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1. As a first approximation to physical reality, the configuration of
certain physical systems, such as: the motion of a Eet of point masses,
considered by Rayleigh;' or the flow of electricity in ideal electric net-
works, as treated by Maxwell2 and others, may be formulated analytically
in terms of a system of linear differential equations of the second order.
Many theoretical questions which arise from still more ideal dynamical
systems which physically may be called conservative, have been in-
vestigated by Birkhoff3 and others. It is the purpose of the present
paper to define analytically the types of dynamical systems whose con-
figuration is given by the previously mentioned set of equations, and to
establish certain facts concerning the existence of algebraic variational
principles for dissipative dynamical systems. In subsequent communica-
tions certain differential topological aspects of dissipative dynamical
systems and their application to the theory of electrical networks will
be considered.

2. In order to facilitate the precise definition of the types of dynamical
systems that are to be considered, it will be convenient to review the
formulation of a general dynamical system of point masses as given by
Rayleigh.' The equations of motion of such a system are:

aijQj + bijQj + cijQ, = Qi(t) i,j = 1, . . . n (2.1)
where ai , bij, cij are functions of class C' on a segment 'y of the t axis, and
where tlfe following symmetric properties exist between the coefficients:

aij aji, bij bji, ci0 _ cji, and Iaiaj 0*

physically: aij are masses, bij dissipation coefficients, and cij elastic
coefficients.

If equations 2.1 are multiplied by Qj the so-called equations of activity4
are obtained.

ajjQjoj + bijQjQi + cijQjQi = Qi,i (2.2)

where i, j = 1, ..., n.
If the following energy functions are defined:
* The usual summation convention will be hereinafter adopted; i.e., a repeated

subscript means a finite summation with respect to that letter.
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Kinetic Energy: T = ftaijQ Qid

Potential Energy: U = c ijQj Qi dt (2.3)

Dissipation Function: F = bij Qj Qi

equations 2.1 and 2.2 can be reduced to the following canonical forms,
respectively:

d b(T+U) ()F
dt aQs + aQi = Qi (2.4)

d
- (T+U)+F=QiQi. (2.5)dt

Equation 2.5 can be considered as a formulation of the principle of con-
servation of energy, where the term Qi Qi may be regarded as the rate at
which energy is supplied to the system from external sources.

3. Definition: A linear dynamical system has the property that its
equations of motion and activity are given by the canonical forms 2.4
and 2.5. It is convenient to classify further linear dynamical systems
as follows:
Type I. A conservative linear dynamical system has the property that

F = 0.
Type II. A dissipative linear dynamical system has the property that

F M 0.
4. Variational Principles:
Classically, it has been of formal interest to establish certain variational

principles which give as a necessary consequence the equations of motion
of linear dynamical systems. The question naturally arises, for what
types of linear dynamical systems does such a principle exist? The
answer to this question follows from certain recent results on the inverse
problem of the calculus of variations by Davis5 and Morse.6
The general form of a variational principle is to set up an integral of

the form,
r2

I = J fi(t, Qi, Q,j,Q j)dt (4.1)

whose Euler equations are the equations of motion of the dynamical system
under consideration. Usually the integrand, fi, is expressed in terms of
the energy functions, 2.3. Well-known principles of this type are the
Principle of Least Action and Hamilton's Principle.
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The following theorem due to Davis5 will be used to establish the ex-
istence of a variational principle for the different types of linear dynamical
systems:

If a given system of differential equations

Hi(t, Qi, Qj, Qi, Qj, Qj) = O i, j = 1, .. ., n

is to be the system of differential equations of the solutions of the problem
of minimizing the integral, I, of the type indicated above, then their
equations of variation must be a self-adjoint system along every curve
Qi = Qi(t).

Davis5 and Morse6 also show that necessary and sufficient conditions
for the self-adjoint requirement are, using the system of equations 2.1:

aij 7--aji

bii + bji _= 2 aij (4.2)
aijbij= cji -cij.

A linear dynamical system of type I will now be considered. In this
case the requirement, that F = 0, yields the result that bij = 0. The
relations 4.2 becomes in this case:

a,j a. t

0 2aij (4.3)
cij Cji

From this result it is at once evident that a variational principle exists
if and only if aij constant. That variational principles for a system of
type I exist is, of course, well known. The following theorem follows at
once:
THEOREM I. The equations of motion of a conservative linear dynamical

system are given by a variational principle if and only if the masses of the
system are constant.

If a linear dynamical system of type II is considered, the relations -4.2
become by the use of the symmetric properties of the coefficients given
in 2.1:

=j-afi (4.4)
bij aj.

The theorem which follows this is:
THEOREM II. The equations of motion of a dissipative linear dynamical

system are given by a variational principle if and only if the dissipation
coefficients are identically equal to the rates of change of the corresponding
masses.
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This result has the physical interpretation of connecting the mass of
the system and the coefficient of dissipation of the system. If the mass
of the system is a monotonically increasing function of time the dissipation
function would be positive, and the system would lose energy. If the
mass of the system decreases monotonically with time, the system would
gain energy. If the mass of the system is an oscillatory function of time
or a function of time whose first derivative is not always of one sign, several
possibilities for the net gain or loss of energy by the system exist:

If a particular epoch, t1 < t < t2 be considered, the time-average rate
of dissipation of energy will be given by:

1 t-2
I=

-tl
Fdt (4.5)

If I = 0, the system will have no net energy loss during this epoch.
If I > 0 or I < 0 the system will have an average loss or gain of energy

during this epoch.
A special case of a system of type II of particular physical importance

is that in which the equations of motion 2.1 have constant coefficients.
Now by relations 4.4, it is seen that

b=_ 0 (4.6)

but this violates our hypothesis that bij 0.
Hence:
COROLLARY: The equations of motion of a dissipative linear dynamical

system w?ith constant coefficients are not given by a variational principle.
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