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PREFACE

£ main difference between this text and others on the
subject, published in the English language, consists
election of the material. In proceeding from the ele-
ary to the more advanced properties of equations, the
ot of invariants and covariants is here omitted, to make
for a discussion of the elements of substitutions and
fution-groups, of domains of rationality, and of their
cation to equations.  Thereby the reader acquires some
iarity with the fundamental results on the theory of
ions, reached by Gauss, Abel, Galos, and Kronecker.
e Galois theory of equations is usually found by the
mner to be quite difficult of comprehension. In the pres-
ext the effort is made to render the subject more eoncrete
ae insertion of numerous exercises. 1f, in the work of
lass room, this text be found to possess any superiority,
1 be due largely to these exercises. Most of them are
vn; some are taken from the treatises named below.
the mode of presentation T can eclaim no originality
llowing texts have been used in the preparation of this

IMANN, . Kreistheilung. Leipzig, 1872.
vsipe, W. Theory of Groups. Cambridge, 1897.
~sipk, W. S.; and PantoN, A, W. Theory of Equations, Vol. I,
1899 ; Vol. 1I, 1901.
gsoN, L. E.  Theory of Alyebraic Equations. New York, 1903.
ToN, B. 8 The Construetive Development of Group-Theory. Phila-
delphia, 1902
yklopddie der Mathematischen Wissenschuften.

v
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Garots, D’Evariste  (Envres mathématiques, avec une introduction par
M. EwmiLe Preago. Paris, 1897.

Kurin, F. Vorlesungen iiber das Tkosaeder. Leipzig, 1884,

MarruiesseN, L. Grundziye der Antiken u. Modernen Algebra. Leip-
zig, 1878.

Nerro, E. Theory of Substitutions, translated by F. N, Core, Ann
Arbor, 1892.

Nerro, E.  Vorlesungen iber Alyebra. Leipzig, Vol. 1, 1896 ; Vol. II,
1900.

PererseN, J.  Theore der Algebraischen Gleichungen  Kopenhagen,
1878.

Piereont, J.  (alois’ Theory on Alyebraic Equations  Salem, 1900.

SaLmoN, G, Modern Higher Algebre  Dublin, 1876.

SerreT, J. A, Handbuch der Iloheren Algebra. Deutsche Uebers. v.
G. Werrnein.  Leipzig, 1878,

"TODHUNTER, 1. Theory of Equations London, 1880. ¥

Voer, . Résolution Alyébrique des Equations. Paris, 1895. .

Weser, I Lehrbuch der Algebra. Braunschweig, Vol. I, 1898;
Vol. 11, 1806.

WEBER, H. Encyklopddie der Elementaren Algebra und Analysis.
Leipzig, 1903,

Of these books, some have been used more than others. In
the elementary parts 1 have been mfluenced by the excellent
treatment found in the first volume of Burnside and Panton.
In the presentation of the Galois theory I have followed the
first volume of Weber’s adirable Lekrbuch der Algebra. Next
to these, special mention of indebtedness is due to Bachmann,
Netto, Serret, and Pierpont.

I desire also to express my thanks to Miss Edith P. Hub-
bard, of the Cutler Academy, Miss Adelaide Denis, of the Col-
orado Springs High School, and Mr. R. K. Powers, of Denver,
for valuable suggestions and assistance in the reading of the
proofs, and to Mr. W. N. Birchby, who has furnished solutions
to a large number of problems.

FLORIAN CAJORIL

CoLORADO COLLEGE,
January, 1904.
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THEORY OF EQUATIONS

CHAPTER I
SOME ELEMENTARY PROPERTIES OF EQUATIONS

1. Functions. In the study of the theory of equations we
shall employ a class of functions called algebraic. An alyebraic
JSunction is one which involves only the operations of addition,
subtraction, multiplication, division, involution, and evolution
1 expressions with constant exponents. Thus, a*+ ax + ),
V2al 41, ;f_ , wre examples of algebraic functions; while

siny, ¢, log (1l + ), tan 'z are examples of functions which
are not algebraie, but transcendental.

A yational function of a quantity is one which involves only-
the operations of addition, subtraction, multiplication, and
division upon that quantity. If root-extraction with respect
to any operand containing that quantity is involved, then the
function is irrational. An integral function of a quantity is
one in which the quantity never appears in the denominator of
a fraction. Thus, ay®+ by + ¢ is a rational, 3/% + g/'é +1 is an
irrational function of y; %2°+ } is an iuntegral function of
2, while % is not an integral function. The expression f(z),’
defined thus,

f@) =a@” + @ + a2t e a2+ ay, I

is a rational integral algebraic function of x of the nth degree, n
being assumed to be a positive integer. The coefficients ay, a,,
B 1



2 THEORY OF EQUATIONS

@y -+, @, arve numbers independent of 2. A variety of further
assumptions relating to these coefficients may be made.

Thus, we may assume that they are variables, varying inde-
pendently of each other. It will be seen that, in this case, the
roots of the equation f(x)=0 are quantities independent of
each other. We may also assume that the variable coeflicients
are rational functions of onc or more other variables. Thus, in
ta® + e + (£ + 1), the coefficients are functions of the varuble ¢.

Or, we may assume the coefficients to be constants — either
particular algebraic numbers or letters which stand for such
numbers.

The nature of the assumptions relating to the coefficients
will be stated definitely as we proceed. In some theorems the
coefficients are confined to real, rational, integral numbers; in
others, the coefficients may be fractions or complex numbers;
in the development of the Galois Theory of Equations, radical
expressions will be admitted. But in no case are the coetti-
cients supposed to be transcendental numbers, such as = or
e=2.718 ...

Whenever, in the next ten chapters, the coefficients are rep-
resented by letters, they may be regarded either as independent
variables or as constants. Not until we enter upon the Galois
theory is it essential to diseriminate Letween the two.

2. The equation obtained by putting the polynomial I in § 1
equal to zero is called an algebraic equation of the nth degree.
We designate it briefly by f(x)=0. A value of 2 which
reduces this equation to an identity is called a 7root.

When all the coefficients are independent variables, the equa-
tion is the so-called general equation of the nth degree. Viewed
from the standpoint of the Galois theory, it will be seen, § 111,
that the so-called general equation is not the true general case,
but really only a very special one.

8. Theorem. If o is o 100t of the equation f(x) =0, then the
quantic f() is divisible by @ — o, without a remainder.
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Divide the polynomial f(r) by x—« until a remainder is
obtained which does not involve x. Designate the quotient
by @, the remainder by 2. Then

J@)=@—a)@Q+ k.
By hypothesis, @ is a root; hence, substituting « for , we have
Sl@y=(e—a)@+ R=0.

Consequently, R =0, and the theorem is proved. The follow-
ing theorem is the converse of this.

4. Theorem. If the quantic f(x) is divisible by x— a without
« remainder, then « is a root of f(x) =0.

By hypothesis, J(o)=(» — @) Q.

The equation f(x) =0 may, therefore, be written (z —a)Q =0,
and the latter is seen to be satisfied when « is substituted for a.
Hence « is a root of f(x)=0.

5. The preceding theorem is a special case of the following

Theorem. TTe value of the quantic f(x), when h is substituted
Jfor x, is equal to the remainder which does not involve x, obtained
in the operation of dividing f(x) by « — h.

Let R be the remainder which does not involve z; then

J@)=@—-1nQ+ L.
Substitute & for 2 and we obtain f(k) = L.

8. Divisions of polynomials by binomials, with numerical
coefficients, may be performed expeditiously by the process
called synthetic division. Suppose #*+ ba*+4x— 23 is to be
divided by # —3. We exhibit the ordinary process, and alsu
that of synthetic division.
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P45 +4x— 23|03 14+5+4 4-23|3
-3 '+ 8x+28 +34+244+84
8x+ da 148428461
8x'—24x
280 —23
28x — 84
61

We notice that in synthetic division the coefficients are
detached, the first term of each partial product is omitted, the
second term of the divisor has its sign changed so that the sec-
ond term of each partial product may be «dded to the correspond-
ing term of the dividend. Moreover, the process 1s compressed
so that the coefficients of the quotient and the remainder appear
all in the same line.
The process is as follows:
Multiply 1 by 3 and add the product to 5, giving 8.
Multiply 8 by 3 and add the product to 4, giving 28.
Multiply 28 by 3 and add the product to — 23, giving 61.
The quotient is @* 4+ 8 2 4- 28 ; the remainder is 61.
If in the dividend any powers of » are nssing, their places
are to be supplied by zero coeflicients.
Divide * — 2%+ ¢ — 5 by 2 + 5.
1+0—- 2+ 04+ 1— 5]-5
_—54+25—1154 5752880
1-54+23—1154576 — 2885
Hence the quotient is «*—52°+ 23 2* — 1152 4- 576; the
remainder is — 2885.

Ex. 1. Show that t — 523 -~ 3¢ 4 15 has 5 as a root.
1-54+0—-3+15]5 %X- 4
+54+04+0-15
04+0-34+ 0
The remainder is 0 ; hence, by § 4. b is a root.

Ex. 2 Show that x5 — 2t + 1023 — 922 4 82 + 699 =0 is satisfled
by z=-3.
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Ex. 3. Divide 27 — 101 25 + 2t — 60 22 + x by x + 4.
Ex. 4. Iff(x) =25 —6 2t + 7o + 2 + 2 4 2, find the value of f(10).

Ex. 5. Determine the value of the quantic &7 — 325 + 4 2% 4+ 628 + 11,
when £ = — 6.

Ex. 6. If —4 is a root of 222+ 6a2+ 72 + 60 =0, find the other
roots.

Ex. 7. Show that, if f(x) is divided by » — &, each successive remain-
der 1s equal to f(h), when A 1s substituted, throughout, for z.

7. Theorem. Every equalion f(x) =0 of the nth degree has n
roots, and no more.

We assume here that every such equation has at least one
root. Let e; be a root of flr)=0. Then f(x) is divisible by
@ — «; without remainder, § 3; so that

J@)=(@ — a)pi(2),
where the quotient ¢,(«) is a rational integral algebraic func-
tion of « of the (n — 1)th degree.
Again ¢,(x) =0 has a r
divisible by ® — e, without r

$1(#) =@ — ) W
and S (@)= (@ — ar)(@ — ) ().

Now ¢,(x) is a rational integral algebraic function of x of
the (n — 2)th degree; hence ¢,(x) = 0 has a root. By continu-
ing in this way we shall obtain 2 factors of f(x), viz,, 2 — «,
2 —ay, + ¢ —a,, and the only other factor is a, which is the
coefficient of #* in the quantic f(x). Thus,

S(x) = ay(@ — &) (% — ) ++- (& — t,).

As the quantic f{z) vanishes when we put for 2 any one
of the n numbers a, @ - a, it follows that f(«)=0 has
n roots. If x is assigned a value different from any one
of these n roots, then no factor of f(x) can vanish and the

equation is not satistied. Hence f(#) =0 cannot have more
than x roots.

Denote it by e, then ¢, (@) is
der, so that
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The + denotes an ambiguity ; that is, the sign of a term sc
affected is here undetermined. We see that the dots which
follow + are ambiguities; that is, each permanence of sign in
S(z) is here replaced in (x — «) - f(x) by an ambiguity. We
see also that to every variation of sign in f'(«) there corresponds
a variation in (¢ —«) - f(x). In the product there is, in addi-
tion, a variation introduced at the end. Hence the product
contains at least one more variation than does f(z). It may
contain more; for, successive permanences like + + 4+ or
— — —, ocenrring in f(x) and replaced in (@ — ) - £(+) by ambi-
guities, may in reality L replaced by the signs + — + or
— -+ —. But such changes in sign always increase the varia-
tions by an even number., Hence in (2 — «) - f(2) the total num-
ber of varations exceeds that in f(x) by the odd number 1 or
1420

The same conclusion is reached when the last term in f(x)
is negative. :

Descartes’ Rule follows now easily. Suppose the product of
all the factors, corresponding to negative and complex roots of
J(®) =0, to be already formed. Designate this product by
F(x). Since F(x) =0 has no positive roots, the first and last
terms in F'(x) have like signs. Hence the number of varia-
tions in F(2) is an even number, 2 k, where k is zero or a posi-
tive integer. Now, if F(x) is multiplied by the factor x —a,,
where «, is a positive root, we get in the product 2 & + 1 vari-
ations, where k, S k. In the same way a second factor x — a,
gives rise to 2 k;+ 2 variations, and so on. Thus, the intro-
duction of » positive roots results in 2 k, + v variations, where
k, is zero or a positive integer. Hence, the theorem is
established. :

12. Negative Roots. To apply Descartes’ Rule to negative
roots of f(#)=0 we write down an equation whose roots are
tltose of f(2) = 0 with their signs changed. The new equation
can be derived by substituting in f(#) =0, — @ for . The
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process merely alters the signs of all the terms involving odd
powers of . It is readily seen that 1f « satisties the equation
J(r) =0, then — « satistics the equation f(—z)=0. Hence,
each negative root of f(x) =0, with its sign changed, is a posi-
tive root of f(—a)=0. Descartes’ Rule may now be applied
to f{—x)=0.

Ex. 1. Determine the nature of the roots of 23 + 32 + 7 =0.

There is no variation ; therefore, no positive root. ‘Transtorin the equa-
tion by changing the signs of the terms containing odd powers of ». We
get 234+ 32 —T7=0. The new equation has one variation; hence,
cannot have more than one positive root. Consequently, the origmal
equation cannot have more than one negative root. The real root of the
given cubic is thus scen to be negative; the other two roots must be
complex.

Ex. 2. Apply Descartes’ Rule to f(z) =2t — 23+ T2 4 6=0. Here
J(x) has two variations, and f(—x) has two variations. Hence f(x) =0
cannot have more than two positive roots nor more than two negative
roots.

Ex. 3. Apply Descartes’ Rule to #?» — 1 =0. Since 22" — 1 has one
variation and (—2)2* — 1 has one vanation, the given equation cannot
have more than one positive root nor more than one negative root. We
readily see that 4 1 and — 1 are roots. Hence there are 2 n — 2 complex
roots.

Ex. 4. Prove that if the roots of a complete equation are all real, the

number of positive roots is equal to the number of variations, and the
number of negative roots is equal to the number of permanences.

Ex. 5. An equation with only positive terms caunot have a positive
root. If the number of variations is odd, the equation has at least one
positive root, but it cannot have an even number of positive roots.

Ex. 6. A gomplete equation with alternating signs cannot have a
negative root.
1egative root

Ex. 7. If all the terms of an equation are positive and the equation
involves no odd powers of x, then all its roots are complex.

Ex. 8. 1f all the terms of an equation are_positive and all jnvolve odd
powers of x, then 0 is the only real root of the equation.
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Ex. 9. Apply Descartes’ Rule to

3 —21 2420 =0. S+ x541=0.
—a2+10x—16=0. 2 —1=0.
24623 —422-3x+4+5=0, 2B —xt a2 41=0.
2+ 1=0. 2+ 1=0.
¥ +1=0. anr—1=0.

x5 —-1=0.

Ex. 10. The equation xt — 423 — 7224 22 4 24 =0 has no com-

plex roots. How many are positive ? How many are negative ?
v v/
Ex. 11. Show that % —axt 4 23— 22 —x—1=0 cannot have just

two positive roots nor just one negative root.

13. Relations between Roots and Coefficients.
If S@ ="+ a2 e 4y 4a,=0
has the roots a;, @, -+, «,, then, by § 7, we have

J@) = (@ — )@ — ) »-- (8 — t,,) = 0.
If » be taken successively equal to 2, 3, or 4, we obtain by
ordinary multiplication,
J@) =@ — a) (@ — ay) = &° — (&) + )T + a0, =0,
J@) = (@ — o) (@ — o) (X — 0g) = & — (0 + ety + et)2?
+ (s + eqotg + ctye) 6 — etyeto0ty = 0,
(@) = (x — o) (& — ) (% — @) (¥ — ) = 2" — (0t + 0t + @tz + 0¢,)2?
+ (oyetz + o g0tg + ey + sty + ettty + egeg)? — (ezyotg0eg

+ oea0ty 4 itgity 4 Cglta@)X + oyotautsey =0,
These relations are seen to obey the following laws:

In the equation f(x) =0, in which the coefficient of x™ is unity,
the coefficient «, of the second term, with its sign changed, is equal
to the swin of the roots.
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The coefficient ay of the third term is equal to the sum of the
nroducts of the roots taken two by two.

The coefficient «, of the fourth term, with its sign changed, is
equal to the sum of the products of the roots taken three by three;
and so on, the signs of the coefficients being taken alternately
negative and positive, and the number of roots taken in each prod-
et Inereasing Oy wnity every time we advance to « new coef-
Sicient, wntil finally the last terin in the equation is rewched,
awhich s wwmerically equal to the product of all the roots and
ahich is positive or negative according as n, the degree of the
equation, is even or odd. In symbols, these luws may be ex-
pressed as follows : ’

h=— (g + s+ s+ -+ + ),
(= (gt + @ty + i 4 o0+ 1w, _e2,),

Uy = — (ystty + @ity 4 oor o, y12,),

. . . . . . . . . . . . .

a,= (—1)wyut,0ty = 1t

When in the equation f(x) =0 the coefficient a, of thé term
#" 15 not unity, we must divide each term of the equation by a,.

v . [« .
The sum of the roots is then equal to — ™, the sum of their
q o
o Uy 0
produets, two by two, is —2 and so on.
Uy

The laws expressing the relations between the coefficients
of an equation and the roots were obtained above by observ-
ing the relations existing in the three products obtained by
actnal multiplication. To remove any doubt which may be
entertained as to the generality of these laws we proceed as
follows. Suppose these laws to hold when « factors are multi-
plied together; that is\, suppose that

(w - “1)(m - ‘L‘A’) o (a" - (l,,) =a" + a]wn\-:l 4 e 4 Ay
where UyyUlyy »ovy Uy

have the values shown in L
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Multiply both sides of this identity by another factor v — «,,,,
and we get

@ — a)(— ay) o (2 — @) (@ — ¥pyy) = 2"+ () — ¥ 2)2”
F (Us — U0 )T T e — Aty
But O — = — (g F tty+ oo+ + ;) — 0y,
ay — @yt 1y = (00 + €yt 4 o0 + @, q0,) + (e + g
F+ o A )t

Oy — Uyt 4y = — (yttptty + -++) — (yey + oty + )yl

— Gty = (— 1) ggatytty + -+ 4y

Hence, if the laws hold for n factors, they hold for n 41
factors. But from actual multiphication we know that the
laws hold when » =4, therefore they must hold when n=>5.
Holding for » =5, they must hold when » =6, and so on for
any positive integral value of .

14. Tt might appear that the o distinct relations existing
between the coefficients and roots of an equation of the wth
degree should offer some wdvantage in the general solution of
the equation, that one of the » roots could be obtained hy the
elimination of the (n —1) roots from the » equations. But
this process offers no advaniage, for on performing this ehm-
nation we merely reproduce the proposed equation. Take, for
example, the cubic & 4 a,2* + axx + ag=0.

We have
0y = — &) ~— 0y — g,
Uy = €y 0tp + 04306 + oty
Qg = — 0yt

To eliminate &, and e, multiply both sides of the first equa-
tion by «,? both sides of the second by «;, and add the results
to the third equation.

We obtain @ + o + agy + ag = 0,
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which is simply the old equation with &, in place of « to repre
sent the unknown quantity.

VWhile the equations expressing the relations between roots
and coeflicients offer no advantage in the general solution of
equations, they are of service in the solution of numerical
equations when some special relation is known to exist among
the roots. Moreover, mn any algebraic equation they enable us
to determine the relations between the coefticients which corre-
spond to some given relations between the roots.

Ex. 1. The cubic z? 4 322 — 16 x — 48 = 0 has two roots whose sum
is zero. Solve the equation.

We have o+ 02 =0,
oy + e + 0y =— 3.
Hence o3 = — 3. Dividing the cubic by z + 3, we have

2—-16=0, x= 4 4.

Ex. 2. The roots of the cubic 23 — 922 4+ 26 x — 24 = 0 are in arith.
metical progression. Find them.

Let @ — d, a, @ + d be the three roots. .

Then 3a=9, 3a:~d2=26; therefore ¢=3, d=1, a—d=2,
@+ d=4. The roots are 2, 3, 4.

Ex 3. Two roots of the cubic 33 4 22 — 152 — 5 = 0 have the sum
zero.  Find all three roots.

Ex. 4. The equation 2»* 4722 {42 — 3 =0 has two roots whose
sum 18 — 2. Solve the equation.

Ex. 5. The equation 223 + 2322 4 802 4 75 = 0 has two equal roots,
Solve. .

Ex. 6. The biquadratic equation 9zt + 42234+ 1322 - 842+ 36 =0
has two pairs of equal roots. Find them.

Ex. 7. If the equation xt 4 a3 + @222 + a3z + a4 = 0 has all its roots
equal, what relation exists between its coefficients ?

Ex. 8. Show that the sum of the nth roots of unity is zero

15. Symmetric Functions. 1f a function of two or more
qnantities is not altered when any two of the quantities are
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mterchanged, it is called a symmetric function. For example,
the trinomal «*+4 V" +¢® 15 o symmetric function of a, b, ¢
because, if any two quantities, say a and b, arve interchanged,
the expregsion is unaltered in value.  We are concerned mamnly
with symmetric functions of the roots of an equation. The
simplest examples of such functions are those given in § 13,

Vi
o+ oty g+ oo+ @y,
o0ty - @ity ity v 0, g0ty
Wytotty 4 @ttty 4 o004 i, _oe, 0, ete.

These are the simplest, because in no term does any one of
the roots occur to a higher power than the first. Other ex-
amples of symmetric functions of the roots are

@) + w4 wled,
(oty — 0)*(ety — @3)*(1ey — ¢,)* (et — ttg) (0t — ) (t3 — e¢,)™

We shall represent a symmetrie function by the letter =,
followed by one of the terms of the funetion.  Given the roots
and one of the terms of the symmetrie funetion of these roots,
it is usnally not difficult to write down all the terms of the
function.  Thus, given the roots «, B, y of a cubic equation, then

Se=u+ B+,
Sef3 = B 4wy + By,
3B = B+ &y + B+ By + Yu+ 4B

Ex. 1. If &3 + ael+ br + e =0 has the roots , 8, v, express the value
f See?p in terms of the coeflicients,

Multiply «t+p+y=—a
by af + ¢y + By =h,
wnd we obtain BB+ 3epy=—ab
and ) Su?B=3c¢c—ab.

‘Ex. 2. Find =« for the same cubic.

*The results in an example marked with a * will be used in later examples
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Ex. 3. Find Z¢? for the same cubic,
Multply the functions S and ¢ together, and the product is
Zat 4+ SaB. lHence Sed == S - St -- St —at 4 Sab-- e

- Ex. 4 For the same cubie, find 2B,
Squarmg both sudes of ¢p + wy 4 By == b, we obtain

Wt bWyt B 2By (et Bt oY) =D
wX. 0. For the same cubie, find Sadg.
show that e« e = Zew’fi -+ 2 o3 4 2 (w44 1- 7).
Bx. 6. For the same cubie, find the value of (« 4 8) (B + v) (v + ©).

Ex. 7 If vl 4 ard4 b2 4 er 4 d = 0 has the roots «, 8, v, 8, find the
value ot Se?,

Ex. 8. For the same quartie, find the value of Ya?gs.
Ex. 9. For the same quartie, find the value of Se2g2
-

Ex 10. Find the value, expressed m tenms of the coeflicients, of the
swm of the squuares ot the 10018 ¢y, (s, <oy @y, Of
S nE? Vg™ 2 ey, g by, = 0,
Squarmg S - — iy, we got Seg? |2 S, = apdy, hence

S = - 2,

Ex 11. In the same equation, fmd 2 L.
By § 13 we have ‘o
(= 1) Yoy == 0l -0 Uy - (0L +on iy F oo | Utz oor Uy
(— V)ran ENUIRRN
Dividing the former by the latter we obtain
1 1 ) 1
SIS SRR
oy 2y U Un n y
Ex. 12. Find the suin of the reciprocals ot the rots of the equation
B2+ 108+ 105 =0. Findalso 3 -1
[IA2)

16. Graphic Representation of the Polynomial f(x). The
changes in value of the polynomial f(z)=wuu "+ a4 .- +a,,
as the variable x increases or decreases, can be seen most easily
by the aid of graphic representations.
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Let XX' and YY"’ be two perpendicular lines, called axes of
reference. Their intersection O is called the origin. Let values
of » be measured off from the origin

"
Y p T along the axis XX' and values of
- y/ 4 be measured off from O along the
' axis YY'. Positive values of x are
X )-;J\B L X measured from O toward the right;

é__ i negative values, toward the left.
QY Positive values of y are measured
from O upward; negative values of
¥, downward.”

The distances of a point P from the axes of reference are
called the coordinates of the point. Thus, P and P are the
coordinates of the point P, both coordinates being positive; @5
and @r are the coordinates of the point @, both being negative.

Let y represent the value of the polynomial f(x); that 1s, let

y=[f().

Suppose now that y = Pn. when x = I’m, then the position of the
point P represents to the eye simultaneously the value of  and
the corresponding value of f(x). If different values of x be laid
off on the axis XX’ and the corresponding values of f(x) on
sJhe axis Y'Y, the points thus located will all lie on a line or
surve, called the graph of the polynomial f(x).

In the construction of the graphs of polynomials it is con-
venient to use “plotting” or “coordinate” paper, ruled in
small squares.

Ex. 1. Construct the graph of f(z) =22 + 2 — 2.
Putting y = a2 4 & — 2, we readily compute the following sets of values :
If =0, y=-2.

z=4+1, y=—1} or -2}

z=1+1 y=0 or --2,
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Plotting these fomts we get the ad-
jomned curve  Here umty 15 taken equal
to § of a side of a square,

From the shape of this curve we can
see that when x 1s negative and mereases,
then f(r) decreasesand reaches a minnnum
value when 2= ~—1.  From there on, as
increases, the f(r) mereases.  The curve
18 o parabola It cuts the axis XX/ n
two places; that is, there are two values
of &, tor wluch the value ot f(a) 18 zero,
These two values of » are 1 and — 2,
Henece 1 and — 2 are roots of the equa-
tion f(x) = 0.

Ex. 2. Construct the graph of f(x) = }2? 4+ 2 + 3.

It z=0, y=3i
rx=1F1, y=44 or
=42, y=6} or
r=13 y--9 or

17

>

24,
23,

¢
.

3

=+ 4 y=12} or 4}].

I

*

The curve does not cut the axis XX’ ; hence no real value of x makes

JS(x) zero, and the roots are both imaginary.
[¢]
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Ex. 3. Construct the graph f(«) =3 — 22 4 22 — 3.

f a=0, y=-3.

) L= b, y=—2120r — 437
r=4 1, y=—=1 or —17.
L r=42, Y=29 or --19,
r=43, y=21 or — 45,

The curve erosses the axis XX/ only once ;
b o Lence there s only one real root.  The value
of this root 1s seen trom the figute to be
about 1.3,

-
/ Ex. 4. Findthe graphof o3 224+ 22 -4,

x
-
b

b3

)/ Ex. 5. Find the graph of «t — 22 41,

/ 17. In construeting the graph of a
polynomial f(x) we located a num-
4=—t+-— Dber of points and then drew a curve
through them. The curve thus ob-
tained was asswmed to represent the
— - — continnous variation of the value of
L), corresponding to the contimuous
. increase of w. But this assumption
that the polynomial f(x) never jumips
from one valie to another, when a is made to vary continunously
from one value to another, requires proof. The proof will be
given in § 25. It is facilitated by the use of derived functions
and Taylor's Theorem.

18. Derived Functions and Taylor’s Theorem. 1In

SO =" + G2 @ e a2,
let 2 receive an increment kb and write x4 & in place of 2. We
have .
FE4+D =+ + e+ 4 a4+ 1) +a,
Let each term be expm\.ded by the binomial formula. Then
collect the coeflicients of like powers of &, and we get
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S+ ="+ a2 ' f e 4o, +a,
+hinae" 4+ (0 — D 4 (e —2) " P oo fa, !
h?
§
t1.s

3

+ n-—%—g fu(n — 1) (n—2)ape 4 (n—1) (0 — 2) (10— 3) g™

1
TR R TT

h ) .
+'17J,_—'3Tnin(n——1)(n—,3 2.1,

The first hine in this expansion is obviously f(z). We shall
call the coeflicient of I the first derived function and denote 1t

nin—1)a2" 24 (n—=1)(n—2)a " e 4+ 20, 4}

by f'(x). Simlarly we shall call the coeflicient of —1—@—3 the
second derived function and denote 1t by f"'(x): and so on
The rth derived tunction 1s designated by 7 (x).  In the Inf-
ferential Caleulus these derived functions ave called differential
coefficients.  Using this new notation, the above result may be
written as follows:

F(@R) =f(x) +hf' () + |h) () + i

~fr(), T

n
K |

|3
Tn the Differential Caleulus this series goes by the name of
Taylor’s Theorem. We have here established the truth of thig
theorem for rational integral functions of x, but the theorem
has actually a much wider application.
The results of this paragraph are true of complex numbers,
as well as of real numbers.

O

19. To arrive at a convenient rule for finding derived func
tions, compare the following expressions :
f(x)=aq* + ax* +apr - fa, x4 a,,
f@)=nax '+ (n =) 24+ (0 = 2) @™ 2 oo - pyy
S'(@)y=n(a—1)u@" 24+ — 1) (1 —2)a@" 4 oo 2ty 4
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We observe that f'(z) can be obtained from f(x) in this man-
ner: Multiply each tern in f(x) by the exponent of © in thut term,
and diminish the exponent of x in the term by wnity. By this
rule ag@" becomes nax™?, ete.; a,, i.e «,2”, becomes 0 - a,x7!,
or 0. Notice that /" () can be derived from f'(x) in the same
way as f'(x) was derived from f(x).
Ex. 1. If f(x)=a5+ 3ot + 6P + 622+ T+ 10,
then S (e)=02t+1223+ 1622+ 122417,
F1(x) =202* + 36 22 + 30 + 12,
S (x)=00x2+ 72 x 4 30,
S (x)=1202 4 72,
I (@)= 120.
Ex. 2. Find all the derived functions of
B 42204+ 723+ 8224 15,

20. Another Form of f'(x). By § 7,
S =wa(r — o) (— ) (& — ag) - (x — at,,)0
Letting 2 morcase to @ + h, we have
fa+y=ale+h—a)(r+h—a)---(t+h—a,). I
But, hy Taylor’s Theorem, § 18, .
1) =)+ ) + 5 ) +

Hence the coefficient of & is f'(x), and f'(x) must, therefore,
be equal to the coefticient of & in the right member of I.

That is, f'(¥) =a(x—e) (r—) - (T—a,) + ay(x—a;) (x—a5)
...(a;...“u)_*_...:J‘_(_"'_)..{.;C(__":_)..*.....{“L@L. I

L—tty Xty r—a,

Formula IT is still true if some of the roots are equal. Sup-

pose ¢« occurs as a root s times and e, oceurs ¢ times, then
S(@) =t (x—m)'(z— )’ -y

and formula I1 becomes

£@)=2 li“l_+...

1
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22. Graphic Representation of Complex Numbers. 1u the con-
truction of graphs of polynomials y= /() we assumed a
orizontal and a vertical axis, and from this pomt of inter-
section measured off values of @ parallel to the horizontal axis
and values of y parallel to the p
vertical axis. A similar plan is
commonly adopted for the repre-

sentation of complex numbers P

or imaginaries. If z=uw+y, l
where @ andesy are real numbers, (] |
either 4+ or —, rational or irra- Q

tional, then 2 and y are laid oft
parallel to the horizontal and
vertical axis, respectively. If
2 =00Q, y=QP, then z 15 repre-
sented in magnitude and direction by O’ The length of O
is called the modulus of z, and is equal to Vaidt*  The
direction of z is indicated by the angle 6, which is called the
amplitude or argument of z.
Since @ = p cos 6, y = p sin 6, we have

z=a 4 iy =p(cos 6 + ! sin G).

This graphic representation of complex numbers is due to
Caspar Wessel (1797).

23. Addition and Subtraction of Complex Numbers. Let OF
=a+1 and OP' =a' + I, then, OP+ O =(a+a')+-i(b+1').
Draw P'S parallel and equal to OP, then 0T =u+d', TS=b+V/,
and 0S8 = OP+ 0P

* This graphic representation is of great help to the mathematician. But
attention shonld be called to the fact that the statement, that to every irra-
tional number there corresponds a hne of definite length, is no longer con-
sldered self-evident nor demounstrable; it involves the geometric postulate:
“If all points of the line fall into two classes m such a manner that each
point of the first class lies to the left of each point of the second class, then
there exists one point, and only one, which brings about this separation.”
See the Eucyklopadie d. Muth. Wiss., I A 3, No. 4.
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Using the notation p=mod. OP, we readily see that, in this
case, mod. OS <mod. O +mod. P'S.

This means simply that two sides of a triangle are, together,
greater than the third side. If OF and OF had the same
v amphitude (that is, the same
dwrection), then the modulus
of their sum would be equul
to the sum of their moduli.
Extending these considera-
tiony to three or wmore im-
aginaries, we readily arrive
at the following theorem:
y x The modulus of the sum of
Q Q two or wore complexr numbers
is less than, or at most equal to, the sum of their moduli. In
other words, a straight line joining two points is shorter than
the sum of the parts of a broken line connecting the same two
points.

v
\
\
\
S 7Y

—

24. Multiplication of Complex Numbers. The product of
2=+ ib = p(cos 0 4 I sin §)
and 2 =da' + @' =p'(cos '+ isin 6)
may be defined as follows:
2.2 =pp'feos(0+ 6" + { sin(6 + 0"},

that is, the modulus of the product of z and 2' s egual to the prod-
uet of their moduli; the amplitude of their product is equal to the
sum of their amplitudes.

Ex. 1. To what power » must z = p(cos 46° + {sin 45°) be raised, in
order that z* may have the same direction as #? What are the conditions
thatz = 2?

Ex. 2. Prove De Moivre's Theorem: (cos@ + ising@)™ = cosmé
+ isinmé, for the case when m is a positive integer.
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25. Continuity of f(z). We wish to prove that f(2) varies
continnously with z, that as the complex number z changes
gradually from « 4 ib to «' + 10, f(2) changes gradually from
S+ 1b) to f(o + ).

Let 2z vary from 2,=« -+ ib to 2,4, where h is likewise a
complex number. The corresponding increment of f(2) is

S+ 0) —[(2),
and this, by Taylor’s Theorem, § 18, is equal to

"f’(zo) + f”(zn) + — f"'(z(,) + - + f"(zo)) I

where f'(z5), f"'(2), -++, /"(%0) are each finite complex numbers.
Now, expression I is

= h{ () + 5 f“(zn) + - + “,*“ S (=) LI
Since each term within the parenthesis of IT is a finite complex
number, and the number of terms is also finite, 1t follows that
the entire expression within the parenthesis has a finite value.

For, by § 23, the modulus of the sum of two or more complex
numbets cannot exceed the sum of their moduli, and no complex
number with a finite modulus can be mfinite, no matter what
its amplitude (direction) may be. Hence, by § 24, as the
modulus of A is allowed to approach the limit zero, the modu-
lus of the entire expression [T approaches the limit zero. But
when the modulus approaches the limit zero, the complex varia-
ble itself approaches zero, no matter what 1ts amplitude may
be. Hence the expression II approaches the limit zero when
h does.

Since expression 11 represents the difference hetween f(z,+k)
and f(z), it follows that an infinitely small variation of the
complex variable z corresponds to an infinitely small variation
of the polynomial f(2), and the continuity of f(z) is established.



26 THEORY OF EQUATIONS

The above reasoning remains valid if we write the real varia-
ble x in place of the complex variable z. For, real numbers are
only special cases of complex numbers.

An examination of the graphs in § 16 shows that when x in-
creases, f(x) does not necessarily increase; it may increase or
decrease. What we have proved is that, whether increasing or
diminishing, f(x) passes from one value to another continuously,
never per saltum.

26. Fundamental Theorem. We shall now demonstrate the
important theorem which was assumed without proof in § 7, a
theorem which has been called the fundamental proposition of
algebra.*

has at least one root.

Every rational integral equation with real or complex coefficients

If we can show that the theorem is true for the special case
in which the coefticients of the given equation ave all real, then
the general ease, m which some or all of the coefticients are
complex, easily follows. Tor,1f f;(2) 15 a function of 2, whose
coefficients are, respectively, the conjugate imaginaries of the
coefficients of a second funetion fi(2), then we may write
Si@=A4iBand f,)=A— 1B, and fi(z) - ful2) =L+ B =[(2),
where f(2) has only real coefticients. Now, if f(z) =0 can be
shown to have a voot «;, then we must have either fi(«) =0
or fa(e))=0. NSuppose fi(«,)=0, then it follows that f(e,)=0,
where «, 1s the conjugate of «,, §8. Hence f;(2)=0 and
J:(2) =0 have each at least one root.

Without loss of generality we may now assume that the

* For historical and eritical remarks on the numerous proofs which have
been given ot this theorem, see the Encyklopadie d. Math. Wiss.,1B1a,No.7;
see also Moritz in Am. Math. Monthly, Vol. 10, p. 15%. Gauss gave four
proofs of this theorem, the fourth (1849 being a simphfication of the first
(1799), The one given here is in substance Gauss’s proof of 1849. It is
geometrical in character, and is open to the objection raised in the foot-note
of §22.
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polynomial f(2) of the nth degree has real coeflicients only.
We wish to prove that there exists always at least one value
of 2, either real or complex, which causes the polynomial y(z)
to vanish.

Let z=a + iy, then, by § 22, the variable represents points in
a plane, and the function f(z) has a definite value at each
point in the plane. As in §8, we may write f(2) = P+ {Q,
where P and @ are functions of » and g with real coeflicients.
To tind expressions for P and @, let x=rcos ¢, y=rsin¢
By De Moivre’s Theorem,

2" = r™(coS ¢ + 7 sin )™ = r™(cos md¢ + i sin md).
Substituting for z m f(z), we get,
P=y"cos np+ayteos(n—1)¢ + ap" 2 ecos(n—2)p+ -+ +u,,
Q=r"sinng +uy" 'sin(n —1)¢ 4wy *sin (N —2)p 4 +++
+ .y sin .
A second expression for P2 and @ is obtained by letting

t=tan }¢. e obtain,

2 1)2
cos ¢ = 1—;?, sin¢ = i—‘-};ﬁ, z=r QLL-I_Q_
This gives,
A4+ (P+iQ =1+ i) 4 ap™ (1 + ity 2(1 + %)
+ e @, (L4
If we expand the binomials by the binomial formula, and
arrange the result according to the powers of ¢, we get,

=99 o MO
P_(l +t‘z))n’ Q—"(] +£2)n’
where g(¢) and h(t) arve rational integral functions of ¢, the
degrees of which do not exceed 2 n.
All points in the plane having the same value for r lie upon
a circle of radius 7, the centre of which is at the-origin of
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cobrdinates. To determine the points on this circle for which
P and @ vanish, we must solve the equations g(f)=0 and
h(t) =0, for the given value of . But we know by § 7 that if
h(t)=0 and g(t) =0 have roots at all, they cannot have more
than 2n. From this it follows that neither P nor @ can be
equal to zero at all points of an area in the plane, for in that
event we could select 7 such that the eircle would pass through
that area, and P and @ would vanish at an infinite number of
poiuts on this circle.
The value of ¢ may be written,

Q= 7'"(sin up+=Lsin(u—1)¢+ 5 sin(n—2)¢+ )

From this expression it is readily seen that r may be taken
so large that @ has the same sign as sin n¢ on all points of the
circle where sin n¢ is numerically larger than some value e
which may be as small as we please, but not zero. Mark on
the circle the points

and designate them, respectively, by 0, 1, 2, .., 2n—1. Thus,
the circle is divided into 2 arcs, (01), (12), (23), -++, (2n—1,0),
in which sin n¢ is alternately
+ and —. The figure shows
the division for n=5. In
passing from arc (01) to are
(12), the function ), for suf-
ficiently large values of 1,
changes from + to —. Since
by § 25, @ is a continuous
function having real values,
in going along the circle from
+ to —, it must at the point
1 pass through zero. Simi-
larly, @ must pass through
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zero also at the points 2, 3, -.., (2n —1), but it does this at no
other points of the circle.

Similar remarks apply to P. Tt is readily seen that, for
sufficiently large values of », P and cos n¢ have always equal
signs; that P is positive at the points 0, 2, -.-, (2n—2), and in
their vicinity, and negative at the points 1, 3, 5, ---, 2n—1),
and in their vicinity.

We have seen that ) cannot vanish at all points of an area.
Consequently the area within the circle can be divided into
districts so that in some distriets @ is everywhere positive,
while in others it is everywhere negative. These districts are
marked off by boundary lines along which @ vanishes. To
aid the eye, the positive districts are shaded.

An arc (2, 2L + 1) of the circle, along which @ is positive,
lies in a positive district. This district lies partly inside and
partly outside the circle. Designate by I the part of it that
is inside. Several cases may arise. The area [ may terminate
inside, as does (2,12, 3), in which case (2, 2 4 1) is the only
arc of the circle on its boundary. Or, the area I may run into
another positive arc (2%, 2% + 1), or it may divide into two
or more branches, each of which terminates in a positive arc
(21, 214+1). If there could be within 7 an area, like an
island, in which @ were negative, then the conclusions which
we are about to draw would still follow.

Consider the boundary line within the circle, passing from
2h+1to 2%k Along this line ¢ =0. But I’ is negative at
the point 2/ 41 and positive at the point 2k Since P is
continuous and represents real values, P must pass through
zero in at least one point along the boundary line connecting
2k +1 and 2% Thus, at that point, we have not only @ =0
but also P=0; that is, f(2) = P+ iQ =0. Thus the existence
of at least one root of f(z) =0 is demonstrated.

The figure on the preceding page is taken from H. Weber
and represents approximately the relations for the equation

P—42—-2=0.
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Its roots are approximately
=152, B=—51,y=—124,e=124i144, =12 —i1.44

The root « lies on the boundary (1, 10, 0).
The root B lies on the boundary (9, 10, 11, 6).
The root y lies on the boundary (5, 11, 4).
The root € lies on the boundary (3, 12, 2).
The root €' lies on the boundary (7, 13, 8).



CHAPTER II
ELEMENTARY TRANSFORMATIONS OF EQUATIONS

27. Frequently it becomes necessary to transform a given
equation into a new one whose roots (or coeficients) bear a
given relation to the roots (or coefficients) of the original
equation. The discussion of the properties of an equation is
often facilitated by such transformations.

28. Change of Signs of Roots. To change an equation into
another whose roots are numerically the same as those of the
given equation, but opposite in sign, it is only necessary to
substitute in the given equution — @ for . 'This transformation
has been used already in the application of Descartes’ Rule
of Signs to negative roots, § 12. v The signs of all the terms
containing odd powers of x are changed by it. The proof is
as follows:

Let « be any root of the equation f(»)=0. Then we must
have f(a)=0. 1If, now, we substitute —u for x, we get
Sf(—x)=0. Of this equation — « is a root, for when we take
z=—a, we have f(—[— «]) =f(«), and this we know to be
equal to zero.

29. Roots multiplied by a Given Number. To transform an
equation into another whose roots are m times that of the first.

Put y = ma, and substitute <L for x in the identity
n

gt + a @ 4 e = (8 — @) (B — ) o (X —a,) =03
we get

¥ Y (] ) =0
£ ) pida,=ay[ S - ) g e [ —a, ) =0
a°m et o(n ')(m 2) (m
31
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Multiplying by m”, we have
™ + mayy™ Tt + -+ P, = ag(y —men) (y —me) -+« (y—ma,) =0,
which is the required equation.

Hence, multiply the second term by m, the third by m? and
30 ON.

Ex. 1. Transform the equation %+ 22 + }z + } = 0 into an equa-
.on with integral coefficients and a, = 1.

Multiply the roots by 1 and we get a8 + ’"’ m“x + M —0. The
fractions will disappear if we take m = 6. ’I‘he result is
24+ 3224+ 1220454 =0.

Ex. 2. Find the equation whose roots are 5 times the roots of the
equation xt — 23+ 22 —~24+31=0.

Ex. 3. Find the equation whose roots are — } times the roots of
ot + 42 - 422 +8x+32=0.

Ex. 4. Transform the equation 323+ 422 —~ 52+ 6 =0 into one in
which the coefficient of 3 is unity and all coeflicients are integral.

Divide the left member of the given equation by 3, then multiply the
1 m oy L’E 6md_ o

B+ —
3
Tal«mg m =3, we get the 1equ1red equatmu B +422— 162+ 64 =0.

‘oots by m. We obtain »3 + —

Ex 5. Change the signs of the roots of the equation
4586224 x4 5=0.
Ex. 6. Remove the fractional coefficients from the equation
B+ir—jx=0
cee}ing a, = 1.

Ex. 7. Transform the equation 10 ¢ — 622 + 72 — 44 = 0 so that the
:()(:f}ﬁcient of the highest term is unity.

Ex. 8. Remove fractional coefficients from $xt+ }a2®—2+4+ 3 =0,
ilso make the coefficient of the highest term unity, and change the signs
)f the roots.
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30. Reciprocal Roots. To change an equation into a new one
whose roots are the reciprocals of the roots of the first equa-
tion. In the equation

@ + @14 o fa, = qy(x — )@ —e) - (#—@a,) =0

put & = }/, and we have

N | o Py P
Y Y Y Y Y

Multiplying by »",

1
A"+ Gy o e “o=“0a"(y - ;Z)("’ - i) ( - «1) =%
1 2, (0

the required equation.

31. Reciprocal Equatxons If an  equation is not altered when

a is changed into its 1 salled o peciprocul equation.
Comparing coefficients of the first and last equation in § 30, we
see that the conditions for a reciprocal equation are

a, o« dy a, dy U, Uy A

The last condition gives o, =« and a, = tu,. If a,= +ay
then the denominators in the equations of condition are all
alike, and we sce that the first, second, third coefficients, etc.,
taken from the beginning, are equal respectively to the first, second,
and third coefficients, etc., taken from the end. 1f a, = — a, then
these relations are modified in this, that corresponding terms
JSrom the beginning and end have opposite signs.

If « is a root of a reciprocal equation, 1 \nust be a root also.
«

. . . . 1
Hence the roots of a reciprocal equation ocecur in pairs e, —;
*

ag——

0y, 1; ete.
oy

If the degree of the equation is vdd, then one of the roots
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must be its own reciprocal; that is, one of the roots must be
either + 1 or — 1. If the coeficients have all like signs, then
me coefficients of the terms equidistant from
the first and last have opposite signs, then 41 is a root. In
either case the degree of the equation can be depressed by
unity, if we divide f(») by « 4+ 1 or by ® —1. The depressed
equation is always « reciprocal equation of even degree with like
signs for its coefficients.

If the degree of a given reciprocal equation is even and if
terms equidistant from the first and last have opposite signs,
then the left member of the equation has 2* — 1 as a factor.
Tror, the equation may be written in the form

@ —1) + a@™? — 1) + ap*(@"* — 1) + .. =0.
Dividing by 2? — 1 reduces this type of reciprocal equation to
one of even degree with all coefficients positive.

Sinee all reciprocal equations of odd degree and all recipro-
cal equations of even degree with half of the coeflicients
negative, are reducible to reciprocal equations of even degree
with coefficients all positive, the latter kind is called the
standard form of reciprocal equation.

Ex. 1. Under what conditions is the equation
4 + a1 + @ax? + wgx + ay = 0 reciprocal ?
Under what conditions is it in the standard form?
Ex. 2. Reduce the following reciprocal equation to the standard form.
28+ ay2® + aprt — @ —apr —1=0.
We may write it thus: (#% — 1) + (et — 1) 4+ @22?(22 —1) = 0.
Dividing by 2 — 1, at + a3+ (1 +a) 22+ +1=0.
Ex. 3. For what value of a, will
2 L @l a2 b o @2 — @@ — e — 2 —1=0
be a reciprocal equation ?

Ex. 4. Solve the equation zt + 32> -3z —1=0.
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Ex. 5. Solve the equation 323 + 224224+ 3=0.
Ex. 8. Given that ¢ is a root of
axd + (b — ac) wt — bexrd — bx? — (@ — be)x + ac =,

find the other roots.

32. Roots diminished by a Given Number. If an equation is
to be transformed into another whose roots are those of the
first, diminished by k, then we take y = x — h, and substitute
& =19+ h in the given cquation

((O.I:” + “l‘vn-l + .ee + «, = 0. -l-
Wo obtain  ay(y + B + (g4 by 4 - 44, = 0. I

If « is a root of equation I, then « — & is a root of equation 11;
for, substituting « — & for y in the latter, we get

U + e e 4 @y,

which expression must vanish, since « is a root of I. Hence
IT is satisfied by y =« — L.
If we expand the binowials in Il and collect the coefficients
of like powers of y, we obtain, let us suppose, the equation
A + by Ly e 4 4, =0,

N -
Since y = x — k, this equation is equivalent to

Ay — Ity + 4 (x—h)y e+ A (e — )+ A, =0.

The form of this last equation suggests an easy rule for carry-
ing out the actual computation. Dividing the left member by
& — h, the remainder obtained is seen to be equal to A, the
absolute term. TIf the quotient thus obtained is divided by
x — h, the remainder is 4,_,, the coefficient of . By continu-
ing this process we can find all the coefficients of the trans-
formed equation.

If, instead of diminishing the roots, we desire to increase
them, we take % negative.



36 THEORY OF EQUATIONS

Ex. 1. Transform 2t — 23 4 722 — 42 + 5 = 0 into another equation
whose roots are less by 2.
By synthetic division the process is as follows :
1 =5 47 —4 452
+2 —6 42 —4
-3 +1 -2 +1

+2 -2 -2

-1 -1 -4

+2 42

+1 +1

+2 |
+ 38

The numbers in black type, 1, — 4, + 1, + 3, indicate, respectively, the
first, second, third, and fourth remainder. Ience the required equation
st 4+ 33 +ut—-4x+1=0.

Ex. 2. Diminish the roots of 2 &% — 43 + 102 — 8 = 0 by 5.

Ex. 3. Transform the equation ! -- 8 #3 4 22 + x -- 6 = 0 into another

n which the second term is wanting.

The sum of the roots of the given equation, by §13, is 4+ 8. In the
required equation the sum shall be zero.  Hence the swm of the roots
must be diminished by &; each smgle root by 2. Hence we get by
synthetic division 24— 9342 — 501 — 48 = 0.

Ex. 4. Remove the second term of o5+ 102t 42241 =0.

Ex. 5. Remove the second term of 424 4 823 4+ » 412 =0.

33. Removal of Second Term in the Cubic. In the transfor-
mation of the general cubic

b + 302 + 3 by 4+ 0y =0
into another, deprived of the second term, we notice that each

. l . .
root must be increased by :', the sum of the roots in the given
. . bY) o l b .
cubic being — ?bfl' Put y=x+ :_', then x =y — 2)-!- Substitut-
N X (] (1 (]

ing, we obtain

n\* . (AN
by Y=y, + 34 ?/——b + 30y +b3—0



ELEMENTARY TRANSFORMATIONS OF EQUATIONS 37

Expanding, and collecting the coefficients of the different
powers of y, we get

by’ + 3 By + B;=0,
where byBy =0, — b*=H,
2B, = by, — 3 bbby + 205 =G,

Accordingly, the transformed cubic, deprived of the second
term, is

3
¥+ 5—‘—’(1’0[’2 b)y + (1’0 by — 3 bybibe + 207°) = 0.
(1)

If the roots of this equation are multiplied by b, by the
process shown in § 29, and the letters H and G, as defined
above, are introduced for brevity, then the transformed cubic

takes the form P31+ (=0, 1

Since z=byy and y =z 4 l[:‘, we have 2= b + b,
0

The reader will observe that by the use of the binomial
coefficients, 1, 3, 3, 1, in the original cubic, the expressions
arising in the process of transformation are simplified some-
what. The use of binomial coefficients is frequently found
convenient.

34. Removal of Second Term in the Quartic. Write the
quartic with binomial coefficients, thus,

bt +40,2° 4+ 6ba® 44 by + by =0.

Iy
The sum of the roots bemg —-l—lb , each root must be increased

b
by 20- Putting y =2 + by !, we have a2 =y — ”:- Substituting

in the quartlc and expandmg the binomials, we obtain

v+ Hy"+ Gy+b‘(b by — 4 btbybg + 6 bbby — 3bt) =0,



38 THEORY OF EQUATIONS

where H and G are defined in § 33. The last term of the
transformed quartic it is most convenient to consider as
composed of I and of a new function I. Let I=bb,—
4bb;+4+ 302 Then we obtain the following :
8bs — 4 bbbs + 6 bbby — 3 b = b (byby — 4 biby + 3 b,2)
— 3 Dby — b2y =0 T—3 H,
The transformed quartic takes now the form
byl — 3 H*

v+ ~°—2 Hy'+, f»* + =0, I

bo 0

or, multiplying the roots by by, the form
A+O624+4 G2+ 0 T—3 H?=0. II

Since z=byy, and y =2+ ;:!, we have 2z = b +b,.
0

Ex. 1. Compute II and ¢ for the cubic, obtained by transforming
28 4+ 322 + 42 — 10 = 0, so that the second term will vanish.

Ex. 2. Compute H, ¢, and I for the quartic with the second term
wanting, obtained from 2x* — 1628 — 222 + 2 — 12 = 0.

Ex. 3. Verify the results obtained in the last two exercises by trans-
forming the cubic and quartic by the process of synthetic division, as
in § 82.

35. Equation of Squared Differences of Roots of Cubic. The
formation of the equation whose roots are the squares of the
differences of every two of the roots of a given cubic is of
importance, because the equation thus formed leads with com-
parative ease to the criteria of the nature of the roots of the
general cubic. Let the cubie be

b + 3 bt + 3 by + by = 0. I
Transforming so as to remove the second term, we have, by § 33,
3 II
¥ t37 b;‘" =0, 11
b,
where y=a+-1
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Let the roots of equation IT be «, 8, y. Then the squares of
the differences of every two of the roots are

(e—=B), («—y) (B—1v)" II1

Since the roots of 1I are the roots of I, each increased by g‘, it
0
follows that the differences of the roots, two by two, of equa-

tion II are the same ag the differences ot the roots of equation I.
Hence the squares of the differences, given in III, are the
squares of the differences of the roots of equation 1, as well as
of equation II. In other words, both equations lead to the
same “equation of squared differences.” This last equation is
evidently

f2—(a— B} {2 — (e~} p— (B—y)%=0. IV

The coefficients may be calculated as follows: Equation IV is
satisfied by the equality

2= (e— B)>2
‘We obtain from this
2
2=+ B4y —y— 7-‘—;31.
Now a?+ B2+ y* was shown in § 15, Ex. 2, to be equal to a,*—2a,;
in the case of equation IT, @, =0, a,= ib—]’! So,
0
a“+/3"'+72=—6,'€‘1’
o
while afy=— G;
by
Hence we may write
z——GH—y2+2-—Q,
by* by

where ¢* and y are written for 9* and y. This is allowable,
since y is one of the three possible values that y can assume in
equation IL.



40 THEORY OF EQUATIONS

Multiplying the members of the last equation by y, we have

¥+ (4 +° ) y—29—0.

0

Subtracting equation I from this, we get

3 II 3G
~Ne = 0,
3¢

hence = .
whene V=55 5 10,

We have here y expressed as a lhmnear funetion of z. Sub-
stituting this expression of y in equation 1I, we obtan, after
some labor,

A4l 18 ”z‘ 8111

+ - (( F 44113 =0. \'
0 b(i‘
This is the “equation of squared differences ” of the roots of
equation 1 and of equation 11, the roots of V being
(e—RB)% (e—7v)% (B—v)*
Multiplying the roots of equation V by b, we obtain an equa-
tion free of fractions,

P+ 18 H2* + 81 %+ 27(G* + 4 11% =0, VI
whose roots are
b (e — B), b (e— 7)2 o' (B— )"
Here (u— ) (u—7)'(8—y)'==15 (@ +4119=D,
where D) is an important funetion, known as the discriminant
of the eubic. Since, by § 33,
G = bb;— 3 bbby + 2 b8,

H=0bp,— b,
we obtain

D = 27 (30202 -+ 6 byubebhy — be2by? — 4 bobs® — 4 by7s).

In the discussion of the cubic equation we shall frequently
make use of the discriminant.
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Ex. 1. Find the equation of squared differences of the roots of the
cubic X’ 4+ 322 —-3xr—-1=0.

Heve bg=1, by=1, ba=— 1, by=—1. Hence ¢ =4 and Il =-—2,
The required equation is 2% —- 36 22 4+ 324 2 — 432 =0,

Ex. 2. The cubic in the previous example is a reciprocal equation,
Solve it, find the values of the squared differences of the roots, and see
whether they are really roots of the equation of squared differences.

The reciprocal equation of the standard form, obtamed from the above,
is @2 +42 +1=0. The roots of the given cubic are 1, — 2 + V3 therr
squared differences are 12, 12 4 6v3. Dividing the left member of the
transformed cubic by z — 12, thus,

1-36+324—432 (12
+ 12 — 288 + 432
—24+ 34+ 0

we see, by § 4, that 12 is a root. The depressed equation, 22—24 2+436=0,
18 satisfied by z = 12 4+ 6 V3.

Ex. 3. Find the equation of squared differences of the roots of the
cubic 28 + 22— — 1 =0,

The required equation 1s 2% — 8224 162 =0 What inference can be
drawn with respect to the roots of the given cubic from the fact that z =0
is a root of the transformed cubic ?

Ex. 4. Find the equation of the squared differences of the roots of
»4+3x42=0. Ans. 23 4+ 1822 + 812 4+ 216 = 0,

It is important to observe that, since the last term + 216 is positive,
and is equal to minus the product of the roots, at least one of the three
values of z must be negative. Now if the roots of the given cubic are all
real, then the squares of their differences must be positive, and all the
values of z must be positive. A negative value of z can be obtained only
when the given cubic has two imaginary roots. Hence u3 + 3 +2=10
has two imaginary roots. Verify this by Descartes’ Rule of Signs.

Ex. 5. Find the equation of the squared differences of the roots of
23 4+ 6224 65x—16 =0,

The process is easier if we first transform the cubic to another whose
second term is wanting.

36. Criteria of the Nature of the Roots of the Cubic. We pro-
ed to diseuss the nature of the roots of the general cubie T in
§ 35, with the help of the “equation of squared differences” V.



42 THEORY OF EQUATIONS

To begin with, observe that, since the absolute term in V is
equal to minus the product of the three roots of V, at least one
of the three roots must be negative when the absclute term is
positive. But a negative root cannot occeur in V, if all the roots
in T are real. A negative result can be obtained only when the
number that is being squared is imaginary. Hence, a negative
root in 'V indicates the presence of two imaginary roots in 1.

Again, when all the roots in 'V are positive, then 1 cannot have
imaginary roots. For, the square of the difference of two con-
jugate imaginary roots is always real and negative, making the
absolute term in V positive and one of its roots negative.

Rewl Roots. Equation 1 has real roots when G*+4 H* is
negative. Ior, to make this negative, H must be negative and
4 H? must be munerically greater than G That being the
case, the signs of the coefticients in V are + — 4+ —. Hence,
by Descartes’ Rule of Signs, V can have no negative roots
Since all these roots are real, they must be positive. Conse-
quently, equation I has all its roots real.

Complex Roots. Equation T has two complex roots when
G% 44 H® is positive. For, when this is positive, one of the
roots in V is negative.

Two Equal Roots. Equation I has two equal roots when
G? +4 H*=0. TFor, in this case, z=( is a root of V, showing
that two of the roots in 1 have zero for their difference. Thus.
the vanishing of the discriminant indicates equal roots.

Three Equal Roots. Equation I has three equal roots when
H=0and @=0. TFor, Vreduces to2*=0. Since all the roots
of V are zero, all the roots of T must be equal to one another.

Ex. 1. Prove that equation V in § 35 cannot have three equal roots
different from zero.

Ex. 2. If two roots in V are equal to each other, but not zero, what
inference can be drawn about the roots of I?

Ex. 8. Compute the discriminant of 23 ~ G224+ 32 — 4 =0.

Ex. 4. ¥Find the discrimmant of 43 +8x2+524+1=0. What
inference can be drawn from 1its value ?



CHAPTER III
ACATION OF THE ROOTS OF AN EQUATION

37. In this chapter we shall deduce theorems giving limits
between which all the real roots of an equation with real coeffi-
cients lie. We shall also derive theorems which enable us to
separate from each other all the distinct real roots, and to
ascertain the exact number and location of the real roots.

38. An Upper Limit. If in the equation f(x) =0 the coefficient
of x* is unity, then the numerically yreutest negutive coefficient,
increased by one, is an wpper limit of the positive roots of the
equation.

Any positive value of & makes f(«) >0, {f it makes

a"—p@ 42?4 - +1)>0,
or, " —p - " —1 >0,
x—1
where p is the numerical value of the greatest negative coeffi-
cient. All the more is f(x) >0, if a positive value of 2 makes

@—1)—pZ _‘11>0,

or, (:u' 1)( - M_-) >0.

But this last expression is always >0, or positive, if p<az—1;
that is, if x> p+1.

Since any real value of «x, greater than p+1, makes f(x) >0,
every real value of 2 which makes f(x) equal to zero must be
equal to or less than p+1. Hence p+1 is an npper limit of
the real positive roots of f(2)=0.

43
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39. Another Upper Limit. [f the numerical value of ewch
negutive coefficient is divided by the sum of all the positive coeffi-
cients which precede it, the greutest of the fractions thus formed,
tncreased by one, 18 an upper limit of the positive roots of f(x) = 0.

Let (&) = ap” + a2 — @™ + a2" 3 — a2t + .. +a,,
in which the coeflicients of a"~? and a"~* are negative. Since

@ = =(@—=1) " '+ - +2+1),
we have a"=(x—1)(a"™ '+ *+ ... +2+1)+1,

If we transform all the positive terms in f(z) by means of
this formula, we obtain j(2) =
ay@—1)a 1 age—1)a" 24 ay(w—1)2" > ay(—1)2* 44+ 4 a,

+a,(x— D" a,(— D)2 (e —D)a" 4o 4
__azwn-—2
Fay(e—1)a" 4+ 4-ay
—amtt
+ oo,

If in this expression « is assigned a positive value large
enough to make the sum of the coeflicients in each column
of terms positive, then f(x) will be positive for that value
of @ The coefficients in the first and third column are posi-
tive, if £>1. The same is true of all other columms which
are free of negative coefficients.

The sum of the coefficients in the second column, contain-
ing the negative coefficient — ay, is positive if @ is large enough

to make aw@—1)+a,(z—1)—a;>0.
a
Wh 2 _ 41,
ence w>au+tlx+

Similarly, we obtain from the fourth column, if

a@—1D)+a@—-1)+ae@—1)—~a,>0,
@,

the inequalit P> e
uattty v U+ a+ag

+1.
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The same reasoning applies to any column containing a
negative coefficient. Hence, if we take @ equal to, or greater
than, the greatest of the expressions thus obtained, then the
polynomial f(x) will be positive, and the greatest expression
constitutes an upper hmit of the positive roots.

Ex. 1. Find upper hmits of the positive roots of
X —-8x3 41822 —-10x +-56=0.
By § 38, 17 is an upper limit.

By § 39, the fractional expressions are %+ 1 ana 19

— 41,
1418

Hence 9 is an upper limit. The largest positive root is 5. Thus § 39
gives here a closer limit than § 38. The limit obtained from § 38 is never
smaller than that obtained from § 39, and usually not so small.

Ex. 2. Find superior limits, by § 38 and by § 39, of
(1) 2t +4522—40x 4+ 84 =0.
) 3xt+6x3+1222—-4x—10=0.
3) 2254+ 102t —-T7253 + 522+ 156 -39 =0.
“4) 223 — 5224 2+4+10=0.

40. Lower Limits. A number not greater than any of the
positive roots of an equation constitutes a- lower or inferior
limit. Such a limit may be found by transforming the given
equation into another whose roots are the reciprocals of the
roots of the given equation. By § 30, this can be done by

writing ¥ = v In the transformed equation we find a superior

limit of ; the reciprocal of y will be an inferior limit of .

41. Limits of Negative Roots. Substitute in the given equa-
tion — y for x, and then find the superior and inferior limits
of the positive roots of the transformed equation.

Ex. 1. Find limits of the positive and of the negative roots of
- 19xt-232—-T7T=0,
By § 38 and § 39 the upper limits are 24. Writing 1 for z, we get
Y
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Tyt 4+ 233 +19y2—1=0. The upper limits of .13 roots of this equation
are § and 3§; hence the lower limits of the positive roots of the given
equation are § and $3.

Writing — y for z, we obtain y* —19»2 4+ 23y — 7 =0. We obtain 20
as a superior limit and 45 as an inferior hmit of the positive values of ».
Hence the negative roots of the given equation lie between — ;% and —20,
and all the roots lie between 24 and —20.

To convey an 1dea of how the limits compare with the actual values of
x, we give the roots: 4.8077 ..., — 3.6331 ..., —.7124 ..., — .H522 ++.,

Ex. 2. Between what limits do the real roots of x5 4 5zt + 23 — 16 x2
~-20x — 16 =0 lie?

By § 38 and § 41, the roots lie between 21 and —21. By § 39 and § 41,
the roots lie between 2% and —6. The roots ave 2, —2, —4, }(~1+ VvV —=3).

Ex. 3. Between what limits are the real roots of
(D) x*t+ 403 —22—- 162 —-12=0,
2) 2t =3P+ 3x—-1=0,
b)) -1t + 17034+ 1722 - 112 4+1=0?

2. Change of Sign of f(x). If two rewl numbers « wnd b, when
substituted for x in f(x), give to f(x) contrary signs, an odd nwm-
ber of roots of the equation f(x) =0 must lie between « and b ; if
they give to f(x) the same sign, either no root or un even number
of roots must lie betiween a and b.

Since f(z) varies continuously with x (§ 25), and f(») changes
sign in going from f(«) to f(b), passing through all the inter-
mediate values, it follows that f(x) must pass through the value
zero. That is, there is some real value of @, between @ and b,
which causes f () to vanish and is a root of the equation f(x)=0.
But f(x), in passing from f(a) to (), may go through zero
nore than once. When f(a) and f(») have opposite signs, f(x)
must pass through zero an odd number of times. Since a real
root corresponds to a point where the graph of f(«) crosses the
axis of @, the statement just made simply means that, to pass
from a point on one side of the axis to a point on the other
side of it, we must cross the axis an odd number of times.
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Similarly, if f(a)' &ind f(b) have like signs, they represent
two points on the same side of the axis. To pass from one
pomt to the other, the graph either does not cross the axis at
all, or it crosses the axis an even number of times. Hence, if
S(a) and f(b) have like signs, there are either no roots or an
even number of roots between « and b.

Ex.1 Locate the roots of «t + 423 — 22 — 1606 — 11 = 0.

From Descartes’ Rule of Signs (§ 11) we see that there cannot be more
than one positive root and not more than three negative roots. We find
J(O)=-11 S(=D=+1
F()=-—23. f(=2)=+1

J@2)=+1 S(—=27)=- 6.
S(=D=+1
We see that the positive root lies between 1 and 2, that the negative
roots lie respectively be.ween 0 and — 1, — 2 and — 2.7, — 2.7 and — 3.

Ex. 2. Locatetherootsof 26 — 5wt + 903 — 922+ b2 —-1=0.
By Descartes’ Rule of Signs we see that there are no negative roots.
We obtain 6 as a supertor limit of the positive roots. We have

f(0) =—1. f(2)=-3.
f(.5)=+.09. f)=+ 14.
S =0 S(6) =+ 2045.

We see that 1 is a root; that there is a root between 0 and .5, also
between 2 and 3. ‘T'wo roots are still unaccounted for, they are imagmary,
as can be ascertained by Sturin’s Theorem, to be given later.

Ex. 3. Locate the real roots of

M x¥- 322462 —-71 =0,
2) e+ 208 — 4122 - 12724 301 =0,
3) 2 —-16x34+86x%— 1700 +110 =0,

43. Maximum and Minimum Values of f(x). _lny wvalue of w
which renders f(x) « maximum or a minimum is & root of the
derived function of f'(x).

First. Let a be a value wliich makes f(x) a minimum.
Since f(a) is a minimum, it is less than both f(« —7%) and
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J(a + k), where % is a small increment. By Taylor’s Theorem
(8 18) we have

f((l/ — Il) —f((l,) = — f'((‘l,) - h + f”(r(,) . l‘i_: — ey
S@H 1) = f@) =L@ Tt S 1) e

Since the left members of these equations are both positive,
the right members must be positive too. Now h may be taken
so small that the sign of the right member of each equation is
the same as the sign of the first term in the right member.
Ilence —f'(a) -k and 4+ f'(«) - b must both be of the same
sign. But this is possible only when f’(«) = 0; that is, when
« s @ root of the first derivative. Since in each equation the
right member is positive, and the first term in that member is
zero, it follows that f''(v) is positive.

Second. Suppose that x = « makes f(x) a maximum. Then
the left members of the above equations are both negative.
That the right members may be both negative, for very small
values of %, it is necessary not only that f'(«) should vanish as
before, but that 1" («) be a negative value.

44. Rule for Maxima and Minima. The proof of the preced-
ing article suggests the following rule for finding maximum
and minimum values of f(x): Solre the equation f'(x)=0.
Each of its roots venders f(x) « maximum or minimum, accord-
ing as it makes f'' (@) nequtive or positive.

Ex. 1. Find the maxima and minima of f(x) =2a% + 1522 + 36 2+ 5.

Here J'(£) =6+ 30 x + 36,
and F1(x) = 12 x 4 80.

S (x) =0givesz =— 2, or —3. We find that f// (— 2) is positive and

J'"(—8) is negative. Hence f(—2) is a minimum and f(-—3) is a
maximum,

Ex. 2. Find the maximum and minimum values of f(x) =2 a3 4 3 r2
~36x + 705,
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45. Rolle's Theorem. DBelween tio suceessive real roots a and
b of the equation f(x) =) there lies at least one real root of the
equution f'(r) =0.

Let the curve in this figure be the graph of f(x) =0. The
points A, B, C, D, E, F, ( represent maximum and minimum
values of f(x); the pomts M, .V, I’ represent real voots of 1 (x)=0.
Between the two roots .M and N the curve bends down and

F

>

then up. Between the real root at N and the double root at
P the curve goes up, down, up, and finally down. Evidently,
between each pair of distinet successive real roots there must
be at least one maximum or minimum value of f(z).

But each maximum or minimum point represents a value of
@ which is a root of the equation f'(x)=0 (§ 44). Hence
Rolle’s Theorem is proved.

From the examination of the ficure we see that two successive
roots of the derived function may not comprise between them
any real root of f(w) = 0, as in case of the roots represented by
D and E; they may comprise one distinel root, as in case of
the roots at .1 and B, B and (K and F, but they can never
comprise more than one root of f(a) = 0.

E
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Ex. 1. The equation 2t — 1223 + 47 22 — 722 + 36 = 0 has the roots
1, 2, 3, 6. Locate the roots of the equation 2x3 — 18x¢ 4+ 47x — 36 =0
by Rolle’s Theorem.

46. The determination of the number of real roots and of
complex roots of an equation is a problem which has engaged
the attention of several great mathematicians. Researches on
this subject have been made by Descartes, Newton, Waring,
Budan, Fourier, Sylvester, Sturm, and some more recent mathe-
maticians. Nearly all of the theorems and rules are defective in
not giving the exact number of real roots or of imaginary roots,
but of giving merely a superior lunit to this number. Des-
cartes’ Rule of Signs, for instance, gives only superior limits
for the number of positive and negative roots.

The theorem of Sturmn is free from tlis blemish. Tt tells
always the exact number of real roots within a given interval
and the exact number of imaginary roots of an equation. Be-
cause of this unfailing certainty we select Sturm’s Theorem to
the exclusion of the theorems of Newton, Sylvester, Budan, and
Fourier, even thongh it is laborious in its application. In prac-
tice, the nature and situation of the roots are more usually found,
when possible, by the theorem of § 42, combined with Des-
cartes’ Rule of Signs and the theorems on the superior and
inferior limits of the roots (§§ 38-41), Sturm’s Theorem being
used only when the other theorems fail to give us the desired
information.

47. Sturm’s Functions. Let f(x) =0 be an equation whigh
has no equal roots. Tind the first derived function of f(x),
namely f'(#). Then proceed with the process of finding the
highest common factor of f(x) and f'(x), with this modification,
that the sign of each remainder be changed before it is used as a
divisor. Continue the process until a remainder is reached
which does not contain 2, and change the sign of that also. We
designate the several remainders with their signs changed, by



LOCATION OF THE ROOTS OF AN EQUATION 51

Si(®), fi(x), -+, fi(®), and call them auxiliary functions. The

functions f(x), f'(®), £2(®), f5(), -, fu(¥) ave called Sturm’s
Junctions.
————

48. Sturm’s Theorem. If f(x) =0 has no equal roots, let
any two real quantities « and b be substituted for x in Sturm’s
Junctions, then the difference between the number of wvariations
of sign in the series when a is substituted for x and the number
when b is snbstituted for & expresses the number of real roots of
J(x) =0 between « and b.

When f(x)=0 has multiple roots, the difference between. the
number of variutions of sign when a and b are substituted for x
in the series, f(w), f'(%), f,(£), +++, [, (&), where f,(2) is the highest
common fuctor of f(x) wd f'(x), is equal to the number of real
roots between a and b, euch mnltiple root counting only once.

First Case. No Equal Roots. [In § 21 the operation of find-
ing the highest common factor between f(2) and f'(x) was used
for finding multiple roots of the equation f(x)=0. If there is
no highest common factor involving @, there are no multiple
roots, and we are able to find all of the » + 1 Sturm’s functions.
The last function, f,(z), is numerical and not zero.

From the mode of formation of Sturm’s functions we obtain
the following equations, in which ¢, gy +-+, ¢, 1 are the succes-
sive quotients in the process:

S(@)=q.f" (*) = fo(%),
J'(@)= @1 (%) — f(%),
Jo(®) = ¢:1(®) — f(2), I

.fn—!(x) = qn. lfn-—l(x) —'j:t(x)'

(1) Two eonsecutive auxiliary functions cannot vanish for
the same walue of x. For, if (@) and fy(x) vanish together
«when @ =e¢, each would contain the factor # —c. From the
second equation it would follow that 2 — ¢ is a factor of f’ (),
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and from the first equation that v —c¢ is a factor of f(x).
Hence f(x) and f'(x) would have a common factor and (§ 21)
JS(x) would have equal roots, which is contrary to hypothesis.

(2) When any auxiliary function vanishes the two adjacent
functions have opposite signs. Suppose, for example, that
JSy(®) is zero for z=c. By (1), fy(*) and f(2) cannot be zero
when f;(x) is zero. The third equation, above, then reduces
to fy(x) = — fi(¥), showing that fy() and f(x) have contrary
signs.

(3) When a, in passing from the value « to the value b
passes through a value which makes an auxiliary function
vanigh, Sturm’s functions neither gain nor lose variations in
sign. For, suppose that, for »=c¢, f,(x) =0, then f, (¢) and
Jr1(6) have opposite signs.  As f,(x) passes through zero, it
changes its sign from 4 to —, or from — to 4. Thus the
three funetions f,_,(2), f,(2), f, 1(¥) will have one variation in
sign just before x=¢ and also just after x=c¢. TIn other
words, no matter which sign is placed between two unlike
signs, we have only one variation. Ilence no variation is
either gained or lost among Sturm's functions.

(4) When =, in passing from the value a to the value b,
assumes a value which is a root of the equation f(x) =0, then
Sturm’s functions lose one variation in sign. By Taylor’s
Theorem, § 18,

fle— Ry —f(c) =— hf'(e) + 1%2 ey — o

Fe+ 1) —F(e) =+17') + Ef"(C) T

For very small values of & the sign of the right member of
each expansion will be the same as the sign of its first term.
If f(x) vanishes for w=¢, so that f(¢) =0, and if f'(c) s posi-
tive, f(c— k) is negative and f(c + k) is positive at is, the
aigns of f(x) and f'(x) will be — + just before 2 =r¢, and + 4
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or numerical factor, as is done in the process of finding the
H. C. F., provided that the factor is positive. TParticular care
must be taken not to change any of the signs, except of course
the sign of a remainder, just before it is used as a divisor in the
next operation.

If we wish to ascertain simply the total number of real roots,
without fixing their location, we need only substitute in the
Sturmian functions the values x= — w0 and = + «© and
observe the difference in the number of variations of sign.

Ex. 1. Apply Sturm’s Theorem to 23 —x2 — 102+ 1 =0,
Here S(x) =8x*—22 -10,
So(@) =021+ 1,
fa(x) = 38313,
We give the signs of the Sturm’s functions for the indicated values of «:
* JF@ S'@ fl®)  Su(x)
© + +
4 +
3 -
2
1
0
-2
-3

-

|
|+ +

[ +4+++++

I+ + 1

A4+ + A+t

+

Since x =« gives no variations and x = —o gives three variations, all
three roots are real. The roots lie between 3 and 4, 0 and 1, — 2 and — 3.

Ex. 2. Apply Sturm’s Theorem to 5 — 62t + 923 — 922+ 62 —1=0,
the equation given in Ex. 2, § 42.
Here fl(x) =62t — 2028 + 27 2% — 182 + 5,
Sa(2) = 28—z,
Js(x) = — 3222 + 882 — 5,
Ji(x) = — 26z 419,
Js(x) = — 192,

When z =w , Sturm’s functions give one variation ; when & = —e0; they
give four. Hence there are three real and two imaginary roots.
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Ex 3 Apply Sturm’s Theoremto 225+ 72t 8234222 -2 —1=0.
We find S (xr) =10xt + 2803 4 2422 4 42 —2,
So(x) =23 4+ 3xt4+ 32+ 1.
Here fu(r) is found to be the II. C. F. of f(«) and f/(+); hence — lisa
quadruple root. For x = 4+, the functions f(x), 7/(r), fa(x) yield the
signs + + +; for » = —w they yield — 4+ —, Hence there are two
distinet real roots, and all the roots are real,

Ex. 4. Show that all the roots of 2t 4+ a2 —22—~2x+4+4=0 are
imaginary.
Ex. 5. Required the number and situation of the real roots of
b 22t - 1Tt + B - 16 =0,
) #4112 1020+ 181 =0,
x5 - 363 + 7222 —3Tw+72=0.

50. Nature of the Roots of the Quartic. In the study of the
nature of the roots of the cubic equation we began in § 35 by
deducing the “equation of squared differences of the roots of
the cabic.” Then, in § 36, we used this transformed equation
in the discussion of the roots of the given cubic. The sume
mode of procedure might be adopted in the study of the roots
of the quartic equation. But the formation of the “equation
of squared differences of the roots” is laborious, and we prefer
to begin the discussion by applying Sturm’s Theorem to the
quartic with its second term removed.

If we transform the general quartic

byt +4 b2+ 6 b2 +4 b 4+ b, =0, I
into a new equation, deprived of its second term and with coef-
ficients integgal in form, we obtain, as in § 34,

¥ +6 Hf+4 Qy+ b T—3 H: =0, II
where y=bx+0,

H=bb,— b2,
Q =00 — 30hb,+ 208,
I=byb,—4 by + 3 b2
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Representing the left member of equation II by f(y), we get

{/
D yprsmy+q,

and, by division,
L) =—3 Iy —3 Gy — b T+ 3 H-
Before dividing }f'(y) by fi(y), multiply ! f(y) by the posi-

tive factor 3 H>. We obtain, after dividing the remainder

by by’
¥ % Fo) = HI—-3 =12 1) L, — 1.
0

We find it convenient to let b 711 — G — 4 [P = b3J.
Then L) =BbyJ —2 HI)y— G

Now multiply fi(y) by the positive factor (3 b/ — 2 HI)?,
and we obtain, after division, a remainder which, with its sign
changed, is equal to

(BT — 3 (3 by] — 2 HIY + 3 G2 (3 byS — HT)
= bR — 2T b2 + T,
where T= (90 =12 bPHIPT 436 Do HP LT+ 9 by 1T )
+ B UHIL— 3 GPI*H — 12 IT'TF)
=8 b LJ(3 b T —4 b2 I412 II°+3 G*)+3 bt 1*HJ
=3 b IJ(3 b S — 3 bHI 12 II* + 3 G7)
=3 0o LT (3 by’J — 3 b*T) =0.
If the remainder is divided by the positive factor bEH?, we
obtain fiy) =P —27 T
We have now all of Sturm’s functions of equation IT.
(1) Al roots real. If (I*—27J% >0, (3 heJ —2 HI)>0,
and H<0; then, for y = o0, the signs of Sturm’s functions are
++++ +; for y=—oo the signs are + —+ —+. The

excess of variations in the lattér case is four; hence all the
roots are real.
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@) Al roots imaginary. If I3 —27 .J%*>0, and if H>O0 or
else (3 byJ — 2 HI) <0, then the number of variations in signs
for y = — o0 is the same as for y =o0; hence there are no real
roots.

(8) Two real roots. If I®—27 J*< 0, then, no matter what
signs H and (3 0,/ —2 IIT) may have, we get always a dif-
ference of two variations for y = and = —oo; hence there
are two real roots and two imaginary roots.

(4) Equal roots. When I*—27 J*=0, it is evident from the
theory of the H. C. I. that there are equal roots. If f(y) is the
only one of Sturm’s functions which vanishes identically, then
Ji(y) is the H. C. F. in % and there are two roots equal to each
other. If fi(y) is identically zero, which happens when =0
and J=0, or when G'=0 and 3 b,J = 2 I, then three roots are
equal to each other or there are two distinet pairs of double
roots. That is, if /=0 and J=0, we get from the equation
defining J the relation G*4-1 II* = 0, which makes f,(y) a per-
fect square. Hence three roots are equal. When =0 and
3 hoJ =2 H1, it follows that b,° T =12 H? and f,(y) is readily seen
to be composed of two unequal factors in y, indicating the ex-
istence of two distinet pairs of equal roots. If we have I=0,
J =0, and H= 0, then it follows that ¢ =0 and f,(y) = 0; hence
JS'(x) =37 and all the roots are equal.

This discussion of equation TI applies also to equation T,
representing the general quartic; for, since y = b + b, the
values of = are real, imaginary, or multiple values, according
as the values of y are real, imaginary, or multiple values.

Ex. 1. Compute the values of II, G, I, J for the equation

2t —4a34+060r2—-82x+1=0.
Then discuss the nature of the roots.

Ex. 2. Show that in equation IT a double root is equal to GI -

(8 by J—2 HT),atriple root is equal to — ¢ %, a quadruple root is equal to 0.

Ex. 3. Apply Sturm’s Theorem to the cubic y® + 3 Hy + G =0, fnd
verify the results of § 36.
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51. Discriminant of the Quartic. The expression I? — 27.,J2
played an important r6le in the discussion of the nature of the
roots of the quartic. We shall prove that, when multiplied by
the constant 256 b,7%, it is equal to the product of the squares
of the differences of the roots. This product is called the
discriminant of the quartie.

Let I* — 27 J*=R. When R vanishes, the quartic was seen
to have equal roots. Hence (@ —«,) must be a factor of R.
Since R is a constant for an equation with constant coefficients,
it is unaltered when («— ) is changed to (¢, — «). Hence
(¢ — &y)® must be a factor of B. This reasoning holds for the
difference of every two roots. Ience

(o0 — w)*(e0 — ap)? -+ (0ty — @)’ 1

is a factor of B. Remembering that by, by, by b, are symmetric
functions of the roots, involving the roots to the degrees one,
two, three, four, respectively, we see on examining the expres-
sion for R, that it cannot involve products of roots of higher
degree than 12. But 12 is also the degree of the terms in
the product 1. TIlence there are no other factors in R which
involve the roots. Therefore, R differs from the product I by
some numerical factor only. This factor can be easily found
by using any simple quartic which has distinet roots, say
bt —1=0. Here B=— b, the product I is — 256 0,7, Hence
(00— aty) (o6 — ) (06 — aeg)*(oty — 0t0)*(0ty — tg)* (e — 023)*
256

= bE(I"’—27J2)=D,
o

where D is the discriminant,



CHAPTER 1V

APPROXIMATION TO THE ROOTS OF NUMERICAL
EQUATIONS

52. Solution by Radicals and by Approximation. The modern
theory of equations is the outgrowth of attempts made during
past centuries to solve equations arising in the consideration
of problems in pure and apphed mathematics. The subject of
the solution of equations resolves itself mto two quite distinet
parts: Firestly, the solution of numerical equations whose
coefficients are given numbers, by some method of approxima-
tion to the true value of the roots; secondly, the solution of
equations whose coefficients are either particular numbers or
independent variables, in such a way as to yield accnrate expres-
sions for the values of the roots in terms of the coefficients —
such expressions to involve no other processes than addition,
subtraction, multiplication, division, and the extraction of roots
of any orders. The latter process is called the algebraic solution
of equations. The former is of importance to the practical
computer, the latter is of special interest to the pure mathema-
tician. In the former each root may be determined separately ;
in the latter a general expression must be found which repre-
sents all the roots indifferently.

In the algebraic solution of equations no great difficulty
presents itself as long as the degree of the equation does not
exceed four. But in spite of persistent attempts by many of
the ablest mathematicians, no algebraic solution of the general
equation of the fifth or a higher degree has ever been given.
In faet, we shall be able to show conclusively that no such
solution is possible; that is, no solution can be given in which

60
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the roots are expressed in terms of the coefficients by means
of radical signs or fractional exponents. In the quadratic
2 4ax 4+ b =0 we know that £ =} (—« £ V@® —4b). In the
cubic we shall see that x can be similarly expressed in termns
of its coefficients by mdicating the extraction of certain square
roots and cube roots. The same remark applies to the
quartic. But in the general quintic « refuses to submit itself
to this mode of treatment. A general solution of the quintic
has been given, but the solution involves elliptic integrals
and is, therefore, not algebraic, but transcendental.

The problem of the solution of numerical equations by
approximation to a certain number of decimal places is much
easier. Not only are we able to determine, with comnparative
ease, the real roots of equations of lower degrees, but also of
the quintic and of higher equations.

Methods of approximation to the roots of numerical equa-
tions have been devised by several mathematicians — Newton,
Lagrange, Budan, Fourier, and others. But the best practical
method is that given in 1819 by William (George Horner.
We shall confine ourselves to the exposition of his method
and that of Newton.

53. Commensurable and Incommensurable Roots. A real root
of a numerical equation is said to be commensurable when it is
an integer or a rational fraction; it is said to be incommensur-
able when it involves an interminable decimal which is not a re-
peating decimal. Since a repeating decimal can be expressed
as a rational fraction, a root in that form is commensurable.

54. Fractional Roots. A rational fraction connot be a root of
an equation with_ inteyral coefficients, the coeflicient of x* being
unity.

If possible, let %, h and %k being integers and % a fraction

reduced to its lowest terms, be a root of the equation
" 4 @2 a4, = 0.
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Writing % for z, we'get

h\" h n-—-1 h n—2
@l o) s

Multiplying by £*~! and transposing all integral terms,
%: — I — W — e — @ L

n
This equation is impossible, since the fraction ’-;;, which is in
its lowest terms, cannot be equal to an integral number.
h . . .
Hence, % cannot be a root of the given equation.

55. Integral Roots. Since the equation with integral
coefficients, & 4 @@ 4o q, =0,

cannot have rational fractional roots, and since @, is numerically
equal to the product of all the roots (§ 13), it is evident that all
commensurable roots are exact divisors of a, and may be found
by testing the factors of a,. By § 4 a factor ¢ is a root, if
S (@) is divisible by @ — ¢ without a remainder.

If the coefficient of 2" is not unity, but a, then we may
divide through by «, and transform the equation into another
whose roots are those of the given equation multiplied by a,
(§ 29). In the new equation the coefficient of 2" is unity and
all the other coefficients are integral. Hence, all its commen-
surable roots are integral.

Ex. 1. Find the commensurable roots of % — 72 — 6 =0,

The commensurable roots must be found among the values 4- 1, -t 2,
+ 3, + 6, which are all factors of — 6. By Descartes’ Rule of Signs we
see that there is only one positive root. By substitution or by synthetic
division we find that + 1 is not a root, that — 1 is a root. We may now
either depress the degree of the equation by dividing by z + 1 and then
solve the resulting quadratic, or we may try the other factors. We obtain
— 2 and + 3 as the values of the other roots.

Ex. 2. Find the commensurable roots of
223 —92 —2 —-3=0.
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Dividing the left member by 2 and multiplying the roots by 2, we
obtain ¥ — 22 —2x—12=0.
It is found that 4 3 is the only commensurable root of this equation.
Hence, + 3 1s the only commensurable root of the given equation.
Ex. 3. Find all the commensurable roots of
44024 6x+4+3=0.
2t —3ud — 2202 -39 — 21 =0,
W —-10xt 4+ 172 —2—-7=0,
25— 1828 4 343 —262° — 182 4 22 =0,
623 —25u24+3244=0.
40342022 —-23246=0.

56. Horner's Method. This method may be used advanta-
geously for finding not only incommensurable roots, but also
commensurable roots when the process of § 55 is inconvenient.

In the application of Horner’s method we must know the
JSirst significant figure of the root, to start with. The first digit
may be found by the process indicated in § 42 or by Sturm’s
Theorem.

Horner’s method consists of successive transformations of an
equation. Each transformation diminishes the root by a certain
amount. If the required root is 2.24004, then the root is
diminished successively by 2, .2, .04, .00004. The mode of
effecting these transformations, by synthetic division, was
explained in § 32. The method will be readily understood by
the study of the following example:

Ex. 1. The equation 23 —2—9=0, I
has a root between 2 and 3, for f(2)=—3 and f(3)=+ 156. The first

figure of the root is thercfore 2. Transforming the equation so that the
roots of the new equation will be smaller by 2, we obtain

1 40 -1 -9 |2
+2 +4 16
Y2 +3 =
+2  +8
¥4 Fu
+2

+ 6
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Since the roots of the transformed equation
W46224112~-3=0 1I

are equal to the roots of equation I less 2, equation II has a root between
0 and 1. This root being less than unity, x2 and x3 are ecach less than x.
Neglecting 23 and 6 22, we obtain an approximate value for x from

1l —-3=0, orzx=.2
Transforming II so as to diminish the roots by .2, we get
28 4+ 6.6 22 4- 13.52 2 — .5562 = 0. 1I1
Neglecting 28 + 6.6 2, we find an approximate value for x in equation
MI from .
13.62 x — .652 = 0, or 2 = .04.
Diminishing the roots of III by the value .04, we have
28 4+ 6.72 22 + 14.0528 2 — .0006706 = 0. v

From 14.0528  — .000676 = 0, we get x = .00004.

The root of equation I whose first figure 1s 2 has now been diminished
by 2, .2, .04, .00004. Ilence the root is approximately 2.24004 The su--
cessive transformations may be conveniently and compactly represented
as follows:

1 +0 -1 — 92 24004
-2 4 6
2 3 =3
2 8 2.448
4 11 — 552
2 ae! 551424
6 12.24 — 000576
2 1.28
6.2 13.52
2 2650
6.4 13.7856
2 2672
6.6 14.0528
04
6.64
04
6.68
04
6.72
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The broken lines indicate the conclusion of the successive transforma-
tions. The numbers immediately below a broken line are the coefficients
of the transformed equation. Thus, the second transformed equation is
seen at once to be 23 + 6.0 %% 4+ 13.52 x — .562 = 0.

Ex. 2. In the equation x3 — 46.6 22 — 44.6x — 142.8 = 0 we find that
J(40)=—, f(50)=+. Hence there is a root between 40 and 50, ‘I'o find
this root, diminish the roots by 40, then find thé first figure of the root in
the transformed equation and proceed by Horner’s method as already
explained. The work is as follows:

1 —466 — 446 — 142.8 | 47.8
40 — 264 — 12344
—6.6 —308.6 — 12486.8
40 1336 111314
33.4 1027.4 — 18564
_ 562.8 1365.4
1690.2
6118
2202.0
57
2260

In the first transformed equation 23 + 73.4 22 4 1027 4 2 — 12486.8 = 0
we only know that the value of « is less than 10; hence the method of
Ex. 1, where we ignored the terms containing x* and «2, is not applicable.
Since in this transformed equation f(7)=— and f(8)=+, we know that
7 is the desired digit.

In the second transformed equation we know that z lies between 0 and
1. Hence we find the first digit of 2 from the equation 2202 2—13556.4=0,

Since in the third transformation there 18 no remainder, we know by
§ 3 that .6 is a root of 23 - 94.4 22 4 2202 2 — 1365.4 = 0 and that 47.6 is a
comanensurable root of the given equation, '

When the fractional part of the root is being found and the
values of the coefficients a? »2, ete., are sufficiently small, it will
be noticed that the last two terms of each transformed equation
occurring in Horner’s process have opposite signs. This is as it

F
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should be; for if the two terms had like signs, the value of « in
the transformed equation would be negative, showing that the
last digit in the root of the original equation had been taken too
large. For instance, if in Ex. 1 the first decimal had, by mis-
take, been taken as 3, instead of 2, then the second trans-
formed equation would have been a* 4 6.9 2* + 14.87 2 + .867 = 0.
The approximate value of 2 in this equation is — .05, show-
ing that in diminishing the roots by .3 we took away too
much.

If, by mistake, a digit is taken too small, the error will show
itself in the next step. Suppose that in Ex. 1 the first deci-
mal had been taken to be .1, then the second transformed
equation would have been 2* + 6.3.* +12.232 — 1.839 = 0.
From 12.23 v — 1.839 =0 we get approximately a=.15. This
changes .1 into .25, and thus discloses an error in the estimate
of the first decimal.

To find the value of a negative root by Horner’s method, we
need only transform the given equation by writing —« for »
and then proceed as before.

Ex. 1. Find the real roots of :
(1) 40 —3xt—-2224+42—-10=0.
@) b+ 3t —at—424+5=0.
B) Tt +323 ~bat+ 42 —-6=0.
(4) o7 — 28 + x5 4+ 2t — 10 = 0.
%) #*—4x—-2=0.

57. Newton’s Method of Approximation. This method is not
as convenient in the solution of numerical equations involving
algebraic functions as is the method of Horner, but it has the
advantage of being applicable to numerical equations involv-
ing transcendental functions. For instance, Newton’s method
can be used in finding 2 in @ — sine = 2.

Let f(x) = 0 be the given equation. Suppose that we know a
quantity a which differs from one of the values of by the small
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quantity k. Then we have » =a + k. By Taylor’s Theorem
F@) =S(@+h) =F0) + hf'(@) +E—f£f"(u) .

Since % i1s small, we get, by neglecting higher powers of %, an
approximate value of A from the equation f(a) + hf'(«) =0,
namely, h = — j—i’%)l We have approximately @ =a — }-’%%
Letting this new approximation to the value of x be repre-
sented by b, we may repeat the above process and secure a
still closer approximation, and so on.

Ex. 1. Solve x — sinx =2,

The angle z, measured m radians, must lie between 2 and 3. Take
=25  r(q)=.5—sin25=.5—sin143° 14/ = — .007.

Fa) =1— cos 2.5 = 1.801.
Hence h =.0639, b = a+ h = 2.6639.
A second a.ppr(;ximation gives us
F(b) =— 00054, f'(h) = 1.8322, k= .0002047.

Hence =0+ h = 2.664195.

58. Complex Roots of Numerical Equations. Recently methods
for approximating to the complex as well as the real roots of
numerical equations have been perfected.* The exposition of
these methods is too long for a work like this.

* See Emory McClintock, ¢ A Method for Calculating Simultaneously All the
Roots of an Equation,” in the American Journul of Mathematics, Vol. XVIIL.,
pp. 89-110 ; M. E. Carvallo, Méthode prutique pour la Résolution numérique
compléte des Equations algebriques ou transcendantes, Paris, 1896,



CHAPTER V
THE ALGEBRAIC SOLUTION OF THE CUBIC AND QUARTIC

59. Solution of the Cubic. There are many different solutions
of the general cubic equation,

b + 3 by? + 3 by + by =0. I
The one which we shall give is due to the Italian mathematician

Tartaglia and was first published in 1545 by Cardan. Equa-

tion 1 is first transformed into another whose second term is
2 — Iy

wanting. Putting, as in § 33, x = , we get

(0
#24+3H+ G =0, IT
where H = bb, — b and G = b, — 3 bbb, +20° To solve
equation IT, let z=u +v. Substituting i II, we get
W4+ 30w+ H)(u +v) + G =0.

‘We are permitted to subject the quantities » and v to a second
condition. The most convenient assumption will be

wy + H=0. I11
This yields W vt=—G. Iv
Eliminating » between III and IV, we gc.
u”—gj=-— @, or ¥* 4 Gu'= H?3,
u

The last equation is a quadratic in form. Solving it, we have

ua=—9+\/ ;0
3TV
68
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Then by IV, vs=—G—uﬂ=—$—\/9f+118.

Since u-._\/ \/—-—+II"‘ v—-—\/—-- —-\/ +H3 A

and z = u + v, we have

z_\/—‘(-"——- +11~‘+\3/—::;]_ 1;3 VI

The expression for the root of the cubie, given in formula VI
is known as Cardan’s fornula.

Since a number has three cube roots, it is evident from V
that « and » have each three values. It may seem as if with
each value of v we nught be able to associate any one of the
three values of v, thus obtamming all together nine values for
w4, or 2. As the cubic has only three roots, this cannot be.
Of the nine values, six are excluded by equation 11I, which w
and v must satisfy. Eliminating » between z =« + v and equa-
tion ITI, we get e _}I, VI

u
where u has the form given in V. Since in expression VII there
is only one number, », which has triple values, this expression
does not involve the difficulties of Cardan’s formnnla. T.et the
three values of u be u, nw, ne?, where o stands for one of the two
complex cube roots of unity, — 4+ 1V —3. Then the three
roots of the cubic II are

]I II(‘.\z 9 __ II(I) VIII

U—", U —=—, Uw
w’ u u

Since z = b0m+ bl, we obtam the roots of "the general cubic I
by subtracting b, from each of the three expressions in VIII,
and then dividing the three results by b,.

60. Irreducible Case. — The general expression for the roots
of a quadratic equation with literal coefficients may be used
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conveniently in solving numerical quadratic equations. For
each letter we substitute its numerical value, then carry out
the indicated operations. It is an interesting fact that, in case
of the eubic, this mode of procedure is not always possible and
that the algebraic solution of the cubie is of little practical use
in finding the numerical values of the roots.

In § 36 we found that the roots of the cubic are all real
when G+ 4 H? is negative. In the attempt to compute these
real roots of the cubic by substituting the values of /I and G
in the general formula, we encounter the problem, to extract
the cube root of a complex number. But there exists no con-
venient arithmetical process of doing this. Nor is there any
way of avoiding the complex radicals and of expressing the
values of the real roots by real radicals. This fact will be
proved in Ex. 8, § 183. By the older mathematicians this
case, when (44 II® is negative, was called the “irreducible
case” in the solution of the cubie, the word “irreducible” hav-
ing here a meaning different from that now assigned to it in
algebra. See § 123.

61. Solution by Trigonometry. The “irreducible case” may
be disposed of by expanding the two terms in (Cardan’s formula
into two converging series with the aid of the binomial theorem.
The imaginary terms will disappear in the addition of the two
series. But it is better tq use the following trigonometric
method (which is itself inferior, for the purpose of arithmetical
computation, to Horner’s method, § 56):

Let —-Q=rcoso, \/9—2+H3=irsin0.
2 4

We get u® =7 (cos 8 + ¢ sin ),
v® = 1 (cos § — ¢ sin §),

where r=\/—H3; 0089=————G——-c
CAVESY : §
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—— 23 ]
Hence, w=vV—-H <cos ‘-”—";' 8 + isin iﬂfsif),
—_— 9
v=V—1II <(}osif'i¥)+ 0_; sing?'%:‘;f),

[

—— 9
and 2= u+v=2vV— I cos ﬂ’;j—ﬁ,

where n takes the values 0, 1, 2.

62. Euler’s Solution of Quartic. Removing the second term
of the quartic

bt +4 0,2 + 6 b’ 44 0y 4 by = 0, I
we get as in § 34,
PO+ 4G+ 0T —S I =0, I
where 2 =0+ by, I =bhy— b2 I= b, —40,b; + 30,
G =Dy — 3 bbby + 2052
Euler assumes the general expression for a root of equation I1
o be 2=V +Vio+V.
Squaring, 22 — u—v—w=2Vu Vo + 2VuVw+2VoVw.
Squaring again and simplifying,
2 —222(u+v+w) —8zvVauvVeovw+ (u4 v+ w)?
— 4 (uv 4 ww 4 re) =0.
Equating coefficients of this and equation II, we have
—SH=u4+v4+w, G=—2VuVoVu,
(w4 v + w)® — 4 (uv 4 ww 4 vw) = b — 3 H?,
or uv+uw+'uw=3H2—b"iI-
But — (u + v+ w), (wv+ ww+vw), —uvw are the coefficients
of a cubic whose roots are u, v, w. This cubie, called “ Euler’s
cubic,” is el bed

y3+3Hy”+(3IIQ—-—I—>y—-I-=O. 111
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Let y = b’z — H, and we obtain
4 0% — bydx 4 J =0, IV
where biS = b2 — 4 H3 — (7,

Equation LV is called the reducing cubic of the quartic.
Since u, v, w are the three values of y 1n 111, we have

w=b? —byb, + by, v=0— U, + biry, w=072— by 4 b,
Hence,

N e AR e e Y ey R
Or, since @ = — 2VuVvVw, we may write

e=Vi+vo——9 . VI

2Vuvv
In the expression for z in VI each of the radicals may be
either 4+ or —. Hence z has four values—the four roots

of equation [I. In equation V there are apparently eight
values of z, but four of them are ruled out by the relation
2VuvVovVw=—G.

From the above we see that the roots of the quartic are
expressed in terms of w, v, w. The values of the latter are
given in terms of the coefficients of the quartic and the three
roots ), @, a3 of the cubic IV. To solve the quartic by the
present method we must, therefore, first solve the reducing
cubic. There are many other algebraic solutions of the general
quartic, but every one of them calls for the solution of an
auxiliary equation of the third degree. These cubics are called
resolvents.

Ex. 1. Under what conditions can a quartic be solved algebraically
without the extraction of cube roats ?

It is only necessary that the reducing cubic have a rational root, so that
the other two roots can be expressed in terms of square roots, Euler's
cubic anawers equally well.
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Ex. 2. Show that the reducing cubic of w4 4 2.3 | »2 -2 =0 hasa
rational root.  Nolve the quartic by square roots,

Ex. 3. Show that, in general, the values of « and y m 224+ y =a.
¥ 4+ = b cannot be found algebraically without the extraction of cube
roots.

Ex. 4. Can all the values of 2 and y in 224y =11, 2+ 2 =17 be
founll without the extraction of cube roots? For solutions, see the
Am  Math. Monthly, Vol. VL., p. 13, Yol. V1I., p. 169 ; see also Vol. X.,
p 192,



CIIAPTER VI

SOLUTION OF BINOMIAL EQUATIONS AND RECIPROCAL
EQUATIONS

63. The Binomial Equation.
*—a=0,

where « is either real or complex, may be solved trigonometri-
cally as follows. I.et

a*=a=ricos (2 kr 4+ 0)+isin(2kr + 6){,

where k may assume any integral value. Then, by De Moivre’s
Theoreimn,

2= {I/;{(’Os-j;j_q-}-l “»’::{*_0]

By assigning to k any n consecutive integral values we obtain
n values for « and no more than », since the »n values recur in

periods.
It is readily seen that the roots are all complex when a is a
complex number. For, to obtain a real root, — “iq must be

zero or a multiple of #; that is, 2kx + 6 will be zero or a
multiple of =; hence « itself must be real, which is contrary
to supposition.

‘When a=+1,
then 2" =1=cos 2 kr 4 isin 2 km,
and & == COS gic£+isin -2—11"’—': I
n n

74
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where & may be assigned the values 0, 1, ..., (o —1). If nis
odd, then k =0 is the only value of & which yields a real roof,

viz. 2=1. If n is even, then only the values k=0 and k=g

yield real roots, viz. w=1 and x=—1.
When a=-1,
then 2r=—1=cos @k+Dr+isin(Ck+1)m,
where & may take the values 0, 1, -, (n —1).
2k 2k
Then z = cos Ek+ 1 +isin Gl D
V3 n
2k+4+1 . .
There can be no real roots, unless —, isan integer, and
therefore 2 an odd number. 1fn =24k +1, that is k= '—‘—-'7}1,
we obtain the real root @ =—1. “

64. Geometrical Interpretation of the Roots of x”=a. The n
roots may be represented graphically in the Wessel’s Diagram
(§ 22) by » lines drawn from the centre of a circle of radius Vr
to points on its circumference and B
dividing the perigon at the centre

0
. o™ .
into equal angles of :’7 radians.

Thus, let n=3 and r=1. The
three cube roots of unity arve seen
fromI,§ 63, tobel, — L 4+ 1V —3,
—31—1+v—3. They are repre-
sented, respectively, by the lines
0.4, OB, OC. These lines make
with each other angles of %« ¢
radians or 120°. The circumference is divided into three equal
parts. In the general case the circumference is divided into
n equal parts. Hence the theory of the roots of unity is
closely allied with the problem of inscribing regular polygons
in a circle or the theory of the Division of the Circle. This
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subject has been worked out mainly by C. F. Gauss, 1801, and
will be treated more fully in Chapter XVII under the head
of Cyclotomic Equations.

65. Roots of Unity. We give a few general properties of
the nth roots of unity, some of which are evident from pre-
vious considerations.

1. The equation 2™ =1 has no multiple roots.

Here f(2) =2a"—1, f'(2) =na*". Smce f(x) and f'(2) have
no common factor involving z, there are no multiple roots

(§ 21).

II. If «is a root of x* —1=0, then o* is also a root, k being
any integer.

Since «*=1, it follows that «™ =1 or («*)” =1, where & is
zero or any integer, positive or negative. Hence «* is a root
of unity. As there are only u roots, it is evident that the
powers of « are not all distinet from each other, and «* is a
periodic funetion.

111. If m and n are primeto each other, the equations a™ —1 =10
and 2* — 1 =0 have no common root except 1.

First we prove the theorem: If m and n are prime to euch
other, then it is alwuys possible to find integers u and b such that

mb—na=2=+1. The fraction 2 may be expanded into a ter-
n

minating continued fraction, say

The successive convergents are p, pgr_ +1 P +_:%__r Sub
qr

tracting the last but one convergent fmm the last, we obtain

a fraction whose numerator, pg(qr+ 1) +¢r — (py + 1)(yr +1),

is seen to be equal to —1. (By mathewatical induction 1t may
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g N A :
be shown that if -2 and ™ are any two successive conver.
V-1

gents, then w,», ,—u, v,=+1.) But

m=plgr+1)+r,n=qr+1;
hence, if we take a=pqg + 1, b =q, we have

4
Py

mb—an=+1. Q.E.D.

Now, if possible, let @ be a root common to 2™ —1 =0 and
2"—1=0. Then ea=1, «*=1 and «™ =1, «*" =1, where a
and b are numbers which satisfy the relation mb —ne= £ 1.
Hence, a™™ =1, «*'=1, or «=1. That is, 1 is the only
root common to the two equations.

IV. If h is the highest common factor of m and n, then roots
of #* — 1 =0 are common roots of €™ —1 =0 and 2" — 1 =0.

We have m = k', n = hn', where m' and »' ave prime to each
other. Hence it is possible to find integers a and b, snch that
m'b —n'a= £ 1. Multiplying by %, we get b — na = £ h.

Now, if «¢ 15 2 common root, we have «* =1, ' =1, g™ " =1,
or«'®=1. This means that « is & root of 2t —1=0.

V.o If « is a complex vont of € —1=0, i being prime, then
the roots are 1, a, % «’y ooy "1,

By 11, 1, «, &% ---, «*71, are all roots of the equation. They
are all different; for suppose « =«’, then « 7=1. But by
TIL 2" =1 =0 and 27 — 1 =0 cannot have a root 1 common,
since n and (p — ¢) are prime to each other. Hence the equa-
tion «~?=1 is 1mpossible, and all the roots are included in
the series 1, «, -y ), ~

VL. The roots of the equations
?—-1=0,22—1=0,a" —1=0, +-
all satisfy the equation a2+ —1=0.

For if a is a voot of 2 —1 =0, then «»=1 and (e?)" =1,
or ¢ =1, 'That is, « is a root of «**"* —1=0.



78 THEORY OF EQUATIONS

66. Primitive Roots of Unity. A root of 2" — 1 =0 is called
a primitive root of that equation, if it is not at the same time a
root of unity of lower degree.

Take 2°—1=0. By VI, § 63, the roots of 2*—1=0 and
' —1=0 are roots of 2®—1=0. These common roots are 1,
—1, —} £ 1V —3. The other two roots are found by solving
P +4+1=0; they are + % + | vV —3, and are seen to be primitive
roots of 2" —1=0.

I. We proceed to show that primitive roots of unity exist for
every degree n.

If nis prime, then, by III, § 65, 2* — 1 = 0 has no root in com-
mon with a similar equation of lower degree, except the root 1.
Hence all the roots of a” — 1 =0, except the root 1, are primi-
tive roots.

If n=p™, where p is a prime, every exact divisor of p=, ex-
cept p™ itself, is an exact divisor of p»~'.  Hence, by VI, § 65,
every nth voot of unity which is at the same time a root of
unity of lower degree, must be a root of #™ ' —1=0. Since
Pt is a factor of pm, it follows, moreover, that every root of
™' —1=0isarootof 2" —1=0. Thus, there are p ' roots
which ave not primitive, and the number of primitive roots is

(-1
Y4
If n=p".q, where p and ¢ are prime, then there are

p"‘(l — 1—) primitive roots of 2" —1=0 and ¢ (1 — 1) primi-
D, q

tive roots of 2 —1=0. Now,if « and Bare two primitive roots
of these equations, respectively, then 8 is a primmtive root
of #*— 1=0. For suppose («B)' =1, where r<n, then o' =8"".
By 1L, § 65, o is a root of & —1=0 and B8~ is a root of
2" —1=0. Butthe two equations can have no root in common,
except unity, since p™ and ¢* are prime to each other, by III,
§ 65. Hence r cannot be less than n. Since, by 1I, § 65, «"=1
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and B"=1, it follows that («8)" =1, and «g is a primitive root
of 2" —1=0. Since there are

1 1
m 1 — * —_
v < P)q ( ’1)

such products e - B8, this expression gives also the number of
primitive ath roots of unity.
It is easy to extend this proof to the case where n=pmg"' ...

I1. We give, without proof, the theorem that if « is « primi-
tive nth root of unity, then « is a primitive nth root of unity
always and only when v and n are prime to each other. This
theorem enables one to find all the primitive nth roots from one
of them.*

III. The roots of the equation 2* —1 = 0, where n =p*¢® +-+ 1°
and p, q, -+ r are the prime fuctors of n, wre the n products of the
Jorm By -+ 8 where B is @ root of ¥** =1, y @ root of a* =1, -.-,
disuroot of ©° = 1.

Tiet «=fy--8

ITere B represents any one of p" values; similarly, y, «--, 8
represent, respectively, ¢%, ---, 7 values. From this it may be
shown that « has » values, which are the » roots of 2"-—1:=0.
For, in the first place, we have g°=1,y" =1, -, § =1;
hence, also, 8" =1,y* =1, ..., & =1, and, therefore, " =1.
In the next place, we show that the » values of « are distinct.
If possible, let two values of « be equal, say

B',yl oo 8' = B”Y” e SN. I
Since not all the roots in the left member of I ean be equal,

respectively, to the roots in the right member, let 8' and 8" he
distinet.

* For the proof, see Burnside and Panton, Vol. I, 1899, p. 9. We have
followed the exposition of the subject of the roots of unity given by these
authors.
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From 1 we get

(ﬁ' [ Sf)qb---rr____ (B”Y” vee 8”)95""',
and (e 8P =y 8P =1,
We ha.ve B"I" L Bnqh ,f'.

Since B’ and B are distinet roots of 4 =1, they are equal to
two different powers of one and the same primitive root B, and

we may write g =g, B"=g"
— Qi m — b
== s = ’

where m' and m + m' are each less than p*. We get
B(m‘m-)qb. i — ‘Bm-qb . .-c’

or g =1.

Hence, B is a root of both a»* =1 and 2™ =1, and also of
a2*=1, where s is the highest common factor of p* and m¢® -« 2.
(Theorem LV, § 65.) But we have s & m, hence, s <p" Thus,
B must be a root of an equation of lower degree than p”.  Since
B is primitive, this cannot be, and equation I is impossible.

IV. The roots of a?* —1=0, where p is prime, can be found
Srom the roots of equations of the form «» = .

Let w, be any root of ar=1, w, any root of a? =y, w, any
root of a® =y, and so on, and finally , any root of v =10, _,.
Then the product « = wye, --- w, represents p® distinet roots of
a2 =1.

For, since wy? =1, wy” = w,, ete., we obtain successively the
relations,

0F = W PWP oo WP =1 W0y + o+ W,_yy
oF = WPWF «or W, F =1 Wy e+ Wy_g

. . . . . . .

o= wy, =1,
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V. The solution of & — 1 =0, where n is uny composite number,
s reduced to the solution of binomial equations in which n is a
prime number.

This important result, of which further use will be made in
a later chapter, follows readily from the theorems 1IT and 1V
of this paragraph.

67. Depression of Reciprocal Equations. .1 reciprocal equation

of the stundurd form (§ 31) cun aliways be depressed to one of hulf
the dimensions.

Divide both sides of the given reciprocal equation
A@™ 4 (! ' =0
0 1 + e 4ay=

by @™, and we get, on collecting in pairs the terms which arve
equidistant from the begiuning and end,

(lo(wm + ;m) + a’l(“"m 1 + ;::__])'f' b + um—l(u. + 1) + Ay = 0'

@

. 1 .
Assunming y =2 + =, we obtain
x

w2+]:,=7/'—'~;

22

1 1 1
w'3+ww_7,=(m-‘2+-x—2><w+5)—y=y3—-3y,

1
w‘+a-c;=<w3+;,)<w+5)—y2+2=y4_.4y2+2,

and generally

1 a1 1 2, 1
m’+:;;=<m” l+a7—">(x+5)_(xp 2+a_’;__2).

By substitution in the above equation we obtain an equa-
tion of the mth degree in y. From the relation z 4 :lc= y we

see that two values of 2 may be deduced from each value of .

n
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Ex. 1. Find the primitive rootsof 22 —1 =0, 23 -1 =0,2¢ — 1 =0.

Ex. 2. Find the roots of 2o — 1 =0,
Dividingby e — 1, weget xt + 23 + 22 + 2 + 1 =0.
Dividing this reciprocal equation by x2 and taking « + L. y, we obtain
—14V5h x
2
Solving 22 — xry 4+ 1 = 0, we arrive at the following four roots :

Y+y=landy=

2 =— 11+ V6 4+ iV10 - 2V5), = — (1 — VH — V10 + 2V5),
2 =—1(1 — V6+ V10 + 2V5), ry=—1(1 + V5 — 1 V10 — 2V5).
These four are primitive fifth roots of unity. The other root is 1.
Show that wy = a2

Ex. 3. Find the roots of 8 — 1 =0,

Ex. 4. Find the roots of £ — 1 =0.

Dividing by ¢ — 1, we get a reciproeal equation in the standard form
which can he depressed to the ecubiic y? + 92 -2y ~1=0.

Writing z =y 4 }, we have 28— [ — 5 =0. By § 59 we obtain for
y three values, «, «y, @2, where

w=—}+1 V28 481V~ 3 4 Va8~ 81V 3.

From 22 — ry 4+ 1 = 0 we get the six values

Wt Vor -4 g ViR -4 wy Vst — 4
2 9 -_“_qu y T 2 ?

which, together with unity, are the seventh roots of unity.
Ex. 5. Find the roots of 28 — 1. Which are primitive roots ?

Ex. 6. Find the roots of 2°—1 =0.

Extracting the cube root, we get a3 =1 or w or w? and x = 1, w, w2,
Vo, wVw, w0V, vVl wved, w2V, where w and w? are the pruni-
tive cube roots of unity. Give the primitive roots of 2% — 1 = 0.

Ex. 7. Give a trigonometric solution of 21 —1 =0 and state which
roots are priniitive.

Ex. 8. Find the primitive roots of 212 — 1 = 0.
Fix. 9. How many primitive roots has 218" —1=0°?

Ex. 10. Find the sum of the primitive roots of ¢ — 1 =0,
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71. By the aid of the theorem of § 70 we can calculate the
value, in terms of the coefficients, of any rational symmetric
function. But this method is laborious, and usually other
methods are preferable. For convenience of reference we state
here some of the results obtained in § 15, viz.,

For the cubic «* 4 ax*+ b +c=0,
Se*B =3¢ — ab,
SR =0—2ac,
S8 =’ — '1)2 —l-}zc,
(c+BB+7)(y+w)y=c—abd
For the quartic @+ ax® 4 ba®+ cx +d =0,
Sd*B =3¢ — ab,
SR =0—2ac+2d.
Ex. 1. For the cubic find the value, expressed in terms of the

of Za?B — TP

coefficients, =
SudB — Sl

Ex. 2. For the quartic find the value of the irrational symmetric
function VZa38.

Ex. 3. For f(x)=0 calculate Zo2aonts, Where o1, oz, +-+y 0tn are
the roots.

Multiply S =—a
and S tta0tz = — ag.

In the product the term e;%;acts occurs only once, the term oioaotacs
occurs 4 times. Hence,

Zaslaz0s + 4 S0 = 0103,

and 21212422{13 = q1ag — 4 A4

If the calculation is carried on by § 70, II, we have, since p=¢=1 and

m=2
? 2 Soes20tatg = §28;2 — 2 838 — 82 + 2 84,

Substituting for sy, s, 83, 84 their values, § 68, and carrying out the
indicated operations, we get the same answer,
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Ex. 4. Show that for the general equation f(x) = 0, the general form,
in terms of the coefficients, obtained for Z;2u.? is the same as for the
quartic equation.

Ex. 5. Calculate Za 32 for f(£)=0 and from the result derive the
special value it assumes for the cubic.

Ex. 6. Calculate Za)2mp2¢; for the quintic equation. Is the result
the same for the general equation ?

Ex. 7. Find the value of the symmetric function
& — B)24 (B — ¥)2-+ (v — @)? for the cubic box? + 3 byx? + 3 bex + b3 = 0.
Deduce the same result from V, § 35.

Ex. 8. By aid of § 35 compute the value of (« — 8)2(« —¥)2(B — ¥)?
for the cubic a8 4+ x24 x4+ 1 =0. What relation has this symmetric
function to the discriminant of the cubic? How many values does the
function (¢ — ) («¢ —7)(B — v) assume when the roots are mterchanged ?
Why is this function not symmetric ?

Ex. 9. Show that for the quartic

xt 4 aped + age? + azx + ay =0,
(a1ts + waets) (s + aity) (Rrees + ttaues) = az? + ar%ay — 4 a0y

Ex. 10. Show that for this quartic

(@B + 78) (vt + BB) + (B + ¥8) (B + x8) + (By + ad)(vee + Bb)

= @13 — 4 ay.

* Ex. 11. Form the cubic equation having for its roots
aB + v8, wy + B8, By + ad.

Ex. 12. Show how the general quartic may be solved with the aid
of the roots of the cubic in Ex. 11 and the relation «fyd = a4.

Ex. 13. How many different values will the function @8 -4 8 assume,
as the roots are interchanged in every possible way ?

* Ex. 14. Find the equation whose roots are
p=\/§+\"/6, p1=\/§+w\n/5, p;:\/§+w2\a/5,
pp=—V2+ \«/5, pp=—V2+ w\s/g, ps=—V2+ w2V,
Let the required equation be
28 4+ @1a® + axet 4 asgx® + @t 4 agx + ag = 0.
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We have ¢; = 0, and therefore @ = ¥ppy = — } ¥p2 = — 6. Multiplying
Zpp1 by Zp, we have 3 Zppipe + Zppy® = 0, hence
a3 =— Zpp1pz = § Zppr? = — § Zp® = - 10.
Multiplying Zppyp2 by Zp, we obtain

—_

4 Zpp1paps + Zpprpe? = 05 Zpp1ps? = Zpat - Zppy — Zps® - Zp 4 Spyt
= Zps?Zppy + Zpat = — 48,
hence a; = 12.
Similarly, we get
5 Zpp1papsps + Zpp1paps? = 0, Zpp1paps® = Zps? - Zpprpe — Zps® + Zppy
— Zpg® = — 300,
hence a5 = — 60. We have ¢y = 17.
* Ex. 15. Find the value, in terms of the coefticients of the cubic, of
(¢ + waty + wtt2)? + (@ + w2y + waa)3, where o 18 a complex cube root
of umty.

* Ex, 16. Show that for the quartic
2t 4 4 baed + 6 byx? + 4 bax + Dy =0,
the following relations hold :
Sitdy = 15636 bythy — 2304 112002 4 432 Do® — 256 by3b; + 672 bybabs
— 48 hy? + 16 by2bg — 36 bady.
Stz = 250 130, — 288 ybabs + 48 by — 16 12hy 4 12 haby.
SiduiPies = 96 Diboby — 48 12 — 48 by2hy + 24 byby.
So8ty3 = 210 by? — 288 bybabs + 48 b2 + 48 D1204 — 18 baby.
Sz 20003 = G b2by.
a2 =16 b2 — 12 b,.
Ea%qug =16 ’)1b.} -4 b4.
* Ex. 17. Find the cubic whose roots are
(@ — ay) (2 — w3), (4 — o) (3—wt1), (@€ — atz) (1 — tp).
* Ex. 18. Show that, for the quartic x* + @23 + wox? + asx + a4 =0,
we have
(4 a1 — az — as) (o — @y — 2 + «3) (¢ — 1 + b2 — otg)
=— (a® — 4 102 + 8 as).



CHAPTER VIII
ELIMINATION

72. Resultants or Eliminants. Let us determine the condi-
tion that the two equations

SJ@) =ap?+ax+0,=0,
F@ysc?+cox+ =0,

shall have a root in common. Designate the roots of the
second equation by B, B, The necessary and sufficient con-
dition that B, or B, shall satisfy the equation f(x) = 0is that
S(By) or f(By) shall vanish; in other words, that the product
J(B) + f(By) shall be zero. Multiplying together

f(ﬂl) = "(1,312 + a ,31 + ay,
J (BL’) = @By’ + ¢y B + ay,
we get
ao2 12 .2 + aoal(ﬂlﬁzg + ﬂlgﬁz) + agty (312 + )322) + a12,31,32
+ ay(By + Bu) + o

Multiplying by ¢’ and substituting for the symmetric func-
tions of B, and B, their values in terms of the coefficients of
F(z) = 0, we have

A’} — Uiy + AeeC® — 2 Ayl + Qr’CiCy — arageey + ag’ce’
This expression is called the eliminant or resultant. Its van-
ishing is the condition that the given equations shall have a
root in common.

If from » equations involving n — 1 variables we eliminate

the variables and obtain an equation R = 0 involving only the
92
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coefficients of the equations, the expression R is called the
eliminant or resultant of the given equations.

In the above example the elimination was performed with
the aid of symmetric functions. This method generalized is
as follows:

73. Elimination by Symmetric Functions. To find the con-
ditions that the two equations

(@) = a@” + @ + a@? + -+, =0,
F@) = cp™ + e@™! + c@™? + o0 ¢, =0,

shall have a common root. For this purpose it is necessary
and sufficient that some one of the roots By, By +++, B of F(x) =
shall satisfy f(z) = 0, in which case the product

must vanish.

We have f(8) = @ + a,fy"™" + -+ +
f (Bz) ”0,32 + alﬁz"_l + e 4 a,,,

f(BM) = aOBm + a’lﬂmn_l + e+ Qe

Multiplying these together, we obtain, after substituting for
the symmetric functions of B;, 8, ---, B,, Which occur in the
product their values in terms of cy,e;, -+, ¢,,, and after clearing of

fractions, R=cf(B) - f(Bs) - f(Br)-

Here R is the eliminant and is a rational integral function of
the coefficients of f(x) and F(x). Its vanishing is the condition
that the two given equations have a root in common. "The degree
of the resultant in the coefficients of the given equations is in
general m + n.

It is easy to see that we obtain the same eliminant by sub-
stituting the roots ey «-+, @, of f() = 0, in succession, for =
in the polynomial F(x).
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74. Euler’s Method of Elimination. 1f f(x) = 0 and F(z) = 0,
as defined in § 73, have a root « 1n common, we may write
J@) = (v — @) f1(%)
Flx) = (v — o) Fy(2),
where @)=t 4 et e - 4,
'1(-7’) = (J!llvm—l + C’z‘nm—2 + e + Cvm’
the coefficients A, ..., 1, and (}, .+, C,, being undetermined
quantities.
We obtain easily the identical equation of the (m + n — 1)th
degree f(r) - F\(x) = F(z) - fi(2).
Performing the indicated multiplications and equating coef-
ficients of like powers of x, we obtain m 4 n homogeneous
equations. Eliminating the undetermined coefficients, we ob-

tain the required resultant.
Thus, find the resultant of

@ + a4+ a, =0, ¢’ 4+ @ + ¢, =0.
If they have a root in common, we obtain the identity
(Ce + Co)(agd® + aye + ay) = (Ao + ) (e@? 4 ¢ + ¢5)
or (Cyy — Lye)d® + (Cyay + Cottg — Aoy — Agep)a?
+ (Ciaz + Oty — Ayes — Ayey)x + Coty — Ay, = 0.
Equating coefficients,
Ci — Ao =0,
Olal + 02('0 —_ 11]('1 - .{12('.0 = O,
Ciaz + Oy — A0y — Ayey =0,
Cy, — 2, =0.

In order that the four homogeneous equations I may be ton-
sistent with each other it is necessary that
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a, 0 Co 0
o A 151 Co 0.
Qg [ Cy (%Y
0 a, 0 Cy

This vanishing determinant is the resultant.

[To recall the reason for this, observe that if each member of
the four equations I is divided by 4, we have really only three
unknown quantities, viz. -(’l, -@, <, If their values, which

D P 7
may be obtained from the first three equations, are substituted
in the fourth equation, then we obtain a relation between the
coefticients of the two given equations which is the same as that
expressed by the above determinant.]

75. Sylvester's Dialytic Method of Elimination. To eliminate
@ between f(x) =0 and F(¥) =0, equations of the degrees n
and m, defined as in § 73, multiply the first successively by
'y &l a?.e, 21 and the second successively by & o, a%..., 2",
We obtain thus the m + n equations

J(@) =0, af(@) =0, a*f(x) =0, ..., a"}f(x) =0,
Fx) =0, aF(x) = 0, &*F(x) = 0, -+, 2" 'F(x) = 0.

The highest power of @ is m+n—1. If f(@) =0 and
F(z) =0 have a common root, it will satisfy all the m +n
equations. If the different powers of x, viz. z, 2% 27, ..., 2™+,
be taken as m + n—1 unknown quantities satisfying m +n
linear equations, it is evident that a relation must exist between
the coefficients of the equations. This condition of consistency
is the vanishing of the resultant.*

* The above proof of Sylvester’s method is the one usually given.
Attention should be called to the fact that it is not shown there that the
different powers of 2 have values that are consistent.
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Thus, to find the resultant of

S@) = gt + a,@? + ax + a3 =0,
and F(z) = @ + ot +¢=0,
we have S@) = 1@ + 0 + ag® + ap= 0,

of @) = ap! + @ + at +axe =0,

Fz) = + e+ e + ¢, =0,

eF@r)=  +ep® + ca’+ o =0,
F(2) = opt + o + o’ =0.

That the four unknowns x, 2% a® «!, may satisfy the five
equations, it is necessary that

0 a a, a, as

@ o, ay ds 0
R=|0 0 o ¢ ¢ |=0.

0 Co G Cy 0

G G Cy 0 0

R is the resultant.

76. Discriminant of f(x) = 0. It was proved in § 21 that if
JS(®) = 0 has a multiple root, that root satisfies f'(x) =0. The
condition that f(«) = 0 and f'(2) = 0 have a root in cominon is
expressed by the vanishing of their resultant. The resultant
of f(z) = 0and f'(x) = 0 is called the discriminant of f(x) =0.
The discriminant of an equation f(x) =0 may be otherwise
defined as the simplest function of the coefficients, or of the roots,
whose vanishing signifies that the equation hus equal roots.

If f(z) = 0 and f'(x) = 0 have a common root, this root will
satisfy also nf(x) —f'(x) =0. Instead of finding the resultant
of f(x) and f'(x), we may therefore find the resultant of
nf(@) — f'(2) = 0and f'(x) =0. The latter mode of procedure
is preferable, because it gives us the resultant clear of an
extraneous factor.
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The discriminants of the general quadratic, cubie, and
quartic are, respectively, as follows:

Quadratic dise. = giz(bf — beb);
0
Cubic disc., § 35, = — ?;_70(0'-’ + 4 HY;
0
256

Quartic disc., § 51,= iy I*=27J%.
0

77. Discriminant expressed as a Symmetric Function of the
Roots. Since the discriminant of the equation f(x) = 0 vanishes
always when at least two roots are equal, but uunder no other
conditions, it follows that «; — &, must be a factor of the dis-
criminant. For if «, and «, are the equal roots, «; — «, is the
only simple factor which will vanish because of this equality.
But an interchange of any two roots, say «, and «, must not
alter the numerical value or the sign of the discriminant, since
the discriminant is a constant when the coefticients of the
equation arc constants. Hence the lowest positive power to
which the factor e; — e, can occur in the discriminant is the
second power. In other words, (¢, — «,)* is a factor of the
diseriminant.

Since this reasoning applies to any two roots whatever,
(1 — a5)? is a factor; also (¢, — «,)*; and so on.

Hence the product

D=1 (t — )2 = (e, — @)’ (0, — @)% -+ (O — 0,)*

is a factor of the discriminant. 1f the multiplications indicated
in this product were carried out, each term would be of the
n(n — 1)th degree in the roots. ‘

The resultant of f(x) = 0 and f'(x) =0 may be expressed by

§ 73 as ay” - () « f'(0t) oo f (et),

where «), @, :+-, «, are the roots of f(2) = 0. One term of this

productis (na)" (¢, + -+ @,)"*; the degree of this term in the roots
H
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is n(n —1). This produet is homogeneous, for if in any other
term, say (n— 1)""«y*(uqety -+- )" % we substitute for the co-
efficients their equivalents in terms of the roots, by the relations
of § 13, say o, + «y + -+ + «, for ——(—l—‘, we see that this term

€«
likewise is of the degree n(n — 1) in the roots. Hence the

product Il(e; — w)® is of the same degree in the roots as the
resultant of f(x) =0 and f'(2) = 0, and, therefore, as the dis-
criminant of f(x)=0. Consequently, this product can differ
from the discriminant by a numerical factor only.

Ex. 1. Show that the resultant of 2 —or —42=0and 224+ 42 —-77=0
is zero, proving that the left members of the equations have a commnon
factor.

Ex. 2. Find the resultant of
age® + 2?4+ aar -+ ag = 0 and cr® + 0122 + e + ¢3 = 0 by Euler's method.

Ex. 3. For what value of @ will the two equations «3 4 ax2+x—1=0
and 224 3z + 7 =0 have a root in common ?

Ex. 4. Using Sylvester’s method of elimination, find the discriminant
of b3+ 3 by 43 bax 403 =0.

Ex. 5. Find the discriminant of z# — 1 = 0. Ilas the eguation egual
roots ?

Ex. 6. Find the discriminant of a7t —a» — 22 4 1=0.



CHAPTER IX

THE HOMOGRAPHIC AND THE TSCHIRNHAUSEN
TRANSFORMATIONS

78. Homographic Transformation. All the transformations
of equations explained in §§ 27-34 are special cases of the
liomographie transformation, in which @ is connected with the
new variable y by the relation

Av 4+ p
)\1'1:_*_#1’
where A, ', u, u' are constants. Thus,ifA=— p'=1,\'=pn=0,
then y=—u2, as in § 28; if A=p'=1 and A'=0, then y=x+p,
as in § 32.

By solving for » we readily get

y=

o P I
) Ny—2A
If this value of 2 is substituted in a given equation of the
nth degree, we obtain a new equation of the nth degree in y.
If &, B, v, ... are the roots of the original equation and «', 8/,
¥, . .. the corresponding roots of the transformed equation, then

we have
ave o = A+ un By )\B'f'll-

=, et
xa_’_l"r? IB+ i ete.

Subtracting, we get « — 8'=-E=BW =AW o ohtain
t=H] g B (A’B+[L')(A-'u+f“)
similar expressions for «' —y', 8 — g8/, 8 — 4/, ete. If now we
take any four roots «, 8, y, 8 and the corresponding roots «', B
99
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y', &', we obtain by means of these expressions the following

welation: (' g8 —y) _(a=B)B—y),
(' =)@ =B) (e—y)3—-8)
The geometrical significance of cach of these fractions hecomes
apparent, if taking O as origin, we put a= 0C, 8= 04,
vy=0B,8=01. Then

' 4l1 ‘B ‘0 D 4—pg=.1C, «—vy= BC,
0 §—B=.D,5—y=BD,
AC | AD

and the fraction on the right-hand side is equal to B0 BD
This is the cross-ratio (anharmonie ratio) of the points C and D
with respect to the points .1 and B. See Ex. 10, § 113.

Similarly, the left-hand fraction expresses the cross-ratio of
points €' and D' with respect to points .1' and B'. Hence, if
the roots «, B, y, 8 represent distances on a line, measured from
an origin O, then the cross-ratio of the four points thus deter-
mined is the same as the cross-ratio, similarly formed, of the
points, determined in the same manner by the corresponding
roots a', B', y', &, of the transformed equation.

Thus, we have on the same line two ranges of points,
@ B,y 8 --and &, B8, 9, &, --- such that the cross-ratio of any
four points of one range is equal to the cross-ratio of the
corresponding four points on the other. Such ranges are called
homographic ; hence the name, homographic transformation.
To a point in one range corresponds one, and only one, point in
the other. In other words, there is a one-to-one correspondence
between the two ranges of points. The homographic traus-
formation is the most general transformation in which this
correspondence holds.  We proceed to consider transformations
which are not usually homographie.

79. The Most General Transformation. The most general
rational algebraic transformation of the roots of an equation
f@) =0of the nth deyree can be reduced to an integral trans-
Jormation of « degree not higher than the (n — 1)th.
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Every rational function of a root e, can be expressed in the
form of a fraction whose numerator and denominator are each
rational integral functions of the root, viz.

g(en),
()
Multiplying both numerator and denominator of A by the
same quantity, we may write (am)
__1__ — _I_l_({f.ll b h_(“m l) * h(“m + l) - :_h“(“_g) .
h(e,,) I(ey) « h(ety) -+ h(et,,)

We see that the denominator A(«,) - i(w) --- h(w,) is a sym-
metric funetion of the roots «, «,--+, «, of the equation
S(x)=0. By 3§ 70 this function can be expressed rationally
in terms of the coefticients. Hence «, can be made to dis-
appear from the denominator of the fraction representing the

value of ] -——. In other words, 1. s reduced to an integral
’ 4 (“m) k (“m)

Junetion of «,,.
Again, the numerator of this fraction, viz.

h(ey) - h(et,, ) » Rt yy) ++- B(e2,,),
is a symmetric function of the roots «y, «+- ¢,_1, @4y +*+ &, Of the
equation RAC) B 0. Hence it can be expressed as a rational
X — &,
function of the coefficients of this equation. These coefficients
are rational integral functions of «, and the coeflicients of
J(&) = 0, as may be seen by performng the indicated division.
1 - q(“m} ] .
Hence f("w) and also ; () can be expressed as an integral
(e, (e,
rational function of «,. Let the integral function G(«,) = "%‘% .
Y
1f G(e,) is of a degree higher than the nth, divide G/(z) by
S (), and we obtain

G@) = Q- f(®) + H(z),
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where the degree of the function H () does not exceed n —1.
Now write «, for w. Since f(«,) = 0, we have ¢ («,) = I (),
and the theorem is proved.

80. The Tschirnhausen Transformation. The most general
rational algebraic transformation of a root of the equation
f(2) = 0 can therefore be represented by the 1tegral functious
of the (n — 1)th degree

Yy= d, + dziv + LI3.’L"‘, 4 oo + d":l:"‘l,

This is known as the Tschirnhausen transformation.

By its aid Tschirnhausen succeeded in reducing the general
cubic and quartic equations to the form of binomial equations.
‘We shall do this for the cubic,

b +302% + 3bx + b3 =0.

We assume y = d, + dz¢ + o*, where d, and d;are coefticients
whose values must be determined.

Tet the roots of the given equation be «, wy «y and the
corresponding roots of the required equation y* —c=0 be
B, B, w8, where w and o’ are the complex cube roots of unity.
Then

B=d, + day + &’y
o =y + dyty + @), I
B = dy + duty + .

Adding, we obtain 3 d, + d.8, + s, =0.

Multiplying the second equation by w, and the third by o and
adding, we have (& + o + o'a)d; + o + wod + o'’ = 0.

Wheuce

2
u.a.+wau +wuu2
d2+sl_.d2+al+a2+“3—__ 2 T 1778 - 1%2
@ + oy 4 o'ty

Since » may represent either one of the two complex cube
roots of unity, there are two possible values for this fraction.
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By a somewhat laborious operation, these values may be shown
to be roots of the quadratic

(b, 4 02?4+ (bybs — biby)x + (bb; — b)) = 0.

The coefficients of this quadratic being known, we can find
its two roots, hence also the required values of d, and d,.
Then, multiplying together the members of equation I, and
substituting for the symmetric functions of «,, «,, «s their values,
we arrive at the value of ¢ in y®— ¢ =0.

Atter reducing the cubic and quadratic to the binomial form,
T'schirnhausen hoped to be able to transform the general
quintic to the form #7°—c¢=0. Since this form admits of
algebraic solution, he hoped to find the much-sought-for gen-
eral algebraic solution of the quintic. But in the determina-
tion of the coefficients d,, d,, ds, d,, (;, unlooked-for difficulties
presented themselves, calling for the solution of an equation
of the 24th degree. While the Tschirnhausen transformation
is worthless for the general solution of the quintic, it enables
one to remove the second, third, and fourth term of the quintic
and of equations of higher degrees.

Ex. 1. Reduce z? 4 ax + b = 0 to the binomial form by the Tschirn-
hausen transformation,

Ex. 2. Find the integral transformation of a degree not higher than

the second, which is equivalent to the transformation y = @+ 1 for the
x

cubicu8 + 2242 4+2=0. ! +
Here {E—)l—zm“% (o2 + Dz + (02® + @2 + 1),
2
1 (e?+D(es?+ 1) elet e+ e+ 1

a2+ 1 (2 + (@ + (a2 + 1) ar2aae® + Son2e? + So? + 1
=(alP+o2+1)2—aw? y=—(x+1)2 Ans.



CHAPTER X
ON SUBSTITUTIONS

81. Notation. In the arrangement or permutation of four
letters, «,a.a,, let each letter be replaced by one of the others;
put, for instance, «, for «,, uy for w, a, for «;, and «, for «,, then
this operation, called u substitution, may be designated by the

notation

Uyl

gl (by ’
where cach letter is replaced by the one beneath, or by the
notation (wa,au;), where each letter is replaced by the one

immediately following, the last letter, a,, being replaced by the
first, @, We shall use more frequently the second notation.

Observe that (w,a:.‘m '"’) = (2%),
foxoxy
12345\_ x
and that (24531)_(12430).

Just as the substitution (@), effected upon the arrange-
ment a,a.u,q, gives the new arrangement a,au,a, S0 when
effected upon a,ayu i, it gives dyu @,

We shall agree that in a substitution a letter may be replaced
by itself, but that no two letters can be replaced by the same

letter. Accordingly WA aq
14y 4
()

is a substitution, but (aa.c,xt,) is not, because in the latter
a, and ag are both replaced by as
104
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Ex. 1. Show that (xyzw) is the same substitution as (wzyz).
Ex. 2. Show that (aja; - @,) is equal to
(arx—mar:-m+l cee Apl1l2 oo Olp_gm l) ;

that, therefore, the same substitution may be represented in several ways
and that its form is consequently not unique.

82. Product of Substitutions. By the notation (aa,:--a,),
(byby -+ b,) we mean that the substitution (wa,-.-q,) is per-
formed first ; then, upon the result thus obtained, the substitution

(by by -+ b))

is performed. We call the two substitutions, placed in jux-
taposition, their product in the given sequence.

If the product (1 2 3)(4 5 3) be applied to the digits
1 2 3 4 5, taken in their natural order, the substitution
(1 2 3) yields the arrangement 2 3 1 4 5. The substitution
(4 5 3) applied to this result gives the arrangement 2 4 1 5 3.
But this last arrangement may be obtained from the first by
the substitution (1 2 4 5 3). Hence the product of (1L 2 3)
and (4 5 3) is equivalent to the single substitution (1 2 4 5 3).

The indicated product (1 2 3)(4 5 3) may be carried out conveniently
as follows : 1 15 replaced by 2 in the first substitution, and 2 1s not re-
placed in the second substitution ; hence 1 is replaced by 2 in the prod-
uct Again, 2 is replaced by 3 in the first substitution, 3 is replaced by
4 in the second substitution ; hence 2 is replaced by 4 in the product,.
Likewise, 4 is replaced by 5 in the second substitution and also in the
product ; 5 is replaced by 3 in the second substitution and in the product,
Hence the result of the multiplication is the substitution (1 2 4 5 3).

Ex. 1. Show that (4 5 3)(1 2 3)=(1 2 3 4 b).
Ex. 2. Show that (abcd)(acde) = (abdce).

83. Commutative and Associative Law. Notice that the
product of (1 2 3)(4 5 3) is not the same as the product of
(4 5 3)(1 2 3). On the other hand. we see that (1 2 3)(4 5)
= (4 5)(1 2 3) and that (xy)(zew)(@2)(yw)=(xz)(yw)(xy)(zr).
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Hence it follows that in the multiplication of substitutions the
commutative law is not, in general, obeyed. However, we shall
find that the associative luw is always obeyed.

Ex. 1. Show that if s,, s, s, are substitutions,

($a80)8c = Sa(888:) = 8%SpSc.

Assume that s, replaces an element p by q,
that s, replaces an element ¢ by »,
that s, replaces an element r by s,
then s,%, replaces an element p by »,
and sy replaces an element ¢ by s.

Hence, 3, 83 8¢y (Sa 85)8c, 8°(% s) each replace p by s.

84. Identical Substitution. A substitution which replaces
every symbol by that symbol itself is an identicul substitution.
Example: Ci‘g:: :“), which may also be written (a,)(«;)(qg). In
) 3,

(ay) the letter «y, is at the same time the first and the last letter,
hence it is replaced by itself. As the identical substitution
plays a role analogous to that of unity in the product of

numbers, it is usually represented by 1.

85. Inverse Substitutions. The inverse of a given substitu-
tion is one which restores the original arrangement, so that a
given substitution and its inverse constitute together an identi-
cal substitution. Thus, the inverse of the substitution

_ (@t @ o btibuti bbby vee b,‘>
s—(b,bgba b,,) 18 the substitution ittty - 1,
Let the inverse of the substitution s be designated by s
Then the inverse of s7'ig 8. The fact that any substitution, fol-
lowed by its inverse, gives us the original arrangement may be

expressed by the symbolism o 1 _ o
We have also s.s=4",

where s° signifies an identical substitution, i.e. s8°=1.
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The repetition of a substitution s or 37!, r times, is denoted
by 8" or s". Hence exponents are used here in much the
same way as are integral exponents in algebra.

86. Cyclic Substitutions. If we suppose the letters of the
substitution (ayt, -+- a,) to be placed in the given order on the

. . . 360° .
circumference of a circle at equal intervals of . the given

substitution is equivalent to a positive rotation of the circle

360°

through

1

Hence such a substitution is called a cycle, or

a cyclic substitution, or a circular substitution. The product
(ube -+ d)(wyz ---w) is called a substitution of two cycles.
Similarly we have substitutions of three or more cycles. The
substitution (1 284567

3457126
(1 35)(2 47 6); for 1 is replaced by 3,3 by 5, 5 by 1, and
we have one cycle; again, 2 is replaced by 4,4 by 7, 7 by 6,
6 by 2, and we have the second cycle.

In this manner any substitution can be resolved into cycles
so that no two cycles have a digit in common. This resolution
can be effected in only one way.

A cycle may consist of a single element, say (5). The sub-

5
stitution G g Z i ;) may also be written (1 3 4)(2)(5), or
@ 3425 0r(1 34).

) cousists of the two cycles,

Ex. 1. Find the cycles of the substitution (abrdnf y h).
cdafybhe

Ex. 2. Verify the relations (ach) (abc) =1, (abe) (abe) = (acd), (ab) (ac,
=(abe), (be)(ach)=(ac), (be)(be)=1, (abe)(acd)=1.

Ex. 3. In which of the following products is the commutative law
obeyed : (abc)(ac), (be)(ach), (bea)(bac) ?

Ex. 4. Write the inverse of (abcde).
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87. Finite Number of Distinct Substitutions. The number of
distinet substitutions which ean be performed upon a fimte
number of elements «a, --- «, is finite, for the number of
substitutions cannot exceed the number of permutations, and
this is known to be finite. Hence, if upon ¢a, - a, we per-
form an unlimited series of substitutions s, s% &%, &' ..., the
results of those substitutions cannot all be distinet. Theve
will be certain powers of s which give the same result as does s
itselt. Let we 4+ 1 be the lowest power of this kind, then s = &,
This may be written s-s =s. Ience

Sm.S'S_l = ss"l = SO = 1,
and =1,

We call m the order of the substitution.
The order of « substitution is the least power of the substitu-
tion which 1s equivalent to the identical substitution.

123 L1231\ , /1234
If 3_<‘)~'41> ““""’(.4112)’3;“(4123}

234 1234
"":< 234) ”52(2341) ete.

Hence m41=>5,m=4,and s* = «* =1, 5" = ¥* and generally,
s4n+r = §".

This substitution s is eyelie. It is evident that the order of «
cyclic or circular substitution is equal to the number of its elements
(digits).

If s=(123)(45), then $*=(132), s*=(45), s*=(122),
$=(132)(45), s> =1. Hence the order is 6.

If ny, ny, ny, -+ denote the munber of elements in the successive
cycles of a substitution, then its order is a number exactly
divisible by each of the numbers n,, 1y, ny, +--; that is, its order
is the least common multiple of u,, 1y, ng, -

Ex. 1. Show by actual substitution that the order of s = (1 2)(34 5).
(6789) is 12 or the L. C. M. of 2, 3, 4.
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88. Theorem. The product =%t may be conveniently obtained
Sfrom the substitutions s and t by performing upon euch cycle of s
the substitution t.

Let s = (abe ...)(a,'b'c' ...) vee
and t=<abc---a'b'c’---).
By s !By’ e

Take any one of the letters «, 8, y, .-+, o', B, ¥',+-+, s2y B.
By t7Y, B is replaced by b; by s, b is replaced by c¢; by ¢, ¢ 1s
replaced by y. Hence by t'st, 8 is replaced by y.

Now, if by ¢ we substitute 8 for b and y for ¢ in the cycles
of s, then, instead of the sequence b ¢, we have in s the sequence
By, which replaces 8 by vy, as before. As this consideration
applies not to B alone, but to any letter, the theorem is
established.

In the operation t~1st, ¢ is said to transform s; the operation
is called a transformation.

Ex. 1. If s=(123)(45667),t==(5723),thent-'=(3275). To
illustrate the theorem just proved, apply ¢4 to the arrangement 1234567
and weget1 7 24 36 5 Tothis resnlt apply the substitution s, and we
have 2 43517 6. To this last arrangement apply ¢, and we obtain
finally 3 4 5 712 6.

This same final arrangement is obtained more easily, if m place of per-
fornung the three substitutions, we perform upon the arrangement
123456 7 only one substitution, namely s'= (13 5)(4762) Nows'1s
gotten from s by performng upon each eyele of s the substitution ¢

Ex. 2. Hs=(123)(45667)and ¢t=(2437), find ¢-s¢ by theorem
in§8%

Ex. 3 If 8= (ab)(ed). t = (abr), determine the result of operating
with 7-1s¢ upon the arrangement @ b ¢ d.

89. Transpositions. A transposition is a cyelic substitu-
tion containing two elements. Thus, (ab), (bc), (1 2) are
transpositions.

Ex 1 Show that the square of any transposition 1s the identical
substuattom, e 1.
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90. Theorem. A substitution may be expressed as the product
of transpositions in «n unlimited number of ways.

We can easily verify that
L23--m)y=(@12)13) --- 1 n),
and that (123)A567) = (L 2)(1 3)(4 5)(L 6)(4 T) -on.

From this it appears that every substitution can be expressed
as the product of transpositions.

The number of ways of doing this is unlimited, for between
any two transpositions just found we may terpolate the indi-
cated square of any transposition without modifying the sub-
stitution; or we may prefix or annex the square of any
transposition, and we may continue this «d lbitum. Thus,

abe = (ab)(ac) = (ca)(ca)(ab)(be)(be)(ac).

91. Theorem. The number of transpositions into which a
substitution is resolvuble is either always even or always odd.

The effect of any transposition, say (@) upon the square
root of the discriminant, V1), is to change its sign. To show
this write (§ 77)

VD = (0 — ) (s — o) (01 — @) -+ (0 — z,),
(g — o) (ot — tg) -+« (3 — @t,,),
("‘3 - "‘4) . (“a - “n))

(“n 1—,).

The transposition (e, a,) alters the sign of the factor (a; — a,)
and interchanges the remaining factors of the first row with
the factors of the second row. The factors in the remaining
rows remain unaltered. Hence the sign of v/ D is reversed by
a single transposition.

Since any substitution can be expressed as the product of
transpositions, the effect of any substitution on V1) must be
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either to alter or not to alter its sign. Tf the sign of VI
remains unchanged, the substitution must contain an even
number of transpositions; if the sign of VD is changed, the
number of transpositions must be odd. Hence no substitution
is capable of being expressed both by an even and by an odd
number of transpositions.

92. Even and Odd Substitutions. A substitution expressible
as the product of an even number of transpositions is called
an eren substitution ; one expressible by an odd number of trans-
positions is called an odd substitution. ldentical substitutions
are classified as even.

Ex. 1. Are the following substitutions odd or even ?

q=(123456) g,____(123) 450617
132564/ :331(46 5)

SI=(AB56)(1T46283),s=(1234)3

<

-3

* Ex. 2. Show that any substitution transforms an even substitution
into an even substitution, See § 88.

93. Theorem. .1 ecven substitutions can be expressed as the
product of cyelic substitutions of three elements.

Tf two transpositions have one element in common, we have

an equality like the following:
121 3)=1 2 3).

If two transpositions have no element in common, we have

the following relation :
A H=>135HA 3 2).

Thus, since any two pairs of transpositions are expressible
in terms of cyclic substitutions of three elements each, it fol-
lows that any even substitution can be thus expressed.

Ex. 1. Express the even substitution (1 2 3 4)(2 4 5 6) as the prod:
uct of cyclic substitutions of three elements.



CHAPTER XI
SUBSTITUTION-GROUPS

94. Example of a Group. The substitutions
1, (12 3),132), I

are distinct and possess the property that the produet of any
two of them, in whichever sequence they are taken, is equal to
one of the three. Thus,

(12313 2=(32123)=L

1(1 2 8)=(1 2 3)1=(1 2 3).
1(1 3 2)=(1 3 2)1=(1 3 2).

Moreover, the square of any substitution gives a substitution
in the set. For, (123)2=(132), 132*=(123),12=1.
The threc substitutions I, possessing these properties, are said
to form a group.

95. Definition of Substitution-group. A set of distinet sub-
stitutions, the product of any two and the square of any one of
which belong to the set, is called a group of substitutions, or a
substitution-growp.

When using the term group we shall always mean a substi-
tution-group.

The substitutions (1 2), (1 8), (1 2 3) do not form u group;
for, while each substitution is distinct and while some of the
products yield substitutions in the set, others do not. Thus,
1 3)(A 2)yields (1 3 2), which does not belong to the set.

Ex. 1. Prove that the product of three or more substitutions of a

group is a substitution belonging to the group.
112
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96. Degree and Order of a Group. 'T'he number of elements
(letters or digits) operated on by the substitutions of a group is
called the degree of the group. The number of substitutions in
a group is called the order of a group. Thus, the group

1, (abe), (acd), (ad), («c), (be)

involves the three elements «, b, ¢ and has six substitutions.
Hence it is of the third degree and sixth order.

Ex. 1. Tell the degree and order of the group 1, («e)(bd).

Ex. 2. Prove that the identical substitution satisfies the conditions of
a group.

Ex. 3. Show that any positive integral power of a substitution of a
group is a substitution of that group.

Ex. 4. Prove that the identical substitution belongs to every group.

*Ex. 5. Prove that the inverse of any substitution in a group belongs to
the group.

Ex. 6. Every substitution s in a group is equal to the product of two
substitutions of the group.

97. Theorem. Upon the distinct letters ay ay++- a, there can be
performed n ! substitutions which formn a group.

From elementary algebra we know that the total number of
permutations of n distinet letters, taken all at a time, is

=1 -—-2)..3.2.1=nl

Take any one permutation . We may change it into any one
of the other permutations by performing a substitution. TBut
for no two of these other n! —1 permutations is the substitution
the same. Tlence there must be one less than 1! such substitu-
tions. Counting in the identical substitution, we have in all 2!
substitutions.

These #! substitutions form a group. For with any one of
them operate upon the permutation P, then upon the result
thus obtained operate with the same or any other substitution.
The second result will, of course, be some one of the n! permu-

1
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tations which can be obtained from the permutation P directly
by performing one of the given substitutions. Thus it follows
that the product of any two substitutions or the square of any
substitution is equivalent to one of the given substitutions.

Ex. 1. The letters a1azq; admit of the six permutations, @ a:as, a1azaz,
A201A3, A2a3(71, A3@12, aza:y.  Show that these six permutations are
obtained, respectively, from a@iaza; by performing the substitutions 1,
(a1)(aza3), (maz)(as), (1a:2a3), (M1@:a2), (@1a8)(az). Show that these
substitutions form a group.

98. Symmetric Functions and Symmetric Group. A symmetric
function of n letters «,, uy, +++, a,, being unaltered in value when
any two of the letters are interchanged, undergoes no change
in value when it is operated on by a substitution belonging to
the group given in the preceding theorem. Because of this
invariance the symmetrie function is said to belony to that group,
and the group bears the name of symmetric group.

Ex. 1. By applying each of the substitutions of the symmetric group
1, (maq2a3), (Masaz), (a2a;), (@¢s), (wma:), show the invariance of the
symmetric function, ¢1a: 4+ ayas + azas.

99. Theorem. All even substitutions of n letters form together
a group.

Even substitutions are each resolvable into the product of an
even number of transpositions, § 92. Hence the product of any
two of them and the square of any one of them yield even
substitutions.

Ex. 1. With the letters a, b, ¢ we can form three transpositions (ab),
(ac), (be). Taking the products of every two of these in either sequence
and the square of every transposition, we obtain the following distinct
substitutions, all even, which form a group:

1, (abe), (acd).

Ex. 2. Show that the odd substitutions of n letters do not form a
group,
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100. Alternating Functions and Alternating Groups. Let
dy, Qg -+, @, be n magnitudes, all different. A function of
these, such that an interchange of any two of them changes
the sign of the function, is called an alternating function.

Example: (@, — az)(a,— ag)(@, — a,) -+ (t;, —a,

(ag — az)(dg— ay) ++ (b — @)

(. — ay).

An even substitution performed upon this function will not
alter its value. For, an even substitution, which consists of an
even number of transpositions, will reverse the sign of the
function an even number of times, and will, therefore, restore
the function to the original sign.

Since the even substitutions of n letters leave an alternating
function unaltered in value while all the odd substitutions
reverse its sign, the group comprising all these even substitu-
tions is called the alternating group of the nth degree. Because
of this invariance for all the even substitutions, but for no
others, the alternating function is said to belong to the alternat-
ing group.

* Ex. 1. Show that the square root of the discriminant of an equation
of the nth degrece, expressed as a function of the roots, is a function which
belongs to the alternating group of the nth degree.

101. Cyclic Functions and Cyclic Groups. The powers of any
substitution form « group. The number of distinct substitutions
s, &, &, ..., resulting from taking the different powers of the
substitution s, cannot exceed the order of the substitution (§ 87).
If this order is m, then s*=1. If, therefore, we square any one
of the m distinet substitutions, or multiply any two of them
together, the result is always one of the m distinet substitu-
tions. Heuce the m distinct substitutions s, §% % .-, s™ are a
group.
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The powers of the cyclic substitution of n letters (a,a;--- a,)
constitute the cyclic group of the degree n.

A function of n letters which is unchanged in value by all
the substitutions of the cyclic group, but hy no others, is called a
cyclic function. The simplest cyelic function belonging to the
cyclic group of the degree n is

0as + a0’ + o + a0, + a,0,%
Ex. 1. Show that the function a;as?+ aqa3? + @;a:® belongs to the
cyclic group 1, (a1%2a3), (2103a2).

Ex. 2. Show that (@1 + @sw + a3w?)? belongs to the cyclic group of
degree 3, w being a complex cube root of unity.

Ex. 3. By raising (aiasn3a4) to powers find the cyclic group of the
degree 4.

102. Transitive and Intransitive Groups. In the group
1L, DG O, A HE 4, A HE Y

tne second substitution replaces 1 by 2, the third replaces 1 by
3, the fourth replaces 1 by 4. Similarly, by means of these
substitutions the digits 2, 3, or 4 can be changed into every
other digit operated on by the substitutions in the group. This
greup is said to be fransitive.

A substitution group is ecalled transitive when it permits any
element to be replaced by every other.

A group that is not transitive is called intransitive. As an
example of the latter we give the following group,

Here neither 1 nor 3 can ever be replaced by either 2 or 4.
103. Primitive and Imprimitive Groups. If in the transitive
group consisting of the six substitutions

1,(123456),(135)(246), (14)(25)(36), (1583)(264),
(165432)
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the digits are divided into the two sets 1, 3, 5 and 2, 4, 6, then
we notice that each of the three substitutions (1 2 3 4 5 6),
(1 4)(25)(36), and (1 65 4 3 2) replaces the digits of one set
by the digits of the other set, while each of the two substi-
tutions (1 3 5)(2 4 6), (1 53)(2 6 4) simply interchanges the
digits of one set among themselves. This group is called
anprimitive.

A transitive group is called imprimitive when its elements can
be divided into sets of an equal number of distinet elements, so
that every substitution either replaces all the elements of one
set by all the elements of another, or simply interchanges
the elements of one set among themselves. Otherwise it is
primitive. Example of a primitive group:

1,(123),(132).

There are three imprimitive groups of degree four, twelve of
degree six, and no nnprimitive groups of degree two, three, and
five.

Ex. 1. Show that no group whose degree is a prime number can be
imprimitive,

104. List of Groups of Degree Two, Three, Four, and Five. We
give here a list of the groups of the first five degrees, omitting
only the group 1. By G,” we mean a group of the degree p
and order g. We give also the notation for groups used by
Cayley and others. In their notation the symmetric group of
degree four is designated by (abed) all ; cyc means “cyelic”
substitution ; pos means “ positive” or even substitution. For
a list of all groups whose degree does not exceed eight, see
Am. Jour. of Math., Vol. 21 (1899), p. 326. In the list of
groups of degree n, we give only those which actually involve n
letters. But it must be understood that any group involving less
than n letters may be taken as an intransitive group of the nth
degree. For instance, ;¥ = 1, (ab) may be written as a group
of the third degree, thus: 1, (ab)(c).
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Drerre Two.

G = (ab) all =1, (ab).

Dreree Turek.

G® = (ube) all = 1, (abe), (acd), (ub), (ac), (be).
G¥ = (abe) cye.=1, (abe), (acd).

Decrer Four.

Gu® = (ibed) all = (abed) pos. + (ub), (ed), (acbd), (adbe),
(be), (ad), (acdb), (abde), (ac), (bd), (abed), (adced).
G, = (abed) pos. =1, (ab)(ed), (ue)(bad), (ud)(be), (wbe),

(ced), (bdc), (adb), (acb), (bed), (ubd),
(rude).

G = (wbed)s =1, (ae)(bd), (uc), (bd), (ub)(cd), (ad)(be),

(ubed), («wdeb).

GP1 = (abed) eye. = 1, (ue)(bd), (abed), (udcb).
GA11 = (abed), = 1, (ab)(ed), (ac)(bd), (ad)(be).
GO = (ab « ed) = 1, (ab)(cd), (ub), (cd).

GO = (ae - bd) = 1, (ac)(bd).

DecrerE Five.

G = (wbede) all = (abede) pos. + (abetl), (abde), (abee
1 f

(ubee), (abde), (abed), (acdd), (acdb),
(ucbe), (uced), (acde), (aced), (adbe),
(addeb), (wibe), (udeb), (adee), (adec),
(aebe), (wecd), (uebd), (aedb), (aecd),
(wedc), (bede), (bdee), (beed), (bdec),
(beed), (bede), (ube)(de), (ach)(de),
(abd)(ce), (wlb)(ce), (abe)(cd), (web)-
(ed), (acdy(be), (adc)(be), (uace)(bd),
(aec)(bd), (ade)(be), (ued)(be), (bed)-
(ae), (bdc)(ae), (bee)(udy, (bec)(ad),
(bde)(uc), (bed)(ac), (cde)(ab), (ced)-
(ad), (ab), (ac), (ad), (ae), (be), (bd),
(be), (cd), (ce)y (de).
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Gg® = (abede)pos.=1, (abede), (abeed), (abdec), (abdce),

Gy = (abede)y, =1,

Gll( 3 = ((tb(‘) 3.11 ((l(")

G® = (abede)y, =1,

(abecd), (wbede), (ucbde), (ucbed),
(acdbe), (ucded), (acebd), (acedd),
(adced), (udcbe), (wudech), (adebe),
(adbec), (udbee), (uebed), (uebic),
(wechd), (aecdb), (weded), (uedbe),
(ubce), (acd), (ucd), (ude), (wde), (ued),
(abd), (udb), (ube), (aeb), (ace), (uec),
(bed), (bde), (bde), (bed), (bee), (bec),
(cde), (ced), (ab)(ed), (ub)(ce), (ab)(de),
(uc)(dd), (ac)(be), («c)(de), (we)(bd),
(ue)(be), (ae)(cd), (ad)(be), (ad)(be),
(ad)(ce), (bey(de), (bad)(ce), (be)(cd).
(abede), (acebd), (adbec), (aeded),
(beed), («cbe), (aecd), (abde), (uded),
(bdec), (adee), (abed), (aebe), (ucdb),
(be)(ca), (ue)(bd), (ud)(be), (ac)(de),
(ab)(ce).

1, (abe), (ach), (ube)(de), (acb)(de),
(ab)(de), (ac)(de), (be)(de), (ab),
(«e), (be), (de).

(ubede), (ucebd), (udbec), (aedcd),
(&) (ed), (ue)(bd), (ad)(be), (ac)(de),
(ub)(ce).

G 1 = {(abc) all (de)} pos =1, (ubc), (acb), (ab)(de),

(ac)(de), (be)(de).

G 11 = (abe) eye. (de) =1, (de), (abc), (abe)(de), (ach),

G = (abede) cye.

(acb)(de).

=1, (abede), (acebd), (adbec), (aedcb).
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Ex. 1. Show that the order of any alternating group is E—! , where n is
the degree of the group. 2

Ex. 2. Tell by the orders of the groups which of the groups of the first
five degrees are the symmetric, which are the alternating groups.

Ex. 3. By inspection, find which of the groups of the degrees two, three,
and four are transitive, intransitive, primitive, imprimitive,

Ex. 4. Show that the mmprimitive group in § 103 may have its elements
divided into the three sets 1,4 ; 2, 56; 3, 6, and that it 1s imprimitive with
respect to these sets.

Ex. 5. Show that, of the groups of the fifth degree, three are intransi-
tive, viz. (1128, Gg®'1, QD11

* Ex. 6. Show that the intransitive group 411 is obtained by multi-
plying every substitution of the group 1, («b) by every substitution of the
group 1, (c¢d).

*Ex. 7. Show that the intransitive group G¢®1I1 is obtained by multiply-
ing the substitutions of the group 1, (ebe), (ach) by the substitutions of
the group 1, (de) ; that Ge®T is the product of the group 1, (abe), (acb)

and the group 1, (ab)(de) ; that (-2 is the product of G¢® and the group
1, (de).

Ex. 8. Show that a group of the third degree may be regarded as an
intransitive group of a higher degree.

105. Sub-groups. The alternating group of degree 4 is
(§104)

'1,(12)34), 1 3)(24),14H(23),123),(132),(134),
(142),(124),(143),(234),(243).

‘We observe that, of the 12 substitutions, the following four
make up a smaller group of their own:

1,1 2)3 4), A1 3)(2 4), (1 4)(2 3).

Thus we may have groups within groups. If from the sub-
stitutions of a group we can pick a set which form a group all
by themselves, this second group is called a sub-group of the first.
The terms group and sub-group ure only relative. A sub-group
considered by itself is called a group, and a group may, in turn,
be a sub-group of another of still higher order.
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Ex. 1. By inspection, find sub-groups of
1, (zy)(2w), (0z)(yw), (2w0)(vz).
Ex. 2. How many sub-groups has (f24©? See § 104,

Ex. 3. How many sub-groups has G424 ?

Ex. 4. What sub-groups has («bede)yo?  (abe)all (de) 2 (abede) all ?

106. Theorem. The order of a sub-group is a fuctor of the
order of the group to which it belonys.

Let the substitutions of the sub-group be s, 8y 85 - S,
and let ¢ be any substitution of the group which does not oceur
in the sub-group. Then, by the definition of a group, we

know that
Syfy Sufy Sy ooy S, T

are all substitutions belonging to the group, but none of them
belong to the sub-group; for suppose st = s,, then

8718, = w7l = 1.

Since s, is a substitution of the sub-group (see Ex. 5, § 96), it
follows that its product with s,, namely ¢, belongs to the sub-
group — which is contrary to supposition.

Moreover, the new substitutions in T are all distinet; for sup-
pose st = s,f, then it would follow that s, = s,

If the substitutions in T do not exhaust the substitutions in
the group not belonging to the sub-group, then suppose the
substitution ¢, is among those left over. Then

Sityy Sabyy Salyy =5 Saly 11

are distinet substitutions of the group not found in the list
8y, 8y *++, 8, for reasons just mentioned ; nor are they found in I;
for suppose st = s.fy, then ¢ = s,7Is)t = 5,4, which is some sub-
stitution in T, a conelusion contrary to the assumption concern-
ing t,, Continuing in this way, the substitutions of the group
are divided into sete of » substitutions each. As the number
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of substitutions is assumed to be finite, this process must come
to an end, and we have the sets

Sy Sy Sy ooty Spy
Sty 8ty sgty ey S
Sity Sy Sgty 00y Sty

sltnw 82tm.) Sgbuy *0y Sntm'

The total number of substitutions in the group is therefore n
times the number of sets, or (m + 2)n. But (m + 2)n is the
order of the group, and n the order of the sub-group. Hence
the order of the sub-group is a factor of the order of the group.

107. Index of a Sub-group. If » is the order of a group G

and m the order of a sub-group Gy, the quotient 2 i called the
m

index of Gy under . Thus the index of an alternating group

: . n!
under the symmetrie group of the same degree is n! + = 2.
-l

Ex. 1. Give the index of every group of the fifth degreec under the
symmetric group.

Ex. 2. Show that a group whose order is prime can have no sub-group
(except the substitution 1).

108. Normal Sub-groups. —If @, is a sub-group of G, and s
any substitution of G which does not oceur in G, the groups G,
and s~'Gys are called conjugate sub-groups of . By the trans-
formation s7'G,s, we mean the result obtained by subjecting
every substitution & of the sub-group G, to the transformation
s7ls;8.

Tf G, and s~'G,s are identical to cach other, whatever substi-
tution s is of @G, @, is called a normal sub-group, or a self-conju-
gate subgroup, or an invariant sub-group of G.

109. Simple Groups. — A simple group is one which has no
normal sub-groups, other than the group consisting of the
identical substitution.
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It can be shown that the alternating group of every degree
above four is simple (§ 198). 1t1s readily seen that all groups
whose order is a prime number are simple. There are only six
groups whose orders are not prime numbers and do not exceed
1092, which are simple, viz., the groups of the orders 60, 168,
360, 504, 660, 1092. Those of order 60 and 360 are alternating
groups of the degrees five and six, respectively.

A group which is not simple is called composite.

Ex. 1. Fiud the groups conjugate to G, under (/1.

If we transform s, = (ac) (bd) by s = («be), we get s-1s13 = (ab) (cd).
In the same way transforming s; = 1, we get 1. Henee a group conjugate
to G is 1, (ab)(cd). We obtain the same conjugate group by taking
for s the substitutions («ed) and («dhb).

The transformation of s—1(/s(Yy, where s = (bar), yields the conjugate
sub-group (ad)(be), 1. The same result 1s obtained 1f we take s = («cb),
(bed), (abd), or (adc).

Taking s = (ac)(bd) or (ad)(he), the conjugate groups obtained are
1dentical with (2,9, The distinct conjugate sub-groups of ¢34 under (4,4
are, therefore, 1, (ac)(bd),

1, (ab)(ed),
1, (ad)(he).

We see that G is not a normal sub-group of G4,

Ex. 2. Find the conjugate groups of (¥ under G4® I,

Ex. 3. Find the conjugate groups of G4 Il under (14,

Ex. 4. Find the conjugate groups of G4 I under G4,

Ex. 5. By actual trial show that (33 is a normal sub-group of G¢® ;

that G»® is a normal sub-group of G4 IT; that G4 II is a normal sub-
group of Gs¥ ; that (4 I 18 a normal sub-group of Gy®.

Ex. 6. Show that every group has identity as a normal sub-group.

Ex. 7. Prove that the alternating group Gy, is a normal sub-group of
the symmetric group G»,, See Ex. 2, § 92.

Ex. 8. Prove that a cyclic group of prime degree is simple.

Ex. 9. Prove that the alternating group embraces all circular sub-
stitutions of odd order, but none ot even order.

Ex. 10. The substitutions common to two groups constitute a group
by themselves, the order of which is a factor of the orders of the two
given groups.
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110. Normal Sub-groups of Prime Index. Of special interest
in the theory of equations are the series of groups

Pl) P2) ) Pu R-H, "‘,1

so related to each other that each group P, is a normal sub-
group of the preceding group P, the index of P’ under P,
being a prime number. Such an assemblage of groups is called
a principal series of composition. If the restriction of a prime
index is removed, then the assemblage is called simply a series
of composition.

Ex. 1. Show that a principal series of composition is (@) for groups of
the third degree, (4®, (s, 1, (b) for groups of the fourth degree, (¥,
Gra®, G4 11, (o, 1.

Ex. 2. Show that, for the group of the fifth degree (%), a principal
series of composition is G, G®, G5, 1.

Ex. 3. Show that G, II is a normal sub-group of Gg®, G419, and
G,

111. Functions which belong to a Group. When @, is a sub-
group of ¢, a rational function of » letters wy, wy -+, «, is said
to belong to G, if the function is unaltered in value by the sub-
stitutions of (¥, but 1s altered by all other substitutions of G.*

*1f the coeficients of f(x) — 0 are independent varigbles, then its roots
are mdependent of each other. A function of the roots must therefore be
looked upon as having an alteration m »salue whenever the function experi-
ences an alteration m form. In other words, when the roots are independent
of each other, two functions of these roots are equal to each other only when
they are identicully equal. In the present chapter the roots are so taken.

When the coefficients of f(x) =0 represent particular numerical values,
its roots are fixed valnes Two functions of these roots may be numerically
equul to each other evenwhen they have different forms. Hence, in an equation
whose coefficients have special values, a function of the roots may be formally
altered by a substitution and yet experience no change in numerical value.
Take, for instance, the equnation with special coefficients, 28 =1. If w is one
of its complex roots, we may write @)= w, (¢, = w?, 03 = w3. The function
o2, is altered in form by the substitution (e)etyt;), but not in value; for,
U3y = 0620, = w. That tunctions of &, oy, ®y, may have different forms,
but the same numerical value is seen also in the equalities

0200 = 0, = () = 042,
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‘We have seen that the alternating group, regarded as a sub
group of the symmetric group, has the alternating functior
which belongs to it (§ 100). Sumilarly the eyche group, re
garded as a sub-group of the symmetric group, has the cychc
function which helonys to 16 (§ 101).  The cyelic function stil
belongs to the eyclic group when the latter is considered as @
sub-group of a sub-group of the symmetric group.

The function @, + 2, — X, — «, belongs to the group 1, (1 3)
(24) when this group is taken as a sub-group of 1, (13)(24)
(12)(34), (1 4)(23),but the funection no longer belongs tc
that group when considered as a sub-group of the symmetric
group; for the substitution (13) ocenrs in the symmetric group
but not in the given sub-group, and yet (1 3) leaves the fune
tion unchanged. When we say that a function belongs to ¢
group, but do not mention of what other group the given group is
a sub-group, we shall understand that it is under the symmetrie

112. To find Functions which belong to a Group. Let G, be
a sub-group of (7, G being of the degree n, and let o, @y +-, «,
be distinet quantities. Let also

P =f(“1, Y “n)

be a rational function which may have rational coefficients and
which will assume a different value for every substitution of
the gronp (. If the order of the sub-group (4, is m, we ohtain
on operating upon p with the substitutions in 7}, m distinet

Val“es, Ps P1y Py "y Pu-1e ]

Tf now we operate upon the functions I by any substitution
in (), these quantities are merely permuted among themselves ;
for, any value p' thus obtained as the result of two substitu-
tions, s, and s, of the sub-group ¢, is the same as that obtained
from p by the simple substitution, s; =, - 8, of this sub-group.

These facts point to the unexpected conclusion that, in the theory nnder
development, the equation /' (r) = 0 may represcnt & more general case when
the coetticients are particular numbers than when they are variables. See § 2.
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If, however, we apply to the functions I a substitution of G
which does not occur in (4, we obtain a series of functions

P’) P’ly M) P'm-l)
of which at least p' does not oceur in I For, if p' did oceur
in I, we would have two identical functions, distinet from p,
resulting from the application to p of two different substitu-
tions. This is impossible.
If now we form a new function ¢ thus,

y={t—p)(t—p) e (¢ — pu-r)s
where ¢t is a variable, it is evident that y remains invariant
when operated on by the substitutions of the sub-group @,, but
varies for any substitution m (¢ which does not occur in G,.
Hence y is a function which belongs to ¢, taken as a sub-group
of .

We are at liberty to assign to ¢ any rational value which will
keep ¢ distinet from any value obtained for it by application
to ¢ of a substitution in (7 that is not in ;.  One such value is
t=0.

113. This method of finding functions belonging to a group
does not usually furnish simple results directly, as will be seen
from the following example.

Ex. 1. Form a function of «;, ¢, (45, @4, which belongs to
GaH =1, (13)(24), taken as a sub-group of
GOIL=1, (13)(24), (12)(34), (14)(23).
Assume p = €1ty + €2, + €3¢y + ¢4ty such that p assumes four distinet

values for the substitutions of (/4/¢II. The substitutions of G5® applied

to p yield p == C1lly + Catly + C3its + Ca0la,

Py = €143 -+ Caty + €304 + C4lla,
hence ¢ = (¢t — p)(t— p1) = ¢2— (a1 + o3) (tey + tez) — (e + otg) (tez +tcs)
+ ()2 + ag¥)cres + (2 + aq?) cary
+ aros(cy® + cs?) + wactg(c? + 042)
+ (@205 + cerees) (€102 + €3¢4) + (@1ts + asoly) (€164 + C2C3).
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¥ is a required function. By inspection we see that ¢ is composed of
parts which are themselves tunctions of the kind sought tor. These parts are
— (U1 + uz)(ber + tes) — (ot + ota) (bcz + ECa),
(@12 + a?)eres + (@ + ag?)cacy,
ayz(er? + es?) + was(cs® + c42).
Fort=1,¢; =¢3= —1and c; = ¢4 = + 1 we obtain the simpler form
oy + Ly — Ly — (g
Fort =0, ¢c; =c3 =1, ¢; = ¢; = i, we obtamn the simpler forms
@? + og? — w? — af?,
WLty — Loy,
Ex. 2. Assuming p = «; — «; 4 i«,, derive functions which belong to
G35 as a sub-group of Ggd).
Taking ¢ =0, we get (¥ —2)(w1et® + «w3:? + a21?) + (¢ + 2) (eeges?

+ wsr® + @yw?). Then show that wies? + wsue® + tay? and  eawst
+ wgeer? + 0y a? each belong to (f5t8).

* Ex. 3. Find the group to which (e, + «3) («z + @s) belongs.
We find, by trial, which of the substitutious of the symmetric group of
the fourth degrec leave the function unaltered. These substitutions are

1, (ez)(sets), (oerees) (ceats), (rees) (Gouts)y (eertes), (ezeey), (oreaitses),
(®ueaezey).  These substitutions constitute the required group. From
§ 1041t is seen to be (Fg*).  From the behavior of this group toward the
given function, show that the group is imprinntive.

Ex. 4. Find the group to which a; @ 4 #4304 — (e1tts + @tgry) belongs.
Ex. 5. Find the group to which (@ — @) («: — «3) belongs,
Ex. 6. Find the group to which (etyig — @;ea)*(eties + 20e4)? belongs.

Ex. 7. Prove that the substitutions which leave unaltered a function
of n distinct letters, form together a group of the nth degree.

* Ex. 8. Show that «)?oe? 4- 0tePatz? + +-+ + @y 170,7 + €047, where 1
and q are distinet positive imtegers, is a cychc function,

Ex. 9 By inspection show that {(«¢ — «2) + (@1 — «3)}2 belongs tc
G, as a sub-group of G(Fey®. Compare with Ex. 1.

Ex. 10. Show that the cross-ratio of four points (§78) f == —~=

when k& 18 not equal to — 1 or to w. is a function which belongs to G411
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that it has then six distinct conjugate values ; that when k=— lork = w,
the conjugate values are formally different ; that the numerical values coin-
cide in pairs when £ = — 1, and in triplets when ¥ = w, w being a complex
cube root of - 1. See § 111.

Ex. 11. Find the values of the roots of #* — 23 — z 4 1 = 0, and show
that, for these values, the function o2ty 4 o12¢ez 4 ws2ets 4 otz2e does not
belong to the cyclic group, although this function is formally altered by
all substitutions in G4 which do not occur in G4¥WI.

* Ex. 12. Show that, for the general quartic, the following functions
belong to the cyclic group:

(¢ +201) (ot + 2 2)(0tz + 2 w3) (e + 2 ),
Wy (o? + 2 1) + edoa(er® + 2 o) + oloes(u® + 2 003) + oegBoe (ots? + 2 ).



CHAPTER XII
RESOLVENTS OF LAGRANGE

114. Resolvents. Kxpressions, known as “resolvents of
Lagrange,” are of great importance in researches on the alge-
braic solution of equations. The term resolvent is used in two
different senses: first, to represent certain auxiliary equations
used in the resolution of given equations; second, to represent
certain functions used in the resolution of equations. The
Lagrangian resolvents are of the latter kind; they are functions
of roots of unity and the roots of the given equation.

115. Definition. Let f(z) =0 be an equation having the
roots «, ¢, +-+, «,,. Let o be any one of the nth roots of
unity, and let the function [w, a] be defined as follows:

[0, ¢] = « + v, + Py + -+ + 0" Yo,y I
The expression 1 is a Lugrangian resolvent.

116. Roots expressed in Terms of Resolvents. If we write
the Lagrangian resolvents,

[0, ] =« + v, + oy + -+ + 0" e,y

[wl, u] @ + “’1“1 + o’u, + —l- o™ u,, " I
[“’n—l! “] =« + W,y + Wy (L, + + w, l Ly -1y |
and add them, we get E[w, «] = ne, 11

where 3 signifies the, sum of all the [w, «], vbtained by writing
in succession w, wy, wy *-+, w,_, in place of w.
K 129



130 THEORY OF EQUATPIONS

If we multiply the equations in T by o™ o™ =, 0, ;1 %
respectively, and then add, we have the more general result,
So* [w, ] = noy, ITI

Hence, if we are given the values of the Lagrangian resolvents
of an equation f(r) =0 of the ath degree and the nth roots of
unity, the equation f'(x) = 0 is solved.

117. Theorem. If we operate wpon the subscripts of « in
[w, @] with the cyclic substitution (0 1 2 3 «-. (n —1)), [0, «]
becomes w! [w, «]; I we operate with (012 ..« (n — 1)), [o, «]
becomes o™ [w, «].

If we operate upon

[0 d]=w+ vy + -+ + 0" ', 4
with the substitution (0 1 2 ... (n —1)) and observe that
o =07l ete., we get
o o, €] = @ + 0w, + 'ty + 0 + 0",
= o (e + oo + o'y + - + 0", ).
Operating in this manner & times, we can easily establish the
truth of the second part of the theorem.

118. Theorem. If with the cyclic substitution

©012..(n-1)

we operate upon the subscripts of « in [w, «], the subscript of the
coefficient of each power of o in [w, «]” undergoes the cyclic sub-
stitution (01 2 .. (n—1))*, v being any positive integer.

By the Polynomial Formula expand
[w, &) = (e + v, + -+ + 0" e, )7,

and by the relation o"=1 reduce all exponents of o to
exponents less than ». Then combine all terms having like
powers of w. We get

Lo, a]' = Ay + 0dy + P4y + -+ 0",y I
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where A4, A, -, .1,_, ave expressions of the degree v with re-
spect to a, &, @y +++y 0, und have integral numerical coefficients.
If in formula I we replace o by o, o, wy +++, w,_; in succes-
sion, we get the following » formulie:
[o, €] =y + oy + o®cdy + oo + 0" 4, 4,
Lo €] =y + oy + ofdy + ooo + 0 7'd, II
(Wt ¢]* = Ao + 0popdy + 0 sy 4 o F 0, 1A, 1
It was shown in § 69, Ex. 5, that the sum of the pth power of
the nth roots of unity is » or 0, according as p is divisible or
not divisible by #. Remembering this and multiplying the »
expressions in Il by o7 o;7% .-+, w,_;7% respectively (& being
any integer), we get, after adding the n resulting expressions,

nady = S0 + [, ], 1801
where 3 indicates the sum of all the expressions obtained by
writing in succession w, wy, wy +++, 0, ; in place of w. 1f now we
operate upon the subseripts of «, oceurring in cach of the v fac-
tors [w, «] in the right member of III with the eyclic substitu-
tion (012« n—1), we get, § 117,

)

So v [w, a]". IV
Now, by writing & + v for & in formula IIT, we obtain

%w"‘ "[w, a]" = n/l,,ﬂ.

In other words, the substitution (0 1 2 ... (n —1)), applied
to the subscripts of « in the right member of IIT causes 4,
to be replaced by A,,,. But 4, is transformed directly into
A,,, by the application to its subscript of the substitution
(012...(n—1)). Hence the theorem is established.

Ex. 1. Tllustrate this theoremn by the roots e, @;, e of the cubic,
taking v = 2.
We have [w, @] = @ + wity + wlts,
[w, (1012 = Ay + A1w + Azw?,
where Ao = ¢ + 2 12, A) = w2 + 2 ttotty, Az = 0442 + 2 s,
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Operating upon the subscripts of « in [w, @] by (0 1 2), we get
@y + wltg + Wiy,
and (g + wits + wlitg)? = s + Aow + Ay
We see that 4y, A, 42, when operated on by (0 1 2)2, become respec-
tively Az, Ao, 4;.

Ex. 2. Illustrate this theorem by taking v = 3 in Ex. 1, and show that
the function belongs to the cyclic group.

Ex. 3. Show that (0 1 2), applied to the subscripts of @, @i, &, in
[w?, @]2 = (@ + w0ty + wies)? = Ao + Ajw + Azw?, produces the same
effect as (0 1 2)¢ applied to the subscripts of Ao, Ay, ls.

Ex. 4. Show that (0 1 2 3) applied to the subscripts of e, 0, o, 3,
in [, €]2= (09 + Wty + bty + ¥0t3)2 = Ag + Ao + Ase0? 4 Azwd, where
w = — ¢, produces the same effect as (0 1 2 3)® applied to the subsecripts
of AO! -Ah -AZ, A8°

119. Theorem. If with the cyclic substitution
012...(n—1))

we operate wpon the subscripts of «, the subscript of the coefficient
of each power of w in the product of [w, «]* « [ohy, «]*1 + [w's, «]'
-« suffers the substitution (01 2 -.. (n—1))+HAmtdvat 0 arhere
Uy W1y Vg o0c Ure positive integers and Ay, Ay o+ positive or negative
integers.

This theorem is a generalization of the preceding and is
proved in the same way. The product yields the equality

[w, €] - [oM, a]'t - [oY @]+ = By+ 0By + By +
ot + mn..]Bu-—l!

where By, B,, .-+, B,_, are functions of the roots «, e, -+, o, _;.
Replacing o successively by w, @, oy +-, o,,, we have all
together n expressions. Multiply them by o % o™ w7 ...

respectively, then add the resulting products, and we get

nB, = :w"[w, ] Loty @], I
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To the subscripts of « in the right member of I apply the
substitution (01 2 ... (n — 1)), and we get

gw“"""—”‘)\‘_m[“’; “]v « [oM, @]t ey

which expression is recognized by T to be equal to nB, ¢ e

Jut B, is replaced by By, - if We operate upon B, with
the substitution (012 ... (i —1))**mMt+, Hence the theorem
18 established.

* Ex. 1. Show that the function [w, «]* belongs to the cyclic group of
the degree n.

If we operate upon [w, «¢] with any such substitution (012... (n — 1))
of the cyeclic group, the etfeet is the same upon the coetlicients B; of
[w, «]* as if the substitution (0 1 2... (n — 1))* were applied to the
subseripts of B, directly, § 118 But (01 2... (n — 1))* 1s the iden-
tical substitution; hence it bLrings about no change. Consequently
[w, «]* is invariant for the cyclic group. This mvariance holds for no
substitution of the symmetric group of degree n, except the substitutions
which occur also in the cyelic group. IIence [w, ®]* belongs to the cyclie
group.

* Ex. 2. Show that the product [w, «]#—A.[wr, «] belongs to the
cyclic group of degree n.

By § 118, 1V, the cyclic substitution (012 ... n — 1), effected upon
the subscripts of « in [w, @]~ gives w~"*+A [w, «]*~A, When operated
upon those in [wA, @] it gives w—A[wA, «]. Tence, when operated upon
the product of the two, we get w "+A -Aw, a]*—A. [wA, «], where

w MATA = yn =1,

Ex. 3. Show that (& — i, — ¢y + i«3)* belongs to the cyclic group of
degree four.

For convenience, let — i = w, and we have (¢ + wlit; + w?its + wBe;)?,
which, by § 118, IV, becomes w—4(& + wt; + w?ts + w3ey)* when operated
upon by (012 3).

Ex. 4. Notice if the following functions belong to the cyclic group of

degree four:
(¢ + iy — @y — Tag)t,

(0 — ity — s + lug) (6 + 0 — Uy — otg),
(@ — 1 + @y — ug) (8 — iy — & + itg)?,
(& — ay + oy — ag)?.



CHAPTER XIII*
THE GALOIS THEORY OF ALGEBRAIC NUMBERS. REDUCIBILITY

120. Definition of Domain. A set of numbers is called a
domain of rationality or simply a domeain, when the sums, dif-
ferences, products, and quotients of any numbers in the set
(excluding only the quotients obtained throngh division by 0)
always yield as results numbers belonging to the set.

All rational numbers (integers and rational fractions, taken
both positively and negatively) constitute such a domain, for
this system of magnitudes is complete in itself in the sense
that any of the four operations involving any of these numbers
never yields as a result a number which does not belong to
the set.

The integers by themselves do not constitute a domain, for
the quotient of two integers may be fractional.

All the numbers of one domain £ may be contained in a
setond and larger domain '.  Iu this event the smaller domain
Q is called a divisor of the other ', and Q' is called a domain
over Q.

For example, the complex numbers of the form a 4 i, where
i=V—1and « and & signify rational numbers, are a domain
of which the domain of rutional numbers is a divisor.

Another example of domains of numbers 15 the one embrac-
ing all real numbers, whether rational or irrational. Still
another is the domain consisting of all numbers, @ + b, where
« and b are rational or irrational.

*In the exposition of the Ga.ois theory in this and the succeeding chapters
we have followed the treatment given by H. Weber in his Lelirbuch der

Algebra, Vol. 1, pp. 491-698,
184
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121. The Domain Q. The domain of rational nuwmbers is
a divisor of all domains, for each domam contamns at least one
number » different from 0; hence 1t contains also » +n or 1.
But if unity belongs to the domain, then it embraces all num-
bers obtained by addition and subtraction of units, that 1s, all
positive and negative mtegers; from the latter we can by divi-
sion derive all rational fractions. Ience the rational numbers
oceur in every doman.  Hereafter we shall indicate the domain
of rational numbers by €,

122. Adjunction. Let Q sigmfiy any domain.  1f we add to
it any number « which does not alveady belong to 1t, then the
uew system of numbers does not constitute a domain unless we
add also all numbers ansing from a finite number of additions,
subtractions, multiplications, and divisions involving « and all
numbers in the domain @  TLet us designate the new domain
thus obtained by Q,,. It is evident that Q is a div-vor of Q.

This process of obtaining the domain Q,, from Q is called
adjunction.  We say that we adjoin « to Q and obtain Q. By
the adjunction of 7 to the domain of rational numbers Q, we
obtain the domain of complex numbers €, ,. This embraces
all numbers of the kind « + /b, where « and s have rational
values. In gencral, if we adjoin « to Q,, we get Qg ).

Ex. 1. Show that the rational (proper) fractions do not constitute a
dowain,

Ex. 2. Show that 0 satisties the definition of & domain.

123. Reducibility Defined. Let the integral function
J@) =" + '+ s o, 2 +u,

have coefficients «, «,, -, «,, all of which belong to some
domain Q. Then we shall say that f(x) is ¢ function in Q and
S (@) =0 is an equation in Q. 1If the tunction f(z), in which =
is some integer >1, can be decomposed into factors of lower
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degree with respect to x, such that the coefficients of the fac-
tors are numbers belonging to the domain Q, then the funetion
S (x) is called reducible in Q; otherwise it 15 called irreducible
in Q.

Thus, if Q designates the domain of rational numnbers,
then 2? — #* is reducible in Q, because it yields the factors
(€ +y)@—y). On the other hand, ' — 3 y* 13 irreducible in
2, because some of the coefticients of 1ts factors

T+ V3y@—V3y

are not rational.

1f, however, we form a new domain by the adjunction of
«=V3 to the domain of rational numbers, we obtam ),
embracing numbers of the kind « + V30, where « and b are
rational. With respect to tlis larger domain the functions
a2 —¢? and #*—3¢® are on an equal footing, for both are
reducible in Q4 ,,, since the coefficients of the two factors of
each function are numbers belonging to the same domain Q.

Ex. 1. Find out which of the following functions are reducible in the
domain of rational numbers ) :
(o) 2 +22 +1,
®) 4+ 2241,
(¢) 224+ =z -1,
@) %4+ =z +1,
(¢) 2+ 1.
Ex. 2. For each of the above functions which are irreducible in Q),

find by adjunction the smallest new domain in which the function is
reducible.

Ex. 3. Find a domain such that all the functions of Ex. 1 will be
reducible in it.

124. Algebraic Numbers. All numbers which are roots of an
algebraic equation

S@=a+ 2" ¢+, +a,=0
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with integral coeflicients are called algebraic numbers. Numbers
which cannot oceur as roots of an algebraic equation are called
transcendental. 1t was fivst proved by Hermite (1873) that e,
the base of the natural system of logarithms, is a transcen-
dental number. In 1882 Lindemann first demonstrated that
m, the ratio of the circumference of a circle to its diameter, is
also transcendental. 1f to the domam of rational numbers
Qq we adjoin 7, we obtain a trawscendental domain. 1f the
number adjoined to Q, is algebraie, the new domain is called
an algebraic domain.

125. Irreducible Equations. An equation, f(2) = 0 is said to
be reducible or irreducible in a domain @, according as the
function () 15 reducible or irreducible in Q.

If we adjoin to the domain @ one of the roots o of the
equation f(x) = 0, then if « does not helong to the domain Q,
we obtain a new domain Qg which is an algebraic domain
orer §).

126. Theorem. If f(x) =0 und F(x) = 0 are hoth equations
i the domain Q, and if f(r)=0is irreducible in Q@ and has one
root which satisfies F(x) = 0, then «ll its roots satisfy Fx) = 0.

Since the two equations have at least one root in common,
the two functions f(2) and F (x) have a common factor involv-
ing . But we know that the highest common factor is found
by ordinary division, i.e. by a process which nowhere intro-
duces numbers not found in the given domam of rationality.
The highest common factor is therefore a furction in Q.
But f(x), being irreducible, has no factor in @ involving a,
oxeept itself. Ience the highest common factor must be either
f (x) or a quantity differing from f(x) by a constant number.
In other words, we must have either F(x)=c. f(x) or
() = g(a) - f(»), where g(r) is a function in Q.

Ex. 1. The cubic 23 — 252 —z +1=0 has three incommensurable
roots and is therefore irreducible in the domain Q). It has one root in
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common with 2% =33 + x24+2r —- 1 =0, Find the II. C. ¥. of the two
functions and show that all the roots of the first equation satisfy the
second.

Ex 2. The function #2 4- 6.x + 718 1rreducible i (), and it 1s not a
divisor of 3+ 3xi+ 324 1. From these data show that the two
functions cannot have a common factor,

Ex. 3. The eyuation a2+ ha, + ¢ =0 m 2, has a root in common
withed + 5024+ 10,4+ 1=0, Showthat ¢ =h=c=0.

Ex. 4. Prove that two functions in £, ¢(r) and f(r), cannot have a
common factor which 1s a tunction of & m 1t f (&) s 1rreducible and not
a divisor of ¢ ().

Ex. 5. If a root of the irreducible equation f () = 0 in © satisfies the
equation ¢(x) =0 in £, and 1t f(r) 1s of lugher degree than ¢(a), then all
the coefticients of ¢ () must be zero.

127. Gauss's Lemma. If [ (@) has inteqral coefficients and can
he resolved into rationed fuctors, it can be resolved into rational
Juetors with integral coefficients.

Consider the two funetions,

G(r) = y + ot @2t e His) = by + by 4 by 4 - .

- - )

ne n

Let & be the H. €. F. of the integers «y, ¢y, @,y +++; and let ! be
the H. C. F. of the integers by, by, Dy, +--.

Also let & be relatively prime to m, and let { be relatively
prime to .

We may now write

Gl)y=k-gx), ) =1- ko),

where g(x) and h(x) are functions whose denominators are,
respectively, m and n.  The numerator of ¢(r) is an integral
funetion of 2 with integral coefficients which have no common
factor, except 1. The same is true of the numerator of
R(x). Hence the smallest denominator of the produet g() - 2(x)
is mn.
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Consider the case when the product G'(x) - II(x) has only
integral coefticients. Then it is evident that k.{ must be
divisible by m - #.  Smee & is relatively prime to m, and I to n,
it follows that

k= pn, = qm,

where p and ¢ are integers. \We may now write
G(x) u!’_ ), ) = TIL" I (),

where the functions ¢, (@) and /,(x) have only integral coefficients.
Consequently, it f(r) 1s resolvable mto two rational factors
(/(ry and H(x), which have fractional coeflicients, so that

we have 18 = Gy - I (),
then we have also  f(2) = py - y(@) - Iy(2),

where the cocfticients are integral throughont.  Ienee, if f(x)
is resolvable into rational factors, it is resolvable into such
factors with inteyral cocflicients.

128. Reducibility of f(»). Whether the function f(r), in
which the coefficients are integers and the degree » does not
exceed 4 or 5, is reducible or not in the domain Q,, can readily
be ascertained by the aid of Gauss’s lenmna and ordinary
algebra.

We assume that, in f(x), the coefficient a, of »* is unity. If
& 18 not unity, we can change the function so that it will be
unity by taking « =1L/-, and multiplying by «," .

y
For every integral value « of », which causes f(x) to vanish,

we have a factor 2 — aof f(2), § 3. Here « must be a factor
of «,. 'This consideration cnables us always to determine the
reducibility or irreducibility of functions f(x) of the second or
third degree.

If f(x) is of the fourth degree, then, if there is no linear
rational factor, there can be no cubic rational factor. To test
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for quadratic rational factors, divide &'+ @' 4 as® + az + @,
by 2?4+ «x+ B, where « and 8 are integers to be determined,
if possible. That there may be no remainder, we must have

a3 — B + af = a(u; — B — me + o),

ay=B(a,— B —ae + ). 1
Hence a= glﬂ:fiﬁf II
a—f

We have the rule: See whether any fuctor B of a, makes o an
tnteger in 11.  If w und B arve such integers, which ulso sutisfy 1,
then @® + ax + B i3 a rutional fuctor sought.

Similarly, if f(x) is of the fifth degree. First search for
linear rational factors  —¢. If none are present, there is no
quartic rational factor. Look for a quadratic rational factor
2?4 ax+4+ B If quadratic factors are likewise absent, there
can be no cubic rational factor, and the function is irreducible.

Dividing & + «t + a0 + @ + e+ u; by 2*+ax 4 B, we
get as the conditions for zero remainder,

thy— B+ B2+ w3 — B
= a(tty — B + 2 uff — e + et — "),

as = Bus— wB + 2 aff — tye + aye — o), 111
‘Whence w=_0% Vel —dae
2¢ !
where =

¢ =u;— a5
6= a8 —a,8 — 5

If 8 is a factor of a;, if « is an integer, and III is satisfied,
then 2+ ax + B is a factor sought.

Ex. 1. Isf(x)=af+ 4ot + 4234+ 922 + 8x 4 2 reducible in Q) ?

Since f(x) does not vanish for x =4 1 or + 2, there are no linear nor
quartic factors in ©2q). Take g =2, then ¢o =4, ¢, =— 14, c;=—8, e=4.
Condition III is satisfied. Hence 2 4 4 + 2 is a factor.
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Ex. 2. Are the following reducible in ) ?

(1) #3+ 2.2+ 32 —6, (5) ¥*4+ 1023 —-10022 —x + 1.
(2) 34312 +8x -2, ©) B+t +a24x+7.
B)xt+ad+a24x—4. () ¥ +2 433+ 422 +324+2

(4) »*+ 923 42522 4 222 4- 6. B) B4+ 1.

129. Eisenstein’s Theorem. If p is « prime number, and
gy (4, +=y (1, integers, all (except ag) divisible by p, but a, not
divistble by p* then 1s f(x) = a4+ @ '+ -« 4 a, irreducible.

For, if f(@) could be resolved into factors, the coeflicients of
the factors could be integers. We could have

F@) = (e + @14 oo 4 ) (dytt + A 4 oo - dy),
where htk=n

Since «, is divisible by p, but not by 2% and a,=¢, - d,, it
follows that one of the factors ¢, d,, is divisible by p, but not
the other. Let ¢, be the factor divisible by p.  Then not all
the coefficients ¢ are divisible by p, else a, would be divisible
by p. Let ¢, be a coefficient not divisible by p, while ¢,44, €19,
..o 0y, are each divisible by p.  The coeflicient of 2*-% in the
product of the two factors of f(x), is then

ey -y e+ Aoty g4 oo

Since every term in this polynomial is divisible by p, except
the first term, the polynomial 1s not divisible by p.  But, hy
assumption, the only coefficient of f(a) which is not divisible
by p is a5 Hence «#~v=w*, which is impossible, since b must
be less than n.

Ex. 1. Show by § 129 the irreducibility of

2034 922 4+ 62 -+ 12,
4254 1454 4 21 2 4+ 36.
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130. Irreducibility of @p——}- When p is a prime nwmber,

£

the equation = 11 =0 is trreducible.
€L —

Ifin 2= ]1 =0, we put 2 =241, then expand the hinomials
xr —

and simphfy, we get

A S )’(2). ])zﬂ 3. +7l(_€'-_‘;’])z+p=0
Since this equation 1s irreducible by § 129, the given equa-
tion is 1rreducible.

131. Exclusion of Multiple Roots. T/nless the contrary is
specifically asserted we shall assume in what follows that the
equation f(x) =0 has no multiple roots. This can be done
without loss of generahity. For, if f(x) = 0 has multiple roots,
we can davide (@) by the H. C. I, of f(x) and f'(z), as in § 21,
and obtain a quotient g(x). Then g(») =0 is an equation in £,
having all its roots distinet, and the theorems which will be
given apply to g() =0

Ex. 1. Show that f(£) = 01s reducible if it has multiple roots.
]

132. Definition of Degree of a Domain and of Normal Domain.
If the irreducible equation f(r) =0, having « for one of its
roots, is of the nth degree, the domain Q,, is said to be of the
nth degree.

Since f(x) =0 is irreducible in Q, it follows that noue of its
roots beloug to the domain Q. For, if the root « were a num-
ber in the domain Q, @ — « would be a factor in Q, and f(»)
would be reducible. It is evident that each voot of f(x) =0,
when adjoined to @, gives rise to a domain over £, § 120.
Thus, if a, w;, ¢y +++, @, are the roots of f(z) =0, we obtain

the » domains
’ Qs Q(al): Q(a,), =t g,y I
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The domains I are said to be coujugate to the Q. These
domams may be all different from each other; some, or all of
them, may be alike.

A domain which is identical with all its conjugate domains is
called a normal domain. The laws of normal domains are far
simpler than those of others. The great advances in algebra
made by Galois rest mainly on the reduction of any given
domain to a normal domain.

133. Theorem. _.lny number in « domuain Q. can be ex-
pressed as « function of « in Q.

By defimtion of a domain (§ 120) any two numbers in it, com-
bined by addition, subtraction, multiplication, or division, yield
a number occurring in the domain; also any number added to
or subtracted from 1tself, multiphed or divided by itself, yields
a number belonging to the domain.

The domain Q,, was obtained by adjunction of e« to Q.
Hence the numbers in Q,,, whether occurring in Q or not, were
obtained by carrying out the four operations of addition, sub-
traction, multipheation, and division upon « and the numbers
in Q. This means that every number in Q, is expressible as
a funetion of « in Q.

Ex. 1. Show that the roots of 2t — 102+ 1 =0 define a normal
domain.

The roots are «=V2+ V3, ay= — V2+ V3, tte = — V2 — Vd
s =V2—V3 Wehave = — =1 =~l. Hence it follows that
0,0 = 1, a) = 01, ap) = 0, 0y o ®

Ex. 2. Show that the domain defined hy the roots of the irreducible
equation x* 4+ 2 + 1 = 0 is not normal.

By Descartes’ Rule we see that the equation has only one real root. No
complex root, can be a rational function of a real root. Hence the three

domains 2, q)y 201, a0 201, ag) CAINOL be identical and therefore not normal.
But the two domains defined by the complex roots are the same ; for,

. . . . B+ v

if 8+ iy and B — iy are the complex roots, B — iy = 53 . Hence
vy

B — iy is a number in the domain obtained by adjoining 8 +1v.
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Ex 3. Show that the roots of 2* — 22 2* 4 1 = 0yield a normal domain.

Ex. 4. Show that the roots of an irreducible quadratic determine a
normal domain.

Ex 5. Show that any three roots of x*+x3+ 2+ 2 +1=0 are
powers of the fourth and that the domain {2, 4) 18 normal. See Ex. 2, § 67.

Ex. 6. Express as a tunction of \/") m 2, the following nummbers of
the domain 1,,/,): 1, 104, 3+ 4V =5,

Ex. 7. Define the domain  which includes the number

(V2 + V3 — V6)-3,

134. Conjugate Numbers, Primitive Numbers. Suppose
number N = ¢(«), where ¢ indicates a function in Q. If
@, @y, -+, &, are the roots of an irreducible equation f(x) =0,

then N=¢(w), N=¢(a),:, Noy=¢(ety,), I
represent # numbers, one from each of the conjugate domains,
Q(a)’ Q(ul)’ R Q(n.”__,)'

The numbers T are said to be numbers conjugate to N.

Some or all of these numbers conjugate to N may be equal to
each other.

A number N in the domain Q,,, which is different from all
its' conjugate numbers, is called a primitive number of the
domain. Otherwise 1t is called imprimitive.

135. Primitive Domains. A domamn Q, is called primitive
when it contains no imprimitive numbers except the numbers
in the domain Q; it is called /mprimitive when it contains
other imprimitive numbers besides.

Ex. 1. The equation f(x) =22 4+ 1 = 0 has the roots 4+ ¢. Here ¢ =%

o2 +a+2

and oy =— 7. Let usassume ¢ (o) =~ ytheng (@) =—i+1= N,

and Ny=i+1. Hence N, being unlike N,, is a primitive number in Q4.
Next, let us assume ¢ (@) = — &t = @1 — &; = 0. Hence 0 is an imprimi-
tive number in Qq, ,).
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More generally, if ¢ () =« + b, where @ and b are rational numbers,

then ¢(— )= --ib, 1f 4:(1)«1(L =«, then ¢(— 1) =a. Hence the im

primitive nunbers are in this e,x‘unplt, confined to those that are rational,
and the domain g, 18 primitive. Since both q,, and Qg _, are
domains containing nuwmbers @ + b, where a and b are rational, and may
be positive or negative, it follows that the two conjugate domains are
wdentical. lHence Qq,,) is a normal domuin.

Ex. 2. The roots of the irreducible equation x2—2=0 are 4+ V2. Show
that ————\/Q\/+ 1 18 a primitive number of Q, vz, that 10 is imprimitive, that

)

the domain Q(, v3) 18 primitive and normal.

Ex. 3. If «1s a root of x2 + 10 x + 1 = 0, define the functions of & such
that N will be the inprimitive number 5

Ex. 4. Show that the number N = «? + «}, belonging to the normal
domain @, 4, in Ex. 2, § 67, is imprimitive and that the domain Q, )
is imprimitive.

Ex. 5. If N=«?, where « is a root ot 4+ 1=0, show that .V i1s imprimi-
tive, that Ny = «? — « is primitive, that the domain {2, ,) 18 normal and
imprimitive.

Ex. 6. If N =« and «is aroot of 28 4 1 =0, prove that N is imprimi-
tive, that Q, ) is normal and nuprimitive.

Ex. 7. If wisaroot of #" — 1 =0, prove that £, 4 is imprinutive.

136. Theorem. Ewery number N in the domain Q, of the nth
deyree is the root of some equation of the nth degree in , the
other roots of which are the remuining nwumbers conjugate to N,
viz. Nl’ M) ) Mn—-l'

Take the product

G—N)y—=N) - =N, )=y"+py" "'+ - +p. =),
in which —p=N+N+-+ N,
p2= NN+ NN+ -+ + N, .N,_,,
+p.=NN - N,y
We see that all the coefficients p,, py, -+, p, are rational sym-

metric functiom of the numbers N,V,, -+, N,_,. Since N=¢(u),
N = q&(u,) oy Ny = @(et, 1) (8 134), where ¢ is a function in
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Q, it is evident that py, p,, .-+, p, are also symmetric functions
in Q of «;, wy, «-+, @, ; for, an iterchange of, say « and «, brings
about simply an interchange of N and N,. Since the mter-
change of N and .V} does not alter these fuuctions, the inter-
change of « and «, does not.

Now ay, wy, «++, «, are the roots of the equation f(a)=0; hence
the coetlicients py, py, +++, p, of ®(y) =0, being symmetric func-
tions 11 Q of «y, --+, «,, may be expressed as functions in Q of
the coefficients of f(a)=0 (§ 70).

But by hypothesis the coefticients of f{x) =0 are numbers
belonging to the domain , hence the same thing is true of
Py o e Thus @(y) =015 an equation of the nth degree in Q,
having the roots N, .V}, -+, N, 1.

Ex. 1. Asanllustration, let f (&) =zt + 1 =0, then @ = Qg and the
rootsare + § V2(1 4+ &), 4 1 V2(1 =), It w=1 V2(1 4 i), the domain
1, 4y consists of numbers « 4 ¢h, where « and & may be rational, or
irrational involving V2. Let N = «} + «® +u«+1,then N =1+ a+ V2)i,
and the numbers conjugate to it are,

N =1+ (+ V2)y Ne=1— (14 V2)i,
Ny=14 (1 — V2 Ny=1—(1-Vv2)y,
and @) == N)(y— Ny~ No)(y — Ny)

=yt -4y + 1292~ 16y +8=0

*Thus, N and the numbers conjugate to it are roots of an algebraic equa-
tion of the fourth degree in @), that is, ®(y) = 0 is an equation i the
same domain as f(x) = 0, and both are of the same degree.

Ex 2. Show that 5, 1, V2 are each numbers lying in the domain Q0
of Kx. 1, and that each is a root of some reducible equation of the
fourth degree.

137. Theorem. Fuvery number of the domain Qg car be
expressed ws a function in Q@ of any primitive number N of the
domwin Q.

Let N' be any number in Q,, and N', N', Ny, .., N',_, the
numbers conjugate to it. Let

@) =@ —N)(x— M) (2 — Ny,
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where N, N, ... .V, ; are conjugates to the primitire number
V. We now construct a new function, y(x), as follows:

. N'd(r) "L @) N, @)
oy = T2+ Ty g i,
This is a fuu(-tmn of x of the (n — 1)th degree,
Sinee N = ¢(a), N = Pplay), -,
and N' = ¢(«), N'i= ¢i(ety)y ey

it follows that an interchange of, say, « and «, interchanges not
only N and &, but also V' and N';, and also the first two
fractions in the expression for y(x).

But ®(x) is not affected by such an interchange. Hence y()
1s not affected, no matter what two «’s replace each other.
FFrom this it follows that ¢(») is a symmetric function of
Wy )y oo+, i, in @ and the coeflicients of () are numbers in Q.

If now we put &= N, then ®(N)=0. As NV is primitive
and consequently different from .V, N, ---, it follows that each
fraction in y(r), except the first, is zero when & = Nj; for, it has
a numerator that 1s zero and a denommator that is finite.

The first fraction gives us :: By § 20 we have, for this inde-

N(I)(N)

"_A

terminate, the relation N'®'(.V), where ®' means the

differential coefticient of ® with respect to x. This relation
yields ¢(NVN) = N'®'(N) or N' =y¢(N)/®'(N), where &'(N) is
not zero, because ®(.r) has no multiple roots. Since y(N) and
®'(N) are both functions of N in ©, it follows that any number
N' can be expressed as a function in Q of any primitive
number N.

Ex. 1. Prove that the domain Qy, is idcntical with the domain ),
N being primitive in Q). )

Ex. 2. It was shown in Ex. 2, § 135, that Nz\/—:i/—;t—]
number of Qq,v3z), where + \/_2 are the roots of the irréducible equation

—2=0. Express b + 3 V2, 5 and V2, as functions of N in Qq).

Ex. 3. Express 5, 7, V2 in Ex. 2, § 136, each as a function in Q of e.

is a primitive
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138. Theorem. If N is primitive in Q,, then the wwmmbers
N, Ny ooy N,y are roots of wi irreducible equation d(x) = 0 of
the nth degree; {f N is fmprimitive, then these nnmbers wy be
divided into ny sets of ny equal numbers in euch set, und e(r) =0
i8 the nyth power of an irreducible equation of the wth degree.

It e = (o N)@— N (o= N, ) =0

is reducible, decompose 1t into its irreducible factors. Take one
of these mrreducible factors, say 6(x). Then 6(xr) =0 must
have as a rool at least one of the numbers N, Ny, ..., N, .
Let ¥, be such a root. Then (V) = 0, and sice N, = ¢(m),
§ 134, we have [ ¢(«;)] = 0; that1s, [ p(w)] = 0 has «, for one
of its roots. Thus O[¢(r)] = 0 and f(r) = 0 are two algebraie
equations having a common voot, munvly a.  As flr)y =0 was
assumed to be irreducible, 1t follows by § 126 that each of the
roots «, wy, -+, @, , of the equation f(r)=0 must satisfy
B[ ¢(x)] =0. Remembering that N, = ¢(«,), we see that each
of the numbers N, N, -, .V, must satisfly the equation
o(r) =

Now 1f N, Ny, ooy, N,y are all distinet, then 6(r) = 0 must
be of the nth degree, and ®(x) = 0 and 6(a) = 0 are identical ;
since, by hypothesis, 8(x) = 0 is irreducible, ®(x) = 0 must be
irreducible.

If, on the other hand, some of the roots N, Ny, .-, N,_, are
alike; let N, N, -, N, represent the distinet roots, then the
irreducible equation 6(a) =0 is of the degree .. lny other
irreducible equation, §,(x) =0, obtained by factoring &(x) =0,
must be satisfied by at least one of the set of roots N, ¥, -+, N,I 1
for, every multiple root in ®(r)=0 has one representative in the
list of distinet roots; hence 6,(x) =0 must be satisfied by each
1006 in the set and is identical with the equation 6(x) =0, the
two having all their »; roots in common.

It thus appears that 1f &(x) =0 is reducible and is resolved
into its irreducible factors, these factors are identical to each
other. Thus, ®(x) =0 is a power of 6(0) =0. Since d(r) =0
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is of the nth degree and 6(x) =0 of the n,th degree, n must be
a multiple of n), that is, n = nn,

Ex. 1. Asan illustration, take the wrreducible equation f(x)=r¢+1=0,
It has the roots @ = 1 V2(1 + ¢), @ =— 1V2(L + 0), @, =+ I\N2(1 = §),
3= — L V2(1—1). Let V=g¢(a)z=u then V= Ny=iand No= Ny=—1.
Hence, (1) =(w + )3 (e — 2= (w4 1)2—0, We have 8(«0)=r2+1=0,
whichissatisfied by V, N, N, V.. The cquation 8 p.e) ) - 0(a%) = (1) +1=0
is satistied by «, @y, @s, ¢g. the voots ot f(a)=0

Ex 2. From the roots of the equation in Ex 5, § 133, find N, Ny, Vo, N3,
when V=« + «d. Determine whether the equation &) = 018 in this
case redueible ; af it s, find »y and 2, and show that 0] ¢(«) ] = 0 19 satis-
tied by the roots ot the given equation f(r) =0

Ex 3. From the roots of the equation in IKx 5, § 133, find Ny, N2, Ny,
when V=4« Is ()= 0 reducible ®

Ex. 4. In Ex. 5, § 135, form ¢(y) =0 and examine its reducibility,
when N = «2

139. Normal Equations. A wnormal equation is an irreducible
equation in which each root can be expressed as a function in
Q of one of the roots.

Ex. 1. Theroots ay, @ ¢, of 7t +1=0, Ex 1, § 138, may be expressed
in terms of & thus* «) =- «, 4y =— ¥, g =4 «ws. Ience x4+ 1=0,
being irreducible, 13 normal.

Ex. 2. Show that ¢ 4 x® + 22 + 2 + 1 = 0 is a normal equation.
Ex. 3. Show that o — 222 + 9 = 0 is normal.



CHAPTER XIV
NORMAL DOMAINS

140. Theorem. .1 primitive number of a normal domain of
the uth degree is « voot of « normal equation of the nth degree.

If a number p be adjoined to Q, making Q,, a domain of the
nth degree, every number N in the domam Q) 1s a root of an
equation F'(x) =0 of the nth degree m Q, the other roots of
which are, by § 136, the remaining numbers conjugate to N, viz.

]Vu M} M) ‘-Vn—-l'

Since N is agsumed to be primitive, F'(w) =0 is irreducible
(§ 138).

Any number N, being defined by ¢(p,), belongs to the domain
Q- Siee Qg is normal, we have Qg =Q = =Q,,
(8 132). Hence all the nnmbers N, WV, --+, N,_; belong to the
Yomain ), and can be expressed as functions in Q of the
primitive number V(§ 137).  From this it follows that F(»)=0
is a normal equation.

141. Theorem. Conversely, if p is a root of « normal equa-
tion, then Q) Is @ normal domain of the sume degree as that of
the equation.

Let p, be the root, of which the other roots are functions in
Q; that is, let p, = ¢,(py), where v may be 1, 2, ..., or (n —1).
Since p, is a root of the given irreducible equation of the nth
degree, the domain Q) and all the domains conjugate to it are
of the nth degree (§ 132).

160
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Any number in the domain Q, ), t.e. in the domain Q3
is a function m Q of [¢,(p,)], and, therefore, also a function
Q of p, itself; that 1s, uny number in the domain €, o, oceurs
also in Q). The converse 1s true also. Hence the conjugate
domains are identical, and Q) is a normal domam.

JoroLLary. Since the domain Qg (1) contains all the roots
of the given normal equation, each of these roots can be ex-
pressed as a funetion mn Q of the root ¢, (py), Where ¢, (p,) may
represent any one of the roots. Thus, én « normd equation every
root can be expressed wot only as o function in §} of some one 700t,
hut us a function in  of any one of the roots.

27—
Ex. 1. Show that the equation

]1 =0 is normal.

Ex. 2. Show that «* + 102 + 40 2 + 205 = 0 1s normal.

142. Adjunction of Several Magnitudes. The adjunction of
several maynitudes may be replaced by the wdjunction of « single
magnitude.

Let «, B, y, --- be numbers adjoined to the domain Q, giving
the enlarged domain @, g ..., To prove that a number p can
be found, such that the domains Qg g ,..,and Qg are identical.

Let « be one of the roots «, a, -+, «,_, of an algebraic equa-
tion in Q, fi(x)=0. Similarly, let 8 be one of the roots
B, By +++y Bu—1 of f.(x) =0, y oue of the roots y, y;, yu -++, yp1 Of
Jix)=0, and so on. Without loss of generality we may
assume that none of these equations have multiple roots.
Now assume for p the following linear function of «, 8, y, -+,

Viz. p=1de+bB+cy+ - I
where «, b, ¢ are indeterminate coefficients to which in special
cases any convenient numerical value in Q may be assigned.
It is evident that ¢ is a magnitude in Q, g, .., for it is
rational function of «, B3, y, :+-. The expression for p involves
one root from each of the equations fi(x) = 0, fu(x) = 0,
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Nemt, replace the roots a, B, y, .-+ by any other combination
oy, [51, 71, -+ of the roots, one root being taken from each equa-

tion. We get pr= ey + 0B + ey + oo+

Similarly we obtain p, py :--. The total number of p’s is
equal to the total number of possible combinations, which is
m -0, where m, n, 0 are respectively the degrees of the
squations. By assigning appropriate values to g, b, ¢, -+, all
the p’s will be distinet from each other.

Now construct the function F(¢), thus:

Ft)=(¢—p)(t—p)(t—py) - II

F(t) is not altered if « is replaced by a, or B by B. Ilence
the coefficients of II, obtained by performing the indicated
raultiplications, are symmetrie functions of the roots of each
one of the equations fi(x) =0, L(.c)_() -«-; therefore, the
coefficients are numbers m €, and F(t) is a function in Q.

Now, any number N in Qg g ...y i a rational function of
o, B, y, . Let N go over into N,, M, ... for the substitutions
which convert p into py, py +--.  With these construct the new
function G(2), defined as follows:

G@t)= F(t) - ——+ N _LVL__F]. . 111

= —py l—-pg )
«(t) is symmetrical with respect to the roots of fi(2)=0,
Si(x)=0, .... Hence its coeflicients lie in Q. For t=p, F(¢)
vanishes, as appears from [I. But the denominator ¢ —p van-

ishes also.
Hence for ¢ =p, we have by § 20

60 = YE6)

where F'(t) is the first differential coefficient of F'(¢).

Hence, N= %é% .
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This means that N is a rational function of p; that is, any
number in Q¢ g ., .) is a rational function of p, and lics, there-
fore, in the domain . Conversely, any number in Qg lies
in Q, g, ..., since every number in Q, is a rational function of
p, and, therefore, of «, B, v, :««. This shows that Q, and
Q4. ., are coextensive domains, and the adjunction of a, B,
¥y, +++ to © may be replaced by the adjunction of p.

Ex. 1. Go over the above proof for the special case where

e=V2,B=Vo,y=8==0,u=b=1, N=3V2 V5.

Here fi(z) =#2—2=0, fo(x)=a2%—5=0. Then p= V2 + V5.
There are six different p’s, and II is of the sixth degree in . Of what
degree is ITL?

G()= N — p)(t = p2) =+ (¢ —p5) + N1(t — p) (¢ — p2) +++ (¢ — p5) + ==
G(p) = N(p — p1)(p—p2) - (p — p5) = 540 p? + 360, where

p=\/:2+\‘/l-';, p3=—\/2+\1/5,
p1=\/§+w\r‘/5, p4=—\/2+ m\s/g,
p2=V2 + w? V5, ps =—V2 + w? V5.

By Ex. 14, § 71, the equation whose roots are p, py, -++, ps, i8
F() =6 -6t ~103 41222 —60¢+ 17 =0.
o F'(p) =6 p5 —24 p3 — 30p% + 24 p — 60.

We see that G(p) — F'(p) = N.

Ex. 2. Is the adjunction of V=2 to £ equivalent to the adjunc-
tion of i + V2 ?

Ex. 3. Are the two domains Qq, vz, v3) and Qq, vg coextensive ? If
not, is one a divisor of the other ?

143. The Galois Domain. If f(x) =0 is an equation of the
nth degree with distinct roots e, ey, «-+, @,_;, then the domain
Qa0 a2 obtained by the adjunction of all its roots to Q,
is called the Galois domain of the equation f(xr)=0. Thus
the roots of the cubic 2*+832?—22—6=0 are — 3, :t\/Q;
hence its Galois domain is Q3.

Ex. 1. Find the Galois domain of 2 + 622 4+ 56 =0.

Ex. 2. Find the Galois domain of the equation in Ex. 5, § 133. Show
that, in this case, Q,, Gy ) = Q= ﬂ(a,) = ()(u’) = ”(u')'
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144. Theorem. The Galois domain of any ulgebraic equation
s « normal domain.

The degree of the Galois domain Q , ..., , is not usually

the same as that of the equation f(r) = 0; let it be m.
Let p be a primitive number of the (Galois domain, then

Q(m ) Q(I')‘

It follows that p is a root of an irreducible equation of the
degree m (§ 138), viz. the equation

9(y) =0, I

The root p, being a number in the Galois domain, can be
expressed as a function of «y, @y, -+, «, ;, in 25 that is,

P =.fl(“’"’ (TR un«l)) IT

Consider all the permutations which can be performed with
the »n subscripts of the letters «, taken all at a time. The
number of these permutations s »! They correspond to the
symmetrie group of substitutions (§ 98).

If we operate upon the subseripts i 1I with each substitu-
tion of the symmetric group of the order n!, in turn, we obtain
values for p which we indicate, respectively, by

A
Py P1y ***y Pur--1e I]I

Next, if we operate with any substitution of the symmetric
group upon the p’s in 111, we get the same set of p’s over again,
only in a different ovder; for, any number resulting from this
second operation is obtained from 1I by two substitutions, the
product of which, by definition of a group, is identical with
one of the substitutions in the group. Hence, if we form the

i
equation H) = () —p)(y—p) - O — pur_r) =0, IV

this equation is invariant under any of the substitutions of
the symmetric group; hence, the coefficients of ¥, obtained by
performing the indicated multiplications in 1V, are invariant.
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But these coefficients are functions in Q of the roots p, py, --+,
and by relation 11, also functions in Q of «y, ¢}, -++, @,_;.

Because of the invariance of the coefficients of IV under the
symmetric group, they are symmetric functions in Q of e, «,
“esy @,y Le. symmetric functions in @ of the roots of f(iv) =0.
Hence IV is an equation in © (§ 123), and its roots are numbers
in Qg o,

But p is a root of both II(y) =0 and g(y) =0. Since g(y)=10
is irreducible, all its roots must be roots of H(y) =0 (§ 126).
But all the roots of II(y)=0 are numbers in Q ... ,;
hence all the roots of g(y)=0 (viz. the conjugate numbers

Ps P1s ***s Pm-1) @€ nUmMbers m Qg .., . Dut

Qipy =14, ..., a,
hence we have Dy = Qppy=+» =0
That is, Dg, oy ay 1 is a normal domain.

145. Galois Resolvent. The equation ¢(y) =0 of § 144 is
called the Gulois resolvent of the given equation flx) =0 in the
domain Q, defined by the coetlicients of the equation f(x)=0.
This resolvent possesses the following properties:

(1) g(y) =0 is irreducible.

(2) Euch root of f(@) =0 can be expressed as a function in Q
of one root p of the equation g(y)=0. That is, each of the
roots e, ey, -+, @,., occurs in .., .., & domain equivalent
to Q.

(3) One root p of g(y) =0 can be expressed as « function in Q
of the n roots of f(x) = 0. That is, by 1I, § 144, we have
P =.fl(“0’ gy o0y “n-])- l
Ex. 1. The cubic 23 + 322 + x — 1 = 0 has the roots
a=—1, t1=—14+V2, te=—1—-V2.

Hence the Galois domain is 4,y3. Also, p =V2 is a root of the
irreducible equation g(y) =2 — 2 =0 and is a primitive number of the
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Galois domain. The equation 22 — 2 = 0 is a Galois resolvent, because
(1) it is irreducible ; (2) the root & = — V2 / V2 and the roots ey, ¢z are
each functions in €, of v2; (3) we may express p as a function of
o, (1, oz, thus, p= V2 = ot — @y + 4 .

Ex. 2. Show that in Ex. 1, p = @ + b V2, which is a root of the equa-
tion 22 —2ax + a* —202=0, ¢ and b being rational, is a primitive
number in the domain Qv3), and that this quadratic is a Galois resol-
vent of the given cubic.

Ex. 3. Show that the degree of the Galois resolvent of an equation of
the nth degree cannot exceed n!. See § 144,

Ex. 4. Construct the equation H(y) = 0 of § 144 for the general cubie
8 4+ @x? + axx + a3 = 0, whose roots are «, o, ds.

As in § 142 select appropriate values in @ for the coeflicients ¢, ¢, ¢z,
so that distinct values for p are obtained for every permutation of the
roots «, «;, a in the relation p=cw + c1¢; + Co0ta.

Performing upon this the six substitutions of the symmetric group of
the third degree, § 104, we obtain

pP=ca + iy + Ca0tzy

p1=cu + 610 + Ca0,

pr=Cwy + C1i + Ca0ty,

P =ca + croe + 20,
ph=cor + eree + oty
pla=cda + 1ty + caa.

We first form the cubic whose roots are p, p1, p2. We get
Zp =230 = — a1Z¢,
Zppr = 2c? « Saq + 2o - Seeq + Seey - S,
= @3¢t + (@2 ~ @2) ey

To obtain the product ppips, observe that the terms ccicse®, ccicati®,
¢¢1Ca0e8 oceur in the product ; their sun is ccic;Zed.  Since ¢, ¢, ¢; and
o, 04, ae are similarly involved, the expression amje2Zc8, also occurs in
the product. The term cejcaianitz occurs three times; hence we have
3 ceycamatr oo,

Observe that a2« has in the product the coefficient p,=c?c; + ¢,2¢2 + co?¢
and that a2z and as2« have each this same coefficient. Hence pcp, is
part of the product, where p,=afw; + 2wz 4+ ¢to2e. Similarly aes?,
o093, aze? have each the coefficient p'.=ccy2 + €122 + ¢¢2.  Therefore,
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p’ep's occurs in the product, where p', = ctet,2 + e¢(e? + o302, We have
now found all together 27 terms which belong to the product ppyp; ; they
constitute the entire product. That 1s,

PP1p2 = €C103Z (L3 + (L0100 =CP - 3 €C1C20L10g + PPy + Peple.
We get
Pat1ia=20 Zac, — 3 ooyt =3 az — a1a: = qe,
Po— D' = it (6 — 6p) + €2(0t — ¢y) — (e — 1)?),
=(0 — ) (« — a) (@) — ) =VD,
where D, 1s the discriminant of the given cubic, hence
2pe=qq+ \/D—a.-v
2 = — \/1)_,,:.
Similarly we have 2 pe = 4o + VD,
2p'.=1q'¢ —VD.
Hence
PP1IP2 = 60102(3 Q103 — (l]_8 -3 a,.) - (l,}ECa -3 cC1C2a3 + %(cha +V DLD‘,.).

We have now found the coefficients of the cubic whose roots are p, py, pa,
expressed in terms of the coetlicients of the given cubic.

In finding the coeflicients of the cubic whose roots are p*, p, p's we
notice that Zp’ = Zp, and Zp'p/; = Zpp;. 'The product p'p'1p’; differs from
pp1pz only in the sign before the radical. Consequently, on multiplying
the left members of the two cubics, the radical disappears and we obtain
a sextic, whose coefficients are numbers in 2. This sextic is the required
equation H(y) = 0, whose roots are p, p1, p2, o'y p'1, p'a

Ex. 5. Show that when 1n the sextic of Ex. 4 the value of D, is a per-
fect square, the sextic becomes reducible into two cubic equations in £,
Hence g(y) = 0 is a cubic in this instance.

Ex. 6. Of what degree is the Galois resolvent of the general quartic ?
The general quintic ?

Ex. 7. Find the roots of the equation 23+ 24 — 23 — 2 —22 -2 =0.
From the roots determine the Galois domain, Prove that 2t —2224+9=0
is a Galois resolvent.

146. Theorem. The Galois resolvent s a normal equation,
and any normal equation is its own Galois resolvent.

The resolvent is a normal equation because (1) it is irre-
ducible and (2) all its roots occur in the Galois domain Q,,
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where p is a root of the resolvent (§ 144), and are, therefore,
functions in Q of the oue root p (§ 138).

To prove the second part, let f(x) =0 be a normal equation,
having the roots «, «,, +++, &, ;. Then Q,, is a normal domain
(§ 141); f(x) =0 is its own Galois resolvent, because being
irreducible it satisties property (1) in § 145, and all its roots
being in the domain §,,, and, therefore, functions of « in Q, it
satisties also properties (2) and (3).

Ex. 1. Show that the equation in Ex. 6 (§ 133) is its own Galois
resolvent.

Ex. 2. Show that the Galois resolvent in lix. 2 (§ 145) satisfies the
definition of a normal equation.

Ex. 3. Find the Galois domamn for the equation in Ex. 3 (§ 133).
Find the irreducible equation in £, having the prunitive number v6 4 v5
as a root. Show that this equation is its own Galois resolvent and that
the Galois domain 1s normal.

147. Theorem. If f(#) =0 is a normal equation of the nth
degree with a root p as a primitive number in the normal domain
Qupyy then the transposition (ppy) cawses each of the numbers
conjugate to p to be replaced by some other of their own set, but no
two numbers are repluced by the same one.

Let the numbers conjugate to p be p, pyy +++, p, 4. They are
all roots of the equation f(w)=0 (§ 138). Since O, is
assumed to be normal, they are contamed in 1t. Hence we

have P= ¢U(P), P = ¢1(P); Ty Pa-1T ¢»t-l(P)’ T

where ¢, ¢y, -+ are functions in Q. If in ¢,(p), which is a root
of f(x) =0, we replace p by p,, we get as a result ¢,(p,), which,
being conjugate to ¢,(p), is another root of f(x)=0 (§ 136).
Hence the numbers in the series

¢U(P»)s ¢1(P»), oty 4’»-1(Pu) II

are identical with numbers in I, except in the order in which
they are written. Now, if we can show that the roots TI are
all distinet, our theorem is proved.
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None of the roots TI are alike, for suppose ¢,(p,) = $:(ps),
that is, ¢;(P/.) — ¢ulpn) = 0, 11

then 111 is an equation having p, as a root. But the irreducible
equation f(2) =0 has also p, as a root. Hence I1I must be
satisfied by all the roots of f(x) =0; for instance, by p. Con-

sequently, é(p) — du(p) = 0.

This equation by I may be written p, — p, = 0, which cannot be
true, since p is a primitive number.

Ex. 1. In Ex. 5, § 133, we have given an irreducible equation with the
YOOots p, p1, P2, p3, conjugate to p in the normal domain ). We have

p1=p% pa=p%ps =p*. Hence the roots may be represented by the

series 9
Py 0% % Pt 1

If in I we write p, for p, we get
3y p3°s pa®y paty

where p3? = pa, ps®=p1, pi* =p. Ilence the transposition (pps) only
changed the order of the roots.

Ex. 2. What is the order of the roots, if in Ex. 1, we apply the
transposition (ppz) ?

148. Theorem. Ewery transposition (p,p,) in the normal
domain Qg s equal to some one of the truanspositions (pp)s

(PP'-!)’ "ty (PP» -1)'

We have pr =b4(p), I
where ¢,(p) is a root of the normal equation f(x) =0. Upon
¢u(p) perform the transposition (pp,), and we get ¢,(p,). This

1s a number conjugate to ¢,(p), and is, therefore, one of the
other roots of f(x) =0, say p, (§ 138), so that

Pr = ‘I’h(Pt)- II

Since the transposition (p,0,) changes p, to p,, and the trans-
position (pp,) changes ¢,(p) to ¢,(p,), we have from equations
I and IT that (o) = (pp.)-
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Ex. 1. In Ex. 5, § 133, the four roots satisfy the following relations:

p =pt
P2 = P247
P2 = pay
pt = p2’.

Operate upon the left members of these equalities with the transposition
(pp2), and upon the right members with (pp3), and show that (pps) = (p2ps)-

Ex. 2. In Ex. 1 find the transposition (pp,) which is equal to (p1ps).
Ex. 3. In Ex. 1, § 136, find ¢ so that («e)=(@1¢s).

149. Substitutions of the Domain Q,, Since any transposi-
tion (ps0.) = (pp,), Where ¢ is some one of the numbers 0, 1, 2,
«-+ (n—1), it follows that there arc not more than n distinct
transpositions in the given normal domain ,,, which numnber
agrees with the degree of the domain and the degree of the
equation f(x) =0, whose roots define this domain. Since every
number in Q4 can be expressed as a function of p in ), since
every number operated upon by (pp,) passes into some other
number in the domain conjugate to it, since, moreover, no two
numbers pass into the same number (§ 147), it follows that
each such substitution applied to all the numnbers in the normal
domain leaves the domain as a whole unchanged.

The substitutions (pp,), where ! takes successively the values
0, 1, --- (n —1), are called the substitutions of the domain Q.

If ¥N=¢(p) is invariant under (pp,) so that N = ¢(p)=e(p,),

then we say that N admits of the substitution (pp). Observe
the difference between the expressions admits and belongs to
(§ 111).  In both the function must be unaltered under the
substitutions of a certain group @, but in the latter expression
we have the additional condition that the function must be
altered by every substitution of ¢ which does not oceur in G,
G, being regarded as a sub-group of G.
* If N=¢(p) is a primitive number, then it is distinet from
each of its other conjugates ¢(p,), $(ps), *+*, $(pn-1). Hence N
admits of none of the substitutions (pp.), except, of course, the
identical substitution 1.
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150. Theorem. The substitutions of the normal domain
constitute a group of the order n.

Remembering the definition of a substitution group (§ 95),
we need only show that i the » distinet transpositions the
product of any two, say of (pp,) and (pp,), is equal to some one
of the transpositions 1 the set, say (pp,).

By § 148 we know that (pp;) = (papr). Multiply both sides
by (pps), and we get

(ees) (pp.) = (ppa) (oupn) = (ppa) s

that iy, the product of any two substitutions (pp,) and (pp,) is a
substitution belonging to the set.

151. Theorem. If the equution f(x)=0 yields the Qulois
domain Q, then there corresponds to the yroup of substitutions
(pp.) of that domain « gronp of substitutions s, of the same order
amony the roots of the equation, such that the product of any two
substitutions (pp,), (pp)) of the domuin corresponds to the product
of the two corvesponding substitutions s,, s, of the roots of f(x)=0.

Let f(x) =0 have the roots «, a;, -+, «,, all of them dis-
tinct. Since these roots are numbers in the Galois domain
Loy ay 3) = p) of the degrec m, it follows that

P=¢'[“, srey Uy 00y an-—]]) I

and that «,=¢,(p) where s has any value 0, 1, «.. (n—1).
Substituting for the «’s their values, we get from I,

P=¢[¢(P)7 "t qS‘(P)I Y ¢n—l(P)]‘ 11

Now p is a primitive number in the Galois domain Qg (§ 144),

and is, therefore, a root of the Galois resolvent g(y) =0, whose

other roots are the remaining numbers conjugate to it, viz.

Py s pm 1+ Consider IT an equation having a root p, then the

irreducible equation y(y) =0 and the equation 1 have p as a

common root; hence the conjugates of p are roots common to
M
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both equatious (§ 126). Replacing p by any of its conjugates
p» We have, therefore,

= (b[(l’(f’n)) b ¢u(P.)’ b} ¢n—l(Pz)]' III
Replacing in 1T p by p,, where ¢ and j are distinct, we get
pr=2Ld(p)s s Dulp))s ++s Bucalp) ] v

Since e, is a root of f(x) =0 and «, = ¢,(p), we have the
equation f[¢,(p)]=0, which has p as one of its roots. Butp
is also a root of the irreducible equation ¢(y)=0; hence
(§ 126) we have f[¢,(p,)]1 =0; that 15, ¢.(p,) is some one of the
roots e, of the equation f(¥) =0. For the same reason ¢,(p,) is
some one of these roots.

Since ¢,(p,) and ¢,(p,) represent each some root of f(z) =0, we
see that in each bracket of 111 and I'V we have some arrange-
ment of the roots «, @, +++, «,_;.

The two arrangements ave not identical; for if they were,
we would have ¢,(p,) = ¢,(p) for all values of s; the right
members of ILL and IV being equal, the left members would
be; that is, p,=p, But this is impossible, since they are roots
of the irreducible equation g(y) =0, and can, therefore, not be
equal. Hence it follows that to wuny two distinct substitutions
(pp.)s(pp,) there correspond two distinet substitutions among the «'s.

From this we draw the further conclusion that since the «’s
belong to the domain Q, and the entire domain has only m
distinet substitutions, there are just m distinet substitutions
among the o’s. There exists, therefore, a oune-to-one corve-
spondence between the substitutions (pp,) and the substitutions
s, of the roots a.

Now the product (pp,) (pp;) is equal to some other substitu-
tion in the group, say (pp,). If to (pp,), (pp,);, (pp:) there corre-
spond, respectively, s, s, s, among the roots, and if

(pes) (pey) = (opa)s

we have also s, - 3,=3,.
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Ex. 1. The quartic equation xt — 12274 1222 4 1762 -- 96 =0 has
the roots

a =24 2V7, oy =2 —2v7,
=4 +2V3, wy=4—2V3.
The Galois domain &) is obtamned by adjoining V7 4+ v3 to q). We
havo p=VT+V3, p=Vi—V3,

pr=—Vi+V3, p=—V7i—V3,
By inspection, we get
« =¢(p) =24 §(24p — %),
= ¢1(p) =2 — [(24p —pY),
w=¢:p)=4—}(16p —pY),
w3 = ¢3(p) =4+ 1(16p — p’).
Substituting for p, i suceession, p, py, psy ps, We obtain the following

Whe: y) =0, ) =y ) =, () = I

P(p) = P1(p) = wy, d2(p) = sy pu(p) = s II

D (p2) =ty P1(p2) = «, b2(p2) ~ w2y da(p2) = ;. I

o(p3) = &y, o1(p3) = «, P2(ps) — s, di(p3) = g, 1v

Operating upon ¢(p), $1(p), ¢2(p), P3(p) m lhine I with the transposi-

tion (ppy) gives us hne Il The anangement «, @y, 2, «3 m line I has

changed to the arrangement a, «y, s, ¢z in line II.  Hence (ppy) corre-
sponds to (2 «w3). Thus, to the substitutions of the domain, viz.,

1, (ep1)y (pp)s  (pps), v
there correspond, respectively, the substitutions among the roots
1, (@0t), (tot1), (wteer) (@aes). VI

The latter are readily seen to constitute a group. Groups related to
each other, as are these two, are called isomorphic. Group VI is called
the Galois group of the given quartic equation.

Ex. 2. Find in the list of groups enumerated in § 104 the group VI of
ix. 1

Ex. 3. In Ex. 1, ¢2(p) = etz and ¢2(p1) = ¢3(p) = $3(p2) = d2(p3) = tta.
Show that, in the set of substitutions V, (pp1)(ppz) =(pp3). Forming all
possible products of two transpositions, show that V is actually a group.

Ex. 4. The cubic 3432242 —1=0 has the roots «¢=-—1,
w=-—1+ V2, oy = —1—V2 and the Galois domain €,vz, where
p=V?2 and p; =— V2. Find the Galois group in both forms.
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152. Galois Group of f(x) =0 in Q. The group of substitu-
tions among the roots «, ), «--, «, ; of the equation f(x)=0
correspouding to (isomorphic with) the group of the Galois
domain O, of that equation is called the Galois group of the
equation. The term Galois group 15 really applicable to the
two isomorphic groups mdifferently. For two (simply) isomor-
phic groups are identical, abstractly considered, since to every
substitution of one there corresponds a single substitution of
the other, and wice versa, and since to the product of any two
substitutions in the one there corresponds the product of the
two corresponding substitutions in the other. For convenience
we shall restrict the term Galois group to the group of substi-
tutions having the roots as elements.

Ex. 1. Show that (7o and 7, are isomorphic; also Gg®1I and Gg®.
Ex. 2. Show that G¢'® is simply isomorphic with

G=1, (0e)(oaae)(@as), (@r0ts)(t20t5) (Catta),
(010t4) (eattg) (¢ts0ts), (@10tste) (Rallsta), (@10t6ls) (Ctallatls).

153. Theorem. Every fuiction in Q, f(a, &y, ++, @, ), which
equals a number N in Q, admits every substitution of the Galois

group of f(x)=0.

Since Q, o,y ., an-y) = Dy €ach e, where =0, 1, -, (n —1),
is a function in @ of p. Hence we have

f(a: Oy **2y “n—l) = O(P) =N, I

where f and 6 are functions in Q. We have 6(p) — N=0, and
this equation in Q is satisfied by one root p, and therefore by
all the roots which belong to the (alois resolvent g(y)=0
(§126). That is, 8(p) = N. But by I the transposition (pp,),
performed upcn 8(p), produces the same result as the corre-
sponding substitution of the Galois group, performed upon
S, «y ,y). As 6(p) remains unaltered, so f(e, *:+, @,)
remains unaltered.
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154. Theorem. Ewvery function in Q, f(a, ay, -+, &,_y), which
admits all the substitutions of the Gulois group, is a number in Q

In the equation f(«, e, -+, «, ) =0(p),
given in § 153, f(«, @), +++, «,_;) admits by hypothesis of the
substitutions of the Galois group; consequently, 6(p) admits
of the corresponding transpositions of the (zalois domain € ,,.
That 18, 8(p), being invariant, is equal to all its conjugates 6(p,).

But 6(p) is a number in the domain Q,, and is a root of an
equation of the nth degree in Q, whose other roots are the
remaining numbers conjugate to it (§ 136). All these roots
being equal, that equation is §x—6(p){"=0. Hence x—6(p)=0
is an equation in Q. Therefore 8(p) is a number in @, as is
also its equal, f(«, +++, @,y).

Ex. 1. In Ex. 1, § 151. the Galois group is 1, (eeas), (aa), (¢ey)-
(e2e3).  The roots of f(x£) =0 are «, 4y, &, g Then ¢+ 40y + 10 is
a tunction in Qq, ot two roots of f(x)=0. The value of this function is
50, a number in {2 ; that is, belonging to the domain Q). Performing
the substitutions (@w;), we get w2 + 4 « + 10, which still equals 50. The
other substitutions do not atfect the function. 'This illustrates § 1563.

Ex. 2. Using the group and roots of Ex. 1, illnstrate § 163 by the
equation (u? + 4 &1 — 24)2 (a2 + 8 w3 — 60)3 = 0. Here the left member
of the equation is our function, and the number in Q is 0.

Ex. 3. f(x)=u«*—#2—2 =0 has the Galois domain Qg), where
p=V2+i,pp=V2—1,pa=—V2+1 pg=—V2—i (1) Expresseach
of the roots of f(x)=0 as a function of p. (2) Find the group of the
domain. (3) Fud the Galois group of f(x)=0.

Ex. 4. In Ex. 3 show that f(a, «+ ¢t,-1) = ¢} + 013 + @2 + «g® ad-
mits all the substitutions of the Galois group ; then show by actual sub-
stitution that f(«, -+, @z_1) is a number in Q). This illustrates § 154,

155. Theorem. A group G is a Gulois group of the equation
Sf(@)=0 for the domuin Q whenever

(A) Every function in Q of the roots e, which is a number in
Q, admits the substitutions of G, and

(B) Every function in Q of the roots a, which admits the sub-
stitutions of G, i8 a number in Q.
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Firstly, we prove that every substitution of G belongs to the
Galois group.

Asin § 142, select appropriate values in © for the coefficients
C, €y +++, €,y 80 that distinet values for p are obtained for every
permutation of the roots «, «, .-+, «,_, in the relation

Ci+ €1ty + v+ €ty = p. I

Now p is a root of the Galows resolvent g(y)=0. In g(p)=0
substitute for p its value in I and we get a function in Q of «,
o, ++y @,_y, Which equals the number zero. If this function
satisfies hypothesis (A), it admits any substitution s of the
given group G. DBut by I this substitution changes p into
some distinet value p,. Hence g (p,) =0, and p, is a conjugate
of p. But the substitution (pp,), which corresponds to s, is a,
transposition of the Galois domain; hence s belongs to the
Galois group, and G is either the Galois group or one of its
sub-groups.

Secondly, we prove that the Galois group is & itself.
Suppose G embraces j substitutions, namely,

Sy et Sy Sy I

then the application of each of these to the function p in

I yields the values Py ***s P Pt II1

If we operate with any substitution s, in II upon any value
p; in 11T, the result p', must be the sanie as if we had operated
upon p directly with ss. But s, must, by the definition of a
group, be one of the substitutions in IT; hence p', must be one
of the values in IIl. Thus it is evident that the operation
with s, upon every value of [II causes simply a permutation
of the values in I1[. Hence a function ¢'(y), defined by the

relation 9@ =@—p)(y— p) e (4 —p)

has coefficients of y that are each invariant under the substi-
tutions of @. If we apply to each of these coefficients the
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hypothesis (B), each of them is a number in Q. Consequently
¢'(y) is a function of y in Q.

Now g'(y) = 0 and the Galois resolvent g (y) = 0 have the root
p in common, hence (§ 126) the degree of ¢'(y) =0 cannot be
less than that of ¢g(y)=0; that is, j, which is the order of @,
cannot be less than the order of the Galois group. Hence the
two groups are the same.

156. Theorem. An equation is reducible or irreducible uccord-
ing us its Glalois group s intransitive or transitive.

Let f(&) = F ) - h(x)=0,

where f(2) =0 is reducible and f(x), F(x), k() are functions
in Q. Let the roots of F(x) =0 be

Gy (hgy *oey Uy oovy 04, ). I

These are also roots of f(x)=0, which has the following

additional roots :
Qyy ooey 0, 0, ) IT

Now it is evident that no root «, of set I can be replaced in the
equation F(x) =0 by a root «, of set II, for «, is not a root of
F(x) =0. Yet we know that the coefficients of & of F(x)=0
admit all the substitutions of the Galois group of f(z)=0
(§ 153). Hence this group can have no substitution which
replaces o, by «, and the group is intransitive (§ 102).

Conversely, if the group P is intransitive and permutes the
roots in set I among themselves only, so that «, will not be
replaced by «, then the product

F@)=(2—a)(@—a) - (@—a,)

admits of all the substitutions of P, and is, therefore, a function
of 2 in Q. Hence F(x) is a factor in Q of f(), and f(x) =0 is
reducible.

Ex. 1. Illustrate this theorem by showing that the Galois groups of
Exs. 1 and 4 in § 1561 are intransitive.
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157. Theorem. .An imprimitive domain has an imprimitive
group.

Let f(#) = 0, having the roots «, &, «++, @,,, be irreducible.
Then its Galois group P is transitive (§ 156). Let the do-
mamn Q,, be imprimitive; that is, let it possess imprimitive
numbers which are not all numbers in Q (§ 135). If N=¢(a)
is an imprimitive number, then its conjugates may be divided
into m, sets of n, equal numbers in each set, so that »=n, - n,
(§ 138). We have then the following =, sets of roots of f(x) =0
with n, roots in each:

A=u &, - Uy -1
B = B’ ﬂl’ b ] Bn?-—-li I
H
e e e e e e
\J
S= 0y Oy ***y Onpp

N=¢(«) = ¢(w) =+ = ¢ (1),
Ni=¢B)=d(B) =" = (B2 11

so that

N,= (o) = (o) = -+ = $(0y0)

are numbers conjugate to N.

From II we see that the Galois group P of f(2) = 0 must be
so constituted that the roots of each set 4, B, ..., S are inter-
changed among themselves and that the sets 4, B, ..., S are
interchanged bodily, but never can two roots of the same set
be replaced by two roots belonging to different sets. Hence P
is an imprimitive group (§ 103).

Ex. 1. Show that the group composed of the powers of (0123) is an
imprimitive group.

Ex. 2. Show that any cyclic group whose order is not prime is an
imprimitive group.

158. Theorem. The symmetric group of the nth degree is the
Glalois group of the general equation f(x) = 0 of the nth degree in
the domain Q, defined by the coefficients of f().
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In the general equation f(x) =0 no relation is assumed to
exist between the roots; that is, the roots are taken to be
independent variables.

In all cases a symmetric function in Q of the roots equals
a number in Q (§70). 1f it be granted that, for the general
equation, this is the only funetion in Q having this property,
condition A of § 155 demands simyply that

Every symmetric function of the roots shall admit the sub-
stitutions of the symmetric group,

and condition B demands that
Every such symmetric function shall equal some number in Q.

Both statements are true. Hence the symmetric group is
the Galois group of the general equation.

159. Actual Determination of the Galois Group. In Exs. 1and
4 of § 151 we determined the Galois groups of easy equations,
for the domain detined by the coefficients of the equation, by
the aid of the roots of the equations. When the roots are not
known, P might be obtained by the construction of the Galois
resolvent, from which P1s obtainable. But the Galois resolvent
is not easily constructed. Practically the Galois group can be
ascertained more readily from the theorem about to be deduced.
Tt is well to remember that, when f(x) =0 is irreducible, the
degree of the Galois group is equal to the degree of the equa-
tion. When f(x) = 0 is reducible and the factors are known,
it is easiest to consider the equations resulting from the irre-
ducible factors of f(x). We proceed to prove the following
theorem, in which M is any function in Q of the roots e, -++, ,_;,
which belongs to @ as a sub-group of the symmetric group:

If a function M is a number in Q, the Galois group for the
domain Q is either Q or one of its sub-groups.

Since, by hypothesis, M is a function in @ of the roots
y gy *++y 0,3, Which is a number in @, it follows by § 153 that
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M admits of every substitution of the (zalois group. By defini-
tion, M belongs to @; that is, there are no substitutions of the
roots, except the substitutions in @, which leave M unaltered
in value. Hence the Galois group is either @ or one of its
sub-groups.

Ex. 1. For the domain Q, .., 4,_,) the Galois group of f(z)=0is 1.

Let @ = 1 and M = ¢ + -++ 4 Ca—1¢tn—y be a function in @ of the roots,
such that it is altered in value for every interchange of the roots. Then
M belongs to @, and is a number 1n the given domain. Hence, by the
above theorem, =1 for {2,

. )

Ex. 2. Find the Galois group of the cubic 23 + 342 - 06x+1=0,

The discriminant (§ 356) is found to be 272 By § 77 the alternat-
ing function of a, ¢y, s equals the square root of the discriminant.
This function admits the alternating group. See Ex. 1, § 100. Take
l‘[:((l -_ (ll)(ll —_ ll;)(!ll - wz)z 27, Q = (1",;("”, and Q= Q(x). We sec
that M is unaltered in value by the substitutions of 3(3, but that its alge-
braic sign is altered by the remaining substitutions of /g. Hence M
belongs to (5@ ; M 1s a number in €3y. Therefore the required group is
either G5 or the group 1. By § 54 we see that the equation has irra-
tional roots ; hence I’ cannot be 1, it must be (3@ for the domain Q.

Ex. 3. Find the Galois group of Newton’s cubic
»—-2x—-5=0,
The discriminant is not a perfect square ; hence P = G¢™® for Q.
Ex. 4. Show that P = 3 for the cubic
=3t +c+1Dr+(c?*+c+1)(2c+1)=0
and the domain Q, c).

Ex. 5. Show that G4®II is the Galois group of z¢*+ 1 =0 for the
domain Q).

The discriminant, § 51, is 256, a perfect square. Hence the alternating
function which belongs to G424 is a number in €gy. The required group
is either G412, or one of its sub-groups. It cannot be the identical group,
because the roots are not rational; it cannot be G, because this is
intransitive, while x¢ + 1 is irreducible (§ 156). Hence the group is either
G12@ or G4WII. We see that y= (¢— &;) (&2 — 0t3) is unaltered by G4¥II,
but is altered in form by all substitutions not in G4®II. The resolvent
cubic, having y as a root, is y3 — 12y + 16 =0 (Ex. 17, § 71). Since the
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roots of this resolvent are rational, y is a number in Q). Sirce these
roots are distinet, y is altered not only 1 form, but also in value by sub-
stitutions not in 4WIL.  Hence y belongs to G4WII, and we may take
y =M. Hence G4®II is the required group.

Ex. 6. Find P for the equation (2 + 2)(#2+x + 1)= 0, Q).

The Galois group of 22 + 2 =0 for Q) is P= 1, (ew,). The equation
22 4+ & + 1 = 0 gives, for Qq), P! =1, («3). Tf we multiply the substi-
tutions of P by those of P/, we obtain the intransitive group 1, (aw;), (®:03),
(woy) (o2t3) = G4@III as the required group for the domam Q). See
Ex. 6, § 104,

Ex. 7. For the domain Q), 28 — 22 — 5=0 has P= G¢®. Show that
for the domam Q, v5),, P = (/;®.
Ex. 8 TFor the given domains find the Galois groups of
(@) 224+ 56x+06=0, Q.
() #+5x+5=0, Q.
(c) zt+10 =0, 1,vn).
@ (x+1)3=0, Q.
() o3 —21x+435=0, Qu.
(f) B =3G+V2) e+ 71 +V2)=0, 24.v5).
() w4 ¥ +u+0+1=0,Q.
(h) (@®456)(x? —21x 4 35)=0, ), also Qq,v35). See Ex. 7, § 104,
(@) -1=@+DE-1)@EP+z+1)@*—2+1)=0, Q).
k) 22-1=0, Q).
@) x4 (a+b)x*+ ab=0, Q. q,0).
(m) x8 —2=0, Q.
(n) at+ 423+ 0622+ 42 4 2 =0 for Qq).
Ex. 9. Find a general expression for the equation of the fourth degree
whose Galois group is G». Assume
(et — )2 + (oy — 03)2 =8¢,
[ — 02)? — (o1 — @3)?]2 = 64 b,
[(@ — o) — (1 — a3)?][t — &g + 4y — &3] = 8VD - 4 AV,

where b, ¢, d are rational numbers and b is not a perfect square. These
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assumptions are justified by the fact that the left member of cach equa-
tion is a function which belongs to 74, § 1564, We get

(@ — o3)? = 4(c + Vb), (00— 5)? = 4(c —Vb),
o« — 0y + oy — oig =4 dVD,
o4 0ty + o + 03 =4 by,
Hence o= by + dVD +Ve +Vb, ws = by + dVh —=Ve + Vb,
= by — dVh +\/;'—:—\‘/_.b, ;= by — dVb —-\/C: ;/—l;
Diminishing each root by b; and forming the gnartic, we obtain the
Tesult yh — 2(D@ + ¢)y® — 4 bdy + (bl — )% — b =0,
Ex. 10. The quartic whose Galois group is G4®III is the reducible
equation,
at =20+ a2 —4cex+(cP—d+e)(2—d—e)=0,
where (d + ¢) and (d — ¢) are not perfect squares.
Derive this by assuning
o+ g — g — ¢y =4 ¢,
(1 - @2)? + (3 — )2 =84,
Coy — w2)? — (U3 — ug)? = 8e.

Ex. 11. Find a general expression for equations of the fourth degree
having the Galois group (/(»]. Use the functions

(o0 — oty — 3 + Toeg)4,
(o + ot — g — t0g)4,
(@1 — g + 05 — 06g)?
(0 — ity — o3 + ioeg) (0t + 022 — 0t — T0tg),
(o1 — 02 + 23 — 005) (@1 — k2 — 00 + i0s)?,
and impose upon the letters which appear in the expressions for the co-

efficients of the quartic no other conditions than that they shall be rational
and one of them shall not be a perfect fourth power. See Ex. 3, § 176.

Ex. 12. Show that, if the roots of the cubic in Ex. 11, § 71, are all
rational, the Galois group of the quartic having the roots a, 8, v, 8 is
either G4WII or one of its sub-groups.

Consider (aB + v8) — (ay + Bd).
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Ex. 13. The product
(0t + o2 — o5 — ) (01 — O + 003 — etg) (0t — Otz — (g + 0Ly)

is a symmetric function of «;, s, a3, 4. The square of the product of
the first two factors belongs to G4®II. To find the general quartic having
G411 as its Galois group, we may therefore assume the factors to equal,
respectively, Vb, Ve, dVbe, where b, ¢, d are rational, but where bc is
not a perfect square.

The required equation, deprived of its second term, is

vt —2(b 4+ ¢+ bed)y2 — 8bedy + (b — ¢ — bed?)2 — 4 be’d? = 0.

Ex. 14. Show that 2t + 2 hz? + ¢ = 0 has the group (/3 when b and ¢
are subject only to the condition that b2 — ¢ is not the square of a number
in 9(1, b, )

Ex. 15. Show that x* 4 2 bx? 4 ¢ =0 has the group G4*II when ¢, but
not b2—c, is the square of a number in Qq, ;).

Ex. 16. Show that x* — 8 Sx2 4 8 §2 — 8 §* =2, where § is any number
in Qq), has the group (4®1.  See Ex. 11.



CHAPTER XV
REDUCTION OF THE GALOIS RESOLVENT BY ADJUNCTION

160. Definition of M. Tet the Galois group P (of the
order p) of the equation f() = 0, having the roots «, @, -+, @,y
possess a sub-group @ of the order ¢, where p = ¢j, j being the
index of @ under /> For the purposes of the theorems in
succeeding chapters, we define .M nearly as in § 159,

Let M be any function in Q of the roots «, +++, &, _, which belongs
to Q as a sub-group of P (§ 111).

161. Theorem. By operating upon M with the substitutions of
P we obtain j distinet values of M which wre roots of an irreducible
equation of the jth degree in €.

If ¢ is a substitution of the Galois group P> which does not
oceur in the sub-group @, and if s, &, +-+, s,_; be the substitutions
of @, then by the definition of a grouy,

8ty Sty ey 8400 I

are all substitutions of . But the substitutions s,¢ in T, when
applied to M, all prodnce the same effect, for in any case we may
operate with the product s, by first operating with s, and then
upon the result with #. By hypothesis, operating with s, upon
M produces no change whatever, hence s,¢ produces always only
the result due to ¢ alone.

By hypothesis it follows that, as ¢ does not oceur in the sub-
group @, ¢t operated upon M gives us a new value M.

From § 106 we see that there are as many sets of substitu-
tions T in the group P as ¢ is contained in p; namely, j sets.
The substitutions of any one set applied to M all give the same
value for M, but no two sets yield the same value.

171
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~ For suppose s/, and 3¢, yielded the same value for M; that
1s, suppose

» SUPP M, = M operated upon hy st,
and M, = M operated upon hy s,t,,

then, operating with (s,t,) upon M, would give M = Jf operated
upon by (s,t,)(s,t)7L

That is, (s,/,)(s,t,) "' s a substitution contained in the group
and is equal to, say s,. If s, = (s,£)(s,t)7, then, operating with
s,t, we get

o f — ¢ @f — !
'Sl {I: - "’m'srtl - Sm tl’

where s, is o substitution in . Since the effects of s,f, and
st upon M are the effects of ¢, and ¢, alone, it follows that
t, =t, which is contrary to supposition. IHence s,¢, and s,¢ must
yield different values when applied to M.

The function ¢(y)=(y— M)(y— M) --- (y — M,_,) is now
seen to be invariant under any substitution of P.

The coeflicients of y 1 ¢(¥), obtained by performing the indi-
cated multiphieations, are symmetric functions of M, M, ..,
A, _, and, therefore, by the definition of M, functions in Q of
the roots of fla) =0, functions which admit of the substitu-
tions of the Galois group 7% Hence these cocefficients are
numbers in Q (§ 154),

To prove the irreducibility of ¢(y), assume that 6(y) is any
function of y in Q, which vanishes for y =M. Then (M )= 0.
Since (M) must admit all the substitutions of the Galois
group (§ 153), we must have 6(M,)= 0, where i has any value
0,1,2,.-.,(j—1). Hence 6(y) cannot be of lower degree than
the jth. As all the roots M, M, -+, M, , of ¢(y) =0 satisfy
0(y) =0, 6(y) is divisible by ¢(»).

Now, if ¢(y) were reducible, one of its factors would vanish
for y=M. Since 6(y) may be «ny algebraic function in
which vanishes for y = M, let 8(y) represent this factor. Then
it would follow that this factor would be divisible by the whole
produet ¢(y), which is impossible. Hence ¢(y) is irreducible.
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162. Theorem of Lagrange as generalized by Galois. .dny
number in the Galois domain which admits the substitutions of
the group Q is contuined in the domain Q y.

In § 161 we saw that M, a function which belongs to @,
assumed the following distinct values, when operated on by the
substitutions of P: M, My ey M. 1

TLet M' be any function in Q of the roots «, «--, «,, which
admits the substitutions of @. lLet any substitution of P
which changes M into M, change M' into M', then we get the
following values, corresponding to those in I,

MYy MYy ey M TI

These are not necessarily distinet.

Accordingly when npon the series of numbers I and IT we
operate with a substitution of P, there occurs a permutation in
each series, but such that if M, changes to M,, then M’, changes
to M.

Defining ¢(y) as in § 161, consider the function

M M M
d(7) = d(y, ! e 2 41
=9 ‘I)<.’/ —M +]/ — M, e y— Mj—),
which is an integral function of y of the (j— 1)th degree.
This function is invariant under all substitutions of > Hence
it is a function in Q. Take y =M. Remembering that ¢()
has no equal roots, we have (reasoning as in § 142)

=200
¢'(M)
where ¢' indicates the first differential coefficient of ¢ with
respect to y. Thus M'is a number in the domain Q).

Ex. 1. Find the value of a root & of the equation 22 4+ 2 =0 in terms
of & — @, it being given that P =1, (aay).

If we take @ =1, we sce that M=« — o, is a function which belongs
to @ and that M’ =« is a function which admits . We find My =«; ¢,
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=W M)(y— M) =9 - (- )2 20N =y(a+ @) + o + af
—200,=—8& ¢'(y) =2y Hence a=o(M)/¢" M)=-4/M. 'The
correctness of this result 1s easily shown.

Ex. 2. For the equation z%4 ax + b =0, having the group P =1,
(ewy), find «® — oy? as a function of « in Q.

Take Q =1, M=u, M= — w? then &(y) = (B ab+2b— a2 — )y
+3ah + 202 —ath — ¥ ¢'(1) =2y + a. Henuce

=[Bab+2b—a—a®)M+3ab+2bt—alh—-a¥]-- (2 M+ a).
Ex. 3 Find the value of [w, «]3 for the cubic o + @2 + agx + a3 =0
in terms of the alternating function (& — ) (¢ — «2) (¢ — o) =VD.
Let M=vD. then y M= —~VD.
We have M'=[w, «]3, M =[w? «]3, ¢(¥)=y2— D,
&) =y + M) + VD(M — M'y). By § 171, Ex. 15,
M4+ M =—2ad+9aqa:~27Tas. We find M — M =—3{ V3D,
S(MY=VD(—2a:8+ 9tiae — 27 ay — 3 i V3 D),
&' (M)Y=2VD, M =1(—2ay®+ 9w — 27 as — 3 ViD).
See also the solution in § 173
Ex 4 For the quartic ot + 4 U128 + 6 bux? -+ 4 bz + by = 0, find the
value of M= (¢« + «) (0, + ;) in terms of M, where
16 M= (@ — @+ wy — 03)2
Both M and M’ belong to the group (Y. Notice that M is a root of
the cubic III, § 62. See also § 169. Hence that cubic is ¢(y) =0. Wetind
162¢(y) =162 (M’ + M’y + M'yy)y? — 16(My + MM + (M + MM
+{M + M3M'1)y + MMM + MMM’y + MMMy
=162.2 Zo102 - 2 — 16 (4 Sweey « Za2 — 8 Sa2uqta)y
+ (2 Saboty — 6 Seetey i + 4 Seday?oe — 4 Sode® — 4 Tolay200g).
In Ex. 16, § 71, the values of the symmetric functions occurring here are
given,
Ex. 5. Complete the computation in Ex. 4 for the special quartic
22+ 622 +42+1=0. Weobtaind(y)=1242—-16y — 3,

s=r+3ptay-5 =200 4 M

N

o'(M)  BMIYOM+2
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163. Reduction of Galois Group. I/ we adjoin to Q a function
M, the Galois group reduces to Q.

Firstly, each function in Q,, of the roots «, «, -+, «,_, of
the original equation f(z) =0, which equals a number in Q)
admits the substitutions of @; for, this number in Q,, is a
function of M, and M admits all the substitutions of Q.

Secondly, each function m Q 4, of the roots ¢, -+, «,_;, which
admits the substitutions of @ is by § 162 a number in Q.

But these are the two charactenstic properties of the Galois
group in the domain Q,, (§ 155). IHence @ is the Galois group
of f(x) =0 in the new domain Q.

This reduction of the order of the (Galois group from p to ¢
(§ 160) was effected by the adjunction of M, the root of an
auxiliary equation of degree j (§ 161).

* Ex. 1. Gaven that o + 23 + 1 =- 0 has the Galois group G.y® for QM,
Adjoin in succession four irtationals M and show that the Galos group is
reduced and the domain is enlarged as mdicated below,

M r ¢(y) =0, § 161 Domuin
249 Q)
VD G D=229 Q, V)

y=(0— o) (2 —0ly) (GyOIT P =129+ V2200, § 71, Ex. 17 Qa,vn, 9
z2=0—01+ty—0z G 9:22137—1—18?/—16]]2—2?/\/7) Qa,vD,y,

W=0—0 G wl—cw+y=0 Q0,VD,y,2,1)

Show that y involves the irrational V12V 3 — 4220,
Ex. 2. Show that the roots of the quartic in Ex. 1 can be expressed
rationally in terms of the roots of the quadratics in z and w.
* Ex, 3. Apply the process of Ex. 1 to the quartic
xt 4 e  r? agr +ay =0
and deduce the successive resolvent equations ¢(y)=0; viz.,
D =256(1% —27J%) (§61), ¥ —12I4+VD =0,
2J2 =12t — 192 @ + 144 yT + 8 12 + y VD — 64 I?,
w—zw+y=0.



GALOIS RESOLVENT BY ADJUNCTION 179

164. A Resolution of the Galois Resolvent. Tiet the Galois
resolvent g(y) =0 have a root p. 1 we effect upon p the sub-
stitutions s, of the sub-group @, one at a time, we get the values

P P1s P2 ***y Py-1y I

where p, is gotten by operating upon p with the substitution s,
If upon the p’s 1n 1 we etfect any substitution of the group @,
the p, in [ sumply undergo a permutation; for, each result thus
obtained, being derived from p by effecting two substitutions
in suceession, is equivalent to p, operated upon by that substi-
tution of ) which is the product of those two substitutions.

Hence, g, M) ="y —p) (I —p1) *** (¥ — pe-1); n

ig invariant under @, and the coeflicients of y in expression
11 are numbers in Q,, § 162. By the notation g(y, M) we
mean here a function of y m which the coefficients of y are
numbers in Q.

Now g(y, M) is a divisor of g(y) in the domain Qy,, for the
former 1s of degree ¢, the latter of p, and p = jq, § 160.

If upon IT we effect a substitution ¢ which occurs in P, but
not in @, we get

g(y, M) = (1 —p) (1 —pr®) =+ (1 — py ). 111
The values p®, p,®, «-+, p, 1 are roots of g(y) =0, hence I1I is
also a divisor of g(y).

Two sets of roots p, +--, p*1® obtained from two distinct sub-
stitutions ¢, are either indentical or they have no root in common.
Consequently, two distinet functions ¢g(y, M,) have no common
factor, and we have the resolution into distinct factors

90 =gC, M) - gQts M) - 9(y, My). v
It is to be noticed that in this resolution the factors g(y, M,) do
not usually belong to the same domain ; they belong respectively
to the domains Qy), Q) *++, Qu, - Another resolution of

g(y) is possible, in which all the factors helong to the same
(10maia 9(”)-
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165. Adjunction of Any Irrationality. If by the adjunction
of any irrational X to Q we obtain « domain Qx, tn which the
Galois resolvent y(y) =0 becomes « reducible equation, so that

011y X)= (1 —p)¥ — p1) = (Y — pg—1)

is an irreducible fuctor of g(y) in Q, of the degree q, then in this
new domain the Galois group s reduced to the sub-group

1, (pp1)s ***» (ppg—)-

Adjoin X. Since g(y) =0 is a normal equation in @, § 146,
we have p,=¢,(p). In

h( X) = —p)»—p) - (1= pp) =0 I
write ¢,(%) in place of y; we obtain a new equation in y, viz.,
gi(p(), X) == (1) — p)(P.(y) — p1) =+ (D) — pg1)=0. 11

As I is irreducible in @ and I and IT have a root p in com-
mon, all the roots of 1 satisfy IT. TLet p, be any root of I; then
putting y = p,, one of the factors in II must vanish; say, the

fa.(“tOI' ¢«(Ph) - pk’
‘We have now the relations

pe= .(p)s
pi = b.(ps)-
Hence the equality of the substitutions
(pox) = (ppa)-
Multiplying by (pp,), we have
(ep)(pex) = (pp.)(opn)s
or (ppe) = (pp.)(ppn)-

That is, the product of any two substitutions in the set
1, (pp1), *** (ppe—1) is equal to one of the substitutions in the set.
Hence they form a group, § 95. Call this sub-group Q.
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Equation I is the Galois resolvent of f(x) = 0 for the domain
Qx,; for this equation is by hypothesis irreducible in Q4,), and
the two other conditions are satisfied, because of the relation
Qe cany) = Dy = By, § 145,

Hence @ is the Galois group of f(x) = 0 in the domain Q,.

166. M a Function of X. M can be expressed us « function in
Q of any irrational X which reduces the Galois group to Q.

We have seen that ¢,(y, X) is a function in Q, of y, whose
coeflicients admit the substitutions of the sub-group @. Since
M belongs to @ and these coefticients admit @, the coefficients
are numbers in Q ), § 162. Hence we may express the product

. W—=p)—p) = (4= py)

as a function of y and X and designate it, as above, by g,(%, X),
or we may express it as a funetion of y and M and designate
it by g(y, M). We have then

9(u, M) =g (y, X). I

Now M is the root of an irreducible equation in Q of degree j,
§ 161; namely, the equation

$(2) =0, 1T

of which the other roots are M;, My, ..., M, ;. By § 164 we
have

g@)=y(y, M) - gy, M) -+ y(y, M, ). LI

The equation I is not satisfied when in the left member we
substitute for M one of its other conjugates; for, supposing it
were, it would follow that ¢(y, M) is equal to one of the other
factors in the right member of III, a conclusion at variance
with the fact that g(y), being irreducible in Q, can have no
equal roots.
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It is, therefore, possible to assign to y such a rational value
that the equation .
1 g(.'/’ z)"'.’/l(.’/’ X ) =0, v

in which z is regarded as the unknown quantity, has only one
root 1n common with equation 1I; namely, 2= M.

The 1. C. F. of 11 and 1V 1s eousequently a binomial, linear
with respect to z.  Since the coefficients of z m both Il and IV
are numbers m Q, and the process of finding the 1L C. F.
includes only operations of subtraction, multiplication, and divi-
sion, and thereby never introduces new irrationals, it follows
that the H. C. F., z— M, is a function in Q5. 1u other words,
M is a number in £y, and therefore a function in Q of X.

Cororuary L The domain Qy, of degree jis a divisor of the
doinain Qy), since every number m Q,, is a function in Q of X.

CorouLAry IT. The number X is a root of the irreducible
equation 2(y)=0 of the same degree as that of the domain Q,,
§ 138. Ience the deyree of h(y)=0 is a multiple of j, the degree
of equation 11.

CorornuAry IIT.  If X is taken as a function in Q of M, then
Qxy wnd Q) are identical.

Corornary IV. The reduction of the Galois group, caused
by any irrational X which 1s not & number in the Galois domain,
can be effected equally well by some number M which is in the
Galois domain. That is, erery possible reduction of the Galois
group may be effected by the adjunction of some number belonging
to the Galois domain.

The numbers in the Galois domain of the equation f{z) =0
are called by Kronecker the “natural irrationalities” of f{w)=0.
The corollary may now be stated thus: Every possible reduction
of the Qulois group may be effected by the udjunction of a natural
irrationality.

Ex. 1. In Ex. 1,§ 163,adjoin to q), X = ¥ VD. Here X admits the
substitutions of the alternating group, and the Galois group is reduced
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to Ghe™®. Now X does not occur in the Galois domain Q4. 0y 4,
=Q0. VB, y, 2, w) and is, therefore, not a natural irrationality. The reduction
brought about by X can be effected by VD, which is a number in the
Galois domain, hence is a natural irrationality. Thisillustrates Corollary
Iv.

The relation vV D = X illustrates the theorem itself. We have

gN=W—-VD)(y+ VD) =0,0ryt=D,

Let yn ="/ Dy 2=V — v D and we get k(y) = (y* ~ VD) (4 + VD)
=0, or y2» = D. This illustrates Corollaries IT and 1.

Ex. 2. If the group P of an equation is (@, illustrate the above
theorem and corollaries by taking X = V(&g — t243)*(@tta+ t10t3)?.  See
Ex. 6, § 113,



CHAPTER XVI

THE SOLUTION OF EQUATIONS VIEWED FROM THE ‘STAND-
POINT OF THE GALOIS THEORY

167. General Plan. Quadratic Equation. The problem, to
solve an algebraic equation, 13 replaced in the (alois theory
by another problem, to bring about a reduction of the Galois
group and a lowering of the degree of the Gulois resolvent by
the successive adjunction of simple algebraic numbers. 1f a
funetion M is adjoined to @, the Galois group is reduced to Q.
[t becomes necessary to determine the numerical value of M
for the given equation f(x) =0. This we endeavor to do by
the construction and solution of an auxiliary equation of the
degree j, where j 15 the index of @ under 2 The roots of
this auxiliary equation, or resolvent, are the required values of
the conjugates of M. This same process is repeated upon the
reduced Galois group until this group finally becomes 1. Then
the enlarged domain contains the roots of the given equation,
and the values of the roots may be found in terms of the
mumbers M, M', .- which have been adjoined to the original
domain.

Quadratic Eguation. The Galois group of 2®*+ayx+a, =0
is the symmetric group G, § 158. Its only sub-group is 1,
§ 104, whose index j=2 Take M=« —«, Its other con
jngate valueis M, = @, — «. M and M, are roots of the equation
P=&—2 am + ¢’=a—4a, § 161. We get y=+ Vai—4ay
as the values of M and M, After adjoining M, the Galois
group is 1; the enlarged domain is Qg , 4, Vaitiay. We know
that « + &y =—a; and & — ¢, =Va* — 4a;. Hence

2ea=—a+Vaf—4da and 2y =— 0, — Vo —4a,
184
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Theoretically there is an infinite number of ways of solving
the quadratie, because there 15 an infinite number of functions
M to choose from. Thus we may take M=N(e— a)**,
where # may be any value which gives W and M, distinct
values, and § is any symmetric function of «, w.

168. Cubic Equation. From the pomnt of view of the Galois
theory the solution given in § 59 may be outlined as follows:
The change from & to z is an operation which does not alter the
domain. The same is true of the change from 2z to x, after z
has been found ; also of the substitution of « 4« for 2, and its
inverse, and of the climination of . The solution of the cubic
may be exhibited thus (where VD, =V —=3VD):

#(y)=0, § 161 M P Q

o» Qs 5,5 hs)EQ'

(LS A )

3 .
W+ Gud—IP=0 u= :LTG+ ;i;’; VD, oW Q’(\/;,;)

W= G-{-\/—i—f +IH? u=](etogy+oay) P Qi e

9
-

The numbers adjoined to Q' are determined by the roots of
two resolvent equations ¢(y) =0, the first a quadratic, the
second a pure cubic equation.

169. Quartic Equation. We give here those steps in the solu-
tion given in § 62 which involve an extension of the domain.
Welet 16,= (6 — g+ oy — @)%, 16 v= (e~ &, — og— o)’

16 w=(e¢—a,— 0+ @)%

(Fag® Q("m b)) = Q
4bh33—bolr+ J=0 bl2ri=bobe—bi2+u Gz® )
¥ = bi2—boba+ boia Vo GWIIL 0'(u, va)
@ =1, (ab
T L] ( ) 0,("' V;)
@'=1, (cd)

{ "= ’)12 -— b0b2 + boeﬁﬁ \,1.7 { 1 { 9’(\/;, V;)
w=bl2— bobe -+ ho’xs \/’;5 1 ﬂ'(\/;' Vo)
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Sinece G*IIT is an transilive group, the quartic can be
factored in the domain @', v,. The two quadratic equations
thereby obtained have as Galows groups 1, (ab), and 1, (c¢d),
respectively. From VI, § 62, we see that Q' vz v,y = Q' vy v
Hence it is not necessary to adjoin more than one of the two
irrationals Vu, V.

The quartic offers a better exhibit of the Galois theory than
did the quadratic and cubic equations, because not only may
we select a great variety of different functions M at each
adjunction, but we may select different groups. In the above
solution the series of groups taken is G'Y, G, G¥III,
G = (1, (ud)), @ =1, but another series may be chosen, viz.
G0, G, WL G 1. In Exs. 1 and 3, § 163, a solution
of the quartic is outlined, in which this series of groups is used.

Again, we may effect a solution by first adjoining a function
that belongs to the cyclic group G*I; say,

Y= awy® -+ i+ g 4wyl

To be sure, the first resolvent equation ¢ (y) =0 will be of
the sixth degree, but it can be treated as an equation of the
third degree and a quadratic.

The number of different solutions of cubic and quartic equa-
tions which have been given sinee the time of Tartaglia and Car-
dan is enormous. For information on different solutions consult
L. Matthiessen, G'rundziige der Antiken w. Modernen Algebra.

It would seem that the above mode of procedure should lead
to solutions of the general quintic equation. But an unexpected
difficulty arises in our inability to solve all the resolvent equa-
tions. There arise resolvents of higher than the fourth degree.
The Galois theory will furnish proof that the solution by radi-
cals of the general quintic and of general equations of higher
degrees is not possible. In the remaining chapters we shall
demonstrate this impossibility and discuss the theory of special
types of equations of higher degree which can be solved
algebraically.



CHAPTER XVII
CYCLIC EQUATIONS

170. Definition. A cyclic equation is one whose (3alois group
is the cyche group, § 101.  Kronecker called such equations
“einfache Abel'sche Gleichungen.”

A quudratic equation is cyclic; for the Galows group is the
symmetric group G,*, which 1s at the same time the cyclic
group of the second degree.

The general cubic is not a cyclic equation in the domain defined
by its coeflicients; for its (alois group is ¢, which is not a
cyclic group. However, if we adjoin

VD= (0 — &) (e — w) (e — w),

the Galois group becomes (§ 163) @®, which is cyelic. Hence
the general cubic is cyclic in the domain Qaonyng v oy

The general quartic is not « ecyelic equation in the domain
defined by its coeflicients, but if we adjoin a funetion which
belongs to the cyclic group G, the equation is cyeclic in the
new domain. One such function that may be adjoined is

M = aww® + o + e + aed
If n is a prime number,
Va4 e +24+1=0 I

8 a cyclic equation in the domain Q. For, § 130, this equa-
tion is irreducible. The eyelic function

)
“’12“’2 + wfwg + ot w07

is seen by the relations w,= o’ w;= w? ete., to be equal to
the sum of the roots, which is — 1. Therefore the Galois
187
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group is either the cyclic group of the degree n — 1 or one of
its sub-groups, § 162, Since 1 15 a normal equation, it 15 its
own Galois resolvent; the Galois domain 18 of the degree n — 1
and the Galois group of the order n —1. Hence the Galois
group of I is the cyclic group of the (n — 1)th order.

Ex. 1. If % is prine, show that #* — 1 =0 is a cyclic equation in the

domain £y In what tollows we shall exclude from our consideration
cyclic equations whose roots are not all irrational.

171. Theorem. Euch root of u eyelic equation can be expressed
as a function in Q of any other root.

It o, w, -, «,_, are the roots of the ¢yclie equation f () = 0,
then the function in Q of 2 of the (n — 1)th degree,

o (4)= r(.L)(-_ g _M>,

£y T — U,

admits the permutations of the cycliec group and is, there-
fore, a number in £, § 154 If we pul in succession

X = @, &y, -y @,_, and if we use the notation ;%‘3 = ¢(«), we get,
”

§ 142, o= ¢(“)’ = ‘f‘(“l), ey Uy = ¢(au~—2 y &= ¢(an—-l)'
This holds even when f(2) = 0 is a reducible equation, pro-
vided that it has no multiple roots.
Ex. 1. When are cyclic equations normal ?

Ex. 2 Show that one root of a quadratic equation can be expressed
as a function in {2, ¢, of the other root.

Ex. 3. Show that any root of a cubic can be expressed as a function
in Qu,, ay, as, vD) of one of the others.

Ex. 4. Show that «: = ¢2(®), @; = ¢3(«), ete, where the superscript
is not an exponent, but mdicates that the functional operation ¢ is to be

repeated. Thus, ¢2(«) = ¢(p(@)).

Ex. 5. Prove that ¢, = ¢"+1(«), wx = ¢"t2(w), ete,
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Ex. 6. If ¢(a)="21P 4 2y = " PP ete., then it
¢(e) e+ d b @) cay+d - !
may be shown that ¢”(«) = «, when a + d = 2 cos for and ad — be =1,
m

where & and m are relatively prime. (Sce Cole’s transl, of Netto's

Theory of Substetutions, pp. 204-207.)  Show that when ¢ =0, — b =¢

=d=1, k=1, m=3, we have ¢ =—- L Sy U =—1— 1, where
wil o

o, 001, o are roots of the cyclic equation 3 4+ 42 — 22 — 1 =0,

Ex. 7. Show that if, in Ex. 6, ¢ =0, b=—c=d=k=1, m=3,
then e, «, ¢ are roots of 23 + ax? — (¢ + 3)c +1=0.

172. Solution of Cyclic Equations. The general solution of
cyclic cquations can be easily obtained by the aid of the
Lagrangian resolvents, § 115.

By the theoremn in § 118 the expression represented by
[w, ] in which the «, &, -+, ¢, are the roots of f(x) =0,
and o is a primitive nth root of unity, § 66, is such that the
coefficient of each power of o is a c¢yclic function of the roots
of f(x) =0. Sce [x.1,§ 119. Thus [, «]*1s a function in
Qay, 0y, - a,, vy Wh1eh belongs to the cyehe gronp.  This function
is a number in Qiay, e 2y 0h § 154, Let the coefficients of
different powers of w m [0, «]" be ¢, 0, -+ey 0, Write

[wh a]*= o+ ot + o 4 oo 4 0,0 =T,
The cyclie function T, can be computed. Regarding it as
known, we get [, «] = VT,
Assign to A the suceessive values 1,2, ..., (n — 1), and we have

n ey
ot woy A et 0", =T,
a4 o'ty A e 4 7 Ve, = VT,

. . . . . . . . . .

2 »m
e+ ooy 4o o Vi = VT,
@+ o 4oy =— Oy

where q, is known. Adding, we get
ne=—a, + VT + VT+ -+ VT, , [
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Thus the root « is expressed in terms of radicals of the nth
order, where the 7', are made up of numbers in Q, yren ap_yy
and the nth roots of unity. IEach of the radieals in I has »
values which differ from each other by a factor that is a root of
unity.

Our expression 1 involves a difficulty which demands our
attention. Siuce each radical has n values, it follows that the
(v —1) radicals represent n"~! values. Hence there are in T,
besides the n roots of the given equation, »*~!—n foreign
values, and no method is assigned for telling which of the
values represent the roots of the given equation.

To remove this difficulty, H. Weber proceeds as follows: If
we effect the substitution (012 .- »—1) upon [w, «]**- [, &],
then by §119 the indices of the coefticients of this product
undergo the substitution (01 2 ... (n —1))*~**A, Asthis is the
identical substitution, the cocflicients are unaltered.

Let [w, ] [o) a]=E, =P+ Mo+ -+ +6,, D™
then E, is a cyclic function in €, ey e, » and may be con-
sidered as known. We have

[oy a1 - [y 0] = (V" - VT, =B,

i E (VT YE
T A\ )R 1I
VI, (/T2 T,

From IT it appears that, for a fixed primitive value of o, each
of the radicals which appear in our value for ne in I may be
expressed as a function in Q@ of one of them. If that one
radical be given all its » values, the expression for na has »
values which are the n roots of the given equation.

Hence

173. Computation of 7,. Tn most cases the computation of
this quantity is extremely involved and special devices must
be resorted to. An idea of such devices will be given in the
discussion of cyclotomic equations, where the solution is
divided up into the simplest component operations. We give
here the computation of 7} = (« + a0 + ay?)®
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Let A = ey + g+ <,
A' = a0 e + @y + oy,
then A + A'=3 3 — Uy,
—A'=VD,

Ti=a"+ ul” + )} + 6wyt + 3 04 + 3 A4’
=3O Mma,~2a 2T a)+ 3V —3 D=}(S+3V=3D),
=100, —20p—2Ta)—3V—-3D= ;(b’——{i\/:gb),
where 8= 9w,—2«*—2T ;. We have now
— g7 s -
VT, = o+ wa1+w"’uz=\/-1(S+3\/— 3D).
\S/ﬁ_——u-}—m"'ul+wa;._ (S —3vV—3 l))

Having thus evaluated the Lagrangian resolvents for the
cubie, we can readily obtain an expression for the roots of
the general cubic by adding the values ot VT, and VT, to
¢+ o+ uy=—a, See solution of Ix. 3, § 162,

Ex. 1. For the quartic x* + 2% + as2® + a;r + a4 = 0 compute

T= (& + woty + ity + wdotg),
where w =1 or — 2.

Letting Ti= (o + ity — 0ty — Tee3)d,
Tr=(w — 10ty — 0y + ittg)d,
we have T + T2 = 2(& — @2)* — 12(@¢ — 03)2(ety — 03)2 + 2(0ty — ezt
=4{(0— @)? - (@1 — )2 — (0t — )2+ (1 — )22
=4papzs —2(0%2 — 22 — 2 ¢1)%,
where ¢; = etz + o¢y0t5 is a root of the cubic in Ex. 11, § 71,
and where pa = (0 + 06 — g — €3)?, p3 = (€ — 04 — &g + 03)2.
Let pr= (06— 0 + 0tz — 0t3)2,
then pt =12 — 4 az + 4 ¢1, prpapz = (1% — 4 ayaz + 8 a3)?,
Ex. 18, § 71. Hence the value of psps is known. We have also
TiT; = (@ — 2 a3 — 2 ¢1)4
Hence T; and T are roots of the known quadratic
V- (Ti+ Ty + TiT: =0.
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Ex. 2. Carry out the computation in Ex. 1 by taking
ay=a:=0, az=as=>5
and show that 7" will have the values 60 ) 80¢ which lie in the
domain £, 5.
Ex. 3. Find Ty and T» when in the quartic oy =ar=as =0, a3 =1.
In this case, is the cyclic group the Galois group in Qq,¢ ?
Ex. 4. Taking o — o + s — o3 =Vopy,
o+ ity — 0ty — 03 =V,
o — 0ty ~ 0tz + 0t = V3,
give a solution of the general quartic, pi, ps, p3, being roots of
8+ (Bas — 3a:2)p? + (3 art — 16 ay%az + 16 aya; + 16 ag? — 64 ay)p
—(a®—4aia:+8a3)2=0. See Ex. L.

Ex. 5. Find a solution of the general quartic by taking
o+ iy — ot — oy = V17,
€= o+ — o= AV,
o — oty — @ + tog = B(VTD3,
where A= (00— g+ s — oz) (€ + iy — 02p — f0g)~3

o[ T+ (12 =20 —2¢0)]
2T (ta10: — @’ — Sa,;)

B=(a—ia;— 0tz + fo3) (0 + f0tg — otz — 0z)~8

=02 —2a:—2¢1,
I

174. Cyclic Equations of Prime Degree. The solution of any
cyclic equation can be made to depend upon the solution of cyclic
equations whose degrees wre prime.

The solution in § 172 applies to cyclic equations of any degree
and is perfectly general. Nevertheless it is of importance, for
subsequent developments, to prove the present theorem. We
give the proof for the degree 12=3.4. The generalization to
the case n=c¢ - f is obvious.
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Let s = (an, - ay,), where &, = ¢(«), t, = Pp(ety), 0t5= (1), +++,
then s® can be resolved into three cycles, ¢, ¢y, ¢; as follows:

¢ = (o),
O= (0‘1“4%“10):

Cy = (Ceatt500800).

TLet y be a funetion ¢ in @ of the roots «, &, e, «, which
belongs to the eycle ¢.  The substitutions of the Galois group
P=1{1,s, 5 - 5"} of f(x)=0, applied to y, give three distinct
values,

Y = Yoty 000),

h= ‘/’(“1“4“7“10):
Yo = p(ayetsoa0ny)y

which are roots of a cubic equation,

t—y)E—n)t—y)=0. 1

The coeflicients of ¢ in I are symmetrie functions in Q of 7,
Y1, Yo, and are, therefore, unaltered by the substitutions of P.
Hence these coefficients are numbexrs i Q, § 154.

‘We proceed to show that I is a eyclic equation whose group
is Py= {1, (yny.), (Wy2in)}. Remembering that the substitutions
of the group P interchange y, y, ¥, cyclicully, we see, firstly,
that any function of ¥, ,, ¥, which admits of the substitution
of P, is a function of «, &, -+, «,_; which admits of the substi-
tutions of P (the Galois group of f(x) =0), and such a function
is a number in Q, § 154; secondly, any function of y, y,, ¥,
which is a number in Q, is a function of the roots «, @, +««, ¢,_1
which is a number in @ and hence admits of the Galois gronp P,
§ 153, thus showing that the function of y, y,, ¥, admits of the
substitutions of P,. Consequently P, is the Galois group of
equation 1, § 155.

o
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We can now prove that f(x) can be broken up into three
factors of the fourth degree each, thus,

J@)=F@y) - F@ ) F y2); I
where F (2, y) =0 is a quartic eyclic equation, in which the
coefficients of 2 are numbers in the domain Q. For, let

Fi(z) =@ — o) (& — «) (& — o) (@ — o), II1

then each coefficient of @ in 1II admits the circular substitu-
tion ¢; hence it admits also the substitutions of what becomes
the Galois group of f(x) =0 after the adjunction of y. This
group must cousist only of powers of ¢, ¢;, ¢,, Therefore, these
coefficients of x are functions of y, § 162, and we have F\(x)
=F(x, y). Moreover, F(x, y) =0 is a cyelic equation in Q,),
since the cyclic functions of its roots lie in this domain.

If inn=e-f, eorf are composite numbers, then we repeat
the process upon the new cyclic equations until all the factor
equations are of prime degree.

Thereby the solution of eyclie equations of any degree n is
made to rest on the solution of cyclic equations whose degrees
are prime numbers.

Ex. 1. Asan illustration, take z¢ + 23 + 22 + 2 + 1 = 0, where & = w,
=0l w=wt i=wt=wd Hence s=(aet0;) = (wewie?d), c=(wwt),
¢ =(w?w?). Take y= aus? + to? = 0t + w, then y; = 0% + w02
=4’ y+tn==1 ym=-1, C-NC-pn)=+t—-1=0,
20=—14VB, f@) =@+ -IVo+ D@+ G +1VEh+1) =
F(z,y) - F(x, ). Xach quadratic factor, equated to zero, is a cyclic
equation.

Ex. 2. Given that f(2) =2+ 25— 624 ~423 46224 3x—-1=0is
a cyclic equation in which « =2cosa, ¢y =2 cosna, ¢ = 2 cos nq, -
o5 = 2 cos nba, where n =2 and a = ?i; . In illustration of the theorem,

r

we have s = (00t 0e030atts), € =(0talty), €1 =(01030;5). Take y = atow?
+ 0042 + 0402, Y1 = 00?4+ azo? + apen?. With some effort we find
y+11=—6, yy1=8. Hence (t—y)(t—y)=103+5t+3=0, 2¢t=—5+ VI3
Weget f(x)=(B8—adt*—t+d—1)(8+(d+1)t2~t—d—2)=0, where
2d=-14VI3,
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The cubic factors yield cyclic equations of prime degree, The expres-
sion for y, selected 1 this example, is somewhat unwieldy. A better
choice is made in the periods of § 180.

’

Ex. 3. If m is odd, and equal to 2 n + 1, show that _(_z_"‘_—lllzn
2 —
when 2z +§= z, yields the cyclic equation

0 =24 av=1 — (1 — 1)an—2 —(n — 2)x"—3 + ﬁ"_*“ll)%' ki) Y
(=N =4 -5 .
+ 1.2 = !

which has the roots & = 2 cos ka, where a = )—2—:—_—1, and where % takes
2n

successively the values 1, 2, 3, -.; n. When 2 + 1 is prime, the equa-
tion 1s 1rreducible,

175. Theorem. Every function in Q of the roots of «n irreduci-
ble cyclic equation is itself the root of @ eyclic equution.

Let « be a root of the given irreducible cyclic equation and
g(e) the function. Then if the values

g(w), !/(4’(“))’ .'/(4-"2(“))) ) f/(d’"_](“)) I

are not all distinet, let say g(e) = g(¢*(«)), and we have, § 138,
the rectangle

g(e), .’/(4’(“))7 SO TC A ()
g(@" (@), g(&* (@), < g(d™ (@),

in which the values in each column are equal, while the values
in each row are distinct, and are roots of an irreducible equar
tion in @, viz.,

h(y) = (y — 9(@))(y — g(¢(@))) -+ (v — 9(¢*7(2))) =0.
The consideration, as in § 142, of the function

o) =h (u)[ g (4’(‘23) +y ("’(J‘E‘Z?) TR [C.C )

V- (“k z)
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leads to the conclusion that

9(d(w)) = ¢:[g(x)],
9(¢*(«0)) = [y ($(@))]; ++

A similar conclusion is reached if all the values of I are
distinct.

Ex. 1. If wisa complex fifth root of unity, show that 14 w, 1 4 w?
1 + w3, 1 + wt are roots of a cyclic equation.

Ex. 2. By § 175 form the roots of a cyclic equation of the sixth degree.

Ex. 3. Show that in a domain made up of real numbers: (1) a cyclic
equation has all its roots real, if one is real, (2) all the roots of a cyclic

equation of odd degree are real, (3) all the roots of a cyclic equation of
even degree are complex when one of them is complex.

176. General Cyclic Cubic Equation. To determine the general
irreducible cyclic equation of the third degree, let «, a;, @, be
the roots of the required cubic, where ¢, = ¢ (), = ¢(e).
From § 80, it follows that the most general algebraic function

¢ in O is ¢ (w) = ad® + e+ c. I

By § 175, de + e is also a root of a eyclic equation. Writ-
ing da+ e for « in T and selecting for d and e values which
cause the coefficient of « to disappear and that of «® to be
unity, we obtain a simpler, yet general function, ¢ (@) = o 4-c.
We have

ow=a +¢
a2=al"'+c,
e =0u'+c

Eliminating &, and «, we have
(E+c)Yf+2c¢(@+c)—a+ct+c=0.
Since e; cannot equal «, the expression &, — & = (? 4+ ¢) — &
cannot be zero. Dividing by (e + ¢) — «, we get
S+ @Be+ Dt + 2+ + B +3c+1)a?
+(@42c+ D+ (P42 +c+1)=0, II
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If the required cubic is ® — a2 4 ayp — ay = 0, then
=+ +w=e"+2c+ D+ u+ (4 2¢),
Uy = ® + & 4 3+ (2 e+ 1)+ (3 )+ (¢ 42 ) a+ (P4 &),

By 1I, =— + (c—1).
U=« + 3+ (3 F 4 Ol + (E+ Ha
By 11, =cty + (¢ +1).

Equation IT is satistied by the three roots «, «, «, and also by
three other roots «', «'), «', whose sum we designate by a').

We have
a+ay=-1,
g =3c4+14 a4 ay—2(c—1),
=c+2,

and «,, ¢', are roots of the quadratic

24z+c+2=0.
Since the sextic II is satisfied by the roots «, a,, o, of the irre-
ducible cubie, IT must be reducible into two cubics. Ience «, and

«'; must be numbers in . Hence the discriminant — (4 ¢4 7)
of the quadratic must be a perfect square; in other words,

—(te+N)=Cr+1)%
or c=—("+f+2).
The roots of the quadratic are fand —(f+1). Writing «,=f,
we get a,=—(f*4+2f+3), az=(f*+2*+3f+1). Thus the
coefficients of the required cubic are obtained, where f is any

number in 2. To remove the second term of this cubie, take

f-.:%and y=m—-7‘?, and we get

P—=3m2+m+Dy+@mt+m+1)(2m+1)=0. 111

Every cyclic equation of the third degree can be reduced to ITI.
See Ex. 4, § 159.
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Ex. 1. Show that the discriminant of III is a perfect square,
D =9¢(m?+m + 1)2
Ex. 2. For the equation III determine the function ¢ in the relation
o = ¢(w).
Ex. 3. Any cyclic equation of the fourth degree can be reduced to the
formyt —2b2s+r)y2 —40r(1 + bsP)y + 0212 -2 8)2 —b(1 + bs2)2 =0,
where 0, », s, are rational numbers and b is not a perfect fourth power,

See Ex. 11, § 1569. Prove that this equation can be solved without the
extraction of cube roots.

CYCLOTOMIC EQUATIONS; GEOMETRIC CONSTRUCTIONS

177. Introduction. In § 63 and § G4 it was shown that the
roots of 2 —1 =0 may be represented thus,
2k 2 kn

+ ¢ sin ===,
" m

, = CO8

where & takes successively the values 0, 1, ..., n — 1, and thas
the solution of 2" — 1 =0 is geometrically equivalent to the
division of the circumference of a circle into n equal parts.
The solution of 2" —1 =0, given in § 63, is trigonometric. We
proceed to show that it is always possible to give an algebraic
solution. We shall point out how this solution can be effected
and shall consider the cases in which the division of the circle
into equal parts can be effected with the aid of the ruler and
compasses.

178. Cyclotomic Equations. 1f we remove the root 1 from
2" —1 =0 by dividing by x — 1, we obtain

w"—l+$ﬂ_2+"'+m+1=0' I

If n is a prime number, equation I is called a cyclotomic equation.
In the domain Q,, the cyclotomic equation is irreducible, § 130,
and cyclic, § 170.

If n is a composite number, we know from § 66 that the solu-
tion of 2* —1=0 can be reduced to the solution of binomial
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equations of the form a™ — A =0, in which the exponents m are
the prime factors of n. By taking «V.l=z, the equation
2™ — A =0 becomes 2" —1=0. Hence the general solutions of
binomial equations can be given as soon as we are able to solve
binomial equations of the form z" —1 =0 whose degrees are
prime numbers. 1t 1s the latter equations which by division
by z—1 give rise to the eyclotome equations,

Sinee a cyclotomic equation 18 a eyclie equation, its solution
is theoretically contained in § 172.  But, as a vule, the compu-
tation of 7', is extremely involved. We proceed to develop a
scheme, due to (ianss, by which the solution of cyelotomic
equations is divided into simpler component operations.

Ex. 1. Show that cyclotomic equations are reciprocal equations.

179. Primitive Congruence Roots. Tt is shown in the Theory
of Numbers that, for every prime number », there exist num-
bers ¢ (called primitive congruence roots of n), such that, on
dividing by »n each wmember in the series,

2 3 n—1
U G5 5 o0 07

the remainders obtained are (except in their sequence) the
numbers in the series
1, 2,8, ooy n—1.

For instance, if n =15, we may take y=2. Tf 2, 22 23 24 are
each divided by 5, the remainders are respectively 2, 4, 3, 1.
These remainders differ from the series 1, 2,3, 4 only in the
order in which they come. Ilustrate the same by taking n=7
and g =3.

In view of these facts and of the relation «®=1, the roots
w, wy, *+, w, ; of the cyclotomic equation I may be written thus:
0=0, o=0) o=0c", o, 0, ,=0""% This notation will
offer certain advantages. The roots of I may therefore be

written :
w o o sy 11
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Ex. 1. By trial find the smallest integer that may be taken as the value
for g when 2 =11, and show that w, w9, w9, ..., w#" represent the saine
roots as w, w?, 3, ..., w0, Show that, for » = 13, y may be 2 or 6.

180. Solution of Cyclotomic Equations reduced to Equations of
Prime Degree. As is evident from § 171 we can base the solu-
tion of equation I of § 178 upon cyclic equations whose degrees
are prime factors of n—1. When « is prime, n —1 is composite.
Let n —1=e - f, where e is a prime factor. As before, let  be a
root of the cyclotomic equation I.  Then construct expressions
M M+ ey Called periods, as follows:

7= 04 o 4 o™ 4 oo @
n=o + ot ot + g/~ n¢+1 I
’7"-1—“‘”” 1+Wq"_ +w”% l-i- +w“’f" J

In each period there are f terms and the first term is the gt 1
power of the last term, and each of the terms after the first 1s
the g*th power of the term preceding it. Kach of the periods
is, therefore, a funtetion that belongs to the eyclic group

G =11, , 8%, +ovy sU-DY,

where the substitution s = (w, w), ws, +=», w,_s). The periods ITT
are special forms which the funetions ¥, y,, y, in § 174 may
assume. Krom § 174 it follows that the periods III are the
roots of an irreducible cyclic oquation

@) (@—n) (£ —ny) =0. IV

This is an equation in  and of the degree e. By the solution
of this equation the periods become known quantities.

181. Product of Two Periods. In order to compute the co-
efficients of equation IV in § 180 we must multiply periods
one by another. Take

"= o + i + o 4 f
'q,,Eu)’ +mk+¢+ v 4+ @

W+ (f-1)e
3

k+(/—1)e
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Observing that 5, remains unaltered when o is replaced by
o?"* or by any of the other roots in that period, we may write
the produet of the two periods as follows:

e = “’yk(w”h + o e+ W”H(/-m)
+ mqk+8( ,’h+0+ uyyll+-e+ + wyh-bju)

hte

+ .
+ mgk+(f l)e( gh+(f l)a + w ng-/f 4o 4 w,,»+n(/_1)a)
In this product the terms in the first column are,
PN S N O PN 0 P o+ e

If (¢*+¢* is a multiple of », then this column becomes
equal to 1. Tf (¢ + ¢*) is not a multiple of », then this column
1s one of the pertods in I11, § 180.

The same conclusion 1s reached for every columm in the
product. Hence the produet is a linear function of the periods,
the coefficients in this function being numbers in the given
domain Q(1).

182. When f is a Composite Number. When in the relation
n—1=-¢-.f, both e and f are prime numbers, the solution
of the cyclotomic equation is evidently made to depend on the
solution of two equations whose degrees are prime, one equa-
tion being of the degree ¢, the other of the degree f.

When fis a composite number, one or more additional steps
are necessary to reduce the problem to the solution of equa-
tions of prime degree. If f=¢'-f', where ¢ is prime, we may
form ee' periods, with f' terms in each, as follows:

1’, =w + wqce' + my‘.’ee’ o wq(l'—l)u"
1’,1 = o + jee +1 + Q..’ee H + ,,(f‘—l)za'+l’
;]' ) % (ug ) + m”ee +e + 20« +e + + wg(/ -l)ee +o
o ’ ee’ Ze —l 2
T = +w’+ +ﬂ S +v" "'*,

ﬂvu‘vlzma +wy.n—1+wy.he~l+ "+w’/u—l



202 THEORY OF EQUATIONS

It is to be noticed that, if we select every eth period in this
set, the sum of the periods thus selected 15 equal to one of the
known periods 111, § 180. For instance,

n=9"+79.+ >+ 71

These periods 'y 9'e 9's ==+ are roots of an irreducible cyclic
equation of the degree ', the coefficients of which are linear func-
tions of the known periods 111

If ' is a composite number, repeat the above process by
assuming f'=e'-f". If n=e-e'-¢".f", then the above
process calls for the solution of one equation of each of the
prime degrees e, €', e", . As soon as one root of a cyclotomic
equation is found, the others can be obtained by raising that
one to the 2d, 3d, ..., nth powers.

183. Constructions by Ruler and Compasses. The operation:
of addition, subtraction, multiplication, and division can b:
performed geometrically upon two lines of given length. For
instance, in elementary geometry we learn how to construct
the quotient of a line « inches long and another line b inches
long, by the aid of the proportion ®:1=«:0. In elementary
geometry we learn also how to construct, by means of ruler
and compasses, the irrational Vab. The geometrie construction
of Ve++ab is simply a more involved application of the pro-
cesses just referred to. But we are not able to construet with
ruler and compasses, irrationals like {/ab. Thus it is evident
that all rational operations and those irrational operations
which involve only square roots can be constructed geometri-
cally by the aid of the ruler and compasses.

Conversely, any geometrical construction whicl involves the
intersection of straight lines with each other or with circles,
or the intersection of circles with one another, is equivalent to
rational algebraic operations or the extraction of square roots.
This is the more evident, if we remember that analytically
each line and circle used in the construction is represented by
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an equation of the first degree and second degree.  Hence there
is a one-to-one correspondence between constructions by ruler
and compasses and algebraic operations which are purely rational
or involve square roots.

Consequently, if we wish to show the impossibility of con-
structing a quantity by ruler and compasses, we need only
show that the algebraic expression for that, quantity in terms
of the known quantities cannot be given by a finite number of
square roots.

Applying these ideas to the problem of dividing the circle
into n equal parts by means of ruler and compasses, the prob-
lem is possible or impossible according as the roots of a®* —1=0
can be expressed by a finite number of square roots or not.

If n is a prime number of the form 2% 4 1, the degree n —1
of the cyclotomic equation is a power of 2, and the operations
called for in § 182 mvolve square roots only. Hence, when n
is @ prime of the form 2+1, the division of the cirele into n
equal parts by ruler and compusses is always possible.  This
important result is due to Gauss.

Ex. 1. Solve «5 — 1 =0 by Gauss’s method.

The cyclotomic equation is wt+ 2342240 41=0. lere n—1=4=2.2;
e=2, f=2. It is only necessary to solve two quadratics. By trial we
get for n = 5, g = 2 the roots

w, w9, w?, w’;
these yield the two periods

7 =0 +ef=w +
7 = 07 + 0P = w? 4 wl,
Hence equation IV, § 180, becomes
22 —(n 4+ m)x + m =0.
But 1T+m=wt et tet==1,
and m=@+o)(?+o)=w+wltotut==1
Hence the quadratic takes the form

#2+2x—1=0, and x=:1;*:._‘[§.
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Take 7 = _—__]_3‘..‘./2 The quadratic whose roots are w and o is
22— (w+ o)z 4 w-wt=0,
or : 22— x4+ 1=0.
Whence x=ﬂ+\/”_2—1_—_ —14+V5+iV10+2V6
2 4 4

According to § 183 the inscription of a regular pentagon into a circle
can be effected with the aid of ruler and compasses.

Ex. 2. Solve 28 —1=0.

Here n — 1 =3.2 .2, Hence the solution of one cubic and two quad-
ratics is called for, and the inscription of a regular polygon of thirteen
sides into a circle by ruler and compasses 1s impossible. Take g = 6, then

18 _ 4
the roots of % =0 are
W, wI, wI, e, wy”,
or w, o w0 Wl W) w? Wl W, W’ Wb i !l

If wetaken —1=e-f=12=3.4, where ¢ = 3, we get
‘ 7 =w+ wb + o+ od,
m=w + 0+ o+
.,'__,Ewlu + w* + w3 + wll,
To compute the cubic of which 5, 71, 7. are roots, we obtain

1+m+m=-1,
M =271+m+ 1,
mnz =17+ 2m -+ n,
me=1n+m+ 29,
m=4+2m+ 9,
me=m+2m+m=-1,
e+ e =4+ m+ 2)=—4.
The cubic is 23 + 22 —4 2 + 1 = 0. Solving this, we obtain the values of

7y My N2
Take next f=4 =e/f' =2.2. We have 9’ = w + w2, 9/ = 0¥ + 5
Since 9’ + 93 = n and 9/9/; = 7y, we find that %’ and »'s are r1oots of the

quadratic
22—z +m =0,
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and are therefore known., Next form the quadratic whose roots are w
and w!2, Since w + w!? = 9’ and w . w'? = 1, this quadratic 18
22—9'xz4 1=0.

Either root of this quadratic is a primitive root of the cyclotomic equation,
from which all the other roots may be found.

Ex. 3. Solve x!7 —1=0.

One root is 1. To find one of the primitive roots, form the cyclotomic
equation of the 16th degree and take g = 3. Then the roots are repre-
sented by the following powers of w:

Log 9% 9% oY - 9%
which are equivalent, respectively, to the powers
1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6.
Take n —1=16=e¢.f=2-.8, where ¢ =2, Then
=w+ o+ o+ 0l 4 w6 4 B+ b o
7= b+ 0¥ + o + Wl 4 Wl + W7 + 012 4 Wb,

We find that 5 4- 9 is equal to the sum of all the roots, or — 1, while
7 =—4. llence g and n; are roots of

24+2-4=0.
Next we take f=8=¢'f! = 2.4, where ¢/ = 2; then
7 = w4 ol 4 0lf 4 o,
7= 8 + b + w4 wl2,
e = " 4 wlf 4 o + o?
s = 0! + wll + W 4 Wb,
The periods 3’ and »’3, whose sum is », are roots of
22— —1=0,
while 5'; and %3, whose sum is 7;, are the roots of

22 —mx—1=0.

2 =
We get n'=g+ "z+1’ ﬂ'2=g—¢%+l,

2 2
ﬂ’1=1‘7§+\/%‘=—+1, 1,'3=%1_\/24L+1_
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In the third step, [/ =4 =¢/'f""=2.2,

7 r= w4 wlb, 'y = wld 4 wt,
7' = w® + ot n'ls = wb + w2,
7' = " + wh, 7' = wlb 4 w2,
7'l = Wl 4 o, 'y = wl! 4 o,

Since 7'’ and 7'’y have ¢’ for their sum and »/, for their product, they are
the roots of
#=ns+ =0,

!
and we obtain 7 = ’7 5+ \/ .

Finally we find that w and «!® are roots of the quadratic

22— q'r+1=0;

that is, w—" 4 \/—"—’~1

a primitive root of the cyclotonnc equation of degree 16.

After solving one of the quadratics given above, the question arises,
which one of the two roots 1epresents a given period ? For instance,
which of the roots of 2 —nr —1 =0 represents 5, ?  To settle this,
form the product

-~ 2
O =) — ) =2 — )=+ V1T = \/’ZI + 1(n'y — 7's).

Hence 9'y — #'s is positive, and 7'y has the plus sign before its radical,
'3 the negative sign.

It is readily seen that, since the equation 7 —1 =0 involves in its
solution no other irrationals than square roots, a regular polygon of seven-
teen sides can be inscribed in a circle by means of the ruler and compasses.
Gauss discovered a method of inscribing this polygon when he was a youth
of nineteen years. Tt was this discovery which induced him to pursue
mathematics as his life-work rather than languages. For an explanation
of the construction of the regular seventeen-sided polygon consult Bach-
mann, Lehre von der Kreistheilung, Leipzig, 1872, p. 67, or Klein's Famous
Problems of Elementary Geometry (ed. W. W, Beman and D. E. Smith),
Boston, 1897, p. 41. We have followed Bachmann’s exposition of the
subject of the division of the circle.



CYCLIC EQUATIONS 207

Ex. 4. Show the impossibility of constructing, with ruler and com-
passes, the side of a cube, the volume of which is twico the volume of a
given cube,

('To construct a cube whose volume shall be double that of a given cube
is the problem known as the ¢ Duplication of the Cube.” It was one of
three problems upon which Greek mathematicians expended much effort.
Myth ascribes to it the following origin: ‘The Delians wete suffering from
a pestilence and were ordered by the oracle to double a certamn cubical
altar. Thoughtless workmen constructed a cube with edges twice as long.
But brainless work like that did not pacify the gods. The error being
discovered, Plato was consulted on this “Dehan problem.” Through
him it received the attention of mathematicians.)

Ex. 5. Show the impossibility of trisecting by the aid of ruler and
compasses any given angle.

To trisect a given angle is the second of the three famous problems
first studied by Greek mathematicians. The third was the ¢ Quadrature
of the Circle.””

Let ¢ be a complex number 0A’ of unit length, Let

|40B = ¢, | 404’ =|A'04" =|4"0B =,

Then % =cos, ¢ + zsm'g
. 2 L. 2
2 = cos - ; + Lsm~3¢,
and 23 = cos ¢ 4 [ sin ¢. I

According to our problem we are given I, where 23 = OB, and we are to
show the impossibility of constructing 0.A’ by ruler and compasses.

We are gomg to prove that equation I, as a rule, is irreducible. Tt is
sometimes reducible. For instance, when ¢ = 40°, equation I gives #3={,
which can be factored into (&£+ 1) («2—ir—1), which factors are functions
in 4,,. In this case the construction can be effected.

When the right member of I is an arbitrary number, that is, when ¢ is
an arbitrary angle, then I is irreducible, else at least one of its roots could
he represented as a function of cos ¢ and sin ¢. By De Moivre’s Theorem

the roots of I are ¢ @
Z; = Cco8 + tsin 30

¢+ o+2mr
5 T tisin R

&3 == CO8 ¢—+3i’r risin 2 +34 L

g = COS ——5——
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If in these expressions for xj, x2, #3 we substitute ¢ + 2 » for ¢, the
roots undergo a cyclic permutation ; that is, 2; becomes 23, 25 becomes 3,
and o3 becomes ;. Because of these changes, no root can, in general, be a

B rational function of sin ¢ and cos ¢ ; for, sin ¢

and cos ¢ remaining unaltered in value when

¢ + 27 is substituted for ¢, the root could

) A’ undergo no change. For an arbitrary angle

< the equation I is, therefore, irreducible. Its

degree being 3, which is not an integral power

of 2, 1ts roots cannot be constructed with the

ald of the ruler and compasses, and the trisec-
tion 1s impossible.

Ex. 6. Show that, it we take cos % equal to a value &, numerically Z 1

and rational or involving square roots only, we get #* = (e + ig8)3, where
B2 =1— ¢?, and where z = « + i is a root which can be constructed
geometrically. Show that any number of trisectable angles ¢ may be
obtained by this process. Taking & =4~/y _ /3, show that the angle
of 456° may be trisected. By assuming « to involve at least one radical
whose order is not two nor a power ot two, show how to obtain angles
which cannot be trisected.

Ex. 7. Assuming 2 cos %:m, show that the trisection of the angle ¢

depends upon the equation #3 — 3z = 2cos ¢. Letting cos ¢ = m/n and
nx =y, derive y8 — 3 uy = 2 mn?, which has integral roots whenever the
first cubic has rational roots. If the integers m and n are prime to each
other, and » is divisible by an odd prime p but not by p?, show that ¢
cannot be trisected. Prove that angles 1207, 60°, 30°, cos~!} cannot be
trisected.

Ex. 8. To show that an irreducible cubic, whose coefficients are rational
numbers and whose three roots are real, cannot be solved by real radicals.

This is the so-called ¢ irreducible case,’’ § 60. We are required to prove
that in the algebraic solution of the given cubic it is impossible to avoid
the extraction of the cube root of a complex number. To this end observe,
first (§ 171, Ex. 3) that the cubic becomes a normal equation when v D
is adjoined to . Here VD is real. The equation 2» — a = 0, where a is
not a perfect nth power, and » is prime, is irreducible. If it were possible
for the normal cubic equation to become reducible on the adjunction of
the real root X= Va, then by § 166, Cor. II, the degree of z* — @ =0
would be a multiple of j, the index of the new Galois group P = 1, under
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G3®, Iere this index 1s 3. As n 1s prime, n=3. This makes Q)=
where p is a root of the normal cubic. Hence the roots of x*» — a@ =0 are
the conjugate values of (Y, § 136, and all of them lie in the normal domain
%p). Now, if one root of a normal equation is real, all its roots are real.
Therefore, all the roots of 2" — ¢ = 0, being functions in @ of p would
have to be real. But this cannot be, when 2 = 3. Thus, the assumption
that our cubic can be solved by real radicals of prime order leads to an
absurdity.

Nor would the solution be possible by real radicals of composite order,
such as Va, where n = py, a composite number ; for, in that case we can
write {/ ¥/, and we can adjon in succession the radicals of prime order
y=Vauand ¥y. But, as has just been shown, such adjunctions do not
render the normal cubic reducible.



CHAPTER XVIII
ABELIAN EQUATIONS

184. Definition. An equation f(x) =0 of the nth degree,
having the roots «, «, -+, «,_; is called dbelian, if each root
can be expressed as a function in Q of some one of its roots,

thus, @ = ¢y(), wy= Do(tt)y +ovy = Pu1(),

and if, for any two of these roots, we have the commutative

relation bubi(€) = P, (). !

By ¢,¢.(«) we mean here ¢,[ ()]
The equation a* — 1 = 0 is Abelian, because, its roots being
+1, £/, wehave —1=4, —i=7# 1=, (P7)*= (i) ete.

Ex. 1. Show that cyclic equations are special cases of Abelian equations,

Ex. 2. Show that % — 1 =0 is Abelian, but not cyclic; that 23 —1=0
is both Abelian and cyclic.

Ex 3. Prove that when Abelian equations are irreducible, they are
normal.

Ex. 4. Show that z» — 1 =0 is Abelian where n is any positive integer.

Ex. 5. The equation % 4+ 222 — 44023 — 3520 x 4 11264 x + 32768 =0
has as three of its roots — 2, 4, — 8. Show that it is an Abelian equation.

Ex. 6. Is 2% — 5 =0 an Abelian equation in the domain 2;,? In the
domain Qq, ). where w is a primitive sixth root of unity ?

185. Abelian Groups. A group whose substitutions obey the
commutative law in multiplication is called an Abelian group.
For instance, 1, (ab) is such a group, because 1. (ab) = (ad) + 1.

210
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Ex. 1 Every sub-group of an Abelian group is itself an Abelian group.

Ex. 2. If (1 1s not Abelian, and @y 1s a sub-group of @, then (/ is not
Abelian.

Ex. 3. Show that /5, G, G T, G 11, (b 11, (5, (D 11,
are Abelian groups.

186. Abelian Equations have Abelian Groups. If the roots of
an dbelian equation are «ll distinet, its Gulois group is an
Abelian group.

Let f(x) =0 be an Abelian equation, and let its roots be

oy =), W= py(a), +++, o, ;=¢,_ (). I

If f(2#) =0 is reducible, let g(x) be an irreducible factor, and
let g(r) =0 have the roots

o, «'=¢'(w), a''=¢"(v), - 1T

All the roots of IT occur, of course, in the series I. Now

g(x) =0 satisfies all the conditions of a (alois resolvent of

f(r)y=0,§145. Hence the group of f(w)=0 consists of the

substitutions p=(aw), p'=(ad'), -

This group obeys the commutative law in multiplication, for
we have p'=(ad') = (¢, ¢'(w)),
p"=(ad"y=(u, ¢"(x)),

and, § 148, p'p'"'={a, ¢'(«){{d'(e), ¢'¢'(0){=1{0, $'¢"(w)},

o0 =, ()} 14"(@), $"B (D1 =14, "4/ (@)},
Since the equation f(«) =0 is Abelian, we have

$"¢'(0) = ¢'d"(@);

hence, " =p"p".

Consequently, the group of substitutions of the domain Qg
-is commutative, as is also the isomorphic group of the equation
Sf(®)=0, § 151. Therefore, the Gralois group of f(x)=0is an
Abelian group.



187. An Equation having an Abelian Group is Abelian. An
irreducible equation g(x) =0, huving a commutatice group is an
Abelian equation.

Let e, o, +++, &, be the roots of g(x) = 0 and let G represent
the group of this equation. As g(#) =0 is irreducible, ¢ is
sransitive, § 156.

Let s be any substitution in the group ¢ which does not
change the digit 0, and let s, be any substitution in G which
replaces 0 by i. Then §7'.s.s, is a substitution of @ which
does not change ¢; for

8,7 changes i to 0,
s does not change 0,
s, changes 0 to i.

Since the group G is assumed to be commutative, we have

-1 1

s1es.s,=8718-3=s

Hence s leaves unchanged not only the digit 0, but also the
digit i. But the group @ is transitive; therefore, the digit 0
must be capable of being replaced by each of the other digits
1,2,3, ., (n—1). Yet, no matter which one of these digits
is taken to be 7, the substitution s leaves i unaltered. These
relations can hold true only when s is the identical substitution
in the group G- Hence every substitution in @, except 1, re-
places 0 by some other digit.

Applying to every other digit the same reasoning which we
applied to 0, it follows that every substitution in the group G,
except the substitution 1, contains that digit among its elements;
in other words, there is no substitution in G, except 1, which
leaves any digit unaltered.

Next, adjoin to the domain Q the quantity M = «, where e
is one of the roots of g(x) =0. Since no substitution in the
group @, except 1, leaves the index of a, unaltered and since
the identical substitution satisfies the definition of a group, 1 is
the sub-group to which M belongs. Thus, @=1; and, by the
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adjunction of a,, the group of the Galois domain is reduced
to 1, § 163.

The Galois domain of ¢(x) =0 is Q a § 143, Each
of the roots «, &, +++, «,_; 18 & number in the (Galois domain and
each of the roots admits of the substitutions of the sub-group
@ =1; hence each root is contained in the domain Q,,,, § 162,
and each root can be expressed as a function in Q of one of
them. "Thevefore, g(.') = 0 is a normal equation and the domain
Q, 18 a normal domain, § 132, We have then

u, = ¢, (),
and the Galois group of g(.r)=:0 consists of the substitutions,
§ 149, o=, d)k(u)).
We have, § 148, pupr = (¢t, Prpi(0)),
pipn = (&, Pypi(10)).
As the group is assumed to be commutative, we must have,
upiu(e) = dipi(),

i.e. g(x) =0 is an Abelian equation.

(ags age oees

188. Theorem. In « substitution belonging to a transitive
Abelian group all the cycles consist of the same number of
clements.

Let the substitution s be resolved into its cycles, and let
be the least number of elements in any cycle. The substitution
s, applied to the elements in that cycle, leaves the elements
unchanged. Since, § 187, in a transitive Abelian group no sub-
stitution, except the identical one, leaves an element unaltered,
s must be the identical substitution. But this can only be the
case when all other cycles (if there are others) consist of »
elements.

Ex. 1. Name the Abelian group of degree five, in which the cycles in
one and the same substitution do not have the same number of elements.
Explain. See Ex. 8, § 185, also § 104.
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Ex. 2. Show by §§ 187, 188 that there can be no transitive Abelian
group of prime degree other than the cyclic group, and that there is no
irreducible Abelian equation of prime degree other than the cyclic
equation.

Ex. 3. Show that no transitive Abelian group of degree n can be of
lower order than n,

Ex. 4. Show that a transitive Abelian group of degree = is of the
order n. Weber, Vol. I, p. 678.

189. Solution of Abelian Equations. The solution of Abeliun
equations may be reduced to the solution of cyclic equations.

In a transitive Abelian group every substitution, except the
identical one, involves all the elements and has the same nuin-
ber of elements in each cycle. Hence, if % is the total number
of elements and » is the number in one cycle, we must have
n =7t where t is the number of cycles in the substitution.

Let G be the group of an irreducible Abelian equation f(x)=0,
and let s be any substitution except 1. 1f ¢, ¢, +-+, ¢,_; are the
cycles in s, we may write

8= CCyCy e Cpye

Each of these cycles has for its elements » roots of the equa-
tion f(x) =0. Ience we have

¢ = (uey +++ t,_y),

= (BB B ),

G = (0'0'1 ‘T.-l);

where the o’s, 8s, -+, o’s are the roots of f(x) =0.
Let s, be any substitution in the group @ We have, § 187,

s les. g =s

The product s,~'ss, is obtained by performing upon each cycle
of s the substitution s, § 88. As this operation leaves s as a
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whole unchanged, it follows that, after the operation, each
cycle still has the same letters occurring in it and in the
same cyclic order, though the e¢ycles may have interchanged
positions. Since s may be any substitution in the group (,
except 1, we conclude that the group is imprimitive, whenever
t>1, § 103.

Let M be a cyclic function of the roots «, a,, «+, «, 4, M, a
cyclic function of the roots B, By, -+, B._1, and so on. We have
then

M=y(a, a, -, a_),

ME ‘P(B} pl; ] ﬁr—l)-

There will be ¢ such conjugate cyclic functions, M, M,
My, ooy M,y

Let @ represent the aggregate of all the substitutions in the
group G' which do not replace a cycle by another, but simply
interchange the elements in each eycle. This aggregate of
substitutions is a group; the product of any two of them gives
a substitution belonging to G, whkich does not intcrchange the
cycles. Thus, Q1s a sub-group of G.

As no substitution in ) can change «, into any element not
belonging to the eyele ¢, Q is an intransitive group.

The function M is readily seen to admit the substitutions
in @ and those only; hence, if we adjoin M to the domain Q,
the group of f(x) = 0 reduces to @, § 163.

As @ is intransitive, the equation f(x) = 0 is reducible in the
domain Q,, § 1506.

Let f(@, M) be a function of 2, defined thus:

S, M) = (2 — «)(@— o) - (@& — &, ).

We proceed to show that this is one of the factors of f(x) in
the domain Q4, Since @ is intransitive and permutes the
roots in each cycle among themselves only, the coefficients of
J(z, M) admit all the substitutions of . Therefore f(z, M)
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is a function of 2 in Quy § 164, Since all the roots of
S(@, M)=0 are roots of f(x)=0, f(r, M) is a factor of f(x)
in Q,y,.
Similarly, we can show that
S(@ M) = (= B)(w—B) = (@— L),
f("-') M,) = (o)) (": - 71) ot (‘1: - Yr—l)’ ete.,

are factors of f(x). We have, therefore,

S(&) =2 f e, M) - J (e My) e f (2 M),

Since the coeflicients of f(x, M) =0 are cyche functions of
its roots, the group of this equation is the cyclic group, or one
of its sub-groups, § 159. But a cyclic group can have no tran-
sitive sub-group, hence the irreducible equation f(¢, M)=0 13
a cyelic equation. Sumilarly for f(=, M) =0, ete.

It remains to explain how the values of M, ..., M,_, may he
obtained. By § 161 they are roots of an irreducible equation
g(M)=0 in Q of the degree t. We proceced to prove that
g(M)=0is Abclian. Sinece f'(», M) =0 is cyclic, we get for
the conjugates of M,

M =y, $(), ++, ¢ ()] = F (&)
My=y[B $(B); =+, ¢ (B)]=F(B) |
]l[2= ‘p[% ‘t‘(Y); R 4"_] (Y)] = ]'Y<Y) J
By assumption, we have 8= ®(«), y=®,(«). Hence
M, = [ (), ¢P(a), -+, ¢ P(r)]
= y[®(a), P¢(«), -, PP (a)]

=!l/1[l£, Uy *eoy “)—11

where ¢, admits the substitutions of the cyelic group. Hence,
by § 162, M, is a function in Q of M. Similarly for M,
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From I we see that replacing « by 8 or y changes M into M,
or M, Hence, if

=MM)=Fo(v), My=\(M)=Fo, (e),
we may write
AMy) = Fo(y) =\ (M) = Fod, ()
M(M) =F&(B) =AA (M) = Fo@ (w).
Since, by asswmnption, ®®, () = ®,®(«), we have also A\(M)
=MA(M). Simlarly for other conjugates of M. *We have
now proved that y(M) =0 is an Abehan equation.

Hence we have showu that the solution of the given Abelian
equation f(x) =0 can be reduced to the solution of eyclic equa-
tions and of another Abelian equation of lower degree. The
latter Abehan equation can be treated in the same manner

as was f(x) =0; hence, eventually, the solution of f(x) =0 is
reduced to that of cyclic equations only.

Ex. 1. Abel gave the following example of an Abelian equation. Let.

9
= T— then cosa, cos2a, ..., cos na can be shown to he the roots of
0

the equation an 4x" 2y 1]6 n(rla Z:r"-4+ I

For the derivation of this equation see Serret’s Algebra (Ed. G.
Wertheim), 1878, Vol. I, pp. 195-199. Expandmg the right member
of De Moivre's formula, cos ma + ¢smma =(cosa + {sina)m, by the
binomial theorem, we can express cos ma as a tunction in Qg of cos a.
We may, therefore, write cosmn = 6(cos «), where 0 is the function.
Similarly, cos m;x = 6;(cos @). Writing m,« tor ¢ in the former equation,
¥

we get cos (miy) = 6(cos mya) = 66,(cos a).
If in 6,(cos a) = cos m,a we replace @ by ma, we have

cos (m;ma) = 6;(cos ma) = 6,0(cos a).

Hence every root of I can be expressed as a function in Q of one of
them, and we have in addition

66,(cos «) = 6,0(cos a).

Therefore I is an Abelian equation.
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Ex. 2. Show that I in Ex. 1 is a reducible equation in the domain
defined by its coefficients.
Consider the value of the root cos na.

Ex. 3. The equation x* +1=0 has the group P = (4911, § 159, Ex, 5.
Its roots are ¢ = §V2(1 +1), 4, =—}V2(1 — i), @o=—a, t3=— @,
Illustrate the reduction of the solution of Abelian equations to that of
cyclic equations.

Let s = (a0t (02t), ¢ = (@), ¢;=(0t20tz), M= 0tot,2+4 ot 0, M= otgoe5?
+ ta0g?, @ =1, (ae))(as03). Here M and M, are the roots of 2 4+2=0;
ie. M=14iV2, M{=—iV2 Then f(z, )=a2+i=0, f(x, — i) =
~ ¢ =0 are both cyclic equations.

Ex. 4. The equation 2t — 828 4 20 22 —16 = 4 1= 0 has the Galois group
G+W11; hence, is irreducible and Abelian. We have here @, = — « + 4,
Oo=—0B34+002—80¢+2, g=03—6 %+ 8+ 2 Illustrate the re-
duction, as in Ex. 1. Netto, Algebra, Vol. II, p. 234,



CHAPTER XIX
THE ALGEBRAIC SOLUTION OF EQUATIONS

190. Adjunction of Roots of Binomial Equations. In this
chapter it is proposed to develop the necessary and sufficient
conditions for the solvability of algebraic equations of any
degree. To this end we shall assume in this paragraph that
JS(x)=0is an equation which admits of being solved by algebra;
that is, we shall assume that all the roots of the given equation
JStx) = 0 can be obtained from its coefticients by a finite number
of additions, subtractions, multiplications, divisions, and ex-
tractions of roots of any index.

Let Ve, where ¢ is an algebraic number, be "ny one of the
radicals which enter into the expressions for the roots of

12
o @y, ++, o, 3 of the equation f(x)=0. Thus, if ¢ =%—+II 8
and m =2, then V¢ is one of the radicals appearing in the
solution of the cubie, § 59. If c= ——g-+ \f%f+ I3, m=3, we

have another radical entering the expression of the roots of a

cubic. Now the mth power of any radical V¢ is a number in
the domain Q. In other words, every radical is a root of a
binomial equation of the form 2™ —«=0. Thus it is evident
that all the radicals which go to make up « root of f(&) =0 are
roots of binomial equations.

1f f(x) =0 is reducible in the domain Q, defined by its coef-
ficients, we may apply to its irredncible factors the argnment

which follows. 1f f(x) =0 is irreducible in that domain, it is
219
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clear that by the successive adjunction of some or all the radi
cals which enter into the expressions for its roots, the equation
will become reducible 1n the enlarged domain. That is, fx)=0
becomes reducible upon the adjunction of certain roots of binomial
equations.

As an illustration, observe that in § 167 the solution of the
quadratic equation was made to depend upon the adjunction
of y, the root of the binomial equation y*=qa,*—4 a,.

In the ease of the cubic, § 168, we first adjoined Vv D, which
18 the root of a binomial equation obtained by removing the
second term from the quadratic w®+4 Gu®— H®=0. Next we
adjoined w, which is a cube root of a binomial.

In the case of the quartic, § 169, we first adjoined v, which
differs ouly by a rational constant from x,, Here «, is the
root of a cubic equation, the solution of which may itself be
explained by the adjunction of roots of binomial equations, as
we have just seen. Next we adjoined V4, Vu, Vw, all roots
of binomial equations.

191. Dependence upon Cyclic Equations. All binomial equa-
tions are known to be Abelian equations, § 184, Exs. 4, 6, and
Abelian equations may be solved algebraically by the aid of a
series of cyclic equations whose degrees are prime, § 189.
Consequently, when f(x) =0 is a solvable equation, its solution
may be made to depend upon that of cyclic equations of prime
degree.

192. Restatement of the Problem. Suppose now that f(x)=0
is any algebraic equation. The question, whether it is solvable
by radicals, may be replaced by the question of equal scope,
whether it is solvable by roots of cyclic equations of prime
degree. We have thus arrived at the following query: Under
what conditions is the group G of an equation of the nth degree,
S(@) =0, reduced by the adjunction of a root of a cyclic equation
whose degree is prime?
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193. Theorem. If the group G of an equation f(x) =0 13
reduced by the adjunction of w root of « cyclic equation of the
prime deyree m, then the group G has « normal subgroup whose
index i3 the prime nwmber m.

Let f(x) =0 be reducible or irreducible, but. free of multiple
roots. Tet h(x)=0 be a cyclic equation of the mth degree,
where m is a prime number. We asswne that the adjunction
of one of the roots of h(x) =0 does reduce the group G to one
of its sub-groups Q. K

Let the roots of h(2) =0 be X, Xj, ..., X, ;. Since h(z) =0
is eyeclic, all its roots can be expressed as functions in Q of one
of them. If ¢/ is the group of f(r)=0 in Q, then @ is the
group of the same equation in the domain Q,, or in the
coextensive domains Qy, vy Dy, _y»

According to § 165, Cor. 11, the degree m of A(x) =0 is a
multiple of j, the index of the group @ under G. Since m is a
prime number, and j must be greater than 1, we have m = j.

Let M be a function in © of the roots of f(x)=0, and let
M belong to the sub-group . Then M is a function in Q of X,
§ 165. '

Again, by § 165, Cor. T, the domain of Q, is a divisor of the
domain Q,. But the degree of Q, is prume, being by defini-
tion, § 132, of the same degree as that of the equation k(x) =0,
which has X as a root.

Since Qy, is a divisor of ;,, and the degree of Q, is prime,
we must have Q) =Q, Ilence, not only is M a function in
Q of X, but X is a function in @ of M, and either function
adinits of all the substitutions that thie other does. Hence X,
like M, belougs to the group Q.

Operate upon X with the substitutious of 7, and we get the
following distinet values: X, X'y, ..., X',_;. By § 161 these
values are roots of an irreducible equation. This must be
identical with the irreducible equation A(z) =0, since the two
have the root X in common, § 126, Thus, the values X, X,

X, and X, X', ..., X', _,, are equal respectively.
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Let s be a substitution in @& which changes X to X;. That
same substitution transforms the sub-group @) into the conjugate
sub-group s 'Qs=@),. Now the substitutions m the sub-group
@, leave X, unchanged. For, to operate with the substitutions
in @, is the same as to operate with s7'@s, where s~! changes
X, to X, and X remains unaltered by the substitutions in ¢,
while s changes X back to Xj. DBut X and X are roots of a
cyclie equation; hence X is a function in Q of X, and X is a
function jn © of X, so that X and X belong to the same grou)
Q. Therefore, Q@ =@,

Since the same reasoning applies to X and any one of the
other roots X, :-+, X,, 1, it follows that @ is identical with all
of its conjugate groups; that 1s, @ is a normal sub-group of @,
having the index m.

194. The Converse Theorem. If the group G of the equation
J(&) =0 has « normal sub-group Q, whose index is a prime wm-
ber m, then, by adjunction of @ root of a cyclic equation of the
degree m, the group G is reduced to Q.

If the group (7 has a normal sub-group @ of the prime index
m, and if we select a function M which belongs to the sub-
gronp @, the conjugate functions all helong to the same group
Q. By §162, each function M, M, ---, M, _,, is contained in
the domain Q. Hence tlus domain is a normal domain, § 132,
and A is the root of a normal equation, §139. In the domain
Qun, we have @ as the group of the equation f(r) =0, §163.
But, if m is a prime number, the normal equation is also a
cyclic equation; for, the degree m of the normal equation is
also the order of the Galois group, §§149, 150. Take any
substitution s (not the identical substitution) in the Galois
group. The different powers of s constitute a sub-group, the
order of which is a factor of the order of the Galois group.
As m is prime, the order of s must be m and the sub-group is
8, 8% &, .-+, s™. The Galois group and its sub-group, being of
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the same order, are identical. Hence the (zalois group is the
eyclic group, s, &, -+, s™, and the normal equation 1s a cyclie
equation, § 170,

195. Metacyclic Equations. An equation is called metacyclic
or solvable, when its solution can be reduced to the solution of
a series of cyclic equations. Abelian equations are a speeial
class of metacyclic equations. The latter embrace all equations
that are solvable by radicals, and no others.

In § 191 it was shown that any equation which can be solved
by radicals can be solved by the aid of cyclic equations of
prime index. Iu §193 it was shown that if the adjunction of
a root of a cyclic equation of prime degree reduces the group
@A, there exists a normal sub-group whose index is a prime
number; while in § 194 it was shown that, if ¢ has a normal
sub-group, the reduction can always be effected by the adjune-
tion of such a root.

196. Criterion of Solvability. 7That « given algebruic equation
he metueyelic it is necesswry und sufficient that there exist a series

oF groups (, Gy (g ey (=1,

the first of which is the Gulnis group of the equation in Q, the last
of which is the identical group, each group heing o normal sub-
group of the preceding and of a prime indeax.

The group (# of a metacyclic equation must have a normal
sub-group of an index j that is a prime number. Call this sub-
group (. If @ consists of the identieal substitulion only

(whose order ig 1), then j= 710 That is, the order of & itself

is prime, and (¢ has no sub-groups, except 1. This can happen
only when & itself is a cyclic group, and the given metacyclic
equation is itself only a cyclic equation.

If @, is not 1, then, since the equation is, by hypothesis,
solvable by radicals, ) must again have a normal sub-group G,
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whose index is a prime number j,. Continuing n this way, we
finally arrive at the identical group 1. This proves the
theorem.

197. Criterion Applied. The Galois group of the general
equation of the nth degree is the symmetrical group of the ath
degree. The symmetric group has always the alternating
group as a sub-group. This alternating sub-group is a normal
sub-group of the index 2. It becomes the group of the given
equation by the adjunction of the square root of the discrinn-
nant. The principal series of composition, § 110, is G, 1, for
the quadratic; ¢, (7™, 1) for the general enbie; and G,
G0 G 11, 4,9 1, for the general quartic.  In these cases the
alternating group is seen to have a normal sub-group of prime
index. We are going to show that when the degree of the
general equation 1s greater than 4, and, consequently, the
degree of the Galois group is greater than i, the alternating
group has no normal sub-group of prime index.

198. Theorem. .ln alternating group of higher degree than
the fourth has no normal sub-group of prime inder,

A1l substitutions of an alternating group are even, §§ 99, 100,
and are expressible as the product of eycles of three clements,
§ 93. Let these substitutions be so expressed.

We first establish the possibility of selecting a substitution
8 in the alternating group, so that a given eyele of three
elements, say (1 2 3), will be transformed into any other eycle
of three elements occurring in the alternating group. Suppose
that 1,2, 3, 4, r, t, u, v, are elements of the group and we wish
to transform (1 2 3) into (r t «). It is easily seen that the
substitution s = (}1 ‘? 3 i) will do it; for, s (123)s=(rtu).
That s is a substitution in the alternating group is clear, since,
§ 82, s=(126)(12,)(34e)(34u), an ecen substitution.
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Next, let @ be a normal sub-group of the alternating grounp,
let s, be any substitution in @ (except the substitution 1), and
§ any substitution in the alternating group. It is easy to see
that, by the property of normal sub-groups, s 's;s is also a
substitution in Q.

If s, cousists of a cycle of three elements, we can, by proper
selection of s in the operation s 'siy, transform s into any
other eycle of three elements. Therefore, ¢ must contain «ll
cyche substitutions of three elements whenever it cowtains one
of them, and must, consequently, be identical with the alter-
nating group.

Since s,7! and s7's;s are both substitutions in @, their product

must be ; namely, A S

We shall now show that, whenever » >4, s can always be
chosen from the substitntions of the alternating group in such
a way that the substitution A represents a cycle of three ele-
meuts, thereby showing that the normal sub-group @ is really
wdentical with the alternating group; n other words, showing
that there is no normal sub-group, distinet from the alternating
group itself, exeept the group 1.

To show this, we assume that all the substitutions in the
alternating group and in @ are resolved (as they always can
be) into cycles so that no two eycles have an element in com-
mon, § 86. In the formation of A there is no need whatever
of considering those cycles in the substitutions s; whose ele-
ments are unaffected by s, because in the product s,7's~%s; they
cancel each other. We shall consider separately the different
forms which s, may take, when » > 4.

(1) Let some one substitution s in the normal sub-group @
have a eycle (123...o) wlnch consists of more than three
elements. Then s;= (123« n)ewe, ooy where ¢, ¢, o are cycles
which do not contain the elements 12 3...00. Choose s =(123),
then & %716, =15"1(132)8=(243), and A=s " 's5=(243).
123)= (1 24). Hence @ contains a substitution A consisting

Q
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of a cycle of three elements, and therefore @ is identical with
the alternating group. Thus, there is no normal sub-group
containing the substitution (1238 ... m)c¢cy---.

(2) Let some one substitution s, in @ consist of two or more
cyeles, two eycles of which contain each three elements. Let
these two cycles be (123)(456). Take s=(134), then
57l =25 )and A=(251)(134)=(12534). Thissub-
stitution A, found in ¢, has more than three elements in its
cycle, and comes under case (1). Hence, there is no normal
sub-group of the alternating group contammg a substitution
5 =0123)456).

(3) Let s, consist of cycles, embracing one cycle of three ele-
ments and another of two elements, viz., the cycles (1.2 3) (4 5).
Choose s = (124), then A= (253)(124)=(12534), which
comes under case (1). Hence, there is no normal sub-group
containing 8, = (12 3) (4 5).

(1) Let s embrace three transpositions, (1 2)(3 4)(5 6).
Choose s=(1305), then A= (264) (1 35), which comes under
case (2). Thus the possibility of the existence of a normal
sub-group, containing s, = (1 2) (3 4) (5 6), is exeluded.

(5) Let s, consist, in part or wholly, of two transpositions
and one invariant element. That 1s, let & contain among its
cycles (12)(34)(5). Take s=(125)and we get A=(125)(125)
=(152). Hence, @ again coincides with the alternating group.

The above cases exhaust all the cases which are possible
when n > 4.

‘When n=4, a new possibility arises; namely, s,=(1 2)(3 4).
No matter what substitution in the alternating group G,* is
chosen for s, we fail to get for A a cycle of three elements. On
the other hand, the sub-group

1, (12)34), (1 3)(24), 1 9@ 3)

satisfies the characteristic property of a normal sub-group of
G,™*.
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»
The group 1 is a normal sub-group of any group, but it is not
a normal sub-group of prime index for alternating groups of
degrees higher than the fourth. The order of the alternating

group of the xuth degree is Q Now LL—L -1 is the index of the
Y D)

group 1 under the alternating group. When n > 4, this index
never is a prime number. Hence the theorem is established.

199. Insolvability of General Equations of the Fifth and Higher
Degrees. Irom §§ 196, 198, it appears that the general equa-
tions of higher degree than the fourth do not satisfy the con-
ditions of solvability. However, a special equation of a higher
degree than the fourth, whose group is not the symmetric or
the alternating group, may possess the necessary series of nor-
mal sub-groups of prime index, and may be solvable by radicals.
Thus, any equation of the fifth degree whose group is not the
symmetric or alternating group can be solved by radicals.

Of the 295 substitution-groups whose degree does not exceed
eight, only 28 arc insolvable. Sec .lm. Jowr. of Muth., Vol. 21,
p- 326.

Ex. 1. Show that the quartic in Ex. 9, § 1539, is metacyclic, but not
Abelian ; find 1ts principal sevies of composition.

200. A Criterion of Metacyclic Equations of Prime Degree. All
algebraic equations of the first four degrees are metacyclic.
The following process enables one to ascertain whether a given
equation of the fifth or a higher prime degree is metacyclic or
not.

1If the given irreducible equation f(z) = 0 is metacyelie, then
one of the series of groups G, @, -+, (%, in § 196 must be the
Galois group of the given equation. Proceeding as in § 159,
let o, o, +++, @, be its roots; also let ¥ be a function of «,
0, -+, @, q formally unaltered by the substitutions in G and
those only, where G is the group of highest order in this series.
Let the index of G with respect to the symmetric group of
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degree n he j. Operating upon y with the substitutions of the
symmetric group we get j expressions for y, distinet ir form,
Viz., iy Yo ++-y ¥, Construet the equation of degree j,

Fiy=@—mn)y—9) - G—y)=0. I
The coefficients of I are symmetric functions of the roots,
o, -+, &, ;; hence they are rational in © and can be computed.
If in the function y we substitute the values of the roots of a
metacyclic equation of the nth degree, y assumes a numerieal
value which lies in Q. For, assuming that the equation 1s
metacyelie, its Galois group must be either ¢ or one of the sub-
groups Gy, -+, (4, § 196; hence y admits the substitutions of
the Galois group and is, therefore, & number in Q, § 154
Conversely, if the function y beeomes a number in 2, when
the values of the roots of f(2) =0, n being prime, are substi-
tuted in it, so that [ has a rational root, which is not a multiple
root, then is f(») =0 metacyehie.  For, under these condi-
tions » belongs to 7, and the Galois group of f(x) = 0 must
be either (7 or one of its sub-groups, § 159, Tf it is (¢, then the
conclusion follows at once; if it is one of its sub-groups, it can
be shown (the proof is here omitted) that, when » is prime, the
sub-group is one of the metacyclic groups 7y, (4o -+, G4y, SO
that f(x) = 0 is a metacyclic equation.*

Hence the rule: Select « function y, formally unaltered by the
substitutions in G, and those only, so that F(y) = 0 has no mul-
tiple roots.  If F(y)=0 hus « rational root, f(x) = 0 is meta-
cyclic, otherwise it is insolralle.

Theoretically, it matters not what function of w, e, -+, ,.,
is selected for y, if only it belongs to the group G- Practically,
much depends upon this selection, as the algebraic operations
are very much more complicated with some funetions than with
others. The computation of the coefticients of F(y) =0 is

* For a complete discussion see H. Weber, 1lgebra, Vol. I, 1898, §§ 188, or
B, Netto, Algebre, Vol I, 1900, § 611-615.
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usualfy very laborious even in the case of the quintie. Inas-
much as Bring, in 1786, and Jerrard, in 1834, were able to trans-
form the general quintic to the form & 4 ex 4 d=0 (for
this transformation, see Netto’s digebra, Vol. 1, pp. 124, 125),
1t is of interest to compute F(y) = 0 for this special form.

Ex. 1. Fud the condition that the equation . §ea  d — 0, when
irreducible, shall be metacyehe,

Referring to § 104, we see that for the yuintic the metaey clie group of
the highest order ¢ 15 («hede) . As a funcetion belonging to this group
select (following . Runge, deta Math 7 (1883), p. 173) ', where
I = Wptly 4 0 A Wally + K,y - (Lg(ly — Upll) — Ually  (L404) W, - (€U,

Here ) =6 and F(y)-- 0 15 a vesolvent equation of the sinth degree.
We find 1t convement to consider yatsell; wineh s not a metacyche fune-
tion,  Operated upon by the synumetnie gronp, # yelds twelve values, of
which six differ fiom the other six sunply mosign. Let one set ot six
values be yq, W2, o+ ¥o.  Also let the equation of whieh they are roots be

Yo+ Yt syt + iyt a? ot agy 4 o =2 0. I

Its coefficients @y, @a, -+, g a1¢ not necessarily rational numbers, bnt
they are syminetric tunctions of yy, «-, yo. Consider yy, -, s as func-
tions of g, +++y 4, —y, and operate upon them with the alternating group ;
the values ), ++, Jg are merely permuted among themselves.  Substitu-
tions which do not belong to the alternating group bring abont a change
in sign.  The coeflicients «), ag. - -, «g are therefore cither symmetrie or
alternating functions of g, «-, @y_1.  Of these ay, ay, ag are symmetric
functions becaunse, being homogeneous functions of eren degree, they are
not affected by changes of signs i wy, %2, -+, 76 On the other hand,
«y, 3, «5 are alternating functions of wy, @y, -+, .1, being homogeneons
functions of odd degree.

If D is the discriminant of the quntic, then V1) 18 a function of
U, +-+, Un 1 belonging to the alternating group., Hence the eoeflicients
a1, a3, ag are of the form sy VD, myV D, m, VD, where uy, my, uy are
symmetric integral functions. With respect to ¢y, ¢y, ++, &, 1, it is seen
that g, is of the second degree. But ¢y i8 also of the fori my v'T), where
my is integral and VD is of the tenth degree. Hence we must have
ay = 0. Similarly, «; being of the sixth degree, yields mg = 0. On the
other hand, a; and v/ D are both of the tenth degree. Write a5 = m vV D.
Equation I becomes

P+ ayt + ayt +mVDy+ag=0. a
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In the equation 25 4+ ez + d = 0, ¢ and d are homogeneous functions ot
the roots of the degrees 4 and b, respectively. Since az, a4, ag are of the
degrees 4, 8, 12, we may write

G2 = Mty Uy = My, dg = MgC3,

where mg, my, my are integers. To find the values of m, m,, me, Mg,
assign to ¢ and d the special values ez — 1, d -0 Then D = — 44; the
five roots are 0, ¢, 24, i3, o}, the six values yy, .., yg ave —2¢, — 24§, — 2,
—2§ 2446 —24 40 Equation IT becomes

0 =y" — vy + may? — mg + 16 iy = (4 + 2 0)4(y% — 8 iy — 20)
=y + 20 Yt + 240 g2 — 320 + 512 iy.

Hence mg =~ 20, my =240, mg =— 320, m = 32.  Substituting in II,
and squaring to remove the radical, we have

(@ — 20 eyt + 240 2y + 320 ¢3)2 = 45 Dy?, 111
or (W2 — 4 ) (yt — 24 cy® + 400 ¢2) = 45. 55 . d4y2,

where D = 44c5 4 5504, Wrile y* =4 z; then y2 being metacyclic, so is 2.
- 1
We obtain R , N
(2B —be2+ 1622 + 5¢3)2= Dz, 1v
which may also be written
(= —e)4(22 — G ez 4 25 ¢2) = b8tz \'2

If 28 + ex 4 d =: 0 is irreducible, it is metacyclic when IV or V has a
rational root, and then only  If the quntic 18 reducible, it 18 always
solvable. TFor a different treatment of the quintie sce (Glashan and Young
in Am. Jour. of Math.7 (1885), and especially McClintock, ib. 8 (1886)
and 20 (1898).

Ex. 2 Show that no equation of the form x5+ 5 + 6¢ =0 1s meta-
cyclic, where ¢ is any teger not a multiple of 5.

By § 124, the equation s irreducible, 1 IV in Ex 1 hasin this instance
a rational root, 1t must be integral, since the coefficients of the quintic are
integral and the first term is #5. It must also be a divisor of the absolute
term 25 ¢6 or 58 But no factor of &¥ is a roout of the equation.

Ex. 3. Show that x% + 16 & + 12 = 0 is irreducible and metacyclic.

Ex. 4 Isxb4+8xt4 1028+ 1022 4+ 7x + 6 =0 metacyclic? Trans-
form s0 as to remove the second term.
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»
Ex 5. In V, Ex. 1, let d = cu, 2z = ¢\, where x and X\ are numbers in
the domain Qqy, or in any other domam. Show that 2+ ce+d=01is
always metacyclic when

c=- _ BhutA
TN I)N -6+ 25)
d U

TN Z6 N 20)°

Ex. 6. Construct the metacyclic qumtic in which p = V2, X = V.
See Ex. 5.

Ex 7. Iswd+ ¢ 4+ 1 =0 metacyelic ?

Ex 8. There is a theorem to the effect that all irreducible, metacyelie
equations of the sixth degree m a domaim £ may be found by adjoining to
Q a square root and then forming in the enlarged domain all cubie equa-
tions. See Weber's Algehra, Vol I1, 1896, p 296 Accordingly, adjoining
V2 to Qqgy, We may write o 4 4 14 V2 = 0 and obtiun, by tiansposing
V2 and squaring, the metaeychie sextic o84 20t 4203 o2 r—12:0,
Dernive similar equations, using the radieal v/,

Ex. 9. Show that >+ 5pet + 10 p2e3 + 10 %2 + S pe + pb— 1 =0 is
metacyche.  Also determme its Galois group.

luerease its roots by p.

Ex. 10. Show that 35 + py? + 1 p2y + » = 0 is metacyclic.
3 7 Yy

. 1)
Take y::_']h'
(2 re4
Ex 11. Prove that equation Vin Ex. 1 ean have no rational yoot when
¢ =4 1. Then prove that, if +5 4 « 4 d - 0 is solvable, it is reducible.

Ex. 12 Show that 0% —- .4 — 0, where .1 is not a perfeet fifth power, is
metacychic and has the group (/5,» in the dommn @y, 1,

Ex. 13. Prove that an irreducible equation 1t +) =0 of the prime degree
n can become redneible by adjoming a radical V«, where w18 prime, only
when m = n.

Let ym—a =0 I

be irreducible, let it have the roots vy, wy, -+, w"='y, where w i3 a complex
ath root of unity. Let f(r) = 0 become reducible when v is adjoined to
, so that J@)=fi(2,7) - ful, V), 1
the coefficient of the highest power of z in each polynomial being unity.
-We may consider I and IT as equations in the same domain, having the
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root v in common, Then II must be satisfied by all the roots of L
Multiplying together the members of the m equations thus obtained, we get

J@e)m=F(z) « Fa(2),
Wwhere () = 10, ¥) < S1(0y wy) o fi(o, @m7ly),
Fp(x)= fa(ay 7) - fo(®, wy) +o- f2(, w~1Y).
Fy(x) and Fp(x) are respectively of the degrees mu; and mna; their
coefficients, being symmetric functions of the roots ot I, he m Q. Smce
J() wirreducible and m and n are both prime, we must have

Fi(r) = 1(e)p, Fo(e)= 1004,

«
PR omny g oy, Ny ony -y 10— om

Ex. 14. Show that m Ex. 13 £(¢) .- fite, )« 1104y wY) o= fi(e, "= 1),
where fi(x, v) is irreducible in the domain Q(w, v), and 15 linear with
respect to x.

Ex. 15. Show that if fi(«, v) =0 yields in Ex. 14

W= Co+ vy + e + eyt
then W = g + Cwy + 0y 4 o 4 Cp_ywh l-yn—l,
ete., where e, @, ete., are roots of f(x) =0, and ¢y, ¢, -+, ¢, 1 are num-
bers in . Show that the difference of two roots of f(r) =0 cannot be a
number in 2.

Ex. 16. Prove that an irreducible solvable quintic with real coefficients
cannot have three real roots and two complex roots.

Show that the Galois group (1) must be of the fifth degree ; (2) can-
not be (g, (@1, (I (Ex. 5, § 104); (3) cannot be (™, § 171;
(4) to test (Vo™ take y2 in Kx. 1, which admits it. 1f any two roots,
8ay wo and (¢, are assumed to be conjugate imaginaries, then

y= el + B+ C,
where 4, B, C are real values. Since A = @y — 0tz — o3, B = t2 — 03 — 0t,
we cannot have 4 = B, because that would make «, = «y. Thus, we see
that y cannot be real. Consequently ¢ cannot be real, unless y is a pure
imaginary. Hence y=(wo—) (s — ). That y2 may lie in 2, we must
have y = iV . Vg and @y — o) = iV1, w4 — s =Vy, where [ and ¢ are
positive numbers in € But by Ex. 15, fand ¢ cannot be perfect squares.
By Exa. 13, 14, 156 we see that the roots of the given quintic are numbers
in the domain €, ,), Where w 13 a complex fitth root of unity and ¥ is a
root of the irreducible equation y* —a@ =0. Hence vV and vy do not
lie in €, ,) and the equations @y — & = i V/f, ¢4 — 62 = Vy are impossible,
Consequently G3¢® is not the group, § 165, B.
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(5) Since (71¢™ does not alter ¥2, it is not the group.

(6) Hence the group must be (F1a9" or (7g¢», both insolvable.

For different proofs see Weber's .1lyehra, Vol. I, p, 669, and Weber’s
Encyklopadie der Elementaren Alychra und Analysis, p. 327,

Ex 17. Show that x5 —4.x —2:=0 bas two complex roots and is
insolvable. For the approximate values of the real roots, see § 26,

Ex. 18. Show that x® — 16 %2 4+ 22 + 6 = 0 15 insolvable.
Ex. 19. Show that x° + 1 + { = 0 is wetacyclic.

Ex. 20. Determme which of the foliowing are metacyelie :
(@ x°+be+3i=0. ) 210

b) 25— 28+ 7 =0. a1
() + ((l) -2t 4+ 3r4+6=0,

201. Historical References. For the development of the earlier and
more elementary parts of the theory of equations consult the histories of
mathematics written by Ball, Fiuk, Marie, Zeuthen, and ('ajori, and the
“ Notes ' at the close of the first volume ot Burnside and Panton’s Theory
of Equations. Or, better yct. consult the monuntental work by Moritz
Cantor, entitled Vorlesungen wuber (Geschichte der Mathematik.  For the
later developments, read C. A, Bjerknes' Neeols-Henrik Abel “Paris, 1885);
Evariste Galois’ (Ewvres, edited by Picard (1897); H. Bmkhardt's
¢ Anfange der Gruppentheorie und Paolo Ruftini’® m the Zewseh. fiir
Mathematik und Physik (Vol. 37, Sup , pp. 119-159, 1802).  Read articles
in the Bulletin of the American Mathewmatical Sweiety, by James Pierpont,
on Lagrange’s place in the theory of substitutions (Vol. 1, pp. 2, 196-204,
1895), on the early history of Galois’ theory of equations (Vol. 4, pp. 332-
337, 1898), on Galois’ Collected Works (Vol. 5, pp. 206-300, 1894) ; by
(. A. Miller, a report on recent progress m the theory of the groups of a
fimte order (Vol. 5, pp. 227-249, 1809) ; by Hemy B. Fine, on ¢ Kronecker
and his Arithmetical Theory of the Algebrate Equation ™ (Vol. 1, pp. 173-
184, 1892). Consult also James Pierpont, ¢ Zur Geschichite der Gleichung
des V. Grades (bis 1858),”" in Monatshefte fiir Mathematih und Physik
(Vol. 6, pp. 15-68, 1895) ; G. A. Miller on the history ot several funda-
mental theorems in the theory of groups of a timte order, m the American
Mathematical Monthly (Vol. 8, pp. 213-216, 1901); Felix Klein, Vorle-
sunyen iiber dus fkosaeder (1884). also Lectures on Mathematies (the
Evanston Colloguinm, 1894) ; B 8. Baston, 7The Constructive Develop-
ment of Group-theory (Pliladelphia, 1902).
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MecClmtock, E., 67, 230.
Metacyclic equations, 223, 227,
Miller, . A., 233.

Moritz, 26,

Multiple roots, 21, 53, 142,

Netto. 189, 218, 228, 229,

Newton, 50,

Newton's formula for sums of pow-
ors, 84,

Newton’s method of approximation,
606,

Normal domain, 142, 145, 150.

Normal equations. 149, 151.

Normal sub-groups, 122; of prime
index. 124,

Numbers, algebraic, 136 ; conjugate,
14¢; primitive, 144, 147; tran-
scendental, 137.

T'anton, see Burnside and Panton,
Picard, 233,

Pierpont, J., 233,

Primitive congruence roots, 199,
Primitive domains, 144, 147,

Quadratic equation, 184,



INDEX

Quartic, cyclic, 198; Fuler's solu-
tion, 71 ; groups of, 172, 173; in
the Galois theory, 185 ; nature of
roots, H6; removal of second
term, 37; symmetric functions
of roots, 91; when solvable by
square roots, 72,

Quintie, 186, 227, 220, 232, 233,

Radicals, solution by, 60.

Reciprocal equations, 33, depres-
sion of, 81.

Reducibility, 134, 136, 139.

Reducing cubie, 72,

Regular polygons, inscription of,
20,

Resolvents of Lagrange, 129,

Resultants, 92,

Rolle’s theorem, 49,

Roots, 2; complex, 6, 42, 58, 67,
232 ; fractional, 01 ; fundamental
theorem, 26; incommensurable,
61 ; integral, 62 ; multiple or equal
roots, 21, 53, 142; of unity, 70,
198, primitive, 78 ; primitive con-
gruence roots, 199 ; reciprocal, 33.

Ruffini, P., 233.

Runge, C., 229,

Self-conjugate sub-groups, 122,
Simple groups, 122.

Smith, D. E., 206.

Solvable equations, 223,
Sturm, 60.

239

Sturm’s theorem, 50, 51 ; applied to
quartic, 56.

Sub-groups, 120 ; index of, 122; of
prime index, 124,

Substitutions, 104; cyclic, 107;
even and odd, 111; identical,
106 ; inverse, 106; laws of, 105;
product of, 105.

Substitution groups, see Groups.

Sylvester, 50.

Sylvester’s method of elimination,95.

Symmetric functions, 1?5, 84, 114;
fundamental theorem, 87 ; elimi-
nation by, 93.

Symmetric group, 114,

Synthetic division, 3.

Taylor’s theorem, 19,
Transcendental numbers, 137,
Transpositions, 109,

Trigonometric solution of irreduci-
ble case, 70; of binomial equa-
tions, 74, 82, 83,

Trisecting an #ngle, 207, 208,

Tschirnhausen’s transformation, 99,
102.

Unity, roots of, 76, 198 ; primitive
roots of, 78.

Waring, 50.
Weber, H., 29, 134, 228, 231,

Zeuthen, 233.
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