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Preface.

The idea of the fundamental region of a group is familiar. (A list of
references will be found at the end of this paper.) The orthoscheme, which
Schlaflit associates with a regular polytope, is really a fundamental region
for the group of symmetries of the polytope. Dr. J. A. Todd} has
recently used this fact in order to obtain abstract definitions for the groups
of symmetries of the regular polytopes.

* Part 1 of this paper appears in the Phil. Trans. Royal Soc. (A), 229 (1930), 829-425.
The paragraphing of this part follows on that of Part 1.

t ‘“Theorie der vielfachen Kontinuitit ', N. Denkschr. Schweis. Ges. Natw., 88 (1901).

t *“The groups of symmetries of the regular polytopes’’, Proc. Camb. Phil. Soc., 27
(1981), 212-231.
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On 24 November, 1930, Dr. G. de B. Robinson urged me to seek a
fundamental region for the * pure Archimedean” polytope 7y. By
fitting together three special orthoschemes, I found the required funda-
mental region, namely a simplex all of whose dihedral angles were
either 47 or 3=. This result led to an empirical generalization, and to an
extension of the Schlafli symbol {k,, k,, ..., k,,_,}. Afterwards I proved
the general result, which can be stated as follows :

Every group of real orthogonal substitutions on m variables, having as
Jundamental region a simplex all of whose dihedral angles are submultiples of
m, ts either the whole group of symmetries of some m-dimensional umform
polytope, or a sub-group thereof.

An abstract definition for such a group, and in particular for the
group of automorphisms of the twenty-seven lines on a cubic surface or of
the twenty-eight bitangents of a plane quartic, can be written down at
once.

A preliminary account of this work appears in the Journal London
Math. Soc., 6 (1931), 132-136. In the last line but eight of page 134, the
words ¢ central projections of ”’ should be inserted after the word
““vertices”.

I should like to express here my thanks to Dr. Todd and Dr. Robinson
for their inspiration and encouragement.

14. An extension of the Schlafli symbol.

14.1. At the end of §5.3 we observed that the vertex figure of the
polytope t, {ky, k, ..., k,,_,} is a generalized prism whose two constituents
are the vertex figures of

{kn’ kn—l’ s kl} and {kn+1: kn+2: e km—l}'

This fact suggests the new notation

by, Koy -, km-l} ={
which is justified by the identities
tofkys Koy oos kipy} = {ky, Ks, ..., ke s}

and b1 {kys Koy ooy Ky} = {lp1s Kpgy +ovs Koo}
We thus define

Bgs B3y +evs Upy . . +1
{ l [{zl, vees Gy} 2 COS z.l, {J1s ++e» g} 2 cOS 1]
Jor 1o +oes -7«—1 0 Jo

(in the notation of §7.1).

kn: kn—-l’ H kl }
kn+1: kn+2’ (] km—l
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Bgs b1s - 1
00 015 w0 Uy
’ "1\ has in general two

It follows from this definition that { o
Jor J1s ++s -7(1—1

kinds of bounding figure :
[z’o, By eons ip~2} snd {io, Uys e i”’ll

25 e o 1> -+ s
Thence it follows that the general element (apart from vertices) is

[7,0, Vs oees by

} (0<p <p, 9<¢ K9).

Uo: Jus -0 Jg-1
This result is perfectly analogous to the fact that the general element of
{kli kza AEXS) km—-l} 18 {kl’ kZ) vy km'—l} (1 <m' <m),
and it is easily seen to agree with (5.23).
14.2. Since

+1
U T ({kz, ooy by 1) 2 cO8 ki) ,
1
it is natural to define

gy Upy eees b ] gy gy vees
0 Y15 ¥ —1 0% “1» ] —1
{kl, ? / { r }2005—\

S Y A BN Y N
The general element (apart from vertices and edges) is now

io, il, asey Zp'—l , ,
ky O0<p' <p, 0<9¢ <9
Jos Juss ++es Ja-1

Similarly, we can define inductively

”kl, ko, ..., l;ﬂ,,, ot s %_1] = <{k2', ooy Koy Yo T e %_1] 2 oS +—
1 Jos J1s ""jq—lJ’ \ Jos Jus -+ a.?q-1' kl/
The general element of not more than » dimensions is simply the general
element of {k, k,, ..., k,}, while the general element of more than
n dimensions is

+1

[ io: i]a .o :':p—l ’ ’
Ky, Koy ooy Ky X (0<p <p, 0<¢ <9).
‘l Jos J1s +ees Ja-1

T By wver S

Since {3y, ..., 4,4} i8 p-dimensional, { .. . } is (p+g+1)-
Jor J1s <o+ Jg—1

} . Bgs U1 -« "’p-1l .

dimensional, whence <k, &y, ..., k,, . . is
Jos J1s «ees .7q-—1J

dimensional. Thus the number of dimensions is one more than the

number of digits involved in the symbol.

(n4-p+q41)-
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Note that

{kl, k21 te kn’ J.o’ e Jq-l} N {kl’ kz’ trer k.,w 7'.0, Z.l, o z.p_l]"
. Jos J1s +es Jq—lJ

Tgs U1 +ves bp_g
14.3. Let us now illustrate this notation by giving numerical values
to the ¢’s, j’s, and k’s.

{g} =t,03=B3={3, 4}, the octahedron, whose vertex figure is [a,, a;,] = B,;

3
{4 j=h B3, the cuboctahedron ”» » » [a, Bil;
{2} =1, {3, 5}, the icosidodecahedron » » » [ay, a;7];
3 .
{6‘ =1 {3, 6} 33 I 3 [alx ay '\/3] >

4) 113 »
Ll:j = t183 = 53 = {4:, 4}: Squa’red paper 2 » » [ﬂl’Bl] =132 '\/2

{3, §}={3, 3, 4} = B, o -{§}={3,4}=33;
o Y=ten - R -
) S S
{ f=up=3143 S A
{5 of =ubs v e (BB
{z 3} —4,(3,4, 3) w o m oy apa/2];
f5 5l =333 T R CIE
{g 3} —1,{5, 3, 3} S TR

SER. 2. VOL. 34, No, 1857. K
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{3

4, 3,3

3,3
4, 3

{3’ 3, g} ={3, 3, 3, 4} = B;;

(o0} =00, 9=,

{3’ g, 3} = hy;;

{3’ 2 4} ={3, 3, 4, 8} = hd;;

{g, 3, 3} =t 053 12 g’l_tz%,

{2’ 3, 4}=t135’ {3 i}_tzﬁs,

]{; 3 3} T {3, 3, 4} = t,35;

{3 4, 3} =14{3,3,4,3}={3,43,3}=1,8,= {z i} :
;

=1,{3, 4,3, 3}; { =1(3,3, 4, 3).

{3m—3 o "=B; { 3m_3y —hy,,: {4, gn-t, 3}:3,,,; {3,3 L s,

3 3m—4 4}
3n 3n gn-1_ 4 3n-1 4
{3m—w—1|1 =lpay; {3,,,_”_2 4f =t,Bn; {3m_n_1 } EnYms {3m n—2 4} =tp0p.

{3” 3p} = Tyq

14.4. The notation can be further extended. By §5.8 with [ for n,
if IT,, has an (I+1)-th vertex figure, then

I, = (1L, Ty pa]™

gy by oons &

Now let Hm= {kl, kz; ceey knv .. p—l}
Jos J1s +ee5 Jg—1

In this case, if I < n,

I1; is the vertex figure of {k, k,_;, ..., &y}

* 3" stands for 3, 3, .. , 8, with n 8's.
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and

. Tgs B1s +ees bpy
I, 1y 141 18 the vertex figure of < kpy, Kppos ooy by . . .
Jo: .71’ AR .7q—1

Accordingly, it is perfectly analogous to write

kylyy, . kg

Uy Uy ves by . :

(14.41) 44 ky, by oo By L B> 15 +evs Gp1
jo,jl, “"jq—l kl+1’ kl+2’ teey kns .. .

.70’.71’ "".7(1—1

(I1<n).

The three kinds of bounding figure are obtained by omitting the k, or the
1,1 OT the j__,, respectively.
In particular,

By Ko s oo By

Ty Ups vees Tpy '
tn—l{kla kza (EE) kn: .. N } = 7;0, 7;1, vy Uy [0
Jor J1s ++05 Jg1 k,, . . )
.70’.717 ""Jq—l
and, finally,

k,n, kn—l’ crey kl

gs Tps vevs by

p—1 .. .

tn{kl, ky, ooy ko, ) =9 %gs by o5 Vp1
Jos J1s <05 g1

Jos J1s s Jom
This last symbol means

'- N . . - -I +l
,{kn—l’ oy oy} 2 cO8 [{zl, oo Ty _q} 2008, {fu1r vres Jus) 2 cos.i]
L k %y a Jo .

n
By (4 .22), the inner square brackets can be removed, and the rows of our
three-rowed symbol are permutable. Writing

b=k

n-—r?
we now have

o . hoy byy ooy By
B0s T15 +ves bpy

(14.42) tn{hn_phn_z,---,ho,, _ T =g 0y eyt
: Jor 1> -5 Jom1

. . . JooJu g1
= tp Yp—-1s Up—2s <=5 Ygs
By By vves By

. . . hO’ hl’ e h’nz—l
=14 J4-1 Jo-2> ++» Jo» | .

1/0, Zl’ ey 'l’p-l

p—1

jo: jl» teey jq—l

K2
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When every &, ¢, j is equal to 3, these results reduce to (7.35) and (7. 36).
Thus, in the notation of (12.11),

3n
(14.43) {3?} 0,100
3¢
14.5. Since the vertex figure and general element of
hos hyy ooy By
(14.51) U0y b1y +ees Upei

_ Jos Jus ++s Jg1
are respectively

(14.52)

[{kl, s By} 2 cOS—— k s B e p_1}2cos s {91 eos Jy-1} 208 ——:I

ho, hl’ seey hn’—l

and Bgs B1s +ens Upy oLn <n, 0Kp' <p, 0<¢' <9),
Jor Ju» '";jq'—l
the following existence conditions are necessary :
ho, Byy s By hos hys <evs By ho, byy vovs By
ORI SN SRS & A ROE S Gy By <o Ty
Jos Ju> ++5 Jg-1 Jos Jus -+ Jom1 Jor J1s -+ oz

must all be finite, and the sum of the squared circumradii of the three
constituents of the prism (14.52) must not exceed unity. By (2.93), the
latter condition is equivalent to

A, _1(hy, -y Byy) 2 T 2—1(7‘2! p_: ) 2 7
[¢]0 ]
Al o Fna) S T T Doy, o ) zo

Aq—l(‘jz: '").jg—l) cosg < 1
, Bg(J1s -5 Jg-1) Jo
or (subtracting both sides from 3)

(14. 53) An-l-l(ho’ hl’ ) hn—1)+Ap+1(1;0’ 7:1’ bt ) ?:1)—1)

Ay (hyy ony Py Ap(igs wmripy)

Aq+1(jo: Jis vees Jg-l)
5 =2,
+ Aq(]lﬁ bt ]q—l)

in virtue of (2.89). As usual, equality indicates degeneracy.
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Here we have tacitly assumed that npg > 0. The existence of
{io, Tys <ees ip_l}
Jo Jv < Jg1
depends solely on the existence of the regular polytope

{zp—p Up-9s +oo Yoy Jor J1o +ees .741—1}’

since the former polytope is the £, truncation of the latter.

14.6. In Chapter 17 we shall see that the vertices of

Tgs gy =eny Ty
(14.61) {kn_,, Bty oo gy T }
Jos J1» +0e Jg-1
hgy Bys <oy Boys
are the centres of the bounding 1 %, %y, ..., 4,y ’s of (14.51), s0 that the

Jos J15 05 Jg1
existence of (14.61) will follow from the existqence of (14.51). But this fact
need not be used here; we shall simply find all possible &’s, i’s, and j’s for
which (14 .51) exists, and then observe that the corresponding polytopes
(14.61) are familiar. By (14.42), there cannot be further values of the
h’s, ¢’s, j’s for which (14.61) exists.

When hy=..=h, j=iy=..=0, j=jfo="..=j,1=3, (14.53)
becomes
n+2  p+2, ¢+2 >9
e tit o) >
or
(14.62) npg <n+p+q+-2,

which is the same as the existence condition (7. 32) for O,,,,,.
Assuming that npg > 0 (as we may, by the remark at the end of §14.5),
311.
the only digit in the symbol { 31’} that can be increased is the last in a
3¢
row. For, by (14.42),

31 4
’ 3
{ 3 } =1, {4s 31, 3} =i, 8'n+3 =1y 8'n+3'
3

This being degenerate, we cannot introduce further digits into any row.
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3n—1’ h
{ ) } is impossible if A > 4 or ¢ > 3, since

J
A,103,3, ..., 3, k) Ay(2) , Ay(y)
A L3 T A TA
_ {(n+1)/2%}—(n/2"1) cos®n/h +sin2n/i sin? 7 j
= W) —{(n—1)F T costalh T 1 T 1
1 1 .o T . o T
- 2(n—1) (n—— 1—(n—1) cos 27r/h> +s1n2z—.+31n29—.,

which decreases when A or ¢ increases.
Thus, if npg > 0, there are only two families of polytopes of the kind
we are investigating :

(i) The three semi-reciprocals

(o 3] (p 301 e 87
L e e I e R

37‘1
{ 3p } N Onpq,
3¢

with the existence condition npg <n-+p-+g+2.

and their common truncation

(ii) The three semi-reciprocals
3 3 (, 31 4}
-1 — — —_ )
{4’ 3 3} Susas {3’ 3n-1, 4} Bnis=13 4

and their common truncation

3n—1, 4
3

14.7. The simplest examples of three-rowed symbols are

3 3
{3}={3, 3, {3}=t134,
3 4

3 3
{3 }=t2ﬁ5, {3 }:{3, 4,3, 3}.
3,3 3,4
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] 3
14.. 8. Since {3

symbol ends with “3, 4, this combination can be replaced by a pair
of 3’s, one over the other. In this manner, the identities

}: {3, 4}, whenever a row of an extended Schlafli

3
{3, 3 }={3, 3,4,3) and {3 }={3,4,3,3
3, 4 3 4
lead respectively to
: :
{3, 3} ={3,3,4,3} and g = {3, 4, 8, 3}.
3 3
The symbols
J k h i
h, it 7, it 2 s k, Bt
gm—5 gm-5 gm—5 gm—5
3 k ) k ’1, b J

wherein h =1 =j =k =3, can be associated with Du Val’s cycle of four
semi-reciprocal %5,’s. (These are semi-reciprocal in the sense that the
reciprocal of each possesses the vertices of the other three together.) In
each member of this cycle, the centres of the B,,_,’s are the vertices of the
opposite member, while the centres of the ky,,_,’s are the vertices of the
two adjacent members.

14.9. It may have seemed pedantic to consider general values for the
numbers involved in the symbols (14.51) and (14.61), when never more
than two of these numbers can actually exceed 3. It is therefore worth
while to remark that, in a Minkowskian or hyper-Minkowskian space
(with a certain number of ‘time-like’” dimensions), the A’s, ’s, and j’s can
be as great as we please, the restriction (14.53) being withdrawn.

In particular, Du Val has investigated the ¢ pure Archimedean”
polytopes ny, with n > 5.

Such considerations, however, are outside the scope of the present
work.

15. Spherical simplexes whose dihedral angles are submultiples of .

15.1. An ordinary spherical triangle can be regarded as the inter-
section of a sphere with three independent planes through its centre. The
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angles of the spherical triangle are just the anglesbetween pairs of the planes.
If the sphere is of unit radius, these three angles suffice to determine the
spherical triangle in both shape and size. But they must not be too small.
In fact, if the angles are (2 3), (3 1), (1 2), the area of the spherical triangle

18
(23)+(B 1)+(1 2)—m.

This function of the angles must consequently be positive. The limit of a
sequence of spherical triangles of diminishing angles on spheres of suitably
increasing radii is a plane triangle, for which

(23)+(31)+(12)—m=0.

These notions can easily be extended to m dimensions. A spherical
stmplex is defined as one of the 2™ parts into which an (m—1)-sphere is
divided by m independent primes through its centre. Of the two
supplementary. angles between a pair of the primes, that one which isinside
the spherical simplex is called a dikedral angle. If the (m—1)-sphere is of
unit radius, the spherical simplex is completely determined by its 3m(m—1)
dihedral angles. As in three dimensions, these dihedral angles must not
be too small. But when m > 3, the content of a spherical simplex is no
longer a simple function of the angles. We accordingly seek a more
tractable criterion.

Let the m primes be called 1, 2, ..., m; and let* (rs) denote the
dihedral angle between the primes  and s, so that (s7)=(rs). Using
Cartesian coordinates, with the origin at the centre of the (m—1)-sphere,
let the prime r have the equation

m
L a;x;=0,
=1
m
where Sai=1 (r=1,2, .., m).

i=1
We can suppose the signs of the a’s adjusted so that the spherical simplex
is just the aggregate of points satisfying

m m
Tz2=1, XZa;x=0.

=1 i=1

m
It follows that Z a,;a4;; = —cos(r s).
i=1

* Not to be confused with the (i) of §9.2.
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The m primes being independent,

@y Gz B3 - Gy |[FO.
Qg1 Az Oy Aom

A3 Q3p QAgg A3

aml Ama “ma eee amm

Squaring this inequality we have*

1 —cos(12) —cos(13) ... —cos(lm)|>0.
—cos(21) 1 —cos(23) ... —cos(2m)
(15.11) | _cos (31) —cos(32) 1 ... —cos(3m)
—cos(m 1) —cos(m2) —cos(m3) ... 1

15.2. The section of our spherical simplex by the prime through the
origin perpendicular to all the primes 1,2, ...,9—1,241,...,m is a
spherical simplex of one fewer dimensions, whose dihedral angles are

(r 8) (rz15£59).

Hence the above determinant must remain positive when any number of
rows are removed, along with the corresponding columns. The in-
equalities obtained in this manner provide the required criteria for the
existence of a spherical simplex of given dihedral angles.

Note that, provided that no obtuse angles are admitted, the value of
our determinant diminishes when any one of the angles is diminished. The
limit of a sequence of spherical simplexes of diminishing dihedral angles
on (m—1)-spheres of suitably increasing radii is a Buclidean simplex, for
which the determinant vanishes. But the simpler determinants, derived
by omitting corresponding rows and columns, remain definitely positive.

Let us now enumerate the spherical and Euclidean simplexes all of
whose dihedral angles are submultiples of #. (This restriction implies
that no dihedral angle shall be obtuse.)

15.3. If the primes 1, 2, ..., m fall into two sets, say 1, 2, ...,¢ and
i+1,¢+2, ..., m, such that every prime of the former set is perpendicular
to every prime of the latter, then our determinant breaks up into two

* This result is due to Schléfli (loc. cit. in Preface).
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factors, whence the existence of the spherical simplex depends on the
existence of two simpler simplexes, viz., that whose dihedral angles are
(rs) with » <+ and s <¢, and that whose dihedral angles are (r s) with
r>1¢ and § > .

In particular, there is a spherical simplex all of whose dihedral angles
are right, namely the spherical simplex bounded by

2, =0, 2,=0, ..., z,=0.

15.4. Apart from one trivial case, it is impossible to have a closed
chain of acute dihedral angles, such as

(12), (23), ..., (—13), (@1).
For, to take the most favourable possibility, suppose that
m=1, (12)=(23)=...=0—12)=(1)=}m,
and (ro)=3r 1 <|r—s| <i—1).

Qur determinant becomes

1 -3 0 0 .. 0 —}|=0 G>2).
3 1 -} 0 .. 0 0
0 —3 1 —} .. o0 o
-3 0 0 0 .. —} 1

Therefore the simplex in this case is Euclidean; and any further
diminution of the angles, or insertion of extra angles, will render it non-
existent.

15.5. Apart from one trivial case, it is impossible to have more than
three acute (r s)’s with a common 7 (ors). For, to take the most favourable
possibility, suppose that

m=25, (12)=13)=(14)=(15)=43%m and (rs)=37 (r>1, s>1).

Our determinant becomes

1 -} —% —} —§|=0
-3 1 0 o0 o0
-3 0 1 0 0
-3 o0 0 1 0
-1 0 0 1
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Therefore the simplex in this case is Euclidean ; and any further diminution
of the angles, or insertion of new angles, will render it non-existent.

15.6. Apart from one trivial case, it is impossible to have a double
occurrence of three acute (rs)’s with a common ». For, to take the most
favourable possibility, suppose that

(13)=(23)=B84)=45)=...=(m—4m—3)= (m—3 m—2)
= (m—2 m—1)= (m—2 m) = 4w,

withrightanglesforall therest. Inthis case, too, the determinant vanishes.
Therefore the simplex is again Euclidean; and any further diminution of
angles, or insertion of extra angles, will render it non-existent.

15.7. The only type of simplex which remains to be considered is that
whose acute dihedral angles form three open chains all emanating from
one bounding prime, thus:

(12), (2 3), (n n+1);
(1 n4-2), (n+2 n+3), (n+p nt+p+1);
(I n4p+2), (n+p+2n+p+3), ..., (n+p+gqnt+ptqil).

(m=n+p+q+1.)

Let us rename these angles as follows:

wlhyy wlhy, ., Tlhy_y;
gy Ty ey Ty
‘”/jO’ Tr/jl’ veey w/jq_l-

Then our simplex can conveniently be denoted by the symbol

by hyy ey R

n—1
(16.71) Gy By eees Gpy
jo: jl: sty .jq—l

15.8. In order to clarify this notation, we may rename the m bounding
primes:

(15.81) 0, 1, 2, .., n, 1, 2, .., ¢, 17, 2", .., ¢

Then w/hy, ©fiy, w[j, are the angles between 0 and 1, 1’, 1"’ respectively,
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w/h, is the angle between » and r4-1, /i, between ' and (r4-1)’, and
m/j, between 7'’ and (r41)”. Every other angle is a right angle.

We might have regarded our acute dihedral angles as forming only
two chains, one emanating from the middle of the other. But this aspect
destroys the symmetry which exists between the A’s, +’s, and j’s, obscuring
the fact that the three rows of the symbol (15.71) can be permuted bodily.

If n =0, so that there are no ’s, we are left with a single chain of acute
dihedral angles; thus

0: 1, . )Zp—l

(15.82)
\]m Jus wves Jo-1

): (Up1> Bp2s -++5 s Jos J1» ...,yq_l).

A simplex of this type, say*
(ky, bgy wvvs Koppy),

is what Schlafli calls an orthoscheme. In this case, returning to the
notation of §15. 1, we have

(r r4+1) = n/k,,

but all (r s)’s for which » and s differ by more than 1 are right angles. So

(15.11) becomes
Am(kh kz: M/ km—l) >0,

in the notation of §3.5.
The simplest orthoscheme is (k): an arc of length #/k. The next
simplest is (ky, k,): a right-angled spherical triangle, of angles «/k, and

7/k,. The simplest other simplex of type (15.71) is (z ) : a hyperspherical
tetrahedron with three right dihedral angles at one vertex, the remaining
three dihedral angles being n/h, w/s, =[j.

Analogous symbols for the special simplexes discussed in §15.5 and
§15.6 are respectively

3

w W w

and (g’ 3%..., 3, 3).
3

The special kind of simplex discussed in §15.4 is unique, in that the number

* Not to be confused with the (x,, @,, ..., .) of § 8.6.
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of acute dihedral angles is equal to (instead of less than) the number of
‘bounding primes. In this case the brackets must close up to form a
complete circle; so the appropriate symbol is

The enumeration of orthoschemes (with integral k’s) involves exactly
the same work as the enumeration of regular polytopes, as undertaken
in §3.5; so we need not repeat it here. The connection will appear later.
Since obviously

(B> By <o kq) = (Foq, gy ooy Eopy),

the result is as follows:

m ] Spherical orthoschemes Euclidean orthoschemes
2 (%)

3 3,8), 8,4, 85 (4, 4), (3,6)

4 (3,8,8), (3,8,¢4), (3,33, (3843) 4,3, 4)

5 (8,8,8,8), (8,83,8,4) 4,3,3,4), (3,8,4,3)
>5 | @-n, (3% 4) (4, 373, 4)

For the sake of completeness, we might add : for m = 1, the very simple
simplex

()

which has, and is, a single vertex; and, for m = 2 (Euclidean), the straight

segment
(),

so called because it subtends a zero angle at infinity.

15.9. It is easily proved by induction that the proper determinant for
ho’ kl’ seny h

n—1
Y5 U1y vees Upa

Jos Jus -+ Jgm1
is equal to

<An+1(h0’ hl’ M) hn—1)+ép+1(i.0, il’ AL ":D-—l) +Aq+1(j9’ jl’ ":’ jq—l)__2>
: A (hy ooy By y) Ap(@l, eesbpy) Aq(h, cees Jg1)

XAp(hys oooshyy) Dyliy, ovns tp1) Bg(Jas +oes Jigma)-
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We saw in §15.2 that the existence of a spherical simplex depends,
not only on (15.11), but also on the existence of a spherical simplex
of one fewer dimensions, derived by suppressing any one of the original
bounding primes. If we suppress the prime 0 (in the notation of §15. 8),
we obtain the orthoscheme

(kI! vy hn—l’ 2’ 7’1! ey p—l: :.71) )Jq—]):

whose existence depends solely on the joint existence of the three ortho-
schemes

(Bas oos Ba)s  @py ooes Bpy)s (1o oo Jgma)-
But the suppression of the prime r (r > 0) leads to the simplex
boy Byy ooy By_gy 2, Bypyy oy By

U b1y vees Byt ,
Jor Jis ++s Jg1
whose existence depends solely on the joint existence of
bg hyy vovs By
gy Ugp oo Tp1 and  (hq, o5 Byy)
jO’ jl’ ce jq—l

Similarly for the suppression of ' or 7"’.
Hence the simplex (15.71) certainly exists if

By gy ooy Bpg By hyy wons By bgy bryy <oy By
gy b1y e lpg | gy bps wees lpog |» 05 1> woes Upy
Joo Ju v+ Je1 Jos J1s o0 Jg1 Jor J1s vees Jg-2

all exist and are definitely spherical (not Euclidean), and if further the
inequality (14.53) is satisfied. In this inequality we have “ > for a
definitely spherical simplex, and “ = " for a Euclidean one.

When all the A’s, 4’s, and j’s are equal to 3, (14.53) becomes (14.62).

Thus the simplex
3n
3¢
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is spherical when npq < n+p+q+2,
and Euclidean when
npq =n+p+q+2.

The particular cases are as follows:

m=n+p+q+1 Spherical Euclidean
p+qg+1 3»
(50) =t
n+3

~——

]
N N

w w w w w w wwf.o w w W
wWw w
OD\—/

w @
N

TN

o W W ow w

o
TN

@ o

Nl

w

N

© \_/

(o]
AN TN

w w

w

w

N——

The next simplest possibility is

311,—1, 4
34q

In this case, since A, (3", 4)=1/2" (as we saw in §3.5), we have

%(1 —l—%%—}-g-i—f) >2, or pg <1. Since the orthoschemes have already

been considered, we can assume that pg > 0. Therefore we must have

p=g=1

31 4
The simplex (3 >,
3

being Euclidean, is the last possibility.
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Recapitulating, the only possible simplexes whose dihedral angles are
submultiples of 7 are the following :

() (m=1, spherical or Euclidean),
(k) (m=2, spherical),
(o0) (m =2, Euclidean),

37l
<3p> (npg <n+p+q+2, m=n+pt+q+1, spherical or Euclidean),
3q

(32, 4) (spherical),
(4, 3m-3, 4) (Euclidean),
(3, 5) (m =3, spherical),
(3, 6) (m=3, Euclidean),
(3,3,5), (3,4,3) (m =4, spherical),
3
3 .
(3: 3: 45 3)’ 3 (m= 5, Euchdean),
3
371;—4, 4 3’ 3
( 3 >, < 3m—5, ) (Euclidean),
3 3, 3
@ (Euclidean),

and an endless variety of new spherical simplexes derivable from pairs of
known spherical simplexes in the manner described in §15. 3.

16. Groups whose fundamental regions are simplexes.

16.1. Let R, R,, ..., R

m

denote the reflections in the m primes of §15.1. These operations clearly
generate a group of congruent transformations or orthogonal substitutions.
Since a reflection is a megative operation (i.e. a transformation whose
matrix has a negative determinant), the group contains both positive and
negative operations; accordingly it is said to be extended.
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It is well known that the product R, R, is a rotation through angle
2 (r ) about the secundum of intersection of the two primes » and s. Since

R32= 1 and (Rr'Rs) (Rs R[) = Rr Rb

all these products are expressible in terms of m—1 of them, provided that
these m—1 involve all the R’s. A suitable set of products is*

S,=R R (r=1,2, .., m—1).

These rotations also generate a group. Since a rotation is a positive
operation, every operation of this group must be positive; accordingly the
group is said to be unextended.

Since the operation R;, of period 2, belongs to the former group but
not to the latter, and since

R, =8,_,Rk, (s=23,.. m),

it follows that the unextended group is a sub-group of index 2 in the extended

group.
The operation R, transforms the simplex of §15.1 into a new simplex,
having the prime s in common with the original one. The operations

‘RT‘RS’ (RT'RS)Z’ (‘RT R8)33

transform the original simplex into a cycle of new ones, all meeting in the
secundum of intersection of » and s. If every dihedral angle of the simplex
s a sub-multiple of m, these simplexes will not overlap. In fact we shall

have
(B, R)1e9 =1

In this case, the simplex is called a fundamental region for either of the
groups.

16.2. We shall let g,, denote the order of the extended group, so
that 4g,, is the order of the unextended group. g, may be finite or
infinite; we shall soon see that it is finite or infinite according as the
fundamental region is spherical or Euclidean.

The operations of the extended group satisfy the relations

Rr=1 (s=1,2, ..., m),

(16.21)
(R, R)™9=1 (r,s=1,2,..,m; r#s),

* This S, is not to be confused with the S,, of §8.9.
SER. 2. VoL. 34. wo. 1858. L
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which are equivalent to

(16.22) R2=1, (8,R)p2=1 (r=1,2, .., m—1)
and
SrleV=1 (r=2,3, ..., m),
(16.23)
(8, 7)1 =1 (r,s=2,8,...,m; r #s).

The g,, operations of the extended group transform the fundamental
region into a net of g,, simplexes, fitting together so as to fill the whole
(m—1)-space (spherical or Euclidean) at least once. An obvious extension
of an argument used by Burnside* proves that the net fills the space
exactly once, and that the equations (16.21) constitute an abstract
definition for the extended group.

Since the extended group can be derived from the unextended group
by the insertion of R,, which is related to the 8’s by (16.22), it follows
that the equations (16.23) constitute an abstract definition for the
unextended group.

Since the g,, simplexes, each of finite content, fit together to fill the

(m—1)-space just once, it follows that g,, is finite or infinite according as
the space is spherical or Euclidean.

16.3. The }g,, operations of the unextended group transform the
fundamental region into one half of the net of simplexes, namely into a set
of 3g,, simplexes of which no two have a common bounding prime. Any
negative operation of the extended group (e.g. R,) transforms this half of
the net of simplexes into the other half. It is useful to regard every
simplex as being ‘shaded ” or “non-shaded ”’ according to the half-net to
which it belongs. A beautiful account of the case when m = 3 is given
by F. Klein in Chapter 1 of his Lectures on the icosahedront.

16 .4. Let us now consider the particular simplexes that can serve as
fundamental regions. Take first the kind of simplex discussed in §15.3,
viz. that for which

(r8)=4m whenever r<i<as.

The relation (R, R,)? = 1 simply means that R, and B, commute. Hence,
substituting in (16 .21), we see that the extended group is in this case the

* W. Burnside, Theory of groups of finite order (2nd ed., 1911), 399 (§291).
t Second edition in English, 1913.
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direct product of the groups generated by
R,, R,, ..., R,
and by R, R, ... R,

In particular, the group corresponding to the simplex all of whose dihedral
angles are right angles is the direct product of m groups each of order 2.

If (rl)=4x (r=2,3,...,m),

(16.23) becomes
{ S2,=1 (r=2,3,...,m),
(

8,18, ) d=1 (r,8=2,3,..,m, r#s).

These equations being of the same form as (16.21), it follows that the
unextended group corresponding to a simplex for which one bounding
prime is perpendicular to all the others, is simply isomorphic with the
extended group corresponding to the simplex (of one fewer dimensions)
which these other primes cut out on the special one.

16.5. Corresponding to the simplex @ discussed in §15.4, we
have the extended group defined by

R2=1 (s=1,2,...,m),
(16.51) (R,R)2=1 (I1<|r—s|<m—1),
(R,B)¥=1 (r—s=—1 or m—1),
and the unextended group defined by
S3=1, 8 _,=1,
S2=1 (u=2,3, ..., m—2),
(8,82 =1 (flu—v|>1),
(8,84 )=1 (m=1,2, .., m—2).

(16.52)

Since the simplex is Euclidean, both these groups are of infinite order.
It is convenient to give them the respective symbols

E‘ and [3m|.
E.g., the infinite group discussed in Burnside’s §299 is our

its fundamental region being the plane equilateral triangle @ .
L2
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16.6. Corresponding to the simplex discussed in §15.5, we have

W w ww

the extended group defined by
R2=R2=R2=R2=R*=1,
(16.61) < (RyR;)2=(RyR,)*=(R,R;)*= (R, R,)?= (R, R;)2= (R, R;)2=1,
(B, B,)*= (B, By’ = (R, R,)’= (R, B;)*=1,
and the unextended group defined by
[ 83=8,3=83=83=1,
(16.62) < (8,83")*=(8,85%)2=(8,87")
1 =(8,851)?=(8,851)?= (83 871)2=1.

Since the simplex is Euclidean, both these groups are of infinite order. It
is convenient to give them the respective symbols

r3 ra’
8 and 3
3 3
L3 L3

Similarly, we obtain two infinite groups

r 3’ 3’1 . 3’ 31 4
3m—5, and

L3, 3 L3, 3

(16 .63)

from the Euclidean simplex discussed in §15.86.

16.7. Having mentioned all the ¢ trivial " cases, let us turn our
attention to the two groups which have the fundamental region (15.71).
We shall call the extended and unextended groups

Chgs By evvs By ] Chgs by ves By V!
(16.171) Gor b1y eertpey | ANA | g, Gy, ey Gy
Jor J1r -+ Jga Lo Jir =+ Jgm1

respectively.
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The following change of notation is convenent :
0=R,,
N,=R,,, (r=0,1, ..., n—1),
(16-72) P,= R, (r=0,1,..., p—1)¥,
Q= Brinipre (r=0,1, ..., ¢=1);
N/=N,0=8,, (r=0,1, .., n—1),
(16.73) P'=P,0=28,11 (r=0,1, ..., p—1),
Q' =@,0==81nipn (r=0,1, ..., ¢—1)
The extended group is defined by
[ 02 =1,
Nz=1 (r=0,1,..,n—1),
P2=1 (r=0,1,..,p—1),
Q=1 (r=0,1,...,q-1),
(16.74) 4 (ONg)o=(N,_,N=1 (r=1,2,...,n—1),
(OPy)e= (P, P)r=1 (r=12,..,p—1),
(0Qp)° = (€1 @Yr=1 (r=1,2, .., 9-1),
(ON,)*= (OP,)*= (0Q,=1 (r>0),
(N, NP = (P, P, = (€, Qs)z_ 1 (IT—8|> 1),
(P Q)= (@ N, = (N, P,)* =

and the unextended group by
[ Np=NZ2=(N,,N/»w=1 (r=1,2,...,n—1),
Pjo=P2= (P, ,P/)r=1 (r=1,2,...,p—1),
Q" =@=(1Q,/) =1 (r=12,..,9-1),

(16.75)

(N, N/P=(P/P/P=(Q QP=1 (jr—s|>1),
(P, Q,/)*=(Q/N,/P*=(N,P/PP=1 (r+s>0),
(P @571 = (@' Ny = (N¢'Pgl)* = 1.

* This P, is not to be confused with the P,, of §8. 3.
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16.8. When p = ¢ = 0, we have two groups whose fundamental region
is the orthoscheme (%, %, ..., k,_;), namely :

[ho: hl’ AR h'n—l]’

defined by
[ 0*=Nj2=1 (r=0,1,..,n-1),
(ONJo=(N,_;,N=1 (r=12,..,n—1),
(16.81)
(ON,P=1 (r>0),
(N, N )*=1 ([7‘—8]>l),
and hos Pyy vvvs Pyl
defined by
[Nyo=N;2= (N, N»=1 (r=1,2, .., n—1),
(16, 82) 0 (N1 V) ( )
(N/N/PE=1 (jr—s|>1).

(16.81) and (16 . 82) are due to Todd*, who obtained them as abstract
definitions for the extended and une.:tended groups of the regular polytope

{hg, by, ..., ;3. The groups given by Burnside in his §296f1 are
respectively :
I, [»];
II, [2, »]’, which is the same as [n];
III, [3,3];
IV, [3,4];
V, [8,5].
Further, the infinite groups discussed in his §§ 300, 301 are respectively
[4, 4] and [3, 6].
The extended groups
[3,3], [3,4], [3,5]
are mentioned by Kleinf. Todd has considered the groups
(3™, [3™% 4], [3,3,5], [3,4,3],
[3=-1), [3m-2 4], [3,3,5]), [3,4,3]

* Loc. cit. in Preface.
t Theory of groups, 408,
t Lectures on the icosahedron, 24.
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in detail, generating each group, save the last of all, by means of two
operations. [3™1] and [3™-1]' are easily recognizable as the symmetric
and alternating groups of degree m-+1. [3™% 4] and [3™2 4] are
discussed by Dr. A. Young in the fifth of his papers on Substitutional

" gm-37
analysis®; his < (AB) subgroup” can be identified with our l} 3
L3
l_3’ 3'\'
L. E. Dicksonf gives an abstract definition for | 3 closely resembling
3
ours. L=
16.9. The rest of our finite groups, namely
73,3 "3,3,37 13,8,3,3]
3,3 3,3 » 3,3 I s
L3 L3 - L3 _J
3,37 rs, 3,37 73,3,3,37
3,31, 3,3 ) 3,3 ’ ;
L3 L3 g L3 J

are less familiar. We shall find the orders of all of them, and identify the
first and fifth with important geometrical groups, viz., the group of
automorphisms of the twenty-seven lines on the general cubic surface, and
the group of automorphisms of the twenty-eight bitangents of the general
plane quartic curve.

17. How each of the groups is related to a uniform polytope.

17.1. When, as in §5.1,¢, Il , is regarded as the part of space which is
inside both II,, and II,,’, the elements ¢, IT, (s > n) arise as actual trunca-
tions of the s-dimensional elements of II,,, and the elements ¢,_,,,II, ,,_,
(8 >m—n) a8 actual truncations of the s-dimensional elements of II,, .
But, if 74-s =m—1, the s-dimensional elements of II,,’ correspond to the
r-dimensional elements of II ,, in the sense that their centres are collinear

* Proc. London Math. Soc. (2), 81 (1930), 273,
t Linear groups (Leipzig, 1901), 293.
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with the common centre of II,, and II,’. Also the vertices of ¢,II,,
correspond to the IT,’s of II,,.  Thus, for every element I, of IT,,, there is a
corresponding element, say II7, of ¢, II,,, viz.:

r = [ I—Im—r—l. r+1 (r <m),
"= ag,
IMs=t¢,II, (8 >n).

0 Uy +ees Tpg

IfI1, = {h”_l, Prnegs vvos bgy .
Jor J1s ++5 Jg1

}, we have

T SR |
0 "1 » p-1
r—
" = tvz—r—l{h)z—r—Q’ hn—r—-3: T hO’ .. . }
Joo Jus +++5 Jg1

(17 . ll) ko, hv ceey hn_,_zl
= 'io, il’ ""ip—l (7‘<n)
.70: jl’ "':jq—l J
and
B> 35 +vs Gy
ITs = tn{hn-l’ kn—z, ey kﬂ’ .. . }
Jos J1s o5 Jgr—1
(17.12) ko, hl, cees kn_1

=34 By e lpyyp (S=n4+p+¢+1; =0, ¢ =0).
Jor J1s +ees jq’—l’
Putting ¢’ = ¢, we see that the elements

hos by woes Bopy Jho’ Byy ves Bny
- of

gy T1» ...,ip,_IJ Tgr Bys weerBp1
Joo Ju -+ Jg1 Jor J1» o031 Jg-1
correspond to the elements
Tgs B1s wees Tpg Tgs B35 eees Spy
{ Bo1s Bpgs +ons Ry, of { by gy Rppgyooes gy ,

Jos J1s <+ Jga Jos J1s +++5 Jo1

and [by (17.11) with the A’s and ¢’s interchanged] to the (p—p'— 1)-
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dimensional elements

. . . jmfn “"-jq—l }

{Tp—1> Tpgs -+o> Tprpa} OF {'&p_l, Tpps +eer Lo»
ho, Byy ooy By

and [by (17.12) with the A’s and j’s interchanged] to the elements

o Che by, ey o b by s by
Jq—l:.?q—-w AR JO’ . . Of Jq—l? Jq—2’ cees Joo . . .

Tgs b1y eeer by gy U1 enes Upg

When every £, 1, j is equal to 3, this means that the elements O,,,,, of 0,,,,,

correspond to the elements n,,, of n,,, and to the elements a,_,- ; of p,,»

and to the elements g, of ¢,,. We have thus incidentally proved the

generalized ‘‘ semi-reciprocation theorem ”’ enunciated at the end of §7.8.
hoy byy oovy Pyy

Clearly, also, the wertices of 4, ¢, ..., t,, ¢ correspond to the

elements Jo» Ju +-5 Jgm1

Py Bgs coos Pa}ly {Bp1s Tppy -0 i1}>, {Jge1s Ja—g> -++» J1}
of the other three polytopes, respectively.

hoy Byy ooy By
17.2. Let W, be a vertex of {%, @1, .- %1 ¢,and let W0, W00,
Jo Jis w0 Jg1
W . be the centres of  adjacent’ elements
hoy Byy oovy By sy hos ey oovy By hoy byy ooy By y
Llo, Ty e bpy [ gy Ups wees by (0 By Bps eeer Bp_y
[jo» Ju s Jom1 Jor Ju» -3 Jg1 Joo Jus ++es Jg-1

respectively. By saying that these elements are to be ¢ adjacent ”’, we
mean that W, must be a common vertex of the elements whose centres
are Woups Woogs Wape, 8nd that the elements whose centres are W,

W opgs Wape must respectively belong to those whose centres are W, 150
Wn(p'+l)q’ Wnp(q’+1)-
Having defined
Woo Warp Wape Wapy
o< <n 0<p'<p, 0<¢ <g),
let Xn’ Xn-n'-l’ Xp'u’ XPQ'
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denote the centres of the corresponding elements of

3 3 b Tgs Uy ooes "p—l
n—1 "Yn—-2s +*v> P00 | . .
Jos J1r e+ Jgm1

The conditions of adjacency now state that the element

{h

n—-1» hn—z: LA hn—r+1}

whose centre is X, (or the vertex X, if »=0) belongs to the element
{hp1, Pp_gy ..oy b} whose centre is X,,, (r<mn), that the element
{hy_1s Py_g, -... by} whose centre is X, belongs both to the element

n—23
(P15 P_gs o5 oy Jos J1» ++e> Jq1} Whose centre is X, and to the element
{Bnzs Bogy -vs B, %, %45 .., 5,4} Whose centre is X, and that the
elements
1:0,7;1, .-.,7; ’_1 7:0, 7:1, ...,7:_
{kn—v R T ? } {hﬂ-p [P T 'p 1 }’
Jo: J1s "".7q—1 Jos J1s ""Jq'—l

whose centres are X, ,, X,,,, belong respectively to the analogous elements
whose centres are X, 15, Xp g1

We next have to define certain primes passing through the common
centre (W,,, or X, ) of our (n+p-+g+1)-dimensional polytopes. Each
such prime is determined by n+p-+g¢ further points lying on it, which

points may be taken equally well as W’s or as X’s:

Prime Determining W’s Determining X’s
0 All save W, All save X,
0L r<n) All save W,,, All save X,,_,_;
ri (0<r<p) All save W, All save X,
7 (0 r<gq) All save W,y All save X,

The n+p-+g-+1 primes
(17.21) 0,0, Ly ooy (n—1), Oy 1y oy (p—1) 0y, 1y, ..y (g—1),

bound a spherical simplex, whose vertices are central projections of the
W’s (or X’s) on an (n-+p--q)-sphere concentric with the polytopes. This
simplex is called a fundamental simplex for each of our four polytopes
(viz. the three semi-reciprocals and their common truncation).

When the polytopes are degenerate, the definition is simpler, since the
W’s actually coincide with the X’s, thus determining a Euclidean
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fundamental simplex. In this case we can regard 0, 7,, 7;, 7; as primes
of the (n+p-+q)-space filled by the polytopes.

17.3. In order to identify the fundamental simplex with (15.71), we
must calculate its dihedral angles. These are simply the angles between
pairs of our primes, and may conveniently be called

(0m), (07), (07y), (ras)s (r;8), (758;), (1), (r;84), (ra8y).
Let us first suppose that g=0.

In this case the W'’s are the centres of certain elements of

{ho, hl, ceey k’n—l}
- . ’
By Bpp vees bpgy
while the X’s are the centres of elements, one of every kind, of the regular

polytope
{Po_gs Pgy +oes B, B, Tyy oney g}

In fact, X is a vertex, X, is the centre of an edge through X,, X, is the
centre of a plane face through this edge, and so on. The process continues
as far as X,,,,, the centre of a bounding figure, provided that we write
X gt for X

If we put
(17.31) by=Fk, ,, t,=Fk, 1, n+tp+l=m,
then the points X, X,, ..., X,,_, are the centres of elements of

{kl’ k2’ A km—l}’

and it is natural to complete the sequence by letting X,, denote the centre
of the whole polytope. Since the circumscribing sphere-analogue of any
element is a section of the circumscribing sphere-analogue of any higher
element containing that element, all the lines X X,, X, X,, ..., X, X,u
are mutually perpendicular. Hence, if r denotes the prime determined by
all the X’s save X,_;; and (r s) denotes the angle between the primes r and s,
it follows that (r s) is a right angle whenever r and s differ by more than 1.
It remains to prove that

(17.32) (rr+1)=ma/k, (r=1,2, ..., m—1).

[The remaining angle, (m m1), is irrelevant to our present purpose.]
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When m = 2, we have a regular k,-gon, centre X,. X, is one end of the
side whose centre is X;,. The angle X, X, X, is clearly

(12) ==/k,.

We can therefore use induction, and assume the corresponding result for
all regular (m-—1)-dimensional polytopes. Since the analogous X’s for
the bounding figure {%,, &,, ..., k,,_,} whose centre is X,,_, are precisely

Xo Xy oony X
we have

(17.33) (rr+l)y=alk, (r=1,2,..., m—2).

Further, if X, X', ..., X, _, are the analogous X’s for the vertex figure
{ky, k3, ..., b1} at the vertex X,, then X, , and X, are collinear with
X, (r=1,2,...,m). Therefore

(17.34) (re+l)=anlk, (r=2,3,.., m—1).

(17.33) and (17.34) together give (17.32).
Reverting to the other notation, we have

(07,) = (n+1n—7r), (07)=(n+1n+tr+2),

(rh 8p) = (m—7 n—3), (1;8) = (n+r+2n+s+2), (r,8)=n—rnts+2),
and therefore, if ¢ =0,

r

(07,) = (07)) = }mr (r>0),
(Ta8p) = (r;8;) = &7 (Ir—s|>1),
(17.35) 3 (r48) = 3m,

(00,) =m/hy, (00;) = /iy,

L =1 = b, (—1)r) ==, (> 0).

Interchanging ¢ and », and jand &; ifn=0,

(07) = (0r;) = }m (r>0),
(ri8) = (r;8;) = 4w (|r—s|>1),
(17.36) ] (ri8;) = &,

(00,) = 7T./'io, (0 01) = "/jo:

L(=1yn) =iy ((r—=1)y7) =l (r>0).
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Similarly, if p =0,

(07;)=(0ry) =4nm (r>0),
(r;8;) = (13,8,) = %= (jr—s|>1),
(17.37) J (r;8) = 3,

(0 O,‘) = '”/jm (O Oh = '”/hos

(e=1,n) =i, (—1n)=mh, (r>0)
Let X!, X, _.—2s Xpe» Xpy be the points associated with

e »q’
J' 205 1y oees bpoy
hn—2’ n—-3> *°*? h’O’ PR .
]0, J1s <0 .7(1—
in the same way as the points X, X, 1, X, X,y are associated with
Tgs Bgs +evs bpy
Bypzs Pgs <os By .. i .
Jos J1s +++5 Jg=1

If the former polytope is chosen to be the actual vertex figure of the latter
at the vertex X,, then X, , and X, are collinear with X,(r=1, 2, ..., n).
So also are X, and X ,, and X, and X . Therefore the angles in-
volved in (17.36) are independent of . Thus the restriction “n=10"
can be removed. Similarly, the restrictions “p=0" and “¢=10" can
be removed from (17.37) and (17.35) respectively. (17.35), (17.36) and
(17.37) together give all the dihedral angles of the fundamental simplex,
viz.

(07,) = (07;)

(07) =47 (r>0),
(r;s;) =14m (Jr—s|>1),
(r

('rh sh) = (718a)
(17.38) (rs;) = (138) = (1,8;) = ¥,
| (00,) =7[hg, (00) =i, (00;)=m/j,,

l((T—l)hT,L)=7T/kr, ((7’—1)57'{):"/7:1-’ ((7 1);7 7)‘_‘77/.7r (r>0).

Thus the primes (17.21) can be identified with the primes (15.81), and
the fundamental simplex with the simplex (15.71).

II

]

17.4. Asin §16.7, let O, N,, P,, @, denote the reflections in the primes
0, 4, 7;, 7;, respectively. With the help of the assumption made in
§ 2.4, we can prove by induction that these reflections are symmetries of

Tgs D1y vevs Tpg |
Byts Ppgy ooos by, ) f, and so also of the related polytopes.
Jo Ju oo Jg1
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To do this we first prove, by induction with respect to m, the corre-
sponding result for {k,, k,, ..., k,_,}, then observe that every
symmetry of {i,_;, %5 5, -+es %0s Jo» J1s -+ Jg-1) 18 2alsO a symmetry of

Uy By e po o
o ) , and finally use induction with respect to n.
Jos J1s +++s Jg1
Apart from two exceptional cases, the same method serves to prove
that these reflections actually generate the whole group of symmetries

B0y b1y oo Bpgy ) o .
of {hy 1, gy s hgy || ~ t, thus identifying this group of
Jos J1s +05 Jgm1
symmetries with the group
rko, hl’ ceey h’n—l_l
(1741) io: il’ ey i{p—l
Ljo’ jl’ R jq-—l .|
whose abstract definition is (16.74).
The first exceptional case is when
{7:0’ ":1: cee ip—l} = {jo: jl: s jq—l}’

By Bgy wees by

since then { } has twice as many symmetries as

Jor J1s -3 Joma
{Ip-1s Tp2s s Y0 oo J1o ++0» Jon)-

(See §5.5.) The second exceptional case is when
bo=Jp i1 =4=j; and fy=ig=..=3=jy=js=-..,

Uos g5 wer Uy

since then { } has <p ;q) times as many symmetries as

) . jO’ jl’ "‘:jq—l
{ip—1> Tpgs ++es %0s Joo J1s ++o» Jg1) -
Thus, whenever the group of symmetries of

Tgs gy oevs @

p—1
{hn—p bgs ooy bgy . }
Jos J1s +o5 Jg—1

* The only actual examples of this second exception are:

p=1,¢=2 44y=38, n=0o0rl, =3,
p=2 9¢=2, =3, n=0.
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is not identical with (17.41), it contains the latter as a sub-group. The same

hos By vy By
can, of course, be said for the group of symmetries of { %o, %3, ..o, %y s
Jo Ju e Je1

since this polytope is a truncation of the other.

17.5. When every h, 4, j is equal to 3, the results are as follows. If
n, p, q are all different, or if p = ¢ =0, the groups of symmetries of 7,

rgn7l
of pg,, of q,,, and of O, are one and the same group, viz. | 37 |. If
L3
rgn
n #p =q #0, the group of symmetries of p,,, i.e. of p,,, is | 3» l , and
L3
is a sub-group of index 2 in the group of symmetries of n,, or of O,,,,.

Finally, if n = p = ¢q 50, the group of symmetries of »,,, i.e. of n,,,, con-

u’

rgnT
tains | 3" | as a sub-group of index 2, and is itself a sub-group of index 3
L3"
in the group of symmetries of O,,,,,.
327
By (12.23), it follows that the order of the group | 37 | is always
L3
(17.51) (n+1)! (p+1)! (g+1)! [npg].
For the values of [npgq], see §12.6. The order of the unextended
rgn™1
group | 37 | is just half as great. Tabulating results in the finite cases,
L3 ]
we have:
3 3n
n p q Order of [31‘] Order of [3"_]
3¢ 37
0| » | ¢ (p+g+2)! 3(p+g+2)!
n 1 1 20+%(n + 3)! 2n+ln + 3)!
2 2 1 51840 25920
3| 21 2903040 1451520
4 2 1 696729600 348364800
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3,3
In particular, as we saw in §13.1, {‘3, 3‘| is the group of auto-
L3 1
r3, 37'
morphisms of the 27 lines on a general cubic surface. 3,3 |, beinga
3
LY

self-conjugate sub-group of index 2, must therefore be identical with
the simple group* A (4, 3).

17.6. For a one-rowed symbol there are no “exceptional cases”:
[ky, kg, ..., k,,_4], which is the same as [k,,_;, £,_,, ..., k], is precisely the
group of symmetries of {k,, k,, ..., k,,_,}; while [k, &y, ..., k,,_;]’ is the
group of positive symmetries. The finite cases are as follows: -

[8™1], of order (m+1)! (the symmetric group);

[3™-1], of order $(m-+1)! (the alternating group) ;
[3m-2 4], of order 2mm!; [3m-2 4], of order 2™1m!;
[k], of order 2k; [k), of order %k (the cyclic group);
[3, 5], of order 120; [3, 5], of order 60 (the icosahedral group);
[3, 3, 5], of order 14400; [3, 8, 5], of order 7200;
[3, 4, 3], of order 1152;  [3, 4, 3]’, of order 576.

These groups are not all distinct. In fact, the following two simple
isomorphisms are well known :
[3, 3]~ 1[3, 4], [3,3,3]~1[3,5].

17.7. If a certain finite polytope I has a fundamental simplex

determined by the centres of m, particular elements IT1", and similarly

for TI{?, then the fundamental simplex of the generalized prism
(e, 1)
1 mse.
is defined as being determined by the centres of the m;+m, elements
(O, M) and [T, IGD).

It is easily seen that the essential features of a fundamental simplex are
maintained, since the reflections in its bounding primes are symmetries
of the whole prism.

* L. E. Dickson, Linear groups (1901), 306-307.
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If the vertices of the prism are given by coordinates of the form

(T1s ceer T3 Tppis veer Ty)

as in §4.1, then the prime determined by the centres of all but one of the
elements [T1{", TIZ)] and of all the elements [II{)), TI®] has an equation of

the form
F(zy, ..., z,)=0.

Likewise, the prime determined by the centres of all the elements
[P, TI2] and of all but one of the elements [TT{}, IT¥] has an equation

7109

of the form
G(®pi1s ey ) = 0.

Since these two primes are perpendicular, the fundamental simplex is of
the type considered in §15.3, the ‘“two simpler simplexes’ being the
fundamental simplexes of I1{;) and II{.

In this connection it only remains to observe that the extended group
which has this simplex for a fundamental region is the direct product of
the groups similarly related to the simpler simplexes; and that the group
of symmetries of the prism either is, or contains as a sub-group, the direct
product of the groups of symmetries of the constituents.

17.8. We saw in § 14.8 that, if j,_, =3 and j,_, = 4, the row
jo: jl: RS jq——l
of an extended Schlafli symbol can be replaced by

. . 3
JorJu ++05 Ja-s g

without altering the polytope represented. Let us see how this trans-
formation affects the corresponding simplex.

The simplex represented by the transformed symbol is bounded by
primesr,,7;, 0and 0,, 1;, ..., (¢—3),, along with two extra primes, say (g—2);
and (g—2),’, each inclined at an angle 47 to (¢—3);, but perpendicular
to one another and to all the other primes. Let (g—1); denote the bisector
of the angle ((q—2)j(q—2),.’). Then, since (g—2); and (¢—2),/ are
similarly situated with respect to the rest of the primes, the new prime
(¢g—1); divides the simplex into two equal halves, simplexes whose
bounding primes are obtained from those of the whole simplex by replacing
(g—2);/ or (g—2); by (g—1);,. Of the half which involves (g—2),, the
bounding prime (g—1); is perpendicular to all the others except (g—2),.

SER. 2. VOL. 34. No. 1859, M
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The angle ((q—-2),~ (q—l)j> = %((g—?)j (q—2),.’) =1n. Thus the effect
of changing g into 3, 4 is to halve the simplex, and so to double the

order of the group for which the simplex is a fundamental region. In
fact, a new operation of period 2, viz. the reflection in (¢—1),, is introduced
into the group.

3,4

The group of symmetries of §,, or {4, 3m~3, 4} is [4, 3™3, 4] or [3m_4’ 4|

Therefore

l’3 A
3
!_3111—4, 4_]

is a sub-group of index 2 in this group, and

["3 |
3
3
m—5
L3 >3

is a sub-group of index 4. This last symbol is given in a more symmetrical
form in (16.63). When m = 5, it reduces to
g7
3
3
L3
17.9. Consider the point whose coordinates consist of 7 repetitions

of 1—(r/m) followed by m—r repetitions of —(r/m). For all values of 7,
this point lies in the (m—1)-space

(17.91) 2, +2p+...+x, =0.

The point is the origin both when » = 0 and when r =m. The m points
obtained by giving  the values 0, 1, ..., m—1 are the vertices of a
Euclidean simplex whose bounding primes are

(17.92) z;—=2,=0, 2,—2;3=0, ..., =z, ,—2,=0, 2,—z,=1.

Since these, regarded as primes in m dimensions, are all perpendicular
to (17.91), we can obtain the angles between them by the usual rule. In
fact, calling them 1, 2, ..., m, we have

12)=023)=..=(m—1m)=(m1l)=3n and (rs)=4inr
(1<|r—s|<m—1).
Thus this simplex is of the kind considered in §15. 4.
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The reflections in the first m—1 of the primes (17.92) are simply the
transpositions of consecutive pairs of coordinates. These generate the
symmetric group on z,, &,, ..., &,,, which is the group of symmetries of a,,_,.
Since this is a sub-group of index 2 in the group of symmetries of ea,,_,
(see §6.9), and since the remaining reflection, viz. that in z,—z, =1,
changes the origin into the point (1; 0,0, ..., 0; —1), it follows that

@ (defined in §16.5) is a sub-group of index 2 in the group of
symmetries of a,,_, k.

Having now considered every possibility, we can assert that every
group of real orthogonal substitutions on m variables, having as fundumental
region a simplex all of whose dihedral angles are submultiples of =, is either
the whole group of symmetries of some m-dimensional uniform polytope, or a
sub-group thereof.

18. The twenty-seven lines and the twenty-eight bitangents.

18.1. The most important of our extended groups is

3,3
3,3,
L3

since this, being the group of symmetries of 2,, or (PA4)g, is also the group
of automorphisms of the lines on a general cubic surface.
By (16.74) it has the abstract definition

{ 0% =1,
Nt=Nz2=1,
Pr=Pp2=1,
Q2= 1)
(ONY = (NN, =1,
(18.11) |

(OPy = (PP, =1,
(0Q)P=1,
(ON,)2= (0P =1,

(PQ)*= (P, @)= (@N)?= (@QN,)*
( = (NPp= (N, P)*= (NP)?= (N, P))*=1.

For simplicity we have written N for N,, P for P,,  for Q,.
M2
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This abstract definition is conveniently represented by the following

diagram :

-0

The six generating operations are each of period 2; all pairs of them not
directly linked in the diagram are permutable, and the products of linked
pairs are of period 3. Analogous diagrams can be made for all our abstract
definitions of extended groups (each link, in the general case, being marked
with the period of the corresponding product).

18.2. In the notation of §9.4, the a,

belongs to both the B,’s

b3bybsbges

bybybybsbeCipCi3CiaCi5Cis aNd by b3bybybgCyyCapCan oo Cons

and is therefore of fype 24, (see §7.5). On the other hand, the o,

by b3, b5 bg

belongs to the former of these B;’s and also to the ag (= 25)

so that it is of type 2,,.
It follows that the requirements of § 17 . 2 are satisfied if we take

bybybyb, by b,

X, to be the vertex bes

X, » 5 centre of the edge b5 b,

X, 5 " b O b, by b,

Xy s » »  Og b3 by b5 bgCya,

D SR » »  Bs by b3 by b5 bg 1515014 C15Cr6
D, CYRRN ” »  ag  bybybybybgbg.

These six points determine the six primes

1,, 05, 0, O, 1;, O
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(by omitting them in turn, and joining the remaining five to the centre
X,1). By §17.4, the generating operations

Nl: Ny 03 P’ Pl: Q
are the reflections in these primes respectively.

18.3. Consider the transpositions (12)*, (23), (34), (45), (56), and the
bifid substitution [456 . 123], defined in (9.44).

(56) alters X,, but leaves the other X’s invariant,

(45) wo Xy » » . »o

(34) no Xy " » . no

(23) w  Xg » » » » )

(12) » Xn » ’s » , ,

[456.123] ,, X, ”» » » ”

Therefore
(15.31) {N1= (56), N =(45), O=(34), P=(23), P,=(12),

and Q = [456.123].

In terms of the lines on the cubic surface (Schlifli’s notation), the
operation (12) consists in interchanging the two halves of the double-six
(“11)1 Co3Coq Czs"zs)

?
@y b5€15C14 €151

and the operation [456.123] consists in interchanging the two halves of
the double-six
<“4 \tts @t Co5C51 €15\

056‘2664 Ca5 by} by by

18.4. Clearly the generating operations
N 1 N ’ 0: P k) P 1

can be taken to be any open chain of transpositions, and then Q can be
either of the two bifid substitutions which separate the numbers involved
in N and N, from the numbers involved in P and P;. In order to employ

* Not to be confused with the (12) of §15.1.
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the notation of §13. 5, it is natural to choose the chain
(23), (36), (61), (14), (45).

@ must now be either [236.145] or [145.236]. Taking the latter value,

we have
Q = [145.236] = (13) [345.126](13).

But, as we observed in §13.9,
[345.126] = H,.
Moreover, (13) = (61)(36)(61).
Hence, by §13.5,
N,=HH;H,, N=H, O=H, P=H, P =H,H H,
and Q@=HyH,H,H,H H,H,

On substituting in (18.11) we obtain an abstract definition for the group
in terms of the H’s, and so ultimately in terms of the two operations w
and H, DBut the new abstract Jefinition is excessively complicated ;
in fact, the definition in terms of siz operations is altogether preferable.

18.5. The most important of our unextended groups is

rs, 3,37

B

since this, being (by § 17.5) the group of positive symmetries of 3,, or (P4),,
is also (by §11.5) the group of automorphisms of the bitangents of a plane
quartic of genus 3.

By (16.75) it has the abstract definition

f N = Nyp = Nig = (VNP = (V) Ny P = 1,
P3=Pp2=(P'P/P=1,

Q=1

(18.51) 1 (N'N,)2=1,

(P @)= (QN))P= (NP =N,/ P')?
= (N, PP = (N'"P/)= (N,/ P}’ = (N, P\')* = 1,
(PQP=(QN)}=(NP)pR=1.

\

For simplicity we have written N’ for N;1, P’ for P,’, Q' for Q,'.
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18.6. In the notation of §9.3, the ay
C13 Oy Cag Oss Cas Cis
belongs to both the B,’s
C12.C13 €14 C15 C16 €17 C'ag Osg Can Csg Cgg Oy
and €19 C32 Caa Cs2 Con Cra C'1g C'ag O Oy Cgs Crg,
and is therefore of type 3,,. On the other hand, the oy
Cog O35 Cas Css Cgy Crg
belongs to the former of the B¢’s and also to the ag (= 3,,)
C15 Cag 35 Cys O Cs Oy,

so that it is of type 3,,.
It follows that the requirements of §17 .2 are satisfied if we take

X, to be the vertex Clgs
X, ., , centre of the edge Ces Crss
X2 2 ”» ” » Qo ‘ 058068 C’781
X, » o ) ” a3 Cig Csg Cgg Cg,
X01 3 3 23 =2 ag C12 038 048 058 068 079’
D CTRRTE » » Bs C12.€13 €14 €15 C16 C17 Uz Cag Cag Csg Cgg T,
Xzo » ”» »» » Qg 018 028 038 048 Css Ocs Cvs-

These seven points determine the seven primes

2 1 0, 0, O, 1, O,

7

(by omitting them in turn, and joining the remaining six to the centre X,,).
By §17.4, the generating operations of the corresponding extended

group, viz..
Nz’ Nl’ No’ 0’ Po: Pl’ Qo,

are the reflections in these primes respectively. Finally, by (16.73),
N,=N,0=0N,, N/=N,0=0N,, N'=(N,0)*=0N,,
P =P,0, P/=P,0, Q=¢,0.
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18.7. Consider the transpositions (12), (23), (34), (45), (56), (67),
and the bifid reflection [4567 .1238], defined in §9. 3.

(67) alters X, but leaves the other X’s invariant,

(56) »w X ” ” » wo s
(45) . 4 ” » ” »o
GO Xy e
(23) » o Ko s » » » o
(LN b e e
[4567.1238] ,, Xup y N y

Therefore
N,=(67), N,=(56), N,=(45), O=(34), P,=(23),

P,=(12), and Q,=[4567.1238].
Finally,

{N2'=(34)(67), N, = (34)(56), N'=(345), P’ =(234),
(18.71)
P/ =(12)(34), and @ = [4567.1238](34).

18.8. Let us now express the generating operations
N,, N/, N', P, P/, @
in terms of the cyclic permutation and bifid substitution of §11.5. We
shall call the latter K, so that*
Ky =[1357.2468]ST.
It is convenient also to let
K, = (1234567)" K ((1234567)",

so that K, = [2461.3578]ST, and so on. (ST is permutable with every
operation.)
From (9.35) we derive fourteen relations such as

* The expression at the end of §11.5 lacks the $, in error,
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Six of these lead to expressions for the N”’sand P"’s. In order to obtain @’,
we observe that
[4567 . 1238] = (26) K, ST|(26),

and (26) = (28)(68)(28).
The results are as follows:
N, =K,K,K,KK;K,, N/'=K,K,K¢K,, N =K, K, K, K;K;K,,
P=K K;K,K,K,K,, P/'=K,K\K,K,,

and
Q=K K, K, K. KK, K. K, K. K, K, K, K, K. K; K. K, K, K, K,.

On substituting in (18.51), we obtain an abstract definition for the
group in terms of the K’s, and so ultimately in terms of the fwo
operations (1234567) and K, It is possible that this new abstract
definition could be simplified by the exercise of some ingenuity.

19. The hundred and twenty tritangent planes*.

19.1. If m <9, a set of m points of general position in a plane
determines a finite number of rational curves which have the property of
being completely specified by their multiplicities at these points. It is
shown by Du Val, in a paper which will shortly appear, that these rational
curves are in correspondence with the vertices of (PA),. These curves
have one variable intersection with any cubic passing simply through the
m points. When m < 8, such cubics represent the prime sections of the
Del Pezzo surfacef F3™ (of order 9—m, in 9—m dimensions), and the
rational curves represent the lines on these surfaces. Thus there is a
perfect correspondence between the lines on the Del Pezzo surface F," and the
vertices of (PA)g_,.

Since F',? is the cubic surface in ordinary space, while F,? is the double
plane branching along a quartic curve of genus three, these are the cases
considered in Chapter 18.

Since plane cubics through eight points all pass through a ninth, there
is no corresponding surface when m = 8. If, however, we consider sextic
curves passing doubly through the eight points, we obtain a surface having
on it 240 conics which correspond to the vertices of (PA)g. This surface

* Chapter 19 was added 11 June, 1932.
t Bend. di Palermo, 1 (1887), 241.
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is, in fact, a double quadric cone in ordinary space, having for branch
curve the sextic of genus four in which it is cut by a general cubic surface.
The section of the double cone by one of the 120 tritangent planes of this
curve breaks up into a pair of conics which coincide in space but lie on
different sheets of the double cone. Hence the 120 tritangent planes of this
special quadri-cubic curve correspond to the 120 pairs of opposite vertices
of (P4)g. This theorem is due to Todd.

Let 1, j, k denote any three numbers from among 1, 2, ..., 8. The
rational curves determined by eight base points are actually* as follows:

8 points ¢;, which can be regarded as curves of order zero;

28 lines a;;, of which a,g joins ¢, cg;

53

56 conics by, of which by, is determined by the five points

C1s Cay +-vs C5)
56 cubics ¢;, of which ¢, goes once through c,, c,, ..., ¢;, and twice

through c,;

ij2

56 quartics @, of which a4 goes once through c,, c,, ..., ¢,
and twice through cg, ¢, ¢g;

28 quintics b;;, of which b,; goes twice through ¢, ¢,, ..., ¢,
and once through c,, cg;

8 sextics ¢/, of which ¢g’ goes twice through ¢, c,, ..., ¢,, and
thrice through cq.

(The order of the suffixes of @ or b is immaterial, but ¢;; and c;; are
distinct.)
The corresponding vertices of (PA), are respectively

Cios Bisor Dins Cis Wisro bijer Coi,
where, using the coordinates (10.21) for (P4)s 34/2,
Qg I8 (1,1,1,1,1,1; —2, —2, —2),
bies 18 (2,2,2; —1, —1, —1, —1, —1, —1),
¢y 18 (3;0,0,0,0,0,0,0; —3),

and so on. The relation is such that two curves having r—1 free inter-
sections correspond to two vertices whose mutual distance is 4/ times
the edge (34/2).

* Noether, Math. Annalen, 33 (1888), 534. Coble, Algebraic geometry and theta-functions
(New York, 1929), 209.
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19.2. The group of automorphisms of the rational curves, being the
group of symmetries of (PA4)g, is :

(3,3, 3 3]
(19.21) 3,3
3

By (16.74), this group is generated, and in fact abstractly defined, by
eight involutory operations

0O, N, N, N,, N,, P, P, @
which satisfy the relations
(ONY = (NN,*= (N, N,)*= (N, N, =1,
(0P = (PPy)® =1,
(0QP =1,

all other pairs being permutable.
The ag C39 Ca9 C59 Cgo C79 C39 T129
belongs to both the f,’s
Cag C39 C49 C59 Co 7y Cga X129 X139 X149 X159 X169 U179 D1ge
and €19 C39 C49 C59 Ce9 Cr9 Cgg X129 Xazg A2q9 Tos9 gy Bo79 Xags
and is therefore of type 4,,. On the other hand, the a4
Ca9 C39 C49 C59 Cg C79 Cug
belongs to the former of these 8,’s and also to the a,(= 4,,)
€19 Cag C39 Ca9 C59 Cg9 C79 Cggs

so that it is of type 4,,.
It follows that the requirements of §17 . 2 are satisfied if we take

X, to be the vertex Cgo>

X, . ., centre of the edge Ca9 Cggs

X, > 2 ag Cg9 C79 Cgys

Xy 0 0 ”» » ag C59 Cg9 C79 Cgg»

Xy » ” a, C49 C59 Cgg Cg Cgys

D. (R » » ag C39 C49 C59 Cg9 C79 Cyg X129,

D. COR » » Bz Cay Cay Ca9 C59 Cg9 C79 Cgg P29 X139 - - - Tyggs

Xoy »  » » ”» Q7 Cy9Co9C3yCagC59 Cg9 Cpg Cyo-
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These eight points determine the eight primes
3)” zn: lh: Oh; O’ Ob 1i> OJ

(by omitting them in turn, and joining the remaining seven to the
centre X,,). By §17.4, the generating operations

N35N2>N1yN> 0: P:P])Q

are the reflections in these primes respectively.
In §11.7 we saw that the group is generated by the two special
symmetries

(19.22) (12345678) and V.

(The former is simply a cyclic permutation of the first eight coordinates,
while the latter, defined in §10.6, interchanges a,,; and by, ¢;, and a,,,,
¢y and bygq, 456 and byge, and so on, but leaves c¢p, €45, @gy5 and by
unaltered.) Tt is therefore natural to consider the involutory operations

(12), (23), (34), (45), (56), (67), (78), and Vi,

(78) alters X, but leaves the other X’s invariant,

67) . X » » oo
(56) ., X, ”» » »o
(45) ., X » » »oos
(34) . X, » » » o
23) . Xg ”» » »
12y ,, Xy » » »
Vis 0 Xy ”» » »

Therefore

{N3=(78), N,=(67), N,=(56), N=(45), O=(34),
(19.23)

P=(23), P,=(12), and Q=7TV,,,.
By §11.7 all the transpositions can be deduced from (19.22); and by
substituting the resultant expressions for O, N, N,, etc., we could obtain

an abstract definition (albeit extremely cumbrous) in terms of these two
operations.
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19.3. The 28 bitangents of the plane quartic can be denoted by
unordered pairs of the numbers 1, 2, ..., 8. Pascal* has devised an
analogous notation for the 120 tritangent planes of the quadri-cubic
curve, by unordered triads of the numbers 0, 1, ..., 9. In the special
case when the quadric through the curve is a cone, the relation with (P4),
is as follows.

If 4, j, k are any three of the numbers 1, 2, ..., 9, the opposite vertices
a;;. and b, correspond to the plane 4jk, and the opposite vertices ¢; and ¢;;
correspond to the plane ;0.

Pascal’s notation does not immediately exhibit the full symmetry of
the configuration of tritangent planes. Batht has discovered a bifid
substitution analogous to that used for permuting the bitangents of the
plane quartic. The substitution

0123/456789,

for example, interchanges 014 and 234, 456 and 789, but leaves 012 and
345 unaltered. Thus V3, when regarded as permuting the joins of opposite
vertices (““diameters”, say) instead of the vertices themselves, is identical
with 0123/456789; and similarly for any V.

But the interchanges involved when the digit 0 occurs after the stroke
in Bath’s symbol show that a substitution such as 1234/567890 is not a
symmetry of (PA)g. Infact, the diameters 123 and 345 are perpendicular,
whereas their transforms 123 and 125 are inclined at {m. Hence, when
the canonical curve lies on a cone, the only bifid substitutions that remain valid
are those in which the digit O occurs before the stroke.

19.4. It is well known that the canonical curve of genus p is of order
2p—2, in p—1 dimensions, and has 27-1(27—1) (p—1)-tangent primes.
These correspond to the odd theta-characteristics of genus p, and so their
group of automorphisms is the special Abelian linear groupi A4(2p, 2),
of order
(19.41) 11 221 (2% —1).

r=1
When p = 3, this order is
2.3.8.15.32.63 =1 451 520.

In fact, since the bitangents of the plane quartic correspond to the pairs
of opposite vertices of 3,,, and since in seven dimensions reflection in a

* Annali di Mat. (2), 20 (1892), 198. Actually, Pascal uses ‘“10'’ instead of ““0’’,
t Journal London Math. Soc., 3 (1928), 84.
t Dickson, Linear groups, 89, 100.
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point is a negative transformation, 4 (6, 2) s simply isomorphic with
rs, s 3

3, 3,
L3

When p =4, (19.41) becomes
2.3.8.15.32.63.128.255 =47 377 612 800.

If the curve lies on a cone, one of the 136 even theta-characteristics is
special*; so the group of automorphisms is a sub-group of index 136 in
A(8, 2), namely the corresponding first hypoabelian groupt, of order

348 364 800 = 96. 10!

Since the tritangent planes of the special quadri-cubic curve correspond
to the pairs of opposite vertices of 4,,, their group of automorphisms is a
self-conjugate sub-group of index 2 in (19.21). But this sub-group is
not the same as

rs3 3,33
3,3 ,
L3 J

since in eight dimensions reflection in a point is a positive transformation.
These two sub-groups of the whole group of symmetries of 4,, have a
common self-conjugate sub-group of index 2, namely the group of
positive symmetries of the diameters of 4,,, which is the simple group

FH(8, 2)i, of order
174 182 400.

Since (19.21) is generated by (19.22), we can use the same symbols
to represent the corresponding generators of the first hypoabelian group,
provided we identify opposite vertices of 4,, by writing

T=1
or

(19.42) Visa Vass Vaas Visa Vier Vera Varz = (89)

(see §10.7). In fact, the abstract definition of the latter group is
derived from that given in §19.2 by inserting one extra relation, namely
(19.42) expressed in terms of O, N, N, etc.

* The corresponding theta-function vanishes for zero values of the arguments. See
Schottky, Journal fiir Math., 103 (1887), 185.

t Dickson, Linear groups, 201.

1 Ibid., 216.
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19.5. We proceed to prove that the whole group A(8, 2) is generated
by these same operations along with the transposition

(90).

Since the operations of the first hypoabelian. group include all the
permutations of 1, 2, ..., 9, it will be sufficient if we prove that 4(8, 2) is
generated by all the permutations of 0, 1, 2, ..., 9 together with all Bath’s
bifid substitutions. Let G denote the group so generated. If G were not
the same as A (8, 2), it would have to be a sub-group; therefore we merely
have to prove that G is of order 47 377 612 800.

Of the 120 tritangent planes of the general quadri-cubic curve, a pair

such as
079, 089

leads by permutations and bifid substitutions to a set of 7140 pairs, namely
1260 of type abc, abd ;
3780 ,, abc, ade;
2100 »  abe, def.

120

Since 7140:( :

), this shows that all pairs of tritangent planes are

equivalent.
Again, a triad such as

069, 079, 089
leads to a set of 152320 triads, namely :

2520 of type abc, abd, abe;
840 ,, abc, abd, acd;
7560 ,, abc, abd, cde;

37800 » abc, abd, aef;

25200 » abc, abd, efg;

75600 » abc, ade, bfg ;

2800 » abc, def, ghi.

Defining the sum of the symbols of three planes as the set of digits obtained
by juxtaposing the symbols and cancelling repeated digits*, we see that
these particular triads are such that the sum of their symbols has one or

* Pascal, Annali di Mat. (2), 20 (1892), 199,
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five or nine digits. (For example, abc+abd-+abe = abcde.) Following
Pascal, we call these even triads. The sum of the symbols of any of the
remaining 128520 possible triads (“odd ” triads) has either three or
seven digits. The geometrical significance of this distinction is that the
nine points of contact of an even triad of tritangent planes do not lie on a
quadric (other than that through the whole curve).

If two planes of an even triad are fixed, there are 64 possibilities for the
third. For instance, a plane making an even triad with 079 and 089 may
involve both or neither of the digits 7, 8. It is easily seen that all such
planes can be derived from any one of them by permutations and bifid
substitutions not affecting the two fixed planes.

If an even triad is fixed, there are 36 possibilities for a fourth plane
which makes an even triad with every pair of the fixed triad. For instance,
a plane making an even triad with every pair of 069, 079, 089 may either
be 678 or involve none of the digits 6, 7, 8.

A plane making an even triad with every pair of

059, 069, 079, 089
must not involve any of the digits 5, 6, 7, 8; so there are (g) = 20

possibilities, and these can be put in correspondence with the vertices
of ¢, as.
A plane making an even triad with every pair of

049, 059, 069, 079, 089

must not involve any of 4, 5, 6, 7, 8; so there are 10 possibilities*. But
since the vertex figure of ¢, a5 is [a,, a,], which has only nine vertices, we
should expect one of these ten to be special. Such is easily seen to be the
case, the special plane being, of course, 123.

There is no plane that will make an even triad with every pair of

123, 049, 059, 069, 079, 089.

But there are four possibilities if we replace 123 by any other symbol
formed with three of the digits 0, 1, 2, 3, 9. E.g., with 039 we can have

any of
012, 019, 029, 129.

* Noether, Math. Annalen, 14 (1879), 270. His
(ap)r (qq' “pad"'f)r (q @y a,), (q’“p“o)
are Pascal’s 0p9, por, Ops, po9,

respectively.
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Finally, 019 is the only plane that will make an even triad with every
pair of
029, 039, 049, 059, 069, 079, 089*.

Let us now translate these results into terms of groups. Those
operations of G that keep one plane fixed form a sub-group &, of index 120.
Those operations that keep two planes fixed form a sub-group G, of index 119
in G4. Those that keep an even triad fixed form a sub-group G, of
index 64 in G,. And so on, through the sequence of numbers 36, 20, 9, 4.
Finally, the only operations that will keep fixed an octad like

019, 029, 039, 049, 059, 069, 079, 089

are (90) and identity; so G, is of order 2.
We can now deduce the orders of all these groups. In particular,

@, is of order
2.4.9.20.36 =51 840,

and @ itself is of order
2.4.9.20.36.64.119.120 =47 377 612 800.

Therefore G is A(8, 2), as we desired to prove.

19.6. The above procedure is closely analogous to that of Chapter 9,
where we obtained successive vertex figures of certain polytopes. Since
@, G;, G, are the groups of symmetries of (14);, (14),, (14); respectively,

r 3, 371
while @, has the same order as |\& 3J , itis natural to expect some relation
3

between G5 and (I4),.
Let 7, 7 be two of the numbers 1, 2, 3; &, k' two of 4,5,6; 1,1 two
of 7, 8,9. The 36 planes which form even triads with every pair of

123, 456, 789
are 40, kk'O, WO, jki.

In the case when the quadri-cubic curve lies on a cone, these 36 planes
correspond to the pairs of opposite vertices

¢;y and Cp;,  Cpye and cpy, ¢y and ¢y, ayy and by

of the (IA4)¢3+/2 (10.32). Since these planes acquire no extra auto-

* Pascal, Atti R. Acc. Lincei (Rend.) (5), 2 (1898), 122.
t (8.18).

SER. 2. voL. 34. xo. 1860. N
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morphisms when the quadri-cubic curve is taken to be general, Gy ts simply
3,37

1somorphic with | 3, 3J ; or, in geometrical language, those automorphisms
3

of the tritangent planes which keep fixed an even triad (i.e., three planes

whose points of contact do not lie on an extra quadric) constitute a group

simply wsomorphic with the group of automorphisms of the lines on the cubic

surface.

This theorem is due to Pascal*, who regards the set of tritangent planes
with one omitted as corresponding to a configuration of 119 planes in four
dimensions. Pairs of these planes meet in a point or in a line according
as the corresponding tritangent planes make an even or odd triad with
the one that was omitted. Let two planes meeting only in a point be called
skew (““gobbo”). There are 64 planes skew to any particular one; and,
skew to any one among these, there are 36. Pascal shows that these 36
correspond to the double-sixes of lines on the cubic surface, which we
recognize as corresponding to the diameters of (/4),. He gives a detailed
accountt of this configuration of 36 planes in four dimensions, from which
we see that the relation with (74), is as follows.

The 36 planes, 360 skew pairs, 1080 skew triads (of the * second kind ),
1080 skew tetrads, and 216 skew pentads correspond to the pairs of opposite
vertices, edges, a,’s, ay’s, and a,’s; while the 120 skew triads (of the
« first kind ”’) and the 135 tetrahedra correspond to the diagonal hexagons
(or pairs of diagonal a,4/3’s) and diagonal 8,4/2’s.

19.7. We shall now- prove that A(8, 2) is generated by the two
operations

(19.71) (012345678) and 0123/456789

[ef. (11.71)].
It is convenient to abbreviate the latter symbol to 0123/. (10.63)
and (10.64) obviously generalize to give

fohi| . (i) = () . fahj| = fakj - fahi],
bede/ . bfgh| = bfgh| . bijk],

where bedefghijk is a permutation of 0123456789. Therefore A4(8, 2) is
generated by

(19.72) Rijk| (3, §, k< 9.

* Atti B. dcc. Lincei (Rend.) (5), 2 (1893), 68.
t Ibid., 71.
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The operations (19.71) together lead to
1234/, 2345/, 5678/, 6780/,

which give the transpositions

(15), (50)
and (01),
whence we can deduce all the permutations of 0, 1, ..., 8, and so also the

rest of the operations (19.72).

19.8. Since A(8, 2) is generated by the symmetries of the diameters
of 4,, along with the transposition (90), it is natural to extend (19.23) by
writing
(19.81) Q, = (90).

(We must suppose the operations O, N, N, etc., modified in the manner
described at the end of §19.4, so that

Q = 0123/456789.)
It is easily seen that @), is permutable with
N, N, N,, N, O, P, P,
whereas Q) =1.

There are, of course, other relations; but these show that 4(8, 2) may be
regarded as a sub-group of the (infinite) group of symmetries of the Minkowskian

polytope
4,, or (IA4),.
This result is not surprising when we recall that G, is precisely the group
of symmetries of (I4), , when r > 3, and is a sub-group (of index 2) when
r=3.
Instead of (19.81), we might have written

P2 = (Ol):

thus exhibiting 4 (8, 2) as a sub-group of the group of symmetries of the
Minkowskian polytope
"4y or (8S4),.

19.9. At the end of a paper on (PA4); and (PA4),*, I have given
geometrical interpretations for the elements, diagonals, etc., of (PA4), as

* Proc. Camb. Phil. Soc., 24 (1928), 1-9. (The symbol Ta,, used there, should have been ¢, a,.)
N2
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special sets of bitangents of the plane quartic. We shall now attempt to
do the same for (P4), and the tritangent planes. Naturally the elements
of (PA)g correspond only to sets of tritangent planes of the “ special ”
quadri-cubic curve (lying on a cone); but there are usually analogous sets
in the general case. Thus, corresponding to the 3360 pairs of opposite
edges of (PA)s, we have 3360 special pairs of tritangent planes of the
special curve, and 119.120/2 = 7140 pairs of tritangent planes of the
general curve. Again, corresponding to the 30240 pairs of opposite
triangular faces and the 1120 pairs of opposite diagonal triangles, we have
302401120 special triads of tritangent planes of the special curve, and
64.7140/3 = 152320 even triads of tritangent planes of the general curve.

Most of the numbers in the second column of the table at the end of
this chapter are taken from §12.8 (the last column of page 414). The
number of diagonal a;+/3’s of (PA)g is 28.240/3 = 2240, since those at
any vertex correspond to the diameters of (PA),., The number of
diagonal {3, 4, 3}’s is 315.240/24 = 3150, since those at any vertex
correspond to the diagonal cubes of (PA), (or to the pairs of opposite
diagonal tetrahedra). In each {3, 4, 3} (e.g., that lying in the 4-space

T+ Ty = XyF-Ty = Xy -+, T, =Zg=12, Xx=0)

we can inscribe three y,’s or three 8, 4/2’s, making 9450 of each altogether.
The B,4/2’s inscribed in the diagonal {3, 4, 3}’s are particularly
interesting since they correspond to tetrads of tritangent planes whose
twelve points of contact all lie on an extra quadric. The *“ sum *’ of the
gsymbols of such a tetrad has either no digits or all the ten.
In the case of the general quadri-cubic curve, every odd triad

determines a fourth plane making with it a tetrad of this kind. E.g., with
the triads

235, 145, 136 and 012, 034, 056
we must associate 246 and 789
respectively. Thus the number of such tetrads is
128520/4 = 32 130*.

Let us take one of these tetrads, and associate with it as many more
planes as possible, in such a way that every triad is odd. We find that
just four more planes can be added, that this can be done in five ways,
and that each new set of four is a tetrad of the same kind. We are thus
led to consider octads of planes such as those which correspond to the

¢ Pascal, 4tti B, A¢g. Linces (Bend.) (5), 2 (1893), 204.
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diagonal Bg4/2’s of (PA)g. Fach octad can be divided into two of the 32130

tetrads in seven ways. K.g., in the octad

(19.91) 124, 235, 346, 457, 561, 672, 713, 890,

the three planes whose symbols involve a particular one of the digits
1,2,3,4,5,6,7 form with 890 a tetrad of the proper kind. Thus the
number of such octads is

5.32130/14 = 11 475.

For the special quadri-cubic curve, we consider only those octads that
correspond to diagonal 834/2’s; then each tetrad belongs to three (instead
of five) octads, and the number is

3.9450/14 = 2 025.

TABLE OF THE PRINCIPAL SETS OF TRITANGENT PLANES.

Number of sets . Number of sets
Number of , Corresponding .
X . for the special onfigurati Typical seb for the general
planes mn & quadri-cubic conhguration P quadri-cubic
set. in 4.
curve. curve.
1 120 a 089 120
2 3360 ' 079, 089 7140
9 80240 ay 069, 079, 089 } 159320
1120 ag+/3 or {6} 128, 456, 789
120960 ay 059, 069, 079, 089 1370880
241920 a, 049, 059, 069, 079, 089 5483520
9450* By /2 012, 034, 056, 789 32130
24
8 9450 " { 235, 145, 136, 6}
146, 236, 245, 185
12 3150 {3, 4, 8} Combination of the two
above
6 241920 ag = 4g 039, 049, 059, ..., 089 8225280
- 123, 049, 059, ..., 089 913920
7 69120 ag =4, 029, 039, 049, ..., 089
34560 4700160
ag = 4q; 129, 039, 049, ..., 089
8 8640 a7 = dgg 019, 029, 039, ..., 089 587520
14 1080 g =4 {029, 039, 049, ..., 089 }
o 1929, 139, 149, ..., 189
8 2025 B /2 124, 235, ..., 713, 890% 11475

* The diagonal B3 +v2's lead to many more B, /2's, but these 9450 are special (being
inscribed in {3, 4, 3}s).
1 (19.91).
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Notes.
20.1. Corrections to Part 1
[Phil. Trans. Royal Soc., A, 229 (1930), 329-425].

329, line 14. For II™* read IT}*.
335, line 27. For ; read , .
337, line 6. For generally read usually.
346, line 16%. Ignore the comma after 3.
347, line 2. Interchange T and /5.
347, line 10. Ignore the wpright stroke.
352, line 17. For e read E.
353, line 19. Ignore the stop after 4.81. For  _ read , ..
360, line 21. Interchange 2 and T {or any other pair).
360, line 23. Interchange 1 and v~ (or any other pair).
361, line 15. For +3 read 3.
369, line 9. For an nth read a t,.

388, line 21. Imsert — after —1,. Ignore the comma before the second
semicolon.

ST [1357 . 2468] = ST557 STaseq-

408, line 15. For automorphism read automorphisms.

20.2. Muller’s proof that every finite uniform polytope has a circumcentre®.

A set of points are said to be equivalent if, for every pair 4, B of the
points, there exists a congruent transformation which changes 4 into B,
leaving the set unchanged as a whole. In §1.8 we made the assumption
that a finite set of equivalent points mecessarily lie on a sphere-
analogue. J. C. P. Miller, assisted by J. A. Todd and L. C. Young, has

* Cf. E. Catalan, ‘“ Mémoire sur la théorie des polyédres’’, Journal de I'Ecole Poly-
technique, 41 (1865), 33. It is interesting to note that Catalan’s definition (p. 25) of *‘ poly-
&dre semi-régulier du premier genre '’ should admit Miller’s non-uniform solid (§2.1); so, too,
the reciprocal of Miller’s solid is really one *‘ du second genre '’.
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constructed a proof to justify this assumption. For simplicity he employs
the terminology of three dimensions; to obtain the general statement,
we have merely to read ¢ m-dimensional sphere-analogue” or
“ (m—1)-sphere ” for ¢ sphere”, and ¢ (m—1)-dimensional sphere-
analogue ” or ““ (m—2)-sphere ** for “ circle .

Leuma.  There is a unigue smallest sphere which encloses all the points.

Proof of lemma. Since the set of points, say II, is supposed finite, we
may take an enclosing sphere of finite radius. If the smallest of such
spheres is not unique, consider two distinct smallest spheres. Since
these are equal and both enclose II, they must intersect. Describe a new
sphere concentric with, and passing through, their circle of intersection.
This sphere will be smaller than the others, and, containing their common
part, must enclose IT; which is absurd. Thus the lemma is established.

Proof of theorem. 8, the smallest sphere enclosing II, must evidently
have at least one point 4 of IT on it. Any other point B of Il must lie on
or within 8. If possible, let B be definitely within. Since the points are
equivalent, there exists a congruent transformation which changes 4 into
B but leaves IT unchanged as a whole. This transformation changes S,
which passes through 4, into an equal sphere S’ passing through B.
Since B does not lie on 8, 8’ must be distinct from §. Since S encloses II,
and II is transformed into itself, S’ must enclose II. But this
contradicts the lemma. Hence B, which was arbitrarily chosen from the
points of IT, lies on 8; and so all the points lie on S.

20.3. Uniform (degenerate) polytopes not uniquely determined by their
vertex figures.

In §2.1 we made the assumption ¢ that, given any uniform polytope,
there is no other uniform polytope of different shape having the same
vertex neighbourhood.” There is no reason to doubt the validity of
this assumption when the polytope is finite; but J. C. P. Miller has
refuted it in the degenerate case, by describing two distinct uniform
polytopes, say M, and M,’, which have the same vertex neighbourhood.
Their common vertex figure is obtained if we cut a cuboctahedron of unit
edge in halves along an equatorial hexagon, and replace one half by a
hexagonal pyramid of unit altitude. Thus each polytope consists of a
net of tetrahedra, octahedra, and triangular prisms, filling three-
dimensional space. In order to avoid repetition, we shall at once describe
the analogous polytopes filling m-dimensional space.
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In §6.8 we saw that the vertex figure of a, % is ea,, and that the
bounding figures of the latter polytope correspond to all the elements of
either of two reciprocal «,,’s. It follows that with every bounding figure
of a, h can be associated a type symbol 0, (distinct from 0,.,), where
n+4n' =m—1, in such a way that every 0,,. at one vertex corresponds
to an a, of a definite one of the two reciprocal a,,’s of which the actual
vertex figure at that vertex is an ‘“expansion’ (in the sense of §6.9).
L' g., the triangles of a, % can be labelled alternately 0,y and 0,,. Further,
there is a definite type symbol On(n"—l) for the (m—1)-dimensional element
in which a 0,,,- meets a 0, ,1)(,-—*. E.g., every edge of a,k is of type 0.

Now, by considering definite integer values of a particular coordinate,
say .1, in (6.81), we see that it is possible (in m+ 1 ways) to select a series
of parallel (m— 1)-spaces, together containing all the vertices of a,, b, and
each filled with elements of a,, » forming an a,,_, h. Every bounding figure of
each a,,_; b is already marked with a type sym¥ol of the form 0,,,~_;. The
new polytope M, ,,t is constructed by cutting a, b along each one of these
(m—1)-spaces, shifting the resultant layers apart, and inserting a layer of
prisms [0, (v_1» ¢;]- The modificction M, ., is derived by sliding every
alternate layer of elements of a,, b, between its two bounding (m—1)-spaces,
in such a way that each inserted prism, instead of joining two 0, _y’s,
jOinS a On (n'—1) to a O('n.'-—l)n‘

Clearly the vertex figure of either of these new polytopes is obtained

if we cut an ea,, in halves along an equatorial ea,,_; [such as that obtained

by fixing z,,,, = 0in (6 . 82)] and replace one half by the pyramid-analogue
(eay —— %)

Exceptionally, My’ is the same as M, viz. alternate strips of triangles
and squares filling a plane. (Vertex figure : a cyclic pentagon, of sides
v2,1,1,1,4/2.)) But consider the degenerate prism [M,, 8,], consisting
of alternate layers of triangular prisms and of cubes, filling three-
dimensional space. It is clear that every alternate layer of triangular
prisms can be turned bodily through a right angle, so as to give a new
uniform polytope, say [Mj, 3,]', having the same vertex figure as [ M, §,).

(This vertex figure is, of course, a bipyramid of slant edge /2 on the
above-mentioned vertex figure of M3.)

20.4. Coordinates for pentagonal polytopes.

The {5, 3}47 ' of §3.6 corresponds in position to the second
t,{3, 5}271 of §5.7; i.., the latter, apart from size, is an actual

* There are, in fact, type symbols for all the elements of a,, , except vertices.
t Not to be confused with Schoute’s My, which is our v,.
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truncation of the former. So, too, the {5, 3} 271 of §3.6 corresponds in
position to the first ¢,{3, 5}2r~1. But, in order to bring the {3, 5}2 of
§3.6 into the position corresponding to the last-mentioned pair of
polyhedra, it is necessary to perform a transposition among the co-
ordinates 7, 1, 0.

Similarly, the {5, 3, 3}2772 of §3.6 and the ¢,{3, 3, 5}2r* of §5.7
(both corrected as in §20.1) correspond in position to the ¢, {5, 3, 3} 2772
of §5.7. But, in order to bring the {3, 3, 5}27"1 of §3.6 into the
corresponding position, it is necessary to perform a transposition among
7, 1, 771, 0. After this alteration has been made, if (z,; z,; z,;; z,) is any
vertex of the {3, 3, 5}2771, then (x,+,; 2,—%,; T3+24; T3—2)* is a
vertex of the {3, 3, 5} 2 4/2771 at the bottom of the page (346).

20.5. Du Val’s coordinates for 5,;.

By applying the transformation
Tor1 = $(@gr1+p) Tp = §(Tor1—F) (r=1,2,3,4)
to the coordinates (§9.1) for 5,, 2 1/2, we obtain, as the vertices of
521 2’

the totality of points whose eight Cartesian coordinates are either all
even or all odd or four even and four odd, with a restriction in the third
case. If z, z,, z;, x, are the four even coordinates (or the four odd ones),
the suffixes 4, j, k, ! always form one half of one of the following bifid
symbols: :

[1234.5678], [1256.3478], [1278.3456],

[1357 . 2468],
[1368.2457], [1458.2367], [1467.2358].

A suitable permutation of the coordinates transforms these bifid -
symbols into those occurring in (9.36), which have the simple property
that all are derivable from any one by cyclic permutation of the digits
1,2,3,4,5,6,1.

Of the points so defined, those distant 2 from the origin must be the
vertices of

4y, 2.

* Cf. Robinson, ‘‘On the orthogonal groups in four dimensions’’, Proc. Camb. Phil. Soc.,
27 (1930), 87-48. His 3, (= {3, 4, 3}) must not be confused with our 3, (= {4, 3, 4}).
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These are easily seen to consist of the vertices
+(2,0,0,0,0,0,0,0)
of a 832 4/2, together with the vertices of fourteen y, 2’s of the form
=%, =2,=2,=0, +ay=4x,=4z,=4x=1,

where [efgh .1jkl] is one of our special bifid symbols. In contrast with
(9.21), this set of coordinates has the advantage that every axial prime is
a prime of symmetry of the polytope.
By selecting the points of this set distant 2 from (0, 0, 0, 0, 0, 0, 0; 2),
we obtain the vertices of
3512

in the perfectly symmetrical form
=2, =2,=2, =0, f+o,=4z,=42,=1,
where (2 j k) is one of the seven triads
(124), (235), (346), (457), (561), (672), (713),

and e, f, g, h are the rest of the numbers 1, 2, 3, 4, 5, 6, 7. The essential
properties of these triads are that every two digits determine a unique
third forming a triad with them, that every two triads have a single digit
in common, and that every digit belongs to just three triads. The digits
of the first triad are the residues, mod 7, of the powers of 2 (or quadratic
residues), and the rest of the triads are derived by cyclic permutation of
the seven digits.

The vertices of 3,, have not hitherto been expressed by rational co-
ordinates in seven dimensions. We observe, incidentally, that these
fifty-six points are the vertices of seven cubes.

For the vertices of 5,,, we have now two expressions in eight dimensions
and one in nine. By considering fundamental systems of theta-
characteristics, Du Val has discovered an expression in fen dimensions.
His statement is as follows.

The vertices of

50,6 /2

are all the points in ten dimensions whose coordinates satisfy the
equations

T+ T+ 2324+ 25 = T+ Z7+ T+ X9+ 210 =0
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and the congruences
B =Xy =Ly =0, =05 = 2= 200, = 203 = 20y = 22, (mod 5).

The consequent coordinates for the vertices of

are
(O, 0) 0’ 0, 07 57 ’ 0’ 0’ _5)’
(ls 1’ l: 17 _4: 3, 3 '_27 '—2, —"2)7
(2: 2, 23 —3> "_3’ 1) 1, 17 l: -—4),
(3: 3, _27 _2’ —'2: 4: —1’ _1: —l) _1))
(4: _]-s _1’ _ly —1, 2: ) ) _37 _3),
(5: 0, 0) 07 '_5 ) Os ) O: 03 0)

20.6. Degenerate prisms.

In §17.7 we defined the fundamental simplex of the finite generalized
prism. It may seem unsatisfactory that nothing has been said about
the degenerate prism (§4.8). However, the extension is easily made.

1 2 )
Let 0, IO, .., IO,

be the bounding simplexes of the (Euclidean) fundamental simplex X, ,
of a degenerate polytope II;, and let (f g) be the angle between the spaces
of =), and =?,. Similarly, let

+1 +2
TG o, BEAD o e, 2,

be the bounding simplexes of the fundamental simplex Z,,_, ; of another
degenerate polytope II,, ;, and let (k I) be the angle between = ;_, and
=0 . ,. We should expect the fundamental simplex X, , of the
degenerate prism [II;, IT,, ;] to have bounding spaces corresponding to
W, L, T, BEAD L, T, _,, such that the angle between the spaces
corresponding to =% and Z{?, is (f g), while the spaces corresponding to
=@, and TF ;_, are perpendicular. Now this is precisely the state of
affairs in the (finite) prism [2,_,, 3, _; ,]; the angle between the spaces of
[Ez 2 m i 1] and [25,0)2’ m—i— 1] 18 fg Whlle the spaces of [220)2: m— 1'—1]
and [Z;_;, Z® . _,] are perpendicular. In fact, the vertices of X, _, all
coincide with the point at infinity in the direction normal to the (m—2)-
space of [Z;_;, ¥, ; ], and its bounding (m—2)-spaces join this point at
infinity to the bounding (m—3)-spaces of [Z,_;, £, ;_,]. Since [II,,_;, II,]
actually lies in (or rather fills) this (m—2)-space, we can neglect the
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(m—1)-th dimension, and acknowledge a fundamental prism in m—2
dimensions in place of the fundamental simplex in m—1.
More generally, the degenerate prism

[Hm1+1’ H’mﬂ-l’ ]

has the fundamental prism

[(Zms By o],

where 2, is the fandamental simplex of II,,,,,, and soon.  The reflections
in the bounding spaces of this fundamental prism generate the direct
product of the groups generated by the reflections in the bounding spaces
of X,,2Zn,.... This direct product is either the whole group of
symmetries of the degenerate prism or a sub-group thereof.

The fundamental simplex of 5, (see §$3.5, 15.8) being

(oo) =0 %’
the fundamental prism of
[825 82’ ] = 8m+1
is le; % 1% - ]=Ym3-

Since y,, £ can be divided (by primes of symmetry through one of its
vertices) into m! repetitions of the simplex (4, 32, 4), the corresponding
group (viz., the direct product of m groups of the form §2=7T2=1)is a
sub-group of index m! in the group of symmetries of 5,,.,.

On the other hand, if a, b, ... are all different, the (extended) group
with [a,1a, a,1b, ...] for fundamental region is precisely the group of
symmetries of [8,a, 8,0, ...]. The unextended group corresponding to the
rectangle [a, 4@, a, $b]—thatis, the group of rotations (positive symmetries)
of [8,a, 8,0]—is discussed by Burnside (§298).
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