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the present note.
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'The summation theorem stated in the preceding note can be utilized
in the convergence theory of Laguerre's series. In fact, suppose that
f(x) is continuous, and that the integral

Go

J e-atta f(t) dt (3)

exists for every a > Then we know that the formal Fourier-Laguerre's

series is summable Abel to f(x) when x > 0; thus the series will represent
the function f(x) whenever it is convergent. The expansion problem is
consequently reduced to a simpler problem, namely that of finding sufficient
conditions for the convergence of a given Laguerre's series. Some such
conditions will be given in the following.

1. We begin with the following theorem:
I. The series

f(x) , a(a) L(a) (x)(1
n=O

converges when x > 0 and represents f(x)., if (i) f(x) is absolutely continuous
on every finite interval 0 < a < x < b, (ii) lim xa + 1f(x) - 0, and (iii)

x *. 0

the integrals

e-' tlaI f(t) 12 dt and J e-t ta tf'(t) 12 dt (2)

exist. The convergence of (1) is uniform on 0 < a . x < b < + co.
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PRLooF:1 Consider the integral

cx2]Cet L(a) (t)tar+ f'(t) dt =I(xI, x2)

where 0 < xi < x2 < + co. In view of (i) f'(x) exists almost everywhere
on (0, + oo) and is summable over (xl, x2). Hence I(x1, x2) exists. Fur-
ther, f(x) is an indefinite integral of f'(x) on (xl, x2) and it is permitted to
integrate by parts. Thus we obtain

I(x1, x2) = [e tL(a) (t) ta + 1 f(t) ]X2

e [(1 + a-t) L"(2) (t) + t L'(c) (t)If(t) dt. (3)
xi

Now let xl - 0, x2 - + o. Then I(x1, x2) tends to a finite limit
and so does the integral on the right-hand side of (3). Denote for the
moment the integrated part by fn(t). In view of (ii) lim fn(t) = 0.

I -. 0
Hence limfn(t) exists and equals zero, sincefn(t) is integrable over (0, + ao).
Now it follows from formula (6) of the first note that

(1 + a-x)Ln`(x) + x L'((x) = (n + l)L( 1 (x)-nL(c" (x).

Hence, denoting the Fourier-Laguerre coefficients of f(x) + xf'(x) by An,
we have

= (n + 1) [a(a) -a(a) l].
In view of the existence of the integral

e ta f(t) + tf'(t) 12 di,

it follows from formula (5) of the first note that the series
co

r(n+l
aA+ 2 oJr(n+a+l)r(n+ a+ 1) 1 A 12 = E r((n + 1) +) a(n an(+?I1In=0 ~~~~~n=0

(4)
is convergent. A simple calculation shows that

Ins a(.)(n +l)s a,()l | (5)n=1

converges, when s < + 2 * In proving this we have to use (4) together

with (5) in the first note as well as well-known properties of the r-function.
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On the other hand, the Dirichlet's series

L(,a)(x)
n = 1 n - (6)

converges when s >2 +4 in virtue of formula (9) of the first note, x

being fixed positive. Further, the convergence is uniform with respect

to x on any finite positive interval 0 < a < x _ b, if s is fixed > +

Now give s a fixed value, a +4< s < 2 + 2 and consider the series

co~ ~x co~ s (a L(c)(x)a(a) L(a)(x) = E,n an n'(7rsI n (7)
For this particular value of s the series (5) and (6) are convergent, x being
positive. Hence, (1) converges when x > 0 and uniformly with respect
to x on 0 < a _ x _ b < + o in view of the uniform convergence of (6)
with respect to x on the same interval; The series (1) may diverge or

co

oscillate when x = 0, since the series (C + a) a(n) is not necessarily

convergent.
2. The expansion problem for Laguerre's series has been investigated

previously in the special case a = 0 by Mm' V. Myller-Lebedeff2 and
in the general case by H. Weyl3 who both base their analysis upon the the-
ory of integral equations. The results of the latter writer are by far the
more general ones. Expressed in terms of the polynomial series rather
than the series of orthogonal functions and with due change of independent
variable and parameter, the result of Weyl for the case a > 0 can be.
stated as follows:

The formal series (1) represents f(x), -if (i) lim xaf(x) = 0, (ii) lim e xxa
. x ol o x- 30 X

.x a-1

f(x) = 0, (iii) G(x) -e X 2 [(x- a)f(x) -xf'(x)] is continuous when

x > 0, and (iv) f G2(x)dx exists.

The condition for the case a < 0 is slightly different in form. Weyl
remarks that the continuity of the derivative can be replaced by a less
restrictive condition if Hellinger integrals are used.

3. To the preceding solution of the expansion problem we shall add a
few conditions for the convergence of a Laguerre's series which involve
restrictions of a different nature.

a 1
II. If lim n 2 - a(" = 0, and if F(x, r), defined byformula (12)
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of the first note, is a holomorphic function of r at r = + 1 when x = xo, then

a(a) L(a)(xo) is convergent.
n 0

The condition of an implies that lim a(a) L(a) (xo) = 0; hence II is a
consequence of the theorem of Fatou. If the series in question is the
Fourier-Laguerre series of a function f(x) which is continuous when x
- xo and such that the integral (J) exists for all values of a > §, then
co

Ea) L(a)(xo) = f(xo). A similar remark applies to the theorems III
n=O

a 1
and IV below. The condition lim n 2 4 a( = 0 is necessary in order

co

that 7a(") L(z) (x) shall converge on an interval or on a set of positive
n=O

measure. This fact is readily seen from formula (7) of the first note in
virtue of a theorem on trigonometric series, due to Cantor and extended
by several authors in various directions.

ax a 3
III. If , a(n) L(n) (xo), xo >0, is summable Abel and if n 2 +4 a(n) is

n=O
bounded, the series is actually convergent.

Since a(a) L(a) (x) < C/n, the theoremn is a consequence of a well-
known Tauberian theorem due to Hardy and Littlewood.

IV. The series a(a) L() (x) converges when x > 0, if eithter (i)-1 <
naO

ae < -- and , a(")-a(a) I is convergent, or (ii) -1< a < + 2 and
n =O0~~~1=

a(") + a (a)| is convergent.
n =O
The proof of this theorem is based upon §2 of the first note. When

-1 < a --2 the series E L(") (x) is convergent. The convergence
nmO

of this series together with that ofE a(X-a,(+1 implies the convergence
n =O

ofE a(") L(") (x). When -1 < a < + 1, the seriesE (-1)" L("(x) is
n=O n-0

convergent. The convergence of this series together with that of
CO

(a)+ aCD( p- ,L()X(") (a^()l implies the convergence of E (-l1)" a(ff)(-1)" L(" (x).
n- n0O
So far we have tacitly assumed x > 0. In the second case we can, however,
permit x to be zero, provided a < 0. If a > 0, we require some additional
condition to ensure convergence when x = 0. If a = 0, such a condition

PROC., N. A. S.268



MA THEMA TICS: G. A. MILLER

is given by lim a(°) = 0; this condition together with the convergence of
co ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ cXcX

E_ a() + a (+)i I implies the convergence of E a(( a(°) L(°)(O).
u=O n=O n=0

1 It is sufficient to prove the convergence of the series. It follows from (2) with the
aid of Schwarz's inequality that the integral (J) exists for every a > 2

2 Math. Annalen, 64, 1907 (388-416).
3 Ibid, 66, 1909 (273-324).
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If pm is the highest power of the prime number p which divides the order
g of a given group G then G contains I + kp, k being a positive integer or
zero, subgroups of order pm and its subgroups of this order are known as
Sylow subgroups. The object of the present paper is to consider some
relative properties of the subgroups of order pm contained in G when their
number is less than 2p2 + I. In particular, we shall prove that when G
contains more than one but less than p2 + I such subgroups then it must
involve an invariant subgroup of order pm-l and when it contains more
than one but less than 2p2 + I such subgroups then it must involve either
an invariant subgroup of order pm-2 or an invariant subgroup order pmi
It is clear that the former of these theorems is useful only when m exceeds
unity while the latter is useful only when m exceeds 2. Moreover, it is
obvious that if in g = pmr and the number r is fixed, it is always possible to
make m sufficiently large so that G involves an invariant subgroup of
order pa, a > 0, for all larger values of m.
To prove the former of the theorems noted above it may first be observed

than when G involves less than p2 + I Sylow subgroups of order pm
then every pair of these subgroups must have pmi-I operators in common,
for if two such subgroups have pm-a operators in common then one of.
them has pa conjugates under the other. Hence it may be assumed in
the proof of this theorem that if K1 and K2 represent two subgroups of
order pm contained in G then their cross-cut Ko is of order pml and is
invariant under K1 and also under K2. If Ko were not invariant under G
there would be a subgroup K3 of order pm contained in G which would not
involve Ko. Each of the two distinct subgroups of order pm-1 which K3
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