24	25 17 13 7	30 21 15 9	35 25 18 10	41 29 21 12	48 34 25 14	55 39 28 16	62 44 32 19	68 49 36 21	67 49 37 23	42 34 27 18	0000	16 18 20 24
28 30 32 36	5 4 3 0,00002	6 5 4 0,00003	7 5 4 0,00003	8 6 5 0,00004	9 7 6 0,00004	10 8 7 0,00005	12 10 8 0,00005	13 11 9 0,00006	15 12 10 0,00007	13 11 9 0,00007	0 0 000000,0	28 30 32 36

Tabelle VII 1. $\alpha \eta_0$, letzte Zeile η_g

ex	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	Xe
0,00	0,00000	0,14888	0,29239	0,42707	0,55025	0,65980	0,75398	0,83135	0,89072	0,93110	0,95172	0,00
0,05	0	14800	29100	42528	54816	65749	75150	82875	88804	92840	94905	0,05
0,15	ŏ	14176	27994	41097	53144	63894	73159	80791	86666	90685	92768	0,10
0,20	0	13704	27095	39858	51682	62270	71417	78967	84795	88799	90899	0,20
0,25	0,00000	0,13150	0,26021	0,38336	0,49816	0,60183	0,69177	0,76623	0,82390	0,86375	0,88496	0,25
0,30	0	12525	24801	36579	47611	57648	66440	73757	79450	83412	85558	0,30
0,35	0	11839	23455	34625	45124	54731	63221	70371	75976	79910	82087	0,35
0,40	0	11101	22001	32500	42398	51494	59588	66479	71967	75869	78081	0,40
0,45	0	10316	20452	30228	39466	47986	55608	62152	67439	71290	73542	0,45
0,50	0,00000	0,09490	0,18821	0,27830	0,36359	0,44248	0,51335	0,57461	0,62465	0,66187	0,68468	0,50
0,55	o o	8630	17119	25323	33102	40312	46813	52461	57116	60635	62876	0,55
0,60		7745	15356	22722	29714	36209	42080	47203	51454	54707	56840	0,60
0,65	l š	5997	11609	20042	20219	31964	37169	41727	45530	48469	50436	0,65
0,70	Ŭ	- 3007	11002	17294	22030	27600	32111	36071	39384	41973	43731	0,70
0,75	0,00000	0,04932	0,09787	0,14491	0,18967	0,23139	0,26931	0,30267	0,33072	0,35269	36782	0,75
0,80	0	3962	7863	11643	15242	18600	21654	24346	26615	28400	29640	0,80
0,85	0	2981	5916	8762	11471	14000	16303	18335	20050	21404	23852	0,85
0,90		1992	3953	5855	7666	9357	10898	12258	13408	14318	14957	0,90
0,95		331	1979	2931	2626	4000	5457	6139	6716	7175	7495	0,95
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
eα	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	a
ղց	1,25000	1,24625	1,23503	1,21638	1,19040	1,15723	1,11703	1,07000	1,01640	0,95650	0,89063	η_9

Gleichmäßig verteilte Ringbelastung zwischen ϱ_1 und ϱ_2 :

$$\delta_{i_0} = 0, 1 \left[\sum_{\varrho_1}^{\varrho_2} a \, \eta_0 - \text{Korrektur} \right]$$

 $\delta_{i_0} = 0.1 \left[\sum_{\varrho_1}^{\varrho_2} a \eta_0 - \text{Korrektur} \right]$ Wirkliche Durchbiegung: $w = \frac{Pa^2}{16 N\pi} \delta_{i_0}$, wo $P = p_0 a^2 \pi$.

Tabelle VII 2. $\alpha \eta_0$, letzte Zeile η_g

ex a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	α_{ϱ}
0,00	0,95172	0,95195	0,93133	0,88952	0,82632	0,74165	0,63550	0,50801	0,35939	0,18992	0,00000	0,00
0,05	94905 94103	94934 94153	92883 92135	88718 88017	82418 81776	73975 73405	63389 62905	50673 50289	35848 35578	18945 18801	0	0,05 0,10
0,20	90899	91029	89144	85210	79206	72455 71126	60970	49649	34496	18231	0	0,15
0,25	0,88496	0,88687	0,86901	0,83106	0,77280	0,69416	0,59518	0,47600	0,33684	0,17804	0,00000	0,25
0,30 0,35 0,40 0,45	85558 82087 78081 73542	85823 82439 78535 74109	84160 80919 77180 72943	80533 77493 73986 70010	74925 72142 68930 65291	67328 64859 62010 58781	57745 55649 53230 50488	46192 44527 42606 40430	32693 31521 30168 28635	17281 16664 15951 15143	0000	0,30 0,35 0,40 0,45
0,50	0,68468	0,69164	0,68207	0,65567	0,61223	0,55173	0,47424	0,37998	0,26923	0,14240	0,00000	0,50
0,55 0,60 0,65 0,70	62876 56840 50436 43731	63697 57726 51324 44572	62974 57241 51025 44403	60656 55277 49431 43133	56728 51804 46451 40671	51185 46817 42069 36941	44038 40329 36298 31944	35308 32364 29163 25706	25029 22955 20701 18266	13242 12149 10961 9678	C 000	0,55 0,60 0,65 0,70
0,75	0,36782	0,37536	0,37454	0,36460	0,34479	0,31434	0,27267	0,21992	0,15652	0,08300	0,00000	0,75
0,80 0,85 0,90	29640 23852 14957 7495	30276 22846 15296 7666	30247 22845 15304 7673	29492 22301 14951 7500	27951 21169 14207 7131	25563 19405 13043 6553	22268 16963 11428 5749	18023 13798 9333 4705	12857 9882 6726 3217	6827 5258 3596 1837	0000	0,80 0,85 0,90
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
ęγ	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	a
ηg	0,89063	0,81913	0,74240	0,66088	0,57503	0,48535	0,39240	0,29675	0,19903	0,09988	0,00000	ηց

Gleichmäßig verteilte Vollbelastung:

$$\delta_{i_0} = \eta_g = \frac{1}{4} (5 - 6 a^2 + a^4).$$

Wirkliche Durchbiegung: $w = \frac{Pa^2}{16 N\pi} \delta_{i_0}$, wo $P = p_0 a^2 \pi$.

Tabelle VIII 1.

Radialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

					*							
α^{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\sqrt[2]{\alpha}$
0,00	0,00000	0,00999	0,03300	0,06506	0,10398	0,14817	0,19633	0,24735	0,30021	0,35395	0,40766	0,00
1 2 3 4	00000	991 969 931 879	3293 3270 3233 3180	6498 6476 6438 6386	10390 10368 10330 10278	14809 14787 14749 14697	19626 19603 19566 19513	24728 24705 24668 24615	30013 29991 29953 29901	35387 35365 35327 35275	40759 40736 40699 40646	7234
0,05	0,00000	0,00811	0,03113	0,06318	0,10210	0,14629	0,19446	0,24548	0,29833	0,35207	0,40579	0,05
6 7 8 9	0 0 0 0	747 697 656 621	3030 2933 2820 2693	6236 6138 6026 5898	10128 10030 9918 9790	14547 14449 14337 14209	19363 19266 19153 19026	24465 24368 24255 24128	29751 29653 29541 29413	35125 35027 34915 34787	40496 40399 40286 40159	6 7 8 9
0,10	0,00000	0,00591	0,02550	0,05756	0,09648	0,14067	0,18883	0,23985	0,29271	0,34645	0,40016	0,10
11 12 13 14	0000	565 541 519 499	2411 2291 2186 2091	5598 5426 5238 5036	9490 9318 9130 8928	13909 13737 13549 13347	18726 18553 18366 18163	23828 23655 23468 23265	29113 28941 28753 28551	34487 34315 34127 33925	39859 39686 39499 39296	12 12 13 14
0,15	0,00000	0,00481	0,02006	0,04818	0,08710	0,13129	0,17946	0,23048	0,28333	0,33707	0,39079	0,15
16 17 18 19	0000	464 448 433 419	1928 1856 1789 1727	4605 4412 4236 4075	8478 8230 7968 76 9 0	12897 12649 12387 12109	17713 17466 17203 16926	22815 22568 22305 22028	28101 27853 27591 27313	33475 33227 32965 32687	38846 38599 38336 38059	16 17 18 19
0,20	0,00000	0,00406	0,01669	0,03925	0,07398	0,11817	0,16633	0,21735	0,27021	0,32395	0,37766	0,20
21 22 23 24	0 0 0 0	394 382 370 359	1615 1563 1514 1468	3786 3656 3533 3418	7110 6843 6595 6363	11509 11187 10849 10497	16326 16003 15666 15313	21428 21105 20768 20415	26713 26391 26053 25701	32087 31765 31427 31075	37459 37136 36799 36446	2223 223 24
0,25	0,00000	0,00349	0,01424	0,03309	0,06145	0,10129	0,14946	0,20048	0,25333	0,30707	0,36079	0,25
26 27 28 29	0000	339 329 320 311	1382 1341 1302 1265	3205 3107 3013 2923	5940 5746 5562 5387	9766 9426 9104 8800	14563 14166 13753 13326	19665 19268 18855 18428	24951 24553 24141 23713	30325 29927 29515 29087	35696 35299 34886 34459	26 27 28 29
0,30	0,00000	0,00303	0,01229	0,02837	0,05220	0,08512	0,12883	0,17985	0,23271	0,28645	0,34016	0,30
32 33 34	00000	294 286 279 271	1195 1161 1129 1098	2754 2675 2598 2524	5061 4908 4762 4621	8238 7978 7728 7490	12445 12030 11635 11259	17528 17055 16568 16065	22813 22341 21853 21351	28187 27715 27227 26725	33559 33086 32599 32096	31 32 33 34
0,35	0,00000	0,00264	0,01068	0,02453	0,04486	0,07261	0,10899	0,15548	0,20833	0,26207	0,31579	0,35
37 38 39	0000	256 249 243 236	1038 1010 982 956	2384 2317 2252 2189	4355 4229 4107 3989	7041 6830 6626 6429	1 C555 10225 9908 9603	15035 14545 14076 13626	20301 19753 19191 18613	25675 25127 24565 23987	31046 30499 29936 29359	36 37 38 39
0,40	0,00000	0,00230	0,00929	0,02128	0,03875	0,06240	0,09310	0,13194	0,18021	0,23395	0,28766	0,40
41 42 43 44	0000	224 218 212 206	904 879 855 8 3 1	2069 2011 1955 1900	3764 3657 3552 3451	6056 5878 5705 5538	9027 8753 8488 8232	12779 12379 11993 11620	17433 16868 16325 15802	22787 22165 21527 20875	28159 27536 26899 26246	41 42 43 44
0,45	0,00000	0,00200	0,00808	0,01846	0,03352	0,05375	0,07984	0,11259	0,15297	0,20207	0,25579	0,45
46 47 48 49	00000	195 189 184 179	786 764 742 721	1794 1743 1694 1645	3255 3161 3069 2980	5217 5063 4914 4768	7743 7509 7282 7061	10910 10572 10244 9926	14809 14338 13881 13439	19544 18905 18287 17690	24896 24199 23486 22759	46 47 48 49
0,50	0,00000	0,00174	0,00701	0,01598	0,02893	0,04625	0,06846	0,09616	0,13010	0,17112	0,22016	0,50
76	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\overset{\alpha}{\geq}$

$$m_{rg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\varrho^2 \mu_{rg} = \varrho^2 \left[ln \frac{1}{a} + \frac{\beta^2 - \varrho^2}{4} \right]$$
, wenn $a \ge \varrho \left(\beta = \frac{\varrho}{a} \right)$
 $\varrho^2 \mu'_{rg} = \varrho^2 \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + 3\beta'^2}{4} \right]$, wenn $a \le \varrho \left(\beta' = \frac{a}{\varrho} \right)$.

Tabelle VIII 2.

Radialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

α^{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{2}{\alpha}$
0,50	0,00000	0,00174	0,00701	0,01598	0,02893	0,04625	0,06846	0,09616	0,13010	0,17112	0,22016	0,50
51	0	169	680	1551	2807	4486	6636	9316	12594	16552	21279	51
53	0	104	641	1461	2642	4218	6232	8738	11796	15481	19872	53
54	õ	154	622	1417	2562	4088	6038	8460	11414	14968	19201	54
0,55	0,00000	0,00150	0,00604	0,01374	0,02484	0,03962	0,05847	0,08189	0,11041	0,14470	0,18549	0,55
56	0	145	585	1332	2407	3838	5662	7924	10678	13985	17916	56
57	0	141	567 550	1293	2332	3716	5480 5302	7665	10324	13053	16701	57
59	Ő	132	532	1211	2185	3481	5128	7166	9641	12604	16117	59
0,60	0,00000	0,00128	0,00515	0,01172	0,02114	0,03366	0,04957	0,06925	0,09311	0,12167	0,15549	0,60
61	0	124	499	1134	2045	3254	4790	6688	8989	11739	14994	61
62	0	120	482	1096	1976	3036	4627	6230	8365	10914	13925	63
64	Õ	112	450	1022	1843	2930	4308	6008	8063	10515	13410	64
0,65	0,00000	0,00108	0,00434	0,00987	0,01778	0,02826	0,04154	0,05790	0,07767	0,10125	0,12905	0,65
66	0	104	419	951	1714	2724	4002	5576	7477	9742	12413	66
67	0	100	404	882	1589	2524	3706	5161	6915	9366	11458	68
69	Õ	93	374	849	1528	2427	3562	4958	6641	8642	10996	69
0,70	0,00000	0,00089	0,00359	0,00816	0,01468	0,02331	0,03421	0,04760	0,06373	0,08290	0,10543	0,70
71	0	86	345	783	1409	2237	3282	*4565 4373	6109	7944	10099	71
73	ŏ	79	317	719	1294	2053	3010	4184	5596	7272	9237	73
74	0	75	303	688	1237	1963	2877	3999	5346	6944	8819	74
0,75	0 ,0 0000	0,00072	0,00290	0,00657	0,01182	0,01874	0,02747	0,03816	0,05101	0,06623	0,08407	0,75
76	o o	69	276	627	1127	1787	2618	3636	4859	6307	8004	76
78	0	62	250	567	1020	1616	2366	3285	4387	5691	7217	78
79	0	59	237	538	967	1532	2243	3114	4157	5391	6834	79
0,80	0,00000	0,00056	0,00225	0,00509	0,00915	0,01450	0,02122	0,02945	0,03930	0,05095	0,06458	0,80
81	0	53	212	481	864	1368	2003	2778	3707	4805	6087	81
83	ő	47	187	425	763	1209	1768	2452	3270	4236	5364	83
84	0	44	175	398	714	1131	1654	2292	3057	3959	5011	84
0,85	0,00000	0,00041	0,00163	0,00371	0,00665	0,01053	0,01540	0,02135	0,02846	0,03685	0,04663	0,85
86	o o	38	152	344	617	976	1429	1980	2639	3415	4321	86
88	Ö	32	129	291	523	827	1210	1675	2232	2887	3651	88
89	0	29	117	266	477	754	1102	1526	2032	2629	3324	89
0,90	0,00000	0,00026	0,00106	0,00240	0,00431	0,00681	0,00996	0,01379	0,01836	0,02374	0,03001	0,90
1 32	0	24	95	215	386 341	610 539	891	1233	1642	2123	2682 2368	91
93	l õ	18	73	165	297	469	685	948	1261	1630	2058	93
94	0	15	62	141	253	400	584	807	1074	1388	1753	94
0,95	0,00000	0,00013	0,00052	0,00119	0,00209	0,00331	0,00483	0,00669	10,00890	0,01149	0,01451	0,95
97		10 8	41	93 69	124	197	287	397	528	681	860	97
98	ŏ	5	20	46	82	130	190	263	350	451	570	98
99	0	3	10	23	41	0 00000	0.00000	0.00000	0.00000	0 00000	0.00000	499
1,00	0,00000	0,00000	0,00000	10,00000	0,00000	0,0000	10,0000	10,0000	10,00000	0,0000	0,00000	$1, \omega$
$ \alpha\rangle$	000	0.05	0.10	0.15	0,20	0.25	0.30	0.35	0.40	0.45	050	$ ^{\alpha}$
VΥ	0,00			<u> </u>						_,	0,00	

$$m_{rg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\varrho^2 \mu_{rg} = \varrho^2 \left[ln \frac{1}{a} + \frac{\beta^2 - \varrho^2}{4} \right]$$

Tabelle VIII 3.

Radialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ . $n q^2$

					1							07
à	0,50	0,55	. 0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	~α
0,00	0,40766	0,46047	0,51150	0,55988	0,60475	0,64522	0,68041	0,70942	0,73132	0,74517	0,75000	0,00
1	40759	46039	51142	55980	60467	64515	68034	70934	73124	74509	74993	1
3	40699	45979	51082	55920	60407	64455	67974	70912	73064	74449	74933	3
4	40646	45927	51030	55868	60355	64402	67921	70822	73012	74397	74880	4
0,05	0,40579	0,45859	0,50962	0,55800	0,60287	0,64334	0,67853	0,70754	0,72945	0,74329	0,74813	0,05
6	40496	45777	50880	55718	60204	64252	67772	70672	72862	74247	74730	.6
8	40399	45567	50782	55508	60107 59995	64154 64042	67674	70575	72765	74149	74633	ś
9	40159	45439	50542	55380	59867	63915	67434	70335	72524	73909	74393	9
0,10	0,40016	0,45297	0,50400	0,55238	0,59725	0,63772	0,67292	0,70192	0,72382	0,73767	0,74250	0,10
11	39859	45139	50242	55080	59567	63614	67133	70034	72224	73609	74093	11
13	39499	44907	49882	54908	59208	63254	66774	69674	72052	73250	73733	13
14	39296	44577	49680	54518	59005	63052	66572	69472	71662	73047	73530	14
0,15	0,39079	0,44360	0,49462	0,54301	0,58787	0,62835	0,66354	0,69255	0,71444	0,72829	0,73313	0,15
16	38846	44127	49230	54068	58555	62602	66121	69022	71212	72597	73080	16
18	38336	43617	48720	53558	58044	62092	65612	68512	70702	72086	72570	18
19	38059	43339	48442	53281	57767	61815	65334	68234	70425	71809	72293	19
0,20	0,37766	0,43047	0,48150	0,52988	0,57475	0,61522	0,65041	0,67942	0,70131	0 _{\$} 71517	0,72000	0,20
21	37459	42739	47842	52680	57167	61215	64733	67634	69824	71209	71693	21
23	36799	42080	47520	52020	56507	60554	64074	66974	69164	70550	71033	23
24	36446	41727	46830	51668	56154	60202	63721	66622	68812	70196	70680	24
0,25	0,36079	0,41359	0,46462	0,51300	0,55787	0,59834	0,63354	0,66255	0,68444	0,69829	0,70313	0,25
26	35696	40977	46080	50918 50520	55405	59452 59055	62972	65872	68062	69446	69930	26
28	34886	40167	45270	50108	54595	58642	62161	65062	67252	68637	69120	28
29	34459	39739	44842	49681	54167	58214	61734	64634	66824	68209	68693	29
0,30	0,34016	0,39297	0,44400	0,49238	0,53725	0,57772	0,61292	0,64192	0,66382	0,67767	0,68250	0,30
31	33559	38839	43942	48781	53267	57314	60834	63735	65924	67309	67793	31
33	32599	37879	42982	47820	52306	56355	59874	62774	64964	66349	66833	33
34	32096	37377	42480	47318	51805	55852	59372	62272	64461	65846	66330	34
0,35	0,31579	0,36859	0,41962	0,46800	0,51287	0,55335	0,58854	0,61754	0,63944	0,65329	0,65813	0,35
36	31046	36327	41430	46268	50755	54802	58321	61222	63412	64797	65280	36
38	29936	35217	40320	45158	49645	53692	57212	60112	62302	63687	64170	38
39	29359	34640	39742	44581	49067	53115	56634	59534	61724	63109	63593	39
0,40	0,28766	0,34047	0,39150	0,43988	0,48475	0,52522	0,56041	0,58942	0,61132	0,62517	0,63000	0,40
41	28159	33439	38542	43381	47867	51914	5434	58335	60524	61909	62393	41
43	26899	32179	37282	42120	46607	50654	54173	57075	59264	60649	61133	43
44	26246	31527	36630	41468	45955	50002	53521	56421	58612	59996	60480	44
0,45	0,25579	0,30860	0,35962	0,40800	0,45287	0,49335	0,52854	0,55755	0,57944	0,59329	0,59813	0,45
46	24896	30177	35280	40118	44605	48652	52172	55072	57261	58646	59130	46
48	23486	28767	33870	38708	43194	47242	50761	53662	55852	57237	57720	48
49	22759	28039	33142	37981	42467	46514	50034	52934	55125	56509	56993	49
C 50	0,22016	0,27297	0,32400	0,37238	0,41724	0,45772	0,49292	0,52192	0,54382	0,55766	0,56250	0,50
α_{ℓ}	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	e^{α}

$$m_{rg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl
$$\varrho^2 \mu'_{rg} = \varrho^2 \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + 3\beta'^2}{4} \right].$$

.

Tabelle VIII 4.

Radialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

α^{2}	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	$\frac{2}{\alpha}$
0,50	0,22015	0,27297	0,32400	0,37238	0,41724	0,45772	0,49292	0,52192	0,54382	0,55766	0,56250	0,50
51	21279	26540	31642	36480	40967	45015	48534	51434	53624	55009	55493	51
52	20564	25768	30870	35708	40195	44242	47761	50662 40874	52852	54237	53933	52
54	19201	24178	29280	34118	38605	42652	46172	49071	51262	52646	53130	54
0,55	0,18549	0,23359	0,28462	0,33301	0,37787	0,41835	0,45354	0,48254	0,50444	0,51829	0,52313	0,55
56	17916	22547	27630	32468	36955	41002	44521	47422	49612	50997	51480	56
57	17300	21758	26782	31620	36107	40155	43674	46575	48764	50149	50633	57
59	16117	20245	25042	29880	34367	38414	42012	44834	47902	48409	48893	59
0.60	0,15549	0,19519	0,24150	0.28988	0.33475	0.37522	0.41041	0.43942	0.46132	0.47517	0.48000	0.60
61	14994	18813	23262	28080	32567	36614	40134	43034	45224	46609	47093	61
62	14453	18124	22398	27158	31645	35692	39212	42112	44302	45686	46170	62
64	13925	17453	21556	26220	30707	34755	38274	41175	43364	44749	45233	63
0.65	0.12905	0.16158	0.19937	0.24301	0 28787	0 32834	0 36354	0 30254	0 41444	0 49890	0 43313	0.65
66	12413	15533	19157	23338	27805	31852	35372	39979	40462	41846	42330	66
67	11930	14923	18395	22399	26807	30854	34374	37274	39464	40849	41333	67
68	11458	14326	17651	21482	25795	29842	33361	36262	38452	39836	40320	68
070	10990	0 13171	16924	20300	24707	20010	32333	0 7 44 04	37424	36609	39293	070
74	10040	19611	15517	19960	0,23725	0,27772	30034	72191	0,00002	36700	37103	74
72	9664	12062	14836	18025	21673	25642	29161	32062	34252	35637	36120	72
73	9237	11525	14170	17208	20682	24555	28074	30974	33165	34549	35033	73
0.75	0019	10998	13517	16409	19713	23452	26972	29872	32062	33447	33930	· /4
76	9004	0,10482	12070	14959	0,18765	0,22335	0,25853	0,28754	0,30944	0,32329	0,32813	0,75
77	7607	9477	11634	14107	16929	20133	23574	26475	28664	30049	30533	1 77
78	7217	8988	11030	13370	16038	19068	22412	25312	27502	28886	29370	78
19	0834	8508	10457	12047	15166	18024	21234	24134	26324	27709	28193	/9
0,60	0,06458	0,08036	0,09856	0,11938	0,14310	0,17002	0,20041	0,22942	0,25132	0,26516	0,27000	0,80
82	5723	7118	8723	10559	12648	15017	17690	20512	22702	24087	24570	l az
83	5364	6670	8171	9888	11841	14054	16549	19274	21464	22849	23333	83
84	5011	6229	7629	9229	11049	13109	15433	18022	20212	21597	22080	84
0,65	4701	5760	0,07095	0,08581	0,10269	0,12180	0,14334	0,16754	0,18944	0,20329	0,20813	0,85
87	3984	4947	6054	7943	9504	11269	13258	15492	17002	19046	19530	87
88	3651	4533	5546	6701	8012	9495	11165	13038	1 5052	16436	16920	88
89	3324	4125	5046	6095	7286	8631	10146	11845	13725	15109	15593	89
0,90	0,03001	0,03724	0,04553	0,05498	0,06571	0,07782	0,09145	0,10673	0,12382	0,13767	0,14250	0,90
92	2368	2938	3590	4911	5175	6126	7195	9523	9731	12409	12893	37
93	2058	2552	3119	3763	4494	5318	6244	7282	8440	9649	10133	93
94	1753	2173	2654	3202	3823	4522	5309	6190	7173	8246	8730	94
0,95	0,01451	0,01799	0,02197	0,02649	0,03162	0,03740	0,04389	0,05116	0,05927	0,06829	0,07313	10,95
97	860	1430	1745	1567	2511	2969	2593	4060	4702	4028	5880 4433	37
98	570	705	861	1038	1237	1463	1715	1998	2313	2663	2970	98
99	283	351	428	515	614	726	851	991	1147	1320	1493	99
1,00	0,00000	0,00000	10,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
$\frac{\alpha}{2}$	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	e^{α}
						the second s					and the second se	

$$m_{rg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\varrho^2 \mu_{rg} = \varrho^2 \left[ln \frac{1}{a} + \frac{\beta^2 - \varrho^2}{4} \right]$$
, wenn $a \ge \varrho \left(\beta = \frac{\varrho}{a} \right)$
 $\varrho^2 \mu'_{rg} = \varrho^2 \left[ln \frac{1}{\varrho} + 1 - \frac{\varrho^2 + 3\beta'^2}{4} \right]$, wenn $a \le \varrho \left(\beta' = \frac{a}{\varrho} \right)$.

Tabelle IX 1.

Tangentialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

a	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{\varrho}{\alpha}$
0,00	0,00000	0,00999	0,03300	0,06506	0,10398	0,14817	0,19633	0,24735	0,30021	0,35395	0,40766	0,00
5 N N L	0000	996 989 976 959	3298 3290 3278 3260	6503 6496 6483 6466	10395 10388 10375 10358	14814 14807 14794 14777	19631 19623 19611 19593	24733 24725 24713 24695	30018 30011 29998 29981	35392 35385 35372 35355	40764 40756 40744 40726	1234
0,05	0,00000	0,00936	0,03238	0,06443	0,10335	0,14754	0,19571	0,24673	0,29958	0,35332	0,40704	0,05
67 89	0 0 0 0	910 883 857 833	3210 3178 3140 3098	6416 6383 6346 6303	10308 10275 10238 10195	14727 14694 14657 14614	19543 19511 19473 19431	24645 24613 24575 24533	29931 29898 29861 29818	35305 35272 35235 35192	40676 40644 40606 40564	6 7 8 9
0,10	0,00000	0,00810	0,03050	0,06256	0,10148	0,14567	0,19383	0,24485	0,29771	0,35145	0,40516	0,10
11 12 13 14	0 0 0	789 769 751 733	2998 2944 2890 2836	6203 6146 6083 6016	10095 10038 9975 9908	14514 14457 14394 14327	19331 19273 19211 19143	24433 24375 24313 24245	29718 29661 29598 29531	35092 35035 34972 34905	40464 40406 40344 40276	11 12 13 14
0,15	0,00000	0,00717	0,02784	0,05943	0,09835	0,14254	0,19071	0,24173	0,29458	0,34832	0,40204	0,15
16 17 18 19	0000	702 687 674 661	2732 2683 2635 2589	5866 5786 5705 5623	9758 9675 9588 9495	14177 14094 14007 13914	18993 18911 18823 18731	24095 24013 23925 23833	29381 29298 29211 29118	34755 34672 34585 34492	40126 40044 39956 39864	16 17 18 19
0,20	0,00000	0,00648	0,02544	0,05542	0,09398	0,13817	0,18633	0,23735	0,29021	0,34395	0,39766	0,20
21 22 23 24	0000	636 625 614 604	2501 2460 2420 2381	5462 5383 5305 5229	9296 9190 9082 8974	1.3714 13607 13494 13377	18531 18423 18311 18193	23633 23525 23413 23295	28918 28811 28698 28581	34292 34185 34072 33955	39664 39556 39444 39326	21 22 23 24
0,25	0,00000	0,00594	0,02344	0,05154	C,08865	0,13254	0,18071	0,23173	0,28458	0,33832	0,39204	0,25
26 27 28 29	0 0 0 0	584 575 566 557	2308 2273 2239 2206	5081 5010 4940 4872	8757 8649 8542 8436	13127 12997 12863 12728	17943 17811 17673 17531	23045 22913 22775 22633	28331 28198 28061 27918	33705 33572 33435 33292	39076 38944 38806 38664	26 27 28 29
0,30	0,00000	0,00549	0,02174	0,04806	0,08331	0,12592	0,17383	0,22485	0,27771	0,33145	0,38516	0,30
31 32 33 34	0 0 0	541 533 526 518	2143 2113 2083 2055	4741 4677 4616 4555	8228 8127 8027 7929	12456 12320 12185 12050	17231 17075 16916 16755	22333 22175 22013 21845	27618 27461 27298 27131	32992 32835 32672 32505	38364 38206 38044 37876	32 33 34
0,35	0,00000	0,00511	0,02027	0,04496	0,07833	0,11917	0,16593	0,21673	0,26958	0,32332	0,37704	0,35
36 37 38 39	0 0 0	504 497 491 484	2000 1973 1948 1923	4438 4382 4327 4273	7738 7645 7553 7463	11784 11653 11523 11395	16430 16267 16103 15941	21495 21314 21130 20943	26781 26598 26411 26218	32155 31972 31785 31592	37526 37344 37156 36964	37 38 39
0,40	0,00000	0,00478	0,01898	0,04220	0,07375	0,11269	0,15779	0,20755	0,26021	0,31395	0,36766	0,40
41 42 43 44	0 0 0	472 466 460 454	1874 1851 1828 1806	4168 4117 4068 4019	7288 7203 7120 7037	11144 11021 10899 10779	15617 15457 15298 15140	20565 20375 20185 19994	25818 2561 2 25402 25190	31 192 30985 30772 30555	36564 36356 36144 35926	41 42 43 44
0,45	0,00000	0,00449	0,01784	0,03971	0,06957	0,10661	0,14984	0,19804	0,24976	0,30332	0,35704	0,45
46 47 48 49	0 0 0 0	443 438 433 428	1762 1741 1721 1700	3925 3879 3834 3790	6877 6799 6722 6647	10544 10429 10316 10204	14829 14676 14524 14374	19614 19426 19238 19051	24760 24543 24326 24108	29873 29638 29401	35244 35006 34764	40 47 48 49
0,50	0,00000	0,00423	0,01681	0,03746	0,06573	0,10094	0,14226	0,18865	0,23890	0,29160	0,34516	0,50
2	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	X

$$m_{tg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\varrho^2 \mu_{tg} = \varrho^2 \left[ln \frac{1}{a} + 1 - \frac{\beta^2 + \varrho^2}{4} \right]$$
, wenn $a \ge \varrho \left(\beta = \frac{\varrho}{a} \right)$
 $\varrho^2 \mu'_{tg} = \varrho^2 \left[ln \frac{1}{\varrho} + 1 - \frac{\beta'^2 + \varrho^2}{4} \right]$, wenn $a \le \varrho \left(\beta' = \frac{a}{\varrho} \right)$

Tabelle IX 2.

Tangentialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

Γ p I	000	0.05	0.40	0.45	000	005	0.20	0.25	0.40	0.45	050	6/
α	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,00	$\frac{\alpha}{\alpha}$
0,50	0,00000	0,00423	0,01681	0,03746	0,06573	0,10094	0,14226	0,18865	0,23890	29010	34264	0,50
52	0	418	1642	3662	6428	9900	13934	18498	23456	28676	34007	52
53	0	408	1623	3621	6357	9773	13791	18317	23240	28432 28187	33747	53 54
0,55	0,00000	0,00399	0,01587	0,03541	0,06219	0,09566	0,13509	0,17958	0,22810	0,27942	0,33218	0,55
56	0	394	1569	3502	6152	9465	13370	17781	22596	27697	32951	56
57	0	390 386	1552	3463 3425	6085 6020	9365	13233	17606 17433	22384 22173	27453 27208	32681 32411	57 58
59	ŏ	381	1518	3388	5956	9170	12965	17261	21964	26964	32140	59
0,60	0,00000	0,00377	0,01501	0,03352	0,05892	0,09074	0,12832	0,17090	0,21756	0,26721	0,318 68	0,60
61	0	373	1485	3315	5830	8979	12702	16922	21549	26479	31596 31324	61 62
63	ő	365	1453	3245	5707	8794	12446	16590	21140	25998	31052	63
64	0	361	1438	3211	5647	8703	12320	16426	20938	25759	30780	64
0,65	0,00000	0,00357	0,01422	0,03177	0,05588	0,08614	0,12195	0,16264	0,20738	0,25522	0,30509	0,65
67	0	353	1407 1392	3143 3110	5530 5473	8525 8438	12072	16104	20559	25286	29969	67
68	Ő	346	1378	3078	5416	8352	11831	15788	20147	24818	29700	68
0.70	0 00000	0 00770	1363	3046	5360	8200	0 11504	1 50 32	19955	24000	0 29166	070
71	0,00000	335	1335	2093	5251	8000	11478	15326	19570	24127	28900	71
72	, ŏ	332	1321	2952	5197	8017	11363	15175	19381	23899	28636	* 72
73		328	1308	2922	5144	7936	11250	15026	19194	23674	28373	73
0,75	0,00000	0,00321	0,01281	0,02862	0,05040	0,07777	0,11027	0,14732	0,18825	0,23228	0,27852	0,75
76	0	318	1268	2833	4988	7699	10917	14587	18643	23007	27593	76
78		315	1255	2804	4938 4888	7621	10808	14444	18462	22789	27554	78
79	Ó	309	1229	2747	4839	7469	10595	14161	18106	22356	26827	79
0,80	0,00000	0,00305	0,01217	0,02720	0,04790	0,07394	0,10489	0,14022	0,17930	0,22142	0,26575	0,80
81		302	1204	2692 2665	4742	7321	10385	13884	17756	21930	26324	82
83	0	296	1180	2638	4647	7175	10181	13613	17412	21510	25828	83
0.85	0 00000	293	0 01157	2612	4601	7104	0.00080	0 13346	0 17243	0 21002	0 25338	04
86	0,00000	287	1145	2560	4500	6063	0,09900	13215	16908	20892	25096	86
87	Ŏ	284	1133	2534	4309	6894	9783	13085	16743	20690	24855	87
88		282	1122	2509	4420	6825	9687	12956	16579	20490	24616	88 89
0,90	0,00000	0,00276	0,01100	0,02458	0,04332	0,06690	0,09496	0,12702	0,16256	0,20093	0,24143	0,90
91	0	273	1089	2434	4289	6624	9402	12577	16096	19897	23909	91
92		271	1078	2410	4246	6558 6493	9309	12453	15938	19702	23676	92
94	Ō	265	1057	2362	4162	6429	9125	12208	15626	19318	23216	94
0,95	0,00000	0,00262	0,01046	0,02339	0,04121	0,06365	0,09035	0,12087	0,15472	0,19128	0,22989	0,95
96	0	260	1036	2315	4080	6302	8945	11968	15319	18939	22763	96
98	l õ	255	1015	2270	3999	6177	8769	11732	15017	18567	22316	98
99	0 00000	252	1005	2247	3959	6116	8681	11615	14868	18382	22095	99
1,00	1,00000	0,00250	0,00995	0,02225	0,03920	0,06055	0,08595	0,11497	0,14720	0,18200	0,21079	1,00
2	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	\aleph^{α}

$$m_{tg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl: $\varrho^2 \mu_{tg} = \varrho^2 \left[l n \frac{1}{\alpha} + 1 - \frac{\beta^2 + \varrho^2}{4} \right].$

Tabelle IX 3.

Tangentialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

$$m_{tg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

	T											
α^{ϱ}	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	$\frac{2}{\alpha}$
0,00	0,40766	0,46047	0,51150	0,55988	0,60475	0,64522	0,68041	0,70942	0,73132	0,74517	0,75000	0,00
1 2 3 4	40764 40756 40744 40726	46044 46037 46024 46007	51147 51140 51127 51110	55985 55978 55966 55948	60472 60465 60452 60435	64519 64512 64500 64482	68039 68031 68019 68001	70939 70932 70919 70902	73129 73122 73109 73092	74514 74507 74494 74477	74998 74990 74978 74960	1 2 3 4
0,05	0,40704	0,45985	0,51087	0,55925	0,60412	0,64460	0,67979	0,70879	0,73069	0,74454	0,74938	0,05
6 7 8 9	40676 40644 40606 40564	45957 45924 45887 45844	51060 51027 50990 50947	55898 55865 55828 55786	60385 60352 60315 60272	64432 64400 64362 64320	67951 67919 67881 67839	70852 70819 70782 70738	73041 73009 72972 72929	74426 74394 74357 74314	74910 74878 74840 74798	6 7 8 9
0,10	0,40516	0,45797	0,50900	0,55738	0,60224	0,64272	0,67791	0,70692	0,72882	0,74267	0,74750	0,10
11 12 13 14	40464 40406 40344 40276	45744 45687 45625 45557	50847 50790 50727 50660	55686 55628 55566 55498	60172 60115 60052 59985	64220 64162 64100 64032	67739 67681 67619 67551	70640 70582 70520 70452	72830 72772 72710 72642	74214 74157 74094 74027	74698 74640 74578 74510	11 12 13 14
0,15	0,40204	0,45485	0,50587	0,55425	0,59912	0,63960	0,67479	0,70379	0,72570	0,73954	0,74438	0,15
16 17 18 19	40126 40044 39956 39864	45407 45324 45237 45144	50510 50427 50340 50247	55348 55266 55178 55086	59834 59752 59664 59572	63882 63799 63712 63619	67401 67319 67231 67139	70302 70219 70132 70039	72492 72409 72322 72229	73877 73794 73706 73614	74360 74278 74190 74098	16 17 18 19
0,20	0,39766	0,45047	0,50150	0,54988	0,59475	0,63522	0,67041	0,69942	0,72132	0,73517	0,74000	0,20
21 22 23 24	39664 39556 39444 39326	44945 44837 44724 44607	50047 49940 49827 49710	54885 54778 54666 54548	59372 59265 59152 59035	63420 63312 63200 63082	66939 66831 66719 66601	69839 69732 69619 69502	72029 71922 71809 71691	73414 73306 73195 73076	73898 73790 73678 73560	21 22 23 24
0,25	0,39204	0,44484	0,49587	0,54426	0,58912	0,62960	0,66479	0,69380	0,71569	0,72954	0,73438	0,25
26 27 28 29	39076 38944 38806 38664	44357 44224 44087 43944	49460 49327 49190 49047	54298 54165 54028 53886	58785 58652 58515 58372	62832 62700 62562 62420	66351 66219 66081 65939	69252 69119 68982 68839	71442 71309 71171 71029	72826 72694 72556 72414	73310 73178 73040 72898	26 27 28 29
0,30	0,38516	0,43797	0,48900	0,53738	0,58225	0,62272	0,65791	0,68692	0,70881	0,72267	0,72750	0,30
31 32 33 34	38364 38206 38044 37876	43644 43487 43324 43157	48747 48590 48427 48260	53585 53428 53265 53098	58072 57915 57752 57585	62120 61962 61800 61632	65639 65481 65319 65151	68539 68382 68219 68052	70729 70572 70409 70242	72114 71956 71794 71627	72598 72440 72278 72110	31 32 33 34
0,35	0,37704	0,42984	0,48087	0,52925	0,57412	0,61459	0,64979	0,67880	0,70069	0,71454	0,71938	0,35
36 37 38 39	37526 37344 37156 36964	42807 42624 42437 42244	47910 47727 47540 47347	52748 52565 52378 52186	57234 57052 56865 56672	61282 61099 60912 60720	64801 64619 64431 64239	67702 67519 67332 67139	69892 69709 69521 69330	71277 71094 70907 70714	71760 71578 71390 71198	36 37 38 39
0,40	0,36766	0,42047	0,47150	0,51988	0,56474	0,60522	0,64041	0,66942	0,69132	0,70517	0,71000	0,40
41 42 43 44	36564 36356 36144 35926	41845 41637 41424 41207	46947 46740 46527 46310	51785 51578 51365 51148	56272 56065 55852 55635	60320 60112 59900 59682	63839 63631 63419 63201	66739 66532 66320 66102	68929 68722 68509 68292	70314 70106 69894 69677	70798 70590 70378 70160	41 42 43 44
0,45	0,35704	0,40985	0,46087	0,50926	0,55412	0,59460	0,62979	0,65880	0,68069	0,69454	0,69938	0,45
46 47 48 49	35476 35244 35006 34764	40757 40524 40287 40044	45860 45627 45390 45147	50698 50466 50228 49986	55185 54952 54714 54472	59232 59000 58762 58520	62751 62519 62281 62039	65652 65419 65182 64939	67842 67609 67372 67130	69226 68994 68757 68514	69710 69478 69240 68998	46 47 48 49
0,50	0,34516	0,39797	0,44900	0,49738	0,54224	0,58272	0,61791	0,64692	0,66882	0,68267	0,68750	0,50
$ ^{\infty}$	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	é

Tabellenzahl:
$$\varrho^2 \mu'_{tg} = \varrho^2 \left[ln \frac{1}{\varrho} + 1 - \frac{\beta'^2 + \varrho^2}{4} \right]$$

Tabelle IX 4.

Tangentialmomente bei gleichmäßig verteilter Kreisbelastung von 0 bis ϱ .

6	050	OFF	0.00	0.05	0.70	075	0.00	0.05	000	0.05	100	ρΖ
α	0,50	0,55	0,60	0,65	0,70	0.75	0,80	0,85	0,90	0,95	1,00	7α
0,50	0,34516	0,39797	0,44900	0,49738	0,54224	0,58272	0,61791	0,64692	0,66882	0,68267	0,68750	0,50
51	34264	39544	44647	49485	53972	58020	61539	64439	66629	68014	68498	51
53	33747	39024	44127	49220	53452	57499	61019	63920	66109	67494	67978	53
54	33484	38757	43860	48698	53185	57232	60751	63652	65842	67226	67710	54
0,55	0,33218	0,38484	0,43587	0,48425	0,52912	0,56959	0,60479	0,63379	0,65570	0,66954	0,67438	0,55
56	32951	38207	43310	48148	52635	56682	60201	63102	65292	66677	67160	56
58	32411	37640	42740	47578	52064	56112	59631	62532	64721	66106	66590	5/
59	32140	37351	42447	47285	51772	55820	59339	62239	64429	65814	66298	59
0,60	0,31868	0,37060	0,42150	0,46988	0,51475	0,55522	0,59041	0,61942	0,64132	0,65517	0,66000	0,60
61	31596	36767	41847	46685	51172	55220	58739	61639	63830	65214	65698	61
63	31052	36175	41041	46066	50552	54912	58110	61032	63200	64594	65078	63
64	30780	35877	40916	45748	50235	54282	57801	60702	62892	64277	64760	64
0,65	0,30509	0,35579	0,40600	0,45426	0,49912	0,53960	0,57479	0,60379	0,62569	0,63954	0,64438	0,65
66	30239	35280	40280	45098	49585	53632	57151	60052	62242	63626	64110	66
69	29969	34981	39960	44766	49252	53300	56819	59720	61909	63294	63778	67
69	29432	34382	39313	444091	48572	52620	56139	59039	61230	62614	63098	69
0,70	0,29166	0,34083	0,38988	0,43749	0,48225	0,52272	0,55791	0,58692	0,60882	0,62266	0,62750	0,70
71	28900	33785	38662	43405	47872	51919	55439	58340	60530	61914	62398	71
72	28636	33487	38336	43058	47515	51562	55081	57982	60172	61557	62040	72
74	28112	32893	37683	42710	47155	50832	54351	57252	59810	60827	61310	73
0,75	0,27852	0,32598	0,37356	0,42008	0,46423	0,50460	0,53979	0,56880	0,59069	0,60454	0,60938	0,75
76	27593	32303	37030	41656	46053	50082	53601	56502	58692	60077	60560	76
77	27334	32010	36705	41303	45680	49700	53219	56119	58309	59694	60178	77
79	26827	31427	36054	40950	45305	49314	52831	55339	57520	59307	59790	78
0,80	0,26575	0,31138	0,35731	0,40242	0,44553	0,48532	0,52041	0,54942	0,57132	0,58516	0,59000	0.80
81	26324	30850	35408	39889	44174	48137	51639	54539	56729	58114	58598	81
82	26075	30563	35086	39535	43795	47739	51232	54132	56322	57707	58190	82
84	25582	29994	34444	38828	43033	47559	50404	53302	55491	56876	57360	83
0.85	0 25338	0 29712	0 34126	0 38477	0 42653	0 46533	0 40088	0 52870	0 55069	0 56454	0 56938	0.95
86	25006	20432	33800	39196	40000	46100	40560	50450	54649	56026	56510	0,00
87	24855	29153	33493	37775	41891	45723	49307	52020	54209	55594	56078	87
88	24616	28875	33178	37425	41510	45316	48718	51584	53772	55156	55640	88
89	24378	28600	32865	37077	41130	44909	48291	51144	53330	54714	55198	89
0,90	0,24 143	0,28525	0,32553	0,36730	0,40750	0,44501	0,47861	0,50701	0,52882	0,54266	0,54750	0,90
92	23676	27782	31934	36038	40390	44093	47430	49806	52430	53357	53840	91
93	23445	27513	31626	35694	39614	43277	46565	49355	51511	52894	53378	93
94	23216	27245	31321	35351	39237	42868	46131	48901	51046	52426	52910	94
0,95	0,22989	0,26979	0,31017	0,35010	0,38860	0,42460	0,45697	0,48446	0,50578	0,51954	0,52438	0,95
96	22763	26715	30714	34670	38485	42053	45261	47989	50107	51477	51960	96
98	22316	26192	30114	33994	37737	41240	44391	47030	49002	50508	50990	97
99	22095	25932	29816	33659	37365	40835	43955	46611	48676	50018	50498	99
1,00	0,21875	0,25675	0,29520	0,33325	0,36995	0,40430	0,43520	0,46150	0,48195	0,49525	0,50000	1,00
$ \alpha $	050	055	060	OGE	0.70	075	0.90	0.05	000	0.05	4.00	$\langle \alpha $
<u> </u> /6	0,50	0,55	0,00	0,05	0,70	0,75	0,80	0,85	0,90	0,95	1,00	6

$$m_{tg} = \frac{p_0 a^2}{4} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\varrho^2 \mu_{tg} = \varrho^2 \left[ln \frac{1}{a} + 1 - \frac{\beta^2 + \varrho^2}{4} \right]$$
, wenn $a \ge \varrho \left(\beta = \frac{\varrho}{a} \right)$
 $\varrho^2 \mu'_{tg} = \varrho^2 \left[ln \frac{1}{o} + 1 - \frac{\beta'^2 + \varrho^2}{4} \right]$, wenn $a \le \varrho \left(\beta' = \frac{a}{\varrho} \right)$
Tabelle X₁.

Radialmomente bei schneidenförmiger Belastung in e.

$$m_{r_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$$

200	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{9}{\alpha}$
0,00	∞											0.00
1 2 3 4	4,60517 3,91 20 2 3,50656 3,21888								·			1 2 3 4
0,05	2,99573	3,49448										0,05
6 7 8 9	81341 65926 52573 40795	3,15938 2,91311 71979 56102										6 7 8 9
0,10	2,30259	2,42634	2,79759									0,10
11 12 13 14	20728 12026 2,04022 1,96611	30933 20582 11294 2,02864	61550 46249 33108 21622									11 12 13 14
0,15	1,89712	1,95143	2,11434	2,38587								0,15
16 17 18 19	83258 77196 71480 66073	88016 81396 75213 69411	2,02289 1,93997 86412 79424	26078 14998 2,05077 1,96112								16 17 18 19
0,20	1,60944	1,63944	1,72944	1,87944	2,08944							0,20
21 22 23 24	56065 51413 46968 42712	58774 53870 49206 44757	66903 61243 55919 50892	80450 73532 67109 61118	1,99416 90735 82775 75434							21 22 23 24
0,25	1,38629	1,40504	1,46129	1,55504	1,68629	1,85504						0,25
26 27 28 29	34707 30933 27297 23787	36432 32523 28766 25149	51604 37292 33174 29233	50224 45240 40521 36039	62293 56368 50807 45569	77810 70675 64031 57821						26 27 28 29
0,30	1,20397	1,21661	1,25453	1,31772	1,40620	1,51995	1,65897					0,30
31 32 33 34	17118 13943 10866 07881	18294 15039 11889 08837	21821 18326 14958 11706	27700 23805 20072 16488	35930 31475 27232 23182	46512 41336 36437 31789	59445 53389 47589 42308					31 32 33 34
0,35	1,04982	1,05878	1,08564	1,13041	1,19309	1,27367	1,37217	1,48857				0,35
36 37 38 39	0,99425 96758 94161	03005 1,00213 0,97499 94858	05523 1,02578 0,99721 96948	09721 06518 03424 1,00432	15597 12034 08609 05310	23153 19127 15275 11582	32387 27796 23422 19247	43301 38041 33050 28306				36 37 38 39
0,40	0,91629	0,92285	0,94254	0,97535	1,02129	1,08035	1,15254	1,23785	1,33629			0,40
41 42 43 44	89160 86750 84397 82098	89778 87334 84948 82619	91634 89085 86601 84181	94727 92003 89356 86784	0,99058 96088 93214 90429	04625 1,01341 0,98173 95115	11430 07760 04235 1,00842	19471 15347 11398 07611	28751 24102 19664 15421			41 42 43 44
0,45	0,79851	0,80343	0,81820	0,84281	0,87727	0,92158	0,97573	1,03973	1,11357	1,19726		0,45
46 47 48 49	77653 75502 73397 71335	78119 75943 73814 71731	79516 77266 75067 72918	81845 79470 77155 74896	85105 82556 80078 77665	89296 86524 83835 81225	94419 91373 88428 85577	1,00474 0,97105 93856 90720	07460 03718 1,00119 0,96654	15378 11212 07217 1,03380		46 47 48 49
0,50	0,69315	0,69690	0,70815	0,72690	0,75315	0,78690	0,82815	0,87689	0,93315	0,99690	1,06815	0,50
2	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	e^{α}

Tabellenzahl: $\mu_{r_0} = \frac{\varrho^2}{2} \left(\frac{1}{a^2} - 1 \right) + ln \frac{1}{a}$, wenn $a \ge \varrho$ $\mu_{r_0} = \frac{1 - \varrho^2}{2} + ln \frac{1}{\varrho}$ (unabhängig von a), wenn $a \le \varrho$.

Tabelle X 2.

Radialmomente bei schneidenförmiger Belastung in ϱ .

$$m_{r_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$$

α^{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{2}{\alpha}$
0,50	0,69315	0,69690	0,70815	0,72690	0,75315	0,78690	0,82815	0,87689	0,93315	0,99690	1,06815	0,50
51 52 53 54	67334 65393 63488 61619	67690 65730 63808 61922	68757 66742 64768 62833	70535 68428 66368 64352	73024 70789 68608 66477	76224 73825 71488 69210	80135 77535 75008 72551	84758 81919 79168 76499	90092 86979 83968 81053	96137 92712 89408 86216	1,02893 0,99121 95488 91986	51 52 53 54
0,55	0,59784	0,60072	0,60937	0,62378	0,64395	0,66989	0,70160	0,73907	0,78230	0,83130	0,88606	0,55
56 57 58 59	57982 56212 54473 52763	58256 56472 54719 52997	59076 57251 55459 53700	60444 58520 56692 54870	62360 60368 58418 56509	64822 62705 60617 58616	67831 65562 63350 61191	71388 68939 66555 64234	75492 72835 70254 67745	80143 77250 74446 71725	85342 82185 79131 76173	56 57 58 59
0,60	0,51083	0,51305	0,51972	0,53083	0,54638	0,56638	0,59083	0,61972	0,65305	0,69083	0,73305	0,60
61 62 63 64	49430 47804 46204 44629	49641 48004 46394 44809	50273 48604 46963 45349	51328 49605 47913 46250	52805 51007 49243 47512	54703 52808 50952 49133	57023 55010 53042 51115	59765 57613 55511 53457	62929 60615 58360 56160	66515 64018 61589 59223	70523 67822 65198 62646	61 62 63 64
0,65	0,43078	0,43249	0,43762	0,44616	0,45812	0,47350	0,49229	0,51450	0,54013	0,56918	0,60164	0,65
66 67 68 69	41552 40048 38566 37106	41714 40201 38712 37243	42199 40662 39148 37657	43009 41429 39874 38344	44143 42503 40892 39307	45601 43884 42200 40545	47382 45572 43798 42058	49488 47567 45687 43846	51917 49869 47867 45810	54670 52478 50338 48248	57748 55394 53099 50861	66 67 68 69
0,70	0,35668	0,35798	0,36188	0,36838	0,37749	0,38920	0,40351	0,42043	0,43994	0,46206	0,48678	0,70
71 72 73 74	34249 32850 31471 30111	34372 32967 31581 30214	34741 33315 31909 30524	35356 33896 32457 31040	36217 34708 33224 31763	37323 35754 34210 32692	38676 37031 35416 33828	40274 38541 36840 35171	42119 40283 38483 36720	44209 42257 40346 38475	46546 44463 42428 40437	71 72 73 74
0,75	0,28768	0,28865	0,29157	0,29643	0,30324	0,31199	0,32268	0,33532	0,34990	0,36643	0,38490	0,75
76 77 78 79	27444 26137 24846 23572	27535 26222 24927 23648	27809 26480 25168 23873	28266 26909 25570 24250	28906 27510 26133 24777	29729 28282 26858 25454	30735 29226 27743 26283	31923 30342 28789 27261	33294 31630 29995 28391	34948 33089 31363 29671	36585. 34719 3 28 92 31101	76 77 78 79
0,80	0,22314	0,22385	0,22596	0,22947	0,23439	0,24072	0,24846	0,25760	0,26814	0,28010	0,29346	0,80
81 82 83 84	21072 19845 18633 17435	21138 19906 18689 17488	21334 20089 18859 17644	21662 20393 19141 17905	22120 20820 19536 18270	22710 21368 20044 18740	23431 22038 20665 19314	24283 22829 21399 19992	25265 23743 22246 20775	26379 24778 23205 21662	27624 25935 24278 22653	81 82 83 84
0,85	0,16252	0,16300	0,16444	0,16684	0,17020	0,17452	0,17980	0,18604	0,19325	0,20141	0,21053	0;85
86 87 88 89	15082 13926 12783 11653	15126 13966 12820 11696	15258 14087 12929 11795	15478 14288 13111 11959	15787 14569 13366 12178	16183 14930 13694 12484	16667 15372 14094 12845	17239 15893 14568 13271	17899 16496 15114 13753	18647 17178 15733 14321	19483 17941 16425 14944	86 87 88 89
0,90	0,10536	0,10565	0,10653	0,10800	0,11065	0,11269	0,11592	0,11973	0,12413	0,12911	0,13468	0,90
91 92 93 94	9431 8338 7257 6188	9457 8361 7277 6204	9535 8429 7335 6253	9665 8542 7433 6336	9846 8711 7570 6451	10080 8905 7745 6599	10365 9155 7960 6780	10703 9450 8214 6994	11092 9790 8507 7241	11533 10176 8840 7521	12026 10607 9210 7834	91 92 93 94
0,95	0,05129	0,05143	0,05183	0,05251	0,05345	0,05467	0,05615	0,05791	0,05994	0,06223	0,06480	0,95
96 97 98 99	4082 3046 2020 1005	4093 3054 2026 1008	4125 3077 2041 1015	4178 3117 2067 1028	4252 3172 2103 1046	4348 3242 2149 1069	4465 3329 2206 1096	4603 3431 2273 1129	4763 3548 2350 1167	4944 3682 2438 1211	5146 3831 2536 1259	96 97 98 99
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
1 [°]	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α

Tabellenzahl:
$$\mu_{r_0} = \frac{\varrho^2}{2} \left(\frac{1}{a^2} - 1 \right) + ln \frac{1}{a}.$$

Tabelle X 4.

Radialmomente bei schneidenförmiger Belastung in q.

						, 						
a.e	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	$\sqrt[6]{\alpha}$
0,50	1,06815											0,50
51	1,02893			-								51
52	0,99121 95488											52
54	91986											54
0,55	0,88606	0,94659										0,55
56	85342	91087										56
57	82185 79131	87640			1							57
59	76173	81089										59
0,60	0,73305	0,77972	0,83083									0,60
61	70523	74952	79804									61
63	65198	69186	73555									63
64	62646	66430	70574					-				64
0,65	0,60164	0,63752	0,67682	0,71953		- <u> </u>						0,65
66	57748 55394	61149 58616	64874 62146	68923 65982								66 67
68	53099	56151	59494	63127								68
69	50861	53750	56914	60352								69
0,70	0,48678	0,51410	0,54402	0,57655	0,61168							0,70
72	46546	49128	51956 49573	55030 52476	55611							71
73	42428	44729	47249	49988	52946							73
74	40437	42505	44981	47563	50351	0 50047						74
0,75	36595	39505	0,42768	0,45199	47824	0,50043						0,75
77	34719	36522	38496	40642	42959	45448						77
78	32892	34581	36432	38443	40616	42949						78
0.80	0 20346	0 30999	0 32430	0 34107	0 36006	0 39135	0 40314					79
81	27624	29000	30507	32145	33914	35814	37845					0,00
82	25935	27214	28615	30137	31782	33548	35436					82
83	24278	25463	26762	28173	29697	29176	33084					83
0.85	0,21053	0,22061	0.23165	0.24366	0.25662	0.27054	0.28543	0.30127				0.85
86	19483	20408	21420	22520	23708	24985	26349	27801				86
87	17941	18784	19707	20711	21795	22959	24204	25529				87
89	14944	15633	16378	17208	18094	19045	20062	23307				89
0,90	0,13468	0,14084	0,14758	0,15491	0,16283	0,17133	0,18042	0,19010	0,20036			0,90
91	12026	12571	13168	13816	14517	15269	16074	16930	17838			91
93	9210	9620	11605	12172	12784	13442	14145 12256	14894	13583			92
94	7834	8180	8559	8970	9415	9893	10403	10946	11523			94
0,95	0,06480	0,06763	0,07074	0,07412	0,07776	0,08168	0,08586	0,09032	0,09505	0,10004		0,95
96	5146	5369	5613	5879	6166	6475	6804	7155	7528	7921		96
98	2536	2644	2763	2891	3031	3180	3340	3510	3690	3881		98
99	1259	1312	1371	1434	1502	1576	1655	1739	1827	1921		99
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
γ_{ϱ}	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	∂^{α}

$$m_{r_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\mu_{r_0} = \frac{\varrho^2}{2} \left(\frac{1}{a^2} - 1 \right) + ln \frac{1}{a}$$
, wenn $a \ge \varrho$
 $\mu_{r_0} = \frac{1 - \varrho^2}{2} + ln \frac{1}{\varrho}$ (unabhängig von *a*), wenn $a \le \varrho$.

Tabelle XI 4.

Tangentialmomente bei schneidenförmiger Belastung in ϱ .

k						-						
α^{ϱ}	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	$\frac{2}{\alpha}$
0,50	1,06815											0,50
51	06776											51
52	06488											52
54	06252											54
0,55	1,05961	0,94659										0,55
56	05622	94627										56
58	04815	94386										58
59	04354	94188										59
0,60	1,03860	0,93944	0,83083				ļ					0,60
67	03337	93657	83056									62
63	02210	92971	82852									63
64	01611	92577	82683									64
0,65	1,00995	0,92155	0,82475	71953								0,05
67	0,99702	91229	81950	71863								67
68	99033	90732	81639	71756								68
070	0 07657	0 80675	0 80033	0 71430	0 61169							070
74	0,97007	80120	80542	71918	61149							0,70
72	96238	88549	80128	70975	61090							72
73	95515	87964	79694	70705	60996							73
0.75	0 94046	0 86754	0 78768	0 70088	0 60713	0 50643						0.75
76	93302	86133	78280	69745	60527	50626						76
77	92554	85501	77777	69382	60314	50575						77
78	91800	84861	76731	68999	59816	50493						78
0.80	0,90283	0,83557	0,76189	0,68182	0,59533	0,50244	0,40314					0.80
81	89520	82894	75637	67749	59230	50080	40299					81
82	88755	82226	75075	67303	58909	49892	40254					82
84	87217	80872	73922	66367	58208	49445	40078					84
0,85	0,86451	0,80193	0,73338	0,65888	0,57842	0,49200	0,39961	0,30127				0,85
86	85681	79507	72745	65395	57456	48930	39816	30113				86
87	84912	78818	72145	64891 64379	57057 56646	48643 48340	39649	30074	l			87
89	83363	77424	70929	63 8 49	56213	48012	39245	29912				89
0,90	0,82604	0,76738	0,70314	0,63331	0,55789	0,47689	0,39030	0,29812	0,20036			0,90
91	81836	76041	69695	62796	55345	47343	38788	29682	20024			91
93	80305	74645	68445	61707	54430	46614	38259	29364	19931			92
94	79541	73945	6781 6	61155	53960	46233	37972	29179	19852			94
0,95	0,78779	0,73245	0,67185	0,60597	0,53483	0,45841	0,37672	0,28977	0,19754	0,10004		0,95
96	78019	72546	66551 65915	59469	52998 52507	45440 45029	37360 37036	28759 28527	19637	9994 9962		96
98	76505	71147	65278	58899	52010	44611	36701	28281	19350	9910		98
99	75751	70448	64640	58526	51508	44184	36355	28022	19183	9839		99
1,00	0,75000	0,69750	0,64000	0,57750	0,51000	0,43750	0,36000	0,27750	0,19000	0,09750	0,00000	1,00
1%	0.50	0.55	0.60	0.65	0.70	075	0.80	0.85	090	0.95	100	$\lambda \alpha$
ΝY		L ,		L			1 -,00	0,00	5,50	0,00	1,00	16/

$m_{t_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$

Tabellenzahl: $\mu_{t_0} = 1 - \frac{\varrho^2}{2} \left(1 + \frac{1}{a^2} \right) + \ln \frac{1}{a}$, wenn $a \ge \varrho$ $\mu_{t_0} = \frac{1 - \varrho^2}{2} + \ln \frac{1}{\varrho}$ (unabhängig von a), wenn $a \le \varrho$.

Tabelle XI 1.

Tangentialmomente bei schneidenförmiger Belastung in \varrho.

-					⁴ 0 4 <i>1</i>	τ						
α^{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{9}{\alpha}$
0,00	∞											0,00
1034	5,60517 4,91202 4,50656 4,21888											1 2 3 4
0,05	3,99573	3,49448										0,05
6 7 8 9	81341 65926 52573 40795	46494 40291 32917 25238										6 7 8 9
0,10	3,30259	3,17634	2,79759									0.10
11 12 13 14	20728 12026 3,04022 2,96611	10272 3,03221 2,96501 90109	78905 76804 73936 70601									11 12 13 14
0,15	2,89712	2,84031	2,66990	2,38587								0,15
16 17 18 19	83258 77196 71480 66073	78250 72745 67497 62486	63227 59395 55548 51723	38188 37143 35633 33785								16 17 18 19
0,20	2,60944	2,57694	2,47944	2,31694	2,08944							0,20
21 22 23 24	56065 51413 46968 42712	53105 48705 44480 40417	44227 40582 37016 33531	29430 27044 24576 22055	08713 08091 07160 05989							21 22 23 24
0,25	2,38629	2,36504	2,30129	2,19504	2,04629	1,85504						0,25
26 27 28 29	34707 30933 27297 23787	32733 29094 25577 22176	26811 23575 20419 17342	16940 14376 11822 09286	03122 2,01499 1,99786 98006	85355 84941 84312 83504						26 27 28 29
0,30	2,20397	2,18883	2,14342	2,06772	1,96175	1,82550	1,65897					0,30
31 32 33 34	17118 13943 10866 07881	15693 12598 09594 06675	11415 08561 05775 03056	04287 2,01832 1,99411 97024	94307 92412 90501 88580	81475 80301 79045 77723	65792 65498 65044 64454					31 32 33 34
0,35	2,04982	2,03837	2,00401	1,94674	1,86656	1,76347	1,63748	1,48857				0,35
36 37 38 39	2,02165 1,99425 96758 94161	2,01076 1,98387 95768 93214	1,97807 95273 92796 90374	92360 90083 87843 85640	84733 82816 80908 79012	74927 73473 71 99 2 70490	62943 62055 61095 60075	48779 48560 48217 47706				36 37 38 39
0,40	1,91629	1,90723	1,88004	1,83473	1,77129	1,68973	1,59004	1,47223	1,33629			0,40
41 42 43 44	89160 86750 84397 82098	88291 85917 83596 81328	85685 83406 81193 79016	81342 79248 77188 75162	75262 73412 71580 69768	67445 65910 64371 62832	57890 56740 55560 54355	46598 45903 45146 44336	33569 33399 33130 32776			42 42 43 44
0,45	1,79851	1,79109	1,76882	1,73170	1,67974	1,61294	1,53129	1,43479	1,32345	1,19726		0,45
46 47 48 49	77653 75502 73397 71335	76937 74811 72729 70689	74790 72739 70727 68753	71211 69284 67389 65525	66201 64448 62716 61065	59760 58231 56709 55195	51886 50631 49366 48093	42582 41650 40688 39700	31846 31287 30675 30016	19678 19542 19327 19040		46 47 48 49
0,50	1,69315	1,68690	1,66815	1,63690	1,59315	1,53690	1,46815	1,38690	1,29315	1,18690	1,06815	0,50
2	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	e^{α}

$$m_{t_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$$

$$\begin{split} \text{Tabellenzahl:} \quad \mu_{t_0} &= 1 - \frac{\varrho^2}{2} \left(1 + \frac{1}{a^2} \right) + \ln \frac{1}{a}, \text{ wenn } a \geqq \varrho \\ \mu_{t_0} &= \frac{1 - \varrho^2}{2} + \ln \frac{1}{\varrho} \text{ (unabhängig von } a), \text{ wenn } a \leqq \varrho. \end{split}$$

Tabelle XI 2.

Tangentialmomente bei schneidenförmiger Belastung in ϱ .

<u> </u>												
α^{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{9}{\alpha}$
0,50	1,69315	1,68690	1,66815	1,63690	1,59315	1,53690	1,46815	1,38690	1,29315	1,18690	1,06815	0,50
51	67334	66729	64912	61884	57645	52195	45533	37661	28577	18282	06776	51
52	65393	64805	63044	60107	55996	50711	44251	36616	27807	17823	06665	52
54	61619	61065	59404	56636	52760	47777	41686	34489	26184	16771	06252	54
0,55	1,59784	1,59246	1,57631	1,54940	1,51172	1,46328	1,40408	1,33411	1,25337	1,16188	1,05961	0 55
56	57982	57458	55888	53270	49604	44892	39132	32326	24472	15571	05622	56
58	54473	53976	52486	50004	48056	43469	36596	30140	22692	14924	05239	57
59	52763	52279	50827	48407	45018	40661	35336	29043	21781	13552	04354	59
0,60	1,51083	1,50610	1,49194	1,46833	1,43527	1,39277	1,34083	1,27944	1,20860	1,12833	1,03860	0,60
61	49430	48969	47586	45281	42055	37906	32836	26844	19930	12094	03337	61
63	47804	47353	46003	43752	40601	36549	31597	25745	18992	11339	02785	62
64	44629	44199	42908	40757	37746	33874	29142	23550	17098	09785	01611	64
0,65	1,43078	1,42657	1,41395	1,39291	1,36345	1,32557	1,27927	1,22456	1,16143	1,08989	1,00993	0,65
66	41552	41140	39904	37844	34960	31253	·26721	21366	15186	08183	1,00356	66
68	40048	39644	36985	36417	32241	29961	25523	20278	14227	07368	99033	67
69	37106	36719	35556	33619	30906	27418	23155	18117	12303	05715	98351	69
0,70	1,35668	1,35287	1,34147	1,32247	1,29586	1,26165	1,21984	1,17043	1,11341	1,04879	0,97657	0,70
71	34249	33876	32757	30892	28282	24925	20822	15974	10379	04039	96952	71
72	31471	31112	30033	28235	25718	23697	19670	14910	09418	02346	95515	72
74	30111	29757	28697	26931	24458	21279	17393	12800	07501	01496	94784	74
0,75	1,28768	1,28421	1,27379	1,25643	1,23213	1,20088	1,16268	1,11754	1,06546	1,00643	0,94046	0,75
76	27444	27102	26078	24371	21981	18908	15153	10715	05593	0,99789	93302	76
78	26137	20801	23524	23114	20763	17741	14047	09681	04644	98934	92554	78
79	23572	23247	22271	20645	18368	15440	11862	07633	02754	97224	91043	79
0,80	1,22314	1,21994	1,21033	1,19432	1,17189	1,14307	1,10783	1,06619	1,01814	0,96369	0,90283	0,80
81	21072	20757	19810	18232	16024	13184	09713	05612	1,00879	95515	89520	81
83	18633	18327	17407	15875	13730	10972	07601	03617	99020	93811	87988	83
84	17435	17133	16227	14716	12600	09881	06557	02629	98096	92959	87217	84
0,85	1,16252	1,15954	1,15060	1,13570	1,11484	1,08802	1,05524	1,01649	0,97179	0,92113	0,86451	0,85
86	15082	14788	13906	12436	10378	07732	04498	1,00676	96266	91268	85681	86
88	12783	12497	11638	10206	08201	05623	02472	98749	94453	89584	84142	ŝá
89	11653	11361	10512	09098	07129	04573	01462	97786	93554	88736	83363	89
0,90	1.,10536	1,10257	1,09419	1,08022	1,06067	1,03553	1,00481	0,96849	0,92660	0,87911	0,82604	0,90
91	09431	09155	08327	06948	05016	02532	0,99497	95910	91770	87079	81836	91
93	07257	06988	06179	04831	02945	1.00519	97554	94977	90008	85426	80305	92
94	06188	05921	05122	03789	01924	0,99526	96595	93131	89134	84604	79541	94
0,95	1,05129	1,04866	1,04075	1,02758	1,00913	0,98542	0,95643	0,92218	0,88265	0,83786	0,78779	0,95
96	04082	03822	03040	01737	0,99912	97566	94699	91311	87402	82971	78019	96
98	02020	01765	1.01000	0.99724	97938	95641	92835	89518	85690	81353	76505	97
99	01005	1,00753	0,99995	98732	96964	94692	91914	88631	84843	80549	75751	éé
1,00	1,00000	0,99750	0,99000	0,97750	0,96000	0,93750	0,91000	0,87750	0,84000	0,79750	0,75000	1,00
α_{ϱ}	0,00	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	α
K			L				1	1	1	L		<u> </u>

$$m_{t_0} = \frac{P}{4\pi} \times \text{Tabellenzahl}$$

Tabellenzahl:
$$\mu_{t_0} = 1 - \frac{\varrho^2}{2} \left(1 + \frac{1}{a^2} \right) + ln \frac{1}{a}$$

Tabelle XII₁.

Potenzen von ξ .

ξ	ξ ²	ξ ³	ξ4	1/52	\$ ^{3/2}
0,00	0,0000	0,000000	0,00000000	8	0,000000
1 2 3 4	1 4 9 16	1 8 27 64	1 16 81 256	10000,000000 2500,000000 1111,111111 625,000000	1000 2828 5196 8000
0,05	0,0025	0,000125	0,00000625	400,000000	0,011180
6 7 8 9	36 49 64 81	216 343 512 729	1296 2401 4096 6561	277,77778 204,081633 156,250000 123,456790	14697 18520 22627 27000
0,10	0,0100	0,001000	0,00010000	100,000000	0,031623
11 12 13 14	121 144 169 196	1331 1728 2197 2744	14641 20736 28561 38416	82,644628 69,444444 59,171598 51,020408	36483 41569 46872 52383
0,15	0,0225	0,003375	0,00050625	44 , 444444	0,058095
16 17 18 19	256 289 324 361	4096 4913 5832 6859	65536 83521 104976 130321	39,062500 34,602076 30,864198 27,700831	64000 70093 76368 82819
0,20	0,0400	0,008000	0,00160000	25,000000	0,089443
21 22 23 24	441 484 529 576	9261 10648 12167 1 38 24	194481 234256 279841 331776	22,675737 20,661157 18,903592 17,361111	96234 103189 110304 117576
0,25	0,0625	0,015625	0,00390625	16,000000	0,125000
26 27 28 29	676 729 784 841	17576 19683 21952 24389	456976 531441 614656 707281	14,792899 13,717421 12,755102 11,890606	132575 140296 148162 156170
0,30	0,0900	0,027000	0,00810000	11,111111	0,164317
31 32 33 34	961 1024 1089 1156	29791 32768 35937 39304	923521 1048576 1185921 1336336	10,405827 9,765625 9,182736 8,650519	172601 181019 189571 198252
0,35	0,1225	0,042875	0,01500625	8,163265	0,207063
36 37 38 39	1296 1369 1444 1521	46656 50653 54872 59319	1679616 1874161 2085136 2313441	7,716049 7,304602 6,925208 6,574622	216000 225062 234248 243555
0,40	0,1600	0,064000	0,02560000	6,250000	0,252982
41 42 43 44	1681 1764 1849 1936	68921 74088 79507 85184	2825761 3111696 3418801 3748096	5,948840 5,668934 5,408329 5,165289	262527 272191 281970 291863
0,45	0,2025	0,091125	0,04100625	4,938272	0,301869
46 47 48 49	2116 2209 2304 2401	97336 103823 110592 117649	4477456 4879681 5308416 5764801	4,725898 4,526935 4,340278 4,164931	311987 322216 332554 343000
0,50	0,2500	0,125000	0,06250000	4,000000	0,353553
Ę	ξ²	ξ³	ξ4	1/52	\$ ³ /2

Tabelle XII 2.

Potenzen von ξ .

ξ	ξ ²	<u>ل</u> ع لاع	ξ4	1/52	ξ ³ /2
0,50	0,2500	0,125000	0,06250000	4,000000	0,35355
51 52 53 54	2601 2704 2809 2916	132651 140608 148877 157464	6765201 7311616 7890481 8503056	3,844675 3,698225 3,559986 3,429355	36421 37498 38585 39682
0,55	0,3025	0,166375	0,09150625	3,305785	0,40789
56 57 58 59	3136 3249 3364 3481	175616 185193 195112 205379	9834496 10556001 11316496 12117361	3,188776 3,077870 2,972652 2,872738	41907 43034 44172 45319
0,60	0,3600	0,216000	0,12960000	2,777778	0,46476
61 62 64 64	3721 3844 3969 4096	226981 238328 250047 262144	13845841 14776336 15752961 16777216	2,687450 2,601457 2,519526 2,441406	47643 48819 50005 51200
0,65	0,4225	0,274625	0,17850625	2,366864	0,52405
66 67 68 69	4356 4489 4624 4761	287496 300763 314432 328509	18974736 20151121 21381376 22667121	2,295684 2,227668 2,162630 2,100399	53619 54842 56074 57316
0,70	0,4900	0,343000	0,24010000	2,040816	0,58566
71 72 73 74	5041 5184 5329 5476	357911 373248 389017 405224	25411681 26873856 28398241 29986576	1,983733 1,929012 1,876525 1,826150	59826 61094 62371 63657
0,75	0,5625	0,421875	0,31640625	1,777778	0,64952
76 77 78 79	5776 5929 6084 6241	438976 456533 474552 493039	33362176 35153041 37015056 38950081	1,731302 1,686625 1,643655 1,602307	66255 67567 68888 70217
0,80	0,6400	0,512000	0,40960000	1,562500	0,71554
81 82 83 84	6561 6724 6889 7056	531441 551368 571787 592704	43046721 45212176 47458321 49787136	1,524158 1,487210 1,451589 1,417234	72900 74254 75617 76987
0,85	0,7225	0,614125	0,52200625	1,384083	0,78366
86 87 88 89	7396 7569 7744 7921	636056 658503 681472 704969	54700816 57289761 59969536 62742241	1 352082 1 ,321178 1 ,291322 1 ,262467	79753 81148 82551 83962
0,90	0,8100	0,729000	0,65610000	1,234568	0,85381
91 92 93 94	8281 8464 8649 8836	753571 778688 804357 830584	68574961 71639296 74805201 78074896	1,207584 1,181474 1,156203 1,131734	86808 88243 89686 91136
0,95	0,9025	0,857375	0,81450625	1,108033	0,92595
96 97 98 99	9216 9409 9604 9801	884736 912673 941192 970299	84934656 88529281 92236816 96059601	1,085069 1,062812 1,041233 1,020304	94060 95534 97015 98504
1,00	1,0000	1,000000	1,0000000	1,000000	1,00000
ξ	ξ²	ξ ³	ξ4	1/52	ξ ³ /2

Tabelle XIII 1.

 $f_1(\xi^4,\,\psi)$

3 C	0	π/16	π/8	<u>₹</u> π	π/4	<u>3</u> π	π/2	<u>5</u> T	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	¥ E
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	.0,00000	0,00000	0,00000	0,00000	0,00
1234	0000	0000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	72034
0,05	0,00001	0,00001	0,00001	0,00001	0,00000	0,00000	0,00000	0,00000	0,00000	0,00001	0,00001	0,05
6 7 89	1 2 4 7	1 2 4 6	1 2 4 6	1 2 3 6	1 2 3 5	1 1 2 3	0 0 0 0	1 1 2 3	1 2 3 5	1 2 4 6	1 2 4 7	6789
0,10	0,00010	0,00010	0,00009	0,00008	0,00007	0,00004	0,00000	0,00004	0,00007	0,00009	0,00010	0,10
11 12 13 14	15 21 29 38	14 20 28 38	14 19 26 36	12 17 24 32	10 15 20 27	6 8 11 15	0000	6 8 11 15	10 15 20 27	14 19 26 36	15 21 29 38	11 12 13 14
0,15	0,00051	0,00050	0,00047	0,00042	0,00036	0,00019	0,00000	0,00019	0,00036	0,00047	0,00051	0,15
16 17 18 19	66 84 105 130	64 82 103 128	61 77 97 120	55 69 87 108	46 59 74 92	25 32 40 50	0 0 0 0	25 32 40 50	46 59 74 92	61 77 97 120	66 84 105 130	16 17 18 19
0,20	0,00160	0,00157	0,00148	0,00133	0,00113	0,00061	0,00000	0,00062	0,00113	0,00148	0,00160	0,20
24 22 23 24	195 235 281 333	191 230 275 326	180 217 259 307	162 195 233 276	138 166 198 235	74 89 107 126	0 1 1	75 90 108 128	138, 166 198 235	179 216 258 306	194 234 279 331	21 22 23 24
0,25	0,00392	0,00385	0,00362	0,00325	0,00276	0,00148	0,00002	0,00151	0,00276	0,00360	0,00389	0,25
26 27 28 29	459 534 619 712	450 524 606 698	424 493 571 657	381 443 513 590	323 376 435 500	173 201 233 267	2 3 4 5	176 205 238 274	323 376 435 500	421 489 565 650	455 529 611 702	26 27 28 29
0,30	0,00817	0,00801	0,00753	0,00676	0,00573	0,00305	0,00007	0,00315	0,00573	0,00744	0,00804	0,30
31 32 33 34	932 1060 1200 1355	914 1039 1176 1327	859 977 1106 1247	771 876 991 1118	653 741 838 945	347 393 444 499	9 11 14 18	360 409 464 524	653 741 838 945	847 961 1086 1222	915 1038 1172 1319	31 32 33 34
0,35	0,01524	0,01493	0,01402	0,01256	0,01061	0,00558	0,00023	0,00590	0,01061	0,01371	0,01479	0,35
36 37 38 39	1708 1910 2130 2368	1674 1871 2086 2320	1572 1757 1958 2176	1407 1572 1750 1944	1187 1325 1474 1635	622 692 766 846	28 35 44 54	662 741 828 922	1 187 1325 1474 1635	1532 1707 1896 2100	1652 1840 2043 2261	36 37 38 39
0,40	0,02627	0,02573	0,02412	0,02153	0,01809	0,00932	0,00066	0,01024	0,01809	0,02319	0,02496	0,40
41 42 43 44	2908 3212 3540 3894	2847 3144 3465 3810	2668 2944 3243 3564	2380 2624 2887 3169	1996 2198 2415 2646	1023 1120 1222 1330	80 97 117 140	1136 1257 1387 1529	1996 2198 2415 2647	2555 2808 3077 3365	2748 3018 3306 3613	41 42 43 44
0,45	0,04276	0,04183	0,03910	0,03472	0,02894	0,01444	0,00168	0,01682	0,02895	0,03672	0,03939	0,45
46 47 48 49	4687 5130 5606 6118	4584 5016 5480 5978	4282 4681 5109 5568	3798 4146 4518 4916	3159 3442 3742 4062	1563 1688 1818 1953	200 238 281 331	1847 2025 2217 2424	3160 3443 3744 4064	3998 4344 4711 5098	4286 4653 5041 5451	46 47 48 49
0,50	0,06667	0,06512	0,06060	0,05340	0,04401	0,02093	0,00389	0,02646	0,04404	0,05507	0,05882	0,50
ξy	0	π/16	π/8	3 16 M	π/4	3 T	$\pi/2$	5 π	3/ N	$\frac{7}{8}\pi$	π	WE

Die Tabellenwerte rechts von der starken Linie sind negativ.

 $f_1(\xi^4, \psi)$

N.	0	π/16	π/8	³ / ₁₆ π	π/4	<u>3</u> T	π/2	5 π	$\frac{3}{4}\pi$	ξπ	π	ΨĘ
0;50	0,06667	0,06512	0,06060	0,05340	0,04401	0,02093	0,00389	0,02646	0,04404	0,05507	0,05882	0,50
51 52 53 54	7256 7888 8566 9293	7085 7700 8358 9063	6586 7148 7749 8390	5793 6274 6786 7331	4760 5140 5541 5964	2237 2384 2534 2686	456 532 619 718	2884 3140 3415 3708	4764 5145 5548 5974	5938 6392 6868 7368	6337 6813 7314 7837	51 52 53 54
0,55	0,10072	0,09818	0,09075	0,07908	0,06409	0,02840	0,00830	0,04024	0,06423	0,07891	0,08384	0,55
56 57 58 59	10907 11802 12761 13788	10625 11490 12415 13406	9806 10585 11415 12300	8521 9170 9858 10584	6877 7368 7882 8419	2993 3144 3293 3437	958 1102 1264 1447	4360 4720 5104 5513	6895 7393 7915 8462	8438 9009 9604 10224	8954 9548 10166 10808	56 57 58 59
0,60	0,14890	0,14466	0,13243	0,11352	0,08979	0,03575	0,01652	0,05949	0,09036	0,10868	0,11473	0,60
61 62 63 64	16071 17338 18699 20159	15601 16816 18118 19512	14247 15315 16453 17664	12163 13017 13917 14864	9563 10168 10794 11441	3703 3820 3923 4007	1881 2137 2422 2738	6413 6906 7430 7985	9636 10263 10918 11599	11536 12229 12946 13687	12162 12874 13609 14367	61 62 63 64
0,65	0,21730	0,21008	0,18953	0,15858	0,12106	0,04071	0,03088	0,08573	0,12309	0,14451	0,15147	0,65
66 67 68 69	23418 25237 27196 29311	22612 24334 26184 28173	20324 21783 23334 24984	16901 17993 191 3 5 20327	12788 13483 14189 14901	4110 4119 4093 4028	3475 3902 4372 4887	9195 9853 10546 11277	13047 13813 14606 15428	15239 16050 16883 17739	15949 16772 17615 18479	66 67 68 69
0,70	0,31596	0,30313	0,26739	0,21566	0,15615	0,03918	0,05451	0,12046	0,16277	0,18615	0,19361	0,70
71 72 73 74	34069 36750 39661 42830	32619 35106 37793 40698	28603 30585 32688 34921	22853 24184 25555 26961	16323 17020 17696 18340	3755 3534 3247 2886	6066 6736 7463 8250	12853 13699 14586 15512	17154 18058 18988 19944	19513 20430 21367 22321	20263 21182 22117 23069	71 72 73 74
0,75	0,46286	0,43844	0,37288	0,28395	0,18941	0,02444	0,09100	0,16479	0,20926	0,23293	0,24036	0,75
76 77 78 79	50065 54209 58768 63800	47257 50966 55003 59407	39794 42444 45239 48180	29845 31301 32745 34157	19485 19954 20329 20588	1912 1282 543 311	10016 10998 12050 13173	17486 18533 19620 20745	21932 22962 24014 25088	24282 25286 26304 27336	25016 26010 27015 28032	76 77 78 79
0,80	0,69377	0,64219	0,51261	0,35509	0,20706	0,01291	0,14367	0,21908	0,26182	0,28379	0,29058	0,80
81 82 83 84	75583 82522 90325 0,99152	69489 75271 81629 88632	54475 57802 61217 64678	36770 37898 38845 39550	20655 20404 19917 19157	2404 3658 5060 6616	15633 16972 18383 19864	23108 24343 25613 26914	27295 28426 29573 30 73 4	29434 30499 31572 32653	30093 31135 32184 33239	81 82 83 84
0,85	1,09208	0,96357	0,68122	0,39944	0,18086	0,08331	0,21414	0,28245	0,31909	0,33739	0,34297	0,85
86 87 88 89	20755 34136 49810 68401	1,04888 14305 24687 36079	71462 74573 77288 79375	39942 39448 38356 36548	16661 14843 12592 9874	10208 12248 14450 16811	23031 24711 26451 28246	29603 30987 32394 33821	33096 34292 35497 36709	34831 35927 37025 38125	35359 36423 37488 38553	86 87 88 89
0,90	1,90782	1,48470	0,80535	0,33900	0,06659	0,19324	0,30093	0,35265	0,37925	0,39225	0,39617	0,90
91 92 93 94	2,18217 52600 2,96909 3,56100	61718 75437 1,88773 2,00036	80381 78440 74158 66942	30291 25611 19771 12724	2927 1330 6105 11376	21983 24776 27690 30710	31985 33916 35880 37872	36724 38194 39672 41155	39145 40366 41587 42806	40324 41421 42515 43604	40679 41738 42794 43844	91 92 93 94
0,95	4,39101	2,06112	0,56237	0,04472	0,17101	0,33819	0,39883	0,42641	0,44022	0,44689	0,44889	0,95
96 97 98 99	5,63760 7,71771 11,88121 24,38366	2,01738 1,79183 1,29919 0,50415	41646 23091 952 23864	4914 15284 26455 38127	23223 29666 36342 43154	36997 40225 43482 46747	41907 43938 45968 47991	44126 45607 47081 48547	45234 46438 47635 48823	45767 46838 47901 48955	45927 46958 47981 48995	96 97 98 99
1,00	∞	0,50000	0,50000	0,50000	0,50000	0,50000	0,50000	0,50000	0,50000	0,50000	0,50000	1,00
Śψ	0	π/16	π/8	3/16 π	$\pi/4$	$\frac{3}{8}\pi$	π/2	<u>5</u> π	3 π	7 8 T	π	ψĘ

Die Tabellenwerte rechts von der starken Linie sind negativ.

$\frac{A}{2}f_1(\vartheta',\,\psi)$

(Für	h		4)
------	---	--	----

₹¥	0	π/ ₁₆	π/8	<u>3</u> π	π/4	<u>ક</u> π	π/2	5 π	<u>3</u> π	$\frac{7}{8}\pi$	π	₽¢
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1234	5 20 45 80	5 20 44 78	5 19 42 74	4 17 37 66	4 14 32 57	2 8 17 31	0000	2 8 17 31	4 14 32 57	5 19 42 74	5 20 45 80	1234
0,05	0,00125	0,00123	0,00115	0,00104	0,00088	0,00048	0,00000	0,00048	0,00088	0,00115	0,00125	0,05
6 7 8 9	179 244 318 402	176 239 312 394	166 225 294 371	149 203 264 334	127 172 225 284	69 93 122 154	0000	69 93 122 154	127 172 225 284	166 225 294 371	179 244 318 402	6789
0,10	0,00495	0,00485	0,00457	0,00411	0,00351	0,00189	0,00000	0,00189	0,00351	0,00457	0,00495	0,10
11 12 13 14	598 710 831 961	586 696 815 942	552 656 768 888	497 590 691 799	423 502 587 679	229 272 318 368	0000	229 272 318 368	423 502 587 679	552 656 768 888	598 710 831 961	72234 7234
0,15	0,01100	0,01078	0,01016	0,00914	0,00778	0,00421	0,00000	0,00421	0,00778	0,01016	0,01100	0,15
16 17 18 19	1247 1403 1568 1740	1223 1376 1537 1706	1152 1296 1448 1607	1037 1167 1303 1447	882 992 1108 1230	477 537 600 666	0000	477 537 600 666	882 992 1108 1230	1152 1296 1448 1607	1247 1403 1568 1740	16 17 18 19
0,20	0,01922	0,01885	0,01776	0,01597	0,01358	0,00732	0,00003	0,00738	0,01358	0,01772	0,01918	0,20
21 22 23 24	2111 2308 2512 2723	2070 2263 2464 2670	1950 2131 2319 2514	1754 1917 2085 2260	1490 1628 1772 1919	803 876 954 1032	4 6 7 9	810 886 963 1045	1490 1628 1772 1919	1944 2123 2310 2502	2104 2298 2498 2705	21 22 23 24
0,25	0,02942	0,02884	0,02716	0,02441	0,02072	0,01113	0,00011	0,01130	0,02072	0,02698	0,02918	0,25
26 27 28 29	3166 3397 3635 3879	3104 3331 3564 3802	2922 3134 3354 3578	2626 2817 3012 3213	2228 2390 2554 2723	1196 1281 1367 1454	14 18 22 27	1217 1306 1398 1493	2228 2390 2554 2723	2901 3111 3321 3539	3137 3361 3591 3824	26 27 28 29
0,30	0,04128	0,04047	0,03807	0,03417	0,02896	0,01543	0,00033	0,01590	0,02896	0,03760	0,04062	0,30
31 32 33 34	4384 4644 4910 5181	4297 4552 4813 5078	4041 4280 4523 4771	3626 3840 4056 4276	3071 3249 3430 3614	1633 1724 1815 1907	40 48 58 68	1690 1792 1897 2004	3071 3249 3430 3614	3984 4212 4442 4674	4304 4548 4795 5044	31 32 33 34
0,35	0,05457	0,05347	0,05023	0,04500	0,03800	0,01999	0,00081	0,02113	0,03800	0,04909	0,05295	0,35
36 37 38 39	5737 6021 6309 6601	5620 5898 6180 6465	5278 5537 5799 6064	4726 4954 5185 5418	3987 4176 4366 4557	2090 2181 2270 2359	95 111 129 149	2224 2337 2453 2570	3987 4176 4366 4557	5144 5381 5617 5853	5547 5799 6051 6302	36 37 38 39
0,40	0,06897	0,06753	0,06332	0,05652	0,04748	0,02446	0,00172	0,02689	0,04748	0,06088	0,06552	0,40
41 42 43 44	7195 7498 7802 8110	7045 7340 7637 7936	6602 6874 7148 7423	5888 6125 6362 6600	4940 5131 5322 5512	2531 2614 2693 2770	197 226 257 292	2810 2933 3058 3184	4940 5131 5322 5513	6322 6554 6783 7009	6800 7045 7287 7524	41 42 43 44
0,45	0,08420	0,08237	0,07699	0,06838	0,05699	0,02843	0,00331	0,03312	0,05701	0,07231	0,07757	0,45
46 47 48 49	8732 9047 9363 9681	8541 8846 9152 9460	7977 8255 8533 8812	7075 7311 7546 7779	5885 6069 6250 6428	2913 2977 3037 3091	373 419 469 524	3441 3571 3703 3835	5887 6071 6253 6431	7449 7661 7868 8068	7984 8205 8419 8625	46 47 48 49
0,50	0,10000	0,09768	0,09090	0,08010	0,06601	0,03140	0,00584	0,03968	0,06605	0,08261	0,08823	0,50
ξψ	0	π/16	π/8	<u>3</u> π	π/4	<u>≩</u> π	π/2	5 π	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ψĘ

Die Tabellenwerte rechts von der starken Linie sind negativ.

$\frac{A}{2}f_{\mathbf{1}}(\vartheta',\,\psi)$

(Für *h* == 4)

¥ S	0	π/16	π/8	³ / ₁₆ π	π/4	<u>ક</u> π	π/2	$\frac{5}{8}\pi$	$\frac{3}{4}\pi$	Zπ	π	ΨĘ
0,50	0,10000	0,09768	0,09090	0,08010	0,06601	0,03140	0,00584	0,03968	0,06605	0,08261	0,08823	0,50
51 52 53 54	10321 10642 10965 11288	10078 10388 10698 11008	9367 9643 9918 10292	8239 8464 8686 8904	6770 6934 7092 7244	3182 3216 3244 3263	648 717 792 872	4102 4236 4371 4505	6776 6941 7101 7256	8446 8623 8791 8950	9013 9192 9361 9519	51 52 53 54
0,55	0,11612	0,11319	0,10463	0,09117	0,07389	0,03274	0,00957	0,04639	0,07405	0,09098	0,09665	0,55
56 57 58 59	11937 12261 12586 12911	11628 11937 12246 12553	10731 10997 11259 11517	9325 9527 9723 9911	7526 7655 7774 7883	3275 3267 3248 3218	1048 1145 1247 1355	4772 4904 5034 5162	7546 7680 7806 7924	9235 9360 9473 9573	9799 9920 10027 10120	56 57 58 59
0,60	0,13236	0,12859	0,11772	0,10091	0,07981	0,03178	0,01468	0,05288	0,08032	0,09660	0,10198	0,60
61 62 63 64	13560 13883 14206 14529	13163 13465 13765 14063	12020 12263 12500 12730	10262 10423 10574 10712	8068 8142 8202 8246	3124 3059 2980 2888	1587 1711 1840 1973	5411 5530 5645 5755	8130 8218 8295 8360	9734 9793 9836 9864	10261 10309 10340 10354	61 62 63 64
0,65	0,14851	0,14358	0,12953	0,10838	0,08274	0,02782	0,02110	0,05859	0,08412	0,09876	0,10352	0,65
66 67 68 69	15171 15491 15810 16127	14649 14937 15221 15500	13167 13371 13565 13746	10949 11045 11124 11184	8285 8277 8248 8199	2662 2528 2380 2217	2251 2395 2541 2689	5957 6048 6131 6205	8452 8479 8491 8488	9873 9852 9815 9760	10332 10295 10240 10167	66 67 68 69
0,70	0,16443	0,15775	0,13915	0,11223	0,08126	0,02039	0,02837	0,06269	0,08471	0,09687	0,10076	0,70
71 72 73 74	16757 17071 17382 17692	16044 16307 16563 16811	14069 14207 14326 14425	11241 11234 11200 11137	8029 7906 7755 7576	1847 1642 1423 1192	2984 3129 3271 3408	6322 6363 6392 6408	8437 8388 8322 8238	9598 9490 9364 9220	9967 9839 9693 9529	71 72 73 74
0,75	0,18000	0,17050	0,14501	0,11043	0,07366	0,00950	0,03539	0,06409	0,08138	0,09058	0,09347	0,75
76 77 78 79	18306 18611 18913 19914	17280 17497 17701	14551 14572 14559 14510	10913 10746 10538	7125 6850 6542	699 440 175	3662 3776 3878	6394 6363 6314	8019 7883 7728	8879 8681 8465	9147 8930 8695 8442	76 77 78 79
0.80	0,19512	0.18062	0,14417	0,09987	0.05824	0.00363	0.04041	0.06162	0.07364	0.07982	0.08173	0.80
81 82 83 84	19809 20103 20395 20685	18211 18336 18431 18490	14277 14081 13822 13493	9637 9232 8771 8251	5413 4971 4497 3996	630 891 1143 1380	4097 4134 4151 4144	6056 5930 5783 5615	7154 6925 6677 6412	7714 7430 7129 6812	7887 7585 7267 6934	81 82 83 84
0,85	0,20972	0,18505	0,13082	0,07671	0,03473	0,01600	0,04112	0,05424	0,06128	0,06479	0,06586	0,85
86 87 88 89	21258 21541 21821 22100	18465 18356 18162 17858	12580 11976 11258 10417	7031 6335 5587 4796	2933 2384 1634 1296	1797 1967 2105 2206	4054 3968 3853 3707	5211 4976 4719 4438	5826 5507 5171 4817	6132 5769 5393 5003	6224 5849 5461 5059	86 87 88 89
0,90	0,22376	0,17413	0,09445	0,03976	0,00781	0,02266	0,03529	0,04136	0,04448	0,04600	0,04646	0,90
91 92 93 94	22649 22920 23189 23455	16785 15919 14743 13176	8343 7117 5792 4409	3144 2324 1544 838	<u>304</u> 121 477 749	2282 2248 2163 2023	3320 3077 2802 2495	3812 3466 3098 2710	4063 3663 3248 2820	4185 3758 3320 2872	4222 3787 3342 2888	91 92 93 94
0,95	0,23719	0,11133	0,03038	0,00242	0,00924	0,01827	0,02154	0,02303	0,02378	0,02414	0,02425	0,95
96 97 98 99	23979 24238 24495 24750	8581 5627 2678 512	1771 725 20 242	209 480 545 387	988 932 749 438	1574 1263 896 475	1782 1380 948 487	1877 1432 970 493	1924 1458 982 496	1947 1471 988 497	1953 1475 989 497	96 97 98 99
1,00	0,25000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
Ŝψ	0	π/16	π/8	3 π 16 π	π/4	<u></u> 3π	π/2	5 π	$\frac{3}{4}\pi$	Zπ	π	ψĘ

Die Tabellenwerte rechts von der starken Linie sind negativ.

$\frac{A}{2}f_1(\vartheta,\psi)$

(Für h = 4)

¥.	0	π/ ₁₆	π/8	³ π	π/4	ž π	π/2	5 N	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	Ψ.E
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1234	0000	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0000	0 0 0 0	0 0 0	0000	0 0 0 0	1 2 3 4
0,05	0,00000	0,00000	0,00000	0,00000	0,00000	,00000,0,	0,00000	0,00000	0,00000	0,00000	0,00000	0,05
67 89	0 1 2 3-	0 1 2 3	0 1 2 3	0 1 1 2	0 1 1 2	0 0 1 1	0 0 0 0	0 0 1	0 1 1 2	0 1 2 3	0 1 2 3	6 7 8 9
0,10	0,00005	0,00005	0,00004	0,00004	0,00003	0,00002	0,00000	0,00002	0,00003	0,00004	0,00005	0,10
11 12 13 14	7 10 14 19	7 10 14 19	6 9 13 18	6 8 12 16	5 7 10 13	3 4 5 7	0 0 0 0	3 4 5 7	5 7 10 13	6 9 13 18	7 10 14 19	71 12 13 14
0,15	0,00025	0,00024	0,00023	0,00021	0,00017	0,00009	0,00000	0,00009	0,00017	0,00023	0,00025	0,15
16 17 18 19	32 41 51 63	31 40 50 62	30 37 47 58	27 34 42 52	22 29 36 44	12 15 19 24	0 0 0	12 15 19 24	22 29 36 44	30 37 47 58	32 41 51 63	16 17 18 19
0,20	0,00077	0,00075	0,00071	0,00064	0,00054	0,00029	0,00000	0,00030	0,00054	0,00071	0,00077	0,20
21 22 23 24	93 112 133 157	91 109 130 154	86 103 123 145	77 93 110 130	66 79 94 111	35 42 50 59	0 0 0 1	36 43 51 60	66 79 94 111	86 103 122 144	93 111 132 156	21 22 23 24
0,25	0,00184	0,00180	0,00170	0,00153	0,00130	0,00070	0,00001	0,00071	0,00130	0,00169	0,00182	0,25
26 27 28 29	214 248 285 326	210 243 279 320	198 229 263 301	178 205 236 270	151 174 200 229	81 93 107 122	1 1 2 2	82 95 110 125	151 174 200 229	196 227 260 298	212 245 282 321	26 27 28 29
0,30	0,00372	0,00364	0,00343	0,00308	0,00261	0,00139	0,00003	0,00143	0,00261	0,00339	0,00366	0,30
31 32 33 34	421 476 535 599	413 466 524 587	388 438 493 551	348 393 442 494	295 333 373 418	157 176 198 221	4 5 6 8	162 184 207 232	295 333 373 418	383 431 484 540	414 466 522 583	31 32 33 34
0,35	0,00669	0,00655	0,00615	0,00551	0,00466	0,00245	0,00010	0,00259	0,00466	0,00602	0,00649	0,35
36 37 38 39	743 824 911 1004	729 807 892 984	684 758 838 923	612 678 749 824	517 572 631 693	271 299 328 359	12 15 19 23	288 320 354 391	517 572 631 693	667 737 811 890	719 794 874 959	36 37 38 39
0,40	0,01103	0,01081	0,01013	0,00904	0,00760	0,00391	0,00028	0,00430	0,00760	0,00974	0,01048	0,40
41 42 43 44	1210 1323 1443 1570	1184 1295 1412 1536	1110 1212 1322 1437	990 1081 1177 1278	830 905 984 1067	426 461 498 536	33 40 48 56	473 518 565 616	830 905 984 1067	1063 1156 1254 1357	1143 1243 1347 1457	41 42 43 44
0,45	0,01705	0,01668	0,01559	0,01384	0,01154	0,00576	0,00067	0,00671	0,01154	0,01464	0,01571	0,45
46 47 48 49	1848 1998 2157 2325	1807 1954 2109 2271	1688 1823 1966 2116	1497 1615 1739 1868	1246 1341 1440 1543	616 658 700 742	79 93 108 126	728 789 853 921	1246 1341 1441 1544	1576 1692 1813 1937	1690 1813 1940 2071	46 47 48 49
0,50	0,02500	0,02442	0,02273	0,02003	0,01650	0,00785	0,00146	0,00992	0,01651	0,02065	0,02206	0,50
ξψ	0	π/16	π/8	3 T	π/4	3 T	$\pi/2$	5 T	34 T	7 N	π	ψĘ

Die Tabellenwerte links von der starken Linie sind negativ.

$$\frac{A}{2}f_1(\vartheta, \psi)$$

(Für
$$h = 4$$
)

E Y	0	π/16	π/8	3π 16π	π/4	<u>}</u> π	π/2	<u>5</u> π	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0,50	0,02500	0,02442	0,02273	0,02003	0,01650	0,00785	0,00146	0,00992	0,01651	0,02065	0,02206	0,50
51 52 53 54	2684 2878 3080 3292	2621 2809 3005 3210	2436 2608 2786 2972	2143 2289 2440 2597	1761 1875 1992 2112	828 870 911 951	169 194 223 254	1067 1145 1228 1313	1762 1877 1995 2116	2197 2332 2469 2610	2344 2485 2630 2776	51 52 53 54
0,55	0,03513	0,03424	0,03165	0,02758	0,02235	0,00990	0,00289	0,01403	0,02240	0,02752	0,02924	0,55
56 57 58 59	3743 3984 4234 4494	3647 3878 4119 4370	3365 3573 3787 4009	2924 3095 3271 3450	2360 2487 2615 2744	1027 1061 1093 1120	329 372 419 472	1496 1593 1694 1797	2366 2496 2626 2758	2896 3041 3187 3333	3073 3223 3373 3523	56 57 58 59
0,60	0,04765	0,04629	0,04238	0,03633	0,02873	0,01144	0,00529	0,01904	0,02892	0,03478	0,03671	0,60
61 62 63 64	5045 5337 5639 5951	4898 5176 5463 5760	4473 4714 4961 5214	3819 4007 4197 4388	3002 3130 3255 3377	1163 1176 1183 1183	591 658 730 808	2013 2126 2241 2357	3025 3159 3292 3424	3622 3764 3904 4040	3818 3963 4104 4241	61 62 63 64
0,65	0,06275	0,06066	0,05473	0,04579	0,03496	0,01176	0,00892	0,02475	0,03554	0,04173	0,04374	0,65
66 67 68 69	6609 6954 7310 7678	6381 6705 7038 7380	5735 6002 6272 6545	4769 4958 5143 5325	3609 3715 3814 3903	1160 1135 1100 1055	981 1075 1175 1280	2595 2715 2835 2954	3682 3806 3926 4041	4300 4423 4538 4647	4501 4622 4735 4841	67 67 69
0,70	0,08057	0,07730	0,06818	0,05499	0,03982	0,00999	0,01390	0,03072	0,04151	0,04747	0,04937	0,70
71 72 73 74	8447 8849 9263 9688	8088 8454 8827 9206	7092 7365 7634 7899	5666 5824 5968 6099	4047 4098 4133 4149	931 851 758 653	1504 1622 1743 1866	3187 3299 3407 3509	4253 4348 4435 4511	4838 4920 4990 5049	5024 5101 5165 5218	71 72 73 74
0,75	0,10125	0,09591	0,08157	0,06211	0,04143	0,00535	0,01991	0,03605	0,04578	0,05095	0,05258	0,75
76 77 78 79	10574 11034 11507 11991	9981 10374 10770 11166	8404 8639 8858 9055	6303 6371 6411 6420	4115 4062 3980 3870	404 261 106 58	2115 2239 2359 2476	3693 3772 3842 3899	4632 4674 4702 4715	5128 5147 5150 5138	5283 5294 5290 5269	76 77 78 79
0,80	0,12488	0,11559	0,09227	0,06392	0,03727	0,00232	0,02586	0,03943	0,04713	0,05108	0,05230	0,80
81 82 83 84	12996 13517 14050 14595	11949 12329 12697 13047	9367 9468 9522 9521	6323 6208 6042 5822	3552 3342 3098 2820	413 599 787 974	2688 2780 2859 2924	3973 3987 3984 3962	4693 4656 4600 4524	5061 4996 4911 4807	5174 5100 5006 4893	81 82 83 84
0,85	0,15153	0,13370	0,09452	0,05542	0,02509	0,01156	0,02971	0,03919	0,04427	0,04681	0,04759	0,85
86 87 88 89	16304 16899 17505	13656 13894 14065 14145	9304 9064 8718 8251	5200 4795 4327 3799	2169 1804 1420 1026	1329 1489 1630 1748	2999 3004 2984 2936	3854 3766 3654 3516	4309 4168 4004 3816	4535 4367 4176 3963	4604 4427 4229 4008	86 87 88 89
0,90	0,18124	0,14105	0,07651	0,03221	0,00633	0,01836	0,02859	0,03350	0,03603	0,03726	0,03764	0,90
91 92 93 94	18756 19400 20056 20725	13900 13474 12752 11642	6909 6024 5009 3896	2604 1967 1336 741	252 102 412 662	1889 1903 1870 1787	2749 2605 2424 2204	3156 2933 2680 2395	3365 3100 2809 2491	3466 3181 2872 2538	3496 3205 2891 2552	91 92 93 94
0,95	0,21406	0,10048	0,02742	0,00218	0,00834	0,01649	0,01944	0,02079	0,02146	0,02179	0,02188	0,95
96 97 98 99	22099 22806 23525 24262	7908 5295 2572 502	1633 682 19 237	193 452 524 379	910 877 720 429	1450 1189 861 465	1643 1298 910 47 8	1730 1348 932 483	1773 1372 943 486	1794 1384 948 487	1800 1388 950 488	96 97 98 99
1,00	0,25000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
ξų	0	π/16	π/8	3 T	π/4	3 T	π/2	5 T	³ / ₄ π	Zπ	π	ψξ

Die Tabellenwerte links von der starken Linie sind negativ.

Tabelle XVI 1.

 $f_2(\xi^4,\,\psi)$

E	0	π/16	π/8	an T	π/4	³ / _δ π	π/2	5 T	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1234	0 0 0 0	0000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0000	0 0 0 0	1234
0,05	0,00000	0,00000	0,00000	0,00000	0,00000	0,00001	0,00001	0,00001	0,00000	0,00000	0,00000	0,05
6 7 89	0 0 0 0	0 1 1 1	1 1 2 3	1 1 2 4	1 2 3 5	1 2 4 6	1 2 4 7	1 2 4 6	1 2 3 5	1 1 2 3	0000	6 7 89
0,10	0,00000	0,00002	0,00004	0,00006	0,00007	0,00009	0,00010	0,00009	0,00007	0,00004	0,00000	0,10
11 12 13 14	0000	3 4 6 8	6 8 11 15	8 12 16 21	10 15 20 27	14 19 26 36	15 21 29 38	14 19 26 36	10 15 20 27	6 8 11 15	0000	11 12 13 14
0,15	0,00000	0,00010	0,00019	0,00028.	0,00036	0,00047	0,00051	0,00047	0,00036	0,00019	0,00000	0,15
16 17 18 19	0000	13 16 20 25	25 32 40 50	36 46 58 72	46 59 74 92	61 77 97 120	66 84 105 130	61 77 97 120	46 59 74 92	25 32 40 50	0 0 0	16 17 18 19
0,20	0,00000	0,00031	0,00061	0,00089	0,00113	0,00148	0,00160	0,00148	0,00113	0,00061	0,00000	0,20
21 22 23 24	0 0 0 0	38 46 55 65	75 90 108 128	108 131 156 185	138 166 199 236	180 217 259 307	195 234 280 332	179 216 258 306	137 165 197 234	74 89 107 126	0 0 0 0	21 22 23 24
0,25	0,00000	0,00077	0,00151	0,00219	0,00278	0,00362	0,00391	0,00360	0,00275	0,00148	0,00000	0,25
26 27 28 29	0000	90 105 121 140	176 205 238 274	256 298 345 398	325 379 438 505	424 493 571 657	457 531 615 707	421 489 565 650	321 373 431 495	173 201 233 267		26 27 28 29
0,30	0,00000	0,00161	0,00315	0,00456	0,00579	0,00753	0,00810	0,00744	0,00566	0,00305	0,00000	0,30
31 32 33 34	0 0 0 0	184 209 237 268	360 409 464 524	521 593 672 759	662 753 853 963	859 976 1106 1247	923 1049 1186 1336	847 961 1086 1222	645 731 825 927	347 393 444 499	000000	31 32 33 34
0,35	0,00000	0,00302	0,00590	0,00855	0,01084	0,01402	0,01500	0,01370	0,01039	0,00559	0,00000	0,35
36 37 38 39	0 0 0 0	339 380 424 473	663 743 830 924	960 1074 1200 1336	1216 1361 1519 1690	1572 1756 1957 2175	1679 1874 2084 2312	1532 1706 1895 2099	1160 1291 1432 1583	623 693 768 849		30 37 38 39
0,40	0,00000	0,00526	0,01028	0,01485	0,01877	0,02411	0,02558	0,02318	0,01746	0,00935	0,00000	0,40
41 42 43 44	0 0 0 0	583 646 714 788	1140 1262 1395 1539	1646 1821 2011 2217	2080 2299 2537 2795	2666 2942 3240 3560	2824 3109 3415 3743	2553 2805 3075 3362	1920 2106 2304 2514	1027 1125 1229 1340		41 42 43 43 44
0,45	0,00000	0,00868	0,01695	0,02441	0,03073	0,03905	0,04094	0,03667	0,02736	0,01457	0,00000	0,45
46 47 48 49	0 0 0 0	955 1050 1152 1263	1864 2047 2245 2460	2682 2943 3225 3529	3373 3697 4046 4422	4275 4672 5097 5553	4469 4868 5294 5746	4336 4700 5085	2972 3221 3483 3758	1580 1709 1845 1986		46 47 48 49
0,50	0,00000	0,01384	0,02692	0,03858	0,04827	0,06040	0,06226	0,05490	0,04046	0,02137	0,00000	0,50
ξψ	0	π/16	π/8	3€ T.	π/4	17 g	17/2	5 T	3 T	$\frac{7}{8}\pi$	π	ψĘ

Tabelle XVI 2.

 $f_2(\xi^4, \psi)$

E V	0	¶/16	¶/8	3 <u>4</u> € T	¶7/4	<u>3</u> π	π/2	5 T	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0.50	0,00000	0,01384	0,02692	0,03858	0,04827	0,06040	0,06226	0,05490	0,04046	0,02137	0,00000	0,50
51 52 53 54	0 0 0 0	1514 1655 1808 1974	2943 3215 3509 3828	4213 4596 5010 5456	5263 5732 6237 6779	6560 7115 7707 8338	6734 7273 7842 8442	5917 6365 6835 7326	4348 4663 4991 5333	2292 2454 2621 2795	0 0 0 0	51 52 53 54
0,55	0,00000	0,02154	0,04172	0,05938	0,07362	0,09010	0,09075	0,07839	0,05687	0,02974	0,00000	0,55
56 57 58 59	0000	2349 2561 2792 3043	4546 4950 5388 5864	6457 7018 7624 8279	7988 8661 9384 10160	9724 10483 11288 12143	9740 10440 11173 11942	8375 8931 9510 10109	6054 6432 6823 7224	3159 3349 3544 3744	0 0 0	56 57 58 59
0,60	0,00000	0,03316	0,06380	0,08986	0,10995	0,13049	0,12746	0,10729	0,07636	0,03948	0,00000	0,60
61 62 63 64	0000	3613 3938 4293 4682	6941 7552 8216 8940	9750 10577 11473 12442	11891 12854 13888 15000	14008 15023 16095 17227	13585 14461 15372 16318	11369 12029 12707 13402	8058 8489 8928 9375	4156 4367 4581 4798	0 0 0 0	61 62 63 64
0,65	0,00000	0,05108	0,09731	0,13493	0,16195	0,18422	0,17299	0,14114	0,09828	0,05017	0,00000	0,65
66 67 68 69	0 0 0 0	5577 6092 6660 7288	10594 11540 12576 13713	14632 15869 17212 18672	17478 18857 20339 21932	19680 21004 22395 23855	18315 19365 20447 21559	14841 15581 16334 17097	10287 10749 11215 11683	5237 5458 5679 5900	0 0 0 0	66 67 68 69
0,70	0,00000	0,07984	0,14965	0,20261	0,23643	0,25384	0,22701	0,17869	0,12151	0,06120	0,00000	0,70
71 72 73 74	00000	8757 9619 10581 11660	16343 17865 19549 21416	21991 23876 25932 28177	25480 27454 29572 31845	26983 28652 30391 32199	23870 25064 26279 27513	18647 19429 20213 20997	12619 13085 13547 14005	6339 6556 6770 6980	00000	71 72 73 74
0,75	0,00000	0,12874	0,23490	0,30628	0,34281	0,34072	0,28761	0,21778	0,14457	0,07187	0,00000	0,75
76 77 78 79	0000	14246 15801 17573 19601	25800 28379 31265 34503	33306 36234 39435 42936	36890 39680 42660 45836	36009 38006 40057 42157	30021 31287 32555 33819	22554 23321 24077 24820	14901 15337 15763 16177	7389 7587 7779 7965	0000	76 77 78 79
0,80	0,00000	0,21934	0,38144	0,46763	0,49214	0,44297	0,35075	0,25547	0,16578	0,08144	0,00000	0,80
81 82 83 84	0 0 0 0	24634 27777 31460 35806	42250 46888 52141 58100	50942 55503 60470 65866	52796 56582 60567 64741	46469 48662 50865 53064	36317 37539 38734 39898	26255 26941 27603 28238	16966 17339 17696 18036	8317 8482 8640 8789	0000	81 82 83 84
0,85	0,00000	0,40975	0,64869	0,71709	0,69089	0,55245	0,41022	0,28844	0,18357	0,08930	0,00000	0,85
86 87 88 89	0 0 0 0	47173 54671 63830 75129	72564 81309 0,91235 1,02462	78008 84759 91941 0,99510	73586 78203 82897 87618	57392 59488 61516 63459	42103 43133 44107 45020	29418 29959 30465 30934	18660 18944 19207 19450	9062 9186 9300 9405	0 0 0	86 87 88 89
0,90	0,00000	0,89209	1,15093	1,07394	0,92306	0,65297	0,45866	0,31365	0,19672	0,09500	0,00000	0,90
91 92 93 94	0 0 0 0	1,06935 29452 58241 1,95090	1,29176 44672 61402 78981	1,15487 23643 31678 39370	0,96891 1,01296 05437 09230	67014 68593 70018 71276	46642 47342 47965 48507	31755 32105 32414 32681	19873 20051 20208 20344	9587 9664 9731 9789	00000	91 92 93 94
0,95	0,00000	2,41825	1,96766	1,46471	1,12591	0,72355	0,48966	0,32906	0,20458	0,09838	0,00000	0,95
96 97 98 99	0 0 0	2,99434 3,66071 4,33880 4,87165	2,13831 29008 41021 48725	52720 57867 61694 64042	15444 17724 19379 20379	73245 73940 74436 74732	49341 49631 49837 49960	33089 33230 33330 33389	20550 20621 20671 20701	9877 9907 9929 9941	00000	96 97 98 99
1,00	0,00000	5,07650	2,51365	1,64828	1,20711	0,74830	0,50000	0,33409	0,20711	0,09946	0,00000	1,00
ξψ	0	TT/16	¶[/8	3 π	π/4	3 π	11/2	5π	³ / ₄ π	şπ	π	ψ [§]

Tabelle XVII 1.

$\frac{A}{2}f_{2}\left(\vartheta',\,\psi\right)$

(Für h = 4)

E	0	π/16	π/8	<u>3</u> π	$\pi/4$	ŝπ	π/2	5 T	$\frac{3}{4}\pi$	Zπ	π	ΨĘ
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1 2 3 4	0000	1 4 9 16	2 8 17 31	3 11 25 44	4 14 32 57	5 19 42 74	5 20 45 80	5 19 42 74	4 14 32 57	2 8 17 31	0 0 0 0	1234
0,05	` 0, 00000	0,00024	0,00048	0,00069	0,00088	0,00115	0,00125	0,00115	0,00088	0,00048	0,00000	0,05
6 7 89	000 00	35 48 62 78	69 93 122 154	100 136 1 77 2 23	127 172 225 284	166 225 294 371	179 244 318 402	166 225 294 37 1	127 172 225 284	69 93 122 154	0000	6 7 89
0,10	0,00000	0,00097	0,00189	0,00275	0.,00351	0,00457	0,00495	0,00457	0,00351	0,00189	0,00000	0,10
11 12 13 14	0 0 0	117 138 162 187	229 272 318 368	332 394 462 534	423 502 587 679	552 656 768 888	598 710 831 961	552 656 768 888	423 502 587 679	229 272 318 368	0 0 0	72 72 73 74
0,15	0,00000	0,00215	0,00421	0,00611	0,00778	0,01016	0,01100	0,01016	0,00778	0,00421	0,00000	0,15
16 17 18 19	0 0 0	243 274 306 339	477 537 600 666	693 780 871 967	882 992 1108 1230	1152 1296 1448 1607	1247 1403 1568 1740	1152 1296 1448 1607	882 992 1108 1230	477 537 600 666	0 0 0 0	16 17 18 1 9
0,20	0,00000	0,00376	0,00737	0,01069	0,01361	0,01776	0,01920	0,01772	0,01355	0,00732	0,00000	0,20
21 22 23 24	0 0 0	413 451 491 533	810 885 963 1045	1175 1285 1398 1516	1495 1634 1779 1928	1950 2131 2319 2514	2108 2303 2505 2714	1944 2123 2309 2501	1486 1623 1764 1910	804 877 953 1032	000000000000000000000000000000000000000	21 22 23 24
0,25	0,00000	0,00576	0,01130	0,01639	0,02084	0,02715	0,02930	0,02699	0,02060	0,01113	0,00000	0,25
26 27 28 29	0 0 0	621 666 714 762	1217 1306 1398 1493	1764 1894 2028 2165	2243 2407 2577 2751	2922 3135 3353 3578	3152 3379 3612 3851	2901 3109 3322 3539	2214 2372 2532 2696	1196 1281 1367 1455	000000000000000000000000000000000000000	26 27 28 29
0,30	0,00000	0,00812	0,01591	0,02306	0,02929	0;03807	0,04094	0,03760	0,02863	0,01544	0,00000	0,30
31 32 33 34		863 915 969 1024	1691 1793 1898 2005	2450 2598 2749 2904	3111 3298 3489 3683	4041 4279 4523 4770	4343 4595 4852 5111	3984 4211 4442 4674	3031 3202 3374 3547	1634 1725 1817 1909		31 32 33 34
0,35	0,00000	0,01080	0,02115	0,03062	0,03882	0,05022	0,05374	0,04908	0,03721	0,02001	0,00000	0,35
36 37 38 39	000000	1137 1196 1256 1317	2227 2341 2457 2576	3223 3387 3554 3724	4084 4290 4499 4711	5536 5797 .6062	5638 5906 6175 6445	5143 5379 5615 5851	3895 4068 4241 4413	2093 2185 2275 2365		36 37 38 39
0,40	0,00000	0,01379	0,02697	0,03897	0,04927	0,06328	0,06716	0,06085	0,04583	0,02454	0,00000	0,40
41 42 43 44		1443 1508 1574 1641	2821 2946 3074 3205	4073 4252 4433 4618	5146 5367 5592 5820	6597 6868 7141 7414	6987 7257 7527 7795	6318 6549 6777 7001	4751 4915 5077 5235	2541 2626 2709 2790		412 43 44
0,45	0,00000	0,01710	0,03337	0,04806	0,06050	0,07688	0,08061	0,07221	0,05388	0,02868	0,00000	0,45
46 47 48 49		1780 1852 1925 1999	3472 3610 3750 3893	4996 5190 5386 5585	6283 6519 6757 6998	7963 8238 8513 8787	8325 8585 8841 9092	7437 7646 7850 8047	5536 5679 5816 5946	2943 3014 3082 3145		46 47 48 49
0,50	0,00000	0,02075	0,04038	0,05787	0,07241	0,09059	0 ,093 39	0,08235	0,06069	0,03205	0,00000	0,50
ξψ	0	π/16	π/8	3 T	π/4	3 T	π/2	<u>5</u> π	3/4 Π	7 /8 π	π	ψĘ

$rac{A}{2}f_{2}\left(\vartheta^{\prime},\,\psi ight)$

(Für *h* == 4)

¥.	0	π/16	π/8	3 16 ∏	π/4	3 N	π/2	<u>5</u> π	3 <u>4</u> N	źπ	π	Ψξ
0,50	0,00000	0,02075	0,04038	0,05787	0,07241	0,09059	0,09339	0,08235	0,06069	0,03205	0,00000	0,50
51 52 53 54	0000	2153 2233 2314 2398	4187 4338 44 9 2 4649	5993 6201 6413 6627	7486 7733 7983 8234	9330 9599 9865 10128	9579 9812 10037 10254	8416 8587 8748 8899	6184 6291 6389 6478	3260 3310 3355 3 39 5	0 0 0 0	51 52 53 54
0,55	0,00000	0,02483	0,04810	0,06845	0,08487	0,10387	0,10462	0,09038	0,06556	0,03429	0,00000	0,55
56 57 58 59	0 0 0 0	2571 2661 2754 2849	4975 5143 5315 5491	7067 7292 7520 7752	8742 8998 9255 9514	10642 10891 11134 11370	10660 10846 11021 11182	9165 9279 9380 9466	6625 6683 6729 6765	3457 3479 3496 3506	0000	56 57 58 59
0,60	0,00000	0,02948	0,05671	ó,07988	0,09773	0,11599	0,11330	0,09537	0,06788	0,03509	0,00000	0,60
61 62 63 64	0 0 0 0	3049 3153 3262 3374	5857 6047 6242 6443	8227 8470 8716 8967	10033 10292 10552 10811	11819 12029 12228 12416	11462 11579 11679 11760	9592 9632 9654 9659	6799 6797 6783 6757	3506 3497 3481 3458	000000000000000000000000000000000000000	61 62 63 64
0,65	0,00000	0,03491	0,06650	0,09222	0,11068	0,12590	0,11823	0,09646	0,06717	0,03429	0,00000	0,65
66 67 68 69	00000	3613 3739 3872 4010	6863 7083 7311 7545	9479 9741 10005 10273	11323 11575 11823 12067	12749 12893 13018 13125	11865 11887 11886 11862	9614 9564 9495 9407	6664 6598 6519 6428	3393 3350 3301 3246	0 0 0 0	66 67 68 69
0,70	0.,00000	0,04155	0,07788	0,10544	0,12304	0,13210	0,11814	0,09299	0,06323	0,03185	0,00000	0,70
71 72 73 74	0 0 0 0	4307 4468 4637 4816	8039 8298 8568 8846	10817 11091 11365 11639	12533 12753 12960 13154	13272 13309 13319 13301	11741 11642 11517 11365	9172 9025 8859 8673	6207 6078 5937 5785	3118 3045 2967 2883	0 0 0 0	71 72 73 74
0,75	0,00000	0,05007	0,09135	0,11911	0,13332	0,13250	0,11185	0,08469	0,05622	0,02795	0,00000	0,75
76 77 78 79	0 0 0 0	5209 5425 5655 5903	9434 9743 10062 10391	12178 12440 12691 12930	13489 13623 13729 13804	13167 13048 12891 12696	10977 10741 10477 10185	8247 8006 7749 7475	5449 5265 5073 4872	2702 2605 2503 2399	0 0 0 0	76 77 78 79
0,80	0,00000	0,06169	0,10728	0,13152	0,13841	0,12459	0,09865	0,07185	0,04663	0,02291	0,00000	0,80
81 82 83 84	000000000000000000000000000000000000000	6456 6767 7103 7470	11073 11422 11773 12121	13351 13521 13654 13741	13837 13784 13676 13506	12179 11854 11485 11070	9518 9145 8746 8323	6881 6563 6233 5891	4446 4224 3996 3763	2180 2066 1951 1834	000000000000000000000000000000000000000	81 82 83 84
0,85	0,00000	0,07869	0,12458	0,13771	0,13268	0,10609	0,07878	0,05539	0,03525	0,01715	0,00000	0,85
86 87 88 89	0 0 0 0 0	8304 8780 9298 9859	12774 13057 13289 13446	13733 13611 13392 13059	12954 12559 12075 11498	10103 9553 8960 8328	7412 6927 6425 5908	5179 4811 4438 4060	3285 3042 2798 2552	1355 1234	0000	87 88 89
0,90	0,00000	0,10463	0,13499	0,12596	0,10826	0,07658	0,05379	0,03679	0,02307	0,01114	0,00000	0,90
91 92 93 94		11099 11746 12359 12850	13407 13127 12606 11789	11987 11219 10284 9180	10057 9191 8235 7195	6956 6224 5469 4695	4841 4296 3746 3195	3296 2913 2532 2153	2063 1819 1578 1340	995 877 760 645	000000000000000000000000000000000000000	92 92 93 94
0,95	0,00000	0,13063	0,10629	0,07912	0,06082	0;03908	0,02645	0,01777	0,01105	0,00531	0,00000	0,95
96 97 98 99		12736 11497 8945 4946	9095 7192 4969 2525	6496 4958 3334 1665	4910 3697 2461 1222	3115 2322 1535 759	2099 1559 1027 507	1407 1044 687 339	874 648 426 210	420 311 205 101	000000000000000000000000000000000000000	96 97 98 99
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,`00000	0,0000	0,00000	0,00000	0,00000	0,00000	1,00
ξψ	0	11/16	π/8	3 T	π/4	3 T	11/2	5 T	³ / ₄ π	ĮΖπ	π	ψĘ

$\frac{A}{2}f_{2}(\vartheta,\psi)$

(Für *h*=4)

E Y	0	π/16	π/8	<u>≩</u> π	π/4	žπ	π/2	5 A	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,0 0000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1234	0000	0000	0 0 0 0	0 0 0 0	0000	0000	0000	0000	0000	0 0 0 0	0000	1 2 3 4
0,05	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,05
6 7 8 9	0000	00000	0 0 1 1	0 0 1 2	0 1 1 2	0 1 2 3	0 1 2 3	0 1 2 3	0 1 1 2	0 0 1	0000	6 7 8 9
0,10	0,00000	0,00001	0,00002	0,00003	0,00003	0,00004	0,00005	0,00004	0,00003	0,00002	0,00000	0,10
11 12 13 14	0 0 0 0	1 2 3 4	3 4 5 7	4 6 8 10	5 7 10 13	6 9 13 18	7 10 14 19	6 9 13 18	5 7 10 13	3 4 5 7	0 0 0	71 12 13 14
0,15	0,00000	0,00005	0,00009	0,00014	0,00017	0,00023	0,00025	0,00023	0,00017	0,00009	0,00000	0,15
16. 17 18 19	0000	6 8 10 12	12 15 19 24	18 22 28 35	22 29 36 44	30 37 47 58	32 41 51 63	30 37 47 58	22 29 36 44	12 15 19 24	0000	16 17 18 19
0,20	0,00000	0,00015	0,00029	0,00043	0,00054	0,00071	0,00077	0,00071	0,00054	0,00029	0,00000	0,20
21 22 23 24	0 0 0 0	18 22 26 31	36 43 51 60	52 62 74 87	66 79 94 111	86 103 123 145	93 111 133 156	86 103 122 144	65 79 93 110	35 42 50 59	0000	21 22 23 24
0,25	0,00000	0,00036	0,00071	0,00103	0,00130	0,00170	0,00183	0,00169	0,00129	0,00070	0,00000	0,25
26 27 28 29	0000	42 49 56 64	82 95 110 125	119 138 159 182	152 176 202 231	198 229 263 301	213 246 283 324	196 227 260 298	150 173 199 227	81 93 107 122	0 0 0	26 27 28 29
0,30	0,00000	0,00073	0,00143	0,00207	0,00263	0,00343	0,00369	0,00339	0,00258	0,00139	0,00000	0,30
31 32 33 34	0 0 0	83 94 106 119	162 184 207 232	235 266 299 336	299 338 380 426	388 438 493 551	417 471 528 591	383 431 484 540	292 328 368 410	157 177 198 221	0000	31 32 33 34
0,35	0,00000	0,00133	0.,00259	0,00375	0,00476	0,00615	0,00658	0,00602	0,00456	0,00245	0,00000	0,35
36 37 38 39	0 0 0 0	148 164 181 201	289 321 355 392	418 463 513 566	529 587 650 716	684 758 837 922	731 809 892 980	667 737 811 890	505 557 613 671	271 299 329 360	000000000000000000000000000000000000000	36 37 38 39
0,40	0,00000	0,00221	0,00432	0,00624	0,00788	0,01013	0,01074	0,00974	0,00733	0,00393	0,00000	0,40
41 42 43 44	0 0 0 0	242 266 291 318	475 520 569 621	685 750 820 894	865 947 1034 1127	1109 1212 1320 1435	1175 1280 1392 1509	1062 1155 1253 1356	799 867 939 1014	428 463 501 540	0 0 0 0	41 42 43 44
0,45	0,00000	0,00346	0,00676	0,00973	0,01225	0,01557	0,01632	0,01462	0,01091	0,00581	0,00000	0,45
46 47 48 49	000000	377 409 443 480	735 797 864 935	1057 1146 1241 1341	1330 1440 1557 1680	1685 1820 1961 2110	1762 1896 2037 2183	1574 1689 1809 1932	1172 1255 1340 1428	623 666 710 755		46 47 48 49
0,50	0,00000	0,00519	0,01010	0,01447	0,01810	0,02265	0,02335	0,02059	0,01517	0,00801	0,00000	0,50
ξψ	0	π/16	π/8	13 π	π/4	3 T	$\pi/2$	5 π	3 π	<u>7</u> 8π	π	ψĘ

Sämtliche Tabellenwerte sind negativ.

Tabelle XVIII 2.

$rac{A}{2}f_{2}\left(\vartheta,\,\psi ight)$

(Für h = 4)

, ¢	0	π/16	π/8	3 16 T	π/4	3 π	^{.¶} ∕2	5 N	$\frac{3}{4}\pi$	Zπ	π	ΨĘ
0,50	0,00000	0,00519	0,01010	0,01447	0,01810	0,02265	0,02335	0,02059	0,01517	0,00801	0,00000	0,50
52 52 53 54	0000	560 604 650 699	1089 1173 1262 1356	1559 1677 1801 1933	1947 2091 2243 2401	2427 2596 2771 2953	2491 2653 2820 2990	2189 2322 2458 2595	1609 1701 1795 1889	848 895 942 990	0000	52 52 54
0,55	0,00000	0,00751	0,01455	0,02071	0,02567	0,03142	0,03165	0,02734	0,01983	0,01037	0,00000	0,55
56 57 58 59	0 0 0 0	806 864 926 992	1560 1671 1 7 88 1911	2216 2369 2530 2699	2741 2924 3114 3312	3337 3539 3745 3958	334 3 3524 3707 3893	2874 3015 3155 3295	2078 2171 2264 2355	1084 1130 1176 1220	0 0 0	56 57 58 59
0,60	0,00000	0,01061	0,02042	0,02876	0,03518	0,04176	0,04079	0,03433	0,02444	0,01263	0,00000	0,60
61 62 63 64	000000000000000000000000000000000000000	1134 1212 1295 1382	2179 2325 2478 2639	3061 3256 3460 3673	3733 3956 4188 4428	4398 4624 4853 5085	4265 4451 4635 4817	3569 3703 3832 3956	2530 2613 2692 2768	1305 1344 1381 1416	00000	61 62 63 64
0,65	0,00000	0,01475	0,02810	0,03896	0,04676	0,05319	0,04995	0,04075	0,02838	0,01449	0,00000	0,65
66 67 68 69	00000	1574 1679 1790 1909	2990 3180 3380 3592	4129 4373 4627 4891	4932 5196 5467 5745	5554 5788 6020 6249	5168 5336 5496 5647	4188 4293 4391 4479	2903 2962 3015 3060	1478 1504 1527 1546	000000	66 67 68 69
0,70	0,00000	0,02036	0,03816	0,05167	0,06029	0,06473	0,05789	0,04557	0,03099	0,01561	0,00000	0,70
71 72 73 74	00000	2171 2316 2471 2637	4052 4302 4566 4844	5453 5749 6056 6374	6318 6611 6907 7203	6690 6899 7098 7283	5919 6035 6137 6223	4624 4679 4721 4750	3129 3151 3164 3168	1572 1579 1581 1579	0 0 0 0	71 72 73 74
0,75	0,00000	0,02816	0,05138	0,06700	0,07499	0,07453	0,06291	0,04764	0,03162	0,01572	0,00000	0,75
76 77 78 79	000000000000000000000000000000000000000	3009 3216 3441 3684	5449 5777 6122 6485	7034 7375 7721 8070	7791 8077 8353 8615	7605 7736 7843 7923	6340 6368 6374 6356	4763 4747 4714 4665	3147 3122 3086 3040	1561 1544 1523 1497	0 0 0	76 77 78 79
0,80	0,00000	0,03948	0,06866	0,08417	0,08859	0,07973	0,06314	0,04598	0,02984	0,01466	0,00000	0,80
81 82 83 84	00000	4236 4550 4894 5271	7265 7680 8111 8552	8759 9091 9406 9695	9078 9268 9421 9530	7990 7971 7912 7811	6245 6149 6025 5873	4515 4413 4294 4157	2917 2840 2753 2655	1430 1389 1344 1294	0 0 0	81 82 83 84
0,85	0,00000	0,05685	0,09001	0,09950	0,09586	0,07665	0,05692	0,04002	0,02547	0,01239	0,00000	0,85
86 87 88 89	00000	6142 6645 7200 7810	9448 9883 10291 10651	10157 10302 10371 10344	9581 9506 9351 9108	7472 7231 6939 6597	5482 5243 4975 4680	3830 3642 3436 3216	2430 2303 2167 2022	1180 1117 1049 978	0 0 0 0	86 87 88 89
0,90	0,00000	0,08475	0,10934	0,10202	0,08769	0,06203	0,04357	0,02980	0,01869	0,00903	0,00000	0,90
91 92 93 94	0000	9191 9942 10689 11354	11103 11111 10903 10417	9926 9496 8895 8111	8328 7780 7122 6357	5760 5268 4730 4148	4009 3636 3240 2823	2729 2466 2190 1902	1708 1540 1365 1184	824 742 657 570	00000	91 92 93 94
0,95	0,00000	0,11789	0,09592	0,07140	0,05489	0,03527	0,02387	0,01604	0,00997	0,00480	0,00000	0,95
96 97 98 99	0 0 0	11738 10817 8591 4847	8382 6767 4772 2475	5987 4665 3202 1632	4525 3479 2364 1198	2871 2185 1474 744	1934 1467 987 497	1297 982 660 332	806 609 409 206	387 293 197 99	0 0 0 0	96 97 98 99
1,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	1,00
ξw	0	π/16	¶./8	3π 16π	π/4	<u>3</u> π	π/2	5/π	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π.	ψĘ

Sämtliche Tabellenwerte sind negativ.

Tabelle XIX 1.

 $g_1\,(\xi^4,\,\psi)$

¥.	0	π/16	π/8	<u>≩</u> π	π/4	<u>3</u> π	π/2	5 N	<u>3</u> 4 π	$\frac{7}{8}\pi$	π	¥
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1234	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	towt
0,05	0,00001	0,00001	0,00001	0,00001	0,00000	ó,00000	0,00000	0,00000	0,00000	0,00001	0,00001	0,05
6 7 8 9	1 2 4 7	1 2 4 6	1 2 4 6	1 2 3 5	1 2 3 5	1 1 2 3	0 0 0	1 1 2 3	1 2 3 5	1 2 4 6	1 2 4 7	67 89
0,10	0,00010	0,00010	0,00009	0,00008	0,00007	0,00004	0,00000	0,00004	0,00007	0,00009	0,00010	0,10
11 12 13 14	15 21 29 38	14 20 28 38	14 19 26 36	12 17 24 32	10 15 20 27	6 8 11 15	0 0 0	6 8 11 15	10 15 20 27	14 19 26 36	15 21 29 38	11 12 13 14
0,15	0,00051	0,00050	0,00047	0,00042	0,00036	0,00019	0,00000	0,00019	0,00036	0,00047	0,00051	0,15
16 17 18 19	66 84 105 130	64 82 103 128	61 77 97 120	55 69 87 108	46 59 74 92	25 32 40 50	0 0 0 0	25 32 40 50	46 59 74 92	61 77 97 120	66 84 105 130	16 17 18 19
0,20	0,00160	0,00157	0,00148	0,00133	0,00113	0,00061	0,00000	0,00062	0,00113	0,00148	0,00160	0,20
21 22 23 24	195 235 280 332	191 230 275 326	180 217 259 307	162 195 233 276	137 166 198 235	74 90 107 127	0 0 0 1	75 91 108 128	137 166 198 235	180 216 258 306	194 234 280 332	21 22 23 24
0,25	0,00391	0,00384	0,00361	0,00325	0,00276	0,00149	0,00001	0,00150	0,00276	0,00360	0,00390	0,25
26 27 28 29	458 533 617 710	449 523 605 696	423 492 569 655	380 442 512 589	323 376 435 500	174 202 234 269	1 1 2 3	176 205 237 272	323 376 435 500	422 490 566 652	456 530 613 705	26 27 28 29
0,30	0,00813	0,00798	0,00751	0,00675	0,00573	0,00308	0,00004	0,00313	0,00573	0,00746	0,00807	0,30
31 32 33 34	928 1054 1193 1345	910 1034 1170 1319	856 973 1101 1241	770 874 989 1115	653 741 839 945	350 397 449 505	4 5 7 9	356 405 459 518	653 741 839 945	850 965 1091 1228	920 1043 1179 1328	31 32 33 34
0,35	0,01512	0,01482	0,01394	0,01252	0,01061	0,00566	0,00011	0,00582	0,01061	0,01378	0,01490	0,35
36 37 38 39	1694 1892 2107 2341	1661 1855 2065 2294	1562 1744 1942 2156	1402 1565 1742 1934	1188 1325 1474 1636	633 705 782 866	14 18 22 27	653 730 81 3 904	1188 1325 1474 1636	1542 1719 1911 2119	1666 1857 2064 2287	36 37 38 39
0,40	0,02593	0,02542	0,02389	0,02141	0,01810	0,00956	0,00033	0,01002	0,01810	0,02342	0,02528	0,40
41 42 43 44	2867 3161 3479 3820	2809 3097 3408 3743	2639 2909 3200 3513	2365 2606 2865 3143	1998 2200 2417 2649	1052 1156 1266 1383	40 49 59 70	1109 1225 1349 1482	1998 2200 2417 2649	2583 2841 3118 3414	2786 3064 3362 3680	41 42 43 44
0,45	0,04187	0,04102	0,03849	0,03441	0,02898	0,01508	0,00084	0,01626	0,02898	0,03730	0,04019	0,45
46 47 48 49	4581 5003 5455 5938	4487 4899 5341 5813	4209 4594 5006 5446	3761 4102 4467 4855	3164 3448 3750 4072	1640 1780 1927 2083	100 119 141 166	1781 1948 2127 2318	3164 3448 3750 4072	4067 4426 4806 5211	4380 4765 5173 5605	46 47 48 49
0,50	0,06454	0,06317	0,05916	0,05270	0,04413	0,02246	0,00195	0,02522	0,04414	0,05639	0,06063	0,50
ξψ	0	π/16	π/8	3 € T	π/4	3 T	$\pi/2$	<u>ξ</u> π	3/4 π	<u>7</u> 8π	T	ψĘ

Die Tabellenwerte rechts von der starken Linie sind negativ.

 $g_1(\xi^4,\,\psi)$

E W	0	TT/16	¶/8	3 16 T	۳/4	<u>}</u> π	π/2	5 N	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0,50	0,06454	0,06317	0,05916	0,05270	0,04413	0,02246	0,00195	0,02522	0,04414	0,05639	0,06063	0,50
51 52 53 54	7005 7593 8219 8887	6856 7429 8041 8692	6416 6949 7516 8119	5710 6179 6676 7203	4776 5160 5567 5997	2418 2597 2784 2979	229 267 310 360	2742 2975 3225 3491	4777 5162 5569 5999	6092 6571 7076 7608	6546 7057 7595 8161	51 52 53 54
0,55	0,09597	0,09384	0,08760	0,07762	0,06451	0,03182	0,00417	0,03774	0,06454	0,08168	0,08756	0,55
56 57 58 59	10352 11156 12010 12917	10120 10903 11734 12616	9440 10161 10926 11737	8354 8980 9642 10340	6929 7433 7964 8521	3392 3610 3834 4064	481 554 636 729	4076 4398 4739 5102	6934 7440 7976 8531	8756 9373 10021 10698	9380 10035 10721 11438	56 57 58 59
0,60	0,13880	0,13553	0,12595	0,11077	0,09105	0,04299	0,00833	0,05487	0,09119	0,11407	0,12187	0,60
61 62 63 64	14903 15989 17142 18365	14546 15600 16717 17902	13503 14464 15480 16554	11854 12673 13535 14441	9718 10360 11030 11730	4540 4785 5033 5283	950 1080 1226 1388	5895 6329 6787 7272	9736 10383 11061 11770	12148 12921 13726 14564	12968 13781 14629 15510	61 62 63 64
0,65	0,19003	0,19157	10000	16303	12400	5797	1760	0,07786	17005	1.5437	10304	0,65
67 68 69	22504 24056 25705	20489 21900 23396 24982	20154 21490 22900	17442 18542 19694	14010 14830 15680	6031 6274 6512	1990 2235 2505	8901 9506 10142	13285 14093 14935 15811	16343 17284 18260 19270	18358 19377 20430	67 68 69
0,70	0,27457	0,26664	0,24388	0,20899	0,16558	0,06740	0,02803	0,10812	0,16724	0,20317	0,21519	0,70
71 72 73 74	29319 31298 33405 35648	28449 30342 32352 34486	25957 27612 29357 31196	22159 23474 24846 26275	17464 18396 19354 20335	6958 7163 7350 7517	3129 3487 3878 4305	11519 12261 13041 13860	17672 18656 19678 20737	21398 22515 23668 24857	22643 23802 24997 26226	71 72 73 74
0,75	0,38039	0,36755	0,33134	0,27761	0,21335	0,07661	0,04771	0,14719	0,21835	0,26081	0,27491	0,75
76 77 78 79	40590 43314 46228 49348	39167 41733 44466 47379	35175 37324 39586 41966	29304 30902 32555 34260	22354 23386 24426 25469	7777 7861 7908 7915	5277 5826 6420 7062	15618 16559 17544 18572	22970 24143 25355 26606	37341 28637 29968 31335	28790 30124 31492 32894	76 77 78 79
0,80	0,52696	0,50487	0,44467	0,36012	0,26508	0,07875	0,07755	0,19645	0,27896	0,32736	0,34331	0,80
81 82 83 84	56294 60170 64356 68890	53807 57355 61158 65233	47093 49848 52733 55748	37808 39641 41503 43381	27537 28545 29524 30461	7784 7636 7425 7146	8500 9300 10157 11072	20763 21927 23138 24396	29225 30592 31998 33442	34173 35643 37148 38686	35800 37303 38838 40405	81 82 83 84
0,85	0,73816	0,69608	0,58891	0,45264	0,31344	0,06793	0,12049	0,25702	0,34925	0,40258	0,42003	0,85
87 88 89	85073 91553 98731	79376 84834 90723	65534 69007 72550	47135 48972 50754 52449	32158 32888 33517 34026	5842 5232 4526	14192 15361 16597	27055 28455 29904 31400	38003 39598 41230	41862 43497 45165 46863	45292 46981 48700	87 88 89
0,90	1,06741	0,97078	0,76128	0,54027	0,34398	0,03719	0,17900	0,32944	0,42898	0,48592	0,50447	0,90
91 92 93 94	15757 26017 37854 51754	1,03929 11298 19176 27504	79690 83169 86478 89508	55450 56676 57661 58361	34612 34649 34490 34118	2807 1786 652 597	19272 20712 22221 23798	34535 36172 37856 39584	44601 46339 48111 49916	50349 52136 53951 55793	52221 54023 55850 57703	91 92 93 94
0,95	1,68473	1,36126	0,92128	0,58729	0,33517	0,01963	0,25444	0,41358	0,51754	0,57662	0,59580	0,95
96 97 98 99	1,89276 2,16536 2,55575 3,23411	44716 52689 59135 62896	94193 95548 96054 95596	58724 58309 57455 56146	32674 31579 30226 28612	3445 5045 6762 8594	27157 28936 30780 32688	43175 45035 46936 48878	53623 55523 57453 59411	59556 61476 63419 65386	61483 63408 65356 67325	96 97 98 99
1,00	∞	1,62944	0,94115	0,54374	0,26740	0,10539	0,34657	0,50859	0,61397	0,67375	0,69315	1,00
ξψ	0	π/16	π/8	aπ ³ π	π/4	3 T	$\pi/2$	<u>5</u> π	$\frac{3}{4}\pi$	Įξπ	π	ψĘ

Die Tabellenwerte rechts von der starken Linie sind negativ.

Tabelle XX 1.

 $g_{2}\left(\xi^{4},\,\psi
ight)$

¥.	0	π/16	π/8	âπ	π/4	ŝπ	π/2	5 T	$\frac{3}{4}\pi$	$\frac{7}{8}\pi$	π	ΨĘ
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
1 2 3 4	0 0 0 0	0000	0 0 0 0	0 0 0 0	0 0 0 0	0000	0000	0000	0000	0000	0 0 0 0	1 2 3 4
0,05	0,00000	0,00000	0,00000	0,00000	0,00000	0,00001	0,00001	0,00001	0,00000	0,00000	0,00000	0,05
67 89	0000	0 1 1 1	1123	1 1 2 4	1 2 3 5	1 2 4 6	1 2 4 7	1 2 4 3	1 2 3 5	1 1 2 3	0000	6 7 8 9
0,10	0,00000	0,00002	0,00004	0,00006	0,00007	0,00009	0,00010	0,00009	0,00007	0,00004	0,00000	0,10
11 12 13 14	0000	3 4 6 8	6 8 11 15	8 12 16 21	10 15 20 27	14 19 26 36	15 21 29 38	14 19 26 36	10 15 20 27	6 8 11 15	000000000000000000000000000000000000000	11 12 13 14
0,15	0, 0 0000	0,00010	0,00019	0,00028	0,00036	0,00047	0,00051	0,00047	0,00036	0,00019	0,00000	0,15
16 17 18 19	0000	13 16 21 25	25 32 40 50	36 46 58 72	46 59 74 92	61 77 97 120	66 84 105 130	61 77 97 120	46 59 74 92	25 32 40 50	000000000000000000000000000000000000000	16 17 18 19
0,20	0,00000	0,00031	0,00061	0,00089	0,00113	0,00148	0,00160	0,00148	0,00113	0,00061	0,00000	0,20
21 22 23 24	0 0 0 0	38 46 55 65	74 90 107 127	108 130 156 185	138 166 199 235	180 217 259 307	195 234 280 332	180 216 258 306	137 165 198 234	90 107 127	0000	21 22 23 24
0,25	0,00000	0,00077	0,00150	0,00218	0,00277	0,00362	0,00390	0,00361	0,00275	0,00149	0,00000	0,25
26 27 28 29	00000	90 104 120 139	176 204 236 272	255 297 343 395	324 377 436 502	423 492 570 655	457 531 614 707	422 490 567 652	322 374 433 498	174 202 234 269	0 0 0 0	26 27 28 29
0,30	0,00000	0,00159	0,00312	0,00453	0,00576	0,00751	0,00810	0,00746	0,00570	0,00308	0,00000	0,30
31 32 33 34	00000	182 207 234 264	357 405 459 518	517 588 665 751	657 747 846 954	856 973 1101 1241	924 1049 1186 1336	850 965 1091 1228	649 736 832 936	350 397 449 505	000000000000000000000000000000000000000	31 32 33 34
0,35	0,00000	0,00298	0,00583	0,00844	0,01073	0,01395	0,01501	0,01378	0,01050	0,00567	0,00000	0,35
36 37 38 39	0 0 0 0	333 373 416 462	653 730 814 905	946 1058 1179 1311	1201 1343 1497 1663	1562 1744 1942 2156	1679 1874 2085 2313	1541 1719 1911 2119	1174 1308 1453 1610	633 705 783 867		36 37 38 39
0,40	0,00000	0,00512	0,01004	0,01453	0,01843	0,02388	0,02560	0,02342	0,01778	0,00957	0,00000	0,40
41 42 43 44	000000000000000000000000000000000000000	568 626 690 759	1110 1225 1351 1486	1608 1775 1955 2149	2039 2249 2476 2721	2638 2909 3199 3512	2826 3111 3417 3746	2582 2840 3117 3412	1959 2153 2360 2582	1054 1158 1268 1386		41 42 43 44
0,45	0,00000	0,00833	0,01631	0,02358	0,02985	0,03847	0,04098	0,03728	0,02818	0,01512	0,00000	0,45
46 47 48 49		914 1000 1093 1192	1787 1956 2135 2330	2583 2826 3085 3363	3269 3573 3898 4247	4207 4591 5002 5441	4475 4876 5303 5759	4064 4423 4804 5207	3068 3334 3617 3915	1645 1787 1937 2095		46 47 48 48 49
0,50	0,0000	0,01299	0,02538	0,03661	0,04621	0,05909	0,06242	0,05634	0,04230	0,02261	0,00000	0,50
5 y	0	π/16	π/8	3 T	$\pi/4$	βπ	$\pi/2$	5π	3/4 π	$\frac{7}{8}\pi$	π	ψĘ

Tabelle XX 2.

 $g_{2}^{}\left(\xi^{4},\,\psi
ight)$

¥	0	π/16	π/8	3€ T	π/4	<u>ક</u> π	π/2	<u>5</u> ¶	3 <u>4</u> M	$\frac{7}{8}\pi$	π	ΨĘ
0,50	0,00000	0,01299	0,02538	0,03661	0,04621	0,05909	0,06242	0,05634	0,04230	0,02261	0,00000	0,50
51 52 53 54	0 0 0	1414 1536 1668 1810	2760 2997 3254 3529	3981 4323 4689 5079	5020 5447 5902 6388	6407 6939 7503 8102	6754 7299 7875 8482	6086 6562 7064 7593	4562 4914 5280 5666	2437 2620 2814 3016	0000	51 52 53 54
0,55	0,00000	0,01961	0,03823	0,05497	0,06907	0,08739	0,09125	0,08149	0,06070	0,03228	0,00000	0,55
56 57 58 59	0 0 0 0	2123 2297 2483 2682	4138 4473 4832 5217	5943 6420 6929 7472	7460 8049 8676 9344	9413 10128 10885 11686	9804 10517 11269 12058	8734 9346 9987 10659	6493 6934 7396 7876	3449 3679 3919 4168	0 0 0	56 57 58 59
0,60	0,00000	0,02896	0,05629	0,08052	0,10055	0,12532	0,12888	0,11359	0,08375	0,04426	0,00000	0,60
61 62 63 64	0000	3125 3370 3633 3916	6069 6539 7043 7583	8671 9332 10037 10790	10811 11615 12470 13379	13426 14370 15365 16415	13758 14670 15625 16622	12089 12850 13641 14463	8895 9432 9989 10566	4695 4971 5258 5553	0 0 0	67 62 63 64
0,65	0,00000	0,04219	0,08162	0,11593	0,14346	0,17519	0,17664	0,15317	0,11161	0,05857	0,00000	0,65
66 67 68 69	0000	4545 4896 5273 5680	8783 9448 10162 10928	12453 13368 14 3 47 15395	15374 16467 17627 18860	18683 19906 21191 22541	18752 19884 21063 22291	16200 17115 18061 19037	11775 12408 13058 13727	6170 6492 6822 7160	0 0 0	66 67 68 69
0,70	0,00000	0,06119	0,11752	0,16514	0,20172	0,23957	0,23564	0,20043	0,14413	0,07506	0,00000	0,70
71 72 73 74	0 0 0 0	6594 7107 7664 8269	12639 13596 14628 15742	17713 18994 20368 21839	21564 23044 24616 26287	25443 26999 28627 30330	24885 26253 27669 29133	21079 22144 23237 24358	15116 15835 16569 17318	7860 8220 8588 8962	0 0 0 0	71 72 73 74
0,75	0,00000	0,08926	0,16946	0,23417	0,28062	0,32108	0,30644	0,25507	0,18083	0,09342	0,00000	0,75
76 77 78 79	00000	9644 10429 11289 12235	18250 19665 21203 22877	25109 26926 28877 30975	29946 31947 34070 36324	33965 35899 37914 40008	32201 33804 35451 37142	26682 27881 29104 30350	18861 19651 20454 21268	9728 10120 10517 10917	0 0 0 0	76 77 78 79
0,80	0,00000	0,13278	0,24703	0,33229	0,38714	0,42183	0,38876	0,31617	0,22092	0,11323	0,00000	0,80
81 82 83 84	000000	14433 15717 17151 18759	26698 28883 31280 33918	35655 38266 41075 44100	41247 43931 46770 49770	44437 46772 49185 51674	40649 42462 44311 46194	32904 34210 35532 36869	22926 23767 24616 25473	11732 12145 12559 12977	0 0 0 0	81 82 83 84
0,85	0,00000	0,20573	0,36824	0,47353	0,52937	0,54237	0,48110	0,38220	0,26334	0,13396	0,00000	0,85
87 88 88 89	0000	22030 24979 27679 30810	40035 43588 47527 51899	50853 54615 58652 62977	56274 59783 63465 67318	59575 62341 65165	52025 54019 56034	39583 40957 42338 43725	27200 28070 28942 29815	13817 14239 14662 15084	0000	87 88 89
0,90	0,00000	0,34470	0,56754	0,67599	0,71339	0,68043	0,58065	0,45118	0,30689	0,15507	0,00000	0,90
91 92 93 94	000000000000000000000000000000000000000	38789 43935 50128 57653	62147 68127 74741 82019	72521 77751 83272 89071	75520 79853 84324 88917	70968 73932 76930 79953	60110 62164 64225 66289	46513 47909 49304 50697	31564 32436 33307 34175	15929 16351 16769 17186	0000	91 92 93 93
0,95	0,00000	0,66861	0,89973	0,95122	0,93613	0,82993	0,68352	0,52085	0,35039	0,17602	0,00000	0,95
96 97 98 99		78157 0,91925 1,08350 27133	0,98574 1,07760 17415 27375	1,01392 07833 14393 21012	0,98391 1,03225 08091 12962	86043 89094 92138 95168	70412 72463 74504 76531	53467 54842 56207 57562	35897 36750 37597 38438	18014 18425 18832 19235		96 97 98 99
1,00	10,00000	1,47262	1,37445	1,27627	1,17810	0,98175	0,78540	0,58905	0,39270	0,19635	0,00000	11,00
ξψ	0	π/16	¶/8	3π π	¶7/4	<u>3</u> π	1/2	- 5 π	$\frac{3}{4}\pi$	'gπ	π	ψ [§]

Tabelle XXI₁.

B

R	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	%
0,25	46,95750	46,83000	46,61750	46,32000	45,93750	45,47000	44,91750	44,28000	43,55750	42,7,5000	0,25
0,30 0,35 0,40 0,45	32,30305 23,46688 17,73187 13,79996	32,21222 23,39816 17,67750 13,75543	32,06083 23,28362 17,58687 13,68120	31,84888 23,12326 17,46000 13,57728	31,57638 22,91709 17,29687 13,44367	31,24333 22,66510 17,09750 13,28037	30,84972 22,36729 16,86187 13,08737	30,39555 22,02367 16,59000 12,86469	29,88083 21,63423 16,28187 12,61231	29,30555 21,19897 15,93750 12,33024	0,30 0,35 0,40 0,45
0,50	10,98750	10,95000	10,88750	10,80000	10,68750	10,55000	10,38750	10,20000	9,98750	9,75000	0,50
0,55 0,60 0,65 0,70	8,90659 7,32389 6,09217 5,11484	8,87459 7,29555 6,06692 5,09204	8,82047 7,24833 6,02483 5,05403	8,74512 7,18222 5,96591 5,00081	8,64824 7,09722 5,89016 4,93239	8,52983 6,99333 5,79757 4,84877	8,38989 6,87055 5,68815 4,74994	8,22842 6,72888 5,56189 4,63591	8,04543 6,56833 5,41880 4,50566	7,84090 6,38888 5,25887 4,36204	0,55 0,60 0,65 0,70
0,75	4,32638	4,30733	4,27083	4,22222	4,15972	4,08511	3,99305	3,88888	3,77083	3, 63888	0,75
0,80 0,85 0,90 0,95	3,68265 3,14628 2,69811 2,31982	3,66187 3,12816 2,68136 2,30301	3,62984 3,09836 2,65343 2,27655	3,58500 3,05688 2,61432 2,23977	3,52734 3,00324 2,56405 2,19234	3,45687 2,93744 2,50260 2,13437	3,37359 2,86019 2,42936 2,06586	3,27750 2,77217 2,34617 1,98681	3,16859 2,66947 2,25059 1,89722	3,04687 2,55622 2,14507 1,79709	0,80 0,85 0,90 0,95
)					

$$B = \frac{3-\varrho^2}{a^2} - (1+\varrho^2)$$

Tabelle XXII 1.

6 Q 0,45 0,25 0,50 0,05 0,10 0,15 0,20 0,30 0,35 0,40 ά α 5,93594 0,25 6,27344 6,11875 5,48594 5,21875 0,25 6,04844 6,40000 5,72500 6,56875 6,49844 4,02385 3,84375 0,30 0,35 0,40 0,45 4,32718 4,78219 4,75374 4,70635 4,63999 4,55468 4,45042 4,18499 0,30 3,14226 2,57007 2,17779 3,01467 2,47656 2,10763 3,67950 2,96383 47316 3,65936 2,94900 46208 3,62578 2,92445 ,57877 ,89000 41777 3,51833 2,84570 38454 3,44446 2,79156 34393 3,35716 2,72757 2,29594 3,25642 2,65375 32 0,40 44362 2,24055 1,84375 0,50 1,89718 0,50 2,12218 2,11375 2,02375 1,98718 1,94500 2,09968 2,08000 2,05468 68957 53166 40877 31126 1,78684 60666 46644 35517 0,55 0,60 0,65 0,70 1,86251 0,55 ,85265 1.84521 1,83008 1,81062 75874 72632 64849 0,60 0,65 0,70 66500 51129 38933 66000 50744 38640 65166 50104 38152 63999 49206 37469 62499 48053 36591 58499 44978 34249 55999 43056 32785 49999 38442 29273 ,21874 0,75 1,29093 1,28875 1,28510 1,27999 27344 ,26541 1,25593 ,24499 1,23260 0,75 1 1. 1 1 0,80 0,85 0,90 0,95 21041 14367 08774 19195 13106 08004 17719 12098 07388 0,80 20882 20619 20250 19775 18509 16822 15820 13502 08.246 1,03797 11486 07014 03230 0,85 14259 14079 08598 13827 12638 10802 06597 1,03686 0,95 1,04041 1 ,04010 ,03959 1,03889 1,03554 ,03403 03038 1 1

 $\left[\frac{3}{8}\left(\frac{1-\varrho^2}{a^2}+\varrho^2\right)+\frac{5}{8}\right]$ D = -

Sämtliche D-Werte sind negativ.

Tabelle XXIII 1. τ

	E.											
a	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	⅔	
0,25	5,04594	5,55875	5,47594	5,36000	5,21094	5,02875	4,81344	4,56500	4,28344	3,96875	0,25	
0,30 0,35 0,40 0,45	3,77969 2,67700 1,96133 1,47066	3,74374 2,64936 1,93900 1,45208	3,68385 2,60328 1,90195 1,42112	3,59999 2,53877 1,85000 1,37777	3,49218 2,45583 1,78320 1,32204	3,36042 2,35446 1,70156 1,25393	3,20468 2,23466 1,60507 1,17344	3,02499 2,09642 1,49375 1,08055	2,82135 1,93976 1,36757 0,97529	2,59375 1,76467 1,22656 0,85763	0,30 0,35 0,40 0,45	
0,50	1,11968	1,10375	1,07719	1,04000	0,99218	0,93375	0,86468	0,78500	0,69468	0,59375	0,50	
0,55 0,60 0,65 0,70	0,86001 66250 50879 38683	0,84265 65000 49744 37640	0,82271 62916 47854 35902	0,79008 59999 45206 33469	74812 56249 41803 30341	69684 51666 37644 26517	63624 46249 32728 21999	56632 39999 27056 16785	48707 32916 20627 10876	39849 24999 13442 427 3	0,55 0,60 0,65 0,70	
0,75	0,28843	0,27875	0,26260	0,23999	0,21094	0,17541	0,13343	0,08499	0,02960	0,03126	0,75	
0,80 0,85 0,90	20791 14117 9024	19882 13259 7708	18369 11829 -6348	16250 9827 4444	13525 7252 1996	10195 6106 996	6259 388 4532	1719 3902 8612	3428 8776 13244	9180 14198 18403	0,80 0,85 0,90	
0,95	0,03791	0,03010	0,01709	0,00111	0,02453	0,05314	0,08696	0,12597	0,17020	0,21962	0,95	
				$E = -\frac{a}{a}$	$\frac{1-\varrho}{2}$		$-\frac{0}{2}a^{2}$					

$$E = \frac{3}{8} \left(\frac{1 - \varrho^2}{a^2} - 1 \right) - \frac{5}{8} \varrho^2$$

Die Tabellenwerte rechts von der starken Linie sind negativ

D

Tabelle XXI 2.

]	5					
a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	Qα
0,25	42,75000	41,85750	40,88000	39,81750	38,67000	37,43750	36,12000	34,71750	33,23000	31,65750	0,25
0,30 0,35 0,40 0,45	29,30555 21,19897 15,93750 12,33024	28,66972 20,71790 15,55687 12,01848	27,97333 20,19102 15,14000 11,67703	27,21638 19,61831 14,68687 11,30589	26,39888 18,99978 14,19750 10,90506	25,52083 18,33545 13,67187 10,47453	24,58222 17,62530 13,11000 10,01432	23,58305 16,86933 12,51187 9,52441	22,52333 16,06755 11,87750 9,40481	21,40305 15,21994 11,20687 8,45552	0,30 0,35 0,40 0,45
0,50	9,75000	9,48750	9,20000	8,88750	8,55000	8,18750	7,80000	7,38750	6,95000	6,48750	0,50
0,55 0,60 0,65 0,70	7,84090 6,38888 5,25887 4,36204	7,61485 6,19055 5,08211 4,20259	7,36727 5,97333 4,88852 4,02775	7,09816 5,73722 4,67809 3,83770	6,80752 5,48222 4,45082 3,63244	6,49535 5,20833 4,20673 3,41198	6,16165 4,91555 3,94579 3,17632	5,80642 4,60388 3,66803 2,92545	5,42966 4,27333 3,3 7343 2,65938	5,03138 3,92250 3,06199 2,37811	0,55 0,60 0,65 0,70
0,75	3,63888	3,49305	3,33333	3,15972	2,97222	2,77083	2,55555	2,32638	2,08333	1,82638	0,75
0,80 0,85 0,90 0,95	3,04687 2,55622 2,14507 1,79709	2,91234 2,43106 2,02774 1,68638	2,76500 2,29397 1,89925 1,56520	2,60484 2,14497 1,75959 1, 433 45	2,43187 1,98404 1,60877 1,29116	2,24609 1,81120 1,44675 1,13833	2,04750 1,62643 1,27359 0,97495	1,83609 1,42974 1,08922 0,80104	1,61187 1,22114 0,89371 0,61659	1,37484 1,00061 0,68700 0,45159	0,80 0,85 0,90 0,95

Tabelle XXII 2.

D											
a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	Qα
0,25	5,21875	4,92344	4,60000	4,24844	3,86875	3,46095	3,02500	2,56094	2,06875	1,54843	0,25
0,30 0,35 0,40 0,45	3,84375 3,01467 2,47656 2,10763	3,64469 2,87364 37320 2,03010	3,42667 2,71918 2,26000 1,94518	3,18969 2,55129 2,13695 1,85288	2,93375 2,36997 2,00400 1,74069	2,65885 2,17521 1,86133 64612	2,36499 1,96704 70875 53166	2,05219 1,74543 54633 40982	1,72042 1,51038 37400 28060	1,36969 1,26191 19195 14399	0,30 0,35 0,40 0,45
0,50	1,84375	1,78468	1,72000	1,64968	1,57375	1,49218	1,40500	1,31218	1,21375	1,10968	0,50
0,55 0,60 0,65 0,70	64849 49999 38442 29273	60310 46499 35752 27223	55338 42666 32804 24979	49934 38499 29601 22540	44098 33999 26141 19905	37829 29166 22425 17075	31128 23999 18452 14051	23994 18499 14223 10830	16428 12666 09738 07415	08430 06499 04997 03805	0,55 0,60 0,65 0,70
0,75	1,21874	1,20381	1,18666	1,16718	1,14874	1,12760	1,10499	1,08093	1,05541	1,02843	0,75
0,80 0,85 0,90 0,95	15820 10802 06597 1,03038	14700 10046 06135 1,02825	13500 09218 05629 1,02592	12181 08318 05079 1,02339	10757 07220 04485 1,02066	09228 06301 03848 1,01772	07593 05185 03166 1,01458	05853 03997 02441 1,01124	04007 02736 01671 1,00769	02056 01404 00857 1,00395	0,80 0,85 0,90 0,95

Sämtliche D-Werte sind negativ.

Tabelle XXIII 2.

					1	£					
a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	$\frac{\varrho}{\alpha}$
0,25	3,96875	3,62094	3,24000	2,82594	2,37875	1,89845	1,38500	0,83844	0,25875	0,35407	0,25
0,30 0,35 0,40 0,45	2,59375 1,76467 1,22656 0,85763	2,34219 1,57114 1,07070 0,72760	2,06667 1,35918 0,90000 58518	1,76719 1,12879 0,71445 43038	1,44375 0,87997 51400 25049	1,09635 0,61261 29883 8362	0,72499 32704 6875 10834	32969 2293 17617 31268	8958 29962 43600 52940	53281 64059 71055 75851	0,30 0,35 0,40 0,45
0,50	0,59375	0,48218	0,36000	0,22718	0,08375	0,07032	0,23500	0,41032	0,59625	0,79282	0,50
0,55 0,60 0,65 0,70	39849 24999 13442 4273	30060 16249 5502 3027	19338 6666 3196 11021	7684 3751 12649 19710	4902 15001 22859 29095	18421 27084 33825 39175	32872 40001 45548 49949	48256 53751 58027 51420	64572 68334 71262 73585	81820 83751 85253 86445	0,55 0,60 0,65 0,70
0,75	0,03126	0,09869	0,17334	0,25532	0,34126	0,43490	0,53501	0,64157	0,75459	0,87407	0,75
0,80 0,85 0,90 0,95	9180 14198 18403 0,21962	15555 20204 24115 0,27425	22500 26782 30371 0,33408	30069 33932 37171 0,39911	38243 41780 44515 0,46934	47022 49949 52402 0,54478	56407 58815 60834 0,62542	66397 68253 69809 0,71126	76993 78264 79329 0,80231	88194 88846 89393 0,89855	0,80 0,85 0,90 0,95

Die Tabellenwerte rechts von der starken Linie sind negativ.

Tabelle XXI	V 1.	
-------------	------	--

F

and the second second second	and the second se		A REAL PROPERTY OF A READ REAL PROPERTY OF A REAL P	and the second sec	and a second sec	the second se	and the second se	and the state of t			
2	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	°∕α
0,25	6,10969	6,06375	5,98719	5,88000	5,74219	5,57375	5,37469	5,14500	4,88469	4,59375	0,25
0,30 0,35 0,40 0,45	4,28093 3,17825 2,46257 1,97190	4,24874 3,15436 2,38156 1,95708	4,19509 3,11453 2,41320 1,93237	4,11999 3,05877 2, 3 7000 1,89777	4,02343 2,98708 2,31445 1,85329	3,90541 2,89946 2,23406 1,79893	3,76593 2,79591 2,16632 1,73468	3,60499 2,67642 2,07375 1,66055	3,42259 2,54101 1,96882 1,57653	3,21874 2,38966 1,85156 1,48263	0,30 0,35 0,40 0,45
0,50	1,62095	1,60875	1,58856	1,56000	1,52343	1,47875	1,42593	1,36500	1,29593	1,21875	0,50
0,55 0,60 0,65 0,70	36125 16375 1,01003 0,88807	35102 15500 1,00244 0,88139	33396 1,14041 0,98978 87026	31008 1,12000 0,97206 85468	27937 1,09374 0,94928 83465	24184 1,06166 0,92143 81017	19749 1,02263 0,88853 78123	1,14632 0,97888 85055 74785	1,08832 0,93041 80752 71001	1,02350 0,87499 75942 66772	0,55 0,60 0,65 0,70
0,75	0,78968	0,78374	0,77384	0,75999	0,74218	0,72041	0,69468	0,66499	0,63134	0,59374	0,75
0,80 0,85 0,90 0,95	70915 64242 58649 0,53915	70382 63758 58208 0,53510	69493 62953 57473 0,52835	68249 61826 56444 0,51889	66649 60377 55121 0, 5 0673	64695 58607 53504 0,49186	62384 56513 51593 0,47429	59718 54098 49388 0,45403	56697 51361 46889 0,43106	53320 48302 44097 0,40538	0,80 0,85 0,90 0,95

$$F = \frac{1}{8} (1 - \varrho^2) \left(1 + \frac{3}{a^2} \right).$$

Tabelle XXV 1.

Gλ

(Für *h* = 4)

α^{ϱ}	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	Ŷα
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0000	0000	0 0 1 1	0 1 2 4	1 3 6 10	1 5 11 20	2 10 21 37	4 14 36 63	6 25 57 99	10 38 85 149	0,05 0,10 0,15 0,20
0,25	0,00000	0,00000	0,00002	0,00006	0,00015	0,00031	0,00057	0,00096	0,00152	0,00228	0,25
0,30 0,35 0,40 0,45	0 0 0 0	1 1 1	3 4 5 6	9 12 15 18	21 28 36 44	44 58 74 91	80 118 136 166	136 180 228 279	215 284 359 438	320 426 538 655	0,30 0,35 0,40 0,45
0,50	0,00000	0,00001	0,00007	0,00022	0,00053	0,00108	0,00197	0,00330	0,00518	0,00773	0,50
0,55 0,60 0,65 0,70	0000	2 2 2 2 2	8 9 10 11	25 29 32 35	61 69 77 84	125 142 157 170	228 257 284 307	380 429 472 509	595 669 734 786	886 990 1080 1151	0,55 0,60 0,65 0,70
0,75	0,00000	0,00002	0,00012	0,00037	0,00090	0,00180	0,00325	0,00535	0,00823	0,01196	0,75
0,80 0,85 0,90 0,95	0 0 0,00000	3 3 3 0,00003	13 13 13 0,00013	39 40 40 0,00039	93 95 95 0,00092	188 191 189 0,00181	337 339 333 0,00315	550 549 534 0,00497	840 832 794 0,00725	1209 1179 1106 0,00976	0,80 0,85 0,90 0,95

$$G = \frac{B}{4} + \frac{D}{h}$$

$$\lambda = (\alpha \varrho)^n.$$

Tabelle XXIV 2.

-	
-	
n	
.	

						and the second se					
a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	$\frac{\rho}{\alpha}$
0,25	4,59375	4,27219	3,92000	3,53719	3,12375	2,67969	2,20500	1,69969	1,16375	0,59719	0,25
0,30 0,35 0,40 0,45	3,21874 2,38966 1,85156 48263	2,99343 2,22239 1,72195 37885	2,74666 2,03918 1,58000 26518	2,47843 1,84004 42570 14163	2,18875 1,62497 25906 00819	1,87760 39397 1,08007 0,86487	1,54499 1,14704 0,88875 71166	1,19093 0,88417 68507 54857	0,81541 60538 46906 37560	418 43 31065 24070 19274	0,30 0,35 0,40 0,45
0,50	1,21875	1,13343	1,04000	0,93843	0,82875	0,71093	0,58500	0,45093	0,30875	0,15843	0,50
0,55 0,60 0,65 0,70	1,02350 0,87499 75942 66772	0,95185 81374 70626 62098	0,87733 74666 64804 56979	78809 67374 58479 51414	69598 59499 51641 45405	59704 51041 44299 38950	49128 42000 36452 32050	37869 32375 28098 24705	25928 22166 19238 16915	13255 11375 9872 8680	0,55 0,60 0,65 0,70
0,75	0,59374	0,55218	0,50666	0,45718	0,40374	0,34635	0,28499	0,21968	0,15041	0,07718	0,75
0,80 0,85 0,90 0,95	53320 48302 44097 0,40538	49587 44921 41010 0,37700	45500 41217 37629 0,34593	41056 37193 33955 0,31214	36257 32845 29986 0,27566	31103 28176 25723 0,23647	25593 23185 21167 0,19458	19728 17871 16316 0,14999	13507 12236 11171 0,10269	6931 6279 5733 0,05269	0,80 0,85 0,90 0,95

Tabelle XXV 2.

Gλ

(Für *h*=4)

-											
à	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	Ŷα
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	10 38 85 149	14 55 123 215	19 77 172 300	26 104 232 406	35 138 306 534	45 178 395 689	57 226 494 870	71 279 611 1080	87 343 758 1318	105 412 913 1585	0,05 0,10 0,15 0,20
0,25	0,00228	0,00331	0,00459	0,00620	0,00815	0,01049	0,01324	0,01638	0,01996	0,02376	0,25
0,30 0,35 0,40 0,45	320 426 538 655	464 613 772 934	644 850 1068 1293	871 1142 1434 1729	1041 1497 1875 2254	1463 1919 2392 2863	1843 2406 2988 3564	2276 2961 3652 4342	2764 3581 4410 5194	3306 4264 5232 6397	0,30 0,35 0,40 0,45
0,50	0,00773	0,01101	0,01515	0,02017	0;02616	0,03309	0,04093	0,04948	0,05881	0,06842	0,50
0,55 0,60 0,65 0,70	886 990 1080 1151	1258 1401 1521 1609	1724 1906 2059 2161	2286 2517 2694 2798	2947 3223 3423 3504	3748 4015 4211 4253	4545 4878 5047 5002	5472 5780 5884 5693	6401 6689 6664 6234	7332 7545 7313 6551	0,55 0,60 0,65 0,70
0,75	0,01196	0,01673	0,02201	0,02813	0,03460	0,04113	0,74699	0,05142	0,05334	0,05139	0,75
0,80 0,85 0,90	1209 1179 1106	1731 1588 1450	2163 2032 1792	2711 2473 2075	3254 2856 2330	3738 3089 2119	4075 3071 1625	4156 2655 555	3842 1659 1324	2954 1424 4296	0,80 0,85 0,90
0,95	0,00976	0,01222	0,01423	0,01492	0,01323	0,00777	0,00331	0,02232	0,05224	0,09141	0,95

Die Tabellenwerte rechts von der starken Linie sind negativ

$H\lambda$

(Für *h* = 4)

al	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	$\frac{\rho}{\alpha}$
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0 0 0 0	0000	0 0 1 1	0 1 2 4	1 3 6 10	1 5 12 21	2 10 21 38	4 16 35 64	6 25 57 101	10 39 86 151	0,05 0,10 0,15 0,20
0,25	0,00000	0,00000	0,00002	0,00006	0,00016	0,00032	0,00059	0,00102	0,00157	0,00237	0,25
0,30 0,35 0,40 0,45	0000	1 1 1 1	3 4 5 6	9 12 16 20	23 30 39 49	46 62 80 100	84 125 147 183	142 191 247 309	225 303 392 489	338 455 588 735	0,30 0,35 0,40 0,45
0,50	0,00000	0,00002	0,00007	0,00024	0,00059	0,00122	0,00223	0,00377	0,00595	0,00894	0,50
0,55 0,60 0,65 0,70	0 0 0	2 2 2 3	9 11 13 14	30 34 39 45	71 83 95 108	145 170 196 223	266 312 358 408	448 525 603 687	707 829 954 1082	1064 1243 1428 1635	0,55 0,60 0,65 0,70
0,75	0,00000	0,00003	0,00016	0,00050	0,00122	0,00251	0,00458	0,00760	0,01213	0,01814	0,75
0,80 0,85 0,90 0,95	0 0 0,00000	3 4 0,00005	18 19 22 0,00023	56 62 67 0,00073	136 149 163 0,00177	278 304 334 0,00360	509 559 609 0,00658	855 936 1021 0,01101	1346 1475 1602 0,01732	2009 2197 2387 0,02566	0,80 0,85 0,90 0,95

$$H = -\frac{B}{4} + \frac{E}{h}$$

 $\lambda = (\alpha \varrho)^h$.

Sämtliche Tabellenwerte sind negativ.

Tabelle XXVII 1.

Kλ

(Für h = 4)

α^{ϱ}	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	² α
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	0000	0 0 0 0	0 0 1 1	0 1 2 4	1 3 6 10	1 5 12 20	2 10 21 38	4 14 36 63	6 25 57 100	10 38 86 151	0,05 0,10 0,15 0,20
0,25	0,00000	0,00000	0,00002	0,00006	0,00015	0,00032	0,00058	0,00098	0,00155	0,00233	0,25
0,30 0,35 0,40 0,45	0 0 0 0	1 1 1	3 4 5 6	9 12 16 19	22 29 37 46	45 60 77 95	82 121 141 175	139 186 238 294	220 293 376 464	330 441 563 695	0,30 0,35 0,40 0,45
0,50	0,00000	0,00001	0,00007	0,00023	0,000,56	0,00115	0,00210	0,00353	0,00550	0,00833	0,50
0,55 0,60 0,65 0,70	0 0 0 0	2 2 2 3	9 10 11 13	27 31 36 40	66 76 86 96	135 156 176 196	247 284 320 357	414 477 538 598	650 749 844 934	975 1117 1254 1385	0,55 0,60 0,65 0,70
0,75	0,00000	0,00003	0,00014	0,00044	0,00106	0,00216	0,00392	0,00653	0,01018	0,01505	0,75
0,80 0,85 0,90 0,95	0 0 0,00000	3 3 3 0,00004	15 17 17 0,00018	48 51 54 0,00056	114 122 129 0,00134	233 249 261 0,00271	423 449 471 0,00486	703 743 777 0,00799	1093 1153 1198 0,01228	1609 1689 1747 0,01771	0,80 0,85 0,90 0,95

$$K = -\frac{B}{4} + \frac{F}{h}$$

$$\lambda = (\alpha \varrho)^h$$

Sämtliche Tabellenwerte sind negativ.

Tabelle XXVI 2.

Hλ

(Für *h* = 4)

and the second s	and the second se		and the second se		A set of the set of th	and the second se	and the second se	and the second		and the second se	
a	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	$\frac{\rho}{\alpha}$
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	10 39 86 151	14 56 125 220	19 78 174 308	26 105 235 416	35 139 311 548	45 179 401 709	57 227 502 897	71 281 622 1116	87 346 773 1366	105 416 934 1647	0,05 0,10 0,15 0,20
0,25	0,00237	0,00342	0,00476	0,00644	0,00851	0,01097	0,01389	0,01726	0,02112	0,02549	0,25
0,30 0,35 0,40 0,45	338 455 588 735	488 657 847 1056	677 916 1181 1473	919 1237 1596 1990	1213 1632 2103 2622	1560 2103 2708 3369	1979 2658 3419 4253	2457 3298 4225 5264	3004 4026 5170 6411	3618 4845 6212 7722	0,30 0,35 0,40 0,45
0,50	0,00894	0,01287	0,01790	0,02414	0,03175	0,04081	0,05142	0,06351	0,07636	0,09263	0,50
0,55 0,60 0,65 0,70	1064 1243 1428 1635	1533 1787 2052 2324	2130 2476 2846 3219	2867 3339 3827 4322	3765 4381 5013 5649	4883 5617 6417 7217	6081 7054 8045 9032	7506 8692 9896 11089	9117 10537 11963 13353	10865 12562 14234 15833	0,55 0,60 0,65 0,70
0,75	0,01814	0,02626	0,03595	0,04802	0,06287	0,08023	0,10013	0,12255	0,14727	0,17397	0,75
0,80 0,85 0,90 0,95	2009 2197 2387 0,02566	2876 3143 3405 0,03642	3968 4331 4683 0,05012	5311 5787 6240 0,06664	6915 7525 8077 0,08608	8801 9540 10227 0,10844	10953 11837 12644 0,13347	13363 14389 15303 0,16074	15986 17156 18155 0,18955	18822 20079 21119 0,22342	0,80 0,85 0,90 0,95

Sämtliche I	Fabellenwerte	sind	l negativ	7 .
-------------	----------------------	------	-----------	------------

Tabelle XXVII 2.

Kλ

(Für h = 4)

Free contractions of the local division of t											
à	0,50	0 55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	Ŷα
0,00	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00
0,05 0,10 0,15 0,20	10 38 86 151	14 55 124 218	19 78 173 304	26 105 234 411	35 138 308 542	45 179 398 699	57 226 503 885	71 280 616 1097	87 344 765 1342	105 414 924 1612	0,05 0,10 0,15 0,20
0,25	0,00233	0,00336	0,00468	0,00632	0,00833	0,01074	0,01357	0,01682	0,02054	0,02477	0,25
0,30 0,35 0,40 0,45	336 441 563 695	476 635 810 995	662 883 11 13	894 1190 1515 1860	1177 1565 1987 2435	1514 2010 2549 3116	1911 2483 3204 3908	2367 3129 3876 4803	2884 3804 4790 5802	3462 4555 5729 6926	0,30 0,35 0,40 0,45
0,50	0,00833	0,01194	0,01652	0,02216	0,02895	0,03695	0.04618	0,05649	0,06808	0,08052	0,50
0,55 0,60 0,65 0,70	975 1117 1254 1385	1395 1594 1787 1966	1924 2191 2452 2691	2577 2927 3261 3560	3357 3802 4215 4577	4231 4816 5314 5735	5313 5966 6546 7017	6477 7236 7891 8391	7759 8613 9314 9793	9099 10051 10775 11202	0,55 0,60 0,65 0,70
0,75	0,01505	0,02150	0,02897	0,03816	0,04874	0,06068	0,07357	0,08698	0,10030	0,11269	0,75
0,80 0,85 0,90 0,95	1609 1689 1747 0,01771	2264 2365 2427 0,02432	3065 3182 3237 0,03217	4011 4130 4157 0,04077	5085 5187 5408 0,04965	6269 6315 6173 0,05810	7511 7454 7134 0,06508	8759 8405 7929 0,06919	9922 9407 8416 0.06865	10889 9967 8411 0,06601	0,80 0,85 0,90 0,95

Sämtliche Tabellenwerte sind negativ

Literatur.

- A. Föppl, Die Biegung einer kreisförmigen Platte. Sitzungsberichte der mathematisch-physikalischen Klasse der K. B. Akademie der Wissenschaften zu München. Jahrgang 1912 S. 155.
- Dr.-Ing. A. Föppl und Dr. Ludwig Föppl, Drang und Zwang. Eine höhere Festigkeitslehre für Ingenieure, I. Bd. 2. Auflage 1924. Verlag von R. Oldenbourg, München u. Berlin.
- 3. Ing. Dr. techn. Ernst Melan, Die Durchbiegung einer exzentrisch durch eine Einzellast belasteten Kreisplatte. "Der Eisenbau" 1920 Nr. 10 S. 190.
- 4. Dr. Ing. H. Marcus, Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. Berlin 1924, Verlag von Julius Springer.
- 5. Dr.-Ing. H. Marcus, Zwei Beispiele für die Verwendung trägerloser Decken. "Beton u. Eisen" 1926 Heft 13 S. 221.
- 6. Dr.-Ing. H. Marcus, Die wirksame Stützfläche der trägerlosen Pilzdecken. "Beton u. Eisen" 1926 Heft 19-20 S. 352.
- 7. Dr.-Ing. Lewe, Pilzdecken und andere trägerlose Eisenbetonplatten. Berlin 1926, Verlag von Wilhem Ernst & Sohn.
- 8. Dr.-Ing. A. Nádai, Die elastischen Platten. Berlin 1925, Verlag von Julius Springer.
- 9. K. Knopp, Theorie und Anwendung der unendlichen Reihen. 2. Aufl. Berlin 1924, Verlag von Julius Springer.
- 10. Zum Aufsuchen der natürlichen Logarithmen wurde verwendet:
 - Zacharias Dase, Tafel der natürlichen Logarithmen der Zahlen. In der Form und Ausdehnung wie die gewöhnlichen oder Briggsschen Logarithmen. Annalen der k. u. k. Sternwarte in Wien 34. Teil, Neue Folge 14. Bd., Wien 1851.
- 11. Dr.-Ing. Wilhelm Flügge, Die strenge Berechnung von Kreisplatten unter Einzellasten mit Hilfe von krummlinigen Koordinaten und deren Anwendung auf die Pilzdecke. Berlin 1928, Verlag von Julius Springer. (Unmittelbar vor Abschluß dieser Arbeit erschienen.)

Lebenslauf.

Ich wurde am 14. Mai 1898 in Budapest (Ungarn) geboren als Sohn des Sektionsrats im königl. ungarischen Handelsministerium Wilhelm Hajnal. Nach dem frühen Tode meiner Eltern bin ich vom 12. bis zum 19. Lebensjahre von meinem Großvater mütterlicherseits, Emanuel Kónyi, dem Begründer und ersten Chef des Stenographenbüros im ungarischen Parlament, erzogen worden, dessen Namen ich später angenommen habe. 1908-1916 habe ich das Staats-Obergymnasium in Budapest I. Bezirk besucht und daselbst 1916 die Maturitätsprüfung mit Auszeichnung bestanden. In demselben Jahre habe ich an dem unter den Abiturienten Ungarns alljährlich veranstalteten Wettbewerb den Roland-Eötyös-Preis für Mathematik erhalten. 1916-1918 studierte ich 4 Semester an der Technischen Hochschule Budapest und bestand die erste Vordiplomprüfung für Bauingenieure mit Auszeichnung. 1919-1921 war ich Studierender der Eidgenössischen Technischen Hochschule in Zürich, deren Diplom ich mir im Jahre 1921 erworben habe. Am 1. Dezember 1921 bin ich in das Konstruktionsbüro der Brückenbauabteilung der Gutehoffnungshütte in Sterkrade (Rhld.) eingetreten, wo ich bis zum Oktober 1923 als Konstrukteur und Statiker tätig war. Die durch die Besetzung des Ruhrgebietes entstandenen traurigen Verhältnisse haben mich bewogen, meine Stelle aufzugeben und nach Wien zu übersiedeln, wo ich 3 Monate als Ingenieur der Wiener Baugesellschaft verbracht habe. Nach kurzer Tätigkeit im Ingenieurbüro Gut & Gergely in Budapest bin ich dann zu Ostern 1924 in das Ingenieurbüro des Herrn Prof. Dr.-Ing. A. Kleinlogel, Darmstadt eingetreten, welches ich nunmehr seit 4 Jahren als Oberingenieur leite. Während dieser Zeit habe ich reichlich Gelegenheit gehabt, mich fachlich, und zwar sowohl theoretisch als praktisch weiterzubilden. Außer den zahlreichen Bauten, die unter meiner Leitung entworfen und berechnet worden sind, habe ich hauptsächlich durch die ausgedehnte Gutachtertätigkeit des Herrn Prof. Kleinlogel viel Anregung empfangen, wozu auch meine Mitarbeit bei der Schriftleitung der internationalen Fachzeitschrift "Beton u. Eisen" viel beigetragen hat. In dieser Zeitschrift sind in den letzten Jahren mehrere Aufsätze von mir erschienen, ferner zahlreiche Besprechungen von Neuerscheinungen der technischen Literatur. Im Sommersemester 1927 und im Wintersemester 1927/28 war ich Studierender der Abteilung für Bauingenieurwesen an der Technischen Hochschule Darmstadt.

Darmstadt, im April 1928.

Koloman Hajnal-Kónyi.