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Preface.

The idea of the fundamental region of a group is familiar. (A list of
references will be found at the end of this paper.) The orthoscheme, which
Schlafli I associates with a regular polytope, is really a fundamental region
for the group of symmetries of the polytope. Dr. J. A. ToddJ has
recently used this fact in order to obtain abstract definitions for the groups
of symmetries of the regular polytopes.

* Part 1 of this paper appears in the Phil. Trans. Royal Soc. (A), 229 (1930), 329-425.
The paragraphing of this part follows on that of Part 1.

f "Theorie der vielfachen Kontinuitat", N. Denkschr. Schweiz. Ges. Natw., 38 (1901).
| "The groups of symmetries of the regular polytopes", Proc. Camb. Phil. Soc, 27

(1931), 212-231.
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On 24 November, 1930, Dr. G. de B. Robinson urged me to seek a
fundamental region for the "pure Archimedean" poly tope n21. By
fitting together three special orthoschemes, I found the required funda-
mental region, namely a simplex all of whose dihedral angles were
either Iv or ^TT. This result led to an empirical generalization, and to an
extension of the Schlafli symbol {kly k2, ..., km_-^. Afterwards I proved
the general result, which can be stated as follows :

Every group of real orthogonal substitutions on m variables, having as
fundamental region a simplex all of whose dihedral angles are submultiples of
7T, is either the whole group of symmetries of some m-dimensional uniform
polytope, or a sub-group thereof.

An abstract definition for such a group, and in particular for the
group of automorphisms of the twenty-seven lines on a cubic surface or of
the twenty-eight bitangents of a plane quartic, can be written down at
once.

A preliminary account of this work appears in the Journal London
Math. Soc, 6 (1931), 132-136. In the last line but eight of page 134, the
words " central projections of" should be inserted after the word
"vertices".

I should like to express here my thanks to Dr. Todd and Dr. Robinson
for their inspiration and encouragement.

14. An extension of the Schlafli symbol.

14.1. At the end of §5.3 we observed that the vertex figure of the
polytope tn{kv k2, ..., &m_j} is a generalized prism whose two constituents
are the vertex figures of

{rn* " ' n - U "•> *1J a n d {kn+V " W 2 > •••> ^ m - l } -

This fact suggests the new notation

f fh h h \ — \ l I
bn\K'V Kit •••> " ' m - l j — " j Y>

l" 'n+l> ^tt+25 •••> " ' m - l j

which is justified by the identities
t0{&!, k2, ..., km_tf = {kv k2, ..., km_tf

a n d *m-i {&i> K • • •» K-i) = {K-v K-2> • • • 5 &i}-
We thus define

(in the notation of § 7.1).
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I t follows from this definition that I ' P- \ j^g -n ge n e r a i

kinds of bounding figure:

• • • and 1 • • • r
t ^ O ' ^ U '••}Jq~l] 1^0' 3l> '••>Jq-2)

Thence it follows that the general element (apart from vertices) is

This result is perfectly analogous to the fact that the general element of
{kv k2, ..., k^} is ftj h> ^ ^ ( 1

and it is easily seen to agree with (5. 23).

14.2. Since
/ 77-\+1

{̂ i> k2, ..., km_1}= ({k2, ..., km_tf2

it is natural to define

{
00 0 \ ' ( 0 0 0

*i. . . . H, . . .
The general element (apart from vertices and edges) is now

i h, h. -.., V-.1 ( .

Similarly, we can define inductively

| , , 7 *o> h > •••> S - i I _ / j , • , H i H i •••» h - i I 77 \
"\ "'l* "*2' *' *' "*n> T — ( i ^ 2 ' • • • > **'n,> T ̂  COS , I

[ J0> hi -i jq-l J \ { J0> 3H - - i Jq-11 Kl I
The general element of not more than n dimensions is simply the general
element of {&1} k2, ..., kn}, while the general element of more than
n dimensions is

k , k2, ..., kn,
h> h'" : l f - 1 l (0<jp

' 3(a 3v '"i Jq'-l]

;

0 ' 1? • • • >

^O'̂ H •••>^ff-lj
J iQ, iv .,., ip-i\

dimensional, whence Ah^ k2, ..., kn, \ is (n+p+q+l)-
[ hi On ••-iJq-ij

dimensional. Thus the number of dimensions is one more than the
number of digits involved in the symbol.
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Note that

f h>3i>->3a-i\_\ *o»h
•jkv &2, •••> kn, ^ r — i%, %, ..., fcn, _
[ *o> *n •••>S-iJ I . 3o> 3i> ••-•>3q

14.3. Let us now illustrate this notation by giving numerical values
to the i's, fs, and h's.

(3)
i - = ^a3 = jS3 = {3,4}, the octahedron, whose vertex figure is [a,, a2] = f32',

j - = ^ (3, 5}, the icosidodecahedron ,3 „ ,, [a1} axTJ;
15)
(31

1 j- = ^i{3, 6} „ „ „ [al5 ai-y/5

{4} = fiS3==S3 = (4,4>. "sqnaredpaper" „ „ „ [j81,j81]=j32

3, l}= {3,3,4} =
„ „ „

„ „

„ „ „

j 3 1 _ , j j _ 7 (3
I 4=1" ~" /">4~~ct3 " " " "|4

I3
i3,

(3 1 , a = f o 4 Q)

13, 4f l P 4 l ' '

(3,3)

( 4 ) _ . .

l3,4f~il64 " " "

' !• = t (3 '4 3)
U, 3J l l ' '
3 J=« i{3 , 3, 5} „ „ „ [^,{5}];

5

SEE. 2. VOL. 34. NO. 1857.
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J 3 , 3 , ij} = {3f 3 , 3 , 4 } = j85;

4,3, 3}={4, 3, 3,4} = S5;

J3 I / f3'3

( l = < i a 5 ) 13,3

3 \
3,3,4)

l3, 3,

J 3 - 3 } = ^ ; {3,
,on \ 1 on i 1on-1 A\ 1 on—I A \

|3m-n-lj ~ lnam> \^m-n-2A\~"-Pmi \^m-n-l j—^nYm* \^m-n-2 AJ ~ ln°m'

14.4. The notation can be further extended. By §5.8 with I for n,
if IIm has an (Z+ l)-th vertex figure, then

kv k2, ..., kn, #

In this case, if I < nt

11/ is the vertex figure of {ku kt_v ...,

* 3" stands for 3, 3, . . . 3, with n 3's.
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and

kl+v kl+2, ..., kn,

Accordingly, it is perfectly analogous to write

//* 1/* 1/*
#i/jj A/i -i j • • • y f\j~i

l i d . d l 1 / < t1 Z* 1/* V ~"*7 -\ 0 ' 1 '
I 1 * ± . * ± J W] ftij A/p. . . . j / I / * , , f I 7 7 7

The three kinds of bounding figure are obtained by omitting the lcx or the
ip-i or the j q _ v respectively.

In particular,

" n - 1 1 " ' I ' " ^ 2 ' • • • > "*n»
l

and, finally,

o i

Jq-1

" * ! » ^ 2 ' " • ? " ^ n '

V i

This last symbol means

r 7T f 7T ~l"l + 1

By (4. 22), the inner square brackets can be removed, and the rows of our
three-rowed symbol are permutable. Writing

we now have

(14.42)

"> = = "-n-rj

3o> Jl> •"> Jq-l
= | * 0 > *1J " " ' ^

A o , «. l 5 . . . , « - n _ i

Ao> " ' l* •••» " ' n - l

K2
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When every h, i, j is equal to 3, these results reduce to (7.35) and (7 .36).
Thus, in the notation of (12.11),

(14.43) 3p = < W

14.5. Since the vertex figure and general element of

(14.51)

are respectively

(14.52)

[{^•••A-i)

and

JQ-1

^~, {i!,..., ia_i} 2COS y-

K •">

the following existence conditions are necessary:

rh0, hlt ..., hn_2] rh0, hlt ..., ^w_x **0» **1

3o> 3q-2

must all be finite, and the sum of the squared circumradii of the three
constituents of the prism (14. 52) must not exceed unity. By (2. 93), the
latter condition is equivalent to

75 ? r~ -5 /T—y. r

or (subtracting both sides from 3)

i O> 3v

JI , -»ie-i)
in virtue of (2 . 89). As usual, equality indicates degeneracy.
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Here we have tacitly assumed that npq > 0. The existence of

( *o> h> • • • > lp-i 1

depends solely on the existence of the regular polytope

Vp-V V-2> • • • > *0> Jo> Jv • • •' Jg-1)>

since the former polytope is the tp truncation of the latter.

14.6. In Chapter 17 we shall see that the vertices of

(14.61) \hn_X) V 2 > . " A / O ' * 1 ' " " V 1 1

(
h0, hlt ..., hn_2

i0, ix, ...,ip-x | ' s of (14.51), so that the

existence of (14.61) will follow from the existence of (14.51). But this fact
need not be used here; we shall simply find all possible ft's, i's, and j ' s for
which (14.51) exists, and then observe that the corresponding polytopes
(14.61) are familiar. By (14.42), there cannot be further values of the
&'s, i's, j ' s for which (14.61) exists.

When ho=... = hn_1 = io=...=ip_1=jo=...=jq_1=3, (14.53)
becomes

or

(14.62) npq^n+p+q+2,

which is the same as the existence condition (7 . 32) for Onpq.
Assuming that npq > 0 (as we may, by the remark at the end of § 14.5),

the only digit in the symbol

row. For, by (14.42),

[ that can be increased is the last in a

, 41
3 = tn 14, 3*-i, 3 ] = tn 8n+3 = t2 8I , , 3 ] tn 8n + 3 = t2 8n + 3 .

This being degenerate, we cannot introduce further digits into any row.
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is impossible if h > 4 or i > 3, since

[March 12.

An+1(3,3,...,3,A) A2£) A2 (j)
Att(35 ..., 3, A) + Ax + Al

1
n—

1
2(n-l) V" l - (n - l ) cos277/^+sin2T+sin2 j '

which decreases Avhen h or i increases.
Thus, if npq > 0, there are only two families of polytopes of the kind

we are investigating:

(i) The three semi-reciprocals

and their common truncation

^nna>

L33J

with the existence condition npq

(ii) The three semi-reciprocals

I s ' 3i = w+3'

and their common truncation

3
13

14.7. The simplest examples of three-rowed symbols are

, 4

3

L3J

3
3, 3

{3, 4, 3}, \ 3
UJ

5, 3 ={3,4,3,3}.
I 3, 4Jj
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14.8. Since \ \ = {3, 4}, whenever a row of an extended Schlafli

symbol ends with " 3 , 4 ", this combination can be replaced by a pair
of 3's, one over the other. In this manner, the identities

I3' 3 4 } = ( 3 ' 3 ' 4 ' 3 } and
•3
3

U 4
= {3, 4, 3, 3}

lead respectively to

3, 3 [ = {3, 3, 4, 3} and
3J

= {3,4,3,3}.

The symbols

j

gm—5
k

irn—5

h

k
3 m ~ 5 , .

i

k,
3m-5j

wherein h = i=j = k = 3, can be associated with Du Val's cycle of four
semi-reciprocal hhm'a. (These are semi-reciprocal in the sense that the
reciprocal of each possesses the vertices of the other three together.) In
each member of this cycle, the centres of the jSm_1's are the vertices of the
opposite member, while the centres of the hym_1's are the vertices of the
two adjacent members.

14. 9. It may have seemed pedantic to consider general values for the
numbers involved in the symbols (14.51) and (14.61), when never more
than two of these numbers can actually exceed 3. It is therefore worth
while to remark that, in a Minkowskian or hyper-Minkowskian space
(with a certain number of "time-like" dimensions), the h's, i's, and j ' s can
be as great as we please, the restriction (14. 53) being withdrawn.

In particular, Du Val has investigated the " pure Archimedean"
polytopes n21 with n > 5.

Such considerations, however, are outside the scope of the present
work.

15. Spherical simplexes whose dihedral angles are submultiples of rr.

15.1. An ordinary spherical triangle can be regarded as the inter-
section of a sphere with three independent planes through its centre. The
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angles of the spherical triangle are just the angles between pairs of the planes.
If the sphere is of unit radius, these three angles suffice to determine the
spherical triangle in both shape and size. But they must not be too small.
In fact, if the angles are (23), (3 1), (12), the area of the spherical triangle
is

(2 3)4-(3 1)+(l 2)-TT.

This function of the angles mast consequently be positive. The limit of a
sequence of spherical triangles of diminishing angles on spheres of suitably
increasing radii is a plane triangle, for which

(2 3 ) + ( 3 1) + ( 1 2 ) - T T = 0.

These notions can easily be extended to m dimensions. A spherical
simplex is defined as one of the 2m parts into which an (ra—1) -sphere is
divided by ra independent primes through its centre. Of the two
supplementary, angles between a pair of the primes, that one which is inside
the spherical simplex is called a dihedral angle. If the (ra—1)-sphere is of
unit radius, the spherical simplex is completely determined by its |ra(ra— 1)
dihedral angles. As in three dimensions, these dihedral angles must not
be too small. But when m > 3, the content of a spherical simplex is no
longer a simple function of the angles. We accordingly seek a more
tractable criterion.

Let the ra primes be called 1, 2, ..., ra; and let* (r s) denote the
dihedral angle between the primes r and s, so that («s r) = {r s). Using
Cartesian coordinates, with the origin at the centre of the (m—1)-sphere,
let the prime r have the equation

TO

where S a ^ = l (r = 1, 2, ..., ra).
»=i

We can suppose the signs of the a's adjusted so that the spherical simplex
is just the aggregate of points satisfying

arixt > 0.

m

It follows that E ariais = — cos(r s).

• Not to be confused with the (ij) of § 9 .2.
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The m primes being independent,

137

"11 ^12a-,0 a.

a21 a22 ""23

"lm

hm

hm

vml

# 0 .

Squaring this inequality we have*

1 —cos (12)

—cos (2 1) 1

(15.11) —cos (3 1) —cos (3 2)

—cos (ml) — cos (in 2) — cos (ra 3)

—cos (1 3)

—cos (2 3)

1

... —cos(lm)

... —cos (2 m)

... — cos (3 m)

15.2. The section of our spherical simplex by the prime through the
origin perpendicular to all the primes 1, 2, ...,i—l,i-\-l, ..., m is a
spherical simplex of one fewer dimensions, whose dihedral angles are

(r s) (r =£i =£s).

Hence the above determinant must remain positive when any number of
rows are removed, along with the corresponding columns. The in-
equalities obtained in this manner provide the required criteria for the
existence of a spherical simplex of given dihedral angles.

Note that, provided that no obtuse angles are admitted, the value of
our determinant diminishes when any one of the angles is diminished. The
limit of a sequence of spherical simplexes of diminishing dihedral angles
on (ra—1)-spheres of suitably increasing radii is a Euclidean simplex, for
which the determinant vanishes. But the simpler determinants, derived
by omitting corresponding rows and columns, remain definitely positive.

Let us now enumerate the spherical and Euclidean simplexes all of
whose dihedral angles are submultiples of TT. (This restriction implies
that no dihedral angle shall be obtuse.)

15.3. If the primes 1, 2, ..., m fall into two sets, say 1, 2, ..., i and
i-\-l,i+2, ..., m, such that every prime of the former set is perpendicular
to every prime of the latter, then our determinant breaks up into two

This result is due to Schlafli (loc. dt. in Preface).
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factors, whence the existence of the spherical simplex depends on the
existence of two simpler simplexes, viz., that whose dihedral angles are
(r s) with r ^ i and s ^ i, and that whose dihedral angles are (r s) with
r > i and s>i.

In particular, there is a spherical simplex all of whose dihedral angles
are right, namely the spherical simplex bounded by

15.4. Apart from one trivial case, it is impossible to have a closed
chain of acute dihedral angles, such as

(12), (2 3), ..., (» - l t ) , ( i l) .

For, to take the most favourable possibility, suppose that

m =i, (1 2) = (2 3) = ... = ( t - 1 *) = (» 1) = %n,

<\r— i— 1).and (r s) = 1

Our determinant becomes

1 - 1 0 0 ... 0 - 1

-1 1 — 1 0 ... 0 0

0 - 1 1 - 1 ... 0 0

0 0

= 0 (»>2).

Therefore the simplex in this case is Euclidean; and any further
diminution of the angles, or insertion of extra angles, will render it non-
existent.

15.5. Apart from one trivial case, it is impossible to have more than
three acute (r s)'s with a common r (or s). For, to take the most favourable
possibility, suppose that

m = 5, ( 1 2 ) = ( 1 3 ) = ( 1 4 ) = ( 1 5 ) = $7r and {re) = ltr ( r > l , s > l ) .

Our determinant becomes

= 0.1

- 1
— 1
- 1
- 1

1
1

0

0

0

- 1
0

1

0

- 1
0

0

1

0

- 1
0

0

0

1



1931.] PoLYTOPES WITH REGULAR-PRISMATIC VERTEX FIGURES.

Therefore the simplex in this case is Euclidean; and any further diminution
of the angles, or insertion of new angles, will render it non-existent.

15.6. Apart from one trivial case, it is impossible to have a double
occurrence of three acute (rs)'s with a common r. For, to take the most
favourable possibility, suppose that

(1 3) = (2 3) = (3 4) = (4 5) = ... = ( ra-4 m - 3 ) = ( m - 3 m - 2 )

= (ra—2 m—1) = (m—2 m) = $77,

with righfcangles for all the rest. In this case, too, the determinant vanishes.
Therefore the simplex is again Euclidean; and any further diminution of
angles, or insertion of extra angles, will render it non-existent.

15.7. The only type of simplex which remains to be considered is that
whose acute dihedral angles form three open chains all emanating from
one bounding prime, thus:

(1 2), (2 3), ..., (n

(ln+2), (n+2n+3), ..., (n+pn+p+l)-t

(ln+p+2), (n+p+2 n+p+3), ..., (n+p+q n+p+q+l).

Let us rename these angles as follows:

Then our simplex can conveniently be denoted by the symbol

C K K —» V-i'

*o, *i» - > V i

J0» 3l> "*•' -3q— 1,

15. 8. In order to clarify this notation, we may rename the m bounding
primes:

(15.81) 0, 1, 2, ..., n, I', 2', ..., p', 1", 2", ..., q".

Then TT/^0, 7r/i0, 7r/j0 are the angles between 0 and 1, 1', 1" respectively,
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n/hr is the angle between r and r + 1 , Trjir between r' and (r+1)', and
7r/̂ r between r" and (r+1)". Every other angle is a right angle.

We might have regarded our acute dihedral angles as forming only
two chains, one emanating from the middle of the other. But this aspect
destroys the symmetry which exists between the h's, i's, and fs, obscuring
the fact that the three rows of the symbol (15.71) can be permuted bodily.

If n = 0, so that there are no h's, we are left with a single chain of acute
dihedral angles; thus

(15.82) I . I = (ip_v ip_2, ..., i0, j 0 , j v ..., j ^ ) .
WO' 3D "•> 3q-\'

A simplex of this type, say*

is what Schlafli calls an orthoscheme. In this case, returning to the
notation of § 15 . 1 , we have

but all (r s)'s for which r and s differ by more than 1 are right angles. So
(15.11) becomes

Am(&1 } k2, . . . , «,n_i) > 0,

in the notation of § 3 . 5.
The simplest orthoscheme is (k): an arc of length irjk. The next

simplest is (k1} k2): a right-angled spherical triangle, of angles TT/Â  and

Tr/k2. The simplest other simplex of type (15.71) is I i I: a hyperspherical

tetrahedron with three right dihedral angles at one vertex, the remaining
three dihedral angles being TT/JI, -nji, -nfj.

Analogous symbols for the special simplexes discussed in §15.5 and
§15.6 are respectively

The special kind of simplex discussed in § 15.4 is unique, in that the number

* Not to be confused with the (xu xit ..., x,,) of § 3 . 6.
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of acute dihedral angles is equal to (instead of less than) the number of
'bounding primes. In this case the brackets must close up to form a
complete circle; so the appropriate symbol is

The enumeration of orthoschemes (with integral k's) involves exactly
the same work as the enumeration of regular poly topes, as undertaken
in § 3.5; so we need not repeat it here. The connection will appear later.
Since obviously

V ' C m - 2 > • • • > ' c l ) = ( " ' U ^2> • " > " 3 m - l ) >

the result is as follows:

m

2
3
4
5

>5

Spherical orthoschemes

(7c)
(3, 3), (3, 4), (3, 5)

(3, 3, 3), (3, 3, 4), (3, 3, 5), (3, 4, 3)
(3, 3, 3, 3), (3, 3, 3, 4)

(3™-1), (3"'"2, 4)

Euclidean orthoschemes

(4,4), (3,6)
(4, 3, 4)

(4, 3, 3, 4), (3, 3, 4, 3)
(4, 3 '"-3, 4)

For the sake of completeness, we might add: for m = 1, the very simple
simplex

( )

which has, and is, a single vertex; and, for ra = 2 (Euclidean), the straight
segment

so called because it subtends a zero angle at infinity.

15.9. I t is easily proved by induction that the proper determinant for

is equal to

Ag+1(j0> j l t .... j Q _ x ) _
A ( j j
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We saw in §15.2 that the existence of a spherical simplex depends,
not only on (15.11), but also on the existence of a spherical simplex
of one fewer dimensions, derived by suppressing any one of the original
bounding primes. If we suppress the prime 0 (in the notation of § 15. 8),
we obtain the orthoscheme

whose existence depends solely on the joint existence of the three ortho-
schemes

(hv ..., kn_x)} (ix, ..., ip-X), (jv '-'yjq-l)-

But the suppression of the prime r (r > 0) leads to the simplex

whose existence depends solely on the joint existence of

Similarly for the suppression of r' or r".
Hence the simplex (15.71) certainly exists if

all exist and are definitely spherical (not Euclidean), and if further the
inequality (14.53) is satisfied. In this inequality we have " > " for a
definitely spherical simplex, and " = " for a Euclidean one.

When all the h's, i'a, and j ' s are equal to 3, (14.53) becomes (14.62).
Thus the simplex

3«
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is spherical when npq < n-\-p-\-q-\-2,

and Euclidean when

npq = n-\-p-\-q-\-2.

The particular cases are as follows:

143

m = n+jj + g + 1

p + q + 1

n + 3

6

7

8

9

Spherical

(S)-<*••>
CO
 
CO
 
CO

CO
 
CO
 
CO

CO
 
CO

coCO
 
CO

CO
 
CO
 
CO

CO
 
00
 
CO

CO
 
CO CO CO

Euclidean

CO
 
CO
 
CC

CO
 
CO
 
CO

CO
 
CO
 
CO

CO
 
CO

CO
 
CO

CO
 
CO
 
CO

CO
 
CO 00 CO CO

The next simplest possibility is

/ 3 - 1 , 4 \

In this case, since An+1(3
n~1, 4) = 1/271 (as we saw in §3.5), we have

{- , , 4- , _ ) > 2, or pq ^ 1. Since the orthoschemes have already
> + 1 ^ 2 + l / ^ > **^> J

been considered, we can assume that pq > 0. Therefore we must have

p = q=\.

The simplex I

being Euclidean, is the last possibility.

'Z™-1, 4>

3
' 3
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Recapitulating, the only possible simplexes whose dihedral angles are
submultiples of v are the following:

( ) (m = 1, spherical or Euclidean),

(k) (m = 2, spherical),

(oo) (ra = 2, Euclidean),

/ 3» \
I 3P I (npq ̂ n-{-p+q-\-2, m = nJ

rp-\-q-\-\, spherical or Euclidean),
V33/

(3™-2, 4) (spherical),

(4, 3"1"3, 4) (Euclidean),

(3, 5) (m = 3, spherical),

(3, 6) (m = 3, Euclidean),

(3, 3, 5), (3, 4, 3) (w = 4, spherical),

(3, 3, 4, 3), I I (m = 5, Euclidean),

/ ' \ / \
I 3 I, I 3"1"5, ) (Euclidean),
V3 / \3, 3/

^3^ (Euclidean),

and an endless variety of new spherical simplexes derivable from pairs of
known spherical simplexes in the manner described in §15.3.

16. Groups whose fundamental regions are simplexes.

16.1. Let Rx, R2, ..., Rm

denote the reflections in the m primes of §15.1. These operations clearly
generate a group of congruent transformations or orthogonal substitutions.
Since a reflection is a negative operation (i.e. a transformation whose
matrix has a negative determinant), the group contains both positive and
negative operations; accordingly it is said to be extended.
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It is well known that the product RrRs is a rotation through angle
2 (r 5) about the secundum of intersection of the two primes r and s. Since

iZs
2=l and (R.R^R.E^R.R,,

all these products are expressible in terms of ra— 1 of them, provided that
these ra—1 involve all the R's. A suitable set of products is*

Sr = Rr+1Rx ( r = l , 2, . . . , m - l ) .

These rotations also generate a group. Since a rotation is a positive
operation, every operation of this group must be positive; accordingly the
group is said to be unextended.

Since the operation Rlt of period 2, belongs to the former group but
not to the latter, and since

ES=SS_1B1 (s = 2, 3, .... m),

it follows that the unextended group is a sub-group of index 2 in the extended
group.

The operation Rs transforms the simplex of § 15 .1 into a new simplex,
having the prime s in common with the original one. The operations

RrRs, (RrRs)*, (RrRs)\ ...

transform the original simplex into a cycle of new ones, all meeting in the
secundum of intersection of r and s. If every dihedral angle of the simplex
is a sub-multiple of IT, these simplexes will not overlap. In fact we shall
have

In this case, the simplex is called a fundamental region for either of the
groups.

16.2. We shall let gm denote the order of the extended group, so
that \gm is the order of the unextended group. gm may be finite or
infinite; we shall soon see that it is finite or infinite according as the
fundamental region is spherical or Euclidean.

The operations of the extended group satisfy the relations

f Rs
2=l {8=1, 2, ..., m),

(16.21) |

• This Sr is not to be confused with the S,,, of § 8 . 9 .

SER. 2. VOL. 34. vo. 1858. L



146 H. S. M. COXETER [March 12,

which are equivalent to

(16.22) * i 2 = l , (^ri?i)a==l ( r = l , 2, ..., m—1)

and

( Qir/(rl) i / 90 w \

oT-i — 1 \T — 4, o, . . . , m),

( 8 S A ) w n " > l ( 23

The gr,n operations of the extended group transform the fundamental
region into a net of gm simplexes, fitting together so as to fill the whole
(m— l)-space (spherical or Euclidean) at least once. An obvious extension
of an argument used by Burnside* proves that the net fills the space
exactly once, and that the equations (16.21) constitute an abstract
definition for the extended group.

Since the extended group can be derived from the unextended group
by the insertion of JKX, which is related to the S's by (16.22), it follows
that the equations (16.23) constitute an abstract definition for the
unextended group.

Since the gm simplexes, each of finite content, fit together to fill the
(ra—l)-space just once, it follows that gm is finite or infinite according as
the space is spherical or Euclidean.

16.3. The \gm operations of the unextended group transform the
fundamental region into one half of the net of simplexes, namely into a set
of \gm simplexes of which no two have a common bounding prime. Any
negative operation of the extended group (e.g. Rx) transforms this half of
the net of simplexes into the other half. It is useful to regard every
simplex as being " shaded " or " non-shaded " according to the half-net to
which it belongs. A beautiful account of the case when m = 3 is given
by F. Klein in Chapter 1 of his Lectures on the icosahedronf.

16.4. Let us now consider the particular simplexes that can serve as
fundamental regions. Take first the kind of simplex discussed in §15.3,
viz. that for which

(r s) = \n whenever r ^.i <s.

The relation (Rr Rs)
2 = 1 simply means that Rr and Rs commute. Hence,

substituting in (16. 21), we see that the extended group is in this case the

* W. Burnside, Theory of groups of finite order (2nd ed., 1911), 399 (§291).
t Second edition in English, 1913.
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direct product of the groups generated by

and by Ri+1, Ri+2i . . . , Em.

In particular, the group corresponding to the simplex all of whose dihedral
angles are right angles is the direct product df m groups each of order 2.

If {rl) = \-n (r = 2>3>.. . ,w)>

(16.23) becomes
Sr

2_i=l (r = 2, 33 ... ,m),

^ i ^ i ) ' / ( f l ) = l (r, s = 2,3, .. . ,m, r^s).

These equations being of the same form as (16.21), it follows that the
unextended group corresponding to a simplex for which one bounding
prime is perpendicular to all the others, is simply isomorphic with the
extended group corresponding to the simplex (of one fewer dimensions)
which these other primes cut out on the special one.

16.5. Corresponding to the simplex (3»y discussed in §15.4, we

have the extended group defined by

r £ s
2 = l ( 5 = 1 , 2, ... ,m),

(16.51) j( jRr JRs)
2=i (1< \r-s\<m-l),

I {Rr Rs)* = 1 (r—s = - 1 or m - 1 ) ,

and the unextended group denned by

3 1 .Cf3 _ 1
1 — A O i — 1

(16.52)
Su*=l (ft = 2, 3, . . . ,m-2 ) ,

^)*= 1 {u=l, 2, ..., m - 2 ) .

Since the simplex is Euclidean, both these groups are of infinite order.
It is convenient to give them the respective symbols

and

E.g., the infinite group discussed in Burnside's § 299 is our

33

its fundamental region being the plane equilateral triangle (33J •

L 2
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16.6. Corresponding to the simplex j o ] discussed in § 15.5, we have

the extended group defined by

(16.61)

(*! R2)* = (Rx i?3)
3 ̂  (R1 £4)3 = (22X £5)3 = 1,

and the unextended group defined by

3 _ .O 3 _ .Cf 3 _ .Of 3 _j — O 2 — O 3 O4 —

(16.62)

Since the simplex is Euclidean, both these groups are of infinite order. It
is convenient to give them the respective symbols

r3-i'

3and

Similarly, we obtain two infinite groups

(16.63) and

3"1'
3m~5,

3,

from the Euclidean simplex discussed in §15.6.

16.7. Having mentioned all the " trivial " cases, let us turn our
attention to the two groups which have the fundamental region (15.71).
We shall call the extended and unextended groups

(16.71)

respectively.

h0, hv ..., hn_^ rA0, hv ..., ^ - i " 1 '

and

•-* ^«-i _ Jq-i -.
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The following change of notation is convenient:

(16.72)
f = -"r+n+2

• Qr = Rr+n+p+2

(16.73)
I

Qr'=QrO =

The extended group is defined by

(r = 0, l , . . . ,7 i - l ) ,

(f = O,l,. . . ,p-l)*,

(r = O,l, ...5 q-1);

(r = 0, 1, . . . , n - l ) ,

(r = 0, 1, . . . , i»-l),

(r = 0, 1, ..., q-1).

(16.74)

O 2 = l ,

= 0, 1, . . . ,? i - l ) ,

ro)*o= (Nr_1Nr)K= l (r = 1, 2, ..., n-1),

(OP0f> = (Pr_1Pr)'--= 1 (r = 1, 2, ..., p-1),

r
r)2= (OPr)

2= (OQr)
2= 1 (r>0),

(NrNs)
2= {PrP,)2= (QrQ8)2= 1 (|r-s|> 1),

and the unextended group by

(16.75)

/yr^l (r= 1, 2, ...,

r'Y'=l ( '= 1, 2, ...,

r ' ) ' ' - 1 (*•= 1, 2, ...,

« ; ) 2 = 1 ( | r -« |> 1),

> o),

* This P,. is not to be confused with the P,u of § 8 . 3.



150 H. S. M. COXETER [March 12,

16.8. When p = q = 0, we have two groups whose fundamental region
is the orthoscheme (h0, hv ..., h,^), namely:

[h0, hv ..., hn_^\,
defined by

(ON0)
h'= (Nr_1Nr)\= 1 (r = 1, 2, ..., n-l),

(16.81) \

(ONr)*=l (r>0),

(NrNf=l (\r-s\>l);

and [ho,hv ..., An_il'>
defined by

JN'o
h°=N'r*= (N'r_1Nr')

hr= l (r= 1, 2, ..., rc-1),
( I D . 82) •<

1 (N;N;)* = I (|r-«|>i).
(16 . 81) and (16 . 82) are due to Todd*, who obtained them as abstract

definitions for the extended and une.itended groups of the regular poly tope
{h0, hx, ..., hn__i}. The groups given by Burnside in his §296f are
respectively:

II, [2, n]', which is the same as [n];

III, [3,3]';

IV, [3,4]';

V, [3,5]'.

Further, the infinite groups discussed in his §§ 300, 301 are respectively

[4, 4]' and [3, 6]'.

The extended groups

[3, 3], [3, 4], [3, 5]

are mentioned by Klein {. Todd has considered the groups

[3- i ] , [3-2}4], [3,3,5], [3,4,3],

[3-1] ' , [3- 2 ,4] ' , [3,3,5]', [3,4,3]'

* hoc. cit. in Preface.
f Theory of groups, 408.
} Lectures on the icosahedron, 24.
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in detail, generating each group, save the last of all, by means of two
operations. [3m-1] and [3™-1]' are easily recognizable as the symmetric
and alternating groups of degree m + 1 . [3m~2, 4] and [3m~2, 4]' are
discussed by Dr. A. Young in the fifth of his papers on Substitutional

analysis*; his " (AB) subgroup" can be identified with our

L. E. Dicksonf gives an abstract definition for

ours.

3,

i_3 j

closely resembling

16 . 9. The rest of our finite groups, namely

Fq O

3, 3
3

rq q-

3,3
3

"3, 3, 3~

3, 3

.3

,r3, 3, 3"1'
3, 3

_3

3, 3
3

O

3, 3, 3, 3 |
3, 3

_3

are less familiar. We shall find the orders of all of them, and identify the
first and fifth with important geometrical groups, viz., the group of
automorphisms of the twenty-seven lines on the general cubic surface, and
the group of automorphisms of the twenty-eight bitangents of the general
plane quartic curve.

17. How each of the groups is related to a uniform polytope.

17.1. When, as in §5.1, tn II m is regarded as the part of space which is
inside both Um and IIm', the elements tnUs (s>n) arise as actual trunca-
tions of the ^-dimensional elements of nm, and the elements tn_m+sYlsm_s

(s^-in—n) as actual truncations of the s-dimensional elements of IIm'.
But, if r + s = ra— 1, the s-dimensional elements of IIm' correspond to the
r-dimensional elements of n,n, in the sense that their centres are collinear

Proc. London Math. Soc. (2), 31 (1930), 273.
Linear groups (Leipzig, 1901), 293.
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with the common centre of Hm and Ilm'. Also the vertices of tn Ylm

correspond to the ITn's of IIm. Thus, for every element ITr of IIm, there is a
corresponding element, say IIr, of tn Um, viz.:

if n = .

(17.11)

and

(17.12)

K - v K-z> •••»
*o» h> •••> V - i
. . .
0 ' Jl> •"> Jq-l

w e h a v e

)> *i> • • • > * p - i

D> J v • • • > ^ o - l

Putting #' = q, we see that the elements

h0, hv ..., &„_!-!

* 0 ' *'i' • • •» * » ' — I i ®^

Jo> J v ••*' ^ g - l

correspond to the elements

,n_v nn_2, ..., n0,

0, hlt

and [by (17.11) with the ^'s and i's interchanged] to the (p— pf— 1)-
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dimensional elements

\lp-l> V ~ 2 > • " ' V + 2 J O t ] * 3 J - 1 ' * P ~ 2 ' •••>

[
and [by (17 .12) with the ft's and j ' s interchanged] to the elements

f &0, hv ..., h ^ ] _ f . . . K K ••> K-\)
\Jq-l>Jq-2> —,fo, . . . [ Ot \jq-l>3a-2> »',h> . . . [•
[ *0' *1» "•) V - l i I *0' *1» •••»*p-lJ

When every A, i, j is equal to 3, this means that the elements Onp>q of 0npg

correspond to the elements np'Q of npq, and to the elements ap_p-_^ of pqn>

and to the elements qnp- of qnp. We have thus incidentally proved the

generalized " semi-reciprocation theorem " enunciated at the end of § 7.8.

20J iv ..., ip_1 > correspond to the

elements jo> j v "

\hn-l, hn-2> •••> "'l}> Vp-1> V - 2 > •••'> * l }

of the other three polytopes, respectively.

17.2. Let Wo be a vertex of •

Wnpq' be the centres of " adjacent" elements

ip_x \ and let TTn.pc,

respectively. By saying that these elements are to be " adjacent ", we
mean that Wo must be a common vertex of the elements whose centres
are WOpa, WnOq, Wnp0, and that the elements whose centres are Wn<pq,
Wnp'g, Wnpq> must respectively belong to those whose centres are W(n>+1)pq,

" n<.p'+l)q> " np(q'+\Y

Having defined
W W , W W
" 0' r r n pq> " np q> " npq
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denote the centres of the corresponding elements of

( "1

The conditions of adjacency now state that the element

{K-V K-2> •••> ^,i-r+l}

[March 12,

whose centre is Xr (or the vertex Xo, if r = 0) belongs to the element
{hn_v hn_2, ..., hn_r} whose centre is Xr+1 (r<n), that the element

, hx} whose centre is Xn belongs both to the element
K io»ii» —.ia-i} whose centre is XOq and to the element

{hn_v hn_2, ..., h0> i0, iv ..., ip_^ whose centre is Xp0, and that the
elements

{ n2

{hn.v hn_2,

KI-TL' ^ n - 2 > • • • > ^ 0 >

Jo> Jv Jo-1 Jq'-l.

whose centres are Xp>g, XpQ', belong respectively to the analogous elements
whose centres are X{p.+1)g, XpW+1).

We next have to define certain primes passing through the common
centre (Wnp(J or Xpq) of our (n-f-^+g'+l)-dimensional polytopes. Each
such prime is determined by n-\-p-\-q further points lying on it, which
points may be taken equally well as W's or as X's:

Prime

0
Th (0 ̂  r < n)
ri ( 0 ^ r<p)
rj (0<r<2)

Determining W's

All save Wo

All save Wrpq

All save W,,,q
All save Wvpr

Determining X's

All save XH

All save Xn. r_ i
All save Xrq

All save Xpr

The n-\-p+q+l primes

(17.21) 0, 0A5 lft, ..., (n-l)h, 0t, 1,, ..., -l)i, 0j3

bound a spherical simplex, whose vertices are central projections of the
W's (or X's) on an (n-\-jp-\-q)-sphere concentric with the polytopes. This
simplex is called a fundamental simplex for each of our four polytopes
(viz. the three semi-reciprocals and their common truncation).

When the polytopes are degenerate, the definition is simpler, since the
W's actually coincide with the X's, thus determining a Euclidean
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fundamental simplex. In this case we can regard 0, rh, r,-, rj as primes
of the {n-\-p-\-q) -space filled by the poly topes.

17.3. In order to identify the fundamental simplex with (15. 71), we
must calculate its dihedral angles. These are simply the angles between
pairs of our primes, and may conveniently be called

(OrJ, (Or,-), (Or,), (rhsh), (r.-s,.), (rj«,), (r,.s,), (rj sh), (rAs,.).

Let us first suppose that q = 0.

In this case the Ws are the centres of certain elements of

while the X's are the centres of elements, one of every kind, of the regular
polytope

In fact, Xo is a vertex, X1 is the centre of an edge through Xo, X2 is the
centre of a plane face through this edge, and so on. The process continues
as far as Xn+p, the centre of a bounding figure, provided that we write

If we put

(17.31) hr = kn_r, ir =

then the points Xo, Xv ..., Xm_1 are the centres of elements of

and it is natural to complete the sequence by letting Xm denote the centre
of the whole polytope. Since the circumscribing sphere-analogue of any
element is a section of the circumscribing sphere-analogue of any higher
element containing that element, all the lines XOXV XXXZ, ..., Xm_1Xm

are mutually perpendicular. Hence, if r denotes the prime determined by
all the X's save Xr-1; and (r s) denotes the angle between the primes r and s,
it follows that (r s) is a right angle whenever r and s differ by more than 1.
It remains to prove that

(17.32) ( r r + l ) = 7r/Av (r= 1, 2, ..., m - 1 ) .

[The remaining angle, (m m+1), is irrelevant to our present purpose.]
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When m = 2, we have a regular fcj-gon, centre X2. Xo is one end of the
side whose centre is Xv The angle X1X2X0 is clearly

We can therefore use induction, and assume the corresponding result for
all regular (ra—1)-dimensional polytopes. Since the analogous X's for
the bounding figure {hx, k2, ..., km_2} whose centre is Xm_x are precisely

we have

(17.33) = 7r/fcr (r = 1, 2, ..., m-2 ) .

Further, if Xo', I / , ..., X^ are the analogous X's for the vertex figure
{k2, k3, ..., &m_i} at the vertex Zo, then X'r_x and Xr are collinear with
Xo (r = 1, 2, ..., m). Therefore

(17.34) (r = 2, 3, ..., tn-1) .

(17 . 33) and (17 . 34) together give (17 . 32).
Reverting to the other notation, we have

(rh
 sn) = {n—r n-s), (

and therefore, if ^ = 0,

(17.35)

n-r), (0rt)=

n+s+2), {rh s,-) = (n-r n+s+2),

(\rs(rhsh)=

Interchanging g' and n, and j and ^; if w = 0,

(17.36) (r,.Si) = ITT-,

(00, .)-Wv
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Similarly, if p = 0,

(17.37)

Let X'n_v X'n_n'_2, X'p'q, X'pq- be the points associated with

in the same way as the points Xn, Xn_n>_1, Xp-q, XVQ> are associated with

^ n - l > ^ n - 2 ' •••> »o> . . . f •

^0> ^ 1 ' •••' Jq-1 J

If the former polytope is chosen to be the actual vertex figure of the latter
at the vertex Xo, then X'r_x and Xr are collinear with Xo (r — 1, 2, ..., n).
So also are X'v-q and Xp-a, and Xpq- and Xpq-. Therefore the angles in-
volved in (17.36) are independent of n. Thus the restriction "n = 0"
can be removed. Similarly, the restrictions " ^ = 0" and "^ = 0" can
be removed from (17 . 37) and (17 . 35) respectively. (17 . 35), (17 . 36) and
(17 . 37) together give all the dihedral angles of the fundamental simplex,

(rhsh) = {TiSi) = (rjSj) = \>n (\r-s\ > 1),

= (rt8h) =

(0 0J = rr/h,, (0 0,.) = W/»OJ (0 0,.) = -n^

viz.:

(17 . 38)

Thus the primes (17.21) can be identified with the primes (15.81), and
the fundamental simplex with the simplex (15. 71).

17.4. As in § 16.7, let O, Nr, Pr, Qr denote the reflections in the primes
0, rh, r{, rjy respectively. With the help of the assumption made in
§2.4, we can prove by induction that these reflections are symmetries of

0

hn_v hn_2, ..., h0,
Jv

, and so also of the related polytopes.
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To do this we first prove, by induction with respect to m, the corre-
sponding result for {kv k2, ..., km_1}, then observe that every
symmetry of {ip_v ip_2, ..., i0, j 0 , j v ..., j ^ J is also a symmetry of

>, and finally use induction with respect to n.
Jot Jv •••> Jq-1 J

Apart from two exceptional cases, the same method serves to prove
that these reflections actually generate the whole group of symmetries

of > i - l > " / n - 2 i • • • > ^ 0 » . , thus identifying this group of

symmetries with the group

(17.41)

whose abstract definition is (16. 74).
The first exceptional case is when

h0, hv ..., An_!

Jq-1 J

since then

{*o» *i» • • •. V i l = O'o» i i ' • • • > ifl-i)'

has twice as many symmetries as

\lp-l> lp-2> •••> ht 3ot Jv •••>Jq-W

(See §5.5.) The second exceptional case is when

h =Jo> *i = 4 = ^ i a n d *2 = *3 = ... = 3 = j a = j " 3 =

since then has times as many symmetries as

-v lp-2i •'•ihtJotJv '"tJa-iS •
Thus, whenever the group of symmetries of

Q, 1} , p-l
n-V "'n-Zt '"> ""0» .

Jot Jv •••' Jq-1

The only actual examples of this second exception are:

p = l, 2 = 2, iu = 3, » = 0 o r l , h0 = 3 ;

i? = 2, 2 = 2, = 3 , n = 0.
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is not identical with (17.41), it contains the latter as a sub-group. The same
h0, hv ..., hn-\

can, of course, be said for the group of symmetries of I i0, iv ..., ip-i

since this polytope is a truncation of the other.

17.5. When every h, i, j is equal to 3, the results are as follows. If
n, p, q are all different, or if p = q = 0, the groups of symmetries of npq,

of pqn, of qnp, and of Onvq, are one and the same group, viz.

, the group of symmetries of pgil, i.e. of ppn, is

. If

, and

is a sub-group of index 2 in the group of symmetries of npp or of Onpp-
Finally, if n = p = q ̂  0, the group of symmetries of npip i.e. of nnn, con-

tains
i on

as a sub-group of index 2, and is itself a sub-group of index 3

in the group of symmetries of Onnn.

By (12 . 23), it follows that the order of the group
r3n-

32J is always

(17.51) (»+l)! (p+l)\ (q+l)\ [npq].

For the values of [npq], see §12.6. The order of the unextended

group
L"

we have:

is just half as great. Tabulating results in the finite cases,

' n

0
n
2
3
4

P

P
1
2
2
2

2

2
1
1
1
1

,-3-|
Order of 3''

I_3?J

(# + 2 + 2)1
2"+2(n + 3)!

51840
2903040

696729600

r3«T
Order of 3''

L3?J

i(P + 2«-2)l
2"+1(« + 3)!

25920
1451520

348364800
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In particular, as we saw in §13.1,
"3, 3'

3 ,3 is the group of auto-

morphisms of the 27 lines on a general cubic surface.
"3, 3"1'

3, 3 , being a

.3, j

self-conjugate sub-group of index 2, must therefore be identical with
the simple group* A (4, 3).

17.6. For a one-rowed symbol there are no "exceptional cases":
[Jci} k2, ..., &,„_]], which is the same as [km_v km_2, ..., kx], is precisely the
group of symmetries of {kv k2, ..., km_-^\ while [kv k2, ..., ^ J ' is the
group of positive symmetries. The finite cases are as follows:

[3"1"1], of order (ra-fl)! (the symmetric group);

[3771"1]', of order | (m-f l ) ! (the alternating group);

[3W*-2, 4], of order Zmm\; [3"1"2, 4]', of order 2"*-%!;

[k], of order 2k; [&]', of order k (the cyclic group);

[3, 5], of order 120; [3, 5]', of order 60 (the icosahedral group);

[3, 3, 5], of order 14400; [3, 3, 5]', of order 7200;

[3, 4, 3], of order 1152; [3, 4, 3]', of order 576.

These groups are not all distinct. In fact, the following two simple
isomorphisms are well known:

[3, 3 ] ~ [ 3 , 4]', [3, 3, 3 ] ' ~ [ 3 , 5]'.

17.7. If a certain finite polytope 11^ has a fundamental simplex
determined by the centres of mx particular elements 11^, and similarly
for II,^, then the fundamental simplex of the generalized prism

rn(1) n(2)i
is defined as being determined by the centres of the mx-\-m2 elements

[n<;>, ng] and [ i e ng>].

It is easily seen that the essential features of a fundamental simplex are
maintained, since the reflections in its bounding primes are symmetries
of the whole prism.

* L. E. Dickson, Linear groups (1901), 306-307.
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If the vertices of the prism are given by coordinates of the form

as in §4.1, then the prime determined by the centres of all but one of the
elements [II^, II^] and of all the elements [11^), n ^ ] has an equation of
the form

F(xv ...,xp) = 0.

Likewise, the prime determined by the centres of all the elements
[Ur\\ IIJJJ] and of all but one of the elements [IlS*|, nj.f ] has an equation
of the form

G(xp+1, ..., a:g) = 0.

Since these two primes are perpendicular, the fundamental simplex is of
the type considered in §15.3, the "two simpler simplexes" being the
fundamental simplexes of II ̂ J and II ^

In this connection it only remains to observe that the extended group
which has this simplex for a fundamental region is the direct product of
the groups similarly related to the simpler simplexes; and that the group
of symmetries of the prism either is, or contains as a sub-group, the direct
product of the groups of symmetries of the constituents.

17.8. We saw in §14.8 that, if jq_2 = 3 and jq_x = 4, the row

Jo> Jx> '"> Jq—l

of an extended Schlafli symbol can be replaced by

. 3
^ 0 ' Jl' •••» J g - 3 ' q

without altering the polytope represented. Let us see how this trans-
formation affects the corresponding simplex.

The simplex represented by the transformed symbol is bounded by
primes rh, rt, 0 and 03-, I,-,..., (q—3)j5 along with two extra primes, say (q—2)j

and (q—2)/, each inclined at an angle -J^TT to (q—3)3-, but perpendicular
to one another and to all the other primes. Let (q— 1),- denote the bisector
of the angle ((q—2)3(g

(— 2)/) . Then, since (#—2)3- and (£—2)/ are
similarly situated with respect to the rest of the primes, the new prime
(q—l)j divides the simplex into two equal halves, simplexes whose
bounding primes are obtained from those of the whole simplex by replacing
(q— 2)/ or (q—2)j by (q— 1),-. Of the half which involves (q—2)}, the
bounding prime (q— 1),- is perpendicular to all the others except (q— 2) .̂

SEE. 2. VOL. 34. NO. 1859. M
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The angle ((?-2), (q-l)t) = \{{q-2)} (g-2)/) = \-n. Thus the effect
3

of changing into 3, 4 is to halve the simplex, and so to double the
o

order of the group for which the simplex is a fundamental region. In
fact, a new operation of period 2, viz. the reflection in (q—l),, is introduced
into the group.

t3 4 "1
' 4 , •

6 , 1J
ereiore

r 3
3

Therefore

is a sub-group of index 2 in this group, and
r 3

3
Qm-5

is a sub-group of index 4. This last symbol is given in a more symmetrical
form in (16 . 63). When m = 5, it reduces to

r3"
3
3

17.9. Consider the point whose coordinates consist of r repetitions
of 1 —(r/ra) followed by ra—r repetitions of — (r/ra). For all values of r,
this point lies in the (ra—1)-space

(17.91) z1+zi+...+xm=0.

The point is the origin both when r = 0 and when r = ra. The ra points
obtained by giving r the values 0, 1, ..., ra—1 are the vertices of a
Euclidean simplex whose bounding primes are

(17.92) xx x2 = 0, x2 x3 = 0, ..., xm_1 xm = 0, x-y xm = 1.

Since these, regarded as primes in ra dimensions, are all perpendicular
to (17 . 91), we can obtain the angles between them by the usual rule. In
fact, calling them 1, 2, ..., ra, we have

(1 2 )= (2 3) = ... = ( r a - l r a ) = ( r a l ) = i 7 7 and {rs) = \ir

(l<\r—s\<m—l).

Thus this simplex is of the kind considered in § 15.4.
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The reflections in the first m—\ of the primes (17 .92) are simply the
transpositions of consecutive pairs of coordinates. These generate the
symmetric group on xv x2, ..., xm, which is the group of symmetries of am_v

Since this is a sub-group of index 2 in the group of symmetries of eaw_1

(see §6.9), and since the remaining reflection, viz. that in x1—xtn= 1,
changes the origin into the point (1; 0, 0, ..., 0; —1), it follows that

(defined in § 16.5) is a sub-group of index 2 in the group of

symmetries of am_1h.

Having now considered every possibility, we can assert that every
group of real orthogonal substitutions on m variables, having as fundamental
region a simplex all of whose dihedral angles are submultiples of TT, is either
the whole group of symmetries of some m-dimensional uniform polytope, or a
sub-group thereof.

18. The twenty-seven lines and the twenty-eight bitangents.

18 . 1 . The most important of our extended groups is

3,3"

3,3

3

since this, being the group of symmetries of 221 or (PA)6, is also the group
of automorphisms of the lines on a general cubic surface.

By (16 . 74) it has the abstract definition

0 2 = 1 ,

(18.11)

(0N1)*={0P1)*=l,

(PQ)* =&!<})* =(QN)*=(QN1)*

= (JVP)2 = (Nx P)2 = (NPJ2 = (Nx Px)2 = 1.

For simplicity we have written N for No, P for Po, Q for Qo.
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This abstract definition is conveniently represented by the following
diagram:

N P

Q

The six generating operations are each of period 2; all pairs of them not
directly linked in the diagram are permutable, and the products of linked
pairs are of period 3. Analogous diagrams can be made for all our abstract
definitions of extended groups (each link, in the general case, being marked
with the period of the corresponding product).

18.2. In the notation of § 9.4, the a
4

C12

belongs to both the jS5's

^2 ̂ 3 "4 "5 ̂ 6 C12 C13 C14 C15 C16 a n ( * ^l ̂ 3 "4 ̂ 5 ̂ 6 C12 C32 C42 C52 C62>

and is therefore of type 201 (see §7.5) . On the other hand, the a4

6263646566

belongs to the former of these jS5's and also to the a5 ( = 220)

6162636465665
so that it is of type 210.

It follows that the requirements of § 17 . 2 are satisfied if we take

Xo to be the vertex 66,

-X̂ i ,, ,, centre of the edge b 5 b 6 ,
•X-2 ,, „ ,, „ <x2 6 4 6 5 6 6 ,

- ^ 0 1 >> >> 55 >J a 4 ^ 3 O 4 O 5 6 6 C 1 2 ,

-^-11 >> >> >> >j P5 ^2^3"4^5^6C12C13C14C15C16'

^20 » »> » » a5 616263646666.

These six points determine the six primes

lft> 0h, 0, 0,, 1,-, 0,.
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(by omitting them in turn, and joining the remaining five to the centre
X21). By §17.4, the generating operations

Nv N, 0, P, Pv Q

are the reflections in these primes respectively.

18.3. Consider the transpositions (12)*, (23), (34), (45), (56), and the
bifid substitution [456 .123], defined in (9 .44).

(56) alters Xo but leaves the other X'a invariant,

)5 "**- l )5 J> >' 5> >

„ „
[456.123] „ X20 „

Therefore

^ = (56), JV = (45), O=(34), P = ( 2 3 ) , P 1 =(12) ,
(18.31)

[ and Q = [456 .123].

In terms of the lines on the cubic surface (Schlafli's notation), the
operation (12) consists in interchanging the two halves of the double-six

al ^1 C23 C24 C25 C26

a'2^2C13C14C15ClC

and the operation [456.123] consists in interchanging the two halves of
the double-six

tt4 \ab a6 C23 C31C12 \

18.4. Clearly the generating operations

N1} N, O, P, Px

can be taken to be any open chain of transpositions, and then Q can be
either of the two bifid substitutions which separate the numbers involved
in N and Nx from the numbers involved in P and Pv In order to employ

• Not to be confused with the (1 2) of § 15 . 1 .
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the notation of § 13 . 5, it is natural to choose the chain

(23), (36), (61), (14), (45).

Q must now be either [236 .145] or [145. 236]. Taking the latter value,
we have

Q = [145 . 236] = (13) [345 .126](13).

But, as we observed in §13.9,

[345 .126] = #4 .

Moreover, (13) = (61)(36)(61).

Hence, by § 13.5,

and Q = HQH2H0HiH0H2HQ.

On substituting in (18.11) we obtain an abstract definition for the group
in terms of the /J's, and so ultimately in terms of the two operations cu
and Ho. But the new abstract definition is excessively complicated;
in fact, the definition in terms of six operations is altogether preferable.

18.5. The most important of our unextended groups is
r 3 , 3, 3'

3, 3

since this, being (by §17.5) the group of positive symmetries of 321 or {PA)1,
is also (by §11.5) the group of automorphisms of the bitangents of a plane
quartic of genus 3.

By (16 . 75) it has the abstract definition

Q'3=l,

(P/ Qy = (Q'N^f = (Q'

(P' Q'-i)2 =

For simplicity we have written N' for

'N')* = (N'P1)* = 1.
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18.6. In the notation of § 9 .3, the a5

C12 ^38 ^48 ^58 ^68 ^78

belongs to both the /36's

C12C13C14C15C16C17 ^28 ^38 ^48 ^58 ^63 ^78

a n d C12C32C42C52C62C72 ^18 ^38 ^48 ^58 ^68 ^ 7 8 '

and is therefore of type 301. On the other hand, the a5

^28 ^38 ^48 ^58 ^68 ^78

belongs to the former of the j86's and also to the a6 (= 320)

^18 ^28 ^38 ^48 ^58 ^68 ^78 '

so that it is of type 310.
It follows that the requirements of § 17 . 2 are satisfied if we take

X2

x .
x01

to be

»

3 )

33

J )

the

»

»

35

vertex

centre

»

»

of the

33

33

' 33

3 )

edge

a2

a3

a 5

^ 6

C12 ^38

C12C13C14C15C16C17 ^28 ^38

^ 4 8

^ 4 8

c4 8

C58<

^ 5 8

^ 5 8

c5 8

k 68

^ 6 8

^ 6 8

C78»

^ 7 8 >

C78'

C78'

^ 7 S ,

C7o,

-^20 " " " " a 6 ^18 ^28 ^38 ^48 ^58 ^68 ^ 7 8 '

These seven points determine the seven primes

2h, lh, 0h, 0, 0,, 1,, 0,

(by omitting them in turn, and joining the remaining six to the centre X21).
By §17.4, the generating operations of the corresponding extended
group, viz.

N N N (1 P P O

are the reflections in these primes respectively. Finally, by (16 . 73),

JVy = N10 = ONV N' = {No O)-1 = ON0,

P o p f po o' — on
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18.7. Consider the transpositions (12), (23), (34), (45), (56), (67),
and the bifid reflection [4567 .1238], defined in § 9.3.

(67) alters XQ but leaves the other X's invariant,

°V) >5 -A-l 35 53 33 35 5

I * " / 35 ^2 " " " 33 3

V U ^ 7 33 ""-3 33 35 33 33 3

X*"' / 33 -*1-01 " " " »> '

(•*••"/ 33 . 1 1 33 33 33 3) 3

[4567.1238] „ Z20 „ „ „ „ .

Therefore

N2=(67), N1=(d6), i^0=(45), O=(34), PO=(23),

P 1 =(12) , and Qo= [4567 .1238].
Finally,

N' = (345), P' = (234),
(18.71) \

[ P / = (12) (34), and Q' = [4567 .1238] (34).

18.8. Let us now express the generating operations

N2', N,', Nr, P', P / , Q'

in terms of the cyclic permutation and bifid substitution of §11. 5. We
shall call the latter Ko, so that*

JT0=-- [1357. 2468] ST.

It is convenient also to let

Kn= (1234567)"" ̂ (1234567)^,

so that Kx = [2461. 3578] ST, and so on. (ST is permutable with every
operation.)

From (9 . 35) we derive fourteen relations such as

KQ JKJ JVQ = (18) ST = K i KQ AJ .

* The expression at the end of §11.5 lacks the S, in error.
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Six of these lead, to expressions for the iV"s and P"s. In order to obtain Q',
we observe that

[4567 .1238] = (26)Z4ST(26),

and (26)=(28)(68)(28).

The results are as follows:

N2' = K2 K, K2 Ko K5 Ko> Nx' = K, K2 Kt K,, N' = K2 K, K2 K3 Kb Ka,

P' = KxK$KxK2K4iK2, Px = K2K0KiK2,
and

Q' = Kx K2 Kx K, K, K, Kx K2 Kx K, Kx K2 Kx K5 Z 6 K5 K2 Kx K, K2.

On substituting in (18.51), we obtain an abstract definition for the
group in terms of the K's, and so ultimately in terms of the two
operations (1234567) and Ko. It is possible that this new abstract
definition could be simplified by the exercise of some ingenuity.

19. The hundred and twenty tritangent planes*.

19.1. If m < 9 , a set of m points of general position in a plane
determines a finite number of rational curves which have the property of
being completely specified by their multiplicities at these points. It is
shown by Du Val, in a paper which will shortly appear, that these rational
curves are in correspondence with the vertices of (PA)m. These curves
have one variable intersection with any cubic passing simply through the
m points. When ?n < 8, such cubics represent the prime sections of the
Del Pezzo surface| Fl~m (of order 9—m, in 9—m dimensions), and the
rational curves represent the lines on these surfaces. Thus there is a
perfect correspondence between the lines on the Del Pezzo surface F2

n and the
vertices of (PA)^,^

Since Fz
3 is the cubic surface in ordinary space, while F2

2 is the double
plane branching along a quartic curve of genus three, these are the cases
considered in Chapter 18.

Since plane cubics through eight points all pass through a ninth, there
is no corresponding surface when m = 8. If, however, we consider sextic
curves passing doubly through the eight points, we obtain a surface having
on it 240 conies which correspond to the vertices of (PA)8. This surface

* Chapter 19 ivas added 11 June, 1932.
f liend. di Palermo, 1 (1887), 241.
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is, in fact, a double quadric cone in ordinary space, having for branch
curve the sextic of genus four in which it is cut by a general cubic surface.
The section of the double cone by one of the 120 tritangent planes of this
curve breaks up into a pair of conies which coincide in space but lie on
different sheets of the double cone. Hence the 120 tritangent planes of this
special quadri-cubic curve correspond to the 120 pairs of opposite vertices
of (PA)8. This theorem is due to Todd.

Let i, j , k denote any three numbers from among 1, 2, ..., 8. The
rational curves determined by eight base points are actually* as follows:

8 points c,-, which can be regarded as curves of order zero;

28 lines a(i, of which a18 joins c7, c8;

56 conies biik, of which 6678 is determined by the five points
Cj , C2, . . . , C5 \

56 cubics cH, of which c18 goes once through c2, c3, ...} c7, and twice
through c8;

56 quartics aijk, of which a678 goes once through cv c2, ..., c5,
and twice through c6, c7, c8;

28 quintics bw of which 678 goes twice through cv c2, ..., c6,
and once through c7, c8;

8 sextics c/, of which c8' goes twice through cv c2, ..., c7, and
thrice through c8.

(The order of the suffixes of a or 6 is immaterial, but ctj and cn are
distinct.)

The corresponding vertices of (PA)8 are respectively

C t9 ' aij9> ^iiki Cij> aijk> "»i9» C9J>

where, using the coordinates (10.21) for (PA)8 3-\/2,

a789 is (1, 1, 1, 1, 1, 1; - 2 , - 2 , - 2 ) ,

6123 is (2, 2, 2; - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) ,

c19 is (3; 0, 0, 0, 0, 0, 0, 0; —3),

and so on. The relation is such that two curves having r—1 free inter-
sections correspond to two vertices whose mutual distance is y/r times
the edge (3V2).

* Noether, Math. Annalen, 33 (1888), 534. Coble, Algebraic geometry and theta-functions
(New York, 1929), 209.
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19.2. The group of automorphisms of the rational curves, being the
group of symmetries of (PA)8, is

(19.21)
Oj Oj Oy O

3, 3
3

By (16.74), this group is generated, and in fact abstractly defined, by
eight involutory operations

O N N N N P P O

u, xv, xv l 5 iv 2, xv 3 , r , JT-^, ty

which satisfy the relations

(ON)3 = (NNJ3 = (N1N2)
S = (xV2xV3)

3 = 1,

(OP)3 = (PPJ* = 1,
(OQf = 1,

all other pairs being permutable.
1 Jie a 6 c3 9 c4 9 c5 9 c6 9 c 7 9 c8 9 ^129

belongs to both the j87'"s

^29 ^39 ^49 ^69 ^69 ^7S ^83 ^129 ^139 ^149 ^159 ^169 ^*179 ^189

-^ J _ - . _ - - J . — _ ~ ~ ~ —
fl Tl I I (^ i I I I i t fi (1 CM it ft ft ft

and is therefore of type 401. On the other hand, the a6

C29 C39 C49 C59 C69 C79 C89

belongs to the former of these /?7's and also to the a7(= 420)

C19 C29 C39 C49 C59 C69 C79 C89'

so that it is of type 410.
It follows that the requirements of § 17 . 2 are satisfied if we take

Xo to be the vertex c89,

X± ,, „ centre of the edge c79c89,

a 4 C49 C59 C69 C79 C89>

a 6 C39 C49 C59 C69 C79 C89 al29»

r 7 C29 C39 C49 C59 C69 C79 C89 a129

29 C39 C49 C59 C69 C?9 C89.
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These eight points determine the eight primes

3,, 2h, lh, 0h, 0, 0(, 1,, 03.

(by omitting them in turn, and joining the remaining seven to the
centre X21). By §17.4, the generating operations

N3, N,, Nv N, 0, P, Pv Q

are the reflections in these primes respectively.
In §11.7 we saw that the group is generated by the two special

symmetries

(19.22) (12345678) and F123.

(The former is simply a cyclic permutation of the first eight coordinates,
while the latter, defined in § 10.6, interchanges a123 and 6123, cu and a234,
c41 and 6234, a456 and 6789, and so on, but leaves c12, c45, a345 and 6345

unaltered.) It is therefore natural to consider the involutory operations

(12), (23), (34), (45), (56), (67), (78), and F123.

(78) alters Xo but leaves the other X'a invariant,

\ " ' ) 33 -**•! 33 3> 33 >

(56) ,, X2 „ „ „

V*"/ 33 3 33 33 33 3

V " * / 33 ^*-4 " '3 33 3

Therefore

(19.23) j

(23)

(12)

F 1 2 3

JJ

3 3

33

/ rr Q \
\ 1 O 1

01 "

"^•11 "

•^20 "

, N2 = (Q1), N.

P = (23), P , =

35

33

3 )

l(12) and

33

33

3 3

Q = V

= (34),

la8.

By §11.7 all the transpositions can be deduced from (19. 22); and by
substituting the resultant expressions for 0, N, Nv etc., we could obtain
an abstract definition (albeit extremely cumbrous) in terms of these two
operations.
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19.3. The 28 bitangents of the plane quartic can be denoted by
unordered pairs of the numbers 1, 2, ..., 8. Pascal* has devised an
analogous notation for the 120 tritangent planes of the quadri -cubic
curve, by unordered triads of the numbers 0, 1, ..., 9. In the special
case when the quadric through the curve is a cone, the relation with (PA)%
is as follows.

If*, j , k are any three of the numbers 1, 2, ..., 9, the opposite vertices
aiik and bm correspond to the plane ijk, and the opposite vertices clV and cu

correspond to the plane ijO.
Pascal's notation does not immediately exhibit the full symmetry of

the configuration of tritangent planes. Bathf has discovered a bifid
substitution analogous to that used for permuting the bitangents of the
plane quartic. The substitution

0123/456789,

for example, interchanges 014 and 234, 456 and 789, but leaves 012 and
345 unaltered. Thus F123, when regarded as permuting the joins of opposite
vertices ("diameters", say) instead of the vertices themselves, is identical
with 0123/456789; and similarly for any Viik.

But the interchanges involved when the digit 0 occurs after the stroke
in Bath's symbol show that a substitution such as 1234/567890 is not a
symmetry of (PA)S. In fact, the diameters 123 and 345 are perpendicular,
whereas their transforms 123 and 125 are inclined at -̂TT. Hence, when
the canonical curve lies on a cone, the only bifid substitutions that remain valid
are those in which the digit 0 occurs before the stroke.

19.4. It is well known that the canonical curve of genus p is of order
2p—2, in p—\ dimensions, and has 2p-x{2v—\) (p—l)-tangent primes.
These correspond to the odd theta-characteristics of genus p, and so their
group of automorphisms is the special Abelian linear group J -4(2^?, 2),
of order

(19.41) ft 22'-1(22'--l).
r=l

When p = 33 this order is

2 .3 .8 .15 .32 .63= 1 451 520.

In fact, since the bitangents of the plane quartic correspond to the pairs
of opposite vertices of 321, and since in seven dimensions reflection in a

* Annali di Mat. (2), 20 (1892), 198. Actually, Pascal uses "10" instead of " 0 " .
•f Journal London Math. Soc, 3 (1928), 84.
J Dickson, Linear groups, 89, 100.
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point is a negative transformation, .4(6, 2) is simply isomorphic with

r 3 , 3,0"1'
3,3,

L3

When p = 4, (19 . 41) becomes

2 . 3 . 8 .15 . 32 . 63 .128. 255 = 47 377 612 800.

If the curve lies on a cone, one of the 136 even theta-characteristics is
special*; so the group of automorphisms is a sub-group of index 136 in
.4(8, 2), namely the corresponding first hypoabelian group~\, of order

348 364 800 = 96.10!

Since the tritangent planes of the special quadri-cubic curve correspond
to the pairs of opposite vertices of 421, their group of automorphisms is a
self-conjugate sub-group of index 2 in (19.21). But this sub-group is
not the same as

3, 3, 3, 3
3, 3

since in eight dimensions reflection in a point is a positive transformation.
These two sub-groups of the whole group of symmetries of 42] have a
common self-conjugate sub-group of index 2, namely the group of
positive symmetries of the diameters of 421) which is the simple group
FH(8, 2)}, of order

174 182 400.

Since (19.21) is generated by (19.22), we can use the same symbols
to represent the corresponding generators of the first hypoabelian group,
provided we identify opposite vertices of 421 by writing

T = l
or

(19 .42) F m F235 F346 F457 F561F672 F713 = (89)

(see §10.7). In fact, the abstract definition of the latter group is
derived from that given in § 19 . 2 by inserting one extra relation, namely
(19.42) expressed in terms of O, N, Nv etc.

* The corresponding theta-function vanishes for zero values of the arguments. See
Schottky, Journal fur Math., 103 (1887), 185.

f Dickson, Linear groups, 201.
% Ibid., 216.
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19.5. We proceed to prove that the whole group ,4(8, 2) is generated
by these same operations along with the transposition

(90).

Since the operations of the first hypoabelian. group include all the
permutations of 1, 2, ..., 9, it will be sufficient if we prove that .4(8, 2) is
generated by all the permutations of 0, 1, 2, ..., 9 together with all Bath's
bifid substitutions. Let G denote the group so generated. If G were not
the same as .4(8, 2), it would have to be a sub-group; therefore we merely
have to prove that G is of order 47 377 612 800.

Of the 120 tritangent planes of the general quadri-cubic curve, a pair
such as

079, 089

leads by permutations and bifid substitutions to a set of 7140 pairs, namely

1260 of type abc, abd;

3780 ,, abc, ade;

2100 ,, abc, def.

Since 7140 = ( ), this shows that all pairs of tritangent planes are

equivalent.
Again, a triad such as

069, 079, 089

leads to a set of 152320 triads, namely :

2520 of type abc, abd, abe;

840

7560

37800

25200

75600

2800

,, abc, abd,

,, abc, abd,

„ abc, abd,

,, abc, abd,

,, abc, ade,

t> abc, def,

acd;

cde;

aef;

tfg;
bfg;
ghi.

Defining the sum of the symbols of three planes as the set of digits obtained
by juxtaposing the symbols and cancelling repeated digits*, we see that
these particular triads are such that the sum of their symbols has one or

* Pascal, Annali di Mat. (2), 20 (1892), 199.
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five or nine digits. (For example, abc-\-abd-\-abe = abcde.) Following
Pascal, we call these even triads. The sum of the symbols of any of the
remaining 128520 possible triads (" odd " triads) has either three or
seven digits. The geometrical significance of this distinction is that the
nine points of contact of an even triad of tritangent planes do not lie on a
quadric (other than that through the whole curve).

If two planes of an even triad are fixed, there are 64 possibilities for the
third. For instance, a plane making an even triad with 079 and 089 may
involve both or neither of the digits 7, 8. It is easily seen that all such
planes can be derived from any one of them by permutations and bifid
substitutions not affecting the two fixed planes.

If an even triad is fixed, there are 36 possibilities for a fourth plane
which makes an even triad with every pair of the fixed triad. For instance,
a plane making an even triad with every pair of 069, 079, 089 may either
be 678 or involve none of the digits 6, 7, 8.

A plane making an even triad with every pair of

059, 069, 079, 089

( f\\
o ) = 20

possibilities, and these can be put in correspondence with the vertices
of t2 a5.

A plane making an even triad with every pair of

049, 059, 069, 079, 089

must not involve anj' of 4, 5, 6, 7, 8; so there are 10 possibilities*. But
since the vertex figure of t2a5 is [a2,a2], which has only nine vertices, we
should expect one of these ten to be special. Such is easily seen to be the
case, the special plane being, of course, 123.

There is no plane that will make an even triad with every pair of

123, 049, 059, 069, 079, 089.

But there are four possibilities if we replace 123 by any other symbol
formed with three of the digits 0, 1, 2, 3, 9. E.g., with 039 we can have
any of

012, 019, 029, 129.

* Noether, Math. Annalen, 14 (1879), 270. His

(«/>)> (22'aPa<ra')i (2aPa°)> (2'«/>«a)

are Pascal's 0 p 9 , p<rr, Opa, p<r9,

respectively.
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Finally, 019 is the only plane that will make an even triad with every
pair of

029, 039, 049, 059, 069, 079, 089*.

Let us now translate these results into terms of groups. Those
operations of G that keep one plane fixed form a sub-group Ox of index 120.
Those operations that keep two planes fixed form a sub-group G2 of index 119
in Gv Those that keep an even triad fixed form a sub-group G.A of
index 64 in G2. And so on, through the sequence of numbers 36, 20, 9, 4.
Finally, the only operations that will keep fixed an octad like

019, 029, 039, 049, 059, 069, 079, 089

are (90) and identity; so Gy is of order 2.
We can now deduce the orders of all these groups. In particular,

G3 is of order

2.4.9.20.36 = 51 840,

and G itself is of order

2 . 4 . 9 . 20 . 36 . 64 . 119 . 120 = 47 377 612 800.

Therefore G is -4(8, 2), as we desired to prove.

19.6. The above procedure is closely analogous to that of Chapter 9,
where we obtained successive vertex figures of certain poly topes. Since
$6> ̂ 5> #4 are the groups of symmetries of (_L4)3, (IA)^ (IA )5 respectively f,

r 3 , 3
while G» has the same order as 3,3 , it is natural to expect some relation

between G3 and (IA)6.
Let j , f be two of the numbers 1, 2, 3; k, k' two of 4, 5, 6; I, V two

of 7, 8, 9. The 36 planes which form even triads with every pair of

123, 456, 789

are jf 0, kk'O, WO, jkl

In the case when the quadri-cubic curve lies on a cone, these 36 planes
correspond to the pairs of opposite vertices

cir and crp ckk. and ck>k> cn. and cn> am and bm

of the (IA)63'\/2 (10.32). Since these planes acquire no extra auto-

* Pascal, Atti E. Ace. Lincei (Bend.) (5), 2 (1893), 122.
t (8.16).

SER. 2. VOL. 34. NO.1860. N
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morphisms when the quadri-cubic curve is taken to be general, G3 is simply

"3,3
isomorphic with 3, 3 or, in geometrical language, those automorphisms

.3
of the tritangent planes which keep fixed an even triad (i.e., three planes
whose points of contact do not lie on an extra quadric) constitute a group
simply isomorphic with the group of automorphisms of the lines on the cubic
surface.

This theorem is due to Pascal*, who regards the set of tritangent planes
with one omitted as corresponding to a configuration of 119 planes in four
dimensions. Pairs of these planes meet in a point or in a line according
as the corresponding tritangent planes make an even or odd triad with
the one that was omitted. Let two planes meeting only in a point be called
skew (" gobbo "). There are 64 planes skew to any particular one; and,
skew to any one among these, there are 36. Pascal shows that these 36
correspond to the double-sixes of lines on the cubic surface, which we
recognize as corresponding to the diameters of (IA)6. He gives a detailed
accountf of this configuration of 36 planes in four dimensions, from which
we see that the relation with (L4)6 is as follows.

The 36 planes, 360 skew pairs, 1080 skew triads (of the " second kind "),
1080 skew tetrads, and 216 skew pentads correspond to the pairs of opposite
vertices, edges, a2's, a3's, and a4's; while the 120 skew triads (of the
" first kind ") and the 135 tetrahedra correspond to the diagonal hexagons
(or pairs of diagonal a2-\/3's) and diagonal j94-\/,2's.

19.7. We shall now prove that -4(8,2) is generated by the two
operations

(19.71) (012345678) and 0123/456789

[of. (11-71)].
It is convenient to abbreviate the latter symbol to 0123/. (10.63)

and (10 .64) obviously generalize to give

fghi/. (ij) = (ij) .fghj/ =fghjl .fghi/,

bcdej. bfghj = bfgh\. bijkf,

where bedefghijk is a permutation of 0123456789. Therefore .4(8, 2) is
generated by

(19.72) hijkj (h,i,j,k<§).

* Atti R. Ace, Lincei {Bend.) (5), 2 (1893), 68.
t Ibid., 71.
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The operations (19.71) together lead to

1234/, 2345/, 5678/, 6780/,

which give the transpositions

(15), (50)

and (01),

whence we can deduce all the permutations of 0, 1, ..., 8, and so also the
rest of the operations (19 . 72).

19. 8. Since ^4(8, 2) is generated by the symmetries of the diameters
of 421 along with the transposition (90), it is natural to extend (19 . 23) by
writing

(19.81) ^ = ( 9 0 ) .

(We must suppose the operations 0, N, Nv etc., modified in the manner
described at the end of § 19.4, so that

(9 = 0123/456789.)

It is easily seen that Qx is permutable with

Nz, N2, Nv N, O, P, Pv

whereas

There are, of course, other relations; but these show that .4(8, 2) may be
regarded as a sub-group of the (infinite) group of symmetries of the Minkowskian
polytope

422 or (I A )9.

This result is not surprising when we recall that Or is precisely the group
of symmetries of (IA)9_r when r > 3, and is a sub-group (of index 2) when
r = 3.

Instead of (19.81), we might have written

P . = (01),

thus exhibiting .4(8, 2) as a sub-group of the group of symmetries of the
Minkowskian polytope

' 431 or {8A)9.

19.9. At the end of a paper on (PA)6 and (PA)?*, I have given
geometrical interpretations for the elements, diagonals, etc., of (PA)7 as

* Proc. Camb. Phil. Soc, 24 (1928), 1-9. (The symbol Tat, used there, should have been *,a4.)

N2
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special sets of bitangents of the plane quartic. We shall now attempt to
do the same for (PA)8 and the tritangent planes. Naturally the elements
of {PA)8 correspond only to sets of tritangent planes of the " special "
quadri-cubic curve (lying on a cone); but there are usually analogous sets
in the general case. Thus, corresponding to the 3360 pairs of opposite
edges of (PA)8, we have 3360 special pairs of tritangent planes of the
special curve, and 119.120/2 = 7140 pairs of tritangent planes of the
general curve. Again, corresponding to the 30240 pairs of opposite
triangular faces and the 1120 pairs of opposite diagonal triangles, we have
30240+1120 special triads of tritangent planes of the special curve, and
64.7140/3 = 152320 even triads of tritangent planes of the general curve.

Most of the numbers in the second column of the table at the end of
this chapter are taken from §12.8 (the last column of page 414). The
number of diagonal a2y'3's of (PA)8 is 28.240/3 = 2240, since those at
any vertex correspond to the diameters of (PA)1. The number of
diagonal {3, 4, 3}'s is 315.240/24 = 3150, since those at any vertex
correspond to the diagonal cubes of (PA)7 (or to the pairs of opposite
diagonal tetrahedra). In each {3, 4, 3} (e.g., that lying in the 4-space

X^-{-X2 = #3"T#4 — ^ 5 ~ r ^ 6 ' X7 = X8 = X§, 2J X = 0)

we can inscribe three y4's or three /34 -\/2's, making 9450 of each altogether.
The /J4-\/<2>s inscribed in the diagonal {3, 4, 3}'s are particularly

interesting since they correspond to tetrads of tritangent planes whose
twelve points of contact all lie on an extra quadric. The " sum " of the
symbols of such a tetrad has either no digits or all the ten.

In the case of the general quadri-cubic curve, every odd triad
determines a fourth plane making with it a tetrad of this kind. E.g~, with
the triads

235, 145, 136 and 012, 034, 056

we must associate 246 and 789

respectively. Thus the number of such tetrads is

128520/4 = 32 130*.
Let us take one of these tetrads, and associate with it as many more

planes as possible, in such a way that every triad is odd. We find that
just four more planes can be added, that this can be done in five ways,
and that each new set of four is a tetrad of the same kind. We are thus
led to consider octads of planes such as those which correspond to the

* Pascal, Atti B, Aw, Lincei (Bend.) (5), 2 (1893)^204.
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diagonal jSg-y^'s of (PA)8. Each octad can be divided into two of the 32130
tetrads in seven ways. E.g., in the octad

(19.91) 124, 235, 346, 457, 561, 672, 713, 890,

the three planes whose symbols involve a particular one of the digits
1, 2, 3, 4, 5, 6, 7 form with 890 a tetrad of the proper kind. Thus the
number of such octads is

5.32130/14= 11475.

For the special quadri-cubic curve, we consider only those octads that
correspond to diagonal j88-\/5's; then each tetrad belongs to three (instead
of five) octads, and the number is

3 . 9450/14 = 2 025.

TABLE OP THE PRINCIPAL SETS OP TRITANGENT PLANES.

Number of
planes in a

set.

1

2

*3 |

4

5

4

8

12

6 j

7 |

8

14

8

Number of sets
for the special
quadri-cubic

curve.

120

3360

30240

1120

120960

241920

9450*

9450

3150

241920

—

69120

34560

8640

10S0

2025

Corresponding
configuration

i n 4*ii

"0

«1

o3^3or {6}
a3

a4

74

{3,4,3}

«5 = 4<>fl

°6 = 410

°C == *01

"7 = *20

Typical set

089

079, 089

069, 079, .089

123, 456, 789

059, 069, 079, 089

049, 059, 069, 079, 089

012, 034, 056, 789

f 235, 145, 136, 246 \

1 146, 236, 245,135 J

Combination of the two
above

039, 049, 059, ..., 089

123,049,059, .... 089

029, 039, 049, . . . ,089

129, 039, 049, .... 089

019, 029, 039, ... ,089

f 029, 039, 049, . . . ,089 1

1129, 339, 149 189 J

124, 235, ..., 713, 890f

Number of sets
for the general
quadri-cubic

curve.

120

7140

1 152320

1370880

5483520

32130

8225280

913920

| 4700160

587520

11475

• The diagonal &8 A/#'S lead to many more 04 ^2's, but these 9450 are special (being
inscribed in {3, 4, 3}'s).

t (19.91).
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NOTES.

20.1. Corrections to Part 1

[Phil. Trans. Royal Soc., A, 229 (1930), 329-425].

329, line 14. For ITr+u read U+u.

335, line 27. For ; read , .

337, line 6. For generally read usually.

346, line 16£. Ignore the comma after 3.

347, line 2. Interchange r and ^5.

347, line 10. Ignore the upright stroke.

352, line 17. For e read E.

353, line 19. Ignore the stop after 4. 81. For read ,

360, line 21. Interchange 2 and r [or any other pair).

360, line 23. Interchange 1 and T"1 (or any other pair).

361, line 15. For ± 3 read 3.

369, line 9. For an nth read a tn.

388, line 21. Insert — after — 1, . Ignore the comma before the second
semicolon.

406, line 23. For [1357 . 2468] T = T1357 ST2468 read

ST [1357. 2468] = ST1357ST2468.

408, line 15. For automorphism read automorphisms.

20.2. Miller's proof that every finite uniform polytope has a drcumcentre*.

A set of points are said to be equivalent if, for every pair A, B of the
points, there exists a congruent transformation which changes A into B,
leaving the set unchanged as a whole. In § 1. 8 we made the assumption
that a finite set of equivalent points necessarily lie on a sphere-
analogue. J. C. P. Miller, assisted by J. A. Todd and L. C. Young, has

* Cf. E. Catalan, " Memoire sur la thiorie des polyedres", Journal de I'Ecole Poly-
technique, 41 (1865), 33. It is interesting to note that Catalan's definition (p. 25) of " poly-
edre semi-r^gulier du premier genre" should admit Miller's non-uniform solid (§2.1); so, too,
the reciprocal of Miller's solid is really one >( du second genre ".
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constructed a proof to justify this assumption. For simplicity he employs
the terminology of three dimensions; to obtain the general statement,
we have merely to read " m-dimensional sphere-analogue" or
" (m—1) -sphere " for "sphere", and " (m—1) -dimensional sphere-
analogue " or " (ra—2)-sphere " for " circle".

LEMMA. There is a unique smallest sphere which encloses all the points.

Proof of lemma. Since the set of points, say II, is supposed finite, we
may take an enclosing sphere of finite radius. If the smallest of such
spheres is not unique, consider two distinct smallest spheres. Since
these are equal and both enclose II, they must intersect. Describe a new
sphere concentric with, and passing through, their circle of intersection.
This sphere will be smaller than the others, and, containing their common
part, must enclose II; which is absurd. Thus the lemma is established.

Proof of theorem. S, the smallest sphere enclosing II, must evidently
have at least one point A of II on it. Any other point B of II must lie on
or within 8. If possible, let B be definitely within. Since the points are
equivalent, there exists a congruent transformation which changes A into
B but leaves II unchanged as a whole. This transformation changes 8,
which passes through A, into an equal sphere S' passing through B.
Since B does not lie on 8, 8' must be distinct from 8. Since S encloses II,
and II is transformed into itself, 8' must enclose II. But this
contradicts the lemma. Hence B, which was arbitrarily chosen from the
points of II, lies on 8; and so all the points lie on S.

20.3. Uniform (degenerate) poly topes not uniquely determined by their
vertex figures.

In § 2 .1 we made the assumption " that, given any uniform polytope,
there is no other uniform polytope of different shape having the same
vertex neighbourhood." There is no reason to doubt the validity of
this assumption when the polytope is finite; but J. C. P. Miller has
refuted it in the degenerate case, by describing two distinct uniform
poly topes, say Jf4 and Jf4', which have the same vertex neighbourhood.
Their common vertex figure is obtained if we cut a cuboctahedron of unit
edge in halves along an equatorial hexagon, and replace one half by a
hexagonal pyramid of unit altitude. Thus each polytope consists of a
net of tetrahedra, octahedra, and triangular prisms, filling three-
dimensional space. In order to avoid repetition, we shall at once describe
the analogous polytopes filling m-dimensional space.
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In §6.8 we saw that the vertex figure of am h is eam, and that the
bounding figures of the latter polytope correspond to all the elements of
either of two reciprocal am's. It follows that with every bounding figure
of amh can be associated a type symbol 07m< (distinct from 0n>n), where
n-\-n' = m— 1, in such a way that every 0vn> at one vertex corresponds
to an an of a definite one of the two reciprocal aOT's of which the actual
vertex figure at that vertex is an "expansion" (in the sense of §6.9).
E.g., the triangles of a2h can be labelled alternately 010 and 001. Further,
there is a definite type symbol 0n(n»_1) for the (m—1)-dimensional element
in which a 0nn' meets a 0(n+i)(n--i)*' E.g., every edge of a2h is of type 000.

Now, by considering definite integer values of a particular coordinate,
say xm+1, in (6.81), we see that it is possible (in m-f-1 ways) to select a series
of parallel (m— l)-spaces, together containing all the vertices of amh, and
each filled with elements of amh forming an am_1A. Every bounding figure of
each am_1 h is already marked with a type symfeol of the form 0n(n'_x). The
new polytope Mm+{\ is constructed by cutting amh along each one of these
(m—l)-spaces, shifting the resultant layers apart, and inserting a layer of
prisms [0n („'_]> ax]. The modification M'm+1 is derived by sliding every
alternate layer of elements oiamh, between its two bounding (m— l)-spaces,
in such a way that each inserted prism, instead of joining two O ^ ^ ' s ,
joins a ()„(„«_!) to a <V_1)n.

Clearly the vertex figure of either of these new polytopes is obtained
if we cut an eam in halves along an equatorial eam_1 [such as that obtained
by fixing xm+1 = 0 in (6 . 82)] and replace one half by the pyramid-analogue

(eam-i T% ao)-

Exceptionally, M3 is the same as M3, viz. alternate strips of triangles
and squares filling a plane. (Vertex figure : a cyclic pentagon, of sides
•\/2, 1, 1, 1, -\/2.) But consider the degenerate prism [M3, S2], consisting
of alternate layers of triangular prisms and of cubes, filling three-
dimensional space. It is clear that every alternate layer of triangular
prisms can be turned bodily through a right angle, so as to give a new
uniform polytope, say [M3, 82]', having the same vertex figure as [M3, S2].

(This vertex figure is, of course, a bipyramid of slant edge -\/2 on the
above-mentioned vertex figure of M3.)

20.4. Coordinates for pentagonal polytopes.

The {5, d}^'1 of §3.6 corresponds in position to the second
^{3, 5J2T-1 of §5 .7 ; i.e., the latter, apart from size, is an actual

* There are, in fact, type symbols for all the elements of amh, except vertices,
f Not to be confused with Schoute's Mn, which is our 7,,.
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truncation of the former. So, too, the {5, Z}2r~1 of § 3 . 6 corresponds in
position to the first ^{3, 5}2t~x. But, in order to bring the {3, 5} 2 of
§3.6 into the position corresponding to the last-mentioned pair of
polyhedra, it is necessary to perform a transposition among the co-
ordinates T, 1,0.

Similarly, the {5, 3, 3}£T"2 of §3.6 and the ^{3, 3, 5}2T~1 of §5.7
(both corrected as in §20.1) correspond in position to the ^{5, 3, 3}£r~2

of §5.7. But, in order to bring the {3, 3, 5J2T-1 of §3.6 into the
corresponding position, it is necessary to perform a transposition among
T, 1, T"1, 0. After this alteration has been made, if (xx; x2; x3; a?4) is any
vertex of the {3, 3, 5}2T~1, then (a^+a^; x1—x2; x^x^; xs—z4)* is a
vertex of the {3, 3, 5)2 ̂ /2TX at the bottom of the page (346).

20.5. Du Val's coordinates for 521.

By applying the transformation

X2r-1 == %(x2r-l ~^~x2r)> X2r~ 2 ( ^ r - l X2r) V = *» %, 3 , 4)

to the coordinates (§9.1) for 521£ -\/2, we obtain, as the vertices of

the totality of points whose eight Cartesian coordinates are either all
even or all odd or four even and four odd, with a restriction in the third
case. If x0 Zj, xk, xt are the four even coordinates (or the four odd ones),
the suffixes i, j , k, I always form one half of one of the following bifid
symbols:

[1234.5678], [1256.3478], [1278.3456],

[1357.2468],

[1368.2457], [1458.2367], [1467.2358].

A suitable permutation of the coordinates transforms these bifid
symbols into those occurring in (9.36), which have the simple property
that all are derivable from any one by cyclic permutation of the digits
1, 2, 3, 4, 5, 6, 7.

Of the points so defined, those distant 2 from the origin must be the
vertices of

* Cf. Robinson, "On the orthogonal groups in four dimensions", Proc. Camb. Phil. Soc,
27 (1930), 37-48. His 54 (= {3, 4, 3}) must not be confused with our 84 (= {4, 3, 4}).
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These are easily seen to consist of the vertices

±(2, 0, 0, 0, 0, 0, 0, 0)

of a jS8^ -\/2, together with the vertices of fourteen y4#'s of the form

xe = xt = xg = xh = 0, ±xt = ±xi = ±xk = ±xt = 1,

where [efgh.ijkl] is one of our special bifid symbols. In contrast with
(9.21), this set of coordinates has the advantage that every axial prime is
a prime of symmetry of the poly tope.

By selecting the points of this set distant 2 from (0, 0, 0, 0, 0, 0, 0; 2),
we obtain the vertices of

321#

in the perfectly symmetrical form

xe = xf = xg = xh = 0, ±x{ = ±xt = ±xk = 1,

where (ijh) is one of the seven triads

(12 4), (2 3 5), (3 4 6), (4 5 7), (5 6 1), (6 7 2), (7 13),

and e, /, g, h are the rest of the numbers 1, 2, 3, 4, 5, 6, 7. The essential
properties of these triads are that every two digits determine a unique
third forming a triad with them, that every two triads have a single digit
in common, and that every digit belongs to just three triads. The digits
of the first triad are the residues, mod 7, of the powers of 2 (or quadratic
residues), and the rest of the triads are derived by cyclic permutation of
the seven digits.

The vertices of 321 have not hitherto been expressed by rational co-
ordinates in seven dimensions. We observe, incidentally, that these
fifty-six points are the vertices of seven cubes.

For the vertices of 521, we have now two expressions in eight dimensions
and one in nine. By considering fundamental systems of theta-
characteristics, Du Val has discovered an expression in ten dimensions.
His statement is as follows.

The vertices of

are all the points in ten dimensions whose coordinates satisfy the
equations

~ X6 ~r xi
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and the congruences

Xj = 3*2 =

The consequent coordinates for the vertices of

= 3*2 == »^3 = = ^ 4 = OCr = "^R == "^n ^= ^^ft = = *^9 = = 10

are
(0, 0, 0, 0, 0; 5, 0, 0, 0, - 5 ) ,
(1, 1, 1, 1, - 4 ; 3, 3, - 2 , - 2 , - 2 ) ,

(2, 2, 2, - 3 , - 3 ; 1, 1, 1, 1, - 4 ) ,

(3, 3, - 2 , - 2 , - 2 ; 4, - 1 , - 1 , - 1 , - 1 ) ,

(4, - 1 , - 1 , - 1 , - 1 ; 2, 2, 2, - 3 , - 3 ) ,

(5, 0, 0, 0, - 5 ; 0, 0, 0, 0, 0).

20.6 . Degenerate prisms.

In § 17 . 7 we defined the fundamental simplex of the finite generalized
prism. It may seem unsatisfactory that nothing has been said about
the degenerate prism (§ 4. 8). However, the extension is easily made.

L e t SSL>a, SJL>2> ..., S } « 2

be the bounding simplexes of the (Euclidean) fundamental simplex S,^
of a degenerate polytope IT,-, and let (/ g) be the angle between the spaces
of S^ 2 and 2g>2. Similarly, let

i+2)" y(m)

be the bounding simplexes of the fundamental simplex Sm_,-_1 of another
degenerate polytope IITO_,-, and let (k I) be the angle between E^Li_2 and
Sm-i-2- We should expect the fundamental simplex Sm_1 of the
degenerate prism [H,-, IIm_,] to have bounding spaces corresponding to
2^2, ..., S^2> ^m^-f-2, •••> ^(m-i-2> s u c n *na* *^e angle between the spaces
corresponding to S ^ and E,-̂ 2 is (/ ^), while the spaces corresponding to
2^2 a n d ^m-i-z are perpendicular. Now this is precisely the state of
affairs in the (finite) prism [S,-_1} Sm_j_i]; the angle between the spaces of
[Sift, Xm-i-i\ and [Sg2, 2m_i-i_] is (/ flf), while the spaces of &12, S ^ . ^ J
and [Si_i, S^Li_2] are perpendicular. In fact, the vertices of Sm - 1 all
coincide with the point at infinity in the direction normal to the (m—2)-
space of [S,_i, Sm_,-_1], and its bounding (m—2)-spaces join this point at
infinity to the bounding (ra—3)-spaces of [S,_1} 2m_,_i]. Since [IITO_,-, II,]
actually lies in (or rather fills) this (ra—2)-space, we can neglect the
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(ra—l)-th dimension, and acknowledge a fundamental prism in ra—2
dimensions in place of the fundamental simplex in ra— 1.

More generally, the degenerate prism

has the fundamental prism

L - ^ w i i J - " T n o ' • • • J >

where l,mi is the fundamental simplex of nmi+1, and so on. The reflections
in the bounding spaces of this fundamental prism generate the direct
product of the groups generated by the reflections in the bounding spaces
of Emi, 2OTl) This direct product is either the whole group of
symmetries of the degenerate prism or a sub-group thereof.

The fundamental simplex of S2 (see §§3.5, 15.8) being

(00) = a1 | ,

the fundamental prism of

[82, 82) ...] = 8W+1

is [ a , - | , o-ii, •••] = Ymi-

Since ym j can be divided (by primes of symmetry through one of its
vertices) into ra! repetitions of the simplex (4, 3m~2, 4), the corresponding
group (viz., the direct product of ra groups of the form S2 = T2 = 1) is a
sub-group of index ml in the group of symmetries of 8,n+1.

On the other hand, if a, 6, ... are all different, the (extended) group
with [ax^a, ax±b, ...] for fundamental region is precisely the group of
symmetries of [82a, S26, . . . ] . The unextended group corresponding to the
rectangle [a1 -|a, ax +b]—that is, the group of rotations (positive symmetries)
of [S2a, S26]—is discussed by Burnside (§298).

20. 7. Bibliography for "Fundamental regions ".

Schwarz, H. A., "Ueber diejenigen Fiille, in welchen die Gaussische kypergeometrische
Reihe eine algebraische Function ihres vierten Elemenies darstellt", Journal ftir Math.,
75 (1872), 292-335; Werke, 2, 211-259.

Klein, F., " Uebor die Transformationen der elliptischen Functionen und die Auflosung der
Gleichungen fiinften Grades", Math. Annalen, 14 (1878), 111-172.

Poincare, H., five papers on automorphic functions, Ada Math., 1-5 (1882-4).
Klein, F., "Ueber den Begriff des functionen Lheoretischen Fundamentalbereichs", Math.

Avnalcn, 40 (1891), 130-139.
Ilurwitz, A., " Zur Theorie der automorphen Funktionen von beliebig vielen Variabeln ", Math.

Annalen, 61 (1905), 325-368.
Bieberbacb, L., "Ueber die Bewegungsgruppen der Euklidischen Raume", 1 Abhandlung,

Math. Annalen, 70 (1910), 297-336 ; 2 Abhandlung, Math. Annalen, 72 (1911), 400-412.
Forsyth, A. R., Theory of functions of a complex variable, 3rd ed. (1918;, 653-793.



1.931.] POLYTOPES WITH REGULAR-PRISMATIC VERTEX FIGURES 189

INDEX.

Abelian linear group: § 19.4.
Abstract definition: pref., §§16.2, 16.7,

16. 8, 18.1, 18.5, 19.2.
Alternating group [3*-a]': § 17 . 6.
Bath: §19.3.
Bifid substitution: §§ 18 . 3, 18.8, 19.3.
Bifid symbol: §20.5.
Bitangents : pref., §18.5.
Burnside: §§16.2, 16.5, 16.8, 20.6.
Canonical curve : § 19.4.
Coble: §19.1.
Congruent transformation: §§16.1, 20.2,

20.5.
Coordinates: §§17.7, 17.9, 19.1, 20.4,

20.5.
Corrections: pref., §20.1.
Cubic surface : pref., §§ 17 .5, 18.1, 18. 3.

Cuboctahedron J J l : §§14.3, 20 .3 .

Cyclic group [7c]': § 17 .6.
Del Pezzo surfaces: § 19.1.
Dickson: §§16.8,17.5,19.4.
Dihedral angle: §§15.1,17.3.
Direct product: §§16.4,17.7.
Double-six: §§18.3, 19.6.
Du Val: §§ 14.8, 14.9, 19.1, 20. 5.
Euclidean simplex: §15.2.
Existence conditions: §§ 14.5, 15 .2.
Extended group: §§ 16.1, 18.1.
First hypoabelian group: § 19.4.
Fundamental prism: § 20.6.
Fundamental region: pref., §§16.1, 20.7.
Fundamental simplex: § 17 .2.
Group of congruent transformations: § 16.1.
Groups generated by two operations :

§§16.8,19.7.
Icosahedral group [3, 5]': §17.6.

Icosidodecahedron

Klein: §§16.3, 16.8, 20.7.
Miller: §§20.2, 20.3.
Minkowskian space: §§ 14.9, 19.8.
Negative operation : § 16.1.
Net of simplexes: §16.2.
Noether: §§19.1, 19.5.

Octahedron | 3 } : §14.3.

Orthoscheme (ku 7c2) ..., kia-\): pref., §15.8.
Pascal: §§19.3, 19.5, 19.6.
Prism: §§17.7, 20.3, 20.6.
Pure Archimedean polytope : pref., §§ 14 .9,

19.1.
Quadri-cubic curve: §§19.1, 19.3, 19,5,

19.9.
Reflection: §§16.1, 17.4.
Regular polytope {7c,, 7c2, •••> &»>-«} : §§17.3,

17.6.
Robinson: pref., §20.4.
Schlafli: pref., §§15.1, 18.3.
Schlafli symbol, extended: §§14.1, 14.2,

14.4.
Schottky: §19.4.
Semi-reciprocation: §§14.4, 14.8, 17.1.
Sphere: §20.2.
Spherical simplex: § 15.1.
Symmetric group [3*"2]: §§17.6, 17.9.
Symmetries: §§17.4,19.2,19.3.
Theta-characteristics: §§19.4, 20.5.
Todd: pref., §§16.8, 19.1, 20.2.
Transposition: §§17.9, 18.3, 18.7, 19.2,

19.7, 20.4.
Type symbol: §§18.2, 18.6, 19.2, 20.3.
Unextended group : §§16.1, 18.5.
Vertex figure: §§14.1, 14.5, 19.5, 20.3.
Young, A.: §16.8.
Young, L. C.: §20.2.


