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The results of these large scale experiments show clearly that under uni-
form conditions the tubercle organism may be cultured for at least 14
years without deterioration in vigor of growth as evidenced by weight of
the bacterial cells per unit of culture.

In this paper no attempt has been made to deal with bacterial dissocia-
tion or life cycles but rather to present certain observed facts which re-
late to the stability of different groups of bacteria when kept for years
under suitable artificial conditions. To the author it appears that the
supposition of gradual deterioration is not necessarily supported by facts.
The results of the experiments here reported show that these forms may be
kept in the laboratory for years and yet remain stable with respect to the
properties tested. It is indeed significant that no matter how contrastive
the artificial medium as compared with the natural environment to which
the organisms were accustomed, many of the dominant physiological
characteristics remain unchanged. The results of this study, therefore,
support the fundamental concept of the stability of pure cultures of bac-
teria under suitable artificial conditions.
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1. Introduction.-In his thesis, Knasterl defines a method of con-
struction which he calls the method of bands, by means of which he is
able to construct indecomposable continua of various types. These
continua may also be thought of as examples to show that each member of a
sequence of continua, each of which contains the following continuum
of the sequence, may be homeomorphic with a rectangle, while the set of
points common to all the continua of the sequence is not homeomorphic
with a rectangle. The present paper is a contribution to the solution
of the problem of determining conditions under which a homeomorphism
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exists between the sets common to two sequences of point sets, the corre-
sponding elements of which are homeomorphic. A certain principle of
uniformity is used in this connection.

2. Notation and Definitions.-In the following, [Me] denotes a sequence
of point sets: M1, M2, M3,. For each i, there exists a homeomorphic
transformation Ti of Mi, and we shall frequently denote Ti(Mi) by N5.
By saying that the sequence of points [P,] converges to the point P,

we shall mean that the point P is the sequential limiting point of the
sequence IPj].
A sequence of point sets [Ti(Mi) ] is said to be uniformly homeomorphic

with respect to the sequence [M,i], if given any positive number e, there
exist corresponding positive numbers 5 and k, such that if i > k and the
distance between the points p and q of Mi is less than 5, then the distance
between T,(p) and Ti(q) is less than e.

If the sequence [Me] is uniformly homeomorphic with respect to [Ti-
(Me)], and the sequence [Ti(Mg) ] is uniformly homeomorphic with re-
spect to [Me], then the sequences [Mi] and [Ti(Mi) ] are said to be mu-
tuaUly uniformly homeomorphic.
Note that if for every integer i we have Mi = M+ij and Ti = Ti,

then the condition that the sequences be mutually uniformly homeomorphic
is equivalent to the condition that a uniform homeomorphism exist be-
tween the sets Mi and T (Mi), as previously defined by the present writer.2

3. Homeomorphisms.-We shall next give two sets of conditions under
which a homeomorphism exists between the sets of common points of two
sequences.
THEOREM 1. In a metric space, let [Mi] and [Nj] be sequences of point

sets such that for each value of i, Mi contains M +i and Ni contains N +i,
and let M and N, respectively, denote the sets of points common to all the sets
of the sequences [Mi] and [Ni]. For each value of i, let T7 denote a homeo-
morphism such that Ti(Mi) = N. Let the sequences satisfy the further
conditions:

(1) if p is any point of M, the sequence [T,(p)] converges to a point
P of N;

(2) if Q is any point of N, the sequence [T,-' (Q)] converges to a point
q of M;

(3) the sequences [M,,] and [Nj] are mutually uniformly homeomorphic.
Under these conditions there exists a uniform homeomorphism T such

that T(M) = N.
Proof.-Let p be a given point of M. Then by (1) and (2), the sequence

[Ti(p) ] converges to a point P of N and the sequence [T, 1(P) ] converges
to a point p' of M. We shall show that p' = p.
Let e-denote an arbitary positive nunlber, and let 5 and k be positive

numbers whose existence follows from (3), which are such that if i > k

VOL. 18, 1932 461



MATHEMA TICS: H. M. GEHMAN

and the distance between the points Ts7(p) and P of Ni is less than 6,
then the distance between the points T7- Ti(p) = p and Ti-1(P) is less
than e. Since the sequence [Ti(p) ] converges to P, there are an infinite
number of points of this sequence for which i > k and whose distance
from P is less than 6. Hence there are an infinite number of points of the
sequence T7- 1(P) whose distance from the point p is less than the arbitrary
number e. It follows that the point p' to which the sequence [Ti-7(P) J
converges is the point p.
Thus we have shown that if p is a point of M and if [Ti(p) ] converges

to the point P of N, then the sequence [7T- 1 (P) ] converges to the point p.
Similarly, if Q is a point of N, and if [T77-(Q)] converges to the point q
of M, then [Ti(q) ] converges to Q. Hence it follows that if p and q are
distinct points of M, the points P and Q are distinct, and conversely.
We can now define a (1 -1) reciprocal correspondence T between the
-points of M and the points of N, by making each point p of M correspond
-to the point of N to which the sequence [Ti(p) ] converges.

It remains to show that T is continuous. By (3) it follows that if e
is any arbitrary positive number, there exist positive numbers 6 and k
such that if i > k and the distance between the points p and q of M is less
than 6, then the distance between the points Ti(p) and Ti(q) is less than e.
But in that case the distance between the points P and Q to which the
sequences [T,(p)] and [Ti(q)] converge is not greater than e. From this
it follows that if the point p is a limit point of any subset of M, the point
T(p) = P is a limit point of the corresponding subset of N. Hence
limit points are preserved under the transformation T and a similar
argument shows that they are preserved under T- Hence T is a homeo-
morphism.
The method of proof shows incidentally that T is uniformly continuous.2

Hence T is a uniformly homeomorphic correspondence or a uniform
homeomorphism.
THEOREM 2. In a metric space, let [Mi I and [Ni] be sequences of compact

point sets such that for each value of i, Mi contains Mi+1 and Ni contains
Nj+i. Let M and N, respectively, denote the sets of points common to all
the sets of the sequences [Mi] and [Ni]. For each value of i, let Ti denote a
homeomorphism such that Tj(M,) = Ni. Let the sequence satisfy the further
conditions:

(1) if p is any point of M, the sequence [Ti(p) I converges to a point P
of N;

(2) if Q is any point of N, the set M contains every limit point of the set
STi-1(Q);
(3) the sequences [Mi] and [Ne] are mutually uniformly homeomorphic.
Under these conditions there exists a uniform homeomorphism T such

that T(M) = N.
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Proof.-Let Q be a point of N. Then since Mi is compact, the sequence
[T,- 1(Q) I has limit points which are points of M, by (2). Suppose it
has two limit points x and y. From (1) and (3), it follows that if e is an
arbitrary positive number, there exist positive numbers a and k such that
(a) the distance between the points Ti(x) and X of Ni is less than e for
every i > k, (b) the distance between the points Ti(y) -and Y of Ni is less
than e for every i > k, (c) the distance between the points x and T7 1(Q)
of M. is less than a for some j > k, and hence the distance between the
points Tj(x) and Q of Nj is less than e for some j > k, and (d) the distance
between the points y and T,71(Q) of Mb is less than a for some h > k, and
hence the distance between the points Th(y) and Q of Nh is less than e
for some h > k. From (a) and (c) it follows that the distance between
the points X and Tj(x) of Nj is less than e, and the distance between the
points Tj(x) and Q of Nj is less than e, and hence the distance between the
points X and Q of N is less than 2 e. Similarly from (b) and (d) it follows
that the distance between the points Y and Q of N is less than 2 e. There-
fore the distance between the points X and Y of N is less than 4 e, and
since e is arbitrary, it follows that X .= Y.
But if X = Y, it follows from (a) and (b) that the distance between.

the. points Ti(x) and Ti(y) of Ni. is less than 2 e for every i > k. But
then it is easily established by means of hypothesis (3) that the distance
between the points x and y of M is less than a, where a is arbitrary. Hence
x = y. In other words the sequence [T-1(Q) ] has a single limit point to
which it converges. Hence the hypotheses of Theorem 1 are fulfilled and
the conclusion follows from Theorem 1.

4. Homeomorphic Transformations.-In this section it is shown that if
the hypotheses of Theorems 1 and 2 are slightly weakened, we can no
longer prove that M and N are homeomorphic, but can merely prove that
there exists a continuous (1 - 1) transformation of M into N, concerning
whose inverse we know nothing except that it is (1 - 1). We shall call
such a transformation a homeomorphic transformation.
THEOREM 3. In a metric space, let [MkI] and [Ne] be sequences of point

sets such that for each value of i, Mi contains Mi+1 and Ni contains Ni+1,
and let M and N, respectively, denote the sets of points common to all the sets
of the sequences [Mi] and [Ni]. For each value of i, let T7 denote a homeo-
morphism such that Tj(Mj) = Ni. Let the sequences satisfy the further
conditions:

(1) if p is any point of M, the sequence [Ti(p)] converges to a point P
of N, and if the points p and p' of M are distinct, than the points P and P'
are distinct;

(2) ifQ is any point of N, the sequence [Ti- 1 (Q) ] converges to a point q of M;
(3) the sequence [Ne] is uniformly homeomorphic with respect to the

sequence [M I.
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Under these conditions there exists a homeomorphic transformation t,
such that t(M) = N.
Proof.-As in the proof of Theorem 1, we can show that if P is a point

of N and if the sequence [T- 1(P) ] converges to the point p of M, then the
sequence [Ti(p) ] converges to P.

Suppose that there is a point p of M such that [T,(p) ] converges to the
point P of N, but that [T,1(P) ] converges to a point q of M, where
q 5 p. From the preceding paragraph we see that since [T7-'(P)]
converges to q, the sequence [Ti(q) I converges to P. But then we have
both [Ti(p) ] and [Ti(q) ] converging to P, which is contrary to (1). Hence
if p is any point of M and if [T,(p) ] converges to the point P of N, then
[T-71 (P) I converges to p.
Thus we define a (1 - 1) correspondence t between the points of M and

the points of N by making each point p of M correspond, to the point
of N to which the sequence T'(p) converges. As in the proof of Theorem 1,
we can show that if p is a limit point of any subset of M, then the corre-
sponding point of N is a limit point of the corresponding subset of N.
Hence we have defined a homeomorphic transformation t such that
t(M) = N.
THEOREM 4. In a metric space, let [Mi] and [Ni] be sequences of compact

point sets such that for each value of i, Mi contains M,+j and Ni contains
Ni+1. Let M and N, respectively, denote the sets of points common to all
the sets of the sequences [Mi I and [Ni]. For each value of i, let Ti denote a
homeomorphism such that Ti(Mi) Ni. Let the sequences satisfy the further
conditions:

(1) if p is any point of M, the sequence [Ti(p) ] converges to a point P
of N, and if the points p and p' of M are distinct, then the points P and P'
are distinct;

(2) if Q is any point of N, the set M contains every limit point of the set
ETi- (Q);
(3) the sequence [Ni] is uniformily homeomorphic with respect to the

sequence [AM ].
Under these conditions there exists a homeomorphic transformation t,

such that t(M) = N.
Proof.-As in the proof of Theorem 2, we show that if Q is any point of

N, and the sequence [T,-1(Q)] has two limit points x and y, the sequences
[Ti(x) ] and [Ti(y)] converge to the same point of N. But this is impossible
by (1). Hence the sequence T,-1(Q) converges to a single point of M.
But in that case the hypotheses of Theorem 3 are' satisfied, and the con-
clusion follows from that theorem.3

* Presented to the American Mathematical Society, October 31, 1931.
1 B. Knaster, Funda. Math., 3, 247-286 (1921).
2 H. M. Gehman, Trans. Amer. Math. Soc.. 29, 553-568 (1927).
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3 In a recent paper by J. H. Roberts, Trans. Amer. Math. Soc., 34, 252-262 (1932),
is given a theorem (Theorem 1) closely related to the theorems of this paper. While
most of Roberts' results will bold true in a more general space than the one considered
by him, the statement that "if Tr- is single-valued, it is continuous," will not be true
in a general metric space.
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In studying the correlation between two variables X and Y it is often
important to compare a given scatter-diagram having observed values of
X, Y, O-, T, r, with a normal distribution having the same values of X,
Y, a T, r. (Here a and r denote the standard deviations of the X's and
the Y's, respectively, and r denotes the coefficient of correlation.)
The usual method of making such a comparison is to draw the "50

per cent ellipse" on the diagram, and see whether 50 per cent of the dots
lie within the ellipse. But this process is rather laborious, and becomes
more so if one attempts to plot the "10% ellipse," the "20% ellipse," etc
The purpose of this paper is to show how this complicated family of

ellipses can be replaced by a simple family of easily plotted concentric
circles. These concentric circles, together with a family of equally spaced
radial lines, will form a "cobweb map" which divides the plane into "town-
ships of equal frequency" of any desired fineness of mesh (for example,
percentiles, permilles, etc.).

This cobweb map makes possible a direct comparison between the observed
distribution of dots and the theoretical distribution in the corresponding normal
case.
The process of constructing the map is extremely simple, as follows.
Let figure 1 represent the given scatter-diagram, in which h is the class-

interval for X, and k the class-interval for Y, and suppose that the means
X, Y (in the original units), the standard deviations 0, T (in the original
units), and the coefficient of correlation r (a pure number), have been
computed in the usual way. Now re-draw the diagram in oblique form,
as follows (see Fig. 2).

r
First, rotate the axis of Y through an angle y,6 given by tan i = 2

i/1- r2
Second, choose as the geometric unit of length to be used on the new
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