Berichte des Ausschusses

für

Versuche im Eisenbau

Ausgabe A

Heft 2

Versuche zur Prüfung und Abnahme der 3000 t-Maschine

Berichterstatter:

Geheimer Regierungsrat Professor Dr.-Ing. Max Rudeloff Direktor des Staatlichen Materialprüfungsamtes zu Berlin-Dahlem

Mit 73 Textfiguren

Springer-Verlag Berlin Heidelberg GmbH 1920

Berichte des Ausschusses für Versuche im Eisenbau

Herausgegeben vom Deutschen Eisenbau-Verband (D. E. V.), früher Verein Deutscher Brücken- und Eisenbau-Fabriken

Nachdem der Ausschuß für Versuche im Eisenbau infolge des Krieges eine mehrjährige Unterbrechung seiner für die Kriegführung nur mittelbar nutzbaren Arbeiten eintreten lassen mußte, wird mit dem vorliegenden Berichte die Fortsetzung seiner Veröffentlichungen wieder aufgenommen.

Die Veröffentlichungen erfolgen im Namen des "Ausschusses für Versuche im Eisenbau", der auch die Versuche selbst beschließt und überwacht. Es erscheinen zwei Arten von Berichten, die je in sich fortlaufend numeriert werden:

> 1. Hefte A, in denen die Anordnung, die Durchführung und die unmittelbaren zahlenmäßigen Ergebnisse der Versuche besprochen und mitgeteilt werden.

> 2. Hefte B, welche die weitere Bearbeitung und Auswertung der Versuchsergebnisse sowie die daraus zu ziehenden Folgerungen und etwaige Bauregeln für die Praxis enthalten.

Dem verschiedenen Inhalte der beiden Arten von Heften wird auch ein verschiedenes Format entsprechen, das für die Hefte B eine besondere Handlichkeit anstrebt.

Bisher sind erschienen:

Ausgabe A, Heft 1:

Der Einfluß der Nietlöcher auf die Längenänderung von Zugstäben und die Spannungsverteilung in ihnen

Nach Versuchen im Materialprüfungsamt zu Berlin-Lichterfelde Berichterstatter: Geh. Regierungsrat Professor Max Rudeloff Mit 30 Textabbildungen. IV und 65 Seiten, 4°. Preis M. 3.60*)

Ausgabe B, Heft 1:

Zur Einführung — Bisherige Versuche

Berichterstatter: Reg.-Baumeister a. D. Dr.-Ing. F. Kögler Mit 26 Abbildungen. IV und 56 Seiten, 8°. Preis M. 1.60*)

Ausgabe A, Heft 2:

Versuche zur Prüfung und Abnahme der 3000 t-Maschine

Berichterstatter: Geh. Regierungsrat Prof. Dr.-Ing. Max Rudeloff Mit 73 Textabbildungen. IV und 82 Seiten, 4°. Preis M. 10.-

*) Hierzu Teuerungszuschläge

Berichte des Ausschusses

für

Versuche im Eisenbau

Ausgabe A

Heft 2

Versuche zur Prüfung und Abnahme der 3000 t-Maschine

Berichterstatter:

Geheimer Regierungsrat Professor Dr.-Ing. Max Rudeloff Direktor des Staatlichen Materialprüfungsamtes zu Berlin-Dahlem

Mit 73 Textfiguren

Springer-Verlag Berlin Heidelberg GmbH

1920

Ausschuß für Versuche im Eisenbau:

Staatsrat Prof. Dr.-Ing. C. von Bach in Stuttgart.
Baurat Dr.-Ing. Bohny, Direktor in Sterkrade i. Rhld.
Geh. Baurat Dr.-Ing. Carstanjen, Direktor in Gustavsburg bei Mainz.
Dr.-Ing. Fischmann, Direktor in Berlin.
Geh. Rezierungsrat Prof. Dr.-Ing. Müller-Breslau in Berliu.
Kommerzienrat Dr.-Ing. Reusch, Generaldirektor in Oberhausen i. Rhld.
Geh. Baurat Schaper, Vortragender Rat in Berlin.
Wirkl. Geh. Oberbaurat a. D. Dr.-Ing. Dr. Zimmermann in Berlin.

Frühere Mitglieder:

† Böllinger, Direktor in Gustavsburg bei Mainz.
Marineschiffsbaumeister Burkhardt in Wilhelmshaven.
Geh. Marine-Oberbaurat Dr.-Ing. Hüllmann in Berlin.
Prof. Dr.-Ing. Kögler in Freiberg i Sa.
† Geh. Baurat Labes, Vortragender Rat in Berlin.
† Geh. Baurat Schnapp in Berlin.
† Baurat Dr.-Ing. Seifert, Direktor in Duisburg, ehem. Vorsitzender.
† Dipl.-Ing. Seidel in Duisburg.

ISBN 978-3-7091-2436-9 ISBN 978-3-7091-2437-6 (eBook)

DOI 10.1007/978-3-7091-2437-6

Inhaltsangabe.

		Seite
I.	Die Maschine	1
II.	Gegenstand der Untersuchung	3
ш.	Prüfung von Druckstäben	5
	A. Prüfung des Stabes 68	5
	1 Das seitliche Aushiegen des Stabes	2
	2. Das Neigen der Druckplatten	10
	3. Die Verkürzung des Stabes	10
	4. Längenänderungen der Stützfedern	12
	5. Zerstörungserscheinungen	12
	6. Zugversuche mit Materialproben aus Stab 68	14
	7. Vergleich der beobachteten Knickkraft mit der berechneten	14
	B. Prüfung des Stabes 69	16
	1. Die Bestimmung der Einspannmomente	18
	2. Das seitliche Ausbiegen des Stabes	22
	3. Das Neigen der Druckplatten	25
	4. Längenänderungen der Stützfedern	28
	5. Durchbiegungen und Verkürzungen der Stabhälften	29
	6. Zerstörungserscheinungen	31
	7. Vergleich der beobachteten und berechneten Festigkeit	33
IV.	Prüfung von Zugstäben	33
	A. Prüfung des Stabes 76	33
	1. Die Dehnungsmessungen	24
	2. Das Gleiten der Laschen gegen den Stab	35
	B Prüfung von zwei geschmiedeten Stähen 80 und 81	26
	1 Ernrohung des Materials der Stäbe	97 97
	2 Prüfung des States 80 auf der 100.t. Werder Maschine	20
	3 Versuche auf der 500.t-Maschine	20
	a) Prüfung des Stabes 80	30
	b) Prüfung des Stabes 81	41
	4. Versuche auf der 3000-t-Maschine	41
	a) Versuche mit dem Stabe 80	42
	b) Versuche mit dem Stabe 81	44
	c) Vergleich der Stabfestigkeiten mit den Materialfestigkeiten	45
	d) Das Verhalten der Druckwasserbremsen	46
	C. Prüfung des Zugstabes 70	48
	1. Der Aufbau des Stabes	48
	2. Gegenstand der Beobachtung	49
	3. Versuchsergebnisse	50
	a) Bestimmung der Zugkräfte	50
	b) Bestimmung der Formänderungen	51
	c) Brucherscheinungen	56

Der Zylinder d und das mit dem Kolben e verbundene Querhaupt f ruhen beide mit Rollen und Gleitflächen auf der Bahn des Grundrahmens.

Die Übertragung der Kraft auf das Probestück erfolgt beim Druckversuch über die Kugellager h, beim Zugversuch durch die Zugstangen i und k, die dann abweichend von der Darstellung Fig. 1-3 nach rechts bzw. links so verschoben werden, daß ihre Köpfe sich gegen den Zylinder d und das Querhaupt b legen, während die Gewindeenden der Stangen zur Aufnahme der besonderen Einspannteile durch die Druckplatten h hervorragen.

Um bei Längenänderungen der Stangen a möglichst reibungsfreie Verschiebung der letzteren gegen die Stützböcke g zu ermöglichen, ruhen die Stangen in den Böcken auf Rollen.

Zum Zurückführen des Kolbens in den Zylinder nach beendetem Versuch dienen zwei im Querhaupt f angeordnete Rückzugzylinder lund zum Vernichten der beim plötzlichen Bruch der Probe freiwerdenden Reaktionskräfte zwei Druckwasserbremsen p, deren Scheibenkolben mit den Stangen averbunden sind.

Das Druckwasser zum Betrieb der Maschine wird der letzteren aus einem Gewichtsakkumulator zugeführt, den eine dreifachwirkende Pumpe speist; sie ist elektrisch betrieben und wird je nach Bedarf selbsttätig ein- und ausgerückt. Der erzeugte Wasserdruck beträgt 400 at.

Die Belastung (Zug- oder Druckkraft) wird aus dem Wasserdruck im Arbeitszylinder d und der Kolbenfläche F(F = 7918 qcm) berechnet und hierbei der durch Reibung verursachte Leergangswiderstand in Abzug gebracht.

II. Gegenstand der Untersuchung.

Die Versuche, über die nachstehend berichtet wird, bezweckten die Prüfung der 3000-t-Maschine auf:

1. ihre Betriebssicherheit und

2. Richtigkeit der Kraftbestimmung.

Zugleich sollten die Versuchsstücke, soweit sie ausgeführten Baugliedern nachgebildet waren, erprobt werden.

Die Betriebssicherheit der Maschine ist bedingt sowohl durch die Beherrschung der Zuführung des Druckwassers aus dem Gewichtsakkumulator zum Arbeitszylinder bei Einstellung der gewünschten Belastung, als auch durch die Widerstandsfähigkeit der einzelnen Maschinenteile gegen die beim Versuch auftretenden Beanspruchungen.

Die Einstellung der Belastung erfolgt mit Hilfe von Ventilen q, Fig. 2, unter Beobachtung des jeweils im Zylinder erzielten Wasserdruckes an Manometern. Die Handhabung der Ventile hat sich als durchaus zuverlässig erwiesen, so daß in dieser Beziehung keine Ausstellungen zu machen waren.

Die Genauigkeit der Druckmessung war anfänglich dadurch beeinträchtigt, daß die Manometer an die Zuleitung r des Druckwassers zum Arbeitszylinder angeschlossen waren. Hiermit war der Mangel verbunden, daß beim schnellen Durchfluß des Druckwassers durch die Leitung die Höhe des Druckes infolge Druckgefälles in der langen engen Rohrleitung zwischen der Anschlußstelle des Manometer und dem Zylinder von den Manometern zu hoch angezeigt wurde. Richtige Druckanzeigen erhält man bei dieser Rohranordnung erst dann, wenn die Kraftäußerung der Maschine mit der Belastung des Probestabes im Gleichgewichtszustande ist, der Kolben des Arbeitszylinders also zum Stillstande gekommen ist. Bei den Versuchen kommt es aber darauf an, den Druck auch nach Überschreitung der Streckgrenze der Probe also auch bei Bewegung des Kolbens gegen den Zylinder und somit bei dauernd nachfließendem Druckwasser zu beobachten. Daher wurde die Rohrleitung derart geändert, daß die Hauptleitung unmittelbar vom Akkumulator zum Arbeitszylinder der Maschine geführt und von letzterem eine besondere Leitung zu den Manometern abgezweigt wurde. Die Abzweigung erfolgte von einem Stutzen aus, der im Scheitel des liegend angeordneten Zylinders zum Entlüften des Zylinders vorhanden war.

Die Prüfung der einzelnen Maschinenteile auf genügende Widerstandsfähigkeit gegen die beim Versuch auftretenden Beanspruchungen konnte nur durch die Prüfung geeigneter Proben mit hinreichend hoher Bruchfestigkeit erfolgen. Die Ergebnisse solcher Prüfungen bilden im wesentlichen den Gegenstand dieses Berichtes. Zugleich ist bei diesen Prüfungen aber darauf Bedacht genommen, auch die Richtigkeit der Kraftanzeige bzw. deren Fehler festzustelken. Hierzu sind bei Prüfung einiger Probestäbe deren elastische Dehnungen ermittelt, aus ihnen die von der Maschine geäußerten Kräfte, die Belastungen, berechnet und letztere mit den Belastungswerten in Vergleich gestellt, die sich durch Berechnung aus dem Wasserdruck und Kolbenfläche ergaben. Da es nun ohne beträchtlichen Kostenaufwand nicht möglich ist, geeignete Kontrollstäbe dauernd bereit zu halten, so erschien es angebracht auch die Formänderungen einiger Maschinenteile mit zu beobachten, um tunlichst in ihnen ein Mittel zur dauernden Kontrolle der Kraftanzeige zu schaffen. Am geeignetsten erschienen hierzu die beiden Spindel a, die den Kraftschluß zwischen dem festen Widerlager der Maschine und dem hydraulischen Krafterzeuger bilden, sowie die Zugstange i, an die beim Zugversuch das eine Ende der Probe angeschlossen wird. Sofern diese Maschinenteile die dem Probestabe erteilte Belastung voll aufnehmen, bietet ihre elastische Längenänderung einen Maßstab zur Bestimmung der Belastung P_1 , indem dann letztere sich berechnet nach der Gleichung:

$$P_1=\frac{\lambda}{l}f\cdot E,$$

wenn $l = \det$ Meßlänge,

 $\lambda = \det$ Dehnung für l,

f = dem beanspruchten Querschnitt und

E = dem Elastizitätsmodul des Materials

ist.

Zur Ausübung der vorbezeichneten Kraftkontrolle mußte also der Elastizitätsmodul des Materials der Spindeln *a* und der Zugstange *i* bekannt sein. Um ihn zu ermitteln und zugleich Aufschluß über die übrigen Festigkeitseigenschaften des Materials zu erlangen, sind zu den einzelnen Teilen der Spindeln und der Zugstangen Zerreißproben mitgeliefert; ihre Prüfung ergab die in Tabelle 23 zusammengestellten Werte.

Zur Prüfung der Maschinen dienten folgende Stäbe:

- 1. zwei Druckstäbe, Fig. 5 und 21, gez. 68 und 69;
- 2. ein genieteter Zugstab, Fig. 42, gez. 76;
- 3. zwei Stäbe aus geschmiedetem Stahlguß, Fig. 46 und 47, gez. 80 und 81 für 500 und 1000 t und
- 4. ein genieteter Zugstab, Fig. 54, gez. 70.

Bei den Druckversuchen erschien es zulässig sogleich auf hohe Beanspruchungen der Maschine zu gehen, da zu erwarten war, daß die Druckstäbe unter örtlichem Ausbiegen allmählich ohne Stoß zu Bruch gehen würden. Bei den Zugversuchen war dagegen mit plötzlichem Bruch zu rechnen. Dabei mußten aber die mit den Spindeln averbundenen Druckwasserbremsen p mit in Mitleidenschaft gezogen werden. Wenn nun auch die Sicherheit dieser Bremsen gegen Bruch durch die Berechnung nachgewiesen war, so erschien es dennoch ratsam, bei den Zugversuchen nicht sogleich auf die höchste Kraftleistung der Maschine von 1500 t zu gehen, sondern mehrere Zugversuche mit Stäben verschiedener Festigkeit auszuführen und hierbei mit den schwächeren Stäben zu beginnen. Auf diesem Wege war es zugleich möglich zu ermitteln, ob es erforderlich ist, die Ventile der Bremsen für verschiedene Bruchlasten verschieden weit zu öffnen, oder ob es zulässig ist, bei allen Versuchen mit völlig geöffneten Ventilen zu arbeiten.

III. Prüfung von Druckstäben.

Die Stabenden stützten sich bei der Prüfung gegen die mit Kugellager ausgerüsteten Druckplatten h, Fig. 1, von der in Fig. 4 im einzelnen dargestellten Anordnung. Die Kugelschale a des einen Drucklagers ist mit dem feststehenden Widerlager der Maschine, die des anderen Drucklagers mit dem Kolben des die Druckkraft erzeugenden Arbeitszylinders verbunden; gegen den Kugelabschnitt b liegt die Druckplatte. Das Eigengewicht der Platte ist durch auf Rollen laufende Stütz-

lager c gegen das Maschinengestell abgefangen. Diese Stützlager sind durch Stangen mit den Querhäuptern b und f, Fig. 1, verbunden, so daß sie deren wagerechten Verschiebungen folgen. Die Stützflächen der Lager c, Fig. 4, sind ebenfalls kugelig ausgebildet; ihr Drehpunkt fällt mit dem Kugelmittelpunkt der Drucklager zusammen.

Um den Bewegungswiderstand in dem Drucklager möglichst gering zu gestalten, ist der Kugelabschnitt bam Umfange durch einen ringförmigen Stulp gegen die Schale a abgedichtet und der so zwischen beiden abgeschlossene Raum wird beim Versuch mit Druckwasser gefüllt gehalten. Hierzu dient der Druckübersetzer dmit dem Verhältnisse der Kolbenflächen von 7 : 4, sein kleiner Kolben wirkt auf die Füllung des Kugellagers,

Fig. 4. Kugellager.

während sein großer Kolben unter dem gleichen Druck steht, der im Arbeitszylinder herrscht. 7:4 ist das Verhältnis der Flächen des Maschinenkolbens und des Kugellagers.

Um sicher zu sein, daß nicht etwa infolge von Undichtigkeit Entleerung der Kugellager eintrat und nun die Kugelflächen unmittelbar zum Auflager kamen, ist der Flüssigkeitsdruck in den Kugellagern während des Versuches an einem nachträglich angebrachten Manometer dauernd beobachtet und die Füllung des Druckübersetzers nach Bedarf erneuert, wozu der Probestab dann vorher entlastet wurde.

A. Prüfung des Stabes 68.

Der Probestab ist dem Gurtungsstück einer bestehenden Brücke nachgebildet, dessen Belastung in der Brücke zu $P_b = 860$ t berechnet ist. Seine Abmessungen und Konstruktion zeigt Fig. 5.

Hiernach besteht der Stab im wesentlichen aus vier Stegblechen *a*, vier Saumwinkeln *b* und dem Deckblech *c*. Durch zwei Querschotten ist die Stablänge in drei Felder geteilt, das mittlere mit 2520 mm, die beiden Endfelder mit 2358 mm Länge. Die Querschotten bestehen aus einem Blech von 10 mm Dicke, das durch Winkel $\left(\frac{80 \cdot 100}{10}\right)$ einseitig an die Stegbleche, dem Deckblech und die unteren Saumwinkel angeschlossen ist (s. a. Fig. 17). Auf der unteren offenen Seite des Stabprofils sind Diagonalverstrebungen angebracht, von denen immer die eine aus einem einfachen Flacheisen von 80 · 10 mm Querschnitt, die andere aus einem Winkeleisen $\left(\frac{40 \cdot 80}{8}\right)$ besteht. Diese Winkeleisen sind so angeordnet, daß der eine Schenkel in die Profilöffnung hineinragt. Hierzu sind die Enden dieses Schenkels fortgeschnitten.

Die Hauptwerte sind: Gesamte Knicklänge. 1 = 788,0 cm Brutto-Querschnittsfläche $F = 846.4 \text{ cm}^2$ Kleinstes Trägheitsmoment. $J = 560 \ 100 \ \mathrm{cm}^4$. $i = \sqrt{\frac{J}{F}} = \sqrt{\frac{560100}{846,4}} = 25,72 \text{ cm}$. $\frac{l}{i} = 30,63$. Kleinster Trägheitshalbmesser Verhältnis . Bruttofläche 846,4 qcm. Beanspruchung 1015 kg/qcm. Stabkraft 860 t. Kleinstes Trägheitsmoment 560100 cm4. Knickfestigkeit nach Euler 22,4 fach. l = 788 cm; i = 25,72 cm; = 30,6 Fig. 5a. 2358 2520 2358 72.36 7880 Fig. 5b Fig. 5c. 554 Fig. 5. Druckstab Nr. 68.

Um den Stab mit möglichster Genauigkeit so in die Maschine einbauen zu können, daß seine Schwerpunktsachse mit der Achse der Maschine, d. h. der Verbindegeraden zwischen den Mittelpunkten der beiden Drucklager, zusammenfiel, war auf die beiden Endflächen des Stabes je eine Platte von 25 mm Dicke aufgenietet, die auf der Außenfläche einen zur Stabachse zentrierten, zylindrischen Ansatz trugen. Diese Ansätze paßten in die Bohrungen hinein, die in den Druckplatten angebracht sind (s. Fig. 1 und 4). Zur Schonung der Druckplatten war zwischen ihnen und dem Stabe noch eine 12 mm dicke Stahlplatte eingefügt (s. Fig. 9, rechts).

Die Endflächen des Stabes waren durch Fräsen so bearbeitet (s. Fig. 5 c), daß nur die 4 Stegbleche a, die vier Saumwinkel b und das Deckblech c mit 846,4 cm² Gesamtdruckfläche zur Anlage kamen. Die übrigen Endglieder des Stabes traten um einige Millimeter von der Druckfläche zurück, nahmen also an der unmittelbaren Kraftübertragung nicht teil.

Das Eigengewicht des Stabes war nach dem Vorschlage des Herrn Baurat Dr. Ing. Seifert gegen das Maschinengestell durch einen Satz Federn abgefangen, die in der Mitte unter dem Stabe angebracht waren (s. Fig. 9 und 17). Die Anord-

6

nung dieser federnden Stütze zeigt Fig. 6. Sie besteht im wesentlichen aus den 3 Federn A mit zwischengelegten Blechscheiben. Die unterste Feder stützt sich gegen den Balken B, der mit den Enden auf dem Maschinenrahmen aufliegt. Durch das Ganze geht das Rohr C hindurch, das an den Enden mit Außengewinde versehen ist und mit der oberen Endfläche gegen das mit dem Probestabe verbundene Druckstück D wirkt (s. a. Fig. 17). Durch Niederschrauben der Muttern E werden die Federn bis zu der gewünschten Tragkraft angespannt. Mit dem Stabe sind zwei solche Federn geliefert. Vor ihrer Verwendung sind sie mehrfachen Belastungsversuchen unterworfen, bei denen die Beziehungen zwischen Belastung und Zusammendrückung ermittelt sind (s. Tab. 1 und Fig. 7). Nach ihnen ist die Anspannung der Federn Anteil des Eigengewicht des Stabes vor dessen Prüfung bewirkt.

Zum Messen der Zusammendrückung der Feder wurde ein Zeigerpaar, Fig. 6, angebracht. Es blieb auch bei der späteren Verwendung der Federn an diesen sitzen, um dauernd erschen und feststellen zu können, um wieviel die Federn je nach der Durchbiegung des Probestabes nach oben oder nach unten ungewollt selbsttätig entlastet oder stärker angespannt wurden. Diese Beobachtungen waren erforderlich, um aus ihnen ableiten zu können, in welchem Maße entweder der durch Entspannen der Federn freiwerdende Anteil des Eigengewichtes der Durchbiegung nach oben entgegenwirkte, oder die Durchbiegung nach unten durch Mehranspannen der Stützfedern behindert wurde. — Zur Unterstützung des Stabes 68 ist Feder 1 verwendet.

Bei Prüfung des Druckstabes 68 wurde die Belastung ^{rig. 6.} stutzteuer. stufenweise um je etwa 100 000 kg gesteigert und hierbei jedesmal beobachtet:

- 1. das seitliche Ausbiegen des Stabes in senkrechter und wagerechter Richtung,
- 2. das Neigen der Druckplatten (Bewegung der Kugellager),
- 3. die Verkürzung des Stabes und
- 4. die Längenänderungen der Stützfedern.

Fig. 7. Beziehung zwischen Belastung und Zusammendrückung der Stützfedern.

1. Das seitliche Ausbiegen des Stabes.

Zur Ermittlung des seitlichen Ausbiegens sind die räumlichen Bewegungen der in Fig. 8 mit 1-8 bezeichneten Meßpunkte mit Rollenapparaten beobachtet.

Fig. 8. Anordnung der Meßstellen bei Stab 68.

Die Rollenapparate waren an einem unabhängig von der Maschine und erschütterungsfrei aufgestellten Holzgestell (s. Fig. 9) senkrecht über oder wagerecht neben dem zugehörigen Meßpunkt angeordnet und die Bewegungen der Meßpunkte wurden

Fig. 9. Probestab 68 mit den Meßapparaten am Holzgestell.

durch Holzstäbe auf die Rollen übertragen. Die Anordnung der Verbindung zwischen dem einen Ende der beiden zusammengehörigen Stäbe und dem Meßpunkt durch Tastspitzen zeigt Fig. 10; am anderen Ende lagen die wagerechten Stäbe, hinreichend belastet, auf den Rollen auf. Die senkrechten Stäbe waren durch Spiralfedern gegen die Rollen gepreßt.

Die Meßpunkte 1, 4 und 7 sowie 2, 5 und 8 (s. Fig. 8) lagen auf dem oberen Deckblech, und zwar über der Mitte der äußeren Stegbleche. Die Meßpunkte 3 und 6

waren an den aus Fig. 8 ersichtlichen Stellen an den abstehenden Schenkeln der Saumwinkel angebracht, um festzustellen, ob hier infolge örtlicher Formänderungen andere Bewegungen eintraten als an den Stellen 4 bzw. 5.

Die für die Meßstellen 1, 7, 4 und 2, 8, 5 beobachteten Bewegungen sowie die hieraus berechneten wagerechten, senkrechten und Gesamtausbiegungen des Stabes enthält Tab 2. Aus den hiernach in Fig. 11 verzeichneten Schaulinien ist zu ersehen, daß die Gesamtausbiegung des Stabes (Fig. 11 A) bis zu etwa 1641 t Belastung dieser annähernd proportional und nur gering war. Bei

der nächsten Laststufe, d. h. unter 1761 t. bog der Stab dann Fig. 10. Anordnung der plötzlich stark durch, und zwar nahm die Durchbiegung unter

dieser Belastung bis zum Einknicken ständig zu. Fig. 11 B läßt in dem Verlauf der voll ausgezogenen Linie ferner erkennen, daß die Durchbiegung auf der Meßstrecke 1, 4, 7 bis zu 1227 t nach

rechts oben gerichtet war, dann aber bei steigender Belastung ihre Richtung änderte, so daß der Stab schließlich nach links oben einknickte, die in der Maschine nach unten gelegene offene Seite des Profils also die größte Druckbelastung erfuhr. Längs der Meßstrecke 2, 5, 8 (gestrichelte Linie Fig. 11 B) war die Durchbiegung nach oben bei den gleichen Belastungen anfänglich etwas größer als längs der Meßstrecke 1, 4, 7; der Stab erlitt hiernach eine geringe Verwindung. Im übrigen war die Durchbiegung längs der beiden Meßstrecken allgemeinen im gleich gerichtet; die Umkehr der wagerechten Durchbiegung von rechts nach links trat auch bei der Strecke 2, 5, 8 unter 1227 t Belastung ein.

Fig. 12 zeigt, daß die Bewegungen der Meßpunkte 5 und 6

(s. Fig. 8) in senkrechter Richtung nur wenig voneinander verschieden waren; dagegen war die wagerechte Bewegung von Punkt 6 nach Fig. 13 erheblich größer als die von Punkt 5. Hieraus folgt, daß das Stegblech mit dem unteren

Tastspitzen

Saumwinkel b (Fig. 5 c) sich nach außen abbog. Bei Belastungen über 1600 t drehte die Biegungsrichtung um, und nach dem Einknicken des Stabes betrug der größte lichte Abstand zwischen den Stegblechen an der Knickstelle nur 53,0 cm gegen ursprünglich 55,4 cm.

Die senkrechten nach oben gerichteten Bewegungen der beiden Meßpunkte 3 und 4 (s. Fig. 8) weichen nach Fig. 14 wie die der Punkte 5 und 6 (s. Fig. 12) ebenfalls nur wenig voneinander ab.

t Belastung t Belastung 1800 1800 5 6 1600 1600 1400 1400 12.00 12.00 1000 1000 800 800 600 600 400 400 żoo 200 1,5 2,0 Ausbiegen 2,5 mm 3.0 0,5 1,0 - 0,5 1,0 mm 1,5 0.5 Ausbiegen Fig. 12. Beobachtungen an den Meßpunkten 5 u. 6. Fig. 13. Beobachtungen an den Meßpunkten 5 u. 6. Senkrechtes Ausbiegen. Wagerechtes Ausbiegen.

Die höchste erreichte Belastung betrug 1862,2 t.

2. Das Neigen der Druckplatten.

Bis zu der Belastung von 1641 t waren keine nennenswerten Schrägstellungen der Druckplatten wahrzunehmen. Dagegen folgten die Druckplatten unter 1760 t Belastung den Schrägstellungen der Endflächen des nach oben ausbiegenden Stabes. Die gegen den Kolben wirkende Platte neigte sich im Bilde Fig. 9 oben nach links, die Platte am festen Widerlager oben nach rechts.

3. Die Verkürzung des Stabes.

Die Verkürzung des Stabes unter der Druckbeanspruchung ist aus der Annäherung der beiden Druckplatten aneinander ermittelt. Hierzu sind an den Seitenflächen der Druckplatten in Höhe der Maschinenachse wagerechte Maßstäbe befestigt (s. Fig. 9) und die Bewegung dieser Maßstäbe gegen Zeiger beobachtet, die an dem Holzgestell, also im Raum feststehend, angebracht waren. Nach den erzielten

10

Ergebnissen (s. Tab. 3) ist die Schaulinie Fig. 15 aufgetragen. Die Beobachtungen schließen sich bis zu etwa 1227 t Belastung an die geradlinige, punktierte Ausgleichslinie gut an; von da ab wächst aber die Längenabnahme des Stabes schneller als die Die Druck-Belastung. spannung bei 1227 t Belastung beträgt 1420 kg/gcm, die zugehörige Verkürzung 0,53 cm. Aus diesen Werten und der Meßlänge von 723,6 cm würde der Elastizitätsmodul sich zu

$$E = \frac{1420 \cdot 723,6}{0,53}$$

≌ 1 940 000 kg/qcm

Fig. 15. Verkürzung des Stabes 68 mit wachsender Belastung.

Fig. 14. Beobachtungen an den Meßpunkten 3 u. 4. Senkrechtes Ausbiegen.

Fig. 16. Längenänderung der Stützfeder.

4. Längenänderungen der Stützfeder.

Die Stützfeder, die zum Ausgleich des Eigengewichtes in der Mitte unter dem Stabe angebracht war (s. Fig. 17), war nach dem Antrage ursprünglich mit 2,5 t angespannt. Entsprechend der Durchbiegung des Probestabes nach oben, verlängerte die Feder sich mit fortschreitender Belastung. Den Verlauf ihrer Verlängerung, beobachtet an dem an der Feder angebrachten Zeigerpaar (s. Fig. 6), zeigt Fig. 16.

Bei Erreichung der Belastung von 1760,9 t, unter der die letzten Beobachtungen stattfanden, betrug die Verlängerung der Feder 1,1 mm. Ihre hiermit verbundene Entspannung berechnet sich mit den Werten Tab. 1 nach dem Verhältnis 1:43,3=1,1:x, zu x=48 kg. Mit diesem Betrage wirkte also das Eigengewicht des Stabes seinem Ausbiegen entgegen. Der Betrag wuchs im weiteren Verlauf der Ausbiegung unter gleichbleibender Druckbelastung entsprechend der Federdehnung um 3,4 mm auf 43,3.3,4 = 147 kg. Dieser Betrag ist so gering, daß er für den Verlauf des Versuches als belanglos angesehen werden kann.

Fig. 17. Stab nach dem Ausknicken in der Maschine.

5. Zerstörungserscheinungen an dem eingeknickten Stabe.

Lichtbild Fig. 17 zeigt den eingeknickten Stab in der Maschine. Eingeknickt ist der wagerechte Schenkel des unteren Saumwinkels (s. a. Fig. 18) und an derselben Stelle (s. Fig. 19) sind die beiden Stegbleche von dem Winkel abgebogen. Diese Knickstelle liegt nicht in Stabmitte, wohl aber im mittleren Felde, und zwar zwischen den Anschlußstellen der beiden sich kreuzenden, auf der offenen Seite des Stabprofils angebrachten Diagonalverstrebungen. Von letzteren ist die im Bilde Fig. 19 oben gelegene das schon oben erwähnte einfache Flacheisen, die untere das Winkeleisen, dessen einer Schenkel im Bereich der Auflagefläche auf den Saumwinkel fortgeschnitten ist. Durch dieses Entfernen des einen Schenkels ist der Winkel derart geschwächt, daß er der Druckbeanspruchung bei Stauchung des Stabes und dem Einwärtsbiegen des Saumwinkels bei b nicht widerstand, sondern im Bereich des ge-

Fig. 18. Seitenansicht des eingeknickten Saumwinkels.

Fig. 19. Abbiegen der Stegbleche von dem Saumwinkel an der Knickstelle.

Fig. 20. Knickstelle des Winkels der Diagonalverstrebung bei a.

schwächten Teiles hinter den Anschlußnieten bei a einknickte. Fig. 20 zeigt diese Knickstelle in der Seitenansicht.

Seite 9 ist auf Grund der Durchbiegungsmessungen dargelegt, daß der Stab im ganzen nach oben, d. h. nach dem Deckblech hin sich durchbog, so daß die nach unten gelegenen Saumwinkel auf der offenen Profilseite die größten Druckbeanspruchungen erlitten. Letztere waren daher in der Nähe der Meßstellen 6, Fig. 8 besonders groß. Fig. 13 läßt nun erkennen, daß die Meßstelle 6 sich mit wachsender Belastung zunächst immer mehr von der Achse des Stabes entfernte. Leider ist 6 der einzige Beobachtungspunkt auf dem unteren Saumwinkel, so daß der Verlauf der seitlichen Durchbiegung dieses Saumwinkels nicht durch Beobachtungen nachgewiesen ist. Man wird aber nicht fehlgehen, wenn man allein aus der Bewegung von 6 darauf schließt, daß der untere Saumwinkel, wenn nicht in seiner ganzen Länge, so doch innerhalb des mittleren Feldes nach außen sich durchbog. Hierdurch ist dann aber die große Randspannung in diesem Saumwinkel, die mit der Durchbiegung des Stabes nach oben verbunden war, wieder vermindert worden. Nun zeigt Fig. 13 weiter, daß die Bewegung des Punktes 6 nach außen (rechts) bei über 1600 t Belastung in starke Bewegung nach innen (links) überging. Hiermit war aber eine Steigerung der Randdruckspannung im Saumwinkel verbunden und damit erklärt sich zwanglos, daß die Zerstörung des Stabes durch Einknicken dieses am stärksten beanspruchten Saumwinkels erfolgte.

Mit dem örtlichen Einknicken war nun weiter verbunden, daß die elastischen Stauchungen (Verkürzungen infolge Druckspannungen) des Saumwinkels, die vorher vielleicht über dessen ganze Länge gleichmäßig verteilt waren, sich unter mehr oder weniger weitgehender Entlastung des übrigen Teiles der Länge auf die Knickstelle konzentrierten und somit die Stauchung des knickenden Saumwinkels im mittleren Felde noch stark steigerten. Die Stegbleche mußten die gleich starke Stauchung erleiden. Sie hatten aber durch das örtliche Einbiegen des Saumwinkels bereits eine örtliche Ausbiegung nach der Stabachse hier erfahren und damit erklärt sich auch, daß die Stauchung der Stegbleche in starkem örtlichen Ausbiegen, und zwar neben der Knickstelle des Saumwinkels sich kundgab.

Das Niet c Fig. 18 hielt der beim Ausknicken der Stegbleche in ihm auftretenden starken Zugbeanspruchung stand, dehnte sich nicht merklich und hinderte das vollständige Loslösen des Stegbleches von dem Saumwinkel.

6. Zugversuche mit Materialproben aus Stab 68.

Zur Feststellung der Festigkeitseigenschaften des Materials des Stabes 68 sind zehn Zugversuche ausgeführt, zu denen die Proben von dem Werk mit eingeliefert waren, und zwar je vier Proben aus den Saumwinkeln b und den Stegblechen a, sowie je ein Stab aus dem Deckblech c, sowie zu den Querblechen.

Aus den Ergebnissen (Tab. 4) zeigt sich, daß die einzelnen Stabteile aus Material von verschiedenen Festigkeitseigenschaften bestehen. Die Festigkeit der Stegbleche bleibt mit $\sigma_B = 3420 \text{ kg/qcm}$ hinter der in den "Normalbedingungen" geforderten Mindestfestigkeit von 3700 kg/qcm zurück. Das Material der Saumwinkel genügt mit der mittleren Festigkeit von 3760 kg/qcm den "Normalbedingungen" gerade, während die Zugfestigkeit des Deckbleches und der Querbleche sich mit $\sigma_B = 4240$ und 4280 kg/qcm dem oberen Grenzwerk der "Normalbedingungen" nähern. Ähnliche Unterschiede zeigen die Werte für die Streckgrenze.

7. Vergleich der beobachteten Knickkraft mit der berechneten.

a) Die reine Druckfestigkeit.

Bei den im Abschnitt 6 dargelegten Festigkeitsunterschieden und den verschieden großen Anteilen, die die einzelnen Glieder an dem Gesamtquerschnitt des Stabes haben, erscheint es nicht zulässig, die Tragfähigkeit des Stabes als reine Druckfestigkeit mit der mittleren Materialfestigkeit zu berechnen, vielmehr ist es angebracht, der Berechnung die Einzelquerschnitte der verschiedenartigen Glieder und deren ermittelte wirkliche Festigkeiten zugrunde zu legen. In Frage kämen hierbei strenggenommen die Materialspannungen an der Quetschgrenze (Fließgrenze unter Druckbeanspruchung). Diese sind indessen nicht ermittelt; man wird daher die Werte für die Streckgrenzen σ_s in die Rechnung einzusetzen haben und hierzu um so mehr berechtigt sein, als die Spannungen an der Quetschgrenze und Streckgrenze nicht wesentlich verschieden zu sein pflegen und es auch allgemeiner Gebrauch ist, den Festigkeitsberechnungen der Konstruktionen die Ergebnisse des Zugversuches zugrunde zu legen. Die Berechnung gestaltet sich dann wie folgt:

4 Stegbleche:	Querschnitt	<i>t =</i>	$4 \cdot 70 \cdot 1,7 \text{ cm}$	= 4'	76,0	qcm;	$\sigma_s =$: 2023]	kg/qei	n;	Druckfestigkeit =	=	962,9 t
4 Winkel:	"	<i>t</i> =	4 · 51,8 qcm	= 2	07,2	";	$\sigma_S =$	2608	,,	;	,, =		540,4 t
1 Deckblech:	,,	f =	96 · 1,7 cm	= 10	63,2	,, ;	$\sigma_8 =$	2700	"	;	,, =	=	440,6 t
Insgesamt:	Querschnitt	=		84	46,4	qcm					Druckfestigkeit =	= 1	1943,9 t

Dieser berechneten Druckfestigkeit von 1943,9 t stehen gegenüber die beobachtete Belastung von 1761 t, bei der das starke Ausbiegen des Stabes begann, sowie die erreichte Höchstlast von 1862,2 t. Die erstere beträgt 90,6%, die letztere 95,8% der errechneten reinen Druckfestigkeit, entsprechend dem Verlust an Materialfestigkeit von 9,4% und 4,2% in der Konstruktion.

Mit den aus Tab. 4 ersichtlichen Materialspannungen σ_P an der Proportionalitätsgrenze berechnet sich die Tragfähigkeit:

der	4 Stegbleche mit	f = 476,	0 qcm	und	$\sigma_P =$	1620	kg/qem	$\mathbf{z}\mathbf{u}$	771,1 t
der	4 Winkel mit	f = 207,	2 ,,	,,	$\sigma_P =$	2345	,,	,,	485,9 t
des	Deckbleches mit	f = 163,	2 ,,	,,	$\sigma_P =$	1460	,,	,,	$238,3~{\rm t}$

und demnach die Tragfähigkeit des Stabes an der Proportionalitätsgrenze zu 1495,3 t

Beobachtet sind nach Fig. 15 für diese Grenze 1227 t. Demnach beträgt der beobachtete Wert 82,1% des berechneten.

Mit dem Gesamtquerschnitt und den Kleinstwerten für $\sigma_P = 1460$ und $\sigma_S = 2023$ ergebeu sich 1236 und 1712 t. Diese Werte liegen den beobachteten sehr nahe.

b) Die Knickfestigkeit.

Ermittelt man für den untersuchten Stab mit

dem Querschnitt					F = 846,4 qcm,
dem kleinsten Trägheitsmoment					$J = 560 \ 100 \ \mathrm{cm^4},$
der Länge			•		l = 788 cm und
dem Verhältnis				 	$\frac{l}{l} = 30,63$

die Knickkraft P nach Euler, wie es von der ausführenden Bauanstalt geschehen ist, sowie nach Tetmajer, so ergeben sich solgende Werte für P:

1. nach Euler

lpha) unter der allgemein üblichen Annahme von $E=2150\;000\;{
m kg/qcm}$

 $P = \frac{\pi^2 E J}{l^2} = \frac{9,86 \cdot 2150\ 000 \cdot 560\ 100}{783 \cdot 788} = 19\ 122\ \mathrm{t},$

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

 β) mit dem ermittelten Wert (s. Tab. 4) $E = 2047\ 000\ \text{kg/qcm}$

$$P = \frac{9,86 \cdot 2\,047\,000 \cdot 560\,100}{788 \cdot 788} = 18\,206 \text{ t.}$$

2. nach Tetmajer ist die Knickspannung

$$\sigma_{\rm K} = \alpha - \beta \frac{l}{i} = 3, 1 - 0,0114 \cdot 30,63$$
 in t/qcm = 2,751 t/qcm

und demnach:

$$P = \sigma_K \cdot F = 2,751 \cdot 846, 4 = 2330 \text{ t}.$$

Das Verhältnis der beobachteten Knickfestigkeit zur berechneten ist demnach

1. nach Euler $=\frac{1862,2}{19122} = 0,097$ oder $=\frac{1862,2}{18206} = 0,102$, 2. nach Tetmajer $=\frac{1862,2}{2330} = 0,80$.

Die rechnungsmäßige Belastung des Stabes 68 in der Brücke beträgt 860 t; die Betriebssicherheit gegen Bruch ist demnach gleich

$$\frac{1862,2}{860} = 2,17 \; .$$

B. Prüfung des Stabes 69.

Der Probestab ist der Endstrebe einer bestehenden Brücke nachgebildet, deren Belastung in der Brücke zu P = 1133 t berechnet ist. Seine Abmessungen und Konstruktion zeigt Fig. 21. Er hat im Querschnitt **H**-Form, die im wesentlichen aus je zwei Stegblechen 1-4, den vier Saumwinkeln *a* und dem Versteifungsblech *b* gebildet wird, das durch die vier Winkel *c* an die nach innen gelegenen Stegbleche angeschlossen ist. Auf die freien Schenkel der Saumwinkel *a* ist je ein Flacheisen aufgenietet, die nicht bis zu den Druckflächen heranreichen. Die beiden Enden des Stabes sind durch Bleche verstärkt, die gegen die Stegbleche gelegt sind und zwar in Fig. 21 am rechten Ende durch je 1 Blech (5 und 6) außen gegengelegt, am linken Ende durch je zwei Bleche (7 u. 8) innen und (9 u. 10) außen gegengelegt.

Die Hauptwerte des Stabes sind:

Gesamt-Knicklänge					l = 1401,5 cm
Brutto-Querschnittsfläche					F = 1066, 4 qcm
Kleinstes Trägheitsmoment					$J = 608\ 657\ { m cm}^4$
Kleinster Trägheitshalbmesser	•		••	•	$i=\sqrt{rac{J}{F}}=\sqrt{rac{608657}{1066,4}}=23,2~{ m cm}$
Verhältnis	•	•		•	$l=rac{l}{i}=60,4$.

Zum Einbauen des Stabes in die Maschine derart, daß seine Achse mit der Maschinenachse zusammenfiel, waren wie beim Stabe 68 wieder Platten auf die Stabenden aufgenietet, die mit zylindrischen Ansätzen in die Druckplatten hineinragten.

Die Endflächen des Stabes waren durch Fräsen so bearbeitet, daß die Druckfläche am rechten Ende Fig. 21, nur von den sechs Stegblechen 1-6 und den vier

16

Saumwinkeln a, am linken Ende ausschließlich von den 8 Stegblechen 1-4 und 7 bis 10 gebildet wurde.

Das Eigengewicht des Stabes war gegen das Maschinengestell durch zwei Federsätze (Stützfedern), s. Fig. 6, abgefangen, die in der Mitte unter dem Stabe aufgestellt waren. Hierzu waren unter dem mittleren Versteifungsblech b (Fig. 21) vier Winkel quer zur Stabachse angebracht und zwischen je zwei dieser Winkel mit einem Bolzen die Druckstücke D (Fig. 6) eingefügt; gegen diese Druckstücke wirkte das Gestänge C der Stützfedern.

Die Eichwerte der Federn, nach denen dieselben vor dem Versuch auf je 4 t angespannt sind, (das Eigengewicht des Stabes ist zu 16 t angegeben) enthält Tab. 1.

Bei Prüfung des Stabes wurde die Belastung in Stufen von je etwa 100 t gesteigert und hierbei wurden jedesmal beobachtet:

1. die Längenänderungen an beiden Enden des Stabes zur Bestimmung der Einspannmomente,

2. das seitliche Ausbiegen des Stabes in senkrechter und wagerechter Richtung,

3. das Neigen der Druckplatten (Bewegungen der Kugellager),

4. die Längenänderungen der Stützfedern und

5. die Durchbiegungen und Verkürzungen der beiden Stabhälften, links und rechts von den Stützfedern.

Versuche im Eisenbau A 2.

1. Die Bestimmung der Einspannmomente.

Bei Prüfung des Stabes 68 hatte sich gezeigt, daß die Druckplatten den mit dem seitlichen Ausbiegen des Stabes verbundenen Schrägstellungen seiner Endflächen erst bei Belastungen kurz vor dem Ausknicken gefolgt waren. Es erschien daher notwendig durch besondere Beobachtungen die Einspannmomente festzustellen, die infolge der Bewegungswiderstände der Druckplatten, bezw. der Kugellager auf den Stab einwirkten. Zu diesem Zweck sind die Längenänderungen der Stegbleche an

Fig. 22. Zusammendrückungen an den Enden der Stegbleche. Linkes Stabende.

den beiden Enden und den vier Ecken des Stabes (s. die Meßstellen 12, 14, 16, 18 und 20, 22, 24, 26 in der über Tab. 5 stehenden Figur) mit Martensschen Spiegelapparaten gemessen. Die Enden der Meßstrecken lagen an dem linken Stabende, auf das der Kolben des Arbeitszylinders einwirkte, etwa 12,5 cm und an dem rechten stärkeren, gegen das feste Widerlager sich stützenden Stabende etwa 1,0 cm von den Druckflächen entfernt. Die Meßlängen betrugen links 20 cm und rechts 15 cm. Die Beobachtungen, ausgedrückt in % der Meßlänge, sind in Tab. 5 zusammengestellt und in Fig. 22 und 23 zu Schaulinien aufgetragen.

Zur Berechnung der Einspannmomente aus den beobachteten Zusammendrückungen (Tab. 5) war zunächst festzustellen, auf welche Achse die Momentezu beziehen sind. Zur Erläuterung sind in Fig. 24 als Beispiel die Zusammendrükkungen an den vier Meßstellen 12, 14, 16 und 18 bei 1485 t Belastung als Kantenlängen eines Prismas aufgetragen, dessen Grundfläche die Lage der Meßstellen

zueinander darstellt. Die Neigung der oberen durch Ausgleich erhaltenen Fläche des Prismas stellt hierbei den Verlauf der Spannungsverteilung über die Endfläche des Druckstabes dar. Sind die Zusammendrückungen für die Meßstellen 12 und 14 nahezu gleich groß und ebenso die für 16 und 18, so kann man der Berechnung der Einspannmomente die Annahme zugrunde legen, daß die Druckkräfte von der Kante ab der größten Zusammendrückungen bei 12 und 14 nach der Kante cd gleichmäßig abnehmen und der mittlere Kräfteabfall durch die Linie ef dargestellt wird, die Einspannmomente sind dann auf die Achse m-m zu berechnen, die im vorliegenden Falle mit der Mitte des Versteifungsbleches b Fig. 21 zusammenfällt. Die Ordinaten eg und fh berechnen sich in diesem Fall als Mittelwerte aus den beobachteten Ordinaten für a und b bzw. für c und d.

Aus Tab. 5 ersieht man, daß die Längenänderungen der Meßstrecken 12 und 14 sowie 16 und 18 von etwa 800 t Belastung ab bis 1911 t nahezu gleich groß sind. Für das linke, schwächere, am Kolben der Maschine

gelegene Stabende kann also die Mittellinie m-m, Fig. 24, für den Belastungsbereich von 800-1900 t mit hinreichender Genauigkeit als Achse der Einspannmomente angesehen werden.

Wie später im Abschnitt 2 Seite 22 gezeigt ist, begann die bleibende seitliche Ausbiegung des Stabes etwa mit Überschreitung der Druckbelastung von 1134 t. Für diese Belastung berechnet sich das Einspannmoment, bezogen auf die Achse m-m, wie folgt:

Die mittleren Höhenverminderungen eg und fh (Fig. 24) ergeben sich zu

Fig. 23. Zusammendrückungen an den Enden der Stegbleche. Rechtes Stabende.

Fig. 24. Lastverteilung über die Druckfläche.

80-1

demnach sind nach Fig. 25 die beobachteten Höhenverminderungen um

$$\Delta \lambda = (\lambda_{bo} - \lambda_{bu}) \frac{1}{2} = (408, 5 - 341, 5) \frac{1}{2} = \pm 33,5\% \cdot 10^{-4}$$

von der mittleren Höhenverminderung verschieden.

Hiernach berechnen sich die beobachteten Materialspannungen bei e und f(Fig. 24) mit dem üblichen Elastizitätsmodul $E = 2\,150\,000$ zu $\sigma_b = \frac{\Delta\lambda \cdot E}{l}$

$$= \pm \frac{33.5 \cdot 2150\,000}{100 \cdot 10\,000} = \pm 72 \text{ kg/qcm}$$

größer oder kleiner als die mittlere Spannung.

Die Messungen erfolgten im Abstand c = 37,7 cm von der Mittelebene des Querschnittes (s. Fig. 25), die halbe Höhe des Querschnittes ist h/2 = 40 cm. Demnach berechnen sich die zusätzlichen Randspannungen

Bestimmung des Einspannmomentes.

$$W = \frac{2J}{h} = \frac{2 \cdot 668700}{80} = 16718 \text{ cm}^3;$$

also $M = W \cdot \sigma_r = 16718 \cdot 76, 4 \cong 13$ mt bei 1134 t
 Gesamtbelastung.

Führt man die Berechnung in gleicher Weise für 1698 t
 Belastung aus, so gelangt man mit den Werten der Tab 5 zu dem Einspannmoment $M \cong 20$ mt.

Bei 2125 t und bei Belastungen unter 800 t sind die beobachteten Zusammendrückungen an den Meßstellen 12 und 14, sowie 16 und 18 erheblich voneinander verschieden, ebenso an dem rechten stärkeren Stabende die beobachteten Zusammendrückungen an den Meßstellen 20 und 22 sowie 24 und 26 bei allen Laststufen. Hieraus ergibt sich, daß für sie keine der beiden Hauptachsen des Querschnittes die Momentenachse ist. Um die Lage der wirklichen Momentenachse angenähert zu ermitteln, ist zunächst diejenige Lage der oberen Endfläche des Prismas (Fig. 24) zu ermitteln, die den vier Werten für die beobachteten Längenabnahmen sich am besten anschließt. Die Schnittlinie dieser oberen mit der unteren Endfläche des Primas gibt dann die Richtung der Momentenachse.

Nachstehend ist als Beispiel die Bestimmung der Momentenachse und des Einspannmomentes für das rechte Stabende und 1698 t Belastung durchgeführt. Hierbei sind zur Vereinfachung der Bezeichnungen die Meßstelle 20 mit a, 24 mit b, 26 mit cund 22 mit d bezeichnet.

Mit den Dehnungswerten der Tab. 5 für die Belastung von 1698 t

$$\lambda_a = -187 \text{ cm } 10^{-5}$$

 $\lambda_b = -327 \text{ cm } 10^{-5}$
 $\lambda_c = -481 \text{ cm } 10^{-5}$
 $\lambda_d = -249 \text{ cm } 10^{-5}$

und den Bezeichnungen Fig. 26 a erhält man zur Bestimmung der Lage der oberen ebenen Endfläche des Prismas (Fig. 24) zunächst für die Mittelpunkte S_{bd} und S_{ac} der Diagonalen b-d und a-c die Werte

$$\begin{split} \lambda_{bd} &= \frac{1}{2}(\lambda_b + \lambda_d) = -288 \text{ cm } 10^{-5} \\ \lambda_{ao} &= \frac{1}{2}(\lambda_a + \lambda_c) = -334 \text{ cm } 10^{-5} \end{split}$$

und hieraus für den Schnittpunkt ${\mathcal S}$ der Prismenachse mit der oberen Endfläche den Wert

 $\lambda_s = \frac{1}{2}(\lambda_{bd} + \lambda_{ac}) = -311 \text{ cm } 10^{-5}$

mithin ist die Strecke

 S_{bd} bis S = -23 cm 10^{-5} S_{ab} bis S = +23 cm $^{-5}$.

und

Die Ausgleichswerte für λ_a bis λ_d zur Erzielung der oberen ebenen Endfläche des Prismas berechnen sich dann wie folgt:

$$\begin{split} \lambda'_a &= \lambda_a + 23 = -187 + 23 = -164 \,\mathrm{cm} \,10^{-5} \\ \lambda'_b &= \lambda_b = 23 = -327 - 23 = -350 \,\mathrm{cm} \,10^{-5} \\ \lambda'_c &= \lambda_b + 23 = -481 + 23 = -458 \,\mathrm{cm} \,10^{-5} \\ \lambda'_d &= \lambda_d - 23 = -249 - 23 = -272 \,\mathrm{cm} \,10^{-5} \end{split}$$

Die Richtung der durch den Punkt S(Fig. 26 a) gehend angenommenen Momentenachse (Nullinie η), d. h. die Richtung der Schnittlinie der beiden Endflächen des Spannungsprismas ist in Fig. 26a und 26b zeichnerisch ermittelt und ebenso die konjugierte Kraftlinie ζ .

Das Trägheitsmoment J_{η} kann hiernach mit genügender Genauigkeit zu $\frac{1}{2}(J_x + J_y)$ angenommen werden. Hierbei ist der Endquerschnitt des Stabes ohne die Saumwinkel zugrunde gelegt. Die Vernachlässigung der letzteren ist damit

Bestimmung der Momentenachse und der Einspannmomente.

gerechtfertigt, daß sie nicht bis an die Druckfläche heranreichen und innerhalb der Meßstrecke nur mit einem Niet angeschlossen sind.

Die der Berechnung des Momentes zugrunde zu legenden Dehnungswerte λ_a^m , λ_b^m , λ_a^m und λ_a^m errechnen sich zu:

$$\lambda_a^m = \lambda_a' - \lambda_s = -164 + 311 = +147 \text{ cm } 10^{-5}$$

$$\lambda_b^m = \lambda_b' - \lambda_s = -350 + 311 = -39 \text{ cm } 10^{-5}$$

$$\lambda_c^m = \lambda_c' - \lambda_s = -458 + 311 = -147 \text{ cm } 10^{-5}$$

$$\lambda_d^m = \lambda_d' - \lambda_s = -272 + 311 = +39 \text{ cm } 10^{-5}.$$

Die im Querschnitt des Versuchsstabes mit den Meßstellen aufgetretenen Randdehnungen sind aus der zeichnerischen Darstellung (Fig. 26b) abgegriffen; sie betragen:

$$\lambda_{\max}^{m_{\bullet}} = +171 \text{ cm } 10^{-5}.$$

Aus diesem Wert berechnet sich

$$\sigma_{\max} = \frac{\lambda_{\max}^m \cdot E}{l} = \frac{171 \cdot 2150\,000}{100\,000 \cdot 10} = 368 \text{ kg/qcm}.$$

Mit $J_x = 3.952500 \text{ cm}^4$

$$J_{*} = 3.784 \ 100 \ \mathrm{em^4}$$

wird $J_r = \frac{J_x + J_y}{2} = 3\,868\,300 \text{ cm}^4$

mit der Länge h' = 166,8 (s. Fig. 26b) ergibt sich:

$$M = \frac{\sigma \cdot 2J_{\eta}}{h'} = \frac{368 \cdot 2 \cdot 3868300}{166,8} \cong 171 \text{ mt.}$$

2. Das seitliche Ausbiegen des Stabes.

Zur Ermittlung des seitlichen Ausbiegens sind die räumlichen Bewegungen der in Fig. 27 mit a-h bezeichneten Meßpunkte mit Rollenapparaten beobachtet, die wie beim Stabe 68 (s. Fig. 9) an erschütterungsfrei aufgestellten Holzgestellen

Ausbiegens beim Stabe 69.

Anordnung der Meßstellen zur Bestimmung des seitlichen

neben den Meßpunkten angeordnet waren. Die Bewegungen der Meßpunkte wurden wieder durch Holzstäbe auf die Rollen der Apparate übertragen. Die Meßpunkte g. e. h und d

senkrecht über oder wagerecht

Die Meßpunkte a, c, b und d, f, e lagen auf dem oberen Rande der Stegbleche 1 und 3 (Fig. 21),

also auf dem inneren der beiden nebeneinander liegenden durchgehenden Bleche. Die Meßpunkte g und h lagen senkrecht unter c, und zwar g auf der Außenseite des Stegbleches 4 in der Höhe des mittleren Versteifungsbleches b (Fig. 21) und h auf der unteren Fläche des inneren Stegbleches 3.

Für den am linken Ende (Fig. 27 links) neben dem Stabe stehenden Beobachter sind die Bewegungen der Meßpunkte nach oben und nach rechts als + und die Bewegungen nach unten und nach links als - bezeichnet.

Die für die Meßpunkte a, c, b beobachteten Bewegungen sowie die hieraus berechneten wagerechten, senkrechten und Gesamtausbiegungen des Stabes enthält Tab. 6.

Die Bewegungen des Meßpunktes c gegen die Punkte a und b, d. h., den Verlauf des wagerechten und senkrechten Ausbiegens zeigen die nach den Werten der Tab. 6 aufgetragenen Schaulinien (Fig. 28). Neben den Beobachtungspunkten sind die zugehörigen Belastungen niedergeschrieben. Aus dem allgemeinen Verlauf der Linie a für die Gesamtausbiegung unter der Belastung ergibt sich, daß der Stab bei der erstmaligen Belastung mit 2125 t sich um 1,4 mm wagerecht nach rechts und um 0,16 mm nach oben durchgebogen hatte. Unter dieser Belastung schritt die Aus-

Fig. 27.

biegung dann in wagerechter Richtung weiter nach rechts fort, während die senkrechte Ausbiegung umkehrte und sogar negativ wurde, d. h. der Stab sich schließlich nach unten durchbog.

Die bleibenden Durchbiegungen nach dem Entlasten auf etwa 24 t waren nach dem Verlauf der Schaulinie b (Fig. 28) schon beim Entlasten nach 1485 t in senkrechter Richtung negativ, d. h. von dieser Belastung ab nach rechts unten gerichtet.

Beim Wiederanheben der jeweilig letzten Belastung vor dem Entlasten wurden die erstmalig beobach-Ausbiegungen teten oben nicht nach wieder erreicht, die Schaulinie a (Fig. 28) verläuft daher im Zickzack.

Den Verlauf der aus den Durchbiegungen nach beiden Richtungen resultierenden Gesamtausbiegungen des Stabes mit wachsender Belastung zeigt die vollausgezogene Schaulinie (Fig. 29). Bis zu etwa 1100 t ist die Ausbiegung der Belastung annähernd proportional, bei höherer Inanspruchnahme des

Fig. 28. Ausbiegen des Stabes 69 an der Meßstelle c gegen alund b (Fig. 27).
a) Gesamtausbiegung, b) Bleibende Ausbiegung.

Stabes wächst sie in stärkerem Maße als die Belastung und zugleich nimmt auch die bleibende Ausbiegung nach dem Verlauf der gestrichelten Linie (Fig. 29) mit der Belastung allmählich zu. Der Stab unterscheidet sich also in seinem Verhalten gegen seitliches Ausbiegen ganz wesentlich von dem Stabe 68, der fast plötzlich ausbog (s. Fig. 11).

Fig. 30 zeigt das wagerechte Ausbiegen des Stabes zwischen den Meßpunkten a b und d e. Der allgemeine Verlauf ist für beide Schaulinien der gleiche. Innerhalb

• Meßpunkt c gegen a und b× • • • • × Meßpunkt f gegen d und e s. Fig. 27.

beider Meßstrecken erfolgte das Ausbiegen nach rechts; es war aber für die Meßstrecke a b c (s. a. Tab. 6) größer als für die Strecke d e f (s. a. Tab. 7). Hieraus folgt, daß die lichte Weite zwischen den Stegblechen (s. Fig. 21) beim seitlichen Ausbiegen des Stabes zunahm.

Fig. 31 gibt den Vergleich für die wagerechten Bewegungen der drei an demselben Stegblech senkrecht untereinander gelegenen Meßpunkte c, g und h (s. Fig. 27). Bei Belastungen über 1000 t bewegten sich alle drei Meßpunkte, entsprechend dem wagerechten Ausbiegen des Stabes, nach rechts. Punkt c hatte diese Bewegungsrichtung vom Beginn des Belastens an, während die Punkte g und h sich anfänglich nach links bewegten. Für den Punkt g, der in Höhe des mittleren Versteifungsbleches lag, war die seitliche Bewegung bis etwa 1200 t nur sehr gering. Dies dürfte als Beweis dafür angesehen werden können, daß die Achse des Stabes bis 1200 t keine wesentliche wagerechte Ausbiegung erlitt und die seitlichen Ausbiegungen, die vorher innerhalb der Meßstrecken a, b, c und d, e, f beobachtet worden sind (s. Fig. 30), im wesentlichen darauf zurückzuführen sind, daß die Stegbleche sich schief stellten.

Hierbei ging der Meßpunkt c am oberen Rande dauernd nach rechts, also in bezug auf das H-förmige Profil nach außen, Punkt h dagegen anfänglich nach links, also nach innen.

Die wagerechten Bewegungen der in dem mittleren Stabquerschnitt liegenden Punkte c und f (s. Fig. 27) waren nahezu gleich groß (s. Fig. 32). An den Stabenden waren die Bewegungen bei a etwas größere als bei d (s. Fig. 33) und bei e wesentlich größer als bei b (s. Fig. 34).

3. Das Neigen der Druckplatten.

Das Neigen der Druckplatten um die wagerechte Mittellinie der Druckfläche ist mit Wasserwagen beobachtet, die auf die obere Fläche der Platten aufgesetzt waren. Für den vor dem Stab stehenden Beobachter sind die Neigungen nach links als negativ und die Neigungen nach rechts als positiv bezeichnet. Der Verlauf der Neigungen beider Platten ist durch die Schaulinien (Fig. 35) dargestellt (s. a. Skizze über der Fig. 35). Aus dem Verlauf dieser Linien erkennt man, daß die linke gegen den Kolben gestützte Platte sich anfänglich mit wachsender Belastung nach links neigte, zwischen 500 und 1700 t nahezu fest stand und bei höheren Belastungen sich nach rechts neigte. Die rechte, gegen das feste Widerlager gestützte Platte neigte sich von 400 t ab zunächst etwas nach rechts und dann mit Überschreitung von 1700 t nach links.

Fig. 32. Wagerechte Bewegungen der Meßpunkte c und f.

Diese Bewegungen der beiden Druckplatten entsprechen im allgemeinen den mit dem beobachteten Ausbiegen des Stabes in senkrechter Richtung verbundenen Schiefstellungen seiner Endflächen. Nach Fig. 28 fand bis zu etwa 1700 t Belastung Ausbiegen nach oben statt; dem entspricht die nach oben divergierende Einstellung der Platten und mit der Umkehr des Ausbiegens des Stabes fiel auch die Umkehr in der Neigung der Platten zusammen.

Auch die unter Abschnitt 1 besprochenen Stauchungen der Stegbleche an den Stabenden stimmen wenigstens für das linke schwächere Stabende mit den Bewegungen der Druckplatte überein. Solange die Platte hier oben nach links hinübergedrückt wurde, mußte die Druckspannung im oberen Teil des Stabquerschnittes größer sein als im unteren und tatsächlich sind, wie Fig. 22 zeigt, für die oben gelegenen Meßstrecken 12 und 14 größere Zusammendrückungen beobachtet als für die unteren Meßstrecken 16 und 18. Bei Belastungen über 1900 t, d. h. nachdem die Neigung der Druckplatten eine Umkehr erfahren hatte, trat auch Ausgleich in den Stauchungen der Stegbleche oben und unten ein.

An dem rechten, stärkeren Stabende stimmt der Unterschied in den Stauchungen der Stegbleche mit der Neigung der Druckplatten nicht überein. Nach der letzteren und entsprechend der anfänglichen Durchbiegung des Stabes nach oben hätte man für die oben gelegenen Meßstrecken 20 und 22 (s. Fig. über Tab. 5) auch die

größeren Stauchungen erwarten sollen, während gerade das Material innerhalb der unten gelegenen Meßstrecken 24 und 26 stärker gestaucht wurde als oben (s. Fig. 23). Dieser Umstand zusammen mit der Beobachtung, daß auch die linke, mit dem Kolben verbundene Druckplatte ihre Neigung bei Steigerung der Belastung von 500 auf 1700 t nicht wesentlich änderte, obgleich der Stab sich noch weiter nach oben durchbog, läßt die Ansicht aufkommen, daß der Bewegungswiderstand der Kugellager trotz des Wasserpolsters zwischen den Kugelflächen noch zu groß war, als daß die Kugellager während des ganzen Versuches in Wirkung traten. Es erscheint nicht ausgeschlossen, daß hierbei die Reibung in dem Stützlager c (Fig. 4) ausschlaggebend war.

Fig. 34. Wagerechte Bewegungen der Meßpunkte b und e.

4. Die Längenänderungen der Stützfedern.

Den Verlauf der Längenänderungen der beiden Stützfedern mit wachsender Belastung des Stabes zeigen die Schaulinien Fig. 36. Die Längenänderungen stimmen für beide Federn gut überein, und zwar erlitten beide Federn von gleich an Längenabnahmen, während man entsprechend der Durchbiegung des Stabes nach oben bis 1700 t Längenzunahmen der Federn hätte erwarten sollen. Man wird aber dieser Unstimmigkeit keine besondere Bedeutung beizumessen haben, zumal es sich bis 1700 t nur um geringe Formänderung handelt und die durch Fig. 6 erläuterte Meßweise keinen Anspruch auf große Feinheit erheben kann. Zudem macht sich zwischen 700 und 1500 t Belastung eine geringe Abnahme der Verkürzung geltend.

Bei höheren Belastungen stimmt die Verkürzung der Stützfedern mit der Durchbiegung des Stabes nach unten überein.

Mit Erreichung der Belastung von 2125 t, bei der die letzten Beobachtungen erfolgten, war die Verkürzung der Feder 1 = 1,15 mm, die der Feder 2 = 1,40 mm. Hieraus berechnet sich die Mehranspannung der Federn, mit denen diese dem Ausbiegen des Stabes nach unten entgegenwirkten, aus den Werten der Tab. 1 zu 63 und 81 kg.

28

Für den Beginn des Ausknickens können diese Gegenkräfte wohl als belanglos erachtet werden. Dagegen hinderten die Federn den Stab am vollständigen Einknicken, so daß sie vor Beendigung des Versuches entfernt werden mußten. Für

weitere Versuche ist daher die Beschaffung hydraulischer Vorrichtungen zum Abfangen des Eigengewichtes nach dem Vorschlage des Berichterstatters in Aussicht genommen.

5. Die Durchbiegungen und Verkürzungen der beiden Stabhälften links und rechts von den Stützfedern.

Im Hinblick darauf, daß die Enden des Stabes verschieden stark ausgebildet waren, erschien es von Interesse die Durchbiegungen der beiden Stabhälften rechts und links von den in der Mitte untergestellten Stützfedern getrennt zu beobachten. Zu diesem Zwecke ist nach Fig. 37 je 40 mm von den Druckflächen und je 90 mm von dem mittelsten Stabquerschnitt entfernt ein Stahlstift in dem einen äußeren Stegblech angebracht und an den beiden Endstiften je ein feiner Draht befestigt, der über den zunächstgelegenen mittleren Stift mit Rolle fortgeführt, an dem herabhängenden Ende belastet und mit einem Zeiger ausgerüstet wurde. Hinter diesen Zeigern wurden die Maßstäbe 36 und 37 und hinter der Mitte der gespannten Drähte

Fig. 37. Anordnung der Meßstellen zur Bestimmung der Durchbiegung und Verkürzung der Stabhälften des Stabes 69.

der beiden Stabhälften. Die Ergebnisse sind in Fig. 38 durch Schaulinien dargestellt. Aus der Lage der Linien zueinander ergibt sich, daß die linke Stabhälfte, die nur

die Maßstäbe 34 und 35 auf dem Stegblech befestigt. Die Bewegungen der Drähte gegen die Maßstäbe 34 und 35 gaben die Durchbiegungen und die Bewegungen der Zeiger gegen die Maßstäbe 36 und 37 die Längenänderungen (s. Tab. 8)

am Ende wenig verstärkt war, sich weniger durchbog aber größere Verkürzung erlitt, als die rechte, zum Teil erheblich verstärkte Hälfte (s. a. Abschnitt 3).

Hingewiesen möge ferner noch auf folgende Erscheinungen sein. Bei der zweiten Belastung mit 700 t hatte besonders die rechte Stabhälfte sich mehr nach oben durchgebogen als bei der erstmaligen Belastung, während die Stützfeder sich gleichzeitig zusammengedrückt hatte (s. Fig. 36) und in Übereinstimmung hiermit (s. Fig. 28) die senkrechte Durchbiegung des ganzen Stabes, die beim erstmaligen Belasten mit 700 t nach oben gerichtet war, nun in eine geringe Durchbiegung nach unten übergegangen war.

Die Durchbiegung der linken Stabhälfte (s. Fig. 38) war unter 1485 t nach voraufgegangenem Entlasten negativ, während sie beim erstmaligen Belasten positiv gewesen war. Die Stabhälfte hatte sich also beim zweiten Belasten nach unten durchgebogen. Hiermit stimmt überein, daß auch die nach oben gerichtete senkrechte Ausbiegung in der Mitte des ganzen Stabes beim zweiten Belasten mit 1485 t (s. Fig. 28) geringer war als beim ersten und ickungen der Stützfedern zuwenommen

ebenso, daß gleichzeitig die Zusammendrückungen der Stützfedern zugenommen hatten (s. Fig. 36).

6. Zerstörungserscheinungen an dem eingeknickten Stabe.

Fig. 39 zeigt den unter der Höchstlast nach unten durchgebogenen Stab in der Maschine, Fig. 40 die Seitenansicht und Fig. 41 die obere Seite des Stabes an der Stelle größter Formänderung nach der höchsten erreichten Belastung von 2293,8 t.

Fig. 39. Nach unten durchgebogener Stab 69 in der Maschine.

Fig. 40. Seitenansicht des Stabes an der Stelle größter Formänderung.

Diese Bilder sprechen für sich. Hervorgehoben möge aber sein, daß trotz der starken Verbiegungen der vernieteten Teile keines der hierbei stark beanspruchten Niete gerissen ist. Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Die in Fig. 41 zutage tretende seitliche Ausbauchung der Stegbleche war erwartet worden und daher waren zur Feststellung ihrer Größe in Mitte der einzelnen durch die Querbleche begrenzten Felder H-A (Fig. 21) auf dem beim Versuch nach oben gelegenen Rande der inneren Stegbleche 1 und 3 diametral gegenüber Marken angebracht worden. Für die Abstände der Marken desselben Feldes voneinander vor und nach dem Versuch sind folgende Werte ermittelt:

Feld-Zeichen (s. Fig. 21):	A	В	C	D	\boldsymbol{E}	F	G	H
Markenabstand vor dem Versuch	819,2	823,1	822,0	822,8	822,6	820,2	820,0	823,4 mm
" nach " "	819,1	807,2	827,7	936,6	824,2	820,9	820,1	823,4 "
Änderung des Markenabstandes	-0,1	-15,9	+ 5,7 +	⊢113,8	+1,6	+0,7	+0,1	+0,0 ,,

Fig. 41. Obere Seite des Stabes 69 an der Stelle größter Formänderung.

Sie lassen erkennen, daß im kurzen Felde H keine nennenswerte seitliche Verbiegung der Stegbleche eingetreten ist; bei den Feldern A und B erfolgte Verbiegen nach innen, bei allen anderen nach außen. Die Verbiegungen in den Feldern C und Esind gegenüber der Verbiegung in dem dazwischenliegenden eingeknickten Felde Dals gering zu bezeichnen. Dies zeugt von der guten Wirkung der Querbleche und tatsächlich scheint Verschiebung dieser Querbleche auf den Saumwinkeln nicht eingetreten zu sein.

Die Stegbleche 1 und 3 waren an den in Fig. 21 mit J und K bezeichneten Stellen, die Stegbleche 2 und 4 bei L und K gestoßen. Um feststellen zu können, ob Verschiebungen an den Stoßstellen eintraten, sind zu beiden Seiten der Stoßstellen Marken auf den Kanten der Stegbleche angebracht und ihre Abstände vor und nach dem Versuch ausgemessen. Die Ergebnisse enthält nachstehende Gegenüberstellung:
Stegblech Nr	1	2	3	4		
Stoßstelle	J K	L K	J K	L K		
Meßlänge vor dem Versuch	24,3 25,2	25,1 25,4	25,2 24,2	26,0 24, 4		
" nach " "	24,6 26,0	24,8 25,7	24,8 23,9	26,0 24,8		
Längenänderung	+0,3 $+0,8$	-0,3 + 0,3	-0,4 -0,3	+0,0 +0,4		

Hiernach sind zwar im allgemeinen nur geringe aber immerhin wahrnehmbare Verschiebungen an den Stoßstellen eingetreten.

7. Vergleich der beobachteten Knickfestigkeit mit der berechneten.

Für den untersuchten Stab mit:

dem	Querso	chnit	t.			•				•	F = 1066,4 qcm
dem	kleinst	en 1	[rä _i	ghe	\mathbf{its}	mc	m	en	t		$J = 608 \; 657 \; { m cm}^4$
der J	Länge					٠					$l=1401,5~{ m cm}$
dem	Verhä	ltnis	•						•	•	$\frac{l}{i} = 60,4$

berechnet sich die Knicklast unter Annahme des Elastizitätsmoduls zu

$$P = \frac{\pi^2 \cdot E J}{l^2} = \frac{9,86 \cdot 2150\,000 \cdot 608\,657}{1401,5 \cdot 1401,5} = 6569 \,\mathrm{t} \,.$$

 $E = 2\ 150\ 000\ \text{kg/qcm}$

2. Nach Tetmajer ist die Knickspannung

$$\sigma_k = \alpha - \beta \frac{l}{i} = 3, 1 - 0,0114 \cdot 60, 4 = 2,411 \text{ t/qcm}$$

und demnach

$$P_k = \sigma_k \cdot F = 2,411 \cdot 1066, 4 = 2571 \text{ t}$$
.

Der Verhältnis der beobachteten Knickfestigkeit zur berechneten ist demnach:

1. nach Euler
$$=\frac{2293,8}{6569}=0,35$$
,
2. nach Tetmajer $=\frac{2293,8}{2571}=0,89$.

Die rechnungsmäßige Belastung des Stabes in der Brücke beträgt 1133 t; die Betriebssicherheit ist demnach $=\frac{2293,8}{1133}=2,02$.

IV. Die Prüfung von Zugstäben.

A. Prüfung des Zugstabes 76.

Die Abmessungen des Stabes zeigt Fig. 42. Er besteht aus einem 5220 mm langen Flachstab von 500 mm Breite und 18 mm Dicke, der an beiden Enden mit 13 Nieten an zwei Laschen von 11 mm Dicke angeschlossen ist. Die Niete haben 23 mm Durchmesser und sind in 5 Reihen dreieckförmig angeordnet. Hieraus ergeben sich folgende Größen:

Gesamtquerschnitt des Stabes	•			•	$= 50.0 \cdot 1.8 = 90.0 \text{ qcm}$
Nettoquerschnitt des Stabes					$= (50, 0 - 2, 3) \cdot 1, 8 = 85, 86$ qcm
Schubquerschnitt der Anschlußniete.					$= 13 \cdot 2 \cdot 4, 15 = 107,9$ qcm
Leibungsfläche der Anschlußniete		•	•		$= 13 \cdot 2, 3 \cdot 1, 8 = 53, 82$ qcm.
Versuche im Eisenbau A 2.					3

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Die Endlaschen sind mit je einem Bolzen von 320 mm Durchmesser an die Einspannteile der Maschine drehbar angeschlossen. Die Gesamtlänge zwischen den Bolzen beträgt 6280 mm.

Die Erprobung des Materials des Flachstabes und der Laschen lieferte die in Tab. 9 zusammengestellten Ergebnisse. Bei Prüfung in der 3000-t-Maschine stand der Stab 76 hochkant, so daß also Fig. 42 die Seitenansicht darstellt.

Nettoquerschnitt des Stabes = $(50,0-2,3) \cdot 1,8 = 85,86$ qcm. Nietouerschnitt des Anschlusses = $13 \cdot 4, 15 \cdot 2 = 107,9$ qcm. Leibungsfläche der Anschlußniete = $13 \cdot 2,3 \cdot 1,8 = 53.82$ qcm.

Unter stufenweiser Laststeigerung ist beobachtet an den in Fig. 42 mit a bis k bezeichneten Stellen:

- 1. Die Dehnung annähernd in der Mitte der Stablänge an beiden Rändern (Meßstellen e, f, i und k) und in der Mitte (g und h). Die Meßapparate, Martensche Spiegelapparate, wurden auf beiden Breitseiten angebracht. Die Anzeigen der paarweise gegenüberliegenden Apparate sind zu Mittel zusammengefaßt (s. Tab. 10).
- 2. Das Gleiten der Laschen gegen den Stab an den Meßstellen a bis d (s. Fig. 42).

1. Die Dehnungsmessungen.

Die im Kopf der Tab. 10 zu den Dehnungen angegebenen Belastungen P sind aus der Kolbenfläche F der Maschine, dem Wasserdruck p in at. und der Leergangsreibung R der Maschine berechnet nach der Gleichung P = pF - R mit den Werten: F = 7918 qcm und R = 3,94 t. Die Drucke p sind an dem Manometer 211 beobachtet. Das Manometer ist in Grade geteilt. Die Beziehungen zwischen der Gradteilung und dem Druck in at. ergeben sich aus Tab. 11.

Aus den Beobachtungswerten Tab. 10 folgt, daß

a) die Dehnung in Mitte der Stabbreite bis zu 82 t Belastung etwas größer war als die mittlere Dehnung an den Stabrändern; der Unterschied nimmt mit wachsender Belastung ab und von 97 t ab überwiegt die Dehnung an den Stabrändern, und zwar um so mehr, je größer die Belastung ist. Von den beiden Stabrändern zeigt bis zu 21 t der untere und bei höheren Belastungen der obere die größere Dehnung¹).

Die besprochenen Unterschiede in den Dehnungen sind indessen nicht beträchtlich, so daß man die Verteilung der Belastung über den Stabquerschnitt als hinreichend gleichmäßig erachten kann, um aus der beobachteten mittleren Dehnung des Stabes und der Dehnungszahl des Materials, die nach Tab. 9 zu $\frac{1}{\alpha} = E = 2079\,000$ ermittelt ist, die tatsächlich auf den Stab übertragenen Belastungen P_1 zu berechnen. Die für P_1 erhaltenen Werte sind in Tab. 10 mit aufgeführt. Ferner sind die Unter-

¹) Der Stab lag bei der Prüfung hochkant. Seine Durchbiegung δ unter dem Eigengewicht berechnet sich mit l = 628 cm, E = 2 150 000 kg/qcm, J = 18 750,3 cm⁴ und q = 0,7065 kg für 1 cm Länge zu $\delta = 0,355$ mm.

schiede zwischen den Kraftanzeigen P und den Belastungen P_1 sowohl in t als auch in % von P_1 berechnet.

Die Berechnung von P_1 aus der Dehnung und der Dehnungszahl (dem Elastizitätsmodul) des Materials ist natürlich nur für die Belastungen innerhalb der Proportionskläftenenen der Materiale sähin. Nach Ele 9

tionalitätsgrenze σ_P des Materials gültig. Nach Tab. 9 liegt σ_P bei 1330 kg/qcm, daher sind in Tab. 10 die Werte von P_1 , nur für $\sigma < 1330$ kg/qcm berechnet.

Aus den prozentuellen Unterschieden zwischen Pund P_1 ergibt sich, daß die Kraftanzeige P bis zu etwa 70 t erheblich größer war als die auf den Probestab übertragene Belastung P_1 . Der Unterschied beträgt 6,5 bis 2,11% und nimmt mit wachsender Belastung ab. Bei 82 t ist P_1 fast gleich P und bei höheren Belastungen bis zu 113 t ist $P_1 > P$. Der Unterschied bleibt aber kleiner als 1%.

Den Verlauf der Dehnung des Stabes 76, gemessen auf 1 m Länge, mit wachsender Belastung bis zur Streckgrenze zeigt Fig. 43. Die Streckgrenze ist hiernach bei der Belastung P = 240,56 t erreicht. Dies entspricht der Spannung $\sigma_s = 2680$ kg/qcm. Nach Tab. 9 hatten

Fig. 43. Dehnung des Stabes 76 mit wachsender Belastung.

die Materialproben den Mittelwert $\sigma_s = 2670 \text{ kg/qcm}$ ergeben. Beide Werte stimmen gut überein, so daß hiernach die Kraftanzeige bis zu 240 t hinreichend genau war.

2. Das Gleiten der Laschen gegen den Stab.

Das Gleiten der Stabenden zwischen den Anschlußlaschen mit wachsender Belastung zeigen die Schaulinien Fig. 44. Die Linien a und b gelten für das linke, die

Linien c und d für das rechte Stabende; dabei lagen die Meßstellen a und c auf dem oberen, die Meßstellen b und dauf dem unteren Rande des Stabes (s. Fig. 42). Der Verlauf der Linien läßt erkennen, daß das Gleiten schon bei 20t Belastung wahrnehmbar war und von etwa 50 t Belastung ab, entsprechend einem Lochleibungsdruck von $50\,000$ = 930 kg/qcm 53.82 in stärkerem Maße zunahm. An beiden Enden war das Gleiten

auf dem beim Versuch nach oben gelegenen Stabrande, Meßestellen a und c größer als auf dem unteren Rande. Dem entspricht nach Tab. 10 die größere Dehnung in Stab-Mitte am oberen Rande (Meßstellen f und e) gegenüber den Dehnungen für k und i.

Der Bruch des Stabes erfolgte bei 379,6 t Belastung ohne den geringsten Schlag, indem der Bruch bei a (Fig. 45) begann und von Nietloch zu Nietloch sich fortpflanzte. Die Stelle a lag am oberen Rande des Stabes. Die schon bei den vorbesprochenen Dehnungs- und Gleitmessungen hervorgetretene stärkere Zugspannung an diesem Rand hat also bis zum Bruch angehalten. Es erscheint daher nicht ausgeschlossen, daß die erzielte Bruchlast durch die ungleichmäßige Lastverteilung ungünstig beeinflußt worden ist.

Fig. 45. Bruchstelle des Stabes 76.

Auf den Nettoquerschnitt von 85,86 qcm des Stabes bezogen, beträgt die Bruchspannung des Stabes $\frac{379600}{85,86} = 4420 \text{ kg/qcm}$. Die Bruchfestigkeit des Materials ist nach Tab. 9 zu 4990 kg/qcm ermittelt. Der Nettoquerschnitt ist in der üblichen Weise berechnet, indem von dem Gesamtquerschnitt das vordere Nietloch des Dreiecks Nietbildes in Abzug gebracht ist. Bei dieser Berechnungsweise sind also $\frac{4420 \cdot 100}{4990} = 89\%$ der Materialfestigkeit in dem Zugstabe 76 ausgenutzt worden.

Der Bruch begann nach Fig. 45 bei *a* in dem Querschnitt mit 3 Nieten. Der Nettoquerschnitt beträgt hier $(50, 0 - 3 \cdot 2, 3)$ 1,8 = 77,58 qcm. Mit ihm berechnet sich die Materialspannung zu $\frac{379\,600}{77,59} = 4890$ kg/qcm. Sie entspricht einer Ausnutzung der Zugfestigkeit des Materials von $\frac{4890}{4990}$: 100 = 98%.

B. Prüfung von zwei geschmiedeten Stahlstäben.

Die Stäbe, gez. 80 und 81, von denen 80 für 1000 t und 81 für 500 t Bruchbelastung berechnet war, sind von der Gutehoffnungshütte zu Oberhausen geliefert. Ihre Abmessungen sind aus Fig. 46 und 47 zu ersehen.

Bei Festsetzung der Abmessungen der Stabköpfe war maßgebend, daß die Versuche zugleich dazu dienen sollten, ebenso wie mit dem Stabe 76, festzustellen, mit welcher Genauigkeit die Kraftäußerung P der Maschine nach der Formel

$$P = p \cdot F - R$$

berechnet werden kann, wenn

p den am Manometer abgelesenen Wasserdruck im Zylinder,

F die Kolbenfläche und

R die Leergangsreibung

bedeuten. Zu diesem Zweck sollten die Stäbe zunächst auf der 500-t-Maschine des Amtes bis nahe zur Proportionalitätsgrenze geprüft und hierbei die Beziehungen zwischen Belastung und Dehnung, die Dehnungszahl, ermittelt werden, um

Fig. 46. Abmessungen des Stabes 80.

dann später bei Prüfung der Stäbe auf der 3000-t-Maschine umgekehrt die wirklichen Belastungen aus den elastischen Stabdehnungen berechnen und mit den nach obiger Formel ermittelten Kraftäußerungen der Maschine in Vergleich stellen zu können. Insbesondere mußten daher die Abmessungen der Stabköpfe auch den zur 500-t-Maschine vorhandenen Einspannvorrichtungen angepaßt werden.

Die Bohrungen in den Stabköpfen wurden als Langlöcher ausgebildet, damit die Stabköpfe in den Einspannklauen sich verschieben konnten und so mit Sicherheit erreicht wurde, daß die Stäbe beim wiederholten völligen Entlasten nicht auf Druck beansprucht wurden.

Zur Bestimmung der Dehnung mittels Martensscher Spiegelapparate sind die Stäbe je mit Ringmarken 1 und 2, Fig. 46 und 47, versehen, in die die Schneiden der Meßfedern so eingesetzt wurden, daß sie parallel zu Längsmarken lagen, die paarweise bei A, B, Cund D angebracht waren.

Fig. 47. Abmessungen des Stabes 81.

Mit den großen Stäben 80 und 81 zugleich waren sechs Zerreißproben an das Amt eingeliefert, und zwar 1-3 zu Stab 80, 4-6 zu Stab 81. Nach Angabe der Gutehoffnungshütte sind diese Stäbe nebeneinander und nahe der Oberfläche (Randzone) aus Probestücken von etwa 200 · 200 mm Querschnitt entnommen, die an einem Ende der großen Stäbe angeschmiedet waren. Die Reststücke der Probestücke waren leider vom Werk verworfen, so daß es nicht mehr möglich war, auch aus dem Kern der Schmiedestücke noch Zugstäbe zur Erprobung des Materials zu entnehmen.

1. Erprobung des Materials der Stäbe 80 und 81.

Die Ergebnisse der Zugversuche mit den sechs Materialproben zeigen Tab. 12 und 13.

Die Proportionalitätsgrenze des Materials der Stäbe 80 und 81 ist nach den Dehnungswerten Tab. 13 nicht scharf ausgeprägt; die Dehnungsstufen bei den einzelnen Laststufen von 500 kg schwanken. Nach den Mittelwerten dürfte man indessen nicht sehr fehlgehen, wenn man die Proportionalitätsgrenze bei 4500 kg annimmt, entsprechend der Spannung $\sigma_P = 1430$ kg/qcm. Bleibende Dehnungen zeigten sich schon nach 1000 kg Belastung. Sie waren hier nur gering, bei 5000 kg dagegen schon recht beträchtlich und zwar nahmen sie beim wiederholten Beanspruchen der Stäbe mit dieser Belastung zu und wurden erst nach mehrmaligem Lastwechsel konstant.

Im übrigen ist das Material nach der guten Übereinstimmung der Einzelwerte für die je drei Proben 1-3 bzw. 4-6 aus demselben Stabe (s. Tab. 12) als außerordentlich gleichmäßig zu bezeichnen und auch die Mittelwerte für beide Stäbe stimmen gut überein.

2. Prüfung des Stabes 80 auf der 100-t-Werder-Maschine.

Die Prüfung auf der Werder-Maschine zur Bestimmung der Dehnungszahl bis 100 t Belastung mußte auf den Stab 80 beschränkt bleiben. Ausgeführt sind fünf Versuchsreihen unter gleichzeitiger Beobachtung der Dehnungen für alle vier Meßstellen A bis D (Fig. 46) auf 250 mm Meßlänge. Die Beobachtungen sind in Tab. 14 für die diametral gegenüberliegenden Meßstellen A und C sowie B und D zunächst getrennt zu Mittelwerten zusammengefaßt und außerdem sind die Gesamtmittel λ_m für alle Beobachtungen bei der gleichen Laststufe gebildet. In der nächstfolgenden Reihe der Tabelle sind die prozentualen Fehler in der Kraftanzeige der Werder-Maschine angegeben, die sich bei deren Eichung mittels der Kontrollstäbe des Amtes ergeben hatten. Dann folgen die um diese Fehlerbeträge richtiggestellten Dehnungswerte λ'_m und die aus letzteren sich ergebenden Werte des Dehnungssolls λ_s für 1 t Belastung ($\lambda_s = \lambda'_{m'P}$). Diese Werte nehmen mit wachsendem P ab.

Daß diese Abnahme tatsächlich besteht, ist unwahrscheinlich. Ihre Beobachtung dürfte darauf zurückzuführen sein, daß der Fehler der Kraftanzeige bei Eichung der Maschine mit den verfügbaren Hilfsmitteln auch nur auf höchstens 0,5% genau bestimmt werden konnte.

Der Mittelwert für λ_s beträgt $10,36 \cdot \frac{1}{200000}$ cm, er weicht von den Einzelwerten in keigem Falle um mehr als 0,4% ab. Dies berechtigt zu der Annahme, daß bei Benutzung dieses Wertes für die weiteren Berechnungen deren Fehler höchstens 1 bis 1,5% beträgt. Eine größere Genauigkeit dürfte aber von der Eichung einer 3000-t-Maschine nicht zu fordern sein, so daß der Stab 80 bis 100 t Belastung als Kontrollstab zur Untersuchung der Kraftanzeige der 3000-t-Maschine benutzt werden konnte.

Der Elastizitätsmodul des Materials berechnet sich mit dem Dehnungswert von $\lambda_s = 10,36 \cdot \frac{1}{200000}$ für 1 t Belastung auf 25 cm Meßlänge zu:

$$E = \frac{P \cdot l}{f \cdot \lambda_s} = \frac{1000 \cdot 25 \cdot 200\ 000}{227 \cdot 10.36} = 2126\ 100\ \text{kg/qcm}.$$

An den Zerreißproben (s. Tab. 12) war er zu 2 091 200 kg/qcm ermittelt. Der Unterschied zwischen beiden Werten beträgt 2 126 100 - 2 091 200 = 34 900 kg/qcm oder 1,6%. Also auch hiernach erscheint die Eichung der Maschine mit dem Wert 10,36 bis auf 1,6% genau möglich, zumal wenn man beachtet, daß die Zerreißproben dem geschmiedeten Block außerhalb desjenigen Teiles entnommen sind, den der Querschnitt des Stabes 80 umfaßt. Es erscheint nicht ausgeschlossen, daß die beobachteten Unterschiede der beiden Elastizitätsmodule wenigstens zum Teil auch hierauf zurückzuführen ist. Für den Stab 80 ist der durch direkte Prüfung auf der Werder-Maschine gewonnene Wert als der zuverlässigere erachtet und den späteren Berechnungen zugrunde gelegt.

3. Die Versuche auf der 500-t-Maschine.

Bei der 500-t-Maschine erfolgt die Bestimmung der Kraftleistung P wie bei der 3000-t-Maschine durch Berechnung des Produktes aus dem im Arbeitszylinder herrschenden Wasserdruck × Kolbenfläche, vermindert um die Leergangsreibung $(P = p \cdot F - R)$.

Die zur Bestimmung des Druckes p benutzten Manometer 104 und 125 sind in Grade geteilt. Die Beziehungen zwischen den Drucken in Atmosphären und den Ablesungen in Graden sind durch Prüfung der Manometer auf der Druckwage von Stückrath in vier Versuchsreihen ermittelt. Die Ergebnisse enthält Tab. 15. Aus ihnen berechnen sich die Drucke in Atmosphären für die bei Prüfung der Stäbe 80 und 81 angewendeten und in Graden abgelesenen Druckstufen wie folgt:

Druckstufen	(80 mit	fin	Graden	20	40	60	80	100	120	140	160
bei Prüfung	Manom. 104	Ìin	at	26,08	51,52	76,83	102,69	128,66	154,75	181,29	208, 13
des	81 mit	(in	Graden	20	40	60	80	100	120	140	160
Stabes	Manom. 125	lin	at	26,04	51,48	76,79	102, 50	128,62	154,71	181,34	208,09

Der Querschnitt F des Arbeitskolbens beträgt 1385 qcm. Die Leergangsreibung R ist vor Beginn der einzelnen Belastungsreihen jedesmal besonders ermittelt und bei Bestimmung von P mit dem jeweilig ermittelten Wert in Rechnung gestellt.

a) Prüfung des Stabes 80 mit Querschnitt f = 227 qcm.

Die Prüfung, deren Ergebnisse nachstehend besprochen sind, erfolgte bei zwei verschiedenen Stellungen des Kolbens im Arbeitszylinder der Maschine und zwar betrug die Länge L des aus dem Zylinder herausragenden Teiles des Kolbens bei Reihe I: 25,5 cm, bei Reihe II: 88,3 cm. Der Gesamthub des Kolbens beträgt 140 cm.

Für die angewendeten Laststufen p (Druckstufen) berechnen sich die Werte von $P = p \cdot F - R$ wie folgt:

Druckstufe in Graden	20	40	60	80	100	120	140	160
P bei Reihe I in t	34,91	70,14	105,19	141,00	176,98	213,11	249,86	287,04
	34,85	70,08	105,13	140,94	176,92	213,05	249,80	286,98

Die Dehnungen λ des Stabes 80 sind bei beiden Reihen für alle vier Meßstrecken A bis D (s. Fig. 46) auf 25 cm Meßlänge beobachtet und die Belastung ist bei jeder Reihe fünfmal wiederholt. Die Beobachtungswerte sind in Tab. 16 zusammengestellt. Ihnen sind angefügt:

1. die aus den Dehnungen λ berechneten Zugkräfte $P_1 = \frac{\lambda}{l} f \cdot E$, wobei für E der bei den Versuchen auf der Werder-Maschine ermittelte Wert E = 2 126100 eingesetzt ist unter der Annahme, daß die Proportionalitätsgrenze die nach Tab. 12 für das Material bei 1430 kg/qcm liegt, bei der angewendeten Höchstlast von etwa 290 t = 1280 kg/qcm noch nicht überschritten wurde;

- 2. die Werte von P, wie sie für die einzelnen Druckstufen vorstehend gegeben sind;
- 3. die Unterschiede zwischen P und P_1 :

a) in
$$t = P - P_1$$

b) in $\% = \frac{P - P_1}{P_1} \cdot 100$

Die zu 3 b) gehörigen Werte sind in Fig. 48 zu Schaulinien aufgetragen. Aus ihrem Verlauf ergibt sich, daß die Unterschiede zwischen den aus den Wasserdrucken und den Festwerten¹) der Maschine berechneten Belastungen P und den aus den Stabdehnungen berechneten Belastungen P_1 mit dem Anwachsen der Belastungen bei beiden Reihen I und II mit verschiedenem Kolbenstand L

Fig. 48. Unterschiede in % zwischen der Kraftanzeige P_{i} berechnet aus dem Wasserdruck, und der Zugkraft P_{i} , berechnet aus der Dehnung der Stäbe 80 und 81 auf der 5004-Maschine. Länge L des aus dem Zylinder hervorragenden Kolbens. L I = 255 cm; L II = 88,3 cm.

----- Stab 80; ---- Stab 81.

den gleichen Verlauf nehmen, und zwar derart, daß diese Unterschiede bei 70 t den höchsten positiven Wert erreichen und von da ab stetig abnehmen, um schließlich in negative Werte überzugehen. Dieser Verlauf ist wegen der bereits erwähnten Übereinstimmung in beiden Reihen als gesetzmäßig anzuschen; zu seiner Erklärung sei folgendes angeführt.

Beiden Berechnungen, sowohl der Werte von P als auch derjenigen von P_1 , können Fehler anhaften, deren Größe aus den vorliegenden Beobachtungen nicht zu bestimmen ist. Der Fehler in der Berechnung von P kann darin be-

ruhen, daß der Reibungsverlust R sich mit wachsender Belastung ändert, während er bei der Berechnung als unveränderlich angenommen werden mußte. Das Wahrscheinlichere ist, daß R zunimmt; dann sind aber die Werte für P zu groß ermittelt. Hieraus würde folgen, daß die positiven Werte für $P - P_1$ bis zu 140 t
 bei Reihe II und bis zu 176 t bei Reihe I zu groß und die negativen Werte zu klein ermittelt sind und daß daher die beiden Schaulinien nach unten verschoben werden müssen. Der Fehler in der Berechnung von P_1 kann darin beruhen, daß die Dehnung des Stabes nicht, wie bei der Berechnung angenommen ist, bis zu 280 t der Belastung proportional ist, sondern daß der Stab bei höheren Belastungen sich stärker dehnte, als der Dehnungszahl $\frac{1}{\alpha} = E = 2\,126\,100$ entspricht, die als Festwert in die Berechnungen von P_1 eingeführt ist. Trifft es aber zu, daß die Proportionalitätsgrenze des Stabes tatsächlich unterhalb 280 t liegt oder die Dehnung der Belastung überhaupt nicht streng proportional ist, so würden die Werte für P1 zu groß bestimmt sein, und zwar besonders diejenigen bei höheren Belastungen. Die richtigen Werte von P₁ würden dann denen von P näherkommen, d. h. die Neigung der Schaulinien Fig. 48 würde abnehmen.

40

¹) Auch die Größe der Reibungsverluste R ist bei der Berechnung als Festwert angenommen.

Da nun keine bestimmte Grundlage gegeben ist, auf welcher die Bestimmung der erwähnten Fehler aufgebaut werden könnte, so gestattet die Verwendung des Stabes 80 als Kontrollstab bei Prüfung der 3000-t-Maschine auf die Richtigkeit ihrer Kraftanzeige nur, festzustellen, inwieweit diese Kraftanzeige von derjenigen der Werder-Maschine und der 500-t-Maschine abweicht.

b) Prüfung des Stabes 81 mit Querschnitt f = 113 qem auf der 500-t-Maschine.

Der Wasserdruck im Arbeitszylinder der Maschine mit dem Kolbenquerschnitt F = 1385 qcm wurde mit dem in Grade geteilten Manometer 125 beobachtet. Für die einzelnen Laststufen (Druckstufen) berechnen sich die Werte für die Zugkräfte $P = p \cdot F - R$ mit R = 1,29 t wie folgt:

Druckstufe in Graden	20	40	60	80	100	120	140	160
Zugkraft P in t	16,53	34,46	52,15	70,18	88,40	106,88	125,40	143,99

Für die Beobachtung der Dehnung des Stabes gilt das zu Stab 80 Gesagte. Die Ergebnisse sind aus Tab. 17 zu ersehen. Ihnen sind wieder angefügt:

1. die aus den Dehnungen berechneten Zugkräfte $P_1 = \frac{\lambda}{i} f \cdot E$. Für E ist

auch hier der bei Prüfung des Stabes 80 auf der Werder-Maschine ermittelte Wert E = 2 126 200 eingesetzt. Da der Stab 81 selbst auf der Werder-Maschine nicht geprüft worden ist, mußte dieser Wert für E als der zuverlässigste angesehen werden. Hierbei ist wieder angenommen, daß die Proportionalitätsgrenze des Stabes, die nach Tab. 13 für das Material bei 1430 kg/qcm ermittelt ist, bei der angewendeten Höchstlast von etwa 144 t = 1270 kg/qcm noch nicht überschritten ist;

- 2. die Werte von P, wie sie vorstehend angegeben sind und
- 3. die Unterschiede zwischen P_1 und P in t sowie in % von P_1 .

Die letztgenannten Werte sind in Fig. 48 mit eingetragen. Aus dem Verlauf der erhaltenen Schaulinie ersieht man, daß, abgesehen von dem auffallend hohen Wert bei 33,68 t, der Unterschied zwischen P und P_1 mit wachsender Belastung ganz ähnlich verläuft wie bei dem Stabe 80.

Bei beiden Stäben nimmt der Unterschied, also der Fehler der Kraftbestimmung nach der Gleichung $P = p \cdot F - R$ mit R = 1,29 t, mit wachsender Belastung ab. Bis zu etwa 100 t ist er etwas größer als 1%, bei höheren Belastungen aber kleiner als 1% gefunden. Zu dem gleichen Ergebnis haben auch die Versuche mit anderen Kontrollstäben geführt. Es erscheint daher zulässig, den Festwert E beider Stäbe mit $E = 2\,126\,100$ in Rechnung zu stellen.

4. Versuche auf der 3000-t-Maschine.

Der Wasserdruck im Zylinder der Maschine ist an den Manometern 211 und 951 beobachtet. Beide sind in Grade geteilt. Die Beziehungen zwischen Graden und Atmosphärendruck sind für das Manometer 211 nach dem Vergleich mit dem Kontrollmanometer 643 des Amtes und für das Manometer 951 nach der Prüfung auf der Druckwage von Stückrath aus Tab. 11 zu ersehen. Nach ihnen sind zunächst die Drucke p in at ermittelt, die den bei Prüfung der Stäbe 80 und 81 angewendeten, in Graden abgelesenen Druckstufen entsprechen, und dann nach der Gleichung $P = p \cdot F - R$ die Belastungen P berechnet. Der Kolbenquerschnitt F der 3000-t-Maschine ist = 7918 qcm. Die Leergangsreibung R ist wiederholt vor und nach den einzelnen Versuchsreihen beobachtet und im Mittel zu R = 4670 kg festgestellt.

a) Versuche mit dem Stabe 80.

Die Dehnungen des Stabes sind auch hier wieder wie auf der 500-t-Maschine (s. S. 39) gleichzeitig für die vier Meßstellen A bis D beobachtet. Die Versuchsergebnisse sind in Tab. 18 zusammengestellt und aus den Gesamt-Mittelwerten sind die Belastungen P_1 berechnet, die der Probestab bei den einzelnen Laststufen erfahren hatte. Die Berechnung erfolgte wieder nach der Formel $P_1 = E \cdot \frac{\lambda}{l} \cdot j$, in der E gleich dem bei Prüfung des Stabes 80 auf die Werder-Maschine ermittelten Elastizitätsmodul $E = 2\,126\,100$ kg/qcm (s. S. 38) gesetzt wurde. Den so erhaltenen

Fig. 49. Unterschiede in % zwischen der Kraftanzeige P, berechnet aus dem Wasserdruck, und der Zugkraft P₁, berechnet aus der Dehnung des Stabes 80 (s. Tab. 18).

Werten sind die Belastungen P gegenübergestellt, die sich nach der Formel $P = p \cdot F - R$ ergaben.

Aus den Endwerten der Tab. 18, den prozentuellen Unterschieden zwischen den Werten, berechnet aus Kolbenfläche und Wasserdruck, und den Werten P_1 , berechnet aus den Stabdehnungen, die in Fig. 49 zu Schaulinien aufgetragen sind, folgt, daß die Berechnung von P mit dem Festwert R = 4670 kg bei kleinen Belastungen zu geringe Werte lieferte. Von 70 t ab bis hinauf zu 275 t waren die Unterschiede zwischen P und P_1 nach der gestrichelten Ausgleichslinie kleiner als 1%. Hier-

nach hat sich also die Kraftleistung der Maschine bei Prüfung des Stabes 80 aus dem beobachteten Druck im Arbeitszylinder zwischen 70 und 275 t mit hinreichender Genauigkeit berechnen lassen.

Gleichzeitig mit den Dehnungen des Probestabes 80 sind auch die Stauchungen der Maschinenspindeln a, Fig. 1, gemessen, die den Kraftschluß zwischen dem festen Widerlager (Querhaupt) der Maschine und dem Kolben des Arbeitszylinders bilden. Diese Messungen bezweckten, festzustellen, ob etwa die Stauchungen der Spindeln als Kontrolle der Kraftleistung dienen können; sie erstreckten sich bei jeder Spindel auf zwei diametral gegenüberliegende Meßstrecken von 60 cm Länge. Aus den Ergebnissen (s. Tab. 19) folgt:

- Die erste Belastungsreihe lieferte wesentlich größere Stauchungen beider Spindeln als die folgenden;
- 2. auch bei den Reihen 2 bis 5 waren die Stauchungen für gleiche Belastungen sehr schwankend;
- mit einer einzigen Ausnahme (obere Spindel Reihe 2) ergaben sich nach dem Entlasten des Zugstabes an den Spindeln Ablesungsreste im Sinne bleibender Stauchung;

- 4. bei Reihe 1 erfuhr die obere Spindel, bei allen anderen Reihen die untere Spindel die stärkere Stauchung;
- 5. in der Summe der Stauchungen beider Spindeln sind die Unregelmäßigkeiten der Einzelwerte nicht ausgeglichen.

Zum Teil können diese Unregelmäßigkeiten in den Beobachtungen für die Stauchungen der Spindeln durch die Schwankungen der Luftwärme im Versuchsraum und durch die damit verbundenen Wärmedehnungen sowohl der Spindeln selbst als auch der messenden Teile der Spiegelapparate herbeigeführt sein, zumal diese Schwankungen häufig derart groß waren, daß sie sich als Zugluft bemerkbar machten. Die Beobachtungen unter 1. und 4. weisen aber darauf hin, daß auch andere Einflüsse hier mit im Spiel waren.

In erster Linie dürfte folgender Umstand mitgewirkt haben. Beim Zugversuch ist der Kolben K des Arbeitszylinders Z (s. Fig. 50) durch sein Querhaupt Q mit

den beiden Spindeln a durch die Muttern mfest verbunden, während der Zylinder Z in der Richtung der Zugkraft sich gegen die Spindeln nach links verschieben kann. Alle Teile ruhen verschiebbar auf dem Grundrahmen der Maschine. Je nach dem größeren Reibungswiderstand wird also beim Versuch entweder (Fall I): der Kol-

ben K mit seinem Querhaupt Q liegenbleiben und der Zylinder Z entsprechend der Dehnung des Stabes und seiner Einspannteile sowie um die Stauchung der Spindeln a nach links sich bewegen; der Stauchung der Spindeln folgt dann auch das rechte Widerlager W, oder (Fall II): der Zylinder wird in seiner ursprünglichen Lage verharren und nun der Kolben K und die mit ihm verbundenen Teile (Spindeln aund Widerlager W) sich nach rechts bewegen.

Im Falle I erfolgt die Beanspruchung (Stauchung) der beiden Spindeln dadurch, daß das Widerlager W unter der Zugkraft des Probestabes nach dem Kolben hin, d. h. nach links bewegt wird. Der Kraftangriff liegt etwa 1610 mm oberhalb der Stützfläche des Widerlagers auf dem Grundrahmen und daher erzeugt der Reibungswiderstand ein Kippmoment, das Querhaupt neigt sich oben nach links. Dann erfährt aber die obere Spindel a größere Belastung als die untere (s. Fig. 3) und tatsächlich zeigen die Beobachtungen, daß die obere Spindel a_1 (Fig. 50) beim erstmaligen Belasten größere Stauchung erlitt als die untere a_2 . Bei höheren Belastungen war der Unterschied in den Stauchungen beider Spindeln beim Versuch nahezu ausgeglichen, ein Beweis, daß das Querhaupt sich nun um das Maß der Stauchung auf dem Grundrahmen verschoben und sich wieder aufgerichtet hatte. Im Falle II ist die Spindel a_1 ebenfalls mehr gestaucht, indem sie einen größeren Verschiebungswiderstand des Widerlagers W nach rechts zu überwinden hat als die Spindel a_2 .

Beim Entlasten sind folgende Fälle zu unterscheiden. Durch den elastischen Zug des Probestabes wird entweder a) der Zylinder Znach rechts gezogen oder b) das Widerlager W, die Spindeln a und der Kolben K nach links geschoben, der Kolben in den Zylinder hinein. In beiden Fällen wird aber zugleich durch die Rückwirkung der elastischen Stauchung der Spindeln die Wiederherstellung des ursprünglichen Abstandes zwischen dem Widerlager W und dem Querhaupt Q des Kolbens angestrebt. Hierbei müssen die Spindeln wenigstens einen dieser beiden Teile (W oder Q) auf dem Grundwerk der Maschine verschieben. Bei der Verschiebung des Widerlagers W kommt in Frage, daß der Verschiebungswiderstand auf der Seite der oberen Spindel (a_1) wegen der unsymetrischen Form und des größeren Gewichtes des Widerlagers W auf dieser Seite größer ist als auf der Seite der unteren Spindel a_2 . Infolgedessen besteht die Neigung, daß das Widerlager sich bei a_2 mehr nach links verschiebt als bei a_1 . Hiermit würde sich auch die größere bleibende Stauchung der oberen Spindel nach dem ersten Entlasten erklären lassen. Bei den weiteren Wiederholungen der Belastungen kommen der oberen Spindel a_1 die in ihm zurückgebliebenen Stauchungen gleichsam zugute, so daß diese Spindel nun geringere Stauchungen bei dem späteren wiederholten Entlasten dürfte von Zufälligkeiten abhängen besonders auch von der Geschwindigkeit des Entlastens.

Jedenfalls zeigen die Beobachtungen, daß die Messung der Spindelstauchungen nicht geeignet ist, als Kontrolle der Kraftäußerung der Maschine zu dienen.

b) Versuche mit dem Stabe 81.

Die an dem Stabe 81 für die vier Meßstellen A bis D (Fig. 47) auf 25 cm Meßlänge beobachteten Dehnungen sind aus Tab. 20 und 21 zu ersehen. Bei den Ver-

Fig. 51. Unterschiede in % zwischen der Kraftanzeige P, berechnet aus dem Wasserdruck p, und der Zugkraft P₁, berechnet aus der Dehnung des Stabes 81 (s. Tab. 20 u. 21).

suchen zu Tab. 20 ist der jeweilige Druck im Arbeitszylinder mit dem Manometer 211, bei den Versuchen zu Tab. 21 mit dem Manometer 951 beobachtet. Bei Berechnung der von dem Probestab aufgenommenen Zugkräfte P_1 nach der Formel $P_1 = E \frac{\lambda}{l} f$ ist der Elastizitätsmodul auch hier gleich 2126 100 in Ansatz gebracht.

Die Unterschiede in Prozenten zwischen den Kraftanzeigen P und den vom Stab aufgenommenen Zugkräften P_1 sind in Fig. 51 durch Schaulinien dargestellt. Aus letzteren ergibt sich,

daß diese Unterschiede bei beiden Reihen mit wachsender Belastung abnahmen. Bei der zuerst ausgeführten Reihe, zu der der Wasserdruck im Arbeitszylinder mit dem Manometer 211 beobachtet ist (Tab. 20), betrug der Unterschied bei 21 t: -8%, während er bei der zweiten Reihe (Tab. 21) nur bei 8 t Belastung -1% überschritt. Beide Reihen lassen aber in Übereinstimmung mit den Versuchen am Stabe 80 (s. Fig. 49) erkennen, daß die Lastanzeige von etwa 70 t Belastung ab als hinreichend genau angesehen werden kann.

Gleichzeitig mit den Dehnungen des Probestabes 81 sind wieder die Stauchungen der beiden Spindeln der Maschine beobachtet und außerdem auch noch die Dehnungen der Zugstange S (s. Fig. 50), durch welche der Probestab mit dem hydraulischen Zylinder Z verbunden ist, die also die gleiche Belastung aufzunehmen hat wie der Probestab.

Die Ergebnisse der Spindelmessungen enthält Tab. 22. Sie stimmen für die beiden Spindeln hier wesentlich besser überein als bei den Versuchen mit dem Stabe 80. Die aus den mittleren Stauchungen und dem aus Tab. 23 ersichtlichen Elastizitätsmodul des Materials $E = 2078\ 250$ berechneten Belastungen weichen aber so stark von den Kraftanzeigen der Maschine ab, daß auch aus diesen Versuchen gefolgert werden muß, daß die Formänderungen der Spindeln nicht zur Kontrolle der Kraftanzeige benutzt werden können.

Die Dehnungen der Zugstange S der Maschine sind auf 40 cm Meßlänge ermittelt. Die Meßstelle lag nahe am Ende der Stange gleich hinter der Anschlußklaue für das Versuchsstück. Die erzielten Ergebnisse zeigt Tab. 24. Bei Berechnung der von der Zugstange aufgenommenen Belastungen $P_1 = E \frac{\lambda}{l} f$ ist E = 2090500gesetzt nach Maßgabe des an den Materialproben aus dieser Stange ermittelten Wertes (s. Tab. 23) und für den Querschnitt f der aus Umfangmessungen erhaltene Wert f = 1388 qcm. Die erhaltenen Belastungswerte P_1 (Tab. 24) weichen von der Kraftanzeige P bei keiner Laststufe über 2% ab; im allgemeinen sind die Unterschiede vielmehr so gering, daß es Erfolg verspricht, wenn die Dehnungen des Zugstabes S der Maschine zur dauernden Kontrolle der Kraftanzeige der Maschine beobachtet werden. Die vorliegenden Beobachtungen reichen nur bis etwa 139 t; die Unterschiede zwischen P und P_1 scheinen aber über 70 t mit wachsender Belastung zuzunehmen. Daher ist es zunächst erforderlich, die Dehnungsmessungen an der Zugstange auf höhere Belastungen auszudehnen, bevor die erwähnte Art der Kontrolle als maßgebend eingeführt werden kann.

c) Vergleich der Stabfestigkeiten mit den Materialfestigkeiten.

Die Streckgrenze des Stabes 81 wurde bei 287,5 t beobachtet, die Bruchbelastungen der beiden Stäbe 80 und 81 betrugen 1014,6 und 485,2 t. Diesen Belastungen entsprechen bei den Stabquerschnitten von 227 und 113 qcm folgende Spannungen σ_S für die Streckgrenze und σ_B für den Bruch:

> beim Stabe 80: $\sigma_S = - \text{kg/qcm}$, $\sigma_B = 4470 \text{ kg/qcm}$ beim Stabe 81: $\sigma_S = 2540 \text{ kg/qcm}$, $\sigma_B = 4300 \text{ kg/qcm}$.

Diesen Werten stehen gegenüber nach Tab. 12 folgende Werte für das Material der Stäbe:

> beim Stabe 80: $\sigma_S = 2470 \text{ kg/qcm}, \sigma_B = 4370 \text{ kg/qcm}$ beim Stabe 81: $\sigma_S = 2530 \text{ kg/qcm}, \sigma_B = 4370 \text{ kg/qcm}.$

Die zusammengehörigen Werte stimmen also außerordentlich gut, nahezu vollkommen überein.

Beide Stäbe rissen annähernd in der Mitte. Das Bruchaussehen zeigen die Lichtbilder Fig. 52 und 53a und b. Stab 80 (Fig. 52) brach senkrecht zur Achse; die Bruchfläche ist im Kern mattgrau feinschuppig und im übrigen, bis auf einen schmalen Rand mit dem Aussehen von Schubflächen, feinkörnig mit stark ausgeprägten radialen Bruchlinien. Die Entstehung des matten Kernes führe ich darauf zurück, daß der Bruch unter Erschöpfung der Dehnbarkeit des Materials im Kern begann und von hier aus nach außen fortschritt. Hierauf deuten auch die erwähnten Bruchlinien hin. Die gleiche Erscheinung fand ich bei Zugversuchen mit Stäben verschiedener Länge¹). Proben aus derselben Stange Flußeisen zeigten, wenn sie ringsum scharf eingekerbt waren, so daß sie keine nennenswerte Dehnung erfuhren, körnigen Bruch mit schmalem matten Rande; schon bei 10 mm Stablänge war die Bruchfläche infolge Streckung des Kornes feinschuppig matt; wurden aber die Stäbe nicht scharf eingekerbt, sondern mit Hohlkehle versehen, so glich das Bruchaussehen dem des Stabes 80 (Fig. 52).

Fig. 52. Bruchfläche des Stabes 80.

Stab 81 brach mit ausgeprägter Trichterbildung, wie besonders die Seitenansicht Fig. 53b deutlich erkennen läßt. Die an dem nahezu ebenen Kern anschließenden Trichterflächen waren durch tiefe Bruchlinien stark zerklüftet.

d) Das Verhalten der Wasserdruckbremsen p, Fig. 1 und 2.

Der Bruch der beiden Stäbe 80 und 81 erfolgte bei 946,1 und 454 t
 Belastung²) unter heftigem Schlage. Die Ventile an den beiden Bremszylinder
np Fig. 1 und 2 standen tunlichst weit offen.

¹) Rudeloff: "Beitrag zum Studium des Bruchaussehens zerrissener Stäbe." Baumaterialienkunde Bd. 4, S. 85.

²) Zerreißlast im Augenblick des Bruches.

Um die Bewegungen der Spindeln in Richtung ihrer Achsen unter dem Rückstoß beim Bruch der Probestäbe festzustellen, wurden ihre Verschiebungen gegen die drei Stützböcke festgestellt, in denen die Spindeln auf Rollen ruhen. Hierzu waren an den Spindeln feste Zeiger und darunter an den Böcken Maßstäbe angebracht, an denen die Bewegungen in 0,1 mm abgelassen werden konnten. Beobachtet sind bei Prüfung

des Stabes (Zerreißlast)	80 (9	46,1 t)	81 (454 t)			
an der Spindel	oben	unten	oben	unten		
Bewegungen (am Bremszylinder	5,8	6,3	5,2	4,6		
in mm { in der Mitte	5,1	5,8	5,4	4,6		
gegen den Bock am festen Widerlager	5,9	6,2	4,7	4,9		
Mittlere Bewegung in mm	5,6	6,1	5,1	4,7		

a) Draufsicht.

b) Seitenansicht.

Die größere Zerreißlast hatte hiernach auch die größere Bewegung der Spindeln im Gefolge; dabei war bei Prüfung des Stabes 80 die Bewegung der unteren Spindel, bei Prüfung des Stabes 81 die Bewegung der oberen Spindel die größere.

Fig. 53. Bruchfläche des Stabes 81,

Auf die Bremszylinder äußerte sich der Rückstoß bei Prüfung des Stabes 81 wie folgt. Im oberen Bremszylinder stieg der Druck auf 10 at, in dem unteren auf 2,5 at. Das Wasser spritzte weit heraus; irgendwelche Schäden an den Bremszylindern tatsächlich ein. Zu bemerken bleibt, daß die Drucke in den Bremszylindern tatsächlich etwas höher gewesen sein können, als an den Manometern beobachtet worden ist, weil die Leitungen zu den letzteren ziemlich eng sind, so daß es nicht ausgeschlossen ist, daß die Manometeranzeige bei dem kurzen Stoß nicht auf den vollen Druck anstieg, indem das Druckwasser durch die weit offen stehenden Ventile mit geringerem Widerstande austreten konnte, als der Widerstand war, den das Wasser in den engen Leitungen zu den Manometern fand.

C. Prüfung des Zugstabes 70.

1. Der Aufbau des Stabes.

Der Stab (Fig. 54) besteht im wesentlichen aus vier Stegblechen von 510 mm Breite und 15 mm Dicke, die nach Fig. 55 mit 190 mm lichtem Abstande (s. a. Fig. 58) paarweise angeordnet und außen mit vier Winkel, $100 \cdot 100 \cdot 12$ mm, gesäumt sind; durch je vier obere und untere Bindebleche *a* bis *d* (Fig. 54) von 12 mm Dicke werden sie in ihrem Abstande gehalten. Die Länge der Bindebleche *a* und *d* beträgt 280 mm,

Stabkraft = 302 t, Bruttofläche = 396,8 qcm, Nettofläche = 306,32 qcm, Beanspruchung = 985 kg/qcm.

die der beiden anderen 260 mm. Die Stablänge zwischen den Außenkanten der Bindebleche a und d beträgt 5560 mm. Außerhalb davon sind die Stabenden auf 900 mm verbreitert (Fig. 54) und jeder der beiden Stege ist durch beiderseits beigelegte Anschlußbleche von 15 und 10 mm Dicke verstärkt. Die Einspannung der Stabenden in die Zerreißmaschine erfolgte durch Bolzen von 320 mm Durchmesser; ihr Achsabstand, die Systemlänge des Stabes, betrug 8000 mm. Zwischen den beiden

mittleren Bindeblechen b und c ist der Stab gestoßen (s. Fig. 56 bis 58). Der Stoß wird gebildet (s. Fig. 58) durch die beiden äußeren und inneren Stoßlaschen e und f und die vier Stoßlaschen g für die Gurtwinkel.

Unter den Bindeblechen b und c sind Querschotte angeordnet (s. Fig. 56 u. 57), bestehend aus einem 10 mm dicken Blech, das einseitig durch zwei Winkel (90 \cdot 90 \cdot 10) an die Stegbleche und auf der anderen Seite durch je einen ebensolchen Winkel an die beiden Bindebleche angeschlossen sind.

2. Gegenstand der Beobachtung.

Die Zugbelastung wurde in den aus Tab. 25 ersichtlichen Stufen gesteigert, beginnend mit 18,23 t als Mullbelastung für die Bestimmung der Formänderungen. Bei jeder Stufe wurde unter jedesmaliger Beobachtung der gesamten und bleibenden Formänderungen zweimal auf 18,23 t entlastet, die Belastung bei dieser Stufe zum drittenmal angehoben, die Formänderungen nochmals abgelesen und dann erst die nächsthöhere Laststufe aufgebracht.

Zur Kontrolle der aus dem Wasserdruck und der Kolbenfläche berechneten Belastungen sind die Dehnungen der Zugstange S der Maschine (s. Fig. 50) beobachtet und auch hieraus wie bei Tab. 24 die Belastungen berechnet.

An Formänderungen sind beobachtet:

 Längenänderungen innerhalb des Stoßes. Die Meßlängen betrugen 100 mm; sie lagen symmetrisch zur Stoßfuge und entsprachen somit dem Achsenabstande (Teilung) der neben der Stoßfuge gelegenen beiden Nietreihen.

Hierbei lagen, wie aus Fig. 56 bis 59 ersichtlich ist:

- a) die Meßstellen 1, 2, 5, 6, 9, 10, 12 und 13 auf den Rändern der Stegbleche;
 die Beobachtungen umfassen somit auch die Erweiterung der Stoßfugen;
- b) die Meßstellen 3, 7, 11 und 14 auf den Rändern der inneren Laschen und
- c) die Meßstellen 15 und 16 in halber Höhe der Stege auf den Außenflächen der äußeren Laschen.

Alle Beobachtungen sind mit Martensschen Spiegelapparaten ausgeführt. Da die Apparate für dieselbe Meßstrecke nicht, wie sonst üblich, paarweise, sondern nur einzeln angebracht werden konnten, so war es erforderlich, die Beobachtungen entsprechend den Kippbewegungen der Spiegel richtigzustellen, die durch Änderungen der Stablage veranlaßt wurden. Zur Beobachtung der letzteren dienten die auf den äußeren Stegblechen bei 4 und 8 (s. Fig. 57) angebrachten (feststehenden) Spiegel (s. a. Fig. 59).

- 2. die Verschiebungen der Stegbleche gegen die inneren Stoßlaschen, und zwar an deren beiden Enden in den durch die Mittelebenen der äußersten Nietreihen gegebenen Querschnitten (s. die Meßstellen 17-24, Fig. 57). Die Messungen erfolgten in ¹/₅₀₀ mm mit den auch schon früher¹) angewendeten Zeigerapparaten, die hier nach Fig. 59 angeordnet waren.
- 3. die Änderungen des Abstandes zwischen den beiden Stegen, und zwar an den beiden Querschnitten in den Mitten zwischen den Bindeblechen a und b, sowie c und d (s. die Meßstellen 25-28, Fig. 54). Die Endmarken der Meßstrecken lagen auf den Gurtwinkeln. Gemessen ist in 1/sm mm mit Rollenapparaten.
- 4. die Längenänderungen der Systemlänge des Stabes in ¹/₁₀ mm an beiden Stegen. Hierzu waren den vier Endmarken der Meßlängen gegenüber im Raum Maßstäbe fest aufgestellt. Die Unterschiede in den Bewegungen der beiden Marken derselben Meßlänge gegen diese Maßstäbe entsprechen den Längenänderungen des Stabes.

¹) Rudeloff: "Dritter Bericht über Versuche mit Nietverbindungen und Brückenteilen". Verhandlungen des Vereins zur Beförderung des Gewerbefleißes 1911.

Versuche im Eisenbau A 2.

3. Versuchsergebnisse.

a) Bestimmung der Zugkräfte (Belastungen).

Die Wasserdrucke im Zylinder der 3000-t-Maschine sind an den Manometern 211 und 123 in Graden beobachtet. Aus den Beobachtungswerten für die einzelnen

Laststufen sind die im Kopf der Tab. 25 angegebenen Drucke p in at angegeben, wie sie sich mit den Eichwerten der Manometer berechnen. Die zu den Lastoder Druckstufen p = 13,17 bis p = 114,15 at in Tab. 25 angegebenen Dehnungen λ der Zugstange sind für die Meßlänge l = 40 cm beobachtet. Sie gelten von dem Anfangsdruck p = 3,195 at ab und entstammen abwechselnd einer Belastung und einer Entlastung. Der Wert $\lambda = \frac{\partial \vartheta}{200\,000}$ cm 59 für p = 3,195 at ist das Mittel aus 15 Beobachtungen, die sich ergaben als die Unterschiede der Ablesungen nach dem Entlasten auf p = 3.195 at gegen die erstmalige Ablesung für p = 0 beim Beginn des Versuches.

Mit den Mittelwerten der befriedigend übereinstimmenden Einzelwerte für λ , dem Stangenquerschnitt f = 1388 qcm und dem Elastizitätsmodul

E = 2090500 kg/qcm

des Stangenmaterials (s. Tab. 23) sind die "Einzelwerte" der Zugbelastungen $P_1 = \frac{\lambda}{l} f \cdot E$ in t berechnet. Die "Gesamtbelastungen" ergaben sich dann nach Vorgesagtem aus der Erhöhung der "Einzelwerte" von P_1 für p=13,17bis 114,15 at um den Wert von $P_1 = 21,4$ t für p = 3,195 at.

Den so errechneten Gesamt-Zugbelastungen P_1 sind ferner in

Tab. 25 die Belastangen P = p F - R in t gegenübergestellt, die sich mit den at-Werten p, dem Kolbenquerschnitt F = 7918 qcm und der Reibung im Leer-

gange der Maschine R = 7068 kg ergeben. Aus den Unterschieden $P - P_1$ in t sind schließlich die prozentuellen Unterschiede zwischen den Ergebnissen der beiden Verfahren zur Ermittlung der Zugbelastungen (aus den Dehnungen der Zugstange *S* der Maschine und aus dem Wasserdruck × Kolbenfläche – Leergangsreibung) für die angewendeten Laststufen berechnet. Die zuverlässigere beider Bestimmungen ist meines Erachtens diejenige aus der Dehnung der Zugstange. Betrachtet man sie als richtig, so folgt aus den Endwerten der Tab. 25, daß der Ermittlung der Zugbelastung bis zu etwa 900 t aus dem am Manometer abgelesenen Wasserdruck ein Fehler von etwa 1 bis 1,5% anhaftet.

Den nachfolgenden Betrachtungen sind die aus den Dehnungen der Zugstange ermittelten Belastungen zugrunde gelegt.

b) Bestimmung der Formänderungen.

Die Ergebnisse der Formänderungsmessungen sind in den Tab. 26 bis 32 zusammengestellt; aus ihnen ergibt sich folgendes:

Die Längenänderung am Stoß, gemessen auf je 50 mm zu beiden Seiten des Stabquerschnittes mit der Stoßfuge (s. Fig. 57), sind bei dem Aufbau des vor-

liegenden Versuchsstabes im wesentlichen abhängig von den Dehnungen der Laschen und der vier Saumwinkel. Auf die gestoßenen Stegbleche kann innerhalb der gewählten Meßlänge ein Teil der Zugkraft nur durch die Reibung zwischen den Stegblechen einerseits und den Laschen und Saumwinkeln andererseits übertragen werden. Ist letzteres in irgendwie nennenswertem Maße der Fall. so wird die Längung λ_{h} . gemessen über den Stoß der Stegbleche, nicht wesentlich größer sein als die Deh-

Fig. 60. Längenänderungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) A des Stabes.

nung λ_l der Laschen. Aus den Werten der Tab. 26 und 28 ist das Verhältnis $\lambda_b : \lambda_l$ schon bei der ersten Laststufe von 98,29 t am Steg A = 232 : 89 und am Steg B = 109 : 75. Hiernach kann gesagt werden, daß besonders am Steg A die gesamte Zugkraft an der Stoßstelle im Bereich der gewählten Meßlänge lediglich von den Laschen und Saumwinkeln aufgenommen worden ist.

Den weiteren Verlauf der Dehnungen zeigen die nach den Mittelwerten der Tab. 26 und 28 aufgetragenen Schaulinien (Fig. 60) für den Steg A und (Fig. 61) für den Steg B.

Zu den Einzelwerten bleibt zunächst hervorzuheben, daß die Messungsergebnisse für die beiden Stegbleche desselben Steges befriedigend übereinstimmen. In Fig. 60 und 61 sind daher die Schaulinien nur für die inneren Stegbleche dargestellt. Die wagerechten Strecken der feineren, gestrichelten Linien für den oberen und unteren Rand entsprechen dem Fortschreiten der Längungen bei dem dreimaligen Wechsel zwischen Be- und Entlastung bei derselben Laststufe.

Sowohl die Längungen λ_b der Meßlängen auf den Stegblechen (s. Tab. 26) als auch die Dehnungen λ_i der Laschen (s. Tab. 28), gemessen auf den beim Versuch

untenliegenden Kanten, waren bei allen Laststufen sichtlich größer als die gleichzeitig an den oberen Kanten ermittelten

Formänderungen. Diese Erscheinung läßt darauf schließen, daß der Stab sich an der Stoßstelle mit wachsender Belastung ständignach unten durchbog. Beim Stabe ohne Stoß hätte allenfalls teilweise mit der Zugkraft zunehmende Aufhebung des ursprünglichen Durchhanges Eigenunter dem gewicht, also Durchbiegen nach oben, erwartet werden müs-

Fig. 61. Längenänderungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) B des Stabes.

sen. Das gegenteilige Verhalten des Stabes dürfte darauf zurückzuführen sein, daß die Reibung zwischen den gestoßenen Stegblechen und den Laschen schon bei geringen Belastungen aufgehoben wurde und nun der Spielraum zwischen den Nieten und Lochwandungen stärkeres Durchbiegen unter dem freigewordenen Eigengewicht nach unten ermöglichte. Infolge der hiermit verbundenen stärkeren Längung an unteren Rande haben hier die Messungen an beiden Stegen nur bis 294 t bzw. 490,8 t fortgesetzt werden können (s. Tab. 26); bei höheren Belastungen ging die Drehung der Spiegel aus dem Meßbereich der Ablesemaßstäbe heraus.

Von den beiden Laschen desselben Steges erlitt sowohl auf der Seite A (Fig. 60) als auch auf der Seite B (Fig. 61) die äußere bei den einzelnen Laststufen größere Längung als die innere, und zwar gilt dies auch für die bleibenden Längungen Tab. 29 und Fig. 62 und 63. Diese Erscheinung kann in zwei Ursachen begründet

sein. Erstens darin. daß beide Stege sich unter der Zugbeanspruchung nach außen durchbogen, und zweitens darin, daß die inneren Laschen mit den Stegblechen weniger fest verbunden waren und daher unter entsprechend stärkerem Gleiten gegen die Stegbleche verhältnismäßig weniger auf Zug beansprucht waren als die äußeren Laschen. Welche dieser beiden Ursachen vorlag oder ob beide gleichzeitig zur Wirkung kamen, läßt sich aus den vorliegenden Messungsergebnissen nicht ohne weiteres erkennen, zumal für die Änderung der

mal fur die Anderung der Feldweite innerhalb des Stoßes überhaupt keine Beobachtungen vorliegen.

Betrachtet man die Anordnung des Querschnittes, der die Zugbelastung in der Ebene der Stoßfuge aufzunehmen hatte, so zeigt sich, daß der Anteil des tragenden Querschnittes neben dem inneren Stegblech lediglich durch die Lasche gegeben ist; er beträgt $51 \cdot 1,5 = 76,5$ qem. Über dem äußeren Stegblech liegen dagegen die dreiteilige Lasche mit

 $f = 2 \cdot 8 \cdot 2 + 30 \cdot 1,5$ cm

und die beiden Saumwinkel mit $f = 2 \cdot 22,7$ cm. Der Gesamtquerschnitt dieser

Fig. 62. Bleibende Längungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Meßlänge. Seite (Steg) 4 des Stabes.

Fig. 63. Bleibende Läugungen der beiden Laschen und des inneren Stegbleches (über den Stoß gemessen) auf 100 mm Länge. Seite (Steg) B des Stabes.

Teile beträgt 122,4 acm. Letzterer ist also nicht nur um 46 gcm größer als der neben dem inneren Stegblech gelegene, sondern sein Schwerpunkt liegt auch weiter von dem Stegblech entfernt. Die Zugkräfte wurden an den Stabenden symmetrisch zu den beiden Stegblechen eingeleitet. Nach allem war somit von vornherein Durchbiegen der beiden Stege nach innen, d. h. nach der Stab-4/100 mm achse hin zu er-

warten gewesen. Innerhalb der beiden anderen, durch die Bindebleche a, b und c, d (Fig. 54) begrenzten Felder außerhalb des Stoßes fand nach den Ergebnissen der Tab.30 und den hiernach verzeichneten Schaulinien Fig. 64 und 65 tatsächlich Durchbiegen der Stege nach innen statt. Dabei war hier die Symmetrie der Querschnitte günstiger, indem die Laschen beiderseits fehlten und nur das statische Moment der Saumwinkel die Durchbiegung beeinflußte. Hiernach erscheint es mindestens zweifelhaft, daß die Stege sich innerhalb des den Stoß enthaltenden Feldes nach außen durchbogen. Damit wächst aber die Wahrscheinlichkeit dafür, daß die äußeren Laschen sich deswegen stärker dehnten als die inneren, weil die inneren infolge stärkeren Gleitens weniger beansprucht waren.

Als Bestätigung möge auf folgendes Ergebnis hingewiesen sein. Das Maß des Gleitens der Stegbleche am Stoßende gegen die Laschenmitte ergibt sich aus dem Unterschiede zwischen den Längenänderungen λ_b und λ_l . Nach den Mittelwerten der Tab. 26 und 28 berechnet sich $\lambda_b - \lambda_l$ wie folgt:

Das Gleiten der Stegblechenden gegen die Laschen war also an beiden Stegen A und B innen tatsächlich größer als außen und zudem war auch der Unterschied zwischen dem Gleiten innen und außen bei dem Steg A, also an dem Steg der größere, an dem auch der Unterschied der Dehnungen beider Laschen der größere war.

An den beiden Enden der inneren Laschen ist deren Gleiten gegen die Stegbleche unmittelbar gemessen (s. Tab. 31 und Fig. 66). Die Schaulinien(Fig. 66) lassen erkennen, daß geringes Verschieben schon bei 100 t Belastung wahrnehmbar war, daß es aber besonders mit Überschreitung der Belastung von 300 t einsetzte. Es ist dies die gleiche Belastung, bei der besonders nach Fig. 60, aber auch nach Fig. 61, die Unterschiede in den Längenänderungen der beiden Laschen desselben Steges begannen.

Bis zu 300 t etwa kann man auch nach Tab. 32 und Fig. 67 die Gesamtdehnung des Stabes innerhalb der Systemlänge der Belastung proportional erachten, während sie ebenso wie die bleibende Dehnung bei höheren Belastungen in stärkerem Maße zunahm.

Nach Vorstehendem sind 300 t sowohl durch das Verschieben der gestoßenen Stegbleche gegen die Laschen, als auch durch den Unterschied in den Dehnungen der Laschen, als auch durch die Dehnung innerhalb der Systemlänge des Stabes gewissermaßen als kritische Belastung gekennzeichnet. Eine zweite solche kritische Belastung liegt zwischen 500 und 600 t, indem bei ihr sowohl die Dehnung λ_i der äußeren Laschen (s. Fig. 60–63) als auch die Änderung der Feldweiten (s. Fig. 64 und 65) in erhöhtem Maße zunahmen.

Fig. 68. Der gerissene Stab 70 in der Maschine.

c) Brucherscheinungen.

Der erste Bruch eines Teiles des Stabes, und zwar eines Saumwinkels erfolgte bei 995,46 t (s. Fig. 68). Die rechnungsmäßige Belastung des Stabes in der Brücke, die Nutzlast, beträgt 302 t also $\frac{1}{3.3}$ der ermittelten Bruchlast.

Mit dem Nettoquerschnitt des Stabes F = 306,32 qcm berechnet sich die Materialbeanspruchung aus der Nutzlast zu $\sigma_N = \frac{302\,000}{306,32} = 985$ kg/qcm und aus der Bruchlast zu $\sigma_B = \frac{995\,460}{306,32} = 3250$ kg/qcm. Die mittlere Materialfestigkeit der Stegbleche ist nach Tab. 33 an der Streckgrenze zu $\sigma_S = 2800$ kg/qcm und an der Bruchgrenze zu $\sigma_B = 3820$ kg/qcm ermittelt. Die Bruchspannung des Stabes 70 verhält sich demnach zur Streckgrenze des Materials wie 3250: 2800 oder wie 116: 100 und zur Bruchfestigkeit des Materials wie 3250: 3820 oder wie 85: 100.

56

Den zeitlichen Verlauf des Bruches der einzelnen Teile des Stabes und die zugehörigen Belastungen läßt Tab. 34 ersehen. Zuerst riß der untere Saumwinkel des Steges A bei 1 (Fig. 69a), dann derselbe Winkel nochmals bei 2 (Fig. 69b), hierauf der obere Saumwinkel deselben Steges A bei 3 (Fig. 69b). Nachdem dann, wieder am Steg A bei 4 (Fig. 69a), noch ein Niet abgeschoren war, rissen nun beide Bleche des Steges B bei 5 (Fig. 70). Hiermit war zugleich die Höchstlast erreicht. Sie betrug 1114,70 t, entsprechend einer rechnungsmäßigen Materialspannung von $\frac{1114700}{306.32} = 3640 \text{ kg/qcm}$ oder 95,3% der Materialfestigkeit.

Fig. 69 a. Seitenansicht des Steges A.

Fig. 69 b. Seitenansicht des Steges A.

Fig. 70. Seitenansicht des Steges B.

Die Belastung war beim Bruch 5 abgesunken; beim Wiederanheben riß unter 702,83 t bei 6 (Fig. 69a) nochmals der obere Saumwinkel des Steges A und bei 709,29 t erlitt auch wieder der untere Saumwinkel des Steges A bei 7 (Fig. 69b) einen Anbruch am Rande des vernieteten Schenkels. Von nun an sank die Belastung trotz weiterer Streckung des Stabes ständig ab. Hierbei rissen unter 628,6 t beide Saumwinkel des Steges B bei 8 (Fig. 70). Bei 610 t erfolgte Abscheren eines zweiten

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

und bei 559 t eines drittes Nietes des Saumwinkels bei 9 und 10 (Fig. 69a). Schließlich scherten auch die übrigen Niete des Saumwinkels ab und zugleich rissen die beiden Stegbleche durch. Die Brüche begannen am unteren Rande und schritten langsam nach oben hin fort.

Das Aussehen der entstandenen Brüche zeigen die Fig. 71-73. Der zuerst gerissene Saumwinkel (s. Fig. 69a) weist über die ganze Bruchfläche körnigen Bruch mit Bruchlinien (Fig. 71) auf. Der Verlauf der letzteren deutet darauf, daß der Bruch am Lochrande begann. Nach dem veränderten Aussehen des schmalen Streifens unter der Anlagefläche des Nietkopfes hat das Material beim Einziehen des Nietes gelitten. An den später noch entstandenen Bruchstellen 2 und 7 (Fig. 69b) war das Bruchgefüge ebenfalls körnig.

Fig. 72. Bruchflächen der Bleche des Steges B.

Die Bruchflächen der Stegbleche des Steges *B*, die unter der Höchstlast rissen (Stelle 5, Fig. 70), zeigen zwischen den Nietlöchern für den Anschluß der Saumwinkel ebenfalls feinkörniges Bruchgefüge mit Bruchlinien (s. Fig. 72); außerhalb dieser Nietlöcher ist das Gefüge bei drei Bruchflächen mattglänzend mit Trichterbildung, bei der vierten aber wieder feinkörnig. Anscheinend ist der Bruch der Bleche von dem auf halber Steghöhe gelegenen Nietloch ausgegangen; die Teile

58

mit körnigen Bruchflächen sind ohne wesentliche bleibende Dehnung plötzlich gerissen, während der Entstehung der Brüche innerhalb der matten Flächen Fließen des Materials voraufgegangen ist. Eine Bestätigung dieser Ansicht erblicke ich in dem Aussehen des Bruches der Stegbleche A. Hier begann der Bruch am untern Rande und pflanzte sich unter starkem Dehnen des Materials langsam nach oben hin fort. Das Bruchaussehen ist daher bis zum oberen Nietloch hin mattglänzend mit Trichterbildung. Oberhalb ist der Bruch schließlich bei geringerer Dehnung, die sich in der Abnahme der Dickenverminderung nach dem Rande zu deutlich zu erkennen gibt, erfolgt und das Bruchaussehen geht wieder in feines Korn über.

Fig. 73. Bruchflächen der Bleche des Steges A.

Zusammenfassung der Ergebnisse.

Die besondere Aufgabe der vorstehend im einzelnen besprochenen Versuche war die Erprobung der Maschine. Die nach dieser Richtung hin erzielten Ergebnisse lassen sich wie folgt zusammenfassen:

- 1. Die Handhabung der Ventile zwecks Einstellung und Regelung der Belastung hat sich als durchaus zuverlässig erwiesen.
- 2. Die Belastung P des Probestabes kann bei der jetzt gewählten Anordnung der Rohrleitungen (s. Seite 3) mit hinreichender Genauigkeit aus dem Wasserdruck p im Zylinder, der Kolbenfläche F und dem Leergangswiderstand R nach der Gleichung P = p F - R berechnet werden. Der wahrscheinliche Fehler des so berechneten Wertes betrug für alle Belastungen zwischen 80 und 900 t meist unter 1% und nicht über 1,5%. Belastungen unter 80 t kommen für eine 3000-t-Maschine nicht in Frage.
- 3. Bei Zugversuchen ist die Möglichkeit einer zuverlässigen Kontrolle der aus dem Wasserdruck berechneten Belastung anscheinend in Messungen der elastischen Dehnungen λ des zur Maschine gehörigen Zugstabes *i*, Fig.1, gegeben.

Bei 400 mm Meßlänge entspricht die Dehnungszunahme $\Delta \lambda = \frac{2.0}{20\,000}$ mm der Steigerung der Belastung um je 100 t.

- 4. Die Kugellagerung der Druckplatten hat sich bei hohen Belastungen bewährt; bei geringen exzentrischen Belastungen hindern die Bewegungswiderstände die Einstellung der Druckplatten trotz des Wasserpolsters in den Kugellagern.
- Die Rückschläge infolge plötzlichen Auslösens der elastischen Drückspannungen in den Maschinenspindeln beim Bruch der Zerrei
 ßproben haben bisher keine Übelstände gezeitigt.

Stütz-	Bedeutung der Werte		Belastungen der Feder in kg											
Nr.	Bedeutung der w	erte	500	1000	1500	2000	2500	3000	3500	4000	4500	5000		
1	Zusammen- drückung λ der Feder in mm unter den über- geschriebenen Belastungen bei Reihe Nr. Mittlere Zunahme	$ \frac{1}{2} $ $ \frac{3}{4} $ $ \frac{4}{5} $ $ \frac{6}{7} $ $ \frac{9}{10} $ Mittel $ e \text{ von } \lambda $	11,9 12,4 11,8 11,8 11,8 11,8 12,6 11,0 11,4 12,3 12,7 11,97	24,0 24,4 23,5 23,4 23,4 24,2 22,5 23,0 23,8 24,2 23,64	35,8 36,3 35,1 35,1 35,0 36,1 34,7 35,1 35,5 36,0 35,47	46,9 47,9 47,2 47,6 46,9 48,1 47,0 48,1 47,4 47,9 47,50	58,3 58,5 58,6 59,4 58,7 60,5 58,0 59,0 59,0 60,2 59,02	70,7 71,4 70,1 70,7 69,7 71,6 68,5 69,5 69,9 71,1 70,32	81,8 82,5 82,5 83,7 81,8 84,1 81,3 83,1 81,9 83,6 82,63	91,1 91,8 91,2 92,4 91,1 93,3 90,8 92,4 91,2 92,8 91,81	99,1 99,5 99,2 100,4 98,8 101,3 98,0 99,7 98,9 100,4 99,53	107,1 107,5 106,9 108,0 106,9 108,7 106,0 107,2 106,8 107,9 107,30		
	für 500 kg Belastg Belastg. in kg fr nahme von λ um j	41,8	42,7	42,1	41,5	43,3	44,1	40,6	54,5	64,7	64,5			
2	Zusammen- drückung λ der Feder in mm unter den über- geschriebenen Belastungen bei Reihe Nr.	1 2 3 4 5 6 7 8 9 10 Mittel	13,1 14,2 13,6 16,2 13,8 15,7 14,2 15,4 12,2 14,4 14,28	25,5 26,4 26,4 29,0 25,9 27,9 27,4 28,5 26,4 27,6 27,10	38,1 39,5 39,7 42,4 38,7 40,5 38,2 39,8 38,3 39,7 89,49	50,4 52,3 51,9 55,0 51,6 54,0 50,9 53,0 50,5 52,4 52,20	62,8 65,1 65,4 69,0 63,7 66,2 63,5 65,4 63,2 65,3 64,96	74,5 76,3 76,4 80,1 74,4 77,0 74,8 76,2 74,2 76,0 75,99	83,4 85,2 84,7 88,3 83,3 85,8 82,9 84,8 82,9 84,9 84,9	91,7 93,7 92,9 96,5 92,0 94,7 91,7 93,8 91,7 93,6 98,23	100,2 102,2 101,3 104,7 100,8 103,4 100,2 102,2 99,8 101,8 101,66	107,5 109,4 108,7 112,2 108,2 110,8 107,7 109,7 107,2 109,3 109,07		
	Mittlere Zunahme für 500 kg Belastg	e von λ . = Δ λ	14,28	12,82	12,39	12,71	12,76	11,03	8,63	8,61	8,43	7,41		
	Belastung in kg für Zu- nahme von λ um je 1 mm		35,0	39,0	40,4	39,3	39,2	45,3	57,9	58,1	59,3	67,5		

Tabelle 1. Zusammendrückung der Stützfedern bei wachsender Belastung.

ungen der Meßpun
nkt 1 u. 2) Ende I
senkrecht wagerec
-122 0
-144 - 20
- 184 - 184 - 36
-198 - 38
-210 - 43
- 222 - 63
-240 - 73
-244 - 88
-244 - 105 -242 - 130
-232 -183
-198 - 263
-36 -463 -545 -545
462 -643
662
1
-104 0
-116 0
128
-140 1
-156 1
-162 1
-172 - 1
1 001
180
-170 0
-148 - 2
- 70 - 5
+112 - 14 392 - 19
612 - 25
770 - 28
744 - 2

Tabelle 1, 2.

61

		Bewegungen der Druckplatten in der Kraftrichtung											
]	Platte am Kolb	en	Pla	Platte am Widerlager								
Belastung			Bewegun	gen in mm			$\frac{des Stabes}{-\lambda} = a - b$						
t	rechts links Mitt		Mittel a	rechts	links	Mittel b	រោយ						
304,8	1,1	1,2	1,15	0,0	0,0	0,0	1,15						
399,8	1,6	1,6	1,60	0,0	0,0	0,0	1,60						
505,1	2,2	2,1	2,15	0,0	0,0	0,0	2,15						
614,4	2,6	2,8	2,70	0,0	0,0	0,0	2,70						
712,5	3,3	3,1	3,20	0,0	0,0	0,0	3,20						
813,9	3,5	3,6	3,55	0,1	0,0	0,05	3,50						
918,4	4,1	4,1	4,10	0,1	0,0	0,05	4,05						
1020,6	4,8	4,6	4,70	0,1	0,0	0,05	4,65						
1124,3	5,1	5,0	5,05	0,2	0,0	0,10	4,95						
1227,2	5,5	5,6	5,55	0,2	0,0	0,10	5,45						
1333,2	6,3	6,2	6,25	0,2	0,0	0,10	6,15						
1433,1	6,9	6,7	6,80	0,2	0,0	0,10	6,70						
1543,1	7,7	7,6	7,65	0,2	0,1	0,15	7,50						
1641,3	8,6	8,6	8,60	0,2	0,2	0,20	8,40						
1760,9	10,6	10,2	10,40	0,2	0,6	0,40	10,00						
1760,9	11,9	11,2	11,55	0,4	0,2	-0,10	11,45						

Tabelle 3. Verkürzung des Stabes 68 mit wachsender Belastung.

Tabelle 5. Zusammendrückungen des

Meß-	Steg-	Lage de (s. obi	r Meßstelle ge Skizze)							Zu	sammer	drücku	ngen i	n Proz.	· 10-4 1	bei den
Nr.	seite	Höhen- lage	Stabende	22	96	200	301	405	507	609	718	23	23	713	815	917
12 16	1	oben unten	links (Kolben)	0 0	$\begin{vmatrix} -3 \\ 12 \end{vmatrix}$	$-1 \\ 24$	14 37	47 50	95 78	145 112	194 151	17 3	14 4	202 145	254 190	303 233
14 18	2	oben unten		0 0	$17 \\ -3$	44 5	76 17	108 55	147 100	187 145	225 187	9 6	.6 6	230 182	271 227	314 266
20 24	1	oben unten	rechts (Wider- lager)	0 0	5 13	13 45	33 78	50 112	64 141	79 162	91 180	11 11	8 4	88 182	102 200	114 216
22 26	2	oben unten		0	2 40	14 98	34 145	51 191	73 235	96 273	115 300	9 24	13 25	118 301	139 330	152 351

	Pr	oben	Abı	nessun	gen		Span	nunge	en kg/q	em	Bruchdehn	ung bezoger	auf	, a
Ver- such	ent- nommen aus (s. Fig. 5)	Material- Zeichen	a Dicke	e Breite	👡 Quer- schnitt	Elasti- zitätszahl $\frac{1}{\alpha} = E$	Proportiona- litätsgrenze	Streck- grenze	Bruch- grenze	$\frac{\sigma_S}{\sigma_B} \cdot 100$	$l = 4,6 \sqrt[3]{f}$ 10 cm je 5 von der B	$l = 4 \sqrt{f}$ 20 cm je 10 ruchstelle	<i>l</i> = 20 cm	Querschnitts verminderun
Nr.			em	cm	qem	kg/qcm	σΡ	σ_{S}	σΒ		%	%	%	%
1 2	Saum-	II ^{160/} 160 · 17	1,77 1,67	2,86 2,90	5,06 4,84	2035000 2050000	2270 2270	2530 2620	3930 3720	65 71	38,8 38,7	28,4 27,8	28,2 27,8	64 66
3 4	winkeln b	II A ¹⁶⁰ / ₁₆₀ · 17	$1,78 \\ 1,73$	2,89 2,88	5,14 4,98	1985000 2050000	2430 2410	2680 2600	3760 3640	71 72	38,0 35,8	27,2 26,9	26,9 26,9	65 67
Mittel		-	1,74	2,88	5,01	2030000	2345	2608	3760	70	37,8	27,6	27,5	66
5 6 7	Steg- blech	12 700 · 17	1,68 1,67 1,66	3,04 2,90 2,90	5,11 4,84 4,81	 2060000 2040000	(1170) 1450 1660	2140 2020 1980	3430 3350 3440	62 60 58	38,0 39,9 38,3	27,4 27,5 27,8	27,4 27,3 27,4	68 70 70
8	a	5996 · 12 700 · 17	1,64	3,13	5,13	2050000	1750	1950	3480	56	40,7	29,8	28,9	70
Mittel		-	1,66	2,99	4,97	2050000	1620	2023	3420	57	39,2	28,1	27,8	70
9	Deck- blech c	5996 • 13 950 • 17	1,72	3,19	5,49	2060000	1460	2700	4240	64	32,2	27,1	26,6	51
10	Quer- blech	5996 · 91 785 · 10	0,97	3,28	3,18	2050000	2200	2950	4280	69	$l=5,65\sqrt{f}$ 28,7	$l=11,3\sqrt{f}$ 24,6	24,2	45

Tabelle 4. Ergebnisse der Zugversuche mit Materialproben aus Stab 68.

Bruchaussehen: Mattgrau, feinschuppig, Trichterbildung. Stab 1: parallel zur Oberfläche (Walzfläche) gespalten.

Stabes 69 an den Enden der Stegbleche.

übergeschriebenen Belastungen in t

1020	1134	24	1184	1269	1485	24	1485	1698	24	1698	1911	24	1911	2125	2125	24	2125
355	408	24	408	470	570	$\begin{array}{c} 11 \\ -25 \end{array}$	574	688	6	703	833	19	851	984	1021	124	1049
283	334	_3	334	395	489		488	581	40	585	670	45	686	930	1000	224	1048
360	409	6	410	469	567	23	572	690	36	700	806	47	813	1021	1066	257	1112
307	349	8	350	402	485	5	485	583	2	589	687	3	696	781	793	1	820
126	137	7	140	155	172	13	165	187	19	179	191	15	185	196	192	15	186
236	253	11	254	275	302	20	297	327	25	324	350	31	349	374	374	41	371
171	184	14	183	199	228	9	226	249	5	246	272	7	266	290	288	7	289
374	396	20	390	417	454	17	447	481	21	474	502	20	499	519	515	17	513

Fig. 27.	u.	Pfeilrichtung												1.2	•	x+ x-		<i>f</i> -1																
kten a, b, c.	Gesamtausbiege des Stabes	× _ OT 110 11	$D = V \overline{D_x^3} + Dy^3$		26	62	129	142	135	167	177	45	09	168	173	185	210	234	41	251	291	373	112	373	482	226	507	703	468	755	1406	1667	1394	1809
Meßpunl	des Stabes a 10 - 4		senkrecht $D_y - 6 = B$		6 +	13	- 33	- 17	+ 17	40	63	40	53	- 26	+ 13	37	62	+ 87	4	76	116	171	- 15	+138	197	- 44	+136	192	-140	+120	169	-130	-440	-165
hen den	Ausbiegen in cn		wagerecht $D_x = 5 - A$		24	61	125	141	134	162	165	20	28	166	173	181	201	217	41	239	267	332	111	346	440	222	488	676	447	745	1396	1662	1323	1801
ng zwisc	wegung der a und b an	aentrecht.	$B = \frac{3+11}{2}$	1	+	- 71	-213	- 207	- 159	- 138	-125	+ 114	+ 105	- 316	- 305	- 289	-266	-251	- 36	-302	- 278	- 255	- 147	- 344	- 363	- 314	- 528	-602	- 600	-746	-1251	-1454	-1398	-1661
: Belastu	Mittlere Be Meßstellen	wagerecht	$A = \frac{2+10}{2}$		+ 20	17	66	107	114	110	109	-104	-140	+ 80	83	87	95	129	-131	+145	181	242	5	252	314	144	366	550	437	627	1520	1704	1507	1895
tehsender	cm	telle c	senkrecht Richtung 6		+	- 28	- 246	- 224	- 142	- 98	- 62	+ 154	+ 158	- 342	-202	-252	-204	- 164	- 32	- 226	-162	- 84	-162	- 206	-166	- 358	- 392	- 410	- 740	-626	-1082	-1584	-1838	-1826
9 mit wa	27 in $\frac{1}{10000}$	Meßs	wagerecht Richtung 5		+ 44	18	224	248	248	272	274	- 84	-112	+246	256	268	296	346	- 90	+384	448	574	116	598	754	366	854	1226	884	1373	2916	3366	2830	3696
Stabes 6	b und c Fig.	elle b	senkrecht Richtung 11		± 106	136	9	+ 24	84	132	174	88	96	- 12	+ 24	62	108	146	- 34	+ 58	106	+ 154	- 114	+ 54	+ 54	- 234	-142	-224	- 484	- 362	- 962	-1168	-1336	-1334
sen des	leßstellen a,	Meßst	wagerecht Richtung 10		- 94	-148	-108	-118	-130	-146	-160	- 46	- 62	-148		-154	-144	- 90	+ 36	- 46	- 6	+ 46	154	20	100	232	154	302	444	384	1196	1258	1300	1476
i. Ausbie	'egung ber M	elle a	senkrecht Richtung 3		- 0A	- 278	- 420	- 438	-402	-408	- 424	+ 140	+ 114	- 620	- 634	- 640	- 640	- 648	- 38	-662	-662	-664	- 180	- 742	- 780	- 394	- 914	- 980	-716	-1130	-1540	-1740	-1460	-1988
thelle 6	Bew	Meßst	wagerecht Richtung 2		+133	183	305	333	358	365	378	-163	-218	+308	320	328	333	348	-298	+335	368	438	-145	+435	528	55	578	798	430	870	1845	2150	1713	2315
Τ		Belastung in t		66	18	200	301	405	507	607	713	23	23	713	815	917	1020	1134	24	1134	1269	1485	24	1485	1698	24	1698	1911	24	1911	2125	2125	24	2125

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

64

						Me	Blängen	links -	- 653 1 (מוי
	Wagerechte	Bewegunge	n der Meß-	Mittlere Be- wegungen	Wage-		rechts	s = 658,	→ 050,1 (0 cm.	,
Belastung	stellen	d, e und f, in cm 10-4	Fig. 27,	der Meß- stellen du. e an den	rechtes Aus- biegen in der Mitte in		Längena in ¹ /109	bnahme cm der	Längena in % 1	bnahme)-3 de r
in t	Meßstelle d	Meßstelle e	Meßstelle f	Enden in cm 10-4	cm 10-4	Be- lastung in t	linken (Kolben)	rechten (Wider- lager)	linken (Kolben)	rechten (Wider- lager)
_	Richtung 1	Richtung 9	Richtung 4	$A = \frac{1+3}{2}$	$D_z = 4 - A$		Stabl	nälfte	Stabl	nälfte
22	_			I _	-	22			-	_
96	133	78	37	28	9	96	0	0	0	0
200	180	- 78	59	51	8	200	5	0	8	0
301	305	80	215	113	102	301	5	0	8	0
405	338	- 95	233	122	111	405	8	1	12	2
507	363	- 95	254	134	120	507	13	3	20	5
609	373	100	259	137	122	609	15	5	23	8
713	375	-100	254	138	116	713	17	8	26	12
23	- 95	0	- 46	- 48	+ 2	23	5	5	8	8
23	-145	+ 33	- 58	- 56	- 2	23	5	5	8	8
713	+325	- 43	+257	+141	+116	713	20	9	31	14
815	330	- 38	262	146	116	815	23	11	35	17
917	325	-28	264	149	115	917	25	13	38	20
1020	320	- 73	280	124	156	1020	28	18 .	43	27
1134	323	- 73	320	125	195	1134	- 33	20	51	30
24	-203	+185	- 5	- 9	4	24	6	8	9	12
1134	+313	150	+369	+232	137	1134	35	20	54 ·	30
1269	323	203	437	263	174	1269	35	23	54	35
1485	373	273	561	323	238	1485	45	30	69	46
24	- 80	375	225	148	77	24	8	10	12	15
1485	+383	333	618	358	260	1485	45	30	69	46
1698	443	400	746	422	324	1698	50	36	77	55
24	123	498	522	311	211	24	13	10	20	15
1698	505	483	884	494	390	1698	50	37	77	56
191 1	688	668	1217	678	539	191 1	57	42	87	64
24	498	755	1085	627	458	24	15	12	23	18
1911	778	780	1405	779	626	1911	57	43	87	65
2125	1595	1775	2962	1685	1277	2125	67	53	103	81
2125	1938	1988	3522	1963	1559	2125	73	55	112	84
24	1700	1925	3209	1813	1396	24	24	18	37	27
2125	2093	2230	3859	2162	1697	2125	71	55	109	84

Tabelle 7. Wagerechtes Ausbiegen des Stabes 69 zwischen den Meßpunkten *d* und *e* (Fig. 27).

Tabelle 8. Verkürzungen des Stabes 69. Meßlängen: links = 653,1 cm, rechts = 658,0 cm.

Tabelle 9. Ergebnisse der Zugversuche mit den Materialproben zum Zugstabe 76.

					-				-		U U	
		At	messung	gen	Elastizitäts-	Spani	nungen 1	kg/qcm	Bruchde	hnung bez die Länge	ogen auf	itts- ing
Probe Nr.	Entnahme aus	Dicke mm	Breite mm	Quer- schnitt f qmm	$\frac{\mathbf{z}\mathbf{a}\mathbf{h}\mathbf{l}}{\frac{1}{\alpha}} = \mathbf{E}$ kg/qcm	Propor- tionali- täts- grenze σ _P	Streck- grenze	Bruch- grenze	$l = 5,65 \sqrt{f}$	$l = 11,3 \sqrt{f}$	<i>l ==</i> 200 mm %	Querschn % ver- minderu
1		18,0	30,0	540	2 069 000	1390	2690	5000	37,7	28,3	28.1	54
2	Stah	18,0	30,0	540	2 075 000	1300	2690	5000	36,1	30,0	29,5	54
3	Duan 1	17,9	30,1	539	2093000	1300	2640	4980	34,9	25,9	25,8	53
Mittel		_			2079000	1330	2670	4990	36,2	28,1	27,8	54
4		11,7	37,7	441	2025000	1470	3020	5030	27,4	21,1	20,5	60
5	Laschen	11,4	37,6	429	2095000	1750	3040	5170	28,3	21,7	20,3	59
6	LAGOMON	11,7	37,7	441	2030000	1470	3040	5150	27,3	20,6	19,5	59
Mittel		_	–	_	2050000	1560	3030	5120	27,7	21,1	20,1	59

Versuche im Eisenbau A 2.

	Querschnitt	des Sta	thes: f	= 90 q(cm. N	littlerer	Elasti	zitätsm	odul de	es Mate	rials n	ach Ta	b. 9: E	= 20'	1000 62	kg/qcm			
Lage der Meßstelle	Belastung	Dehnung	g in cm	10 ⁵ auf P in	12 cm M t und Z	eßlänge l ugspann	oei den i ungen σ	lbergescl in kg/qc	nriebenei m	1 Belastı	Ingen	Bleiber überge	ade Dehi schriebe	nung in nen Belt	cm 10 ⁻⁵ istungen in kg/	auf 12 c P in t qcm	und Zug	nge bei spannun	den gen
s. Fig. 42	Nr.	$\sigma = 97$ $P = 8,71$	237 21,36	40 6 36,54	575 51,72	743 66,89	914 82,22	10%6 97,73	1258 113,24	1431 128,75	1603 144,26	406 36,54	675 51,72	743 64,87	914 82,22	1086 98,73	1268 113,24	1431 128,75	1603 144,26
e und f am oberen Stabrande	н 01 ю 4 Ю	52	114 131 123 121 126	216 217 224 225	324 327	421 423	530	636 639 639	733 738 738	841 843 846	956	11 9 7	12	4	ۍ.	15 18	18	% %	45 51
;	Mittel	22	123,0	220,1	325,5	422,0	581,5	687,7	736,3	843,3	960,0	11,0	12	4	5	16,5	18,5	26,5	48,0
g und h in Mitte Stabbreite	L 63 69 44 KD	40	124 141 131 133 133	224 223 231 232	326 331	421 423	528 529	630 635 631	728 734 734	834 836 837	946 953	17 7 9	13	3	×	13 16	18 21	26	45 45
	Mittel	40	133,2	227,5	328,5	422,0	528,5	632,0	732,0	835,7	949,5	11,0	13	3	8	14,5	19,5	26,0	48,5
<i>i</i> und <i>k</i> am unteren Stabrande	⊷ 0 0 4 10	38	118 132 126 131 131 135	213 218 222 223	316 325	417 417	521 522	626 631 629	725 731 731	834 836 837 837	954 960 .	14 8 13	17	x	10	17 18	23 25	32	45 51
	Mittel	3 S	128,4	219,0	320,5	417,0	521,5	628,7	729,0	885,7	957,0	11,7	17	8	10	17,5	24,0	32,0	48,0
Gesam	tmittel λ	33,3	128,2	222,2	324,8	420,3	527,2	632,8	782,4	838,2	955,5	11,2	14	т¢	7,7	16,2	20,7	28,2	46,5
$P_1 = \frac{\lambda}{l}$	$\cdot f \cdot E$ in t	5,19	19,97	34,62	50,60	65,48	82,14	98,59	114,11										
Unterschied zwischen der	$P-P_{1}$ in kg	+3,52	+1,39	+1,92	+1.12	+1,41	+0.08	0,86	-0,87										
Kraftanzeige P und der wirklichen Belastung P_1	$\frac{P-P_1}{P_1} \cdot 100$ in %	+40,4	+6,5	+5,25	+2,17	+2,11	+0,10	-0,88	-0,77										

Tabelle 10.

Dehnung des Stabes 76 bei stufenweise gesteigerter Belastung.

66

Versuche zur Prüfung und Abnahme der 3000-t-Maschine.

Beziehungen zwischen den Ablesungen an der Gradteilung der Manometer und dem Flüssigkeitsdruck in at.

Mano- meter Nr.	Beobach- tungsreihe Nr.		Abl	esungen	am Man	ometer	in Grade	n bei de	n überge	schriebe	nen Dru	cken	
	Druck in at	10	20	30	40	50	60	70	80	90	95	-	
	1	31,3	61,9	93,4	123,3	153,1	183,2	212,6	242,5	271,4	285,6		-
211	2	31,3	61,9	93,4	123,3	153,0	183,2	212,6	242,5	271,5	285,7	-	
	3	31,3	62,0	93,3	123,2	153,1	183,3	212,5	242,5	271,4	285,6	-	
	Mittel	31,3	61,9	93,4	123,2	153,1	188,2	212,6	242,5	271,4	285,6	-	_
	Druck in at	1	3	5	10	15	20	25	30	35	40	4 5	50
	1	6,6	18,7	31,0	60,8	90,6	120,4	150,2	180,4	209,9	240,0	269,6	299,6
1	2	6,3	18,7	30,7	60,8	90,6	120,4	150,2	180,2	209,9	240,0	269,6	299,5
051	3	6,5	18,8	31,2	60,9	90,8	120,5	150,4	180,5	210,0	240,1	269,7	299,7
951	4	6,5	18,8	31,0	60,9	90,8	120,4	150,3	180,4	210,0	240,1	269,6	299,6
	5	6,4	18,6	31,1	60,9	90,8	120,5	150,4	180,6	210,0	240,2	269,8	299,7
	6	6,4	18,8	31,1	60,9	90,8	120,6	150,4	180,7	210,1	240,2	269,8	299,7
	Mittel	6,5	18,7	31,1	60,9	90,7	120,5	150,3	180,5	210,0	240,1	269,7	299,6

Tabelle 12.

Ergebnisse der Zugversuche mit den Materialproben zu den Stäben 80 und 81.

	aus	At	messung	gen.	Elastizi-	Spanr	ungen k	g/qem	Mittlere Entfer-	Dehnung	ð bezogen	auf Länge	tte- 8 9	hen
Probe	tnommen Kontrollsta	Durch- messer d	Quer- schnitt f	Meß- länge	$\frac{1}{\alpha} = E$	Streck- grenze _{σg}	Bruch- grenze σ _B	Ver-' hältnis σ_S / σ_B 100	nung der Bruch- stelle von der näch- sten End- marke	l=5,65 √ f	l=11,8 ∛ f	l = Ge- samte Meßlänge	Querschuf	ruchaussel
Nr.	5	mm	qmm	mm	kg/qem				(m	%	%	%	%	<u> </u>
1		19,93	312,1	200	2109800	2530	4350	58	3	37,0	28,2	27,1	61	1.6
2	i	20,03	315,2	200	2088300	2440	4350	56	4	38,4	31,7	30,0	59	, di
3	80	20,12	318,2	200	2075600	2440	4320	56	2	34,9	27,7	26,0	61	Jung
Mittel		-	—	_	2 091 200	2470	4340	57	-	36,8	29,2	27,7	60	einse
4		17,98	254,0	180	2090440	2470	4370	57	7	37,6	29,1	28,8	66	u, n
5	0.1	19,99	314,1	200	2094040	2670	4460	60	3	38,3	32,1	29,7	65	gra
6	81	19,98	313,6	200	2090140	2460	4270	58	2,5	39,8	33,5	29,3	65	latt
Mittel		-	-	-	2 091 540	2530	4370	58	-	38,6	31,6	29,3	65	1

Tabelle 13. Dehnung der Materialproben zu den Stäben 80 und 81 bei stufenweisem Belasten bis zur Streckgrenze.

	Ent-	D	ehnun	gen is	n em i	10 - 5	auf 15	em 1	Meßlä	nge be	ei den	über	geschr	ieben	en Be	lastun	gen	in	t	0
Probe	nom- men				Del	nung	szunal	nme fi	ir je	500 kg	g Last	zunah	me				bł	leibe	nd	schnitt
Nr.	aus Stab	0,5	1	1,5	2.	2,5	3	3,5	4	4,5	5	5,5	6	6,5	7	7,5	1	5	6	qcm
1		112	114	114	114	115	114	116	115	116	117	115	122	119	134	150	-	7	20	3,12
2		114	117	115	117	115	115	116	118	116	120	118	124	126	146	172	8	34	-	3,15
3	80	115	115	116	117	115	116	115	115	116	120	116	120	119	127	127	7	27		3,18
Mittel		114	115	115	116	115	115	116	116	116	119	116	122	121	136	150	8	23	$[\overline{20}]$	
4				;	Stab	4 ist	t mit	and	eren	Last	stufe	en ge	prüft	;				1	_	2,54
5	61	121	109	114	117	115	115	114	115	114	116	116	117	120	117	120	3	9	13	3,14
6	01	124	106	117	114	115	117	116	115	115	119	115	122	122	135	151	1	10	-	3,14
Mittel		122	108	115	116	115	116	115	115	115	117	116	120	121	126	136	2	10	[13]	-

Belastung Nr.	Beobachtungen für die Meßstrecken	Dehnunge	n des Stabes	in $\frac{1}{200000}$ cm lastungen in t	bei den folg	enden Be-	Ablesungsrest nach dem Entlasten
	(Fig. 46)	20	40	60	80	100	Linusten
1	!	210	414	618	824	1034	0
2		206	412	616	822	1032	0
3		204	410	616	822	1032	2
4	A u. C	206	414	618	826	1032	-2
5		208	416	622	826	1036	0
Mittel	1	206,8	413,2	• 618,0	824,0	1033,2	-
1		208	416	624	835	1047	0
2		207	417	623	835	1045	0
3		208	417	626	836	1047	+2
4	B u. D	210	418	626	835	1049	+3
5		209	417	625	834	1046	+2
Mittel		208,4	417,0	624,8	835,0	1046,8	-
Gesamtmittel /	<i>m</i> • • • • • •	207,6	415,1	621,4	829,5	1040,0	
Maschinenfehle	r in %1)	-0,16	-0,07	+0,07	+0,40	+0,82	_
Richtiggestellte	Dehnung λ'_m	207,9	415,4	621,0	826,2	1031,5	_
Dehnungssoll f	$ \text{ ir } 1 \text{ t } \lambda_s = \frac{\lambda_m'}{P} $	10,40	10,38	10,35	10,33	10,32	
Mittelwert für	$\frac{\Delta \lambda'_m}{P}$			10,36			
Abweichung de	er Einzelwerte						
$\operatorname{für} \frac{A\lambda'_m}{P} \operatorname{vom} M$	ittel in %	+0,39	+0,19	0,10	0,29	0,39	-

Tabelle	14.	Prüfung des Stabes 80 auf der 100-t-Werder-Maschine.
		Meßlänge = 25 cm ; Querschnitt = 227 qcm .

Tabelle 15	Priifungen der	Manometer	104 und	125 auf	der	Wage von	Stückrath.
Laberre ro.	riurungen uu	manometer	IVI unu	Two aut	uu	Hugo ron	Stuckiada.

Manometer Nr.	Beobach- tungsreihe Nr.		Ablesung	gen am N	fanometer	in Grade	n bei den	übergesc	hriebenen	Druc ken	
	Druck in at	40	80	120	160	200	240	280	320	360	380
	1	31,0	62,7	93,4	124,1	154,2	183,5	212,5	242,1	270,8	285,0
104	2	30,9	62,4	93,4	124,0	154,0	183,3	212,4	241,8	270,6	284,9
101	3	30,9	62,6	93,4	124,1	154,1	183,3	212,4	242,0	270,4	284,7
	4	30,9	62,5	93,4	124,1	154,1	183,4	212,3	241,7	270,4	284,6
	Mittel	30,9	62,5	93,4	124,1	154,1	183,4	212,4	241,9	270,6	284,8
	Druck in at	20	40	60	80	100	120	140	160	180	195
	1	31,1	62,5	92,9	123,0	152,9	182,4	211,9	240,9	270,6	292,1
	2	30,6	61,7	92,6	122,7	152,6	182,4	211,4	240,6	270,4	291,9
125	3	31,1	62,3	93,2	122,9	152,7	182,4	212,2	240,9	270,5	291,9
120	4	30,9	62,2	92,9	122,8	152,7	182,3	211,7	240,8	270,3	291,8
	5	30,9	62,4	92,8	122,8	152,8	182,4	211,8	240,9	270,7	292,0
	6	30,8	62,2	92,8	122,9	152,8	182,4	211,6	240,8	270,4	291,8
	Mittel	80,9	62,2	92,8	122,9	152.8	182,4	211.8	240,8	270,5	291,9

Mittel | 30,9 | 62,2 | 92,8 | 122,9 | 152,8 | 182,4 | 211,8 | 240,8 | 270,5 | 291,9 ¹) Die Maschine zeigt die Last entsprechend den negativen Fehlerwerten zu groß und entsprechend den positiven Werten zu klein an; die beobachteten Dehnungen des Stabes sind demnach um den negativen Fehler zu vergrößern und um den positiven Fehler zu verringern, damit die richtiggestellten Dehnungswerte erhalten werden, die den im Tabellenkopf angegebenen Belastungen zukommen.
Tabelle 14, 15, 16.

Tabelle 16. Prüfung des Stabes 80 auf der 500-t-Maschine.

Meßlänge = 25 cm; Querschnitt = 227 qcm.

Die Prüfung erfolgte bei zwei verschiedenen Stellungen des Kolbens im Arbeitszylinder der Maschine, gekennzeichnet durch die Länge L des aus dem Zylinder hervorragenden Kolbenteiles (s. erste Spalte).

Kolben- stellung	Belastungs- reihe	Beobachtung für die Maßstrackan	Dehn	ungen des Arbeitszy	s Stabes in linder, abg	$\frac{1}{200000}$ gelesen in	em bei de Graden a	n folgende m Manon	en Drucke neter 104	n im	lesungs- nach dem ttlasten
	Nr.	Mensuecken	20°	40°	60°	80°	100°	120°	140°	160°	Ab rest En
	1 2 3 4	A u. C	365 362 363 359	730 719 720 724	1088 1085 1082 1083	1467 1465 1469 1460	1842 1839 1838 1840	2218 2223 2222 2221	2607 2614 2605 2600	3011 3012 3002 3000	$^{+3}_{+5}_{+3}_{+2}$
	5 Mittel		364 362.6	724	1087	1466 1465.4	1842 1840.2	2226 2222.0	2603 2605.8	3014 3007.8	+3 + 3,2
I. L = 25,5	1 2 3 4 5	B u. D	358 351 360 352 355	717 702 708 710 708	1072 1064 1066 1065 1068	1438 1434 1447 1436 1438	1813 1803 1807 1811 1814	2181 2177 2185 2184 2188	2565 2560 2564 2556 2558	2961 2952 2953 2947 2960 2954.6	$+3 \\ -3 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 4 \\ 0 \\ 4 \\ 0 \\ 4 \\ 0 \\ 0$
em	Ceren		399,2 979 0	709,0	1057,0	1458,0	1909,0	2185,0	2500,0	2554,0	-0,4
	$P_1 =$	$\frac{\lambda}{l} \cdot f \cdot E^{1}) \text{ in t}$	34,64	69,13	1076,0	140,15	176,15	212,60	249,34	287,76	1,1
	$\vec{\mathbf{N}} P =$	pF = R in t	34,91	70,14	105,19	141,00	176,98	213,11	249,86	287,04	I
	i T	$-P_1$ in t	+0,27	+1.01	+1,33	+0,85	+0,83	-0,51	-0,52	-0,72	
	$\frac{O}{P_1}$ $\frac{O}{P_1}$	$\frac{P_1}{1} \cdot 100$ in %	+0,81	+1,46	+1,28	+0,60	+0,47	-0,24	-0,21	0,25	
	1 2 3 4 5	A u. C	367 362 363 365 358	728 725 723 720 724	1092 1092 1088 1094 1091	1468 1466 1473 1468 1469	1850 1851 1849 1845 1844	2228 2223 2229 2227 2224	2619 2612 2613 2609 2610	3019 3023 3013 3015 3012	+7 +9 +6 +7 +3
	Mittel		363,0	724,0	1091,4	1468,8	1847,8	2226,2	2612,6	3016,4	+6,4
II. L ==	1 2 3 4 5	B u. D	355 354 358 356 351	711 715 719 709 712	1078 1074 1075 1073 1068	1446 1441 1454 1443 1445	1820 1825 1825 1813 1812	2204 2187 2196 2178 2188	2574 2567 2574 2567 2573	2965 2973 2965 2964 2961	+4 +5 +9 +4 0
88,3 cm	Mittel	-	854,8	713,2	1073,6	1445,8	1819,0	2190,6	2571,0	2965,6	4,4
	Gesa	mtmittel	359,9	718,6	1082,5	1457,3	1833,4	2208,4	2591,8	2991,0	5,4
	P_1	$=rac{\lambda}{l}f\cdot E^{1}$) in t	34,74	69,36	104,49	140,67	176,97	213,17	250,17	288,70	
	δ P =	pF - R in t	34,85	70,08	105,13	140,94	176,92	213,05	249,80	286,98	
		$P - P_1$ in t	+0,11	+0,72	+0,64	+0,27	-0,05	-0,12	-0,37	-1,72	
	$\frac{1}{\frac{1}{2}}$	$\frac{P_1}{1} \cdot 100$ in %	+0,32	+1,03	+0,61	+0,18	-0,03	-0,06	-0,15	-0,60	

¹) $E = 2.126\ 100\ \text{kg/qcm}$ (s. S. 38).

Tabelle 17. Prüfung des Stabes 81 auf der 500-t-Maschine.

Belastı reih	ings- ie	Beobachtung für die Meßstrecken (s. Fig. 47)	Dehn	ungen des	stabes in bgelesen i	1 200 000 c n Graden	m bei der am Manc	n folgende ometer 125	n Drucks	ufen,	blesungs- t nach dem intlasten
Nr	• •	(5. 118. 11)	20°	40°	60°	80°	100°	120°	140°	106°	A resi
1			340	702	1081	1451	1830	2209	2596	2990	+7
2			335	709	1073	1447	1820	2206	2597	2984	+1
3		A u. C	344	703	1084	1451	1828	2216	2600	2994	+5
4			345	703	1082	1451	1821	2208	2597	2985	+3
5			341	704	1078	1450	1821	2211	2598	2984	+2
Mitt	tel		341,0	704,2	1079,6	1450,0	1824,0	2210,0	2597,6	2987,4	
1			340	699	1077	1444	1822	2194	2578	2972	+4
2			333	695	1067	1436	1807	2192	2579	2965	-1
3		B u. D	338	696	1072	1440	1812	2200	2583	2976	+2
4			346	699	1077	1446	1812	2197	2585	2972	+6
5			338	700	1072	1440	1809	2197	2580	2966	± 0
Mitt	tel		339,0	697,8	1073,0	1441,2	1812,4	2196,0	2581,0	2970,2	
(Gesam	tmittel λ	340,0	701,0	1076,3	1445,6	1818,2	2203,0	2589,3	2978,8	
Zug- P1		$=\frac{\lambda}{l}\cdot f\cdot E^{1}$) in t	16,34	33,68	51,72	69,46	87,35	105,85	124,42	143,13	
kraft	P=	$= p \cdot F - R$ in t	16,53	34,46	52,15	70,18	88,40	106,88	125,40	143,99	
TT		$P - P_1$ in t	0,19	0,78	0,43	0,72	1,05	1,03	0,98	0,86	
Unter- schied	$\frac{P}{I}$	$\frac{P_1}{P_1} \cdot 100$ in %	1,16	2,32	0,83	1,04	1,20	0,98	0,79	0,60	

 $\label{eq:MeBlange} \begin{array}{l} {\rm MeBlange}=25~{\rm cm};~{\rm Querschnitt}=f~113~{\rm qcm}.\\ {\rm Die}~{\rm Lange}~L~{\rm des}~{\rm aus}~{\rm dem}~{\rm Zylinder}~{\rm hervorragenden}~{\rm Kolbenteiles}~{\rm betrug}~25~{\rm cm}. \end{array}$

¹) E = 2.126.100 kg/qcm (s. S. 38).

Tabelle 18. Prüfung des Stabes 80 auf der 3000-t-Maschine.

Belastun reihe	gs- Beobachtung für die Meßstrecke	D a	ehnunge bgelesen	n des St in Grad	abes in en am M	1 200 000 c 1anomet	m bei de er 211 ur	en folgen id nach	iden Dru Tab. 11 (cken im 1mgerech	Zylinder met in a	r, t	sungs- ich dem asten
Nr.	Grade $at = p$	10 3,195	20 6,389	80 9,584	40 12,840	50 16,105	60 19,870	70 22,566	80 25,798	90 28,928	100 82,228	110 35,562	Able: rest na Entl
1		216 210	460	719	1001	1254	1529 1520	1784	2056 2054	2320 2210	2575 2572	2851	-12
3	A u. C	207	473	731	1004	1261	1525	1792	2060	2325	2591	2863	+ 4
4 5		$220 \\ 225$	479 482	736	1007 1012	1256 1261	$1525 \\ 1541$	$\frac{1786}{1799}$	2052 2069	2315 2330	2569 2592	2845 2864	-8 + 1
Mitte	1	215,6	472,4	725,8	1003,8	1256,2	1582,2	1788,8	2058,2	2321,8	2580,0	2854,2	
1 2 3 4 5	B u. D	220 218 225 220 228	469 476 474 480 486	728 725 733 729 737	1011 1003 1008 1010 1017	1264 1257 1263 1260 1271	1541 1538 1541 1536 1550	1798 1797 1800 1797 1807	2075 2066 2069 2064 2081	2338 2330 2337 2328 2343	2601 2593 2606 2594 2607	2878 2869 2877 2864 2881	+13 +10 +12 +4 +11
Mitte	1	222,2	447,0	730,4	1009,8	1263,0	1541,2	1799,8	2071,0	2885,2	2600,2	2873,8	
Ge	$samtmittel \lambda$	218,9	474,7	728,1	1006,8	1259,6	1586,7	1794,3	2064,6	2328,5	2590,1	2864,0	
$\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$P_1 = \frac{\lambda}{l} \cdot f \cdot E \text{ in t}$	21,13	45,82	70,28	97,18	121,58	148,33	173,19	199,29	224,76	250,02	276,45	
	$P = p \cdot F - R \text{ in t}$	20,63	45,92	71,22	97,00	122,85	148,70	174,01	199,20	224,38	250,43	276,91	
Tinton	$P-P_1$ in t	-0,50	+0,10	+0,94	-0,18	+1,27	+0,37	+0,81	-0,09	-0,38	+0,41	+0,46	
Unter- schied \underline{P}	$\frac{P-P_1}{P_1} \cdot 100 \text{ in } \%$	-2,47	+0,22	+1,29	-0,19	+1,05	+0,25	+0,46	-0,05	-0,17	+0,16	+0,17	

Meßlänge = 25 cm.

70

Tabelle 19.	Stauchung der Spindeln der 3000-t-Maschine bei wachsender	71
	Zugbelastung am Probestabe 80.	

Meßlänge = 60 cm.

-s2u	Zimmer in	wärme °C	Sta	nahung	der Spir	daln in	1	m hei	den folo	andan 7	unhalast	ungan P	in t	n B cest
teihe	bei Beginn	am Ende	0.0	uonung	uer opn	iden m	200 000 ` am Prob	estab (s.	Tabelle	18)	ugoeiaso	ungen 1		esungsi ach de intlaste
Nr.	d Belastu	er ngsreihe	21,13	45,82	70,58	97,18	121,58	148,33	173,19	199,29	224,76	250,02	276,45	ADA B
			L			I. Un	tere S	oindel.						
1	15.33	16.30	37	75	138	182	218	264	300	336	375	412	453	65
2	16.70	16.72	32	65	105	144	186	228	265	297	335	372	409	16
3	17,10	17,40	29	57	96	135	173	210	250	287	326	363	401	8
4	17,40	18,12	31	70	105	147	184	224	264	300	340	374	414	22
5.	18,10	18,40	34	66	103	143	179	218	257	302	341	377	414	29
Mittel	_	_	81,5	64,5	102,2	142,2	180,5	220,0	259,0	296,5	338,0	371,5	409,5	
	II. Obere Spindel.													
1	13,60	14,50	102	144	170	210	262	296	340	372	402	437	471	+128
2	14,62	15,11	25	62	94	130	162	196	228	272	309	336	369	- 8
3	14,91	15,17	38	70	99	132	169	205	242	281	315	356	397	+46
4	—	15,21	43	79	113	148	184	201	235	276	321	356	399	+ 50
5	14,94	15,05	17	48	83	114	156	196	234	261	303	334	377	± 11
Mittel	_		30,8	64,7	97,3	141,0	167,8	199,5	234,8	272,5	312,0	345,5	385,5	
			-	Ī	II. Sur	nme fü	r beide	Spind	eln.					
1		1	139	219	308	392	480	560	640	708	777	849	924	193
1			57	127	199	274	348	424	493	569	644	708	778	8
3	-	-	67	127	195	267	342	415	492	568	641	719	798	54
4			74	149	218	295	368	425	499	576	661	,730	813	72
5			51	114	186	257	335	414	491	563	644	711	791	40

Tabelle 20. Prüfung des Stabes 81 auf der 3000-t-Maschine.

Meßlänge = 25 cm.

188	Be- tung	Be- obachtung für die Meßstelle	Dehnur	ngen des a	Stabes m Manor	in <u>1</u> 200 00 meter 21	ō cm bei 1 und na	den folg ich Tabe	enden D lle 11 ur	ruckstufe ngerecht	en, abgel let in at	esen in G	raden	esungsrest ch dem itlasten
	Nr.	$\begin{array}{l} \text{Grade} \\ \text{at} = p \end{array}$	5 1,60	10 3,20	15 4,79	20 6,39	25 7,99	30 9,58	35 11,21	40 12,84	45 14:47	50 16,11	55 17,74	Able na Ea
	1		162	462	731	992	1241	1485	1780	2040	2293	2548	2841	+ 2
	2		163	459	728	987	1240	1483	1778	2042	2298	2553	2836	+2
	3		163	460	731	889	1238	1489	1786	2045	2300	2549	2839	0
	4	A u. C	165	466	730	979	1238	1484	1778	2036	2291	2538	2832	-12
	5		172	474	737	996	1245	1495	1792	2053	2304	2558	2848	+ 5
Mi	ttel		165,0	464,2	731,4	988,6	1239,4	1487,2	1782,8	2043,2	2297,2	2549,2	2839,2	
-	1		166	466	734	995	1244	1491	1789	2049	2302	2555	2849	+ 1
	2		168	463	733	992	1246	1489	1784	2050	2304	2559	2844	+ 2
	3		166	468	737	1006	1247	1499	1796	2054	2308	2557	2850	0
	4	B u. D	167	474	738	989	1248	1497	1793	2052	2307	2555	2851	- 1
	5		171	475	738	1000	1247	1497	1794	2056	2308	2565	2853	+4
M	ttel		167,6	469,2	736,0	996,4	1246,4	1494,6	1791,2	2052,2	2305,8	2558,2	2849,4	-
G	esan	tmittel λ_m	166,3	466,7	788,7	992,5	1242,9	1490,9	1787,0	2047,7	2301,5	2553,7	2844,3	
kraft	$P_1 =$	$=\frac{\lambda}{l}f\cdot E \text{ in t}$	7,99	22,42	35,25	47,69	59,72	71,64	85,87	98,39	110,59	122,70	136,67	
Zug	P =	$\overline{pF-R}$ in t	7,98	20,63	33,28	45,92	58,57	71,22	84,07	97,00	109,93	122,85	135,78	
hied	Р	- P1 in t	-0,01	-1,79	-1,97	1,77	-1,15	-0,42	-1,80	-1,39	-0,66	+0,15	-0,89	_
Untersci	$\frac{P-1}{P_1}$	$\frac{P_1}{1} \cdot 100 \text{ in}\%$	-0,13	-8,00	-5,59	-3,71	-1,93	-0,59	-2,30	1,41	-0,57	+0,12	-0,65	

Tabelle 21. Prüfung des Stabes 81 auf der 3000-t-Maschine.

-													The second s	
в	Belastung Nr.	Beobach- tung für die Meß- strecke	Dehnu	ngen de:	s Stabes am Ma	in $\frac{1}{20000}$ nometer		i den fol nach Ts	genden I ib. 11 um)ruckstui 1gerechn	ien, abgel et in at	lesen in (Graden	sungsreat ch dem tlasten
		$\begin{array}{c} \mathbf{Grade} \\ \mathbf{at} = p \end{array}$	10 1,57	20 3,21	30 4,83	40 6,50	50 8,18	60 9,85	70 11,53	80 18,20	90 14,88	100 16,56	110 18,24	Able Da En
_	1 2 3 4 5	A u. C	150 151 147 143 142	422 420 416 412 410	684 687 682 673 673	953 952 952 944 938	1239 1241 1236 1230 1221	1506 1506 1503 1490 1488	1787 1791 1791 1778 1778 1771	2061 2059 2057 2046 2042	2334 2328 2325 2316 2308	2603 2601 2600 2587 2579	2869 2871 2870 2859 2854	+12 +10 + 8 + 3 -17
_	Mittel		147	416	680	948	1233	1499	1784	2053	2322	2594	2865	
_	1 2 3 4 5 Mittel	B u. D	148 152 146 148 150	418 420 420 419 423 420	682 685 683 682 687	951 954 954 951 954 954	1237 1240 1237 1239 1240	1508 1507 1504 1506 1507	1784 1794 1794 1786 1793	2059 2063 2062 2059 2060	2334 2331 2331• 2329 2332	2602 2606 2604 2601 2607	2871 2878 2873 2872 2881	+4 + 9 + 5 + 2 + 7
G	esamtmi	ittel	147,7	418,0	681,8	950,3	1236,0	1502,5	1786,9	2056,8	2326,8	2599,0	2869,8	
Zugkraft	$\frac{P_1 = \frac{\lambda}{l}}{P = p \cdot \lambda}$	$f \cdot E$ in t F - R in t	7,10	20,08	32,76 32,73	45,66	59,39 59,26	72,19	85,86 85,81	98,83 99.07	111,80	124,88	137,89 138.95	
ied	$P - P_1$	int	-0,11	-0,17	-0,03	+0,31	-0,13	+0,36	-0,05	+0,24	+0,53	+0,76	+1,06	
Untersch	$\frac{P-P_1}{P_1}$	• 100 in%	-1,55	-0,85	0,09	+0,68	-0,22	+0,50	-0,06	+0,24	+0,47	+0,60	+0,77	

Meßlänge = 25 cm.

Tabelle 22.	Stauchung der Spindeln	der	3000-t-Maschine	bei	Prüfung	des	Zug-
	SI	abes	81.				

Meßlänge = 60 cm.

_			1											· · · · · · · · · · · · · · · · · · ·
в	Belastung Nr.	Bezeich- nung der	Stauch	ungen d Gr	er Spind aden am	eln in <u>2</u> Manom	1 00000 cm eter 211	n bei de und naci	n folgen h Tab. 11	iden Dru l umgere	ickstufen chnet in	, abgele at	sen in	sungsrest ch dem tlasten
		Spinder	5 1,60	10 3,20	15 4,79	20 6,39	25 7,99	80 9,58	85 11,21	40 12,84	45 14,47	50 16,11	55 Grad 17,75 at	Able: nac En
	1		7	24	37	51	65	87	108	130	146	163	182	- 6
	2		7	25	37	54	69	83	101	119	139	157	175	-14
	3		4	22	38	54	70	87	109	127	144	161	180	-12
	4	untere	7	24	40	56	75	93	114	132	150	167	188	+11
	5		13	32	45	59	76	93	113	133	150	169	189	+ 3
	Mittel		7,6	25,4	39,4	54,8	71,0	88,6	109,0	128,2	145,8	163,4	182,8	
	1		9	26	42	59	70	88	108	122	139	156	175	- 1
	23		10	25	42	58	73	88	108	122	140	_	178	+ 8
			14	34	51	67	84	99	117	133	148	163	182	+10
	4	obere	16	38	54	71	87	101	121	138	155	171	192	± 16
	5		20	40	55	69	84	98	118	137	150	167	187	+10
	Mittel		13,8	32,6	48,8	64,8	79,6	94,8	114,4	130,4	146,4	164,2	182,8	-
G	esamtmi	ittel	10,7	29,0	44,1	59,8	75,3	91,8	111,7	129,3	146,1	163,8	182,8	-
gkraft	$P_1 = \frac{\lambda}{l}$	$\cdot f \cdot E$ in t	7,28	19,72	30,00	40,67	51,21	62,43	75,97	87,94	99,36	111,40	124,32	-
Zug	$P = p \cdot$	$F - R \operatorname{in} \mathbf{t}$	7,98	20,63	33,28	45,92	58,57	71,22	84,07	97,00	109,73	122,85	135,75	-
hied	$P \leftarrow P_1$	int.	+0,70	+0,91	+3,28	+5,25	+7,36	+8,79	+8,10	+9,06	10,57	11,45	11,43	
Untersc	$\frac{P-P_1}{P_1}$	• 100 in%	+9,6	+4,6	+10,9	+12,9	+14,4	+14,1	+10,7	+10,3	+10,6	+10,3	+9,2	_

	Mater	ialzeichen		Abmess	sungen		Spannu	ngen in	kg/qcm		Bruchdeh	nung % für	die Länge	+ <u>18</u>
Stab Nr.	Nr.	Charge Nr.	Proben ent- nommen aus	Durch- messer d mm	Quer- schnitt f qmm	Dehnungs- zahl $\frac{1}{\alpha} = E$	P- Grenze σ _P	Streck- grenze σ_S	Bruch- grenze ^o B	$rac{\sigma_S}{\sigma_B}$ 100	$l = 5,65 \sqrt{f}$ $= 100 \text{ mm}$	$l = 11,3 \sqrt{f}$ $= 200 \text{ mm}$	<i>l</i> = 2 00 mm	Querschnitts verminderur
				00.00	-	0.005.000	1010	07.40	1000	40		00.0	00.4	
1 2	1	0005/08		20,03	314,9	2 065 000	1910	2540	5150	48 53	29,8 29.4	23,0	22,4	55
3	3	9000/00	Muffen	19,97	313,1	2075000	1760	2560	5300	48	29,4	22,0	21,8	53
	Mit	tel				2 065 000	1800	2610	5240	50	29.5	22.5	22.0	54
<u> </u>								1		L				
4	12			20,12	317,8	2 065 000	1570	2440	4910	50	32,9	25,4	25,3	55
5	13	9776		20,10	217,0	2 110 000	1580	2390	4890	49 56	30,6	23,6	23,0	59 61
	14				314,0	2 103 000		2700	4990			40,0		- 01
	Mit	tel				2093000	1790	2530	4930	52	81,8	24,1	23,8	58
7	23		Zug-	20,05	315,6	2055000	1580	2280	4750	48	30,8	23,9	23.8	55
8	24	4854	stange	20,10	317,0	2115000	1890	2490	4860	51	33,4	26,1	23,4	58
9	25	1		20,10	317,0	2095000	1890	2400	5040	48	30,8	24,8	24,7	57
	Mit	tel		_		2 088 000	1790	2390	4880	49	31,7	24,9	24,0	57
G	esamt	mittel		_		2090500	1790	2460	4910	51	31,8	24,5	23,9	58
10	20			20.00	314.0	2 060 000	1430	2360	4900	48	32.0	95.4	95.4	54
11	30	10 896		20,10	317.0	2 100 000	1580	2460	4940	50	33.1	25.9	25.8	57
12	31			20,10	317,0	2100000	1890	2520	4940	51	32,4	25,6	25,3	57
'	Mit	tel				2 087 000	1630	2450	4930	50	82,5	25,6	25,5	56
13	34			19.97	313.1	2 055 000	1440	2630	4680	56	32.3	24.9	24.3	60
14	35	9942		20,10	317,0	2120000	1890	2660	4750	56	33,8	26,8	25,7	61
15	36			20,10	317,0	2 110 000	2530	3060	4910	62	33,2	28,0	27,7	60
	Mit	tel	~	—		2 095 000	1950	2780	4780	58	83,1	26,6	25,9	60
16	44		Spindel	20,05	315,6	2 070 000	1580	2960	5810	51	28.3	24.1	24.0	51
17	45	9996		20,00	314,0	2085000	1590	3010	5960	51	26,2	20,5	20,4	53
18	46			20,10	317,0	2020000	1580	2970	5870	51	26,8	20,0	20,0	55
	Mit	tel				2 058 000	1580	2980	5880	51	27,1	21,5	21,5	53
19	54			19,95	312,4	2 075 000	1280	2660	5430	49	30.9	22.4	22.3	54
20	55	9953		20,01	317,0	2090000	1580	2740	5440	51	32,0	24,4	24,3	54
21	56	i		20,01	317,0	2055000	1740	2670	5430	49	30,6	23,6	23,6	56
	Mit	tel			. —	2 073 000	1580	2690	5430	50	31,2	23,5	23,4	55
G	esamt	mittel		_		2 078 250	1670	2780	5260	52	31,0	24,3	24,1	56

Tabelle 23. Zugversuche mit Materialproben aus einzelnen Teilen der 3000-t-Maschine.

Tabelle 24.

Dehnung der Zugstange der 3000-t-Maschine bei Prüfung des Zugstabes 81.

Meßlänge = 40 cm; Stabquerschnitt = 1388 qcm.

Elastizitätsmodul E = 2.090500 kg/qcm.

	Belastung Nr.	Deh	nung der Gra	Zugstan den am	nge in <u>2</u> Manome	1 00000 eter 951	bei den und nacl	folgend 1 Tab. 11	en Druc umgere	kstufen, echnet in	abgelese at	n in	ungsrest . Entlast.
		10 1,57	20 8,21	30 4,83	40 6,50	50 8,18	60 9,85	70 11,53	80 13,20	90 14,88	100 16,56	110 Grad 18,24 at	Ables nach d
	1	20	57	91	127	165	204	237	273	310	343	378	+7
	2	22	56	91	128	164	201	238	273	309	345	380	+6
	3	21	55	91	126	163	199	238	272	308	344	378	+5
	4	20	57	90	125	161	197	235	269	306	341	378	+4
	5	20	55	90	125	164	198	236	270	305	340.	375	+1
	Mittel für λ	20,6	56,0	90,6	126,2	163,4	199,8	236,8	271,4	307,6	342,6	877,8	-
gkraft	$P_1 = \frac{\lambda}{l} f \cdot E$ in t	7,47	20,30	32,85	45,76	59,24	72,44	85,86	98,41	111,54	124,23	136,97	
'nΖ	P = p F - R in t	6,99	19,91	32,73	45,97	59,26	72,55	85,81	99,07	112,33	125,64	138,95	
hied	$P-P_1$ in t	-0,48	-0,39	-0,12	+0,21	+0,02	+0,11	-0,05	+0,66	+0,79	+1,41	+1,98	
Unterse	$\frac{P-P_1}{P_1}$ 100 in %	-0,64	-1,92	-0,34	+0,46	+0,03	+0,15	-0,06	+0,67	+0,71	+1,13	+1,45	

Tabelle 25. Ermittlung der Belastungen aus den Dehnungen λ der Zugstange der Maschinen und den Wasserdrucken p in at im Zylinder bei Prüfung des Stabes 70.

Querschnitt der Stange: f = 1388 qcm; Elastizitätsmodul des Stangenmaterials: E = 2090500 kg/qcm; für die Ermittlung der Dehnungen λ : Meßlänge l = 40 cm; Reibungswiderstand beim Leerlauf der Maschine: R = 7068 kg; Kolbenquerschnitt F = 7918 qcm.

			1		Dr	uckstufe	n in at =	p, erred	ehnet au	s den A	blesunger	n in Grade	en an	
.1	Bedeu	tung der V	Werte				Manom	eter 211					123	
				3,195	13,17	26,07	38,57	51,80	63,67	76,49	89,16	89,11	102,00	114,15
stange	achtet	Anfang tung	sbelas- in at	0				3,195					_	
Zug	beol		1	Mittel	216	489	753	1025	1293	1560	1841	1850	2121	2386
der	Ľ, eb	Paiho	2	aus	213	488	753	1026	1290	1560	1840	_	2117	2383
27	bei d	Nr	3	15 Be-	211	486	753	1028	1296	1566	1848		2124	2391
inger 1	18	111.	4	obach-	211	487	753	1027	1296	1565	1847	—	2122	2391
Inu L	00		5	tungen	209	484	751	1027	1296	1565		-	2128	2394
Deh	g	Mittel	werte	59,0	212,0	486,6	752,6	1026,6	1294,2	1563,2	1844,0	[1850,0]	2122,4	2389,2
		$=\frac{\lambda}{1}\cdot t\cdot E$	Einzel- werte	21,4	76,89	176,56	272,97	372,35	469,41	566,98	668,82	671,00	769,80	866,57
ela.et		į ·	Gesamt		98,29	197,96	294,37	393,75	490,81	588,38	690, 22	692,40	791,20	887,97
P =		$p \cdot F -$	R	18,23	97,18	199,32	298,34	399,15	497,08	598,59	698,90	698,53	800,59	896,73
	i. li	$P - P_1$ is	nt		-1,11	+1,36	+3,97	+5,40	+6,27	10,21	+8,68	+6,13	+9,39	+8,76
sci	hied 1	$\frac{P-P_1}{P_1} \cdot 10$	$00\mathrm{in}\%$	_	-1,13	+0,69	+1,35	+1,37	+1,28	+1,74	+1,25	+0,89	+1,19	+0,99

Belastungs- reihe	Nr. und Lage	Gemessen am	L	ängenzur	nahme λ	, in 1 1000	000 cm b	ei den f	olgenden	Belastu	ngen in f	;
Nr.	der Meßstelle	(s. Fig. 58)	98,29	197,96	294,37	893,75	490,81	588,38	690,22	692,40	791,20	887,97
			St	eg (Se	ite) A	des S	tabes.					
1 2 3 4	l oben		176 175 175 —	404 402 402 -	858 908 924 —	2496 2686 2767 —	4276 4580 4675 —	6015 6225 6344 6425	 	8391 	9 626 9 871 10 073 —	11 497
Mittel			175	403	897	2650	4510	6252	_	(8391)	9 858	(11497)
$\begin{array}{c}1\\2\\3\end{array}$	9 unten	äußeres	272 288 290	811 861 881	1680 1788 1848				_	_		
Mittel			283	851	1772				_	-	_	
Gesam	tmittel		229	627	1835	-	-		-		_	_
1 2 3 4	2 oben		189 189 187 —	438 446 447 -	946 990 1008 —	2599 2809 2900 	4529 4754 4836 —	$\begin{array}{c} 6176 \\ 6426 \\ 6566 \\ 6646 \end{array}$	7845 — — —	8 523 — — —	9 841 10 094 10 285 —	11 687
Mittel			188	444	981	2769	4703	6454	(7845)	(8523)	10 064	(11687)
1 2 3	10 unten	inneres	270 286 288	815 851 869	1658 1746 1802	4016 4256 4397	6196 6486 6646	-	-	-	-	-
Mittel			281	845	1735	4223	6443	_	-	_	· —	-
Gesam	tmittel		285	645	1358	3496	5578	-	-	-	-	-
			St	eg (Se	ite) B	des S	tabes	-				
1 2 3 4	5 oben		96 93 92 	270 269 268 -	539 551 557 —	1360 1611 1722 —	3385 3647 3768 —	5445 5605 5709	7015 7354 —	7592 	9119 9474 9664 —	-
Mittel			94	269	549	1564	3600	5586	7185	(7592)	9419	-
1 2 3	12 unten	äußeres	106 108 110	$382 \\ 400 \\ 409$	980 1030 1067	_		_	_	. –	_	-
Mittel			108	397	1026		-	-	-	-	-	
Gesam	tmittel		101	333	788				<u> </u>	<u> </u>		
1 2 3 4 Mittel	6 oben		90 87 86 - 88	245 243 .241 - 243 243	455 460 461 459	1049 1237 1313 	2905 3131 3233 - 3090	4614 4866 5000 5105 4896	6389 6697 6543	6937 — — — (6937)	8438 8783 8977 8733	
1 2 3	13 unten	inneres	142 146 150	478 502 517	1120 1184 1223	2988 3479 3640	5349 5589 5708		-		-	_
Mittel	1		146	499	1176	3369	5549	-	-		-	
Gesam	tmittel	-	117	371	818	2285	4320	-	-	_	-	

Tabelle 26. Längenänderungen λ_o, gemessen über den Stoß an den Stegblechen. Die Stoßstelle lag in Mitte der Meßlänge; die Beobachtungen begannen mit 21,40 t Anfangsbelastung.

Tabelle 27. Bleibende Längungen, gemessen über den Stoß an den Stegblechen. Die Stoßstelle lag in Mitte der Meßlängen. Die Beobachtungen begannen mit 21,40 t Anfangsbelastung; auf sie wurde auch stets wieder entlastet.

Belastungs	Nr und	Ge	emessen	Disthe	nda Tan		1	m nach	den folo	unden T	alaatuna	
reihe	Lage der	auf	am	Dicine	nne meni	Rong In	100 000	m nach	den long	enden b	etastung	en iu s
Nr.	Meßstelle	Seite	(s. Fig. 58)	98,29	197,96	294,37	898,75	490,81	558,38	690,22	791,20	887,97
1				16	22	146	1361	2708	3759	4747	5964	7159
2	1			16	25	156	1455	2867	3909	4941	6129	7339
3	oben							_	4018			
Mittel				16	24	151	1408	2788	3865	4844	6047	7249
1			äußeres	90	367	912						
2	9			94	389	990	-		-			-
3	unten					-						
Mittel				92	378	951					-	
Gesam	tmittel	A		54	201	551		•	-			
1				21	33	200	1452	2783	3839	4859	6126	7394
2	2			21	38	213	1557	2943	4001	5068	6316	7609
	oben								4119			
Mittel	<u> </u>			21	- 36	207	1505	2863	3986	4964	6221	7502
1			inneres	94	369	902	2930	4505	5971			
2	10			102	391	962	3070	4719	6269	-		-
	unten								0409			
Mittel				98	380	932	3000	4612	6236	<u> </u>		
Gesam	tmittel			60	208	570	2253	3738	5111	_		
1				-2	16	88	634	1900	3049	4249	5595	7284
2	5			0	17	91	725	2059	3271	4469	5823	7524
3	oben			_					3399		-	
Mittel				-1	17	90	680	1980	3240	4359	5709	7409
1			äußeres	-7	81	300						5
2	12			6	87	328	-	-	-	—	-	
	unten											
Mittel		1		1	84	314	-	_	-	_		
Gesam	tmittel	В		1	- 51	202	-	-	-			
1				-2	4	33	310	1347	2401	3565	4891	6658
2 3	6 shan			-4	4	31	352	1481	2602	3763	5122	6971
	oben								2110			
Mittel					4	85	551	1414	2573	3664	6007	6815
1	10		inneres	+9	121	404	2125	3711	4780	6060 6110		
4 3	13 unten			20	129	440	2320	3870	4972 5110	0112	_	_
Mittel	unton			15	195	499	2222	2791	4954	6086		
Gesami	mittel			6	65	999	1977	9602	3764	4875		
Goodin			1 1	v	Οġ	220	1014	2009	0103	4010		

Tabelle 28. Dehnungen λ_i der Laschen.

Die Stoßstelle der Stegbleche lag gegenüber der Mitte der Meßlänge; die Beobachtungen begannen mit 21,40 t Anfangsbelastung.

astungs- ihe Nr.	Nr. und Lage der Maßstellan	Gemessen an der Lasche		Dehnu	ngen λ _l	in <u>1</u> 100000) ^{cm bei}	den folg	genden I	Belastung	en in t	
Bel	menstenen	(a. 118, 00)	96,29	197,96	294,37	393,75	490,81	588,38	690,22	692,40	791,20	887,97
				Seite	A des	Stab	e 8.					
1			82	170	236	283	387	498	642	656	813	1007
2	9		79	165	229	282	385	501	649		821	1022
3 4	oben		78	161	225	278	382	502 502	-		827	1028
Mittel			80	165	230	281	385	501	646	(656)	820	1019
		ţ	04	993	248	476	619	748	807	806	1120	1550
2		innere	98	225	348	476	616	740	897	080	1130	1607
ĩ	11		98	225	354	481	616	748			1133	-
4	unten				-		_	748	-	-	-	
Mittel			97	224	349	478	615	748	897	(896)	1134	1583
Gesa	ntmittel		88	195	290	379	500	624	771	776	977	1301
1	15		89	219	409	537	656	886	1293	1373	2023	3383
2	in der		89	221	415	531	666	897	1353	- 1	2133	3623
3	Mitte	e	89	221	418	526	665	901		- 1	2175	3738
4	(auf hal-	außere		-		-		900	-	-	-	-
Mittel	ber Höhe)		89	220	414	581	662	896	1323	(1373)	2110	3581
				Seite	B des	Stabe	es.		<u></u>			
1			61	144	239	340	450	582	730	748	903	1103
2			56	144	236	334	457	589	741	- I	902	1130
3	7		56	141	234	333	458	590	-	-	904	1134
4	oben					-	-	590	-	-		-
Mittel			58	143	236	836	455	588	736	(748)	903	1122
1		t innora	68	174	276	388	497	628	776	792	972	1372
2		umere	70	174	274	387	499	634	787	- 1	992	1450
3	14		70	175	277	392	500	636	-		1004	1473
4	unten				-			638		-	-	-
Mittel			69	174	276	889	499	634	782	(792)	989	1432
Gesa	mtmittel		64	159	256	362	477	611	759	770	946	1277
1	16		79	201	331	426	559	771	1155	1180	1735	2873
2	in der)	81	200	330	418	561	778	1171		1782	3075
3	Mitte	e	81	200	329	411	561	778	-	- 1	1805	3144
4	(auf hal-	außere		-	-	-	-	773	-		-	
Mittel	ber Höhe)		80	200	330	418	560	775	1163	(1180)	1774	3031

Be- lastungs-	Nr. und Lage der	Ger	nessen an der	Bleiber	nde Läng	gung in g	1 100 000 c	m nach	den folg	enden B	elastung	en in t
Nr.	Meßstelle	Seite	Lasche (s. Fig. 58)	98,29	197,96	294,37	393,75	490,81	588,38	690,22	791,20	887,97
l 2 3 Mittel	3 oben			4 4 4	-18 -19 -	69 74 	143 146 145	137 141 	$-125 \\ -123 \\ -123 \\ -123 \\ -124$	-95 -94 -	46 41 44	+32 + 39 - +36
1 2 3 Mittel	11 unten	A	f innere	-2 -2 -2 -2	3 3 	4 6 	12 14 13	15 21 -	27 29 29 28	50 48 49	130 132 131	448 468 458
Gesa	mtmittel				-8	34	-66	-61	-48	-23	+44	+247
1 2 3 Mittel	15 auf hal- ber Höhe		e äußere	3 3 	16 17 	55 58 57	13 12 - 13	6 5 	93 97 99 96	399 424 - 412	1002 1080 1041	2293 2443 - 2368
						_				(
	7 oben			$-5 \\ -6 \\ -$	_7 _7 _	- 8 -10 -	$-65 \\ -72 \\ -$	-103 -102 -	$-98 \\ -95 \\ -94$	-73 -72 -	35 35 	$^{+53}_{+57}$
1 2 3 Mittel	7 oben			-5 -6 -6 -6 -6	-7 -7 -7 -7	$ \begin{bmatrix} -8 \\ -10 \\ - \end{bmatrix} $	-65 -72 - -69	-103 -102 	98 95 94 96	-73 -72 - - 78	35 35 85	+53 + 57 + 55
1 2 3 <u>Mittel</u> 1 2 3	7 oben 14 unten	В	<i>†</i> innere		-7 -7 -7 -5 -5 -5 -5		-65 -72 - -69 -33 -34 -	$-103 \\ -102 \\ -$ $-103 \\ -23 \\ -22 \\ -$	$ \begin{array}{r} -98 \\ -95 \\ -94 \\ \hline -96 \\ \hline -2 \\ 0 \\ \end{array} $	$-73 \\ -72 \\ -73 \\ -78 \\ +28 \\ +34 \\ - \\ -$	-35 -35 - 85 +112 +120 -	+53 +57
1 2 3 Mittel 1 2 3 Mittel	7 oben 14 unten	В	<i>†</i> innere	-5 -6 -66666666	-7 -7 -7 -5 -5 -5 -5 -5	$ \begin{array}{c} -8 \\ -10 \\ -9 \\ -26 \\ -28 \\ - \\ -27 \\ \end{array} $	-65 -72 -69 -33 -34 - -34 -	$-103 \\ -102 \\ -102 \\ -23 \\ -22 \\ -23 \\ -$	$ \begin{array}{c} -98 \\ -95 \\ -94 \\ -96 \\ -4 \\ -2 \\ 0 \\ -2 \\ \end{array} $		-35 -35 -35 +112 +120 - 116	+53 +57 +55 +431 +455 - 443
1 2 3 Mittel 1 2 3 Mittel Gesa	7 oben 14 unten mtmittel	В	<i>j</i> innere	-5 -6 -6666666	-7 -7 -7 -5 -6 -7	$ \begin{array}{r} -8 \\ -10 \\ - \\ -9 \\ -28 \\ - \\ -27 \\ -27 \\ -18 \\ \end{array} $	-65 -72 -69 -33 -34 - -84 -52	-103 -102 108 -23 -22 - -23 -23 -23 -23 -63	$ \begin{array}{r} -98 \\ -95 \\ -94 \\ \hline -96 \\ -2 \\ 0 \\ -2 \\ \hline -2 \\ -2 \\ -49 \\ \hline -49 \\ \end{array} $	$ \begin{array}{r} -73 \\ -72 \\ - \\ -78 \\ +28 \\ +34 \\ - \\ +81 \\ -21 \\ \end{array} $	-35 -35 35 +112 +120 116 +41	+53 +57 - +55 +431 +455 - 443 +249
1 2 3 Mittel 1 2 3 Mittel Gesa 1 2 3	7 oben 14 unten mtmittel 16 auf hal- ber Höhe	В	f innere e äußere	-5 -6 - -6 5 2 - 4 -1 4 6 -	-7 -7 -7 -5 -5 -6 9 8 -	$ \begin{array}{r} -8 \\ -10 \\ -9 \\ -28 \\ -28 \\ - \\ -27 \\ -18 \\ 11 \\ 11 \\ - \\ \end{array} $	$ \begin{array}{r} -65 \\ -72 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	103 102 108 23 22 	$ \begin{array}{r} -98 \\ -95 \\ -94 \\ \hline -96 \\ \hline -2 \\ 0 \\ \hline -2 \\ \hline -2 \\ \hline -49 \\ \hline +71 \\ +73 \\ +75 \\ \end{array} $	$-73 \\ -72 \\ -$ -78 +28 +34 - +81 -21 +335 +349 -	35 35 35 +112 +120 116 +41 805 844 	+53 +57 - +55 +431 +455 - 443 +249 1876 1995 -

Tabelle 29. Bleibende Längungen der Laschen.

Die Stoßstelle der Stegbleche lag gegenüber der Mitte der Mcßlängen; die Beobachtungen begannen mit 21,40tAnfangsbelastung; aufsie wurde auch stets wieder entlastet.

Tabelle 30.

Verschiebungen der inneren, gestoßenen Stegbleche gegen die innere Lasche.

Die Meßstellen lagen in den Querschnitten mit den äußersten Nieten. Die Verschiebungen der Stegblechteile nach dem benachbarten Ende der Lasche hin sind als positiv bezeichnet.

	- 1									-		
Be- lastungs- reihe	Nr. und Lage der	Lage der Meß- stelle zum Stoß		Versc	hiebung	in 1/5000	cm bei d	len folge	nden Be	lastungei	ı in t	. <u> </u>
Nr.	Meßstelle	(s. Fig. 57)	98,29	197,96	294,37	893,75	490,81	588,38	690.22	692,40	791,20	887,97
				Seite	A des	Stabe	s.					
1			4	13	29	54	101	138	170	180	2.10	360
2			5	15	30	61	108	140	180		320	370
3	17		5	17	30	65	110	147		-	320	370
4	oben	rechts.		-		_		150			-	_
Mittel		nach dem	5	15	80	60	106	144	175	(180)	283	366
1		Kolben	4	19	38	72	123	163	199	208	238	293
2	10	Maschine	5	20	40	80	129	167	203	-	243	303
3	19 unton	hin	5	21	42	83	133	173	-		248	303
4	unten							173				
Mittel			5	20	40	78	128	169	201	(208)	243	800
Gesan	ntmittel		5	18	35	69	117	157	188	194	263	333
1			5	14	36	100	139	173	213	225	260	310
2			5	16	39	105	140	180	220	-	265	320
3	18		6	17	40	107	145	181	-	-	270	320
4	oben	links,						184				
Mittel		nach dem	5	16	38	104	141	180	217	(225)	265	317
1		Wider-	5	16	35	105	158	213	275	305	355	445
2	20	lager	5	17	37	116	166	225	295		375	455
3	unten	hin	5	18	39	118	173	231	-	-	385	455
4	unter							235	· · · · ·			
Mittel		-	_5	17	37	113	166	226	285	(305)	372	452
Gesa	mtmittel		5	16	38	109	153	203	251	(265)	318	384
				Seite	B de	s Stab	es.					
1			3	9	18	42	95	145	194	209	246	297
2			4	9	19	51	103	150	204	-	257	309
3	21.		4	9	19	54	107	157	-		257	314
4	open	rechts,	-	_	_		-	159				
Mittel		nach dem Kalban	4	9	19	49	102	153	199	(209)	253	307
1		der	2	13	28.	74	136	183	239	260	293	346
2		Maschine	4	14	30	88	145	192	252	-	302	360
3	20 unten	hin	4	14	30	92	149	198	-	-	312	362
4	unicin	1			-	-		203				
Mittel			3	14	29	85	143	194	246	(260)	302	356
Gesa	mtmittel		4	11	24	67	122	173	222	(235)	278	332
1			1	6	12	28	70	106	142	156	190	245
2			1	7	12	33	77	111	150	-	200	255
3	22		1	8	12	37	79	115	-		204	260
4	open	links,						118	-			
Mittel		nach dem fosten	1	7	12	33	75	113	146	(156)	198	253
1		Wider-	3	12	27	74	115	153	194	210	245	297
2	94	lager	3	13	31	82	123	160	204	-	255	313
3	unten	hin	3	14	33	85	126	163	-	-	261	318
4			-	-		<u> </u>		167	100	(010)	071	900
Mittel		-		13	30	80	121	161	199	(210)	204	608
Gesa	mtmittel		2	10	21	57	98	137	173	(183)	226	281

Belastungs- reihe	Nr. und Lage der Meßstellen	im Felde und Art	Änd	lerung d	er Feldw	eiten in	em 10-	4 bei de	n folgen	den Bela	stungen	in t
Nr.	(s. Fig. 54)	der Form- änderung	98,29	197,96	294,37	393,75	490,81	588,38	690,22	692,40	791,20	887,97
1 2 3 4	27 oben		22 20 20 -	30 24 20	22 20 18	42 54 60	60 78 84 	80 92 100 108	82 82 	106 	24 6 6 	$-220 \\ -260 \\ -276 \\ -$
Mittel		Feld I	21	25	20	52	74	95	82	(106)	12	-252
$\begin{array}{c}1\\2\\3\\4\end{array}$	28 unten	Gesamt		$-2 + 10 \\ 16$	18 34 36 -	$\begin{array}{c} 24\\ 10\\ 2\\ -\end{array}$	-6 -24 -28 -	$-28 \\ -48 \\ -66 \\ -70$	-42 -42 -	-52 - -	$+38 \\ 54 \\ 70 \\ -$	350 374 414
Mittel			-7	8	29	12	-19	-58	-42	(-52)	54	379
Gesam	tmittel		7	16	25	32	27	21	20	27	33	64
$1 \\ 2 \\ 3$	27 oben		2 0 -	-4 10 	20 26 	0 6 —	20 30 —	36 44 56	30 42 40		-42 -44 -	$-328 \\ -340 \\ -$
Mittel		Feld I	1	-7	-23	3	25	45	37		-48	-334
1 2 3 Mittel	28 unten	bleibend	10 10 	$ \begin{array}{r} 14 \\ 30 \\ - \\ - \\ 99 \end{array} $	46 50 	18 14 	- 8 -24 -	$-42 \\ -54 \\ -66 \\ -54$	$-36 \\ -42 \\ -46 \\ -41$	-	+54 70 -	394 434
Gesam	tmittel		6	8	18	10	5	- 4	-11 _ 9		10	40
GUSAIII				0	10						1Ų	
			1									l,
1 2 3 4	25 oben		4 0 0	4 10 14 	$-30 \\ -38 \\ -38 \\ -$	$-58 \\ -56 \\ -54 \\ -$	66 60 60	$-120 \\ -120 \\ -120 \\ -120 \\ -120$	-208 -216 	-220 	-424 444 456 	738 774 782
1 2 3 4 Mittel	25 oben	Feld II	4 0 	-4 -10 -14 - - 9	-30 -38 -38 - -35	58 56 54 -56	66 60 62	-120 -120 -120 -120 -120 -120	-208 -216 -212	-220 (-220)	-424 -444 -456 - - -441	738 774 782 765
1 2 3 4 <u>Mittel</u> 1 2 3 4	25 oben 26 unten	Feld II Gesamt		$ \begin{array}{r} -4 \\ -10 \\ -14 \\ -9 \\ -40 \\ -50 \\ -52 \\ - \end{array} $	-30 -38 -38 - -85 -82 -88 -90 -	-58 -56 -54 - - - - - - - -	-66 -60 -60 -62 -82 -60 -58 -	$-120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -168 \\ -164 \\ $	-208 -216 	-220 	-424 -444 -456 - - -441 -678 -700 -716 -	-738 -774 -782 - -765 -1204 -1242 -1266 -
1 2 3 4 Mittel 1 2 3 4 Mittel	25 oben 26 unten	Feld II Gesamt	$ \begin{array}{c} 4 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{array}{r} -4 \\ -10 \\ -14 \\ -9 \\ -40 \\ -50 \\ -52 \\ -47 \\ -47 \\ -47 \\ -47 \\ -10 \\ -52 \\ -10 \\ -10 \\ -10 \\ -52 \\ -5$	-30 -38 -38 -38 -38 -38 -82 -82 -88 -90 - -87	-58 -56 -54 - - - - - - - -	-66 -60 -60 -62 -82 -60 -58 - -67	$-120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -180 \\ -174 \\ -168 \\ -164 \\ -172 \\ $	-208 -216 	-220 (-220) 382 (-382)	424 444 456 	-738 -774 -782 - - -765 - - 1204 - 1242 - 1266 - - - - 1237
1 2 3 4 Mittel 1 2 3 4 Mittel Gesam	25 oben 26 unten tmittel	Feld II Gesamt	$ \begin{array}{r} 4 \\ 0 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 7 \\ - \\ 8 \\ \end{array} $	-4 -10 -14 - -9 -40 -50 -52 - - -47 -28	$ \begin{array}{r} -30 \\ -38 \\ -38 \\ -38 \\ -38 \\ -38 \\ -38 \\ -38 \\ -82 \\ -85 \\ -82 \\ -87 \\ -87 \\ -87 \\ -61 \\ \end{array} $	$ \begin{array}{r} -58 \\ -56 \\ -54 \\ - \\ -56 \\ $	$ \begin{array}{r} -66 \\ -60 \\ -60 \\ - \\ -62 \\ - \\ -62 \\ - \\ -62 \\ - \\ - \\ -67 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$-120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -120 \\ -174 \\ -168 \\ -164 \\ -164 \\ -172 \\ -146 \\ $	-208 -216 	-220 	-424 -444 -456 	-738 774 -782 - -765 -1204 -1242 -1266 - -1287 -1001
1 2 3 4 Mittel 1 2 3 4 Mittel Gesam 1 2 3 Mittel	25 oben 26 unten tmittel 25 oben	Feld II Gesamt Feld II	$ \begin{array}{c} 4 \\ 0 \\ - \\ - \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	-4 -10 -14 -9 -50 -52 - -47 -28 -16 -20 - -18	-30 -38 -38 -38 -38 -38 -82 -85 -82 -87 -87 -61 -38 -40 - -39	$ \begin{array}{r} -58 \\ -56 \\ -54 \\ - \\ -56 \\ -54 \\ - \\ -56 \\ - \\ -56 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$ \begin{array}{r} -66 \\ -60 \\ -60 \\ -60 \\ -60 \\ -58 \\ -60 \\ -58 \\ -67 \\ -67 \\ -64 \\ -38 \\ -39 \\ -39 \\ \end{array} $	-120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 174 - 168 - 164 - 172 - 168 - 164 - 172 - 164 - 172 - 146 - 172 - 146 - 90 - 92 - 86 - 89 - 89 - 89 - 89 - 89 - 89 - 89	-208 -216 	-220 	-424 -444 -456 - - -441 -678 -700 -716 - - - 698 - 570 - 404 -418 - - 411	-738 774 782 1204 -1242 -1266 1287 1287 1001 758 778 768
1 2 3 4 Mittel 1 2 3 4 Mittel 6 csam 1 2 3 Mittel 1 2 3 Mittel	25 oben 26 unten tmittel 25 oben 26 unten	Feld II Gesamt Feld II bleibend	$\begin{array}{c} 4 \\ 0 \\ 0 \\ -1 \\ -18 \\ -18 \\ -18 \\ -18 \\ -2 \\ -4 \\ -3 \\ -14 \\ -16$	$\begin{array}{c} -4 \\ -10 \\ -14 \\ -9 \\ \end{array}$	30 38 38 	$\begin{array}{c} -58\\ -56\\ -54\\ -\\ -\\ -\\ -56\\ -\\ -\\ -\\ -56\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} -66 \\ -60 \\ -60 \\ -60 \\ -60 \\ -60 \\ -61 \\ -60 \\ -61 \\ -61 \\ -61 \\ -61 \\ -61 \\ -61 \\ -61 \\ -61 \\ -38 \\ -61 \\ -38 \\ -61 \\ -38 \\ -61 \\ -38 \\ -61 \\$	$\begin{array}{c} -120\\ -120\\ -120\\ -120\\ -120\\ -120\\ -120\\ -168\\ -164\\ -172\\ -168\\ -164\\ -172\\ -168\\ -36\\ -89\\ -86\\ -89\\ -88\\ -56\\ -56\\ -46\\ -46\\ -46\\ -46\\ -58\\ -56\\ -46\\ -46\\ -46\\ -46\\ -46\\ -46\\ -46\\ -4$	$\begin{array}{c} -208\\ -216\\ -\\ -212\\ -360\\ -378\\ -\\ -\\ -369\\ -291\\ -178\\ -178\\ -178\\ -178\\ -178\\ -178\\ -260\\ -226\\ -276\end{array}$		-424 -444 -456 	738 774 782
1 2 3 4 Mittel 1 2 3 4 Mittel 1 2 3 Mittel 1 2 3 Mittel	25 oben 26 unten 25 oben 26 unten	Feld II Gesamt Feld II bleibend	$\begin{array}{c} 4\\ 0\\ 0\\ \end{array}$	- 4 -10 -14 - 9 - 9 -50 -52 -52 	30 38 38 	$\begin{array}{c} -58\\ -56\\ -54\\ -\end{array}$	-66 -60 -60 -62 -62 -62 -62 -62 -63 -58 -67 -64 -40 -38 -39 +40 +40	$\begin{array}{c} -120\\ -120\\ -120\\ -120\\ -120\\ -120\\ -120\\ -16\\ -16\\ -174\\ -16\\ -172\\ -146\\ -172\\ -146\\ -90\\ -92\\ -86\\ -89\\ -86\\ -56\\ -46\\ -53\\ \end{array}$	$\begin{array}{c} -208\\ -216\\ -\\ -\\ -212\\ -360\\ -378\\ -\\ -\\ -369\\ -369\\ -378\\ -\\ -369\\ -369\\ -291\\ -176\\ -178\\ -178\\ -178\\ -177\\ -260\\ -266\\ -276\\ -2$	220 	-424 -444 -456 - - - - - - - - - - - - - - - - - - -	738 774 782 -1204 -1242 -1242 -1242

d. h. des Abstandes der Stegbleche Seite A und B des Stabes voneinander.

Die Dehnung ist	ermittelt aus	den Bewegunge	n der beiden	Stabenden	(Augen)	gegen f	este	Punkte	im
	Raum; die B	eobachtungen b	egannen vor	ı der Nullas	t = 21,4	t ab.			

Belastungs-	Seite des			Dehnung	en in ¹ /100	cm bei d	en folgend	len Belast	ungen in	t	
Nr.	Stabes	98,29	197,96	294,37	393,75	490,81	588,38	690,22	692,40	791,20	887,97
			I. Ges	amtdehr	ung unt	ær der 1	Belastun	g.			
1		8	17	25	35	45	57	69	71	82	95
2		8	17	25	36	46	58	69		83	97
3	A	8	17	25	35	47	58	-	-	83	98
4			-	_			58				-
Mittel		8,0	17,0	25,0	35,8	46,0	57,8	69,0	(71,0)	82,7	96,7
1		7	17	25	36	47	59	72	75	86	102
2		7	16	26	37	48	59	72		87	102
3	B	7	15	26	36	49	60 、	-	-	88	103
4		—		-	—		58			—	
Mittel		7,0	16,0	25,7	36,3	48,0	59,0	72,0	75,0	87,0	102,3
Gesam	tmittel	7,5	16,5	25,3	35,8	47,0	58,4	70,5	73,0	84,9	99,5
		II. Bl	eibende	Dehnun	g nach (lem Ent	tlasten a	uf 21,4	t.		
1		0	0	0	2	4	7	10	-	13	19
2		0	0	1	2	5	8	11	-	14	20
3	A		—	—	-	—	9	12		—	
Mittel		0	0	0,5	2,0	4,5	8,0	11,0	-	13,5	19,5
1		0	0	2	5	8	11	16	1	20	26
2	_	0	1	4	6	9	13	17		20	27
3	В	-	-	-	-	-	13	17	-		-
Mittel		0	0,5	8,0	5,5	8,5	12,3	16,7		20,0	26,5
Gesamt	tmittel	0	0,25	1,8	3,8	6,5	10,15	13,9		16,8	23,0

Tabelle 33.	Ergebnisse der	Zugversuche	mit de	n Materialprober	ı zum	Zugstabe	70.
		Meßlänge :	= 200 m	n.			

			Abı	messun	gen	Elasti-	Spann	aungen k	g/qcm	ntfer- ruch- näch- narke	B bezog	ruchdehnu en auf die	ng Länge	tts- ung
P r obe	Ent- nom- men aus	Be- zeichnung der Proben	Dicke	Breite	Quer- schnitt f	zitātszahl $\frac{1}{\alpha} = E$	Propor- tionali- täts- grenze	Streck- grenze	Bruch- grenze	Mittlere E nung der B stelle v. d. sten Endr	l = 5,65 √f	i=11,8 ∤ <i>j</i>	l = Gesamte Meßlänge	Querschniver
Nr.	İ		mm	mm	qmm	kg/qcm	σ _P	a_S	σ _B	em	%	%	%	%
12			15,3	30,6	468	2015000	1500	2800	3360	In der	letzten	Marke g	gerissen	(10)
13		88. 520. 15	15,0	30,7	461	2065000	1740	3020	3660	AnRon	alh dan I	f		_
14			14,7	30,7	451	2050000	2220	2930	3700	f Auber	laib der h	temange	gerissen	_ `
15	a	5996. 88. 520. 15	14,9	32,1	478	2 060 000	1880	2920	4090	10	36,1	25,7	25,7	64
16	Steg-		14,9	30,5	454	2020000	1540	2860	3830	Außer	halb der M	feßlänge	gerissen	
17	DICOL	88 A 520 15	15,2	29,9	454	2020000	1540	2580	3830	9	32,5	23,1	23,0	69
18		010/10	15,1	30,5	461	2010000	1950	2760	4070	Außerl	alb der M	leßlänge	gerissen	_
19		5996. 88 A 520. 15	15,0	32,2	483	2045000	1860	2610	3980	9	33,7	24,0	23,7	65
Mittel		-	-	_		2 035 600	1780	2810	3820	_	[34,1]	[24,3]	[24,1]	[66]
20	Stoß- lasche	5996. 90. 300. 16	15,5	32,2	499	2 055 000	1600	2200	3580	7	4 1,0	30,8	30 5	70
	Versu	che im Eise	nbau A	. 2.	•							6	ı	

Bruch	Belastung	Bruch			Nr. de höriger bilder	r zuge- 1 Licht- figur	
Nr.	t			Lage	n1	Bruch-	
		Art	im Steg	Höhe	lage	aus- sehen	
1	995,46	Saumwinkel gerissen	A	unten	69 a	71	
2	1018,98	Derselbe Winkel gerissen	A	unten	6 9 b	_	
3	1030,48	Saumwinkel gerissen	A	oben	69 b	_	
4	1098,95	Heftniet des Saumwinkels abgeschoren	A	unten	69 a	—	
5	1114,70	Beide Stegbleche gerissen	B	über die ganze Höhe	70	72	
6	702,83	Saumwinkel gerissen	A	oben	69 a	-	
7	709,29	Saumwinkel angebrochen	A	unten	69 b	_	
8	628,63	Beide Saumwinkel gerissen	B	oben und unten	70	-	
9	610,01	2. Heftniet des Saumwinkels abgeschoren	A	unten	69 a	-	
10	559,54	Desgl. 3. Niet	A	unten	69 a		
11	sinkt ständig ab	Nach und nach scheren die letzten sechs Niete des Saumwinkels ab und die Steg- bleche reißen, unten beginnend, durch	A	über die ganze Höhe	69 a	73	

Tabelle 34. Zeitlicher Verlauf der Brüche der einzelnen Stabteile.

Druck der Spamerschen Buchdruckerei in Leipzig.

Eisen im Hochbau. Ein Taschenbuch mit Zeichnungen, Zusammenstellungen und Angaben über die Verwendung von Eisen im Hochbau. Herausgegeben vom Stahlwerksverband A.-G., Düsseldorf. Fünfte, völlig neubearbeitete und erweiterte Auflage. Mit zahlreichen Abbildungen und 7 Tafeln. Gebunden Preis M. 16.---

Taschenbuch für Bauingenieure. Unter Mitwirkung von hervorragenden Fachmännern herausgegeben von Dr.Ing. E. h. Max Foerster, Geh. Hofrat, ord. Professor für Bauingenieurwesen an der Technischen Hochschule Dresden. Dritte, verbesserte und erweiterte Auflage. 2263 Seiten mit 3070 Textabbildungen.

Die Grundzüge des Eisenbetonbaues. Von Geh. Hofrat M. Foerster, ord. Professor an der Technischen Hochschule Dresden. Mit 164 Textabbildungen. Gebunden Preis M. 18.--

Repetitorium für den Hochbau. Von Dr. Ing. E. h. Max Foerster, Geh. Hofrat, ord. Professor für Bauingenieurwissenschaften an der Technischen Hochschule Dresden.

- Heft: Graphostatik und Festigkeitslehre. Für den Gebrauch an Technischen Hochschulen und in der Praxis. Mit 146 Textabbildungen. Preis M. 7.60
- 2. Heft: Abriß der Statik der Hochbaukonstruktionen. Für den Gebrauch an Technischen Hochschulen und in der Praxis. Mit 157 Textabbildungen. Preis M. 8.60
- 3. Heft: Grundzüge des Eisenhochbaues. Mit zahlreichen Textabbildungen. Unter der Presse
- **Technische Mechanik.** Ein Lehrbuch der Statik und Dynamik für Maschinen- und Bauingenieure. Von Ed. Autenrieth. Zweite Auflage. Neubearbeitet von Professor Dr. Ing. Max Ensslin, Stuttgart. Mit 297 Textabbildungen. Zweiter, unveränderter Neudruck. Unter der Presse
- Elastizität und Festigkeit. Die für die Technik wichtigsten Sätze und deren erfahrungsmäßige Grundlage. Von Dr.-Ing. C. Bach, württ. Staatsrat, Professor des Maschineningenieurwesens, Vorstand des Ingenieurlaboratoriums und der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart. Achte, vermehrte Auflage. Unter Mitwirkung von Professor R. Baumann, Stellvertreter des Vorstandes der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart. Mit in den Text gedruckten Abbildungen und Tafeln. Unter der Presse

Festigkeitseigenschaften und Gefügebilder der Konstruktionsmaterialien. Von Dr. Ing. C. Bach und R. Baumann. Zweite Auflage. Mit etwa 700 Textabbildungen. Unter der Presse