EXPERIMENTAL PHILOSOPHY,
 In Three-Books :

Jufy.12. Containing yo.tb.

With fome Dedutions, and Probable Hypothefes, raifed from them, in Avouchment and Illuftration of the now famous Atomical Hypothefs.

By HENRY POWER, Dr. of Phyfick.

Perfpisillum (Microfcopicum fcilices) fividiff Democritus, exilkifer forte; on modum vidınli Aımmum (quam ille invifibilem omnind affirmsvii) inventum fuife pktaffer. Fr. Verulan. lib. 2. novi Organi, fect. 39.

Hinc igitar facillimè inselligere poffkmus, quan faklee, quanm inaniter fefe venditat bumana fapientia, quóve ferantur nofira Ingenia, nifi relta ratione, experientiáque (fcientiayums omninиm magifira) nitanenr oropin is falebras accuratè viten!. Muffet. De Infea. cap. 15. pag. 115.

LONDON,

Printed by T. Roycrofa, for fobm Martin, and fames Allefry. at the Bell in S. P'auls. Church-yard. 1664.

2FM. AB: eMED $12-1-49$

The Preface to the Ingenious Reader.

9ivi Ioptrical Glafes (wbich are now wrought up to tbat beight and curiofity we fee are but a Modern Invention: Antiquity gives us not the leaft bint thereaf, neither do their Records furnibs us with any tbing that does Antedate our late difcoveries of the Telefcope, or Microfcope. The want of which a 3 incom-

The Preface.

incomparable Artifice made them not onely erre in their fond Caléftial Hypothe /is, and Cryfalline wheel-work of the Heavens above us, but alfo in their nearer Obfervations of the minute Bodies and Smalleft fort of Creatures about us, which bave been by them but Ieightly and perfunctorily defcribed, as being the difregarded pieces and buflement of the Creation; when (alas!) thofe fons of Senfe were not able to fee bow curioully the minuteft things of the world are wrought, and woith what eminent Jignatures of Divine Providence they were inrich'd and embel$l i f t d$,

The Preface.

lift'd, without our Dioptrical afsifance. Neitber do I think that the Aged world ftands now in need of Spectacles, more than it did in its primitive Strength and Luftre: for bowfoever though the faculties of the foul of our Primitive father Adam might be more quick bo per_picacious in Apprebenfion, than thofe of our lap Sed Selves; yet certainly the Conftitution of Adam's Organs wous not divers from ours, nor different from thofe of bis Fallen Self, fo that be could never difcern tbofe dijtant, or minute objęts by NaturalVifion, as we do by the Artificial advantages of the

The Preface.

 the Telefcope and Microfcope. So that certainly the fecondary Planets of Saturn and Jupiter and bis Anfulary appearances, the $\mathrm{Ma}-$ culx Solis, and Lunations of the inferiour Planets, were as obfcure to bim as unknown to bis Pofferity; onely what he migbt ingenioufly ghefs at by the Analogie of things in Nature, and •ome other advantageous Circumftances.And asthoferemoteobjects weerebeyond the reach of bis naturalOpticks, fodoubtefs the Minute Atoms and Particles of matter, were as unknoomn to bim, as shey are yet unfeen by us: for

The Preface.

certainly both bis and our Eyes were framed by providence in Analogie to the reft of our fenfes, and as might beft manage this particular Engine we call the Body, and beft agree with the place of our babitation (theearth and elements we were to converfe with) and not to be critical (perzators, furveyors, and adequate judges of the immenfe Univerfe: and therefore it hath often feemid to me beyond an ordinary probability, and fomtbing more than fancy (bow paradoxical foever the conjecture may feem) to think, that the leaft Bodies we are able to fee with our naked eyes, are b

The Preface.

but middle proportionals (as it were) 'twixt the greateft and fmalleft Bodies in nature, whbich two Extremes lye equally beyond the reach of bumane enfation: For as on the one fide they are but narrow fouls, and not worthy the name of Pbilofophers,that tbink any Body can be too great or too too vaft in its dimenfons; fo likewife, are they as inapprebenfive, and of the fame litter with the former, that on the otber fide tbink the particles of Matter may be too little;and that nature is fitited at an Atom, and muft bave a non ultra of her fubdivififons.

Sucb

Such, I am fure,our Modern Engine (the Microfcope) wil ocularlyevince and unlearn them their opinions again: for herein you may fee what a fubtil divider of matter Na ture is; berein we can fee what the illuftrious wits of the Atomical and Corpufcularian Pbilofophers durft but imagine, even the very Atoms and their reputed Indivifbles and leaft realities of Matter, nay the curious Mechanifm and organical Contrivance of thofe Minute Animals, with their diftinct parts, colour, figure and motion, whofe whole bulk were to them almoft invifible : fo that $b 2$

The Preface.

The Preface.

 were Arifotle now alive, he might write a new Hiftory of Animals; for the firt Tome of Zoography is fill wanting, the Naturalijts bitberto baving onely defribed unto us the larger and more voluminous fort of Animals, as Bulls, Bears, Tygers, \&c. whilf they bave regardlefly pafs'd by the Infectile Automata, (tbofe Living-exiguities) with only a bare mention of their names, whereas in the efe prety Engines (by an Incomparable Stenography of Providence) are lodged all the perfections of the largeft Animals; they bave the fame organs of body, multiplicity
The Preface.

of parts, variety of motions, diverf $f t y$ of figures, feverality of functions with thofe of the largeft fize: and that wbich augments the miracle, is, that all thefein \int o narrow a room neither. interfere nor impede one anotber in their operations.W botberefore with the Learned ${ }^{*}$ Doctor, admires not * Drown
 bis Eagle, and wonders not more at the operation of two fouls in thofeminute bodies, than but one in the trunk of a Cedar? Ruder beads fand amazed at thofe prodigious and Colofean pieces of Nature, as Whales, Elephants, and Dromedaries;but in thefe nar-

The Preface.

narrow Enginestbere is more curious Matbematicks, and the ArchiteCture of tbefe little Fabricks more neatly fet forth the wijdom of their Maker.
Nows as Matter may be great or little, yet never / brink by fubdivifon into notbing; $\int 0$, is it not probable, tbat Motion alfo may be indefinitely foift or low, and yet never come to a quiefcency? and foconfequently there can be no reff in Nature, more than aVacuity in Matter. The following Obfervations feem to make out, that the Minute particles of mof (if not all) Bodies are conftantly in fome kind

The Preface.

of motion, and that motion may be both invififly and unintelligibly flow, as well as (wift, and probably is as un Ceparable an attribute to Bodies, as well as Extenfon is. And indeed, if the very nature of fuiditit confif in the Intefine motion of tbe parts of that Body call'd fuid, as Des-Carres bappily fuppofed, and M^{-}. Boyle bas more bappily demonfrated, Why may we not be bold botbto tbink and fay,that there is no fucb tbing in the World as an abfolute quiefcence? for I .the greateft part of the World (viz.the atberial Medium (wherein all the Stars. and

The Preface.

 and Planets do (wimps is now confefs'd by all to be fluid, and $\int 0$, consequently, in a Perpetual Motion. 2. All the fixed lights of Heaven are generally concluded to be pure Fire, and J con- Sequentially in motion alpo; not to mention the dinetical Rotations of their whole Bodies, which every one is supposed to have, as we as our Sun: and as for the Opace and Planetary Bodies of the Vniverfe, they are all porous, and the atherial Matter is continually freaming through them, their internal fire and beat constantly subliming Atoms out of them, the Magne-

The Preface.

Magnetical Atoms continually playing about them: Not tomention aldo their dinetical Motions about their own Axes, and circumrevolutions about their central Suns: Jothat,Is it not, Ifay,more than probable, that reft and quiefcency is omer Peripatetical Notion, and that the supreme Being (who is Activity it pelf) never made any thing inactive or utterly devoid of Motion?
Hence wool unavoidable follow forme other Principles of tbeever-to-be-admired Des-Cartes :
I. That as Matter is made greater or less, by addition or subduction of parts,

The Preface.

parts, fois Motion made foifter or Alower by addition given to the Movent, by other contiguous Bodies more fwiffly moving, or by fubducion of it by Bodies floplier moved.
2. As the parts of Matter can be transfer'd from one Body to anotber, and as long as they remain united, mould remain fo for ever: So Motion may be tranflated fromi one Body to another, but when it is not transfer'd, it would remain in tbat Body for ever.
But thefe fublime Speculations I Ball witb more confidence treat of in anotber place ; the Speculation of Motion, and its Origin, being, as I con-

The Preface.

conceive, one of the obfcureft things in Nature.
And therfore at prefent we fhalkeep within the compafs of the Microfcope, and look at notbing furtber than pobat we can difcover therein: The knowledge of Man (faith the learn'd Verulam) batb bitherto been determin'd by the view or fight, fo that what foever is invifible, either in refpect of the finene $\int s$ of the Body it felf, or the fmalnefs of the parts, or of the fubtilty of its motion, is little enquired; and yet the ee be the things tbat govern Nature principally:How much therefore are we oblig'd to mo$c 2$ dern

The Preface.

 den Industry, that of late bath diff cover'd this advantageous Artifccoof G cafes, and furnijbid our necef Sties with fuck artificial Es, that now peithee the fineness of the Body, nor the fnalnefs of the parts, nor the fubtily of its notion, can Secure them from our difcovery? And indeed, if the Dioptricks further prevail, and that darWing Art could but perform what the Theorifss in Conical fictions demonfiltrate, we might hope, ere long, to fee the Magnetical Effluvium of the Loadfone, the Solary Atoms flight cor globuli xetherei of the renowned DesCartes) the (fringy part_ ales.
The Preface.

cles of Air, the conffant and tumultsarr motion of the Atoms of all fluid Bodies, and tope infinite, infenfible Corpufles (wbichdailyproducetbofe prodigious (though common) effects amongst us: And though there hopes be vaftly hyperbolical, yet who can tel bow far Mechanical Induftrymay prevail; for the process of Art is indfinite, and who can Set a non-ulcra to her endevours? I am fare, if we look backwards at what the Dioptries bath already performed d we cannot but conclude much Prognofticks to be witbinthe circle of possibilities, and perhaps not out of the reach of fath-

The Prefice.

 futurity toexbibit: bowever tbis I am fure of, That witbout ome fucb Mecbanical afisitance, our beft Pbilofophers will but proveempty Conjecturalijts, and their profoundet Specu_ lations berein,but glof'd outfdeF allacies; like our Stage-fenes, or PerSpertives, that hew things invords, woben they are but fuperficial paintings.For, to conclude with tbat doubly Honourable (both for bis parts and zaple parentage) M Boyle, When a binke
hinss
and
Writer, faith be, acquaints me onely pas.o. with bis own thougbts or conjectures, without inricbing bis lifcourle with

The Preface.

any real Experiment or Obfervation, if be be miftaken in bis Ratiotination, I a min fome danger of erring with bim, and at leaft am like to lofe my time, witbout receiving any valuable compenfation for fogreat alofs: But if a Writer endevours, by delivering new and real Obfervations or Experiments, to credit bis Opinions, the Cafe is inuch otberwayes; for, let bis Opinions be never fo falle (bis Experiments being true) I am not oblig'd to believe the former, and am leff at my liberty to benefit my felf by the latter: And tbougb be baveerroneouly fuperftructed upon bis Ex-peri-

Henry Power.

From New-Hall,
near Hallifax,
x.Aug. 166 t .

 parts.

Had our famous Muffet but feen them, he would not have fpoke fo doubtfully as he did: oculos (faiti he, fpeaking of Flea's) babere, verifimile eft, timm quod fuos eligunt receßßus, tìm quod appetente luce fo fubdacunt. He has alfo a very long neck, jemmar'd like the tail of a Lobftar, which he could nimbly move any way; his head, body, and limbs alfo, be all of blackilh armourwork, flining and polifhed with jemmar's, moft excellently contrived for the nimble motion of all the parts: nature having armed him thus Cap-a-pe like a Curiazier in warr, that he might not be hurt by the great leaps he takes; to which purpofe alfo he hath fo excellent an eye, the better to look before he leap: to which add this advantageous contrivance of the joynts of his hinder legs which bend backwards towards his belly, and the knees or flexure of his fore-legs forwards (as in moft quadrupeds) that he might thereby take a better rife when he leaps. His feet are flit into claws or talons, that he might the better ftick to what he lights upon: he hath alfo two pointers before which grow out of the forchead, by which he tryes and feels all objects, whether they be edible or no. His neck, body, and limbs are alfo all befet with hairs and brifles, like fo many Turnpikes, as if his armour was palyfado'd about by them. At his finout is fixed a Probofcis, or hollow trunk or probe, by which he both punches the skin, and fucks the blood through it, leaving that central fpot in the middle of the Flea-biting, where the probe entred.

One would wonder at the great ftrength lodged in fo fmall a Receptacle, and that he is not able onely to carry his whole armour about him, but will frisk and curvet
wonderful, we could plainly fee, that the holes were all of a fquare figure like an honey-comb, and fuck full of fmall hairs (like the pores in our skin) and which (by blowing upon) you might fee waft to and fro ; all which neat particularities were more palpably difcovered in the cyc of a great Humble-Bee. Now thefe holes were not abfolute perforations, but onely dinples in their crulta-

B 2
ceous

Microfcopical Obfervations.

fo nimbly with it : Stick a large brafs pinthrough his tayl and he will readily drag it away. I have feen a chain of gold(at Tredefiants famous reconditory of Novelties) of three hundred links, though not above an inch long, both fafteed to, and drawn away by a Flea. Such a like one it feems as our Muffet tells that one Marcus an Eny-lijb-manmade. Nay hear what he faith further, Accepi-muffer, mus itema fide dignis, Pulicem fic Catena alligatum, Currum de Insfeaureum perfete e fuis numeris ab/olutum, nullo negotio traxife, this, ilib. 2 id quod \mathcal{G} Artificis induffriam \mathcal{G} /uas ipfins vires multium com- cap. 28. mendat: Yea, we have heard it credibly reported, faith he, that a Flea hath not onely drawn a gold Chain, but a golden Charriot alfo with all its harnefs and accontrements fixed to it, which did excellently fet forth the Artifice of the Maker, and Strength of the Drawer; fo great is the mechanick power which Providence has immurd within thefe living walls of Jet.

Observat. it.'

The Bee.

THe eyc of a Bee is of a protuberant oval figure, black and all foraminulous, drill'd full of immumerable holes like a Grater or Thimble; and, which is more

Microfopical Obfervations.

ceous Tunica Corneas which it feems is fullof little pitholes, like the cap of a thimble: for we cutt out the eye in a large Humble-Bee and Crecker, and bared the fhell or horney coat of the eye; and laying either the convex or concave fide upwards (upon the object plate)I could cafily perceive the little holes or dimples formerly mentioned. So that, by the favour of our Microfcope, I have feen more in one hour then that famous Bee-mafter Arifomachus did in his fifty years contemplation of thofeLaborious Infects.
If you divide the Bee (or Humble-Bee efpecially) near the neck, you fhall, without help of the glaffe, fee the heart beat moft lively, which is a white pulfing veficle. The ftings in all Bees are hollow and tubulous (like a Shoomaker's-punch) fo that when they prick the flefh, they do alfo, through that channel, transfufe the poyfon into it: For if you take a Bee, Wafp, or Humble-Bee efpecially, and gently fqueeze her tayl, fo that you may fee the fting, you fhall perceive a drop of diaphanous liguor at the very end of it, which if you wipe off, you fhall diftinctly fee it renewed again, that hunnour paffing down the Cavity into the end thereof. But if you would fee their Common-wealth, Laws, Cuftoms, Military Difcipline, and their skill in Tacticks and Architecture, then readour Englifh Butler, an experimental and not Theoretical writer on that fubject.

Observat. ilif.
The Common Fly.
T is a very pleafant Infect to behold: her body is as it were from head to tayl ftudded with filver and black Armour,

Microfopical Obfervations.

Armour, ftuck all over with great black Briftes, like Porcupine quills, fet all in parallel order, with their ends pointing all towards the tayl; her wings look like a Seatan with black thick ribs or fibers, difpers'd and brancl'd dhrough them, which are webb'd between with a thin membrane or film, like a flice of Mufcovy-glaffe: She hath a fmall head which fhe can move or turn any way: She hath fix legs, but goes onely but upon four; the two foremoft the makes ule of inftead of hands, with which you may often fee her wipe her mouth and nofe, and take up any thing to eat. The other four legs are cloven and arn'd with little clea's or tallons(like a Catamount) by which fhe layes hold on the rugofities and afperities of all bodies fhe walks over, even to the fupportance of her felf, though with her back downwards and perpendicularly invers'd to the Horizon. To which purpofe alio the wifdom of Nature hath endued her with another fungular Artifice, and that is a fuzzy kinde of fubftance like little fponges, with which the hath lined the foles of her feet, which fubftance is always repleated with a whitifh vifcous liguor, which he can at pleälure fqueeze out, and fo fodder and bc-glew her felf to the plain the walks on, which otherways her gravity would hinder (were it not for this contrivance) efpecially when fle walks in thofe inverted pofitions.
But of all things her eyes are moft remarkable, being exceeding large, ovally protuberant and moft neatly dimpled with innumerable little cavities like a fmall grater or thimble, through which feeming perforations you may fee a faint reddilh colour (which is the blood in the eyes, for if you prick a pin through the eye, you fhall finde more blood there, then in all the reft of her body.) The like foraminulous perforations or trelliced cyes are

Macrofopical Obfervations.

in all Flyes, more confpicuoufly in Carnivorous or FlefhFlyes, in the Stercorary or Yellow Flyes that feed upon Cow-dung: The like eyes I have alfo found in divers other Infects, as the Shepherd-flye or Spinfter-Hye, which Muffet calls opilionum $\overline{\mathrm{A}} \mathrm{I}$ facam; alfo in Cantharides or French.Flyes; alfo in all forts of Scarabees, black and fpotted; alfo in all forts of Moth-lyes, called by Mufet, Phalenne-papiliones; alfo in the May-Fly, But-ter-fyes, Scorpion-taild-fly, Twinges, and Earwigs; moft clearly in the lloe-black eye of the Crecker, and in the large eye of the Dragon-fly or Adderbolc. Many more obfervables there are in Common Flyes, as their Vivacity; for, when they appear defperate and quite forfaken of their forms, by virtue of the Sun or warm afhes they will be revoked into life, and perform its functions again.
Had Domitian thus bufied himfelf in the Contemplation of this Animal, it had been an employment, not fometimes unworthy of Cafar. For, to conclude with mufft ; lib.de In- Dei vero virtutem qudm valide animalcula iffa, parim fane fectis, valida, demonftrant? Contemplare enim vel minimum mu/cicap.12. lionem, Є quomodò in Tantillo Corpore,pedes, alas, oculos, promu/(cidem, aliaque membra, omni filo minora, concinnè adaptavit Altifimus, edijfere !

Observat. IV.
The Gray, or Hor Je-Fly.

HEr eye is an incomparable pleafant fpectacle: 'tis of a femifphproidal figure, black and waved, or rather indented all over with a pure Emerauld-green, fo

Microfcopical Obferbations.

that it looks like green filk Irifh-ftitch, drawn upon a black ground, and all latticed or cheguered with dimples like Common Flyes, which makes the Indentures look more pleafantly : Her body looks like filver in froft-work, onely fring'd all over with white filk: Her legs all joynted and knotted like the plant call'd Equifetum or Horfe-tayl, and all hairy and flit at the ends into two toes, both which are lined with two white fponges or fuzballs as is pre-oblerv'd in Common Flyes. Atter her head is cut off, you fhall moft fairly fee (juft at the fetting on of her neck) a pulfing particle (which certainly is the heart) to beat for half an hour moft orderly and neatly through the skin.

Observat. V.

The Butter-E゙ly.

THis Animal might well deferve our Obfervation without the affiftance of a Microfoppe; for who does not admire the variegated diverfity of colours in her expanfed wings? which do not onely out-rye the Peacock in all his pride, but does as far out-go the Atrip'd bravery of the Tulip, as that did Solomon in all his glory : But view them in the Microfopope, and you may fee the very ftreaks of the Coeleftial pencil that drew them. For the wings of the Butterfly feem like a great plume of feathers, with a glyftering fplendour exceeding pleafant to behold, efpecially if the wings be Atripd with feveral colours: yea that fmall meal and duft of their wings (which fticks to your fingers when you catch them) is all Imall little feathers, which grow out of their

Micrefeopical Obfervations.

their wings; and you may plainly fee the twills by which they ftick to the wings, and the holes in the wings, out of which they were pluck'd. Nature having imp'd her wings (for her better flight) with thofe plumeous excrefcences; which hews how vaftly * they wëre miftaken, that held this mealy duft to be an exudation of atoms out of their wings.
Her cye is large and globular (but fomewhat flattifh) white like Alablafter, diced or befpeck'd here and there with black 1pots (like checker'd Marble)all foraminous, both the white and black parts of it. Imean in a white Butterfly, for in a red-wing'd Butterfly, her eye is all black and full of perforations as in a Common Fly.

The Probe (which you fee lyes in her mouth inf fpiral contorfions, wound up like a pring, or like the twining tendrils of the Vine, and which you may with a pin draw out to its full length) feems to be hollow, and fupplies the office both of Mouth and Tongue : for you flall fee it (if cutt out and laid on the object-plate) to winde and coyl it felf up like a Spring, and then open again a long time together, and to have a tranfparent kinde of hollowneffe quite throughout. Nature having made it of a confiderable length (when extendcd) that fhe might reach her nourifhment, elfe the length of her legs would hinder the ftooping of her head : She hath alfo fitred it with that fpiral or cochleary contrivance, that fo being drawn up into an Helix, and retracted into the mouth, it might be no hinderance to her flight.

Observat.

Micrefcopical Obfervations.
Observat. VI.
A Loufe.
CHe appears the bigneffe of a large Crecket, the body diap phanous and tranfparent, with three legs on either fide, and two horns in the fnout, all tranfparent and of Gauntlet-work, having here and there hairs and briftes; her feet likewife are llit into toes. Her two eyes were like two black beads, gogled and protuberans, ttanding fomewhat backwards on the fide of her head behind her horns: She is blackifh about the fhoulders; if fle be laid on her back, sou may perceive her body to be of Efcallop'd protuberances, diaphanous alfo, very handfome to behold. In this fupine pofition of hers, there are two bloody darkifh fpors difcernable, the greater in the midft of her body, and the leffer towards her tayl. In the Centre of the middle fpot there is a white Film or Bladder, which continually contracts and dilates its felf upwards and downwards from the head towards the tayl; and alwayes after every pulfe of this white particle or veficle, then followes the pulfe of the great dark bloody fipor, in which, or over which, the veficle feems to fwim. This we obferv'd two or three hours together, as long as the Loufe lived; and this motion of Syfole and Diaftole is mof palpably feen, when the Loufe grows feeble and weak. I prick'd the white veficle with a fimall needle ahd let out a little drop of blond; and then viewing her again in the Microfope, we could not perceive any life or motion after.

In a greater Loufe you might fee this pulfation of C her

Microfcopical Objervations.

her heart through her back alfo; but the white film or veficle you cannot fee till fhe be turn'd with her belly upwards.

The lower dark fpot (which is the leffer towards the tayl) Dr. Harvey probably conjectures to be the excrements in the guts of the Loufe, there repofited juft betore exclufion.
Hear how neatly Sir Theodore Maybern delivers his Obfervation of this Animal, taken in a puny Microf cope ; Cornua, ૬ Crenatam Corporis Ambitsm, totam fublfantiam de Infsais! Diaphanam, per quam Cordis \mathcal{O} Sanguinis tavquam in Euripo indefnester furfuantis Motum.

Observat. Vil.

AWood-Loufe, or Wood.Mite.

(like Bezanteliers) fpringing out of them. She hath two pointersalfo before, like a pair of pincers, which fhe moved laterally, all full of hairs, aud two round knobs at the ends of them. Her eyes are very protuberant, and globular, of a pure golden colour, moft admirable to behold, efpecially when varnifh'd with a full light, and moft neatly latticed or maffed like a net (as nath been pre-obferv'd in other Infects.) And flhe feemed to have this peculiar Artifice, that fle can put out or draw in her eye at her pleafurc; fo that fometimes we could fee them far more prominent then at others; and fometimes again the one eye more then the other: Infomuch that in one of our Critical Obfervations, I could fee more then a hemifphere of the eye at once; fo that what the Procefus Ciliares does to our eycs, either in retracting or protruding the Cryftalline Humour (for helping the fight) the fame does the Optick nerve (it feems) to the whole Globe or Bulk of their eyes.

Observat. Vifi. The Houfe-Spider.

Now let us fee what we can difcover in ovids Lydian-Spinftreffe, that proud Madam which Pallas, for her Rivalfhip, transform'd into the Spider; which hath not onely the Character of Ariffotle, but of Solomon himfelf, for a wife and prudent Animal, and therefore a fit Refidentiary in the Court of Kings.
Of Domeftick Spiders there are two forts ; one with - longer legs and a little body, and the other contrariwife.

The firt eminent thing we found in thefe Houfe-Spi-

Microfopical Obfervations.

ders, were their eyes, which in fome were four, in fome fix, and in fome cight, according to the proportion of their bulk, and longity of their legs. Thefe eyes are placed all in the forefront of their head (which is round, and without any neck) all diaphanons and tranfparent, like a Locket of Diamonds, or a Sett of round CryitalBeads: fo that well might Muffit fay of thofe Philofophers that held them blinde, Sawì crextixnt illi jummo weridie, qui videre ipfas yon vident neque intelligunt: Far better might he have faid it, if his eyes had had the affiftance of our Microfope.
Neither wonder, why Providence fhould be fo Ano. malous in this Animal more then in any other we know of (Argus his head being fix'd to Arachne's floulders.) For, firlt: Since they wanting a neck cannot move their head, it is requifite that defect flould be fupplyed by the multiplicity of eyes. Secondly: Since they were tolive by catching fo nimble a prey as a Fly is, they ought to fre her every way, and to take her per /altum (as they do) without any motion of their head to difcover her; which motion would have fcar'd away fo timorous an Infect.
They have a very puffy light body of an O val figure, covered with a fleek thin skin : which they change once a moneth, fayes $M u f f e t$; though I hardly belicve they caft their Ppoils fo often.
Their skin is not pellicid, for I could never difcover any pulfing particle within them: She hath eight legs, four on each fide, Iplit into fmall oblong fingers at the ends, by which fhe makes her curious Web-work Both body and limbs is all tuck over with fmall filver hairs, which the very ayr will watt to and fro, as you may fee
in the Microfoppe. in the Microfoope.

Microfopical Obfervations.

Observat. IX.

The little white Field-Spider with Bort legs.

THere is a litele white fhort-leg'd Spider (which you fhall find plentifully amonget new Hey, or in 2 fweating Hey-mough) which is a glorious fpecracle to behold; for her Body is like white Amber imborsd grow briftes or prickles like whin-pricks perfectly taper-grown. And (which is moft admirable) we could moft diftinctly fee fix, in tome eight eyes, ranged in this order; the innermoft leaft, and the outermoft greateft, of a very quick and lively tranfparency or fulgour, like Eagle's eyes ; every Eye hath a pale yel. low circle, which encompaffeth a vio let-blew Pupill, moft clear and moft
 admirable, but not perforated at all. Letting her lye on the object-plate for half an hour together, we perceived her Eyes all of them to grow Pefs and lefs, and a whitinh kind of film or focker, by degrees, to cover part of them: I cutt her in the midn at firft, and fo layd onely her head with the upper part of her body, on the object-plate.

Microfcopical Obfervations.

Observat. X.

The Field Spider with long Legs.

THis Spider was a very pleafant fpectacle: having cutt off her legs, and layd her flat with her belly upon the object-plate, I perceived a round knob erected perpendicularly upon the top of her back, which proved to be her head (though at firft I could not perfwade my felf into that belief;) for in it were fixed two jettblack protubdrant (but not foraminulous) eyes, on either fide one, which by diligent Infpection we found to be of different parts, with a very black fmooth pupil in the middt of either of them, more protuberant than the reft of the circumambient matter, which was of a coarfer grain, browner and more rugged than the prominent Pupil.
She had before, two claws (at a manifeft diftance from her head) juft like a Crab's claws, with two black tips, like the Chely's in Crabs, which I could diftinctly fee to open and fhutt (exactly like thofe in a Scorpion) which were indented, or madoSaw-wife on the infide (the better to keep faft what fhe had once laid hold on.)
There is a Field-Spider of a ruffet colour and long legs, of the fame fhape and figure.

The head and eyes in all Spiders are conttived with great variety.

Observat. XI.
 Another Field-Spider.

Took a Field-Spider under a ftone, 13. of Fune, with a bag of eggs fantened to her tayl, bigger thau all the bulk of her body; I opened it, and law abundance of blewifh eggs in it, which in the Micre/sope look'd white and round, like your counterfeit pearl, and 1 could moft clearly fee abundance of very minute Spiders, newly hatch'd, no bigger, and juft like Mites in Meal, with white hairs and briftles, elpecially in their tail, creeping and crawling amongtt the eggs: The Nett-work of the Purfe or Bag feem'd all diaphanous ; a very pleafant fectacle, and of curious workmanhip.
I then made the like Obfervation of a bag full of Houfe-Spider-eggs, which are round and white, juft like white Poppy feed; and all things look'd whitifh, and fomething Tranfparent therein alfo : but the youngling Spiders (that were cither hatching, or newly hatch'd) were far bigger then the former, and white as Alablafter, but flap dike the Parent with five legs on each fide (without hairs or briftes) and not by far fo active as the other. I could not fee any Heart beat in any of them all.

Microfrapical Obfervations.

Observat. XIf. Maites in Cbeefe.

THey appeared fome bigger, fome lefs; the big. geft appeared equal to a Nutmeg; in thape they feem'd oval and obtus'd towards the tail: Their colour refembled that of Mother of pearl, or Common pearr, and reflected the light of the Sun in fome one point, according to their various poficions, as pearl doth : fo that it feems they are fheath'd and cruftaceous Animals (as Scarabees and fuch like Infects are.) I could perfectly fee the divifions of the head, neck, and body. To the fmall end of the oval Body was fattned the head, very little in proportion to the body, its mouth like that of a Mole, which it open'd and hlutt; when open'd, it appear'd red within: The eyes alfo, like two little dark pots, are difcernable: Near to the head were four legs faftned, two on each fide; the legs were juft like to thofe in a Loufe, Jemmar'd and Tranfparent: She has two.little pointers at the finout; nay, you may fee them fometimes, if you happily take the advantage, like fo many Gimny-Pigs, munching and chewing the cud: About the head and tail are ftuck long hairs or briftles: Some we could fee (as little, even in the Glafs, as a Muftard-feed) yet perfectly hap'd and organiz'd: We alfo faw divers Atoms fomewhat Tranfparent like eggs, both in form and figure. Nay, in thefe moving Atoms, I could not onely fee the long brittles formerly fpecified, but alfo the very hairs which grew out of their leggs, which leggs themfelves are fmaller than the fmalleft

Microfopical Obfervations.

hair our naked eyes can difcover. What rare Confide. rations might an Iugenious Speculator take up here, even from chis fingular Experiment? of the frange and moft prodigious skilfulnefs of Nature in the fabrick of fo Minute an Animal (a thoufand whereof do not weigh one fingle grain, (for one feed of Tob :cco is bigger than any of them) and yet how many thoufand parts of Matter muft go to make up this heterogeneous Contexture? For, befides the parts infervient to Nutrition, Senfation, and Motion, how fmall and thiu muft the liquours be that circulate through the pipes and veffels diffeminated through thole parts? nay, How incomprehenfibly fubtil muft the Animal-fpirits be, that run to and fro in Nerves included in fuch prodigioully Little fpindle- fhank'd leggs?

Observat. XIII.

Mites in Malt-duft and Oatmeal-duft.

THey feem fomewhat different from thofe of Cheefe, formerly defcribed, yet of the fame bulk, proportion, and colour ; onely biett with more and longer white briftes, elp cially in the tail: they are far more active and quick in motion than thofe In habitants of C_{a} fe- Bobby, fome bigger, fome leffer. Some we faw fo exceeding little (yet perfectly organiz'd and flap,d like the reft) that no briftles nor lairs could be difcern'd, either becaule they had none, or elfe (nore probably) becaufe the Glafs failed in. prefenting them: for how fmall mult that hair be, think you, which (though fo exceffively augmented in the Glafs) yet feems as fmall as

Microcopical Obfervations.
any hair innaginable ? and upon an Animal too, whofe whole bulk to the bare eye is quite indifcernable.

If you befprinkle the Object-plate, upon which you view them, with a pretty quantity of Oatmeal, you fhall fee what working and tugging thefe poor little Animals make amongft it, running and fcudding amonget it; under it, over it, and into it, like Rabbits into their Burrows; and fometimes cafting it and heaving it up, (as Moles or Pioners do earth) and trolling to and fro with this mealy duft (which feems fomething diaphąnous) fticking to them, as if it were a little world of Arimals, bufying themfelves in running this way and that way, and over one anothers backs; which is a fpectacle very pleafant to behold.

Observat. Xiv.
 Mites, bred among/t Figs.

THey are in colour like other Mites, but bodyed and fhaped like Scarabees, with two little fhort horns at the fiout, and above them two very long ones: you may clearly fee three leggs on either fide the body : they are more fluggifh and unweildy then Meal-mites are, and not brifted like them. Though I have feen fome amongft them alfo full of white briftles, and flaped like thofe in Oatmeal: the like common (for fo I may call them) Mites I have alfo found in Hay, in the powder that falls off dryed roots, \&c.

Observat. XV.

The Mites, in fujubes and Sebeften's.

\boldsymbol{T} Rom Jejub's and Sebeften's, being long kept, there Tfalls a browniih kind of powder, which being laid upon the Object.plate, you fhall difcover in it fmall whitifh Mites, very little ones, and all befert with briftles and hairs round over like a Hedghog, but not of fo quick and lively a motion as the other Mites.

Observat. XVI.
 The red Mite, found on Spiders.

T Here is a red Mite which you fhall often find feeding upon Spiders; She is bodied juft like a Tortoife, with a little head and fix long fmall leggs, three on each fide: About the leggs of the Field.Spider I have found many of thefe Coral-Mites or Tortoifes, and this thing I have obferved of them, That they cling exceeding clofe to the Animal whilft the is alive; but when dead, they all fall off and creep away from her, as lice do from dying men, or other vermin from an old rotten falling houfe.

Observat. XVII.
 The Nites or Lice found on Humble-Bees.

WIthin that yellow plufh or furre of Humble. Bees you thall often find a little whitifh very nimblyrunning Animal, which hath the flape and form of a Mite in the Microfocope: I remember the Induftrious Kircher fayes, he hath found by his Glaffes Lice upon Fleas : Either our Fleas in England are not like theirs in Italy for this property, or elfe I have never taken them in their Lowfie fenfon: But Ifee no reafon to the contrary, but both Fleas and Lice may have other Lice that feed upon them, as they do upon us. For fiace the minuteft Animal that comes within the reach of our Micro. foope, is found to have a mouth, ftomack, and gutts, for Nutrition; and moft, if not all, the Parenchymata for Circulation and Separation of Excrements, there can be no doubt, but they have alfo a continual perfpiration and exudation through the habit of their body: Of which excrement of the third and laft Concoction, all thefe Vermin that pefter the outfide of Animals, are gene. rated.

Observat. XVili.

Pond.Mites.

T
Here are bred in moft reftagnant Waters, Pools and Fihponds in ${ }_{2} u n c$ and $f u l y$, ant innumerable compa-

Microfopical Obferbations.

ny of little whitifh Animals, which move up and down the water with jerks and ftops in their motion; in which Animals we could difcover two little horns and leggs, but could never get to fee it quick in the Microfoope: for as foon as ever it is taken out of the water, it is perfectly dead. Neither may it feem ftrange to find thefe Animals in rectagnant fifh waters, fince the very Occan it felf in fome places (in fummer time) is full of Living creatures. For our weftern Navigators tell us, That in fummer, in the Weft Indian Scas (about the Coafts of Virginia, Hi/paniola, Faima:a, Cuba, \& c . the Sea fwarms wilh Maggots and Grubs, which in a little time will fo eat their very fhips (as far as they draw water) that lye there at Anchor, that they will be as brittle and as full of holes as a honey comb, or a grater; infomuch that we are forced to have them cafed either with thin heets of Lead, or with Flax, Pitch and Tarr, to fecure them from that danger.

Nay, not onely the Water, but the very Air it felf, may certainly at foure times and feafons be full of Living creatures; which muft be, moft probably, when great putrefactions reign therein, as in the Plague-time elpecially.

Now it were well worth the Obfervation, if in fuch aerial Putrefactions any kind of Living creatures could be difcovered, which probably may be done by Glaffes: for I am fure in my long, Tele/cope I can fome days fee a tremulous Motion and Agitation of rowling fumes, and: ftrong Atoms in the air, which I cannot fee of other days; of which I thall perchance more largely difcourfe: in my Telefcopical Obfervations.

Micrefoopical Obfervations.

Observat. XIX.

Whey-worms, call'd by lome, Wbealnworms, or Hand-worms, or Barrows.

THefe fmalleft of Creatures (being accounted by Muffet as a Species and kind of Mites, bred upon Animals, as the former fort are in Cheefe, Meal, Wax, rotten Wood, \&c.) may very well be the fubject of our next Obfervation.

In this fmall Animal you may fee an oval reddinh liead, and therein a mouth or prominent fnout, arm'd with an Appendent Probofcis or Trunk, confifting of many villous filaments in figure of a Cone, wherewith it perforates our skin, and fucks the blood or Aqueous nutriment from the puftules it is bred near. Nay, you may difcover feet, laterally ranged on both fides, and many hairy tufts on the tayl, with afperities, rugofities, and protuberances in the skin. To behold all which varieties of parts and organs in fo minute a particle of Matter (as this living Atom is), I know not whether it be more admirable to behold, or incredible to believe without an Ocular Demonftration.
Certainly Scaliger and Muffrt would have far more admired this almott invifible fub-cutaneous Inhabitant, had they had the happinefs to have feen it in our Micro. fcope. Hear their defcription,taken onely by the Opticks de Infet. bi; vix oculis capitury; magnitudo eft tam pulla preterquam glolib.2. Conifare ipfam fod unum effe ex Atomis Epicurum dixerit: ità

Observat. XX.

The Gloworm or Glafsworm.

HEr Eyes (which are two fmall black points or fpecks of jett)are pent-hous'd/under the broad flat cap or plate which covers her head; whicl obfcure fituation, together with their exceeding exiguity, makc them undifernable to common Spectators. Yet in the Micrefoope they appear very fair, like black polifid jett or marble, femi-globular,and all foraminulous, or full of fmall but very curious perforations (as in Comunon Flyes.) Her two horns are all joynted and degreed like the fops in the germination of fome Plants, as

Microfeopical Obfervations.

fub cute babitat, ut, actis cuniculis, pruritum maximum loso ingeserat, pracipuè manibus: extrątus acu, © Japer ungue pofitur, movet fe, $/$ S Solis etiam calore adjuvetur. Dirum eft quomode tam pufilla Befiola, nallis quafi pedibus infidens, tam longos fab Cuticula fulcos peragat.

Our famous DIaylbern (who had the advantage of an Ordinary Microfoope) gives this fhort, but very neat defrription of this poor Animal. Imì ipfi Acari, (faith he) In Epipre exigsitate indivifibiles, ex cunicusis prope aque lacum, folâ quos forlermnt in cute, acu extralli © umgue impofitt, caput ru- Prefatobram, © pedes quibus gradiuntur, ad folem produvt. And riâ, ad therefore it is not to tell in what a fma!! particlc of Mat- Mufft. ter, life may actually confift, and exercile all the functi- de Infoons too, both of Vegetation, Senfation, and Motion: So that, Ommia /ust Animarum plena, may have more of truth in it, than he could either think or dream of that firft pronounced it.
\qquad

pronounced it.

```
dis.
```


Microfopical Obfervations.

Horf-tail and Canes: Under which the hath two other Imall horns or pointers, of the fame fuff and fafhion. Take hold of her horns, and you may draw out her eyes and cut them out, and folay them on your objectplate and fee them diftinctly. This is that Night-Animal with its Lanthorn in its tail; that crecpug-Star, which feems to outfhine thofe of the Firmament, and to outvye them too in this property efpecially; that whereas the Coeleftial Lights are quite oblcured by the interpofition of a fmall cloud, this Terreftrial-Star is more enliven'd and enkindled thereby, whofe pleafant fulgour no darknefs is able to eclipfe.

Observat. XXI.
 Common Gralsboppers.

T N thofe Common Grafshoppers,both great and little; which are fo frequent at hay-time with us, there are fome things remarkable. Firft, Their Eyes, which like other Infects are foraminulous; nay, we have taken the Cornea or outward Film of the Eye quite off, and clenfed it fo from all the pulpous matter which lay within it, that it was clear and diaphanous like a thin film of Sliffe or Mufcovy-glafs, and then looking again on it in the Microfoope, I could plainly fee it foraminulous as before.

You thall in all Grafshoppers fee a green Film or Plate (like a Corflet) which goes over the neck and floulders, which if you lift up with a pin, you may fee their heart play, and beat very orderly for a long time together.

Microfcopical Obfervations.
25
The like curious Lattice-work I have alfo obferv'd in the cruftaceous Cornes of the Creckets Eye, which I have carefully feparated from all the matter which ftuffd it within, which certainly is their Brain; as hereafter fhall be made more probable.

Observat. XXII.

 The Ant, Emmet or Pi/mire.THis little Animal is that great Pattern of Induftry and Frugality : To this Schoolmafter did Solomon fend his Sluggard, who in thofe virtues not onely excels all Infects, but moft men. Other excellent Oblervables there are in fo fmall a fabrick: As the Herculean Itrength of its body, that it is able to carry its triple weight and bulk: The Agility of its limbs, that it runs fo fwiftly: The equality of its Motion, that it trips fo nimbly away without any faliency or leaping, without any firs or ftarts in its Progreffion. Her head is large and globular, with a prominent Snout : ber eye is of a very fair black colour, round, globular, and prominent, of the bignefs of a Pea, foraminulous and latticed like that of other Infects: her mouth (in which you may fee fomething to move) is arm'd with a pair of pincers, which move literally, and are indented on the infide like a Saw, by wiuch fhe bites, and better holds her prey; and you miy often fee them carry their white oblong eggs in them for better fecurity.

Observat. XXIII.

Of the little greenish Grasshopper or Lo. cult, bred upon the backside of green leaves, especially the leaves of Goofberries, Sweet-briar, and golden Muofear, in April and beginning of May.

THis pretty Animal is a pleafant Object to look upon in our Glass, being of a light Green, and in the full Sunfhine flews exactly like green Cloth of Silovers hath two horns and four logs, two on each fides : Her eyes are two fuck very little black Atoms, that, unlefs to a very critical and fart eye, they are indifcernabe; yet if you advantageoully place her, and view her with a full light (tranfmitted through a Burning-glafs (which artifice I fometimes use) you hall fairly fee them to be as bog as two fall black round Beads, and drill'd through alpo with innumerable perforations (as the eye in a Fly) which will try the exquifitenefs both of your Glads and Eye to behold.

Observat. XXIV. The yellow Locule.

THere is a pretty, but very little, white oblong Infect, which flicks to the ribs and backfide of Role.

Microscopical Observations.

tree-leaves in $A u g u f f$, which in the Microfoope looks of a pure white colour, and diaphanous like Sugar-Candy, with an Annular body like a Wasp, with Come eght hoops or rims, and conical or rulh.grown towards che tall, with fix long legs, every leg composed of three joynts, all beet with hort hairs, especially in the Annulary divifions and Interftices of her body: Her eyes were very globular, protuberant, and large (as they are in all young Animals) white, like two crystal Beads, and mont neatly latticed, which I could mot clearly gif. cen.

Below the eyes (as flee lay upon her belly) was two Below the eyes (as flee lay upon her belly) was two
crook'd horns, which bended backwards towards her tayl, and was faften'd in two lockets at the roots; and,
as 1 thought, I fometimes fee her eyes more protubetayl, and was faften'd in two dockets at the roots; and,
as 1 thought, I fometimes fee her eyes more protube.rant than others, as if the could thrust them out, and draw them in at pleasure, as we have formerly obferv'd in the Wood-Loufe obferv. She has two pair of Mrifiles or hairs (like Muftacho's) at the flout, one bending one way; and another, another. I could difcover no Mouth, though I turn'd her over and over. This puny Infect I have obferv'd to turn into a final yellow Locuff, with two white wings longer than the body, and to skip up and down the Rofe-tree-leaves in Augusts and
then (when the was metamorphosed into a Locuft) I skip up and down the Rofe-tree-leaves in $A u p u f t$, and
then (when the was metamorphosed into a Locuft) I could difcern no Mouth in the Microscope, but only two
pointers like a pair of clofed Compaffes in her fiout, could difcern no Mouth in the Micro/ cope, but one y two
pointers like a pair of clofed Companies in her flout, which cannot be feed on her till the be winged, and then laid on the object-plate with her belly upwards.

[^0][^1]\qquad
\qquad

E 2
Obser- therein, in May.

THal fpumeous froth or dew(which here in the North we call Cuckow. Spittle, and, in the South, Woodfear; and which is molt frequently found in LavanderBeds, Horf mint, छic.)looks like a heap of glafs-bubbles, or a knob'd drinking.glafs; in which you fhall always find a little Grub, or Animal, which in the Microfcope feems a pretty golden-coloured Infect, with three leggs on each fide; and two horns, and two round fair goggleeyes of a duskifh red colour, like polifh'd Rubies; which you may alfo fee latticed and perforated in a clear light. Her tayl is all jemmard with Annulary divifions, which at laft end in a ftump, which fhe often draws up, or thrufts out, at her pleafure.
Muffet, Muffet cals this Infect, Locuflellam, or, a puny-Locuft; de Infect. and failh, That firft it creepeth, then leapeth, and at laft
Cap. 16. flyeth. She has two black ifh claws, or pounces (at the
pag.122. ends of her feet,) which the can open and fhut at her pleafure: We could difcover no mouth at all, but a long reddifh Probe, between the fore-legs, through which, perchance, the fuck'd her froathy nourifhment.

Now, what this fpumeous matter is, and into what Animal this Infect is at laft thaped or tranfpeciated, are Doubts that as yet have found no clear and experimental Decifion.

That the Spattle is a froathy kind of dew that falls from

Microfopical Obfervations.

from the Air, I doubt not, whatfoever my Lord Bacon fay to the contrary. For, firft ; It is found upon moft, if not all, Plants whatfoever, but moft copioully amongft our Whinns, or prickly Broom; and generally about the joynts and ramulous dvivions, becaufe there it is beft fecured from the heat of the Sun, which licks it off the open leaves, or elfe probably it is imbibed by the full grown and porous leaves of Plants, as the Milldew, alid other honey-Dews are.
secondly, That it is the fole exudation and fecrement of Plants, 1 cannot believe: Firft, becaule it is never found upon their Second growth, nor in Eddifh: Secondly, How fhould an excrement of fo many feveral Plants, ftill breed one and the fame Animal, when as we fee that all Vegetables whatfoever produce their feveral. Infects (as Niuffet in his 19. and 20. Chapters has particularly enumerated.) I fhall not deny but the Effluvium's. that continually perfpire out of all Plants whatfoever, may advantage and promote the nutrition of the little Infect that breeds thercin.

For that all Vegetables have a conflant perfpiration, the continual difperfion of their odour makes out ; befides an experimental eviction I hall give you by this. fingular Experiment: 23. of Fob. (-61 1.) we weighed an Onyon exactly to two ounces, two fruples and a half, and hanging it up till the 6 . of May next following (at which time it had fprouted out a long fhoot) we then, upon a re-ponderation of it, had loft near two drams of its former weight, which was exhaled by infenfible. Tranfpiration.

Microfcopical Obfervations.

Observat. XXVI.

The Cow-Lady, or Jpottcd Scarabee.

1T is a very lively and nimble Animal : Cut off the head, and erect it perpendicular upon the neck (which mult be faften'd to a bic of foft Wax) and then you thall fee thofe two little fmall black eyes it hath, fett upon a little fhort neck (which is moveable within the former) either eye fett between three white plates, like polifh'd Ivory (two litcle ones on the one fide, and one great one on the other) her eyes are alfo foraminulous, and curioully lattic'd like thole in a Fly formerly defcrib'd. If you unfleath her body, and take off her fpotted fhore cruftaceous wings, you thall find under them another pair of filmy Tiffany long wings, like thofe of Flyes, which lye folded up, and cafed within the former, of both which pair the makes ufe in flying; which being removed, nothing remains to fecure the bulk of the body but a thin tender black skin, under which you might moft lively fee the pulfation of her Heart for twelve or fourteen hours, after the head and neek was leparated.

Obseryat. XXVif. TbeWater-Infect, or Water-Spider.

THere is a black cruftaceous Infect with an Annu. lar body, and fix hairy legs, which moves nimbly upon the water $;$ the two foremoft legs are fhorter than

Microfopical Obfervationss.

the reft by one half, and ferve inftead of hands to reach any thing to the month : She hath two hairy geniculated horns, knotted or joynted at feveral divifions like Knotgrafs, or Horf-tayl: Her body is like Froft-work in filver: Her cyes black, globular, and foraminulous.

Observat. XXVIII.

The Wafp-like Locuft.

TTHere is a little fmall long black Infect, which you Thall find creeping and leaping amongit Pinks, Gillyflours, Rofe-leaves, छic. which in the Microfoope hath two fair long wings, and is bodied juft like a Wafp (from. whence 1 have given her the name of the Wa/p-Loruft) with fix or feven Annulary divifions, of jett-black and yellow wings: She hath two horns, made of five or fix white and black internodium's, very pretty to behold; either of them arifing from a black knobb'd root, with three black legs on either fide, and two little black eyesg. and, as I gheffed, latticed; though what Art can prefent diftinct parts in that eye which is fett in an Animal fo fmall, that he whole bulk of it is no bigger then a little bit of black thread, or hair. They are kill'd with the leaft touch imaginable. I took them with a Pint point dipp'd in fattle, and fo glew'd them to the object-plate, as I do ftronger Infects with a touch of Turpentine. -

Micrafopical Objervations.

one pretty thing 1 have herein obferved, that when this bubble has ftood in the fuperiour end of the glats (and fometimes it would do to for a pretty while together before it broke) I have feen fome of thofe fmali Snigs or Animals on the top of it, crawling over the fmooth convexity of the bubbler like fo many Leels over a Looking.glafs) without breaking thorow the tender cuticle and film of fo brittle and thin a fubftance.

Fourthly, That as the Liguor (dropt upon your object-plate) fpends and dries up, fo you thall fee thofe little Quicks to draw nearer and nearer together, and grow feebler in their motion; and whin all he Vineger or Aleger is dried away, then they lic all dead, twitted and complicated all together, like a knot of Eels, and af er a little time dry guite away to nothing.

Fifthly, Their heads and tails are fmaller then the reft of their bodics ; which is beft oblerved by the Microfope, when the Liquor wherin they fwim is almoft rpent and dried up, To that their motion thereby is rendred more feeble and weak, or when they lie ab. folutely dead.
Sixthly, Another remarkable thing, is, their exceeding exiguity; for certainly of all Animals they are the leaft that can be feen by the bare eye, which is helped and advantaged alfo by the refraction of the water whercin they fwim.
Seventhly, If you take a fpoonful of the forefaid Vineger and heat it overa few coals, it prefently de. ttroys all the Quick's in it, fo that you may fee them all ftretched out at their full length, like a pencil chopt fimall, or little bits of hairs fwimming up and down the Liquor, which in a flort time will precipitate and all fink down to the bottom of the glafs.

Microfoopical Obfervations.

Nay thele poor Vermin are not onely flain by actual heat, but by a potential one alfo: for, putting buta few drops of the Oyle of Vitriol into an Effence-glafs full of that Vineger, it alfo fhortly deftroyed them in the fame manner as the fire had done before.

Eighthly, Now though heat hath that killing property, yet it feems that cold hath not : for I have taken a jar-glafs full of the faid Vineger, and by applying Snow and Salt to it, I have artificially frozen all the faid Li guor into a mafs of Ice, (wherein all thefe Animals it reemed lay incryftalled) thbugh I could difcover none of them in it (though I have taken the Icy-mafs out on purpofe to look at it) fo that now I gave them for gone for ever: yet when I came again (about two or three hours after) to uncongeal the Liquor, by keeping the glafs in my warm hand, when the Vineger was again returned to its former liquidity, all my little Animals made their re-appearance, and danced and frisked about as lively as ever. Nay I have expofed a jar.glais full of this Vincger all night to a keen Froft, and in the morning have thaw'd the Ice again, and thefe little Vermin have appeared again and endured again that ftrong and long Conglaciation without any manifef injury done to them; which is both a pretty and a Atrange Experiment.
Ninthly, I have filled an efferice-glafs half with the faid Vineger, and half with Oyle (which floated on the Vineger) in a diftinct Region by it felf, and I have obferved that in frofty weather when the Vineger has been congealed, that all the little Eels have run up into the fuper-incumbent oyle to preferve themfelves there, and would not return till fome warmth was applyed to the Vineger again, and then they would al-

F 2
ways
ways prefently return down into their native Liquor again.
Tenthly, Their motion is very remarkable, which is reftefs and conftant, with perperual undulations and wavings, like Eels or Suakes; fo that it feems, that Animals that come neareft the claffis of Plants, have the moft reftlefs motions.

Eleventhly, the innumerable number and complicated motion of thefe minute Animals in Vineger, may very neatly illuftrate the Doctrine of the incomparable Des-Cartes, touching Fluidity: (viz.) That the particles of all fluid bodies are in a continual and reftefs motion, and therein confifts the true nature of fluidity: for by this ocular example, we fee there may be an inteftine reftlefs motion in a Liquor, notwithfanding that the unaffifted eye can dilcover no fuch matter., which likewife is evinced by 06 ferv. 13 . of the Mites in Meal.

Observat. XXXI.

Of the great Black. Snail.

IN this flimy Animal (the flow-paced Engine of $\mathrm{Na}_{\text {a- }}$ ture) are very many rare and excellent Oblervables. The firft is his Eyes, which are four in number, (like black atramentous Spots) fixed to the end of their horns; or rather to the ends of thofe black filaments or optick nerves, which are theathed in her horns which fhe can retract or protrude, through the hollow trunck of her horns, as.flis pleafeth.

If with your finger you take hold of the tip of her horis

Microfcopical Obfervations.

horn when fully extended, and draw out this nervous filament, or then nimbly clip off the extremities of her horns, you fhall in the Microjcope fee thofe 2. black fpots to be femi-fpherical eyes, like two large blew Beads: and we could afterwards alfo, when the re-extended the ftump, clearly perceive it with the bare eye to be tubulous and hollow. And therefore however, though the learned Doctor Brown (my ever honoured friend) hath ranked this conceit of the Eyes of a Snail (and cfpecially their quadruplicity) amongit the Vulgar errours of the multitude; yet through a good Micro/cope, he may eafily fee his own errour, and Nature's moft admirable variety in the plurality, paucity, and anomalous Situation of eyes, and the various fabrick and motion of that excellent organ; as our Obfervations will more particularly inform him.

If by a dextrous Diffection you would fee the interm nal Fabrick of this Animal, there are many excellent things that will recompence your curiofity.

For firft, you may find her Heart juft over againft that round hole near her neck (which Doctor Harvey ingeniounly conjectures to be the place of their refpiration; which hole you may obferve to open and that as the moves or ftands ftill, and out of which I have obferved fome falivous Matter to be evacuated.

We have obfervid her Heart to beat fairly for a guarter of an hour afterher diffection; afterwards we toak out her guts which were of a pure green colour, by reafon of the thime fs of their film, and tranfparency of the green juice of hearbs with which they were repleated.

They were all diaper'd or branched over with pure white Capillary little veins, which (by help of the AItcrof(cope)
sro(cope) we could difcern to be hollow, with a blackifh kind of pith rumning througl the midft of the fualleft of them, which doubtlefs was their nutrimental juice coagulated there, like the bloud ftarkn'd in the veins of dead Animals.
They are mouthed like a Hare or Rabbit, with foar or fix needle.teeth, like thofe in Leeches.
Nay this poor Animal (how contemptible foever is may feem) hath a whole Sert of the fame parts and organs with other Animals, as Heart, Liver, Spleen, Stomach, Guts, Mouth and Teeth, Veins and Arteries: Yea and a pair more of the nobleft of the Senfes (the Eyes.)
Nay this Animal doth autoptically , evince us, that, as fanguineous and more perfect Animals, have a circulasion of their bloud within them; fo this more ignoble creature hath alfo a circulation of its nutritive humour, which is to it as Bloud is to other Animals.

Nay further (which is the beft Remarkable of all) this juice hath not onely a circular motion; but alfo the very Animal Spirits (by which fhe moves) feem to have the like Circulation. For, if you obferve her with the bare eye to creep up the fides of a glafs, you fhall fee a little ftream of clouds, channel up her belly from her tail to her head, which never return again the fame way, but probably go backwards again from the head down the back to the tail; and thus, folong as fhe is in local motion they retain their circulation, which is a pleafant fpectacle. And more pleafant, if you let her creep upon the lower fide of your glafsobject-plate, and fo view that wavy Current of Spirits through the Microfcope; which handfome experiment does not onely prove the Spirit's circular motion, but alfo ocularly demoro

Micrafcopical Obfervations.
Arates that the Animal Spirits are the Soul's immediate inftrument in all Loco-motion.
Now if you reply that it is onely the parts of her body, that moving by a kind of undulation protrude ono another forwards, as Palmer.worms (which we call Wool boys,) and fome fort of Caterpillars do : To this 1 anfwer, that do but intenfly obferve any one of the former fpots or clouds, and you fhall fee it go quite along from the tail to the head, keeping alwayes ann c qual diftance from the precedent and fubfequent fpot: fo that it is far more ingenious to belicve it to be a gale of Animal Spirits, that, moving from her head along her back to her tail, and thence along her belly to her head again, is the caufe of her progreffive motion.

Observat. XXII.

Of Lampreys.

THe Lamprey hath feven holes or cavities, on cifide three or four, and no gills at all, as other filies have ; whence the common people, through ignorance of thefe cavities, and their proper ufe in nature, have affirmed them to be liyes; an errour fogrofs and palpable, that it needs not the Microfiope to refute it: For thele holes or fluces do indeed fupply the defect of gills, and are affifted by the conduit in the head, for (like Cetaceous Animals) the Lamprey hath a fiftula, fpout or pipe, at the back part of the head, whereat they firt out water, fo that both thefe cavities and the head-pipe together, do very neatly fupply the defect of
gills, and execute their office of receiving and ejecting water again.

Thefe fluces and the fiftula, fhoot themfelves nopewife, and not ftraight torwards, into the cavity of her weck.
The Heart in this Animal is very ftrangely fecured, $\& 2$ lies immured or capfulated in a Cartilage, or grilly fubftance, which includes the Heart and its Auricle, as the Scull or Pericranium does the Brains in other Animals; it is of a horny and tranfparent fubftance, of an obtufe conical figure, cemented and glewed as it were on all fides to the Pleura, or innermolt skin of the Thorax; the Cone or obtufe Tip of this Capfula, butts or flhoots it felf into the bafis of the Liver, which to give way thereunto has an oval cavity or hollownefs exactly fic to receive it.

In this Cartilaginous Pericardium, or purfe of the heart, is likewife the Auricle co-included, lying not upon the bafis of the heart as in other Animals, but laterally adjacent thereunto, infomuch that it being far more flaggy then the heart, they feem to reprefent the right and left ventricle of the heart. Yet is the Heart, not onely more folid, but feated in the right fide, and the Auricle in the left.
If the Lamprey be laid upon her back, and you gently lift up with a probe, the Heart and Auricle; you thall fee a fine thin Membrane arife, which feparates the Heart from the Auricle, as the falx cerebri does feparate the left fide of the brain from the right.

From this Auricle proceeds a little fhort Channel, which perforates this feparating Membrane, and brings the bloud from the auricle into the heart, we thruft a probe juft under this Channel betwixt the Heart and the Auricle

Microfcopical Obfervations.

Auricle, to fee the bloud paffe from the Auricle into the Heart; for at every pulfe of the Auricle you might fee the bloud paffe through this Channel into the heart; tor alwayes, as the bloud paffed through it was blew, and, when empty, pale, and tranfparent, that I could eafily fee the Probe thorow it.

Whileft I had the Probe in this pofition, with another Inftrument and it together, I quite ftopped the Channel on purpofe to hinder the bloud from coming into the heart, which thereupon grew very pale, and in a fhort time cealed its motion; the Auricle in the interim fwelled and was very red. I no fooner opened the Channel to let the bloud have a free paffage as formerly, but the hoart began afrefh to beat again.
We pricked the heart while it was in its motion with a large pin into the cavity thereof, and at every fytole or contraction, we plainly faw a drop of bloud fqueez'd and ejected out of that hole.

In this Animal, you may eafily diftinguifh between the motion of the heart and auricle, for there intercedes the time of a pulfe twixt che motion of the auricle and the heart; and the heart in every diaftole is of a fair purple and ruddy colour, and in every fyfole pale and wan, as is obfervable in Frogs and other Fifhes alfo; where you may fee the heart to fhift colours by turns, as it receives or ejects the bloud in the performance of the circulation.

Now the reafon of this Cartilaginous Capfula of the heart in this Creature, might be its defect of bones and thofe coftal ribs, which ferve others to fecurc the heart from all external violence; for, fhe wanting thefe, had not Nature wifely fecured and capfulated the heart in this grifte, it had been fubject to all external inju-

Microfopical Obfervations.

and reflecting the Suns rays, feem here and there of Rainbow colours:
Being layd of a row or train, they feemed like a Cawyy of Crytal Stones, or pure Alum Lumps: So that now we need not to much wonder with the Vulgar Philolophers, how fo clear and glorious a body as glafs, flould be made of fo durty, opace, and contemprible Materials, as Afhes and Sand; fince now we are taught by this Obfervation that Sand, and Salt which is in the Afhes, the two prime Materials thereof, are of themfelves fo clear and tranfparent, before they unite into that diaphanous Compofition.

Observat. XXXIV.

A jmall Atom of Quick-falver.

AN Atom of Quick-filver (no bigger then the fmalleft pins. head) feemed like a globular Looking.glafs) where (as in a Mirrour) you might fee all the circumambient Bodies; the very Stancheons and Panes in the Glafs-windows, did moft clearly and diftinctly appear in it: and whercas, in moft other Mettals, you may perceive holes, pores, and cavities; yet in $\frac{\square}{\text { none }}$ at all are difcoverable; the fmalleft Aton whereof, and fuch an one, as was to the bare Eye, tantìm non invifibile, was prefented as big as a Rounfeval-Pea, and projecting a fhade ; Nay, two other Atoms of p, which were cafually layd on the fame plate, and were undifcernable to the bare eyc, were fairly prefented by our Microfoope.

1T is worth an Hour-glafs of Time to behold the Cryftal Sands that meafurc it; for they all feem like Pragments of Cryftal, or Alum, perfectly Tralucent, of irregular polyhedrical figures, not any one globular 3 every Corn about the bignefs of a Nuttmeg, or a Walnutt: which. from their unequal fuperficies refracting phragm to part the lower Venter from the Thorax.
The Lamprey likewife hath no bones: for the fpine or back-bone, it hath a Cartilaginous flexible Tube or Channel, withour any Vertebra or Spondyls in i, hollowed or tubulous from owe end to the other; in which lay the Spinal Marrow, which was of a ferous, thin, and milky fubftance.
In fome Lampreys, I have found the Liver (as DoCor Brown writes) of a pure grafs-green colour, which remain'd and kept that tincture whilft the Animallived; but when I had cut it out of the Body, and layd it by, it prefently turned into a faint Olive-colour. Befides I have in the begimning of April cut up many Lampreys, whofe Livers were of no fuch colour at all, but a dull yellow, like that of Eels and other Fifles.
So that in this Animal, and Suakes alfo, you may diItinctly fee the Bloud's Circulation.

Obsequat. XXXIIL.
Corns of Sand, Sugar, and Sale.
and

G 2

OBSER-

冨

Observat. XXXV.

Mercurial Powders.

N thofe Chymical preparations of Mercury, which they call Turbith-Mineral, Mercurius Vita, dulcis, fublimate, precipitate, and Mercury Cofmetical, you may moft plainly and diftinctly fee the globular Atoms of current and quick of befprinkled all amongt thofe Powders, like fo many little Stars in the Firmament : which fhews thiat thofe Chymical Preparations, are not near fo purely exalted and prepared, as they are prefumed to be; nor the Mercury any way tranfmuted, but meerly by an Atomical Divifion rendred infenfible.

That fubtle and pure yellow Powder of Meroury, called Mercurius vite, looked like the Yolk of an Kgge boyled hard and crumbled to a grofs Powder: in it and in that Meal. like Powder of Mercurius Co/meticus, were globules of ₹ plainly difcernable.

Microfcopical Obfarrations.

Observat. XXXVI.
Of the feven Terreflial Planets, as the
Cbymifs call tbem.

Ook at a polifh'd piece of any of thefe Metals and you fhall fee them all full of fiftures, cavities, and afperities, and irregularities; bue leaft of allin Lead, which is the clofeft and moft compact folid Body pro. bably in the world.

Observat. XXXVII.

Ribbans of all forts of Colours, Silk, Sat: ten, Silver and mixed.

IN the Silk Ribbans, you might plainly 1 fee the Contexture, how the Warp and the Weft crofs one another at right Angles; and how neatly they are platted, jult as in this Picture: In Satten Ribbans, one Warp croffed over three or four Wefts, moft lively and pleafant in Cloth of Silver, the Weft (being flat wired Silver) that croffes the Warp, it makes a fine Chequered Reprefentation.

Observat. XXXVIfi.

The fmall Duft, Pomder, or Seeds of the leffer Moon-wort.

Hat fmall pure yellow Meal or Duft, which you may fhake off from ripe Moon-wort, appears like a heap of little white round Bugles, or Seed Pearl, and fomething tranfparent when the Sun fhined, like to fome other fmall Seeds, with a fiber about every one of them like the femi-circular ribbe in a Pompion: So that this Experiment hath decided the old quarrel in
Herbalifm,

Microfopical Obfervations,

Herbalifm, Which is the leaft of Seeds; for though Muftard-feed do carry the Vogue amonght the People, yet its exiguity is to be refpectively underftood, of fuch Seeds as extend to large productions; for we fee that the Seeds of fweet Marjerom and wild Poppy, are far leffe; and the Sceds of Tobacco fo finall that a thoufand of them make not above one fingle Grain in weight: yet muft all give place to the fuper-exiguity of this farinaccous'Seed of Wort, which is indeed $\tau \tilde{\mathrm{v}}$ amesuizur inaxsitatr.
The exiguity and fmalnefs whereof may very well be one of the Magnalis of Nature, fomewhat illuftrating the great Work of the Creation, and valt Production from Ncthing.

Observat. XXXIX.

The Seeds of Wall-Rue, or mbite Maydenie. bair.

TAke one of the Leafs of Wall-Rue, (which haths the blackifh fcurff fticking to the back fide of it) and lay it upon the object plate, and you fhall fee all the Seeds look juit like a fett of black Buttons upon green Taffata; and every Button or Seed compaffed with a circle or ribbe, fomewhat refembling a Catterpillar: It hath been the Opinion of old Herbarifts, that the Capillary Plants had no Seeds, whicli errour did rile mealy from a popular inadvertency; for though thefe Plants carry not their Seeds in, vifible Husks, Pods,

Microfopical Obfervations.
Spikes, Fruits, $宀 c$. yet are they conftantly to be found on the back fide of their Leafs.

Observat. XL.

Of the Seeds of Strawberries.

TIs ftrange to fee, what feveral wayes Nature producethand fecureth the feveral Seeds of Plants; fome are preferved in large Pulps, as the Seeds of all pomiferous Plants. Others, befides the circuminvolving Pulpe, are immured in Shells, as all StoneFruit, © Oc. Others, in the leffer Pulp of their Berries, as Mulberries, Rasberries, © © But in Strawberries, Nature hath put out the Seeds, as if they were froutings from the Pulp : for thofe fmall fpecks or ptotuberances on the outfide of the Strawberry, are the Seeds thereof, and in the Micro/sope look not unlike the Strawberry; fome reddifh, yellowifh, and green colours, as the Strawberrics themfelves are.

Microfcopical 0bfervations.
Observat. XLI.
Corn Poppy Seeds.

THey are none of them globular, nor of a fmooth furface, but all like Kidneys in form, and of the feeming bigners of Walnuts,
 and like an Hony-Comb on the furface, with regular Sides and Angles, making all of them pentagonal and hexagonal areola's s and gliftering in the Sun-hine likeTiffue, or the Foil on the backfide of a Looking-glafs, as is prefented in thefe two Figures. Some other Seeds alfo looked not unlike them, as Henbane, Flower of Briftow, ©̛.

Observat. XLII.

The fmall Duft or Powder on the Pendents of Lillies.

IN all our common Garden-Lillies (cfpecially the Red and White) out of the middle of the Flower groweth a long fyle or poyntel, befer round about with Imall chives, which are tipped wi'h pendents, a fiagle pendent on the head of every Chivall pounced over with a fmall Duft or Powder, which will cleave to and finit your fingers : this Powder (taken from the yellow

Microocopical Obfervations.

Lilly) looks very pleafantly in the Microfcope, of a golden colour, and fonewhat diaphanous: where you may fee cvery Atom very diftinctly to be of an Oval Figure, exactly like fome Sort of Seeds: the Powder of the white Lilly pundents, looks of a pure pale yellow, and like fo many pieces of polifhed Amber.

Observat. XLili.

The Leafs of feveral Trees and Plants.

THe backfide of a Rofe-trec-Leaf, but efpecially of a fweet Bricr Leaf, looks diaper'd moft excel. lently with filver.

The backfide of the Leaf of Englif) Mercury, called bornus Henrrcus, looks, as if rough. caft with filver, and all the ribs are fluck full of round white tranfparent Balls, like innumerable Grapes, or Oake Apples, or a Bracelet of Cryftal; and we could discover little foot.ftalks in many of them, by which they were faftned to the ribs and fibers of the Leaf, which is a very pleafant Spectiacle.

A Leaf of Ruc looks all full of holes like an HonyComb.

A Sage Leaf looks like a white Rugge, or Shagge, full of Knots, taflel'd all with white filver' ' hrums, and one or two fine round Cryttal beads or pendents, as big as Peas, faftucd to every Knot.

Microfopical Obfervations.

Observat. XLIV.

Pink-pendents.

THe chives which grow out of red Pinks, and which are tipped with red Pendents, befmeared over with a Imall Mealy Powder, look very pleafantly in the Glafs; for every Pendent looks like a red Taffata Cufhionet, all befet and Sprinkled over with round white Beads, or Grumwel. feed.

Observat. XLV.

Of \mathcal{X} eitles.

LOok at the backfide of a Nettle.Leaf, and you thall fee it all full of Needles, or rather long fharp tranfparent Pikes, and every Needle hath a Cryftal pummel, fo that it looks like a Sword-Cutler's Shop, full of glittering drawn Swords, Tucks, and Daggers; fo that here you may autoptically fee the Caufes, as well as you have formerly felt the Effects, of their Netling. Something like them, appear the Prickles on BorrageLeafs and Stalks.

Observat. XLVI.

Gilla Theopbrafi.

T looks pleafantly, like a diaphanous heap of Icycles or firiated Niter; but not altogether fo regularly figured : but moft of them are oblong particles, angular, and pointed, whichmay perchance exftimulate the Stomach, (by its netling pungency) like a heap of needles, and lo promote its vomitory operation.

Observat. XLVII.

$$
A \mathcal{N} \text { itt. }
$$

ANitt is an Egge glewed by fome vifcous matter to the fides of the hair it fticks to ; it is Oval in fhape, white in colour, and full of tranfparent I iquor or Gel. ly, and feems to be cafed in a brittle Shell by the crackling it makes 'twixt your nails. In the fame manner appears a Nitt in a Horfe's hair: Muffet will needs have it a quick, or rudely-fhaped Animal. Thus difcurfive Argumentation and Rational probabilities millead men in the Wildernefs of Enguiry; but he that travels by the Clew, which his own fenfe and ocular obfervation has fpun out, is likclieft to trace the fecureft path, and go furtheft into the Maze and Labyrinth of Truth.

Observat. XLVIII.
A Line drawn upon Paper.

A^{s}S thefe dioptrical Glaffes, do heighten and illuftrate the Works of Nature, to do they on the other fide, difparage and depretiate thofe of Art : For as they thew the incomparable exactnefs of the former, fo do they difcover the flawe and deficiencies of the latter; for a right line either printed or drawn never fo neatly upon paper appears all ragged, indented, and difcontmued by the rugofities and feeming protuberances of the paper, in which likewife you may fee whole clouds, as it were, of raggs, the primitive materials thereof.
I had a Rarity beftowed on me by Mafter Taylor (once a famous Scrivener in thefe Parts) which is, The Lords Prayer and Creed writ in words at length, and a Breviate alfo of the ten Commandments, and all couched (but diftinctly writ) in the compafs of a fingle penny. In the Micro/cope you might read it all, as if it were writ in Text hand, but all the Letters appeared (as we have obferved of the line) crooked and unhandfome; fo Inartificial is Art when the is pinched and freitned in her Workmanlhip.

Microcopical Obferbations.

fee fnall Sparks of Diamonds angular, andegrowing out of the Stone as out of a Mineral bed.

Observat.L.

Cf Hair.

T7E flit a black Horfe's Hair with a Rafor, and perceived it to be hollow, with a white ftreak like pith in the middle of it; it feemed as big as a Ruhn, and fike a Rufh flit length-wayes into two. They are none of them Cylindrical, but angular and cornerd, which you may even perceive by your fingers, by twirling a Horfe-hair in them : Now though Borrelius, and fome of our Anstomifts, as Bartholin, Riolan, छc. fay the like of the Hairs of a mans head, that they alfo are hollow within, and angular and corner'd without : yet I could never perceive neither the one nor the other in any of the Microfopes 1 have feen, though 1 have tried it in four excellent ones, the worlt whereof I am confident was better then that of Borrels: In all which, I could perceive nothing of an Hair, but that it was like a thin horn fomething diaphanous (efpecially in the full Sun) which diaphanity might perchance hinder the appearance both of its cavity and angularity alfo: for I my felf have lietle glats pipes of folittle a Cylinder, and fo fmall a bore, that their hollownefs to the bare cye is utterly imperceptible.

And fince the briftles and quils in other Animals are fenfibly hollow, which are analogous to the hairs in a man; I doubt not, but every one of our hairs is hollow alfo, which though our Glaffes (by realon of their tranf-
parency) cannot prefent, yet it is palpably evinced by an odde Experiment inPoland, where there is a dileafe (they call the Plisa) which makes the very hairs of their heads drop bloud at the ends, and if cutany where, to drop bloud there alfo; which infallibly proves the tubulous cavity of them. Befides, we fee the hairs do grain and fork themfelves, (when grown too long) which is a fign alfo of their hollownefs.

What, thall we judge them too fmall to be perforated by Nature? fince we fee the has perforated Veffels within the Body, as fmall as hairs, as the Vene Ladea, and Lymphreducts; nay, fince we fee that Art can blow a glafs hollow, and yet as fmall as a hair ; and your Wiredrawers know, that if they take a fhort piece of Wire, as thick as a quill, and drill it through, that then though they draw it out to the fmalnefs of a hair, yet will it ftill remain hollow quite through in defpite of their Wurdle : which is as great a Miracle in that Engine, as that the like Wire once gile, fhall remain perfectly gilt all over, though it be drawn five hundred yards longer than it was at firft ; which is an experimental truth, and the dayly practice of our Wire-drawers in London. So that the conclufion of this Obfervation may be this, that every hair of our head is as a little quill or horn, hollow and tranfparent. Which feems to be further avouched alfo by the burning of hair; for there you may perceive the fame odour and fmell, as of burnt horn; and the Chymifts, as I remember, draw out of hair a volatile Spirit, exactly like that of Harts-horn:both which experiments do prove an homogeneity and fimilarity of their fubitance.

Of Aromatical, Electrical, and Magnetical Effluxions.

Ome with a Magifterial Confidence do rant fo high
as to tell us, that there are Glaffes, which will reprefent not onely the Aromatical and Electrical Effluxions of Bodies, but even the fubtile effluviums of the Load-ftone it felf, whofe Exfpirations (faith Doctor Higbmore) fome by the help of Glaffes have feen in the form of a Mift to flow from the Load-ftone. This Experiment indeed would be an incomparable EviCtion of the Corpareity of Magnetical Effluviums, and fenfibly decide the Controverfie 'twixt the Peripatetick and Atomical Philofophers.

But lyam fure he had better Eyes, or elfe better Glaffes, or both, then ever I faw, that performed fo fubtle an Experiment: For the beft Glaffes that ever I faw, would not reprefent to me, the evaporations of Camphire (which fpends it felf by continually effluviating its own Component Particles;) nay, I could never fee the groffer fteams that continually perfpire out of our own Bodies, which you fee will foil and befmear a polifhed Glafs at any time ; and which are the fuliginous Eructations of that internal fire, that conftantly burns within us.

Microfcopical Obfervations.

Indeed if our Diopticks cotild attain to that curiofi. ty as to grind us fuch Glaffes, as would prefent the Effluviums of the Magnet, we might hazard at laft the difcovery of Spiritualities themfelves: however it would be of incomparable ufe to our Modern Corpuf. cularian Philofophers, who have banifhed Qualities out of the lift of the Predicaments. And truly, as the Learned Doctor Brown hath it ; The Doctrine of Efluxions, their penctrating Natures, their invifible paths, and unfufpected effects, are very confiderable: for (befides the Magnetical One of the Earth) feveral Liffufions there may be from divers other Bodies, which invifibly act their parts at any time, and perhaps throughany Medium: A part of Philofophy but yet in difcovery; and will, I fear, prove the laft Leaf to be turned over in: the Book of Nature.

Some Confiderations, Corollaries, and Dedugions, Anatomical, Phyfical, and $O p$ tical, drawn from the former Experi. ments and Ob/ervations.

FIrft, Therefore, it is Ocularly manifeft from the former Obfervations, that, as perfect Animals have an inceffant motion of their Heart, and Circulation of their Bloud (firft difcovered by he illuftrious Doctor Harvey;) fo in thefe puny automata, and exfanguineous pieces of Nature, there is the fame pulfing Organ, and Circulation of their Nutritive Humour alfo: as is demonitrated

Microfopopical 0bfervations.

monftrated by O BSER V. fourth, fixth, feventeenth,

Nay, by OBSER V. fixth, it is plain that a Loufe is a Sanguineous Animal, and hath both an Heart and Auricles, the one manifeftly preceding the pulfe of the other ; and hath a purple Liquor or Bloud, which circulates in her (as the Nobleft fort of Animals have) which though it be onely confpicuous in its greateft bulk, at the heart, yer certainly it is carried up and down in Circulatory Veffels; which Veins and Arteries are foexceeding little, that both they and their Liquor are infenfible : For certainly, if we can at a Lamp.Furnace draw out fuch fmall Capillary pipes of Glafs that the reddeft Liquor in the World fhall not be feen in them (which I have often tried and done;) how much more curioufly can Nature weave the Veffels of the Body; nay, and bore them too with fuch a Drill, as the Art of man cannot excogitate: Befides, we fee, even in our own Eyes, that the Sanguineous Veffels that run along the white of the eye (nay and probably into the diaphanous humours alfo) are not difcernable, but when they are preter-maturally diftended in an Ophthalmia, and fo grow turgent and confpicuous.

To which we may adde, that in moft quick Fifh, though you cut a piece of their fleth off, yet will no bloud be difcernable, though they be fanguinenus Animals; but the bloud is fo divided by the minuteneds of their Capillary Veffels, or percribration through the habit of the Parts, that either it has loft its rednefs, or our eyes are not able to difcover its tincture.

Secondly, It is obfervable alfo from the former Experiments, that in thefe minute Animals their nutritive Liquor never arifes to the perfection of bloud, but con-
tinually
tinually as it were remains Chyle within them, for want of a higher heat to dye it into that Spirituous Liquor : Nay, you fhall obferve in perfect Sanguineous Animals a Circulation of an albugineous chylie-matter (before the bloud have a being) if you take Nature at the rife, and critically obferve her in her rudimental and obfcure begimings.

For view but an Egge, (after the fecond day's Incurbation, and you fhall fee the cicarricula in the Yolk, dilated to the breadth of a groat or fix-pence into tranfparent concentrical circles; in the Centre whereof is a white Spot, with fmall white threads, (which in futurity proves the Heart with its Veins and arteries) but at pre. fent both its motion and circulation is undifcernable to the bare eye, by reafon of the feeblenefs thereof, and alfo becaufe both the Liquor and its Veffels were concolour to the white of the Eggs they fwum in; but the Heart does circulate this ferous diaphanous Eiquor, before (by a higher heat) it be turned into bloud.
And one thing here I am tempted to annex, which is a pretty and beneficial Obfervation of the Microf/cope, and that is, That as foon as ever you can fee this red pulfing Particle appear (which Doctor Harvey conceited, no to be the Heart, but one of its Auricles) you fhall moft diftinctly fee it, to be the whole Heart with both Auricles and both Ventricles, the one manifeftly pre. ceding the pulfe of the other (which two motions the bare eye ;adges to be Synchronical) and without any interloping perify:tole at all: So admirable is every Organ of this Machine of ours framed, that every part within us is intirely made, when the whole Organ feems too little to have any parts at all.

Thirdly, It is peculiarly remarkable from obferva-

Microfopical Obfervations.

tion $\times \times x$. That not onely the bloud in perfect Animals, and the chyle in imperfect ones; but alfo the Animal Spirits have a Circulation, which fingular obfervation hath often provoked and entifed our endeavours into a further enguiry after the Nature of thefe Spirits, as to their Origin or Generation, their activity and motion, with fome orher eminent properties belonging to them : we flall draw our thoughts together, and fo prefent them to your View: I will not fay, that our difcourfe hereon, fhall pafs for an un.controllable authentick Truth; it is all my ambition if it attain but to the fávotrable reception of a rational Hypothefis at laf.

A Digresion of the Animal Spirits.

FIrft, then, we have not thofe narrow conceptions of there fubtle Spirits to think that they are onely incladed within the Bodies of Animals, or generated
(much lefs created) there, but are univerfally diffufed throughout all Bodies in the World, and that Nature at firt created this atherial fubftance or fubtle particles, and diffufed them throughout the Univerfe, to give fermentation and concretion to Minerals; vegetation and maturation to Plants; life, fenfe, and motion to Animals; And indeed, to be the main (though invifible) Agent in all Natures three Kingdoms Mineral, Vegetal, and Animal.

And left they fhould (becaufe of their exceeding volatility and activity) be of litele or no ufe, Nature hath immerfed them in grofler matter, and imprifoned them in feveral Bodies, with whith the has intermixed them,

Microfoopical Obfervations.
the better to curb the boundlefs activity of fo thin and fpirituous a fubftance, and therefore the Spirits (of all compound Bodies efpecially) ought to be confidered under a triple notion:

Viz. Under the ftate of $\left\{\begin{array}{l}1 . \text { Fixation. }\end{array}\right.$
 2. Fufion.
 3. Volatilization.

Firft of Fixation, when they are fo complicated with the groffer Particles of Matter, and lockt therein to faft, that they can hardly be feparated, and difimprifoned as in Minerals, but moft efpecially in Gold.
Secondly, The ftate of Fufion, I call that, when the Spirits by any kind of help have fo wrought themfelves towards a Liberty, that they are in the middle way to Volatility, as in half.concooted Minerals, fermenting Vapours or Liquors, and half. ripned Fruits, \& c.
Thirdly, The Spirits are in their third ftate of Volatility, when after a colluctancy with the groffer Particles they have fo fubjugated and overcone them, that they are juft upon wings, and ready to fly away; as in Wine when it is in the height of its fermentation, and in fone part of our arterial bloud alwayes. Now we ob. ferve that thole Bodies that relax and open the groffer compofition of other Bodies, do prefently create a fermentation; for, being like fo many Keys, they fet the imprifoned Spirits at Liberty, which prefently fall on working, and by attenuating the groffer parts,feparating the Heterogeneous, volatilizing fome, precipitating of others, digefting of others, expelling of others, do at laft mould it and work it to fuch a Body, as the parts of it are fit to make up:In all which interval of time, there is a pal.

Microfcopical Ob/ervactions.

pable and fenfible heat produced: Thus this Spirit being embowelled in the larth, and meeting there with convenient matter and adjuvant caufes, toth proceed to produce Minerals, creating an actual hear, wherefoever it operates, as in Allum or Copperafe Mines, which being broken, expofed, and mciftned, will gather an actual hent, and produce much more of thofe Minerals, then elfe the Mine would yield, as Agricola and Thurnifeer do affirm, and is proved by common experience.

The like is generally obferved in Mines, as Agricola, Eraftus, and ibanius, छre. do affirm and avouch out of the dayly experience of Mineral men, who affirm, that in moft places they find their Mines fo hot, as they can hardly touch them; akhough it is likely that, where they work for perfect Minerals, the hear which was in fermentation whilft they were yet in breeding, is now much abated, the Mineral being grown to their perfection, as the skilful and excellent Doctor fordan very well infers.

The like heat we obferve conftantly to be in our Cole-pits: Nay, we fometimes obferve in our Brafslumps (as our Colliers call them) which is a kind of Marcafite, a very great heat ; for being expofed to the moift Air, or fprinkled with water, they will fmoak and grow exceeding hot; and if they be layd up on a heap and watered, they will turn into a glowing red hot fire, as I have feen them my felf.

And it was a Cafialty once terrible to our Neigh-bour-Town of Ealand; for there, one Wilfon a Patient of mine, having, pild up many Cart. loads of thefe Braf:lumps in a Barn of his, (for fome fecret purpoles of his own) the Roof letting rain-water fall copioully in amongt thẹm, they all began to fmoak, and at hift to

Micro/copical Observations

take fire, and burnt like red hot Coals; fo that the Town was in an uproar about quenching of them; and one thing further I took Special notice of in this unlucky Experiment, that the Water which drained from the quenching of them, left little pieces and Cryftals of Copperafe flicking all along to the Piles of Grads, that grew in the Croft it run down.

Thus Antimony and Sublimate being mixed logether, will grow fo hot (the one relaxing the fermenting Spirit in the other) that they are not to be touched.

Thus in the Corrofion of Petals by Aqua fortis, what a ftrong heat is there in the Liquor, and what a fleam constantly evaporates during their fermentation. In the Commixtion of Cyl of Vitriol with Cyl of Tartar per deliquium, what a violent heat and effervescence do prefently arife, befides a tharp and acrimonious vapour that trikes our noftrils./ Nay, and we fee our Subterraneous Damps do fometimes with intermixtion with the moil Air, grow to that over -height of fermentation, that they fire of themfelves and trike down all before them.

Thus the Spirit of Niter mixed with Butter of Antimong, grows fo hot, that it is ready to rife in a flame.

Thus certainly do all Baths receive their heat from Mineral Vapours, or the Minerals themselves, being in folutis Principis, and fo the fermenting Spirit fens a playing in them, as the Learned Doctor Jordan did mot ratonally conjecture.
This univerfal fermenting Spirit does not onely play thee feats in the Mineral; but alto operates in the fame manner in the Vegetable Kingdome, which we ocularly behold in the Artifice of Malt, where the Grains of Early being moiftned with water, the parts are relaxed,

Microfoppical Obferbations.

the internal Spirits in them are dilated, and put into action; and the fuperfluity of water being removed (which might chook it) and the Early being lay up in heaps, the fermentation and heat prefently appears, with a kind of vinous fleam and effluvium which paffe from it, and therefore it hots forth into Spires. Thus we fee in wet. Hay, how the fipits work not onell to a heat, but (if they be not cooled and prevented by Ventilation) they break out into a flame alfo; Nay, in all Vegetables there is this conftant Heat (though it be below our Senfation) as it is in Some Fifhes and colder Animals alfo, and a conftaut fleam and tranfpiration of particles, as we have experimentally proved in our XXV. observation.

And now let us purfie the fe Spirits into the Animal Kingdom, and we foal fee that they have the like effects and operations there alfo, as is formerly obferved; onely, being there in greater plenty, and more purely refined, and in a constant fate of Fufion and Volatility, they work nobler effects.

Now the Spirits that are lodged in all the meats and drinks we receive, being more or less fixed therein; What does the Soul, but (like an excellent Chymift) in this internal Laboratory of Man, by a fermentation of our nourihment in the ftomach and guts, a filtration thereof through the Lactea, a digeftion in the Heart, a Circulation and Rectification in the Veins and Arerims: what does he, 1 fay, by there several Ply/fico-Chymical operations, but Arrive all this while to unfix, exalt, and volatilize the Spirits conteined in our nutrimont, that fo they may be tranfmitted to the Brain, and its divarications, and in that reconditory kept and repofired for her ute and fervice.

Microfopical Obfervations．

So that thefe which we now call Animal Spirits are the pureft，fubteft，and moft volatile particles and act：－ veft Atoms of the bloud，which by continual pulfation of the Heart are carried with the bloud by the carotidal Arteries up into the Brain，and there by that lax and boggy fubftance are imbibed and feparated from the bloud，and thence by the Spinal Marrow and Nervis tranfmitted to all the parts of the Body．

Now as the Chyle is perfected in the ftomach and guts，and their appendent Veffels，the lacteal Veins； and as the bloud is perfected in the Heart，and its an－ nexed Veffels，the Veins and Arteries：fo the Animal Spirits are feparated，preferved，and perfected in the Brain，with its continued trunk and branches，viz．the Spinal Marrow，Nerves，and Fibers，for the ules here－ after to be declared．

Now the two former Liguors，the Chyle and the Bloud（becaufe of their groffer liquidity）need to be conveyed in hollow Pipes and Channels（viz．the Veins and Arteries；）but the Spirits which is the quinteffence of them both，can eafily pafs by a fwift filtration， through the Brain，Spinal Marrow，and Nerves，Mem－ brases，and Fibers，which are as it were the Cords， Sayls，and Tackling，to move this Engine or Veffel we call the Body．
－Nay，though we can give you no fenfible eviction of it，Why may not all thofe long filaments of which the fubftance of the Brain，Spinal Marrow，and Nerves confifts，be tubulous and hollow；fo that the Animal－ Spirits may be channelled through them，as the bloud through the Veins and Arteries？I am fure，we fee by Obfervation xxxi．and L ．what infinitely fmall filaments and veffels there are in Animals，and yet all tubulous

Microfcopical Obfervations．

and perforated；fo that the fuddain inflation of all thofe capillary threads or pipes，may ferve for Motion of the Body，and the conftant though flower filtration of the Spirits through their Coats and Cylindrical Mem－ branes may ferve for Seufation．So that it feems，this Cottage of Clay，with all its Furniture within it，was but made in fubferviency to the Animal Spirits；for the extraction，feparation，and depuration of winich，the whole Body，and all the Organs and Utenfiis therein are but iuftrumentally contrived，and preparatorily de－ figued．Juft as the Chymical Elaboratory with all its Furnaces，Crucibles，Stills，Retorts，Cucurbits，Ma－ trats，Bolt－heads，Pelicans，छ$⿱ ㇒ ⿺ 丄 丅 八$ ．were made for no other end by the ingenious Chymift，than for the extraction and depuration of his Spirits and Quinteffences（which he draws from thofe Bodies he deals with）in（he ob－ tainment of which he hath come to the ultimate defign of his indeavours．
Now as in Minerals and Vegetables the colluctancy of thefe fermenting Spirits with the groffer matter，does both create a conftant heat and evaporation of Atoms： So in Animals，the like is more eminently confpicuous， to wit the vital heat，or calidum innatum，and thofe fuli－ ginous effluviums which pafs conftantly out of us Ty infenfible tranfpiration；which santorius hath proved to exceed the bulk and weight of all our fenfible Evacu－ ations what foever．
Having thus demonfrated how the Soul obtains thefe Spirits after her feveral operations of Digëftion，Chy－ lification，Sanguification，Circulation，© 6 ．the like now let us fee what ufe fle makes of fo pretious a fub． ftance．

Pirft，thercfore we affirm，that this thin and firitu－ K 2 ous

Microfcopical Obfervations.

ous matter, which is called the Animal Spirits, is the immediate Infrument of the Soul, in all her operations both of Senfe and Motion. Firft, for fenfe, it is plain by what is difcovered in a Vertigo ; for the Brain it felf is not of fuch a fluid fubtance, as to turn round, and make all objects to do fo too; wherefore tis a fign that the immediate corporeal inftrument of conveying the images of things, is the Spirits in the Braill. Secondly, That they are the chicf Engine of Sight, is plain; not onely becaule the cye is full of thefelivid Spirits, but alfo becaufe dimuefs of fight comes from deficiency of them, though the parts of the eye otherwayes be entire enough, as in fick and old perfons, and in thofe tronbled withan Amaurofis, or Gutta Serena. I had the Inft yeara Patient, a young Boy of feventeen years old, who fell cafually ftark blind of his right eye; in which you could outwardly difCover no fault at all (the Difeafe being an A masro/is, or obftruction of the Optick Nerve) for, that Nerve being by fucceffful means dilobftructed and relaxed, fo that the Animal Spirits were able to flow done to the Retina again, he fhortly after perfectly recovered his fight agaun, without any relappe at all, to this prefent day. Thirdly, If you calt a Ligature upon any Nerve, you deftroy both the.fenfe and motion of that part whither that Nerve was pro. pagated (as by that pleafant Experiment by tying the recurrent Nerves in a living Dogg, we have tryed) till by relaxing the Ligature the Spirits may have the freedome to channel into the Nerves again: Which truth is alfo handfomely made out, by that ordinary example of a mans Leg being afleep (as we call it) for by com. preffion of the Nerves, the propagation of the Spirits into the part is hindred; for, as feufe and motion is reftored,

Microfopical Obfervations.

- ftored, you may feel fomething creep into the Leg, tingling and ftinging like Pifmires (as spigglius compares it) which is the return of the Animal Spirits into that part again. Fourthly, That Spontaneous motion is performed by continuation of the Animal Spirits, from the common Senforium to the Mufcle, (which is the grofs Enginc of Motion) is fenfibly evinced in dead palfies, where one fide is taken away.

Toall which add, the former Obfervation of the Spirits circumundulation when the Snail at any time moved, and of their joint quiefcency together.

Having now. hown you how thefe Animal Spirits are generated in our Body, or, to fpeak more properly, difimprifoned and feparated from our nutriment, and fo from fixation, brought through Fufion to Volatilization ; having alfo flown you what ufe Nature makes of them in Senfation and Motion: let us ferew our Enguiry a little further, and fee if we can difcover how the Spirits move in the Brain and Nerves, to perform the fame operations. Firft, therefore, we affirm that a leffer quantity and flower motion of the Spirits is required for Senfation, than there is for Motion; for in this the Mufcle fwells that maves the part, which is a plain Indication of a greater influx of Spirits directed thither ; a greater, I fay, for I do not deny but there is re. quired to fenfation a moderate quantity and diffulion of the Spirits into all the parts of the Body, elfe we fhould alwayes be benummed and ftupid (as when our. Leg is afloep) by an interception of the Spirits. Secondly, that their motion is flower in fenfation then motion; the former Experiment of the Snail does ailo manifeft: whofe Animal Spirits never begin to undulate till fhe begin to move, whereas fhe is fenfible when theys

Microfopical Obfervations.

are in Quiefcency, as you may, by pricking her with a Needle,eafily oblerve. Thirdly, in the return of the Spirits into the fupefied Leg, we plainly perceive by the prickling, what a flow motion the Spirits have.All which Phenomena do feem to favour our former Conjecture, that for Motion the Spirits move impetuoufly down the nervous filaments, (which are hollow;) but for Senfation they onely creep by a filtration down their Coats and Membranes.
Now thefe Spirits being fo fubtle and diffipable, the Soul fpends them every day in ufing of them, and they being much fpent, fhe can hardly move the Body any longer: The fenfe whereof we call Laffitude; For certainly, as Doctor More very ingenioully inferrs, if it were an immediate faculty of the Soul to contribute Motion to any matter ; I do not underftand (that Faculty never failing nor diminifhing, no more than the Soul it felf can fail or diminifh) that we fhould ever be weary.

Thus are the Pheromena of Senfe and Motion beft Salved, whillt we are awake; now what happeus when we fleep, is a matter of further enquiry: Some have defined Sleep to be a migration of all the Spirits out of the Brain, into the exteriour parts of the Body; whereas by our former Oblervations, it may rather feem to the contrary ; that is, The retraction of the Spirits into the Brain, or at leaft a reftaguation of them in the nervous parts, does (till Nature being recruited by a new fupply and regeneration of them in the Brain) direct them into the Spinal Marrow and Nerves, which being replenifhed with them again, they run their current as before; fo the whole Animal thereby is made capableof feeling the Impulfes of any external object whatever

Microfopical Ob/ervations.

(which we call, Waking) and during this Interval and Non-tearm of fenfation (for fo we may without a Complement call Sleep) why may not the Soul be retracted, and wholly intent upon, and bufied about, her Vegetative and Plaftical Uperations? So that when the has locked up the doors of this Laboratory the Body, fhe may be bufie in augmentng, repairing, and regenerating all the Organs and Utenfils within, and painting and plaiftring the Walls without. This 1 am fure we obferve to be the greateft part of her obfcure employment in the Womb, where the Embryo for the molt part fleeps, whilf the Soul is in full exercife of her PlaItick and Organo.Poietctical Faculty.

Now thele Animal Spirits being continually tranfmitted from the Brain, through the Spinal Marrow, Nerves, Tendons, \& Fibers, into all the parts of the Body (efpecially whilft we are awaking) may, fome of them at leaft, have a kind of circulation; for thofe which perfpire not, having lof their motion, may either mix with the bloud in babitu partium, or relapfe into a kind of infipid phlegm, as Clymical Spirits do, that are not purely rectified, and to be returned back by the Lym. phiducts again.

Laftly, I have but one paradoxical and extravagant Quere to make, and that is this ; That fince we have proved thefe Animal Spirits to be the ultimate refult of all the concoctions of theBody, the very top and perfection of all Nature's operations, the pureft and moft x therial particles of all Bodies in the W orld whatfoever, (and fo confequently of neareft alliance to Spiritualities) and the fole and immediate inftrument of all the Soul's operations here, even in fatu conjunto (the Body and the Organs thereof, being but fecondary and fubfervient

Microfoopical Obfervations.

Inftruments to the Spirits:) Thefe things being thus premifed, may it not be probable enough that thefe Spirits in the other World, thati onely be the Soul's Vehicle
 mentioned by the Apoftle; by a vital re-union with which, it may fupereminently out-act all that ever fhe was able to do in this earthly Prifon and heavy Cottage of the Body ; fince alfo (which I may fuper-adde) thofe volatile Spirits (being freed by a conttant and perpetual diffipation from the Body) are diffufed through this great xetherial Occan,as into their proper Element, ready to be united to the Soul at the inftant of her Sem paration.

Fourth Deduction.

FOurtbly, The Phyfiologift alfo may gather fomething from the former Obfervations, touching the nature of Colours ; that they are indeed nothing but the various modification of Light. For moft, if not all, Bodies in their minute particles (through which the Sun's Rays have more freedome to penetrate) feem to lofe their Colours, and grow diaphanous, as you may ob. ferve in the Microf cope.

Secondly, Is it not fhrewdly probable, that fince motion is the caufe of fight, (which is nothing elfe, but the impulfe that the Luminous Atoms make upon the Retina:) Is it not, I I Ay, fhrewdly probable, that Colours are nothing elfe but a various modification of this motion, fince we fee that they are both naturally and artificially made by light, to which we can imagine nothing to be added or deducked to fuper-induce thofe fine Tinctures

Microfapical Obfervations.

as in the Rain-bow, the Prifme, cryttal Pendents, Glafs. Globes filled full of water, and in thofe arenulous Atoms in the former Experiment xxxiii, except fome change in the motion of the Luminous Atoms, which mult neceffarily follow from the diverfities of Objects and Mediums they either hit upon or pafs thorow ; and fo confeguently do either accelerate or retardate the Solary Atoms in their Dinetical and progreflive Motion; whence arifes both the diverfity and variety of all colours whatfoever, as that profoundeft Mafter of Mechanicks (Des-Cartes) hath both fubtilly excogitated, and ingenioufly illuftrated by the Prifme.

To which we fhall add fome further experimental E viation:
Firlt, If the Hole (through which the Species is traifmitted into a dark room) be covered with a leaf of Beaten Gold, it will not onely look of a pure green colour, but all the light trajected through it will put on the fame Tincture.

Secondly, If with a Prifme you frike the Rainbowcolours upon a wall, and obferving where a red is projected, you there place an Eye, the Spectator fhalr judge it to be another colour ; becaufe that the Solary Atoms, which flot through the Prifme upon the wall, and there painted that colour, being again and again refracted by the Diaphanous Humours of the Eye, muft needs, in all reafon, exclange their motion, and fo confeguently paint the Retina with another colour: both which Experiments shew, that Colour is nothing elfe but the modification of Eight, which by the alteration of its motion is dyed into colours. The like Artificial alteration of the Colours may be made by interpofing a Burning-

74

Microfoopical Obfervations.

Glafs 'twixt the Prifme and the Light, and 'twixt the Prifine and the Paper.
But this Cartefian Theory of Colours we hall further make out by feveral Experiments in the Extraction, Commixtion, and Tranfcoloration of Tinctures. Firft therefore,

If into the Infufion of Violets you put fome few drops of the oyl of Tartar per Deliquium, it will prefently ftrike it into a green Tiucture : now, if inftead of that oyl you put in oyl of Vitriol, it Atrikes it into a purple Colour : to which if you fuper-add fome drops of Spirit of Harts.Horn, it frikes it green again.

Secondly, If into the Tincture of dryed Rofes (drawn in Hot-water with oyl of Vitriol after the ufual manner) you drop a few drops of Spirit of Harts-Horn, or of Urine, or of oyl of Tartar per Deliguium, it will prefently frike the red into a green Colour ; which by a fu-per-addition of the oyl of Vitriol, you may re-tincture as before.
Thirdly, If into an Infufion of Copperofe you have a little Gall, it prefently puts on a Sable inky Colour; into which if you put a few drops of the Spirit or oyl of Vitriol, ie ftrikes out the Colour immediately, and the water becomes white again; to which if you fuper-add a few drops of oyl of Tartar per Deliquium, it re-denigrates it again.

Thus a Glafs of the Sweet-Spaw-water alfo, upon the Infufion of Gall, turns into a Claret-colour: but if you drop but a little of the faid oyl or fpirit into it, it prefently eats out the Colour, and the water returns to its primitive clearnefs again.
Draw a faint Tincture of Brafil wood, bruifed or rafped in lake-warm water, filter it, and clarifie it; then if you

Microfcopical Obfervations.

you add a little fharp vineger to a good quatity of it, it will ftrike it into the exact colour of good ftale Englifh Beer, and it will partly have the fmellof it alfo.

Secondly, If into another quantity of the faid reddifh Infufion you adda few drops of the oyl of Tartar per Deliquium, it will turn it to a pure purplifh red, like excellent Claret.
Thirdly, If into this Artificial Claret you drop a few drops of the oyl of Vitriol, it will turn it into a pale Amber colour (like Sack as may be) which with addition of fair water you may empale as you pleale. By which ingenious commixtion of Spirits and Liquors did Floram Marchand, that famous Water-Drinker, exhibit thofe rare tricks and curiofity's at London, of vomiting all kind of Liquors at his mouth.
For, firt ; Before he mounts the Stage, he alwayes drinks in his private Chamber, fafting, a gill of the Decoction of Brafil; then making his appearance, he prefents you with a pail full of luke-warm water, and twelve or thirteen glaffes, fome wafhed in vineger, others with oyl of Tartar, and oyl of Vitriol; then he drinks four and twenty glafles of the water, and carefully taking up the glaffe which was walhed with oyl of Tartar, he vomits a reddifh liguor into it, which prefently is brightned up and ting'd into perfect and lovely Claret.
After this firft affay, he drinks fix or feven glafles more (the better to provoke his vomiting) as alfo the more to dilute and empale the Brafil Decoction within him, and then he takes a glafs rinfed in vineger, and vomits it full, which inftantly, by its acidity is tranfcoloured into Englifh Beer; and vomiting alfo at the fame time into another glafs (which he wafhes in fair water) he

L 2
prefents

Microfcopical Obfervations.

prefents the Spectators with a glafs of paler Claret, or Burgundian wine; then drinking again as before, he picks out the glafs wafled with oyl of Vitriol, and vomiting a faint Brafil-water into it, it prefently appears to be Sack; and perchance if he wafl'd the one half of the glafs with 1pirit of Sack, it would have a faint odour and thavour of that Wine alfo.

He then begins his Caroufe again, and drinking fifteen or fixteen glaffes, till he has almoft extinguilhed the ftrength and tincture of his Brafil water, he then vomits into a Vineger-glafs again, and that prelents white Wine. At the next difgorgement (when his fomack is full of nothing but clear water indeed (which he has filld f_{0}, by the exceeding quantity of water which at every interval he drinks) he then deludes the SpeCtators by vomiting Rofe water, Angelica water, and Cinamon water into thofe glaffes which have been formerly wafhed with thofe Spirits. And thus was that famous Cheat perform'd, and indeed acted with fuch a port and flowing grace, by that Italian Bravado, that he did not onely trike an Admiration into valgar heads, and common Spectators, but even into che judicious and more knowing part of men, who could not readily find out the ingenuity of his knavery.
The Chymical Elaboratories likewife do teach us this Truth in Fumes and Smoaks, as well as Liquors (which indeed are but rarified and expanfed Liquors;) for Niter it felf, though nothing a kin to rednefs doth in diftillation yicld bloud-red Fumes (called by the Chymifts Salamanders-bloud) which fall again into a Li quor which hath nothing of red in it.
So Soot (though black) yet: when it is preffed and forced up into an exhalation by a ftrong fire, will fill

Microfopical Obferbations.

the Receiver with Milk white Fumes ; thus Sall-Armo. niack, and black Antimony, being equally mixed and gradually fublimed in an Urinal, will exhibit a Scene of Colours, and will make a tranfition out of one into another with a delectable variety.
By all which pleafant Obfervations, it palpably appears that the nature of Colours confifts in the free admiffion, tranfition, refraction, or reflection of light; from the Objects difcoloured; For firt, you fee fevce ral Colours introduced into Liquors by thofe Ingredients, that neither had nor could communicate any fuch tincture. Secondly, 'tis as plain, that the minute Particles and Atoms of thofe Bodies that were imbibed by the Liquors, and filled up their fmalleft Cavities or Interftice; , accordingly as they were altered in their fite, pofition, and motion; to were the Luminous Beams varioully tranfmitted, refracted, or reflected, and to confeguently thence refulted thofe feveral Scenes of Colours.

Thus when the Atoms wherewith the Liquor is fully. impregnated do relax and open themfelves, that the light may fairly penetrate, then is the Liquor limpid and clear; but if they draw up a little clofer one to another, fo that the light be refracted, then is the Liquor yellow; if clofer yet to a greater refraction of the Light, then is the Liquor red:but if in this randezvouz they draw up into a very clofe Body indeed, fo that by reafon of their contiguity, both in rank and file, no light can be trajected through them ; then opacity and darknefs arifes: If the Rays cannot break the front of them, then is a milky-Whitenefs prefented there.

Microfoppical Obfervations.

The Fifth Corolearyp Anatomical Confiderations about the Eye.'

OUr next Reflections fhall be made upon the Eye, to admire as well as contemplate Nature's variety in the conftructure and conformation of ta excellent an Organ: The two Luminaries of our Microso $/ m$, which fee all other things, cannot fee themfelves, nor difcover the excellencies of their own Fabrick: Nature, that ex. cellent Miffrefs of the Opticks, feems to have run through all the Conick Sections, in thaping and figuring its Parts; and Dioptrical Artifts have almoft ground both their Brain and Tools in pieces, to find out the Arches and Convexities of its prime parts, and are yet at a lofs, to find their true Figurations, whereby to advance the Fabrick of their Teleffopes and Microfcopes: which practical part of Opticks is but yet in the rife; but if it run on as fuccelsffully as it has begun, our Pofterity may come by Glaffes to out.fee the Sun, and Difcover Bodies in the remote Univerfe, that lie in Vortexes, beyond the reach of the great Luminary. At prefens let us be content with what our microfope demonitrates; and the former Obfervations, I amfure, will give all ingenious perfons great occafion, both to admire Nature's Anomaly in the Fabrick, as well as in the number of Eyes, which the has given to feveral Animals: We fee the T unica Cornea in moft Infects is full of perforations, as if it were a Tunica Vvea pinked full of Holes, and whereas perfect Animals, have but one Aperture, thefe Infects have a thoufand Pupils, and fo fee a Hemifphere

Microfcopical Obfervations.

Hemifphere at once : and indeed 'tis worth our confideration to think, that fince their Eye is perfecaly fixed, and call move no wayes, it was requifite to lattice that Window, and fupply the defect of its Motion, with the multiplicity of its Apertures, that fo they might fee at once what we can but do at feveral times, our Eyes having the liberty and advantage to move every way (like Balls in Sockets) which theirs have not.
Secondly, We obferve no diaphanous parts in thofe lattic'd Eyes, fince it is probable, that the Horney Coat of the Eye ferves alfo for a Pericranium for their Brain: For, that the Brain of moft Infects lies in their Eyes, feems to me more than a probability. Firft, becaufe in Flies, Butter-fies, Bees, © C. you can find no other place in their Heads, wherein any matter analogous to the Brain, can be lodged. Secondly, in the Eyes of thole Infects you fhall alwayes find great fore of a pulpous fubttance, like to be Brain in thofe Creatures. Thirdly, the Eyes in all Infects are very large, and feem difproportional to fo fmall Bodies, if intended for no other ufe than Vifion. Fourthly, why may not this lattic'd film of their Eye be their Tunica Retina, which as it is concave in us, is convex in them; and as it is made of the Brain in us, fo it is in them, and therefore lies contiguous to it, and may indeed be over caft, by a tranfparent Cornea, through which the Net-work of this interiour film may thus eminently appear; For certainly fuch Animals as have diftinction of Senfes, as Seeing, Feeling, δc, muft needs have an Animal-Senfation; an Animal, 1 fay, for I hold alfo a natural Senfation, which is performed without a Brain, and fuch an one is difcoverable even in Animals, and in our own Selves; for befides the Animal-Senfation (whofe original is in the Brain)

Microfcopical Obfervations.

Brain) the Stomach, Guts, and the Parenchymata of the Body, yea and the Bloud too has a natural Senfation of what is good, and what is bad for them, as Doctour Harvey has excellently proved, Lib. de Gener. and fo fome of the loweft rank of Animals (as the Zoophyta and plant-Animals) may perchance be utterly devoid of Animal, and have onely a Natural Senfation; but this belongeth to fome Anatomical Obfervations I have by me, where I may perchance prove that all Vegetables (as well as the Senfitive and humble Plants) have this latter kind of Senfation, as well as Animals.

But let us return to the Eye again, of which curious Organ I am tempted to fay much more; but that I have referved that difcourfe as more proper formy Telefcopical Obfervations. Onely for the prefent, to encourage the Lovers of free Philofophy, and tolet them fee that even the greateft Oculits and Dioptrical Writers, that the World ever faw, Kapler, DesCartes, Schemar, and Hugenius, have not yet difcovered all Nature's Curiofities, even in that Organ; I will here deliver one or two Optical Experiments : The firft hiuts whercof, I muft ingenioully confefs, I received from fome Fragments and Papers of our famous, and never to be forgotten Country-mau, Mafter Gafoign of Midleton near Leeds, who was unfortunately flain in the Royal Service for His late Majefty ; a Perfon he was of thofe ftrong Parts and Hopes, that not onely we, but the whole World of Learning fuffered in the lofs of hins.

Take a frefh Eye, and, in a frofty Evening, place it with the Pupil upwards, where it may be frozen through, then in the Morning you may cut it as you pleafe. If you cut it with a plain Parallel to the Optick Axis(which

Section

Microfcopical Obfervations.

81
Section Des. Cartes thought impoffible) then fhall you fee all the Parts, as he has pictured them pag. 9 2. and each part will be very different in colour, and remain in their natural Site, which may be pricked forth in an oyled Paper:By this trick alfo you fhall find, that there is a double Cryftalline humour, one circum-included within the other; if you do but thaw the Cryftalline you fhall fee the outward will pill off from the inward: The right Figures of both which Cryftallines are monftrous difficult, if not impoffible, to find out ; hence it follows that every Ray of incidence is feven times refracted in the Eye before it reach the Retina, whatfoever Scbeinar fays to the contrary.

The fecond Experiment, is one of the ingenious Ex cogitations of M. Ga/foign's, and it is to delineate the prime parts of the Eye; after this manner : Having a Glafs and Table fited to obferve the Eye's fpots, place an Eye with the Horny Tunicle either upwards or downwards, between the inmoft Glafs and Table; fo near the Glafs, as the Eye will almoft fill up the compafs of the Eye's Image, then the reprefentation of the Eye will be very large (proportionable to the Eye's Image) upon the Table, and thus you may prick out the three Pigures of the Cornea, and the outward and inward Cryftallines. Many other neat wayes with my Dioptrical Glaffes can I take the Figures of the prime Parts of the Eye, which fhall be difcovered in their fit places.

And now having done with the Fabrick, the Obfervations lead us to the Confideration of the Number and Plurality of Eyes, that Nature hath afforded fome Crea. tures. I muft confels though I have been very curious and critical in obfervings yet I could never find any

Animal that was monocular, nor any that had a multi-
plicity of Eyes, except Spiders, which indeed are lo fair and palpable that they are clearly to be feen by any man that wants not his own. And though Argus has been held as prodigious a fiction as Polypheme, and a plurality of Eyes in any Creature, as great a piece of monftrofity, as onely a fingle one ; yet our glaffes have refuted this Errour (as obfervat. viii. and ix. will tell you:) fo that the Works of Nature are various, and the feveral wayes, and manifold Organization of the Body, infcrutable; lo that we had need of all the advantages that Art can give us; to difcover the more myfterious Works of that divine Architcotrefs; but efpecially, when the draws her felf into fo narrow a Shop, and works in the retiring Room of fo minute an Animal.
Laftly, Many more hints might be taken from the former Obfervations, to make good the Atomical Hypothefis; which I am confident will receive from the Mi. crofcope fome further advantage and illuftration, not onely as to its firft univerfal matter, Atoms; but alfo, as to the neceflary Attributes, or effential Properties of them, as Motion, Figure, Magnitude, Order, and Difpofition of them in feveral Concretes of the World; elpecially if our Micro/copes arife to any higher perfection: and if we can but, by any artificial helps, get but a glimpre of the fmalleft Truth, it is not to tell what a Fabrick of Philofophy may be raifed from it; (for to conclude with that Patriark of Experimental Philofophy, SirFran-the Learned Lord Bacon,) The Eye of the Undercis Baconftanding, faith he, is like the Eye of the Senfe; for as Nar. Hie you may fee great Objects through fmall Cranies or Expy , Lr. Levels; fo you may fee great Axioms of Nature, through Exp. 9r. Levall and contemptible Inftances and Experiments.

Thefe

Maicrofcopical Obfervations.

Thefe are the few Experiments that my Time and Glafs hath as yet afforded me an opportunity to make, which I hatten out into the World to ftay the longing thereof; But you may expect fhortly from Doctor Wren, and Mafter Hooke, two Ingenious Members of the Royal Society at Grefoam, the Cuts and Pictures drawn at large, and to the very life of thefe and other Microfcopical Reprefentations.

The End of the Microfcopical Obfervations.

EXPERIMENTAL PHILOSOPHY,

In thirce Books.

Containing

$\underset{\text { New }}{\text { Expe }}\left\{\begin{array}{l}\text { Exicrofopopical, } \\ \begin{array}{l}\text { Mercurial, }, \\ \text { Magnetical. } .\end{array}\end{array}\right.$
With fome Deductions and probable Hyjpothefes, $^{\text {a }}$ raifed from them, in Avouchment and Illufration of the now famous Atomicat Hypothesis.

By HENRY POWER D' of Phyfick.

LONDON, Printed in the Year 1663 i

Liber Secundus.

Mercuriall Experiments.

By

HESNRY POWER, M* ${ }^{*}$

Itaque fperandum omnino eft, effe adbuc in Nature: finu, multa excellentis u/us Recondita; qua nullam cum jam Inventis Cognationem babent, aut parallelifmum, fed omnino fita funt extra vias phantafia, que tamen adhuc Inventa non /unt, qua proculdubio, per multos /eculorum circuitus \& ambages, *ipfa quardeque prodibunt. Fr. Verulam, lib. i. Novi Organi, fect. 109.

The Second Book.

 }

Thefe Phyfice-Mechanical Ex-\{ \(\begin{aligned} \& Hydrargyral,
\& Hydraulical,\end{aligned}\) periments are of four forts, Preamatical, and mixt.

Such things as are requifite for the triall of thefe Experiments, are

1. A Quart at leaft of () Quickfluer.
2. Several Gla/s-Trunks, or Cyliwdrical Glafs-Tubes, fome
open at both ends, and fome exaifly cloped; or (as they
phraf it) Hermetically fealed at the one end. All of fo. pbrafe it) Hermetically fealed at the one end. All of /ioveral Lengths and Bores.
3. A Glafs-T unnel or two, noith mpooden difbes and /poons, for filing of the Gla/s.Tubes witk Mercury.
4. You maft have no Metalline Utenfils about you,for fear they be fpoiled roith the Mercury.
5. Spread a Blanket or Carpet on the ground when you try thefo Experiments, that fo none of the Mercury may be loft, but may be taken up again with weoden fpoons.
6. You may bave by you alfo Glafs.Syphons, Weather-Glaffes ou may bave by you ald Gla/ss sypbons, weatber-Glafles
of feveral right and crooked fbapes, \&c. the more to ad. vantage the Experiments. pbrafe it) Hermentically /ealed at the one ena. AL fo

 MERCURIAL EXPERIMENTS.

Снар. I.

Experiment 1.

Ake a Glafs-Tube of above 29 inches in length, as A B, clofed as the end B, and open at A : fill it full of Quickfilver, and fo clofe the end A, exactly with the thumb (as with a ftoppel;) then reverfe it, and putting it and your finger together into the wooden veffel D, filld about two inches deep with Qnickfilver, erect it perpendicularly therein; then drawing away your finger from the orifice, your fhall fee a great part of the

Quickfilver in the Tube to make a quick and fmart defcent into the external Quickfilver inthe veffeliand after it hath, by feveral vibrations up and down, found out a certain point or ceegree, there to ftand ftill and immoveable : fo that all the upper part of the Tube (which the Mercury has deferted) viz. from E to B, will feem to be a vacuity.

The firft Inventor of this noble Experiment, was Torricellius the eminent Mathematician, and deferved Succeffour to the famous Gallilao, to whom all the Common-wealth of Learning are exceedingly oblieg'd, becaufe thereby he has excited the greateft modern Wits to higher and nobler Experiments.
In this Torricellian Experiment (for fo we fhall alwayes herenfter call it) let me give you notice of thefe rare Obfervables:

1. If the Tube be not longer then 29 . inches, the Quickfilver will not at all defcend: this we have tryed in feveral Tubes of $18,2 \mathrm{I}$, and $26^{\frac{1}{2}}$ inches long.
2. In Tubes of a greater length then 29 . inches, the Quickfilver will defcend.
3. The Quickfilver will not defcend lower then 29. inches, or thereabouts; that is, the Cylinder of Mercury in the Tube will alwayes be 29. inches in height above the fuperficies of the reftagnant Mercury in the veffel.
4. The Quickfilver defcends neither more nor lefí in Tubes of a greater or leffer Bore, provided they excced the length of 29 . inches.
5. How long foever the Tube be, the Quickfilver will fall down to its wonted pitch and ftint of 29 . inches or thereabouts; as we have tryed in Tubes of 32, $35 \frac{1}{x}, 36,45$, and 50 inches in Longitude, and all of different Diameters and Bores.

Mercurial Experiments.

6. If you add any more Quickfilver to that in the veffel, then, that in the Tube riles proportionally the higher: and contrariwife, if youtake any Quickfilver out of the veffel, that in the Tube defcends lower ; and fo confequently, the internal Quickfilver in the Tube keeps alwayes the fame height of that in the veffel.
7. That you may with great facility move the Tube to and fro in the veffeld Quickfilver, but not draw it up towards the fuperficies of the external Quickfilver in the veffel without fome reluctancy.
8. That if you tilt or incline the Glafs-Tube, you flall fee the Quickfilver gradually to afcend till it almoft totally fill the Tube, at which Angle of Inclination the atletus or perpendicular will be equal to 29 . inches, let the Tube be of what length foever.
9. That upon removal of your finger from the orifice, you hall fee the Quickfilver to make a very Quick and Smart defeent fix inches at leaft below the ftandard of its Alcitude in the Glafs of 45 inches long, and in others more or lefs; and after a few vibrations up and down, to fettle at its wonted pitch and altitude of 29. inches, or thereabouts.
10. That if any thing,confiderably hot or cold, be applyed to the Superiour part of the Tibe, the Quickfilver thercin will more or lefs afcend or defcend, as the water in a Weather-glafs, though with farr feebler and more infenfible effects: So that any time of the year it will not much defert nor furmount the determinate height and pitch aforefaid of 29 . inches.
Ir. That this feeming vacuity in the Tube would be judged by any one that came in at an adventure, to be nothing but fuch like illuminated ayr as this we breathe in.

$$
\mathrm{N}_{2} \quad 12 . \text { If }
$$

Mercurial Experiments.

12. If you dip your thumb into the veffel'd Mercury, and clofe the orifice of the Tube therin, and fo gently re. verfe it, you fhal fee the Quickfilver in the Tube to move more 'wiftly (though not without refiftance, and ebullitions) through that feeming vacuity ; and the Nercury will pafs with fuch floggs towards the deprefsed extreme of the Tube, as will make you apprehend that the Tube will be either beaten out of your hand or broken : none of which Phrenomena will appear, if you let in the outward ayr into the cavity unpoffeffed by the Mercury. In which Interim of Motion, your thumb will be drawn and luck'd into the orifice of the Tube, not without fome confiderable pain.
13. If before the removal of your thumb you reimmerge it again into the veffel'd Quickfilver as before, \& then draw the Tube perpendicularly quite out of the veffell'd Quickfilver, the Quickfilver in the Tube will rife to the top of the Glats with fuch a violence as will indanger the knocking out of the head of the Glafs, and then the ayr will pafs by a feeedy ebullition through the Quickfilver, and it will totally defcend into the veffel. I once brake a Glafs-tube of near forty inches long, by plucking it fuddenly out of the veffeld mercury.
14. That you cannot to cautioully perform this Experiment in any Glafs Tube whatfoever, but fome little Air will be feen in the top of the Tube, when reverfed, and before the removal of your Thumb, like the little Cap of Air in the obtufe end of an Egge; fo
that if you incline the Tube to what Angle foever (on that if you incline the Tube to what Angle foevor (as in the eighth Obfervable aforefaid) the re-afcending Quickfilver will never totally and exactly fill the Tube, but a little Cap of Air will ftill ftand in the top thereof.
15. That, ufe all the Artifice and Induftry you can,

Mercurial Experiments.

you cannot fo cautiouny fill the Tube, but that the $\mathbf{C y}$ linder of Quickfilver will feem cragged and thehed, and never purely fimooth and polifhed, (though your Glafs be never fo fmooth and dry, and your Quickfilver never fo well purged) which interftices are filled up with Particles of Air that lurk ${ }^{\circ}$ wixt the Contiguities of the Glafs and Quickfilver: and which after the defcent of the Quickfilver do bubble up, and hoor themfelves little by little into that feeming vacuity (as you may ocularly behold them) and doubtlefs are.the occafion and hindrance why uponinclination of the Tube (as in 8. Ob. ferv.) the Quickfilver cannot totally replenifh and fill the Tube again.
16. We filled a Tube of 27 , inches with Quick filver, and afterinverfion of it into a Veffel of Quickfilver, as in the Torricelian-Experiment we perceived,juft upon retraction of the finger, the little Particles of Air which remained lurking between the fides of the Tube and the Quickfilver, on the fuddain to become more vifible, by a violent and rapid dilatation, flying out like fo many little Springs wound up, and then all at once fet at Liberty.
17. If you immerge the Tube into Veffels of Quickfilver of feveral Capacities and larger Surfaces, the def cent of it will not alter.
18. Obferve that the height of the Mercurial Cylinder, which here with us is found to be 29 . inches at the leaft (if you order the Tube handfomely in filling of it) may feem greatly different from the French Obfervations, and thofe of Forrain Experimenters, as Parricellius himfelf, Doctor Pa/cal, Roberual, Doctor Pettit, and Pecquet, who all affign its Altitude to be but about 27. inches. To this I fhallonely at prefent anfwer, that this
difference

Mercurial Experiments.

difference of the Mercurial Cylinder, may partly arife from the variations of the Climates, the Air being more thin and hot then ours, partly from the difference and altitude of the Atmolphere here and there, (as fhall hereafter be made more intelligible) and partly from she diverfity of our meafures and theirs, or from the club and combination of all thefe caufes joyned together. To which I may well fuper-add, the negligence or inconfideration of thofe that try this Experiment ; for you imay alter thę height of the Mercurial Cylinder, as you do rudely or cautioully tumnel in the Quickfilver into the Tube; for I have fome time with exact caution, made it to rife to 30 . inches in altitude from the Surface of the reftaguant Quickfilver in the Veffel.I fet down 29. inches as its determinate height, to which it will for the moft mount, though you ufe but a carelefs kind of carefuluefs in the management of the Experi: ment.

Chap. II.

That in the fuperiour part of the Tube there is no abfolute Vacuity.

B
Efore we proceed to any further Experiments, we will firft canvals the Caufe of this Primitive one of Torricelliss, which has given occafion of trying all the reft ; and then we wil deliver our Hypothe/is, which I hope will falve all the itrange appearances, not onely in this, but in thofe ftranger that follow.

Valerianus Magnus, and fome others are fo fond to believe

Mercurial Experiments.

believe this deferted Cylinder to be an abfolute Vacuity, which is not only non-philofophical, but very ridiculous.

1. For, the Space deferted hath both Longitude , Latitude, and Profundity, therefore a Body; for the very nature of a Body confifts onely in extenfion, which is the effential and unfeparable property of all Bodies whatfoever.
e. Again we have the fenfible eviction of our own eyes to confute this Suppofitional Vacuity; for we fee the whole Space to be Luminous (as by $\mathrm{Ob}_{\mathrm{f} / \mathrm{er} \text {.) Now }}$ Light muft either be a Subftance, or elfe how fhould it fubfilt (if a bare Quality) in a Vacuity where there is nothing to fupport it?
2. Again, the Magnetical Efluxions of the Earth are diffufed through thit feeming Vacuity, as per Experi. ment.
3. There is fome Air alfointerfeerfed in, that feeming Vacuity, which cannot be expetted uponany inclination of the Tube whatfoever, as by $0^{2} j$ er. is ma. nifeft.
4. The moft full Evidence againft this pretended Vacuity is from the returgenfecncy of the compty Bladder fulfended in this Vacuity; for, how thould it be fo full blown from nothing? as is by Exp. mo!t inicomparably cvinced.

Снар．III．
 That it is not the Efluviums of Mercury that fill up that feeming V acuity．

BEfore we come pofitively to declare，what it is that fupplies this feeming Vacuity，let us draw fome negative Conclufions，and fee if we can prove that it is not fupplied with any Spirits Mercurial，or Exhalations ： and this we flsall moft fully do by aningenious Experi－ ment borrowed from the Mechanical Wit of Doctor Pafcal，which fhall paffe for the fecond in the Bed－ roll of our Experiments．

Doctor Pafcal＇s Experiment 2．

THat the deferted part of the Tube，is not filled up with any Hydrargyral emanations，may be thus evinced；becaufe he hath found the fame Experiment to fucceed in water onely，without any Quickfilver at all ：for he took a Tube or Lead－Pipe of 46 ．foot in length，made clofe at the one end in cafting of it；and having filled it full of water，and reverfed it into a paile of water，underneath about a foot deep，he found the water to fall within 32 ．foot of that in the Veffel；fo that the deferted part of the Pipe was i 3 ．foot；fo tall a Cylinder of that Liquor，being it feems but æqui－ponde－ rous to a Mercurial Cylinder of 28．inches．Kircher and Birthius，it feems，alfo have tried the like in a Lead－Pipe

Mercurial Experiments．

of 2100 ．foot long，and an inch diameter；into which at the top was let in a hort neck＇d weather－glafs，or bolt－ head，and faftned fo to，that no Air could pierce the coement，that luted the Glads and Lead．Pipe together， which Lead．Pipe at the bottome was alfo fitted with a Turn－cock，which when it was once filled with water would keep it in till they had reverfed it into a $⿴ 囗 十$ fogs－ head of water underneath；and then，by a turn of the Cock letting out the water，it deferted the Bolt head， and fuperiour part of the Tube，wherein appeared this
feeming Vacuity．

Experiment 3.

RUt for a further Confirmation of this Truth，let me fubjoyn another Experiment，（which hall here pafs for our third）of the fame Author＇s．
Take a Glafs－Syringe or Squirt；of what length you pleafe，exactly fitted with a Squirt．ftaff；ftop the mouth
of your Syringe clofe with your finger，and fo drown it pleafe，exactly firted with a Squirt．ftaff；ftep the mouth
of your Syringe clofe with your finger，and Io drown it over head and ears with hand，and all，in a large Veffel of water ；then draw back the Squirt ftaff，and the Veffel of water；then draw back the Squirt ftaff，and the
Syringe will appear a Vacuity（which will pain your finger by an Introfuction of it in at the Orifige；）but if
then you ereet the Syringe perpendicular，and draw it all finger by an Introfuction of it in at the Orifige；）but if
then you ereat the Syringe perpendicular，and draw it all out of the water（excepting that end clofed by your out of the water（excepting that end cloled by your
finger）and then open the Orifice，you hall fee the wa－ ter fuddainly arife and fill the deferted Cavity of the Syringe．
Both which Experiments do fufficiently prove that this feeming Vacuity may be exhibited without the help of any Quickfilver at all，and therefore this imagi－

B

－nary

Mercurial Experiments.

nary Space in the Torricelian-Experiment aforefaid, cannot rationally be fuppofed to be repleated with any Mercurial Efluviums.

Chap. IV.

Experiment 4:

That it is not Light onely, which Jupplies tbis feeming Vacuity.

TAke the Barrel of a long Gun, about 4 . foot long, and Bunging up the Touch-Hole, fill it eafily with Mercury, and reverfing of it into theV effel'dQuickfilver, as before, you may meafure it, to obferve the determinate height aforefaid, which you may eafily perceive;
Firft, By the flufhing out of the Quickfilver, upon removal of your finger into the Veffel where the reftaguant Quickfilver receives it :

Secondly, By the re-afcent of the Quickfilver upon tilting or placking the Gun quite out of the reftagoant Mercury, as alfo by the forceable introfuction of your finger, if you clofe the muzzle of the Barrel within the Veffel'd Mercury, and fo draw it out and reverie it, as alfo by the plucks and fhogs it will give in that action:

Thirdly, and moft perceptibly, By the repletion of it with water, if you draw the Tube gently out of the Quickfilver in the Veffel into a fuper-incumbent region of water (which you firft poured into the fame Vef-

Mercurial Experiments.
fel:) for then if you ftop tho Orifice with your finger, whilf it ftands immers'd in the region of water, and fo draw it out and reverfe it, you thall perceive it full of water.

The like, no doubt, will fucceed in Tubes of other Mettals. Again, if Light onely (onely I fay, becaufe we do not deny light to be there) fill up that empty Cylinder, it would be certainly far more Luminous (as containing nothing but the pure Solary Atoms) than the external medium and region of the Air about it, which is confufedly intermixed both with airy magnetical and coeleftial particles, befides the halituous effluviums of all Bodies whatloever. But this contrary to Ob/orvat.

Chap. V.

That the ervacuated Cylinder in the Tube, is not filled with Atmo/pharical Air only.

BY Atmofpherical Air, I underftand fuch as we conftantly breathe and live in, and is a mixt Body of Luminous ald Magnetical Eflaviums, powdred with the influential Atoms of Heaven from above, and the halituous Efluxions and Aporrhoea's of this terraqueous Globe below : And that no fuch Air fills the Superiour Cavity of the Tube, take this Experiment to evince you.

Mercurial Experiments.

Experiment 5.

HAving filled, clofed, and reverfed the Tube A B as before into the veffel'd Quickfilver D, fill up the faid Veffel with water about 2. inches deep, then lifting the Tube gently, but perpendicularly out of the veffeld Quickfilver into the region of water, you fhall fee the Quickfilver and Water rife to the top of the Glafs, and after a fhort (but confufed) intermixion the one with the other, the Quick Gilver will totally defcend into the Veffel; and the water arife and fill the whole Tube excepting a little cap of Air in the top of the Tube, formerly hinted at in Obfer. 14.

Now if that Air in the Tube was Homogeneous to this in the Atmofphare, the water would never rife to thruft it out of its proper place, or, if it did, it could not fqueefe through the Body of the Tube; but we plainly fee the rifing water does fill up the place (as likewife the Quickfilver does in the firlt Experiment, where you tilt and incline it) till it come to that particle of Air, which indeed is of the fame nature with ouss (and which we told you formerly lurked 'twixt the Concave Surface of the Tube and the Cylinder of Quickfilver) and that neither the rifing water nor afcending Quickfilver, can or does exterminate.

This Truth alfo is manifeftly evinced from the twelfth Obfervable annexed to the firft Hydrargyral Experiment, which palpably fhows that it is not common Air which fupplies that feeming Vacuity.

Chap. Vi:

HAving drawn the former negative Conclufions; and demonftrated, That it is not Light onely, not Mercurial Spirits, not Atmo/pherical Ayr, which is diffufed through that feeming Vacuity, it will be expected we fhould deliver fomething pofitively, and demonftrate what it is.

Pecquet (who I think follows Roberuallius therein) ingenioufly conceives, that the whole mafs of Ayr hath a Spontaneous Eleter, or natural aptitude in it felf to dilate and expand it felf upon the removal of all circumambient obftacles (which he calls the Elaftical motion of that Element) fo that the particle of Ayr may be underftood to be as many little Springs, which if at liberty, and not bound and fqueefed up, will powerfully, ftrong, ly , and fpontaneounly dilate and fretch out themfelves, not onely to fill up a large room, but to remove great bodies: So that he compares this vaft Element of Air, circumfufed about this terraqucous Globe, to a great heap of Wooll-fleeces or Sponges, piled one upon another, the fuperiour particles of the Ayr preffing the inferiour, and hindring their continual tendency to a felfdilatation; fo that all the particles of this Atmo/phare (efpecially the inferiour fort) ftrive at all times to expand and dilate themfelves : and when the circumrefiftency of other contiguous Bodies to them is removed, then they flye out into their defired expanfion (or at leaft will dilate fo far as neighbouring Obftacles will permit:) Juft like the Spring of a Watch (which if the String be broke, prefently flyes out into its fulleft ex-
panfion

Mercurial Experiments.

panfion :) which Elaftick motion in the Ayr then ceafes, when it comes to an equilibration with thole circum. jacent Bodies that refifted it.

That this is not onely an Ingenious Eypothefis, but that there is much of reality and truch in it, I think our following Experiment will to fafety of fatisfaction demonitrate.

Onely we differ from Pecquet in the ftrict notion he hath of Rarefaction and Condenlation, which he fup. pofeth to be performed without either intromiffion or exclufion of any other extraneous Body whatfoever. Now how Ayr or any other Body fhould diminifh or augment its Quantity (which is the moft clofeand effential Attribute to Bodies) without change of its own Subftance, or at leaft without a reception or exclufion of fome other extrinfecal Body, either into, or ont of the Porofities thereof, founds not onely harh to our ears, but is befides an unintelligible difficulty.

Now though we camnot by Senfible and Mechanical Demonfration thew how any new Subftance or Subtler matter (than Ayr is) which enters into the Tube to replenifl that feeming vacuity, and to fill up the aerial interftices (which muft needs be confiderable in fo great a felf.dilation) yet we muft (confidering the nature of rarefaction aforefaid) be forced to believe it: and perhaps fome happy Experimenter hereafter may come to give us a better then this Speculative and Metaphyfical Evidence of it.
That the hollow Cylinder in the Tube is not onely fill'd up with the dilated particles of Ayr, but allo with a thin Ftherial Subftance intermingled with them :

1. Lat us fuppole therefore (at random if you pleafe)

Mercurial Experiments.

that there is a thin fubtle xtherial fubftance diffufed throughout the Univerfe; nay, which indeed, by farr the greateft thereof: in which all thefe Luminous and Opace Bodies (I mean the Starrs and Planets) with their Luminous and Vaporous Spheres (continually efGuviating from them) do fwim at free and full Liberty.
2. Let us confider that this ather is of that Subtil and Penetrative Nature, that like the Magnetical Effluviums, it hoots it felf through all Bodies whatfoever, whofe fmall pores and interftices are fupplyed and fill'd up with this xtherial Subftance, as a Sponge with water.
3. Let us add to the former Confiderations, that the Ayr hath not onely a ftrong Elatery of its own (by which it preffes continually upon the Earth, and all Bodies circuminclofed by it) butit alfo ponderates, and is heavy, in its own Atmofphare.

But becaule I am refolved you fhall take nothing upon the truft and reputation of the beft Authour, take this Experiment to prove the Ayr's gravitation (in proprio Loco) as the vulgar Philofophy cals it.

Experiment 6.

TAke a Wind-gun (which new Artifice is now com: mon) and weigh it exactly when empty, then by plying the Pump-ftaft charge it foundly and weigh it again, and you thall find it much heavier then before; yea, a large Bladder, full blown, will weigh more then its relf emptied, and manifent this inequality upon a ticklifh pair of Scales.

Now though this Experiment 1eems onely to evince the gravitation of Ayr condens'd, yet it confequentially follows, that Ayr alfo in the Liberty of its own Sphare, is proportionally ponderous (though it is a difficult point Mechanically to evince it, unlefs we were actually above the Atmofphære, or in a Vacuity to weigh it there in a thimer medium then here we are able to do;) yet, if I miftake not, I have an Experiment in Banco which will give fome Mechanical Evidence of this great Myftery, which here, with all its confequences, I Ahall deliver.

Experiment $7 \cdot$

THe 6. of May, 1653. I took two Tubes, one of 45. inches, the other $35^{\frac{1}{2}}$ in length, and of different Diameters; and filling them both at the Bottom of Hallifax-Hill, the Quickfilver in both came down :o its wonted pitch of 29 . inches, thence going immediateIy to the top of the faid Hill, and repeating the Experiment again, we found it there to fall more then half an inch lower then it did at the bottom or foot of the Yaid Hill.

Pecquet relates, That Dr. Pafcal himfelf tryed this Experiment upon a Mountain of 500 perches high, near Clerament, and he found Quickfilver there at the Hill to defcend lower by three inches, and fome what more, then it did at the bottom; fo that, according to the Analogy \& Proportion of both, and fome other confiderable Circumftances, we might not onlyMechanically find out the Perpendicular height of our great Hill here at Hallifax, or any other Mountain whatfoever, but venture notably at the height of the Atmofphære it felf.

For

Mercurial Experiments.

For, to manage the Principles we have formerly laid down, Firft, The reafon why the Quickfilver defcends at all in the firft Ixperiment, is from its exceeding gravity. Secondly, Why it falls no lower then 29. becaufe a Cylinder of that weight does juit æquipoife the Elaftick power of the Ayr without, and therefore after a few vibrations up and down (as is Obfervable in all Statick Experiments) they arrive at a Counterpoife.

But the reafon now (as to our particular Mountain's Experiment) why the Counterpoife fhould alter at the top from that at the bottom of the Hill, and the defcent of the Quickfilver be fo unequal, is not fo much from any alteration in the Elaftick power and virtue of that Ayrat the top, from that at the bottom of the Hill; as from the variation of the gravity of the Superincumbent Ayr: For, a longer, and fo confequently, more weighty Columne of Ayr , preffes upon the veffel'd Quickfilver at the bottom of the Mountain, and fo makes the Quickfilver in the Tube, rife higher than at the top of the Mountain; which being fo much nearer the top of the Atmofphare, a leffer weight of Superponderant Ayrmakes a leffer quantity of Quickfilver arife in the Tube: and fo come the Mcrcurial Cylinders to vary in their Altitudes, viz, from the natural Supergravitation of more or lefs of the Superincumbent Atmofphære. So that it is more shan probable, that the higher one rifes in the Ayr, to try this Experiment, the Quickfilver in the Tube would fall down lower; and if the Experiment could be try'd at the top of the Atmofphære, no Quickfilver at all would remain in the Tube, but fall down to a level with that in the veffel. I could wifh that fome of our Canary-Merchants would get this Experiment try'd at the top of the Pike of

$$
\mathrm{P} \quad \text { Tcneriffe, }
$$

Temeriffe, which is defervedly famed for the higheft Hill in the world.

Object. I. But I fee you are ready to reply, and fay, That the inequality of the Mercurial Cylinder (in the Moun-tain-Experiment aforefaid) may every whit as rationally be fuppofed to proceed from á change in the Elaftick property of the Ayr, which may be more vigorous at the bottom, and more faint and feeble at the top of the Hill, and fo force a greater or leffer quantity of Quickfilver up into the Tube.

Object. 2. I know how harfh it founds, That Ayr fhould gravitate in its own Sphxre, and we, and all other Terreftrial Inhabitants, be infenfible of it ; and that which augments the improbability, is, That Water we experimentally know (which is a fluid and diffipable Body, as Ayr is) does not gravitate in its own proper place; for if we dive never fo deep, it's fo far from depreffing of them lower, or weighing on them, that it is readier to buoy them up again: And why fhould not we conclude the like of its next neighbouring Element, the Ayr ?

To the firt Objection, 1 anfwer, That though I fhould grant that there fhould be fome difference in the Elatery of fome of the aerial particles from others, yet to be fo great in fo fmall a diftance as four or five furlongs, 'tis not fo cafily credible.

I Ball anfwer your Second Objettion mith ibis following (wobich may pass for the 9.) Experiment.

FIll the Tube, as in the firft Experiment, and drown both it and the veffel of reftaguant Quickfilver (by letting down all carefully with ftrings into a Hogshead, or great Ciftern of water) and you fhall fee that the decper you immerge the Tube, the higher fill will the Quickfilver in the Tube arife. Let the veffel of water be of a greater or leffer plane in the furface, it matters not; becaufe onely thofe parts of water that hang perpendicularly over the veffeld Quickfilver do gravitate upon it: We drown'd a Tube to 25 . inches in depth, above the Superficies of the veffeld Quickfilver, and it raifed the Quickfilver in the Tube about $11_{4}^{2} 2-$ bove the ftint of 29 . inches, at which it formerly ftood; juft according to the fore-obferved proportion 'twixt the weight of the Water and Quickfilver: a Cylinder of the former of 3 2. foot, being buit 'xquiponderant to 2 Cylinder of the latter of 29. inches.
Of which noble Experiment, we mult confefs, the firt hint was given us, by thofe acute and fi. gularly acecomplifhed Gentlemen of Tovnley-Hall i: Lancafbire, who were as Judicious asHonourable Spectators of thele our Hydrargyral Experiments; and whofe Mechanical Prognofticks feldom failed, but were ftill made good by the future event of the Experiments.
By which it moft evincingly appears, that water does gravitate in its own Sphere (as they phrafe it) which

108

Mercurial Experiments.

now we may retort upon the Second Objection, and fay, That if water do gravitate, then why not Ayr in their proper Sphere ? both being fluid, difipable, and co-neighbouring Elements; and fo confequently whe. ther in Ayr or Water the Experiment be tryed, this effect will follow, That the deeper you immerge the Tube in either Element, the higher will the Mercurial Cylinder rife: And contrariwife, As 32. foot of Superjacent water would raife up a Mercurial Cylinder of 29. inches; So the lame Cylinder of 29 inches is raifed by a Column of the height of the whole Atmof phare it felf.

But we may by a far more facile and cheaper Experiment evince the gravitation of Water in its Sphrere, which is oblervable in the common Experiment of a Syphon; through which, the water, by Suction, being firft fet on motion, it is eafily obfervable, that the flux in the extravafated leg of the Syphon, is at firft moft ftrong; and proportionally decreafes, as the water in the veffel finks lower and lower towards the bottom of that leg immerg'd in it : which cannot proceed from any other caufe imaginable, but from the Supergravitation of the high parts of the water upon the lower, which being thereby more ftrongly forced up the fhorter leg of the Syphon, the flux thereby is ftronger in the longer ; and fo faints,as the bulk of the Superponderant continually decreafes.

Mercurial Experiments.

Chap. Vil.

The'Reafons of all thofe extravagant Phx-

 nomena, which we obferved in the firft Experiment of Torricellius.1. DEcaufe the finaller weight of Quickfilver is not Bable to mafter the Elaftick preffure of the external Ayr.
2. Becaufe then the Cylinder of Quickfilver Superponderates and overpowers both the Ayr's Elaftick vir. tue and gravity.
3. Becaufe ar that ftint of 29 . inches, the internal Cy. linder of Quick filver comes to an æquilibration with the external Cylinder of Ayr , which preffes upon the veffel'd Quickfilver.
4. and 5. Becaufe that in wider and longer Tubes there is at firft included a greater quantily of Quickfilver, it does more ftrongly overpower the Elaftick refiftence of the Ayr, and fo will come (though with more vehemence and fwiftnefs) to its wonted Altitude of 29. inches.
5. Becaufe by Addition or Diminution of the veffeld Quickfilver there is a change in the Tube and Veffel, but not in the Mercarial Cylinder in the Tube; for that alwayes keeps at an equal Altitude from that in the Veffel.
6. Becaufe the Merourial Cylinder is very heavy, and Quickfilver in Quickfilver moves as eafily as a Bucket of water in the whole Well.
7. Be-

Mercurial Experiments.

8. Becaufe thereby there is onely a change in the Tube, but not in the Altitude of the Mercurial Cylinder; for in that Augle of Inctination, the Perpendicular is till 29 . inches.
9. Becaufe the Quickfilver, by its long defcent, having acquired a greater motion than was requifite to bring it down to its determinate Altitude, cannot fuddenly ftop there, but by feveral vibrations up and down, gradually comes back to its wonted Altitude; as we fee Pendents, which multiply their undulations before they reft in their defired Perpendicularity.
10. Becaufe the Atoms of Fire and Heat (which is alone) penetrating through the Tube, do expand and dilate the ætherial Ayr in that feeming Vacuity, and fo confequently depreffe the Mercxrial Cylinder; or elfe, contrariwife, upon the approach of cold, fome xtherial Atoms pafs out again through the Glafs, and fo the Mercurial Cylinder mounts higher.
11. Becaufe it is a Medium fomewhat thinner than Ayr alone is; the reafon of your finger's exuction may be the Elaftick preflure of the external Ayr, without Ariving either to come in it felf, or thrult any other Body into the Tube; as alfo the Tendency of the zetherial Atoms within, to be a free and proportional commixtion with Aerial particles without.
12. Becaufe when the Continuity of the external and internal Quickfilver is broke, the Mercurial Cylin-
der is by the Elaftick preflure of the Ayr (der is by the Elaftick preflure of the Ayr (which then prevails) forced up into the top of the Tube; which done, then the Quick filver, by its gravity overpowring, the Atmofpherical, or unexpanded Ayr, falls down, and gives place to the lighter Body.
13. Becaufe no Contiguity, it feems, in dry Bodies (how

Mercurial Experiments.

(how clofe foever) can exclude the interveniency of Ayr.
Having in our laft (9. Experiment) proved fufficiently the ponderofity of Water, and its gravitation upon the external Quickfilver in the Veffel, we will now come to fhew you likewife its gravitation upon the internal Quickfilver in the Tube.

Experiment 10.

W ${ }^{\text {E took fuch a }}$ a like A B (as in the I. Eperiment) near four foot in length, and filld it full of Quickfilver, except a Segment (A of about 14. inches, which we filled up with water;) then reverfing the Tube, and holding, it folong in that pofture, till the Quickfilver and Water had exchanged their places, we then drown'd it in the Veffel d Quickfilver D, and there withdrawing our finger (as in the I. Exprriment) the Quickfilver in the Tube defcended an inch, and more, lower than the ordiuary ftint, (viz, within $2 \frac{1}{2}$ inches of that in the Veffel:) and this we try'd in Glass. Tubes of 40. and 45 . inches in Longitude: So that the Tube will be replenifhed with three Cylinders (vir.) of Quickfil. ver, Water, and Ayr.
In which Experiment there are three or four remark. able Appearances, which ought not to pafs our Obfervation:

1. That after inverfion of the Tube into the veffel'd Quickfilver, before you draw away your finger from the Orifice, you may obferve continual Bubbles of Ayr to pafs through the Water by an Ebullition, and fo prefently
fently to create the little Cap of Ayr, formerly obferved (in our ${ }^{14} 4.06$ ferv.) though in the interina the Orifice A, be never fo clofely fopped.
2. That after the removal of your finger, and collapfion of the Atercury to, as aforefaid, the volatile bubbles of Ayr ftill pafs through the Region of Water for a long time.
3. That if the Cylinder of Quickfilver, included in the Tube, be not above 29 . inches, befides that of the Water, no effect at all will follow.
4. That if the Cylinder of Quickfilver, included into the Tube, be but one inch higher than its ordinary pitch, then, upon making the Experiment, it will fall proportionally lower, according to the weight of the Supergravitating Water.
This Experiment, with thofe confiderable circumftances annexed to it, makes the Water's gravitation more eminently appear: For, fince 14 . inches of Water is almoft x quiponderant to one inch of Quickfilver (as is evident by the Statick Tables of Getaldi) and the Quickfilver in the Tube being depreffed by the Superincumbent Cylinder of Water of I4. inches, it follows, that it would neceffarily deprefo it one inch lower than the ordinary ftint.
But unlefs the Cylinder of QuickGilver be fo great, (or at leaft that of Quickfilver and Water to be to powerful) as that it be able to overcome the Elaftick preffure of the Atmofphere, no effect at all will follow, becaufe there can be no defcent of either : and as for thofe Aerial Atoms which paifs by bubbles through the Body of the Water, they are thofe formerly obferv'd for tolurk 'twixt the Contiguity of the Q uick filiver and Tube; nay, and perchance, and in the Body of the

Quick-

Mercurial Experiments.

113
Quickfilver and Water too, becaufe they ceafe not after the collapfion and defcent of the Mercury.
(i Thus having Mechanically evinced the gravitation of thofe two fluid Elements, both Watter and Ayr, in their proper places and regions; we may come to make good the fecond Part of our H ypothe/is, which is the Air's Elaftick virtue and property. For the demonftrating of which, take this following Experiment.

Experiment in.

FIll the Tube (as in the former Experiment) and let the Scgment A of 14. inches, which was formerly fill'd with Water, be oncly filld with Ayr; then, after you have revers'd it into the veffeld Quickfilver D, and withdrawing your finger, you fhall fee the Quickfilver in the Veffel fo to fall, that it came down 16 .incles lower then its wonted and determinate Altitude : We fill'd the fame Tube, of 45 . inches long, within two inches of the top, and then reverfing it, as before, it defcended two inches below the ordinary ftint.
We alfo tumell'd into the Tube a Cylinder of Quickfilver, but of five inches in Altitude (letting the Ayr fupply the other Segment of 40 . inches;) and reverfing it, as before, it fell down within two inches of the Quickfilver in the Veffel.

Obferve, that in thefe mixed Experiments of Ayr and Quickfilver, or Water and Mercury, or all three together, that when you have revers'd the Tube, you mult hold it clofe ftop'd folong perpendicular, till the feveral Bodies have acquired their feveral refpective and proper places.

Mercurial Experiments.

To this Experiment likewife we muft annex one confiderable Phenomenon :
Firft, That before you withdraw your finger, you fhall perceive the interual Quickfilver in the Tube, to prefs fo fenfibly upon your finger, as if it would force an entrance out, both before and after it was immerg'd in the Veffel'd Quickfilver: which protrufion cannot poffibly be fuppofed to proceed from any other caufe, but the Elatery of the included Ayr (for the preffure was far greater than the natural gravity of the whole Tube of $Q^{\text {uickfilver could make) }}$ which (uponthe removal of your finger) having got fome Liberty to manifeft it felf, it depelfs the Quickifilver fo far below its determinare height : Hence it appears, that Ayr, befides its gravity, has a nobler rarcfactive faculty, by which it forces the Quickfilver to fo confiderable a defe nt , whereas Water, by its weight onely (as is manifeft in the precedent Experiment and no innate Elatery, did depel the Succumbent Quickfilver in the Tube.

But becaufe the Ayr's Elatery is one of the chief parts of our Hypotheffs, we will not onely make it good by one, but confirm it by many more fucceeding Experiments.

Experiment 12.

FIll any manner of Tube, not above 29. inches in Length, half with Quickfilver, and half with Ayr, and then clofing your Orifice with your fiuger, and reverfing it into Veffeld Quickfilver, as in the former Experiments, you fhall (upon removal of your finger) fee the Quick filver fall an inch lower then before, as being

Mercurial Experiments.

depell'd by the dilated Ayr; if then you pour water upon the reftagnant Quickiilver in the Veffel, to about one inch deep, and draw the Tube out of the Quickfilver into the region of Water above, you flall fee the Quickfilver haftily to arife fome inches in the Tube, and then the Water and it confuredly to intermingle one with the other. Laftly, (the Quickfilver being wholly defcended into the Veffel) the Water will arife to fill the one half of the Tube. This we tried in Glaffes of 18, 21, and 27 inches in Length.
In the firf it fell I, inch, in the fecond it fell $3 \frac{1}{2}$ inches, in the third 5 inches, and more, fron the firt point it ftood at, before you immers'd it iu the Veffel'd Mercury.

This Experiment drew me on to the trial of another: for I thought if Quickfilver would defcend with 2 quantity of Ayr included with it in Tubes below the required pitch and Standard of 29 . inches, then proba. bly fome fuch like effect would follow in Water and Ayr (included in any of the longer fort of Tubes) though much lower then 32 . foot, which is found to be the Standard of Water in its Afcent in Pumps and other Inftruments (as is befides delivered in Exper.)

Experiment 13.

VVE therefore fill'd our Glals-Tubes of 45 inches, half with Water, and the reft with Ayr, and afterwards invers'd it into a pail of water, one or two inches deep; the fuccefs was, that withdrawing your finger, as before, the internal Water in the Tube, did fhoot about two inches lower then before, and with fuch
like vibrations (though far fhorter than thofe in Quick filver:) Laftly, if you immers'd the Tube one foot deep in the pail of water, the water in the Tube would rife fomewhat higher than before.
Note, tha tini thefc two laft Experiments, the defcent or fall of the Quick filver or Water, was moft notable about the midit of the Tube, viry when it was equally fill'd with Ayr and Quickfilver, or Ayr and Water.
Which Experiments do not onely make good what is formerly delivered of the Ayr's Elaftick preflurc, bu: alfo it renders Doctor Pafoal's Experiment, of the defcent of Water to 3 . foot, very creditable to thofe that want Inftruments to try it.

Experiment 14.

VVE alfo tried that Experiment of Roberualius, quoted by Pecquet, pag. 50. It took one of thofe little Bladders that are in Fiines, (that in the little Fifl, call'd with us, a Graining, is beft) and after it had been a few dayes dried, 1 lect out all the Ayr of it, and tyed the mouth of it again fo clofe, that no new Ayr could reenter; then I gently wet it on the out fide, and drop. ped it down to the bottom of the Tube, that it might the better ftick there, and not be buoyed up with the Quick filver poured in upon it ; then cautioufly tumelling in the $Q_{\text {uick filver, }}$ and reverfing the Tube, as in the firt Experiment, we found that after the Quickfilver was come down to its wonted pitch, the Fifh.Bladder was full blown, and did fwim on the top of the Quickfilver; which, upon the admiffion of the external Ayr, grew inftantly flavid aud empty again.

Mercurial Experiments.

Now, what elfe is the reafon of the Bladder's intumefcences upon Collapfion of the Quickfilver to its wonted Standard, but the Spontancous Dilatation and Elaftick Rarefaction of that little remuant of Ayr, skulking in the rugofities thereof; and then (upon removal of the circumpreffing Quick filver) expanding it felf in the Bladder, as well as that does in the Tube? The reafon of is flaccefcency, upon admiffion of external Ayr, is, becaule then the Elater of the external Ayr is to ftrong, that it forces the embladder'd Ayr into its former extenfion and confiftency again.

But hold; Before I paf, from this Experiment, I mult take Pecquet in hand, who, upon confidence of this Experiment, infults highly over thofe that admit not of his Rarefaction, but will introduce a new wetherial fubftance to intermingle with the dilated Ayr to fill up this feeming Vacuity.
object. i. If any wetherial Subftance penetrate the Glats-Tube, it ruflies in equally on all fides towards the Bladder, pendent in the Centre; and fo, in all probability, would rather prefs and fyueefe the veficle on all fides clofer together, than (by an oppofite motion, and re-action.upon it felf) extend and dilate it

Object. 2. Again, Since it enters in fo frecly at the pores of the Bladder, what flould improfeuit there? Since the pores, which gave it admittance, are continually open, and manifeft themfelves fo to be, when any external Ayr is admitted into the Tube,for then it feems the ather flyes out indeed; and the Ayr is recondenfed again into its natural and ordinary Confftence.
objett. 3. Again, If the Quickfilver defcending do impel the ather through the pores of the Glafs, to help the dilated Ayr, in fuppliance of that feeming Vacuitys Why fhould not Quickfilver totally defcend, and fill the whole Tube with æether, and fo, confequently, Quickfilver fliould defcend in any Tube (though lower than the ordinary ftint of 29 . inches) whatfoever contrary to Experiment.
object. 4. But if there be a Superaerial region of 8 . ther, as much lighter and fubtiller than Ayr, as Ayr is then Water, How comes any part of it to be diffuled, or difperfed throughout our Elements? Or, if it be, Why fhould not the atherial particles fly all away to their proper Sphare (or be rather forced thither by the continual preffure of thefe heavier Bodies?) as we fee no Ayr will abide in Water, but is forc'd up into its proper region and Element above it.
Solut. I. We grant, that the ather pierces equally in on all fides of the Tube, and fo likewife on all fides of the Bladder (into which it would not have entred) had there been no Ayr at all which had freely open'd in its dilation to receive the coming ather into its intimate receffes.

Solut. 2. Why the æther hits not out again (during the interim of the Ayr's expanfion) may be, becaufe it has either changed its figure, or it and the aèrial particles may be in a new motion, which may not ceafe till overpowred by the re-admiffion of new Ayr. But what's the reafon in a Bladder half.blown, and held to the fire, or laid in warm afhes, the internal Ayr fheuld rife and twell

Mercurial Experiments.

fwell up the Bladder, as in this Experiment ? If you fay, From the Atoms of Fire, or Heat, which penetrate into the Bladder; the fame Objection I then make to you, (as he there to me) Why could they not hit out, as well as in, through the fame pores? The like may be faid of the Ayr in a Weather.Glafs, upon application of any thing that is hot to the head of the Tube.

Solut. 3. Now, why the Quickfilver does not totally defcend, we have told you, is from the refiftence of the Atmophharical Ayr, which forces up a Cylunder of Quickfilver of that height of 28 . inches; but as we have fince declared, if the Experiment could be made at the top of the Atmo(phare (which is not very high) then it would totally defcend, and the ather there would fill the whole Tube.
Solut. 4. It is every whit as probable, that xetherial Atoms may be interfperfedly diffufed through all our Elements, as that Ayr may be, or the Maguetical effluviuns: the fame we have made probable (by its bcing in Water and Quickfilver) and the latter, no man (that knows any thing of Magnetical Operations) doubts of.
Before we take our leave of thefe fubtil and rare Experiments, I will give you that ingenious, but very difficult Experiment of A wyotius, as quoted by Pecgurt, which flall bring up the rere in this Mufter-role of our Experiments, and which will confirm all we have formerly delivered.

Experiment 15. Of Auzotius.

TAve a long Tube, with a Head like a WeatherGlafs, only open at both ends, as A B, and with a Circular ledge at B (to tee a Bladder about) as alto a little pipe G, which opens into the Head thereof, reverfe it, and into the mouth of the Head let down a hole. low Cube of wood or Ivory C, as large as the Head will contain; which with its four corners may reft upon the neck of the Glass (as in the Second Figure:) then take a fall Cylinder of Glass, of above 28. inches, and fer it in the middle of the Cube C, and clone the mouth of the Head B, and the pipe G with Bladders, fo that no Ayr can get in; then flopping the Orifice of the long Tube A, with your thumb, let another tunnel-in Mercury at the top of the fall Glafs tube F, which will frt fill the Cube C, and then running over, and falling down the Interftices, that the four Angles of the Cube C makes with the neck of the Glass, foal at lat come to fill both Tubes: Lastly, cloning the Orifice of the great Tube A into the Veffel'd Quickfilver, and there withdrawing yougfinger, as in the former Experiments, you hall fee all the Quicksilver in the final Tube F B, to fall into the Cubical Veffel C, (which being not able to contain it) it, together with all the Quickfilver, in the head and neck of the great Glafs-tube, will come down to its wonted pitch E 29. inches of that in the Veffel.
Which thews, the defcending Quickflver perpetually observes its Sandard-altitude from what height foever. But the great bufmefs is, If you open the little pipe G, and let in any Ayr, you hall not only fee it to

Mercurial Experiments.

depel the Mercurial Cylinder A E, but to force up the Quickfilver out of the Cube \mathbf{C}, into the fall Tube B F, to its wonted Altitude of 29 . inches, and totally to expel the Mercurial Cylinder 18 A out of the Tube: which ocularly demonftrates, that it is the At. mo/pherical Ayr that (in the firft Experiment) raifes and keeps up that Cylinder of Quickfilver in the Tube of 29. inches in Altitude, or the reabouts.

С hap. Villi.

Additional Experiments made at TownleyHall, in the years 1660. and 1661. by the advice and afsiftance of that Heroick and Worthy Gentleman, Richard Tovvnley, Afr. and thole Ingenous Gentlemen Mr^{r}. Jon N , and M^{r}. Charles Tovveley, and Mregraekemp.

THe haft year, 1660. came out that excellent Taractate of Experiments of Efqr. Boyle's, with his Pneumatical Engin, or Ayr-pump, invented, and publifhed by him; wherein he has, by virtue of that rare Contrivance, outdone all that ever poffibly could be performed by our late Mercurial and Experimental Philofophers: And, indeed, to give a true and deferred Character of that worthy Production of his, I mut needs fay, I never read

Mercurial Experiments.
any Tractate in all my life, wherein all things are fo curiounly and critically handled, the Experiments fo judicioully and accurately tried, and fo candidly and intelligibly delivered. I no fooner read it, but it rubbed up all my old dormant Notions, and gave me a frefla view of all my former, and almofl-forgotten, Mercurial Experiments. Nay, it had not that effect onely on me, but likewife it excited and ftirr'd up the noble Soul of my ever honoured Friend, Mr. Tovaley, together with me, to attempt thefe following Experiments.

Experiment I.

WEtook a long Glafs-Tube,open at both ends, and put the one end into Quickfilver about one inch deep; then at the upper end we poured in water by a Tunnel:the effect was this,(as was prefurmifed) That the water rife up to aCylinder of 14 , inches above the furface of the Quickfilver in the Veffel, but then it would rife no higher, but brake through the reftagnant Quickfilver in the Veffel, and fwum upon the top thereof, which is confonant to the Series and Chain of our former Experiments : wherein it is proved, that one inch of Quickfilver is xequiponderant to above one foot of Water ; and therefore there was reafon that one inch of reftagnant Quickfilver flould fupport a Cylinder of 14 . inches of Water, but no more. But as touching this proportion of Water and Quickfilver, becaufe we have formerly only given it to you upon truft from Maximius Gletaldi, we will now give you an Experimental eviction of it.

Mercurial Experiments.
123

Experiment 2.

VVE filld a Glafs. Vial (being firft counterpoifed with Mercury) and then weighed it; afterwards we weighed as much Water in a Glals. Vial, of a known weight, as counterpoifed the Quickfilver, and then meafuring the water in the Mercurial Vial aforefaid, we found it to contain near 14. times as much Water as it did of Mercury.

Experiment 3-

VV Eifld a Tube with Quickfilver, as in the Tor-ricellian-Experiment, whercin much leifure and accuratenefs were ufed in filling the Tube, to make a polite equal Mercurial Cylinder, and after immerfion thereof into the Veffeld Quickfilver, we put both the Tube and Veffel into a frame made for that purpofe, and let it ftand perpendicular therein for certain dayes together (viz.) from the 15 . March, to the 20. April after, to obferve if it would vary and alter its Standard, which we found it do confiderably; for fometimes it was half an inch higher or lowerathen the Mark and Standard we left it firft at. Ithink, according to the variation of the Atmo/phare in its temperature: and if you obferve ftrictly, you fhall fee that the Qaickfilver in the Tube does never precifely obferve the fame Standard not a day together, nay fometimes not an hour.

Experiment 4.

A Gain, we tried the Torricellian-Experiment aforefaid, in a Glal-sSy phon of $46 \frac{1}{2}$ inches in length, and after immerfion of both ends into two feveral veffels of Quickfilver, the internal Quickfilver fell down to its wonted Standard of 29 . inches in both thanks of the Syphon: having applied warm clothes to the top of the Syphon, the Quickfilver defcended in either leg the breadth of two Barley corns lower than the ordinary ftint. We gently lifted one of the legs out of the veffel'd Quickfilver, and then the Quickfilver in that leg rofe violently up, fo that part of it paffed over into the other Thank : then having fpeedily again drown'd the aforefaid leg into the Viffel, we obferv'd the Quickfilver in both legs to have fallen much (upon the admiffion of that Ayr) and to ftand in both legs at an equal pitch and height, as it did again the Second time, upon admiffion of a little more Ayr, though the Quickfflver then did not rife high enough to pafs over into the othes flank as before.

Experiment 5.

WE took the fane Syphon again (as before) and then only fill'd one of the legs with Quickfilver, leaving the other full of Ayr ; then ftopping both Orifices, reverfed both fhanks into two feveral Veffels of Quickfilver, as before; then opening both Orifices, the effect was, That the Quickfilver fell in one Tube,

Mercurial Experiments.

and néw Quickfilver rofe out of the other Veffel into the other Tube to an equal Altitude.

Experiment 6.

vVE filld a Tube! though with much difficulty) fuch an one as is here defcribed, with Quickfilver, then invers'd it into Quickfilver, as before: The firlt effect was, It fell leifurably down out of the head H, and ftood at $D, 29$. inches in perpendicular from the Quickfilver in the Veffel E.

The fecond effect was; Ayr being let in 'twixt C and B, the Quickfilver rofe from D, its former Standard, to A : So that from A to B, and C to E (for fo far as \mathbf{C} it fell upon admiffion of Ayr) made up its wonted Standard again.

Experiment $7 \cdot$

-7. ${ }^{\mathrm{E} \text { took a Glafs. Cruet, with a fimall Spout, and }}$ fill'd it with Water, and afterwards luted the great mouth A, fo that no Ayr could get in; then turn'd the fmall Spout downwards, but no Water came out of the Cruet into the open Ayr, inverfing likewife the frall Snout into Oyl, no Water defcended, nor Oyl, though a lighter Liquor, afcended; then filling the former Cruet with Milk, though upon inverfion of the Cruet none of it would fall out into the Ayr, yet being inverfed into Water, thefe two Liquors changed places, the Milk defcending in a little fill ftream, the Water afcending in the fame manner in two conftant little
ftreams,

Mercurial Experiments.
freams, running Counter one to another ; in the neck of the Cruet we tinged the Water with Indico, the better to diftinguifh their ftreams.

Experiment 8.

WE filld the former Cruet with Quickfilver, and immers'd the Suout into the Water (having firft well luted the mouth of the Vial) but no exchange of place followed, unlefs by much fhaking of the Quickfilver, you forced it little by little out; and fo either Water or Ayr paffed up inftead thereof.

Chap. IX.

Experiment 9.

APril 27. (r 66 x.$)$ we tryed the Torricellian-Experiment in the Porch at the new Church in Pendle, (which ftandeth upon a coufiderable height) the weather being clear, fair, and moderate, about ten of the clock in the morning, the Tube about 42. inches in length, which we filld with very much care and diligence, to make a polite Mercurial Cylinder, and there we then found the Mercarial Standard to be $28 / 4$ inches.
We tried the fame Experiment with the like accuratenefs, and in the fame Tube, at the Beakon upon the very top of Pendle-Hill, on the fame day betwixt twelve and one a clock, (the Ayr being there much colder then at bottom, or at new Church aforefaid) though the Sky

Mercurial Experiments.

was as clear;and there the Mercurial Cylinder was lower then before at New-Church, by a juft inch, being fallen precifely to $27 / 4$ inches.

About three a clock of the fame day, the laid tria! was made (with all the former circumftances) at Barlom, the loweft place (for conveniency) near the laid Hill, much lower then the place of the firt trial, the Ayr being very much hotter then at the time of the firft trial; and there the Cylinder of Quickfilver was equal to that in the firft trial (viz) $28 / 4$ inches. By which it appears, That (if the Ayr at Barlon had remain'd of an equal temperature with that of New-Church)the Quickfilver, in all probability, would have fallen lower then the inch we obferved.

Experiment 10.

AT the top of the faid Hill, we put into the fame Tube (which was divided into roz. equal divifions of fpaces) as much Quickfilver, as being ftop d and in. verfed, the Ayr remaining in the top of the Tube, fill'd 50115 , or thereabout, of the forementioned divifions, and the Quickfilver, the remaining part of the Tube. The Tube being thus immers'd, and the finger withdrawn, the internal Ayr dilated fo as to fill of the abovementioned parts $84 / 5 \mathrm{~s}$. and there remain'd in the Tube a Cylinder of Quickfilver containing in length $11 \mid 26$ inches. We tried the fame Experiment at the bottom of the faid Hill, the Tubes being fill'd, as above, and the Ayr 5015 . dilated to 8318 . and the Cylinder was in height $\mathbf{x} \mid 78$. inches.

Mercurial Experiments.

Experiment 11.

VVE took another Tube, containing in length from the Superficies of the external Quickfil. ver into which we immers'd it (for fo we meafure all our Lengths) about 26 .inches, containing equal divifious of Space, 3 r . and about an half, reprefented here by A B, which we filld fo with Quickfilver, that being revers'd and fop'd at B, there remain'd 9 . divifions fill'd with Ayr from A to E :then the Quickfilver being left at liberty to fall down into a difh under. neath, it fell near to the mark 18 to 1 . So that the Ayr dilated, fill'd the Space A 1, containing of thefe divifions $17 \mid 8$, and then the Cylinder 1 B was in perpendicular height 13 l86. inches.

We brought this Tube, with the fame MountainAyr in it, by the help of a long Tube of wood, having a difh faftned to the open end of it, and both full of Quickfilver, into which we put our Tube, A B, (which Inftrument you have here reprefented) and at the bottom of the Hill the Quickfilver rofe up unto the mark m , under the 17 . uivifion. So that the Ayr dilated, fill'd of the equal parts 1735, and the Quickfilver in B was in height $14 / 31$. inches.

Then we put out this Mountain-Ayr, and let into the Tube the lame quantity of Valley-Ayr, which fill'd the part A E, containing alfo 9 . of the equal divifions aforefaid; and then the end of the Tube B opened the Ayr dilated to the mark 11 . So that it contain'd I7/58. parts, and the Quickfilver in perpendicular height, $14 / 2$.

That

Mercurial Experiments.

That you may at one glance behold all the varieties of thefe Dilatations of Ayr, and height of the Mercurial Standard, 1 have fuppofed the line A B to reprefent all the Tubes. A E ftill reprefents the Ayr left in them, A D the Ayr dilated, B D the Quickfilver.

In the long Tube.

Now before we pafs to any further Experiment, we think it fit to make and denominate feveral confiderable Spaces of the Tube in the Mergarial Experiments, which will avoid both confufion and multiplicity of terms for the future.

Let A B be the Tube in which Quickfilver (in cafe it were totally void of Ayr) would ftand in a perpen-

[^2]dicular Cylinder above the Quickfilver in the Veffel from B to C. So we flall call that line or fpace,

B C The Mercurial Standard.

But if in the Tube there be left as much external Ayr as would fill the Tube from A to E, and that then the Quickfilver would fall from \mathbf{C} to D , and the Ayr be dilated to fill the fpace A D, then we fhall call

$$
\begin{aligned}
& \text { B D }=\text { The Mercury. } \\
& \text { C D }=\text { The Mercurial Complement. } \\
& \text { A E }=\text { The Ayr. } \\
& \text { E D }=\text { The Ayr's Dilatation. } \\
& \text { A D }=\text { The Ayr Dilated. }
\end{aligned}
$$

Where note, That the meafure of the Mercurial Standard, and Mercurial Complement, are meafured onely by their perpendicular heights, over the Surface of the reftagnant Quickfilver in the Veffel: But Ayr, the Ayr's Dilatation, and Ayr Dilated, by the Spaces they fill.

So that here is now four Proportionals, and by any three given, you may ftrike out the fourth, by Converfion, Tranfpofition, and Divifion of them. So that by thefe Analogies you may prognofticate the effects, which follow in all Merourial Experiments, and predemonftrate them, by calculation, before the fenfes give an Experimental thereof.

Mercurial Experiments.

Experiment 12.

wE tricd the Paforlian-Experiment in a Tin. Tube of 33. foot long, made of feveral heets of Tin, and clofely foddered up with peuter: To the upper end whereof we faftued a long Glafs-Tube, open at both ends ; then, having foddered up the lower cnd, we reared the Tube to a Turret at 'Tormley-Hall, and fill'd it with water; then clofing the top of the Glafs-Pipe, and immerfing the other end of the Tin- Tube into a ciftern of water a foot deep, we opened the lower end, and perceived the water to fall out of the Glafs. Tube into the Tin, but how far we could not tell, onely we conjeCured to be about the proportion given by Doctor Pa/cal; viz that a Cylinder of water ftood in a Tube about 3_{2} foot high: but prefently our Glafs. tube, at the juncture to the Tin, began toleak, and let in Ayr; fo we could make no further procefs in the Experiment: onely one thing we obferved in filling of the Tube, that after the water which we tunnelled in had gone down a pretty way into the Tube, part of it (by the rebounding Ayr) was violently forced up again, and fhot out at the npper end of our Glafs-tube two or three foot high into the open Ayr: Which Experimeut may be a caution to Pump-makers, \& all Artificers that deal in Water-works, that they attempt not to draw water higher then 33 foot (its Standard-Altitude) Ieft they lofe both their credit, coft, and pains in fo unfucceffful a defign. For I remennber in my Lady Bomles her ncw Water-work at Heath. Hall, near Wakefield, where the Water is raifed at leaft 16. yards high, the fimple workman undertook firft to
do it by a fingle Pump; but feeing his endevours were fruftrated, he was forced to cut his Cylinder in two Pumps, and to raife it, firtt, eight yards into a Leadciftern, and then by another Pump to raife it out of that other, eight yards, into a ciftern above.

Chap. X.

NOw to falve all thefe Mercurial Pbenomena, as alfo thofe mixed Experiments of Quickfilver and Water, Quickfilver and Ayr, Ayr and Water.in fingle and double Tubes and Syphons of all Bores, divers learned and ingenious Heads have excogitated feveral neat, though'different, Hypothe/es: For, to omit the whimfies of two Grandees, that is, Valerianus and Hobbs, which fo grofly Philofophize : the former affirming the deferted fpace in the Tube to be an abfolute Vacuity; the latter, to be replenifhed with this very Common Ayr which we breache in; which creeping up 'twixt the Contiguity of the Glafs and Quickfilver, fills up that conceited Vacuity. To omit thefe exorbitant Conceits, I find two or three more intelligible and rational $H y$ pothefis.

The firft is of Roberual and Pecquet, of the Ayr's Ela. fticity and Gravitation, which we have formerly embrac'd, onely with this addition, That whercas they will have Rarefaction and Condenfation to be performed without any increafe or lofs of quantity (which can never be conceived) we admit of an x therial Subftance or Matter intromitted and excluded, the Bodies fo chang'd as we formerly explicated.
The fecond Hypotbe/is is of the Vacuift's fuch, I

Mercurial Experiments.

neean, as, though they hold this Spring of Ayr, yet in its dilation will admit of no zether or forrain Subftance to enter the pores thereof; but the particles, fo dilated, to remain fo with interfperfed Vacuities: and this opinion hath many cminent Advocates and Avouchers, Gafend, Doctor Ward, Doctor Charleton,\&c.
The lateft Novellift that hath undertaken this Experimental Philofophy, is one Linus, alias Hall, who hath excogitated a new Principle of his own, whereby he not onely falves all the Phanomena in the Torricellian. Experiments formerly delivered; but alfo all thofe ftranger Experiments difcovered fince by Gerricus and Boyl's Pneumatical Engines. (His Principles he thus layes down.)

1. That there is an infeparability of Bodies, fo that there can be no Vacuities in rerum natura.
2. That the deferted Space of the Tube (in the Tor-ricellian-Experiment) is filld with a finall film of Quickfilver, which being taken off the upper part of it, is both extenuated and extended through that feeming Vacuity.
3. That by this extended film, or rope (as he calls it) of dilated Quickfilver, the reft of the Quickfilver in the Tube is furpended, and kept up from talling into the V effel.
4. That this funicle, or rope, is exceedingly rarefied and extended by the weight of the pendent Quickfilver, and will (upon removal of that violent Caufe which f_{0} holds it) re-contract it felf into its former dimenfions again, and fo draw up what Body foever it hath hold of along with it; as the eflluviums of an Electrick upon its retreat, plucks up ftraws, or any other thing with it that it is able to wield.
5. That

Mercurial Experiments.

5. That Rarefaction or Condenfation is perform'd without any increafe or loffe of quantity in the Body fo chang'd.
6. That this Extenfion of the film of Qnickfilver, is not indefinite, but hath a certain limit, beyond which it will not be ftretch'd; and therefore if the Tube be of an exceeding great height, the Quickflver will rather part with another film, and extend that, and fo a third, or fourth, till it come to the Standard of 29 . inches, where it refts, having not weight, nor power enough to feparate another film from it felf.

Upon reliance on, and encouragement from thefe Principles, he undertakes all difficulties, and engages with wiree great Experimental-Philofophers, Torricellius, Schotus, and Boyle, and refolves all the Phanomena of their Engines.

1. As firft, Why the Quickfilver in the Tube, ander 29. inches, defcends not at all? Becaufe it fticks with its uppermoft furface fo clofe to the top of the Tube, that there is not weight enough to break that adhafion: the reafon whereof is, becaufe there is nothing to fucceed in the room of the defcending Quickifiver, and therefore it firmly fticks there, Ne daretur vacusm.
2. In longer Tubes if falls to that Standard, becaufe then the greater weight of the Quickfilver is able to break that linck of Contiguity or Adhafion ; and therefore the uppermoft furface of the Quickfilver being fliced off, is dilated into a tenuous Column, or Funicle, which fupplies that feeming Vacuity.
3. The reafon why the internal Quickfilver in the Tube does afcend, upon plucking the Tube out of the reftaguant

Mercurial Experiments:

reftagnant Quickfilver, is, Becaufe then (fome of the QuickGiver in the Tube falling out) the Contiguity is not onely broke, but the Quickfilver in the Tube being made thereby lighter, the rope is able to pluck it up; which it doth by retracting and fhrivelling it felf up to the fmalnefs of its former dimenfion; and thus by no violent diftention, but fpontaneous, you muft perceive all the Experiments of the Weather Glafs to be performed by a tenuous Funicle of Ayr, and, in the Pa/ia-lian-Experiment, by a rope of Water; and fo of other Liquors, where this feeming Vacuity is created. By this taft of Philofophy you may eafily imagine how he falves all the Mercurial Phanomena, and thofe of the Pneumatical Engine.
The Arguments by which he ftrives to authenticate and make good his Hypothefis, are thefe four Negative ones; by which he ftrives to impugn the Doctrine of thofe that hold the Ayr's gravitation and Elafticity.

The firt (which is the main and Herculean-Argument) is from the introfuction of the finger, fo obfervable in the Torricellian-Experiment : which, faith he, proceeds from fomething (chat is at a ftrefs') within the Tube, and from nothing that is at a full and free Liberty without: this fuction and attraction of the finger he proves to be not onely eminently fenfible in Tubes above the Standard (whether open at both ends, or clofed at the one) but alfo in Tubes under the Standard of 29 . inches : for, faith he, take a fmall Tube, under the Standard, open at both ends, of 20. inches fuppofed in length, and fill it with Quickfilver, ftopping the lower Orifice with your thumb, then clofing the upper with your finger,
and inmerging the lower into reftagnant Quick Gilve: (as in the Torricellian-Experiment) you fhall (faith he) upon removal of your thumb (though no Quickfilver fall out) feel a palpable fuction of your finger, and the Tube will ftick fo clofe to the pulp of your finger, that you may quite lift it out of the Veffel, and carry it (with all the Quick filver pendent in it) up and down the room. Therefore (faith he) the internal Cylinder of Quickfilver in the Tube is not held up by the preponderant Ayr without; for, if fo, whence comes fo ftrong a fuction, and fo firm an adhaxion of the Tube to your fiuger? For if the external Ayr thruft the Quickfilver upwards, it can never at the fame time draw down the finger too.

His fecond Argument, That the ftauding Quickfilver in the Tube, is not held up there by the external Ayr, is fetch'd alfo from another Experiment in the fame Tube: For (faith he) fill the fame Tube almoft full of Quickfilver (leaving a little fpace of Ayr within it) and then immerging it as before, you fhall fee the Quickfilver to make a confiderable delcent in it, $v i$ z, as far as that little Ayr could well be extended, alfo a ftrong introfuction of your finger as before : From whence he thus argues; If the external Ayr cannot hold up 20. inches of Quickfilver (as we here fee; How can it hold up 29. I pray you (as in the Torricellinn-Experiment?) This Experiment, as appears by our Mercurial.-Oblervations, we made many years ago.

His third Argument is from the Non.gravitation of the Mercurial Cylinder: For, faith he, the Quickfilver in that Station (viz after it has fallen to its old Standard)

Mercurial Experiments.

is not all ponderons, as you may perceive by your finger to the Orifice of the Tube ; from whence, 隹估 he, 'tis plain, that the Quickfilver is there furpended by that tenuous, but tenaceous, rope in the Tube.

His fourth Argument is from the difficalty of Suction of Quickfilver up a Tube, open at both ends, of
what length foever; through which, faith he, water is on of Quickfilver up a Tube, open at both ends, of
what length foever, through which, faith he, water is eafily drawn up to the mouth: And why not Quickfil-
ver? Since here is nothing elfe required but the remoeafily drawn up to the mouth: And why not Quickfil-
ver? Since here is nothing elfe required but the removal of the internal Cylinder of Ayr, which is eafily done (faith he) by Suction,as is manifeft by the alcenfion of
water, but cannot be performed in Quickfilver (which (faith he) by Suction, as is manifeft by the alcenfion of
water, but cannot be performed in Quickfilver (which fhould as eafily be thruft up (to 29. inches at leaft) by the Superincumbent Atmospbare) as the water which is repugnant to Experience of the fire: he concludes, 'Tis not the external Ayr that caufes that effect, neither by its Elafticity, Gravitation, nor both.

Now for the Pofitive Arguments to avouch his Prin: ciples by, he has none at all; onely what he ferches a poAeriori, from his commodious Solution of Difficulties, and falving the Phanomesa better then others have done. For read him through, and you fhall fee he hangs fo like a Tumbler by this rope, that fwing him which way you will, you cannot get him off; though, I doubt not, but we fhall prove his cord to be a mere :rope of fand, and of his own twifting ; and Reafon will, sampfon-like, break it eafily in pieces.

Mercurial Experiments.

Chap. XI.

A Confutation of this Funicular Hypoo thefis of Linus; by Henry Power, $\mathrm{M}^{\text {x. }}$ D.

Objett. x. IF you fill a Tube of 45 . inches in length (as 1 we have hewed you in Experiment in.j except 15 . inches (which let the Ayr fupply) and invert it, you fhall perceive a greater protrufion of your finger by the crupturient Quickfilver, than can poffibly be imputed to the Sapergravitation of the Quickfilver included in the Tube : for, if the whole Tube be fill d with Quickfilver, and inverted, it fhall not make fuch a forcible preffure upon your finger (as that Cylinder of Quickfilver and Ayrdoes) which can be imputed to no other caufe, then the Elafticity of the included Ayr; which, Ariving to dilate it Celf, detrudes the Quickfilver; and, when liberty is given, it forces it down much lower than its ordinary Standard of 28 . inches: which fhewes, that there is no fuch thing as Attraction in the Ayr, but rather a contrary power of Self-extending, and Dilatation. Now, I confefs, this is but an Argument quoad forfum, and therefore not fo much to be infifted upon, becaufe not Mechanically demonftrable.

Object. 2. Again, this is obfervable in all Bodies, that are capable of Extenfion, That ftill, as their Extenfion is angmented or increafed, fo muft the force or power be

Mercurial Experiments.

139
that extends them. As for example., in Ropes or Leather, the firft inch of their forced extenfion is performed by a leffer power then the fecond inch would be, and that then the third, ©oc. Now in the third of Boyle's Experiments, pag. 44. it is oblerved, That the Sucker is as eafily drawn down, when it is nearer to the bottom of the Pump, as when it is much farther off ; which is contrary to the nature of forced Extenfion, as is before delivered.
object. 3. Again, If (according to Linus) the Bladder's intumefcency, in Boyle's Engine, did proceed from the forced extenfion of the Ayr in the Receiver; then the firft evacuation of the P'ump would extend the Bladder more then the fecond, and that than the third, © 6 . But the contrary is avouched by his fourth Experiment, pag. 47. which proves againft the Funicular Doctrine of Linus, but neatly makes out the Elafticity of the embladder'd Ayr, which gradually increafes, as the debilitated Ayr in the Receiver gives room for its expanfion.

Objeti. 4. Again, Linus is refuted by the 19. Experiment in Boyle, which is an Experiment of a four foot Tube, fill'd with water, and inclofed in the Receiver ; by which he found that the water, included in the Tube, did not at all fubfide after feveral exfuctions, till the Elafticity of the included Ayr was no longer able to fupport that Cylinder of water ; but, according to Linus, it thould have fubfided at the firft exfuction, as well as the Quickfilver did when the Torricellian-Experiment was included in the faid Recciver.

T 2
Object. 5 ,

Mercurial Experiments.
Object. s. According to Linus his Principles, the Mercurial Standard flould be the fame at the top of any eminent Hill, that it is at the bottom, efpecially if the Temperature of the Ayr be in both places alike; but this is contrary to the Experiments we tried at Hallifax and Pendle-Hill (as you may fee in Experiment 7 . pag. 19 . alfo Experiment 1 I. pag. 45.) where the coldnefs of the Ayr was a difadvantage to our Experiments; and yet, for all that, you fee how confiderably the Mercurial Standard did vary. Which Objection Linus has ingeniounly confeff'd to me himelf (when once I had the happinel's to fee him) that he camot as yet anfwer.
objet. 6. Take a Glafs.Tube above the Standard, but of a fmall Bore, (that will not admit above a great Pea, or Cherry-ftone) let it be clofed at one end, and fill this with Quickfilver (which you flall find no eafie thing to do ; for I am fure we were a whole hour in filling one, and ftill were forced to thruft the Quickfilver down into it with a fmall wire) then reverfe it very gently into a veffel of reftaguant Quickfilver, and after it has come down to its wonted Standard, you may lift the Tube out of the veffel, and carry it up and down with the Quickfilver pendent in it; which will neither fall out, nor rife up to the top, to fill up the reputed Vacuity. Now what fayes Linus to this? Why does not his rope thrivel it felf up, and pull up this Mercurial Oylinder in this Tube, as well as in all others of a larger Bore?
Objett. 7. Take a Glafs.Syphon A B, and having filld bothlegs with Quickfilver, open the longer into the veffeld Quickfilver B; the effect is, That the Quickfilver in the longer flank will fall down to \mathbf{C} (its

Mercurial Experiments.

wonted Standard;) but that in the fhort fhank A D, bed ing fill clofe ftopped with your finger, will remain full.

Now (according to Linus) the funicle A C exercifes the fame power of pulling the Mercurial Surface A as C : and according to the Principles of Mechanick's, If C B be heavier than A D, it fhould pull over A D into the veffel B. And his Anfwer (which you may read, pag. 74. is nothing to the purpofe; for open the fhort end of the Syphon into the veffel D, (according to his Salvo) no Quickfilver flould ftill rife, becaufe it is ftill as clofely adherent to the veffel'd Quickfilver, as it was before, to my finger; and yer, upon Experiment made, the Quickfilver will rife all out of the veffel D, and go over A, into the veffel B.
Which Experiment, as it confuteth his, fo it clearly avouches our Principles, of the Elaftical preffure of the external Ayr upon the furface of the Quickfilver in the veffel D, which forces it up to A, and lo over into the veffel B.
object. 8. We took an ordinary Weather-Glafs (this 15. 0806.166 I .) A B, of about two foot in Length, and carrying it to the bottom of Hallifax:-Hill, the water ftood in' the fhank at C , (diz) 1_{3}. inches above the furface of the water in the veffel B, thence carrying it thus fitted, immediately to the top of the faid Hill, the water fell down to the point D (viz.) $\frac{1}{4}$ inch lower than it was at the bottom of the faid Hill: which incomparably proves the natural Elafticity of the Ayr.

For the internal Ayr A C, which was of the lame powerand extenfion with the external at the bottom, of

Mercurial Experiments.

of the Hill, being carried to the top, did thare manifeft a greater Elafticity then the Mountain-Ayr there did manifeft Preffure, and fo extended it felf further by C D, which it was not able to do at the bottom, becaufe the Valley-Ayr there was of equal force and refiftance to it: Which Experiment very neatly proves the Elafticity of the Ayr (which Linns would abolifh) as the Tor-ricellian-Experiment; which being carried to the top of the fame Hill(differ'd $\frac{1}{2}$ an inch)did eminently prove the gravitation of the Ayr.

Alfo about the end of fansary, 166 I . we went again to the top of Hallifax-Hill, with divers Weather-Glaffes of feveral Bores, Heads, and Shapes; and found in them all a proportional defcent of the Water, as in the former Experiment at the top of the faid Hill refpectively to what it was at the bottom, with this Obfervable, That in the greateft-Headed Weather-Glafs (which included moft Ayr in it) the defcent of the Water was greater, as being moft deprefs'd, by the greateft quantity of the included Ayr.

Chap. XII.

Experiments in Capillary Tubes and Sy: phons.

Experiment 1.

TAke a fmall Capillary Glafs-pipe, or Tube, open at both ends; and dipping the one extreme perpen-

Mercurial Experimeats.

dicular into the water, you fhall fee the water fpontaneoufly arife to a competent height in the Tube, with a guick and fmart afcent.
Note firft, That the infide of the Pipe ought to be very clean, as well from duft, and little bubbles, as films of water, which will remain in the Pipe, when the water is blown, or fuck'd out of it.
Secondly, It muft be perfectly dry from any other Liquors which will not mingle with water, as Oyl, ξ^{6}.

Thirdly, If you moiften the Pipe firft with water, before you try the Experiment, the alcent of the water will be more guick and lively.
Fourthly, Thit not onely Water, but Milk, Wine, Oil, and other Liguors, except Quickfilver, will likewife rife to a certain height in the faid Pipes.
Fifthly, After the Water has rifen to irs Standardheight, if you take it out of the Liquor, it hall not fall out at all; if you invert the Pipe, the included Cylinder of water will fall down alfo to the other extreme : alfo the deeper you immerge it in the veffll of water, the higher ftill will it rife in the Pipe, ftill keeping its Stan-dard-Altitude above the furface of the water in the verfel: alfo if you fuck it above the Standard, it will ftill fall back to its wonted Altitude.
Sixthly, That not onely Water, but Milk, Wine, Oyl, and all other Liquors, will fpontancoufly arife in the faid Pipes; but with this difference, That the heavicr the Liquors are, the lower their Standard is, and the flower is their Afcent to it: thus you fhall fee Oyl of Tartar will not rife, by one third, fo high as water; nor Oyl of $V i$. triol by $\frac{1}{3}$ fo high as it ; which may alter more or lefs, according to the goodnefs of the faid Oyls.

Seventhly, Now if you take out a Pipe(wherein in ei-
ther of the faid Oyls has firf rifen up to its wonted Standard) and immerge the end thereof into a lighter Li quor (as water) you fhall fee the Oyl fall gradually out into the water, and the Pipe gradually fill with water, and arife to its own Standard; which is higher a great deal than the Standard of either of the faid Oyls, as is before delivered : the like will follow in Syphons.

Bighthly, The fmaller Bore that your Tube is of, the higher will your Water arife; yet we could never get it to arife to the height of 5 .inches (as Mr. Boyle mentions) though we have attempted it in Tubes almoft as fmall as Hairs, or as Art could make them.

Ninthly, If the Tabes be of the Bore of an ordinary Quill, or bigger, no Water at all will arife.

Tenthly, That little or no difference of the water's afcent in the former Tubes is perceptible at the bottom, or top of our Hill.

Experiment 2.

BEnd one of thefe Tubes into a little Syphon (which you may do by putting it into the flame of a Candle) and then putting the one extreme thereof into a veffel of water, you fhall fee it prefently fall a running on its own accord. Obferve,

1. That the perpendicular height of the flexure of the Syphon to the water's Superficies, be fhorter, or at leaft exceed not that Standard-height, unto which the water would rife, were it a ftreight Pipe onely.
2. That the pendent Shank hang not onely lower then the water's Superficies, but by fuch a determinate Length; for we have found, that if the pendent, or extrava

Mercurial Experiments.

extravafated Leg be fhorter, or equal, or but a little lower then the Superficies of the water in the veffel, no effect at all would follow; but the pendent Leg would hang full of water, without any flux at all. Now what this determinate length is, we conccive the pendent Shank mult be longer from the flexure then the Standard of the Liquor would reach; and then it will run as other Syphons do which have a larger Bore: fo that you fee, the Mechanical reafon (which is fo univerfally received by all men) why the pendent Leg in Syphons muft be longer than the other, to make the Liquor run out (viz.) becaufe the greater weight of water in the pendent Leg , overpoifes and fways down that in the fhorter, as in a pair of Skales; is not univerfally true in all Syphons whatfoever.
3. If to the nofe of the pendent Leg you apply a wet piece of Glafs, the water then will begin to come out of the Pipe, and run down to the lowermoft cdge of the Glafs; where, gathering it felf into round bubbles, it would fall to the ground : but then you muft obferve that the nofe of the pendent Shank be lower than the Surface of the water in the veffel.

Experiment 3.

IEt both Shanks of the Syphon be fill'd with water, fo that the pendent Leg be longer than the Superficies of the water (and yet not fo loug neither as to fet it on running) then to the nofe of the pendent Leg apply a veffel of Milk, and you fhall fee, that though the water would not break out of the Pipe into the open Ayr (a medium far lighter, and more divifible than Milk;) yet

Mercurial Experiments.

it did run out into the Milk, and one might fee it purl up again without mingling with the Milk, at a little dark. ifh hole, like a Spring. Obferve:

Experiment 4.

IF you lift the veffel of Milk (with the pendent Leg drown'd in it) higher towards the flexure of the Syphon, fo that the Superficies of the Milk be nearer the flexure of the Syphon than the Staperficies of the Wa. ter, you thall (after a confiderable tine) fee the Milk rife up the pendent Leg, and to drive back the Water; and having fill'd the whole Syphon, to fall a rumning into the Water-veffel, with this difference to the former Experiment, That whereas the Water in the former came to the top of the Milk, the Milk here funk down to the botrom of the Water, in a fmall Itream like a curl'd white thread, and chere fetled in a Region by it felf.

Experiment 5.

NOw, contrariwife, if you lift the veffel of Water nearer the flexure of the Syphon than the Superficies of the Milk is, then will the Water rife over the Syphon and beat out the Milk, and fall a running, as in the third Experiment. And thus you may at pleafiure change your Scene, and make the Syphon fall a rumning, either with Milk or Water: which is a pleafant fpectacle to behold, efpecially if the Water be tingd red with

Mercurial Experiments.

My Worthy and ever Honoured Friend, Mr. Charles Tornnley, upon confidence of thefe Experiments, thought he had difcovered that great, and long fought-for Rarity amongft the Mechanicks (viz) APerpetual Motion: For the demonftrating of which, he devis'd this following Experiment,

M^{r} Charles Townley bis Experiment; from which, be would dedure a Perpetual Motion.

工. Et the Glafs D E F be fill'd with two feveral Li1 quors, fo as they may remain in two diftinct Regions, one above another, as A B, without the leaft mixtures (which may be performed in Milk and Water, placing a broad piece of Cork, or Bread, that will (wim fo upon the Milk, which muft be the lower, as A, being heavier than Water, that it may receive the force of the Water's fal when you pour it upon the Milk:) this done, and the Cork or Bread being taken out, hang theSyphon A C B, firft fill'd with Milk, upon the ftick D C E, fo artificially, that the longer end A may remain in the Region of Milk, and the fhorter end B in the Region of Waters with this caution, That the flexure of the Syphon C be removed no higher from the Milk, than it would naturally afcend to, if the Syphon was ftreight : Now (faith Mr. Charles) Since in the former Experiment the Water would rife over the top of the Syphon, and drive back the Milk; and afterwards rife to the top thereof, and there fwim aloft : why here in the Syphon A C B, the like fhould not follow, (ziz.) the Water at B drive the V 2

Milk,

Milk, (which is fuppos'd firft to fill the Syphon) back to C, then to A, where iffuing out of the Pipe (as it did in rhe former Experiment) it would afcend to its proper Region of Water again, and fo continue in a Circular Motion perpetually.

Now however this fame Problem of M. Charles might feem probable in the Theory, yet it will prove more than moft difficult (if not impoffible) in the Practice. For,
I. We filld the Glafs D E P, half full of Milk, and half full of Water, as A B; then hanging the Syphon (firft fill'd with Milk) fo artificially on the thick D E, fo that the longer Shank might reach the Milk A, and tho fhorter might open into the Superincumbent Region of Water B, we obferv'd this effect, That the Milk did for a fmall time run out of the Orifice B, and feem'd to fall into the inferiour Region of Milk; but at laft the Milk (or at leaft the ferous or more watrifh parts thereof) fo intermixed with the Water (which we could difcern by the whitenefs and opacity of the Water) that the flux was quite ftifled.
2. Contrary to Mr. Charles his Prognofticks, the Water did not rile up the fhort Shank, and drive back the Milk, but quietly permitted the Milk to drill through it ; though I know it was not material which way the flux was performed, provided it would have been perpetual.
The Experiment failing in thefe two Liquors, we attempted the fame again in other two Liquors (which we were fure would not mix;) and to that purpofe we filld the aforefaid Glafs with Oyl of Tartar per deliquium, and Spirit of Wine, which we tinged yellow with Saffron, the better to diftinguilh the Liquors; and then adapting the Syphon, as before, we wifh'd for a happy cvent in the Experiment. But Experience (which ought to be the Miltrefs

Mercurial Experiments.

Miftrefs of wife men as well as fools) fhew'd us the quite contrary; for the Syphon would not run at all, but continued full, which we afterwards conjectured to proceed from the Heterogeneity of the two Liquors. fo that the Oyl of Tartar would not break out into the Spirit of Wine, no more than Milk or Water will do into the open Ayr, where the pendent Shank is florter than the Standard height of thofe two Liquors. So that, it feems, to effect this Experiment indeed, two fuch Liquors muft be found out, as are in fome wife Homogeneoss, and of a Congruity, and the one confiderably lighter than the other, which is tantùm non impe/jibile. For befides the former Liquors, we have tried Oyl and Water, and no Motion at all was perceived, for the fame reafon of incongruity formerly delivered.

But thefe, and a hundred more Experiments of this nature are every day excogitated and tried by our Noble Society of Gre/bam-Colledge, which in a little time will be improved into far nobler Confequences and Theories, than can poffibly be done by the fingle Endevours of any Perfon whatfoever.

The End of the Mercurial Experiments.

EXPERIMENTAL PHILOSOPHY.

The Third Book.
Containing Experiments Magnetical :

With a Confutation of GRANDAMICVS.

Amicus, Plato;
Amicus, Ariffoteles; Grandis Amicus, Grandamicus:
Sed, Magis Amica, Veritas.

By HENR P POWER, D^{r} of Phyfick.

LONDON, Printed in the Year 1663.

Magnetical Experiments.

3. A Magnetical difcovery of Longitudes, or fomething equivalent thereunto.

In the canvaffing of thefe three great Difcoveries, we fhall invert the order, and begin with the laft firft. But before we can conveniently faften upon thefe three main pillars of his Book, there are three other confiderable Errors of his, firft to be removed; which, though they lye more ob/cure and removed from our fight, and buried, as it were, under ground;yet indeed are they the Bafis and Foundation upon which his magnificent StruQure is built: And they are thefe Pofitions following: 1. That the virtue of the Magnet, and all Magnetick Bodies, is purely immaterial, and a bare fimple Quality.
2. That it proceeds intrinfecally from the proper form of the Loadfone; as he hath delivered, Cap. 3 . Pag. 48.
3. That all the World, and confequently all the Bodies therein, were made, by the Divine Providence, for the ufe of us and our habitation, this Globe of Earths which he has fixed in the Centre of the World, and conftituted us Lords and Mafters of all the Univerfe. Grand, Pag. so.

Chap. II:

Of the Corporeal Effliviurms of the Load: fone.

D
Octor Highmore tells us, That the Magnetical Ex: firations of the Loadfone may be dificovered by

Grandamicus Confuted.

the helpof Glaffes, and be feen in the form of a mift, to flow from the Loadtone: This, indeed, would be an incomparable eviction of the Corporeity of Magneticall Efluviums, and fenfibly decide the Controverfic under Confideration. But Iam fure he had either better Eyes, or elfe better Glaffes than ever 1 faw (though I have look'd through as good as Englund affords) nad the beft of them all was as far from prefenting thefe fubtil Emanations, that they would never exhibit to me thofe groffer, and far more material, Eflluviums, from Electrical and Aromatical Bodies: Nay, not the Evaporations of Camphire, which feends it felf by continual. Is Effluviating its own component Particles : Nay, I could never fee the groffer fteams, that continually tranfpire out of our own Bodies, and are the fuliginous Eructations of that internal Fire which conftantly burns within us. Indeed, if our Dioptricks could attain to that Curiofity, as to grind us fuch Glaffes as would prefent the Efluviums of the Magnet; we might hope to difcover all Epicarus his Atoms, Des.Cartes his Globuli atherii, and all thofe infenfible Corpufcles which daily -produce fuch Confiderable effects in the generation and corruption of Bodies about us: Nay, might not fuch Microfsopes hazard the dilcovery of the Aerial Genii, and prefent even Spiritualities themfelves to our view? But though both our Natural and Artificial Eyes fail in this performance, yet have we another more Intrinfick Eye, that will yet difcover their materiality, and that is the piercing Rye of Reafon. For,

1. That the Magnetical Emiffions and Fluors, are not bare Qualitics, but indeed Corporeal Atoms, is deducible from hence; That this virtue decayes in progrefs of Time (as all Odours do) and is totally de-

$$
X_{2} \quad \text { ftroyed }
$$

Magnetical Experiments.

ftroy'd by Fire in a few minutes, and is capable of Rarity and Denfity, whence it is more potent near at hand than further off: all which are the proper and incommunicable Attributes of Bodies.
2. Again, it is further evinced by fome Parallel and Analogical effects of Electrical with Magnetical Bodies, that they both work by Corporeal Effluviums; for a well polifh'd ftick of hard Wax (immediately after frication) will almoft as vigoroully move the Directory Needle, as the Loadftone it felf; onely there is (amongft others) thefe confiderable differences 'twixt thefe Eminent Bodies, that the Efluviums of the one, (as being more Grofs and Corporeal) are intercepted by any medium; but Magnetical Efluviums are hindred (becaufe of their exceeding tenuity) by the interpofition of no Body whatfoever. Secondly, Whereas Blectrical fluors do profently, recoyl by. fhort ftreight lines to their Bodies again, Maguetical. Atoms do not fo; but do wheel about, and, by a Vortical motion, do make their return unto the Loadfone. again, as Dos. Cartes hath excellently declared.

Grandamicus Confuted:
 157

Сhap. III.

That the Magnetical Effluviums do not proceed intrinjecally from the Stone, but are certain extrinfecal particles, which approching to the Stone, and finding congruous pores and inlets therein, are cbannel'd tbrough it ; and baving acquired a Motion thereby, do continue tbeir Current Jo far, till being repulled by the ambient Ayr, they recool again, and return in a Vortical Motion, and lo continue tbeir revolution for ever, through the Body of: tbe Nagnet.

Argument 1.

CHAp.

THis feems probable, firft, from this, That if a Magh net it felf be made red hot in the fire, it not oncly amits the Magnetical vigour it had in it felf. before, but acquires a new one, according to the pofitional Laws in its Refrigeration ; Io thiat by inverting the Extremes (as it came out of the fire) you may alter the Pols thercof (at pleafure,) nay, you may change the Polarity of many

Magnetical Experiments.

feeble Stones, by a long Pofition, in a contrary pofture to that which it inaturally affects. Both which Experiments feem to fhew, That the Magnetical Efluviums are not Innate and Congenial to the Stone, but proceed $a b$ extrinfeco, evc. therefore do impreguate the Stone again, upon their re-admiffion; or do change its Polarity, as the more powerful treams of Atoms do prevail. The like Experiment (if it could be tried) would doubtlefs hold good in the great Magnet of the Earth; for the Terrella we fee in all other Pbanomena, is avouched by her Mother- Earth.

Argument 2. The faid Argument we may aflume from a certain Section of the Stone; for if you divide the Magnet through a meridian, or Saw of a Segment, parallel to the Axis, the former Ax is and Poles will quite vanifh away ; and each Segment, by this divifion, will acguire a new Axis of its own : which hews, That the external Magnetical Fluors, which pafs'd through the Stone, all in one continued Atream before, now paffe by feveral currents throngh both Stones, and fo create a new Axis and Poles in either.

Argument 3. Is from the difponent or directive faculty (as they call it) of the Stone ;ifor to fay, This Polary direction proceeds from it felf, is to put a Soul, or Intelligence, at leaft, into the Stone; which muft turn it about(as Angels are fained to do the Coeleftial Orbs:) How much more credible is it, That the ftream of Atoms from without, by beating upon the Stone, do turn it to and fro, till they have laid it in fuch a Pofition as is fitteft for them to run through it, as a ftream of water turns a hollow trunk of wood, or a long ftick, till it come to lye parallei to its current. Argu-

Grandamicus Confuted.

159
Argument 4. Is from the different effecas proceeding from all Efluxions that come from all other Bodies, befides Magnetical, as Electrical, Odoriferous, $ఆ 6$. for all Bodies that effluviate intrinfecally from themfelves, their ex firations flye quite away into the open Ayr, and never make any return again to the Body from whance they proceeded, fo that in time they do not onely fpend their quinteffential and finer particles, but even their whole bulk and fubftance, as is Ocularly manifeft in Camphire : Now'sis not fo in Magnetical Bodies, whofe exfipirations are continual and permanent, becaule they return in Circumgyrations to their Bodics again.
Argument 5. If the Magnetick rayes proceeded intrinfecally from the Stone, there is mot reafon they flould proceed from the Centre, the Stone being all of an uniform Subftance; as the Luminous rayes doe from the Body of the Sun, and as Odours do from their Original; and fo there would be no Poles, nor Inclinations of Magnets more in one Latitude than in another: But now fince there are two Poles, where the Current of Efluxions are ftrongeft, it is a fign the Magnetical Fluors coming from withour, doe ftrike a ftream in at one Pole; and finding the grain and bait of the Stone, to lye fir for their Tranation, do channel through to the oppofite part of the Stone, and fo continue their Current in the Ayr, fo far, till they are refifted and forced to recoyl by a double whirlpool-motion round about into the Magnet again.

Argument 6. That the Magnetick Fluors proceed not intrinfecally from the Stone, to caufe the Self.Direction in the Magnet, is further evident from this new

Magnetical Experiments.

Experiment: Take a wedge of Iron (which the Smiths call Puncheons) and heating it red-hot, you fhall, according to the Laws in its refrigeration, endue it with a polary verticity, as has been proobferved by all Magnetick Writers: But that which will heighten the Experiment further, is, That though it hath but acquired a feeble virtue by its refrigeration, yet if you take it up cold, and with a few fmart ftrokes of a great Mall, or Ham, mer, you beat the one end of it, fetting the other againft fome hard refifting matter, as Stone, Brafs, Iron, or hard Wood, you thall thereby give it a moft powerful Magnetifme, fo that it will then as actively move the Needle, at a good diftance, as the Loadtone it felf: Now, lay I, by thofe percuffions you did fo open and relax the pores in the Iron-wedge, that the Magnetical Atoms could then enter in, with a full Carriere, which before they could not; and having once got fo free a paffage, they will maintein the Current ever after.

Argument 7. Since a conftant, fteddy, and polary direction of parts is onely obfervable in Bodies Magnetical, we have reafon to think and believe, that thefe Magnetical Effuvia (which are the caufe of this peculiar direction) are not only tranfmitted and channel'd through the Earth, but through many other Coeleftial Bodies al$f o$, as $\odot \odot 4 \mathrm{~h}$, and, perchance, the reft of the Planets yea and Fixed Stars too, as by Tele/copical Ob/ervatinns is now made very manifeft in thofe Bodies that fwin within our Planetary Syfteme.

Argument 8. Take a Rod of Iron (or a Puncheon) as before; heat it red-hot, and according to the Laws in its refrigeration, you may endue this or that Extreme

Grandamicus Confuted.

with whether polarity you pleafe; now afterwards by flriking it with a Hammer in the fame pofture that it was cooled in, you may much advance and invigorate its Magnetical virtue, as we have formerly declared : But now the main Obfervable of all, is, That after both the reception of the virtue by convenient refrigeration, as alfo the augmentation of it by percuffion, you may by inverting and repercufing the Extremes, alter the polarity of the Iron at your pleafure; and then, which is Itranger, that if you frike the Iron in the middle 'twixt the two Extremes, it will deftroy its formerly acquired Magnetifm.
Argument 9. If you bore with a Wimble in any hard piece of wood, till you heat it foundly, you will communicate to it a froug Verticity, infomuch that it will nimbly turn a Magnetical Needle; but if with a dril of Iron or Steel you bore a piece of Brafs or Iron till you heat it well, it will acquire fo ftrong a Magnetifm thereby, that it will not only turn an equilibrated Needle, but vigoroully attract, and lift up a fmall Needle: and I have obferved the fmall filings and fhavings which fall out of the Drill-hole, to ftick to the point of the Drill, as if it had been to a Magnet it felf; which fhews, that the Magnetical Atoms did more eafily by far enter into the Drill or Wimble, when the parts thereof were heat and fet in Motion, than before.

Which ftill feems to make out, That the Magnetical Atoms rather enter into, than proceed from thole Bodies we call Magnetical, as the reaching foul of the renowned Des.Cartes hath happily fuppofed.

Chap.

Magnetical Experiments.

Grandamicus Confuted.

Chap. IV.

That the World was not made Primarily, nor Solely for the ufe of Man, nor in Jubferviency unto Him and bis Faculties.

A

 S I would not dcrogate from the Greatnefs and Eminency of Man (as being a very Noble Creature s) fo I would not have him arrogate too much to himfelf: For though it may be a pious, and morally good conception, To think that the whole world was made for him, yet I am fure 'tis no real and Phyfical Truth.For firf, How many glorious Bodies of vaft Bulks, and immenfe Diftances, have appeared, nay, and may yet appear to future ages (as Comets and New Stars) which are now gone and vanifh'd again, which no mortal man ever underitood the reafons and caufes of, nor received no good nor evil, either before or fince their appearances? Nay, How many fuch Comets may have been near the Sun, whofe firft rife, continuation, and difappearance may have been made in fix moneths time, of which (by reafon of the Sun's vicinity to them) we could never fee nor know any thing? Who can be fo irrational, as to think that thofe innumerable company of Sars (with which the Via Laitea is powdred) and many other parts of Heaven are chrong'd (as the Pleiadiss) in which very Subconftellation I have feen above 20. Stars of a confiderable Magnitude, and leffer ones innume.
innumerable, alfo the Hyades, the Stelle Nebulofa, \&rc. were cver made for the ule of Us and our Farth, fince they are at that immenfe diftance, and invifible to our eyes; and had remaind eternally fo, had not the incomparable invention of Telefoopes relicved our eye-fight herein? Nay, to come nearer, Who can imagine that any of the primary Planers were wholly defigned for the fervice of पIs and our Earth; whereas, if noft of them were plack'd out of the Heavens, we fhould no more feel the want of them, than the Countrey Swain that already knows of no fuch Wanderers? What then mult we think of the Secondary Planets, as the CircumSaturnian, and the four Jovialifts, which are not onely indifcernable by us, and therefore were never defigned for our ufe, but alfo have their peculiar Motion about their Primary Planets (which they orderly and punctually attend) which fhews other ends that God and Nature has defigned them for, to wit, to be as wholly Subfervient to their Central planets of Saturn and ${ }^{\prime}$ upiter, as the Moon is to us? Laftly, Who is there that knows not the vaft difproportion'twixt this Speck of Earth, and the immenfe Heavens, how that it is lefs than the fmalleft Mote or Atom, which we fee to hover and play in the Sun's beams, in comparifon of the Fixed Stars? So that if one ftood but in the Firmament, it could never befeen at all; and if it were annihilated, would never be mifs'd, being fo fmall and inconfiderable a portion of the Creation : Nay, our Modern Philofophers have found, That not onely the Earth, but the whole Orbis Magnus (which is the Earth's Annual Circle it defcribes about the Sull) is but a Point, in regard of the immenfe diftance of the Fixed Stars. Nay, the Noble and Elaftical Soul of Des-Cartes, that has fretch'd it felf yet a

[^3]pin higher, has done the Heavens and Upper World more right yer, as to the Magnificent valtaefs of its Expanfion, and has fhown us that every Fixed Star is a Sun, and is fer in the Centre of a Vortex, or Planetary Syftem, as ours is, and that they are as far remote one off another, as ours is off them; and that all our whole Planetary Vortex hrinks almoft into nothing, if compared to thofe innumerable Sy ftems above us. What are we then but like fo many Ants or Pifmires, that toyl upon this Mole-hill, and could appear no otherwayes at difrance, but as thofe poor Animals, the Mites, do to us through a good Asiero/cope, in a piece of Cheefe?

Let us not therefore pride our felves too much in the Lordhip of the whole Univerfe, 'tis more, I am fure, than we could challenge from our Creatour, that he liath made us fuch Noble Creatures as we are, that he hath given us fuch a large Inheritance, as the whole Globe of the Earth, that he hath Subjugated all things therein to our ufe and fervice ; and laftly, that he hath endued our Souls with fuch firitual and prying faculties, that we can attempt and reach at the Superiour and more myfterious works of his Creation, and therein to admire thofe things we are not capable to underftand. As for the Earth being the Centre of the World, 'tis now an opinion fo generally exploded, that I need not trouble you nor my felf with it. And, indeed, what need I take pains to refute that which is but grats diftum, and which he neither hath, nor all the Peripateticks in the world can ever prove. Let us firt fee him do that, and then you fhall fee what I am able to fay to it.

Grandamicus Confuted.

Chap. V.

ANd now I come to his three great Inventions; and the firt fhall be of Longitudes. To find the Longitude of any place, or fome thing æquipollent thereunro, is eafily done (faith he) from thefe three Data; that is, The Angle of $\left\{\begin{array}{l}\text { Magnetical Inelination. } \\ \text { Magnetical Variation. } \\ \text { Elevation of the Pole. }\end{array}\right.$
As for Example: At Rouen in France, The Angle of North- Eafting Variation of the Compafs is $-2 \mathrm{gr}^{20^{\circ}}$ The Angle of Septentrional Inclination is -72 gr . The Elevation of the North-Pole there, is - $49 \mathrm{~g}^{r}$.

Grandamicus his Confequence from bence.

Now 'tis impoffible (faith he) that thefe three Angles mould be the fame in auy other determinate point of the Earth, but at our City at Rowen.

To which we Reply,

Firf, That he runs upon a falle Affumption ; viz. That the Angle of Variation it felf is perpetually the fame in the farme place of the Earth, which is falle; For Mr. Burroms, Ann. Dorn. 1 580. made an exact ObfervaMr, Burrows, An.
tion of the Needle's Variation towards the Eaft at Lime-
Houfe,

Magnctical Experiments.
Houfe, near London, and found it to amount to no lefs than $11 \mathrm{gr}, 15^{\prime}$, and afterwards; Ann. Dom. $1622 . \mathrm{Mr}$. Gunter, at the fame place, obferved it to be diminimed to onely 6 gr .and $\mathrm{r} 3^{\prime}$. And Gildebrand, Ans. Dom. 1634. in the fame place found it to come yet lower, and not to exceed 4 gr .6 min . So that in procefs of time it is very probable it will come to an exact Meridionality, and, perchance veer as much on the other fide of the Meridian Line (viz) Weftwards, as it hath done of this.
Doctor Croone, my Worthy and moft Ingenious Friend, writes me word, that in fane laft, 106 I , the Magnetical Variation at London, was found to be by the beft Obfervation $45^{\prime} 3^{\prime \prime \prime}$ Weftwards: fo that it leems it has part the Meridian already. And of this myftery of the Variation of the Variation, Grandamicus himfelf was not ignorant; but becaufe it would fpoyl his glorious Invention, he therefore unhandfomly and unworthily afperfes our Englif) Obfervations, with Ignorance, Error, and Incertitude, sap. 4-pag.73.
Whereas the Obfervators nominated, were of that Knowledge and Perfpicacity in the Mathematicks, that I am fure tis a Credit to Gramdamicus to be inferiour to any of them. But we fhall now tell him, That not onely the Englifh, but his own Countrey-men have found out this truth. So that the like decreafe of the Needle's Variation has been obferved at Paris by Mer/emnus, and at Aix by Gaflendws : So then this Angle of Variation being quite fallible, and alwayes variable, his other two Angles will prove nothing at all; for they are the fame in the fame Latitude or Parallel round about the Earth.
2. But granting him his three Data: I fay, in the oppofite point of the Globe (that is Antipodes to Rouen) all

Grandamicus Conjuted:

If you reply, and fay, That though the Angles of Variation and Inclination be the fame, yet they will be pointed out by the oppofite points of the Directory and Inclinatory Needles. To which we Counter-reply, That the fame point of the Needle that pointed at the Northpolc bere, will there point at the Sonth. pole; thereforc he can luve no evidence of the Needle of Variation, as is manifett by carrying the Needle from the one Pole of the Terrella to the other.

And for the linclinatory Needle, we fee what a ticklifh thing it is to make exactly, and though it be poized by a good Artificer, yet will it mifs one or more Degrees in hitting the true point of Inclination, which would be a coufiderable Error, to a Land-Traveller as leaft.
3. For the Profit and Utility of this Invention, 'tis none at all: forto a Traveller that fails in one and the fame Parallel (which he may do many a thoufand miles) the Angles of Inclination and Elevation will remain the fame with thole at the Port from whence he fer Sail ; and though the Angle of Variation did alcer (as he would have it) yer my Marriner cau tell nothing at all thereby, but onely thus, That he is not at Rouen; but how far he is gone from it, either Eaft or Weft, he knowes not at all suulefs he foreknew the Angles of Variation in every Longitude, which is yet unknown: and if they were all now known, yet were it of little or no ufe or benefit, becaufe in procefs of time the Variation it felf va. ries, as we have pre-obferved.

Maynetical Experiments.

Chap. VI.

$A_{\text {wil }}^{N}$Nd now we come to his Second great Invention, with which he thunders againft the Copernicans, and that is his great Magnetical Experiment to avouch the Earth's Immobability.

To this Experiment therefore drawn from the perpendicular pofition of the Magnet, we anfwer, That the reafon why the Terrella does wheel about, and direct certain parts of its Equator, to certain and determinate points of the Horizon, is, Becaufe it is overpower'd by the Magnetical Effluxions of the Barth; which, as a greater Magnet, does violently reduce it to that Situation, which probably is the lame that thofe Equatorial parts had in their Mineral Beds : And therefore this great Argument againtt the Dinetical Motion of the Earth, is no Argument at all, unlefs that he could prove to us that the Terrella could play this trick; it were removed out of the fphare of the Earth's Magnetifme, which is beyond his Philofophy ever to demonftrate.
2. Again, If this Motion of the Magnet did proceed from an Intrinfecal Tendency that it has of its own, to bring all its parts to their right and determinate points, there to remain in a perfect Stability, then would thofe parts conftantly affect this (and no other) Situation, howfoever the Loadftone was pofited (provided it be at
\because Liberty to move it felf to its defired pofition.) But this is falfe ; For, in Grandamicus his Experiment, if you invert the Poles of the Magnet, and fer the North-Pole in the Zenith, and the South in the Nadir, you fhall fee the Stone to Counterchange its Situation, and thofe requa-

Grandamicus Confuted.

torial parts of the Magnet, which before refpected the Eaft, thall now wheel about, and fix themfelves in the Weft ; and the Northern parts turn to the South: which fhews, That the Stone does not Tack about from an intrinfecal principle and form of its own, but is turned by the extrinfecal Effluxions of the whole Earth; or rather by the ftream of thofe Magnetical Atoms, that ftrike not onely through the Axis of the Earth, but alfo through the Body of every petty Loadftone, accordingly as they are beft received by the Grain or Bait of the faid Stone.
And now I am engaged in this Magnetick Difcourle, I muft tell you that I think our famous Gillert has drawn a more prevalent Argument from this Magnetical Philo. fophy, to prove the Earth's Motion by, than Grandamicus has done to deftroy it; for fince it is demonftrated of late, that all the whole Earth is nothing but a great and Globular Loaditone, and that all the Circles of the Armillary Sphxre, are really, truly, and naturally inhærent in the Earth, by virtue of the tranfcurrent Atoms, How can we conclude otherwife but with Gilbert? 2 wis in pefferum ram de faito moveri dubitabit, quum ci omnia ad motum planè requifita, dedit natura ; i. e. figuram rotundam, pendulam in medio Fluido pofitionem, © omsnes terminos mot ui Circulari infervientes, polus nempè, aquatorem, meridianos polares circulos, छ parallelos?

Laftly, As for his Univerfal Meridian, it is likewife deduced from his Anti.Coperncan Experiment of the Loadfone fwimming in a Boar, with its Poles vertically erected : For (faith hei,) Since the Stone being Horizontally.placed, does not thew the true Meridian, but with an Angle of V ariation, in molt, if not in all places of the Earth, if you fer it with its Axis perpendicular as before, it will (after fome undulations to and fro) reft quietly,

'Magnetical Experiments.

with certain parts facing the Meridian ; which 'points muft be exactly marked, and through them a Circle drawn round about the Stone; by help of which, you may frike a true Meridian-Line, when and where you pleafe.

Now, though we grant this Experiment to be true, and, probably,to hold good in all Longitudes and Latitudes yet he that fhall perpend; how many ticklifh Curiofities, and nice Circumftances there are to perform this Experiment exactly, will find the Invention only pleafing in the Theory, but not in the Practice: For, I. It is very difficult to place the Terrella in an exact perpendicular ; 2. When 'tis.fo, 'tis as difficult to keep it invariable under the fame Zenith; 3 . Moft difficult to draw an exact Meridian-Line from it: Not to mention how hard a thing it is ; firft, to find the two Polary points in a Globe-Loadfone; alfo to keep the Boat in a Fluctua, tion, parallel to the Horizon.

The end of Magnetical Experiments.

Subterrancous Experiments:

OR,
OBSERVATIONS
About
COLE-MINES.

BY
HENRY POWER $\mathrm{M}^{\mathrm{x}} \mathrm{D}^{\text {. }}$

Z 2

Subterraneous Experiments.

A The Cole-pit.

B The Vent-pit.
C. C The Sow, that drains all the heads from water.

DD D; 6 C. The Vent-head, not above two yards broad.
EREE The Lateral Heads, which are not above two yards broad.
FF F The prick'd lines, the Thusl-vent; that is, a Vent drivewtheough the lateral heads.
G G G G Is Walls or Pillars of the whole Cole-Bed remaining (which with us is not above two foot thick) to hinder the roof of the pit for falling.
The Roof and Seat is the Top and Bottom of the Works, wherein they get Coles, whieh is about two foot or more diftant the onc from the other.

Subterraneous Experiments:

175

Experiment i.

A the top of the Cole-pit we Atook the Weather-Glafs A B, whofe thank E B was about $2 \frac{1}{2}$ foot long, of a fmall bore, and the Head A E $2 \frac{1}{2}$ inches in Diameter; and heating the Head thereof, and immerging it prefently in the Glafs ful of water B ; the water, after a competent time, rofe up to the point C; where we let it ftand for a while, till we faw that the External and Internal Ayr were come to the fame Temper and Elafticity.

Then carrying the WeatherGlafs (lo prepared) in a Scoop downto the bottom of theCole-pit(which was not above 35 . yards deep) there the Water in the Weather-Glafs did rife up to the point D, viz. very near 3. Inches higher than its forsuer Standard C.

Experiment 2.

THe fixth day of November, 1662, we repeated the fame Experiment, as before, in a pit of 68 . yards deep, and there we found, that at the bottom of the faid pit the water in the Weather-Glaffe, did rife very near four inches higher than the point C: viz one inch higher than the point D to F . Now we obferv'd, that in carrying down of the faid Glars in a Scoop from the top to the middle of the Pit, there the water did not rife fo much as it did from the middle to the bottom, by half an inch; fo that ic feems the rife of the water was not proportional to the Glaffe's defcent in the Pit.

Experiment 3.

WE took a very good arm'd Loadftone, of an Oval figure (whore poles lay in the long Diameter) and at the top of the Coal-pit we loaded the Northpole of it with the greateft weight it was able to carry, even to a Scruple; then taking the Stone down to the bottom of the pit, and hanging on the fame weiglt again, we could perceive no difference in the power of the Stone at the one place from the other; for it would neither lift more nor lefs there, than above : though to try this Experiment precifely, and to minute weights, is very ticklifh; for the fame Stone in any place will fome. times lift a little more, and fometimes a little lefs.

Experiment

Experimint 4-

WE took a thread of 68. yards long (which is as long as the deepeft pit is with us) and faftening a Brafs lump of an exact pound weight to it, we counterpoizd both it and the thread with a weight in the other Scale; then faftning the other end of the thread to one of the Scales, we let down the pendent weight near to the bottom, and there we found it to weigh lighter by an ounce at leaft than it did at the top of the faid pit.
We had tryed this with a Bladder full of water, and other fubftances alfo, but that our thread by often untwining broke it felf.

Experiment 5.

THe Collyers tell us, That if a Piftol be fhot off in a head remote from the eye of a pit, it will give but a little report, or rather a fudden thump, like a Guu hot off at a great diffance; but if it be difcharg'd at the eye of the pit in the bottom, it will make a greater noife than if hot off above.ground. But thefe Experiments are of a dangerous trial in our pits, and the Collyers dare not attempt them by reafon of the crazinefs of the roof of their works, which often falls in of iss own accord without any Concuffion at all.
Every Cole.pit hath its Vent-pit digg'd down at a comperent diftance from it, as $\rho 0.0$ or 80 . paces one from another.

Subterraneous Experiments.

They dig a Vault under. ground from one pit to another (which they call the Vent-pit) that the Ayr may have a free paffage from the one pit to the others, fo that both pits with that Subterraneous intercourle, or vault, do exactly reprefent a Syphon invers'd. Now the Ayr always has a Motion, and runs in a ftream from one pit to the other ; for if the Ayr fhould have no Motion (or Vent, as they call it) but Reftagiate, then they could not work in the pits.
It is not requifits that the Vent.pit fhould be as deep as the Cole-pit.
Now the Vent, or Current, of Subterraneous Ayr is fometimes one way, and fometimes another ; fometimes froma the Vent-pit to the Cole-pit, and fometimes contrariwife (as the Winds (above ground) do alter;) and allo weaker and ftronger at fometimes than at others : and fonetimes the Vent plays fo weakly, that they cannot work for want of V entilation.
Then to gather Vent (as they call it) they ftraiten the Vault, and wall part of it up; fo that the Ayr (which before run in a large ftream) being now crowded into a leffer channel, and forced to pals through a narrower room, gathers in ftrength, and runs more Twiftly.
Now it is obferv'd, that the Subterraneous Ayr is alwayes warm, and in the coldeft weather, the warmeft; Co that it never freezes in that pit, out of which the Vent plays.

Subterraneous Experiments.

Of Damps.

T
Here are three forts of Damps, or rather three degrees of the fame Damp;
$\left\{\begin{array}{l}\text { The Common. }\end{array}\right.$
$V_{i z}$. $\left\{\begin{array}{l}\text { The Suffocating. } \\ \text { The Fiery }\end{array}\right.$ (The Fiery.
The Common Damp is that Subterraneous Steam, or Exhalation, which coming out of the Earth, reftagnates in the heads and undergroundy-cavities, and hinders their Candles for burning, fo that they cannot work.

1. If they incline their Candle downwards, towards their feat, it is oblerv'd, it will abide in the longer, and not fweal away, and ftifle it felf with too much tallow, as it would do above-ground.
2. Though this Damp be fo great, as it extinguifhes the Candle, yet they can abide in it withoutSuffocation. Alfo the heavy vapour will reftagnate there, and is not able to rife.
3. This Damp is fometimes generated by the Effluviums and Perlpirations that come out of their own Bodies that work, if they fweat much; and if the Candle be within the fphare of thofe EMuviums, it will extinguifh it as the former; as the Collyers obferve that pals from one head to another that is working in another head.

This Damp is fometimes on the one fide of the heads and not on the other; and for the moft part it runs all along the roof, fo that a Candle will burn, if fet upon the feat : but if you lift it upinto the fuperincumbent

$$
\mathrm{Aa}_{2} \quad \text { Region }
$$

180

Subterraneous Experiments.

Region of Damp-vapours, it will be immediately ex. tinguin'd.
Now befides the playing of the Vent, they fometimes are neceffitated to keep conftant fires under-ground, to purifie and ventilate the Ayr: Sometimes the running of the Scoops (when they begin to work) will fet it into Motion : Sometimes, if the Damp draw towards the eye of the pit, then they fet it intomotion by throwing down of Cole-facks.

Of the Suffocating Damp.

TΓ He Suffocating or Choking Damp is a more pernici, ous Exhalation, or elfe a higher degree of the former.; into which no man is able to enter, but prefently he is ftifled and dyes. And it is oblerved, that the Bodies of thofe (which are fo flain) do fwell, and are puffed up exceedingly, as if poyfon'd. This Damp is feldom here in our pits; but if it be, then the firft perfon that is let down into it, is prefently kill'd : fo that afterwards they try, by letting down dogs, when it is removed, and fit to enter into ; and mott. part by letting down of lighted Candles, which will be extinguifh'd by the Damp in the bottom of the pit, if any Damp be reftagnant there.

Of the Fiery Damp.

The end of Subterraneous Experiments.

Ertainly this World was made not onely to be Inhabited, but Studied and Contemplated by Man; and, How few are there in the World that perform this homage due to. their Creator? Who, though he hath difclaimed all-Brutal, yet ftill accepts of a Rational Sacrifice ; 'tis a Tribute we ought to pay him for being men, for it is Reafon that tranfpeciates our Natures, and makes us little lower than the Angels: Without theright management of this Faculty, we do not fo muchs: in our kind as Beafts do in theirs, who juftly obey the prefeript of their Natures, and live up to the height of that inftinct that Providence hath given them. But,alas, How.

The Conclufion.

How many Souls are there, that never come to act beyond that of the gazing. Monarch's ? Humanum paucis sivit genur. There is a world of People indeed, and but a few Men in it; mankind is but preferv'd in a few Individuals ; the greateft part of Humanity is loft in Earth, and their Souls fo fixed in that groffer moity of themfelves (their todies) that nothing can volatilize them, and fertheir Reafons at Liberty. The numerous Rabble that feems to have the Signatures of man in their faces, are Brutes in their undertanding, and have nothing of the nobler part that flould denominate their Fifences; 'tis by the favour of a Metaphor we call them Men, for ar the beft they are but Des-Cartes's Astomata,
 frames, and Zanies of meu, and have nothing but their ouffides to juftific their titles to Rationality.
Pugs and Baboons many claim a Traduction from Adam as well as thefe, and have as great a flare of Reafon to juftifie their Parcntage.

But it is not this numarous piece of Monftrofity (the Multitude onely) that are enemies to themfelves and Learning; there is a company of men amongft the Phiignorance themelves, a fort of Notional heads, whofe
igarnifh'd over with a little fquabling Sophintry) is as great and invincible as the former. Thele are they that daily ftuff our Libraries with their Philofophical Romances, and glut the Preffs with their Canting Loquacities. For, inftead of folid and Experimental Philofophy, it has been held accompliflment enough to graduate a Student, if he could but ftiffly wrangle out a vexatious difpute of fome odd Peripatetick qualities, or the like; which (if tranflated into Englif), lignified no more than a Heat 'twixt two Oyter-wives in Billings.

The Conclufion.

gate : Nay, thefe crimes have not onely fain'd the Com. mon, but there are fipots alfo to be feen even in the Purmon, but here Learning. For it hath been a grear fault, and, indeed, a folemn piece of Folly, even amongft the Profeffors and nobler fort of Philolophers, That when they have arrived to a competent height in any Art or Science, if any difficulty do arile that their Art cannot prefently reach unto, they inftantly pronounce it a thing impoffible to be done; which inconfiderable and rath cenfure and foreftallment of their endevours, doesnot onely ftifle their own further Enquiries, but alfo hangs, to all fucceeding ages, as a Scar-crow to affright them for ever approching that difficulty. Hence it is, that moft Arts andSciences are branded at this day with fome fuch ignominious Impofibility.
Thus came they to upbraid Chymiftry with the Altahef, and Philofophers-Stone ; Geography, with Longitudes ; Geometry, with the Quadrature of a Circle; Stereometry, with he Duplication of the Cube ; Trigonometry, with the Trifection of an Angle; Algebra, with the Aquation of three difcontinued Numbers; Mechanicks, with a Perpetual Motion; and our own Profeffion, with the incurability of Cancers and Quartans, Nay, the Spring and Nepetides in Natural Philofophy, the DoCrine of Comets in Aftronomy, the Terra Incognita in Geography, the Heart's Motion in Anatomy, the Forming of Conick Sections in Dioptricks, the Various Variation in Magnetical Philofophy, are accounted as infuperable difficulties as the former, whore Caufes (they fay) defie all Humanc Induftry ever to dilcover them.

But befides this Inteftine war, and civil diffention that is 'twixt men of the fame denomination and principles,

The Conclusion.

there is one more general Impediment, which is an Authentick difcouragement to the promotion of the Arts and Sciences, and that is, The Universal Exclamation of the World's decay and approximation to its period; That both the great and little World have long fine pals ${ }^{\circ} \mathrm{d}$ the Meridian, and, That the Faculties of the one doe fade and decay, as well as the Fabricks and Materials of the other; which though it be a Conceit that hath poi. fefs'd all ages pant, as nearly as ours, yet the Clamour was never fo high as it is now : Something, therefore, I hall here offer, that will abate and qualifie the rigour of this Conception.

An $\varepsilon f \int_{\text {av }}$, to prove the World's \mathcal{D} ration, from the flow motion of the Sun's Apogrum, or the Earth's Aphelion.

FIrft, We take for granted, from the Scripture.Account, that the World is about goo. years old.
Secondly, We take it for granted, that the Sun's Ape. geum was at the Creation fer in the first point of Aries; for which you will anon fee prevalent reafons.

Thirdly, From Aftronomical Obfervation 'cis now found, that the Sun's Apogreum is about the fixth degree
of Cancer.

Fourthly, By intervals of Obfervation it is likewife found, That the Motion of the Sun's Apograum, in 100. years, is $1 \mathrm{gr} .42^{\prime} 33^{\prime \prime}$, which by retrocalculation will point out the time of the World's Nativity to be about so00. years ago, which very handfomely draws nigh to

The Conclusion.

the Scripture-Account, as the famous Longomontanus has ingenioully observed.
Vow in all likelihood, he that made this great Automaton of the world, will not deftroy it, till the flower Motion therein has made one Revolution.

For would it not even in a common Watchmaker (that has made a curious Watch for forme Gentleman or other, to hew him the rarity of his Art) be great indefcretion, and a molt imprudent act, and argue allo a diflike of his own work, to pluck the faid W arch in pieces before every wheel therein had made one revolution at lealt ? Now the Apogaum (if it move equally, as it hath hitherto done) will not perfect one Revolution under 20000 . years, whereof there is but one Quadrant yet spent, and 1 soon. years are yet to come.
Befides, What reafon is there that God fhould respect the one Hemifphære of the Earth, more than the other? For, take the Sun's Apogaum now as it is, and the North Hemifphare of the Earth hath eight days more of the Sun's company than the South Hemifphere hath (as is plain to every one's Obfervation) for it is eight days more from the Vernal to the Autumnal Fiquinox, then it is from the Autumnal to the Vernal again; which inequality will be repaid to our Antoci in one Revolution
of the Sun's A pogrom: for soon. years hence, bot mifphreres will equally enjoy the Sun's illuminating perefence; and soco. years after that, the Southern HemeSphere will have the eight fupernumerary days transferr'd to them; and then at the period of the lat 5000. years, both Hemilphæres will be equilibrated again: Therefore, in all reafon, tho fe Southern Inhabitants may expect, and we molt grant one Revolution of the Sun's Aposaum, at leapt, (which is disco. years) yet to cone, to Bb 2
bal.

190
 The Conclufion.

ballance our felicities in this world; and who knows, but it may be continued many more Revolutions? Thus much for the Macroco/m: Now what decay there is in the Microco/ m, we mult be both Parties and Judges; and how far our Modern Wits have outdone the Ancient Sages, the parallel 'twixt the few Inventions of the one, and the rare Difcoveries of the other, will eafily determine. But the Learned Hackwell's Apology fhall be mine at prefent, for not treating any further of this Subject ; he having long fince perform'd that Task, to the conviction of Prejudice it felf.
Befides this Catholick one, there are other Remora's yet in the way, that have been acceffory hindrances to the advancement of Learning, and that is, A diffidence and defperation of moft men(nay even of thofe of more difcerning faculties) of ever reaching to any eminent Invention; and an inveterate conceit they are poffers'd with of the old Maxim, That Nil diftum, qued non prius dittum: by which defpondency of mind, they have not onely fififled the bloffoming of the Tree of Knowledge in themfelves, but alfo have nipp'd the very Buds and Sproutings of it in others, by blazing about the old and uncomfortable Aphorifin of our H itpocrates, of Nature's obfcurity, the Life's brevity, the Senfes fallacity, and the Judgement's infirmity.

Had the winged Souls of our modern Hero's been lime-twig'd with fuch ignoble conceptions as thefe, they had never flown up to thofe rare Inventions with which they have fo enrich'd our latter dayes; we had wanted the ufeful Inventions of Guns, Printing, Navigation, Paper, and Sugar; we had wanted Decimal and Symbolical Arithmetick, the Analytical Algebra, the Magnetical Philofophy, the Logarithms, the Hydrargyral

The Conclufion.

19 1
grral Experiments, the glorious Inventions of Dioptrick Glaffes, Wind guns, and the Noble Boyle's Pneumatick Engine.
Nay, what ftrangers had we been at home, and within the circle of our own felves? We had yet never known the Melenterical and Thoracical Laftere, the Blood's Circulation, the Lymphiducts, and other admirable Curiofities in this fabrick of our Selves. -
All which incomparable liventions do not only folicite, but, me-thinks, fhould inflame our endevours to attempt even Impoffibilities, and to make the world know There are not difficulties enough, in Philofophy, for a vigorous and active Reafon: 'Tis a Noble refolution to begin there where all the world has ended ; and an Heroick attempt to falve thofe difficulties (which former Philofophers accounted impofibilities) though but in an Ingenious Hypothefis: And, certainly, there is no Truth man's wit may raife Engines to Scale and Conguer it: Though Democritus his pit be never fo decp, yet by a long Sorites of Obfervations, and chain of Deductions, we may at laft fathom it, and catch hold of Truth that hath folong fitt forlorn at bottom thereof.
But thefe are Reaches that are beyond all thofe of the Stagyrite's Retinue, the Solutions of all thofe former Difficulties are referved for you (moof Noble Souls, the true Lovers of Free, and Experimental Philoopophy) to gratifie Pofterity withall.
You are the enlarged and Elaftical Souls of the world, who, removing all former rubbilh, and prejudicial refiftances, do make way for the Springy Intellect to flye out into its defired Expanfion. When I feriounly contemplate the freedom of your Spirits, the excellency of
your Principles, the vaft reach of your Defigns, to unriddle all Nature ; me-thinks, you have done more than men already, and may be well placed in a rank Specifically different from the reft of groveling Humanity. And this is the Age wherein all mens Sonls are in a kind of fermentation, and the fpirit of Wifdom and Learning begins to mount and free it felf from thofe droffie and terrene Impediments wherewith it hath been fo long clogg'd, and from the infipid phlegm and $C a-$ put Mortuam of ufelefs Notions, in which it has endured fo violent and long a fixation.
This is the Age wherein (me-thinks)Philofophy comes in with a Spring-tide; and the Peripateticks may as well hope to ftop the Current of the Tide, or (with Xerxes) to fetter the Ocean, as hinder the overflowing of free Philofophy: Me-thinks, I fee how all the old Rubbif mult be thrown away, and the rotten Buildings be overthrown, and carried away with fo powerful an Inundation. Thefe are the days that muft lay a new Foundation of a more magnificent Philofophy, never to be overthrown : that will Empirically and Senfibly canvals the Phenemena of Nature, deducing the Caules of things from fuch Originals in Nature, as we obferve are producible by Art, and the infallible demonftration of Mechanicks : and certainly, this is the way, and no other, to build a true and permanent Philofophy: For Art, being the Imitation of Nature (or, Nature at Second. Hand) it is but a fenfible expreffion of Effects, dependent on the fame (though more remote Caufes;) and therefore the worls of the one, muft prove the moft reafonable difcoveries of the other. And to fpeak yet more clofe to the point, I think it is no Rhetorication to fay, That all things are Artificial; for Nature it felf is nothing

The Conclufion.

nothing elfe but the Art of God. Then, certainly, to find the various turnings, and myfterious procefs of this divine Art, in the management of this great Machine of the World, malt needs be the proper Office of onely the Experimental and Mechanical Philofopher. For the old Dogmatifts and Notional Speculators, that onely gaz'd at the vifible effects and laft Refultances of things, underftood no more of Nature, than a rude Countreyfellow does of the Internal Fabrick of a Watch, that onely fees the Index and Horary Circle, and perchance hears the Clock and Alarum frike in it: But he that will give a fatisfactory Account of thofe Pbrnomena, mult be an Artificer indeed, and one well skill'd in the Wheelwork and Internal Contrivance of fuch Anatomical Engines.

FIXIS.

Errata.

In the Preface, read Daring, inftead of Darling Arto p. 6.1.5. Opilionim. p. 11. 1.18. 2athe. p. 21.1. 26, fratge Atoms. P. 27.1. 17. Obforvat. 7. P. 29.1. 27. adde found.1.28. adde fonnd it had lof7. P. 31.1.14. rings. P.47.1.9. Moon mort, and l. 13 . of all things. p.49. I.1 7. ehive, all. P. s1. 1. G. like. p. 68.1 .10 .1 incid. \& 1.21. darn. p. 70. 1. 28 . dele (does.) \& 1. 29. doth diref. p. 71. 1.22, andfo. p.73. 1.4. And mdeed and roality. p. 78.1.20.0f that. p.81.1.17. Swn's /pofs.
 1. 30. Torricelliws, p 94. I.2 , their Agr. P.99.1.13, this is, ibid. Obfarv.11. Experiment 1. p. 101, 1. 30. Elater. 1.12. particles. p.102. 1.6. Experiments suill to fatiels. l.21. dele (which) p. 103.12. is by far the greatef, art thercof. p.108.1.26. fuperponderant mater. p.11a 1.12. all ome. 1. 24. at a free. p. 11.1.7. Such a like Tate. p. 112.1.5. ter. 1. ult. dele (Mad; p.114.1.26. the orifice,

 1.26. in the, p.135. l.7. Concive, J. 22 . of bis Philofophy. P. $137,1,13$. dele (of the firc) and read, therefore. P. 168.1. 16. if it.

[^0]: \qquad

[^1]: \qquad

[^2]: S dicular

[^3]: Y_{2}
 pin

