## Р.П.ЭЛЛИОТ

# СТРУКТУРЫ ДВОЙНЫХ СПЛАВОВ



## Constitution of Binary Alloys, First Supplement

Rodney P. Elliott, Ph.D. SENIOR METALLURCIST, 111 RESEARCH INSTITUTE, CHICAGO

## СТРУКТУРЫ ДВОЙНЫХ СПЛАВОВ

Первое дополнение

Р. П. Эллиот

TOM II

Перевод с английского А. М. Захарова, В. С. Золоторевского, П. К. Новика и Ф. С. Новика

Под редакцией И.И.Новикова и И.Л.Рогельберга



ИЗДАТЕЛЬСТВО «МЕТАЛЛУРГИЯ» Москва 1970

McGraw-IIIII Book Company

NEW YORK ST. LOUIS SAN FRANCISCO TORONTO LONDON SYDNEY

## содержание

| Система                                                                                                                                | Справочник<br>М. Хансена<br>К. Андерко                                                                                                                                                   | Настоящий<br>справочник                                                                                                                                                              | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Справочник<br>М. Хансена<br>К. Андерко | Настоящий<br>справочник                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Ga—Gd<br>—Ge<br>—Hg<br>—Ho<br>—In                                                                                                      | Стр.<br>789*<br>790*<br>791*                                                                                                                                                             | Стр.<br>17<br>17<br>18<br>19                                                                                                                                                         | Ga-Ti<br>-Ti<br>-U<br>-V<br>-V<br>-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Стр.<br>807*<br>808*<br>809*<br>810    | Стр.<br>31<br>32<br>32<br>33<br>33                                                                                                  |
| —Ir<br>—K<br>—La                                                                                                                       | 792<br>792                                                                                                                                                                               | 19<br>19<br>20                                                                                                                                                                       | -Yb<br>-Zn<br>-Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 810*<br>811                            | 33<br>33<br>33                                                                                                                      |
| – Ll<br>– Mgn<br>– Mo<br>– NNa<br>– NNd<br>– NNd<br>– Os<br>– PPd<br>– PPthu<br>– Rs<br>– Sbe<br>– Ssi<br>– Sr<br>– Sr<br>– Tb<br>– Tt | 793*<br>793*<br>794*<br>795<br>795<br>795*<br>795*<br>797*<br>—<br>797*<br>—<br>798<br>799<br>799<br>801<br>—<br>801<br>802*<br>803<br>804*<br>803<br>804*<br>805<br>805*<br>805<br>806* | $ \begin{array}{c} 21\\ 21\\ 21\\ 22\\ 22\\ 22\\ 23\\ 23\\ 23\\ 23\\ 24\\ 25\\ 25\\ 25\\ 26\\ 26\\ 26\\ 26\\ 26\\ 28\\ 28\\ 29\\ 29\\ -29\\ -29\\ -30\\ 30\\ 30\\ 30\\ \end{array} $ | $ \begin{array}{c} \mathbf{Gd} - \mathbf{Ge} \\ -H \\ -Hg \\ -In \\ -Ir \\ -La \\ -Mg \\ -Mn \\ -Nb \\ -Nb \\ -Nb \\ -Nb \\ -Nb \\ -O \\ -Os \\ -P \\ -Pb \\ -Pd \\ -Pt \\ -Pu \\ -Ru \\ -Sb \\ -Ss \\ -Ss \\ -Si \\ -Ta \\ -Te \\ -Te$ | 811<br>811<br>811<br>811<br>812<br>    | $\begin{array}{c} 34\\ 35\\ 36\\ 36\\ 36\\ 37\\ 38\\ 39\\ 39\\ 39\\ 39\\ 39\\ 41\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$ |

Р. П. Эллиот

#### СТРУКТУРЫ ДВОЙНЫХ СПЛАВОВ Т. 11

#### Редактор издательства К. Д. Мишарина Технический редактор Л. В. Добужинская

| Сдано в производство 16/Х | 1969 г. Подписано в печать                         | 21/Х 1970 г. |
|---------------------------|----------------------------------------------------|--------------|
| Бумага типографская № 2,  | 60×90 <sup>1</sup> / <sub>16</sub> = 14,75 бум. л. | 29,5 печ. л. |
| Учизд. л. 35,48.          | Изд. № 5005 Тираж 4                                | 4500 экз.    |
| Заказ 421.                | Цена 3 р. 75 к.                                    |              |

Издательство «Металлургия» Москва Г-34, 2-й Обыденский пер., 14

Ленинградская типография № 6 Главполиграфпрома Комитета по печати при Совете Министров СССР Ленинград, С-144, ул. Моисеенко, 10.

<u>3—11—1</u> БЗ 63—69 г. № 12

| $ \begin{array}{c} Gd - Tl \\ - U \\ - V \\ - W \\ - Zr \\ - Zr \\ Ge - Hf \\ - Hfg \\ - In \\ - In \\ - Li \\ - Mn \\ - Nh \\ - Nh$                                                                                                                                                                                                                                                                                                                                                                                                     | Система                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Crp.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Справочник<br>М. Хансена<br>Қ. Андерко |
| $\begin{array}{c} Crp. \\ 47 \\ 47 \\ 47 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Настоящий<br>справочник                |
| $ \begin{array}{c} Ge - Y \\ - Zn \\ - Zr \\ H - Hf \\ - Ir \\ - K \\ - La \\ - Li \\ - Lu \\ - Mg \\ - Mn \\ - Mo \\ - Ni \\ - Nb \\ - Nd \\ - Ni \\ - Nb \\ - Re \\ - Rh \\ - Ru \\ - Pb \\ - Pd \\ - Pr \\ - Pt \\ - Pu \\ - Re \\ - Rh \\ - Ru \\ - Sb \\ - Sc \\ - Si \\ - Sn \\ - Sr \\ - Ta \\ - Th \\ - Ti \\ - Mg \\ - Zr \\ - Mg \\ - Si $                                                                                                                                                                                                                                                                                                                                                                                                     | Система М<br>Н                         |
| Crp.<br>828*<br>829*<br>830*<br>831<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Справочник<br>4. Хансена<br>4. Андерко |
| $\begin{array}{c} C_{T}p.\\ 68\\ 68\\ 69\\ \hline \\ 69\\ \hline \\ 70\\ 70\\ 70\\ 71\\ 72\\ 72\\ \hline \\ 73\\ 73\\ 73\\ 73\\ 73\\ 75\\ 75\\ 76\\ \hline \\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 76\\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Настоящий<br>справочник                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |
| $\begin{array}{c} HfMn \\Mo \\Nb \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Система                                |
| Crp.<br>863<br>863<br>863<br>864<br>864<br>864<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Справочник<br>М. Хансена<br>Қ. Андерко |
| Crp.<br>87<br>88<br>89<br>90<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Настоящий<br>справочник                |
| $\begin{array}{c} Hg \_Se \\ \_Si \\ \_Sm \\ \_Sn \\ \_Sr \\ \_Ta \\ \_Te \\ \_Ti \\ \_Ti \\ \_U \\ \_V \\ \_W \\ \_Zr \\ Ho \_Ir \\ \_Ni \\ \_O \\ \_Zr \\ Ho \_Ir \\ \_Mn \\ \_Ni \\ \_O \\ \_Sb \\ \_Se \\ \_Si \\ \_Se \\ \_Si \\ \_Se \\ \_Si \\ \_Se \\ \_Si \\ \_Te \\ \_U \\ \_Zr \\ In \_Ir \\ \_Kr \\ \_La \\ \_Mg \\ \_Mn \\ \_Na \\ \_Nd \\ \_Nd \\ \_Nd \\ \_P \\ \_Pd \\ $ | Система                                |

Справочник Настоящий М. Хансена справочник К. Андерко

> Стр.

\_\_\_\_

888\* 890\* 891\*

\_\_\_\_ 896\*

\_\_\_\_

\_\_\_\_

-----

-

899\* 900\* 902\*

903\* 905\*  Стр. 

\_\_\_\_

 $112 \\ 113 \\ - \\ 114$ 

----

\_\_\_\_

| Система                                                                                                                                             | Справочник<br>М. Хансена<br>К. Андерко                                                                                              | Настоящий<br>справочник                                                                                                                                        | Система                                                             | Справочник<br>М. Хансена<br>К. Андерко                                                                                            | Настоящий<br>справочник                                                                                                                                       | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Справочник<br>М. Хансена<br>К. Андерко                                                                                             | Настоящий<br>справочник                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Справочник<br>М. Хансена<br>Қ. Андерко                                                    | Настоящий<br>справочния                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In—Pt<br>—Pu<br>—Rh<br>—Ss<br>—Sb<br>—Se<br>—Si<br>—Sn<br>—Te<br>—Th<br>—Ti<br>—Ti<br>—Ti<br>—Zn<br>—Zr<br>Ir—La<br>—Mg<br>—Mn<br>—Mo<br>—Nb<br>—Nb | Crp.<br>908<br>908<br>909*<br>910*<br>911<br>911*<br>913*<br>915*<br>916<br>917*<br>919<br>920*<br>921<br>921*<br>922<br>922<br>922 | Стр.<br>123<br>123<br>125<br>125<br>125<br>126<br>126<br>126<br>127<br>127<br>127<br>127<br>128<br>129<br>130<br>130<br>131<br>131<br>131<br>131<br>132<br>132 | IrW<br>                                                             | Стр.<br>928<br>928<br>928<br>929*<br><br>930<br>931<br><br>932*<br>932*<br>932*<br>933*<br>934<br>934*<br>936<br>936*<br>937*<br> | $\begin{array}{c} Crp. \\ 139 \\ 140 \\ 140 \\ 140 \\ 140 \\ 140 \\ 141 \\ 141 \\ 141 \\ 141 \\ 142 \\ \\ \\ \\ \\ \\ \\ \\ \\ 144 \\ 144 \\ 144 \end{array}$ | La-Th<br>-Ti<br>-Tl<br>-V<br>-V<br>-V<br>-Zr<br>Li-Mg<br>-Zr<br>Li-Mg<br>-Zr<br>Li-Mg<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr<br>-Zr | Стр.<br>947<br>947<br>947<br>949*<br><br>959*<br><br>951*<br><br>953<br><br>953<br><br>953*<br><br>957<br>957<br>957<br>957<br>957 | Стр.<br>152<br>153<br>153<br>153<br>153<br>154<br>155<br>156<br>156<br>156<br>156<br>156<br>156<br>156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mg-Mn<br>Mo<br>N<br>Na<br>Nd<br>Ni<br>O<br>Os<br>Pb<br>Pd<br>Po<br>Pr<br>Pt<br>Pt<br>Pt<br>Pt<br>Sb<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br> | Стр.<br>962*<br>963<br>963<br>963*<br>                                                    | Crp.<br>166<br>167<br>167<br>168<br>169<br>169<br>169<br>169<br>170<br>170<br>170<br>170<br>171<br>172<br>172<br>172<br>172<br>172<br>173<br>173<br>173<br>173 |
| O<br>Os<br>Pb<br>Pb<br>Pt<br>Re<br>Rh<br>Ru<br>Sb<br>Sc                                                                                             | 922<br>923<br>923<br>923<br>923<br><br>924*<br>925<br>926<br>926<br>926<br>926<br>                                                  | $ \begin{array}{c} 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ \\ 133 \\ \\ 133 \\ \\ 134 \\ 135 \\ \end{array} $                                                       | La—Lu<br>—Mg<br>—Mn<br>—Mo<br>—Na<br>—Nb<br>—Nd<br>—Ni<br>—Os<br>—P | 938*<br>940*<br><br>941<br>941<br><br>941*<br>942<br>942                                                                          | 144<br>145<br>                                                                                                                                                | -Si<br>-Si<br>-Sr<br>-Tre<br>-Ti<br>-Ti<br>-Ti<br>-Zr<br>-Zr<br>-Zr<br>-Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 957<br>958*<br><br>959<br><br>959*<br><br>960*<br><br>1                                                                            | $     \begin{array}{r}       160 \\       1\overline{62} \\       1\overline{63} \\       1\overline{63} \\       1\overline{63} \\       1\overline{63} \\       1\overline{63} \\       1\overline{64} \\       1\overline{64}$ | $ \begin{array}{c} -Ti \\ -Tl \\ -U \\ -W \\ -Y \\ -Zn \\ -Zr \\ Mn-Mo \\ -Nb \\ -Nb \\ -Nd \\ Nd \\ Ni \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 979*<br>981*<br>982*<br>983<br>983<br>983*<br>988*<br>990*<br>991*<br>991*<br>994<br>     | 174<br>175<br>175<br>176<br>178<br>178<br>178<br>178<br>179<br>180                                                                                             |
|                                                                                                                                                     | 926<br>927<br>927<br>927<br>927<br>927<br>928                                                                                       | 135<br>135<br>136<br>136<br>136<br>137<br>137<br>137<br>137<br>138<br>139<br>139<br>139                                                                        | Pb<br>Pd<br>Pt<br>Rh<br>                                            | 942*<br>—<br>—<br>944<br>944<br>944*<br>944<br>944*                                                                               | $ \begin{array}{r} 147\\148\\148\\148\\149\\150\\150\\\\150\\151\\151\\151\\151\\151\\151\end{array} $                                                        | N<br>O<br>O<br>P<br>P<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    | $164 \\ 164 \\ 164 \\ 164 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 165 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 \\ 166 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} -N_{1} \\ -O \\ -P \\ -Pb \\ -Pd \\ -Pt \\ -Pu \\ -Re \\ -Rh \\ -Ru \\ -S \\ -Sb \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 994*<br>998*<br>1000*<br>1002*<br>1002*<br>1004*<br>-<br>1005*<br>1007*<br>1007*<br>1008* | 180<br>183<br>183<br>183<br>183<br>183<br>185<br>185<br>186<br>186<br>186                                                                                      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Справочник<br>М. Хансена<br>К. Андерко                                                                                                                                                                                                                                                                                                                                         | Настоящий<br>справочник                                                                                                                                                                                                                                                                                                   | Система                                                 | Справочник<br>М. Хансена<br>Қ. Андерко                                                                                                                                                                                                                                                              | Настоящий<br>справочник                                                                                                                                                                               | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Справочник<br>М. Хансена<br>Қ. Андерко | Настоящий<br>справочник                                                                                                  | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Справочник<br>М. Хансена<br>К. Андерко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Настоящий<br>справочник                                                                                                                                                                                                |
| $\begin{array}{c} Mn - Sc \\ - Se \\ - Si \\ - Sn \\ - Ta \\ - Tb \\ - Te \\ - Th \\ - Ti \\ - V \\ - Y \\ - Zr \\ \hline Mo - N \\ - Ni \\ - O \\ - V \\ - Zr \\ Mo - N \\ - Ni \\ - O \\ - Os \\ - P \\ - Pu \\ - Po \\ - Pb \\ - Po \\ - Pb \\$ | Стр.<br>1010<br>1010*<br>1012*<br>1014<br>1014<br>1015<br>1015*<br>1018*<br>1018*<br>1019<br>1020<br>1020*<br>1020*<br>1022*<br>1022*<br>1024*<br>1028<br>1028<br>1028<br>1028<br>1028<br>1028<br>1029<br>1029<br>1029<br>1029<br>1029<br>1029<br>1030<br>1031<br>1031*<br>1033*<br>1034<br>1033*<br>1034<br>1035*<br>1034<br>1039*<br>1039*<br>1040<br>1040*<br>1042*<br>1043 | Стр.<br>187<br>—<br>187<br>187<br>187<br>187<br>189<br>189<br>189<br>189<br>189<br>192<br>—<br>192<br>—<br>193<br>193<br>193<br>194<br>195<br>195<br>195<br>195<br>196<br>197<br>198<br>199<br>199<br>200<br>200<br>201<br>201<br>203<br>204<br>204<br>206<br>206<br>207<br>207<br>207<br>207<br>207<br>207<br>207<br>207 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Стр.<br>1043<br>1044<br>1044<br>1044<br>1044<br>1044<br>1045<br>1045<br>1045<br>1045<br>1045<br>1045<br>1045<br>1045<br>1046<br>—<br>1046<br>—<br>1046<br>—<br>1046<br>—<br>1046<br>—<br>1047<br>1048*<br>1050<br>1050<br>1051<br>1052<br>—<br>1054<br>1054<br>1066*<br>1066*<br>1068*<br>1069<br>— | Crp. 213<br>214<br>214<br>214<br>215<br>215<br>215<br>215<br>215<br>216<br>216<br>216<br>216<br>216<br>216<br>216<br>217<br>217<br>218<br>218<br>219<br>219<br>219<br>219<br>219<br>219<br>219<br>219 | $\begin{array}{c} Na - Xe \\ -Zn \\ -Zr \\ Nb - Nd \\ -Ni \\ -O \\ -Os \\ -P \\ -Pd \\ -Pt \\ -Pu \\ -Re \\ -Ri \\ -Sb \\ -Sse \\ -Si \\ -Sn \\ -Tc \\ -Te \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Zn \\ -Zr \\ Nd - Ni \\ -Os \\ -P \\ -Pd \\ -Pt \\ -Pu \\ -Ri \\ -Sb \\ -Si \\ -Si \\ -Ta \\ -Te \\ -Th \\ -Ti \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Zn \\ -Tr \\ -Ti \\ -U \\ -V \\ -W \\ -S \\ -Si \\ -Si \\ -Si \\ -Ta \\ -Th \\ -$ | Стр.<br>                               | Crp.<br>226<br>227<br>227<br>227<br>227<br>230<br><br>230<br>230<br>232<br>233<br>235<br>235<br>235<br>235<br>235<br>235 | $ \begin{array}{c} Nd - Ti \\ -Tl \\ -Tm \\ -U \\ -V \\ -Zr \\ Ni - O \\ -Os \\ -P \\ -Pd \\ -Pd \\ -Pr \\ -Pt \\ -Pt \\ -Pu \\ -Re \\ -Ru \\ -Sb \\ -Sc \\ -Se \\ -Si \\ -Se \\ -Si \\ -Se \\ -Si \\ -Ta \\ -Tt \\ -Te \\ -Th \\ -Ti \\ -Te \\ -Th \\ -Ti \\ -Tt \\ -V \\ -W \\ -Y \\ -Y \\ D \\ -Zn \\ -Zr \\ Np - O \\ -P \\ -Pu \\ -Sc \\ -Si \\ -Te \\ -U \\ -V \\ -W \\ -Y \\ D \\ -Pn \\ -Pb \\ -Dt $ | Стр.<br>—<br>—<br>1085<br>—<br>1085*<br>1087<br>1087*<br>1087*<br>1087*<br>1087*<br>1092*<br>1092*<br>1092*<br>1092*<br>1092*<br>1092*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1095*<br>1109*<br>1112*<br>1126*<br>1126* | Стр.<br>251<br>252<br>252<br>253<br>253<br>254<br>254<br>254<br>254<br>255<br>256<br>256<br>256<br>258<br>258<br>262<br>262<br>262<br>262<br>264<br>265<br>265<br>267<br>267<br>267<br>267<br>267<br>267<br>267<br>267 |

)

| Система М<br>К                                                                                                            | правочник<br>. Хансена<br>. Андерко | Настоящий<br>справочник                                                                                                                                                                                                                                                                                                                      | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Справочник<br>М. Хансена<br>К. Андерко                                                      | Настоящий<br>справочник   | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Справочник<br>М. Хансена<br>К. Андерко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Настоящий<br>справочник                                                                                                                                    | Система                                               | Справочник<br>М. Хансена<br>Қ. Андерко                                                                                                                                                                                                                                                                                                                                               | Настоящий<br>справочник                      |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| O—Pd<br>—Pm<br>—Po<br>—Pr<br>—Pt                                                                                          | Стр.                                | Стр.<br>280<br>280<br>280<br>280<br>280<br>281                                                                                                                                                                                                                                                                                               | W<br>Y<br>Zn<br>Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Стр.<br>1146<br>1147<br>1147                                                                | Стр.<br>307<br>308<br>309 | PbTl<br>U<br>W<br>Zn<br>Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Crp.<br>1177*<br>1180*<br>1182*<br>1183*<br>1183*<br>1185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Стр.<br>321<br>321<br>321<br>321<br>321<br>322                                                                                                             | Pr—T1<br>—U<br>—V<br>—Y<br>—Zn                        | Стр.<br>1199*<br>1200<br><br>1200                                                                                                                                                                                                                                                                                                                                                    | Стр.<br>341<br>342<br>342<br>342<br>342<br>— |
| $\begin{array}{c} -Pu\\Rb\\Rb\\Rb\\Sb\\Sc\\Si\\Si\\Sr\\Sr\\Tr\\Tr\\Tr\\Tr\\Tr\\Tr\\Ti\\Ti\\Ti\\Ti\\V\\V\\V\\V\\V\\V\\V\\$ | $\begin{array}{c}$                  | 282<br>283<br>284<br>284<br>284<br>284<br>285<br>285<br>286<br>287<br>287<br>287<br>288<br>289<br>290<br>290<br>290<br>290<br>290<br>290<br>291<br>293<br>293<br>293<br>293<br>293<br>293<br>294<br>297<br>299<br>300<br>301<br>301<br>302<br>304<br>304<br>304<br>304<br>304<br>305<br>305<br>306<br>306<br>306<br>307<br>307<br>307<br>307 | $\begin{array}{c} \mathbf{P} - \mathbf{P} \mathbf{b} \\ - \mathbf{P} \mathbf{c} \\ - \mathbf{P} \mathbf{r} \\ - \mathbf{P} \mathbf{t} \\ - \mathbf{P} \mathbf{u} \\ - \mathbf{R} \mathbf{e} \\ - \mathbf{S} \mathbf{b} \\ - \mathbf{S} \mathbf{e} \\ - \mathbf{S} \mathbf{n} \\ - \mathbf{S} \mathbf{r} \\ - \mathbf{T} \mathbf{e} \\ - \mathbf{T} \mathbf{e} \\ - \mathbf{T} \mathbf{h} \\ - \mathbf{R} \mathbf{u} \\ - \mathbf{S} \\ - \mathbf{S} \mathbf{e} \\ - \mathbf{S} \mathbf{i} \\ - \mathbf{S} \\ - \mathbf{S} \mathbf{e} \\ - \mathbf{S} \mathbf{i} \\ - \mathbf{S} \\ - \mathbf{S} \mathbf{e} \\ - \mathbf{S} \mathbf{i} \\ - \mathbf{S} \\ - \mathbf{T} \\ - $ | $\begin{array}{c} 1147\\ 1147\\ 1148\\ 1149\\ 1150\\ 1150\\ 1150\\ 1150\\ 1151\\ 151\\ 151$ | $\begin{array}{c}$        | $\begin{array}{c} \mathbf{Pd} - \mathbf{Pt} \\ - \mathbf{Re} \\ - \mathbf{Ru} \\ - \mathbf{Su} \\ - \mathbf{Si} \\ - \mathbf{Ti} \\ - \mathbf{Ti} \\ - \mathbf{Ti} \\ - \mathbf{Ti} \\ - \mathbf{V} \\ - \mathbf{V}$ | 1186         1186         1186         1187*         1186*         1187*         1190         1190*         1191*            1192         1193         1193         1193         1193         1193         1193         1193         1193         1193         1193         1195         1195         1198            1198            1198            1198            1198            1198            1198            1198            1198            1198            1198               1198            1199         1199*              < | $\begin{array}{c}\\ 322\\ 323\\ 324\\\\ 325\\ 325\\ 325\\ 325\\ 327\\ 329\\\\ 329\\ 331\\ 331\\ 332\\ 332\\ 333\\ 334\\ 336\\ 336\\ 336\\ 336\\ 336\\ 336$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} 1201^* \\ 1202^* \\ 1203 \\ 1203 \\ 1203^* \\ \hline \\ - \\ 1205 \\ 1205^* \\ 1207^* \\ \hline \\ 1209 \\ 1209 \\ 1209 \\ 1209 \\ 1209 \\ 1209 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1211 \\ 1215 \\ \hline \\ 1215 \\ 1215 \\ 1215 \\ 1215 \\ 1216^* \\ \hline \\ - \\ 1216 \\ 1217 \\ 1217 \\ 1217 \\ \end{array}$ | $\begin{array}{c}$                           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Справочник<br>М. Хансена<br>Қ. Андерко                                                                                                                                                                                                                                                                                                    | Настоящий<br>справочник                                                                      | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Справочник<br>М. Хансена<br>К. Андерко                                                                                                                                                                                  | Настоящий<br>справочник                                                                                                                                                                        | Система                                                                                                                                                                                                                                                                                                                                                                                                                                               | Справочник<br>М. Хансена<br>Қ. Андерко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Настоящий<br>справочник                                                                                                                                                                                                                                                                                                                                                   | Система                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Справочник<br>М. Хансена<br>К. Андерко                                                                 | Настоящий<br>справочник.                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \textbf{Re} & -Rh \\ -S \\ -Sc \\ -Se \\ -Si \\ -Sn \\ -Ta \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Zr \\ \textbf{Rh} -Ri \\ -Sb \\ -Sc \\ -Se \\ -Si \\ -Sr \\ -Sr \\ -Tr \\ -Ti \\ -U \\ -V \\ -Y \\ -Zr \\ \textbf{Ru} \\ -S \\ -Sc \\ -Se \\ -Si \\ -Sr \\ -Tr \\ -Ti \\ -U \\ -V \\ -Y \\ -Zr \\ \textbf{Ru} \\ -S \\ -Sc \\ -Se \\ -Si \\ $ | Стр.<br>1217<br>1217<br>1218<br>1218<br>1218<br>1218<br>1219<br>1219<br>1219<br>1219<br>1220<br>1220<br>1221<br>1221<br>1221<br>1221<br>1222<br>1223<br>1223<br>1223<br>1223<br>1224<br>1224<br>1224<br>1224<br>1224<br>1224<br>1225<br>1225<br>1225<br>1225<br>1225<br>1225<br>1225<br>1226<br>1226<br>1226<br>1226<br>1227<br>1227*<br> | Crp.<br>363<br>363<br>364<br>364<br>364<br>364<br>366<br>368<br>368<br>371<br>371<br>373<br> | $\begin{array}{c} S-Se \\ -Si \\ -Sm \\ -Sn \\ -Sn \\ -Sn \\ -Sr \\ -Ta \\ -Ti \\ -V \\ -W \\ -Y \\ -Y \\ -Y \\ -V \\ -W \\ -Zr \\ Sb-Sc \\ -Se \\ -Si \\ -Sn \\ -Sr \\ -Ta \\ -Ti \\ -Si \\ -Si \\ -Si \\ -Sm \\ -Sm$ | Стр.<br>1229*<br>1229<br>1229*<br>1231<br>1231<br>1232<br>1232*<br>1233<br>1235*<br>1236<br>1237*<br>1238<br>1238<br>1239<br>1239*<br>1241*<br>1242*<br>1244*<br>1246*<br>1244*<br>1246*<br>1249*<br>1249*<br>1253*<br> | Crp.<br>386<br>387<br>387<br>387<br>389<br><br>389<br>390<br>391<br>391<br>391<br>392<br>393<br>393<br>394<br>395<br>395<br>396<br>396<br>397<br>397<br>397<br>397<br>397<br>397<br>397<br>397 | $\begin{array}{c} Se = Sn \\ -Sr \\ -Ta \\ -Tb \\ -Te \\ -Te \\ -Ti \\ -Ti \\ -Ti \\ -Ti \\ -Ti \\ -V \\ W \\ -Y \\ -Yb \\ -Zn \\ -Zr \\ \\ Si = Sm \\ -Sr \\ -Ta \\ -Te \\ -Ti \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Zn \\ -Zr \\ \\ Sm -Sn \\ -Te \\ -Ti \\ -Ti \\ -U \\ -Zr \\ \\ Sm -Sr \\ -Te \\ -Ti \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Y \\ \\ -Zr \\ \\ Sm -Sr \\ -Te \\ -Ti \\ -Ti \\ -U \\ -V \\ -W \\ -Y \\ -Y \\ \\ -Y \\ -Y \\ \\ -Y \\ -Y $ | Стр.<br>1254*<br>1255<br>—<br>1256*<br>1256*<br>1257<br>1258*<br>—<br>1259<br>1259<br>1260<br>1260<br>1260*<br>1261<br>1261*<br>1262*<br>1262*<br>1264*<br>1264*<br>1265*<br>1267*<br>1272*<br>1274*<br>1274*<br>—<br>—<br>—<br>1277*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1278*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1287*<br>1 | CTP.<br>407<br>407<br>407<br>408<br>408<br>409<br>409<br>409<br>409<br>409<br>410<br>410<br>410<br>410<br>410<br>410<br>410<br>410<br>411<br>411<br>412<br>413<br>413<br>413<br>413<br>414<br>415<br>-16<br>416<br>416<br>416<br>416<br>417<br>419<br>421<br>421<br>421<br>422<br>422<br>422<br>423<br>423<br>423<br>423<br>423<br>424<br>424<br>425<br>426<br>-16<br>426 | $\begin{array}{c c} Sn & -Zn \\ & -Zr \\ Sr & -Te \\ & -Tl \\ & -U \\ & -U \\ & -Zn \\ \hline Ta & -Tb \\ & -Tc \\ & -Tc \\ & -Tc \\ & -Tr \\ & -Ti \\ & -U \\ & -V \\ & -W \\ & -Y \\ & -Zr \\ \hline Tb & -Te \\ & -U \\ & -V \\ & -W \\ & -Zr \\ \hline Tc & -Ti \\ & -Ti \\ & -Ti \\ & -V \\ & -W \\ & -Zr \\ \hline Te & -Th \\ & -Ti \\ & -Ti \\ & -U \\ & -V \\ & -Y \\ & -Yb \\ & -Zn \\ & -Zr \\ \hline Th & -Ti \\ & -Ti \\ & -U \\ & -V \\ & -Y \\ & -Yb \\ & -Zn \\ & -Zr \\ \hline \end{array}$ | Crp.<br>1287*<br>1289*<br>1291<br>1292<br>1292<br>1292<br>1292*<br>1294*<br>1296<br>1296*<br>1296*<br> | Crp.<br>427<br>427<br>427<br>428<br>428<br>428<br>429<br>429<br>430<br>430<br>430<br>430<br>430<br>432<br>432<br>432<br>432<br>432<br>433<br>432<br>432<br>433<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>435<br>436<br>437<br>438<br>439<br>439<br>440<br>440<br>440<br>440<br>441<br>442<br>443<br>439<br>439<br>440<br>440<br>440<br>440<br>441<br>442<br>443<br>443<br>444<br>444<br>444<br>444<br>444<br>446 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Система                                | Справочник<br>М. Хансена<br>Қ, Андерко | Настоящий<br>справочник | Система              | Справочник<br>М. Хансена<br>Қ. Андерко | Настоящий<br>справочник |
|----------------------------------------|----------------------------------------|-------------------------|----------------------|----------------------------------------|-------------------------|
| -                                      | Стр.                                   | Стр.                    |                      | Стр.                                   | Стр.                    |
| Ti—U                                   | 1309*                                  | 447                     | U—Zn                 | 1321*                                  | 451                     |
| —V                                     | 1312*                                  | 447                     |                      | 1323*                                  | 453                     |
| —W                                     | 1314*                                  | 448                     |                      |                                        |                         |
| Y                                      |                                        | 448                     | V-W                  | 1325                                   | 455                     |
| -Zn                                    | 1315*                                  |                         | ∥ —Y                 |                                        | 455                     |
| -Zr                                    | 1316*                                  | 449                     | -Yb                  | ·                                      | 456                     |
| TI                                     | 1318                                   | 450                     | -Zr                  | 1326*                                  | 456                     |
|                                        | 1318*                                  | 450                     |                      | 1010                                   | 100                     |
| 2.11                                   | 1010                                   | 400                     | w_v                  |                                        | 457                     |
| TmU                                    |                                        | 450                     |                      | 1397                                   | 101                     |
| III0                                   |                                        | 100                     | - <u>-</u> 211<br>7r | 1398*                                  | 457                     |
| U V                                    | 1290*                                  |                         |                      | 1320                                   | 401                     |
| $\mathbf{U} - \mathbf{v}_{\mathbf{w}}$ | 1320*                                  | 450                     | V 7.                 |                                        | 157                     |
|                                        | 1320*                                  | 400                     | IZn                  |                                        | 407                     |
| Y                                      |                                        | 450                     | Zr                   | <u> </u>                               | 459                     |
| —Y b                                   | —                                      | 551                     | ·                    | 1000*                                  | 400                     |
|                                        |                                        |                         | 1 7n_7r              | 1330*                                  | 4h()                    |

Приложение

#### ОПЕЧАТКИ

в книге М. Хансена и К. Андерко

| Стр.                                    | Строка                                                   | ,<br>Напечатано                                                     | Должно быть                                                                                     |
|-----------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 17<br>38<br>114                         | 13 снизу<br>16 снизу<br>Табл. 7                          | 5,2 ат. (3,7 вес.)<br>Ад                                            | 6,3 ат. (4,5 вес.)<br>Нg<br>Значения растворимости<br>в ат. % должны быть<br>уредицены в 10 раз |
| 189<br>277<br>398<br>51 <b>3</b><br>739 | 4 сверху<br>2 снизу<br>6 сверху<br>5 сверху<br>35 сверху | NaAs <sub>s</sub><br>(TaB <sub>n</sub> )<br>Sones<br>Co<br>24 atoma | NasAs<br>(NbB <sub>n</sub> )<br>Jones<br>Na<br>32 aroma                                         |

| -      |  |
|--------|--|
| + 6466 |  |
| 1,0400 |  |
| 0704   |  |
| 0 3534 |  |

#### Ga-Gd. Галлий-гадолиний

Известны четыре соединения: Gd<sub>3</sub>Ga, Gd<sub>3</sub>Ga<sub>2</sub>, GdGa и GdGa<sub>2</sub> [1]. GdGa имеет ромбическую решетку;  $a = 4,341 \pm 0,008$  A,  $b = 4,066 \pm 0,003$  A,  $c = 4,066 \pm 0,003$  A,  $c = 4,066 \pm 0,003$  A,  $c = 4,066 \pm 0,003$  A, c = 1,000 A = 11,02 ± 0,02 Å [2]. Структура GdGa2 гексагональная, типа AlB2; a = 4,221 ±  $\pm$  0,001 A,  $c = 4,141 \pm 0,002$  A [3] или  $a = 4,219 \pm 0,005$  A,  $c = 4,135 \pm$  $\pm 0,005 \text{ A}$  [4].

- 1. Moriarty J. L., Baenziger N. С. Неопубликованные данные; см. Спеддинг Ф. Х., Даан А. Х. Редкоземельные металлы. Изд-во «Металлургия», 1965.
- 2. Baenziger N. C., Moriarty J. L. (Jr.), Acta Cryst., 1961, v. 14, p. 946—947.
- 3. Baenziger N. C., Moriarty J. L. (Jr.), Acta Cryst., 1961, v. 14, p. 948-950.

4. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

#### 1,9824 0,0176

#### Ga—Ge. Галлий—германий \*

Повторно исследован ликвидус системы [1]. По полученным данным с учетом результатов работ (см. М. Хансен и К. Андерко [2, 3, 8]) построен ликвидус диаграммы на рис. 219. Он мало отличается от ликвидуса соответствующей диаграммы у М. Хансена и К. Андерко (см. т. II, рис. 405), однако проведен значительно точнее. Согласно расчету, эвтектическая концентрация равна 5.10-3 % (ат.) Се при температуре лишь на 0,007 град ниже точки плавления Ge. Данные по ликвидусу и эвтектической концентрации, полученные в работе [2], слишком грубы и практической ценности не представляют.

В работе [3] сделан обзор экспериментальных данных по растворимости Ga в твердом Ge. На рис. 219 кривая растворимости проведена согласно работе [4]:

| Гемпература, °С        | 900 | 800  | 650 | 400 | 300 |
|------------------------|-----|------|-----|-----|-----|
| Растворимость, % (ат.) | 0,5 | 0,95 | 1,1 | 0,8 | 0,6 |

Как видно, растворимость ретроградная с максимумом при 650° С.

1. Thurmond C. D., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169—204.

2. Савицкий Е. М. идр. ЖНХ, 1958, т. 3, с. 763—765. 3. Тгитьоге F. A. Bell System Tech. J., 1960, v. 39, р. 205—233.

4. Trumbore F. a. o. Phys. Chem. Solids, 1959, v. 11, p. 239-245.

2 Р. П. Эллиот, том, II

16





#### Ga—Hg. Галлий—ртуть \*

Диаграмма состояния (рис. 220) построена по данным тщательного дифференциального термического анализа сплавов, приготовленных из Ga чистотой 99,999% и дистиллированной ртути [1]. Согласно данным химического анализа [2] равновесных фаз, полученных электроосаждением Ga в Hg в изотермических условиях, область несмешиваемости несколько шире, чем на днаграмме рис. 220: 3,84—93,86% (ат.) Hg при 95° C; 3,33—94,71% (ат.) Hg при 80° C; 2,93— 95,18% (ат.) Hg при 65° C; 2,57—95,83% (ат.) Hg при 50° C; 2,27—96,35% (ат.) Hg при 35° C; 1,94—96,62% (ат.) Hg при 30,5° C и ниже монотектики 96,81% (ат.) Hg при 22° C; 97,56% (ат.) Hg при 10° C. Растворимость Ga в Hg, определенная потенциометрическим методом и химическим анализом, составляет 3,82% (ат.) [1,36% (по массе)] при 30° C [3].

1. Ргедеl В. Z. Physik. Chem. (Frankfurt), 1960, Bd 24, S. 206—216. 2. Яценко С. П., Дружинина Е. П., ЖНХ, 1961, т. 6, с. 1902—1904. 3. Нижник А. Т., Звагольская Е. В. ЖНХ, 1961, т. 6, с. 1006—1008. 18



1,6261

#### Ga—Но. Галлий—гольмий

НоGa<sub>2</sub> имеет гексагональную решетку типа AlB<sub>2</sub>;  $a = 4,192 \pm 0,005$  A,  $c = 4,044 \pm 0,005$  A [1].

1. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

1,5576 0,4424

#### Ga—Ir. Галлий—иридий

В системе определены четыре промежуточные фазы: IrGa<sub>6</sub>, IrGa<sub>2</sub>, IrGa<sub>2</sub> (стехиометрический состав определен недостаточно точно) и IrGa [1]. Фаза IrGa<sub>3</sub> образуется по перитектической реакции из IrGa<sub>6</sub> и IrGa<sub>2</sub>.

ІгGа<sub>3</sub> имеет две модификации. Высокотемпературная тетрагональная модификация изоструктурна с СоGа<sub>3</sub> (химически родственна структуре CuAl<sub>2</sub>), a = 6,41 A, c = 6,60. ІгGa имеет кубическую решетку типа CsCl; a = 2,98 A.

1. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540; Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

#### 0,2512 $\overline{1},7488$

2\*

#### Ga—К. Галлий—калий \*

Диаграмма на рис. 221 построена по данным термического анализа и дополнена результатами химического анализа [1, 2]. Установлено образование двух соединений: КGa<sub>4</sub> — по перитектической реакции при 505 ± 2° С и К<sub>5</sub>Ga<sub>3</sub> — у кон-

15

центрационной границы монотектической — синтектической реакции при 620 ± ± 5° С. Образование КGa затруднено, о чем свидетельствует переохлаждение, достигающее 40 град. Стехиометрический состав КGa4 определяли химическим



Рис. 221. Ga-K

анализом центрифугированных кристаллов. Растворимость Ga в K, определенная химическим анализом равновесных смесей, составляет 0,014; 0,009 и 0,005% (ат.) при соответственно 500, 400 и 300° С.

1. Feschotte P. Ann. Chim. (Paris), 1961, v. 6, p. 1029-1070. 2. Rinck E., Feschotte P. Compt. Rend., 1961, v. 252, p. 3592-9394.

#### 1.7006 0,2994

#### Ga-La. Галлий-лантан \*

Было подтверждено, что LaGa<sub>2</sub> имеет гексагональную решетку типа AlB<sub>2</sub>; a = 4,329 A, c = 4,405 A [1, 4] или  $a = 4,320 \pm 0,005$  A, c = 4,416 A [2]. Интерметаллид LaGa изоморфен с GeGa и PrGa, однако периоды решетки его не приводятся [3] (PrGa имеет ромбическую решетку типа CaSi [4]). Решетка La<sub>3</sub>Ga кубическая типа AuCu<sub>3</sub>, но размытые отражения на рентгенограмме не позволили провести точных измерений [4].

1. I and elli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40.

2. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

20

3. I an delli A. Atti Congr. Intern. Chim., 10, Rome, 1938, v. 2, p. 688-694. 4. I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11p.

0.1036 1.8964

#### Ga-Mn. Галлий-марганец \*

В работе [1] сообщается о существовании в системе следующих интерметаллических фаз: Мп<sub>3</sub>Ga, высокотемпературная модификация которой имеет гексагональную решетку типа Mg; a = 2,698 A, c = 4,344 A; MgGa, высокотемпературная модификация при 800° С имеет ромбоэдрическую решетку типа  $Cr_2Al_8$ ;  $a = 9,02_8$  Å,  $\alpha = 88^\circ 24'$  (для эквивалентной гексагональной ячейки  $a = 12,58_7$  Å, c = 16.07 A); MnGa<sub>3</sub> имеет о. ц. к. решетку типа Ni<sub>3</sub>Hg, a = 5,591 A.

1. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, p. 512.

1,8613 0.1387

#### Ga-Mo. Галлий-молибден \*

Соединение МозGa образуется в результате взаимодействия исходных компонентов в эвакуированной кварцевой ампуле при 1200° С [1]. Структура Мо<sub>3</sub>Ga кубическая типа β-W; a = 4,943 ± 0,002 A [1]. При изменении соотношения исходных компонентов от 4:1 до 1:1 период решетки оставался постоянным. Температура перехода в сверхпроводящее состояние 9,8° К [2].

1. Wood A. E. a. o. Acta Cryst., 1958, v. 11, p. 604-606. 2. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

0.6970 1.3030

#### Ga-N. Галлий-азот \*

В работе [1] приводятся более точно определенные значения периодов гексагональной (типа вюрцита) решетки GaN:  $a = 3,160 \pm 0,008$  A,  $c = 5,125 \pm$ ± 0,010 А. Эти величины значительно отличаются от приводимых М. Хансеном и К. Андерко (см. т. II [3]).

Сообщается о существовании триазида Ga (N<sub>3</sub>)<sub>3</sub> [2].

1. Lirman J. V., Zhdanov G. S. Acta Physicochim. URSS, 1937, v. 6,

2. Wiberg E., Michaud H. Z. Naturforsch, 1954, Bd 9b, S. 502-503.

#### 0.4817 1.5183

#### Ga-Na. Галлий-натрий \*

Работами [1-4] подтверждена приведенная М. Хансеном и К. Андерко (см. т. II, рис. 409, а) диаграмма. Расхождение имеется только в определении стехнометрического состава соединения, образующегося по перитектической реакции. По данным химического анализа центрифугированных кристаллов [4], состав его NaGa4. Это подтверждается и минимумом на кривой электросопротивление — концентрация [3]. Методом измерения электросопротивления подтвержден также в пределах ±0,2% (ат.) Ge стехиометрический состав плавящегося конгруэнтно соединения Na, Ga, [3]. Температура богатой галлием эвтектики равна 29,75° С [1, 3]. Растворимость Ga в Na, определенная химическим анализом равновесных смесей [1, 2], составляет: 3,0; 1,2; 0,42; 0,13; 0,05 и 0,015% (ат.) при соответственно 500, 450, 400, 300, 200 и 98° С.

Feschotte P. Ann. Chim. (Paris), 1961, v. 6, p. 1029-1070.
 Rinck E., Feschotte P. Compt. Rend., 1960, v. 250, p. 1489-1491.
 Rinck E., Feschotte P. Compt. Rend., 1960, v. 251, p. 869-871.
 Rinck E., Feschotte P. Compt. Rend., 1961, v. 252, p. 3592-3594.

1,8753 0,1247

#### Ga— Nb. Галлий—ниобий

Решетка соединения Nb<sub>3</sub>Ga кубическая типа  $\beta$ -W,  $a = 5,171 \pm 0,002$  A [1].

1. Wood E. A. a. o. Acta Cryst., 1958, v. 11, p. 604-606.

 $\overline{1,6841}$ 0.3159

#### Ga—Nd. Галлий—неодим

NdGa<sub>2</sub> имеет гексагональную решетку типа AlB<sub>2</sub>;  $a = c = 4,27 \pm 0,01$  A [1]. Сообщается, что Nd<sub>3</sub>Ga изоструктурен AuCu<sub>3</sub>, однако период решетки не приводится [2].

Haszko S. E. Trans. AIME, 1961, v. 221, p. 201.
 Iandelli A. The Physical Chemistry of Metallic Solutions and Interme-



tallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11p.

> Ga— Ni. Галлий—никель \*

Методами рентгеновского, термического и микроскопического анализов исследованы сплавы с 10—33% (ат.) Ga [1]. В работе использованы Ni чистотой более 99,96% и Ga чистотой также более 99,9%. По полученным данным построена область диаграммы, включающая растворимость Ga в Ni в твердом состоянии. Как было показано ранее (см. М. Хансен и К. Андерко, т. II [3]), в области твердого раствора на основе Ni существует участок, характеризующийся образованием сверхструктуры типа Cu<sub>3</sub>Au, обозначенный на рис. 222 α'.

Фаза  $\alpha'$  существует во всем температурном интервале вплоть до солидуса. Образуется она по перитектической реакции при 1210° С и при 1204°С вступает в эвтектическую реакцию с NiGa. Как предполагается в работе [1], ретроградная растворимость по границе ( $\alpha + \alpha'$ )/ $\alpha$  свидетельствует о существовании низкотемпературной фазы, хотя при последующем дифференциальном термическом анализе теплового эффекта не обнаружено. Опубликованы данные о концентрационной зависимости периодов решетки α-[1, 2] [и α'-фазы [1].

1. Pearson W. B., Rimek D. M. Canad. Phys., 1957, v. 35, p. 1228-1234. 2. Pearson W. B., Thompson L. T. Canad. Phys., 1957, v. 35, p. 349-357.

0,6392 $\overline{1},3608$ 

#### Ga—O. Галлий—кислород

Сообщается о существовании пяти модификаций Ga<sub>2</sub>O<sub>3</sub>, однако лишь  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> стабильна в интервале от комнатной температуры до температуры плавления (1725 ± 15° C) [1]. Согласно данным рентгеновского исследования монокристаллов и порошков, структура его относится к моноклинной сингонии (пространственная группа *C2/m*);  $a = 5,80 \pm 0,01$  A,  $b = 3,04 \pm 0,01$  A,  $c = 12,23 \pm 0,02$  A,  $\beta = 103^{\circ} 42'$  [2, 3].  $\alpha$ -Ga<sub>2</sub>O<sub>3</sub> имеет ромбоэдрическую решетку типа  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>; a = 4,99 A, c = 13,47 A [4].

1. Roy R. a. o. J. Amer. Chem. Soc., 1952, v. 74, p. 719-722.

2. Kohn A. J. a. o. Amer. Mineralogist, 1957, v. 42, p. 398-407.

3. Geller S. J. Chem. Phys., 1960, v. 33, p. 676-684.

 Zachariasen W. H. Skrifter Norske Videnskaps-Akad. Oslo, 1928 (4); Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press N. Y., 1958, p. 1015.

## 1,5642

#### Ga—Os. Галлий—осмий

Интерметаллид OsGa индицирован в предположении тетрагональной структуры типа CoGa<sub>3</sub> (химически близкой структуре типа CuAl<sub>2</sub>); a = 6,49 A, c = 6,74 A [1].

Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540; Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

#### 0,35241,6476

#### Ga-P. Галлий-фосфор \*

Фосфид GaP получен рядом исследователей химическим путем [1—3] и синтезом элементов [4—6]. Температура плавления GaP превышает 1000° С [7]. GaP имеет г. ц. к. решетку типа ZnS с периодом 5,4504 A [1, 8], 5,45 A [2] и  $5,4505 \pm 0,0001$  A [9].

1. Addamiano A. J. Amer. Chem. Soc., 1960, v. 82, p. 1357-1540.

2. Самсонов Г. В. и др. ЖНХ, 1961, т. 6, с. 749-751.

3. Effer D., Antell G. B. J. Electrochem. Soc., 1960, v. 107, p. 110 см. [2].

4. Wolff G. a. o. Phys. Rev., 1954, v. 94, p. 753; см. [1].

5. Wolff G. A. a. o. M. Schoen, H. Welker, eds. B KH. «Semiconductors and Phosphors», p. 547, Interscience Publishers, Inc. N. Y., 1958; cm. [1].

6. Guire R. J., Weiser K. U. S. Patent 2871100 (1959), см. [1].

7. Van den Boomgaard J., Schol K. Philips Res. Řept., 1957, v. 12, p. 127; cm. [1].

8. Addamiano A. Acta Cryst., 1960, v. 13, p. 505.

9. Giesecke G., Pfister H. Acta Cryst., 1958, v. 11, p. 369-371.

В результате повторных исследований [1, 2] построена более точная диаграмма (рис. 223). Подтвержден определенный ранее (см. М. Хансен и К. Андерко. т. II [1]) общий характер диаграммы. В работе [1] проведен дифференциальный термический анализ сплавов, выплавленных из 99,95% -ного Ga и 99,99% -ного Рb. В работе [2] методами термического и микроскопического анализов исследованы



Рис. 223. Ga-Pb

сплавы в интервале 95-100% (ат.) Рb. В качестве исходных компонентов при выплавке сплавов использовали Рb чистотой 99,999% и Ga чистотой более 99,9%. Монотектика расположена при 313° С и 94,5% (ат.) Рb [1] или 311 ± 1° С

и 95,8% (ат.) Рь [2]. Область расслаивания простирается до 606° С при ~50% (ат.) [1]. Температура эвтектики 29,7° С, что на 0,08 град ниже температуры кристаллизации Ga [1]. Термодинамическим расчетом для эвтектической концентрации получено значение 0,06% (ат.) Рb [1]. Микроскопическим методом определена растворимость Ga в Pb [2].

1. Predel B. Z. Metallkunde, 1959, Bd 50, S. 663-667. 2. Greenwood J. N. J. Inst. Metals, 1958-1959, v. 87, p. 91-93.

1,8152

## Ga-Pd. Галлий-палладий \*

Диаграмма состояния (рис. 224) построена по данным термического, микроскопического и рентгеновского исследований [1]. Подтверждено существование ранее обнаруженных фаз Pd<sub>3</sub>Ga, Pd<sub>2</sub>Ga, PdGa и Pd<sub>3</sub>Ga, и найдены четыре новые фазы: PdsGa3, PdGa5 и две фазы в интервале 50-60% (ат.) Pd, существующие между 900 и 1000° С. Из последних двух фаз лишь одна, расположенная при ~55% (ат.) Pd, обнаружена микроскопически. Предположение о существовании другой фазы сделано на основании данных термического анализа сплавов этой области. Pd<sub>3</sub>Ga образуется очень медленно.

Кристаллическая структура. При исследовании монокристаллов установлено, что PdGa5 имеет о. ц. тетрагональную решетку (пространственная группа  $D_{4h}^{18}$ ); a = 6,448 А, c = 10,003 А [1, 2]. Структуру можно рассматривать как промежуточную между структурами CuAl<sub>2</sub> с вакансиями и CoGa<sub>3</sub> [1].

Анализом монокристаллов установлено, что Pd2Ga имеет ромбическую решетку типа NiSi; a = 7,814 A, b = 5,493 A и c = 4,046 A [1].

 $Pd_5Ga_3$  имеет ромбическую решетку типа  $Rh_5Ge_3$ ; a = 10,51 A, b = 5,42 A, c = 4,03 Å (работа проведена на монокристаллах [1, 3]).

1. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540.

2. Bhan G., Schubert K. Trans. Indian Inst. Metals, 1960, v. 13, p. 332-

3. Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

## 1,6944 0,3056

## Ga-Pr. Галлий-празеодим \*

Подтверждена гексагональная структура PrGa2 типа AlB2, периоды решетки: a = c = 4,303 A [1, 3],  $a = 4,272 \pm 0,005$  A,  $c = 4,298 \pm 0,005$  A [2]. PrGa имеет ромбическую решетку типа CaSi; a = 4,452 A, b = 11,331 A, c = 4,195 A [1, 3]. Решетка Ргз Ga кубическая типа АцСиз, однако очень размытые отражения не позволили определить период ее [3].

- 1. I and elli A. Congr. Intern. Chim. Pure Appl. 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40.
- 2. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.
- 3. I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt-Brit. Proc. Symp., 1959, v. 1, № 6, Paper 3F, 11p.

1,5528 0,4472

#### Ga-Pt. Галлий-платина \*

Рентгеновским анализом [1, 2] сплавов, содержащих 82; 80; 78; 76,5; 75; 62,5; 60; 58; 33; 16 и 5% (ат.) Pt, кроме граничных твердых растворов, обнаружены следующие фазы:

24



 $Pt_4Ga$ , гомогенная в интервале 77—81% (ат.) Pt, решетка моноклинная, искаженная тетрагональная типа  $LI_2$ ;  $a = 7,74_2$  A,  $c = 7,85_5$  A.

р $t_3$ Ga, гомогенная при 75% (ат.) Pt, решетка типа  $L1_2$ ; a = 3,892 A. Об этой dbase сообщалось также в работе [3];  $a = 3,91_5$  A.

 $Pt_5Ga_3$ , гомогенная в интервале 59—63% (ат.) Рt, решетка ромбическая; a = 8,031 A,  $b = 3,94_8$  A,  $c = 7,44_0$  A.

РtGa<sub>2</sub> при 33% (ат.) Pt. Об этой фазе сообщалось и ранее (см. М. Хансен и К. Андерко, т. II [2]).

 $Pt_3Ga_7$  находится в равновесии с  $PtGa_6$  при 16% (ат.) Pt; a = 8,799 A (см. также М. Хансен и К. Андерко, т. II [1, 3]).

рtGa<sub>6</sub>, образующаяся при перитектическом взаимодействии Pt<sub>3</sub>Ga<sub>7</sub> с расплавом, имеет ромбическую решетку; a = 15,946 A, b = 12,034 A,  $c = 2 \times 4,43_8$  A.

1. Bhan S., Schubert K. Z. Metallkunde, 1960, Bd 51, S. 327-339.

2. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, S. 303.

 Stadelmaier H. H., Hardy W. K. Z., Metallkunde, 1961, Bd 52, S. 391-396.

 $\overline{1,8309}$ 0.1691

## Ga-Rh. Галлий-родий

Промежуточная фаза RhGa<sub>3</sub> находится в равновесии с двумя фазами приблизительного состава RhGa<sub>2</sub> и RhGa<sub>6</sub>.

RhGa<sub>3</sub> имеет тетрагональную решетку, изотипную с CoGa<sub>3</sub> (химически близкую структуре CuAl<sub>2</sub>);  $a = 4,48_8$  A,  $c = 6,55_3$  A [1].

 Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540; Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

T,8360 0,1640

## Ga— Ru. Галлий—рутений

Идентифицирована промежуточная фаза RuGa<sub>3</sub>, имеющая тетрагональную решетку, изотипную с CoGa<sub>3</sub> (химически близкую структуре CuAl<sub>2</sub>); a = 6,47 A, c = 6,73 A [1].

Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540; Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

0,3373 $\overline{1,6627}$ 

## Ga—S. Галлий—сера \*

Исследование термической стабильности системы [1] позволило заключить следующее: а) GaS распадается при температуре плавления (970° C) на Ga<sub>2</sub>S<sub>5</sub> и Ga<sub>2</sub>S, последнее соединение в этих условиях газообразно; б) выше 950° C твердый Ga<sub>2</sub>S разлагается по реакции диспропорционирования на твердые GaS и Ga; в) выше 950° C Ga<sub>2</sub>S<sub>3</sub> теряет S и переходит в Ga<sub>4</sub>S<sub>5</sub>; г) Ga<sub>4</sub>S<sub>5</sub> стабилен до 1200° C и существует в интервале концентраций 54,5—56,5% (ат.) S. При более высоких температурах Ga<sub>4</sub>S<sub>5</sub> легко разлагается на S и Ga<sub>2</sub>S.

В работе [2] обнаружен полиморфизм Ga<sub>2</sub>S<sub>3</sub>. Сообщается о существований трех модификаций:  $\alpha$ -,  $\beta$ - и  $\gamma$ - Ga<sub>2</sub>S<sub>3</sub>.  $\beta$ - Ga<sub>2</sub>S<sub>3</sub> — высокотемпературная неупорядоченная фаза с гексагональной решеткой типа вюрцита.  $\gamma$ -Ga<sub>2</sub>S<sub>3</sub> — неупорядоченная низкотемпературная фаза, имеющая г. ц. к. решетку типа цинковой обманки.  $\alpha$ -Ga<sub>2</sub>S<sub>3</sub> — упорядоченная модификация  $\beta$ -Ga<sub>2</sub>S<sub>3</sub>, обнаруженная в работах [3, 4],

- 27

а также в работах, приводимых М. Хансеном и К. Андерко (см. т. II [6, 7]). В упомянутых работах соединению приписывалась гексагональная структура, однако при рентгеновском исследовании порошков и монокристаллов [2] усгановлено, что характеристики экстинкции соответствуют ромбоздрической решетке, причем искаженной, являющейся в сущности моноклинной; a = 12,637 A, b = $= 6,41_1$  A,  $c = 7,03_8$  A,  $\beta = 131,07^\circ$ . Температура превращения  $\alpha$ -Ga<sub>2</sub>S<sub>3</sub>  $\rightleftharpoons$  $\rightleftharpoons$   $\beta$ -Ga<sub>2</sub>S<sub>3</sub> не установлена, хотя в работе [3] модификация  $\alpha$  наблюдалась при 1000° С.

1. Spandau H., Klanberg F. Z. Anorg. Allgem. Chem., 1958, Bd 295, S. 300-308.

2. Goodyear J. a. o. Acta Cryst., 1961, v. 14, p. 1168-1170.

3. Hahn H., Frank G. Z. Anorg. Allgem. Chem., 1955, Bd 278, S. 340-348.

4. H a h n H., F r a n k G. Z. Anorg. Allgem. Chem., 1955, Bd 278, S. 333-339.

1,7579 0,2421

#### Ga—Sb. Галлий—сурьма \*

В хорошем согласии находятся данные по температуре плавления GaSb: 712 ± 3° C [1]; 712° C [2]; ~705° C [3]. За исключением области 40—44% (ат.) Sb, ликвидус по обе стороны от GaSb, построенный по данным термического анализа [2], совпадает с ликвидусом, предложенным М. Хансеном и К. Андерко (см. т. II, рис. 413):

| Содержание Sb,  | % | (ат.) | • | • | • | • |   | 40  | 44  | 48  | 50  | 52  | 65  | 60  |
|-----------------|---|-------|---|---|---|---|---|-----|-----|-----|-----|-----|-----|-----|
| Температура, °С | • |       | • |   |   |   | • | 642 | 623 | 700 | 712 | 705 | 698 | 685 |

Повторно определен период решетки GaSb (г. ц. к. типа цинковой обманки): 6,096 ± 0,003 A [4], 6,0963 A [3], 6,0954 ± 0,0001 A [5].

1. Bednar J., Smirous K. Czech J. Phys., 1955, v. 5, p. 546.

2. Глазов В. М., Петров Д. А. Изв. АН СССР, ОТН, 1958, № 4, с. 125— 129.

3. Miller J. F. a. o. J. Electrochem. Soc., 1960, v. 107, p. 527-533.

4. Горюнова Н. А., Федорова Н. Н. ЖТФ, 1955, т. 25, с. 1339—1341.

5. Giesecke G., Pfister H. Acta Cryst., 1958, v. 11, p. 369—371.

1,9460

## Ga—Se. Галлий—селен \*

При повторном анализе дебаеграмм (см. М. Хансен и К. Андерко, т. II [4]), проведенном в работе [1], обнаружены следующие две модификации GaSe: ромбоэдрическая  $\gamma$ -GaSe (a = 3,755 A, c = 23,92 A) и  $\beta$ -GaSe с гексагональной решеткой, аналогичной GaSe (a = 3,755 A, c = 15,94 A). Эти данные хорошо согласуются с полученными ранее (см. М. Хансен и К. Андерко, т. II [5]). Существование модификации ε-GaSe (см. М. Хансен и К. Андерко, т. II [5]). Существование модификации рассчитанной и экспериментальной интенсивности отражений. Возможно, существует как слоистая структура (см. М. Хансен и К. Андерко, r. II [4]), так и структура типа анти-GaS [2] с периодами решетки: a = 3,74 A, c = 15,92 A.

Период решетки кубического Ga<sub>2</sub>Se<sub>3</sub> равен 5,420 А [3].

1. Jellinek F., Hahn H., Z. Naturforsch., 1961, Bd 16b., S. 713—715. 2. Татаринова Л. И. и др. Кристаллография, 1956, т. 1, с. 537—541. 3. Горюнова Н. А., Григорьева В. ЖТФ, 1956, т. 26, с. 2150—2160.

## Ga-Si. Галлий-кремний \*

Результаты повторного исследования ликвидуса [1] в основном подтверждают данные, полученные ранее (см. М. Хансен и К. Андерко, т. II, рис. 414). Однако координаты эвтектической точки [1]: 1,2% (ат.) [0,5% (по массе)] Si и 19° С расходятся с определенными ранее (29,8° С, точка плавления Ga) (см. М. Хансен и К. Андерко, т. II [1]).

Расчет положения эвтектики [2], по данным М. Хансена и К. Андерко (см. т. II [1]), дал следующие значения: 2·10<sup>-8</sup> % (ат.) Si, температура на 1·10<sup>-7</sup> ° C ниже точки плавления Ga. Пользоваться данными работы [1], относящимися к эвтектике, не следует, так как они нуждаются в дальнейшем подтверждении. В работах [3, 4] проведен термодинамический расчет солидуса системы для

В работах [3, 4] проведен термодинамический раски соблидует систавов, богатых Si. В одном случае был использован коэффициент распределения  $k_0 = 0,01$  [3], а в другом  $k_0 = 0,008$ . Температура максимальной растворимости составляет ~1170° C [3] ~1250° C [4]. Растворимость, определенная методом температурного градиента [4], равна 0,030% (ат.) Ga при 805 ± 10° C; 0,052% (ат.) Ga при 982 ± 10° C; 0,064% (ат.) Ga при 1066 ± 10° C. Эти данные согласуются с рассчитанным солидусом. Кривая, построенная в работе [3], расположена при более высоких концентрациях Ga: ~0,23% (ат.) при ~1170° C и ~0,08% (ат.) Ga при ~800° C.

1. Савицкий Е. М. и др. ЖНХ, 1958, т. 3, с. 763—775.

2. Thurmond C. D., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169-204.

- 3. Козловская В. М., Рубинштейн Р. Н. ФТТ, 1961, т. 3, с. 3354— 3362.
- 4. Trumbore F. A. Bell System Techn. J., 1960, v. 39, p. 205-233.

## 1,4447

## Ga—Sm. Галлий—самарий

SmGa<sub>2</sub> имеет гексагональную решетку типа AlB<sub>2</sub>; a = 4,280 A, c = 4,209 A [1, 2]; a = 4,238 A, c = 4,187 A [3]. Sm<sub>3</sub>Ga имеет кубическую решетку типа AuCu<sub>3</sub>, однако из-за сильно размытых линий на рентгенограмме период ее определить не удалось [2].

1. I an delli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40.

2. I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Counpounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11p.

3. H a s z k o S. E. Trans. AIME, 1961, v. 221, p. 201-202.

1,9007 0.0993

#### Ga—Sr. Галлий—стронций

SrGa<sub>2</sub> имеет гексагональную решетку типа AlB<sub>2</sub>; a = 4,344 A, c = 4,732 A [1]. Соединение получено из Ga чистотой 99,85% и Sr чистотой 99,5%.

1. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci, Fis. Mat. Nat., 1955, v. 19, p. 39-43.

#### 1.6422 0.3578

#### Ga—Tb. Галлий—тербий

TbGa<sub>2</sub> имеет гексагональную решетку;  $a = 4,209 \pm 0,005$  A,  $c = 4,095 \pm$ ± 0,005 Å [1].

1. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

## 1,7375 0.2625

Ga—Te. Галлий—теллур \*

Диаграмма состояния Ga-Te (рис. 225) построена по данным дифференциального термического анализа и прямого наблюдения температур плавления при регулируемом давлении паров Те (от 10-4 до 7 мм рт. ст.) [1]. Кроме известных



соединений GaTe и Ga, Te3, рентгеновским анализом обнаружены два других соединения, нестабильных при комнатной температуре: Ga<sub>3</sub>Te<sub>2</sub> и GaTe<sub>3</sub>. Нижняя температурная граница существования новых фаз не определена. При 408° С на кривой охлаждения GaTe<sub>3</sub> наблюдается перегиб. При этой же температуре отме-чается апомалия GaaTe2. Возможно, эти температуры и есть нижняя граница тросопротивления daa Поличиство с помалия электросопрогнылсния созтез. Боллонно, ота температуры и есть нижняя граница существования фаз. Допускается существование соединения Ga<sub>2</sub>Te, однако экс-периментальных подтверждений этого не имеется. Область расслоения в жидком перименна рис. 225 показана по данным М. Хансена и К. Андерко (см. т. II [1]), состояния на расписти и состояния и состоя хотя в область данным работы [1], построить однозначно невозможно, поэтому 75% (ат.) Те, по данным работы [1], построить однозначно невозможно, поэтому горизонтали изотермических превращений и границы областей показаны предположительно.

Подтверждается [2], что Ga<sub>2</sub>Te<sub>3</sub> имеет решетку типа цинковой обманки. Период решетки соединения, полученного зонной плавкой, составляет 5,906 А в закаленном состоянии и 5,901 А в литом отожженном состоянии [3]. Сверхструктурных линий на рентгенограммах не обнаружено.

 $G_aTe_3$  имеет гексагональную решетку; a = 6,43 A, c = 14,20 A [1].

1. Newman P. C. a. o. Philips Res. Rept., 1961, v. 16, p. 41-50. 2. Woolley J. C. a. o. J. Less-Common Metals, 1959, v. 1, p. 199-201.

3. Woolley J.C., Pamplin R. J. Electrochem. Soc., 1961, v. 108, p. 874-879.

1,4779

0.5221

## Ga-Th. Галлий-торий

Соединение ThGa2 получено при взаимодействии порошка с жидким Ga в эвакуированной ампуле при 500° С. ThGa, имеет тетрагональную решетку типа  $C_c$  (*a*-ThSi<sub>2</sub>),  $a = 4,243 \pm 0,001$  A, c = $= 14,690 \pm 0,002 \text{ A}$  [1].

1. Brown A. Acta Cryst., 1961, v. 14, p. 860----865.

Ga-Ti.

0,1630 1,8370 Галлий-титан \*

Как показано на рис. 226, новое исследование [1] позволило дополнить данные ранней работы (см. М. Хансен и К. Андерко, т. II [1]). Для температуры перитектоидной реакции  $\beta + \alpha_2 \rightleftharpoons \alpha$ дается значение 940° С.

По данным изучения литой структуры сплавов с 25, 32 и 33,3% (ат.) Ga, можно предположительно построить диаграмму выше 1100° С. Металлографическое исследование литых сплавов показало, что сплав с 25% (ат.) Ga имел при кристаллизации однофазную структуру β, а сплав с 32% (ат.) Ga — двухфазную структуру, состоящую из первичных кристаллов



Рис. 226. Ga—Ti

 $Ti_2Ga$  и эвтектики  $\beta$  +  $Ti_2Ga$ . Количество обеих составляющих примерно одинаково. И, наконец, сплав с 33,3% (ат.) Ga ( $Ti_2Ga$ ) плавится конгруэнтно.

1. Anderko K. Z. Metallkunde, 1958, Bd 49, S. 165-172.

## 1,5329

Ga—Tl. Галлий—таллий \*

Представленная на рис. 227 диаграмма построена по данным тщательно выполненного исследования 33 сплавов, выбранных во всем интервале концентраций [1]. Хотя растворимость Ga в Tl в твердом состоянии не определялась, обна-



Рис. 227. Ga-Tl

руженное понижение температуры аллотропического превращения с 235 до 224° С свидетельствует об эвтектоидном превращении.

1. Predel B. Z. Metallkunde, 1959, Bd 50, S. 663-667.

1,4666

#### Ga—U. Галлий—уран \*

UGa<sub>2</sub> индицирован в предположении гексагональной решетки; a = 4,21 A, c = 4,01 A. Расчет интенсивности указывает на то, что соединение относится к пространственной группе *C6/mmm* [1].

Неизвестное ранее соединение UGa имеет ромбическую решетку; a = 9,40 A, b = 7,60 A, c = 9,42 A, c 16 формульными единицами в элементарной ячейке. Соединение отнесено к пространственной группе *Стест* [1].

1. Марков Е. Г., Левдик В. А. Кристаллография, 1956, т. 1, с. 644—649. 32 0,1362 1.8638

#### Ga-V. Галлий-ванадий

Соединение V<sub>3</sub>Ga, полученное дуговой плавкой, имеет кубическую решетку типа  $\beta$ -W;  $a = 4,816 \pm 0,002$  A [1]. При изменении отношения компонентов от 3:1 до 5:1 период решетки соединения не изменялся. Отмечается, что соединение стабильно в широком интервале концентраций.

1. Wood A. E. a. o. Acta Cryst., 1958, v. 11, p. 604—606. 2. Blumberg W. E. a. o. Phys. Rev. Letters, 1960, v. 5, p. 149—152.

1,8944 0,1056

#### Ga-Y. Галлий-иттрий

 $YGa_2$  имеет гексагональную решетку типа AlB<sub>2</sub>;  $a = 4,198 \pm 0,005$  A,  $c = 4,095 \pm 0,005$  A [1].

1. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

1,6153 0,3847

#### Ga—Yb. Галлий—иттербий

Сообщается о безуспешной попытке получить соединение YbGa<sub>2</sub> [1]. Подобное соединение со структурой типа AlB<sub>2</sub> имеется в большинстве систем Ga с редкоземельными металлами.

1. Haszko S. E. Trans. AIME, 1961, v. 221, p. 201-202.

0,0279 $\overline{1},9721$ 

Ga—Zn. Галлий—цинк \*

Тщательное повторное исследование системы [1] с использованием термического анализа 22 сплавов в основном подтвердило данные предыдущих работ, обобщенные М. Хансеном и К. Андерко. Некоторые расхождения имеются в области диаграммы, богатой Ga. Эвтектика расположена при 3,7% (ат.) Zn и 25,4° С. Измерением твердости серии сплавов, содержащих 0—3% (ат.) Zn, определена растворимость Zn в Ga, равная примерно 0,85% (ат.) Zn. Судя по некоторому искажению элементарной ячейки, обнаруживаемому при рентгеновском анализе, растворимость Ga в Zn составляет 0,3—0,9% (ат.) Zn.

1. Heumann T., Predel B. Z. Metallkunde, 1958, Bd 49, S. 90-95.

1,8833 0,1167

#### Ga—Zr. Галлий—цирконий \*

Диаграмма (рис. 228) построена по данным работ [1—3]. В работе [1] при исследовании трех сплавов обнаружены следующие соединения: ZrGa<sub>3</sub>, образующееся по перитектической реакции при температурах выше 1000° С; Zr<sub>5</sub>Ga<sub>3</sub>, также образующееся по перитектической реакции, и соединение, существующее в виде первичных кристаллов в сплаве с 37,5% (ат.) Ga. Предположительный состав последнего соединения Zr<sub>2</sub>Ga<sub>3</sub> [4]. В упоминавшихся работах [1—3] указывается на существование эвтектики  $\mathcal{K} \rightleftharpoons \beta + Zr_5Ga_3$ . Состав е 15—20% (ат.) Ga [1] 21% (ат.) Ga [2]. Максимальная растворимость Ga в  $\beta$ -Zr составляет 8% (ат.).

З Р. П. Эллиот, том II

Граница  $\beta/(\beta + Zr_3Ga)$  построена по данным металлографического исследования [2, 3]. Эвтектоидная точка расположена при ~850° С и ~1,6% (ат.) Ga.

 $Zr_5Ga_3$  имеет гексагональную решетку типа  $Mn_5Si_3$ ; a = 8,04 Å, c = 5,71 Å; структура Zr<sub>3</sub>Ga неизвестная [1].

 $Zr_2Ga_8$  имеет ромбическую решетку типа  $Zr_2Al_3$ ; a = 5,512 A, b = 9,451 A, c = 13,764 A [4].



- 1. Anderko K. Z. Metallkunde, 1958, Bd 49, S. 165-172.
- 2. Betterton J. O. (Jr.), Easton D. S. U. S. At Energy Comm., ORNL-2839, 1959, p. 33-36.
- 3. Easton D. S., Betterton J. O. (Jr.) U. S. At. Energy Comm. ORNL-2988, 1960, p. 110-114.
- 4. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, S. 512.

#### 0.3358 1.6642

## Gd—Ge. Гадолиний—германий

Сообщается о существовании следующих соединений: Gd<sub>3</sub>Ge<sub>2</sub> и (или) Gd<sub>2</sub>Ge, GdGe, Gd<sub>2</sub>Ge<sub>3</sub> (?) и GdGe<sub>3</sub> и (или) GdGe<sub>5</sub> [1]. Необходимо отметить, что эти данные далеко не окончательные. GdGe имеет ромбическую решетку типа CrB;  $a = 4,175 \pm 0,002A$ ,  $b = 3,960 \pm 0,003A$ ,  $c = 10,61 \pm 0,01A$  [2].

- 1. Moriarty J. L., Baenziger N. С. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга, А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 946-947.
- 34

2,1922 3.8078

#### Gd-H. Гадолиний-водород \*

Диаграмма состояния Gd-Н построена на основании изучения зависимости давления H<sub>2</sub> от количества водорода, абсорбированного Gd чистотой 99,7% (основная примесь О) при различных температурах [1]. Эксперимент проводили в системе с постоянным объемом. Растворимость Н в Gd в твердом состоянии сов системе с постоятия состоятия состоятия состоятия состоятия состоятия состоятия за% (ат.) при 800° С. В равновески с граничным твердым раствором



Рис. 229. Gd—H

находится гидридная фаза GdH<sub>2</sub>, имеющая заметную область гомогенности. Существует и вторая гидридная фаза GdH<sub>3</sub>, гомогенная в более узком интервале концентраций.

Фазовая диаграмма системы представлена на рис. 229.

Гидрид GdH<sub>2</sub> имеет кубическую решетку, изотипную с CaF<sub>2</sub>;  $a = 5,303 \pm$  $\pm$  0,001А. GdH<sub>2</sub>, изотипный с PuH<sub>3</sub>, имеет гексагональную решетку;  $a = 3,73 \pm 0,01$ А,  $c = 6,71 \pm 0,02$ А [1].

Упругость диссоциации GdH<sub>2</sub> выражается зависимостью lg p (мм pm. cm.) =  $= 9,72 - 10,250/T^{\circ} K$  [1].

1. Sturdy G. E., Mulford R. N. R. J. Amer. Chem. Soc., 1956, v. 78, p. 1083-1087. 3\*

#### 1,8944 0,1056

## Gd---Нg. Гадолиний---ртуть

Растворимость Gd в жидкой ртути определяли химическим анализом насыщенных растворов [1]. Получены следующие значения:

| Растворимость, % (ат.)<br>Температура, °С | $1,006 \\ 356$ | 0,650<br>300 | $\substack{\textbf{0,406}\\250}$ | 0,230<br>200 | $0,114 \\ 150$ | 0,047<br>100 | $0,015 \\ 50$ |
|-------------------------------------------|----------------|--------------|----------------------------------|--------------|----------------|--------------|---------------|
|-------------------------------------------|----------------|--------------|----------------------------------|--------------|----------------|--------------|---------------|

Приведенные данные рассчитаны методом наименьших квадратов. GdHg имеет кубическую решетку типа CsCl; a = 3,719A [2].

- 1. Messing A. F., Dean O. C. U. S. At. Energy Comm. ORNL-2871, 1960, 21p.
- I and elli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

## 0,1368

## Gd—In. Гадолиний—индий

Обнаружено пять соединений: Gd<sub>3</sub>In, Gd<sub>2</sub>In, GdIn, Gd<sub>2</sub>In<sub>3</sub> и GdIn<sub>3</sub>. GdIn<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> с периодом  $a = 4,6103 \pm 0,0002A$  [2], 4,601A [3]. GdIn имеет кубическую решетку типа CsCl;  $a = 3,830 \pm 0,001A$  [2].

- Могіагtу J. L., Ваепzіger N. С. Неопубликованные данные; см. сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 948-950.
- 3. I andelli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

## 1,9098

## Gd—Ir. Гадолиний—иридий

GdIr<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>; *a* = 7,550 ± 0,001A [1].

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654.

#### 0,0538 1,9462

## Gd—La. Гадолиний—лантан

Представленная на рис. 230 диаграмма состояния построена по данным дифференциального термического анализа, рентгеновского исследования и металлографического анализа ограниченного количества образцов для определения положения границ. Как видно, на диаграмме при высоких температурах существует область непрерывного твердого раствора  $\beta$ . Фаза  $\beta$ , имеющая о. ц. к. решетку, участвует в двух изотермических реакциях: перитектоидной ( $\alpha$ -Gd) +  $\beta \rightleftharpoons$  $\rightleftharpoons$  ( $\alpha$ -La) при  $\sim$ 1025° C и эвтектоидной  $\beta \rightleftharpoons$  ( $\alpha$ -La) + ( $\alpha$ '-La) при  $\sim$ 855° C. При ~840° C в системе протекает еще одна эвтектоидная реакция: ( $\alpha$ -La) + ( $\alpha$ -Gd)  $\rightleftharpoons$  $\rightleftharpoons$ « $\delta$ ». Сообщается, что « $\delta$ »-фаза имеет г. к. решетку типа Sm, периоды которой меняются с составом. При 30% (ат.) La  $a = 3,667 \pm 0,001$ A,  $c = 26,482 \pm 0,007$ A.

В работе [1] приводятся также значения периодов решетки нескольких сплавов со структурой (α-Gd) и (α-La). Диаграмму следует считать предположительной, так как требуются дополнительные исследования для уточнения ряда ее областей. Данные рентгеновского исследования [2] согласуются с предложенной диаграммой [1].

В работе [2] изучены также магнитные свойства ряда сплавов Gd-La [2].

% (no macce) 90 30 40 50 70 80 10 20 60 1600 1400 1200 А 1000 ~85 ~840 = 80 ~855° ~87 800  $(\alpha - Gd)$  $(\alpha' - L\alpha)$ 600 (a-La) 400 "в" 200 Л 10 20 30 40 50 60 70 80 90 100 0 Gđ % (am.) La



1. Valletta R. M. Thesis Ph. D. Iowa State University of Science and Technology, 1959, 88p.

2. Thoburn W. C. a. o. Phys. Rev., 1958, v. 110, p. 1298-1301.

#### 0,8097 1,1903

#### Gd-Mg. Гадолиний-магний \*

Диаграмма (рис. 231) построена по данным термического, металлографического и рентгеновского анализов. Сплавы выплавляли из 99,99%-ного Mg, 99,0%-ного Gd в индукционной печи или печи сопротвления [1]. Четыре соединения, обнаруженные в этой работе, не совпадают с четырьмя соединениями, о которых сообщается в более ранней работе (см. М. Хансен и К. Андерко, т. II [1]). Допускают также существование MgGd<sub>2</sub>, однако из-за низкой чистоты Gd обнаружить его металлографически оказалось невозможным [1]. Вместе с тем данные рентгеновского анализа указывают на то, что Gd находится в равновесии с MgGd. Поместив указанную диаграмму, авторы работы [1] вместе с тем заявляют: «На диаграмме показано, что соединение MgGd плавится конгруэнтно при ~865° С. Однако сплавы, лежащие около этого соединения [80 и 90% (по массе) Gd], плавятся при температурах, близких к температуре плавления этого соединения. Это дает основание предполагать, что соединение образуется по перитектической реакции, а вместо эвтектики, показанной на диаграмме, проходит эвтектоидная реакция». По данным измерения микротвердости, максимальная рас-

творимость Gd в Mg составляет ~0,32-0,39% (ат.) [2-2,5% (по массе)] и уменьшается до 0,16-0,24% (ат.) [1-1,5% (по массе)] при комнатной температуре.

MgGd имеет кубическую решетку типа CsCl (a = 3,787А [2]), что хорошо совпадает с данными работы [1] (a = 3,78А). Мg<sub>3</sub>Gd имеет кубическую решетку, a = 7,31А [1]. Сообщается также, что Mg2Gd имеет г. ц. к. решетку типа MgCu2, однако периоды ее не приводятся [1].





1. Савицкий Е. М. и др. ЖНХ, 1961, т. 6, с. 1734; предварительные данные см. Савицкий Е. М. и др. Цветные металлы, 1960, № 11, с. 59. 2. I and elli A., Accad. Nazl. Lincei, Rend, Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 0,4568 1,5432

## Gd—Mn. Гадолиний-марганец \*

Рентгеновский и термический анализы и измерение магнитного момента указывают на существование в интервале 55,0-96,3% (ат.) [30-90% (по массе)] Мп нонвариантного взаимодействия при 1070° С и упорядочения ниже 900° С в интервале 41,7-74,1% (ar.) [20-50% (по массе)] Мп [1]. Отмеченные детали диаграммы не согласуются с соединениями, существующими в системе,

GdMn<sub>2</sub>, гомогенный при комнатной температуре в интервале 32—40% (ат.) Gd, имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7,724А [2], 7,732А [3], 7,73А имеет 7,74 А [1]. Вплоть до 880° С не наблюдалось полиморфизма GdMn<sub>2</sub> [2].  $^{[4]}_{GdMn_5}$  имеет ромбическую решетку; a = 7,23A, b = 4,41A, c = 3,13A [4]. GdMп<sub>12</sub>, возможно, является третьим соединением, существующим в системе [5].

- 1. Hubbard W. M. a. o. J. Appl. Phys., 1960, v. 31, p. 368S-369S.
- 2. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.
- 3. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948-950.
- 4. Nassau K. a. o. Phys. Chem. Solids, 1960, v. 16, p. 123-130.
- 5. Moriarty J. L., Baenziger N. С. Неопубликованные данные, см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изл-во «Металлургия», 1965.

#### 0.2147 1,7853

#### Gd-Mo. Гадолиний-молибден

В системе не существует промежуточных фаз [1].

1. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948--950.

1,0492 2,9508

#### Gd-N. Гадолиний-азот \*

Существование и структура GdN подтверждены работами [1, 2]. Периоды решетки GdN равны 4,999 ± 0,002А [1] и 4,999А [2].

1. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 87-90.

2. I an d e l l i A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

0,2287 1.7713

#### Gd-Nb. Гадолиний-ниобий

Соединение в системе Gd-Nb не образуется [1].

1. Moriarty J. L., Baenziger L. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

#### 0.4280 1,5720

#### [Gd—Ni. Гадолиний—никель \*

Система исследована во всем интервале концентраций с использованием рентгеновского, термического и металлографического анализов [1, 2]. Обе предложенные диаграммы в основном согласуются. На обеих показаны три эвтектики и два плавящихся конгруэнтно соединения. Диаграмма на рис. 232 приведена по данным [1], так как при построении ее было исследовано большее количество сплавов. При построении диаграммы (см. рис. 232) соединение, идентифицирован-HOE KAK Gd, Ni15, ПОКАЗАНО КАК Gd, Ni17.



На диаграмме, построенной в работе [2], показаны следующие нонвариантные равновесия:

 $\begin{array}{c} \mathrm{Gd} + \mathcal{K} \rightleftharpoons \mathrm{Gd}_{3}\mathrm{Ni} \ (760^{\circ} \mathrm{C}) \\ \mathcal{K} \ [\sim 32\% \ (ar.) \ \mathrm{Ni}] \rightleftharpoons \mathrm{Gd}_{3}\mathrm{Ni} + \mathrm{Gd}_{3}\mathrm{Ni}_{2} \ (670^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi} \rightleftharpoons \mathrm{Gd}_{3}\mathrm{Ni}_{2} \ (700^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi} \rightleftharpoons \mathrm{Gd}_{3}\mathrm{Ni}_{2} \ (700^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{3} \rightleftharpoons \mathrm{GdNi}_{12} \ (1030^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{4} \rightleftharpoons \mathrm{Gd}_{3}\mathrm{Ni}_{17} \ (1170^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{5} \rightleftharpoons \mathrm{GdNi}_{4} \ (1210^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{5} \rightleftharpoons \mathrm{GdNi}_{4} \ (1210^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{5} \rightleftharpoons \mathrm{GdNi}_{17} \ (1280^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{5} \rightleftharpoons \mathrm{GdNi}_{2} \ \mathrm{Ni}_{17} \ (1280^{\circ} \mathrm{C}) \\ \mathcal{K} + \mathrm{GdNi}_{5} \Rightarrow \mathrm{GdNi}_{2} \ \mathrm{SdNi}_{17} \ \mathrm{SdNi}_{17} + \mathrm{Ni} \ (1220^{\circ} \mathrm{C}) \\ \end{array}$ 

На этой диаграмме, в отличие от диаграммы, предложенной в работе [1], имеются два образующихся перитектически соединения Gd<sub>3</sub>Ni<sub>2</sub> и GdNi<sub>4</sub>. Темпе-

ратуры конгруэнтного плавления GdNi и GdNi<sub>5</sub> равны соответственно ~1300° С и ~1500° С [2].

и ~1500 С 121. Gd<sub>3</sub>Ni имеет ромбическую решетку; a = 5,15 A, b = 6,70 A, c = 6,23 A [2]. Gd<sub>3</sub>Ni имеет тетрагональную решетку; a = 7,28 A, c = 8,61 A. Решетка GdNi ромбическая типа FeB;  $a = 5,428 \pm 0,002$  A,  $b = 4,353 \pm 0,002$  A,  $c = 6,931 \pm 0,002$  A [3] или a = 3,8 A, b = 5,2 A, c = 4,2 A [2]. Соединение GdNi<sub>2</sub>  $\pm 0,002$  A [3] или a = 3,8 A, b = 5,2 A, c = 4,2 A [2]. Соединение GdNi<sub>1</sub>  $\pm 0,002$  A [3] или a = 3,8 A, b = 5,2 A, c = 4,2 A [2]. Соединение GdNi<sub>2</sub>  $\pm 0,002$  A [2],  $7,202 \pm 0,005$  A [5], 7,20 A [6]. GdNi<sub>3</sub> имеет ромбоэдрическую [1], 7,27 A [2],  $7,202 \pm 0,005$  A [5], 7,20 A [6]. GdNi<sub>3</sub> имеет ромбоэдрическую [1], 7,27 A [2].  $GdNi_4$  имеет гексагональную решетку, a = 5,35 A, b = 6,22 A, c = 7,03 A [2]. GdNi<sub>4</sub> имеет гексагональную решетку, a = 5,35 A, c = 5,83 A [2]. GdNi<sub>5</sub> имеет гексагональную решетку, a = 5,35 A,  $c = 3,9640 \pm 0,0005$  A [4]; a = 4,902 A, c = 3,964 A [1]; a = 4,90 A, c = 3,97 A [2]. Решетка Gd<sub>2</sub>Ni<sub>17</sub> гексагональная, a = 8,18 A, c = 8,47 A [2]  $\pm 0,005$  A [2]. Решетка Gd<sub>2</sub>Ni<sub>17</sub> гексагональная, a = 8,18 A, c = 8,47 A [2]

- Сореland M., Kato H. В книге «Rare Earth Research» (Proceedings of the Second Conference) J. F. Nachman, C. E. Lundin, eds., Gordon and Breach Science Publishers Inc., N. Y., 1962, p. 133—14. U. S. At. Energy Comm. USBM—U—887, 1961, p. 4—6; Kato H., Armantrout C. E. U. S. At. Energy Comm. USBM—U—873, 1960, p. 17—20 u USBM—U—819, 1961, p. 17—19.
- 2. Novy V. F. a. o. Trans. AIME, 1961, v. 221, p. 585-588.

3. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 946-947.

4. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 948-950.

5. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.

6. Nassau K. a. o. Phys. Chem. Solids, 1960, v. 16, p. 123-130.

7. Wernick J. H., Geller S. Acta Cryst., 1959, v. 12, p. 662-665.

#### 0,9915 $\overline{1,0085}$

#### Gd-0. Гадолиний-кислород

Gd<sub>2</sub>O<sub>3</sub> существует в двух модификациях: *С* с о. ц. к. решеткой типа Mn<sub>2</sub>O<sub>3</sub> [1—8] и *В* с моноклинной решеткой [8, 9]. Как сообщается в работе [2], превращение *С* → *В* обратимо, однако в других работах [1, 8] показано, что превращение необратимо и *В*-модификация стабильна. Для температуры превращения приводятся следующие значения, °C: 1225 [2], 1250 [8], 1000 [7], 1500—1600 [1] и 1400—1500 [9]. Сообщалось также и о существовании метастабильной гексагональной *А*-модификации. Температура плавления Gd<sub>2</sub>O<sub>3</sub> 2350 ± 5° C [10] или 2330 ± ± 20° C [11]. Известен окисел GdO [12].

О. ц. к. решетка (типа  $Mn_2O_3$ ) *С*-Gd<sub>2</sub>O<sub>3</sub> имеет период: 10,798 A [1], 10,818 A [3], 10,813 ± 0,005 A [4], 10,8122 A [8], 10,79 A [5] или 10,79<sub>7</sub> A [6]. В-модификация имеет моноклинную решетку;  $a = 14,061 \pm 0,013$  A,  $b = 3,566 \pm 0,006$  A,  $c = 8,760 \pm 0,007$  A,  $\beta = 100,10 \pm 0,08^{\circ}$  [9] или a = 14,06, b = 3,572 A, c = 8,75 A,  $\beta = 100,10^{\circ}$  [8]. *А*-модификация имеет гексагональную решетку; a = 3,76 A, c = 5,89 A [8].

1. I an delli A. Gazz. Chim. Ital., 1947, v. 77, p. 312-318.

- 2. Warshaw I., Roy R.J. Phys. Chem., 1961, v. 65, p. 2048-2051; Warshaw I. Thesis. Pensylvania State University, 1961, 114p.
- 3. JB rauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.
- 4.**J**Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.

41

5. Zachariasen W., Norsk. Geol. Tidsskr., 1927, v. 241, p. 310-316.

6. Bommer H. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 273-280.

- 7. Jorba M. P. a. o. Bull. Soc. Franc. Mineral. Crist., 1961, v. 84, p. 401-402. 8. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960; v. A64, p. 309-316.
- 9. Guentert O. J., Mozzi R. L. Acta Cryst., 1958, v. 11, p. 746.
- 10. Curtis C. E., Johnson J. R. J. Amer. Ceram. Soc., 1957, v. 40, p. 15---
- 11. Wisnyi L. G., Pijanowski S. U. S. At. Energy Comm., 1956, KAPL-1564, p. 10-11.
- 12. Brewer L. Chem. Rev., 1953, v. 52, p. 51.

1,9174 0,0826

## Gd—Os. Гадолиний—осмий

 $GdOs_2$  имеет гексагональную решетку типа MgZn<sub>2</sub>;  $a = 5,319 \pm 0,002$  A,  $c = 8,838 \pm 0,002$  A [1]. Структура эквиатомного сплава не кубическая и не относится к типу CsCl [2].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

0,7057 1,2943

## Gd-P. Гадолиний-фосфор

GdP имеет г. ц. к. решетку типа NaCl; a = 5,723 A [1].

1. I and elli A. B có. «Rare Earth Research», E. V. Kleber (ed.), The Macmillan Company, N. Y., 1961, p. 135-141.

1,8803

#### Gd—Pb. Гадолиний—свинец

Соединение GdPb<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,828 A [1].

1. I an d e 11 i A. Atti. Accad. Nazl. Lincei, Rend. Classe Sci, Fis. Mat. Nat., 1960, v. 29, p. 62-69.

1,8340

## Gd—Pd. Гадолиний—палладий

 $GdPd_3$  имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,090 A [1].

- 1. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162.
- 1,9051

## Gd—Рt. Гадолиний—платина

Как показал рентгеновский анализ [1], в системе существуют промежуточные фазы GdPt, GdPt<sub>2</sub>, GdPt<sub>5</sub> и, возможно, Gd<sub>2</sub>Pt<sub>3</sub> и GdPt<sub>3</sub>.

GdPt имеет ромбическую решетку типа FeB;  $a = 5,574 \pm 0,005$  A,  $b = 4,458 \pm 0,003$  A,  $c = 7,164 \pm 0,003$  [2].

GdPt<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7,637  $\pm$  0,001 A [3], 7,577 [4, 5], 7,6349  $\pm$  0,0008 Å [6].

- 1. Moriarty J. L., Baenziger N. С. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 946-947.
- 3. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
- 4. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099,
- 1959, p. 76-92. 5. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 6. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 948-950.

 $\overline{1},8129$ 0,1871

#### Gd—Ри. Гадолиний—плутоний

Добавки Gd не стабилизируют δ-Ри при закалке до комнатной температуры [1].

1. Gshneidner K. A. (Jr.) a. o. (eds.), Plutonium, 1960, Cleaver-Hume Press, Ltd, London, 1961, p. 134-142.

0,1832 1,8168

## Gd-Rh. Гадолиний-родий

GdRh<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,514 ± 0,001 A [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, v. 651-654.

#### 0,1883 1,8117

## Gd-Ru. Гадолиний-рутений

 $GdRu_2$  имеет гексагональную решетку, изотипную с MgZn<sub>2</sub> [1, 2];  $a = 5,271 \pm$  $\pm$  0,002 Å,  $c = 8,904 \pm 0,002$  Å [1]. Структура эквиатомного сплава не кубическая и не относится к типу CsCl [3].

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E. U. S. At. Energy Comm., 1960, ANL-6330, p. 156-158. 3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

#### 0,6895 1,3105

#### Gd-S. Гадолиний-сера

GdS имеет г. ц. к. решетку типа NaCl; a = 5,574 A [1], a = 5,563 A [2, 3]. Gd<sub>2</sub>S<sub>3</sub> существует в двух модификациях. α стабильна до 950 ± 150° С. При этой температуре происходит превращение α 
γ. γ стабильна до температуры плавления (~1885° С) [1, 4]. Кристаллическая структура α-Gd<sub>2</sub>S<sub>3</sub> неизвестна [1]. ү-Gd<sub>2</sub>S<sub>3</sub> имеет о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub>: a = 8,387 А [1, 4]. Сульфид Gd<sub>2</sub>S<sub>3</sub> гомогенен в небольшом интервале концентраций. Отсутствуют какие-либо

указания на существование соединения Gd<sub>3</sub>S<sub>4</sub> [4]. GdS<sub>2</sub> гомогенен до состава GdS<sub>1,90</sub> [5], решетка его тетрагональная; a = 7,85 A, c = 7,96 A [1]; a = 7,83 A, c = 7,96 A [5].

1. Flahaut J. e. a. Compt. Rend., 1957, v. 245, p. 2291-2293. 2. Iandelli A. В книге «Rare Earth Research», E. V. Kleber (ed.). The Macmillan Company, N. Y., 1961, p. 135-141.

42

3. I and elli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci., Fis. Mat. Nat., 1960, v. 29, p. 62-69.

4. Picon M. e. a. Bull. Soc. Chim. France, 1960, p. 221-228.

- 5. Flahaut J. e. a. Bull. Soc. Chim. France, 1959, p. 1917-1920.
- 0,1112 $\overline{1},8888$

#### Gd—Sb. Гадолиний—сурьма

GdSb имеет г. ц. к. решетку типа NaCl, *a* = 6,217 A [1, 2]; температура плавления >1000° С [2].

1. Iandelli A. В книге «Rare Earth Research», E. V. Kleber (ed.), The Macmillan Company, N. Y., 1961, p. 135—141.

2. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.

 $\frac{0,2982}{1,7018}$ 

#### Gd—Se. Гадолиний—селен

Обобщая данные работ [1—6], можно сказать, что в системе Gd—Se образуются те же соединения, что и в системах других редкоземельных элементов с Se: GdSe, твердый раствор от Gd<sub>3</sub>Se<sub>4</sub> до Gd<sub>2</sub>Se<sub>3</sub> [57,1—60% (ат.) Se] и твердый раствор от Gd<sub>2</sub>Se<sub>3.6</sub> до GdSe<sub>2</sub> [64,3—66,7% (ат.) Se].

GdŠe, полученный синтезом элементов [1—3] или восстановлением окисла алюминием в присутствии Se [4], имеет г. ц. к. структуру типа NaCl с периодом 5,758 A [1], 5,781 A [2], 5,79 A [3], 5,772 [4]. Данные по температуре плавления GdSe заметно различаются: 2160° C [1] и 1860—1865° C [3].

Сообщается [5], что распад Gd<sub>2</sub>Se<sub>3</sub> при 1200—1700° С сопровождается образованием серии твердых растворов с составом от Gd<sub>2</sub>Se<sub>3</sub> до Gd<sub>3</sub>Se<sub>4</sub>. Кристаллическая структура их о. ц. к. типа Th<sub>3</sub>P<sub>4</sub> с соответствующим количеством вакантных позиций Gd, a = 8,717 A (Gd<sub>3</sub>Se<sub>4</sub>). Эти данные подтверждаются и другой работой [3], в которой и Gd<sub>3</sub>Se<sub>4</sub>, и Gd<sub>2</sub>Se<sub>3</sub> относятся к одинаковому структурному типу Th<sub>3</sub>P<sub>4</sub>. Однако в работе [1] со стороны Gd<sub>2</sub>Se<sub>3</sub>, обогащенной Gd, обнаружена эвтектика, которая несовместима с существованием Gd<sub>3</sub>Se<sub>4</sub>. Определенная химическим анализом концентрация эвтектики равна 56% (ат.) [39% (по массе)] Se [1]. Период решетки Gd<sub>2</sub>Se<sub>3</sub> равен 8,72 ± 0,005 A.

Методом газопереноса приготовлены сплавы, лежащие на границе области твердого раствора Gd<sub>2</sub>Se<sub>3, 6-4</sub>. Селенид Gd<sub>2</sub>Se<sub>4</sub> был получен синтезом элементов.

 $Gd_2Se_{3,6}$  имеет тетрагональную решетку (a = 8,15 Å, c = 8,36 A), изоморфную с другими подобными соединениями в системах редкоземельных элементов и Se [6]. По предварительным данным [1],  $Gd_2Se_4$  был проиндицирован в предположении ромбической ячейки; a = 7,27 A, b = 4,03 A и c = 8,30 A.

- Vickery R.C., Muir H. M. В книге «Rare Earth Research» E. V. Kleber (ed.), The Macmillan Company, N. Y., 1961, p. 223—231.
- 2. I an d e l l i A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- Miller J. F. a. o. В книге «Rare Earth Research» (Proceedings of the Second Conference), J. F. Nachman, C. E. Lundin (eds.), Gordon and Breach Science Publishers Inc. N. Y., 1962, p. 233—248.
- 4. Guittard M., Benacerraf A. Compt. Rend., 1959, v. 248, p. 2589-2591.
- 5. Benacerraf A., Guittard M. Compt. Rend., 1959, v. 248, p. 2012-2014.
- 6. Benacerraf A. e. a. Compt. Rend., 1959, v. 248, p. 1672-1675.
- 44

0,7482 $\overline{1},2518$ 

#### Gd—Si. Гадолиний—кремний

Сообщается о существовании при ~58% (ат.) Si нестехиометрического силиинда GdSi<sub>2</sub>. Ниже 400 ± 25° С он имеет ромбическую решетку (a = 4,09 A, b = 4,01 A, c = 13,44 A), а выше 400 ± 25° С — тетрагональную типа ThSi<sub>2</sub>; a = 4,10 A, c = 13,61 A (при 460° C) [1]. В работе [2] высказывается предположение о том, что богатое кремнием соединение имеет состав Gd<sub>3</sub>Si<sub>5</sub>, а сплав с 67% (ат.) Si имеет двухфазную структуру Si + Gd<sub>3</sub>Si<sub>5</sub>. Подтвержден также и диморфизм силицида Gd<sub>3</sub>Si<sub>5</sub> (однако имеются расхождения с работой [1] в определении типа решетки): одна модификация гексагональная ( $a = 3,877 \pm 0,001$  A,  $c = 4,172 \pm 0,001$  A), другая — ромбическая ( $a = 4,09 \pm 0,001$  A,  $b = 4,01 \pm$ + 0,001 A,  $c = 13,44 \pm 0,01$  A). Температура плавления «GdSi<sub>2</sub>» 1540° C [3] или 1500° C [4].

Сообщается о существовании эвтектики при 85,3% (ат.) [97% (по массе)] Gd и соединения Gd<sub>5</sub>Si<sub>3</sub>; растворимость Si в Gd <0,56% (ат.) [0,1% (по массе)] [5].

- 1. Perri J. A. a. o. J. Chem. Phys., 1959, v. 63, p. 616-619. Perri J. A. a. o. ibid., 1959, v. 63, p. 2073-2074.
- 2. Lundin C. E. В книге «Rare Earth Research», E. V. Kleber (ed.), The Macmillan Company, N. Y., 1961, p. 306—313.
- 3. Binder I. J. Amer. Ceram. Soc., 1960, v. 43, p. 287-292.
- 4. Grinthal R. D. J. Electrochem. Soc., 1960, v. 107, p. 59-61.
- 5. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-887 (QPR 13), 1961, p. 4-5.

#### 1,9393 0,0607

#### Gd—Та. Гадолиний--тантал

В системе отсутствуют промежуточные фазы [1, 2]. При плавке в танталовом тигле Gd поглощает <0,088% (ат.) [0,1% (по массе)] Та. Взаимная растворимость компонентов в твердом состоянии очень мала [2].

- 1. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 948-950.
- 2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0.0909 $\overline{1.9091}$ 

#### Gd—Te. Гадолиний—теллур

В работе [1] исследованы соединения, образующиеся в системе. Обнаружено четыре соединения: GdTe, Gd<sub>3</sub>Te<sub>4</sub> (гомогенное до состава Gd<sub>2</sub>Te<sub>3</sub>), GdTe<sub>2</sub> и GdTe<sub>4</sub>. GdTe плавится при 1870 ± 30° C, Gd<sub>3</sub>Te<sub>4</sub> — при 1410 ± 30° C и «Gd<sub>2</sub>Te<sub>3</sub>» при 1505 ± 30° C. Из-за испарения Те температуры плавления GdTe<sub>2</sub> и GdTe<sub>4</sub> определить не удалось. Можно предполагать, что GdTe испытывает эвтектоидный распад, так как в результате спекания эквиатомной смеси при 1300° С образуется соединение GdTe, а при температуре спекания 800° С в сплаве обнаруживаются две равновесные фазы: Gd и Gd<sub>3</sub>Te<sub>4</sub>.

GdTe имеет г. ц. к. решетку типа NaCl [1, 2], a = 6,139 A [2]. По другим данным, решетка GdTe моноклинная; a = 8,623 A, b = 9,053 A, c = 3,186 A,  $\beta = 91^{\circ}$  I' [3]. Структура соединения Gd<sub>3</sub>Te<sub>4</sub> не определена. Предполагается, что оно имеет ромбическую структуру [1]. GdTe<sub>2</sub> имеет тетрагональную решетку; a = 9,10 A, c = 9,30 A; GdTe<sub>4</sub> имеет ромбоэдрическую решетку; a = 13,0 A,  $\alpha = 25^{\circ}$  30' [1].

 Miller J. F. a. o. В книге «Rare Earth Research» (Proceedings of the Second Conference), J. F. Nachman, C. E. Lundin (eds.), Gordon and Breach Science Publishers Inc., N. Y., 1962, p. 233—248. 2. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat. 1960, v. 29, p. 62-69.

3. Brizner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.

#### 0,5164 1,4836

#### Gd—Ті. Гадолиний—титан

Диаграмма, представленная на рис. 233, построена в результате изучения сплавов, выплавленных в дуговой печи из более чем 99%-ного Gd и электролитического Ti [1]. В работе использованы данные рентгеновского, термического и



Рис. 233. Gd—Ti

металлографического анализов, резистометрических измерений и определения температур плавления.

В работе [2] сообщается, что в системе отсутствуют соединения, а взаимная растворимость компонентов в твердом состоянии очень мала. Gd повышает температуру α — β-превращения Ti до 900 ± 3° C, при которой происходит перитектоидная реакция [3]. Растворимость Gd как в α-, так и в β-Ti меньше 0,09% (ат.) [0,3% (по массе)]. Имеется неподтвержденное экспериментальными данными сообщение [4] о существовании области несмешиваемости в жидком состоянии.

- 1. Croeni J. G. a. o. U. S. Bur. Mines, Rept. Invest. 5796, 1961, 14p.
- 2. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948-950.
- Love B. WADC Tech. Rept. 57—666, pt. 11, 1959; см. Гшнейднер К.А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- Веск Ř. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

46

1,88620,1138

#### Gd-Tl. Гадолиний-таллий

В системе обнаружено три соединения: Gd<sub>2</sub>Tl, GdTl и GdTl<sub>3</sub> [1]. GdTl имеет кубическую решетку типа CsCl,  $a = 3,7797 \pm 0,0009$  A [2]. Решетка GdTl<sub>3</sub> кубическая типа AuCu<sub>3</sub>, a = 4,696 + 0,001 A [2].

 Могіатіу Ј. L., Ваеп ziger N. С. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд.во «Металлургия», 1965.

2. Baenziger N. C., Moriarty J. L. (Jr.). Acta Cryst., 1961, v. 14, p. 948-950.

1,8189 0,1811

#### Gd-U. Гадолиний-уран

Gd и U не смешиваются в жидком состоянии [1, 2]. Растворимость Gd в U уменьшается от 0,23% (ат.) [0,15% (по массе)] при 1250° С до 0,11% (ат.) [0,075% (по массе)] при 1150° С [1]. По другим данным, растворимость Gd в U при 1200° С составляет 0,15% (ат.) [0,1% (по массе)] [2].

Растворимость Gd в α-U менее 0,08% (ат.) [3].

 Wilhelm H. A. Nuclear Fuels Newsletter, 1957, WASH—704, см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 26.
 Haefling J. F., Daane A. H. Trans. AIME, 199, v. 215, p. 336—338.
 Berndt A. U. S. At. Energy Comm. ANL—6516, 1961, p. 214—217.

0,4885 $\overline{1},5115$ 

## Gd—V. Гадолиний—ванадий

В системе не обнаружено промежуточных соединений [1—3]. В жидких сплавах на основе одного из компонентов растворимость другого компонента ограничена [1]. Сообщается о разрыве растворимости в жидком состоянии в богатой ванадием части диаграммы [4]. Растворимость Gd в V в твердом состоянии должна быть очень небольшой [1, 3]. Предполагается изоморфизм с системой Y—V [4].

Более подробные данные о растворимости даются в работе [1]: если судить по содержанию Gd в закристаллизовавшейся ванадиевой части расплава, растворимость Gd в жидком V мала, а растворимость V в жидком Gd примерно 14% (ат.). Температуры затвердевания богатых V и Gd расплавов не более чем на З *град* отличаются от температуры плавления чистых компонентов. После отжига при 950° C в твердом V не обнаружено выделений Gd. То, что в результате совместной плавки V и Gd период решетки первого изменяется, связывают с раскисляющим действием Gd. По той же причине заметно уменьшается твердость загрязненного V после плавки с Gd.

- 1. Komjathy S. a. o. WADC Tech. Rept. 59-483, 1959, 69p.; Komjathy S. J. Less-Common Metals, 1961, v. 3, p. 468-488.
- 2. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948-950.
- 3. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-887 (QPR 13), 1961, p. 4.
- 4. Lundin C. E., Klodt D. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга, и А. Х. Даана. Изд-во «Металлургия», 1965.

47

## Gd—W. Гадолиний—вольфрам

В системе не образуется соединений [1].

- 1. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948-950.
- 0.2476 1,7524

Gd-Y. Гадолиний-иттрий

Диаграмма состояния (рис. 234) построена по данным работы [1]. В работе использованы термический и рентгеновский анализы и ограниченное микроскопическое исследование для определения положения границ. И низкотемпературные



1. I and elli A. Atti Accad. Nazl. Lincei. Rend. Classe Sci, Fis. Mat. Nat., 1960, v. 29, p. 62-69.

0,2366 1.7634

## Gd—Zr. Гадолиний—цирконий

Приведенная на рис. 235 диаграмма построена по данным исследования сплавов, выплавленных в дуговой печи из более чем 99%-ного Gd и иодидного Zr. Определялась температура плавления сплавов, проведены термический, металлографический и рентгеновский анализы [1]. В других работах сообщается, что диаграмма состояния Gd-Zr простая, эвтектического типа [2], что в системе не образуются соединения [3]. Оба утверждения согласуются с предложенной диаграммой [1]. В упомянутых работах, однако, обнаружена растворимость Zr 48

в Gd. В работе [3] этот вывод основан на заметном изменении периода решетки. Согласно диаграмме состояния [1], растворимость Zr в Gd «очень мала». Gd повышает температуру аллотропического превращения Zr до перитектоидной [4].

Хотя примесные фазы не позволили металлографическим метолом точно определить температуру и концентрацию перитектоида [4], все же полученные результаты близки к данным работы [1]. Zr не влияет на аллотропическое превращение Gd [1].

1. Copeland M. I. a. o. U. S. Bur. Mines, Rept. Invest. 5850, 1961, 13p.

2. Love B. WADD Tech. Rept. 60-74, 1960, pt 1, p. 29. x-6d=ß-6d 3. Baenziger N. C., Moriarty J. L. (Jr.) Acta Cryst., 1961, v. 14, p. 948-950.

4. Uy J. C. a. o. Rensselaer Polvtechnic Institute, Final Report on Contract AT (301)-2159, 1961, 80p.

Химическим путем можно

получить соединения между Ge

1.8575 Ge—H. 2,1425 Германий-водород



и Н. В литературе, однако, не указывается, равновесны ли эти соединения. В табл. 21 перечислены все соединения этого типа, упоминавшиеся в литературе. Сообщается [3], что температуру кипения соеди-

пений можно выразить эмпирической зависимостью. В обзоре [4] упоминается о существовании соединений (GeH)<sub>x</sub> и (GeH<sub>2</sub>)<sub>x</sub>.

| ТАБЛИЦА | 21. ТЕМПЕРАТУРА | ПЛАВЛЕНИЯ |
|---------|-----------------|-----------|
| И       | КИПЕНИЯ ГИДРИД  | (ОВ       |
| И       | кипения гидрид  | (OB       |

|                                                                                                                                                                                                                           | Температура, °С                                                        |                                 |                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|--|
| Соединение                                                                                                                                                                                                                | плавления                                                              | кипения                         | Источники                       |  |  |  |  |
| $\begin{array}{c} \operatorname{Ge}_5\operatorname{H}_{12}\\ \operatorname{Ge}_4\operatorname{H}_{10}\\ \operatorname{Ge}_3\operatorname{H}_8\\ \operatorname{Ge}_2\operatorname{H}_6\\ \operatorname{GeH}_4 \end{array}$ | $ \begin{array}{c c} - & -105, 6 \\ - & -109 \\ - & - \\ \end{array} $ | +234<br>+176,9<br>+110,5<br>+29 | [1]<br>[1]<br>[2]<br>[2]<br>[2] |  |  |  |  |

A m b e r g e r E. Angew Chem., 1959, Bd 71, S. 372-373.
 D e n n i s L. M. a. o. J. Amer. Chem. Soc., 1924, v. 46, p. 657-674.

4 Р. П. Эллиот, том II

3. English W. D., van Nicholls R. V. J. Amer. Chem. Soc., 1950, v. 72, p. 2764-2765.

4. Johnson O. H. Chem. Rev., 1952, v. 51, p. 431-469.

## 1,6091

## Ge—Hf. Германий—гафний \*

Диаграмма состояния (рис. 236) взята из работы [1], в которой экспериментальные данные отсутствуют. Проведено рентгеновское исследование системы, изучено 8 литых или спеченных сплавов, приготовленных из Ge высокой чистоты



и Hf с примесью 2,2% Zr [2]. На диаграмме мало данных о температурах плавления сплавов. Построена она в предположении аналогии с системами Zr—Ge и Hf—Si.

Нf<sub>2</sub>Ge имеет тетрагональную решетку типа CuAl<sub>2</sub>; a = 6,587 A,  $c = 5,37_2$  A [2]. Решетка Hf<sub>5</sub>Ge<sub>3</sub> гексагональная типа Mn<sub>5</sub>Si<sub>3</sub> [2, 3];  $a = 7,87_1$  A,  $c = 5,55_7$  A;  $a = 7,91_1$  A,  $c = 5,54_5$  A (разница в значениях периодов решетки связана, ве-50 роятно, с различным содержанием примесей) [2];  $a = 7,88_3$  A, c = 5,537 A [3% (ат.) C] [3]. Соединение стабилизируется в присутствии примесей [2, 3]. Нібе имеет ромбическую решетку типа FeB [2]. В работе [2] подтверждено существование соединения HiGe<sub>2</sub>.

1. Nowotny H. u. a. Radex Rundschau, 1960, Bd 6, S. 367-372. 2. Nowotny H. u. a. Monatsh. Chem., 1960, Bd 91, S. 270-275. 3. Parthe E. Acta Cryst., 1959, v. 12, p. 559-560.

## Ge—In. Германий—индий \*

1,8012 0.1988

Повторно исследована растворимость Ge в жидком In [1, 2]. Полученные данные подтверждают ликвидус диаграммы, приведенной М. Хансеном и К. Андерко (см. т. II, рис. 419). Результаты работы [1] согласуются с данными, приведенными М. Хансеном и К. Андерко (см. т. II, [2]), а работы [2] — с их же данными (см. т. II [1]) в интервале от 0 до 50% (ат.) Ge. По данным работы [1] и М. Хансена и К. Андерко (см. т. II [2]) рассчитано положение эвтектики 157° С, 0.05% (ат.) Ge [3].

В табл. 22 приведены значения растворимости Іп в Ge [2, 4, 5]. Данные первых двух работ хорошо согласуются между собой и заметно отличаются от данных работы [5].

| т | A | Б | ли | ЦA | 22. | растворимость | In | В | твердом | Ge |
|---|---|---|----|----|-----|---------------|----|---|---------|----|
|---|---|---|----|----|-----|---------------|----|---|---------|----|

| Темпе-<br>ратура<br>°С                        | Растворимо                                             | сть, % (ат | r.) $In \cdot 10^{-3}$ | Темпе-<br>ратура<br>°С                        | Растворимость, % (ат.) In·10 <sup>-3</sup> |                              |                                                                 |  |
|-----------------------------------------------|--------------------------------------------------------|------------|------------------------|-----------------------------------------------|--------------------------------------------|------------------------------|-----------------------------------------------------------------|--|
|                                               | [2]                                                    | [4]        | [5]                    |                                               | [2]                                        | [4]                          | [5]                                                             |  |
| 932<br>931<br>925<br>900<br>874<br>800<br>797 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |            |                        | 700<br>620<br>600<br>510<br>500<br>400<br>300 | 66<br>                                     | 45<br>58<br><br>65<br>70<br> | $\begin{vmatrix} 4,5-8,6\\61-122\\6,8\\-\\-\\<23 \end{vmatrix}$ |  |

1. Hassion F. X. Неопубликованные данные, цит. см. [3].

2. Журкин Б. Г. и др. Изв. АН СССР, ОТН, Металлургия и топливо, 1959, № 5, с. 86-90.

3. Thurmond C. D., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169-204.

4. Thurmond C. D. a. o. Chem. Phys., 1956, v. 25, p. 799–800; Klemm W. u. a. Z. Anorg. Allgem. Chem., 1948, Bd 256, S. 239.

5. Тгитьоге F. A. Bell System Tech. J., 1960, v. 39, p. 205—233; см. John H. J. J. Electrochem. Soc., 1958, v. 105, p. 741.

#### 1,57520,4248

## Ge—Ir. Германий—иридий \*

Структура образующихся в системе фаз изучалась с помощью рентгеновского анализа порошков и монокристаллов сплавов Ge с 60, 44, 43 и 20% (ат.) Ir, подвергнутых термообработке при 520—1000° С [1]. Получены следующие результаты: IrGe имеет ромбическую решетку типа *B31*, что согласуется с данными М. Хансена и К. Андерко (см. т. II, [1]); решетка Ir<sub>4</sub>Ge<sub>5</sub> тетрагональная, a =

= 5,64 A,  $c = 4 \times 4,56$  A; Ir<sub>3</sub>Ge, изотипен с Ir<sub>3</sub>Sn<sub>7</sub>; IrGe<sub>4</sub> имеет гексагональную решетку, a = 6,211 A,  $c = 7,77_2$  A [1].

В этой работе имеются некоторые данные о взаимосвязи фаз в системе, однако их недостаточно для построения диаграммы состояния. В сплаве с 40% (ат.) Ge появляется эвтектоидная (или эвтектическая) структура, возможно (Ir) + IrGe. При этой концентрации допускается существование высокотемпературной фазы типа *B8*. В сплаве с 56% (ат.) Ge имеются две фазы: IrGe и Ir<sub>3</sub>Ge<sub>7</sub>, а в сплаве с 57% (ат.) Ge обнаруживаются три фазы: Ir<sub>3</sub>Ge<sub>4</sub> (?), Ir<sub>4</sub>Ge<sub>5</sub> и Ir<sub>3</sub>Ge<sub>7</sub>. При 80% (ат.) Ge фаза Ir<sub>3</sub>Ge<sub>7</sub> находится в равновесии с IrGe<sub>4</sub>.

1. Bhan S., Schubert K. Z. Metallkunde, 1960, Bd 51, S. 327-339.

0,2688 $\overline{1.7312}$ 

#### Ge—К. Германий—калий \*

Кристаллическую структуру КGe определяли в работах [1—3]. Соединение имеет кубическую решетку и содержит в элементарной ячейке 32 формульные единицы. Наиболее точен период решетки, равный 12,80  $\pm$  0,03 A [1]. В результате исследования монокристаллов определено положение атомов в элементарной ячейке, соединению приписана группа  $P\overline{43n}$ .

При нагревании в высоком вакууме КGe разлагается до KGe<sub>4</sub> — соединения с кубической решеткой (a = 13,9 A) [2].

1. Busmann E. Naturwissenschaften, 1960, Bd 47, S. 82.

- 2. Schafer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 214-220.
- 3. Busmann E. Z. Anorg. Allgem. Chem., 1961, Bd 31, S. 90-106.
- 1,7182

## Ge—La. Германий—лантан

LaGe<sub>2</sub> имеет о. ц. тетрагональную решетку типа ThSi<sub>2</sub>; a = 4,330 A, c = 14,255 A [1]. В работе [2] сообщается, что LaGe<sub>2</sub> имеет ромбически искаженную решетку типа ThSi<sub>2</sub>, периоды ее не указаны.

- I an d e l l i A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt Brit., Proc. Symp., 1959, v. 1, № 9, paper 3F, 11p.
- 2. Matthias B. T. a. o. Phys. Rev., 1958, v. 112, p. 89.

## $\frac{1,0195}{2,9805}$

## Ge—Li. Германий—литий

В результате диффузионного взаимодействия смесей Ge и Li различного состава получены соединения Li<sub>3</sub>Ge и Li<sub>4</sub>Ge. Оба соединения плавятся конгруэнтно соответственно при 800 ± 10 и 750 ± 10° C [1]. Твердый раствор на основе Ge и Li<sub>3</sub>Ge образуют эвтектику при 49 ± 5% (ат.) Li и 525 + 10° C. Сообщается [2], что богатое Li соединение имеет скорее всего состав Li<sub>15</sub>Ge<sub>4</sub>, а не LiGe<sub>4</sub>, и что структура его о. ц. к., изотипная с Cu<sub>15</sub>Si<sub>4</sub>;  $a = 10,783 \pm 0,002$  A.

В табл. 23 приведены данные по растворимости Li в Ge в твердом состоянии [1, 3]. Максимальная растворимость  $1,7 \pm 0,5 \cdot 10^{-2}$ % (ат.) Li достигается при 800° С. Коэффициент распределения Li, по различным данным, колеблется от 0,002 до 0,01 [1, 4, 5].

#### ТАБЛИЦА 23. РАСТВОРИМОСТЬ LI В ТВЕРДОМ Ge

| Темпера-<br>тура, °С            | Раствор                                                                                              | IK .                                                                                                                                | Ca<br>Ca                                    | Раствор                  | E F -                                                                          |                                                                            |                          |
|---------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|
|                                 | % (ат.)                                                                                              | число атомов<br>на 1 см <sup>3</sup>                                                                                                | Литера<br>турный<br>источн                  | Temner<br>Typa,          | % (ат.)                                                                        | число атомов<br>на 1 см <sup>3</sup>                                       | Литер<br>турны<br>источі |
| 900<br>800<br>700<br>600<br>500 | $1,3 \cdot 10^{-2} \\ 1,7 \cdot 10^{-2} \\ 1,3 \cdot 10^{-2} \\ 8 \cdot 10^{-3} \\ 6 \cdot 10^{-3} $ | 5, 3 · 10 <sup>18</sup><br>7, 3 · 10 <sup>18</sup><br>5, 2 · 10 <sup>18</sup><br>3, 3 · 10 <sup>18</sup><br>2, 5 · 10 <sup>18</sup> | [1, 5]<br>[1, 5]<br>[1, 5]<br>[1, 5]<br>[3] | 400<br>300<br>200<br>100 | $1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 6 \cdot 10^{-6} \\ 5 \cdot 10^{-7} \\ $ | $4, 5 \cdot 10^{17} 5 \cdot 10^{16} 2, 5 \cdot 10^{15} 2, 3 \cdot 10^{14}$ | [3]<br>[3]<br>[3]<br>[3] |

1. Pell E. M. Phys. Chem. Solids, 1957, v. 3, p. 74-76.

2. Гладышевский Е. И., Крипякевич П. П. Кристаллография, 1960, т. 5, с. 574—576.

3. Morin F. J., Reiss H. Phys. Chem. Solids, 1957, v. 3, p. 196-209.

4. В urton J. A., Morin F. J. Неопубликованные данные, см. FullerC. S.,

Ditzenberger J. A. Phys. Rev., 1953, v. 91, p. 193.

5. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.

#### 0,1211 1.8789

## Ge---Мп. Германий---марганец \*

Данные рентгеновского анализа порошков и изучения магнитных свойств сплавов, приготовленных из 99,9%-ного Мп и 99,99999%-ного Ge [1], указывают на необходимость пересмотра предложенной ранее диаграммы (см. М. Хансен и К. Андерко, т. II [1]).

Диаграмма на рис. 237, за исключением интервала 21,8-35,7% (ат.) Ge, не отличается от диаграммы, приведенной М. Хансеном и К. Андерко (см. т. П, рис. 421). В указанном интервале она перестроена согласно данным работы [1]. Фаза § - высокотемпературная модификация Мп5Ge2, имеет область гомогенности, сужающуюся при понижении температуры. Магнитные свойства ξ-фазы аномальны, что связано, возможно, с антиферромагнетизмом этого соединения. Такую же аномалию магнитных свойств, связанную с антиферромагнетизмом, обнаруживает и высокотемпературная є-фаза (Мп<sub>з.25</sub>Ge), тогда как низкотемпературная модификация є, ферромагнитна. Высказано предположение о том, что более вероятен состав этой фазы Мпя "Ge [1]. Обнаружена k-фаза с очень узким интервалом гомогенности [1]. Фаза является ферромагнетиком типа N. По положению она соответствует низкотемпературной фазе Mn<sub>5</sub>Ge<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [1]). Изучение большого количества чистых сплавов, содержащих до 60% (ат.) Мп, подтверждает, что на участке 0-50% (ат.) Мп существуют только 2 фазы: твердый раствор на основе Ge и Mn<sub>3</sub>Ge [2]. При 113° К Mn<sub>3</sub>Ge<sub>2</sub> испытывает превращение первого рода [3]. Работа [1] помогла значительно яснее представить строение диаграммы на участке Mn<sub>3</sub>Ge<sub>2</sub>---Mn<sub>3,25</sub>Ge, хотя, как указывает сам автор, предложенную им диаграмму невозможно полностью согласовать с магнитными свойствами сплавов. Необходимо дальнейшее исследование с использованием термического и металлографического анализов.

Коэффициент распределения для растворимости Мп в Ge твердом состоянии составляет ~10<sup>-6</sup> [4].

Кристаллическая структура. Фаза є имеет неупорядоченную г. к. решетку типа Mg с 2 атомами в элементарной ячейке. При 22,7% (ат.) Ge периоды составляют:  $a = 2,66_8 \pm 0,003$  A,  $c = 4,30_9 \pm 0,003$  A [1, 5]. Фаза  $\varepsilon_1$  также неупорядочена, решетка ее тетрагональная, типа In;  $a = 3,80_3$  A,  $c = 3,61_8$  A для эквивалентной гранецентрированной ячейки [1, 6]. Фаза  $\zeta$  имеет гексагональную решетку ( $a = 7,18_6$  A,  $c = 13,0_8$  A) с 42 атомами в элементарной ячейке. В то же



время сильные отражения могут быть индицированы в предположении  $a' = a/\sqrt{3} = 4,15$  А, c' = c/2,5 = 5,23 А [1]. Периоды решетки и относительная интенсивность отражений [1] подтверждают предположение М. Хансена и К. Андерко (см. т. II [1]) о том, что структура ζ фазы родственна структуре Ni<sub>2</sub>In. Рентгенограммы порошка k-фазы индицировать не удалось, сообщается лишь что «симметрия решетки, по-видимому, не очень низкая» [1]. Фаза  $\eta$  (Mn<sub>5</sub>Ge<sub>3</sub>) изотипна с Mn<sub>5</sub>Si<sub>3</sub> и имеет гексагональную решетку;  $a = 7,18_8$  А,  $c = 5,03_7$  А (со стороны, богатой Мп) [1]. Эти данные согласуются с результатами, полученными ранее (см. М. Хансен и К. Андерко, т. II [5]).

1. O h o y a m a T. J. Phys. Soc. Japan, 1961, v. 16, p. 1995-2002.

2. Марголин С. Д., Факидов И. Г. Магнитная структура ферромагнетиков. Новосибирск, Книжное изд-во, 1960, с. 211—216.

- 3. Факидов И. Г., Цивкин Ю. Н. ФММ, 1959, т. 7, с. 685.
- 4. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.
- 5. Yasukochi K. a. o. J. Phys. Soc. Japan, 1959, v. 14, p. 1820.
- 6. O h o y a m a T. a. o. J. Phys. Soc. Japan, 1961, v. 16, p. 352-353.

54

1,8789 0,1211

## Ge-Mo. Германий-молибден \*

В работах [1, 2] изучалось соединение МоGe<sub>2</sub>. Выше 1095 ± 20° С фаза распадается на Mo<sub>2</sub>Ge<sub>3</sub> и жидкость. Высокотемпературная модификация MoGe<sub>2</sub>, изотипная с MoSi<sub>2</sub>, не наблюдалась. Сомнительно и само ее существование. Эксперименты по закалке [3] показали, что германиды Mo<sub>3</sub>Ge<sub>2</sub> и Mo<sub>2</sub>Ge<sub>3</sub> термически стабильны при 1290° С, а Mo<sub>3</sub>Ge — по крайней мере до 1760° С. У этих соединений не обнаружено никаких модификаций.

1. Peavler R. J., Beck C. C. J. Phys. Chem., 1959, v. 63, p. 2058—2059. 2. Searcy A. W., Carpenter J. H. Неопубликованные данные, см. [1]. 3. Carpenter J. H. Thesis, Purdue University, 1955, Dissertation Abstr., 1955, v. 15, p. 2402.

0,7146 1,2854

## Ge-N. Германий-азот \*

Нитрид Ge<sub>3</sub>N<sub>4</sub> имеет две модификации [1]:  $\alpha$ -Ge<sub>3</sub>N<sub>4</sub> гексагональный;  $a = 8,202 \pm 0,004$  A,  $c = 5,941 \pm 0,003$  A;  $\beta$ -Ge<sub>3</sub>N<sub>4</sub> ромбоэдрический, типа фенацита (Be<sub>2</sub>SiO<sub>4</sub>); a = 8,62 A,  $\alpha = 108,0^{\circ}$  ( $a = 8,038 \pm 0,004$  A,  $c = 3,074 \pm 0,002$  A для эквивалентной гексагональной ячейки). Решетки  $\alpha$ - и  $\beta$ -модификаций Ge<sub>3</sub>N<sub>4</sub> различаются только типом упаковки.

Обнаруженный ранее ромбический Ge<sub>3</sub>N<sub>4</sub> (см. М. Хансен и К. Андерко, т. II, [3]) соответствует α-Ge<sub>3</sub>N<sub>4</sub>. Концентрационная и температурная зависимость полиморфизма Ge<sub>3</sub>N<sub>4</sub> неизвестна. Часто наблюдаются структуры, в которых присутствуют обе модификации. α-Ge<sub>3</sub>N<sub>4</sub> образуется в результате нагрева Ge в аммиаке при 750° C, а β-Ge<sub>3</sub>N<sub>4</sub> — при нагреве окисла в тех же условиях [1].

1. Ruddlesden S. N., Popper P. Acta Cryst., 1958, v. 11, p. 465—468; Popper P., Ruddlesden S. N. Nature, 1957, v. 179, p. 1129.

0,4993 1,5007

## Ge-Na. Германий-натрий \*

Соединение NaGe имеет моноклинную решетку; a = 12,33 A, b = 6,70 A, c = 11,42 A,  $\beta = 120^{\circ}$ . В элементарной ячейке содержится 16 формульных единиц [1].

1. Schäfer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 214-220.

1,8929

#### Ge-Nb. Германий-ниобий

Работа [1] уже обсуждалась М. Хансеном и К. Андерко (см. т. I [4]), но ее данные не были приведены. Согласно этой работе, соединение  $\sim Nb_3Ge_2$  имеет гексагональную решетку типа  $Mn_5Si_3$ ;  $a = 7,71_8$  А,  $c = 5,37_0$  А. Для « $Nb_5Ge_3$ » приведена тетрагональная структура [1];  $a = 10,14_8$  А,  $c = 5,15_2$  А. В подтверждение структуры « $\beta$ -W», предложенной ранее для соединения  $Nb_3Ge$ , в работе [2] приведен период ее кубической решетки:  $a = 5,1743 \pm 0,0014$  А.

1. Nowotny H. a. o. J. Phys. Chem., 1956, v. 60, p. 677-678. 2. Nevitt M. V. Trans. AIME, 1958, v. 212, p. 350-355.

#### 1,7017 0.2983

## Ge—Nd. Германий—неодим

NdGe<sub>2</sub> имеет о. ц. тетрагональную решетку типа ThSi<sub>2</sub> [1, 2]; a = 4,224 A, c = 13,904 A [1];  $a = 4,258 \pm 0,005$  A,  $c = 13,87 \pm 0,01$  A [2].

1. I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11p.

2. Гладышевский Е.И.идр. Кристаллография, 1961, т. 6, с. 267-268.

#### 0,0924 1,9076

## Ge-Ni. Германий-никель \*

Обзор [1] работ [2-6] посвящен коэффициенту распределения и растворимости Ni в Ge. Из-за различий в методике определения чрезвычайно малой растворимости получается большой разброс ее значений. Максимальная растворимость составляет 1,8 · 10<sup>-5</sup> % (ат.) Ni; при 875° C; при 700° C она уменьшается до 4,5  $\times$  $\times 10^{-7}$  % (at.) Ni; [1].

В работе [7] приводятся значения периода решетки твердого раствора на основе Ni [0-16% (ат.) Ge].

- 1. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.
- 2. Tyler W. W. Phys. Chem. Solids, 1959, v. 8, p. 59-65.
- 3. Tyler W. W., Woodbury H. H. Bull. Amer. Phys Soc., 1957, v. 2, p. 135.
- 4. Tyler W. W. a. o. Phys. Rev., 1955, v. 98, p. 461-465. 5. Van der Maesen F., Brenkman J. A. Philips Res. Rept., 1954, v. 9, p. 225-230.
- 6. Wertheim G. K. Phys. Rev., 1959, v. 115, p. 37-47.
- 7. Pearson W. B., Thompson L. T. Canad. J. Phys., 1957, v. 35, p. 349-357.

#### 0,6568 1.3432

## Ge-0. Германий-кислород\*

В работах [1—4] изучены фазовые равновесия в системе Ge—GeO<sub>2</sub>. Диаграмма (рис. 238) построена по данным работы [2] с некоторыми поправками [3]. Работа [4] подтверждает приведенную диаграмму. Выводы работы [1] нельзя сопоставить с данными работ [2-4]. При изучении равновесия в работе [1] был использован рентгеновский анализ, в работах [2-3] — рентгеновский и металлографический и в работе [4] — дифференциальный термический.

Соединение GeO термодинамически нестабильно в твердом состоянии [1-4]. хотя его можно получить химическим путем [5] или в газообразном состоянии [6, 7]. GeO<sub>2</sub> существует в двух кристаллических модификациях [8, 9]. Высокотемпературный GeO<sub>2</sub> (H) имеет гексагональную решетку низкотемпературной  $\alpha$ -модификации кварца; a = 4,987 А, c = 5,652 А [10]. Низкотемпературная модификация GeO<sub>2</sub> (L) имеет тетрагональную решетку типа рутила;  $a = 4,395 \pm$ ± 0,003 A, c = 2,860 ± 0,003 A [11]. Переход из одной модификации в другую происходит при 1033° С [8]. GeO<sub>2</sub> (H) плавится при 1116 ± 4° С, GeO<sub>2</sub> (L) имеет метастабильную точку плавления 1086 ± 5° С [8]. При охлаждении из жидкого состояния GeO2 переохлаждается и затвердевает в виде аморфной стекловидной массы [1-4, 12].

При определении температур плавления сплавов Ge-GeO2 возникла путаница [1, 2]. Эвтектическая температура была определена равной 870° С. В тщательно выполненной работе [3] изучалось плавление и  $GeO_2(H)$ , и  $GeO_2(L)$ . Окислы плавили в германиевых тиглях, помещенных в эвакуированные ампулы. Было установлено, что выше 912 ± 5° С жидкость образуется как в тигле с GeO<sub>2</sub> (*H*), так и в тигле с GeO<sub>2</sub> (*L*), однако в интервале 870—912° С плавится с образованием эвтектики только GeO<sub>2</sub> (*H*). Таким образом, 912° С — температура стабильной эвтектической реакции Ж 🔁 (Ge) + GeO<sub>2</sub> (L), а 870° С — температура метастабильной эвтектической реакции Ж → (Ge) + GeO<sub>2</sub> (H).

Температура плавления Ge и сплавов Ge-O в интервале до ~20% (ат.) О павна 940 ± 1° С. Это позволяет предположить, что сплавы, богатые Ge, кристал-



Рис. 238. Ge-0

лизуются по реакции  $\mathbb{X}_1 \rightleftharpoons$  (Ge) +  $\mathbb{X}_2$  (монотектика) или  $\mathbb{X}_1 + \mathbb{X}_2 \rightleftharpoons$  Ge (твердый).

В работе [1] сообщается, что растворимость в твердом состоянии достигает 60% (ат.) О. Температура плавления твердого раствора при этом повышается до 1430° С. Методом калиброванного инфракрасного поглощения определены следующие значения растворимости О в Ge [13]:

Температура, °С..... 940 Растворимость, % (ат.) 10<sup>-3</sup>... 6,7 900 800 750 700650 0,75 0,34 4.0 1.4 0,18

Дается также значение 0,45% (ат.) [< 0,1% (по массе)] О [2], что согласуется с данными работы [13] и противоречит данным работы [1].

1. Hoch M., Johnston H. L. J. Chem. Phys., 1954, v. 22, p. 1376-1377.

2. Candidus E. S., Tuomi D. J. Chem. Phys., 1955, v. 23, p. 588.

3. Trumbore F. A. a. o. J. Chem. Phys., 1956, v. 24, p. 1112.

4. Brewer L., Zavitsanos P. Phys. Chem. Solids, 1957, v. 2, p. 284-285.

56

- 5. Johnson O. H. Chem. Rev., 1952, v. 51, p. 431-469.
- 6. Buess W., v. Wartenburg H. Z. Anorg. Allgem. Chem., 1951, Bd 266, S. 281–288.
- 7. Jolly W. L., Latimer W. M. J. Amer. Chem. Soc., 1952, v. 74, p. 5757-5758.
- 8. Laubengayer A. W., Morton D. S. J. Amer. Chem. Soc., 1932. v. 54, p. 2303–2320.
- 9. Schwarz R., Haschke E. Z. Anorg. Allgem. Chem., 1943, Bd 252, S. 170–172.
- 10. Swanson H. E., Tatge E. Natl. Bur. Std. (U. S.), Circ. 539, 1953, v. 1, p. 51.
- 11. Bauer W. G. Acta Cryst., 1956, v. 9, p. 515-520.
- 12. Kelley K. K., Christensen A. V. U. S. Bur. Mines, Rept. Invest., 5710, 1961, 5p.
- 13. Kaiser W., Thurmond C. E. J. Appl. Phys., 1961, v. 32, p. 115-118.
- 1,5817 0,4183

#### Ge-Os. Германий-осмий \*

Рентгеновским исследованием монокристаллов установлено, что OsGe, имеет моноклинную решетку;  $a = 8,995 \pm 0,006$  A,  $b = 3,094 \pm 0,004$  A,  $c = 7,685 \pm 0,004$  A,  $\pm 0,002 \text{ A}, \beta = 119^{\circ} 10' \pm 10' [1].$ 

1. Weitz G. u. a. Z. Metallkunde, 1960, Bd 51, S. 238-243.

0,3699 1.6301

#### Ge-P. Германий-фосфор \*

Предельная растворимость Р в Ge составляет 5.10<sup>15</sup> атомов в 1 см<sup>3</sup> (11,2× ×10<sup>-6</sup>% (ат.)]. В работе [2] приводится коэффициент распределения Р в Ge. равный 0,080 [3] или 0,12 [4].

- 1. Lehovec K. a. o. Electrochemical Society, Abstract of Papers. Presented by Electronics Division, Philadelphia, May, 1959, p. 159-160.
- 2. Trumbora F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.
- 3. Hall R. N. General Electric Research Lab., 58-RL-1874; см. [2].
- 4. Burton J. A. a. o. J. Chem. Phys., 1953, v. 21, p. 1991-1996.
- 1,5445 0,4555

#### Ge-Pb. Германий-свинец \*

В работе [1] повторно определен ликвидус системы. О методе, которым было проведено исследование, ничего не сообщается. При оценке растворимости Ge в различных легкоплавких металлах [2] данным работы [1] отдается предпочтение перед данными М. Хансена и К. Андерко (см. т. II [1, 2]). Результаты работы [1] приведены ниже.

| Темпера-                          | 873 | 864 | 850 | 835  | 789  | 785  | 777  | 739 | 711 | 680 | 628  |
|-----------------------------------|-----|-----|-----|------|------|------|------|-----|-----|-----|------|
| Раствори-<br>мость, %<br>(ат.) Ge | 63  | 50  | 37  | 27,0 | 12,6 | 11,2 | 10,5 | 6,6 | 5,2 | 4,0 | 2, 1 |

Они повторяют ход кривой ликвидуса (см. М. Хансен и К. Андерко, т. II. рис. 423), однако по абсолютным значениям значительно отличаются от нее. Эвтектика расположена на 0,1 град ниже точки плавления Pb при 0,02% (ат.) Ge. Коэффициент распределения Pb в Ge составляет 1,7.10-4 [3].

1. Hassion F. X. Неопубликованные данные; см. [2].

- 2. Thurmond C. D., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169-204.
- 3. Trumbore F. A. Bell System Techn. J., 1960, v. 39, p. 205-233.

1.7120 0.2880

## Ge—Pr. Германий—празеодим \*

Известно, что в системе образуются следующие соединения: Pr<sub>3</sub>Ge, Pr<sub>2</sub>Ge PrGe и PrGe<sub>2</sub> [1].

РгGe2 плавится при 1570° C, PrGe2 и Ge образуют эвтектику при 825° C [2]. РгGе имеет ромбическую решетку типа CaSi; a = 4,474 A, b = 11,098 A, c == 4,064 A [1, 3]. Повторным исследованием подтверждено, что PrGe2 имеет о. ц. тетрагональную решетку типа ThSi<sub>2</sub>; a = 4,258 A, c = 13,970 Å [1].

- 1. Jandelli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11p.
- 2. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1949, v. 6, р. 727; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 3. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1955, v. 19, p. 307-313.

1,5704 0.4296

## Ge—Pt. Германий—платина \*

При температуре плавления Ge коэффициент распределения Pt в Ge составляет ~5.10-6 [1].

В работе [2] проведен рентгеновский анализ 14 сплавов системы во всем интервале концентраций. Кроме известных ранее соединений Pt<sub>2</sub>Ge<sub>3</sub>, PtGe, и Pt2Ge (см. М. Хансен и К. Андерко, т. II [1]), обнаружены соединения PtGe2, Рt<sub>3</sub>Ge<sub>2</sub> и Pt<sub>3</sub>Ge. Ge и PtGe<sub>2</sub>, а также Pt<sub>3</sub>Ge и Pt<sub>2</sub>Ge образуют эвтектики. Pt<sub>3</sub>Ge<sub>2</sub> плавится при 800—900° С, Pt<sub>3</sub>Ge — при 900—1000° С.

Структура PtGe<sub>2</sub> ромбическая типа CaCl;  $a = 6,18_5$  A,  $b = 5,76_7$  A, c =a = 2,908 A [2]. Pt<sub>2</sub>Ge<sub>3</sub> имеет ромбическую решетку типа MnP с вакансиями;  $a = 3 \times 5,48$  A,  $b = 3,37_8$  A,  $c = 6,22_1$  A [2]. Pt<sub>3</sub>Ge<sub>2</sub> также имеет ромбическую решетку, близкую к типу MnP, со сверхструктурой; a = 7,544 A, b = 3,423 A, c = 12,236 A [2]. Pt<sub>3</sub>Ge имеет моноклинно искаженную структуру типа AuCu<sub>3</sub>; a = 7.931 A, b = c = 7.767 A,  $\beta = 90.06^{\circ}$  [2, 3].

1. Dunlap W. C. Phys. Rev., 1954, v. 96, p. 40; cm. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.

2. Bhan S., Schubert K. Z. Metallkunde, 1960, Bd 51, S. 327-339.

3. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, S. 303.

#### 1,4771 0.5229

#### Ge-Pu Германий-плутоний \*

Сообщается о двух ранее неизвестных соединениях: РизGe и РизGe2 [2]. Структура соединений неизвестна, а состав Pu<sub>3</sub>Ge<sub>2</sub> нуждается в подтверждении. Периоды решетки соединений РиGe2 и Ри2Ge3, цитируемые М. Хансеном и К. Андерко (см. т. II, [1]), были определены в работе [2]. РиGe2 имеет о. ц. тетрагональную решетку типа ThSi<sub>2</sub>;  $a = 4,102 \pm 0,002$  A,  $c = 13,81 \pm 0,01$  A (со стороны Ge). Структура Ри2Ge3 гексагональная типа псевдо-AlB2, периоды псевдоячейки:  $a = 3,975 \pm 0,002$  Å,  $c = 4,198 \pm 0,002$  А. Между Ge и PuGe<sub>3</sub> обнаружена эвтектика [3].

- Ellinger F. H. В книге «The Metal Plutonium». A. S. Coffinberry, W. N. Miner (eds.), University of Chicago Press, Chicago, 1961, p. 281—308.
- Коффинберри А.С., Еллингер Ф.Х. Труды 2-й Международной конференции по мирному использованию атомной энергии, 1958, Ядерное горючее и реакторные материалы. Атомиздат, 1959, т. 6, с. 157-165.
- Schonfeld F. W. Вкниге «The Metal Plutonium», A. S. Coffinberry, W. N. Miner. Eds. University of Chicago Press, Chicago, 1961, p. 240—254.

1,9291

## Ge-Rb. Германий-рубидий \*

Соединение RbGe имеет кубическую решетку, в элементарной ячейке которой содержится 32 формульные единицы [1—3]. Период решетки a = 13,19 A [3], пространственная группа  $P\overline{43n}$  [1—2].

- При нагревании в высоком вакууме RbGe диссоциирует с образованием RbGe<sub>4</sub> [3]. Решетка нового соединения кубическая, a = 14,0 A [3].
- 1. Busmann E. Naturwissenschaften, 1960, Bd 47, S. 82.

2. B u s m a n n E. Z. Anorg. Allgem. Chem., 1961, Bd 313, S. 90-106.

3. Schafer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 214-220.



Диаграмма состояния (рис. 239) построена по данным металлографического. рентгеновского и термического анализов сплавов, выплавленных из химически чистых компонентов в кварцевых ампулах. Обнаружено четыре соединения. Rh<sub>3</sub>Ge<sub>4</sub> и Rh<sub>5</sub>Ge<sub>3</sub> образуются по перитектической реакции, температура ее не определена. RhGe и Rh<sub>2</sub>Ge плавятся конгрузнтно. Наиболее достоверными кажутся данные металлографического исследования [1]. Эвтектика Ge-Rh<sub>3</sub>Ge<sub>4</sub> расположена вблизи 23,2% (ат.) [30% (по массе)] Rh. В работе не объяснены причины высокой температуры плавления Ge ( $\sim 980^{\circ}$  C). Общепринятое значение для температуры плавления германия 937° С (отмечена знаком «×» на рис. 239). При легировании периоды решетки компонентов не меняются, что, по мнению авторов. свидетельствует о незначительной взаимной растворимости.

Ge— Rh. Германий—родий \*

Соединения RhGe, Rh<sub>5</sub>Ge<sub>3</sub> и Rh<sub>2</sub>Ge обнаружены ранее (см. М. Хансен и К. Андерко, т. II [1]). Специальным металлографическим исследованием [1] не удалось подтвердить сообщение [2] о существовании Rh<sub>3</sub>Ge<sub>2</sub>. Судя по име-

ющимся данным, RhGe не полиморфное соединение. Предварительным рентгеновским исследованием установлено, что Rh<sub>3</sub>Ge<sub>4</sub> имеет тетрагональную решетку;  $a = 5,7 \pm 0,2$  A,  $c = 10,0 \pm 0,3$  A [1].

1. Журавлев Н. Н., Жданов Г. С. Кристаллография, 1956, т. 1, с. 205— 208. 2. Matthias B. T. Phys. Rev., 1953, v. 92, p. 874—876.

#### 0,3549 $\overline{1,}6451$

Ge—S. Германий—сера \*

Для температур плавления и кипения GeS приводятся значения соответственно 615 и 827° С [1]. Раньше эти температуры принимались равными соответственно 530 и 630° С [2].

Перелом на кривой упругости пара при 500° С [3] связан, как полагают, с фазовым превращением. Этот перелом не обнаружен в работе [1].

GeS<sub>2</sub> не имеет фиксированной температуры плавления и переходит в стекловидное состояние примерно при 800° С [1]. В работе [2] эта температура упоминается как точка плавления. При дальнейшем нагреве GeS<sub>2</sub> разлагается с образованием S, GeS и Ge<sub>2</sub>S<sub>3</sub>. Рентгенограммы порошка Ge<sub>2</sub>S<sub>3</sub> свидетельствуют о том, что структура его отличается от структуры двух других сульфидов. Температурная зависимость GeS<sub>2</sub> определялась в работе [4].

Максимальная растворимость  $\hat{S}$  в Ge составляет  $>5\cdot 10^{15}$  атомов в 1 см<sup>3</sup> [>1,1×10<sup>-5</sup>% (ат.)] [5].

- Spandau H., Klanberg F. Z. Anorg. Allgem. Chem., 1958, Bd 295, S. 291-299.
- 2. Pugh W. J. Chem. Soc., 1930, p. 2370.
- 3. Давыдов В. И., Диев Н. П. ЖНХ, 1957, т. 2, с. 2003—2006.
- 4. Погорелый А. Д., Морозова Н. К. Изв. вузов. Цветная металлургия, 1960, т. 3, № 4, с. 113—121.
- Tyler W. W. Phys. Chem. Solids, 1959, v. 8, p. 59-65; cm. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-235.

1,7754 0,2246

#### Ge—Sb. Германий—сурьма \*

На установке, в которой медленно вытягивали вращающийся монокристалл Ge из расплава, богатого сурьмой, определена растворимость Sb в Ge в жидком и твердом состояниях [1]. Методом измерения вязкости определена температура начала кристаллизации [2]. Полученные в этих работах данные по ликвидусу хорошо согласуются с диаграммой, приведенной М. Хансеном и К. Андерко (см. т. II, рис. 424). Растворимость Sb в Ge рассчитывалась также в работе [3] по зна-

#### ТАБЛИЦА 24. ЛИКВИДУС СИСТЕМЫ Ge-Sb И РАСТВОРИМОСТЬ Sb в Ge

| Темпера-<br>тура, °С            | Ликвидус<br>% (ат.)<br>[1]    | Раствори<br>в тверд<br>% (ат. | мость Sb<br>юм Ge,<br>)·10 <sup>-3</sup> | Темпе-<br>ратура                | Ликвидус<br>% (ат.) | Растворимость Sb<br>в твердом Ge,<br>% (ат.)·10 <sup>-3</sup> |                |
|---------------------------------|-------------------------------|-------------------------------|------------------------------------------|---------------------------------|---------------------|---------------------------------------------------------------|----------------|
|                                 |                               | [1]                           | [3]                                      | °C                              |                     | [1]                                                           | [3]            |
| 929<br>923<br>906<br>900<br>879 | 0,06<br>0,60<br>6,25<br>12,98 | 0,134<br>1,82<br>10,5<br>29,3 | <br>20                                   | 813<br>800<br>700<br>693<br>600 | 37,4<br><br>70,5    | 32,6 $-$ $71,5$                                               | 30<br>22<br>19 |

60

чениям коэффициента распределения и ликвидуса, проведенным М. Хансеном и К. Андерко, см. т. II [2]). Результаты работ [1, 3] хорошо согласуются. В табл. 24 сведены данные по растворимости [1, 3] и ликвидусу [1].

- 1. Журкин Б. Г. и др. Изв. АН СССР, ОТН, Металлургия и топливо, 1959, № 5, с. 86—89.
- 2. Глазов В. М., Чижевская С. Н. Заводская лаборатория, 1961, т. 26, с. 720-723.
- 3. Thurmond C. D. a. o. J. Chem. Phys., 1956, v. 25, p. 799-800.

 $\frac{0,2081}{1,7919}$ 

#### Ge—Sc. Германий—скандий

Сообщается о существовании сверхпроводящего соединения ScGe<sub>2</sub> [1]. Структура его неизвестна.

1. Matthias B. T. a. o. Phys. Rev., 1958, v. 112, p. 89.

1,9635

#### Ge—Se. Германий—селен

GeSe имеет ромбически искаженную решетку типа NaCl, изотипную с SnS и SnSe [1-4]. На элементарную ячейку приходится 4 формульные единицы; a = 4,38 A, b = 3,82 A, c = 10,79·A [1];  $a = 4,40 \pm 0,008$  A,  $b = 3,85 \pm \pm 0,008$  A,  $c = 10,82 \pm 0,01$  A [3]. Максимальная растворимость Se в Ge в твердом состоянии >5·10<sup>15</sup> атомов в 1 см<sup>3</sup> [>11·10<sup>-6</sup> % (ат.)] Se [5].

- 1. O k a z a k i A. J. Phys. Soc. Japan, 1958, v. 13, p. 1151-1155.
- 2. O k a d a T. Phys. Chem. Solids, 1959, v. 8, p. 428.
- 3. Kannewurf C. R. a. o. Acta Cryst., 1960, v. 13, p. 449-450.
- Kannewurf C. R. Ph. D. Thesis, Northwestern University, 1961, 104p.; Dissertation Abstr., 1962, v. 22, p. 2846.
- 5. Туler W. W. Phys. Chem. Solids, 1959, v. 8, p. 59; см. Тгитbore F. A. Bell System Tech. J., 1960, v. 39, p. 205—233.

0,4124 $\overline{1.5876}$ 

#### Ge—Si. Германий—кремний \*

Методом медленной кристаллизации [2] в работе [1] определены ликвидус и солидус сплавов в интервале 7—34% (ат.) Si. Полученные результаты согласуются с данными М. Хансена и К. Андерко (см. т. II [1]). В интервале 0— 20% (ат.) Si концентрационная зависимость периода решетки почти не отклоняется от правила Вегарда [1]. При бо́льшем содержании Si наблюдается небольшое отрицательное отклонение от правила Вегарда [2, 3]. Не обнаружено никаких признаков сверхструктур, на концентрационной кривой твердости отсутствуют максимумы.

- 1. Hassion F. X. a. o. J. Phys. Chem., 1955, v. 59, p. 1118-1119.
- 2. W a n g C. C. Sylvania Electric Products, Inc., Final Technical Report on Contract NObrs 63180 (PB 131422), 1955, 48p.
- 3. Klement R., Sandmann H. Naturwissenschaften, 1957, Bd 12, S. 349--350.

1,6838 0,3162

#### Ge-Sm. Германий-самарий

 $SmGe_2$  имеет о. ц. тетрагональную решетку типа ThSi<sub>2</sub>; a = 4,183 A, c = 13,810 A [1].

1. I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11p.

 $\overline{1,7865}$ 0.2135

#### Ge-Sn. Германий-олово \*

Методом точного взвешивания определена растворимость Ge в жидком Sn [1]. Эти данные использованы для расчета растворимости Sn в Ge в твердом состоянии с использованием экспериментально определенных коэффициентов распределения [2]. Полученные результаты [1, 2] приведены в табл. 25. По расчету эвтектика расположена при 0,3% (ат.) Ge на 0,9 град ниже точки плавления Sn.

ТАБЛИЦА 25. РАСТВОРИМОСТЬ В СИСТЕМЕ Ge-Sn

| Температура<br>°С                      | Sn в Ge [2],<br>% (ат.)      | Ge в жидком<br>Sn [1]<br>% (ат.) | Температура<br>°С                        | Sn в Ge [2]<br>% (ат.) | Ge в жидком<br>Sn [1]<br>% (ат.)           |
|----------------------------------------|------------------------------|----------------------------------|------------------------------------------|------------------------|--------------------------------------------|
| 900<br>800<br>750<br>700<br>650<br>600 | 0,17<br>0,49<br>0,76<br>0,93 |                                  | $550 \\ 500 \\ 450 \\ 400 \\ 350 \\ 300$ | 1,07<br>1,14           | 13,7<br>8,9<br>5,6<br>3,45<br>1,98<br>1,07 |

 Thurmond C. S., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169-204.

Thurmond C. D. a. o. J. Chem. Phys., 1956, v. 25, p. 799-800; Trumbore F. A. J. Electrochem. Soc., 1956, v. 103, p. 597-600.

1,9183 0.0817

#### Ge—Sr. Германий—стронций

Получен Sr<sub>2</sub>Ge и измерена его теплота образования [1]. Металлографические образцы стехиометрического состава и отличающиеся от него на 10% (ат.) в обе стороны были негомогенны.

1. Морозова М. П. и др. Вестник Ленинградского университета. Серия Физика и химия, 1959, № 2, с. 83-86.

1,6036

#### Ge—Та. Германий—тантал \*

Растворимость Та в твердом Ge составляет [1]:

Температура, °С..... 910 875 850 825 800 775 Растворимость, % (ат.) Та. 10<sup>-3</sup> 45 147 79 34 15,8 7,9

Промежуточная фаза Та<sub>5</sub>Ge<sub>3</sub> имеет две модификации, температура превращения ~1100° C [2]. Низкотемпературная тетрагональная модификация  $\alpha$ -Та<sub>5</sub>Ge<sub>3</sub> изотипна с низкотемпературной модификацией Та<sub>5</sub>Si<sub>3</sub>; a = 6,599 A, c = 12,01 A.

62

Высокотемпературная модификация  $\beta$ -Ta<sub>5</sub>Ge<sub>3</sub> также имеет тетрагональную решетку типа  $D_{4h}^{18}$  или  $D_{2d}^{11}$ ; a = 10,01 A, c = 5,150 A. Структура низкотемпературной модификации была подтверждена в работе [3], в которой также показано, что добавка 5% (ат.) С приводит к изменению структуры на гексагональную, изотипную с Mn<sub>5</sub>Si<sub>3</sub>; a = 7,581 A, c = 5,235 A.

1. Сандулова А. В., Хэ Ю-лян, ДАН СССР, 1959, т. 128, с. 329—332. 2. Nowotny H. a.o. Phys. Chem., 1956, v. 60, p. 677—678. 3. Parthe E., Norton J. T. Acta Cryst., 1958, v. 11, p. 14—17.

1,75510.2449

#### Ge—Te. Германий—теллур \*

В работе [1] удалось установить причину расхождений в определении характера образования GeTe, существовавших в ранних работах (см. М. Хансен и К. Андерко, т. II [1, 2]). Работа проведена с использованием термического анализа и специальной техники кристаллизации сплавов, выплавленных из полупроводникового Ge и Te чистотой более 99,999%. Показано, что GeTe кристаллизуется из расплава при 724° C и образует эвтектику с Ge при 49,85% (ат.) Те и 723° C. Соединение GeTe гомогенно вне стехиометрического состава при 50,61% (ат.) Те [1].

Максимальная растворимость Те в твердом. Ge 2·10<sup>15</sup> атомов в 1 см<sup>3</sup> [4,6×  $\times$ 10<sup>-69</sup>% (ат.) Те] [1].

Высокотемпературная модификация GeTe имеет г. ц. к. решетку типа NaCl, a = 5,94 A [3].

1. McHugh J. P., Tiller W. A. Trans. AIME. 1960, v. 218, p. 187-188.

- 2. Туler W. W. Phys. Chem. Solids, 1959, v. 8, p. 59, см. Тгитbore F. A. Bell System Tech. J., 1960, v. 39, p. 205—233.
- 3. Абрикосов Н. Х. и др. ДАН СССР, 1958, т. 123, с. 273—281.

1,4954

#### Ge—Th. Германий—торий

Рентгеновским анализом установлено существование в системе по крайней мере шести соединений [1]. За исключением ThGe<sub>0,3±0,1</sub>, все они соответствуют аналогичным соединениям в системе U—Si. В наиболее поздних работах обнаружены соединения, несколько отличные по составу [2, 3]. В работе [1] сплавы приготовляли из Ge высокой чистоты и Th, содержавшего 20—30% (мол.) инертного окисла. Это привело к известной неопределенности при установлении стехиометрии соединения. В работах [2, 3] методика приготовления сплавов исключала опасность окисления. Для окончательного определения составов соединений требуется широкое исследование всей системы.

Наиболее богатой германием фазе приписан состав  $\text{ThGe}_{3,0\pm0,4}$ . Она имеет кубическую решетку с a = 11,72 A [1]. Соединение может быть изотипно с UGe<sub>3</sub> и USi<sub>3</sub> (тип AuCu<sub>3</sub>). В таком случае большая элементарная ячейка, возможно, принята ошибочно.

Вблизи ThGe<sub>2,5</sub> была обнаружена тетрагональная фаза  $\alpha$ -ThGe<sub>2</sub> [1], изоструктурная с  $\alpha$ -USi<sub>2</sub> и  $\alpha$ -ThSi<sub>2</sub>;  $a = 4,106 \pm 0,003$ A,  $c = 14,193 \pm 0,005$  A.

При составе Th<sub>0.9</sub> Ge<sub>2</sub> (ThGe<sub>2.22</sub>) обнаружено соединение с гранецентрированной (по *C*-граням) ромбической решеткой;  $a = 16,642 \pm 0,006$  A,  $b = 4,023 \pm \pm 0,002$  A,  $c = 4,160 \pm 0,002$  A. Соединение может быть получено дуговой плавкой или приведением в равновесное состояние Ge, помещенного в жидкий висмут при температуре свыше 650° С. Высказано предположение [2], что это соединение идентично соединению ThGe<sub>2</sub>, обнаруженному в работе [1], и что оно имеет дефектную структуру нового структурного типа, относящегося к пространственной группе *Cmmm*. При составе ThGe<sub>2</sub> [2, 3], полученном приведением в равновесное состояние при температуре ниже 650° С, образуется соединение с ромбической гранепентрированной (по граням С) решеткой типа ZrSi<sub>2</sub>;  $a = 4,223 \pm 0,002$  А,  $b = 16,911 \pm 0,006$ А,  $c = 4,052 \pm 0,002$  [2]. В ранней работе [3] этому соединению приписывалась гранецентрированная (по граням А) ромбическая решетка. Фаза состава ThGe<sub>1,82</sub>, полученная дуговой плавкой, идентифицирована как дефектная фаза [3], идентичная с фазой ThGe<sub>2,5</sub> из работы [1].

<sup>дсф</sup> В интервале ThGe<sub>1,6±0,3</sub> обнаружена фаза β-ThGe<sub>2</sub>, изотипная с β-USi<sub>2</sub>,  $\beta$ -ThSi<sub>2</sub>, β-PuSi<sub>2</sub>. β-ThGe<sub>2</sub> имеет искаженную гексагональную решетку типа AlB<sub>2</sub>. <sub>Дар аметры</sub> ее не определялись [1].

Фаза ThGe<sub>1,5</sub> [3], идентичная ThGe<sub>1,6</sub> [1], имеет гексагональную решетку;  $a = 4,06 \pm 0,01A$ ,  $c = 4,18 \pm 0,01A$ . ThGe имеет г. ц. к. решетку типа NaCl,  $a = 6,044 \pm 0,001A$  [1]. Образцы сплавов, близкие по составу к ThGe<sub>0,8</sub>. содержат фазу Th<sub>3</sub>Ge<sub>2</sub>, изоструктурную с U<sub>3</sub>Si<sub>2</sub> и Th<sub>3</sub>Si<sub>2</sub>. Периоды ее тетрагональной решетки:  $a = 7,971 \pm 0,004A$ ,  $c = 4,170 \pm 0,003A$  [1].

Tharp A. G. a. o. J. Electrochem. Soc., 1958, v. 105, p. 473-476.
 Brown A. Acta Cryst., 1962, v. 15, p. 652-656.
 Brown A. Acta Cryst., 1961, v. 14, p. 860-865.

0,1806 1.8194

#### Ge—Ті. Германий—титан \*

Рентгеновским, микроскопическим, дилатометрическим анализами, а также методом измерения сопротивления изучена система Ge—Ti в интервале 400—1370° С и 0—22% (ат.) Ge [1]. Построенная в результате этого диаграмма в общем согласуется с диаграммой, приведенной М. Хансеном и К. Андерко (см. т. II, рис. 427, *a*). Различия касаются положения эвтектики 1360° С (13,4% (ат.) [19% (по массе)] Ge) и перитектоида (905° С 2,7% (ат.) [4% (по массе)] Ge]. Растворимость Ge в β-Ti уменьшается от максимальной 8,6% (ат.) [12,5% (по массе)] при 1360° С до 2,0% (ат.) [3% (по массе)] при 905° С. Растворимость Ge в  $\alpha$ -Ti уменьшается от 2,7% (ат.) [4% (по массе)] при 905° С до 0,7% (ат.) [1% (по массе)] при 905° С до 0,7% (ат.) [1% (по массе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе)] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] си макесе]] при 905° С до 0,7% (ат.) [1% си макесе]] си макесе

ТіGе имеет ромбическую решетку, изотипную с ТіSi;  $a = 3,80_9$  A,  $b = 5,23_5$  A,  $c = 6,83_4$  A [3, 4].

 Peterson U. C., Huber R. W. U. S. Bur. Mines Rept. Invest. 5365, 1957, p. 1-20.

2. Anderko K. Z. Metallkunde, 1958, Bd 49, S. 165-172.

3. Агеев Н. В., Самсонов В. П. ЖНХ, 1959, т. 4, с. 1590—1595.

4. Агеев Н. В., Самсонов В. П. ЖАН СССР, 1957, т. 112, с. 853—855.

#### 1,5505-0,4495

#### Ge—ТІ. Германий—таллий \*

В работах [1, 2] исследован ликвидус системы при высоком содержании T1. Результаты более поздней из указанных работ (рис. 240) согласуются с данными М. Хансена и К. Андерко (см. т. II, [1]). В работе [1] использован термический анализ, в работе [2] абсциссы точек определяли по изменению массы куска Ge после выдержки в жидком T1 в вакууме. Эвтектика расположена при 0,04% (ат.) Ge на 0,3 град ниже точки плавления T1 [2].

Коэффициент распределения TI в Ge составляет ~4.10-5 [3].

<sup>5</sup> Р. П. Эллиот, том II



- 1. Савицкий Е. М. и др. ЖНХ, 1958, т. 3, с. 763-765.
- 2. Thurmond C. D., Kowalchik M. Bell System Techn. J., 1960, v. 39, p. 169-203.
- 3. B u r t o n J. A. Physica, 1954, v. 20, p. 845; Burton J. A. a. o. J. Chem. Phys., 1953, v. 21, p. 1991.
- 1,4842 0,5158

#### Ge—U. Германий—уран \*

Диаграмма (рис. 241) построена по данным рентгеновского, микроскопического, дилатометрического и термического анализов и измерения микротвердости [1]. Сплавы выплавляли из 99,86%-ного U и 99,99%-ного Ge. Обнаружено 5 соединений. UGe<sub>3</sub> и U<sub>5</sub>Ge<sub>3</sub> кристаллизуются из расплава, «UGe<sub>7</sub>» образуется по перитектоидной реакции, формула соединению приписана предположительно. UGe<sub>2</sub> скорее всего плавится конгруэнтно, а U<sub>3</sub>Ge<sub>4</sub>, вероятно, образуется по перитектической реакции. Как следует из результатов рентгеновского и микроскопи-



ческого анализов, растворимость Ge в α-U и β-U составляет 1% (ат.), в γ-U до 3% (ат.).

Лауэграммы и рентгенограммы порошка U<sub>5</sub>Ge<sub>3</sub> были индицированы в предположении гексагональной структуры, изотипной с Mn<sub>5</sub>Si<sub>3</sub>; *a* = 8,58A, *c* = 5,79A; две формульные единицы в элементарной ячейке [2].

Лауэграммы U<sub>3</sub>Ge<sub>4</sub> индицированы в предположении ромбической структуры; a = 5,87A, b = 9,88A, c = 8,98A [2].

5\*

66

UGe<sub>2</sub> имеет ромбическую решетку типа ZrSi<sub>2</sub>; a = 4,12A, b = 15,1A, c = 3,98A.

Подтверждено, что UGe<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,205A [2].

1. Ляшенко В.С., Быков В. Н. Атомная энергия, 1960, т. 8, с. 146—148. 2. Макаров Е.С., Быков В. Н. Кристаллография, 1959, т. 4, с. 183—185.

0,1538 1.8462

## Ge—V. Германий—ванадий \*

В результате изучения семи сплавов в интервале 16,7—70,9% (ат.) Ge сделан вывод, что в системе имеются лишь два соединения:  $V_5Ge_3$  и  $V_3Ge$  и двухфазные равновесия: V +  $V_3Ge$ ,  $V_3Ge$  +  $V_5Ge_3$  или  $V_5Ge_3$  + Ge [1]. Данные рентгеновского анализа [2] указывают на то, что для соединения « $V_5Ge_8$ » более вероятен состав  $V_3Ge_2$ . Коэффициент распределения V в Ge при температуре плавления Ge  $3 \cdot 10^{-7}$  [3].  $V_5Ge_3$  имеет гексагональную решетку, изотипную с  $Mn_5Si_3$ ; a == 7,285 ± 0,002A,  $c = 4,970 \pm 0,002A$  [1].

- 1. Гладышевский Е. И., Кузьма Ю. В. ДАН УРСР, 1958, № 11, с. 1208—1211.
- Perri J. A., Ph. D. Thesis, Polytechnic Institute of Brooklyn, 1958, 114p.; Dissertation Abstr., 1958, v. 19, p. 436.
- 3. Woodbury H. H., Tyler W. W. Phys. Rev., 1955, v. 100, р. 659; см. Тгитbore F. A. Bell System Tech. J., 1960, v. 39, р. 205—233.

1,5963 0,4037

#### Ge—W. Германий—вольфрам \*

Показано, что Ge и W образуют простую систему эвтектического типа без каких-либо промежуточных соединений [1]. Это подтверждает выводы более ранней работы (см. М. Хансен и К. Андерко, т. II [2]). В твердом состоянии компоненты не растворяются друг в друге. Высказано предположение о том, что если в системе имеются интерметаллические соединения, то образуются они очень медленно и существуют при очень высоких давлениях.

1. Nowotny H. a. o. Monatsh. Chem., 1961, Bd 92, S. 365-370.

1,9119 0,0881

## Ge— Ү. Германий—иттрий

Соединение Y<sub>5</sub>Ge<sub>3</sub> имеет гексагональную решетку типа  $Mn_5Si_3$ ,  $a = 8,47_1$  A,  $c = 6,35_0$  A [1]. Сообщается о существовании соединения YGe<sub>2</sub> с объемноцентрированной тетрагональной решеткой [2]. Периоды ее не указаны.

1. Parthé E. Acta Cryst., 1960, v. 13, p. 868-871. 2. Matthias B. T. a. o. Phys. Rev., 1958, v. 112, p. 89.

0,0455 $\overline{1},9545$ 

Ge—Zn. Германий—цинк \*

Методом измерения эффекта Холла на кристаллах, вытянутых из расплава при температурах ниже точки плавления Ge на 0,1—2 град, определен коэффициент распределения Zn в Ge, равный 4·10<sup>-4</sup>. Это значение не совпадает с опреде<sub>ленным</sub> ранее  $K_0 = 0,01$  [2], но согласуется со значениями растворимости [3], экспериментально определенными коэффициентами распределения [4] и результатами изучения низкотемпературных магнитных свойств [5]. Растворимость Zn <sub>в твердом</sub> Ge [3] составляет:

 $T_{CMПература}$ , °С°С759±10725±10714±10420±20 $p_{acтворимость}$ , % (ат.). 10~37,2±0,34,6±2,34,7±0,61,3±0,7

Растворимость Ge в жидком Zn равна [6]:

Эвтектическая концентрация составляет 4,4% (ат.) Ge [6]. Ранее для нее приводилось значение 5,5% (ат.) Ge (см. М. Хансен и К. Андерко, т. II [1]). Согласно расчету, температура эвтектики 398° С [6].

1. Туler W. W. Phys. Chem. Solids, 1959, v. 8, p. 59. 2. Burton J. A. a. o. J. Chem. Phys., 1956, v. 25, p. 799—800; см. [3].

3. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205–233.

4. Thurmond C. D. a. o. J. Chem. Phys., 1956, v. 25, p. 799-800.

5. Geist D. Z. Physik, 1960, Bd 158, S. 123–132.

6. Thurmond C. D., Kowalchik M. Bell System Tech. J., 1960, v. 39, p. 169-204.

1,9008

#### Ge—Zr. Германий—цирконий \*

Подтверждено, что  $Zr_5Ge_3$  имеет гексагональную структуру типа  $Mn_5Si_3$ ; a = 7,993A, c = 5,597A.

1. Parthé E., Norton J. T. Acta Cryst., 1958, v. 11, p. 14-17.

#### 3,7516 2,2484

#### H—Hf. Водород—гафний \*

Система исследована (исследован Hf с ~1% Zr, введены соответствующие поправки) тензиметрическим методом в интервале 250—870° С (рис. 242) [1]. В этом температурном интервале существует широкая двухфазная область, в которой находятся в равновесии твердый раствор на основе α-Hf и δ-фаза. По виду диаграммы можно было бы предположить, что при повышении температуры двухфазная область замыкается и образуется непрерывный ряд твердых растворов α (δ). Однако это невозможно, так как фазы имеют различную кристаллическую структуру (гексагональную и кубическую).

В работе [2] определялось изобарное равновесие при 1 ат. В результате исследования для границ двухфазной области даны значения 16,7—33,3% (ат.) Н при 950° С и ~63% (ат.) Н при 400° С. Следует отметить, что использованный метод отличается невысокой чувствительностью при определении предельных концентраций при 950° С. Гораздо точнее данные тензиметрического исследования [1]. Изобары при 760 и 76 мм рт. ст. на рис. 242 взяты из работы [1].

Подтверждается [2] существование обнаруженных ранее трех гидридных фаз (см. М. Хансен и К. Андерко, т. II (1—4]): г. ц. к. δ-фаза с дефектной структурой типа СаF<sub>2</sub>, δ'-фаза с псевдокубической дефектной структурой δ-фазы и ε-фаза с о. ц. тетрагональной решеткой типа ZrH<sub>2</sub>. Богатая Hf δ'-фаза переходит в куби ческую δ-фазу при нагреве до 85—100° С [2]. Двухфазная область δ + є на рис. 242 построена в результате тензиметрического исследования [1]. Определенный [1] предел растворимости H в Hf подтверждает более ранние данные рентгеновского и металлографического исследований (см. М. Хансен и К. Андерко, т. II, [1]).







2,4113

#### Н—К. Водород—калий

КН имеет г. ц. к. решетку типа NaCl, а = 5,708 А [1]. Теплота образования КН равна 13,82 ккал/моль [2].

- 1. Elson R. E. a. o. U. S. At. Energy Comm. UCRL 4519. 1956; см. Libowitz G. G., J. Nucl. Nater., 1960, v. 2, p. 1—22.
- 2. Gunn S. R., Green L. G. J. Amer. Ghem. Soc., 1958, v. 80, p. 4782; см. Libowitz G. G. J. Nucl. Mater. 1960, v 2, p. 1—22.
- 3,8607 2,1393

## H—La. Водород—лантан \*

В результате тензиметрического исследования небольшого количества сплавов, выплавленных на базе 99,9%-ного La, сделан вывод, что диаграмма состояния системы H—La подобна обобщенной диаграмме Ce—H, H—Nd и H—Pr (см. рис. 138 [1]). По аналогии с системой Се—Н, предполагается [2] существование непрерывного ряда твердых растворов между LaH<sub>2</sub> и LaH<sub>3</sub>. Поэже существование непрерывного ряда твердых растворов было доказано экспериментально [3]. Период г. ц. к. решетки типа CaF<sub>2</sub> уменьшается от 5,663A (LaH<sub>2</sub>) до 5,604A (LaH<sub>3</sub>). Близкие значения периодов решетки получены в работе [4]: 5,661 ±  $\pm$  0,005A для LaH<sub>2</sub> и 5,62 ± 0,01A для LaH<sub>2.78</sub>.

1. Mulford R. N. R., Holley C. E., J. Phys. Chem., 1955, v. 59, p. 1222-1226.

- 2. Avphassorho C. Compt. Rend., 1959, v. 63, p. 2018-2021.
- 3. Goon E. J. J. Phys. Chem., 1959, v. 63, p. 2018-2021.
- 4. Warf J., Korst W. См. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965, р. 283.
- 1,1221 0.8779

#### H—Li. Водород—литий

В интервале Li—LiH система исследована методом термического анализа [1-4]. Диаграмма состояния на рис. 243 построена [5] в результате обобщения работ [1-4]. В интервале 13-49% (ат.) Н существует область несмешиваемости



Рис. 243. H—Li

в жидком состоянии [3]. Эта область показана на диаграмме [5], однако границы ее несколько отличаются от указанных выше. В работе [6] приведены данные по изотермам состав — давление. LiH имеет г. ц. к. решетку типа NaCl с периодом 4,093A [7], 4,09A [8], 4,08A [9], 4,0834 ± 0,0005A [10]. Дейтерид LiD имеет период 4,073A [7] или 4,0684 ± 0,0005A [10].

Messer C. E. a. o. U. S. At. Energy Comm. NYO-3958, 1955, 16 p.
 Messer C. E. a. o. U. S. At. Energy Comm. NYO-8021, 1957, 12 p.
 Messer C. E. a. o. J. Phys. Chem., 1958, v. 62, p. 220-222.

70
- 4. Messer C. E., Seales R. A. U. S. At. Energy Comm. NYO-3959, 1959, 14 p.
- 5. Messer C. E. U. S. At. Energy Comm. NYO-9470, 1960, 64 p.
- 6. Heumann F. K., Salmon O. N. U. S. At. Energy Comm. KAPL-1667, 1956, 54 p.
- 7. Zintl E., Harder A. Z. Physik Chem. (Leipzig), 1935, Bd B28, S. 478-480; см. [10].
- 8. A h m e d M. S. Phil. Mag., 1951, v. 42, p. 997-1004.
- 9. Cochran W. Rev. Mod. Phys. 1958, v. 30, p. 47-50.

10. Staritzky E., Walker D. L. Anal. Chem., 1956, v. 28, p. 463.

3,7604 2,2396

### H-Lu. Водород-лютеций

Получен гидрид LuH<sub>2.9</sub> [1] с г. к. решеткой;  $a = 3,57_3$  A,  $c = 6,43_4$  A.

1. Hardcastle K. I. Dissertation. University of Southern California, 1961, 104 р.; особенно 85 и 95-96с.

2.6175 1.3825

# H-Mg. Водород-магний \*

Растворимость Н в жидком Мд изучалась в работах [1, 2]. Данные работы [1] приведены в табл. 26. К сожалению, в работе [21] не даны температуры, которым соответствуют полученные значения растворимости. Сообщается лишь, что растворимость меняется от  $\sim 9$  до 33 см<sup>3</sup> H<sub>2</sub> в 100 г Mg [( $\sim 0,019$ )÷ ( $\sim 0,071$ )% (ат.) H] при давлении Н<sub>2</sub> 1 ат.

ТАБЛИЦА 26. РАСТВОРИМОСТЬ Н в Mg ПРИ РАЗЛИЧНОМ ДАВЛЕНИИ [1]

|                                |                        | Pac                     | творимост               | ь при да                | влениях, л             | им рт. с                | т.                     |                         |
|--------------------------------|------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|
| Темпера-<br>тура. °С           | 20                     | 0                       | 400                     |                         | 600                    |                         | 760                    | )                       |
| ijpa, o                        | см <sup>3</sup> /100 г | % (ат.)                 | см <sup>8</sup> /100 г  | % (a†.)                 | см <sup>8</sup> /100 г | % (ат.)                 | см <sup>3</sup> /100 г | % (ат.)                 |
| 640<br>(твердый)<br>675<br>725 | 15,6<br>23,8<br>30,6   | 0,034<br>0,052<br>0,066 | 22, 4<br>33, 8<br>43, 3 | 0,049<br>0,073<br>0,094 | 27,3<br>41,4<br>53,2   | 0,059<br>0,090<br>0,115 | 30,7<br>46,5<br>60,1   | 0,067<br>0,100<br>0,130 |
| 775                            | 32, 1                  | 0,070                   | 45,7                    | 0,099                   | 56,1                   | 0,122                   | 63, 1                  | .0,137                  |

Для температур 440, 470, 510 и 560° С построены изотермы диаграммы «давление-температура-состав» системы Mg-MgH<sub>2</sub> при давлении до нескольких сотен атмосфер [3]. На большей своей части изотермы практически не зависят от давления и изменяются с концентрацией. Судя по изотермам, существуют две твердые фазы: (Mg) и MgH<sub>2</sub>, состав которых определяется крайними точками горизонтального участка изотерм. Во всех образцах рентгеновским и микроскопическим анализом обнаруживались две фазы. Предельная растворимость Н в Мg при равновесии с Mg H<sub>2</sub> составляет, % (ат.); 9,3 при 560° С; 3,4 (среднее из 4 определений) при 510° С; 2,6 при 505° С; 3,1 при 470° С и 2,0 при 440° С.

MgH<sub>2</sub> получен нагреванием Mg в H<sub>2</sub> при высоком давлении (до 70 am) [4] и с помощью катализаторов нагреванием до 380-450° С при давлениях 100--200 кГ/см<sup>2</sup> (97—194 am) [5]. Соединение имеет высокую упругость диссоциации (1 am при ~285° C), которая может быть выражена зависимостью [3, 6]:  $lg \ p \ (am) = -4,090 \times 10^3/T - 2,441 \ lg \ T + 4,524 \cdot 10^{-3}T - 2,277 \cdot 10^{-6}T^2 +$ + 12.214.

MgH<sub>2</sub> имеет о. ц. тетрагональную решетку; a = 4,517А, c = 3,021А [6].

1. Koenman J., Metcalfe A. G. Trans. ASM, 1959, v. 51, p. 1072-1081. 1. Паров М. В., Серебряков В. В. Заводская лаборатория, 1958, т. 24, 2. Шаров М. В., Серебряков В. В. Заводская лаборатория, 1958, т. 24, c. 1226—1228.

3. Stampfor J. E. Disser. Univ. of New Mexico, 1958, Dissert. Abstr., 1959, v. 19, p. 1554-1555; Stampfer J. F. a. o. J. Amer. Chem. Soc., 1960, v. 82, p. 3504-3508.

4. Е 1 l i n g e r F. H. a. o. J. Amer. Chem. Soc., 1955, v. 77, p. 2647 см. [6]. 5. Дымова Т. Н. и др. ЖНХ, 1961, т. 6, с. 763—767.

6. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.

2,0214 1.9786

# Н-Мо. Водород-молибден \*

Определялась растворимость Н в Мо в интервале 1280—1700° С [1]. Образцы нагревали в Н2 при давлении 1 am и закаливали в воде. Температурная зависимость растворимости описывается соотношением  $S = 27e^{-9700/RT}$  (где S выражена в см<sup>3</sup> на 100 г). Результаты хорошо согласуются с полученными ранее для интервала 600-1100° С (см. М. Хансен и К. Андерко, т. II, [2]). При повышении температуры до 1700° С растворимость Н увеличивается, что ставит под сомнение обнаруженный ранее (см. М. Хансен и К. Андерко, т. II, [1]) максимум растворимости при 800° С.

1. Hill M. L. J. Metals, 1960, v. 12, p. 725-726.

2,6419 1.3581

# H-Na. Водород-натрий

Выше 200° С при взаимодействии Na и H<sub>2</sub> образуется соединение NaH [1]. Температурная зависимость упругости диссоциации имеет вид 1g p = 10,47 — — 5958/ $T^{\circ}$  К [2], что очень хорошо согласуется с уравнением 1g p = 10,17 — - 5880/T° К, составленным для сравнения автором обзора по данным [1]. Период г. ц. к. решетки NaH равен 4,897 А [4].

1. Жуков И.И.Изв. Инст. физ. хим. анал. 1927, т. 3, с. 600-640. 2. В апиѕ М. D. a. o. J. Amer. Chem. Soc., 1955, v. 77, p. 2007; см. [3]. 3. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22. 4. Elson R. E. a. o. U. S. At. Energy Comm. UCRL—4519, 1956; см. [3].

#### 1.9646 2,0354

# Н-Nb. Водород-ниобий \*

Тензиметрические измерения [1-4] при давлении 1 ат указывают на неограниченную взаимную растворимость Nb и NbH. Экспериментальные данные разных авторов хорошо согласуются; в работе [3] они получены вплоть до температуры 1400° С, в [1, 2, 4] - только до 700-800° С. Определения с помощью вакуумных микровесов [5] соответствуют тензиметрическим измерениям. При температуре 673° С [6] построена кривая давление—состав вплоть до 1000 ат, при этом растворимость достигла 42,3% (ат.) Н. Изобары, приведенные на рис. 244 при давлениях 760,76 и 7,6 мм рт. ст., взяты из работы [3]; данные работы [1] не согласуются с результатами работ [1, 2, 4] в Н-углу диаграммы, что, возможно, связано с большей чистотой Nb, использованного в работе [1]. Как видно из изобар (рис. 244), эквиатомный состав не достигается методами гидрирования. Термодинамические расчеты [4] указывают, что содержание Н не может превысить 47,1% (ат.).

Рентгеновские [2, 3] и микроструктурные [3] исследования свидетельствуют о разделении раствора (Nb, NbH) при низких температурах на фазы с о. ц. к. решеткой, одна из них более богата Nb, а другая H. Область несмешиваемости построена по данным рентгеноструктурного анализа [2]; критическая точка при ~140° С имеет состав ~23% (ат.) Н (рис. 244). Критическая температура 250° С [7] не согласуется с тензиметрическими измерениями. Термодинамическим анализом тензиметрических данных в работе [4] рассчитана критическая температура 183,2° С и состав критической точки 27,2% (ат.) Н; границы области не-



Рис. 244. Н- Nb

смешиваемости при более низких температурах следующие: 18,2—33,0% (ат.) Н при 150° С, 10,8—35,6% (ат.) Н при 100° С и 2,6—38,7% (ат.) Н при 0° С. В работе [2] обнаружили только о. ц. к. структуры, находящиеся в равновесии ниже 140° С; однако в работе [4] наблюдали и о. ц. к., и «искаженную о. ц. к.» структуру для фазы, обогащенной Н. Отмечается [7], что искаженная структура твердого раствора на основе NbH существует только ниже 100° С. Предположение о том, что области несмешиваемости не существует, а искаженная структура является мартенситной [8], представляется неправомерным.

Соединение NbH стехиометрического состава получить трудно, поэтому период его решетки точно не измерен: по данным [4] a = 3,41A, по данным [2] a =

= 3,42Å для составов, лежащих около NbH. В работе [2] указано, что 1% (ат.) Н увеличивает период о. ц. к. решетки Nb на 0,0023±0,0002Å.

увеличивае соединение NbH<sub>2</sub>, полученное катодной гидратацией в HF [9], метастабильное соединение NbH<sub>2</sub>, полученное катодной гидратацией в HF [9], при температуре 300° С в вакууме распадается на NbH и H<sub>2</sub>. Решетка NbH<sub>2</sub> г. ц. к. типа CaF<sub>2</sub>,  $a = 4,563 \pm 0,001$ A.

1. McKinley T. D. Неопубликованная работа, доложенная на Regional Meeting AIME, Cleveland, Ohio, April, 1957.

- 2. Albrecht W. M. a. o. J. Electrochem. Soc., 1959, v. 106, p. 981—986; предварительные данные, см. Albrecht W. M. a. o. J. Electrochem. Soc., 1958, v. 105, p. 219—223.
- 3. K o m j a t h y S. J. Less-Common Metals, 1960, v. 2, p. 466-480.
- 4. Veleckis E. Dissertation, Illinois Institute of Technology, 1960; Edwards R. K., Veleckis E. Abstracts of Papers for 138th Meeting, America Chemical Society, 1962, 32S.
- 5. Katz O. M., Gulbransen E. A. J. Electrochem. Soc., 1958, v. 105, p. 756-757.
- 6. Перминов П. С. ДАН СССР, 1958, т. 121, с. 1041-1042.
- 7. Wainwright C. Bull. Inst. Metals, 1958, v. 4, p. 68-69.
- 8. Paxton H. E. a. o. Trans. AIME, 1959, v. 215, p. 725-727.
- 9. Brauer G., Müller H. J. Inorg. Nucl. Chem., 1961, v. 17, p. 102-107; Angew Chem., 1958, Bd 70, S. 53-54; Plansee Proceedings, 1959, Pergamon Press, N. Y., 1959, p. 257-263.

 $\overline{3},8443$ 2.1557

## H-Nd. Водород-неодим \*

Диаграмма состояния системы (см. рис. 138) построена в результате тензиметрического исследования сплавов, выплавленных из 99,2%-ного Nd [1]. В атомных процентах диаграмма совпадает с диаграммами Се—Н и Рг—Н. Влияние Н на ү = β-превращение неизвестно. Период решетки твердого раствора с г. ц. к. решеткой типа СаF<sub>2</sub> уменьшается при повышении содержания H: 5,467 ± ± 0,002A для NdH<sub>2</sub>, 5,433 ± 0,005A для NdH<sub>2,40</sub> [2], 5,470 ± 0,001 для NdH<sub>2</sub> и 5,43A для NdH<sub>2.6</sub> [3].

1. Mulford R. N. R., Holley C. E. J. Phys. Chem., 1955, v. 59, p. 1222-1226.

2. Warf J., Korst W. См. в сб. «Редкоземельные металлы» под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

3. Holley C. E. a. o. J. Phys. Chem., 1955, v. 59, p. 1226-1228.

# 2,2349

### H-Ni. Водород-никель \*

Полученные в работах [1—3] значения растворимости Н в Ni при 1 ат в интервале температур 1500—1600° С согласуются с данными, опубликованными ранее (см. М. Хансен и К. Андерко, т. II [4, 5]).

Обнаружен гидрид предположительного состава NiH [4]. Соединение было получено при комнатной температуре взаимодействием Ni и H в катодном разряде, в результате которого образовалась гидридная пленка толщиной ~10 мк. Рентгеновским исследованием установлено, что соединение имеет г. ц. к. структуру типа NaCl или цинковой обманки,  $a = 3,721 \pm 0,001$ A, при 16—22° C.

1. Busch T., Dodd R. A. Trans. AIME, 1960, v. 218, p. 488-490.

2. Schenck H., Wunsch H. Arch. Eisenhuettenw., 1961, Bd 218, S. 779-790.

- De Kazinczy F., Lindberg O. Jernkontorets. Ann., 1960, Bd 144, S. 288; cm. [2].
   Boniszewski T., Smith G. C. Phys. Chem. Solids, 1961, v. 20, p.
- 115—118.

#### 3,4631 2,5369

# H— Np. Водород—нептуний

Сообщается [1], что Np взаимодействует с H $_2$  пpи 50° C с образованием гидрида NpH $_{3,6-3,8}.$ 

1. Fried S., Davidson N. J. Amer. Chem. Soc., 1948, v. 70, p. 3539; см. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1—22.

# 3,6398

#### H—Ра. Водород—протактиний\*

Подтверждено существование  $PaH_3$  [1].  $PaH_3$  имеет кубическую решетку и изоструктурен с UH<sub>3</sub>,  $a = 6{,}648 \pm 0{,}005A$  [2].

1. Sellers P. A. a. o. J. Amer. Chem. Soc., 1954, v. 76, p. 5935--5938. 2. Rundle R. E. J. Amer. Chem. Soc., 1951, v. 73, p. 4172.

3,6870 2,3130

## Н—Рb. Водород—свинец \*

Повторно сообщаются данные о растворимости Н в Рb при 600° С [1-2] (см. также М. Хансен и К. Андерко, т. II [5]).



В работе [2] приведены изотермы системы от —78 до 477° С и давлений от 1 до 1000 ат.

<sup>1</sup> Основные особенности строения диаграммы системы следующие [1, 3]: а) существует твердый раствор  $\alpha$  с г. ц. к. решеткой, период которой непрерывно увеличивается от 3,891 до 3,894А при PdH<sub>0,05</sub>; б) до состава PdH<sub>0,7</sub> простирается дву хфазная область ( $\alpha + \beta$ ), где в равновесии находятся две г. ц. к. фазы (a = 3,894А) и гидридная фаза  $\beta$  (a = 4,027А); в) твердый раствор  $\beta$  имеет область гомогенности, период г. ц. к. решетки его увеличивается от 4,027 до 4,07А. При температурах выше 300° С или давлениях более 20 *ат* между г. ц. к. Рd

н го ц. к. Рон (типа NaCl) образуется непрерывный ряд твердых растворов [2]. Нейтронографическим методом установлено [11], что атомы Н и D занимают

Неитронографическим мегодом установлено [11], что цтома и и в становлено [11], что цтома и в в становлено [11], что цтома и в становлено [11], что цтома и

- 1. Knowles D. R. U. K. At. Energy Authority, Ind. Group, IGR-R/C 190, 1957.
- 2. Levine P. L., Weale K. E. Trans. Faraday Soc., 1960, v. 56, p. 357-362.
- 3. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.
- 4. Lewis F. A. Platinum Metals Rev., 1961, v. 5, p. 21-25.
- 5. Silberg P. A., Bachman C. H. J. Chem. Phys., 1958, v. 29, p. 777-781.
- 6. Van Swaay M. Ph. D. Thesis, Princeton University, 1956, 78 p.; Dissertation Abstr. 1958, v. 18, p. 97-98.
- 7. Lewis F. A. Naturwissenschaften, 1961, Bd 48, S. 402-403.
- 8. Bucer R. V. Rev. Phys. Acad. Rep. Populaire Roumaine, 1961, v. 6, p. 583-588.
- 9. Everett D. H., Nordan P. Proc. Roy. Soc. (London), 1960, v. A259, p. 341-360.
- 10. H a a d R. M., Shipko J. U. S. At. Energy Comm. KAPL 1097, 1956.
- 11. Worsham J. E. a. o. Phys. Chem. Solids, 1957, v. 3, p. 303-310.
- 12. Schuldiner S., Hoare J. P. J. Electrochem. Soc., 1958, v. 105, p. 278-284.
- 13. Wicke E. Oesterr. Chemiker-Ztg., 1961, Bd 62, S. 324-325.

#### $\overline{3,8545}$ 2.1455

# . H-Pr. Водород-празеодим \*

Тензиметрическим методом исследованы сплавы, выплавленные из 99,5%-ного Pr [1]. Построенная диаграмма состояния (см. рис. 138) совпадает (при шкале концентрации в атомных процентах) с диаграммами Се—Н и Nd—Н. Влияние Н на  $\alpha \rightleftharpoons \beta$ -превращение Pr неизвестно. Твердый раствор Н в Pr имеет г. ц. к. решетку типа CaF<sub>2</sub>. Период его решетки уменьшается при увеличении содержания H: 5,517 ± 0,001A (PrH<sub>2</sub>) [2]; 5,487A (PrH<sub>2,8</sub>) [3] и 5,515 ± 0,002A (PrH<sub>2</sub>), 5,495 + 0,003A (PrH<sub>2,85</sub>) [4].

- 1. Mulford R. N. R., Holley C. E. J. Phys. Chem., 1955, v. 59, p. 1222-1226.
- 2. Holley C. E. a. o. J. Phys. Chem., 1955, v. 59, p. 1226-1228.
- 3. Elson R. E. a. o. См. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 4. Warf J., Korst W. См. в сб. «Редкоземельные металлы» под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

#### 3,6196 2,3804

# Н-Ри. Водород-плутоний \*

В результате изучения сплавов при различных температурах и давлениях до 70 кГ/см<sup>2</sup> установлен характер фазового равновесия в интервале от 67 до 75% (ат.) Н [1]. Обнаружены две гидридные фазы: а с г. ц. к. структурой при 67—73%

76

(ат.) Н и β с г. ц. к. решеткой в интервале от 74% (ат.) Н и выше. На рис. 246 предположительно показаны фазовые границы, при построении которых были учтены данные, полученные этими же авторами в более ранней работе (см. М. Хансен и К. Андерко, т. II [3]). На диаграмме представлена, очевидно, растворимость Н в Ри, поскольку точка плавления Ри 639,5° С. Предполагается [2], что водород незначительно влияет на температуру плавления и аллотропических превращений Ри, в то же время результаты работы [1] дают основание предпола-





гать эвтектическую реакцию. Фаза а имеет г. ц. к. решетку типа CaF<sub>2</sub>, a =  $= 5,395 \pm 0,002$ А при РиН<sub>2.0</sub>, при составе РиН<sub>2.5</sub> период решетки уменьшается до  $a = 5,34 \pm 0,01$ А [1]. Гидрид  $\beta$  стехиометрического состава РиН<sub>3</sub> имеет гексагональную решетку с  $a = 3,78 \pm 0,01$ А,  $c = 6,76 \pm 0,01$ А [1]. Значения периодов решетки РиН2,5 и РиН3 подтверждены в работе [3].

Предварительное исследование системы D-Pu [1] показано, что при одинаковых составах и температурах равновесное давление D несколько выше, а период решетки дейтеридов несколько меньше. В системе D-Pu обнаружены те же равновесные фазы, что и в системе Н-Ри.

1. Mulford R. N. R., Sturdy G. E. J. Amer. Chem. Soc., 1956, v. 78, p. 3879-3901.

2. Schonfeld F. W. a. o. B Metallurgy and Fuels, Progress in Nuclear Energy, Scholl Pergamon Press, N. Y., 1959, p. 579-599.
 McDonald B. J., Fardon J. B. J. Chem. Soc., 1956, p. 781; cm. Li-

b o w i t z G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.

#### 2,0716 1,9284

# H-Rb. Водород-рубидий

Соединение RbH имеет г. ц. к. решетку типа NaCl, a = 6,049A [1]. Теплота образования его 11,3 ккал/моль [2]. При нормальном давлении Н<sub>2</sub> соединение RbH диссоциирует, не достигая точки плавления [2].

1. Elson R. E. a. o. U. S. At. Energy Comm. UCRL —4519 rev., 1956; см. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.

2. Messer C. E. U. S. At. Energy Comm. NYO - 3955, 1953; cm. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.

3,9910 2,0090

## H-Rh. Водород-родий \*

На основании изучения сплавов при различных давлениях и температурах сделан вывод о существовании твердого раствора H в Rh [1].

1. Жуков И. И. Изв. Инст. физ.-хим. анализа, 1927, т. 3, с. 600-640.

#### 2,3506 1.6494

## H—Sc. Водород—скандий

Изучено взаимодействие Sc с H<sub>2</sub> при температурах до 900° С и давлениях несколько меньше атмосферного [1]. Работа проведена на скандии, основными металлическими примесями в котором были Al [0,5% (по массе)] и Y [0,2% (по массе)]. При 450° С наблюдалось взаимодействие, в результате чего образовался сплав состава ScH<sub>2,027</sub>. Соединение ScH<sub>2</sub> имеет г. ц. к. решетку предположительно типа CaFe<sub>2</sub>, a = 4,7832 + 0,0005А. На элементарную ячейку приходится, вероятно, 4 формульные единицы. Безуспешной оказалась попытка получить ScH<sub>3</sub> (по аналогии с YH<sub>3</sub>). Не удалось получить и высшие гидриды Sc реакцией с Н2 при высоких температурах и различных давлениях Н2 [2].

1. McGuire J. C., Kempter C. P. J. Chem. Phys., 1960, v. 33, p. 1584-1585.

2. Hardcastle K. I. Ph. D. Thesis, University of Southern California, 1961, 104 p.: Dissertation Abstr., 1961, v. 22, p. 3383.

#### 2,5549 1,4451

## H-Si. Водород-кремний

Известны соединения с общей формулой Si<sub>n</sub>H<sub>2n+2</sub>, называемые силанами. Если  $n \leqslant 3$ , соединения при комнатной температуре находятся в газообразном состоянии [1, 2].

1. Stock A. The Hydrides of Boron and Silicon, Cornell University Press, Ithaca, N. Y., 1933, 250 p.

2. English W. D., van Nicholls R. V. J. Amer. Chem. Soc., 1950, v. 72, p. 2764-2765,

На рис. 192 (см. систему Dy—H) приведена обобщенная диаграмма состояний для системы Dy—H, Er—H и H—Sm [1]. SmH<sub>3</sub> имеет гексагональную решетку типа Na<sub>3</sub>As;  $a = 3,78 \pm 0,01$ A,  $c = 6,78 \pm 0,02$ A [2]. Для упругости диссоциации SmH<sub>2</sub> приводится зависимость lg p (мм pm. cm.) = 10,89–11,180/T [3].

Mulford R.N.R.U.S.At. Energy Comm. AECU — 3813, 1958; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
 Ellinger F. Частное сообщение, см. Гшнейднер К. А. Сплавы



Рис. 247. Н—Та

гнейднер К.А.Сплавы редкоземельных металлов; Изд-во «Мир», 1965.

 Mulford R. N. R. Частное сообщение; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### <sup>2,0608</sup> 1,9392 H — Sr. Водород—стронций \*

В предварительном исследовании системы [1] обнаружена широкая область растворимости Н в Sr в твердом состоянии. При увеличении содержания Н температуры солидуса и ликвидуса сплавов повышаются. Гидрид SrH<sub>2</sub> испытывает полиморфное превращение. Нет никаких указаний на существование гексагональной γ-фазы, подобной γ-фазе в системе Ca—H.

1. Peterson D. T., Colburn R. U. S. At. Energy Comm. IS-351, 1961, p. 27-28.

#### 3,7461 2,2539 Н—Та. Водород—тантал \*

Проведены тензиметрические исследования системы при 164— 402° С [1], 300—700° С [2] и 350—630° С [3] и давлениях не более 1000 *мм рт. ст.* В исследованном температурном интервале Н растворяется в Та. Результаты термодинамического анализа экспериментальных данных [3] свидетельствуют о том, что максимальная растворимость Н в Та составляет 41,5% (ат.) и что ниже —58,5° С существует область разрыва растворимости. На рис. 247 приведена эта область, а также нанесены изобары для давлений 760, 76 и. 7,6 мм рт. ст. [3]. Данные работы [2] допускают существование области разрыва растворимости при температурах ниже 100° С. Определена растворимость Н в Та при температуре 622° С и давлении до 1000 ат и при 679° С и 750 ат [4]. Максимальные значения растворимости равны соответственно 41,7 и 38,0% (ат.). В обоих случаях наблодается логарифмическая зависимость равновесного давления от температуры.

Предсказанная [3] область разрыва растворимости не согласуется с обнаруженной ранее подобной областью, существующей при комнатной температуре (см. М. Хансен и К. Андерко, т. II [3, 4, 9 и 11]). Возможно, что обнаруженное) в ряде работ соединение «Та<sub>2</sub>Н» [5] (см. М. Хансен и К. Андерко, т. II [4, 11]) является богатой водородом фазой при температурах ниже критической. Превранеше гидрида из кубической модификации в ромбическую не изучалось.

Kofstad P. a. o. J. Amer. Chem. Soc., 1959, v. 81, p. 5015—5019.
 Mallett M. W., Koehl B. G. J. Electrochem. Soc., 1962, v. 109, p. 611—616.
 Veleckis E. Dissertation, Illinois Institute of Technology, 1960, 173.
 Перминов П. С. ДАН СССР, 1958, т. 121, с. 1041—1042.
 Saba W. G. a. o. J. Chem. Phys., 1961, v. 35, p. 2148—2155.

#### 3,8023 2,1977

## H-Tb. Водород-тербий

Обпаружен гидрид TbH<sub>2,95</sub>, имеющий гексагональную структуру типа Na<sub>3</sub>As;  $a = 3,70 \pm 0,02$  A,  $c = 6,60 \pm 0,03$  A [1]. Сообщается о том, что система H—Tb подобна системам тяжелых редкоземельных металлов с водородом. См. систему Ce—H [2].

1. Y a k e 1 H. L. (Jr), a. o. U. S. At. Energy Comm. ORNL-2839, p. 49-51.

2. Mulford R.N.R.См. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

#### 3,6378 2,3622

## H—Th. Водород—торий \*

Растворимость Н в Th определялась в интервале температур 200-800° С на Th трех степеней чистоты. Результаты работы приведены на рис. 248.

Данные по системе, упоминавшиеся М. Хансеном и К. Андерко (см. т. II [7]), в настоящее время можно найти в другом источнике [2].

В работе [1] часто упоминается ThH<sub>2</sub> как наиболее богатое водородом соединение в системе. В то же время упоминается [3] о многих химических реакциях, в которых участвует ThH<sub>4</sub>. Однако в обеих работах [1, 3] эти фазы не были обнаружены.

1. Peterson D. T., Westlake D. G. Trans. AIME, 1959, v. 215, p. 444-447.

 N o t t o r f R. W. a. o. U. S. At. Energy Comm. TID-5223, pt. 1, 1952, p. 350-369.

3. Lipkind H., Newton A. S. U. S. At. Energy Comm. TID-5223, pt. 1, 1952, p. 398-404.

## 6 Р. П. Эллиот, том II

81



В работах [1—3] дан обзор литературы по системе. Позднее опубликованы не вошедшие в обзоры результаты тензиметрического исследования [4].

Согласно работе [5], при содержании >60% (ат.) Н у-фаза имеет тетрагональную решетку; a = 4,45 А, c = 4,35 А. В сплаве с 65,8% (ат.) Н при 37° С отношение c/a становится равным единице [6]. Период решетки г. ц. к. у-фазы при высоком давлении и высокой температуре достигает максимума при определенных давлениях H<sub>2</sub>: 7; 19,6 и 30,5  $\kappa\Gamma/cm^2$  при соответственно 350, 450 и 500° С [7].

- 1. Глазунов С. Г. и др. Изв. АН СССР, ОТН, 1958, № 6, с. 30—36.
- Якимова А. М. Труды Комиссии по аналитической химии. Институт геохимии и аналитической химии, Изд-во АН СССР 1960, т. 10, с. 142—149.
- 3. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22.
- 4. Гвоздев С. П., Журенкова А. А. Изв. вузов, Черная металлургия, 1960, № 9, с. 8—13.
- 5. Софина В. В. и др. Кристаллография, 1958, т. 3, с. 539-544.
- 6. Yakel H. L. (Jr) Acta Cryst., 1958, v. 3, p. 46-51.
- 7. Goon E. J., Malgiolio J. U. S. At. Energy Comm. NYO-7547, 1958, CM. [3].

#### 3,7758 2,2242

## H—Tm. Водород—тулий

Система H—Tm изоморфна с системами H — тяжелые редкоземельные металлы [1]. См. Се—H.

1. Mulford R.N.R.См. всб. «Редкоземельные металлы». Под ред. Ф. Х. Спеддинга, А. Х. Даана. Изд-во «Металлургия», 1965. В работе [1] определена растворимость Н в U. Полученные данные неплохо согласуются с результатами, полученными ранее (см. М. Хансен и К. Андерко, т. II [7]): в  $\alpha$ -U и  $\beta$ -U $\sim$ 0,0007% (по массе) Н и в  $\gamma$ -U $\sim$ 0,0014% (по массе) Н при 800° С. Сообщается о перегибе на кривой термического расширения UH<sub>3</sub> при 400—425° С [2]. Происхождение его не объясняется.

H—U. Водород—уран \*

1. Davis W. D. U. S. At. Energy Comm. KAPL-1548, 1956, p. 1-27. 2. Goon E. J. a. o. Rev. Sci. Instr., 1957, v. 28, p. 342-344.

#### 2,2963 1,7037

3.6268 2,3732

# H--V. Водород-ванадий \*

Проведен тензиметрический анализ системы на участке 0—32% (ат.) Н при 165—456° С (использован V чистотой более 99,7%) [1] и при 246—554° С и давлении до 1 ат (использован V чистотой более 99,5%) [2]. Согласно обеим работам,

в исследованном интервале простирается область твердых растворов Н в V. На основании результатов термодинамического анализа экспериментальных данных [2] высказано предположение о том, что максимальная возможная растворимость Н в Та составляет 47,1% (ат.) и что при температурах ниже критической точки [47,1° С и 17,6% (ат.) Н] сплавы двухфазны. На рис. 249 приведены изобары при 760; 76 и 7.6 мм рт. ст. [2] и рассчитанная термодинамически область. разрыва растворимости. Область разрыва растворимости, построенная по данным рентгеновского анализа [3], плохо согласуется с областью, положение которой определено термодинамическим расчетом. Экспериментально определено значение растворимости Н в V, равное 48,5% (ат.). Вместе с тем настораживает сообщение автора о том, что сплавы готовили наводороживанием при 850°С и давлении 1 am.

При температурах ниже критической богатая водородом фаза имеет о. ц. тетрагональную решетку [3, 4]; a = 3,02 А, c == 3,36 А [4]; a = 2,996 А, c == 3,402 А [5]; a = 2,996 А, c == 3,402 А [5]; a = 2,992 (at.) H] [3]. При ~200° С отношение c/aстановится равным единице. Для

6\*



определения положения области разрыва растворимости и интервала стабильности тетрагонального гидрида необходимы дальнейшие исследования.

82

Нестехиометрический дигидрид VH1,77 имеет г. ц. к. структуру типа CaF2, a = 4,271 ± 0,002 А. Соединение можно получить, используя высокие давления или плавиковую кислоту в присутствии катализатора [6].

- 1. Kofstad P., Wallace W. E. J. Amer. Chem. Soc., 1959, v. 81, p. 5019-5022.
- 2. Veleckis E. Dissertation, Illinois Institute of Technology, 1960, 173 p.
- 3. Zanowick R. L. Dissertation, University of Pittsburgh, 1961, 76 p.

4. Trzeciak M. J. a. o. U. S. At. Energy Comm. BMI-1112, 1956, 32 p.

5. Антонова М. М., Самсонов Г. В. ЖПХ, 1960, Т. 33, с. 1407—1408. 6. Maeland A. J. a. o. J. Amer. Chem. Soc., 1961, v. 83, p. 3728-3729.

#### 2,0545 1.9455

# Н-Ч. Водород-иттрий \*

Система изучена с помощью металлографического и рентгеновского анализов и определения газопоглощения [1]. При температурах ниже 550° С использовали У чистотой 99,2%, а выше 550° С - чистотой 98,6%. Результаты работы



представлены на рис. 250 (давления выше 1 ат). Данные работы [2] в интервале 0-100° С согласуются с рис. 250. Не приводится никаких подробностей высокотемпературной области твердых растворов на основе гидрида, обозначенного ҮН.

Предполагается [3], что гидрид ҮН, обязан своим появлением Zr, содержание которого в Y составляло 1%.

YH2 имеет г. ц. к. решетку типа CaF2, a = 5,201 A. YH<sub>3</sub> имеет гексагональную решетку; a = 3,674 Å, c = 6,599 А [1].

- 1. Lundin C. E., Klodt D. Cm. B co. «Pegкоземельные металлы» под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Dialer K., Frank B. Z. Naturforsch., 1960, Bd 15b, S. 58.
- 3. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

# H-Yb. Водород—иттербий \*

При тензиметрическом исследовании системы при давлениях до 30 ат обнаружена двухфазная область между дигидридом и соединением

предположительно состава УbH<sub>3</sub> [1] [сплав состава 75% (ат.) Н не был исследован]. Таким образом, по виду диаграмма близка к диаграмме Dy-H. На изотермах давление-состав имеется горизонталь, свидетельствующая, по мнению автора, о существовании гидрида Yb<sub>2</sub>H<sub>5</sub> [1]. Подобная интерпретация недопустима в свете имеющихся экспериментальных данных, относящихся к области гомогенности, и того факта, что, согласно рентгеновским данным, YbH2 и YbH3 находится в равновесии.

YbH<sub>2</sub> имеет ромбическую решетку типа SrH<sub>2</sub>; a = 5,88 A, b = 3,56 A, c == 6,79 Å (YbH<sub>1,96</sub>). Это хорошо согласуется с данными по дидейтериду (см.

М. Хансен и К. Андерко, т. II [1]). В закаленных образцах обнаружена также метастабильная модификация YbH<sub>2</sub> с г. ц. к. решеткой, a = 5,253 A [1-3].  $YbH_3$  имеет г. ц. к. решетку предположительно типа BiF<sub>3</sub> [1—3],  $a = 5,192 \pm$ 

+ 0,002 А [71,9% (ат.) Н] [3]. Существует неопределенность в отношении того, представляет ли этот состав богатую Н границу нестехиометрического YbH3 или обедненное водородом соединение переменного состава [2].

- 1. Hardcastle K. I. Dissertation, University of Southern California, 1961, 96 p.
- 2. Hardcastle K., Warf J. C. В книге «Rare Earth Research» (Proceedings of the Second Conference) eds., J. F. Nachman, C. E. Lundin, Gordon and Breach Science Publishers, Inc., N. Y., 1962, p. 261-271.

3. Warf J.C., Hardcastle K.J. Amer. Chem. Soc., 1961, v. 83, p. 2206-2207.

# 2,1880

## H-Zn. Водород-цинк \*

При тщательном повторном исследовании [1] растворимости Н в жидком Zn получено значение (1,8 ± 1)·10<sup>3</sup> см<sup>3</sup> на 100 г Zn при 516° С. Это значение приволилось теми же авторами и ранее (см. М. Хансен и К. Андерко, т. II [10]).

1. Hoimann W., Maatsch J. Neue Hütte, 1957, Bd 2, S. 648-650.

#### 2,0434 1,9566

# H—Zr. Водород—цирконий \*

Приведенная М. Хансеном и К. Андерко (см. т. II, рис. 447) диаграмма эвтектондного типа подтверждена в недавних исследованиях. Как показано на рис. 251, в настоящее время хорошо изучена и область диаграммы при содержании 50% (ат.) Н. В работе [1] сделан обзор литературы по системе.

Методом определения теплоемкости подтверждено предположенное ранее (см. М. Хансен и К. Андерко, т. II [32]) положение границы (β + δ)/δ [2].

При изучении давления диссоциации с учетом данных высокотемпературного рентгеновского анализа удалось более точно построить границы α/(α + β),  $(\alpha + \beta)/\beta$ ,  $\beta/(\beta + \delta)$ ,  $(\delta + \beta)/\delta$  и  $(\alpha + \delta)/\delta$ . Эти данные совместно с данными М. Хансена и К. Андерко (см. т. II [27, 34]) использовали при построении диаграммы на рис. 251. Как показано на рис. 251, предельная растворимость Н в α-Zr составляет 6% (ат.). При изучении поглощения Н получены несколько большие значения растворимости H в α-Zr [4]:

500 Температура, °С ... 840 800 750 700 Растворимость % (ат.) 0,90 1,95 2,90 5,45 530 650 6,45 7,00 7,00 5,454.10

По данным [3] и М. Хансена и К. Андерко (см. т. II [27, 34]), эвтектоидная концентрация равна 33% (ат.) Н, а состав б-фазы при эвтектоидной температуре 56% (ат.) Н. По результатам металлографического анализа [5] эвтектоидная концентрация равна  $36 \pm 2\%$  (ат.) H.

Дилатометрическим методом определялись фазовые границы в интервале от 300° С до эвтектоидной температуры [6, 7]. Определен состав равновесных фаз при эвтектоидной температуре [6]:  $\alpha$  [5,75  $\pm$  1% (ат.) H],  $\beta$  [38  $\pm$  2% (ат.) H] и  $\delta$  [53 ± 1% (ат.)]; эвтектондное превращение происходит при 550 ± 5° С [7]. Границы  $\alpha/(\alpha + \delta)$  и  $(\alpha + \delta)/\delta$  определены дилатометрически [6]. Граница  $\alpha/(\alpha + \delta)$  прекрасно согласуется с данными, приведенными М. Хансеном и К. Андерко (см. т. II [27]), граница ( $\alpha$  +  $\delta$ )/ $\delta$  [6] ниже 500° С совпадает с данными работы [3].

Обнаруженные впервые ранее (см. М. Хансен и К. Андерко, т. II [6] гидридные фазы б и є сейчас хорошо изучены, существуют они в интервале 60-

67% (ат.) Н [8-12]; б-фаза имеет г. ц. к. решетку, а є-фаза — г. ц. тетрагональную. Для построения границ этих областей на рис. 251 использованы результаты рентгеновского анализа [10]. б-фаза существует до 62,4% (ат.) Н, а є-фаза в интервале ~63,2% (ат.) Н — ZrH<sub>2</sub>. Границы є фазы нанесены схематично, так как, по данным тензиметрического исследования, при повышенных температурах существует лишь один гидрид [12, 13]. Период решетки б-фазы равен 4,778 А и незначительно меняется при изменении концентрации [10]. Периоды решетки є-фазы зависят от состава: a = 4,88 A, c = 4,56 A (со стороны, богатой Zr) и





a = 5,05 A, c = 4,33 A (ZrH<sub>2</sub>) [10]. Высказано предположение о существовании на богатой Zr границе б-фазы метастабильного тетрагонального гидрида; a == = 4,61 A, c = 4,96 A [5].

На основании металлографического исследования предполагается, что тетрагональный гидрид є образуется при псевдомартенситном превращении кубической фазы [5, 14] или путем двойникования [11]. Предположенные механизмы образования є-фазы согласуются с данными работы [15], в которой обнаружена температурная зависимость степени тетрагональности.

Определялась растворимость Н в Zr при температурах 700-1000° С и давлениях 0,1-4,0 мкм рт. ст. [16]. В этих условиях растворимость изменяется в пределах 5-38·10-4%.

1. Libowitz G. G. J. Nucl. Mater., 1960, v. 2, p. 1-22. 2. Douglas T. B. J. Amer. Chem. Soc., 1959, v. 80, p. 5040-5046.

3. LaGrange L. D. a. o. J. Phys. Chem., 1959, v. 63, p. 2035-2041.

- 4. Someno M. Nippon Kinzoku Gakkaishi, 1960, v. 24, p. 249-253.
- 5. W h i t w h a m D. Mem. Sci. Rev. Met., 1960, v. 57, p. 1-15; U. S. At. Energy
- Comm. APEX-614, 1960, 30 p.
- 6. Espagno L. e. a. Compt. Rend., 1959, v. 248, p. 2003-2005.
- 7. Espagno L. e. a. Compt. Rend., 1958, v. 247, p. 1199-1202.
- 8. Trzebiatowski W., Stalinski B. Roczniki Chem., 1956, v. 30, p. 691-696.
- Софина В. В. и др. Кристаллография, 1958, т. 3, с. 539-544.
- 10. Espagno L. a. o. Compt. Rend., 1959, v. 249, p. 1105-1107.
- 11. Chang R. J. Nucl. Mater., 1960, v. 2, p. 335-340.
- 12. Vetrano J. B., Atkins D. F. Met. Soc. AIME, Inst. Metals, Div., Spec. Rept. Ser. № 10, Nuclear Metallurgy, 1960, v. 7, p. 57-61.
- 13. Libowitz G. C. Abstr. of Papers for 137 th Meeting, Amer. Chem. Soc., April, 1960, 8R-9R.
- 14. Whitwham D. a. o. Acta Met., 1959, v. 7, p. 65-68.
- 16. Mallett M. W., Albrecht W. M. J. Electrochem. Soc., 1957, v. 104, p. 142-146.
- 15. Yakel H. L. (Jr.). Acta Cryst., 1958, p. 46-51.

#### 1,9661 0,0339

### Hf-Ir. Гафний-иридий

При изучении структур типа AB<sub>3</sub> идентифицировано соединение HfIr<sub>3</sub> [1].  $\Phi_{a3a}$  имеет кубическую решетку, изоморфную с Си<sub>3</sub>Au, a = 3,935 А. Сообщается, что структура равноатомного соединения не о. ц. к. и не относится к типу CsCl. В сплаве с 30% (ат.) Ir, полученном дуговой плавкой, обнаружено соединение Hf<sub>2</sub>Ir [3]. При закалке с 1200° С сплав был однофазным. Hf<sub>2</sub>Ir имеет г. ц. к. решетку, изоморфную с Ti<sub>2</sub>Ni,  $a = 12,352 \pm 0,001$  Å [3].

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286. 3. Schwartz L. H., Nevitt M. V. Trans. AIME, 1958, v. 213, p. 700-702.

0,5121 1,4879

#### Нf-Mn. Гафний-марганец \*

Спеканием компонентов при 1000 и 1200° С получено соединение HfMn<sub>2</sub> [1]. При температуре спекания 1400° С соединение не образовывалось. Высказано предположение о том, что HIMn<sub>2</sub> распадается по перитектоидной реакции в интервале 1200-1400° С.

 $HfMn_2$  имеет гексагональную решетку типа  $MnZn_2$ ; a = 4,956 A, c === 8,122 А [1]. В работе [2], в которой исследованы сплавы, выплавленные индукционной плавкой в кварцевом тигле, подтверждена предложенная структура  $HiMn_2$ ; a = 4,995 A, c = 8,213 A (возможны загрязнения?). Данные М. Хансена и К. Андерко (см. т. II, [1]) следует считать устаревшими.

Сообщается о существовании соединения НfMn, имеющего г. ц. к. решетку типа Ti<sub>2</sub>Ni,  $a = 11,812 \pm 0,001$  A [3].

- 1. Elliott J. H. Trans. ASM, 1961, v. 53, p. 321-329.
- 2. Wernick J. H., Haszko S. E. Phys. Chem. Solids, 1961, v. 18, p. 207-209.
- 3. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; N e v i t t M. V. a. o. Trans. AIME. 1960, v. 218, p. 1019-1021.

86

### Hf-Mo. Гафний-молибден \*

Диаграмма состояния системы (рис. 252) построена по данным металлографического и рентгеновского анализов и определения температуры начала плавления сплавов, выплавленных в дуговой печи с использованием Hf 97,6% (2,3% Zr) [1]. Температура β — α превращения Hf принята равной 1750 ± 20° C [2].



Соединение HiMo<sub>2</sub> имеет ограниченный интервал гомогенности. Отмечается сложный характер полиморфных превращений HfMo<sub>2</sub> [1]. Оба соединения, и HfMo<sub>2</sub> и Hf<sub>35</sub>Mo<sub>65</sub>, в литом состоянии и после отжига при 1920 и 1875° С имеют гексагональную решетку типа MgNi<sub>2</sub>. После отжига при 1816° С оба соединения, HfMo<sub>2</sub> и Hf<sub>35</sub>Mo<sub>65</sub>, имеют промежуточную гексагональную структуру, тип между MgZn<sub>2</sub> и MgNi<sub>2</sub>. При 900—1750° С решетка их становится г. ц. к. типа MgCu<sub>2</sub>. При дальнейшем понижении температуры Hf<sub>35</sub>Mo<sub>65</sub> сохраняет кубическую струк-

туру, а HiMo<sub>2</sub> вновь становится гексагональным (типа MgNi<sub>2</sub>). Данные, приведенные в работе [1], несколько расходятся с результатами изучения HiMo<sub>2</sub>, приготовленного на базе Hi чистотой 99,8% [3]. В этой работе в интервале 500— 1400° С обнаружена лишь одна г. ц. к. (типа MgCu<sub>2</sub>) модификация. Чтобы принять результаты работы [1], необходимо убедиться в том, что причиной полиморфизма не является примесь Zr. Период решетки г. ц. к. НiMo<sub>2</sub> составляет 7,555 A [3], 7,560 A [1].

1. Taylor A. a. o. J. Less—Common Metals, 1961, v. 3, p. 265—280. 2. Deardorff D. K., Kato H. Trans. AIME, 1963, v. 227, p. 264—265. 3. Elliott R. P. Trans. ASM, 1961, v. 53, p. 321—329.

 $\frac{1,1055}{2,8945}$ 

# Hf—N. Гафний—азот \*

По данным работы [1], система Hf—N аналогична системе Hf—C, в ней имеется одно плавящееся конгруэнтно соединение HiN. Однако имеются указания [2] на существование двух соединений Hf<sub>2</sub>N и HfN<sub>1-x</sub>. Растворимость N в Hf довольно велика: 29% (ат.) при 1700° C [2]. Периоды решетки  $\alpha$ -Hf с таким содержанием N составляют a = 3,222 A, c = 5,157 A [2]. В сплавах, нагревавшихся при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан при 1700° C, никаких следов  $\beta$ -Hf не обнаружено. На этом основании сделан мость N в  $\alpha$ -Hf снижается незначительно. Фаза Hf<sub>2</sub>N появляется в сплавах при содержании  $\sim 30\%$  (ат.) N. В сплаве с 34% (ат.) N после отжига при 1500° C  $\alpha$ -Hf практически отсутствует, а уже при 35% (ат.) N в сплаве появляется фаза HfN<sub>1-x</sub>. Период решетки г. ц. к. HfN уменьшается при увеличении содержания N: 4,512 A при 42,6% (ат.) N, 4,518 A при 50% (ат.) и 4,515 A при 52,5% (ат.) N [2].

1. Nowotny H. u. a. Radex Rundschau, 1960, Bd 6, S. 367—372. 2. Rudy E., Benesovsky F. Monatsh. Chem., 1961, Bd 92, S. 415—441.

#### 0,4833 1,5167

# Hf—Ni. Гафний—никель \*

На основании металлографического и рентгеновского анализов сплавов, приготовленных на базе 99,9%-ного Hf, сделан вывод о том, что система Hf—Ni аналогична системе Zr—Ni [1]. Соединения NiHf<sub>2</sub>, NiHf и Ni<sub>7</sub>Hf<sub>2</sub> плавятся конгруэнтно, а Ni<sub>10</sub>Hf<sub>7</sub>, Ni<sub>5</sub>Hf<sub>2</sub> и Ni<sub>5</sub>Hf образуются по перитектической реакции. Эвтектоидный распад Ni<sub>11</sub>Hf<sub>9</sub> происходит при 1150 ± 20° C.

Днаграмма на рис. 253 построена в основном по данным работы [1]. Раствори-Диаграмма на рис. 253 построена в основном по данным работы [1]. Растворимость Hí в Ni показана согласно работе [2]. Температуры плавления для системы Hí—Ni не определяли. Показанные на рис. 253 температуры плавления нанесены пропорционально системе Zr—Ni. По данным другой работы [3], в системе имеются соединения NiHí<sub>2</sub>, NiHí, Ni<sub>3</sub>Hí<sub>2</sub>, Ni<sub>2</sub>Hí и Ni<sub>4</sub>Hí и эвтектики при 1200° С и 25,3 и 87,7% (ат.) [10 и 70% (по массе)] Ni.

NiHf<sub>2</sub> имеет о. ц. тетрагональную решетку типа AlCu<sub>2</sub>;  $a = 6,743\pm0,006$  A,  $c = 5,58\pm0,01$  A [1, 4]. При загрязнении кислородом решетка NiHf<sub>2</sub> становится г. ц. к. типа Ti<sub>2</sub>Ni [5]. NiHf имеет базоцентрированную ромбическую решетку (пространственная группа *Cmcm*);  $a = 3,220\pm0,005$  A;  $b = 9,820\pm0,006$  A,  $c = 4,12\pm0,01$  A [1, 4]. Ni<sub>11</sub>Hf<sub>9</sub> имеет о. ц. тетрагональную  $\pm 0,006$  A,  $c = 4,12\pm0,01$  A [1, 4]. Ni<sub>10</sub>Hf<sub>7</sub> имеет базоцентрированную ромбическую решетку; a = 9,79 A, c = 6,53 A [1]. Ni<sub>10</sub>Hf<sub>7</sub> имеет базоцентрированную ромбическую решетку;  $a = 12,275\pm0,004$  A,  $b = 9,078\pm0,008$  A,  $c = 9,126\pm$   $\pm 0,005$  A [1, 6]. Решетка Ni<sub>5</sub>Hf г. ц. к. (пространственная группа F43m), a = = 6,68 A [1]; сообщается, что г. ц. к. структура изотипна с AuBe<sub>5</sub>, a == 6,683 A [7].

88



- 1. Kirkpatrick M. E., Larsen W. L. Trans. ASM, 1961, v. 54, p. 580-590.
- 2. Reinbach R. Z. Metallkunde, 1960, Bd 51, S. 292-294.
- 3. Deardorff D. K. Дискуссия по работе [1]. Trans. ASM, 1961, v. 54, p. 851-853; Deardorff D. K. a. o. B co. The Metallurgy of Hafnium, eds. D. E. T h o m a s, E. T. H a y s. U. S. Atomic Energy Commission, 1960, p. 202. 4. Kirkpatrick M. E. a. o. Acta Cryst., 1962, v. 15, p. 252-255.
- 5. Nevitt M. V. U. S. At. Energy Comm. ANL-6330, 1960, p. 164-165.
- 6. Kirkpatrick M. E. a. o. Acta Cryst., 1962, v. 15, p. 894-903.
- 7. Dwight A. E. Неопубликованные данные; см. Deardorff D. K. a. o.
- B.co. The Metallurgy of Hafnium», D. E. Thomas E. T. Hayes (eds.), U. S. Atomic Energy Commission 1960, p. 202.
- 1,0478 2,9522

# Hf-O. Гафний-кислород \*

Методами металлографического и рентгеновского анализов и определением точки плавления (по методу конусов Зегера) система Hf-O изучена в интервале 0-67% (ат.) О [1]. Приведенная на рис. 254 диаграмма характеризуется двумя эвтектиками и конгруэнтным плавлением твердого раствора на основе α-Hf. Данные рентгеновского исследования [2] поддерживают опубликованное ранее сообщение [3] о существовании на диаграмме поля β-Hf-HfO2. В работе [4] подтверждается широкая область твердого раствора на основе α Hi. Данные об аллотропическом превращении HfO2 приводятся в работе [5]. Температура плавления HfO<sub>2</sub> составляет 2900 ± 25° C [5] или 2812° C [6].

HfO2 при 1700° С переходит из моноклинной в тетрагональную модификацию [5]. Периоды решетки моноклинного  $HfO_2$  составляют: a = 5,11 A, b = 5,14 A, c = 5,28 А,  $\beta = 99^{\circ} 44'$  (при комнатной температуре) и a = 5,21, b = 5,15 А, c = 5,43 А,  $\beta = 98^{\circ}$  48' (при 1640  $\pm 20^{\circ}$  С). Тетрагональный НfO<sub>2</sub> имеет периоды 90

решетки: a = 5,14 A, c = 5,25 A (1920 ± 20° C). В работе [7] также приведены периоды моноклинного  $HfO_2$  (типа  $ZrO_2$ ):  $a = 5,1156 \pm 0,0005$  A,  $b = 5,1722 \pm 0.0005$  A, b = 5,1722 $\pm 0,0005$  A,  $c = 5,2948 \pm 0,005$  A,  $\beta = 99^{\circ} 11' \pm 0,05'$ .



1. Rudy E., Stecher P. J. Less-Common Metals, 1963, v. 5, p. 78-89. 2. Nowotny H. u. a. Radex Rundschau, Bd 1960 (6), S. 367-372, 3. R u d y E. Dissertation, Technische Hochschule Vienna, 1960. 4. Dagerhamn T. Acta Chem. Scand., 1961, v. 15, p. 214-215. 5. Curtis C. E. a. o. J. Amer. Ceram. Soc., 1954, v. 37, p. 458-465. 6. Корнилов И.И. Труды Комиссии по аналитической химии. Институт геохимии и аналитической химии. Изд-во АН СССР 1960, т. 10, с. 17-26. 7. Adams J., Rogers M. D. Acta Cryst., 1959, v. 12, p. 951.

#### 1.9727 0,0273

## Нf-Os. Гафний-осмий

НfOs<sub>2</sub> имеет гексагональную решетку, изотипную с MgZn<sub>2</sub>;  $a = 5,184 \pm 0,002$  A,  $c = 8,468 \pm 0,002$  A [1]; a = 5,200 A, c = 8,492 A [2]. Решетка сплава эквиатомного состава HfOs кубическая типа CsCl, a = 3.239 A [3].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E. Trans, ASM 1961, v. 53, p. 479-500. 3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

0,2237 1.7763

# Hf-Pd. Гафний-палладий

В работе [1] идентифицировано соединение HfPd<sub>3</sub> [1]. Эта фаза имеет гексагональную структуру, изоморфную с TiNi<sub>3</sub>; a = 5,595 A, c = 9,192 A. Показано, что структура эквиатомного сплава не г. ц. к. и не относится к типу CsCl [2]. Выплавленный в дуговой печи сплав состава Hf.Pd после отжига при 1200° С был двухфазным [3]. Порошок этого сплава был повторно отожжен (при 1200° С?). Снятые с него рентгенограммы показали, что сплав имеет г. ц. к. решетку типа  $Ti_{a}Ni$ ,  $a = 12,3605 \pm 0.0003$  A.

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286. 3. Nevitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700-702.

1,9614 0,0386

#### Hf—Pt., Гафний—платина

В работе [1] идентифицирована фаза HfPt3. Эта фаза имеет гексагональную структуру, изоморфную с TiNi<sub>3</sub>; a = 5,636 A, c = 9,208 A. При изучении соединений типа АВ было обнаружено, что структура эквиатомного сплава не о. ц. к. и не относится к типу CsCl [2]. Выплавленный в дуговой печи сплав с ~30% (ат.) Рt был однофазным [3]. Рентгенограмма этой фазы индицирована в предположении г. ц. к. решетки типа  $Ti_2Ni$ ,  $a = 12,461 \pm 0,001$  А.

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286. 3. Nevitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700-702.

1,8678 0.1322

#### . Hf—Pu. Гафний—плутоний

Предварительные результаты рентгеновского анализа свидетельствуют о том, что в є-Ри растворяется 30% (ат.) Нf. Предполагается, что растворимость Ри в α-Hf составляет ~5% (ат.), поскольку периоды решетки α-Hf изменяются при добавке Ри от a = 3,196 A, c = 5,056 A до a = 3,192 A, c = 5,072 A [1].

1. Waldron M. B. В книге The Metal Plutonium, A. S. Coffinberry, W. N. M i n e r (eds.), University of Chicago Press, Chicago, 1961, p. 225-239.

1,9817 0,0183

#### Hf-Re. Гафний-рений

Диаграмма состояния на рис. 255 построена по данным металлографического и рентгеновского исследований сплавов [1]. Исходными материалами служили 99,7% -ный Hf и 99,99% -ный Re. В системе имеются две эвтектики и три соеди-

нения: Hf11Re9, HfRe2 и HfRe7. HfRe2 плавится конгрузнтно при 3100° С. По неплам данным [2], температура плавления HfRe<sub>2,04</sub> [67,1% (ат.) Re] составляет 2935 ± 75° С. Отмечается также, что богатая рением эвтектика может быть расположена левее ближайшей к ней перитектики, т. е. образующееся по перитектической реакции соединение богаче рением, чем эвтектика [1].

При поисковом исследовании соединений системы в интервале 0-66,9% (ат.) Ні [3] обнаружены четыре соединения: фаза «А», наблюдаемая только





после отжига при 1000° С сплавов с 92,7; 96,8 и 99% (ат.) Re; Hf<sub>5</sub>Re<sub>24</sub>; HfRe<sub>2</sub> и фаза «В» предполагаемого состава Hf2Re (наблюдалась только в литых образцах).

В работах [1, 3, 4] идентифицирована фаза со структурой α-Мп. Она была обозначена HiRe, [1], Hf<sub>5</sub>Re<sub>24</sub>;  $a = 9,713 \pm 0,005$  A [3] или a = 9,711 A при 83% (ат.) Re [4]. На основании большой разницы в атомных радиусах сделан вывод о невозможности существования неупорядоченной структуры типаα-Mn [2]. Наиболее вероятна упорядоченная структура типа  $Ti_5Re_{24}$ . HiRe<sub>2</sub> имеет гексаго-нальную решетку типа MgZn<sub>2</sub>; a = 5,239 A, c = 8,584 A [1, 5];  $a = 5,248 \pm 0,001$  A,  $c = 8,529 \pm 0,002$  A [3];  $a = 5,2478 \pm 0,0002$  A,  $c = 8,5934 \pm 0,0002$  A (HiRe<sub>2,02</sub>) [3]; a = 5,249 A, c = 8,595 A [6].

1. Taylor A., Doyle N. WADD Tech. Rept. 60-132, 1960, p. 137-181.

2. Krikorian N. H. a. o. J. Phys. Chem., 1960, v. 64, p. 1517-1519. 3. Гладышевский Е.И.идр. Кристаллография, 1960, т. 5, с. 877-881.

- 4. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099,
- 1959, p. 76—92. 5. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

6. Dwight A, E. Trans. ASM, 1961, v. 53, p. 479-500.

92

#### 0,2395 1,7605

## Hf-Rh. Гафний-родий

Сообщается о существовании промежуточной фазы HfRh<sub>3</sub> [1]. Решетка ее кубическая, изоморфная с Cu<sub>3</sub>Au, a = 3,911 А. Структура эквиатомной фазы HfRh не о. ц. к. и не относится к типу CsCl [2]. Сплав с 33% (ат.) Rh, выплавленный в дуговой печи, после закалки с 1200° С был однофазным [3]. Соединение Hf<sub>2</sub>Rh индицировано в предположении г. ц. к. решетки типа Ti<sub>2</sub>Ni, a = 12,3255 A [3].

D wight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976—979.
 D wight A. E. Trans. AIME, 1959, v. 215, p. 283—286.
 N evitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700—702.

0,2469 1,7531

## . Hf-Ru. Гафний-рутений

НfRu индицировано в предположении кубической решетки типа CsCl, a = 3,225 A [1].

1. Dwight A. E. Trans. AIME. 1959, v. 215, p. 283-286.

0,7455

### Hf-S. Гафний-сера

Прямым синтезом компонентов или разложением высших сульфидов могут быть получены сульфиды  $HfS_3$ ,  $HfS_2$ ,  $Hf_2S_3$  и HfS [1].  $HfS_3$  имеет моноклинную решетку; a = 5,08 A, b = 3,58 A, c = 8,96 A,  $\beta = 98,4^\circ$ . Решетка  $HfS_2$  гексагональная типа  $CdJ_2$ ; a = 3,635 A, c = 5,837 A.  $Hf_2S_3$  также имеет гексагональную решетку, промежуточную по типу между *C6* и *B8*; a = 3,635 A, c = 5,839 A. Структура HfS, до сих пор не определена, хотя рентгенограмма этого соединения может быть индицирована в предположении ромбической решетки [1].

 McMaggart F. K., Wadsley A. D. Australian J. Chem., 1958, v. 11, p. 445-457.

0,3545

## Hf—Se. Гафний—селен

Прямым синтезом компонентов или разложением высших селенидов могут быть получены селениды HfSe<sub>3</sub>, HfSe<sub>2</sub>, Hf<sub>2</sub>Se<sub>3</sub> и HfSe [1]. HfSe<sub>3</sub> имеет моноклинную решетку; a = 5,48 A, b = 3,72 Å, c = 9,47 A,  $\beta = 98,3^{\circ}$ . Решетка HfSe<sub>2</sub> гексагональная типа CdJ<sub>2</sub> (*C6*); a = 3,748 Å, c = 6,159 Å. Hf<sub>2</sub>Se<sub>3</sub> дает сложную рентгенограмму, которую невозможно индицировать. Структура HfSe до сих пор не определена, хотя рентгенограмма может быть индицирована в предположении ромбической решетки.

 McTaggart E. K., Wadsley A. D. Australian J. Chem., 1938, v. 11, p. 445-457.

0,8031 1,1969

# Hf—Si. Гафний—кремний \*

Обнаружены два новых соединения:  $Hf_2Si$  (тетрагональная решетка типа  $CuAl_2$ a = 6,48 A, c = 5,21 A [1]) и  $Hf_3Si_2$  (тетрагональная решетка типа  $U_3Si_2$ ; a = 6,999 A, c = 3,671 A [2]). Сообщается также о соединении  $Hf_5Si_3$  с гексагональной решеткой (тип  $Mn_5Si_3$ );  $a = 7,89_0$  A,  $c = 5,55_8$  A [1]. Однако в работе [3] было высказано предположение, что это соединение стабилизируется лишь в присутствии примесей внедрения. По данным рентгеновского исследования и определения температуры плавления предложена диаграмма состояния [4], приведенная на рис. 256. На ней показана также фаза Hf<sub>3</sub>Si<sub>2</sub>.

ная на рис. 200. На пол полозна типа FeB;  $a = 6,85_5$  A,  $b = 3,75_2$  A,  $c = 5,19_1$  A [1].





Nowotny H. u. a. Monatsh. Chem., 1958, Bd 89, S. 701-707.
 Schob O. u. a. Monatsh. Chem. 1961, Bd 92, S. 1218-1226.
 Kieffer R., Benesovsky F. Powder Met., 1958, № 1/2, p. 145-171.
 Nowotny H. u. a. Radex Rundschau, 1960, № 6, S. 367-372.

0,1774 1,8226

# Hf-Sn. Гафний-олово

В сплавах, содержащих меньше 40% (ат.) Sn [1], идентифицирован интерметаллид  $Hf_5Sn_3$  [1—5]. Сплавы с 20% (ат.) Sn двухфазны и содержат  $Hf_5Sn_3$  и твердый раствор на основе  $\alpha$ -Hf. Судя по заметному изменению периода решетки

94

α-Нf при увеличении содержания Sn в сплаве, растворимость Sn в α-Hf значительна [1].  $Hf_5Sn_3$  имеет гексагональную решетку типа  $Mn_5Si_3$ ;  $a = 8,37_6$  A, c = 5,73, А при 62,5% (ат.) Hf [1], a = 8,42 А, c = 5,82 А [2]; a = 8,38 А, c = 5,68 А [3] и  $a = 8,39_1$  А,  $c = 5,82_3$  А [4]. По данным работы [4], для стабилизации Hf<sub>5</sub>Sn<sub>3</sub> не обязательно присутствие примесей внедрения. В интервале 40—50% (ат.) Sn существует по крайней мере еще одна фаза [1].

Фаза эта не стабильна и напоминает аналогичную фазу в системе Hf-Al.

Богатая оловом промежуточная фаза HfSn<sub>2</sub> появляется в сплавах с 70% (ат.) Sn, нагретых до 650° С. Вторая фаза в этих сплавах — практически чистое Sn. HiSn<sub>2</sub> имеет гексагональную решетку, изоструктурную с CrSi<sub>2</sub>;  $a = 5,48_7$  A,  $c = 7,62_5$  A [1, 5].

 Boller H. u. a. Monatsh. Chem., 1960, Bd 91, S. 1174-1184.
 Smith J. F. U. S. At. Energy Comm. ISC-835, 1957, p. 33.
 Boller H. u. a. Monatsh. Chem., 1960, Bd 91, S. 736.
 Bailey D. M., Smith J. F. Acta Cryst., 1961, v. 14, p. 57-58. 5. Nowotny H. Advan. X-ray Anal.; 1961, v. 5, p. 13-32.

1,9945 0,0055

## Hf—Ta. Гафний—тантал \*

Предположительная диаграмма состояния системы Hf—Ta (рис. 257) построена по данным металлографического и рентгеновского исследований и определения температуры начала плавления [1, 2]. Упомянутые работы не закончены.



1. Kato H. a. o. U. S. At. Energy Comm. USBM-U-783, (QPR 9), 1960, p. 15-16. 2. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-863 (QPR 12), 1961, p. 3.

Hf—Tc. Гафний—технеций

Проведено рентгеновское исследование сплава Тс, постепенно разбавлявшегося гафнием [1]. При 12,5% (ат.) Нб наблюдалась о. ц. к. структура типа  $\alpha$ -Mn,  $a = 9,603 \pm 0,001$  A [1, 2]. При 33,3% (ат.) Нf сплав имел гексагональную структуру типа  $MgZn_2$ ;  $a = 5,200 \pm 0,001$  Å, c == 8,616 ± 0,001 [1]. В эквиатомном сплаве обнаружена кубическая фаза 'типа CsCl, a =  $= 3,270 \pm 0,004 \text{ A}$  [1].

1. Darby J. B. (Jr.), Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

2. Lam D. J. a. o. Nature, 1961, v. 192, p. 744.

0.1460 1,8540

#### Hf--Те. Гафний--теллур

Прямым синтезом элементов можно получить теллуриды Hf2Te3 и HfTe [1]. Ні<sub>2</sub>Те<sub>3</sub> имеет гексагональную решетку, по типу промежуточную между С6 и В8; a = 3,947 А, c = 6,635 А. Структура НfTe не определена [1].

1. McTaggart F. K., Wadsley A. D. Australian J. Chem., 1958, v. 11, р. 445—457.

1,8862 0,1138

### Hf—Th. Гафний—торий

Диаграмма на рис. 258 построена по данным металлографического, термического и рентгеновского анализов и определения электросопротивления сплавов.



96

Исходными материалами при плавке являлись 99,94%-ный Hf и 99,9%-ный Th [1]. Th понижает температуру  $\alpha \neq \beta$ -превращения Hf до температуры трехфазной реакции: ( $\beta$ -Hf)  $\neq \alpha$ -Hf) + Ж (1600° C). ( $\beta$ -Th) и ( $\alpha$ -Hf) образуют явтектику при 68,4% (ат.) [74,3% (по массе)] Hf и 1450° C. Hf понижает температуру превращения Th до эвтектоидной, 1295° C 88,5% (ат.) [91,1% (по массе)] Th. Судя по измерению периодов решетки, растворимость Th в  $\alpha$ -Hf при комнатной температуре туре невелика, а растворимость Hf в  $\alpha$ -Th в этих условиях  $\sim$ 3,9% (ат.) [ $\sim$ 5% (по массе)].

1. Gibson E. D. a. o. Trans. ASM, 1958. v. 50, p. 348-369.

#### 0,5715 1.4285

## Hf—Ti. Гафний—титан \*

В жидком и твердом состояниях Hf и Ti образуют непрерывный ряд твердых растворов [1, 2]. Диаграмма на рис. 259 построена по данным работы [1], в которой солидус и ликвидус определялись оптическим наблюдением образцов при





 $(\alpha \leftarrow \beta$ -превращение) использованы для построения диаграммы состояния в работе [2]. Предложенная диаграмма в основном согласуется с рис. 259, однако точное сравнение невозможно из-за малого масштаба, в котором построена диаграмма в работе [2]. В обеих работах недостаточно экспериментальных данных для точного построения ( $\alpha + \beta$ )-области. В работе [3] температура  $\alpha \neq \beta$ -превлащения сплавов, богатых Ті, определена на ~50 град выше, чем в работе [1].

1. Hayes E. T., Deardorftt D. K. U. S. At. Energy Comm. USBM—U— 345, August, 1957; см. The Metallurgy of Hafnium, eds. D. E. Thomas, E. T. Hayes U. S. Atomic Energy Commission, 1960, p. 205—206. 2. Тылкина М. А. и др. ЖНХ, 1959, т. 4, с. 2320—2322.

3. 1 m g r a m A. G. a. o. WADC Tech. Rept. 59-595, pt 11, August, 1961, 119 p.

1,8751 0,1249

# Нf-U. Гафний-уран

Диаграмма (рис. 260) построена по данным металлографического исследования н определения электросопротивления и температуры плавления сплавов, выплавленных из 99,84% -ного Hf и 99,9% -ного U. Солидус точно не определен, показано лишь, что при увеличении содержания Hf температура плавно повышается без максимумов. На этом основании высказано предположение [1] о полной взаимной растворимости β-Hf и γ-U. Этому противоречили наблюдавшиеся в сплавах шаровидные включения второй фазы, однако было показано, что эти включения представляют собой стабилизированный примесями α-Hf. Аналогичная картина на блюдается в системе U—Zr [2].

При добавке U температура α → β-превращения понижается до 1125 ± 25° С. При этой температуре и 45% (ат.) U расположен эвтектоид. Металлографическим исследованием образцов, подвергнутых градиентному нагреву, обнаружена эвтектоидная реакция при 733 ± 2° С и 95,5% (ат.) U [1]. При обычном изотермическом нагреве [3] температура эвтектоидного превращения найдена равной 740 ± 4° С.

Как показали металлографический и термический анализы, Hf повышает температуру α д β-превращения U до перитектоидной, 676 ± 3° С. Состав перитектоида не установлен, но, очевидно, меньше 0,5% (ат.) Hf.

- 1. Peterson D. T., Beerntsen D. J. Trans. ASM, 1960, v. 52, p. 763-777.
- Saller H. A. a. o. Proc. Nucl. Eng, Sci. Conf., 2d, Philadelphia, 1957, Advances in Nuclear Engineering, v. 11, p. 228; Pergamon Press, N. Y., 1957; см. [1]. Trans. ASM, 1960, v. 52, p. 777-780.

3. D w i g h t A.C. Дискуссия по работе [1], Trans. ASM, 1960, v. 52, p. 777-780.

0,5447 $\overline{1},4553$ 

7\*

# Нf—V. Гафний-ванадий \*

В работах [1, 2] сообщается, что в системе существует только одно соединение  $HfV_2$ . Вместе с тем эти работы не согласуются в оценке характера фазовых равновесий. При повторном определении периода г. ц. к. решетки (тип MgCu<sub>2</sub>)  $HfV_2$ , приготовленного из материалов высокой частоты, получено значение 7,400 A [3].

Согласно работе [1], литая эвтектическая структура наблюдается по обе стороны от состава HfV<sub>2</sub>, что указывает на конгруэнтное плавление соединения. Методом изучения начала плавления определена точка плавления HfV<sub>2</sub> выше 2000° С. Температура эвтектики со стороны, богатой V, составляет примерно 1600° С, а эвтектика со стороны, богатой Hf, лежит при 1550  $\pm$  15° и между 53-72% (ат.) Hf. Растворимость Hf в V составляет: 2,1-2,4; 1,2-1,5 и <0,6% (ат.) при соответственно 1500, 1200 и 1000° С.

Как сообщается в работе [2], HIV<sub>2</sub> образуется по перитектической реакции при 1490° С. Эта температура согласуется со значением 1500° С, приведенным





Рис. 261. Hf—W

М. Хансеном и К. Андерко (см. т. II, [1]). HfV₂ образует эвтектику с β-Hf при 43,5% (ат.) [18% (по массе)] V и 1450° С. Температура α → β-превращения Hf понижается до эвтектоидной, 1155° С, при 16,9—19,6% (ат.) [6±0,5% (по массе)] V. Предельная растворимость V в α-Hf при эвтектоидной температуре составляет 1,0—4,7% (ат.) [0,3—1,4% (по массе)].

- 1. Komjathy S. a. o. WADC Tech. Rept. 59-483, 1959, 69 p.; Komjathy S. J. Less-Common Metals, 1961, v. 3, p. 468-488.
- 2. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-887 (QPR 13), 1961, p. 3; Kato H. a. o. U. S. At. Energy Comm. USBM-U-839 (QPR 11), 1961, p. 23.
- 3. Elliott R. P. Trans. ASM, 1961, v. 53, p. 321-329.
- 1,9872

### Hf—W. Гафний—вольфрам \*

Система исследована в двух работах [1, 2]. В обеих использован Нf чистотой 97,7% (2,2% Zr). Обнаружено только одно соединение HfW<sub>2</sub>, которое образуется по перитектической реакции. HfW<sub>2</sub> и твердый раствор на основе  $\beta$ -Hf вступают в эвтектическое взаимодействие. Предельные концентрации твердых растворов и инвариантные температуры согласуются лишь до определенной степени. Диаграмма состояния (рис. 261) построена по данным более тщательной работы [1]. Температура превращения Hf принята равной 1750 ± 20° C [3]. В работе [2] для инвариантных реакций определены следующие параметры: эвтектика Ж [39% (ат.) W] $\rightarrow \beta$ -Hf [11,5 ± 1% (ат.) W]  $\rightarrow$  HfW<sub>2</sub> при 1980 ± 30° C, перитектика Ж [63% (ат.) W] + (W) [94% (ат.) W] $\rightarrow$ HfW<sub>2</sub> при 2540 ± 50° C и эвтектоид ( $\beta$ -Hf) [9,5 ± 1% (ат.) W] $\rightarrow$ C( $\alpha$ -Hf) + HfW<sub>2</sub> при ~1730° C. В обеих работах указано, что HfW<sub>2</sub> имеет небольшую область гомогенности.

Подтверждено, что HfW<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7,591 A (использован Hf высокой чистоты) [4], 7,599 A [1], 7,593 A [2].

Giessen B. C. a. o. Trans. AIME, 1962, v. 224, p. 60-64.
 Braun H., Rudy E. Z. Metallkunde, 1960, Bd 51, S. 360-363
 Deardorff D. K., Kato H. Trans, AIME, 1963, v. 227, p. 264-265 [1].
 Elliott R. P. Trans. ASM, 1961, v. 53, p. 321-329.

0,3026

## Hf—Y. Гафний—иттрий

Диаграмма на рис. 262 построена по неопубликованным данным [1]. В системе отсутствуют промежуточные соединения. Подробности эксперимента неизвестны,

1. Lundin C. E., Klodt D. Неопубликованные данные, см. в сб. «Редкоземельные металлы» под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

0,2918 1,7082

## Hf—Zr. Гафний—цирконий \*

На рис. 263 приведена диаграмма, построенная по данным работы [1]. Температуры ликвидуса и солидуса определены оптическим методом. Превращения в твердом состоянии изучены с помощью дифференциального термического анализа. Неясно, действительно ли температурный интервал области (α + β) так узок, что его невозможно измерить, или сама техника эксперимента позволяет определить только нижнюю или верхнюю границу?



1. Hayes E.T., Deardorff D.K.U.S.At. Energy Comm. USBM-U-345, 1957. Deardorff D. K. a. o. В кн. «The Metallurgy of Hafnium», eds. D. E. Thomas E. T. Hayer, U. S. Atomic Energy Commission, 1960, p. 191 - 210.

0,2426 1.7574

# Hg-In. Ртуть-индий \*

Известны две большие работы, посвященные исследованию системы [1, 2]. Диаграмма на рис. 264 построена по работе [2], в которой проведен термический анализ 59 сплавов, приготовленных из Нg двойной перегонки и 99,999% - ного In.





Диаграмма в работе [1] выглядит практически так же, лишь все температуры плавления на 2-5 град ниже. В этой работе не исследованы области гомогенности соединений, богатых Hg, и растворимость Hg в In в твердом состоянии. Соединениям приписаны составы Hg, In, HgIn и HgIn<sub>11</sub>. Определен состав конгруэнтной точки [14,3% (ат.) In], который предполагает формулу богатого ртутью соединения HggIn [2]. По другим данным, состав этого соединения соответствует формуле Hg, In [3].

Построенный в работах [1, 2] ликвидус в интервале 60-100% (ат.) In согласуется с данными М. Хансена и К. Андерко (см. т. 11, [2]). Растворимость Нд в Іп при комнатной температуре равна 55% (по массе) [4], что согласуется с данными работ [1, 2]. В работе [2] и по М. Хансену и К. Андерко (см. т. II [2]) приводятся сходные данные по растворимости Hg в In в твердом состоянии.

1. I to H. a. o. Nippon Kinzoku Gakkaishi, 1951, v. B15, p. 383-384.

2. Козин Л. Ф., Тананаева Н. Н. ЖНХ, 1961, т. 7, с. 909—912.

3. Ніldebrand J. H. J. Amer. Chem. Soc., 1913, v. 35, p. 501; см. Valen-

tiner S. Z. Metallkunde, 1955, Bd 46, S. 442-449.

4. Liebl G. Dissertation, Technische Hochschule Zurich, 1956; см. Spengler H. Metall, 1958, Bd 12, S. 105, 113.

#### 0,7102 1.2898

# Нд-К. Ртуть-калий \*

 $K_5Hg_7$  имеет ромбическую решетку; a = 10,06 A, b = 19,45 A, c = 8,34 A, пространственная группа Р bcm, 4 формульные единицы на элементарную ячейку [1].

Ранее было известно соединение КНg (см. М. Хансен и К. Андерко, т. II [17]). В результате того, что обнаружено соединение K5Hg7, возникла необходимость пересмотра принятой диаграммы (см. М. Хансен и К. Андерко, т. 11, рис. 450), тем более что результаты более ранних работ (см. там же [7, 9]) подтверждают некоторую неопределенность в этом интервале концентраций.

1. Duwell E. J., Baenziger N. C. Acta Cryst., 1960, v. 13, p. 476-479.

#### 0,1596 1.8404

# Hg-La. Ртуть-лантан \*

Определены периоды решетки LaHg, LaHg<sub>2</sub>, LaHg<sub>3</sub> и LaHg<sub>4</sub> [1]. Приведенные значения согласуются с данными, полученными тем же автором ранее (см. М. Хансен и К. Андерко, т. II, [1]). Исключение составляют периоды решетки LaHg<sub>3</sub> и LaHg4, которые оказались кратными определенным ранее.

LaHg имеет кубическую решетку типа CsCl, a = 3,845 A; решетка LaHg<sub>2</sub> гексагональная типа AlB<sub>2</sub>, a = 4,958 A, c = 3,640 A; LaHg<sub>3</sub> имеет гексагональную решетку типа MgCd<sub>3</sub>, a = 6,822 A, c = 4,960 A. Период о. ц. к. решетки LaHg<sub>3</sub> равен 10,990 А [1].

1. I and elli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40 Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.

#### 0,5625 1,4375

# Hg-Mn. Ртуть-марганец \*

Рентгеновским исследованием монокристалла определена пространственная группа тетрагонального соединения Mn<sub>2</sub>Hg<sub>5</sub>-*P4/mbm* [1]. Структура этого соединения аналогична структуре соединений Pd (NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub> · H<sub>2</sub>O и Pt (NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub> × × H<sub>2</sub>O. Тип и период решетки определялись этим же автором ранее (см. М. Хансен и К. Андерко, т. II [11]). В результате более тщательного исследования [2]

104

получено значение a = 9,758 A, c = 2,998 A и точно определены положения атомов.

Ниже 198° К соединение MnHg антиферромагнитно [3]. При низких температурах оно сохраняет кубическую решетку, периоды которой линейно изменяются с изменением температуры ниже 300° К.

De Wet J. F. Nature, 1957, v. 180, p. 1412-1413.
 De Wet J. F. Acta Cryst., 1961, v. 14, p. 733-738.
 Nakagawa Y., Hori T. J. Phys. Soc. Japan, 1961, v. 16, p. 1470.

 $\frac{1,1559}{2,8441}$ 

# Hg-N. Ртуть---азот

Известны соединения Hg<sub>3</sub>N<sub>2</sub> и HgN<sub>3</sub> [1]. Первое из них получено при взаимодействии Hg с NH<sub>3</sub>, а второе — химическим разложением.

1. Бусев А. Ученые записки Ленинградского Гос. пед. института, 1940, т. 29, с. 303; см. Вол Л. Е. Строение и свойства двойных металлических систем, Физматгиз, 1959, т. 1, с. 129.

0,9407 $\overline{1},0593$ 

# Hg-Na. Ртуть-натрий \*

Предполагается [1], что период c кристаллической решетки NaHg<sub>2</sub> вдвое больше, чем сообщалось ранее. Это предположение основано на результатах недавнего нового исследования кристаллической структуры BiIn<sub>2</sub> [1]. Никаких экспериментов, подтверждающих это, не проводили. Предположение основано на сходстве кристаллических структур и химических свойств.

1. Макаров Е. С. Кристаллография, 1958, т. 3, с. 5-9.

0,1432 1,8568

# Hg—Nd. Ртуть—неодим \*

Растворимость Nd в жидкой ртути определялась химическим анализом насыщенных растворов [1]. Получены следующие результаты:

| Температура, °С        | 356   | 300   | 250   | 200   | 150   | 100   | 50      |
|------------------------|-------|-------|-------|-------|-------|-------|---------|
| Растворимость, % (ат.) | 0,881 | 0,581 | 0,372 | 0,217 | 0,111 | 0,048 | • 0,016 |

Приведенные значения рассчитаны методом наименьших квадратов.

Известны четыре соединения NdHg, NdHg<sub>2</sub>, NdHg<sub>3</sub> и NdHg<sub>4</sub> [2]. NdHg имеет кубическую решетку типа CsCl, a = 3,780 A [2,3]. Решетка NdHg<sub>2</sub> гексагональная, типа AlB<sub>2</sub>; a = 4,899 A, c = 3,530 A [2]. NdHg<sub>3</sub> имеет гексагональную решетку типа MgCd<sub>3</sub>; a = 6,695 A, c = 4,929 A [2]. Решетка NdHg<sub>4</sub> о. ц. к. типа  $\gamma$ -латуни (?), a = 10,867 A [2].

1. Messing A. F., Dean O. C. U. S. At. Energy Comm. ORNL-2871, 1960,

 I an d e 11 i A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40. The Physical Chemistry of Metallic Solutions and Intermetallic, Gompounds, Natl. Phys. Lab., Gt. Brit, Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.

3. I and elli i A. Atti Accad. Nazl. Lincei, Rend. Classe Sci, Fis. Mat. Nat., 1960, v. 29, p. 62-69. 0,55**38** 

# Hg-Ni. Ртуть-никель \*

В работе [1] определялась растворимость Ni в Hg в замкнутой системе в интервале 100—300° С. Излом на кривой растворимости (рис. 265) при 280° С соответствует обнаруженному ранее перитектическому распаду NiHg<sub>4</sub>.

1. Toner D. F. U. S. At. Energy Comm. ORNL-2839, 1959, p. 187-191.



#### 1,0969 2,9031

### Hg-0. Ртуть-кислород

Сообщается о существовании окислов HgO и HgO<sub>2</sub>. Оба окисла полиморфны. HgO<sub>2</sub> существует в кубической  $\alpha$ -модификации ( $a = 4,736 \pm 0,005$  А) или в ромбической (псевдотетрагональной)  $\beta$ -модификации ( $a = 6,080 \pm 0,010$  А,  $b = 6,010 \pm 0,010$  А, c = 4,800 + 0,010 А) [1].

НдО существует в гексагональной модификации (a = 3,577 А, c = 8,681 А [2] или a = 3,571 А, c = 8,667 А [3]) и ромбической ( $a = 6,612_1$  А,  $b = 5,520_1$  А,  $c = 3,521_3$  А [4, 5] или a = 6,592 А, b = 5,504 А, c = 3,513 А [3]). Стабильна ромбическая модификация [3].

В работах [1, 4] приведены данные по структурам окислов и положению атомов в элементарных ячейках.

1. Vannerberg N. G. Arkiv Kemi, 1959, v. 13, p. 515-521.

2. Aurivillius K., Carlson I. B. Acta Chem. Scand., 1957, v. 11, p. 1069.

3. Laruelle M. P. Compt. Rend., 1955, v. 241, p. 802-805.

4. Aurivillius K. Acta Cryst., 1956, v. 9, p. 685-686.

5. Aurivillius K. Acta Chem. Scand., 1956, v. 10, p. 852-866.

#### 0,2742 1,7258

## Hg-Pd. Ртуть-палладий \*

В интервале концентрации Pd от 86,2-до 100% (ат.) Нд растворяется в Pd; период решетки Pd при этом увеличивается от 3,888 до 3,945 A [1]. При содержании Pd менее 86,2% (ат.) в сплаве появляется фаза PdHg, имеющая о. ц. тетрагональную решетку; a = 3,026 A, c = 3,702 A.

1. Terada K., Cagle F. W. (Jr.) Acta Cryst., 1961, v. 14, p. 1299.

1.9801 0.0199

# Hg—Ро. Ртуть—полоний

Методами микрометаллургии получено соединение HgPo, которое имеет г. ц. к. решетку типа NaCl,  $a = 6,250 \pm 0,003$  A [1].

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

0,1534

# Hg-Pr. Ртуть-празеодим \*

РгНд имеет кубическую решетку типа CsCl с периодом 3,799 А. Решетка РгНд<sub>2</sub> гексагональная типа AlB<sub>2</sub>; a = 4,918 А, c = 3,539 А. РгНд<sub>3</sub> имеет гексагональную решетку типа MgCd<sub>3</sub>; a = 6,724, c = 4,937 А. РгНд<sub>4</sub> имеет о. ц. к. решетку, a = 10,895 А [1].

 I an delli A. Congr. Intern. Chim. Pure. Appl. 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40: Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat. 1960, v. 29, p. 62-69, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11 p.

 $\frac{0,0118}{1,9882}$ 

# Hg—Pt. Ртуть—платина \*

Сплав с 75% (ат.) Рt после отжига при 500° С имел однофазную структуру твердого раствора на основе Рt. Период решетки сплава a = 3,92 А практически не отличался от периода решетки нелегированной Pt. Отмеченная независимость периода решетки Рt от содержания Hg ставит под сомнение определенную ранее (см. М. Хансен и К. Андерко, т. II, [1]) рентгенографическим методом границу растворимости Hg в Pt. Из-за близости факторов атомного рассеяния Pt и Hg не удалось установить, испытывает ли соединение Pt<sub>3</sub>Hg упорядочение.

1. Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.

1,9240

## Нg—Ри. Ртуть—плутоний \*

В работах [1, 2] изучен характер фазовых равновесий в сплавах, богатых Hg (рис. 266). Известно два соединения: PuHg<sub>4</sub> и PuHg<sub>3</sub>, оба изоструктурны соответствующим соединениям системы Pu—U [1]. Растворимость Pu в жидкой Hg определялась в интервале 21—325° С [3]. Получены следующие значения: 0,0131; 0,0255; 0,0625; 0,190; 0,496 и 0,561% (ат.) Pu при соответственно 21, 50, 100, 200, 300 и 325° С. В работе [4] для растворимости при комнатной температуре указано значение, близкое к приведенным выше данным: 2,2 г/л или 0,0137% (ат.) Ри.

 $PuHg_3$  имеет гексагональную решетку, на элементарную ячейку которой приходится половина формульной единицы [1].  $PuHg_4$  имеет «псевдо-о. ц. к.» решетку [1],  $a = 3,61 \pm 0,001$  A [5].



Рис. 266. Hg—Pu

- Schonfeld F. W. a. o. В книге, «Metallurgy and Fuels», Progress in Nuclear Energy, Pergamon Press, N. Y., 1959, v. 2, ser. V, p. 579-599.
- Schonfeld F. W. В книге «The Metal Plutonium», A. S. Coffinberry, W. N. Minereds. University of Chicago Press, Chicago, 1961, p. 240—254.
   Bowersox D. F., Leary A. J. Inorg. Nucl. Chem., 1959, v. 9, p. 108—
- 112. 4. White A. G. At. Energy Res. Estab. Gt. Brit., Rept. AEREC/R—1458, 1954, см. [3].
- 5. Ellinger F. H. В книге «The Metal Plutonium», A. S. Coffinberry, W. D. Miner, eds University of Chicago Press, Chicago, 1961, p. 281—308.

0,2168 · 1,7832

# Hg—Sb. Ртуть—сурьма \*

По данным полярографического и потенциометрического анализов, растворимость Sb в Hg составляет 2,4·10<sup>-4</sup> *г-атом/л* [3,55·10<sup>-4</sup>% (ат.)] [1], что согласуется с неопубликованными данными [2] и примерно в десять раз превышает значения, приведенные М. Хансеном и К. Андерко (см. т. II [1]).

1. Zebreva A. E., Kozlovsky M. T. Collection Czech. Chem., Commun, 1960, v. 25, p. 3188-3194.

2. Liebl J. Dissertation, Munich, 1956.

108

Чистый HgSe стабилен до 500° С; выше этой температуры соединение сублимирует без диссоциации [1]. Обнаружено [2], однако, что при давлении ртути примерно 90 am HgSe плавится при 793° С.

Согласуется с приведенным значением сообщение, что температура плавления HgSe составляет 798° С [3].

- 1. Елпатьевская О. Д. и др. ЖТФ, 1956, т. 26, с. 2154—2156. 2. Усачев П. В. и др. ЖПХ, 1960, т. 33, с. 2771—2772.
- 3. Strauss A. J. Lincoln Laboratory, MIT, Lexington, Mass.; частное сообщение, Mason D. R., O'Kane D. F. International Conference on Semiconductor Physics, Prague, 1960, Academic Press Inc., N. Y., 1961, p. 1026-1031.

#### 0,1251 1.8749

## Hg-Sm. Ртуть-самарий

Определенная химическим анализом насыщенных растворов растворимость Sm в жидкой Hg составляет [1] (приведенные данные рассчитаны методом наименьших квадратов):

| Температура, °С .      | 356   | 300   | $\begin{array}{c} 250\\ 0,362 \end{array}$ | 200   | 150   | 100   | 50    |
|------------------------|-------|-------|--------------------------------------------|-------|-------|-------|-------|
| Растворимость, % (ат.) | 0,781 | 0,593 |                                            | 0,224 | 0,123 | 0,071 | 0,022 |
|                        |       |       |                                            | ,     |       |       |       |

Известны четыре соединения: SmHg, SmHg<sub>2</sub>, SmHg<sub>3</sub> и SmHg<sub>4</sub> [2]. SmHg имеет кубическую решетку типа CsCl,  $a = 3,744_5$  A [2, 3]. Решетка SmHg<sub>2</sub> гексагональная типа AlB<sub>2</sub>; a = 4,853 A, c = 3,520 A [2]. SmHg<sub>3</sub> имеет гексагональную решетку типа MgCd<sub>3</sub>; a = 6,632 A, c = 4,909 A [2]. SmHg<sub>4</sub> имеет о. ц. к. решетку  $\gamma$ -латуни (?), a = 10,820 A [2].

- 1. Messing A.F., Dean O.C.U.S. At. Energy Comm. ORNL-2871; 1960, 21 p.
- 2. I and elli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds Natl. Phys., Lab., Gt. Brit. Proc. Symp., 1959, № 9, v. 1, Paper 3R 11p.
- 3. I and elli A. Atti Accad. Nazl. Linceri, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 0,2279 1.7721

## Hg-Sn. Ртуть-олово \*

Диаграммы (рис. 267 и 268) предложены в работе [1], в которой методом измерения растворимости серого (α) и белого (β) Sn в Hg определяли стабильный и метастабильный ликвидус системы в температурном интервале от 0 до ---32,2° С. На рис. 268 сплошной линией показан ликвидус стабильной системы (серое Sn). а пунктиром — метастабильной [HgSn12 (ү)]. Предложенный вариант согласуется с данными работы [2], по которым при температурах выше — 10° С из раствора на основе Нg кристаллизуется только HgSn<sub>12</sub>, а выше 1° С Hg интенсивно взаи-модействует с серым Sn с образованием HgSn<sub>12</sub>. Дилатометрическим методом определена температура нонвариантного взаимодействия γ → Hg + α-Sn, равная — 8,15 ± 0,1° С [3], что довольно близко к определенной в работе [1]: --7,5° С. Растворимость Hg в Sn при -8,15° C составляет от >0,1 до <6% (ат.) Hg

1. Van Lent P. H. Acta Met., 1961, v. 9, p. 125-128.

2. Ewald A. W., Tufte O. N. J. Appl. Phys., 1958, v. 29, p. 10007; см. [1]. 3. Smith R. W. Canad. J. Phys., 1959, v. 37, p. 1079-1084. 110



0.4049 1,5951

#### 0,1965 1,8035

# Hg—Te. Ртуть—теллур \*

Температура плавления Hg-Te при внешнем давлении составляет 600° С [1] или 667° С [2]. Для температуры плавления HgTe приводится также значение 670° С [3], однако при этом ничего не говорится об условиях эксперимента. В работе [1] определен период решетки HgTe, равный 6,460 А, и подтверждено, что соединение имеет структуру цинковой обманки (см. М. Хансен и К. Андерко, т. II [2]).

- 1: Lawson W. P. a. o. Phys. Chem. Solids, 1959, v. 9, p. 325-329.
- 2. Усачев П. В. и др. ЖПХ, 1960, т. 33, с. 2771—2772.
- 3. Strauss A. J. Lincoln Laboratory, MIT, Lexington, Mass.; Частное сообщение, Mason D. R. and D. F. O'K an e. International Conference on Semiconductor Physics, Prague, 1960, Academic Press, Inc., N. Y., 1960, p. 1026-1031.
- 1,9366 1,0634

## Hg—Th. Ртуть—торий \*

Подтверждено существование гексагонального ThHg<sub>8</sub> [1, 2]. Авторы сообщают. что область гомогенности соединения очень узка, что не согласуется с данными предыдущих работ (см. М. Хансен и К. Андерко, т. II [3]). Периоды решетки ThHg<sub>3</sub> составляют: a = 3,364 A, c = 4,907 A [1] или a = 3,361 A, c = 4,905 A [2].

В работе [2] методом электросопротивления, а также рентгеновским и термическим анализами изучена система во всем интервале концентраций. Построенная диаграмма приведена на рис. 269. Сплавы приготовляли и отжигали в запаянных стеклянных ампулах. Кроме ThHg3, обнаружена г. ц. к. фаза ThHg, распадающаяся по эвтектоидной реакции ThHg = ThHg<sub>3</sub> + (Th) при температуре, лежащей в интервале 400-600° С. Период решетки ТhHg равен 4,80 А [2]. Сплавы, богатые ртутью, кристаллизуются по перитектической реакции Ж + ThHg<sub>3</sub> ∠(Hg) при -32° С. Постоянство периодов решетки Тh свидетельствует о незначительной растворимости Hg в Th [2]. ThHg<sub>3</sub> и ThHg разлагаются в динамичес-ком вакууме, но стабильны до 1000° С в небольшой замкнутой системе [2].

Измерением электросопротивления образцов, приведенных в равновесие в масляной ванне, определена растворимость Th в жидкой Hg, составляющая 4,4% (ат.) [5% (по массе)] при 300° С [12]. При понижении температуры до перитектической растворимость становится незначительной. В работе [3] при химическом анализе равновесных образцов получены значения растворимости Th в Hg на два порядка меньше, чем в работе [2]. Растворимость при 300° С составляет 0,195% (ат.) [0,0226% (по массе)] Th [3]; см. вставку на рис. 269.

1. Ferro R. Acta Cryst., 1958, v. 11, p. 737-738.

- 2. Domagala R. F. a. o. Trans. AIME, 1958, v. 212, p. 393-395.
- 3. Messing A. F., Dean O. C. U. S. At. Energy Comm. ORNL-2871, 1960. 21 p.

#### 1,9919 0.0081

## Hg—Tl. Ртуть—таллий \*

Рентгенографически обнаружено упорядочение в жидком состоянии вблизи состава Нд<sub>5</sub>Tl<sub>2</sub> [1]. Термодинамическими исследованиями показано, что упорядочение жидких сплавов наблюдается в интервале 27-32% (ат.) T1.

1. Smallman R. E., Frost B. R. T. Acta Met., 1956, v. 4, p. 611-618. 2. Ward R. G., Wilson J. R. Nature, 1958, v. 182, p. 334-335. 112



Эти данные согласуются с результатами, приведенными М. Хансеном и К. Андерко по работе [7], и не совпадают с данными другой работы (там же т. II, [1]).

\* Данные рассчитаны по формуле, приведенной в работе [1] но эти данные не согласуются с формулой.

8 Р. П. Эллиот, том, II

Температуры разложения UHg<sub>4</sub>, UHg<sub>3</sub> и UHg<sub>2</sub> равны соответственно 383, 417 и 436° С, а температура кипения Hg повышается при легировании ураном до 366° С, при которой происходит нонвариантная реакция UHg<sub>4</sub> + Hg (газ) → Hg (ж) [2]. Отмечается [2], что диаграмма, приведенная М. Хансеном и К. Андерко (см. т. II [7]), противоречит правилу фаз, так как согласно ей при 360—365° С в равновесии находятся четыре фазы. Автор работы [2] считает, что нонвариантная температура относится к указанной выше реакции. Высказанные замечания [2] представляют несомненную ценность, в то же время интерпретация данных М. Хансена и К. Андерко (см. т. II [7]), как совпадающих с собственными результатами, необоснована, поскольку температура разложения (см. М. Хансен и К. Андерко, т. II [7]), совпадает с температура, определенной в работе [1] (по тому же справочнику). В последней работе сплавы изучали в запаянных ампулах, что с большей вероятностью исключало перитектическую реакцию (при 365° С) с участием газообразной ртути, чем реакцию разложения UHg<sub>4</sub>.

На основании недавнего повторного исследования структуры BiIn<sub>2</sub> высказано предположение о том, что период *c* решетки UHg<sub>2</sub> может быть вдвое больше определенного ранее [3]. Это предположение не проверено экспериментально и основано лишь на сходстве структуры и химических свойств соединений.

1. Messing A. F., Dean O. C. U. S. At. Energy Comm. ORNL—2871, 21 р. 2. Forsberg H. C. U. S. At. Energy Comm. ORNL—2885, 1960, 58 р. 3. Макаров Е. С. Кристаллография, 1958 т. 3, с. 5—9.

0,1841 1,8159

# Hg—Xe. Ртуть—ксенон

Растворимость X е в Hg при 1 *ат.*, определенная методом меченых атомов [1], подчиняется зависимости  $-\lg X = 0.2 + 2565/T$ , где X — атомная доля X е, а T, °K. Ошибка в вычислении может составить 200%.

1. Mitra C. Dissertation, Columbia University, 1959; Dissertation Abstr., 1961, v. 22, p. 100.

1,9335 0.0665

#### Ho—Ir. Гольмий—иридий

HoIr<sub>2</sub> имеет г. ц. к. решетку типа  $MgCu_2$ , a = 7,490 A [1].

1. D wight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

0,4773 $\overline{1},5227$ 

### Но-Мп. Гольмий-марганец

НоМп<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>; a = 7,50 A [1],  $a = 7,507 \pm 0,005$  A [2]. НоМп<sub>5</sub> имеет ромбическую решетку, изоморфную с GdMn<sub>5</sub>, DyMn<sub>5</sub> и YMn<sub>5</sub>, тип ее не установлен; a = 7,10 A, b = 4,36 A, c = 3,09 A [1].

1. Nassau K. a.o. Phys. Chem. Solids, 1960, v. 16, p. 123-130. 2. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.

 $\frac{1,0711}{2,9289}$ 

Но— N. Гольмий—азот

НоN имеет г. ц. к. решетку типа NaCl, a = 4.87, A [1].

1. Klemm W., Winkelmann G., Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 87-90.

#### Но-Ni. Гольмий-никель

НоNi<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>; a = 7,13 A [1],  $a = 7,136 \pm 0,005$  A [2]. Решетка HoNi<sub>5</sub> гексагональная типа CaCu<sub>5</sub>; a = 4,88 A, c = 3,96 A [1]; a = 4,872 A, c = 3,966 A [3];  $a = 4,871 \pm 0,005$  A,  $c = 3,966 \pm 0,005$  A [4].

1. Naussau K. a.o. Phys. Chem. Solids, 1960, v. 16, p. 123-130. 2. Wernik H. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868. 3. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500. 1. Haszko S. E. Trans. AIME, 1960, v. 218, p. 763.

1,0131 2,9869

#### Но-О. Гольмий-кислород

Но<sub>2</sub>O<sub>3</sub> имеет о. ц. к. решетку, изотипную с  $Mn_2O_3$  (так называемая *C*-форма окислов редкоземельных металлов) [1—5];  $a = 10,607 \pm 0,005$  A [2, 3], a = 10,6065 A [4], Ho<sub>2</sub>O<sub>3</sub> имеет одну модификацию [4, 5].

- 1. Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 2. Bommer H. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 273-280.
- 3. Templeton D. H., Daeben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.
- 4. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, v. 64A, p. 309-316.
- 5. Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051.

1,9380 0.0620

#### Ho-Os. Гольмий-осмий

HoOs<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub> [1]. Периоды решетки не приводятся.

1. Bozorth R. M. a.o. Phys. Rev., 1959, v. 115, p. 1595-5196.

# $\frac{0,7262}{1,2738}$

#### Но-Р. Гольмий-фосфор

НоР имеет г. ц. к. решетку типа NaCl [1, 2], a = 5,626 [1].

- 1. Bruzzone G. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 208-213.
- 2. I a n d e l l i A., В книге «Rare Earth Research», ed. E. V. K l e b e r. The Macmillan Company, N. Y., 1961, p. 135—141.

# $\frac{0,1903}{1,8097}$

8\*

#### Ho—Pd. Гольмий—палладий

HoPd<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,064 A [1].

1. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76; Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162.

114

#### 1,9269 0.0731

## Ho—Pt. Гольмий—платина

Соединение HoPt<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> с периодом 4,064 A [1], 4,063 A [2].

1. Dwight A. E. a.o. Acta Cryst., 1961, v. 14, p. 75-76. 2. Dwight A. E. U.S. Energy Comm. ANL-6330, 1960, p. 158-162.

0,2048 $\overline{1},7952$ 

## Ho— Rh. Гольмий—родий

HoRh<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,426 A [1].

1. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

0,2125 $\overline{1},7875$ 

## Но— Ru. Гольмий—рутений

HoRu<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>; a = 5,244 A, c = 8,810 A [1].

1. Dwight A. E. U.S. At. Energy Comm. ANL-6330, 1960, p. 156-158.

0,7111 $\overline{1},2889$ 

### Но---S. Гольмий---сера

HoS имеет г. ц. к. решетку типа NaCl [1, 2], a = 5,465 [1].

- 1. Bruzzone G. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat, 1961, v. 30, p. 208-213.
- 2. I an delli A. Вкниге «Rare Earth Research», E. V. Kleber, ed. The Macmillan Company, N. Y., 1961, p. 135—141.

0,1317 1.8683

#### Но-Sb. Гольмий-сурьма

HoSb имеет г. ц. к. решетку типа NaCl с периодом  $6,129 \pm 0,002$  A [1], 6,130 A [2, 3].

- 1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- 2. I a n d e l l i A. В книге «Rare Earth Research», V. E. K l e b e r. ed. The Macmillan Company, N. Y., 1961, p. 135—141.
- 3. Bruzzone G. Atti. Accad. Nazl. Lincei. Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 208-313.

#### 0,3198 $\overline{1},6802$

#### Но-Se. Гольмий-селен

НоSe имеет г. ц. к. решетку типа NaCl, a = 5,680 A [1].

 Bruzzone G. Atti Accad. Nazl. Lincei. Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 208-212.

## Ho-Si. Гольмий-кремний

В спеченных материалах наряду с другими силицидами обнаружены следы соединения предположительно состава HoSi или Ho<sub>5</sub>Si<sub>3</sub> [1, 2]. Судя по рентгенограмме, хотя ее и не удалось расшифровать полностью, новое соединение, повидимому, аналогично гексагональным силицидам La, Ce, Pr, Nd, a = 9,60 A, a = 7,07 A для «CeSi».

1. Grinthal R. D. См. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

2. Binder I. J. Amer. Chem. Soc., 1960, v. 43, p. 287-292. .

0,1114 1.8886

## Но-Те. Гольмий-теллур

НоТе имеет г. ц. к. решетку типа NaCl с периодом  $6,072 \pm 0,002$  A [1], 6,049 A [2, 3].

- 1. Brixner L. H. J. Inogr. Nucl. Chem., 1960, v. 15, p. 199-201.
- 2. Bruzzone G. Atti Accad. Nazl. Lincei. Rend. Classe Sci. Mat. Nat., 1961, v. 30, p. 208-213.
- 3. I an delli A. Вкниге «Rare Earch Research», E. V. Kleber. ed. The Macmillan Company, N. Y., 1961, p. 135—141.

#### 1,8406 0,1594

### Но-U. Гольмий-уран

Но и U не смешиваются в жидком состоянии [1, 2]. Растворимость Но в жидком U уменьшается от 0,11% (ат.) [0,075% (по массе)] при 1250° С до 0,036% (ат.) [0,025% (по массе)] при 1150° С [1]. По данным работы [2], растворимость Но в U при 1200° С составляет 0,072% (ат.) [0,05% (по массе)].

Растворимость Но в α-U <0,02% (ат.) [3].

 Wilhelm H. E. Nuclear Fuels Newsletter WASH-704, 1958; см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 30.

2. Haefling J.F., Daane A.H. Trans. AIME, 1959, v. 245, p. 336-338. 3. Berndt H.A. U.S. At. Energy Comm. ANL-6516, 1961, p. 214-217.

#### 0,2571 $\overline{1},7429$

## Ho—Zr. Гольмий—цирконий

Металлографическим анализом сплавов дуговой плавки изучено влияние Но на α → β-превращение Zr [1]. Точные результаты не удалось получить из-за присутствия примесных фаз. Но повышает температуру превращения на ~40 град. Растворимость Но в β-Zr составляет ~1,1% (ат.) [~2% (по массе)], а в α-Zr при перитектической температуре ~3,7% (ат.) [~6,5% (по массе)].

 U y J. C. a. o. Rensselaer Polytechnic Institute, Final Report on Contract AT (30-1)-2159, 1961; L a m D. J. Dissertation, Rensselaer Polytechnic Institute, 1960, 107 p.

# В работе [2] определяли периоды решетки твердого раствора на основе Mg.

### In-Ir. Индий-ирилий

Промежуточная фаза IrIn<sub>8</sub> находится в равновесни с богатым индием расплавом и соединением приблизительного состава Ir<sub>2</sub>In<sub>3</sub>. IrIn<sub>3</sub> имеет тетрагональную структуру, химически близкую структуре CuAl<sub>2</sub>; a = 6,99 A, c = 7,20 A.

1. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540; Schubert K. u. a., Naturwissenschaften, 1958, Bd. 45, S. 360-361.

#### 0,1367 1.8633

1,7736

0,2264

# In—Kr. Индий—криптон

Построена зависимость логарифма растворимости Кг в жидком In от обратной температуры [1], согласно которой растворимость изменяется от 1,56 10-8 до 5,6·10-7 см<sup>3</sup> на 1 см<sup>3</sup> соответственно при 1000 и 1300° С [10,9·10-10 и 3,9.10-8% (ar.)].

1. Johnson G. W. Phil. Mag., 1961, v. 6, p. 943-946.

# 1,9170

# In-La. Индий-лантан

LaIn<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,732 A [1]. Сообщается [2], что La<sub>3</sub>In также имеет кубическую решетку типа AuCu<sub>3</sub>, a = 5,07 A [3]. Однако так как в работе [2] сделана ссылка на работу [1] как предшествующую, соединение LasIn, возможно, появилось вследствие типографской опечатки.

- 1. I an delli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., G. Brit., Proc. Symp., 1959, № 9, v. 1, Paper 3F, 11p.; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62–69.
- 2. Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130—133. 3. Zachariasen W. H. Неопубликованные данные; см. [2].

1,2184 2,7816

#### In—Li. Индий—литий \*

В работе [1] определены периоды решетки твердого раствора на основе In при комнатной температуре. На основании данных, полученных при измерении периода решетки семи сплавов, можно сделать вывод о том, что растворимость Li в In превышает 14% (ат.) (наиболее богатый индием сплав из числа исследованных).

1. Graham J., Raynor G. V. Phil. Mag., 1959, v. 2, p. 1354-1363.

#### 0,6738 1.3262

In—Mg. Индий—магний \*

При исследовании влияния Мд на период решетки Іп установлено, что предел растворимости Mg в In лежит в интервале 35-40% (ат.) Mg. Сплавы приготовили из 99,95%-ного Mg и 99,998%-ного In. Дифференциальным термическим анализом некоторых сплавов установлено, что твердый раствор на основе In образуется при перитектическом взаимодействии в-фазы с расплавом (рис. 270) [1].



Рис. 270. In-Mg

1. Graham J., Raynor G. V. Phil. Mag., 1957, v. 2, p. 1354-1363. 2. Hardie D., Parkins R. N. Phil. Mag., 1959, v. 4, p. 815-825.

0,9134 1,0866

## In-N. Индий-азот \*

InN нестабилен и распадается на In и N2 при 677-680° С [1].

1. Juza R., Hahn H. Z. Anorg. Allgem. Chem., 1940, Bd 244, S. 133; cm. ВолА.Е. Структура и свойства двойных металлических систем. Физматгиз, 1959, т. I. с. 97.

1.9005 0.0995

#### In-Nd. Индий-неодим

NdIn, имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,655 A [1].

1. I an delli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1955, v, 1, № 9, Paper 3F., 11 p.; Atti Accad. Nazl. Lincei. Rend. Classe Sci, Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 0,2912 1.7088

#### In— Ni. Индий—никель \*

Определено, изменение периода решетки Ni при увеличении содержания In от 0 до ~3% (ат.) [1].

1. Pearson W. B., Thompson L. T. Canad. J. Phys., 1958, v. 35, p. 349—357.

# $\frac{0,8558}{1,1442}$

# Iп-О. Индий-кислород

In<sub>2</sub>O<sub>3</sub>, полученный сжиганием металла, имеет о. ц. к. решетку;  $a = 10,105_6 \pm \pm 0,0010$  A [1], a = 10,12 A [2]. In<sub>2</sub>O<sub>3</sub> плавится при 1910  $\pm 10^{\circ}$  C [3].

Staritzky E. Anal. Chem., 1956, v. 28, p. 310-316.
 Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9, p. 310-316.
 Schneider S. J. J. Res. Natl. Bur. Std., 1961, v. A65, p. 429-434.

0,5688 $\overline{1},4312$ 

## In—Р. Индий—фосфор \*

Диаграмма на рис. 271 построена по данным термического анализа [1, 2] и химического анализа равновесной смеси жидкость—пар [3], быстро охлажденной до комнатной температуры. В работе [1] исследованы девять сплавов, пять



Рис. 271. Іп-Р

из которых расположены в интервале 0—10% (ат.) Р. В работе [2] исследованы четыре сплава, включая InP. Результаты всех трех работ указывают на то, что In и InP образуют простую эвтектическую систему. Температура эвтектики 153,6° С [1] и 154° С [2] (точка плавления In 156,4° С). Экстраполяцией кривых ликвидуса показано, что состав эвтектики неотличим от состава нелегированного In. В работе [1] определяли периоды решетки твердых растворов на основе In и InP. Сделан вывод о том, что максимальная растворимость компонентов ниже предела чувствительности метода (несколько тысячных процента).

Точка плавления InP (1045° C) определена экстраполяцией от 45% (ат.) Р [1]. Вместе с тем авторы [1] признают, что значение 1062 ± 7° C [3], возможно, более точно. По данным работы [2], точка плавления InP 1070° C.

имеет г. ц. к. решетку типа цинковой обманки; a = 5,88 A [2],  $a = 5,86875 \pm 0,0001$  A [4].

1. Shafer M., Weiser K. J. Phys. Chem., 1957, v. 61, p. 1424-1426. 2. Köster W., Ulrich W. Z. Metallkunde, 1958, Bd 49, S. 365-367. 3. Van den Boomgaard J., Schol K. Philips Res. Rept., 1957, v. 12, p. 127-140.

4. Giesecke G., Pfister H. Acta Cryst., 1958, v. 11, p. 369-371.

#### 1,7434 0,2566

# In-Pb. Индий-свинец \*

Проведено повторное определение ликвидуса и солидуса системы [1]. Ликвидус в основном совпадает с приведенным М. Хансеном и К. Андерко. Солидус изучен в интервале 75—100% (по массе) Рb. Приведены точки на кривой: 67,6; 74,4; 83,3 и 91,3% (ат.) Рb соответственно при 225, 250, 275 и 300° C [1]. Перитектические реакции происходят при 158,9 и 171,6° C [2]. Состав жидкости, участвующей в этой реакции: соответственно 6,25% (ат.) [10,75% (по массе)] Pb и 18,7% (ат.) [29,4% (по массе)] Pb [1].

Равновесная концентрация между твердым раствором на основе In и α-фазой (см. М. Хансен и К. Андерко, т. II [14]) подтверждена в работе [3].

1. Oelsen W., Zühlke P. Неопубликованные данные; см. S. Valentiner. Z. Metallkunde, 1958, Bd. 49, S. 375.

2. Valentiner S. Z. Metallkunde, 1955, Bd 46, S. 442-449.

3. Raynor G. V., Graham J. Trans. Faraday Soc., 1958, v. 54, p. 161-173.

0,0316 $\overline{1,9684}$ 

## In—Pd. Индий—палладий \*

Приведенная на рис. 272 диаграмма построена по данным микроскопического, термического и рентгеновского анализов [1]. Чистота исходных компонентов более 99,9%. К сожалению, ценность работы снижается из-за того, что не приводятся ни экспериментальные точки, ни составы сплавов. Число и состав фаз, обнаруженных в работе [1], совпадают с приведенными М. Хансеном и К. Андерко (см. т. II [1]).

Растворимость Pd в In менее 0,1% (ат.). Твердый раствор на основе In образует эвтектику с PdIn<sub>3</sub> при 155° С и концентрации, близкой к 100% In.

Наибольший интервал гомогенности имеет PdIn [48—61,5% (ат.) Pd]. Максимальная температура плавления PdIn не совпадает со стехиометрическим составом.

Pd<sub>2</sub>In, гомогенный в интервале 63,5—67,2% (ат.) Pd, испытывает при высоких температурах полиморфное превращение, протекающее по перитектоидной эвтектоидной реакциям. Как показал рентгеновский анализ, низкотемпературная модификация имеет узкий интервал гомогенности.

Образующееся по перитектической реакции соединение Pd<sub>9</sub>In гомогенно при высоких температурах в интервале 73,5—75,2% (ат.) Pd. При 1066° С интервал

1

120



гомогенности резко сужается до 1% (ат.). Для температуры перитектической реакции в работе [1] приведено два значения: 1360 и 1365° С.

Твердый раствор на основе Pd простирается до 20—21% (ат.) In при температуре окончания кристаллизации и до 17—18% (ат.) In при 600° С.

ратуре окраняет упорядоченную структуру вплоть до температуры плавлерdIn сохраняет упорядоченную структуру вплоть до температуры плавления [1]. По данным предварительного рентгеновского исследования [1],  $Pd_{2}In$ (низкотемпературная модификация?) имеет г. ц. тетрагональную решетку. Со-(пизкотемпературная модификация?) имеет г. ц. тетрагональную решетку. Согласно работе [2], решетка  $Pd_{2}In$  ромбическая типа  $Ni_{2}Si; a = 8,22 A, b =$ 

= 5,60 Å, c = 4,21 Å. Авторы отмечают, что линии Pd<sub>2</sub>In на рентгенограмме были несколько размытыми (возможно, вследствие полиморфизма, о котором авторы ничего не знали).

Обнаруженное в работах [1, 3] соединение Pd<sub>5</sub>In<sub>3</sub> имеет ромбическую решетку типа Rh<sub>5</sub>Ge<sub>3</sub>; a = 11,02 A, b = 5,60, c = 4,24 A. Этот состав лежит в пределах однофазной области PdIn, определенной в работе [1].

1. Knight J.R., Phys D. W. J. Less-Common Metals, 1959, v. 1, p. 292-

303. 2. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540.

3. Schubert K. u.a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

#### 1,9108 0,0892

# In--- Pr. Индий--- празеодим

Диаграмма, приведенная на рис. 273, построена по данным термического анализа сплавов, приготовленных из 99,95%-ного In и 99,5%-ного Pr. Для температуры плавления Pr в этой работе дается значение 912° С (при общепринятом 935 ± 5° С); отмечается также некоторое взаимодействие расплава с материалом тигля. Высказано предположение [3], что в результате взаимодействия с материалом тигля все температуры ликвидуса [1] оказались заниженными. Судя по остановке на кривой охлаждения, PrIn испытывает при 1091° С полиморфное превращение [1].

 $PrIn_3$  имеет кубическую решетку типа AuCu<sub>3</sub>,  $a = 4,670_5$  A [3].  $Pr_3In$  имеет г. ц. к. решетку типа Cu, a = 4,93 A [1].

1. I an delli A. Atti Accad., Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1947, v. 2, p. 327-334.

2. I an de I l i A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40.

3. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 1,7692 0.2308

## In—Pt. Индий—платина \*

Сплав состава  $Pt_3In$  имеет тетрагональную решетку типа  $L6_0$ ; a = 3,93 A, c = 3,87 A [1]. С  $Pt_3In$  сосуществует другая фаза. Решетка ее неизвестна.

 Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.

#### 1,6761 0,3239

# In—Pu. Индий—плутоний \*

Компоненты полностью взаимно растворимы в жидком состоянии, и по крайней мере в  $\delta$ -Ри растворяется заметное количество In [1]. Соединение Puln<sub>3</sub> имеет частично упорядоченную структуру типа AuCu<sub>3</sub>,  $a = 4,607 \pm 0,001$  A; подтверждено также, что аналогичную структуру имеет Pu<sub>3</sub>In,  $a = 4,702 \pm \pm 0,001$  A.[2].





1. Schonfeld, F. W. В книге «The Metal Plutonium», A. S. Coffinberry, W. N. Miner eds. University of Chicago, Press, Chicago, 1961, p. 240-254.

2. Бочвар А. А. и др. Ядерное горючее и материалы. Вторая международная конференция по мирному использованию атомной энергии. Доклады советских ученых, т. З. Атомиздат, 1959, с. 376-395.

0.0473 1 9527

# In— Rh. Индий—родий \*

В интервале 200-500° С соединение RhIn<sub>3</sub> находится в равновесии с RhIn и твердым раствором на основе In [1]. RhIn<sub>3</sub> имеет тетрагональную решетку, изотипную с CoGa<sub>3</sub>; a = 7,01 A, c = 7,15 A [1, 2].

1. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540. 2. Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

,5538 1 4462

# In-S. Индий-сера \*

Как показало рентгеновское исследование монокристаллов In<sub>2</sub>S<sub>3</sub>, соединение испытывает превращение типа порядок-беспорядок [1]. Разупорядочение происходит при нагреве до температур, близких к точке плавления. У порядоченная сверхструктура сохраняется некоторое время при низких температурах (2 и при 25° С) [1]. Наличие сверхструктуры при низких температурах препятствует образованию α-In<sub>2</sub>S<sub>3</sub> (см. М. Хансен и К. Андерко, т. II [1, 6]), если эта модификация не образовалась уже в результате низкотемпературного процесса получения соединения. Рентгеновским исследованием порошка β-In<sub>2</sub>S<sub>3</sub> показано, что соединение не имеет структуры типа шпинели. Этот вывод подтвержден на монокристаллах [1], хотя структуру β-In<sub>2</sub>S<sub>3</sub> можно рассматривать и как родственную шпинели. β-In<sub>2</sub>S<sub>3</sub> — стабильная модификация In<sub>2</sub>S<sub>3</sub>.

1. Huber M. Compt. Rend., 1961, v. 253, p. 471-473. 2. Rooymans C. J. M. J. Inorg. Nucl. Chem., 1959, v. 11, p. 78.

1,9743 0.0257

1.1.4.1

# In—Sb. Индий—сурьма \*

Ликвидус в интервале 40-60% (ат.) Sb хорошо согласуется с диаграммой (см. М. Хансен и К. Андерко, рис. 470).

Для температуры плавления InSb приводятся значения 540° C [1] и 525,2  $\pm$ ± 0,3° С [2]. Повторные определения периода решетки InSb (г. ц. к. типа цинковой обманки) дали следующие результаты:  $a = 6,465 \pm 0,003$  A [3] и a = $= 6,47877 \pm 0,00005 \text{ A}$  [4].

В работе [5] приведена диаграмма состояния InSb в координатах давлениетемпература в интервалах 0—50 кбар и 0—600° С. Минимум области жидкой фазы расположен при ~330° С и 20 кбар.

Стабильная при высоких давлениях модификация существует в интервале температур от комнатной до точки плавления при давлениях выше 20-22 кбар. В осажденной из газовой фазы пленке InSb обнаружена метастабильная гексагональная модификация со структурой типа вюрцита [6, 7].

1. Глазов В. М., Петров Д. А. Изв. АН СССР, ОТН, 1958, т. 4, с. 125—

2. Bednar J., Smirous K. Czech. J. Phys., 1955, v. 5, p. 546. 129. 3. Горюнова Н. А., Федорова Н. Н. ЖТФ, 1955, т. 25, с. 1339—1341.

124

4. Giesecke G., Pfister H. Acta Cryst., 1958, v. 11, p. 369-371. 5. Jayaraman A. a.o. Nature, 1961, v. 191, p. 1288-1290. 6. Семилетов С. А., Розсивал М. Кристаллография, 1957, т. 2, c. 287-288. 7. Палатник Л. С. идр. ФММ, 1951, т. 11, с. 229-235.

0,1624 1,8376

#### In—Se. Индий—селен\*

Подтверждено существование соединений In<sub>2</sub>Se<sub>3</sub>, InSe и In<sub>2</sub>Se [1]. Темпера-тура полиморфного превращения In<sub>2</sub>Se<sub>3</sub> — 196° С. Это значение получено как среднее из нескольких определений, выполненных различными методами [1]. В работе [2] для температуры превращения приводится значение 200° С.

На основании электронографического исследования сделан вывод о существовании по крайней мере четырех модификаций In<sub>2</sub>Se<sub>3</sub>: стабильной при комнатной температуре α со структурой графита; β, стабильной выше 200° С, и γ (кубическая и моноклинная модификации), стабильной выше 500—600° С [3]. В работе [4] и у М. Хансена и К. Андерко (см. т. II [4]) высказано предположение, что α-модификация стабильна и выше 200° С. Однако это, по-видимому, ошибочно, так как в работах [2, 5] поддерживается мнение [3], что модификация α стабильна лишь до 200° С. Повторно определена температура плавления In<sub>2</sub>Se<sub>3</sub> [6] - 888 ± ± 3° С, что согласуется с данными М. Хансена и К. Андерко (см. т. II [1]). Судя по данным дифференциального термического анализа, In<sub>2</sub>Se также испытывает полиморфное превращение при 120 ± 2° С [1].

Кристаллическая структура. Высокотемпературная модификация In<sub>2</sub>Se<sub>3</sub> (β) имеет гексагональную решетку; a = 4,01 A, c = 19,24 A [2]; a = 4,00 A, c == 19,0 А [4]; a = 7,11 А, c = 19,3 А [1]. Низкотемпературная α-модификация In<sub>2</sub>Se<sub>3</sub> имеет решетку, дающую большое число дифракционных линий [4]. Согласно работе [8], для структуры характерно двухслойное гексагональное расположение атомов Se, пространственная группа  $C_6^6$ — $C6_3$ , на элементарную ячейку приходится 32 формульные единицы; a = 16,00 A, c = 19,24 A. Осаждением из газовой фазы получена тонкая пленка InSe [9]. Соединение

имело гексагональную решетку пространственной группы  $D^4_{6h}$ ; a=4,05 A, c== 16,93 А, а не ромбоэдрическую, как предполагалось ранее (см. М. Хансен и К. Андерко, т. II [3]).

1. Brice J. C. a. o. Brit. J. Appl. Phys., 1958, v. 9, p. 110-111.

2. Міуаzawa Н., Sugaike S. J. Phys. Soc. Japan, 1957, v. 12, p. 312. 3. Семилетов С. А. ФТТ, 1961, т. 3, с. 746—753.

4. Hahn H., Frank G. Naturwissenschaften, 1957, Bd 44, S. 533-534. 5. Newman P. C., Redhill W. Z. Anorg. Allgem. Chem., 1959, Bd 299,

S. 158; см. [3]. 6. Mason D. R., O'Kane D. F. International Conference on Semiconductor

Physics, Prague, 1960, Academic Press Inc., N. Y., 1961, p. 1026-1031.

7. Семилетов С. А. Кристаллография, 1960, т. 5, с. 704-710.

8. Семилетов С. А. Кристаллография, 1961, т. 6, с. 200-203.

- 9. Семилетов С. А. Кристаллография, 1956, т. 3, с. 288—292.
- 0,6112 1.3888

# In—Si. Индий—кремний \*

Определенные методом взвешивания значения растворимости Si в In меньше приводимых ранее (см. М. Хансен и К. Андерко, т. II [3]). Растворимость составляет 0,88; 1,98; 4,39; 9,92 и 50% (ат.) Si при соответственно 900, 1000, 1100, 1200 и 1317° С [1]. Рассчитано положение эвтектики: 2.10-8% (ат.) Si и температура на 1.10-7 град ниже точки плавления In [1]. Коэффициент распределе-126

ния In в Si при температуре плавления Si составляет  $k_0 = 4 \cdot 10^{-4}$  [2]. Растворимость In в Si, рассчитанная с использованием коэффициента распределения, 5.10<sup>-4</sup>, максимальная при 1337° С4.10<sup>-8</sup>% (ат.) Іп. При понижении температуры она постепенно уменьшается до 6·10-6% (ат.) In при 627° С.

1. Thurmond C. D., Kowalchik M. Bell System. Tech. J., 1960. v. 39, p. 169-204.

2. H a l l R. N. General Electric Research Lab. Rept. 58-RL-1874; см. T r u m -

bore F. A. Bell System Techn. J., 1960, v. 30, p. 205-233. 3. Козловская В. М., Рубинштейн Р. Н. ФТТ, 1961, т. 3, с. 3354-3362.

1,8825 0,1175

# In—Sm. Индий—самарий

SmIn<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,622 A [1].

1. I an d e 11 i A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Nat. Phys. Lab., Gt. Brit., Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.; Atti Accad. Nazl. Lincei, Rend, Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

1,9853 0.0147

# In-Sn. Индий-олово \*

Подтвержден [1] перитектический характер образования у-фазы [75-85% (ат.) Sn] (см. М. Хансен и К. Андерко, т. II [9]). Можно считать, что в интервале концентраций 75—100% (ат.) Sn диаграмма состояния построена окончательно.

Подтверждена перитектическая температура, равная 205° С, и солидус у-фазы [1]. Рентгеновским методом определена граница твердого раствора на основе Sn, проходящая через точки 94,1% (ат.) [94,3% (по массе)] Sn при 50° С и 94,0% (ат.) [94,2% (по массе)] Sn при 105° С [1]. В интервале температур 50-150° С границы у-фазы практически вертикальны: 89,4-89,5% (ат.) [89,7-89,8% (по массе) ] Sn со стороны, богатой Sn, и 75,9—76,1% (ат.) [76,5—76,7% (по массе)] Sn со стороны, богатой In [1].

В ранней работе [2] граница у-фазы со стороны Sn была определена равной ~86% (ат.) Sn. В работах [1, 2] изучались изменения периода решетки у-фазы с изменением состава. Не получено также [2] никаких данных, которые бы указывали на то, что у-фаза имеет более сложную структуру, чем г. ц. тетрагональная.

1. Goulding C. W., Raynor G. V. J. Inst. Metals, 1956-1957, v. 85, р. 535—536; Дискуссия к М. Хансен и К. Андерко, т. II [9]. 2. Raynor G. V., Graham J. Research, 1957, v. 10, p. 369-371.

#### 1.9539 0,0461

# In--Те. Индий--теллур \*

Недавно была повторно определена температура конгруэнтного плавления In<sub>2</sub>Te<sub>3</sub>. Полученные значения (666° С [1] и 667 ± 3° С [2]) хорощо согласуются с температурой, принятой М. Хансеном и К. Андерко. Результаты дифференциального термического анализа, измерение теплопроводности и времени релаксации позволяют предполагать полиморфное превращение InTe при 167° С [3].

Многие данные указывают на полиморфизм In<sub>2</sub>Te<sub>3</sub> [4-8]. Все авторы согласны, что высокотемпературная модификация имеет г. ц. к. решетку типа цинковой обманки; a = 6,158 Å [5], 6,16 Å [7]. Нет единого мнения о структуре низкотемпературной фазы и температуре или температурном интервале превращения. По одним данным, оно происходит в интервале 520-620° С [6], по другим — при 617 ± 5° С [8]. Авторы работ [6, 7] приняли кубическую структуру (а = 18,50 А), что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II [9] ]). Как показал расчет интенсивности, в структуре упорядочиваются катионные вакансии. Результаты исследования монокристаллов In<sub>2</sub>Te<sub>3</sub> [8] показывают, что низкотемпературная модификация соединения имеет либо тетрагональную, либо ромбическую структуру. Этот вывод поддерживается в работе [5], авторы которой считают, что соединение имеет о. ц. тетрагональную решетку с симметрией 14mm. Работа проведена на порошках.

1. Wooley J. C. a. o. J. Less-Common Metals, 1959, v. 1, p. 199-201. 2. Mason D. R., O'Kane D. F. International Conference on Semiconductor Physics, Prague, 1960, Academic Press Inc., N. Y., 1961, p. 1026-1031.

3. Wright H. C., Brice J. C. Nature, 1959, v. 183, p. 27-28. 4. Wooley J. C. a.o. J. Less-





Common Metals, 1959, v. 1, p. 362-376.

- 5. Wooley J. C., Pamplin B. R. J. Electrochem. Soc., 1961, v. 108. p. 874-879.
- 6. Заславский А. И., Сер-геева В. М. ФТТ, 1960, т. 2, c. 2872-2880
- 7. Zuze V. P. a. o. International Conference on Semiconductor Physics, Prague, 1960, Academic Press Inc., N. Y., 1961, p. 871-880.
- 8. Gasson D. B. a. o. International Conference on Semiconductor Physics, Prague, 1960, Academic Press Inc., N. Y., 1961, p. 1032-1036.

#### 1,6941 In—Th. Индий—торий

Диаграмма состояния в интервале 66,7—100% (ат.) Th (рис. 274) построена по данным рентгеновского и металлографического анализов [1]. Сплавы приготовили из электролитического Th и In высокой чистоты. Th.In и твердый раствор на основе α-Th образуют эвтектику при  $\sim 82\%$  (ат.) Th и 1160  $\pm$  10° C. Th<sub>2</sub>In плавится при  $1170 \pm 10^{\circ}$  С. Растворимость In в Th определяли металлографически и по изменению периода решетки. Влияние In на  $\alpha \implies \beta$ -превращение Th<sup>\*</sup>не изучали.

Растворимость Th в жидком In при 650° С не была обнаружена, а при 800 и 900° С она составляет соответственно 0,12% (ат.) [0,25% (по (массе)] и

0.47% (ат.) [0,95% (по массе)] [2]. Тh<sub>2</sub>In имеет тетрагональную решетку типа  $C_{\rm LLAl}_{2}$ ; a = 7,787 A, c = 6,113 A [1]. Кроме Th<sub>2</sub>In, обнаружено два других соединения: ThIn<sub>3</sub> с кубической решеткой типа  $L1_2$ , a = 4,695 A [3] и ThIn<sub>2</sub> также с кубической решеткой, а = 7,050 А [4].

- Murray J. R. J. Less—Common Metals, 1959, v. 1, p. 314—320.
  Hayes E. E., Gordon P. U.S. At. Energy Comm. TID—65, 1958, p. 130—141; cm. Rough F. A., Bauer A. A. U.S. At. Energy Comm. BMI-1300, 1958, p. 112. 3. Ferro R. Acta Cryst., 1958, v. 11, p. 737-738.

4. Dwigh A. E. Неопубликованные данные, 1957; см. Вацег А. А., Rough F. A., Metallurgy and Fuels, Progress in Nuclear Energy, Pergamon Press, N. Y., 1959. ser. V. v. 2, p. 612-620.

0.3794 1,6206

## In-Ti. Индий-титан \*

Диаграмма, приведенная на рис. 275, построена предположительно по данным работ [1, 2]. В основу ее положены результаты металлографического



исследования 13 сплавов, содержавших 4,0—26,2% (ат.) [9—46% (по массе)] In [1]. Сплавы отжигали при 750—1050° С с интервалом в 50 град. В работе [2] термическим и рентгеновским анализом сплавов с 0—50,7% (ат.) [0—30% (по массе)] Ті определены фазовые границы. Состав сплавов, богатых Ті, контролировался [1] по уменьшению массы слитков при дуговой плавке (до 10%). Точность определения границ составляла ±1,5% (ат.) In. Предполагается, что In понижает температуру  $\alpha \rightleftharpoons \beta$ -превращения Ті. Возможно, что предположение основано на анализе общей формы границ. И  $\alpha$ - и  $\beta$ -твердые растворы находятся в равновесии с твердым раствором на основе Ti<sub>3</sub>In, который имеет широкий интервал гомогенности.

В сплаве с ~33,8% (ат.) [55% (по массе)] Іп обнаружена фаза с кубической решеткой типа Cu<sub>3</sub>Au (L1<sub>2</sub>), *a* = 4,22 A [1]. Возможно, это соединение Ti<sub>3</sub>In. Показано, что данные М. Хансена и К. Андерко (см. т. II [2]) ошибочны, поскольку неправильно учитывались потери In.

Термическим анализом [2] установлено, что соединение  $In_4 Ti_3$  образуется по перитектической реакции при 796° С  $\pm$  5° С. Состав перитектической жидкости: 2,4—3,5% (ат.) [1,0—1,5% (по массе)] Ті. Температура кристаллизации богатых индием сплавов практически не отличается от температуры кристаллизации чистого In.

Кристаллическая структура. Ti<sub>3</sub>In имеет гексагональную решетку типа Mg<sub>3</sub>Cd (D0<sub>19</sub>), при  $\sim 21\%$  (at.); a = 5,89 A, c = 4,76 A [1]. При добавке In период *c* решетки  $\alpha$ -Ti увеличивается, а период *a*, возможно, несколько уменьшается.

Решетка у-фазы тетрагональная; a = 10,094 А и c = 3,052 А [2]. Основываясь на размерах элементарной ячейки и плотности ( $6,42 \pm 0,05 \ c/cm^3$ ), ей приписали состав In<sub>4</sub>Ti<sub>3</sub>.

Anderko K. Z. Metallkunde, 1958, Bd 49, S. 165-172.
 Johnson R. G., Prosen R. J. Trans. AIME, 1962, v. 224, p. 397-398.

1,7493 0,2507

## In—Tl. Индий—таллий \*

Измерением электросопротивления при высоких давлениях установлено [1], что максимальная растворимость In в Tl составляет приблизительно 70% (вероятно, атомных). На кривой зависимости температурного коэффициента электросопротивления от состава при атмосферном давлении имеются минимумы при  $\sim 24$  и  $\sim 60\%$  (ат.) Tl, соответствующие предельной растворимости Tl в In и в  $\alpha$ -фазе. Эти значения хорошо согласуются с данными M. Хансена и K. Андерко (см. т. II, рис. 474). В работе [2] указывается на необходимость некоторого изменения концентрации эвтектоида и положения крайних точек на перитектической горизонтали (171° С?), однако авторы не приводят никаких данных. Границы двухфазной области  $\alpha$  + (In) (см. M. Хансен и K. Андерко, т. II, [18]) вновь приведены в работе [3].

1. Bridgman P. W. Proc. Amer. Acad. Arts Sci., 1955, v. 84, p. 5-11.

2. Smith J. F., Meyerhoff R. W. U. S. Energy Comm. ISC-351, 1961, p. 129-130.

3. Raynor G. V., Graham J. Trans. Faraday Soc., 1958, v. 54, p. 161-173.

1,6831 0,3169

## In—U. Индий—уран \*

В табл. 27 приведены значения растворимости U в жидком In [1]. 130 ТАБЛИЦА 27. РАСТВОРИМОСТЬ И В ЖИДКОМ In

|                                               | Растворимость U в In                                 |                                                                      |  |  |
|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--|--|
| Температура, °С —                             | % (ат.)                                              | % (по массе)<br>1,05<br>0,70<br>0,45<br>0,25<br>0,15<br>0,10<br>0,08 |  |  |
| 900<br>850<br>800<br>750<br>700<br>650<br>600 | 0,49<br>0,34<br>0,22<br>0,12<br>0,07<br>0,05<br>0,03 |                                                                      |  |  |

 Hayes E. E., Gordon P. J. U. S. At. Energy Comm. TID-65, 1948, p. 130-141; cm. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 32.

0,0999 1,9001

#### In—Zr. Индий—цирконий

Часть диаграммы со стороны Zr (рис. 276) построена в результате микроскопического анализа сплавов в интервале от 500 до 1300° С [1]. Сплавы выплавляли

из 99,95%-ного Zr и 99,99%-ного In. Насыщенный твердый раствор на основе Zr находится в равновесии с твердым раствором на основе соединения ZraIn. Температура аллотропического превращения Zr при добавке In повышается до перитектоидной (1003 ± 20° С). Изучено [2] влияние In на период решетки α-Zr. Показано, что период с увеличивается, а период а уменьшается. Граница однофазной области ZraIn со стороны In точно не установлена. Для нее приводятся значения >26,1% (ат.) [1] и >28,5% (ат.) [3]. Zr<sub>3</sub>In имеет неупорядоченную г. ц. к. структуру;  $a = 4.45 \pm 0.01$  A [1],  $a = 4.461 \pm$ ± 0,002 A [3]. Высказано [3] предположение, что соединение имеет упорядоченную структуру типа Cu<sub>3</sub>Au, однако подтвердить это не удалось из-за невысокого качества рентгенограмм и малой разницы в атомных факторах In и Zr.

1. Betterton J. O. (Jr.), Novce W. K.

2. Betterton J. O. (Jr.), Easton D. S.

3. Anderko K. Z. Metallkunde, 1958, Bd 49,

ORNL-2344, 1957, 52 p.

p. 107-110.

S. 165-172.

Trans. AIME, 1958, v. 212, p. 340-342; Bet-

terton J. O. (Jr.) a. o. U. S. At. Energy Comm.

U. S. At. Energy Comm. ORNL-2988, 1960,

Lalr<sub>2</sub> имеет г. ц. к. решетку, изотипную с

 $MgCu_2$  [1, 2],  $a = 7,686 \pm 0,001$  Å [1] или a =

Ir—La. Иридий—лантан



9\*

= 7,688 [2].

0,1431

1,8569

Рис. 276. In-Zr

- 1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
- 2. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 0,3037 1,6963

### Ir—Mo. Иридий—молибден \*

Рентгеновским анализом подтверждено существование MoIr<sub>3</sub> со структурой  $\beta$ -W и г. к. фазы є [1]. При содержании примерно 25% (ат.) Іг в литых образцах обнаружена также σ-фаза. Можно предполагать, что σ-фаза стабильна только при высоких температурах, а после отжига при 1600° С и ниже переходит в фазу со структурой  $\beta$ -W.

Решетка о-фазы тетрагональная,  $a = 9,64_8$ А,  $c = 4,96_8$ А [1]. Период решетки фазы типа β-W равен 4,974 А [1]. Периоды решетки гексагональной є-фазы составляют: a = 2,993 А, c = 4,388 А [1]. Величина периода a значительно отличается от приведенной М. Хансеном и К. Андерко.

1. Knapton A. G. J. Inst. Metals, 1958-1959, v. 87, p. 28-32.

1,1373 $\overline{2},8627$ 

## Ir—N. Иридий—азот

Азот не растворяется в Ir, в системе не образуются нитриды [1].

 Е тісh F. Monatsh. Chem., 1905, Bd 26, S. 1013, 1908, Bd 28, S. 1077— 1085; Becker F. Über die Dissoziation der Oxide des Iridiums und der Platinums, Darmstadt, 1927; см. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959.

0,3177 1.6823

# Ir—Nb. Иридий—ниобий \*

В результате изучения шести сплавов [1] обнаружены три фазы: фаза типа β-W при 25% (ат.) Ir, указанная ранее (см. М. Хансен и К. Андерко, т. II [1]), σ-фаза при 37% (ат.) Ir и неидентифицированная фаза при 75% (ат.) Ir, появляющаяся после отжига при 1200° С. Литой сплав с 75% (ат.) Ir представлял собой твердый раствор на основе Ir. Сообщается [2] о существований соединения NbIr<sub>3</sub> с решеткой типа Cu<sub>3</sub>Au. Возможно, это неидентифицированная фаза, обнаруженная в работе [1]. Решетка сплава эквиатомного состава ни типа CsCl, пи о. ц. к. [3].

Период кубической фазы Nb<sub>3</sub>Ir составляет 5,139 A [1]. Решетка  $\sigma$ -фазы тетрагональная; a = 9,88 (8) A, c = 5,07 (2) A [37% (ат.) Ir] [1]. Период кубической фазы NbIr<sub>3</sub> равен 3,893 A [2].

Knapton A. G. J. Inst. Metals, 1958-1959, v. 87, p. 28-32.
 Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979.
 Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

0,1265 1,8735

## Ir— Nd. Иридий—неодим

NdI<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub>,  $a = 7,605 \pm 0,001$  A [1].

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654. 132 1,0817 $\overline{2},9183$ 

## Ir-О. Иридий-кислород \*

Равновесие изучалось методом газопереноса [1]. Установлено, что нагретые Ir и IrO<sub>2</sub> сублимируют в токе O<sub>2</sub> или смеси O<sub>2</sub> + N<sub>2</sub> с образованием газообразного IrO<sub>3</sub>, стабильного до 1700° С. IrO<sub>2</sub> получали нагреванием прокатанного листового Ir при 1130—1150° С в токе O<sub>2</sub>. IrO<sub>2</sub> конденсировался в суженной части трубы, где поддерживалась температура, лежащая в интервале стабильности IrO<sub>2</sub>. Область стабильности газообразного IrO<sub>3</sub> согласуется с данными работ [2, 3], включенных в литературный обзор работы [1].

- 1. Schafer H., Heitland H.J. Z. Anorg. Allgem. Chem., 1960, Bd 304, S. 249-265.
- 2. Holborn L. u. a. Wiss. Abhandl. Physik-Tech. Reichsansalt, 1904, Bd 4, S. 85.
- 3. E m i c h F. Sitzber. Akad. Wiss. Wien, Math-Naturw., Kl., Abt. 11b., 1905, Bd 114, S. 454; Monatsh Chem., 1905, Bd 26, S. 1011; 1908, Bd 29, S. 1077.

0,7948 1,2052

#### Ir—P. Иридий—фосфор \*

Методом высокотемпературной металлографии исследован сплав с $\sim$ 6% (ат.) Р [1]. Обнаружена эвтектика, расположенная при 1262° С в области диаграммы со стороны Ir.

ІгР<sub>2</sub> имеет моноклинную решетку, изоструктурную с RhP<sub>2</sub>;  $a = 5,745_7$  A,  $b = 5,790_6$  A,  $c = 5,850_0$  C,  $\beta = 111,60^\circ$  [2]. Фосфид IгР<sub>3</sub> имеет кубическую решетку, изоструктурную с RhP<sub>3</sub> и NiP<sub>3</sub>, a = 8,015 A [3].

1. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336.

2. R undqvist S. Acta Chem. Scand., 1961, v. 15, p. 451-453.

3. Rundqvist R. Nature, 1960, v. 185, p. 31-32.

#### 0,2576 1.7424

## Ir—Pd. Иридий—палладий

Металлографическим и рентгеновским методом исследовано 19 сплавов [1] и предложена диаграмма, приведенная на рис. 277. Максимум области несмешиваемости в твердом состоянии расположен при 1840° С и 50—55% (ат.) Рd. Выше этой температуры Ir и Pd полностью растворимы друг в друге. Солидус определен лишь на участке 75—100% (ат.) Pd до температуры 1700° С.

1. Raub E., Plate W. Z. Metallkunde, 1957, Bd 48, S. 444-447.

#### 0,1369 1,8631

#### Ir—Pr. Иридий—празеодим

PrIr<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub>,  $a = 7,621 \pm 0,001$  A [1].

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654.

#### 0,2785 1.7215

## Ir— Ru. Иридий—рутений \*

В предварительном сообщении о продолжающейся работе [1] указывается, что Ir и Ru образуют широкие области твердых растворов. Небольшая двухфазная область простирается от 37,5 до 50% (ат.) Ru. Возможно, что при ~55% (ат.) Ru происходит превращение в твердом состоянии.

1. R a u b E. J. Less-Common Metals, 1959, v. 1, p. 3-18.



0,1982 1.8018

## Ir—Sb. Иридий—сурьма

На рис. 278 приведена предположительная диаграмма состояния системы на участке 50—100% (ат.) Sb, построенная по данным термического, металлографического и рентгеновского анализов [1—4]. Сообщается [1, 2], что IrSb<sub>3</sub> образуется по перитектической реакции при ~900° С. Однако в проведенных позже высокотемпературных рентгеновских исследованиях [3, 4] не было обнаружено никаких превращений до 1000° С. Авторы указывают, что перитектика должна быть расположена между 1000 и 1200° С. Кривая ликвидуса построена по данным работы [1]. IrSb<sub>3</sub> имеет кубическую решетку типа CoAs<sub>3</sub> [4] с периодом 9,2495 А [3, 4] 11 9,248 ± 0,002 А [1, 2, 5].

Решетка IrSb<sub>2</sub> моноклинная, изоморфная с CoSb<sub>2</sub>;  $a = 6,58 \pm 0,02$  A,  $b = 6,53 \pm 0,02$  A,  $c = 6,68 \pm 0,02$  A,  $\beta = 115,5^{\circ}$  [6]. IrSb имеет гексагональную решетку типа NiAs,  $a = 3,978 \pm 0,02$  A

 $\pm$  0,001 A,  $c = 5,521 \pm 0,002$  A [7].

- Кузьмин Р. Н. и др. Кристаллография, 1957, т. 2, с. 48—50.
- Журавлев Н. Н. идр. Кристаллография, 1960, т. 5, с. 553—562.
- K j e k s h u s A. Acta Chem. Scand., 1961, v. 15, p. 678-681.
- Kjekshus A., Pedersen G. Acta Cryst., 1961, v. 14, p. 1065-1070.
- 5. Журавлев Н. Н., Жданов Г. С. Кристаллография, 1956, т. 1, с. 509— 513.
- Жданов Г. С., Кузьмин Р. Н. Кристаллография, 1961, т. 6, с. 872-881.
- 7. Кузьмин Р. Н. Кристаллография, 1958, т. 3, с. 366—367.



0,6316 1,3684

#### Ir—Sc. Иридий—скандий

ScIr<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub> [1, 2], с периодом 7,348  $\pm$  0,001 А и 7,346 А [2].

Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

#### 0,3884 $\overline{1.6116}$

## Ir—Se. Иридий—селен \*

IrSe<sub>2</sub> имеет ромбическую решетку типа C37 с 24 атомами в элементарной ячейке [1]; a = 20,94 A, b = 5,93 A, c = 3,74 A. Высказано предположение, что диселенид не стехиометричен и имеет приблизительно состав IrSe<sub>1.9</sub>.

1. Baricelli L. B. Acta Cryst., 1958, v. 11, p. 75-79. 2. Sovold L. Thesis, University of Oslo, 1954.

#### 0,8372 1,1628

## Ir—Si. Иридий—кремний \*

Известны семь соединений: Ir<sub>3</sub>Si [1, 2], Ir<sub>2</sub>Si [1, 2], Ir<sub>3</sub>Si<sub>2</sub> [1, 2], IrSi [1, 3], Ir<sub>2</sub>Si<sub>3</sub> [1], IrSi<sub>2</sub> [1] и IrSi<sub>3</sub> [1]. Все соединения, обнаруженные ранее (см. М. Хансен и К. Андерко, т. II [1]), совпадают с упомянутыми выше. При

134

9,5% (ат.) Si и 1470° C существует эвтектика. Ir<sub>3</sub>Si<sub>2</sub> — высокотемпературная фаза и при 500—750° C распадается на Ir<sub>2</sub>Si и IrSi [1].

Іг<sub>3</sub>Si имеет о. ц. тетрагональную решетку типа U<sub>3</sub>Si (родственную AuCu<sub>3</sub>);  $a = 5.22_2$  A,  $c = 7.95_4$  A [1, 2].

Ir<sub>2</sub>Si имеет ромбическую решетку типа Ni<sub>2</sub>Si; a = 7,615 A,  $b = 5,28_4$  A,  $c = 3,98_9$  A [1, 2].

Іг<sub>3</sub>Si<sub>2</sub> имеет гексагональную решетку типа Ni<sub>2</sub>In;  $a = 3,96_3$  A,  $c = 5,12_6$  A [1, 2], что согласуется с данными М. Хансена и К. Андерко (см. т. II [1]).

IrSi имеет ромбическую решетку типа MnP [1, 3];  $a = 5,558 \pm 0,005, b = 3,211 \pm 0,005$  A,  $c = 6,273 \pm 0,005$  A [3].

IrSi<sub>3</sub> имеет гексагональную решетку ( $a = 4,35_0$  Å,  $c = 6,61_0$  Å) с двумя формульными единицами в элементарной ячейке [1].

Структуры Ir<sub>2</sub>Si<sub>3</sub> и IrSi<sub>2</sub> неизвестны.

Bhan S., Schubert K. Z. Metallkunde, 1960, Bd 51, S. 327-339.
 Schuber K. u. a. Naturwissenschaften, 1960, Bd 47, S. 303.
 Korst W. L. a.o. J. Phys. Chem., 1957, v. 61, p. 1541-1543.
 Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336.

0,1066 1,8934

#### Ir—Sm. Иридий—самарий

SmIr<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1]. Периоды решетки не приводятся.

1. Bozorth R. M. a.o. Phys. Rev., 1959, v. 115, p. 1595-1596.

0,3431 1.6569

#### Ir—Sr. Иридий—стронций

Система Ir—Sr исследована металлографическим и рентгеновскими методами [1]. Обнаружена плавящаяся конгруэнтно фаза  $SrIr_2$ . Между  $SrIr_2$  и Ir имеются, по-видимому, минимум еще две фазы. Образуются они либо по перитектической реакции, либо в результате превращения в твердом состоянии. Одна из этих фаз, возможно,  $SrIr_3$ . При нагреве смеси порошков состава  $SrIr_3$ при 1250° С продукт реакции представляет собой соединение  $SrIr_2$ , окруженное порошком Ir. При 1350°  $SrIr_2$  взаимодействует с Ir, возможным продуктом реакции является  $SrIr_3$ . Давление паров Sr над  $SrIr_3$  так велико, что кварцевые ампулы, в которых проводят нагрев, раздуваются и лопаются. Соединение  $SrIr_5$ не существует.

Соединение SrIr<sub>2</sub> обладает сверхпроводимостью. Критическая температура 5,7° К [2].

Кристаллическая структура. SrIr<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>; a = 7,849 A [1],  $a = 7,700 \pm 0,005$  A [3]. Предполагается, что SrIr<sub>3</sub> и вторая неизвестная фаза имеют г. ц. к. решетки.

 Naumann T., Kniepmeyer M. Z. Anorg. Allgem. Chem., 1957, Bd 290, S. 191-204.

2. Matthias B. T., Corenzwit E. Phys. Rev., 1957, v. 107, p. 1558. 3. Wood E. A., Compton V. B. Acta Cryst., 1958, v. 11, p. 429-433.

0,0283 $\overline{1},9717$ 

#### Ir—Та. Иридий—тантал

Обнаружена тетрагональная  $\sigma$ -фаза [1, 2]. Металлографическим анализом установлено, что в интервале примерно от 75 до 85% (ат.) Та существует однофазная область [1]. Это согласуется с данными работ [2, 3], по которым сплав с 75% (ат.) Та имеет однофазную структуру  $\sigma$ -фазы. Периоды решетки ее: a = 9,938 A, c = 5,172 A [1];  $a = 9,93_3$  A,  $c = 5,17_0$  A [2].

В литых сплавах эквиатомного состава после отжига при 1000° С в течение 7 дней обнаружена новая фаза [2]. Сплав состава TaIr<sub>3</sub> имеет г. ц. к. структуру. В работе [4] предполагается присутствие в сплаве сверхструктуры типа Cu<sub>3</sub>Au (кубическая, но не г. ц. к.). Авторы не наблюдали сверхструктурных линий на рентгенограммах, однако они считают, что эти линии должны быть слабыми из-за незначительной разницы в атомных факторах. Периоды решетки TaIr<sub>3</sub>: a = 3,861 A [2], a = 3,889 A [4].

Nevitt M. V., Downey J. W. Trans. AIME, 1957, v. 209, p. 1072
 Knapton A. G. J. Inst. Metals, 1958–1959, v. 87, p. 28–32.
 Geller S. a.o. J. Amer Chem. Soc., 1955, v. 77, p. 1502–1504.

4. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979.

#### 0,0826 $\overline{1},9174$

#### Ir—Tb. Иридий—тербий

TbIr<sub>2</sub> имеет г. ц. к. решетку типа MnCu<sub>2</sub> [1]. Периоды ее в работе не приведены.

1. Bozorth R. M. a.o. Phys. Rev., 1959, v. 115, p. 1595-1596.

 $\frac{0,1799}{1,8201}$ 

## Ir—Te. Иридий—теллур \*

Рентгеновским методом изучено девять металлокерамических сплавов [1]. Обнаружено два соединения: IrTe<sub>2</sub> и Ir<sub>3</sub>Te<sub>8</sub>. IrTe<sub>2</sub> находится в равновесии с Ir, а Ir<sub>3</sub>Te<sub>8</sub> — с Te. Решетка IrTe<sub>2</sub> гексагональная типа Cd (OH)<sub>2</sub>;  $a = 3,930 \pm 0,003$  A,  $c = 5,393 \pm 0,005$  A [1]. Ir<sub>3</sub>Te<sub>8</sub> имеет дефектную кубическую решетку типа пирита,  $a = 6,414 \pm 0,003$  A. Ранее [2] было идентифицировано соединение IrTe<sub>2+x</sub> со структурой типа пирита,  $a = 6,411 \pm 0,002$  A.

- Hockings E.F., White J.G. J. Phys. Chem., 1960, v. 64, p. 1042-1045.
- Groeneveld Meijer W. O. J. Amer. Mineralogist, 1955, v. 40, p. 646-657.

#### 1,9201 0,0799

## Ir—Th. Иридий—торий

Дуговой плавкой получены 1-г слитки сплавов, содержащих до 33% (ат.) Ir [1] Наиболее богатое торием соединение, Th<sub>7</sub>Ir<sub>3</sub>, образует эвтектику с Th при 15 ± ± 1% (ат.) Ir и температуре >1300° C [1]. Th<sub>7</sub>Ir<sub>3</sub> имеет гексагональную решетку типа Th<sub>7</sub>Fe<sub>3</sub>; a = 10,076 A, c = 6,296 A [1]; a = 10,06 A, c = 6,290 A [2].

ThIr, имеет кубическую решетку типа MgCu<sub>2</sub>;  $a = 7,6615 \pm 0,0015$  A [3], a = 7,664 A [2].

Решетка ThIr<sub>5</sub> гексагональная типа CaCu<sub>5</sub>; a = 5,315 A, c = 4,288 A [4].

- 1. Thomson J. R. Nature, 1961, v. 189, p. 217.
- 2. Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.
- 3. Dwight A. E. a. o. Trans. AIME, 1958, v. 212, p. 337-338.

4. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

136

### Ir—Ti. Иридий—титан \*

Диаграмма состояния на рис. 279 построена по данным термического, рентгеновского, дилатометрического и металлографического анализов, а также определения температур плавления и электросопротивления сплавов. Сплавы выплавляли в дуговой печи из электролитического Ті и Іг чистотой 99,9% [1].





В системе образуются три соединения: Tilr<sub>3</sub>, Tilr , Ti<sub>3</sub>Ir. Tilr гомогенен в широком интервале концентраций. По данным дилатометрического и металлографического анализов [1], (β-Ті) при ~500° С и 90% (ат.) Ті испытывает эвтектоидный распад. Это превращение протекает чрезвычайно медленно.

Tilr<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> с периодом 3,845 A [2] и 3,85 A [1]. ТіІг может быть индицирован в предположении моноклинной рещетки; a = 2,926 А, c = 3,463 А,  $\beta = 90,92^{\circ}$  [1]. Отдельные наблюдения свидетель-

ствуют в пользу тетрагональной решетки. Термическим анализом обнаружена реакция при ~1750° С, связываемая с упорядочением или с бездиффузионным превращением. Ті<sub>з</sub>Іг имеет кубическую решетку типа β-W с периодом 5,007 А [3];  $5.0101 \pm 0.0004 \text{ A}$  [4]; 5.009 A [5].

1. Croeni J. B. a.o. U. S. Bur. Mines Rept. Invest. 6079, 1962, 15 p. 2. Dwight A. E., Beck P. A. Trans. AIME, 1959. v. 215, p. 976-979. 3. Geller S. Acta Cryst., 1956, v. 9, p. 885. 4. Nevitt M. V. Trans. AIME, 1958, v. 212, p. 350-355. 5 Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, 130-133.

0,0561 1.9439

### Ir-Tm. Иридий-тулий

TmIr<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1]. Периоды решетки не указаны.

1. Bozorth R. M. a.o. Phys. Rev., 1959, v. 115, p. 1595-1596.

# 1,9091

## Ir-U. Ирилий-уран \*

Обнаружено соединение UIr<sub>3</sub> с кубической решеткой типа  $AuCu_3$ , a = 4,023 A. Максимальная растворимость Ir в твердом U составляет ~2,4% (ат.) [2% (по массе)] [2].

1. Dwight A. E., Nevitt M. V. U.S. At. Energy Comm. ANL-6099. 1959, p. 76-92; D wight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76. 2. Park J. J., Buzzard R. W. U.S. At. Energy Comm. TID-7526, pt. 1, 1957, p. 89-102.

0,5786 1.4214

## Ir-V. Иридий-ванадий

В системе существует по крайней мере две промежуточные фазы: V<sub>3</sub>Ir и VIr<sub>3</sub>. Первое имеет решетку типа β-W [1, 3], а второе - кубическую решетку типа AuCu<sub>3</sub> [3, 4]. На рентгенограммах эквиатомного сплава не удалось индицировать некоторые линии [3]. Предполагается, что они принадлежат неизвестной фазе (или фазам). При исследовании сверхпроводимости V<sub>2</sub>Ir [5] обнаружено, что V<sub>3</sub>Ir однофазен в некотором интервале концентраций. Сплав стехнометрического состава не обладает сверхпроводимостью, в то же время сплав с 33,3% (ат.) Ir является сверхпроводником. Valr находится в равновесии с твердым раствором на основе V [3].

Наиболее точное значение периода решетки  $V_3$ Ir  $a = 4,7854 \pm 0,0006$  A [2]. В сплаве с 33,3% (ат.) Ir a = 4,794 А. Период решетки VIr, a = 3,812 А [4]

1. Matthias B. T. a.o. Неопубликованная работа, 1955; Geller S. Acta Cryst., 1956, v. 9, p. 885.

2. Nevitt M. B. Trans. AIME, 1958, v. 212, p. 330-335.

3. Knapton A. G. J. Inst. Metals, 1958–1959, v. 87, p. 28–32. 4. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976–979 5. Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130–133.

#### 0,0212 1,9788

## Ir-W. Иридий-вольфрам \*

Рентгеновским методом исследованы выплавленные в дуговой печи сплавы с 15, 25, 30, 50 и 75% (ат.) Ir [1]. Обнаружены две промежуточные фазы: г. к. фаза в сплавах с 50 и 75% (ат.) Ir и о-фаза в сплавах с 25 и 30% (ат.) Ir. Первая фаза

138

уже была идентифицирована ранее (см. М. Хансен и К. Андерко, т. II [1]). В литых сплавах о-фаза находится в равновесии с твердым раствором на основе W. Возможно, что σ-фаза стабильна только при высоких температурах, а при 1800° С переходит в гексагональную. Однако в сплавах, отожженных при 1000° С в течение 7 дней, это превращение не было обнаружено [1].

о-фаза имеет теграгональную решетку;  $a = 9.67_2$  А,  $c = 5.01_0$  А. Периоды решетки гексагональной фазы: a = 2.774 А, c = 4.468 А при 50% (ат.) Іг и a = 2.751А, c = 4.398 А при 75% (ат.) Іг.

1. Knapton A. G. J. Inst. Metals, 1958-1959, v. 87, p. 28-32.

0,3368 1,6632

# Ir— Ү. Иридий—иттрий

YIr<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub> [1, 2]. Период решетки соединения, измеренный на образцах одной плавки, изменяется от 7,500 до 7,520 А [1], что может свидетельствовать о существовании области гомогенности. Согласно работе [2], период решетки a = 7,524 A.

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

0.0457 1,9543

### Ir—Yb. Иридий—иттербий

YbIr<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1]. Периоды решетки не приведены.

1. Bozorth R. M. a.o. Phys. Rev., 1959, v. 115, p. 1595-1596.

0,3257 1.6743

# Ir—Zr. Иридий—цирконий \*

Металлографически исследованы сплавы в интервале 15-30% (ат.) Ir [1]. При 26% (ат.) Іг обнаружена узкая однофазная область. Новая фаза стабильна во всем исследованном интервале температур (900-1300° С). Как показал рентгеновский анализ, структура этой фазы не относится к типу Ti<sub>2</sub>Ni, хотя в сплавах, загрязненных кислородом, обнаруживается фаза со структурой Ti<sub>2</sub>Ni [1].

 $ZrIr_3$  имеет кубическую решетку типа  $Cu_3Au$ , a = 3,943 A [2]. В эквиатомном сплаве не существует фазы со структурой типа CsCl [3].  $ZrIr_2$  имеет т. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,359 A [4, 5].

1. Nevitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700-702. 2. Dwight A. E., Bech P. A. Trans. AIME, 1959, v. 215, p. 976-979. D wight A. E. Trans. AIME, 1959, v. 215, p. 283-286.
 D wight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
 Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

0,4457 1.5543

#### К-N. Калий-азот

Обзор литературы по системе сделан в работе [1]. Известны два нитрида: K<sub>3</sub>N и KN<sub>3</sub>. Оба соединения могут быть получены синтезом элементов. K<sub>3</sub>N плавится при 343° С и разлагается при 355° С. КN<sub>3</sub> плавится при 387° С. КN<sub>3</sub> имеет тетрагональную решетку, изотипную с КНF<sub>2</sub>; a = 6,106 A, c = 7,070 A [2]. 1. В о л А. Е. Структура и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 99.

2. Frevel L. K. J. Amer. Chem. Soc., 1936, v. 58, p. 779-782.

0,23051.7695

## К— Na. Калий—натрий \*

Система исследована методом определения электросопротивления [1]. Кривая ликвидуса в общем совпадает с предложенной ранее (см. М. Хансен и К. Анлерко, т. II [4]), за исключением участка 80-90% (ат.) К, на котором новый ликвидус расположен на несколько градусов ниже. В отличие от более ранних работ обнаружена довольно значительная взаимная растворимость компонентов в твердом состоянии [1]. В Na растворяется ~3% (ат.) К, а в К ~4,5% (ат.) Na. Тшательного определения солидуса не проводили. Термическим анализом определяли крайнюю точку нонвариантной горизонтали. Эта точка и отвечала предельной растворимости.

При 280,5 ± 1° К (7,2 ± 1° С) происходит перитектическая реакция Ж [~40% (ат.)] К + (Na)[~3% (ат.) К]  $\longrightarrow$  Na<sub>2</sub>K. Эвтектика Ж [~66,6% (ат.) К]  $\xrightarrow{}$  Na<sub>2</sub>K + (K) [~4,5% (ат.) Na] расположена при 261 ± 1° K (-12,3 ± 1° С). Подтверждены состав и структура Na,К.

Изучен [2] вопрос о существовании в расплаве молекул промежуточного соединения (см. М. Хансен и К. Андерко, т. II [20-23]). Рентгеновский анализ показал, что расплав состоит из статистической смеси атомов.

1. MacDonald D. K. C. a. o. Canad. J. Phys. 1956, v. 34, p. 389-394. 2. Orton B. R. a. o. Acta Met., 1960, v. 8, p. 177-186.

0.3881 1.6119

#### К-О. Калий-кислород

КО<sub>2</sub> имеет тетрагональную решетку типа CaC<sub>2</sub>;  $a = 5,704 \pm 0,004$  A,  $c = 6,699 \pm 0,005$  [1]; a = 5,70 A, c = 6,75 A [2] или a = 5,70 A, c = 6,75 A [3]. Выше 60-100° С происходит превращение. Высокотемпературная модификация имеет кубическую решетку,  $a = 6.09 \pm 0.01$  A [4]. КО<sub>2</sub> плавится при 380° C [1]. К<sub>2</sub>О<sub>2</sub> нестабилен и в присутствии О<sub>2</sub> переходит в КО<sub>2</sub> [5]. КО<sub>3</sub> также нестабилен [6]. К<sub>2</sub>О имеет г. ц. к. решетку типа СаF<sub>2</sub>, a = 6,449 А [7].

1. Abrahams S. C., Kalnajs J. Acta Cryst., 1955, v. 8, р. 503—506. 2. Касаточкин В., Котов В. ЖТФ, 1937, т. 7, с. 1468—1475.

3. Helms A., Klemm W. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 97.

4. Carter G. F. a.o. Acta Cryst., 1952, v. 5, p. 851.

5. Schechter W. H., Kleinberg J. J. Chem. Educ., 1947, v. 24, p. 302-303.

6. Казарновский И. А. идр. ДАН СССР, 1949, т. 64, с. 69—72.

7. Zint E. u.a. Z. Electrochem., 1934, Bd 40, S. 588; cm. Pearson W. B. A Handbook of Lattice Specings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1017.

0.1012 1.8988

## К-Р. Калий-фосфор

Соединение КаР получено при взаимодействии паров белого Р с расплавом К при 700° С [1]. Продукт реакции красного Р и паров К имеет стехиометрический состав К<sub>2</sub>Р, однако не является самостоятельной фазой такого состава. К<sub>3</sub>Р имеет гексагональную решетку типа Na<sub>3</sub>As; a = 5,69, A, c = 10,05 A.

1. G n u t z m a n n G. u. a. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 210-223.

140

# К-Pb. Калий-свинец \*

Все исследовавшие эту систему отмечают серьезные затруднения, связанные с получением гомогенных сплавов. Диаграмма, приведенная М. Хансеном и К. Андерко, основана в первую очередь на данных работы, выполненной в 1908 г. Проведенное обширное исследование системы методом термического анализа показало, что предполагавшаяся ранее область несмешиваемости в жидком состоянии на самом деле не существует [1] (рис. 280). Подтвержден перитектиче-



Рис. 280. К-РЬ

ский характер образования соединений KPb<sub>2</sub> и KPb<sub>4</sub>. В то же время KPb кристаллизуется непосредственно из расплава при 570° С [1], а не образуется по перитектической реакции, как предполагалось ранее. Не подтверждено существование области несмешиваемости в жидком состоянии и фазы K<sub>2</sub>Pb. Обнаружено соединение K<sub>8</sub>Pb<sub>3</sub> [1].

К сожалению, в работе [1] не использован рентгеновский и металлографический анализы. По-видимому, это было связано с большими трудностями из-за высокой активности сплавов К. До опубликования диаграммы состояния [1] на основании тщательного термодинамического изучения жидких сплавов было сообщено об отсутствии области расслоения в жидком состоянии [2].

1. Шойхет Д. Н. идр. ЖНХ, 1959, т. 4, с. 1616—1619. 2. Морачевский А. Г. ЖПХ, 1957, т. 30, с. 1239—1243. 142 1,2084 0,7916

### К-Ри. Калий-плутоний

«Анализ результатов, полученных в ряде экспериментов по приготовлению сплавов, позволяет считать, что компоненты полностью не смешиваются ни в жидком, ни в твердом состояниях» [1].

1. S c h o n f e l d F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, Pergamon Press, N. Y., 1959, Ser. V, v. 2, p. 579-599.

 $\overline{1,5067}$ 0,4933

## K—Sb. Калий—сурьма \*

Термическим и рентгеновским анализами обнаружены соединения  $K_5Sb_4$  и  $KSb_2$  [1]. Ранее были известны соединения  $K_3Sb$  и KSb (см. М. Хансен и К. Андерко, т. II [1]).  $K_5Sb_4$  образуется при 507° С по перитектической реакции



Рис. 281. K-Sb

между расплавом и KSb, а KSb<sub>2</sub> плавится конгруэнтно с плоским максимумом при 411° С. На рис. 281 приведена модификация диаграммы (см. М. Хансен и К. Андерко, рис. 481). На участке от 30 до 79% (ат.) Sb она построена с учетом
данных работы [1]. Нонвариантная реакция вблизи 100% К, по-видимому, эвтектическая. Данных о растворимости в твердом состоянии не приводится. Кристаллическая структура. KSb имеет моноклинную решетку, изотипную

c LiAs; a = 7,18 A, b = 6,97 A, c = 13,40 A,  $\beta = 115,1^{\circ}$  [2].

- 1. Dorn F. W., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 189-203.
- 2. Busmann E., Lohmeyer S. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 53-59.
- 0,1436 1,8564

# К-Si. Калий-кремний \*

KSi имеет кубическую структуру, изотипную с KGe, с 30 формульными единицами в элементарной ячейке [1]. Структура определена обработкой рентгенограмм методом анализа Фурье [2], a = 12,62 A [2, 3]. При разложении KSi в высоком вакууме при ~500° С образуется соединение KSi<sub>6</sub> [3]. Рентгенограммы порошка KSi очень сложны и сходны с рентгенограммами RbSi<sub>6</sub>, KGe<sub>4</sub> и RbGe<sub>4</sub>. Решетка KSi, возможно, кубическая, a = 13.4 A.

1. Busmann E. Naturwissenschaften, 1960, Bd 47, S. 82.

- 2. Busmann E. Z. Anorg. Allgem. Chem., 1961, Bd 313, S. 90-106. 3. Schäfer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 214-220.

#### 1,6063 0.3937

## Кr—Рb. Криптон—свинец

Радиоактивным анализом определена растворимость Kr в жидком Pb [1]. Растворимость по Оствальду (1 см<sup>3</sup> газа на 1 см<sup>3</sup> металла) является линейной функцией обратной температуры. Растворимость Кг. рассчитанная по данным работы [1] в предположении средней плотности жидкого Pb, составляет:

| Температура, °C<br>Растворимость, % | (ат.) 10 <sup>-в</sup> | • • • | 1300<br>46,3 | 1200<br>21,3 | 1100<br>9,25 | 100<br>3,5 | 0 900<br>2 1,1 | ) 80<br>1 0,2 | 0<br>86 |
|-------------------------------------|------------------------|-------|--------------|--------------|--------------|------------|----------------|---------------|---------|
| 1. Jоhпsоп<br>р. 957—963.           | G. W.,                 | Sch   | uttl         | eworth       | R.           | Phil.      | Mag., 1        | 1959, v.      | 4,      |

#### 1,8483 0,1517

#### Kr—Sn. Криптон—олово

Радиоактивным анализом определена растворимость Kr в жидком Sn [1]. Растворимость по Оствальду является линейной функцией обратной температуры. Растворимость, рассчитанная по данным работы [1] в предположении средней плотности жидкого Sn, составляет 6,22 · 10-8; 2,27 · 10-8 и 7,4 · 10-9% (ат.) при соответственно 1300, 1200 и 1100° С.

- 1. Johnson G. W., Schuttleworth R. Phil. Mag., 1959, v. 4 p. 957—963.
- 1,8997 0,1003

#### La—Lu. Лантан—лютеций

Образцы с 20 и 45% (ат.) Lu имели гексагональную структуру La [1].

1. Anderson G. W. a.o. Phys. Rev., 1958, v. 109, p. 243-247.

0,7568 1.2432

# La-Mg. Лантан-магний \*

Вновь исследована часть диаграммы состояния со стороны Mg [1]. В работе использованы термический, микроскопический и рентгеновский анализы. Сплавы приготовляли из Mg высокой чистоты и 99,7% ного La. Эвтектика расположена при 616° С и 2,4% (ат.) La.

Подтверждено, что богатое Mg соединение имеет формулу Mg<sub>9</sub>La и образуется перитектически при 672° С.

Повторно определена растворимость La в Mg [1, 2]. По данным измерения периода решетки [1], она составляет 0,14; 0,09 и 0,07% (ат.) La соответственно при 616, 610 и 580° С. Микроскопическим анализом [2] определено значение ~0,035% (ат.) [0,2% (по массе)] La при 545° С.

Данные обеих работ хорошо согласуются с данными, приведенными М. Хансеном и К. Андерко (см. т. II, [6, 7]), и противоречат данным, цитируемым там же (см. т. П. [5]). Согласно работе [3], богатая Мд эвтектика расположена при 571° С. Растворимость La при этой температуре 0,28% (ат.) [1,6% (по массе)]. При понижении температуры до комнатной она уменьшается до 0,05-0,09% (ат.) [0,3-0,5% (по массе)] La. Поскольку авторы не приводят экспериментальных данных и не указывают чистоту исходных материалов, ценность этих сообщений снижается, особенно при сравнении с работами [1], и данными М. Хансена и К. Андерко (см. т. II [3, 5]).

Вновь определены периоды решетки интерметаллических соединений. LaMg<sub>8</sub> имеет кубическую решетку типа  $BiF_3$ , a = 7,509 A [4]. LaMg<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 8,787 А [4]. Период решетки LaMg (кубическая типа CsCl), a = 3,963 [4, 5].

1. Park J. J. WADC Tech. Rept. 57-504, 1957, 33 p.

- 2. Тихова Н. М., Афанасьева Г. А. Металловедение и обработка металлов, 1958, № 3, с. 38—41.
- 3. Новикова И.А. идр. См. Терехова В.Ф. и Савицкий Е.М. в сб. «Редкие металлы и сплавы». Металлургиздат, 1960, с. 189-201.
- 4. Iandelli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11 p.
- 5. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 0,1607 1,8393

#### La-Mo. Лантан-молибден

Система La-Mo аналогична системе Ce-Mo [1]. В последней системе нет интерметаллических соединений.

1. Daane A. H., Spedding F. H. См. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 0,9964 1.0036

# La-N. Лантан-азот \*

Подтверждено, что LaN имеет г. ц. к. решетку типа NaCl;  $a = 5,301 \pm$  $\pm$  0,002 A [1], a = 5,285 A [2]. Сообщается [3], что LaN, истинная стехиометрия которого неизвестна, имеет ромбическую решетку; a = 5,32 A, b = 5,30 A, c = 5.25 Å.

1. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 87-90.

10 Р. П. Эллиот, том II

2. И веронова В. И. и др. Вестн. Московского Университета. Сер. физ, мат. и естеств. наук, 1961, т. 5, № 8, с. 37—60; см. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 106.

 Grintal R. D. См. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0,1747 $\overline{1},8253$ 

### La-Nb. Лантан-ниобий

Часть системы от 0 до 40% (ат.) [50% (по массе) La изучена в работе [1] методами металлографического и рентгеноструктурного анализов, а также измерением твердости и электросопротивления образцов сплавов, выплавленных в дуговых печах с использованием металлов чистотой 99%. При содержании La более  $\sim 0.07-0.13\%$  (ат.) [0,1-0,2% (по массе)] образовывались два жидких слоя, что указывало на нерастворимость компонентов в жидком состоянии; монотектическая температура определена равной  $2400 \pm 20^{\circ}$  С. Промежуточные фазы не образуются, Nb повышает температуру плавления La на 5-7 град. Растворимость La в Nb при комнатной температуре  $\sim 0.3\%$  (ат.).

В работе [2] диаграмма, приведенная в [1], перестроена с учетом более точных значений температур плавления и полиморфного превращения La.

1. Савицкий Е. М. идр. ЖНХ, 1959, т. 4, с. 1462—1463. 2. Гшнейднер К. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

# 1,9834

146

# La—Nd. Лантан—неодим

Диаграмма состояния (рис. 282) взята из работы [1]. Построена она по неопубликованным данным [2]. В жидком состоянии металлы полностью взаимно растворимы. γ-La и β-Nd.образуют непрерывный ряд твердых



Рис. 282. La—Nd

растворов. Авторы показали, что твердый раствор (γ-La, β-Nd) превращается при понижении температуры в твердый раствор (β-La, α-Nd). Однако образование непрерывного ряда твердых растворов между β-La и α-Nd невозможно, так как компоненты имеют различную кристаллическую структуру [1]. На диаграмме (рис. 282) сделана попытка разрешить это противоречие и показан один из возможных вариантов фазового равновесия ниже 800° С. Все сплавы при низких температурах имеют гексагональную решетку [2], что свидетельствует в пользу предложенного варианта диаграммы [1]. Кроме того, такой же характер равновесия наблюдается и в системах La-Gd и La—Y [1].

1. Гшнейднер К.А.Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

2. Daane A. H., Spedding F. H. U. S. At. Energy Comm. ISC-530, 1954.

## La-Ni. Лантан-никель \*

Подтверждена гексагональная структура LaNi<sub>5</sub> типа CaCu<sub>5</sub> [1—3]; a = 5,013 A, c = 3,984 A[1]; a = 5,016 A, c = 3,982 A [2]. Попытки получить г. ц. к. LaNi<sub>2</sub> оказались безуспешными [3, 4].

 Wernick J. H., Geller S. Acta Cryst., 1959, v. 12, p. 662-665.
 Dwight A. E., Nevitt M. V. U.S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
 Nassau K. a.o. Phys. Chem. Solids, 1960, v. 16, p. 123-130.
 Dwight A. E. U.S. At. Energy Comm. ANL-6516, 1961, p. 259-260.

0,9386 1.0614

## La-0. Лантан-кислород \*

Эквиатомная композиция представляет собой смесь твердого раствора на основе La и хорошо известного окисла La<sub>2</sub>O<sub>3</sub> [1]. Кислород не влияет на  $\beta \rightleftharpoons \gamma$ -превращение в La [1]. При изучении гидридов обнаружен окисел LaO, имеющий г. ц. к. решетку типа NaCl, a = 5,249 Å [2]. Однако в свете данных работы [1] существование LaO окончательно не доказано.

 $La_2O_3$  существует в одной модификации [3—5]. Окисел имеет гексагональную решетку типа A и является прототипом подобных структур. Утверждается [6, 7], однако, что до 500° С существуют две модификации  $La_2O_3$ : гексагональная типа A и о. ц. к. типа C. Следует предпочесть данные работ [3—5], учитывая успехи в технике разделения редкоземельных элементов, достигнутые со времени опубликования работ [6, 7]. Период о. ц. к. решетки  $La_2O_3$  типа C будет a = 11.38 A [6].

1. Daane A. H., Spedding F. H. См. Гшнейднер К. А. Сплавы • фредкоземельных металлов. Изд-во «Мир», 1965.

- 2. Korst W. L., Warf C. Abstracts of Papers for 129th Meeting American Chemical Society, April, 1956, 4Q.
- 3. Blum S. L., Maguire E. A. Amer. Ceram. Soc. Bull., 1960, v. 39, p. 310-312.
- 4. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, v. A64, p. 309-316.
- 5. Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051.
- 6. I an delli A. Gazz. Chim. Ital., 1947, v. 77, p. 312-318.
- 7. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.

#### $\overline{1},8635$ 0.1365

#### La-Os. Лантан-осмий

LaOs<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub>,  $a = 7,737 \pm 0,001$  A [1] или a = 7,736 A [2].

 Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E., Nevitt M. V. U. S. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

#### $\overline{1,8263}$ 0,1737

# La-Pb. Лантан-свинец \*

Подтверждено, что LaPb<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> a = 4,903 A [1].

10\*

1. I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11 p.; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

 $\frac{0,1158}{1,8842}$ 

### La-Pd. Лантан-палладий

Соединение LaPd<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,235 A [1].

 Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76; Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162.

1,8522

## La—Pt. Лантан—платина

LaPt<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1, 2]. Судя по тому, что в образцах одной плавки период решетки соединения меняется от 7,763 до 7,774 А, соединение имеет заметную область растворимости в твердом состоянии [1]. Согласно работе [2], период решетки соединения равен 7,755 А. LaPt<sub>5</sub> имеет гексагональную решетку типа CaCu<sub>5</sub>; a = 5,386 А, c = 4,376 А [2].

 Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654,
 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

1,7589 0,2411

## La—Ри. Лантан—плутоний

По немногочисленным данным термического анализа была предположительно построена диаграмма [1] (рис. 283). Кроме того, была снята одна рентгенограмма сплава системы La—Pu. Температура плавления и температура β→γ-превращения La равны соответственно 912 и 858° С. Области β-La + γ-La и Ж + γ-La очень узкие и трудно разрешимы. Растворимость Pu в β-La → 16% (ат.), а в γ-La 20% (ат.) [1]. На диаграмме, приведенной в работе [1], указаны значения 14 и 19,5% (ат.) Pu. Авторы не получили никаких данных, указывающих на существование области расслоения в жидком состоянии. В то же время в других работах [2, 3] такая область упоминается (в оригинальной статье отсутствуют данные по системе La—Pu; возможно, что Гшнейднер ссылается на устное сообщение). Нет единого мнения и о взаимной растворимости компонентов в твердом состоянии. Сообщается [2], что компоненты растворяются друг в друге, а в работе [1] найдено, что растворимость La в Pu незначительна.

- 1. Poole D. M. a.o. В книге «Plutonium», 1960, Grison E. a.o. eds. Cleaver-Hume Press, Ltd., London, 1961, p. 267—280.
- Schonfeld F. W. Вкниге «The Metal Plutonium», Coffinberry A.S., Miner W. N., eds. University of Chicago Press, Chicago, 1961, p. 240-254.
- Coffinberry A. S. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 6, pp. 681—685; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изп-во «Мир», 1965.



LaRh<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>;  $a = 7,646 \pm 0,001$  A [1], a = 7,647 A [2].

 Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E., Nevitt M. V. U.S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. Trans. ASM, 1961, p. 53, p. 479-500. Сообщается о существовании в системе трех соединений. Одно из них,  $La_5Ru$ , образует эвтектику с La [1]. В монографии [2] на основании данных о системе Ce—Ru [1] высказывается сомнение относительно истинного состава соединения  $La_5Ru$ .

LaRu<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub>;  $a = 7,702 \pm 0,001$  A [3], a = 7,701 A [4].

- 1. Spedding F. H., Daane A. H. U. S. At. Energy Comm. ISC-643, 1955, ISC-530, 1954; см. [2].
- 2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 3. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654.
- 4. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E., Trans. ASM, 1961, v. 53, p. 479-500.
- 0,6367 $\overline{1},3633$

#### La—S. Лантан—сера \*

LaS<sub>2</sub> имеет кубическую решетку с 8 формульными единицами в элементарной ячейке, a = 8,20 A [1, 2]. Соединение плавится при 1650° С. Одновременно с плавлением происходит диссоциация [2].

La<sub>2</sub>S<sub>3</sub> существует в двух модификациях:  $\beta$ , стабильная в интервале от 650 до 1300 ± 100° C [2, 3], и  $\gamma$ , стабильная от 1300 ± 100° C до температуры плавления, 2095 ± 30° C [2—5]. Структура  $\beta$ -La<sub>2</sub>S<sub>3</sub> не установлена [3].  $\gamma$ -La<sub>2</sub>S<sub>3</sub> имеет о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub> с вакансиями металлических ионов; a = 8,731 A [2, 3],  $a = 8,706 \pm 0,001$  A [6].

La<sub>3</sub>S<sub>4</sub> имеет такую же решетку, что и  $\gamma$ -La<sub>2</sub>S<sub>3</sub>, и образует с ним непрерывный ряд твердых растворов [3]. Частичным испарением La<sub>2</sub>S<sub>3</sub> получено соединение в промежутке между La<sub>2</sub>S<sub>3</sub> и La<sub>3</sub>S<sub>4</sub>. Плавится оно в интервале 1800—2000° C [7]. Точка плавления La<sub>3</sub>S<sub>4</sub> 2100° C [3]. La<sub>3</sub>S<sub>4</sub> имеет о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub>, a = 8,730 A [3, 8].

LaS плавится при  $\sim$  2200° C [4]. Решетка его г. ц. к. типа NaCl;  $a = 5,854 \pm 0,003$  A [9—11], a = 5,788 A [12].

- 1. Flahaut J. a. o. Bull. Soc. Chim. France, 1959, p. 1917-1920.
- 2. Picon M., Patrie M. Compt. Rend., 1956, v. 243, p. 1769-1772.
- 3. Picon M. e. a. Bull. Soc. Chim. France, 1960, p. 221-228.
- Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 5. Litz L. M. High Temperature Technology, Stanford Research Institute, Menlo Park, Calif., 1959, p. 134, cm. [4].
- 6. Fried S. a. o. J. Amer. Chem. Soc., 1950, v. 72, p. 771-775.
- 7. Зверева И. П. ДАН СССР, 1957, т. 113, с. 333.
- 8. Picon M., Flahaut J. Compt. Rend., 1956, v. 243, p. 2074-2076.
- 9. I an delli A. В книге «Rare Earth Research», E. V. Klieber ed. The Macmillan Company, N. Y., 1961, p. 135—141.
- I a n d e l l i A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 11. I an delli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-886.
- 12. Gaume-Mahn F. Bull. Sox. Chim. France, 1956, p. 1862-1867.
- 0,2453 $\overline{1},7547$

#### La-Se. Лантан-селен

Идентифицированы селениды La<sub>2</sub>Se<sub>3</sub> и La<sub>2</sub>Se<sub>4</sub> [1]. La<sub>2</sub>Se<sub>4</sub> получен методом газопереноса. Соединение имеет область растворимости, простирающуюся до состава La<sub>2</sub>Se<sub>3,6</sub>, и находится в равновесии с La<sub>2</sub>Se<sub>3</sub> [2]. La<sub>2</sub>Se<sub>4</sub> имеет тетраго-

нальную решетку; a = 8,49 A, c = 8,56 A (при стехиометрическом составе) н a = 8,40 A, c = 8,52 A (La<sub>2</sub>Se<sub>3,6</sub>) [2].

В результате распада La<sub>2</sub>Se<sub>3</sub> при 1200—1700° С образуется ряд твердых растворов между La<sub>2</sub>Se<sub>3</sub> и La<sub>3</sub>Se<sub>4</sub> [3]. Твердый раствор имеет о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub> с вакансиями ионов La; a = 9,055 А (La<sub>2</sub>Se<sub>4</sub>) [3], a = 9,055 (La<sub>2</sub>Se<sub>3</sub>) [4].

LaSe может быть получен синтезом элементов [5] или восстановлением окисла алюминием в присутствии Se [6]. LaSe имеет г. ц. к. решетку типа NaCl;  $a = 6,063 \pm 0,003$  A [5], a = 6,060 A [6].

- 1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd 233, S. 84--96.
- 2. Benacerraf A. a.o. Compt. Rend., 1959, v. 248, p. 1672-1675.
- 3. Benacerraf A., Guittard M. Compt. Rend., 1959, v. 248, p. 2012-2014.
- 4. Miller J. F., Himes C. В книге «Rare Earth Research». E. V. Kleber ed. The Macmillan Company N. Y., 1961, p. 232—240.
- 5. I a n d e l l i A. Hazz. Chim. Ital., 1955, v. 85, p. 881-887; Atti Accad. Nazl, Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 6. Guittard M., Benacerraf A. Compt. Rend., 1959, v. 248, p. 2589-2591.

#### 0,6942 $\overline{1},3058$

# La—Si. Лантан—кремний \*

Подтверждена тетрагональная (типа ThSi<sub>2</sub>) структура LaSi<sub>2</sub>; a = 4,31 A, c = 13,80 A [1]. На основании изучения реакции образования можно предположить, что температура плавления соединения 1580—1600° C [2]. LaSi<sub>2</sub> плавится при 1500° C [3].

Соединение приблизительного состава La<sub>5</sub>Si<sub>3</sub> имеет гексагональную решетку, изоморфную с подобными соединениями в системах Ce—Si, Pr—Si и Nd—Si; a = 9.75 A, c = 7.06 A [4].

- 1. Perri J. A. a.o. J. Phys. Chem., 1959, v. 63, p. 616-619.
- 2. Нешпор В. С., Самсонов Г. В. ЖПХ, 1960, т. 33, с. 993-1001
- 3. Grinthal R. D. J. Electrochem. Soc., 1960, v. 107, p. 59-61.
- 4. Grinthal R. D. См. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 0,0683 1,9317

#### La—Sn. Лантан—олово \*

La<sub>2</sub>Sп имеет гексагональную решетку; a = 6,50 A, c = 6,36 A [1].

 Grinthal R. WADC Tech. Rept 53—190, pt. VI, 1958, см. Редкоземельные металлы, под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.

 $\overline{1,8853}$ 0,1147

#### La—Та. Лантан—тантал

В системе образуется широкая область расслоения в жидком состоянии, простирающаяся от Та по крайней мере до 84% (ат.) [80% (по массе)] La [1]. Соединений в системе не обнаружено [1]. При плавке La в танталовом тигле содержание Та в La <0,04% (ат.) [0,05% (по массе)]. Взаимная растворимость в твердом состоянии очень мала, интерметаллидные фазы не образуются [2].

1. Love B. WADD Tech. Rept. 61-123, 1961, p. 48, 50, 56, 68.

2. Spedding A. H., Daane A. H. см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

150

0,0369 $\overline{1},9631$ 

### La-Te. Лантан-теллур

LaTe имеет г. ц. к. решетку типа NaCl,  $a = 6,422 \pm 0,003$  A [1]. О. ц. к. решетка La<sub>2</sub>Te<sub>3</sub> изоморфна с Ce<sub>2</sub>Se<sub>3</sub>, a = 9,62 A [2].

 I an delli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

2. Miller J. F., Himes R. C. В книге «Rare Earth Research», E. V. Kleber ed. The Macmillan Company, N. Y., 1961, p. 232—240.

 $\overline{1,7770}$ 0,2230

## La—Th. Лантан—торий \*

Определены периоды г. ц. к. решетки сплавов β-La—α-Th [1]. Полученные данные подтверждают, что компоненты образуют непрерывный ряд твердых (a % (па тассе) растворов.



1. E v a n s D. S. a. o. J. Nucl. Mater., 1960, v. 2, p. 121-128.

76

#### La—Ті. Лантан—титан \*

Диаграмма (рис. 284) построена по данным термического и металлографического анализа [1] и впоследствии пересмотрена [2]. В работе использованы La чистотой 98% и Ті чистотой 99,96%. Горизонталь при 1500°С отвечает монотектической реакции  $\mathcal{K}_1 \longrightarrow \mathcal{K}_2 + \beta$ , поскольку в системе отсутствуют интерметаллические соединения [3] (см. М. Хансен и К. Андерко, т. 11 [1])

[1]). Характер нонвариантной горизонтали, связанной с плавлением La (905° C), не определялся.

Диаграмма, предложенная в работах [1, 2], подтверждена при исследовании сплавов, выплавленных из чистого Ті и 99,77%-ного La [4]. Обнаружено эвтектоидное превращение при 903 ± 8° С. Взаимная растворимость, по данным работы [4],

меньше, чем указано в работах [1, 2]: 0,07—0,53% (ат.) La при 903° С и 0,07% (ат.) La при 772° С.

1. Савицкий Е. М., Бурханов Г. С. ЖНХ, 1957, т. 2, с. 2609—2616. 2. Бурханов Г. С., Савицкий Е. М. Металлургия, металловедение

- и термическая обработка, 1959, № 6, с. 28.
- Веск R. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 4. Love B. WADC Tech. Rept. 57—666, pt 11, 1959; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

 $\overline{1,8323}$ 0.1677

# La-Tl. Лантан-таллий \*

При изучении механических и физических свойств сплавов системы наблюдались соединения LaTl и La<sub>2</sub>Tl [1].

LaTl имеет кубическую решетку типа CsCl; a = 3,922 A [2, 4], a = 3,933 A [3].

LaTl<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,806 A [3—5]. Это противоречит данным М. Хансена и К. Андерко (см. т. II [4]), но совпадает со многими сведениями о бинарных системах редкоземельных элементов.

- 1. Савицкий Е. М. идр. ЖНХ, 1958, т. 3, с. 763—775.
- 2. I an delli A. Atti Congr. Intern. Chim. 10, Rome, 1938, v. 2, p. 688-694.
- 3. I an de 11 i A. Congr. Intern. Chim. Pure Appl. 16, Paris, 1957, Mem. Sedt.
- Chim. Minerale, 1958, p. 35-40.
  4. I a n d e l l i A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. 1, № 9,
- Paper 3F, 11 p.
  5. I an d e 11 i A. Atti Accad. Nazl. Lincei, Rend, Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### $\overline{1},7660$ 0.2340

## La-U. Лантан-уран \*

В работе [1] подтверждено существование области расслоения и химическим анализом определен состав жидкости (табл. 28).

ТАБЛИЦА 28. СОСТАВ ЛИКВИДУСА СИСТЕМЫ La-U

| Температура                                          | Растворимо                   | сть Lа в U                   | Растворимос                                                                         | ть U в La                                            |
|------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|
| °C                                                   | % (по массе)                 | % (ат.)                      | % (по массе)                                                                        | % (ат.)                                              |
| 1250<br>1225<br>1200<br>1175<br>1150<br>1100<br>1050 | 0,84<br>0,81<br>0,76<br>0,77 | 1,43<br>1,38<br>1,30<br>1,31 | $1,02_{2} \\ 0,78_{7} \\ 0,82_{8} \\ 0,68_{4} \\ 0,58_{5} \\ 0,57_{9} \\ 0,42_{2} $ | 0,60<br>0,46<br>0,49<br>0,40<br>0,35<br>0,34<br>0,25 |

1. Haefling J.F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.

#### 0,4356 1.5644

### La-V. Лантан-ванадий

По данным работ [1, 2], в системе не образуется промежуточных фаз, существует общирная область расслоения расплава и V растворим в жидком La. Диаграмма (рис. 285) построена в работе [1] по данным металлографического и термического анализов. Сплавы выплавляли из 98,5%-ного La и 99,3%ного V.

152



1. Савицкий ТЕ. М. и др. Труды Института металлургии им. А. А. Байкова, АН СССР, 1960, № 5, с. 166—173.

2. Komjathy S. J. Less-Common Metals, 1961, v. 3, p. 468-488.

#### 0, 1938 1, 8062

La— Ү. Лантан—иттрий

Диаграмма состояния (рис. 286) построена по данным термического и рентгеновского анализов [1]. Ограниченно использован металлографический анализ для определения положения границ. Высокотемпературные модификации компонентов образуют непрерывный ряд твердых растворов  $\beta$  с о. ц. к. решеткой. При ~860° С  $\beta$ -фаза испытывает эвтектоидный распад  $\beta \rightleftharpoons (\alpha'-La) + (\alpha-La)$ , а при ~895° С участвует в перитектоидной реакции  $\beta + (\alpha'-Y) \oiint (\alpha-La)$ . При 725° С происходит перитектоидная реакция ( $\alpha$ -La) + ( $\alpha$ -Y)  $\oiint (\alpha-La)$ . При 725° С происходит перитектоидная реакция ( $\alpha$ -La) + ( $\alpha$ -Y)  $\oiint (\alpha-La)$ . В сплаве с 52% (ат.) Y «дъ-фаза была индицирована в предположении г. к. решетки типа Sm;  $a = 3,699 \pm 0,007$ ,  $c = 26,70 \pm 0,05$  А. В работе [1] приводится зависимость периодов решетки нескольких сплавов La—Y от состава и температуры. Диаграмму следует считать предположительной, для ее уточнения необходимы дальнейшие исследования. Изучалась свер хпроводимость ряда сплавов La—Y [2].

1. Valletta R. M. Ph. D. Thesis, Iowa State University of Science and Technology, 1959, 88 p.

2. Anderson G. S. a.o. Phys. Rev., 1958, v. 109, p. 243-247.

% (no macce) 10 20 30 40 50 60 7C 80 90 1600 1400 1200 Ternepamypa,°C 8 8 ß ~ 895 -37 ~860° ~77 77~12 33 1~101 -725 ~55 46 20) 1~52 600 ک  $(\alpha - \gamma)$  $(\alpha - La)$ 400 8"1 200 0 50 60 70 100 10 20 30 40 80 90 0 % (am.) Y La

Рис. 286. La—Y

#### 0,3273 1.6727

La-Zn. Лантан-цинк \*

Более точно определен период кубической решетки LaZn типа CsCl: a = = 3,760 A [1].

 I a n d e l l i A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 0,1826 1,8174 La—Zr. Лантан—цирконий

При предварительном металлографическом исследовании системы обнаружена область расслоения в жидком состоянии [1]. Взаимная растворимость компонентов ниже порога чувствительности применявшейся методики. Соединения в системе отсутствуют [2].

- 1. Веск R. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Daane A. H., Spedding F. H. U. S. At. Energy Comm. ISC—530, 1954; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

154

1,4554 0,5446

# Li—Mg. Литий—магний \*

Проведено прецизионное определение периодов г. к. решетки твердых растворов, содержащих 1,03; 4,66; 9,93 и 14,03% (ат.) Li [1].

1. Hardie D., Parkins R. N. Phil. Mag., 1959, v. 4, p. 815-825.

2,8593 1,1407

# Li—Мо. Литий — молибден

Определены приблизительно значения растворимости Мо в Li при 1000 и 1200° С [1]. Дистиллированный Li выдерживали при соответствующих температурах в тиглях из Мо в атмосфере Ar и охлаждали водой за менее чем 50 сек. Определенная таким образом растворимость составляет 0,000072% (ат.) [0,001% (по массе)] Мо при 1000° С и 0,0022—0,0076% (ат.) [0,03—0,10% (по массе)] Мо при 1200° С. Химическим анализом [2] Li, выдержанного в тигле из Мо, определена растворимость Мо в Li при 675—925° С. Следует отметить большой разброс экспериментальных данных. Тем не менее общий характер изменения рас-



творимости от 0,000037% (ат.) Мо при 675° С до 0,00011% (ат.) Мо при 925° С хорошо согласуется с данными работы [1].

1. Бычков Ю. Ф. идр. Атомная энергия, 1959, т. 7, с. 531—536.

Li—N. Литий—азот

Частичная диаграмма Li—Li<sub>3</sub>N (рис. 287) построена по данным термического анализа сплавов, выплавленных на базе 97,84%-ного Li. Температура плавления Li<sub>3</sub>N определена равной 815° C, а температура нонвариантной реакции 185° C. При 185° C протекает перитектическая реакция, так как температура плавления Li равна 180,5° C. Растворимость N в жидком Li определялась химическим анализом равновесных расплавов [2]. Получены следующие значения [2]:

250

0.02

[0.04]

 $Li_3N$  является прототипом гексагональной структуры; a = 3,665 A, c = 3,892 A [3]. Ранее  $Li_3N$  приписывалась кубическая структура [4], однако позже автор [5] признал правильность результатов работы [3].

Нитрид LiN<sub>3</sub> может быть получен мокрой химической реакцией [6, 7]. Не подтверждена [8] возможность получения Li<sub>2</sub>N при взаимодействии N<sub>2</sub> с Li<sub>3</sub>N.

1. Большаков К. А. идр. Изв. вузов, Цветная металлургия, 1959, № 4, с. 52—53.

2. Hoffman E. E. ASTM Spec. Tech. Publ. 272; Newer Metals, 1960, p. 195-206.

3. Zintl E., Brauer G. Z. Elektrochem., 1935, Bd 41, S. 102-107. 156

- 4. Brill R. Z. Krist., 1927, Bd 65, S. 94-99.
- 5. Brill R. Z. Elektrochem., 1935, Bd 41, S. 266.
- 6. Hofman-Bang N. Acta Chem. Scand., 1957, v. 11, p. 581-582.
- 7. Славинский М. П. Физико-химические свойства элементов. 1952, с. 35; см. [9].
- 8. Ария С. М., Прокофьева Е. А. Сб. статей по общей химии. Госхимиздат, 1953, т. 1, с. 9.
- Вол А. Е. Структура и свойства двойных металлических систем. Физматгиз, 1959, т. 1 с. 107.

#### 1,4797 0.5203

# Li—Na. Литий—натрий \*

Методом термического анализа проведено повторное исследование системы [1]. Сплавы выплавляли из 99,95%-ного Li и 99,99%-ного Na [1]. Полученная диаграмма (рис. 288) совпадает с диаграммой, приведенной М. Хансеном и К. Ан-



Рис. 288. Li-Na

дерко (см. т. II, рис. 496, *a*). Более точно определены фазовые границы и составы нонвариантных превращений. Максимум области расслоения [442 ±  $\pm 10^{\circ}$  C, 40,3% (ат.) Na] лежит выше определенного ранее.

1. Howland W. H., Epstein L. F. Advan. Chem. Ser., 1957, v. 19, p. 34-41.

#### 2,8733 1,1267

#### Li-Nb. Литий-ниобий

Примерная растворимость Nb в Li при 1000° С определена в работе [1] после равновесной выдержки расплава свежеочищенного Li в тигле из Nb в атмосфере Ar и последующего охлаждения за менее чем 50 сек в воде. В этих условиях растворимость Nb в Li составила <0,0000075% (ат.) [0,0001% (по массе)].

1. Бычков Ю. Ф. и др. Атомная энергия, 1959, т. 7, с. 531-536.

1,0727 0,9273

### Li—Ni. Литий—никель

В работах [1—3] определялась растворимость Ni в жидком Li. Проведен [1] химический анализ жидкого Li, профильтрованного через фильтр из нержавеющей стали. В полученные результаты необходимо ввести поправку на растворение Cr и Fe. Исследован расплав, выдерживавшийся в тиглях из Ni до достижения равновесия [2, 3]. Все результаты [1-3] приведены в табл. 29. Значения растворимости [1-3] при 650-700° С хорошо совпадают друг с другом. При более высоких температурах растворимость, по данным работы [2], существенно больше растворимости, определенной в работе [3].

| Температура                                                 | Рабо    | ота [1]      | Рабо                               | та [2]                                  | Работа [3]                                             |                                                    |  |
|-------------------------------------------------------------|---------|--------------|------------------------------------|-----------------------------------------|--------------------------------------------------------|----------------------------------------------------|--|
| °C                                                          | % (ат.) | % (по массе) | % (ат.)                            | % (по<br>массе)                         | % (ат.)                                                | % (по<br>массе)                                    |  |
| 950<br>900<br>850<br>750<br>700<br>650<br>600<br>500<br>200 |         |              | 0,39<br>0,16<br>0,059<br>0,018<br> | 3,2<br>1,36<br>0,5<br>0,015<br><br><br> | 0,066<br>0,049<br>0,037<br>0,027<br>0,019<br>0,015<br> | 0,82<br>0,69<br>0,57<br>0,43<br>• 0,27<br>0,19<br> |  |

ТАБЛИЦА 29. РАСТВОРИМОСТЬ Ni В ЖИДКОМ Li

- 1. Bagley K. Q., Montgomery U. K. At. Energy Authority, Ind. Group, Rept. IGR-TN/C-250, 1955, 7 p.
- 2. Бычков Ю. Ф. и др. Атомная энергия, 1959, т. 7, с. 531-536.
- 3. Leavenworth H. W., Cleary R. E. ActaMet., 1961, v. 9, p. 519-520.
- 1.6372 0.3628

#### Li-0. Литий-кислород

Растворимость О в жидком Li составляет 0,065; 0,0374; 0,0205 и 0,0096% (ат.) соответственно при 400, 350, 300 и 250° С [1]. Известны три соединения: Li<sub>2</sub>O, Li<sub>2</sub>O<sub>2</sub> [2] и LiO<sub>2</sub> [3, 4]. Однако LiO<sub>3</sub>, возможно, нестабилен, так как получить 158

его можно лишь в тщательно контролируемых условиях. Li<sub>2</sub>O имеет г. ц. к. решетку типа CaF<sub>2</sub>; a = 4,628 A [5], a = 4,602 A [6]. Li<sub>2</sub>O<sub>2</sub> имеет тетрагональную решетку с 8 формульными единицами в элементарной ячейке; a = 5,49 A, c = 7,76 A [7].

- 1. Hoffman E. E. ASTM Spec. Tech. Publ. 272; Newer Metals, 1960, p. 195-206; U. S. At. Energy Comm. ORNL-2894, 1960, p. 23, ORNL-2924 1960, p. 141—144.
- 2. Schechter W. H., Kleinberg J. J. Chem. Educ. 1947. v. 24. p. 302---303.
- 3. Schechter D., Kleinberg J. J. Amer. Chem. Soc., 1954, v. 76, p. 3297-3300; Thompson J., Kleinberg J., J. Amer. Chem. Soc. 1951, v. 73, p. 1243-1245.
- 4. Вольнов И. И., Шатунина А. Н. ЖНХ, 1959, т. 5, с. 257-259.
- 5. Zintl E. u. a. Z. Elektrochem., 1934, Bd 40, S. 588.
- 6. Будников П. П., Тресвятский С. Г. ДАН СССР, 1954, т. 99, с. 761. см. [8].
- 7. Feher F. Angew. Chem., 1938, Bd 51, S. 497.
- 8. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1017-1018.

#### 1,3504 0.6496

#### Li-P. Литий-фосфор

Синтезом элементов можно получить LiP и Li<sub>3</sub>P [1]. Li<sub>3</sub>P имеет гексагональную решетку типа Ni<sub>3</sub>As; a = 4,273 A, c = 7,594 A [2].

- 1. Maak I., Rabenau A. Angew. Chem., 1960, Bd 72, S. 268. 2. Brauer G., Zintl E. Z. Physik. Chem. (Leipzig), 1937, Bd 37, S. 323; cm. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 717.

#### 2,5250 Li-Pb. Литий-свинец \* 1,4750

Недавно проведена работа, посвященная определению стехиометрического состава и кристаллической структуры промежуточных фаз. Согласно работе [1], «истинной» формулой ранее обнаруженного соединения Li<sub>5</sub>Pb<sub>2</sub> является Li<sub>8</sub>Pb<sub>3</sub>. Соединение имеет моноклинную решетку; a = 8,240 A, b = 4,757 A, c = 11,03 Å,  $\beta = 104^{\circ} 25'$ .

Фаза β-LiPb имеет решетку типа CsCl [2]. Низкотемпературная модификация  $\beta'$ -LiPb имеет ромбоэдрическую решетку,  $a = 3.542 \pm 0.003$  Å,  $\alpha = 89^{\circ} 30' \pm$  $\pm 3'$ .

В работе [3] обобщены данные о структуре интерметаллических соединений в системе (табл. 30). В случае, если данные табл. 30 противоречат данным М. Хан-

ТАБЛИЦА 30. СОЕДИНЕНИЯ В СИСТЕМЕ Li-Pb [3]

| Соединение                                                                                                                                        | Структура                                                                                  | Периоды решетки, А                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Li <sub>22</sub> Pb <sub>6</sub><br>Li <sub>7</sub> Pb <sub>2</sub><br>Li <sub>8</sub> Pb<br>Li <sub>8</sub> Pb <sub>3</sub><br>β-LiPb<br>β'-LiPb | Кубическая<br>Гексагональная<br>Кубическая<br>Моноклинная<br>Кубическая<br>Ромбоэдрическая | a = 20,08<br>a = 4,751, c = 8,589<br>a = 6,687<br>a = 8,240, b = 4,757,<br>$c = 11,03, \beta = 104,5^{\circ}$<br>$a = 3,563 (220^{\circ} C)$<br>$a = 3,542, a = 89,5^{\circ}$ |
|                                                                                                                                                   |                                                                                            |                                                                                                                                                                               |

сена и К. Андерко (см. т. II), предпочтение следует отдать первым. Формула  $Li_{22}Pb_5$  более точно отвечает составу соединения, обозначавшемуся ранее формулой  $Li_4Pb$ . Эта фаза имеет г. ц. к. решетку, a = 20,08 А. Точно так же формула  $Li_7Pb_2$  предпочтительнее, чем  $Li_{10}Pb_3$  (см. М. Хансен и К. Андерко, т. II, рис. 497).

1. Zalkin A. a.o. J. Phys. Chem., 1956, v. 60, p. 1275—1277. 2. Zalkin A., Ramsey W. J. J. Phys. Chem., 1957, v. 61, p. 1413—1415. 3. Zalkin A., Ramsey W. J. J. Phys. Chem. 1958, v. 62, p. 689—693.

2,8144

# Li—Pd. Литий—палладий

В исследовании, посвященном разработке легкоплавких припоев [1], обнаружено, что жидкий Pd растворяет 44,7% (ат.) [5% (по массе)] Li. Этот сплав плавится при «значительно более низкой» температуре, чем Pd. При затвердевании большая часть растворенного Li остается в твердом растворе.

- Bredzs N., Schwartzbart H. Welding J. (N.Y.), 1961, v. 40, p. 123S-129S.
- 2,5508

# Li—Pt. Литий—платина \*

В результате интенсивной экзотермической реакции между свободными от примесей Li и Pt, протекающей при 540° С в вакууме или в инертной атмосфере, образуется соединение LiPt<sub>2</sub> с г. ц. к. решеткой типа MgCu<sub>2</sub>,  $a = 7,60 \pm 0.05$  A [1].

1. Nash C. P. a. o. J. Amer. Chem. Soc., 1960, v. 82, p. 6203-6204.

# 2,4575 1,5425

# Li—Pu. Литий-плутоний

«Микроструктурное исследование продуктов, образовавшихся при попытке получить сплавы, показывает, что компоненты не смешиваются друг с другом ни в жидком, ни в твердом состоянии» [1].

 Schonfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, Pergamon Press, N. Y., 1959, ser. V, v. 2, p. 579-599.

1,3353

# Li—S. Литий—сера

Химическим путем получен Li<sub>2</sub>S [1]. Сульфид присутствует в качестве примеси в стали [1]. Температура плавления Li<sub>2</sub>S 975° C.

Juza R., Uphoff W. Z. Anorg. Allgem. Chem. 1956, Bd 287, S. 113—119.
 Безкоровайный Н. М., Яковлев Е. И. Металлургия и металловедение чистых металлов. Сборник научных работ. 1960, № 2, с. 189—206.

1,3928 0.6072 Li—Si. Литий—кремний \*

Диаграмма состояния на рис. 289 построена по данным термического анализа [1]. Сплавы выплавлялись из 99,24%-ного Si и Li чистотой более 99,0%. Промежуточная фаза Li<sub>2</sub>Si плавится конгруэнтно при 752 ± 5° C [1]; 750 ± 160

± 10° С [2]. Фаза Li<sub>4</sub>Si [1, 2] образуется по перитектической реакции при 633 ± 5° С [1], а не при 720 ± 20° С [2].

<sup>2</sup> растворимость Li в твердом Si составляет [2]:



11 Р. П. Эллнот, том. П

Приведенные данные [2] в основном согласуются с результатами работы [3] и противоречат результатам работ [4, 5].

Bohm H. Z. Metallkunde, 1959, Bd 50, S. 44-46.
 Pell E. M. Phys. Chem. Solids, 1957, v. 3, p. 77-81.
 Fuller C. S., Reiss H. J. Chem. Phys., 1957, v. 27, p. 318-319.
 Reiss H. a. o. J. Chem. Phys. 1956, v. 25, p. 650-655.
 Fuller C. S., Ditzenberger J. Z. Phys. Rev., 1953, v. 91, p. 193.

2,8987

# Li—Sr. Литий—стронций

Диаграмма состояния (рис. 290) построена по данным термического и высокотемпературного рентгеновского анализов [1]. Сплавы выплавляли из Li чистотой 99,86—99,88% и 99,87%-ного Sr [1]. Обнаружено четыре соединения: Li<sub>23</sub>Sr<sub>6</sub>,



Li<sub>2</sub>Sr<sub>3</sub>, LiSr<sub>8</sub> и высокотемпературное соединение, обозначенное «С». Никаких экспериментальных данных, подтверждающих диаграмму, в работе не приводится. Li<sub>23</sub>Sr<sub>6</sub> имеет г. ц. к. решетку типа Th<sub>6</sub>Mn<sub>23</sub>, a = 14,880 A. Решетка Li<sub>2</sub>Sr<sub>3</sub> тетрагональная, пространственная группа  $P4_2/mm$ ; a = 9,842 A, c = 8,761 A. 162

LiSr<sub>8</sub> существует в двух модификациях: низкотемпературной ромбической (a = 6, 0 A, b = 7, 0 A, c = 7, 7 A) и высокотемпературной г. к. (a = 4, 40 A, c = 13, 84 A).

1. Wang F. E.-Y. Dissertation, Syracuse University, 1960, 107 p.; Kanda F. A., King A. J. U. S. At. Energy Comm. TID-5691, 1960, p. 1-40.

 $\overline{1}, 1611 \\ 0.8389$ 

### Li-Ti. Литий-титан

Химическим анализом расплава, выдержанного в тиглях из Ті, определялась растворимость Ті в жидком Li при 725—925° С [1]. Построена температурная зависимость растворимости в координатах логарифм концентрации — обратная температура. Отмечается значительный разброс экспериментальных точек. Растворимость меняется от 0,00009% (ат.) Ті при 725° С до 0,0002% (ат.) Ті при 925° С.

Аналогичным методом для растворимости при 900° С получено значение 0.0020% (ат.) [0,014% (по массе)] [2], что хорошо согласуется с работой [1].

1. Leavenworth H. W., Cleary R. E. Acta Met., 1961, v. 9, p. 519—520. 2. Бычков Ю. Ф. идр. Атомная энергия, 1959, т. 7, с. 531—536.

 $\overline{2},4647$ 1,5353

### Li-U. Литий-уран

Изучена растворимость U в Li при 700—1000° С [1]. Дистиллированный Li выдерживали в тиглях из U в атмосфере и охлаждали водой в течение менее 50 сек. Определены точки ликвидуса:

| Содержание U,  | , % | (ат.) | [% | (по | массе)] |     | • | 0,0015<br>(0,5) | 0,00087<br>(0,03) | 0,00018<br>(0,006) | 0,000058<br>(0,002) |
|----------------|-----|-------|----|-----|---------|-----|---|-----------------|-------------------|--------------------|---------------------|
| Температура, ч | °C  |       | :  |     |         | • 1 | • | 1000            | 900               | 800                | 700                 |

1. Бычков Ю. Ф. и др. Атомная энергия, 1959, т. 7. с. 531-536.

#### $\overline{2},8813$ 1,1187

## Li-Zr. Литий-цирконий

Изучена растворимость Zr в Li при 700—1200° С [1]. Дистиллированный Li выдерживали в тиглях из Zr в атмосфере Ar. Получены следующие значения: Растворимость % (ат.) [% (по

| acce)]       |    | • |  | ÷ |   | · |  | 0,023<br>(0,30) | 0,0091<br>(0,12) | 0,0023<br>(0,03) | 0,00076<br>(0,01) | < 0,00076 < (0,01) |
|--------------|----|---|--|---|---|---|--|-----------------|------------------|------------------|-------------------|--------------------|
| Гемпература. | °C |   |  |   | 2 |   |  | 1200            | 1100             | 1000             | 800               | 700                |

Этим результатам противоречат данные работы [2], в которой Li выдерживали 100 ч в капсулах из Zr в условиях вибрации. Растворимость, согласно этой работе, равна 0,00076% (ат.) [0,01% (по массе)] Zr при 480° C и около 0,076% (ат.) [1,0% (по массе)] Zr при 760° C.

1. Бычков Ю. Ф. и др., Атомная энергия, 1959, т. 7, с. 531-536.

2. Anderson R.C., Stephan H.R. (at ORNL) U.S. At. Energy Comm. NEPA-1652, August, 1950.

#### 0,5031 1,4969

#### Lu-Mn. Лютеций-марганец

LuMn<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>; a = 5,228 A, c = 8,590 A [1]. 1. D w i g h t A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162. 11\* 163

| Ι,               | 0969 |  |
|------------------|------|--|
| $\overline{2}$ . | 9031 |  |

# Lu-N. Лютеций-азот

Мононитрид LuN получен реакцией смеси порошка металла и KCl с NH<sub>3</sub> при 700° C [1]. Нитрид имеет г. ц. к. решетку, изотипную с NaCl,  $a=4,766\pm\pm0,002$  A.

 Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 87-90.

 $\frac{0,4743}{1,5257}$ 

# Lu—Ni. Лютеций—никель

LuNi<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,085 A [1].

1. Dwight A. E. U. S. At. Energy Comm. ANL-6516, 1961, p. 259-260.

#### 1,0389 2,9611

# Lu—O. Лютеций—кислород

В работах [1—4] изучалась структура Lu<sub>2</sub>O<sub>3</sub>. Окисел имеет о. ц. к. решетку типа  $Mn_2O_3$  с периодом 10,391 ± 0,005 [3] или 10,3907 А [4]. В обоих случаях чистота материала составляла 99,9%. В работах [4, 5] показано, что Lu<sub>2</sub>O<sub>3</sub> существует лишь в одной модификации, которая имеет решетку  $Mn_2O_3$ , так называемого типа C.

1. Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9, p. 310-316.

2. B o m m e r H., Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 273-280.

- 3. Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.
- 4. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, v. 64A, p. 2048-2051.

5. Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051.

1,9638 0,0362

# Lu—Os. Лютеций—осмий

LuOs<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>;  $a = 5,254 \pm 0,002$  A,  $c = 8,661 \pm 0,002$  A [1] или a = 5,261 A, c = 8,670 A [2].

Compton V. B., Matthias B. T. ActaCryst., 1959, v. 12, p. 651-654.
 Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.

0,2161 $\overline{1},7839$ 

# Lu—Pd. Лютеций—палладий

LuPd<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> a = 4,027 A [1].

1. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162.

1,8592

# Lu—Ри. Лютеций—плутоний

Добавка ≥4,1 ± 0,3% (ат.) Lu позволяет зафиксировать закалкой δ-Ри при комнатной температуре.

1. Gschneidner K. A. (Jr.) a. о. В книге «Plutonium, 1960», eds. Grison O. a. o. Cleaver—Hume Press, Ltd., London, 1960, p. 124—142.

 $\overline{1,9731}$ 0.0269

# Lu- Re. Лютеций-рений

LuRe<sub>3</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>; a = 5,335 A, c = 8,717 A [1]. 1. Dwight A. E. U. S. At. Energy Comm. ANL—6330, 1960, p. 156—158.

0,2306 $\overline{1},7694$ 

### Lu-Rh. Лютеций-родий

LuRh имеет кубическую решетку типа CsCl, a = 3,525 A [1]. Решетка LuRh<sub>2</sub> г. ц. к. типа MgCu<sub>2</sub>, a = 7,412 A [1].

1. Dwight A. E. U. S. At. Energy Comm. ANL-6516, 1961, p. 259-260.

#### 1,2357 0,7643

## Lu-Ru. Лютеций-рутений

LuRu<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>;  $a = 5,204 \pm 0,002$  A,  $c = 8,725 \pm 0,002$  A [1] или a = 5,210 A, c = 8,722 A [2].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.

1,79550.2045

### Lu—Si. Лютеций—кремний

Lu<sub>3</sub>Si<sub>5</sub> имеет гексагональную решетку, изотипную с Y<sub>3</sub>Si<sub>5</sub> и силицидами других редкоземельных металлов;  $a = 3,745 \pm 0,005$  A,  $c = 4,042 \pm 0,005$  A [1]. Соединения LuSi<sub>2</sub> не существует. По данным рентгеновского и металлографического анализов, сплав с 66,7% (ат.) Si имеет двухфазную структуру Lu<sub>3</sub>Si<sub>5</sub> + + (Si).

 Lundin C. E., В книге «Rare Earth Research», ed. Kleber E. V. The Macmillan Company, N. Y., 1961, p. 306—313; см. в сб. «Редкоземельные металлы», под ред. Φ. Х. Спеддинга, А. Х. Даана. Изд-во «Металлургия», 1965.

# $\overline{1},9856$ 0,0144

### Lu-Ta. Лютеций-тантал

При плавке Lu в тигле из Ta в Lu растворяется  $\sim 1\%$  (ат.) (по массе) Ta. В системе отсутствуют интерметаллические соединения. Растворимость Ta в твердом Lu «очень мала» [1].

 Spedding F. H., Daane A. X. Metallurgy and Fuels, p. 413. Progr. in Nuclear Energy, ser. V, v. 1, Pergamon Press, N. Y., 1956; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

1,8663 0,1337

## Lu-U. Лютеций-уран

Растворимость Lu в жидком U при ~1200° C составляет 0,54% (ат.) [0,40% (по массе)] [1]. Эта величина получена химическим анализом расплава. При ~1150° C в U растворяется 0,27% (ат.) [0,2% (по массе)] Lu [2].

- Haefling J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336—338.
   Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December, 1957; см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 36.
- 0,5359 $\overline{1},4641$

### Lu—V. Лютеций—ванадий

По данным предварительного металлографического анализа, в богатой V части диаграммы существует область расслоения. Система аналогична системе Y—V. Интерметаллические соединения отсутствуют [1].

- 1. Лундин К., Клодт Д. Неопубликованные данные; см. в сб. «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.
- $\frac{0,2830}{1,7170}$

### Lu—Zr. Лютеций—цирконий

Металлографически установлено, что Lu повышает температуру α → β-превращения Zr до перитектоидной (932° C). Растворимость Lu в β- и α-Zr равна соответственно ~2,1% (ат.) [4% (по массе)] и ~4,9% (ат.) [9% (по массе)]. Присутствие примесной фазы в сплавах помешало получить более точные результаты.

I. U y J. C. a. o. Rensselaer Polytechnic Institute, Final Report on U. S. At. Energy Comm. Contract AT (30-1)-2159, 1961.

1,6462

### Mg—Mn. Магний—марганец \*

Вновь определена растворимость Mn в Mg в твердом и жидком состояниях [1]. Растворимость в жидком состоянии определялась термическим и химическим анализами насыщенных расплавов. Растворимость Mn в твердом Mg определяли металлографически и по изменению физических свойств при перемене состава сплавов. Сплавы приготовляли реакцией между дистиллированным Mg и соединениями Mn высокой чистоты. Экспериментальные данные в работе не приведены. Растворимость, по данным работы [1] (табл. 31), меньше, чем сообщалось ранее (см. М. Хансен и К. Андерко т. II, рис. 501).

| ТАБЛИЦА | 31. | РАСТВОРИМОСТЬ | Mn | В | твердом |
|---------|-----|---------------|----|---|---------|
|         |     | И ЖИДКОМ Мg   |    |   |         |

| Температура | Раствор   | римость Mn   | Температура | Растворимость Mn      |              |  |  |
|-------------|-----------|--------------|-------------|-----------------------|--------------|--|--|
| °С          | в твердом | и жидком Mg  | °С          | в твердом и жидком Mg |              |  |  |
|             | % (ат.)   | % (по массе) |             | % (ат.)               | % (по массе) |  |  |
| 850         | 2,23      | 4,9          | 653         | 0,98                  | 2,2 (тверд.) |  |  |
| 800         | 1,86      | 4,1          | 600         | 0,71                  | 1,6          |  |  |
| 750         | 1,49      | 3,3          | 550         | 0,44                  | 1,0          |  |  |
| 700         | 1,17      | 2,6          | 500         | 0,22                  | 0,5          |  |  |
| 653         | 0,9       | 2,0 (жидк.)  | 400         | 0,09                  | 0,2          |  |  |

Проведен рентгеновский анализ осадка, выделенного электролитически из сплава с 0,67% (ат.) [1,5% (по массе)] Мп [2]. Осадок представляет собой смесь β-и α-Мп, периоды решетки фаз такие же, как и у чистого металла. Отсюда де-

лается вывод о том, что растворимость Mg в твердом Mn не может быть очень большой.

1. Петров Д. А. и др. Труды Института металлургии им. А. А. Байкова, АН СССР, 1957, № 1, с. 142—143.

2. Дриц М. Е. и др. Металловедение и термическая обработка металлов, 1959, № 10, с. 33—37.

#### 0,2396 $\overline{1},7604$

## Mg--- N. Магний--- азот \*

 $Mg_3N_2$  существует в трех модификациях:  $\alpha$ ,  $\beta$  и  $\gamma$  [1]. Температуры превращения 550 и 788° С.  $Mg_3N_2$  с кубической решеткой типа  $Mn_2O_3$ , вероятно, является низкотемпературной  $\alpha$ -модификацией.  $Mg_3N_2$  диссоциирует при  $\sim$  [520° С [2].

В работах [3, 4] приведены данные о получении и свойствах азида Mg (N<sub>3</sub>)<sub>2</sub>, взрывающегося при нагревании.

- Moser H. Physik Z., 1936, Bd 37, S. 737; cm. Kubachewski O., Evans E. L. Metallurgical Thermochemistry, 2d ed., John Wiley and Sons, Inc., N. Y., 1956, p. 314.
- 2. Mitchell D. W., Ind. Eng. Chem., 1949, v. 41, p. 2027-2031.
- Славинский М. П. Физико-химические свойства элементов. Металлургиздат, 1952, с. 138.
- 4. Wiberg E., Michaud H. Z. Naturforsch., 1954, Bd 9b., S. 501-502.

#### $\bar{1},2268$ 0,7732

### Mg-Nd. Магний-неодим

Диаграмма на рис. 291 построена по данным работ [1, 2]. Эвтектика Mg + + Mg<sub>9</sub>Nd расположена при 1,7% (ат.) Nd и 546° C, а Mg<sub>9</sub>Nd образуется по перитектической реакции при 640° C [1]. Измерением периодов решетки определено, что растворимость Nd в Mg составляет 0,10; 0,07 и <0,03% (ат.) соответственно при 546, 520 и 500° C [1]. Для приготовления сплавов в работе [1] использовали Mg высокой чистоты и 99,7%-ный Nd.

В работе [2] показано, что два соединения, образующиеся в богатых магнием сплавах, имеют составы Mg<sub>9</sub>Nd и Mg<sub>3</sub>Nd. Mg<sub>3</sub>Nd растворяет некоторое количество Mg.

Проведено термическое и металлографическое исследование и измерение микротвердости сплавов Mg—Nd [3]. Применялся Nd чистотой 95%. Установленное в работе значение эвтектической концентрации {~5,6% (ат.) [26% (по массе)] Nd} не согласуется с данными работы [1], хотя значения температуры эвтектики (548° C [3]) довольно близки. Соединение, находящееся в равновесии с твердым раствором на основе Mg, имеет состав 10,1—20,2% (ат.) [40—60% (по массе)] Nd, что также совпадает с данными работы [1]. Растворимость Nd в Mg составляет 0,33% (ат.) при эвтектической температуре и 0,14% (ат.) при 200° С (метод микротвердости) [3]. Поскольку использованный в работе [3] Nd содержал примеси других редкоземельных элементов, следует считать, что полученные данные подтверждают предложенный тип диаграммы, при этом количественные характеристики не следует принимать во внимание.

В работе [4] приводятся значения эвтектической температуры 548—550° С и растворимости 0,17% (ат.) [1% (по массе)] Nd. Растворимость определяли по двум сплавам. Добавки Nd увеличивают период решетки твердого раствора на основе Mg [4].

Сообщается [2], что Mg<sub>0</sub>Nd имеет две модификации, различающиеся по составу. Рентгенограммы отожженного β-Mg<sub>0</sub>Nd совпадают с рентгенограммами  $\beta$ -Mg<sub>9</sub>Ce. Соединение имеет о. ц. к. решетку с периодом 14,578  $\pm$  0,005 А. Структура второй модификации,  $x = Mg_9Nd$ , имеет среднюю или низкую симметрию. Для точного определения структуры необходимы дополнительные исследования.

Изучены и другие соединения системы [5, 6]. MgNd имеет кубическую решетку типа CsCl, a = 3,867 A [5, 6]. Mg2Nd имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 8,662 A и Mg3Nd — кубическую типа BiF<sub>3</sub>, a = 7,410 A [5].





- 1. Park J. J., Wyman L. L. WADC Tech. Rept. 57-504, 1957, 33 p.
- 2. Белецкий М.С., Гальперин Е.Л. ФММ, 1961, т. 11, с. 698—703.
- 3. Савицкий Е. М. идр. ЖНХ, 1958, т. 3, с. 2138—2142.
- 4. Тихова Н. М., Афанасьева Л. А. Металловедение и обработка металлов, 1958, № 3, с. 38—41.
- I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Symp., 1959, v. 1, № 9, Paper 3F, 11 p.
- 6. I an d e l l i A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 1,6174 0,3826

## Mg-Ni. Магний-никель\*

Измерена упругость паров над сплавами Mg---Ni [1]. По полученным данным рассчитаны термодинамические константы соединений.

1. Smith J. F., Christian J. L. Acta Met., 1960, v. 8, p. 249-255.

### Mg-0. Магний-кислород \*

Температура плавления монокристаллов MgO высокой чистоты равна 2825 ± ± 20° С [1]. Это неплохо согласуется с полученным ранее значением 2784° С (температура приведена к Международной температурной шкале 1948 г.) [2]. Химическим путем получен пероксид MgO<sub>2</sub> [3]. Он имеет кубическую решетку

типа пирита, a = 4,839 + 0,007 А.

1. McNally R. N. a.o. J. Amer. Ceram. Soc., 1961, v. 44, p. 491-493. 2. Kanolt C. W. Wash. Acad. Sci., 1913, v. 3, p. 315-318. 3. Vannerberg N. G. Arkiv Kemi, 1959, v. 14, p. 99-105.

1,0696 0,9304

# Mg—Pb. Магний—свинец \*

Вновь тщательно определен ликвидус в интервале 0—3% (по массе) Mg [1]. Эвтектика расположена при 248,5 ± 0,25° С и 16,4—16,7% (ат.) [2,25—2,30% (по массе)] Mg. Если состав выражен в процентах по массе, линия ликвидуса от точки плавления Pb (327,3° C) до эвтектики — прямая.

Определены периоды решетки разбавленных растворов Pb в Mg [2, 3]. В обеих работах обнаружено небольшое изменение периода решетки при увеличении содержания Pb: a = 3,2099 A, c = 5,2108 A [2] или a = 3,20922 A, c = 5,21067 A [3] для чистого Mg и a = 3,2132 A, c = 5,2409 A. [2] [5,99% (ат.) Pb], a = 3,21320 A, c = 5,23368 A [3] [4,823% (ат.) Pb].

При изучении упругости паров сплавов Mg—Pb установлено, что при сублимации любого из компонентов образуется соединение Mg<sub>2</sub>Pb [4].

 Horsley G., Maskrey J. T. J. Inst. Metals, 1957-1958, v. 86, p. 446-448.
 Hardie R. D., Parkins R. N. Phil. Mag., 1959, v. 4, p. 815-825.
 Walker C. B., Marezio M. Acta Met., 1959, v. 7, p. 769-773.
 Scheil E., Wolf F. Z. Metallkunde, 1959, Bd 50, S. 229-233.

1,3578

# Mg—Pd. Магний—палладий \*

Проведено обширное исследование соединений и промежуточных фаз системы [1]. Металлографическим и рентгеновским анализами изучено 39 сплавов, выплавленных из Mg и Pd чистотой более 99,9%. Плавку вели в тиглях из железа или окиси алюминия. Исследованию системы, но не такому полному, были посвящены также работы [2, 3]. Обнаружены соединения Mg<sub>8</sub>Pd, Mg<sub>4</sub>Pd, Mg<sub>3</sub>Pd, Mg<sub>2.7</sub>Pd, MgPd<sub>3</sub> и два соединения, близкие по составу к MgPd [1]. Существование последних двух соединений подтверждено в работе [2]. В работе [3] вблизи MgPd обнаружено одно соединение.

Ма<sub>в</sub>Рd гомогенен в интервале 12,7—15,2% (ат.) [39—44% (по массе)] Pd. Соединение имеет г. п. к. решетку,  $a = 20,06_0$  А при 15,09% (ат.) Pd и  $a = 20,18_2$  А при 12,87% (ат.) Pd. С увеличением содержания Pd число его атомов в элементарной ячейке возрастает от 51 до 60 [1]. Общее число атомов в элементарной ячейке равно 398 и не зависит от состава.

Как показал рентгеновский и микроскопический анализы, Mg<sub>4</sub>Pd имеет узкую область гомогенности. Структура соединения неизвестна [1].

 $Mg_3Pd$  имеет гексагональную решетку типа Ni<sub>3</sub>As; a = 4,613 A, c = 8,410 A; соединение гомогенно в узком интервале концентраций [1].

Область существования Mg<sub>2,7</sub>Pd ~26,3—28,0% (ат.) [61—63% (по массе)] Pd [1]. Соединение имеет гексагональную решетку с ~28 атомами в элементарной ячейке; a = 8,663, c = 8,170 А при большом содержании Pd [1]. Структура

168

Mg<sub>2.7</sub>Pd аналогична структуре Al<sub>5</sub>Co<sub>2</sub>, однако сплав состава Mg<sub>5</sub>Pd<sub>2</sub> оказался двухфазным [1].

Эквиатомный сплав имеет двухфазную структуру. В интервале от  $\sim 46,2-47,5$  до 58,3% (ат.) [79—80 до 86% (по массе)] Рd сплавы однофазны и имеют кубическую структуру типа CsCl,  $a \approx 3,16$  A [1]. Не показано, как вторая фаза состава MgPd связана с упомянутой выше фазой. Второе соединение «MgPd» индицировано в предположении тетрагональной решетки типа AuCu;  $a = 3,03 \pm 2,001$  A,  $c = 3,42 \pm 0,01$  A при 45% (ат.) Mg [2]. В той же работе период решетки фазы со структурой типа CsCl при 50% (ат.) Mg определен равным 3,17  $\pm 0,01$  A [2]. По другим данным [3],  $a = 3,12_0$ A.

На участке 75—100% (ат.) Рd выше 750° С существует однофазная область. Однако при 500° С сплавы указанных составов имеют двухфазную структуру MgPd<sub>3</sub> + Pd [1]. MgPd<sub>3</sub> имеет г. ц. к. решетку, на элементарную ячейку которой приходится одна формульная единица, a = 3,920 А. Отсутствие сверхструктурных линий на рентгенограмме указывает на разупорядоченность структуры.

- 1. Ferro R. J. Less-Common Metals, 1959, v. 1, p. 424-438.
- 2. Крипякевич П. И., Гладышевский Е. И. Кристаллография, 1960, т. 5, с. 517—579.
- 3. Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.
- 1,0637 0,9363

# Mg—Ро. Магний—полоний

Методами микрометаллургии получено соединение MgPo. Оно имеет г. к. решетку типа NiAs,  $a = 4,345 \pm 0,010$  A,  $c = 7,077 \pm 0,020$  A.

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

 $\bar{1}, 2370$ 0, 7630

# Mg—Pr. Магний—празеодим \*

Диаграмма состояния в области, богатой Mg, исследована методами термического, микроскопического и рентгеновского анализов [1]. Сплавы выплавляли из Mg высокой чистоты и 99,7%-ного Pr. Наиболее богато Mg соединение PrMg<sub>9</sub>. При 573° С и 1,7% (ат.) Pr оно образует эвтектику с твердым раствором на основе Mg. Температура эвтектики равна 630° С.\*

Растворимость Рг в Mg определяли по изменению периода решетки. Получены следующие значения: 0,09; 0,07 и <0,03% (ат.) Рг соответственно при 573, 540 и 510° С, что хорошо согласуется с данными металлографического анализа [2]: 0,07—0,087% (ат.) [0,4—0,5% (по массе)] Рг при 565° С.

Были определены периоды решетки интерметаллических соединений системы. PrMg<sub>3</sub> имеет кубическую решетку типа BiF<sub>3</sub>, a = 7,430 A [3]. Решетка PrMg<sub>2</sub> г. ц. к. типа MgCu<sub>2</sub>, a = 8,689 A [3], решетка PrMg кубическая типа CsCl, a = 3,885 A [3, 4].

- 1. Park J. J., Wyman L. L. WADC Tech. Rept, 57-504, 1957, 33 p.
- Тихова Н. М., Афанасьева Л. А. Металловедение и обработка металлов, 1958, № 3, с. 38—41.
- 3. I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.
- I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

\* В оригинале ощибка, речь, по-видимому, идет о температуре перитектической реакции образования Mg, Pr. Прим. ред.

 $\bar{1},0954$ 0,9046

# Mg-Pt. Магний-платина \*

В работе [1] проведен химический, рентгеновский и металлографический анализы и определена плотность сплавов с 0—30% (ат.) Рt. Обнаружены две промежуточные фазы и эвтектика [~7,6% (ат.) Рt и 575° C]. Одна из фаз приблизительного состава Mg<sub>0</sub>Pt имеет г. ц. к. решетку, изотипную с Mg<sub>0</sub>Pd, a == 20,11 A. Другая, состава Mg<sub>3</sub>Pt, имеет гексагональную решетку типа Na<sub>3</sub>As, a = 4,577 A, c = 8,322 A. MgPt имеет кубическую решетку типа B20, изоструктурную с PdGa и PtGa,  $a = 4,86_3$  A [2]. Вблизи состава 75% (ат.) Pt, кроме твердого раствора на основе Pt, обнаружена упорядоченная г. ц. тетрагональная фаза типа  $L6_0$ ; a = 3,88 A, c = 3,72 A [2].

- 1. Ferro R., Rambaldi G. J. Less-Common Metals, 1960, v. 2, p. 383-391.
- 2. Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.

#### $\overline{1,0021}$ 0.9979

# Mg—Pu. Магний—плутоний \*

Диаграмма, представленная на рис. 292, построена в работе [1].Сплавы закаливали от температур, лежащих выше области несмешиваемости, и подвергали длительному отжигу. Довольно точно установлено положение эвтектики



Рис. 292. Mg-Pu

170

и монотектики. Известны два соединения:  $PuMg_2$  и  $PuMg_x$  ( $x \approx 2$ ). Оба образуются по перитектоидной реакции.  $PuMg_2$  имеет г. ц. к. решетку типа  $CaF_2$  с периодом 7,34 ± 0,01 А. Решетка  $PuMg_x$  гексагональная;  $a = 13,8 \pm 0,1$  А,  $c = 9,7 \pm 0,01$  А [1, 2]. Таким образом,  $PuMg_2$  и  $PuMg_x$  соответствуют соединениям  $Pu_2Mg$  и  $PuMg_2$ , обнаруженным ранее (см. М. Хансен и К. Андерко, т. II [1]). Температуры инвариантных реакций, связанных с аллотропическими превращениями Pu, указаны на рис. 292, согласно работе [3]. В работе [1] ничего не сказано о том, что изучалось влияние Mg на аллотропические превращения Pu. Просто одни горизонтали показаны пунктиром, а другие сплошными линиями. Не показан б'-Pu.

- Schonfeld F. W. a. o. В книге «Metallurgy and Fuels», shap. 10—10, Progress in Nuclear Energy. Pergamon Press, N. Y., 1959, ser. V, v. 2, p. 579— 599; Schonfeld F. W. В книге «The Metal Plutonium», Coffinberry A. S. W. N. Miner (eds). University of Chicago Press, Chicago, 1961, p. 240—254.
- 2. Ellinger F. H. Там, же, р. 281—308.
- 3. Jette E. R. J. Chem. Phys., 1955, v. 23, p. 365-368.
- 1,3735

# Mg—Rh. Магний—родий

MgRh имеет кубическую решетку типа CsCl,  $a = 3,099 \pm 0,002$  A [1]. По данным рентгеновского анализа, MgRh находится в равновесии с твердым раствором на основе Rh.

Промежуточная фаза состава 71,5—74,7% (ат.) Mg имеет гексагональную решетку типа  $Al_5Co_2$ ; a = 8,554 A, c = 8,028 A (Mg<sub>5</sub>Rh<sub>2</sub>) или a = 8,515 A, c = 8,016 A при 74,7% (ат.) Mg [2].

1. Compton V. B. Acta Cryst., 1958, v. 11, p. 446.

2. Ferro R. Atti Accad. Nazl. Linceri Rend. Classe Sci. Mat. Nat., 1960, v. 29, p. 70-73.

1,8799

# Mg—S. Магний—сера \*

Проведено прецизионное измерение периода г. ц. к. решетки MgS типа NaCl [1],  $a = 5,2034 \pm 0,0003$  A при 21° C.

1. Güntert O. J., Faessler A. Z. Krist., 1956, Bd 107, S. 357-361.

1,7331 0,2669

# Mg—Sc. Магний—скандий

Мд и Sc хорошо растворяются друг в друге [1].

1. Даан А. Частное сообщение; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 1,9374 0,0626

## Mg-Si. Магний-кремний \*

Растворимость Si в Mg при эвтектической температуре равна 0,0027% (ат.). Это значение получено в результате химического анализа сплава, приготовленного из Mg и Si зонной плавки. Приведенная величина хорошо согласуется с опубликованной ранее (см. М. Хансен и К. Андерко, т. II [7]).

1. Yue A. S. Trans. AIME, 1959, v. 215, p. 870-871.

 $\tilde{1},2089$ 0,7911

### Mg-Sm. Магний-самарий

SmMg имеет кубическую решетку типа CsCl, a = 3,810 A [1, 2], SmMg<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 3,810 A [1]. SmMg<sub>3</sub> имеет кубическую решетку типа BiF<sub>3</sub>, a = 7,327 A [1].

1. I a n d e 1 I i A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl.'Phys. Lab., Gt. Brit., Proc. Symp., 1959, № 9, v. 1, Paper 3F, 11 p.

2. I andelli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

# 1,3115 . Мд—Sn. Магний—олово \*

Определены периоды решетки твердого раствора на основе Mg [1]. Mg<sub>2</sub>Sn имеет г. ц. к. решетку типа CaF<sub>2</sub>, a = 6,7630 A при 26° C [2]. Соединение получено из 99,97%-ного Mg и 99,997%-ного Sn.

В напыленной пленке обнаружено метастабильное соединение Mg и Si [3]. Решетка его ромбическая; a = 15,23 A, b = 8,90 A, c = 13,10 A. При составе, обогащенном Mg по сравнению с Mg<sub>2</sub>Sn, соединение устойчиво до  $\sim 150^{\circ}$  C. При содержании Mg меньше, чем в Mg<sub>2</sub>Sn, оно устойчиво до  $315^{\circ}$  C.

1. Hardie D., Parkins R. N. Phil. Mag., 1959, v. 4, p. 815–825. 2. Blunt R. F. a. o. Phys. Rev., 1955, v. 100, p. 663–666. 3. Suganuma R. J. Phys. Soc. Japan, 1959, v. 14, p. 685–686.

#### 1,4433 0,5567

# Mg—Sr. Магний—стронций \*

Соединение, обозначавшееся ранее  $Mg_9Sr$  (см. М. Хансен и К. Андерко, т. II [2]), идентифицировано как  $Mg_{17}Sr_2$  [1]. Структура его гексагональная, типа Th<sub>2</sub>Ni<sub>17</sub>;  $a = 10,533 \pm 0,007$  A,  $c = 10,341 \pm 0,007$  A. Соединению  $Mg_4Sr$  (см. M.

Соединению  $Mg_4Sr$  (см. М. Хансен и К. Андерко, т. II [2]) приписана формула  $Mg_{23}Sr_6$  [2]. Соединение имеет г. ц. к. решетку типа  $Th_6Mn_{23}$ , a = 14,91 А.

 Гладышевский Е.И. идр. Кристаллография, 1961, т. 6, с. 267—268.
 Гладышевский Е.И. идр. Кристаллография, 1961, т. 6, с. 769—770.

1,0202 Mg—Th. 0,9798 Магний-торий \*

Вновь исследована система в интервалах 0—20 [1] и 0—10% (ат.) Тh [2]. Диаграмма на рис. 293 построена по данным микроскопического и рентгеновского исследований [1]. Сплавы вы-



.

плавляли из [99,95%-ного Mg и 98%-ного Th. В работе [2] использованы микроскопический анализ и измерение твердости. Эвтектика, по данным работы [2], расположена при 580° С и 6,5% (ат.) [40% (по массе)] Th; растворимость Th в Mg при этой температуре равна ~0,55% (ат.) [5% (по массе)]. За исключением эвтектической концентрации, эти данные хорошо согласуются с диаграммой на рис. 293. Однако результаты обеих работ [1, 2] значительно отличаются от полученных ранее (см. М. Хансен и К. Андерко, т. II [1], рис. 510]. Растворимость Th в Mg при 300° С равна 0,05% (ат.) [0,5% (по массе)].

Методом количественной металлографии состав соединения, образующегося по перитектической реакции, определен как ThMg<sub>5</sub> [1]. Использовав опубликованные в работе [1] данные об интенсивности дифракционных линий, авторы работы [3] установили, что это соединение изоморфно с Th<sub>6</sub>Mn<sub>23</sub>. Перегибы на кривой охлаждения [1] согласуются с предложенной стехиометрией Th<sub>23</sub>Mg<sub>6</sub>. Так это соединение и показано на рис. 293.

Соединение, богатое магнием, имеет г. ц. к. решетку типа  $\text{Th}_6\text{Mg}_{23}$ , a = 12,27 A [1]. Предположительно оно имеет состав  $\text{Th}_6\text{Mg}_{23}$  и структуру типа  $\text{Th}_6\text{Mn}_{23}$  [3].

1. Yamamoto A. S., Rostoker W. Trans ASM, 1958, v. 50, p. 1090-1105.

2. Дриц М. Е. идр. Изв. АН СССР, ОТН, 1958, № 8, с. 93—96.

3. Гладышевский и др. Кристаллография, 1961, т. 6, с. 769—770.







Методами металлографического, рентгеновского, электронографического и химического анализов изучалась взаимная растворимость компонентов при температурах до 1200° С. Сплавы приготовляли в герметичной титановой камере, в которую загружали Mg или смесь Mg и Ti [1]. На рис. 294 приведена построенная в этой работе диаграмма.

В системе отсутствуют промежуточные соединения. Растворимость Ті в Mg, по данным работы [1], выше, чем сообщалось ранее (см. М. Хансен и К. Андерко, т. II [1, 2]). Авторы [1] не уверены, что им удалось привести сплавы в равновеспое состояние при определении растворимости Mg в Ті. Полученные ими значения растворимости меньше определенных ранее (см. М. Хансен и К. Андерко, т. II [5]). Mg повышает температуру α →β-превращения Ті до ~890° С. При этой температуре происходит перитектическая реакция [1].

L Obinata I. u. a. Metall, 1959, Bd 13, S. 392-397.

 $\overline{1,0092}$ 0,9908

## Mg-U. Магний-уран \*

Растворимость U в Mg равна 0,0002% (ат.) [0,002% (по массе)] при 650° С и 0,017% (ат.) [0,17% (по массе)] при 1132° С.

 Wilhelm H. A. Nuclear Fuels Newsletter WASH-704, December, 1957, p. 2-4; cm. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 37.

#### 1,43700,5630

# Мg-Y. Магний-иттрий \*

Диаграмма (рис. 295) построена по данным работы [1], за исключением кривой растворимости У в Мg. Для построения последней использованы данные работы [2]. В работе [1] применяли металлографический, термический и рентгеновский анализы. Сплавы выплавляли из 99,5%-ного У и 99,97%-ного Mg. Данные работы [2], относящиеся к растворимости У в Mg, а также к кривым ликвидуса и солидуса, предпочтительнее, поскольку работа была посвящена тщательному исследованию только этого участка диаграммы. Исходные компоненты имели чистоту более 99,9%. Методами термического и металлографического анализов исследовали закаленные и отожженные сплавы. Предельная растворимость У в Mg составляет 2,6% (ат.), что предположительно подтверждено в работе [3].

Согласно работе [1], Mg стабилизирует высокотемпературную модификацию Y. Она устойчива до очень низких температур и испытывает эвтектоидное превращение при 775° С и 68,9% (ат.) Y. Высокотемпературная о. ц. к. модификация β-Y может быть зафиксирована при комнатной температуре.

В работе [4] исследована часть диаграммы со стороны Mg. Однако чистота использованного Y составляла всего 98,3%. По этой причине полученные результаты не включены в диаграмму. В работе подтверждено существование эвтектики между Mg и соединением, образующимся по перитектической реакции (возможно, Mg<sub>3</sub> Y). Эвтектическая точка расположена при 620 ± 5° C и 12,4% (ат.) [34% (по массе)] Y [4].

 $Mg_{17}Y_3$  имеет о. ц. к. решетку с периодом 11,27 [1] или 11,25 А [5]. Однако в работе [4] этой фазе приписан состав  $Mg_3Y$  и кубическая решетка, a = 3,76 А. Вторая промежуточная фаза  $Mg_5Y_2$  может быть индицирована в предположении ромбической решетки; a = 5,9 А, b = 11,0 А, c = 9,8 А [1] или гексагональной решетки, a = 6,05, А,  $c = 9,82_3$  А [5]. Предполагается, что  $Mg_5Y_2$  гомогенен в интервале ~83-87% (ат.) [58-65% (по массе)] Mg. Третье соединение MgY имеет кубическую решетку типа CsCl [5], a = 3,80 А [1].

174



Рис. 295. Mg-Y

1. Gibson E. D., Carlson O. N. Trans. ASM, 1960, v. 52, p. 1084-1096. 2. Mizer D., Clark J. B. Trans. AIME, 1961, v. 221, p. 207-208.

- 3. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1, с. 48-53.
- 4. Терехова В. Ф. и др. ЖНХ, 1960, т. 6, с. 235—236.
- 5. Smith J. F., Bailey D. M. U. S. At. Energy Comm. ISC-351, 1961, p. 70.

# $\bar{1},5705$ 0,4295

# Mg—Zn. Магний—цинк \*

Диаграмма на рис. 296 построена по данным тщательного рентгеновского, металлографического и термического исследований сплавов, содержащих 0— 66,7% (ат.) Zn [1]. Однако авторы называют построенную ими диаграмму «фазовой диаграммой», а не «равновесной диаграммой состояния». Для приготовления сплавов использовали спектрально чистые Mg и Zn. На участке от 66,7 до 100% (ат.) Zn диаграмма построена по данным М. Хансена н К. Андерко (см. т. 11 [1, 2, 27, 28]). Mg и Zn образуют пять промежуточных фаз. В работе [1] приводятся таблицы межплоскостных расстояний для Mg<sub>7</sub>Zn<sub>3</sub>, MgZn и Mg<sub>2</sub>Zn<sub>3</sub>, однако структуры этих фаз не определены. Температура инвариантных реакций и положение линий солидуса и ликвидуса определены термическим и дифференциальным термическим анализами.

растворимость Zn в твердом Mg составляет [1]:





В работе [2] проведено прецизионное определение периодов решетки твердого раствора на основе Mg.

1. Park J. J., Wyman L. L. WADC Tech. Rept. 57—504, October, 1957. 2. Hardie D., Parkins R. N. Phil. Mag., 1959, v. 4, p. 815—825.

1,4259 0,5741

# Mg—Zr. Магний—цирконий \*

По данным измерения твердости, микроскопического и рентгеновского анализов спеченных (в твердой фазе и с оплавлением) образцов в интервале 28,6— 38,4% (ат.) [60—70% (по массе)] Zr существует область твердого раствора на основе промежуточного соединения [1].

 T as c h o w H. J., S a u e r w a l d F. Z. Anorg. Allgem. Chem., 1961, Bd 307, S. 123-136.

1,7578

# Мп-Мо. Марганец-молибден \*

Проведено термическое, металлографическое и рентгеновское исследования трех сплавов [1]. Полученные результаты противоречат данным М. Хансена и К. Андерко (см. т. II, [2]). Растворимость Мо в δ-Мп выше, чем в γ-Мп



Рис. 297. Мп-Мо



1. Hellawell A. J. Less—Common Metals, 1959, v. 1, p. 343—347.

# 0,5934 Мп- N. Марганец-азот \*

Согласно работам [1, 2], область твердого раствора на основе у-Мп показана на диаграмме (см. М. Хансен и К. Андерко, т. II, рис. 517) неправильно. При 800° С существует двухфазная область. Данные о положении фазовых границ сведены в табл. 32.

При 1000° С ү, є и у' образуют непрерывный ряд твердых растворов [1]. Все три фазы имеют г. ц. к. решетку, γ'ферромагнитная модификация. Эвтектоидная реакция (γ-Мп) → (α-Мп) + є происходит при 600—800° С [1]. Изучено влияние состава на период решетки [1].

ТАБЛИЦА 32. ФАЗОВЫЕ ГРАНИЦЫ В СИСТЕМЕ Мп-N [1]

| t, °C                              | γ                                 | γ'                      | 3             | Ę                                          | · η. |
|------------------------------------|-----------------------------------|-------------------------|---------------|--------------------------------------------|------|
| $1000 \\ 820 \\ 800 \\ 600 \\ 400$ | 3,8-9,8<br>6,7-8,8<br>5,3-9,1<br> | 9,8—15,0<br>—<br>—<br>— | 15,0-20,7<br> | 24,4-?<br>24,4-?<br>27,5-34,7<br>28,8-34,7 | <br> |
| * По дан                           | ным работы [2]                    | l. '                    |               |                                            | ·    |

В работах [3, 4] определена растворимость N в жидком Mn: 1,54; 2,8; 1 и 2,2% (ат.) при соответственно 1510, 1275 [3], 1800 и 1380° C [4]. Для температурной зависимости растворимости предложены формулы: 1g% (ат.) N=3090/T—1,55 [3] и 1g% (ат.) N=3010/T—1,457 [4]. Данные обеих работ неплохо согласуются между собой.

Сообщается о существовании азида Mn (N<sub>3</sub>)<sub>2</sub> [5].

1 J u z a R. u. a. Z. Elektrochem., 1957, Bd 61, S. 804-809.

2. Brisi C. Mat. Ital., 1955, v. 47, p. 405—408. 3. Gokcen N. A. Trans. AIME, 1961, v. 221, p. 200—201.

- 4. Бараташвили И. Б. и др. ДАН СССР, 1961, т. 139, с. 1354—1355.
- 5. Franklin E. C. J. Amer. Chem. Soc., 1934, v. 56, p. 568-571.

 $\overline{1},7718$ 0,2282

### Mn-Nb. Марганец-ниобий \*

Мп-угол диаграммы изучен с использованием термического анализа в дополнении к микро- и рентгеноструктурному [1]. Сплавы готовили в атмосфере Ar в тиглях из окиси тория. Диаграмма (рис. 298) взята из этой работы, но в нее



Рис. 298. Мп- Nb

не включены узкие двухфазные области, которые не были определены экспериментально. Схематически на рис. 298 (вставка) показаны контуры диаграммы по данным работы [1].

В работе [1] определены следующие характеристики: эвтектическое образование смеси δ [2,4% (ат.) Nb] с NbMn<sub>2</sub> при 1224° С, концентрация эвтектической точки 3,6% (ат.) Nb; эвтектическая реакция  $\delta \rightleftharpoons \beta + \gamma$  при ~1120°С и 0,4% (ат.) Nb и перитектоидная  $\delta + NbMn_2 \rightleftharpoons \beta$  при 1145°С и ~2% (ат.) Nb. Подтверждаются данные М. Хансена и К. Андерко (см. т. II [1, 3]) о существовании соединения NbMn<sub>2</sub>.

В работе [2] термическим, металлографическим и рентгеноструктурным анализами также изучен Mn-угол диаграммы. Nb повышает температуру α ∠βпревращения Mn с 727 до 800° С. Определены следующие нонвариантные реакции: перитектойдная  $\beta$  + NbMn<sub>2</sub>  $\rightarrow \alpha$  при 800° C; перитектойдная  $\gamma$  + NbMn<sub>2</sub>  $\rightarrow \beta$  при 1135° C и эвтектическая Ж  $\rightarrow$ NbMn<sub>2</sub> +  $\gamma$  при 1220° C [2]. Перитектойдная реакция при 1135° С не соответствует более полным данным [1] и, возможно, является следствием ошибки в интерпретации данных термического анализа.

Периоды гексагональной решетки  $NbMn_2$ : a = 4,891 A, c = 7,969 A [2]. Эти значения несколько выше приведенных М. Хансеном и К. Андерко (см. т. II [3]).

Экспериментальное изучение двойной системы с целью поиска эквиатомных фаз с решеткой о. ц. к. или типа CsCl показало [3], что фаза NbMn в данной системе отсутствует.

1. Hellawell A. J. Less-Common Metals, 1959, v. 1, p. 343-347. · 2. Савицкий Е. М., Копецкий Ч. В. ЖНХ, 1960, т. 5, с. 755—757. 3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

1,5807 0.4193

## Mn-Nd. Марганец-неодим

Определена точка Кюри NdMn5. Соединение индицировано в предположении ромбической решетки типа GdMn5. Периоды решетки не указаны [1].

1. Wallace W. E. Частное сообщение; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 1,9712 0,0288

### Mn—Ni. Марганец—никель \*

Вновь исследована область диаграммы от 0 до 12% (ат.) Ni и от 1000 до 1250° C [1]. Полученные результаты подтверждают данные М. Хансена и К. Андерко (см. т. II [1]). Изучалось влияние 0-20% (ат.) Мп на период решетки Ni [2]. Измерены периоды решетки твердых растворов в интервале 40-80% (ат.) Мп. MnNi<sub>3</sub> имеет г. ц. к. решетку, a = 3,57 А. Фаза MnNi имеет упорядоченную тетрагональную решетку типа C;  $a = 3,714 \pm 0,003$  A,  $c = 3,524 \pm 0,003$  A [5], что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II, [7]).

- 1. Hellawell A., Hume-Rothery W. Phil. Trans. Roy. Soc., London, 1957, v. A249, p. 417-459. 2. Pearson W. B. Nature, 1954, v. 173, p. 364.
- 3. Pearson W. B., Thompson L. T. Canad. J. Phys., 1957, v. 35, p. 349-357.
- 4. Курнаков Н. Н., Тронева М. Я. Труды Института металлургии им. А. А. Байкова АН СССР, 1961, № 8, с. 128—134.
- 5. Kasper J. S., Kouvel J. W. Phys. Chem. Solids, 1959, v. 11, p. 231-238.
- 0,5359 1,4641

# Мп-О. Марганец-кислород

В химической литературе упоминаются соединения MnO, Mn<sub>3</sub>O<sub>4</sub>, Mn<sub>2</sub>O<sub>3</sub>, MnO<sub>2</sub>, MnO<sub>3</sub> и Mn<sub>2</sub>O<sub>7</sub> [1]. Существование MnO<sub>3</sub> точно не установлено, а Mn<sub>2</sub>O<sub>7</sub> при комнатной температуре и нормальном давлении — жидкость. В работе [2

рассмотрена литература, посвященна строению окислов. Поскольку в различных окислах валентность Мп не одинакова, проблемы, возникающие при изучении равновесия в системе, схожи с теми, с которыми сталкиваются при изучении значительно более исследованной системы Fe-O. Окислы, особенно MnO и Mn<sub>3</sub>O<sub>4</sub>, имеют область гомогенности [2-4]. Это может отчасти объяснить значительное расхождение данных различных авторов. Для построения диаграмм состояния необходимо обширное исследование равновесия в системе при переменном давлении. Точка плавления фазы «МпО» может колебаться в пределах нескольких сотен градусов в зависимости от давления кислорода. Наиболее высокая температура ликвидуса MnO равняется 1750° С [2, 5, 6]. Примерно при 1540° С и парциальном давлении кислорода 0,1 am образуется эвтектика между Mn<sub>3</sub>O<sub>4</sub> и MnO [2]. Изучено взаимодействие между Mn<sub>3</sub>O<sub>4</sub> и MnO в интервале 1248—1562° С в зависимости от парциального давления О<sub>2</sub> [2]. В работе [7] изучалось поверхностное окисление Мп. Обнаружено, что в интервале температур 200-1000° С одна из важнейших составляющих — MnO. В интервале от 50 до ~53% (ат.) О имеется однофазная область MnO, а в промежутке от 53 до ~57% (ат.) О существуют MnO  $_{\rm H}^{1} Mn_{3}O_{4}$  [8].

Температура плавления Mn<sub>3</sub>O<sub>4</sub>, 1567 ± 4° С, хорошо согласуется с результатами ранних работ [2]. Область гомогенности Mn<sub>3</sub>O<sub>4</sub> простирается от ~57 до 58,4% (ат.) О. Мп<sub>3</sub>О<sub>4</sub> существует в двух модификациях: низкотемпературной тетрагональной и высокотемпературной кубической [9-11]. Температура перехода из одной модификации в другую 1160 ± 5° С [11].

Температура равновесного сосуществования Mn<sub>3</sub>O<sub>4</sub> и Mn<sub>2</sub>O<sub>3</sub> на воздухе составляет  $877 \pm 8^{\circ}$  C, а при давлении O<sub>2</sub>, равном 1 am, 968  $\pm 5^{\circ}$  C [2].

Мп<sub>2</sub>O<sub>3</sub> существует в интервале 600-800 и не выше 900° С [7]. Во всех исследованных образцах MnO<sub>2</sub> при температурах выше 450° С превращалась в α-Mn<sub>2</sub>O<sub>3</sub> [12]. В интервале 600-940° С Мп<sub>3</sub>O<sub>4</sub> в присутствии О<sub>2</sub> взаимодействует с МпO<sub>2</sub> с образованием Мп<sub>2</sub>O<sub>3</sub> [4]. Однако выше 940° С Мп<sub>2</sub>O<sub>3</sub> распадается на Мп<sub>3</sub>O<sub>4</sub> и O<sub>2</sub>.

Соединению MnO<sub>2</sub> приписывалось по крайней мере 7 различных структур [12-22]. Разница определяется в основном наличием и интенсивностью линий на рентгенограммах порошка, связанных с упорядочением, обусловленным характером взаимного расположения октаэдров MnO<sub>6</sub> [12].

Не существует единого мнения относительно идентификации различных форм и их превращений. Это объясняется тем, что в распоряжении исследователей имелись только рентгенограммы порошка.

Кристаллическая структура. Опубликованные к 1955 г. данные по структурам и периодам решетки окислов Mn рассмотрены в монографии [23].

МпО имеет г. ц. к. решетку типа NaCl с периодом 4,444<sub>5</sub> [24], 4,442 ± ± 0,001 (MnO<sub>1,00</sub>) или 4,440 ± 0,001 A (MnO<sub>1,07</sub>) [2]. Как показало нейтронографическое исследование при 80° С, MnO имеет магнитноупорядоченную структуру, a = 8,85 A [25]. Ниже 173° К наблюдается ромбоэдрическое искажение решетки МпО и при 93° К окисел имеет существенно искаженную кубическую структуру [26]. Ромбоэдрическое искажение структуры подтверждено в работе [27]. При понижении температуры увеличивается объем [28, 29].

Низкотемпературная модификация Mn<sub>3</sub>O<sub>4</sub> имеет г. ц. тетрагональную решетку, родственную шпинели, пространственная группа  $F4_1/adm; a = 8,140$  A (?), с = 9,435 А (?) [30]. Первоначально соединению приписывали о. ц. тетрагональную решетку; a = 5,76 A, c = 9,44 A, пространственная группа  $I4_1/amd$  [31]. Mn<sub>2</sub>O<sub>3</sub> имеет по крайней мере две модификации. α-Mn<sub>2</sub>O<sub>3</sub> является прототипом

о. ц. к. структур, a = 9,408 Å [32].  $\gamma$ -Mn<sub>2</sub>O<sub>3</sub> имеет тетрагональную решетку; a = 8,1 А, c = 9,4 А. Структура ү-Мп<sub>2</sub>O<sub>3</sub> аналогична структуре Мп<sub>3</sub>O<sub>4</sub> с вакансиями атомов Mn [33]. Сообщается о существовании о. ц. тетрагональной модификации  $Mn_2O_3$ ; a = 8,87 A, c = 9,97 Å [34].

Различные модификации MnO<sub>2</sub> имеют тетрагональную, гексагональную и ромбическую структуры, хотя все они являются видоизменениями одной и той же исходной структуры [12-22]. α-МпО2 имеет тетрагональную решетку типа рутила; a = 4,397 Å, c = 2,873 Å [22] или a = 4,388 Å, c = 2,865 Å [13]. Решетка β-MnO<sub>2</sub> ромбическая;  $a = 4,534 \pm 0,010$  A,  $b = 9,303 \pm 0,021$  A,  $c = 2,859 \pm 0.010$  A  $\pm$  0,005 A [12].  $\eta''$ -Мп<sub>2</sub>O<sub>3</sub> имеет ромбическую решетку;  $a = 4,364 \pm 0,020$  A,

180

 $b = 9,283 \pm 0,020$  А,  $c = 2,841 \pm 0,020$  А [12],  $\varepsilon_1$ -МпО<sub>2</sub> имеет ромбическую решетку;  $a = 7,63 \pm 0,004$  Å,  $b = 7,79 \pm 0,04$  Å,  $c = 9,32 \pm 0,05$  А [12].

- 1. HodgmanC. D. a. o. (eds.), Handbook of Chemistry and Physics, 41st ed., Chemical Rubber Publishing Co., Cleveland Ohio, 1959, p. 604-605.
- 2. Hahn W. C. (Jr.), Muan A. Amer. J. Sci., 1960, v. 258, p. 66-78.
- 3. Ария С. М. идр. ЖОХ, 1956, т. 26, с. 2102—2106.
- 4. Grasselly G., Klivenyi E. Acta Univ. Szeged. Acta Mineral. Petrog., 1956, v. 9, p. 33-40.
- 5. White J. a. o. J. Roy. Tech. Coll. (Glasgow), 1934, v. 3, p. 231-240.
- 6. Glaser F. P. Amer. J. Sci., 1958, v. 256, p. 398-412.
- 7. Bouillon F. e. a. Compt. Rend., 1961, v. 252, p. 3986-3988.
- 8. Роде Е. Я. ЖНХ, 1956, т. I. с. 1430—1439.
- 9. Southard J.C., Moore G.E.J. Amer. Chem. Soc., 1942, v. 64, p. 1769-1770: см. [1].
- 10. McMurdie H. F., Golovato E. Res. Natl. Bur. Std., 1948, v. 41, р. 589—600; см. [1].
- 11. Van Hook H. J., Keith M. L. Amer. Mineralogist, 1958, v. 43, p. 69-83; см. [1].
- 12. Gattow G., Glemser O. Z. Anorg. Allgem. Chem., 1961, v. 309, p. 121-232.
- 13. Bhide V. G., Damle R. V. J. Sci. Ind. Res. (India), 1961, v. 20B, p. 405-507.
- 14. Glemser O. u. a. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 1-19.
- 15. Gattow G., Glemser O. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 20—36.
- 16. N y e W. F. a. o. Proc. Ann. Power Sources Conf., 1959, v. 13, p. 125-129.
- 17. De Wolfe P. M. Acta Cryst., 1959, v. 12, p. 341-345.
- 18. Fukuda M. Natl. Tech. Rept. (Matsushita Elec. Ind. Co., Osaka), 1959, v. 5, p. 1–13.
- 19. Brenet J. P. e. a. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 69-80.
- 20. Gattow G., Glemser O. Naturwissenschaften, 1960, Bd 47, S. 59-60.
- 21. Glemser O., Meisiek H. J. Prakt. Chem., 1958, Bd 5, S. 219-223.
- 22. Ito K., Takahashi T. Kogyu Kagaku Zasshi, 1961, v. 64, p. 1375-1378.
- 23. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1018-1019.
- 24. Jay A. H., Andrews K. W. J. Iron Steel Inst. (L.), 1946, v. 152, p. 15P; см. [23].
- 25. Shull C.G., Smart J.S. Phys. Rev., 1949, v. 76, p. 1256-1257; см. [23].
- 26. Tombs N. C., Rooksby H. P. Nature, 1950, v. 165, p. 442; см. [23], 27. Roth W. L. Abstracts, American Crystallographic Association Summer
- Meeting, 1956, р. 25; см. [23]. 28. Ellefson B. S., Tayler N. W. J. Chem. Phys., 1934, v. 2, p. 58; см. [23].
- 29. Ruhemann B., Phys. Z. Sowjetunion, 1935, Bd 7, S. 590.
- 30. Mason B. Amer. Mineralogist, 1947, v. 32, p. 316; см. [23].
- 31. A minoff G. Z. Krist., Ĭ926, Bd 64, S. 475, см. [23].
- 32. Морозов И.С., Кузнецов В.Г.Изв. АН СССР, ОХН, 1949, № 4,
- с. 1343; см. [23].
- 33. Verwey E. J. W., de Boer J. H. Rec. Trav. Chim., 1936, v. 55, p. 431; см. [23].
- 34. LeBlanc M., Wehner G. Z. Physik Chem. (Leipzig), 1933, Bd AI68, S. 59; см. [23].

0.2488 1.7512

1.4234

0,5766

#### Мп—Р. Марганец—фосфор \*

Подтверждено, что Mn<sub>3</sub>P имеет тетрагональную решетку, изоструктурную с Fe<sub>3</sub>P; a = 9,181 A, c = 4,568 [1], что согласуется с данными М. Хансена и К. Андерко (см. т. II [5]).

Обнаружена заметная область растворимости Mn<sub>2</sub>P [1]. При повышении температуры граница области со стороны Р сдвигается в сторону чистого Р [1]. Не подтверждено соединение Мп<sub>3</sub>Р<sub>2</sub> [1]. Автор [1] считает, что полученные ранее данные (см. М. Хансен и К. Андерко, т. II [3]), относящиеся к интервалу Мп. Р-МпР, свидетельствуют о широкой области гомогенности Мп<sub>2</sub>Р, а не о существовании новой промежуточной фазы. Необходимо вновь провести тщательный термический анализ системы Mn-P. Более точно определены периоды гексагональной (типа Fe<sub>2</sub>P) решетки Mn<sub>2</sub>P: a = 6,081 A, c = 3,460 A [1].

Вновь были определены периоды решетки MnP [2, 3]. Результаты работы [2] превосходно согласуются с данными, полученными ранее (см. М. Хансен и К. Анлерко, т. II [4, 5]).

1. Rundqvist S. Acta Chem. Scand., 1962, v. 16, p. 992-998. 2. Rundqvist S. Там же, р. 287—292.

3. Щукарев С. А. и др. ЖОХ, 1961, т. 31, с. 1773—1777.

### Mn—Pb. Марганец—свинец \*

Химическим анализом насыщенных расплавов определялась растворимость Mn в жидком Рb [1].

В работе использовались 99,986% - ный Рb и 99,9% - ный Мп. Экстраполяцией экспериментальных данных определено положение эвтектики: <0,04% (ат.)

[<0,01% (по массе)] Mn [1]. Состав обогащенного свинцом расплава при температуре монотектики (1198° С) равен примерно 73,6% (ат.) [91,3% (по массе)] Рь [1]. На рис. 299 приведена кривая растворимости Мп в жидком Рь [1].

Растворимость Мп в Рь при комнатной температуре составляет ~0,02% (ат.). Эта величина была получена в опытах по термообработке при изучении сверхпроводимости пленок сплава [2].

1. Pelzel E. Metall, 1956, Bd 10, S. 717-718. 2. Barth N. Z. Physik, 1960, Bd 148, S. 646-652.

# 1,7116

# Mn—Pd. Марганец—палладий \*

Тщательным термическим анализом подтверждено, что δ-Mn образуется при 1211° С по перитектической реакции δ [3,9% (ат.) Рd] + Ж [5,7% (ат.) Рd] → → y [4% (ат.) Pd] [1]. Это подтверждает результаты более ранней работы (см. М. Хансен и К. Андерко, т. II, [3]).

1. Hellawell A. J. Less-Common Metals, 1959, v. 1, p. 343-347.

1,3562 0,6438

## Mn—Pu. Марганец—плутоний \*

Диаграмма (рис. 300) построена по данным металлографического, рентгеновского, термического и дилатометрического анализов [1]. Хотя диаграмму нельзя



считать окончательной, она очень похожа на диаграмму, приведенную М. Хансеном и К. Андерко (см. т. II, рис. 523, а). В настоящей диаграмме более подробно показана растворимость Mn в Pu и характер полиморфных превращений Pu. Строение этой области яснее видно на вставке рис. 300 [2]. Использованный в работе Ри содержал ~0,007% О и 0,0380-0,0720% остальных примесей.





РиМп<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [3, 4] с периодом 7,292 ± 0,001 (со стороны Ри) [3] или 7,290 ± 0,005 Å [4].

1. Schonfeld F. W. Вкниге «The Metal Plutonium». Coffinberry A. S.,

Miner W. N. (eds.). University of Chicago Press, Chicago, 1961, p. 240—254. 2. Elliott R. O., Larson A. C. Там же, p. 265—280.

3. Coffinberry A.S., Ellinger F. H. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, v. 9, p. 138-146.

4. R u n n a 1 1 s O. J. C. Canad. J. Chem., 1956, v. 34, p. 113-145.

1,4696 0,5304

# Мп- Re. Марганец-рений

Диаграмма на рис. 301 построена по данным микроскопического и рентгеновского анализов и измерения микротвердости сплавов с 0,2-32,1% (ат.) Re. При 22,9% (ат.) Re существует тетрагональная  $\sigma$ -фаза, a = 9,13 A, c = 4,93 A. 22,9% (аг.) Ко существует теграговальная очраза, u = 5,15 К, v = 4,35 К. В то же время в сплаве с 52,3% (ат.) Re после отжига при 1000° C в течение 360 и



рентгенографически обнаружена  $\sigma$ -фаза, a = 9,14 A, c = 4,75 A [2]. Сравнение периодов с решеток обеих фаз позволяет предположить существование растворимости Mn в σ-фазе. σ-фаза имеет упорядоченную структуру, состав фазы близок к Re<sub>16</sub>Mn<sub>14</sub>.

1. Савицкий Е. М. и др. ЖНХ, 1961, т. 6, с. 1474—1476. 2. Копецкий Ч. В., идр. ДАН СССР, 1959, т. 125, с. 87-88. 3. Агеев Н. В., Шехтман В. Ш. ДАН СССР, 1960, т. 135, с. 309—311.

184

В результате термического, рентгеновского и металлографического анализов трех сплавов построен фрагмент диаграммы Мп—Rh для сплавов, богатых Мп

> 1,7325 0,2675

0,2338

1,7662

 $\bar{1},6543$ 0,3457





(рис. 302) [1]. у-Мп кристаллизуется по перитектической реакции при ~ 1234 °С и образует обширную область твердых растворов. Минимум на кривой ликвидуса вблизи перитектической точки следует считать предположительным. так как построен он лишь по одной экспериментальной точке. Предельная растворимость Rh в Mn составляет ~4% (ат.). Re расширяет область существования у-фазы в сторону более низких температур, при которых происходит ее эвтектоидный распад. О таком характере взаимодействия в этой области диаграммы уже сообщалось в ранней работе (см. М. Хансен и К. Андерко, т. II. [1]).

1. Hellawell A. J. Less — Common Metals, 1959, v. 1, p. 343—347.

> Мп— Ru. Марганец—рутений \*

В результате термического, рентгеновского и металлографического анализов четырех сплавов построен фрагмент диаграммы Мп—Ru для сплавов, богатых Мп (рис. 303) [1]. δ-Мп образуется по перитектической реакции при 1268° С. Предельная растворимость Ru в δ-Mn составляет 8% (ат.). Ru расширяет температурный интервал существования γ-Mn.

1. Hellawell A. J. Less—Common Metals, 1959, v. 1, p. 343—347.

# Mn—S. Марганец—сера \*

Проведено прецизионное определение периода г. ц. к. (тип NaCl) решетки MnS (*a* = 5,224 A [1]).

1. Le Bot J., Quan D. T. Compt. Rend., 1961, v. 254, p. 1321-1322.

> Mn—Sb. Марганец—сурьма \*

При изучении магнитных свойств соединений с гексагональной решеткой типа NiAs методами порошковой метал - лургии был получен антимонид MnSb [1]. На образце, медленно охлажденном от 700° С, определены периоды решетки: a = 4,15 А, c = 5,78 А. По данным работы [2], a = 4,22 А, c = 5,95 А.

1. Lotgering F. K., Gorter E. W. Phys. Chem. Solids, 1957, v. 3, p. 238— 249. 2. Щукарев С. А. идр. ЖОХ, 1961, т. 31, с. 1773—1777.

0,0871 1,9129

### Мп—Sc. Марганец—скандий

Добавка 1% (ат.) Sc на 20 град понижает температуру  $\gamma \stackrel{>}{\longrightarrow} \delta$ -превращения Mn [1]. Sc Mn<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>; a = 5,033 A, c = 8,278 A [2].

1. Hellawell A. J. Less—Common Metals, 1959, v. 1, p. 110—112. 2: Dwight A. E. Trans. ASM, 1961, v. 53, p. 479—500.

0,2913 $\overline{1},7087$ 

# Mn—Si. Марганец—кремний \*

По данным металлографического, рентгеновского, термического анализов [1, 2] и измерения сопротивления [3] построена частичная диаграмма MnSi—Si (рис. 304).

Точка перитектического образования соединения лежит ближе к концентрации 62,5% (ат.) Si, чем к составу MnSi<sub>2</sub>. Соединение гомогенно в интервале 62,5— 63,4% (ат.) Si [1, 3]. В работе [2] этому соединению приписан состав Mn<sub>3</sub>Si<sub>5</sub> и утверждается, что область гомогенности лежит с богатой Mn стороны Mn<sub>3</sub>Si<sub>5</sub>. Для построения ликвидуса (рис. 304) изучено 13 сплавов в интервале 55— 70% (ат.) Si [2]. Сплавы выплавляли из электролитического Mn и Si чистотой 99,998%. Результаты обенх работ [1, 2] согласуются с данными, полученными ранее (см. М. Хансен и К. Андерко, т. II [5]). Единственное расхождение относится к стехиометрии соединения. Температура перитектики равна 1150° С, эвтектика расположена при 1145° С и 67,5% (ат.) [51,5% (по массе)] Si [1].

Рентгеновским анализом монокристаллов определено положение атомов в элементарной ячейке Mn<sub>3</sub>Si [4]. Обнаруженное ранее (см. М. Хансен и К. Андерко, т. II [10]) превращение происходит в интервале 600—650° С и может быть как диффузионным, так и бездиффузионным (мартенситным) [5].

1. Коршунов В. А. идр. ФММ, 1961, т. 12, с. 277—284. 2. Дудкин Л. Л., Кузнецова Е. С. ДАН СССР, 1961, т. 141, с. 94—97. 3. Коршунов В. А., Гельд П. В. ФММ, 1961, т. 11, с. 945—947. 4. Aronson B. Acta Chem. Scand., 1960, v. 14, р. 1414—1418. 5. Давыдов К. Н. идр. ФММ, 1961, т. 12, № 3, с. 108—113.

#### $\overline{1},6654$ 0,3346

# Mn—Sn. Марганец—олово \*

Температура точки Кюри Mn<sub>4</sub>Sn (Mn<sub>3</sub>Sn) равна 178° С [1].

1. Ochsenfeld Z. Metallkunde, 1958, Bd 49, S. 472-476.

#### ī,4824 0,5176

Мп-Та. Марганец-тантал \*

Диаграмма на рис. 305 построена по данным термического, рентгеновского и металлографического анализов [1]. Исходный Мп имел чистоту 99,83%, а Та — 99,9%. Границы растворимости Тав различных модификациях Мп не установлены.

186



Характер фазовых равновесий вблизи областей Ж, у-Мп и б-Мп предположителен.

В подтверждение известных данных (см. М. Хансен и К. Андерко, т. II [1, 2]) сообщается, что TaMn<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>, a = 4,852 A, c = 7,911 А. Точка плавления ТаМп<sub>2</sub> расположена выше 1670° С [1].

1. Савицкий Е. М., Копецкий Ч. В. ЖНХ, 1960, т. 5, с. 2638—2640.

ī,5389 0.4611

# Mn-Tb. Марганец-тербий

TbMn<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7,620 ± 0,005 A [1].

1. Wernick H. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.

1,6339 0.3661

## Mn—Те. Марганец—теллур \*

При 800° С МпТе имеет небольшой избыток атомов Мп (МпТе<sub>1,002-1,013</sub>) [1]. Область гомогенности соединения, если таковая имеется, чрезвычайно узка [1]. Периоды гексагональной решетки МпТе при комнатной температуре: а =  $= 4.087 \pm 0.001$  A,  $c = 6.701 \pm 0.002$  A [2]. Нейтронографическим методом исследован антиферромагнетизм MnTe [3].

MnTe<sub>2</sub> образуется по перитектической реакции при 735° С [4]. Ликвидус для сплава стехнометрического состава расположен при 881° С [4].

1. Johansen H. A. J. Inorg. Nucl. Chem., 1958, v. 6, p. 344-345. 2. Гражданкина Н. П., Гурфель Д. И. ЖЭТФ, 1958, т. 35, с. 907—910. 3. Дорошенко А. В. идр. ФММ, 1961, т. 12, с. 911—912. 4. Дудкин Л. Д., Вайданич В. И. ФТТ, 1960, т. 2, с. 1526—1532.

# 1,3741 0,6259

# Mn—Th. Марганец—торий \*

Ранее в частном сообщении (см. М. Хансен, К. Андерко, т. II [2]) упоминалось о существовании эвтектики в сплавах, богатых Th. В работе [1] отмечается, что в настоящее время данные о наличии эвтектики можно встретить в открытой литературе [2].

Более точно определены периоды решетки ThMn<sub>2</sub> (гексагональная, типа MgZn<sub>2</sub>); a = 5,476 Å, c = 8,931 Å [3].

1. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BM1-1300, 1958, p. 116–117.

Wilhelm H. A. a. o. U. S. At. Energy Comm. CT-3714, 1946.
 Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.

0,0595 1,9405

# Мп-Ті. Марганец-титан \*

Диаграмма состояния системы изучена далеко не полностью. В недавних исследованиях [1-4] сплавов с 55-100% (ат.) Мп получено много новых данных о характере фазового взаимодействия компонентов в этом интервале. Однако для точного определения положения точек и устранения противоречий необходимы дополнительные рентгеновские и термические исследования. Диаграмма состояния (рис. 306) построена по данным работ [1-3], часть диаграммы в интервале 0,55% (ат.) Мп взята у М. Хансена и К. Андерко (см. т. II, рис. 530).

189



Тщательным термическим анализом богатых Mn сплавов определен характер взаимодействия β-, γ- и δ-Мп [1]. Двухфазные области чрезвычайно узки. что видно из вставки на рис. 306. Эвтектика расположена при 90,5% (ат.) Мп и 1204° С. Соединение ТіМп, плавится конгруэнтно при 1325° С, область гомогенности соединения не исследована. На кривых охлаждения и нагревания наблюдались остановки при 1230 и 1250° С. Судя по этим данным, ТіМп, образуется по перитектической реакции при 1230° С. Следует отметить, что это предположение не подтверждено микроскопическим анализом. Ничего не сказано о характере изотермического превращения при 1250° С [1]. Упомянутые данные с таким же успехом могут свидетельствовать о существовании еще одного соединения между TiMn<sub>3</sub> и TiMn<sub>2</sub>. Остановка на кривых охлаждения сплавов с 50 и 55% (ат.) Мп при 1181° С соответствует эвтектике Ж → β-Ті + ТіМп<sub>2</sub>. Ранее для этого эвтектического преврашения сообщалась температура 1175° С. В интервале от температуры ликвидуса до 1175° С не обнаружено других нонвариантных превращений [1]. Это подтверждает предположение М. Хансена и К. Андерко (см. т. II [4]) о том, что ТіМп образуется не по перитектической реакции.

Термическим и металлографическим анализами изучена система в интервале 67—100% (ат.) Мл [4]. Полученные значения температур нонвариантных превращений хорошо согласуются с данными работы [1]. Кроме плавящегося конгруэнтно при 1330° С ТіМл<sub>2</sub>, обнаружено соединение ТіМл<sub>4</sub>, которое образуется по перитектической реакции при 1230° С [4]. Состав соединения определен металлографическим анализом. γ-Мп и ТіМл<sub>4</sub> образуют эвтектику при 1195° С и 91% (ат.) [92,4% (по массе)] Мл [4]. Данные работ [1, 7] значительно различаются в определении характера взаимодействия аллотропических модификаций Мл. При добавке Ті температура γ 50-превращения повышается до перитектической Ж + + δ-Мп γ-Mn (1225° С); температура β 50-превращения повышается до перитектоидной γ-Mn + ТіМл<sub>4</sub> 70-Mn (1160° С); температура α 26-превращения повышается до перитектоидной β-Mn + ТіМл<sub>4</sub> са-Mn (730° С). Данные термического анализа в работе [4] выглядят не так убедительно, как в работе [1].

Термическим, металлографическим и рентгеновским анализами изучена диаграмма в интервале 45—100% (ат.) Мп [2]. Для приготовления сплавов использовался губчатый Ті (99,7%). Установлено, что ТіМп<sub>2</sub> плавится конгруэнтно при 1325° С и имеет широкую область гомогенности. Эвтектика расположена при 1185° С и 81,5% (ат.) Мп [2], что сильно отличается от данных работы [1].

Возможно, что причина расхождения — значительный угар Mn [2]. Между ТіМп, и Mn других промежуточных фаз не обнаружено [2]. ТіМп сосуществует с ТіМп, при 1150° С [2].

Металлографическим и рентгеновским анализами обнаружены две промежуточные фазы между Mn и TiMn<sub>2</sub> [3]. Они обозначены TiMn<sub>3</sub> и «R-фаза» [ $\sim 82\%$  (ат.) Mn]. В закаленных от 1145° С сплавах с 87 и 91% (ат.) Mn обнаружен  $\alpha$ -Mn. Ни TiMn<sub>3</sub>, ни «R-фаза» не наблюдаются в образцах, отожженных при 700° С, что можно объяснить эвтектоидным распадом.

При построении диаграммы (рис. 306) данные работы [3] пришлось интерпретировать несколько иначе. Два богатых Mn соединения были предположительно обозначены TiMn<sub>3</sub> и TiMn<sub>4</sub>. Судя по составам сплавов, в которых наблюдался эффект на кривой охлаждения в работе [1], соединение ТіМп<sub>4</sub> должно быть расположено при ~78% (ат.) Мп, а не 83% (ат.), как предполагалось в работе [3]. Температура перитектического образования ТіМпа принята равной 1250, а не 1230° С [1]. По данным рентгеновского исследования, схематически показаны перитектоидное образование а-Mn и эвтектоидный распад ТiMn<sub>3</sub> и TiMn<sub>4</sub>. Тепловые эффекты, связывавшиеся с перитектоидным превращением при 730° C [4], возможно, соответствуют эвтектоидному превращению, о котором сообщается в работе [3]. Граница ТіМп, показана по данным работы [2]. Вновь определены периоды гексагональной (типа MgZn<sub>2</sub>) решетки TiMn<sub>2</sub>: a = 4,826 A, c = 7,924 A [5], что хорошо согласуется с данными М. Хансена, К. Андерко (см. т. II [13]). Периоды решетки, определенные в работе [4], заметно отличаются от указанных выше: a = 4,822 A, c = 7,833 A. «R-фаза» имеет ромбоэдрическую решетку, изотипную с тройной фазой в системе Мо-Сг-Со [6]; в элементарной ячейке содержится 53 атома, периоды эквивалентной гексагональной решетки: а =

190

= 11,003 A, c = 19,446 A [3]. Рентгенограммы ТіМп<sub>3</sub> не индицированы [3]. Отмечается их сходство с рентгенограммами тетрагональных или ромбических фаз в системе Мо-Ni.

В работах [7, 8] обсуждается кинетика образования и область существования мартенситной г. к. α'-фазы и метастабильной ω-фазы.

- 1. Hellawell A., Hume-Rothery W. Phil. Trans. Roy. Soc., London. 1957, v. A249, p. 417-459.
- 2. Murakami Y., Enjyo T. Nippon Kinziku Gakkaishi, 1958. v. 22. p. 261-265.
- 3. Waterstrat R. M. Trans. AIME, 1961, v. 221, p. 687—690. 4. Савицкий Е. М., Копецкий Ч. В. ЖНХ, 1960, т. 5, с. 2422—2434.
- 5. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.
- 6. Котига Ү. а. о. Аста Стузт., 1960, v. 13, р. 575. 7. Агеев Н. В., Смирнова З. М. Сб. «Титан и его сплавы». Изд-во АН CCCP, 1958, c. 17-24.
- 8. Дьякова М. А., Богачев И. Н. ФММ, 1960, т. 10, с. 896-902.

1.5123 0,4877

# Mn—Tm. Марганец—тулий

TmMn<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>,  $a = 5,241 \pm 0,005$  A,  $c = 8,565 \pm 0.005 \text{ A}$  [1].

- 1. Wernick J. H., Haszko S. E. Phys. Chem. Solids, 1961, v. 18, p. 207-209.
- 0.0327 1,9673

#### Mn—V. Марганец—ваналий \*

Представленная на рис. 307 диаграмма в области сплавов, богатых Мп, построена по данным тщательного термического анализа семи сплавов, выплавленных из Mn и V высокой чистоты [1]. При добавке V повышаются температуры



Возможно, что при этой температуре происходит перитектическое образование β-Мп, однако утверждать с уверенностью нельзя, поскольку двухфазные области на данном участке диаграммы очень узкие.

При изучении упругости паров методом Кнудсена получены термодинамические данные, по которым рассчитана растворимость (рис. 308) [2]. Сообщается о существовании о-фазы вблизи 50% (ат.) [2]. Никаких сведений о ней не приведено. Эти сообщения невозможно согласовать с данными работы [1], которые предпочтительнее (см. рис. 307). В то же время дальнейшие исследования, возможно, помогут устранить противоречивость результатов работ [1, 2].

Показано, что решетка эквиатомного сплава не о. ц. к. и не относится к типу CsCl. как предполагалось ранее (см. М. Хансен и К. Андерко, т. II [1, 3]).

1. Hellawell A., Hume-Rothery W. Phil. Trans. Roy. Soc., London, 1957, v. A249, p. 417-459.

2. Евсеев А. М., Пожарская Г. В. ЖНХ, 1960, т. 5, с. 1896-1897. 3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

1,7908 0,2092

### Mn— Ү. Марганец—иттрий

Диаграмма на рис. 309 взята из работы [1], где изучалось влияние У на полиморфные превращения Мп. Чистота исходных материалов не указана. Обнаружены соединения YMn<sub>2</sub> [2-4] и YMn<sub>5</sub>

[4]. ҮМп, имеет г. ц. к. решетку типа имеет ромбическую решетку; а = = 7.12 Å, b = 4.34 Å, c = 3.05 Å [4]. При 925° С и 29—35% (ат.) [20— 25% (по массе)] Mn образуется эвтектика [5].

- 1. Hellawell A. J. Less Common Metals, 1959, v. 1, p. 343-347.
- 2. Beaudry B. J. a. o. Acta Cryst., 1960, v. 13, p. 743-744.
- 3. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 4. Nassau K. a. o. Phys. Chem. Solids, 1960, v. 16, p. 123-130.
- 5. Daane A. H., Spedding F. H. U. S. At. Energy Comm. ISC-976, 1957, р. 20-21 см. в книге «Редкоземельные металлы», под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965. 3



1,9244

### Mn—Zn. Марганец—цинк \*

Изучением магнитных свойств [1] установлено, что пересыщенная ε-фаза испытывает в интервале 50—100° С превращение по следующей схеме:  $\varepsilon \to \varepsilon' \to$  $\rightarrow \alpha'$ . Фаза є' метастабильна и имеет гексагональную, возможно, упорядоченную структуру. Превращение  $\varepsilon \to \varepsilon'$  является диффузионным, а превращение  $\varepsilon' \to \alpha'$ имеет сдвиговый характер.

Рентгеновским анализом подтверждено существование сверхструктуры в α'-фазе [1]. Ранее это только предполагалось (см. М. Хансен и К. Андерко, т. П, [1]).

1. Tezuka S. a. o. J. Phys. Soc. Japan, 1960, v. 15, p. 931.

13 Р. П. Эллиот. том II

### Mn—Zr. Марганец—цирконий \*

Полная диаграмма состояния (рис. 310) построена по данным работ [1, 2] и М. Хансена и К. Андерко (см. т. II [1-3]). В работах [1, 2] использованы термический, металлографический и рентгеновский методы. Кроме того, в работе [2] измеряли твердость и микротвердость сплавов. Богатые Мп сплавы выплавляли в атмосфере Ar в тиглях из окиси тория [1], корунда или окиси бериллия [2]. Данные обеих работ близки. Расхождения наблюдаются только в определении



Рис. 310. Мп-Zr

характера взаимодействия при высоких температурах (см. вставки на рис. 310). В экспериментальном исследовании эквиатомных фаз со структурой о. ц. к. или типа CsCl в двойных системах фаза ZrMn не была обнаружена.

Вновь определена кристаллическая структура ZrMn<sub>2</sub>: a = 5,039 A, c = = 8,279 А [4]. Эти данные отличаются от полученных ранее (см. М. Хансен и К. Андерко, т. II [2, 3]).

1. Hellawell A. J. Less-Common Metals, 1959, v. 1, p. 343-347. 2. Савицкий Е. М., Копецкий Ч. В. ЖНХ, 1960, т. 5, с. 2422—2434.

3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

4. Dwight A. E. U. S. At. Energy Comm. ANI-6330, 1960, p. 156-158.

0,8357 1.1643

# Мо-N. Молибден-азот \*

Электронографическим исследованием подтверждено, что Mo2N имеет г. ц. к. решетку с периодом 4,169 А [1]. При азотировании пленки Мо в NH<sub>3</sub> в структуре Мо. N наблюдается недостаток атомов Мо. Вблизи состава MoN электронографически обнаружены две гексагональные фазы: MoN (I) пространственная группа  $P\overline{3}m1$ , a = 5,72 A, c = 5,60 A и MoN (II), a = 5,665 A, c = 5,52 A [2]. Периоды решетки MoN (I) хорошо согласуются с данными М. Хансена и К. Андерко (см. т. II [2]). Однако для соединения указаны разные пространственные группы. Предпочтительнее данные работы [2], так как они основаны на строгой кристаллографической интерпретации результатов. О существовании MoN (II) ранее не сообщалось. Предварительные данные работ [1, 2] изложены в работе [3].

Сообщается об образовании Мо<sub>5</sub>N<sub>4</sub> [4].

- 1. Троицкая Н. В., Пинскер З. Г. Кристаллография, 1959, т. 4, c. 36-41.
- 2. Троицкая Н. В., Пинскер З. Г. Кристаллография, 1961, т. 6, c. 43—48.
- 3. Пинскер З. Г. и др. Кристаллография, 1957, т. 2, с. 179-181.

4. Morel R. W. F. a. o. A Study of Selected Metallic Borides, Nitrides, and Phosphides, Final Report on

| Con    | tract No 80nr—80200, 1952    |
|--------|------------------------------|
| (?),   | 60 p. (AD 12451), Nucl.      |
| Sci.   | Abstr., 1955, v. 9, p. 3380. |
| 0,0140 | Мо— Nb.                      |
| 1,9860 | Молибден —                   |

13\*

Сушествование неограниченной растворимости компонентов в данной системе было проверено в работах [1-3]. С помощью металлографического анализа и измерений физических свойств сплавов, приготовленных из 98,7%-ного Nb и 99,9%-ного Мо, построена диаграмма (рис. 311) [1]. Определением темпе-

ниобий



195

ратуры начала плавления четырех сплавов и чистых элементов установлено, что минимум соответствует температуре 2345—2350°С и концентрации 19,5—29,3% (ат). [20-30% (по массе)] Мо. В работе [2] локальным рентгеноспектральным анализом диффузионных пар установлена неограниченная растворимость компонентов при 1100° С. В работе [3] приведена зависимость параметра о. ц. к. решетки твердого раствора от состава.

- 1. Корнилов И. И., Полякова Р. С. Труды Института металлургии им. А. А. Байкова, АН СССР, 1957, вып. 2, с. 149—153.
- Birks L. S., Seebold R. E. J. Nucl. Mater., 1961, v. 3, p. 249-259.
   Goldschmidt H. J., Brand J. A. J. Less-Common Metals, 1961, v. 3, p. 44-61.

0,2135 $\overline{1},7865$ 

### Мо-Ni. Молибден-никель \*

Металлографическим и рентгеновским методами вновь исследована система Мо—Ni в интервале 12—50% (ат.) [18—62% (по массе)] Мо и 600—1000° С. Сплавы готовили из Ni и Мо чистотой соответственно 99,95 и 99,8% [1]. Положение фазовых границ и изотермических превращений (рис. 312) в общем согласуется с приведенным М. Хансеном и К. Андерко (см. т. II, рис. 537). Различие лишь в ходе границы растворимости Мо в Ni и особенно в быстром уменьшении рас-



4 особенно в быстром уменьшении растворимости вблизи температуры перитектоидного образования MoNi<sub>4</sub>. Определенный в работе [2] солидус в интервале 0—26,4% (ат.) [0—37% (по массе)] Мо и данные, относящиеся к системе Мо—Ni—Cr [3], неплохо согласуются с результатами работ [1] и М. Хансена и К. Андерко (см. т. II, рис. 537). Дилатометрическим анализом температура перитектоидного образования MoNi<sub>4</sub> определена равной 865° C [4].

Длительным старением получена фаза MoNi<sub>4</sub> [1]. Она имеет упорядоченную о. ц. тетрагональную решетку, a = 5,727 A, c = 3,566 A [1]. Интересно, что ранее (см. М. Хансен и К. Андерко, т. II [11]) соединение MoNi<sub>4</sub> было индицировано в предположении упорядоченной г. ц. тетрагональной решетки с практически теми же периодами! MoNi<sub>3</sub> имеет упорядоченную ромбическую решетку типа  $TiCu_3$ ; a = 5,064 A, b = 4,224 A, c = 4,448 A [5]. В работе отмечается, что «не наблюдалось серьезных расхождений в экспериментальных и рассчитанных значениях интенсивности» [5].

Соединение MoNi изучалось в работах [1, 6—8]. В работах [1, 3] приведены данные по интенсивности и положению отражений. MoNi имеет «по крайней мере псевдотетрагональную» решетку; a = 9,108 A, c = 8,852 A [7]. Структура отнесена к пространственной группе  $P4_{2}2_{1}2$ , однако автор допускает возможность отнесения ее к пространственным группам  $P2_{1}2_{1}2$  или  $P2_{1}2_{1}2_{1}$  [7]. Утверждается, что MoNi правильнее индицировать в предположении решетки типа σ-фазы (FeCr); a = 9,36 A, c = 4,85 A [8]. К сожалению, автор не приводит никаких экспериментальных данных.

 G u t h r i e P. V., S t a n s b u r y E. E. U. S. At. Energy Comm. ORNL-3078, 1961, 57p. Stoffel D. W.; S t a n s b u r y E. E. U. S. At. Energy Comm. AECU-3105, 1955, p. 76.

- 2. Михеев В. С. Труды Института металлургии им. А. А. Байкова АН СССР, 1957, вып. 2, с. 154—163.
- 3. Смирягин А. П. и др. ЖНХ, 1958, т. 3, с. 853-859.
- 4. Riddle J. R. U. S. At. Energy Comm. ORNL-2839, 1959, p. 300-301.
- 5. Saito S., Beck P. A. Trans. AIME, 1959, v. 215, p. 938-941.
- 6. Багаряцкий Ю. А., Ивановская Л. Е. ДАН СССР, 1960, т. 132, с. 339—342.
- 7. Shoemaker C. B. a. o. Acta Cryst., 1960, v. 13, p. 585-587.
- 8 Obrowski W. Naturwissenschaften, 1959, Bd 46, S. 490.

#### 0,7779 $\overline{1},2221$

#### Мо-О. Молибден-кислород

Рентгенографически в системе обнаружено восемь соединений: Mo<sub>3</sub>O [1], MoO<sub>2</sub> [2], Mo<sub>4</sub>O<sub>11</sub> [3], Mo<sub>17</sub>O<sub>47</sub> [4, 5], MoO<sub>2.80</sub> [4], Mo<sub>8</sub>O<sub>23</sub>, Mo<sub>9</sub>O<sub>26</sub> [6] и MoO<sub>3</sub> [7-9].

Наиболее полное рентгенографическое исследование соединений, лежащих в интервале от MoO<sub>2</sub> до MoO<sub>3</sub> при температурах 500—800° С, выполнено в работе [4]. Образцы для исследования получали спеканием Мо или MoO<sub>2</sub> с MoO<sub>3</sub>. Обнаружено семь промежуточных фаз:  $\eta$ - и  $\gamma$ -Mo<sub>4</sub>O<sub>14</sub>, Mo<sub>17</sub>O<sub>47</sub>, MoO<sub>2.80</sub>, Mo<sub>8</sub>O<sub>28</sub>,  $\xi$ - и  $\beta'$ -Mo<sub>9</sub>O<sub>28</sub>. Ни одна из этих фаз не имеет широкой области гомогенности. Выше 800° С стабильны только MoO<sub>2</sub> и MoO<sub>3</sub>. В работе [4] эти соединения показаны на фазовой диаграмме, однако характер трехфазного равновесия не выяснен. Температурные интервалы существования обеих фаз (см. ниже) согласуются между собой, что позволяет предположить наличие между ними эвтектоидного или перитектоидного превращения.

Мо<sub>3</sub>О имеет дефектную г. ц. к. решетку типа BiF<sub>3</sub> a = 5,549 А. Состав фазы Мо<sub>3</sub>О точно не определен и содержание кислорода в ней может отличаться от стехиометрического, Выше 1100° С соединение нестабильно [1].

Мо $\dot{O}_2$  имеет моноклинную решетку;  $a = 5,608 \pm 0,005$  A,  $b = 4,842 \pm 20,005$  A,  $c = 5,517 \pm 0,005$  A,  $\beta = 119,75 \pm 0,07^{\circ}$  [2, 10].

Мо<sub>4</sub>O<sub>11</sub> существует в двух модификациях: до 615° С моноклинной; a = 24,54 А, b = 5,439 А, c = 6,701 А,  $\beta = 94,28^{\circ}$  и в интервале  $615 \div \sim 800^{\circ}$  С — ромбической; a = 24,49 А, b = 5,457 А, c = 6,752 А [4\*].

 $Mo_{17}O_{47}$ , образовавшийся при температурах до  $600^{\circ}$  Ć, имеет ромбическую решетку;  $a = 21,61_5$  A,  $b = 19,63_2$  A, c = 3,951 A. Выше  $630^{\circ}$  C  $Mo_{17}O_{47}$  переходит в  $Mo_8O_{28}$  [4, 5].

МоО<sub>2,80</sub> получен при 500—530° С, однако он, по-видимому, не стабилен при этих температурах, так как распадается на  $Mo_{17}O_{47}$  и  $MoO_3$  при выдержке в этом интервале температур. Решетка соединения тетрагональная; a = 49,99 А, c == 3,937 А [4].  $Mo_8O_{23}$  распадается в интервале 785—800° С с образованием  $MoO_3$ и ромбического  $Mo_4O_{11}$ . При более низких температурах (650° С)  $Mo_8O_{23}$  стабилен. Окисел имеет моноклинную решетку; a = 16,88 А, b = 4,052 А, c = 13,39 А, B = 73,81° [6, 11].

Мо<sub>в</sub>О<sub>26</sub> существует в двух модификациях: триклинной (600—750° C); a = 8,145 A, b = 11,89 A, c = 19,66 A,  $\alpha = 95,47^{\circ}$ ,  $\beta = 90,39^{\circ}$ ,  $\gamma = 109,97^{\circ}$  [4<sup>\*1</sup>] и моноклинной (750—780° C); a = 16,80 A, b = 4,039 A, c = 14,58 A,  $\beta = 95,43^{\circ}$  C [6, 11].

При 550° С триклинная модификация распадается на моноклинный Мо<sub>4</sub>O<sub>11</sub> и МоO<sub>3</sub>. Моноклинная модификация распадается при 785—800° С на ромбический Мо<sub>4</sub>O<sub>11</sub> и МоO<sub>3</sub> [4].

МоО<sub>3</sub> имеет ромбическую решетку; a = 3,966 А, b = 13,88 А, c = 3,703 А [7, 10]; a = 3,962 А, b = 13,855 А, c = 3,701 А [8]; a = 3,93 А, b = 13,97 А, c = 3,67 А [9]; a = 3,9628 А, b = 13,855 А, c = 3,6964 А [12]. Окисел плавится при 797° С [13].

<sup>\*</sup> Здесь приведены наиболее поздние (1961 г.) данные из опубликованных А. Magneli, a. o. из Университета г. Упсала в Швеции,

- Schönberg N. Acta Chem. Scand., 1954, v. 8, p. 617—619.
   Magneli A. Arkiv Kemi, Mineral., Geol., 1947, v. 24A (2).
   Magneli A. Acta Chem. Scand., 1948, v. 2, p. 861.
   Kihlborg L. Acta Chem. Scand., 1959, v. 13, p. 954—962.
   Khilborg L. Acta Chem., Scand., 1960, v. 14, p. 1612—1622.
   Magneli A., Anderson G. Acta Chem. Scand., 1948, v. 2, p. 501.
   Magneli A., Anderson G. Acta Chem. Scand., 1950, v. 4, p. 793.
   Bräckken H. Z. Krist., 1931, Bd 78, S. 484.
   Wooster N. Z. Krist., 1931, Bd 80, S. 504.
   Magneli A. a. o. Anal. Chem., 1952, v. 24, p. 1998—2000.
   Magneli A. a. O. Acta Chem. Scand., 1955, v. 9, p. 1382.
   Westman S., Magneli A. Acta Chem. Scand., 1958, v. 12, p. 363—364.
   Бабаджан А. А. Труды Института металлургии, УФАН СССР, 1957,
  - т. 1, с. 74—79.

1,7028

### Mo—Os. Молибден—осмий \*

Рентгеновским и металлографическим методами изучены сплавы с 0---25% (ат.) Os [1]. Температуры плавления определяли оптическим методом в ходе дуговой плавки. Твердый раствор на основе Мо образует эвтектику с о-фазой.



расположенную при ~2430° С и 18% (ат.) Оз. После отжига при 2000° С и ниже сплавы имеют двухфазную структуру твердого раствора на основе Мо и соединения Mo<sub>3</sub>Os. Судя по этим данным, в интервале между 2000 и 2430°С происходит перитектоидная реакция (Mo) $+\sigma \rightarrow Mo_3Os$ . Этот вывод согласуется с работой [2], в которой было обнаружено, что литые сплавы имеют структуру о-фазы [35% (ат.) Os]. Сплав с 75% (ат.) Оѕ имел однофазную структуру, однако после отжига при 1000° С в нем образовалась неизвестная фаза [2]. Это указывает на большую растворимость Мо в Оз при высоких температурах.

Приведенная на рис. 313 диаграмма состояния построена по данным работ [1, 2]; она неплохо согласуется с данными ранних работ (см. М. Хансен, К. Андерко, т. II [1, 2]).

Периоды решетки тетрагональной о-фазы:  $a = 9,63_8$  A,  $c = 4,96_8$  A [1, 2].

- 1. B a i r d J. D. a. o. Plansee Proceedings, 1958, Pergamon Press, N. Y., 1959, p. 371-389.
- 2. Knapton A. G. J. Inst. Metals, 1958 — 1959, v. 87, p. 28-32.

0,4910 1.5090

## Мо-Р. Молибден-фосфор \*

МоР — имеет гексагональную решетку, изоморфную WC; a = 3,230 A, c = 3,207 A [1]. Это согласуется с данными М. Хансена и К. Андерко (см. т. II [3]).

1. Bachmayer K. a. o. Monatsh. Chem., 1955, Bd 86, S. 39-43.

# Мо—Рb. Молибден—свинец \*

Растворимость Мо в жидком Рb при 1206° С не превышает 11% (ат.) [0,005% (по массе)] Мо [1].

1. Alden T. a. o. Trans. AIME, 1958, v. 212, p. 15-17.

#### $\tilde{1},9539$ 0.0461

1,6656

0.3344

### Мо-Pd. Молибден-палладий \*

Диаграмма на рис. 314 построена по данным металлографического и рентгеновского исследований спеченных сплавов высокой чистоты [1]. Предельная



198

растворимость Pd в Мо составляет около 6% (ат.), что противоречит данным М. Хансена и К. Андерко (см. т. II [2]). При 1740° С и ~58% (ат.) Рd происходит перитектическая реакция образования г. к. фазы, обозначенной є. Металлографическим анализом установлено, что є фаза существует в интервале 50-60% (ат.) Pd и испытывает эвтектоидный распад ниже 1400° С. При понижении температуры граница (Мо + є)/є сдвигается в сторону более высоких содержаний Рd. Сплав с 58,3% (ат.) Рd был гомогенным после отжига при 1660 и 1715° С и двухфазным после отжига при 1615° С. В Рd растворяется несколько более 40% (ат.) Мо [1], что согласуется с данными М. Хансена и К. Андерко (см. т. II [1]). Форма кривой ликвидуса и трехфазные реакции с участием жидкости, б-фазы и твердого раствора на основе Pd не изучены.

1. Howarth C. W., Hume-Rothery W. J. Inst. Metals, 1958-1959 v. 87, p. 265-269.

# 1,6598 0,3402

#### Мо-Ро. Молибден-полоний

Молибден не взаимодействует с парами Ро при температурах до 700° С [1].

1. Wotteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

1,6915 0,3085

# Мо-Pt. Молибден-платина \*

В работе [1] подтвержден предложенный ранее характер взаимодействия фаз (см. М. Хансен, К. Андерко, т. II [3]). Предположительная диаграмма (рис. 315) построена в работе [2]. Кривая ликвидуса построена путем регистрации начала оплавления с помощью оптического пирометра. Обнаружены две промежуточные



фазы: г. к. ε-фаза и α1-фаза и тетрагональная модификация твердого раствора на основе Pt. Границы твердых фаз показаны очень неточно. На рис. 315 граница [(Мо) + є]/є проходит при ~28% (ат.) Pt. В работах [2] и у М. Хансена и К. Андерко (см. т. II [3]) сплавы этого состава однофазны. В то же время, согласно работе [1], эта граница проходит при 35% (ат.) Pt. є-фаза плавится конгрузнтно при 2100° С. Эвтектика Ж 🗾 ∠ (Мо) + є расположена при 1900° С. Богатые платиной сплавы испытывают перитектическое превращение Ж + є → (Pt) при  $\sim 1850^{\circ}$  C [2].

В работе [3] также определен ликвидус системы. Учитывая то, что объемы исследований [2, 3] более ограничены. совпадение результатов следует считать превосходным. Согласно работе [3], в системе имеется лишь одна промежуточная фаза, плавящаяся конгруэнтно при  $\chi_{emnepatypax} \sim 2000$  и  $\sim 2200^{\circ}$  С по данным [4]. Температура эвтектики  $\chi_{emnepatypa} \sim 2080^{\circ}$  С. Сообщается, что сплавы, богатые Pt, испытывают перитектическую реакцию [3].

Предельная растворимость Мо в Pt составляет ~27% (ат.) [15% (по массе)] [4, 5]. Эти данные расходятся с результатами работ [1, 2] и М. Хансена, К. Анлерко (см. т. II [3]). При добавке Мо период решетки Pt уменьшается [4, 5].

Необходимы дальнейшие работы для выяснения взаимной растворимости компонентов в твердом состоянии.

1. Knapton A. G., J. Inst. Metals, 1958-1959, v. 87, p. 28-32. 2. Knapton A. G. Planseeber. Pulvermet, 1959, Bd 7, S. 2-3.

3. Nishimura H. Nippon Kinzoku Gakkaishi, 1958, v. 22, p. 425-428.

4. Kimura H. Trans. Natl. Res. Inst. Metals (Tokyo), 1960, v. 2 (1), p. 30-36.

5. Nishimura H., Kimura H. Nippon Kinzoku Gakkaishi, 1959, v. 23, p. 616-620.

1,5982

### Мо-Ри. Молибден-плутоний

Мо и Ри образуют простую диаграмму эвтектического типа [1-3]. Эвтектика расположена вблизи Ри. Для температуры эвтектики приводится значение 590° C [3].

Температуры аллотропических превращений, приведенные в работе [2], заимствованы, по-видимому, из работы [4]. В работе [2] не наблюдалась эвтектическая микроструктура.

Высказано предположение, что понижение температуры плавления может быть связано с примесными элементами.

- 1. Schonfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, Pergamon Press, N. Y., 1959, ser. V., v. 2, p. 579-599.
- 2. Schonfeld F. W. В книге «The Metal Plutonium», University of Chicago Press, Chicago, 1961, Coffinberry A.S., Miner W.N. (eds.), p. 240-254.
- 3. Бочвар А. А. и др. Ядерное горючее и материалы. Вторая международная конференция по мирному использованию атомной энергии. Доклады советских ученых, т. 3, 1959, с. 376-395; см. Schonfeld F. W. В книге «The Metal Plutonium», Coffinberry A. S. and Miner W. N. (eds), University of Chicago Press, Chicago, 1961, p. 255-264.

4. Jette E. R. J. Chem. Phys., 1955, v. 23, p. 365-368.

 $\overline{1},7118$ 0,2882

# Мо- Re. Молибден-рений \*

Диаграмма состояния системы построена в работах [1-3]. Предпочтение следует отдать диаграмме из работы [1] (рис. 316), основанной на более общирном исследовании. На вставке показана часть диаграммы по работе [2], предварительные данные которой опубликованы в работе [4]. В работах [1, 3] использовали Мо и Re «высокой чистоты». Исходные компоненты в работе [2] имели чистоту 99,8%. В работах [1-3] использовали металлографический и рентгеновский анализы и оптическую пирометрию, в работе [2] кроме того определяли электросопротивление и твердость.

В общих чертах три диаграммы согласуются между собой. В работах [2, 3] не показан эвтектоидный распад о-фазы, однако в работе [3] не проводили отжига при температурах ниже 1200° С, а в работе [2] — ниже 1100° С. Эвтектика расположена при 50% (ат.) Re и 2440° C [1] и при 48,9% (ат.) [65% (по массе)] Re и 2505° C [3]. В работе [2] на кривых ликвидуса и солидуса в области сплавов, богатых Мо, показан минимум, расположенный при 2450 ± 30° С и 28-33,5% (ат.)

[43—46% (по массе)] Re и перитектика Ж + σ → (Мо) при 42% (ат.) Re и 2500 ± ± 25° С. Для перитектики Ж + (Re) → о приводится значение 72% (ат.) Re, 2520° С [1], 62% (ат.) Re, 2570 ± 25° С [2] и 68% (ат.) Re (приблизительно), 2645° С [3]. Перитектоидное превращение σ + (Re) → происходит при 76% (ат.) Re, 1850° С [1], 78% (ат.) Re, ~1850° С [2] и 75% (ат.) Re, 2080° С [3].



Растворимость Мо в Re составляет 15% (ат.) при 2520° С [1] ~17,7% (ат.) [10% (по массе)] при 2570 ± 25° С [2] и ~20,9% (ат.) [12% (по массе)] при 2645° С [3]. В системе обнаружены только две промежуточные фазы [1-3]: σ-фаза (Mo<sub>2</sub>Re<sub>3</sub>), гомогенная в широком интервале температур, и *κ*-фаза, обозначенная как MoRe<sub>3</sub> [3] и имеющая небольшую область гомогенности.

Мо<sub>2</sub>Rе<sub>3</sub> имеет тетрагональную решетку; *a* = 9,54 A, *c* = 4,95 A [5]; *a* = 9,57 A, c = 4,98 Å [6]; a = 9,588 Å, c = 4,983 Å [7]. х-фаза имеет кубическую решетку изотипную с  $\alpha$ -Mn [1], a = 9.55 A [5].

1. Knapton A. G. J. Inst. Metals, 1958-1959, v. 87, p. 62-64.

- 2. Савицкий Е. М. идр. ЖНХ, 1959, т. 4, с. 424-434.
- 3. Dickinson J. M., Richardson L. S. Trans. ASM, 1959, v. 51, рр. 1055—1066; дискуссия, р. 1067—1071. 4. Савицкий Е. М., Тылкина М. А. ЖНХ, 1958, т. 3, с. 820—837.
- 5. Агеев Н. В., Шехтман В. Ш. Изв. АН СССР, сер. физ., 1959, т. 23, c. 650-651.
- 6. Niemiec J. Trzebiatowski W. Bull. Acad. Polon. Sci., Classe III 1956, v. 4, p. 601-603.

7. Knapton A. G. J. Inst. Metals, 1958-1959, v. 87, p. 28-32.

# 1,9696 0,0304

# Mo-Rh. Молибден-родий \*

Диаграмма (рис. 317) построена в результате рентгеновского и металлографического исследования спеченных сплавов высокой чистоты, содержавших 0---40% (ат.) Rh [1] и 40—100% (ат.) Rh [2].



При низких температурах растворимость Rh в Мо невелика, что подтверждает данные М. Хансена и К. Андерко (см. т. II [1]). При повышении температуры она увеличивается, достигая ~20% (ат.) при температуре эвтектики (1940 ± 15° С). 203

Концентрация эвтектики составляет  $\sim 39\%$  (ат.) Rh. Предельная растворимость Мо в промежуточной фазе є лежит в пределах 52—57% (ат.) Мо. є-фаза имеет гексагональную решетку; a = 2,757 A, c = 4,426 A при максимальном содержании Мо [1]; a = 2,746 A, c = 4,389 A при 58,3% (ат.) Rh [1]; a = $= 2,7673 \pm 0,0002$  A,  $c = 4,4589 \pm 0,0002$  A в двухфазном Мо + є сплаве, отожженном при 1500° C [2]. Увеличение содержания Rh в пределах однофазной области є приводит к уменьшению периода решетки є-фазы. Концентрационная зависимость c/a проходит через минимум вблизи 75% (ат.) Rh [2].

Однофазная область є простирается примерно от 45 до 82% (ат.) Rh [2]. Температура плавления є-фазы достигает максимума (2075 ± 10° C) при ~67% (ат.) Rh [2]. При увеличении содержания Rh температура плавления понижается до 2000 ± 10° C, отвечающей перитектической реакции Ж [92% (ат.) Rh] + є [81% (ат.) Rh] ; (Rh) [85% (ат.) Rh] [2].

- 1. Haworth C. W., Hume-Rothery W. J. Inst. Metals, 1958-1959, v. 87, p. 265-269.
- 2. Anderson E., Hume-Rothery W. J. Less-Common Metals, 1960, v. 2, p. 19-28.
- 1,9747 0,0253

# Мо— Ru. Молибден—рутений \*

Приведенная на рис. 318 диаграмма построена по данным рентгеновского и микроскопического анализов [1]. В области ликвидуса и солидуса Мо и Ru образуют простую диаграмму эвтектического типа. Температура плавления Ru определена равной  $2310 \pm 20^{\circ}$  С. С понижением температуры растворимость Ru в Mo уменьшается и при 1500° С составляет ~13% (ат.). Растворимость Мо в Ru также уменьшается с понижением температуры, но не так резко, как растворимость Ru в Mo. Подтверждено существование  $\sigma$ -фазы (Mo<sub>5</sub>Ru<sub>3</sub>), обнаруженной ранее (см. М. Хансен и К. Андерко, т. II [1—5]).  $\sigma$ -фаза образуется при 1920  $\pm$  10° С и 37  $\pm$  1% (ат.) Rh по перитектоидной реакции между твердыми растворами Мо и Ru.

Периоды решетки тетрагональной о-фазы при содержании Ru 37,5% (ат.) составляют a = 9,5575 A, c = 4,9346 A. При 18,68% (ат.) Ru о. ц. к. решетка твердого раствора на основе Мо имеет a = 3,1251 A. Периоды г. к. решетки твердого раствора Мо в Ru равны: a = 2,7478 A, c = 4,4103 A [при 41,45% (ат.) Мо]. Зависимость периода решетки Ru от содержания Мо близка к правилу Вегарда. Уменьшение периода решетки Мо при добавке Ru не так велико, как предполагалось вначале.

- 1. Anderson E., Hume-Rothery W. J. Less-Common Metals, 1960, v. 2, p. 443-450.
- 0,4760 $\overline{1},5240$

# Мо—S. Молибден—сера \*

Полученный химическим путем сульфид MoS<sub>3</sub> имеет переменный состав. При нагревании он теряет избыток S и связанную H<sub>2</sub>O и при 350° C превращается в ромбоэдрический MoS<sub>2</sub>, также переменного состава. При дальнейшем повышении температуры ромбоэдрический MoS<sub>2</sub> переходит в гексагональный [1].

MoS<sub>2</sub> высокой чистоты плавится выше 1800° С [2]. Это не согласуется с данными работы [3] (1185° С) и М. Хансена и К. Андерко (см. т. II [7]). Основываясь на экспериментах по спеканию [2], автор предлагает температуру плавления, равную ~2375° С.

Синтетический MoS<sub>2</sub> имеет ромбоздрическую решетку [4]. Периоды эквивалентной гексагональной решетки равны: a = 3,16 A, c = 18,36 A [4]. Периоды aсинтетического и природного MoS<sub>2</sub> равны, а период c синтетического MoS<sub>2</sub>



в 1,5 раза больше, чем природного. Это — результат различной упаковки атомов. Единого мнения о характере упаковки нет [4, 5]. При изучении структуры MoS<sub>2</sub>, полученного различными методами, обнаружен второй синтетический дисульфид, также имеющий гексагональную решетку с периодом *с* большим, чем у естественного гексагонального MoS<sub>2</sub>. Изменения в структуре новой модификации объясняются статистическим чередованием гексагональной и ромбоэдрической упаковки.  $Mo_2S_3$  имеет моноклинную решетку;  $a = 8,633_5$  A, b = 3,208 A, c = 6,902 A,  $\beta = 102,43^{\circ}$  [7].

- 1. Роде Е. Я., Лебедев Б. А. ЖНХ, 1961, т. 6, с. 1189—1197.
- 2. Cannon P. Nature, 1959, v. 183, p. 1612-1613.

3. Зеликман А. Н., Беляевская Л. В. ЖНХ, 1956, т. 1, с. 2239; см. [1].

- 4. Bell R. E., Herfert R. E. J. Amer. Chem. Soc., 1957, v. 79, p. 3351-3354.
- 5. Семилетов С. А. Кристаллография, 1961, т. 6, с. 536-540.
- 6. Зеликман А. Н. и др. Кристаллография, 1961, т. 6, с. 389-394.

7. Jellinek F. Nature, 1961, v. 192, p. 1065-1066.

0,0846 $\overline{1}.9154$ 

# Мо-Se. Молибден-селен \*

МоSe<sub>2</sub> получен спеканием стехиометрической смеси Мо и Se чистотой соответственно 99 и 99,9% при 700° С [1]. МоSe<sub>2</sub> имеет гексагональную решетку, возможно, изотипную с  $MoS_2$ ;  $a = 3,29_1$  А;  $c = 12,9_1$  А. Судя по измерению плотности, на элементарную ячейку приходятся две формульные единицы [1].

 Украинский Ю. М., Новоселова А. В. ДАН СССР, 1961, т. 139, с. 1136—1137.

0,5335 1,4665

### Мо-Si. Молибден-кремний \*

В настоящее время считается, что соединение, идентифицированное ранее как Mo<sub>3</sub>Si, имеет формулу Mo<sub>5</sub>Si<sub>3</sub>. Структура его изотипна с тетрагональным силицидом Cr<sub>5</sub>Si<sub>3</sub> [1, 2]. Более точно периоды решетки Mo<sub>5</sub>Si<sub>3</sub> определены в работе [2]:  $a = 9,642 \pm 0,005$  A,  $c = 4,905 \pm 0,005$  A.

Граница MoSi<sub>2</sub> со стороны Мо расположена при 67,1 ± 1,0% (ат.) [3]. До 720° С она идет вертикально. MoSi<sub>2</sub> находится в равновесии с Mo<sub>5</sub>Si<sub>3</sub>.

Aronson B. Acta Chem. Scand., 1955, v. 9, p. 1107-1110.
 Dauben C. H. a. o. J. Phys. Chem., 1956, v. 60, p. 443-445.
 Amberg S. Monatsh. Chem., 1960, Bd 91, S. 412-425.

 $\overline{1},7246$ 0.2754

## Мо—Та. Молибден—тантал \*

Линейный ход концентрационной зависимости т. э. д. с. до 20% (ат.) [32% (по массе)] Та указывает на образование непрерывного ряда твердых растворов [1]. Это согласуется с ранними работами (см. М. Хансен, К. Андерко, т. II [1—3]).

1. Панченко Е. В., Струг Е. М. Изв. вузов. Черная металлургия, 1960, № 5, с. 177—180.

1,9904

### Мо-Тс. Молибден-технеций

Рентгеновским методом исследован сплав Тс, последовательно разбавлявшийся молибденом [1]. Вблизи эквиатомной концентрации обнаружена структура β-W, а при 75% (ат.) Мо-структура тетрагональной σ-фазы [1]. Периоды решетки не приведены.

Исследовалась сверхпроводимость сплавов Мо—Тс [2]. Авторы предполагают, что в системе Мо—Тс образуются фазы аналогичные фазам системы Мо—Re. 1. Darby J. B. (Jr.) Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

2. Compton V. B. a. o. Phys. Rev., 1961, v. 123, p. 1567-1568.

# $\overline{1}, 8762 \\ 0, 1238$

# Мо-Те. Молибден-теллур \*

В работах [1, 2] проведен полный структурный анализ МоТе<sub>2</sub>. Соединение имеет гексагональную решетку:  $a = 3,5182 \pm 0,0014$  А,  $c = 13,9736 \pm 0,0040$  А [1] или  $a = 3,519 \pm 0,001$  А,  $c = 13,964 \pm 0,004$  А [2], пространственная группа  $P6_3/mmc$ . В работе [1] МоТе<sub>2</sub> получен сухим синтезом при 460° С с последующим отжигом при 600° С. Исходными компонентами были Мо и Те чистотой соответственно 99,9 и 99,999%. В работе [2] соединение синтезировано при 1100° С с последующей гомогенизацией при этой температуре; исходные Те и Мо имели чистоту 99,999%. Плотность МоТе<sub>2</sub> 7,681 ± 0,018 [1] или 7,8 ± 0,23  $e/cm^3$ .

В интервале от комнатной температуры до 1200° С МоТе<sub>2</sub> не испытывает изотермических превращений [1]. Соединение не плавится в исследованном интервале температур, что согласуется с данными М. Хансена, К. Андерко (см. т. II [1]).

1. Knop O., Mac Donald R. D. Canad. J. Chem., 1961, v. 39, p. 897—904. 2. Puotinen D., Newnham R. E. Acta Cryst., 1961, v. 14, p. 691—692.

ī,6163 0,3837

#### Mo—Th. Молибден—торий \*

Авторы работы [1], цитируя данные неопубликованных отчетов, подтверждают высказанные ранее предположения об отсутствии в системе промежуточных фаз. Согласно результатам термического, рентгеновского и металлографического анализов и измерения электросопротивления, Мо и Th образуют простую эвтектическую систему с эвтектикой, расположенной при 1380° С и 15,4% (ат.) [7% (по массе)] Мо. При добавке Мо аллотропическое превращение Th происходит в области расположения эвтектоида {1358° С и <0,24% (ат.) [0,1% (по массе)] Мо}. При 1325° С растворимость Th в Мо не обнаружена [2].

 Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 118.
 Larsen W. L. a. o. U. S. At. Energy Comm. IS-500, 1962, M34-M35.

#### 0,3017 1,6983

### Мо-Ті. Молибден-титан \*

Работы [1—8] посвящены изучению кинетики образования и структуре метастабильной  $\omega$ -фазы, возникающей при  $\alpha \rightleftharpoons \beta$ -превращении богатых титаном сплавов. В работах [1, 2] рассматривается также мартенситная  $\alpha'$ -фаза и ее влияние на свойства сплавов.

Определением постоянной Холла подтверждено существование непрерывного ряда твердых растворов между  $\beta$ -Ті и Мо и обнаружены эффекты, указывающие на существование соединений в сплавах состава Ti<sub>4</sub>Mo, Ti<sub>3</sub>Mo и TiMo<sub>4</sub> [8]. Однако при исследовании диффузного рассеяния рентгеновских лучей в системе не обнаружено каких-либо соединений или сверхструктур, хотя степень ближнего порядка при медленном охлаждении повышается [9].

Максимальной температурой перехода в сверхпроводящее состояние (3,7° K) обладает сплав с ~84% (ат.) Ті [10].

- 1. Knorr W., Scholl H. Z. Metallkunde, 1960, Bd 51, S. 605-612.
- 2. Bungardt K., Rüdinger K. Z. Metallkunde, 1961, Bd 52, S. 120-135.
- 3. Багаряцкий Ю. А. идр. ДАН СССР, 1958, т. 122, с. 593—596.
- 4. Агеев Н. В., Петрова Л. А. Сб. «Титан и его сплавы». Изд-во АН СССР, 1958, с. 3—16.
- 5. Lohberg K., Westphal H. Naturwissenschaften, 1958, Bd 45, S. 82.
- 6. Lohberg K., Westphal H. Z. Metallkunde, 1958, Bd 49, S. 449-455.
- 7. Spachner S. A. Trans. AIME, 1958, v. 212, p. 57-59.
- 8. Грум-Гржимайло Н. В., Громова В. Г. ЖНХ, 1957, т. 2, с. 2426—2428.
- 9. Dupouy J. M., Averbach B. L. Acta Met., 1961, v. 9, p. 755-763.
- 10. Blaugher R. D. a. o. Phys. Chem. Solids, 1961, v. 21, p. 252-255.
- 1,6053 0,3947

#### Mo—U. Молибден—уран \*

Система вновь исследована при температурах 0—900° С в интервалах концентраций: 0—36 [1], 0—45 [2], 0—100 [3], 15—36 [4] и 2—30% (ат.) Мо [5]. В работе [1] использованы электролитический U высокой чистоты и технический Мо. Суммарное содержание примесей в сплавах, изученных в работе [5], составляло 0,17%. Исследования проводились рентгеновским, металлографи-



ческим, термическим и калориметрическим методами, определялись твердость и электросопротивление сплавов.

Все исследователи [1-5] согласны в том, что β- и γ-U испытывают эвтектоидный распад. Однако положение эвтектоидных точек указывается по-разному. Нет единого мнения и по вопросу о характере распада δфазы (у М. Хансена и К. Андерко на рис. 541, а эта фаза была обозначена  $\gamma'$ ). В работах [1-3] утверждается, что превращение δ д γ происходит конгрузнтно, а у-U испытывает второе эвтектоидное превращение. Согласно работе [4],  $\delta$ -фаза образуется по перитектоидной реакции  $\delta \rightarrow \gamma +$ + (Мо). Предпочтение отдано данным работы [1] (рис. 319), которые подтверждаются работами [2, 3]. Результаты работы [4] таковы, что по ним

можно построить и диаграмму типа той, которая приведена в работе [1]. При построении диаграммы в работе [3] были использованы данные М. Хансена и К. Андерко (см. т. II [7, 8]). На этой диаграмме показан перитектоидный распад у-U при 1290° С и 40% (ат.) Мо, что хорошо согласуется с данными М. Хансена, К. Андерко (см. т. II [1]).

Эвтектоидное превращение  $\beta$ -U по различным данным происходит при: 639 ± 5° С и 1,2% (ат.) Мо [1]; 648° С и 1,3% (ат.) Мо [2]; 635° С и 3% (ат.) Мо [3] и 665° С и ~1% (ат.) Мо [5]. Растворимость Мо в а-U при эвтектоидной температуре составляет, % (ат.): 0,18 [1]; 0,2 [2], 2,4 [3] и 0,7 [5]. Эвтектоидное превращение  $\gamma$ -U (при большем содержании U) происходит при 565 ± 5° С и 22,6% (ат.) [10,5% (по массе)] Мо [1]; 572° С и 22% (ат.) Мо [2]; 560° С и 22% (ат.) Мо [3]; 573° С и 24% (ат.) Мо [4]. Предельное содержание Мо в двухфазной области γ + β равно: 11% (ат.) при 639° С [1]; 8% (ат.) при 650° С [2]; 6% (ат.) при 635° С [3] и ~6% (ат.) при 665° С [5].

Конгруэнтное превращение δ-фазы происходит при 595° С и 32,4% (ат.) [16,2% (по массе)] Мо [1]; 605° С и 33,3% (ат.) Мо [2]; 615° С и 33,3% (ат.) Мо [3]. Второй γ-эвтектоид расположен при 580° С и 34,2% (ат.) [17,3% (по массе)] Мо [1]; 600° С и 35% (ат.) Мо [2]; 605° С и 37% (ат.) Мо [3]. Перитектоидная реакция б → γ + (Мо) происходит при 612° С и ~32,5% (ат.) Мо [4].

Периоды о. ц. решетки тетрагональной  $\delta$ -фазы составляют  $a = 3,427 \pm \pm 0,0010$  A,  $c = 9,854 \pm 0,001$  A [1].

- 1. Dwight A. E. J. Nucl. Mater., 1960, v. 2, p. 81-87.
- 2. И в а н о в О. С. и др. Сб. «Строение сплавов некоторых систем с ураном и торием». Атомиздат, 1961, с. 68—86; И в а н о в О. С. и др. Там же, с. 48—67.
- 3. Конобеевский С. Т. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии, 1958, т. 3. Ядерное горючее и реакторные материалы. Атомиздат, 1959, с. 396—413.
- 4. Bostrom W. A., Halteman E. K. Proc. Nucl. Eng. Sci. Conf., 2d, Philadelphia, 1957, «Advances in Nuclear Engineering», Pergamon Press, N. Y., 1957, v. 11, p. 184—193; Boyle R. F., Halteman E. K. U. S. At. Energy Comm. WAPD—BT—10, 1958, p. 101—109.
- Bellot J. a. o. Mem. Sci. Rev. Met., 1959, v. 56, p. 301-306; Bellot J. a. o. Metaux (Corrosion-Ind.), 1958, v. 33, p. 343-351.

#### 0,2749 $\overline{1},7251$

### Мо—V. Молибден—ванадий \*

Мо и V образуют непрерывный ряд твердых растворов [1—3]. Металлографическим анализом шести сплавов, выплавленных в дуговой печи и отожженных при 900° С, показано, что непрерывность твердого раствора сохраняется при температурах значительно ниже солидуса [2]. Диаграмма плавкости (рис. 320)



14 Р. П. Эллиот, том 11

построена в результате исследования сплавов, выплавленных в дуговои печи из алюминотермического V и Мо чистотой 99%. Образцы подвергали прямому электронагреву в условиях абсолютно черного тела. Температура солидуса соответствовала началу оплавления образца, а температура ликвидуса — нарушению электрического контакта.

 Барон В. В. и др. Изв. АН СССР, ОТН, 1958, № 4, с. 36—40.
 Котјаth у S. a. o. WADC Tech. Rept. 59—482, 1959, 69р.; Котјаth у S. J. Less—Common Metals, 1961, v. 3, p. 468—488.
 Sperner F. Z. Metallkunde, 1959, Bd 50, S. 592—596.

1,7174 0,2826

### Мо—W. Молибден—вольфрам \*

Судя по концентрационной зависимости эффекта Холла, в системе существует одно соединение MoW [1].

1. Грум - Гржимайло Н. В., Прокофьев Д. Н. ЖНХ, 1958, т. 3, с. 1470—1471.

0,0330 1,9670

### Мо-Ү. Молибден-иттрий

Проведен металлографический анализ сплавов, выплавленных с использованием 99,6%-ного Y [1]. По полученным данным построена диаграмма состояния [2]. В работе [1] температура плавления Y принята равной 1552° С. На диаграмме [2] показана общепринятая температура плавления (1502° С) и высказывается предположение, что температура эвтектики (1498° С) также завышена (рис. 321).

На основании исследования одного сплава с 10% (по массе) У, выплавленного из 96,5%-ного У, сообщается, что в системе не образуются соединения, но существует область расслоения [4].

1. L u n d i n C. E., K l o d t D. Неопубликованные данные University of Denver.

 Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир» 1965.

 Лундин К. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.

<sup>•</sup> 4. Савицкий Е. М., Терехова• В. Ф. Цветные металлы, 1959, № 1, с. 48—53.

0,1666 1.8334

# Mo—Zn. Молибден—цинк \*

Термическим, металлографическим и химическим анализами установлено, что растворимость Мо в Zn увеличивается от 0,0025 при температуре плавления Zn до 0,015% (ат.) при 550° С [1]. При этой температуре происходит перитектическая реакция  $\mathcal{K} + (Mo) \xrightarrow{} (MoZn_6?)$ . В интервале 550—750° С растворимость остается постоянной: 0,0150% (ат.) Мо. Изолированные кристаллы интерметаллидной фазы содержали 29,3% (ат.) [22% (по массе)] Мо и 64,6% (ат.) [72,8% (по массе)] Zn. Фаза имеет г. ц. к. решетку, a = 7,72 A [2]. Эти результаты подтверждают данные, приводимые М. Хансеном, К. Андерко (см. т. II [1]), отно-сящиеся к растворимости Мо в жидком Zn и существованию промежуточного соединения. Результаты работы [1] подтверждают также сообщение (см. М. Хансен, К. Андерко, т. II [2]) о том, что чистые Мо и Zn не сплавляются при 1200° С.





Соединение (MoZn<sub>6</sub>?) является основной структурной составляющей спеченного сплава с 14% (ат.) Мо, отожженного при 525° С [1].

1. Martin A. E. a. o. J. Chem. Engn. Data, 1961, v. 6, p. 596—599. 2. Flikkema D. S. Tani B. S. Частное сообщение автору; см. [1].

0,0220

# Mo-Zr. Молибден-цирконий \*

При закалке сплавов Zr с 3—8% (по массе) Мо образуется метастабильная ω-фаза [1, 2]. Структура этой фазы не является кубической, как в сплавах Ti—Cr [1]. Предполагается, что фаза имеет тетрагональную решетку с c/a = 1.45.

Robinson H. A. a. o. J. Metals, 1956, v. 8, p. 1544-1545.
 Domagala R. F., a. o. Trans. AIME, 1957, v. 209, p. 1191-1196.
 14\* 211

# N-Na. Азот-натрий

Обнаружены следующие нитриды: Na<sub>3</sub>N, NaN<sub>3</sub> [1, 2] и Na (N<sub>3</sub>)<sub>2</sub> [3]. NaN<sub>3</sub> имеет ромбоэдрическую решетку; a = 5,481 А,  $\alpha = 38^{\circ}$  43' [4]. Na<sub>3</sub>N распадается при 300° С. NaN<sub>3</sub> плавится без разложения [1, 2].

Приведенные данные взяты из справочника [5].

1. Zehnder L. Wied Ann., 1894, Bd 52, S. 56.

- 2. Dennis and Brone. Z. Anorg. Allgem. Chem., 1904, Bd 40, S. 93.
- 3. Funaoka M., Iwanaga. Japanese Patent, 3475, June, 1954.
- 4. Frevel L. K. J. Amer. Chem. Soc., 1936, v. 58, p. 779-782.
- 5. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 120.

#### 1,1783 0,8217

# N— Nb. Азот—ниобий \*

В области концентраций до~50% (ат.) N диаграмма была вновь изучена [1, 2]. В работах [3—5] приведены данные о растворимости в твердом состоянии. Диаграмма (рис. 322) построена с помощью рентгеноструктурного, металлографического и химического анализов сплавов, приготовленных дуговой плавкой или



Рис. 322. N-Nb

диффузионным насыщением N порошков или полос Nb [1]. Характер нонвариантной реакции, приведенной на рис. 322, надежно не установлен и получен по данным микроструктурных наблюдений Nb или сплавов Nb—N, выплавленных в атмосфере N<sub>2</sub> или инертных газов. Данные работ [1, 2] совпадают при указании области гомогенности NbN и Nb<sub>2</sub>N; фаза Nb<sub>4</sub>N<sub>3</sub>, обнаруженная в работе [2], лежит внутри области гомогенности (NbN). Данные о растворимости в твердом состоянии, полученные в работах [3—5], не отличаются от данных [1].

212

Найдено [2] пять нитридов Nb, обозначенных  $\beta$  (Nb<sub>2</sub>N),  $\gamma$  (Nb<sub>4</sub>N<sub>3</sub>), $\delta$  (NbN<sub>0.88-0.98</sub> выше 1230° C), δ' и ε (NbN<sub>1,000-1,018</sub> ниже 1370° C); δ-фаза «возможно» метастабильна [2]. Фазы β и γ наблюдали при соответственно NbN<sub>0,40-0,50</sub> и NbN0,75-0,79; их кристаллические структуры и периоды решеток указаны ранее (см. М. Хансен и К. Андерко, т. II [10]); решетка б-фазы г. ц. к. типа NaCl; a = 4,373 ÷ 4,393 А в зависимости от концентрации в области гомогенности, решетка є-фазы псевдогексагональная, т. е. истинная элементарная ячейка имеет более низкую симметрию по сравнению с гексагональной,  $a = 2,9591 \pm$ ± 0,0002 A, c = 11,2714 ± 0,0006 A [2]. Выше 1370° С происходит распад и превращение  $\varepsilon$ -NbN  $\rightarrow \delta$ -NbN [2, 6]. Фазы  $\varepsilon$  и  $\delta$  очень хорошо соответствуют высоко- и низкотемпературным модификациям NbN [1]. В работе [7] обнаружены только Nb<sub>2</sub>N и NbN (проводилось электронномикроскопическое исследование проволок Nb диам. 0,25 мм, азотированных при 1400-1800° С). После азотирования порошка Nb при 600—1200° С в течение ≪30 мин [8] в нем найдены фазы β, у, б' и є; в то же время после азотирования в течение более длительного времени (>30 мин) при 900 и 1200° С найдены лишь β (Nb<sub>2</sub>N) и ε (NbN) фазы [8].

- Elliott R. P., Komjathy S. AIME Metallurgical Society Conference, v. 10, «Columbium Metallurgy», Interscience Publishers Inc., N. Y., 1961, p. 367-381.
- 2. Brauer G., Esselborn R. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 151-170.
- 3. Albrecht W. M., Goode W. D. U. S. At. Energy Comm. BMI-1360, 1959. 13p.
- 4. Pemsler J. P. J. Electrochem. Soc., 1961, v. 108, p. 744-750.
- 5. Brauer G., Lesser R. Z. Metallkunde, 1959, Bd 50, S. 487-492.
- 6. Brauer G. J. Less-Common Metals, 1960, v. 2, p. 131-137.
- 7. Septuer A. e. a. Compt. Rend., 1952, v. 234, p. 105-107.
- 8. Самсонов Г. В., Верхоглядова Т. С. ЖНХ, 1961, т. 6, с. 2732— 2737.

# 2,9872

# N—Nd. Азот—неодим \*

Подтверждено, что NdN имеет г. ц. к. решетку типа NaCl  $[1, 2], a = 5,151 \pm 0.002$  A [1].

- 1. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 87-90.
- 2. Iandelli A. Atti Accad. Nazl. Lincei, Rend, Classe Sci., Fix, Mat. Nat., 1960, v. 29, p. 62-69.

#### 1,3778 0,6222

# N—Ni. Азот—никель \*

Недавно показано, что растворимость N как в жидком, так и в твердом Ni незначительна. Химическим анализом нитрированной пленки Ni (99,92%) получено значение <0,0018% (ат.) [0,0004% (по массе) N [1]. Методом Сивертса определена растворимость N в жидком Ni [2]: 0,0021% (ат.) [0,0005% (по массе)] при 1600° С; при этом ошибка эксперимента ± 0,004% (ат.) [0,001% (по массе)] превышает величину растворимости. Сообщается [3, 4], что растворимость N в Ni при 1600° С очень мала. Методом отбора проб растворимость при 1600° С определена равной 0,0010% (ат.) [0,00024% (по массе)] N [5]. Взаимодействие N и Ni исследовалось электронографически [6]. Установлено, что образованию гексагонального Ni<sub>3</sub>N (a = 2,66 A, c = 4,34 A) при 175° С предшествует заметное увеличение периода решетки Ni (от 3,52 до 3,72 A) [6]. При нагревании в вакууме при 480° C Ni<sub>3</sub>N превращается непосредственно в Ni с нормальной структурой [6]. Также на основании электронографического исследования высказано [7] предпо-

213

ложение о том, что г. ц. к. структура с увеличенным параметром (3,72 А) принадлежит в действительности Ni<sub>4</sub>N. Согласно работе [8], Ni<sub>4</sub>N образуется при 230-240° С и имеет тетрагональную решетку; a = 3,72 Å, c = 7,28 Å.

В более ранней литературе описано получение нитрида Ni<sub>3</sub>N<sub>2</sub> [9] и азида Ni (N<sub>3</sub>)<sub>2</sub>.

#### 1. Trukdogan E. T., Ignatowicz S. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp. Paper 6C, 1959, v. 11, N 9, p. 8. Chemical Publishing Company, N. Y., 1960, p. 192-198.

- 2. Humbert J.C., Elliott J.F. Trans. AIME, 1960, v. 218, p. 1076-1088.
- 3. Wriedt H.A., Gonzalez O.D. Trans. AIME, 1961, v. 221, p. 532-535.
- 4. Busch T., Dodd R. A. Trans. AIME, 1960, v. 218, p. 488-490.
- 5. Schenck H. u. a. Arch. Eisenheuttenwesen, 1959, Bd 30, S. 533-538.
- 6. Trillat J. J. Bull. Soc. Chim. France, 1957, v. 23, p. 804-809.
- 7. Terao N., Berghezan A. J. Phys. Soc. Japan, 1959, v. 14, p. 139-148; Terao N. Naturwissenschaften, 1959, Bd 46, S. 204; 1958, Bd 45, S. 620-621.
- 8. Terao N. J. Phys. Soc. Japan, 1960, v. 15, p. 227-230.
- 9. Бусев А. Ученые Записки Ленинградского госпединститута, 1940, т. 29. с. 303; см. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 122.
- 10. Franklin E. C. J. Amer. Chem. Soc., 1934, v. 56, p. 568-571; Ehl R. C a. o. WADC Tech. Note 59-115, 1959, 75p.

2,8672 1,1328

## N-Os. Азот-осмий

 $Os_2N$  имеет кубическую решетку, a = 3.45 A [1].

1. Киперман С. Л. и Грановская В. Ш. ЖФХ, 1951, т. 25, с. 557— 564; см. E h 1 R. G. a. o. WADC Techn. Note, 59-115, 1959, 75p.

2,7828

### N-Ра. Азот — протактиний \*

Сообщается о существовании «нитрида Ра» [1].

1. Sellers P. A. a. o. J. Amer. Chem. Soc., 1954, v. 76, p. 5935-5938.

2,8300

#### N—Pb. Азот—свинец \*

Сообщается о существовании нитрида Pb<sub>3</sub>N<sub>4</sub> [1, 2] и двух азидов: PbN<sub>6</sub> и Pb (N<sub>3</sub>)<sub>4</sub> [3]. PbN<sub>6</sub> имеет две модификации: ромбическую  $\alpha$ -PbN<sub>6</sub>, a = 6,628 A, b = 11,312 A, c = 16,246 A [4]; a = 6,63 A, b = 11,31 A, c = 16,25 A [5], H моноклинную  $\beta$ -PbN<sub>6</sub>, a = 5,090 A, b = 8,844 A, c = 17,508 A,  $\beta = 90^{\circ}10'$ и a = 18,49 A, b = 8,84 A, c = 5,12 A,  $\beta = 107^{\circ} 35'$  [5].

Обе модификации взрываются от детонации.

- 1. Fischer F., Schröter F. Ber. Deut. Chem. Ges., 1910, Bd 43, S. 1465-1479; Chem. Abstr. 1910, Bd 4, S. 2075.
- 2. Janeff W. Z. Physik, 1955, Bd 142, S. 619-636.
- 3. Möller H. Z. Anorg. Allgem. Chem., 1949, Bd 260, S. 249-254; см. Ehl R. G. u. a. WADC Tech. Note, 59-115, 1959, S. 54.
- 4. Gray P., Waddington T. C. Nature, 1955, v. 176, p. 653.
- 5. Azaroff L. V. Z. Krist., 1956, Bd 107, S. 362-369; Chem. Abstr., 1957, v. 51, S. 3225.

 $\overline{2},9974$ 1.0026

### N-Pr. Азот-празеодим \*

Более точно определен период г. ц. к. решетки (типа NaCl) PrN: a = = 5.165 A [1].

1. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

2,7626 1,2374

## N-Pu. Азот-плутоний \*

РиN имеет г. ц. к. решетку (типа NaCl) с периодом 4,908 ± 0,001 [1] или 4.905 ± 0,001 A [2]. Попытки получить высшие нитриды Ри оказались безуспешными [1].

1. Ellinger F. H. В книге «The Metal Plutonium», (eds.) A. S. Coffinberry, W.N.Miner. University of Chicago Press, Chicago, 1961, p. 281-308. 2. Zachariasen W. H. Structure Rept., 1949, v. 12, p. 48.

2,7923

# N-Ra. Азот-радий

Металлический Ra получен восстановлением нитрида [1]. Химическим путем получено соединение с формулой Ra<sub>3</sub>N<sub>2</sub> или Ra (N<sub>3</sub>)<sub>2</sub>. Ra (N<sub>3</sub>)<sub>2</sub> распадается на N и Ra при нагреве в вакууме при 180-250° С.

1. E b l e r E. Ber. Deut. Chem. Ges., 1910, Bd 43, S. 2613-2618.

#### 1,2146 0,7854

# N-Rb. Азот-рубидий

В справочнике [1] дан обзор системы. Известны два нитрида: Rb<sub>3</sub>N, получаемый прямым синтезом [2-4], и RbN<sub>3</sub> [5, 6]. RbN<sub>3</sub> имеет тетрагональную решетку; a = 6,37, c = 7,42 A [5] или a = 4,497 A, c = 3,707 A [6].

Следует отметить, что элементарные ячейки нитрида, предложенные в работах [5, 6], различаются только центрированным базисом и удвоенным периодом с.

- 1. В о л А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 133.
- 2. Moissan H. Compt. Rend., 1903, v. 136, p. 587.
- 3. Fischer F., Schröter F. Ber. Deut. Chem. Ges., 1910, Bd 43, S. 1465-1479; см. [1].
- 4. Бусев А. Ученые записки Ленинградского госпединститута, 1940, т. 29, с. 303; см. [1].
- 5. Pauling L. Z. Physik Chem., 1930, Bd. B8, S. 326-328.
- 6. Günther P. u. a. Z. Physik. Chem. (Leipzig), 1929, Bd 6, S. 459-480.

#### 1,0609 0.9391

## N-Sb. Азот-сурьма \*

Нитрид Sb образуется при дуговом разряде между Sb-электродами в азотсодержащей атмосфере [1]. Нитриду приписана формула SbN [2].

1. Fischer F., Schröter Ber. Deut. Chem. Ges., 1910, Bd 43, S. 1465-1479. 2. E h l R. G. a. o. WADC Tech. Note 59-115, 1959, 75р.; авторы упоминают работы [1] и Janeff W. Z. Physik, 1955, Bd 142, S. 619-636.
## N--Sc. Азот-скандий \*

Температура плавления ScN равна 2650° С [1]. Не обнаружено испарения при этой температуре.

1. Friederich E., Sittig L. Z. Anorg. Allgem. Chem., 1925, Bd 143, S. 293-320.

1,2490

## N—Se. Азот—селен

В системе идентифицировано одно соединение (SeN)<sub>x</sub> [1], имеющее триклинную решетку [2];  $a = 6,47 \pm 0,01$  A,  $b = 6,85 \pm 0,01$  A,  $c = 6,85 \pm 0,04$  A,  $\alpha =$  $= 90,5^{\circ}, \beta = 100,4 \pm 0,1^{\circ}, \gamma = 100,4 + 0,1^{\circ}$ . Ранее это соединение было индицировано в предположении моноклинной решетки [3].

1. Jander J., Doetsch V., Chem. Ber., 1960, Bd 93, S. 561-569. 2. Barnighausen H. u. a. Acta Cryst., 1961, Bd 14, S. 1079.

- 3. Jander J., Doetsch V., Angew. Chem., 1958, Bd 70, S. 704; Chem. Abstr., 1959, Bd 53, S. 6856.

1,6978 0,3022

## N—Si. Азот—кремний \*

В настоящее время считается, что нитрид, образующийся при реакции N<sub>2</sub> или NH<sub>3</sub> с Si, имеет состав Si<sub>3</sub>N<sub>4</sub> [1-13]. Ранние сообщения [14] о существовании соединений SiN и Si $_2N_3$  ошибочны. Si $_3N_4$  существует в двух модификациях: α- и β-Si<sub>3</sub>N<sub>4</sub>. Полиморфизм не зависит от состава. Обе модификации имеют гексагональную решетку [1, 3, 4, 6, 9, 12]. Наиболее точные периоды решетки нитрида следующие:  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>:  $a = 7,748 \pm 0,001$  A,  $c = 5,617 \pm 0,001$  A [4];  $a = 7,758 \pm 0,005$  A,  $c = 5,623 \pm 0,005$  A [6];  $\beta$ -Si<sub>3</sub>N<sub>4</sub>:  $a = 7,608 \pm 0,001$  A,  $c = 2,9107 \pm 0,0005$  [4];  $a = 7,603 \pm 0,005$  A,  $c = 2,909 \pm 0,003$  A [6]. По данным анализа монокристаллов, пространственная группа  $\alpha$ -Si<sub>3</sub>N<sub>4</sub>:  $P\overline{3}1c$  [4, 6], а  $\beta$ -Si<sub>3</sub>N<sub>4</sub>:  $P6_3/m$  [4, 6, 15]. Другие структуры, которые приписывались Si<sub>3</sub>N<sub>4</sub>, — ромбическая [2, 5, 13] или ромбоздрическая [5, 8], могут быть выражены и в гексагональных координатах. β-Si<sub>3</sub>N<sub>4</sub> образуется при высоких температурах (1450° С). Соединение можно получить отжигом α-Si<sub>3</sub>N<sub>4</sub> при 1550° С [1, 6]. Температура превращения расположена, вероятно, в интервале 1300-1450° С.

 ${
m Si}_{3}{
m N}_{4}$  не плавится, а разлагается при  $\sim$  1800° С [16]. Нитрид находится в равновесии с жидким Si. Растворимость N в жидком Si при температуре плавления составляет ~10<sup>19</sup> атом/см<sup>3</sup> [0,02% (ат.)]. Растворимость N в твердом Si очень мала [7]. Соединение Si<sub>3</sub>N<sub>4</sub> практически не имеет области гомогенности [7]. В работе [10] определялась упругость паров N<sub>2</sub> над Si и Si<sub>3</sub>N<sub>4</sub>.

При дуговой плавке Si<sub>3</sub>N<sub>4</sub> образуется соединение Si<sub>x</sub>N с гексагональной решеткой;  $a = 4,534 \pm 0,004$  A,  $c = 4,556 \pm 0,004$  A [6]. Обращается внимание на то, что базис элементарной ячейки SixN может быть получен из обеих модификаций Si<sub>3</sub>N<sub>4</sub>.

Кроме равновесного Si<sub>3</sub>N<sub>4</sub>, существует и тетразид Si (N<sub>3</sub>)<sub>4</sub> [17]. Получить его можно химическим путем.

1. Glemser O. u. a. Z. Anorg. Allgem. Chem., 1957, Bd. 291, S. 51-66. 2. Lamure J., Billy M. Compt. Rend., 1957, v. 245, p. 1931-1933. 3. Vassiliou B., Wilde F. G. Nature, 1957, v. 179, S. 435-436. 4. Hardie D., Jack K. H. Nature, 1957, v. 180, p. 332–333. 5. Popper P. Ruddlesden S. N. Nature, 1957, v. 179, p. 1129. 6. Forgeng W. C., Decker B. F. Trans. AIME, 1958, v. 212, p. 343–348. 7. Функе В. Ф., Самсонов Г. В. ЖОХ, 1958, т. 28, с. 267-272.

- 8. Ruddlesden S. N., Popper P. Acta Cryst., 1958, v. 11, p. 465-468. 9. Narita K., Mori K. Bull Chem. Soc. Japan, 1959, v. 32, p. 417-419. 10. Pehlke R. D., Elliott J. F. Trans. AIME, 1959, v. 215, p. 781-785. 11. Kaiser W., Thurmond C. D. J. Appl. Phys., 1959, v. 30, p. 427-431. 12. I wai S., Yasunaga A. Naturwissenschaften, 1959, Bd 46, S. 473-474. 13. Billy M. Ann. Chim. (Paris), 1959, v. 4, p. 795-851. 14. Weiss L., Englehardt T. Z. Anorg. Allgem. Chem., 1910, Bd 65, S. 38. 15. Borgen O., Seip H. M. Acta Chem. Scand., 1961, v. 15, p. 1789. 16. Collins J. F., Gerby R. W. J. Metals, 1955, v. 7, p. 612-615.
- 17. Wiberg E., Michaud H., Z. Naturforsch., 1954, Bd. 96, S. 50.

# $\overline{2},9693$ 1,0307

#### N—Sm. Азот—самарий

Нитрид SmN получен синтезом элементов и химическим путем [1-3]. Соединение имеет г. ц. к. решетку типа NaCl с периодом 5,039-5,048 А; наиболее точно определенное значение 5,0481 ± 0,0008 А [3].

- 1. I an delli A. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 81-86; см. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69. 2. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd 288,
- S. 87-90.

3. Eick H. A. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 5987-5989.

# 1,0720 0,9280

## N-Sn. Азот-олово \*

В работе [1], как и у М. Хансена и К. Андерко, (см. т. II [1]), указывается, что нитрид имеет формулу Sn<sub>3</sub>N<sub>4</sub>. Сообщается, что Sn<sub>3</sub>N<sub>4</sub> разлагается при 360° C [1].

1. Fischer F., Iliovici G. Ber. Deut. Chem. Ges., 1908, Bd 41, S. 3802, 4449; 1909, Bd. 42, S. 527; см. А. Е. В о л. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 128.

# 1,2038 0,7962

### N—Sr. Азот—стронций

Кроме азида Sr (N<sub>3</sub>)<sub>2</sub> (об азиде имеется большая литература см. [1]), известны следующие нитриды:  $Sr_2N$  [2, 3],  $Sr_3N_2$  [3] и  $Sr_3N_4$  [4].  $Sr_3N_9$  плавится при 1027° C [5]. Sr (N<sub>3</sub>)<sub>2</sub> взрывается при нагреве до 169° C [6, 7].  $Sr_3N_2$  плавится при 1030° С и имеет псевдогексагональную решетку типа Ва<sub>3</sub>N<sub>2</sub> [8]. Sr (N<sub>3</sub>)<sub>2</sub> имеет ромбическую решетку; a = 11.82 Å, b = 11.47 Å, c = 6.08 Å [9].

1. E h 1 R. G. a. o. WADC Tech. Note, 59-115, 1959, 75 p.

2. Ария С. М. идр. ЖОХ, 1955, т. 25, с. 634—639. 3. Ария С. М. идр. ЖОХ, 1957, т. 27, с. 1740—1743; см. [1]. 4. Ehrlich P., Hein H. J. Z. Elektrochem., 1953, Bd. 57, S. 710—714.

5. Quill L. L. The Chemistry and Metallurgie of Miscellaneous Materials-Ther-

modynamics, Mc-Graw-Hill Book Company, N. Y., 1950; см. [10]. 6. Wöhler L., Martin F. Z. Angew. Chem., 1917, Bd 30, S. 33; см. [10]. 7. Брицке Е.В., Қапустинский А.Ф. Термические константы неорганических веществ. Изд-во АН СССР, 1949; см. [10].

8. Кубашевский О., Голкинс Б. Окисление металлов и сплавов. Изд-во, «Металлургия», 1965, с. 31. Ссылка на оригинальную работу отсутствует.

9. Бокий Г. Б. Введение в кристаллохимию. Изд. МГУ, 1954, с. 397; см. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 138—139

2,8890

#### N—Та. Азот—тантал \*

Растворимость N в Та исследовалась в интервалах 25—2400° С [1], 2390— 3020° С [2] и 500—1500° С [3]. Определена граница однофазной области Та<sub>2</sub>N (рис. 323) [1]. В работах [1—3] использовали Та чистотой выше 99,9%. В работах [1, 2] производили очистку сухого N<sub>2</sub>; N<sub>2</sub>, использованный в работе [3],



№ 2; № 2, использованный в работе [3], имел чистоту 99,96%. Исследования проводили измерением равновесного давления и металлографическим и рентгеновским методами [1—3]. Кроме того, определяли электросопротивление [1], твердость [3], проводили химический анализ [2, 3] и измерение с помощью оптического пирометра [2]. Данные работы [2] (х на рис. 323) хорошо согласуются с результатами работы [3], ниже растворимости, определенной в работе [1]: 1,8; 2,75 и 3,7% (ат.) № при соответственно 500, 1000 и 1500° С.

Сообщается о существовании соединения Та<sub>3</sub>N<sub>5</sub> [4].

- Gebhardt E. u. a. Z. Metallкипde, 1961, Bd. 52, S. 464—476; предварительные данные опубликованы Gebhardt E. u. a. Z. Metallkunde, 1958, Bd. 49, S. 577—583; Plansee Proceedings, 1958, Pergamon Press, N. Y., 1959, p. 291—302.
- 2. Pemsler J. P., J. Electrochem. Soc., 1961, v. 108, p. 744-750.
- 3. Vaughan D. A. a. o. Trans. AIME, 1961, v. 221, p. 937-946.

4. Morel R. W. F. a. o. Study of Selected Metallic Borides, Nitrides, and

Phosphides, Final Report under Contract N8onr—80200, 1952, 60 р.; см. Nucl. Sci. Abstr. 1955, v. 9, р. 3380.

# 2,9442

## N—Tb. Азот—тербий

ТbN получен в результате реакции NH<sub>3</sub> с Tb при 700° С [1]. TbN имеет г. ц. к. решетку типа NaCl,  $a = 4,933 \pm 0,002$  А [1]. Температура точки Кюри соединения 43° К [2].

 Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd. 288, S. 87-90.

- 2. Wilkinson M. K. a. o. J. Appl. Phys., 1960, v. 31, p. 3588-3598.
- 218

#### 1,0416 0,9584

#### N—Те. Азот—теллур

Нитрид Те получен при дуговом разряде между электродами из Те в азотсодержащей атмосфере [1]. Сообщается о существовании Te<sub>3</sub>N<sub>4</sub> [2].

1. Fischer F., Schröter F. Ber. Deut. Chem. Ges., 1910, Bd. 43 S. 1465-1479.

2. Strecker W., Mahr C. Z. Anorg. Allgem. Chem., 1934, Bd. 221, S. 199-208; cm. Ehl R. G. u. a. WADC Tech. Note 59-115, 1959, 75 p.

 $\bar{1},4660$ 0,5340

## N-Ті. Азот-титан \*

В результате рентгеновского исследования тройной системы сделан вывод о том, что растворимость N в  $\alpha$ -Ti меньше, чем сообщалось ранее (см. М. Хансен и К. Андерко, т. II [1]). Согласно этим данным [1], при 1400° С она равна ~20% (ат.) N. Между  $\alpha$ -Ti и (TiN) обнаружены два соединения: упорядоченная фаза Ti<sub>2-3</sub> N и тетрагональная ε-фаза;  $a = 4,94_4$  A,  $c = 6,07_2$  A [1]. В работе [2] также сообщается о существовании упорядоченной фазы Ti<sub>2</sub>N. В работе [3] определены периоды решетки твердых растворов на основе  $\alpha$ - и  $\beta$ -Ti.

1. Nowotny H. u. a. Monatsh. Chem., 1961, Bd 92, S. 403-414.

- 2. W est man S. a. o. Abstr. Sci. Papers, 18th Intern. Congr. Pure Appl. Chem. Montreal, 1961, p. 116.
- 3. Skulari P. Chvatalova L., Hutnicke Listy, 1958, v. 13, p. 899-908.

# 2,8359

#### N—Tl. Азот—таллий \*

При дуговом разряде между электродами из Т1в атмосфере, содержащей N<sub>2</sub>, образуется нитрид Т1 [1]. Сообщается, что нитрид имеет состав TIN [2—4]. Азид TIN<sub>3</sub> очень нестабилен, плавится он при 334° С [5].

- 1. Fischer F., Schröter F. Ber. Deut. Chem. Ges., 1910, Bd. 43, S. 1465-1479.
- 2. Ehl R. G. a. o. WADC Tech. Note 59—115, 1959, 75 р.; см. [1] и J u z a R., Hahn H. Z. Anorg. Allgem. Chem., 1940, Bd. 244, S. 133—148.
- 3. Okubo J. Phil. Mag., 1929, v. 5, p. 377.
- 4. Бусев А., Ученые Записки Ленинградского госпединститута, 1940, т. 29, с. 303; см. Вол А. Е. Структура и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 139—140.
- 5. Славинский М. П. Физико-химические свойства элементов. Металлургиздат, 1952, с. 242.

1,0828 $\overline{2},9172$ 

#### N—Тт. Азот—тулий

При реакции смеси порошка металла и КСІ в токе NH<sub>3</sub> получен мононитрид TmN [1]. Нитрид имеет г. ц. к. решетку типа NaCl,  $a = 4,809 \pm 0,002$  A.

1. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd. 288, S. 87-90,

#### N—U. Азот—уран \*

Температура плавления UN равна 2480 ± 50° С [1]. Нейтронографически подтверждена структура UN, изотипная с NaCl,  $a = 4,890 \pm 0,001$  A [2]. Проведено прецизионное определение периода решетки: a = 4,8899 Å при 26° C [3].  $U_2N_3$  индицирован в предположении гексагональной решетки;  $a=3,70~{
m A},~c=1,70~{
m A}$ = 5,80 А, что не совпадает с данными М. Хансена и К. Андерко (см. т. II [1]). но согласуется с их же данными по другой работе (см. т. II [6, 7]).

- 1. Newkirk H. W., Bates J. L. U. S. At. Energy Comm. HW-59468, 1959, 5 p.
- 2. Mueller M. H., Knott H. W. Acta Cryst., 1958, v. 11, p. 751-752; Mueller M. H., Heaton L. U. S. At. Energy Comm. NAL-6176, 1961, p. 14—15.
- 3. Kempter C. P. a. o. Anal. Chem., 1959, v. 31, p. 156-157.
- 4. Vaughan D. A., Schwartz C. M. Неопубликованные данные (1954); см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 47.

# 2,8818

## N-W. Азот-вольфрам \*

В системе существуют следующие промежуточные фазы:  $W_2N$ ,  $W_3N_2$ , WN,  $W_2N_3$  и  $WN_2$  [1]. Все приведенные соединения, за исключением  $W_2N_3$ , упоминаются М. Хансеном и К. Андерко. Работы [2—7] посвящены исследованию отдельных соединений системы. Сообщается, что WN имеет тетрагональную решетку (a = 5,786 A, c = 6,408 A), что не согласуется с данными М. Хансена и К. Андерко (см. т. II [11]), в которой WN был индицирован в предположении гексагональной решетки. Электронографически исследовано шесть гексагональных и ромбоэдрических нитридов (табл. 33) [3-6]:

| T | А | Б | л | И | Ц | А | 33. | ХАРАКТЕРИСТИКА | НИТРИДОВ |
|---|---|---|---|---|---|---|-----|----------------|----------|
|---|---|---|---|---|---|---|-----|----------------|----------|

| Формула                                                           | Cumpound                                    | Простран-                              | Пери                                          | Литера-                                         |                                 |
|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------|
| Формула                                                           | Сингония                                    | ственная<br>группа                     | a                                             | с                                               | турный<br>источник              |
| $W_{1,15-1,35}N$<br>$W_2N$<br>$W_{0,64}N$<br>$W_{0,6}N$<br>$WN_2$ | Гексагональная<br>><br>Ромбоэдриче-<br>ская | P63/mmc<br>P3<br>P63/mmc<br>P63<br>R3m | 2,885<br>2,89<br>2,87<br>2,89<br>2,89<br>2,89 | 15,30-15,46<br>22,85<br>11,00<br>10,8<br>16,4 * | [3]<br>[4]<br>[5]<br>[5]<br>[6] |
| <sup>W</sup> 1,17 <sup>N</sup>                                    | То же                                       | R3m                                    | 2,89                                          | 29,35 *                                         | [5]                             |

\* Для эквивалентной гексагональной ячейки.

Нитрид WN имеет г. ц. к. решетку типа NaCl,  $a = 4,12 \div 4,14$  A [7]. Исследование проводили на образцах состава WN-WN0.67.

Нет единого мнения по вопросу о структуре WN. По различным данным, нитрид имеет тетрагональную [2], г. ц. к. [7] и гексагональную решетку (см. М. Хансен и К. Андерко, т. II [11]). В работе [2] отмечается двойная периодичность, в результате чего, определенный в работе период а ровно вдвое больше, чем у М. Хансена и К. Андерко (см. т. II [11]). Периоды решетки W<sub>2</sub>N (см. М. Хансен и К. Ан-дерко, т. II [4, 5]) близки к периодам решетки WN, идентифицированного в работе [7]. Вообще отмечается [3-6], что нитриды имеют близкие значения

периодов решетки. Это объясняется тем, что периоды решетки фаз внедрения определяются в первую очередь характером упаковки металлических атомов.

- 1. Славинский М. П. Физико-химические свойства элементов. Изд-во АН СССР, 1952, с. 481; см. В о л А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 78.
- 2. Neugebauer J. u. a. Z. Anorg. Allgem. Chem., 1959, Bd 302, S. 50—59. 3. Хитрова В. И., Пинскер З. Г. Кристаллография, 1958, т. 3, с. 545— 552.
- 4. Хитрова В.И., Пинскер З. Г. Кристаллография, 1960, т. 5, с. 711-717.
- 5. Хитрова В. И., Пинскер З. Г. Кристаллография, 1961, т. 6, с. 882-891.
- 6. Хитрова В. И. Кристаллография, 1961, т. 6, с. 549-552.
- 7. Хитрова В.И., Пинскер З.Г. Кристаллография, 1959, т. 4, с. 545— 553.

#### 1,1974 0,8026

## N-Y. Азот-иттрий

Металлографически исследованы сплавы с 0-50% (ат.) N [1]. Обнаружено лишь одно промежуточное соединение — нитрид YN. Температура плавления его ≥2670° С при давлении N<sub>2</sub> 1 am [2]. Растворимость N в Y при температуре ликвидуса составляет ~3,7% (ат.) [0,6% (по массе)] [1].

YN имеет г. ц. к. решетку типа NaCl [1, 2]; a = 4,878 A [1], a =  $= 4,877 \pm 0,006 \text{ A}$  [2].

1. Лундин К. И. Клодт Д. Неопубликованные данные; см. в кн. «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.

2. Kempter C. P. a. o. J. Phys. Chem., 1957, v. 61, p. 1237-1238.

#### 2,9084 1.0916

## N—Yb. Азот—иттербий

Нитрид YbN получен взаимодействием металла с NH<sub>3</sub> [1] и синтезом элементов [2]. YbN имеет г. ц. к. решетку типа NaCl. Наиболее точно периоды ее определены в работе [2],  $a = 4,7852 \pm 0,0008$  А.

1. Klemm W., Winkelmann G. Z. Anorg. Allgem. Chem., 1956, Bd. 288, S. 87-90.

2. Eick H. A. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 5987-5989.

1,3309 0,6691

### N-Zn. Азот-цинк \*

Растворимость N в жидком Zn при 448° C равна (1-2)·10<sup>-3</sup> см<sup>3</sup> на 100 г [0,006-0,012% (ат.) N] [1]. Исследование проводили по методу Сивертса на новейшей аппаратуре.

Нитрид Zn<sub>3</sub>N<sub>2</sub> можно получить при реакции порошка Zn c NH<sub>3</sub> [2-4], c N<sub>2</sub> в электрической дуге [5], или химическим путем [3]. При 350° С в вакууме или при 800° С и атмосферном давлении Zn<sub>3</sub>N<sub>2</sub> разлагается на составные элементы [6, 7].

 $Zn_3N_2$  имеет о. ц. к. решетку типа  $Mn_2O_3$ ,  $a = 9,743 \pm 0,005$  A [8]. Азид Zn (N<sub>3</sub>)<sub>2</sub> взрывается при нагреве [9].

- 1. Hofmann W., Maatsch J. Neue Huette, 1957, Bd. 2, S. 648-650.
- W hite A. H., Kirschbraun L. J. Chem. Soc., 1906 (A), V. 11, p. 853; см. Вол А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. 1, с. 169—170.
- 3. J u z a R., u. a. Z. Anorg. Allgem. Chem., 1938, Bd 239, S. 273; см. там же.
- 4. Суходский В. А., Горбунова К. М. ЖОХ, 1934, т. 4, с. 587—593; см. там же.
- 5. Fischer F., Schröter. Ber. Deut. Chem. Ges., 1910, Bd. 43, S. 1465–1479.
- 6. J u z a R., H a h n H., Z. Anorg. Allgem. Chem, 1940, Bd 244, S. 125, 133; см. В о л А. Е. Строение и свойства двойных металлических систем. Физматгиз, 1959, т. I, с. 169—170.
- 7. Maslowski M., Regulski H., Sprawozdania Prace Polsk Towarz. Fiz., 3, 1927, p. 87; cm. там же.
- 8. Juza R., Hahn H., Z. Anorg. Allgem. Chem., 1940, Bd 244, S. 125-132.
- 9. Rossiani F. D. a. o., Natl. Bur. Std. (U. S.), Circ. 500, 1952, p. 182.

# 1,1863

## N—Zr. Азот—цирконий \*

Растворимость N в β-Zr, определенная при изучении диффузии [1], несколько больше, чем показано у М. Хансена, К. Андерко (см. т. II, рис. 546):

| Температура, °С 1399        | $1299 \\ 2,24$ | 1199 | 1099 | 999  | 899  |
|-----------------------------|----------------|------|------|------|------|
| Растворимость, % (ат.) 2,85 |                | 1,73 | 1,03 | 0,45 | 0,13 |

Опубликованы результаты проведенного ранее дилатометрического исследования влияния N на а → β- превращение Zr [2]. Определялось влияние N на периоды решетки α-Zr [3]. По этим данным, растворимость N в α-Zr равна 19,1% (ат.) [3,5% (по массе)] N(вероятно, при комнатной температуре).

Как показали рентгеновский и металлографический анализы, ZrN при 1500° С гомогенен в интервале 35—50% (ат.) [4]. По данным рентгеновского и тензиметрического анализов [5], ZrN<sub>0,7</sub> [41,2% (ат.) N] и ZrN<sub>0,96</sub> [48,9% (ат.) N] однофазны в интервале 2327—2527° С при давлениях от 10<sup>-1</sup> до 300 *мм рт. ст.* ZrN имеет г. ц. к. решетку типа NaCl,  $a = 4,5745 \pm 0,001$  А при 17° С [6].

- 1. Материалы комиссии по атомной энергии США, 4, Ядерные реакторы, т. III, Материалы для ядерных реакторов, ИЛ, 1956, с. 341; см. В о л А. Е. Строение и свойства двойных металлических систем, Физматгиз, 1959.
- 2. McGeary R. K. U. S. At. Energy Comm. TID-5061, 1951, p. 419-437.
- 3. Grozier J. D. U. S. At. Energy Comm. ZH-26, 1960, p. 17-19.
- 4. Rudy E., Benesovsky F. Monatsh. Chem., 1961, Bd 92, S. 415-441.
- 5. Смагина Е. И. и др. ЖФХ, 1960, т. 34, с. 2328—2335.
- 6. Baker T. W. Acta Cryst., 1958, v. 11, p. 300.

#### 1,5928 0.4072

#### Na— Ni. Натрий—никель

Растворимость Ni в жидком Na в интервале 200—600° С определена с помощью изотопа Ni<sup>63</sup> равной (0,004—0,20) · 10<sup>-4</sup>% [1]. Присутствие Na<sub>2</sub>O заметно влияет на растворимость Ni в Na.

1. Kovacina T. A., Miller R. R. Nucl. Sci. Eng., 1961, v. 10, p. 163-166.  $_0, 1576$ 1.8424

#### Na-О. Натрий-кислород

На рис. 324 показана температурная зависимость растворимости О в жидком Na [1, 2]. Данные работы [3] в интервале 175—350° С согласуются с рис. 324. Учитывая очень низкие абсолютные значения растворимости, совпадение результатов независимых определений можно считать очень хорошим. Все исследователи отмечают, что на результаты испытаний сильно влияет материал тигля. Стекло вступает во взаимодействие со сплавом, особенно при температурах выше 250° С.





Минимальное загрязнение и наилучшие результаты обеспечиваются при использовании тиглей из нержавеющей стали.

В работе [4] исследован ликвидус системы  $Na_2O-Na_2O_2$ . Сплавы приготовляли в тиглях из окиси алюминия. На кривой ликвидуса обнаружен минимум при 42% (ат.)  $Na_2O$  [44,1% (ат.) O] и 570° С. Температуры плавления  $Na_2O$  и  $Na_2O_2$  равны соответственно 920 и 675° С.  $Na_2O$  имеет г. ц. к. решетку типа  $CaF_2$ , a= = 5,56 A [5].

О существовании Na<sub>2</sub>O<sub>2</sub> впервые сообщалось в работе [6]. Позднее существование окисла было подтверждено рентгеновским и термическим анализами [7]. Na<sub>2</sub>O<sub>2</sub> имеет две (а возможно и три) аллотропические модификации [7]. Na<sub>2</sub>O<sub>2</sub>I стабилен до 512 ± 1° С. Выше этой температуры он переходит в Na<sub>2</sub>O<sub>2</sub>II. При

223

Заливке расплавленного  $Na_2O_2$  в жидкий воздух образуется  $Na_2O_2Q$ , которая может быть как высокотемпературной (596—675° С), так и низкотемпературной модификацией.  $Na_2O_2I$  имеет гексагональную решетку;  $a = 6,207 \pm 0,004$  А,  $c = 4,471 \pm 0,003$  А.

Решетка Na<sub>2</sub>O<sub>3</sub> тетрагональная с 8 формульными единицами в элементарной ячейке; a = 6,66 A, c = 9,93 A [8].

В работах [9, 10] получен высший окисел NaO<sub>2</sub>. Он имеет г. ц. к. решетку,  $a = 5,490 \pm 0,005$  A (при 25° C), и гомогенен в ограниченном интервале концентраций [9].

Впоследствии было обнаружено несколько модификаций NaO<sub>2</sub> [11]. Выше  $-50^{\circ}$  C NaO<sub>2</sub> имеет неупорядоченную г. ц. к. решетку типа пирита. В интервале от -77 до  $-50^{\circ}$  C соединение имеет упорядоченную г. ц. к. решетку типа пирита, a = 5,46 A (при  $-70^{\circ}$  C). Ниже  $-77^{\circ}$  C решетка NaO<sub>2</sub> ромбическая типа марказита; a = 4,26 A, b = 5,54 A, c = 3,44 A (при  $-100^{\circ}$  C). Подтверждены три модификации NaO<sub>2</sub> с температурами превращения -43 и  $-80^{\circ}$  C [6].

- Trocki T. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy Genet 1955, v. 9, p. 241-251; Salmon O. N., Cashman T. J. U. S. At Energy Comm. KAPL-1653, 1956, p. 29.
- 2. Noden J. D., Bagley K. Q. U. K. At. Energy Authority, Ind. Group, R and DB (C) TN-80, 1958, 7 p.
- 3. Siegel S. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, v. 9, p. 324.
- 4. Bunzel E. G., Kohlmeyer E. J. Z. Anorg. Allgem. Chem., 1947, Bd 254, S. 1-30.
- 5. Z i n t 1 E. u. a. Z. Elektrochem., 1934, Bd 40, S. 588ff, cm. P e a r s o n W. B. A Handbook of Lattice Spacings and Structures, of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1020.
- 6. Роде Т. В., Гольдер Г. А. ДАН СССР, 1956, т. 110, с. 1001—1004.
- Tallman R. L., Margrave J. L. J. Inorg. Nucl. Chem., 1961, v. 21, v. 21, p. 40-44, Tallman R. L. Thesis University of Wisconsin, 1960, 315 p.; Dissertation Abstr., 1960, v. 20, p. 293.
   Feher F. Angew Chem., 1938, Bd 51, S. 497 ff; cm. Pearson W. B.
- Feher F. Angew Chem., 1938, Bd 51, S. 497 ff; CM. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon Press, N. Y., 1958, p. 1020.
- 9. Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1950, v. 72, p. 2251-2254.
- 10. Schechter W. H., Shakely R. H., Abstracts of Papers for 129th Meeting, American Chemical Society, Aprill, 1956, p. 18L.
- 11. Carter G. F., Templeton D. H. J. Amer. Chem. Soc., 1953, v. 75, p. 5247-5249.
- 1,0711 0,9289

## Na—Pt. Натрий—платина \* •

Соединение NaPt<sub>2</sub> получено синтезом элементов [1]. Решетка его г. ц. к. типа  $MgCu_2$ ,  $a = 7,48 \pm 0,02$  A.

1. Nash C. P. a. o. J. Amer. Chem. Soc., 1960, v. 82, p. 6203-6204.

# 2,9779

#### Na—Pu. Натрий—плутоний

Анализ ряда попыток получить сплавы позволяет сделать вывод о полной несмешиваемости элементов как в жидком, так и в твердом состоянии.

1. S.c.honfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, Pergamon Press, N. Y., 1959, ser. v, v. 2, p. 579-599.  $\overline{1},8556$ 0,1444

#### Na-S. Натрий-сера

Исследования, посвященные системе и не включенные в справочник М. Хансена и К. Андерко, рассмотрены в обзорах [1] (работы [2—8]) и [9] (работы [10— 16]). Na<sub>2</sub>S<sub>3</sub>, плавящийся при 230° С, распадается при нагреве выше 550° С до Na<sub>2</sub>S<sub>1,9</sub> [1]. Температура плавления Na<sub>2</sub>S<sub>1,9</sub> 460° С. Выше 1260° С Na<sub>2</sub>S<sub>1,9</sub> в результате диссоциации переходит в Na<sub>2</sub>S<sub>1,37</sub>. Na<sub>2</sub>S<sub>1,37</sub> кристаллизуется в интервале 650—830° С. В работе [9] определены структуры безводных полисульфидов: а-Na<sub>2</sub>S<sub>2</sub> имеет моноклинную решетку (a = 4,40 A, b = 5,33 A, c = 3,81 A,  $\beta = 93°$  12′) с 1 формульной единицей в элементарной ячейке. Решетка  $\beta$ -Na<sub>2</sub>S<sub>2</sub> моноклинная с 2 формульными единицами в элементарной ячейке (a = b == 5,11 A, c = 5,76 A,  $\beta = 88°$  44′). Na<sub>2</sub>S<sub>4</sub> также имеет моноклинную решетку (a = 8,01 A, b = 8,24 A, c = 8,82 A,  $\beta = 91°$  5′), на элементарную ячейку прихолится 4 формульных единицы.

- 1. Kohlmeyer E. J., Brinkmann H. Z. Anorg. Allgem. Chem., 1959, "Bd 299, S. 182—187.
- 2. Friedrich K. Metall u. Erz, 1914, Bd. 11, S. 79.
- 3. Thomas J. S., Rule A. J. Chem. Soc., 1917, v. 111, p. 1063.
- 4. Pearson T. G., Robinson P. L. J. Chem. Soc., 1930, p. 1473.
- 5. Ley P. Chem. Ztg., 1934, Bd 58, S. 859.
- 6. K 1 e m m W. u. a. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 283.
- 7. Feher F., Berthold H. J. Z. Anorg. Allgem. Chem., 1953, Bd 273, S. 144.
- 8. Bunzel E. G., Kohlmeyer E. J. Z. Anorg. Allgem. Chem., 1947, Bd 254, S. 1.
- 9. Erametsa O., Karlsson K. Acta Polytech. Scand., 1961, v. 15, p. 18.
- 10. Bergstrom F. W. J. Amer. Chem. Soc., 1926, v. 48, p. 146.
- 11. Locke J., Austell A. Amer. Chem. J., 1898, v. 20, p. 592.
- 12. Draves C. Z., Tarter H. V. J. Amer. Chem. Soc., 1926, v. 48, p. 1527.
- 13. Zintl E. u. a. Z. Physik. Chem. (Leipzig), 1931, Bd A154, S. 27.
- 14. Hugot C. Compt. Rend., 1899, v. 129, p. 388.
- 15. Meyer F. R., Ronge G. Angew. Chem., 1939, Bd 52, S. 637.
- 16. Feher F., Berthold H. J. Z. Anal. Chem., 1953, Bd 138, S. 245.

#### 1,2762 0,7238

#### Na—Sb. Натрий—сурьма \*

При исследовании монокристаллов [1.] подтверждено раннее сообщение (см. М. Хансен и К. Андерко, т. II [5]) о том, что NaSb имеет моноклинную решетку. Соединение NaSb изоструктурно с LiAs;  $a = 6,80 \pm 0,02$  A,  $b = 6,34 \pm 0,02$  A,  $c = 12.48 \pm 0.04$  A,  $\beta = 117.6 \pm 0.2^{\circ}$  [1].

Высказано предположение о том, что истинной формулой NaSb является Na<sub>4</sub>Sb<sub>4</sub> [2]. На основании температурной зависимости электросопротивления установлено, что ширина запрещенной зоны NaSb равна 0,82 *эв* [2].

При исследовании Rb<sub>3</sub>Sb получены данные, подтверждающие предположение о том, что гексагональный Na<sub>3</sub>Sb является полупроводником *n*-типа [3].

1. Comer D. T. Acta Cryst., 1959, v. 12, p. 41-45.

2. Угай Я. А., Вигутова Т. Н. ФТТ, 1959, т. 1, с. 1786—1788.

3. Chikawa J. a. o. J. Phys. Soc. Japan, 1961, v. 16, p. 1175-1180.

# $\overline{1},9131 \\ 0,0869$

## Na—Si. Натрий—кремний \*

NaSi имеет моноклинную решетку [1].

1. Schäfer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd. 312, S. 214. 15 Р. П. Эллнот, том II 225

## Na-Sr. Натрий-стронций



 Atomic Energy Research Establishment United Kingdom; Частное сообщение, 1957; см. Воиgh F. A., Ваиег А. А., U. S. At. Energy Comm. BMI-1300, 1958, р. 65.

#### 1,2433 0,7567

## Na—Xe. Натрий—ксенон \* 🔹

Методом меченых атомов определена растворимость Xe при давлении 1 am [1]. В результате получена зависимость  $-\lg x = 3,248 + 522/T$ , где x =атомная доля Xe, а T — температура, °K. Возможная ошибка в значениях составляет 2%.

1. Mitra C. Dissertation, Columbia University, 1959, Dissertation Abstr., 1961, v. 22, p. 100.

#### <sup>1,5462</sup> 0,4538 Na---Zn. Натрий---цинк \*

При изучении активности Na при 600° C в Na—Zn-расплавах, содержащих до 2,5% (по массе) Na, установлено, что эвтектика между твердым раствором на основе Zn и соединением расположена практически при 100% Zn. Полученные 226

результаты подтверждают также существование NaZn<sub>13</sub> (см. М. Хансен и К. Андерко, т. II [4-6]).

1. Häusler W. Z. Metallkunde, 1960, Bd. 51, S. 95-100.

 $\overline{1,4016}$ 0,5984

## Na-Zr. Натрий-цирконий

«Не обнаружено сколько-нибудь заметной взаимной растворимости компонентов» [1]. Если содержание примесей в жидком Na поддерживается на достаточно низком уровне, коррозии Zr в Na не наблюдается [1].

1. Spiegel S. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At Energy, Geneva, 1955, v. 9, p. 321-330.

 $\overline{1},8088$ 0,1912

### Nb— Nd. Ниобий—неодим

Nb в Nd при температуре плавления последнего растворяется очень незначительно или почти не растворяется [1].

1. Spedding F. H. a. o. U. S. At. Energy Comm. ISC—854, 1957, см. Гшнейднер К. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0,1995 $\overline{1},8005$ 

### Nb— Ni. Ниобий—никель \*

Локальным рентгеноспектральным анализом диффузионных пар, отожженных при 1100° С, установлено существование в системе двух соединений: NbNi<sub>3</sub> и NbNi [1]. Поскольку иногда наблюдалось оплавление, пришли к выводу [1], что температура эвтектики NbNi<sub>3</sub>—NbNi 1100 ± 5° С, в отличие от 1175° С, данной М. Хансеном и К. Андерко (см. т. II[3]). Новые определения температуры плавления NbNi<sub>3</sub> (1400° С) подтвердили старые данные.

Решетка соединения NbNi<sub>3</sub> ромбическая, изоструктурная с  $\beta$ -TiCu<sub>3</sub>; a = 5,11 A, b = 4,25 A, c = 4,54 A [2, 3]. Решетка NbNi не о. ц. к. и не типа CsCl [4].

1. Вігкз L. S., Seebold R. E. J. Nucl. Mater., 1961, v. 3, p. 249—259. 2. Корнилов И. И., Пылаева Е. Н. ДАН СССР, 1964, т. 97, с. 455—457.

3. Пылаева Е. Н. идр. ЖНХ, 1958, т. 3, с. 1626—1631.

4. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

0,7639 1,2361

## Nb---О. Ниобий--кислород \*

Равновесная днаграмма (рис. 326) построена по данным металлографического и рентгеноструктурного анализов, а также определения момента начала плавления сплавов, выплавленных в дуговых печах из очищенного электроннолучевой плавкой Nb и 99,9% ного Nb<sub>2</sub>O<sub>5</sub> [1]. Обнаружено три конгруэнтно плавящихся соединения: NbO, NbO<sub>2</sub> и Nb<sub>2</sub>O<sub>5</sub>. NbO и NbO<sub>2</sub> почти не имеют области твердых растворов, в то время как Nb<sub>2</sub>O<sub>5</sub> имеет узкую область гомогенности с возможной перитектической реакцией между NbO<sub>2</sub> и Nb<sub>2</sub>O<sub>5</sub>. Еще ранее (см. М. Хансен и К. Андерко, т. II [1,4]) была указана область гомогенности соединения Nb<sub>2</sub>O<sub>5</sub>.Nb растворяет максимально 4,0% (ат.) [0,72% (по массе)] О при эвтектической температуре и 1,43% (ат.) [0,25%

в Nb сообщалось ранее (см. М. Хансен и К. Андерко, т. II [2]); значения, полученные в работе [1], хорошо совпадают с данными этой работы при низких температурах и значительно ниже при температурах около эвтектической. Данные работы [1], имеющие четкие металлографические доказательства, предпочтительнее. В работе [2] определена растворимость О в Nb при температурах 2170— 2470° С в зависимости от давления.



Рис. 326. Nb-О

В работе [3] обнаружены только NbO, NbO<sub>2</sub> и Nb<sub>2</sub>O<sub>5</sub>, что согласуется с результатами работы [1]. В исследовании [4] найдено только NbO<sub>2</sub> и не обнаружены Nb<sub>2</sub>O<sub>3</sub> и Nb<sub>3</sub>O<sub>4</sub>. Температуры плавления NbO и Nb<sub>2</sub>O<sub>5</sub> соответственно 1935 ± 15 и 2080 ± 15° C [5]. Температура плавления Nb<sub>2</sub>O<sub>5</sub>, по данным разных исследователей, составляет, °C: 1477—1512 [6], 1486 [7], 1465 ± 5 [8], 1491 ± ± 2 [9] и 1495 [1]. Сообщается [10] об образовании при низкотемпературном окислении тетрагональной недоокиси Nb<sub>2</sub>O; a = 3,36 A, c = 3,25 A. При исследовании окисления Nb [11, 12] обнаружены две недоокиси NbO<sub>x</sub> и NbO<sub>y</sub> (где x и y равны  $\sim^{1/2}$ ). NbO<sub>x</sub> образуется при 300–350° C, NbO<sub>y</sub> — при 400–500° C [12]. Обе они имеют тетрагональную решетку с периодами: NbO<sub>x</sub>,  $a = 3,38_7$  A,  $c = 3,27_4$  A; NbO<sub>y</sub>,  $a = 6,64_5$  A,  $c = 4,80_5$  A [12]. При микроструктурном изучении NbO<sub>x</sub> и NbO<sub>y</sub> обнаружено, что обе недоокиси термодинамически метастабильны [13].

Кристаллические структуры. Решетка NbO кубическая,  $a = 4,2103 \pm 0,0004$  A при 21° C (см. М. Хансен и К. Андерко, т. II [1]). Кристаллическая структура и период решетки подтверждены новыми данными:  $a = 4,210_8$  A [14] и a = 4,210 A [1]. NbO не имеет аллотропических модификаций, что продемонстрировано закалкой из жидкого состояния [14].

Решетка NbO<sub>2</sub> тетрагональная (32 формульные единицы на элементарную ячейку); a = 13,71 A, c = 5,985 A [15], связь этой элементарной ячейки со структурой рутила описана [15]. Предварительное изучение монокристаллов NbO<sub>2</sub> указывает на о. ц. тетрагональную решетку пространственной группы 14<sub>1</sub>/a [16]. На основании измерения теплосодержания, электропроводности и термического расширения в работе [17] сделан вывод, что при  $\sim 767^{\circ}$  C NbO<sub>2</sub> претерпевает фазовое превращение.

Аллотропические модификации Nb<sub>2</sub>O<sup>5</sup> обсуждаются в работах [8, 9, 18, 19]. Nb<sub>2</sub>O<sub>5</sub>, полученный химическим путем, аморфный [8]. В результате окисления при температурах  $< 800^{\circ}$  С образуется кристаллический окиссл  $\alpha$ -Nb<sub>2</sub>O<sub>5</sub> [18]. При изучении рентгеноструктурным анализом кинетики перехода  $\alpha \implies \beta$  при температурах выше 1230° С [18] сделан вывод, что стабильна модификация  $\beta$ -Nb<sub>2</sub>O<sub>5</sub>. Сообщается [8] об обратимом образовании (эндотермически) при 1285° С аллотропической модификации  $\gamma$ -Nb<sub>2</sub>O<sub>5</sub>, устойчивой до температуры плавления. Однако критическое рассмотрение данных [8] позволило утверждать [9], что при давлении 1 *ат* устойчиво только  $\beta$ -Nb<sub>2</sub>O<sub>5</sub>. Также утверждатся [19], что  $\beta$ -Nb<sub>2</sub>O<sub>5</sub> единственная стабильная модификация. Промежуточная форма Nb<sub>2</sub>O<sub>5</sub>, о которой сообщалось М. Хансеном и К. Андерко (см. т. II [1]), по данным работ [20, 21], идентична  $\beta$ -Nb<sub>2</sub>O<sub>5</sub>, некоторая несогласованность данных различных исследователей объясняется разной полнотой аллотропического превращения [22].

Указывается, что дефекты кристаллической структуры Nb<sub>2</sub>O<sub>5</sub> нестехнометрического состава включают вакансии атомов О. Тот факт, что структура Nb<sub>2</sub>O<sub>5</sub> зависит от состава, продемонстрирован в работе [23], где обнаружена дискретная фаза NbO<sub>2.40</sub> [70, 6% (ат.) О] и двухфазная область 70,6—71,1% (ат.) О; решетка NbO<sub>2.40</sub> моноклиная и похожа на решетку  $\beta$ -Nb<sub>2</sub>O<sub>5</sub>; a = 18,86 A, b = 3,822 A, c = 15,75 A,  $\beta = 102^{\circ}$  11'.

Структура  $\beta$ -Nb<sub>2</sub>O<sub>5</sub> моноклинная с 14—15 формульными единицами на элементарную ячейку; a = 19,63 A, b = 3,835 A, c = 20,93 A,  $\beta = 120^{\circ}$  [8], или a = 20,39 A, b = 3,82 A, c = 19,47 A,  $\beta = 115^{\circ}$  39' [19].

- 1. Elliott R. P. Trans. ASM, 1959, v. 52, p. 990-1014.
- 2. Pemsler J. P. J. Electrochem. Soc., 1961, v. 108, p. 744-750.
- 3. Алямовский С. И. и др. ЖНХ, 1958, т. 3, с. 2437.
- 4. Швейкин Г. Р. Труды Института химии, УФ АН СССР 1958, № 2, с. 51—56.
- Колчин О. П., Сумарокова Н. В. Атомная энергия, 1961, т. 10, с. 168—170.
- 6. Orr R. L. J. Amer. Chem. Soc., 1953, v. 75, p. 2808-2809.
- 7. Reisman A., Holzberg F. J. Amer. Chem. Soc., 1955, v. 77, p. 2115-2119.
- 8. Shafer M. W., Roy R. Z. Krist., 1958, Bd. 110, S. 241-248.
- 9. Reisman A., Holtzberg F. J. Amer. Chem. Soc., 1959, v. 81, p. 3182-3184.

<sup>\*</sup> Обозначения разных аллотропических форм Nb<sub>2</sub>O<sub>5</sub> греческими буквами не соответствуют обозначениям, принятым в оригинальных работах,

- 10. Brauer G., Muller H. Plansee Proceedings, 1958, Pergamon Press, N. Y., 1959, p. 257-263; Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 63-67. 11. Hurlen T. Inst. Hierro y Acero, 1960, v. 13, p. 714-728.
- 12. Norman N. J. Less-Common Metals, 1962, v. 4, p. 52-61.
- 13. Norman N. a. o. J. Less-Common Metals, 1962, v. 4, p. 124-137.
- 14. Andersson G., Magneli A. Acta Chem. Scand., 1957, v. 11, p. 1065-1066.
- 15. Magneli A. a. o. Acta Chem. Scand., 1955, v. 9, p. 1402.
- 16. Marinder B. O. Acta Chem. Scand., 1961, v. 15, p. 707-708.
- 17. Куценко Ф. Г., Гельд П. В. Изв. вузов. Цветная металлургия, 1960, № 3 (4), c. 102-106.
- 18. Goldschmidt H. J. J. Inst. Metals, 1958-1959, v. 87, p. 235-239.
- 19. Звинчук Р. А. Кристаллография, 1958, т. 3, с. 744-447.
- 20. Лапицкий А. В. и др. ЖФХ, 1952, т. 26, с. 57. 21. Schafer H. u. a. Z. Anorg. Allgem. Chem., 1954, Bd 275, S. 289.
- 22. Kofstad P., Anderson P. B. Phys. Chem. Solids, 1961, v. 21, p. 280-286.

23. Norin R., Magneli A. Naturwissenschaften, 1960, Bd. 47, S. 354-355.

# 1,6888 0.3112

### Nb-Os. Ниобий-осмий \*

Рентгеноструктурным анализом определена значительная взаимная растворимость компонентов, составляющая ~15% (ат.) каждого компонента [1, 2]. Фаза χ (α-Mn) существует примерно при 55-65% (ат.) Os [2]. В работе [3] получена зависимость периода решетки у-фазы от состава, а в работе [4] найдено, что кристаллическую структуру α-Мп имеет сплав с 66% (ат.) Оs. Фаза σ существует в интервале концентраций 30-54% (ат.) Os [2]. Решетку Nb<sub>3</sub>Os типа β-W, о которой сообщалось М. Хансеном и К. Андерко (см. т. II [1]), в работе [1] не обнаружили, но высказали предположение о возможности существования такой структуры при более низкой температуре.

Периоды промежуточных фаз следующие: у тетрагональной σ-фазы a = = 9,58 Å, c = 5,06 Å [1] [40% (ат.) Os]; у кубической фазы типа а-Мп а = 9,778 Å [1] [50% (ат.) Os], a = 9,640 Å [4] [66% (ат.) Os].

1. Knapton A. G., J. Inst. Metals, 1958-1959, v. 87, p. 28-32.

- 2. Knapton A. G. J. Less-Common Metals, 1960, v. 2, p. 113-124.
- 3. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 163-164.
- 4. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.
- 1,6517 0,3483

## Nb—Pb. Ниобий—свинец

Nb и Pb взаимно не растворяются ни в жидком, ни в твердом состоянии и не образуют промежуточных фаз [1]. Спектральным анализом равновесных металлов обнаружены лишь следы их взаимной растворимости.

- 1. Wilhelm, H. A., Ellis T. G. U. S. At. Energy Comm. IS-351, 1961, p. 37—38.
- 1,9399 0.0601

#### Nb---Рd. Ниобий---палладий \*

Фазовая диаграмма системы (рис. 327) построена в работе [1] методами металлографического и рентгеноструктурного анализов, установлением температур начала плавления сплавов при одновременном определении различных физических и механических свойств: твердости, абсолютной т. э. д. с. электросопротивления и предела прочности. Сплавы готовили дуговой плавкой из 99,9%-ного Pd и 99.5%-ного Nb. Pd и Nb хорошо взаимно растворяются в твердом состоянии при 1500° С: 33-43,4% (ат.) [30-40% (по массе)] Nb в Pd и 25,3-31,4% (ат.)] [28-35% (по массе)] Рd в Nb.Данные работы [1] подтверждают существование



Рис. 327. Nb—Pd

σ-фазы, обнаруженной ранее (см. М. Хансен и К. Андерко, т. II [1]). Минимум на кривых зависимости твердости и термического расширения от состава указывает на существование упорядоченной фазы NbPd<sub>3</sub> [1]. Это соответствует данным работы [2], где найдено, чть решетка NbPd3 тетрагональная типа TiAl3; a = = 3,895 A, c = 7,913 A. В некоторых случаях составы, цитированные в работе [1] в тексте, не соответствуют приведенным на диаграмме, например состав фазы Nb2Pd на диаграмме не соответствует стехиометрическому. При построении диаграммы (рис. 327) температура плавления для Nb принята 2468° C [3], а соединение Nb2Pd приведено стехиометрического состава.

230

В работе [4], как и в [1], обнаружена значительная взаимная растворимость Pd в Nb, однако в сплавах, содержащих 30—50% (ат.) Pd, о-фазу не обнаружили ни в литом состоянии, ни после 5—7-дневного отжига при 1000—1200° С.

Савицкий Е. М. идр. ЖНХ, 1961, т. 6, с. 2603—2605.
 Dwight A. E. U. S. At. Energy Comm. ANL—6330, 1960, р. 158—162.
 Schofield T. H. J. Inst. Metals, 1956—1957, v. 85, p. 372—374.
 Knapton A. G. J. Less-Common Metals, 1960, v. 2, p. 113—124.

1,6775 0,3225

#### Nb—Pt. Ниобий—платина \*

Диаграмма (рис. 328) взята из работы [1], в которой использовали методы рентгеноструктурного, микроскопического и термического анализов сплавов, приготовленных из Nb и Pt чистотой соответственно 99,6 и 99,99%. Были найдены четыре промежуточные фазы, три из которых имеют область растворимости.



Фаза Nb<sub>3</sub>Pt, образующаяся по перитектической реакции при  $\sim\!2000^\circ$  С, имеет кубическую решетку типа β-W с периодом, меняющимся от 5,147 до 5,166 А при увеличении содержания Nb. Эти данные хорошо согласуются с приведенными М. Хансеном и К. Андерко (см. т. II [2, 3]). Решетка фазы Nb<sub>2</sub>Pt, образующейся 232

также по перитектической реакции, тетрагональная; a = 9,91 A, c = 5,12 A; это явно относится к фазе Nb<sub>5</sub>Pt<sub>3</sub>, о которой сообщалось М. Хансеном и К. Андерко (см. т. II [2]), и подтверждается результатами работы [2], где приведены те же значения периодов, что в [1]. Кристаллическая структура NbPt не определена; фаза NbPt<sub>3</sub> образуется как упорядоченная структура из неупорядоченной г. ц. к. (Pt) при ~1800° C [1].

Данные менее всесторонних экспериментальных исследований не согласуются с результатами работы [1]: локальным рентгеноспектральным анализом Nb--Pt-диффузионных пар, отожженных при 1100° С, обнаружены фазы Nb<sub>3</sub>Pt, NbPt, NbPt<sub>2</sub> и NbPt<sub>3</sub> [3]; определением температур начала плавления найден максимум на кривой ликвидуса при содержании примерно 75% (ат.) Pt [4].

Решетка твердого раствора на основе соединения эквиатомного состава NbPt не о. ц. к. и не типа CsCl [5].

1. Kimura H., Ito A. Nippon Kinzoku Gakkaishi, 1961, 26, p. 88-91.

2. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

3. Seebold R. E., Birks L. S. J. Nucl. Mater., 1961, v. 3, p. 260-266.

4. Knapton A. G. J. Less-Common Metals, 1960, v. 2, p. 113-124.

5. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

 $\overline{1},5842$ 0.4158

### Nb-Pu. Ниобий-плутоний

Примерная диаграмма, построенная в работе [1], представляет собой простую диаграмму эвтектического типа с эвтектической точкой, лежащей около Ри; промежуточных фаз в системе не обнаружено. В связи с тем, что эвтектические микроструктуры не наблюдались, сделано допущение [1], что небольшое снижение температуры плавления могло вызываться присутствием примесей.

 S c h o n f e l d F. W. a. o. Metallurgy and Fuels, Progress, in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579—599, Schofeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry and W. N. Miner, University of Chicago Press, Chicago, 1961, p. 240—254.

1,6978 0,3022 Nb-Re. Ниобий-рений \*

Равновесия в данной системе изучали в работах [1-4]. Все исследователи обнаружили большую растворимость Re в Nb и эвтектическую реакцию с концентрацией эвтектической точки около 50% (ат.) Re. В работе [1] предполагается, что для твердого раствора на основе Nb может существовать конгруэнтный максимум. В сплавах, содержащих большее количество Re [>50% (ат.)], в работах [1, 2] обнаружены: σ-фаза, образующаяся перитектически при 2450 [2] или 2565° С [1], которая в дальнейшем распадается по эвтектоидной реакции при >2300 [2] или 2162° С [1]; χ-фаза, плавящаяся конгруэнтно, и эвтектика, богатая Re. Вместе с тем в работах [3, 4] показано перитектическое образование χ-фазы, в работе [4] перитектоидное образование σ-фазы при 1075° С, а в работе [3] σ-фаза вообще не обнаружена.

В работах [1, 2] проведено достаточно убедительное микроскопическое исследование богатой Re эвтектики, данные работ [3, 4] не противоречат этим сообщениям. Фаза о, по данным работы [4] появляется после 400-и отжига при 1075° С, однако, по данным [1], на рентгенограммах образцов, отожженных при 1045° С в течение 35 дней, рефлексов о-фазы не обнаружено. Растворимость Nb в Re составляет 4% (ат.) при 2715 ± 15 [1] или 2720° С [4]; значение растворимости 1,5% (ат.) Nb при 2200° С, определенное в работе [2], хорошо совпадает с даннными [1, 4]. Диаграмма (рис. 329) взята из работы [1].

Отметим следующие расхождения в данных разных исследователей о фазовых равновесиях в системе: максимальная растворимость Re в Nb составляет 46% (ат.) при 2400° С [2], ~48% (ат.) при 2350° С [3] или 42,5% (ат.) при 2350° С [4]; концентрация эвтектической точки 50% (ат.) Re при 2400° C [2], ~51% (ат.)



Re при 2350° С [3], 47,5% (ат.) Re при 2380° С [4]; температура и концентрация перитектической точки при образовании о фазы 2450° С и 57% (ат.) Re [2]; то же для эвтектоидной реакции образования о-фазы: >2300° С и 57% (ат.) Re [2]; то же для эвтектики, богатой Re: 2730° С и 90% (ат.) Re [2]; конгрузнтная температура плавления х-фазы 2800° С при 80% (ат.) Re [2]. Перитектическая температура 2520° С [3,4].

Фаза у существует в широком интервале концентраций, например при 2200° С от 61,5 ± 1 до 87% (ат.) Re [1] или 62-87% (ат.) Re [2], 66-81% (ат.) Re [3]. 64-87% (ат.) Re [4]. Период решетки χ-фазы (о. ц. к., типа α-Mn) составляет 9.774-9,630 А [61,5-87% (ат.) Re] [1] или 9,780-9,620 [62-87% (ат.) Re] [2, 4]. По данным работы [5], период решетки при содержании 87% (ат.) Re равен 9,62 А.

Периоды решетки тетрагональной о-фазы составляют a = 9.78 A, c = 5.11 A [57% (ar.) Re] [1].

1. Grant N. J., Giessen B. C. WADD Tech. Rept. 60-132, 1960, p. 90-112, J. Metals, 1961, v. 13, p. 87. 2. Knapton A. G. J. Less-Common Metals, 1959, v. 1, p. 480-486; J. Inst.

Metals, 1958-1959, v. 87, p. 28-32.

3. Савицкий Е. М. и др. Атомная энергия, 1959, т. 7, с. 470-472.

4. Levesque P. a. o. Trans. ASM, 1961, v. 53, p. 215-226, дискуссия, там же, p. 907-909.

5. D wight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 163-164.

# $\bar{1},9556$ 0.0444

## Nb-Rh. Ниобий-родий \*

По данным работы [1], фаза NbRh<sub>3</sub> имеет упорядоченную кубическую решетку, изоструктурную с Си<sub>з</sub>Аи; a = 3,865 А. По данным работы [2], решетка эквиатомного состава не о. ц. к. и не типа CsCl.

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

#### 1,9607 0.0393

## Nb-Ru. Ниобий-рутений \*

Определением температур начала плавления в работе [1] обнаружен максимум кривой ликвидуса около 5% (ат.) Ru и минимумы при 1810° Č [40% (ат.) Ru] и 1680° С [65% (ат.) Ru]. Максимум соответствует промежуточной фазе [48-49% (ат.) Ru], о которой сообщалось М. Хансеном и К. Андерко (см. т. II [1]), и соединению NbRu, найденному в работе [2], Утверждается [2], что NbRu имеет высокотемпературную кубическую решетку типа CsCl превращающуюся при закалке в тетрагональную. Nb и Ru образуют довольно широкие ряды твердых растворов; сплав с 39% (ат.) Ru представляет собой твердый раствор на основе Nb с о. ц. к. решеткой; в Ru-углу диаграммы сплав с 66% (ат.) Ru является твердым раствором на основе Ru с растянутой г. к. решеткой [1]. Предельная растворимость Nb в твердом Ru, определенная в работе [1], не соответствует данным М. Хансена и К. Андерко (см. т. II [1]).

1. Knapton A. G. J. Less-Common Metals, 1960, v. 2, 113-114. 2. Dwight A. E. Zrans. AIME, 1959, v. 215, p. 283-286.

#### 1,8822 0.1178

## Nb-Sb. Ниобий-сурьма

Соединение Nb<sub>3</sub>Sb имеет кубическую решетку типа  $\beta$ -W [1, 2] с периодом 5,2621 ± 0,0003 Å [1] или 5,262 ± 0,002 Å [2].

1. Nevitt M. V. Trans. AIME, 1958, v. 212, p. 350-355. 2. Wood E. A. a. o. Acta Cryst., 1958, v. 11, p. 604-606.

0,0706 $\overline{1},9294$ 

Методом микрорентгеноспектрального анализа в работе [1] идентифицированы соединения NbSe, Nb<sub>2</sub>Se<sub>3</sub> и NbSe<sub>2</sub>. Образцы были приготовлены из Nb чистотой 99,7% и высокочистого Se. Отжиг образцов проводили при 1100° C.

1. Seebold R. E., Birks L. S. J. Nucl. Mater., 1961, v. 3, p. 260-266.

0,5195 $\overline{1},4805$ 

#### Nb—Si. Ниобий—кремний \*

Рентгеновским анализом установлено существование только трех соединений стехиометрических составов:  $Nb_4Si$ ,  $Nb_5Si_3$  и  $NbSi_2$ . Растворимость Si в Nb при 1000° C около 0,3% (ат.), затем она снижается; вместе с тем Nb в твердом Si нерастворим [1].

Существование соединения Nb<sub>4</sub>Si установлено надежно. Факт перитектоидного распада Nb<sub>4</sub>Si, установленный в работе [2]. подтверждается данными [1], где эвтектоидная температура определена равной 1100—1200° С. Равновесие между Nb и Nb<sub>5</sub>Si<sub>3</sub>, о котором сообщалось в работе [3] и М. Хансеном и К. Андерко (см. т. II [7, 13]) устанавливается явно ниже 1100° С. Решетка Nb<sub>4</sub>Si гексагональная; a = 3,59 А, c = 4,46 А; она относится к пространственной группе  $C6_{32}$ ,  $C6_{3}/m$  или  $C6_{3}$  [4]. Высказано предположение, что Nb<sub>4</sub>Si может существовать более чем в одной аллотропической модификации [1].

В работе [1] подтверждается полиморфизм соединения Nb<sub>5</sub>Si<sub>3</sub>, температура полиморфного превращения ~2000° С; низкая скорость этого превращения приводит к существованию выше 2000° С обеих кристаллографических модификаций. Указывается [1] на узкую область гомогенности со стороны кремния. Вместе с тем сообщается [4, 5], что Nb<sub>5</sub>Si<sub>3</sub> имеет три полиморфные формы: тетрагональную с решеткой типа Cr<sub>5</sub>B<sub>3</sub>; a = 6,56 A, c = 11,86 A [4]; a = 6,59 A, c = 11,89 A [5]; тетрагональную типа Cr<sub>5</sub>Si<sub>3</sub>; a = 10,00 A, c = 5,07 A [4]; a = 10,03 A, c = 5,11 A [5] и гексагональную с решеткой типа Mn<sub>5</sub>Si<sub>3</sub>; a = 7,52 A, c = 5,24 A [4]; a = 7,52 A, c = 5,30 A [5].

Точно определенные периоды гексагональной решетки NbSi<sub>2</sub> составляют: *a* = 4,7971 A, *c* = 6,592 A [6].

Температуры плавления, определенные в работе [4], не согласуются с приведенными ранее (см. М. Хансен и К. Андерко, т. II [8, 13]); сообщается, что соединение Nb<sub>4</sub>Si<sub>3</sub> плавится конгруэнтно при 2600 ± 100° С, а сплавы с 50 и 70% (ат.) Si — соответственно при температурах 2400 ± 100 и 2150 ± 100° С.

1. Goldschmidt H. J. J. Iron and Steel Inst., 1960, v. 194, p. 169-180.

- Pruvot E., Knapton A. G. (Assoc. Elec. Ind.), Ses. Lab. Rept. A-738 1957, cm. Kieffer R., Benesovsky F. Powder Met., 1958, v.1/2, p. 145-171.
- Kieffer R. a. o. Plansee Proceedings, 1955, Pergamon Press, N. Y., 1956, p. 154-165.
- 4. Самсонов Г. В. и др. ЖНХ, 1958, т. 3, с. 868-878.
- 5. Аржаный П. М. и др. Изв. АН СССР, ОТН, Металлургия и топливо, 1959, № 6, с. 127—129.
- 6. Swanson H. E. a. o. Natl. Bur. Stf. (U. S.) Circ. 539, 1959, v. VIII, p. 39.



#### Nb—Sn. Ниобий—олово \*

Диаграмма (рис. 330) построена методами металлографического, термического и рентгеноструктурного анализов, а также измерением твердости сплавов, приготовленных дуговой плавкой из Nb и Sn чистотой соответственно 98 и 99,9% [1]. Единственное соединение Nb<sub>3</sub>Sn с кристаллической структурой типа  $\beta$ -W образуется по перитектической реакции. Nb растворяет заметные количества Sn, но сам в Sn не растворяется. Сплавы, содержащие >54% (ат.) [60% (по массе)] Sn, образуют две несмешивающиеся жидкости.



Рис. 330. Nb—Sn

Предварительные данные, полученные в работе [2], не полностью совпадают с данными [1]: на основании опытов по изучению диффузии в жидкой фазе сообщается о существовании по крайней мере еще одного соединения NbSn<sub>2</sub>; раство-

236

римость Nb в жидком Sn при 1000 и 500° C соответственно 0,32% (ат.) [0,25% (по массе)] и 0,13% (ат.) [0,1% (по массе)]. По данным работы [2], растворимость Sn в твердом Nb при 500—1000° C составляет  $\sim 2,17\%$  (ат.) [2,75% (по массе)].

В связи с неизменяемостью периода решетки от состава в работе [3] сделан вывод об отсутствии у соединения Nb<sub>3</sub>Sn области гомогенности.

- 1. Агафонова М. И. и др. Изв. АН СССР, ОТН, Металлургия и топливо, 1959, № 5, с. 138—141.
- 2. Wilhelm H. A., Ellis T. G. U. S. At. Energy Comm. IS-351, 1961, p. 30-31.
- 3. Jansen H. G., Sauer E. J. Proc. Intern. Conf. Low Tepm. Phys., 7th, Toronto, Ont., 1960, p. 379-382.
- 1,7107 0,2893

#### Nb—Та. Ниобий—тантал \*

Диаграмма на рис. 331 построена по данным работы [1], в которой использовали металлографический и термический анализы. Компоненты неограниченно взаимно растворяются в твердом и жидком состояниях, солидус плавно возрастает



с увеличением содержания Та. Вид диаграммы подтверждается данными работы [2], где, кроме того, сообщается, что максимальная разница по температуре между ликвидусом и солидусом в данной системе составляет менее 10 град. В выступлении в дискуссии по работе [1] предполагается, что метод наблюдения за появлением первых капель расплава может давать завышенные значения солидуса [3].

Период решетки твердых растворов изменяется по закону Вегарда, причем по величине он почти постоянен при переходе от Nb к Ta [1].

Рис. 331. Nb-Та

 Williams D. E., Pechin W. H. Trans. ASM, 1958, v. 50, p. 1081-1089.

2. Rogers B. A. U. S. At. Energy Comm. ISC—835, 1957, р. 25—26. 3. Rhines F. N. Дискуссия по работе [1], Trans. ASM, 1958, р. 1088.

# 1,9764

## Nb—Тс. Ниобий—технеций \*

Система изучена в работе [1] рентгеновским анализом сплавов Тс, последовательно разбавлявшихся Nb. O. ц. к. решетку типа  $\alpha$ -Mn обнаружили у сплава с 14,3% (ат.) Nb,  $a = 9,547 \pm 0,001$  A. В работе [2] также обнаружена фаза с кристаллической структурой типа  $\alpha$ -Mn,  $a = 9,625 \pm 0,002$  A. Для нее указан стехиометрический состав NbTc<sub>3</sub>. Судя по данным работ [1, 2], можно предположить, что структура типа  $\alpha$ -Mn существует в широком интервале концентраций.

1. Darby J. B., Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

2. Compton V. B. a. o. Phys. Rev., 1961, v. 123, p. 1567-1568. 238 1,8622 0,1378

## Nb-Те. Ниобий-теллур

Фазы в системе Nb—Te изучены в работе [1] рентгеновским анализом и определением электропроводности порошковых сплавов, спеченных в течение 700 и при 900° С. Чистота Nb была 99,8%, Te 99,99%. Обнаружены три промежуточных фазы: α в интервале концентраций 15,3—44,5% (ат.) Те; β в интервале 50—63% (ат.) Те и у в интервале 70—80% (ат.) Те. Некоторые полученные результаты были подтверждены измерениями т. э. д. с.

Рентгеновский анализ обнаруженных фаз, проведенный в работе [2], дал следующие результаты:  $\alpha$ -фаза состава NbTe<sub>0.82</sub> имеет кубическую решетку с периодом 8,419 ± 0,001 A;  $\beta$ -фаза состава NbTe имеет гексагональную решетку;  $a = 5,16 \pm 0,01$  A,  $c = 7,62 \pm 0,05$  A (измерения при 700° C, затем снова при 20° C, с использованием высокотемпературной рентгеновской камеры, показали отсутствие полиморфизма);  $\gamma$ -фаза имеет о. ц. тетрагональную решетку, у монокристалла состава NbTe<sub>3</sub> периоды составляют  $a = 9,10 \pm 0,05$  A,  $c = 21,35 \pm \pm 0,05$  A.

1. Новоселова А. В. и др. ДАН СССР, 1960, т. 135, с. 864—867. 2. Григорян Л. А. и др. ДАН СССР, 1960, т. 135, с. 1133—1134.

# $\tilde{1},6024$ 0,3976

# Nb--Th. Ниобий--торий \*

На диаграмме, приведенной М. Хансеном и К. Андерко (см. т. II), показано небольшое снижение температуры полиморфного превращения Th при добавлении Nb. В работе [1] обнаружено, что указанное снижение температуры более значительно, что связано с удалением С при рафинировании. Таким образом, влияние добавок Nb на температуру полиморфного превращения чистого Th точно не установлено.

 Chiotti T. Частное сообщение, 1954; см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 121.

0,2877 $\overline{1},7123$ 

## Nb---Ті. Ниобий---титан \*



Границы фазовых областей  $\alpha/(\alpha + \beta)$ , а также  $(\alpha + \beta)/\beta$  вновь определены в работе [1]. Эти результаты вместе с данными, приведенными М. Хансеном и К. Андерко (см. т. II [1]), показаны на рис. 332. Различия между ними невелики, а так как каждое из исследований проведено достаточно тщательно, отдать предпочтение какому-либо из них трудно.

Данные работы [2] подтверждают уже известный факт отсутствия в данной системе промежуточных соединений. Однако, основываясь на данных изменения значений энергии активации диффузии, автор работы [3] предположил возможность существования промежуточных фаз при 25 и 60% (ат.) Nb. Тот же автор, по данным измерения константы Холла [4], предположил промежуточные фазы при 16,7; 50 и 66,7% (ат.) Nb. Указанные предположения мало обоснованы и противоречат более прямым экспериментальным данным. Сообщения об области существования метастабильной переходной фазы, предшосящей превращению  $\beta$ -Ti в ( $\alpha + \beta$ ), в сплавах, богатых Ti, содержатся в работе [5].

- 1. Imgram A. G. a. o. WADC Tech. Rept. 59-595, pt II, 1961, p. 59-63.
- 2. Шахова К. И., Будберг П. Б. Изв. АН СССР, ОТН, Металлургия и топливо, 1961, № 4, с. 56—58.
- 3. Грум Гржимайло Н. В. Изв. АН СССР, ОТН, 1957, № 7, с. 24-28.
- 4. Грум-Гржимайло Н. В. ЖНХ, 1958, т. 3, с. 1715—1716.
- 5. Багаряцкий Ю. А. идр. ДАН СССР, 1958, т. 122, с. 593—596.

# 1,5914

## Nb—U. Ниобий—уран \*

Равновесия в системе в интервале концентраций от 0 до 100% изучены в работе [1], равновесия только в твердом состоянии — в работах [2—4]. Диаграмма, построенная в работе [1] и приведенная на рис. 333, предпочтительнее других, так как в этой работе одни и те же результаты получены при использовании различных методов исследования. В работах [1—3] исходные материалы имели чистоту по крайней мере 99,9%; в работе [4] — 99,69% U и 98,2% Nb. При изучении равновесий использовали металлографический и рентгеноструктурный анализы [1—4] и в дополнение к ним определение электросопротивления [1, 2], термический [3, 4] и дилатометрический [1, 4] анализы, а также измерения температур с помощью оптического пирометра [1].

За исключением превращения ( $\alpha$ -U) ( $\gamma$ -U), фазовые равновесия в системе оказались такими же, что и приведенные М. Хансеном и К. Андерко (см. т. II, рис. 650, *a*), однако в новых работах они изучены полнее. Все исследователи обнаружили широкую область твердых растворов  $\gamma$ -U в Nb, область расслоения в твердом состоянии и эвтектоидный распад у сплавов, лежащих между краем области расслоения в твердом состоянии со стороны Nb и 100% U. Нонвариантное превращение ( $\alpha$ -U) ( $\beta$ -U), по данным измерения электросопротивления [1], рентгеноструктурного [4] и металлографического [1, 4] анализов, является эвтектоидным [1-4], по данным количественной металлографии [3], — перитектоидным. В работе [2] рассматриваемое превращение считается перитектоидным, однако доказательств не приводится. Эвтектоидная температура и концентрация эвтектоидной точки составляют: 663° С и 1,27% (ат.) [0,5% (по массе)] Nb [1]; ~667° С и 1,6% (ат.) Nb и 640° С и 1,3% (ат.) Nb [4].

Данные разных исследователей о температуре и концентрации эвтектоидной точки в случае распада  $\gamma$ -фазы, а также о температуре и концентрации критической точки области расслоения в твердом состоянии и о границе этой области со стороны Nb разноречивы. Эвтектоидная реакция происходит при 647° C, концентрация эвтектойдной точки 14,5% (ат.) [6,2% (по массе)] Nb [1]; при 634 ± 2° C 18,4 ± 0,5% (ат.) [8,1 ± 0,2% (по массе)] Nb [2]; при 650 ± 5° C 13,3 ± 1% (ат.) Nb [3]; при 650° C 17,5% (ат.) Nb [4]. Температура и концентрация критической точки области расслоения в твердом состоянии составляют: 975° C и 47,7% (ат.) [70% (по массе)] Nb [1]; ~850° C [2], 950° C [3] или 990° C [4] и ~50% (ат.) Nb [2-4]. Граница области расслоения со стороны Nb при тем-240

пературе эвтектоидного распада  $\gamma$ -фазы проходит при 73,1% (ат.) [51,5% (по массе)] Nb [1], 75,8% (ат.) [55% (по массе)] Nb [2]; 68  $\pm$  2% (ат.) Nb [3] и 72% (ат.) Nb [4].



Растворимость Nb в  $\alpha$ -U: >0,64% (ат.) [0,25% (по массе)] при 659° С [1]; ~1,9% (ат.) при 665° С [3]; незначительная по данным работы [4]. Растворимость Nb в  $\beta$ -U: >1,27% (ат.) [0,5% (по массе)] при 663° С [1]; 1,9% (ат.) при 720° С и ~0,6% (ат.) при 667° С [3]; 3,5% (ат.) при 650° С [4].

16 Р. П. Эллиот, том П

В работах [2, 4, 5] сообщается об образовании в у-твердых растворах при закалке с температур, близких к эвтектоидной, метастабильной фазы с о. ц. тетрагональной решеткой.

В работе [6] в результате опытов по изучению диффузии с помощью локального рентгеноспектрального анализа в области расслоения в твердом состоянии обнаружена промежуточная фаза. Она существует по крайней мере в температурном интервале 800—996° С. выше которого «интервал концентраций уменьшается и смещается к более высокому содержанию U при повышении температуры». М. Хансен и К. Андерко (см. т. II [2]) уже сообщали об этой фазе, однако она считалась либо «микроструктурной особенностью», либо метастабильной фазой.

- 1. Rogers B. A. a. o. Trans. AIME, 1958, v. 212, p. 387-393.
- 2. Dwight A. E., Mueller M. H. U. S. At. Anergy Comm. ANL-5581, 1957, 74 p.
- 3. Pfeil P. C. L. a. o. J. Inst. Metals, 1958-1959, v. 87, p. 204-208; Trans. AIME, 1959, v. 215, p. 172-173.
- 4. Иванов О. С., Терехов Г. И. Строение сплавов некоторых систем с ураном и торием. Госатомиздат, 1961, с. 20-34.
- 5. Mu'eller M. H. U. S. At. Energy Comm. ANL-6516, 1961, p. 211-212. 6. Peterson N. L., Ogilvie R. E. Trans. AIME, 1960, v. 218, p. 439-444.



### Nb—W. Ниобий—вольфрам \*

Авторы работ [1-3] полностью соглашаются, что оба компонента неограниченно взаимно растворяются как в твердом, так и в жидком состояниях. По данным работ [2, 3], солидус сплавов монотонно возрастает от Nb к W следующим образом:

| Содержание, % (ат.)<br>Температура, °С | $\begin{smallmatrix}&0\\2450\end{smallmatrix}$ | 11<br>2700 | $\begin{smallmatrix}&25\\2870\end{smallmatrix}$ | 43<br>3050 | 66,6<br>3240 | 100<br>3400 |
|----------------------------------------|------------------------------------------------|------------|-------------------------------------------------|------------|--------------|-------------|
|----------------------------------------|------------------------------------------------|------------|-------------------------------------------------|------------|--------------|-------------|

Периоды решеток твердых растворов определены в работе [2].

- 1. Kieffer R. a. o. J. Less-Common Metals, 1959, v. 1, p. 19-33; Z. Metallkunde, 1959, Bd 50, S. 18-24.
- 2. Кример Б.И., Матвеев Ю. Е. В сб. «Производство и обработка стали и сплавов». Московский институт стали, 1956, вып. 38, с. 420-426.
- 3. Михеев В. С., Певцов Д. М. ЖНХ, 1958, т. 3, с. 861-868.
- 0.0191 1.9809

## Nb— Ү. Ниобий—иттрий

Диаграмма состояния системы (рис. 334) построена в работе [1] по данным металлографического и термического анализов сплавов, приготовленных дуговой плавкой из Nb и Y чистотой соответственно 99,8 и 99,1%. Температура плавления У изменена до принятой величины. Предварительные исследования, проведенные в работах [2, 3], подтверждают данные [1]; имеются предварительные указания на ограниченную растворимость в твердом состоянии и несмешиваемость — в жидком [4].

Сообщается [1] об «обратной перитектической реакции» ( $\beta$ -Y)  $\rightleftharpoons$  Ж + ( $\alpha$ -Y), вызываемой аллотропией У, однако доказательств в пользу ее не приводится.

- 1. Lundin C. E., Klodt D. T. J. Inst. Metals, 1961-1962, v. 90, p. 341-347; Лундин К. Е. В книге «Редкоземельные металлы»; под ред. Ф. Х. Спеддинга и А. Х. Даана. Изд-во «Металлургия», 1965.
- 2. Carlson O. N. a. o. U. S. At. Energy Comm. IS-17, 1959, p. 76-77.

3. Love B. WADD Tech. Rept. 61-123, 1961, p. 48-53, 68. 4. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1.

c. 48-53.



0,1526

1.8474

16\*

Nb-Zn: Ниобий-цинк

Равновесия в системе изучены по определению потери массы, диффузионными опытами, а также методами локального рентгеноспектрального и рентгеноструктурного анализов [1—5]. В работе [6] растворимость Nb в жидком Zn изучали с помощью химического анализа насыщенных образцов. Обнаружено несколько промежуточных фаз [1]: NbZn, Nb<sub>2</sub>Zn<sub>3</sub>, NbZn<sub>2</sub>, NbZn<sub>3</sub> и не идентифицированное соединение, стехиометрический состав которого лежит между NbZn<sub>3</sub> и Zn; все соединения образуются по перитектическим реакциям; при <0,14% (ат.) [0,2% (по массе)] Nb происходит эвтектическое превращение. В работе [6] приведена температура перитектической реакции 478° С (485° С по данным термического анализа) для соединения, неидентифицированного в работе [1]. По измерению давления паров в работе [7] область гомогенности соединения NbZn<sub>3</sub> установлена равной 74,3-75,0% (ат.) [67,1-67,8% (по массе)] Zn при 780° С.

Диаграмма (рис. 335) построена по данным работ [1-7]; в работах [1, 7] опыты проводили при давлении больше атмосферного, в то время как в работе [6] давление было < 1 am.

Соединение NbZn<sub>3</sub>, решетка которого кубическая типа CuAu<sub>3</sub>, в температурном интервале 475—870° С упорядочивается [3]; период решетки равен 3,934 А

[6]. Решетка NbZn<sub>2</sub> гексагональная типа MgNi<sub>2</sub>; a = 5,05 A, c = 16,32 A [4]. Решетка Nb<sub>2</sub>Zn<sub>3</sub> также гексагональная, возможно пространственных групп  $P6_3/mmc$ , P62c или  $P\overline{6}_3mc$ ; a = 5,063 A, c = 26.43 A [5].



- 1. Goode R. J. a. o. Rept. NRL (Naval Res. Lab U. S.) Progr., Aprill, 1960, p. 27-28.
- 2. Seebold R. E., Birks L. S. J. Nucl. Mater., 1961, v. 3, p. 260-266; U. S. Naval Res. Lab. Rept. NRL-5520, September, 1960, 11p.
- 3. Vold C. L. Acta Cryst., 1960, v. 13, p. 743.
- Vold C. L. Acta Cryst., 1961, v. 14, p. 1289–1290, Rept. NRL (Naval Res. Lab. U. S.) Progr., February, 1961, p. 33–34; July, 1961, p. 19.
   Vold C. L. Rept. NRL (Naval Res. Lab. U. S.) Progr., October, 1960, p. 28–29.

- 6. Martin A. E. a. o. J. Chem. Engn. Data, 1961, v. 6, 596-599. 7. Meussner R. A., Goode R. J. U. S. Naval Res. Lab. Rept., NRL-5620, 1961, p. 1-4.

0.0080 1,9920

## Nb-Zr. Ниобий-цирконий \*

Равновесия в системе изучены с помощью металлографического анализа сплавов, выплавленных в дуговых печах из Nb и Zr, чистотой соответственно 99,8 и 99,75% [1]; в дополнение к этим исследованиям измеряли твердость, температуры плавления, а также определяли момент появления первых капель жидкости.



Рис. 336. Nb—Zr

Диаграмма, построенная в работе [1] (рис. 336), хорошо совпадает с приведенной М. Хансеном и К. Андерко (см. т. II [1], рис. 562), хотя последняя базируется на результатах весьма неполного исследования, в котором даже не применяли микроструктурный анализ. Наиболее значительно расходятся данные работы [1] с приведенным М. Хансеном и К. Андерко (т. II [1]) значением растворимости Nb в Zr; в работе [1] оно определено равным 0,06% (по массе и ат.) Nb. Равновесия в системе изучали также в работе [2] с использованием металлографического и рентгеноструктурного анализов; данные этой работы хорошо согласуются с данными [1], особенно в области, богатой Zr; в то же время, по данным [2], предельная растворимость Zr в Nb составляет 94% (ат.), а минимум кривой ликвидуса

244

лежит около 60% (ат.) Zr. Результаты других исследователей о деталях диаграммы не совпадают полностью с данными работы [1]. Измерением модуля упругости при охлаждении [5] в работах [3, 4] установлен минимум кривой ликвидуса при 1600° С, эвтектоидная реакция при 560° С и концентрации эвтектоидной точки 12% (ат.) Nb; по данным работы [6], концентрация эвтектоидной точки 24% (ат.) Nb, а измерением внутреннего трения температура эвтектоидного превращения определена равной 640 ± 15° С [7]. Данные металлографического анализа, проведенного в работе [1], можно считать весьма надежными, так как они получены после длительного отжига при температурах вблизи эвтектоидной.

Существование переходной фазы, названной ю-фазой, образующейся при закалке или низкотемпературном старении сплавов, богатых Zr, проверяли в работах [8-11]; в работе [10] ю-фазу наблюдали в сплавах, содержащих более 33% (ат.) Nb; в работе [1] ее обнаружили у сплавов с 8-35% (ат.) Nb. Кристаллическая структура  $\omega$ -фазы г. к.; a = 5,02 А, c = 3,00 А [11].

- 1. Lundin C. E., Cox R. H. U. S. At. Energy Comm. TID-12369, 1960, 52р; US. At. Energy Comm. TID-11919, 1960, 52 pp. Оба сообщения идентичны,
- 2. Knapton A. G. J. Less-Common Metals, 1960, v. 2, p. 119-121.
- 3. Бычков Ю. Ф. и др. Сб. «Металлургия и металловедение чистых металлов», 1959, вып. 1, с. 179—191.
- 4. Бычков Ю. Ф. и др. Атомная энергия, 1957, т. 2, с. 146-157.
- 5. Вусһкоv Yu. F. a. o. (Бычков Ю. Ф. и др.) J. Nucl. Energy, 1957, v 5, p. 408–412.
- 6. Емельянов В. С. и др. Атомная энергия, 1958, т. 4, с. 161-168.
- 7. Савицкий Е. М., Дашковский А. И. Изв. АН СССР, ОТН, Металлургия и топливо, 1961, № 5, с. 96-100.
- 8. Robinson H. a. o. J. Metals, 1956, v. 8, p. 1544-1545.
- 9. Hatt B. A. a. o. Nature, 1957, v. 180, p. 1406.
- 10. Yakel H. L. U. S. At. Energy Comm. ORNL-2839, 1959, p. 51-64.
- 11. Hatt B. A., Roberts J. A. Acta Met., 1960, v. 8, p. 575-584.

#### 0,3907 1.6093

## Nd-Ni Неодим-никель

NdNi<sub>5</sub> индицирован в предположении гексагональной решетки, изотипной c CaCu<sub>5</sub>;  $a = 4,948 \pm 0,005$  A,  $c = 3,977 \pm 0,005$  A [1]; a = 4,956 A, c == 3,976 A [2]. NdNi<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,270 A [3].

- 1. Wernick J. H., Geller S. Acta Cryst., 1959, v. 12, pp. 662-665.
- 2. Dwight A.E., Trans. ASM, 1961, v. 53, p. 479—500, а также Dwight A.E. Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

3. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.

0.9552 1.0448

## Nd-О. Неодим-кислород

Предложен вариант диаграммы Nd—Nd<sub>2</sub>O<sub>3</sub> (рис. 337) [1], на которой показан окисел NdO [2].

Сплавы, выплавленные из Nd чистотой 99% и Nd<sub>2</sub>O<sub>3</sub>, исследовались термическим и металлографическим методами [1]. В работе [3] обнаружены соединения  $Nd_{6}O_{11}$  и  $NdO_{2}$ . Температура плавления  $Nd_{2}O_{3}$  равна 2272 ± 20° C [4].

NdO имеет г. ц. к. решетку типа NaCl с периодом 5,068 ± 0,002 A [2] (в работе [1] была обнаружена г. ц. к. фаза с периодом 5,025 А при 23° С и 5,115 А при 1000° С, однако состав ее не определен).

Nd<sub>2</sub>O<sub>3</sub> существует в двух модификациях: А (высокотемпературная) и С (низкотемпературная). Температура превращения А \_ С 600 (5, 6], 650 [7] или 775—850° С [8]. Сообщается [9] о существовании третьей модификации В с моноклинной решеткой. Периоды решетки, рассчитанные в работе [7] по данным работы [9], равны: a = 14,35 A, b = 3,666 A, c = 8,99 A,  $\beta = 100,34^{\circ}$ . Однако в работе [6] модификацию В не удалось получить даже при тех же условиях эксперимента, как и в работе [9]. В ряде работ [1, 5, 10] предполагается, что стабильна только A Nd<sub>2</sub>O<sub>3</sub>. Однако сообщается [6], что превращение A - C обратимо. Нейтронографически подтверждена [11] гексагональная (типа La<sub>2</sub>O<sub>3</sub>) решетка A-Nd<sub>2</sub>O<sub>3</sub>; a = 3,84 A,  $c = 6,00_2$  A [12]; a = 3,831 A; c = 5,999 A (при 26° C) [13]; a = 3,82 A, c = 5,98 A [7]; a = 3,84 A, c = 6,01 A [14]. C-Nd<sub>2</sub>O<sub>3</sub> имеет о. ц. к. решетку типа Mn<sub>2</sub>O<sub>3</sub> с периодом 11,078 [15], 11,07<sub>2</sub> [16, 17], 11,04<sub>8</sub> [8] или 11,080 А [7].



Рис. 337. Nd-0

При нагреве пленки Nd в печи (атмосфера не указана) получено соединение Nd<sub>6</sub>O<sub>11</sub>, имеющее кубическую решетку с периодом 11,05 ± 0,003 A [3]. Это сообщение нуждается в подтверждении, так как возможно, что за Nd<sub>6</sub>O<sub>11</sub> принят насыщенный кислородом окисел Nd<sub>2</sub>O<sub>3</sub> (модификация С). Окислением паров Nd получено соединение NdO2 [3].

- 1. Love B., WADD Tech. Rept. 61-123, 1961, p. 37-40.
- 2. Ellinger F. H. U. S. At. Energy Comm. AECU-2593, 1953, 11p.
- 3. Белецкий М. С., Иерусалимский М. И. ДАН СССР, 1960, т. 133, с. 355—358.
- 4. Lambertson W.A., Gunzel F.H. (Jr.), U.S. At. Energy Comm. AECD-3465, 1952, 3p.
- 5. Blum S. L., Maguire E. A. Amer. Ceram, Soc. Bull., 1960, v. 39
- p. 310-312; Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048,
  - 2051; Warshaw I. Thesis, Pennsylvania State University, 1961, p. 114.
- 7. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, v. A64, p. 309-316.
- 8. I an delli A Gazz. Chim. Ital, 1947, v. 77, p. 312-318.
- 9. Shiafer, M. W., Roy R. J. Amer. Ceram. Soc., 1959, v. 42, p. 563-570.
- 10. Wolf L., Barnighausen H. J. Prakt. Chem., 1956, Bd 3, S. 228-231.
- 11. Kochler W., Wollan E. Acta Cryst., 1953, v. 6, p. 741.
- 12. Douglass R. M. Annal. Chem., 1956, v. 28, p. 551-552.
- 13. Swanson H. Natl. Bur. Std. (U. S.) Circ. 539, 1955, v. IV, p. 26.

- 14. Z a c h a r i a s e n W. Z. Phys. Chem. (Leipzig), 1926, Bd 123, S. 134-150; Chem. Abstr., 1926, v. 20, p. 3597.
- 15. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.
- 16. B o m m e r H. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 273-280.

 H u n d F., P e e t s V. Z. Anorg. Allgem. Chem., 1953, Bd 271, S. 6; см. в книге «Редкоземельные металлы»; под ред. Φ. Х. Спеддинга, А. Х. Даана. Изд-во «Металлургия», 1965.

1,8801 0.1199

## Nd—Os. Неодим—осмий

При рентгеновской съемке порошков сплавов Nd—Os, выплавленных в дуговой печи, обнаружено соединение NdOs<sub>2</sub>. NdOs<sub>2</sub> имеет гексагональную решетку типа MgZn;  $a = 5,368 \pm 0,002$  A,  $c = 8,926 \pm 0,002$  A [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

#### 0,6683 $\overline{1},3317$

## Nd—Р. Неодим—фосфор

NdP имеет г. ц. к. решетку типа NaCl; *a* = 5,838 A [1].

 I an delli A., Botti E. Atti Acad. Nazl. Lincei. Rend. Classe Sci. Fis. Mat. Nat, 1937, v. 25, p. 638-640.

1,8429

Nd—Pb. Неодим—свинец

На основании изучения концентрационной зависимости предполагается [1] существование соединений  $Nd_2Pb$ , NdPb и  $NdPb_3$ . Таким образом, система Nd-Pb аналогична системам Ce—Pb и Pr—Pb.  $NdPb_3$  имеет кубическую решетку типа AuCu<sub>3</sub>; a = 4,852 A [2].

1. Отопков П. П. и др. ДАН СССР, 1961, т. 139, с. 616-617.

 I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. I, № 9, Paper 3F. 11p, Atti Acad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

0,1323 1,8677

## Nd—Pd. Неодим—палладий

Соединение NdPd<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub>; a = 4,130 A [1]. 1. D w i g h t A. E. US At. Energy Comm. ANL 6330, 1960, p. 158—162.

1,8688 0,1312

## Nd—Pt. Неодим—платина

Соединение NdPt<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7,694  $\pm$  2,001 A [1]. NdPt<sub>5</sub> имеет гексагональную решетку типа CaCu<sub>5</sub>; a = 5,345 A, c = 4,391 A [2].

 Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500; Dwight A. E. Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

Nd—Ри. Неодим—плутоний

Система Nd—Pu аналогична системе Ce—Pu (см. [1]). Ранее сообщалось [2], что 1) жидкие Nd и Pu образуют непрерывный ряд растворов, 2) в системе отсутствуют соединения и 3) взаимная растворимость компонентов в твердом состоянии составляет ~10% (атомн.). Добавки Nd не дают возможности зафиксировать закалкой δ-Pu при комнатной температуре [3].

 Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240-254.

2. Schonfeld F. W. a. o. «Merallurgy and Fuels», Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579-599.

3. Gschneidner K. A. (Jr.) a. о. В книге «Plutonium, 1960», eds. E. Grison, a. o., Cleaver—Hume Press, Ltd., London, 1961, p. 134—142.

0,1469 1.8531

1,77550.2245

### Nd— Rh. Неодим—родий

Рентгенограмма порошка NdRh<sub>2</sub> индицирована в предположении г. ц. к. решетки типа MgCu<sub>2</sub> с периодом 7,564 ± 0,001 A [1]. Соединение NdRh<sub>2</sub> получено дуговой плавкой [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

#### 0,1520 1,8480

## Nd— Ru. Неодим—рутений

Рентгенограмма порошка NdRu<sub>2</sub> индицирована в предположении г. ц. к. решетки типа MgCu<sub>2</sub> с периодом 7,614 ± 0,001 A [1]. Соединение NdRu<sub>2</sub> получено дуговой плавкой [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

0,6532 1,3468

#### Nd—S. Неодим—сера

NdS имеет г. ц. к. решетку типа NaCl,  $a = 5,691 \pm 0,001$  A [1, 4, 5]. Температура плавления соединения 2200 ± 60° С [1, 3].

Сульфид  $M_{ds}S_4$  плавится при 2040° С [6]. Структура его о. ц. к. типа  $Th_3P_4$ , a = 8.524 А [7].

 $\gamma$ -Nd<sub>2</sub>S<sub>3</sub> плавится при 2200° С [6, 8] или 2010° С с одновременной диссоциацией до NdS [9]. Nd<sub>2</sub>S<sub>3</sub> имеет три модификации:  $\alpha$ -Nd<sub>2</sub>S<sub>3</sub> существует до 1050 ± ± 50° С и превращается в  $\beta$ -Nd<sub>2</sub>S<sub>3</sub> [6, 9];  $\beta$ -Nd<sub>2</sub>S<sub>3</sub> стабилен в интервале от 1050 ± ± 50 до 1300 ± 200° С, а при более высоких температурах переходит в  $\gamma$ -Nd<sub>2</sub>S<sub>3</sub> [6, 9];  $\gamma$ -Nd<sub>2</sub>S<sub>3</sub> стабилен до температуры диссоциации [9].

Структуры  $\alpha$ - и  $\beta$ -Nd<sub>2</sub>S<sub>3</sub> неизвестны [6, 9].  $\gamma$ -Nd<sub>2</sub>S<sub>3</sub>, как и Nd<sub>3</sub>S<sub>4</sub>, имеет о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub>, но с вакансиями металлических ионов, a = 8,527 A [6, 9]. Nd<sub>3</sub>S<sub>4</sub> и  $\gamma$ -Nd<sub>2</sub>S<sub>3</sub> образуют непрерывный ряд твердых растворов.

NdS<sub>2</sub> плавится при 1760° С. Соединение имеет ромбическую решетку типа LaS<sub>2</sub> с 8 формульными единицами в элементарной ячейке, a = 8,04 A [9, 10].

249

- 1. Picon M. C., Patrie M., Compt. Rend., 1956, v. 242, p. 1321.
- 2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 3. Picon M. C. e. a. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 685.
- 4. Iandelli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887.
- 5. Guame-Mahn F. Bull. Soc. Chim. France, 1956, v. 22, p. 1862-1867.
- 6. Picon M. a. o. Bull. Soc. Chim. France, 1960, v. 26, p. 221-228.
- 7. Picon M., Flahaut J. Compt. Rend., 1956, v. 243, p. 2074-2076.
- 8. Litz L. M. High Temperature Technology, Stanford Research Institute, Menlo Park, Calif., 1959, p. 134.
- 9. Picon M., Patrie M. Compt. Rend., 1956, v. 243, p. 1769-1772.
- 10. Flahaut J. a. o. Bull. Soc. Chim. France, 1959, v. 251, p. 1917-1920.

#### 0,0738 1,9262

## Nd-Sb. Неодим-сурьма

NdSb имеет г. ц. к. решетку, a = 6,322 A [1].

1. I an delli A., Botti E Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1937, v. 25, p. 638-640.

0,2619 1,7381

## Nd—Se. Неодим—селен

Сообщается [1] о существовании Nd<sub>2</sub>Se<sub>3</sub> и Nd<sub>2</sub>Se<sub>4</sub>. Nd<sub>2</sub>Se<sub>4</sub> получен методом газопереноса [3]. Соединение гомогенно до состава Nd<sub>2</sub>Se<sub>3,6</sub> и находится в равновесии с Nd<sub>2</sub>Se<sub>3</sub>. Nd<sub>2</sub>Se<sub>4</sub> имеет тетрагональную решетку; *a* = 8,35 A, *c* = 8,43 A; а Nd<sub>2</sub>Se<sub>3,6</sub> *a* = 8,28 (средн.) A, *c* = 8,41 A [2]. В результате распада Nd<sub>2</sub>Se<sub>3</sub> при 1200—1700° С между Nd<sub>2</sub>Se<sub>3</sub> и Nd<sub>3</sub>Se<sub>4</sub>

образуется ряд твердых растворов с кубической решеткой типа Thap4 и переменным количеством вакантных атомов Nd; при составе Nd<sub>3</sub>Se<sub>4</sub> a = 8,859 Å.

NdSe может быть получен прямым синтезом элементов [4] или при реакции окисла Nd c Al и Se [5]. NdSe имеет г. ц. к. решетку типа NaCl с периодом a = = 5,909 + 0,003 [4] u 5,891 A [5].

1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd 233, S. 84-96.

- 2 Benacerraf A. a. o. Compt. Rend., 1959, v. 248, p. 1672-1675.
- 3. Benacerraf A., Guittard M. Compt. Rend., 1959, v. 248, p. 2012-2014.
- 4. I an delli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887.
- 5. Guittard M., Benacerraf A. Compt. Rend., 1959, v. 248, p. 2589-2591.
- 0,7106 1,2894

## Nd—Si. Неодим—кремний \*

При температуре, лежащей в интервале от комнатной до 150° С, NdSi2 испытывает полиморфное превращение [1]. Низкотемпературная модификация имеет ромбическую решетку; a = 4,18 A, b = 4,15 A, c = 13,56 A [1]. Высокотемпературная модификация — тетрагональную типа ThSi2 (см. М. Хансен, К. Андерко, т. II [2]); a = 4,103 A, c = 13,53 A. NdSi<sub>2</sub> плавится при 1525° С [2].

Сообщается о существовании силицида примерного состава Nd<sub>5</sub>Si<sub>3</sub> [2, 3] Структура его (гексагональная) изоморфна со структурой аналогичного соединения в системе La—Si; a = 9,57 A, c = 7,04 A.

2. Binder I. J. Amer. Ceram. Soc., 1960, v. 43, p. 287-292.

3. Grinthal R. D. WADC Tech. Rept. 53—190, pt VI, May, 1958; см. Гшнейднер Е. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0.0848 1.9152

#### Nd-Sn. Неодим-олово

 $NdSn_3$  имеет кубическую решетку типа AuCu<sub>3</sub>, a = 4,705 A [1].

1. Landelli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Sump. 1959, v. I, № 9, Paper 3F, 11p.

1,9018 0.0982

### Nd-Та. Неодим-тантал

При плавке в Та тигле загрязнение Nd танталом составляет <0,04% (ат.) [<0,05% (по массе)]. Промежуточные соединения в системе не образуются, растворимость Та в твердом Nd невелика [1].

1. Spedding F. H., Daane A. H., Metallurgy and Fuels, chap. V, Progress in Nuclear Energy, ser. V, v. I, Pergamon Press, N. Y., 1956, р. 413, см. Гшнейднер К. А. Сплавы редкоземельных металлов, Изд-во «Мир», 1965.

0,0534 1.9466

#### Nd-Те. Неодим-теллур

NdTe имеет г. ц. к. решетку типа NaCl,  $a = 6,262 \pm 0,003$  A [1]. Соединение плавится при 2045 ± 30° С [2].

В интервале Nd<sub>3</sub>Te<sub>4</sub>---Nd<sub>2</sub>Te<sub>3</sub> сплавы имеют о. ц. к. решетку типа Th<sub>3</sub>P<sub>4</sub> с периодами 9,4557 ± 0,0005 A (Nd<sub>3</sub>Te<sub>4</sub>), 9,4389 ± 0,0004 Å (Nd<sub>2</sub>Te<sub>3</sub>) [2]. С ўвеличением содержания Те температура плавления несколько понижается: от 1685 ±  $\pm$  30 для  $\rm Nd_3Te_4$  до 1650  $\pm$  30° C для  $\rm Nd_2Te_3$  [2].

1. I andelli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887.

2. Miller J. F. a. o. B книге «Rare Earth Research» eds. J. F. Nachman, C. E. Lundin (Proceedings of the Second Conference), Gordon and Breach, Science Publishers, Inc., N, Y., 1962, p. 233-248.

## (a) And a second secon second sec

## Nd-Th. Неодим-торий

Добавки Nd понижают температуру превращения Th [1].

1. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-887

(QPR 13), 1961, p. 10.

0.4789

1,5211

#### Nd-Ті. Неодим-титан

По данным термического и металлографического исследования построена диаграмма (рис. 338) на участке 0-4% (ат.) Nd. Сплавы выплавляли в дуговой печи из Nd и Ті чистотой соответственно 99,8 и 99,97% [1]. Интерметаллических соединений не обнаружено, Nd стабилизирует «-Ті. Температура превращения α ∠ β повышается до 900° С. При этой температуре происходит перитектоидное

251

1,7938

0,2062

<sup>1.</sup> Perri J. A. a. o. J. Phys. Chem., 1959, v. 63, p. 616-619; Perri J. A. a. o. J. Phys. Chem., 1959, v. 69, p. 2073.

превращение. Растворимость Nd в α- и β-Ті примерно одинакова [1]. В то же время заметный эффект старения твердого раствора на основе α- Ті указывает на уменьшение растворимости при понижении температуры. Указывается [2], что значения растворимости, определенные в работе [1], слишком высоки, если при-



Рис. 338. Nd—Ti

ществует двухфазная область г. к.-Nd + + г. к.-Тт. Авторы работы [1] провели

контрольное исследование порошкового образца из сплава с 37% (ат.) Тт, приготовленного в работе [2], и обнаружили в нем г. к.-Nd (a = 3,76 ± 0,007 A,  $c = 12,325 \pm 0,01$  A) и «б»-фазу (NdTm) с ромбоэдрической г. к. структурой Sm  $(a = 3,656 \pm 0,003 \text{ A}, c = 26,36 \pm 0.02 \text{ A})$ .

- 1. Valletta R. M. Ph. D. Thesis, Iowa State University of Science and Technology, 1959, 88p.
- 2. Barton R. J. Ph. D. Thesis (не опубликовано), Iowa State University of Science and Technology, 1957.

# 1,7825 0.2175

## Nd-U. Неодим-уран \*

Подтверждена несмешиваемость в жидком состоянии [1, 2]. Значения взаимной растворимости приведены в табл. 34. Показано [1], что сплавы со стороны U начинают кристаллизоваться по монотектической реакции; образование эвтектики не наблюдалось.

- 1. Haefling J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.
- 2. Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December, 1957, (classified); cm. Rough F. A., Bauer A. H. U. S. At. Energy Comm. BMI-1300, 1958, p. 43.

## ТАБЛИЦА 34. ВЗАИМНАЯ РАСТВОРИМОСТЬ ЖИДКИХ Nd и U

| Температура                                          | Растворимос                                   | сть Nd в U                           | Растворимость U в Nd                                                            |                                                      |  |
|------------------------------------------------------|-----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|--|
| °C                                                   | % (по массе)                                  | % (ат.)                              | % (по массе)                                                                    | % (ат.)                                              |  |
|                                                      | <u></u>                                       | По [1]                               |                                                                                 |                                                      |  |
| 1250<br>1225<br>1200<br>1175<br>1150<br>1100<br>1050 | 0, 19<br>0, 12<br>0, 18<br>0, 16<br>0, 14<br> | 0,31<br>0,20<br>0,30<br>0,26<br>0,23 | $\begin{array}{c} 1,76\\ 1,65\\ 1,99\\ 1,55\\ 1,68\\ 0,99\\ 1,30\\ \end{array}$ | 1,08<br>1,01<br>1,21<br>0,95<br>1,03<br>0,60<br>0,80 |  |
|                                                      |                                               | По [2]                               |                                                                                 |                                                      |  |
| 1250<br>1150<br>1000                                 | 0,20<br>0,15<br>—                             | 0,33<br>0,25                         | 2,0                                                                             | 1,22<br>0,67                                         |  |

0,4521 1.5479

0

### Nd---V. Неодим---ванадий

В этой системе нет промежуточных фаз [1] и наблюдается только ограничен ная растворимость в жидком состоянии вблизи ординат компонентов. Растворимость Nd в жидком V очень мала, что установлено по количеству Nd в V после

кристаллизации отделенных сепарацией жидкостей. Растворимость V в Nd около 14% (ат.). Точки кристаллизации расплавов, богатых V или Nd, отличаются не больше, чем на З град, от точек плавления нелегированных компонентов. В образцах, отожженных при 950° С. Nd из твердого V не выделялся; изменения периода решетки V в результате сплавления с Nd указывают на раскисляющее действие последнего. Растворимость Nd в V в твердом состоянии считается очень малой.

1. Komjathy S.a.o. WADC Tech. Rept. 59-483, 1959, 69p.; Komjathy S. J. Less-Common Metals, 1961, v. 3, p. 466-488.

В работе [1] обнаружили соединение NdY с гексагональной структурой Sm, образующееся по перитектоидной реакции. В работе [2] для NdY с 47.0% (ат.) Y даны значения a=3,665±  $\pm 0,007$  A,  $c = 26.45 \pm 0.02$  A.



252

На рис. 339 представлен предварительный вариант равновесной диаграммы состояния этой системы по работе [3]. Ее вид согласуется с данными [1, 2]. Были использованы металлографический, термический и рентгеновский анализы. Обнаружено, что NdY разлагается при ~550° С. а-фазы Nd и Y обладают большой взаимной растворимостью, но точно она не была определена. Построение границ фазовых областей рентгеновским методом затруднено из-за идентичности решеток и малой разницы (~1%) в их периодах. Предполагается, что выше 550° С в равновесии находятся фазы  $\alpha_1$  и  $\alpha_2$ . Система характеризуется равномерным возрастанием температуры плавления с увеличением концентрации У, резкое оплавление связывается с малым температурным интервалом между ликвидусом и солидусом. Дифференциальный термический анализ показывает, что температура  $\alpha \not \supseteq \beta$ -превращения в Nd повышается по мере увеличения содержания Y: очевидно, что  $\beta$ -Nd и  $\beta$ -Y неограниченно взаимно растворяются, но пока это экспериментально не доказано.

- 1. Спеддинг Ф., Даан А. Устное сообщение на собрании АІМЕ, 1959; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 2. Valletta R. M. Ph. D. Thesis, Iowa State University of Science and Technology, 1959, 88p.
- 3. Kirkpatrick C. G., Love В. В книге «Rare Earth Research» eds. J. F. Nachman, C. E. Lundin (Proceedings of the Second Conference), Gordon and Breach, Science Publishers, Inc., N. Y., 1962, p. 87–103; Love B. WADD Tech. Rept. 61—123, 1961, 198р., особенно р. 23—28, 85—91, 121—124.
- 0,3438 1,6562

#### Nd—Zn. Неодим—цинк

Соединение NdZn имеет кубическую решетку типа CsCl, a = 3.601 A [1]

- 1. I an delli A. Atti Acad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 0.1992 1,8008

### Nd-Zr. Неодим-цирконий

В работе [1] на выплавленных в дуговой печи сплавах металлографически изучено влияние Nd на полиморфизм Zr. Окончательных результатов не получено из-за присутствия в образцах посторонних фаз. Авторы [1] считают нонвариантную реакцию перитектоидной, хотя пределы растворимости: 0,89% (ат.) [1,4% (по массе)] Nd в β-Zr и ~0,57% (ат.) [0,9% (по массе)] Nd в α-Zr говорят об эвтектоидном превращении. Загрязнение сплавов и гистерезис полиморфного превращения помешали выявить влияние Nd на его температуру.

1. U y J. C. a. o. Rensselaer Polytechnic Institute, Final Report on Contract AT (30-1)-2159, 1961; Lam D. J. Dissertation, Rensselaer Polytechnic Institute, 1960, 107p.

#### 0,5644 1.4356

### Ni-O. Никель --- кислород \*

В работе [1] получены окислы NiO, Ni<sub>2</sub>O<sub>3</sub> и NiO<sub>2</sub>; последний можно было приготовить только под «высоким давлением». Однако автору работы [2] не удалось окислить NiO больше, чем до NiO<sub>1.06-1.07</sub>; в работе [3] также показано, что NiO существует в диапазоне концентраций, соответствующих формуле NiO<sub>1,002-1,32</sub>, и что Ni<sub>3</sub>O<sub>4</sub>, Ni<sub>3</sub>O<sub>2</sub> и NiO<sub>2</sub> не могут быть получены термическим разложением NiNO<sub>3</sub>. Сообщается об образовании шпинели Ni<sub>28</sub>O<sub>32</sub> [4]. Считается, что NiO имеет г. ц. к. решетку типа NaCl, a = 4,172 A [1], или ромбоэдрическую, a = = 2,9518 Аиа = 60°, 4,2′ при 18° С [5]. Ni<sub>2</sub>O<sub>3</sub> имеет г. ц. к. решетку, a = 4,186 А,  $_{\rm H}$  NiO<sub>2</sub> — кубическую, a = 4,620 A [1].

1. Богацкий Д. П., Манеева И. А. ЖОХ, 1959, т. 29, с. 1382—1390.

- 2. Holtermann C. B. Ann. Chim. (Paris), 1940, v. 14, p. 121-206: Chem. Abstr., 1941, v. 35, р. 7859. 3. Роде Е. Я. ЖНХ, 1956, т. І. с. 1430—1439.
- 4. Finch G. J., Sinha K. P. Trans. Faraday Soc., 1957, v. 53, p. 623-627.
- 5. Rooksby H. P. Trans. Brit. Ceram. Soc., 1957, v. 56, p. 581-589.

#### 0.2776 1.7224

## Ni-P. Никель-фосфор \*

Растворимость Р в твердом Ni по результатам металлографического исследования отожженных и закаленных высокочистых сплавов Ni-P показана на рис. 340. Термический анализ дал эвтектическую температуру 875 ± 1° С. Решетка Ni<sub>3</sub>P тетрагональная, a = 9,01 A, c = 4,42 A [1]. Эти данные хорошо



Рис. 340. Ni-Р

согласуются с приводимыми М. Хансеном и К. Андерко (см. т. II [5]). Тетрагональная структура Ni<sub>3</sub>P подтверждена в работе [2], где получены значения a = 8,954 A, c = 4,387 A.

Проведена работа с монокристаллами фазы Ni<sub>12</sub>P<sub>5</sub> [2]; ранее о ней не сообщалось, но авторы [2] предположили, что именно к ней относятся данные по Ni<sub>7</sub>P<sub>3</sub>, приведенные М. Хансеном и К. Андерко (см. т. II [6]). Соединение имеет тетрагональную решетку, a = 8,646 A, c = 5,070 A.

Подтверждено, что Ni<sub>2</sub>P имеет гексагональную структуру, a = 5,859 A, c = 3,382 A [2-4]. Это согласуется с данными М. Хансена и К. Андерко (см. т. II [5]). В работе [4] обнаружена двухфазная область Ni<sub>12</sub>P<sub>5</sub> + Ni<sub>2</sub>P, 255

существующая вплоть до 1000° С. Изменение периода решетки Ni<sub>2</sub>P в этой двухфазной области в зависимости от температуры указывает на существование значительной области гомогенности NipP. Элементарная ячейка NipP сжимается с увеличением содержания Р.

NiP<sub>2</sub> имеет моноклинную решетку;  $a = 6,365_9$  A,  $b = 5,615_2$  A,  $c = 6,071_5$  A и  $\beta = 126,22_4^{\circ}$ , изоморфную с PdP<sub>2</sub> [5]. Фазе NiP<sub>3</sub> приписывается кубическая структура, а = 7,819 А [2]. В работе [2] показано существование еще одной фазы — Ni<sub>2.5</sub>P (Ni<sub>5</sub>P<sub>2</sub>), близкой по составу к Ni<sub>12</sub>P<sub>5</sub>. Структура этой фазы не определена.

- 1. Koenemann J., Metcalfe A. G. Trans. AIME, 1958, v. 212, p. 571-572.
- 2. R undqvist S., Larsson E. Acta Chem. Scand., 1959, v. 13, p. 551-560.
- 3. Rundqvist S., Jellinek F. Acta Chem. Scand., 1959, v. 13, p. 425---432.
- 4. R undqvist S. Acta Chem. Scand., 1962, v. 6, p. 992-998.
- 5. Rundqvist S. Acta Chem. Scand., 1961, v. 15, p. 451-543.

#### 1,4522 0.5478

### Ni-Pb. Никель-свинец \*

Растворимость Ni в жидком свинце изучали методом химического анализа жидкой фазы [1-4], находящейся в равновесии с твердой. В работе [1] сообщается, что концентрация эвтектической точки 0,46% (ат.) [0,13% (по массе)] Ni, а не 0,38% (ат.) [0,11% (по массе)] Ni (см. М. Хансен и К. Андерко, т. II [7]). Значения растворимости хорошо согласуются, но все же они здесь несколько меньше при температурах выше 500° С.чем это указывается М.Хансеном и К. Андерко (см. т. II [7]). В работе [2] изучено также равновесие между двумя жидкими фазами Ж, и Ж, при 1373 и 1430° С; там же определены составы сосуществующих фаз при 1500 и 1550° С экстраполяцией данных по тройной системе Fe—Pb—Ni на двойную Ni—Pb. Данные о растворимости в твердом состоянии [1—4] и равновесии (Ж<sub>1</sub> + Ж<sub>2</sub>) [2] в сочетании со старыми результатами (см. М. Хансен и К. Андерко, т. П, рис. 565) дают диаграмму, представленную на рис. 341. При составлении рис. 341 были использованы данные М. Хансена и К. Андерко (см. т. II [1, 7]) об эвтектической температуре (324° С).

- 1. Davey T. R. A. AIME Metallurgical Society Conference, v. 7, Physical Chemistry of Process Metallurgy, Interscience Publishers, Inc., N. Y., 1961. p. 581-600.
- 2. Miller R. O., Elliott J. F. Trans. AIME, 1960, v. 218, p. 900-910.
- 3. Alden T. a. o. Trans. AIME, 1958, v 212, p. 15—17. 4. Fleischer B., Elliott J. F. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. 1, № 9, Paper 2F, 12p.



### Ni—Pd. Никель—палладий \*

Изотермы электросопротивления и его температурного коэффициента при всех температурах имеют вид, характерный для непрерывного ряда твердых растворов [1], что согласуется с данными М. Хансена и К. Андерко (см. т. II, рис. 566). В работе [2] наблюдали изменение гальваномагнитных, а в [3] — термомагнитных эффектов вблизи состава, соответствующего формуле NiPda, но эти отклонения не сказались на ходе кривых электросопротивления и его температурного коэффициента в зависимости от концентрации [1]. Температура точки Кюри, определенная в работе [1] по максимуму на температурной зависимости термического коэффициента электросопротивления, согласуется с данными М. Хансена и К. Андерко (см. т. II, рис. 566).



1. Язлиев С. ЖНХ, 1960, т. 5, с. 1182—1184.

2. Майаликгулиев Г. Изв. АН Туркм. ССР, 1957, № 3, с. 3; 1957, № 5, с. 116; 1959, № 1, с. 104; см. [1].

3. Аннаев Р. Г., Язлиев С. Изв. АН Туркм. ССР, 1957, № 6, с. 3; см. [1].

17 Р. П. Эллиот, том II



### Ni-Po. Никель-полоний

В работе [1] исследовали сплавы, приготовленные по микрометаллургической методике, где Ni подвергается воздействию паров Ро. Между NiPo (со структурой NiAs) и NiPo, (со структурой Cd (OH),) образуется непрерывный ряд твердых растворов. Периоды гексагональной решетки колеблются в пределах  $a = 3,95 \div$  $\div$  3,98 А и  $c = 5,68 \div 5,71$  А. Диаграмма состояния аналогична диаграмме системы Ni-Te.

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

1,61960,3804

1,4465 0,5535

## Ni-Pr. Никель-празеодим \*

В работах [1, 2] даются периоды решетки PrNis с гексагональной структурой типа CaCu<sub>5</sub>:  $a = 4,958 \pm 0,005$  A,  $c = 3,980 \pm 0,005$  A [1] и a = 4,964 A, c = 3,975 Å [2]. В работе [3] приведено значение периода для соединения PrNi<sub>2</sub> с г. ц. к. решеткой типа MgCu<sub>2</sub>;  $a = 7,285 \pm 0,005$  А. Термический анализ не показал полиморфных превращений в интервале от комнатной температуры до 880° C.

Предполагается [4], что фаза, которой приписывается формула PrNi<sub>4</sub> (см. М. Хансен и К. Андерко, т. II [1]), есть Pr<sub>2</sub>Ni<sub>2</sub>.

1. Wernick J. H., Geller S. Acta Crist., 1959, v. 12, p. 662-665.

- 2. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; D w i g h t A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 3. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868.
- 4. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 1,3849

## Ni—Pu. Никель—плутоний \*

Диаграмма (рис. 342) построена в работе [1] и уточнена в исследовании [2]. Область существования фазы б', по [3], дана на вставке. Диаграмма, приведенная М. Хансеном и К. Андерко (см. т. II [1, 2]), хорошо согласуется с данными работы [1], однако в первой меньше деталей. В работах [1, 2] использовали Ni с 0,0125% С и следами Мд, Са и Си, а в работе [3] применяли высокочистый Ри. В качестве методов исследования использовали термический анализ [1-3], оптическую металлографию [1, 2], простой рентгеноструктурный [1, 2] и высокотемпературный рентгеновский [3] и химический [1] анализы.

Система характеризуется двумя эвтектиками и шестью промежуточными фазами: PuNi, PuNi<sub>2</sub>, PuNi<sub>3</sub>, PuNi<sub>4</sub>, PuNi<sub>5</sub> и PuNi<sub>9</sub> [1].

В работах [2, 4-6] РиNi<sub>9</sub> приписывается формула Рu<sub>2</sub>Ni<sub>17</sub>. РuNi имеет ромбическую решетку, изоморфную с TII,  $a = 3,59 \pm 0,01$  Å,  $b = 10,21 \pm 0,02$  Å,  $c = 4, 22 \pm 0.01$  Å [7]; a = 3,63 A b = 10,24 A, c = 4,20 A [1]. PuNi<sub>2</sub> xapakтеризуется г. ц. к. решеткой типа MgCu<sub>2</sub> [1, 2, 5, 6, 8] с периодом до 7,141 А (со стороны Ри при 600° С), 7,115<sub>3</sub> (со стороны Ni при 600° С) [1]; 7,141 А (со стороны Pu), 7,115 A (со стороны Ni) [2]; 7,141 ± 0,001 A (со стороны Pu), 7,115 ± ± 0,001 A (со стороны Ni) [5]; 7,16 ± 0,01 A [6]; 7,14 A [8]. РиNi<sub>8</sub> имеет ромбоэдрическую решетку ( $\overline{R3m}$ ), a = 6,22 A,  $\alpha = 33^{\circ}44'$  (периоды гексагональной ячейки:  $a = 5.00 \pm 0.02$  A,  $c = 24.35 \pm 0.10$  A) [9]; эта фаза имеет ромбическую решетку; a = 4,268 A, b = 4,98 A, c = 8,18 A [1]. У PuNi<sub>4</sub> моноклинная решетка  $(C2/m); a = 4.87 \pm 0.01 \text{ A}, b = 8.46 \pm 0.02 \text{ A}, c = 10.27 \pm 0.02 \text{ A}, \beta = 100 \pm 0.02 \text{ A}$  $\pm$  0,1° [10]. PuNi<sub>5</sub> имеет гексагональную решетку типа CaZn<sub>5</sub>;  $a=4,872\pm$  $\pm$  0,001 Å,  $c = 3,980 \pm 0,001$  Å [1];  $a = 4,872 \pm 0,002$  Å,  $c = 3,980 \pm 0,001$  Å 258



(при избытке Pu);  $a = 4,861 \pm 0,002$  A,  $c = 3,982 \pm 0,001$  (при избытке Ni) [2, 5]; a = 4,875 ± 0,005 A, c = 3,970 ± 0,005 A [6]. У Ри<sub>2</sub>Ni<sub>17</sub> гексагональная решетка, изоморфная с Th<sub>2</sub>Ni<sub>17</sub>; a = 8,29 A, c = 8,01 A [1];  $a = 8,29 \pm 0,02$  A,  $c = 8,01 \pm 0,02$  A [2, 5];  $a = 8,30 \pm 0,01$  A,  $c = 8,00 \pm 0,01$  A [6].

- 1. Wensch G. W., Whyte D. D. U. S. At. Energy Comm. LA-1304, 1951,
- 2. Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry and W. N. Miner, University of Chicago Press, Chicago, 1961, p. 240-254, Schonfeld F. W. a. o. Metallurgy and Fuels. Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N.-Y., 1959, p. 579-599.
- 3. Elliott R. O., Larson A. C. B KH. «The Metal Plutonium», eds A. S. Coffinberry, W. N. Miner, University of Chicago Press, Chicago, 1961, p. 265, 280. 4. Schonfeld F. W. Tam me, p. 255-264.
- 5. Ellinger F. H. Там же, р. 281-308, Coffinberry A. S., Ellinger F. H. Proc. U N. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, v. 9, p. 138--146.
- 6. Runnalls O. J. C. Canad. J. Chem., 1956, v. 34, p. 133-145.
- 7. Cromer D. T., Root R. B. Acta Cryst., 1959, v. 12, p. 942-943
- 8. Бочвар А.А. и др. Труды 2-й международной конференции по мирному



использованию атомной энергии. Доклады советских ученых, т. З. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 376-395. 9. CromerD. T., OlsenC. E. Acta Cryst., 1959, v. 12, p. 689-964. 10. Cromer D. T., Larson A. C. Acta Cryst., 1960,



Диаграмма на рис. 343 дана по [1], где равновесие оценивалось по результатам термического, металлографического и рентгеноструктурного анализов образцов, приготовленных извысокочистого Ni и Re чистоты 99,6-99,8%. Соединений не обнаружено; наблюдается значительная взаимная растворимость компонентов. Растворимость Re в твердом Ni резко уменьшается с понижением температуры, в то время как растворимость Ni и Re меняется меньше.

В работе [1] ход солидуса не соответствует правилу фаз. Это не отражено на рис. 343.

1. Погодин С. А., Скрябина М. А. Изв. сектора физ.-хим. анализа, АН СССР, ИОНХ, 1954, т. 25, с. 81-88,

 $\overline{1}, 7612$ 0.2388

#### Ni—Pu. Никель—рутений \*

Диаграмма на рис. 344 построена по результатам термического, микроскопического и рентгеновского анализов [1]. При 1490° С происходит перитектическая реакция Ж + (Ru) ⇒ (Ni). Твердые растворы на основе Ru и Ni существуют в большом диапазоне концентраций. Кривая солидуса Ru-раствора имеет небольшую ретроградность вблизи перитектической температуры. Между последней



и 600° С растворимость Ru в Ni падает от 29,7 до 3,1% (ат.). В этом же температурном интервале растворимость Ni в Ru уменьшается от 48,7 до 7,2% (ат.). Кривая зависимости периодов решетки твердых растворов Ni-Ru or г. ц. к. Ni до г. к. Ru показывает положительное отклонение от закона Вегарда. При содержании 3.1% (ат.) Ru в Ni (600° C) период равен 3.541 А. При концентрации Ru 92,8% (ат.) (600° С) периоды решетки твердого раствора на его основе составляют: a = 2,696 A, c = 4,260 A.

1. Raub E., Menzel D. Z. Metallkunde, 1961, Bd 52, S. 831-833.

Работы [1, 2] подтвердили ранее обнаруженные фазовые равновесия в интервале концентрацией 30—50% (ат.) S. Были использованы термический, металлографический, рентгеновский анализы, методы электропроводности, определения напряжения течения, плотности. В работе [3] был изучен весь диапазон концентраций от 0 до 100% S, что дало возможность представить полный вид диаграммы состояния. Методики исследования не оговариваются [3], хотя очевидно, что большинство данных получено методом рентгеноструктурного анализа. Ni имел чистоту 99,99%. В работе [3] диаграмма дается для сплавов, приводившихся в равновесие с парами S.

Диаграмма состояния системы Ni—S (рис. 345) составлена по результатам работ [1—3] и старых данных (см. М. Хансен и К. Андерко, т. II, рис. 569). В системе обнаружено пять соединений, из которых Ni<sub>3</sub>S<sub>2</sub>, Ni<sub>7</sub>S<sub>6</sub> и NiS имеют полиморфные превращения. Высокотемпературная модификация Ni<sub>3</sub>S<sub>2</sub> рассматривается в работах [1, 2] как твердый раствор на основе Ni<sub>4</sub>S<sub>3</sub>, так как на кривой напряжения течения имеется минимум в точке, соответствующей стехиометрическому составу Ni<sub>4</sub>S<sub>8</sub>.

В работах [1—3] подтверждены данные, обобщенные М. Хансеном и К. Андерко (см. т. II, рис. 569) для интервала концентраций 0—44% (ат.) S. Незначительные колебания температур нонвариантных реакций отражены в табл. 35.

| таблица | 35. | СРАВНЕНИЕ | ΤE | ЕМПЕРАТУР | • НОНВАРИАНТНЫХ |
|---------|-----|-----------|----|-----------|-----------------|
|         | ПF  | ЕВРАЩЕНИЙ | в  | СИСТЕМЕ   | Ni-S            |

|                                                                                           | Т                                             | емпература, ° | <u>.</u>        |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|-----------------|--|
| Изотермические<br>превращения                                                             | М. Хансен и<br>К. Андерко,<br>т. 11, рис. 569 | [1, 2]        | [3]             |  |
| $\mathfrak{K}  \mathrm{Ni} + \mathrm{Ni}_3 \mathrm{S}_2 (H)$                              | 645                                           | 635           | 637±3           |  |
| $Ni_3S_2$ (H) $$ Ni + $Ni_3S_2$ (L)                                                       | 535                                           | 525           | ~530            |  |
| $Ni_3S_2$ (L) $\rightarrow$ $Ni_3S_2$ (H)                                                 | 555                                           | 550           | 550 <u>+</u> 10 |  |
| $Ni_3S_2(H) \rightleftharpoons Ni_3S_2(L) + Ni_7S_6(H)$                                   | 525                                           | 518           | _               |  |
| $\mathbb{X}$ + NiS (H) $\overrightarrow{\leftarrow}$ Ni <sub>3</sub> S <sub>2</sub> (H).  | ~810                                          | 805           | 806 <u>+</u> 3  |  |
| $Ni_3S_2(H) + NiS(H) \stackrel{\longrightarrow}{\longleftarrow} Ni_7S_6(H)$               | 560                                           | 575           | 573 <u>+</u> 2  |  |
| $Ni_7S_6(H) \rightleftharpoons Ni_7S_\delta(L)$                                           | ~400                                          | 400           | 399±2           |  |
| $Ni_7S_6(L) + NiS(H) \rightleftharpoons NiS(L)$                                           | >400 *                                        | • _ '         | 379 <u>+</u> 3  |  |
| Nis (H) $\rightleftharpoons$ Nis (L) + Ni <sub>3</sub> S <sub>4</sub>                     | 380 *                                         | · —           | 280±5 .         |  |
| • NiS (H) + NiS <sub>2</sub> $\overrightarrow{\leftarrow}$ Ni <sub>3</sub> S <sub>4</sub> | <300 *                                        | . —           | 303±3           |  |
| NiS, точка плавления                                                                      |                                               | ~995          | 992±3           |  |
| $\mathfrak{K}  \operatorname{NiS}(H) + \operatorname{NiS}_2$                              | _                                             | •             | $982 \pm 3$     |  |
| NiS <sub>2</sub> , точка плавления                                                        | ·                                             | '             | 1010            |  |
| $\mathbb{X}_1 \rightleftharpoons \mathrm{NiS}_2 + \mathbb{X}_2$                           | _                                             | . –           | 998             |  |

\* Реакция, эквивалентная эвтектондному разложению или образованию соединения по перитектондной реакции.

Данные М. Хансена и К. Андерко (см. т. II) и работ [1—3] расходятся в отношении природы полиморфных превращений в Ni<sub>7</sub>S<sub>6</sub>. М. Хансен и К. Андерко считают высокотемпературную модификацию этого соединения твердым раствором на основе Ni<sub>6</sub>S<sub>5</sub>; авторы работ [1, 2] высокотемпературную модификацию 262



Рис. 345. Ni—S

рассматривают как  $Ni_8S_5$ , а низкотемпературную — как  $Ni_8S_8$ ; в работе [3] соответствующая реакция считается простым полиморфным превращением.

Показано, что высокотемпературные модификации NiS и NiS<sub>2</sub> плавятся конгруэнтно [3] и образуют между собой эвтектику. В интервале концентраций от NiS до S выше 1000° C сосуществуют две жидкости [3]. Заключительная стадия кристаллизации сплавов от NiS, до S считается эвтектической, хотя подтверждений этому не дается [3].

Границы растворимости S в высокотемпературной модификации NiS в интервале 480—780° С составляют 50—51,5% (ат.) (по данным изменения периода решетки) [4]. В работах [5—9] показано, что область гомогенности высокотемпературной модификации NiS существует за счет образования вакансий на месте атомов Ni, и дается соответствующая термодинамическая трактовка. Область гомогенности NiS лежит в пределах NiS<sub>2.00+0.005</sub> [3].

Сообщается [10], что растворимость S в Ni <0,011% (ат.) [<0,006% (по массе)]. Однако в работе [11] обнаружили охрупчивание границ зерен из-за присутствия на них сульфидной фазы в высокочистом Ni, содержавшем 0,0011% (ат.) [0,009% (по массе)] S; сульфид отсутствовал при 800° С.

Высокотемпературная модификация NiS имеет гексагональную решетку типа NiAs; a = 3,4392 A, c = 5,3484 А для Ni<sub>1,000</sub>S [9]; изменение периодов с концентрацией дано в [9, 12]. В соответствии с данными [13], высокотемпературная модификация Ni<sub>3</sub>S<sub>2</sub>, рассматривающаяся как Ni<sub>4</sub>S<sub>3+x</sub>, имеет гексагональную решетку;  $a = 5,44 \pm 0,01$  A,  $c = 12,04 \pm 0,01$  A ( $^{55}_{650^{\circ}}$  C); у Ni<sub>7</sub>S<sub>6</sub> (в [13] — Ni<sub>9</sub>S<sub>8</sub>) гексагональная решетка;  $a = 12,12 \pm 0,01$  A,  $c = 11,30 \pm 0,01$  A; 6 формульных единиц на элементарную ячейку.

Стабильность Ni<sub>3</sub>S<sub>4</sub> в зависимости от температуры и давления рассматривается в работе [14]. Период г. ц. к. решетки соединения NiS<sub>2</sub> равен 5,6893 А (при избытке Ni) и 5,6890 A (при избытке S) при 900° C; согласно работе [15], a = 5,677 A.

1. Соколова М. А. ЖНХ, 1956, т. 1, с. 1440-1454.

- 2. Соколова М. А. ДАН СССР, 1956, т. 107, с. 286-289.
- 3. Kullerud G., Yund R. A. Carnegie Inst. Wash. Year. Book, 1959, v. 58, p. 139-142.
- 4. Laffitte M., Benard J. Compt. Rend., 1956, v. 242, p. 518-521.
- 5. Laffitte M. Compt. Rend., 1956, v. 243, p. 58-61.
- 6. Laffitte M., Benard J. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957; Mem. Sect. Chim. Minerale, 1958, p. 193-200. 7. Laffitte M. Rev. Nickel, 1959, v. 25, p. 79-84, 109-112.
- 8. Laffitte M. Bull. Soc. Chim. France, 1959, p. 1223-1233.
- 9. Laffitte M. Bull. Soc. Chim. France, 1959, p. 1211-1222.
- 10. Pfeiffer I. Z. Metallkunde, 1955, Bd 46, S. 516-520.
- 11. Olsen K. M. a. o. Trans. ASM, 1961, v. 53, 349-348.
- 12. Кузнецов В. Г., Елисеев А. А. Ж. структурн. химии, 1961, т. 2, c. 578-584.
- 13. Кузнецов В. Г. Вопросы металлургии и физики полупроводников. Труды 4-го совещания. Изд-во АН СССР, 1961, с. 159-173.
- 14. Kullerud G., Yund R. A. Carnegie Inst. Wash. Year. Book, 1961, v. 60, p. 176-178.
- 15. Elliott N. J. Chem. Phys., 1960, v. 33, p. 903-905.

1.6831 0,3169

## Ni-Sb. Никель-сурьма \*

Область концентраций 20,2-34% (ат.) Sb была повторно исследована с использованием термического и металлографического анализов 11 сплавов, закаленных с восьми температур отжига [1]. Этот участок диаграммы заново приводится на рис. 346.

Кристаллическая структура сплавов с содержанием 20-30% (ат.) Sb нужлается во всестороннем исследовании. В работе [2] рассматриваются две аллотропические модификации Ni<sub>3</sub>Sb: г. ц. к. типа Fe<sub>3</sub>Al (a=5,96 A) при высокой температуре и искаженная гексагональная (ромбическая) типа Cu<sub>3</sub>Ti (a = = 2,68 Å, b = 4,53 А, c = 4,30 А) при-комнатной температуре. В работе [2]

не указано, является ли высокотемпературная модификация βфазой или Ni<sub>3</sub>Sb стехиометрического состава претерпевает полиморфное превращение ниже эвтектоидной температуры.

В работе [3] методами металлографического, электрического анализов и измерением т. э. д. с. определена область существования фазы NiSb: 47.2-54,1% (ат.) Sb. Показано [4, 5], что NiSb имеет решетку NiAs.

- 1. Еременко В. Н., Кручинина Г.И. Труды Института черной металлургии АН УССР, 1951, вып. 5, c. 110-122.
- 2. Schubert K. u. a. Naturwissenschaften, 1956, Bd 43, S. 248-249.
- 3. Дудкин Л. Д., Абрикосов Н. Х. ЖНХ, 1957, т. 2, с. 212-221.
- 4. Schmid H. Cobalt, 1960, № 7, p. 26-32.
- 5. Schneider A., Imhagen K. H. Naturwissenschaften, 1957, Bd 44, S. 324.



Ni-Sc. 0,1159 1,8841 Иикель—скандий

Хотя количественных данных не было получено, в работе [1] отмечается, что Sc мало

#### Рис. 346. Ni-Sb

растворим в твердом Ni. У ScNi<sub>2</sub> г. ц. к. решетка типа MgCu<sub>2</sub>, a = 6,926 A [2]. Показано [3], что ScNi имеет кубическую решетку типа CsCl; данные о ее периоде не приводятся.

1. Корнилов И. И. Изв. АН СССР, ОХН, 1950, с. 475—484; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

2. D wight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

3. Dwight A. E. U. S. At. Energy Comm. ANL-6516, 1961, p. 259-260.

Ĩ, 8712 0.1288

#### Ni-Se. Никель-селен \*

Диаграмма состояния была построена [1] с использованием термического и рентгеноструктурного анализов (рис. 347). В данном случае [1] нет неясностей относительно методики рентгеновских измерений, которые были основными в работе. γ-модификация NiSe [2] определена в работе [1] как Ni<sub>21</sub>Se<sub>20</sub>. Соединение Ni<sub>6</sub>Se<sub>5</sub>, существующее в температурном интервале 670—400° С [1], ранее не обнаруживалось. Область гомогенности NiSe [50,5-56,5% (ат.) Se] была определена ранее в работе [3], авторы которой установили, что твердые растворы образуются по способу вычитания. В обеих работах [1, 3] отмечается, что гексагональная решетка NiSe ( $\beta$ ) существует вплоть до ~54,5% (ат.) Se [3], а моноклинная — вблизи концентрации, соответствующей фазе NiaSea (β'), которая располагается внутри области гомогенности NiSe. Полиморфизм у Ni<sub>3</sub>Se<sub>2</sub> доказан



только появлением остановки на термограмме [1]. Поиски фазовых превращений по результатам измерения теплоемкости в сплавах с 53,3-55,5% (ат.) Se в температурном интервале от -173 до 77° С не дали положительных результатов [4]. Термическая остановка, наблюдавшаяся при 320° С в сплавах с 40-50% (ат.) Se [2], может соответствовать образованию соединения Ni<sub>21</sub>Se<sub>20</sub> по перитектоидной реакции, которая, по [1], проходит при 375° С.

У  $\alpha$ -Ni<sub>3</sub>Se<sub>2</sub> ромбоэдрическая решетка (*R32*) [2, 5]; a = 4,24 A,  $\alpha = 90^{\circ}$  38,6' эквивалентные гексагональные параметры: a = 6,03 A, c = 7,26 A), с 1 формульной единицей на элементарную ячейку [5]; по [2], a=4,2375 A,  $\alpha=90^{\circ}42$ . Структуры α'- и β-Ni<sub>3</sub>Se<sub>2</sub> неизвестны.

 $Ni_6Se_5$  имеет гексагональную решетку,  $a = 3,78 \pm 0,01$  A,  $c = 15,89 \pm 0,02$  A, но точно структура этой фазы не установлена [1]. Соединение Ni<sub>21</sub>Se<sub>20</sub> (γ-NiSe по [2]) имеет ромбоэдрическую структуру типа миллерита NiS; a = 5,8834 A,  $\alpha = 116^{\circ} 31'$  [2].

У фазы NiSe в области, богатой Ni, гексагональная решетка типа NiAs; a = = 3,6613 A, c = 3,3562 A [3]; a = 3,660 A, c = 3,55 A [2]. Изменение этих параметров с температурой обсуждается в работе [6], а с концентрацией — в [2]. NiSe с избытком Se имеет моноклинную решетку (C2/m); a = 6,196 A, b = 3,634 A, c = 2.5,232 A,  $\beta = 90,78^{\circ}$  при 56,5% (ат.) Se [3]; a = 12,15 A, b = 3.633 А. c = 10.45 А.  $\beta = 149^{\circ}22'$  [2]. Как видно, различия данных разных авторов весьма существенны.

У фазы NiSe<sub>2</sub> кубическая пиритная структура с периодом от 5,9626 А (NiSe<sub>1,975</sub>) до 5,9604 А (NiSe<sub>2.00</sub>) при 20°С [3]; по [2] а = 5,962 А.

- 1. Кузнецов В. Г. Вопросы металлургии и физики полупроводников. Труды 4-го совещания. Изд-во АН СССР, 1961, с. 159-173.
- 2. Heller J. E., Wegener W. Neues Jahrb. Mineral., Abhandl., 1960, Bd 94, S. 1147—1159.
- 3. Gronvold F., Jacobson E. Acta Chem. Scand., 1956, v. 10, p. 1440-1454.
- 4. Gronvold F. a. o. Acta Chem. Scand., 1960, v. 14, p. 634-640.
- 5. Agarwala R. P., Sinha A. Z. Anorg. Allgem. Chem., 1957, Bd 289, S. 203-206.
- 6. Schneider A., Imhagen K. H. Naturwissenschaften, 1957, Bd 44, S. 324.

## Ni-Si. Никель-кремний \*

В работе [1] при изучении растворимости двойных силицидов подтверждена ромбическая структура MnP у соединения NiSi с периодом, приведенным М. Хансеном и К. Андерко (см. т. II [18]) для NiSi<sub>2</sub>.

Анализ монокристаллического и порошкового соединения Ni<sub>3</sub>S<sub>2</sub> показал, что оно имеет ромбическую решетку (Стс21), 16 формульных единиц на элементарную ячейку; a = 12,229 A, b = 10,805 A, c = 6,924 A [2]. У Ni<sub>5</sub>Si<sub>2</sub> гексагональная (тригональной симметрии) решетка со следующими значениями периодов в зависимости от концентрации: при избытке Si a = 6,670 A, c = 12,267 A; при избытке Ni a = 6.670 A, c = 12,332 A [2]; детали кристаллической структуры Ni<sub>5</sub>Si<sub>2</sub>, которая очень сложна, приведены в работе [2]. 1. Wittman K. u. a. Monatsh. Chem., 1961, Bd 92, S. 961-966.

2. Pilström G. Acta Chem. Scand., 1961, v. 15, p. 893-902.

1,5916

#### Ni-Sm. Никель-самарий

У SmNi, г. ц. к. решетка типа MgCu<sub>2</sub> [1, 2],  $a = 7,226 \pm 0,005$  A [2]. SmNi<sub>5</sub> имеет гексагональную решетку типа CaCu<sub>5</sub> [1, 3];  $a = 4,924 \pm 0,005$  A, c = $= 3.974 \pm 0.005$  A [3].

1. Nassau K. a. o. Phys. Chem. Solids, 1960, v. 16, p. 123-130. 2. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868. 3. Haszko S. E. Trans. AIME, 1960, v. 218, p. 763.

1,6941 0,3059

#### Ni-Sn. Никель-олово \*

Высокотемпературная модификация Ni<sub>3</sub>Sn имеет кубическую решетку типа Fe<sub>3</sub>Al,  $a = 5.98 \pm 0.01$  A [1]. Температура полиморфного превращения 950° C [1].

Температурная зависимость периода решетки Ni<sub>3</sub>Sn<sub>2</sub> (типа NiAs) дана в работе [2]. В работе [3] определили период решетки твердых растворов на основе никеля.

<sup>0,3200</sup> 1,6800

- 1. Schubert K. u. a. Naturwissenschaften, 1956, Bd 43, S. 248-249. 2. Schneider A., Imhagen K. H. Naturwissenschaften, 1957, Bd 44,
- S. 324. 3. Pearson W.B., Thompson L. T. Canad. J. Phys., 1957, v. 35, p. 349-357.
- 1,5112 0,4888

## Ni-Ta. Никель-тантал \*

Фаза Ni<sub>3</sub>Ta конгруэнтно плавится при 1530° С [1]. Решетка у Ni<sub>8</sub>Ta ромбическая, изоморфная с упорядоченным Cu<sub>3</sub>Ti [2], a = 5,10 A, b = 4,24 Å, c == 4,52 А. В остатке после растворения в кислоте сплава Cu + 30% (по массе) Ni + 6,4% (по массе)Та и нейтрализации примесей силицида была получена фаза, точно соответствующая по составу Ni Ta [3].

В работе [4] с использованием рентгеноспектрального микроанализатора в диффузионных парах после отжига при 1100° С в течение 96 и идентифицированы фазы Ni<sub>3</sub>Ta, Ni<sub>2</sub>Ta, NiTa Ni<sub>2</sub>Ta<sub>3</sub>.

- 1. Корнилов И.И., Пылаева Е. Н. ДАН СССР, 1957, т. 97, с. 455-457.
- 2. Пылаева Е. Н. и др. ЖНХ, 1958, т. 3, с. 1626—1631.
- 3. Smith C. S. Trans. AIME, 1959, v. 215, p. 905-909.

4. Seebold R. E., Birks L. S. J. Nucl. Mater., 1961, v. 3, p. 260-266, U. S. Naval. Res. Lab. Rept. NRL 5520, 1960, 11 p.

1,5676 0,4324

1000

900

800

700

600

500

400

300

40

60

Рис. 348. Ni-Te

Температура, "С

70

ž

60

### Ni-Tb. Никель-тербий

Te.% (no macce) У TbNi<sub>2</sub> г. ц. к. решетка типа  $MgCu_2$ , a == 7,160 ± 0,005 А [1]. ТbNi<sub>5</sub> имеет гексаго-80 90 нальную решетку типа CaCu<sub>5</sub>,  $a = 4,894 \pm \pm 0,005$  A,  $c = 3,966 \pm 0,005$  A [2]. NiTe2 1. Wernick J. H., Geller S. Trans. AIME, 1960, v. 218, p. 866-868. 2. Haszko S. E. Trans. AIME, 1960, v. 218, p. 763.

> ۱ 1,6627 0.3373 ·

448,5°

80

Te, % (am.)

99.7

100

Те

#### Ni-Te. Никель-теллур

Часть диаграммы состояния NiTe-Te получена в связи с термодинамическим изучением этой системы [1]. NiTe и NiTe, неограниченно взаимно растворимы; их твердый раствор образует с Те эвтектику при 99,7% (ат.) Те и температуре 448,4° С — на 1 град ниже точки плавления Те. Вид участка диаграммы по работе [1] дан на рис. 348.

Неограниченная взаимная растворимость NiTe и NiTe<sub>2</sub> подтверждена в работах [2, 3], где определены периоды решетки в зависимости от состава и температуры. Методом измерения теплоемкости показано отсутствие упорядочения в сплавах вблизи состава NiTe, [4].

Фазы NiTe<sub>0.62</sub> и NiTe<sub>0.88</sub> при 900° С имеют узкие области гомогенности [3]. Авторы [3] обнаружили также существование однофазной области между NiTe<sub>0.66-0.67</sub> и NiTe<sub>0.82-0.63</sub>.

- 1. Westrum E. F. (Jr.), Machol R. E. J. Chem. Phys., 1958, v. 29, p. 824-828.
- 2. Schneider A., Imhagen K. H. Naturwissencshaften, 1957, v. 44, р. 324—325 (две статьи).
- 3. Щукарев С. А., Апурина М. С. ЖНХ, 1960, т. 5, с. 2410-2413.
- 4. Westrum E. F. (Jr.) a. o. J. Chem. Phys., 1958, v. 28, p. 497-503.

1,4028 0,5972

## Ni-Th. Никель-торий \*

В обзорной работе [1] приведен вариант диаграммы, близкий к опубликованному М. Хансеном и К. Андрерко (см. т. II). Диаграмма [1] дана до 100% Th и подтверждает образование Th<sub>7</sub>Ni<sub>3</sub> по перитектической реакции и наличие эвтектической реакции Ж (с. Th) + Th<sub>7</sub>Ni<sub>3</sub> при 1000° С. Показано также существование аллотропического превращения в Th, но влияние Ni на него осталось неизвестным. Последнее, возможно, нашло отражение в работе [2], где показано также, что добавка 4% (ат.) Th не влияет на период решетки Ni. Подтверждено [3] существование пяти соединений, о чем ранее сообщалось в работе [1].

Подтверждено [4], что Th<sub>7</sub>Ni<sub>3</sub> имеет решетку Fe<sub>3</sub>Th<sub>7</sub> и следующие периоды гексагональной ячейки: a = 9,885 A, c = 6,225 A. Подтверждено [5], что ThNi<sub>2</sub> имеет гексагональную решетку AlB<sub>2</sub>; даны более точные значения периодов:  $a = 3,960 \pm 0,003$  Å,  $c = 3,844 \pm 0,004$  Å.

1. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958. p. 119-120.

2. Wilhelm H. A. a. o. U. S. At. Energy Comm. ISC-6 (Progr. Rept), 1947, p. 75-77.

3. Murray J. R. J. Inst. Metals, 1955-1956, v. 84, p. 91-96.

4. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133. 5. Brown A. Acta Crist., 1961, v. 14, p. 860-865.

0,0882 1.9118

#### Ni-Ti. Никель-титан \*

Структура закаленного β-Ті зависит от содержания Ni. При концентрации Ni < 4% (ат.) образуется гексагональная мартенситная  $\alpha'$ -фаза [1], температура M<sub>s</sub> резко падает при определенной концентрации. В сплавах с 5-10% (ат.) Ni в процессе закалки образуется метастабильная ω-фаза [1,2].

Последние определения растворимости Ті в Ni хорошо согласуются с данными М. Хансена и К. Андерко (см. т. II, рис. 575, 575 а): 11,8 ± 0,3% (ат.) Ті при 1100° С; 9,6 ± 0,3% (ат.) Ті [3] или 9,6—12,9% (ат.) Ті [4] при 800° С; по [5], максимальная растворимость 10% (ат.) Ті.

Область гомогенности Ti<sub>9</sub>Ni простирается не больше, чем на 1% (по массе) с каждой стороны от ординаты, соответствующей идеальному стехиометрическому составу [6]. Наличие у Ті<sub>2</sub>Ni г. ц. к. решетки с Fd3m-симметрией подтвер-ждено в работе [7];  $a = 11,3231 \pm 0,0004$  [7],  $a = 11,278 \pm 0,001$  A [8].

Соединение TiNi не распадается при понижении температуры по эвтектоидной реакции [9]. Ширина области его существования быстро уменьшается: 48-54% (ат.) Ni при 1000° C; 51-52,8% (ат.) Ni при 800° C; 51-52% (ат.) при 600° C;  $\sim 51\%$  (ат.) Ni при  $< 600^{\circ}$  C. Некоторые признаки обратимых структурных изменений обнаружены в сплаве с 51% (ат.) Ni при 36° С. Низкотемпературную модификацию можно было выявить рентгенографически; по дифракционным линиям решетка была ориентировочно идентифицирована как гексагональная; а == = 4,572 A, c = 4,660 A. Период кубической решетки TiNi, по данным [10],

равен 3,015± 0,001 А. Признаков упорядочения здесь не было обнаружено. В работе [11] решетка TiNi была идентифицирована как упорядоченная типа CsCl.

1. Barton J. W. a. o. Trans. AIME, 1960, v. 218, p. 844-849,

- 2. Агеев Н. В., Петрова Л. А. ЖНХ, 1959, т. 4, с. 1092-1099.
- 3. Багаряцкий Ю. А., Тяпкин Ю. Д. ЖНХ, 1958, т. 3, с. 934—935.
- 4. Пряхина Л. И. Труды Института металлургии А. А. Байкова. Изд-во АН СССР, 1957, 2, с. 119—125.
- 5. Корнилов И. И., Снетков А. Я. Изв. АН СССР, ОТН, 1957, вып. 7, с. 84—98.
- 6. Yurko G. A. a. o. Trans. AIME, 1958, v. 212, p. 698-700.
- 7. Mueller M. H., Knott H. W. U. S. At. Energy Comm. ANL-6330, 1960, p. 175-178.
- 8. Yurko G. A. a. o. Acta Crist. 1959, v. 12, p. 909-911,
- 9. Purdy G. R., Parr J. G. Trans. AIME, 1961, v. 221, p. 636-639.
- 10. Phillip T. V., Beck P. A., Trans. AIME, 1957, v. 209, p. 1269—1271. 11. Pietrokowsky P., Youngkin F. G. J. Appl. Phys., 1960, v. 31,
  - p. 1763—1766.
- 0,0614 $\overline{1},9386$

Ni—V. Никель—ванадий \*

В работе [1] приведено теоретическое обсуждение предельной растворимости и соотношений между ликвидусом и солидусом в богатой Ni части диаграммы состояния.

1. Hume-Rothery W. Phil. Mag., 1961, v. 6, p. 769-774.

#### 1,5039 0,4961

## Ni-W. Никель-вольфрам \*

В работе [1] дается участок диаграммы от 0 до 24,2% (ат.) [50% (по массе)] W, очевидно, как обобщение данных других авторов. Фазовые равновесия здесь идентичны приведенным у М. Хансена и К. Андерко (см. т. II, рис. 579), за исключением присутствия фазы WNi<sub>6</sub>. Авторы [1] показали, что эта фаза образуется по перитектоидной реакции WNi<sub>4</sub> + (Ni)  $\rightarrow$  WNi<sub>6</sub> при  $\sim$  875° C, однако доказательств ее существования не привели.

По данным работы [2], «ограниченная растворимость» W в Ni больше 15,8% (ат.), но соответствующая температура не оговаривается. «Максимальная растворимость» W в Ni при эвтектической температуре 18,1% (ат.), а при 700° С 13,0% (ат.) [3]. Необходимо отметить ограниченность экспериментального обоснования данных [2, 3].

До проведения более тщательно поставленных работ следует предпочесть вариант диаграммы, данный М. Хансеном и К. Андерко (см. т. II, рис. 579).

Корнилов И.И., Будберг П.Б. ДАН СССР, 1955, т. 100, с. 73—75.
 Корнилов И.И., Снетков А. Я. Изв. АН СССР, ОТН, 1955, вып. 7, с. 84—88.

3. Корнилов И. И., Домотенко Н. Т. ДАН СССР, 1958, т. 120, с. 311—313.

1,8196 0,1804

## Ni— Ү. Никель—иттрий

Проведено окончательное исследование этой системы [1, 2]. Результаты этих независимо выполненных работ хорошо согласуются, за исключением области сплавов с 10—30% (ат.) У, где имеется несоответствие по количеству фаз. Диа-

грамма на рис. 349 является компромиссной между работами [1, 2] и в основном взята из обзора их [3]. В работах [1, 2] использованы выплавленные в дуговой печи сплавы, приготовленные из высокочистых исходных материалов. Эксперименты проводили методами металлографического, рентгеновского и термического анализов.



Принципиальным расхождением является существование фазы Y<sub>2</sub>Ni<sub>7</sub>, по [1], и ее отсутствие, по [2], а также стехиометрический состав наиболее богатого Ni интерметаллида: Y<sub>2</sub>Ni<sub>17</sub> [1] или YNi<sub>9</sub> [2].

ÝNі имеет ромбическую решетку; a = 4,10 + 0,02 A,  $b = 5,51 \pm 0,02$  A,  $c = 7,12 \pm 0,02$  A [1]; у YNi<sub>2</sub> г. ц. к. решетка типа MgCu<sub>2</sub> с периодом 7,181 ± ± 0,002 [1, 4]; 7,18 [2]; 7,184 [5] и 7,12 A [6]. Фаза YNi<sub>2</sub> существует в области шириной  $\sim 0,7\%$  (ат.) [1, 4], YNi<sub>3</sub> имеет ромбоэдрическую решетку;  $a = 8,60 \pm 0,02$  A,  $a = 33^{\circ}$  48' [1]. У YNi<sub>5</sub> решетка гексагональная типа CaCu<sub>5</sub>;  $a = 4,883 \pm 0,001$  A,  $c = 3,967 \pm 0,001$  A [1]; a = 4,891 A, c = 3,961 A [5]; в работах [2, 6, 7] данные о периодах хорошо согласуются. Сообщается об узкой области гомотенности у YNi<sub>5</sub> [1]. Фаза Y<sub>2</sub>Ni<sub>17</sub> имеет гексагональную решетку;  $a = 8,34 \pm 0,02$  A,  $c = 8,08 \pm 0,02$  A [1].

Рентгеновские данные о других промежуточных фазах [1, 2] еще не окончательны.

В соответствии с приведенной здесь диаграммой в работе [8] дан предел растворимости У в Ni  $\sim$  0,14% (ат.) [0,28% по массе].

1. Beaudry B. J., Daane A. H. Trans. AIME, 1960, v. 218, p. 854-859.

 Domagola R. F. a. o. Trans. ASM, 1961, v. 53, p. 137-155; дискуссия, p. 899-903.

3. Гшнейднер Е. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

4. Beaudry B. I. a. o. Acta Crist., 1960, v. 13, p. 743-744.

5. D wight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

6. Nassau K. a. o. Phys. Chem. Solids, 1960, v. 16, p. 123-130.

7. Wernick J. H., Geller S. Acta Cryst., 1959, v. 12, p. 662-665.

8. Love B. WADD Tech. Rept. 61-123, 1961, p. 47.

1,5307 0,4693

## Ni— Yb. Никель—иттербий

УbNi<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>;  $a = 7,060 \pm 0,005$  A [1]. У YbNi<sub>5</sub> гексагональная решетка типа CaCu<sub>5</sub>;  $a = 4,841 \pm 0,005$  A,  $c = 3,965 \pm \pm 0,005$  A [2].

Haszko S. E. Trans. AIME, 1960, v. 218, p. 958.
 Haszko S. E. Trans., AIME, 1960, v. 218, p. 763.

1,9531

## Ni—Zn. Никель—цинк \*

По дайным об изменении периода решетки установлено [1], что растворимость Zn в Ni достигает 33% (ат.). Предположение М. Хансена и К. Андерко (см. т. [1 [23]) о значительно меньшей растворимости оказалось неправильным.

 Pearson W. B., Thompson L. T. Canad. J. Phys., 1957, v. 35, p. 349-357.

1,8085 0,1915

## Ni—Zr. Никель—цирконий \*

В работе [1] исследована вся область концентрацией от 0 до 100%. Металлографически и рентгенографически определены ликвидус и солидус; методами электросопротивления и металлографии — температура эвтектоидного распада ( $\beta$ -Zr), которая оказалась значительно выше, чем указано М. Хансеном и К. Андерко (см. т. II [1]). Ликвидус, построенный в работе [1] с точностью ±10 град, показан на рис. 350. Малые размеры диаграммы [1] помешали более тщательному ее воспроизведению. Сообщается [1] о существовании семи интерметаллических соединений, формулы которых приведены на рис. 350. Ликвидус был изучен [2] с меньшей точностью для диапазона концентраций 0—55% (ат.) Zr; образующиеся по перитектическим реакциям соединения Ni<sub>5</sub>Zr<sub>2</sub>, Ni<sub>10</sub>Zr<sub>7</sub> Ni<sub>11</sub>Zr<sub>9</sub> не были обнаружены, а вместо Ni<sub>5</sub>Zr и Ni<sub>7</sub>Zr<sub>2</sub> были получены формулы Ni<sub>4</sub>Zr и Ni<sub>3</sub>Zr, Ni—NiZr<sub>2</sub> соответственно. При изучении участка диаграммы Ni—NiZr



18 Р. П. Эллиот, том II

272

авторы [3] получили данные, очень близкие к приведенным в работе [1], за исключением вопроса об образующихся по перитектическим реакциям Ni<sub>10</sub>Zr<sub>7</sub> и Ni<sub>11</sub>Zr<sub>9</sub>, которые не были разделены авторами [3] и которые они назвали «Ni-Zr<sub>4</sub>». В работе [4] показана область гомогенности при 900° С в интервале 14,5-18,0% (ат.) Zr у Ni<sub>5</sub>Zr и 21,0—22,5% (ат.) Zr у Ni<sub>7</sub>Zr<sub>2</sub>; по [1], область существования Ni<sub>10</sub>Zr<sub>7</sub> 41,1-43,5% (ат.) Zr. Авторы [2] показали неизменность растворимости Zr в Ni 0,6% (ат.) [0,9% (по массе)] — в интервале 850—650° С, что хорошо согласуется с данными [3] [<1% (ат.)]. Сравнение температур и концентраций конвариантных точек, по данным [1-4], приведено в табл. Зб для участка диаграммы Ni-NiZr<sub>2</sub>. Часть диаграммы NiZr<sub>2</sub>—Zr, заново построенная в работе [1], хорошо согласуется с вариантом М. Хансена и К. Андерко (см. т. II [1], рис. 581), за исключением более точно определенной эвтектоидной температуры.

ТАБЛИЦА 36. СРАВНИТЕЛЬНЫЕ ДАННЫЕ О ТЕМПЕРАТУРАХ. И КОНЦЕНТРАЦИИ НОНВАРИАНТНЫХ ТОЧЕК НА УЧАСТКЕ Ni-NiZr<sub>2</sub>

| Изотермические                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | По данным                                                                                              |                                                                                                                  |                                                                                                                           |                                                                       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| превращения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]                                                                                                    | [2]                                                                                                              | [3]                                                                                                                       | [4]                                                                   |  |  |  |
| Эвтектика Ni — NigZr:<br>содержание Zr. % (ат.)<br>температура, °С           перитектическое образование NigZr, °С           пие NigZr, °С           Перитектическое образование NigZr, °С           перитектическое образование NigZr, °С           Эвтектика NigZr_2 NigZr, °С           Эвтектика NigZr_2 NigZr, °С           Эвтектика NigZr_2 NigZr, °С           Эвтектика NigZr_2 NigZr, °С           Перитектическое образование NigZr, °С           ние NigZr, °С           Перитектическое образование NigZr, °С           перитектическое образование NigZr, °С           Втектика NiZr, °С           Эвтектика NiZr_N °С           Совражание Zr, % (ат.)           температура, °С           Соврежание Zr, % (ат.)           температура, °С           Соврежание Zr, % (ат.)           температура, °С | 8,8<br>1170<br>1300<br>~1440<br>1180<br>36,3<br>1060<br>1160<br>1170<br>~1270<br>63,5<br>1010<br>~1140 | 9,8<br>1175<br>1300<br>1420<br>Не обна-<br>ружено<br>37,5<br>1070<br>Не обна-<br>ружено<br>~1270<br>52,3<br>1165 | $\begin{array}{r} 9,7\\1210\pm5\\1280\pm10\\1450\\1180\pm10\\37\\1070\pm10\\1195\pm10\\1350\\-\\-\\-\\-\\-\\-\end{array}$ | $1185\pm10$<br>$1340\pm10$<br>$1575\pm25$<br><br><br><br><br><br><br> |  |  |  |

Кристаллическая структура. У Ni<sub>5</sub>Zr г. ц. к. решетка типа AuBe<sub>5</sub> [1,3-5] с периодом 6,7064 ± 0,0006 Å (при избытке Ni) и 6,7072 ± 0,0006 Å (при избытке Zr) [1].

 $Ni_7Zr_2$  имеет, очевидно, ромбическую решетку; a = 4,8 A, b = 8,1 A, c =-----[1].

Решетка Ni<sub>5</sub>Zr<sub>2</sub> ориентировочно идентифицирована как псевдоромбическая (C2ca):  $a = 12.386 \pm 0.006$  Å,  $b = 9.156 \pm 0.008$  Å  $c = 9.211 \pm 0.005$  Å (для стехиометрического состава); разбавление цирконием приводит к образованию простой ромбической решетки (*Pbca*);  $a = 12,497 \pm 0,004$  A,  $b = 9,210 \pm 0,004$  A,  $b = 12,497 \pm 0,004$  A,  $b = 1,2,497 \pm 0,004$  A, b = 1,2,497 $\pm$  0,008 Å,  $c = 9,325 \pm 0,002$  Å [1, 6].

± 0,04 Å, 2 атома на элементарную ячейку [1].

NiZr имеет г. ц. ромбическую решетку (Стст);  $a = 3,268 \pm 0,008$  A, b == 9,937 + 0,004 A,  $c = 4,101 \pm 0,005$  A [1, 7].

У NiZr, о. ц. тетрагональная решетка типа CuAl, [1, 7, 8];  $a = 6,477 \pm$  $\pm$  0.004 A,  $c = 5.241 \pm 0.006$  A [7].

1. Kirkpatrick M. E., Larsen W. L. Trans. ASM, 1961, v. 54, p. 580-590.

2. Погодин С. А., Скоробогатова В. И. Изв. сектора физ.-хим. анализа, ИОНХ АН СССР, 1954, т. 25, с. 70-80.

3. Smith E., Guard R. W. Trans. AIME, 1957, v. 209, p. 1189-1190. 4. Kramer D. Trans. AIME, 1959, v. 215, p. 256-258.

5. Burkhardt W., Shubert K. Z. Metallkunde, 1959, Bd 50, S. 442-452.

6. Kirkpatrick M. E. a. o. Acta Crist., 1962, v. 15, p. 894—903.

7. Kirkpatrick M. E. a. o. Acta Crist., 1962, v. 15, p. 252-255.

8. Nevitt M. V. U. S. At. Energy Comm. ANL-6330, 1960, p. 164-165.

#### 1,1706 2.8294

Np-O. Нептуний-кислород

Известны три окисла: NpO, NpO2 и Np3O8. У NpO г. ц. к. решетка NaCl,  $a = 5,00 \pm 0,01$  A [1]; NpO<sub>2</sub> имеет кубическую решетку типа CaF<sub>2</sub> с периодом 5,425 ± 0,001 [1]; 5,433 ± 0,001 [2] и 5,4341 ± 0,002 А [3]. Окисел Np<sub>3</sub>O<sub>8</sub> изоморфен с ромбическим U<sub>3</sub>O<sub>8</sub> [4, 5]. В работе [6], по рентгеновским данным, определены периоды решетки  $Np_3O_8$ : a = 6,54 A, b = 4,08 A, c = 4,18 A, значения которых хорошо согласуются с результатами работ [7, 8].

1. Zachariasen W. H. Acta Crist., 1949, v. 2, p. 388-390.

- 2. McKay H. A. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 28, p. 299-306.
- 3. Asprey L. B. a. o. J. Amer. Chem. Soc., 1955, v. 77, p. 1707-1708.
- 4. Gibson G. a. o. U. S. At. Energy Comm. AECD 2930, 1950, см. [6].
- 5. Katz J. J., Gruen D. M. J. Amer. Chem. Soc., 1949, v. 71, p. 2106-2112.
- 6. Collins D. A., Philips G. M. J. Inorg. Nucl. Chem., 1958, v. 6,
- p. 67—69. 7. R o b e r t s L. E. a. o. Proc. Intern. Conf. Peaceful Uses At. Energy 2d, Geneva, 1958, v. 28, p. 215-221.
- 8. Mooney R. C. L. U. S. At. Energy Comm. ANL-4031, 1947; cm. [7].

# 1,9909

# Np—Pu. Нептуний—плутоний

Система была изучена в [1-4]. Диаграмма на рис. 351 построена на основе результатов термического, дилатометрического и рентгеновского анализов [1]. Все исследование было проведено с использованием лишь 2-3 г Np по методике постепенного разбавления его плутонием. Исходный Np содержал 0,34% (по массе) Са и 0,22% (по массе) U, а Pu < 0,01% всех примесей. Была обнаружена значительная растворимость Np в α-Рu, хотя точно границы областей существования а растворов на основе Ри и Np не определены. Результаты дилатометрического и электрического анализов сплавов, содержащих ~50,5% (ат.) [50% (по массе)] Np, позволяют наметить фазовую границу между 100 и 200° С; однако рентгеновское исследование не выявило структурных изменений, и поэтому здесь предполагается фазовый переход второго рода [1].

В работе [1] обнаружена значительная растворимость Np в β-Pu, но фазовая граница не определена. Рентгеноструктурный анализ не дал стабильных результатов; предполагается, что в двухфазной области сосуществуют β-Np + β-Pu; результаты термического анализа согласуются с этим предположением [1].Существенная взаимная растворимость в-модификаций противоречит диаграмме [2], основывающейся на дилатометрических измерениях. В работе [2] обнаружена очень малая растворимость Np в β-Pu и сообщается о существовании промежуточной фазы ζ; однако, по данным рентгеноструктурного анализа [1], эта фаза имеет структуру β-Ри. Результаты работы [1] предпочтительнее, чем данные, основанные на косвенных экспериментах [2]. Интерпретация фазовой области α-Np + + α-Ри, как видно из диаграммы [1], предполагает перитектоидную реакцию  $(\beta$ -Np) +  $(\beta$ -Pu)  $\rightarrow$   $(\alpha$ -Pu), а не простое превращение  $(\alpha$ -Pu)  $\rightarrow$   $(\beta$ -Np), как сооб-275

щалось ранее [3]. Нонвариантное превращение при 325° С было обнаружено рентгенографически с точностью ±5 град; полученных данных достаточно, чтобы идентифицировать реакцию как перитектоидную и исключить возможность эвтектоидной реакции. Дилатометрические данные подтвердили эти результаты [1].



Рис. 351. Np-Pu

Линиям п-фазы на рентгенограммах нельзя было присвоить индексы по стандартной методике, но в работе [1] путем сравнения с линиями ζ (Pu - U)-фазы сумели идентифицировать решетку, как кубическую, характерную для ζ (Pu - U)фазы, но ромбически искаженную. Периоды ее для сплава с 19,3% (ат.) [19% по массе)] Np при 375° C: a = 10,86 A; b = 10,67 A; c = 10,43 A.

Между ү-Np и ε-Pu образуется непрерывный ряд твердых растворов, хотя минимум термическим анализом не определен [1]. Вероятно, богатый Np сплав, использованный в работе [1], слегка загрязнился, на что указывает некоторая прерывность в ходе изменения солидуса, хотя никаких признаков превращений в твердом состоянии у этого сплава не наблюдалось.

- 1. Mardon P. G. a. o. J. Less-Common Metals, 1961, v. 3, p. 281-292.
- 2. Соре R. G. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 280-289.
- 3. Poole .D. M. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 267-280. 4. McKay H. A. C. Proc. U. N. Intern. Conf. Peacoful. Uses At. Energy,

2d, Geneva, 1958, v. 28, p. 299-306.

0,9262 1.0738

## Np-Si. Нептуний-кремний \*

У NpSi<sub>2</sub> о. ц. тетрагональная решетка типа ThSi<sub>2</sub>;  $a = 3.97 \pm 0.01$  A, c = $= 13,70 \pm 0,03$  A [1].

1. Zachariasen W. H. Acta Crist., 1949, v. 2, p. 94-98.

1,9982

## Np-U. Нептуний-уран

Детальное исследование этой диаграммы состояния [1] проведено с использованием очень малого количества Np, всего около 2 г. Работа [1] выполнена с применением различных методов — термического, дилатометрического, металлографического и рентгеновского — на образцах, которые получали растворением U в расплавленном Np. Последний имел чистоту 99,44%, а U более 99,9%. Полученная диаграмма представлена на рис. 352.

Из трех модификаций Np и U только высокотемпературные образуют непрерывный ряд твердых растворов. Авторы твердо уверены в этом, несмотря на трудности в интерпретации некоторых противоречивых данных, свидетельствующих о существовании небольшой области отсутствия растворимости. Максимальная растворимость U в β-Np около 26% (ат.), Np в β-U также около 26% (ат.). Ограниченные твердые растворы на основе β-Np и β-U распадаются по эвтектоидной реакции с образованием α-Np или α-U. Максимальная растворимость U в α-Np составляет 20% (ат.), а Np в α-U — около 43% (ат.)

Единственная промежуточная фаза (б) имеет широкую область гомогенности. Она образуется по перитектоидной реакции при 668° С. Эта фаза изоструктурна с С-фазой системы Ри-U. Она имеет кубическую решетку с периодом, изменяющимся от 10,55 А при 25% (ат.) U до 10,63 А при 50% (ат.) U. При 500° С кубическая решетка претерпевает тетрагональное искажение.

1. Mardon P.G., Pierce J.H.J. Less-Common Metals, 1959, v. I, p. 467-475



2,84051,1595

## О—Ра. Кислород—протактиний

Пленка на Ра была идентифицирована как РаО; у этого окисла г. ц. к. решетка типа NaCl,  $a = 4,961 \pm 0,003$  A [1]. РаО<sub>2</sub> черного цвета, имеет г. ц. к. решетку флюоритного типа. Он был получен в работе [2] восстановлением Ра<sub>2</sub>O<sub>5</sub> в Н<sub>2</sub> при 1550° С. Период решетки, равный 5,505 ± 0,001 A, согласуется с теоретическим значением 5,52 A, рассчитанным интерполяцией между ThO<sub>2</sub> и UO<sub>2</sub> [3]. Ра<sub>2</sub>O<sub>5</sub> получен нагревом частиц гидроокиси Ра до 500° С на воздухе. У него белый цвет, г. ц. к. решетка флюоритного типа,  $a = 5,455 \pm 0,007$  A [2]. Ра<sub>2</sub>O<sub>5</sub> с ромбической решеткой, изоморфной с U<sub>2</sub>O<sub>5</sub>, был получен при воздействии BrF<sub>5</sub> на окись Ра при 500° С. У Ра<sub>2</sub>O<sub>5</sub> в этом случае  $a = 6,92 \pm 0,02$  A,  $b = 4,02 \pm \pm 0,01$  A,  $c = 4,18 \pm 0,02$  A [2]. У г. ц. к. Ра<sub>2</sub>O<sub>5</sub>, нагретого в вакууме 278

до 1000—1500° С, изменяется решетка на тетрагональную;  $a = 3,835 \pm 0,001$  А,  $c = 5,573 \pm 0,001$  А [2]. После нагрева до 1800° С Ра<sub>2</sub>O<sub>5</sub> имеет г. ц. к. решетку,  $a = 5,476 \pm 0,002$  А [2]. Элементарную ячейку тетрагонального Ра<sub>2</sub>O<sub>5</sub> можно считать гранецентрированной (a = 5,42 А, c = 5,573 А) по аналогии с тетрагональной у-фазой в системе U—O [4].

Zachariasen W. H. Acta Crist., 1952, v. 5, p. 19; cm. [2].
 Sellers P. A. a. o. J. Amer. Chem. Soc., 1954, v. 76, p. 5935—5938.
 Zachariasen W. H. Acta Crist., 1949, v. 2, p. 388—390.
 Roberts L. E. J. Quart. Rev. (London), 1961, v. 15, p. 442—460.

 $\overline{2},8877$ 1,1123

#### О-РЬ. Кислород-свинец \*

В работах [1—3] изучены с применением нейтроноструктурного анализа две модификации PbO — тетрагональная (красного цвета) [1] и ромбическая (желтого цвета) [2, 3]. Данные [1] подтверждают существование тетрагональной (P4/nmm) структуры, упоминавшейся ранее М. Хансеном и К. Андерко (см. т. II [24]). Определенные рентгеновским способом периоды решетки равны:  $a = 3,96 \pm \pm 0,01$  А,  $c = 5,01 \pm 0,01$  А. Подтверждено [3] существование у PbO ромбической структуры (Pbma), обнаруженной в работе [2]; кроме того, приведены значения периодов решетки по результатам рентгеновского анализа [3]: a = 5,476 А, b = 4,743 А, c = 5,876 А.

Сообщения о ряде высших окислов Pb основывались на экспериментах по окислению PbO или восстановлению PbO<sub>2</sub> или PbC<sub>2</sub>O<sub>4</sub>, однако стабильность этих окислов обычно не оценивалась. В работе [4], показано, что окисел PbO<sub>x</sub> (x > 1,45) стабилен; его состав близок к  $\beta$ -PbO<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [20]) и находится в области PbO<sub>x</sub> (см. М. Хансен и К. Андерко, т. II [22]). Данные [4], в соответствии с результатами, приводимыми М. Хансеном и К. Андерко (т. II [20]), говорят, что эта фаза имеет ромбическую решетку; a = 7,78 A, b = 10,98 A, c = 11,48 A [4] или a = 7,78 A, b = 5,49 A, c == 7,64 A (см. М. Хансен и К. Андерко, т. II, 20); однако фаза  $\beta$ -PbO<sub>x</sub> (1,42 < x < 1,50) имеет о. ц. к. решетку с периодом 5,485A [5].

Рь $\dot{O}_2$  существует в двух модификациях — тетрагональной  $\beta$  и ромбической  $\alpha$ -Рь $O_2$ . У  $\beta$ -Рь $O_2$   $a = 4,91_8$  A,  $c = 3,36_5$  A [6] или  $a = 4,943 \pm 0,001$  A,  $c = 3,368 \pm 0,002$  A [7]; пространственная группа  $\beta$ -Рь $O_2$  Р4<sub>2</sub>mnm [7]. Периоды решетки  $\alpha$ -Рь $O_2$  определены в работе [8]: a = 4,938 A, b = 5,939 A; c = 5,486 A.

По концентрационным изотермам поверхностного натяжения установили [9] растворимость PbO в Pb 0,4% (ат.) [0,42% (по массе)] О при 750° С; эта величина несколько превышает приведенную М. Хансеном и К. Андерко (см. т. II, [4,7]).

1. Leciejewicz J. Acta Crist., 1961, v. 14, p. 1304.

2. Kay M. J. Acta Crist., 1961, v. 14, p. 80-81.

3. Leciejewicz J. Acta Crist., 1961, v. 14, p. 66.

4. Anderson J.S., Sterns M.J. Inorg. Nucl. Chem., 1959, v. 11, p. 272-285.

5. Butler G., Сорр J. L. J. Chem. Soc., 1956, р. 725; см. [4],

6. Реггації G., Вгепет J. Compt. Rend., 1960, v. 250, p. 325—327. 7. Толкачев С. С. Вестник ЛГУ. Серия физ. и хим. 1958, т. 13, № 4,

7. Голкачев С. С. Вестник ЛГУ. Серия физ. и хим. 1906, 1. 10, 62 1, вып. 1, с. 152—153.

8. Заславский И. идр. ДАН СССР, 1950, т. 75, с. 559—561.

9. Bradhurst D. H., Buchanan A. S. Australian J. Chem., 1959, v. 12, p. 523-524.

## О-Pd. Кислород-палладий

Обзор литературы по кристаллической структуре PdO приведен в работе [1]. У PdO тетрагональная решетка (P42/mmc), 2 атома на элементарную ячейку. Наиболее точные значения периода решетки [2]:  $a = 3,035 \pm 0,005$  A, c == 5,325 ± 0,005 А. Положения атомов определены методом нейтроноструктурного анализа [3].

При изучении этой системы не обнаружили высших окислов [4]; PdO находится в равновесии с (Pd). В более старых работах фиксировалось существование Pd<sub>2</sub>O<sub>3</sub> и PdO<sub>2</sub> [4].

1. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon Press, N. Y., 1958, p. 1024.

2. Zachariasen W. H. Z. Physik. Chem. (Leipzig), 1927, Bd 128, S. 412; см. [1].

3. Waser J. a. o. Acta Cryst., 1953, v. 6, p. 661; см. [1].

4. Levi G. R., Fontana C. Gazz. Chim. Ital., 1926, v. 56, p. 388-396

1.0428 0,9572

## О-Pm. Кислород-прометий

Из закономерностей образования аллотропических модификаций полуторных окислов редкоземельных металлов авторы работы [1] сделали вывод о существовании всех трех модификаций у Pm<sub>2</sub>O<sub>3</sub>. Однако в работах [2, 3] по результатам сопоставления Pm2O3 с другими окислами редкоземельных металлов считают, что он имеет о. ц. к. решетку типа Mn<sub>2</sub>O<sub>3</sub>, так называемая «С-форма» полуторного окисла.

1. Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051.

- 2. Bruno M., Croatto U. Nature, 1959, v. 183, p. 601; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965. 3. Pizzini S., Barbieri R. Ric. Sci., 1959, v. 29, p. 1042-1052.
- $\overline{2},8819$ 1,1181

## О-Ро. Кислород-полоний

Окисел Ро идентифицирован как РоО2 [1, 2]. У него сразу после образования тетрагональная решетка, которая затем переходит в г. ц. к. типа СаF<sub>2</sub> [1]. Подтверждено [2] существование двух модификаций, но показано, что г. ц. к. структура существует в интервале концентраций и что переход из г. ц. к. решетки в тетрагональную обратим в зависимости от температуры. Период г. ц. к. РоО, стехиометрического состава равен 5,59 [1] и 5,637 ± 0,005 А [2], для тетрагональной модификации a = 5,45 A, c = 8,36 A [2].

1. Martin A. W. J. Phys. Chem., 1954, v. 58, p. 911-913. 2. Bagnall K. W., D'Eye R. W. M. J. Chem. Soc., 1954, v. 4, p. 4295-4299.

1.0552 0,9448

#### 0-Pr. Кислород-празеодим

Фазовые равновесия в концентрационной области PrO2-Pr2O3 детально изучены в работах [1, 2], а для концентраций вблизи PrO<sub>2</sub> — в работе [3]. У соединения PrO2 узкая область гомогенности [1]. Между PrO1,68 и PrO1.83 имеется область существования промежуточной фазы с г. ц. к. решеткой флюорита 280

при недостатке О, которая постепенно переходит в о. ц. к. типа Mn<sub>2</sub>O<sub>3</sub> (С-форма) при его избытке. Таким обрразом, существование твердого раствора здесь невозможно. По данным работы [2], при различных температурах до 1050° С и давлениях меньше 1 am O2 между PrO2 и PrO1,79 существует г. ц. к. решетка флюорита, между PrO<sub>1,70</sub> и PrO<sub>1,70</sub> — ромбоэдрическая, между PrO<sub>1,70</sub> и PrO<sub>1,67</sub> — о. ц. к. и при концентрациях, соответствующих PrO<sub><1,67</sub>, — гексагональная структура.

Рентгеновским методом показано существование разрыва растворимости во флюоритной области ниже ~350° С [3]. Из работы [3] следует, что стехиометрический состав Pr<sub>6</sub>O<sub>11</sub> находится в области расслоения при недостатке кислорода; однако, по [4], Pr<sub>6</sub>O<sub>11</sub> является отдельной фазой.

Температура плавления Pr<sub>2</sub>O<sub>3</sub> равна 2200° С [5]. Кристаллическая структура. У PrO<sub>2</sub> г. ц. к. решетка типа CaF<sub>2</sub> с периодом 5,3938 ± 0,0003 (для примерно стехиометрического состава), 5,467 (PrO<sub>1.833</sub>) [3] и 5,394 ± 0,002 Å [4]. Промежуточная фаза с о. ц. к. решеткой типа Mn<sub>2</sub>O<sub>3</sub> [1] и периодом от 5,458 (PrO<sub>1,83</sub>) до 5,510 А (PrO<sub>1,68</sub>) [1]; 11,30±0,05 А (PrO<sub>1,70</sub>) [2]. Pr<sub>2</sub>O<sub>3</sub> существует в двух модификациях [6-8]: С-типа с о. ц. к. (Mn<sub>2</sub>O<sub>3</sub>)

решеткой до 600° С [6]; a = 11,14 ± 0,01 А [4, 9] н А-типа с гексагональной решеткой в интервале 700—1400° С [6—8], a = 3.85 А, c = 6.00 А [8]; a = $= 3,859 \pm 0,003$  A,  $c = 6,008 \pm 0,003$  A [9]; a = 3,854, A, c = 6,007 A [10]; a = 3,86 A, c = 6,01 A [11].

Рг<sub>6</sub>О<sub>11</sub> приписывается кубическая решетка с периодом 5,462 [10] и 5,468 ±  $\pm 0.001$  Å [4].

1. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 277 S. 89-95.

- 2. Guth E. D. a. o. J. Amer. Chem. Soc., 1954, v. 76, p. 5239-5242.
- 3. Sieglaff G. L., Eyring L. J. Amer. Chem. Soc., 1957, v. 79, p. 3024-3026.
- 4. Mc Cullough J. D. J. Amer. Chem Soc., 1950, v. 72, p. 1386-1390.
- 5. Eyring L., Eick H. Symposium on Rare Earth Chemistry, Ames, Yowa, American Chemical Society, November, 1956; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 6. Iandelli A. Gazz. Chim. Ital. 1947, v. 77, p. 312-318.
- 7. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.
- 8. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, 64A, p. 309-316.
- 9. Eyring L. a. o. J. Amer. Chem. Soc., 1952, v. 74, p. 1186-1190.
- 10. Reed W. R. Thesis, Michigan State University, 1954, 83 p; Dussertation Abstr., 1959, 19, p. 1538-1539.

11. Zachariasen W. Z. Physik. Chem (Leipzig), 1926, Bd 123, S. 134-150

2,9138

## О-Рt. Кислород-платина

Рентгеновское исследование позволило обнаружить только одно соединение — Pt<sub>3</sub>O<sub>4</sub>, которое разлагается на Pt и O<sub>2</sub> [1]. По данным исследования [1], оно имеет тетрагональную решетку; a = 7,98 A, c = 5,44 A, однако по работе [2] его решетка о. ц. к. с периодом 6,226 А. PtO<sub>2</sub> обнар ужена в опытах по окислению; в работе [3] по электронографическим данным [4] решетка PtO<sub>2</sub> идентифицирована как гексагональная; a = 3,10 A, c = 4,8 A. В работе [5], также по электронографическим данным, приводятся другие значения периодов: a = 1,75 A, с = 2,62 А; однако рентгеноструктурный анализ [6] подтвердил результаты [3] (a = 3,08 Å, c = 4,19 Å). Авторы работы [7] при 1107 и 1208° С обнаружили протекание реакции  $Pt + O_2 \rightarrow PtO_2$  (газ).

РtО приписывается тетрагональная структура;  $a = 3,05 \pm 0,003$  A, c = $= 5,35 \pm 0.005$  A [8].

- 1. Ария С. М. и др. Сб. статей по общей химии, вып. 1. Изд-во АН СССР, 1953, c. 76-82.
- 2. Galloni E. E., Roffo A. E. J. Chem. Phys., 1941, v. 9, p. 875-877; Chem. Abstr. 1942, v. 36, p. 696.
- 3. Шишаков Н. А. Кристаллография, 1957, т. 2, с. 689-690.
- 4. Finch G. J. a. o. Proc. Roy. Soc. (London), 1933, 141, p. 414; см. [3].
- 5. Boche O. Bull. Classe Sci., Acad. Roy. Belg., 1951, v. 37, p. 393-396; Chem. Abstr., 1952, v. 46, p. 2868.
- 6. Busch R. H. a. o. Anais Acad. Brasil. Cienc., 1952, v. 24, p. 185-201; Chem. Abstr., 1953, v, 47, p. 4162.
- 7. Schäfer H., Tebben A. Z. Anorg. Allgem. Chem., 1960, Bd 304, S. 317-321.
- 8. Moore W. J., Pauling L. J. Amer. Chem. Soc., 1941, v. 63, p. 1392; см. W. B. Pearson. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1025.

2,8203 1,1797

## О-Ри. Кислород-плутоний

Исследование [1] базировалось на существовании известных соединений: РиО, Ри2О3 (σ), Ри2О3 (η) и РиО2 (ζ) [1, 2]. На рис. 353 объединены данные работ [1-5]. В них использовали металлографический и рентгеновский методы, дополненные экспериментами по оплавлению. Растворимость О в Ри в интервале 580—1150° С составляет 3,8·10<sup>-3</sup> % (ат.) [(25 ± 10]·10<sup>-4</sup>% (по массе)] [1].



Рис. 353. О-Ри

Соединение PuO, очевидно, не стабильная фаза [1]. Состав Pu<sub>2</sub>O<sub>3</sub> изменяется от 60 до 63,6% (ат.) О [2]; по-видимому, некоторые из исследованных образцов содержали PuO2. Обнаруженная кубическая модификация Pu2O3 (σ) [2] была изучена в работе [1], авторы которой заключили, что эта фаза не образуется при полиморфном превращении гексагонального  $\eta = Pu_2O_3$ , открытого позднее в ра-282

ботах [1, 3]. Температура плавления η-фазы (2240° С) была определена как среднее из нескольких значений, колебавшихся между 2170 и 2290° С [1]. Точка плавления PuO<sub>2</sub> 2280 ± 30° С [4] и 2295 ± 30° С (в Не). Эти данные заставляют предполагать, что PuO2 — конгрузнтно плавящееся соединение. Если бы PuO2 образовывалось по перитектической реакции, оно должно было нахолиться в равновесии с более тугоплавким (и более стабильным) соединением, которое наверняка было бы обнаружено в многочисленных исследованиях этой системы.

У PuO г. ц. к. решетка типа NaCl с периодом 4,958 ± 0,002 A [2]. σ-фаза имеет гексагональную структуру типа La<sub>2</sub>O<sub>3</sub>;  $a = 3,841 \pm 0,006$  A,  $c = 5,958 \pm$  $\pm$  0,005 A [3, 6]; у η-фазы о. ц. к. решетка типа Mn<sub>2</sub>O<sub>3</sub> с периодом 11,04  $\pm$  $\pm$  0,02 A [1]; РиО2 имеет г. ц. к. решетку типа Са $F_2$  с периодом 5,396  $\pm$ ± 0,001 [7] и 5,3950 ± 0,0003 A [8].

- 1. Holley C. E. Jr. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 6, p. 215-220, Schonfeld F. W. В книге «The Metal Plutonium», eds A. S. Coffinberry, W. N. Miner. University of Chicago.
- Press, Chicago, 1961, p. 240—254. 2. Zachariasen W. H. Acta Cryst., 1949, v. 2, p. 388—390; Mooney R. C. L., Zachariasen W. H. В книге «The Transuranium Elements», eds. G. T. Seaborg a. o. pt. II, National Nuclear Energy Series, Div. IV, v. 14B, McGraw-Hill Book Company, N. Y., 1949, p. 1442-1447.
- 3. Templeton D. H., Dauben C. H. U. S. At. Energy Comm. UCRL -1886, 1952; см. Соffinberry A. S., Ellinger F. H. Proc. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, p. 138—146.
  4. Chikalla T. D. U. S. At. Energy Comm. HW — 69832, 1961, 23 р., Chem.
- Abstr., 1962, v. 57, p. 122.
- 5. Pijanowski S. W., DeLucas L. S. U. S. At. Energy Comm. KAPL -1957, 1960, p. 1-5; Chem. Abstr., 1961, v. 55, p. 11973.
- 6. Ellinger F. H. B KHure «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 281-308.
- 7. Drummond J. L., Welch G., Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 379-383.
- 8. Asprey L. B. J. Amer. Chem. Soc., 1955, v. 77, p. 1707-1708.

 $\overline{1},2723$ 1,7277

## О-Rb. Кислород-рубидий

Получение R b<sub>2</sub>O описано в работе [1]. Рентгеновский анализ методом порошка показал, что у Rb<sub>2</sub>O г. ц. к. решетка антифлюоритного типа с периодом 6,742 А. Сообщалось [2] о получении RbO химическими методами. Несколько авторов [2, 3] сообщают об окисле, которому они приписывают формулу Rb<sub>2</sub>O<sub>3</sub>. Магнитным и рентгеновским методами показано, что это может быть сложный окисел с формулой Rb<sub>2</sub>O<sub>2</sub>·2RbO<sub>2</sub> [1].

1. Helms A., Klemm W.Z. Anorg. Allgem. Chem., 1939, Bd. 242, S. 33-40: см. [3].

- 2. Rengade E. Ann. Chim. Phys., 1907, v. 11, p. 348; см. [3].
- 3. Schechter W. H., Kleinberg J. J. Chem. Educ., 1947, v. 24, p. 302-303.

# 2,9341

#### О— Re. Кислород—рений

Исследовано несколько окислов рения. Re<sub>2</sub>O<sub>7</sub> получали окислением Re или химически [1]. Он кипит при 360° С с образованием мономерных паров. У Re<sub>2</sub>O<sub>7</sub> ромбическая решетка;  $a = 15,25 \pm 0,1$  A,  $b = 5,48 \pm 0,02$  A,  $c = 12,5 \pm 12$ ± 0,01 А, пространственная группа Рттс [2].

ReO3 получали восстановлением Re2O7 и химическим способом [1]. ReO3 быстро разлагается выше 300° С [1] на Re2O7 и ReO2 [3]. У него кубическая решетка с периодом 3,7510 ± 0,0005 A [4].

ReO<sub>2</sub> существует в двух модификациях: моноклинной, стабильной ниже 300° С, и ромбической, стабильной в интервале 300-1050° С [4]. Ромбическую модификацию получали совместным нагревом Re и ReO3 при 800° C [1, 4] и в результате реакции Re с парами Re<sub>2</sub>O<sub>7</sub> при 500° C [1, 2]. Моноклинная модификация была получена в работе [5]. Ў ромбического  $\text{ReO}_2 a = 4,8094 \pm 0,0005$  A, b == 5,6433 ± 0,0005 A,  $c = 4,6007 \pm 0,0005$  A [4, 6]. Периоды моноклинной (типа MoO<sub>2</sub>) решетки ReO<sub>2</sub> следующие: a = 5,562 A, b = 4,838 A, c = 5,561 A,  $\beta = 120^{\circ} 87'$  [7].

Известны также водные окислы Re: гидратированный Re2O3 [1], ReO·H2O и Re<sub>2</sub>O·2H<sub>2</sub>O [8], полученные химическим способом.

1. Deschanvres A. Ann. Chim. (Paris), 1959, v. 4, p. 1217-1246.

- 2. Wilhelmi K. A. Acta Chem. Scand., 1954, v. 8, p. 693.
- 3. Freundlich W., Deschanvres A. Compt. Rend., 1957, v. 245, p. 1809-1810.
- 4. Magneli A. Acta Chem. Scand., 1957, v. 11, p. 28-33.
- 5. Zachariasen W. H. A. C. A. Program and Abstracts of Winter Meeting, 1951, F. 4; см. [4].
- 6. Magneli A. Acta Cryst., 1956, v. 9, p. 1038-1039.
- 7. Zachariasen W. H. Частное сообщение, Magneli A., Andersson G. Acta Chem. Scand., 1955, v. 9, p. 1378-1381.
- 8. Young R. C., Irvine J. W. J. Amer. Chem. Soc., 1937, v. 59, р. 2648, см. [1].
- 1, 1917 0.8083

## 0-Rh. Кислород-родий

Интерпретация авторами работы [1] экспериментов [2] с горячей проволокой Rh показывает существование летучего окисла Rh<sub>x</sub>O<sub>2</sub>.

- 1. Schäfer H., Heitland H.J.Z. Anorg. Allgem. Chem., 1960, Bd 304, S. 249-265.
- 2. Holborn L. u. a. Wiss. Abhandl. Physik.-Techn. Reichsanstalt, 1904, Bd 4, S. 85.
- 1,1994

## О-Ru. Кислород-рутений

 $RuO_2$  имеет тетрагональную решетку рутила;  $a = 4,52 \pm 0,02$  A,  $c = 3.12 \pm 0.02$  A, c =± 0,02 Å, 2 атома на элементарную ячейку [1]. RuO<sub>2</sub> вступает в реакцию с кислородом при температурах выше 800° С, образуя газообразный RuO<sub>3</sub> или RuO<sub>4</sub> в зависимости от температуры и давления [2].

1. Goldschmidt V. M. «Geochemische Verteilunggesetze», v. VI, измерения Zachariasen W. H., CM. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N.-Y., 1958, p. 1026. 2. Schäfer H. Angew. Chem., 1961, Bd 73, S. 27.

1,1186 0,8814

## 0-Sb. Кислород-сурьма

В работах [1, 2] термическим разложением Sb<sub>2</sub>O<sub>5</sub> получены соединения Sb<sub>6</sub>O<sub>13</sub>, Sb<sub>2</sub>O<sub>4</sub> (SbO<sub>2</sub> [3]) и Sb<sub>2</sub>O<sub>3</sub>. У Sb<sub>2</sub>O<sub>4</sub> ромбическая решетка, изоморфная SbTaO<sub>4</sub>; a = 4,814 Å, b = 5,435 Å [4]; pahee [6] Sb<sub>2</sub>O<sub>4</sub> приписывалась г. ц. к.

решетка (a = 10,22 A), однако показано [7], что эту решетку имеет не Sb<sub>2</sub>O<sub>4</sub>, а Sb<sub>3</sub>O<sub>6</sub>OH. В работе [6] на рентгенограммах соединений, предположительно считающихся Sb<sub>6</sub>O<sub>13</sub> и Sb<sub>2</sub>O<sub>5</sub>, получены линии, идентичные «Sb<sub>2</sub>O<sub>4</sub>».

У Sb<sub>2</sub>O<sub>3</sub> две модификации. Выше 570° С у него ромбическая решетка (Pccn); a = 4,93 Å, b = 12,48 Å, c = 5,43 Å [8]; ниже 570° С решетка г. ц. к. (Fd3m), a = 11,15 A [9].

- 1. Simon A. Z. Anorg. Allgem. Chem., 1927, Bd. 165, S. 31-40; Chem. Abstr. 1927, v. 21, p. 3775.
- 2. Simon A., Thaler E. Z. Anorg. Allgem. Chem., 1927, Bd 162, S. 253-278: Chem. Abstr., 1927, v. 21, p. 3169.
- 3. Уразов Г. Г., Сперанская Е. И. ЖНХ, 1956, т. I, с. 1418—1429.
- 4. Dihlstrom K. Z. Anorg. Allgem. Chem., 1938, Bd 239, S. 57; см. [5]
- 5. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N. Y., 1958, p. 1026. 6. Dehlinger U. Z. Krist., 1927, Bd 66, S. 108-119; Chem. Abstr., 1928,
- 33, p. 2088.
- 7. Dihlstrom K., Westgren A. Z. Anorg. Allgem. Chem., 1937, Bd 235, S. 153; см. [5].
- 8. Buerger M. J. Amer. Mineralogist, 1936, v. 21, p. 206; см. [5]; Buerger M. J., Hendricks S. B. Z. Krist. 1937-1938, Bd 98, S. 1; cm. [5].

9. Almin K. E., Westgren A. Arkiv Kemi Mineral Geol., 15B (22), 1942, 6 р. см. [5]; Chem. Abstr., 1942, v. 36, р. 5688.

ī,5499 0,4501

#### 0-Sc. Кислород-скандий

У  $Sc_2O_3$  о. ц. к. решетка типа  $Mn_2O_3$  [1—3],  $a = 9,855 \pm 0,005$  A [3]; в работах [1, 2] приводится меньший по величине и менее точно определенный период. По оценке [4] точка плавления Sc<sub>2</sub>O<sub>3</sub> составляет ~2300° С, по данным более новой работы [5] 2470 ± 50° С.

- 1. Goldschmigt V. M. u. a., Geochemische Verteilungsgesetze», 1925, Bd IV, V; cm. Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, N.-Y., 1958.
- 2. Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 3. Менков А. А. и др. ДАН СССР, 1961, т. 141, с. 364-367.
- 4. Barta C. u. a. Naturwissenshaften, 1958, Bd 45, S. 36.
- 5. Торопов Н. А., Васильева В. А. Кристаллография, 1961, т. 6, c 968---972.
- 1,7556 0.2444

## 0-Si. Кислород-кремний

Диаграмма состояния этой системы не построена; исчерпывающий обзор работ содержится в [1]. Существование твердых соединений, кроме SiO<sub>2</sub>, точно не установлено. Показано, что SiO является газообразным соединением [2, 3]. Существование кристаллического SiO [4] опровергнуто в работе [5]; авторы [6, 7] считают, что кристаллический или аморфный «SiO» в действительности -- смесь Si и SiO<sub>2</sub>. В работе [8] предполагается наличие газообразных окислов Si<sub>2</sub>O и Si<sub>2</sub>O<sub>3</sub>. Авторы [9] доказывают возможность образования кристаллического Si<sub>2</sub>O<sub>3</sub>; по [10] Si<sub>2</sub>O<sub>3</sub> существует и имеет кубическую решетку,  $a = 5,77 \pm 0,03$  А.

Растворимость О в твердом кремнии, определенная методом поглощения инфракрасных лучей, составляет [11] 3,4; 1,8; 0,8 и 0,4% (ат.) · 10-3 при соответственно 1412 (точка плавления), 1250, 1100 и 1000° С. Растворимость О в жидком Si при 1410° С составляет 3,6.10-3% (ат.) [12]. Показано [11] выделение SiO<sub>2</sub> из (Ŝi) при высокой температуре, что опровергает возможность существования твердых SiO и Si $_2O_3$ .

SiO<sub>2</sub> может существовать в виде различных аллотропических модификаций, называемых кварцем, тридимитом или кристобалитом. Диаграмма состояния SiO<sub>2</sub> в зависимости от температуры и давления построена в работе [13] и переработана в [1]. Четыре модификации стабильны при атмосферном давлении [1]:  $\beta$ -кварц при температурах ниже 573° С;  $\alpha$ -крарц в интервале 573—867° С;  $\alpha$ -тридимит в интервале 867—1470° С и  $\alpha$ -кристобалит от 1470° С до точки плавления (1728° С). При атмосферном давлении наблюдаются следующие метастабильные превращения:  $\alpha$ -кварц  $\rightarrow \alpha$ -кристобалит (1027° С) и  $\alpha$ -кварц  $\rightarrow \infty$ нике то при 1610° С. Точка кипения SiO<sub>2</sub> по расчетам составляет 2793  $\pm$  75° С, а экспериментально измеренная для кварца 2677  $\pm$  125° С [14]. Ниже даются кристаллографические параметры различных форм SiO<sub>2</sub> по [1]:  $\beta$ -кварц — гексагональная решетка; a = 4,903 A, c = 5,394 A;  $\alpha$ -кварц — гексагональная правитка; a = 5,01 A, c = 8,22 A;  $\alpha$ -кристобалит — гексагональная синтетические сорта кварца имеют большие периоды, чем натуральные. У последних периоды решетки меняются в зависимости от концентрациии примесей [15].

1. Бережной А. С. Кремний и его двойные системы. Киев, Изд-во АН УССР, 1958.

- 2. Ramstad H. F. a. o. Trans. AIME, 1961, v. 221, p. 1021-1028.
- 3. Chapman A. T. a. o. ARL Tech. Note, 60-154, 1960, 14 p.
- 4. Hoch M., Johnston H. L.J. Amer. Chem. Soc., 1953, v. 75, p. 5224— 5225; см. в [6].
- 5. Geller S., Thurmond C. D. J. Amer. Chem. Soc., 1955, v. 77, p. 5285-5287; cm. B [6].
- 6. Brewer L., Greene F. T. Phys. Chem. Solids, 1957, v. 2, p. 286-288.
- 7. Brady G. W. J. Phys. Chem., 1959, v. 63, p. 1119-1120.
- 8. Faessler A., Krämer H. Ann. Physik, 1959, Bd. 4, S. 263-268.
- 9. R hode G., Weiner K. L. Angew. Chem., 1961, Bd 73, S. 410.
- 10. Dadape V. V., Margave J. L. Abstr. Sci. Papers, 18th Intern. Congr. Pure Appl. Chem., Montreal, 1961, p. 103-104.
- 11. Hrostowski H. J., Kaiser R. H. Phys Chem. Solids, 1959, v. 9, p. 214-216.
- Абрикосов Н. Х., идр. Изв. АН СССР, ОТН, Металлургия и топливо, 1960, № 6, с. 65—68.
- 13. Mosesman M. A., Pitzer K. S. J. Amer. Chem. Soc., 1941, v. 63, p. 2348-2356.
- 14. Schick H. L. Chem. Rev., 1960, v. 60, p. 331-362.
- 15. Франк-К.аменецкий В. А. Кристаллография, 1960, т. 5, с. 650— 654.
- 1,02700,9730

### 0—Sm. Кислород—самарий

На основе экспериментальных исследований в работе [1] дается вариант части диаграммы состояния от 0 до 22,5% (ат.) О (Sm — Sm<sub>2</sub>O<sub>3</sub>), включающей область существования SmO. По рентгеновским данным,  $\alpha$ -Sm находится в равновесии с Sm<sub>2</sub>O<sub>3</sub> *B*-типа; температура полиморфного превращения Sm при добавлении О повышается с 930 до 1000° С. Кривые ликвидуса и солидуса очень близки к горизонтали при 1070—1080° С. SmO образуется при 625° С (по перитектоидной реакции) [2], или при 1175° С (перитектически) [3]. И те, и другие данные противоречат наблюдавшемуся в работе [1] равновесию между Sm и Sm<sub>2</sub>O<sub>3</sub>. Здесь необходимо повторное исследование.

Кроме  $Sm_2O_3$ , хорошо описанного в литературе по химии, и SmO, в работе [3], показано существование субокиси  $SmO_{0.4-0.6}$ .

 $Sm_2O_3$  существует в двух модификациях: с моноклинной решеткой (*B*-тип, высокотемпературная модификация);  $a = 14,17_7 \pm 0,01$  A,  $b = 3,63_3 \pm 0,01$  A,

 $c = 8,84_7 \pm 0,01$  А,  $\beta = 99,96 \pm 0,03^{\circ}$  [4]; a = 14,16 А, b = 3,621 А, c = 8,84 А,  $\beta = 100, 25^{\circ}$  [5], и с о. ц. к. решеткой Mn<sub>2</sub>O<sub>3</sub> при низких температурах (С-тип) с периодом 10,934 [5]; 10,932  $\pm$  0,009 А [6] и 10,928 А [7]. Эти данные хорошо согласуются с результатами более старых работ [8—10] по определению периода решетки о. ц. к. Sm<sub>2</sub>O<sub>3</sub>. Сообщается [11], что переход С-тип  $\geq B$ -тип обратим, в то время как, по [1, 5], стабильна только модификация *B*-типа, *C*-тип метастабилен. Температура превращения составляет 900 [5], 875 [11] и 1100—1200° С [10].

У SmO г. ц. к. решетка типа NaCl с периодом 4,9883 ± 0,0003 [3], 5,026 ± ± 0,002 A [2].

 $SmO_{0,4-0,6}$  имеет г. ц. к. решетку типа ZnS [3]; период меняется от 5,3698  $\pm$  0,0006 до 5,3790  $\pm$  0,0008 А, однако линейной зависимости периода от конпентрации не обнаружено.

- 1. Love B. WADD Tech. Rept. 61-123, 1961, p. 40-42.
- 2. Ellinger F. H., Zachariasen W. J. Amer. Chem. Soc., 1953, v. 75, p. 5650.
- 3. E i c k H. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 5147-5149, E i c k H. A., Thesis, University of Lowa, 1956, 121 p.
- 4. Douglas R. M., Staritzky E. Anal. Chem., 1956, v. 28, p. 552.
- 5. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 1960, A64, p. 309-316.
- 6. Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.
- 7. Brauer G.; Gradinger H. Z. Anorg. Allgem. Chem., 1954, v. 276, p. 209-226.
- 8. Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9 p. 310-316, Chem. Abstr., 1928, v. 22, p. 2087.
- 9. Bommer H. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 273-280.
- 10. I an delli A. Gazz Chim. Ital., 1947, v. 77, p. 312-318.
- 11. Warshaw J., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051; Warshaw J. Thesis, Pennsylvania State University, 1961, 107 p.

#### 1,1297 0,8703

#### 0-Sn. Кислород-олово

Красному SnO в работе [1] приписывается ромбическая решетка (*Pbcn*);  $a = 5,00 \pm 0,01$  A,  $b = 5,72 \pm 0,01$  A,  $c = 11,12 \pm 0,02$  A; 8 формульных единиц на элементарную ячейку. При комнатной температуре SnO метастабилен; интервал его стабильности вероятно, лежит выше 385° C [1].

По электронограммам монокристаллов определены [2] периоды тетрагональной решетки SnO<sub>2</sub>: a = 3,74 A, c = 3,19 A. Под действием электронного пучка SnO<sub>2</sub> испарялся и конденсировался на угольной подложке на кольце вокруг исходного кристалла SnO<sub>2</sub> в виде смеси Sn и SnO<sub>2</sub>, затем SnO<sub>2</sub> + SnO и, наконец, SnO.

Переход от нестабильного SnO к стабильному SnO<sub>2</sub> исследовался в работах [3, 4].

1. Donaldson J. D. a. o. J. Chem. Soc., 1961, p. 839-841.

2. Selme P., Croissant O. Compt. Rend., 1960, v. 251, p. 564-566. 3. Spinedi P., Gauzzi F. Ann. Chim. (Rome), 1957, v. 47, p. 1305-

1315. 4. N i w a K. a. o. Bull. Chem. Soc. Japan, 1958, v. 31, p. 725-727.

1,26150,7385

#### 0-Sr. Кислород-стронций

Моноокись SrO [1-3] и перекись SrO<sub>2</sub> [3, 4] были получены химическим путем.
У SrO г. ц. к. решетка типа NaCl, a = 5,1602 A (25° C) [5]. SrO<sub>2</sub> имеет о. ц. тетрагональную решетку типа CaC<sub>2</sub>; a = 5,0445 A, c = 6,6161A (24° C) [6].

- 1. Guntz A., Benoit F. Bull. Soc. Chim. France, 1924, v. 35, p. 709-728.
- 2. Holtermann C. B. Ann. Chim. (Paris), 1940, v. 14, p. 121-206.
- 3. Holtermann C., Laffitte P. Compt. Rend., 1939, v. 208, p. 517-518.
- 4. Baumann D. J. Iowa State J. Sci., 1954, v. 28, p. 280-281.
- 5. Swanson E. H. a. o. Natl. Bur. Stand. (U. S.) Circ. 539, V, 1955, p. 68-69.
- 6. S'wanson H. E. a. o. Natl. Bur. Std., (U. S.), Circ. 539, VI, 1956, p. 52.
- 2,9467

## О-Та. Кислород-тантал \*

Пока нет окончательных данных о диаграмме состояния Та-Та<sub>2</sub>О<sub>5</sub>, построенной с использованием обычных металловедческих методов; поэтому сейчас неясно, какие из множества полученных окислов стабильны. Предельная растворимость О в Та была определена с помощью металлографического [1], рентгеновского (по периодам решетки) [1, 2] анализов и методом микротвердости [2]; она составляет < 5,3; 3,65; 2,95 и 2,5% (ат.) при соответственно 1800, 1500, 1000. 500° С [1] и 6,4; 4,2; 3,1; 2,2 и 1,5% (ат.) при соответственно 1650, 1300, 1100, 900 и 700° С. Величины предельной растворимости приводятся также в работе [3]: 4,6%, и 0,8% (ат.) при соответственно 1500 и 800° С, и в [4] ~ 4% (ат.) при 1500° С. По [2, 3] в равновесии с твердым раствором на основе Та находится Та<sub>2</sub>О, по [1] Та<sub>2</sub>О<sub>5</sub>. Растворимость О в твердом Та в функции давления О<sub>2</sub> в интервале 2390-3020° С определена в работе [5].

В литературе сообщается о существовании нескольких окислов: Та4О [6-8], Та<sub>2</sub>О [9, 10], ТаО [8, 9], ТаО<sub>2</sub> [7, 11, 12] и Та<sub>2</sub>О<sub>5</sub> [1, 2, 6, 7, 10—16]. Авторам работы [1] не удалось установить существования ни одного окисла, кроме Та<sub>2</sub>О<sub>5</sub>. В работе [9] обнаружено, что описанный М. Хансеном и К. Андерко (см. т. II [3]) окисел Ta2O фактически представляет собой Ta2 (OxN1-x). Ta4O и TaO получали только в экспериментах по окислению и восстановлению. Показано, что когда Та<sub>2</sub>О<sub>5</sub> вступает в реакцию с С, перед образованием ТаС в качестве промежуточных фаз образуются ТаО, и Тао [11]. Состав и кристаллическая структура этих окислов точно не определены: у ТадО ромбическая решетка [7] с периодами a = 3,60 A, b = 3,27 A, c = 3,20 Å [6], которые относятся к окислу, «близкому к Та<sub>4</sub>О». У «Та<sub>2</sub>О» тетрагональная решетка [6]. Фаза, которую считают Та<sub>2</sub>О, по результатам микроанализа изоморфна с NbO2, т. е. имеет тетрагональную решетку ( $a = 3,68_0$  A,  $c = 4,75_8$  A) [7]. Все вышеперечисленные окислы при непрерывном окислении в конце концов превращаются в Ta2O5 при температурах >600° С; сейчас нельзя сделать положительного заключения об их стабильности.

Та<sub>2</sub>О<sub>5</sub> существует по меньшей мере в двух модификациях, как отмечали М. Хансен и К. Андерко (см. т. II). Сообщается [14] о существовании еще трех модификаций. Низкотемпературный β-Та<sub>2</sub>О<sub>5</sub> переходит в высокотемпературную  $\alpha$ -модификацию при 1360  $\pm$  5° C,  $\alpha$ -Та<sub>2</sub>O<sub>5</sub> плавится при 1872  $\pm$  10° C [13]. α — β-превращение проходит исключительно медленно, и поэтому при быстром нагреве  $\beta$ -Та<sub>2</sub>O<sub>5</sub> плавится при 1785 ± 30° С [13]. У  $\beta$ -Та<sub>2</sub>O<sub>5</sub> ромбическая решетка, пространственная группа  $P2_12_12$ ;  $a = 6,192 \pm 0,001$  A,  $b = 44,02 \pm 0,001$  A, b = 44,001  $\pm$  0,005 Å,  $c = 3,898 \pm 0,001$  Å [16]; a = 7,753 Å, b = 7,487 Å; c = 7,487 Å [15]. Авторы работы [15] считают, что эта структура существует только между 500 и 600° С. α-Та<sub>2</sub>O<sub>5</sub> имеет тетрагональную решетку, пространственная группа  $I4_1/amd$ ;  $a = 3.81 \pm 0.005$  A,  $c = 35.67 \pm 0.001$  A [16], a πο pabore [15] ромбическую; a = 7,938 A, b = 8,905 A, c = 11, 224 А. Однако отмечается [13], что у α-Та<sub>2</sub>O<sub>5</sub> моноклинная или возможно триклинная структура. Кроме того, даются значения периодов ромбической решетки окисла нестехнометрического состава вблизи  $Ta_2O_5$  [12]: a = 6,20 A, b = 69,6 A, c = 3,90 A (возможно, они

относятся к β-Ta<sub>2</sub>O<sub>5</sub>), а также периоды гексагонального окисла с составом, также близким к Та<sub>2</sub>O<sub>5</sub>; a = 6,17 А, c = 11,72 А. Три модификации Та<sub>2</sub>O<sub>5</sub> имеют следующие решетки [14]: гексагональную (образуется при 800° С); а = 7,303 Å, c = 11,65 A; ромбическую (образуется при 920° C), a = 7,787 Å, b = 7,679 Å, c = 12,70 А и вновь ромбическую (образуется при 1100° С) с a = 7,776 А, b = 12,40 A, c = 12,60 A.

- 1. Vaughan D. A. a. o. Trans. AIME, 1961, v. 221, p. 937-946.
- 2. Gebhardt E., Seghezzi H. D. Z. Metallkunde, 1959, Bd 50, S. 521-527; Plansee Proceedings, 1958, Pergamon Press, N. Y., 1959, p. 280-290.
- 3. Gerhardt E., Seghezzi H. D. Z. Metallkunde, 1957, Bd 48, S. 503-508.
- 4. Perkins R. H. U. S. At. Energy Comm. LA-2316, 1957; CM. Schmidt F. F. DMIC Report 133, 1960, p. 84.
- 5. Pemsler J. P. J. Electrochem. Soc., 1961, v. 108, p. 744-750.
- 6. Brauer G., Müller H. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957; Mem. Sect. Chim. Minerale, 1958, p. 63-67; Chem. Abstr., 1960, v. 54, p. 10 379.
- 7. Norman N. J. Less-Common Metals, 1962, v. 4, p. 52-61; Norm a n N. a. o. Там же, p. 124—137.
- 8. Hägg G., Schönberg N. IV A Tidskr., 1953, Bd 24, S. 345-346.
- 9. Wasilewski R.J. Trans. AIME, 1961, v. 221, p. 647.
- 10. Brauer G., Müller H. Plansee Proceedings, 1958, Pergamon Press, N.—Ү., 1959, р. 257—263. 11. Самсонов Г. В. Укр. хим. журнал, 1957, т. 23, с. 287—296.
- 12. Harvey J., Wilman H. Acta Cryst., 1961, v. 14, p. 1278-1281.
- 13. Reisman A. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 4514-4520.
- 14. Симанов Ю. П. и др. Вестник МГУ, Серия физ-мат. и естествен. наук, 1954, № 6, c. 109–113.
- 15. Лапицкий А. В. и др. Вестник МГУ, Серия физ. мат. и естествен. наук, 1954, № 2, c. 85–89.
- 16. Заславский А. И. идр. ДАН СССР, 1955, т. 104, с. 409-411.

#### 1,0022 0.9978

## О-Ть. Кислород-тербий

Tb<sub>2</sub>O<sub>3</sub> описан в работах [1, 2]. TbO<sub>2</sub> получали из Tb<sub>2</sub>O<sub>3</sub> путем реакции с атомарным О [3]. Авторы работы [3] предположили, что Tb<sub>2</sub>O<sub>3</sub> и TbO<sub>2</sub> образуют непрерывный ряд твердых растворов. Однако в тщательно проведенной работе [4] показано существование пяти отдельных фаз: Tb<sub>2</sub>O<sub>3</sub>, TbO<sub>1,715</sub>, TbO<sub>1,81</sub>, TbO<sub>1,83</sub> и TbO2, каждая из которых имеет узкую область гомогенности [по более старым данным [5], интервал существования Tb<sub>2</sub>O<sub>3</sub> 60-61,5% (ат.) О].

Эти области располагаются вблизи Tb2O3 и TbO2 [4]. Промежуточная фаза TbO<sub>1.81</sub> обнаружена также в работе [6]; описанный здесь окисел Tb<sub>4</sub>O<sub>7</sub> (TbO<sub>1.75</sub>) на самом деле не существует [4, 5]

Ть<sub>2</sub>O<sub>3</sub> с точкой плавления 2387° С [7] первоначально считался мономорфным и ему приписывалась о. ц. к. решетка Мп2O3 (С-тип) [8, 9]; однако в работе [10] показали, что выше 1875° С образуется (обратимо) моноклинная А-модификация типа Sm<sub>2</sub>O<sub>3</sub>. В исследовании [4] также наблюдали А-модификацию в плавленом Tb<sub>2</sub>O<sub>3</sub>, что подтверждает существование полиморфного превращения. Период о. ц. к. решетки Tb<sub>2</sub>O<sub>3</sub> типа Mn<sub>2</sub>O<sub>3</sub> по разным данным следующий: 10,70 [1]; 10,69 [2];  $10,7281 \pm 0,0005$  A [4].

У Тр $O_{1,715}$  ромбоэдрическая решетка;  $a = 6,509 \pm 0,002$  A,  $\alpha = 99^{\circ}21' \pm$  $\pm 0,5'$ ; TbO<sub>1,81</sub> имеет триклинную решетку,  $a = b = c = 5,286 \pm 0,001$  A,  $\alpha = \beta = 89^{\circ}25,1', \gamma = 90^{\circ}$ ; у TbO<sub>1,823</sub> ромбоэдрическая структура,  $a = 5,233 \pm \pm 0,001$  A,  $\alpha = 89^{\circ}41'$  [4]. Соотношение между TbO<sub>1,715</sub>, TbO<sub>1,81</sub>, TbO<sub>1,823</sub> и ТьО, типа СаF, дано в работе [4].

289

TbO<sub>2</sub> имеет г. ц. к. решетку CaF<sub>2</sub> с периодом 5,220 ± 0,001 (TbO<sub>1.95</sub> [4] и  $5.213 \pm 0.002$  A [3].

- 1. Zachariasen W. Norsk Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 2. Bommer H. Z. Anorg. Allgem. Chem.: 1939, Bd 241, S. 273-280.
- 3. Gruen D. M. a. o. J. Amer. Chem. Soc., 1951, v. 73, p. 1475-1479.
- 4. Baenziger N. C. a. o. J. Amer. Chem. Soc., 1961, v. 83, p. 2219-2223.
- 5. Guth E. D., Eyring L. J. Amer. Chem. Soc., 1954, v. 76, p. 5242-5244.
- 6. Prandtl W., Rieder G. Z. Anorg. Allgem. Chem., 1938, Bd 238, S. 225, см. [5].
- 7. Еугіпд L., Еіск. Неопубликованные данные, см. Гшнейднер К.А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 8. Iandelli A. Gazz. Chim. Ital., 1947, v. 77, p. 312-318.
- 9. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., A64, 1960, p. 309-316.
- 10. Warshaw I., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051.

# 1,2085 0,7915

## О-Тс. Кислород-технеций

Соединение ТсО<sub>2</sub> было идентифицировано в работе [1]. У него моноклинная решетка типа MoO<sub>2</sub>;  $a \approx 5,53$  A,  $b \approx 4,79$  A,  $c \approx 5,53$  A,  $\beta \approx 120^{\circ}$ .

1. Zachariasen W. H. A. C. A. Program and Abstracts of Winter Meeting (1951), F-4; см. Magneli A., Andersson G. Acta Chem. Scand., 1955, v. 9, p. 1378-1381.

1,0983

О-Те. Кислород-теллур

Минерал теллурид имеет ромбическую решетку; a = 5,50 A, b = 11,75 A, c = 5.59 A [1]. Однако у TeO<sub>2</sub>, полученного осаждением из водных растворов или плавленого, решетка тетрагональная; a = 4,796 A, c = 7,588 A [2]. Полное описание структуры TeO<sub>2</sub> сделано в работе [3]. По-видимому, приписывание ТеО<sub>2</sub> решетки рутила (в которой с в два раза меньше приведенного выше значения) связано с неполным индицированием [1].

Попытки получить соединение TeO окислением Te, сплавлением Te и TeO2 или химическими способами были безуспешными [4].

1. Бокий Г.Б. Введение в кристаллохимию. Изд. МГУ, 1954, с. 425; см. [2].

- 2. Зломанов В. П. и др. ЖНХ, 1958, т. 3, с. 1473-1477.
- 3. Stehlik B., Balak L. Collection Czech. Chem. Commun., 1949, Bd 14, S. 595; см. [2].
- 4. Glemser O., Poscher W. Z. Anorg. Allgem. Chem., 1948, Bd 256, S. 103-106.

# 2,8386

## О---Тh. Кислород---торий

В работе [1] определена растворимость О в Тh в интервале от 1000 до 1200° С: 0,009; 0,0052 и 0,0035% (по массе) при соответственно 1200, 1100 и 1000° С. Максимальный предел растворимости О в Th при 1415° C составляет 0,4% (ат.) [0,028% (по массе)] [2]. В системе обнаружены два соединения. У ThO г. ц. к. решетка типа NaCl. По [3], межатомное расстояние Th-Th составляет 3,71 А (период решетки 5,25 А); по [4], межатомное расстояние Th-O составляет 2,60 А (период решетки 5,20 A). В работе [5] определена точка плавления ThO<sub>2</sub> 3300 ± ± 100° С. ThO<sub>2</sub> имеет г. ц. к. решетку типа СаF<sub>2</sub> с периодом 5,5859 ± 0,005 [6];  $5.586 \pm 0.0015$  [7]; 5,597 [8]; 5,5961  $\pm$  0,0001 A [3].

- 1. Peterson D. T. Trans. AIME, 1961, v. 221, p. 924-926.
- 2. Gerds A. F., Mallett M. W. J. Electrochem. Soc., 1954, v. 101, p. 171-174.
- 3. Rundle R. E, Acta Cryst., 1948, v. 1, p. 180-185.
- 4. Zachariasen W. H. Acta Crist., 1952, v. 5, p. 19-21.
- 5. Lambertson W. A. a. o. J. Amer. Ceram. Soc., 1953, v. 36, p. 397-399.
- 6. Zachariasen W. H. Phys. Rev., 1948, v. 73, p. 1104—1105. 7. Slowinski E., Norman E. Acta Cryst., 1952, v. 5, p. 768—770.
- 8. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.

# $\overline{1},5238$ 0,4762

# О-Ті. Кислород-титан \*

Ті-ТіО. Последние сведения по участку диаграммы Ті-ТіО в основном подтверждают данные М. Хансена и К. Андерко (см. т. II [1]), однако имеются подтверждения и другой работы (см. М. Хансен и К. Андерко, т. II [29]). Предельное содержание О в α-Ті соответствует ТіО<sub>0,48</sub> [32,4% (ат.)] [1]; по [2, 3]

~ 33% (ат.) (по результатам измерения периода решетки); однако из результатов измерения магнитной восприимчивости [4] следует, что при 850° С предельная растворимость составляет 29,0—30,9% (ат.) [12,5 ± 0,5%) (по массе)]. Сообщается [5] о существовании фазы с упорядоченной тригональной решеткой (пространственная группа  $P\overline{3}m1$ , которая приписывается Ті<sub>3</sub>О; по [5, 6], этой структурой обладает сплав с составом, соответствующим Ti<sub>2</sub>O, по [1]-— ТіО<sub>0,401-0,600</sub> [28,6—37,5% (ат.)]. б-фаза, по М. Хансену и К. Андерко (см. т. II [1]), соответствует по составу Ті<sub>3</sub>О<sub>2</sub> [3] или 40,5— 42,1% (at.)  $[1,90 \pm 0,5\%$  (по массе)] O [4].

ТіО-ТіО2. Полиморфное превращение в ТіО

все еще точно не установлено; наиболее вероятно,

что оно происходит ниже 950° С, но кристалли-

ческая структура и реакции в твердом состоянии ниже 950° С не выяснены [7, 8] (см. также

М. Хансен и К. Андерко, т. II [29]). Для спла-

вов, содержащих более 50% (ат.) О, реакции в

твердом состоянии совсем неизвестны (см. М.

Хансен, К. Андерко, т. II [21]). Пределы рас-

творимости (TiO) по результатам измерения

периодов решетки составляют 47,4-54,0% (ат.)





О [9]; предел растворимости со стороны, богатой О, при 1800° С соответствует 58,9% (ат.) [32,4% (по массе)], а при комнатной температуре $\sim 56,2\%$  (ат.) [30%(по массе)] О [10].

Существование фаз Ti<sub>2</sub>O<sub>3</sub> и Ti<sub>3</sub>O<sub>5</sub> твердо установлено. Область гомогенности Ті<sub>2</sub>O<sub>3</sub> находится в инетрвале 59,0—61,2% (ат.) [32,5—34,5% (по массе)] О [11]. В работе [10] приводится участок диаграммы (рис. 354), построенный по результатам рентгеновского, микроскопического и термического анализов. Положение кривой ликвидуса на участке Ti<sub>2</sub>O<sub>3</sub>—TiO<sub>2</sub>, по [12], хорошо согласуется с данными [10]. Необходимо отметить, что положение границы существования TiO со стороны О, по [11], значительно отличается от соответствующей кривой М. Хан-

291

сена и К. Андерко (см. т. II [1,29]). Установлено [12], что температура плавления Ti<sub>2</sub>O<sub>8</sub> 1820° C, а эвтектическая температура 1660° С [эвтектическая точка 63,2% (ат.) О]. В окончательном варианте диаграммы необходимо показать область существования Ti<sub>3</sub>O<sub>5</sub> (см. [7, 13]). В работах [14, 15] исследована область диаграммы от TiO<sub>1.75</sub> до TiO<sub>1.90</sub> и приведены рентгеновские данные для серии соединений  $Ti_n O_{2n-1}$  (4  $\leq n \leq 10$ ).

ТіО<sub>2</sub> существует в интервале концентраций ТіО<sub>1,983-2,000</sub> [11]; область гомо-генности простирается до ТіО<sub>1,90</sub> [15] и до ТіО<sub>1,96</sub> [16]. Температура плавления TiO<sub>2</sub> 1640° C [16].

Кристаллическая структура. Подтверждено существование б-фазы; по [3], она имеет тетрагональную решетку; a = 3,20 A, c = 5,12 A, по [4], — гексагональную (P6/mmm); a = 4,991 Å, c = 2,879 Å [17]. Высокотемпературный TiO имеет г. ц. к. решетку типа NaCl с периодом 4,174 [9]; 4,1766 ± 0,0001 [18] или 4,181 ± 0,005 A [8]. У Ті<sub>2</sub>О<sub>3</sub> ромбоэдрическая решетка, пространственная группа R3c; a = 5,42 A, a = 56,9° [19]; a = 5,428 A, a = 56,65° [8] или a=  $= 5,431 \pm 0,001$  А,  $\alpha = 56,58 \pm 0,002^{\circ}$  (гексагональные периоды:  $a = 5,148 \pm$  $\pm$  0,002 A,  $c = 13,636 \pm 0,002$  A [11]. В работе [20] даются значения периода решетки Ті<sub>2</sub>О<sub>3</sub>.

Широко исследовавшийся окисел Ti<sub>3</sub>O<sub>5</sub> имеет моноклинную решетку и существует по крайней мере в двух модификациях. В работе [13] установлены две модификации с температурой перехода 120° С. Низкотемпературная модификация имеет следующие периоды решетки: a = 9,752 A, b = 3,8020 A, c = 9,4419 A, β = 91, 547°; у высокотемпературной модификации «искаженная псевдобрукитовая структура»; a = 9,82 A, b = 3,78 Å, c = 9,97 A,  $\beta = 91,0^{\circ}$ . Однако в работе [7] получили предварительные данные, противоположные приведенным выше: высокотемпературная модификация относится к пространственной группе A2/m; a = 9,898 A, b = 3,776 A, c = 9,828 A,  $\beta = 91,32^{\circ}$ , а низкотемпературная — к пространственной группе C2/m; a = 9,76 A, b = 7,61 A, c == 9,44 A,  $\beta$  = 91,50°. Хотя температуры превращения не приводятся, предполагается, что может существовать третья модификация. В работе [21] приведены периоды решетки по 86 линиям соединения с составом, соответствующим Ti<sub>3</sub>O<sub>5</sub>.

Работы [5, 14, 15, 19, 22] содержат данные о последовательной серии соединений  $\text{Ti}_n \text{O}_{2^{n-1}}$  (4  $\leq n \leq 10$ ), базирующихся на рутиловой структуре TiO<sub>2</sub>. Утверждается, что периодические изменения вида рентгенограмм порошков скорее дискретные, чем непрерывные. Из этой серии был также обнаружен окисел Ті<sub>6</sub>О<sub>11</sub> [23]. Соединению Ті<sub>5</sub>О<sub>9</sub> было уделено особое внимание в работах [22, 24].

Последние данные по TiO<sub>2</sub>: брукит — ромбическая решетка, пространственная группа  $Pbca; a = 9.25 \pm 0.03$  Å,  $b = 5.46 \pm 0.02$  Å,  $c = 5.16 \pm 0.01$  A [25] рутил — тетрагональная решетка; a = 4,5937 A, c = 2,9581 A [11].

- 1. Макаров Е. С., Кузнецов Л. М. Ж. структурн. химии, 1960, т. 1, с. 170—177.
- 2. Skulari P., Chvatalova L. Hutnicke Listy, 1958, Bd 13, S. 899-908.
- 3. Koncz J., Koncz-Deri M. Periodica Polytech., 1957, v. 1, p. 67-687
- 4. Y a o Y. L. Trans. AIME, 1959, v. 215, p. 851-854.
- 5. Andersson S. a. o. Acta Chem. Scand., 1957, v. 11, p. 1641-1652.
- 6. Nowotny H., Dimakopoulou E. Monatsh. Chem., 1959, Bd 90, S. 620-622.
- 7. Bright N. F. H. Advan. X-ray Anal., 1960, v. 4, p. 175-193.
- 8. Pearson A. D. Phys. Chem. Solids, 1958, v. 5, p. 316-327.
- 9. Вольф Е. идр. Вестник ЛГУ, 1959, 14, № 10, Серия физ. и хим. 2, c. 87-92.
- 10. Nishimura H., Kimura H. Nippon Kinzoku Gakkaishi, 1956, v. 20, p. 524–528.
- 11. E j i m a T. Thesis, University of Missouri School of Mines and Metallurgy, 1959, 190 p.; Straumanis M. E. a. o. Acta Cryst., 1961, v. 14, p. 493-

497; Straumanis M. E., Ejima T. Acta Cryst., 1962, v. 15, p. 404-409.

- 12. Brauer G., Littke W. J. Inorg. Nucl. Chem., 1960, v. 16, p. 67-76.
- 13. Asbrink S., Magneli A. Acta Cryst., 1959, v. 12, p. 575-581; Acta Chem. Scand., 1957, v. 11, p. 1606-1607.
- 14. Andersson S. Congr. Intern. Chim. Pure Appl. 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 53-57; Andersson S., Magneli A. Naturwissenschaften, 1959, Bd 43, S. 495-496.
- 15. Andersson S. a. o. Acta Chem. Scand., 1957, v. 11, p. 1653-1657.
- 16. Корнилов И. И. Тр. Комиссии по аналит. химии, АН СССР. Ин-т геохимии и аналит. химии, 1960, вып. 10, с. 17-26.
- 17. Andersson S. Acta Chem. Scand., 1959, v. 13, p. 415-419.
- 18. Straumanis M. E., Li H. W. Z. Anorg. Allgem. Chem. 1960, v. 305, p. 143-147.
- 19. Magneli A. a. o. Final Technical Report. No. 1 (Oct. 1, 1957 Sept. 30, 1958) on Contract DA-91-508-EUC-245, PB-145, 923, 1961, 82 p., Chem. Abstr., 1962, v. 57, p. 164.
- 20. Модель М. С., Уколова Т. П. ЖНХ, 1957, т. 2, с. 2274—2276. 21. Белецкий М. С. идр. ЖНХ, 1957, т. 2, с. 2276—2278.
- 22. Andersson S. Acta Chem. Scand., 1960, v. 14, p. 1161-1172.
- 23. Руднева А. В., Малышева Т. Я., ДАН СССР, 1959, т. 125, c. 363—365.
- 24. Халимов Ф. В., Резниченко В. А. Сб. «Титан и его сплавы». Изд-во АН СССР, 1960, с. 21-23.
- 25. Yoganarasimhan S. R., Rao C. N. R. Anal. Chem., 1961, v. 33, p. 155.

# 2,8936

## О-ТІ. Кислород-таллий

Известны два соединения: Tl<sub>2</sub>O [1, 2] и Tl<sub>2</sub>O<sub>3</sub> [2-4]. Существование более богатого О окисла, чем Т12О3, предполагается в связи с присутствием тетрагональной фазы, находящейся в равновесии с Tl<sub>2</sub>O<sub>3</sub>, пересыщенным по О [3]. Tl<sub>2</sub>O<sub>3</sub> плавится при 717 ± 5 [5] или 716 ± 2° C [2] и кипит при 1169° C [2].

У Tl<sub>2</sub>O<sub>3</sub> о. ц. к. решетка типа Mn<sub>2</sub>O<sub>3</sub> с периодом 10,57 [4] и 10,534 А (пересыщение по О) [3]. Твердые растворы образуются за счет и анионных и катионных вакансий, что вызывает изменение цвета в зависимости от состава [3].

- 1. Brewer L. Chem. Rev., 1953, 52; см. [2].
- 2. Щукарев С. А. идр. ЖНХ, 1961, т. 6, с. 2817—2818.
- 3. Scatturin V. a. o. Ric. Sci., 1956, v. 26, p. 3108-3114.
- 4. Zachariasen W. Norsk. Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 5. Duncan A. B. F. J. Amer. Chem. Soc., 1929, v. 51, p. 2697.

# 2,9760

### О-Тт. Кислород-тулий

Кристаллическая структура Tm<sub>2</sub>O<sub>3</sub> исследована в работах [1-4]. У него о. ц. к. решетка типа Mn<sub>2</sub>O<sub>3</sub> с периодом 10,488 ± 0,006 [3] или 10,4866 А [4] (в обоих случаях чистота окисла была 99,9%). В работах [4, 5] показано отсутствие других аллотропических модификаций, кроме этой (С-типа).

- 1. Zachariasen W. Norsk. Geol. Tidsskr., 1927, v. 9, p. 210-316.
- 2. Bommer H. Z. Anorg. Allgem. Chem., 1939, Bd 241, S. 278-280.
- 3. Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.
- 4. Roth R. S., Schneider S. J. J. Res. Natl. Bur. Std., 64A, 1960, p. 309-316.

5. Warshaw I., Roy R. J. Phys. Chem., 1961, v 65, p. 2048-2051.

## 0--- U. Кислород-уран

Равновесие в этой системе исследовано главным образом в связи с окислением UO<sub>2</sub> до U<sub>3</sub>O<sub>5</sub>; другим участкам диаграммы посвящено значительно меньшее число работ. Обзоры [1] (1940—1960), [2] (1951—1956) и [3] (1927—1951 гг.) очень полно охватывают опубликованные вплоть до 1960 г. данные. В настоящем





обзоре использованы материалы этих работ, особенно когда необходимо дополнить довольно обширный список литературы.

В библиографии перечислены не все использованные источники. На рис. 355 показан лучший вариант диаграммы, являющийся результатом обобщения материалов разных авторов, как это показано ниже в обсуждении.

U — UO<sub>2</sub>. Растворимость О в U дано в работах [4, 5], а предложенная [6] соответствующая область диаграммы основывается на данных одной работы о рас-

творимости О в α-U и трех работ с результатами определения растворимости О в жидком U. Диаграмма эвтектическая при малых содержаниях О с температурными кривыми превращения γ-и β-U, снижающимися до эвтектоидных точек.

Соединение UO появляется в малых количествах в виде тонких, но не изолированных окисных пленок [7, 8]. Предполагается, что оно метастабильно [7] или стабильно только при высоких температурах по аналогии с ThO [9]. У UO г. ц. к. решетка типа NaCl, a = 4,92 A [7, 8].

 $U_2O_3 - U_3O_8$ . Существование обедненного кислородом окисла UO<sub>2</sub> описано в работах [10—12]; его состав может дойти до UO<sub>1,75</sub> [10]. Однако в работе [13] на основе рентгеновских измерений периодов решетки был сделан вывод о том, что UO<sub>2</sub> не теряет О при плавке в восстановительной атмосфере H<sub>2</sub>.

UO<sub>2</sub> имеет г. ц. к. решетку типа CaF<sub>2</sub>,  $a = 5,469 \pm 0,002$  А (приведенное значение периода получено в работах [12, 14—17]. Температура плавления UO<sub>2</sub> на воздухе составляет 2700  $\pm$  50° С [13, 16, 18, 19], а в Не или H<sub>2</sub> 2270° С [20].

Область растворимости О в UO<sub>2</sub> существует при температурах выше ~200° С. В работах [21-24] дан общий вид участка диаграммы от области гомогенности UO, в сторону кислорода при температурах выше 600° С; между данными разных авторов имеются некоторые различия в положении границ фазовых областей. Данные работ [22, 24] были использованы при построении соответствующего участка диаграммы на рис. 355 между 1000 и 1300° С, а данные [21] - ниже 1000° С до U<sub>2</sub>O<sub>2</sub>. В работе [25] показано, что граница между областями существования  $UO_2$  и ( $UO_2 + U_4O_9$ ) должна соответствовать ниже 600° С максимальной концентрации О. Ниже 600° С обнаружено существование целого ряда соединений. Наиболее важными можно считать U<sub>4</sub>O<sub>9</sub> (UO<sub>2,25</sub>) [26-32], UO<sub>2,3</sub> [30], U<sub>3</sub>O<sub>7</sub> (UO<sub>2,33</sub>) [22, 28, 30, 33] и U<sub>5</sub>O<sub>13</sub> (UO<sub>2,6</sub>) [30]. Твердо установлено, что U<sub>4</sub>O<sub>9</sub> является равновесной фазой; детальный структурный анализ позволил установить о. ц. к. решетку этого окисла (пространственная группа 143d), а = = 21,77 А [32]. В экспериментах по окислению и восстановлению обнаружено существование двух модификаций. О. ц. тетрагональный U<sub>3</sub>O<sub>7</sub> (a = 3,78 Å, c == 5,55 А) стабилен вплоть до 300° С (при отжиге). U<sub>3</sub>O<sub>7</sub> с недостатком О (UO<sub>2,3</sub>) стабилен выше 300 — до ~500° С [30]. В работе [33] показано, что в процессе окисления при 350° С на рентгенограммах не выявляются линии тетрагональной фазы; по [22], сплавы в интервале от U2,80 до U2,40 метастабильны; авторы работы [27] при описании экспериментов с достижением равновесия не упоминают об  $U_3O_7$ . Вблизи состава, соответствующего  $U_3O_8$ , отмечено [21] существование области гомогенности до UO<sub>2,56</sub>; сообщается о фазе U<sub>2</sub>O<sub>5</sub> [7] и U<sub>5</sub>O<sub>13</sub> [34]. Структура всех этих фаз ромбическая; a = 6,716 Å, b = 35,80 A, c = 8,42 A [21]; a = 6,73 A, b = 31,71 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, b = 31,76 A, c = 8,28 A [7]; a = 6,751 A, c = 8,28 A [7]; a = 6,751 A, a = 8,28 A [7]; a = 6,751 A, a = 31,76 A, = 8,285 А [34]. Хотя на рис. 355 показаны только соединения U<sub>4</sub>O<sub>9</sub> и U<sub>3</sub>O<sub>8</sub>, требуются дополнительные исследования, чтобы установить, нет ли в этом концентрационном интервале стабильных промежуточных фаз.

 $U_3O_8$  и области с большей концентрацией кислорода. На основе экспериментов по определению теплоемкости в работе [35] установлены три модификации  $U_3O_8$ : : $\alpha$ - $U_3O_8$  при 350—770° С,  $\beta$ - $U_3O_8$  при 770—940° С и  $\gamma$ - $U_3O_8$  при температурах выше 940° С. В работе [34] показано, что две модификации имеют ромбическую решетку и несколько отличаются по составу. У третьей модификации  $U_3O_8$ решетка гексагональная (тригональная) [36]. Оданако указывается [37], что  $\beta$ - $U_3O_8$  [34] может быть метастабильной модификацией. Ромбический  $U_3O_8$ подробно изучали с помощью рентгеновской [38] и нейтронной дифракций [39]. Решетка этой модификации базоцентрированная ромбическая, пространственная группа *C222* [39]; a = 11,901 A, b = 6,71 A, c = 8,28 A [36]. Период решетки aобладает тройной, а c — двойной периодичностью. В работе [40] даны следующие значения периодов ромбической решетки  $U_3O_8$ : a = 6,71 A, b = 3,96 A, c == 4,15 A. Гексагональный  $U_3O_8$  стабилен выше 400° C;  $a = 6,814 \pm 0,001$  A,  $c = 4,136 \pm 0,001$  A [36].

Описано шесть модификаций UO<sub>3</sub>, но, по данным работы [37], только одна из них (ромбическая) стабильна и имеет a = 9,70 A, b = 9,80 A, c = 19,92 A [41] (вначале решетка этой модификации была идентифицирована как моноклин-

ная [42]). Автор работы [43] UO<sub>3</sub> также приписывает ромбическую структуру но периоды дает другие: a = 13,00 A, b = 10,72 A, c = 7,50 A.

При концентрациях О, превышающих его содержание в UO<sub>3</sub>, необходимо отметить существование еще двух фаз: UO<sub>4</sub>·2H<sub>2</sub>O и перекиси U<sub>2</sub>O<sub>7</sub>. При нагреве UO<sub>4</sub>·2H<sub>2</sub>O до 195° С и выше он разлагается с образованием U<sub>2</sub>O<sub>7</sub> [44]. Поскольку UO<sub>4</sub>·2H<sub>2</sub>O никогда не получали в виде ангидрида, его можно считать нестабильным по отношению к UO<sub>3</sub> и U<sub>2</sub>O<sub>7</sub>. После нагрева до 200—400° С U<sub>2</sub>O<sub>7</sub> разлагается с образованием красного UO<sub>3</sub> и O<sub>2</sub>, по [37], красный UO<sub>3</sub><sup>e</sup>нестабилен.

В работе [45] высказана интересная идся о том, что многие окислы, содержащие больше О, чем UO<sub>2</sub>, образуют ряд  $U_nO_{2n+2}$ . Хотя большинство обсуждавшихся здесь окислов соответствует этой формуле, недостаток данных об их структуре не позволяет в настоящее время принять или отклонить эту теорию.

- Hoekstra H. R. В книге «Uranium Dioxide». ed. J. Belle. U. S. Atomic Energy Comm. Available from Superintendent of Documents, Washington, 1961, p. 230—271, 299—302.
- 2. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1953, p. 49-52.
- The Chemistry of Uranium, eds. J. J. Katz, E. Rabinowitch, pt. I, National Nuclear Energy Series, Div. VIII, v. 5, McGraw-Hill Book Co., N. Y., 1951, p. 224-281.
- 4. Cleaves H. E. a. o. U. S. At. Energy Comm. CT—1696; Cleaves H. E. a. o.; там же, CT—2618; Cleaves H. E., там же, CT—1819; см. [6].
- 5. Sloman H. A., Harvey C. A. J. Inst. Met., 1951-1952, v. 80, p. 391-407.
- 6. B a g l e y K. Q., O l i v e r D. S. U. S. At. Energy Authority, Ind. Group, R. and DB (C) TN-41, 1959, p. 1-10, 17 and figs. 1-5.
- 7. R u n d l e R. E. a. o. J. Amer. Chem. Soc., 1948, v. 70, p. 99-105.
- 8. Dickerson R. F. a. o. J. Metals, 1956, v. 8, p. 456-460.
- 9. Ackermann R. J. U. S. At. Energy Comm. ANL 5482, 1955, 114 p.
- 10. Zachariasen W. H. U. S. At. Energy Comm. N 1973, 1945; см. [6].
- 11. Hering H., Pério P. Bull. Soc. Chim. France, 1952, p. 351-357.
- 12. Anderson J. S. a. o. Nature, 1960, v. 185, p. 915-916.
- Wisnyi L. G., Pijanowski S. W. U.S. At. Energy Comm. KAPL — 1702, 1957, 20 p.
- Mueller M. H., Heston L. U. S. At. Energy Comm. ANL 6176, 1961, 29 p.
- 15. Hashiguchi R. a. o. Trans. Natl. Res. Inst. Metals (Tokyo), 1960, v. 2, p. 1-5; Chem. Abstr., 1961, v. 55, p. 5067.
- 16. Chikalla T. D. U. S. At. Energy Comm. HW 69832, 1961, 23 p.
- 17. Anderson J.S., Sawyer J.O. Proc. Chem. Soc., 1960, p. 145-146.
- 18. Newkirk H. W., Bates J. L. U. S. At. Energy Comm. HW-59468,
- 1959, 5 p.
- 19. Powers R. M. a. o. U. S. At. Energy Comm. SCNC-317, 1960, 128 p. 20. Pijanowski S. W., DeLucas L. S. U. S. At. Energy Comm. KAPL ---
- 1957, 1960, 5 p.
- 21. Gronvold F. J. Inorg. Nucl. Chem., 1955, v. 1, p. 357-370.
- 22. Blackburn P. E. J. Phys. Chem., 1958, v. 62, p. 897—902;; Blackburn P. E. a. o., там же, p. 902—908.
- 23. Schaner B. E. J. Nucl. Mater., 1960, v. 2, p. 110-120.
- Roberts L. E., Walter A. J. J. Inorg. Nucl. Chem., 1961, v. 22, p. 213-229.
- 25. Willardson R. K. a. o. J. Inorg. Nucl. Chem., 1958, v. 6, p. 19-33.
- Anderson J. S. Proceedings of the Austral. Atomic Energy Symposium, 1958. Melbourne University Press, 1959, p. 588-598.
- 27. Sudo K., Kigoshi A. Sci. Rept. Res. Inst. Tohoku-Univ., 1961, A13, p. 31-38, 448-455.
- 28. De Marco R. E. a. o. Amer. Ceram. Soc. Bull., 1959, v. 38, p. 360-362.

- 29. Clayton J.C., Aronson S.U.S. At. Energy Comm. WAPD-BT-10, 1958, p. 96-100.
- 30. Hoekstra H. R. a. o. J. Inorg. Nucl. Chem., 1961, v. 18, p. 166-178.
- 31. Будников П. П. идр. ДАН СССР, 1959, т. 128, с. 85-88.
- 32. Belbeoch P. B. a. o. Acta Cryst., 1961, v. 14, p. 837-843.
- 33. Бессенов А. Ф., Власов В. Г. ФММ, 1961, № 11, с. 957—959.
- 34. Hoekstra'H. R. a. o. J. Phys. Chem., 1955, v. 59, p. 136-138.
- 35. Хомяков <sup>в</sup>К. Г. и др. Сб. «Исследования в области химии урана». Атомиздат, 1961, с. 141—144.
- 36. Siegel S. Acta Cryst., 1955, v. 8, p. 617-619.
- 37. Hoekstra H.R., Siegel S. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 28, p. 231-234.
- 38. С h o d u r a B., Maly J. Proc. U. N. Intern, Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 28, p. 223—230; Ходура Б. и др. Атомная энергия, 1958, т. 5, с. 1027—1031.
- 39. Andresen A. F. Acta Cryst., 1958, v. 11, p. 612-614.
- 40. H'olser W. T., Acta Cryst., 1956, v. 9, p. 196.
- 41. Connolly D. E. Acta Cryst., 1959, v. 12, p. 949.
- 42. De Wolff P. M. Acta Cryst., 1961, v. 14, p. 322-323.
- 43. Pério P. Bull. Soc. Chim. France, 1953, v. 19 p. 776-777.
- 44. Бродский А. И., Франчук Н. Ф. ДАН СССР, 1961, т. 138, с. 1345—1348.
- 45. Макаров Е. С. ДАН СССР, 1961, т. 139, с. 612-615.

#### $\overline{1}, 4970$ 0, 5030

## О—V. Кислород—ванадий \*

V - VO. Границы области гомогенности VO 43,0-54,5% (ат.) О [1]; 46,2-55,9% (ат.) О [2]; 45,3-54,5% (ат.) О при 800° С[3]. Все эти концентрации получены по результатам исследования периодов решетки. По пикнометрическим данным граница области гомогенности VO со стороны О определена при 55,5-56% (ат.) О [4]. В этой области существуют три фазы: VO<sub>0,7±0,1</sub>, VO<sub>0,8-1,2</sub> VO<sub>1,2-1,37</sub> [5]; однако, по [6], в диапазоне 46,2-55,9% (ат.) О (VO) содержит анионные вакансии, а в [7] методами рентгеновского, пикнометрического и микроскопического анализа установлено, что сплавы, соответствующие по составу VO<sub>0,75</sub> и VO<sub>1,30</sub>, двухфазны. VO<sub>0,53</sub> «возможно» представляет собой V<sub>2</sub>O, на что указывают рентгеновские данные [3]. Переломы на кривых объема и энтальпии вблизи VO<sub>-0,30</sub> интерпретированы в работе [8] как указание на появление новой фазы или границу растворимости β-фазы (см. М. Хансен и К. Андерко, т. II, рис. 586). В работе [6] даны периоды решетки при 800 и 1600° С для сплавов с 42,8-57% (ат.) О, а в [9] — периоды V<sub>4</sub>O и VO, полученных в процессе образования VC из V<sub>2</sub>O<sub>3</sub>.

 $VO - V_2O_5$ . В этом диапазоне концентраций достаточно твердо установлено существование 10 соединений:  $V_2O_3$ ,  $V_3O_5$ ,  $VO_2$ ,  $V_6O_{13}$ ;  $V_2O_5$  и серии  $V_nO_{2n-1}$ ( $4 \le n \le 8$ ). Кроме того, сообщается [3] существование о. ц. тетрагонального соединения  $VO_{1,27}$ , образующегося ниже 900° С (возможно, что это «*X*-фаза», по М. Хансену и К. Андерко (см. т. II [3]). Однако утверждается [5], что этот состав находится в области существования фазы с г. ц. к. решеткой (см. выше), а согласно работе [7], в сплаве, соответствующем по составу  $VO_{1,30}$ , в равновесии находятся VO и  $V_2O_3$ . Для выяснения вопроса о существовании этого «соединения» ( $VO_{1,27}$ ) необходима дополнительная работа.

Область существования  $V_2O_3$  соответствует  $VO_x$ , (1,44 < x < 1,65) [7]. В работе [10] на основе измерений магнитной восприимчивости, подтвержденных рентгеновским и металлографическим анализом, построен участок диаграммы от  $V_2O_3$  до  $V_2O_5$ . Здесь имеется эвтектика при 663 ± 3° C [эвтектическая точка 70,5% O]; соединения  $V_nO_{2n-1}$  распадаются по эвтектоидным реакциям ( $VO_{1,87}$ при ~680° C, а четыре других — при ~710° C). В исследовании [11] также на основе измерений магнитной восприимчивости показано, что  $VO_2$  и  $V_2O_5$  не могут

296

находиться в равновесии при 600° С (как утверждается в [10]), а авторы работы [12] на базе измерений электропроводности сделали вывод о стабильности VO<sub>1,80</sub> и VO<sub>1,84</sub> при комнатной температуре. Согласно [11], VO<sub>2</sub> имеет небольшую область гомогенности (VO<sub>1,995-2,000</sub>), V<sub>2</sub>O<sub>5</sub> исследован в работе [13] с применением рентгеноструктурного и термического анализов; никаких полиморфных превращений (см. [14]) не обнаружено. Температура плавления V<sub>2</sub>O<sub>5</sub> 674 [13] и 685° С [10].

Диаграмма (рис. 356) составлена по данным [6] для богатой О области (VO), по [7] — для области существования V<sub>2</sub>O<sub>3</sub> и по [10], где установлена более низкая температура эвтектоидного распада VO<sub>1,87</sub> в интервале V<sub>2</sub>O<sub>3</sub> — V<sub>2</sub>O<sub>5</sub>.

У V<sub>2</sub>O<sub>3</sub> ромбоэдрическая ре-

шетка типа  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>; a = 5,467

А.  $\alpha = 53,74^{\circ}$  [1] (см. также

М. Хансен и К. Андерко, т. II

[18]); по [15], низкотемпера-

турная (-145° С) модификация

имеет моноклинную структуру;

a = 8,57 A, b = 4,98 A, c =

(Cc): a = 9.983 A, b = 5.031 A,

 $c = 9,835 \text{ A}, \beta = 138,80^{\circ} [1,16].$ 

VO, также имеет моноклинную

решетку ( $P2_11_c$ ); a = 5,743 A,

b = 4,517 A, c = 5,375 A,  $\beta =$ 

= 122,61° [1,17]; в работе [18]

обнаружено полиморфное пре-

вращение при ~70° С; высоко-

температурная модификация ха-

рактеризуется тетрагональной

решеткой типа ТіО<sub>2</sub> (рутила);

 $a = 4,530 \pm 0,009 \text{ A}, c = 2,869 \pm$ 

 $\pm$  0,006 А. У V<sub>6</sub>O<sub>13</sub> моноклинная решетка (*C21m*); a = 11,90А,

b = 3,671 A, c = 10,12 A,  $\beta =$ 

== 100.86° [19]. Кристалличе-

ская структура V<sub>2</sub>O<sub>5</sub> была

У V<sub>3</sub>O<sub>5</sub> моноклинная решетка

= 13,88 A,  $\beta = 91, 6^{\circ}$ .



вновь идентифицирована в работе [20] как ромбическая (*Pmnm*); a = 11,510 A, b = 4,369 A, c = 3,563 A. Эти данные хорошо согласуются с приводившимися М. Хансеном и К. Андерко (см. т. II [26]).

Предполагается, что соединения гомологического ряда V<sub>n</sub>O<sub>2n-1</sub> имеют структуру рутила [1]. В работе [21] VO<sub>1,80</sub> (V<sub>5</sub>O<sub>9</sub>) приписывается изоморфность с Ti<sub>5</sub>O<sub>9</sub>.

- 1. Andersson G. Acta Chem. Scand., 1954, v. 8, p. 1599-1606.
- 2. Вольф Е, Ария С. М. ЖОХ, 1959, т. 29, с. 2470—2473.
- 3. Westman S., Nordmark C. Acta Scand., 1960, v. 14, p. 465-470.
- 4. Вольф Е., Морозова М. П. ЖОХ, 1959, т. 29, с. 3146—3148.
- 5. Гуревич М. А., Ормонт Б. Ф. ЖНХ, 1957, т. 2, с. 2581—2588.
- 6. Вольф Е. и др. Вестник ЛГУ, 1959, т. 14, № 10, Серия физ. и хим., вып. 2, с. 87—92.
- 7. Гельд П. В. и др. ФММ, 1960, т. 9, с. 315—317. Ж. структурн. химии, 1961, т. 2, с. 301—307.
- 8. Морозова М. П., Егер Г. ЖОХ, 1960, т. 30, с. 3514—3517.
- 9. Самсонов Г. В. Укр. химич. журнал, 1957, т. 23 с. 287-296.
- 10. Burdese A. Ann. Chim. (Rome), 1957, v. 47, p. 785-796.
- 11. Grossman G. u. a. 8. Anorg. Allgem. Chem., 1960, Bd 305, S. 121-132.
- 12. Богданова Н. И., Ария С. М. ЖОХ, 1960, т. 30, с. 3-7.
- 13. Holtzberg F. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 1536-1540.
- 14. Ditte A. Compt. Rend., 1885, v. 101, p. 498; см. [13].

15. Warekois E. P. J. Appl. Phys., 1960, v. 31, p. 346-347.

- 16. Asbrink S. a. o. Acta Chem. Scand., 1959, v. 13, p. 603.
- 17. Andersson G. Acta Chem. Scand., 1956, v. 10, p. 623-628.
- 18. Westman S. Acta Chem. Scand., 1961, v. 15, p. 217.
- 19. Хансен М., Андерко К. т. II [5]; см. Озеров Р. П. Усп. хим., 1955. т. 24, с. 951—984.
- 20. Bachmann H. G. u. a. Z. Krist., 1961, Bd 115, S. 110-131.
- 21. Andersson S., Magneli A. Naturwissenschaften, 1956, Bd 43, S. 495-496.

# О—W. Кислород—вольфрам \*

 $\overline{2},9395$ 1,0605

Растворимость О в W при 1700° C 0,06% (ат.) % [0,005% (по массе)] [1]. Сообщается о пяти модификациях WO<sub>3</sub>: моноклинной ниже —40° C [2], триклинной от —40 до 17° C [2], моноклинной от 17 до 320° C [2—4], ромбической от 320 до 720° C [3, 4] и тетрагональной выше 720° C [3, 4]. В работе [5] на основании измерения давления паров сделан вывод, что у WO<sub>3</sub> нет области гомогенности. Периоды решетки трех низкотемпературных модификаций следующие: моноклинная a = 5,27 A, b = 5,16 A, c = 7,67 A  $\beta = 91°43'$ ; триклинная a == 7,30 A, b = 7,52 A, c = 7,69 A,  $\alpha = 88°50'$ ,  $\beta = 90°55'$ ;  $\gamma = 90°56'$ ; «высокотемпературная» моноклинная a = 7,30 A, b = 7,53 A, c = 7,68 A,  $\beta = 90°54'$ [2]; a = 7,306 A, b = 7,541 A, c = 3,845 A,  $\beta = 90,85°$  (90°51') [6];  $a = 7,274 \pm \pm 0,002$  A,  $b = 7,501 \pm 0,001$  A,  $c = 3,824 \pm 0,003$  A,  $\beta = 89°56'$  [7].

Изменение периодов решетки с температурой для трех высокотемпературных модификаций описано в работе [3]. Результаты экспериментов по окислению показывают, что выше 1000° С структура WO<sub>3</sub> необратимо изменяется с образованием модификации, обозначенной α' [8].

Окислы в интервале  $WO_3 - WO_2$  исследованы с использованием рентгеноструктурного [8, 10], электронографического [9] анализов и измерения давления паров [5, 11]. Сообщается [5] о существовании соединений  $W_{20}O_{58}$  (область гомогенности  $WO_{2,94-2,88}$  и  $W_{18}O_{49}$  (область гомогенности  $WO_{2,74-2,70}$ ). В работе [6] окисный слой, прилегающий к поверхности металла, идентифицирован как  $\gamma$ -WO<sub>3</sub>. Предполагается, что эта фаза соответствует « $\gamma$ -фазе»  $W_{18}O_{49}$  по М. Хансену и К. Андерко (см. т. II [8]); в этой области существуют два стабильных окисла:  $WO_{2,9-2,8}$  и  $WO_{2,8-2,2}$  [9, 10]. Область гомогенности  $W_3O_8$  соответствует  $WO_{2,664-2,768}$  [11]. В работе [12] даны уточненные по сравнению с приведенными М. Хансеном

В работе [12] даны уточненные по сравнению с приведенными М. Хансеном и К. Андерко (см. т. II [5, 6]), значения периодов решетки  $WO_2$ : a = 5,565 A, b = 4,892 A, c = 5,650 A,  $\beta = 120,69^\circ$ .

На основании электронографических и электронномикроскопических данных авторы работы [9] заключили, что « $\beta$ -W» — стабильный окисел (в противоположность М. Хансену и К. Андерко, т. II. [21]), очевидно, с кубической решеткой,  $a = 5,04 \pm 0,01$  А. W<sub>3</sub>O<sub>2</sub>, по старым литературным данным [13], имеет кубическую структуру с периодом 5,036 А.

- Allen B. C., Albrecht W. M. Battelle Memorial Institute; частное сообщение, см. Klopp W. D., Barth V. D. DMIC Memorandum 50, 1960, 10 p.
- 2. Tanisaki S. J. Phys. Soc. Japan, 1960, v. 15, p. 566-573, 1959, v. 14, p. 680-681.
- Perry J. A. a. o. J. Appl. Phys., 1957, v. 28, p. 1272—1275; Perri J. A. Dissertation Abstr., 1958, v. 19, p. 436.
- 4. Sawada S., Danielson G. C. Phys. Rev., 1959, v. 113, p. 105-1008.
- 5. Blackburn P. E. Abstr. Sci. Papers, 18 th Intern. Congr. Pure Appl. Chem., Montreal, 1961, p. 105-106.
- Westman S., Magneli A. Acta Chem. Scand., 1958, v. 12, p. 363-364; Chem. Abstr., 1959, v. 53, p. 11926.

- 7. Veda R., Kobayashi J. Phys., Rev., 1953, v. 91, p. 1565.
- 8. Архаров В. И., Козманов Ю. Д. ФММ, 1956, т. 2, с. 361-369. 9. Андриевский А. И., Набитович И. Д. ФТТ, 1960, т. 2, c. 982-986.
- 10. Бергер И. и др. ЖНХ, 1956, т. 1, с. 1713—1716.
- 11. Морозова М. П., Гетскина Л. Вестник ЛГУ, 1959, т. 14, № 22, Серия физ. и хим., вып. 4, с. 128-131.
- 12. Magneli A., Andersson G. Acta Chem. Scand., 1955, v. 9, p. 1378-1381.
- 13. Burgers W. G., van Liempt I. A. M. Rec. Trav. Chim., 1931, v. 50, р. 1050; см. Озеров Р. П. Усп. хим., 1955, т. 24, c. 951-984.

# 1,2551

# О-Ү. Кислород-иттрий

Предварительный вариант области диаграммы от У до У<sub>2</sub>О<sub>3</sub> построен в работах [1, 2] на основании рентгеновского и металлографического исследований. Работа [1] (рис. 357) кажется более подробной, чем [2]. Указывается [3], без приведения экспериментальных результатов, на существование соединения УО;



Рис. 357. О-Y

сообщается [2] о г. ц. к. фазе с периодом 5,49 А при 1000° С и 5,40 А при комнатной температуре; состав этой фазы не определен. Здесь необходимы дополнительные исследования. Точка плавления У<sub>2</sub>O<sub>3</sub> 2415° C [4]; авторы работы [5] отмечают, что Y<sub>2</sub>O<sub>3</sub> стабилен по крайней мере до 1800° С. Твердо установлено существование Y 203 только в виде редкоземельной полутораокиси С-типа [6, 7]. У Y<sub>2</sub>O<sub>3</sub> о. ц. к. решетка типа MnO<sub>2</sub> с периодом 10,60 [8, 9]; 10,605 ± 0,001 [10] и 10,604 А при 27° С [11].

300

- 1. Carlson O. N. a. o. U. S. At. Energy Comm. IS-351-1961, p. 26-27 Carlson O. N., McMullen W. D. U. S. At. Energy Comm., IS-193. 1960, p. 41-41..
- 2. Love B. WADD Tech. Rept. 61-123, 1961, p. 34-37.
- 3. Huber E. J. a. o. J. Phys. Chem., 1957, v. 61, p. 497-498.
- 4. R u f f O. Z. Anorg. Allgem. Chem., 1913, Bd 82, S. 373-385.
- 5. Curtis C. E., Tharp A. G. J. Amer. Ceram. Soc., 1959, v. 42, p. 151; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 6. Warshaw J., Roy R. J. Phys. Chem., 1961, v. 65, p. 2048-2051; Warshaw J. Thesis, Pennsylvania State University, 1961, 114 p.
- 7. Blum S. L., Maguire E. A. Amer. Ceram. Soc. Bull., 1960, v. 39, p. 310-312.
- 8. Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, S. 209-226.
- 9. Zachariasen W. Norsk. Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 10. Staritzky E. Anal. Chem., 1956, v. 28, p. 2023. 11. Swanson H. E. a. o. Natl. Bur. Std. (U. S.) Circ. 539, III, 1954, p. 28 - 29.

# $\overline{2,9661}$ 1,0339

### О— Yb. Кислород—иттербий

Известны два окисла: YbO и Yb<sub>2</sub>O<sub>3</sub>. У YbO г. ц. к. решетка типа NaCl с периодом 4,86  $\pm$  0,02 A [1]. Кристаллическая структура Yb<sub>2</sub>O<sub>3</sub> исследована в работах [2-8]; у него о. ц. к. решетка типа Mn<sub>2</sub>O<sub>3</sub>, наиболее точно период определен в работе [6]; a = 10,435 ± 0,001 A, по [7], a = 10,4334 A. Согласно [5, 7, 8], Yb2O3не претерпевает полиморфных превращений, у него всегда структура Mn2O3, так называемого С-типа. Yb<sub>2</sub>O<sub>3</sub> плавится без разложения [6] при 2346° С [9].

- 1. A c h ar d J. C., T s o u c ar i s G. Compt. Rend., 1958, v. 246, p. 285-288.
- 2. Zachariasen W. Norsk. Geol. Tidsskr., 1927, v. 9, p. 310-316.
- 3. Bommer H. Z. Anor. Allgem. Chem., 1939, Bd 241, S. 273-280.
- 4. Templeton D. H., Dauben C. H. J. Amer. Chem. Soc., 1954, v. 76, p. 5237-5239.
- Brauer G., Gradinger H. Z. Anorg. Allgem. Chem., 1954, Bd 276, 5. S. 209-226.
- 6. Staritzky E. Anal. Chem., 1956, v. 28, p. 2023-2024.
- 7. Roth R. S., Schneider S. J. Res. Natl. Bur. Std., 1960, v. 64A. p. 309-316.
- 8. Warshaw I., Roy R., J. Phys. Chem., 1961, v. 65, p. 2048-2051.
- 9. Eyring L., Eick H. American Chemical Society Meeting, Ames, Iowa, 1956: см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 1,3887 0.6113

## 0-Zn. Кислород-цинк

У/М. Хансена и К. Андерко эта система не рассматривается. До 1956 г. не было сведений о строении этой диаграммы.

В работе [1] дан обзор кристаллографических данных. Авторы исследований [2, 3] исчерпывающе обсуждают структуру ZnO, имеющего гексагональную решетку (B4);  $a = 3,24961 \pm 0,00002$  Å,  $c = 5,20653 \pm 0,00013$  Å (20° C) [3]. У ZnO г. ц. к. решетка (ВЗ), a = 4,62 A [4].

Перекись ZnO<sub>2</sub> была получена химическими способами. Она имеет кубическую решетку пирита,  $a = 4,871 \pm 0,006$  A [5].

- 1. P e a r s o n W. B. A Hahdbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon Press, N.-Y., 1958, p. 1036.
- 2. Heller R. B. a. o. J. Appl. Phys., 1950, v. 21, p. 1283; см. [1].
- 3. Rymer T. B., Archard G. D. Research, 1952, v. 5, p. 292, cm. [1].
- 4. Bragg W. H., Daryshire J. A. U. S. At. Energy Comm. COO-181, 1953; J. Metals, 1954, v. 6, p. 238; cm. [1].
- 5. Vannerberg N G. Arkiv Kemi, 1959, Bd 14, S. 119-124.

1,2440 0,7560

# О----Zr. Кислород---цирконий \*

Фазовые равновесия в области Zr-ZrO2 при температурах 825-2025° С были заново исследованы методами металлографического и электрического анализов на образцах, приготовленных с использованием реакторного Zr [1]. Подтвержден вид диаграммы, приведенной М. Хансеном и К. Андерко, (см. т. II [1]), однако, по новым данным, предельная растворимость О в α- и β-Zr больше на 2-4% (ат.). Отмечается [1], что твердые растворы на основе  $\alpha$ -Zr, содержащие более 30% (ат.) О. невозможно зафиксировать при комнатной температуре. Подтверждены также температуры плавления, приводившиеся М. Хансеном и К. Андерко (см. т. II [1]). Металлографический анализ [1] показал, что предельная растворимость О в (ZrO<sub>2</sub>) резко снижается от 66,5 до 63.4% (ат.) в температурном интервале 1535—1570° С; авторы работы [1] относят это за счет третьей модификации ZrO, и предполагают прохождение эвтектоидной реакции. Термическое травление литого ZrO, также указывает на существование третьей (высокотемпературной) модификации [2]. На диаграмме (рис. 358) показаны новые положения границ растворимости и предполагаемая [1] эвтектоидная горизонталь; другие линии диаграммы заимствованы у М. Хансена и К. Андерко (см. т. II, рис. 587). В работе [3] подтверждены значения растворимости О в α-Zr [28,6% (ат.)] при 400----800° C.

Период решетки a ( $\alpha$ -Z<sub>r</sub>) достигает максимума при  $\sim 20\%$  (ат.) О, что противоречит данным М. Хансена и К. Андерко (см. т. II [1, 7]) о непрерывном росте этого периода [3].

В работе [4] доказывается существование ZrO и Zr<sub>2</sub>O<sub>3</sub>, образующихся при восстановлении ZrO<sub>2</sub> углеродом. У ZrO г. ц. к. решетка, a = 4,62 А, эти наблюдения не говорят, однако, о наличии областей существования этих фаз на равновесной диаграмме состояния. Авторам исследования [5] не удалось получить ZrO прямым синтезом Zr и ZrO<sub>2</sub> или при взаимодействии ZrO<sub>2</sub> с Mg.

ZrO<sub>2</sub> может существовать только в виде стабильной моноклинной и метастабильной тетрагональной модификации [6]. В работах же [7—9] сообщается, что при окислении массивного или очень тонкого Zr образуется кубическая модификация ZrO<sub>2</sub>, которая переходит при нагреве до температуры несколько ниже 1000° С в тетрагональную, а затем в моноклинную. В работе [10] обнаружили тетрагональный ZrO<sub>2</sub> при нагреве гидроокиси или нитрата в интервале 290— 300° С, а моноклинный ZrO<sub>2</sub> — при разложении оксихлорида при 350—400° С. Превращение тетрагональный ZrO<sub>2</sub> — моноклинный ZrO<sub>2</sub> происходит при температурах 1170—1200° С в случае нагрева и при 1020—940° С — при охлаждении [10]. Предполагаемая [1, 2] «высокотемпературная» модификация ZrO<sub>2</sub>, вероятно, имеет кубическую решетку [7—9].

Температура плавления «свободной от Hf» ZrO<sub>2</sub> 2850 ± 25° C [11] — выше, чем сообщалось ранее.

Периоды решетки моноклинного ZrO<sub>2</sub> различны по разным данным: a = 5,21 A, b = 5,26 A, c = 5,375 A,  $\beta = 99^{\circ}58'$  [11];  $a = 5,1454 \pm 0,0005$  A,  $s = 5,2075 \pm 0,0005$  A,  $c = 5,3107 \pm 0,005$  A,  $\beta = 99^{\circ}14' \pm 5'$  [12];  $a = 5,169 \pm 0,008$  A,  $b = 5,232 \pm 0,008$  A,  $c = 5,341 \pm 0,008$  A,  $\beta = 99^{\circ}15' \pm 10'$  [13]; a = 5,12 A,  $b = 5,20_2$  A,  $c = 5,30_3$  A;  $\beta = 80,82^{\circ}$  (99,18°) [10]. Периоды тетрагонального ZrO<sub>2</sub>: a = 5,09 A,  $c = 5,17_8$  A [10].



 Gebhardt E. a. o. J. Nucl. Mater., 1961, v. 4, p. 255-268.
 Evans P. E., Wildsmith G. Nature, 1961, v. 189, p. 569-570.
 Holmberg B., Magneli A. Acta Chem. Scand., 1958, v. 12, p. 1341; Holmberg B., Dagerhamn T., 1961, v. 15, p. 919-925.
 Cамсонов Г. B. Укр. хим. журнал, 1957, т. 23, с. 287-296.
 Weber B. C. a. o. J. Amer. Ceram. Soc., 1956, v. 39, p. 197-207.
 Weber B. C., Schwartz M. A. Ber. Deut. Keram. Ges., 1957, Bd 34, S. 391-396.

302

- 7. Коробков И. И. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии. Доклады советских ученых, т. 3. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 474-485.
- 8. Коробков И.И., Игнатов Д. В. ДАН СССР, 1958, т. 120, с. 527— 530.
- 9. Саркисов Е. С. идр. Атомная энергия, 1958, т. 5, с. 550—553. 10. Комиссарова Л. Н. идр. ЖНХ, 1960, т. 5, с. 1413—1417.
- 11. Curtis C. E. a. o. J. Amer. Ceram. Soc., 1954, v. 37 p. 458-465.
- 12. Adam J., Rogers M. D. Acta Cryst., 1959, v. 12, p. 951.
- 13. McCullough J. D., Trueblood K. N. Acta Cryst., 1959, v. 12, p. 507.

0,7881 1,2119

# Os-P. Осмий-фосфор \*

Попытки получить богатые Os сплавы дуговой плавкой под аргоном оказались безуспешными [1.] — сплавы не содержали Р. OsP2 был получен при нагреве металлического порошка и красного Р в запаянных эвакуированных кварцевых трубках между 500 и 1000° С [2]. ОsP<sub>2</sub> имеет ромбическую решетку (*C18*, структура марказита); a = 5,098 А, b = 5,898 А, c = 2,918 А [2].

1. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336.] 2. Rundqvist S. Nature, 1960, v. 185, p. 31-32.

0,1303 1,8697

## Os-Pr. Осмий-празеодим

Модификации PrOs<sub>2</sub> с г. ц. к. решеткой типа MgCu<sub>2</sub> и гексагональной структурой MgZn, сосуществуют в образцах, полученных дуговой плавкой [1]. Период решетки г. ц. к. РгО<sub>2</sub> равен 7,663 ± 0,001 А; у гексагональной модификации а =  $= 5.368 \pm 0.002$  А,  $c = 8.945 \pm 0.002$  А [1]. Эти наблюдения, вероятно, результат неполного протекания полиморфного превращения.

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

0,1937 1,8063

## Os-Sb. Осмий-сурьма

В работах [1-3] сообщается о получении соединения OsSb, с ромбической решеткой. OsSb, имеет лоллингитную структуру; a = 6,684 A, b = 5,937 A, c == 3,210 A [1]. По [2, 3], у OsSb<sub>2</sub> марказитная структура FeS<sub>2</sub> (лоллингитная структура — это более искаженная, чем марказитная, структура пирита); а = = 5.924 A, b = 6.666 A, c = 3.202 A [2].

1. Johnson W. D., J. Inorg. Nucl. Chem., 1961, v. 22, p. 13-18. 2. Журавлев Н. Н. и др. Кристаллография, 1960, т. 5, с. 553-562. 3. Қузьмин Р. Н. и др. Кристаллография, 1960, т. 5, с. 218-223.

0,6250 1.3750

### Os—Sc. Осмий--скандий

У ScOs<sub>2</sub> гексагональная решетка, изотипная с MgZn<sub>2</sub>;  $a = 5,179 \pm 0,002$  A,  $c = 8.484 \pm 0.002$  A [2].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

## Os-Si. Осмий-кремний \*

В работе [1] обнаружено не известное ранее соединение Os-Si с кубической структурой FeSi,  $a = 4,729 \pm 0,001$  A.

При изучении методом высокотемпературной металлографии температур плавления различных эвтектик благородный металл — Si в областях, богатых платиноидами, обнаружено, что эти температуры выше 1500° С, т. е. выше температурного потолка установки.

1. Korst W. L. a. o. J. Phys, Chem., 1957, v. 61, p. 1541-1543. 2. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336.

0,1020 1.8980

## Os-Sm. Осмий-самарий

у SmOs, гексагональная решетка типа MgZn<sub>2</sub>;  $a = 5,336 \pm 0,002$  A, c = $= 8.879 \pm 0.002$  A [1].

1. Compton V.B., Matthias B.T. Acta Cryst., 1959, v. 12, p. 651-654.

0.0218 1,9782

## Os-Ta. Осмий-тантал \*

Система изучалась методами металлографического, рентгеновского, микрорентгеноспектрального и термического (по точкам плавления) анализов на образцах, приготовленных из металлов чистотой 99,9% [1]. Как видно из рис. 359, на







основе обоих компонентов образуются широкие области твердых растворов. Кроме того, на диаграмме видны области существования двух промежуточных фаз —  $\gamma$  и с. Общий вид диаграммы, описанной ранее [2], согласуется с данными работы [1]; последние сообщения о пределах растворимости при 2200° С следующие: 0-22% (ат.) Та, твердый раствор на основе Оs и 86—100% (ат.) Та, твердый раствор на основе Та, области гомогенности  $\gamma$  и с, 35—52 Та и 55—78% (ат.) Та

σ-фаза описана в работах [3, 4], γ-фаза при 25% (ат.) Та — в [4], при 34% (ат.) Та — в [5]. Периоды решетки тетрагональной σ-фазы:  $a = 9,91_{6}$  A,  $c = 5,10_{8}$  A при 50% (ат.) [4]. γ-фаза имеет кубическую структуру α-Mn, a = 9,689 A [25% (ат.) Та?] [4]; по [5], a = 9,659 A [34% (ат.) Та].

1. Kaufmann A. R. a. o. WADD Tech. Rept. 60-132, Oct. 1960, p. 33-39.

- 2. Knapton A.G. J. Less-Common Met., 1960, v. 2, p. 113-124.
- 3. Geller S. a. o. J. Amer. Chem. Soc., 1955, v. 77, p. 1502-1504.
- 4. Knapton A. G. J. Inst. Met., 1958-1959, v. 87, p. 28-32.
- 5. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

0,0781 1,9219

## Os—Tb. Осмий—тербий

При изучении магнитных свойств интерметаллических соединений установлено, что TbOs<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>, периоды не приведены [1].

1. Bozorth R. M. a. o. Phys. Rev., 1959, v. 115, p. 1595, 1596.

0,1733 $\overline{1}.8267$ 

# Os—Te. Осмий—теллур\*

При спекании двух металлов получено, а затем исследовано соединение OsTe<sub>2</sub> [1]. В соответствии с ранее опубликованным обзором оно имеет кубическую решетку типа пирита (FeS<sub>2</sub>),  $a = 6,398 \pm 0,001$  А. При «высоких температурах» (выше 600° C) OsTe<sub>2</sub> диссоциирует и элементарный Те конденсируется на холодных частях контейнера [1].

1. Groenevold Meijer W.O.J. Amer. Mineralogist, 1955, v. 40, p. 646-657.

 $1,9135 \\ 0,0865$ 

## Os—Th. Осмий—торий

В работе [1] в дуговой печи плавили образцы, содержащие до 33% (ат.) Оs. Th<sub>7</sub>Os<sub>3</sub> образует эвтектику с Th при  $14 \pm 1\%$  (ат.) Оs и  $1287 \pm 12^{\circ}$  С [1]. У Th<sub>7</sub>Os<sub>3</sub> гексагональная решетка типа Th<sub>7</sub>Fe<sub>3</sub>, a = 10,031 A, c = 6,296 A [1]; по [2], a = 10,02 A, c = 6,285 A. ThOs имеет г. ц. к. решетку типа MgCu,  $a = 7,7050 \pm \pm 0,0015$  A [3].

Thomson J. R. Nature, 1961, v. 189, 217.
 Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.
 Dwight A. E. a. o. Trans. AIME, 1958, v. 212, p. 337, 338.

0,5989 $\overline{1},4011$ 

### Os-Ti. Осмий-титан \*

Подтверждено, что у TiOs кубическая решетка, изотипная с CsCl, a = 3,07 A [1].

1. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

 $\overline{1},9025$ 0,0975

# Os--U. Осмий-уран\*

Методом термического анализа исследованы сплавы с 0—23,8% (ат.) [0—20% (по массе)] Оs, полученные в индукционной печи в тиглях из окиси бериллия. Отмечается существование эвтектической точки при 20,4% (ат.) [17% (по массе)] Os и ~ 950° С. Температуры превращений  $\gamma \rightarrow \beta$  и  $\beta \perp \alpha$  в U снижаются при легировании Os до 684 и 639° С соответственно. По данным термического анализа, в диапазоне концентраций Os 9,8—12,2% (ат.) [8—10% (по массе)] при 945° С по перитектоидной реакции образуется ранее неизвестное соединение. Предполагается, что здесь происходит нонвариантная реакция  $\gamma$ -U + UOs<sub>2</sub>-X.

0,5721 $\overline{1},4279$ 

0,0146

1.9854

### Os-V. Осмий-ванадий

В работе [1] методом рентгеноструктурного анализа проведено предварительное изучение диаграммы по пяти сплавам, выплавленным в дуговой печи. Сплав с 26,8% (ат.) Оѕ находится в области твердого раствора (V). Сплав с 41,5% (ат.) Оѕ имеет упорядоченную кубическую структуру с периодом 3,007 А. Сплавы в диапазоне концентраций 50—100% (ат.) Оѕ состоят из неидентифицированной фазы и (Os). Сплав с 85,4% (ат.) Оѕ однофазный.

Данные работы [2] согласуются с результатами исследования [1]: у сплава эквиатомного состава кубическая решетка типа CsCl, a = 3,010 A [2].

1. Knapton A. G. J. Inst. Met., 1958-1959, v. 87, p. 28-32. 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

## Os—W. Осмий—вольфрам \*

В работе [1] с использованием рентгеновского и металлографического анализов выплавленных в дуговой печи образцов из Оs и W чистотой 99,99% построена диаграмма состояния (рис. 360). Образцы отжигали и закаливали в жидком Sn. Взаимная растворимость Os и W в твердом состоянии весьма значительна; образуется только одна промежуточная фаза — о. У нее тетрагональная решетка типа  $\beta$ -U с периодами, изменяющимися в пределах:  $a = 9,625 \div 9,670$  A, c == 4,975 ÷ 5,015 A при увеличении концентрации W от 65 до 80% (ат.). В работе [1] приводятся также зависимости периодов решетки (W) и (Os) от состава.

На базе ограниченных рентгеновских данных подтверждено [2] существование о-фазы. Однако, по [2], она появляется при 50—75% (ат.) W и имеет периоды:  $a = 9,65_6$  A,  $c = 5,00_3$  A при 50% (ат.) W. Сообщается [2] также о существовании неидептифицированной фазы при 25% (ат.) W после отжига при 1000° С. Данные работы [1] предпочтительнее.

1. Taylor A. a. o. J. Less-Common Met., 1961, v. 3., p. 333-347. 2. Knapton A. G. J. Inst. Met., 1958-1959, v. 87, p. 28-32.

<sup>1.</sup> Park J. J., Buzzard R. W. U. S. At. Energy Comm. TID-7526, pt 1, 1957, p. 93.



0,3302 $\overline{1},6698$ 

## Os— Ү. Осмий—иттрий

У YOs<sub>2</sub> гексагональная решетка типа  $MgZn_2$ ;  $a = 5,307 \pm 0,002$  A,  $c = 8,786 \pm 0,002$  A [1] или a = 5,308 A, c = 8,794 A [2]. У сплава эквиатомного состава решетка не о. ц. к. и не типа CsCl [3].

Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
 Dwight A. E. Trans. AIME. 1959, v. 215, p. 283-286.

0,3191 1,6809

 $\overline{1},4628$ 0,5372 Os—Zr. Осмий—цирконий \*

Решетка ZrOs была идентифицирована как кубическая, типа CsCl, a = = 3,263 A [1].

Подтверждено, что ZrOs<sub>2</sub> имеет гексагональную структуру типа MgZn<sub>2</sub>; a = 5,210 A, c = 8,529 A [2]; a = 5,219 A, c = 8,538 A [3].

1. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

2. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.

3. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

Р-РА. Фосфор-палладий \*

Рентгеновские исследования [1] показали, что диаграмма состояния сложнее приведенной М. Хансеном и К. Андерко (см. т. II, рис. 588). В системе имеется по крайней мере четыре промежуточные фазы в диапазоне 0—25% (ат.) Р (три другие фазы не упоминаются). С помощью высокотемпературного микроскопа обнаружена эвтектика ( $\beta + \gamma$ ) при 788° С [2], что подтверждает данные М. Хансена и К. Андерко (см. т. II [3]).  $\gamma$ -фаза (Pd<sub>3</sub>P) имеет ромбическую решетку цементита (Fe<sub>8</sub>C) [1]. Область гомогенности, определенная при закалке сплавов с 740° С, простирается от ~20 до 25% (ат.) Р. Периоды решетки  $\gamma$ -фазы (с точностью ±0,05%) следующие: a = 5,980 А, b = 7,440 А, c = 5,164 А (со стороны P); a = 5,645 А, b = 7,558 А, c = 5,071 А (со стороны Pd) [1]. Соединение стехиометрического состава, по [3], имеет следующие периоды (с использованием обозначений по [1]): a ( $b = 5,971 \pm 0,001$  А, b ( $c) = 7,445 \pm 0,001$  А и c ( $a) = 5,166 \pm 0,001$  А. При изучении вакансионной структуры цементитого типа в работе [4] получены зависимости периодов решетки Pd<sub>3</sub>P с увеличением содержания P.

Решетка соединения PdP<sub>2</sub> идентифицирована как моноклинная, изоструктурная с NiP<sub>2</sub>;  $a = 6,777_1$  A,  $b = 5,856_3$  A,  $c = 6,206_3$  A,  $\beta = 126,42_7$ ° [5]; размеры элементарной ячейки неизменны, что указывает на отсутствие области гомогенности. В работе [6] при нагреве порошка Pd и красного P между 500 и 1100° C получено новое соединение PdP<sub>3</sub>. У него о. ц. к. решетка, изоструктурная с NiP<sub>3</sub> и IrP<sub>3</sub>, a = 7,705 A.

1. Rundqvist S., Gullman L.-O. Acta Chem. Scand., 1960, v. 14, p. 2246-2247.

2. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336.

3. Fruchart - Triquet E. a. o. Compt. Rend., 1961, v. 252, p. 1323-1324.

4. Fruchart E. e. a. Compt. Rend., 1961, v. 252, p. 3263-3265.

5. R undqvist R. Acta Chem. Scand., 1961, v. 15, p. 451-453.

6. Rundqvist S. Nature, 1960, v. 185, p. 31-32.

# $\overline{1,2005}$ 0,7995

## Р-Рт. Фосфор-платина \*

Методом высокотемпературной металлографии подтверждено, что в этой системе эвтектическая температура равна  $588^{\circ}$  C [1]. Подтверждена также кубическая (C2) структура типа пирита у соединения PtP<sub>2</sub>, a = 5,694 A [2].

1. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336. 2. Rundqvist S. Nature, 1960, v. 185, p. 31-32.

308

# Р- Re. Фосфор-рений \*

Исследован концентрационный интервал 0—50% (ат.) Р при температурах 800—1100° С и подтверждено существование соединений Re<sub>2</sub>P и ReP [1].

 $Re_2P$  имеет ромбическую решетку (*C23*) типа PbCl<sub>2</sub>; a = 5,540 Å, b = 2,939 Å, c = 10,040 Å [1].

1. Rundqvist S. Acta Chem. Scand., 1961, v. 15, p. 342-348.

1,4786

# Р— Rh. Фосфор—родий \*

Система изучена в интервале концентраций 0—75% (ат.) Р с помощью рентгеновского анализа и химико-аналитического метода [1]. Обнаружены четыре промежуточные фазы: Rh<sub>2</sub>P, RhP<sub>2</sub>, RhP<sub>3</sub> в соответствии с данными М. Хансена и К. Андерко (см. т. II [2]) и Rh<sub>4</sub>P<sub>3</sub> вместо Rh<sub>5</sub>P<sub>4</sub> по предположению М. Хансена и К. Андерко (см. т. II [2]).

Кристаллическая структура. У Rh<sub>2</sub>P г. ц. к. решетка антифлюоритного (C1) типа, a = 5,498 A [1]. Rh<sub>4</sub>P<sub>3</sub> имеет ромбическую решетку типа NiAl<sub>3</sub>; a = 11,662 A, b = 3,317 A, c = 9,994 A [1]. У RhP<sub>2</sub> моноклинная структура;  $a = 5,742_9$  A,  $b = 5,794_2$  A,  $c = 5,837_0$  A,  $\beta = 112^\circ 91_9$  [2]. У RhP<sub>3</sub> о. ц. к. решетка, вероятно, типа CoAs<sub>3</sub>, a = 7,996 A [1].

1. Rundqvist S., Hede A. Acta Chem. Scand., 1960, v. 14, p. 893—902. 2. Rundqvist S. Acta Chem. Scand., 1961, v. 15, p. 451—453.

1,4837 0,5163

# Р— Ru. Фосфор—рутений \*

Анализ кристаллических структур Ru<sub>2</sub>P, RuP и Ru<sub>2</sub>P дал следующие результаты: Ru<sub>2</sub>P имеет ромбическую решетку типа PbCl<sub>2</sub>, изоструктурную с Co<sub>2</sub>P; a = 5,902 A, b = 3,859 A, c = 6,896 A. Эти данные получены рентгеновским методом порошка на тщательно отожженных сплавах. Никаких изменений периодов решетки Ru<sub>2</sub>P в сплавах, закаленных с температуры несколько ниже 1000° C, не происходит. Выше этой температуры область гомогенности, вероятно, расширяется. Точка плавления Ru<sub>2</sub>P выше, чем у Co<sub>2</sub>P [1].

У RuP ромбическая решетка, изоструктурная с MnP; a = 5,520 A, b = 3,168 A, c = 6,120 A [2].

 $RuP_2$  имеет ромбическую решетку типа FeS<sub>2</sub> (марказйтная структура); a = 5,115 A, b = 5,888 A, c = 2,870 A [3].

R undqvist S. Acta Chem. Scand., 1960, v. 14, p. 1961-1979.
 R undqvist S. Acta Chem. Scand., 1962, v. 16, p. 287-292.
 R undqvist S. Nature, 1960, v. 185, p. 31, 32.

#### 1,5937 0,4063

## Р—Se. Фосфор—селен

Решетка  $P_4Se_2$  идентифицирована как ромбическая;  $a = 9,739 \pm 0,005$  A,  $b = 11,797 \pm 0,006$  A,  $c = 26,270 \pm 0,013$  A [1].  $P_4Se_2$  имеет структуру, близкую к  $P_4S_3$ , но отличается в два раза большим периодом c.

1. Keulen E., Vos A. Acta Cryst., 1959, v. 12, p. 323-329. 310

## Р-Si. Фосфор-кремний

Диаграмма на рис. 361, взятая из работы [1], построена с использованием термического и металлографического анализов. Граница (Ж + Р<sub>г</sub>)/Р<sub>г</sub> проведена по результатам расчетов по правилу рычага соотношения фаз в сплавах, закаленных из области (Ж + Р<sub>г</sub>). Эвтектическая концентрация была определена с помщью линейного металлографического анализа и по пересечению ликвидуса с эвтектической горизонталью. Методом линейного анализа установлено, что соединение находится при 50,1 ± 2% (ат.) Р [52,6 ± 2% (по массе)]; следовательно, формула соединения SiP. Химический анализ соединения, находящегося в рав-



Рис. 361. Р--- Si

новесии с (Si), дал состав 48,2% (ат.) [50,6% (по массе)] Р, что указывает на существование растворимости в твердом состоянии.

Равновесие между (Si), Ж, SiP и P<sub>г</sub> очень близко к четверной точке при атмосферном давлении. Экспериментально было показано наличие двух нонвариантных трехфазных реакций: Ж + P<sub>г</sub>  $\rightarrow$  SiP и Ж (Si) + SiP. При повышенных давлениях идут реакции Ж (Si) + P<sub>г</sub> и (Si) + P<sub>г</sub> SiP [2].

Некристаллическое соединение Si<sub>2</sub>P получено химическим путем при 460° C [2]. При 600° C оно разлагается на Si и SiP. Эта реакция, вероятно, необратима, и поэтому на диаграмме состояния нет области Si<sub>2</sub>P.

Растворимость Р в Si была определена в экспериментах по диффузии с использованием P<sub>2</sub>O<sub>5</sub>: 0,55; 0,70; 0,65% (ат.) при соответственно 1300, 1200 и 1100° C; 0,45 и 0,30% (ат.) при соответственно 1000 и 900° C [3].

1. Giessen B., Vogel R. Z. Metallkunde, 1959, Bd. 50, S. 274-277.

- Fritz G., Berkenhoff H. O. Z. Anorg. Allgem. Chem., 1959, Bd 300, S. 205-209.
- Mackintosh I. М. Неопубликованные данные; см. Тги mbore F. A. Bell System. Tech. J., 1960, v. 39, p. 205—233.

У РSm г. ц. к. решетка, изотипная с NaCl,  $a = 5,760 \pm 0,003$  A [1]. 1. I a n d e l l i A. Z. Anorg. Allgem. Chem., 1956, v. 288, p. 81–86; Atti Accad. 'Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62–69.

1,4166

## Р—Sn. Фосфор—олово \*

В работе [1] сделана попытка получить SnP<sub>3</sub> по реакции взаимодействия Sn с красным P (1:3) при 700° С в вакуумированной трубке Vycor. Присутствие непрореагировавшего Р указывает на отклонение от стехиометрического состава SnP<sub>3</sub>: продукт реакции был похож на один большой монокристалл и содержал по анализу 50,35% (ат.) Sn [78,86% (по массе)] и 49,65% (ат.) [20,47% (по массе)] Р. Авторы работы [1] пришли к выводу, что образовавшаяся фаза есть SnP.

Полученные результаты не согласуются с диаграммой, приведенной М. Хансеном и К. Андерко (см. т. II), согласно которой в системе имеется эвтектика при 49,7% (ат.) [20,5% (по массе)] Р и  $\sim$ 540° С и существуют соединения Sn<sub>4</sub>P<sub>3</sub>, Sn<sub>3</sub>P<sub>4</sub> и SnP<sub>3</sub>. Возможно, что SnP образуется по перитектоидной реакции в твердом состоянии при температуре ниже 540° С, однако этого не было обнаружено (см. М. Хансен и К. Андерко, т. II [8]). Хотя соединение SnP было описано в очень старой работе (см. М. Хансен и К. Андерко, т. II [4]), его существование впоследствии нигде не подтверждалось. Близость по составу фаз Sn<sub>4</sub>P<sub>3</sub>, SnP и Sn<sub>3</sub>P<sub>4</sub> [16,37; 20,70° и 25,81% (по массе) Р соответственно] и трудности их анализа также говорят о возможном отсутствии фазы SnP или одной из двух других. Прежде чем считать результаты работы [1] уточнением данных М. Хансена и К. Андерко (см. т. II [8]), весьма желательно попытаться синтезировать SnP смещением Sn и P в жидком состоянии в отношении 1 : 1, а не 1 : 3, поскольку в последнем случае выше  $\sim 600°$  C существуют две жидкие фазы.

Авторы работы [1] идентифицировали решетку полученного продукта реакции (SnPr?) как гексагональную;  $a = 8,78 \pm 0,01$  A,  $c = 5,98 \pm 0,01$  A.

1. K'atz G. a. o. Acta Cryst., 1957, v. 10, p. 607.

1,5484 0,4516

## Р—Sr. Фосфор—стронций

В работе [1] сделана попытка идентифицировать соединения в этой системе, смешивая в различных пропорциях компоненты в лодочках внутри эвакуированной стеклянной трубы. При стехиометрическом соотношении P<sub>2</sub>Sr<sub>3</sub> весь Р поглощался Sr, что подтверждено химическим анализом. По мнению авторов, это соединение относится к классу уже установленных фаз Bi<sub>2</sub>Sr<sub>3</sub> и Sb<sub>2</sub>Sr<sub>3</sub>. 1.<sup>r</sup> Щ укарев С. А. и др. ЖОХ, 1957, т. 27, с. 289.

1,2336 0,7664

#### Р—Та. Фосфор—тантал \*

В соответствии с данными М. Хансена и К. Андерко (см. т. II [3]) сообщается [1], что  $\beta$ -ТаР имеет тетрагональную решетку, изоморфную с  $\beta$ -NbP; a = 3,334 A, c = 11,34 A.

1. Bachmayer K. a. o. Monatsh. Chem., 1955, Bd. 86, S. 39-43.

## Р-Тb. Фосфор-тербий

У ТbР г. ц. к. решетка типа NaCl с периодом 5,688 ± 0,002 [1] и 5,686 А [2].

1. Olcese G. L. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 195-200.

2. I a n d e l l i A. В книге «Rare Earth Research» ed E. V. Kleber. The Macmillan [Co., N. Y., 1961, p. 135—141.

 $\overline{1}, 1253$ 0.8747

## Р--Тh. Фосфор--торий \*

Существование Th<sub>3</sub>P<sub>4</sub> подтверждено получением его прямым синтезом [1] и по реакции ThH<sub>4</sub> с PH<sub>3</sub> [2]. Подтверждено также отсутствие фазы ThP<sub>2</sub> [1].

1. Ferro R. Congr. Intern. Chim. Pure Appl. 16, Paris, 1957, Mem. Sect. Chim. [Minerale, 1958, p. 353-358.]

2. Lipkind H., Newton A. S. U. S. At. Energy Comm. TID-5223, pt. 1, 1952, p. 398-404.

#### 1,8107 0,1893

# Р-Ті. Фосфор-титан \*

Показано [1, 2], что фаза TiP имеет гексагональную решетку. Это согласуется с данными М. Хансена и К. Андерко (см. т. II [3]). Периоды решетки TiP: a = 3,513 A, c = 11,75 A [1], a = 3,48 A, c = 11,62 A [2].

1. Васһтаует К. u. a. Monatsh. Chem., 1955, Вd 96, S. 39—43. 2. Щукарев С. А. идр. ЖОХ, 1959, т. 29, с. 2465.

#### ĩ,2634 0,7366

## Р-Тт. Фосфор-тулий

У TmP г. ц. к. решетка типа NaCl, a = 5,573 A [1].

 I andelli A. В книге «Rare Earth Research» ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135—141.

#### 1,1143 0,8857

# Р—U. Фосфор—уран \*

Существование и тип структуры  $U_3P_4$  и  $UP_2$ , по данным [1], согласуются с приведенными М. Хансеном и К. Андерко (см. т. II [4, 6]). У  $U_3P_4$  о. ц. к. решетка, a = 8,230 А;  $UP_2$  имеет тетрагональную решетку; a = 3,816 А, c = 7,794 А.

 Ferro R. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 353-358.

# $\tilde{1}, 2264 \\ 0, 7736$

## Р-W. Фосфор-вольфрам \*

В соответствии с данными М. Хансена и К. Андерко (см. т. II [2]), сообщается [1], что WP имеет ромбическую решетку, изоморфную с MnP; a = 6,223 A, b = 5,726 A, c = 3,238 A. По [2], a = 5,734 A, b = 3,249 A, c = 6,222 A.

312

1. Bachmayer K. u. a. Monatsh. Chem., 1955, Bd 86, S. 39-43. 2. Rundqvist S. Acta Chem. Scand., 1962, v. 16, p. 287-292.

1,5420 0,4580

# Р—Ү. Фосфор—иттрий

У РҮ г. ц. к. решетка типа NaCl с периодом 5,662 А [1].

 I an delli A. В книге «Rare Earth Research». ed. E. V. Kleber. The Macmillan Co., N.—Y., 1961, p. 135—141.

1,2530 0,7470

## Р— Yb. Фосфор—иттербий

У YbP г. ц. к. решетка типа NaCl с периодом 5,554 A [1]. 1. I an delli A. В кн. «Rare Earth Reseach». ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135—141.

1,5309 0,4691

# Р—Zr. Фосфор—цирконий \*

В соответствии с данными М. Хансена и К. Андерко (см. т. II [3]) сообщается [1], что  $\beta$ -ZrP имеет гексагональную решетку, изоморфную с TiP, a = 3,693 A, c = 12,50 A.

1. Bachmayer K. u. a. Monatsh. Chem., 1955, Bd 86, S. 39-43.

1,9942 0,0058

# Рb—Ро. Свинец—полоний \*

Используя микрометаллургическую методику, авторы работы [1] получили соединение PbPo, у которого, по их данным, г. ц. к. решетка типа NaCl с периодом 6,590 ± 0,003 A.

1. Witterman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

# $0,1675 \\ 1,8325$

## Pb—Pr. Свинец—празеодим \*

Подтверждена кубическая структура типа AuCu<sub>3</sub> у соединения  $\Pr Pb_3$ , a = 4,867 A.

- I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds. Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. I, N 9, Paper 3F, 11 p.; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.
- 1,9326

# Рb—Ри. Свинец—плутоний \*

Диаграмма на рис. 362 [1, 2] построена с использованием металлографического, рентгеновского, термического и дилатометрического анализов. Эта диаграмма отличается от приведенной М. Хансеном и К. Андерко (см. т. II [1], рис. 596, *a*) температурой плавления богатого Р соединения. В работе [3] отмечается, что диаграмма в работах [1, 2] построена по меньшему количеству данных, чем у М. Хансена и К. Андерко (см. т. II [1]). Однако она приводится здесь педиком для сравнения.

Остается неясным, имеет ли PuPb<sub>3</sub> упорядоченную кубическую структуру типа AuCu<sub>3</sub> ([4] и М. Хансен и К. Андерко, т. II [1]) или неупорядоченную структуру г. ц. к. типа Cu [1, 5].



THC. 502. 10 -1 u

- Schonfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579-599.
   Schonfeld F. W. В книге «The Metal Plutonium», eds. S. Coffinberry,
- 2. Schonfeld F. W. В книге «The Metal Plutonium», eds. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.
- 3. Schonfeld F. W. Там же, р. 255—264.
- 4. Ellinger F. H. Там же, p. 281-308.
- 5. Бочвар А. А. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии. Доклады советских ученых, т. 3. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 376—395.

0,8104 1,1896

## Pb—S. Свинец—сера

В работе [1] строили диаграмму p-T-x, особенно подробно вблизи PbS — единственного соединения в этой системе. Обнаружено, что PbS плавится при 1127° С и содержит избыток Pb 3·10<sup>-4</sup>% (ат.). Это соединение имеет узкую область гомогенности [ $\pm 3\cdot 10^{-4}$ % (ат.)]. Аномалии в форме ликвидуса объяснены ближним упорядочением в жидкости.

В работе [2] методом химического анализа определена растворимость S в жидком Pb:

| Темпера-       | 925 | 900  | 850  | 800  | 750  | 700  | 650  | 600  | 550  | 500  | 450                      |
|----------------|-----|------|------|------|------|------|------|------|------|------|--------------------------|
| Раствори-      | 7,6 | 6,25 | 4,25 | 2,90 | 1,85 | 1,10 | 0,59 | 0,33 | 0,16 | 0,08 | <b>0,03</b> <sup>.</sup> |
| мость, % (ат.) |     |      |      |      |      |      |      |      |      |      |                          |

Данные приводятся по графику из работы [2], в которой растворимость определяли через неодинаковые температурные интервалы. Эти значения растворимости меньше, чем у М. Хансена и К. Андерко (см. т. II, рис. 597). Данные работ [2] по растворимости хорошо согласуются. По расчетам [2], эвтектическая концентрация соответствует 0,0017% (ат.) S.

- 1. Bloem J., Kröger F. A., Z. Physik. Chem. (Frankfurt), 1956, Bd 7, S. 1-14.
- Blanks R. F., Willis G. M. AIME, Metallurgical Soc. Conference, v. 8, «Physical Chemistry of Process Metallurgy». Interscience Publishers, Inc. N. Y., 1961, p. 991-1028.

3. Cheng L. L., Alcock C. B. Trans. AIME, 1961, v. 221, p. 295-300.

#### 0,2309 $\overline{1},7691$

Pb---Sb. Свинец--сурьма \*

Определенная методом радиоактивных изотопов растворимость Pb в Sb оказалась равной 4,5—5,6% (ат.) [1]; однако неясно, к каким температурам относятся эти концентрации (возможно, что к эвтектической). В работе [2] на чистых от S сплавах установлено, что эвтектическая темпе-

В работе [2] на чистых от S сплавах установлено, что эвтектическая температура 251,2° С, а концентрация 17,7% (ат.) [11,2% (по массе)] Sb. На основе термодинамического изучения системы авторы работы [3] предполагают, что приведенные М. Хансеном и К. Андерко (см. т. II [25]) величины растворимости Sb в Pb занижены.

1. Абрамов А. Ю., Кононович Л. И. Заводская лаборатория, 1959, т. 25, с. 1081—1083.

- 2. Knolle K., Löhberg K. Z. Metallkunde, 1960, Bd. 51, S. 350-353. 3. Diller L. W. a. o. J. Phys. Chem., 1960, v. 64, p. 1736-1738.
- 0,4190

# Рb—Se. Свинец—селен \*

Растворимость Se в жидком Pb была определена методом термического анализа и подтверждена металлографически при 826—1006° С [1] и химическим анализом сосуществующих жидкостей при 390—710° С [2]. Данные работ [1, 2] ложатся на плавную кривую, построенную в координатах «Ig концентрации — обратная температура», и, следовательно, опровергают существование монотектической реакции, предполагавшейся М. Хансеном и К. Андерко (см. т. II [7]). Величины растворимости равны, по данным [1],

| Температура, °С | 1006,2 | 982, 1 | 969,1 | 952,4 | 926   | 825,9 |  |
|-----------------|--------|--------|-------|-------|-------|-------|--|
| (ar.)           | 40,01  | 35     | 30    | 25,00 | 20,50 | 10,00 |  |

и, по данным [2]. температура, °С . . 710 650 610 560 500 465 390 растворимость, % (ат.) [% (по массе)] 0,323 0.160 0.084 0.026 2,31 1,59 [0,89] [0,61] 0,55 [0,21] [0, 123][0,061] [0,032] [0,010]

При экстраполяции получается, что богатая Рb эвтектика содержит <0,013% (ат.) [0,005% (по массе)] Se [2]. Ликвидус в интервале концентраций 30—40% (ат.) Se слегка выше, чем по данным М. Хансена и К. Андерко (см. т. II [7]). Точка плавления PbSe 1080,7 ± 0,5° C [1]. В работе [3] определена упругость пара твердого PbSe; влияние состава на сублимацию не отмечено.

У PbSe г. ц. к. решетка типа NaCl с периодом 6,122 А [4], что хорошо согласуется с данными М. Хансена и К. Андерко, (см. т. II [7]).

1. Siedman D. N. a. o. Trans. AIME, 1961, v. 221, p. 1269-1270; ARL-131 [Final Report under Contract AF33 (616)-3883], 1961, 34 p.

2. Pelzel E. Metall, 1956, Bd 10, S. 717-719.

3. Зломанов В. П. и др. ЖНХ, 1959, т. 4, с. 2661—2664.

4. Earley J. W. Amer. Mineralogist, 1950, v. 35, p. 337-364.

0,8679 1,1321

### Рb—Si. Свинец—кремний \*

С помощью тщательного взвешивания определена [1] растворимость Si в жидком Pb:

Температура, °С..... 1250 1201 1150 1100 1076 1050 Растворимость, % (ат.)... 1,12 0,76 0,46 0,36 0,25 0,22

По этим экспериментальным результатам с использованием термодинамических уравнений определены [1] следующие данные: критическая температура ~2047° С, монотектическая температура ~1397° С и координаты эвтектической точки: 9 · 10<sup>-80</sup>% (ат.) Si и температура на 5 · 10<sup>-8</sup> ° С ниже точки плавления Pb. Величины растворимости, по данным работы [1], значительно больше, чем по старым данным (см. М. Хансен и К. Андерко, т. II [5]). Диаграмма на рис. 363 основывается на результатах работы [1]. Крестиками показаны полученные в работе [2] точки составов жидких фаз, сосуществующих при 1420° С, хорошо совпадающие с результатами [1].

1. Thurmond C. D., Kowalschik M. Bell System Tech. J., 1960, v. 39, p. 169-204.

2. Kirkwood D. H., Chipman J. J. Phys. Chem., 1961, v. 65, p. 1082-1084.

0,1393 1.8607

## Pb—Sm. Свинец—самарий

У соединения SmPb<sub>3</sub> кубическая решетка типа AuCu<sub>3</sub> с периодом 4,835 A [1].

 I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds. Natl. Phys. Lab., Gt. Brit. Proc. Symp. 1959, v. 1, N 9, Paper 3F, 11 p.; Atti Accad. Nazl. Lincei, Rend., Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

0,2420 $\overline{1},7580$ 

## Pb—Sn. Свинец—олово \*

Система была вновь исследована с помощью чувствительной электроакустической установки [1] и методом калориметрии [2]. Данные работы [2] хорошо согласуются с приводившимися М. Хансеном и К. Андерко (см. т. II, рис. 601), за исключением того, что, по [2], величины растворимости Sn в (Pb) более зна-





чительны. В работе [3], где использовали электрический анализ, также получены завышенные данные о растворимости Sn в (Pb): 26,4; 17,7; 12,8; 8,4 и 5,1% (ат.) при соответственно 173,0; 145,5; 124; 97,5 и 80—70° С. По [2], растворимость составляет: 29,3; 21,5; 12,5; и 6,8% (ат.) при соответственно 183, 150, 100 и 50° С. Предпочтительнее данные работы [3], поскольку в ней применяли более длительные выдержки (до двух месяцев) для достижения равновесия.

- 1. Borchers H., Kaiser J. Z. Metallkunde, 1958, Bd 49, S. 95-101. 2. Schürmann E., Gilhaus F. J. Archiv Eisenhuettenw., 1961, Bd 32,
- 2. Sen ut mann E., Grinaus F. J. Archiv Eisenhuettenw., 1301, Bu 32, S. 867–877.
- 3. Cahn J. W., Treaftis H. N. Trans. AIME, 1960, v. 218, p. 376-377.

# $\frac{0,3738}{1,6262}$

## Pb—Sr. Свинец—стронций \*

В работе [1] получено соединение  $Sr_2Pb$  и измерена теплота его образования. Металлографические образцы стехиометрического состава, а также отличающиеся от него на  $\pm 10\%$  (ат.), были негомогенными. 1. Морозова М. П. и др. Вестник ЛГУ, 1959, т. 14, № 10, серия физ. и хим., вып. 2, с. 83—86.

0,2105 $\overline{1},7895$ 

## **Pb—Te.** Свинец—теллур \*

По последним данным [1, 2], пределы растворимости РbTe значительно уже, чем указывается М. Хансеном и К. Андерко (см. т. II, рис. 603). В связи с этим в работе [3] заново исследовали пределы растворимости РbTe, применяя микроскопический, рентгеновский и денситометрический анализы, и обнаружили, что растворимость и Pb, и Te в PbTe меньше того предела, который может быть зафиксирован при использовании стандартных металловедческих методов. Интервал максимальной растворимости, по данным электрического анализа [4], составляет 49.994—5,013% (ат.) Те при 775° С. Составы жидкой и твердой фаз, полученные по результатам химического анализа приведенных в равновесие образцов, даны в табл. 37. Подтверждено [5] существование области гомогенности у PbTe, но ланные по растворимости противоречат рассмотренным выше [1-4]; согласно [5, 6], ликвидус выше, чем по М. Хансену и К. Андерко (см. т. II, рис. 603). Анализ термических кривых охлаждения [7] также показывает, что при 0-50% (ат.) Те ликвидус находится выше, чем экстраполированная кривая у М. Хансена и К. Андерко (см. т. II). Авторы работы [7] на основе данных по отжигу утверждают, что PbTe не растворяет Pb. По [1], PbTe плавится при 932,9 ± ± 0,05° С и имеет состав, несколько приближенный к Те [50,002% (ат.) Те]. В работе [1] дан состав жидкости, находящейся в равновесии с твердым PbTe при 923—924° С. Повышенная температура плавления PbTe, сообщаемая в работе [1], вероятно, близка к истинной, так как соединение готовили из материалов 99,99%-ной чистоты и принимали максимальные меры предосторожности против испарения.

ТАБЛИЦА 37. ЛИКВИДУС И СОЛИДУС СИСТЕМЫ РЬ-Те

|                                                                                                                         | Лик                                                                                                                                                       | видус                                                                                                                                    | -                                                                | Сол                                              | идус                                                     |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| Температура, °С                                                                                                         | Те, %<br>(по массе)                                                                                                                                       | Те, % (ат.)                                                                                                                              | Литера-<br>турный<br>источник                                    | Те, %<br>(по массе)                              | Те, % (ат.)                                              |
| 775<br>725<br>700<br>650<br>550<br>512<br>500<br>485<br>420<br>400<br>366<br>347<br>340<br>Эвтектика<br>(экстраполяция) | $10, 10 \\ 5, 7 \\ 4, 30 \\ 2, 98 \\ 1, 90 \\ 1, 10 \\ 1, 05 \\ 0, 75 \\ 0, 75 \\ 0, 25 \\ 0, 21 \\ 0, 080 \\ 0, 065 \\ >0, 05, \\ <0, 10 \\ \end{cases}$ | $ \begin{vmatrix} 15,4\\8,9\\6,80\\4,75\\3,05\\1,77\\1,69\\1,21\\1,21\\1,21\\0,49\\0,41\\0,34\\0,13\\0,12\\>0,08,\\<0,16 \end{vmatrix} $ | [5]<br>[55]<br>[55]<br>[55]<br>[65]<br>[66]<br>[66]<br>[66]<br>[ | 30,8<br>30,3<br>28,3<br>27,5<br>26,4<br>25,0<br> | 42,0<br>41,4<br>39,1<br>38,1<br>36,8<br>35,1<br><br>30,8 |

Подтверждено, что у РbTe г. ц. к. решетка типа NaCl с периодом 6,50 ± 0,02 [8] и 6,45 A [9]. Результаты электронографического анализа пленок, полученных при испарении PbTe [8, 10, 11], неправильно интерпретированы. 1. Miller E. a. o. Trans. AIME, 1959, v. 215, p. 882-887.

2. Fritts R. W., Karrer S. Bull. Amer. Phys. Soc., 1956, v. 1, p. 226; CM. [3].

- 3. Miller E. a. o. Trans. AIME, 1960, v. 218, p. 382-383.
- 4. Brebrick R.F., Allgaier R.S.J. Chem. Phys., 1960, v. 32, p. 1826-1831.

- 5. Pelzel E. Metall, 1956, Bd. 10, S. 717-719.
- Davey T. R. A. AIME Metallurg. Soc. Conference, v. 7, «Physical Che-Imistry of Process Metallurgy». Interscience Publishers, Inc., N. Y., 1961, p. 581-600.
- 7. Graveman H., Wallbaum H. J. Z. Metallkunde, 1956, Bd. 47, S. 433-441.
- 8. R e i m e r L. Naturwissenschaften, 1957, Bd. 44, S. 416-417.
- 9. Пашинкин А. С., Новоселова А. В. ЖНХ, 1959, т. 4, с. 2657— 2660.
- 10. Feltynowski A. a. o. Bull. Acad. Polon. Sci., Classe, III, 1955, t. 3, S. 597-599.
- 11. Feltynowski A. u. a. Exptl. Tech. Physik, 1958, Bd. 6, S.17-20.

1,9507 0,0493

## Рb---Тh. Свинец---торий \*



Рис. 364. Рb—Th

Диаграмма (рис. 364), заимствованная из работы [1], основана на данных [2]. Показано существование фаз ThPb<sub>3</sub> [2, 3, 5] и ThPb [5], фаза же ThPb<sub>2</sub> предполагается [2, 4]. Фаза ThPb<sub>3</sub> образуется по перитектической реакции около 750° С, а растворимость Th в жидком Pb достигает 20% (ат.) при 1200° С [1]. Согласно [4], растворимость Pb в твердом Th меньше 1% (ат.) при 625° С.

Кристаллическая структура. У ThPb<sub>3</sub> кубическая структура, изотипная с AuCu<sub>3</sub>, с периодом 4,856 A [3] или 4,855  $\pm$  0,001 A [5]. Предполагается [5] возможность протекания упорядочения и разупорядочения в ThPb<sub>3</sub>, хотя соответствующие экспериментальные наблюдения отсутствуют. ThPb имеет г. ц. тетрагональную решетку;  $a = 4,545 \pm 0,001$ , c = $= 5,644 \pm 0,003$  A [5].

- Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 114-115.
- 2. Bryner J. S., Teitel R. J. Неопубликованная работа, см. [1]
- Ferro R. Acta Cryst., 1958, v. 11, р. 737—738.
   Weiner R. Неопубликованная работа; см. [1].
   Brown A. Acta Cryst., 1961, v. 14, р. 856—860.

0,0060 1,9940

### Pb---ТІ. Свинец---таллий \*

Результаты измерения электросопротивления при комнатной температуре под гидростатическим давлением указывают на возможность превращения в PbTl<sub>7</sub> [1].

1. Bridgman P. W. Proc. Amer. Acad. Arts Sci., 1955, v. 84, p. 1-42.

#### $\overline{1},9397$ 0,0603

# Рb-U. Свинец-уран \*

UPb<sub>3</sub> имеет г. ц. к. решетку типа A1 [1], что подтверждает данные М. Хансена и К. Андерко (см. т. II [1—3]). В работе [1] не удалось точно выяснить, является ли структура этого соединения упорядоченной, однако результаты измерения периодов решетки UPb<sub>3</sub> составляет 4,7915 ± 0,0002 A [1] или 4,795 A [2]. По стоянство периода решетки UPb<sub>3</sub> при изменении концентрации показывает, что эта фаза имеет узкую область гомогенности [1]. Решетка UPb идентифицирована как тетрагональная [1]. Это согласуется с данными М. Хансена и К. Андерко (см. т. II, [5]), которые описали структуру UPb как о. ц. тетрагональную. Однако, по данным работы [2], решетка UPb<sub>3</sub>;  $a = 4,579 \pm 0,001$  A,  $c = 5,259 \pm 0,001$  A.

1. Brown A. Acta Cryst., 1961, v. 14, p. 856-850.

2. Fitzpatrick J. M., Kaufmann A. R. Частное сообщение, 1950; см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 35—36.

0,0518 $\overline{1.9482}$ 

## Рb—W. Свинец—вольфрам \*

Растворимость W в жидком Pb меньше 0,0056% (ат.) [0,005% (по массе)] при 1200° С [1].

1. Alden T. a. o. Trans. AIME. 1958, v. 212, p. 15-17.

0,5010 $\overline{1},4990$ 

## Pb—Zn. Свинец—цинк \*

В работах [1, 2] проведены термодинамические исследования ликвидуса этой системы. При экстраполяции данных показано [1], что критический состав (точка максимума на кривой расслоения) находится вблизи 900, а не 798° С, как указывалось М. Хансеном и К. Андерко (см. т. II, рис. 608). В работе [2] критикуется этот вывод [1] и подтверждается более низкая критическая температура. Рассинтанные в работе [2] температуры кипения хорошо согласуются с данными М. Хансена и К. Андерко (см. т. II, [4, 5]):

Содержание, % (ат.) Рb . . . 10 20 Температура, °C . . . . . . . 1022 961 30 934 40 925 60 924 80 920

Повторные определения величин взаимной растворимости в жидком состоянии при более низких температурах хорошо согласуются со старыми данными. Монотектическая точка лежит при 0,41% (ат.) Рb и 417,66° С, а богатая свинцом жидкость содержит при этой температуре 94,9% (ат.) Рb [1]. По данным работы [3], монотектическая точка соответствует 0,30% (ат.) Рb. Эвтектическая концентрация составляет 97,80% (ат.) Рb [1] и 98,18% (ат.) Рb [3].

21 Р. П. Эллиот, том II

Растворимость в твердом состоянии Pb в Zn, по данным металлографических и авторадиографических измерений, <1,6 · 10<sup>-5</sup>% (ат.) [5 · 10<sup>-5</sup>% (по массе)] и может быть еще значительно меньше, например 0,32 · 10<sup>-5</sup>% (ат.) [1 · 10<sup>-5</sup>% (по массе)] при монотектической температуре [4].

Rosenthal F. D. a. o. Trans. AIME, 1958, v. 212, p. 153-161.
 Predel B. Z. Physik Chem. (Frankfurt), 1959, Bd 20, S. 150-165.
 Davey T. R. A. AIME Metallurgy Soc. Conference, v. 7, "Physical Chemistry of Process Metallurgy" Interscience Publishers, Inc., N. Y., 1961, p. 581-600.
 Servi I. S. a. o. Trans. AIME, 1958, v. 212, p. 361-366.

0,3563 $\overline{1},6437$ 

## Pb—Zr. Свинец—цирконий \*

Добавки Pb к Zr повышают температуру α β-перехода до перитектойдной при 6% (ат.) Pb и 900° C [1] (рис. 365).



 Kneip G. D., Betterton J. O. U. S. At. Energy Comm. ORNL—1727, 1954; см. в книге «Metallurgy of Zirconium». eds. E. T. Hayes. B. Lustman, F. Kerze. National Nuclear Energy Series, Div. VII, v. 4, McGraw-Hill Book Co., N. Y., 1955, p. 459, 460, 462.

## Pd— Rh. Палладий—родий\*

В системе Pd—Rh при низких температурах происходит расслоение [1, 2]. Диаграмма (рис. 366) построена по данным о расслоении, полученным при измерении периодов решетки и металлографически [1]; линии ликвидуса и солидуса приведены схематично по М. Хансену и К. Андерко (см. т. II [1]). В работе [1] однозначно показано,

что обе находящиеся в равновесии фазы имеют г. ц. к. решетку. Из рентгеновских данных [1] следует отсутствие аллотропического превращения у Rh в интервале 0—1500° С, кроме того, авторы работы [1] для подтверждения мономорфности Rh приводят результаты исследования электросопротивления [3].

В работе [2] расслоение в твердом состоянии обнаружено при исследовании э. д. с. На диаграмме [2] богатый Rh твердый раствор является раствором на основе низкотемпературной модификации Rh, которая предполагается стабильной ниже 1030° С. Вариант диаграммы, предложенный в работе [1], предпочтителен, поскольку здесь были использованы более общепринятые металловедческие методы и приведены доказательства отсутствия полиморфизма, предполагавшегося в работе [2].

1. R a u b E. u. a. Z. Metallkunde, 1959, Bd 50, S. 428—431; предварительные данные см. R a u b E. J. Less-Common Met. 1959, v. 1, p. 3—18.

2. Рудницкий А. А. и др. Изв. сектора платины и других благородных металлов, ИОНХ АН СССР, 1955, т. 29, с. 190—196.

3. Bale E. S. Platinum Metals Rev., 1958, v. 2, p. 61-63.



Рис. 366. Pd— Rh

0,0208 1,9792

Pd— Ru. Палладий—рутений \*

Диаграмма (рис. 367) построена по результатам металлографического, термического и рентгеновского анализов [1, 2]. Ликвидус в работе [1] определяли с помощью металлографического анализа литых и отожженных образцов. Полученная кривая была продолжена до точки плавления Ru, установленной в работе [3]. Перитектическая реакция Ж + (Ru) ⇄ (Pd) протекает при 1593° C [1] или при 1579° [2]. Ниже перитектической горизонтали (при 1575° C) образуется промежуточная фаза по перитектоидной реакции (Pd) + (Ru) ⇄ (β) [1]. В работе [2] не получено экспериментальных доказательств существования β-фазы. Промежуточная фаза распадается при 724° С по эвтектоидной реакции [1], что следует из результатов термического анализа, однако последний может давать заниженные значения температуры по сравнению с равновесными.

Растворимость в твердом состоянии Ru в Pd определена металлографически [2]; согласно [1], растворимость при 1100 и 1400° С составляет 5—10 и 10— 15,5% (ат.) соответственно. Растворимость Pd в Ru ~9,5% (ат.) при 725° С [1]; 11,6  $\pm$  0,4% (ат.) при 1300° С и 7,2  $\pm$  0,5% (ат.) при 1000° С [2].

В работе [2] даны следующие значения периодов решетки сплавов — твердых растворов на основе Рd с г. ц. к. решеткой, закаленных с 1500° С: 3,8789

323



[8,57% (ат.) Ru] и 3,8747 А [15,07% (ат.) Ru]. Периоды г. к. решетки сплава — раствора на основе Ru с 9,5% (ат.) Pd — равны: a = 2,7024 А, c = 2,845 А [2], предполагается возможность полиморфных превращений в Ru при температурах выше 1500° С.







0,5221 $\overline{1},4779$ 

Pd—S. Палладий—сера \*

В дополнение к ранее обнаруженным фазам  $Pd_4S$ ,  $Pd_{2.8}S$  ( $\beta$ ), PdS и  $PdS_2$  идентифицирован пятый сульфид  $Pd_{2.2}S$  [1]. Он присутствовал в медленно охлажденных образцах, а также в образцах, закаленных с 600° С. У него кубическая 324

решетка, a = 8,9300 А, плотность  $8,67 \ c/cm^3$  [1]. Pd<sub>4</sub>S имеет тетрагональную решетку  $(D_{2d}^4)$  с двумя формульными единицами на элементарную ячейку; a = 5,1147 А, c = 5,5903 А. У PdS также тетрагональная структура; a = 6,4287 А, c = 6,6082 А [1]. Приводятся результаты расчета рентгенограммы порошка Pd<sub>2,8</sub>S, присутствовавшего только в закаленных образцах [1]. Попытки синтезировать PdS<sub>2</sub> [1] оказались безуспешными, хотя по химической реакции он может быть легко получен. Период решетки (Pd), находящегося в равновесии с Pd<sub>4</sub>S, пеизменен, что указывает на ничтожную растворимость S в Pd. Это соответствует данным работы [2], согласно которым в Pd растворяется 0,01% S.

1. Gronvold F., Rost E. Acta Chem. Scand., 1956, v. 10, p. 1620–1634. 2. Jedele A. Z. Metallkunde, 1935, Bd. 27, S. 271–275; cm. [1].

0,3754 1,6246

## Pd—Sc. Палладий—скандий

у промежуточной фазы Pd<sub>3</sub>Sc кубическая решетка типа Cu<sub>3</sub>Au с периодом 3,981 A [1].

 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

0,1308 $\overline{1},8692$ 

### Pd—Se. Палладий—селен \*

В системе существуют четыре соединения:  $Pd_4Se$ ,  $Pd_{2,8}Se$ ,  $Pd_{1,1}Se$  и  $PdSe_2$ [1]. Фаза  $Pd_{2,8}Se$  ранее не была описана;  $Pd_{1,1}Se$  соответствует соединению, которое идентифицировали как PdSe. Каждая из четырех фаз существует или после закалки, или после медленного охлаждения.

У Рd<sub>4</sub>Se тетрагональная решетка  $(D_{2d}^2)$  с двумя формульными единицами на элементарную ячейку; a = 5,2324 А, c = 5,6470 А. Структура Pd<sub>2,8</sub>Se неизвестна, но в работе [1] приводится расчет рентгенограммы порошка. PdSe<sub>2</sub> имеет ромбическую решетку, приводимые в работе [1] периоды решетки были известны ранее.

В соответствии с данными М. Хансена и К. Андерко (см. т. II [6]), обнаруженное в предыдущих работах соединение PdSe находится по [1] на стороне Pd по отношению к стехиометрическому составу. На рентгенограмме сплава эквиатомного состава обнаружены рефлексы PdSe<sub>2</sub> [1]. У Pd<sub>1,1</sub>Se простейшая кубическая решетка с периодом 10,604 A [1]. В работе [2] сообщается о существовании однофазной области между составами, соответствующими Pd<sub>1,1</sub>Se и PdSe.

На основе неидентифицированной рентгенограммы сплава Pd<sub>2,5</sub>Se предполагается [1] существование фазы, стабильной только при высоких температурах.

1. Gronvold F., Rost E. Acta Chem. Scand., 1956, v. 10, p. 1620-1634. 2. Matthias B. T., Geller S. Phys. Chem. Solids, 1958, v. 4, p. 318-319.

0,5796 $\overline{1},4204$ 

# Pd—Si. Палладий—кремний \*

325

В работе [1] повторно исследовали систему методом термического анализа 18 сплавов, приготовленных из 99,8%-ного Pd и 99,6%-ного Si (рис. 368). Температуры на рис. 368 несколько отличаются от приводимых М. Хансеном и К. Андерко (см. т. II, рис. 611). Подтверждено существование Pd<sub>a</sub>Si; это соединение образуется по перитектической реакции при 960° С. Подтверждено также конгруэнтное плавление Pd<sub>a</sub>Si и PdSi. Взаимная растворимость компонентов <0,1% (ат.), если она вообще существует. По данным работы [2], растворимость Pd в Si при 1200° C составляет от 10<sup>15</sup> до 3 · 10<sup>16</sup> атомов на 1 см<sup>3</sup> [2 · 10<sup>-6</sup> — 6× ×10<sup>-5</sup>% (ат.)]. На основании сведений о термической остановке при 875° C у сплава с 33% (ат.) Si предполагается [1] существование соединения Pd<sub>9</sub>Si<sub>4</sub>, а горизонталь при 875° C трактуется как эвтектическая (Ж → Pd<sub>9</sub>Si<sub>4</sub> + Pd<sub>2</sub>Si). Это предположение рискованно, даже несмотря на приводимые данные о периодах решетки «Pd<sub>9</sub>Si<sub>4</sub>»; здесь необходимы дополнительные исследования — возможно, что у Pd<sub>2</sub>Si имеется низкотемпературная модификация.



В работе [3] подтверждены фазы  $Pd_3Si$ ,  $Pd_2Si$  и PdSi и сообщается о возможности существования еще двух соединений в диапазоне 0-25% (ат.) Si, что установлено на спеченных образцах, отожженных при 600—700° С. По изменениям периодов решетки в работе [3] заключили об очень узкой области гомогенности  $Pd_3Si$ , в то время как у  $Pd_2Si$  имеется «заметная» растворимость.

Разова решетка в расоте (5) заключили со оченая» узаконочнисти Р $d_8$ Si, в то время как у  $Pd_2$ Si имеется «заметная» растворимость. Анализ монокристалла  $Pd_3$ Si [3] показал, что у этого соединения ромбическая решетка типа Fe<sub>3</sub>C; a = 5,735 A, b = 7,555 A, c = 5,260 A. Структура «Pd<sub>2</sub>Si<sub>4</sub>» идентифицируется как тетрагональная,  $a = 4,68 \div 4,73$  A,

Структура «Pd<sub>2</sub>Si<sub>4</sub>» идентифицируется как тетрагональная,  $a = 4,68 \div 4,73$  A,  $c = 6,83 \div 6,88$  A [1]. Подтверждено, что у Pd<sub>2</sub>Si гексагональная решетка типа Fe<sub>2</sub>P, при комнатной температуре a = 6,497 A, c = 3,432 A со стороны Pd и a = 6,528 A, c = 3,437 A со стороны Si [3]. Эти данные получены на спеченных при 800° C образцах. В работе [1] подтверждена ромбическая структура MnP

у  $pd_2Si$  и даны значения периодов, идентичные приведенным М. Хансеном и К. Андерко (см. т. II [5]).

 R ao N. K., Winterhager H. Trans. Indian Inst. Metals, 1956-1957, v. 10, p. 139-148.

2. Collins C. B., Carlson R. O. Phys. Rev., 1957, v. 108, p. 1409, см. Тrumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205—233.

3. Aronsson B., Nylund A. Acta Chem. Scand., 1960, v. 14, p. 1011-1018.

# 1,9537 Pd—Sn. Палладий—олово \*

Фазовые равновесия в этой системе исследованы в работах [1, 2], где использовали термический, микроскопический и рентгеноструктурный анализы. Кривые ликвидуса в обеих работах очень близки; температуры трехфазных реакций в исследовании [1], где чистота металлов не оговаривается, значительно ниже, чем в работе [2], в которой приготовляли сплавы из Р4 чистотой более 99,9% и Sn «Chempur». Диаграмма [2] кажется результатом тщательного исследования, одна о ее ценность трудно определить, поскольку не приведены экспериментальные точки и составы. В диаграмму на рис. 369 включены данные о ликвидусе и температурах трехфазных реакций по работе [1].

Сообщается о существовании следующих фаз:  $Pd_3Sn [1, 2]$ ,  $Pd_2Sn [1]$ ,  $\alpha$ - $Pd_3Sn_2 [1, 2]$  (в работе [2] этой фазе приписывается формула  $Pd_2Sn$ ),  $\beta$ - $Pd_3Sn_2 [1, 2]$ , PdSn [1, 2],  $Pd_3Sn_4 [2]$ ,  $PdSn_2 [1, 2]$ ,  $PdSn_3 [1]$  и  $PdSn_4 [1]$ . По сообщениям [2] соединение  $PdSn_4$  не существует, рентгеновские данные говорят, что это — аллотропическая модификация  $PdSn_2$ . Рассмотрение опубликованных сведений о перитектических температурах показывает, что  $PdSn_2$ , по [1], соответствует  $Pd_3Sn_4$ , по [2].  $PdSn_3$ , по [1], соответствует  $Pd_3Sn_4$ , по [2], а фаза  $PdSn_4$ , по [1], соответствует низкотемпературной модификации  $PdSn_2$ , по [2], а фаза  $PdSn_4$ , по [1], соответствует низкотемпературной модификации  $PdSn_2$ , по [2].

Полученные металлографические экспериментальные точки [1] определяют местоположение PdSn<sub>2</sub>, PdSn<sub>3</sub> и PdSn<sub>4</sub>. Эти данные использованы на рис. 369.

В работах [1, 2] не построена кривая растворимости Sn в Pd, однако, по их данным, все же оказалось возможным провести на рис. 369 эту границу. Растворимость Sn в Pd составляет ~17% (ат.) при эвтектической температуре [2]. Эвтектические концентрации соответствуют 21,2 и 30,2% (ат.) Sn [2]. Растворимость Pd в Sn меньше 0,1% (ат.) [2]. Границы областей гомогенности и точки плавления Pd<sub>8</sub>Sn и α-Pd<sub>9</sub>Sn<sub>2</sub>, показанные на рис. 369, заимствованы из работы [2].

Ниже даются температуры трехфазных реакций, по [2] (в скобках, по [1]): эвтектики: 1280 (1293), 1215 (1231), перитектических реакций: 900 (929), 810 (825), 600 (617), 345 (348), 295 (309); эвтектики: 230 (229)° С. Детали превращений в твердом состоянии в диапазоне концентраций от 25 до 40% (ат.) Sn не исследовали [2].

Кристаллическая структура. У Pd<sub>3</sub>Sn неупорядоченная г. ц. к. решетка ~3,97 A [2]. Pd<sub>2</sub>Sn имеет ромбическую структуру типа Ni<sub>2</sub>Si; a = 8,12 A, b = 5,65 A, c = 4,31 A [1].  $\beta$ -Pd<sub>3</sub>Sn<sub>2</sub> является сверхструктурой  $\alpha$ -Pd<sub>3</sub>Sn<sub>2</sub>;  $a_{\beta} = 2a_{\alpha}, c_{\beta} = 3c_{\alpha}$  [1].

В работе [1] подвергается сомнению утверждение М. Хансена и К. Андерко (см. т. II [4]) о моноклинноискаженной решетке PdSn.

Показано [3], что кристаллы  $PdSn_2$  после закалки из жидкого состояния имеют моноклинноискаженную структуру NiAs; a = 6,18 A, b = 3,93 A, c = 6,38 A,  $\beta = 88,5^{\circ}$ . После медленного охлаждения или закалки у  $PdSn_2$  тетрагональная решетка — сочетание структур типа  $CaF_2$  и  $CuAl_2$ ;  $a = 6,490 \pm 0,001$  A,  $c = 24,378 \pm 0,004$  A.

Согласно результатам анализа монокристалла, структура PdSn относится к г. ц. ромбической, пространственная группа  $D_{2h}^{18}$  или одна из ее подгрупп; a = 6,47 A, b = 6,50 A, c = 17,20 A [1, 4].



1. Schubert K. u. a. Z. Metallkunde, 1959, Bd 50, S. 534-540. 2. Knight J. R., Rhys. D. W. J. Less-Common Met., 1959, v. 1, p. 292-303.

2. Knight of Krist, 1956, v. 107, p. 99–123.

4. Schubert K. u. a. Naturwissenschaften, 1958, Bd 45, S. 360-361.

#### 0,0855 1,9145

# Pd—Sr. Палладий—стронций

Рентгеновское и металлографическое исследования [1] системы Pd—Sr позволили обнаружить конгруэнтно плавящееся соединение SrPd<sub>5</sub> и фазу SrPd<sub>2</sub>. Вероятно, SrPd<sub>5</sub> и Pd образуют эвтектику. Другая эвтектика состоит из SrPd<sub>5</sub> и SrPd<sub>2</sub>. SrPd<sub>5</sub> содержит 14,4% (ат.) Sr, SrPd<sub>2</sub> — 29,15% (ат.) Sr.

Кристаллическая структура. У SrPd<sub>5</sub> гексагональная структура типа CaCu<sub>5</sub>; a = 5,411 A, c = 4,416 A. SrPd<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> с периодом 7.800 [1] или 7,826  $\pm$  0,005 A [2].

1. Heumann T., Kniepmeyer M. Z. Anorg. Allgem. Chem., 1957, Bd. 290, S. 191-204.

2. Wood E. A., Compton V. B. Acta Cryst., 1958, v. 11, p. 429-433.

#### 1,9223 0,0777

## Pd—Te. Палладий—теллур \*

Известны шесть теллуридов — Pd<sub>4</sub>Te, Pd<sub>3</sub>Te, Pd<sub>5</sub>Te<sub>2</sub>, Pd<sub>2</sub>Te, PdTe и PdTe<sub>2</sub> [1]. Диаграмма (рис. 370) взята из работы [2]; она построена в основном по результатам термического анализа, дополненным рентгеновскими и металлографическими наблюдениями, измерениями микротвердости и электропроводности. Сплавы были приготовлены из спектрально чистого Pd и 99,999%-ного Te [2].

В работе [2] подтверждено существование описанных шести теллуридов [1]. Pd<sub>4</sub>Te, Pd<sub>3</sub>Te, Pd<sub>5</sub>Te<sub>2</sub> и Pd<sub>2</sub>Te образуются по перитектическим реакциям; PdTe и PdTe<sub>2</sub> плавятся конгруэнтно. Согласно данным термического анализа [2], PdTe и PdTe<sub>2</sub> образуют непрерывный ряд твердых растворов в температурном интервале 640—690° С. Фазовые равновесия между PdTe и PdTe<sub>2</sub> (см. рис. 370) противоречат правилу фаз, однако, поскольку в работе [2] регистрировали и солидус, и ликвидус, эти данные нельзя изменить; соответствующая область диаграммы должна быть заново исследована. В работе [1] не обнаружено неограниченной растворимости между PdTe и PdTe<sub>2</sub>. Нонвариантная реакция, наблюдавшаяся [2] при 460° С, не обсуждается. При комнатной температуре растворимость PdTe в PdTe<sub>2</sub> не превышает 2% (ат.), PdTe<sub>2</sub> в PdTe 4% (ат.) [2]. При 400° С в Pd растворяется  $\sim 10\%$  (ат.) Te [2], период решетки Pd увеличивается от 3,890 до 3,938 А при 9,2% (ат.) Te. Вблизи ординаты Te при 400° С расположена эвтектичекая точка [2].

При анализе монокристалла  $Pd_4$  Те установлено, что у него простейшая кубическая решетка, a = 12,674 А (метод порошка); ее можно подразделить на субячейки с периодом 3,16 А, причем каждая из субячеек будет объемноцентрированной [1].

Подтверждены кристаллографические характеристики PdTe и PdTe<sub>2</sub>; периоды гексагонального PdTe составляют [1]: a = 4,1521 A, c = 5,6719 A, без изменения в зависимости от состава; периоды гексагональной решетки PdTe<sub>2</sub>: a = 4,0365 A, c = 5,1262 A.

В работе [3] полученные сплавлением PdTe и PdTe<sub>2</sub> подвергли исследованию для минералогической идентификации. По их данным [3], при 75% (ат.) Те PdTe<sub>2</sub> сосуществует с чистым Te, что согласуется с результатами исследования [2]. При концентрации, соответствующей формуле PdTe, между зернами этой фазы обнаружена [3] мелкодисперсная составляющая из PdTe и изотропного соединения, «которая была по виду похожа скорее не на эвтектику, а на перитектическую составляющую». В работе [3] наблюдались продукты распада вдоль



Рис. 370. Pd—Te

направлений (0001) в PdTe<sub>2</sub>, при 60% (ат.) Те. Предполагается, что эти продукты не являются частицами PdTe, как это должно быть по диаграмме (см. рис. 370). 1. Gronvold F., Rost E. Acta Chem. Scand., 1956, v.10, p. 1620—1634.

2. Медведева З. С. идр. ЖНХ, 1961, т. 6, с. 1737—1739. 3. Groeneveld Meijer W. O. J. Amer. Mineralogist, 1955, v. 40, р. 646—

1,6625 0,3375

657.

## Pd—Th. Палладий—торий

В выплавленных в дуговой печи однограммовых образцах сплавов с содержанием Pd до 33% (ат.) наиболее богата Th фаза Th<sub>2</sub>Pd [1]. Она образует эвтектику с Th при 22 ± 1% (ат.) Pd и 1112 ± 12° C [1]. В работе [2] показано, что сплав с  $\sim$  32,3% (ат.) [18% (по массе)] Pd имеет однофазную структуру; очевидно, это Th<sub>2</sub>Pd с тетрагональной решеткой типа CuAl<sub>2</sub>;  $a = 7,33_0$  A,  $c = 5,93_0$  A. у промежуточной фазы ThPd<sub>3</sub> гексагональная решетка типа TiNi<sub>3</sub>; a = -5,856 A, c = 9,826 A [3].

1. Thomson J. R. Nature, 1961, v. 189, p. 217. 2. Ferro R., Capelli R. Acta Cryst., 1961, v. 14, p. 1095. 3. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

0,3478 1.6522

## Рd—Ті. Палладий—титан \*

Эта система была тщательно исследована в двух работах [1, 2]. В них показано существование только одной промежуточной фазы (в противоположность данным М. Хансена и К. Андерко, т. II [1, 2]) и одной эвтектики — со стороны Ті. Однако вид диаграммы по [1] (рис. 371) и по [2] (рис. 372) существенно различается.

При построении диаграммы (рис. 371) были использованы металлографический, рентгеновский и дифференциальный термический анализы [1]. Для приготовления сплавов методом дуговой плавки использовали губку Ті и Pd чистотой соответственно 99,5% и 99,9%; точка плавления применявшегося Ті была 1720°С. Обнаружено одно соединение TiPd<sub>3</sub>, конгруэнтно плавящееся при 1720° С [1]. Искривление ликвидуса вблизи ~66% (ат.) Ті сомнительно; приведенные в работе [1] микрофотографии можно легко интерпретировать как указание на существование при этой концентрации фазы Ti<sub>2</sub>Pd.

Диаграмма состояния (рис. 372) в основном построена по



данным термического анализа с привлечением металлографии и результатов измерения физических и механических свойств. Сплавы получали дуговой плавкой иодидного Ті и высокочистого Pd. Была обнаружена единственная промежуточная фаза со стехиометрическим составом TiPd<sub>2</sub>. Точка плавления использовавшегося в работе [2] Ті также была 1720° С.



Рис. 372. Pd—Ti (2) (см. также рис. 371)

Литой сплав с составом Pd<sub>3</sub>Tl имеет тетрагональную структуру  $(L6_0); a = 4,12$  A, c = 3,84 A

[1]. На этом сплаве получены также сверхструктурные линии. Тетрагональная решетка, вероятно, нестабильна при комнатной температуре, поскольку при обработке Pd<sub>3</sub>Tl в холодном состоянии структура оказалась г. ц. к. с периодом 4,03 A, причем кубическая ячейка имеет такой же объем, как тетрагональная.

1. Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.

# 1,6514

## Рd—U. Палладий—уран \*

Построенный в работе [1] предварительный вариант диаграммы, основанный на данных термического, микроскопического и рентгеновского анализов, заметно отличается от приведенного М. Хансеном и К. Андерко (см. т. II [1], рис. 612, а). Основные данные сравниваются в табл. 38.

## ТАБЛИЦА 38. СРАВНЕНИЕ ДАННЫХ О НОНВАРИАНТНЫХ РЕАКЦИЯХ В СИСТЕМЕ Pd—U

| Изотермические превращения                                                                                                                                                                               | По [1]                                      | По М. Хансену и<br>К. Андерко<br>(см. т. II [1] |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|
| Эвтектика:<br>температура, °С<br>содержание Pd, % (ат.)<br>Эвтектоидного распада UPd, °С<br>эвтектоидного распада (γ—U), °С<br>β 2 а<br>Растворимость в у-U при эвтектической<br>температуре, % (ат.) Pd | 996<br>26,3<br>950<br>738<br>642<br>2,2-4,4 | 998<br>37,4<br>970<br>756<br>665<br>5,0         |

Данные М. Хансена и К. Андерко предпочтительнее, поскольку они базируются на более исчерпывающем исследовании и лучше документированы.

В работе [2] даны значения периодов решетки палладиевого раствора.

1. Park J. J., Buzzard R. W. U. S. At. Energy Comm. TID-7526, pt. 1, 1957, p. 80-102.

2. Catterall J. A. Phil. Mag., 1957, v. 2, p. 491-498.

# $\frac{0,3210}{1,6790}$

# Pd—V. Палладий—ванадий \*

Система подробно изучена в работе [1] по 21 сплаву в диапазоне 20— 90% (ат.) V. Сплавы готовили в дуговой печи и отливали в холодную форму. Термический анализ для построения линий ликвидуса и солидуса был проведен только на сплавах с концентрацией V менее 60% (ат.), так как при больших концентрациях образцы взаимодействовали с тиглем. Для построения границ фазовых областей в твердом состоянии были использованы металлографический, рентгеноструктурный и дилатометрический анализы. Диаграмма по данным работы [1] представлена на рис. 373.

Растворимость в твердом состоянии Pd в V уменьшается от максимальной — 37,5% (ат.) при 1340° C до 15% (ат.) при 500° C. Растворимость V в твердом Pd уменьшается от 58% (ат.) при 1340° C до  $\sim$ 50% (ат.) при 500° C. В твердом состоянии происходит несколько превращений. В области твердого раствора, богатого Pd, образуются две фазы: Pd<sub>2</sub>V ниже 905° C и Pd<sub>3</sub>V при 815° C. Твердый раствор на основе Pd при 720° C и концентрации V 28% (ат.) распадается по эвтектоидной реакции на Pd<sub>3</sub>V + Pd<sub>2</sub>V. Фаза PdV<sub>3</sub> образуется по перитектоидной реакции при 840° C.

У PdV<sub>3</sub> кубическая решетка, изотипная с β-W; a = 4,815 A [1]. Фаза Pd<sub>3</sub>V имеет упорядоченную тетрагональную структуру, изотипную с TiAl<sub>3</sub>; a = 3,847 A, c = 7,749 A [1]. Эти данные подтверждаются в работе [2], по которой a = 3,847 A, c = 7,753 A. У Pd<sub>2</sub>V о. ц. тетрагональная решетка; a = 3,889 A, c = 3,736 A [1].

 Köster W., Haehl W. D. Z. Metallkunde, 1958, Bd 49, S. 647-649.
 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, 75-76.



1,7635 0,2365

## Pd—W. Палладий—вольфрам \*

Диаграмма на рис. 374 построена по данным работы [1], в которой использовали методы определения точки плавления, микроскопический, рентгеновский анализы, методы макро- и микротвердости и измерение э. д. с. При легировании точка плавления Pd повышается до перитектической температуры 2175 ± 25° C [перитектическая реакция: (W) + Ж (Pd)]. Температуры плавления определяли по моменту появления первой капли расплава с помощью оптического пирометра на сплавах, приготовленных из порошков чистотой 99,9%, спеченных и затем переплавленных в дуговой печи. Твердый раствор W в Pd простирается до 18,4% (ат.) [28% (по массе)] Pd. Микроскопический и рентгеновский анализы показывают, что все сплавы, вплоть до 14% (ат.) [23% (по массе)] W, являются



однофазными твердыми растворами. Это согласуется с данными М. Хансена и К. Андерко (см. т. II [1]). Твердые растворы на основе Pd имеют г. ц. к. решетку с периодами, близкими к чистому Pd.

Однофазная область твердого раствора на основе W узка. Вблизи перитектической температуры растворимость Pd в W достигает ~3,40% (ат.) 12% (по 335 массе)], а при 1500° С — 2,7% (ат.) [1,6% (по массе)]. По рентгеновским данным, в двухфазной области имеются только насыщенные твердые растворы, промежуточные фазы отсутствуют, что согласуется с данными М. Хансена и К. Андерко (см. т. II [2, 3]).

1. Тылкина М. А. идр. ЖНХ, 1961, т. 6, с. 1471—1474.

0,0779 $\overline{1},9221$ 

# Pd— Ү. Палладий—иттрий

У соединения  $YPd_3$  кубическая решетка типа AuCu<sub>3</sub>, a = 4,074 A [1].

- D wight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76; D wight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 158-162.
- 0,2127 $\overline{1},7873$

# Pd—Zn. Палладий—цинк \*

В работе [1] структура фазы  $Pd_2Zn$  идентифицирована как ромбическая (*Pnma*); a = 5,35 A, b = 7,65 A, c = 4,14 A. Авторы [2] изучали растворимость Pd в жидком Zn и получили результаты, хорошо согласующиеся с данными М. Хансена и К. Андерко (см. т. II [2]).

Уравнение кривой растворимости между 440 и 750° С выглядит так: lg атомн. доли  $Pd = 2,840 - 4,665 \cdot 10^3 T^{-1} + 0,632 \cdot 10^6 T^{-2}$ , где T — абсолютная температура [2].

- 1. Stadelmaier H. H., Hardy W. K. Z. Metallkunde, 1961, Bd 52, S. 391-396.
- 2. Martin A. E. a. o. J. Chem. Engn. Data, 1961, v. 6, p. 596-599.
- 0,0681 $\overline{1},9319$

# Pd—Zr. Палладий—цирконий \*

Участок диаграммы на рис. 375 между 0 и 50% (ат.) Рd в основных чертах построен в работе [1] по результатам исследования 30 сплавов. Растворимость в твердом состоянии Рd в α-Zr меньше 0,1% (ат.) при 700° C [1]. Растворимость Рd в β-Zr при эвтектической температуре 1030° С составляет 11,5% (ат.) [1]. Растворимость Zr в Pd не определена, но период решетки твердого раствора на основе Pd, сосуществующего с богатой Pd промежуточной фазой, значительно отличается от периода чистого металла. На этом основании можно считать, что Zr в значительных количествах растворяется в Pd.

Насыщенный твердый раствор на основе  $\beta$ -Zr распадается по эвтектоидной реакции на  $\alpha$ -Zr + Zr<sub>2</sub>Pd. Эвтектоидная точка находится при 7 ± 0,5% (ат.) Pd. При закалке малолегированных сплавов из области ( $\beta$ -Zr) превращение проходит с образованием мартенситной фазы, изотипной с  $\alpha$ -Zr. В более легированных сплавах [ $\sim$ 3,5% (ат.) Pd] на микроструктуре виден остаточный  $\beta$ -Zr, но твердость говорит о прохождении какой-то реакции. Рентгеновские исследования позволили обнаружить неподавляемое образование промежуточной фазы, близкой по природе к той, которая образуется во многих Ti-сплавах.

Эвтектика образуется при 24,5 ± 1% (ат.) Рd и 1030° С. Она состоит из смеси β-Zr и Zr<sub>2</sub>Pd. Zr<sub>2</sub>Pd конгруэнтно плавится на  $\sim$ 5 град выше температуры эвтектической реакции (1080° С), по которой образуется смесь Zr<sub>2</sub>Pd и ZrPd. В работе [2] подтверждено существование Zr<sub>2</sub>Pd, точка плавления которого считается равной 1100° С. Предварительные определения ликвидуса показали, что сплав с 40% (ат.) Pd полностью расплавляется выше 1250° С, а сплав с 43,2% (ат.) Pd выше 1390° С. Температура конгруэнтного плавления ZrPd не определена, указывается только, что она должна быть выше 1600° С. Авторы исследования [1] на небольшом числе образцов показали существование соединения ZrPd<sub>2</sub>, которое является одной из фаз эвтектики вместе с ZrPd. В работе [1] установлено также, что ZrPd<sub>2</sub> образуется по перитектической реакции. Фаза ZrPd<sub>3</sub> была впервые обнаружена в работе [3], а затем в [1]. Это наиболее богатое Pd соединение.



У Zr<sub>2</sub>Pd тетрагональная решетка; a = 3,28 A, c = 3,32 A [2]. Автор работы [1] не согласен с этим и приписывает Zr<sub>2</sub>Pd г. ц. тетрагональную структуру; a = 4,66 A, c = 3,64 A. Рентгенограмма порошка Zr<sub>2</sub>Pd очень близка к Zr<sub>2</sub>Cu [1]. Структура Zr<sub>2</sub>Pd, по данным работ [4, 5], тетрагональная типа Mo<sub>2</sub>Si; a = 3,29 A,

22 Р. П. Эллиот, том II

c = 11,01 A [4]; a = 3,306 A, c = 10,984 A [5]. Решетка ZrPd не могла быть идентифицирована [1] из-за сложности рентгенограммы. Структура ZrPd<sub>2</sub> тоже тетрагональная, типа MoSi<sub>2</sub>;  $a = 3,40_7$  A,  $c = 8,59_7$  A [4].

У ZrPd<sub>3</sub> г. к. решетка, изотипная с TiNi<sub>3</sub>; a = 5,612 A, c = 9,235 A [3].

1. Anderko K. Z. Metallkunde, 1959, Bd 50, S. 681-686. 2. Nevitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700-702. 3. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979. 4. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, S. 303. 5. Nevitt M. V. U. S. At. Energy Comm. ANL-6330, 1960, p. 164-165.

0,3796 1.6204

## Ро-Sr. Полоний-стронций

Авторы работы [1], используя микрометаллургическую методику, получили соединение SrPo и идентифицировали его решетку как г. ц. к. типа NaCl с периодом  $6,796 \pm 0,003$  Å.

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

0,0648 1,9352

## Ро-Та. Полоний-тантал

Та не реагирует с парами Ро при температурах вплоть до 700° С [1].

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

1,9424 0,0576

# Ро--- W. Полоний-- вольфрам

W не реагирует с парами Ро при температурах вплоть до 700° С [1]. 1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

0,5068 1,4932

Ро-Zn. Полоний-цинк \*

Авторы работы [1], используя микрометаллургическую методику, получили соединение ZnPo и идентифицировали его структуру как г. ц. к. типа ZnS с периодом  $6,309 \pm 0,004$  А.

1. Witteman W. G. a. o. J. Phys. Chem., 1960, v. 64, p. 434-440.

# $\overline{1},8584$ 0,1416

## Pr—Pt. Празеодим—платина

У PrPt<sub>2</sub> г. ц. к. решетка типа MgCu<sub>2</sub> с периодом 7,709 ± 0,001 А [1]. PrPt<sub>5</sub> имеет гексагональную структуру типа СаСи<sub>5</sub>; a = 5,353 А, c = 4,386 А [3]. 1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654. 2. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

1,7651 0,2349

## Pr—Pu. Празеодим—плутоний

Диаграмма Pr-Pu сходна с Ce-Pu [1]. В более старой работе [2] также показано, что компоненты полностью растворимы в жидком состоянии, не образуют соединений, растворяются взаимно в твердом состоянии до ~10% (ат.), образуя диаграмму перитектического типа. Введение Рг в Ри не дает возможности закалкой зафиксировать б-Ри при комнатной температуре.

1. Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240-254.

2. Schonfeld F. W. a. o. «Metallurgy and Fuels», Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579-599.

3. Gschneidner K. A. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 134-142.

#### 0,1365 1.8635

## Pr-Rh. Празеодим-родий

По рентгенограмме порошка соединения PrRh2, полученного дуговой плавкой, его структура идентифицирована как г. ц. к., изотипная с MgCu<sub>2</sub>, a = 7,575 ± ± 0,001 A [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

#### 0,1416 1,8584

## Pr-Ru. Празеодим-рутений

По рентгенограмме порошка соединения PrRu<sub>2</sub>, полученного дуговой плавкой, его структура идентифицирована как г. ц. к., изотипная с MgCu<sub>2</sub>, a = 7,624 ± ± 0.001 A [1].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

0.6428 1,3572

#### Pr-S. Празеодим-сера

Соединение PrS с точкой плавления 2230° С [1] имеет г. ц. к. решетку типа

NaCl с периодом 5,727  $\pm$  0,003 [3], 5,739 [4, 5] и 5,747 А [6, 7]. Температура плавления соединения  $Pr_3S_4$  2100° С [8]. У него о. ц. к. решетка типа Th<sub>3</sub>P<sub>4</sub> с периодом 8,589 [8] или 8,594 А [9].

У  $Pr_2S_3$  три модификации:  $\alpha$ ,  $\beta$  и  $\gamma$ .  $\alpha$ - $Pr_2S_3$  существует вплоть до 925  $\pm$  75° C, после чего переходит в  $\beta$ -Pr<sub>2</sub>S<sub>3</sub>;  $\beta$ -Pr<sub>2</sub>S<sub>3</sub> существует от 925  $\pm$  75 до 1300  $\pm$  200° С, а затем переходит в  $\gamma$ -Pr<sub>2</sub>S<sub>3</sub>, который плавится при 1795° С [1, 8, 10]. Кристал-лическая структура  $\alpha$ - и  $\beta$ -Pr<sub>2</sub>S<sub>3</sub> не была установлена; у  $\gamma$ -Pr<sub>2</sub>S<sub>3</sub> о. ц. к. решетка типа Th<sub>3</sub>P<sub>4</sub> (Pr<sub>3</sub>S<sub>4</sub> с вакансиями) с периодом 8,592 [8] или 8,594 А [10].

Соединение PrS2 плавится при 1780° С [1, 10]. Его решетка кубическая типа LaS<sub>2</sub> с 8 формульными единицами на элементарную ячейку, a = 8,08 A [10, 11].

1. Picon M. C. a. o. Congr. Intern. Chim. Pure Appl., 16 Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 685, см. [2].

2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

3. I an delli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887.

4. I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

5. I an delli A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135—141.

6. Picon M., Patrie M. Compt. Rend., 1956, v. 242, p. 1321-1324.
7. Gaume-Mahn F. Bull. Soc. Chim. France, 1956, p. 1862-1867.
8. Picon M. a. o. Bull. Soc. Chim. France, 1960, v. 26, p. 221-228.
9. Picon M., Elahaut J. Compt. Rend., 1956, v. 243, p. 2074-2076.
10. Picon M., Patrie M. Compt. Rend., 1956, v. 243, p. 1769-1772.
11. Flahaut J. a. o. Bull. Soc. Chim. France, 1959, p. 1917-1920.

0,2515 $\overline{1},7485$ 

## Pr—Se. Празеодим—селен

 $\Pr_2Se_3$  и  $\Pr_2Se_4$  идентифицированы в работе [1]. Фаза  $\Pr_2Se_4$  получена по транспортной реакции [2]. Ее область растворимости начинается от состава  $\Pr_2Se_{3,6}$ , который находится в равновесии с  $\Pr_2Se_3$ . У  $\Pr_2Se_4$  тетрагональная решетка; a = 8,39 A, c = 8,46 A;  $\Pr_2S_{3,6}$  также имеет тетрагональную структуру; a = 8,35 A, c = 8,47 A [2].

При 1200—1700° С образуется область твердых растворов между  $Pr_2Se_3$  и  $Pr_3Se_4$  [3]. У этих растворов о. ц. к. решетка типа  $Th_3P_4$  с присущими ей вакансиями в местах расположения атомов Pr, a = 8,927 А для  $Pr_3Se_4$ .

Соединение PrSe было получено прямой реакцией между компонентами при 1000—1100° С [4] и при восстановлении окисла алюминием в присутствии Se [5]. У PrSe г. ц. к. решетка типа NaCl с периодом 5,947 ± 0,003 [4] или 5,952 А [5].

1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd 233, S. 84-96.

2. Benacerraf A. a. o. Compt. Rend., 1959, v. 248, p. 1672-1675.

- 3. Benacerraf A., Guittard M. Compt. Rend., 1959, v. 248, p. 2012-2014.
- I an delli A. Gazz. Chim. Ital., 1955, v. 85, p. 881-887; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69. «Rare Earth Research», ed. E. V. Kleber The Macmillan Co., N. Y., 1961, p. 135-141.
- 5. Guittard M., Benacerraf A. Compt. Rend., 1959, v. 248, p. 2589-2591.
- 0,7004 1.2996

## Pr—Si. Празеодим—кремний

РгSi<sub>2</sub> претерпевает полиморфное превращение при  $-120 \pm 15^{\circ}$  C [1]. Ниже этой температуры структура ромбическая; a = 4,23 A, b = 4,20 A, c = 13,68 A ( $-130^{\circ}$  C); выше этой температуры решетка тетрагональная (см. М. Хансен и К. Андерко, т. II [1]) типа ThSi<sub>2</sub>; a = 4,20 A, c = 13,76 A [1].

Сообщается [2] о существовании гексагонального соединения со стехиометрическим составом вблизи  $Pr_5Si_8$ , изоморфного с подобными соединениями в системах La—Si, Ce—Si, Nd—Si, Gd—Si, Ho—Si; a = 9,63 A, c = 7,09 A.

- Perri J. A. a. o. J. Phys. Chem., 1959, v. 63, p. 616-619; Perri J. A. a. o. J. Phys. Chem., 1959, v. 63, p. 2073-2074.
- 2. Grinthal R. D. WADC Tech. Rept. 53—190, pt. IV, May, 1958; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 0,0745 $\overline{1},9255$

### Pr-Sn. Празеодим-олово \*

В работе [1] подтверждена кубическая структура PrSn<sub>3</sub> и дается период 4,714 А.

1. I and elli A. The Physical Chemistry of Metallic Solutions and Intermetallic compounds. Natl. Phys. Lab., Gt. Brit. Proc. Symp., 1959, v. 1, N 9, paper 3F, 11 p.

 $\overline{1}, 8915$ 0, 1085

### Рг—Та. Празеодим—тантал

При плавке в танталовом тигле Рг растворяет <0,04% (ат.) [0,05% (по массе)] Та. В системе нет интерметаллических соединений. Растворимость в твердом состоянии Та в Рг мала [1].

 Spedding F. H., Daane A. H. Metallurgy and Fuels, chap. V, Progress in Nuclear Energy, ser. V, v. 1, Pergamon Press; N. Y., 1956, p. 413. см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0,0431 1,9569

## Pr—Те. Празеодим—теллур

У PrTe г. ц. к. решетка типа NaCl,  $a = 6,322 \pm 0,003$  A [1]. 1. I a n d e l l i A. Gazz. Chim. Ital., 1955, v. 85, p. 881—887; Atti Accad. Nazl. Lincei, Rendom Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62—69.

1,7834 0,2166

## Pr—Th. Празеодим—торий

Предварительные данные [1] показывают, что добавки Рг снижают температуру полиморфного превращения Th. Температура плавления богатых Th сплавов уменьшается при введении Pr [1].

1. Kato H., Copeland M. I. U. S. At. Energy Comm. USBM-U-887, (OPR 13), 1961, p. 10.

0,4686 1,5314

#### Pr-Ті. Празеодим-титан

Показана несмешиваемость в жидком состоянии [1].

 Веск R. Неопубликованные данные, Denver Research Institute; см. К. Е. Лундин. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.

 $1,8385 \\ 0,1615$ 

# Pr—Tl. Празеодим—таллий \*

У PrTl кубическая решетка типа CsCl с периодом 3,869 A [1-3] (приведенные в работе [1] з лачения периодов в ангстремах на самом деле имеют размерность  $\kappa X$ ). PrTl<sub>3</sub> имеет кубическую решетку типа AuCu<sub>3</sub> с периодом 4,747 A [2-4]. Период решетки PrTl, по [2], отличается от данных [1-3].

- 1. I an delli A. Atti Congr. Intern. Chim., 10, Rome, 1938, v. 2, p. 688-694.
- 2. I and elli A. Congr. Intern. Chim. Pure Appl. 16, Paris, 1957; Mem. Sect. Chim. Minerale, 1958, p. 351-40.
- 3. I a n d e l l i A. The Physical Chemistry of Metallic Solutions and Intermetallic. Compounds, Natl. Phys. Lab., Gt. Brit., Proc. Simp., v. I, 1959, N 9, Paper 3F, 11 p.
- 4. I and elli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci, Fis. Mat. Nat., 1960, v. 29, p. 62-69.

Подтверждена несмешиваемость в жидком состоянии [1, 2]. В работе [1] химическим анализом сосуществующих расплавов определены значения взаимной растворимости в жидком состоянии (табл. 39).

| ТАБЛИЦА | 39. | ВЗАИМНАЯ РАСТВОРИМОСТЬ | Pr | И | U |
|---------|-----|------------------------|----|---|---|
|         | в   | ЖИДКОМ СОСТОЯНИИ       |    |   |   |

| Температура _ | Раствори   | мость Pr в U  | Растворимость U в Pr                  |                   |  |  |
|---------------|------------|---------------|---------------------------------------|-------------------|--|--|
| °C            | % (ат.)    | % (по массе)  | % (ат.)                               | % (по массе)      |  |  |
|               |            | По данным [1] | · · · · · · · · · · · · · · · · · · · |                   |  |  |
| 1250          | 0,66       | 0,39          | 1.22                                  | 2.02.             |  |  |
| 1225          | 0,54       | 0,32          | 1,04                                  | 1.74              |  |  |
| 1200          | 0,51       | 0,30          | 1,18                                  | 1,98,             |  |  |
| 1175          | 0,46       | 0,27          | 0,90                                  | 1,50,             |  |  |
| 1100          | 0,38       | 0,22          | 0,92                                  | 1,55              |  |  |
| 1000          | ** <b></b> |               | 0,71                                  | 1,18,             |  |  |
| 1000          | ~          |               | 0,63                                  | 1,06 <sub>3</sub> |  |  |
|               |            | По данным [2] |                                       |                   |  |  |
| 1250          | 0,67       | 0,4           | 1.31                                  | 1 22              |  |  |
| 1150          | 0,34       | 0,2           | _                                     | · · · · · · ·     |  |  |
| 1000          |            |               | 0,59                                  | 1.0               |  |  |

 Haefling J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.
 Wilhelm H. A., Nuclear Fuels Newsletter, WASH-704, December 1957 (classified); cm. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 57.

0,4418 $\overline{1},5582$ 

# Рг—V. Празеодим—ванадий

Общие особенности системы были изучены в работе [1], где показано отсутствие промежуточных фаз и существование большой области расслоения в жидком состоянии. Малые добавки Pr практически не изменяют температуры плавления V. Растворимость в жидком состоянии Pr в V очень мала, а V в Pr заметнее, о чем свидетельствует появление дендритов V в богатом Pr расплаве после кристаллизации. Отжиг при 950° С не приводит к выделению Pr из твердого V; следовательно, растворимость Pr в V должна быть очень малой. Расслоение в жидком состоянии описано также в работе [2].

- 1. Komjathy S. a.o. WADC Tech. Rept. 59-483, 1959, 69 pp.; Komjathy S. J. Less-Common Met., 1961, 3, p. 468-488.
- Лундин К. Е., Клодт Д. Неопубликованные данные, см. К. Е. Лундин. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана Изд-во «Металлургия», 1965.
- 0,1999 1.8001

## Pr— Ү. Празеодим—иттрий

Сплав с 50,3% (ат.) У по рентгенограмме порошка был идентифицирован как  $\delta$ -фаза (с г. к. структурой Sm);  $a = 3,648 \pm 0,007$  А,  $c = 26,41 \pm 0,04$  А [1].

1. Valletta R. M. Ph. D. Thesis, Iowa State University of Science and Technology, 1959, 88 p.; Dissertation Abstr., 1960, v. 20, p. 3539.

0,27811,7219

## Pt— Rh. Платина—родий \*

По данным работы [1] и М. Хансену и К. Андерко (см. т. II [6]), при 20— 25% (ат.) Rh на концентрационной кривой магнитной восприимчивости наблюдается резкий излом, который можно интерпретировать как разрыв на кривой растворимости по аналогии с системами Pt—Ir, Pd—Th и Pd—Ir. Для этого разрыва растворимости предсказывается критическая температура 780° C [2]. Результаты измерения [3] коэффициента деформационной чувствительности (изменение электросопротивления в зависимости от деформации) в сплавах с содержанием Rh до 30% (ат.) подтверждают образование метастабильных твердых растворов, фиксирующихся при закалке. Полиморфные превращения в чистом Rh описаны в работах [1, 4—7]. Данные высокотемпературных определений периода решетки [8] не согласуются с результатами работы [9]. Здесь необходимы дальнейшие исследования.

1. Darling A.S. Platinum, Metals Rev., 1961, v. 5, p. 58-65.

- 2. Raub E. J. Less-Common Met., 1959, v. 1, p. 3-18; см. [1].
- 3. Савицкий Е. М., Правоверов Н. Л. ЖНХ, 1961, т. 6, с. 2776—2780.
- 4. Jaeger F. M., Zanstra J. E. Proc. Acad. Sci. Amsterdam, 1931, v. 34, p. 15—32; см. [1].

5. Dixon E. T. Phys. Rev., 1931, v. 38, p. 6; см. [1].

- 6. Jaeger F. M., Rosenbohm E. Proc. Acad. Sci. Amsterdam, 1931, v. 34, p. 85-99; см. [1].
- 7. Рудницкий А. А. и др. Изв. сектора платины и других благородных металлов, ИОНХ АН СССР, 1955, т. 29, с. 183—189.
- 8. Raub R. u. a. Z. Metallkunde, 1959, Bd. 50, S. 428-431; см. [1].
- 9. Ваle Е. S. Platinum Metals Rev., 1958, v. 2, p. 61-63; см. [1].

#### 0,7845 $\overline{1},2155$

### Pt—S. Платина—сера \*

Подтверждено [1, 2], что у PtS тетрагональная структура (B17) и более точно определены значения периодов решетки: a = 3,4700 A, c = 6,1096 A (период a, по данным M. Хансена и К. Андерко, т. II [3], равен  $\sqrt{2a}$  по [1, 2]). Периоды решетки не изменяются с концентрацией, и поэтому область гомогенности PtS не может быть большой. Получить PtS из жидкой Pt оказалось невозможно, так как PtS вместо плавления разлагается.

Уточненные значения периодов гексагональной решетки  $PtS_2$  типа  $CdI_2$  составляют: a = 3,5432 A, c = 5,0388 A [1, 2]. Узкая область гомогенности фазы  $PtS_2$  была установлена [2] по изменению периода c в сплавах от  $PtS_{2,00}$  до  $PtS_{3,00}$ .

Предполагаемые в работе [3] соединения  $Pt_5S_6$  и  $Pt_2S_3$  не были обнаружены в работах [1, 2, 4] и приводимой М. Хансеном и К. Андерко (см. т. II [1]).

1. Kjekshus A. Acta Chem. Scand., 1961, v. 15, p. 159-166.

- 2. Gronvold F. a. o. Acta Chem. Scand., 1960, v. 14, p. 1879-1893.
- 3. Schneider R. Ann. Physik, 1869, Bd. 138, S. 604, 1873, Bd. 148, S. 625;

см. [2].

4. Kjekshus A., Gronvold F. Acta Chem. Scand., 1959, v. 13, p. 1767-1774.

0,6361 1,3639

### Pt-Sc. Платина-скандий

343

В системе образуется соединение Pt<sub>3</sub>Sc [1]. У него кубическая решетка типа Cu<sub>3</sub>Au с периодом 3,958 A.

 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

Полученное в работе [1] соединение PtSe0.80 было идентифицировано как «моноселенид»; у него моноклинная решетка; a = 6,5806 Å, b = 4,6248 Å, c == 11,145 A, β = 78,40°; точка плавления 1055 ± 15° С. Небольшие изменения периодов решетки PtSe0,80 в интервале PtSe0,70-0.85 указывают на узкую область гомогенности этого соединения [2].

Подтверждены [1, 2] известные данные о кристаллической структуре PtSe<sub>2</sub>; уточнены периоды: a = 3,7278 A, c = 5,0813 A. У PtSe<sub>2</sub> нет заметной области гомогенности, однако возможны небольшие изменения состава PtSe, с температурой [2]. Термическое расширение PtSe<sub>2</sub> анизотропно [3].

Se практически нерастворим в Pt, что доказывают [2] неизменностью периода решетки Pt в сплаве с 33,33% (ат.) Se, в котором (Pt) находится в равновесии c PtSe<sub>0,80</sub>.

1. Kjekshus A. Acta Chem. Scand., 1961, v. 15, p. 159-166.

2. Gronvold a. o. Acta Chem. Scand., 1960, v. 14, p. 1879-1893.

3. Kjekshus A., Gronvold F. Acta Chem. Scand., 1959, v. 13, p. 1767-1774.

0,8420 1,1580

## Pt—Si. Платина—кремний \*

В работе [1] методом высокотемпературной металлографии подтверждено существование эвтектики в богатой Pt области системы. Сообщаемая [1] эвтектическая температура 830° С хорошо согласуется с приведенной М. Хансеном и К. Андерко (см. т. II). Однако, по данным работ [2, 3], эвтектика может состоять из (Pt) и Pt<sub>3</sub>Si, а не Pt<sub>5</sub>Si<sub>2</sub>, как указывается М. Хансеном и К. Андерко (см. т. II [1]). У  $Pt_3Si$  моноклинная решетка, изотипная с  $Pt_3Ge; a = 7,71_6 A, b =$ = 7,77<sub>3</sub> Å, c = 7,77<sub>8</sub> Å,  $\beta = 88,15^{\circ}$  [2]. Высокотемпературная модификация Pt<sub>2</sub>Si имеет решетку типа Fe<sub>2</sub>P;  $a = 6,43_6$  A,  $c = 3,56_9$  A [2]. При комнатной температуре у этого соединения тетрагональная структура; *a* = 5,554 A, *c* = 5,923 A [2]. Последние данные подтверждают бо́льший размер ячейки Pt<sub>2</sub>Si по М. Хансену и К. Андерко (см. т. II [6]).

1. Reinacher G. Rev. Met. (Paris), 1957, v. 54, p. 321-336. 2. Schubert K. u. a. Naturwissenschaften, 1960, Bd 47, S. 303. 3. Aronsson B. Arkiv Kemi, 1960, Bd 16, S. 379-423.

0,3478 / 1,6522

## Pt—Sr. Платина—стронций

Микроскопическое и рентгеновское исследование [1] системы показало существование двух промежуточных фаз: SrPt<sub>2</sub> и SrPt<sub>5</sub>.

Последняя плавится инконгруэнтно. Если сплав состава SrPt, быстро охладить, образуется метастабильная эвтектика из Pt и SrPt<sub>5</sub>. После отжига при 1600° С в течение 6 ч на фоне эвтектики появляются кристаллы SrPt<sub>5</sub>. Эти структурные изменения происходят при концентрациях Sr вплоть до 33,3% (ат.).

Кристаллическая структура. У SrPt<sub>5</sub> гексагональная решетка CaCu<sub>5</sub>, a = = 5,397 A, c = 4,364 A. ŠrPt<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1, 2], с периодом 7,742 [1] или 7,777 ± 0,005 A [2].

1: Heumann T., Kniepmeyer M. Z. Anorg. Allgem. Chem., 1957. Bd 290, S. 191-204.

2. Wood E. A., Compton V. B. Acta Cryst., 1958, v. 11, p. 429-433.

## Pt-Та. Платина-тантал \*

В работе [1] изучено 11 сплавов с составами в диапазоне 0-50% (ат.) Та в литом состоянии и после отжига при 1500 и 1000° С. Растворимость в твердом состоянии Та в Pt составляет ~90 и ~80% (ат.) (?) при соответственно 1500 и 1000° С. Сообщается о существовании трех соединений: Pt<sub>4</sub>Ta, Pt<sub>3</sub>Ta и Pt<sub>2</sub>Ta. Pt<sub>4</sub>Ta, обнаруженное только при 1500° С, имеет тетрагональную решетку; а = = 8,58 A, c = 10,60 A; у Pt<sub>3</sub>Ta также тетрагональная структура; a = 6,45 A, c = 6,98 А. Показано, что  $Pt_2Ta$  плавится конгрузнтно. Указывается также на существование в системе конгруэнтно плавящейся фазы [2].

Сплав с 75% (ат.) Та однофазен [3]. У М. Хансена и К. Андерко (см. т. П [1]) сплав этого состава идентифицирован как тетрагональная о-фаза.

1. Browning B. D. Master's Thesis, Air Force Institute of Technology, Wright Patterson Air Force Base, Rept. GAW/Mech 61-1, 69 p. AD269424, 1961, 71 p.

2. Knapton A. G. J. Less-Common Met., 1960, v. 2, p. 113-124. 3. Geller S. a. o. J. Amer. Chem. Soc., 1955, v. 77, p. 1502-1504.

0,1847 1.8153

# Pt-Te. Платина-теллур \*

Подтверждено существование промежуточных фаз: PtTe<sub>2</sub> [1-3] и PtTe [1, 4, 5[. Температура плавления PtTe 925 ± 15° C [1]. При изучении взаимодействия Те с проволокой из спектрографически чистой Pt обнаружено, что при 700 и 825° С образуется сразу и РіТе, и РіТе, а при 900° С — только РіТе. Термическое расширение PtTe2 между 20 и 950° С анизотропно [2]. Описанная М. Хансеном и К. Андерко (см. т. II [1]) фаза Pt<sub>2</sub>Te не была обнаружена [4].

Кристаллическая структура. Более точные значения периодов гексагональной решетки PtTe<sub>2</sub> составляют: a = 4,0259 A, c = 5,2209 A [1-4]. У PtTe ромбическая решетка, a = 6,6144 A, b = 5,6360 A, c = 11,865 A [1, 4], однако, по данным работы [5], это соединение имеет гексагональную структуру NiAs; a = 4,111 A, c = 5,446 A.

1. Kjekshus A. Acta Chem. Scand., 1961, v. 15, p. 159-166.

2. Kjekshus A., Gronvold F. Acta Chem. Scand., 1959, v. 13, p. 1767-1774.

3. Groeneveld Meijer W. O. I. Amer. Mineralogist, 1955, v. 40, p. 646-657.

4. Gronvold F. Acta Chem. Scand., 1960, v. 14, p. 1879-1893.

5. Groeneveld Meijer W. O. J. Amer. Mineralogist, 1955, v. 40, p. 693-696.

1,92480,0752

# Pt—Th. Платина—торий

При исследовании [1] серии сплавов с концентрацией до 33% (ат.) Pt с помощью рентгеновского и металлографического анализов обнаружено хрупкое соединение Th7Pt3, которое входит в эвтектику вместе с (Th) при 17,5 ± ± 0,5% (ат.) Рt (эвтектическая температура 1242 ± 12° С). Промежуточная фаза ThPt<sub>3</sub> была выделена металлографически [2], но ее структура не была опрелелена.

Кристаллическая структура. У Th<sub>7</sub>Pt<sub>3</sub> гексагональная решетка, изотипная c Th<sub>2</sub>Fe<sub>3</sub>; a = 10,126 Å, c = 6,346 Å [1].

1. Thomson J. R. Nature, 1961, v. 189, p. 217.

2. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

344







точка плавления была 1720° С. Были обнаружены три соединения: TiPt, и Ti<sub>3</sub>Pt с узкими областями гомогенности и TiPt с более широкой областью существования. Результаты работы [1] отличаются от данных М. Хансена и К. Андерко (см. т. П [1]), где говорится о существовании TiPt<sub>3</sub>, Ti<sub>2</sub>Pt и Ti<sub>3</sub>Pt и отсутствии фазы ТіРt. Подтверждена г. ц. к. структура TiPt<sub>3</sub>, a=3,916 А, и кубическая структура  $\beta$ -W у Ti<sub>3</sub>Pt, a = 5,024 А [1]. Приведенные значения периодов согласуются с данными М. Хансена и К. Андерко (см. т. II [2]). В работе [2] приготовлен

сплав эквиатомного состава и в нем не обнаружено фаз с о. ц. к. решеткой или структурой CsCl.

- 1. Nishimura H., Hiramatsu T. Nippon Kinzoki Gakkaishi, 1957, v. 21, p. 469-473.
- D w i g h t A. E. Trans. AIME, 1959, v. 21, p. 283– 286.

Pt—U. Платина—уран\*

Диаграмма на рис. 377 построена [1] с использованием Pt и U чистотой 99,5% и ~99,9 соответственно методами термиче-

ского, рентгеноструктурного и металлографического анализов. Идентифицированы четыре соединения: Pt<sub>5</sub>U, Pt<sub>3</sub>U, Pt<sub>2</sub>U и PtU, но периоды их решеток не определены. Pt<sub>2</sub>U разлагается перитектически при 1220° C [2].

В работе [3] измерены периоды ромбической решетки  $Pt_2U: a = 5,60 \text{ A}, b = 9,68 \text{ A}, c = 4,12 \text{ A},$  эти результаты противоречат данным М. Хансена и К. Андерко (см. т. II [3]).

- 1. Park J. J., Fickle D. P. J. Res. Natl. Bur. Std., 1960, A64, p. 107-117; U. S. At. Energy Comm. NBS-5946, 1958, 30 p.
- 2. Park J. J., Buzzard R. W. U. S. At. Energy Comm. TID-7526, 1959, pt. 1, p. 89-102; TID-7502, 1960, pt. 1, p. 191-194.
- 3. Hatt B. A., Williams G. I. Acta Cryst., 1959, v. 12, p. 655-657.



346



0,5834 1.4166

0,0259 1.9741

## Рt-V. Платина-ванадий \*

Фаза Pt<sub>3</sub>V имеет тетрагональную решетку, изотипную с TiAl<sub>3</sub>; a = 3,861 A, c = 7,824 A [1]. Вновь подтверждена структура  $\beta$ -W у PtV<sub>3</sub>, a = 4,814 A [2]. В системе Pt—V отсутствуют фазы со структурой CsCl [3]. В сплаве с эквиатомным составом не обнаружено фаз со структурой о. ц. к. или CsCl.

 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

2. Matthias B. T. a. o. Phys. Chem. Solids, 1961; v. 19, p. 130—133; Geller S. Acta Cryst., 1956, v. 9, p. 885. Цнтируется неопубликованная работа 1955 г., где получен период a = 4,815A.

3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

# Pt—W. Платина—вольфрам \*

В работе [1] подтверждено отсутствие промежуточных фаз. Сплавы с 25 и 50% (ат.) W двухфазны [1], что противоречит опубликованной диаграмме. Возможно, это связано с нерасплавлением W при получении сплавов.

1. Knapton A. G. J. Inst. Met., 1958-59, v. 87, p. 28-32.

#### 0,3415 1,6585

# Рt— Ү. Платина—иттрий

У  $YPt_2$  г. ц. к. решетка типа MgCu<sub>2</sub> с периодом 7,590 ± 0,001 [1] или 7,607 А [2, 3]. Соединение  $YPt_3$  имеет кубическую решетку типа AuCu<sub>3</sub> с периодом 4,075 А [2, 4]. Решетка  $YPt_5$  идентифицирована как гексагональная типа CaCu<sub>5</sub>, c/a = 0,839 [2].

 Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.
 Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.

3. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

4. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

0,4751 $\overline{1},5249$ 

# Pt—Zn. Платина—цинк \*

При осаждении Zn на Pt (после отжига при 100° С или комнатной температуре) обнаружено соединение PtZn. Его структура «соответствовала» сообщениям, опубликованным ранее (см. М. Хансен и К. Андерко, т. II [1]), т. е. была г. ц. тетрагональной типа СuAu. Сообщается [1] также о присутствии слабых линий Pt<sub>5</sub>Zn<sub>2</sub>. Неизвестно, однако, на основании каких данных определена эта формула. Возможно, что речь идет об описанной М. Хансеном и К. Андерко (см. т. II [1]) фазе Pt<sub>8</sub>Zn.

1. Uhlig H. H. a. o. Acta Met., 1955, v. 3, p. 302-304.

0,3305 1,6695

# Pt—Zr. Платина—цирконий \*

Диаграмма (рис. 378) построена по данным металлографического и рентгеновского анализов [1]. Точки плавления определяли визуально по моменту появления жидкости. Сплавы готовили дуговой плавкой иодидного Zr и высокочистой Pt. В работе [1] достаточно подробно изучена область диаграммы от 50 до 100% (ат.) Zr, другая половина системы — весьма поверхностно. Концентрация критических точек определена с точностью ~±1% (по массе) Pt.

Хотя металлографически установлены области существования трех соединений [1], данные об их кристаллической структуре не приводятся. Исследование сплава эквиатомного состава показало, что ZrPt имеет структуру не о. ц. к. и не CsCl [2].

В работах [3, 4], так же как и у М. Хансена и К. Андерко (см. т. II [1]), показано существование фазы ZrPt<sub>3</sub>. При значительном общем загрязнении ее кислородом [6,000 · 10<sup>-4</sup> % (по массе)] стабилизируется г. ц. к. решетка типа Ti<sub>2</sub>Ni,  $a = 12,574 \pm 0,006$  A [3].

- 1. K en da 11 E. G. a. o. Trans. AIME, 1961, v. 221, p. 445-452.
- 2. D w i g h t A. E. Trans. AIME, 1959, v. 215, p. 283-286.
- N e v i t t N. V., S c h w a r t z L. H. Trans. AIME, 1958, v. 212, p. 700-702.
   N o w o t n y H. Z. Metallkunde, 1942, Bd. 34, S. 237-241; cm. B KHURE «Metallurgy of Zirconium», eds. B. Lustman, F. Kerze. National Nuclear Energy Series, Div. VII, v. 4, McGraw-Hill Book Co., N. Y., 1955, p. 469.
- 0,1136 $\overline{1},8864$

# Ри— Re. Плутоний—рений

Богатое Ри соединение  $PuRe_2$  образует эвтектику с Ри [1]. У  $PuRe_2$  гексагональная решетка типа  $MgZn_2$ ;  $a = 5,396 \pm 0,001$  A,  $c = 8,729 \pm 0,001$  A [2, 3],



- 1. Schonfeld F. W. B книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240-254.
- 2. Ellinger F. H., Там же, p. 281-308.
- 3. Schonfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579-599.

0,3791 1,6209

## Ри- Ru. Плутоний-рутений

Фазовые равновесия в этой системе изучены в работах [1-3]. Диаграмма на рис. 379 взята из работы [1]. Она хорошо согласуется с данными исследования [2] в области, богатой Ри (см. вставку на рис. 379). Температура перитектоид-





ного образования Ри19Ru равна 320° С [1], что находится в пределах ошибки определения известной температуры γ → δ-превращения в Ри (319 ± 5° С); в результате на диаграмме появилась горизонталь, на которой сосуществуют четыре фазы. По данным [2], температура превращения үдтво ниже и имеется область  $\delta + \zeta$  (Ри<sub>19</sub>Ru), что разрешает явное противоречие в работе [1], однако фазовую границу выше точки образования соединения нельзя увязать с предполагаемым фазовым равновесием. Существование растворимости у соединения Ри Ru, по данным [2], подтверждается и в работе [3], согласно которой предельная растворимость со стороны Ри составляет 3% (ат.) Ru. Авторы работы [1] использовали методы оптической и рентгеновской металлографии, термический и дилатометрический анализы; в работе [2] применяли термический и дилатометрический анализы сплавов, приготовленных из высокочистого Ри [сумма примесей 0.03% (по массе)] и 99,995% ного Ru. В системе имеется пять интерметаллических соединений: Ризе, Риз Ru, Риз Ru, Риз Ru, Рис и РиRus [1, 4]. В работе [3] полтверждены температуры перитектического образования и эвтектической реакции в области вблизи Ри, сообщаемые ранее [1]. Температура перитектоидной реакции, по которой образуется Pu<sub>19</sub>Ru, составляет 323 ± 3° C [3], что также хорошо согласуется с [1]. Данные об эвтектике  $Ru + Pu_2Ru$ , показанные на рис. 379, являются предварительными [1].

У PuRu кубическая решетка типа CsCl [1, 4] с периодом 3,363 A [1]; PuRu<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub> [1, 4] с периодом 7,476 [1] или 7,474 ± ± 0,001 A [1].

1. Schonfeld F. W. a. o. Metallurgy and Fuels, Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579-599; Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240-254.

2. Соре R. G. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press Ltd., London, 1961, p. 280-289.

3. Ellinger F. H. Там же, р. 320.

4. Benson E. M., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 75-76.

0,8777 1,1223

## Pu-S. Плутоний-сера \*

Описаны два соединения, образующиеся в этой системе: PuS с г. ц. к. решеткой, изотипной с NaCl,  $a = 5,536 \pm 0,001$  A [1], и Pu<sub>2</sub>S<sub>3</sub> нестехиометрического состава с о. ц. к. решеткой типа  $Th_3P_4$ ,  $a = 8,4543 \pm 0,0005$  A [2].

1. Zachariasen W. H. Acta Cryst., 1949, v. 2, p. 291–296.

2. Zachariasen W. H. Acta Cryst., 1948, v. 1, p. 265–268; 1949, v. 2, p. 57-60.

0,7310 1.2690

Плутоний — скандий

Добавка 2,75 ± 0,25% (ат.) Sc способствует фиксации 8-Ри при комнатной температуре после закалки [1].

Pu—Sc.

1. Gschneidner K. A. a. o. В книге «Plutonium, 1960, eds. F. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 134-142.

#### 0,9298 Ри-Si. Плутоний--1,0702 кремний

Идентифицированы пять соединений: PuSi, Pu<sub>2</sub>Si<sub>3</sub>, PuSi<sub>2</sub> и два соединения в интервале 30-40% (ат.) Si, которым



ориентировочно приписаны формулы Pu<sub>5</sub>Si<sub>3</sub> и Pu<sub>3</sub>Si<sub>2</sub> [1]. Pu и Pu<sub>5</sub>Si<sub>3</sub> (?) образуют эвтектику при 570° С и 4% (ат.) Si; эвтектическая точка для смеси Si + + PuSi<sub>2</sub> соответствует 82% (ат.) Si (температура не определена) [1]. В работе [2] методом высокотемпературной рентгеносъемки исследовано влияние Si на превращения δ δ δ c в Pu. Результаты [2] схематично показаны на рис. 380.

 Schonfeld F. W. a. o. В книге «Metallurgy and Fuels». Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y., 1959, p. 579—599; Schonfeld F. W. В книге «The Metal Plutonium» eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.
 Elliott R. O., Larson A. C. Там же.

0,2067 1,7933

# Ри—Sm. Плутоний—самарий

Легирование Ри самарием не стабилизирует δ-Ри [1].

1. Gschneidner K. A. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 134—142.

0,3094 1,6906

## Pu—Sn. Плутоний—олово \*

Суммированные экспериментальные данные [1] показывают, что в системе образуются только два соединения: PuSn<sub>3</sub> (см. М. Хансен и К. Андерко, т. II [1]) и богатое Pu соединение, вероятно, отвечающее формуле Pu<sub>4</sub>Sn. При~13% (ат.) Sn образуется эвтектика Pu + Pu<sub>4</sub>Sn. Растворимость в твердом состоянии очень мала — приближается к нулю.

 S c h o n f e l d F. W. a. o. В книге «Metallurgy and Fuels». Progress in Nuclear Energy, ser. V., v. 2, Pergamon Press, N. Y., 1959, p. 579—599; S c h o n f e l d F. W. В книге «The Metal Plutonium», eds. A. S. Coffinbery, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.

0,4412 $\overline{1},5588$ 

## Pu—Sr. Плутоний—стронций

Ри не сплавляется со Sr [1].

 Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinbery, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.

 $\begin{array}{r}
 0,1263 \\
 \overline{1},8737
 \end{array}$ 

## Ри—Та. Плутоний—тантал

Предварительный вариант диаграммы [1] показывает, что это простая система эвтектического типа без интерметаллических соединений. Эвтектическая точка находится вблизи Ри. Эвтектическая структура не наблюдалась и авторы допускают, что небольшое снижение температуры плавления может быть связано с примесями.

 S c h o n f e l d F. W. a. o. В книге «Metallurgy and Fuels», Progress in Nuclear Energy, ser. V, v. 2. Pergamon Press, N. Y., 1959, p. 579—599; S c h o n f e l d F. W. В книге «The Metal Plutonium», eds. A. S. Coffinherry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.

352

0,1827 $\overline{1},8173$ 

## Ри-Тb. Плутоний-тербий

Легирование Ри тербием не стабилизирует δ-модификацию Ри [1].

1. Gschneidner K. A. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o.

Cleaver-Hume Press, Ltd., London, 1961, p. 134-142.

0,0183 $\overline{1},9817$ 

## Ри—Тh. Плутоний—торий \*

Фазовые равновесия в этой системе были изучены в диапазоне 0—80% (ат.) Th [1] и во всем интервале концентраций в работе [2]. Диаграмма на рис. 381 составная: богатая Ри область дана по [1], а богатая Th — по [2]. В работе [1] дается



область δ', описанная в работе [3] (см. левую вставку на рис. 381). Область диаграммы вблизи Ри (см. правую вставку) [2] отличается от приводимой в работе [1] более низкой температурой и концентрацией точек на эвтектической горизонтали, а также спецификой нонвариантных реакций между твердыми растворами на основе различных модификаций Ри. Диаграммы работ [1, 3] согласуются с дан-

23 Р. П. Эллиот, том II

ными первой работы [4], проведенной по этой системе. При построении диаграмм использовали следующие методы: оптическая металлография [1, 4], рентгеноструктурный анализ [2, 4], высокотемпературная рентгеносъемка [3], термический анализ [1—4], дилатометрия [1, 2, 4], рентгеновская металлография [1], измерение плотности [4] и оптическая пирометрия [2].

Все авторы согласны, что в системе имеется только одна промежуточная фаза, образующаяся по перитектической реакции. Поскольку эвтектоидный распад (β-Th) происходит почти при той же температуре, что и перитектическое образование Pu<sub>2</sub>Th, даются два варианта реакции: ( $\alpha$ -Th) + Ж Pu<sub>2</sub>Th [1, 4] и (β-Th) + Ж Pu<sub>2</sub>Th [2]. Небольшие различия диаграммы [1, 2], не показанные на рис. 381, касаются температур полиморфных превращений Pu:  $\gamma \rightarrow \delta$ -превращение происходит при 305° C,  $\beta \rightarrow \gamma$  – при 215° C и  $\alpha \rightarrow \beta$  – при 127° C [2].

Денситометрическими измерениями установлено [4], что соединение  $Pu_{13}Th_6$ имеет область гомогенности при 30—33% (ат.) Th. Согласно [2, 4], это соединение имеет ромбическую решетку;  $a = 9,820 \pm 0,005$  A,  $b = 8,164 \pm 0,005$  A,  $c = 6,681 \pm 0,005$  A [4]; a = 9,79 A, b = 8,43 A, c = 7,90 A [2].

- Schonfeld F. W., a. o. В книге «Metallurgy and Fuels». Progress in Nuclear Energy, ser. V, v. 2. Pergamon Press, N. Y., 1959, p. 579—599; Schonfeld F. W. Вкниге «The Metal Plutonium», eds. A. S. Coffiberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.
- 2. Бочвар А. А. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии. Доклады советских ученых, т. З. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 376—395.
- 3. Elliott R. O., Larson A. C. В книге «The Metal Plutonium», eds. A. S. Coffiberry, M. N. Miner. University of Chicago Press, Chicago, 1961, p. 265—280.
- 4. Poole D. M. a. o. J. Inst. Met., 1957-1958, v. 86, p. 172-176.

0,7035 1,2965

## Ри-Ті. Плутоний-титан

В работе [1] построен предварительный вариант диаграммы состояния (рис. 382), включающий данные [2] по растворимости δ'-фазы. Превращение ( $\alpha$ -Pu)  $\rightarrow$  ( $\beta$ -Pu), не отмечается. Температура перехода ( $\gamma$ -Pu)  $\rightarrow$  ( $\delta$ -Pu)  $\rightarrow$  ( $\delta$ -Pu)  $\rightarrow$  ( $\delta$ -Pu)  $\rightarrow$  ( $\beta$ -Pu), не отмечается. Температура перехода ( $\gamma$ -Pu)  $\rightarrow$  ( $\delta$ -Pu)  $\rightarrow$  ( $\gamma$ -Pu)  $\rightarrow$  ( $\gamma$ -Pu) выше, чем у чистого Pu. Эти данные, согласно [1], указывают на ничтожную растворимость Ti в  $\gamma$ -Pu и возможность некоторого растворения Ti в  $\beta$ -Pu. Максимальная растворимость Ti в  $\delta$ -Pu примерно 4% (ат.) [2], однако указывается цифра 0,3% (ат.) [3]. Это расхождение, вероятно, вызвано различной чистотой исходного Pu. Наиболее велика растворимость Ti в  $\epsilon$ -Pu [25% (ат.) при 770° C]. Область  $\delta$ ' определена на Pu чистотой не менее 99,97% [2]. В работе [1] подтверждено, что эвтектойдная температура равна 442° C [2].

Температура α → β-превращения в Ті снижается под действием Ри до 603° С [1]; максимальная растворимость Ри в β-Ті около 15% (ат.), в α-Ті — около 4% (ат.).

Ожидается [4], что линия ликвидуса в зависимости от состава почти прямолинейна.

- 1. Poole D. M. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 267—280.
- Elliott R. O., Larson A. C. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 265—280.
- 3. Waldron M. B. Там же, р. 225—239.
- 4. Schonfeld F. W. a. o. В книге «Metallurgy and Fuels». Progress in Nuclear Energy, ser. V, v. 2, Pergamon Press, N. Y. 1959, p. 579—599.



1,8438

2000

1800

1600

1400

-500

- 450

- 400

п

PU

(8-Pu)

2.5

## Ри—Тт. Плутоний—тулий

% (no macce)

20

30

40 50 60 708090

(B-Ti

(a-Ti)

90

100

Τi

80

10

(E-PU)

446

δ-Ρμ+α-Τι

5,0

Ti,% (am.)

6.5

7,5

Легирование Ри тулием в количестве <5% (ат.) стабилизирует δ-модификацию Ри при комнатной температуре после закалки [1].

1. Gschneidner K. A. a. o. В книге «Plutonium. 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 134—142.

#### 0,0071 $\overline{1},9929$

23\*

## Ри— U. Плутоний—уран \*

Фазовые равновесия в этой системе изучались в работах [1-3], область  $\delta' - B$  [4]. Диаграмма (рис. 383) построена по данным [1, 4]. В работе [1] использовали материалы чистотой 99,8%; Ри, из которого готовили сплавы [4], имел чистоту 99,95%. В работах [1-3] применяли стандартные методики рентгеновского,

## 354

термического, дилатометрического и металлографического анализов. В работе [4] пользовались высокотемпературной рентгеносъемкой и термическим анализом. Диаграммы [1, 2] в общем близки в отношении нонвариантных реакций, за исключением того, что, по [1], эвтектоидная реакция η (β-Pu) + ζ идет при 278° С, в то время как, согласно [2], η (γ-Pu) + ζ – при 295° С. Другие де-



Рис. 383. Ри--- U

тали богатой Ри области диаграммы (см. вставку на рис. 383) не сообщаются [2], поэтому предпочтение отдано данным работы [1]. Предел растворимости η со стороны U составляет 65% (ат.) U, температура перитектоидного образования 595° С, а температура эвтектоидного распада (β-U) 565° С [2]. Диаграмма [3], для которой приводится мало исходных данных, отличается от варианта, приведенного в работе [1], следующими деталями: а) большей растворимостью U в β-Ри: 17% (ат.) [% (по массе)] при 300° С и 4% (ат.) [% (по массе)] при 150° С; б) пониженной растворимостью U в γ-Ри, образующемся по перитектоидной реакции; в) пределами растворимость (смассе)] U, который противоречит правилу фаз.

Растворимость Ри в  $\alpha$ -U при 25  $\pm$  2° C составляет 15% (ат.) [% (по массе)] [5]. Температура перитектоидного образования ( $\alpha$ -Ри) 115,5—118° C [6]. В работе [2] отмечены остановки при 280 и 295° С между 5 и 25% (ат.) U; на основе диаграммы [1] можно объяснить только остановку при 280° С.

Результаты изучения кристаллической структуры промежуточных фаз следующие.  $\eta$ -фаза с 25% (ат.) U имеет тетрагональную решетку;  $a = 10,57 \pm \pm 0,005$  А,  $c = 10,76 \pm 0,005$  А [1, 7]. Структура  $\zeta$  также идентифицирована [3] как тетрагональная; a = 10,73 А, b = 10,44 А при 20% (ат.) U; по данным других работ у нее простейшая кубическая решетка с периодом 10,692 А [35% (ат.) U]; 10,651 А [70% (ат.) U] [1]; 10,664  $\pm$  0,005 А [7]; 10,65  $\pm$  0,01 А [35% (по массе) U]; 10,61  $\pm$  0,01 А [50% (по массе) U]; 10,60  $\pm$  0,02 А [70% (по массе) U] [2]. В работе [7] указывается, что у  $\zeta$ -фазы в действительности, вероятно, тетрагональная решетка, c/a = 1,00 при комнатной температуре.

- Ellinger F. H. a. o. J. Nucl. Mater., 1959, v. 1, p. 233—243; Schonfeld F. W. Вкниге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.
- Waldron M. B. Taw we, p. 225-239; Waldron M. B. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 6, p. 162-169.
- 3. Бочвар А. А. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии. Доклады советских ученых, т. 3. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 376—395.
- Elliott R. O., Larson A. C. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 265—280.
- 5. Berndt A. F. U. S. At. Energy Comm. ANL-6516, 1961, p. 214-217.
- 6. Nelson R. D., Taylor J. M. U. S. At. Energy Comm. HW-62073, 1960, 22 p.
- 7. Coffinberry A. S., Ellinger F. H. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, v. 9, p. 138—146; Ellinger F. H. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 281—308.

0,6767 $\overline{1},3233$ 

Ри-V. Плутоний-ванадий \*

Существование эвтектической диаграммы, данной М. Хансеном и К. Андерко (см. т. II [1]), не подтверждено [1]. В работе [1] не было обнаружено эвтектической микроструктуры и выражено сомнение в том, что снижение на несколько градусов температуры плавления Ри связано именно с добавлением V, а не с присутствием других примесей. V фактически нерастворим в δ-, δ'- или ε-Ри [2]. η-Ри, стабильный по М. Хансену и К. Андерко (см. т. II, [1]), при 450—475° С, согласно данным работы [1] соответствует δ'-Ри, стабильному при .452—480° С.

 Schonfeld F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.
 Elliott R. O., Larson A. C. Там же, p. 265—280.

## Ри-W. Плутоний-вольфрам

Согласно предварительным данным, диаграмма Pu—W простая эвтектическая, без промежуточных фаз [1]. Эвтектическая точка находится вблизи Pu. Эвтектических микроструктур не было обнаружено и авторы поэтому полагают, что небольшое понижение температуры плавления может быть связано с примесями [1].

 S c h o n f e l d F. W. a. o. В книге «Metallurgy and Fuels». Progress in Nuclear Energy, ser. V, v. 2. Pergamon Press, N. Y., 1959, p. 579—599; S c h o n f e l d F. W. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 240—254.

# $\frac{0,4348}{1,5652}$

## Ри— Ү. Плутоний—иттрий

Легирование Ри иттрием не стабилизирует δ-Ри [1].

1. Gschneidner K. A. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd, London, 1961, p. 134—142.

#### 0,1458 $\overline{1}.8542$

### Ри— Yb. Плутоний—иттербий

Легирование Ри иттербием не стабилизирует δ-Ри [1].

1. Gschneidner K. A. a. o. В книге «Plutonium, 1960», eds. E. Grison a. o. Cleaver-Hume Press, Ltd., London, 1961, p. 134—142.

# 0,5684 Ри—Zn. Плутоний—цинк

На рис. 384 приведена диаграмма по данным работы [1]. При ее построении использовали термический, рентгеновский и металлографический анализы спла вов, приготовленных из Ри и Zn чистотой соответственно 99,83 и 99,99%. Обнаружены четыре промежуточные фазы:  $PuZn_2$ ,  $Pu_2Zn_9$ ,  $PuZn_8$  и  $Pu_2Zn_17$ .  $PuZn_2$  существует в узком и не установленном диапазоне концентраций. Область б' на рис. 384 дана гипотетически; предполагается, что эвтектоидная концентрация <0,5% (ат.) Zn, поскольку (б'-Ри) не был обнаружен.

У PuZn<sub>2</sub> г. ц. к. решетка, изотипная с MgCu<sub>2</sub>;  $a = 7,760 \pm 0,001$  A (со стороны Pu),  $a = 7,747 \pm 0,001$  A (со стороны Zn). Соединение Pu<sub>2</sub>Zn<sub>17</sub> имеет гексагональную решетку типа U<sub>2</sub>Zn<sub>17</sub>;  $a = 8,994 \pm 0,004$  A,  $c = 26,60 \pm 0,08$  A.

- Ellinger F. H. a. o. В книге «Extractive and Physical Metallurgy of Plutonium and Its Alloys». ed. W. D. Wilkinson. Interscience Publishers, Inc., N. Y., 1960, p. 169—180.
- 0,4237 $\overline{1},5763$

## Ри—Zr. Плутоний—цирконий \*

В независимо проведенных работах [1, 2] получены два варианта диаграммы рис. 385 [1] и 386 [2]. В основных чертах они близки, но расходятся во многих деталях. Вероятно, предпочтение следует отдать данным работы [1], которая кажется более детальной.

Данные работ [1, 2] согласуются в следующих чертах строения диаграммы: неограниченная растворимость в твердом состоянии между ε-Ри и β-Zr с постоянно





повышающимся солидусом от Ри к Zr; существование двух промежуточных фаз; протяженность области твердых растворов на основе  $\delta$ -Ри [до  $\sim$ 70% (ат.) Zr], распадающихся в пределах этой области по двум эвтектоидным реакциям; существование довольно широкой области твердого раствора на базе  $\alpha$ -Zr [13—15% (ат.) Ри].

Некоторые важные различия между вариантами диаграмм [1, 2] сводятся к следующему: твердый раствор є с образованием δ-фазы распадается по перитектоидной реакции [1] или по эвтектоидной [2]; различны положение на диаграмме, формулы и области гомогенности богатой Ри промежуточной фазы и PuZr<sub>2</sub>; различны многие концентрации и температуры критических точек.

Авторы работы [1] приписывают богатой Ри промежуточной фазе с областью гомогенности 12,1—20,6% (ат.) Zr формулу Ри<sub>6</sub>Zr. Сплав с 17% (ат.) Zr распадается с образованием в процессе нагрева (δ-Ри) при ~350° С. Согласно [2], аналогич-

<sup>0,1193</sup>  $\overline{1},8807$
ная фаза (в) существует в диапазоне от ~10 до ~30% (ат.) Zr, распадаясь с образованием (б-Ри) при ~345° С. Без сомнения, М. Хансен и К. Андерко (см. т. II [1]) под этой фазой подразумевают соединение  $Pu_x Zr$  (x > 3).

Ри Ст. имеет область гомогенности от 65,3 до 68% (ат.) Ст и распадается при нагреве с образованием (δ-Ри) при 450° С [1]. х-фаза существует в очень узкой





Ри<sub>в</sub>Zг имеет ромбическую решетку; a = 10,39A, b = 10,44A, c = 11,18A, 8 формульных единиц на элементарную ячейку [1]. У РиZг<sub>2</sub> гексагональная решетка типа разупорядоченной AlB<sub>2</sub> [2], a = 5,055 A, c = 3,123 A [2];  $a = 5,060 \pm 0,002$  A,  $c = 3,119 \pm 0,002$  A [1].  $\theta$ -фазе [2] в работе [3] приписывается формула Pu<sub>19</sub>Zr.

- 1. Б.очвар А. А. и др. Труды 2-й Международной конференции по мирному использованию атомной энергии. Доклады советских ученых, т. З. Ядерное горючее и реакторные металлы. Атомиздат, 1959, с. 376—395. 2. Marples J. A. C. J. Less-Common Met., 1960, v. 2, p. 331—351.
- 3. Ellinger F. H. В книге «The Metal Plutonium», eds. A. S. Coffinberry, W. N. Miner. University of Chicago Press, Chicago, 1961, p. 304-305.



## Rb—Sb. Рубидий—сурьма \*

Диаграмма (рис. 387) построена по результатам термического и рентгеновского анализов [1]. Рентгенограммы порошка. каждого из соединений Rb<sub>3</sub>Sb, Rb<sub>5</sub>Sb<sub>2</sub> [неопределенной концентрации между 25 и 30% (ат.) Sb], Rb<sub>5</sub>Sb<sub>4</sub>, RbSb, RbSb<sub>2</sub> и Rb<sub>3</sub>Sb<sub>7</sub> оказались различными. Фазы RbSb<sub>2</sub> и Rb<sub>3</sub>Sb<sub>7</sub> могут содержать на 1,5% (ат.) Sb меньше, чем это следует из формулы соединения. Превращения



в соединениях  $Rb_5Sb_2$  (?) и  $Rb_3Sb_7$ , происхдящие с повышением температуры, не подтверждены результатами рентгеновского анализа. Растворимость в твердом состоянии Rb в Sb и Sb в Rb неизвестна. В области диаграммы, богатой Rb, по-видимому, происходит эвтектическая реакция. В работе [2] при изучении кристаллических структур и электрических свойств пленок Rb—Sb идентифицирована «кубическая фаза  $Rb_3Sb$ », из которой с увеличением содержания Rbобразуется гексагональная фаза. Соответствует ли она соединению  $Rb_5Sb_2$  (?), неизвестно [1].

Кристаллическая структура. У Rb<sub>3</sub>Sb гексагональная решетка, изотипная с Na<sub>3</sub>As;  $a = 6,28_3$  A, c = 11,18 A [3], a = 6,29 A, c = 11,17 A [4]. Согласно работе [2], у гексагональной фазы  $a = 6,32 \pm 0,02$  A,  $c = 11,19 \pm 0,02$  A; у соединения Rb<sub>3</sub>Sb с кубической решеткой, из которого образуется при увеличении концентрации Rb гексагональная фаза, периода  $a = 8,84 \pm 0,02$  A.

- 1. Dorn F. W., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 189-203.
- 2. Chikawa J. a. o. J. Phys. Soc. Japan, 1961, v. 16, p. 1175-1180.

3. G n u t z m a n n G. u. a. Z. Anorg. Allgem. Chem., 1961, Bd 309, S. 210-225.

4. Журавлев Н. Н. и др. Кристаллография, 1960, т. 5, с. 134—137.

0,4833 $\overline{1},5167$ 

### Rb—Si. Рубидий—кремний \*

У RbSi кубическая решетка, изотипная KGe, с 32 формульными единицами на элементарную ячейку [1]. Структура этого соединения была изучена с помощью Фурьс-анализа [2], a = 13,04 A [2, 3]. Соединение RbSi<sub>6</sub> образуется при разложении RbSi в глубоком вакууме при  $\sim 525^{\circ}$  C [3]; очень сложная рентгенограмма порошка RbSi<sub>6</sub> близка к KSi<sub>6</sub>, KGe<sub>4</sub> и RbGe<sub>4</sub> и, вероятно, соответствует кубической решетке с периодом 13,4 A [3]; здесь необходимы дальнейшие исследования.

1 Busman E. Naturwissenshaften, 1960, Bd 47, S. 82.

2. Busman E. Z. Anorg. Allgem. Chem; 1961, Bd 313, S. 90-106.

3. Schafer R., Klemm W. Z. Anorg. Allgem. Chem., 1961, Bd 312, S. 214-220.

0,7642 1.2358

### Re—S. Рений—сера \*

 $\operatorname{ReS}_7$  имеет о. ц. тетрагональную решетку; a = 13, 66 A, c = 5,53 A [1]На элементарную ячейку  $\operatorname{Re}_2S_7$  приходится 10 формульных единиц;  $a = 13, 7 \pm \pm 0,3 \text{ A}, c = 10,24 \pm 0,6 \text{ A}$  [2]. В работе [3] изучено разложение  $\operatorname{Re}_2S_7$  при повышении температуры. Установлено, что выше 400° C  $\operatorname{Re}_2S_7$  разлагается с образованием дисульфида  $\operatorname{ReS}_2$ . В интервале концентраций между  $\operatorname{ReS}_2$  и  $\operatorname{Re}_2S_7$  отсутствуют термически стабильные соединения. Показано также, что не образучется сульфидов, более богатых Re, чем  $\operatorname{ReS}_2$ .

1. Traore K., Brenet J. Compt. Rend., 1959, v. 249, p. 280-282.

2. Traore K., Brenet J. Bull. Soc. Franc. Mineral. Crist., 1959, v. 82, p. 323; cm. [3].

3. Роде Е. Я., Лебедев В. А. ЖНХ, 1961, т. 6 с. 1198—1203.

0,6172 $\overline{1}.3828$ 

### Re—Sc. Рений—скандий

У ScRe<sub>2</sub> гексагональная решетка типа MgZn<sub>2</sub>; a = 5,267 A, c = 8,584 A [1]

1. Dwigt A. E. U. S. At. Energy Comm, ANL-6516, 1961, p. 259-261.

0,3728 Re—Se. Рений—селен \*

ReSe<sub>2</sub> стехиометрического состава был синтезирован из Re и Se чистотой соответственно 99 и 99,9% при 700° С [1]. Кристаллическая структура этого соединения, вероятно, имеет более низкую симметрию, чем гексагональная [1].

1. Украинский Ю. М., Новоселова А. В., ДАН СССР, 1961, т. 139, с. 1136—1137.

362

вторая эвтектика, наблюдавшаяся также в исследовании [3]. По [1], Ж $\rightleftharpoons$ (Та) +  $\sigma$ , а по [3], Ж $\rightleftharpoons$  $\sigma$  +  $\chi$ . В работах [1, 3] показан эвтектоидный распад  $\sigma$ -фазы; однако, согласно [2], ниже 2860 ± 25° С  $\sigma$  не распадается. Несмотря на много-





численные расхождения, диаграмме по работе [1] следует отдать предпочтение, поскольку она является результатом наиболее обширного исследования. Максимальная растворимость в твердом состоянии Re в Ta составляет: 47,3% (ат.) [48, 4% (по массе)] [1]; 47,9% (ат.) [49% (по массе)] [2]; 41% (ат.) [3]; растворимость Ta в твердом Re равна примерно 5% (ат.) [1—3].  $\sigma$ -фаза имеет тетрагональную решетку;  $a = 9,80_9$  A,  $c = 5,12_3$  A [4]; a = 9,69 A, c = 5,04 A [1];

365

Диаграмма (рис. 388) построена по результатам металлографического, рентгеноструктурного и термического анализов выплавленных в дуговой печи или спеченных образцов, приготовленных из высокочистых материалов [1]. Известны три соединения: ReSi, ReSi<sub>2</sub> и предварительно идентифицированное как Re<sub>5</sub>Si<sub>3</sub>. Надо полагать, что формула Re<sub>5</sub>Si<sub>3</sub> более точно соответствует стехиометрическому составу соединения, которомуМ. Хансен и К. Андерко (см. т. II [1]) приписывали



0,0128 $\overline{1},9872$ 

0,8217

1,1783



Фазовые равновесия в этой системе были исследованы в работах [1—3]. Диаграмма (рис. 389) заимствована из работы [1], на вставке показан участок от 40 до 100% (ат.) Re, по [3]. На рис. 390 приведена область диаграммы [2] в диапазоне от 40 до 100% (ат.) Re от 2000 до 3200° С. В работах [1, 2] были использованы материалы высокой чистоты. Здесь в качестве основных применяли рентгеновский, металлографический и термический (с помощью оптического пирометра) анализы. Авторы работы [2] измеряли также твердость. В работе [3] дана диаграмма, базирующаяся на измерениях ликвидуса и рентгеновских ланных.

Согласно [1—3], в системе существуют две промежуточные фазы:  $\sigma$  и  $\chi$ ; однако их происхождение неодинаково трактуется разными авторами: по [1, 2],  $\sigma$  образуется по перитектической реакции  $\mathcal{K} + \chi \not\subset \sigma$ , а в работе [3] дается другая реакция  $\mathcal{K} + (Ta) \not\subset \sigma$ . Согласно [1],  $\chi$  плавится без разложения и входит в эвтектику с твердым раствором на основе Re, в то время как авторы работ [2, 3] дают перитектическую реакцию  $\mathcal{K} + (Re) \not\subset \chi$ . В работе [1] обнаружена

a = 9,63 А, c = 4,928 А [2]. У  $\chi$ -фазы о. ц. к. решетка типа  $\alpha$ -Мп с периодом  $a = 9,65 \div 9,621$  А  $\{63,7 - 82,1\%$  (ат.) [64,4-82,5% (по массе)] [2]; 9,686 А [4]; 9,765 A [64,8% (ar.) Re] [5]; 9,758-9,624 A [64,3-78,5% (ar.) Re] [1].



Рис. 390. Re-Ta (2) (см. также рис. 389)

- 1. Brophy J. H. a. o. Trans. AIME, 1960, v. 218, p. 910-914, Brophy J. H. Schwarzkopf P. Trans. AIME, 1960, v. 218, p. 184-185.
- 2. Тылкина М.А.идр. ЖНХ, 1960, т. 5, с. 1905—1907, Савицкий Е.М. Тылкина М. А. ЖНХ, 1958, т. 3, с. 820—837. 3. Кпарton А. G. J. Less-Common Met., 1960, v. 2, p. 113—124.
- 4. Knapton A. G. J. Inst. Met., 1958-1959, v. 87, p. 28-32.
- 5. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.
- 1,9045 0,0955

### Re---Тh. Рений---торий

Соединение ThRe<sub>2</sub> имеет гексагональную решетку, изотипную с MgZn<sub>2</sub>; a = 5,492 A, c = 9,097 A [1].

1. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

0,5899 1,4101

Re-Ti. Рений-титан \*

Диаграмма на рис. 391 построена по результатам исследования 23 сплавов с помощью металлографического и дилатометрического анализов и методом определения температуры оплавления [1]. Область твердого раствора на основе β-Ті простирается до ~50% (ат.) Re, что согласуется с более ранними предположениями (см. М. Хансен и К. Андерко, т. II [1]). Область твердого раствора



366

на базе  $\alpha$ -Ті очень ограничена, растворимость при 750° С составляет 0,03% (ат.) Re. Раствор на основе  $\beta$ -Ті стабилизируется при пониженных температурах с увеличением содержания Re. ( $\beta$ -Ті) можно зафиксировать закалкой уже при 4,5% (ат.) Re; при меньших концентрациях Re закаленная структура содержит мартенситную  $\alpha'$ -фазу [1, 2]. В диапазоне 2,8—4,5% (ат.) Re после закалки появляется значительное количество метастабильной  $\omega$ -фазы, существующей во многих титановых сплавах [1, 2].

Границы фазовых областей, примыкающих к перитектической горизонтали, а также растворимость Ті в твердом Re точно не установлены. Предполагается, что в Re растворяется не больше нескольких процентов [1] по массе Ti.

Подтверждено [1] существование обнаруженной ранее промежуточной фазы Ti<sub>5</sub>Re<sub>24</sub> и показано, что она образуется по перитектической реакции при 2750° С. Других промежуточных фаз нет. Период о. ц. к. решетки Ti<sub>5</sub>Re<sub>24</sub> типа α-Mn равен 9,587 А. Ниже 66° К эта фаза является сверхпроводником [3].

1. Савицкий Е. М. идр. ЖНХ, 1959, т. 4, с. 702—704; Савицкий Е. М. и Тылкина М. А. ЖНХ, 1958, т. 3. с. 820—837.

2. Багаряцкий Ю. А. идр. ДАН СССР, 1958, т. 122, с. 593-596.

3. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

## 1,8935

### Re—U. Рений—уран

Диаграмма (рис. 392) взята из работы [1]. Предварительные данные показали существование только одного интерметаллического соединения URe<sub>2</sub>. Экспериментальные детали не приводятся.

URe<sub>2</sub> плавится с открытым максимумом при 2200° С и образует эвтектики с (Re) и ( $\gamma$ -U), в то время как U<sub>2</sub>Re образуется с малой скоростью по перитектондной реакции при температуре ниже 750° С [1]. URe<sub>2</sub> имеет две полиморфные модификации с температурой превращения 180 ± 3° С [1, 2]. Растворимость U в Re почти постоянна и равна 0,5% (ат.) [0,6% (по массе)] от комнатной температуры до 2000° С [1].

Согласно экспериментальным данным более старой работы [3], (γ-U) образуется по перитектической реакции при 1150—1200° С. Растворимость Re в γ-U составляет 6—16% (ат.), в α-U 0,5—1% (ат.) [3]. В работе [3] показано существование соединений, более богатых U, чем URe<sub>2</sub>, которое образуется по перитектоидной реакции при ~800° С и затем распадается при 625—630° С (в работе [1] не сообщается об эвтектоидном распаде URe<sub>2</sub>). (α-U) и (γ-U) могут быть зафиксированы закалкой при комнатной температуре [1, 3]; при последующем распаде обоих твердых растворов образуются метастабильные фазы [1].

Промежуточная фаза URe<sub>2</sub> имеет две аллотропические модификации [2]. Выше 180  $\pm$  3° C у нее гексагональная решетка типа MgZn<sub>2</sub>; a = 5,433 A, c = 8,561 A. Ниже 180° C решетка высокотемпературной модификации претерпевает ромбическое искажение и ее периоды становятся равными: a = 5,600 A, b = 9,178 A, c = 8,463 A. Кристаллическая структура URe<sub>2</sub> не установлена.

Larsen W. L. a. o. U. S. At. Energy Comm. IS-500, 1962, M32-M33.
Неопубликованная работа Fulmer Research Institute, 1957; см. U. S. At. Energy Comm. BMI-1300, 1958, p. 57-58.
Hatt B. A. Acta Cryst., 1961, v. 14, p. 119-123.

0,5631 $\overline{1},4369$ 

### Re—V. Рений—ванадий \*

Диаграмма (рис. 393) построена по результатам термического, микроскопического и рентгеновского анализов и измерений твердости и микротвердости [1]. В работе [1] использовали Re и V чистотой 99,8% и могли оценивать температуры



Рис. 392. Re--U

#### 24 Р. П. Эллиот, том II

плавления с точностью ± 25 *град*. Диаграмма [1] согласуется по виду и (примерно) по значениям растворимости с вариантом диаграммы, приведенным ранее в работе [2].



Промежуточная фаза σ образуется по перитектической реакции (2490 ± 25° C [1]) и соответствует по составу соединению Re<sub>3</sub>V [1, 2]. Около 1500° C

Рис. 393. Re-V

Re<sub>3</sub>V претерпевает эвтектоидный распад с образованием двух насыщенных твердых растворов [1, 2]. Анализ рентгенограмм порошка с-фазы показал, что у нее тетрагональная решетка; a = 9,42 A, c = 4,85 A [2]; a = 9,36 A, c = 4,86 A [1, 3].

Область растворимости в твердом состоянии V в Re мала [<5% (ат.)] [1]. Растворимость Re в V, наоборот, велика [~65% (ат.) между 800—1500° C] [1, 2]. С увеличением концентрации Re солидус повышается от точки плавления чистого V до температуры 2290 ± 25° С, при которой происходит перитектическая реакция Ж [~32,5% (ат.)] + σ [~75% (ат.) Re] ⇐ (V) [1].

- 1. Тылкина М. А. ЖНХ, 1960, т. 5, с. 1907—1910.
- 2. Komjathy S. a. o. WADC Tech. Rept. 59-483, 1959, 69 p.; Komjathy S.
- J. Less-Common Met., 1961, v. 3, p. 468-488.
- 3. Тылкина М. А. идр. ДАН СССР, 1960, т. 131, с. 332—334.

0,0056 $\overline{1},9944$ 

### Re—W. Рений—вольфрам \*

Фазовые равновесия в этой системе были исследованы в работах [1, 2] с использованием металлографического и капельного (по моменту начала видимого оплавления) методов. Диаграмма (рис. 394) в основном заимствована из работы [1], только солидус твердых растворов на основе компонентов построен по данным [2]. В твердом состоянии растворимость Re в W составляет 37% (ат.) при 3000° C, 28% (ат.) при 1600° C [1]; в работе [2] эти значения выше: 45% (ат.) при 2890° C и 32% (ат.) при 1100° C. Значения растворимости W в Re, определенные в работах [1, 2], хорошо согласуются: 20% (ат.) при 2800° C [1], 15% (ат.) при 2815° C [2], 14% (ат.) при 2410° C [1], 11% (ат.) при 1600° C [1] и 12% (ат.) при 1100° C [2].

Имеется общее мнение, что фаза σ-WRe образуется по перитектической реакцин при 3000° С [1] или 2890° С [2]. Максимальные значения растворимости этого соединения также хорошо согласуются по данным разных авторов: 43,5— 71% (ат.) Re при 2200—2800° С [1], 45—66% (ат.) Re при 2000° С [2], по сравнению с 43,5—66% (ат.) Re [1] при 2000° С; 40—66% (ат.) Re [2] при 1100° С. Периоды тетрагональной решетки σ-фазы равны: a = 9,645 A, c = 5,038 A [3]. Эвтектика (Re) + σ образуется при 74% (ат.) Re и 2825° С [1] или 75% (ат.) Re и 2815° С [2]; согласно [4], эвтектическая точка расположена при 70% (ат.) Re.

Вторая промежуточная фаза образуется при 2125° С [1] по перитектоидной реакции [1, 2] с участием фаз σ и (Re). Область ее гомогенности вблизи 73% (ат.) Re очень узка [1]. Как отмечалось М. Хансеном и К. Андерко (см. т. II [3]), эта фаза, обозначенная как χ на рис. 394, имеет решетку α-Мп.

1. Dickinson J. W., Richardson L. S. Trans. ASM, 1959, v. 51, p. 758-771.

2. Савицкий Е. М. и др. Изв. АН СССР, ОТН, Металлургия и топливо, 1959, вып. 3, с. 99-107.

3. Савицкий Е. М., Тылкина М. А. ЖНХ, 1958, т. 3., с. 820—837.

4. Kirner K. Planseeber. Pulvermet., 1959, Bd. 7, S. 117-119.

0,3210 1,6790

### Re— Ү. Рений—иттрий

Диаграмма на рис. 395 построена по результатам рентгеновского и металлографического анализов [1], но опубликована в работах [2, 3]. Единственное соединение YRe<sub>2</sub> образуется по перитектической реакции при 2520° С. Сплав с 95% (ат.) Y кристаллизуется по эвтектической реакции. В работе [2] эвтектическая горизонталь проведена правильно, но не обозначена концентрация. В работе [3] эта неточность повторена. Эвтектическая точка при 95% (ат.) Y была установлена нами в контакте с Лундиным. Превращение α-Y → β-Y (1490° C), возможно, идет по перитектической реакции [2].

У YRe<sub>2</sub> гексагональная решетка типа MgZn<sub>2</sub> [2, 4, 5];  $a = 5,397 \pm 0,002$  A,  $c = 8,824 \pm 0,002$  A [2];  $a = 5,396 \pm 0,002$  A,  $c = 8,819 \div 0,002$  A [4]; a = 5,397 A, c = 8,828 A [5].

$$24*$$



- 1. Лундин К. Е. и Клодт Д. Неопубликованная работа, выполненная в Denver Research Inst. on G. E. — ANPD Subcontract AT-33; см. [2].
- 2. Лундин К. Е. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.
- 3. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

4. Compton V.B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654. 5. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.



#### 0,3101 $\overline{1},6899$

### Re-Zr. Рений-цирконий \*

Диаграмма на рис. 396 построена методами металлографического, капельного (по моменту видимого начала оплавления) и рентгеновского анализов, выплавленных в дуговой печи сплавов из иодидного Zr и 99,8%-ного Re [1]. Были обнаружены три соединения: Zr<sub>5</sub>Re<sub>24</sub>, ранее известное ZrRe<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [1]) и Zr<sub>2</sub>Re. Рентгеновские данные обсуждаются в работе [2]. Соединение Zr<sub>5</sub>Re<sub>24</sub> наблюдалось также в исследованиях [3, 4], но при несколько ином стехиометрическом составе; существование ZrRe<sub>2</sub> подтверждено в работах [5, 6].

Данные работ [6 и 1] противоречат друг другу в отношении способа образования ZrRe<sub>2</sub>: согласно [1], происходит перитектическая реакция при 2450° С, а по [6], это соединение конгруэнтно плавится при 2750° С и перитектическая реакция не идет. Положения границ областей существования Zr<sub>5</sub>Re<sub>24</sub> и ZrRe<sub>2</sub> точно не установлены, но, судя по изменениям периодов решеток, области гомогенности существуют [1, 2].

Zr<sub>5</sub>Re<sub>24</sub> имеет о. ц. к. решетку типаα-Mn [1], но позднее было высказано предположение [2], что решетка этого соединения является сверхструктурой α-Mn,



Рис. 396. Re-Zr

как Ті<sub>5</sub>Re<sub>24</sub>. По данным работы [2] период решетки 9,645 ± 0,005 A со стороны Re и 9,963 ± 0,005 A со стороны Zr. Значения периодов решетки, полученные в работах [3, 4], неплохо согласуются с данными работы [2]: *a* = 9,698 A (ZrRe<sub>6</sub>) [4]; a = 9,75 A [17% (at.) Zr] [3].

Наиболее точные значения периодов решетки ZrRe<sub>2</sub> равны:  $a = 5,2701 \pm$  $\pm$  0,0004 A,  $c = 8,6349 \pm 0,0008$  A (ZrRe<sub>2.01</sub>) [6];  $a = 5,269 \pm 0,002$  A, c = $= 8,626 \pm 0,004$  А [32% (ат.) Zr] [1]. Периоды решетки ZrRe<sub>2</sub>, сообщаемые в работе [5] (a = 5,039 А, c = 8,279 А), маловероятны при сравнении с приводимыми в работах [1, 6], а также М. Хансеном и К. Андерко (см. т. II [1]).

Кристаллическая структура Zr<sub>2</sub>Re неизвестна.

- 1. Савицкий Е. М. идр. Атомная энергия, 1959, т. 7, с. 231—234. Предварительные данные были опубликованы Савицким Е. М. и Тылкиной М. А. ЖНХ, 1958, т. 3, с. 820-837.
- 2. Крипякевич П. И. и др. Изв. вузов. Черная металлургия, 1960, № 1, c. 12—15.
- 3. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.
- 4. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.
- 5. Dwight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.
- 6. Krikorian N. H. a. o. J. Phys. Chem., 1960, v. 64, p. 1517-1519.

0,5064 1,4936

### Rh—S. Родий—сера \*

При исследовании потенциально сверхпроводниковых соединений [1] подтверждено существование фазы Rh<sub>9</sub>S<sub>8</sub>, ранее описанной М. Хансеном и К. Андерко (см. т. II [1]). Впоследствии сообщалось, что это соединение имеет кубическую решетку, a = 9,911 ± 0,001 A [2]. В работе [3] независимо установили кубическую решетку у Rh<sub>9</sub>S<sub>8</sub>, близкую к решетке Pd<sub>1.1</sub>Se (Pd<sub>9</sub>Se<sub>8</sub>).

1. Matthias B. T. a.o. Phys. Rev., 1954, v. 93, p. 1415. 2. Matthias B. T., Geller S. Phys. Chem. Solids, 1958, v. 4, p. 318-319. 3. Steen O. Cm. Gronvold F., Rost E. Acta Chem. Scand., 1956, v. 10 p. 1628.

 $\overline{1},9270$ 0,0730

Rh—Sb.

Родий-сурьма\*

Участок диаграммы состояния вблизи ординаты Sb (рис. 397) построен с помощью металлографического, термического и рентгеновского анализов [1]. Эвтектика с температурой плавления на 10-20 град ниже, чем у Sb, образуется при > 97,1% (ат.) Sb. Кроме ранее описанного соединения RhSb (см. М. Хансен и К. Андерко, т. II [1]), в работе [1] обнаружены фазы RhSb, и RhSb<sub>3</sub>. Обе они образуются по перитектическим реакциям.

Подтверждено [1], что у RhSb ромбическая структура. RhSb<sub>2</sub> имеет моноклинную решетку, изотипную CoSb<sub>2</sub>, с 4 формульными единицами на элементарную ячейку [1, 2]. Наиболее точные значения периодов решетки получены в работе [2]:  $a = 6.57 \pm 0.02$  A,  $b = 6,52 \pm 0,02$  A,  $c = 6.66 \pm 0.02$  A,  $\beta =$ 



=116,9°. Согласно приведенным М. Хансеном и К. Андерко данным по системе Co—Sb (см. т. II [7]), соединение  $CoSb_2$  имеет скорее ромбическую, чем моноклинную решетку. У RhSb<sub>3</sub> кубическая структура, изотипная с CoAs<sub>3</sub>,  $a = -9,229 \pm 0,002$  A [3].

- 1. Журавлев Н. Н. и др. Вестник МГУ, Серия математики, механики, астрономии, физики и химии, 1958, т. 13, № 5, с. 79-82.
- Жданов Г. С., Кузьмин Р. Н. Кристаллография, 1961, т. 6, с. 872-881.
- Журавлев Н. Н., Жданов Г. С. Кристаллография, 1956, т. 1, с. 509—513.

0,3596 $\overline{1},6404$ 

### Rh—Sc. Родий—скандий

В системе идентифицированы два соединения. RhSc имеет кубическую решетку типа CsCl с периодом 3,206  $\pm$  0,001 A [1]. У Rh<sub>3</sub>Sc кубическая решетка, изотипная с Cu<sub>3</sub>Au, a = 3,900 A [2].

1. Compton V. B. Acta Cryst., 1958, v. 11, p. 446. 2. Dwight A. E., a.o. Acta Cryst., 1961, v. 14, p. 75-76.

0,5639 $\overline{1},4361$ 

### Rh—Si. Родий—кремний \*

Проведенный в работе [1] рентгеноструктурный анализ спеченных сплавов показал существование следующих соединений:  $Rh_2Si_3$ ,  $Rh_5Si_3$ ,  $Rh_3Si_2$ ,  $Rh_3Si_{2+}$ , двух модификаций RhSi,  $Rh_2Si_3$ ,  $Rh_2+Si_3$  и  $Rh_2Si_{3+}$ .  $Rh_2Si$  получено также в работе [2], RhSi — в [3].

 $Rh_2Si$  находится в равновесии с (Rh).  $Rh_3Si_{2+}$  — высокотемпературное соединение, стабильное при 750 и нестабильное уже при 500° С. Температура полиморфного превращения RhSi зависит от состава.  $Rh_2Si_3$  и  $Rh_{2+}Si_3$  существуют только при высоких температурах,  $RhSi_{2+}$  — и при высоких, и при низких [1]. Поскольку в работе [1] не исследовали сплавы, более богатые Si, чем  $Rh_2Si$ , вероятно существование других соединений. Необходимо дополнительное металлографическое и более законченное рентгеновское исследование, прежде чем можно будет построить фазовую диаграмму.

У Rh<sub>3</sub>Si ромбическая решетка типа PbCl<sub>2</sub> [1, 2];  $a = 5,40_8$  A,  $b = 3,93_0$  A,  $c = 7,38_3$  A [1]. Rh<sub>5</sub>Si<sub>3</sub> имеет ромбическую решетку типа Rh<sub>5</sub>Ge<sub>3</sub>;  $a = 10,07_4$  A,  $b = 5,30_9$  A,  $c = 3,88_8$  A [1].

Кристаллическая структура Rh<sub>3</sub>Si<sub>2</sub> еще не определена. Высокотемпературное соединение Rh<sub>3</sub>Si<sub>2+</sub> имеет гексагональную решетку типа Ni<sub>2</sub>In (*B8*);  $a = 3,94_9$  A, c = 5,047 A [1].

У высокотемпературной модификации RhSi ромбическая структура типа MnP;  $a = 6,36_2$  A,  $b = 5,53_1$  A,  $c = 3,06_3$  A; низкотемпературная модификация имеет кубическую структуру типа FeSi с периодом 4,675 A [1]. Однако, по данным работы [3], у RhSi кубическая решетка CsCl,  $a = 2,963 \pm 0,0005$  A; так как в работы [3] RhSi получали спеканием при 1550° С смеси (Rh : 3Si) и допускали взаимодействие с O, эти данные сомнительны.

Кристаллические структуры Rh<sub>2</sub>Si<sub>3</sub>, Rh<sub>2+</sub>Si<sub>3</sub> и Rh<sub>2</sub>Si<sub>3+</sub> неизвестны.

- 1. В h a n S., S c h u b e r t K. Z. Metallkunde, 1960, Bd. 51, S. 327—339; предварительные данные см. S c h u b e r t K. u. a. Naturwissenshaften, 1960, Bd. 47, S. 303.
- 2. Aronsson B. a.o. Nature, 1959, v. 183, p. 1318-1319.
- 3. Finnie L. N., Searcy A. W. Acta Cryst., 1959, v. 12, p. 260.
- 376

#### î,9380 0.0620

### Rh-Sn. Родий-олово \*

Соединение Rh<sub>3</sub>Sn обнаружено в работе [1], но детали его структуры не были описаны. Размеры ромбической элементарной ячейки Rh<sub>2</sub>Sn составляют: a == 8,208 A, b = 5,520 A, c = 4,220 A [1]. Низкотемпературная инверсия в RhSn<sub>2</sub> подвергнута дальнейшему обсуждению в работе [2]. Отмечено, что высокотемпературная модификация со структурой типа CuAl<sub>2</sub> становится после закалки неупорядоченным чередованием структур типа CuAl<sub>2</sub> и CaF<sub>2</sub>. Разупорядочение относится к одномерному типу. Структура CuAl<sub>2</sub> исчезает после отжига при 400° С. Аналогичное обсуждение приводится в работе [3].

1. Schubert K. u. a. Z. Metallkunde, 1959, Bd. 50, S. 534-540.

2. Hellner E. Z. Krist. 1956, Bd. 107, S. 99-123.

3. Jagodzinski H., Hellner E. Z. Krist., 1956, Bd. 107, S. 124-149.

0,0698 $\overline{1},9302$ 

### Rh—Sr. Родий—стронций

В этой системе известны два соединения. У SrRh<sub>2</sub> г. ц. к. решетка типа MgCu<sub>2</sub> [1, 2] с периодом 7,706 ± 0,005 A (соединение получено спеканием в Ar) [2]. Соединение, изотипное по структуре с гексагональным CaCu<sub>5</sub>, отсутствует, однако при сепарации расплава с 17% (ат.) Sr при 1600° С получено г. ц. к. соединение с неизвестной решеткой, a = 10,0 A [2].

Согласно [3], SrRh<sub>2</sub> является сверхпроводником с температурой перехода 6.2° К.

1. Wood E. A., Compton V. B. Acta Cryst., 1958, v. 11, p. 429-433. 2. Heumann T., Kniepmeyer M. Z. Anorg. Allgem. Chem., 1957, Bd. 290, S. 191-204.

3. Matthias B. T., Corenzwit E. Phys. Rev., 1957, v. 107, p. 1558.

 $\overline{1},7551$ 0,2449

### Rh-Та. Родий-тантал \*

В работе [1] показано существование промежуточной фазы  $Rh_3Ta$  с кубической решеткой типа  $Cu_3Au$ , a = 3,86 A.

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979

1,9066 0.0934

### Rh—Te. Родий—теллур \*

В работе [1] смешивали порошки двух элементов в пропорции  $Rh_2Te_5$ , затем спекали их для получения «мелкозернистого продукта». Рентгенографически (методом порошка) подтверждено, что у  $Rh_2Te_5$  кубическая структура пирита FeS<sub>2</sub>,  $a = 6,428 \pm 0,001$  А. Это хорошо согласуется со старыми данными о низкотемпературной модификации  $RhTe_2$ . Из-за отсутствия линий Te на рентгенограмме спеченного  $Rh_2Te_5$  приписывают этому соединению формулу  $RhTe_{2+x}$  [1].

1. Groeneveld Meijer W. O. J. Amer. Mineralogist, 1955, v.40, p.646-657

1,6467 0,3533

### Rh-Th. Родий-торий

Согласно [1], в полученных дуговой плавкой однограммовых образцах с концентрацией Rh до 33% (ат.) содержится фаза Th<sub>7</sub>Rh<sub>3</sub>, образующая эвтектику с Th при 20  $\pm$  1% (ат.) Rh и 1237  $\pm$  12° C.

377

.

У  $Th_7Rh_3$  гексагональная решетка типа  $Th_7Fe_3$ ; a = 10,031 A, c = 6,287 A [1]. Отожженный сплав с 66,3% (ат.) [81,59% (по массе)] Тh имеет двухфазную структуру, а его рентгенограмма идентична практически гомогенному сплаву с 68,8% (ат.) [83,3<sub>3</sub>% (по массе)] Th, решетка которого имеет тип Th<sub>7</sub>Fe<sub>3</sub>; a = 10,028 A, c = 6,293 A [2]. У соединения ThRh<sub>3</sub> структура типа Cu<sub>3</sub>Au, a == 4,139 A [3].

1. Thomson J. R. Nature, 1961, v. 189, p. 217.

2. Ferro R., Rambaldi G. Acta Cryst., 1961, v. 14, p. 1094.

3. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

0,3321 1,6679

1,6358

### Rh-Ti. Родий-титан \*

В работе [1] обнаружено соединение TiRh<sub>3</sub> с кубической решеткой, изотипной с Си<sub>з</sub>Аи, *a* = 3,822 А [1]. Это противоречит данным М. Хансена и К. Андерко (см. т. II [1]), согласно которым фаза со стехиометрическим составом TiRh<sub>3</sub> не существует. Структура сплава с 50% (ат.) не о. ц. к. и не типа CsCl [2].

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979 2. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.



Рис. 398. Rh—U

Диаграмма на рис. 398 базируется на неопубликованных данных, рассматриваемых в работах [1, 2]. Известны три соединения: URh<sub>3</sub>, URh и U<sub>2</sub>Rh [1]. Максимальная температура плавления в системе соответствует 2160°C при 20,2% (ат.) [37% (по массе)] U [1] (предполагается, что эта концентрация отвечает соединению URh<sub>4</sub>); при 10,9% (ат.) [22% (по массе)] U и 1500° С наблюдается минимум [1], указывающий на образование эвтектики (Rh) + URh<sub>4</sub> (?). Предполагается, что URh образуется по перитектической реакции; ликвидус этого соединения ~1200° С [1]. Согласно [2], эвтектика URh + (у-U) образуется при 77,5% (ат.) Rh и 885° C; по [1], эвтектическая температура 867 ± 2° C. U<sub>2</sub>Rh образуется по перитектоидной реакции при 755 ± 5° C [1, 2]. По данным металлографического анализа [1], эвтектоидный распад (ү-U) происходит при 702 ± 4° С (по [2] при 730° С). (β-U) также распадается по эвтектоидной реакции при 629° С; оба эвтектоида образуются очень медленно и склонны к переохлаждению [1]. Значения пределов растворимости в богатой U области диаграммы состояния на рис. 398 взяты из работы [2].

У URh<sub>2</sub> кубическая решетка типа AuCu<sub>2</sub> с периодом 3,992 [3] или 3,991 А [4].

- 1. Chiswick H. H. Metallurgy and Fuels. Progress in Nuclear Energy, ser. V, v. 3, Pergamon Press, N. Y., 1961, р. 23-65; цитируются неопубликованные работы Argonne National Laboratory и Park J. J., National Bureau of Standards.
- 2. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, р. 58; цитируется неопубликованная работа Yorke J. M. Alloys of Uranium with Ruthenium and Rhodium. Johnson and Mathey Ltd., AERE Rept. X/PR 2409, 1956 u Park J. J. Natl. Bureau of Stand.
- 3. Ferro R. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1958, v. 25, p. 189–191.
- 4. Dwight A. E. a. o. Acta Cryst., 1961, v. 14, p. 75-76.

0,3053 1.6947

### Rh-V. Родий-ванадий \*

В работе [1] кристаллическая структура богатой V промежуточной фазы Rh<sub>3</sub>V была идентифицирована как кубическая, изотипная с Cu<sub>3</sub>Au, a = 3,795 А.

1. Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979.

#### 0,0634 1,9366

#### Rh— Ү. Родий—иттрий.

 $YRh_2$  имеет кубическую решетку, изотипную с MgCu<sub>2</sub> [1], с периодом 7,459  $\pm$ ± 0,001 [1] или 7,488 A [2]. У YRh кубическая решетка типа CsCl с периодом 3.41 A [3].

1. Compton V. B., Matthias B. Acta Cryst., 1959, v. 12, p. 651-654.

2. Dwight A. E., Nevitt M. V. U. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; D w i g h t A. E. Trans. AIME, 1961, v. 53, p. 479-500.

3. Dwight A. Е. Частное сообщение; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

0,0523 1.9477

### Rh—Zr. Родий—цирконий

В Zr может раствориться примерно 15% (ат.) Rh без заметного изменения периода решетки [1]. Использовавшийся Zr содержал 1% примесей. При больших концентрациях Rh на рентгенограммах порошка появляются дополнительные

378

линии, отвечающие новой фазе с решеткой, близкой к Zr, или, возможно, сверхструктуре. Предполагается [1], что сплавы с содержанием Rh > 33% (ат.) двухфазны.

В работе [2] приготовили и подвергли отжигу при 950° С сплавы с 10—33% (ат.) Rh. Металлографический анализ показал, что сплав с 30% (ат.) Rh имеет однофазную структуру и находится в равновесии с твердым раствором на основе Zn. Сплав с 30% (ат.) Rh не имеет решетки Ti<sub>2</sub>Ni [2], хотя у сплава с 20% (ат.) Rh после загрязнения 0,64% О была решетка Ti<sub>2</sub>Ni,  $a = 12,476 \pm 0,001$  A.

Решетка второго соединения —  $ZrRh_3$  — была идентифицирована как кубическая, a = 3,927 A [3]. Хотя сверхструктурные линии отсутствовали, в работе [3], учитывая недостаточную разницу атомных размеров Zr и Rh для получения таких линий, предположили, что у этого соединения решетка AuCu<sub>3</sub>. Фазы с кубической структурой при 50% (ат.) Rh не обнаружено [4].

Matthias B. T. Phys. Rev., 1955, v. 97, p. 74-76.
Nevitt M. V., Schwartz L. H. Trans. AIME, 1958, v. 212, p. 700-702.
Dwight A. E., Beck P. A. Trans. AIME, 1959, v. 215, p. 976-979.
Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

1,9193 0,0807

## Ru—Sb. Рутений—сурьма

В этой системе обнаружены два соединения: RuSb и RuSb<sub>2</sub> [1, 2]. Решетка RuSb была предварительно идентифицирована как ромбическая типа MnP. Это было сделано на основе близости рентгенограмм RuSb и RhSb. У RuSb<sub>2</sub>, ромбическая структура марказита (FeS<sub>2</sub>); a = 5,942 A, b = 6,650 A, c = 3,174 A [1]. В богатой Sb части диаграммы металлографически обнаружили существование эвтектоида или эвтектики [2]. У соединения RuSb не обнаружено полиморфизма [2].

1. Журавлев Н. Н. и др. Кристаллография, 1960, т. 5, с. 553—562. 2. Кузьмин Р. Н. и др. Кристаллография, 1960, т. 5, с. 218—223.

0,3519 $\overline{1},6481$ 

### Ru—Sc. Рутений—скандий

У ScRu<sub>2</sub> гексагональная решетка типа MgZn<sub>2</sub> [1, 2]; a = 5,135 A, c = 8,525 A [1];  $a = 5,119 \pm 0,002$  A,  $c = 8,542 \pm 0,002$  A [2].

 D wight A. E., Nevitt M. V. S. At. Energy Comm. ANL-6099, 1959, p. 76-92; D wight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
Compton V. B. Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

0,5588 $\overline{1},4412$ 

## Ru—Si. Рутений—кремний \*

В работе [1] идентифицировано новое соединение Ru<sub>2</sub>Si. Анализ монокристалла показал, что у него ромбическая решетка типа RbCl<sub>2</sub>;  $a = 5,27_{9}$  A,  $b = 4,00_{5}$  A,  $c = 7,41_{5}$  A.

В работе [2] подтверждено существование у RuSi двух модификаций, описанных М. Хансеном и К. Андерко (см. т. II, [2]). Кубическая (типа CsCl) модификация имеет период решетки  $a = 2,909 \pm 0,002$  А; другая — тоже кубическая, «почти наверняка» со структурой FeSi (что показано сравнением с рентгенограммой OsSi), имеет период 4,73 ± 0,1 А.

 Aronsson B., Aselius J. Acta Chem. Scand., 1961, v. 15, p. 1571-1574; Aronsson B. a.o. Nature, 1959, v. 183, p. 1318-1319.
Korst W. L. a.o. J. Phys. Chem., 1957, v. 61, p. 1541-1543.

380

#### 1,8275 0,1725

1,7499

0.2501

### Ru-Sm. Рутений-самарий

Соединение SmRu<sub>2</sub> имеет г. ц. к. решетку, изотипную с MgCu<sub>2</sub>, a = 7,580 A [1].

1. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.

Ru-

## Ru—Та. Рутений—тантал \*

Диаграмма (рис. 399) построена по результатам термического, металлографического, рентгеноструктурного и микрорентгеноспектрального анализов сплавов, приготовленных из металлов чистотой более 99,9% [1]. Отмечается существование



двух промежуточных фаз [1], обозначенных на рис. 399 у и µ. Обе они имеют упорядоченную о. ц. к. решетку (Та). В работе [1] показано, что твердый раствор на основе Та имеет и другие области упорядочения, которые впоследствии были

исследованы [2] детальнее. В свете установленного упорядочения (Та) диаграмма на рис. 399 согласуется с данными М. Хансена и К. Андерко (см. т. II [1]).

В работе [2] на закаленных с 1500° С сплавах с 10, 20, 30, 40, 45 и 50% (ат.) Ru заново изучена богатая Та область диаграммы. (Та) имеет о. ц. к. решетку по крайней мере до 20% (ат.) Ru; период решетки уменьшается до 3,233 А. При 30% (ат.) Ru структура становится упорядоченной кубической типа CsCl, a = = 3,202 А. При 40 и 45% (ат.) Ru у твердого раствора решетка тетрагональная, a = 3,158 А, c = 3,215 А [40% (ат.) Ru]; a = 3,109 А, c = 3,286 А [45% (ат.) Ru] и a = 3,085 А, c = 3,385 А [50% (ат.) двухфазная область]. Тетрагональная решетка (Та) также упорядочена и соответственно интерпретируется как тетрагонально искаженная решетка CsCl; предполагают [2], что она может образоваться из кубической типа CsCl при охлаждении с 1500° С до комнатной температуры. Для уточнения этих предположений необходим высокотемпературный рентгеновский анализ.

- Каиfmann A. R. a. o. WADD Tech. Rept. 60—132, 1960, 181 р.; особенно р. 19—26.
- 2. Hartley C. S. a.o. WADD Tech. Note, 60-288, 1961, 18p.

## 1,9014

### Ru—Te. Рутений—теллур \*

При спекании элементов в соответствующей пропорции получено соединенис RuTe<sub>2</sub>, которое подвергнуто рентгеновским и другим исследованиям [1]. В согласии с данными, приведенными М. Хансеном и Андерко (см. т. II), решетка RuTe<sub>2</sub> идентифицирована как кубическая, изотипная с пиритной (FeS<sub>2</sub>),  $a = 6,377 \pm 0,001$  А. Точка плавления соединения выше 600° С [1].

1. Groeneveld Meijer W. O. J. Amer. Mineralogist, 1955, v. 40, p. 646-657.

#### 1,6395 0,3605

### Ru—Th. Рутений—торий

В работе [1] в дуговой печи выплавлены однограммовые образцы сплавов с концентрацией Ru до 33% (ат.). Металлографический и рентгеновский (методом порошка) анализы литых и отожженных образцов дают основания считать  $Th_7Ru_3$  наиболее богатым Th соединением. Эвтектика  $Th_7Ru_3$  + Th образуется при  $1262 \pm 12^\circ$  C и  $16 \pm 1\%$  (ат.) Ru. У  $Th_7Ru_3$  гексагональная решетка; a = 9,969 A, c = 6,302 A. Измерения рентгеновской интенсивности показали большое сходство со структурой типа  $Th_7Fe_3$  [1].

У промежуточной фазы ThRu<sub>2</sub> г. ц. к. решетка типа MgCu<sub>2</sub> с периодом 7,649 [2] или 7,651 А [3].

1. Thomson J. R. Nature, 1961, v. 189, p. 217.

- 2. Dwight A. E., Nevitt M. V. Ú. S. At. Energy Comm. ANL-6099, 1959, p. 76-92.
- 3. Matthias B. T. a. o. Phys, Chem, Solids, 1961, v. 19, p. 130-133.
- 0,3270 $\overline{1},6730$

### Ru—Ті. Рутений—титан \*

В работе [1] подтверждено, что у RuTi кубическая структура типа CsCl с периодом 3,070 А.

1. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

1,6306 0.3694

### Ru-U. Рутений-уран \*

Диаграмма (рис. 400) заимствована из работы [1]. Предыдущий вариант диаграммы [3], построенный с помощью термического, микроскопического и рентгеновского анализов, качественно согласуется с вариантом [1] \*1. Единственное существенное различие — более низкие температуры нонвариантных реакций в богатой U области, по данным [3]. Согласно [3], эти температуры



Рис. 400. Ru—U

составляют 618, 693 и 885° С, в то время как в работе [1] они соответственно равны 633; 710 и 899° С. Сообщается [1] о существовании соединений  $U_3Ru_4$ ,  $U_2Ru_3$  и  $U_3Ru_5$  в дополнение к  $U_2Ru$ , URu и URu<sub>3</sub>, описанным в работе [3]. Максимальная растворимость Ru в  $\gamma$ -U составляет 11% (ат.) [5% (по массе)] [3], или 12% (ат.) [5,5% (по массе)] [1]; максимальная растворимость Ru в  $\beta$ -U 2,3% (ат.) [1% (по массе)] [3] или 1,16% (ат.) [1]; в  $\alpha$ -U  $\sim$  0,58% (ат.) [0,25% (по массе)] [3]. U<sub>2</sub>Ru, URu и URu<sub>3</sub> образуются по перитектическим реакциям: U<sub>2</sub>Ru при 947 [1, 3], URu при 1171 [1] или 1180 [3] и URu<sub>3</sub> — при 1850 [1] или 1575° С [3]. U<sub>2</sub>Ru<sub>3</sub>, вероятно, образуется около 1000° С [4] (неизбежна пе-

 \* Согласно [2], ₹автор [1], кроме металлографического анализа, никаких методик не обсуждает.

ритектоидная реакция). Как образуются U<sub>3</sub>Ru<sub>4</sub> и U<sub>3</sub>Ru<sub>5</sub>, неизвестно, но, вероятно, по перитектическим реакциям, так как на ликвидусе нет открытого максимума до точки плавления Ru при 2500° С [5]. Диаграммы [1, 3] не включают области. богатой Ru, хотя известно [5], что растворимость U в Ru при 1500° С составляет 0,39% (ат.) [0,9% (по массе)]. Согласно [6], данные работ [7. 8] согласуются с результатами исследования [3] для богатых U сплавов. Однако в более позднем обзоре [2] предпочтение отдается данным работы [1], поскольку использованный в ней металлографический анализ дает меньшие ошибки, чем термический [3]. при изучении систем с медленно протекающими реакциями.

• Соединение U<sub>2</sub>Ru имеет моноклинную решетку;  $a = 13,106 \pm 0,0014$  A.  $b = 3,343 \pm 0,0002$  A,  $c = 5,202 \pm 0,0009$  A,  $\beta = 96^{\circ} 9,6' \pm 2,8'$  [9].

- 1. Dwight A. E. Argonne National Loboratory, см. работу [2].
- 2. Chiswick H. H. Metallurgy and Fuels. Progress in Nuclear Energy, ser. V, v. 3. Pergamon Press, N. Y., 1961, p. 23-65. 3. Park *I.* J., Buzzard R. W. U. S. At. Energy Comm. TID-7526,
- pt. 1, 1957, p. 89-102.
- 4. D wight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 148.
- 5. Park J. J. National Bureau of Standards; см. [2].
- 6. Rough F. A., Bauer A. A. U.S. At. Energy Comm. BMI-1300, 1958, p. 59.
- 7. Murray J. R., Lloyd S. J. At. Energy Res. Estab. (Gt. Brit), Rept. AERE—M/M 107; см. [6].
- 8. Yorke J. M. At. Energy Res. Estab. (Gt. Brit.) Rept. AERE-X/PR 2409, 1956, см. [6].
- 9. Berndt A. F. Acta Cryst., 1961, v. 14, p. 1301-1302.

0.3002 1,6998

### Ru-V. Рутений-ванадий \*

В работе [1] показано, что VRu «вероятно» при высокой температуре имеет кубическую решетку CsCl, которая при закалке превращается в тетрагональную.

1. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

1,7427 0,2573

### Ru-W. Рутений-вольфрам \*

Диаграмма (рис. 401) построена по результатам металлографического, термического, рентгеновского и микрорентгеноспектрального анализов сплавов, полученных из металлов чистотой 99,9% [1]. В неопубликованной работе [2] обнаружено существование нескольких нонвариантных реакций и значительной растворимости W в Ru. Согласно [2], эвтектическая и эвтектоидная температуры равны соответственно 2350 и 1630° С. Результаты работы [1] заметно отличаются от описанных М. Хансеном и К. Андерко (см. т. II. [1]) большими значениями растворимости Ru в · W.

Согласно [1], стехиометрический состав о фазы соответствует формуле W<sub>3</sub>Ru<sub>2</sub> [1, 3], по работе [2] — WRu<sub>2</sub>. Первая формула лучше соответствует виду диаграммы, так как перитектическая и эвтектоидная концентрации находятся вблизи 60% (ат.) W, хотя тщательный микрорентгеноспектральный анализ [1] показывает широкую область гомогенности: 59-63% (ат.) W при 1700° С и 59—67% (ат.) W при 2117° С. σ-фаза имеет тетрагональную решетку; a == = 9,349 ± 0,013 A, c = 4,855 ± 0,040 A (W<sub>2</sub>Ru [2]). Эти данные близки к полученным тем же автором для  $W_3Ru_2$  [3]: a = 9,55 A, c = 4,96 A.

1. Kaufmann R. R. a.o. WADD Tech. Rept. 60-132, 1960, 181p.; ocoбенно р. 26-33.

2. Obrowski W. Частное сообщение Вайнштейну (Weinstein D.). IIT Research Institute, November, 1960.

3. Obrowski W. Naturwissenschaften, 1957, Bd. 44, S. 581.



Рис. 401. Ru-W

25 Р. П. Эллиот и др.

#### 0,0563 $\overline{1},9437$

### Ru— Ү. Рутений—иттрий

У YRu<sub>2</sub> гексагональная решетка типа MgZn<sub>2</sub>;  $a = 5,256 \pm 0,002$  A,  $c = 8,792 \pm 0,002$  A [1]; a = 5,261 A, c = 8,856 A [2].

Сплав эквиатомного состава имеет решетку не о. ц. к., и не типа CsCl [3].

1. Compton V. B., Matthias B. T. Acta Cryst., 1959, v. 12, p. 651-654.

- 2. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 3. Dwight A. E. Trans. AIME, 1959, v. 215, p. 283-286.

0,0472 $\overline{1},9528$ 

### Ru—Zr. Рутений—цирконий \*

У сплава эквиатомного состава о. ц. к. решетка, a = 2,86 A [1]. Хотя сверхструктурные линии не были обнаружены, предполагается, что кристаллическая структура сплава изотипна с CsCl [1]. Подтверждено, что ZrRu<sub>2</sub> имеет гексагональную решетку типа MgZn<sub>2</sub>; a = 5,146 A, c = 8,511 A [2] или a = 5,144 A, c = 8,504 A [3]. ZrRu<sub>2</sub> стабильно только при повышенных температурах [2].

D wight A. E. Trans. AIME, 1959, v. 215, p. 283-286.
D wight A. E. U. S. At. Energy Comm. ANL-6330, 1960, p. 156-158.
Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

| 1, | 420 | 15 |
|----|-----|----|
| 0. | 579 | 15 |

### S—Sb. Сера—сурьма \*

Подтверждены данные о кристаллической структуре, приведенные М. Хансеном и К. Андерко (см. т. II [7—10]), и получены точные значения периодов решетки [1].

1. Grdenic D., Scavnicar S. Proc. Chem. Soc., 1960, p. 147-148.

1,8533 0,1467

### S—Sc. Сера—скандий

В работах [1—3] идентифицировано соединение ScS<sub>3</sub>, решетка которого изоструктурна с Er<sub>2</sub>S<sub>3</sub> [1, 2]. Авторы работы [4] синтезировали Sc<sub>2</sub>S<sub>3</sub> из Sc чистотой 97—97,5% (по массе) и S, свободной от Se [после вакуумной сублимации чистота S была выше 99,9% (по массе)]. По предварительной оценке, у полученного соединения г. ц. тетрагональная решетка, изотипная с  $\beta$ -In<sub>2</sub>S<sub>3</sub>, a = 10,39A, c = 31,17A; 32 атома на элементарную ячейку [3]. Возможна сверхструктура и кубическая субячейка, a = 2,596 A [3].

1. К 1 е т т W. u. a. Z. Anorg. Allgem. Chem., 1930, Bd. 190, S. 123; см. [2, 3]. 2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир»,

1965. 3. Менков А. А. идр. ДАН СССР, 1961, т. 141, с. 364—367.

#### 1,6086 0,3914

### S—Se. Сера—селен \*

Парциальная упругость паров Se над сплавами Se—S при 250° C определена в работе [1]. То, что эта величина оказалась больше, чем у чистого Se, интерпретируется как указание на молекулярную структуру жидкого Se.

1. Альтшулер О. В. и др. ЖНХ, 1957, т. 2, с. 1581—1586.

386

#### 0,0575 1.9425

### S—Si. Сера—кремний \*

Растворимость в твердом состоянии S в Si (ретроградная вблизи точки плавления) по результатам электрического анализа [1] составляет:

| Температура, °С                          | 1400 | 1300 | 1200 | 1100 |
|------------------------------------------|------|------|------|------|
| Растворимость, % (ат.), 10 <sup>-5</sup> | 4    | 6    | 3    | 6    |

Перечисленные значения растворимости были переведены в атомные проценты из *атом/см<sup>3</sup>*.

1. Carlson R. O. a.o. Phys. Chem. Solids, 1959, v. 8, p. 81-83.

ī,3289 0,6711

### S—Sm. Сера—самарий

Твердый раствор на основе SmS<sub>2</sub> простирается до SmS<sub>1,94</sub> [1]. У SmS<sub>2</sub> кубическая решетка типа LaS<sub>2</sub> с 8 формульными единицами на элементарную ячейку и периодом 7,96 [1, 2] или 7,87 А [3]. При растворении Sm в этом соединении решетка подвергается тетрагональному искажению; a = 7,88 А,  $c = 7,97 \pm \pm 0,01$  А. Твердый раствор на основе SmS<sub>2</sub> находится в равновесии с кубической фазой Sm<sub>2</sub>S<sub>3</sub> [1]. Точка плавления SmS<sub>2</sub> 1730° C [2].

У соединения Sm<sub>2</sub>S<sub>3</sub> две модификации —  $\alpha$  (с неустановленной кристаллической структурой) и  $\gamma$  с о. ц. к. решеткой типа Th<sub>3</sub>P<sub>4</sub> (Sm<sub>3</sub>S<sub>4</sub> с вакансиями), a = 8,448 A [2—5]. Соединение плавится при 1780 [2, 4] или 1900° С [6]. В вакууме (0,01 *мм pm. cm.*) соединение улетучивается при 1800° С [6].

Соединение  $\text{Sm}_3\text{S}_4$  имеет о. ц. к. решетку, изотипную с  $\text{Th}_3\dot{P}_4$ , a = 8,556 A [4, 5]. Оно плавится при 1800° C [3, 4].

У SmS г. ц. к. решетка типа NaCl с периодом 5,970 ± 0,003 [7-9]; 5,967 [3]; 5,863 А [6]. Точка плавления 1500 [3] или 1940° С [6].

1. Flahaut J. a.o. Bull. Soc. Chim. France, 1959, v. 25, p. 1917-1920

- 2. Picon M., Patrie M. Compt. Rend., 1956, v. 243, p. 1769-1772.
- 3. Houston M. D. Ceramic Age, 1961, v. 77, p. 50-54.
- 4. Picon M. e. o. Bull. Soc. Chim. France, 1960, v. 26, p. 221-228.
- 5. Picon M., Flahaut J. Compt. Rend., 1956, v. 243, p. 2074-2076.
- 6. Gaume-Mahn F. Bull. Soc. Chim. France, 1956, v. 22, p. 1862-1867.
- 7. Iandelli A. Z. Anorg. Allgem. Chem., 1956, Bd. 288, S. 81-86.
- 8. I a n d e l l i A. В книге «Rare Earth Research», ed. V. Kleber. The Macmillan Co., N.—Y., 1961, p. 135—141.
- 9. Iandelli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 1,43160,5684

### S-Sn. Сера-олово \*

Появление газовой фазы при больших концентрациях S затрудняет выяснение фазовых равновесий. Предварительный вариант диаграммы (рис. 402) построен по данным работ [1—6]. Можно считать установленными четыре соединения: SnS, Sn<sub>3</sub>S<sub>4</sub>, Sn<sub>2</sub>S<sub>3</sub> и SnS<sub>2</sub>; однако условия их существования остаются невыясненными. В работах [1, 2], варьируя давление паров S в открытой системе, строили фазовую диаграмму p-T-x, в то время как в работе [3] исследовали продукты диссоциации SnS<sub>2</sub>, а в [4] — образование Sn<sub>3</sub>S<sub>4</sub>. В работе [5] радиохимическими методами определена растворимость в жидком состоянии S в Sn (расплав находился в равновесии с твердым SnS), подчиняющаяся уравнению lg % (ат.) S в Sn<sub>ж</sub> = 3,40 — 3225/T° К. При изучении упругости паров SnS установлено, что точка плавления этого соединения в нейтральной атмосфере равна 880 ± 5° C, а точка кипения при атмосфер ном давлении 1230° C (получено экстраполяцией). Согласно [1], максимальную точку плавления (881,5  $\pm$  2° C) SnS имеет при давлении S 0,033 *am*, а SnS<sub>2</sub> (870° C) — при давлении S 40 *am*. Область несмешиваемости в жидком состоянии простирается от 10 до 47% (ar.) S и, возможно, от ~70 до 90% (ar.) S. В работе [1] получено также соединение



с 58,1 ± 1% (ат.) S, которому приписывается формула Sn<sub>3</sub>S<sub>4</sub>. Его кристаллическая структура не установлена; известно только, что она не кубическая. Согласно [4], Sn<sub>3</sub>S<sub>4</sub> имеет тетрагональную решетку; a = 7,553 A, c = 8,383 A; рентгеновские данные не подтверждают этих результатов [4]. Sn<sub>2</sub> плавится при более высокой температуре, чем Sn<sub>2</sub>S<sub>3</sub> [1]. В работе [3] обнаружено, что при 520° C SnS<sub>2</sub> находится в равновесии с Sn<sub>2</sub>S<sub>3</sub> и парами S, а при 640° C — с SnS

и парами S. В работе [4] получили Sn<sub>3</sub>S<sub>4</sub> в вакууме при 600 и 450° C из компонентов; при 800° C продуктом было соединение SnS. При изучении продуктов распада SnS<sub>3</sub> не было обнаружено фазы Sn<sub>3</sub>S<sub>4</sub> [3].

- 1. Albers W., Schol K. Philips Res. Rept. 1961, v. 16, p. 329-342.
- 2. Albers W. a.o. J. Appl. Phys., 1961, v. 32. (suppl). p. 2220-2225.
- 3. Волынский И. С. Севрюков Н. Н. ЖОХ, 1955, т. 25, с. 2380— 2388.
- 4. Bok L. D. C., Boeyens J. C. A. J. S. African Chem. Inst., 1957, v. 10, p. 49-53.
- 5. Cheng L. L., Alcock C. B. Trans. AIME, 1961, v. 221, p. 295-300.
- 6. Клушин Д. Н., Черняк В. Я. ЖНХ, 1960, т. 5. с. 1409—1412.

## 1,5634 S—Sr. Сера—стронций \*

В результате прецизионных измерений [1] для г. ц. к. решетки типа NaCl соединения SrS получено значение периода 6,0199 ± 0,0003 А при 20° С.

1. Güntert O. J., Faessler A. Z. Krist., 1956, Bd. 107, S. 357-361.

1,30500,6950

### S-Tb. Сера-тербий

У TbS г. ц. к. решетка типа NaCl с периодом 5,516 ± 0,002 [1] или 5,517А [2].

- Olcese G. L. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 195-200.
- 2. I a n d e l l i A. В книге «Rare Earth Research». ed. E. V. Kleber. The Macmillan Co., N.—Y., 1961, p. 135—141.

#### $\overline{1}, 1403$ 0,8597

### S—Th. Сера—торий \*

В работе [1] продемонстрировано влияние чистоты исходных материалов, особенно содержания О, на фазовые равновесия. В работе [1] использовали более чистые материалы, чем в предыдущих исследованиях, и более длительные выдержки для приведения сплавов в равновесие. Они показали, что богатая S фаза имеет формулу  $Th_2S_5$  [ $Th_3S_{10}$  по М. Хансену и К. Андерко (см. т. II [3])], и подтвердили существование  $ThS_2$ . Однако в работе [1] не удалось получить  $Th_7S_{12}$  или  $Th_2S_3$ . В сплавах соответствующей концентрации были обнаружены  $ThS_2$  и неидентифицированное соединение. В сплаве эквиатомного состава зафиксированы небольшие количества ThS и  $ThS_2$  и вышеупомянутое неидентифицированное соединение. Предполагается, что для образования ThS и  $Th_2S_3$  необкодимо небольшое количество О [1]. Требуются дальнейшие эксперименты для выяснения фазовых равновесий в этой системе.

Точки плавления ThS и Th<sub>2</sub>S<sub>3</sub> равны соответственно 2400—2450 и  $\sim$ 2300° C [2]. Последняя величина значительно больше, чем у М. Хансена и К. Андерко (см. т. II [4]).

У Th<sub>2</sub>S<sub>5</sub> тетрагональная решетка; a = 5,43 A, c = 10,15 A [1]. Периоды ромбической решетки соединения ThS<sub>2</sub> составляют: a = 4,283 A, b = 7,275 A, c = 8,617 A [1], что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II [1, 2]).

1. Graham J., McTaggart F. K. Austral. J. Chem., 1960, v. 13, p. 67-73.

2. Самсонов Г. В., Попова Н. М. ЖОХ, 1957, т. 27 с. 3-10.

388

Последние исследования позволили выяснить фазовые равновесия в этой системе.

ТіS<sub>3</sub>. Подтверждено существование ТіS<sub>3</sub> с моноклинной решеткой [1, 2]; a = 5,01 A, b = 3,40 A, c = 8,80 A,  $\beta = 98,40^{\circ}$  [1] или a = 4,97 A, b = 3,42 A, c = 8,78 A,  $\beta = 97^{\circ}$  16' [2]. Период c, по [1, 2], в два раза меньше приведенного M. Хансеном и К. Андерко (см. т. II [10]). Ниже 635° С ТіS<sub>3</sub> распадается на TiS<sub>2</sub> и S [2].

 $TiS_2$ . Подтверждено, что  $TiS_2$  имеет гексагональную решетку типа  $CdI_2$ [1, 3—5]; a = 3,4080 A, c = 5,7014 A [3] или a = 3,4049 A, c = 5,6912 A (по результатам экстраполяции к стехиометрическому составу) [5]. Нижний предел существования области гомогенности  $TiS_2$  соответствует 64,3% (ат.) S [5].

 $Ti_{2}S_{3}$ . У соединения  $Ti_{2}S_{3}$  гексагональная решетка типа WC; a = 3,295 A, c = 3,190 A [6, 7]. Эти данные подтверждены в работе [3].

Твердый раствор на основе « $Ti_2S_3$ ». Для диапазона от 52 до 66% (ат.) S получено много различных данных. Область твердого раствора находится в пределах 52,4—66,7% (ат.) S, и этот раствор по результатам тщательно проведенного рентгеновского анализа имеет решетку  $Ti_2S_3$  [3]. В работе [4] сообщаются близкие к исследованию [3] данные для сплавов с концентрацией 57—64% (ат.) S, которые не позволяют выяснить расхождения между результатами работ [3, 5] по вопросу, имеют ли сплавы с 64—66,7% (ат.) S структуру  $TiS_2$  или  $Ti_2S_3$ . В работе [8] обнаружили гомогенную фазу в диапазоне 57,8—61,4% (ат.) S с гексагональной решеткой (a = 3,42 A, c = 11,44 A), являющейся сверхструктурой  $TiS_2$ : a = 5,9359 ( $V3 \times 3,4272$ ) A, c = 22,866 A [3]; a = 3,426 A, c = 11,41 A [4]. В исследовании [1] приведены примерно такие же значения периодов, что и в [4]. Вблизи 60% (ат.) S обнаружена фаза с гексагональной сверхструктурой (a = 3,43 A, c = 34,3 A), соответствующая формуле  $Ti_8S_{12}$ , кратной  $Ti_2S_3$  [8]. При 800° C концентрационный диапазон ее существования шире, чем при 1000° C (S/Ti = 1,49÷1,52).

*TiŠ.* В работе [3] критикуются цитируемые М. Хансеном и К. Андерко (см. т. II [10]) данные о температурной зависимости полиморфизма TiS. Показана зависимость полиморфизма от концентрации: высокотемпературная модификация (см. М. Хансен и К. Андерко, т. II [1]) слегка сдвинута по составу в сторону S и отвечает формуле  $Ti_{1-x}S$  [3]. Необратимое полиморфие превращение, описанное М. Хансеном и К. Андерко (см. т. II [1]), в работе [3] приписывается реакции Ti с кварцевым контейнером, что смещает состав в сторону S.  $Ti_{1-x}S$  имеет периоды решетки: a = 3,4245 A, c = 26,493 A (гексагональные индексы ромбоздрической ячейки) [3]. Периоды решетки этой алотропической модификации равны: a = 9,021 A,  $\alpha = 21^\circ$  48' (a = 3,41 A, c = 26, 41 A для гексагональной ячейки) [1]. TiS стехнометрического состава имеет гексагональную структуру NiAs; a = 3,299 A, c = 6,380 A [3].

В работе [3] насыщением был получен твердый раствор с составом, отвечающим формуле Ti<sub>6</sub>S. Растворимость S в Ti составляет 23% (ат.) [3].

В работе [9] изучали систему при температурах 500—1000° С в смесях H<sub>2</sub>S/H<sub>2</sub> и обнаружили твердый раствор в диапазоне концентраций 56,5—65,9% (ат.) S. Сплавы с 44,5—50,5% (ат.) S были двухфазными. Кажется невозможным, чтобы эти данные относились к двойной системе.

- 1. McTaggart F. K., Wadsley A. D. Austral. J. Chem., 1958, v. 11, p. 445-457.
- 2. Jeannin Y., Bénard M. Compt. Rend., 1958, v. 246, p. 614-617.
- 3. Bartram S. F. Ph. Thesis, Rutgers University, 1958, 136 p. Dissertation Abstr., 1958, v. 19, p. 1216.
- 4. Wadsley A. D. Acta Cryst., 1957, v. 10, p. 715-716.
- 5. Jeannin Y., Bénard J. Compt. Rend., 1959, v. 248, p. 2875-2877.
- 6. Hahn H., Ness P. Naturwissenschaften, 1957, Bd. 44, S. 581.
- 7. Hahn H., Ness P. Z. Anorg. Allgem. Chemie, 1959, Bd. 302, S. 17-36.

8. Jeannin Y. Compt. Rend., 1960, v. 251, p. 246-248.

 Abendroth R. P., Schlechten A. W. Trans. AIME, 1959, v. 215, p. 145-151.

 $\overline{1}, 1956 \\ 0.8044$ 

### S—Tl. Сера—таллий \*

Приготовленный химическим способом TIS имеет тетрагональную решетку;  $a = 7,7869 \pm 0,00066$  A,  $c = 6,8071 \pm 0,00068$  A [1], что согласуется с данными М. Хансена и К. Андерко [см. т. II [4]).

Полученное химическим путем соединение  $Tl_2S_5$  имеет две модификации (красную и черную), обе с ромбическими решетками, но различной конфигурации [2]. В решетке красного  $Tl_2S_5$  4 формульные единицы на элементарную ячейку;  $a = 6,66 \pm 0,07$  A,  $b = 6,52 \pm 0,07$  A,  $c = 16,75 \pm 0,17$  A. Решетка черной модификации характеризуется 12 формульными единицами на элементарную ячейку;  $a = 23,45 \pm 0,23$  A,  $b = 8,877 \pm 0,09$  A,  $c = 10,57 \pm 0,11$  A.

- Scatturin V., Frasson E. Ric. Sci., 1956, v. 26, p. 3382—3386; Chem. Abstr., 1957, v. 51, p. 5611.
- Frasson E., Scatturin V. Atti Inst. Veneto Sci., Lettere Arti, Classe Sci. Mat. Nat., 1955/1956, v. 114, p. 61-66; Chem. Abstr., 1958, v. 52, p. 9705.

#### $\overline{1},2785$ 0,7215

### S—Тт. Сера—тулий

У TmS г. ц. к. решетка типа NaCl, a = 5,412 A [1].

 I andelli A. В книге «Rare Earth Research», ed E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135—141.



390

В работе [1] предложен вариант диаграммы, основывающийся на результатах своих исследований и данных, приведенных М. Хансеном и К. Андерко (см. т. П, [4, 11]). Температура плавления US 2462<sup>+30</sup> С [1]. Диаграмма (рис. 403) заимствована из работы [1], за исключением следующих фактов: в работе [1] указано полиморфное превращение US при ~1690° С, хотя в тексте это не оговорено и, по [1],  $\alpha$ -US<sub>2</sub> и  $\beta$ -US<sub>2</sub> сосуществуют в интервале температур.

US2 имеет три аллотропические модификации: α- и β-US2, уже обсуждавшиеся М. Хансеном и К. Андерко (см. т. II), и у-US<sub>2</sub>, образующуюся в результате реакции между H<sub>2</sub>S и U<sub>3</sub>S<sub>5</sub> [2, 3]. γ - US<sub>2</sub> медленно переходит в β-US<sub>2</sub> при 425° С. Поскольку у-US<sub>2</sub> невозможно получить при отжиге β-US<sub>2</sub>, у-модификация, вероятно, неравновесна.

В работе [3] показано существование U<sub>3</sub>S<sub>5</sub>. Подтверждено [4] отсутствие  $U_4S_3$  и равновесие между US и U. В работе [5] упоминается соединение  $US_4$  (?).

В работах [1, 6] даны наиболее точные значения периода г. ц. к. решетки типа NaCl соединения US : a = 5,4903 ± 0,0002 А при комнатной температуре; no [7], a = 5,4926 A.

у-US2 имеет гексагональную решетку, относящуюся к новому структурному типу, с 3 формульными единицами на элементарную ячейку, a = 7,253 Å, c = = 4,067 А [3]. У US<sub>3</sub> моноклинная решетка, изотипная с USe<sub>3</sub>; a = 5,40 А, b = 3,90 A, c = 18,26 A,  $\sin \beta = 0,986$  ( $\beta = 80^{\circ} 25'$  или 99° 35') [3]. У U<sub>3</sub>S<sub>5</sub> ромбическая структура нового типа; a = 7,42 A, b = 8,08 A, c = 11,72 A [3].

1. Cater E. D. U. S. At. Energy Comm. ANL-6140, 1960, p. 144-157.

- 2. Picon M., Flahaut J. Compt. Rend., 1955, v. 240, p. 2150-2151.
- 3. Picon M., Flahaut J. Bull. Soc. Chim. France, 1958, v. 24, p. 772-780.
- 4. Picon M., Flahaut J. Compt. Rend., 1955, v. 241, p. 655-657.
- 5. Eding H. J., Carr E. M. U. S. At. Energy Comm. ANL-6339, 1961, p. 33.
- 6. Cater E. D. a. o. J. Chem. Phys., 1961, v. 35, p. 608-618.
- 7. Shalek P. D. U. S. At. Energy Comm. ANL-6330, 1960, p. 101-103.

1,7989 0,2011

### S-V. Сера-ванадий \*

В работе [1] был получен и идентифицирован как действительно существующая промежуточная фаза сульфид V<sub>3</sub>S. Он полностью расплавляется при 1400° С. Из предыдущих данных о термических остановках (см. М. Хансен и К. Андерко, т. II [5]) можно заключить, что V<sub>3</sub>S образуется по перитектической реакции.

Фаза V<sub>3</sub>S имеет две аллотропические модификации с температурой перехода между 825 и 950° С. Высокотемпературная модификация, обозначаемая α-V<sub>3</sub>S, имеет о. ц. тетрагональную решетку, близкую к  $Ni_3P$ ; a = 9,470 A, c = 4,589 A. У низкотемпературной модификации β-V<sub>3</sub>S также о. ц. тетрагональная решетка; a = 9,381 A, c = 4,663 A.  $\beta$ -V<sub>3</sub>S близка по кристаллической структуре к  $\beta$ -W [1].

VS. В работе [2] показано, что соединение VS имеет при 900° С (в вакууме) область гомогенности в пределах VS<sub>1,05-1,22</sub> [51,2—55,0% (ат.) S]. Его решетка, очевидно, относится к типу NiAs. Заново измеренные периоды гексагональной типа NiAs решетки VS равны: a = 3,33 A, c = 5,82 A [3].

 $V_2S_3$ . Согласно [2],  $V_2S_3$  находится в равновесии с VS и имеет при 900° С вне-

стехиометрический состав VS<sub>1,35-1.40</sub> [57,5—58,4% (ат.) S]. По данным более поздней работы по измерению магнитной восприимчивости, этот интервал соответствует VS<sub>1,33-1,50</sub> [57,1-60,0% (ат.) S] [4].

VS<sub>4</sub>. Монокристаллы фазы VS<sub>4</sub> были получены в работе [5]. Их решетка оказалась моноклинной; a = 12,67 А, b = 10,41 А, c = 12,11 А,  $\beta = 148, 37^{\circ}$ .

1. Pedersen B., Gronvold F. Acta Cryst., 1959, v. 12, p. 1022-1027.

2. Логинов Г. М. ЖНХ, 1960, т. 5, с. 221-223.

3. Tsubokawa J. J. Phys. Soc. Japan. 1959, v. 14, p. 196-198.

4. Логинов Г. М. ЖНХ, 1961, т. 6, с. 261—264. 5. Pedersen B. F. Acta Chem. Scand., 1959, v. 13, p. 1050.

## $\overline{1}, 2414$ 0, 7586

### S-W. Сера-вольфрам \*

Схематичная диаграмма (рис. 404) взята из работы [1], где изучалась тройная система Fe—W—S. WS<sub>2</sub> плавится конгрузнтно при температуре выше 1800° С. Согласно [1], соединение WS3 диссоциирует при атмосферном давлении и  $300-400^{\circ}$  С на  $WS_2+S_{\Gamma}$ , однако это не согласуется с точкой кипения S (444,5° C). Детальный рентгеноструктурный анализ WS3, полученного при разложении

аммонийного сульфовольфрамата, приведен в работе [2]. Образцы в концентрационном интервале WS<sub>1.86-2,30</sub> были однофазными (WS2) и имели одинаковые (в пределах ошибки измерения) периоды решетки вне зависимости от соотношения W:S. Эти периоды гексагональной решетки вблизи стехнометрического состава (WS<sub>2,05</sub>) соответствовали а=  $= 3,14_5 \text{ A}, c = 12,2_5 \text{ A}.$ 

В то время как, по М. Хансену и Қ. Андерко (см. т. II [1, 2]), предел области существования WS2 отвечает формуле WS<sub>1.95</sub>, в работе [2] показано, что сплав WS<sub>1,86</sub> имеет решетку WS<sub>2</sub>. Эти расхождения могут быть связаны с разной точностью рентгеновских измерений или различиями в приготовлении соединения. В работе [2] не смогли определить WS3 в образцах с концентрацией S, отвечающей формуле WS<sub>2.30</sub>. Это согласуется и с другими данными о нестабильности WS<sub>3</sub> [1] (см. также М. Хансен и Қ. Андерко, т. II [1]).

В работе [3] ограниченно исследована система с использованием метода прямого синтеза образцов. Исследование подтвердило основные положения работ [1, 2].

У WS<sub>2</sub> разупорядоченная кристаллическая структура, заметное упорядочение происходит только при нагреве выше 700° С [2].



2. Самойлов С. М., Рубинштейн А. М. Изв. АН СССР, ОХН, 1959, c. 1905-1915.

3. Щукарев С. А. идр. ЖОХ, 1960, т. 30, с. 2102—2104.

 $\bar{1,5571}$ 0,4429

### S-Y. Сера-иттрий

У YS г. ц. к. решетка типа NaCl, изменение периода решетки от 5,466 для стехиометрического состава до 5,495 А при предельном растворении У говорит о существовании области гомогенности [1]. По [2], а = 5,493 А. Точка плавления YS, усредненная по результатам работ [1, 4, 5], равна 2060 ± 40° C [3].



393

% (по массе)

 $\rm Y_5S_7$ , которое может быть получено при разложении  $\rm Y_2S_3$  при 1700° C или путем медленного плавления  $\rm YS_2$  в вакууме при 1660° C, имеет моноклинную решетку с 2 формульными единицами на элементарную ячейку; а = 12,67 А, b = 3,81 A, c = 11,45 A, β = 74° [6]. Точка плавления Y<sub>5</sub>S<sub>7</sub> 1630° C [6].

У 2S<sub>3</sub> образуется при диссоциации YS<sub>2</sub> в вакууме при 850—1500° С [7]. У Y<sub>2</sub>S<sub>3</sub> моноклинная структура; a = 17,47 A, b = 4,02 A, c = 10,17 A,  $\beta = 81^{\circ}$  10′ [7]. Y<sub>2</sub>S<sub>3</sub> стабильно от 850° С до точки плавления 1900—1950 [8—9], 1925 ± 25 [10] и 1600° С [7]. При 1700° С Y<sub>2</sub>S<sub>3</sub> разлагается с образованием

 $Y_5S_7$  и S [7]. YS<sub>2</sub>, которое может быть получено при нагреве  $Y_2S_3$  с избытком S в течение недели при 600° C [7], имеет тетрагональную решетку; a = 7,71 A, c = 7,89 A [4, 6]. В работе [11] для YS1,90 получены такие же значения периодов, как в исследованиях [4, 6]; измерения плотности показали, что соединение содержит избыток Y [3]. Точка плавления YS<sub>2</sub> 1660° С [4, 6].

1. Flahaut J., Guittard M. Compt. Rend., 1956, v. 242, p. 1318.

2. I an delli A. В книге «Rare Earth Research», ed. E. V. Kleber The Macmillan Co., N. Y., 1961, p. 135-141.

3. Гшнейднер К. А. Сплавы редкоземельных металлов, Изд-во «Мир», 1965.

- 4. Picon M., Patrie M. Compt. Rend., 1956, v. 243, p. 1769-1772.
- 5. Picon M. e. a. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect., Chim. Minerale, 1958, p. 685.
- 6. Flahaut J., Guittard M. Compt. Rend., 1956, v. 243, p. 1210-1212.
- 7. Picon M. e. a. Bull. Soc. Chim. France, 1960, v. 26, p. 221-228.
- 8. Picon M., Cogné G. Compt. Rend., 1931, v. 193, p. 595-597; см. [9].
- 9. Gaume-Mahn F. Bull. Soc. Chim. France, 1956, v. 22, p. 1862-1867. 10. Litz L. M. High Temperature Technology. Stanford Research Inst., Menlo Park, Calif., 1959, р. 134; см. [3].
- 11. Flahaut J. e. a. Bull. Soc. Chim. France, 1959, v. 25, p. 1917-1920.

# 1,2681 0,7319

## S— Yb. Сера—иттербий

Соединение YbS, образующееся в процессе диссоциации Yb $_2S_3$  при температурах >1300° С в вакууме, имеет область гомогенности, соответствующую формуле YbS<sub>1,11-1,15</sub> [1, 2]; у него г. ц. к. решетка типа NaCl с периодом 5,673 (YbS<sub>1,13</sub>) [1, 2], 5,658 (YbS<sub>1,15</sub>) [2] или 5,677 А [3].

Соединение Yb<sub>3</sub>S<sub>4</sub>, которое можно получить при разложении Yb<sub>2</sub>S<sub>3</sub> или по реакции Yb<sub>2</sub>O<sub>3</sub> с H<sub>2</sub>S, имеет область гомогенности YbS<sub>1,33-1,46</sub> [1, 4]. У Yb<sub>3</sub>S<sub>3</sub> ромбическая решетка с 4 формульными единицами на элементарную ячейку; a = 12,81 А, b = 12,97 А, c = 3,84 А [Yb<sub>3</sub>S<sub>4</sub>) [1]; a = 12,69 А, b = 12,87 А, c = 3,82 А (YbS<sub>1,46</sub>) [4]. В работах [2, 4, 5] соединению приписывалась формула Yb<sub>5</sub>S<sub>7</sub>.

В исследованиях [1, 5] получили Yb2S3 при нагреве в присутствии S при 800—1100° С соединения Yb<sub>3</sub>S<sub>4</sub>, предварительно приготовленного при 1300° С.  $Yb_2S_3$  разлагается в вакууме при 1100° C с образованием  $Yb_3S_4$ . У  $Yb_2S_3$  (гексагональная решетка, 6 формульных единиц на ячейку; a = 6,784 A, c = 18,29А. В более старой работе [2] тех же авторов структура Yb2S3 была идентифицирована как ромбическая.

- 1. Flahaut J. e. a. Bull. Soc. Chim. France, 1961, v. 27, p. 102-105.
- 2. Domange L. e. a. Compt. Rend., 1958, v. 247, p. 1614-1616.
- 3. I and elli A. B книге «Rare Earth Research, ed. E. V. Kleber. The Macmillan Co., N.-Y., 1961, p. 135-141.
- 4. Flahaut J. e. a. Compt. Rend., 1960, v. 251, p. 1517-1519.

5. Picon M. e. a. Bull. Soc. Chim. France, 1960, v. 26, p. 221-228.

394

Точка плавления ZnS в атмосфере Ar под давлением 0,1 кГ/мм<sup>2</sup> равна 1830 ± ± 20° С [1]. Эта величина близка к приведенной М. Хансеном и К. Андерко (см. т. II [6]): 1800-1900° С при 100-150 ат, из чего авторы работы [1] сделали вывод о слабой зависимости точки плавления от давления (0,1 кГ/мм<sup>2</sup> соответствует ~10 am). Авторам работы [1] удалось расплавить ZnS при давлении  $0.035 \ \kappa \Gamma / M M^2 \ (\sim 3 \ am).$ 

Третья модификация ZnS с ромбоэдрической решеткой, обозначенная γ-ZnS, описана по результатам рентгеновского анализа ZnS, нагревавшегося между 600 и 1020° С [2], и по данным термического анализа [3].

ZnS с чисто гексагональной структурой (α-ZnS, вюрцит) получен из чистого порошка ZnS при 1050° С и давлении 500 мм pm cm. [4], а в работе [5] чистые кристаллы получены путем контролируемого охлаждения в Аг при давлении 0,1 кГ/мм<sup>2</sup>. Авторы работы [5] предполагают, что температура полиморфного превращения у особо чистых кристаллов выше 1150° С. Отмечается [5], что описанное М. Хансеном и К. Андерко (см. т. II [4]) соединение ZnS содержало 0,15% Fe и что примеси, диффундирующие из кварцевых стенок печи, загрязняли кристаллы.

В работе [6] вновь показано, что период г. ц. к решетки β-ZnS (цинковой обманки) равен 5,4109 А. Ромбоэдрическая у-модификация ZnS имеет после отжига при 1000° С периоды (по гексагональным осям) a = 3,830 А, c = 9,477 А, после отжига при  $850^{\circ}$  С a = 3,811 А, c = 9,348 А [2].

- 1. Addamiano A., Dell P. A. J. Phys. Chem., 1957, v. 61, p. 1020---1021.
- 2. Buck D. C., Strock L. W. Amer. Mineralogist, 1955, v. 40, p. 192-200.
- 3. Васильева Е. Г., Фридман С. А. Изв. АН СССР, Серия физич., 1959. т. 23. с. 1347-1350.
- 4. Samelson H., Brophy. V. A. Electrochem. Soc., Electronics Div. Abstr., 1960, v. 9, p. 77-78.
- 5. Addamiano A., Aven M. J. Appl. Phys., 1960, v. 31, p. 36—39. 6. Van Aswegen J. T. S., Verleger H. Naturwissenschaften, 1960, Bd. 47, S. 131.

## $\overline{1},5460$ 0,4540

### S—Zr. Сера—цирконий \*

Последние работы позволили в значительной мере выяснить вопросы, связанные с существованием сульфидов циркония. ZrS<sub>3</sub> выше 700° С распадается на менее богатые S сульфиды [1]. Подтверждена его моноклинная структура [1, 2], но значения периодов решетки расходятся: a = 5,17 A, b = 3,66 Å, c = 18,3 Å,  $\beta = 98,1^{\circ}$  [2]; a = 5,04 A, b = 3,60 A, c = 8,95 A,  $\beta = 98,5^{\circ}$  [1]. Предполагают, что удвоенное значение периода с, полученное в работе [2], связано с двойникованием использованных монокристаллов.

Подтверждено существование ZrS2 и его гексагональная структура типа CdI<sub>2</sub> [1-5]. Новые измерения размеров элементарной ячейки дали следующие результаты: a = 3,662 A, c = 5,813 A [1] и a = 3,662 A, c = 5,809 A [3]. Автор работы [4], используя методику восстановления Н<sub>2</sub> для определения термодинамических свойств сульфидов Zr, показал, что ZrS<sub>2</sub> при 500-900° С существует в диапазоне 65,6—66,6% (ат.) S.

Различные данные о соединениях, соответствующих по составу Zr<sub>2</sub>S<sub>3</sub>, Zr<sub>3</sub>S<sub>4</sub> и ZrS, объяснены, исходя из существования широкой однофазной области между 47,4 и 60% (ат.) S [1, 2]. Эта фаза имеет примитивную кубическую решетку с периодом 10,24—10,26 А [1, 2] и симметрией, близкой к г. ц. к. типа NaCl. Увеличенные размеры элементарной ячейки связаны с упорядочением вакансий

395

1,6906 0.3094 в позициях атомов S. Существование особой структуры у ZrS, подобной структуре фазы с широкой областью растворимости, но имеющей тип NaCl (a = 5,25 A [2]), поставлено под вопрос в работе [1]. Граница растворимости промежуточной фазы со стороны S составляет 63,2 и 62,3% (ат.) при соответственно 900 и 600° C; со стороны Zr граница растворимости не определена [4].

Фаза Zr<sub>4</sub>S<sub>3</sub> существует только в присутствии паров S [2]. У нее тетрагональная структура; a = 3,543 А, c = 8,07 А. Сульфид с минимальной концентрацией S соответствует формуле Zr<sub>3</sub>S<sub>2</sub> [2]. Он обнаружен также как продукт реакций между Zr и ZrS<sub>2</sub>, ZrS<sub>2</sub> и Mg [5]. У Zr<sub>3</sub>S<sub>2</sub> гексагональная решетка типа WC; a = 3,436 А, c = 3,435 А [2].

1. McTaggart F. K., Wadsley A. D. Austral. J. Chem., 1958, v. 11, p. 445-457.

2. Hahn H. u. a. Z. Anorg. Allgem. Chem., 1957, Bd. 292, S. 82-96.

3. Bracuti A. J. J. Ph. D. Thesis, Rutgers University, 1958.

4. Larsen A. H. Ph. D. Thesis, University of Missouri, 1959.

5. Clearfield A. J. Amer. Chem. Soc., 1958, v. 80, p. 6511-6513.

0,4327 $\overline{1},5673$ 

#### Sb—Sc. Сурьма—скандий

У ScSb г. ц. к. решетка типа NaCl, a = 5,859 A [1].

1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.

## $\frac{0,6370}{1,3630}$

### Sb—Si. Сурьма—кремний \*

Растворимость Si в жидкой Sb определена с помощью тщательного взвешивания [1]:

| `емпература, °С        | $1200 \\ 15$ | 1098 | 999  | 900  | 800  |
|------------------------|--------------|------|------|------|------|
| Растворимость, % (ат.) |              | 8,35 | 4,61 | 2,41 | 1,47 |

Температура ликвидуса при 50% (ат.) 1310° С [1]. По этим данным рассчитали, что эвтектическая точка должна соответствовать 0,3% (ат.) Si и находиться на 1,1 град ниже точки плавления Sb, т. е. при 629,4° С [1].

Солидус со стороны Si ретроградный [2—5]. Авторы работы [2], используя микроскопический анализ и метод микротвердости, показали, что максимальная растворимость при ~850° С составляет ~0,2% (ат.) Sb, растворимость при эвтектической температуре ~0,1% (ат.) Sb. В работе [3] рассчитано, что растворимость Sb в твердом Si максимальна при ~1325° С и составляет ~0,4% (ат.), в то время как построение солидуса по результатам измерения термического градиента между 800 и 1070° С [4] и изучение диффузии Sb в Si в интервале 1200—1400° С [5] дают максимальную растворимость ~0,14% (ат.) при ~1325° С [4].

1. Thurmond C. D., Kowalchik M. Bell System. Tech. J., 1960, v. 39, p. 160-204.

2. Глазов В. М., Лю Чжэнь-юань. Изв. АН СССР, ОТН, Металлугия и топливо, 1960, вып. 4, с. 150—155.

- 3. Козловская В. М., Рубинштейн Р. Н. ФТТ, 1961, т. 3, с. 3354—3362.
- 4. Trumbore F. A. Bell System. Tech. J., 1960, v. 39, p. 205-233.
- 5. Rohan J. J. a. o. J. Electrochem. Soc., 1959, v. 106, р. 705; см. [3, 4].

1,9083 0.0917

### Sb—Sm. Сурьма—самарий

SbSm имеет г. ц. к. решетку, изотипную с NaCl,  $a = 6,271 \pm 0,003$  A [1]. 1. I an d e l l i A. Z. An org. Allgem. Chem., 1956, Bd. 288, S. 81—86; Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat., 1960, v. 29, p. 62—69.

 $0,0110 \\ \overline{1},9890$ 

### Sb-Sn. Сурьма-олово \*

Автор работы [1] сделал обзор литературы по этой системе и привел диаграмму состояния, которая отличается от опубликованной М. Хансеном и К. Андерко (см. т. II, рис. 635) только тем, что равновесие (β' + Ж)/β здесь относится к температурам 246—325° С.

Согласно новым определениям растворимости в твердом состоянии Sb в Sn [2], она меньше, чем указывалось М. Хансеном и К. Андерко (см. т. II, рис. 635):

1. Ellwood E. S. Annotated Equilibrium Diagrams, Inst. of Metals, London, 1956, No. 23.

2. Eyre B. L. J. Inst. Met., 1959-1960, v. 88, p. 223-224.

#### 0,1427 $\overline{1},8573$

### Sb—Sr. Сурьма—стронций

Система изучена в работе [1] с помощью металлографического анализа литых сплавов, построения концентрационных кривых плотности и термического анализа (только богатых Sb сплавов). Сплавы, богатые Sb, плавили в кварцевых лодочках, а богатые Sr готовили в герметически закрытых стальных тиглях. Были использованы металлы высокой чистоты.

Металлографические наблюдения показали однофазные структуры при 25, 50, 60 и 67% (ат.) Sr, что соответствует номинальному составу соединений Sb<sub>3</sub>Sr, SbSr, Sb<sub>2</sub>Sr<sub>3</sub> и SbSr<sub>2</sub>. Отклонения на зависимостях плотности, определенной по результатам пикнометрического измерения, от концентрации при тех же составах подтверждают металлографические данные.

Металлографический и термический анализы показали существование эвтектики Sb + Sb<sub>3</sub>Zr при~600° C и 20% (ат.) Sr. Так как эвтектика была обнаружена в литых сплавах, содержащих всего 1,5% (ат.) Sr, растворимость Sr в твердой Sb несомненно меньше этой величины.

Поскольку термический анализ проводили только на сплавах с концентрацией Sr не больше 20% (ат.), ни вид диаграммы, ни даже формы кристаллизации соединений неизвестны. Плавки с концентрацией Sr более 70% (ат.) содержали столбчатые кристаллы металлического Sr. Это говорит либо о существовании эвтектики между 67 и 70% (ат.) Sr, либо о перитектической реакции с образованием SbSr<sub>2</sub>.

Согласно [2], у SbSr<sub>2</sub> о. ц. тетрагональная решетка; a = 5,00 A, c = 17,41 A; пространственная группа I4/mmm, 12 атомов на элементарную ячейку.

1. Щукарев С. А. идр. ЖОХ, 1957, т. 27, с. 1737—1740. 2. Вгацег G., Müller O. Angew. Chem., 1961, Bd. 73, S. 169.

#### $\overline{1}, 8279$ 0, 1721

#### Sb—Та. Сурьма—тантал

Промежуточная фаза  $Ta_3Sb$  имеет кубическую структуру типа  $\beta$ -W с периодом 5,2595  $\pm$  0,0010 A [1].

1. Nevitt M. V. Trans. AIME, 1958, v. 212, p. 350-355.

## 1,8844 0.1156

### Sb—Tb. Сурьма—тербий

Диаграмма состояния не построена. Неправильные заключения [1] являются результатом типографской ошибки.

У TbSb г. ц. к. решетка типа NaCl с периодом 6,178 А [2], 6,181 ± 0,002 А [3] или 6,180 А [4].

- 1. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир»,
- 2. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- 3. Olcese G. L. Atti Accad. Nazl. Lincei, Rend. Classe, Sci. Fis. Mat. Nat., 1961, v. 30, p. 195-200.
- 4. I an delli A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135-141.

#### 1,9796 0,0204 Sb—Те. Сурьма—теллур \*

Участок диаграммы между Sb и Sb<sub>2</sub>Te<sub>3</sub> (рис. 405) ревизует старые данные. Он построен по результатам тщательных термического и рентгеновского анализов [1] сплавов, приготовленных из Sb чистотой более 99.99% и дважды сублими-



рованного Те. Эвтектическая точка, ранее обнаруженная при 29% (ат.) Те, в действительности является точкой минимума на кривых ликвидуса и солидуса. В этой области имеются две образующиеся по перитектическим реакциям промежуточные фазы с широкими областями гомогенности. Температуры перитектических равновесий очень близки. Линии этих двух фаз на рентгенограммах порошков графически показаны в работе [1], но тип кристаллических структур не определен. Растворимость в твердом состоянии Те в Sb оценена равной 1% (ат.) при 500° С. По данным [1, 2], Sb<sub>2</sub>Te<sub>3</sub> не имеет измеримой области растворимости. При экстраполяции эвтектических и перитектических остановок до нуля получается, что соединение Sb<sub>2</sub>Te<sub>3</sub> имеет состав 59,60 ± 0,05% (ат.) Te [2], по [1], эта концентрация соответствует 59,2% (ат.). Конгруэнтное плавление Sb<sub>2</sub>Te<sub>3</sub> происходит при 616° С [1] или при 612° С [3].

У Sb<sub>2</sub>Te<sub>3</sub> гексагональная решетка ( $R\bar{3}m$ );  $a = 4,25 \pm 0,02$  A,  $c = 29,96 \pm 0,02$  $\pm$  0,10 Å [4].

1. Абрикосов Н. Х. идр. ЖНХ, 1959, т. 4, с. 2525—2530.

2. Offergeld G., Van Cokenberghe J. Nature, 1959, suppl. 4,

v. 184, p. 185-186; Phys. Chem. Solids, 1959, v. 11, p. 310-314.

3. Васенин Р. И. ЖТФ, 1955, т. 25, с. 1190-1197.

4. Семилетов С. А. Кристаллография, 1956, т. 1, с. 403-406.

## 1,7198 0,2802

Sb—Th. Сурьма—торий \*

Значения растворимости Th в жидкой Sb приведены в табл. 40 [1].

ТАБЛИЦА 40. РАСТВОРИМОСТЬ ТН В ЖИДКОЙ Sb

| Температура<br>°С | Th, % (ат.) | Th, %<br>(по массе) | Температура<br>°С | Th, % (ат.) | Th, %<br>(по массе)          |
|-------------------|-------------|---------------------|-------------------|-------------|------------------------------|
| 900               | 0,53        | 1,0                 | 750               | 0,05        | 0, 1 < 0, 05 < 0, 05 < 0, 05 |
| 850               | 0,26        | 0,5                 | 700               | <~0,02      |                              |
| 800               | 0,16        | 0,3                 | 650               | <~0,02      |                              |

1. Hayes E. E., Gordon P. J. U. S. At. Energy Comm. TID—65, 1948, p. 130—141; см. Rough F. A., Bauer A. U. S. At. Energy Comm. BMI-1300, 1958, p. 99.

0,4052 1,5948

### Sb—Ті. Сурьма—титан \*

В дополнение к ранее обнаруженным соединениям Sb и Тi идентифицированы Ti<sub>3</sub>Sb [1, 2] и Ti<sub>5</sub>Sb<sub>2</sub> [3]. У Ti<sub>3</sub>Sb кубическая решетка типа  $\beta$ -W, a == 5,217 Å. Соединение Ťi<sub>5</sub>Sb<sub>2</sub> имеет тетрагональную решетку, изотипную Ťi<sub>2</sub>Bi, в котором оно взаимно неограниченно растворяется. Кристаллическая структура Ті<sub>5</sub>Sb<sub>2</sub> относится к типу СЗВ (Cu<sub>2</sub>Sb); периоды тетрагональной ячейки: a = = 4.01 A, c = 14.5 A [3].

Периоды гексагональной решетки TiSb: a = 3,98 A, c = 6,17 A [4].

TiSb<sub>2</sub>, вероятно, образуется по перитектической реакции при 1010° С, ликвидус сплава этого состава 1030° С [5].

Kjekshus A., Scientific Paper No. 418, 10th Inter-Scandinavian Chemistry Conference, Stockholm, 1959; cm. [2].
Matthias B. T. a.o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

- 3. Auer-Welsbach H. u. a. Monatsh. Chem., 1958, Bd. 89, S. 154-159.
- 4. Щукарев С. А. идр. ЖОХ, 1959, т. 29, с. 2465—2467.
- 5. Дудкин Л. Д., Вайданич В. И. ФТТ, 1960, т. 2, с. 404-405.

### Sb--ТІ. Сурьма-таллий \*

Рентгеноструктурный анализ при комнатной температуре богатых TI фаз в сплавах TI—Sb, приготовленных из TI и Sb чистотой соответственно 99,9 и 99,999%. показал, что растворимость в твердом состоянии Sb в α-TI составляет 1% (ат.), и фаза (β?) с г. ц. к. решеткой стабильна около 10% (ат.) Sb. Протяженность области гомогенности г. ц. к. фазы определить не удалось. Соединение TI<sub>7</sub>Sb<sub>2</sub> обнаружено при ~22% (ат.) Sb, что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II [6]).

Термодинамическое исследование [2] подтвердило существование аллотропической модификации Tl с г. ц. к. решеткой при высоком давлении. Следовательно, фазовые равновесия у М. Хансена и К. Андерко (см. т. II, рис. 638) можно считать в целом правильными, хотя здесь необходима большая дополнительная работа по определению границ фазовых областей и выяснению существования о. ц. к. Tl.

1. Suganuma R. J. Phys. Soc. Japan, 1960, v. 15, p. 1395-1409. 2. Kaufman L. Acta Met., 1961, v. 9, p. 896-897.

1,8579 0.1421

### Sb—Tm. Сурьма—тулий \*

У TmSb г. ц. к. решетка типа NaCl с периодом 6,083 [1] или 6,091 А [2].

- 1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- 2. I a n d e l l i A. В книге «Rare Earth Research». ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135—141.
- 1,7088 0.2912

## Sb—U. Сурьма—уран \*

Диаграмма на рис. 406 построена по данным металлографического, термического и рентгеновского анализов сплавов, приготовленных индукционной и дуговой плавкой из высокочистого реакторного U (0,04% С, 0,02% Fe) и высокочистой Sb (99,99%) [1]. Значения растворимости U в жидкой Sb, по данным работ [2, 3], согласуются. Растворимость составляет [3]:

| Температура, °С | 900   | 850   | 800   | 750   | 700   | 650   |
|-----------------|-------|-------|-------|-------|-------|-------|
| Macce)]         | 1,5   | 0,9   | 0,4   | 0,26  | 0,15  | 0,05  |
|                 | [2,9] | [1,8] | [0,8] | [0,5] | [0,3] | [0,1] |

В дополнение к ранее известным соединениям USb, U<sub>3</sub>Sb<sub>4</sub> и USb<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [2, 3]) идентифицировано U<sub>4</sub>Sb<sub>3</sub> [1].

Характер трехфазной реакции между (Sb), USb<sub>2</sub> и жидкостью не определен, так же как и трехфазное равновесне между (γ-U), U<sub>4</sub>Sb<sub>3</sub> и жидкостью; температуры реакций идентичны соответственно точкам плавления Sb и U. Растворимость Sb в  $\alpha$ -,  $\beta$ - и γ-U, определенная металлографически, составляет 0,02; 0,10 и 0,05% (ат.) при 620, 730 и 825° C соответственно. Температура превращения ( $\alpha$ -U)  $\rightarrow$  ( $\beta$ -U) 663  $\pm$  3° C аналогична определенной в работе [1] для  $\alpha$ -U  $\rightarrow$   $\beta$ -U, хотя в первом случае наблюдается больший термический гистерезис. Переход ( $\beta$ -U)  $\rightarrow$  ( $\gamma$ -U) происходит при 780° C (у нелегированного U— при 772° C); здесь гистерезис не наблюдается, что указывает на перитектоидную реакцию.

Исходя из того, что в отожженных при 1650° С сплавах, близких по составу к  $U_4Sb_3$ , рентгеновским методом было обнаружено выделение USb, в работе [1] предполагается существование области гомогенности у  $U_4Sb_3$ .

Авторы работы [4], описывая свою старую работу (см. М. Хансен и К. Андерко, т. 11 [1, 2], дают следующие значения периодов решеток: a = 6,203 A (USb),



Рис. 406. Sb—U

40Q

a = 9,113 A (U<sub>3</sub>Sb<sub>4</sub>), a = 4,281 A, c = 8,759 A (USb<sub>2</sub>). Отсюда видно, что у М. Хансена и К. Андерко соответствующие величины даны скорее в килоиксах, чем в ангстремах.

У  $U_4Sb_3$  гексагональная решетка; a = 9,268 A, c = 6,201 A [1].

- 1. Beaudry B. J., Daane A. H. Trans. AIME, 1959, v. 215, p. 199-203.
- 2. Cammack H. Z., Bridger G. L. U. S. At Energy Comm. ISC-638, 1955, см. [1].
- 3. Hayes E. E., Gordon P., U. S. At. Energy Comm. TID-65, 1948. р. 134, см. [1].
- 4. Ferro R. Congr Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 353-358.
- 0,3784 1,6216

### Sb—V. Сурьма ванадий \*

В дополнение к VSb<sub>2</sub> обнаружено существование соединений V<sub>3</sub>Sb [1, 2] и VSb [3]. У V<sub>3</sub>Sb кубическая решетка типа  $\beta$ -W;  $a = 4,932 \pm 0,002$  A [1] или  $a = 4,9335 \pm 0,0009$  A [2]. VSb имеет гексагональную структуру типа NiAs; a = 4,270 A, c = 5,447 A [3].

VSb<sub>2</sub> образуется по перитектической реакции при 900° С; температура ликвидуса при стехиометрическом составе 1120° С [4]. Имеется вероятность полиморфного превращения в VSb, при 870° С [4].

- 1. Wood E. A., a. o. Acta Cryst., 1958, v. 11, p. 604-606.
- 2. Nevitt M. V. Trans. AIME, 1958, v. 212, p. 350-355.
- 3. Grison B., Beck P. A. Acta Cryst., 1962, v. 15, p. 807-808.
- 4. Дудкин Л. Д., Вайданич В. И., ФТТ, 1960, т. 2, с. 404—405.
- 0,1365 1,8635

### Sb— Ү. Сурьма—иттрий

У YSb г. ц. к. решетка типа NaCl с периодом 6,163 А [1] или 6,165 А [2]. Температура плавления этого соединения 1850-2200° С [3].

- 1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- 2. I andelli A. B книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135-141.
- 3. Miller, J. F., Himes R. C. B книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company. N. Y., 1961, p. 232-240.
- 1,8474 0,1526

### Sb— Yb. Сурьма—иттербий

У YbSb г. ц. к. решетка типа NaCl с периодом 5,922 [1] или 6,079 А [2].

1. Brixner L. H. J., Inorg. Nucl. Chem., 1960, v. 15, p. 199-201. 2. Iandelli A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135-141.

0,2701 1.7299

### Sb—Zn. Сурьма—цинк \*

Низкотемпературная  $\beta$ -модификация Zn<sub>4</sub>Sb<sub>3</sub>, согласно результатам анализа монокристалла, имеет базоцентрированную моноклинную решетку;  $a=8,2_5$  A,  $b=1,2_3$  A, c=10,897 A,  $\beta=99^\circ$  30'  $\pm$  1° 30' [1]. Измерения плотности показывают одинаковую вероятность стехиометрических формул Zn<sub>4</sub>Sb<sub>3</sub> и Zn<sub>7</sub>Sb<sub>5</sub>.

С помощью рентгеноструктурного анализа показано [1], что ε-Zn<sub>3</sub>Sb<sub>2</sub> не существует при комнатной температуре; это согласуется с данными М. Хансена и К. Андерко (см. т. II [10]). β-Zn<sub>4</sub>Sb<sub>3</sub> находится в равновесии с твердым раствором на основе Zn [1], в то время как по М. Хансену и К. Андерко (см. т. II [10]) с (Zn) сосуществует ZnSb. Предпочтение следует отдать результатам работы [1], где предполагается, что нонвариантная температура 405° С (см. М. Хансен и К. Андерко, т. II [5]) относится к эвтектоидному распаду ζ-Zn<sub>3</sub>Sb<sub>2</sub> → β-Zn<sub>4</sub>Sb<sub>3</sub> + + (Zn).

В работе [2] строили линию ликвидуса системы по результатам исследования неравновесного плавления. Обнаружено, что ZnSb плавится с образованием открытого максимума при 567° С. а эвтектика ZnSb + Zn<sub>4</sub>Sb<sub>3</sub> плавится при 545° С. Ранее опубликованная диаграмма не может быть изменена на основе этих экспериментов, особенно потому, что тщательное изучение соответствующей области диаграммы показало возможность частого возникновения здесь метастабильных условий.

1. Tvdlitat V. Czech. J. Phys., 1959, v. 9, p. 638-640. 2. Угай Я. А. ЖНХ, 1958, т. 3, с. 678-682.

0,1254 1,8746

### Sb—Zr. Сурьма—цирконий \*

Растворимость Sb в α- и β-Zr определена металлографически в температурном интервале 750-1300° С [1]. Недостаточная чистота иодидного Zr (99,9%) помешала точному определению температуры перитектоидной реакции — авторы [1] получили трехфазную область на двойной диаграмме. Sb. % (no macce)

Рис. 407 составлен по данным [1] в соответствии с правилом фаз.

5 .10 15 20 25

B+Zr2Sb

~ 875

1300

1200

900

1. Betterton J.O. (Jr.) Spicer W. M. Trans. AIME, 1958, v. 212, p. 456-457.

1,7568 0,2432

### Sc—Se. Скандий—селен

Существование соединения Sc<sub>2</sub>Se<sub>3</sub>, впервые обнаруженного в работе [1], подтверждено исследованием [2]. В последнем сказано, что у Sc<sub>2</sub>Se<sub>3</sub> г. ц. к. решетка типа  $\gamma'$ -Al<sub>2</sub>O<sub>3</sub>,  $a = 5,416 \pm 0,005$  Å. В работе [3] отмечается, что г. ц. к. структура относится к типу ZnS (цинковой обманки) с недостатком Sc. Соединение ScSe не существует [4].

- 1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd. 233, S. 84-96.
- 2. Менков А. А. идр. ДАН СССР, 1959, т. 128, c. 92–94.
- 3. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 4. Менков А. А. идр. ДАН СССР, 1961, т. 141, c. 364-367.

800 a + Zr, Sb 700 0 10 20 Zr Sb. % (am.)

06

a-Zr

Рис. 407. Sb—Zr

#### 0,2043 1,7957

### Sc—Si. Скандий—кремний

Сообщается [1] о существовании фазы ScSix (х неизвестно), структура которой не изотипна с ThSi2. В работе [2] говорится о существовании соединения ScSi<sub>2</sub>, но его кристаллическая структура не установлена.

26\*

1. Brauer G., Haag H. Z. Anorg Allgem. Chem., 1952, Bd. 267, S. 198-212, см. Гшнейднер К. А. Сплавы редкоземельных металов. Изд-во «Мир», 1965.

2. Matthias B. a.o. Phys. Rev., 1958, v. 112, p. 89.

#### 1,3954 0,6046 Sc-Та. Скандий-тантал

При плавке металлического Sc в тиглях из Та расплав насыщается 0,5-1,3% (ат.) [2-5% (по массе)] Та, что значительно превышает величину растворимости Та в других редкоземельных металлах при таких экспериментах [1]. При 1425—1475° С Sc настолько быстро реагирует с Та, что проплавляет тигель.

1. Spedding F. H. a. o. Trans. AIME, 1960, v. 218, p. 608-611.

## 1,6572

## Sc-Tc. Скандий-технеций

В работе [1] проведено рентгеноструктурное исследование сплавов Тс, последовательно насыщенных Sc. У сплава с 12,5% (ат.) Sc о. ц. к. решетка типа α-Мп с периодом 9,509 ± 0,001 A [1, 2]. При 33,3% (ат.) Sc наблюдается гексагональная структура MgZn<sub>2</sub>;  $a = 5,223 \pm 0,001$  A,  $c = 8,571 \pm 0,001$  A [1].

- 1. Darby J. B. Jr., Lam D. J. U. S. At.-Energy Comm. ANL-6516, 1961, p. 254–256. 2. Lam D. J. a. o. Nature, 1961, v. 192, p. 744.

 $\overline{1}, 5518$ 0, 4482

## Sc-Te. Скандий-теллур

У  $Sc_2Te_3$  г. ц. к. решетка типа  $\gamma'$ -Al $_2O_3$  с периодом 5,817  $\pm$  0,005 A [1]. Согласно [2], структура этого соединения относится к типу ZnS (цинковой обманки) с недостатком Sc.

Соединение ScTe идентифицировано в работах [3, 4]. Согласно [3], у ScTe гексагональная решетка типа NiAs;  $a = 4,120 \pm 0,005$  A,  $c = 6,748 \pm 0,005$  A. Автор работы [4] также установил гексагональную структуру ScTe, но с совершенно другими периодами: a = 6.72 A, c = 8.360 A. Поскольку в работе [4] даются только значения периодов, причину расхождений результатов [3, 4] нельзя выяснить.

1. Менков А. А. идр. ДАН СССР, 1958, т. 128, с. 92-94.

2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир». 1965.

3. Менков А. А. идр. ДАН СССР, 1961, т. 141, с. 364-367.

4. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.

#### 1,9725 0,0275

### Sc-Ti. Скандий-титан

Фазовые равновесия в этой системе исследовались в работах [1, 2], где приводятся существенно различающиеся варианты диаграммы состояния. Предпочтительнее данные работы [1], где использованы чистейшие материалы и система изучена значительно подробнее.

Диаграмма [1] на рис. 408 построена по результатам термического, металлографического и рентгеновского анализа сплавов, приготовленных из Ті и Sc чистотой соответственно 99,88 и 99,75%. Установлено, что Sc имеет высокотемпературную (выше 1334 ± 4° C) аллотропическую модификацию с о. ц. к. решеткой (несмотря на то, что высокое давление паров мешало получению четких результатов при высокотемпературной рентгеносъемке). β-Sc и β-Ti образуют непрерывные ряды твердых растворов, однако α-Sc и α-Tí только частично взаимно растворимы. При 1050° С твердый раствор (β-Sc, β-Ti) распадается по эвтектоид-



Рис. 408. Sc-Ti

ной реакции на (β-Ti) + (α-Sc). Sc слегка снижает температуру полиморфного превращения Ті. При закалке сплавов с 58—100% (по массе) Ті образуется мартенситная фаза с гексагональной решеткой.

Авторы работы [2] изучали фазовые равновесия с помощью термического, рентгеновского и металлографического анализов сплавов, полученных из Ті и Sc чистотой соответственно 99.7 и 96%. Высокотемпературная о. ц. к. модификация была обнаружена выше 1450° С. Но неограниченной растворимости модификаций с о. ц. к. решеткой не наблюдалось, а при 1440° С протекала эвтектическая реакция Ж (β-Sc) + (β-Ti). Показано, что (β-Sc) подвергается эвтекто-идному распаду при 1330° С, а линия температур начала полиморфного преврашения Ті, полнимается до перитектоидной горизонтали при 900° C, где идет

404

реакция ( $\alpha$ -Sc) + ( $\beta$ -Ti) $\xrightarrow{\sim}$ ( $\alpha$ -Ti). Взаимная растворимость гексагональных модификаций Ti и Sc, по данным работ [2, 1], примерно одинакова.

 Веаиdгу В. Ј., Daane А. Н. Trans. AIME, 1962, v. 224, p. 770—775.
Савицкий Е. М., Бурханов Г. С. ЖНХ, 1961, т. 6, с. 1253— 1255.

1,2761

### Sc—U. Скандий—уран

В системе Sc--- U имеется широкая область несмешиваемости в жидком состоянии [1].

 Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965; см. Міпег W. N. а. о. В книге «Rare Metals Handbook», ed. С. А. Hampel. Reinhold Publishing Corporation, N. Y., 1961, chap. XVIII, р. 336. Цитируемое Гшнейднером положение в последнем источнике найти не удалось.

1,8374

### Sc—Zn. Скандий—цинк

Сплав с 77,2% (ат.) (?) [70% (по массе)] Zn плавится ниже 1000° С [1].

 Spedding F. H. a.o. U. S. At. Energy Comm. ISC-1049, 1958; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

1,7202

### Se-Sm. Селен-самарий

Известны три промежуточные фазы: SmSe [1, 2], Sm<sub>2</sub>Se<sub>3</sub>—Sm<sub>3</sub>Se<sub>4</sub> [3, 4] и Sm<sub>2</sub>Se<sub>4</sub> [4].

У SmSe г. ц. к. решетка типа NaCl [1, 2] с периодом 6,200 ± 0,003 A [1] или 6,171 A [2]. В работе [2] соединение SmSe получено восстановлением окисла алюминием в присутствии Se. SmSe плавится при ~2100° C [5, 6].

В работе [3] идентифицировали соединение со стехиометрическим составом Sm<sub>2</sub>Se<sub>3</sub>. Однако в исследовании [4] показано, что это соединение лежит в области твердых растворов [55—60% (ат.) Se] на основе Sm<sub>3</sub>Se<sub>4</sub>, причем растворы образуются за счет возникновения вакансий на месте атомов Sm. У Sm<sub>3</sub>Se<sub>4</sub> о. ц. к. решетка типа Th<sub>3</sub>P<sub>4</sub> с периодом 8,785 A (для состава Sm<sub>2</sub>Se<sub>3</sub>). Точка плавления Sm<sub>2</sub>Se<sub>3</sub> оценена равной  $> 1540^{\circ}$  C [5].

В работе [4] транспортной реакцией получен сплав  $Sm_2Se_{3,6}$ . По составу он соответствует предельной растворимости Sm в  $Sm_2Se_4$  и находится в равновесии с  $Sm_2Se_3$ . У  $Sm_2Se_{3,6}$  тетрагональная решетка; a = 8,18 A, c = 8,38 A [4].

 I an delli A. Z. Anorg. Allgem. Chem., 1956, Bd. 288, S. 81-87; Atti Accad. Nazl. Lincei, Rend. Classe Sci Fis. Mat. Nat., 1960, v. 29, p. 62-69.
«Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135-141.

- Guittard M., Benacerraf A. Compt. Rend., 1959, v. 248, p. 2589-2591.
- 3. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd. 233, S. 84-96.
- 4. Benacerraf A. a. o. Compt. Rend., 1959, v. 248, p. 1672-1675.
- 5. Miller J. F., Himes R. S. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 232—240.

6. Miller J. F. a. o. В книге «Rare Earth Research» (Proceedings of the Second Conference), eds. J. F. Nachman, C. E. Lundin Gordon and Breach, Science Publishers, Inc., N. Y., 1962, p. 233—248.

 $\overline{1},8230\\0,1770$ 

### Se-Sn. Селен-олово

Подтверждено, что у SnSe ромбическая решетка типа SnS [1-3];  $a = 4,47 \pm 0,01$  A,  $b = 4,19 \pm 0,01$  A,  $c = 11,48 \pm 0,01$  A [3]. В работе [4] обнаружено фазовое превращение второго рода в SnSe при 541° С. Ниже этой температуры коэффициент термического расширения вдоль оси c отрицателен, а выше — положителен во всех трех направлениях.

Согласно [5], температура кристаллизации SnSe при охлаждении  $629 \pm 5^{\circ}$  С, решетка гексагональная, типа CdI<sub>2</sub>;  $a = 3,811 \pm 0,002$  А,  $c = 6,137 \pm 0,003$  А. Устойчивая искаженная гексагональная структура указывает на возможность полиморфного превращения в SnSe<sub>2</sub>, однако высокотемпературный анализ между 200 и 500° С не подтвердил этого предположения.

1. O k a d a T. Phys. Chem. Solids, 1959, v. 8, p. 428.

- 2. Okazaki A., Ueda I. Mem. Fac. Sci. Kyushu Univ., 1956, Bd. 2, p. 46-49.
- 3. Нестерова И. М. идр. ЖНХ, 1961, т. 6, с. 2014—2018.
- 4. Жданова В. В. ФТТ, 1961, т. 3, с. 1619-1620.
- 5. Busch G. a. o. Helv. Phys. Acta., 1961, v. 34, p. 359-368.

#### $\overline{1,6400}$ 0.3600

### Se-Ta. Селен-тантал

Эта система изучена [1] с помощью рентгеноструктурного анализа сплавов, полученных при взаимодействии порошков Se и Ta в эвакуированных кварцевых ампулах при 900° C (точка кипения Se 685° C). После спекания образцы перешлифовывали и обрабатывали при 900° C в течение двух дней. «По-видимому, полученные таким способом образцы были полностью гомогенными». Результаты химического анализа не сообщаются.

На основе рентгеновских данных в работе [1] пришли к выводу о существовании интерметаллической а-фазы в широком интервале концентраций TaSe<sub>1,0-2,0</sub> [50—66,7% (ат.)] и «существовании более высоких селенидов» (между TaSe<sub>2</sub> и TaSe<sub>4</sub>). Предполагается, что а-фаза сходна с фазой TaS<sub>1,0-1,9</sub> в системе Ta—S.

1. Ария С. М. идр. ЖОХ, 1956, т. 26, с. 2373—2375.

## 1,6963

### Se—Tb. Селен—тербий

У TbSe г. ц. к. решетка типа NaCl с периодом 5,741 ± 0,002 A [1] или 5,740 A [2].

- 1. Olcese G. L. Atti Accad. Nazl. Lincei, Rend. Glasse Sci. Fis. Mat. Nat., 1961, v. 30, p. 195-200.
- 3. I an delli A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company. N. Y., 1961, p. 135—141.

 $\overline{1},7915$ 0.2085

## Se-Te. Селен-теллур \*

В работе [1] проведен рентгеновский и денситометрический анализы сплавов с 0,1—75% (ат.) Se, полученных сплавлением дважды дистиллированных Те и Se в эвакуированных стеклянных капсулах. С увеличением содержания Se

406

периоды решетки *а* и *с* уменьшаются, причем *с* линейно изменяется с концентрацией, а соответствующая кривая для *а* имеет положительное отклонение от закона Вегарда. Сверхструктурных линий не было обнаружено. Значения плотности, определенные пикнометрическим методом, оказались меньше рассчитанных по периодам решетки.

1. Смородина Т. П. ФТТ, 1960, т. 2, с. 883-886.

1,5317 0,4683 Se—Th. Селен—торий \*

В работе [1] проведен рентгеновский анализ сплавов, приготовленных из высокочистого Se и Th, содержавшего 0,346% W (другие примеси можно было обнаружить только спектроскопически). В противоположность данным М. Хансена и К. Андерко (см. т. II [1]), согласно которым для получения соединения ThSe<sub>2,33</sub> (Th<sub>3</sub>Se<sub>7</sub>) избыток Se из селенида должен удаляться в течение нескольких месяцев нагрева при 300° C, авторы [1] обнаружили, что Se быстро отделяется при 350° C вплоть до получения соединения ThSe<sub>2,5</sub> (Th<sub>4</sub>Se<sub>10</sub>), из которого уже не происходит дальнейшего удаления Se в процессе недельной выдержки при 350° C. Th<sub>4</sub>Se<sub>10</sub> имеет тетрагональную решетку; a = 5,629 A, c = 10,764 A.

Согласно [1], диселения ThSe<sub>2</sub> кристаллизуется в ромбическую решетку типа PbCl<sub>2</sub>, a = 4,435 A, b = 7,629 A, c = 9,085 A, что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II [2]).

Попытки получить Th<sub>7</sub>Se<sub>12</sub>, Th<sub>2</sub>Se<sub>3</sub> и ThSe оказались безуспешными [1]. Авторы предполагают, что для образования этих соединений необходимо небольшое количество О.

1. Graham J., McTaggart F. K. Australian J. Chem., 1960, v. 13, p. 67-73.

0,2171 $\overline{1},7829$ 

### Se—Ті. Селен—титан \*

Существует единое мнение различных исследователей системы Se—Ti в отношении количества и кристаллической структуры фаз между 21 и 72% (ат.) Se. Однако для ряда концентраций, при которых, по предположению [1], легко образуются окислы и силициды в процессе приготовления сплавов, что вызывает уменьшение содержания Ti, разногласия имеются.

Имеются доказательства, что недоселенид, возможно  $Ti_2Se$ , образуется в сплавах с концентрацией Se 37,5% (ат.) и меньше [1] (см. также М. Хансен и К. Андерко, т. II [1]).

В работе [1] идентифицирована фаза с ромбической решеткой типа NiAs  $(a = 3,494 \text{ A}, b = 6,222 \Pi, c = 6,462 \text{ A})$ , содержащая 48,7% (ат.) Se и обозначенная TiSe<sub>0,95</sub>. Возможно, однако, что из-за взаимодействия сплавов с тиглями из окиси алюминия действительный состав этого соединения может быть ближе к TiSe.

При 51,2% (ат.) Se обнаружена фаза с гексагональной структурой типа NiAs; a = 3,571 A, c = 6,297 A [1]. Ей приписана формула TiSe<sub>1,05</sub>, что очень близко к фазе TiSe (см. М. Хансен и К. Андерко, т. II [1]) и Ti<sub>3</sub>Se<sub>2</sub>, по [2, 3]; a = = 7,135 A, c = 11,976 A. Согласно [2, 4] TiSe имеет гексагональную элементарную ячейку с удвоенными периодами ранее установленной решетки типа NiAs (см. М. Хансен и К. Андерко, т. II [1]). Периоды TiSe равны: a = 7,135 A, c = 11,976 A [2]; a = 7,15 A, c = 12,00 A [4]. В работе [5] изучена температурная зависимость периодов решетки TiSe.

В диапазоне 54,6—66,6<sup>6</sup>/м (ат.) Se авторы [1] обнаружили фазу TiSe<sub>1,20-2,00</sub>, которая имеет гексагональную решетку при максимальном содержании Ti, претерпевает моноклинную деформацию с увеличением концентрации Se и снова

становится гексагональной в интервале TiSe<sub>1.4-2.00</sub>. Между 54,6% (ат.) Se (TiSe<sub>1.2</sub>) и 56,5% (ат.) Se (TiSe<sub>1.30</sub>) изменения в структуре настолько велики, что при пониженных температурах можно ожидать образования двухфазной области [1]. Периоды решетки TiSe<sub>2</sub>, определенные в работе [4]: a = 3,535 A, c = 6,004 A и приведенные М. Хансеном и К. Андерко (см. т. II [2]), хорошо согласуются с результатами [1]; a = 3,537 A, c = 6,002 A.

1. Gronvold F., Langmyhr F. J. Acta Chem. Scand., 1961, v. 15, p. 1949-1962.

2. Hahn H., Ness P. Naturwissenschaften, 1957, Bd. 44, S. 581.

2. Hahn H., Ness P. Z. Anorg. Allgem. Chem., 1959, Bd. 302, S. 17-36.

4. McTaggart F. K., Wadsley A. D. Australian J. Chem., 1958, v. 11, p. 445-457.

5. Schneider A., Imhagen K. H. Naturwissenschaften, 1957, Bd. 44, S. 324.

#### $\overline{1}, 5870$ 0,4130

## Se—Tl. Селен—таллий \*

Кристаллическая структура Tl<sub>2</sub>Se исследована электронографически на пленках, полученных осаждением из газовой фазы. У Tl<sub>2</sub>Se тетрагональная решетка (P4/n), 10 формульных единиц на элементарную ячейку; a = 8,54 A, c = 12,71 A [1]:

В работах [2, 3] с использованием радиактивного ТІ определены упругости паров TlSe, Tl<sub>2</sub>Se и Tl<sub>2</sub>Se<sub>3</sub>.

1. Стасова М. М., Вайнштейн Б. К. Кристаллография, 1958, т. 3, с. 141—147.

2. Шахтахтинский М. Г., Кулиев А. А. ДАН АзССР, 1959, т. 15. с. 891—895.

3. Шахтахтинский М.Г., Кулиев А.А. ФММ, 1960, т. 9, с. 202—204.

#### $\overline{1,6698}$ 0.3302

### Se-Тт. Селен-тулий

У TmSe г. ц. к. решетка типа NaCl, a = 5,640 A [1].

 I a n d e l l i A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135—141.

#### $\overline{1,5207}$ 0,4793

### Se-U. Селен-уран \*

Существующая информация о химических и физических свойствах, кристаллографии и методах получения селенидов U обобщена в работе [1]. В дополнение к ранее известному USe из газовой фазы получены новые селениды: U<sub>3</sub>Se<sub>4</sub> [2], U<sub>2</sub>Se<sub>3</sub> [3], U<sub>3</sub>Se<sub>5</sub> [4], USe<sub>2</sub> [5] и USe<sub>3</sub> [6]. U<sub>2</sub>Se<sub>3</sub> и U<sub>3</sub>Se<sub>4</sub> образуют при температуре < 1400° С эвтектику [2].

У  $U_3$ Se<sub>4</sub> о. ц. к. решетка типа Th<sub>3</sub>P<sub>4</sub>, 4 формульные единицы на элементарную ячейку, a = 8,80 A [2].

 $U_2Se_3$  имеет ромбическую структуру, изотипную с Sb<sub>2</sub>S<sub>3</sub>, 4 формульные единицы на элементарную ячейку; a = 11,33 A, b = 10,94 A, c = 4,06 A [3].

У U<sub>3</sub>Se<sub>5</sub> ромбическая решетка типа U<sub>3</sub>S<sub>5</sub>, 4 формульные единицы на элементарную ячейку; a = 7,73 A, b = 8,49 A, c = 12,43 A [4]. USe<sub>2</sub> существует в трех аллотропических модификациях —  $\alpha$ ,  $\beta$  и  $\gamma$ , которые изотипны с соответствующими модификациями US<sub>2</sub>. У  $\alpha$ -USe<sub>2</sub> тетрагональная решетка; a = 10,73 A, c = 6,59 A;  $\beta$ -USe<sub>2</sub> имеет ромбическую структуру типа PbCl<sub>2</sub>; a =

= 4,26 A, b = 7,46 A, c = 8,98 A; γ-USe<sub>2</sub> имее́т гексагональную решетку; a = 7,68 A, c = 4,21 A [5].

У USe<sub>3</sub> моноклинная структура, 4 формульные единицы на элементарную ячейку; a = 5,68 A, b = 4,06 A, c = 19,26 A,  $\beta = 80^{\circ} 30' \pm 30'$  [6].

В работе [1] приведен также период кубической решетки USe 5,66 А вместо 5,750 А по М. Хансену и К. Андерко (см. т. II [1]).

- 1. K h o d a d a d P. Bull. Soc. Chim. France, 1961, v. 27, p. 133-136.
- 2. K h o d a d a d P. Compt. Rend., 1960, v. 250, p. 3998-4000.
- 3. K h o d a d a d P. Compt. Rend., 1959, v. 249, p. 694-696.
- 4. K h o d a d a d P. Compt. Rend., 1958, v. 247, p. 1205-1206.
- 5. K h o d a d a d P. Compt. Rend., 1957, v. 245, p. 934-936.
- 6. K h a d a d a d P. Compt. Rend., 1957, v. 244, p. 462-464.
- 0,1903 1,8097

## Se-V. Селен-ванадий \*

При повторном исследовании периодов решетки (типа NiAs) фазы VSe размеры гексагональной ячейки оказались равными a = 3,66 A, c = 5,95 A [1].

1. Tsubokawa I. J. Phys. Soc. Japan, 1959, v. 14, p. 196-198.

1,9484 0,0516

Se-Y. Селен-иттрий

Соединение Y<sub>2</sub>Se<sub>3</sub> описано в работе [1]. Согласно [2], температура плавления Y<sub>2</sub>Se<sub>3</sub> > 1800° C.

Соединение YSe имеет г. ц. к. решетку типа NaCl, a = 5,703 A [3].

1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd. 233, S. 84-96.

2. Miller J. F., Humes R. C. Вкниге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company. N. Y., 1961, p. 232-240.

3. Іап dellі А. Там жер. 135—141.

1,6593 0,3407

## Se-Yb. Селен-иттербий \*

Соединение Yb<sub>2</sub>Se<sub>3</sub> обнаружено в работе [1]. Его температура плавления, по [2], должна быть > 1665° С. Согласно [3], точка плавления YbSe 1940-1950° С. В работах [3, 4] вновь определили период решетки YbSe (a = 5,931 A [4]), который оказался больше, чем у М. Хансена и К. Андерко (см. т. II [1]).

1. Klemm W., Koczy A. Z. Anorg. Allgem. Chem., 1937, Bd 233, S. 84-96.

- 2. Miller J. F., Himes R. C. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 232-240.
- 3. Miller J. F. a. o. B книге «Rare Earth Research», eds. (Proceeding of the Second Conference). J. F. Nachman, C. E. Lundin. Gordon and Breach, Science Publishers, Inc., N. Y., 1962, p. 233-248.
- 4. I a n d e l l i A. В книге «Rare Earth Research», ed. E. V. K l e b e r. The Macmillan Company, N. Y., 1961, p. 135-141.
- 0.0820 1.9180

## Se-Zn. Селен-цинк \*

В закрытой системе точка плавления ZnSe составляет 1515 ± 20° С [1]. Наиболее точное значение периода г. ц. к. решетки ZnSe 5,6686 ± 0,0006 A [2].

Гексагональный ZnSe синтезирован из элементов при 1380° С [3, 4], а также получен разложением ZnSe N<sub>2</sub>H<sub>4</sub> при 480 ± 20° С [5, 6]. Согласно [4, 6], гексагональная модификация ZnSe метастабильна. В работе [5] получены монокристаллы ZnSe — гексагональные призмы; их гексагональная структура была подтверждена и рентгеновским методом. Согласно [7], рентгенограммы, снятые с порошка и монокристалла, говорят о гексагональной (типа ZnS. вюрцит) структуре ZnSe, с дефектами, которые образуют локальные кубические области сфалеритного типа; a = 3,98 A, c = 6,55 A [3];  $a = 4,01 \pm 0,02$  A,  $c = 6,54 \pm 0,02$  A,  $c = 6,55 \pm 0,02$  A,  $c = 6,55 \pm 0,02$  A, c $\pm$  0.02 A [4].

- 1. Fischer A. G. J. Electrochem. Soc., 1959, v. 106, p. 838-839.
- 2. Горюнова Н. А., Федорова Н. Н. ФТТ, 1959, т. 1, с. 344—345.
- 3. Кручеану Е., Чистяков Ю. Д. Кристаллография, 1960, т. 5, с 364-
- 4. Пашинкин А.С.идр. Кристаллография, 1960, т. 5, с. 261-267.
- 5. Қорнеева И. В. Кристаллография, 1961, т. 6, с. 630-631.
- 6. Benzing W.C. a. o. J. Amer. Chem. Soc., 1958, v. 80, p. 2657-2659; см. [5].
- 7. Chistyakov Yu. D., Crucianu E. Acad. Rep. Populare Romine Studii Cercetari Met., 1960, v. 5, p. 517-525.

#### 1,9373 0,0627

## Se-Zr. Селен-цирконий \*

В работах [1, 2] описаны следующие соединения и фазы: ZrSe<sub>3</sub>, «ZrSe<sub>2</sub>» [63--66,7% (ат.) Se], «Zr<sub>3</sub>Se<sub>4</sub>» [50-58,2% (ат.) Se] и фаза в интервале концентраций 37,4-44,5% (ат.) Se, включающем два соединения со стехиометрическими составами: «Zr<sub>4</sub>Se<sub>3</sub>» и «Zr<sub>3</sub>Se<sub>2</sub>». В дополнение к вышеперечисленным соединениям, которые были получены прямым синтезом, при сублимации показано образование  $Zr_4Se_3$ . Согласно [1, 2], у ZrSe<sub>3</sub> моноклинная решетка; a = 5,42 A, b = 3,75 A, c = 19,5 А,  $\beta = 97,6^{\circ}$ ; ZrSe<sub>2</sub> имеет гексагональную структуру типа CdI<sub>2</sub>; a = -10,5= 3,771 A, c = 6,148 A, у  $Zr_3Se_4$  ромбоэдрически искаженная решетка NaCl; a = 5,337 A,  $\alpha = 89,39^\circ$  (эквивалентные гексагональные периоды:  $a = 7,509 \pm$  $\pm$  0,008 A,  $c = 9,338 \pm$  0,009 A). Zr<sub>3</sub>Se<sub>2</sub> имеет гексагональную решетку типа WC;  $a = 3,546 \pm 0,005$  A, c = 0,005 A; ў  $Zr_4Se_3$  тетрагональная структура, изотипная с Zr<sub>4</sub>S<sub>3</sub>; a = 3,634 ± 0,005 Å, c = 8,361 ± 0,008 Å. Периоды решетки Zr увеличиваются при добавлении Se; максимальная растворимость Se составляет 23,1% (ar. [1, 2].

Авторы работ [3, 4] подтвердили моноклинную структуру ZrSe<sub>3</sub>, однако, по их данным, период с в два раза меньше, чем в работах [1, 2]: a = 5,42 Å, b = 3,74 A, c = 9,45 A,  $\beta = 98,2^{\circ}$  [3]; a = 5,41 A, b = 3,77 A, c = 9,45 A,  $\beta = 97,5^{\circ}$ [4]. В работе [4] проводили исследования на монокристаллах.

Подтверждено [3] существование ZrSe2. Его структура идентифицирована как гексагональная; a = 3,757 A, c = 18,63 A; эти значения периодов подобны (а в два раза'меньше, с вдвое больше) периодам гексагональной решетки «Zr<sub>3</sub>Se<sub>4</sub>», по [1, 2]. Подтверждено [3] также существование двухфазной области при 50% (ar.) Se.

1. Hahn H., Ness P. Naturwissenschaften, 1957, Bd 44, S. 534.

2. Hahn H., Ness P. Z. Anorg. Allgem. Chem., 1959, Bd 302, S. 37-49.

3. McTaggart F. K., Wadsley A. D. Australian J. Chem., 1958, v. 11, p. 445-457.

4. Kronert W., Plieth K. Naturwissenschaften, 1958, Bd 45, S. 416.

## 1,2712 0,7288

### Si-Sm. Кремний-самарий \*

Показано, что SmSi<sub>2</sub> имеет полиморфное превращение при  $380 \pm 40^{\circ}$  С [1]. Выше этой температуры решетка тетрагональная, типа ThSi<sub>2</sub>; a = 4,08 A, c = = 13,51 A (470° C); ниже 380° С кристаллическая структура становится ромбиче-

ской (искаженная решетка высокотемпературной модификации ThSi<sub>2</sub>); a = 4,105 A, b = 4,035 A, c = 13,46 A [1].

1. Реггі Ј. А. а. о. Ј. Phys. Chem., 1959, v. 63, p. 616—619; см. Реггі Ј. А. a. o. J. Phys. Chem., 1959, v. 63, p. 2073-2074.

#### 1,3741 0,6259

### Si-Sn. Кремний-олово \*

Диаграмма на рис. 409 построена по данным [1], подтверждающим отсутствие соединений в этой системе (см. М. Хансен и К. Андерко, т. II, [1, 2]). Кривая ликвидуса получена по результатам тщательного измерения потерь в массе



слитка Si, приводившегося в равновесие с жидким Sn при температурах 1025 ---1373° С; кривая проведена по 26 парным точкам. Концентрация эвтектики по расчетам составляет 1 · 10<sup>-5</sup>% (ат.) Si; ее температура кристаллизации на 4 · 10<sup>-5</sup> град ниже точки плавления Sn.

Согласно [2], растворимость Sn в Si составляет, % (ат.) · 10<sup>-2</sup>: 1,6; 9,2; 10; 11; 10, 4; 7,8; 5 при соответственно 1400, 1350, 1300, 1200, 1100, 900 и 700° С. Значения растворимости переведены в атомные проценты из атом/см<sup>3</sup>.

1. Thurmond C. D., Kowalchik M. Bell. System. Tech. J., 1960, v. 39, p. 169-204.

2. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233; Trumbore F. A. a. o. Phys. Chem. Solids, 1959, v. 9, p. 60-69.

## Si-Sr. Кремний-стронций \*

В работе [1] получено соединение Sr<sub>2</sub>Si и измерена теплота его образования. Металлографические шлифы образцов стехнометрического состава и с отклонениями от него на 10% (ат.) в обе стороны были негомогенными.

1. Морозова М. П. и др. Вестник ЛГУ, 1959, т. 14, № 10, серия физ. и хим., вып. 2, с. 83-86.

## 1,1912 0,8088

 $\overline{1},5059$ 0,4941

### Si-Ta. Кремний-тантал \*

Согласно [1], коэффициент распределения Та в Si (отношение атомной доли легирующего элемента в твердой фазе к его атомной доле в жидкости) составляет 10-7, что указывает на исключительно низкую растворимость Та в твердом Si при температуре плавления Si.

Дальнейшие исследования кристаллических структур соединений Si-Ta приведены в работах [2-4]. В дополнение к сведениям о стабилизации гексагональной модификации Ta<sub>5</sub>Si<sub>2</sub> элементами внедрения автор [2] предположил, что фаза ТальSi может быть тройной фазой, в которой внедренные атомы (O, N, C) располагаются в октаэдрических пустотах решетки типа Ni<sub>3</sub>Sn. Решетка TaSi<sub>0.2</sub> не относится к типу Ni<sub>3</sub>Sn [1]. Соотношения между двумя тетрагональными модификациями Та<sub>5</sub>Si<sub>3</sub> не установлены; обе фазы появляются и при высоких, и при низких температурах [3]. В работе [4] даны периоды решеток TaSi<sub>2</sub>, Ta<sub>5</sub>Si<sub>3</sub> (T2) и Та<sub>5</sub>Si<sub>3</sub> (стабилизированного С) при комнатной и повышенных температурах; эти данные хорошо согласуются с ранее опубликованными.

1. Trumbore F. A. Bell. System. Tech. J., 1960, v. 39, p. 205-233.

2. Aronsson B. Arkiv Kemi, 1960, Bd 16, S. 379-423.

Nowotny H. u. a. Monatsh. Chem., 1961, Bd 92, S. 116-127.
Nowotny H., Laube E. Planseeber. Pulvermet., 1961, Bd 9, S. 54-59.

## $\overline{1}, 3427$ 0,6573

### Si-Te. Кремний-теллур \*

В соответствии с М. Хансеном и К. Андерко (см. т. II [1, 2]), в работе [1] подтвердили существование в этой системе двух соединений: SiTe и SiTe<sub>2</sub>. Кристаллическая структура SiTe «не относится к типу NaCl». Точка плавления этого соелинения  $898 \pm 4^{\circ}$  C.

1. Smirous K. a. o. Czech. J. Phys., 1957, Bd 7, S. 120-122.

412

Противоречивые результаты двух подробных рентгеновских исследований [1, 2] привели к тому, что сейчас имеются неясности относительно количества соединений в этой системе и полиморфного превращения у ThSi<sub>2</sub>. Авторы [1] пока-



Рис. 410. Si—Th

зали существование  $Th_3Si_2$ , ThSi и двух модификаций  $ThSi_2$  (с гексагональной решеткой при высоких температурах и с тетрагональной — при низких). Согласно [2], образуются  $Th_3Si_2$ , ThSi и три близких по составу родственных соединения —  $Th_3Si_5$ ,  $Th_6Si_{11}$  и  $ThSi_2$ , причем у двух последних имеется полиморфное превращение. У  $ThSi_2$  при высоких температурах тетрагональная решетка, при низких — гексагональная [2].

В связи с изучением соединений авторы работы [2] дополнительно проделали металлографическое исследование, позволившее построить предварительный вариант диаграммы состояния (рис. 410). Для приготовления сплавов использовали Si и Th чистотой соответственно 99,999 и 99,4%. Растворимость в твердом состоянии не изучалась. Подтверждено существование эвтектики при 10% (ат.) Si, однако температура ее плавления оказалась несколько выше, чем указывается М. Хансеном и К. Андерко (см. т. II [5]). Th<sub>3</sub>Si<sub>2</sub> плавится при ~1850° С; то, что эта температура — перитектическая, вытекает из факта отсутствия эвтектической микроструктуры в сплавах с 40-50% (ат.) Si. Сообщается о ничтожной растворимости соединений в этой системе. Эвтектика ThSi<sub>2</sub> + Si образуется при 82% (ат.) Si и 1350° C. Обозначения аллотропических модификаций на рис. 410 противоположны использованным в работе [2]: на рис. 410 α относится к низкотемпературным, а β — к высокотемпературным модификациям. Согласно [2], полиморфные превращения в TheSi11 и ThSi происходят соответственно при ~1300 и ~1200° С. В работе [2] не приводится экспериментальных доказательств образования фаз Th<sub>2</sub>Si<sub>5</sub>, Th<sub>6</sub>Si<sub>11</sub> и ThSi<sub>2</sub> по перитектическим реакциям (рис. 410).

Указывается [1], что область существования высокотемпературной  $\beta$ -модификации ThSi<sub>2</sub> несколько смещена от стехиометрического состава в сторону Th.

Кристаллическая структура. У Th<sub>3</sub>Si<sub>2</sub> тетрагональная решетка (P4/mem);  $a = 7,835 \pm 0,003$  A,  $c = 4,154 \pm 0,005$  A [1]; кристаллическая структура этого соединения «очень близка» к U<sub>3</sub>Si<sub>2</sub>. ThSi имеет ромбическую решетку типа FeB; a = 5.89 A, b = 7.88 A, c = 4,15 A [1].

Согласно [2], Th<sub>3</sub>Si<sub>5</sub>,  $\alpha$ -Th<sub>6</sub>Si<sub>11</sub> и  $\alpha$ -ThSi<sub>2</sub> имеют гексагональную структуру типа AlB<sub>2</sub>; y Th<sub>3</sub>Si<sub>5</sub>,  $\alpha$ -Th<sub>6</sub>Si<sub>11</sub>  $\alpha$ -ThSi<sub>2</sub> имеют гексагональную структуру = 4,013 A, c = 4,258 A и у  $\alpha$ -ThSi<sub>2</sub>  $a = 4,136 \pm 0,001$  A,  $v \alpha$ -Th<sub>6</sub>Si<sub>11</sub> a == 4,013 A, c = 4,258 A и у  $\alpha$ -ThSi<sub>2</sub>  $a = 4,136 \pm 0,001$  A,  $c = 4,126 \pm 0,001$  A. У  $\beta$ -Th<sub>6</sub>Si<sub>11</sub> и  $\beta$ -ThSi<sub>2</sub> о. ц. тетрагональная решетка:  $\beta$ -Th<sub>6</sub>Si<sub>11</sub> имеет a = 4,01 A, c = 13,89 A, у  $\beta$ -ThSi<sub>2</sub> a = 4,135 A, c = 14,375 A [2]. Кажется весьма неправдоподобным, что такие фазы с идентичной структурой и почти одинаковыми периодами решетки взаимно не растворяются. Более вероятна не идентичность решеток, а упорядочение с образованием ячеек кратных объемов; при этом слабые сверхструктурные линии на рентгенограммах, возможно, не были замечены. Периоды тексагональной решетки ThSi<sub>2</sub> составляют:  $a = 3,985 \pm$  $\pm 0,002$  A,  $c = 4,220 \pm 0,002$  A [1].

Для окончательного выяснения вопроса о существовании близких по составу фаз [2] и о том, тетрагональную или гексагональную решетку имеет высокотемпературная модификация ThSi<sub>2</sub>, необходимы дополнительные эксперименты.

 Jacobson E. L. a. o. J. Amer. Chem. Soc., 1956, v. 78, p. 4850-4852.
Brown A., Norreys J. J. Nature, 1959, v. 183, p. 673, Brown A., Norreys J. J. J. Inst. Metals, 1960-1961, v. 89, p. 238-240; Brown A. Acta Crvst., 1961, v. 14, p. 860-865.

#### $\overline{1},7682$ 0,2318

### Si—Ti. Кремний—титан \*

Кристаллическая структура образующегося по перитектической реакции TiSi определена при анализе монокристаллов, выделенных из усадочных раковин [1]. Она оказалась ромбической ( $a = 3,61_8$  A,  $b = 4,97_0$  A,  $c = 6,49_2$  A), относящейся к пространственной группе  $C_{2V}^1$  или  $D_{2h}^1$ . TiSi имеет такую же решетку, как TiGe. Автор работы [2] отмечает, что линии на рентгенограмме порошка, которые наблюдал он и в работе, цитируемой М. Хансеном и К. Андерко, (см. т. II [1]), были различными, и это может свидетельствовать о существовании двух модификаций TiSi. Однако авторы работы [3] подтвердили данные исследования [4], согласно которым решетка TiSi изотипна с FeB (*B27*);  $a = 6,54_5$  A,  $b = 3,63_8$  A,  $c = 4,99_7$  A (значения периодов такие же, как в работе [1], различаются только обозначения).

Периоды гексагональной решетки Ti<sub>5</sub>Si<sub>3</sub>: a = 7,429 A, c = 5,1392 A (при 25° C) [5]; a = 7,448 A, c = 5,114 A [6].

414

 Агеев Н. В., Самсонов В. П. ДАН СССР, 1957, т. 112, с. 853—855; Агеев Н. В., Самсонов В. П. ЖНХ, 1959, т. 4, с. 590—595.
Агопѕѕоп В. Arkiv Kemi, 1960, Вd 16, S. 379—423.
Вгикі С. и. а. Monatsh. Chem., 1961, Bd 92, S. 781—788.
Schachner H. и. а. Monatsh. Chem., 1954, Bd 85, S. 245.
Swanson H. E. a. o. Natl. Bur. Std. (U. S.), Circ. 539, 1959, VIII, p. 64—65.
Nowotny H. u. a. Monatsh Chem., 1959, Bd 90, S. 15—23.

1,0718

## Si—U. Кремний—уран \*

На основе металлографического исследования 50 плавок в работе [1] установлено, что область существования образующейся по перитектоидной реакции ε-фазы (U<sub>3</sub>Si) смещена от стехиометрического состава в сторону Si; область гомогенности у этой фазы отсутствует. Ее состав соответствует 25,95% (ат.) [3,97% (по массе)] [1]. Эти данные [1] противоречат приведенным М. Хансеном и К. Андерко (см. т. II [7]); в последней говорилось о смещении состава ε-фазы относительно стехиометрического в сторону U.

Предварительные работы [2, 3] значительно расширили наши знания о полиморфизме USi<sub>2</sub>. Была обнаружена концентрационная зависимость трех модификаций USi<sub>3</sub>; фаза, ранее идентифицированная как «β-USi<sub>2</sub>», в действительности является U<sub>3</sub>Si<sub>5</sub> и существует при 62—63% (ат.) Si [2]; «α-USi<sub>2</sub> «соответствует по составу USi<sub>1,86</sub> [3]. USi<sub>2</sub> стехиометрического состава стабильно только до 450° С, выше этой температуры сосуществуют USi<sub>1,86</sub> и USi<sub>3</sub> [3]; следовательно, конгруэнтно плавящимся соединением является USi<sub>3</sub>. По-видимому, указанная М. Хансеном и К. Андерко (см. т. II, рис. 650) нонвариантная температура ~1610° С относится к перитектическому образованию U<sub>3</sub>Si<sub>5</sub>.

У U<sub>3</sub>Si<sub>5</sub> гексагональная дефектная структура AlB<sub>2</sub>;  $a = 3,843 \pm 0,001$  A,  $c = 4,069 \pm 0,001$  A [2, 3]. USi<sub>1,86</sub> имеет о. ц. тетрагональную решетку с одной вакансией в месте атома Si на каждые две элементарные ячейки; периоды решетки USi<sub>1,86</sub> слегка измеряются при отжиге в результате упорядочения в расположении атомов Si :  $a = 3,930 \pm 0,001$  A,  $c = 14,06 \pm 0,01$  A (после отжига при  $<650^{\circ}$  C);  $a = 3,948 \pm 0,002$  A,  $c = 13,67 \pm 0,001$  A (после дуговой плавки) [3]. У USi<sub>2</sub> гексагональная решетка типа AlB<sub>2</sub>;  $a = 4,028 \pm 0,001$  A,  $c = 3,852 \pm 0,001$  A (1000 A) (1000 A)

Isserow S. Trans. ALME, 1957, v. 209, p. 1236—1239.
Brown A., Norreys J. J. Nature, 1959, v. 183, p. 673.
Brown A., Norreys J. J. Nature, 1961, v. 191, p. 61—62.

1,7414 0,2586

### Si-V. Кремний-ванадий \*

Подтверждено существование соединения со стехиометрическим составом, отвечающим формуле V<sub>5</sub>Si<sub>3</sub> [1].

- 1. Perri J. A. Ph. D. Thesis, Polytechnic Institute of Brooklyn, 1958, Dissertation Abstr., 1958, v. 19, p. 436.
- 1,1839 0,8161

### Si—W. Кремний—вольфрам \*

Теперь установлено, что фаза, которой раньше приписывалась формула  $W_3Si_2$ , в действительности  $W_5Si_3$  [1—3] с тетрагональной решеткой, изоструктурной с  $Cr_5Si_2$ . В работе [3] получены металлографические доказательства распространения области гомогенности от стехиометрического состава в сторону Si, которые объясняют изменения периодов решетки, наблюдавшиеся различными авторами. Автор работы [3], изучая «многочисленные» сплавы, выплавленные в индукционной печи в тиглях из окиси циркония (W имел чистоту 99,5%, Si — 99,9%), не обнаружил эвтектики (W) +  $W_bSi_3$ ; он отмечает, что эвтектическая структура не наблюдалась и в работах, цитированных М. Хансеном и К. Андерко (см. т. II [11, 21]). В работе [3] обнаружены перитектические ободки вокруг первичных кристаллов твердого раствора на основе W и продукты распада рас-

твора на базе W<sub>5</sub>Si<sub>3</sub>. Автор этой работы не измерял температур нонвариантных равновесий, но показал, что богатые W сплавы еще не плавятся при 2300° С. Уточненная диаграмма (рис. 411) включает перитектическую реакцию с образованием (W<sub>5</sub>Si<sub>3</sub>) и температуры по М. Хансену и К. Андерко (см. т. II [21]), за исключением богатой Siэвтектики, температура плавления которой дана по другой работе (см. М. Хансен и К. Андерко, т. П [11]). Трудно отдать предпочтение какой-либо из этих работ. в работе [21] использовали более чистый Si (99,2%), а в работе [11] — надежнее методика измерения.

Предполагается [3], что сообщаемые М. Хансеном и К. Андерко (см. т. II [20]) значения периодов решетки относятся к богатым Si растворам на основе  $W_5Si_3$ . По [2],  $a = 9,605 \pm 0,005$  A,  $c = 4,964 \pm 0,005A$ ), состав не оговаривается). По [3], a = = 9,61 A, c = 4,95 A [для среднего состава ( $W_5Si_3$ )].

Рентгеновские и металлографические исследования диффузионного слоя, образующегося между W и жидким Si при 1700° С, показали существование в нем фазы W<sub>3</sub>Si с кубической решет-



кой типа  $\beta$ -W,  $a = 4.91 \pm 0.01$  A [4]. Поскольку в работе [3] отжиг проводили на воздухе (небольшие количества элементов внедрения могут стабилизировать структуру типа  $\beta$ -W), а металлографические и рентгеновские доказательства далеки от окончательных, эту идентификацию W<sub>3</sub>Si как равновесного соединения следует рассматривать в качестве предварительной.

Aronsson B. Acta Chem. Scand., 1955, v. 9, p. 1107-1110.
Dauben C. H. J. Phys. Chem., 1956, v. 60, p. 443-445.
Obrowski W. J. Inst. Metals, 1960-1961, v. 89, p. 79-80.

4. Матюшенко Н. Н. ФММ, 1959, т. 8, с. 878—880.

## $\overline{1},4996$ 0,5004

### Si—Y. Кремний—иттрий \*

Фазовые равновесия в этой системе были исследованы [1] методами металлографического, рентгеновского и термического анализов. Диаграмма (рис. 412) взята из работы [2], авторы которой использовали оригинальные данные [1].

27 Р. П. Эллиот, том II



Растворимость Si в твердом У ничтожно мала [3]; значения взаимной растворимости <0,01% (по массе) [2]. Соединение YSi<sub>2</sub> [4] (см. также М. Хансен и К. Андерко, т. II [1]), по данным [1], в действительности имеет формулу Y<sub>2</sub>Si<sub>5</sub>; металлографический анализ многих образцов с составом, соответствующим YSi2, показал, что у них двухфазная структура ( $Y_3Si_5 + Si$ ). У  $Y_5Si_3$  гексагональная [1] решетка типа  $Mn_5Si_3$  [5];  $a = 8,40_3$  A, c =

 $= 6.30_{3}$  A [5];  $a = 8.418 \pm 0.005$  A,  $c = 6.337 \pm 0.005$  A [1].

YSi имеет ромбическую [1] структуру типа CrB с 8 атомами в элементарной ячейке [6];  $a = 4,25_1$  A,  $b = 10,52_6$  A,  $c = 3,82_6$  A [6];  $a = 4,257 \pm 0,005$  A,  $b = 10,527 \pm 0,008$  A,  $c = 3,839 \pm 0,005$  A [1].

 $Y_3Si_5$  имеет полиморфное превращение при 450  $\pm$  50° C [4]. У  $\alpha$ -Y $_3Si_5$  решетка ромбическая; a = 4,04 A, b = 3,95 A, c = 13,33 A [4];  $a = 4,052 \pm 10,052$  $\pm$  0,007 A, b = 3,954  $\pm$  0,002 A, c = 13,360  $\pm$  0,002 A [1]. Y  $\beta$ -Y<sub>3</sub>Si<sub>5</sub> reparation нальная структура типа ThSi<sub>2</sub>; a = 4,04 A, c = 13,42 A (545° C) [4]. Отмечено [1] существование гексагональной модификации Y<sub>3</sub>Si<sub>5</sub> при избытке Si относительно стехнометрического состава:  $a = 3.836 \pm 0.001$  A,  $c = 4.139 \pm 0.001$  A.

1. Лундин К. Е., Клодт Д. Неопубликованные данные; см. Лундин К. Е. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965; L u n d i n C. E. В книге «Rare Earth Research», ed E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 306-313. 2. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965. 3. Carlson O. N. a. o. ASTM Spec. Tech. Publ. 272. «Newer Metals», 1960,

p. 144-159. 4. Perri J. A. a. o. J. Phys. Chem., 1959, v. 63, p. 616-619; Perri J. A.

a. o. J. Phys. Chem., 1959, v. 63, p. 2073-2074.

5. Parthe E. Acta Cryst., 1960, v. 13, p. 868-871.

6. Parthe E. Acta Cryst., 1959, v. 12, p. 559-560.

1,2104 0.7896

### Si-Yb. Кремний-иттербий \*

В работе [1] отмечено существование соединения с гексагональной решеткой, изотипной с AlB<sub>2</sub>; a = 3,76 A, c = 4,09 A.

1. Grinthal R. D. WADC Tech. Rept. 53—190, pt VI, 1958; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

1,6331 0.3669

### Si-Zn. Кремний-цинк \*

Диаграмма (рис. 413) построена с использованием данных о ликвидусе [1] и информации об отсутствии в системе интерметаллических соединений (см. М. Хансен и К. Андерко, т. II [1-3]). Авторы работы [1] рассчитывали точки ликвидуса как результат измерений потерь массы слитков Si, приводившихся в равновесие с известным количеством Zn при различных температурах. Эти данные значительно отличаются от приводившихся М. Хансеном и К. Андерко (см. т. II [5]. рис. 413). Использованный в работе [1] метод вполне надежен и полученные здесь данные достовернее. Согласно расчетам [1], эвтектическая точка расположена при 0.04% (ат.) Si на 0.2 град ниже точки плавления Zn.

В работе [2] с использованием наиболее точных значений коэффициентов распределения, известных из литературы, рассчитана растворимость Zn в Si. Получены следующие данные:

| Температура, °С                          | 1400 | 1350 | 1300 | 1200 | 1100 | 1000 |
|------------------------------------------|------|------|------|------|------|------|
| Растворимость, % (ат.). 10 <sup>-5</sup> | 18   | 84   | 12   | 6    | 2    | 0,6  |
| 27*                                      |      |      |      |      |      | 419  |



1. Thurmond C. D., Kowalchik M. Bell System. Tech. J., 1960, v. 39, p. 169-

2. Trumbore F. A. Bell System Tech. J., 1960, v. 39, p. 205-233.

 $\overline{1},4885$ 0,5115

## Si-Zr. Кремний-цирконий \*

Противоречивые данные о фазовых равновесиях в этой системе в значительной мере связаны с различиями в результатах оценки стехиометрического состава соединений по данным металлографических и кристаллографических методов. Существование Zr<sub>4</sub>Si поставлено под вопрос [1, 2]. Возможно, что в некоторых работах Zr<sub>4</sub>Si не могли обнаружить из-за присутствия примесей в образцах [1, 2] или вследствие стабильности этой фазы только в ограниченном температурном интервале [3].

Фаза, обозначенная как Zr<sub>3</sub>Si<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [9]), имеет гексагональную решетку типа Mn<sub>5</sub>Si<sub>3</sub>, и поэтому ей скорее следует приписывать формулу Zr<sub>5</sub>Si<sub>3</sub> [2]. В работах [2, 4, 5] продемонстрировано сильное стабилизирующее влияние малых количеств С, N и O на существование этой фазы. Zr<sub>5</sub>Si<sub>3</sub> с растворенными в ней В, С, N или O кристаллизуется в гексагональную (D8<sub>8</sub>) решетку [5]. Согласно [4] периоды решетки Zr<sub>5</sub>Si<sub>3</sub>: *a* = 7,854 A, *c* = 5,535 A.

решетку [5]. Согласно [1] периода решетки  $\Sigma_{15}$ 5]. a = 7,657 А, t = 0,657 А. Решетка фазы  $Zr_3Si_2$  была идентифицирована [5, 6] как тетрагональная, типа  $U_3Si_2$ ; a = 7,082 А, c = 3,715 А [5]. Фаза стабилизируется в присутствии исключительно малых количеств В, С, N или О. В неопубликованной работе [6] установлено, что фаза  $Zr_4Si_3$  (см. М. Хансен и К. Андерко, т. II [9]) имеет кристаллическую структуру, изотипную с  $U_3Si_2$ , и поэтому ей следует приписать формулу  $Zr_2Si_2$ .

формулу Zr<sub>3</sub>Si<sub>2</sub>. У ZrSi ромбическая структура, изотипная с FeB (см. М. Хансен и К. Андерко, т. II [13]), но при растворении A1 она становится ромбической типа CrB;  $a = 3,76_2 \div 3,78_8$  A,  $b = 9,91_2 \div 10,07_0$  A,  $c = 3,75_4 \div 3,78_8$  A [5].

Повторные измерения [7] размеров элементарной ячейки ZrSi<sub>2</sub> дали следующие результаты: a = 3,721 A, b = 14,689 A, c = 3,684 A.

1. Nowotny H. u. a. Monatsh. Chem., 1957, Bd 87, S. 447-470.

2. Brewer L., Krikorian O. J. Electrochem. Soc., 1956, v. 103, p. 38-51.

3. Aronsson B. Arkiv Kemi, 1960, Bd 16, S. 379-423.

4. Parthe E. Powder Met. Bull., 1957, v. 8, p. 23-34.

5. Schob O. u. a. Monatsh. Chem., 1961, Bd 92, S. 1218-1226.

6. Pietrokowsky Р. Неопубликованная работа; см. [2].

7. Bracuti A. J. J. Ph. D. Thesis, Rutgers University, 1958, Dissertation Abstr., 1958, v. 19, p. 1217.

0,1027 1.8973

### Sm—Sn. Самарий—олово

У SmSn<sub>3</sub> кубическая решетка типа AuCu<sub>3</sub>, a = 4,677 A [1].

 I an delli A. The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab. Gt. Brit. Proc. Symp. 1959, v. 1, No.9, Paper 3F, 11p.

0,0748 1,9252

### Sm—Te. Самарий—теллур

SmTe имеет г. ц. к. решетку типа NaCl с периодом 6,594 ± 0,003 A [1]. Согласно [2], точка плавления SmTe 1910—1930° С.

У Sm<sub>2</sub>Te<sub>3</sub> о. ц. к. решетка типа Th<sub>3</sub>P<sub>4</sub> с периодом 9,48 А [2]; температура плавления 1440—1550° С [2, 3].

- 1. I a n d e l l i A. Z. Anorg. Allgem. Chem., 1956, Bd 288, S. 81-86.
- 2. Miller J. F. a. o. В книге «Rare Earth Research» (Proceedings of the Second Conference), eds. J. F. Nachman, C. E. Lundin. Gordon and Breach, Science Publishers, Inc., N. Y., 1961, p. 233—248.
- 3. Miller J. F., Humes R. C. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Company, N. Y., 1961, p. 232-240.

#### 0,4968 1,5032

### Sm—Ті. Самарий—титан

Сплавы SmTi трудно приготовить из-за высокой упругости паров Sm [1].

1. Love B. WADC Tech. Rept. 57—666, 1959; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### $\overline{1},8668$ 0,1332

### Sm—Tl. Самарий—таллий

У SmTl кубическая решетка типа CsCl с периодом 3,813 A [1]. SmTl имеет кубическую решетку типа AuCu<sub>3</sub> с периодом 4,807<sub>5</sub> A [1, 2].

- 1. I an delli A. Congr. Intern. Chim. Pure Appl., 16, Paris, 1957, Mem. Sect. Chim. Minerale, 1958, p. 35-40; The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Natl. Phys. Lab., Gt. Brit. Proc. Symp. 1959, v. 1, № 9, Paper 3F, 11 p.
- I a n d e l l i A. Atti Accad Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 1,8006 0,1994

Sm—U. Самарий—уран

Взаимная растворимость Sm и U в жидком состоянии в области несмешиваемости определена в работе [1] (табл. 41).

| ТАБЛИЦА 4 | 11. | взаимная  | PACT | BOF | римость | в | жидком |
|-----------|-----|-----------|------|-----|---------|---|--------|
| 5         |     | состоянии | A Sm | И   | U       |   |        |

| Температура                                          | Растворимо                           | ость Sm в U                              | Раствория                                    | иость U в Sm                                        |
|------------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| °C                                                   | % (ат.)                              | % (по массе)                             | % (ат.)                                      | % (по массе)                                        |
| 1250<br>1225<br>1200<br>1175<br>1150<br>1100<br>1050 | 0,33<br>0,40<br>0,40<br>0,33<br>0 32 | 0,21<br>0,25<br>0,25<br>0,21<br>0,20<br> | 0,70<br>0,86<br>0,63<br>0,48<br>0,48<br>0,48 | 1,10<br>1,35<br>1,35<br>1,0<br>0,76<br>0,76<br>0,76 |

Данные получены химическим анализом находившихся в равновесии жидкостей. Подобные же значения растворимости получены в работе [2]: для Sm в U 0,32% (ат.) [0,2% (по массе)] при 1150° С и 0,40% (ат.) [0,25% (по массе)] при 1250° С; для U в Sm 0,32% (ат.) [0,5% (по массе)] при 1100° С и 0,83 (ат.) [1,3% (по массе)] при 1250° С. 1. Haelfing J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336—338. 2. Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December, 1957, (Classified); см. Rough F. A., Bauer A. U. S. At. Energy Comm. BMI-1300, 1958.

0,3617 $\overline{1},6383$ 

### . 1

### Sm-Zn. Самарий-цинк

У соединения Sm—Zn кубическая решетка, изотипная с CsCl, a=3,622 A [1].

 I an delli A. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1960, v. 29, p. 62-69.

#### 0,2170 1,7830

### Sm—Zr. Самарий—цирконий

Попытки приготовить сплавы этой системы спеканием в присутствии жидкой фазы и дуговой плавкой оказались безуспешными [1]; был сделан вывод об отсутствии соединений и о том, что в Sm растворяется <7,2 (ат.) [4,5% (по массе)] Zr.

1. A n o n., U. S. At. Energy Comm. USBM-U-647, 15, 1959, p. 18.

0,1318 $\overline{1},8682$ 

### Sn—Sr. Олово—стронций

Получено соединение SrSn и измерена теплота реакции его образования [1]. Металлографические образцы стехиометрического состава, так же как и образцы состава на  $\pm 10\%$  (ат.) отклонявшиеся от него, были негомогенными.

1. Морозова М. П. и др. Вестник ЛГУ, 1959, т. 14, № 10, серия физ. и хим., № 2, с. 83—86.

1,8171 0.1829

### Sn—Ta. Олово—тантал \*

Подтверждено, что у Ta<sub>3</sub>Sn кубическая типа  $\beta$ -W решетка, a = 5,278 A [1]

 C o d y G. D. a. o. Proc. Intern. Conf. Low Temp. Phys. 7th, Toronto, Ont., 1960, p. 382-385.

1,9686 0,0314

### Sn—Te. Олово—теллур \*

Период г. ц. к. решетки SnTe был измерен с различной точностью в нескольких работах: 6,29 [1]; 6,32 [2]; 6,322 ± 0,005 [3] или 6,285 Å[4]. Согласно [5], область гомогенности SnTe находится при 49,2—50,8% (ат.) Te.

1. Абрикосов Н. Х. идр. ДАН СССР, 1958, т. 123, с. 279-281.

 Hashimoto K., Hirakawa K. J. Phys. Soc. Japan, 1956, v. 11, p. 716-717.

3. Нестерова Я. М. идр. ЖНХ, 1961, т. 6, с. 2014-2018.

- 4. А х у н д о в Г. А. и др. Сб. «Вопросы металлургии и физики полупроводников» Труды 4-го совещания. Изд-во АН СССР, 1961, с. 104—106.
- 5. K r e b s H. u. a. Z. Anorg. Allgem. Chem., 1961, Bd 308, S. 200-211.

Ĩ,7087 0,2913

### Sn—Th. Олово—торий \*

Согласно [1], растворимость Th в жидком Sn составляет <0,025; 0,1; 0,96 и 2,25% (ат.) при соответственно 600, 700, 800 и 900° С. Решетка промежуточной фазы ThSn<sub>3</sub> идентифицирована как кубическая, изотипная, с AuCu<sub>3</sub>, a = 4,718 A [2].

 Hayes E. E., Gordon P. По описанию Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 131.
Ferro R. Acta Cryst., 1958, v. 11, p. 737-738.

#### 0,3941 1.6059

### Sn—Ti. Олово—титан \*

Часть диаграммы состояния Sn—Ti (см. М. Хансен и К. Андерко, т. II. рис. 657а) со стороны Ті была уточнена в работах [1-5]. Подтверждено [1] подавление перехода α → β при добавлении Sn. Опыты в работе [1] проводили на сплавах, полученных плавкой во взвешенном состоянии [2]. Измерения электросопротивления, его температурного коэффициента и изучение микроструктуры закаленных сплавов показали присутствие минимума при 6,52% (ат.) Sn и 842° С [1], в то время как по данным [3] он находится при 5% (ат.) Sn и 860° С (в работе [3] использовали методы твердости, дифференциального термического и металлографического анализов сплавов, получавшихся дуговой плавкой или спеканием порошков). Авторы исследования [1], расширившие данные работы [3] и другие (см. М. Хансен и К. Андерко, т. II) за счет большего приближения к равновесию сплавов, полученных плавкой во взвешенном состоянии, подтвердили результаты работы, цитированной М. Хансеном и К. Андерко (см. т. II [9]). Исследование [4] влияния Sn в количестве до 4,3% (ат.) [10% (по массе)] на свойства Ті ясно продемонстрировало стабилизацию в-модификации под действием Sn, которое снижает температуру  $\beta \rightarrow \alpha$  перехода (это, конечно, полтверждает и существование эвтектоидного превращения на диаграмме состояния, приведенной М. Хансеном и К. Андерко (см. т. II [7]). В работе [1] вплоть до 25% (ат.) Sn обнаружен непрерывный ряд твердых растворов между (α-Ti) и Ti<sub>3</sub>Sn (γ-фаза). Однако при 890° С происходит перитектоидная реакция ( $\alpha$ -Ti)  $\rightleftharpoons$  ( $\beta$ -Ti) +  $\gamma$  [3]. При исследовании влияния Н на период решетки сплавов Ті-Sn в работе [5] обнаружено, что между 6 и 12% (ат.) Sn период с решетки α-Ті возрастает. Это указывает на возможность растворения 12% (ат.) \$п в твердом растворе на основе α-Ti, a не  $\sim$ 9,5% (at.) Sn, как сообщалось в работе [3] и M. Хансеном и К. Андерко (см. т. II [4, 5, 7]).

Определение температур плавления сплавов [1] подтвердило результаты, изложенные М. Хансеном и К. Андерко (см. т. II [4, 5, 7—9]).

Кристаллическая структура Ti<sub>5</sub>Sn<sub>3</sub> была заново изучена авторами [6], которые подтвердили, что она гексагональная, изотипная с Mn<sub>5</sub>Si<sub>3</sub>.

- 1. Глазова В. В., Курнаков Н. Н. ДАН СССР, 1960, т. 134, с. 1087— 1090.
- 2. Глазова В. В., Курнаков Н. Н. Изв. АН СССР, ОТН, Металлургия и топливо, 1960, вып. 4, с. 81—84.
- 3. Корнилов И. И., Нартова Т. Т. ЖНХ, 1960, т. 5, с. 622-629.
- 4. Bungardt K., Wiegand H. H. Z. Metallkunde, 1960, Bd 51, S. 181– 185.
- 5. Coucoulas A., Margolin H. Trans. AIME, 1960, v. 218, p. 958-959.
- 6. Nowotny H. u. a. Monatsh Chem., 1959, Bd 90, S. 15-23.
- 424

### Sn—Tl. Олово—таллий \*

В работе [1] методами термического, металлографического и рентгеновского анализов была вновь построена вся равновесная диаграмма. Сплавы готовили из Sn и T1 чистотой 99,98 и 99,9% соответственно. Эвтектическая температура составляет 170,6° С, а эвтектическая концентрация — 30,9% (ат.) [43,5% (по массе)] T1 [1]. Последняя получена в результате экстраполяции кривых ликвидуса. Максимальная растворимость T1 в Sn 0,5% (ат.) [0,9% (по массе)]. Пока-

1,7640 0,2360



Рис. 414. Sn----ТІ

зано, что высокотемпературная модификация T1 стабилизуется до комнатной температуры при добавлении Sn [1]. В противоположность ранее полученным данным, авторы работы [1] установили, что эта модификация имеет г. ц. к., а не о. ц. к. решетку. В рентгеновском исследовании [2], в отличие от [1], при комнатной температуре не была зафиксирована фаза с г. ц. к. решеткой, однако в работе [2] изучали сплавы с 71,9—90,1% (ат.) T1. Калориметрические данные [3] в согласии с результатами [1] говорят о стабилизации высокотемпературной модификации T1 при добавлении Sn вплоть до комнатной температуры; однако авторы работы [3] дают очень узкий диапазон концентраций для фазовой области α-T1 + + γ-T1 [98,87—99,00% (ат.) T1 при 159° С, 97,85—97,97% (ат.) T1 при 60° С]. Кроме того, в работе [3] показано образование по перитектической реакции при

178° С интерметаллического соединения неизвестного состава, которое затем, при 153° С, подвергается эвтектоидному распаду. В работе [1] наблюдалось образование пластинчатой структуры, похожей на перлит, после закалки из области ( $\gamma$ -TI) сплава, ордината которого пересекает двухфазную область ( $\alpha$ -TI)+( $\gamma$ -TI). Такая структура, конечно, не обязательно результат эвтектоидной реакции. Согласно [4], растворимость в твердом состоянии TI в Sn при эвтектической температуре составляет 1% (ат.) [1,7% (по массе)], а затем резко падает до 0,31% (ат.) [0,54% (по массе)] при 156° С.

Диаграмма на рис. 414 заимствована из работы [1]. Высокотемпературная модификация TI обозначена  $\gamma$ , чтобы отличить ее от  $\beta$ -TI с о. ц. к. решеткой. Для окончательного установления пределов растворимости ( $\gamma$ -TI) и выяснения того, существует ли в действительности  $\beta$ -TI с о. ц. к. решеткой, необходимы дополнительные эксперименты. Нужны также металлографические и рентгеновские работы для установления предполагаемого [3] соединения. Наблюдавшиеся в работе [3] нонвариантные температуры могут быть связаны с полиморфными превращениями в TI; включать в диаграмму предполагаемое [3] «соединение» без металлографической и рентгеновской проверки преждевременно. Для полноты картины на рис. 414 при 13° С показана горизонталь, соответствующая температуре превращения в Sn.

Отмечается [5], что при высоких давлениях результаты измерения электросопротивления говорят о возможности существования соединения SnTl<sub>7</sub>. Это соединение может быть стабильным только при высоком давлении.

1. Blade J. C., Elwood E. C. J. Inst. Metals, 1959-1960, v. 88, p. 186-189.

- 2. Suganuma R. J. Phys. Soc. Japan, 1960, v. 15, p. 1395-1409.
- 3. Schürmann E., Oberle B. Arch. Eisenhuettenw, 1961, Bd 32, S. 791-797.

4. Rayson H. W. a. o. Metallurgia, 1959, v. 59, p. 57-62, 125-130.

5. Bridgman P. W. Proc. Amer. Acad. Arts. Sci., 1955, v. 84, p. 1-42.

0,3673 1,6327

### Sn—V. Олово—ванадий \*

Повторная проверка [1] предельной растворимости Sn в V показала, что она постоянна и равна 9,2-9,7% (ат.) Sn в температурном интервале  $800-1500^{\circ}$  С. Подтверждено образование V<sub>3</sub>Sn со структурой типа  $\beta$ -W [1, 2] по перитектической реакции [1]. Согласно [2], период кубической решетки V<sub>3</sub>Sn 4,96 A, что хорошо согласуется с данными М. Хансена и К. Андерко (см. т. II, [2]).

Komjathy S. a. o. WADC Tech. Rept. 59-483, 1959, 69p; Komjathy S. J. Less-Common Metals, 1961, v. 3, p. 468-488.

 C o d y G. D. a. o. Proc. Intern. Conf. Low. Temp. Phys., 7th, Toronto, Ont., 1960, p. 382-385.

0,1255 1,8745

### Sn-Y. Олово-иттрий

Предварительный вариант диаграммы (рис. 415) построен в работе [1] с помощью термического, металлографического и рентгеновского анализов. Соединение, которому по результатам пространственных металлографических измерений предварительно приписана формула Y<sub>2</sub>Sn, образует эвтектику с твердым раствором на основе Y при ~15,8% (ат.) [20% (по массе)] Sn и 1280° С. Согласно рентгеновским и металлографическим данным, растворимость Sn в Y должна быть <0,75% (ат.) [1% (по массе)]; признаки стабилизации высокотемпературной модификации Y при добавлении Sn

отсутствуют.

Металлографический, термический и рентгеновский анализ показали присутствие по крайней мере одного соединения, вероятно, сосуществующего в эвтектике с Y<sub>2</sub>Sn; плавление сплава с 42,8% (ат.) [50% (по массе)] Sn происходит при температурах 1580—1720° С.

 Love B. WADD Tech. Rept. 60—74, 1960, 226 p.; особенно р. 45, 46, 114, 115, 194—196.

Sn—Zn. 0,2590 1.7410 Олово-цинк \*

В работе [1] показано, что эвтектическая точка лежит при 14,6% (ат.) [8,6% (по массе)] Zп и 199° С. Эти результаты были получены методами термического и микроскопического анализов сплавов, приготовленных из Sn и Zn чистотой соответственно



99,997 и 99,997%. При термодинамическом исследовании [2] с использованием калориметрических методов получена эвтектическая концентрация 14,4% (ат.) Zn. И те, и другие данные о положении эвтектической точки близки к опубликованным М. Хансеном и К. Андерко (см. т. II): 15% (ат.) Zn и 198° С.

Растворимость в твердом состоянии Zn в Sn при 156<sup>6</sup> C по результатам резистометрического и металлографического анализов меньше 1,1% (ат.) [0,5% (по массе)] [3]. Согласно [1], растворимость Zn в Sn при 199° C 0,582% (ат.) [0,325% (по массе)], при комнатной температуре 0,36% (ат.) [0,2% (по массе)] (экстраполяция). Величина растворимости при эвтектической температуре, определенная в работе [1], согласуется с данными М. Хансена и К. Андерко (см. т. II [29]). Согласно расчетам [4], исходящим из термодинамической активности и энтальпии, предельная растворимость Zn в Sn должна составлять 3,9% (ат.); наиболее вероятное значение оценено равным 3% (ат.)

Растворимость Sn в Zn 0,14% (ат.) [0,25% (по массе)] [1], что превышает соответствующую величину у М. Хансена и К. Андерко (см. т. II [26]).

Bray H. J. J. Inst. Metals, 1958–1959, v. 87, p. 49–54.
Genot M., Hagege R. Compt. Rend., 1960, v. 251, p. 2901–2903.
Rayson H. W. a. o. Metallurgia, 1959, v. 59, p. 57–62.
Hagege R., Genot M. Compt. Rend., 1961, v. 252, p. 1002–1004.

#### 0,1144 1.8856

### Sn—Zr. Олово—цирконий \*

В работе [3] сделан обзор ранее проведенных исследований [1, 2] (см. также М. Хансен и К. Андерко, т. II [1]). Отмечено только одно существенное разногласие: перитектоидная реакция ( $\beta$ -Zr)+Zr<sub>4</sub>Sn ( $\alpha$ -Zr), согласно [1, 2], идет 427

при 1020° С; однако результаты, приведенные М. Хансеном и К. Андерко (см. т. II [1], остаются более надежными.

Последние исследования соединений в системе Sn—Zr [4, 5] показали необходимость проверки фазовых равновесий в интервале концентраций 20— 50% (ат.) Sn. Обнаружено [4] два гексагональных соединения, которым приписана формула «Zr<sub>5</sub>Sn<sub>3</sub>» и решетка которых относится к пространственной группе *P6*<sub>3</sub>/*mcm*: одна, обозначенная Zr<sub>5</sub>Sn<sub>3</sub><sup>-</sup> (a = 8,46 A, c = 5,78 A), наблюдалась в однофазном состоянии при 33,3% (ат.) Sn, вторая, обозначенная Zr<sub>5</sub>Sn<sub>3</sub><sup>-</sup> (a = 8,50 A, c = 5,81 Å), находилась в равновесии с Zr<sub>5</sub>Sn<sub>3</sub><sup>-</sup> при 37,5 и 41,2% (ат.) Sn. При содержании 28,5% (ат.) Sn в работе [4] обнаружено соединение Zr<sub>3</sub>Sn с кубической типа β-W решеткой (a = 5,634 A), сосуществующее с Zr<sub>5</sub>Sn<sub>3</sub><sup>-</sup>; соединение с решеткой β-W (a = 5,65 A) наблюдалось также в работе [5], но ему приписана формула Zr<sub>4</sub>Sn.

- 1. Carlson O. N., Nice R. A. U. S. At. Energy Comm. ISC-132, 1950, p. 37-43.
- Wilhelm H. A., Carlson O. N., U. S. At. Energy Comm. TID-5061, 1951 (declassified 1958), p. 450-460.
- 3. Saller H. A., Rough F. A. U. S. At. Energy Comm. TID-10059, 1952 (declassified 1960), p. 376-383.
- 4. Gran G., Andersson S. Acta Chem. Scand., 1960, v. 14, p. 956-957.
- 5. Schubert u. a. Naturwissenschaften, 1960, Bd 47, S. 512.

## 1,5659

### Sr—U. Стронций—уран

При изучении диффузии в системе Sr—U показано, что диаграмма состояния может представлять собой две области твердых растворов — (Sr) и (U) — с двухфазной областью между ними [1]. Растворимость Sr в U очень мала.

1. A d d a Y. a. o. Compt. Rend., 1960, v. 250, p. 536-538.

0,0563 $\overline{1},9437$ 

### Та—Тb. Тантал—тербий

Согласно [1], Та не влияет на температуру плавления Тb. После плавки в танталовом тигле Tb содержал 0,09% (ат.) [0,1% (по массе)] Та [2]. Интерметаллические соединения в системе отсутствуют, а растворимость в твердом состоянии Та в Tb мала [2].

- Spedding F. H., Daane A. H. U. S. At. Energy Comm. IS-15, 1959; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 2. Spedding F. H., Daane A. H. Metallurgy and Fuels, chap V, Progress in Nuclear Energy, ser. V, v. 1, Pergamon Press, N. Y., 1956; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 0,2658 $\overline{1},7342$

#### Та-Тс. Тантал-технеций

В работе [1] система изучена с помощью рентгеноструктурного анализа сплавов Тс, последовательно насыщавшихся Та. При 16,7% (ат.) Та наблюдалась фаза с о. ц. к. решеткой α-Mn,  $a = 9,565 \pm 0,001$  A [1, 2]. У сплава эквиатомного состава кубическая структура CsCl, с периодом 3,172 ± 0,003 A [1].

1. Darby J. B. (Jr.) Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961. 2. Lam D. J. a. o. Nature, 1961, v. 192, p. 744.

0,1515 $\overline{1},8485$ 

### Та-Те. Тантал-теллур

В работе [1] идентифицированы три теллурида: ТаТе, ТаТе, и ТаТе, Низший теллурид был обнаружен в концентрационном интервале 33,3 — 44,4% (ат.) Те, но предполагаемый стехиометрический состав не установлен. Фаза ТаТе имеет область гомогенности между 46 и 54,5% (ат.) Те. Дифференциальным термиче ским анализом установлено обратимое превращение в этой фазе при 840° С; результаты высокотемпературной рентгеносъемки показывают, что превращение полиморфно. У ТаТе<sub>2</sub> также имеется область гомогенности между 60 и 66,7% (ат.) Те. Высокотемпературных модификаций у ТаТе<sub>2</sub> и ТаТе<sub>3</sub> не обнаружено.

Кристаллическая решетка фазы  $TaTe_2$  может быть отнесена к ромбическому типу; a = 6,42 A, b = 10,9 A,  $c = 6,65 \div 6,69$  A [2]; ее решетку можно рассматривать и как псевдогексагональную искаженную структуру CdI<sub>2</sub>. Решетка  $TaTe_3$ анализировалась как имеющая тетрагональную ячейку с размерами: a = 6,5 A, c = 11,9 A [1].

1. Украинский Ю. М. и др. ЖНХ, 1959, т. 4, с. 148—152. 2. Украинский Ю. М. и др. ЖНХ, 1959, т. 4, с. 2820—2822.



428

Диаграмма (рис. 416 [1]) построена по данным рентгеновского, электрического, термического и металлографического анализов. Сплавы готовили в дуговой печи из высокочистого листа Та и иодидного Th; было очень трудно получить гомогенные слитки. Температуры ликвидуса и солидуса определяли с помощью оптического пирометра; точки ликвидуса оценивали с точностью  $\pm 50$  град. Эвтектическая точка находится при 3,2% (ат.) [4% (по массе)] Та и 1565  $\pm$  10° С. Легирование Th танталом снижает температуру полиморфного превращения от 1363 до 1338  $\pm$  5° С. Значения растворимости рассчитаны по закону Вегарда из данных о периоде решетки: растворимость Та в β-Th при 1375° С составляет 0,12% (ат.) [0,15% (по массе)] при 1330° С, в  $\alpha$ -Th растворяется 0,045% (ат.) [0,06% (по массе)] Та, при 1350° С в Та растворяется 0,026% (ат.) [0,02% (по массе)] Th. При комнатной температуре взаимной растворимости не зафиксировано.

В работе [2] приводятся неопубликованные данные, подтверждающие ограниченную растворимость и отсутствие соединений в этой системе.

1. McMasters O. D., Larsen W. L. J. Less. Common Metals, 1961, v. 3, p. 312-320.

2. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 130.

0,5770 $\overline{1},4230$ 

### Та—Ті. Тантал—титан \*

В работе [1] после закалки фиксировали метастабильные фазы  $\alpha'$  и  $\omega$ .  $\alpha'$  появляется при закалке сплавов с 0—40% (ат.) Та;  $\omega$  образуется из пересыщенной  $\beta$ -фазы после отжига при 400° С.

1. Багаряцкий Ю. А. идр. ДАН ССР, 1958, т. 122, с. 593—596.

0,0298 $\overline{1},9702$ 

### Та—Тт. Тантал—тулий

Температура плавления Тт, выплавленного в тиглях из Та, повышается на 135 град (с 1545 до 1680° С). В жидком Тт растворяется примерно 1,4% (ат.) [1,5% (по массе)] (?) Та [1]. В системе нет интерметаллических соединений и растворимость Та в Тт мала [2].

- Spedding F. H., Daane A. H. U. S. At. Energy Comm. IS—15, 1957, and ISC—1116, 1959; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 2. Spedding F. H., Daane A. H. Metallurgy and Fuels, chap V, p. 413, Progress in Nuclear Energy, ser. V, v. 1, Pergamon Press, N. Y., 1956; см. Гшнейднер К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- ī,8807 0,1193

### Та—U. Тантал—уран \*

Неопубликованные данные, описанные в работе [1], подтверждают диаграмму, данную М. Хансеном и К. Андерко (см. т. II, рис. 664). По [1], авторы работ [2, 3] согласны относительно отсутствия интерметаллических соединений в этой системе; подтверждено существование перитектической горизонтали в богатой U области диаграммы [2].

1. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 67.

430

- 2. A h m a n n D. H. Частное сообщение авторам работы [1], 1946.
- 3. Atomic Energy Research Establishment, United Kingdom. Частное сообщение авторам работы [1], 1954.

0,5502 1,4498

### Та—V. Тантал—ванадий \*

На основе металлографических и рентгеновских данных, а также капельного анализа (определение точки плавления по моменту появления жидкости) в работе [1] предложен вариант диаграммы, (рис. 417). Наблюдается полная взаимная растворимость в жидком и твердом состояниях выше 1320° С. На кривой ликви-


дуса имеется минимум при 1820° С. Интерметаллическое соединение TaV<sub>2</sub> образуется из твердого раствора с о. ц. к. решеткой при ~1320° С. Автор настоящего справочника, используя рентгеновские данные [1], установил, что TaV<sub>2</sub> имеет г. ц. к. решетку типа MgCu<sub>2</sub>, a = 7,162 А; авторы [1] согласны с этим.

В работе [2] также показана неограниченная растворимость в твердом состоянии; здесь приводятся результаты измерений периодов решетки и микротвердости. По [2] солидус не имеет минимума, температура плавления непрерывно повышается:

| Концентрация, % (ат.) V<br>Температура, °С | 100<br>1800 | 80<br>1900 | $\begin{array}{c} 60 \\ 2040 \end{array}$ | $\begin{array}{r} 40\\2240\end{array}$ | $\begin{array}{c} 20 \\ 2460 \end{array}$ |
|--------------------------------------------|-------------|------------|-------------------------------------------|----------------------------------------|-------------------------------------------|
|                                            | (низкая)    |            |                                           |                                        |                                           |

 Carlson O. N. a. o. AIME Metallurgical Society Conference, v. 2, «Reactive Metals», Interscience Publishers, Inc., N. Y., 1959.
 Еременко В. Н. идр. ЖНХ, 1960, т. 5, с. 2290—2293.

1,9928 0,0072

## Та—W. Тантал—вольфрам \*

Та и W растворимы в любых пропорциях, что следует из результатов определения физических и механических свойств и металлографического анализа литых и спеченных сплавов [1—3].

- 1. Kieffer R. a. o. J. Less-Common Metals, 1959, v. 1, p. 19-33.
- 2. Kieffer R. u. a. Z. Metallkunde, 1959, Bd 50, S. 18-24.
- 3. Braun H. a. o. Plansee Proceedings, 1958, Pergamon Press, N. Y., 1959, p. 264-276.
- 0,3084 1.6916

## Та-Ү. Тантал-иттрий

Та и У ограниченно взаимно растворимы и в жидком, и в твердом состояниях [1, 2]. Авторы работы [2], используя металлографический и капельный (по моменту начала видимого оплавления) методы, следующим образом оценили максимальную растворимость в жидком состоянии: 0,21% (ат.) [0,1% (по массе)] У в Та и 0,5% (ат.) [0,1% (по массе)] Та в Y; обнаружено слабое снижение температуры плавления Y при добавлении Та, однако эвтектической микроструктуры не наблюдалось (точка плавления Y, использовавшегося в работе [2], была высокой). Согласно [3], Та повышает точку плавления Y примерно на 30 град.

- 1. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1, с. 48—53.
- 2. Lundin C. E. (Jr.), Klodt D. T. J. Inst. Metals, 1961-1962, v. 90, p. 341-347.
- S p e d d i n g F. H., D a a n e A. H. U. S. At. Energy Comm. IS-15, November, 1959; см. Г ш н е й д н е р К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.
- 0,2973 1,7027

### Та—Zr. Тантал—цирконий \*

Диаграмма (рис. 418) построена по результатам электрического, дилатометрического, капельного (по моменту начала видимого оплавления) и металлографического анализов выплавленных в дуговой печи сплавов из металлов чистотой более 99,9% [1]. Та и о. ц. к. β-Zr неограниченно взаимно растворяются выше 1780° С; ниже этой температуры происходит расслоение фаз с о. ц. к. решеткой,

432

а при 800° С и 93,6% (ат.) [88% (по массе)] Zr наблюдается эвтектоидный распад. Фазовые диаграммы [2, 3], на основании которых можно сказать, что в системе имеется эвтектика, нельзя считать обоснованными из-за малой чистоты использованных материалов; в работе [3] подтверждено, что область растворимости существует при более высоких температурах и что их вариант диаграммы оши-





бочен. В работе [3] сплавы были загрязнены 0,2-0,4% (ат.) О и N. Эвтектика находилась при 73% (ат.) Zr и 1485° С.

Сплавы готовили [2] в дуговой печи из Zr и Ta чистотой соответственно 99,6 и 99%. Эвтектическая точка находилась при 66% (ат.) Zr и 1585° С.

В работе [4] показано отсутствие промежуточных фаз. Согласно [5], растворимость Та в α-Zr мала.

- 1. Williams D. E. a. o. Trans. AIME, 1962, v. 224, p. 751-756.
- 2. Емельянов В.С. и др. Атомная энергия, 1957, т. 2, с. 42-47.
- 3. Pease L. F. a. o. ASD Tech. Rept. 60-132, pt II (also NMI-9237), 1962, p. 42-74.
- 4. Rogers B. A. U. S. At Energy Comm. ISC-835, 1957, 20p.
- 5. Van Thyne R. J., McPherson D. J. Trans. ASM, 1955, v. 48, p. 795– 803.
- 0,0953 1,9047

### Тb—Те. Тербий—теллур

У ТbTe г. ц. к. решетка типа NaCl с периодом 6,101 [1, 2] или 6,102 ± ± 0,002 A [3].

- 1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- I an deili A. В книге «Rare Earth Research», ed. É. V. Kleber. The Macmillan Company, N. Y., 1961, p. 135—141.
- 3. Olcese G. L. Atti Accad. Nazl. Lincei, Rend. Classe Sci. Fis. Mat. Nat., 1961, v. 30, p. 195-200.

1,8252

### Tb—U. Тербий—уран

Согласно [1], Ть и U взаимно не растворяются в жидком состоянии. Растворимость Ть в жидком U увеличивается с 0,3% (ат.) [0,2% (по массе)] при 1150° С до 0,6% (ат.) [0,4% (по массе)] при 1250° С [1]. Эти данные согласуются с результатами работы [2], по данным которой в U при 1200° С растворяется 0,48% (ат.) [0,32% (по массе)] Ть.

- 1. Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December 1957 (classified); cm. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 68.
- 2. Haefling J.F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.

0,2410 1,7590

### Tb—Zr. Тербий—цирконий

В работе [1] металлографически на выплавленных в дуговой печи сплавах изучено влияние Тb на полиморфизм Zr. Присутствие посторонних фаз из-за примесей мешало точным определениям. Тb повышает температуру полиморфного превращения на  $\sim 50^{\circ}$  C. Растворимость Tb в  $\beta$ -Zr составляет  $\sim 3,5\%$  (ат.) [6% (по массе)], а в  $\alpha$ -Zr 4,1% (ат.) [7% (по массе)] при перитектоидной температуре.

1. Uy J. C. a. o. Rensselaer Polytechnic Inst., Final Report on Contract AT (30-1)-2159, 1961.

0,3153 1,6847

### Тс-Ті. Технеций-титан

В работе [1] исследовали систему с помощью рентгеноструктурного анализа сплавов Тс, последовательно насыщавшихся V. При 12,5% (ат.) Ті возникала о. ц. к, структура  $\alpha$ -Mn,  $a = 9,579 \pm 0,001$  Å [1,2]. Наблюдалось образование только одного соединения — TcV — с кубической решеткой типа CsCl, a = 3,110 + 0,005 А.

 Darby J. B., Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.
 Lam D. J. a. o. Nature, 1961, v. 192, p. 744.

Tc--

## Тс-V. Технеций-ванадий

В работе [1] методом рентгеноструктурного анализа изучены сплавы этой системы, полученные последовательным насыщением Тс ванадием. Обнаружено единственное соединение TcV с кубической решеткой типа CsCl,  $a = 3,025 \pm \pm 0,005$  А.

1. Darby J. B., Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

1,73110,2689

0.2885

1,7115

#### Тс-W. Технеций-вольфрам

Авторы работы [1] исследовали систему с помощью рентгеноструктурного анализа сплавов Тс, последовательно насыщавшихся W. Наблюдалось образование только одного соединения — тетрагональной о-фазы при 25% (ат.) W. Периоды решетки не приводятся.

1. Darby J. B., Lam] D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

0,0316 $\overline{1}.9684$ 

#### Tc—Zr. Технеций—цирконий

Исследована [1] система с помощью рентгеноструктурного анализа сплавов Tc, последовательно насыщавшихся Zr. При 14,3% (ат.) Zr образуется фаза с о. ц. к. решеткой  $\alpha$ -Mn,  $a = 9,637 \pm 0,001$  A [1]. Это подтверждает данные работы [2], согласно которым имеется соединение со стехиометрическим составом ZrTc<sub>0</sub>,  $a = 9,636 \pm 0,002$  A. Кроме того, в работе [1] обнаружена фаза ZrTc с гексагональной решеткой типа MgZn<sub>2</sub>;  $a = 5,219 \pm 0,001$  A,  $c = 8,655 \pm 0,001$  A.

1. Darby J. B., Lam D. J. U. S. At. Energy Comm. ANL-6516, 1961, p. 254-256.

2. Compton V. B. a. o. Phys. Rev., 1961, v. 123, p. 1567-1568.

#### ī, 7402 0, 2598 Те—Th. Теллур—торий \*

Система Te—Th была вновь изучена в работе [1] с использованием Th и Te, полученных специальными методами для обеспечения максимально возможной чистоты. Для приведения сплавов в равновесие использовали выдержки продолжительностью 2—3 недели. Идентифицированы четыре соединения: ThTe<sub>3</sub>, 28\* 435

ThTe2,. Th2Te3 и ThTe. ThTe3, вероятно, высший теллурид, соответствующий ThTe2.68 (см. М. Хансен и К. Андерко, т. II [1]). ThTe3, приведенный в равновесие при 450° С путем сублимации избытка Те, после реакции при 550° С в течение 2—3 недель имел моноклинную решетку, a = 6,14 A, b = 4,31 A, c = 10,44 A, β=98.4° (индицирование было недостаточно точным, чтобы считать эти результаты окончательными). Теоретическая плотность этого соединения (7,44 г/см<sup>3</sup>) близка к экспериментальной (7,40 г/см<sup>3</sup>). Присутствие трителлурида объясняет ранее наблюдавшуюся [2] аномалию в изменении электросопротивления, а также малую скорость сублимации Те при 600° С [3]. После выдержки в течение нескольких часов при 900° C ThTe<sub>3</sub> превращается в ThTe<sub>2</sub>. Рентгенограмму порошка ThTe<sub>2</sub> можно рассчитать, зная размеры гексагональной ячейки; *a* = 8,49 A, с = 9,01 А. Однако экспериментальные неточности были таковы, что, по данным [1]. это могло быть только псевдоячейкой. После нагрева ThTe<sub>2</sub> в течение нескольких недель при 800° С в вакууме образуется новая фаза, рентгенограмма порошка которой может быть отнесена к Th, Te12. Предполагается, что для прохождения последней реакции необходимо небольшое количество О. Элементарную ячейку Th<sub>7</sub>Te<sub>12</sub> можно считать гексагональной (a = 12,33 A, c = 13,8 A), однако не все линии рентгенограммы удовлетворительно сходятся с предполагаемой структурой. Th<sub>2</sub>Te<sub>3</sub> кристаллизуется в гексагональную решетку (a = 12,49 Å, c = 4,354 Å), близкую к структуре Th<sub>7</sub>Te<sub>12</sub>. Возможно, что эти соединения лежат в области гомогенности одной фазы, причем Th<sub>2</sub>Te<sub>3</sub> имеет дефектную по катионам решетку. Сплав состава ThTe содержал лишь в небольшом количестве кубический теллурид (см. М. Хансен и К. Андерко, т. П [1]), а также Th<sub>2</sub>Te<sub>3</sub> и немного фазы с г. ц. к. решеткой, a = 5,116 A (Th?). При загрязнении О образуется примерно 40% ThTe, остальное Th<sub>2</sub>Te<sub>3</sub> и ThOTe. Здесь необходимы дальнейшие работы.

1. Graham J., McTaggart F. K. Austral. J. Chem., 1960, v. 13, p. 67-73. 2. McTaggart F. K. Austral. J. Chem., 1958, v. 11, p. 471. 3. Bear J., McTaggart F. K. Austral. J. Chem., 1958, v. 11, p. 458.

#### 0,4255 1,5745

### Те-Ті. Теллур-титан \*

Согласно [1, 2], ТіТе имеет решетку с гексагональной элементарной ячейкой и удвоенными периодами по сравнению со структурой типа NiAs, которая ранее приписывалась этому соединению (см. М. Хансен и К. Андерко, т. II [1]). Периоды решетки ТіТе составляют: a = 7,704 A, c = 12,626 A [1, 3]; a = 7,72 A, c = 12,65 A [2]. Положение о существовании неограниченной растворимости ТіТе и ТіТе<sub>2</sub> (см. М. Хансен и К. Андерко, т. II [1]) должно быть пересмотрено. Согласно [4], предел растворимости фазы ТіТе со стороны Ті лежит при 44,6% (ат.) Ті и ее структура не гексагональная, как указывается М. Хансеном и К. Андерко (см. т. II [1]), а близкая к моноклинной; a = 6,954 А. b = 3,836 А, c = 12,716 A, β = 90, 63°. В работе [2] получили у сплава с 40% (ат.) Ті такой же период решетки, как у ТіТе,.

Недотеллуриду предварительно приписана формула Ti<sub>2</sub>Te; у него неопределенная тетрагональная решетка [1, 3]. Авторы этих работ не смогли проанализировать сублимированные кристаллы соединения; его формула была определена по результатам измерения плотности. Рентгеновские [4, 5] и денситометрические данные [4] дают формулу Ti5Te4, хотя в этих работах приводятся такие же рентгенограммы, как в [3] для Ті2 Те. Согласно [4, 5], решетка обнаруженного соединения о. ц. тетрагональная (a = 10,164 A, c = 3,7720 A), в то время как по [3] она тетрагональная и имеет  $a = 14,37 \pm 0,01$  A,  $c = 3,590 \pm 0,005$  A. Ті<sub>5</sub>Те<sub>4</sub> заметной области гомогенности не имеет, а его состав точно соответствует формуле [4]. Полный структурный анализ показал связь структуры Ті<sub>5</sub>Те<sub>4</sub> с описанными в работе [5] соединениями Ti<sub>2-x</sub>Te<sub>2</sub>.

Растворимость Те в Ті, по-видимому, мала, так как в сплаве с 80% (ат.) Ті были обнаружены только дифракционные линии «Ті<sub>2</sub>Te» [3].

1. Hahn H., Ness P. Naturwissenschaften, 1957, Bd 44, S. 581.

2. McTaggart F. K., Wadsley A. D. Austral. J. Chem., 1958, v. 11, 445-457.

3. Hahn H., Ness P. Z. Anorg. Allgem. Chem., 1959, Bd 302, S. 17-36.

4. R a a u m F. Thesis, University of Oslo, 1959; cm. [5].

5. Gronvold F. a. o. Acta Cryst., 1961, v. 14, p. 930-934.

#### 1,7954 0.2046

## Te--Тl. Теллур--таллий \*

Диаграмма состояния Te-Tl вновь построена в работе [1] (рис. 419) методами микроскопического, термического и рентгеновского анализов. Установлено существование соединения Tl<sub>2</sub>Te<sub>3</sub>, образующегося по перитектической реакции при 238 ± 2° С (см. общее обсуждение М. Хансена и К. Андерко, т. II, особенно [8, 9]). Те образует вместе с Tl<sub>2</sub>Te<sub>3</sub> эвтектику при 29% (ат.) Tl и 224 ± ± 2° С. Перитектическое образование Tl<sub>2</sub>Te<sub>3</sub> может быть легко подавлено до



Рис. 419. Те-ТІ

начала реакции; в этом случае Те образует с ТІТе метастабильную эвтектику при ~31% (ат.) ТІ и 203° С. ТеТІ образуется по перитектической реакции при 300° С, что согласуется с данными М. Хансена и К. Андерко (см. т. II [2, 3]). Показано, что конгруэнтное плавление у-фазы происходит при концентрации, соответствующей Tl<sub>5</sub>Te<sub>3</sub> с областью гомогенности 62-64% (ат.) Tl между 200 и 390° С. Точка плавления у-фазы 453 ± 3° С — выше, чем указано М. Хансеном и К. Андерко (см. т. II [1-3]).

Кристаллическая структура. Согласно [1], Tl<sub>2</sub>Te<sub>3</sub> имеет моноклинную решетку; a = 13,5 А, b = 6,5 А, c = 7,9 А,  $\beta = 73^{\circ}$ ; у ТІТе о. ц. тетрагональная структура; a = 12,950 A, c = 6,175 A, с 16 формульными единицами на элементарную ячейку (у TIS и TISe — 14); у-фаза также имеет о. ц. тетрагональную решетку: a = 8,92 A, c = 12,63 A.

1. Rabenau A. u. a. Z. Metallkunde, 1960, Bd 51, S. 295-299.

1,8782 0,1218

## Te—Tm. Теллур—тулий

У ТтТе г. ц. к. решетка типа NaCl с периодом 6,042 А [1].

1. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.

1,7292 0,2708

## Те—U. Теллур—уран\*

В работе [1] изучены магнитные свойства UTe<sub>2,25</sub>, UTe<sub>2.0</sub> и UTe<sub>1.5</sub>. Полученные данные подтверждают результаты, изложенные М. Хансеном и К. Андерко (см. т. II [3]), согласно которым имеется отдельное соединение с формулой UTe<sub>2.2</sub>.

 Trzebiatowski W., Sepichowska A. Bull. Acad Polon. Sci, Ser. Sci. Chim. Geol. Geograph., 1959, v. 7, р. 181—182. Оригинал недоступен; см. Chem. Abstr., 1960, v. 54, р. 16063.

0,3987 1.6013

### Те-V. Теллур-ванадий \*

Фазовые равновесия во всем диапазоне концентраций описаны в работах [1, 2]. Хотя результаты этих исследований не согласуются, они показывают, что диаграмма состояния гораздо сложнее, чем это описано М. Хансеном и К. Андерко (см. т. II [1, 2]), там говорится о существовании только одного соединения VTe.

Авторы [1] методом рентгеноструктурного анализа изучили 23 сплава с составами между 29 и 75% (ат.) V. Ванадий чистотой более 99,6% и дистиллированный теллур спекали в контейнерах из кварца или окиси алюминия при 1000° С, отжигали при 750° С и медленно охлаждали до комнатной температуры. Согласно [1], образцы, содержащие более 45,5% (ат.) V, реагируют с кварцем. Возможно, этим можно объяснить расхождения относительно ширины фазовой области  $\beta$  по данным [1, 2]. Авторы работы [1] обнаружили две промежуточные фазы:  $\beta$  ( $\sim$ V<sub>5</sub>Te<sub>4</sub>) в равновесии с твердым раствором на основе V и  $\gamma$ , включающую четыре близких по кристаллической структуре соединения, — в равновесии с (Te). В работе [1] детально рентгенографически изучены эти структуры и по изменению периодов решетки определены границы фазовых областей.

В работе [2] спекали 16 композиций в интервале от 25 до 80% (ат.) V в кварцевых капсулах. Исследованные методами т.э. д. с., рентгеновского и резистометрического анализов сплавы приводились в равновесие только при комнатной температуре [2]. Авторы [2] оценивали приведение в равновесное состояние на основе сравнения рентгенограмм порошков. Описаны соединения VTe<sub>2</sub> (имеющее две модификации), V<sub>2</sub>Te<sub>3</sub> и две промежуточные фазы — β [(44—54,9% (ат.) V] и γ [56,5—83,3% (ат.) V].

Диаграмма (рис. 420) построена по данным [1]. Трехфазные равновесия являются гипотетическими и показаны для наглядности; надо учитывать, что из работы [1] не следует обязательность границ между областями существования различных у-фаз.

Кристалическая структура.  $\gamma_1$  имеет гексагональную структуру NiAs; a = 3,942 A, c = 6,126 A [47,62% (ат.) V] [1].

У  $\gamma_2$  моноклинная решетка с переменными параметрами: a = 6,763 A, b = 3,807 A,  $c = 2 \times 6,225$  A,  $\beta = 91,52^{\circ}$  [44,44% (ar.) V]; a = 6,460 A, b = 3,685 A,  $c = 2 \times 6,335$  Å,  $\beta = 90,3^{\circ}$  [37,04% (ar.) V] [1].

 $\gamma_3$  имеет гексагональную решетку, близкую к NiÁs—Cd (OH)<sub>2</sub>; a = 3,689 A, c = 6,405 A при 36,04% (ат.) V [1].

У  $\gamma_4$  структура ромбическая, как у Cd (OH)<sub>2</sub>; a = 6,333 A, b = 3,618 A,  $c = 2 \times 6,427$  A при 35,09% (ат.) V [1].

 $\beta$ -фаза (V<sub>5</sub>Te<sub>4</sub>) имеет моноклинную решетку; a = 13,48 A,  $b = 3,91_3$  A, c = 13,82 A,  $\beta = 93,5_8^0$  [1].

Согласно [2], «волокнистая» модификация VTe<sub>2</sub> характеризуется ромбической структурой; a = 6,48 A, b = 7,29 A, c = 6,27 A.

1. Gronvold F. a. o. Acta Chem. Scand., 1958, v. 12, p. 971-982.

2. Украинский Ю. М. идр. Научн. доклады высш. школы, Химия и химич. технология, 1959, № 1, с. 62—66.

% (no macce) 50 60 70 80 90 40 30 10 20  $le_4$ 1200 2 2 12 2 3 1000 800 ŝ Температура, 600 400 200 [1] 0 ß α VTe2 [2] V2 Te3 t. комнатная *90* 100 40 50 60 70 80 . . 20 30 0 10 V % (am.) Те Рис. 420. Te-V

0,1569 1,8431

## Те—Ү. Теллур—иттрий

Точка плавления соединения  $Y_2$ Te<sub>3</sub> составляет 1525 ± 25° C [1]. У соединения YTe г. ц. к. решетка типа NaCl с периодом 6,095 [2] или 6,080 A [3].

- Miller J. F., a. o. J. Electrochem. Soc. 1959, v. 106, p. 1043—1046; Miller J. F. Humes R. C. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 232—240.
- 2. Brixner L. H. J. Inorg. Nucl. Chem., 1960, v. 15, p. 199-201.
- 3. I a n d e l l i A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135—141.

1,8677 0,1323

## Те-Yb. Теллур-иттербий \*

Согласно [1], период г. ц. к. решетки типа NaCl соединения YbTe составляет 6,361 А. Авторы работы [2] оценивали точку плавления YbTe в 1720—1760° С (по результатам оплавления порошковых брикетов соединения).

438 .

1. I andelli A. В книге «Rare Earth Research», ed. E. V. Kleber. The Macmillan Co., N. Y., 1961, p. 135-141.

2. Miller J. F., Himes R. С. там же, р. 232-240.

#### 0,2904 1.7096

### Te—Zn. Теллур—цинк \*

Точка плавления ZnTe вновь определена равной 1300 ± 10° C [1]. Согласно [2, 3], ZnTe существует в двух модификациях; гексагональную можно получить в результате реакции паров элементов, составляющих соединение. По данным исследования [2], периоды гексагональной ячейки:  $a = 4.37 \pm 0.03$  A, c = 53 A, а кристаллическая структура представляет собой комбинацию гексагональных и кубических субячеек. В работе [3] указывается, что гексагональная модификация ZnS имеет структуру вюрцита; a = 4,27 A, c = 6,99 A. Поскольку плавленое соединение ZnS всегда имеет кубическую решетку, гексагональную модификацию следует считать метастабильной [2]; авторы работы [3] наблюдали переход из гексагональной в кубическую модификацию за счет механической деформации. Период г. ц. к. решетки ZnTe типа цинковой обманки равен 6,089 ±  $\pm$  0,002 [3]; 6,085 [4]; 6,08 A [5].

- 1. Mason D. R., O' Kane D. F. Internat. Conference on Semiconductor Phys., Prague, 1960. Academ. Press. Inc., N. Y., 1961, p. 1026-1031.
- 2. Пашинкин А.С. идр. Кристаллография, 1960, т. 5, с. 261-267.
- 3. Chistyakov Yu. D., Cruceanu E. Rev. Phys., Acad. Rep. Populaire Roumaine, 1961, v. 6, p. 211-217.
- 4. Horak J. u. a. Czech. J. Phys., 1957, Bd 7, S. 468-475.
- 5. Коломиец Б. Т., Малькова А. А. ЖТФ, 1958, т. 28, с. 1662—1669.

0.1458 1,8542

## Te—Zr. Теллур—цирконий

Соединения. образующиеся в этой системе, исследованы с помощью рентгеновского анализа [1—3]. У ZrTe<sub>3</sub> моноклинная решетка, вероятно, изотипная с ZrSe<sub>3</sub> [1, 2]; a = 5,95 A, b = 3,92 A, c = 20,8 A,  $\beta = 97,7^{\circ}$  [1, 2]; a = 5,89 A, b = 3,93 А, c = 10,10 А,  $\beta = 98,4^{\circ}$  [3]. Однофазная область в диапазоне 44,5-68,7% (ат.) Те [1, 2] включает соединения со стехиометрическим составом ZrTe (решетка типа NiAs) и ZrTe2 (решетка типа CdI2). Между этими структурами наблюдается плавный переход. У ZrTe гексагональные периоды: a = 3,953 ±  $\pm$  0,005 A,  $c = 6,647 \pm 0,005$  A [2]; y ZrTe<sub>2</sub>  $a = 3,950 \pm 0,005$  A,  $c = 6,630 \pm$  $\pm$  0,005 Å [2]. В работе [3] приводятся менее точные значения периодов.  $Zr_4Te_3$ имеет тетрагональную решетку, изотипную с  $Zr_4Se_3$  и  $Zr_4S_3$ ;  $a = 3,687 \pm 0,005$  А,  $c = 9,56 \pm 0,01$  A [2]. У Zr<sub>3</sub>Te<sub>2</sub> гексагональная структура типа WC; a == 3,762 ± 0,005 A, c = 3,864 ± 0,005 A [2]. Zr<sub>3</sub>Te<sub>2</sub> находится в равновесии с твердым раствором на основе Zr.

1. Hahn H., Ness P. Naturwissenschaften. 1957, Bd 44, S. 534.

2. Hahn H., Ness P. Z. Anorg. Allgem. Chem., 1959, Bd 302, S. 136-154. 3. McTaggart F. K., Wadsley A. D. Austral. J. Chem., 1958, v. 11, p. 445—457.

0,0452 1,9548

440

## Th—Tl. Торий—таллий

Согласно [1], растворимость Th в жидком Tl увеличивается с 0,25% (ат.) при 800° С до 0,3% (ат.) при 900° С. Промежуточная фаза ThTl<sub>3</sub> имеет кубическую решетку, изотипную, с  $Cu_3Au$ , a = 4,748 A [2].

1. Науез Е. Е., Gordon P., см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 131.

\$

2. Ferro R. Acta Cryst., 1958, v. 11, p. 737-738.

# 1,9890 0,0110

## Th-U. Торий-уран \*

В работе [1] диаграмма состояния построена для диапазона концентраций от 0 до 100% U. в работах [2, 3] — от 0 до 19,6% (ат.) [20% (по массе)] U, в работе [4] — от 0 до 9,8% (ат.) [10% (по массе)] U. Согласно [1—4], U в значительных количествах растворяется и в а-и в β-Th. Результаты работы [2], очевидно, наиболее полные для изученной области диаграммы, представлены на рис. 421. Температуры нонвариантных реакций (за исключением эвтектоидного распада β-Th) и полиморфных превраще-ний в U взяты у М. Хансена и К. Андерко (см. т. II [1]). В работах [1-4] использовались высокочистые материалы. Применялись следующие методы: рентгеновский анализ [1-3], высокотемпературная рентгеносъемка [4], термический анализ с помощью оптического пирометра [1, 4], термический [1], металлографический [1, 3] и электрический [2, 3] анализы.

Авторы работы [4] показали снижение температуры перехода  $\alpha$ -Th $\rightarrow\beta$ -Th до 1330° C, но не обнаружили эвтектоидного распада β-Th, как это сделано в работе [2].

Растворимость U в Th по разным данным различна. В работе [1] на основе металлографических наблюдений установлены следующие значения растворимости: 2,5; 1,9 и 0,15% (ат.) при соответственно 1375, 1100 и 800° С. Согласно рентгеновским данным [2], в Th растворяется:



| Температура, °С<br>Растворимость % | (ar.) [% (ПО.) | 1270<br>accell 6.8.[7] | 1000  | 25    |
|------------------------------------|----------------|------------------------|-------|-------|
| Растворимость, %                   | (ат.) 1% (по м | acce)] 0,8[/]          | 1 [1] | 1 [1] |

Авторы работы [3], используя электрический анализ, получили такие результаты:

| Температура, °С | 1000        | 900         | 800        |
|-----------------|-------------|-------------|------------|
| массе)]         | 1,71 [1,75] | 0,63 [0,65] | 0,68 [0,7] |

Согласно [4], измерения периодов решетки говорят о следующих значениях растворимости U в Th:

| Температура, °С           | . 1250      | 1150       | 950       |
|---------------------------|-------------|------------|-----------|
| Растворимость, % (ат.) [% |             | ·          |           |
| (по массе)]               | . 7.5 [7.5] | 4,39 [4,5] | 2.74[2.5] |

Монотектическая точка соответствует 49% (ат.) U [1]. Разница между этой концентрацией и результатом ранее проведенной работы — 27,5% (ат.) (см. М. Хансен и К. Андерко, т. II [1]) — говорит о необходимости постановки контрольного исследования. Согласно [1], эвтектическая точка лежит при 4% (ат.) Th и 1100 ± 4° C; температура перехода ( $\alpha$ -U)  $\rightarrow$  ( $\beta$ -U) при 666° C; (β-U) = (α-U) — при 772° С, а растворимость Th в U составляет 0,3 и 0,05% (ат.) при 900 и 700° С.

В работе [5] подтверждено отсутствие промежуточных фаз в этой системе.

- 1. Murray J. R. J. Inst. Met., 1958—1959, v. 87, p. 94—96. 2. Bentle G. G. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 6, p. 156-161, Metallurgy and Fuels. Progress in Nuclear Energy, ser. V, v. 3, Pergamon Press, N. Y., 1961, p. 13-22. 3. Bauer A. a. o. U. S. At. Energy Comm. BMI-1188, 1957, 10 p. 4. Wilson W. B. a. o. Trans. AIME, 1958, v. 212, p. 52-55.
- 5. Toth L. E. u. a. Monatsh. Chem., 1961, Bd 92, S. 945-948.
- 0,6586 1,3414

## Th-V. Торий-ванадий \*

Диаграмма (рис. 422) построена [1] с использованием термического, металлографического, рентгеновского и резистометрического анализов выплавленных в дуговой печи сплавов, которые готовили из иодидных Th и V. Подтвержден эвтектический тип системы: эвтектическая точка находится при 19.3% (ат.) [5% (по массе)] V и  $1435 \pm 10^{\circ}$  C.





V снижает температуру полиморфного превращения в Th «мало, но заметно». В нелегированном Th эта температура оказалась равной 1365 ± 10° C, а эвтектоидная температура 1345 ± 10° С. Пределы растворимости V в α- и β-Th были определены по изменению периодов решетки с использованием закона Вегарда (см. вставку на рис. 422). Растворимость Th в V <0,1% (ат.) при 1390° С. Со-гласно [1], точка плавления V составляет 1835 ± 10° С, что ниже общепринятого значения 1900° С.

1. Steigerwald E. A., Guarnieri G. J. Trans. ASM, 1962, v. 55, p. 301–306.

0,1011 1,8989

## Th-W. Торий-вольфрам \*

Согласно [1], авторы работы [2] «определили» фазовые равновесия в этой системе. Они обнаружили «малую» взаимную растворимость компонентов. Эвтек-в системе не образуется.

1. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 133.

2. Lloyd S. J., Murray J. R. United Kingdom. Частное сообщение авторам [1], 1955.

#### 0,4166 1.5834

## Th— Ү. Торий—иттрий

Полное исследование этой системы (рис. 423) методами термического, металлографического, резистометрического и рентгеновского анализов проведено в работе [1]. Сплавы из высокочистых металлов готовили в дуговой печи. Диаграмма состояния характеризуется отсутствием интерметаллических соединений и



Рис. 423. Th-Y

областью неограниченной растворимости в жидком и твердом состояниях при высоких температурах. В-твердый раствор распадается по эвтектоидной реакции (β-Th, β-Y) $\rightarrow$  (α-Th) + (α-Y); концентрация эвтектоидной точки 46,5% (ат.) [25% (по массе)] Y.

Наиболее яркая особенность диаграммы [1] — существование высокотемпературной (о. ц. к.) модификации Ү. Это полиморфное превращение ранее не отмечалось. Температура превращения 1490° С. При обсуждении данных авторы работы [1] приводят результаты других исследователей, подтверждающие существование высокотемпературной модификации.

В работе [2] определены периоды решетки в зависимости от концентрации в образцах, отожженных при 750° С и затем быстро охлажденных до 25° С; полученные таким способом значения предельной растворимости говорят о том, что ( $\alpha$ -Th) и ( $\alpha$ -Y) находятся в равновесни в интервале концентраций 49—69% (ат.) Th. Для подтверждения рентгеновских данных авторы [2] провели металлографическую работу. Расхождения данных [1], [2], возможно, связаны с повышенным содержанием примесей в Y, который использовали в работе [1].

Кристаллическая структура. В работах [1, 2] определены периоды решетки  $\alpha$ -Th,  $\beta$ -Th и  $\alpha$ -Y. Период  $\beta$ -Y оценен при экстраполяции, так как линии о. ц. к. решетки никогда не получались на рентгенограммах чистого Y и богатых им сплавов [1]. Получены следующие результаты:  $\alpha$ -Th (г. ц. к.): a = 5,0846 A [1, 2];  $\beta$ -Th (о. ц. к.):  $a = 4,11 \pm 0,01$  A [2];  $\alpha$ -Y (г. к.):  $a = 3,666 \pm 0,001$  A,  $c = 5,797 \pm 0,001$  A [1] или  $a = 3,651 \pm 0,001$  A,  $c = 5,747 \pm 0,001$  A [2];  $\beta$ -Y (о. ц. к.):  $a = 4,11 \pm 0,02$  A [1].

1. Eash D. T., Carlson O. N. Trans. ASM, 1959, v. 52, p. 1097-1113, имеется дискуссия.

2. Evans D. S., Raynor G. V. J. Nucl. Mater., 1960, v. 2, p. 209-215.

0,1274 $\overline{1},8726$ 

### Th— Yb. Торий—иттербий

Th и Yb полностью нерастворимы в жидком состоянии [1]. Образец, состоящий из слоев, богатых Th и Yb, отжигали при 675° С в течение нескольких дней. Измерение периодов решетки показали небольшую взаимную растворимость. Период г. ц. к. решетки увеличивается с 5,0848 у чистого Th до 5,0864 ± 0,0002 A у твердого раствора Yb с Th и уменьшается от 5,4861 у чистого Yb до 5,4851 ± ± 0,0003 A у твердого раствора Th в Yb.

Если допустить линейное изменение периодов, то эти данные свидетельствуют о растворении в Th 0,4% (ат.) Уb и в Yb 0,25% (ат.) Th.

1. Evans D.S., Raynor G.V.J. Less-Common Met., 1961, v. 3, p.179-180.

0,5503 1,4497

## Th—Zn. Торий—цинк \*

На рис. 424 приведена диаграмма состояния [1], полученная в условиях, обеспечивающих ограничение испарения. За исключением кривой растворимости Th в жидком Zn, линии диаграммы получены по результатам термического анализа образцов, находившихся в эвакуированных контейнерах из Ta. Для приготовления сплавов использовали Zn чистотой 99,99% (по массе) и Th, содержавший 1,250·10<sup>-4</sup>% (по массе) O, 0,0350% (по массе) С и меньшие количества Fe, N и Si. Давление паров Zn в областях Th<sub>2</sub>Zn<sub>1</sub>?—ThZn<sub>4</sub> и ThZn<sub>4</sub>—ThZn<sub>2</sub> достигало 1 am при 967 и 1037° С соответственно; поскольку эти температуры ниже эвтектических, газовая фаза с давлением 1 am образуется до начала плавления сплавов [1]. Было обнаружено [1] только четыре интерметаллических соединения; фаза Th<sub>4</sub>Zn<sub>7</sub> (или Th<sub>8</sub>Zn<sub>18</sub>), описанная в работе [2], не зафиксирована. Авторы работы [2] обнаружили кристаллы  $\alpha$ -ThSi<sub>2</sub> в верхней части образцов из многих сплавов; по-видимому, это связано с взаимодействием с кварцевыми ампулами, в которых готовились сплавы; отсюда следует возможность загрязнения последних Si. В работе [1] на основе термического и металлографического анализов показано, что различные соединения имеют очень узкие области гомогенности в пределах  $\pm 0.5\%$  (по массе). Описано [2] соединение  $Th_{2+x}Zn$  при 24,1— 25,8% (ат.) Zn (по данным химического анализа). Периоды решетки  $Th_{2+x}Zn$ близки к периодам  $Th_2Zn$ , и авторы работы [2] предполагают, что  $Th_2Zn$  имеет область гомогенности. Также обнаружена кубическая «Х»-фаза, которая, возможно, является  $ThO_8$  [2].



Измерения периодов решетки интерметаллических соединений проведены в работах [1-7]. Ранее описанное (см. М. Хансен и К. Андерко, т. II [1]) соединение ThZn<sub>9</sub> на самом деле, по [3, 4], имеет формулу Th<sub>2</sub>Zn<sub>17</sub>. У него ромбоэдрическая решетка с эквивалентными гексагональными периодами: a = 9,03 A, c = 13,20 A [3]. У ThZn<sub>4</sub> о. ц. тетрагональная решетка типа BaAl<sub>4</sub>; a = 4,26 A, c = 10,4 A [2]; a = 4,273 A, c = 10,359 A [1]; a = 4,273 A, c = 10,395 A [5]. Соединение Th<sub>2</sub>In имеет о. ц. тетрагональную решетку; a = 7,95 A, c = 5,64 A [6]; эти данные существенно отличаются от описанных М. Хансеном и К. Андерко (см. т. II [4]). Соединение Th<sub>2±x</sub>Zn [2], вероятно, имеет решетку типа CuAl<sub>2</sub>; a = 7,62 A, c = 5,62 A; последние значения периодов согласуются с приведенными М. Хансеном и К. Андерко (см. т. II [4]). У ThZn<sub>2</sub> гексагональная;  $a = 4,497 \pm 0,002$  A,  $c = 3,718 \pm 0,002$  A или a = 9,03 A, c = 7,39 A [1]. Предполагается [7], что использованные авторами [2] образцы могли быть загрязРастворимость Th в жидком Zn была изучена с помощью анализа жидких образцов, насыщенных  $Th_2Zn_{17}$  [1, 4, 5, 8]. В исследовании [8] фильтровали жидкость через пористый графитовый фильтр, чтобы удалить маленькие твердые частички. В работах [1, 5] использовали также метод термического анализа. Результаты [1, 4, 8] сравниваются на рис. 425. Температура плавления Zn не изменяется при добавлении Th [1, 4]. Эти данные согласуются с выведенным [8]



#### Рис. 425. Растворимость Th в Zn (см. также рис. 424)

методом наименьших квадратов уравнением lg X = 6,231 – -10,719 · 10<sup>3</sup> T<sup>-1</sup>+1,910×10<sup>6</sup> T<sup>-2</sup>, где X — атомная доля Th; T абсолютная температура; уравнение действительно для температурного интервала 449—746°С. В работе [1] для описания своих данных предложили уравнение lg (ат.) % Th = 5,850—6,230× ×10<sup>3</sup> T<sup>-1</sup>, где T — абсолютная температура.

Неопубликованная работа, описанная М. Хансеном и К. Андерко (см. т. II [3]), теперь напечатана [9].

- Chiotti P., Gill K. J. Trans. AIME, 1961, v. 221, p. 573-580.
- Макаров Е. С., Гудков Л. С. Кристаллография, 1956, т. 1, с. 650—656.
- Макаров Е. С., Виноградов С. И. Кристаллография, 1956, т. 1, с. 634— 643.
- 4. Смирнов М. В. и др. ЖФХ, 1957, т. 31, с. 1013— 1018.
- 5. Chiotti P. a. o. U. S. At. Energy Comm. IS-17, 1959, p. 67-72.
- 6. Carlson O. N. a. o. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, Geneva, 1955, v. 9, p. 74-106.
- 7. Brown A. Acta Cryst., 1961, v. 14, p. 860-865.
- 8. Martin H. A. a. o. J. Chem. Eng. Data, 1961, v. 6, p. 596-599.
- 9. Welhelm H. A. a. o. Thorium Metallurgy, U.S. At. Energy Comm. CT-3714, 1946 (declassified).

#### 0,4056 1,5944

### Th—Zr. Торий—цирконий \*

Фазовые равновесия в этой системе были вновь исследованы в работах [1] (0—100% Zr) и [2] [15—100% (ат.) Zr]; растворимость Zr в  $\alpha$ -Th определена в работах [3, 4]. Использовали металлографический [1—4], рентгеновский [1—4] и термический [2] анализы; сплавы готовили из иодидных Zr и Th. Вид диаграммы [1, 2] близок к приведенной М. Хансеном и К. Андерко (см. т. II, рис. 672), но имеются различия в деталях. Минимум на кривых ликвидуса и солидуса в случае приготовления сплавов из Zr, содержащего 1% (ат.) Hf, находится при 1290 ± 10° C и 46% (ат.) Zr [2]. Высокотемпературный эвтектоид образуется при 920° Си 40% (ат.) Zr [1], при 917,5 ± 7,5° Си 46% Zr [2] или при 910° C [5]. Максимум на кривой расслоения находится при 945° C и ~54% (ат.) Zr [1] или 950 ± 10° С и 52,5% (ат.) Zr [2]; богатый Zr эвтектонд соответствует 650° С и 86% (ат.) [1, 6] или  $\sim$ 87% (ат.) Zr [2]. Граница растворимости ( $\alpha$ -Th) [3], экстраполированная до низких температур [4], приведена на рис. 426. Растворимость Th в  $\alpha$ -Zr <2,2% (ат.) [7] или  $\sim$ 2% (ат.) [1].

- Бадаева Т. А., Алексеенко Г. К. ЖНХ, 1959, т. 4, с. 1873—1880; сб. «Строение сплавов некоторых систем с ураном и торием». Госатомиздат, 1961, с. 369—380.
- Murray J. R. J. Less-Common Met., 1960, v. 2, p. 1-10.
- 3. Johnson R. H. Honeycombe R. W. K. J. Nucl. Mater., 1961, v. 4, p. 59-65.
- 4. Evans D. S., Raynor G. V. J. Nucl. Mater., 1961, v. 4, p. 66-69.
- 5. Gibson E. D. a. o. Trans. ASM, 1958, v. 50, p. 348-369.
- 6. Ŝaller H. A., Rough F. A. U. S. At. Energy Comm. TID—10059, 1952 (рассекречено в 1960 г.), р. 376—383.
  7. Pfeil P. C. L. At. Energy Res. Estab. (Gt.
- Pfeil P. C. L. At. Energy Res. Estab. (Gt. Brit.), Rept. AERE—M/R 960; cm.R ough F. A., Bauer A. A. U. S. At. Energy Comm. BMI — 1300, 1958, p. 136.



Th.% (no macce)

К Металлографическое исследование [1] богатых U сплавов подтвердило вариант диаграммы, приведенной М. Хансеном и К. Андерко, (см. т. II [5], рис. 673 а). Также подтверждена правильность

этого участка диаграммы и, кроме того, показана узкая область гомогенности у соединения TiU<sub>2</sub> [2].

В работе [3] предполагается, что решетка TiU<sub>2</sub> изотипна скорее с Ni<sub>2</sub>In, чем с AlB<sub>2</sub>, как указано М. Хансеном и К. Андерко (см. т. II [4]).

1. Murphy D. J. Trans. ASM, 1958, v. 50, p. 884-900.

Ті—U. Титан—уран \*

2. Howlett B. W., Knapton A. G. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958, v. 6, p. 104-110.

3. Макаров Е. С. Кристаллография, 1958, т. 3, с. 5-9.

1,9732 0.0268

1,3036

## Ті—V. Титан—ванадий \*

Фазовая граница  $\beta/(\alpha+\beta)$  заново исследована с помощью металлографического анализа образцов, приготовленных из высокочистых компонентов, закаленных по обычной и высокоскоростной методике [1]. Результаты [1], хорошо согласующиеся с приведенными М. Хансеном и К. Андерко (см. т. II [1, 2, 4, 7]), дают возможность провести границу до 500° С: 5,5; 13,5; 24,0 и 40% (ат.) V при соответственно 800, 700, 600 и 500° С. Согласно [1], растворимость V в с-Ті должна быть < 2% (ат.) [(по массе)] при 700° С, что согласуется с данными М. Хансена и К. Андерко (см. т. II [2, 7].

Другие исследования этой системы касаются обнаружения и условий существования метастабильной офазы, образующейся при переохлаждении богатого Ті твердого раствора с о. ц. к. решеткой. Согласно [2], офаза является продуктом закалки в сплавах с 10—18% (по массе) V. Температурно-временные

условия ее существования в сплаве с 15% (по массе) V описаны в работе [3]. Кристаллическая структура  $\omega$ -фазы гексагональная, пространственная группа *P6/mmm*; a = 4,60 A, c = 2,82 A [4]. В другой рентгеновской работе [5] была выбрана ромбическая ячейка; a = 6,205 A, b = 6,597 A, c = 13,63 A [5].

- 1. Ermanis F. a. o. Trans. AIME, 1961, v. 221, p. 904-908.
- 2. Багаряцкий Ю. А. идр. ДАН СССР, 1958, т. 122, с. 593—596.
- 3. Löhbere K., Westphal H. Z. Metallkunde, 1958, Bd 49, S. 449-455.
- 4. Silcock J. M. a. o. В книге «The Mechanism of Phase Transformations in Metals», Inst. of Metals Monograph and Report Ser. no 18, Inst. of Met., London, 1956, p. 93—104; Nature, 1955, v. 175, p. 731.
- 5. Spachner S. A. Trans. AIME, 1958, v. 212, p. 57-59.
- ĩ,4157 0.5843

#### Ті—W. Титан—вольфрам \*

Богатая Ті область диаграммы была вновь исследована в температурном интервале 600—1000° С [1—3]. Металлографический анализ [1, 2] сплавов, содержавших 0,06—0,09% (по массе) О, показал, что фазовая граница  $\beta/(\alpha + \beta)$ является прямой линией от 882° С до эвтектоидной точки, расположенной при ~8,7% (ат.) W и 735° С. Данные работы [3] согласуются с диаграммой, приве-



денной М. Хансеном и К. Андерко (см. т. II, рис. 675).

 Imgram A. G. a. o. WADC Tech. Rept. 59— 595, pt. II, August 1961.
 Douglass R. W. a. o. WADC Tech. Rept. 59—595, pt I, March 1960.
 Багаряцкий Ю. А. идр. ЖНХ, 1958, т. 3, c. 777—785.

> Ті— Ү. Титан иттрий

Полные исследования этой системы проведены в работах [1, 2]. Диаграмма (рис. 427) составлена по данным исследований [1, 2], где применялись металлографический, электрический, термический и рентгеновский анализы сплавов, полученных в дуговой печи. Чистота исходного Y была 99.5%, Ti 99,7% [1] или Ү 98,7%, Ті 99,92% [2]. В системе не образуется соединений; эвтектическая точка находится при 78,3% (ат). Y [87% (по массе)] и 1330°С [1] или при 79.8% (ат.) [88% (по массе)] У и 1385 ± 10°С

[2]. Ликвидус на рис. 427 построен по [1]. Пределы растворимости в твердом состоянии и богатая Ті область диаграммы на рис. 427 даны по работе [2], за исключением эвтектоидной температуры, которую рассчитали как среднюю из 880 [1] и 870° С [2].

Предполагается [3], что полиморфное превращение в У происходит скорее при 1510, а не при 1475° С, как указывается в работе [1]. Следовательно, добавление Ті к У приводит к трехфазной реакции (β-Y) (α-Y). Металлографические доказательства протекания этой реакции приведены в работах [2, 3].

Эвтектический тип диаграммы подтвержден другими исследователями [4, 5]. В ограниченной по объему работе [1] показана малая растворимость Ті в Y и несмешиваемость в жидком состоянии при больших концентрациях Y; последнее наблюдение противоречит данным [1—3]. Автор работы [5] согласен с отсутствием соединений в системе, но эвтектическую точку он относит к 84,5% (ат.) [81% (по массе)] Y и ~1420° С. Максимальная предельная растворимость Ті в Y составляет ~1,8% (ат.) [1% (по массе)] [5].

1. Bare D. W., Carlson O. N. Trans. ASM, 1961, v. 53, p. 1-11.

2. Lundin C. E. Klodt D. T. Trans. AIME, 1962, v. 224, p. 367-372.

3. К lodt D. T., Lundin C. Е. дискуссия по [1]; Trans. ASM, 1961, v. 53, р. 883—885.

4. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1, с. 48-53.

5. L o v e B. WADD Tech. Rept. 60-74, pt 1, May, 1960, p. 33-35.

 $\overline{1},7202$ 0,2798

# Ті—Zr. Титан—цирконий \*

Пределы растворимости  $\alpha$ - и  $\beta$ -растворов на основе Ті были заново исследованы металлографически на сплавах, приготовленных из иодидных металлов [1, 2]. Согласно [1], фазовая область ( $\alpha + \beta$ ) расположена между 12,2—29,2% (ат.) [21—44% (по массе)] Zr при 500 и 600° С и в диапазоне 11,0—25,9% (ат.) [19— 40% (по массе)] Zr при 700° С; все эти концентрации значительно ниже, чем указывалось М. Хансеном и К. Андерко (см. т. II, рис. 677). Границы области ( $\alpha + \beta$ ) соответствуют [2]:

| Температура, °С                    | 800         | 750       | - 700       |
|------------------------------------|-------------|-----------|-------------|
| Растворимость, % (ат.) 1% (по мас- | 6,2-13,7    | 15,9-20,5 | 12,7-27,7   |
| ce)] Zr                            | [11,2-23,2] | [26,5-33] | [21,7-42,5] |

Предыдущие оценки границ существования области ( $\alpha + \beta$ ) (см. М. Хансен и К. Андерко, т. II [2—4]) были не окончательными и новые работы [1, 2] до конца не прояснили эти вопросы; здесь необходимо дополнительное исследование.

Метастабильная  $\omega$ -фаза, наблюдавшаяся при  $\beta \to \alpha$ - превращении, имеет гексагональную решетку,  $c/a = 0,622 \pm 0,002$  [3]. В работе [4] изучали температуры превращений метастабильных фаз  $\alpha'$  и  $\omega$ .

Выдвинутая гипотеза о том, что минимум на кривой ( $\alpha$ )  $\rightarrow$  ( $\beta$ ) при 50% (ат.) является результатом упорядочения [5], подтверждена калориметрическими измерениями [6].

1. Ence E., Margolin H. Trans. AIME, 1961, v. 221, p. 205—206. 2. Imgram A. G. a. o. WADC Tech. Rept. 59—595, pt. II, 1961, 119 p.

3. Hatt B. A. a. o. Nature, 1957, v. 180, p. 1406.

4. Гриднев В. Н. идр. ДАН СССР, 1960, т. 134, с. 1334—1336.

5. S m o l a c h o w s k i R. В книге «Metallurgy of Zirconium», eds. B. Lustman, F. Lerze. National Nuclear Energy Series, Div. VII, v. 4, Mc Graw-Hill Book Co., N. Y., 1955, p. 432.

6. Scott J. L. U. S. At. Energy Comm. ORNL-2328, 1957, p. 86-89.

29 Р. П. Эллиот, том II

# $\overline{1},9338$ 0,0662

### T1-U. Таллий-уран \*

Согласно [1], растворимость U в жидком Tl повышается с  $\sim 0.10\%$  (ат.) [0,12% (по массе)] при 800° С до 0,145% (ат.) [0,17% (по массе)] при 900° С.

1. Hayes E. E., Gordon P. J. U. S. At Energy Comm. TID-65, 1948, р. 130-141 (classified); см. Rough F. A, Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 68—69.

0.4950 1,5050

### T1-Zn. Таллий-цинк \*

В работе [1] с помощью прецизионного термического анализа сплавов, приготовленных из Zn чистотой более 99,999% (точка плавления 419, 505° С) и Tl чистотой 99,99%, вновь изучена богатая Zn область диаграммы состояния. Монотектическая точка расположена при 0,42% (ат.) ТІ и 416,926 ± 0,003° С. По атомной шкале линия ликвидуса прямолинейна от Zn до монотектической точки. Температура монотектической реакции, согласно [1], меняется на +0,0043 град с повышением давления на 1 am, т. е. так же, как точка плавления чистого Zn [2].

Максимальная растворимость Т1 в Zn при монотектической температуре составляет ~0,004% (ат.) [1], что рассчитано по экспериментально определенным с помощью радиоактивного Т1 коэффициентам распределения.

1. McLaren E. H., Weinberg F. Canad. J. Phys., 1961, v. 39, p. 588-595. 2. McLaren E. H. Canad. J. Phys., 1957, v. 35, p. 1086.

1,8522 0.1478

### Tm—U. Тулий—уран

U и Tm не смешиваются в жидком состоянии. Растворимость Tm в жидком U увеличивается с 0,035% (ат.) [0,025% (по массе)] при 1150° С до 0,098% (ат.) [0.075% (по массе)] при 1250° С [1]. Эти данные согласуются с результатами [2]: при 1225° С в U растворяется 0,056% (ат.) [0,04% (по массе)] Тт.

1. Wilhelm H. A., Nuclear Fuels Newsletter, WASH-704, December 1957 (classified), cm. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 70.

2. Haefling J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.

#### 0,1121 1.8879

## U-W. Уран-вольфрам \*

При 1000° С растворимость W в U составляет 0,2-0,5% (ат.), а U в W 0,4-0,7% (ат.) [1]. Это хорошо согласуется с ранее опубликованными данными.

1. National Physical Lab., United Kingdom. Неопубликованные данные, 1948; см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 73.

0,4277 1.5723

#### U-Y. Уран-иттрий

Система U-Y характеризуется неполной смешиваемостью в жидком состоянии [1]. Химический анализ насыщенных расплавов, подтвержденный металлографическим исследованием, дал следующие значения растворимости У в жид-KOM U:

| Температура, °С               | 1250        | 1225     |
|-------------------------------|-------------|----------|
| Растворимость, % (ат.) 1% (по | [. 11]      | 0.07.0   |
| Macce)                        | 0.29 [0.11] | 0,37 LU, |

1200 [0, 14]0,32 [0,12] 0.23 [0.086]

1175

Результаты работы [1] частично согласуются с выше приведенными: 0,40 [0,15] и 0,20% (ат.) [0,075% (по массе)] при соответственно 1250 и 1150° С. В работе [2] металлографически показано существование эвтектики в богатой U области диаграммы.

1. Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December, 1957 (classified): см. Rough F. A., Bauer A. A. U. S. At. Energy Comm. BMI—1300, 1958, p. 75.

2. Haefling J.F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338.

#### 0,1386 1,8614

## U-Yb. Уран-иттербий.

Взаимная растворимость в жидком состоянии определена с помощью химического анализа сосуществующих в равновесии расплавов [1]. Значения растворимости при разных температурах приведены в табл. 42.

| таблица | 42. | взаимная | растворимость | U | в | Y |
|---------|-----|----------|---------------|---|---|---|
|         | В   | жидком с | состоянии     |   |   |   |

| Температура                  | Раствори                     | мость U в Yb                                                                    | Раствори             | Растворимость Yb в U |  |  |
|------------------------------|------------------------------|---------------------------------------------------------------------------------|----------------------|----------------------|--|--|
| °C                           | % (ат.)                      | % (по массе)                                                                    | % (ат.)              | % (по массе)         |  |  |
| 1250<br>1200<br>1150<br>1050 | 0,23<br>0,51<br>0,30<br>0,13 | $\begin{array}{c} 0, 31_{0} \\ 0, 71_{1} \\ 0, 41_{7} \\ 0, 18_{0} \end{array}$ | 0,30<br>0,18<br>0,30 | 0,22<br>0,13<br>0,22 |  |  |

Согласно [2], растворимость U в Yb нулевая при 1000° С и 0,58% (ат.) [0,8% (по массе)] при 1250° С, а растворимость Yb в U составляет 0,21 [0,15] и 0,28% (ат.) [0,2% (по массе)] при соответственно 1150 и 1250° С.

1. Haefling J. F., Daane A. H. Trans. AIME, 1959, v. 215, p. 336-338. 2. Wilhelm H. A. Nuclear Fuels Newsletter, WASH-704, December 1957 (classified), см. R o u g h F. A., Bauer A. A. U. S. At. Energy Comm. BMI-1300, 1958, p. 75.

#### 0,5613 1,4387

#### U-Zn. Уран-цинк \*

На рис. 428 приведена диаграмма состояния при давлении 1 ат, построенная по данным измерений упругости паров и термического анализа (см. М. Хансен и К. Андерко, т. II [1]). Диаграмма состояния конденсированной системы при давлении 5 am была представлена М. Хансеном и К. Андерко (см. т. II, рис. 680а). Впервые описанное соединение UZn<sub>9</sub> (см. т. II [1], по данным [1, 2], имеет формулу U<sub>2</sub>Zn<sub>17</sub>. Его структура гексагональная ( $D_{3h}^1 - P\overline{6}m^2$ ), a = 8,99 A, c == 26.35 А [1]. В работе [2] обнаружили, что у этой фазы две модификации: высокотемпературная с гексагональной решеткой, близкой к Th<sub>2</sub>Ni<sub>17</sub>; a = 8,962±  $\pm$  0,002 A,  $c = 8,809 \pm 0,004$  A; и низкотемпературная с ромбоэдрической структурой типа Th<sub>2</sub>Zn<sub>17</sub> и эквивалентными гексагональными периодами: a = 8,978 ±  $\pm$  0,005 А и  $c = 13,160 \pm 0,002$  А. В работе [2] предполагается, что сведения [1] об элементарной ячейке относятся к случаю сосуществования обеих модификаций

450



Рис. 428. U—Zn

в одном кристалле. Полиморфное превращение, вероятно, происходит ниже 550° С. В металлографической работе, описанной М. Хансеном и К. Андерко (см. т. II [1]), показано существование только одного соединения с узкой областью гомогенности. Однако в работе [3], используя регистрируемое диффузионное равновесие 13 сплавов в интервале между 420 и 504° С и рентгеновский анализ образцов, быстро охлажденных с 460° С до комнатной температуры, обнаружили непрерывную серию твердых растворов в диапазоне от  $U_2Zn_{17}$  (со структурой  $Th_2Ni_{17}$ ) и до состава, примерно отвечающего формуле  $UZn_{12}$ . Существование области гомогенности предполагалось также в работе [1], согласно которой она находится в диапазоне концентраций  $U_9Zn_{15-17}$ .

В работе [4] заново определили растворимость U в Zn:

| Темпе-                                     | $1050 \div 25$ | 900  | 800  | 700  | 600   | 500    | 425    |
|--------------------------------------------|----------------|------|------|------|-------|--------|--------|
| ратура, °С.<br>Раствори-<br>мость, % (ат.) | 10,53          | 5,10 | 1,62 | 0,41 | 0,076 | 0,0090 | 0,0012 |

1. Макаров Е. С., Виноградов С. И. Кристаллография, 1956, т. 1, с. 634-643.

2. Vold C. L., Peterson D. T. U. S. At. Energy Comm. IS-246, 1961, 28p. 3. Veleckis E. a. o. J. Phys. Chem., 1961, v. 65, p. 2127-2131.

4. Chiotti P., Shoemaker H. U. S. At. Energy Comm. IS-17, 1959. p. 72-74.

0,4166 $\overline{1},5834$ 

## U—Zr. Уран—цирконий \*

Фазовые равновесия в твердом состоянии вновь изучены в работах [1—4]; в целом эти данные подтверждают диаграмму, приведенную М. Хансеном и К. Андерко (см. т. II [3]). Новое — твердо установленный факт существования δ-фазы, которая наиболее подробно исследована в работах [5, 6]. Использовались методы металлографического, рентгеновского и термического анализов, микрорентгеноспектрального анализа диффузионных пар и твердости. Данные [3, 7] отличаются от [1, 2] в отношении превращения ( $\beta$ -U)  $\Rightarrow$  ( $\alpha$ -U), согласно [3, 7], происходит перитектоидная реакция ( $\alpha$ -U) $\Rightarrow$ ( $\beta$ -U) + ( $\gamma$ -U), по [1, 2], идет эвтектоидная реакция ( $\beta$ -U) $\Rightarrow$ ( $\alpha$ -U) + ( $\beta$ -Zr). Можно полагать, что высокотемпературный рентгеновский анализ [1] адэкватно установил существование области ( $\beta$ -Zr) + + ( $\beta$ -U), что исключает возможность перитектоидной реакции [3, 7], но оставляет вероятной другую перитектоидную реакцию ( $\alpha$ -U) $\Rightarrow$ ( $\beta$ -U) + ( $\gamma$ -U). Однако дилатометрическое исследование (см. М. Хансен и К. Андерко, т. II [3]), которое очевидно, дало наиболее точную температуру реакции (662  $\pm$  3° C), говорит о предпочтительности эвтектоидной реакции. Диаграмма рис. 429 — комбинация результатов работ [1, 5], а также приведенных М. Хансеном и К. Андерко (см. т. II [3]).

Кроме зафиксированных на рис. 429, имеются следующие данные о температурах нонвариантных превращений и концентрации критических точек: реакция (α-U) → (β-U) + (γ-U), согласно [3, 7], идет при 700° С, эвтектоидная точка ~5% (ат.) Zr; богатый U эвтектоид находится при 695° С и 13% (ат.) Zr [2] или 685° С и 16% (ат.) Zr [3], или 680° С и 17,5% (ат.) Zr [5]; реакция (α-U) + + (β-Zr) → δ [или (α-Zr) + (β-Zr) → δ] [2] относится к 620° С и 63% (ат.) Zr [1], 610<sup>°</sup> ± 5<sup>°</sup> Си 62<sup>°</sup>/<sub>8</sub> (ar.) Zr [3], 610<sup>°</sup> Си 68<sup>°</sup>/<sub>8</sub> (ar.) Zr [4], 620<sup>°</sup> Си~60<sup>°</sup>/<sub>8</sub> (ar.) Zr [6] или 615° С и 75,5% (ат.) Zr [2] (отличие данных [2] относительно координат перитектоидной горизонтали, на которой образуется δ-фаза, от результатов других авторов необходимо отметить особо); эвтектоидная реакция в богатой Zr области, согласно [2], происходит при 607° С, концентрация эвтектоидной точки 66,5% (ат.) Zr по [3], соответствующие значения равны 595 ± 5° Си 77% (ат.) Zr, по [4], 598° Си 80% (ат.) Zr и, по [6], 610° Си~75% (ат.) Zr. Все авторы говорят об уменьшении предельной растворимости б-фазы с понижением температуры от перитектоидной, за исключением авторов работы [2], которые показали увеличение растворимости. Пределы растворимости Zr в δ-фазе при 400° C составляют

452

67—79 [1], 65—79 [2], 70—76 [3] и ~65÷72,5% (ат.) Zr [6]. Малые количества примесей О или N значительно сужают область гомогенности δ [8].

В работе [9] обсуждается кристаллическая структура δ-фазы и делается вывод, что полученные рентгенограммы можно рассматривать как результат наличия либо частично упорядоченной примитивной гексагональной решетки, либо ячейки о. ц. к. решетки. Данные об электросопротивлении и магнитной восприимчивости [10] подтверждают предположение о гексагональной структуре δ-фазы.





Предполагается [11], что δ-фаза на основе соединения UZr<sub>2</sub> изотипна по структуре с Ni<sub>2</sub>In, которое имеет гексагональную решетку.

- 1. Howlett B. W., Knapton A. G. Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2d, Geneva, 1958. v. 6, p. 104-110.
- 2. Иванов О. С., Багров Г. Н. Сб. «Строение сплавов некоторых систем с ураном и торием». Госатомиздат, 1961, с. 5—19.
- 3. Bauer A. A. U. S. At. Energy Comm. BMI-1350, 1959, p. 3-14.
- 4. Philibert J, Adda Y. Compt. Rend., 1957, v. 245, p. 2507-2510.
- 5. Duffey J. F., Bruch C. A. Trans. AIME, 1958, v. 212, p. 17-19.
- 6. Wisnyi L. G., Pijanowski S. U. S. At. Energy Comm. KAPL—1564, 1956 (рассекречено в 1957 г.) 45 р.
- 7. В e l l o t J. Частное сообщение, см. [4].
- 8. Bauer A. A. a. o. Trans. AIME, 1958, v. 212, p. 801-808.
- 9. Boyko E. R. Acta Cryst. 1957, v. 10, p. 712-713.
- 10. Barnard R. D. Proc. Phys. Soc. (London), 1961, v. 78, p. 722-727.
- 11. Макаров Е. С. Кристаллография, 1958, т. 3, с. 5-9.

1,4425 0,5575

## V-W. Ванадий-вольфрам \*

Система характеризуется неограниченной растворимостью в жидком и твердом состояниях [1—3]. На рис. 430 солидус заимствован из работы [1], ликвидус из [2]. Согласно [1], точка минимума находится при 4,5% (ат.) W и 1635° С а по [2], — при 6,5% (ат.) W и 1630° С. При конструировании диаграммы (рис. 430) предпочтение было отдано результатам более обширного исследования [1]. Отмечается [3], что сильная внутрикристаллитная ликвация в литых



сплавах может привести к ошибочной идентификации промежуточной фазы. В образцах, отожженных при 800° С, никаких избыточных фаз не образуется [3].

- 1. Барон В. В. и др. Изв. АН СССР. ОТН, Металлургия и топливо, 1960, вып. 1. с. 70-74.
- 2. Kieffer R. a o. J. Less Common Met., 1959, v. 1 p. 19-33; Z. Metallkunde, 1959, Bd 50, S. 18-24.
- K o m j a t h y S. a. o. WADC Tech. Rept. 59-483, 1959, 69p. K o m j a t h y J. Less-Common Met., 1961, v. 3, p. 468-488.

1,7581

# V-Y. Ванадий-иттрий

Диаграмма состояния (рис. 431) построена методами металлографического анализа и определения температур оплавления выплавленных в дуговой печи сплавов из V и Y чистотой 99,5% и 99,1%. В работах [2, 3] также показано, что система характеризуется несмешиваемостью в жидком состоянии, отсутствием соединений и малой взаимной растворимостью компонентов в жидком состоянии; согласно [2], эвтектика расположена при ~83,8% (ат.) Y [90% (по массе)] и 1495° С. Результаты работы [3] рассматриваются в [4].

454

- 1. Lundin C. E., Klodt D. T. J. Inst. Met., 1961—1962, v. 90, p. 341—347; см. Лундин К. Е. В книге «Редкоземельные металлы», под ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.
- 2. Love B. WADD Tech. Rept. 60-74, 1960, 226p.
- 3. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1, с. 48—53.
- 4. Tesmen A. B. Metal Progr., 1960, v. 78, № 3, p. 190, 192.



# 1,4691

#### V— Yb. Ванадий—иттербий

Беглое металлографическое исследование показало существование несмешиваемости в жидком состоянии у богатых V сплавов [1].

 L u n d i n C. E., K l o d t D. Denver Research Inst. Неопубликованные данные General Electric Co.—ANPD Subcontract AT—33; см. Лундин К. Е. В книге «Редкоземельные металлы» под ред. Ф. Спеддинга, А. Даана. Изд-во «Металлургия», 1965.

#### $\bar{1},7470$ 0,2530

### V—Zr. Ванадий—цирконий \*

В работе [1] методом металлографического и термического (с помощью оптического пирометра) анализов определены ликвидус, солидус и растворимость в твердом состоянии богатых V сплавов, приготовленных из V и Zr чистотой 98,6 и 99,9%. Растворимость Zr в твердом V составляет:

| Темпе-                           | 1800     | 1600      | 1400      | 1300                 | 1100      | 700   | 20   |
|----------------------------------|----------|-----------|-----------|----------------------|-----------|-------|------|
| ратура, °С<br>Раствори-          | 0,56 [1] | 1,9 [3,4] | 4,2 [7,2] | (эвтект.)<br>5,2 [9] | 3,7 [6,4] | 2,6   | 1,9  |
| Мость, % (ат.)<br>[% (по массе)] |          |           | χ.        |                      |           | [4,0] | 10,0 |

Точки ликвидуса были равны:

| Концентрация, % | (ат.) [% | (по массе)] Zn | 0    | 5,8 [10] | 9,6 [16] |
|-----------------|----------|----------------|------|----------|----------|
| Температура, °C |          |                | 1880 | 1800     | 1700     |

В работе [2] металлографически показано, что эвтектоидная точка (при распаде твердого раствора на основе  $\beta$ -Zr) лежит при 5,2—6,9% (ат.) [3—4% (по массе)] V.

Подтверждена г. ц. к. решетка типа MgCu<sub>2</sub> у соединения ZrV<sub>2</sub>, *a* = 7,439 A [3], что согласуется с данными М. Хансена и К. Андерко (см. т. II [6]).

Метастабильная  $\omega$ -фаза, образующаяся при закалке ( $\beta$ -Zr), имеет гексагональную структуру; a = 5,02 A, c = 3,00 A [4]; тщательно изучено кристаллографическое соотношение  $\omega$  с матричной фазой. Согласно [2], a = 10,77 A, c = 10.96 A.

1. Барон В. В. и др. Труды Института металлургии им. А. А. Байкова АН СССР, 1961, вып. 8, с. 278—285.

2. O k u m u r a H. Y. Trend Eng. Univ. Wash., 1960, v. 12, 3, p. 28.

3. Matthias B. T. a. o. Phys. Chem. Solids, 1961, v. 19, p. 130-133.

4. Hatt B. A., Roberts J. A. Acta Met., 1960, v. 8, p. 575-584; HattB. A. a. o. Nature, 1957, v. 180, p. 1406.

#### 0,3156 $\overline{1}.6844$

### W-Y. Вольфрам-иттрий

Диаграмма состояния этой системы простая эвтектическая [1]. Интерметаллических соединений не образуется. Протекающая при затвердевании нонвариантная реакция «вероятно» имеет эвтектический характер; она идет при ~1550°С и 0,5% (ат.) [1% (по массе)] W. В работе [2] цитируется та же литература, что и в [1], но указывается эвтектическая концентрация 0,1% (ат.) [0,2% (по массе)] W. Максимальная растворимость Y в W<1% (ат.) [0,5% (по массе)] [1]. Влияние W на превращение  $\alpha \gtrsim \beta$  в Y неизвестно [2].

1. L u n d i n C. E., K l o d t D. Denver Research Inst. Неопубликованные данные. General Electric Co. — ANPD Subcontract АТ-33; см. Лундин К. Е. В книге «Редкоземельные металлы», под. ред. Ф. Спеддинга и А. Даана. Изд-во «Металлургия», 1965.

2. Гшнейднер К.А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 0,3045 $\overline{1}.6955$

#### W—Zr. Вольфрам—цирконий \*

Согласно рентгеновским данным [1], растворимость Zr в W примерно 1,50% (ат.) [0,75% (по массе)]. Образцы отжигали при 2204° С в течение 2 ч и охлаждали до комнатной температуры примерно за 10 мин; полученные данные действительны для температур вблизи 1650° С [1].

1. Semchyshen M., Barr R. Q. Climax Molybdenum Co. of Michigan, Final Report under Contract 58-847-c, June 20, 1961, p. 101-126.

0,1336 1,8664

## Y-Zn. Иттрий-цинк

Диаграмма (рис. 432) построена на основе металлографического и термического анализов образцов в эвакуированных тиглях из Та [1]. Наблюдалось образование семи соединений. YZn<sub>11</sub> образует эвтектику с Zn при 419° С — совсем немного ниже точки плавления Zn. Небольшая остановка при 745° С на термограммах сплавов между YZn и YZn<sub>2</sub>, вначале считавшаяся свидетельством существования какого-то соединения [1], по новым данным [2], указывает на полиморфное превращение в YZn<sub>2</sub>. В интервале YZn<sub>2</sub>—YZn<sub>3</sub> термических остановок не наблюдалось, но, несмотря на узкую область гомогенности YZn<sub>2</sub>, измерения электросопротивления показали протекание этого превращения при гораздо более низких температурах [2]. Короткая остановка при 985° С на термограммах сплавов в диапазоне YZn—YZn<sub>2</sub> [1] не была объяснена. Растворимость Y в Zn составляет 0,0103% (ат.) [0,014% (по массе)] при 500° С [3] и 0,13% (ат.) [0,18% (по массе)] при 600° С [4].



1. Chiotti P., Gill K. U. S. At. Energy Comm. IS-193, 1961, p. 31.

2. Chiotti P. a. o. U. S. At. Energy Comm. IS-351, p. 19-20.

458

- 3. Chiotti P., Parry S. J. U. S. At. Energy Comm. IS-193, 1960, p. 78-85.
- 4. К п i g h t o n J. B. Неопубликованные данные; см. Г ш н е й д н е р К. А. Сплавы редкоземельных металлов. Изд-во «Мир», 1965.

#### 1,9889 0,0111

## Y-Zr. Иттрий-цирконий

Фазовые равновесия в этой системе исследовались в трех работах [1—3], авторы которых согласны относительно отсутствия соединений, эвтектического типа диаграммы и малой взаимной растворимости компонентов. При построении диаграммы использовали методы металлографического и рентгеновского анализов. Данные [1, 2] очень хорошо согласуются, но работа [1] гораздо подробнее.

Данные [1, 2] очень хорошо соласуются, но расога [1] гораеда под-Только растворимость Y в α- и β-Zr при перитектоидной температуре точнее опре-



делена в работе [2]. Диаграмма (рис. 433) составлена по исследованию [1], за исключением величин растворимости на перитектоидной горизонтали, которые заимствованы из работы [2].

В работах [2, 3] не исследовали влияние Zr на α → β-превращение в Y; согласно [1], температура этого превращения снижается вплоть до эвтектоидной горизонтали.

Эвтектика находится при 1385° С и 43,4% (ат.) [44% (по массе)] Zr [2], при 1325° С и ~49,4% (ат.) [50% (по массе)] Zr [3], при 1363 ± 16° С и 40,4% (ат.)

[41% (по массе)] Zr [1]. Растворимость Zr в Y составляет 1,95% (ат.) [2% (по массе)], а Y в Zr при эвтектической температуре 2,05% (ат.) [2,0% (по массе)] [2]; максимальная растворимость Zr в Y ~4, % (ат.) [5% (по массе)], а при комнатной температуре она снижается до 1,5% (ат.) [по массе)] Zr [3].

В работе [1] не смогли точно определить растворимость Y в α- и β-Zr при перитектоидной температуре из-за присутствия примесных фаз. Предполагается [1], что эта растворимость равна 1,13% (ат.) [1,1% (по массе)] Zr — значительно больше, чем по данным [2]. Перитектоидная температура (рис. 433) дана по исследованию [1]; в работе [2] перитектоидная реакция захвачена в вилку и ее температура считается 880° С. В работе [4] ранее предполагали перитектоидную реакцию у богатых Zr сплавов, но не показали, связана ли она с полиморфным превращением или образованием промежуточной фазы.

- 1. U y J. C. a. o. Rensselaer Politechnic Inst., Final Report on Contract AT (30-1)-2159, 1961; Proebstle R. A. Dissertation, Rensselaer Polytechnic Inst. 1960, 151 p.; L a m D. J. Dissertation, Rensselaer Polytechnic Inst., 1960, 107 p. 2. Lundin C. E., Klodt D. T. Trans. AIME, 1962, v. 224, p. 367-372.
- 3. Love B. WADD Tech. Rept. 60-74, 1960, 226 p.
- 4. Савицкий Е. М., Терехова В. Ф. Цветные металлы, 1959, № 1, c. 48-53.



Рис. 434. Zn-Zr при давлении более 4 am. (см. также рис. 435)

В работе [1] исследованы богатые Zr сплавы и показано, что ZrZn — равновесное соединение. При 61,5% (ат.) [69% (по массе)] Zr и 1015° С образуется эвтектика; максимальная растворимость Zn в β-Zr 27,1% (ат.) [21% (по массе)]. β-Zr распадается по эвтектоидной реакции при 80,2% (ат.) [85% (по массе)] Zr и 750° C; растворимость Zn в α-Zr ничтожно мала. В работе [2] идентифицировано соединение Zr<sub>3</sub>Zn<sub>2</sub>, выделяющееся из жидкого Mg раствора; детали экспериментов не приводятся. Следовательно, Zr<sub>3</sub>Zn<sub>2</sub> может считаться неравновесным соединением или образовываться по эвтектоидной реакции; здесь необходимы дополнительные эксперименты.

С помощью термического, металлографического, рентгеновского анализов, измерений упругости паров сплавов, приготовленных из Zn и Zr чистотой соответственно 99,99 и 99,95% в эвакуированных контейнерах из Та, построена область диаграммы от 0 до 61% (ат.) Zr [3]. Наблюдалось образование пяти соединений:  $ZrZn_{16}$ ,  $ZrZn_6$ ,  $ZrZn_3$ ,  $ZrZn_2$  и ZrZn. В условиях давления повышенного в контейнерах (примерно <10 am) все соединения, кроме ZrZn<sub>2</sub>, образуются по перитектическим реакциям, ZrZn<sub>2</sub> плавится конгрузнтно при 1180°С; ZrZn<sub>3</sub> претерпевает не установленное полиморфное превращение при 910 °С. Растворимость Zr в жидком Zn определена с помощью нескольких методов, включающих измерение упругости паров и прямой химический анализ. Раство-



Рис. 435. Zn-Zr при давлении 1 am (см. также рис. 434)

римость в жидком состоянии падает от 16,8% (ат.) Zr при 1000° C до 0,2  $\pm$  0,04% (ат.) Zr при эвтектической температуре (417 $\pm$ 1° C). В работе [3] подтверждено существование эвтектики ZrZn+( $\beta$ -Zr) при 61,5% (ат.) [69% (по массе)] Zr и 1015°C.

На рис. 434 приведена диаграмма состояния, построенная [1, 3] при давлениях >1 ат (но <10 ат). В работе [3] определена температура, при которой давление паров равно 1 ат, и получена соответствующая диаграмма (рис. 435).

Ликвидус в богатой Zn области, построенный методом отбора проб и их химического анализа, дается на вставке рис. 434 [4]; в согласии с этими данными, авторы работы [5] получили при 500° С значение растворимости Zr в жидком Zn 0,172% (ат.)

Точный стехиометрический состав соединений не установлен; однако термический и металлографический анализы показали, что области гомогенности малы [3]. В работе [6] подтверждено выделение ZrZn<sub>14</sub> из богатых Zn растворов, но обнаружено, что после отжига сплава с 5% (по массе) Zr в течение 2 месяцев при 500° С в равновесии находится соединение ZrZn22. По мнению автора, это может быть связано с тремя причинами: a) ZrZn22 является равновесным соединением, а ZrZn<sub>14</sub> — метастабильным, образующимся при быстром охлаждении; 6) ZrZn<sub>14</sub> и ZrZn<sub>22</sub>— оба равновесные соединения и из-за исключительной близости их кристаллических структур (см. ниже) ZrZn<sub>22</sub> образуется очень медленно; в) ZrZn<sub>22</sub> и ZrZn<sub>14</sub> отвечают стехнометрическим составам внутри области существования одной промежуточной фазы.

Кристаллическая структура. У Zr<sub>3</sub>Zn<sub>2</sub>. простая тетрагональная решетка; a = 7,633 A, c = 6,965 A [2]. ZrZn имеет кубическую решетку (Pm2m), a = = 3,335 A [1]. Подтверждено, что у соединения ZrZn<sub>2</sub> г. ц. к. структура типа MgCu<sub>2</sub> [7]; оно ферромагнитно ниже 35° K [8]. ZrZn<sub>8</sub> имеет ромбическую (близкую к тетрагональной) решетку; a = 12,8 Å, b = 12,5 Å, c = 8,68 Å [3].

У ZrZn<sub>14</sub> г. ц. к. решетка (*Fd3m*); a = 14,11 A [3],  $a = 14,103 \pm 0,001$  A [6]; ZrZn<sub>22</sub> тоже имеет г. ц. к. структуру (*Fd3m*),  $a = 14,101 \pm 0,001$  A [6]. Данные об интенсивности линий неупорядоченной структуры ZrZn<sub>12</sub> и пол-

ностью упорядоченной ZrZn22 оказались аналогичными, что позволило предположить [6] возможность существования промежуточной фазы с областью гомогенности шириной 6-9% (ат.).

1. Carlson O. N., Borders E. Неопубликованная работа; см. в книге «Metallurgy of Zirconium», eds. B. Lustman, F. Kerze. National Nuclear Energy Series, Div. III, v. 4, McGraw-Hill Book Co,. N. Y., 1955, p. 481-483.

2. Petersen D. R., Rinn H. W. Acta Cryst., 1961, v. 14, p. 328-329.

- 3. Chiotti P., Kilp G. R. Trans. AIME, 1959, v. 215, p. 892-898; Trans. AIME, 1960, v. 218, p. 41-44.
- 4. Martin A. E. a. o. J. Chem. Eng. Data, 1961, v. 6, p. 596-599. 5. Chiotti P. Parry S. J. S. U. S. At. Energy Comm. IS-193, 1960, p. 78-85.
- 6. Samson S. Acta Cryst., 1961, v. 14, p. 1229-1236.
- 7. Dwight A. E. Trans. ASM, 1961, v. 53, p. 479-500.
- 8. Matthias B. T., Bozorth R. M. Phys. Rev., 1958, v. 109, p. 604-605.

#### приложение

#### таблица А. некоторые физические СВОИСТВА ЭЛЕМЕНТОВ

| Сим-<br>вол | Элемент     | Атом-<br>ный<br>номер | Атомная<br>масса *1 | Точка<br>плавления,<br>°С | Точка<br>кипения *2, *8<br>°С | Плотность<br>при 20° С *4<br>г/см <sup>8</sup> |
|-------------|-------------|-----------------------|---------------------|---------------------------|-------------------------------|------------------------------------------------|
|             | · · · ·     | <u> </u>              |                     |                           | 0007                          | 10.07-                                         |
| Ac          | Актиний     | 89                    | 227 *               | $1050\pm50$               | 2927                          | 10.5                                           |
| Ag          | Серебро     | 47                    | 107,87              | 960,8                     | 2190                          | 9 70                                           |
| Al          | Алюминий    | 13                    | 26,9815             | 660,1                     | 2000                          | 117                                            |
| Am          | Америций    | 95                    | 243 *2              | $995 \pm 40$              | 612                           | 5 79                                           |
| As          | Мышьяк      | 33                    | 74,922              | 817                       | 013                           | 0,72                                           |
| At          | Астатин     | 85                    | 210                 | 302 **                    | 0007                          | 10.3                                           |
| Au          | Золото      | 79                    | 196,967             | 1063                      | 2907                          | 9 34                                           |
| в           | Бор         | 5                     | 10,811              | $2225 \pm 75$             | .2777                         | 2,04                                           |
| Ba          | Барий       | 56                    | 137,34              | $725\pm5$                 | 1637                          | 1.85                                           |
| Be          | Бериллий    | 4                     | 9,0122              | $1284\pm1$                | 2809                          | 0.8                                            |
| Bi          | Висмут      | 83                    | 208,980             | 271,375                   | 1551 **                       | 5,0                                            |
| Bk          | Берклий     | 97                    | 247 **              |                           | 0707                          | 2.26                                           |
| C           | Углерод     | 6                     | 12,0111             | 3827                      | 3/2/                          | 1 55                                           |
| Ca          | Кальций     | 20                    | 40,08               | 839 <u>+</u> 4            | 1492                          | 8.65                                           |
| Cd          | Кадмий      | 48                    | 112,40              | 321,03                    | 705                           | 6.67                                           |
| Ce          | Церий       | 58                    | 140,12              | 797±3                     | 3099                          | 0,07                                           |
| Cf          | Калифорний. | 98                    | 251 **              | <u> </u>                  | _                             | _                                              |
| Cm          | Кюрий       | 96                    | 247 *5              |                           | 0056                          | 8.9                                            |
| Co          | Кобальт     | 27                    | 58,933              | 1492                      | 2950                          | 7 10                                           |
| Cr          | Хром        | 24                    | 51,996              | $1875\pm 25$              | 2045                          | 1 90                                           |
| Cs          | Цезий       | 55                    | 132,905             | $28,6\pm0,2$              | 000 **                        | 8.96                                           |
| Cu          | Медь        | 29                    | 63,54               | 1083                      | 2538 **                       | 8 54                                           |
| Dy          | Диспрозий   | 66                    | 162,50              | 1407±5                    | 2/38                          | 9.05                                           |
| Er          | Эрбий       | 68                    | 167,26              | 1497±15                   | 2730 **                       | 5,00                                           |
| Es          | Эйнштейний  | 99                    | 254 **              |                           | -                             | 5.26                                           |
| Eu          | Европий     | 63                    | 151,96              | $826\pm10$                | 1698                          | 7.86                                           |
| Fe          | Железо      | 26                    | 55,847              | $1535\pm 1$               | 2887                          | 7,00                                           |
| Fm          | Фермий      | 100                   | 253 **              |                           |                               |                                                |
| Fr          | Франций     | 87                    | 223 *5              | 24 **                     | 750 **                        | 5.01                                           |
| Ga          | Галлий      | 31                    | 69,72               | $29,6\pm0,1$              | 2237                          | 7.80                                           |
| Gd          | Гадолиний   | 64                    | 157,25              | $1312\pm15$               | 3270 **                       | 5 32                                           |
| Ge          | Германий    | 32                    | 72,59               | 936 <u>+</u> 2            | 2827                          | 0.071                                          |
| н           | Водород     | 1                     | 1,00797             |                           | -252,7 **                     | 13.1                                           |
| Hf          | Гафний      | 72                    | 178,49              | $2222\pm30$               | 4302                          | 13,1                                           |
| Hg          | Ртуть       | 80                    | 200,59              | -38,87                    | 350,58 **                     | 8.80                                           |
| Ho          | Гольмий     | 67                    | 164,930             | 1461 ±5                   | 2955                          | 7 31                                           |
| In          | Индий       | 49                    | 114,82              | 156,61                    | 2006 **                       | 225                                            |
| Ir          | Иридий      | 77                    | 192,2               | 2443                      | 4547                          | 0.86                                           |
| K           | Калий       | 19                    | 39,102              | $63,4\pm 0,2$             | 754 **                        | 6.17                                           |
| La          | Лантан      | 57                    | 138,91              | 920 ±5                    | 3440                          | 0,17                                           |
| Li          | Литий       | 3                     | 6,939               | 181 ±1                    | 1327                          | 0,00                                           |
| Lu          | Лютеций     | 71                    | 174,97              | $1652 \pm 5$              | 3870 **                       | 3,04                                           |
| Lw          | Лавренций   | 103                   | 257 **              |                           | -                             | ·                                              |
| Md          | Менделевий  | 101                   | 256 **              | -                         |                               | 1 74                                           |
| Mg          | Магний      | 12                    | 24,312              | $650 \pm 1$               | 1112                          | 7 43                                           |
| Mn          | Марганец    | 25                    | 54,938              | $1244 \pm 3$              | 2095                          | 1,30                                           |
|             | 1           | 1                     | 1                   | 1                         | 1                             | 1                                              |

составле-

ജ При

**JJEMEHTOB** 

**CTPVKTVPA** 

**КРИСТАЛЛИЧЕСКА**Я

ä

АБЛИЦА

F

табл. Б приложения справочника М. Хансена и К. Андерко,

|                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   | • • • •                                                                                                                                                                                                  |                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Сим-<br>вол                                                                                 | Элемент                                                                                                                                                                                                                         | Атом-<br>ный<br>номер                                                                                                                                  | Атомная<br>масса *1                                                                                                                                                                                                              | Точка<br>плавления<br>°С                                                                                                                                                                                                                                                                          | Точка<br>кипения *2, *3<br>°С                                                                                                                                                                            | Плотность<br>при 20° С *4<br>г/см <sup>8</sup>                                                                                                                                               |
| Mo<br>N<br>Na<br>Nb<br>Nd<br>Ni<br>No                                                       | Молибден<br>Азот<br>Натрий<br>Ниобий<br>Ниобий<br>Никель<br>Нобелий                                                                                                                                                             | $ \begin{array}{r} 42 \\ 7 \\ 11 \\ 41 \\ 60 \\ 28 \\ 102 \\ \end{array} $                                                                             | 95,94<br>14,0067<br>22,9898<br>92,906<br>144,24<br>58,71<br>254 *5                                                                                                                                                               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                            | 5512<br>195,8 *4<br>881e<br>4540<br>2683<br>2728                                                                                                                                                         | 10,2<br>0,81<br>0,97<br>8,4<br>7,0<br>8,9                                                                                                                                                    |
| Np<br>Os<br>P<br>Pb<br>Pb<br>Pd                                                             | Нептуний<br>Кислород<br>Осмий<br>Фосфор<br>Протактиний<br>Свинец<br>Палладий                                                                                                                                                    | 93<br>8<br>76<br>15<br>91<br>82<br>46                                                                                                                  | 237 *5<br>15,9994<br>190,2<br>30,9738<br>231 *5<br>207,19<br>106,4                                                                                                                                                               | $\begin{array}{c} -\frac{637\pm2}{-218,8*4}\\ -218,8*4\\ 3027\pm18\\ 44,0\pm0,2 \ (?)\\ 1425*8\\ 327,426\\ 1552 \end{array}$                                                                                                                                                                      | 3880 *5<br>-183 *4<br>5027<br>280<br>4410 *5<br>1749 **<br>2927                                                                                                                                          | 19,5<br>1,14<br>22,6<br>1,82<br>15,4<br>11,4<br>12,0                                                                                                                                         |
| Pm<br>Po<br>Pr<br>Pt<br>Pu<br>Ra<br>Rb                                                      | Прометий<br>Полоний<br>Празеодим<br>Платина<br>Плутоний<br>Радий<br>Рубидий                                                                                                                                                     | 61<br>84<br>59<br>78<br>94<br>88<br>37                                                                                                                 | 147 **<br>210 *2<br>140,907<br>195,09<br>242<br>226<br>85,47                                                                                                                                                                     | $ \begin{vmatrix} 1035 & ** \\ 246 \\ 935\pm 5 \\ 1769 \\ 640\pm 1 \\ 700 \\ 38.6\pm 0.3 \end{vmatrix} $                                                                                                                                                                                          | 2460 *5<br>962<br>3343 *5<br>3827<br>3454<br>1630 *5<br>686 *6                                                                                                                                           | (9,2) 6,77 21,4 19,00-19,72 5,0 1,53                                                                                                                                                         |
| Re<br>Rh<br>Ru<br>S                                                                         | Рении<br>Родий<br>Рутений<br>Сера                                                                                                                                                                                               | 75<br>45<br>44<br>16                                                                                                                                   | 186,2<br>102,905<br>101,07<br>32,064                                                                                                                                                                                             | $3160\pm 20$<br>1960<br>2280<br>(119(?))                                                                                                                                                                                                                                                          | 5762<br>3687<br>4052                                                                                                                                                                                     | 21,0<br>12,4<br>12,2                                                                                                                                                                         |
| S<br>Sb<br>Sc<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss<br>Ss | Сера<br>Сурьма<br>Скандий<br>Селен<br>Кремний<br>Самарий<br>Олово<br>Стронций<br>Тантал<br>Тербий<br>Технеций<br>Технеций<br>Технеций<br>Технур<br>Торий<br>Титан<br>Таллий<br>Тулий<br>Ванадий<br>Вольфрам<br>Иттербий<br>Цинк | 16<br>51<br>234<br>14<br>62<br>50<br>383<br>73<br>65<br>43<br>52<br>90<br>22<br>81<br>69<br>223<br>74<br>39<br>223<br>74<br>39<br>20<br>20<br>23<br>74 | 32,064<br>121,75<br>44,958<br>78,96<br>28,086<br>150,35<br>118,69<br>87,62<br>180,948<br>158,924<br>99<br>127,60<br>232,038<br>47,90<br>204,37<br>168,934<br>238,04<br>50,942<br>183,85<br>88,905<br>173,04<br>65,37<br>91<br>92 | $ \begin{cases} 113 (?) \\ 630,5 \\ 1539 \\ 217 \\ 1412\pm3 \\ 1072\pm5 \\ 231,91 \\ 772\pm2 \\ 2998\pm30 \\ 1356\pm5 \\ 2170\pm30 \\ 449,6\pm6 \\ 0,3 \\ 175\pm4 \\ 1668\pm5 \\ 303\pm1 \\ 1545\pm5 \\ 1131\pm2 \\ 1905\pm14 \\ 3380 \\ 1502\pm7 \\ 824\pm5 \\ 419,505 \\ 1850\pm5 \end{cases} $ | 444,60 **<br>1634 **<br>3264<br>685<br>2480<br>1870 *5<br>2493 **<br>1372<br>5487<br>3540 **<br>5030 **<br>890 **<br>4227<br>3313<br>1666<br>1993<br>3677<br>3309<br>5727<br>3397<br>1700<br>902<br>4377 | $\begin{array}{c} 2,07\\ 6,62\\ 3,00\\ 4,79\\ 2,33\\ 7,54\\ 7,30\\ 2,6\\ 16,6\\ 8,27\\ 11,5\\ 6,24\\ 11,7\\ 4,51\\ 11,85\\ 9,33\\ 19,07\\ 6,1\\ 19,3\\ 4,47\\ 6,96\\ 7,14\\ 6,40\end{array}$ |

\*1 Если нет специальной оговорки, химические символы и атомные массы даны так, как это утверждено 18 Международным конгрессом теоретической и прикладной химии в августе 1961 г. Атомные массы с индексом \*6 даны приближенно. \*2 Если нет специальной оговорки, данные приводятся, по К. А. Гшнейднеру (К. А. G s c h n e i d n e r. А. Compilation of Some of the Physical Properties of the Me-tallic and Nonmetallic Elements and a Study of Some of their Interrelationships. Solid State Phys., 1964, v. 16, p. 275-426). \*8 Точки кипения рассчитаны по данным об упругости паров, за исключением отме-ченных \*6, приведенных приближенно, и \*6 — результат прямых измерений. \*4 Если нет специальной оговорки, данные приводятся по периодической системе Е. Н. Sargent and Со.

E. H. Sargent and Co.
 \*\* Приближенно.

\*• Измерено.

\*7 По данным D. Mc Whan. Lawrence Radiation Lab., Cristal Structure and Physical Properties of Americium Metal. U. S. At. Energy Comm. UCRL—9695, 1961.
 \*8 По данным Metals Handbook, 8th ed., v. 1, ASM, Metals Park, Ohio, 1961.

| Эта т<br>нии и<br>1. Е.                    | аблица являетс<br>спользовали су<br>Н. Sargen                                                  | ся пересмотренным<br>педующие основные<br>it and Co. Период                                       | вариантом табл. Е<br>е источники:<br>цическая система, с                             | 5 приложен<br>содержащая                              | иия справоч<br>я данные 18                               | ника М. Х<br>Междунај                                  | ансена родного                                | и К. Ан<br>конгресс                                         | дерко, т. II. При ее составле-<br>а теоретической и прикладной                                                      |
|--------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| хи<br>2. W.<br>3. Г л<br>лег<br>мет<br>дин | ини, август 19<br>В. Реаг s с<br>ц нейднер<br>оечисляются в<br>аллоидных атс<br>іационное числ | 61 г.<br>л. А Напдроок о<br>К. А. Сплавы ред<br>графе «Примечания<br>эмов, данные в ско<br>10 12. | of Lattice Spacings<br>(коземельных метал<br>вэ. Если нет специ<br>бках, наблюдались | and Struct<br>плов. Изд-в<br>цальных ого<br>в структу | tures of Me<br>o «Мир», 19<br>оворок, пер<br>грах твердь | tals and Al<br>65 (для pe)<br>коды решет<br>іх раствор | lloys. Ре<br>цкоземел<br>ки относ<br>ов [внед | гgатов<br>Бных эл<br>ятся к к<br>рения и                    | Press, NY., 1958.<br>іементов). Отдельные источники<br>омнатной температуре. Радиусы<br>не скорректированы на коор- |
|                                            |                                                                                                |                                                                                                   |                                                                                      | Пери                                                  | юды решети                                               | си, А                                                  | -жэ<br>эинго                                  | от оун<br>кид)<br>отон                                      |                                                                                                                     |
| гоямиЭ                                     | Элемент                                                                                        | Аллотропи-<br>ческая<br>модификация                                                               | Кристаллическая<br>структура                                                         | a                                                     | <i>b</i><br>или а                                        | ¢                                                      | ы ээшйяжийд<br>атомное расст<br>А             | Атомный раду<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                                                          |
| Ac                                         | Актаний                                                                                        | 1                                                                                                 | . Г. ц. к.                                                                           | 5,311                                                 |                                                          | 1                                                      | 3,755                                         | 1,88                                                        | Farr J. D. a. o. J. Inorg.<br>Nucl. Chem., 1961, v. 18, p.42-                                                       |
| Al<br>Al<br>Am                             | Серебро<br>Алюминий<br>Америций                                                                | 111                                                                                               | Г. ц. к.<br>Г. ц. к.<br>Двойная г. к.                                                | 4, 0856<br>4, 0491<br>3, 642                          |                                                          | <br>11,76                                              | 2,888<br>2,862                                | 1,44<br>1,43<br>                                            | 4/<br>                                                                                                              |
| As                                         | Мышьяк                                                                                         | l                                                                                                 | -идреодмод                                                                           | 4,159                                                 | 53°49'                                                   | <br>.                                                  | 2,51                                          | 1,39                                                        | p. 185—187                                                                                                          |
| Au<br>B                                    | 3onoro<br>Bop                                                                                  | β ( >~1200° C)*1                                                                                  | ческая (А/)<br>Г.ц.к.<br>Ромбоэдри-<br>иеская                                        | 4,0783<br>10,944                                      | 1.1                                                      | 23, 811*2                                              | 2,884                                         | 1,44                                                        | –<br>*1 Считается, что у В две<br>равновесные аллотропические                                                       |
|                                            |                                                                                                |                                                                                                   |                                                                                      |                                                       |                                                          |                                                        |                                               | •                                                           | модификации (см. диаграмму<br>состояния В-Рt и H о г n F.H.<br>«Вогол», p. 110-115. Репит                           |
|                                            |                                                                                                |                                                                                                   |                                                                                      | -                                                     |                                                          |                                                        |                                               | •                                                           | гтева, м. 11, 1300). Другис<br>«модификации» В, вероятно, яв-<br>ляются монотропными. См.                           |
| ,                                          |                                                                                                |                                                                                                   |                                                                                      |                                                       |                                                          |                                                        |                                               |                                                             | статью Ноагd, New Кик<br>*ª Периоды эквивалентной<br>гексагональной ячейки. Н о -                                   |
|                                            |                                                                                                |                                                                                                   |                                                                                      |                                                       |                                                          |                                                        |                                               |                                                             | ard J. L., New Kill A. L. 20<br>Amer. Chem. Soc., 1960, v. 82,<br>p. 70–76                                          |

30 Р. П. Эллиот, том II

|          |                         |                                                                                                       |                                                                | Пер                                              | ноды решет | гки, А                | еж-<br>оя ние                                              | ус по<br>(для<br>ного                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                  |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------|-----------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Символ   | Элемент                 | Аллотропи-<br>ческая<br>модификация                                                                   | Кристаллическая<br>структура                                   | a                                                | ь<br>или а | c                     | Влижайшее м<br>атомное расст                               | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                                                                                                                             |
|          |                         | α ( <~1200° C)                                                                                        | Простая<br>ромбоэдри-<br>ческая                                | 4,908                                            | _          | 12,567 **             |                                                            | ×<br>- ×                                                    | *3 Периоды эквивалентной<br>гексагональной ячейки. De-<br>cker B. F., Kasper J. S.<br>Acta Crist., 1959, v. 12, p. 503-                                                                |
| Ba<br>Be | Барий<br>Бериллий       | β (>1200° C)<br>α (<1200° C)                                                                          | О. ц. к.<br>О. ц. к.<br>Г. к.                                  | 5,025<br>2,546 *<br>2,2858                       | -          | <br>3,5842            | 4,348<br>2,225                                             | 2,24<br>1,12                                                | • Прн 1254°С<br>Амоненко В. М. идр.<br>ФММ, 1961, т. 12, с. 865-872<br>Ріскеtt J. J. a. o. U. S.<br>Atom. Energy Comm. NMJ-                                                            |
| Bi       | Висмут                  | -                                                                                                     | Ромбоэдри-<br>ческая *                                         | 4,7457                                           | 57°14,2′   | -                     | 3,111                                                      | 1,70                                                        | 1252, 1961<br>• Эквивалентная г. ц. ромбо-<br>эдрическая ячейка имеет, $a = = = 6,546A$ , $\alpha = 87^{\circ}34'$ (S a l k o-<br>v i t z E. J: Trans. AIME,<br>1056 y. 206 - 126 177) |
| C        | Углерод                 | α-графит<br>β-графит<br>алмаз                                                                         | Гексагональ-<br>ная (А9)<br>Ромбоэдри-<br>ческая<br>Кубическая | 2,4614<br>2,461<br>3,568                         | · · · _ ·  | 6,7014<br>10,064<br>— | $\left.\begin{array}{c} 1,42\\-\\1,544\end{array}\right\}$ | [0,77]                                                      |                                                                                                                                                                                        |
| Ca       | <b>Қа</b> льци <b>й</b> | β ( >448° C) *                                                                                        | (А4)<br>О. ц. к.                                               | 4,38                                             | `          | · -                   | <b>—</b>                                                   | _                                                           | * Так называемый г. к. мо-<br>дификация Са связана с нали-<br>ием Н См систему Са – Н                                                                                                  |
| Cd<br>Ce | Кадмий<br>Церий         | $\begin{array}{c} \alpha \; (<\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Г. ц. к.<br>Г. к.<br>О. ц. к.<br>Г. ц. к.<br>Г. к.<br>Г. ц. к. | 5,582<br>2,9787<br>4,11<br>5,158<br>3,68<br>4,85 |            | 5,617<br>             | 3,946<br>2,979<br>3,647<br>—                               | 1,96<br>1,52<br>                                            |                                                                                                                                                                                        |

Продолжение табл. Б

|     |                |                            |                                                                     |                                  | 2                             |            |        |                                   |                                                             |                                                                                                                                |
|-----|----------------|----------------------------|---------------------------------------------------------------------|----------------------------------|-------------------------------|------------|--------|-----------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 30* |                |                            |                                                                     |                                  | Пери                          | юды решети | ки, А  | еж-<br>ояние                      | аус по<br>(для<br>иного                                     |                                                                                                                                |
|     | Символ         | Элемент                    | Аллотропи-<br>ческая<br>модификация                                 | Кристаллическая<br>структура     | а                             | ь<br>или а | C      | Ближайшее м<br>атомное расст<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                                                                     |
|     | Co             | Кобальт                    | а или ү (400° С)                                                    | Г. ц. к.                         | 3,548                         | · _        | _      | -                                 | _                                                           | Drain I. a. o. Bull. Soc.<br>Chim. France, 1954, v. 21,<br>p. 828-830                                                          |
|     | Cr             | Хром                       | ε ( <400° C)<br>—                                                   | Г. к.<br>О. ц. к.*               | 2,5071<br>2,884               | Ξ          | 4,0086 | 2,4967<br>2,498                   | 1,25<br>1,27                                                | * Существование модифика-<br>ции Сг с г. ц. к. решеткой выше                                                                   |
|     |                |                            | •                                                                   |                                  |                               |            |        |                                   |                                                             | 1840°С предполагалось В 10-<br>о m D. S., G rant N. J.<br>Trans AIME, 1951, v. 191, p. 1009,<br>но было опровергнуто другими   |
|     |                |                            |                                                                     |                                  |                               |            | •      |                                   |                                                             | авторами. Существование пяти<br>(!) аллотропических модифика-<br>ций предполагалось Григо-<br>рьевым А.Т. и Соко-<br>рьевым А. |
|     |                |                            |                                                                     |                                  |                               |            |        | -                                 |                                                             | ЛОВСКОЙ Е. М. Бестник<br>МГУ, серия II; хим. 1961,<br>т. 16 (6), с. 3—15, но эти дан-<br>ные не были подтверждены              |
|     | Cs<br>Cu<br>Dy | Цезий<br>Медь<br>Диспрозий | <br>β (вблизи t <sub>пл</sub> ) *                                   | О. ц. к.<br>Г. ц. к.<br>О. ц. к. | 6,067 *<br>3,6153<br>3,98     |            |        | 5,25<br>2,556<br>—                | 2,67                                                        | в других разонах<br>* При 78° К<br>* Miller A. Е., Daa-<br>ne A. H. Trans, AIME, 1964,<br>v. 230, p. 568—572                   |
|     | Er             | Эрбий                      | α<br>β (>~1370°C)*i                                                 | Г. к.<br>О. ц. к.                | 3,5903<br>3,94 *²             | · -        | 5,6475 | 3, <u>5</u> 03<br>—               | 1,77                                                        | *1 Love B. W., D. D. Tech.<br>Rept. 60-74, 1960, pt. I                                                                         |
|     | Eu             | Европий                    | -                                                                   | О. ц. к                          | 4,5820                        |            | -      | 3,968                             | -                                                           | *2 Miller A. E., Daane A. H.<br>Trans. AIME, 1964, v. 230,<br>p. 568-572                                                       |
| 46  | Fe             | Железо                     | $\delta$ (>1390° C)<br>$\gamma$ (910-1390° C)<br>$\alpha$ (<910° C) | О. ц. к.<br>Г. ц. к.<br>О. ц. к. | 2,94 *<br>3,656 *<br>2,8664 * |            |        | 2,585<br>2,481                    | <br>1,27                                                    | * При 1425° С<br>* При 950° С<br>* При 25° С                                                                                   |

| , . |               |                           | •                                   |                                                              | Пер                              | ноды решет | ки, А                | еж-<br>ояние                      | ус по<br>(для<br>ного                                       |                                                                                                                            |
|-----|---------------|---------------------------|-------------------------------------|--------------------------------------------------------------|----------------------------------|------------|----------------------|-----------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|     | Символ        | Элемент                   | Аллотропи-<br>ческая<br>модификация | Қристаллическая<br>структура                                 | a                                | ь<br>нли а | . C                  | Ближайшее м<br>атомное расст<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                                                                 |
| •   | Ga            | Галлий                    | _                                   | Ромбическая                                                  | 4,524                            | 4,523      | 7,661                | 2,437                             | 1,41                                                        |                                                                                                                            |
|     | Gd<br>Ge      | Гадолиний<br>Германий     | β (>1264° C)<br>α (<1264° C)        | (АП)<br>О. ц. к.<br>Г. к.<br>Кубическая                      | 4,06<br>3,6360<br>5,658          | ·          | 5,7826               | 3,573<br>2,449                    | 1,80<br>1,37                                                |                                                                                                                            |
|     | н             | Водород                   | Газ                                 | (А4)<br>Гексаго-                                             | 3,76 *                           | _          | 6,13                 | _                                 | [0,46]                                                      | * При —271° С                                                                                                              |
|     | Hf            | Гафний                    | β ( >1755° C)                       | нальная<br>О. ц. к.                                          | 3,51                             |            |                      | -                                 |                                                             | Dearndorff D. K., Ka-<br>to H. Trans. AIME, 1963,                                                                          |
|     | Hg            | Ртуть                     | α ( <1755° C)<br>α                  | Г. к.<br>Ромбоэдри-                                          | 3,1883<br>3,005 *                | 70°31,7′   | 5,0422               | 3,006                             | 1,55                                                        | v. 227, р. 264—265<br>* При 78° К                                                                                          |
|     |               |                           | β                                   | ческая (А10)<br>О. ц. тетраго-<br>нальная                    | 3,995 *                          | · _        | 2,825                | -                                 | -                                                           | * Структура возникает при<br>высоком давлении; см. A t o j i M.<br>a. o. J. Chem, Phys., 1959, 31,                         |
|     | Ho            | Гольмий                   | β (вблизи t <sub>пл</sub> ) *       | О. ц. к.                                                     | 3,96                             | A          | <u> </u>             | -                                 | -                                                           | <ul> <li>m. 1023-1029</li> <li>* Miller A. E., Daa-<br/>ne A. H. Trans. AIME, 1964,</li> <li>v. 230, p. 568-572</li> </ul> |
|     | In            | Индий                     |                                     | Г. к.<br>Г. ц. тетраго-                                      | 3,5773<br>4,594                  | · <u>-</u> | 5,6158<br>4,951      | 3,486<br>3,25                     | 1,77<br>1,66                                                |                                                                                                                            |
|     | Ir<br>K<br>La | Иридий<br>Калий<br>Лантан |                                     | пальная (Аб)<br>Г. ц. к.<br>О. ц. к.<br>О. ц. к.<br>Г. ц. к. | 3,8389<br>5,344<br>4,26<br>5,304 |            |                      | 2,714<br>4,624                    | 1,36<br>2,35                                                |                                                                                                                            |
| •   | Li            | Литий .                   | α (<330° C)<br>>196° C<br><196° C   | Г. к.<br>О. ц. к.<br>Г. к.<br>Г. ц. к.*                      | 3,770<br>3,5089<br>3,111<br>4,40 |            | 12,159<br>5,093<br>— | 3,739<br>3,039<br>—<br>—          | 1,88<br>1,57<br>—<br>—                                      |                                                                                                                            |

; Продолжение табл. Б

|          |            |                          |                                                          |                                                        |                                                 |               |                                 |                                   |                                                             | • • • • • • • • • • • • • • • • • • • •                                   |
|----------|------------|--------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------|---------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|
| <u> </u> |            |                          |                                                          |                                                        | Пер                                             | иоды решеті   | ки, А                           | еж•<br>гояние                     | чус по<br>(для<br>иного                                     |                                                                           |
|          | Символ     | Элемент                  | Аллотропи-<br>ческая<br>модификация                      | Кристаллическая<br>структура                           | a                                               | ь<br>или а    | С                               | Ближайшее м<br>атомное рассл<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                |
| I        | Lu         | Лютеций                  | β (вблизи t <sub>пл</sub> )*                             | О. ц. к.                                               | 3,90                                            |               | .—                              |                                   |                                                             | * Miller A. E., Daa-<br>ne A. H. Trans. AIME, 1964,<br>v. 230, p. 568—572 |
| N<br>N   | Aig<br>Ain | Магний<br>Марганец       | α<br>δ (>1133° C)<br>γ (1095—1133° C)<br>β (727—1095° C) | Г. к.<br>Г. к.<br>О. ц. к.<br>Г. ц. к.<br>Кубическая   | 3,5031<br>3,2088<br>3,080 *<br>3,862 *<br>6,313 |               | 5,5509<br>5,2098<br>—<br>—<br>— | 3,434<br>3,196<br>2,731<br>2,373  | 1,72<br>1,60<br>—<br>—<br>—                                 |                                                                           |
|          |            |                          | a (727°C)                                                | (A13)<br>Кубическая<br>(A12)                           | 8,912                                           |               | · ·                             | 2,24                              | 1,30                                                        | <u> </u>                                                                  |
| _ 1      | Ло<br>N    | Молибден<br>Азот         | β                                                        | О. ц. к.<br>Гексаго-                                   | 3,1466<br>4,04 *                                |               | 6,60                            | 2,725                             | 1,39                                                        | * При —234° С                                                             |
| r        | Na         | Натрий                   | a<br>>−222° C<br><−222° C                                | Кубическая<br>О. ц. к.<br>Г. к.                        | 5,67 *<br>4,2906<br>3,767                       | -             | <br>6,154                       | 1,06<br>3,714                     | 0,92<br>1,90                                                | * При —252° С<br>—                                                        |
| N<br>F   | d Hd       | Ниоби <b>й</b><br>Неодим | β ( >862° C)<br>α ( <862° C)                             | О. ц. к.<br>О. ц. к.<br>Г. к.                          | 3,3007<br>4,13<br>3,6579                        | Ξ             | 11,7992                         | 2,859                             | 1,46                                                        |                                                                           |
| ł        | Ni<br>Ip   | Никель<br>Нептуний ́     | γ ( >540° C)<br>β (278-540° C)                           | Г. ц. к.<br>О. ц. к.<br>Тетрагональная                 | 3,5238<br>3,53<br>4,90                          |               | 3,39                            | 2,491                             |                                                             |                                                                           |
| (        | o          | Кислород                 | α ( $< 278°$ C)<br>γ ( $-225°$ C)<br>β ( $-238°$ C)      | Ромоическая<br>Кубическая<br>Ромбоэдри-                | 4,73<br>6,84<br>6,20                            | 4,90<br>99,10 | 3,67                            | =                                 | 0,60                                                        |                                                                           |
| C        | Ds<br>P    | Осмий<br>Фосфор          | а (—252° С)<br>Металлический                             | ческая<br>Ромбическая<br>Г. к.<br>Ромбическая<br>(A16) | 5,51<br>2,7341<br>3,32                          | 3,83<br>4,39  | 3,45<br>4,3197<br>10,52         | 2,675<br>2,18                     | 1,35<br>1,28                                                |                                                                           |
| · I      | Pa         | Протактиний              | -                                                        | О. ц. тетраго-                                         | 3,925                                           |               | 3,238                           | 3,21                              | 1,61                                                        |                                                                           |
| n I      | Pb         | Свинец                   | <u> </u>                                                 | Г. ц. к.                                               | 4,9495                                          | <u> </u>      | -                               | 2,750                             | 1,37                                                        |                                                                           |

| ; <u></u> |           |                                     |                                   | Пер               | иоды решет                                        | ки, А           | еж-<br>ояние                      | ус по<br>(для<br>Ного                                       |                                                                   |
|-----------|-----------|-------------------------------------|-----------------------------------|-------------------|---------------------------------------------------|-----------------|-----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| Символ    | Элемент   | Аллотропи-<br>ческая<br>модификация | Кристаллическая<br>структура      | a                 | ь<br>нли а                                        | С               | Ближайшее м<br>атомное расст<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                        |
| Po        | Полоний   | β ( >75° C)                         | Ромбоэдри-                        | -3,8902           | 98°13′                                            | _               |                                   | _                                                           | · _ · · .                                                         |
|           | :         | α ( <75° C)                         | ческая<br>Простая<br>кубическая   | 3,352             | · _                                               | 3,352           | 1,76                              | -                                                           | -                                                                 |
| Pr        | Празеодим | β ( >792° C)<br>α ( <792° C)        | О. ц. к.<br>Г. к.                 | 4,13<br>3.6725    | _                                                 | 11,8354         | 3,640                             | 1,83                                                        |                                                                   |
| Pt        | Платина   | <u> </u>                            | Г. ц. к.                          | 3,9310            |                                                   | _               | 2,775                             | 1,38                                                        | <del>~</del>                                                      |
| Pu        | Плутоний  | e (>476°C)                          | О. ц. к.                          | 3,6361 *          |                                                   | -               | -                                 | _                                                           | The Metal Plutonium eds. A. S.<br>Coffinberry, W. N. Miner, 1961, |
|           |           | δ' (451-476° C)                     | О. ц. тетраго-                    | 3,327 *           |                                                   | 4,482           |                                   | -                                                           | р. 99—107<br>* При 490° С                                         |
|           |           | δ (319-451° C)<br>γ (206-319° C)    | Г. ц. к.<br>Г. ц. ромби-          | 4,6371 *<br>3,159 | 5,768                                             | 10,162          |                                   | =                                                           | * При 465° С<br>* При 321°                                        |
|           |           | β (122-206° C)                      | Б. ц. моно-                       | 9,284             | 10,463                                            | 7,859           | -                                 | -                                                           | · <u> </u>                                                        |
|           |           | α ( <122° C)                        | клинная<br>Простая<br>моноклинная | 6,182             | $\beta = 92, 13^{-1}$<br>4,826<br>$\beta = \beta$ | 10,956          |                                   | _                                                           | · — .                                                             |
|           | ·         |                                     |                                   |                   | $= 101.74^{\circ}$                                |                 |                                   |                                                             |                                                                   |
| Rb        | Рубидий   |                                     | О.ц.к.                            | 5,710             | -                                                 | 4,996           |                                   | 2,57                                                        |                                                                   |
| Re        | Рений     | <b>—</b> .                          | О. ц. к.                          | 2,7609            | -                                                 | 4,4583          | 2,740                             | 1,37                                                        |                                                                   |
| Rh        | Родий     |                                     | Г. ц. к.                          | 3,8034            |                                                   | _               | 2,689                             | 1,34                                                        | Имеются указания на превра-<br>щение при 1100—1200° С             |
| Ru        | Рутений   | - '                                 | Г. к.                             | 2,7038            |                                                   | 4,2816          | 2,649                             | 1,34                                                        |                                                                   |
| S         | Сера      | α (желтая)<br>β                     | Ромбическая<br>Моноклинная        | 10,437<br>10,92   | 12,845<br>10,98<br>$\beta = 83^{\circ}16'$        | 24,369<br>11,04 | 2,04                              | -                                                           |                                                                   |

Продолжение табл. Б

|     |        | 1        |                                                                                                                              |                                    |                           |                                 |                  |                                   |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------|----------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------------------------|------------------|-----------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |          |                                                                                                                              |                                    | Пер                       | иоды решет                      | ки, А            | еж-<br>ояние                      | гус по<br>(для<br>ного                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Символ | Элемент  | Аллотропи-<br>ческая<br>модификация                                                                                          | Кристаллическая<br>структура       | а                         | b<br>или а                      | С                | Ближайшее м<br>атомное расст<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | s      | Cepa     | β                                                                                                                            | Ромбоэдри-<br>ческая               | 6,46                      | 115°18′                         |                  | -                                 | -                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Sb     | Сурьма   | <u> </u>                                                                                                                     | Ромбоэдри-<br>ческая               | 4,5065                    | 57°6, 5′                        | _                | 2,904                             | 1,59                                                        | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Sc     | Скандий  | β ( >1334° C) *                                                                                                              | О. ц. к.                           |                           | . —                             | ·. — ·           | -                                 |                                                             | * Beaudry B. J., Daa-<br>ne A. H. Trans. AIME, 1962,<br>v. 224, p. 770—775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Se     | Селен    | α ( <1334° C)<br>—                                                                                                           | Г. к.<br>Гексаго-<br>нальная (А8)  | 3,3090<br>4,3656          |                                 | 5,2733<br>4,9590 | 3,256<br>2,32                     | 1,64<br>1,6                                                 | Г.ц.к. модификации Sc не<br>существует                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |        |          | α                                                                                                                            | Моноклинная                        | 9,05                      | 9,07<br>$\beta = 90,46^{\circ}$ | 11,61            | -                                 | -                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |        | • .      | β                                                                                                                            | Моноклинная                        | 9,31                      | $\beta = 93^{\circ}8'$          | 12,85            | -                                 | -                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Si     | Кремний  | · - ·                                                                                                                        | Кубическая (А4)                    | 5,4282                    |                                 | —                | 2,351                             | 1,32                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Sm     | Самарий  | β (>917° C)<br>α (<917° C)                                                                                                   | О. ц. к.<br>Ромбоэдри-<br>ческая * | 4,07<br>8,996             | 23°13′                          | _                | 3, 59                             | 1,80                                                        | * Периоды гексагональной<br>ячейки: a = 3,621 A, c = 26,25 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Sn     | Олово    | Белое (>13° С)<br>Серое (<13° С)                                                                                             | Тетрагональная<br>Кубическая (А4)  | 5,8314<br>6,4892          |                                 | 3,1815           | 3,022<br>2,81                     | 1,62<br>1,58                                                | $= \frac{1}{2} \sum_{i=1}^{n} $ |
|     | Sr     | Стронций | $\begin{array}{c} \gamma \ (>605^{\circ} \ C) \\ \beta \ (215-605^{\circ} \ C) \\ \alpha \ (<\!215^{\circ} \ C) \end{array}$ | О. ц. к.<br>Г. к.<br>Г. ц. к.      | 4,85 *<br>4,32 *<br>6,085 |                                 | 7,06             | 4,31                              | 2,15                                                        | * При 614° С<br>* При 248° С<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Та     | Тантал   | -                                                                                                                            | О. ц. к.                           | 3,303                     | — .                             |                  | 2,859                             | 1,46                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| _   | Тb     | Тербий   | β (вблизи t <sub>пл</sub> ) *                                                                                                | О. ц. к.                           | 4,02                      | _                               | <b>—</b>         | -                                 | -                                                           | * Miller A. E., Daa<br>ne A. H. Trans. AIME, 1964, v.<br>230, p. 568-572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 471 |        |          | α                                                                                                                            | Гк.                                | 3,6010                    |                                 | 5,6936           | 3,526                             | 1,77                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|                                                                                                                                                                                                                                                              |                    |                                             |                                   | Пери              | ноды решети       | ки, А          | еж-<br>ояние                      | ус по<br>(для<br>Ного                                       |                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------|-----------------------------------|-------------------|-------------------|----------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|
| Символ                                                                                                                                                                                                                                                       | Элемент            | Аллотропи-<br>ческая<br>модифякация         | Кристаллическая<br>структура      | a                 | ь<br>или а        | C              | Ближайшее м<br>атомное расст<br>А | Атомный ради<br>Гольдшмидту<br>координацион<br>числа 12), А | Примечания                                                    |
|                                                                                                                                                                                                                                                              |                    | [.                                          | _                                 |                   |                   |                | ]                                 |                                                             | la ale destructions en successions                            |
| Tc<br>Te                                                                                                                                                                                                                                                     | Технеций<br>Теллур |                                             | Г.к.<br>Гексагональ-<br>ная (А8)  | 2,74<br>4,4570    |                   | 4,39<br>5,9290 | 2,571                             | 1,60                                                        |                                                               |
| Th                                                                                                                                                                                                                                                           | Торий              | β (>1400° C)<br>α (<1400° C)                | О. ц. к.<br>Г. ц. к.              | 4,12<br>5,0860    | Ξ.                | ÷ — .          | 3.60                              | 1.80                                                        |                                                               |
| Ti                                                                                                                                                                                                                                                           | Титан              | $\beta$ (>882,5° C)<br>$\alpha$ (<882,5° C) | О. ц. к.<br>Г. к.                 | 3,306 *<br>2,9506 |                   | 4.6788         | 2.89                              | 1.47                                                        | * При 900° С                                                  |
| TI                                                                                                                                                                                                                                                           | Таллий             | $\beta$ (>234° C)<br>$\alpha$ (<234° C)     | О. ц. к.<br>О. ц. к.              | 3,882 *<br>3,4564 | _                 | 5.531          | 3.407                             | 1.71                                                        | * При 262° С                                                  |
| Tm                                                                                                                                                                                                                                                           | Тулий              | β (вблизи t <sub>пл</sub> ) *               | О. ц. к.                          | 3, 92             | —                 |                | -                                 | _                                                           | * Miller A. E., 'Daa-<br>ne A. H. Trans. AIME, 1964,          |
|                                                                                                                                                                                                                                                              |                    | α                                           | Г. к.                             | 3.5375            | ·                 | 5,5546         | 3 448                             | 1 74                                                        | v. 230, p. 568—572                                            |
| U                                                                                                                                                                                                                                                            | Уран               | γ (>775° C)<br>β (660-775° C)               | О. ц. к.<br>Тетраго-              | 3,49 *<br>10,758  |                   | 5,656          | 3,02                              | 1,56                                                        | * При_800° С                                                  |
| n de la composition<br>de la composition de la<br>composition de la composition de la comp | н                  | α ( <660° C)                                | нальная<br>Ромби-<br>ческая (А20) | 2,8545            | 5,8681-<br>4,9566 | -              | 2,77                              | -                                                           | —                                                             |
| v                                                                                                                                                                                                                                                            | Ванадий            | -                                           | О. ц. к.                          | 3,024             |                   |                | 2,632                             | 1,34                                                        | ·                                                             |
| w                                                                                                                                                                                                                                                            | Вольфрам           | -                                           | О. ц. к.                          | 3,158             | · — .             | ~ '            | 2,734                             | 1,39                                                        | Так называемый «β-W» в дей-<br>ствительности W <sub>8</sub> O |
| Y                                                                                                                                                                                                                                                            | Иттрий             | $\beta$ (> 1490° C)<br>$\alpha$ (<1490° C)  | О. ц. к.<br>Г. к.                 | 4,11<br>3,6474    | Ξ                 | 5,7306         | 3.656                             | 1.80                                                        |                                                               |
| Yb                                                                                                                                                                                                                                                           | Иттербий           | β (>798° C)<br>α (<798° C)                  | О. ц. к.<br>Г. ц. к.              | 4,44<br>5,4862    | _                 | _              | 3.79                              | 1.92                                                        |                                                               |
| Zn                                                                                                                                                                                                                                                           | Цинк               | _                                           | Г. к.                             | 2,6649            | -                 | 4,9470         | 2,6648                            | 1,38                                                        | · · ·                                                         |
| Zr                                                                                                                                                                                                                                                           | Цирконий           | β (>865° C)<br>α (<865° C)                  | О. ц. к.<br>Г. к.                 | 3,62 *<br>3,2312  |                   | 5,1477         | 3,17                              | 1,60                                                        | * При 867° С                                                  |