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1. In the geometry of paths as developed by Professor Veblen and
myself in a number of papers in volumes eight and nine of these PROCEED-
INGS, the idea is that the paths are a generalization of straight lines in
euclidean space. We take the equations of the paths in the form

d2X$ r
dxa dxg (1)

ds2 D ds ds

where s is a parameter peculiar to each path and r t, (= rP) are func-
tions of the x's. Now I make the assumption that physical phenomena
manifest themselves in paths in a space-time continuum of four dimensions
and that the functions r , are determined by the character of the phenomena.
In this note I apply this idea to the case of electro-magnetic phenomena as
developed in the general theory of relativity, and the results raise the
question whether Weyl, and later Eddington, are justified in the assump-
tion that the fundamental vector introduced by Weyl in his gauging
system is the electro-magnetic potential of the field.

2. Suppose that the fundamental quadratic form of the space-time
continuum is written in the general form

ds2 = gijdx'dx' (gij = gi) (2)

Let K. and K" denote the covariant and contravariant components
of the electro-magnetic potential in a general system of coordinates, x'.
As usual we put

F,,,, = ?K,, (3)
bJXV ?bX"



MATHEMATICS: L. P. EISENHART

and
F: = ev. F - eaUgoFap, (4)

where ge, is the cofactor of gsa in the determinant divided by

g = lg",j (5)
From (3) follows the second set of Maxwell equations

?6F 6F,O ?6FoaX&P + a + Ia-X ° (6)

and the first set in tensor form are

F= J" (7)

where the left-hand member is the sum for v of the covariant derivatives
of F"", and J" are the contravariant components of the charge-current
vector in general co6rdinates; thus

dx"J"_po-d, (8)
ds

where po is the proper-density of the charge.'
The equations of motion, in tensor form, of an electric charge are

+ { -} - = _ FJ', (9)

where u is the mass-density and { } denotes the Christoffel symbols

of the second kind with respect to (2).2
3. If we put

# 1Fp'Jp Fp$J I (10)

where, in consequence of (2),
dxa dx

=ygap - = jAp (11)
ds ds

equations (9) may be written

d2Xs a+({ }dx=-+ 9aa3,. d d
. (12)
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These equations are of the form (1), where

ra= { g,ip (13)

Elsewhere,3 I have shown that the same paths are defined by

+ ri d s (14)
if we take

r,= aX,p + atv d2 2 dxa (ds2 (15)
a# a o~+ 3,(a =S-2 dsO7 s

From (8), (10) and the skew-symmetric character of F,,^, we have

dxa
a= 0, (16)
ds

and hence from (15) we see that s and s' can be taken as the same. From
(13) and (15) it follows that the functions r for the paths may be given the
form

r= { '5t~ } + 5ao, + 5~Oa -g9I,O'. (17)

The expressions (17) are those given by Weyl4 for the coefficients of the
affine connection of a manifold whose character is determined directly
by gravitation and electro-magnetism. Weyl assumes that the vector pa
in (17) is the electro-magnetic potential. From the foregoing results it
would seem that p)a is not the electro-magnetic potential but is functionally
connected with it, Ka, as given by (10), (3) and (7). There are other
considerations which point to this view.

4. In accordance with the Weyl5 geometry a new gauge system is
introduced by altering the length of the standard at each point in the ratio
'X/2, where X is an arbitrary ptint function. If the standard is decreased
in the ratio X/2, a length will be increased in this ratio and for the new sys-
tem

ds'2 = Xdgs2ap (18)

the coordinate system being independent of the gauge.
If the components of a tensor in the new gauge system are XA times

those in the old system, the tensor is said to be of weight e. Thus from
(18) it follows that g,a, is of weight one, and from (12) that s' is of weight
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minus one, and consequently q ( = g,ipp') is of weight zero. Further-
more it follows from (3), (4) and (7) that if Ka is taken of weight one, then
,os is of weight minus one from (10), which is in accordance with (12).

Pauli6. pointed out that the Einstein equations

Rik - 2gikR = - kTik (19)

are inconsistent, when it is assumed, as Weyl has done, that the convariant
components K. of the electro-magnetic potential are of weight zero. In
fact, on this hypothesis, the left-hand and right-hand members of (19)
are respectively of weights zero and minus one. Juttner7 called attention
to the same difficulties in the case of the equations

Rik - j gikR = - kSik, (20)

where

Sik= gikFaFa _F-cFkpga.

He tried to overcome the inconsistencies by changing the form of these
equations, while still holding to the hypothesis that Ka is of weight zero.
Mr. A. Bramley of the Department of Physics of Princeton University

has shown, in a paper to be offered to the Philosophical Magazine, that
equations (19) and (20) are consistent, if the weight of K. is taken fo be
one, and if Ka is not supposed to be the fundamental vector sp of the
gauging system, but functionally related to it in such a way that P. is
of weight zero. Equations (10) are consistent with the hypothesis made by
Bramley. In view of the foregoing considerations it is a question whether
Weyl's assumption that the gauging vector pi is the electro-magnetic
potential should be rejected, and the relation (10) be adopted to give the
relation between p,a and the electro-magnetic potential Ka,,.

1 Eddington, The Mathematical Theory of Relativity, Cambridge, 1923, pp. 173, 190.
2 Eddington, 1. c., p. 190.
3 These PROCEZDINGS, 8, 1922 (234); also Veblen, Ibid. (347).
4 Cf. Weyl, Space, Time and Matter, English translation, pp. 125, 284; also Eddington,

1. c., pp. 202, 203.
5L. c., p. 127; also, Eddington, 1. c., pp. 200, 203, Eddington shows that (17) is

-invariant for gauge-transformations, and for this reason (17) is used in place of (13).
As shown by (14), (15) and (16) the forms (17) and (13) lead to the same paths.

6 Encycl. Math. Wiss., vol. V2, part 4, p. 767.
7 Math. Ann., 87, 1922 (282).
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