С. П. Тимошенко, Дж. Гудьер

ТЕОРИЯ УПРУГОСТИ

Перевод с английского М. И. РЕЙТМАНА

> Под редакцией Г.С.ШАПИРО

Издание второе

МОСКВА «НАУКА» ГЛАВНАЯ РЕДАКЦИЯ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ 1979 **22.25 Т 41** УДК 539.3

Тимошенко С. П., Гудьер Дж. Теория упругости: Пер. с англ. / Под ред. Г. С. Шапиро. — 2-е изд. — М.: Наука. Главная редакция физико-математической литературы, 1979, 560 с.

Руководство по теории упругости С. П. Тимошенко на протяжении более полувека служит настольным пособием для студентов, инженеров и исследователей во всем мире.

В книге дано систематическое изложение теории упругости, начиная с вывода основных соотношений и кончая некоторыми решениями, полученными в последние годы. Подробно рассмотрены плоская задача, задача о кручении и концентрации напряжений, некоторые пространственные задачи, вариационные принципы и методы решения задач. Излагаются также задачи о распространении волн в упругой среде. При редактировании обширная библиография дополнена ссылками на новейшие советские и зарубежные исследования.

Книга предназначена для научных работников, аспирантов и студентов, а также для инженеров-проектировщиков, занимающихся расчетами на прочность.

Табл. 16, илл. 279.

Степан Прокопьевич Тимошенко, Дж. Гудьер ТЕОРИЯ УПРУГОСТИ

М., 1979 г., 560 стр. с илл.

Редактор И. А. Маркузон Техн. редакторы В. Н. Кондакова, С. Я. Шкляр Корректоры О. А. Сигал, Л. С. Сомова

ИБ № 11208

Печать с матриц. Подписано к печати 05.02.79. Бумага 60×90¹/16, тип. № 2. Литературная гарнитура. Высокая печать. Условн. печ. л. 35. Уч.-изд. л. 35,72. Тираж 16600 экз. Заказ № 3521. Цена книги 2 р. 70 к.

> Издательство «Наука» Главная редакция физико-математической литературы 117071, Москва, В-71, Ленинский проспект, 15

Ордена Октябрьской Революции и ордена Трудового Красного Знамени Первая Образцовая типография имени А. А. Жданова Союзполиграфпрома при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли. Москва, М-54, Валовая, 28

 $T = \frac{20302 - 005}{053(02) - 79} 164 - 79. \quad 1703040000$

С Перевод на русский язык. Главная редакция физико-математической литературы издательства «Наука», 1975

От редактора перевода	. 9
	. 12
Предисловие ко второму изданию	. 14
	. 10
Ооозначения	• 19
Глава 1. Введение	. 21
§ 1. Упругость	. 21
§ 2. Напряжения	. 22
§ 3. Обозначения для сил и напряжений	. 23
§ 4. Компоненты напряжений	. 24
§ 5. Компоненты деформаций	. 25
§ 6. Закон Гука	. 27
§ 7. Индексные обозначен 4я	. 3!
Задачи	. 33
<i>1 лава 2.</i> Плоское напряженное состояние и плоская деформация	. 34
§ 8. Плоское напряженное состояни»	. 34
§ 9. Плоская деформация	. 34
§ 10. Напряжения в точке	. 36
§ П. Деформации в точке	. 41
§ 12. Измерение поверхностных деформаций	. 43
§ 13. Построение круга деформаций Мора для розетки	. 45
§ 14. Дифференциальные уравнения равновесия	. 45
§15. Граничные условия	. 46
§ 16. Уравнения совместности	. 47
§17. Функция напряжений	. 49
Задачи	. 5!
Гадад 3. Леумерные залачи в прямоугольных координатах	. 53
18 Решение в полиномах	° 00 53
8 10 Kounepue addeette Doununt Ceu Beugua	. 00 57
ξ 20. Опродоление пороживаний	. 07
$\S 20.$ Onpedemente nepemententa $\ldots \ldots \ldots \ldots \ldots \ldots $. 50
	. 09
§ 22. Изгио балки равномерной нагрузкой	. 03
§ 23. Другие случан оалок с непрерывным распределением нагруз	ки 08
§ 24. Решение двумерной задачи при помощи рядов Фурье	. 10
9 25. Другие приложения рядов Фурье. Нагрузка от сооственного ве	ca 76
§ 26. Влияние концов. Собственные функции	. 77
Задачи	. 79

§ 27. Общие уравнения в полярных координатах 82 § 28. Полярно-симметричное распределение напряжений 85 § 29. Чистый изгиб кривых брусьев 85 § 30. Компоненть деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого брусь силой, приложенной на конце 99 § 43. Изгиб кривого брусь силой, приложенной на конце 99 § 43. Изгиб кривого брусь силой, приложенной на конце 104 § 35. Вляяне круглого отверстия на распределение напряжений в пластинке 112 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли нейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 136 § 42. Сляд, действующая гочке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 145 § 44. Приложения сбощенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырез	§ 27. Общие уравнения в полярных координатах 82 § 28. Полярно-симметричное распределение напряжений 85 § 29. Чистый изгиб кривых брусьев 88 § 30. Комполенты деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокаци и. 104 § 35. Вляяние круглого отверстия на распределение напряжений в пластинке 104 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли-иейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 124 § 39. Изгибающий момент, действующий на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пласлинки 140 § 43. Обобщенного решения в полярных координатах 149 § 44. Приложения обобщенного решения в вырязов 152 § 46. Собственные методы. Метод фотоупруготи и метод «мударь» 162 § 47. Эксперименгальные методы и проверка теоретических решений	Глава 4.	Двумерные задачи в полярных координатах	82
§ 28. Полярно-симметричное распределение напряжений 85 § 29. Чистый изгиб кривых брусьев 88 § 30. Компоненты деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Влияние круглого отверстия на распределение напряжений в пластинке 105 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли нейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Слла, действующая на острие клина 124 § 39. Изгиба оший мсмент, действующий на острие клина 124 § 30. Обобщенное решение двумерной задачи в полярных координатах 140 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пласлинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 152 § 47. Экспериментальные методы м проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 <	§ 28. Полярно-симметричное распределение напряжений 85 § 29. Чистый изгиб кривых брусьев 88 § 30. Компоненты деформаций в полярных координатах 92 § 31. Перемещения пра симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Влиянке круглого отверстия на распределение напряжений в пластинке 104 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли-нейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 44. Приложения обобщенного решения в волярных координатах 149 § 45. Клин, нагруженный волов граней 152 § 46. Собственные решения для клиньев и вырезов 154 3 а д а чи 157 Глава 5. Экспериментальные методы и проверка теоретических решений 162	§ 27	. Общие уравнения в полярных координатах	82
§ 29. Чистый изгиб кривых брусьев 88 § 30. Компоненты деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Влияние круглого отверстия на распределение напряжений в пластиние 104 § 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сляд, действующая на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом дисее 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенного решения в полярных координатах 149 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженый вдоль граней 157 <i>Глава 5.</i> Экспериментальные методы и проверка теоретических решений 162 § 48 § 44. Собственные решения для клиньев и вырезов 154 3 а д ч и 157 <i>Глава 5.</i> Экспериментальные методы и проверка теоретических решений 162 <	§ 29. Чистый изгиб кривых бруслев 88 § 30. Компоненты деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Вляяние круглого отверстия на распределение напряжений в поластинке 104 § 36. Сосредоточенная скла, приложенная в некоторой точке прямоли- нейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 43. Обобщенное решения для клиньев и вырезов 152 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженный длол крине методы и проверка теоретических решений 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 <	§ 28	. Полярно-симметричное распределение напряжений	85
§ 30. Компоненты деформаций в полярных координатах 92 § 31. Перемещения при симметричных полях напряжений 93 § 32. Вращающиеся диски 96 § 33. Изгиб кривого бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Вляяние круглого отверстия на распределение напряжений в пластиние 104 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли нейной границы 112 § 37. Провзвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 126 § 40. Действие на балку сосредоточенной сила 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенного решения в полярных координатах 149 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 154 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48 154	 30. Компоненты деформаций в полярных координатах	§ 29	Чистый изгиб кривых брусьев	88
 § 31. Перемещения при симметричных полях напряжений	 § 31. Перемещения при симметричных полях напряжений	š 30	. Компоненты деформаций в полярных координатах	9 2
 32. Вращающиеся диски	 § 32. Вращающися диски	\$ 31	. Перемешения при симметричных полях напряжений	93
§ 33. Изгиб кривото бруса силой, приложенной на конце 99 § 34. Краевые дислокации 104 § 35. Влияние круглого отверстия на распределение напряжений в 104 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли- нейной границы 105 § 36. Сосредоточенная сила, приложенная в некоторой точке прямоли- нейной границы 112 § 37. Проязвольная вертикальная нагрузка на прямолинейной границе 118 8 § 38. Сила, действующая на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение даумерной задачи в полярных координатах 149 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для кляньев и вырезов 152 § 47. Экспериментальные методы и проверка теоретических решений 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 176 <td> § 33. Изгиб кривото бруса силой, приложенной на конце</td> <th>\$ 32</th> <td>Врашающиеся лиски</td> <td>96</td>	 § 33. Изгиб кривото бруса силой, приложенной на конце	\$ 32	Врашающиеся лиски	96
§ 34. Краевые дислокации 104 § 35. Влияние круглого отверстия на распределение напряжений в пластинке 105 § 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина 124 § 39. Изгибающий момент, действующий на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом джее 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решения двумерной задачи в полярных координатах 149 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженый вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 154 За д а ч и 157 Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы. Метод фотоупругим методом 162 § 47. Экспериментальные методы. Метод фотоупругим методом 170 § 50. Примеры определения	 § 34. Краевые дислокации	6 33	Изгиб кривого бруса силой, приложенной на конце	99
 § 35. Влияние круглого отверстия на распределение напряжений в пластинке. 105. § 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы. 112 § 37. Произвольная вертикальная нагрузка на прямолинейной границы 112 § 38. Сила, действующая на острие клина 124 § 38. Сила, действующая на острие клина 124 § 39. Изгибающий момент, действующий на острие клина 126 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 154 3 а д а ч и 157 Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определения напряжений фотоупругим методом 173 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 58. Выралкение напряжений, выражений через комплексные потенциалы 185 § 58. Выралкение напряжений и премещений через комплексные потенциалы 185 § 59. Результирующая напряжений, действующих по некоторой кривой. Гравичные условия напряжений действующах по некоторой кривой. Гравичные условия напряжений напряжений § 50. Криволинсй не поряжений керекондинатых норя	 § 35. Вляяние круглого отверстия на распределение напряжений в пластинке	§ 34	Краевые лислокации	104
9 со. Длялие ируплото отерения переспределение и переспределение и переспределение и прастрике	 9 сл. Липис и р. 1000 случения на реперенено с пластинке	\$ 35	Влияние круглого отверстия на распределение напряжений в	
 \$ 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы	 § 36. Сосредоточенная сила, приложенная в некоторой точке прямолннейной границы	3 00	пластиние	105
9 6. Ссердоготенны сили, приложения в исторол ток приложения сили, приложения в исторор ток приложения сили, приложения в исторой ток приложения сили приложения в полярие и и и и и и и и и и и и и и и и и и	 вейной границы	\$ 36	Сосредоточенная сила приложенная в некоторой точке прямоли-	
§ 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 § 38. Сила, действующая на острие клина	 37. Произвольная вертикальная нагрузка на прямолинейной границе 118 38. Сила, действующая на острие клина	3 00	нейной праници	112
 9 01. Примеры действующая на острие клина	 9 от. провызонала пертикалица на рузка на прямонненной транастичения 124 9 38. Сила, действующая на острие клина	8 37		118
 9 00. Сила, деяствующая на острие клина	 9 00. Онла, денспрующая на острие клина	8 38	Сила тейструющая на остоие клина	194
9 05. Пля полющия можени, действующий на осстрие клива 127 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом дисие 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 140 § 43. Обобщенное решения в полярных координатах 149 § 44. Приложения обобщенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 152 § 46. Собственные решения для клиньев и вырезов 157 <i>Глава 5.</i> Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 \$ 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 170 170 51. Определения напряжений фотоупругим методом 170 § 50. Примеры определения напряжений 173 \$ 52. Методы фотоу пругости в трехмерном случае 174 § 53. Метод муара 174 \$ 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 \$ 54. Функции комплексного переменного 179 § 54. Функции напряжений, вы	9 05. Паглодающия жожси, действующия на острие кляна 120 § 40. Действие на балку сосредоточенной силы 127 § 41. Напряжения в круглом диске 136 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 44. Приложения сбобщенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 152 § 46. Собственные решения для клиньев и вырезов 154 3 а д а ч и 157 <i>Главва 5.</i> Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 48. Измерение паряжений фотоупругим методом 162 § 49. Круговой полярископ 170 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений фотоупругим методом 170 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 174 § 54. Функции комплексного переменного 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Ла	\$ 30 \$ 30		196
 940. Действие на облку сосредноченной силы	 9 40. деяствие на балку сосредоточенной силы	5 JO	Пойстрие на балих соорологоношной сили	197
9 41. Папряжения в крујлом джке 130 9 42. Сила, действующая в точке бесконечной пластинки 140 9 43. Обобщенное решения в толярных координатах 140 9 44. Приложения сбобщенного решения в полярных координатах 149 9 45. Клин, нагруженный вдоль граней 152 9 46. Собственные решения для клиньев и вырезов 152 9 46. Собственные решения для клиньев и вырезов 154 3 а д а ч и 157 Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 162 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений фотоупругим методом 170 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 185 § 57. Перем	9 41. Папряжения в круглом диске 130 § 42. Сила, действующая в точке бесконечной пластинки 140 § 43. Обобщенное решение двумерной задачи в полярных координатах 145 § 44. Приложения сбобщенного решения в полярных координатах 149 § 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 152 § 46. Собственные решения для клиньев и вырезов 154 За да чи 157 Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 160 162 § 50. Примеры определения напряжений фотоупругим методом 170 171 § 51. Определение главных напряжений отоупругим методом 170 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 <	S 40	Напражения в крупком лиско	126
 9 42. Сила, деиствующая в точке оссконечной пластинки	 9 42. Сила, деяствующая в точке осесконечной пластинки	8 40 8 40		140
 § 43. Сосощенное решение двумернои задачи в полярных координатах 145 § 44. Приложения сбобщенного решения в полярных координатах . 149 § 45. Клин, нагруженный вдоль граней	 § 43. Обобщенное решение двумерной задачи в полярных координатах 149 § 44. Приложения сбобщенного решения в полярных координатах . 149 § 45. Клин, нагруженный вдоль граней	S 42	Сила, деиствующая в точке оесконечной пластинки	140
 9 44. Приложения сосощенного решения в полярных координатах. 149 § 45. Клин, нагруженный вдоль граней	 § 44. Приложения сосощенного решения в полярных координатах	9 43 6 11	Придочное решение двумерной задачи в полярных координатах	140
§ 45. Клин, нагруженный вдоль граней 152 § 46. Собственные решения для клиньев и вырезов 154 Задачи 157 Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений 173 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Главаа 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 185 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений и перемещений через комплексные потенциалы 187 § 60. Криволинсй не координаты 189 § 60. Криволинсй на пряжений в криволинейных координатах 192	 § 45. Клин, нагруженный вдоль граней	9 44 8 45	. Приложения сосощенного решения в полярных координатах	149
 9 40. Сооственные решения для клиньев и вырезов	 9 40. Сооственные решения для клиньев и вырезов	§ 40 6 40	Клин, нагруженный вдоль граней	152
Задачи 15/ Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений 173 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 174 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 185 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. 189 § 60. Криволинсй: не координаты 192 § 61. Компонситы папряжений в криволинейных координатах 192	Задачи 15/ Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Эксперименгальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений 173 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженые через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 185 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. 187	§ 40	Сооственные решения для клиньев и вырезов	104
Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом 162 § 49. Круговой полярископ 168 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений 173 § 52. Методы фотоупругости в трехмерном случае 174 § 53. Метод муара 176 Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выражение через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 185 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений и перемещений через комплексные потенциалы 187 § 60. Криволинсй: с координаты 189 § 60. Криволинсй: с координаты 192 § 61. Компонситы папряжений в криволинейных координатах 195	Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 162 § 47. Экспериментальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом	3 a J	ачи	191
 § 47. Эксперименгальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом	 § 47. Эксперименгальные методы и проверка теоретических решений 162 § 48. Измерение напряжений фотоупругим методом	Глава 5.	Экспериментальные методы. Метод фотоупругости и метод «муара»	162
 § 48. Измерение напряжений фотоупругим методом	 § 48. Измерение напряжений фотоупругим методом	§ 47	Экспериментальные методы и проверка теоретических решений	162
 § 49. Круговой полярископ	 § 49. Круговой полярископ	§ 48	Измерение напряжений фотоупругим методом	162
 § 50. Примеры определения напряжений фотоупругим методом	 § 50. Примеры определения напряжений фотоупругим методом 170 § 51. Определение главных напряжений	§ 49	Круговой полярископ	168
 § 51. Определение главных напряжений	 § 51. Определение главных напряжений	§ 50	. Примеры определения напряжений фотоупругим методом	170
 § 52. Методы фотоупругости в трехмерном случае	 § 52. Методы фотоупругости в трехмерном случае	§ 51	. Определение главных напряжений	173
 § 53. Метод муара	 § 53. Метод муара	§ 52	Методы фотоупругости в трехмерном случае	174
Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 183 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия 189 § 60. Криволинсй не координаты 192 § 61. Компонситы папряжений в криволинейных координатах 195	Глава 6. Двумерные задачи в криволинейных координатах 179 § 54. Функции комплексного переменного 179 § 55. Аналитические функции и уравнение Лапласа 181 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 183 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. 187	§ 53	. Метод муара	176
 § 54. Функции комплексного переменного	 § 54. Функции комплексного переменного	Глава в.	Двумерные задачи в криволинейных координатах	179
 § 55. Аналитические функции и уравнение Лапласа	 § 55. Аналитические функции и уравнение Лапласа	§ 54	Функции комплексного переменного	179
 § 56. Функции напряжений, выраженные через гармонические и комплексные функции 183 § 57. Перемещения, отвечающие заданной функции напряжений 185 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия 189 § 60. Криволинсй не координаты 192 § 61. Компонситы папряжений в криволинейных координатах 	 § 56. Функции напряжений, выраженные через гармонические и комплексные функции	§ 55.	Аналитические функции и уравнение Лапласа	181
плєксные функции	плєксные функции	§ 56	Функции напряжений, выраженные через гармонические и ком-	
 § 57. Перемещения, отвечающие заданной функции напряжений	 § 57. Перемещения, отвечающие заданной функции напряжений		плексные функции	183
 § 58. Выражение напряжений и перемещений через комплексные потенциалы 187 § 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия 189 § 60. Криволинсй: не координаты 192 § 61. Компонситы папряжений в криволинейных координатах 	 § 58. Выражение напряжений и перемещений через комплексные по- тенциалы § 59. Результирующая напряжений, действующих по некоторой кривой. 	§ 57	Перемещения, отвечающие заданной функции напряжений	185
тенциалы	тенциалы	§ 58	Выражение напряжений и перемещений через комплексные по-	
 § 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия	§ 59. Результирующая напряжений, действующих по некоторой кривой.	-	тенциалы	187
Граничные условия		§ 59	Результирующая напряжений, действующих по некоторой кривой.	
§ 60. Криволинсії ве коордипаты	Граничные условия		Граничные условия	189
§ 61. Компонситы вапряжений в криволинейных координатах 195	§ 60. Криволинсії ве координаты	§ 60	Криволинсії не координаты	192
	§ 61. Компонситы папряжений в криволинейных координатах 195	§ 61	Компонситы испряжений в криволинейных координатах	195
Запачи 197	Запачи 197	•		

§ 62. Решения в эллиптических координатах. Эллиптическое отверсти	łe
в пластинке с однородным напряженным состоянием	. 197
§ 63. Эллиптическое отверстие в пластинке, подвергнутой одноосном	fy
растяжению	. 201
§ 64. Гиперболические границы. Вырезы	. 205
§ 65. Биполярные координаты	. 207
§ 66. Решения в биполярных координатах	. 208
§ 67. Определение комплексных потенциалов по заданным граничны	M
условиям. Методы Н. И. Мусхелишвили	. 213
§ 68. Формулы для комплексных потенциалов	. 216
§ 69. Свойства напряжений и деформаций, отвечающих комплексны	M
потенциалам, аналитическим в области материала, расположе	н-
ной вокруг отверстия	. 218
§ 70. Теоремы для граничных интегралов	. 220
§ 71. Отображающая функция ω (ξ) для эллиптического отверсти	я.
Второй граничный интеграл с	. 223
§ 72. Эллиптическое отверстие. Формула для $\psi(5)$	225
Задачи	. 228
Глара 7 Анализ наподжений и пеформаний в пространственном слинае	229
1 дана 7. Апания папряжения в деформация в пространственном случае. 6 74 Враторию	. 225
	231
§ 70. Главные напряжений и направляющая поверуность напряжени 8 76. Эллипсоил напряжений и направляющая поверуность напряжени	. 201 гй 939
§ 70. Оплетеление главных напряжений	233
§ 78. Инварианты напряжений	234
6 79. Определение максимального касательного напряжения	235
§ 80. Однородная деформация	. 237
§ 81. Леформации в точке тела	. 238
§ 82. Главные оси деформаций	. 241
§ 83. Вращение	. 242
Задачи	. 244
Глава 8. Общие теоремы	. 245
§ 84. Дифференциальные уравнения равновесия	. 245
§ 85. Условия совместности	. 246
§ 86. Определение перемещений	. 249
§ 87. Уравнения равновесия в перемещениях	. 250
§ 88. Общее решение для перемещений	. 251
§ 89. Принцип суперпозиции	. 252
§ 90. Энергия деформации	. 253
9 91. Энергия деформации для краевой дислокации	. 258
9 92. Принцип виртуальной работы	. 260
у 50. георема Кастильяно	. 265
у 34. Приложения принципа минимальной работы. Прямоугольнь	ie ooo
	. 269
у 50. эффективная ширина широких полок балок	. 2/2
Задачи	. 278

5

Ś	96. Единственность решения	279
Ś	97. Теорема взаимности	281
Ś	98. Приближенный характер решений для плоского напряженного	
	состояния	284
3	адачи	286
Глава	9. Элементарные трехмерные задачи теории упругости	288
ş	99. Однородное напряженное состояние	288
ě	100. Растяжение призматического стержня под действием собствен-	
	HOTO BECA	289
8	101 Кручение круглых валов постоянного поперечного сечения	292
5	109. Цистый изгиб призматических стеруней	293
2		907
3		231
Глава	10. Кручение	299
6	104. Кручение прямолинейных стержней	299
6	105. Эллиптическое поперечное сечение	304
5		306
5		300
S S		212
9	100. Кручение стержия узкого прямоугольного поперечного сечения	010
9	109. Кручение прямоугольных стержней	310
9	110. Дополнительные результаты	319
Ş	111. Решение задач о кручении энергетическим методом	322
Ş	112. Кручение стержней прокатных профилей	328
ş	113. Экспериментальные аналогии	330
Ş	114. Гидродинамические аналогии	331
ş	115. Кручение полых валов	334
ş	116. Кручение тонкостенных труб	338
ş	117. Винтовые дислокации	342
Ş	118. Кручение стержия, одно из поперечных сечений которого	
	остается плоским	344
-6	119. Кручение круглых валов переменного лиаметра	346
5	алачи	354
-		
Глава	11. Изгиб брусьев	358
6	120. Изгиб консоли	358
8	121. Функция напряжений	360
8	122. Круглое поперечное сечение	362
5		363
S S	194 Прямочгольное поперенное селение	264
2 2	195. Пополнитот ила разлитати	270
8	196 Hogy March Brown Boron Barrow Bar	070
8	197 Почто налибо	074
S	127. LICHTP ИЗГИОЗ	3/4
5	120. Гешение задач изгиоа с помощью метода мыльной пленки	3/1
S	129. Перемещения	380
Ś	130. Дальнейшие исследования изгиба брусьев	381

Глава	12.	Осесимметричные напряжения и деформации в телах вращения	383
ş	131.	Общие уравнения	383
Š	132.	Решение в полиномах	386
ş	133.	Изгиб круглой пластинки	387
ş	134.	Трехмерная задача о вращающемся диске	390
š	135.	Сила, приложенная в некоторой точке бесконечного тела	392
ŝ	136.	Сферический сосуд под действием внутреннего или внешнего	
5		равномерного давления	395
\$	137.	Местные напряжения вокруг сферической полости	398
\$	138.	Сила, приложенная на границе полубесконечного тела	400
š	139.	Нагрузка, распределенная по части границы полубесконечного	
5		тела	404
\$	140.	Давление между двумя соприкасающимися сферическими телами	411
š	141.	Давление между двумя соприкасающимися телами. Более общий	
Ũ		случай	416
ş	142.	Соударение шаров	421
Š	143.	Симметричная деформация круглого цилиндра	423
ş	144.	Круглый цилиндр под действием опоясывающего давления .	427
ş	145.	Решение Буссинеска в виде двух гармонических функций	429
š	146.	Растяжение винтовой пружины (винтовые дислокации в кольце)	430
Š	147.	Чистый изгиб части круглого кольца	433
T	12		435
1 ливи 8	148	Простейщие случаи распределения температурных напряжений	100
3	140.	Простемшие случая распределения температурных напряжения.	435
3	ала		441
8	149	Пролодьное изменение температуры в полосе	441
5 8	150	Тонкий круглый лиск: распределение температуры симметрии.	111
3	100.	исе относительно центра	<u>^^^</u>
8	151	Ллинный коуглый нилинар	446
3	ала		454
8	152	Chena	454
5	153	Общие уравнения	458
5	154	Теорема взаимности в термомпригости	469
5	155	Полные термоупругие тероомации. Произвольное распрететение	402
3		температуры	463
8	156.	Термоупругие перемещения Интегральное решение В М Май-	100
3		зеля	465
3	ала	чи	468
\$	157.	Начальные напряжения	468
8	158.	Общее изменение объема связанное с начальными напряме-	100
3		ниями	471
8	159.	Плоская леформация к плоское напряженное состояние Матол	-111
3		УСТРАНЕНИЯ леформаций	471
6	160.		472
\$	161	Плоское термонапряженное состояние вызванное возминонном	TIU
5		ОДНОВОЛНОГО ПОТОКА ТЕПЛА ИЗОЛИВОВАННЫМ ОТВЕВСТИЕМ	479
			110

7

§ 162. Решения общих уравнений. Термоупругий потенциал перемеще-	
ния	480
§ 163. Общая двумерная задача для круговых областей	484
§ 164. Общая двумерная задача. Решение в комплексных потенциалах	486
Глава 14. Распространение волн в упругой сплошной среде	489
§ 165. Введение	489
§ 166. Волны расширения и волны искажения в изотропной упругой	
среде	490
§ 167. Плоские волны	491
§ 168. Продольные волны в стержнях постоянного сечения. Элемен-	
тарная теория	496
§ 169. Продольное соударение стержней	501
§ 170. Поверхностные волны Рэлея	509
§ 171. Волны со сферической симметрией в бесконечной среде	512
§ 172. Взрывное давление в сферической полости	513
Приложение. Применение конечно-разностных уравнений в теории упру-	
ГОСТИ	517
§ 1. Вывод конечно-разностных уравнений	517
§ 2. Методы последовательных приближений	521
§ 3. Метод релаксации	524
§ 4. Треугольные и шестиугольные сетки	529
§ 5. Блочная и групповая релаксации	534
§ 6. Кручение стержней с многосвязными поперечными сечениями .	535
§ 7. Точки, расположенные вблизи границы	537
§ 8. Бигармоническое уравнение	539
§ 9. Кручение круговых валов переменного диаметра	547
§10, Решение задач с помощью ЭВМ	550
Именной указатель	552
Предметный указатель	557

от редактора перевода

Превосходные руководства, написанные недавно скончавшимся выдающимся ученым, педагогом и инженером С. П. Тимошенко (1878—1972), охватывают почти все разделы механики твердого тела: техническую механику¹), сопротивление материалов²), статику сооружений³), теорию колебаний⁴), теорию упруготи 5), теорию пластинок и оболочек⁶), теорию упругой устойчивости⁷) и историю развития механики деформируемых тел⁸). Большинство этих книг на протяжении более полувека служат во всем мире основными пособиями по механике в высших технических учебных заведениях и настольными руководствами для инженеров и исследователей. Как правило, они многократно переиздавались и (в некоторых случаях при участии учеников С. П. Тимошенко) подвергались модернизации.

Успех этих книг, конечно, не случаен. Он тесно связан с многообразием интересов, широкой эрудицией и глубиной, которые характеризуют собственные научные изыскания С. П. Тимошенко⁹).

Среди книг, написанных этим замечательным механиком, особое место по праву занимает «Курс теории упругости» в двух частях, основанный на лекциях, читавшихся им в Киевском политехническом институте (1907—1910 гг.) и в Петербургском

⁴) С. П. Тимошенко, Колебания в инженерном деле, Физматгиз, 1959.
 ⁵) S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, изд. 3.

McGraw-Hill, N. Y., 1970.

6) С. П. Тимошенко, С. Войновский Кригер, Пластинки и оболочки, Физматгиз, 1963.

¹⁾ S. P. Timoshenko, D. H. Young, Engineering Mechanics, Изд. 4. т. 1, Statics; т. 2, Dynamics, McGraw-Hill, N. Y., 1967.

²) С. П. Тимошенко, Сопротивление материалов, изд. четвертое, т. І. Элементарная теория и задачи; т. II. Более сложные вопросы теории и задачи, Гостехиздат, 1946.

³) S. P. Timoshenko, D. H. Young, Theory of Structures, McGraw-Hill, N. Y., 1956.

⁷) S. P. Timoshenko, T. M. Gere, Theory of Elastic Stability, изд. 2, McGraw-Hill, 1959. ⁸) С. П. Тимошенко, История науки о сопротивлении материалов,

⁸) С. П. Тимошенко, История науки о сопротивлении материалов, Гостехиздат, 1957.

⁹) См., например, С. П. Тимошенко, Устойчивость стержней, пластин и оболочек, «Наука», 1971.

институте инженеров путей сообщения (1912-1914 гг.). Первая его часть (изданная в 1914 г.) была посвящена телам, все размеры которых имеют одинаковый порядок, а вторая (изданная в 1916 г.) - статике, устойчивости и колебаниям стержней и пластинок. В то время теория упругости излагалась преимущественно в университетских курсах и нередко трактовалась как раздел математической физики, вне связи с техническими приложениями. Блестящий курс С. П. Тимошенко был одним из первых ¹) руководств, предназначенных для нужд инженеров. Отказавшись от изложения ряда разделов, имеющих чисто теоретическое значение (теоремы существования и единственности, общие методы интегрирования, теория строения упругих тел и др.), автор сосредоточил внимание на прикладных вопросах: оценке пределов применимости элементарных решений сопротивления материалов. задачах, для которых неприменимы элементарные подходы (в частности. о концентрации напряжений в зонах резких изменений формы тела или распределения нагрузки), экспериментальных и приближенных аналитических способах исследования. В курсе нашли отражение и собственные интересные результаты автора. Книга эта и ныне не потеряла своего значения. Она была переиздана без изменений в 1972 г.²) и вновь получила высокую оценку³).

Стремительное развитие техники ставит перед теорией упругости все новые задачи, и лицо ее непрерывно меняется. Естественно, что на протяжении последующих неполных шести десятилетий С. П. Тимошенко нашел необходимым неоднократно существенно перерабатывать и дополнять свой курс.

Впервые это было сделано в 1934 г., когда в США на английском языке была опубликована под заглавием «Теория упругости» сильно переработанная первая часть «Курса». Порядок изложения материала был изменен. Чтобы облегчить читателю усвоение материала, вначале подробно излагалась теория плоской задачи и лишь затем трехмерная теория. Нашли отражение многие важные успехи в теории, достигнутые за прошедшее двадцатилетие. Заключительная глава была посвящена распространению волн в упругой среде⁴). На основе второй части «Курса» С. П. Тимошенко написал три монографии: по теории колеба-

¹⁾ Написанные ранее, например, учителями С. П. Тимошенко — Ф. С. Ясинским (1897, 1902) и И. Г. Бубновым (1906, 1908, 1912) — курсы теории упругости получили значительно меньшее распространение.

²) С. П. Тимошенко, Курс теории упругости, «Наукова думка», Киев, 1972.

³⁾ Г. Н. Савин, Рецензия, «С. П. Тимошенко, Курс теории упругости». Прикладная механика, № 5 (1973).

⁴⁾ Эта книга в переводе А. Н. Шошина издавалась в Советском Союзе в 1934 и 1937 гг. См. С. П. Тимошенко, Теория упругости, ОНТИ, ГТТИ, 1934, 1937.

ний, по теории пластинок и оболочек и по теории упругой устойчивости.

В дальнейшем «Теория упругости» перерабатывалась автором дважды. Ее второе издание было опубликовано в США в 1951, а третье — в 1970 г., причем в обоих случаях к этой работе был привлечен его ученик Дж. Н. Гудьер (1905—1969) — один из крупнейших в США специалистов по теории упругости, известный у нас как один из авторов книги «Упругость и пластичность» (изд-во «Иностранная литература», 1960), написанной им совместно с Ф. Г. Ходжем.

Подробные сведения об изменениях, внесенных в эти два переиздания книги, содержатся в предисловии авторов.

Предлагаемый перевод осуществлен с последнего американского издания 1970 г.

Перевод первого издания книги давно стал у нас библиографической редкостью. Появление предлагаемого современного руководства по теории упругости, предназначенного для инженеров, студентов технических учебных заведений и исследователей, заполнит имеющийся пробел в нашей литературе и будет, без сомнения, содействовать прогрессу технических приложений этой дисциплины.

Г. С. Шапиро

ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ

При подготовке этой книги для третьего издания сохранены первоначальные цель и план первого издания — дать инженерам существенные основы знаний по теории упругости в столь простой форме, какую позволяет этот предмет, вместе с набором решений частных задач, важных для инженерной практики и проектирования. Многочисленные ссылки в подстрочных примечаниях показывают читателю, как можно продолжить изучение некоторых вопросов. Поскольку теперь эти ссылки легко пополнить с помощью реферативного журнала Applied Mechanics Reviews, новые ссылки вводились очень экономно. Мелкий шрифт, как и прежде, используется для разделов, которые могут быть пропущены при первом чтении.

Весь текст был вновь просмотрен, и в него внесены незначительные изменения, как за счет исключения и перекомпоновки, так и путем добавления некоторых разделов.

Основные дополнения отразили развитие отдельных разделов. интерес к которым повысился со времени появления в 1951 г. второго издания. В главах 3 и 4 введен анализ влияния концов и теория собственных решений, связанных с принципом Сен-Венана. Ввиду быстрого роста приложений дислокационных упругих решений в науке о поведении материалов, эти разрывные в смещениях решения излагаются более подробно (теория краевых и винтовых дислокаций в главах 4, 8, 9 и 12). К главе 5 добавлены вводные сведения о методе «муара» с иллюстрацией его применения на практике. Изложение понятия об энергии деформации и вариационных принципов проведено в трехмерном случае и включено в главу 9, что дало основу для новых разделов по термоупругости в главе 13. Обсуждение использования комплексных потенциалов для двумерных задач пополнено группой новых параграфов, основанных на хорошо известных теперь методах Н. И. Мусхелишвили. Этот подход несколько отличается

от прежнего, так как в нем используются преимущества решений, развитых ранее только для аналитических функций. Дано полробное изложение новых решений для эллиптического отверстия, которые важны в современной механике разрушения (теории трещин). Исследование осесимметричных напряжений в главе 12 упрощено, и добавлены новые разделы, в которых более приближенный анализ случая разрезанного кольца как одного витка спиральной пружины заменен более точной теорией. В силу значительного роста приложений, например в ядерной энергетике, глава 13 «Температурные напряжения» расширена за счет включения термоупругой теоремы взаимности и полученных из нее нескольких полезных результатов. Кроме того, исследование двумерных задач дополнено двумя заключительными параграфами, последний из которых устанавливает взаимосвязь двумерных задач термоупругости с комплексными потенциалами и методами Н. И. Мусхелишвили из главы 6. В главе 14, посвященной распространению волн, перестройка изложения придала больше значения основам трехмерной теории. Добавлено также решение для действия взрывного давления в сферической полости. Приложение, посвященное численному методу конечных разностей, включает пример использования ЭВМ для решения задачи с большим числом неизвестных.

Некоторые из упомянутых изменений, позволяющих упростить анализ, возникли в процессе преподавания курса в Стэнфордском университете за последние двадцать лет. Много полезных предложений, поправок и даже целиком сформулированных задач с решениями исходят от многочисленных студентов и читателей. Всем им приносится самая искренняя признательность за их неоценимую помощь.

Почти все задачи заимствованы из экзаменационных билетов, предлагаемых на экзаменах в Стэнфордском университете. Отсюда читатель может примерно оценить, какая часть книги соответствует учебному курсу, занимающему несколько меньше трех часов в неделю в течение академического года.

Дж. Н. Гудьер

ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

Многочисленные уточнения и успехи, которые достигнуты в теории упругости и ее приложениях со времени выхода первого издания, отражены во многих добавлениях и изменениях, помещенных в настоящем издании. В то же время построение книги большей частью остается прежним.

Разделы, касающиеся метода фотоупругости, двумерных задач в криволинейных координатах и температурных напряжений, расширены и выделены в отдельные новые главы, содержащие многие методы и решения, которых не было в прежнем издании. Добавлено приложение, относящееся к методу конечных разностей, в том числе к методу релаксации. Новые параграфы, включенные в другие главы, относятся к теории розетки датчиков деформаций, гравитационным напряжениям, принципу Сен-Венана, компонентам вращения, теореме взаимности, общим решениям, приближенному характеру решений при плоском напряженном состоянии, центру кручения и центру изгиба, концентрации напряжений при кручения вблизи закруглений, приближенному исследованию тонкостенных сечений (например, авиационных) при кручении и изгибе, а также к круговому цилиндру при действии пояскового давления.

Добавлены также задачи для студентов, охватывающие материал книги вплоть до конца главы о кручении.

Нам доставляет удовольствие выразить большую признательность читателям книги, которые внесли много полезных предложений.

С. П. Тимошенко, Дж. Н. Гудьер

ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ

В течение последних лет теория упругости нашла широкое применение при решении инженерных задач. Существует много случаев, когда элементарные методы сопротивления материалов оказываются непригодными для того, чтобы дать удовлетворительную информацию о распределении напряжений в инженерных конструкциях; тогда приходится прибегать к более совершенным методам теории упругости. Элементарная теория недостаточна, чтобы составить представление о местных напряжениях вблизи зон приложения нагрузок и вблизи опор балок. Равным образом она не может дать удовлетворительное объяснение в тех случаях, когда исследуется распределение напряжений в телах, все размеры которых представляют собой величины одного и того же порядка. Напряжения в роликах и шариках подшипников можно найти, только используя методы теории упругости. Элементарная теория не дает также способа исследования напряжений в местах резкого изменения поперечного сечения балок или валов. Известно, что во входящих углах наблюдается высокая напряжений. В результате этого концентрация именно там прежде всего начинают возникать трещины, особенно если конструкция подвергается действию знакопеременных напряжений. Большинство эксплуатационных поломок деталей машин можно отнести за счет этих трещин.

За последние годы в решении таких практически важных задач были достигнуты значительные успехи. В тех случаях, когда получить точное решение затруднительно, были развиты приближенные методы. В некоторых случаях решения были получены с помощью экспериментальных методов. В качестве примера можно назвать метод фотоупругости для решения двумерных задач теории упругости. Приборы для применения методов фотоупругости можно теперь найти как в университетах, так и во многих промышленных испытательных лабораториях. Результаты исследований методами фотоупругости оказались особенно полезными при изучении различных случаев концентрации напряжений в местах резкого изменения поперечных сечений и у закруглений малого радиуса на входящих углах. Без сомнения эти результаты оказали значительное влияние на современное конструирование деталей машин и способствовали во многих случаях улучшению конструкции путем устранения слабых мест, от которых могли бы начинаться трещины.

Другим примером успешного приложения экспериментов при решении задач теории упругости является метод мыльной пленки для определения напряжений при кручении и изгибе призматических стсржней. Трудная проблема решения дифференциальных уравнений в частных производных при заданных граничных условиях заменяется в этом случае измерениями наклонов и прогибов соответствующим образом натянутой и нагруженной мыльной пленки. Эксперименты показывают, что таким путем можно получить не только визуальную картину распределения напряжений, но и приобрести необходимую информацию относительно величины напряжений с точностью, достаточной для практических целей.

Далее представляет интерес электроаналогия, которая дает способ исследования напряжений при кручении в валах переменного диамстра у закруглений и вырезов. Аналогия между задачей изгиба пластинок и плоской задачей теории упругости также может с успехом использоваться при решении важных технических задач.

При подготовке этой книги ставилась цель дать инженерам в доступной форме необходимые основные сведения по теории упругости. Кроме того, имелось в виду дать сводку решений частных задач, представляющих практический интерес, и описать приближенные и экспериментальные методы решения задач теории упругости.

Имея в виду практические приложения теории упругости, автор не останавливается на вопросах, которые представляют преимущественно теоретический интерес и не находят в настоящее время применения в технике, чтобы уделить большее внимание рассмотрению конкретных задач. Только на основе подробного изучения таких задач и сравнения результатов точных исследований с приближенными решениями, которые обычно излагаются в элементарных курсах сопротивления материалов, проектировщик может добиться полного понимания распределения напряжений в инженерных конструкциях и научится успешно использовать более точные методы анализа напряжений.

При рассмотрении частных задач в большинстве случаев применяется метод прямого определения напряжений с использованием уравнений совместности деформаций в напряжениях. Этот метод более привычен для инженеров, которые обычно интересуются величиной напряжений. При введении соответствующим образом подобранной функции напряжений этот метод, кроме того, является часто более простым, чем использование уравнений равновесия в перемещениях.

Во многих случаях в книге применяется также энергетический метод решения задач теории упругости. При этом интегрирование дифференциальных уравнений заменяется исследованием условия минимума некоторых интегралов. При помощи метода Ритца эта задача вариационного исчисления сводится к простой задаче отыскания минимума функции. Таким способом удается получить приближенные решения во многих практически важных случаях.

Чтобы упростить изложение, книга начинается с рассмотрения двумерных задач, и лишь после того как читатель освоится с различными методами, используемыми при решении задач теории упругости, рассматриваются трехмерные задачи. Те части книги, которые, хотя и имеют практическое применение, но при первом чтении могут быть пропущены, набраны мелким шрифтом. Читатель может вернуться к изучению таких задач, овладев более существенными разделами книги.

Математические выводы приведены в элементарной форме и обычно не требуют бо́льших математических знаний, чем даются в высших технических учебных заведениях. В случаях изложения более сложных задач приводятся все необходимые объяснения и промежуточные выкладки, чтобы читатель мог без затруднений следить за ходом вывода. Лишь в нескольких случаях приведены окончательные результаты без полных выводов. Но при этом всегда даются необходимые ссылки на литературу, в которой эти выводы можно найти. В многочисленных примечаниях даются ссылки на статьи и книги по теории упругости, которые могут иметь практическое значение. Эти ссылки могут представить практический интерес для тех инженеров, которые пожелают более детально изучить некоторые частные вопросы. Они дают также картину современного развития теории упругости и могут быть полезны студентам старших курсов, которые собираются работать в этой области науки.

При подготовке данной книги автор широко пользовался книгой «Курс теории упругости», часть 1, издание Института инженеров путей сообщения, С.-Петербург, 1914, по тому же предмету, которая представляет собой курс лекций по теории упругости, читавшийся в нескольких русских высших технических учебных заведениях.

Автору в его работе помогли д-р Л. Доннел и д-р Дж. Н. Гудьер, которые прочли всю рукопись; автор признателен им за многочисленные исправления и предложения. Автор пользуется возможностью выразить также благодарность проф. Дж. Г. Маккелафу, д-ру Э. Э. Вейбелю, проф. М. Садовскому и Д. Г. Юнгу, которые помогли при окончательной подготовке книги, прочитав некоторые части рукописи. Автор благодарен также Л. С. Венстра за изготовление чертежей и Э. Д. Вебстер за печатание рукописи.

С. П. Тимошенко

обозначения

x, y, z — прямоугольные координаты.

r, θ — полярные координаты.

ξ, η — ортогональные криволинейные координаты; иногда прямоугольные координаты.

R, ψ, θ-сферические координаты.

N-внешняя нормаль к поверхности тела.

1, m, n-направляющие косинусы внешней нормали.

А — площадь поперечного сечения.

I_x, I_y-моменты инерции поперечного сечения относительно осей x и y.

I -- полярный момент инерции поперечного сечения.

g-ускорение силы тяжести.

ρ — плотность.

q-интенсивность непрерывно распределенной нагрузки.

р — давление.

Х, Ү, Z-компоненты объемной силы.

 \overline{X} , \overline{Y} , \overline{Z} — компоненты распределенной поверхностной нагрузки, отнесенные к единице площади.

М-изгибающий момент.

M_t — крутящий момент.

 $\sigma_x,\,\sigma_y,\,\sigma_z$ — нормальные компоненты напряжения, параллельные осям x y и z.

σ_n — нормальная компонента напряжения, параллельная n.

σ_r, σ_θ — радиальное и окружное нормальные напряжения в полярных координатах.

σ_ξ, σ_η—нормальные компоненты напряжений в криволинейных координатах.

σ_r, σ_g, σ_z — нормальные компоненты напряжений в цилиндрических координатах.

 $\Theta = \sigma_x + \sigma_y + \sigma_z = \sigma_r + \sigma_\theta + \sigma_z.$

т-касательное напряжение.

 τ_{xy} , τ_{xz} , τ_{yx} — компоненты касательного напряжения в прямоугольных координатах.

τ_{rθ} — касательное напряжение в полярных координатах.

т_{ξη}-касательное напряжение в криволинейных координатах.

 $\tau_{r\theta}$, $\tau_{\theta z}$, τ_{rz} --- компоненты касательного напряжения в цилиндрических координатах.

обозначения

S-полное напряжение на некоторой площадке. Поверяностное усилие. и, v, w-компоненты перемещения.

е-относительное удлинение.

 ε_x , ε_y , ε_z — относительные удлинения в направлениях x, y и z.

 ε_r , ε_{θ} — радиальное и тангенциальное относительные удлинения в полярных координатах

 $e = \varepsilon_x + \varepsilon_y + \varepsilon_z$ — объемное расширение.

у-относительная деформация сдвига.

γ_{xy}, γ_{xz}, γ_{yz}— компоненты сдвиговой деформации в прямоугольных координатах.

 $\gamma_{r\theta}$, $\gamma_{\theta z}$, γ_{rz} — компоненты сдвиговой деформации в цилиндрических коорлинатах.

Е-модуль упругости при растяжении и сжатии.

G — модуль упругости при сдвиге.

у — коэффициент Пуассона.

$$\mu = G, \quad \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$$
 - константы Ламе.

ф-функция напряжения.

 $\varphi(z), \psi(z), \chi(z)$ — комплексные потенциалы; функции комплексного переменного z = x + iy.

z-сопряженное комплексное переменное x-iy.

С-кругильная жесткость.

θ-угол закручивания на единицу длины.

F = 2G0 -- величина, используемая в задачах о кручении.

V-энергия деформации.

V₀—энергия деформации, отнесенная к единице объема.

t — время.

Т-некоторый интервал времени. Температура.

α-коэффициент теплового расширения. Угол.

с₁, *с*₂ — скорости волн.

Глава 1 ВВЕДЕНИЕ

§ 1. Упругость

Почти все инженерные материалы обладают в какой-то мере свойством *упругости*. Если вызывающие *деформацию* внешние силы не превышают некоторого предела, то после снятия этих сил деформация исчезает. В этой книге всюду будет предполагаться, что тела, испытывающие действие внешних сил, являются *идеально-упругими*, т. е. они полностью восстанавливают свою первоначальную форму после снятия нагруэки.

Мы здесь не рассматриваем атомную структуру тела. Будем считать, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Для упрощения рассуждений, как правило, будем предполагать, что тело изотропно, то есть, что его упругие характеристики по всем направлениям одинаковы.

Конструктивные материалы не вполне удовлетворяют этим предположениям. Например, такой важный материал, как сталь, если его рассмотреть под микроскопом, оказывается состоящим из кристаллов разных размеров и разной ориентации. Свойства этого материала весьма далеки от однородности, однако опыт показывает, что решения теории упругости, основанные на допущениях об однородности и изотропии, с очень высокой точностью применимы к стальным конструкциям. Объяснение этого факта состоит в том, что кристаллы очень малы: обычно в кубическом сантиметре стали их миллионы. Поэтому, несмотря на то, что упругие характеристики кристаллов в разных направлениях могут различаться, сами кристаллы, как правило, расположены случайным образом и упругие характеристики больших кусков металла представляют собой усреднения характеристик кристаллов. Пока геометрические размеры рассматриваемого тела достаточно велики по сравнению с размерами одного кристалла, предположение об однородности может применяться с высокой степенью точности, Точно так же материал может рассматриваться как изотропный, если его кристаллы ориентированы случайным образом.

Если же благодаря определенным технологическим процессам, таким, как прокатка, в металле преобладает какая-то определен-

введение

ная ориентация кристаллов, упругие характеристики металла в разных направлениях становятся различными и следует учитывать анизотропию материала. Это имеет место, например, в случае холоднокатаной меди.

§ 2. Напряжения

На рис. 1 показано тело, находящееся в состоянии равновесия. Под действием внешних сил P_1, P_2, \ldots, P_7 между частями тела возникают внутренние силы взаимодействия. Чтобы исследовать величину этих сил в произвольной точке O, вообразим, что тело разделено на две части A и B поперечным сечением mm, проходящим через эту точку. Рассматривая одну из этих частей, например часть A, можно утверждать, что она находится в равновесии под действием внешних сил P_5, \ldots, P_7 и внутренних сил,

распределенных по поперечному сечению *mm* и представляющих действие материала части *B* на материал части *A*. Предположим, что эти силы непрерывно распределены по площади сечения *mm* подобно тому, как распределяются по поверхности, на которую они действуют, гидростатическое давление или давление ветра. Величины таких сил обычно определяются их *интенсивностью*, т. е. величиной силы, отнесенной к единице площади, на которую она действует. Интенсивность внутренних сил называется *напряжением*.

В простейшем случае призматического стержня, который растягивается силами, равномерно распределенными по его концам (рис. 2), внутренние силы в произвольном поперечном сечении *mm* также распределяются равномерно. Следовательно, интенсивность этого распределения, т. е. напряжение, можно получить, разделив полное растягивающее усилие *P* на площадь поперечного сечения *A*.

В рассмотренном случае напряжение распределено по поперечному сечению равномерно. В общем случае (рис. 1, сечение тт) это не так. Чтобы получить величину напряжения, по некоторой малой площадке δA , вырезанной из поперечного сечения mm в точке О, прежде всего отметим, что силы, действующие на эту элементарную площадку со стороны части тела В на часть тела А, можно свести к результирующей δР. Если мы будем теперь непрерывно уменьшать площадь элементарной площадки бА, то предельное значение отношения $\delta P/\delta A$ даст нам величину напряжения, действующего в поперечном сечении mm в точке О. Предельное направление результирующей **б***P* является направлением напряжения в рассматриваемой точке. В общем случае вектор напряжения наклонен к площадке δA, на которой оно действует, и его можно разложить на две компоненты: на нормальное напряжение, перпендикулярное площадке, и на касательное напряжение, действующее в плоскости площадки 8А.

§ 3. Обозначения для сил и напряжений

Существует два вида внешних сил, которые могут воздействовать на тело. Силы, распределенные по поверхности тела, такие, как давление одного тела на другое или гидростатическое давление, называются поверхностными силами. Силы, распределенные

по массе тела, такие, как силы тяжести, магнитные силы или (в случае движения тела) силы инерции, называются массовыми силами. Поверхностную силу, отнесенную к единице площади, мы будем разлагать на три xкомпоненты, параллельные декартовым координатным осям x, y, z, используя для этих компонент обозначения $\overline{X}, \overline{Y}, \overline{Z}$. Массовые силы, отнесенные к единице объема, называемые объемными силами, также разложим на три компоненты, обозначив их через X, Y, Z.

Буквой о будем обозначать нормальное напряжение, а буквой т — касательное. Чтобы указать ориентацию плоскости, по которой действует напряжение, к этим буквам будем добавлять индексы. Рассмотрим очень малый кубический элемент в точке P (рис. 3) с гранями, параллельными координатным осям. Обозначения для компонент напряжений, действующих по граням этого элемента, а также направления, которые считаются положительными, показаны на рис. 3. Например, для граней элемента, перпендикулярных оси u, нормальные

§ 3]

компоненты напряжений, действующих на этих гранях, обозначаются через о_у. Индекс у показывает, что напряжения действуют по площадке, перпендикулярной оси у. Нормальное напряжение считается положительным, когда оно вызывает растяжение элемента, и отрицательным, когда оно вызывает сжатие.

Касательные напряжения разлагаются на две компоненты, параллельные координатным осям. В этом случае используются уже два индекса, из которых первый показывает направление нормали к рассматриваемой плоскости, а второй — направление компоненты напряжений. Например, если снова рассмотреть грани, перпендикулярные оси у, то компонента в направлении х обозначается через т_{их}, а компонента в каправлении z-через т_{их}. Положительные направления компонент касательных напряжений на грани кубического элемента принимаются совпадающими с положительными направлениями координатных осей, если растягивающие напряжения для той же грани совпадает с положительным направлением соответствующей оси. Если растягивающие напряжения имеют направление, противоположное положительному направлению оси, то положительные направления компонент касательного напряжения меняются на обратные. В соответствии с этим правилом положительные направления всех компонент напряжения на первой грани кубического элемента (рис. 3) совпадают с положительными направлениями координатных осей. Если же рассматривается левая грань того же элемента, то положительные направления меняются на обратные.

§ 4. Компоненты напряжений

Как видно из предыдущего параграфа, для каждой пары параллельных граней кубического элемента, изображенного на рис. З, требуется один символ, чтобы обозначить нормальную компоненту напряжений, и еще два символа, чтобы обозначить компоненты касательных напряжений. Чтобы обозначить напряжения, действующие на шести гранях элемента, потребуется три символа σ_x , σ_y , σ_z для нормальных напряжений и шесть τ_{xy} , τ_{yx} , τ_{xz} , τ_{zx} , τ_{yz} , τ_{zy} для касательных. С помощью простого исследования равновесия элемента число символов для касательных напряжений можно сократить до трех.

Если взять моменты сил, действующих на элемент, относительно оси, проходящей через центральную точку С и параллельной, скажем, оси x, то окажется необходимым рассматривать лишь те поверхностные силы, которые показаны на рис. 4. Объемными силами, такими, как вес элемента, в этом случае можно пренебречь, поскольку при уменьшении размеров элемента действующие на него объемные силы уменьшаются пропорционально кубу линейного размера, тогда как поверхностные усилия уменьшаются пропорционально квадрату линейного размера. Следовательно, для очень малого элемента объемные силы являются величинами более высокого порядка, чем поверхностные силы, и при определении моментов могут не

учитываться. Точно так же моменты, вызванные неоднородностью распределения нормальных усилий, имеют более высокий порядок малости, чем моменты, вызванные сдвиговыми усилиями, и в пределе обращаются в нуль. Таким образом, усилия, действующие на каждой грани куба, можно считать равными произведению площади грани на величину напряжения в ее центре. Если обозначить размеры малого элемента на рис. 4 через dx, dy, dz, то

FNC. 4.

из уравнения моментов сил относительно точки С

$$\tau_{zy}\,dx\,dy\,dz = \tau_{yz}\,dx\,dy\,dz.$$

Подобным же образом можно получить и два других уравнения. Из этих уравнений находим

$$\tau_{xy} = \tau_{yx}, \quad \tau_{zx} = \tau_{xz}, \quad \tau_{zy} = \tau_{yz}. \tag{1}$$

Следовательно, на двух перпендикулярных друг другу гранях кубического элемента компоненты касательного напряжения, перпендикулярные линии пересечения этих граней, равны между собой¹).

Таким образом, для описания напряжений, действующих на координатных плоскостях, проходящих через любую точку, достаточно шести величин σ_x , σ_y , σ_z , $\tau_{xy} = \tau_{yx}$, $\tau_{xz} = \tau_{zx}$, $\tau_{yz} = \tau_{zy}$. Они будут называться компонентами напряжений в этой точке.

Ниже (§ 74) будет показано, что с помощью этих шести компонент можно определить напряжения на любой наклонной площадке, проходящей через ту же точку.

§ 5. Компоненты деформаций

При рассмотрении деформаций упругого тела будем предполагать, что имеется достаточное количество связей, которые препятствуют движению тела как жесткого целого, в силу чего перемещения частиц тела невозможны без его деформации.

В этой книге будут рассматриваться только обычно возникающие в инженерных конструкциях малые деформации. Прежде

§ 5]

¹) Бывают и исключения, особенно в тех случаях, когда напряжения вызываются электрическим и магнитным полями (см. задачу 2, стр. 33).

введение

всего разложим перемещения частиц деформированного тела на компоненты u, v, w, параллельные соответственно координатным осям x, y, z. Будем считать, что эти компоненты являются весьма малыми величинами, меняющимися непрерывно по объему тела. Рассмотрим малый элемент упругого тела (рис. 5). Если тело подвергается деформации u, v, w—компоненты перемещения в точке P, то перемещение в направлении x соседней точки A, расположенной на оси x, с точностью до величин первого порядка по dx имеет вид

$$u+\frac{\partial u}{\partial x}dx$$

ввиду возрастания функции u на величину $(\partial u/\partial x) dx$ с увеличение нием координаты x. Увеличение

dy

длины элемента PA, вызванное деформацией, равно $(\partial u/\partial x) dx$. Таким образом, относительное

Рис. 5.

Рис. 6.

удлинение в точке P в направлении x составляет $\partial u/\partial x$. Таким же путем можно показать, что относительные удлинения в направления y и z определяются производными $\partial v/\partial y$ и $\partial w/\partial z$. Рассмотрим теперь изменение угла между элементами PA и PB (рис. 6). Если u и v—перемещения точки P в направлениях x и y, то перемещения точки A в направлении y и точки B в направления x расно $v + (\partial v/\partial x) dx$ и $u + (\partial u/\partial y) dy$. В результате этих перемещений новое направление P'A' элемента PA образует, как показано на чертеже́, с начальным направлением малый угол $\partial v/\partial x$. Точно так же направление P'B' повернуто по отношению к PB на малый угол $\partial u/\partial y$. Отсюда видно, что первоначально прямой угол APB между двумя элементами PA и PB уменьшился на величину $\partial v/\partial x + \partial u/\partial y$. Это величина представляет собой деформацию сдвига между плоскостями xz и yz.

Через є мы будем обозначать относительное удлинение, а через γ —относительную деформацию сдвига. Для указания направлений деформации будем использовать те же индексы, что

$$\begin{aligned} \varepsilon_{x} &= \frac{\partial u}{\partial x}, \quad \varepsilon_{y} &= \frac{\partial v}{\partial y}, \quad \varepsilon_{z} &= \frac{\partial w}{\partial z}, \\ \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{xz} &= \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \gamma_{yz} &= \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}. \end{aligned}$$
(2)

Позже мы покажем, что, зная три относительных удлинения в трех перпендикулярных направлениях и три относительные деформации сдвига, отнесенные к тем же направлениям, можно найти удлинение в любом направлении и изменение угла между любыми двумя направлениями (см. § 81). Шесть величин $\varepsilon_{s}, \ldots, \gamma_{ys}$ называются компонентами деформации.

§ 6. Закон Гука

Линейные соотношения между компонентами напряжений и компонентами деформаций называют обычно законом Гука. Представим себе элементарный прямоугольный параллелепипед с гранями, параллельными координатным осям, подверженный действию нормального напряжения σ_x , равномерно распределенного по двум противоположным граням, как это имеет место в опыте на растяжение. Вплоть до достижения предела пропорциональности относительное удлинение элемента дается формулой

$$\varepsilon_x = \frac{\sigma_x}{E}$$
, (a)

где *Е*—модуль упругости при растяжении. Материалы, используемые в инженерных конструкциях имеют модули, очень большие по сравнению с допускаемыми напряжениями, в силу чего относительное удлинение, определяемое по формуле (а), является очень малой величиной. Например, для конструкционных сталей оно обычно меньше чем 0,001.

Такое удлинение элемента в направлении оси *x* сопровождается сужением в поперечном направлении (сжатием), определяемым компонентами деформаций

$$\varepsilon_y = -v \frac{\sigma_x}{E}, \quad \varepsilon_z = -v \frac{\sigma_x}{E},$$
 (6)

где v—константа, называемая коэффициентом Пуассона. Для многих материалов коэффициент Пуассона можно принять равным 0,25. Для конструкционных сталей он обычно считается равным 0,3.

Зависимости (а) и (б) можно использовать также в случае простого сжатия. При сжатии модуль упругости и коэффициент Пуассона обычно имеют те же значения, что и при растяжении.

введение

Если рассматриваемый элемент подвергается одновременному действию нормальных напряжений σ_x , σ_y , σ_z , равномерно распределенных по его граням, то получающиеся в результате компоненты деформаций можно получить из выражений (а) и (б). Производя наложение компонент деформаций, вызванных каждым из трех напряжений, получаем соотношения

$$\varepsilon_{x} = \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})],$$

$$\varepsilon_{y} = \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})],$$

$$\varepsilon_{z} = \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})].$$
(3)

Эти соотношения, подтверждаются многочисленными экспериментальными измерениями.

В последующем мы будем часто использовать выше примененный метод наложения, или суперпозицию, для отыскания полных деформаций и напряжений, вызванных несколькими силами. Он является законным до тех пор, пока деформации малы, а соответствующие им малые перемещения не влияют существенно на действие внешних сил. В таких случаях мы пренебрегаем малыми изменениями размеров деформируемого тела, а также малыми перемещениями точек приложения внешних сил, и основываем наши вычисления на начальных размерах и начальной форме тела. Получающиеся в результате перемещения можно находить с помощью суперпозиции в виде линейных функций внешних усилий, как это было сделано при выводе соотношений (3).

Существуют, однако, особые случан, в которых малыми деформациями нельзя пренебрегать и следует их учитывать. В качестве примера такого рода можно назвать случай одновременного действия осевой и поперечной нагрузки на тонкий стержень. Сами по себе осевые силы вызывают простое растяжение или сжатие, однако если они действуют одновременно с поперечной нагрузкой, то оказывают существенное влияние на изгиб стержня. При определении деформаций стержня в таких условиях, несмотря на малость прогибов, нужно учитывать их влияние на момент от внешних сил¹). Теперь уже полные прогибы не являются линейными функциями усилий и не могут быть получены с помощью простого наложения.

¹) Несколько примеров такого рода можно найти в книге S. Timoshenko, Strength of Materials, изд. 3, т. 2, гл. 2, Van Nostrand Co., Inc., Princeton, N. J. 1956. [См. также русский перевод другого издания: С. П. Тимощенко, Сопротивление материалов, т. 2, гл. 2, Гостехиздат, 1946. (Прим. перев.)]

В соотношениях (3) зависимости между удлинениями и напряжениями полностью определяются двумя физическими константами E и v. Те же константы можно использовать и для определения зависимости между деформацией сдвига и касательным напряжением.

Рассмотрим частный случай деформации прямоугольного параллелепипеда, когда $\sigma_z = \sigma$, $\sigma_y = -\sigma$ и $\sigma_x = 0$. Вырежем элемент *abcd* плоскостями, параллель-

мент иси плоскостями, параллельными оси х и наклоненными под углом 45° к осям у и г (рис. 7). Как следует из условий равновесия элемента Obc (рис. 7, б), нормальные напряжения на всех гранях элемента abcd равны нулю, а касательные напряжения

$$\tau = \frac{1}{2} \left(\sigma_z - \sigma_y \right) = \sigma. \qquad (B)$$

Такое напряженное состояние называется *чистым сдвигом*. Удлинение вертикального элемента *Оb* равно укорочению горизонталь-

ных элементов Oa и Oc, откуда (пренебрегая малыми величинами второго порядка) следует, что длины отрезков элемента ab и bc при деформации не изменяются. Угол между гранями ab и bc изменяется, и соответствующую величину деформации сдвига у можно найти из треугольника Obc. Таким образом, в результате деформации имеем

$$\frac{\partial c}{\partial b} = \operatorname{tg}\left(\frac{\pi}{4} - \frac{\gamma}{2}\right) = \frac{1 + \varepsilon_y}{1 + \varepsilon_z}.$$

Подстановка из равенств (3) дает

$$\varepsilon_z = \frac{1}{E} (\sigma_z - \nu \sigma_y) = \frac{(1+\nu)\sigma}{E}, \quad \varepsilon_y = -\frac{(1+\nu)\sigma}{E}.$$

Замечая, что при малых у

$$\operatorname{tg}\left(\frac{\pi}{4}-\frac{\gamma}{2}\right) = \frac{\operatorname{tg}\frac{\pi}{4}-\operatorname{tg}\frac{\gamma}{2}}{1+\operatorname{tg}\frac{\pi}{4}\operatorname{tg}\frac{\gamma}{2}} = \frac{1-\frac{\gamma}{2}}{1+\frac{\gamma}{2}};$$

находим

$$\gamma = \frac{2(1+\nu)\sigma}{E} = \frac{2(1+\nu)\tau}{E}.$$
 (4)

Таким образом, зависимость между деформацией сдвига и касательным напряжением определяется константами *E* и у. Часто используется обозначение

$$G = \frac{E}{2(1+\nu)}.$$
 (5)

§ 6]

$$\gamma = \frac{\tau}{G}$$
.

Константа G, определяемая уравнением (5) называется модулем упругости при сдвиге или модулем сдвига.

Если касательные напряжения действуют по всем граням элемента, как показано на рис. З, искажение угла между двумя пересекающимися гранями зависит только от соответствующих компонент касательного напряжения. Отсюда получаем

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}, \quad \gamma_{yz} = \frac{1}{G} \tau_{yz}, \quad \gamma_{zx} = \frac{1}{G} \tau_{zx}. \tag{6}$$

Компоненты деформаций, характеризующие удлинения (3) и искажения (6), не зависят друг от друга. Общий случай деформации, производимой тремя нормальными и тремя касательными компонентами напряжений, можно получить с помощью наложения: на три удлинения, определяемые выражениями (3), накладываются три деформации сдвига, определяемые соотношениями (6).

Уравнения (3) и (6) определяют компоненты деформаций как функции компонент напряжения. Иногда требуется выразить компоненты напряжений в функции компонент деформаций. Их можно получить следующим образом. Складывая уравнения (3) и используя обозначения

$$e = \varepsilon_x + \varepsilon_y + \varepsilon_z, \quad \Theta = \sigma_x + \sigma_y + \sigma_z,$$
 (7)

получаем следующую зависимость между объемным расширением е и суммой нормальных напряжений Θ

$$e = \frac{1 - 2v}{E} \Theta.$$
 (8)

Для случая равномерного гидростатического давления с интенсивностью *р* имеем

$$\sigma_x = \sigma_y = \sigma_z = -p.$$

Тогда из (8) получаем

$$e = -\frac{3\left(1-2\nu\right)p}{E}.$$

Эта формула представляет собой зависимость между относительным объемным расширением е и гидростатическим давлением р. Величина E/[3 (1-2v)] называется модулем объемного расши-

Величина E/[3(1-2v)] называется модулем объемного расширения. Используя обозначения (7) и решая уравнения (3) относительно σ_x , σ_y , σ_z , находим

$$\sigma_{x} = \frac{vE}{(1+v)(1-2v)}e + \frac{E}{1+v}\varepsilon_{x},$$

$$\sigma_{y} = \frac{vE}{(1+v)(1-2v)}e + \frac{E}{1+v}\varepsilon_{y},$$

$$\sigma_{z} = \frac{vE}{(1+v)(1-2v)}e + \frac{E}{1+v}\varepsilon_{z}.$$
(9)

Используя обозначение

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)} \tag{10}$$

и выражение (5), эти формулы можно привести к виду

$$\sigma_{x} = \lambda e + 2G\varepsilon_{x}, \quad \sigma_{y} = \lambda e + 2G\varepsilon_{y}, \quad \sigma_{z} = \lambda e + 2G\varepsilon_{z}.$$
(11)

§ 7. Индексные обозначения

Введенные обозначения для компонент усилий, напряжений, перемещений и деформаций стали общепринятыми во многих странах, в особенности для инженерных расчетов. В этой книго они будут использоваться повсюду. Однако для сжатого представления общих уравнений и выводимых из них теорем более удобна и часто применяется другая система обозначений—*система индексных обозначений.* В этой системе компоненты перемещения, например, обозначаются u_1, u_2, u_3 , или более коротко u_i , где считается, что индекс i может принимать значения 1, 2 или 3. Для координат вместо обозначений x, y, z используются обозначения x_1, x_2, x_3 , или просто x_i .

На рис. З показаны девять компонент напряжений. Ниже эти компоненты представлены в *левой* таблице:

Вводя обозначения τ_{xx} вместо σ_x , τ_{yy} вместо σ_y и τ_{zz} вместо σ_z , мы получаем следующую таблицу. Здесь первый индекс указывает направление нормали к грани элемента, на которой эта компонента действует, а второй индекс указывает ось, которой параллельна эта компонента напряжений. В *правой* таблице буквенные индексы заменены на соответствующие цифровые. Чтобы записать все девять компонент, теперь нам потребуется два индекса *i* и *j*, каждый из которых независимо принимает значения 1, 2, 3. Тогда все девять компонент т представятся в виде

$$\tau_{ii}$$
 при $i, j = 1, 2, 3.$ (6)

Соотношения (1), которые сводят девять компонент к шести (но пока в таблицу входят девять), можно выразить в виде

$$\tau_{ji} = \tau_{ij}, \qquad i \neq j. \tag{B}$$

Если положить i = j = 1, то просто имеем три тождества вида $\tau_{11} = \tau_{11}$.

Вместо зависимостей (2) между деформациями и перемещениями мы введем теперь девять компонент деформаций ε_{ij} (причем из определения

§ 7]

введение

деформаций сдвига следуєт, что $\varepsilon_{ii} = \varepsilon_{ii}$) согласно зависимостям

$$\boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right). \tag{r}$$

Полагая i = j = 1, а затем i = j = 2 и i = j = 3, получаем соотношения в следующем виде:

$$\varepsilon_{11} = \frac{\partial u_1}{\partial x_1}, \quad \varepsilon_{22} = \frac{\partial u_2}{\partial x_2}, \quad \varepsilon_{33} = \frac{\partial u_3}{\partial x_3}.$$
 (A)

Полагая сначала i=1, j=2, затем i=2, j=3 и, наконец i=3, j=1, из (г) получаем следующие три соотношения:

$$\varepsilon_{12} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right), \quad \varepsilon_{23} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right), \quad \varepsilon_{31} = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right). \quad (e)$$

Заметим, что $2\varepsilon_{12}$, $2\varepsilon_{13}$, $2\varepsilon_{23}$ — это не что иное, как γ_{xy} , γ_{xz} , δ_{yz} в (2). Таким образом, ε_{12} есть половина величины, на которую уменьшается первоначально прямой угол между линейными элементами dx_1 , dx_2 в точке с координатами x_1 , x_2 , x_3 . Вместо суммы $\varepsilon_x + \varepsilon_y + \varepsilon_z$ получим выражение

$$arepsilon_{11} + arepsilon_{22} + arepsilon_{33}$$
 или $\sum_{i=1, \ 2, \ 3} arepsilon_{ii}$. (ж)

При индексных обозначениях удобно опускать знак суммирования и писать просто є_{іі}. На необходимость суммирования указывает повторяющийся индекс. Это называется правилом суммирования. Отсюда в компонентах напряжений получаем

$$\tau_{ii} = \tau_{11} + \tau_{22} + \tau_{33}. \tag{B}$$

Использование индекса *j* или любого другого буквенного индекса, который мы можем ввести вместо *i*, не меняет смысла выражения. По этой причине такой повторяющийся индекс часто называют «немым» индексом.

Шесть компонент напряжений выражаются через шесть компонент деформаций с помощью формул (11) совместно с (6). Чтобы записать эти выражения с помощью числовых индексов, нам потребуется таблица

1	0	0	
0	1	0	
0	0	1	

Она записывается в виде δ_{ij} . Очевидно, что этот символ обозначает нуль, если $i \neq j$, и единицу, если i = j = 1, 2, 3. Его называют «символом Кронекера». С его помощью шесть зависимостей (6), (11) записываются в следующем виде

$$\tau_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2G \varepsilon_{ij}, \quad i, j, k = 1, 2, 3.$$
 (K)

Символ ε_{kk} , так же как символ τ_{ii} в (и) обозначает, разумеется, сумму. Однако, как видит читатель, оказалось необходимым использовать в равенстве (к) немой индекс k, отличный от i и j. Например, чтобы получить первое из уравнений (11), принимаем i=1, j=1 и из (к) находим

$$\tau_{11} = \lambda \delta_{11} \varepsilon_{kk} + 2G \varepsilon_{11} = \lambda \varepsilon_{kk} + 2G \varepsilon_{11}, \qquad (\pi)$$

где ε_{kk} имеет тот же смысл, что и e.

Дифференцирование по координатам, которое встречается, например, в формуле (г), можно обозначить более кратко с помощью запятой. Так, соотношение (г) можно записать в виде

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}). \tag{M}$$

ЗАДАЧИ

Если обозначить $3\tau = \tau_{11} + \tau_{22} + \tau_{33}$, то τ будет средним арифметическим трех нормальных компонент напряжений.

Напряжения т_{ії} можно рассматривать как реаультат наложения двух состояний, напряжения в которых даются таблицами

Первое из них, часто называемое средним или шаровым напряжением 1), выражается формулой $\tau \delta_{ij}$. Второе, называемое девиаторным напряжением или девиатором напряжений, можно обозначить через τ'_{ij} , где

$$\tau_{ij}' = \tau_{ij} - \tau \delta_{ij}.$$
 (0)

Подобным же образом можно разделить и деформацию ε_{ii} на среднюю деформацию $\varepsilon_{ii}/3$ или e/3, и девиаторную деформацию ε'_{ii} , где

$$\varepsilon_{ij}' = \varepsilon_{ij} - \frac{1}{3} e \delta_{ij}. \tag{n}$$

Шесть уравнений, выражающих закон Гука, эквивалентны равенствам

$$\tau_{ij}' = 2G\varepsilon_{ij}'; \tag{p}$$

при этом

$$8\tau = (3\lambda + 2G) e. \tag{p'}$$

В качестве простого упражнения их можно вывести из уравнений (к) или, наоборот, исходя из (м), можно вернуться к (к).

Форма (p^{9}) особенно удобна для использования в теории пластичности и теории вязкоупругости. Постоянная $3\lambda + 2G$ часто обозначается через K. В этом случае K будет модулем объемного расширения, уже введенным на стр. 30.

ЗАДАЧИ

1. Показать, что уравнения (1) остаются справедливыми, если элемент, изображенный на рис. 4, движется и имеет угловое ускорение как абсолютно твердое тело.

2. Допустим, что упругий материал содержит большое число равномерно распределенных намагниченных частичек, в силу чего магнитное поле вызывает в каждом элементе dx dy dz момент µ dx dy dz относительно оси, параллельной оси x. Как нужно модифицировать уравнения (1)?

3. Привести причины, по которым формулы (2) справедливы только для малых деформаций.

4. Упругий слой заключен между двумя абсолютно жесткими плитами, с которыми он скреплен. Слой сжимается плитами, и нормальные напряжения в направлении сжатия равны σ_z . Считая что прикрепление к плитам полностью исключает поперечные деформации ε_x , ε_y , найти явное выражение для модуля Юнга (т. е. для отношения σ_z/ε_z) через E и v. Показать, что если материал слоя имеет коэффициент Пуассона лишь не на много меньший 0,5, как это имеет место, например, для резины, то этот модуль Юнга будет во много раз больше E.

5. Доказать, что равенство (8) следует из равенств (11), (10) и (5).

¹⁾ Если $\tau = -p$, p > 0, то получаем гидростатическое давление p.

Глава 2

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ И ПЛОСКАЯ ДЕФОРМАЦИЯ

§ 8. Плоское напряженное состояние

Если тонкая пластинка нагружена усилиями, приложенными на ее границе параллельно плоскости пластинки и равномерно

Рис. 8.

распределенными по толщине (рис. 8), то компоненты напряжений σ_z , τ_{xz} , τ_{yz} на обеих поверхностях пластинки равны нулю, и можно предварительно предположить, что они равны нулю и внутри пластинки. Тогда напряженное состояние будет определяться только компонентами σ_x , σ_y , τ_{xy} и называется плоским напряженным состоянием. Можно также пред-

положить 1), что эти три компоненты не зависят от z, т. е. не меняются по толщине пластинки, а являются функциями только от x и y.

§ 9. Плоская деформация

Подобные упрощения возможны и в другом предельном случае, когда размер тела в направлении оси *z* очень велик. Если длинное цилиндрическое или призматическое тело нагружается силами, которые перпендикулярны продольной оси тела и не меняются по его длине, можно считать, что все поперечные сечения находятся в одних и тех же условиях. Проще всего для начала предположить, что концевые сечения ограничены фиксированными гладкими абсолютно жесткими плоскостями, которые препятствуют перемещениям в продольном направлении. Эффект удаления этих плоскостей мы разберем позже. Поскольку нет

¹⁾ Сделанные здесь предположения критически исследуются в § 98. Изменение напряжений по толщине должно существовать, однако в достаточно тонкой пластинке им можно пренебречь подобно тому, как пренебрегают существованием мениска на вершине столбика жидкости в капиллярной трубке термометра.

осевых перемещений на концах, а в силу симметрии их нет и в среднем сечении, можно предположить, что то же самое справедливо и для любого поперечного сечения.

Существует много важных задач такого рода; например, для подпорной стенки под действием поперечного давления (рис. 9),

трубопровода или туннеля (рис. 10), цилиндрической трубы под действием внутреннего давления, цилиндрического ролика, сжимаемого силами в диаметральной плоскости, как это имеет место

в роликоподиципнике (рис. 11). В любом случае, конечно, нагрузка не должна изменяться по длине тела. Поскольку в каждом поперечном сечении условия одинаковы, достаточно рассмотреть тонкий слой между двумя сечениями, расстояние между которыми равно единице. Компоненты перемещений и и v являются функ-

циями x и y, но не зависят от продольной координаты z. Поскольку продольные перемещения w равны нулю, уравнения (2) дают

$$\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0, \quad \gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = 0, \quad \varepsilon_z = \frac{\partial w}{\partial z} = 0.$$
 (a)

Продольные нормальные напряжения σ_z можно выразить из уравнений (3) через σ_x и σ_y с помощью закона Гука. В силу того, что $\varepsilon_z = 0$, получаем

или

$$\sigma_z - v (\sigma_x + \sigma_y) = 0,$$

$$\sigma_z = v (\sigma_x + \sigma_y).$$
(6)

Эти нормальные напряжения действуют по всем поперечным сечениям, включая концевые, где они представляют собой силы, необходимые для поддержания плоской деформации и производимые фиксированными гладкими абсолютно жесткими плоскостями.

Согласно уравнениям (а) и (б) компоненты напряжений τ_{xz} и τ_{yz} будут равны нулю, а согласно уравнению (б) напряжения σ_z можно определить, зная σ_x и σ_y . Следовательно, задача о плоской деформации, как и задача о плоском напряженном состоянии, сводится к определению компонент напряжений σ_x , σ_y и τ_{xy} как функций x и y.

§ 10. Напряжения в точке

Зная компоненты напряжений σ_x , σ_y , τ_{xy} в любой точке пластинки в условиях плоского напряженного состояния или плоской деформации, можно найти из уравнений статики напряжения на любой наклонной по от-

ношению к осям x и y плоскости (площадке), проходящей через эту точку перпендикулярно пластинке. Обозначим через P некоторую точку в напряженной пластинке и допустим, что компоненты напряжения σ_x , σ_y , τ_{xy} известны (рис. 12). На малом расстоянии от P проведем плоскость BC, параллельную оси z, так, чтобы эта плоскость вместе с координатными плоскостями вырезала из пластинки очень малую тре-

угольную призму *PBC*. Поскольку напряжения изменяются по объему тела непрерывно, то при уменьшении размеров вырезанного элемента напряжение, действующее на площадке *BC*, будет стремиться к напряжению на параллельной площадке, проходящей через точку *P*.

При рассмотрении условий равновесия малой треугольной призмы объемными силами можно пренебречь как величинами высшего порядка малости. Подобным образом, если вырезанный элемент очень мал, можно пренебречь изменениями напряжений по граням и предположить, что напряжения распределены равномерно. Тогда силы, действующие на треугольную призму, можно определить путем умножения компонент напряжений на площади граней. Пусть N — направление нормали к плоскости BC, а косинусы углов между нормалью N и осями x и y обозначаются следующим образом:

 $\cos(N, x) = l, \quad \cos(N, y) = m.$

Тогда, если через A обозначить площадь грани BC элемента, то площади двух других граней будут Al и Am.
Если обозначить через \overline{X} и \overline{Y} компоненты напряжений, дей-ствующих на грани BC, то условия равновесия призматического элемента приводят к следующим соотношениям:

$$\overline{X} = l\sigma_x + m\tau_{xy}, \quad \overline{Y} = m\sigma_y + l\tau_{xy}. \tag{12}$$

Таким образом, компоненты напряжений на любой площади, определяемой направляющими косинусами l и m, можно легко найти из соотношений (12), если известны три компоненты на-пряжения σ_x , σ_y , τ_{xy} в точке P. Обозначим через α угол между нормалью N к площадке BCи осью x, так что $l = \cos \alpha$ и $m = \sin \alpha$; тогда из соотношений (12)

пля нормальной и касательной компоненты напряжений на плошалке ВС получим формулы:

$$\sigma = \overline{X}\cos\alpha + \overline{Y}\sin\alpha = \sigma_x\cos^2\alpha + \sigma_y\sin^2\alpha + 2\tau_{xy}\sin\alpha\cos\alpha,$$

$$\tau = \overline{Y}\cos\alpha - X\sin\alpha = \tau_{xy}(\cos^2\alpha - \sin^2\alpha) + (\sigma_y - \sigma_x)\sin\alpha\cos\alpha.$$
(13)

Очевидно, угол α можно выбрать таким образом, чтобы каса-тельное напряжение τ на площадке ВС стало равным нулю. Для этого случая получаем

 $\tau_{xy}(\cos^2\alpha - \sin^2\alpha) + (\sigma_y - \sigma_z)\sin\alpha\cos\alpha = 0$,

или

$$\frac{\tau_{xy}}{\sigma_x - \sigma_y} = \frac{\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{1}{2} \operatorname{tg} 2\alpha.$$
(14)

Из этого уравнения можно найти два взаимно перпендикулярных направления, для которых касательные напряжения на соответствующих площадках равны нулю. Эти направления называются главными, а соответствующие нормальные напряжения -- главными нормальными напряжениями.

Если за главные направления принять направления осей х и y, то компонента τ_{xy} равна нулю и формулы (13) принимают более простой вид

$$\sigma = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha, \quad \tau = \frac{1}{2} (\sigma_y - \sigma_x) \sin 2\alpha. \quad (13')$$

Изменение компонент напряжений о и т в зависимости от угла α можно легко представить графически в виде диаграммы в координатах σ и τ¹). Каждой ориентации площадки соответ-ствует точка на этой диаграмме, координаты которой представляют собой значения напряжений о и т, действующих на этой площадке. Такая диаграмма представлена на рис. 13. Для площадок, перпендикулярных к главным направлениям, мы получаем точки A и B с абсциссами σ_x и σ_y соответственно. Теперь можно

¹) Этот графический метод принадлежит О. Мору (см. О. Mohr, Zivilin-genieur, 1882, стр. 113). См. также его Technische Mechanik, изд. 2, 1914.

доказать, что компоненты напряжения для любой площадки BC, определяемой углом α (рис. 12), будут представляться координатами некоторой точки на окружности, для которой отрезок AB является диаметром. Чтобы найти эту точку, достаточно отмерить от точки A в том же направлении, в каком измеряется угол α на рис. 12, дугу, отвечающую углу 2α . Для координат построенной таким образом точки D из рис. 13 получим

$$OF = OC + CF = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha,$$
$$DF = CD \sin 2\alpha = \frac{1}{2} (\sigma_x - \sigma_y) \sin 2\alpha.$$

Сравнение с формулами (13') показывает, что координаты точки D дают численные значения компо-

нент напряжения на площадке ВС, определяемой углом а. Чтобы привести в соответствие знак касательной компоненты, примем, положительные значения т что откладываются вверх (рис. 13, а), и будем считать касательные напряжения положительными, когда они дают момент, действующий по направлению часовой стрелки, как это имеет место на гранях bc и ad элемента abcd (рис. 13, б).

Рис. 13. и ад элемента abcd (рис. 13, б). Касательные напряжения проти-воположного направления, например действующие на гранях ab и dc элемента, считаются отрицательными¹). Будем менять ориентацию площадки BC, вращая ее вокруг оси, перпендикулярной плоскости xy (рис. 12) по направлению часовой стрелки так, что угол α будет изменяться от 0 до $\pi/2$; при этом точка D на рис. 13 будет перемещаться от A к B. Таким образом, нижняя половина круга определяет изменение напряжений для всех значений α в этих пределах. В свою очередь верхняя часть круга дает напряжения для интервала $\pi/2 \ll \alpha \ll \pi$.

Продолжая радиус *CD* до точки D_1 (рис. 13), т. е. беря угол равным $\pi + 2\alpha$ вместо 2α , получаем напряжения на площадке, перпендикулярной площадке *BC* (рис. 12). Отсюда видно, что касательные напряжения на двух взаимно перпендикулярных площадках численно друг другу равны, как это и было доказано ранее. Что касается нормальных напряжений, то мы видим из

¹) Это правило используется только при построении круга Мора. Повсюду в других местах используется правило, приведенное на стр. 24.

§ 10]

рисунка, что $OF_1 + OF = 2OC$, т. е. сумма нормальных напряжений, действующих на двух взаимно перпендикулярных площадках, при изменении угла α остается постоянной.

Максимальное касательное напряжение т_{тах} дается на диаграмме (рис. 13) максимальной ординатой окружности, т. е. равно радиусу окружности. Отсюда

$$\tau_{\max} = \frac{\sigma_x - \sigma_y}{2}.$$
 (15)

Оно действует на площадке, для которой $\alpha = \pi/4$, т. е. на площадке, нормаль к которой делит пополам угол между двумя главными направлениями.

Соответствующая диаграмма может быть построена и для случая, когда одно или оба главных напряжения отрицательны, т. е. для случая сжатия. Нужно только величину сжимающего напряжения откладывать в сторону отрицательных абсцисс. На рис. 14, а изображена диаграмма для случая, когда оба главных напряжения отрицательны, на рис. 14, б построена диаграмма для случая чистого сдвига.

Из рис. 13 и 14 видно, что напряжение в любой точке можно разложить на две части. Одна из них представляет собой двухосное растяжение (или

Рис. 14.

сжатие), две компоненты которого равны между собой и по величине определяются абсциссой центра круга Мора. Другая часть представляет собой чистый сдвиг с касательным напряжением, величина которого дается радиусом круга. При наложении нескольких плоских напряженных состояний равномерные растяжения (или сжатия) можно складывать друг с другом алгебраически. При наложении состояний чистого сдвига нужно учитывать направления плоскостей, на которые действуют соответствующие касательные напряжения. Можно показать, что при наложении друг на друга двух напряженных состояний чистого сдвига, для которых плоскости максимального касательного напряжения сведется к другом β друг к другу, получающаяся в результате система сведется к другому случаю чистого сдвига. Например, рис. 15 показывает как определять напряжение, производимое двумя состояниями чистого сдвига с величинами касательных напряжений τ₁ и т₂ на площадке, положение которой определяется углом α. Первое из этих состояний относится к плоскостям *хх* и *уг* (рис. 15, *а*), а второе—к плоскостям, наклоненным к плоскостям *хх* и *уг* под углом β (рис. 15, б). На рис. 15, а координаты точки D представляют касательное и нормальное напряженья на площадке СВ для первой системы, торда как координаты точки D1 (рис. 15, б) дают напряжения на этой площадке для второй системы. Складывая геометрически векторы OD и OD₁,

Рис. 15.

получаем результирующее напряжение ОС на этой площадке, вызываемое одновременным действием двух систем, а координаты точки G дают нам касательное и нормальное напряжения. Следует заметить, что величина OG не зависит от угла α. Следовательно, в результате наложения двух состояний

рого

к плоскостям хг и уг на угол, равный половине угла GOD. Диаграмма, подобная изображенной на рис. 13, может также исполь-

Рис. 16.

зоваться для определения главных напряжений, если известны компоненты σ_x , σ_y , τ_{xy} для любых двух взаим-но перпендикулярных площадок (рис. 12). В этом случае следует начать

чистого сдвига мы получаем круг Мора для нового состояния чистого сдвига, для котовеличина касательного напряжения

дается вектором OG, а плоскости максимального касательного напряжения наклонены

с построения двух точек D и D₁, представляющих напряжения на двух координатных плоскостях (рис. 16). Таким путем находится диаметр DD, круга. После построения круга главные напряжения о, и о, находятся по точкам пересечения окружности с осью абсцисс. Из рисунка находим

$$\sigma_{1} = OC + CD = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\frac{(\sigma_{x} - \sigma_{y})^{2}}{4} + \tau_{xy}^{2}},$$

$$\sigma_{2} = OC - CD = \frac{\sigma_{x} + \sigma_{y}}{2} - \sqrt{\frac{(\sigma_{x} - \sigma_{y})^{2}}{4} + \tau_{xy}^{2}}.$$
(16)

Максимальное касательное напряжение определяется радиусом круга, т. е. по формуле

$$\tau_{\max} = \frac{1}{2} (\sigma_1 - \sigma_2) = \sqrt{\frac{(\sigma_x - \sigma_y)^2}{4} + \tau_{xy}^2}.$$
 (17)

Таким путем можно получить все необходимые характеристики распределения напряжений в любой точке, если известны три компоненты напряженного состояния σ_x , σ_y , τ_{xy} .

§ 11. Деформации в точке

Если известны компоненты деформаций ε_x , ε_y , γ_{xy} в некоторой точке, то можно найти относительное удлинение по любому направлению, а также уменьшение прямого угла (деформацию

Рис. 17

сдвига) любой ориентации. Линейный элемент PQ (рис. 17, *a*), соединяющий точки (x, y) и (x + dx, y + dy), после переноса, удлинения (или сжатия) и вращения переходит в результате деформации в линейный элемент P'Q'. Компоненты перемещения точки Q иметочки P суть u и v, а компоненты перемещения точки Q иметот вид

$$u + \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$
 $u \quad v + \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy.$

Если отрезок P'Q' на рис. 17, а перенести мысленно теперь таким образом, чтобы точка P' вновь совпала с P, он окажется в положении PQ'' (рис. 17, б), а отрезки QR, RQ'' представят компоненты перемещения точки Q относительно точки P. Отсюда

$$QR = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy, \quad RQ'' = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy.$$
 (a)

Компоненты QS, SQ" этого относительного перемещения по направлениям нормали к PQ" и вдоль PQ" соответственно можно найти в виде

$$QS = -QR\sin\theta + RQ''\cos\theta, \quad SQ'' = QR\cos\theta + RQ''\sin\theta, \quad (6)$$

пренебрегая малым по сравнению с θ углом QPS. Поскольку отрезок QS можно отождествить с дугой окружности с центром в точке P, то SQ" представляет собой удлинение элемента PQ. Относительное удлинение отрезка PQ, обозначаемое через ε_{θ} , равно SQ"/PQ. Используя выражения (б) и (а), получаем

$$\boldsymbol{\varepsilon}_{\boldsymbol{\theta}} = \cos \theta \left(\frac{\partial u}{\partial x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds} \right) + \sin \theta \left(\frac{\partial v}{\partial x} \frac{dx}{ds} + \frac{\partial v}{\partial y} \frac{dy}{ds} \right) = \\ = \frac{\partial u}{\partial x} \cos^2 \theta + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \sin \theta \cos \theta + \frac{\partial v}{\partial y} \sin^2 \theta,$$

или

$$\boldsymbol{\varepsilon}_{\theta} = \boldsymbol{\varepsilon}_{x} \cos^{2} \theta + \boldsymbol{\gamma}_{xy} \sin \theta \cos \theta + \boldsymbol{\varepsilon}_{y} \sin^{2} \theta. \tag{B}$$

Эта формула дает относительное удлинение в направлении θ.

Угол ψ_{θ} , на который поворачивается элемент PQ, равен QS/PQ. Отсюда, согласно формулам (б) и (а),

$$\psi_{\theta} = -\sin\theta \left(\frac{\partial u}{\partial x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds} \right) + \cos\theta \left(\frac{\partial v}{\partial x} \frac{dx}{ds} + \frac{\partial v}{\partial y} \frac{dy}{ds} \right),$$

или

$$\psi_{\theta} = \frac{\partial v}{\partial x} \cos^2 \theta + \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) \sin \theta \cos \theta - \frac{\partial u}{\partial y} \sin^2 \theta.$$
(r)

Линейный элемент *PT*, составляющий прямой угол с *PQ*, наклонен под углом $\theta + \pi/2$ к направлению оси *x*. Это означает, что его угол поворота $\psi_{\theta+\pi/2}$ определяется по формуле (г), где θ нужно заменить на $\theta + \pi/2$. Поскольку $\cos(\theta + \pi/2) = -\sin\theta$, а $\sin(\theta + \pi/2) = \cos\theta$, находим

$$\psi_{\theta + \pi/2} = \frac{\partial v}{\partial x} \sin^2 \theta - \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) \sin \theta \cos \theta - \frac{\partial u}{\partial y} \cos^2 \theta.$$
(д)

Деформация сдвига γ_{θ} для направлений *PQ*, *PT* при этом равна $\psi_{\theta} - \psi_{\theta+\pi/2}$, откуда

$$\gamma_{\theta} = \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) (\cos^2 \theta - \sin^2 \theta) + \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) 2 \sin \theta \cos \theta,$$

$$\frac{1}{2} \gamma_{\theta} = \frac{1}{2} \gamma_{xy} (\cos^2 \theta - \sin^2 \theta) + (\varepsilon_y - \varepsilon_x) \sin \theta \cos \theta.$$
(e)

или

Сравнивая формулы (в) и (е) с соотношениями (13), замечаем, что эти формулы можно получить из (13), заменяя σ на ε_{θ} , τ на $\gamma_{\theta}/2$, σ_x на ε_x , σ_y на ε_y , τ_{xy} на $\gamma_{xy}/2$ и α на θ . Следовательно, каждому результату, полученному из соотношений (13) для напряжений σ и τ соответствует результат для ε_{θ} и $\gamma_{\theta}/2$, который § 12]

можно получить исходя из условий (в) и (е). В силу этого существуют два значения θ , отличающиеся друг от друга на 90°, для которых γ_{θ} равно нулю. Эти значения θ определяются из уравнения

$$\frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} = \operatorname{tg} 2\theta.$$

Соответствующие деформации ε_{θ} называются главными деформациями. Можно вычертить диаграмму в виде круга Мора, аналогичную рис. 13 или 16, ординатами которой являются величины $\gamma_{\theta}/2$, а абсциссами — величины ε_{θ} . Наибольшее значение $\gamma_{\theta}/2$ будет определяться радиусом круга. Таким образом, максимальная деформация сдвига $\gamma_{\theta max}$ дается формулой

 $\gamma_{\theta \max} = \varepsilon_1 - \varepsilon_2.$

§ 12. Измерение поверхностных деформаций

Деформации, или относительные удлинения, на поверхности тел обычно удобнее всего измерять с помощью электрических тензодатчиков¹).

Простейшей формой такого датчика является короткий кусок проволоки, изолированный от поверхности образца и приклеенный к ней. Когда возникает удлинение, электрическое сопротивление проволоки увеличивается, и в силу этого можно измерить деформацию электрическим способом. Этот эффект обычно усиливается за счет того, что проволока укладывается в петли и получается несколько последовательно соединенных длин датчиков. Проволока вклеивается между кусочками бумаги и вся система наклеивается на поверхность образца.

Использование таких датчиков весьма просто, когда заранее известны главные направления. Вдоль каждого из главных направлений помещается один датчик и производятся прямые измерения ε_1 и ε_2 . Далее с помощью закона Гука (3) можно найти главные напряжения, положив $\sigma_x = \sigma_1$, $\sigma_y = \sigma_2$, $\sigma_z = 0$; последнее условие основывается на предположении, что на поверхности, к которой приклеены датчики, напряжения отсутствуют. Отсюда

$$(1 - v^2) \sigma_1 = E (\varepsilon_1 + v \varepsilon_2), \quad (1 - v^2) \sigma_2 = E (\varepsilon_2 + v \varepsilon_1).$$

Если главные направления заранее неизвестны, требуется произвести три измерения. Как известно, деформированное состояние определяется полностью, если можно измерить величины ε_x , ε_y , γ_{xy} . Однако поскольку датчики измеряют лишь удлинения и не могут непосредственно измерить деформацию сдвига,

¹) Подробное обсуждение этого метода дано в книге М. Hetényi (ed.), Handbook of Experimental Stress Analysis, гл. 5, 9, John Wiley, New York, 1950.

приходится измерять относительные удлинения в точке по трем направлениям. Такая система датчиков называется «розеткой». Круг Мора можно вычертить с помощью простого построения¹), которое приводится в § 13; после этого легко найти главные деформации. Расположение названных трех датчиков показано тремя сплошными линиями на рис. 18, а. Пунктирная линия

изображает неизвестное направление наибольшей главной деформации ε_1 ; направление установки первого датчика отличается от него на угол φ , отсчитываемый по часовой стрелке.

Если в формулах (в) и (е) из § 11 оси x и y совпадут с главными направлениями, то ε_x следует заменить на ε_1 , ε_y — на ε_2 , а деформация сдвига γ_{xy} станет равной нулю. Тогда указанные соотношения примут вид

$$\varepsilon_{\theta} = \varepsilon_1 \cos^2 \theta + \varepsilon_2 \sin^2 \theta, \quad \frac{1}{2} \gamma_{\theta} = -(\varepsilon_1 - \varepsilon_2) \sin \theta \cos \theta,$$

где θ —угол, отсчитываемый от направления ε_1 . Эти формулы можно записать также в виде

$$\varepsilon_{\theta} = \frac{1}{2} (\varepsilon_1 + \varepsilon_2) + \frac{1}{2} (\varepsilon_1 - \varepsilon_2) \cos 2\theta, \quad \frac{1}{2} \gamma_{\theta} = -\frac{1}{2} (\varepsilon_1 - \varepsilon_2) \sin 2\theta,$$

причем их значения представлены координатами точки P круга Мора на рис. 18, в. Если θ принимает значение φ , точка Pсоответствует точке A круга на рис. 18, δ (угловое перемещение от оси ε_{θ} равно 2 φ). Абсцисса этой точки ε_{φ} является известной величиной. Если θ принимает значение $\varphi + \alpha$, точка P переходит в точку B, сместивщись далее по окружности на угол $AFB=2\alpha$, и абсцисса этой точки имеет известное значение $\varepsilon_{\alpha+\varphi}$. Если θ принимает значение $\varphi + \alpha + \beta$, точка P занимает место точки C, сместившись по дуге на угол $BFC = 2\beta$, а абсцисса принимает значение $\varepsilon_{\alpha+\beta+\varphi}$.

Теперь задача состоит в построении окружности по известным трем абсциссам и двум углам α и β.

¹) Glenn Murphy, J. Appl. Mech. 12, A-209 (1945), N. J. Hoff, там же.

§ 13. Построение круга деформаций Мора для розетки

Из выбранного произвольно начала координат О' проволится вспомогательная горизонтальная ось є (рис. 18, б) и вдоль нее откладываются значения трех измеренных деформаций ε_{o} , $\varepsilon_{\alpha+\omega}$, $\varepsilon_{\alpha+\beta+\omega}$. Через полученные точки проводятся вертикали. На вертикали, проходящей через точку $\varepsilon_{\alpha+\omega}$, выбирается произвольная точка D, и под углами α и β к этой вертикали проводятся линии DA и DC, пересекающие две другие вертикали в точках А и С. Окружность, проведенная через точки D, A и C, и является искомой. Ее центр определяется пересечением перпендикуляров, восставленных из середин отрезков CD и DA. Три направления установки датчиков определяются точками А, В и С. Угол AFB (удвоенный угол ADB), равен 2α, а угол BFC равен 2β. Следовательно, точки A, B, C располагаются на окружности с требуемыми угловыми интервалами и имеют требуе-мые абсциссы. Теперь можно провести ось є_в (линию OF); расстояния от точки О до точек пересечения этой оси с окружностью дадут главные деформации є, и є2. У гол 2ф — это угол, образуемый лучом FA с осью ε_{θ} . Этот угол отсчитывается по часовой стрелке.

§ 14. Дифференциальные уравнения равновесия

Рассмотрим равновесие малого прямоугольного параллелепипеда с размерами вдоль осей x и y, h, k и толщиной единица

(рис. 19). Напряжения, действующие на площадках 1, 2, 3, 4 в положительных направлениях, показаны на рисунке. С учетом изменения напряжений в пространстве значения, скажем σ_x , для граней 1 и 3 не в точности равны друг другу. Символы σ_x , σ_y , τ_{xy} относятся к точке (x, y), центру прямоугольника на рис. 19. Значения напряжений посередине граней будут обозначаться через $(\sigma_x)_1$, $(\sigma_y)_2$ и т. д. Поскольку грани малы, действующие по ним усилия получаются путем умножения на-

лучаются путем умножения напряжений на площади граней, по которым они действуют¹). Объемная сила, которой мы пренебрегали при рассмотрении равновесия треугольной призмы на рис. 12 как величиной высшего порядка малости, теперь должна учитываться, поскольку

¹) При более строгих рассуждениях вводятся члены высшего порядка малости, которые исчезают при переходе к пределу.

она имеет тот же порядок, что и члены, описывающие исследуемые изменения компонент напряжения. Если обозначить через X, Y компоненты объемной силы, то уравнение равновесия сил, действующих в направлении оси x, имеет вид

$$(\sigma_x)_1 k - (\sigma_x)_3 k + (\tau_{xy})_2 h - (\tau_{xy})_4 h + Xhk = 0,$$

или, после деления на hk,

$$\frac{(\sigma_x)_1 - (\sigma_x)_3}{h} + \frac{(\tau_x y)_2 - (\tau_x y)_4}{k} + X = 0.$$

Если теперь уменьшать размеры рассматриваемого элементарного параллелепипеда, положив $h \rightarrow 0$, $k \rightarrow 0$, то, согласно определению производной, предел выражения $[(\sigma_x)_1 - (\sigma_x)_3]/h$ будет равен $\partial \sigma_x/\partial x$. Аналогично член $[(\tau_{xy})_2 - (\tau_{xy})_4]/k$ станет равным $\partial \tau_{xy}/\partial y$. Подобным же образом получится уравнение равновесия для сил, действующих в направлении оси y. Таким образом, будем иметь

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0, \quad \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + Y = 0.$$
(18)

Это два дифференциальных уравнения равновесия для двумерной задачи.

Во многих практических приложениях единственным видом объемных сил является вес тела. Тогда, направляя ось у вниз и обозначая через р массу, отнесенную к единице объема тела, получим уравнения равновесия в виде

$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho g = 0.$ (1)

(19)

§ 15. Граничные условия

Уравнения (18) или (19) должны удовлетворяться во всех точках по объему тела. Компоненты напряжения меняются по объему рассматриваемой пластинки. При достижении ее границы

они должны быть такими, чтобы находиться в равновесии с внешними силами, приложенными на границе пластинки. В силу этого внешние силы можно рассматривать как продолжение распределения внутренних напряжений. Условия равновесия на границе можно получить из уравнений (12). Рассмотрим малую треугольную призму *PBC* (рис. 12), такую, что ее сторона *BC* совпадает с границей пластинки, как показано на рис. 20. Обозначая через \overline{X} и \overline{Y} компоненты поверхностных сил, отнесенных к единице площади в этой точке границы, получаем

$$\overline{X} = l\sigma_x + m\tau_{xy}, \quad \overline{Y} = m\sigma_y + l\tau_{xy}, \quad (20)$$

где *l* и *m*-направляющие косинусы нормали *N* к границе.

В частном случае рассмотрения равновесия прямоугольной пластинки координатные оси обычно принимаются параллельными сторонам пластинки и граничные условия (20) можно упростить. Пусть, например, одна из сторон пластинки параллельна оси x, тогда нормаль N на этой части границы будет параллельна оси y; отсюда l=0 и m=1. Уравнения (20) тогда принимают вид

$$\overline{X} = \pm \tau_{xy}, \quad \overline{Y} = \pm \sigma_y,$$

причем положительный знак в этих формулах берется в том случае, когда нормаль N направлена в сторону положительных значений y; если же нормаль направлена в противоположную сторону, то берется отрицательный знак. Из этих формул видно, что компоненты напряжения на границе равны компонентам поверхностных усилий, отнесенных к единице площади границы.

§ 16. Уравнения совместности

Определение напряженного состояния в теле, находящемся под действием заданных внешних сил, является одной из основных задач теории упругости. В двумерном случае необходимо решить дифференциальные уравнения равновесия (18), и решение это должно быть таким, чтобы удовлетворялись граничные условия (20). Эти уравнения, выведенные с применением статических условий равновесия и содержащие три компоненты напряжения σ_x , σ_y , τ_{xy} , недостаточны для определения указанных компонент. Задача является статически неопределимой: чтобы получить ее решение, следует рассмотреть упругую деформацию тела.

Математическая формулировка условий совместности распределения напряжений с существованием непрерывных функций *u*, *v*, *w*, определяющих деформацию, будет получена из уравнений (2). Для двумерных задач мы рассмотрим три компоненты деформации, а именно

$$\varepsilon_x = \frac{\partial u}{\partial x}, \quad \varepsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}.$$
 (a)

Эти три компоненты деформации выражаются через две функции u v. Следовательно, они не могут выбираться произвольно и должно существовать некоторое соотношение между компонентами деформации; его можно легко получить из (а). Дифференцируя первое из уравнений (а) дважды по y, второе дважды по x, а третье — один раз по x и второй раз по y, находим

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \, \partial y}.$$
 (21)

Это дифференциальное уравнение, называемое условием совместности, должно удовлетворяться при подстановке компонент дефор-

47

§ 16]

мации, чтобы обеспечить существование функций *и* и *v*, связанных с компонентами деформации соотношениями (а). Используя закон Гука (3), можно, преобразовав условие (21), получить соотношение, которому должны удовлетворять компоненты напряжения.

В случае плоского напряженного состояния (§ 8) выражения (3) принимают вид

$$\boldsymbol{\varepsilon}_{x} = \frac{1}{E} \left(\boldsymbol{\sigma}_{x} - \boldsymbol{\nu} \boldsymbol{\sigma}_{y} \right), \quad \boldsymbol{\varepsilon}_{y} = \frac{1}{E} \left(\boldsymbol{\sigma}_{y} - \boldsymbol{\nu} \boldsymbol{\sigma}_{x} \right), \tag{22}$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy} = \frac{2(1+\nu)}{E} \tau_{xy}.$$
 (23)

Подставляя эти выражения в уравнение (21), находим

$$\frac{\partial^2}{\partial y^2} (\sigma_x - \nu \sigma_y) + \frac{\partial^2}{\partial x^2} (\sigma_y - \nu \sigma_x) = 2 (1 + \nu) \frac{\partial^2 \tau_{xy}}{\partial x \partial y}.$$
 (6)

Уравнение (б) можно переписать в другой форме, если воспользоваться уравнениями равновесия. Для частного случая, когда единственной объемной силой является вес тела, дифференцируя первое из уравнений (19) по x, а второе по y, и складывая их, получаем

$$2\frac{\partial^2 \tau_{xy}}{\partial x \, \partial y} = -\frac{\partial^2 \sigma_x}{\partial x^2} - \frac{\partial^2 \sigma_y}{\partial y^2} \cdot$$

Подставляя этот результат в уравнение (б), получаем условие совместности в напряжениях в виде

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = 0.$$
(24)

В общем случае, используя таким же образом уравнения равновесия (18), находим

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right).$$
 (25)

В случае плоской деформации (§ 9) имеем

$$\sigma_{\boldsymbol{z}} = v \left(\sigma_{\boldsymbol{x}} + \sigma_{\boldsymbol{y}} \right).$$

Используя это соотношение, из закона Гука (3) находим

$$\boldsymbol{\varepsilon}_{\boldsymbol{x}} = \frac{1}{E} \left[(1 - v^2) \, \boldsymbol{\sigma}_{\boldsymbol{x}} - v \, (1 + v) \, \boldsymbol{\sigma}_{\boldsymbol{y}} \right],$$

$$\boldsymbol{\varepsilon}_{\boldsymbol{y}} = \frac{1}{E} \left[(1 - v^2) \, \boldsymbol{\sigma}_{\boldsymbol{y}} - v \, (1 + v) \, \boldsymbol{\sigma}_{\boldsymbol{x}} \right],$$
 (26)

$$\gamma_{xy} = \frac{2(1+\nu)}{E} \tau_{xy}.$$
 (27)

Подставляя найденные выражения в уравнение (21) и используя, как и ранее, уравнения равновесия (19), мы видим, что уравнение совместности (24) сохраняет свой вид и для плоской дефор-

мации. Для общего случая объемных сил из уравнений (21) и (18) получаем условие совместности в следующей форме:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = -\frac{1}{1 - \nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right).$$
(28)

Уравнения равновесия (18) или (19) вместе с граничными условиями (20) и уравнением совместности (в одной из приве-денных выше форм) дают нам систему уравнений, которая обычно достаточна для полного определения распределения напряжений в двумерной задаче¹). Частные случаи, в которых понадобятся некоторые дополнительные соображения, будут рассмотрены позже (см. стр. 146). Интересно отметить, что в случае постоянных объемных сил уравнения, определяющие распределение напряжений, не содержат упругих констант материала. Следовательно, распределение напряжений в этом случае будет одним и тем же для всех изотропных материалов, если эти уравнения достаточны для полного определения напряжений. Данное заключение обладает практической важностью: позднее мы увидим, что для прозрачных материалов, таких, как стекло или целлулоид, можно определять напряжения оптическим методом, используя поляризованный свет (стр. 162). Из вышеприведенных соображений ясно, что экспериментальные результаты, полученные для какого-либо прозрачного материала, в большинстве случаев можно непосредственно применять и к любым другим материалам. например к стали.

Следует также отметить, что в случае постоянных объемных сил уравнение совместности (24) справедливо как для плоского напряженного состояния, так и для плоской деформации. Следовательно, в обоих случаях распределение напряжений будет одним и тем же, если формы границ и приложенные к ним внешние усилия совпадают²).

§ 17. Функция напряжений

Мы уже показали, что решение двумерных задач сводится к интегрированию дифференциальных уравнений равновесия вместе с условием совместности и граничными условиями. Начнем со случая, когда единственным видом объемных сил являются силы тяжести. Тогда должны удовлетворяться следующие уравнения

¹) При плоском напряженном состоянии условия совместности отличаются от условия (21) и не выполняются при сделанных нами предположениях. В § 98 показывается, что, несмотря на это, метод, изложенный в данной главе, дает для тонких пластинок хорошее приближение.

²) Это утверждение требует некоторой модификации, если пластинка или цилиндр имеют отверстия, поскольку в этом случае задача может быть решена корректно только с учетом как напряжений, так и перемещений (см. § 43).

(см. уравнения (19) и (24)):

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \rho g = 0, \quad (a)$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = 0.$$
 (6)

К данным уравнениям следует добавить граничные условия (20). Обычный метод решения этих уравнений состоит во введении некоторой новой функции, называемой функцией напряжений¹). Как легко проверить, уравнения (а) удовлетворяются, если ввести некоторую функцию ф от x и y, которая связана с компонентами напряжения следующими зависимостями:

$$\sigma_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}} - \rho g y, \quad \sigma_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}} - \rho g y, \quad \tau_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y}.$$
(29)

Таким образом можно получить множество решений уравнений равновесия (а). Действительным решением задачи будет то из них, которое удовлетворяет также уравнению совместности (б). Подставляя выражения (29) для компонент напряжения в уравнение (б) находим, что функция напряжений ф должна удовлетворять уравнению

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^3} + \frac{\partial^4 \varphi}{\partial y^4} = 0.$$
(30)

Таким образом, решение двумерной задачи, когда единственной объемной силой является вес тела, сводится к отысканию решения уравнения (30), которое удовлетворяет граничным условиям (20). В следующих главах этот метод решения будет применен к нескольким примерам, представляющим практический интерес.

Рассмотрим теперь несколько более общий случай объемных сил, предположив, что эти силы обладают потенциалом. Тогда компоненты X и Y в уравнениях (18) определятся уравнениями

$$X = -\frac{\partial V}{\partial x}$$
, $Y = -\frac{\partial V}{\partial y}$, (B)

где V-потенциальная функция. Уравнения (18) принимают вид

$$\frac{\partial}{\partial x}(\sigma_x - V) + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial}{\partial y}(\sigma_y - V) + \frac{\partial \tau_{xy}}{\partial x} = 0.$$

Эти уравнения имеют ту же форму, что и уравнения (а); они будут удовлетворены, если положить

$$\sigma_x - V = \frac{\partial^2 \varphi}{\partial y^2}, \quad \sigma_y - V = \frac{\partial^2 \varphi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \varphi}{\partial x \partial y},$$
 (31)

где ф-функция напряжений. Подставляя выражения (31) в уравнение сов-

¹⁾ Эту функцию при решении плоских задач ввел Эри (G. B. Airy, Brit. Assoc. Advan. Sci., Rept., 1862) и иногда ее называют функцией напряжений Эри.

ЗАДАЧИ

местности (25) для плоского напряженного состояния, получаем

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = -(1-\nu) \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right). \tag{32}$$

Аналогичное уравнение можно получить и для случая плоской деформации.

Когда объемной силой является только вес, потенциал V равен — ρgy . В этом случае правая часть уравнения (32) обращается в нуль. Принимая для уравнения (32) или (30) в качестве решения $\varphi = 0$, находим из (31) или (29) следующее распределение напряжений

$$\sigma_x = -\rho g y, \quad \sigma_y = -\rho g y, \quad \tau_{xy} = 0. \tag{(f)}$$

Это одно из возможных напряженных состояний в двух измерениях, возникающих под действием силы тяжести. Это же состояние получается при действии гидростатического давления ρgy , причем напряжения обращаются в нуль при y=0. Оно может возникнуть в пластинке или цилиндре произвольной формы при соответствующих граничных условиях для напряжений. Если обратиться к элементу, показанному на рис. 12, то уравнение (13) показывает, что на границе должно действовать нормальное *давление* ρgy , а касательное напряжение должно быть нулевым. Если внешние силы действуют на пластинку каким-то иным образом, то мы должны наложить нормальное *растяжение* на границе ρgy и новые внешние силы. Обе системы находятся в равновесии, и определение их влияния сводится к решению задачи для одних только усилий на поверхности без объемных сил¹).

ЗАДАЧИ

1. Показать, что уравнения (12) остаются справедливыми, когда элемент, изображенный на рис. 12, приобретает ускорение.

2. Найти графически главные деформации и их направления из следующих трех экспериментальных измерений:

$$\epsilon_{\phi} = 2 \cdot 10^4$$
, $\epsilon_{\alpha+\phi} = 1,35 \cdot 10^{-3}$, $\epsilon_{\alpha+\beta+\phi} = 0,95 \cdot 10^3$,

где $\alpha = \beta = 45^{\circ}$.

3. Показать, что линейные элементы в точне *х*, *у*, обладающие максимальным и минимальным поворотами, располагаются в двух перпендикулярных направлениях, определяемых углом θ, который находится из уравнения

$$\operatorname{tg} 2\theta = \frac{\partial v/\partial y - \partial u/\partial x}{\partial v/\partial x + \partial u/\partial y}.$$

4. Напряжения во вращающемся диске единичной толщины можно рассматривать, считая, что вызвавшие их центробежные силы являются объемными силами в неподвижном диске. Показать, что такие объемные силы находятся из потенциала $V = -\frac{1}{2}\rho\omega^2 (x^2 + y^2)$, где ρ — плотность и ω — угловая скорость вращения диска относительно начала координат.

5. В диске с горизонтальной осью возникают напряжения, вызванные силой тяжести и определяемые уравнениями (г) (§ 17). Показать эскизно краевые усилия, которые уравновешивают его вес. На другом эскизе показать краевые усилия для случая, когда вес полностью воспринимается реакцией горизонтальной поверхности, на которой покоится диск.

¹) Эта задача и общий случай потенциала V, когда правая часть уравнения (32) обращается в нуль, рассмотрены Био (М. Biot, J. Appl. Mech., (1935) стр. А-41).

6. В цилиндре с горизонтальной осью возникают напряжения, вызванные силой тяжести и определяемые уравнениями (г) (§ 17). Его концы ограничены

Рис. 20а.

гладкими фиксированными абсолютно жесткими плоскостями, которые создают условия плоской деформации. Изобразить эскизно силы, действующие на его поверхности, включая концы.

7. Используя зависимость между напряжениями и деформациями и уравнения (а) из § 16 вместе с уравнениями равновесия (18), показать, что при отсутствии объемных сил в задачах о плоском напряженном состоянии перемещения должны удовлетворять уравнениям

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{1+v}{1-v} \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0,$$
$$\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} + \frac{1+v}{1-v} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0.$$

8. На рис. 20а изображен «зуб» на пластинке, находящейся в плоском напряженном состоянии в плоскости чертежа. Грани зуба (два прямолинейных отрезка) свободны от усилий. Предполагая, что все компоненты напряжения конечны и непрерывны по

всей области пластинки, доказать, что в вершине «зуба» нет никаких напряжений.

Глава З

ДВУМЕРНЫЕ ЗАДАЧИ В ПРЯМОУГОЛЬНЫХ КООРДИНАТАХ

§ 18. Решение в полиномах

Выше было показано, что решение двумерных задач теории упругости, когда объемные силы отсутствуют или постоянны, сводится к интегрированию дифференциального уравнения

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0$$
 (a)

при граничных условиях (20). Для случая длинной прямоугольной полосы представляют интерес решения уравнения (а) в форме полиномов. Выбирая полиномы различных степеней и подбирая для них соответствующие коэффициенты, можно решить много практически важных задач¹).

Начнем с полинома второй степени

$$\varphi_2 = \frac{a_2}{2} x^2 + b_2 x y + \frac{c_2}{2} y^2, \tag{6}$$

который, очевидно, удовлетворяет уравнению (а). Из уравнений (29), полагая $\rho g = 0$, находим

$$\sigma_x = \frac{\partial^2 \varphi_2}{\partial y^2} = c_2, \quad \sigma_y = \frac{\partial^2 \varphi_2}{\partial x^2} = a_2, \quad \tau_{xy} = -\frac{\partial^2 \varphi_2}{\partial x \partial y} = -b_2.$$

Все три компоненты напряжения постоянны по всему объему тела; таким образом, функции напряжения (б) соответствует случай комбинированного однородного растяжения или сжатия²) в двух взаимно перпендикулярных направлениях и однородного сдвига. Как уже отмечалось на стр. 46, на границе тела усилия должны быть равны внутренним напряжениям; в случае прямоугольной пластинки со сторонами, параллельными координатным осям, эти усилия показаны на рис. 21.

A. Mesnager, Compt. Rend. 132, 1475 (1901). См. также А. Тітре, Z. Math. Physik 52, 348 (1905).
 ²) Стрелки на рис. 21 имеют обычный смысл, определенный в § 3. Связан-

²) Стрелки на рис. 21 имеют обычный смысл, определенный в § 3. Связанные с ними числа a_2 , $-b_2$, c_2 могут быть как положительными, так и отрицательными. Таким путем удается без изменения направлений стрелок охватить все возможные случаи. В то же время на рис. 22 стрелки непосредственно показывают принятые направления усилий.

Рассмотрим теперь функцию напряжений в виде полинома третьей степени:

$$\varphi_3 = \frac{a_3}{3 \cdot 2} x^3 + \frac{b_3}{2} x^2 y + \frac{c_3}{2} x y^2 + \frac{d_3}{3 \cdot 2} y^8.$$
 (B)

Эта функция также удовлетворяет уравнению (а). Используя выражения (29) и полагая $\rho g = 0$, находим

Для прямоугольной пластинки, показанной на рис. 22, положив все коэффициенты, кроме d_3 , равными нулю, получаем напряженное состояние чистого изгиба. Если лишь один коэффициент a_3 отличен от нуля, получаем случай чистого изгиба под действием нормальных напряжений, приложенных к сторонам пластинки $y = \pm c$. Если считать отличными от нуля коэффициенты b_3 или c_3 , то находим, что по краям пластинки действуют не

только нормальные, но также и касательные напряжения. Рис. 23 показывает, например, случай, в котором в функции (в) равны нулю все коэффициенты, кроме b_3 . Вдоль краев $y = \pm c$ имеем равномерно распределенные растягивающие и сжимающие напряжения, а также касательные напряжения, пропорциональные координате x. На краю x = l действует только одно постоянное касательное напряжение $-b_3 l$, а на краю x = 0 напряжения отсутствуют. Аналогичное распределение напряжений получается в том случае, если принять отличным от нуля коэффициент c_3 . Взяв функцию напряжений в виде полиномов второй или третьей степени, мы не накладываем никаких ограничений на выбор величин коэффициентов, поскольку уравнение (а) удовлет-

воряется при любых их значениях. В случае полиномов более высоких степеней уравнение (а) удовлетворяется только в том случае, если между коэффициентами выполняются соответствующие условия связи. Возьмем, например, функцию напряжений в виде полинома четвертой степени

$$\varphi_4 = \frac{a_4}{4 \cdot 3} x^4 + \frac{b_4}{3 \cdot 2} x^3 y + \frac{c_4}{2} x^2 y^2 + \frac{d_4}{3 \cdot 2} x y^3 + \frac{e_4}{4 \cdot 3} y^4.$$
(r)

Подставляя выражение (г) в равенство (а), находим, что оно удовлетворяется лишь в том случае, когда

$$e_4 = -(2c_4 + a_4).$$

Компоненты напряжения в этом случае выражаются формулами

Коэффициенты a_4, \ldots, d_4 в этих выражениях произвольны; подбирая их

Рис. 24.

соответствующим образом, можно получить различные условия нагружения прямоугольной пластинки. Например, принимая все коэффициенты, за исключением d₄, равными нулю, находим

$$\sigma_x = d_4 xy, \quad \sigma_y = 0, \quad \tau_{xy} = -\frac{d_4}{2} y^2.$$
 (A)

Если считать коэффициент d_4 положительным, то силы, действующие на прямоугольную пластинку и вызывающие напряжения (д), имеют вид, представленный на рис. 24. По продольным сторонам пластинки $y = \pm c$ действуют равномерно распределенные касательные усилия, по концам—касательные усилия, распределенные по параболическому закону. Касательные усилия, действующие по контуру пластинки, приводятся к паре с моментом¹)

$$M = \frac{d_4 c^2 l}{2} 2c - \frac{1}{3} \frac{d_4 c^2}{2} 2c l = \frac{2}{3} d_4 c^3 l.$$

Эта пара уравновешивается другой парой, образуемой нормальными усилиями, действующими на краю пластинки x = l.

Рассмотрим функцию напряжений в виде полинома пятой степени

$$\varphi_5 = \frac{a_5}{5 \cdot 4} x^{\underline{5}} + \frac{b_5}{4 \cdot 3} x^4 y + \frac{c_5}{3 \cdot 2} x^3 y^2 + \frac{d_5}{3 \cdot 2} x^2 y^3 + \frac{e_5}{4 \cdot 3} x y^4 + \frac{f_5}{5 \cdot 4} y^{\underline{5}}.$$
 (e)

1) Толщина пластинки принимается равной единице.

§ 18]

Подстановка выражения (е) в уравнение (а) показывает, что это уравнение удовлетворяется, если

$$e_{5} = -(2c_{5} + 3a_{5}), \quad f_{5} = -\frac{1}{3}(b_{5} + 2d_{5}).$$

Соответствующие компоненты напряжения равны

$$\begin{split} \sigma_{x} &= \frac{\partial^{2} \varphi_{5}}{\partial y^{2}} = \frac{c_{5}}{3} x^{3} + d_{5} x^{2} y - (2c_{5} + 3a_{5}) xy^{2} - \frac{1}{3} (b_{5} + 2d_{5}) y^{3}.\\ \sigma_{y} &= \frac{\partial^{2} \varphi_{5}}{\partial x^{2}} = a_{5} x^{3} + b_{5} x^{2} y + c_{5} xy^{2} + \frac{d_{5}}{3} y^{3},\\ \tau_{xy} &= -\frac{\partial^{2} \varphi_{5}}{\partial x \partial y} = -\frac{1}{3} b_{5} x^{3} - c_{5} x^{2} y - d_{5} xy^{2} + \frac{1}{3} (2c_{5} + 3a_{5}) y^{3}. \end{split}$$

Коэффициенты a_5, \ldots, d_5 снова произвольны, и, выбирая их, можно получить решения для различных условий нагружения пластинки. Принимая, например, все коэффициенты, кроме d_5 , равными нулю, находим

$$\sigma_x = d_5 \left(x^2 y - \frac{2}{3} y^3 \right), \ \sigma_y = \frac{1}{3} d_5 y^3, \ \tau_{xy} = -d_5 x y^2.$$
 (**)

При этом нормальные усилия равномерно распределяются вдоль продольного края пластинки (рис. 25, a). Вдоль края x = l нормальные усилия складываются из усилий, распределенных по

Рис. 25.

линейному закону, и усилий, распределенных по закону кубической параболы. Касательные напряжения на продольных краях пластинки пропорциональны x, а вдоль края x = l распределены по параболическому закону. Распределение этих напряжений по контуру пластинки показано на рис. 25, б. Так как уравнение (а) представляет собой линейное диффе-

Так как уравнение (а) представляет собой линейное дифференциальное уравнение, то сумма нескольких решений этого уравнения также будет его решением. В силу этого можно производить наложение элементарных решений, полученных в этом параграфе, и находить новые решения, представляющие практический интерес. Ниже будет рассмотрено несколько примеров использования метода наложения.

§ 19. Концевые эффекты. Принцип Сен-Венана

В предыдущем параграфе было получено несколько решений лля прямоугольных пластинок с помощью функций напряжений ф очень простого вида. В каждом случае граничные усилия должны быть распределены в точности так как того требует решение. Например, в случае чистого изгиба (рис. 22) нагружение вертикальных граней пластинки должно осуществляться нормальными усилиями (σ_x при x = 0 или x = l), пропорциональными координате у. Если «моменты» на гранях создавать каким-либо иным образом, решение, приведенное в § 18, становится некорректным. Если эти измененные граничные условия на гранях пластинки должны удовлетворяться точно, следует найти другое соответствующее этим условиям решение. Многие из таких решений были получены не только для прямоугольных областей, но также и для областей призматической, цилиндрической и клиновидной формы (некоторые из них будут рассмотрены ниже). Эти решения показывают, что изменение в распределении нагрузки на границе без изменения ее результирующей приводит к значительным изменениям напряжений лишь вблизи конца. В таких случаях простые решения, подобные представленным в этой главе, могут дать достаточно точные результаты всюду, за исключением окрестностей границы.

Изменение распределения нагрузки равносильно наложению системы сил, статически эквивалентной нулевой силе и нулевой паре. Предположение, что такая система сил, приложенных к малой части поверхности тела, приведет к появлению одних лишь местных напряжений и деформаций, было высказано Сен-Венаном в 1855 году¹) и известно под названием принципа Сен-Венана. Этот принцип подтверждается экспериментами, которые не ограничиваются малыми деформациями в упругих материалах, подчиняющихся закону Гука: например, установка небольшого зажима на длинный кусок толстостенной резиновой трубки вызывает заметные деформации лишь в непосредственной близости от места зажима.

Для двух- и трехмерных тел, таких, как диски, сферы или полубесконечные тела, напряжение или деформация, вызванные нагружением малой части тела, убывают «со скоростью геометрической прогрессии», часто независимо от того, равна или не равна нулю результирующая нагрузок. В то же время было показано²), что обращение в нуль результирующей не является точным критерием степени локализации эффекта нагружения.

¹) В. de Saint-Venant, Mémoires des Savants Etrangers 14 (1855). ²) R. von Mises, Bull. Am. Math. Soc. 51, 555 (1945); Е. Sternberg, Quart. Appl. Math. 11, 393 (1954); Е. Sternberg and W. T. Koiter, J. Appl. Mech. 25, 575—581 (1958). [Русский перевод: Э. Штернберги В. Койтер, сб. «Механика» № 3 (55), 97—112 (1959).]

§ 20. Определение перемещений

Если из предыдущих уравнений найдены компоненты напряжения, то компоненты деформации можно определить, используя закон Гука, выраженный уравнениями (3) и (6). Тогда перемещения и и и можно получить из уравнений

$$\frac{\partial u}{\partial x} = \varepsilon_x, \quad \frac{\partial v}{\partial y} = \varepsilon_y, \quad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \gamma_{xy}.$$
 (a)

Интегрирование этих уравнений в каждом частном случае не представляет никаких трудностей, и мы рассмотрим несколько примеров их применения. Сразу же можно видеть, что компоненты деформации, выраженные формулами (а), не меняются, если добавить к *и* и *v* линейные функции

$$u_1 = a + by, \quad v_1 = c - bx, \tag{6}$$

в которых *a*, *b* и *c*—постоянные. Это означает, что перемещения не определяются полностью напряжениями и деформациями. На перемещения, вызванные внутренними деформациями тела, можно наложить его перемещения как абсолютно твердого тела. Постоянные *a* и *c* в уравнениях (б) определяют поступательное движение тела, а постоянная *b*—малый угол вращения абсолютно твердого тела относительно оси *z*.

Ранее было показано (см. стр. 49), что в случае постоянных объемных сил распределения напряжений как для плоского напряженного состояния, так и для плоской деформации являются одинаковыми. Однако перемещения для этих двух задач различны, так как в случае плоского напряженного состояния компоненты деформации, входящие в уравнение (а), определяются формулами

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y), \quad \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x), \quad \gamma_{xy} = \frac{1}{G} \tau_{xy},$$

тогда как для случая плоской деформации для компонент деформации имеем формулы

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] = \frac{1}{E} \left[\left(1 - \nu^{2} \right) \sigma_{x} - \nu \left(1 + \nu \right) \sigma_{y} \right],$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{x} + \sigma_{z} \right) \right] = \frac{1}{E} \left[\left(1 - \nu^{2} \right) \sigma_{y} - \nu \left(1 + \nu \right) \sigma_{x} \right],$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}.$$

Легко проверить, что эти уравнения можно получить из предыдущей системы уравнений для плоского напряженного состояния, если в последних заменить E на $E/(1-v^2)$ и v на v/(1-v). Такая постановка не меняет выражения для G, которое сохраняет вид E/[2(1+v)]. Метод интегрирования уравнений (а) будет дан ниже при рассмотрении конкретных задач.

§ 21. Изгиб консоли, нагруженной на конце

Рассмотрим консоль, имеющую узкое прямоугольное поперечное сечение единичной толщины и изгибаемую силой *P*, приложенной на конце (рис. 26). Верхняя и нижняя грани консоли

свободны от нагрузки, на торце x = 0 распределены касательные усилия, имеющие результирующую P. Этим условиям нагружения можно удовлетворить, выбрав надлежащую комбинацию напряжений чистого сдвига с напряжениями, даваемыми формулами (д) из § 18, показанными на рис. 24. Нала-

гая состояние чистого сдвига $\tau_{xy} = -b_2$ на напряженное состояние, определяемое формулами (д), получаем

$$\sigma_x = d_4 xy, \quad \sigma_y = 0, \quad \tau_{xy} = -b_2 - \frac{d_4}{2} y^2.$$
 (a)

Чтобы продольные края $y = \pm c$ консоли были свободны от усилий, необходимо принять

$$(\tau_{xy})_{y=\pm c} = -b_2 - \frac{d_4}{2}c^2 = 0,$$

откуда

$$d_4 = -\frac{2b_2}{c^2}$$
.

Для удовлетворения условия на нагруженном конце консоли, сумма касательных усилий, распределенных по торцу, должна быть равна *P*. Отсюда¹)

$$-\int_{-c}^{c}\tau_{xy}\,dy=\int_{-c}^{c}\left(b_{2}-\frac{b_{2}}{c^{2}}\,y^{2}\right)dy=P.$$

Из этой зависимости получаем

$$b_2 = \frac{3}{4} \frac{P}{c} \, .$$

Подставляя найденные выражения для коэффициентов d_{4} и b_{2} в уравнения (a), получим

$$\sigma_{x} = -\frac{3}{2} \frac{P}{c^{3}} xy, \quad \sigma_{y} = 0, \quad \tau_{xy} = -\frac{3}{4} \frac{P}{c} \left(1 - \frac{y^{2}}{c^{2}}\right).$$

Замечая, что 2/3с³ — это момент инерции I поперечного сечения

§ 21]

¹) Знак минус перед интегралом стоит согласно правилу знаков для касательных напряжений. Напряжение τ_{xy} на конце x=0 положительно, если оно направлено вверх (см. стр. 24).

консоли, получаем

$$\sigma_x = -\frac{P}{I} xy, \quad \sigma_y = 0, \quad \tau_{xy} = -\frac{P}{2I} (c^2 - y^2).$$
 (6)

Это решение полностью совпадает с элементарным решением, которое дается в курсах сопротивления материалов. Следует заметить, что это решение является точным лишь в том случае, когда касательные усилия на конце распределяются по тому же параболическому закону, что и касательные напряжения τ_{xy} и интенсивность нормальной силы в заделке пропорциональна *у*. Если усилия на конце распределяются иным образом, распределение напряжений (б) не является точным решением для области вблизи конца консоли, однако в силу принципа Сен-Венана оно может считаться удовлетворительным для поперечных сечений, достаточно удаленных от этого конца.

Рассмотрим теперь перемещения, соответствующие напряжениям (б). Применяя закон Гука, находим

$$\varepsilon_x = \frac{\partial u}{\partial x} = \frac{\sigma_x}{E} = -\frac{Pxy}{EI}, \quad \varepsilon_y = \frac{\partial v}{\partial y} = -\frac{v\sigma_x}{E} = \frac{vP}{EI}xy,$$
 (B)

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{\tau_{xy}}{G} = -\frac{P}{2JG} (c^2 - y^2). \tag{r}$$

Процедура определения компонент перемещения *и* и *v* состоит в интегрировании уравнений (в) и (г). Интегрируя уравнения (в), находим

$$u = -\frac{Px^2y}{2EI} + f(y), \quad v = \frac{vPxy^2}{2EI} + f_1(x),$$

где f(y) и $f_1(x)$ — неизвестные функции, из которых одна зависит только от y, другая — только от x. Подставляя эти значения u и v в уравнение (г), получаем

$$-\frac{Px^{2}}{2EI} + \frac{df(y)}{dy} + \frac{vPy^{2}}{2EI} + \frac{df_{1}(x)}{dx} = -\frac{P}{2IG}(C^{2} - y^{2}).$$

В этом уравнении некоторые члены являются функциями только от x, а некоторые — только от y; один из членов не зависит ни от x, ни от y. Обозначим эти группы членов соответственно через F(x), G(y), K, так что

$$F(x) = -\frac{Px^2}{2EI} + \frac{df_1(x)}{dx}, \quad G(y) = \frac{df(y)}{dy} + \frac{vPy^2}{2EI} - \frac{Py^2}{2IG},$$

$$K = -\frac{Pc^2}{2IG}.$$

Теперь рассматриваемое уравнение можно переписать в виде F(x) + G(y) = K.

Из этого соотношения следует, что функция F(x) тождественно равна некоторой постоянной d, а функция G(y)— некоторой

60

§ 21]

постоянной *e*. В противном случае функции F(x) и G(y) изменялись бы в зависимости от x и y, и при изменении одной только переменной x или одной только переменной y равенство непремено нарушалось. Таким образом,

$$e+d=-\frac{Pc^2}{2IG}\tag{A}$$

И

$$\frac{df_1(x)}{dx} = \frac{Px^2}{2EI} + d, \quad \frac{df(y)}{dy} = -\frac{vPy^2}{2EI} + \frac{Py^2}{2IG} + e.$$

Значит, функции f(y) и $f_1(x)$ имеют вид

$$f(y) = -\frac{vPy^3}{6EI} + \frac{Py^3}{6IG} + ey + g, \quad f_1(x) = \frac{Px^3}{6EI} + dx + h.$$
(e)

Подставляя их в выражения для и и и, находим

$$u = -\frac{Px^2y}{2EI} - \frac{vPy^3}{6EI} + \frac{Py^3}{6IG} + ey + g, \quad v = \frac{vPxy^2}{2EI} + \frac{Px^3}{6EI} + dx + h.$$
(m)

Теперь постоянные d, e, g, h можно определить из уравнения (д) и из трех условий закрепления, которые необходимы, чтобы воспрепятствовать движению балки в плоскости xy как абсолютно твердого тела. Допустим, что точка A, являющаяся центром тяжести концевого поперечного сечения, фиксирована. Тогда при x = l, y = 0 компоненты перемещений u и v равны нулю и из уравнений (ж) следует, что

$$g=0, \quad h=-\frac{Pl^3}{6El}-dl.$$

Уравнение изогнутой оси консоли получается при подстановке y = 0 во второе уравнение (ж). Отсюда

$$(v)_{y=0} = \frac{Px^3}{6EI} - \frac{Pl^3}{6EI} - d(l-x).$$
(1)

Для определения постоянной *d* в этом уравнении нам нужно воспользоваться третьим условием закрепления, исключающим возможность вращения балки в плоскости *x* относительно фиксированной точки *A*. Это условие можно реализовать несколькими способами. Рассмотрим два случая.

1) Элемент оси балки на конце А зафиксирован. Тогда условие закрепления имеет вид

$$\left(\frac{\partial v}{\partial x}\right)_{\substack{x=l\\y=0}} = 0. \tag{K}$$

2) Вертикальный элемент поперечного сечения в точке А зафиксирован. Тогда условие закрепления принимает вид

$$\left(\frac{\partial u}{\partial y} \right)_{\substack{x=l \\ y=0}} = 0.$$
 (π)

В первом случае из уравнения (и) получаем

$$d=-\frac{Pl^2}{2EI},$$

а из уравнения (д) следует

$$e=\frac{Pl^2}{2EI}-\frac{Pc^2}{2IG}.$$

Подставляя найденные постоянные в уравнения (ж), находим

$$u = -\frac{Px^{2}y}{2EI} - \frac{vPy^{3}}{6EI} + \frac{Py^{2}}{6IG} + \left(\frac{PI^{3}}{2EI} - \frac{Pc^{2}}{2IG}\right)y,$$

$$v = \frac{vPxy^{3}}{2EI} + \frac{Px^{3}}{6EI} - \frac{PI^{2}x}{2EI} + \frac{PI^{3}}{3EI}.$$
 (M)

Уравнение изогнутой оси балки имеет вид

$$(v)_{y=0} = \frac{Px^3}{6EI} - \frac{Pl^2x}{2EI} + \frac{Pl^3}{3EI}.$$
 (H)

Оно дает значение прогиба для нагруженного конца (x=0), равное $Pl^3/(3EI)$. Это значение совпадает со значением, которое обычно получается в элементарных курсах сопротивления материалов.

Чтобы проиллюстрировать искажение поперечного сечения, производимое касательными напряжениями, рассмотрим перемещение u на закрепленном конце (x = l). Для этого конца из уравнений (м) имеем

$$(u)_{x=l} = -\frac{vPy^3}{6EI} + \frac{Py^3}{6IG} - \frac{Pc^2y}{2IG},$$

$$\left(\frac{\partial u}{\partial y}\right)_{x=l} = -\frac{vPy^2}{2EI} + \frac{Py^2}{2IG} - \frac{Pc^3}{2IG},$$

$$\left(\frac{\partial u}{\partial y}\right)_{x=l} = -\frac{Pc^2}{2IG} = -\frac{3}{4}\frac{P}{cG}.$$
(0)

Форма поперечного сечения после его искажения показана на рис. 27, а. Под действием касательного напряжения $\tau_{xy} = -3P/(4c)$ в точке А элемент поперечного сечения в этой точке поворачивается вокруг точки А в плоскости xy на угол 3P/(4cG) по часовой стрелке.

Если вместо того, чтобы фиксировать горизонтальный элемент оси, зафиксировать вертикальный элемент поперечного сечения в точке A (рис. 27, б), то из условия (л) и первого из уравнений (ж) получаем

$$e=\frac{Pl^2}{2EI},$$

а из уравнения (д) находим

$$d = -\frac{Pl^2}{2EI} - \frac{Pc^2}{2/G}.$$
 (1)

6**2**

Подставляя выражение (п) во второе из уравнений (ж), имеем

$$(v)_{y=0} = \frac{Px^3}{6EI} - \frac{Pl^2x}{2EI} + \frac{Pl^3}{3EI} + \frac{Pc^2}{2IG}(l-x).$$
 (p)

Сравнивая эту зависимость с уравнением (н), можно сделать вывод, что из-за поворота оси в точке A (рис. 27, б) вертикальные перемещения оси консоли увеличиваются на величину

$$\frac{Pc^2}{2IG}(l-x)=\frac{3P}{4cG}(l-x).$$

Это одна из возможных количественных оценок 1) так называемого

Рис. 27.

влияния поперечной силы на прогибы балки. На практике на заделанном конце мы имеем условия, отличные от показанных на рис. 27. Фиксированное сечение обычно не может искажаться²), и распределение усилий на заделанном конце консоли отличается от того, которое дается уравнениями (б). Однако решение (б) дает удовлетворительные результаты для сравнительно длинных консолей на значительном удалении от концов.

§ 22. Изгиб балки равномерной нагрузкой

Пусть балка узкого прямоугольного поперечного сечения единичной ширины, опертая на концах, изгибается равномерно распределенной нагрузкой интенсивности *q*, как показано на рис. 28. Условия на верхней и нижней гранях балки имеют вид

$$(\tau_{xy})_{y=\pm c} = 0, \quad (\sigma_y)_{y=+c} = 0, \quad (\sigma_y)_{y=-c} = -q.$$
 (a)

Другие оценки приводятся в задаче 3, стр. 80 и в тексте на стр. 67.
 Влияние упругости самой заделки исследовал экспериментально и теоретически Доннел (W. J. O'Donnell, J. Appl. Mech. 27, 461-464 (1960)).

Условия на концах $x = \pm l$ представляются в форме

$$\int_{-c}^{c} \tau_{xy} dy = \mp ql, \quad \int_{-c}^{c} \sigma_{x} dy = 0, \quad \int_{-c}^{c} \sigma_{x} y dy = 0. \tag{6}$$

Последние два из уравнений (б) выражают тот факт, что на концах балки отсутствуют продольные усилия и изгибающие моменты.

Рис. 28.

Все условия (а) и (б) можно удовлетворить, комбинируя некоторые решения в форме полиномов, полученные в § 18. Начнем с решения (ж), иллюстрируемого рис. 25. Чтобы снять растягивающие напряжения вдоль края y = c и касательные напряжения вдоль краев $y = \pm c$, наложим на тело простое сжатие $\sigma_y = a_2$ из решения (б) § 18, и напряжения $\sigma_y = b_3 y$ и $\tau_{xy} = -b_3 x$, показанные на рис. 23. Таким путем находим

$$\sigma_x = d_5 \left(x^2 y - \frac{2}{3} y^3 \right), \quad \sigma_y = \frac{1}{3} d_5 y^3 + b_3 y + a_2, \quad \tau_{xy} = -d_5 x y^2 - b_3 x. \quad (B)$$

Из условий (а) получаем

$$-d_{s}c^{2}-b_{s}=0, \quad \frac{1}{3}d_{5}c^{3}+b_{s}c+a_{s}=0, \quad -\frac{1}{3}d_{5}c^{3}-b_{s}c+a_{s}=-q_{s}$$

откуда

$$a_2 = -\frac{q}{2}, \quad b_3 = \frac{3}{4}\frac{q}{c}, \quad d_5 = -\frac{3}{4}\frac{q}{c^3}.$$

Подставляя эти значения в уравнения (в) и замечая, что выражение 2c³/3 равно моменту инерции *I* прямоугольного поперечного сечения единичной толщины, находим

$$\begin{split} \sigma_{x} &= -\frac{3}{4} \frac{b}{c^{3}} \left(x^{2}y - \frac{2}{3}y^{3} \right) = -\frac{q}{2I} \left(x^{2}y - \frac{2}{3}y^{3} \right), \\ \sigma_{y} &= -\frac{3q}{4c^{3}} \left(\frac{1}{3}y^{3} - c^{2}y + \frac{2}{3}c^{3} \right) = -\frac{q}{2I} \left(\frac{1}{3}y^{3} - c^{2}y + \frac{2}{3}c^{3} \right), \quad (\Gamma) \\ \tau_{xy} &= -\frac{3q}{4c^{3}} \left(c^{2} - y^{2} \right) x = -\frac{q}{2I} \left(c^{2} - y^{2} \right) x. \end{split}$$

Легко проверить, что эти компоненты напряжения удовлетворяют не только условиям (а) на продольных краях, но также и двум

64

§ 22]

первым условиям (б) на концах. Для того чтобы обращались в нуль изгибающие моменты на концах балки, наложим на решение (г) состояние чистого изгиба с напряжениями $\sigma_x = d_3 y$, $\sigma_y = \tau_{xy} = 0$, показанными на рис. 22, и определим постоянную d_3 из условия, что при $x = \pm l$

$$\int_{-c}^{c} \sigma_{x} y \, dy = \int_{-c}^{c} \left[-\frac{3}{4} \frac{q}{c^{3}} \left(l^{2} y - \frac{2}{3} y^{3} \right) + d_{3} y \right] y \, dy = 0.$$

Отсюда

$$d_3 = \frac{3}{4} \frac{q}{c} \left(\frac{l^2}{c^2} - \frac{2}{5} \right).$$

Окончательно получаем

$$\sigma_{x} = -\frac{3}{4} \frac{q}{c^{3}} \left(x^{2}y - \frac{2}{3}y^{3} \right) + \frac{3}{4} \frac{q}{c} \left(\frac{l^{2}}{c^{2}} - \frac{2}{5} \right) y = = \frac{q}{2I} (l^{2} - x^{2}) y + \frac{q}{2I} \left(\frac{2}{3}y^{3} - \frac{2}{5}c^{2}y \right).$$
(33)

Первый член в этом выражении представляет напряжения, даваемые элементарной теорией изгиба, а второй член — необходимую поправку. Поправочный член не зависит от x и мал по сравнению с максимальным напряжением изгиба, если пролет балки велик по сравнению с ее высотой. Для таких балок элементарная теория изгиба дает достаточно точные значения напряжения σ_x . Следует отметить, что выражение (33) является точным решением только в том случае, если нормальные условия на концах $x = \pm l$ распределены по закону

$$\overline{X} = \pm \frac{3}{4} \frac{q}{c^3} \left(\frac{2}{3} y^3 - \frac{2}{5} c^2 y \right),$$

т. е. если нормальные усилия на концах равняются напряжениям σ_x при $x = \pm l$, полученным по формуле (33). Главный момент и главный вектор этих усилий равны нулю. Следовательно, исходя из принципа Сен-Венана, мы заключаем, что их влияние на напряжения на значительном удалении от концов, скажем, на расстоянии, большем высоты балки, пренебрежимо мало. Таким образом, решение (33) в этих удаленных от концов точках является достаточно точным, если не приложены силы \overline{X} .

Расхождение между точным решением (33) и приближенным решением, представленным первым членом (33), проистекает из того, что при выводе приближенного решения предполагалось, что продольные волокна балки находятся в условиях чистого растяжения. Между тем из решения (г) можно видеть, что между этими волокнами действуют сжимающие напряжения σ_y . Эти напряжения и дают поправку, представленную вторым членом выражения (33). Распределение сжимающих напряжений σ_y по высоте балки показано на рис. 28, в. Распределение касательных напряжений τ_{xy} , определяемых третьим уравнением (г), по поперечному сечению балки совпадает с тем, какое дает обычная элементарная теория изгиба.

Если вместо распределенной нагрузки q балка нагружена силами собственного веса, решение должно быть модифицировано путем подстановки $q = 2\rho gc$ в (33) и в последние два уравнения (г) и добавления напряжений

$$\sigma_x = 0, \ \sigma_y = \rho g \ (c - y), \ \tau_{xy} = 0. \tag{A}$$

Для этого случая распределение напряжений можно получить из выражений (29), полагая

$$\varphi = \frac{1}{6} \rho g (y^3 + 3cx^2).$$

Следовательно, оно представляет собой возможное напряженное состояние, возникающее под действием собственного веса и усилий на границе. На верхнем крае y = -c имеем $\sigma_y = 2\rho gc$, а на нижнем y = c соответственно $\sigma_y = 0$. Таким образом, если к полученному ранее решению добавить напряжения, определяемые формулами (д), при $q = 2\rho gc$, то напряжения на обоих горизонтальных краях становятся равными нулю и нагрузка на балку будет состоять только из одной силы веса.

Перемещения u и v можно найти методом, описанным в предыдущем параграфе. Предполагая, что в центре тяжести среднего поперечного сечения (x = 0, y = 0) горизонтальное перемещение равно нулю, а вертикальное перемещение равно прогибу δ , используя решения (г) и (33), находим

$$u = \frac{q}{2EI} \left[\left(l^2 x - \frac{x^3}{3} \right) y + x \left(\frac{2}{3} y^3 - \frac{2}{5} c^2 y \right) + vx \left(\frac{1}{3} y^3 - c^2 y + \frac{2}{3} c^3 \right) \right],$$

$$v = -\frac{q}{2EI} \left\{ \frac{y^4}{12} - \frac{c^2 y^2}{2} + \frac{2}{3} c^3 y + v \left[(l^2 - x^2) \frac{y^2}{2} + \frac{y^4}{6} - \frac{1}{5} c^2 y^2 \right] \right\} - \frac{q}{2EI} \left[\frac{l^2 x^2}{2} - \frac{x^4}{12} - \frac{1}{5} c^2 x^2 + \left(1 + \frac{1}{2} v \right) c^2 x^2 \right] + \delta.$$

Из выражения для *и* можно видеть, что нейтральная ось балки не проходит по срединной линии. Благодаря сжимающему напряжению

$$(\sigma_y)_{y=0} = -\frac{q}{2}$$

срединная линия имеет деформацию растяжения vq/(2E), откуда

$$(u)_{y=0}=\frac{vqx}{2E}.$$

Из выражения для *v* находим уравнение кривой прогибов

$$(v)_{y=0} = \delta - \frac{q}{2EI} \left[\frac{l^2 x^2}{2} - \frac{x^4}{12} - \frac{1}{5} c^2 x^2 + \left(1 + \frac{1}{2} v \right) c^2 x^2 \right].$$
 (e)

Предполагая, что на концах балки прогиб равен нулю, находим

$$\delta = \frac{5}{24} \frac{ql^4}{EI} \left[1 + \frac{12}{5} \frac{c^2}{l^2} \left(\frac{4}{5} + \frac{v}{2} \right) \right]. \tag{34}$$

Множитель перед скобкой равен прогибу, который получается из элементарной теории в предположении, что поперечное сечение балки в процессе деформации остается плоским. Второй член в квадратных скобках представляет собой поправку, связанную с влиянием поперечной силы.

Дифференцируя уравнение (е) для кривой прогибов дважды по *х*, находим следующее выражение для кривизны:

$$\left(\frac{d^2v}{dx^2}\right)_{y=0} = \frac{q}{EI} \left[\frac{l^2 - x^2}{2} + c^2 \left(\frac{4}{5} + \frac{v}{2}\right)\right].$$
 (35)

Можно видеть, что кривизна не пропорциональна в точности изгибающему моменту 1) $q(l^2 - x^2)/2$. Добавочный член в скобках представляет собой необходимую поправку к обычной элементарной формуле. Более общее исследование кривизны балки показывает 2), что поправочный член, содержащийся в выражении (35), может также использоваться для любого случая непрерывно изменяющейся интенсивности нагрузки. Влияние поперечной силы на прогибы в случае сосредоточенной нагрузки будет рассмотрено ниже (стр. 136).

Элементарный учет влияния поперечной силы на кривизну кривой прогибов балок дали Ренкин ³) в Англии и Грасхоф ⁴) в Германии. Если принять максимальную деформацию сдвига на нейтральной оси балки единичной ширины равной 3/2 (Q/2cG), где Q — поперечная сила, то соответствующее увеличение кривизны определяется производной этой деформации сдвига по x. Эта производная равна 3/2 (q/2cG). Исправленное выражение для кривизны, получаемой из элементарного анализа, принимает тогда вид

$$\frac{q}{EI}\frac{l^2-x^2}{2}+\frac{3}{2}\frac{q}{2cG}=\frac{q}{EI}\left[\frac{l^2-x^2}{2}+c^2(1+\nu)\right].$$

Сравнивая это выражение с выражением (35), видим, что такое элементарное решение дает несколько завышенное значение поправки ⁵).

Поправочный член в выражении для кривизны (35) не может быть приписан одной только поперечной силе. Частично он связан со сжимающими напряжениями σ_y . Эти напряжения распределяются по высоте балки неравномерно. Поперечное расширение в направлении *x*, производимое этими напряжениями, убывает от верхней грани балки к нижней, и таким путем ими вызывается обратная кривизна выпуклостью вверх. Эта кривизна вместе с влиянием поперечной силы и учитывается поправочным членом в уравнении (35).

§ 22]

¹) На это обстоятельство впервые указал Пирсон (К. Pearson, Quart. J. Math. 24, 63 (1889)).

²) См. статью Т. von Karman, Abhandl. Aerodyn. Inst., Tech. Hochschule, Aachen, 7, 3 (1927).

³) Rankine, Applied Mechanics, изд. 14, 1895.

⁴⁾ Grashof, Elastizität und Festigkeit, изд. 2, 1878.

⁵) Несколько лучшее приближение дает использование элементарных соображений, связанных с энергией деформации. См. S. Timoshenko, Strength of Materials, изд. 3, т. 1, стр. 318.

§ 23. Другие случаи балок с непрерывным распределением нагрузки

Увеличивая степень полиномов, представляющих решения двумерной задачи (§ 18), мы получаем решения задач изгиба для различных видов непрерывно распределенных нагрузок¹). Взяв, например, решение в форме полинома шестой степени и сочетая его с приведенными выше решениями из § 18, мы можем получить напряжения в вертикальной консоли, нагруженной гидростатическим давлением, как показано на рис. 29. Таким путем можно показать, что все условия на продольных краях

Здесь q — вес единицы объема жидкости, так что интенсивность нагрузки на глубине x равна qx. Поперечная сила и изгибающий момент на одной и той же глубине равны соответственно $qx^2/2$ и $qx^3/6$. Очевидно, первые члены в выражениях для σ_x и τ_{xy} соответствуют значениям напряжений, полученным по обычным элементарным формулам.

На верхнем конце балки x = 0 нормальные напряжения равны нулю. Касательные напряжения

$$\tau_{xy} = -\frac{q}{8c^3}(c^4 - y^4) + \frac{q}{4c^3}\frac{3}{5}c^2(c^2 - y^2)$$

хотя и не равны нулю, но малы по всему поперечному сечению и их результирующая равна нулю, в силу чего приближенно выполняется условие отсутствия внешней нагрузки на верхнем конце балки.

Добавляя к выражению для σ_x в уравнениях (а) член — q_1x , где q_1 — удельный вес материала консоли, мы учтем тем самым собственный вес балки. Таким путем предлагалось использовать полученное решение для определения напряжений в каменных

¹) См. уже упоминавшуюся статью Тимпе (А. Timpe); сноска на стр. 53, а также W. R. Osgood, J. Res. Nat. Bur. Std., ser. B, 28, 159 (1942).

плотинах прямоугольного поперечного сечения ¹). Следует отметить, что это решение не удовлетворяет условиям на нижней грани плотины. Решение (а) является точным, если на нижней грани плотины действуют силы, распределенные в точности таким образом, как и напряжения σ_x и τ_{xy} в решении (а). В действительности нижняя грань плотины скреплена с основанием, и условия ее работы отличаются от тех, которые представляются этим решением. В соответствии с принципом Сен-Венана можно

утверждать, что влияние закрепления на нижней грани на больших расстояниях от нее пренебрежимо мало, однако для каменных плотин размер поперечного сечения 2c обычно нельзя считать малым по сравнению с высотой l, и пренебрегать этим влиянием не следует ²).

не следует²). Принимая функцию напряжений в виде полинома седьмой

Рис. 30.

степени, можно получить напряжения в балке, нагруженной по параболическому закону. В главе 6 (стр. 189) показывается, как с помощью комплексной переменной можно сразу же выписать полиномиальную функцию напряжений любой степени.

В общем случае непрерывного распределения нагрузки (рис. 30) напряжения в любом поперечном сечении на значительном удалении от концов, скажем, на расстоянии, большем высоты балки, можно приближенно определить из следующих, уравнений ³):

$$\sigma_{x} = \frac{My}{I} + q \left(\frac{y^{3}}{2c^{3}} - \frac{3}{10}\frac{y}{c}\right), \qquad \sigma_{y} = -\frac{q}{2} + q \left(\frac{3y}{4c} - \frac{y^{3}}{4c^{3}}\right),$$
$$\tau_{xy} = \frac{Q}{2I} (c^{2} - y^{2}), \qquad (36)$$

где M и Q — изгибающий момент и поперечная сила, вычисленные обычным путем, а q — интенсивность нагрузки в рассматриваемом поперечном сечении.

²) Задача определения напряжений в каменных плотинах представляет большой практический интерес и обсуждалась разными авторами. См. К. Pearson, On some Disregarded Points in the Stability of Masonry Dams, Drapers' Co. Research Mem., 1904; К. Pearson and C. Pollard, On experimental study of the stresses in Masonry Dams, Drapers'Co. Researche Mem., 1907. См. также статьи: L. F. Richardson, Trans. Royal Soc. (London) 210A, 307 (1910); S. D. Carothers, Proc. Royal Soc. Edinburgh 33, 292 (1913); I. Muller, Publ. Lab. Photoélasticité, Zürich, (1930): Fillunger, Oesterr. Wochschr. Öffentl. Baudienst, No. 35; (1913) K. Wolf, Sitzber. Akad. Wiss. Wien 123 (1914).
³) F. Seewald, Abhandl. Aerodynam. Inst., Tech. Hochschule, Aachen, 7,

³) F. Seewald, Abhandl. Aerodynam. Inst., Tech. Hochschule, Aachen, 7, 11 (1927). Дальнейшее развитие такого метода приближения см. в работе Гэйтвуда и Дэйла (В. Е. Gatewood and R. Dale, J. Appl. Mech. 29, 747 — 749 (1962))

¹) M. Levy, Compt. Rend. 126, 1235 (1898).

Эти уравнения согласуются с полученными ранее для балки, находящейся под действием равномерно распределенной нагрузки (см. § 22).

Если нагрузка интенсивности q направлена вниз и распределена вдоль нижней грани (y = + c) балки, то выражения для напряжений получаются из уравнений (36) путем наложения однородного растягивающего напряжения $\sigma_y = q$ и имеют вид

$$\sigma_{\mathbf{x}} = \frac{My}{I} + q \left(\frac{y^3}{2c^3} - \frac{3}{10}\frac{y}{c}\right), \qquad \sigma_{\mathbf{y}} = \frac{q}{2} + q \left(\frac{3y}{4c} - \frac{y^3}{4c^3}\right), \qquad (36')$$
$$\tau_{\mathbf{x}\mathbf{y}} = \frac{Q}{2I} (c^2 - y^2).$$

§ 24. Решение двумерной задачи при помощи рядов Фурье¹)

Мы показали, что если по длине балки узкого прямоугольного поперечного сечения нагрузка распределена непрерывно, то в некоторых простых случаях может использоваться функция напряжений в виде полиномов. Гораздо большая степень общности решений получается, если взять эту функцию в виде ряда Фурье (по x). Каждая компонента нагрузки на верхней и нижней гранях балки может обладать той степенью общности, которая возможна в этих рядах. Например, компоненты нагрузки могут иметь разрывы.

Уравнение для функции напряжения

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0$$
 (a)

может быть удовлетворено, если взять функцию ф в виде

$$\varphi = \sin \frac{m\pi x}{l} f(y), \tag{6}$$

где m — любое целое число, а функция f(y) зависит только от y. Подставляя (6) в (а) и используя обозначение $m\pi/l = \alpha$, получаем следующее уравнение для определения f(y):

$$\alpha^{4} f(y) - 2\alpha^{2} f''(y) + f^{\text{IV}}(y) = 0.$$
 (B)

Общее решение этого линейного дифференциального уравнения с постоянными коэффициентами имеет вид

$$f(y) = C_1 \operatorname{ch} \alpha y + C_2 \operatorname{sh} \alpha y + C_3 y \operatorname{ch} \alpha y + C_4 y \operatorname{sh} \alpha y.$$

Тогда функция напряжений определяется выражением

$$\varphi = \sin \alpha x \left(C_1 \operatorname{ch} \alpha y + C_2 \operatorname{sh} \alpha y + C_3 y \operatorname{ch} \alpha y + C_4 y \operatorname{sh} \alpha y \right), \qquad (r)$$

и соответствующие компоненты напряжения определяются формулами

$$\sigma_{\mathbf{x}} = \frac{\partial^2 \varphi}{\partial y^2} = \sin \alpha x \left[C_1 \alpha^2 \operatorname{ch} \alpha y + C_2 \alpha^2 \operatorname{sh} \alpha y + C_3 \alpha \left(2 \operatorname{ch} \alpha y + \alpha y \operatorname{ch} \alpha y \right) + C_4 \alpha \left(2 \operatorname{ch} \alpha y + \alpha y \operatorname{sh} \alpha y \right) \right],$$

$$\sigma_{\mathbf{y}} = \frac{\partial^2 \varphi}{\partial x^2} = -\alpha^2 \sin \alpha x \left(C_1 \operatorname{ch} \alpha y + C_2 \operatorname{sh} \alpha y + C_3 y \operatorname{ch} \alpha y + C_4 y \operatorname{sh} \alpha y \right), \quad (\mathfrak{a})$$

$$\tau_{\mathbf{x}y} = -\frac{\partial^2 \varphi}{\partial x \partial y} = -\alpha \cos \alpha x \left[C_1 \alpha \operatorname{sh} \alpha y + C_2 \alpha \operatorname{ch} \alpha y + C_3 \left(\operatorname{ch} \alpha y + \alpha y \operatorname{sh} \alpha y \right) + C_4 \left(\operatorname{sh} \alpha y + \alpha y \operatorname{ch} \alpha y \right) \right].$$

¹⁾ По-видимому, первое исследование плоской задачи методом рядов Фурье, остающееся до сих пор одним из наиболее полных, дал Матье (Е. M a th i e u, Théorie de l'Elasticité des Corps Solides, ч. 2 гл. 10, стр. 140—178, Gauthier-Villars, Paris, 1890). В этом исследовании для решения задач в прямоугольных консчных областях использовалось наложение ординарных рядов Фурье по x и y. Анализировались вопросы сходимости при определении коэффициентов Фурье из решения бсеконечной системы алгебраических уравнений.

Рассмотрим частный случай балки прямоугольного сечения, опертой по концам, под действием вертикальных непрерывно распределенных усилий на верхней и нижней гранях с интенсивностями $A \sin \alpha x$ и $B \sin \alpha x$ соответственно. Рис. 31 соответствует случаю, когда $\alpha = 4\pi/l$ и значения A и B положительны. Распределение напряжений для этого случая можно получить из решения (д). Постоянные интегрирования C_1, \ldots, C_4 можно определить из

Рис. 31.

условий на верхней и нижней гранях балки $y = \pm c$. Эти условия имеют вид:

при y = + cпри y = -c

$$\tau_{xy} = 0, \quad \sigma_y = -B \sin \alpha x;$$
 (e)
 $\tau_{xy} = 0, \quad \sigma_y = -A \sin \alpha x.$

Подставляя эти значения в третье из уравнений (д), получаем

$$C_{1\alpha} \operatorname{sh} \alpha c + C_{2\alpha} \operatorname{ch} \alpha c + C_3 (\operatorname{ch} \alpha c + \alpha c \operatorname{sh} \alpha c) + C_4 (\operatorname{sh} \alpha c + \alpha c \operatorname{ch} \alpha c) = 0,$$

- $C_{1\alpha} \operatorname{sh} \alpha c + C_{2\alpha} \operatorname{ch} \alpha c + C_3 (\operatorname{ch} \alpha c + \alpha c \operatorname{sh} \alpha c) - C_4 (\operatorname{sh} \alpha c + \alpha c \operatorname{ch} \alpha c) = 0,$

откуда

$$C_3 = -C_2 \frac{\alpha \operatorname{ch} \alpha \alpha}{\operatorname{ch} \alpha \alpha + \alpha \alpha \operatorname{sh} \alpha \alpha}, \quad C_4 = -C_1 \frac{\alpha \operatorname{sh} \alpha \alpha}{\operatorname{sh} \alpha \alpha + \alpha \alpha \operatorname{ch} \alpha \alpha}.$$
(#)

Используя условия на гранях $y = \pm c$ и второе из уравнений (д), находим

$$\alpha^2 (C_1 \operatorname{ch} \alpha c + C_2 \operatorname{sh} \alpha c + C_3 c \cos \alpha c + C_4 c \operatorname{sh} \alpha c) = B,$$

$$\alpha^2 (C_1 \operatorname{ch} \alpha c - C_2 \operatorname{sh} \alpha c - C_3 c \cos \alpha c + C_4 c \operatorname{sh} \alpha c) = A.$$

Складывая и вычитая эти уравнения и используя соотношения (ж), получаем

$$C_{1} = \frac{A+B}{\alpha^{2}} \frac{\operatorname{sh} \alpha x + \alpha \operatorname{ch} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c}, \quad C_{2} = -\frac{A-B}{\alpha^{2}} \frac{\operatorname{ch} \alpha c + \alpha \operatorname{ch} \alpha c}{\operatorname{sh} 2\alpha c - 2\alpha c}$$

$$C_{3} = \frac{A-B}{\alpha^{2}} \frac{\alpha \operatorname{ch} \alpha c}{\operatorname{sh} 2\alpha c - 2\alpha c}, \quad C_{4} = -\frac{A+B}{\alpha^{2}} \frac{\alpha \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c}.$$
(B)

Подставляя эти значения в уравнения (д), находим следующие выражения

71

для компонент напряжения:

$$\sigma_{x} = (A+B) \frac{(\alpha c \operatorname{ch} \alpha c - \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \alpha y \operatorname{sh} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \sin \alpha x - (A-B) \frac{(\alpha c \operatorname{sh} \alpha c - \operatorname{ch} \alpha c) \operatorname{sh} \alpha y - \alpha y \operatorname{ch} \alpha y \operatorname{ch} \alpha c}{\operatorname{sh} 2\alpha c - 2\alpha c} \sin \alpha x,$$

$$\sigma_{y} = -(A+B) \frac{(\alpha c \operatorname{ch} \alpha c + \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \alpha y \operatorname{sh} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \sin \alpha x + (A-B) \frac{(\alpha c \operatorname{sh} \alpha c + \operatorname{ch} \alpha c) \operatorname{sh} \alpha y - \alpha y \operatorname{ch} \alpha y \operatorname{ch} \alpha c}{\operatorname{sh} 2\alpha c - 2\alpha c} \sin \alpha x, \quad (K)$$

$$\tau_{xy} = -(A+B) \frac{\alpha c \operatorname{ch} \alpha c \operatorname{sh} \alpha y - \alpha y \operatorname{ch} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \cos \alpha x + (A-B) \frac{\alpha c \operatorname{sh} \alpha c \operatorname{ch} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \cos \alpha x.$$

Эти напряжения удовлетворяют вдоль краев $y = \pm c$ условиям, показанным на рис. 31. На концах балки x = 0 и x = l напряжения σ_x равны нулю и имеются только касательные напряжения τ_{xy} . Эти напряжения σ_x равны нулю и имеются только касательные напряжения τ_{xy} . Эти напряжения выражаются двумя членами (см. уравнение (к)). Первый член, пропорциональный A + B, представляет напряжения, которые для верхней и нижней половин концевого поперечного сечения имеют одну и ту же величину, но противоположные знаки. Результирующая этих напряжений по всему концевому сечению равна нулю. Второй член, пропорциональный A - B, имеет на концах балки результирующую, которая уравновешивает нагрузки, приложенные к продольным краям балки $y = \pm c$.

Если эти нагрузки для обоих краев балки одинаковы, коэффициент A равен коэффициенту B, и реактивные усилия на концах балки обращаются в нуль. Рассмотрим этот частный случай более подробно, считая, что длина балки велика по сравнению с ее высотой. Согласно второму из уравнений (к) нормальное напряжение σ_v на срединной плоскости балки y=0 равно

$$\sigma_{y} = -2A \frac{\alpha c \operatorname{ch} \alpha c + \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \sin \alpha x. \tag{(n)}$$

Для длинных балок величина αс, равная *mπc/l*, мала, если число полувол<u>и</u> *m* невелико. В силу этого, подставляя в (л) разложения

sh
$$\alpha x = \alpha x + \frac{(\alpha x)^3}{6} + \frac{(\alpha x)^5}{120} + \dots$$
, ch $\alpha x = 1 + \frac{(\alpha x)^2}{2} + \frac{(\alpha x)^4}{24} + \dots$

и пренебрегая членами высшего порядка малости по сравнению с (cc)⁴, получаем

$$\sigma_y = -A \sin \alpha x \left(1 - \frac{(\alpha c)^4}{24} \right).$$

Следовательно, для малых значений ∞ распределение напряжений по срединной плоскости практически совпадает с их распределением на обеих горизонтальных гранях балки ($y = \pm c$). Отсюда можно сделать вывод, что давление передается по высоте балки или пластинки без существенных изменений, если только изменения этого давления вдоль граней не происходят слишком быстро.

Касательные напряжения τ_{xy} для этого случая очень малы. На верхней и нижней половинах поперечного сечения они имеют результирующие, необходимые для того, чтобы уравновесить небольшую разность между давлениями на горизонтальных гранях $y = \pm c$ и на срединной плоскости y = 0.
В самом общем случае распределение вертикальной нагрузки по верхней и нижней граням балки (рис. 32) можно представить в виде следующих рядов ¹): для верхней грани

 $q_{u} = A_{0} + \sum_{m=1}^{\infty} A_{m} \sin \frac{m\pi x}{l} + \sum_{m=1}^{\infty} A'_{m} \cos \frac{m\pi x}{l}; \qquad (M)$

для нижней грани

$$q_l = B_0 + \sum_{m=1}^{\infty} B_m \sin \frac{m\pi x}{l} + \sum_{m=1}^{\infty} B_m' \cos \frac{m\pi x}{l}.$$

Постоянные члены A_0 и B_0 представляют равномерное нагружение балки которое рассматривалось в § 22. Напряжения, вызываемые членами, содержащими sin (*mлx/l*), получаются путем суммирования решений, выражаемых формулами (к). Напряжения, вызываемые членами, содержащими соs (*mлx/l*),

легко получить из (к), если заменить sin ax на cos ax и наоборот и заменить на обратный знак при т_{xu}.

Чтобы проиллюстрировать применение этого общего метода²) определения напряжений в прямоугольных пластинках, рассмотрим случай, показанный на рис. 33. Для этого случая симметричного нагружения члены с sin (*mлх/l*) в выражениях (м) исчезают, а коэффициенты A_0 и A'_m получаются обычным путем:

$$A_{0} = B_{0} = \frac{qa}{l}, \quad A'_{m} = B'_{m} = \frac{1}{l} \int_{-a}^{a} q \cos \frac{m\pi x}{l} dx = \frac{2q \sin \frac{m\pi u}{l}}{m\pi}.$$
 (H)

Члены A_0 и B_0 представляют однородное сжатие в направлении оси *y*, равное qa/l. Напряжения, вызываемые тригонометрическими членами, получаются при помощи решений (к) с заменой sin αx на cos αx в этом решении и изменением знака при τ_{xy} .

¹) Теорию рядов Фурье см. в книгах: Osgood, Advanced Calculus, 1928; В yerly, Fourier Series and Spherical Harmonics, 1902 или Churchill, Fourier Series and Boundary Value Problems, 1963. [См. также, например, В. И. Смирнов, Курс высшей математики, т. 2, Гостехиздат, 1956. Прим. *перев.*].

²) Несколько примеров были рассмотрены в работах: М. С. R i b i è r e, Compt. Rend. **126**, 402 — 404, 1190 — 1192 (1898); F. B l e i c h, Bauingenieur **4**, 255 (1923.)

Рассмотрим срединную плоскость у=0, на которой действует одно лишь нормальное напряжение о". Используя второе из уравнений (к), находим

$$\sigma_y = -\frac{qa}{l} - \frac{4q}{\pi} \sum_{m=1}^{\infty} \frac{\sin \frac{m\pi a}{l}}{m} \frac{\frac{m\pi c}{l} \operatorname{ch} \frac{m\pi c}{l} + \operatorname{sh} \frac{m\pi c}{l}}{\operatorname{sh} \frac{2m\pi c}{l} + 2\frac{m\pi c}{l}} \cos \frac{m\pi x}{l}.$$

Это цапряжение было найдено Файлоном¹) для бесконечно длинной полосы, когда размер а очень мал, т. е. для случая сосредоточенной силы P = 2qa.

 $\sigma_{\prime\prime}$ 1.5 значения тсби 1,0 0.5 0 0 2 1 Значения х/с Рис. 34.

Результаты вычислений показаны на рис. 34. Можно видеть, что с ростом х напряжение падает очень быстро. При значении x/c = 1,35 оно становится нулевым, а затем сжатие сменяется растяжением. Файлон исследовал также случай, изображенный на рис. 35, когда силы Р смещены друг относительно друга. Представляет практический интерес распределение касательных напря-

жений по поперечному сечению в этом случае, которое представлено на рис. 36. Можно видеть, что для малых значений отношения b/c, это распределение отлично от параболического распределения, которое дает элементарная теория изгиба. Очень большие напряжения наблюдаются в верхней и нижней частях балки, тогда как ее срединная часть практически свободна от касательных напряжений.

В задаче, показанной на рис. 34, в силу симметрии на срединной линии отсутствуют касательное напряжение и вертикальное перемещение. Таким образом, верхняя часть балки работает как упругий слой, покоящийся на абсолютно жестком гладком основании 2).

²) Шероховатое основание рассматривали Маргер (К. Marguerre, Inge-nieur-Arch. 2, 108 (1931)); Эбрахамсон и Гудьер (G. R. Abrahamson, J. N. Goodier, J. Appl. Mech. 28, 608-610 (1961); гибкий, но нерастяжимый слой, погруженный в упругий материал, — случай, представляющий инте-

¹) L. N. G. Filon, Trans. Roy. Soc. (London), ser. A, 201, 67 (1903). Ту же задачу рассматривали также Тимпе (А. Timpe, Z. Math. Physik 55, 149 (1907)), Месмер (G. Mesmer, Vergleichende spannungsoptische Untersuchun-gen, diss., 1929), Зеевальд (F. Seewald) (см. ссылку выше) и Бэй (H. Bay, Ingenieur-Arch. 3, 435 (1932)). Приближенное решение той же задачи дал Пижо (M. Pigeaud, Compt. Rend. 161, 673 (1915)). Исследование этой задачи в случае прямоугольной пластинки конечной длины провел Гудьер (J. N. Goodier, J. Appl. Mech. 54, No. 18, 173 (1932)). [Решения для полосы были обобщены на случай многослойных сред. Библиография по этому поводу содержится в книге: Г. Б. Колчин и Э. В. Фаверман, Теория упругости неоднородных тел, Кишинев, 1972. См. также В. С. Никишин, Г. С. Шапиро. Задачи теории упругости для многослойных сред, «Наука», 1973. (Прим. ped.)]

Рассмотрим теперь другой предельный случай, когда высота пластинки 2с велика по сравнению с длиной 21 (рис. 37). Мы воспользуемся этим случаем, чтобы показать, что распределение напряжений по поперечным сечениям по мере увеличения расстояния от точки приложения силы Р быстро приближается к однородному. Используя второе из уравнений (к) с заменой sin ах на сов ах и выражения (н) для коэффициентов Am, равных Bm, находим

$$\sigma_y = -\frac{qa}{l} - \frac{4q}{\pi} \sum_{m=1}^{\infty} \frac{\sin \alpha a}{m} \frac{(\alpha c \operatorname{ch} \alpha c + \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \alpha y \operatorname{sh} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \cos \alpha x, \quad (o)$$

sh $\alpha y = ch \alpha y = (1/2)e^{\alpha y}$. Подставляя эти значения в уравнение (о), получаем œ

$$\sigma_{y} = -\frac{qa}{l} - \frac{4q}{\pi} \sum_{m=1}^{\infty} \frac{\sin \alpha a}{2m} \left[(\alpha c + 1) e^{\alpha (y-c)} - \alpha y e^{\alpha (y-c)} \right] \cos \alpha x =$$
$$= -\frac{qa}{l} - \frac{4q}{\pi} \sum_{m=1}^{\infty} \frac{\sin \frac{m\pi a}{l}}{2m} \left[\frac{m\pi}{l} (c-y) + 1 \right] e^{\frac{m\pi}{l} (y-c)} \cos \frac{m\pi x}{l}$$

где qa = P/2. Если величина *l* мала по сравнению с *c*, то αc —большое число и величиной l можно пренебречь по сравнению с sh ac. Можно также принять

sh
$$\alpha c = \operatorname{ch} \alpha c = \frac{1}{2} e^{\alpha c}$$
.

Для поперечных сечений, находящихся на большом расстоянии от середины пластинки, можно считать,

рес с точки зрения механики грунтов, рассмотрен Био (М. Biot, Phys. 6, 367 (1935)). [Замечание авторов о том, что верхняя часть балки работает как упругий слой, покоящийся на жестком гладком основании, справедливо только в случае, если условия контакта слоя и основания допускают возникновение растягивающих напряжений. (Прим. ред.)]

Если величина c-y не очень мала, скажем c-y > l/2, этот ряд сходится очень быстро и при вычислении в нем достаточно удержать лишь несколько членов. Кроме того, принимая

$$\sin \frac{m\pi a}{l} = \frac{m\pi a}{l}$$

и полагая 2aq = P, находим

$$\sigma_y = -\frac{P}{2l} - \frac{P}{l} \sum_{m=1}^{\infty} \left[\frac{m\pi}{l} (c-y) + 1 \right] e^{\frac{m\pi}{l} (y-c)} \cos \frac{m\pi x}{l}.$$

При y = c - l, например, получаем

$$\sigma_y = -\frac{P}{2l} - \frac{P}{l} \left(\frac{\pi + 1}{e^{\pi}} \cos \frac{\pi x}{l} + \frac{2\pi + 1}{e^{2\pi}} \cos \frac{2\pi x}{l} + \frac{3\pi + 1}{e^{3\pi}} \cos \frac{3\pi x}{l} + \dots \right).$$

Для получения хорошей точности достаточно взять в этом ряде три первых члена, и распределение напряжений будет таким, как показано на рис. 38, б. На том же рисунке изображено также распределение напряжений при c-y=l/2 и при $c-y=2l^2$). Очевидно, что на расстоянии от конца, равном ширине полосы, распределение напряжений практически является однородным, что подтверждает вывод, который обычно делается на основе принципа Сен-Венана.

Для длинной полосы, такой, как показана на рис. 37, напряжения σ_y передаются с небольшими изменениями по ширине пластинки 2*l*, если скорость их изменения вдоль края не слишком велика. Однако рассматриваемое решение требует некоторой поправки с целью учета этого фактора, особенно вблизи концов $y = \pm c$. Решение задачи, представленной на рис. 37 при c = 2l, проведенное другим методом ²), дало практически однородное распределение сжимающих напряжений по среднему горизонтальному сечению в соответствии с

рис. 38, в. Напряжения в окрестности точек приложения нагрузок Р будут рассмотрены позже (см. стр. 112).

§ 25. Другие приложения рядов Фурье. Нагрузка от собственного веса

Задачи, рассмотренные в § 24, касались однопролетной балки длиной *l* или 2*l*. Эти решения, однако, равным образом можно рассматривать как представление периодических напряженных состояний в длинной балке, параллельной оси *x*, так как ряд Фурье представляет периодическую функцию. Такое периодическое распределение напряжений имеет неразрезная балка, состоящая

¹) См. цитируемую выше работу Блейха (F. Bleich). Эти результаты были подтверждены также более полным анализом и экспериментальными измерениями Теокариса (P. Theocaris: (1) J. Appl. Mech. **26**, 401-406 (1959); (2) Intern. J. Engr. Sci. 2, 1-19 (1964)).

²) J. N. Goodier, Trans. ASME 54, 173 (1932).

из последовательности равных пролетов с той же нагрузкой и при соответствующих условиях на концах. Если же, как это имеет место в некоторых конструкциях железобетонных бункеров, балка имеет большую высоту и является балкой-стенкой, опертой в точках, расстояние между которыми сопоставимо с высотой балки (рис. 39), то изложенный метод ¹) приводит к полезным ре-

зультатам, тогда как элементарная балочная теория при этом неприменима. Равномерно распределенная нагрузка q_1 на нижней грани, уравновешиваемая направленными вверх равпомерно распределенными вверх равпомерно распределенными на участках длиной 2b с интервалами l реактивными силами, относится к частному случаю, описываемому уравнениями (м) из § 24. Если нагрузка q_1 прикладывается к верхней грани, то нужно просто добавить распределение напряжений, вызываемое равными по интенсивности, но противоположными по

Рис. 39.

направлению давлениями q₁, действующими на верхней и нижней гранях. Если нагрузкой служит вес самой балки, то получающаяся задача с объемными силами может быть сразу же сведена к задаче о действии краевых нагрузок. Простое распределение напряжений

$$\sigma_x = 0, \quad \sigma_y = -\rho g (y+c), \quad \tau_{xy} = 0$$

удовлетворяет уравнениям равновесия и совместности (19) и (24). Очевидно, оно описывает опирание в виде равномерно распределенного по нижней грани давления $2\rho gc$ (рис. 39). Условие, что σ_y равно нулю всюду на нижней грани, за исключением участков опирания длиной 2b, удовлетворяется путем добавления этого напряженного состояния к состоянию, изображенному на рис. 39, с заменой q_1 на $2\rho gc$. При этом соответствующие напряжения вызываются действием нагрузок q и q_1 без объемных сил.

§ 26. Влияние концов. Собственные функции

Функция напряжений в виде ряда Фурье, рассмотренная в §§ 24 и 25, пригодна для задач с заданными нагрузками или перемещениями на двух противоположных гранях. Если же условия заданы на всех четырех гранях прямоугольной области, то такая функция не является достаточно общей, и к ней следует добавить функцию напряжений в виде ряда Фурье по y. Это приводит к методу перекрестной суперпозиции одинарных рядов, развитому Матье (см. примечание на стр. 70).

При исследовании задач с нагружением на концах, когда верхняя и нижняя грани свободны от нагрузок или имеют нулевые перемещения или другие однородные граничные условия, может использоваться функция напряжений иного вида. Чтобы познакомиться с ней, рассмотрим, например, для задачи со свободными гранями $y = \pm c$ функцию напряжений

$$\varphi = C e^{\frac{-\gamma x}{c}} \left(\varkappa \cos \frac{\gamma y}{c} + \frac{\gamma y}{c} \sin \frac{\gamma y}{c} \right), \qquad (a)$$

которая удовлетворяет дифференциальному уравнению (30) при любых значениях постоянных C, γ , κ . Условия $\sigma_y = 0$, $\tau_{xy} = 0$ на гранях $y = \pm c$

¹) Задачи такого рода обсуждаются, например с соответствующими ссылками в книге К. Веуег, Die Static im Eisenbetonbau, изд. 2, 1934; см. также Н. Сгаетег, Ingenieur-Arch. 7, 325 (1936).

удовлетворяются, если положить

$$\varphi = 0, \quad \frac{\partial \varphi}{\partial y} = 0 \quad \text{Ha} \quad y = \pm c,$$
 (6)

поскольку отсюда следует

$$\frac{\partial^2 \varphi}{\partial x^2} = 0$$
, $\frac{\partial^2 \varphi}{\partial x \, \partial y} = 0$ ha $y = \pm c$.

Однако условия (б) требуют также нулевой результирующей силы и нулевого момента в любом сечении x = const. Условие симметрии относительно оси x означает, что достаточно исследовать усилия в направлении x. Для них получаем

$$\int_{-c}^{c} \sigma_{x} \, dy = \int_{-c}^{c} \frac{\partial^{2} \varphi}{\partial y^{2}} \, dy = \left[\frac{\partial \varphi}{\partial y} \right]_{y=-c}^{y=c} dy$$

Таким образом, нагрузка на каждом конце полосы является самоуравновешенной.

Поскольку функция (а) является четной по y, достаточно применить условие (б) только при y = c. В результате имеем

$$\varkappa \cos \gamma + \gamma \sin \gamma = 0, \quad \gamma \cos \gamma + (1 - \varkappa) \sin \gamma = 0. \tag{B}$$

Далее, после исключения и, получаем

$$\sin 2\gamma + 2\gamma = 0, \qquad (r)$$

если соз $\gamma \neq 0$. Корни уравнения (г), отличные от очевидного корня $\gamma = 0$, который не представляет интереса, являются комплексными. Они образуют сопряженные комплексные пары; кроме того, если γ —корень, то и — γ является корнем. Корни, обладающие положительной действительной частью, дают функции напряжений вида (а), которые стремятся к нулю с ростом x и, следовательно, применимы к задачам о действии самоуравновешенной нагрузки на конце x = 0 полосы x > 0. В порядке возрастания действительной части два первых корня ¹) равны

$$\gamma_2 = 2,1061 + 1,1254i; \quad \gamma_4 = 5,3563 + 1,5516i.$$
 (д)

Четные индексы использованы ввиду того, что мы рассматривали в уравнении (а) лишь четную функцию от у. Если вместо этого рассмотреть нечетную функцию

$$\varkappa' \sin \frac{\gamma y}{c} \cos \frac{\gamma y}{c}, \qquad (e)$$

то уравнение (г) заменяется следующим:

$$\sin 2\gamma - 2\gamma = 0. \tag{(x)}$$

¹) J. Fadle, Ingenieur-Arch. 11, 125 (1941). Функции рассматриваемого здесь вида независимо ввели И. Фадле (J. Fadle) и П. Ф. Папкович. Ссылки см. в (1) J. P. Benthem, Quart. J. Mech. Appl. Math. 16, 413-429 (1963); (2) G. Horway, J. S. Born, J. Appl. Mech. 24, 261-268 (1957); (3) J. N. Goodier, P. G. Hodge, Elasticity and Plasticity, John Wiley, New York, 1958, [Русский перевод: Дж. Гудьер, Ф. Ходж, Упругость и пластичность, ИЛ, М., 1960]; (4) М. W. Johnson, Jr., R. W. Little, Quart. Appl. Math. 22, 335-344 (1965). [Как отметил Б. М. Нуллер (ПММ 33, № 2, 376-383 (1964)), соотношения обобщенной ортогональности и задача одновременного разложения двух независимых функций в ряды по однородным функциям впервые исследовались П. А. Шиффом (J. Math. pures et appl. ser. III, 9, (1883).- Прим. ред.].

Его первые два ненулевых корня равны

$$\gamma_3 = 3,7488 + 1,3843i, \quad \gamma_5 = 6,9500 + 1,6761i.$$
 (ii)

Для отыскания соответствующих значений к' вместо первого из уравнений (в) используем соотношение

$$\varkappa' \sin \gamma + \gamma \cos \gamma = 0. \tag{K}$$

Обращаясь к симметричному случаю, представленному формулой (а), после подстановки выбранного значения корня у, например у2 из (д) и соответствующего ему значения и из первого или второго уравнения (в), получаем комплексную форму функции напряжений, в которой коэффициент С будем считать здесь равным единице. Поскольку эта функция напряжений удовлетворяет дифференциальному уравнению (30), ее действительная и мнимая части. каждая в отдельности, также удовлетворяют этому уравнению и могут использоваться как действительные функции напряжений. Каждой из них можно придать ее собственный действительный коэффициент. Действительная часть у дает экспоненциальный множитель, описывающий скорость убывания с ростом х. Наименьшая из таких скоростей встречается в функциях, соответствующих у.; согласно (д) экспоненциальный множитель равен

$$-2,1061x/c$$

Он является мерой затухания напряжений, которое качественно описывается принципом Сен-Венана, если только рассмотренная здесь система «собственных функций» способна представить любую самоуравновешенную нагрузку на концах, какая может быть приложена. Хотя это и так, на практике определение коэффициентов ведет к весьма трудоемким вычислениям. Чтобы избежать их. были протабулированы приближенные функции более простого вида, которые использовались в ряде работ 1).

Вместо задания нагрузок условия на концах могут основываться на заланных перемещениях. В некоторых случаях напряжения имеют особенности в углах $x = 0, y = \pm c$. В этих случаях важно исследовать характер сингулярных членов²) и, если возможно, представить их в замкнутой форме так. чтобы часть решения в виде ряда представляла только несингулярную часть. Пример такого рода встречается в задаче о полосе, которая закреплена на одном конце и имеет нулевые перемещения. Задача решалась указанным путем при действии растягивающей нагрузки 3). Исследована также задача о полосе, растягиваемой в двух направлениях, у которой упругие константы в области x > 0 отличаются от констант в области $x < 0^4$).

ЗАЛАЧИ

1. Найти, какая задача о плоском напряженном состоянии, отвечает следующей функции напряжений:

$$\varphi = \frac{3F}{4c} \left(xy - \frac{xy^3}{3c^2} \right) + \frac{P}{2} y^2.$$

2. Найти, какая задача отвечает функции напряжений

$$\varphi = -\frac{F}{d^3} xy^3 \left(3d - 2y \right)$$

в области, заключенной между линиями y=0, y=d и x=0 при $x \ge 0$.

- ²) Это требует отдельного исследования угловой области (см. гл. 4 § 42).
 ³) См. цитированную работу Бентема (J. P. Benthem).
 ⁴) К. Т. S. I y engar and R. S. Alwar, Z. Angew. Math. Phys. 14, 344 352 (1963); Z. Angew. Math. Mech. 43, 249-258 (1963).

¹) См. G. Horway, J. S. Born J. Appl. Mech. 24 (1957).

3. Показать, что функция

$$\varphi = \frac{q}{8c^3} \left[x^2 \left(y^3 - 3c^2 y + 2c^3 \right) - \frac{1}{5} y^3 \left(y^2 - 2c^2 \right) \right]$$

является функцией напряжений и найти, решением какой задачи она служит, если применяется в области, ограниченной линиями $y = \pm c$ и x = 0 при $x \ge 0$.

4. Утверждается, что функция

$$\varphi = s \left(\frac{1}{4} xy - \frac{xy^2}{4c} - \frac{xy^3}{4c^2} + \frac{ly^2}{4c} + \frac{ly^3}{4c^2} \right)$$

служит решением задачи о консоли ($y = \pm c$, 0 < x < l), нагруженной вдоль нижней грани равномерными сдвигающими усилиями, если верхняя грань и торец x = l свободны от нагрузки. В каком отношении такое решение несовершенно? Сравнить выражения для напряжений с теми, которые получаются по элементарным формулам растяжения и изгиба.

5. В задаче о консоли, изображенной на рис. 26, условия опирания имеют вид:

при
$$x = l, y = 0$$

при $x = l, y = \pm c$
 $u = v = 0,$
 $u = 0.$

Показать, что прогиб определяется формулой

$${}^{(v)}_{\substack{x=0\\y=0}} - \frac{Pl^3}{3El} \left[1 + \frac{1}{2} (4 + 5v) \frac{c^2}{l^2} \right].$$

Изобразить эскизно деформированную форму опорного конца x = l и указать на эскизе, какой форме опирания отвечает решение (Шарниру? Каткам, движущимся по фиксированной плоскости?).

6. Балка, изображенная на рис. 28, вместо нагрузки q на верхней грани, нагружена собственным весом. Найти выражения для компонент перемещения и v. Найти также выражение для изменения толщины, первоначально равной единице.

7. Консоль, изображенная на рис. 26, вместо узкого прямоугольного поперечного сечения имеет широкое, и соответствующие усилия, приложенные вдоль вертикальных граней, создают условия плоской деформации. Нагрузка на единицу ширины на конце консоли равна *P*.

Доказать, что напряжения σ_x , σ_y , τ_{xy} не отличаются от тех, которые найдены в § 21. Найти выражение для напряжения σ_z и вычертить эскизно его распределение по граням консоли. Выписать выражения для компонент перемещения u и v, если при x = l фиксируется горизонтальный элемент оси консоли.

8. Показать, что если V — плоская гармоническая функция, т. е. удовлетворяет уравнению Лапласа

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0,$$

то и функции xV, yV, $(x^2 + y^2)V$ также удовлетворяют уравнению (a) § 18 и могут использоваться как функции напряжений.

9. Показать, что функция

$$(Ae^{\alpha y} + Be^{-\alpha y} + Cye^{\alpha y} + Dye^{-\alpha y}) \sin \alpha x$$

является функцией напряжений.

80

Вывести в рядах выражения для напряжений в полубесконечной пластинке при y > 0 под действием на грани y = 0 нормального давления, имеющего выражение

$$\sum_{m=1}^{\infty} b_m \sin \frac{m\pi x}{l}.$$

Показать, что напряжение σ_x в любой точке на грани является сжимающим и равно значению приложенного в этой точке давления. Предполагать, что с ростом y напряжения стремятся к нулю.

10. Показать, что уравнению (б) из § 17 удовлетворяют напряжения, определяемые уравнениями (д) из § 24 и напряжения, получаемые в результате решения задачи 9.

Глава 4

ДВУМЕРНЫЕ ЗАДАЧИ В ПОЛЯРНЫХ КООРДИНАТАХ

§ 27. Общие уравнения в полярных координатах

При исследовании напряжений в круглых кольцах и дисках, криволинейных стержнях узкого прямоугольного поперечного сечения с круговой осью и т. д. удобно использовать полярные координаты. В этом случае положение точки на срединной пло-

Рис. 40.

скости пластинки определяется расстоянием от начала координат O (рис. 40) и углом θ между радиусом-вектором r и некоторой осью Ox, фиксированной в рассматриваемой плоскости.

Рассмотрим равновесие малого элемента 1234, вырезанного из пластинки радиальными сечениями O4, O2, нормальными к пластинке, и двумя цилиндрическими поверхностями 3, 1, также нормальными к плоскости пластинки. Нормальную компоненту напряжения в радиальном направлении обозначим через

 σ_r , нормальную компоненту в окружном направлении — через σ_0 , а касательную компоненту напряжения — через τ_{r0} , считая, что каждый символ представляет напряжение в точке r, θ , которая находится в центре элемента точки P. С учетом изменения напряжения его значения посередине сторон 1, 2, 3, 4 не будут в точности равны σ_r , σ_{θ} , τ_{r0} , и мы обозначим их через $(\sigma_r)_1$ и т. д., как показано на рис. 40. Радиусы сторон 3, 1 обозначим через r_3 , r_1 . Усилие, действующее в радиальном направлении по стороне 1, равно $(\sigma_r)_1 r_1 d\theta$, что можно записать также в виде $(\sigma_r r)_1 d\theta$. Усилие же, действующее в радиальном направлении по стороне 3, равно $(\sigma_r)_3 d\theta$. Компонента нормального усилия, действующего по стороне 2, вдоль радиуса, проходящего через точку P, равна — $(\sigma_0)_2 (r_1 - r_2) \sin (d\theta/2)$ или — $(\sigma_0)_2 dr (d\theta/2)$. Соответствующая компонента действующего по сторона 2 и 4 дают вклад $[(\tau_{r0})_2 - (\tau_{r0})_4] dr$. Предположим, кроме того, что

объемная сила имеет в радиальном направлении компоненту *R*. Проектируя все силы на радиальное направление, получаем уравнение равновесия

$$(\sigma_r r)_1 d\theta - (\sigma_r r)_3 d\theta - (\sigma_\theta)_2 dr \frac{d\theta}{2} - (\sigma_\theta)_4 dr \frac{d\theta}{2} + \\ + [(\tau_{r\theta})_2 - (\tau_{r\theta})_4] dr + Rr d\theta dr = 0.$$

После деления на dr d0 это уравнение принимает вид

$$\frac{(\sigma_r r)_1 - (\sigma_r r)_3}{dr} - \frac{1}{2} \left[(\sigma_\theta)_2 + (\sigma_\theta)_4 \right] + \frac{(\tau_r \theta)_2 - (\tau_r \theta)_4}{d\theta} + Rr = 0.$$

Если размеры элемента уменьшаются и в пределе становятся равными нулю, первый член уравнения в пределе обращается в $\partial (\sigma_r r)/\partial r$. Второй становится равным σ_{θ} , а третий — $\partial \tau_{r\theta}/\partial \theta$. Проектируя все силы на окружное направление, получим второе уравнение равновесия. Окончательно эти два уравнения равновесия принимают вид

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\sigma_r - \sigma_{\theta}}{r} + R = 0, \quad \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{\partial \tau_{r\theta}}{\partial r} + \frac{2\tau_{r\theta}}{r} + S = 0, \quad (37)$$

где S — компонента объемной силы в кольцевом направлении (в сторону увеличения θ).

При решении двумерных задач в полярных координатах эти уравнения заменяют уравнения (18). Если объемные силы равны нулю, то уравнения (37) можно удовлетворить, полагая

$$\sigma_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}, \quad \sigma_{\theta} = \frac{\partial^{2} \varphi}{\partial r^{2}}, \quad (38)$$
$$\tau_{r\theta} = \frac{1}{r^{2}} \frac{\partial \varphi}{\partial \theta} - \frac{1}{r} \frac{\partial^{2} \varphi}{\partial r \partial \theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta} \right),$$

где φ —функция напряжений, зависящая от r и θ . Это, разумеется, можно проверить с помощью прямой подстановки. Вывод формул (38) приводится ниже. Вместо вывода уравнений (37) и доказательства, что при R = S = 0 они удовлетворяются при помощи выражений (38), можно исходить из поля напряжений в системе координат xy, определяемого компонентами σ_x , σ_y , τ_{xy} , как это было сделано в главе 3. Затем от них можно перейти к компонентам σ_r , σ_{θ} , $\tau_{r\theta}$ в полярных координатах. Из (13), отождествляя α с θ , имеем

$$\sigma_{r} = \sigma_{x} \cos^{2} \theta + \sigma_{y} \sin^{2} \theta + 2\tau_{xy} \sin \theta \cos \theta, \sigma_{\theta} = \sigma_{x} \sin^{2} \theta + \sigma_{y} \cos^{2} \theta - 2\tau_{xy} \sin \theta \cos \theta, \tau_{r\theta} = (\sigma_{y} - \sigma_{x}) \sin \theta \cos \theta + \tau_{xy} (\cos^{2} \theta - \sin^{2} \theta).$$
(a)

Подобным же образом можно выразить σ_x , σ_y , τ_{xy} через σ_r , σ_{θ} ,

т_{ге} с помощью следующих соотношений (см. задачу 1, стр. 157):

$$\sigma_{x} = \sigma_{r} \cos^{2} \theta + \sigma_{\theta} \sin^{2} \theta - 2\tau_{r\theta} \sin \theta \cos \theta,$$

$$\sigma_{y} = \sigma_{r} \sin^{2} \theta + \sigma_{\theta} \cos^{2} \theta + 2\tau_{r\theta} \sin \theta \cos \theta,$$

$$\tau_{xy} = (\sigma_{r} - \sigma_{\theta}) \sin \theta \cos \theta + \tau_{r\theta} (\cos^{2} \theta - \sin^{2} \theta).$$
(6)

Чтобы получить выражения (38), найдем далее зависимости между производными в обеих координатных системах. Прежде всего, имеем

$$r^2 = x^2 + y^2$$
, $\theta = \operatorname{arctg} \frac{y}{x}$,

что дает

$$\frac{\partial r}{\partial x} = \frac{x}{r} = \cos \theta, \quad \frac{\partial r}{\partial y} = \frac{y}{r} = \sin \theta,$$
$$\frac{\partial \theta}{\partial x} = -\frac{y}{r^2} = -\frac{\sin \theta}{r}, \quad \frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos \theta}{r}.$$

Таким образом, для любой функции f(x, y) в полярных координатах $f(r \cos \theta, r \sin \theta)$ получаем

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial f}{\partial \theta}\frac{\partial \theta}{\partial x} = \cos\theta\frac{\partial f}{\partial r} - \frac{\sin\theta}{r}\frac{\partial f}{\partial \theta}.$$
(B)

Чтобы найти выражение для $\partial^2 f/\partial x^3$, повторим операцию, определенную правой частью (в). Тогда

$$\frac{\partial^2 f}{\partial x^2} = \left(\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta}\right) \left(\cos\theta \frac{\partial f}{\partial r} - \frac{\sin\theta}{r} \frac{\partial f}{\partial \theta}\right) = \\ = \cos^2\theta \frac{\partial^2 f}{\partial r^2} - \cos\theta \sin\theta \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right) - \frac{\sin\theta}{r} \frac{\partial}{\partial \theta} \left(\cos\theta \frac{\partial f}{\partial r}\right) + \\ + \frac{\sin\theta}{r^2} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial f}{\partial \theta}\right).$$

После небольших преобразований это соотношение приводится к виду

$$\frac{\partial^2 f}{\partial x^2} = \cos^2 \theta \, \frac{\partial^2 f}{\partial r^2} + \sin^2 \theta \left(\frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \right) - 2 \sin \theta \cos \theta \, \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial f}{\partial \theta} \right). \quad (\Gamma)$$

Аналогично находим

$$\frac{\partial^2 f}{\partial y^2} = \sin^2 \theta \frac{\partial^2 f}{\partial r^2} + \cos^2 \theta \left(\frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \right) + 2 \sin \theta \cos \theta \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial f}{\partial \theta} \right) \quad (\textbf{A})$$
$$- \frac{\partial^2 f}{\partial x \partial y} = \sin \theta \cos \theta \left(\frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} - \frac{\partial^2 f}{\partial r^2} \right) - (\cos^2 \theta - \sin^2 \theta) \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial f}{\partial \theta} \right). (e)$$

Если в качестве f взять функцию напряжений $\varphi(x, y)$, определяемую формулами (29) (при $\rho g = 0$), то производные в левых частях уравнений (г), (д) и (е) станут равными соответственно σ_y , σ_x и τ_{xy} . Следовательно, выражения в правых частях уравнений (г), (д) и (е) можно подставить вместо компонент напря-

жения в правой части (а). Легко проверить, что результат такой подстановки приводит к формулам (38).

Чтобы записать дифференциальное уравнение (a) (стр. 53) в полярных координатах, сначала сложим уравнения (г) и (д). Получим

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)f = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)f.$$
 (ж)

Это соотношение показывает, что оператор правой части в полярных координатах эквивалентен оператору Лапласа левой части. Далее, складывая два первых уравнения (б), найдем

$$\sigma_x + \sigma_y = \sigma_r + \sigma_\theta. \tag{(ii)}$$

Если объемная сила отсутствует, то аналогично тому, как это было сделано на стр. 48, получаем

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(\sigma_x + \sigma_y) = 0.$$
 (K)

В силу соотношений (и), (к) и (ж) это условие можно записать в виде

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right) \left(\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r}\frac{\partial \varphi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \varphi}{\partial \theta^2}\right) = 0.$$
(39)

Из различных решений этого дифференциального уравнения в частных производных мы можем получить решения двумерных задач в полярных координатах при разных граничных условиях. Несколько примеров таких задач будут рассмотрены в данной главе.

§ 28. Полярно-симметричное распределение напряжений

Если функция напряжений зависит только от r, уравнение совместности (30) принимает вид

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right) \left(\frac{d^2\varphi}{dr^2} + \frac{1}{r}\frac{d\varphi}{dr}\right) = \frac{d^4\varphi}{dr^4} + \frac{2}{r}\frac{d^3\varphi}{dr^3} - \frac{1}{r^2}\frac{d^2\varphi}{dr^2} + \frac{1}{r^3}\frac{d\varphi}{dr} = 0.$$
 (40)

Это обыкновенное дифференциальное уравнение, которое можно привести к линейному дифференциальному уравнению с постоянными коэффициентами, если ввести новую переменную t с помощью зависимости $r = e^t$. Таким путем легко получить общее решение уравнения (40). Это решение содержит четыре постоянных интегрирования, которые должны быть определены из граничных условий. С помощью подстановки можно проверить, что общее решение имеет вид

$$\varphi = A \ln r + Br^2 \ln r + Cr^2 + D.$$
 (41)

Из этого общего решения можно получить решения ряда задач

о полярно-симметричном распределении напряжений¹) без учета объемных сил. Соответствующие компоненты напряжения, согласно уравнениям (38), имеют вид

$$\sigma_r = \frac{1}{r} \frac{\partial \varphi}{\partial r} = \frac{A}{r^2} + B (1 + 2 \ln r) + 2C,$$

$$\sigma_{\theta} = \frac{\partial^2 \varphi}{\partial r^2} = -\frac{A}{r^2} + B (3 + 2 \ln r) + 2C,$$

$$\tau_{r\theta} = 0.$$
(42)

Если в начале координат нет отверстия, постоянные A и B обращаются в нуль, поскольку в ином случае компоненты напряжения (42) при r = 0 становятся неограниченно большими. Следовательно, для пла-

ния (42) при r = 0 становятся неограниченно большими. Следовательно, для пластинки без отверстия в начале координат и при отсутствии объемных сил может существовать только одно полярно-симметричное распределение напряжений, при котором $\sigma_r = \sigma_{\theta} = \text{const}$ и пластинка находится в условиях однородного сжатия или растяжения во всех направлениях в своей плоскости.

Рис. 41.

Если в начале координат имеется отверстие, то из уравнений (42) можно вы-

вести и другие решения, отличные от однородного растяжения или сжатия. Принимая, например, *В* равным нулю²), можно привести уравнения (42) к виду

$$\sigma_r = \frac{A}{r^2} + 2C, \quad \sigma_{\theta} = -\frac{A}{r^2} + 2C. \tag{43}$$

Это решение можно использовать для описания поля напряжений в полом цилиндре, подверженном действию равномерного давления на внутренней и внешней поверхностях³) (рис. 41). Обозначим через a и b внутренний и внешний радиусы цилиндра, а через p_i и p_0 — внутреннее и внешнее давления. Тогда граничные условия задачи примут вид

$$(\sigma_r)_{r=a} = -p_i, \quad (\sigma_r)_{r=b} = -p_0. \tag{a}$$

Подставляя (а) в первое из уравнений (43), получаем следующие уравнения для определения A и C:

$$\frac{A}{a^2} + 2C = -p_i, \quad \frac{A}{b^2} + 2C = -p_0.$$

¹⁾ Функция напряжений, зависящая от θ, не обязательно приводит к распределениям напряжений, зависящим от θ. Это иллюстрирует функция вида Aθ в (p) на стр. 140.

²⁾ Доказательство, что В должно равняться нулю, требует рассмотрения перемещений. См. стр. 94.

 ³) Решение этой задачи принадлежит Ламе (G. Lamé, Lecons sur la théorie ... de l'élasticité, Gauthier-Villars, Paris, 1852).

откуда следует, что

$$A = \frac{a^2 b^2 (p_0 - p_i)}{b^2 - a^2}, \quad 2C = \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}.$$

Подставляя эти значения в уравнения (43), получаем следующие выражения для компонент напряжения:

$$\sigma_r = \frac{a^2 b^2 (p_0 - p_i)}{b^2 - a^2} \frac{1}{r^2} + \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}, \quad \sigma_\theta = -\frac{a^2 b^2 (p_0 - p_i)}{b^2 - a^2} \frac{1}{r^2} + \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}.$$
(44)

Радиальное перемещение u легко найти, так как в данном случае $\varepsilon_{\theta} = u/r$ и для плоского напряженного состояния

$$E\varepsilon_{\theta} = \sigma_{\theta} - \nu \sigma_r.$$

Интересно отметить, что по всей толщине цилиндра сумма $\sigma_r + \sigma_{\theta}$ постоянна. Следовательно, напряжения σ_r и σ_{θ} вызывают однородное растяжение или сжатие в направлении оси цилиндра, и поперечные сечения, перпендикулярные оси цилиндра, будут оставаться плоскими. Таким образом, деформация, производимая напряжениями (44) в элементе цилиндра, вырезанном двумя смежными поперечными сечениями, не влияет на деформацию соседних элементов. Это оправдывает принятие для этого элемента условий плоского напряженного состояния, как и было сделано выше.

В частном случае, когда $p_0 = 0$ и цилиндр подвержен одному только внутреннему давлению, выражения (44) принимают вид

$$\sigma_r = \frac{a^2 p_i}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right), \quad \sigma_\theta = \frac{a^2 p_i}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right). \tag{45}$$

Эти выражения показывают, что в этом частном случае напряжение σ_{θ} — растякение σ_{θ} — всегда является сжимающим, а напряжение σ_{θ} — растягивающим. Последнее принимает наибольшее значение на внутренней поверхности цилиндра, где

$$(\sigma_{\theta})_{\max} = \frac{p_i \, (a^2 + b^2)}{b^2 - a^2} \,. \tag{46}$$

Напряжение (σ_{θ})_{тах} всегда численно превышает внутреннее давление и приближается к нему по величине с ростом *b*. Следовательно, его нельзя сделать ниже p_i , сколько бы материала не добавлялось ко внешней части цилиндра. Различные приложения уравнений (45) и (46) при проектировании машин излагаются обычно в элементарных курсах сопротивления материалов¹).

¹) См., например, S. Timoshenko, Strength of materials, изд. 3, т. 2, гл. 6, N. J., 1956. [См. С. П. Тимошенко, Сопротивление материалов, Физматгиз, 1960. См. также М. М. Филоненко-Бородич и др., Курс сопротивления материалов, т. 2, гл. 9. Гостехиздат, 1949. (Прим. nepes.)].

Соответствующая задача для цилиндра с эксцентричным отверстием решена Джеффри¹). Если радиус отверстия равен a, радиус внешней поверхности цилиндра—b и расстояние между центрами соответствующих окружностей равно e, то (если e < 1/2a) максимальным напряжением при действии внутреннего давления p_i будет окружное напряжение на внутренней поверхности в самом тонком месте. Величина этого напряжения определяется формулой

$$\sigma = p_i \left[\frac{2b^2 (b^2 + a^2 - 2ae - e^2)}{(a^2 + b^2) (b^2 - a^2 - 2ae - e^2)} - 1 \right].$$

При e = 0 это выражение совпадает с (46).

§ 29. Чистый изгиб кривых брусьев

Рассмотрим кривой брус с постоянным сечением в виде узкого прямоугольника²) и круговой осью. Пусть брус изгибается

в плоскости кривизны моментами M, приложенными по концам (рис. 42). В этом случае изгибающий момент остается постоянным по длине стержня и естественно ожидать, что распределение напряжений во всех радиальных сечениях будет одним и тем же, и потому решение задачи можно получить, используя выражение (41).

Обозначая через а и в внутренний и внешний радиусы по-

верхность бруса и принимая ширину прямоугольного поперечного сечения равной единице, получаем следующие граничные условия:

(1)
$$\sigma_r = 0 \quad \text{при} \quad r = a \quad \mu \quad b = r,$$

(2)
$$\int_a^b \sigma_\theta dr = 0, \quad \int_a^b \sigma_\theta r dr = -M,$$
 (a)

(3)
$$\tau_{r\theta} = 0$$
 всюду на поверхностях.

Условие (1) означает, что как выпуклая, так и вогнутая поверхности бруса свободны от нормальных усилий. Условие (2) ука-

¹) G. B. Jeffery, Trans. Roy. Soc. (London), 221А, 265 (1921). См. также Brit. Ass. Adv. Sci. Rept., 1921.

В § 66 данной книги дано полное решение этой задачи с помощью иного метода.

²) Из общей теории двумерной задачи, § 16, следует, что решение, полученное ниже для плоского напряженного состояния, справедливо и для случая плоской деформации.

§ 29]

ЧИСТЫЙ ИЗГИБ КРИВЫХ БРУСЬЕВ

зывает на то, что нормальные напряжения на концах вызваны только действием момента M, тогда как условие (3) указывает, что к внешней и внутренней поверхностям не приложены касательные внешние усилия. Используя первое из уравнений (42) совместно с граничным условием (1) из (а), получаем

$$\frac{A}{a^2} + B(1+2\ln a) + 2C = 0, \quad \frac{A}{b^2} + B(1+2\ln b) + 2C = 0.$$
 (6)

Теперь нужно удовлетворить граничному условию (2) из (а). Использование функции напряжений гарантирует равновесие системы. Ненулевая результирующая усилий на каждом из концов стержня приводит к нарушению условий равновесия. Для того чтобы изгибающий момент равнялся *M*, должно выполняться условие

$$\int_{a}^{b} \sigma_{\theta} r \, dr = \int_{a}^{b} \frac{\partial^{2} \varphi}{\partial r^{2}} r \, dr = -M.$$
(B)

Отсюда получаем

$$\int_{a}^{b} \frac{\partial^{2} \varphi}{\partial r^{2}} r \, dr = \left| \frac{\partial \varphi}{\partial r} r \right|_{a}^{b} - \int_{a}^{b} \frac{\partial \varphi}{\partial r} \, dr = \left| \frac{\partial \varphi}{\partial r} r \right|_{a}^{b} - \left| \varphi \right|_{a}^{b}$$

и, принимая во внимание, что с учетом (б)

$$\left|\frac{\partial \varphi}{\partial r} r\right|_{a}^{b} = 0,$$

из (в) на ходим

$$|\varphi|_a^b = M.$$

После подстановки сюда выражения (41) для ф получаем

$$A \ln \frac{b}{a} + B (b^2 \ln b - a^2 \ln a) + C (b^2 - a^2) = M.$$
 (r)

Это уравнение, вместе с двумя уравнениями (б), полностью определяет постоянные A, B, C. Отсюда находим

$$A = -\frac{4M}{N} a^2 b^2 \ln \frac{b}{a}, \quad B = -\frac{2M}{N} (b^2 - a^2),$$

$$C = \frac{M}{N} [b^2 - a^2 + 2 (b^2 \ln b - a^2 \ln a)],$$
(A)

где для упрощения введено обозначение

$$N = (b^{2} - a^{2})^{2} - 4a^{2}b^{2} \left(\ln \frac{b}{a}\right)^{2}.$$
 (e)

Подставляя значения постоянных, определяемые выражениями (д),

в формулы для компонент напряжения (42), получаем

$$\sigma_{r} = -\frac{4M}{N} \left(\frac{a^{2}b^{2}}{r^{2}} \ln \frac{b}{a} + b^{2} \ln \frac{r}{b} + a^{2} \ln \frac{a}{r} \right),$$

$$\sigma_{\theta} = -\frac{4M}{N} \left(-\frac{a^{2}b^{2}}{r^{2}} \ln \frac{b}{a} + b^{2} \ln \frac{r}{b} + a^{2} \ln \frac{a}{r} + b^{2} - a^{2} \right), \quad (47)$$

$$\tau_{r\theta} = 0.$$

Эти формулы дают распределение напряжений, удовлетворяющее всем граничным условиям¹) (а) для чистого изгиба и представляют собой точное решение задачи, если распределение нормальных усилий на концах дается вторым из уравнений (47). Если силы, создающие изгибающий момент M, распределены по торцам стержня некоторым другим образом, распределение напряжений на концах будет отличаться от того, которое дается решением (47). Однако, согласно принципу Сен-Венана, на некотором удалении от концов, скажем, на расстояниях от концов, превышающих высоту сечения бруса, этими отклонениями от решения (47) можно пренебречь. Это обстоятельство иллюстрирует рис. 102.

Представляет практический интерес сравнение решения (47) с элементарными решениями, приводимыми в курсах сопротивления материалов. Если высота бруса b-a мала по сравнению с радиусом (b+a)/2 срединной оси стержня, то обычно напряженное состояние принимается таким же, как и в прямолинейном брусе. Если же высота не мала, то обычно на практике полагают, что при изгибе поперечные сечения бруса остаются плоскими; тогда можно показать, что распределение нормального напряжения σ_{θ} по любому поперечному сечению следует гиперболическому закону²). Во всех случаях наибольшее³) и наименьшее значения напряжения σ_{θ} можно представить в виде

$$\sigma_{\theta} = m \frac{M}{a^2} \,. \tag{(x)}$$

¹⁾ Это решение принадлежит Х. С. Головину (Известия С.-Петербургского технологического института, т. 3, 1881). Эта статья, опубликованная на русском языке, долгое время была неизвестна в других странах, и та же задача была решена Рибьером (М. С. Ribiere, Compt. Rend. 108 (1889); 132 (1901)) и Прандтлем. См. А. Föppl, Vorlesungen uber Teshnische Mechanik, т. 5, стр. 72, 1907, а также А. Timpe, Z. Math. Physik, 52, 348 (1905).

²) Эта приближенная теория развита в работах Н. Résal, Ann. Mines (1862) стр. 617. Е. Winkler, Zivilingenieur 4, 232 (1858). См. также книгу Е. Winkler, Die Lehre der Elastizität und Festigkeit, гл. 15, Prag, 1862. Дальнейшее развитие этой теории принадлежит Грасхофу (F. Grashof, Elastizität und Festigkeit, 1878 стр. 251, и Пирсону (K. Pearson, History of the theory of elasticity, т 2, ч. 1, стр. 422, 1893).

³) Наибольшее значение σ_{θ} в (47) всегда получается на внутренней поверхности бруса r = a; доказательство этого дал Брок (J. E. Brock, J. Appl. Mech. **31**, 559 (1964)).

Коэффициент тв формуле (ж)			
$\frac{b}{a}$	Линейное распределение напряжения	Гиперболическое распределение напряжения	Точное решение
1,3 2 3	$\pm 66,67 \\ \pm 6,000 \\ \pm 1,500$	+72,98-61,27+7,725-4,863+2,285-1,095	+73,05-61,35 +7,755-4,917 +2,292-1,130

Коэффиниент т в формуле (ж

В табл. 1 приводятся значения множителя *m*, вычисленного по двум элементарным методам, упомянутым выше, и по точной формуле (47)¹). Из этой таблицы можно видеть, что элементар-

ное решение, основанное на гипотезе плоских сечений, дает очень точные результаты.

Далее будет показано, что в случае чистого изгиба плоские поперечные сечения действительно остаются плоскими, и расхождение между элементарными решениями и точным решением связано с тем, что в элементарных решениях пренебрегают компонентой напряжения σ_r и считают, что продольные волокна изогнутого стержня находятся в состоянии чистого растяжения или сжатия.

Из первого уравнения (47) можно видеть, что для направления изгиба, показанного на рис. 42, напряжение о, всегда положи-

Т 8 6 Напряжение б_ө=тм ₀3 4 Нейтральная ось 2 (r/a = 1,443)0 2 4 6 1,0 1.2 1,4 1.6 ß Напряжение б_r=/3 <u>n</u>2 1,2 Max. (1,070) 0,9 0.6 0,2 0 1,0 1,2 1,6 1,4 1,8

Рис. 43

тельно. Тот же вывод можно сделать сразу же, исходя из направления напряжений σ_{θ} , действующих на элементы n-n(рис. 42). Соответствующие усилия дают результирующие в радиальном направлении, стремящиеся отделить друг от друга продольные волокна и вызывающие растягивающее напряжение в радиальном направлении. Это напряжение увеличивается в направлении к нейтральной поверхности и становится макси-

таблица 1

¹) Эти результаты взяты из докторской диссертации V. Bilevicz, Michigan University, 1931.

мальным вблизи нее. Его максимальное значение всегда намного меньше $(\sigma_{\theta})_{max}$. Например, при b/a = 1,3, $(\sigma_r)_{max} = 0,060 (\sigma_{\theta})_{max}$; при b/a = 2, $(\sigma_r)_{max} = 0,138 (\sigma_{\theta})_{max}$; при $b/a = 3 (\sigma_r)_{max} = 0,193 (\sigma_{\theta})_{max}$. На рис. 43 дано распределение σ_{θ} и σ_r при b/a = 2. Из этого рисунка видно, что точка с максимальным напряжением σ_r несколько смещена от нейтральной оси в направлении центра кривизны.

§ 30. Компоненты деформаций в полярных координатах

При исследовании перемещений в полярных координатах обозначим компоненты перемещения в радиальном и окружном направлениях через *и* и *v*. Если

u — радиальное перемещение стороны ad элемента abcd (рис. 44), то радиальное перемещение стороны bc равно $u + (\partial u/\partial r) dr$. Относительное удлинение элемента abcd в радиальном направлении определится тогда формулой

Рис. 44.

$$e_r = \frac{\partial u}{\partial r}$$
. (48)

Деформации в окружном направлении зависят не только от перемещения v, но также и от радиального перемещения u. Считая, например, что точки a и d элемента abcd (рис. 44) имеют только радиальное перемещение u, получаем, что новая длина дуги ad равна $(r+u)d\theta$, а отсюда окружная деформация определяется выражением

$$\frac{(r+u)\,d\theta-r\,d\theta}{r\,d\theta}=\frac{u}{r}\,.$$

Разность окружных перемещений сторон *ab* и *cd* элемента *abcd* равна $(\partial v/\partial \theta) d\theta$, а окружная деформация, вызванная перемещением v соответственно равна $\partial v (r d\theta)$. Отсюда общая окружная деформация определяется формулой¹)

$$\varepsilon_{\theta} = \frac{u}{r} + \frac{\partial v}{r \, \partial \theta} \,. \tag{49}$$

Рассмотрим теперь деформацию сдвига, считая, что элемент abcd после деформации занимает положение a'b'c'd' (рис. 44). Угол между направлениями ad и a'd', связанный с радиальным перемещением u, равен $\partial u/(r \partial \theta)$. Точно так же угол между a'b' и ab равен $\partial v/\partial r$. Следует отметить, что вклад в деформацию сдвига вносит только часть этого угла (заштрихованная на рисунке),

¹⁾ Символ є в § 11 имел другой смысл.

тогда как другая его часть, равная v/r, представляет угловое перемещение, связанное с вращением элемента abcd как абсолютно твердого тела относительно оси, проходящей через точку O. Следовательно, общее изменение угла dab, представляющее собой деформацию сдвига, определяется формулой

$$\gamma_{r\theta} = \frac{\partial u}{r \, \partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} \,. \tag{50}$$

Подставляя теперь выражения для компонент деформации (48), (49) и (50) в уравнения, выражающие закон Гука для плоского напряженного состояния

$$\varepsilon_r = \frac{1}{E} (\sigma_r - \nu \sigma_\theta), \ \varepsilon_\theta = \frac{1}{E} (\sigma_\theta - \nu \sigma_r), \ \gamma_{r\theta} = \frac{1}{G} \tau_{r\theta},$$
 (51)

можно получить уравнения, достаточные для определения и и и.

§ 31. Перемещения при симметричных полях напряжений

Подставляя в первое уравнение (51) компоненты напряжения из уравнений (42), находим

$$\frac{\partial u}{\partial r} = \frac{1}{E} \left[\frac{(1+v)A}{r^2} + 2(1-v)B\ln r + (1-3v)B + 2(1-v)C \right].$$

После интегрирования получаем

$$u = \frac{1}{E} \left[-\frac{(1+v)A}{r} + 2(1-v)Br\ln r - B(1+v)r + 2C(1-v)r \right] + f(\theta),$$
(a)

где $f(\theta)$ — функция лишь одной переменной θ . Из второго уравнения (51), используя (49), находим

$$\frac{\partial v}{\partial \theta} = \frac{4Br}{E} - f(\theta).$$

Отсюда после интегрирования получаем

$$v = \frac{4Br\theta}{E} - \int f(\theta) \, d\theta + f_1(r), \tag{6}$$

где $f_1(r)$ — функция лишь одной переменной r. Подставляя выражения (а) и (б) в (50) и замечая, что $\gamma_{r\theta}$ равна нулю, поскольку равно нулю $\tau_{r\theta}$, находим

$$\frac{1}{r}\frac{\partial f(\theta)}{\partial \theta} + \frac{\partial f_1(r)}{\partial r} + \frac{1}{r}\int f(\theta)d\theta - \frac{1}{r}f_1(r) = 0, \qquad (B)$$

откуда

$$f_1(r) = Fr, \quad f(\theta) = H\sin\theta + K\cos\theta,$$
 (r)

где F, H и K—постоянные, которые должны определяться из условий закрепления криволинейного стержня или кольца. Подставляя выражения (г) в (а) и (б), получаем следующие формулы для перемещений¹):

$$u = \frac{1}{E} \left[-\frac{(1+\nu)A}{r} + 2(1-\nu)Br\ln r - B(1+\nu)r + 2C(1-\nu)r \right] + H\sin\theta + K\cos\theta, \quad (52)$$
$$v = \frac{4Br\theta}{F} + Fr + H\cos\theta - K\sin\theta,$$

крепления бруса в виде

$$u=0, v=0, \frac{\partial v}{\partial r}=0$$
 при $\theta=0$ и $r=r_0=\frac{a+b}{2}$.

Подставляя сюда выражения для перемещений (52), получаем следующие уравнения для определения постоянных интегрирования F, H и K

$$\frac{1}{E} \left[-\frac{(1+\nu)A}{r_0} + 2(1-\nu)Br_0 \ln r_0 - B(1+\nu)r_0 + 2C(1-\nu)r_0 + K = 0, Fr_0 + H = 0, F = 0. \right]$$

Отсюда следует, что F = H = 0, и для перемещения v получаем

$$v = \frac{4Br\theta}{E} K\sin\theta.$$
 (53)

и зна-

Это означает, что перемещение любого поперечного сечения складывается из поступательного перемещения — K sin θ, одинакового для всех точек сечения, и поворота поперечного сечения на угол $4B\theta/E$ относительно центра кривизны O (рис. 42). Мы видим, что при чистом изгибе поперечные сечения остаются плоскими, как это обычно и предполагается в элементарной теории изгиба криволинейных стержней.

При исследовании симметричного распределения напряжений в сплошном кольце (стр. 86) постоянная В в общем решении (42) принималась равной нулю, и таким путем мы пришли к задаче Ламе. Теперь же, после получения выражений (52) для перемещений, становится понятным, какой смысл имеет предположение о том, что постоянная B равна нулю. Постоянная B является сомножителем в члене $4Br\theta/E$, входящем в выражение для перемещения v. Этот член неоднозначен; он меняется при

¹⁾ Уравнение (в) удовлетворяется только в том случае, когда $\int f(\theta) d\theta$ (f (θ) дается формулой (г)) берется без добавления постоянной.

увеличении θ на 2π , т. е. при возвращении к данной точке после полного оборота по кольцу. Такое *многозначное* выражение для перемещения физически невозможно в сплошном кольце, поэтому для данного случая нам следует положить B = 0 в общем решении (42).

Кольцо служит примером многосвязного тела, т. е. такого тела, в котором некоторые сечения можно провести без разделе-

ния тела на две части. Для полного определения поля напряжений в таких телах недостаточно задания граничных условий в напряжениях, и должны рассматриваться дополнительные уравнения, представляющие собой условия однозначности перемещений (см. §§ 34, 43).

Физический смысл многозначных решений можно разъяснить, рассматривая начальные напряжения в многосвязном теле. Если вы-

Рис. 45.

резать часть кольца двумя смежными поперечными сечениями (рис. 45) и соединить концы кольца с помощью сварки или каким-либо иным методом, то получится кольцо с начальными напряжениями, т. е. в кольце возникнут напряжения, несмотря на отсутствие внешней нагрузки. Если α — малый угол, определяющий вырезанную часть кольца, то кольцевое перемещение, необходимое для того, чтобы соединить вместе концы кольца, равно

$$v = \alpha r.$$
 (д)

То же перемещение, получаемое из уравнения (53), если положить $\theta = 2\pi$, составляет

$$v = 2\pi \frac{4Br}{E}.$$
 (e)

Из (д) и (е) получаем

$$B = \frac{\alpha E}{8\pi} \,. \tag{(X)}$$

Постоянная *B*, входящая в многозначный член выражения для перемещения (53), имеет теперь определенное значение в зависимости от способа, с помощью которого в кольце образуются начальные напряжения. Подставляя (ж) в уравнение (е) из § 29, находим, что изгибающий момент, необходимый для того, чтобы свести вместе концы кольца (рис. 45), равен

$$M = -\frac{\alpha E}{8\pi} \frac{(b^2 - a^2)^2 - 4a^2b^2 \left(\ln\frac{b}{a}\right)^2}{2(b^2 - a^2)} \,. \tag{H}$$

Отсюда, используя решение (47) для случая чистого изгиба, легко вычислить начальные напряжения в кольце.

§ 32. Вращающиеся диски

Распределение напряжений в круглом вращающемся диске имеет большое практическое значение¹). Если толщина диска мала по сравнению с его радиусом, то изменением радиального и окружного напряжений по толщине диска можно пренебречь²) и задача легко решается³). Если толщина диска постоянна, можно применить уравнение (37), в котором объемной силой будет являться сила инерции⁴). Тогда

$$R = \rho \omega^2 r, \quad S = 0, \tag{a}$$

где ρ — масса единицы объема материала диска, а ω — угловая скорость вращения. В силу симметрии напряжение $\tau_{r\theta}$ обращается в нуль, а напряжения σ_r и σ_{θ} не зависят от θ . Второе уравнение (37) удовлетворяется тождественно, а первое можно записать в форме

$$\frac{d}{dr}(r\sigma_r) - \sigma_\theta + \rho \omega^2 r^2 = 0.$$
 (6)

Согласно формулам (48) и (49) компоненты деформации в симметричном случае имеют вид

$$\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_{\theta} = \frac{u}{r}.$$
 (B)

Выражая из двух первых соотношений между напряжениями и деформациями (51) компоненты напряжения, будем иметь

$$\sigma_r = \frac{E}{1-v^2} \left(\varepsilon_r + v \varepsilon_{\theta} \right), \quad \sigma_{\theta} = \frac{E}{1-v^2} \left(\varepsilon_{\theta} + v \varepsilon_r \right).$$

Далее, используя (в), находим

$$\sigma_r = \frac{E}{1 - v^2} \left(\frac{du}{dr} + v \frac{u}{r} \right), \quad \sigma_{\theta} = \frac{E}{1 - v^2} \left(\frac{u}{r} + v \frac{du}{dr} \right). \tag{(f)}$$

Подставляя эти выражения в (б), получим, что перемещение и должно удовлетворять уравнению

$$r^{2}\frac{d^{2}u}{dr^{2}} + r\frac{du}{dr} - u = -\frac{1-v^{2}}{E}\rho\omega^{2}r^{3}.$$
 (д)

¹) Полное исследование этой задачи и общирную библиографию по этому вопросу можно найти в книге: K. Löffler, Die berechnung von Rotierenden Scheiben und Schalen, Springer-Verlag OHG, Göttingen, 1961.

²) Точное решение задачи для диска, имеющего форму сплющенного эллипсоида вращения, получил Кри (С. Сhree, Proc. Roy. Soc. (London) 58, 39 (1895)). Это решение показывает, что в однородном диске с толщиной, равной 1/8 диаметра, различие между максимальным и минимальным напряжением на оси вращения составляет только 5% от максимального напряжения.

³) Более подробное обсуждение этой задачи будет дано позже (см. § 134).

⁴⁾ Вес диска считается пренебрежимо малым.

Общее решение этого уравнения имеет вид

$$u = \frac{1}{E} \left[(1 - v) Cr - (1 + v) C_1 \frac{1}{r} - \frac{1 - v^2}{8} \rho \omega^2 r^3 \right], \qquad (e)$$

где С и С₁-произвольные постоянные. Соответствующие компоненты напряжений находятся из (г) в виде

$$\sigma_r = C + C_1 \frac{1}{r^2} - \frac{3+\nu}{8} \rho \omega^2 r^2, \quad \sigma_\theta = C - C_1 \frac{1}{r^2} - \frac{1+3\nu}{8} \rho \omega^2 r^2. \quad (\mathbf{x})$$

Постоянные интегрирования С и С₁ определяются из граничных условий.

Для случая сплошного диска, чтобы получить u = 0 в центре, мы должны положить $C_1 = 0$. Постоянная C определяется из условия, на контуре r = b диска. Если там не приложены силы, то получаем

$$(\sigma_r)_{r=b} = C - \frac{3+v}{8}\rho\omega^2 b^2 = 0,$$

откуда

$$C=\frac{3+\nu}{8}\rho\omega^2b^2.$$

Компоненты напряжений, согласно (ж), теперь определяются формулами

$$\sigma_r = \frac{3+\nu}{8}\rho\omega^2 (b^2 - r^2), \quad \sigma_\theta = \frac{3+\nu}{8}\rho\omega^2 b^2 - \frac{1+3\nu}{8}\rho\omega^2 r^2.$$
(54)

Эти напряжения принимают максимальное значение в центре диска¹), где

$$\boldsymbol{\sigma}_{\boldsymbol{\rho}} = \boldsymbol{\sigma}_{\boldsymbol{\theta}} = \frac{3+\nu}{8} \rho \omega^2 b^2. \tag{55}$$

В случае диска с круглым отверстием радиуса а в центре постоянные интегрирования в уравнениях (ж) могут быть найдены из граничных условий на внутренней и внешней границах. Если на этих границах нет усилий, то граничные условия имеют вид

$$(\sigma_r)_{r=a} = 0, \quad (\sigma_r)_{r=b} = 0;$$
 (14)

из этих условий следует, что

$$C = \frac{3+\nu}{8}\rho\omega^2 (b^2 + a^2), \quad C_1 = -\frac{3+\nu}{8}\rho\omega^2 a^2 b^2.$$

Подставляя эти значения в уравнения (ж), получаем

$$\sigma_{r} = \frac{3+\nu}{8} \rho \omega^{2} \left(b^{2} + a^{2} - \frac{a^{2}b^{2}}{r^{2}} - r^{2} \right),$$

$$\sigma_{\theta} = \frac{3+\nu}{8} \rho \omega^{2} \left(b^{2} + a^{2} + \frac{a^{2}b^{2}}{r^{2}} - \frac{1+3\nu}{3+\nu} r^{2} \right).$$
(56)

§ 32]

¹) Можно показать, что когда σ_r и σ_{θ} не зависят от θ , они по их определению должны быть равны друг другу в центре.

Максимальное радиальное напряжение возникает в точке r = V ab, где

$$(\sigma_r)_{\max} = \frac{3+\nu}{8} \rho \omega^2 (b-a)^2.$$
 (57)

Максимальное окружное напряжение действует на внутренней границе, где оно равно

$$(\sigma_{\theta})_{\max} = \frac{3+\nu}{4} \rho \omega^2 \left(b^2 + \frac{1-\nu}{3+\nu} a^2 \right) .$$
(58)

Можно показать, что это напряжение больше чем $(\vec{\sigma}_r)_{max}$. Когда радиус отверстия *а* стремится к нулю, максимальное окружное напряжение стремится к значению, вдвое большему того, которое действует в центре сплошного диска и определяется формулой (55). Таким образом, введение малого кругового отверстия в центре¹) сплошного вращающегося диска удваивает максимальное напряжение. Другие примеры этого явления концентрации напряжений вокруг отверстий будут рассмотрены позже (см. стр. 105—112).

Предполагая, что напряжения по толщине диска не меняются, можно распространить развитый здесь метод анализа и на диски переменной толщины. Если h-толщина диска, меняющаяся в зависимости от радиуса r, то уравнение равновесия для элемента, показанного на рис. 40, имеет вид

$$\frac{d}{dr}(hr\sigma_r) - h\sigma_{\theta} + h\rho\omega^2 r^2 = 0.$$
 (K)

Используя равенство (г) для того, чтобы выразить компоненты напряжений через и, приводим уравнение (к) к виду

$$r^{2}\frac{d^{2}u}{dr^{2}}+r\frac{du}{dr}-u+\frac{r}{h}\frac{dh}{dr}\left(r\frac{du}{dr}+\nu u\right)=\frac{1-\nu^{2}}{E}\rho\omega^{2}r^{3}.$$
 (J)

Если величина h задана как функция от r, то (л) представляет собой дифференциальное уравнение относительно переменной и. Оно легко интегрируется для случая

$$h = Hr^n, \tag{M}$$

где *H* и *n*—постоянные. Его общее решение в этом случае имеет вид

$$u = mr^{n+3} + Ar^{\alpha} + Br^{\beta},$$

где

$$m = \frac{(1-v^2) \rho \omega^2}{E [8+(3+v) n]}$$
 ,

¹⁾ Случай эксцентрического отверстия рассмотрен в работе Та-Сheng Ku, J. Appl. Mech. 27, 359—360 (1960). См. также библиографию в этой работе.

а α и β-корни квадратного уравнения

$$x^2 + nx + nv - 1 = 0.$$

Величины А и В являются произвольными постоянными.

Хорошее приближение к реальной форме вращающихся дисков можно получить, разделив диск на части и аппроксимируя форму каждой части кривой типа (м)¹). В ряде работ был рассмотрен также случай конического диска²). Часто вычисления производились с разбиением диска на части и заменой каждой части диском постоянной толщины³).

§ 33. Изгиб кривого бруса силой, приложенной на конце⁴)

Начнем с простого случая, изображенного на рис. 46. Стержень узкого прямоугольного поперечного сечения с осью в форме дуги круга закреплен на нижнем конце и изгибается силой Р, приложенной в радиальном направлении к верхнему концу. Изгибающий момент в любом поперечном сечении *m* пропорционален $\sin \theta$, а нормальное напряжение σ_{θ} , согласно элементарной теории изгиба кривых брусьев, пропорционально изгибающему моменту.

Полагая, что это остается справедливым и для точного решения (предположение, ⁰ которое будет подтверждено результатами) из второго уравнения (38) находим, что функция напряжений ф, удовлетворяющая уравнению

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r}\frac{\partial^2}{\partial \theta^2}\right) \left(\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r}\frac{\partial \varphi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \varphi}{\partial \theta^2}\right) = = 0, \quad (a)$$

должна быть пропорциональна sin θ. Принимая

$$\varphi = f(r) \sin \theta$$

и подставляя (б) в уравнение (а), находим, что функция f(r)должна удовлетворять следующему обыкновенному дифференциальному уравнению

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{1}{r^2}\right)\left(\frac{d^2f}{dr^2} + \frac{1}{r}\frac{df}{dr} - \frac{1}{r^2}\right) = 0.$$
 (B)

(б)

Scheiben und Ringe nach einem neuen Verfahren, Berlin, 1929. Cm. также цитированную выше книгу Леффлера (K. Löffler).

4) См. цитированную выше работу Х. С. Головина.

x

¹) M. Grübler, VDI 50, 535 (1906). ²) A. Fisher, Z. Oesterr. Ing. Arch. Vereins 74, 46 (1922); H. M. Mar-tin, Eng. 115, 1 (1923); B. Hodkinson, Eng. 116, 274 (1923); K. E. Bisshopp, J. Appl. Mech. 11, A-1 (1944). ³) Этот метод развил Донат (M. Donat, Die Berechnung Rotierender

Это уравнение можно преобразовать в линейное уравнение с постоянными коэффициентами (см. стр. 85), и его общее решение имеет вид

$$f(r) = Ar^3 + B\frac{1}{r} + Cr + Dr\ln r,$$
 (r)

где A, B, C и D—постоянные интегрирования, которые определяются из граничных условий. Подставляя решение (г) в выражение (б) для функции напряжений и используя общие формулы (38), находим следующие выражения для компонент напряжений:

$$\sigma_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^{3}} \frac{\partial^{2} \varphi}{\partial \theta^{2}} = \left(2Ar - \frac{2B}{r^{3}} + \frac{D}{r}\right) \sin \theta,$$

$$\sigma_{\theta} = \frac{\partial^{2} \varphi}{\partial r^{2}} = \left(6Ar + \frac{2B}{r^{3}} + \frac{D}{r}\right) \sin \theta,$$

$$\tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta}\right) = -\left(2Ar - \frac{2B}{r^{3}} + \frac{D}{r}\right) \cos \theta.$$
(59)

Условия, что внешняя и внутренняя границы кривого стержня (рис. 46) свободны от внешних условий, имеют вид

 $\sigma_r = \tau_{r\theta} = 0$ при r = a и r = b

или, в соответствии с равенством (59),

$$2Aa - \frac{2B}{a^3} + \frac{D}{a} = 0, \quad 2Ab - \frac{2B}{b^3} + \frac{D}{b} = 0.$$
 (д)

Наконец, последнее условие состоит в том, что сумма касательных усилий, распределенных по верхнему концу стержня, должна быть равна P. Принимая ширину поперечного сечения равной единице, или считая P нагрузкой на единицу толщины пластинки, для верхнего конца $\theta = 0$, получаем

$$\int_{a}^{b} \tau_{r\theta} dr = -\int_{a}^{b} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta} \right) dr = \frac{1}{r} \frac{\partial \varphi}{\partial \theta} \Big|_{b}^{a} =$$
$$= \left(Ar^{2} + \frac{B}{r^{2}} + C + D \ln r \right) \Big|_{b}^{a} = P,$$

или

$$-A(b^2 - a^2) + B\frac{(b^2 - a^2)}{a^2b^2} - D\ln\frac{b}{a} = P.$$
 (e)

Из уравнений (д) и (е) находим

1

$$A = \frac{P}{2N}, \quad B = -\frac{Pa^2b^2}{2N}, \quad D = -\frac{P}{N}(a^2 + b^2),$$
 (**)

где

$$N = a^2 - b^2 + (a^2 + b^2) \ln \frac{b}{a} .$$

Подставляя значения (ж) постоянных интегрирования в уравнения (59), получаем выражения для компонент напряжений. Для

100

верхнего конца стержня при $\theta = 0$ получаем

$$\sigma_{\theta} = 0, \quad \tau_{r\theta} = -\frac{P}{N} \left[r + \frac{a^2 b^2}{r^3} - \frac{1}{r} (a^2 + b^2) \right]. \tag{H}$$

Для нижнего конца $\theta = \pi/2$ находим

$$\tau_{r\theta} = 0, \quad \sigma_{\theta} = \frac{P}{N} \left[3r - \frac{a^2 b^2}{r^3} - (a^2 + b^2) \frac{1}{r} \right].$$
 (K)

Формулы (59) определяют точное решение задачи только тогда, когда усилия на концах криволинейного стержня распределены так, как этого требуют уравнения (и) и (к). Для всякого другого распределения усилий распределение напряжений на концах стержня будет отличаться от того, которое дает решение (59), однако в силу принципа Сен-Венана на большом расстоянии от концов решение остается справедливым. Вычисления показывают,

Рис. 47.

что элементарная теория, основанная на предположении, что плоские поперечные сечения после изгиба остаются плоскими, снова дает весьма удовлетворительные результаты.

На рис. 47 показано распределение касательных напряжений $\tau_{r\theta}$ по поперечному сечению $\theta = 0$ (для случаев b = 3a, 2a и 1,3a). Абсциссами являются радиальные расстояния от внутренней границы r = a. Ординаты представляют собой численные коэффициенты, на которые нужно умножить среднее касательное напряжение P/(b-a), чтобы получить касательное напряжение в рассматриваемой точке. При величине этого коэффициента 1,5 получается напряжение, равное максимальному касательному напряжению, определенному из параболического распределения для прямых балок прямоугольного сечения. Из рисунка можно видеть, что распределение касательных напряжений приближается к параболическому, когда высота сечения мала. Для таких соотношений размеров, которые характерны для арок и сводов, можно с достаточной точностью принимать параболическое распределение тельных напряжений, которое имеет место в прямолинейных стержнях прямоугольного поперечного сечения.

Рассмотрим теперь перемещения, вызываемые силой *P* (рис. 46). Используя уравнения (48)—(51) и подставляя выражения (59) для компонент напряжения, получаем

$$\frac{\partial u}{\partial r} = \frac{\sin \theta}{E} \left[2Ar \left(1 - 3v \right) - \frac{2B}{r^3} \left(1 + v \right) + \frac{D}{r} \left(1 - v \right) \right],$$

$$\frac{\partial v}{\partial \theta} = r\varepsilon_{\theta} - u, \quad \gamma_{r\theta} = \frac{\partial u}{r \partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r}.$$
(1)

После интегрирования первого из этих уравнений имеем

$$u = \frac{\sin \theta}{E} \left[Ar^2 (1 - 3v) + \frac{B}{r^2} (1 + v) + D (1 - v) \ln r \right] + f(\theta), \quad (M)$$

где функция $f(\theta)$ зависит только от θ . Подставляя выражение (м) во второе уравнение (л) вместе с выражением для ε_{θ} и интегрируя, находим

$$v = -\frac{\cos\theta}{E} \left[Ar^{2} (5+v) + \frac{B}{r^{2}} (1+v) - D \ln r (1-v) + D (1-v) \right] - \int f(\theta) d\theta + F(r), \quad (H)$$

где функция F (r) зависит только от r. Подставляя теперь выражения (м) и (н) в третье равенство (л), приходим к уравнению

$$\int f(\theta) d\theta + f'(\theta) + rF'(r) - F(r) = -\frac{4D\cos\theta}{E}.$$

Это уравнение удовлетворяется, если положить

$$F(r) = Hr, \quad f(\theta) = -\frac{2D}{E}\theta\cos\theta + K\sin\theta + L\cos\theta, \quad (\Pi)$$

где *H*, *K* и *L*—произвольные постоянные, которые определяются из условий закрепления.

Компоненты перемещений и и v, согласно формулам (м) и (н), имеют теперь следующий вид:

$$u = -\frac{2D}{E}\theta\cos\theta + \frac{\sin\theta}{E} \left[D(1-\nu)\ln r + A(1-3\nu)r^2 + \frac{B(1+\nu)}{r^2} \right] + K\sin\theta + L\cos\theta, \quad (p)$$
$$v = \frac{2D}{E}\theta\sin\theta - \frac{\cos\theta}{E} \left[A(5+\nu)r^2 + \frac{B(1+\nu)}{r^2} - \frac{B(1+\nu)}{r^2} \right]$$

$$-D(1-\nu)\ln r\Big]+\frac{D(1+\nu)}{E}\cos\theta+K\cos\theta-L\sin\theta+Hr.$$

Радиальное перемещение верхнего конца стержня можно получить, полагая $\theta = 0$ в выражении для *u*, откуда

$$(u)_{\theta=0} = L. \tag{C}$$

Постоянная L определяется из условия на заделанном конце

(рис. 46). При $\theta = \pi/2$ имеем v = 0 и $\partial v/\partial r = 0$; таким образом, из второго уравнения (р) получаем

$$H=0, \quad L=\frac{D\pi}{E}.$$
 (T)

Следовательно, прогиб верхнего конца стержня с учетом (ж) дается формулой

$$(u)_{\theta=0} = \frac{D\pi}{E} = -\frac{P\pi (a^2 + b^2)}{E\left[(a^2 - b^2) + (a^2 + b^2)\ln\frac{b}{a}\right]}.$$
 (60)

Приложение этой формулы будет дано ниже. Когда b приближается к a, а высота сечения криволинейного стержня h=b-aмала по сравнению с a, можно использовать выражение

$$\ln \frac{b}{a} = \ln \left(1 + \frac{h}{a} \right) = \frac{h}{a} - \frac{1}{2} \frac{h^2}{a^2} + \frac{1}{3} \frac{h^3}{a^3} + \dots$$

Подставляя его в (60) и пренебрегая членами высших порядков, получаем

$$(u)_{\theta=0}=-\frac{3\pi a^3 P}{Eh^3},$$

что совпадает с элементарной формулой для этого случая 1).

Взяв функцию напряжений в виде

$$\varphi = f(r) \cos \theta$$

и действуя описанным выше способом, находим решение для случая, когда к верхнему концу стержня приложены вертикальная сила и изгибающий момент (рис. 46). Вычитая из этого решения напряжения, производимые изгибающим моментом (см. § 29), можно получить напряжения, вызываемые вертикальной силой, приложенной к концу стержня. Имея решения для случаев действия горизонтальной и вертикальной сил, можно с помощью наложения получить решения для любой наклонной силы.

В приведенных рассуждениях всюду предполагалось, что уравнения (д) удовлетворяются и что круговые границы стержня свободны от нагрузок. Считая, что в (д) правые части отличны от нуля, получаем случай, когда по границам стержня распределены нормальные и касательные усилия, пропорциональные sin θ и cos θ . Комбинируя эти решения с полученными ранее для случаев чистого изгиба и для изгиба силой, приложенной на конце, можно приближенно представить условия нагружения свода песком или грунтом²).

103

¹⁾ См. С. П. Тимошенко, Сопротивление материалов, т. I, § 80, Физматгиз, 1960.

²) Несколько примеров такого рода рассмотрели Х. С. Головин и Рибьер (Ribiere), см. работы, цитированные выше.

§ 34. Краевые дислокации

В § 33 компоненты перемещений (р) были получены, исходя из компонент напряжения (59). Постоянные *А*, *B*, *D* для задачи, представленной на рис. 46, определялись формулами (ж).

Приложение этого решения к задаче о четверти кольца не связано с существом дела. С равным успехом то же решение

Рис. 48.

равным успехом то же решение можно применить и к почти полному кольцу (рис. 48, *a*, *б*). Его можно также интерпретировать для случая, когда заданы не силы, а перемещения.

Рассмотрим перемещения (р) из § 33. Обратим внимание на то, что первый член в выражении для и может привести к разрыву перемещений. Рассмотрим рис. 48, б. На этом рисунке изо-

бражено первоначально полное кольцо с радиальным разрезом при $\theta = 0$. На нижней поверхности разреза $\theta = 0$, а на верхней $\theta = 2\pi - \varepsilon$, где ε —бесконечно малая величина. Если вычислить *и* по формуле (р) для двух этих значений θ , то результаты будут различаться на величину δ . Таким образом,

$$\delta = (u)_{\theta = 2\pi - e} - (u)_{\theta = 0}.$$
 (a)

Из формулы (р) тогда получаем

$$\delta = -\frac{2D}{E} 2\pi.$$
 (6)

Это относительное смещение двух поверхностей разреза показано на рис. 48, δ символом δ . Усилие P, необходимое для того, чтобы произвести это смещение, находится из последнего уравнения (ж) § 33, куда нужно подставить D, определяемое по формуле (б). Если две поверхности приварены друг к другу после того, как наложено перемещение δ , каждая из них в виде действия и противодействия передает на другую указанное усилие P. Кольцо при этом находится в состоянии самонапряжения, называемом «краевой дислокацией». Соответствующее плоское деформированное состояние является основой для объяснения пластической деформации в кристаллах металлов¹).

Рис. 48, а показывает кольцо с зазором шириной δ с параллельными берегами. Если сначала сделать тонкий разрез, а затем

¹) G. I. Тауlог, Proc. Roy. Soc. (London), ser. A, 134, 362—387 (1934). См. также А. Н. Cottrell, Dislocation and Plastic Flow in Crystals, гл. 2, 1956. [Русский перевод А. Котрелл, Дислокации и пластическое течение металлов, Металлургиздат, 1958.]

§ 35]

наложить относительные перемещения, для того чтобы раскрыть разрез, то разрыв перемещений возникнет уже не для u, а для v. Его можно получить из решения § 33, если принять, что правая поверхность разреза занимает положение $\theta = -\pi/2$, а левая— $\theta = 3\pi/2$. Тогда, поскольку положительное направление v совпадает с направлением возрастания θ , получаем

$$\delta = (v)_{\theta = -\pi/2} - (v)_{\theta = 3\pi/2}.$$
 (B)

Используя вторую из формул (р) § 33, находим

$$\delta = \frac{2D}{E} \left(-\frac{\pi}{2} \right) \sin \left(-\frac{\pi}{2} \right) - \frac{2D}{E} \frac{3\pi}{2} \sin \frac{3\pi}{2} = \frac{4\pi D}{E} .$$
 (r)

Тот факт, что значения δ в (б) и (г) различаются только знаком, означает, что и напряжения в этих двух случаях должны различаться только по знаку. Величина *P* находится из третьего соотношения (ж) в § 33, после чего из двух первых находятся *A* и *B*. Это соответствие можно было предвидеть на основании того факта, что если сделать оба разреза, показанные на рис. 48, *a* и δ , то четверть кольца будет вырезана полностью. Относительное перемещение δ на рис. 48, *a* и относительное перемещение — δ на рис. 48, *б* можно вызвать одновременно, если сдвинуть четверть кольца вправо на величину δ . Это не вызовет никаких напряжений, и следовательно, оба вида дислокации должны иметь равные и противоположные по знаку напряжения, если каждая нз них существует отдельно. Это обстоятельство служит примером общей «теоремы об эквивалентных разрезах»¹).

§ 35. Влияние круглого отверстия на распределение напряжений в пластинке

Рис. 49 изображает пластинку, подверженную однородному растяжению величиной S в направлении оси x. Если в пластинке проделано малое круглое отверстие, то распределение напряжений вблизи этого отверстия изменится; однако в соответствии с принципом Сен-Венана можно сделать вывод, что этим изменением можно пренебречь на расстояниях, достаточно больших по сравнению с радиусом отверстия a.

Рассмотрим часть пластинки внутри концентрической окружности радиуса *b*, большого по сравнению с *a*. Напряжения на окружности радиуса *b* будут по существу теми же, что и в пла-

¹) Использованный здесь иллюстративный пример дал Гудьер (J. N. Goodier, Proc. 5th Intern. Congr. Appl. Mech., 1938, стр. 129—133). Теорема принадлежит Вольтерра, который дал общую теорию в работе V. Volterra, Ann. Ecole Norm. (Paris), ser. 3, 24, 401—517 (1907). См. также А. Ляв, Математическая теория упругости, 1935, стр. 236 и цитированную выше работу: А. Тіт ре, Z. Math. Physik.

стинке без отверстия; следовательно, они определятся формулами

$$(\sigma_r)_{r=b} = S\cos^2\theta = \frac{1}{2}S(1 + \cos 2\theta), \quad (\tau_{r\theta})_{r=b} = -\frac{1}{2}S\sin 2\theta.$$
 (a)

Эти усилия, действующие на внешнюю часть кольца, имеющего внутренний радиус r = a и внешний радиус r = b, определяют

Рис. 49.

распределение напряжений внутри кольца, которое можно рассматривать как состоящее из двух частей. Первая часть вызвана постоянной компонентой 1/2S нормальных усилий. Напряжения, которые она вызывает, можно определить с помощью выражений (44). Другая часть, вызванная нормальными силами $1/_2S \cos 2\theta$, вместе с касательными усилиями $-1/_2S \sin 2\theta$ создает напряжения, которые

можно получить из функции напряжений вида

$$p = f(r) \cos 2\theta. \tag{6}$$

Подставляя это выражение в уравнение совместности

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial r^2}\right)\left(\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r}\frac{\partial \varphi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \varphi}{\partial \theta^2}\right) = 0,$$

приходим к следующему обыкновенному дифференциальному уравнению для определения f(r):

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{4}{r^2}\right)\left(\frac{d^2f}{dr^2} + \frac{1}{r}\frac{df}{dr} - \frac{4f}{r^2}\right) = 0.$$

Его общее решение имеет вид

$$f(r) = Ar^2 + Br^4 + C\frac{1}{r^2} + D.$$

Отсюда получаем функцию напряжений

$$\varphi = \left(Ar^2 + Br^4 + C\frac{1}{r^2} + D\right)\cos 2\theta, \qquad (B)$$

а соответствующие компоненты напряжений, согласно уравнениям (38), определяются формулами

$$\sigma_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}} = -\left(2A + \frac{6C}{r^{4}} + \frac{4D}{r^{2}}\right) \cos 2\theta,$$

$$\sigma_{\theta} = \frac{\partial^{2} \varphi}{\partial r^{2}} = \left(2A + 12Br^{2} + \frac{6C}{r^{4}}\right) \cos 2\theta,$$

$$\tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta}\right) = \left(2A + 6Br^{2} - \frac{6C}{r^{4}} - \frac{2D}{r^{2}}\right) \sin 2\theta.$$

(r)

Постоянные интегрирования нужно теперь определить из условий (а) для внешней границы и из условия, что край отверстия свободен от внешних усилий. Эти условия дают

$$2A + \frac{6C}{b^4} + \frac{4D}{b^2} = -\frac{1}{2}S, \qquad 2A + \frac{6C}{a^4} + \frac{4D}{a^2} = 0,$$

$$2A + 6Bb^2 - \frac{6C}{b^4} - \frac{2D}{b^2} = -\frac{1}{2}S, \qquad 2A + 6Ba^2 - \frac{6C}{a^4} - \frac{2D}{a^2} = 0.$$

Решая эту систему уравнений и полагая a/b = 0, т.е. считая пластинку неограниченно большой, получаем

$$A = -\frac{S}{4}, \quad B = 0, \quad C = -\frac{a^4}{4}S, \quad D = \frac{a^2}{2}S.$$

Подставляя эти значения постоянных в уравнения (г) и добавляя напряжения, вызываемые равномерным растяжением интенсивности $1/{_2}S$, действующим на внешней границе, и определяемые из уравнений (44), находим¹)

$$\sigma_{r} = \frac{S}{2} \left(1 - \frac{a^{2}}{r^{2}} \right) + \frac{S}{2} \left(1 + \frac{3a^{4}}{r^{4}} - \frac{4a^{2}}{r^{2}} \right) \cos 2\theta,$$

$$\sigma_{\theta} = \frac{S}{2} \left(1 + \frac{a^{2}}{r^{2}} \right) - \frac{S}{2} \left(1 + \frac{3a^{4}}{r^{4}} \right) \cos 2\theta,$$

$$\tau_{r\theta} = -\frac{S}{2} \left(1 - \frac{3a^{4}}{r^{4}} + \frac{2a^{2}}{r^{2}} \right) \sin 2\theta.$$
(61)

Перемещения *и* и *v* могут быть отсюда получены с использованием уравнений (48)—(51) с точностью до смещений абсолютно твердого тела. Это предоставляется сделать читателю в качестве упражнения (задача 6, стр. 157). При этом перемещения не содержат разрывов.

Если радиус r очень велик, напряжения σ_r и $\tau_{r\theta}$ приближаются к значениям, даваемым уравнениями (а). На краю отверстия r = a получаем

$$\sigma_r = \tau_{r\theta} = 0, \quad \sigma_{\theta} = S - 2S \cos 2\theta.$$

Можно видеть, что напряжение σ_{θ} достигает максимального значения, когда $\theta = \pi/2$ или $\theta = 3\pi/2$, т. е. на концах *m* и *n* диаметра, перпендикулярного к направлению растяжения (рис. 49). В этих точках (σ_{θ})_{max} = 3S. Это максимальное растягивающее напряжение втрое больше постоянного напряжения *S*, приложенного на концах пластинки.

В точках p и q, где θ равно π и 0, получаем

$$\sigma_{\theta} = -S;$$

таким образом, в окружном направлении в этих точках действует сжимающее напряжение.

¹) Это решение получил Кирш (G. Kirsch) см. VDI 42 (1898). Оно много раз подтверждалось измерениями деформаций и методами фотоупругости (см. гл. 5 и книги, ссылки на которые приведены на стр. 163).

Для поперечного сечения пластинки, проходящего через центр отверстия и перпендикулярного оси х, угол в равен л/2. поэтому из уравнения (61) находим

$$\tau_{r\theta} = 0, \ \ \sigma_{\theta} = \frac{S}{2} \left(2 + \frac{a^2}{r^2} + 3 \frac{a^4}{r^4} \right).$$

Ясно, что влияние отверстия носит локальный характер. С уве-личением r напряжение σ_{θ} приближается к значению S. Распре-деление этих напряжений показано на рис. 49 заштрихованной площадью. Ло-кальный характер напряжений вокруг отверстия оправдывает применимость решения (61), выведенного для бесконечно большой пластинки, к пластинке конечной ширины. Если ширина пластинки не меньше четырех диаметров отверстия, ошибка решения (61) при вычислении $(\sigma_{\theta})_{max}$ не превышает $6^{0}/_{0}^{-1}$). решение (г) для растяже-

Имея сжатия в одном направления или ния или сжатия в одном направле-нии, с помощью наложения можно легко получить решение для растяжения или сжатия в двух перпендикулярных направ-лениях. Принимая, например, растягивающие напряжения в двух перпендикулярных направлениях равными S, находим, что на границе отверстия действуют растягивающие напряжения $\sigma_{\theta} = 2S$ (см. стр. 98). Считая, что в направлении x действует растягива-ющее напряжение S (рис. 50), а в направлении y — сжимающее напряжение — S, получаем случай чистого сдвига. Согласно (61) кольцевое напряжение на границе отверстия при этом равно

$$\sigma_{\theta} = S - 2S \cos 2\theta - [S - 2S \cos (2\theta - \pi)].$$

При $\theta = \pi/2$ или $\theta = 3\pi/2$, т.е. в точках *n* и *m*, находим, что $\sigma_{\theta} = 4S$. При $\theta = 0$ или $\theta = \pi$, т.е. в точках n_1 и m_1 , имеем $\sigma_{\theta} = -4S$. Следовательно, при чистом сдвиге для достаточно большой пластинки максимальное кольцевое напряжение на границе отверстия в четыре раза превышает приложенное напряже ние чистого сдвига.

ние чистого сдвига. Высокая концентрация напряжений на краю отверстия пред-ставляет большой практический интерес. В качестве примера можно упомянуть отверстия в палубах судов. При изгибе кор-пуса судна в палубах вызывается растяжение или сжатие, а им сопутствует высокая концентрация напряжений вокруг отверстий. Многократные циклы нагружения, производимые волнами, при-

^{1).} См. С. П. Тимошенко, Известия Киевского политехнического инсти-тута, Киев, 1907. Мы должны принимать S равным нагрузке деленной на полную площадь сечения пластинки.
водят к усталости материала в перенапряженных частях палуб, которая может в конечном счете вызывать усталостные трещины¹).

Часто оказывается необходимым уменьшить концентрацию напряжений вокруг отверстий, например вокруг отверстий для осмотра крыльев и фюзеляжа самолета. Это можно сделать путем добавления буртика²) или подкрепляющего кольца³). Соответствующее аналитическое решение задачи было проведено путем обобщения метода, использованного выше, а результаты сравнивались с экспериментальными

измерениями, полученными с помощью тензодатчиков 3).

Случай круглого отверстия вблизи прямолинейной границы полубесконечной пластинки при действии растягивающих напряжений, параллельных границе (рис. 51), исследовал Джеффри⁴). Уточнение результата и сравнение с фотоупругими испытания-

Рис. 51.

ми (см. гл. 5) было проведено позднее Миндлиным 5). Напряжения на контуре отверстия в точке n, ближайшей к краю. когда отрезок mn мал по сравнению с np, становятся очень большими в сравнении с невозмущенным растягивающим напряжением.

Джеффри исследовал также случай постоянного нормального давления р_i, действующего на границе отверстия. Это частный случай задачи об эксцентричном отверстии, описанной на стр. 88. Если отверстие удалено от прямолинейного края, напряжения на границе отверстия, согласно выражениям (45), равны

$$\sigma_{\theta} = p_i, \quad \sigma_r = -p_i.$$

Если же отверстие находится вблизи края, кольцевые напряжения вдоль границы отверстия уже не будут постоянными. Максимальное кольцевое напряжение возникает в точках k и l и определяется формулой

$$(\sigma_{\theta})_{\max} = p_i \frac{d^2 + r^2}{d^2 - r^2} \,. \tag{62}$$

⁴) G. B. Jeffery, См. его работу, цитированную выше.
⁵) R. D. Mindlin, Proc. Soc. Exptl. Stress Anal. 5, 56 (1948); см. также W. T. Koiter, Quart. Appl. Math. 15, 303 (1957).

§ 35]

См. введение и библиографию в книге: Thein Wah (ред.), A Guide for the Analysis of Ship Structures, Washington, D. C., 1960.
 ²) S. Timoshenko, J. Franklin Inst. 197, 505 (1924); см. также С. П. Ти-

у. танже с. П. Гинкин пист. 197, осо (1924); см. также с. П. Ги-мощенко, Сопротивление материалов, т. 2, Физматиз, 1960.
 ³) S. Levy, A. E. McPherson, F. C. Smith, J. Appl. Mech. 15, 160 (1948). Ссылки на более ранние работы можно найти в этой статье. Ссылки на работы, выпледшие до 1955 г., см. в книге Дж. Гудьер, Ф. Ходж, Упругость и пластичность, ИЛ, 1960.

Это напряжение можно сравнить с растягивающим напряжением в точке т на прямолинейной границе пластинки, определяемым формулой

$$\sigma_{\theta} = \frac{4p_i r^2}{d^2 - r^2} \,. \tag{63}$$

При $d = r\sqrt{3}$ оба выражения совпадают. Если $d > r\sqrt{3}$, то максимальное напряжение действует на границе отверстия, а при $d < r\sqrt{3}$ максимальное напряжение действует в точке m.

Случай пластинки конечной ширины с круглым отверстием на оси симметрии (рис. 52) рассматривал Р. Хаулэнд¹). Он обна-

Рис. 52.

ружил, например, что когда 2r = 0.5d, напряжение $\sigma_{\theta} = 4.3S$ в точке п и

$$\sigma_{\theta} = 0.75S$$

в точке т.

Метод. использованный в этом параграфе для исследования напряжений вокруг малых круглых отверстий, можно применить

и в случае, когда пластинка подвергается чистому изгибу²). Как для действия растяжения, так и для действия изгиба рассмотрено уже много частных случаев¹). Они включают задачи об одном отверстии или ряде отверстий в полосе 3-5) и в полубесконечной пластинке¹), о наборе отверстий, расположенных по окружности²), и о полукруглых вырезах в полосе³).

¹) R. C. J. Howland, Trans. Roy. Soc. (London), ser. A, 229, 49 (1930). У. С. Э. Ноw ган ц, ттань, коу. Soc. (Conton), set. А, 223, 49 (1950). Многочисленные ссылки на точные и приближенные решения для круглых и иных отверстий можно найти в журнале Applied Mechanics Reviews. Можно рекомендовать следующие книги: R. E. Peterson, Stress Concentration Factors in Design, New York, 1953; Дж. Гудьер, Ф. Ходж, Упругость и пластичность, ИЛ, 1960, Г. Н. Савин, Концентрация напряжений вокруг отверстий, Гостехиздат, 1951. Основные книги по фотоупругости (см. гл. 5) содержат много полезных экспериментальных данных.

²) Z. Tuzi, Phil. Mag., February, 1930, стр. 210; см. также Sci. Papers Inst. Phys. Chem. Res. (Tokyo) 9, 65 (1928). Соответствующую задачу для эллип-тического отверстия решил ранее Вольф (K. Wolf, Z. Tech. Phys. 160 (1922)). Круглое отверстие в полосе рассматривали Хаулэнд и Стивенсон (R. How-land, A. C. Stevenson, Trans. Roy. Soc. (London) Ser. A 232, 155(1933). Доказательство сходимости решения в рядах дал Найт (R. C. Knight, Quart. J. Math., Oxford Series 5, 255 (1934). ³) K. J. Schulz, Proc. Nederl. Akad. van Wetenschappen 45, 233, 341, 457 594 (1942).

<sup>457, 524 (1942); 48, 282, 292 (1945).
4)</sup> Chih - Bing Ling, Collected Papers in Elasticity and Mathematics, Institute of Mathematics, Academia Sinica, Tapei, Taiwan, 1963.
§) M. Isida, Bull. Japan. Soc. Mech. Engr. 3, 259-266 (1960); M. Isida, S. Tagami, Proc. 9th Japan Nat. Congr. Mech. 1959, crp. 51-54. В этих публикациях можно найти также ссылки на многочисленные статьи Исиды (M. Isida) по этому вопросу.

§ 351

Метод, развитый Хенгстом, применялся к случаю отверстия в квадратной пластинке под действием равных растяжений в двух направлениях¹), а также под действием сдвига²). Рассматрива-лись случаи как неподкрепленного, так и подкрепленного отверстий.

Были получены, кроме того, решения для бесконечной пластинки с круглым отверстием, когда усилия были приложены к границе отверстия³), для соответствующей задачи о полосе⁴) и задачи о ряде отверстий, расположенных вблизи (и параллельно) прямолинейной границы⁵) полубесконечной пластинки (ряд отверстий для заклепок).

Если в бесконечной пластинке, находящейся под действием растягивающего напряжения S, имеется эллиптическое отверстие, причем одна из главных осей эллипса параллельна направлению растяжения, то напряжения в точках на поверхности отверстия, расположенных на другой главной оси, равны

$$\sigma = S\left(1+2\frac{a}{b}\right),\tag{64}$$

где 2*а*-ось эллипса, перпендикулярная направлению растяжения, а 26-другая ось. Эта и другие задачи, касающиеся эллипсов, гипербол и двух кругов, рассматриваются в главе 6, где можно найти соответствующие ссылки.

Очень узкое отверстие с большим отношением а/b, перпендикулярное направлению растяжения, вызывает очень высокую концентрацию напряжений ⁶). Это объясняет причину распространения трещин, расположенных поперек направления приложенных сил. Распространение таких трещин можно остановить, если у концов трещины просверлить отверстия, чтобы ликвидировать там острые концы, вызывающие высокую концентрацию напряжений.

Если отверстие заполнено материалом, жестким или имеющим другие упругие константы по сравнению с материалом пластинки (плоское напряженное состояние) или тела (плоская деформация), то имеем задачу о жестком или упругом включениях. Она реша-лась для круглого⁷) и эллиптического включений⁸). Результаты

¹) H. Hengst, Z. Angew. Math. Mech. 18, 44 (1938).
²) C. K. Wang, J. Appl. Mech. 13, A-77 (1946).
³) W. G. Bickley, Trans. Roy. Soc. (London), ser. A, 227, 383 (1928).
⁴) R. C. Knight, Phil. Mag., ser. 7, 19, 517 (1935).
⁵) C. B. Ling, M. C. Hsu, Bur. Aeron. Res. Tech. Rept. 16, Chengtu, China, Febr., 1945. См. также примечание 4 на стр. 110.
⁶) Задачу об узкой щели рассматривал М. Садовский. (М. Sadowsky, Z. Angew. Math. Mech. 10, 77 (1930)).
⁷) K. Sezawa, G. Nishimura, Rept. Aeron. Res. Inst., Tokyo Imp. Univ., 6, № 25 (1931); J. N. Goodier, Trans. ASME 55, 39 (1933).
⁸) L. H. Donnell, Theodore von Kármán Anniversary Volume, 293, Pasadena, 1941.

dena, 1941.

для жесткого цилиндрического включения были подтверждены фотоупругим методом¹) (см. гл. 5).

Напряжения, определяемые уравнениями (61) задачи, показанной на рис. 49, совпадают для случая плоского напряженного состояния и плоской деформации. Однако в случае плоской деформации на плоских торцах тела должны действовать осевые напряжения

$$\sigma_{z} = \nu \left(\sigma_{r} + \sigma_{\theta} \right),$$

перпендикулярные плоскости xy, чтобы сделать деформации ε_z равными нулю. Снятие этих напряжений с торцов и переход к свободным от напряжений торцам вызовет новые напряжения, которые уже не будут носить двумерный (плоское напряжение состояние или плоская деформация) характер. Если диаметр отверстия мал по сравнению с расстоянием между торцами, то эти возмущения будут ограничиваться окрестностью торцов. Однако если диаметр и расстояние между торцами имеют величину одного порядка, задачу всюду в области нужно рассматривать как существенно трехмерную. Исследования такого рода²) показали, что σ_{θ} остается наибольшей компонентой напряжений и ее значение весьма близко к тому, которое дает двумерная теория.

§ 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы

Рассмотрим сосредоточенную вертикальную силу P, приложенную к горизонтальной прямолинейной границе AB бесконечно большой пластинки (рис. 53, *a*). Распределение нагрузки по толщине пластинки является однородным, как показано на рис. 53, *б*. Толщина пластинки принимается равной единице, так что P — нагрузка на единицу толщины пластинки.

Распределение напряжений зависит от сил, действующих на всей замкнутой границе, например *ABmn*, а не только от условий на *AB*. Это справедливо и тогда, когда граница *ABmn* уходит на бесконечность.

Существует фундаментальное решение ³), называемое простым радиальным распределением напряжений. Любой элемент C, рас-

¹) W. E. Thibodeau, L. A. Wood, J. Res. Nat. Bur. Std. 20, 393 (1938).

²) A. E. Green, Trans. Roy. Soc. (London), ser. A, 193, 229 (1948); E. Sternberg, M. Sadowsky, J. Appl. Mech. 16, 27 (1949).

³) Решение этой задачи с помощью трехмерного решения Буссинеска (J. Boussinesq) (см. стр. 401) получил Фламан (Flamant, Compt. Rend. 114, 1465 (1892)). Обобщение этого решения на случай наклонной силы принадлежит Буссинеску (Boussinesq, Compt. Rend. 114, 1510 (1892)). См. также статью: J. H. Michel, Proc. London Math. Soc. 32, 35 (1900). Экспериментальное неследование, которое дало толчок вышеупомянутым теоретическим работам, провел Вильсон (Carus Wilson, Phil. Mag. 32, 481 (1891)).

положенный на расстоянии r от точки приложения силы, подвергается простому сжатию в радиальном направлении. Компоненты напряжений определяются при этом формулами

$$\sigma_{\mathbf{r}} = -\frac{2P}{\pi} \frac{\cos \theta}{r}, \quad \sigma_{\theta} = \tau_{r\theta} = 0.$$
 (65)

Окружные напряжения σ_{θ} и касательные напряжения $\tau_{r\theta}$ равны нулю. Легко видеть, что указанная система напряжений удовлетворяет уравнениям равновесия (37).

Рис. 53.

Граничные условия на AB также удовлетворяются, так как компоненты σ_{θ} и $\tau_{r\theta}$ равны нулю вдоль прямолинейного края пластинки, который свободен от усилий, за исключением точки приложения силы (r = 0). Результирующая усилий, действующих на цилиндрическую поверхность радиуса r (рис. 53, δ), должна уравновешивать силу P. Она получается путем суммирования вертикальных компонент $\sigma_r r d\theta \cos \theta$, действующих на каждый элемент $r d\theta$ поверхности. Таким путем находим

$$2\int_{0}^{\pi/2}\sigma_{r}r\cos\theta\,d\theta=-\frac{4P}{\pi}\int_{0}^{\pi/2}\cos^{2}\theta\,d\theta=-P.$$

Для доказательства того, что (65) является точным решением задачи, следует рассмотреть также условия совместности (39). Приведенное выше решение получается из функции напряжений

$$\varphi = -\frac{P}{\pi} r \theta \sin \theta. \tag{a}$$

Это можно проверить, используя формулы (38) следующим образом:

$$\sigma_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}} = -\frac{2P}{\pi} \frac{\cos \theta}{r},$$

$$\sigma_{\theta} = \frac{\partial^{2} \varphi}{\partial r^{2}} = 0, \quad \tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta} \right) = 0, \quad (65')$$

что совпадает с решением (65). Подставляя функцию (а) в урав-

нение (39), можно легко показать, что это уравнение удовлетворяется.

Это решение требует определенного распределения усилий на остальной части границы. Если этой остальной частью является, например, полуокружность некоторого радиуса R, то требуемая сила определяется формулами (65) при r = R.

Выбирая окружность произвольного диаметра d с центром на оси x и касательную к оси y в точке O (рис. 53, a), для любой точки окружности C имеем $d\cos\theta = r$. Отсюда, согласно уравнению (65),

$$\sigma_{r} = -\frac{2P}{\pi d},$$

т.е. напряжения во всех точках окружности остаются одинаковыми, за исключением точки приложения нагрузки О.

Рассмотрим горизонтальную плоскость mn, находящуюся на расстоянии a от прямолинейного края пластинки: нормальные

Рис. 54.

и касательная компоненты напряжений в произвольной точке *М* на этой плоскости (рис. 53, *a*) определятся из условия простого сжатия в радиальном направлении

$$\sigma_{x} = \sigma_{r} \cos^{2} \theta = -\frac{2P}{\pi} \frac{\cos^{2} \theta}{r} = -\frac{2P}{\pi a} \cos^{4} \theta,$$

$$\sigma_{y} = \sigma_{r} \sin^{2} \theta = -\frac{2P}{\pi a} \sin^{2} \theta \cos^{2} \theta,$$

$$\sigma_{xy} = \sigma_{r} \sin \theta \cos \theta = -\frac{2P}{\pi} \frac{\sin \theta \cos^{2} \theta}{r} = -\frac{2P}{\pi a} \sin \theta \cos^{3} \theta.$$

(66)

На рис. 54 представлено графически распределение напряжений σ_x и τ_{xy} вдоль горизонтальной плоскости mn.

В точке приложения нагрузки напряжение теоретически неограниченно велико, поскольку конечная сила в этой точке дей-

ствует на бесконечно малой площади. В действительности нагрузка распределяется по площадке хотя и малой, но конечной ширины. В силу этого может происходить локальное пластическое течение. Однако даже в этом случае пластическую зону можно вообразить выделенной цилиндрической поверхностью малого радиуса, как показано на рис. 53, б. Уравнения теории упругости в этом случае можно применять к остальной части пластинки.

Аналогичное решение можно получить и для горизонтальной силы *P*, приложенной к прямолинейной границе полубесконечной пластинки (рис. 55). Компоненты напряжений для этого случая даются теми же уравнениями (65); однако угол θ в них нужно при этом измерять от направления силы, как показано

на рис. 55. Находя результирующую всех сил, действующих на цилиндрическую поверхность, изображенную на рис. 55 пунктирной линией, получаем

$$-\frac{2P}{\pi}\int_{0}^{\pi}\cos^{2}\theta\,d\theta=-P.$$

Эта результирующая уравновешивает внешнюю силу P, а поскольку компоненты напряжения $\tau_{r\theta}$ и σ_{θ} на прямолинейной границе равны нулю, то решение (65) удовлетворяет граничным условиям.

Имея решения для вертикальной и горизонтальной сосредоточенных сил, можно с помощью суперпозиции получить решения для наклонных сил. Разлагая наклонную силу *P* на две компоненты, вертикальную *P* соз и горизонтальную *P* sin α (рис. 56), из уравнений (65) получаем формулу для радиального напряжения в любой точке в виде

$$\sigma_r = -\frac{2}{\pi r} \left[P \cos \alpha \cos \theta + P \sin \alpha \cos \left(\frac{\pi}{2} + \theta \right) \right] = -\frac{2P}{\pi r} \cos \left(\alpha + \theta \right).$$
(67)

Таким образом, уравнения (65) можно использовать для любого направления силы, если в каждом случае измерять угол θ от направления действия силы.

Функцию напряжений (а) можно использовать также в случае, когда к прямолинейному краю полубесконечной пластинки приложена пара сил

(рис. 57, а). Легко видеть, что функцию напряжений для случая, когда в точке O_1 на расстоянии а от начала координат действует растягивающая сила P, можно получить из формулы (а) для φ , если считать φ функцией xи y вместо r и θ , записать y + a вместо y, а также — P вместо P. Комбинируя

эту и первоначальную функцию напряжений φ , можно получить функцию напряжений для двух равных по величине и противоположных по знаку сил, приложенных в точках O и O_1 в виде

$$-\phi(x, y+a)+\phi(x, y).$$

Когда расстояние *а* становится очень малым, эта величина приближается к производной

$$\varphi_1 = -a \frac{\partial \varphi}{\partial y} \,. \tag{6}$$

Подставляя (а) и (б) и учитывая, что (см. стр. 84)

$$\frac{\partial \varphi}{\partial y} = \frac{\partial \varphi}{\partial r} \sin \theta + \frac{\partial \varphi}{\partial \theta} \frac{\cos \theta}{r},$$

находим

$$\varphi_{1} = \frac{P_{a}}{\pi} \left(\theta + \sin \theta \cos \theta \right) =$$
$$= \frac{M}{r} \left(\theta + \sin \theta \cos \theta \right), \quad (68)$$

где М -- момент приложенной пары.

Рассуждая таким же образом, находим, что производная φ_1 дает функцию напряжений φ_2 для случая, когда в двух точках O и O_1 на очень малом расстоянии a

Рис. 57.

приложены две пары с равными по величине и противоположными по знаку моментами M (рис. 57, б). Для этого случая находим

$$\varphi_2 = \varphi_1 - \left(\varphi_1 + \frac{\partial \varphi_1}{\partial y}a\right) = -a \frac{\partial \varphi_1}{\partial y} = -\frac{2Ma}{\pi r} \cos^2 \theta.$$
 (69)

При изменении направления вращения приложенных пар на обратные необходимо лишь изменить знак функции (69).

Ряд функций напряжений, полученных последовательным дифференцированнем, использовался для решения задачи о концентрации напряжений, вызванной полукруглым вырезом в полубесконечной пластинке, находящейся под действием растягивающих напряжений, параллельных краю¹). Максимальное растягивающее напряжение при этом чуть больше чем в три раза, превышает невозмущенное растягивающее напряжение, действующее вдалеке от выреза. Исследовалась также полоса с полукруглыми вырезами на каждом крае²). Коэффициент концентрации напряжений (отношение максимального

¹) F. G. Munsell, Phil. Mag. 21. 765 (1936).

²) Сравнение теоретических результатов и измерений фотоупругими методами при растяжении и изгибе, принадлежащих нескольким авторам, провел Исида (M. Isida, Sci. Papers Fac. Eng., Tokushima Univ., Japan, 4, № 1,67—69 (January, 1953). Им рассмотрены результаты следующих работ: М. М. Frocht, R. Guernsey, Jr., D. Landsberg, J. Appl. Mech. 19, 124 (1952); C. B. Ling, J. Appl. Mech., 19. 141—146 (1952), 14, 275—280 (1947); H. Neuber, Kerbspannunslehre, 1937, стр. 35—37 (первое издание), или стр. 42—44, Springer-Verlag, OHG, Berlin, 1958 (второе издание); Н. Poritsky, H. D. Snively, C. R. Wylie, J. Appl. Mech. 6, 63 (1939).

напряжения в минимальном сечении к среднему) с ростом размеров вырезов падает ниже трех и приближается к единице.

Зная распределение напряжений, можно обычным путем получить соответствующие перемещения с помощью уравнений (48)—(50). Для силы, нормальной к прямолинейной границе (рис. 53), имеем

$$\varepsilon_r = \frac{\partial u}{\partial r} = -\frac{2P}{\pi E} \frac{\cos \theta}{r},$$

$$\varepsilon_{\theta} = \frac{u}{r} + \frac{\partial v}{r \partial \theta} = v \frac{2P}{\pi E} \frac{\cos \theta}{r},$$

$$\varepsilon_{r\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + \frac{\partial u}{\partial r} - \frac{v}{r} = 0.$$

(B)

Интегрируя первое из этих уравнений, находим

$$u = -\frac{2P}{\pi E} \cos \theta \ln r + f(\theta), \qquad (r)$$

где $f(\theta)$ — функция одной только переменной θ . Подставляя (г) во второе уравнение (в) и интегрируя, получаем

$$v = \frac{2vP}{\pi E} \sin \theta + \frac{2P}{\pi E} \ln r \sin \theta - \int f(\theta) \, d\theta + F(r), \qquad (a)$$

где функция F (r) зависит только от одной переменной r. Под-ставляя (г) и (д) в третье уравнение (в), заключаем, что

$$f(\theta) = -\frac{(1-\nu)P}{\pi E}\theta\sin\theta + A\sin\theta + B\cos\theta, \quad F(r) = Cr, \quad (e)$$

где A, B и C — постоянные интегрирования, которые определяются из условий закрепления. Выражения для перемещений, согласно уравнениям (г) и (д), имеют вид

$$u = -\frac{2P}{\pi E} \cos \theta \ln r - \frac{(1-\nu)P}{\pi E} \theta \sin \theta + A \sin \theta + B \cos \theta,$$

$$v = \frac{2\nu P}{\pi E} \sin \theta + \frac{2P}{\pi E} \ln r \sin \theta - \frac{(1-\nu)P}{\pi E} \theta \cos \theta + (\mathbf{x}) + \frac{(1-\nu)P}{\pi E} \sin \theta + A \cos \theta - B \sin \theta + Cr.$$

Допустим, что условия закрепления полубесконечной пластинки (рис. 53) таковы, что точки оси x не имеют поперечных перемещений. Тогда v = 0 при $\theta = 0$ и, согласно второй из формул (ж), получаем, что A = 0, C = 0. При этих значениях постоянных интегрирования вертикальные перемещения точек оси х определяются формулой

$$(u)_{\theta=0} = -\frac{2P}{\pi E} \ln r + B.$$
 (4)

Чтобы определить постоянную *B*, допустим, что некоторая точка оси *x* на расстоянии *d* от начала координат не имеет вертикаль-

ного перемещения. Тогда из уравнения (и) находим

$$B=\frac{2P}{\pi E}\ln d.$$

Имея значения всех постоянных интегрирования, можно по формулам (ж) определить перемещения любой точки полубесконечной пластинки.

Рассмотрим, например, перемещения точек на прямолинейной границе пластинки. Горизонтальные перемещения можно получить, полагая $\theta = \pm \pi/2$ в первом из выражений (ж). Отсюда получаем

$$(u)_{\theta=\pi/2} = -\frac{(1-v)P}{2E}, \quad (u)_{\theta=-\pi/2} = -\frac{(1-v)P}{2E}.$$
 (70)

Таким образом, все точки прямолинейной границы имеют постоянное перемещение, направленное в сторону начала координат. Мы можем считать такое перемещение физически возможным, если припомним, что вокруг точки приложения силы P мы мысленно удалили часть материала, ограниченную цилиндрической поверхностью малого радиуса (рис. 53), в пределах которой уравнения теории упругости теряют силы. В действительности, конечно, произойдет пластическая деформация этого материала; в силу этого можно допустить существование вдоль прямолинейной границы перемещений, определяемых формулами (70). Вертикальные перемещения на прямолинейной границе получаются из второго выражения (ж). Учитывая, что перемещение v считается положительным, если оно направлено в сторону увеличения θ , и что деформация симметрична относительно оси x, найдем вертикальные перемещения, направленные вниз, на расстоянии r от начала координат в виде

$$(v)_{\theta = -\pi/2} = -(v)_{\theta = \pi/2} = \frac{2P}{\pi E} \ln \frac{d}{r} - \frac{(1+v)P}{\pi E}.$$
 (71)

В начале координат, согласно этой формуле, возникает неограниченно большое перемещение. Для возможности физического объяснения этого, как и ранее, следует предположить, что часть материала вокруг точки приложения нагрузки вырезана цилиндрической поверхностью малого радиуса. Для других точек границы уравнение (71) дает конечные перемещения.

§ 37. Произвольная вертикальная нагрузка на прямолинейной границе

Кривые для напряжений σ_x и τ_{xy} , построенные в предыдущем параграфе (рис. 54), можно использовать как линии влияния. Допустим, что эти кривые определяют напряжения для единичной силы P, равной, например, одному килограмму. Тогда для

любого другого значения силы P напряжение σ_x в любой точке H плоскости mn можно получить путем умножения ординаты \overline{HK} на значение P.

Если на прямолинейную горизонтальную границу AB полубесконечной пластинки действуют несколько сосредоточенных сил P, P_1, P_2, \ldots , то напряжения на горизонтальной плоскости mn можно получить с помощью суперпозиции напряжений, вызываемых каждой из этих сил. Для каждой из них кривые напряжений σ_x и τ_{xy} можчо получить, сдвигая кривые, построенные для силы P, к новым началам координат O_1, O_2, \ldots Отсюда следует, что напряжение σ_x , вызываемое, например, силой P_1 на плоскости mn в точке D, получается путем умножения ординаты $\overline{H_1K_1}$ на P_1 . Таким же образом напряжение σ_x в точке D, вызываемое силой P_2 , получается равным $\overline{H_2K_2} \cdot P_2$ и так далее. Общее нормальное напряжение в точке D на плоскости mn, вызываемое силами P, P_1, P_2, \ldots , будет

$$\sigma_{\mathbf{x}} = \overline{DD}_{\mathbf{1}} \cdot P + \overline{H_{\mathbf{1}}K_{\mathbf{1}}} \cdot P_{\mathbf{1}} + \overline{H_{\mathbf{2}}K_{\mathbf{2}}} \cdot P_{\mathbf{2}} + \dots$$

Следовательно, кривая σ_x , показанная на рис. 54, представляет собой линию влияния для нормального напряжения σ_x в точке D. Таким же путем мы заключаем, что кривая зависимости τ_{xy} является линией влияния касательного напряжения на плоскости mn в точке D.

Имея эти кривые, легко получить компоненты напряжения в точке *D* для любого вида вертикального нагружения границы *AB* пластинки.

Если вместо сосредоточенных сил на пластинку действует равномерная нагрузка интенсивности q, распределенная на части SS прямолинейной границы (рис. 54), то нормальное напряжение, σ_x , вызываемое этой нагрузкой в точке D, можно получить путем умножения интенсивности q на соответствующую площадь влияния, которая на рисунке заштрихована.

Задачу о действии равномерно распределенной нагрузки можно решить и другим способом с помощью функции напряжений вида

$$\varphi = Ar^2\theta, \qquad (a)$$

где A—постоянная. Соответствующие компоненты напряжений представляются в форме

$$\sigma_{r} = \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}} = 2A\theta,$$

$$\sigma_{\theta} = \frac{\partial^{2} \varphi}{\partial r^{2}} = 2A\theta, \quad \tau_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \varphi}{\partial \theta} \right) = -A. \quad (6)$$

Применяя эти зависимости к полубесконечной пластинке, приходим к распределению нагрузки, показанному на рис. 58, а. На правом краю пластинки действует равномерно распределенная

119

касательная нагрузка интенсивности — А и равномерно распределенная нормальная нагрузка интенсивности Ал, скачком меняющая знак в начале координат О. Направления сил следуют

Рис. 58.

из определений положительных направлений компонент напряжений, действующих на элемент C.

Сдвигая начало координат в точку О₁ и меняя знак функции

Рис. 59.

напряжений ф, приходим к распределению нагрузок, показанному на рис. 58, б. Налагая оба случая распределения нагрузки, показанные на рис. 58, а и б, получаем случай действия равномерной нагрузки на части прямолинейной границы полубесконечной пластинки, показанной на рас. 58, в. Чтобы получить заданную интенсивность нагрузки, положим

$$2A\pi = q, \quad A = \frac{1}{2\pi} q.$$

Напряжения в любой точке пластинки даются функцией напряжений¹)

$$\varphi = A \left(r^2 \theta - r_1^2 \theta_1 \right) = \frac{q}{2\pi} \left(r^2 \theta - r_1^2 \theta_1 \right). \tag{B}$$

Из уравнений (б) мы видим, что в любой точке М пластинки (рис. 59, а)

¹⁾ Это решение данной задачи принадлежит Мичеллу (J. H. Michell, Proc. London Math. Soc. 34, 134 (1902)).

первый член функции напряжений (в) дает равномерное растяжение во всех направлениях в плоскости пластинки, равное $2A\theta$, н чистый сдвиг интенсивностью — A. Точно так же второй член функции напряжений дает равномерное сжатие — $2A\theta_1$ и чистый сдвиг интенсивностью A. Равномерное растяжение и сжатие можно просто сложить друг с другом, тем самым получить выражение для равномерного напряжения сжатия

$$p = 2A\theta - 2A\theta_1 = 2A(\theta - \theta_1) = -2A\alpha, \qquad (r)$$

где α — угол между радиусами r и r_1 .

Для наложения двух состояний чистого сдвига (одного, отвечающего направлению r, и другого — отвечающего направлению r_1) мы можем воспользоваться кругом Мора (рис. 59, 6), который в этом случае имеет радиус, равный численному значению интенсивности сдвига A. Выбирая в качестве осей т и о два диаметра, один из которого DD_1 параллелен r и другой FF_1 , перпендикулярен r, получаем графическое представление чистого сдвига, отвечающего направлению r. Радиусы CF и CF_1 представляют главные напряжения A и — A, составляющие угол $\pi/4$ с радиусом r в точке M, соответственно с этим состоянием чистого сдвига. Радиус CD представляет касательное напряжение — A на плоскости m, перпендикулярной к r. Для любой плоскости m_1n_1 , наклоненной под углом β к mn (рис. 58, a), компоненты напряжения 2β .

Ту же окружность можно использовать также для получения компонент напряжений, вызванных чистым сдвигом в направлении r_1 (см. стр. 39). Рассматривая вновь плоскость $m_1 n_1$ и замечая, что нормаль к этой плоскости составляет угол $\alpha - \beta$ с направлением r_1 (рис. 59, a), получаем, что компонепты напряжений даются координ атами точки H окружности. Чтобы обеспечить нужный знак чистого сдвига, отвечающего направлению r_1 , мы должны изменить знаки компонент напряжения и получаем таким путем точку H_1 на окружности. Полное напряжение, действующее на плоскости $m_1 n_1$, определяется вектором CK, компоненты которого дают нормальное напряжение — $(\sigma + \sigma_1)$ и касательное напряжение $\tau_1 - \tau$. Вектор CK имеет одну и ту же величину для всех значений β , поскольку и длины его компонент CH_1 и CG, и угол между ними $\pi - 2\alpha$ не зависят от β . Следовательно, комбинируя два состояния чистого сдвига, мы снова приходим к чистому сдвигу (см. стр. 40).

Если $\tau_1 - \tau = 0$, то угол β определяет направление одного из главных напряжений в точке M. Из рисунка мы видим, что компоненты τ и τ_1 численно равны друг другу, если

$$2\beta = 2(\alpha - \beta)$$

откуда $\beta = \alpha/2$. Следовательно, направление главного напряжения делит пополам угол между радиусами r и r_1 . Величины главных напряжений при этом будут

$$\pm 2\sigma = \pm 2A \sin 2\beta = \pm 2A \sin \alpha. \tag{(d)}$$

Комбинируя это напряженное состояние с однородным сжатием (г), находим, что полные значения главных напряжений в любой точке М равны

$$-2A(\alpha + \sin \alpha) \quad \mu \quad -2A(\alpha - \sin \alpha).$$
 (e)

Вдоль дуги любой окружности, проходящей через точки O и O_1 , угол α остается постоянным, следовательно, постоянны и главные напряжения, определяемые выражениями (е). На границе между точками O и O_1 (рис. 59, a) угол α равен π , и мы получаем, согласно (е), что главные напряжения равны $-2\pi A = -q$. Для остальных частей границы $\alpha = 0$ и оба главных напряжения равны нулю.

Таким образом, если рассматривать произвольное распределение нагрузки (рис. 60) как составленное из большого числа нагрузок переменной интенсивности, действующих на малые элементы границы, то горизонтальные напряжения σ_x под любым из таких элементов (как показано на рис. 60) полностью связаны только с этим элементом и

$$\sigma_x = \sigma_y = -q \tag{(x)}$$

вдоль всей прямолинейной границы.

Несколько других случаев действия распределенной нагрузки на прямолинейной границе полубесконечной пластинки исследовал Каротерс¹). Иной способ решения этой задачи будет рассмотрен позже (стр. 153).

Перемещения, соответствующие компонентам напряжений, определяемым уравнениями (б), легко найти с помощью прямого

интегрирования уравнений для *и* и *v* таким же путем, как это было сделано в § 31. Опуская члены, связанные с перемещением тела как твердого, получаем

$$u = \frac{2A}{E}(1-v) r\theta, \quad v = -\frac{4A}{E} r \ln r.$$
(H)

Используя эти формулы в суперпозиции, представленной равенст-

вом (в), можно найти выражения для направленного вниз вертикального перемещения каждой точки первоначально прямолинейной горизонтальной границы пластинки. По определению, v в своей собственной системе координат $r\theta$ представляет собой перемещение в направлении возрастания θ . Чтобы найти направленное вниз перемещение (рис. 58, в), будем считать, что оно равно v для любой точки справа от O и — v для любой точки слева от O. Это связано с тем, что вклад от системы, привязанной к точке O_1 и соответствующей члену — $r_1^2\theta_1$ в уравнении (в), в точке O_1 меняет знак на обратный. Направленные вниз перемещения поверхности при плоском напряженном состоянии для задачи, изображенной на рис. 58, e, показаны на рис. 61. Разумеется, к ним можно добавить перемещение тела как твердого.

Рис. 61.

Выражения на рис. 61 по своему смыслу дают нулевой наклон поверхности в середине и на бесконечности. В точках О и О₁ наклоны не ограничены, и в этом смысле указанные точки являются сингулярными (ср. задачу 18, стр. 159).

1) S. D. Carothers, Proc. Roy. Soc. (London), ser. A, 97, 110 (1920).

122

Перемещение в срединной точке C верхнего края при $OO_1 = 2a$ имеет значение

$$v_c = -\frac{2q}{\pi E} (2a \ln a). \tag{K}$$

Если теперь рассматривать нагрузку q как элемент нагрузки с неоднородным распределением (рис. 60), расстояние 2a станет бесконечно малым. Поскольку предел $a \ln a$ при $a \rightarrow 0$ равен нулю, мы приходим к выводу, что при определении перемещения под каждым элементом нагрузки таким методом самим вкладом этого элемента можно пренебречь. Перемещение, вызванное другими элементами нагрузки (см. рис. 60) для любой точки x на крае y = 0 получается в виде

$$v(x) = -\frac{2}{\pi E} \int_{\xi=a}^{\xi=b} q(\xi) \ln |x-\xi| d\xi, \qquad (\pi)$$

где символ $|x-\xi|$ обозначает (положительное) расстояние между элементом нагрузки в точке ξ и рассматриваемой точкой x. Сюда также можно было бы добавить

члены, связанные с перемещением абсолютно твердого тела.

Подынтегральное выражение обладает особенностью при $x = \xi$, то есть для элемента нагрузки, расположенного над рассматриваемой точкой. Мы видели, однако, что этот элемент не вносит вклада. Следовательно интеграл здесь нужно понимать в смысле главного значения по Коши.

Уравнение (л) можно использовать для отыскания интенсивности нагрузки q, которая вызывает заданные перемещения прямолинейной границы. Предполагая, например, что перемещения вдоль нагруженной части прямолинейной границы постоянны (рис. 62), можно показать, что распределение нагрузки по этой части границы определяется уравнением¹)

$$q=\frac{P}{\pi \sqrt{a^2-x^2}}.$$

¹) М. Sadowsky, Z. Angew. Math. Mech. 8, 107 (1928). Соответствующую задачу для неоднородных перемещений в области контакта см. в книгах: Н. И. Мусхелишвили, Некоторые основные задачи математической теории упругости, Изд. АН СССР, 1954; Л. А. Галин, Контактные задачи теории упругости, Гостехиздат, 1953. Влияние местных закруглений в углах рассматривалось в работе J. N. Goodier, C. B. Loutzenheiser, J. Appl., Mech. 32, 462—463 (1965).

§ 38. Сила, действующая на острие клина

Простое радиальное распределение напряжений, рассмотренное в § 36, может также использоваться для представления

напряжений в клине под действием сосредоточенной силы в его вершине. Рассмотрим симметричный случай, показанный на рис. 63. Толщина клина в направлении, перпендикулярном плоскости xy, принимается равной единице. Условия вдоль граней клина (т. е. при $\theta = \pm \alpha$) удовлетворяются, если для компонент напряжений принять значения

$$\sigma_r = -\frac{kP\cos\theta}{r}, \quad \sigma_\theta = 0, \quad \tau_{r\theta} = 0.$$
 (a)

Рис. 63.

Постоянную k подберем теперь таким образом, чтобы удовлетворить условиям

равновесия в точке О. Приравнивая результирующую давления на цилиндрической поверхности (показанной на рис. 63 пунктиром) силе — P, получаем

$$-2\int_{0}^{\alpha} \frac{kP\cos^{2}\theta}{r} r \, d\theta = -kP\left(\alpha + \frac{1}{2}\sin 2\alpha\right) = -P,$$

откуда

$$k=\frac{1}{\alpha+1/2\sin 2\alpha}.$$

Далее, в соответствии с выражениями (a)¹), имеем

$$\sigma_r = \frac{P\cos\theta}{r\left(\alpha + \frac{1}{2}\sin 2\alpha\right)}.$$
 (72)

Полагая $\alpha = \pi/2$, приходим к ранее рассмотренному решению (65) для полубесконечной пластинки. Можно видеть, что распределение нормальных напряжений по поперечному сечению *mn* неравномерно и что отношение нормального напряжения в точках *m* или *n* к максимальному напряжению в центре поперечного сечения равно cos⁴ α .

Если приложенная сила перпендикулярна к оси клина (рис. 64), можно использовать то же решение (а), измеряя угол θ от направления силы. Постоянный множитель k определится из

¹) Это решение принадлежит Мичеллу (Michell), см. его цит. работу. См. также А. Mesnager, Ann. Ponts Chaussées, 1901.

уравнения равновесия

$$\int_{\frac{\pi}{2}-\alpha}^{\frac{\pi}{2}+\alpha}\sigma_{r}r\cos\theta\,d\theta=-P,$$

откуда

$$k=\frac{1}{\alpha-1/2\sin 2\alpha}.$$

Следовательно, радиальные напряжения

$$\sigma_r = -\frac{P\cos\theta}{r\left(\alpha - \frac{1}{2}\sin 2\alpha\right)}.$$
 (73)

Нормальные и касательные напряжения в любом поперечном сечении mn находятся из формул

$$\sigma_{y} = -\frac{Pyx\sin^{4}\theta}{y^{3}(\alpha - \frac{1}{2}\sin 2\alpha)} , \quad \tau_{xy} = -\frac{Px^{2}\sin^{4}\theta}{y^{3}(\alpha - \frac{1}{2}\sin 2\alpha)} .$$
 (6)

В случае малого угла α можно положить

$$2\alpha - \sin 2\alpha = \frac{(2\alpha)^3}{6} \, .$$

Затем, обозначая момент инерции поперечного сечения через *I*, из формул (б) находим

$$\sigma_{y} = -\frac{Pyx}{I} \left[\left(\frac{\operatorname{tg} \alpha}{\alpha} \right)^{3} \sin^{4} \theta \right],$$

$$\tau_{xy} = -\frac{Px^{2}}{I} \left[\left(\frac{\operatorname{tg} \alpha}{\alpha} \right)^{3} \sin^{4} \theta \right].$$
(B)

Для малых значений α множитель $[(tg \alpha)/\alpha]^3 \sin^4 \theta$ можно считать приблизительно равным единице. Тогда выражение для σ_y совпадает с формулой элементарной теории балок. Максимальное касательное напря-

жение действует в точках *m* и *n* и вдвое больше того, которое дает элементарная теория для центра тяжести прямоугольного поперечного сечения балки.

Поскольку мы имеем решения для двух случаев, представленных на рис. 63 и 64, то тем самым мы можем получить решение для произвольного направления силы *P* в плоскости *xy*, разлагая эту силу на две составляющие и используя метод суперпозиции¹). Следует отметить, что решения (72) и (73) являются точными лишь в том случае, если на закрепленном конце

¹⁾ Несколько примеров распределения напряжения в клиньях рассмотрел Миура (A. Miura, Spannungskurven in Rechteckigen und Keilförmigen Trägern, Berlin, 1928).

клин удерживается радиально направленными силами, распределенными так, как это предусматривается решением. Если это не так, то решения будут точными лишь для точек, достаточно удаленных от закрепленного конца.

§ 39. Изгибающий момент, действующий на острие клина

Функции напряжений

$$\varphi_1 = C_1 \sin 2\theta \tag{a}$$

соответствует система напряжений

$$\sigma_r = -4C_1 \frac{1}{r^2} \sin 2\theta, \ \sigma_\theta = 0, \ \tau_{r\theta} = 2C_1 \frac{1}{r^2} \cos 2\theta,$$
 (6)

а функция напряжений

$$\varphi_2 = C_2 \theta \tag{B}$$

приводит к распределению напряжений

$$\sigma_r = 0, \quad \sigma_\theta = 0, \quad \tau_{r0} = \frac{C_2}{r^2}.$$
 (r)

Комбинируя эти два решения, получаем

$$\sigma_r = -4C_1 \frac{1}{r^2} \sin 2\theta, \quad \sigma_\theta = 0, \quad \tau_{r\theta} = \frac{1}{r^2} (2C_1 \cos 2\theta + C_2).$$
 (A)

Очевидно, грани $\theta = \pm \alpha$ будут свободны от нагрузки, если принять $C_2 = -2C_1 \cos 2\alpha$.

Тогда напряжения будут определяться формулами

$$\sigma_r = -4C_1 \frac{1}{r^2} \sin 2\theta, \quad \sigma_\theta = 0, \quad \tau_{r\theta} = 2C_1 \frac{1}{r^2} (\cos 2\theta - \cos 2\alpha). \quad (e)$$

На цилиндрической поверхности радиуса r (рис. 65) напряжения σ_r вызывают ненулевое радиальное усилие. Но то же можно сказать и о напряжениях $\tau_{r\theta}$; непосредственные вычисления по формуле (е) показывают, что полное усилие равно нулю. Система сил приводится к паре с заданным моментом M, отнесенным к единичной толщине и определяемым формулой

$$M = \int_{-\alpha}^{\alpha} \tau_{r\theta} r^2 d\theta = 2C_1 (\sin 2\alpha - 2\alpha \cos 2\alpha). \qquad (\texttt{w})$$

Очевидно, что напряжения (е) в материале, расположенном между сечениями r = a и r = b, отвечают изгибу клина моментами M, (рис. 65), причем постоянная C_1 определяется через M и α с помощью уравнения (ж). Внутренний радиус a можно выбрать сколь угодно малым¹).

126

¹) Решение дали Каротерс (S. D. Carothers, Proc. Roy. Soc. Edinburgh, sect. A, 23, 292—306 (1912)) и независимо от него Инглис (C. E. Inglis, Trans. Inst. Nav. Arch, London 64, 253 (1922)).

Выражение в скобках в формуле (ж) $\sin 2\alpha - 2\alpha \cos 2\alpha$

не может обращаться в нуль ни при каких значениях α , определяющих угол раствора клина. При $0 < 2\alpha < 2\pi$ это выражение обращается в нуль только при $2\alpha = 257,4^{\circ}$, но тогда рассматриваемая область представляет собой почти три четверти кольца (рис. 66). Момент M в формуле (ж) обратится в нуль, так как вклады функций φ_1 и φ_2 равны по величине и противоположны

по знаку. Нагрузка на дуге r = a будет самоуравновешенной, так же, разумеется, как и нагрузка на дуге r = b.

При $2\alpha > 257,4^{\circ}$ момент M снова не будет равен нулю, и C_i определится из уравнения (ж). Однако теперь существуют уже и другие способы нагружения дуги r = a, приводящие к моменту M, которые дают распределение напряжений, убывающее с ростом r медленнее¹), чем r^{-2} (как это имеет место в соотношении (e)]. В действительности сказанное становится справедливым, как только угол 2α превысит 180°. Таким образом, применение зависимостей (е) и (ж) ограничивается случаями клиньев со сравнительно небольшими углами при вершине, в которых влияние распределения усилий при r = a и r = b может быть локализовано.

§ 40. Действие на балку сосредоточенной силы

Задача о распределении напряжений в балке при действии сосредоточенной силы представляет большой практический интерес. Ранее было показано (§ 23), что в балке узкого прямоугольного поперечного сечения с непрерывной нагрузкой применение элементарной теории изгиба дает возможность получить распре-

¹) Е. Sternberg, W. T. Koiter, J. Appl. Mech. **25**, 575—581 (1958). [Русский перевод: Э. Штернберг, В. Койтер, сб. «Механика» № 3, 97—115 (1959).]

деление напряжений с удовлетворительной точностью. Однако вблизи точки приложения сосредоточенной силы следует ожидать серьезного местного возмущения в характере распределения напряжений, в связи с чем возникает необходимость дальней-

шего исследования этой задачи. Впервые изучение местных напряжений провел экспериментально Карус Вильсон 1). Проводя опыты с прямоугольной балкой из стекла на двух опорах (рис. 57), нагруженной в центре, и используя поляризованный свет (см. стр. 163), он показал, что в точке А, где приложена на-

грузка, распределение напряжений близко к тому, которое наблюдается в полубесконечной пластинке под действием нормальной сосредоточенной силы. Вдоль поперечного сечения АD нормальное напряжение σ_x не следует линейному закону, а в точке *D*, расположенной напротив точки *A*, растягивающее напряжение меньше, чем следовало бы ожидать, исходя из элементарной теории балки. Эти результаты на основании некоторых эмпирических предпосылок объяснил Стокс²). Система, представленная на рис. 67, может быть получена путем наложения двух систем, показанных на рис. 68. Радиальные сжимающие напряжения, действующие в сечениях mn, np и pq полубесконечной пластинки (рис. 68, а), снимаются равными им радиальными растягивающими напряжениями, действующими на гранях прямоугольной балки, опертой в точках *n* и *p* (рис. 68, б). Чтобы получить случай, рассмотренный Стоксом, нужно нало-жить напряжения в такой балке на напряжения в полубесконечной пластинке.

При определении напряжений в балке можно использовать элементарную балочную теорию. Изгибающий момент в среднем сечении AD балки получается, если от момента силы реакции P/2 отнять момент всех радиально направленных растягивающих усилий, приложенных к половине балки. Этот момент легко вычислить, если учесть, что радиально распределенные растяги-вающие усилия статически эквивалентны давлению, распределенному по квадранту *ab* цилиндрической поверхности *abc*, располо-женной у точки A (рис. 68, в). Или же, согласно уравнению (65), эти усилия эквивалентны горизонтальной силе Р/л и вертикальной силе Р, приложенным в точке А (рис. 68, г). Тогда

¹⁾ Carus Wilson, Phil. Mag. 32, 481 (1891). 2) См. работу Вильсона. См. также G. G. Stokes, Mathematical and Physical Papers 5, 238.

изгибающий момент, т. е. момент относительно точки O, равен $\frac{P}{2} l - \frac{P}{\pi} c$,

а соответствующие напряжения изгиба определяются по формуле 1)

$$\sigma'_{\mathbf{x}} = \frac{P}{I} \left(\frac{l}{2} - \frac{c}{\pi} \right) y = \frac{3P}{2c^3} \left(\frac{l}{2} - \frac{c}{\pi} \right) y.$$

К этим напряжениям изгиба следует добавить равномерно распределенные растягивающие напряжения *P*/2*лс*, вызываемые.

растягивающей силой *Р*/л. Нормальные напряжения в поперечном сечении *AD*, полученные таким элементарным путем, будут, таким образом, определяться формулой

$$\sigma_x = \frac{3P}{2c^3} \left(\frac{l}{2} - \frac{c}{\pi} \right) y + \frac{P}{2\pi c}.$$

Эта формула совпадает с полученной Стоксом. Ее справедливость в рамках некоторых ограничений была подтверждена экспериментально современными методами фотоупругости²).

§ 40]

¹) Как и ранее, мы считаем *Р* усилием, отнесенным к единице толщины пластинки.

²) М. М. Frocht, Photoelasticity т. 2, стр. 104—107, John Wiley, New York, 1948 [М. Фрохт, Фотоупругость, Гостехиздат, 1950]; С. Saad, A. W. Hendry, Proc. Soc. Exptl. Stress Anal, 18, 192—198 (1961). Применение этого метода к коротким балкам при ударе см. в работе: A. A. Betser, M. M. Frocht, J. Appl. Mech. 24, 509—514 (1957).

Несколько лучшее приближение можно получить, если учесть, что к нижней грани балки прикладывается распределенная на-грузка (рис. 68, δ) и использовать уравнения (36'). Интенсив-ность такой нагрузки в точке D из уравнения (65) равна $P/\pi c$. Подставляя данное значение в (36') и комбинируя результат со значением σ_x , полученным выше, получаем во втором приближении

$$\sigma_{x} = \frac{3P}{2c^{3}} \left(\frac{l}{2} - \frac{c}{\pi} \right) y + \frac{P}{2\pi c} + \frac{P}{\pi c} \left(\frac{y^{3}}{2c^{3}} - \frac{3}{10} \frac{y}{c} \right),$$

$$\sigma_{y} = \frac{P}{2\pi c} + \frac{P}{\pi c} \left(\frac{3y}{4c} - \frac{y^{3}}{4c^{3}} \right).$$
 (a)

Эти напряжения нужно наложить на напряжения

$$\sigma_x = 0, \quad \sigma_y = -\frac{2P}{\pi (c+y)}, \tag{6}$$

действующие в полубесконечной пластинке, в результате получатся напряжения в сечении АД.

Сравнение с более точным решением, приведенным ниже (см. таблицу 2, стр. 133), показывает, что уравнения (а) и (б) дают с очень высокой точностью напряжения во всех точках, за ис-ключением точки D на нижней грани балки, где поправка к простой балочной формуле дается выражением

$$-\frac{3P}{2\pi c} + \frac{P}{2\pi c} + \frac{1}{5} \frac{P}{\pi c} = -0,254 \frac{P}{c},$$

тогда как более точное решение дает всего $-0,133 \frac{P}{c}$.

Решение той же задачи с помощью тригонометрических рядов получил Файлон¹). Он применил это решение к случаю действия сосредоточенных сил и для нескольких частных случаев провел вычисления (см. § 24), которые находятся в хорошем согласии с более поздними исследованиями.

Дальнейшего прогресса в этой области достиг Лэмб²), кото-рый рассмотрел бесконечную балку, нагруженную через равные промежутки равными сосредоточенными силами, действующими попеременно вверх и вниз, и получил для нескольких случаев выражения кривой прогибов. Полученные результаты показывают, что элементарная теория изгиба Бернулли — Эйлера является весьма точной, если высота балки мала по сравнению с длиной. Было также показано, что уточнения для поперечной силы, даваемые элементарной теорией Ренкина и Грасхофа (см. стр. 67), являются несколько завышенными и должны быть уменьшены примерно на 25% ³).

130

L. N. G. Filon, Trans. Roy. Soc. (London), ser. A, 201, 63 (1903).
 H. Lamb, Atti IV Congr. Intern. Mat. 3, 12, Rome (1909).
 K такому же выводу пришел Файлон (Filon) в своей цитированной выше статье.

Более детальное исследование распределения напряжений и кривизны вблизи точки приложения сосредоточенной силы провели Карман и Зеевальд¹). Карман рассмотрел бесконечно длинную балку и использовал решение для бесконечной пластинки с двумя равными и противоположными моментами, действующими в двух соседних точках прямолинейной границы (рис. 57, б). Напряжения вдоль нижней грани балки, которые вводятся благодаря такой процедуре, можно снять, если использовать решение в виде тригонометрических рядов (§ 24), которое для бесконечно длинной балки представляется интегралом Фурье. Таким путем Карман пришел к функции напряжений

$$\varphi = \frac{Ma}{\pi} \int_{0}^{\infty} \frac{(\alpha c \operatorname{ch} \alpha c + \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \operatorname{sh} \alpha c \operatorname{sh} \alpha y \cdot \alpha y}{\operatorname{sh} 2\alpha c + 2\alpha c} \cos \alpha x \, d\alpha - \frac{Ma}{\pi} \int_{0}^{\infty} \frac{(\alpha c \operatorname{sh} \alpha c + \operatorname{ch} \alpha c) \operatorname{sh} \alpha y - \operatorname{ch} \alpha c \operatorname{ch} \alpha y \cdot \alpha y}{\operatorname{sh} 2\alpha c - 2\alpha c} \cos \alpha x \, d\alpha.$$
(B)

Эта функция дает распределение напряжений в балке, когда эпюра изгибающих моментов состоит из очень узкого прямоугольника, как показано на

рис. 69. В самом общем случае нагружения балки вертикальными силами, приложенными на верхней грани балки²), соответствующая эпюра изгибающих моментов может быть разделена на элементарные прямоугольники, подобные показанному на рис. 69, а соответствующую функцию напряжений можно получить путем интегрирования выражения (в) вдоль длины балки⁸).

~

Этот метод решения Зеевальд применил к случаю балки, нагруженной сосредоточенной силой *P* (рис. 67). Он показал, что напряжение σ_x можно разбить на две части: одну из них можно вычислить по элементарной балоч-

ной формуле, другая характеризует локальный эффект вблизи точки приложения силы. Эту последнюю часть напряжения, обозначаемую через σ_x , можно представить в форме β (*P*/*c*), где β — численный множитель, зависящий от положения точки, в которой определяется местное напряжение. Значения этого множителя даны на рис. 70. Две другие компоненты напряжения σ_y и τ_{xy} также можно представить в форме β (*P*/*c*). Соответствующие значения β даются на рис. 71 и 72. Из них можно видеть, что местные напряжения весьма быстро падают с увеличением расстояния от точки приложения нагрузки, и на расстоянии, равном высоте балки, ими обычно можно пренебречь. Используя значения множителя β при x = 0, можно найти местные напряжения в пяти точках поперечного сечения *AD* при данной нагрузке (рис. 67) по приводимой

³) Дополнительная литература, посвященная изгибу неоднородных балок указана в прим. ред. на стр. 74.

¹) T. Kármán, F. Seewald, Abhandi, Aerod, Inst., Tech. Hochs. Aachen 7, (1927).

²) Случай сосредоточенной силы, приложенной на половине расстояния между верхней и нижней гранями балки, рассмотрел Хауленд (R. C. J. Howland, Proc. Roy. Soc. (London) 124, 89 (1929)), см. ниже стр. 144; случай пары сил, приложенной внутри балки рассмотрел Гиркман (K. Girkmann, Ingenieur-Arch. 13, 273 (1943)). Он же исследовал сосредоточенные продольные силы в стенке двутавровой балки (K. Girkmann, Oesterr. Ingenieur-Arch. 1, 420 (1946)).

таблица 2

Множители β для срединного сечения AD (рис. 67)

	 с	0	c	
7	2		2	

Точное решение

σ_x 0,428 0,1210,136 σ_y ∞ 1,230,4560,145	0,133 0
--	------------

Приближенное решение

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\sigma'_x \sigma'_y$	0,573 ∞	0,426 —1,22	0,159 —0,477	0,108 0,155	0,25
---	-----------------------	------------	----------------	-----------------	----------------	------

на стр. 133 табл. 2. Для сравнения в ней приводятся значения местных напряжений ¹), полученные из уравнений (а) и (б) (стр. 130). Как видим, эти уравнения дают местные напряжения с достаточной степенью точности.

Зная напряжения, можно без особых трудностей найти кривизны и прогибы балки. Эти вычисления показывают, что кривизну кривой прогибов

 $\frac{1}{r} = \alpha \frac{p}{r^2}$

15 2,0

также можно разбить на две части, из которых одна дается элементарной теорией, а другая учитывает локальное влияние сосредоточенной нагрузки *P*. Эта дополнительная кривизна срединной линии балки может быть представлена формулой

Рис. 73.

Q5 **1**0

-0.5

$$\frac{1}{r} = \alpha \frac{P}{Ec^2}, \qquad (r)$$

-30 -25 -20 -15 -10

где а численный множитель, меняющийся вдоль длины балки. На рис. 73 даны несколько значений этого множителя. Мы видим, что уже в поперечном сечении, находящемся на

расстоянии, большем половины высоты балки, дополнительной кривизной можно пренебречь.

С учетом влияния этих местных эффектов на кривизну две ветви *АВ* и *АС* кривой прогибов (рис. 74) можно считать пересекающимися под углом

$$\gamma = \frac{P}{c} \left(\frac{3}{4G} - \frac{3}{10E} - \frac{3\nu}{4E} \right) \tag{a}$$

друг к другу. Соответствующий прогиб в центре

$$\delta_1 = \frac{\gamma l}{4} = \frac{Pl}{4c} \left(\frac{3}{4G} - \frac{3}{10E} - \frac{3\nu}{4E} \right).$$
 (e)

Из этого прогиба нужно вычесть еще малую поправку δ_2 , снимающую скачок наклона в точке A кривой прогибов. Эта величина также была вычислена Зеевальдом и определяется формулой

$$\delta_2 = 0,21 \frac{P}{E}$$
.

Обозначая теперь через δ₀ прогиб, определенный с использованием элементарной теории, получаем полный прогиб под сосредоточенной силой в виде

$$\delta = \delta_0 + \delta_1 - \delta_2 = \frac{Pl^3}{48EI} + \frac{Pl}{4c} \left(\frac{3}{4G} - \frac{3}{10E} - \frac{3v}{4E} \right) - 0.21 \frac{P}{E}.$$
 (74)

Рис. 74.

¹) То есть напряжения, которые следует наложить на напряжения, полученные по обычной балочной теории.

При v=0,3 эта формула дает

$$\delta = \frac{Pl^3}{48El} \left(1 + 2.85 \left(\frac{2c}{l} \right)^2 - 0.84 \left(\frac{2c}{l} \right)^3 \right]. \tag{74'}$$

Элементарная теория Ренкина — Грасхофа (см. стр. 67) для этого случая приводит к выражению

$$\delta = \frac{Pl^3}{48El} \left[1 + 3,90 \left(\frac{2c}{l} \right)^2 \right]. \tag{*}$$

Очевидію, что равенство (ж) дает завышенное значение поправки, связанной со сдвигом¹). В этих формулах не учтен прогиб, вызванный местными деформациями на опорах.

§ 41. Напряжения в круглом диске

Начнем с простого случая двух равных по величине и противоположных по знаку сил Р, действующих вдоль диаметра АВ

Рис. 75.

(рис. 75). Предполагая, что каждая из этих сил вызывает простое радиальное распределение напряжений (уравнения (65)), мы можем найти силы, которые следует приложить на границе диска, чтобы создать такое распределение напряжений. В любой точке М окружности диска мы имеем сжатия в направлениях гиг, равные соответственно $(2P/\pi) \cos \theta/r$ и $(2P/\pi) \cos \theta_1/r_1$. Поскольку отрезки г и г, перпендикулярны друг к другу и

$$\frac{\cos\theta}{r} = \frac{\cos\theta_1}{r_1} = \frac{1}{d}, \qquad (a)$$

где d — диаметр диска, мы приходим к заключению, что два главных напряжения в точке М являются двумя равными сжимающими напряжениями величины 2P/(лd). Следовательно, по любой площадке, проходящей через точку М и перпендикулярной плоскости диска, будут действовать такие же сжимающие напряжения. Таким образом, чтобы создать предполагаемые два простых радиальных распределения напряжений, нужно по окружности диска приложить нормальные сжимающие усилия интенсивностью 2P/(пd).

Поправки к элементарным теориям изгиба балок и пластинок исследовались также на основе вывода этих теорий в качестве предельных случаев решений общей трехмерной линейной теории упругости. См. J. N. Goodier, Proc. Roy. Soc. Canada, ser. 3, sec. 3, 32, 1-25 (1938).

Если граница диска свободна от внешних усилий, напряжения в любой точке получаются путем наложения однородного растяжения в плоскости диска величиной $2P/(\pi d)$ на два простых радиальных распределения напряжений. Рассмотрим напряжения в горизонтальном диаметральном сечении диска в точке N. Из условия симметрии можно сделать вывод, что в этой плоскости не будет касательных напряжений. Нормальное напряжение, вызываемое двумя равными сжимающими усилиями, равно

$$-2\left(\frac{2P}{\pi}\frac{\cos\theta}{r}\right)\cos^2\theta,$$

где r — расстояние AN, и θ — угол между AN и вертикальным диаметром. Налагая на это распределение напряжений однородное растяжение $2P/(\pi d)$, получаем полное нормальное напряжение на горизонтальной плоскости в точке N в виде

$$\sigma_y = -\frac{4P}{\pi} \frac{\cos^3\theta}{r} + \frac{2P}{\pi d},$$

или, используя тот факт, что

$$\cos\theta = \frac{d}{\sqrt{d^2 + 4x^2}},$$

получаем

$$\sigma_y = \frac{2P}{\pi d} \left[1 - \frac{4d^4}{(d^2 + 4x^2)^2} \right]. \tag{6}$$

Максимальное сжимающее напряжение вдоль диаметра *CD* действует в центре диска, где

$$\sigma_y = -\frac{6P}{\pi d} \, .$$

На концах диаметра сжимающее напряжение σ_y обращается в нуль.

В нуль. Рассмотрим теперь случай двух равных по величине и противоположных по знаку сил, действующих вдоль хорды AB(рис. 76). Предположим снова существование двух радиальных простых распределений, исходящих из точек A и B, а напряжения в плоскости, касательной к границе диска в точке M, получим с помощью наложения двух радиальных сжатий $(2P/\pi)\cos\theta/r$ и $(2P/\pi)\cos\theta_1/r_1$, действующих в направлениях rи r_1 . Нормаль MN к касательной в точке M является диаметром диска; отсюда треугольники MAN и MBN являются прямоугольными и углы, которые образуют нормаль MO с r и r_1 , равны соответственно $\pi/2 - \theta_1$ и $\pi/2 - \theta$. Нормальные и касательные напряжения, действующие на элемент границы в точке M,

§ 41]

определяются по формулам

$$\sigma = -\frac{2P}{\pi} \frac{\cos\theta}{r} \cos^2\left(\frac{\pi}{2} - \theta_1\right) - \frac{2P}{\pi} \frac{\cos\theta_1}{r_1} \cos^2\left(\frac{\pi}{2} - \theta\right) = = -\frac{2P}{\pi} \left(\frac{\cos\theta\sin^2\theta_1}{r} + \frac{\cos\theta_1\sin^2\theta}{r_1}\right), \quad (B)$$
$$\tau = -\frac{2P}{\pi} \left(\frac{\cos\theta}{r} \sin\theta_1\cos\theta_1 - \frac{\cos\theta_1}{r_1}\sin\theta\cos\theta\right).$$

Эти уравнения можно упростить, если учесть, что из треугольников *MAN* и *MBN* следует

 $r = d \sin \theta_i$ $r_i = d \sin \theta$.

Подставляя эти значения в уравнения (в), находим

$$\sigma = -\frac{2P}{\pi d}\sin\left(\theta + \theta_{1}\right), \quad \tau = 0.$$
 (r)

Из рис. 76 видно, что значение $\sin(\theta + \theta_1)$ вдоль границы остается постоянным. Следовательно, чтобы вызвать предпола-

Рис. 77.

щие усилия интенсивностью $2P/(\pi d) \times \sin(\theta + \theta_1)$. Чтобы получить решение для диска, границы которого свободны от сжимающих усилий, нужно только наложить на вышеописанные два простых радиальных распределения напряжений однородное растяжение интенсивностью $2P/(\pi d)\sin(\theta + \theta_1)$.

гаемое радиальное распределение на-

пряжений, к границе нужно приложить равномерно распределенные сжимаю-

Задача о распределении напряжений в диске может быть решена и для более общего

случая, когда на границе диска действует любая самоуравновешенная система усилий¹).

Рассмотрим одну из сил, действующих в точке A в направлении хорды AB (рис. 77). Задаваясь вновь простым радиальным распределением напряжений, имеем в точке M простое радиальное сжатие с интенсивностью $2P/\pi \cos \theta_1/r_1$, действующее в направлении AM. Примем начало полярных координат в точке O в центре диска, а угол θ будем измерять, как показано на рисунке. Нормальные и касательные компоненты напряжений, действующие на элемент, касательный к границе в точке M, можно легко найти, если учесть, что угол между нормалью MO к элементу и направлением сжатия r_1 ,

[гл. 4

¹) Задачи, рассмотренные в этом параграфе, впервые решили Герц (H. Hertz, Z. Math. Physik 28 (1883);) и Мичелл (J. N. Michell, Proc. London Math. Soc. 32, 44(1900); 34, 134(1901)). Задачу, отвечающую рис. 75, где круглый диск заменен прямоугольным, рассмотрел Гудьер (J. N. Goodier, Trans, ASME 54, 173(1932)), который учел влияние распределения нагрузки на малых отрезках границы.

§ 41]

равен $\pi/2 - \theta_2$. Отсюда

$$\sigma_r = -\frac{2P}{\pi} \frac{\cos \theta_1}{r_1} \sin^2 \theta_2, \quad \tau_{r\theta} = -\frac{2P}{\pi} \frac{\cos \theta_1}{r_1} \sin \theta_2 \cos \theta_2. \tag{2}$$

Так как из треугольника AMN имеем $r_1 = d \sin \theta_2$, уравнения (д) можно записать в форме

$$\sigma_r = -\frac{P}{\pi d} \sin \left(\theta_1 + \theta_2\right) - \frac{P}{\pi d} \sin \left(\theta_2 - \theta_1\right),$$

$$\tau_{r\theta} = -\frac{P}{\pi d} \cos \left(\theta_1 + \theta_2\right) - \frac{P}{\pi d} \cos \left(\theta_2 - \theta_1\right).$$
 (e)

Эти напряжения, действующие на элемент, касательный к границе в точке M, можно получить путем наложения трех следующих напряженных состояний:

1. Нормальных напряжений, равномерно распределенных вдоль границы

$$-\frac{P}{\pi d}\sin\left(\theta_{1}+\theta_{2}\right). \tag{(*)}$$

2. Касательных напряжений, равномерно распределенных вдоль границы

$$-\frac{P}{\pi d}\cos\left(\theta_{1}+\theta_{2}\right). \tag{4}$$

3. Напряженного состояния, в котором нормальная и касательная компоненты определяются формулами

$$-\frac{P}{\pi d}\sin\left(\theta_{2}-\theta_{1}\right) \quad \mathbf{H} \quad -\frac{P}{\pi d}\cos\left(\theta_{2}-\theta_{1}\right). \tag{K}$$

Учитывая, что угол между силой P и касательной в точке M равен $\theta_1 - \theta_2$, можно сделать вывод, что напряжение (к) имеет величину $P/\pi d$ и действует в направлении, противоположном силе P.

Допустим теперь, что на диск действует несколько усилий и что каждое из них вызывает простое радиальное распределение напряжений. Тогда усилия, которые должны быть приложены к границе, чтобы вызвать такое распределение напряжений, будут следующими:

1. Равномерно распределенное вдоль границы нормальное усилие с интенсивностью

$$-\sum \frac{P}{\pi d}\sin\left(\theta_{1}+\theta_{2}\right). \tag{7}$$

2. Касательное усилие с интенсивностью

$$-\sum \frac{P}{\pi d} \cos \left(\theta_1 + \theta_2\right). \tag{M}$$

3. Усилие, интенсивность и направление которого получаются в результате векторного суммирования выражений (к). Суммирование должно распространяться на все силы, действующие вдоль границы.

Момент всех внешних сил относительно точки О, согласно рис. 77, равен

$$\sum \frac{P\cos\left(\theta_1+\theta_2\right)d}{2},$$

а поскольку, для того чтобы система находилась в равновесии, этот момент должен быть равен нулю, мы приходим к выводу, что касательные усилия (м) равны нулю. Усилие, получаемое путем суммирования напряжений (к), пропорционально векторной сумме внешних усилий и также должно быть равно нулю, если система находится в равновесии. Следовательно, чтобы получить простое радиальное распределение к границе диска, необходимо приложить только равномерное сжатие (л). Если граница свободна от равномерного сжатия, напряжения в любой точке диска находятся путем наложения на предполагаемое простое радиальное распределение равномерного растяжения интенсивности

$$\sum \frac{P}{\pi d} \sin \left(\theta_1 + \theta_2 \right).$$

Используя этот общий метод, легко получить другие случаи распределения напряжений в круглых дисках¹). Рассмотрим, например, случай пары, действующей на диск (рис. 78) и уравновешиваемой другой парой, приложенной в центре диска. Задаваясь двумя одинаковыми радиальными распределе-

ниями напряжений в точках A и B, мы видим, что в этом случае интенсивность нормальных усилий (л) и сумма напряжений (к) равны нулю, и для создания простого радиального распределения напряжений требуется приложить лишь касательные усилия (м). Интенсивность этих усилий, согласно (м), равна

$$-\frac{2P}{\pi d}\cos\left(\theta_{1}+\theta_{2}\right)=-\frac{2M_{t}}{\pi d^{2}},\qquad(\mathrm{H})$$

где M_t — момент пары. Чтобы освободить границу диска от касательных усилий и перенести пару, уравновешивающую момент от двух сил P, с окружности диска в его центр, нужно наложить на простое радиальное распределение напряжения, отвечающие случаю, показанному на рис. 78, 6. Эти последние напряжения, вызываемые чистым сдвигом, приложенным к окружности, можно вычислить, если учесть, что для каждой концентрической окружности радиуса r касательные напряжения ния должны давать момент M_t . Отсюда

$$\tau_{r\theta} 2\pi r^2 = M_t, \quad \tau_{r\theta} = \frac{M_t}{2\pi r^2}. \tag{II}$$

Эти напряжения также можно вывести из общих уравнений (38), приняв функцию напряжений в виде

 $\varphi = \frac{M_t \theta}{2\pi}, \qquad (p)$

откуда

$$\sigma_r = \sigma_{\theta} = 0, \quad \tau_{r\theta} = \frac{M_t}{2\pi r^2}.$$

§ 42. Сила, действующая в точке бесконечной пластинки

Если сила *P* действует в срединной плоскости бесконечной пластинки (рис. 79, *a*), то распределение напряжений можно легко получить путем наложения только что рассмотренных систем. Мы не можем, однако, построить решение путем простого наложения двух решений для полубесконечной пластинки, как показано на рис. 79, б и в. Хотя вертикальные перемещения в обоих случаях будут одними и теми же, горизонтальные пере-

¹) Некоторые интересные примеры обсуждаются в цитированной выше работе Мичелла (J. H. Michell).

мещения вдоль границ будут различаться. В то время как для случая, изображенного на рис. 79, б, это перемещение направлено от точки O, в случае 79, в оно направлено к точке O. Величина этих перемещений в обоих случаях, согласно уравнениям (70), равна

$$\frac{1-\nu}{4E}P.$$
 (a)

Эту разницу в горизонтальном перемещении можно ликвидировать, комбинируя случаи 79, б и всо случаями 79, гид, в которых вдоль прямолинейных границ действуют касательные усилия. Перемещения для этих последних случаев можно получить из решения задачи об изгибе кривого бруса, изображенного на рис. 46. Устремляя внутренний радиус этого стержня к нулю, а внешний - к бесконечности, приходим к случаю полубесконечной пластинки. Перемещение вдоль прямолинейного края пластинки в направлении касательной си-

лы, действующей на границе, согласно равенству (60) равно

$$\frac{D\pi}{E}$$
. (6)

Постоянную интегрирования D нужно подобрать таким образом, чтобы обратить в нуль перемещения, получающиеся из (а) и (б). Тогда

$$\frac{D\pi}{E} = \frac{1-\nu}{4E} P, \quad D = \frac{1-\nu}{4\pi} P.$$
(B)

При таком подборе, в результате наложения случаев 79, *б*, *в*, *г* и *д*, приходим к решению для бесконечной пластинки, нагруженной в точке (рис. 79, *a*).

Поле напряжений в пластинке теперь легко получить путем суперпозиции напряжений в полубесконечной пластинке, вызванных нормальной силой P/2, приложенной на границе (см. § 36) на напряжения в кривом брусе, формулы для которых содержат постоянную интегрирования D. Учитывая различие в отсчете угла θ на рис. 46 и 79 и используя равенства (59), получаем следующие формулы для определения напряжений в криволинейном стержне (отсчет угла θ производится согласно

рис. 79):

$$\sigma_r = \frac{D\cos\theta}{r} = \frac{1-v}{4\pi} \frac{P\cos\theta}{r},$$

$$\sigma_{\theta} = \frac{D\cos\theta}{r} = \frac{1-v}{4\pi} \frac{P\cos\theta}{r},$$

$$\tau_{r\theta} = \frac{D\sin\theta}{r} = \frac{1-v}{4\pi} \frac{P\sin\theta}{r}.$$

Комбинируя эти напряжения с напряжениями, определяемыми формулами (65) для случая нагрузки *P*/2, получаем следующее распределение напряжений в бесконечной пластинке:

$$\sigma_{r} = \frac{1-\nu}{4\pi} \frac{P\cos\theta}{r} - \frac{P\cos\theta}{\pi r} = -\frac{(3+\nu)}{4\pi} \frac{P\cos\theta}{r},$$

$$\sigma_{\theta} = \frac{1-\nu}{4\pi} \frac{P\cos\theta}{r}, \quad \tau_{r\theta} = \frac{1-\nu}{4\pi} \frac{P\sin\theta}{r}.$$
 (75)

Вырезая из пластинки у точки O (рис. 79, a) малый элемент, ограниченный цилиндрической поверхностью радиуса r, и проектируя силы, действующие на цилиндрическую границу элемента на оси x и y, получаем

$$X = 2 \int_{0}^{\pi} (\sigma_r \cos \theta - \tau_{r\theta} \sin \theta) r \, d\theta = P,$$

$$Y = 2 \int_{0}^{\pi} (\sigma_r \sin \theta + \tau_{r\theta} \cos \theta) r \, d\theta = 0.$$

Таким образом усилия, действующие на границе цилиндрического элемента, представляют нагрузку *P*, приложенную в точке *O*. Используя уравнения (13) в декартовых координатах, можно найти из (75) компоненты напряжений в виде

$$\sigma_{x} = \frac{P}{4\pi} \frac{\cos \theta}{r} \left[-(3+\nu) + 2(1+\nu) \sin^{2} \theta \right],$$

$$\sigma_{y} = \frac{P}{4\pi} \frac{\cos \theta}{r} \left[1 - \nu - 2(1+\nu) \sin^{2} \theta \right],$$

$$\tau_{xy} = -\frac{P}{4\pi} \frac{\sin \theta}{r} \left[1 - \nu + 2(1+\nu) \cos^{2} \theta \right].$$
(76)

Из решения (76) для одной сосредоточенной силы, можно с помощью суперпозиции найти решения для других видов нагружения. Рассмотрим, например, случай (рис. 80), когда две равные по величине и противоположные по знаку силы действуют на бесконечную пластинку в точках O и O_1 , находящихся на очень малом расстоянии d друг от друга. Напряжения в любой точке M получаются с помощью суперпозиции напряжений, вызываемых силой в точке O_1 и напряжений, вызываемых другой силой в точке O. Рассматривая, например, элемент в точке M, перпендикулярный оси x, и обозначая через σ_x нормальное на-

142

пряжение, вызываемое в этом элементе силой в точке О. получаем, что нормальное напряжение ог, вызываемое совместным действием обоих сил, показанных на этом рисунке, равно

$$\sigma'_{x} = \sigma_{x} - \left(\sigma_{x} + \frac{\partial \sigma_{x}}{\partial x}d\right) = -d\frac{\partial \sigma_{x}}{\partial x} = -d\left(\frac{\partial \sigma_{x}}{\partial r}\cos\theta - \frac{\partial \sigma_{x}}{\partial \theta}\frac{\sin\theta}{r}\right).$$

Таким образом, компоненты напряжений для случая, изображенного на рис. 80, получаются из уравнений (76) путем дифференцирования. Отсюда получаем

$$\sigma_{x} = \frac{dP}{4\pi r^{2}} \left[-(3+\nu)\cos^{2}\theta + (1-\nu)\sin^{2}\theta + 8(1+\nu)\sin^{2}\theta\cos^{2}\theta \right],$$

$$\sigma_{y} = \frac{dP}{4\pi r^{2}} \left[(1-\nu)\cos^{2}\theta + (1+3\nu)\sin^{2}\theta - 8(1+\nu)\sin^{2}\theta\cos^{2}\theta \right], \quad (77)$$

$$\tau_{xy} = \frac{dP}{4\pi r^{2}} \left[-(6+2\nu) + 8(1+\nu)\sin^{2}\theta \right] \sin\theta\cos\theta.$$

Можно видеть, что с ростом r компоненты напряжений быстро

убывают, и ими можно пренебречь, если г велико по сравнению с d. Такой результат следует ожидать в соответствии с принципом Сен-Венана, если мы имеем случай двух уравнове-шенных и приложенных очень близко друг к другу сил¹).

Налагая два поля напряжений, определяемые равенствами (77), мы получаем решение задачи, показанной на рис. 81. Компоненты напряжений для этого случая имеют вид

$$\sigma_{x} = -2 (1-\nu) \frac{dP}{4\pi r^{2}} (1-2\sin^{2}\theta),$$

$$\sigma_{y} = 2 (1-\nu) \frac{dP}{4\pi r^{2}} (1-2\sin^{2}\theta),$$

$$\tau_{xy} = -2 (1-\nu) \frac{dP}{4\pi r^{2}} \sin 2\theta.$$

¹) Следует, однако, отметить, что аналогичное убывание напряжений может происходить и в случае, когда близко расположенные силы не находятся в равновесии. Примером служит рис. 82 и соответствующие ему выраже-ния (79). См. Е. Sternberg, Quart. Appl. Math. 11, 393—404 (1954) и упомянутую там статью Мизеса (R. von Mises).

То же распределение напряжений в полярных координатах выражается формулами

$$\sigma_r = -2 (1-v) \frac{dP}{4\pi r^2}, \quad \sigma_{\theta} = 2 (1-v) \frac{dP}{4\pi r^2}, \quad \tau_{r\theta} = 0.$$
 (78)

Это решение можно согласовать с решением (45) для толстостенного цилиндра, находящегося под действием внутреннего давления, если внешний диаметр цилиндра устремить к бесконечности.

Таким же путем можно получить решения и для случая, изображенного на рис. 82, а. Компоненты напряжений имеют вид 1)

a) T 6) x Рис. 82.

$$\sigma_r = \sigma_\theta = 0, \quad \tau_{r\theta} = -\frac{M}{2\pi r^2}. \quad (79)$$

. .

Они представляют напряжения, вызываемые моментом М, приложенным в начале координат (рис. 82, б).

Если вместо бесконечной пластинки мы рассмотрим бесконечно длинную полосу, подвергнутую действию продольной силы Р (рис. 83), то можно исходить из решения (76), принимая вначале, что пластичка бесконечна во

всех направлениях. Напряжения вдоль краев полосы, которые возникают в результате этого, можно снять, накладывая системы равных и противоположных по знаку усилий. Напряжения, создаваемые этой корректирующей системой усилий, можно определить, используя общий метод, описанный в § 24. Вычисления, проделанные Хаулэндом²), показывают, что местные напряжения, вызы-ваемые сосредоточенной силой *P*, быстро убывают с ростом расстояния от точки приложения нагрузки, и на расстояниях, больших ширины полосы, распределение напряжений по пюперечному сечению практически постоянно. В приведенной ниже табл. З даны некоторые значения напряжений σ_x и σ_y , вычисленные в предположении, что полоса закреплена на конце $x = +\infty$ и коэффициент Пуассона равен 1/4.

Напряжения, производимые в полубесконечной пластинке силой, приложенной на некотором расстоянии от края, исследовал Мелан³).

1) А. Ляв, Математическая теория упругости, ОНТИ, 1935, стр. 225.

²) См. его работу, цитированную выше. См. также статью Е. Melan, Z. Ang. Math. Mech. 5, 314(1925). ³) Е. Melan, Z. Angew. Math. Mech. 12, 343(1932).

Поправку к этой статье дал Л. М. Куршин, Прикладная математика и механика, т. 23, 1959.
	$\frac{x}{c} =$	$-\frac{\pi}{3}$	$-\frac{\pi}{9}$	$-\frac{\pi}{18}$	$-\frac{\pi}{30}$	0
y = 0	$\frac{\sigma_x 2c}{p} =$	0,118	0,992	•••		00
y=c	$\frac{\sigma_x 2c}{p} =$	+0,159	+0,511	0,532	0,521	0,500
y=0	$\frac{\sigma_y 2c}{p} =$	0,110	0,364	•••	•••	
	$\frac{x}{c} =$	$\frac{\pi}{30}$	$\frac{\pi}{18}$	$\frac{\pi}{9}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
y=0	$\frac{x}{c} = \frac{\sigma_x 2c}{p} = \frac{\sigma_x 2c}$	π 30	$\frac{\pi}{18}$	$\frac{\pi}{9}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$ 1,002
y = 0 $y = c$	$\frac{\frac{x}{c}}{\frac{p}{p}} = \frac{\sigma_x 2c}{\frac{\sigma_x 2c}{p}} = \frac{\sigma_x 2c}{p}$	$\frac{\pi}{30}$	$\frac{\pi}{18}$	$\frac{\pi}{9}$ 1,992 0,489	$\frac{\pi}{3}$ 1,118 0,841	$\frac{\pi}{2}$ 1,002 0,973
y = 0 $y = c$ $y = 0$	$\frac{\frac{x}{c}}{\frac{p}{p}} = \frac{\sigma_{x}^{2c}}{\frac{p}{p}} = \frac{\sigma_{y}^{2c}}{\frac{p}{p}} = \frac{\sigma_{y}^{2c}}{\frac{p}{p}}$	$\frac{\pi}{30}$	$\frac{\pi}{18}$	$\frac{\pi}{9}$ 1,992 0,4890,364	$\frac{\pi}{3}$ 1,118 0,8410,110	$\frac{\pi}{2}$ 1,002 0,973 -0,049

таблица З

§ 43. Обобщенное решение двумерной задачи в полярных координатах

Исследовав несколько частных случаев двумерных задач в полярных координатах, мы можем теперь выписать более общую функцию напряжений о в виде следующего ряда¹):

$$\varphi = a_0 \ln r + b_0 r^2 + c_0 r^2 \ln r + d_0 r^2 \theta + a'_0 \theta + + \frac{a_1}{2} r \theta \sin \theta + (b_1 r^3 + a'_1 r^{-1} + b'_1 r \ln r) \cos \theta - - \frac{c_1}{2} r \theta \cos \theta + (d_1 r^3 + c'_1 r^{-1} + d'_1 r \ln r) \sin \theta + + \sum_{n=2}^{\infty} (a_n r^n + b_n r^{n+2} + a'_n r^{-n} + b'_n r^{-n+2}) \cos n\theta + + \sum_{n=2}^{\infty} (c_n r^n + d_n r^{n+2} + c'_n r^{-n} + d'_n r^{-n+2}) \sin n\theta.$$
(80)

Первые три члена в первой строке этого выражения представляют решение для распределения напряжений, симметричного относительно начала координат

¹) Это решение дал Мичелл (J. H. Michell, Proc. London Math. Soc. 31, 100(1899)). См. также цитированную выше работу (A. Timpe, Z. Math. Physik). Аналогичное решение для случая эллиптического кольца дал также Тимпе (A. Timpe, Math. Z. 17, 189(1923)).

(см. § 28). Четвертый член дает распределение напряжений для случая, представленного на рис. 58. Пятый член дает решение для чистого сдвига (рис. 78, 6). Первый член во второй строке представляет простое радиальное распределение для силы, приложенной в направлении $\theta = 0$. Остальные члены второй строки представляют решение для части кругового кольца, изгибаемого радиальной силой (рис. 46). Комбинация всех членов второй строки дает решение для силы, действующей в бесконечной пластинке (§ 42). Аналогичные решения получаются также из третьей строки выражения (80), с той лишь разницей, что направление силы изменяется на $\pi/2$. Остальные члены выражения (80) представляют решения для касательных и нормальных сил, пропорциональных sin $n\theta$ и соз $n\theta$, действующих на внутренней и внешней границах кругового кольца. Пример такого рода мы имели при исследовании распределения напряжений вокруг малого кругового отверстия (§ 35).

Одних граничных условий не всегда достаточно для определения всех коэффициентов ряда (80). Иногда требуется дополнительное исследование перемещений. Рассмотрим полное кольцо с заданными интенсивностями нормальных и кольцевых усилий, задаваемыми следующими рядами Фурье:

$$(\sigma_r)_{r=a} = A_0 + \sum_{n=1}^{\infty} A_n \cos n\theta + \sum_{n=1}^{\infty} B_n \sin n\theta,$$

$$(\sigma_r)_{r=b} = A_0' + \sum_{n=1}^{\infty} A_n' \cos n\theta + \sum_{n=1}^{\infty} B_n' \sin n\theta,$$

$$(\tau_{r\theta})_{r=a} = C_0 + \sum_{n=1}^{\infty} C_n \cos n\theta + \sum_{n=1}^{\infty} D_n \sin n\theta,$$

$$(\tau_{r\theta})_{r=b} = C_0' + \sum_{n=1}^{\infty} C_n' \cos n\theta + \sum_{n=1}^{\infty} D_n' \sin n\theta,$$

$$(\pi_{r\theta})_{r=b} = C_0' + \sum_{n=1}^{\infty} C_n' \cos n\theta + \sum_{n=1}^{\infty} D_n' \sin n\theta,$$

где постоянные A_0 , A_n , B_n ... определяются обычным путем, исходя из заданного распределения усилий ни границе (см. стр. 73). Определяя компоненты напряжения из выражения (80) с использованием равенств (38) и сравнивая значения этих компонент при r=a и r=b с теми, которые дают уравнения (а), получаем достаточное число уравнений для определения коэффициентов во всех случаях для $n \ge 2$. Для n=0, т. е. для членов, входящих в первую строку выражения (80) и для n=1, т. е. для членов второй и третьей строк, требуются дополнительные исследования.

Если в качестве функции напряжений принята первая строка выражения (80), постоянная a'_0 определяется величиной касательных усилий, равномерно распределенных вдоль границ (см. стр. 140). Распределение напряжений, которое дает член, содержащий d_0 , *многозначно* (см. стр. 119) и для полного кольца мы принимаем ¹) $d_0 = 0$. Для определения остальных трех постоянных a_0 , b_0 и c_0 имеется только два уравнения

$$(\sigma_r)_{r=a} = A_0$$
 и $(\sigma_r)_{r=b} = A_0'$.

Добавочное уравнение для определения этих постоянных получается из рассмотрения перемещений. Перемещения в полном кольце должны быть однозначной функцией θ . Проведенное ранее исследование показывает (см. § 28), что это условие выполняется, только если положить $c_0 = 0$. Тогда оставшиеся

¹) Функции напряжений, дающие разрывы напряжений в кольце, можно интерпретировать как решение для кольца с вырезом. См. J. N. Goodier, J. C. Wilhoit, Jr., Proc. 4th Ann. Conf. Solid Mech., Univ. Texas, Austin, Texas, 1959, стр. 152—170.

две постоянные a_0 и b_0 определяются из двух приведенных выше граничных условий.

Рассмотрим теперь подробнее члены, для которых n = 1. Для определения восьми постоянных a_1, b_1, \ldots, d'_1 , входящих во вторую и третью строки выражения (80), мы находим компоненты напряжений σ_r и $\tau_{r\theta}$, используя эту часть функции φ . Затем, используя условия (а) и приравнивая соответствующие коэффициенты при sin $n\theta$ и cos $n\theta$ на внутренней и внешней границах, получаем следующие восемь уравнений:

$$(a_{1}+b_{1}') a^{-1}+2b_{1}a-2a_{1}'a^{-3} = A_{1},$$

$$(a_{1}+b_{1}') b^{-1}+2b_{1}b-2a_{1}'b^{-3} = A_{1}',$$

$$(c_{1}+d_{1}') a^{-1}+2d_{1}a-2c_{1}'a^{-3} = B_{1},$$

$$(c_{1}+d_{1}') b^{-1}+2d_{1}b-2c_{1}'b^{-3} = B_{1}',$$

$$2d_{1}a-2c_{1}'a^{-3}+d_{1}'a^{-1} = -C_{1},$$

$$2d_{1}b-2c_{1}'b^{-3}+d_{1}'a^{-1} = D_{1},$$

$$2b_{1}a-2a_{1}'a^{-3}+b_{1}'a^{-1} = D_{1},$$

$$2b_{1}b-2a_{1}'b^{-3}+b_{1}'b^{-1} = D_{1}'.$$
(6)

Сравнивая уравнения (б) с (в), можно видеть, что они совместны лишь в том случае, когда

$$a_1a^{-1} = A_1 - D_1, \quad a_1b^{-1} = A_1' - D_1', \quad c_1a^{-1} = B_1 + C_1, \quad c_1b^{-1} = B_1' + C_1', \quad (r)$$

откуда следует, что

$$a(A_1-D_1)=b(A'_1-D'_1), a(B_1+C_1)=b(B'_1+C'_1).$$
 (A)

Можно показать, что если силы, действующие на кольцо находятся в равновесии, уравнения (д) удовлетворяются всегда. Принимая, например, что сумма компонент всех сил в направлении оси *х* равна нулю, находим

$$\int_{0}^{2\pi} \left\{ \left[b\left(\sigma_{r}\right)_{r=b} - a\left(\sigma_{r}\right)_{r=a} \right] \cos \theta - \left[b\left(\tau_{r\theta}\right)_{r=b} - a\left(\tau_{r\theta}\right)_{r=a} \right] \sin \theta \right\} d\theta = 0.$$

Подставляя сюда выражения для σ_r и $\tau_{r\theta}$ из уравнений (а), приходим к первому из уравнений (д). Таким же путем, проектируя все силы на ось y, приходим ко второму уравнению (д).

Если a_1 и c_1 определены из уравнений (г), две системы уравнений (б) и (в) тождественно совпадают, и для определения оставшихся шести постоянных мы имеем только четыре уравнения. Необходимые два дополнительных уравнения получаются из рассмотрения перемещений. Члены во второй строке выражения (80) представляют функцию напряжений для некоторой комбинации простого радиального распределения и поля напряжений изгиба в криволинейном стержне (рис. 46). Накладывая общие выражения для перемещений¹) в этих двух случаях, а именно используя уравнения (ж) (стр. 100) и (р) (стр. 102) и подставляя $a_1/2$ вместо — P/π в (ж) и b_1 вместо D в (р), находим следующие многозначные члены в выражениях для перемещений *и* и *v*:

$$\frac{a_1}{2}\frac{1-\nu}{E}\theta\sin\theta+\frac{2b_1}{E}\theta\sin\theta, \quad \frac{a_1}{2}\frac{1-\nu}{E}\theta\cos\theta+\frac{2b_1}{E}\theta\cos\theta.$$

¹) Следует отметить, что если угол измеряется от вертикальной оси, а не от горизонтальной, как показано на рис. 46, вместо θ нужно подставить $\theta + \pi/2$, как это показано на рис. 53.

Для полного кольца, если напряжения вызываются лишь нагрузкой на границах, эти члены должны обращаться в нуль. Отсюда $\frac{a_1}{2} \frac{1-v}{E} + \frac{2b'_1}{E} = 0$, или

$$b_1' = -\frac{a_1(1-v)}{4}$$
 (e)

Аналогично из третьей строки выражения (80), имеем

$$d_1' = -\frac{c_1(1-v)}{4}.$$
 (*)

Уравнений (е) и (ж) вместе с уравнениями (б) и (в) теперь достаточно для определения всех постоянных в функции напряжений, представленных второй и третьей строками выражения (80).

Мы приходим к заключению, что в случае кольца задание граничных условий (а) недостаточно для определения распределения напряжений и необходимо также рассматривать перемещения. Перемещения в кольце должны быть однозначными, и, чтобы это условие выполнялось, нужно положить

$$c_0 = 0, \quad b'_1 = -\frac{a_1(1-\nu)}{4}, \quad d'_1 = -\frac{c_1(1-\nu)}{4}.$$
 (81)

Мы видим, что постоянные b_1' и d_1' зависят от коэффициента Пуассона. В силу этого распределение напряжений в кольце обычно зависит от упругих характеристик материала. Оно становится не зависящим от упругих констант только в том случае, когда коэффициенты a_1 и c_1 обращаются в нуль, откуда, согласно уравнению (81), $b_1' = d_1' = 0$. Этот частный случай имеет место, когда (см. уравнения (г)) $A_1 = D_1$ и $B_1 = -C_1$. Мы имеем такое условие, когда результирующая всех сил, приложенных как к внутренней, так и внешней границе кольца, равна нулю. Возьмем, например, результирующую ком-

 2π

Рис. 84.

поненту в направлении *х* сил, приложенных к границе *r* = *a*. Эта компонента, согласно (а), равна

$$\int_{\Omega} (\sigma_r \cos \theta - \tau_{r\theta} \sin \theta) a \, d\theta = a\pi \, (A_1 - D_1).$$

Если она обращается в нуль, то $A_1 = D_1$. Таким же путем, проектируя силы на направление y, получаем $B_1 = -C_1$, если сумма проекций сил на ось y равна нулю. Отсюда можем сделать вывод, что распределение напряжений в кольце не зависит от упругих констант материала, если результирующие всех сил, приложенных к каждой

границе, равны нулю. Момент этих сил не обязательно должен быть равным нулю.

Эти выводы, сделанные для случая круглого кольца, сохраняют силу также в самом общем случае двумерной задачи для *многосвязного* тела. Из общего исследования, которое провел Мичелл¹), следует, что для многосвязных тел (рис. 84) уравнения, аналогичные уравнениям (81) и выражающие условие однозначности перемещений, нужно вывести для каждого контура в отдельности, такого, как контура A и B на рисунке. Распределение напряжений в таких телах в общем случае зависит от упругих констант материала. Оно не зависит от этих констант только в том случае, когда результирующие усилий на каждом контуре обращаются в нуль²). Количественно влияние

- ¹) Cm. J. H. Michell, Proc. London Math. Soc., 31, 100 (1899).
- ²) Следует помнить, что объемные силы считаются нулевыми.

\$ 44] ПРИЛОЖЕНИЯ РЕШЕНИЯ В ПОЛЯРНЫХ КООРДИНАТАХ

упругих констант на максимальные напряжения обычно мало, и на практике им можно пренебречь 1). Этот вывод имеет практическую ценность. Позже мы увидим, что для прозрачных материалов, таких, как стекло и бакелит, можно определять напряжения оптическим методом, используя поляризованный свет (см. стр. 162), а полученный вывод означает, что результаты, найденные для прозрачных материалов, можно сразу же применять при тех же внешних усилиях для любого другого материала, например для стали.

§ 44. Приложения обобщенного решения в полярных координатах

В качестве первого приложения решения двумерной задачи в рядах в полярных координатах рассмотрим круглое кольцо, сжатое двумя равными и противоположно направленными силами, действующими вдоль диаметра²)

(рис. 85, а). Мы начнем с решения для сплошного диска (§ 41). Вырезав в этом диске концентрическое отверстие радиуса а, получим, что по краю отверстия

¹) Исследование этого вопроса провел Файлон (L. N. G. Filon, Brit. Assoc. Advan. Sci. Rept, 1921). См. также: E. C. Coker, L. N. G. Filon. Рыотоеlasticity, §§ 6.07, 6.16, Cambridge, University Press, New York, 1931. [Русский перевод: Э. Кокер, Л. Файлон. Оптический метод изучения напряжения, ГТТИ, 1940.] ²) См. С. П. Тимошенко, Известия Киевского политехнического инсти-

тута, 1910. См. также K. Wieghardt, Sitzber. Akad. Wiss. Wien 124, ч. II. 1119 (1915).

действуют распределенные нормальные и касательные усилия. Эти усилия можно снять путем наложения системы сил, равных по величине и противоположных по знаку. Эту последнюю систему можно представить с достаточной точностью, используя несколько первых членов ряда Фурье. Тогда соответствующие напряжения в кольце получаются при помощи общего решения, приведенного в предыдущем параграфе. Эти напряжения вместе с напряжениями, найденными для сплошного диска, и дают полные напряжения в кольце. Отношения σ_{θ} : (2P/nb), найденные таким путем для различных точек поперечных сечений mn и m_1n_1 в случае b=2a, даются в приведенной ниже табл. 4^{1,3}).

	r	A	Б	л	И	Ц	Α	- 4
--	---	---	---	---	---	---	---	-----

r=	b	0,95	0,86	0,75	0,65	0,5b
		Точная	а теория			
$mn \\ m_1n_1$	2,940 —3,788	1,477 2,185	-0,113 -0,594	-2,012 1,240	-4,610 4,002	8,942 10,147
	Гипербол	лическое расп	ределение	напряжен	ий	
mn m,n,	2,885	1,602 	0,001	-2,060 0,772	-4,806 5,108	8,653

Линейное распределение напряжений

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
--

Для сравнения даются значения тех же напряжений, определенные по двум элементарным теориям, основанным на следующих допущениях: 1) поперечные сечения остаются плоскими, в силу чего нормальные напряжения в сечении следуют гиперболическому закону; 2) напряжения распределяются по линейному закону.

Таблица показывает, что для сечения mn, которое находится на сравнительно большом расстоянии от точек приложения нагрузки P, гиперболическое распределение напряжений дает результаты, весьма близкие к точным. Ошибка в величине максимального напряжения не превышает 3%. Для поперечного сечения m_1n_1 ошибки приближенного решения намного больше. Интересно отметить, что результирующая нормальных напряжений, действующих по сечению m_1n_1 , равна P/n. Этого следовало ожидать, если вспомнить задачу о действии сосредоточенной нагрузки на клин, представленный на рис. 68, e. Распре-

150

¹⁾ Толщина пластинки принимается равной единице.

²) Значения напряжений в сечении m_1n_1 при b=2a, 2,5a, 3,33a, 5a, 10a были даны в работе: Е. А. Ripperger, N. Davids, Trans. ASCE, 112, 619—628 (1947).

деление нормальных напряжений по сечениям mn и m_1n_1 , определенное тремя вышеописанными методами, показано на рис. 85, 6 и е. Метод, примененный выше для случая действия двух равных по величине и противоположных по направлению сил, можно использовать для общего случая нагружения круглого кольца сосредоточенными силами¹).

В качестве второго примера рассмотрим стержень с проушиной²) рис. 86. Распределение давлений по краю отверстия зависит от величины зазора между болтом и краем отверстия. Приведенные далее результаты получены в предположении, что на внутренней и внешней границах действуют только нормальные давления³):

$$(\sigma_r)_{r=a} = -\frac{2P}{\pi} \frac{\cos \theta}{a} \quad \text{при} \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2},$$
$$(\sigma_r)_{r=b} = -\frac{2P}{\pi} \frac{\cos \theta}{b} \quad \text{при} \quad \frac{\pi}{2} < 0 < \frac{3\pi}{2}.$$

Таким образом, давления распределены вдоль нижней половины внутреннего края и верхней половины внешнего края проушины. После разложения этих

Рис. 86.

выражений в тригонометрические ряды, напряжения можно вычислить, используя общее решение (80) из предыдущего параграфа. Рис. 87 показывает значения отношения σ_{6} : (*P*/(2*a*)), вычисленные для поперечных сечений *mn* и $m_{1}n_{1}$, при b/a = 4 и b/a = 2. Следует отметить, что в этом случае результи-

Рис. 87.

¹) L. N. G. Filon, The Stresses in a Circular Ring, Selected Engineering Papers, № 12, London, 1924.

²) H. Reissner, Jahrb. Wiss. Gesellsch. Luftfahrt, 1928, crp. 126; H. Reissner, F. Strauch, Ingenieur-Arch. 4, 481 (1933).

⁸⁾ Р обозначает силу, отнесенную к единице толщины пластинки.

рующая усилий, действующих на каждой границе, не обращается в нуль; следовательно распределение напряжений зависит от упругих констант материала. Приведенные выше вычисления сделаны при коэффициенте Пуассона, равном 0,3¹).

§ 45. Клин, нагруженный вдоль граней

Общее решение (80) можно также использовать для случая полиномиального распределения нагрузки по граням клина²). Определяя по уравнению (80) обычным путем компоненты напряжения и удерживая только члены, содержащие r^n , считая $n \ge 0$, получаем следующие формулы для компонент напряжений, выраженные по возрастающим степеням r:

Таким образом, каждая степень *г* связана с четырьмя произвольными параметрами, в силу чего, если приложенные на границах $\theta = \alpha$ и $\theta = \beta$ напряжения заданы в виде полиномов по *г*, то могут быть определены напряжения в клине, заключенном между этими границами.

Если, например, граничные условия имеют вид

$$\begin{aligned} & (\sigma_{\theta})_{\theta=\alpha} = N_0 + N_1 r + N_2 r^2 + \dots, \\ & (\sigma_{\theta})_{\theta=\beta} = N_0' + N_1' r + N_2' r^2 + \dots, \\ & (\tau_{r\theta})_{\theta=\beta} = S_0' + S_1' r + S_2' r^2 + \dots, \end{aligned}$$

то, приравнивая коэффициенты при различных степенях г, имеем

$$2 (b_0 + d_0 \alpha + a_2 \cos 2\alpha + c_2 \sin 2\alpha) = N_0,$$

$$6 (b_1 \cos \alpha + d_1 \sin \alpha + a_3 \cos 3\alpha + c_3 \sin 3\alpha) = N_1.$$
(6)

¹) Экспериментальное определение напряжения методом фотоупругости см. в книгах М. М. Frocht, Photoelasticity, т. 2, § 6.4 [Русский перевод: М. Фрохт, Фотоупругость, Гостехиздат, 1950] и Е. G. Сокег, L. N. G. Filon, Photoelasticity § 6.18 [Русский перевод: А. Кокер, Л. Файлон, Оптический метод изучения напряжения, ГТТИ, 1940]. См. также К. Такеmura, Y. Hosokawa, Tokyo Imp. Univ. Aeron. Res. Inst. Rept. 12, 1926. Напряжения в стальной проушине исследовал Матар (J. Mathar, Forschungsarbeiten, 306, 1928). Далее эту теорию развил Теокарис (P. S. Theocaris, J. Appl. Mech. 23, 85—90 (1956)).

²) См. С. П. Тимошенко, Теория упругости. С.-Петербург, 1914, стр. 119.

и вообще 1)

 $(n+2)(n+1)[b_n \cos n\alpha + d_n \sin n\alpha + a_{n+2} \cos (n+2)\alpha + c_{n+2} \sin (n+2)\alpha] = N_n.$ Три другие группы уравнений получаются для σ_θ при θ=β и для τ_{rθ} при $\theta = \alpha$ и $\theta = \beta$. Этих уравнений достаточно для определения постоянных, входящих в решение (82).

Рассмотрим, например, случай, показанный на рис. 88. Равномерное нормальное давление q действует на грани $\theta = 0$ клина, а другая грань $\theta = \beta$

Рис. 88.

Рис. 89.

свободна от усилий. Используя только первые строки в выражениях (82) для σ₆ и т_{r6}, можно получить уравнения для определения постоянных b₀, d₀, a₂ и с, в виде

$$\begin{array}{ll} 2b_0 + 2a_2 = -q, & 2b_0 + 2d_0\beta + 2a_2\cos 2\beta + 2c_2\sin 2\beta = 0, \\ -d_0 - 2c_2 = 0, & -d_0 + 2a_2\sin 2\beta - 2c_2\cos 2\beta = 0, \end{array}$$

откуда, вводя обозначение $k = tg \beta - \beta$, находим

$$c_3 = \frac{q}{4k}$$
, $a_2 = -\frac{q \lg \beta}{4k}$, $d_0 = -\frac{q}{2k}$, $2b_0 = -q + \frac{q \lg \beta}{2k}$,

Подставляя эти выражения в равенства (82), получаем²)

$$\sigma_{\theta} = \frac{q}{k} \left(-k + \frac{1}{2} \operatorname{tg} \beta - \theta - \frac{1}{2} \operatorname{tg} \beta \cos 2\theta + \frac{1}{2} \sin 2\theta \right),$$

$$\tau_{r\theta} = \frac{q}{k} \left(\frac{1}{2} - \frac{1}{2} \operatorname{tg} \beta \sin 2\theta - \frac{1}{2} \cos 2\theta \right),$$

$$\sigma_{r} = \frac{q}{k} \left(-k + \frac{1}{2} \operatorname{tg} \beta - \theta - \frac{1}{2} \sin 2\theta + \frac{1}{2} \operatorname{tg} \beta \cos 2\theta \right).$$

(B)

Подобным же образом можно получить компоненты напряжений и для любого другого члена при полиномиальном распределении (а) нагрузки.

Метод, развитый только что для определения напряжений в клине, можно применить и к полубесконечной пластинке, если положить угол раствора клина равным л. Напряжения, например, для случая, показанного на рис. 89.

\$ 45]

¹⁾ Члены N₀, N'₀, S₀, S'₀ не являются независимыми. Они представляют напряжение в углу r = 0, и можно задать независимо только три из них.

²) Это решение другим методом получил Леви (М. Levy, Compt. Rend. 126, 1235 (1898)). См. также Р. Fillunger, Z. Math. Physik 60 (1912). Приложение функций напряжений такого вида к клиновидным коробчатым балкам дал Рейсснер (E. Reissner, J. Aeron. Sci. 7, 353 (1940)). Другие типы нагрузок рассматривал Трэнтер (C. J. Tranter, Quart. J. Mech. Appl. Math. 1, 125 (1948)).

получаются из уравнений (в) после подстановки в них значения β = π. Отсюда

$$\sigma_{\theta} = -\frac{q}{\pi} \left(\pi - \theta - \frac{1}{2} \sin 2\theta \right),$$

$$\tau_{r\theta} = -\frac{q}{2\pi} (1 - \cos 2\theta),$$

$$\sigma_{r} = -\frac{q}{\pi} \left(\pi - \theta - \frac{1}{2} \sin 2\theta \right).$$

(r)

Эти выражения для напряжений удовлетворяют условиям на прямолинейной границе, а также специфическим условиям на замыкающей границе, такой, как полуокружность r = b.

§ 46. Собственные решения для клиньев и вырезов

В § 45 компоненты напряжений (82) были взяты в виде разложений по положительным целым степеням r, соответствующим аналогичной форме функции напряжений. Однако если вернуться к ряду по $\cos n\theta$ и $\sin n\theta$ в функции напряжений (80), то легко убедиться, что независимо от того, будет ли n целым числом или нет, каждый член этого ряда будет являться функцией напряжений. Действительно, дифференциальное уравнение (39) удовлетворяется независимо от значения n. Это значение может быть комплексным, однако в этом случае мы можем использовать в качестве вещественной функции напряжений или действительную, или мнимую части полученной функции напряжений. Таким образом, вводя вместо n показатель $\lambda + 1$, можно принять

$$\varphi = r^{\lambda + 1} f(\theta), \qquad (a)$$

$$f(\theta) = C_1 \sin(\lambda + 1) \theta + C_2 \cos(\lambda + 1) \theta + C_3 \sin(\lambda - 1) \theta + C_4 \cos(\lambda - 1) \theta.$$
(6)

Здесь C₁, C₂, C₃, C₄-произвольные постоянные.

Компоненты напряжений и перемещений (если пренебречь членами, отвечающими перемещению абсолютно твердого тела) определяются формулами

$$\sigma_r = r^{\lambda - 1} \left[f''(\theta) + (\lambda + 1) f(\theta) \right], \tag{B}$$

$$\sigma_{\theta} = r^{\lambda - 1} \left[\lambda \left(\lambda + 1 \right) f(\theta) \right], \qquad (r)$$

$$\tau_{r\theta} = -r^{\lambda-1} \lambda f'(\theta), \qquad (\mathbf{g})$$

$$2Gu = r^{\lambda} \left[-(\lambda + 1) f(\theta) + (1 + \nu)^{-1} g'(\theta) \right], \qquad (e)$$

$$2Gv = r^{\lambda} [-f'(\theta) + (1+v)^{-1}(\lambda - 1)g(\theta)], \qquad (m)$$

$$g(\theta) = 4 (\lambda - 1)^{-1} [C_s \cos(\lambda - 1)\theta + C_4 \sin(\lambda - 1)\theta]. \qquad (n)$$

где

где

Перемещения здесь соответствуют плоскому напряженному состоянию.

Рассмотрим теперь приложение этого метода к клиновидной области, ограниченной радиусами $\theta = \pm \alpha$, которые свободны от нагрузки, так что

$$\sigma_{\theta} = 0, \quad \tau_{r\theta} = 0 \quad \text{при} \quad \theta = \pm \alpha.$$
 (к)

Согласно (г) и (д) это означает, что

$$f(\alpha) = 0, \quad f(-\alpha) = 0, \quad f'(\alpha) = 0, \quad f'(-\alpha) = 0, \quad (\pi)$$

а из (б) отсюда получаются четыре уравнения относительно постоянных C_1 , C_2 , C_3 , C_4 . С помощью операций сложения и вычитания легко показать, что эти уравнения эквивалентны следующей системе:

$$C_{1} \sin (\lambda + 1) \alpha + C_{3} \sin (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) C_{1} \cos (\lambda + 1) \alpha + (\lambda - 1) C_{3} \cos (\lambda - 1) \alpha = 0,$$

$$C_{2} \cos (\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$
(M)
$$(\lambda + 1) C_{1} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda + 1) \alpha + C_{4} \cos (\lambda - 1) \alpha = 0,$$

$$(\lambda+1) C_2 \sin(\lambda+1) \alpha + (\lambda-1) C_4 \sin(\lambda-1) \alpha = 0.$$

Каждая из этих двух пар уравнений однородна, и следовательно, если выбрать число λ произвольно, то все четыре постоянных должны обращаться в нуль. Однако значения C_1 и C_3 в (м) могут и отличаться от нуля при обращении в нуль определителя из коэффициентов, т. е. если

$$(\lambda - 1)\sin(\lambda + 1)\alpha\cos(\lambda - 1)\alpha - (\lambda + 1)\sin(\lambda - 1)\alpha\cos(\lambda + 1)\alpha = 0.$$

Это условие приводится к виду

$$\lambda \sin 2\alpha - \sin 2\lambda \alpha = 0. \tag{0}$$

Если взять значение λ , удовлетворяющее этому уравнению, то постоянные C_1 и C_3 могут и не обращаться в нуль. Отношение C_3/C_1 определяется любым из двух уравнений (м). Однако сама величина постоянной C_1 может оставаться произвольной.

Аналогично, рассматривая два других уравнения, (н), получаем, что постоянные C_2 и C_4 могут быть отличны от нуля, если λ удовлетворяет условию

$$\lambda \sin 2\alpha + \sin 2\lambda \alpha = 0. \tag{(1)}$$

Рассматривая условия (о) и (п) совместно, заключаем, что только единственное значение $\lambda = 0$ удовлетворяет обоим уравнениям. Этот случай, однако, не представляет интереса. Таким образом, если одно из уравнений (о), (п) удовлетворяется, то другое удовлетворяться не будет. Это значит, что если C_1 , C_3 не равны нулю, то C_2 и C_4 должны быть равны нулю и обратно.

Рассматривая этот обратный (симметричный) случай, получаем, что если (п) удовлетворяется, то из первого уравнения (н) следует

$$\frac{C_4}{C_2} = \frac{-\cos(\lambda+1)\,\alpha}{\cos\,(\lambda-1)\,\alpha}.$$
 (p)

Функция напряжений (а) принимает вид

$$\varphi = r^{\lambda+1} C_2 \left[\cos\left(\lambda+1\right) \theta - \frac{\cos\left(\lambda+1\right) \alpha}{\cos\left(\lambda-1\right) \alpha} \cos\left(\lambda-1\right) \theta \right]$$
(c)

и является единой комплексной функцией для каждого корня уравнения (п), приводящей к двум действительным решениям.

Исследование корней уравнения (п) 1) показывает, что для клиновидных областей, т. е. при 2α < π, существует бесконечная система корней с положительными действительными частями, из которых все превышают единицу. Соответствующие функции напряжений с помощью уравнений (в)-(и) приводят к напряжениям и перемещениям, которые стремятся к нулю вместе с г. Однако если λ является корнем уравнения (п), то и - λ является корнем. Следовательно, существует и другая система корней, имеющих отрицательные дествительные части. Из-за них и напряжения, и перемещения будут безгранично увеличиваться, если г стремится к нулю. Вершину клина, таким образом, нельзя рассматривать как ненагруженную, даже если результирующие сила и момент пары равны нулю. Для антисимметричного случая, описываемого уравнениями (о), вывод будет таким же. При $2\alpha > \pi$, т. е. для пластинок с вырезами, корни уравнения (п) меняют характер²). Изменение¹) характера корней (о) происходит при значении угла 2а = 257,4°.

Такого рода результаты были получены¹) для различных условий на краях $\theta = \pm \alpha$. Если оба края закреплены (u = v = 0), выводы для клиновидной области (2α < π) с качественной стороны будут подобны. Если закреплен один край, а другой свободен от напряжений ($\sigma_{\theta} = \tau_{r\theta} = 0$), существуют функции напряжений, которые дают перемещения, стремящиеся к нулю при $r \rightarrow 0$, но безгранично увеличивающиеся напряжения, когда при-мерно $2\alpha > 63^{\circ}$ (при $\nu = 0,3$). Квадрант $2\alpha = \pi/2$ является интересным частным случаем, который показывает характер особенностей в задаче о растяжении полосы с одним закрепленным краем ³).

В частных задачах о клиньях и вырезах, в том числе в задачах с нагруженными радиальными краями, методы интегральных

M. L. Williams, J. Appl. Mech. 19, 526 (1952).
 См. Е. Sternberg, W. T. Koiter, J. Appl. Mech. 25 (1958).
 См. примечание 1 на стр. 78.

преобразований¹) непосредственно приводят к требуемым комбинациям частных решений 2), таких, как решения из §§ 38 и 39 с однородными решениями, рассмотренными в данном параграфе.

ЗАДАЧИ

1. Вывести три соотношения (б), приведенные на стр. 84. Выбрать для каждого наиболее пригодный «треугольный» элемент, для которого эти соотношения могут быть сразу же получены в качестве уравнений равновесия. 2. Проверить уравнение (r) из § 27 для случая

$$\varphi = x^4 - y^4 = (x^2 + y^2)(x^2 - y^2) = r^4 \cos 2\theta.$$

3. Исследовать смысл функции напряжений СО, где С - постоянная. Применить ее к кольцу a < r < b и к бесконечной пластинке.

Кольцо закреплено на границе r = a и подвергается равномерному окружному сдвигу по границе r = b, создающему момент М. Используя уравнения (48), (49), (50), найти выражение для окружного перемещения v при r = b.

4. Показать, что в задаче, соответствующей рис. 45, если внутренний радиус a мал по сравнению с внешним радиусом b, то значение σ_{θ} на внутреннем контуре определяется выражением

$$\frac{\alpha E}{4\pi} \left(1 - 2 \ln \frac{b}{a} \right)$$

и в силу этого велико и отрицательно, когда угол α положителен (полость закрывается).

Какова наибольшая полость (значение α), которая может закрыться без превышения предела упругости, если b/a = 10, $E = 2,1 \times 10^6 \kappa \Gamma/c m^2$, предел упругости — 2,8×10³ кГ/см²?

5. Найти с помощью суперпозиции из уравнений (61) напряжения в бесконечной пластинке с отверстием, когда невозмущенное напряженное состояние на бесконечности представляет собой однородное растяжение с в двух направлениях х и у. Результаты должны соответствовать формулам (44) для частного случая $b/a \to \infty$, $p_i = 0$, $p_0 = -S$. Использовать это обстоятельство для проверки.

6. Найти выражения для перемещений, соответствующих напряжениям (61), и проверить их однозначность.

7. Преобразовать функцию напряжений (а) из § 36 к декартовым координатам и вывести отсюда значения σ_x , σ_y , τ_{xy} , которые эквивалентны распределению напряжений, определяемому уравнениями -- (65'). Показать, что эти значения стремятся к нулю, если расстояние от точки приложения силы увеличивается в любом направлении.

8. Проверить, что в частном случае $\alpha = \pi/2$ компоненты напряжения (е) из § 39 удовлетворяют уравнению (68), и исследовать, согласуется ли это распределение напряжений с элементарной теорией изгиба для малых α .

ЗАДАЧИ

¹) См. статьи Штериберга и Койтера (Sternberg, Koiter), примечание 1 на стр. 127 и Бентема (Benthem), примечание 1 на стр. 78, а также содержащиеся в этих статьях ссылки на более ранние работы.

²) В связи с экспериментальными результатами, полученными фотоупругим методом, описанным в гл. 5, Зоннтаг (G.Sonntag) в ряде статей рассмотрел и другие комбинации. См. G. Sonntag, Forsch. Ing. Wes. 29, 197-203 (1963) и содержащиеся там ссылки. См. также Н. Neuber, Z. Angew. Math. Mech. 43, 211-228 (1963).

9. Показать с помощью определения результирующих усилий, что распределение напряжений (е), стр. 126, действительно отвечает нагружению вершины клина одним только моментом M.

10. Сила P, отнесенная к единице толщины, приложена с помощью острия ножа ко дну выреза с углом раствора 90°, как показано на рис. 90. Найти напряжения и горизонтальную силу, передаваемую через дугу AB в соответствии с типом распределения, представленным уравнениями (а) в § 38.

11. Найти выражение для напряжений о_х в сечении mn, показанном на рис. 91. Теория клина, изложенная в данной главе, и теория консоли из главы 3 дают разные распределения напряжений

для сечения rs. Объяснить это расхождение. 12. Определить значение постоянной C в функ-

ции напряжений

$$\varphi = C [r^2 (\alpha - \theta) + r^2 \sin \theta \cos \theta - r^2 \cos^2 \theta tg \alpha],$$

от которой требуется, чтобы она удовлетворяла условиям на верхней и нижней гранях треугольной пластинки, показанной на рис. 92. Определить компоненты напряжений σ_x , τ_{xy} для вертикального сечения *mn*. Вычертить кривые для случая $\alpha = 20^\circ$ и для сравнения — кривые, соответствующие элементарной балочной теории.

13. Определить значение постоянной С в функции напряжений

$$\varphi = Cr^2 (\cos 2\theta - \cos 2\alpha),$$

от которой требуется удовлетворение условиям

$$\begin{split} &\sigma_{\theta} \!=\! 0, \ \tau_{r\theta} \!=\! s \quad \text{при} \quad \theta \!=\! \alpha, \\ &\sigma_{\theta} \!=\! 0, \ \tau_{r\theta} \!=\! -s \quad \text{при} \quad \theta \!=\! -\alpha, \end{split}$$

соответствующим равномерной касательной нагрузке, направленной от вершины

на каждой грани клина. Убедиться, что на вершине не действуют ни сосредоточенная сила, ни момент.

14. Найти функцию напряжений типа

 $a_3r^3\cos 3\theta + b_1r^3\cos \theta$,

которая удовлетворяет условиям

$$\sigma_{\theta} = 0, \quad \tau_{r\theta} = sr$$
 при $\theta = \alpha,$
 $\sigma_{\theta} = 0, \quad \tau_{r\theta} = -sr$ при $\theta = -\alpha,$

где s-постоянная. Изобразить эскизно нагрузку при положительном значении s.

15. Найти функцию напряжений типа

$$a_4r^4\cos 4\theta + b_2r^4\cos 2\theta_1$$

которая удовлетворяет условиям

$$\sigma_{\theta} = 0$$
, $\tau_{r\theta} = sr^2$ при $\theta = \alpha$,
 $\sigma_{\theta} = 0$, $\tau_{r\theta} = -sr^2$ при $\theta = -\alpha$,

где s-постоянная. Изобразить эскизно нагрузку.

16. Вывести распределение напряжений

$$\sigma_x = -\frac{p}{\pi} \left(\operatorname{arctg} \frac{y}{x} + \frac{xy}{x^2 + y^2} \right), \quad \tau_{xy} = -\frac{p}{\pi} \frac{y^2}{x^2 + y^2},$$
$$\sigma_y = -\frac{p}{\pi} \left(\operatorname{arctg} \frac{y}{x} - \frac{xy}{x^2 + y^2} \right)$$

из функции напряжений (см. уравнение (а) § 37)

$$\varphi = -\frac{\rho}{2\pi} \left[(x^2 + y^2) \operatorname{arctg} \frac{y}{x} - xy \right]$$

и показать, что оно удовлетворяет условиям на крае y=0 полубесконечной пластинки, показанной на рис. 93 в тех же осях. Нагрузка простирается неограниченно влево.

Исследовать значение τ_{xy} в следующих случаях: а) при приближении к точке O вдоль границы Ox, б) при приближении к точке O вдоль оси y. (Расхождение объясняется разрывом нагрузки в точке O).

17. Показать, что функция напряжений

$$\varphi = \frac{s}{\pi} \left[\frac{1}{2} y^2 \ln (x^2 + y^2) + xy \arctan \frac{y}{x} - y^2 \right]$$

удовлетворяет условиям на крае y=0 полубесконечной пластинки, показанной на рис. 94. Равномерная касательная нагрузка располагается от точки O

влево до бесконечности. Показать, что напряжение σ_x неограниченно возрастает при приближении к точке O по любому направлению. Конечное значение получается лишь в том случае, когда разрыв сглаживается в окрестности точки O.

18. С помощью суперпозиции, используя результаты решения задачи 16, получить значения σ_x , σ_y , τ_{xy} для давления, действующего на отрезок -a < x < a прямолинейного края полубесконечной пластинки. Показать, что касательное напряжение определяется по формуле

$$\tau_{xy} = -\frac{p}{\pi} \frac{4axy^2}{[(x-a)^2 + y^2][(x+a)^2 + y^2]}.$$

Исследовать поведение этого напряжения при приближении к точке x = a, y = 0: a) вдоль границы, б) вдоль линии y = 0.

19. Используя результаты задачи 17, показать эскизно изменение напряжений σ_x вдоль края y=0 для равномерной касательной нагрузки s, приложенной к отрезку -a < x < a края.

20. Показать, что функция напряжений

$$\varphi = \frac{p}{2\pi a} \left[\left(\frac{1}{3} x^3 + xy^2 \right) \arctan \left(\frac{y}{x} + \frac{1}{3} y^3 \ln (x^2 + y^2) - \frac{1}{3} x^2 y \right] \right]$$

удовлетворяет условиям на краю y=0 полубесконечной пластинки, изображенной на рис. 95, если влево от точки O до бесконечности приложено линейно возрастающее давление.

21. Показать, что если приложенное давление в задаче 20 заменить нагружением касательными усилиями, т. е. *р* заменить на *s*, то соответствующая функция напряжений будет иметь вид

$$\varphi = \frac{s}{2\pi a} \left[xy^2 \ln (x^2 + y^2) + (x^2y - y^3) \arctan \frac{y}{x} - 3xy^2 \right]$$

22. Показать, как распределение нагрузки, показанное на рис. 96, можно получить с помощью суперпозиции из нагружения типа, показанного на рис. 95.

Рис. 97.

Рис. 98.

23. Показать, что параболическая нагрузка, показанная на рис. 97, дается функцией напряжений

$$-\frac{p}{\pi}\left\{-\frac{xy^3}{3a^2}\ln\frac{r_2^2}{r_1^2} - \left[\frac{a^2}{4} + \frac{1}{2}\left(x^2 + y^2\right)\left(1 - \frac{x^2}{6a^2} + \frac{y^2}{2a^2}\right)\right]\alpha + \frac{2}{3}ax\beta + \frac{1}{2}ay\left(1 - \frac{x^2}{3a^2} + \frac{y^2}{a^2}\right)\right\}$$

для давления и функцией

$$\frac{s}{\pi} \left\{ \frac{y^2}{6a^2} \left(3a^2 - 3x^2 + y^2 \right) \ln \frac{r_2^2}{r_1^2} + \frac{2}{3} ay\beta + \frac{xy}{3a^2} \left(x^2 - 3y^2 - 3a^2 \right) \alpha + \frac{4xy^2}{3a} \right\}$$

для касательной нагрузки, где

$$r_1^2 = (x-a)^2 + y^2, \quad r_2^2 = (x+a)^2 + y^3,$$

$$\alpha = \theta_1 - \theta_2 = \operatorname{arctg} \frac{2ay}{x^2 + y^2 - a^2}, \quad \beta = \theta_1 + \theta_2 = \operatorname{arctg} \frac{2xy}{x^2 - y^2 - a^2}.$$

24. Показать, что в задаче, соответствующей рис. 75, вдоль вертикального диаметра всюду, за исключением точек А и В, действуют растягивающие напряжения $\sigma_x = 2P/(\pi d)$. Проверить равновесие полукруглой части ADB путем рассмотрения малых полуокружностей вокруг точек А и В (см. рис. 68, в и г). 25. Проверить, что функция напряжений

P (- 1 - . . . 1 . . . φ

$$r = -\frac{1}{\pi} \left\{ \psi r \sin \theta - \frac{1}{4} (1 - v) r \ln r \cos \theta - \frac{1}{2} r \theta \sin \theta + \frac{d}{4} \ln r - \frac{d^2}{32} (3 - v) \frac{1}{r} \cos \theta \right\}$$

удовлетворяет граничным условиям для силы Р, действующей на контуре отверстия в бесконечной пластинке с нулевыми напряжениями на бесконечности. и что окружное напряжение на границе отверстия равно

$$\frac{P}{\pi d} \left[2 + (3 - v) \cos \theta \right]$$

всюду, за исключением точки А (рис. 98).

Показать также, что эта функция напряжений отвечает однозначным перемещениям.

26. Получить в условиях задачи 25 путем интегрирования окружное напряжение вокруг отверстия при действии на границе отверстия равномерного давления р. Затем проверить результат с помощью уравнений (45).

27. Найти общую форму f(r) в функции напряжений $\theta f(r)$ и получить выражения для компонент напряжений о, о, т, в. Может ли такая функция напряжений применяться к замкнутому кольцу?

Глава 5

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ. МЕТОД ФОТОУПРУГОСТИ И МЕТОД «МУАРА»

§ 47. Экспериментальные методы и проверка теоретических решений

Изложение теоретических методов будет продолжено в главе 6. Данную главу можно рассматривать как введение к изучению двух основных экспериментальных методов, которые могут использоваться для подтверждения некоторых особенностей решений для напряжений и деформаций, полученных и исследованных в предыдущих главах. Заметим, однако, что до сих пор рассматривались лишь пластинки простой геометрической формы. Для пластинок более сложного очертания получение аналитических решений становится затруднительным, но эти трудности в большинстве случаев удается преодолеть, если обратиться к численным методам (обсуждаемым в приложении) или к экспериментальным методам, таким, как измерение поверхностных деформаций с помощью тензометров (§ 12), фотоупругий метод или метод муара.

§ 48. Измерение напряжений фотоупругим методом

Этот метод основывается на открытии Дэвида Брюстера¹): когда через кусок стекла, в котором имеются напряжения, пропускается поляризованный свет, то эти напряжения вызывают яркую цветную картину. Брюстер высказал предположение, что эти цветные картины можно использовать для измерения напряжений в инженерных конструкциях, таких, как каменные мосты, исследуя их стеклянные модели в поляризованном свете при различных условиях нагружения. Это предположение не при-влекло внимания инженеров того времени. Лишь впоследствии физиком Максвеллом были проведены сравнения 2) фотоупругих цветных картин с аналитическими решениями. Много позже упомянутым предположением воспользовались Вильсон при исследовании напряжений в балке под действием сосредоточенной

D. Brewster, Trans. Roy. Soc. (London), 1816, crp. 156.
 J. C. Maxwell, Sci. Papers T. 1, crp. 30.

нагрузки¹), и Менаже при исследовании арочных мостов²). Затем метод развил и широко применял Кокер³), который в качестве материала модели стал применять целлулоид. Более поздние исследователи применяли бакелит, фостерит⁴) и эпоксидную смолу⁵). Для измерений использовались картины черно-белых полос, получаемые с помощью монохроматического освещения, заменившие цветные картины, которые создавало белое освещение.

Далее мы рассмотрим лишь простейшую форму аппаратуры, используемой в фотоупругих исследованиях 6). Обычный свет можно рассматривать как колебания во всех направлениях, перпендикулярных лучу. Путем отражения от куска листового стекла, покрытого с одной стороны черной краской, или с помощью пропускания через поляризатор — призму Николя или поляроиднию пластинку — мы получаем более или менее поляризованный

Рис. 99.

луч света, в котором преобладают поперечные колебания в каком-либо одном направлении. Плоскость, содержащая это направление и направление луча, является плоскостью поляризации. В фотоупругих исследованиях напряженного состояния используется свет такого типа. Здесь мы будем рассматривать использование лишь монохроматического света.

Рис. 99, а схематически изображает плоскость поляризации. Луч света, порожденный в точке \hat{L} , проходя через поляризатор P, и затем через прозрачную модель М, преобразующую луч в

¹) C. Wilson, Phil. Mag. 32, 481 (1891).

²⁾ A. Mesnager, Ann. Ponts Chaussées, 4e Trimestre, стр. 129 (1901), и 9e Series, 16, 135 (1913).

³) Многочисленные публикации Кокера собраны в его статьях: Е. G. C о k е r, Gen. Elec. Rev. 23, 870 (1920), и J. Franklin Inst. 199, 289(1925). См. также книгу: E. G. Coker, L. N. G. Filon, Photoelasticity, Cambridge University Press, New York, 1931. [Русский перевод: Э. Кокер, Л. Файлон см. примечание на стр. 149.]

примечание на стр. 149.] ⁴) M. M. Leven, Proc. Soc. Exptl. Stress Anal. 6, № 1, 19 (1948). ⁵) См. статью: M. Hetényi, Photoelasticity and Photoplasticity (в сбор-нике: J. N. Goodier, N. J. Hoff (ред.), Structural Mechanics, Proc. 1st Symp. Nav. Struct. Mech., стр. 483—505, Pergamon Press, 1960). ⁶) Более полное изложение можно найти в книгах: M. Hetényi (ред.) Handbook of Experimental Analysis, John Wiley, New York, 1950; M. M. Frocht, Photoelasticity, John Wiley, New York, 1941, 1948 и в упомянутой книге Э. Кокера и Л. Файлона. [См. также А. Я. Александров, М. Х. Ахметзянов, Поляризационно-оптические методы механики деформируемых тел, «Наука», 1973 (Прим. ред.)].

соответствии со своим напряженным состоянием, проходит затем через анализатор — другой поляризатор А—к экрану S, на котором создается картина интерференционных полос (рис. 101—105).

На рис. 100, а представлен малый элемент abcd левой грани модели M. Направления главных напряжений σ_x и σ_y принимаются ради удобства соответственно параллельными сторонам элемента. Луч света, поляризованный в плоскости OA (рис. 100), исходит из поляризатора P, причем направление луча перпендикулярно плоскости чертежа. Колебание является простым гармоническим, и его можно представить следующими «поперечными» — перемещениями:

$$s = a \cos pt$$
 (a)

в направлении OA, где p—умноженная на 2π частота, зависящая от цвета освещения, и t—время.

Перемещение (а) в плоскости OA разлагается на компоненты с амплитудами $OB = a \cos \alpha$ и $OC = a \sin \alpha$ в плоскостях Ox и Oy. Соответствующие компоненты перемещения имеют вид

$$x = a \cos \alpha \cos pt$$
, $y = a \sin \alpha \cos pt$. (6)

Влияние главных напряжений σ_x и σ_y в точке О пластинки заключается в изменении скоростей, с которыми эти компоненты перемещения распространяются в пластинке. Обозначим через v_x и v_y скорости в плоскостях Ох и Оу. Если h—толщина пластинки, то промежутки времени, необходимые для этих двух компонент, чтобы пересечь пластинку, составляют

$$t_1 = h/v_x$$
 и $t_2 = h/v_y$. (B)

Поскольку световые волны передаются без искажения формы x_1 , перемещение в направлении x света, покидающего пластинку в момент t, отвечает перемещению в направлении оси x света, ранее вошедшего в пластинку в момент t_1 . Отсюда

$$x_1 = a \cos \alpha \cos p (t - t_1), \quad y_1 = a \sin \alpha \cos p (t - t_2).$$
 (r)

Таким образом, покидая пластинку, эти компоненты обладают разностью фаз $\Delta = p (t_2 - t_1)$. Экспериментально было установлено, что при любых заданных материале, температуре и длине волны света разность фаз пропорциональна разности главных напряжений. Кроме того, она пропорциональна толщине пластинки. Эта зависимость обычно выражается в форме

$$\Delta = \frac{2\pi h}{\lambda} C(\sigma_x - \sigma_y), \qquad (A)$$

где λ — длина световой волны в вакууме, а C — экспериментально определяемый оптико-механический коэффициент. Коэффициент C зависит как от длины волны и температуры, так и от вида материала.

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ

Анализатор A пропускает только колебания (или компоненты колебаний) в его собственной плоскости поляризации. Если эта плоскость расположена под прямым углом к плоскости поляризации поляризатора¹) и если при этом *модель удалена*, анализатор A не будет пропускать света и экран будет темным. Рассмотрим теперь, что произойдет в присутствии модели. Компоненты (г), достигшие анализатора, можно представить в виде

$$x_2 = a \cos \alpha \cos \psi, \quad y_2 = a \sin \alpha \cos (\psi - \Delta),$$
 (e)

поскольку при переходе от $M \ltimes A$ они сохраняют разность фаз Δ . Здесь через ψ обозначено pt + const.

Плоскость поляризации поляризатора А представлена на рис. 100, а для удобства прямой mn, перпендикулярной OA. Компоненты колебаний, которые пропускаются призмой A, направлены вдоль оси Om и, в соответствии с уравнениями (е), будут

$$x_2 \sin \alpha = \frac{1}{2} a \sin 2\alpha \cos \psi,$$

- $y_2 \cos \alpha = -\frac{1}{2} a \sin 2\alpha \cos (\psi - \Delta).$

Суммарное колебание вдоль тл отсюда равно

$$\frac{1}{2} \alpha \sin 2\alpha \left[\cos \psi - \cos \left(\psi - \Delta \right) \right] = -\alpha \sin 2\alpha \sin \frac{\Delta}{2} \sin \left(\psi - \frac{\Delta}{2} \right).$$

Множитель $sin[\psi - (\Delta/2)]$ представляет собой простое гармоническое изменение во времени. В то же время амплитуда равна

$$a\sin 2\alpha \sin \frac{\Delta}{2}$$
. (**)

Отсюда следует, что некоторое количество света достигнет экрана, исключая случаи, когда $\sin 2\alpha = 0$ или $\sin (\Delta/2) = 0$. Если $\sin 2\alpha = 0$, то направления главных напряжений параллельны двум взаимно перпендикулярным направлениям поляризации призм P и A. Таким образом, лучи, которые проходят через такие точки модели M, будут гаситься и соответствующие точки на экране S оставаться затемненными. Эти точки обычно лежат на одной или более кривых, изображаемых на экране S черной полосой. Такие кривые называются изоклинами. Чтобы найти направления главных напряжений, можно в большом числе точек на этих кривых провести очень короткие линии, параллельные осям Pи A. Используя для скрещенных призм P и A разные (взаимно перпендикулярные) ориентации, можно получить различные изоклины. После этого короткие линии покрывают все поле подобно распределению железных опилок на магните, и можно вычертить

¹⁾ В этом случае полярисатор и анализатор называют «скрещенными».

кривые, касательные в каждой точке к главным осям напряженного состояния. Эти линии представляют собой траектории главных напряжений.

Если $\sin(\Delta/2) = 0$, то $\Delta = 2\pi n$, где $n = 1, 2, \ldots$. Когда $\Delta = 0$, главные напряжения равны между собой. Точки, где это имеет место, называют изотропными точками и они будут, разумеется, затемненными. Точки, в которых n = 1, образуют темные полосы или полосы первого порядка, точки, для которых n = 2, образуют полосы второго порядка и т. д. Такие полосы называются изохромами (в силу того, что при использовании белого цвета они соответствуют гашению световых волн определенной длины, т. е. некоторой цветной полосе). Из уравнения (Д) следует, что разность $\sigma_x - \sigma_y$ на полосе n = 1, и т. д. Следовательно, чтобы найти разность главных напряжений, достаточно знать порядок полосы и разность напряжений, представленную полосой первого порядка, или цену полосы.

Цену полосы можно определить, создав в пластинке простое растяжение. Поскольку напряженное состояние в этом случае является однородным, полос не будет и вся поверхность модели на экране будет казаться равномерна освещенной или затемненной. При нулевой нагрузке она будет темной. По мере увеличения напряжения она будет становиться все ярче и ярче, а затем снова потемнеет, когда разность напряжений (в данном случае просто растягивающее напряжение) приблизится к цене полосы. При дальнейшем увеличении нагрузки поверхность модели на экране снова становится ярче, затем снова темнеет, когда напряжение вдвое превысит цену полосы и так далее.

Такие смены яркости и затемнения с увеличением нагрузки, очевидно, будут происходить в любой точке неоднородного поля напряжений, если разность главных напряжений становится кратной цене полосы. При рассмотрении поля в целом такие изменения в отдельных точках отвечают постепенному движению полос (включая и появление новых полос) с увеличением нагрузки. Порядок полос можно при этом определять, наблюдая за их движением и подсчитывая их.

Пусть, например, при чистом изгибе слоя получается картина полос, показанная на рис. 101. Параллельные полосы отвечают тому обстоятельству, что часть полосы, удаленная от точек приложения нагрузок, имеет во всех вертикальных сечениях одно и то же распределение напряжений. Наблюдая при постепенном увеличении нагрузки за экраном, замечаем, что новые полосы появляются у верхней и нижней граней балки и они двигаются к ее середине, при этом полосы располагаются все более и более густо. Лишь одна полоса на нейтральной оси балки все время остается темной. Очевидно, это полоса нулевого порядка (n = 0).

§ 49. Круговой полярископ

Мы видели, что только что рассмотренный плоский полярископ дает для некоторого выбранного значения α соответствующие изоклины, а также изохромы или полосы. Таким образом, затемнения на рис. 101 показывают ориентации главных осей, совпадающие с ориентациями поляризатора и анализатора. В действительности фотография, показанная на рис. 101, получена *в круговом полярископе*, который является модификацией плоского полярископа, позволяющей исключить из рассмотрения изоклины¹). Схематически этот полярископ показан на рис. 99, *б*, на котором по сравнению с рис. 99, *а* добавлены две пластинки Q_p и Q_A в четверть волны. Пластинка в четверть волны—это кристаллическая пластинка, имеющая две плоскости поляризации и действующая на луч света подобно модели с однородным напряженным состоянием. Она вносит разность фаз Δ в соответствии с равенством (е), но толщина этой пластинки подобрана так, чтобы выполнялось условие $\Delta = \pi/2$. Используя уравнение (е) со значением Δ для света, покидающего Q_p , замечаем, что можно прийти к простому результату, если принять равным 45° угол α , представляющий сейчас угол между плоскостью поляризации призмы Pи одной из осей Q_p . Тогда можно записать

$$x'_{2} = \frac{a}{\sqrt{2}} \cos \psi, \quad y'_{2} = \frac{a}{\sqrt{2}} \cos \left(\psi - \frac{\pi}{2}\right) = \frac{a}{\sqrt{2}} \sin \psi.$$
 (B)

Здесь x'_2 отвечает «быстрой» оси пластинки в четверть волны. Точка, движущаяся с такими компонентами перемещения (функция ψ всегда имеет вид pt + const для каждой заданной точки вдоль луча), движется по окружности. Поэтому такой свет характеризуется круговой поляризацией.

Компоненты, определяемые формулами (и), направлены вдоль осей поляризации Q_p . Обозначая через β угол между x'_2 и направлением σ_x в модели (рис. 100, б), а вновь через Δ — разность фаз, вызванную напряжением в элементе, для света, покидающего модель и связанного только с x'_2 , получаем

$$x_{3} = \frac{a}{\sqrt{2}} \cos\beta \cos\psi, \quad y_{3} = \frac{a}{\sqrt{2}} \sin\beta \cos(\psi - \Delta), \quad (\kappa)$$

а для света, связанного с y_2 ,

$$x_{3} = -\frac{a}{\sqrt{2}}\sin\beta\sin\psi, \quad y_{3} = \frac{a}{\sqrt{2}}\cos\beta\sin(\psi - \Delta). \quad (\pi)$$

¹) Если поляризатор и анализатор вращаются так, что их оси остаются перпендикулярными, то полосы остаются постоянными, а изоклины двигаются. Когда это вращение производится достаточно быстро, изоклины становятся невидимыми. Круговой полярископ приводит к тому же эффекту, но чисто оптическими средствами.

круговой полярископ

Складывая компоненты, определяемые формулами (к) и (л), для света, покидающего модель, находим

$$x_3 = \frac{a}{\sqrt{2}} \cos \psi', \quad y_3 = \frac{a}{\sqrt{2}} \sin (\psi' - \Delta), \quad (M)$$

где $\psi' = \psi + \beta$.

Прежде чем исследовать влияния Q_A и A на луч света, удобно представить движение (м) в виде суперпозиции двух круговых движений. Это можно сделать следующим образом. Обозначая $\psi' - (\Delta/2)$ через ψ'' и $a/\sqrt{2}$ через b, из уравнений (м) имеем

$$x_3 = b\cos\left(\psi'' + \frac{\Delta}{2}\right) = b\left(\cos\frac{\Delta}{2}\cos\psi'' - \sin\frac{\Delta}{2}\sin\psi''\right), \quad (H)$$

$$y_{3} = b \sin\left(\psi'' - \frac{\Delta}{2}\right) = b\left(\cos\frac{\Delta}{2}\sin\psi'' - \sin\frac{\Delta}{2}\cos\psi''\right), \quad (0)$$

что представляет собой суперпозицию кругового движения с радиусом $b \cos(\Delta/2)$ в направлении по часовой стрелке (см. рис. 100, б, где луч света проходит перпендикулярно плоскости чертежа вниз) и кругового движения с радиусом $b \sin(\Delta/2)$ в направлении против часовой стрелки.

Теперь можно показать, что если ось поляризации A установлена под углом 45° к осям поляризации Q_A , то одно из круговых движений передается на экран S, а другое приводит к затемнению. Это и дает желаемый результат изохромы без изоклин.

Компоненты x_3 и y_3 в формулах (н) и (о) направлены по главным осям напряженного состояния модели. Изменение осей для кругового движения вызывает лишь изменение на постоянную фазового угла ψ'' . Следовательно, круговое движение по часовой стрелке можно представить с помощью компонент вида

$$x_4 = c\cos\psi, \quad y_4 = c\sin\psi \tag{(1)}$$

вдоль осей Q_A , где ψ —снова имеет вид pt + const. Отождествляя x_4 с быстрой осью Q_A , на выходе из Q_A имеем

$$x_5 = c \cos \psi, \quad y_5 = c \sin \left(\psi - \frac{\pi}{2}\right) = -c \cos \psi.$$
 (p)

При этом ф снова изменяется на постоянную.

Если теперь мы установим ось анализатора A под углом 45° к Ox_4 и Oy_4 (рис. 100, e), то компоненты перемещений (p) вдоль этой оси дадут

 $c\cos 45^\circ\cos\psi - c\cos 45^\circ\cos\psi$,

или нуль. Таким образом, круговое движение по часовой стрелке света не дает.

Рассмотрим таким же путем часть движения по уравнениям (н) и (о) против часовой стрелки, т. е.

$$x'_4 = -c\sin\psi, \quad y'_4 = -c\cos\psi. \tag{n'}$$

§ 49]

Получаем, что перемещение, передаваемое вдоль оси анализатора, будет

$$-c\cos 45^\circ \sin\psi - c\cos 45^\circ \sin\psi;$$

отсюда амплитуда получается в виде

$$\sqrt{2}c$$
, илн $\sqrt{2}b\sin\frac{\Delta}{2}$, или $a\sin\frac{\Delta}{2}$. (c)

Напомним, что через b обозначено $a/\sqrt{2}$ и что a—амплитуда на выходе из поляризатора. Здесь, разумеется, не учитывались потери света в приборе. Сравнивая этот результат с результатом (ж) для плоского полярископа, замечаем, что множитель sin 2α теперь отсутствует, и следовательно, на экране появятся изохромы, но изоклин не будет.

Если разность Δ равна нулю, то и амплитуда (с) также равна нулю. Следовательно, если модели нет или модель не нагружена, то экран будет темным. Таким образом, мы получаем темное поле. Если ось анализатора повернута на 90° по отношению к Q_A , то мы получаем освещенное поле, где место бывших темных полос занимают светлые полосы. Тот же эффект можно вызвать в плоскости полярископа, если поместить оси поляризатора и анализатора не под прямым углом, а параллельно друг другу.

§ 50. Примеры определения напряжений фотоупругим методом

Фотоупругий метод позволил получить особенно важные результаты при исследовании концентрации напряжений вблизи отверстий и входящих углов. В таких случаях максимальное напряжение достигается на границе и может быть получено оптическим методом непосредственно, так как одно из главных напряжений на свободной границе обращается в нуль.

Рис. 102 показывает картину полос для кривого бруса¹), изгибаемого моментами *M*. Внешний радиус бруса втрое превышает его внутренний радиус. Максимальный порядок полосы на правом конце как на нижней, так и на верхней грани равен 9. Регулярное расположение полос указывает на линейное распределение напряжений изгиба в поперечном сечении. Порядки полос, отмеченные на верхнем конце стержня, показывают распределение напряжений в искривленной части (полная модель распространялась за верхнюю грань, которая являлась для нее плоскостью симметрии). Эти полосы показывают, что сжимающее напряжение на внутренней грани имеет порядок 13,5, а растягивающее напряжение на внешней грани—6,7. Эти значения с весьма большой точностью пропорциональны напряжениям теоретического «точного решения», которые даны в последней строке таблицы на стр. 91.

¹) E. E. Weibel, Trans. ASME 56, 637 (1934).

§ 50] определения папряжений фотоупрутим мезодом

Рис. 103 и 104 соответствуют случаю изгиба балки сосредоточенной силой, приложенной в центре среднего сечения ¹). Частое расположение темпых полос указывает на высокие напряжения вблизи точки приложения силы. Число полос, пересекающих поперечное сечение, убывает с увеличением расстояния поперечного сечения

от середины балки. Это вызвано уменьшением изгибающего момента.

Рис, 105 показывает распределение панряжений в пластинке ступенчатой ширины при действия осевого растяжения. Как видим,

Pare, 194,

максимальное напряжение действует у конца галтели. Отношение этого максимального напряжения к среднему напряжению в нанболее узкой часта пластинки пазывается коэффициентом колцентрации напряжений. Он зависат от отношения радиуса R галтели к ширине d пластинки. Некоторые значения полученных экспериментально коэффициентов концентрации напряжений⁸) приведены на рис. 106. Мы видим, что с уменьшением отношения R/d максимальное напряжение быстро увеличивается, и когда R/d=0, 1 максимальное напряжение более чем здвое превосходит среднее

1) M. M. Frocht, Trans. ASME 53 (1931)

³) E. E. Wetbel, Trans. ASMB 56 (1934).

171

Ряс. 106.

Pac, 107.

Pac, 193,

§ 51]

растягивающее напряжение. Рис. 107 показывает ту же пластинку, подвергнутую чистому изгибу с помощью момента, приложенного на конце и действующего в срединной плоскости пластинки. Рис. 108 дает коэффициенты концентрации напряжений¹), определяемые как отношение наибольшего напряжения, полученного в месте изменения сечения, к обычному наибольшему фибровому напряжению в самой узкой части, где ширина пластинки равна d. Если условия проектирования ограничивают длину галтели, то лучше использовать не круговую форму закругления, а эллиптическую²).

§ 51. Определение главных напряжений

Как мы видели, обычный полярископ определяет лишь разность главных напряжений и их направления. Если требуется найти главные напряжения во всей модели или на границе, где нагрузка неизвестна, требуются дополнительные измерения или нагрузка пензвестна, гребуются дополнительные измерения или вычисления. Для этого было предложено много разных методов. Здесь мы дадим лишь краткое описание некоторых из них ³). Сумму главных напряжений можно найти, измеряя изменения толщины пластинки ⁴). Уменьшение толщины, вызванное напря-

жениями, определяется формулой

$$\Delta h = \frac{hv}{E} \left(\sigma_x + \sigma_y \right), \qquad (a)$$

откуда можно вычислить $\sigma_x + \sigma_u$, если в каждой точке, где должны быть определены напряжения, измерено Δh . Для этой цели использовалось несколько различных видов тензометров 5). Для получения картины интерференционных полос модель помещается напротив интерферометра так, что образуется воздушная пленка, тогда изменения толщины пластинки определятся изменениями толщины воздушной пленки, и требуемую информацию при этом можно получить на основании одной-единственной фотографии.

Дифференциальное уравнение (б) на стр. 50, которому подчи-няется сумма главных напряжений, удовлетворяется также, если в него подставить прогибы однородно-растянутой мембраны, такой, как мыльная пленка. При соответствующих условиях прогибы

¹⁾ Много подобных кривых для разных случаев, полученных эксперимен-¹ много подооных кривых для разных случаев, полученных экспериментальными и теоретическими методами, приведено в книгах: R. E. Peterson, Stress Concentration Design Factors, John Wiley, New York, 1953; R. B. Heywood, Designing by Photoelasticity, Chapman and Hall, London, 1952.
 ²) M. M. Frocht, D. Landsberg, J. Appl. Mech. 26, 448-450 (1959).
 ³) Более полную информацию можно получить в книгах, приведенных развитивности и страна.

в примечании 6 на стр. 163.

 ⁴) Этот метод предложил Менаже (Mesnager), см. ссылку 2 на стр. 163.
 ⁵) См. М. М. Фрохт, Фотоупругость, т. 2, Гостехиздат, 1950.

такой мембраны в некотором масштабе определяют сумму $\sigma_x + \sigma_y^{-1}$. Во многих случаях граничные условия для переменной $\sigma_x + \sigma_y^{-1}$, которые требуются для построения такой мембраны, могут быть получены из картины фотоупругих полос. Как известно, эта картина дает величины $\sigma_x - \sigma_y$. На свободной границе одно из главных напряжений, скажем σ_y , равно нулю, и сумма $\sigma_x + \sigma_y$ становится равной $\sigma_x - \sigma_y$. Кроме того, в точках границы, где нагрузка нормальна к ней и имеет известную величину, сама нагрузка равна одному из главных напряжений, и фотоупругие измерения разности достаточны для определения суммы главных измерения разности достаточны для определения суммы главных напряжений. Тому же самому дифференциальному уравнению удовлетворяет электрический потенциал тока, проходящего через пластинку, что может служить основой для применения метода электроаналогии²). Помимо этих экспериментальных процедур, развиты и эффективные численные методы, которые обсуждаются в Приложении. Главные напряжения можно также определять чисто фотоупругим методом, более сложным, чем те, которые определи в б 49 и 40 описаны в §§ 48 и 49.

§ 52. Методы фотоупругости в трехмерном случае

Модели, используемые в обычных фотоупругих испытаниях, нагружаются при обычной комнатной температуре, являются упругими и для них картина интерференционных полос исчезает вместе со снятием нагрузки. Поскольку свет должен пройти сквозь всю толщину модели, интерпретация картины интерферен-ционных полос возможна только в том случае, когда модель находится в плоском напряженном состоянии - компоненты напряжения при этом распределяются по толщине пластинки почти равномерно. Когда это не имеет места, как, например, при трехмерном распределении напряжений, оптический эффект определяется интегралом, содержащим напряжения во всех точках. расположенных вдоль луча³).

Эту трудность можно преодолеть с помощью метода, основанного на наблюдениях, которые сделали Брюстер и Максвелл⁴). Оказалось, что животные клеи, такие, как рыбий клей, если их высушить под нагрузкой, а потом разгрузить, сохраняют в полярископе остаточную интерференционную картину, как если бы они все еще оставались под нагрузкой и оставались упругими.

J. P. Den Hartog, Z. Angew. Math. Mech. 11, 156 (1931).
 ²) См. R. D. Mindlin, J. Appl. Phys, 10, 282 (1939).
 ³) См. статью Друккера (D. C. Drucker) в книге Handbook of Experimental Stress Analysis, в которой содержится подробное изложение трехмерной фотоупругости.

⁴⁾ См. выше ссылки на их работы (стр. 162).

Как обнаружнии более поздние исследования, смолы, такие, какбакелит и фостерит, обладают тем же свойством, если нагружать их в горячем состоянии, а затем охладить. Объяснение¹) состоит в том, что структура этих материалов состоит из прочного упру-

того скелета, или молекулярной решетки, на который не действует тепло, я остальное пространство заполнено массой слабо связанных друг с другом молекул, которая при нагревании размятчается. Когда горячий образец нагружается, нагрузку несет упругий скелет, который без преиятствий упруго деформируется. При охлаждении размятченная масса, в которую погружен этот скелет, «замораживается» и скелет сохраняет те же деформация

Pae, 110,

даже посде снятия нагрузки. Подобным же образом существенно сохраняется и онтический эффект, который не меняется, даже если образец разрезать на куски. Следовательно, трехмершый образец можно разрезать на тонкие слои, каждый из которых можно исследовать в полярископе. Напряженное состояние, которое вызывает онтический эффект в вырезанном слое, не является илоским, однако известно, что прочие компоненты τ_{xs} , τ_{ys} и σ_{s} не влияют на луч, имеющий 'направление z, т. е. направление иормали к плоскости разреза. Интерференционная картина, показанная на рис. 109, была получена в таком слое, центрально-

¹) M. Eletényi, J. Appl. Phys. 10, 295 (1939).

зырезанном из растинутого круглого вала (из фостерита) с вырезом гиперболического профиля⁴). Максимальное папряжение, полученное из этой интерференционной картины, совпадает с теоретическим значением с точностью до 2 - 3%³). На рис, 110 изображена другая интерференционная картина того же типа, полученная на бакелитовой моделя соединения болта и гайка³). Нижняя гайка обычного типа. Нижняя часть верхней гайки имеет копусообразное очертание и характеризустся меньшей концентрацией папряжений, чем обычная гайка.

§ 83. Метод муара

илитерерация выплания и алексо создать и интеререрация в каретония и на истородот и и и и и и и и и и и и и и и непосредственно связанные с перемещения и и в качестве илисстрации рассмотрим пластинку, которал подверчается про-

Pac. III,

стой деформации сдвига в своей плоскости. tla рис. 111, а показап ряд параллельных, разделенных равными расстояниями линий, папесенных на пластинку. Деформация сдвига приводит эти линии в наклонпое положение, как показано на рис. 111, б. Вращение каждой линии совершается вокруг се середящы, остающейся неподвижной. По этим линиям хоронго видно поле вертикальных перемещений. Первоначальшый ряд (рис. 111, а) сохраняется, как

коння на прозрачной пленке, а затем накладывается на деформированную сетку (рис. 111, б), как показано на ряс. 111, в. Мы получаем картину, изображающую «точки» пересечения двух рядов линий. Если рассматривать эту картину с большого расстояния или с полузакрытыми глазами, то она представится в виде довольно широких вертикальных полос. Между ними размещаются участки из белых ромбовидных площадок, одна из которых находится посередние (рис. 111, в). Двигаясь вдоль вертикальной линии, расположенной посередние рисунка, мы проходим световую «полосу», вдоль которой вертикальное перемещение равно пулю, При этом мы пересекаем семь темпых линий, которые образуют «семилинейное затемпение». Пересская по вертикали соседнюю тёмную полосу справа или слева, мы пройдем, однако, через 13 темпых линий, и получим «13-линейное затемнение». Срединная

¹) См. упомянутую выше работу Лезена (Leven).

³) H. Neuber, Kerbspannunslehre, 39, Springer-Verlag OffG, 1953.

³) М. Пете́ауі, Ј. ÁррІ. Mech. 10, А.93 (1943), В этой статье призедены результаты для нескольких других форм гайки. Сравнение с опытами на усталость и широкий экспериментальный и теоретический анализ этой задачи см. в главе 7 вышеуномянутой книги Гейвуда (R, B, Цеуwood), линия этой темной полосы соединяет, очевидно, точки, в которых вертикальное перемещение равно одному расстоянию б между полосами первоначального ряда линий. Следующая справа вертикальная светлая полоса отвечает вертикальному перемещению 26 и т. д. Ясно, что эти полосы являются линиями равного вертикального перемещения.

Также очевидно, что если деформация сделала первоначальный ряд линий криволинейным, то темные и светлые полосы также будут искривлены, но при этом останутся линиями равных вертикальных перемещений. Если при этом первоначальные линии еще и удлиняются или сжимаются, то полосы представляют линии равных вертикальных компонент перемещения.

Подобным образом вертикальный ряд линий, используемый вместо изображенного на рис. 111, *а* ряда, приведет к полосам, которые представляют линии равных горизонтальных компонент перемещения.

Описанный метод является одной из разновидностей метода муара¹) Муаровые полосы иногда называют механическими интерференционными полосами. Разграфленные линии создают темные полосы в местах сгущения с первоначальной сеткой.

На рис. 112 показано применение метода. На нем представлен конечный результат серии муаровых и фотоупругих наблюдений, проведенных Дюрелли²).

Схема в правой верхней части рис. 112 показывает диск, сжатый двумя силами P. Ниже этой схемы кривые, помеченные словами «метод муара» и «фотоупругость», показывают значения разности главных напряжений ($\sigma_1 - \sigma_2$) вдоль горизонтального диаметра, отнесенной к σ_{cp} , т. е. к среднему сжимающему напряжению в диаметральном сечении. Хорошее соответствие этих двух кривых свидетельствует о том, что метод муара позволяет достигнуть высокой точности. Переход от перемещений к напряжениям требует операции дифференцирования. Верхний левый квадрант на рис. 112 показывает муаровые полосы для горизонтального перемещения. Левый нижний квадрант—такие же полосы для вертикального перемещения.

Аналитическое решение задачи о диске при действии сосредоточенных сил дано в § 41. Для центра диска единичной толщины с диаметром *d* получаем

$$\sigma_1 = \frac{2P}{\pi d}$$
, $\sigma_2 = -\frac{6P}{\pi d}$, $\sigma_{cp} = \frac{P}{d}$.

¹) Общий анализ оптических аспектов метода см. в статье: М. Stecher, Am. J. Phys. 32, 247—257 (1964). Полный обзор и библиография даны Теокарисом (P. S. Theokaris) в книге: Н. N. Abramson, H. Liebowitz, J. M. Crowley, S. Juhasz (ред.), Applied Mechanics Surveys, 613—626, Spartan Books, Washington, 1966.

²) Авторы признательны профессору Дюрелли (Durelli) за этот рисунок.

Теоратическое значение ($\sigma_1 \rightarrow \sigma_8$)/ σ_{ep} равно 8/м, т. с. равно 2,55. Опо несколько выше значения, показанного экспериментальными

Рис. 112. Картины муаровых полос, изохромы и пормализованные разности главных пормальных напряжений по горязонтальной осн для диска, напруженного по диаметру сосредогочешными силами. 1 - изотеты и, 2 - изотеты о, 3 - эталонная решетка, 4 - изохромы, 5 - метод «муара», 6 - метод фотоунругости.

кривыми на рис. 112, которое составляет 2,4. На напряжение в центре может влиять действительное распределение усилий по малым илощадям контакта нагрузки с моделью¹).

- 4) J. N. Goodier, Trans. ASME 54, 173-183 (1932).

Глава б

ДВУМЕРНЫЕ ЗАДАЧИ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ

§ 54. Функции комплексного переменного

При решении выше рассмотренных задач было удобно использовать декартовы и полярные координаты. Для задач с другими границами — в виде эллипсов, гипербол, неконцентрических

окружностей и более сложных кривых — обычно предпочитают применять другие системы координат. При введении таких систем координат, а также при построении соответствующих функций напряжений удобно использовать комплексные переменные.

При помощи двух действительных чисел x, y можно образовать комплексное число x+iy, где через i обозначен $\sqrt{-1}$. Так как i не принадлежит множеству действительных чисел, то следует определить для комплексных чисел понятия равенства, сложения, вычитания, умножения и деления¹). Так, по определению,

ножения и деления¹). Так, по определению, если x+iy=x'+iy', то x=x', y=y'. Другие операции определяются так же, как и для действительных чисел. Например,

$$(x+iy)^2 = x^2 + 2ixy + (iy)^2 = x^2 - y^2 + 2ixy$$
, ибо $i^3 = -1$.

Переходя к полярным координатам, показанным на рис. 113, имеем

$$z = x + iy = r (\cos \theta + i \sin \theta).$$
 (a)

Так кык

$$\cos\theta + i\sin\theta = 1 - \frac{1}{2!}\theta^2 + \frac{1}{4!}\theta^4 - \ldots + i\left(\theta - \frac{1}{3!}\theta^3 + \ldots\right)$$

И

$$i^2 = -1, i^3 = -i, i^4 = 1$$
 и т. д.,

$$\cos \theta + i \sin \theta = 1 + i\theta + \frac{1}{2!} (i\theta)^2 + \frac{1}{3!} (i\theta)^3 + \ldots = e^{i\theta}.$$

Эта формула является определением символа $e^{i\theta}$, где θ — действительное число. Из соотношения (а) следует

$$z = x + iy = re^{i\theta}$$
.

¹) Эти понятия представляют собой определения операций над парами действительных чисел; число *i* используется только для удобства. См., например, Е. Т. Whittaker, G. N. Watson, Modern Analysis, З изд., стр. 6—8, Cambridge University Press, 1920. [Русский перевод: Е. Уиттекер и Г. Ватсон, Курс современного анализа, Физматгиз ч. 1—2, 1962—1963.]

Алгебранческие, тригонометрические, экспоненциальные, логарифмические и другие функции от z образуются так же, как и от действительного переменного, если только принимается аналитическое, а не геометрическое определение. Таким образом, с помощью соответствующих степенных рядов можно определить функции sin z, cos z и e^z . Любую такую функцию можно разложить на действительную и мнимую части, т. е. представить в форме $\alpha(x, y) + i\beta(x, y)$, где $\alpha(x, y) - действительная часть, а <math>\beta(x, y) -$ мнимая часть¹). Обе эти части являются обычными deйствительными функциями x и y и не содержат i. Например, если функция f (z) равна <math>1/z, то получаем

$$f(z) = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x}{x^2 + y^2} + i\frac{(-y)}{x^2 + y^2}.$$
 (6)

При разделении действительных и мнимых частей удобнее всего там, где это возможно, использовать экспоненциальные функции. Например,

$$sh z = \frac{1}{2} [e^{x+iy} - e^{-(x+iy)}] = \frac{1}{2} [(e^x - e^{-x}) \cos y + (e^x + e^{-x}) i \sin y] = \\ = sh x \cos y + i ch x \sin y;$$

аналогично

$$\operatorname{ch} z = \operatorname{ch} x \cos y + i \operatorname{sh} x \sin y$$
.

Для каждой функции комплексного переменного можно получить, согласно определению, сопряженную функцию путем замены всюду i на -i. Произведение самой функции на сопряженную, очевидно, бодет действительной функцией. В выражении (б) функция x - iy (сопряженная функции x + iy) использовалась для получения действительного знаменателя. Следуя тому же общему правилу, можно произвести разложение функции cth z

$$\operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z} = \frac{\left(\frac{e^{x+iy} + e^{-x-iy}\right)\left(\frac{e^{x-iy} - e^{-x+iy}\right)}{\left(e^{x+iy} - e^{-x-iy}\right)\left(\frac{e^{x-iy} - e^{-x+iy}\right)}{e^{x-iy} - e^{-x+iy}}\right)}.$$

Производя перемножение в числителе и знаменателе, приходим к выражению

$$\operatorname{cth} z = \frac{\operatorname{sh} 2x - i \sin 2y}{\operatorname{ch} 2x - \cos 2y}.$$
 (B)

Производная функции f(r) по z, по определению, выражается формулой

$$\frac{df}{dz} = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}, \qquad (r)$$

где $\Delta z = \Delta x + i \Delta y$ и $\Delta z \longrightarrow 0$ означает, разумеется, что $\Delta x \longrightarrow 0$ и $\Delta y \longrightarrow 0$. Переменные x и y можно всегда представлять в виде декартовых координат точки на плоскости. Тогда величины Δx и Δy характеризуют смещение в некоторую соседнюю точку. На первый взгляд можно ожидать, что формула (г) будет различной для различных направлений смещения. Тем не менее предел в (г) определяется через z и Δz в точности так же, как если бы это были действительные числа. При этом имеют место и соответствующие формулы, как, например.

$$\frac{d}{dz}(z^2) = 2z, \quad \frac{d}{dz}\sin z = \cos z$$

независимо от выбора Δz , Δx и Δy . Следовательно, мы вправе сказать, что все эти функции могут образовываться из z формально тем же путем, что и производные действительной функции, которая зависит только от z. Эти производные являются одними и теми же для всех направлений приращения Δz в точке z. Такие функции называются аналитическими.

¹⁾ Следует отметить, что, вопреки своему названию, она является действительной функцией.
Величину x - iy можно рассматривать как функцию от z в том смысле, что при заданной z заданы x и y, а следовательно, и x - iy. Производная этой функции от z есть предел $(\Delta x - i \Delta y)/(\Delta x + i \Delta y)$ при Δx , $\Delta y \longrightarrow 0$. Она зависит от направления смещения Δx , Δy . Если мы сместимся в направлении x, так что $\Delta y = 0$, то предел будет равным 1. Если мы сместимся по направлению y, так что $\Delta x = 0$, то получим в пределе -1. Следовательно, функция x - iy не является аналитической функцией от x + iy. Позже при построении функций напряжений будут использоваться как аналитические функции, так и функция x - iy. Любую функцию, содержащую i, будем называть комплексной функциеi.

Аналитическая функция f(z) обладает неопределенным интегралом, определяемым как функция, для которой функция f(z) является ее производной по z, и обозначаемым через $\int f(z) dz$. Например если f(z) = 1/z, то

$$\int \frac{1}{z} dz = \ln z + C.$$

Постоянная интегрирования С является теперь комплексным числом A+iB, содержащим две действительные произвольные постоянные.

§ 55. Аналитические функции и уравнение Лапласа

Аналитическую функцию f (z) можно рассматривать как функцию от x и y обладающую частными производными. Отсюда

$$\frac{\partial}{\partial x}f(z) = \frac{d}{dz}f(z)\frac{\partial z}{\partial x} = f'(z)\frac{\partial z}{\partial x} = f'(z), \qquad (a)$$

поскольку $\partial z/\partial x = 1$. Аналогично

$$\frac{\partial}{\partial y}f(z) = f'(z)\frac{\partial z}{\partial y} = if'(z),$$
(6)

поскольку $\partial z/\partial y = i$.

Если f(z) представить в форме $\alpha(x, y) + i\beta(x, y)$, то получим

$$\frac{\partial}{\partial x}f(z) = \frac{\partial \alpha}{\partial x} + i\frac{\partial \beta}{\partial x}, \quad \frac{\partial}{\partial y}f(z) = \frac{\partial \alpha}{\partial y} + i\frac{\partial \beta}{\partial y}.$$
(B)

Сравнивая равенства (в) с (а) и (б), получаем

$$i\left(\frac{\partial\alpha}{\partial x}+i\frac{\partial\beta}{\partial x}\right)=\frac{\partial\alpha}{\partial y}+i\frac{\partial\beta}{\partial y}.$$
 (r)

Замечая, что α и β —действительные числа и что $i^2 = -1$, а также, что равенство (г) требует равенства порознь его действительных и комплексных частей, находим

$$\frac{\partial \alpha}{\partial x} = \frac{\partial \beta}{\partial y}, \quad \frac{\partial \alpha}{\partial y} = -\frac{\partial \beta}{\partial x}.$$
 (II)

Мы получили уравнения Коши — Римана¹). Исключая β путем дифференцирования первого уравнения по x, второго — по y и сложения получаемых равенств, будем иметь

$$\frac{\partial^2 \alpha}{\partial x^2} + \frac{\partial^2 \alpha}{\partial y^2} = 0.$$
 (e)

¹) Эти уравнения называют также уравнениями Даламбера — Эйлера. См., например, А. И. Маркушевич, Краткий курс теории аналитических функций, Физматгиз, 1961, стр. 31. (Прим. перев.)

Это уравнение называется *уравнением Лапласа*, а любое его решение называется гармонической функцией. Таким же образом, исключая а из уравнений (д), найдем

$$\frac{\partial^2\beta}{\partial x^2} + \frac{\partial^2\beta}{\partial y^2} = 0. \tag{(*)}$$

Следовательно, если две функции α и β переменных x и y являются действительной и мнимой частями некоторой аналитической функции f(z), то каждая из них будет решением уравнения Лапласа. Уравнение Лапласа встречается во многих физических задачах, включая задачи теории упругости (см., например, уравнение (6) § 17).

Функции α и β называются *сопряженными* гармоническими функциями. Ясно, что если дана некоторая гармоническая функция α, уравнения (д) будут с точностью до постоянной определять другую функцию β, которая является сопряженной по отношению к функции α.

В качестве примеров нахождения гармонических функций из аналитических функций z рассмотрим функции e^{lnz} , z^n , ln z, где n—действительная постоянная. Получаем зависимость

$$e^{inz} = e^{inx} e^{-ny} = e^{-ny} \cos nx + ie^{-ny} \sin nx,$$

показывающую, что $e^{-ny} \cos nx$ и $e^{-ny} \sin nx$ —гармонические функции. Заменив n на -n, находим, что $e^{ny} \cos nx$ и $e^{ny} \sin nx$ —также гармонические функции. Отсюда следует, что и функции

sh ny sin nx, ch ny sin nx, sh ny cos nx, ch ny cos nx (n)

— гармонические функции, так как они представляют собой результат сложения и вычитания предыдущих функций с коэффициентами 1/2. Из соотношения

$$z^{n} = (re^{i\theta})^{n} = r^{n} e^{in\theta} = r^{n} \cos^{n\theta} + ir^{n} \sin^{n\theta}$$

получаем гармонические функции

$$r^n \cos n\theta$$
, $r^n \sin n\theta$, $r^{-n} \cos n\theta$, $r^{-n} \sin n\theta$. (K)

Из выражения

$$\ln z = \ln r e^{i\theta} = \ln r + i\theta$$

находим гармонические функции

$$\ln r \,\mathrm{u}\,\theta.$$
 (л)

Легко проверить, что функции (к) и (л) удовлетворяют уравнению Лапласа в полярных координатах (см. уравнение (ж), стр. 85), т.е.

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = 0.$$
 (M)

ЗАДАЧИ

1. Определить действительные функции от x и y, которые являются действительной и мнимой частями комплексных функций z^2 , z^3 , th z. [$x^2 - u^2$, 2xu; $x^3 - 3xu^2$, $3x^2y - u^3$;

 $sh 2x (ch 2x + cos 2y)^{-1}$, $sin 2y (ch 2x + cos 2y)^{-1}$.

2. Определить действительные функции от r и θ , которые являются действительными и мнимыми частями функций z^2 , $z \ln z$.

 $[r^{-2}\cos 2\theta, -r^{-2}\sin 2\theta; r \ln r \cos \theta - r\theta \sin \theta, r \ln r \sin \theta + r\theta \cos \theta.]$

3. Пусть ζ — комплексная переменная и $z = c \operatorname{ch} \zeta$. Найти производную

$$\frac{d}{dz} \sinh n\zeta$$

как функцию от ζ . Положив $\zeta = \xi + i\eta$, найти действительную и мнимую части этой производной, если с и n — действительные числа.

4. Пусть z = x + iy, $\zeta = \xi + i\eta$ и z = ia cth 1/2 ζ , где a — действительное число. Показать, что

$$x = \frac{a \sin \eta}{\operatorname{ch} \xi - \cos \eta}, \quad y = \frac{a \operatorname{sh} \xi}{\operatorname{ch} \xi - \cos \eta}$$

§ 56. Функции напряжений, выраженные через гармонические и комплексные функции

Если ψ — некоторая функция от x и y, то при помощи операции дифференцирования находим, что

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)(x\psi) = x\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2}\right) + 2\frac{\partial\psi}{\partial x}.$$
 (a)

Если ψ —гармоническая функция, то скобка в правой части обращается в нуль. При этом функция $\partial \psi / \partial x$ также является гармонической, поскольку

$$\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)\left(\frac{\partial \psi}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}\right)=0.$$

Таким образом, повторное применение оператора Лапласа к выражению (а) дает

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) (x\psi) = 0, \tag{6}$$

что можно переписать также в виде

$$\left(\frac{\partial^4}{\partial x^4}+2\frac{\partial^4}{\partial x^2\partial y^2}+\frac{\partial^4}{\partial y^4}\right)(x\psi)=0.$$

Сравнение с уравнением (а) (стр. 53) показывает, что функция $x\psi$ может использоваться в качестве функции напряжений, если ψ — гармоническая функция. То же самое справедливо и в отношении функции $y\psi$, а также, разумеется, в отношении самой функции ψ .

Путем непосредственного дифференцирования можно легко показать, что $(x^2 + y^2)\psi$, т. е. $r^2\psi$, также удовлетворяет тому же самому дифференциальному уравнению и может приниматься в качестве функции напряжений, если ψ —гармоническая функция.

Например, выбирая две гармонические функции

sh ny sin nx, ch ny sin nx

из функций (и) (стр. 182) и умножая их на y, получаем с помощью суперпозиции функцию напряжений (г) (стр. 70). Взяв гармонические функции (к) и (л) (стр. 182) в их первоначальном виде или умножив их на x, y или r^2 , можно построить все члены функции напряжений в полярных координатах, определяемой уравнением (80).

Вопрос о том, может ли быть получена таким образом любая функция напряжений, остается для нас открытым. Но ответ на

него будет получен сразу же в процессе выражения общей функции напряжений через две произвольные функции. Обозначая оператор Лапласа

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

через ∇^2 , можно записать уравнение (а) на стр. 53 в виде $\nabla^2 (\nabla^2 \varphi) = 0$, или $\nabla^4 \varphi = 0$. Обозначая через *P* оператор $\nabla^2 \varphi$, равный $\sigma_x + \sigma_y$, замечаем, что *P*—гармоническая функция и, следовательно, должна иметь сопряженную гармоническую функцию *Q*. Следовательно, *P*+*iQ*—аналитическая функция от *z*, и можно записать

$$f(z) = P + iQ. \tag{B}$$

Интеграл от этой функции по z представляет собой другую аналитическую функцию, скажем $4\psi(z)$. Тогда, обозначая действительную и мнимую части $\psi(z)$ через p и q, получаем

$$\psi(z) = p + iq = \frac{1}{4} \int f(z) dz, \qquad (r)$$

откуда $\psi'(z) = 1/4 f(z)$. Кроме того, получаем

$$\frac{\partial p}{\partial x} + i \frac{\partial q}{\partial x} = \frac{\partial}{\partial x} \psi(z) = \psi'(z) \frac{\partial z}{\partial x} = \frac{1}{4} f(z) = \frac{1}{4} (P + iQ).$$

Приравнивая действительные части в первом и последнем членах, находим

$$\frac{\partial p}{\partial x} = \frac{1}{4} P.$$
 (д)

Поскольку р и q—сопряженные функции, они удовлетворяют уравнениям (д) § 55, откуда

$$\frac{\partial q}{\partial y} = \frac{1}{4} P. \tag{e}$$

Так как $P = \nabla^2 \varphi$, то из уравнений (д) и (е) следует, что $\varphi = xp - yq - r$ армоническая функция; действительно,

$$\nabla^2 (\varphi - xp - yq) = \nabla^2 \varphi - 2 \frac{\partial p}{\partial x} - 2 \frac{\partial q}{\partial y} = 0.$$
 (w)

Таким образом, для любой функции напряжений ф имеем

$$\varphi - xp - yq = p_1,$$

где p₁—некоторая гармоническая функция. Следовательно,

$$\varphi = xp + yq + p_1. \tag{83}$$

Это соотношение показывает, что любая функция напряжений может быть образована из выбранных соответствующим образом сопряженных функций *p* и *q* и гармонической функции *p*₁. Выражение (83) весьма полезно. Заметим, однако, что использование обеих функций *p* и *q* не обязательно. Вместо уравнения (ж)

мы можем записать

$$\nabla^2 (\varphi - 2xp) = \nabla^2 \varphi - 4 \frac{\partial p}{\partial x} = 0,$$

а это показывает, что функция ф—2xp является гармонической, скажем, равной p_2 . В силу этого любую функцию напряжений можно представить в форме

$$\varphi = 2xp + p_2, \tag{W}$$

где *p* и *p*₂—соответствующим образом подобранные гармонические функции.

Возвращаясь к уравнению (83), введем функцию q₁, которая является гармонической и сопряженной к p₁, и запишем

$$\chi(z) = p_1 + iq_1$$

Тогда легко проверить, что действительная часть функции

$$(x-iy)(p+iq)+p_1+iq_1$$

тождественно равна правой части уравнения (83). Следовательно, функцию напряжений можно представить в виде¹)

$$\varphi = \operatorname{Re}\left[\overline{z\psi}(z) + \chi(z)\right], \qquad (84)$$

где символ Re обозначает «действительную часть», \overline{z} обозначает x - iy, а $\psi(z)$ и $\chi(z)$ — соответствующим образом подобранные аналитические функции. И наоборот, при любом выборе $\psi(z)$ и $\chi(z)$ уравнение (84) дает функцию напряжений, т.е. решение уравнения (а), стр. 53. Позже это уравнение будет применено к решению некоторых задач, представляющих практический интерес.

Записывая «комплексную функцию напряжений», содержащуюся в скобках в выражении (84), как

$$\overline{z}z\frac{\psi(z)}{z}+\chi(z)$$

и учитывая, что $\overline{zz} = r^2$ и $\psi(z)/z$ — по-прежнему является функцией от z, находим, что любая функция напряжений может быть представлена в виде

$$r^2p_4+p_5,$$

где p_4 и p_5 — гармонические функции.

§ 57. Перемещения, отвечающие заданной функции напряжений

В § 43 уже было показано, что в многосвязной области при определении напряжений требуется, чтобы соответствующие перемещения обеспечивали отсутствие в них разрывов, т. е. чтобы напряжения частично не были вызваны дислокациями. По этой причине, не говоря уже о случаях, когда перемечения

185

¹) E. Goursat, Bull. Soc. Math. France 26, 206 (1898); N. I. Muskhelishvili, Math. Ann. 107, 282-312 (1932).

представляют интерес сами по себе, нам нужен метод отыскания функций перемещений и и v при заданной функции напряжений.

Зависимости между напряжениями и деформациями для плоского напряженного состояния, определяемого уравнениями (22) и (23), можно записать в следующем виде:

$$E\frac{\partial u}{\partial x} = \sigma_x - v\sigma_y, \quad E\frac{\partial v}{\partial y} = \sigma_y - v\sigma_x,$$
 (a)

$$G\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) = \tau_{xy}.$$
 (6)

Внося в первое из этих соотношений функцию напряжений и учитывая, что $P = \nabla^2 \varphi$, получаем

$$E\frac{\partial u}{\partial x} = \frac{\partial^2 \varphi}{\partial y^2} - v \frac{\partial^2 \varphi}{\partial x^2} = \left(P - \frac{\partial^2 \varphi}{\partial x^2}\right) - v \frac{\partial^2 \varphi}{\partial x^2} = -(1+v)\frac{\partial^2 \varphi}{\partial x^2} + P; \quad (B)$$

аналогично

$$E\frac{\partial v}{\partial y} = -(1+v)\frac{\partial^2 \varphi}{\partial y^2} + P.$$
 (r)

Однако, согласно равенствам (е) и (ж) § 56 в приведенном выше уравнении (в), можно заменить P на $4\partial p/\partial x$, а в уравнении (г) заменить P на $4\partial q/\partial y$. Отсюда, после деления на 1 + v, получаем

$$2G\frac{\partial u}{\partial x} = -\frac{\partial^2 \varphi}{\partial x^2} + \frac{4}{1+\nu}\frac{\partial p}{\partial x}, \quad 2G\frac{\partial v}{\partial y} = -\frac{\partial^2 \varphi}{\partial y^2} + \frac{4}{1+\nu}\frac{\partial q}{\partial y}. \tag{A}$$

Интегрирование этих уравнений приводит к соотношениям

$$2Gu = -\frac{\partial\varphi}{\partial x} + \frac{4}{1+\nu}p + f(y), \quad 2Gv = -\frac{\partial\varphi}{\partial y} + \frac{4}{1+\nu}q + f_1(x), \quad (e)$$

где f(y) и $f_1(x)$ — произвольные функции. Если эти выражения подставить в левую часть уравнения (б), то получим

$$-\frac{\partial^2 \varphi}{\partial x \, \partial y} + \frac{2}{1+\nu} \left(\frac{\partial p}{\partial y} + \frac{\partial q}{\partial x} \right) + \frac{1}{2} \frac{df}{dy} + \frac{1}{2} \frac{df_1}{dx} = \tau_{xy}. \tag{W}$$

Но первый член в левой части этого уравнения равен τ_{xy} , а скобка обращается в нуль, поскольку p и q—сопряженные гармонические функции, удовлетворяющие уравнениям Коши—Римана (§ 56). Отсюда

$$\frac{df}{dy} + \frac{df_1}{dx} = 0,$$

что влечет за собой

$$\frac{df}{dy} = A, \quad \frac{df_1}{dx} = -A,$$

где A — постоянная. Отсюда следует, что члены f(y) и $f_1(x)$ в уравнении (е) представляют перемещение абсолютно твердого тела. Опуская эти члены, можно переписать уравнения (е) в виде¹)

$$2Gu = -\frac{\partial \varphi}{\partial x} + \frac{4}{1+\nu}p, \quad 2Gv = -\frac{\partial \varphi}{\partial y} + \frac{4}{1+\nu}q \tag{II}$$

1) А. Ляв, Математическая теория упругости, ОНТИ, 1935.

и просто иметь в виду, что в (и) можно добавить перемещения абсолютно твердого тела. Эти уравнения позволяют нам найти и и v, если известна функция ф. Прежде всего мы должны, найдя $P = \nabla^2 \varphi$, определить сопряженную функцию Q с помощью уравнений Коши — Римана

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}, \quad \frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x},$$

построить функцию f(z) = P + iQ и с помощью интегрирования функции f (z), как это сделано в уравнении (г) § 56, получить ри q. Далее можно найти все члены уравнений (и).

Полезность уравнений (и) проявится в последующих приложениях, для которых метод определения перемещений, исполь-зованный в главах 3 и 4, непригоден.

§ 58. Выражение напряжений и перемещений через комплексные потенциалы

До сих пор мы выражали компоненты перемещения и напряжения через функцию напряжений ф. Но так как равенство (84) выражает φ через две функции $\psi(z)$ и $\chi(z)$, то через эти два «комплексных потенциала» можно выразить также напряжения и перемещения.

Напомним, что любая комплексная функция f(z) может быть представлена в форме $\alpha + i\beta$, где α и β — действительные функции. Ей соответствует сопряженная функция $\alpha - \beta i$, которая получается из функции f(z), если всюду заменить i на -i. При этом используется следующее обозначение:

$$\overline{f}(\overline{z}) = \alpha - i\beta.$$
 (a)

Таким образом, если $f(z) = e^{inz}$, то

$$\overline{f}(\overline{z}) = e^{-in\overline{z}} = e^{-in(x-iy)} = e^{-inx}e^{-ny}.$$
(6)

Отметим отличие (б) от выражения

$$f(\overline{z}) = e^{in\overline{z}},$$

что иллюстрирует смысл черты над функцией f в равенстве (a). Очевидно,

$$f(z) + \overline{f}(\overline{z}) = 2\alpha = 2 \operatorname{Re} f(z).$$

Тем же путем можно показать, что если добавить к функ-ции, входящей в скобки в равенстве (84), сопряженную ей функцию, то сумма будет равна удвоенной действительной части

¹⁾ Термин «сопряженная» используется здесь в смысле, совершенно отличном от того, в котором он употребляется в выражении «сопряженные гармонические функции».

упомянутой функции. Следовательно, равенство (84) можно заменить следующим:

$$2\varphi = \overline{z}\psi(z) + \chi(z) + z\overline{\psi}(\overline{z}) + \overline{\chi}(\overline{z}).$$
(85)

Путем дифференцирования находим

$$2 \frac{\partial \varphi}{\partial x} = \overline{z} \psi'(z) + \psi(z) + \chi'(z) + \overline{z} \overline{\psi}'(\overline{z}) + \overline{\psi}(\overline{z}) + \overline{\chi}'(\overline{z}),$$

$$2 \frac{\partial \varphi}{\partial y} = i [\overline{z} \psi'(z) - \psi(z) + \chi'(z) - \overline{z} \overline{\psi}'(\overline{z}) + \overline{\psi}(\overline{z}) - \overline{\chi}'(\overline{z})].$$

Если второе из этих равенств умножить на *i* и сложить с первым, то получаем равенство

$$\frac{\partial \varphi}{\partial x} + i \frac{\partial \varphi}{\partial y} = \psi(z) + z \overline{\psi}'(\overline{z}) + \overline{\chi}'(\overline{z}). \tag{B}$$

Повторяя эти выкладки с равенствами (и) § 57, находим

$$2G(u+iv) = -\left(\frac{\partial\varphi}{\partial x}+i\frac{\partial\varphi}{\partial y}\right) + \frac{4}{1+\nu}(p+iq).$$

Используя соотношение (г) § 56 и приведенное выше равенство (в), получаем

$$2G(u+iv) = \frac{3-v}{1+v} \psi(z) - z\overline{\psi}'(\overline{z}) - \overline{\chi}'(\overline{z}).$$
(86)

Эта формула позволяет определить u и v для плоского напряженного состояния, если заданы комплексные потенциалы $\psi(z)$ и $\chi(z)$. Для случая плоской деформации, в соответствии с § 20, в правой части формулы (86) v нужно заменить на v/(1-v).

Компоненты напряжения можно получить непосредственно, беря вторые производные от обеих частей соотношения (85). Однако, имея в виду последующие приложения к криволинейным координатам, лучше поступить иным образом. Дифференцируя равенство (в) по x, получаем

$$\frac{\partial^2 \varphi}{\partial x^2} + i \frac{\partial^2 \varphi}{\partial y \partial x} = \psi'(z) + z \overline{\psi}''(\overline{z}) + \overline{\psi}'(\overline{z}) + \overline{\chi}''(\overline{z}).$$
(r)

Дифференцируя равенство (в) по у и умножая на *i*, имеем

$$i\frac{\partial^{2}\varphi}{\partial x\partial y} - \frac{\partial^{2}\varphi}{\partial y^{2}} = -\psi'(z) + z\overline{\psi}''(\overline{z}) - \overline{\psi}'(\overline{z}) + \overline{\chi}''(\overline{z}). \tag{A}$$

Вычитая и складывая уравнения (г) и (д), можно получить более простые представления¹)

$$\sigma_x + \sigma_y = 2\psi'(z) + 2\overline{\psi'}(\overline{z}) = 4 \operatorname{Re} \psi'(z), \qquad (87)$$

$$\sigma_{y} - \sigma_{x} - 2i\tau_{xy} = 2\left[z\overline{\psi}''(\overline{z}) + \overline{\chi}''(\overline{z})\right].$$
(88)

¹⁾ Эти результаты и уравнение (86) были получены Г. В. Колосовым в его докторской диссертации, Дерпт, 1909. См. также его статью в Z. Math. Physik 62 (1914).

Замена і на — і в обеих частях соотношения (88) дает

$$\sigma_y - \sigma_x + 2i\tau_{xy} = 2 \left[\overline{z}\psi''(z) + \chi''(z) \right].$$
(89)

Отделяя действительную и мнимую части равенств (89) или (88), мы получим выражения для $\sigma_x - \sigma_y$ и $2\tau_{xy}$. Таким образом, два соотношения (87) и (89) определяют компоненты напряжения через комплексные потенциалы $\psi(z)$ и $\chi(z)$. Следовательно, задав определенные функции $\psi(z)$ и $\chi(z)$, мы найдем из уравнений (87) и (89) возможное напряженное состояние, а соответствующие этому состоянию перемещения легко получить из уравнения (86).

В качестве простой иллюстрации этого метода рассмотрим полиномиальную систему напряжений, обсуждавшуюся на стр. 55—56. Функцию напряжений в виде полинома пятой степени, очевидно, можно получить из соотношения (85), если положить

$$\psi(z) = (a_5 + ib_5) z^4, \quad \chi(z) = (c_5 + id_5) z^5,$$

где a₅, b₅, c₅ и d₅ — произвольные коэффициенты. Отсюда

$$\begin{aligned} \psi'(z) &= 4 (a_5 + ib_5) z^3, \quad \chi'(z) = 5 (c_5 + id_5) z^4, \\ \psi''(z) &= 12 (a_5 + ib_5) z^3, \quad \chi''(z) = 20 (c_5 + id_5) z^3. \end{aligned}$$

Учитывая эти формулы, из соотношений (87) и (89) получим

$$\sigma_{x} + \sigma_{y} = 4 \operatorname{Re} 4 (a_{5} + ib_{5}) z^{3} = 16 \operatorname{Re} (a_{5} + ib_{5}) [x^{3} - 3xy^{2} + i (3x^{2}y - y^{2})] = \\ = 16a_{5}(x^{3} - 3xy^{2}) - 16b_{5} (3x^{2}y - y^{3}),$$

$$\begin{aligned} \sigma_{y} - \sigma_{x} + 2i\tau_{xy} &= 2\left[12\left(a_{5} + ib_{5}\right)z^{2} + 20\left(c_{5} + id_{5}\right)z^{3}\right] = \\ &= 24\left(a_{5} + ib_{5}\right)\left(x - iy\right)\left(x + iy\right)^{2} + 40\left(c_{5} + id_{5}\right)\left(x + iy\right)^{3} = \\ &= \left[24a_{5}x\left(x^{2} + y^{2}\right) - 24b_{5}y\left(x^{2} + y^{2}\right) + 40c_{5}\left(x^{3} - 3xy^{2}\right) - 40d_{6}\left(3x^{2}y - y^{3}\right)\right] + \\ &+ i\left[24a_{5}y\left(x^{2} + y^{2}\right) + 24b_{5}x\left(x^{2} + y^{2}\right) + 40c_{5}\left(3x^{2}y - y^{3}\right) + 40d_{5}\left(x^{3} - 3xy^{2}\right)\right] \end{aligned}$$

Выражения в квадратных скобках определяют соответственно $\sigma_y - \sigma_x$ и $2\tau_{xy}$. Компоненты перемещения, отвечающие этому распределению напряжений, легко получить из равенства (86), которое приводит к зависимости

$$2G(u+iv) = \frac{3-v}{1+v} (a_5+ib_5) z^4 - 4 (a_5-ib_5) z\overline{z^3} - 5 (c_5-id_5) \overline{z^4}.$$

Ясно, что полиномиальная функция напряжений, имеющая все члены любой заданной степени n (n > 2), может содержать только четыре независимые действительные постоянные.

§ 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия

На рис. 114, а показана дуга кривой AB, проведенная на пластинке. Сила, действующая на элемент ds дуги, с которой материал слева от элемента ds действует на материал, расположенный справа от ds, при переходе от $A \\ \kappa B$ может быть представлена компонентами $\overline{X} ds$ и $\overline{Y} ds$. Тогда из уравнений (12) § 10 получаем

$$\overline{X} = \sigma_x \cos \alpha + \tau_{xy} \sin \alpha$$
, $\overline{Y} = \sigma_y \sin \alpha + \tau_{xy} \cos \alpha$, (a)

где α — угол между левосторонней (при движении от $A \ \kappa B$) нормалью N и осью x. Малой дуге ds, как показано из рис. 114, 6, соответствуют отрезки dx и dy. При следовании вдоль дуги ds

в направлении АВ значения x уменьшаются и dx отрицательно. Длина горизонтальной стороны элементарного треугольника (рис. 114, б) поэтому равна — dx. Таким образом,

$$\cos \alpha = \frac{dy}{ds}, \quad \sin \alpha = -\frac{dx}{ds}.$$
 (6)

Внося эти значения с учетом зависимостей

$$\sigma_x = \frac{\partial^2 \varphi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \varphi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \varphi}{\partial x \partial y}$$

в уравнения (а), находим

$$\overline{X} = \frac{\partial^2 \varphi}{\partial y^2} \frac{dy}{ds} + \frac{\partial^2 \varphi}{\partial x \partial y} \frac{dx}{ds} = \frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial y} \right) \frac{dy}{ds} + \frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial y} \right) \frac{dx}{ds} = \frac{d}{ds} \left(\frac{\partial \varphi}{\partial y} \right),$$

$$\overline{Y} = -\frac{\partial^2 \varphi}{\partial x^2} \frac{dx}{ds} - \frac{\partial^2 \varphi}{\partial x \partial y} \frac{dy}{ds} = -\frac{d}{ds} \left(\frac{\partial \varphi}{\partial x} \right).$$
(B)

Следовательно, компоненты F_x , F_y результирующего усилия на дуге AB равны

$$F_{x} = \int_{A}^{B} \overline{X} \, ds = \int_{A}^{B} \frac{d}{ds} \left(\frac{\partial \varphi}{\partial y}\right) ds = \left[\frac{\partial \varphi}{\partial y}\right]_{A}^{B},$$

$$F_{y} = \int_{A}^{B} \overline{Y} \, ds = -\int_{A}^{B} \frac{d}{ds} \left(\frac{\partial \varphi}{\partial x}\right) ds = -\left[\frac{\partial \varphi}{\partial x}\right]_{A}^{B},$$
(r)

где квадратная скобка означает разность значений заключенной в нее величины в точках A и B.

Усилие, действующее на дугу AB, дает следующий момент в направлении часовой стрелки относительно точки O (см. (в)):

$$M = \int_{A}^{B} x \overline{Y} \, ds - \int_{A}^{B} y \overline{X} \, ds = -\int_{A}^{B} \left[x d \left(\frac{\partial \varphi}{\partial x} \right) + y d \left(\frac{\partial \varphi}{\partial y} \right) \right].$$

Здесь использованы уравнения (в). После интегрирования по частям получаем¹)

$$M = [\varphi]_A^B - \left[x \frac{\partial \varphi}{\partial x} + y \frac{\partial \varphi}{\partial y} \right]_A^B.$$
(д)

190

¹) Равенства (г) и (д) могут использоваться для установления аналогии между плоским напряженным состоянием и медленным плоским движением вязкой жидкости. См. J. N. Goodier, Phil. Mag., ser. 7, 17, 554, 800 (1934).

Из уравнений (в) мы видим, что если кривая AB представляет собой ненагруженную границу, так что \overline{X} и \overline{Y} равны нулю, то производные $\partial \varphi/\partial x$ и $\partial \varphi/\partial y$ вдоль AB должны иметь постоянные значения. Если на кривой AB заданы нагрузки, то уравнения (в) показывают, что они определяются с помощью значений $\partial \varphi/\partial x$ и $\partial \varphi/\partial y$ вдоль границы. Это эквивалентно заданию производных $\partial \varphi/\partial s$ вдоль границы и $\partial \varphi/\partial n$ —вдоль ноормали к AB. Их можно считать известными, если вдоль AB заданы φ и $\partial \varphi/\partial n^{-1}$.

Продолжим теперь дугу так, чтобы образовалась замкнутая кривая, и точка *B* совпала с точкой *A*. При этом будем считать, что точка *B* достигает *A*, двигаясь по дуге, т. е. по замкнутому контуру *AB*. Тогда уравнения (г) и (д) дают результирующее усилие и момент от напряжений, действующих на часть пластинки, ограниченную упомянутым замкнутым контуром.

С помощью комплексных потенциалов $\psi(z)$ и $\chi(z)$, согласно (85), уравнения (г) можно записать в виде

$$F_{x} + iF_{y} = \left[\frac{\partial\varphi}{\partial y} - i\frac{\partial\varphi}{\partial x}\right]_{A}^{B} = -i\left[\frac{\partial\varphi}{\partial x} + i\frac{\partial\varphi}{\partial y}\right]_{A}^{B}.$$

Используя уравнение (в) § 58, имеем

$$F_{x} + iF_{y} = -i \left[\psi \left(z \right) + z \overline{\psi}' \left(\overline{z} \right) + \overline{\chi}' \left(\overline{z} \right) \right]_{A}^{B}, \tag{90}$$

Равенство (д) тогда принимает вид

$$M = \operatorname{Re}\left[-z\bar{z}\bar{\psi}'(\bar{z}) + \chi(z) - \bar{z}\bar{\chi}'(\bar{z})\right]_{A}^{B}.$$
(91)

В случае замкнутого контура, содержащего начало координат, равенства (90) и (91) показывают, что если принять $\psi(z)$ и $\chi(z)$ в форме z^n , где n—положительное или отрицательное целое число, то F_x , F_y и M равны нулю, так как при обходе контура функции в скобках возвращаются к своим начальным значениям. Функция $\ln z = \ln r + i\theta$ после обхода замкнутого контура, окружающего начало координат, не возвращается к своему начальному значению, поскольку θ при этом увеличивается на 2π . Таким образом, если $\psi(z) = C \ln z$ или $\chi(z) = Dz \ln z$, где C и D комплексные постоянные, уравнение (90) дает ненулевое значение для $F_x + iF_y$. Точно так же $\chi(z) = D \ln z$ дает ненулевое значение M, если D—мнимое число, но оно же дает нулевое значение, если число D действительное.

¹⁾ Эти граничные условия ведут к аналогии с поперечными прогибами упругих пластинок. Исследование такой аналогии с соответствующими ссылками дал Миндлин (R. D. Mindlin, Quart. Appl. Math. 4, 279 (1946)). [См. также А. И. Лурье, ПММ 4, § 1, 93—102 (1940). (Прим. ред.).]

§ 60. Криволинейные координаты

Можно рассматривать полярные координаты r, θ (рис. 113) как координаты, определяющие положение точки пересечения окружности (радиуса r) и радиальной прямой (проведенной под углом θ к начальной прямой). Переход *от декартовых* координат κ полярным осуществляется с помощью формул

$$\sqrt{x^2+y^2}=r$$
, $\arctan \frac{y}{x}=\theta$. (a)

Первая из них, когда *r* принимает различные постоянные значения, представляет семейство окружностей. Вторая, когда в принимает различные постоянные значения, представляет семейство радиальных прямых.

Уравнения (а) представляют собой частный случай уравнений вида

$$F_1(x, y) = \xi, \quad F_2(x, y) = \eta.$$
 (6)

Если ξ и η постоянны, то эти уравнения определяют две кривые, которые будут пересекаться, если $F_1(x, y)$ и $F_2(x, y)$ подобрать соответствующим образом. Различные значения ξ и η приведут к разным кривым и разным точкам пересечения. Таким образом, каждая точка в плоскости xy будет характеризоваться определенными значениями ξ и η —значениями, при которых эти две кривые, определяемые уравнениями (б), через нее проходят. Величины ξ и η можно рассматривать как координаты точки. Поскольку заданные значения ξ и η определяют точку пересечения двух кривых, они называются криволинейными координати $namu^{1}$.

Полярные координаты и соответствующие им компоненты напряжения оказались весьма полезными для задач с границами в виде концентрических окружностей, рассмотренных в главе 4. Напряжения и перемещения на таких границах зависят только от θ, поскольку *r*—величина постоянная. Когда границы определяются другими кривыми, например эллипсами, удобно использовать криволинейные координаты, одна из которых вдоль границы имеет постоянное значение.

Если разрешить уравнения (б) относительно x и y, мы будем иметь два уравнения вида

$$x = f_1(\xi, \eta), \quad y = f_2(\xi, \eta),$$
 (B)

с которых обычно удобнее начинать изучение. Рассмотрим, например, два уравнения

$$x = c \operatorname{ch} \xi \cos \eta, \quad y = c \operatorname{sh} \xi \sin \eta, \quad (\Gamma)$$

¹⁾ Общая теория криволинейных координат была развита Ламе в книге: G. Lamé, Lecons sur les Coordonnées Curvilignes, Gauthier-Villars, Paris, 1859.

где с-постоянная. Исключив η, получим уравнение

$$\frac{x^2}{c^2 \operatorname{ch}^2 \xi} + \frac{y^2}{c^2 \operatorname{sh}^2 \xi} = 1.$$

Если ξ —постоянная, то это уравнение эллипса с полуосями с ch ξ и c sh ξ и фокусами в точках $x = \pm c$. Для различных значений ξ мы получим разные эллипсы с теми же фокусами, т. е. семейство софокусных эллипсов (рис. 115). На каждом из таких эллипсов координата ξ постоянна, а η изменяется в диапазоне

от 0 до 2π , подобно тому как в полярных координатах на окружности *r* остается постоянным, а угол θ меняется. В действительности в данном случае η — эксцентрический угол точки на эллипсе¹).

С другой стороны, если из уравнений (г) исключить ξ , то с помощью равенства $ch^2 \xi - sh^2 \xi = 1$ получаем

$$\frac{x^2}{c^2\cos^2\eta} - \frac{y^2}{c^2\sin^2\eta} = 1.$$
 (д)

При постоянном значении η это уравнение представляет гипер-

болу с тем же фокусом, что и у эллипса. Таким образом, уравнение (д) описывает семейство софокусных гипербол, на каждой из которых п остается постоянным, а § изменяется. Такие координаты называются эллиптическими.

Два уравнения (г) эквивалентны уравнению $x + iy = c \operatorname{ch}(\xi + i\eta)$, или

$$z = c \operatorname{ch} \zeta, \qquad (e)$$

где ζ = ξ + *i*η. Очевидно, это частный случай соотношения

$$z = f(\zeta). \tag{W}$$

Помимо того, что равенство (ж) определяет z как функцию ζ, его можно разрешить относительно ζ. В таком случае ξ и η будут действительной и мнимой частями функции z, поэтому они должны удовлетворять уравнениям Коши—Римана (д) из § 55, а следовательно, и уравнению Лапласа (е) или (ж) из § 55.

Криволинейные координаты, которые используются в этой главе, будут выводиться из соотношений в форме (ж) и вследствие этого будут обладать некоторыми специальными свойствами.

Рис. 115.

¹) Если а и θ — полярные координаты точки на окружности, описанной вокруг эллипса с полуосями а и b, то перпендикуляр, опущенный из этой точки на ось x, пересечет эллипс в точке $x = a \cos \theta$, $y = b \sin \theta$. При этом θ называется эксцентрически углом этой точки на эллипсе.

Если точка x, y, имеет криволинейные координаты ξ , η , то соседняя точка x + dx, y + dy будет иметь криволинейные координаты $\xi + d\xi$, $\eta + d\eta$, в силу чего, пользуясь двумя уравнениями типа (в), мы можем записать

$$dx = \frac{\partial x}{\partial \xi} d\xi + \frac{\partial x}{\partial \eta} d\eta, \quad dy = \frac{\partial y}{\partial \xi} d\xi + \frac{\partial y}{\partial \eta} d\eta.$$
(ii)

Если изменяется только координата ξ , то приращения dx, dy соответствуют элементу дуги ds_{ξ} вдоль кривой $\eta = \text{const}$, и

$$dx = \frac{\partial x}{\partial \xi} d\xi, \quad dy = \frac{\partial y}{\partial \xi} d\xi.$$
 (K)

Отсюда

$$(ds_{\xi})^{2} = (dx)^{2} + (dy)^{2} = \left[\left(\frac{\partial x}{\partial \xi} \right)^{2} + \left(\frac{\partial y}{\partial \xi} \right)^{2} \right] (d\xi)^{2}.$$
(π)

Поскольку $z = f(\zeta)$, получаем

$$\frac{\partial z}{\partial \xi} = \frac{\partial x}{\partial \xi} + i \frac{\partial y}{\partial \xi} = \frac{d}{d\zeta} f(\zeta) \frac{\partial \zeta}{\partial \xi} = f'(\zeta), \qquad (M)$$

где

$$f'(\zeta) = \frac{df(\zeta)}{d\zeta}.$$

Теперь любую комплексную величину можно записать в форме $J\cos\alpha + iJ\sin\alpha$, или $Je^{i\alpha}$, где J и α — действительные числа. Если

$$f'(\zeta) = J e^{i\alpha},\tag{H}$$

то уравнение (м) дает

$$\frac{\partial x}{\partial \xi} = J \cos \alpha, \quad \frac{\partial y}{\partial \xi} = J \sin \alpha,$$
 (0)

и тогда из уравнения (л)

 $ds_{\xi} = J d\xi.$

Тангенс угла наклона отрезка ds_t из уравнений (к) и (о) определяется формулой

$$\frac{dy}{dx} = \frac{\partial y/\partial \xi}{\partial x/\partial \xi} = \mathrm{tg}\,\alpha. \tag{1}$$

Таким образом, величина α , определяемая уравнением (н), представляет собой угол между касательной к кривой $\eta = \text{const}$ в направлении увеличения ξ и осью x (рис. 116). Точно так же, если изменяется η , приращения dx и dy из уравнений (и) соответствуют элементу дуги ds_{η} , взятому вдоль кривой $\xi = \text{const}$, и вместо уравнений (к) получаем

$$dx = \frac{\partial x}{\partial \eta} d\eta, \quad dy = \frac{\partial y}{\partial \eta} d\eta.$$

Действуя вышеописанным образом, находим

$$\frac{\partial x}{\partial \eta} = -J \sin \alpha, \quad \frac{\partial y}{\partial \eta} = J \cos \alpha,$$

и что $ds_n = J d\eta$, а также

$$\frac{dy}{dx} = -\operatorname{ctg} \alpha$$

Сравнивая этот последний результат с уравнением (п), видим, что кривые $\xi = \text{const}$ и $\eta = \text{const}$ пересекаются под прямым углом направление увеличения у со-И ставляет угол $\pi/2 + \alpha$ с осью x(рис. 116).

Рассмотрим, например, эллиптические координаты, определяемые уравнением (е). Получаем

$$f'(\zeta) = c \operatorname{sh} \zeta =$$

= c \operatorname{sh} \xi \cos \eta + ic \operatorname{ch} \xi \sin \eta = Je^{i\alpha}.

$$x$$

 y
 ξ =const
Hanpadnenue
ydenuvenun η
Рис. 116.

Сравнивая действительные и мнимые части в последнем уравнении, получаем

$$J\cos\alpha = c \operatorname{sh} \xi \cos\eta$$
, $J\sin\alpha = c \operatorname{ch} \xi \sin\eta$,

откуда

$$J^{2} = c^{2} (\operatorname{sh}^{2} \xi \cos^{2} \eta + \operatorname{ch}^{2} \xi \sin^{2} \eta) = \frac{1}{2} c^{2} (\operatorname{ch} 2\xi - \cos 2\eta), \quad (p)$$

$$tg \alpha = cth \xi tg \eta.$$
 (c)

§ 61. Компоненты напряжений в криволинейных координатах

Уравнения (86), (87) и (89) определяют декартовы компоненты перемещения и напряжения через комплексные потенциалы $\psi(z)$ и $\chi(z)$. Когда используются криволинейные координаты, комплексные потенциалы можно считать функциями ζ, а г выражается через ζ уравнением типа (ж) § 60, определяющим криволинейные координаты. Таким образом, представление σ_x , σ_y и τ_{xy} через ξ и η не встречает затруднений. Однако обычно удобнее опреде-лить напряжения следующим образом:

 σ_{ξ} — нормальная компонента напряжений на кривой $\xi = \text{const}$, σ_n — нормальная компонента напряжений на кривой $\eta = \text{const}$, τ_{ξη} — касательная компонента на обеих кривых.

Эти компоненты показаны на рис. 117. Сравнивая этот рисунок н рис. 116 с рис. 12, мы видим, что о_ξ и т_{ξη} соответствуют о и т на рис. 12. Следовательно, можно использовать уравнения (13),

и таким образом мы получаем

$$\sigma_{\xi} = \frac{1}{2} (\sigma_x + \sigma_y) + \frac{1}{2} (\sigma_x - \sigma_y) \cos 2\alpha + \tau_{xy} \sin 2\alpha,$$

$$\tau_{\xi\eta} = -\frac{1}{2} (\sigma_x - \sigma_y) \sin 2\alpha + \tau_{xy} \cos 2\alpha.$$

Заменяя α на $\pi/2 + \alpha$, таким же путем находим

$$\sigma_{\eta} = \frac{1}{2} (\sigma_x + \sigma_y) - \frac{1}{2} (\sigma_x - \sigma_y) \cos 2\alpha - \tau_{xy} \sin 2\alpha.$$

Отсюда легко получить следующие уравнения 1):

$$\sigma_{\xi} + \sigma_{\eta} = \sigma_x + \sigma_y, \qquad (92)$$

$$\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta} = e^{2i\alpha} \left(\sigma_{y} - \sigma_{x} + 2i\tau_{xy}\right). \tag{93}$$

Множитель $e^{ai\alpha}$ для криволинейных координат, определяемый уравнением $z = f(\zeta)$, можно найти из уравнения (н) § 60. С по-

мощью этого множителя и сопряженной с ним функции, которую можно получить, заменяя *i* на — *i*, находим

$$f'(\zeta) = Je^{i\alpha}, \quad \bar{f}'(\bar{\zeta}) = Je^{-i\alpha},$$

откуда

$$e^{2i\alpha} = \frac{f'(\zeta)}{\bar{f}'(\bar{\zeta})} \,. \tag{94}$$

Например, в рассматриваемых нами эллиптических координатах $f'(\zeta) = c \operatorname{sh} \zeta$; таким образом,

$$e^{2i\alpha} = \frac{\operatorname{sh}\zeta}{\operatorname{ch}\zeta}.$$
 (ж)

После того как определено значение $e^{2i\alpha}$, уравнения (92) и (93) позволяют выразить σ_{ξ} , σ_{η} , $\tau_{\xi\eta}$ через σ_{x} , σ_{y} , τ_{xy} . Перемещение в криволинейных координатах определяется ком-

Перемещение в криволинейных координатах определяется компонентой u_{ξ} в направлении увеличения ξ (рис. 116) и компонентой u_{η} в направлении увеличения η . Если u и v—суть декартовы компоненты перемещения, то получаем

$$u_{\xi} = u \cos \alpha + v \sin \alpha, \quad u_{\eta} = v \cos \alpha - u \sin \alpha,$$
$$u_{\xi} + i u_{\eta} = e^{-i\alpha} (u + iv). \tag{95}$$

откуда

Используя уравнение (86) при
$$z = f(\zeta)$$
 и уравнение (94), мы можем выразить u_{ξ} и u_{η} через ξ и η , если известны комплексные потенциалы.

Уравнения (92), (93). (95) получены Г. В. Колосовым в упомянутой выше работе.

Комбинируя уравнения (86), (87) и (89) с (92), (93) и (95), получаем следующие выражения для компонент напряжений и перемещения (последнее из них—с заменой *i* на —*i*)

$$\sigma_{\xi} + \sigma_{\eta} = 2 \left[\psi'(z) + \overline{\psi}'(\overline{z}) \right] = 4 \operatorname{Re} \psi'(z), \qquad (96)$$

$$\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta} = 2e^{2i\alpha} \left[\bar{z}\psi''(z) + \chi''(z) \right], \qquad (97)$$

$$2G\left(u_{\xi}-iu_{\eta}\right)=e^{i\alpha}\left[\frac{3-\nu}{1+\nu}\overline{\psi}\left(\overline{z}\right)-\overline{z}\psi'\left(z\right)-\chi'\left(z\right)\right].$$
(98)

Мы будем использовать эти уравнения при решении некоторых задач с криволинейными границами.

ЗАДАЧИ

1. Показать, что для полярных координат, определяемых уравнением $z = e^{\zeta}$, равенство (94) принимает вид $e^{2i\alpha} = e^{2i\eta}$, откуда $\alpha = \eta = 0$.

2. Получить решения следующих задач в полярных координатах с помощью заданных комплексных потенциалов. Найти компоненты напряжения и перемещения. A, B, C, D обозначают постоянные, не обязательно действительные.

а) Кольцо (a < r < b) с равными и противоположными моментами M, приложенными с помощью действия касательного напряжения на обеих границах (рис. 138):

$$\psi(z) = 0, \ \chi(z) = A \ln z.$$

б) Кольцо под действием внутреннего давления p₁ и внешнего давления p₀ (см. стр. 86);

$$\psi(z) = Az, \quad \chi(z) = B \ln z.$$

в) Чистый изгиб кривого бруса и «вращательная дислокация» кольца, описанные в §§ 29 и 31:

 $\psi(z) = Az \ln z + Bz, \quad \chi(z) = C \ln z.$

г) Задача, решенная в § 33:

$$\psi(z) = Az^2 + B \ln z, \quad \chi(z) = Cz \ln z + D/z.$$

д) Пластинка с круговым отверстием под действием растяжения (§ 36):

$$\psi(z) = Az + B/z, \quad \chi(z) = C \ln z + Dz^2 + F/z^2.$$

е) Радиальное распределение напряжений, исследованное в § 36:

$$\psi(z) = A \ln z, \quad \chi(z) = Bz \ln z.$$

ж) Сила, приложенная в некоторой точке бесконечной пластинки (§ 42): $\psi(z) = A \ln z, \quad \chi(z) = Bz \ln z.$

§ 62. Решения в эллиптических координатах. Эллиптическое отверстие в пластинке с однородным напряженным состоянием

Как было показано в § 60, эллиптические координаты ξ, η, показанные на рис. 115, определяются уравнениями

$$z = c \operatorname{ch} \zeta, \quad \zeta = \xi + i\eta,$$
 (a)

откуда

$$x = c \operatorname{ch} \xi \cos \eta, \quad y = c \operatorname{sh} \xi \sin \eta$$

и

198

$$\frac{dz}{d\zeta} = c \operatorname{sh} \zeta, \quad e^{2i\alpha} = \frac{\operatorname{sh} \zeta}{\operatorname{ch} \zeta}.$$
 (6)

На эллипсе с полуосями $c \operatorname{ch} \xi_0$ и $c \operatorname{ch} \xi_0$ координата ξ постоянна и равна ξ_0 . Если полуоси заданы величинами a и b, то c и ξ_0 можно найти по формулам

$$c \operatorname{ch} \xi_0 = a, \quad c \operatorname{sh} \xi_0 = b.$$
 (B)

Следовательно, если задан один представитель из семейства эллипсов, то тем самым определено все семейство эллипсов, а также все семейство гипербол (см. стр. 193). Если величина ξ очень мала, то соответствующий эллипс очень вытянут. В пределе при $\xi = 0$ он становится отрезком прямой длиной 2*c*, соединяющим фокусы. Если принимать для ξ все бо́льшие и бо́льшие положительные значения, эллипс становится все больше и увеличивается, приближаясь в пределе при $\xi = \infty$ к бесконечной окружности. Точка на любом эллипсе один раз обходит его контур, когда η изменяется от нуля (на положительной оси *x*, рис. 115) до 2*π*. В этом отношении η напоминает угол θ в полярных координатах. Непрерывность компонент перемещения и напряжения требует, чтобы они были периодическими по η с периодом 2*π*, в силу чего они будут иметь те же значения при $\eta = 2\pi$, какие они имели при $\eta = 0$.

Рассмотрим теперь бесконечную пластинку в состоянии равномерного всестороннего растяжения *S*, возмущенного эллиптическим отверстием с полуосями *a* и *b*, контур отверстия предполагается свободным от напряжений¹). Эти условия означают, что

$$\sigma_x = \sigma_y = S$$
 на бесконечности ($\xi \to \infty$), (г)

 $\sigma_{\xi} = \tau_{\xi\eta} = 0$ на эллиптической границе отверстия, где $\xi = \xi_0$. (д) Из уравнений (87) и (89) находим, что условие (г) удовлетворяется, если

 $2 \operatorname{Re} \psi'(z) = S$, $\tilde{z} \psi''(z) + \chi''(z) = 0$ на бесконечности. (е)

Так как в силу непрерывности компоненты напряжения и перемещения должны быть периодическими по η с периодом 2π , нам следует рассмотреть такие формы $\psi(z)$ и $\chi(z)$, которые дают

¹) Решения для пластинки с эллиптическим отверстием впервые дали Г. В. Колосов в вышеупомянутой работе и Инглис (С. Е. Inglis, Trans. Inst. Nav. Arch., 1913; Eng. 95, 415 (1913)). См. также работу: Т. Pöschl, Math. Z. 11, 95 (1921). В ней использован метод Г. В. Колосова. Тот же метод применил к некоторым двумерным задачам теории упругости Стивенсон (A. C. Stevenson, Proc. Roy. Soc. (London), ser. A, 184, 129, 218 (1945)). Другие ссылки на соответствующую литературу будут даны далее в этой же главе.

функцию напряжений с тем же периодом. Эти формы суть

sh $n\zeta$, τ . e. sh $n\xi \cos n\eta + i \operatorname{ch} n\xi \sin n\eta$, ch $n\zeta$, τ . e. ch $n\xi \cos n\eta + i \operatorname{sh} n\xi \sin n\eta$,

где n — целое число. Функция $\chi(z) = Bc^2 \zeta$, где B — постоянная, также пригодна для этой задачи.

Из (а) видно, что при $\xi \rightarrow \infty \zeta$ ведет себя как ln z, а такая форма χ требуется в родственной задаче о круговом отверстии (см. задачу 26, стр. 197).

Принимая $\psi(z) = Ac \operatorname{sh} \zeta$, где A — постоянная, и используя первое из уравнений (б) для нахождения производной $d\zeta/dz$, обратной $dz/d\zeta$, получаем

$$\psi'(z) = Ac \operatorname{ch} \zeta \frac{d\zeta}{dz} = A \frac{\operatorname{ch} \zeta}{\operatorname{sh} \zeta} = A \operatorname{cth} \zeta.$$
 (x)

На бесконечном расстоянии от начала координат величина ξ равна бесконечности, а cth ζ равен единице. Следовательно, первое из условий (е) удовлетворяется, если 2A = S. Из (ж) далее получаем

$$\psi''(z) = -\frac{A}{c} \frac{1}{\operatorname{sh}^3 \zeta} \tag{H}$$

И

$$\bar{z}\psi''(z) = -A \frac{\operatorname{ch} \zeta}{\operatorname{sh}^3 \zeta}.$$
 (K)

Принимая $\chi(z) = Bc^2 \zeta$, где *В* — постоянная, находим

$$\chi'(z) = \frac{Bc}{\operatorname{sh}\zeta}, \quad \chi''(z) = -B\frac{\operatorname{ch}\zeta}{\operatorname{sh}^3\zeta}.$$
 (*n*)

Уравнения (к) и (л) показывают, что каждая из функций $z\psi''(z)$ и $\chi''(z)$ на бесконечности обращается в нуль. Следовательно, второе из условий (е) выполняется.

Условие (д) можно удовлетворить с помощью надлежащего выбора постоянной В. Вычитая уравнение (97) из равенства (96), получаем

$$\sigma_{\xi} - i\tau_{\xi\eta} = \psi'(z) + \overline{\psi}'(\overline{z}) - e^{2i\alpha} [\overline{z}\psi''(z) + \chi''(z)], \qquad (M)$$

где функция e^{2ia} задается второй из формул (б). Отсюда

$$\sigma_{\xi} - i\tau_{\xi\eta} = A\left(\frac{\operatorname{ch}\zeta}{\operatorname{sh}\zeta} + \frac{\operatorname{ch}\zeta}{\operatorname{sh}\zeta}\right) + \frac{\operatorname{sh}\zeta}{\operatorname{sh}\zeta}\left(A\frac{\operatorname{ch}\zeta}{\operatorname{sh}^{3}\zeta} + B\frac{\operatorname{ch}\zeta}{\operatorname{sh}^{3}\zeta}\right) = \frac{1}{\operatorname{sh}^{2}\zeta\operatorname{sh}\zeta}\left\{A\left[\operatorname{sh}\zeta\operatorname{sh}(\zeta+\zeta) + \operatorname{ch}\zeta\right] + B\operatorname{ch}\zeta\right\}.$$
(H)

На границе эллиптического отверстия $\xi = \xi_e$ и $\zeta + \overline{\zeta} = 2\xi_o$, $\overline{\zeta} = 2\xi_o - \zeta$. При этом (н) сводится к виду

$$\frac{1}{\operatorname{sh}^2\zeta\operatorname{sh}\overline{\zeta}}(A\operatorname{ch} 2\xi_0+B)\operatorname{ch}\zeta.$$

В силу этого условие (д) удовлетворяется в том случае, если

$$B = -A \operatorname{ch} 2\xi_0 = -\frac{1}{2} \operatorname{S} \operatorname{ch} 2\xi_0.$$
 (o)

Теперь мы получаем

$$ψ(z) = \frac{1}{2} Sc sh ζ, \quad \chi(z) = -\frac{1}{2} Sc^2 ch 2ξ_0 \cdot ζ.$$
(Π)

Все граничные условия удовлетворены. Однако мы не можем быть уверены, что комплексные потенциалы (п) представляют решение нашей задачи до тех пор, пока мы не убедились, что они не вызывают разрывов в перемещении. Декартовы компоненты перемещения можно найти из уравнения (86), которое в данном случае приводит к зависимости

$$2G(u+iv) = \frac{3-v}{1+v} Ac \operatorname{sh} \zeta - Ac \operatorname{ch} \zeta \operatorname{cth} \overline{\zeta} - \frac{Bc}{\operatorname{sh} \overline{\zeta}}, \qquad (p)$$

где A = S/2, а *В* определяется выражением (о). Гиперболические функции имеют действительную и мнимую части, периодические по η . Следовательно, если обойти любой эллиптический контур $\xi = \text{const}$ внутри пластинки, перемещения *и* и *v* приобретут свои первоначальные значения. Это означает, что комплексные потенциалы (п) дают решение задачи.

Компонента напряжения σ_{η} на краю отверстия легко находится из уравнения (96), поскольку σ_{ξ} на контуре равно нулю. Внося значение $\psi'(z)$ из уравнения (ж) при A = S/2, получаем

$$\sigma_{\xi} + \sigma_{\eta} = 4 \operatorname{Re} \psi'(z) = 2S \operatorname{Re} \operatorname{cth} \zeta.$$

Однако, согласно уравнению (в), стр. 180,

$$\operatorname{cth} \zeta = \frac{\operatorname{sh} 2\xi - i \sin 2\eta}{\operatorname{ch} 2\xi - \cos 2\eta} \,.$$

Отсюда

$$\sigma_{\xi} + \sigma_{\eta} = \frac{2S \, \text{sh} \, 2\xi}{\operatorname{ch} \, 2\xi - \cos \, 2\eta}$$

и на границе отверстия

$$(\sigma_{\eta})_{\xi=\xi_0} = \frac{2S \operatorname{sh} 2\xi_0}{\operatorname{ch} 2\xi_0 - \cos 2\eta}.$$

Наибольшая величина σ_{η} , получающаяся на концах главной оси, где η принимает значения 0 и π , а $\cos 2\eta = 1$, равна

$$(\sigma_{\eta})_{\max} = \frac{2S \sinh 2\xi_0}{\cosh 2\xi_0 - 1}$$
.

Из уравнений (в) легко видеть, что

$$c^2 = a^2 - b^2$$
, sh $2\xi_0 = \frac{2ab}{c^2}$, ch $2\xi_0 = \frac{a^2 + b^2}{c^2}$.

Отсюда находим, что

$$(\sigma_{\eta})_{\max} = 2S \frac{a}{b}$$
.

Эта величина все больше увеличивается по мере того, как эллипс становится уже.

Наименьшее значение $(\sigma_{\eta})_{\xi=\xi_0}$ получается на концах малой оси, где $\cos 2\eta = -1$. Отсюда

$$(\sigma_{\eta})_{\min} = \frac{2S \operatorname{sh} 2\xi_0}{\operatorname{ch} 2\xi_0 + 1} = 2S \frac{b}{a}.$$

При a = b, то есть когда эллипс превращается в круг, $(\sigma_{\eta})_{max}$ и $(\sigma_{\eta})_{min}$ становятся равными 2S, что совпадает с решением для кругового отверстия при всестороннем растяжении, приведенным на стр. 107.

Задача о действии равномерного давления S внутри эллиптического отверстия с нулевыми напряжениями на бесконечности легко получается путем комбинации вышеприведенного решения с решением для однородного напряженного состояния $\sigma_{\xi} = \sigma_{\eta} =$ = -S, получаемым исходя из комплексного потенциала $\psi(z) =$ = -Sz/2.

§ 63. Эллиптическое отверстие в пластинке, подвергнутой одноосному растяжению

В качестве второй задачи рассмотрим бесконечную пластинку под действием одноосного растягивающего напряжения S, дейст-

вующего в направлении, составляющем угол β с положительной осью x (рис. 118). Это напряженное состояние возмущается эллиптическим отверстием, главная ось которого, как и в предыдущей задаче, направлена вдоль оси x. Частным случаем служит задача для отверстия, главная ось которого перпендикулярна либо

параллельна направлению растяжения ¹). Однако более общая задача при решении ее предлагаемым методом является не более трудной. Из ее решения мы можем найти влияние эллиптического отверстия на любое однородное плоское напряженное состояние, определяемое главными напряжениями на бесконечности, имеющими любую ориентацию относительно отверстия.

Пусть Ox' и Oy' — декартовы оси, полученные поворотом оси Ox на угол β , при котором эта ось становится параллельной направлению растяжения S. Тогда уравнения (92) и (93) дают

 $\sigma_{x'} + \sigma_{y'} = \sigma_x + \sigma_y, \quad \sigma_{y'} - \sigma_{x'} + 2i\tau_{x'y'} = e^{2i\beta} (\sigma_y - \sigma_x + 2i\tau_{xy}).$

¹) См. статьи, упоминаемые в примечании 1 на стр. 198.

Поскольку на бесконечности $\sigma_{x'} = S$, $\sigma_{y'} = \tau_{x'y'} = 0$, то получаем

 $\sigma_x + \sigma_y = S$, $\sigma_y - \sigma_x + 2i\tau_{xy} = - Se^{-2i\beta}$ на бесконечности,

а из уравнений (87) и (89)

4 Re $\psi'(z) = S$, 2 $[\bar{z}\psi''(z) + \chi''(z)] = -Se^{-2i\beta}$ на бесконечности. (а) На границе $\xi = \xi_n$ отверстия должно быть $\sigma_{\xi} = \tau_{\xi\eta} = 0$.

Всем этим граничным условиям можно удовлетворить, взяв $\psi(z)$ и $\chi(z)$ в виде¹)

$$\begin{aligned} &4\psi(z) = Ac \operatorname{ch} \zeta + Bc \operatorname{sh} \zeta, \\ &4\chi(z) = Cc^2\zeta + Dc^2 \operatorname{ch} 2\zeta + Ec^2 \operatorname{sh} 2\zeta, \end{aligned}$$

где А, В, С, D и Е-подлежащие определению постоянные.

Так как $z = c \operatorname{ch} \zeta$, то в выражений для $4\psi(z)$ член $Ac \operatorname{ch} \zeta$ равен просто Az. Его вклад в функцию напряжений (84) выразится в виде члена Re Azz или Re Ar^2 . Он равен нулю, если A—мнимое число, следовательно, A можно сразу же считать действительным числом. Постоянная C также должна быть равной нулю. Действительно, если мы подставим в уравнение (91) вышеприведенные выражения для $\psi(z)$ и $\chi(z)$, принимая в качестве кривой AB замкнутый контур, окружающий отверстие, то найдем, что все члены, исключая член, содержащий C, равны нулю, так как гиперболические функции являются периодическими по η с периодом 2π . Член, содержащий C, имеет вид Re $[Cc^2(\xi+i\eta)]_A^B$. Он обращается в нуль на замкнутом контуре только в том случае, если C—действительное число.

Постоянные В, D и E являются комплексными, и можно записать

$$B = B_1 + iB_2, \quad D = D_1 + iD_2, \quad E = E_1 + iE_2. \tag{6}$$

Подстановка полученных выражений для $\psi(z)$ и $\chi(z)$ в условия (а) дает

$$A + B_1 = S, \quad 2(D + E) = -Se^{-2i\beta}.$$
 (B)

Вычитая уравнение (97) из уравнения (96), для о_ξ—iτ_{ξη} получаем

$$4 (\sigma_{\xi} - i\tau_{\xi\eta}) = \cosh \overline{\zeta} [(2A + B \operatorname{cth} \zeta) \operatorname{sh} \overline{\zeta} + (\overline{B} + B \operatorname{csh}^2 \zeta) \operatorname{ch} \overline{\zeta} + (C + 2E) \operatorname{csh} \zeta \operatorname{cth} \zeta - 4D \operatorname{sh} \zeta - 4E \operatorname{ch} \zeta].$$

На границе отверстия $\xi = \xi_0$ и $\overline{\zeta} = 2\xi_0 - \zeta$. Если внести это значение $\overline{\zeta}$ в члены sh $\overline{\zeta}$ и ch $\overline{\zeta}$ и разложить функции sh $(2\xi_0 - \zeta)$ и ch $(2\xi_0 - \zeta)$, то выражение в квадратных скобках примет вид

 $(2A \operatorname{sh} 2\xi_0 - 2iB_2 \operatorname{ch} 2\xi_0 - 4E) \operatorname{ch} \zeta -$ $- (2A \operatorname{ch} 2\xi_0 - 2iB_2 \operatorname{sh} 2\xi_0 + 4D) \operatorname{sh} \zeta + (C + 2E + B \operatorname{ch} 2\xi_0) \operatorname{cth} \zeta \operatorname{csh} \zeta.$

202

¹⁾ См. упомянутую выше работу Стивенсона (Stevenson).

Это выражение, а следовательно и $\sigma_{\xi} - i\tau_{\xi\eta}$ на границе отверстия, обращается в нуль, если обращаются в нуль все коэффициенты при ch ζ , sh ζ , cth ζ , csh ζ . Таким образом, мы получаем три уравнения, которые вместе с двумя уравнениями (в) должны удовлетворяться постоянными A, B, C, D, E. Поскольку постоянные A и C действительны, то на самом деле девять уравнений должны удовлетворяться при подстановке восьми постоянных A, C, а также B_1 , B_2 , D_1 , D_2 , E_1 , E_2 , причем последние шесть постоянных определяют действительные и мнимые части B, D и E. Эти уравнения непротиворечивы и их решение имеет вид

$$A = Se^{2\xi_0} \cos 2\beta, \quad D = -\frac{1}{2} Se^{2\xi_0} \operatorname{ch} 2(\xi_0 + i\beta),$$

$$B = S(1 - e^{2\xi_0 + 2i\beta}), \quad E = \frac{1}{2} Se^{2\xi_0} \operatorname{sh} 2(\xi_0 + i\beta),$$

$$C = -S(\operatorname{ch} 2\xi_0 - \cos 2\beta).$$

Таким образом, комплексные потенциалы этой задачи даются формулами

$$4\psi(z) = Sc \left[e^{2\xi_0} \cos 2\beta \operatorname{ch} \zeta + (1 - e^{2\xi_0 + 2i\beta}) \operatorname{sh} \zeta \right], 4\chi(z) = -Sc^2 \left[(\operatorname{ch} 2\xi_0 - \cos 2\beta) \zeta + \frac{1}{2} e^{2\xi_0} \operatorname{ch} 2 (\zeta - \xi_0 - i\beta) \right].$$

Перемещения теперь можно найти из уравнения (98). Легко видеть, что они однозначны.

Напряжение σ_{η} на границе отверстия можно получить из уравнения (96), положив в нем σ_{ξ} равным нулю. Отсюда

$$(\sigma_{\eta})_{\xi=\xi_0} = S \frac{\operatorname{sh} 2\xi_0 + \cos 2\beta - e^{2\xi_0} \cos 2(\beta-\eta)}{\operatorname{ch} 2\xi_0 - \cos 2\eta}.$$

Когда растягивающее усилие S действует под прямым углом к главным осям ($\beta = \pi/2$), получаем

$$(\sigma_{\eta})_{\xi=\xi_0} = Se^{2\xi_0} \left[\frac{\operatorname{sh} 2\xi_0 \left(1+e^{-2\xi_0}\right)}{\operatorname{sh} 2\xi_0 - \cos 2\eta} - 1 \right],$$

и наибольшее значение, получающееся на концах главной оси, где $\cos 2\eta = 1$, определяется выражением

$$S\left(1+2\frac{a}{b}\right).$$

Если отверстие все более сужается, это выражение неограниченно увеличивается. При a=b оно совпадает со значением 3S, найденным для кругового отверстия (стр. 107). Наименьшее значение напряжения около эллиптического отверстия равно — S, причем оно действует на концах малой оси. То же значение получается и для кругового отверстия.

Если растягивающее усилие S параллельно большой оси $(\beta = 0)$, максимальное значение σ_n на контуре отверстия воз-

никает на концах малой оси, и равно S(1+2b/a). Когда эллипс становится очень узким, оно приближается к S. На концах большой оси при любых значениях *a/b* напряжение равно — S.

Влияние эллиптического отверстия на состояние чистого сдвига S, параллельного осям x и y, легко найти с помощью суперпозиции двух случаев растяжения с усилием S при $\beta = \pi/4$ и — S при $\beta = 3\pi/4$. Отсюда

$$(\sigma_{\eta})_{\xi=\xi_0} = -2S \frac{e^{2\xi_0} \sin 2\eta}{\operatorname{ch} 2\xi_0 - \cos 2\eta}.$$

На концах большой и малой осей эллипса это выражение обращается в нуль, а наибольшее значение

$$\pm S \frac{(a+b)^2}{ab}$$

оно имеет в точках, определяемых координатами $\eta = th \xi_a = b/a$. Когда эллипс очень узок, эти значения весьма велики и точки, в которых они действуют, близки к концам большой оси. Имеются решения для эллиптического отверстия в пластинке, находящейся под действием чистого изгиба в своей плоскости^{1,2}) и параболического распределения касательных усилий, которое возникает в тонкой балке прямоугольного сечения 2), для эллиптического отверстия с равными и противоположными по знаку сосредоточенными силами, приложенными по концам малой оси ³), а также для жесткого и упругого включений, заполняющих отверстие в растянутой пластинке 4). Рассматривались и более общие виды решений в форме рядов для действительной функции напряжений ф в эллиптических координатах⁵). Эквивалентные им комплексные потенциалы можно построить из функций, использованных или упомянутых здесь вместе с аналогом простых функций, приведенных в задачах на стр. 197, если необходимо учесть влияние дислокаций, а также сосредоточенных сил и моментов. Решение для общего случая нагружения эллиптического отверстия дается позже в §§ 67-72.

K. Wolf, Z. Tech. Physik, 1922, стр. 160.
 H. Neuber, Ingenieur-Arch. 5, 242 (1934). Это решение и несколько других, относящихся к отверстиям в виде эллипсов или гипербол, даны в книге Нейбера (Neuber, Kerbspannungslehre, изд. 2, Springer-Verlag OHG,

В книге неноера (мен вет, кегозранниндзение, изд. 2, оргидет ченад отго, Berlin, 1958). ³) Р. S. Symonds, J. Appl. Mech. 13, A-183 (1946). Решение в конеч-ной форме дал Грин (А. Е. Green, J. Appl. Mech. 14, A-246 (1947)). ⁴) Н. И. Мусхелишвили, Z. Angew. Math. Mech. 13, 264 (1933); L. H. Donnell, Theodore von Kármán Anniversary Volume, 1941. [§]) E. G. Coker, L. N. G. Filon, Photo-elasticity, Cambridge Univer-sity Press, New York, 1931, стр. 123, 535 [Русский перевод: Э. Кокер, Л. Файлон (см. ссылку на стр. 149)]; А. Тітре, Math. Z. 17, 189 (1923).

Кроме того, детально разработаны многие другие решения для эллиптических и других некруговых отверстий или включений при различных нагоужениях 1).

§ 64. Гиперболические границы. Вырезы

В § 60 было показано, что кривые η = const в эллиптических координатах являются гиперболами, а в § 62--что диапазон изменения для у можно принять в пределах от 0 до 2π , а для ξ — от 0 до ∞.

Пусть η₀ — постоянное значение η вдоль гиперболической дуги (рис. 119). Оно заключено в пределах между 0 и 2π , поскольку вдоль *BA* как х, так и у положительны. Вдоль другой половины этой ветви гиперболы _{7=π-70} ВС значение η равно $2\pi - \eta_0$, а вдоль половины ED другой ветви η равно $\pi - \eta_0$, а вдоль EF значение η равно $\pi + \eta_0$.

Рассмотрим пластинку *ABCFED*, заключенную между этими гипер-

болическими границами, растягиваемую в направлении Оу²). Для того чтобы в сечении шейки ЕОВ растягивающее напряжение было конечным, на бесконечности оно должно равняться нулю. Комплексные потенциалы, которые удовлетворяют этому, а также другим необходимым условиям симметрии относительно осей Ох и Оу и, кроме того, условию отсутствия напряжений на гиперболических границах, выражаются в виде

$$\psi(z) = -\frac{1}{2} Ai\zeta, \quad \chi(z) = -\frac{1}{2} Ai\zeta z - Bci \operatorname{sh} \zeta, \quad (a)$$

где A и B—действительные постоянные, а $z = c \operatorname{ch} \zeta$. Отсюда

$$\psi'(z) = -\frac{iA}{2c\,\mathrm{sh}\,\zeta}, \quad \chi'(z) = -\frac{1}{2}\,Ai\zeta - \left(\frac{1}{2}\,A + B\right)i\,\mathrm{cth}\,\zeta.$$
 (6)

Рис. 119.

¹) Н. И. Мус хелишвили, Некоторые основные задачи математиче-ской теории упругости, Изд. АН СССР, 1954. См. также Г. Н. Савин, Концентрация напряжений около отверстий, Гостехиздат, 1951; Р. Р. Тео-dorescu, One Hundred Years of Investigation in the Plane Problem of the Theory of Elasticity в книге Н. N. Abramson, H. Liebowitz, J. M. Crowley, S. Juhasz (ред.), Applied Mechanics Surveys, Spartan Books, Washington, 1966, стр. 245—262. ²) Эта задача для случая растяжения, а также для случая сдвигового нагружения решалась Гриффитсом (А. А. Griffith, Tech. Rept. Aeron. Res. Comm. (GB). 2, 668 (1927—1928), и Нейбером (Н. Neuber, Z. Алдеw, Math.

Comm. (GB), 2, 668 (1927—1928), и Нейбером (Н. Neuber, Z. Angew. Math. Mech. 13, 439 (1933).

Уравнение (90) из § 59 показывает, что гиперболическая граница $\eta = \eta_0$ будет свободна от напряжений, если функция

$$\hat{\Psi}(z) + z\overline{\psi}'(\overline{z}) + \overline{\chi}'(\overline{z})$$
 (B)

вдоль нее будет постоянна, или, что эквивалентно, если будет постоянной сопряженная функция. Эта сопряженная функция, согласно уравнениям (а) и (б), имеет вид

$$A\eta - \frac{1}{2} Ai \frac{ch\overline{\zeta}}{sh\,\zeta} - \left(\frac{1}{2} A + B\right) i \operatorname{cth} \zeta. \tag{(r)}$$

На гиперболе $\eta = \eta_0$ имеем $\overline{\zeta} = \zeta - 2i\eta_0$, в силу чего приведенное выражение принимает вид

$$A\eta_{0} - \frac{1}{2} A \sin 2\eta_{0} - \left(\frac{1}{2} A \cos 2\eta_{0} + \frac{1}{2} A + B\right) i \operatorname{cth} \zeta.$$

Это выражение постоянно, если величина в скобках обращается в нуль. Таким образом,

$$B = -A \cos^2 \eta_0. \tag{A}$$

Чтобы найти результирующую сил, передаваемых через шейку, можно применить равенство (90) § 59 к узкому сечению *ЕОВ* (рис. 119), или точнее—к нижней части эллипса $\xi = 0$, заключенной между гиперболами $\eta = \eta_0$ и $\eta = \pi - \eta_0$. На контуре этого эллипса ζ равно $i\eta$, $\overline{\zeta}$ равно $-i\eta$, и мы получаем из уравнений (90), (в) и (г)

$$F_{x} - iF_{y} = i \left[A\eta - (A+B) \operatorname{ctg} \eta \right]_{\eta=\eta_{0}}^{\eta=\pi-\eta_{0}} = i \left[A \left(\pi - 2\eta_{0} + 2 \operatorname{ctg} \eta_{0} \right) + 2B \operatorname{ctg} \eta_{0} \right].$$

Поскольку A и B считаются действительными величинами, функция F_x равна нулю, и использование уравнения (д) приводит к зависимости

$$F_y = -A \left(\pi - 2\eta_0 + \sin 2\eta_0\right),$$

которая служит для определения A, если задано полное усилие F_y . Компоненты напряжения и перемещения легко найти из уравнений (96), (97) и (98). Первое из них дает

$$\sigma_{\xi} + \sigma_{\eta} = -\frac{4A}{c} \frac{\operatorname{ch} \xi \sin \eta}{\operatorname{ch} 2\xi - \cos 2\eta}.$$

Значение σ_{ξ} вдоль гиперболической границы можно найти, если положить в этом выражении $\eta = \eta_0$. Оно достигает максимума, равного $-2A/c \sin \eta_0$ в наиболее узком месте, где $\xi = 0$. Нейбер¹)

¹) См. упомянутую выше работу. Для сравнения результатов Нейбера с фотоупругими испытаниями и опытами на усталость для пластинок с вырезами и валов с бороздками см. R. E. Peterson, A. M. Wahl, J. Appl. Mech. 3,15 (1936); или С. П. Тимошенко, Сопротивление материалов, т. 2, стр. 332. См. также книгу М. Фрохта Фотоупругость, т. 2, Гостехиздат, 1950.

выразил это максимальное значение через радиус кривизны гиперболы в наиболее узком месте шейки. Он же решил с помощью другого метода соответствующие задачи об изгибе и сдвиге, а также растяжении пластинки.

§ 65. Биполярные координаты

Задачи, связанные с двумя неконцентрическими круговыми границами, включающими в качестве частного случая круговое отверстие в полубесконечной пластинке, обычно требуют использования биполярных коор-

динат §, ŋ, определяемых уравнениями

$$z = ia \operatorname{cth} \frac{1}{2} \zeta, \zeta = \xi + i\eta$$
, (a)

где *а*—действительная постоянная.

Заменяя cth $(1/2\zeta)$ на $(e^{\frac{1}{2}\zeta} + e^{-\frac{1}{2}\zeta})/(e^{\frac{1}{2}\zeta} - e^{-\frac{1}{2}\zeta})$

и решая первое уравнение относительно e^{ζ} , легко показать, что оно эквивалентно в этом случае равенству

$$\zeta = \ln \frac{z + ia}{z - ia}.$$
 (6)

Величина *z*+*ia* на плоскости *xy* представляется отрезком прямой, соеди-

няющим точки — *ia* и z, в том смысле, что проекции на оси дают действительную и мнимую части этой величины. Ту же величину можно представить в виде $r_1e^{i\theta_1}$, где r_1 —длина отрезка, а θ_1 —угол, который он составляет с осью x (рис. 120). Подобным образом z—*ia*—отрезок, соединяющий точки *ia* и z,—можно представить как $r_2e^{i\theta_1}$ (рис. 120). Тогда уравнение (б) принимает вид

$$\xi + i\eta = \ln\left(\frac{r_1}{r_2}e^{i\theta_1}e^{-i\theta_2}\right) = \ln\frac{r_1}{r_2} + i(\theta_1 - \theta_2),$$

откуда

$$\boldsymbol{\xi} = \ln \frac{r_1}{r_2}, \quad \boldsymbol{\eta} = \boldsymbol{\theta}_1 - \boldsymbol{\theta}_2. \tag{B}$$

Из рис. 120 можно видеть, что $\theta_1 - \theta_2$ представляет собой угол между двумя прямыми, соединяющими полюсы — *ia* и *ia* с рассматриваемой точкой *z*, если она расположена справа от оси *y*, и тот же угол с обратным знаком, если она лежит слева от y. Отсюда следует, что кривая $\eta = \text{const}$ является дугой окружности, проходящей через эти полюсы. Несколько таких окружностей показаны на рис. 120. Из уравнений (в) видно, что для кривой $\xi = \text{const}$ имеем $r_1/r_2 = \text{const}$. Такая кривая также является окружностью. Она окружает полюс ia, если r_1/r_2 превышает единицу, т. е. если ξ —положительная величина. Если же ξ —отрицательно, она окружает другой полюс — ia. Некоторые из таких окружностей показаны на рис. 120. Они образуют семейство соосных окружностей с двумя полюсами в качестве предельных точек.

При переходе через отрезок y, соединяющий полюсы, координата η изменяется от π до — π . Диапазон ее изменения для всей плоскости составляет от — π до π . Напряжения и перемещения при переходе через этот отрезок остаются постоянными, если они представлены периодическими функциями от η с периодом 2π .

Разделение действительной и мнимой частей в уравнении (а) приводит к зависимостям¹)

$$x = \frac{a \sin \eta}{\operatorname{ch} \xi - \cos \eta}, \quad y = \frac{a \operatorname{sh} \xi}{\operatorname{ch} \xi - \cos \eta}.$$
 (r)

Дифференцирование уравнения (а) дает

$$Je^{i\alpha} = \frac{dz}{d\zeta} = -\frac{1}{2}ia\cosh^2\frac{1}{2}\zeta \qquad (\texttt{A})$$

И

$$e^{2i\alpha} = \frac{dz/d\zeta}{d\bar{z}/d\bar{\zeta}} = -\operatorname{sh}^2 \frac{1}{2} \,\overline{\zeta} \,\operatorname{csh}^2 \,\frac{1}{2} \,\zeta. \tag{e}$$

§ 66. Решения в биполярных координатах²)

Рассмотрим круглый диск с эксцентричным отверстием, подвергнутый действию давления p_0 по внешней границе и давления p_1 по границе отверстия³). Полученные компоненты напряжения будут также служить решением задачи о круглой толстостепной трубе с эксцентричным отверстием.

Пусть внешняя граница будет окружностью $\xi = \xi_0$, принадлежащей семейству окружностей $\xi = \text{const}$, а контур отверстия будет окружностью $\xi = \xi_1$. Две такие окружности представлены жирными линиями на рис. 120. Из выражения для *у* в уравнениях (г) § 65 следует, что эти окружности имеют радиусы *a* csh ξ_0

¹⁾ См. вывод равенства (в) в § 54.

²) Этому вопросу посвящена монография: Я. С. У флянд, Биполярные координаты в теории упругости, Гостехиздат, М. — Л., 1950. (Прим. ред.)

³) Первое решение, выраженное через действительную функцию напряжений, принадлежит Джеффри (G. B. Jeffery, Trans. Roy. Soc. (London), ser. A, 221, 265 (1921)).

и $a \cosh \xi_1$ и что их центры находятся на расстояниях $a \coth \xi_0$ и $a \coth \xi_1$ от начала координат. Таким образом, если заданы радиусы и расстояние между центрами, можно определить a, ξ_0 и ξ_1 .

Если обходить любую окружность $\xi = \text{const}$ против часовой стрелки, начиная двигаться влево от оси *у* (рис. 120), координата η будет изменяться от $-\pi$ до π . Следовательно, функции, которые должны описывать компоненты напряжения и перемещения, должны при $\eta = \pi$ иметь те же значения, что и при $\eta = -\pi$. Это будет обеспечиваться, если они будут периодическими функциями от η с периодом 2π . Это означает, что комплексные потенциалы $\psi(z)$ и $\chi(z)$ можно взять в форме

$$ch n\zeta$$
, $sh n\zeta$, (a)

где n — целое число. Тем же свойством обладают и их производные по z (см. уравнение (д) § 65).

Если такие функции ввести в уравнения (90) и (91), примененные к случаю любой окружности $\xi = \text{const}$, то в силу периодичности соответствующее усилие и момент будут равны нулю. Так как пластинка, ограниченная такой окружностью, находится в равновесии, это условие должно сохраняться и для полного решения.

Потребуем также, чтобы функция $\chi(z)$ имела вид $aD\zeta$, где D—постоянная. Подставляя ее в приведенные выше равенства (90) и (91), мы видим, что момент, определяемый уравнением (91), будет равен нулю только в том случае, если D—действительное число. Следовательно, D и нужно принять таким. Рассматривая уравнение для перемещений (86), находим, что упомянутая функция, так же как и функция (а), используемые в качестве $\psi(z)$ или $\chi(z)$, дают поле перемещений, свободное от разрывов.

Поле равномерного всестороннего растяжения или сжатия, которое является частью решения, получается из комплексного потенциала $\psi(z) = Az$, где A— действительное число. Соответствующая действительная функция напряжений, согласно (84), имеет вид

$$\varphi = \operatorname{Re}\left(\overline{z}Az\right) = A\overline{z}z = A\left(x^2 + y^2\right).$$

С помощью уравнений (г) из § 65 ее можно выразить в биполярных координатах в форме

$$\varphi = Aa^2 \frac{\operatorname{ch} \xi + \cos \eta}{\operatorname{ch} \xi - \cos \eta}.$$
 (6)

Рассматривая функции вида (а) при n = 1, замечаем, что поскольку поле напряжений в данной задаче является симметричным относительно оси y, мы должны выбрать функции (а) так, чтобы соответствующие им напряжения обладали этим свойством симметрии. Следовательно, мы должны принять

$$\psi(z) = iB \operatorname{ch} \zeta, \quad \chi(z) = B' \operatorname{sh} \zeta,$$
 (B)

209

§ 66]

где В и В'-действительные числа, и

$$\psi(z) = iC \operatorname{sh} \zeta, \quad \chi(z) = C' \operatorname{ch} \zeta, \quad (\Gamma)$$

где C и C'-действительные числа.

Действительная функция напряжений, соответствующая комплексным потенциалом (в), согласно уравнению (84) имеет вид

$$aB \frac{\operatorname{sh} \xi \operatorname{ch} \xi \cos \eta - \operatorname{sh} \xi \sin^2 \eta}{\operatorname{ch} \xi - \cos \eta} + B' \frac{\operatorname{sh} \xi \operatorname{ch} \xi \cos \eta - \operatorname{sh} \xi \cos^2 \eta}{\operatorname{ch} \xi - \cos \eta}$$

Если принять B' = aB, члены, содержащие $\sin^2 \eta$ и $\cos^2 \eta$ в числителях, не будут зависеть от η , и каждый числитель в целом будет зависеть от η только за счет тех членов, которые содержат $\cos \eta$, — так же, как функция (б). То же справедливо в отношении комплексных потенциалов (г), если принять C' = aC. Таким образом, оказывается, что для решения данной задачи можно использовать функции более частного вида.

Принимая, таким образом,

$$\psi(z) = iB \operatorname{ch} \zeta, \quad \chi(z) = aB \operatorname{sh} \zeta$$
 (A)

с помощью уравнений (96), (97), а также (а) и (е) § 65 находим, что соответствующие компоненты напряжения определяется формулами

$$a \left(\sigma_{\xi} + \sigma_{\eta}\right) = 2B \left(2 \operatorname{sh} \xi \cos \eta - \operatorname{sh} 2\xi \cos 2\eta\right), \quad (e)$$

$$a \left(\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta}\right) = -2B \left[\operatorname{sh} 2\xi - 2 \operatorname{sh} 2\xi \operatorname{ch} \xi \cos \eta + + \operatorname{sh} 2\xi \cos 2\eta - i \left(2 \operatorname{ch} 2\xi \operatorname{ch} \xi \sin \eta - \operatorname{ch} 2\xi \sin 2\eta \right) \right]. \quad (\mathbf{x})$$

Аналогично функции

$$\Psi(z) = iC \operatorname{sh} \zeta, \quad \chi(z) = aC \operatorname{ch} \zeta, \quad (H)$$

дают

$$a \left(\sigma_{\xi} + \sigma_{\eta}\right) = -2C \left(1 - 2 \operatorname{ch} \xi \cos \eta + \operatorname{ch} 2\xi \cos 2\eta\right), \qquad (\kappa)$$

$$a \left(\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta}\right) = 2C \left[-\operatorname{ch} 2\xi + 2 \operatorname{ch} 2\xi \operatorname{ch} \xi \cos \eta - \frac{1}{2}\right]$$

$$--\operatorname{ch} 2\xi \cos 2\eta + i \left(2 \operatorname{sh} 2\xi \operatorname{ch} \xi \sin \eta - \operatorname{sh} 2\xi \sin 2\eta\right)]. \quad (\pi)$$

Компоненты напряжения, получающиеся в случае

$$\chi(z) = aD\zeta, \tag{M}$$

определяются уравнениями

$$\sigma_{\xi} + \sigma_{\eta} = 0,$$

a ($\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta}$) = D [sh 2 ξ - 2 sh $\xi \cos \eta - i$ (2ch $\xi \sin \eta - \sin 2\eta$)]. (н)
Состояние равномерного всестороннего растяжения, определяемое

Состояние равномерного всестороннего растяжения, определяемое формулой

$$\psi(z) = Az, \qquad (o)$$

приводит к зависимостям

$$\sigma_{\xi} + \sigma_{\eta} = 4A$$
, $\sigma_{\eta} - \sigma_{\xi} + 2i\tau_{\xi\eta} = 0$,

или

$$\sigma_{\boldsymbol{\xi}} = \sigma_{\boldsymbol{\eta}} = 2A, \quad \tau_{\boldsymbol{\xi}\boldsymbol{\eta}} = 0. \tag{(1)}$$

§ 661

Решение рассматриваемой задачи можно теперь получить с помощью суперпозиции напряженного состояния, представленного комплексными потенциалами (д), (и), (м) и (о). Собирая члены, представляющие $\tau_{\xi\eta}$ в уравнениях (ж), (л) и (н), находим, что обращение в нуль $\tau_{\xi\eta}$ на границах $\xi = \xi_0$, $\xi = \xi_1$ дает

$$D - 2B \operatorname{ch} 2\xi_0 - 2C \operatorname{sh} 2\xi_0 = 0,$$

$$D - 2B \operatorname{ch} 2\xi_1 - 2C \operatorname{sh} 2\xi_1 = 0.$$
(p)

Выражая В и С через D, получаем

$$2B = D \frac{\operatorname{ch}(\xi_1 + \xi_0)}{\operatorname{ch}(\xi_1 - \xi_0)}, \quad 2C = -D \frac{\operatorname{sh}(\xi_1 + \xi_0)}{\operatorname{ch}(\xi_1 - \xi_0)}.$$
 (c)

Нормальное напряжение σ_{ξ} можно найти путем вычитания дей-ствительной части уравнения (ж) из уравнения (е) и аналогично из других соответствующих пар уравнений. На границе $\xi = \xi_0$ для σ_{ξ} следует принять значение — p_0 , а на границе $\xi = \xi_1$ — значение — p_1 . Если использовать выражения для B и C, опре-деляемые уравнениями (с), то эти граничные условия приведут к двум уравнениям

$$2A + \frac{D}{a}\operatorname{sh}^{2}\xi_{0}\operatorname{th}(\xi_{1} - \xi_{0}) = -p_{0},$$

$$2A - \frac{D}{a}\operatorname{sh}^{2}\xi_{1}\operatorname{th}(\xi_{1} - \xi_{0}) = -p_{1},$$

откуда

$$A = -\frac{1}{2} \frac{p_0 \operatorname{sh}^2 \xi_1 + p_1 \operatorname{sh}^2 \xi_0}{\operatorname{sh}^2 \xi_1 + \operatorname{sh}^2 \xi_0},$$

$$D = -a \frac{(p_0 - p_1) \operatorname{cth} (\xi_1 - \xi_0)}{\operatorname{sh}^2 \xi_1 + \operatorname{sh}^2 \xi_0}.$$

Отысканием этих постоянных и постоянных, найденных согласно (с), завершается определение комплексных потенциалов. Когда действует только внутреннее давление p_1 ($p_0 = 0$), окружное напряжение на краю отверстия оказывается равным

$$\begin{aligned} (\sigma_{\eta})_{\xi - \xi_1} = &- p_1 + 2p_1 (\operatorname{sh}^2 \xi_1 + \operatorname{sh}^2 \xi_0)^{-1} (\operatorname{ch} \xi_1 - \cos \eta) \times \\ &\times [\operatorname{sh} \xi_1 \operatorname{cth} (\xi_1 - \xi_0) + \cos \eta]. \end{aligned}$$

Выражение для максимального значения 1) этого напряжения уже было дано на стр. 88.

Общий вид функции напряжений в биполярных координатах, выраженной в рядах, дал Джеффри²). Легко найти соответствующие этой функции комплексные потенциалы, которые включают

Исчерпывающее исследование этого максимального значения дали Кокер и Файлон в упомянутой выше (стр. 149) книге.
 ²) G. B. Jeffery, Trans. Roy. Soc. (London), ser A, 221, (1921).

рассмотренные здесь функции вместе с биполярным аналогом простых функций, приведенных в задачах на стр. 197, когда в задаче присутствуют дислокации и сосредоточенные силы. Такой способ применялся к задаче о бесконечной пластинке с сосредоточенной силой, приложенной в произвольной точке¹), к задаче о полубесконечной области с круговым отверстием при действии растягивающей нагрузки, параллельной прямолинейному краю или плоской границе²), а также при действии собственного веса³). Кроме того, таким способом рассматривались бесконечная пластинка с двумя отверстиями 4) или одним отверстием, образованным двумя пересекающимися окружностями 5).

Решения были даны также для круглого диска под действием сосредоточенной силы в любой точке (), для диска подвешенного в некоторой точке и находящегося под действием собственного веса?), для диска, вращающегося вокруг эксцентричной оси ⁸), как с использованием биполярных координат, так и без использования их⁹). Рассматривалось также влияние круглого отверстия в полубесконечной пластинке с сосредоточенной силой на прямолинейной границе 10).

Другие виды криволинейных координат. У равнение

$$z = e^{\zeta} + abe^{-\zeta} + ac^{3}e^{-3\zeta},$$

из которого следует

$$x = (e^{\xi} + abe^{-\xi})\cos\eta + ac^{3}e^{-3\xi}\cos 3\eta,$$

$$y = (e^{\xi} - abe^{-\xi})\sin\eta - ac^{3}e^{-3\xi}\sin 3\eta,$$

где a, b и c—постоянные, дает семейство кривых $\xi = \text{const}$, которое может включать различные овальные формы, в том числе квадрат с закругленными углами. Влияние отверстия такой формы в растянутой пластинке исследовал, используя действительную

1) Это решение дал Мелан (Е. Melan) (см. примечание на стр. 144). Комплексные потенциалы для случая сосредоточенной силы и момента даны на стр. 265 книги Грина и Зерна (А. Е. Green, W. Zerna, Theoretical Elasticity, Oxford University Press, Fair Lawn, New Jersey, 1954). ²) См. стр. 109. См. также статью: W. T. Koiter, Quart. Appl. Math.

^{15, 303 (1957).}

³) R. D. Mindlin, Proc. ASCE, 1939, стр. 619.
⁴) T. Pöschl, Z. Angew. Math. Mech. 1, 174 (1921); 2, 187 (1922). См. также: С. Weber, Z. Angew. Math. Mech. 2, 267 (1922); Е. Weinel, там же, 17, 276 (1937); Chih Bing Ling, J. Appl. Phys. 19, 77 (1948).

<sup>же, 17, 276 (1937); Спята Банд Lang, J. Appl. Phys. 19, 77 (1946).
§) Ling, там же, стр. 405.
6) R. D. Mindlin, J. Appl. Mech. 4, A-115 (1937).
7) R. D. Mindlin, J. Appl. Phys. 9, 714 (1938).
8) R. D. Mindlin, Phil. Mag., ser. 7, 26, 713 (1938).
9) B. Sen, Bull. Calcutta Math. Soc. 36, 58, 83 (1944).
¹⁰) A. Barjansky, Quart. Appl. Math. 2, 16 (1944). См. также R. M. Evan-Ivanowski, там же, 19, 359 (1962).</sup>

функцию напряжений, Гринспэн¹). С помощью некоторого обобщения этих координат Грин²) получил решения для треуголь-ного отверстия с закругленными углами; использование некоторого другого преобразования координат позволило ему рассмотреть случай строго прямоугольного отверстия. В последнем случае заостренные углы приводили к бесконечным коэффициентам концентрации напряжений.

Криволинейные координаты

 $z = \zeta + ia_{2}e^{i\zeta} + ia_{2}e^{i2\zeta} + \ldots + ia_{n}e^{in\zeta},$

где a_1, a_2, \ldots, a_n — действительные постоянные, были применены Вебером к задаче о полубесконечной пластинке с зубчатой границей ³), образованной рядом расположенных на равных расстояниях полукруглых вырезов. Когда расстояния между центрами

ниях полукруглых вырезов. Когда расстояния между центрами вырезов вдвое превышают диаметр выреза, коэффициент концен-трации при растяжении оказался равным 2,13. Значение этого коэффициента для одного выреза составляет 3,07 (см. стр. 116). Произвольные формы. Кикукава разработал и применил метод решения задач для отверстий и закруглений заданной произвольной формы⁴). По этому методу последовательные улуч-шения начального конформного отображения производятся до тех пор, пока не будет достигнуто адекватное приближение к заданной форме области. Подробные результаты получены для задач о концентрации напряжений в растягиваемой пластинке со следующими возмущающими факторами: 1) отверстие ромбовидной формы с круглыми закруглениями по углам, 2) двойной вырез в полосе, причем каждый из вырезов имеет две параллельные прямолинейные стороны, соединенные полуокружностью, что придает вырезу форму буквы U, 3) закругленная в виде четверти окружности галтель в месте перехода пластинки от конечной ширины до ширины бесконечной. Результаты для случая 2) очень близки к результатам Нейбера для двойного гиперболического выреза (см. § 64).

§ 67. Определение комплексных потенциалов по заданным граничным условиям. Методы Н. И. Мусхелишвили

В предыдущих параграфах был решен ряд задач с помощью некоторого разумного выбора комплексных потенциалов относительно простой формы, наделенных соответствующими свойствами. Однако существуют более мощные и общие методы отыскания

¹⁾ М. Greenspan, Quart. Appl. Math. 2, 60 (1944). См. также V. Morkovin, там же, 3, 350 (1945).

 ²) A. E. Green, Proc. Roy. Soc. (London), ser. A, 184, 231 (1945).
 ³) C. Weber, Z. Angew. Math. Mech. 22, 29 (1942).

⁴⁾ Краткое описание этого метода со ссылками на литературу дается в книге: Гудьер и Ходж. Упругость и пластичность, ИЛ, 1961.

потенциалов непосредственно из заданных граничных условий ¹), с помощью дальнейшего использования теории функций комплексного переменного.

В § 59 мы обнаружили, что компоненты усилия F_x , F_y , передаваемого по дуге AB, проведенной в материале, даются равенством (90)

$$F_{x} + iF_{y} = -i \left[\psi(z) + z\overline{\psi}'(\overline{z}) + \overline{\chi}'(\overline{z}) \right]_{A}^{B}.$$

$$(90')$$

Дуга AB может составлять часть замкнутой границы, например, границы отверстия, показанного на рис. 121. Тогда, если двигаться от точки A к точке B так, чтобы материал оставался слева, действующие на него силы будут равны — F_x и — F_y . Примем теперь точку A за фиксиро-

него силы будут равны — F_x и — F_y . Примем теперь точку A за фиксированную точку на границе отверстия, а B за типичную точку на L. Считая, что нагрузка на границе отверстия задана, находим силы F_x , F_y как функции s (рис. 121) в виде

$$i(F_x + iF_y) = f_1(s) + if_2(s),$$
 (a)

Рис. 121.

(где $f_1(s)$ и $f_2(s)$ — действительные функции. В уравнении (90') значение величины в скобках в левой части для фиксиро-

ванной точки A является некоторой постоянной C. Обозначая через z координату подвижной точки B, можно выразить граничные условия на краю отверстия в форме

$$\Psi(z) + z\overline{\Psi}'(\overline{z}) + \overline{\chi}'(\overline{z}) = f_1(s) + if_2(s)$$
 Ha L. (99)

Для определения из этого уравнения двух комплексных потенциалов удобно заменить комплексную переменную *z* для любой точки в физической области новой комплексной переменной ζ, связанной зависимостью

$$z = \omega(\zeta), \tag{100}$$

где $\omega(\zeta)$ — подобранная соответствующим образом функция ζ . Такое соотношение использовалось ранее [уравнение (ж), (стр. 193)] для определения вида криволинейных координат. Теперь удобно принять иную, хотя и близкую по смыслу, геометрическую интерпретацию этой функции как конформного отображения.

Точка P', определяемая комплексной координатой $\zeta = \xi + i\eta$ в плоскости ζ (рис. 122, δ) соответствует точке P (или *отоб ражается* в точку P) на плоскости z (рис. 122, a), где z определяется формулой $z = \omega$ (ζ). В общем случае гладкая кривая P'Q' отображается в другую гладкую кривую PQ. Для задач теории упругости,

¹⁾ Н. И. Мусхелиш вили, Некоторые основные задачи математической теории упругости. См. примечание 1 на стр. 205.

\$ 671 ОПРЕДЕЛЕНИЕ КОМПЛЕКСНЫХ ПОТЕНЦИАЛОВ

в которых рассматривается одно некруговое отверстие в бесконечв которых рассматривается одно некруговое отверстие в бесконеч-ной области, функция, осуществляющая конформное отображение, будет выбираться таким образом, чтобы единичная окружность $\rho = 1$ на плоскости ζ отображалась на кривую *L*. При этом вместо прямоугольных координат ξ , η удобно использовать полярные координаты ρ , θ . Функция $\omega(\zeta)$, кроме того, будет выбираться таким образом, чтобы любая точка *P*' (внутри окружности или на ней) отображалась только в *одну* точку *P*. Эта функция

Рис. 122.

должна быть аналитической в каждой точке P', которая отобра-жается в «материальную» точку P. В качестве такой функции можно взять разложение в ряд Лорана

$$\omega(\zeta) = R\zeta + \frac{e_1}{\zeta} + \frac{e_2}{\zeta^2} + \dots,$$
 (6)

где R, e_1 , e_2 и т. д. — постоянные. Тогда любая функция от z, скажем, $\psi(z)$ или $\chi'(z)$, будет также функцией от ζ , получаемой заменой z на $\omega(\zeta)$.

Отсюла

$$\psi(z) = \psi[\omega(\zeta)], \quad \chi'(z) = \chi'[\omega(\zeta)]. \tag{B}$$

Переходя к функциям от ζ , мы несколько изменим обозначения, используя символы φ и ψ в другом смысле, а именно: функция $\psi[\omega(\zeta)]$ в формулах (в) будет записываться в виде

$$\varphi(\zeta),$$
 (r)

а функция $\chi' [\omega(\zeta)]$ в формулах (в) в виде

$$ψ$$
 (ζ). (д)

Если переписать граничное условие (99) в этих новых обозна-чениях, то первый член в левой части станет равным просто $\varphi(\zeta)$. Третий член станет равным $\overline{\psi}(\xi)$ и получается с помощью замены каждого символа *і* в выражении ψ (ζ) на — *і*. Во втором члене в левой

ДВУМЕРНЫЕ ЗАДАЧИ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ [ГЛ. 6

части (99) нужно заменить z на $\omega(\zeta)$. Прежде чем заменить $\overline{\psi}'(\overline{z})$, следует учесть, что

$$\psi'(z) = \frac{d}{dz}\psi(z) = \frac{d}{d\zeta}\psi[\omega(\zeta)]\frac{d\zeta}{dz} = \frac{d}{d\zeta}\phi(\zeta)\frac{d\zeta}{dz} = \phi'(\zeta)\frac{d\zeta}{dz} \qquad (e)$$

И

$$\frac{d\zeta}{dz} = \frac{1}{\frac{dz}{d\zeta}} = \frac{1}{\omega'(\zeta)}.$$
 (ж)

В соответствии с этим второй член в (99) заменится выражением

$$\omega\left(\zeta\right)\left[\overline{\phi}\left(\overline{\zeta}\right)\right]\frac{1}{\overline{\omega'}\left(\overline{\zeta}\right)}.$$
(II)

В правой части выражения (99) мы имеем комплексную функцию положения точки на кривой L. Соответствующая точка на единичной окружности $\rho = 1$ может быть определена координатой θ или $e^{i\theta}$. Полагая

$$\sigma = e^{i\theta}, \quad \overline{\sigma} = e^{-i\theta},$$
 (K)

мы замечаем, что σ есть в действительности значение ζ для характерной точки на единичной окружности. Таким образом, правую часть уравнения (99) можно выразить как функцию от σ и записать

$$f_1(s) + if_2(s) = f(\sigma).$$
 (л)

Постоянную C в выражении (99) можно исключить с помощью простого добавления соответствующей постоянной к ψ (или к $\chi'(z)$), причем такое изменение не повлияет на распределение напряжений. Функция $f(\sigma)$ соответствует нагрузке, приложенной между точками A и B, которая, согласно уравнению (а), задается в виде $-F_y + iF_x$.

После этого граничное условие (99) принимает вид

$$\varphi(\sigma) + \frac{\omega(\sigma)}{\bar{\omega}'(\bar{\sigma})} \bar{\varphi}'(\bar{\sigma}) + \bar{\varphi}(\bar{\sigma}) = f(\sigma).$$
(101)

Это условие и служит основным в методах Н. И. Мусхелишвили. Измененные обозначения совпадают с теми, которые использованы в книге, указанной в сноске на стр. 205. Здесь излагаются лишь начала методов, описанных в этой книге.

§ 68. Формулы для комплексных потенциалов¹)

Нашей целью сейчас является отыскание потенциалов $\varphi(\zeta)$ и $\psi(\zeta)$, удовлетворяющих граничным условиям (101) для любой внешней точки ζ единичного круга.

216

^{1) §§ 68} и 69 предполагают у читателя некоторые знания об интегрировании комплексных функций, отсутствующие в кратком обзоре, приведенном в §§ 54 и 55.
Здесь координата ζ выбирается однажды и затем фиксируется. Далее уравнение (101) умножается на $1/(\sigma - \zeta)$. Каждый член после этого остается некоторой функцией от σ и может быть проинтегрирован по единичной окружности, обозначаемой далее через γ . Отсюда

$$\int_{\gamma} \frac{\varphi(\sigma) \, d\sigma}{\sigma - \zeta} + \int_{\gamma} \frac{\omega(\sigma)}{\overline{\omega'(\sigma)}} \, \overline{\varphi'}(\overline{\sigma}) \, \frac{d\sigma}{\sigma - \zeta} + \int_{\gamma} \frac{\overline{\psi}(\overline{\sigma}) \, d\sigma}{\sigma - \zeta} = \int_{\gamma} \frac{f(\sigma) \, d\sigma}{\sigma - \zeta} \,. \tag{102}$$

Значение этого шага состоит в том, что он устанавливает связь с интегралами такого рода, используемыми в хорошо известной интегральной теореме Коши—Гурса и интегральной формуле Коши¹). Согласно этим теоремам (приводимым ниже в § 70) первый интеграл в (102) определяется следующим образом:

$$\int_{\gamma} \frac{\phi(\sigma) \, d\sigma}{\sigma - \zeta} = -2\pi i \phi(\zeta), \qquad (a)$$

если функция $\varphi(\zeta)$ является аналитической в каждой точке вне γ , включая точки на бесконечности. Значения $\varphi(\sigma)$ на γ должны сохранять непрерывность при переходе к значениям $\varphi(\zeta)$ вне единичного круга. Третий интеграл в (102), как можно показать, обращается в нуль, если функция $\psi(\zeta)$ является аналитической в любой точке ζ вне γ , включая точки на бесконечности. Кроме того, функция $\psi(\sigma)$ должна быть непрерывной при переходе к $\psi(\zeta)$. Второй интеграл в (102) можно вычислить, если $\omega(\zeta)$ является рациональной функцией, т. е. отношением двух полиномов. Для частного случая, который рассматривается для иллюстрации в § 71, этот интеграл равен нулю, и уравнение (102) дает выражение для $\varphi(\zeta)$ в виде

$$\varphi(\zeta) = -\frac{1}{2\pi i} \int_{\gamma} \frac{f(\sigma) \, d\sigma}{\sigma - \zeta} \,. \tag{6}$$

Уравнение (102) также ведет к подобной формуле для $\psi(\zeta)$, как мы увидим позже (§ 72).

Требование, чтобы функции $\varphi(\zeta)$ и $\psi(\zeta)$ были аналитическими вне γ , накладывает некоторые ограничения на типы задач, которые можно решать этим методом. Сейчас мы рассмотрим эти ограничения.

§ 68]

¹⁾ См., например, R. V. Churchill, Complex Variables and Applications, изд. 2 гл. 5, McGraw-Hill, New York, 1960. [См. также А. И. Маркушевич, Краткий курс теории аналитических функций, Физматгиз, 1961 (Прим. перев.)].

§ 69. Свойства напряжений и деформаций, отвечающих комплексным потенциалам, аналитическим в области материала, расположенной вокруг отверстия

Предположим, что отображающая функция $\omega(\zeta)$ является всюду аналитической в области, занятой материалом. Следовательно, если потенциалы являются аналитическими функциями от ζ , то они останутся аналитическими, будучи выраженными как функции от z в любой точке рассматриваемой области. Отсюда следует, что аналитическими функциями являются и все их производные. Из свойства аналитичности вытекает непрерывность этих функций. В частности, они приобретают свое первоначальное значение при обходе любого замкнутого контура, окружающего отверстие и лежащего внутри материала. Отсюда также следует, что их сопряженные функции, а также действительные и комплексные части порознь непрерывны¹).

Зная это, мы можем с использованием уравнений (86)—(91) установить следующие характеристические свойства напряженных состояний, представимых с помощью аналитических потенциалов.

1. Согласно уравнениям (87) и (88) компоненты напряжений являются непрерывными²).

Согласно уравнению (86) компоненты перемещений являются непрерывными. Таким образом, напряженное состояние, даваемое решением, не может содержать дислокаций.
 Согласно уравнению (90) полное усилие, действующее на

3. Согласно уравнению (90) полное усилие, действующее на любой контур, равно нулю. Следовательно, должна быть равна нулю и результирующая усилий, приложенных к границе отверстия.

4. Согласно уравнению (91) результирующий момент усилий, приложенных к границе отверстия, должен быть равным нулю.

Кроме того, если начало координат лежит внутри отверстия, то всякая функция F(z), аналитическая в области материала во всех точках, включая точки на бесконечности, допускает разложение в ряд Лорана

$$F(z) = c_0 + \frac{c_1}{z} + \frac{c_2}{z^2} + \dots,$$

где c_0 , c_1 и т. д. — постоянные. Рассматриваемые потенциалы $\psi(z)$ и $\chi(z)$, таким образом, также допускают такое разложение. Тогда из уравнений (87) и (88) следует, что

¹⁾ Для доказательства этих свойств см:, например, упомянутую выше книгу Черчилля (Churchill) гл. 2. [См. также упомянутую выше книгу А. И. Маркушевича гл. 2. (Прим. ред.)]

²⁾ Примеры потенциалов, представляющих разрывные напряженные состояния, привели Гудьер и Уилхойт (J. N. Goodier, J. C. Wilhoit, Proc. 4th Ann. Midwest Conf. Solid Mech., Univ. Texas, 1959, стр. 152—170).

5. Компоненты напряжений на бесконечности обращаются в нуль. Таким образом, на бесконечности нет никакой нагрузки, так как, согласно свойствам (3) и (4), результирующие сила или момент для бесконечного контура будут равны нулю¹).

Из этих свойств ясно, что напряжения и деформации, представленные аналитическими потенциалами, должны отвечать самоуравновешенному нагружению на границе отверстия.

Это ограничение не является чрезмерно сильным. Например, влияние ненагруженного отверстия в бесконечной области с нагружением границы на бесконечности (см., например, задачу, изображенную на рис. 118) можно найти, если сначала отыскать напряжения при отсутствии отверстия. Это вызывает некоторое нагружение на кривой, отвечающей отверстию, однако в силу того, что материал, заполняющий отверстие, находится в равновесии, это нагружение является самоуравновешенным. Далее нам нужно определить напряжения вне отверстия, вызванные равным по величине и противоположным по знаку нагружением границы отверстия и обращающиеся в нуль на бесконечности. Эта задача отвечает требованиям 1—5 для аналитических потенциалов.

Если требуется исследовать нагружение на границе отверстия, которое имеет ненулевые результирующие усилие и момент, можно исходить из решения для сосредоточенной силы, представленного в части (ж) задачи 2 на стр. 197, придавая силе требуемое результирующее значение. Сюда можно добавить решение для момента, представленное в части (а) той же задачи, считая b равным бесконечности и а—очень малым. Эти решения отвечают нагрузке, действующей на границе отверстия, которая обладает заданными результирующей силой и результирующим моментом, но распределена иначе, чем требуется. Заданное распределение нагрузки достигается введением некоторого доступного определению нагружения на границе отверстия, причем задача о таком нагружении отвечает требованиям, вытекающим из свойств аналитических потенциалов.

Если требуется получить дислокационное решение, то можно исходить из решений, представленных в частях (д) и (е) той же задачи, принимая заданные величины дислокационного переноса или вращения, и полученная таким образом задача будет удовлетворять требованиям, вытекающим из свойств аналитических потенциалов.

Потенциалы для каждой отдельной части задачи 2 на стр. 197, разумеется, не будут оба аналитическими всюду в области

¹⁾ Для бесконечной граничной кривой обращение в нуль компонент напряжений не обязательно влечет за собой равенство нулю результирующих.

материала, поскольку ln z не является непрерывной функцией для любого замкнутого контура, окружающего начало координат, а также потому, что функции z и z² не являются аналитическими всюду в области, включающей бесконечность.

§ 70. Теоремы для граничных интегралов

При установлении теорем, упомянутых в §68, начнем с уравнения (а) стр. 217. Если в области вне γ функция $\phi(\zeta)$ является аналитической всюду, включая бесконечность, то ее можно разложить в ряд Лорана

$$\varphi(\zeta) = \frac{a_1}{\zeta} + \frac{a_2}{\zeta^2} + \dots \qquad (a)$$

Постоянная a_0 не включается, поскольку она не влияет на напряжения¹).

На рис. 123 вычерчена окружность большого раднуса Γ , концентрическая с γ . Поскольку функция $\varphi(\zeta)$ является аналитической в области, ограниченной контуром со стрелками, можно применить интегральную формулу Коши, получаем

$$2\pi i \varphi(\zeta) = \int_{\Gamma} \frac{\varphi(t) dt}{t - \zeta} - \int_{\gamma} \frac{\varphi(\sigma) d\sigma}{\sigma - \zeta}, \quad (6)$$

где ζ —любая точка в этой области; обозначение t используется для точек, принадлежащих окружности Γ , а σ —как и раньше, для точек на окружности γ . Но первый интеграл по контуру Γ равен нулю. Чтобы показать это, заметим сначала, что разложение (а) сохраняет силу на Γ , если заменить ζ на t. Отсюда

$$t \varphi(t) = a_1 + \frac{a_2}{t} + \dots$$
, (B)

и так как этот ряд сходится, то функция $t\varphi(t)$ является ограниченной. Мы можем ввести положительную постоянную C такую, что

$$|t||\varphi(t)| < C, \tag{r}$$

где |t| обозначает модуль (абсолютное значение) t, т. е. радиус R на рис. 123. Постоянную C можно выбрать таким образом, чтобы неравенство (г) сохраняло силу для всех значений R, больших

¹⁾ Когда позже этот потенциал будет использоваться для определения перемещений, мы сможем добавлять члены, отвечающие движению абсолютно твердого тела.

некоторого значения R_0 . Например, R_0 может соответствовать наибольшему значению $|t||\varphi(t)|$.

Записывая

$$I_1 = \int_{\Gamma} \frac{\varphi(t) dt}{t - \zeta}, \quad |I_1| \leq \int_{\Gamma} \frac{|\varphi(t)| |dt|}{|t - \zeta|}, \quad (\pi)$$

заменим каждую из величин под знаком интеграла в (д) таким образом, чтобы величина интеграла увеличилась. Сначала заменим $|\varphi(t)|$ на C/|t|, что в силу (г) означает увеличение этой величины. Для замены |dt| записываем

$$t = \operatorname{Re}^{i\theta}, \quad dt = i\operatorname{Re}^{i\theta}d\theta, \quad |dt| = R\,d\theta,$$
 (e)

что не меняет величины этого выражения. При замене |t-ζ| в знаменателе мы не уменьшим значения интеграла, приняв взамен величину $R-\rho$. Из треугольника, представленного на рис. 123. видно. что

$$\rho + |t - \zeta| \ge R, \ R - \rho \le |t - \zeta|. \tag{(x)}$$

Отсюда, возвращаясь к (д), получаем

$$|I_1| < \int_{0}^{2\pi} \frac{C}{R} \frac{1}{R-\rho} R \, d\theta = \frac{2\pi C}{R-\rho} \,. \tag{H}$$

Мы можем неограниченно увеличивать R, не меняя C, и при этом ρ будет, разумеется, оставаться фиксированным благодаря выбору определенного значения ζ . Предельное значение $|I_1|$ при этом, очевидно, будет равно нулю. Однако, увеличивая R, мы деформируем Γ таким способом, который не может изменить значения интегралов в уравнении (д). Следовательно, $|I_1|$ должно обращаться в нуль, если R—конечно. Теперь первый интеграл в формуле (б) можно опустить. При этом останется равенство

$$-2\pi i\varphi\left(\zeta\right) = \int_{\gamma} \frac{\varphi\left(\sigma\right) \, d\sigma}{\sigma - \zeta} \,, \tag{103}$$

которое совпадает с равенством (а), § 68, что и даст требуемый результат¹). Покажем далее, что третий интеграл в соотношении (102) обращается в нуль, т. е. что

$$\int_{\gamma} \frac{\overline{\psi}(\overline{\sigma}) \, d\sigma}{\sigma - \zeta} = 0. \tag{104}$$

Поскольку $\psi(\zeta)$ должна быть аналитической повсюду вне γ , включая бесконечность, она допускает разложение в ряд Лорана

$$\Psi(\zeta) = \frac{b_1}{\zeta} + \frac{b_2}{\zeta^2} + \dots, \qquad (K)$$

¹) По терминологии Н. И. Мусхелишвили, это-интегральная формула Коши для внешней области.

где снова опущен постоянный член, не влияющий на напряженное состояние. При доказательстве нам придется рассматривать ζ не только для точек вне окружности γ, но и внутри нее. Для ясности введем обозначения:

 ζ_0 для точек вне γ , ζ_1 для точек внутри γ .

Таким образом, в (104) и (к) мы запишем ζ_0 вместо ζ. В (к) мы можем величины справа и слева заменить сопряженными величинами. Отсюда

$$\bar{\psi}(\bar{\zeta}_0) = \frac{\bar{b}_1}{\bar{\zeta}_0} + \frac{\bar{b}_2}{\bar{\zeta}_0^2} + \dots$$
(л)

Этот ряд, разумеется, сходится при любых ζ₀. Однако при этом

$$\zeta_0 = \rho_0 e^{i\theta}, \quad \overline{\zeta_0} = \rho_0 e^{-i\theta}, \quad \frac{1}{\overline{\zeta_0}} = \frac{1}{\rho_0} e^{i\theta}, \quad (M)$$

где, очевидно, $\rho_0 > 1$. Следовательно, величина $1/\rho_0$ изображается на плоскости ζ точкой, лежащей внутри γ . Таким образом, можно представить любую внутреннюю точку ζ_1 . Согласно уравнению (к) это означает, что мы имеем некоторую функцию $F(\zeta_1)$, равную $\psi^-(\overline{\zeta_0})$ и представляемую сходящимся рядом

$$F(\zeta_1) = \bar{b}_1 \zeta_1 + \bar{b}_2 \zeta_1^2 + \dots$$
(H)

Очевидно, функция $F(\zeta_1)$ является аналитической внутри γ . Если обозначить теперь через ζ координату любой точки вне γ , не совпадающую с ζ_1 , то функция

$$\frac{F\left(\zeta_{1}\right)}{\left(\zeta_{1}-\zeta\right)}$$

также является аналитической внутри у. Следовательно, согласно интегральной теореме Коши, ее интеграл по любому контуру внутри у равен нулю. Этот контур можно совместить с у, откуда

$$\int_{\gamma} \frac{F(\sigma) \, d\sigma}{\sigma - \zeta} = 0. \tag{0}$$

Однако поскольку $\sigma = e^{t_0}$, то $\sigma = 1/\overline{\sigma}$. В силу этого из (н) получаем

$$F(\sigma) = \overline{b}_1 \sigma + \overline{b}_2 \sigma^2 + \ldots = \frac{\overline{b}_1}{\overline{\sigma}} + \frac{\overline{b}_2}{\overline{\sigma}^2} + \ldots$$

Когда $\zeta_1 \longrightarrow \sigma$, то $\zeta_0 \longrightarrow \sigma$, и тогда ряд в (л) совпадает с рядом в (п). Отсюда

$$F(\sigma) = \overline{\psi}(\overline{\sigma}).$$

Это означает, что уравнение (о) приводит к уравнению (104), что и требовалось доказать.

Мы рассматривали здесь первый и третий интегралы в уравнении (102) из § 68. Второй интеграл будет рассмотрен в § 71 для отображающей функции ω(ζ) частного вида.

§ 71. Отображающая функция ω(ζ) для эллиптического отверстия. Второй граничный интеграл

Если принять

$$z = \omega(\zeta)$$
 при $\omega(\zeta) = R\left(\zeta + \frac{m}{\zeta}\right)$, (105)

где *R*—любая положительная, а *m*—положительная постоянная, меньшая единицы, то получаем

$$x = R\left(\rho + \frac{m}{\rho}\right)\cos\theta, \quad y = R\left(\rho - \frac{m}{\rho}\right)\sin\theta.$$
 (a)

Единичная окружность у на плоскости ζотображается на эллипс на плоскости z с полуосями

$$a = R(1+m), \quad b = R(1-m),$$
 (6)

а внешняя концентрическая окружность — на внешний софокусный эллипс.

Для второго интеграла в уравнении (102) находим

$$\omega'(\zeta) = R\left(1 - \frac{m}{\zeta^2}\right), \quad \overline{\omega'}(\overline{\sigma}) = R\left(1 - \frac{m}{\overline{\sigma^2}}\right). \tag{B}$$

Поскольку $\sigma = 1/\sigma$, отсюда имеем

$$\frac{\omega(\sigma)}{\bar{\omega}'(\bar{\sigma})} = \frac{1}{\sigma} \frac{\sigma^2 + m}{1 - m\sigma^2}.$$
 (r)

Следовательно, второй интеграл принимает вид

$$I_{2} = \int_{\gamma} \frac{1}{\sigma} \frac{\sigma^{2} + m}{1 + m\sigma^{2}} \bar{\varphi}'(\bar{\sigma}) \frac{d\sigma}{\sigma - \zeta_{0}}, \qquad (A)$$

где мы снова пишем ζ_0 вместо ζ , чтобы подчеркнуть тот факт, что ζ представляет здесь некоторую произвольно выбранную точку вне у. Покажем теперь, что, согласно интегральной теореме Коши, интеграл І, обращается в нуль. Рассмотрим возможность того, что все подынтегральное выражение равно $f(\sigma)$, т. е. совпадает на γ со значением аналитической функции f (ζ,), где ζ₁ — любая точка внутри γ. Свойство непрерывности следует из условия

$$f(\sigma) = \lim_{\zeta_1 \to \sigma} f(\zeta_1).$$

Отсюда, учитывая (д), можно получить

$$f(\zeta_1) = \frac{1}{\zeta_1} \frac{\zeta_1^2 + m}{1 - m\zeta_1^2} \,\overline{\varphi}'\left(\frac{1}{\zeta_1}\right) \frac{1}{\zeta_1 - \zeta_0} \,. \tag{e}$$

Члены 1— $m\zeta_1^2$ и ζ_1 — ζ_0 в знаменателе не вызывают трудностей: они не равны нулю, так как m < 1 и ζ_0 берется вне γ . Учитывая разложение (a) из § 70, получаем

$$\frac{1}{\zeta_1}\,\overline{\varphi}'\left(\frac{1}{\zeta_1}\right) = -\,\overline{a}_1\varepsilon_1 - 2\overline{a}_2\zeta_1^2 - \dots$$

Это выражение является аналитическим, так как продифференцированный ряд для $\varphi'(\zeta)$, полученный из (a) § 70, является аналитической функцией, если ζ находится вне γ , то есть если $1/\zeta$ находится внутри γ . Очевидно, функция $f(\zeta_1)$ является аналитической по γ . Следовательно, интеграл от нее по контуру γ , то есть I_2 в (д), согласно теореме Коши, равен нулю.

Этот результат, вместе с результатами в § 70, доказывает формулу (б) из § 68 для задачи об эллиптическом отверстии.

§ 72. Эллиптическое отверстие. Формула для $\psi(\zeta)$

Исходное граничное условие (101), можно привести к сопряженной форме

$$\overline{\varphi}(\overline{\sigma}) + \frac{\overline{\omega}(\overline{\sigma})}{\omega'(\sigma)} \varphi'(\sigma) + \psi(\sigma) = \overline{f}(\overline{\sigma}), \qquad (a)$$

а затем к форме

$$\int_{\gamma} \frac{\bar{\varphi}(\bar{\sigma}) \, d\sigma}{\sigma - \zeta} + \int_{\gamma} \sigma \, \frac{1 + m\sigma^2}{\sigma^2 - m} \, \varphi'(\sigma) \frac{d\sigma}{\sigma - \zeta} + \int_{\gamma} \frac{\psi(\sigma) \, d\sigma}{\sigma - \zeta} = \int_{\gamma} \frac{\bar{f}(\bar{\sigma}) \, d\sigma}{\sigma - \zeta} \,, \quad (106)$$

где ζ обозначает точку вне контура ү.

Согласно уравнению (л) § 70 первый интеграл обращается в нуль, если заменить ф на функцию ф, обладающей всеми свойствами, которые требовались от ф в § 70. Заметим, что это обстоятельство относится к отверстиям не только эллиптической формы. Для второго интеграла, применяя теорему (103), т.е. интегральную формулу Коши для внешней области, получаем

$$\frac{1}{2\pi i} \int_{\gamma} \left[\sigma \frac{1+m\sigma^2}{\sigma^2-m} \varphi'(\sigma) \right] \frac{d\sigma}{\sigma-\zeta} = -\zeta \frac{1+m\zeta^2}{\zeta^2-m} \varphi'(\zeta).$$
(6)

В формуле (103) мы заменяем — $\varphi(\zeta)$ функцией, стоящей в правой части (б), с учетом того, что эта функция является аналитической всюду вне γ , включая точки на бесконечности. Третий интеграл в (106), в силу той же теоремы, принимает вид

$$\int_{\gamma} \frac{\psi(\sigma) d\sigma}{\sigma - \zeta} = -2\pi \psi(\zeta).$$
 (B)

Таким образом, формула (106) приводится к форме

$$\Psi(\zeta) = -\frac{1}{2\pi i} \int_{\gamma} \frac{\tilde{f}(\bar{\sigma}) d\sigma}{\sigma - \zeta} - \zeta \frac{1 + m\zeta^2}{\zeta^2 - m} \varphi'(\zeta).$$
(r)

Выписывая снова формулу (б) § 68

$$\varphi(\zeta) = -\frac{1}{2\pi i} \int_{\Sigma} \frac{f(\sigma) d\sigma}{\sigma - \zeta}, \qquad (A)$$

225

получаем в виде (г) и (д) формулы для функций φ(ζ) и ψ(ζ), выраженных через заданные самоуравновешенные нагрузки на границе отверстия. Разумеется, формула (г) справедлива только для эллиптического отверстия¹), тогда как формула (д) не связана с этим ограничением.

§ 73. Эллиптическое отверстие. Частные задачи

На рис. 124 показано эллиптическое отверстие, свободное от нагрузки, причем напряжения вызываются приложением равномерного растягивающего усилия S на бесконечности под углом β

к оси х. Эта задача была решена в § 63 с помощью прямого выбора комплексных потенциалов, обладающих соответствующими свойствами. Сейчас мы выведем эти потенциалы, пользуясь методом Н. И. Мусхелишвили.

В соответствии с § 69 мы будем искать аналитические потенциалы, которые следует нало-

жить на поле простого растяжения, действующего всюду в области при отсутствии отверстия. Сила, передаваемая через дугу *АВ* (рис. 124). в соответствии с § 59 составляет

$$F_x^0 + iF_y^0 = S(y'_B - y'_A)e^{i\beta}.$$
 (a)

При z' = x' + iy' в общем случае получаем

$$z' = e^{-i\beta}z \tag{6}$$

и для эллипса

$$z' = e^{-i\beta}R\left(\sigma + \frac{m}{\sigma}\right). \tag{B}$$

Отождествляя σ с *B*, можно переписать соотношение (a) в виде

$$F_x^0 + iF_y^0 = SR \frac{1}{2i} \left[\sigma + \frac{m}{\sigma} - 1 - m - e^{2i\beta} \left(\frac{1}{\sigma} + m\sigma - 1 - m \right) \right].$$
(r)

Аналитические потенциалы дают возможность снять с контура эллипса эти усилия. Иначе говоря, они должны отвечать функции

¹) Обобщение этой формулы на любую рациональную отображающую функцию см. в книге Н. И. Мусхелишвили, упомянутой в примечании 1 на стр. 205.

$$\begin{split} f(\sigma), & \text{определяемой формулой} \\ f(\sigma) &= i \left(F_x + iF_y \right) = -i \left(F_x^0 + iF_y^0 \right) = \\ &= -\frac{1}{2} SR \left[\left(1 - me^{2i\beta} \right) \sigma + \left(m - e^{2i\beta} \right) \frac{1}{\sigma} - \left(1 + m \right) \left(1 - e^{2i\beta} \right) \right]. \end{split}$$
(д)

Подстановка ее в уравнение (д) § 72 для определения φ(ζ), приводит к трем легко вычисляемым интегралам. Получаем

$$\int_{\mathbf{y}} \frac{\sigma \, d\sigma}{\sigma - \zeta} = 0, \quad \int_{\mathbf{y}} \frac{d\sigma}{\sigma - \zeta} = 0, \quad \int_{\mathbf{y}} \frac{1}{\sigma} \frac{d\sigma}{\sigma - \zeta} = -2\pi i \frac{1}{\zeta}. \tag{107}$$

Первые два результата следуют сразу же из интегральной тео-

Рис. 125.

ремы Коши для единичного круга, когда ζобозначает точку вне его. Выражение для третьего интеграла следует из теоремы Коши для внешней области или из теоремы о вычетах для внутренней области. Отсюда

$$\varphi(\zeta) = -\frac{1}{2\pi i} \int_{\gamma} \frac{f(\sigma) \, d\sigma}{\sigma - \zeta} = -\frac{1}{2} SR \, (m - e^{2i\beta}) \frac{1}{\zeta} \,. \quad (e)$$

Чтобы определить ψ(ζ), используем формулу (г), § 72. Согласно формуле (д) имеем

$$\overline{f}(\overline{\sigma}) = -\frac{1}{2} SR \left[(1 - me^{-2i\beta}) \frac{1}{\sigma} + (m - e^{-2i\beta}) \sigma - (1 + m) (1 - e^{-2i\beta}) \right]. \quad (\mathsf{x})$$

Чтобы вычислить интеграл, снова воспользуемся формулами (107). Отсюда

$$\psi(\zeta) = -\frac{1}{2} SR \left[(m - e^{2i\beta}) \frac{1 + m\zeta^2}{\zeta(\zeta^2 - m)} + (1 - me^{-2i\beta}) \frac{1}{\zeta} \right]. \quad (H)$$

Компоненты напряжения в системе координат x, y теперь можно найти из производных от $\varphi(\zeta)$ и $\psi(\zeta)$ по z. Криволинейные компоненты, отвечающие эллипсам на плоскости z, на которые отображаются окружности $\rho > 1$, а также ортогональные им гиперболы, на которые отображаются лучи $\theta \coloneqq$ const, можно получить по формулам типа (92) и (93) или (96) и (97). Перемещения определяются из уравнений (86) или (98).

В качестве второй иллюстративной задачи рассмотрим эллиптическое отверстие (рис. 125) с равномерно распределенным нормальным давлением *p* на участках границы *GAC* и *DEF*; участки *CD* и *FG* остаются ненагруженными. Точки *C*, *G*, *D*, *F* имеют координаты z_1 , $\overline{z_1}$, $-\overline{z_1}$, $-z_1$, а соответствующие им точки на γ в плоскости ζ -это σ_1 , $\overline{\sigma_1}$, $-\sigma_1$.

226

Обозначая через *г* координату точки *В* на эллипсе внутри участка *GC*, имеем

$$F_x + iF_y = pi(z-a)$$
 для дуги GAC.

От точки С до D это усилие остается постоянным. Отсюда

$$F_x + iF_y = pi(z_1 - a)$$
 для дуги CD.

Таким образом, получаем

$$F_x + iF_y = pi(z_1 - a + z + \overline{z}_1)$$
для дуги DEF

И

$$F_x + iF_y = pi(\overline{z}_1 - a)$$
 для дуги FG.

Соответственно функция $f(\sigma) = i (F_x + iF_y)$ определяется формулами

$$f(\sigma) = \begin{cases} -p \left[R \left(\sigma + \frac{m}{\sigma} \right) - a \right] & \text{для дуги } GAC, \\ -p \left[R \left(\sigma_1 + \frac{m}{\sigma_1} \right) - a \right] & \text{для дуги } CD, \\ -p \left[R \left(\sigma_1 + \frac{m}{\sigma_1} \right) - a + R \left(\sigma + \frac{m}{\sigma} \right) + R \left(\frac{1}{\sigma_1} + m\sigma_1 \right) \right] \\ & \text{для дуги } DEF, \\ -p \left[R \left(\frac{1}{\sigma_1} + m\sigma_1 \right) - a \right] & \text{для дуги } FG. \end{cases}$$

Членом — a в каждой скобке можно пренебречь. Нагрузка определяется изменением функции $f(\sigma)$. Из формулы (д) § 72 получаем

$$2\pi i\varphi(\zeta) = pR\left\{\int_{\overline{\sigma}_{1}}^{\sigma_{1}} \left(\sigma + \frac{m}{\sigma}\right) \frac{d\sigma}{\sigma - \zeta} + \left(\sigma_{1} + \frac{m}{\sigma_{1}}\right) \int_{\sigma_{1}}^{\overline{\sigma}_{1}} \frac{d\sigma}{\sigma - \zeta} + \int_{-\overline{\sigma}_{1}}^{\sigma_{1}} \left[\sigma + \frac{m}{\sigma} + (1 + m)\left(\sigma_{1} + \frac{1}{\sigma_{1}}\right)\right] \frac{d\sigma}{\sigma - \zeta} + \left(\frac{1}{\sigma_{1}} + m\sigma_{1}\right) \int_{-\overline{\sigma}_{1}}^{\overline{\sigma}_{1}} \frac{d\sigma}{\sigma - \zeta}\right\}.$$
 (π)

Интегралы можно вычислить, беря неопределенные интегралы и подставляя пределы. Отсюда

$$\frac{2\pi i}{\rho R} \varphi(\zeta) = \zeta \ln \frac{\zeta^2 - \sigma_1^2}{\zeta^2 - \overline{\sigma_1}^2} - \frac{m}{\zeta} \left(4 \ln \sigma_1 - \ln \frac{\zeta^2 - \sigma_1^2}{\zeta^2 - \overline{\sigma_1}^2} \right) + \left(\sigma_1 + \frac{m}{\sigma_1} \right) \ln \frac{\zeta + \overline{\sigma_1}}{\zeta - \sigma_1} + (1 + m) \left(\sigma_1 + \frac{1}{\sigma_1} \right) \ln \frac{\zeta + \sigma_1}{\zeta + \overline{\sigma_1}} + \left(\frac{1}{\sigma_1} + m \sigma_1 \right) \ln \frac{\zeta - \overline{\sigma_1}}{\zeta + \sigma_1}.$$
(M)

Эту формулу можно упростить, приведя ее к виду

$$\frac{2\pi i}{pR} \varphi(\zeta) = -\frac{4m}{\zeta} \ln \sigma_1 + \left(\zeta + \frac{m}{\zeta}\right) \ln \frac{\zeta^2 - \sigma_1^2}{\zeta^2 - \overline{\sigma}_1^2} + \left(\sigma_1 + \frac{m}{\sigma_1}\right) \ln \frac{\zeta + \sigma_1}{\zeta - \sigma_1} + \left(\frac{1}{\sigma_1} + m\sigma_1\right) \ln \frac{\zeta - \overline{\sigma}_1}{\zeta + \overline{\sigma}_1}.$$
(H)

Функцию $\psi(\zeta)$ можно теперь найти из выражения (д) § 72, построив $\tilde{f}(\sigma)$ согласно формуле (к). Интегрирование производится так же, как и в (л), что в результате дает

$$\begin{split} \int_{\gamma} \frac{\overline{f}(\overline{\sigma}) d\sigma}{\sigma - \zeta} &= -pR \left[m\zeta \ln \frac{\zeta^2 - \sigma_1^2}{\zeta^2 - \overline{\sigma}_1^2} - \frac{1}{\zeta} \left(4 \ln \sigma_1 - \ln \frac{\zeta^2 - \sigma_1^2}{\zeta^2 - \overline{\sigma}_1^2} \right) + \right. \\ &+ \left(\frac{1}{\sigma_1} + m\sigma_1 \right) \ln \frac{\zeta + \overline{\sigma}_1}{\zeta - \sigma_1} + (1 + m) \left(\frac{1}{\sigma_1} + \sigma_1 \right) \ln \frac{\zeta + \sigma_1}{\zeta + \overline{\sigma}_1} + \left. + \left(\sigma_1 + \frac{m}{\sigma_1} \right) \ln \frac{\zeta - \overline{\sigma}_1}{\zeta + \sigma_1} \right]. \end{split}$$
(0)

Затем, после некоторых упрощений, получаем

$$\frac{2\pi i}{pR} \psi(\zeta) = -4 \ln \sigma_1 \left(1 + m^2\right) \frac{\zeta}{\zeta^2 - m} + \left(\sigma_1 + \frac{m}{\sigma_1}\right) \frac{\zeta - \overline{\sigma_1}}{\zeta + \overline{\sigma_1}} + \left(\frac{1}{\sigma_1} + m\sigma_1\right) \ln \frac{\zeta + \sigma_1}{\zeta - \sigma_1}.$$
 (II)

Имея окончательные формулы для двух комплексных потенциалов, определяемых уравнениями (н) и (п), выражения для перемещения и напряжения можно получить из общих формул (96)—(98).

ЗАДАЧИ

1. Проверить, что решение, представленное зависимостями (ж) и (к) из § 73, ведет к тем же результатам, что и решение, приведенное в § 63 для напряжения на концах большой и малой осей эллиптического отверстия.

2. Получить из решения, указанного в § 73 для задачи, соответствующей рис. 125, потенциалы $\varphi(\zeta)$ и $\psi(\zeta)$ для случая давления *p*, действующего во всех точках границы эллиптического отверстия. Проверить, что напряжения, определенные на нонцах большой и малой осей, согласуются с результатами, приведенными в § 62.

3. Рассмотрим пластинку с эллиптическим отверстием, показанную на рис. 124. Предположим, что на бесконечности действует система напряжений $\sigma_x = S_1$, $\sigma_y = S_2$, $\tau_{xy} = 0$ (вместо растяжения S под углом β , что показано на рис. 124). а) Найти выражения для напряжений у отверстия. б) Проверить этот результат разными способами, используя известные результаты для эллиптического и кругового отверстий. в) Показать, что если $S_2/S_1 = b/a$, то напряжение около отверстия остается одним и тем же по всей границе отверстия ¹). г) Показать, что если напряжение состояние на бесконечности представляет собой чистый сдвиг под углом 45° к осям эллипса, то наибольшее напряжение около отверстия действует по концам большой оси и соответствует коэффициенту концентрации напряжений 2[1+(a/b)].

228

¹⁾ A. J. Durelli, W. M. Murray, Proc. Soc. Exptl. Stress Anal. 1. № 1 (1943).

Глава 7

АНАЛИЗ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ В ПРОСТРАНСТВЕННОМ СЛУЧАЕ

§ 74. Введение

Предыдущие главы (исключая предварительное изложение основ теории упругости в главе 1) касались двумерных задач. Настоящая глава, так же как и последующая, посвящена дальнейшим общим вопросам, которые важны для решения рассматриваемых далее задач. В данной главе анализ напряжений полностью отделен от анализа деформаций и не вводятся никакие

зависимости между напряженидеформациями. И Эти реями зультаты приложимы к напряжениям, возникающим в любой среде, например (сплошной) в вязкой жидкости или в пластическом твердом теле, И то же самое справедливо в отношении деформаций.

Обратимся к общему случаю распределения напряжений в трех измерениях. Уже было показано (см. § 4), что напряжения, действующие на шести гранях кубического элемента, можно описать $\begin{array}{c} & & \\ x & & \\ y &$

шестью компонентами напряжения, а именно тремя нормальными напряжениями σ_x , σ_y , σ_z и тремя касательными напряжениями $\tau_{xy} = \tau_{yx}$, $\tau_{xz} = \tau_{zx}$, $\tau_{yz} = \tau_{zy}$. Если в некоторой точке эти компоненты напряжения известны, то из уравнений статики можно определить напряжения, действующие на любой наклонной площадке, проходящей через эту точку. Пусть О—некоторая точка напряженного тела. Допустим, что нам известны напряжения для координатных плоскостей xy, xz, yz (рис. 126). Чтобы получить напряжения на некоторой наклонной площадке, проходящей через точку O, рассмотрим плоскость BCD, параллельную этой площадке и находящуюся на малом расстоянии от точки O, так что эта плоскость вместе с координатными плоскостями вырезает из тела некоторый очень малый тетраэдр BCDO. Поскольку напряжения по объему тела изменяются непрерывно, то напряжения на площадке *BCD* будут приближаться к напряжениям на параллельной площадке, проходящей через точку *O*, если устремить к нулю размеры тетраэдра.

При рассмотрении условий равновесия элементарного тетраэдра объемными силами можно пренебречь (см. стр. 25). Далее, в силу того, что элемент очень мал, можно пренебречь изменением напряжений на его гранях и считать что напряжения распределены равномерно. В силу этого усилия, действующие на тетраэдр, можно определить путем умножения компонент напряжения на площади граней. Если обозначить через А площадь грани BCD тетраэдра, то площади трех других граней получаются с помощью проектирования А на три координатные плоскости. Если обозначить через N нормаль к площадке BCD и, кроме того, ввести обозначения

$$\cos(Nx) = l,$$

$$\cos(Ny) = m,$$

$$\cos(Nz) = n,$$
(a)

то площади трех других граней тетраэдра будут равны

Обозначим через X, Y, Z три компоненты напряжения, параллельные координатным осям и действующие на наклонной площадке BCD; тогда компонента усилия, действующего на грани BCD в направлении оси x, равна AX. Аналогично компоненты усилий в направлении оси x, действующие на трех других гранях тетраэдра, равны — $Al\sigma_x$, — $Am\tau_{xy}$, — $An\tau_{xz}$. Соответствующее уравнение равновесия тетраэдра имеет вид

$$AX - Al\sigma_x - Am\tau_{xy} - An\tau_{xz} = 0.$$

Подобным же образом, проектируя все силы на оси *у* и *z*, можно получить два других уравнения равновесия. После сокращения на множитель *A* уравнения равновесия тетраэдра можно записать в виде

$$X = \sigma_x l + \tau_{xy} m + \tau_{xz} n,$$

$$Y = \tau_{xy} l + \sigma_y m + \tau_{zy} n,$$

$$Z = \tau_{xz} l + \tau_{yz} m + \sigma_z n.$$
(108)

Таким образом, компоненты напряжения на любой площадке, определяемой направляющими косинусами l, m, n, можно легко найти из уравнений (108), если в точке O известны шесть компонент напряжения σ_x , σ_y , τ_{xy} , τ_{xz} , τ_{yz} .

§ 75. Главные напряжения

Рассмотрим теперь нормальную компоненту напряжения σ_n , действующего на площадке *BCD* (рис. 126). Используя обозначения (a) § 74 для направляющих косинусов, находим, что

$$\sigma_n = Xl + Ym + Zn, \qquad (a)$$

или, после подстановки значений X, Y, Z из уравнений (108),

$$\sigma_n = \sigma_x l^2 + \sigma_y m^2 + \sigma_z n^2 + 2\tau_{yz} mn + 2\tau_{xz} ln + 2\tau_{xy} lm.$$
(109)

Изменение σ_n в зависимости от направления нормали N можно представить геометрически следующим образом. Придадим направление N вектору, длина которого r обратно пропорциональна квадратному корню из абсолютного значения напряжения σ_n , т. е. для которого

$$r = k/\sqrt{|\sigma_n|}, \tag{6}$$

где *k* — постоянный коэффициент. Координаты конца этого вектора выразятся формулами

$$x = lr, \quad y = mr, \quad z = nr. \tag{B}$$

Подставляя в уравнение (109), согласно соотношению (б),

$$\sigma_n = \pm \frac{k^2}{r^2} , \qquad (\Gamma)$$

а также, согласно формулам (в), значения *l*, *m*, *n*, находим¹)

$$\pm k^{2} = \sigma_{x}x^{2} + \sigma_{y}y^{2} + \sigma_{z}z^{2} + 2\tau_{yz}yz + 2\tau_{zx}zx + 2\tau_{xy}xy.$$
(110)

При вращении плоскости *BCD* вокруг точки *O* конец вектора *r* всегда лежит на поверхности второго порядка, определяемой уравнением (110).

Хорошо известно, что для поверхности второго порядка, определяемой уравнением (110), всегда можно направить оси x, y, z так, чтобы обратились в нуль члены, содержащие произведения координат. Это означает, что мы всегда можем найти три такие перпендикулярные плоскости, для которых τ_{yz} , τ_{zx} , τ_{xy} обращаются в нуль. Таким образом, результирующие напряжения на этих плоскостях будут перпендикулярны площадкам, на которых они действуют. Мы назовем эти напряжения главными

¹⁾ Знаки «плюс» или «минус» в уравнении (г) и соответственно в уравнении (110) используются в зависимости от того, растягивающим или сжимающим является нормальное напряжение σ_n . Если все три главных напряжения являются напряжениями одного знака, нужен только один из двух знаков, и поверхность (110) является эллипсоидом. Если же не все главные напряжения имеют одинаковый знак, то в формуле (110) нужно сохранить оба знака. При этом поверхность, представляемая теперь двумя уравнениями (110), состонт из сочетания двухлолостного гиперболоида с однополостным гиперболоидом, которые обладают общим асимптотическим конусом.

напряжениями, их направления — главными направлениями, а площадки, по которым они действуют, — главными площадками. Можно видеть, что эти напряжения полностью определены в любой точке, если заданы направления главных осей и величины трех главных напряжений. Поверхность, определяемая уравнением (110), должна быть одной и той же независимо от выбора осей x, y, z.

§ 76. Эллипсоид напряжений и направляющая поверхность напряжений

Если совместить координатные оси x, y, z с направлениями главных осей, то определение напряжений на любой наклонной площадке становится очень простым. Касательные напряжения τ_{yz} , τ_{zx} , τ_{xy} в этом случае равны нулю, и уравнения (108) принимают вид

$$X = \sigma_x l, \quad Y = \sigma_y m, \quad Z = \sigma_z n. \tag{111}$$

Подставляя значения l, m, n из этих уравнений в хорошо известное соотношение $l^2 + m^2 + n^2 = 1$, находим

$$\frac{X^2}{\sigma_x^2} + \frac{Y^2}{\sigma_y^2} + \frac{Z^2}{\sigma_z^2} = 1.$$
 (112)

Эта зависимость означает, что если для каждой наклонной площадки, проходящей через точку O, напряжение представляется вектором, исходящим из точки O, с компонентами X, Y, Z, то концы этих векторов лежат на поверхности эллипсоида, определяемого уравнением (112). Этот эллипсоид называется эллипсоидом напряжений. Его полуоси представляют главные напряжения в данной точке. Отсюда можно сделать вывод, что максимальное напряжение в любой точке представляет собой наибольшее из трех главных напряжений в этой точке.

Если два из трех главных напряжений численно равны, эллипсоид напряжений становится эллипсоидом вращения. Если эти численно равные напряжения имеют один и тот же знак, результирующие напряжения на всех площадках, проходящих через ось вращения эллипсоида, будут равны и перпендикулярны к площадкам, на которых они действуют. В этом случае напряжения на любых двух перпендикулярных площадках, проходящих через эту ось, можно рассматривать как главные. Если все три главных напряжения равны и имеют один и тот же знак, эллипсоид напряжений становится сферой и любые три перпендикулярных направления могут рассматриваться как главные оси. Когда одно из главных напряжений равно нулю, эллипсоид напряжений сводится к эллипсу на плоскости, и векторы, представляющие напряжения на всех площадках, проходящих через данную точку, лежат в той же плоскости. Такое напряженное § 77]

состояние называется *плоским* и уже обсуждалось в предыдущих главах. Если два главных напряжения равны нулю, получаем случай простого растяжения или сжатия.

Каждый радиус-вектор эллипссида напряжений представляет в некотором масштабе напряжение по одной из площадок, проходящих через центр эллипсоида. Чтобы найти эту площадку, воспользуемся, наряду с эллипсоидом напряжений (112), направляющей поверхностью напряжений, определяемой уравнением

 $\frac{x^2}{\sigma_x} + \frac{y^2}{\sigma_y} + \frac{z^2}{\sigma_z} = 1.$ (113)

Напряжения, представленные радиусом-вектором эллипсоида напряжений, действуют на площадке, параллельной касательной плоскости к направляющей поверхности напряжений в точке ее пересечения с названным радиусом-вектором. Это можно показать следующим образом. Уравнение касательной плоскости к направляющей поверхности напряжений (113) в некоторой точке с координатами x₀, y₀, z₀, представляется в виде

$$\frac{xx_0}{\sigma_x} + \frac{yy_0}{\sigma_y} + \frac{zz_0}{\sigma_z} = 1.$$
 (a)

Обозначая через *h* длину перпендикуляра, опущенного из начала координат на вышеупомянутую касательную плоскость, а через *l*, *m*, *n*—направляющие косинусы этого перпендикуляра, можно записать уравнение этой касательной плоскости в форме

$$lx + my + nz = h. \tag{6}$$

Сравнивая выражения (а) и (б), находим

$$\sigma_x = \frac{x_0 h}{l}, \quad \sigma_y = \frac{y_0 h}{m}, \quad \sigma_z = \frac{z_0 h}{n}.$$
 (B)

Подставляя эти значения в уравнения (111), получаем

$$X = x_0 h, \quad Y = y_0 h, \quad Z = z_0 h,$$

т. е. компоненты напряжения на площадке с направляющими косинусами l, m, n, пропорциональные координатам x_0 , y_0 , z_0 . Следовательно, вектор, представляющий напряжение, как отмечалось выше, проходит через точку с координатами x_0 , y_0 , z_0 ¹).

§ 77. Определение главных напряжений

Если известны компоненты напряжения для трех координатных плоскостей, то мы можем определить направления и величины главных напряжений, используя то свойство, что главные напряжения перпендикулярны к плоскостям, на которых они действуют. Обозначим через *l*, *m*, *n* направляющие косинусы некоторой главной площадки, а через *S*—величину главного

¹) Другой метод представления напряжения в точке с использованием окружностей развил Мор (О. Моhr, Technische Mechanik, изд. 2, стр. 192, 1914). См. также А. Föppl, L. Föppl, Drang und Zwang, т. 1, стр. 9; Н. М. Westergaard, Z. Angew. Math. Mech. 4, 520 (1924). Окружности Мора применялись нами при исследовании двумерных задач (см. § 9).

напряжения, действующего на ней. Тогда компоненты этого напряжения будут определяться формулами

$$X = Sl, \quad Y = Sm, \quad Z = Sn.$$

Подставляя эти компоненты в уравнение (108), получаем

$$(S - \sigma_x) l - \tau_{xy}m - \tau_{xz}n = 0,$$

$$- \tau_{xy}l + (S - \sigma_y)m - \tau_{yz}n = 0,$$

$$- \tau_{xz}l - \tau_{yz}m + (S - \sigma_z)n = 0.$$
(a)

Это — три однородные линейные уравнения относительно неизвестных l, m, n. Они дают решения, отличные от нуля только в том случае, если определитель системы уравнений равен нулю. Вычисляя этот определитель и приравнивая его нулю, получаем следующее кубическое уравнение относительно S:

$$S^{3}-(\sigma_{x}+\sigma_{y}+\sigma_{z})S^{2}+(\sigma_{x}\sigma_{y}+\sigma_{y}\sigma_{z}+\sigma_{x}\sigma_{z}-\tau_{yz}^{2}-\tau_{xz}^{2}-\tau_{xy}^{2})S-(\sigma_{x}\sigma_{y}\sigma_{z}+2\tau_{yz}\tau_{xz}\tau_{xy}-\sigma_{x}\tau_{yz}^{2}-\sigma_{y}\tau_{xz}^{2}-\sigma_{z}\tau_{xy}^{2})=0.$$
 (114)

Три корня этого уравнения дают значения трех главных напряжений S_1 , S_2 , S_3 . Подставляя каждое из этих напряжений в уравнения (а) и используя зависимость $l^2 + m^2 + n^2 = 1$, мы можем найти три системы направляющих косинусов для трех главных площадок.

§ 78. Инварианты напряжений

Считая, что напряженное состояние задано, т. е. заданы главные напряжения и главные оси, мы можем, разумеется, описать его с помощью компонент напряжения в любой системе координат x, y, z. Вне зависимости от выбора ориентации этих осей уравнение (114) должно дать для S те же самые три корня. Следовательно, и коэффициенты этого уравнения должны быть всегда одними и теми же. В качестве осей x, y, z можно выбрать сами главные оси. Тогда величины σ_x , σ_y , σ_z будут равны S_1 , S_2 , S_3 (в том или ином порядке), а τ_{xy} , τ_{yz} , τ_{zx} будут равны нулю. Отсюда инвариантные значения коэффициентов в уравнении (114) определяются выражениями

$$\sigma_x + \sigma_y + \sigma_z = S_1 + S_2 + S_3, \qquad (a)$$

$$\sigma_x \sigma_y + \sigma_y \sigma_z + \sigma_z \sigma_x - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{xz}^2 = S_1 S_2 + S_2 S_3 + S_3 S_1, \quad (6)$$

$$\sigma_x \sigma_y \sigma_z + 2\tau_{xy} \tau_{yz} \tau_{xz} - \sigma_x \tau_{yz}^2 - \sigma_y \tau_{xz}^2 - \sigma_z \tau_{xy}^2 = S_1 S_2 S_3.$$
(B)

Выражения в левых частях уравнений называются инвариантами напряжений. Очевидно, из них можно сформировать и другие инварианты. Обозначая выражения в левых частях (а), (б) и (в) соответственно через I_1 , I_2 , I_3 , легко проверить, что

$$(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2) = 2I_1^2 - 6I_2, \quad (r)$$

Следовательно, выражение в левой части этого уравнения также является инвариантом. Он встретится нам позже при исследовании энергии деформации.

§ 79. Определение максимального касательного напряжения

Пусть через x, y, z обозначены главные оси, в силу чего σ_x , σ_y , σ_z —главные напряжения, а через l, m, n обозначены направляющие косинусы некоторой заданной площадки. Тогда, согласно уравнениям (111), квадрат полного напряжения на этой площадке равен

$$S^{2} = X^{2} + Y^{2} + Z^{2} = \sigma_{x}^{2}l^{2} + \sigma_{y}^{2}m^{2} + \sigma_{z}^{2}n^{2}.$$

Квадрат же нормальной компоненты напряжения на той же площадке, согласно уравнению (109), есть

$$\sigma_n^2 = (\sigma_x l^2 + \sigma_y m^2 + \sigma_z n^2)^2. \tag{a}$$

Тогда квадрат касательного напряжения на той же площадке должен быть равен

$$\tau^{2} = S^{2} - \sigma_{n}^{2} = \sigma_{x}^{2}l^{2} + \sigma_{y}^{2}m^{2} + \sigma_{z}^{2}n^{2} - (\sigma_{x}l^{2} + \sigma_{y}m^{2} + \sigma_{z}n^{2})^{2}.$$
 (6)

Теперь исключим один из направляющих косинусов, скажем n, из этого уравнения, используя зависимость

$$l^2 + m^2 + n^2 = 1$$
,

а затем определим l и m таким образом, чтобы сделать напряжение т максимальным. После подстановки $n^2 = 1 - l^2 - m^2$ в выражение (б), вычисления производных от этого выражения по l и m и приравнивания этих производных нулю, получаем следующие уравнения для определения направляющих косинусов площадок, для которых т достигает минимума или максимума

$$l\left[\left(\sigma_{x}-\sigma_{z}\right)l^{2}+\left(\sigma_{y}-\sigma_{z}\right)m^{2}-\frac{1}{2}\left(\sigma_{x}-\sigma_{z}\right)\right]=0,$$

$$m\left[\left(\sigma_{x}-\sigma_{z}\right)l^{2}+\left(\sigma_{y}-\sigma_{z}\right)m^{2}-\frac{1}{2}\left(\sigma_{y}-\sigma_{z}\right)\right]=0.$$
(B)

Одно из решений этих уравнений можно получить, положив l = m = 0. Можно получить также решения, отличные от нуля. Приняв, например, l = 0, находим из второго уравнения (в), что $m = \pm \sqrt{2}$, а приняв m = 0, находим из первого уравнения (в), что $l = \pm \sqrt{2}$. Решений уравнений (в), в которых и l и m отличны от нуля, вообще говоря, не существует, так как в этом случае выражения в квадратных скобках не могут одновременно обращаться в нули.

Повторяя вышеприведенные рассуждения, но с исключением из уравнения (б) значения *l*, а затем *m*, приходим в конце кон-

цов к таблице значений направляющих косинусов, доставляющих т максимум или минимум (табл. 5).

таблица 5

<i>l</i> =	0	0	±1	0	$\pm 1/\sqrt{2}$	$\pm 1/\sqrt{2}$
<i>m</i> =	0	±1	0	$\pm 1/\sqrt{2}$	0	$\pm 1/\sqrt{2}$
<i>n</i> =	±1	0	Ö	$\pm 1/\sqrt{2}$	$\pm 1/\sqrt{2}$	0

Направляющие косинусы для плоскостей т_{max} и т_{min}

Первые три столбца дают направления координатных плоскостей, совпадающих, как и предполагалось вначале, с главными площадками. По этим плоскостям касательные напряжения равны нулю, т. е. выражение (б) минимально. Три других столбца дают плоскости, проходящие через каждую из координатных осей и делящие пополам угол между двумя другими главными осями. Подставляя направляющие косинусы этих трех плоскостей в выражение (б), получаем следующие значения касательных напряжений на этих главных площадках:

$$\tau = \pm \frac{1}{2} (\sigma_y - \sigma_z); \quad \tau = \pm \frac{1}{2} (\sigma_x - \sigma_z), \quad \tau = \pm \frac{1}{2} (\sigma_x - \sigma_y).$$
(115)

Из формул (115) следует, что максимальные касательные напряжения действуют по площадке, делящей пополам угол между максимальным и минимальным главными напряжениями, и что их величины равны половине разности между этими главными напряжениями.

Если оси x, y, z, показанные на рис. 126, совпадают с направлениями главных напряжений и если OB = OC = OD, т. е. нормаль к наклонной грани тетраэдра имеет направляющие косинусы $l = m = n = 1/\sqrt{3}$, то нормальное напряжение на этой грани, определяемое формулой (109), равно

$$\sigma_n = \frac{1}{3} \left(\sigma_x + \sigma_y + \sigma_z \right). \tag{(r)}$$

Это напряжение называется средним напряжением. Касательное напряжение на этой же грани определяется, согласно формуле (б), в виде

$$\tau^2 = \frac{1}{3} \left(\sigma_x^2 + \sigma_y^2 + \sigma_z^2 \right) - \frac{1}{9} \left(\sigma_x + \sigma_y + \sigma_z \right)^2.$$

Эту зависимость можно также переписать так:

$$\tau^2 = \frac{1}{9} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 \right],$$

или, используя формулу (г),

 $\tau^2 = \frac{1}{3} \left[(\sigma_x - \sigma_n)^2 + (\sigma_y - \sigma_n)^2 + (\sigma_z - \sigma_n)^2 \right].$

Это касательное напряжение называется октаэдрическим касательным напряжением, поскольку грань, на которой оно действует, является гранью правильного октаэдра, вершины которого располагаются на осях. Это напряжение часто используется в теории пластичности.

§ 80. Однородная деформация

Мы будем рассматривать здесь лишь малые деформации, которые часто встречаются в инженерных конструкциях. Малые перемещения частиц деформируемого тела разлагаются обычно на компоненты *u*, *v*, *w*, параллельные координатным осям *x*, *y*, *z*. Предполагается, что эти компоненты являются очень малыми величинами, непрерывно изменяющимися по объему тела.

Рассмотрим в качестве примера простое растяжение призматического стержня, закрепленного верхним концом (рис. 127). Обозначим через є относительное удлинение стержня в направлении x, а через vє относительное поперечное сужение. Тогда компоненты перемещения точки с координатами x, y, z будут иметь вид

$$u = \varepsilon x, \quad v = -v \varepsilon y, \quad w = -v \varepsilon z.$$

Обозначая через x', y', z' координаты этой точки после деформации, получаем

$$x' = x + u = x (1 + \varepsilon),$$

$$y' = y + v = y (1 - v\varepsilon),$$

$$z' = z + w = z (1 - v\varepsilon).$$
(a) PHC. 127.

Если рассмотреть плоскость в стержне, задаваемую перед деформацией уравнением

$$ax + by + cz + d = 0, \tag{6}$$

то точки этой плоскости после деформации по-прежнему будут лежать в одной плоскости. Уравнение этой новой плоскости получается с помощью подстановки в уравнение (б) значений *x*, *y*, *z* из соотношений (а). Таким путем можно легко показать, что параллельные до деформации плоскости и параллельные линии остаются параллельными и после деформации.

Если мы рассмотрим в стержне сферическую поверхность, определяемую уравнением

$$x^2 + y^2 + z^2 = r^2$$
, (B)

Рис. 127.

то в результате деформации стержня эта сфера преобразуется в эллипсоид, уравнение которого можно найти, подставляя в уравнение (в) выражения для x, y, z, полученные по формулам (а). Это дает

$$\frac{x^{\prime 2}}{r^2 (1+\varepsilon)^2} + \frac{{y^{\prime 2}}}{r^2 (1-v\varepsilon)^2} + \frac{{z^{\prime 2}}}{r^2 (1-v\varepsilon)^2} = 1.$$
(r)

Таким образом, сфера радиуса r деформируется в эллипсоид с полуосями $r(1+\varepsilon)$, $r(1-v\varepsilon)$, $r(1-v\varepsilon)$.

Простое растяжение с поперечным сужением, рассмотренное выше, представляет частный случай деформации более общего типа, в котором компоненты перемещения *u*, *v*, *w* являются линейными функциями координат. Действуя тем же путем, что и раньше, можно показать, что этот тип деформации обладает всеми свойствами, обнаруженными выше для случая простого растяжения. Плоскости и прямые остаются плоскостями и прямыми после деформации. Параллельные плоскости и параллельные прямые после деформации остаются параллельными. Сфера после деформации становится эллипсоидом. Деформация такого вида называется однородной деформацией. Ниже будет показано, что для этого случая деформация в любом заданном направлении будет одинаковой для всех точек деформируемого тела. Следовательно, два геометрически подобных и подобным образом ориентированных элемента тела остаются после деформации геометрически подобными.

В более общих случаях деформация по объему деформируемого тела меняется. Например, при изгибе балки удлинения и сужения продольных волокон зависят от их расстояния до нейтральной поверхности, деформации сдвига в элементах скручиваемого круглого вала пропорциональны их расстояниям до оси вала. В таких случаях неоднородной деформации требуется анализ деформации в окрестности каждой точки.

§ 81. Деформации в точке тела

Для исследования деформаций в окрестности некоторой точки О деформируемого тела (рис. 128) рассмотрим малый линейный элемент ОО₁ длиной *г* с направляющими косинусами *l*, *m*, *n*. Проекции этого малого элемента на координатные оси имеют вид

$$\delta x = rl, \quad \delta y = rm, \quad \delta z = rn.$$
 (a)

Эти проекций равны координатам точки O_1 в осях x, y, z, для которых O есть начало координат. Если через u, v, w обозначить компоненты перемещения точки O в процессе деформации тела, то соответствующие перемещения соседней точки O_1 можно будет

представить следующим образом:

$$u_{1} = u + \frac{\partial u}{\partial x} \,\delta x + \frac{\partial u}{\partial y} \,\delta y + \frac{\partial u}{\partial z} \,\delta z,$$

$$v_{1} = v + \frac{\partial v}{\partial x} \,\delta x + \frac{\partial v}{\partial y} \,\delta y + \frac{\partial v}{\partial z} \,\delta z,$$

$$w_{1} = w + \frac{\partial w}{\partial x} \,\delta x + \frac{\partial w}{\partial y} \,\delta y + \frac{\partial w}{\partial z} \,\delta z.$$
(6)

Здесь предполагается, что величины бх, бу, бг малы, и следовательно, члены с высшими степенями и с произведениями этих величин в выражениях (б) можно опустить, как величины более высокого порядка малости. Координаты точки О, после деформации принимают вид

$$\delta x + u_{1} - u = \delta x + \frac{\partial u}{\partial x} \delta x + \frac{\partial u}{\partial y} \delta y + \frac{\partial u}{\partial z} \delta z,$$

$$\delta y + v_{1} - v = \delta y + \frac{\partial v}{\partial x} \delta x + \frac{\partial v}{\partial y} \delta y + \frac{\partial v}{\partial z} \delta z,$$

$$\delta z + w_{1} - w = \delta z + \frac{\partial w}{\partial x} \delta x + \frac{\partial w}{\partial y} \delta y + \frac{\partial w}{\partial z} \delta z.$$

(B)

Рис. 128.

Следует отметить, что эти координаты являются линейными функциями начальных координат δx , δy , δz ; следовательно, деформация в очень малом элементе тела в точке О может считаться однородной (§ 80).

Рассмотрим удлинение элемента r, вызванное этой деформацией. Квадрат длины рассматриваемого элемента после деформации равен сумме квадратов координат, определяемых формулами (в). Отсюда, если є — это относительное удлинение элемента, получаем

$$(r+\varepsilon r)^{2} = \left(\delta x + \frac{\partial u}{\partial x}\delta x + \frac{\partial u}{\partial y}\delta y + \frac{\partial u}{\partial z}\delta z\right)^{2} + \left(\delta y + \frac{\partial v}{\partial x}\delta x + \frac{\partial v}{\partial y}\delta y + \frac{\partial v}{\partial z}\delta z\right)^{2} + \left(\delta z + \frac{\partial w}{\partial x}\delta y + \frac{\partial w}{\partial y}\delta y + \frac{\partial w}{\partial z}\delta z\right)^{2},$$

или, после деления на r^2 и использования формул (a),

$$(1+\varepsilon)^{2} = \left[l\left(1+\frac{\partial u}{\partial x}\right)+m\frac{\partial u}{\partial y}+n\frac{\partial u}{\partial z}\right]^{2}+\left[l\frac{\partial v}{\partial x}+m\left(1+\frac{\partial v}{\partial y}\right)+n\frac{\partial v}{\partial z}\right]^{2}+\left[l\frac{\partial w}{\partial x}+m\frac{\partial w}{\partial y}+n\left(1+\frac{\partial w}{\partial z}\right)\right]^{2}.$$
 (r)

Учитывая, что є и производные $\partial u/\partial x$, ..., $\partial w/\partial z$ являются малыми величинами, так что их квадратами и произведениями можно пренебречь, и использовав зависимость $l^2 + m^2 + n^2 = 1$, можно привести соотношение (г) к виду

$$\varepsilon = l^2 \frac{\partial u}{\partial x} + m^2 \frac{\partial v}{\partial y} + n^2 \frac{\partial w}{\partial z} + lm \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + ln \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) + mn \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right).$$
(116)

Следовательно, удлинение элемента r можно определить, если известны выражения $(\partial u/\partial x), \ldots, (\partial u/\partial y + \partial v/\partial x), \ldots$ Используя обозначения

$$\frac{\partial u}{\partial x} = \varepsilon_x, \quad \frac{\partial v}{\partial y} = \varepsilon_y, \quad \frac{\partial w}{\partial z} = \varepsilon_z,$$

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \gamma_{xy}, \quad \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \gamma_{xz}, \quad \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \gamma_{yz}$$
(A)

можно представить выражение (116) в форме¹)

$$\varepsilon = \varepsilon_x l^2 + \varepsilon_y m^2 + \varepsilon_z n^2 + \gamma_{xy} lm + \gamma_{xz} ln + \gamma_{yz} mn.$$
(117)

Физический смысл величин $\varepsilon_x, \ldots, \gamma_{yz}, \ldots$ уже обсуждался (см. § 5) и было показано, что величины $\varepsilon_x, \varepsilon_y, \varepsilon_z$ являются относительными удлинениями в направлениях осей x, y, z, а величины $\gamma_{xy}, \gamma_{yz}, \gamma_{xz}$ — тремя деформациями сдвига, отнесенными к тем же направлениям. Сейчас мы увидим, что если заданы шесть компонент деформаций, то удлинение любого элемента проходящего через точку O, можно определить из выражения (117).

В частном случае однородной деформации компоненты перемещения *u*, *v*, *w* являются линейными функциями координат. Следовательно, согласно уравнениям (д), компоненты деформаций по объему тела постоянны, т. е. в этом случае каждый элемент тела испытывает одну и ту же деформацию.

При исследовании деформаций вблизи точки О иногда требуется узнать изменение угла между двумя линейными элементами, проходящими через эту точку. Используя формулы (в) и (а) и считая є малой величиной, получаем для направляющих косинусов элемента r (рис. 128) после деформации выражения

$$l_{1} = \frac{\delta x + u_{1} - u}{r(1 + \varepsilon)} = l\left(1 - \varepsilon + \frac{\partial u}{\partial x}\right) + m\frac{\partial u}{\partial y} + n\frac{\partial u}{\partial z},$$

$$m_{1} = \frac{\delta y + v_{1} - v}{r(1 + \varepsilon)} = l\frac{\partial v}{\partial x} + m\left(1 - \varepsilon + \frac{\partial v}{\partial y}\right) + n\frac{\partial v}{\partial z},$$
 (e)

$$n_{1} = \frac{\delta z + w_{1} - w}{r(1 + \varepsilon)} = l\frac{\partial w}{\partial x} + m\frac{\partial w}{\partial y} + n\left(1 - \varepsilon + \frac{\partial w}{\partial z}\right).$$

Взяв другой элемент r^1 , проходящий через ту же точку, но имеющий направляющие косинусы l', m', n', получаем для величин этих косинусов после деформации выражения, аналогичные соотношениям (е). Косинус угла между этими двумя элементами после деформации равен

$$\cos{(rr')} = l_1 l'_1 + m_1 m'_1 + n_1 n'_1.$$

Считая удлинения є и є' в этих двух направлениях малыми величинами и

¹) Выражение (117) можно сравнить с выражением σ_n , которое дает соотношение (109); при этом следует обратить внимание на множители 2 в трех последних членах. Когда используются индексные обозначения, в частности в уравнениях (е) из § 7, правая часть уравнения (117), выраженная через ε_{ij} , содержит соответствующие множители 2. Такая форма удобна, когда рассматриваются изменения координат, а напряжения и деформации представляются тензорами второго ранга.

используя соотношения (е), находим

$$\cos (rr') = (ll' + mm' + nn')(1 - \varepsilon - \varepsilon') + 2(\varepsilon_x ll' + \varepsilon_y mm' + \varepsilon_z nn') + \gamma_{yz}(mn' + m'n) + \gamma_{xz}(nl' + n'l) + \gamma_{xy}(lm' + l'm).$$
(118)

Если направления r и r' перпендикулярны друг другу, то ll'+mm'+nn'=0 и соотношение (118) определяет величину сдвига между этими двумя направлениями.

§ 82. Главные оси деформаций

Из выражения (117) можно получить геометрическую интерпретацию изменения деформации в заданной точке. С этой целью отложим в направлении каждого линейного элемента r (рис. 128) радиус-вектор длиной

$$R = \frac{k}{\sqrt{|\epsilon|}} \,. \tag{a}$$

Тогда, поступая так же, как в § 75, можно показать, что концы всех таких радиусов-векторов лежат на поверхности, описываемой уравнением

$$\pm k^2 = \varepsilon_x x^2 + \varepsilon_y y^2 + \varepsilon_z z^2 + \gamma_{yz} yz + \gamma_{xz} xz + \gamma_{xy} xy.$$
(119)

Форма и ориентация этой поверхности полностью определяются деформированным состоянием в данной точке и не зависят от направления осей координат. Всегда можно выбрать такие направления ортогональных осей координат, чтобы члены с произведениями координат в уравнении (119) исчезли, т. е. чтобы деформации сдвига для таких направлений обращались в нуль. Такие направления называются главными осями деформаций, соответствующие плоскости — площадками главных деформаций, а деформации в этих направлениях — главными деформаций, а деформации в этих направлениях — славными деформациями. Из приведенных выше рассуждений ясно, что главные оси деформации остаются перпендикулярными друг другу и после деформации, а прямоугольный параллелепипед с гранями, параллельными главным плоскостям, и после деформации остается прямоугольным параллелепипедом. В общем случае он испытывает малое вращение.

Если оси x, y, z являются главными осями деформаций, то уравнение (119) принимает вид

$$\pm k^2 = \varepsilon_x x^2 + \varepsilon_y y^2 + \varepsilon_z z^2.$$

В этом случае удлинение любого линейного элемента с направляющими косинусами *l*, *m*, *n*, согласно соотношению (117), выражается в виде

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{\boldsymbol{x}} l^2 + \boldsymbol{\varepsilon}_{\boldsymbol{y}} m^2 + \boldsymbol{\varepsilon}_{\boldsymbol{z}} n^2, \qquad (120)$$

а деформация сдвига, отвечающая двум взаимно перпендикулярным направлениям *r* и *r'*, согласно соотношению (118), определяется формулой

$$\gamma_{rr'} = 2 \left(\varepsilon_{\mathbf{x}} l l' + \varepsilon_{y} m m' + \varepsilon_{\mathbf{z}} n n' \right). \tag{121}$$

241

Таким образом, можно видеть, что деформации в любой точке полностью определены, если мы знаем направления главных осей деформаций и величины главных удлинений. Определение главных осей деформаций и главных удлинений можно проделать аналогично тому, как это сделано в § 77. Можно также показать, что сумма $\varepsilon_x + \varepsilon_y + \varepsilon_z$ при повороте системы координат остается постоянной. Эта сумма имеет, как мы знаем простой физический смысл: она является относительным объемным расширением, вызванным деформацией в данной точке.

§ 83. Вращение

В общем случае в процессе деформации тела любой его элемент меняет форму и испытывает вращение и поступательное перемещение. С учетом деформации сдвига края элемента поворачиваются на разные углы; поэтому следует обсудить, каким образом можно дать определение вращению всего элемента. Любой прямоугольный элемент *хуг* можно привести в конечное состояние с помощью трех следующих шагов, примененных к элементу в недеформированном теле:

1. На элемент накладываются деформации ε_x , ε_y , ε_z , γ_{xy} , γ_{yz} γ_{xz} , и затем элемент ориентируется таким образом, чтобы направления главных деформаций не испытывали поворота.

2. Элемент переносится поступательно так, чтобы его центр занял свое конечное положение.

3. Элемент вращается вокруг центра до совпадения со своей конечной ориентацией.

Вращение на третьем шаге, очевидно, является вращением направлений главных деформаций и, следовательно, не зависит от выбора осей x, y, z. Его можно определить при заданных перемещениях u, v, w. В то же время это вращение, очевидно, не зависит от компонент деформации.

Поскольку поступательное перемещение элемента для нас не представляет интереса, мы можем рассмотреть перемещение некоторой точки O₁ (см. § 81, рис. 128) относительно точки O, центра элемента. Это относительное перемещение определяется уравнениями (б) § 81 в виде

$$u_{1} - u = \frac{\partial u}{\partial x} \,\delta x + \frac{\partial u}{\partial y} \,\delta y + \frac{\partial u}{\partial z} \,\delta z,$$

$$v_{1} - v = \frac{\partial v}{\partial x} \,\delta x + \frac{\partial v}{\partial y} \,\delta y + \frac{\partial v}{\partial z} \,\delta z,$$

$$w_{1} - w = \frac{\partial w}{\partial x} \,\delta x + \frac{\partial w}{\partial y} \,\delta y + \frac{\partial w}{\partial z} \,\delta z.$$

(a)

Используя для компонент деформаций обозначения (д) из § 81,

а также обозначения ¹)

$$\frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) = \omega_x, \quad \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) = \omega_y,$$

$$\frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = \omega_z,$$
(122)

мы можем записать соотношения (а) в форме

$$u_{1} - u = \varepsilon_{x} \delta x + \frac{1}{2} \gamma_{xy} \delta y + \frac{1}{2} \gamma_{xz} \delta z - \omega_{z} \delta y + \omega_{y} \delta z,$$

$$v_{1} - v = \frac{1}{2} \gamma_{xy} \delta x + \varepsilon_{y} \delta y + \frac{1}{2} \gamma_{yz} \delta z - \omega_{x} \delta z + \omega_{z} \delta x,$$

$$w_{1} - w = \frac{1}{2} \gamma_{xz} \delta x + \frac{1}{2} \gamma_{yz} \delta y + \varepsilon_{z} \delta z - \omega_{y} \delta x + \omega_{x} \delta y,$$

(6)

которая представляет относительные перемещения в виде двух частей; из них одна зависит только от компонент деформации, а другая — только от величин ω_x , ω_u , ω_z .

Теперь мы можем показать, что величины ω_x , ω_y , ω_z в действительности являются компонентами вращения, осуществляемого на третьем шаге. Рассмотрим поверхность, определяемую уравнением (119). Квадрат радиуса в любом направлении обратно пропорционален относительному удлинению линейного элемента в этом направлении. Уравнение (119) при этом имеет вид

$$F(x, y, z) = \text{const.}$$
(B)

Если мы рассмотрим теперь соседнюю точку x + dx, y = dy, z + dz на этой поверхности, то получим соотношение

$$\frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy + \frac{\partial F}{\partial z}dz = 0.$$
 (r)

Сдвиг на величины dx, dy, dz происходит в направлении с направляющими косинусами, пропорциональными dx, dy, dz. Три величины $\partial F/\partial x$, $\partial F/\partial y$, $\partial F/\partial z$ также определяют некоторое направление, так как мы можем принять направляющие косинусы пропорциональными им. Тогда левая часть уравнения (г) пропорциональна косинусу угла между двумя этими направлениями. Поскольку этот косинус должен, согласно (г), равняться нулю, то упомянутые два направления взаимно перпендикулярны. Далее, так как направление, определяемое dx, dy, dz, лежит в плоскости, касательной к поверхности в точке x, y, z, то направление, определяемое $\partial F/\partial x$, $\partial F/\partial y$, $\partial F/\partial z$, нормально к поверхности, описываемой уравнением (в).

§ 83]

¹) Рассмотрение рис. 6 показывает, что величины $\partial v/\partial x$ и — $\partial u/\partial y$, встречающиеся в выражении для ω_z , представляют собой вращения по направлению часовой стрелки линейных элементов O'A' и O'B' из их начальных положений OA и OB. Таким образом, ω_z представляет собой усреднение этих вращений, а величины ω_x и ω_u имеют аналогичный смысл для плосностей уг и хг.

Функция F(x, y, z) в нашем случае обозначает правую часть уравнения (119). Поэтому

$$\begin{split} &\frac{\partial F}{\partial x} = 2\varepsilon_{x}x + \gamma_{xy}y + \gamma_{xz}z, \\ &\frac{\partial F}{\partial y} = \gamma_{xy}x + 2\varepsilon_{y}y + \gamma_{yz}z, \\ &\frac{\partial F}{\partial z} = \gamma_{xz}x + \gamma_{yz}y + 2\varepsilon_{z}z. \end{split}$$
(A)

Если поверхность, определяемая уравнением (119), имеет центр в точке O (рис. 128), то мы можем отождествить δx , δy , δz в соотношениях (б) с x, y, z в (д).

Рассмотрим тенерь частный случай, когда ω_x , ω_y , ω_z равны нулю. При этом правые части выражений (д) совпадают с правыми частями соотношений (б) во всем, за исключением множителя 2. Следовательно, перемещения, определяемые выражениями (б), нормальны к поверхности, определяемой уравнением (119). Если рассматривать точку O_1 (рис. 128) как точку на этой поверхности, это означает, что перемещение точки O_1 нормально к поверхности в точке O_1 . Следовательно, если OO_1 —это одна из главных осей деформации, т. е. одна из главных осей поверхности, то перемещение точки O_1 происходит в направлении OO_1 , а следовательно, отрезок OO_1 не вращается. Рассматриваемое перемещение отвечает первому шагу.

Чтобы завершить процесс перемещения, нам следует учесть в соотношениях (б) члены, содержащие ω_x , ω_y , ω_z . Однако эти члены отвечают малым вращениям тела как жесткого целого относительно осей x, y, z с компонентами ω_x , ω_y , ω_z . Следовательно, эти величины, определяемые формулами (122), выражают вращение на третьем шаге, т. е. вращение главных осей деформации в точке O. Их называют просто компонентами вращения.

ЗАДАЧИ

1. Найти уравнение поверхности типа f(x, y, z) = 0 с центром в точке O, которая превращается в сферу с уравнением $x'^2 + y'^2 + z'^2 = r^2$ после однородной деформации, описанной в § 80. К какому типу принадлежит эта поверхность?

2. Показать, что если вращение равно нулю во всем теле (безвихревая деформация), то вектор перемещения является градиентом некоторой скалярной потенциальной функции.

Привести один или несколько примерс в такой безвихревой деформации из задач, рассмотренных в предыдущих главах.

244

Глава 8 ОБЩИЕ ТЕОРЕМЫ

§ 84. Дифференциальные уравнения равновесия

В § 74 мы рассматривали напряженное состояние в некоторой точке упругого тела. Рассмотрим теперь изменение напряжений при изменении положения точки. Для этого нужно исследовать условия равновесия малого прямоугольного параллелепипеда с ребрами δx , δy , δz (рис. 129). Компоненты напряжений, действующих на гранях этого малого элемента, и их положительные

Рис. 129.

направления показаны на этом рисунке. Здесь мы учитываем малые изменения компонент напряжений, вызванные малыми приращениями координат δx , δy , δz . Таким образом (если обозначить центральные точки граней элемента через 1, 2, 3, 4, 5, 6, как показано на рис. 129), мы проводим, например, различие между значением напряжения σ_x в точке 1 и его значением в точке 2, записывая соответственно (σ_x)₁ и (σ_x)₂. Символ σ_x сам по себе обозначает, разумеется, значение этой компоненты напряжения в точке x, y, z. При определении усилий, действующих на элемент, мы считаем его грани очень малыми и усилие получаем путем умножения напряжения, действующего в центре тяжести грани, на площадь грани.

Следует отметить, что приложенная к элементу объемная сила, которой мы пренебрегали как малой величиной высшего порядка при рассмотрении тетраэдра (рис. 126), теперь должна приниматься в расчет, так как она имеет тот же порядок, что и рассматриОБЩИЕ ТЕОРЕМЫ

ваемые теперь члены, связанные с изменением компонент напряжения. Если обозначить через X, Y, Z компоненты этой силы, отнесенной к единице объема элемента, то уравнение равновесия, полученное суммированием всех сил, действующих на элемент в направлении x, примет вид

$$[(\sigma_x)_1 - (\sigma_x)_2] \, \delta y \, \delta z + [(\tau_{xy})_3 - (\tau_{xy})_4] \, \delta x \, \delta z + [(\tau_{xz})_5 - (\tau_{xz})_6] \, \delta x \, \delta y + + X \, \delta x \, \delta y \, \delta z = 0.$$

Аналогично можно получить два других уравнения равновесия. Разделив выписанное уравнение на $\delta x \, \delta y \, \delta z$ и перейдя в нем к пределу путем стягивания элемента к точке x, y, z, получим

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0,$$

$$\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} + Y = 0,$$

$$\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + Z = 0.$$
(123)

Уравнения (123) должны удовлетворяться во всех точках по объему тела. Напряжения по объему тела меняются, и при достижении поверхности они должны находиться в равновесии с внешними силами, действующими на поверхности тела. Условия равновесия на поверхности получаются из уравнений (108). Взяв тетраэдр *OBCD* (рис. 126) так, чтобы грань *BCD* совпадала с поверхностью тела в данной точке, приведем уравнения (108) к виду

$$\begin{split} \overline{X} &= \sigma_x l + \tau_{xy} m + \tau_{xz} n, \\ \overline{Y} &= \sigma_y m + \tau_{yz} n + \tau_{xy} l, \\ \overline{Z} &= \sigma_z n + \tau_{xz} l + \tau_{yz} m, \end{split}$$
(124)

где *l*, *m*, *n* — направляющие косинусы внешней нормали к поверхности тела в рассматриваемой точке.

Если задача состоит в определении напряженного состояния тела под действием заданных сил, то необходимо решить уравнения (123) и решение должно быть таким, чтобы удовлетворялись граничные условия (124). Названных уравнений, содержащих шесть компонент напряжения σ_x , ..., τ_{yz} , недостаточно для определения этих компонент. Задача является статически неопределимой, и чтобы получить ее решение, мы должны поступить так же, как и в случае двумерной задачи, т. е. рассмотреть также упругие деформации тела.

§ 85. Условия совместности

Следует заметить, что шесть компонент деформации в каждой точке полностью определяются тремя функциями *u*, *v*, *w*, представляющими компоненты перемещения. Следовательно, компоненты деформации как функции *x*, *y*, *z* не могут быть произволь-

ными, а должны подчиняться условиям, следующим из соотношений (2).

Таким образом, согласно соотношениям (2), имеем

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} = \frac{\partial^3 u}{\partial x \,\partial y^2} , \quad \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^3 v}{\partial x^2 \,\partial y} , \quad \frac{\partial^2 \gamma_{xy}}{\partial x \,\partial y} = \frac{\partial^3 u}{\partial x \,\partial y^2} + \frac{\partial^3 v}{\partial x^2 \,\partial y} ,$$

откуд**а**

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \, \partial y} \,. \tag{a}$$

Два других соотношения такого рода можно получить с помощью циклической перестановки символов *x*, *y*, *z*.

Аналогично, учитывая выражения для производных

$$\frac{\partial^2 \varepsilon_x}{\partial y \, \partial z} = \frac{\partial^3 u}{\partial x \, \partial y \, \partial z}, \qquad \qquad \frac{\partial^2 \gamma_y}{\partial x} = \frac{\partial^2 v}{\partial x \, \partial z} + \frac{\partial^2 w}{\partial x \, \partial y}, \\ \frac{\partial \gamma_{xz}}{\partial y} = \frac{\partial^2 u}{\partial y \, \partial z} + \frac{\partial^2 w}{\partial x \, \partial y}, \qquad \frac{\partial \gamma_{xy}}{\partial z} = \frac{\partial^2 u}{\partial y \, \partial z} + \frac{\partial^2 v}{\partial x \, \partial z},$$

находим, что

$$2\frac{\partial^2 \varepsilon_x}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right). \tag{6}$$

Эти два соотношения вида (б) можно получить с помощью перестановки символов *x*, *y*, *z*. Таким образом, мы приходим к шести дифференциальным соотношениям между компонентами деформаций, которые должны удовлетворяться в силу формул (2):

$$\frac{\partial^{2}\varepsilon_{x}}{\partial y^{2}} + \frac{\partial^{2}\varepsilon_{y}}{\partial x^{2}} = \frac{\partial^{2}\gamma_{xy}}{\partial x \partial y}, \qquad 2 \frac{\partial^{2}\varepsilon_{x}}{\partial y \partial z} = \frac{\partial}{\partial x} \left(-\frac{\partial\gamma_{yz}}{\partial x} + \frac{\partial\gamma_{xz}}{\partial y} + \frac{\partial\gamma_{xy}}{\partial z} \right),$$

$$\frac{\partial^{2}\varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{2}\varepsilon_{z}}{\partial y^{2}} = \frac{\partial^{2}\gamma_{yz}}{\partial y \partial z}, \qquad 2 \frac{\partial^{2}\varepsilon_{y}}{\partial x \partial z} = \frac{\partial}{\partial y} \left(\frac{\partial\gamma_{yz}}{\partial x} - \frac{\partial\gamma_{xz}}{\partial y} + \frac{\partial\gamma_{xy}}{\partial z} \right), \qquad (125)$$

$$\frac{\partial^{2}\varepsilon_{z}}{\partial x^{2}} + \frac{\partial^{2}\varepsilon_{x}}{\partial z^{2}} = \frac{\partial^{2}\gamma_{xz}}{\partial x \partial z}, \qquad 2 \frac{\partial^{2}\varepsilon_{z}}{\partial x \partial y} = \frac{\partial}{\partial z} \left(\frac{\partial\gamma_{yz}}{\partial x} + \frac{\partial\gamma_{xz}}{\partial y} - \frac{\partial\gamma_{xy}}{\partial z} \right).$$

Эти дифференциальные соотношения ¹) называются условиями совместности.

Используя закон Гука (3), можно преобразовать условия совместности (125) в зависимости между компонентами напряжения. Возьмем, например, условие

$$\frac{\partial^2 \varepsilon_y}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial y^2} = \frac{\partial^2 \gamma_{yz}}{\partial y \, \partial z} \,. \tag{B}$$

§ 85]

¹) Доказательство того факта, что этих шести уравнений достаточно, чтобы обеспечить существование перемещения, отвечающего заданной системе функций ε_x , ..., γ_{xy} , ..., можно найти в книгах: А. Ляв, Математическая теория упругости, ОНТИ, 1935 и І. S. Sokolnikoff, Mathematical Theory of Elasticity, стр. 25, 1956. Сами уравнения были даны Сен-Венаном (B. de Saint-Venant) в своем издании книги Навье (C. L. M. H. Navier, Résume des Leçons sur l'Application de la Mécanique, прил. 3, Carilian—Goeury, Paris, 1864).

ОБЩИЕ ТЕОРЕМЫ

Из формул (3) и (4), используя обозначения (7), получаем

$$\varepsilon_y = \frac{1}{E} [(1+v) \sigma_y - v\Theta], \quad \varepsilon_z = \frac{1}{E} [(1+v) \sigma_z - v\Theta], \quad \gamma_{yz} = \frac{2(1+v) \tau_{yz}}{E}.$$

Подставляя эти зависимости в соотношение (в), находим

$$(1+\nu)\left(\frac{\partial^{2}\sigma_{y}}{\partial z^{2}}+\frac{\partial^{2}\sigma_{z}}{\partial y^{2}}\right)-\nu\left(\frac{\partial^{2}\Theta}{\partial z^{2}}+\frac{\partial^{2}\Theta}{\partial y^{2}}\right)=2(1+\nu)\frac{\partial^{2}\tau_{yz}}{\partial y\,\partial z}.$$
 (r)

Правая часть этого уравнения может быть преобразована при помощи уравнений равновесия (123). Из этих уравнений имеем

$$\frac{\partial \tau_{yz}}{\partial y} = -\frac{\partial \sigma_z}{\partial z} - \frac{\partial \tau_{xz}}{\partial x} - Z, \quad \frac{\partial \tau_{yz}}{\partial z} = -\frac{\partial \sigma_y}{\partial y} - \frac{\partial \tau_{xy}}{\partial x} - Y.$$

Дифференцируя первое из этих уравнений по z, а второе по y, и складывая их друг с другом, получаем

$$2\frac{\partial^2 \tau_{yz}}{\partial y \,\partial z} = -\frac{\partial^2 \sigma_z}{\partial z^2} - \frac{\partial^2 \sigma_y}{\partial y^2} - \frac{\partial}{\partial x} \left(\frac{\partial \tau_{xz}}{\partial z} + \frac{\partial \tau_{xy}}{\partial y} \right) - \frac{\partial Z}{\partial z} - \frac{\partial Y}{\partial y} ,$$

или, используя первое из уравнений (123), имеем

$$2\frac{\partial^2 \mathbf{\tau}_{yz}}{\partial y \, \partial z} = \frac{\partial^2 \sigma_x}{\partial x^2} - \frac{\partial^2 \sigma_y}{\partial y^2} - \frac{\partial^2 \sigma_z}{\partial z^2} + \frac{\partial X}{\partial x} - \frac{\partial Y}{\partial y} - \frac{\partial Z}{\partial z}$$

Подставляя это выражение в соотношение (г) и используя для упрощения записи символ

$$abla^2=rac{\partial^2}{\partial x^2}+rac{\partial^2}{\partial y^2}+rac{\partial^2}{\partial z^2}$$
 ,

находим

$$(1+\nu)\left(\nabla^{2}\Theta - \nabla^{2}\sigma_{x} - \frac{\partial^{2}\Theta}{\partial x^{2}}\right) - \nu\left(\nabla^{2}\Theta - \frac{\partial^{2}\Theta}{\partial x^{2}}\right) = (1+\nu)\left(\frac{\partial X}{\partial x} - \frac{\partial Y}{\partial y} - \frac{\partial Z}{\partial z}\right). \quad (A)$$

Два аналогичных соотношения можно получить из двух других условий совместности вида (в).

Складывая все три соотношения вида (д), находим

$$(1-\nu)\nabla^2\Theta = -(1+\nu)\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z}\right); \qquad (e)$$

подставив полученное выражение для $\nabla^2 \Theta$ в соотношение (д), будем иметь

$$\nabla^2 \sigma_x + \frac{1}{1+\nu} \frac{\partial^2 \Theta}{\partial x^2} = -\frac{\nu}{1-\nu} \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} + \frac{\partial Z}{\partial z} \right) - 2 \frac{\partial X}{\partial x} \,. \tag{W}$$

Мы можем получить три соотношения такого вида, соответствующие первым трем соотношениям (125). Подобным образом остальные три условия (125) можно преобразовать к соотношениям следующего вида:

$$\nabla^{2} \tau_{yz} + \frac{1}{1+\nu} \frac{\partial^{2} \Theta}{\partial y \, \partial z} = -\left(\frac{\partial Z}{\partial y} + \frac{\partial Y}{\partial z}\right). \tag{H}$$

Если объемные силы отсутствуют или постоянны, соотношения (ж) и (и) принимают вид

$$(1+\nu) \nabla^2 \sigma_x + \frac{\partial^2 \Theta}{\partial x^2} = 0, \quad (1+\nu) \nabla^2 \tau_{yz} + \frac{\partial^2 \Theta}{\partial y \partial z} = 0,$$

$$(1+\nu) \nabla^2 \sigma_y + \frac{\partial^2 \Theta}{\partial y^2} = 0, \quad (1+\nu) \nabla^2 \tau_{xz} + \frac{\partial^2 \Theta}{\partial x \partial z} = 0, \quad (126)$$

$$(1+\nu) \nabla^2 \sigma_z + \frac{\partial^2 \Theta}{\partial z^2} = 0, \quad (1+\nu) \nabla^2 \tau_{xy} + \frac{\partial^2 \Theta}{\partial x \partial y} = 0.$$

Мы видим, что в дополнение к уравнениям равновесия (123) и граничным условиям (124) компоненты напряжений в изотропном теле должны удовлетворять шести условиям совместности (ж) и (и) или шести условиям (126). Этой системы уравнений в общем случае достаточно для однозначного определения компонент напряжения (см. § 96).

Условия совместности содержат только вторые производные от компонент напряжения. Следовательно, если внешние силы таковы, что уравнения равновесия (123) вместе с граничными условиями (124) могут удовлетворяться, когда компоненты напряжения принимаются или постоянными, или линейными функциями координат, то уравнения совместности в таком случае удовлетворяются тождественно и такая система напряжений представляет собой корректное решение задачи. Несколько примеров таких задач будут рассмотрены в главе 9.

§ 86. Определение перемещений

Когда из вышеприведенных уравнений найдены компоненты напряжения, можно получить компоненты деформации, используя закон Гука (формулы (3) и (6)). Затем для определения перемещений u, v, w можно использовать соотношения (2). Дифференцируя соотношения (2) по x, y, z, можно получить 18 уравнений, содержащих 18 вторых производных от u, v, w, из которых можно определить все эти производные. Например, для компоненты перемещения u получаем

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial \varepsilon_x}{\partial x}, \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial \gamma_{xy}}{\partial y} - \frac{\partial \varepsilon_y}{\partial x}, \quad \frac{\partial^2 u}{\partial z^2} = \frac{\partial \gamma_{xz}}{\partial z} - \frac{\partial \varepsilon_z}{\partial x},
\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial \varepsilon_x}{\partial y}, \quad \frac{\partial^2 u}{\partial x \partial z} = \frac{\partial \varepsilon_x}{\partial z}, \quad \frac{\partial^2 u}{\partial y \partial z} = \frac{1}{2} \left(\frac{\partial \gamma_{xz}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} - \frac{\partial \gamma_{yz}}{\partial x} \right).$$
(a)

Вторые производные для двух других компонент перемещения vи ω можно получить с помощью циклической перестановки символов x, y, z в равенствах (a).

Значения *u*, *v*, *w* можно теперь найти, интегрируя дважды эти выражения для вторых производных. Введение произвольных постоянных интегрирования выразится в добавлении к знаОБЩИЕ ТЕОРЕМЫ

чениям u, v, w линейных функций от x, y, z, так как очевидно, что эти функции можно прибавлять к u, v, w, не оказывая влияния на уравнения (а). Чтобы не произошло изменения компонент деформации (2), эти добавочные линейные функции должны иметь вид

$$u' = a + by - cz, \quad v' = d - bx + ez, \quad w' = f + cx - ey.$$
 (6)

Это означает, что перемещения не полностью определяются напряжениями и деформациями. На перемещения, найденные из дифференциальных уравнений (123), (124) и (126), можно наложить перемещения абсолютно твердого тела. Постоянные a, d, f в уравнениях (б) соответствуют поступательной части движения тела, а постоянные b, c, e соответствуют трем поворотам такого абсолютно твердого тела относительно координатных осей. Когда имеется достаточно связей, чтобы воспрепятствовать движению тела как абсолютно твердого, шесть постоянных в уравнениях (б) можно легко определить из уравнений связей. Несколько примеров вычислений такого рода будет дано ниже.

§ 87. Уравнения равновесия в перемещениях

Один из методов решения задач теории упругости состоит в исключении компонент напряжения из уравнений (123) и (124) с помощью закона Гука и в выражении компонент деформации через перемещения с использованием формул (2). Таким путем мы приходим к трем уравнениям равновесия, содержащим только три неизвестных функции *u*, *v*, *w*. Подставляя в первое из уравнений (123) нормальное напряжение

$$\sigma_{\mathbf{x}} = \lambda e + 2G \frac{\partial u}{\partial x}, \qquad (a)$$

согласно формуле (11), касательные напряжения, определяемые из формул (6)

$$\tau_{xy} = G\gamma_{xy} = G\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right), \quad \tau_{xz} = G\gamma_{xz} = G\left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}\right), \quad (6)$$

находим

$$(\lambda+G)\frac{\partial e}{\partial x}+G\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}\right)+X=0.$$

Два других уравнения можно преобразовать подобным же образом. Затем, пользуясь символом ∇² (см. стр. 248), представим уравнения (123) в виде

$$(\lambda + G) \frac{\partial e}{\partial x} + G \nabla^2 u + X = 0,$$

$$(\lambda + G) \frac{\partial e}{\partial y} + G \nabla^2 v + Y = 0,$$

$$(\lambda + G) \frac{\partial e}{\partial z} + G \nabla^2 w + Z = 0$$
(127)

при отсутствии массовых сил эти уравнения принимают вид

$$(\lambda + G) \frac{\partial e}{\partial x} + G \nabla^2 u = 0,$$

$$(\lambda + G) \frac{\partial e}{\partial y} + G \nabla^2 v = 0,$$

$$(\lambda + G) \frac{\partial e}{\partial z} + G \nabla^2 w = 0.$$
(128)

Дифференцируя первое из этих уравнений по x, второе по y и третье - по г, а затем складывая получаемые соотношения, находим

$$(\lambda + 2G) \nabla^2 e = 0.$$

Таким образом, объемное расширение е должно удовлетворять дифференциальному уравнению

$$\frac{\partial^2 e}{\partial x^2} + \frac{\partial^2 e}{\partial y^2} + \frac{\partial^2 e}{\partial z^3} = 0.$$
 (129)

Тот же вывод относится и к случаю, когда объемные силы постоянны по всему объему тела.

Подставляя выражения для напряжений, определяемые по формулам вида (а) и (б), в граничные условия (124), находим

$$\overline{X} = \lambda e l + G\left(\frac{\partial u}{\partial x}l + \frac{\partial u}{\partial y}m + \frac{\partial u}{\partial z}n\right) + G\left(\frac{\partial u}{\partial x}l + \frac{\partial v}{\partial x}m + \frac{\partial w}{\partial x}n\right) \quad (130)$$

Уравнения (127) вместе с граничными условиями (130) полностью определяют три функции и, v, w. Затем по формулам можно найти компоненты деформации, и из соотношений (9) и (6) — компоненты напряжения. Применение этих уравнений будет показано в главе 14.

§ 88. Общее решение для перемещений

С помощью простой подстановки легко проверить, что дифференциальные уравнения равновесия в перемещениях (128) удовлетворяются, если положить¹)

$$u = \varphi_1 - \alpha \frac{\partial}{\partial x} (\varphi_0 + x\varphi_1 + y\varphi_2 + z\varphi_3),$$

$$v = \varphi_2 - \alpha \frac{\partial}{\partial y} (\varphi_0 + x\varphi_1 + y\varphi_2 + z\varphi_3),$$

$$w = \varphi_3 - \alpha \frac{\partial}{\partial z} (\varphi_0 + x\varphi_1 + y\varphi_2 + z\varphi_3),$$

¹) Это решение дали независимо П. Ф. Папкович (Р. F. Раркоvitch, Compt. Rend. 195, 513, 753 (1932)) и Нейбер (Н. Nеuber, Z. Ang. Math. Mech. 14, 203 (1934)). Другие общие решения дали Б. Г. Галеркин (В. Galerkin, Compt. Rend. 190, 1047 (1930)), а также Буссинеск (Boussinesq) и Кельвин (Kelvin) (см. Todhunter, Pearson, History of Elasticity, т. 2). Кроме того см. R. D. Mindlin, Bull. Am. Math. Soc. (1936) стр. 373. [См. также Б. Г. Галеркин, ДАН СССР, сер. А, стр. 355, 1930; Г. Д. Гродский, Известия АН СССР, сер. матем. и ест. наук, № 10, 1934. (Прим. ред.)]

где $4\alpha = 1/(1-\nu)$ и четыре функции ϕ_0 , ϕ_1 , ϕ_2 , ϕ_3 являются гармоническими, т. е.

$$\nabla^2 \varphi_0 = 0, \quad \nabla^2 \varphi_1 = 0, \quad \nabla^2 \varphi_2 = 0, \quad \nabla^2 \varphi_3 = 0.$$

Можно показать, что это решение является общим, даже если опустить в нем φ_0^{1}).

Нейбер преобразовал эту форму решения к криволинейным координатам и применил ее к решению задач о телах вращения²), порождаемых гиперболами (гиперболический вырез в цилиндре) и эллипсами (полость в виде эллипсоида вращения) и подверженных растяжению, изгибу, кручению или сдвигу в направлении, поперечном к оси, совместно с изгибом.

§ 89. Принцип суперпозиции

Решение задачи для конкретного упругого тела с заданными поверхностными и объемными силами требует определения компонент напряжений или перемещений, которые удовлетворяют соответствующим дифференциальным уравнениям и граничным условиям. Если в качестве основных неизвестных выбраны компоненты напряжения, то следует удовлетворить: 1) уравнениям равновесия (123), 2) условиям совместности (125) и 3) граничным условиям (124). Обозначим через $\sigma_x, \ldots, \tau_{xy}, \ldots$ напряжения, вызванные поверхностными силами $\overline{X}, \overline{Y}, \overline{Z}$ и массовыми силами X, Y, Z.

Пусть σ'_x , ..., τ'_{xy} , ... — компоненты напряжения в том же упругом теле, вызванные поверхностными силами \overline{X}' , \overline{Y}' , \overline{Z}' и объемными силами X', Y', Z'. Тогда компоненты напряжения $\sigma_x + \sigma'_x$, ..., $\tau_{xy} + \tau'_{xy}$... будет представлять напряжения, вызванные поверхностными силами $\overline{X} + \overline{X}'$, $\overline{Y} + \overline{Y}'$, $\overline{Z} + \overline{Z}'$ и объемными силами X + X', ... Это положение справедливо вследствие того, что все дифференциальные уравнения и граничные условия линейны. Следовательно, складывая первое из уравнений (123) с соответствующим уравнением

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X' = 0,$$

находим

$$\frac{\partial}{\partial x}(\sigma_x + \sigma'_x) + \frac{\partial}{\partial y}(\tau_{xy} + \tau'_{xy}) + \frac{\partial}{\partial z}(\tau_{xz} + \tau'_{xz}) + X + X' = 0.$$

¹) Исследование вопроса о числе функций, необходимом для полноты решения см. в работе Р. М. Naghdi, C. S. Hsu, J. Math. Mech. 10, 233-246 (1961), а также в работах, ссылки на которые приведены там.

²⁾ Н. Neuber, Kerbspannungslehre, изд. 2, Berlin, 1958. Эта книга содержит также решения двумерных задач. См. выше главу 6.
Подобным образом из первого граничного условия (124) и его аналога путем сложения получаем

$$\overline{X} + \overline{X}' = (\sigma_x + \sigma'_x) \, l + (\tau_{xy} + \tau'_{xy}) \, m + (\tau_{xz} + \tau'_{xz}) \, n.$$

Таким же путем можно получить и условия совместности. Эта полная система уравнений показывает, что $\sigma_x + \sigma'_x$, ..., $\tau_{xy} + \tau'_{xy}$, ... удовлетворяют всем уравнениям и граничным условиям, определяющим напряжения, вызванные усилиями $\overline{X} + \overline{X}'$, ..., X + X', ... Этот факт является примером применения принципа суперпозиции. Его легко распространить на другие виды граничных условий, например на заданные перемещения.

При выводе уравнений равновесия (123) и граничных условий (124) мы не делали различия между положением и формой элемента до и после нагружения. Как следствие, полученные уравнения (и соответственно сделанные из них выводы) справедливы только до тех пор, пока малые перемещения при деформировании не влияют существенно на действие внешних сил. Однако в ряде случаев деформацию приходится принимать во внимание. Тогда приведенный выше принцип суперпозиции теряет силу. Примером такого рода является балка, испытывающая одновременное действие продольной и поперечной нагрузки. Много других примеров появляется в связи с исследованиями устойчивости тонкостенных конструкций.

§ 90. Энергия деформации

Если однородный стержень подвергается простому растяжению, то при удлинении стержня силы, приложенные к его концам, совершат некоторую работу.

Таким образом, если на элемент стержня, показанный на рис. 130, действует лишь одно нормальное напряжение σ_x , то соответствующая сила $\sigma_x dy dz$ совершает работу на перемещении $\varepsilon_x dx$. Зависимость между этими двумя

величинами в процессе нагружения изображается прямой линией OA на рис. 130; δ , а работа, совершенная в процессе деформации, определяется площадью $1/2 (\sigma_x dy dz) (\varepsilon_x dx)$ треугольника OAB. Обозначая эту работу через dV, имсем

$$dV = \frac{1}{2} \sigma_x \varepsilon_x \, dx \, dy \, dz. \tag{a}$$

Очевидно, что такая же работа совершается во всех подобных элементах, если они имеют тот же объем. А теперь зададимся вопросом: что стало с этой работой, в какой вид или виды энергии она перешла?

Адиабатическое сжатие газа вызывает повышение его температуры. Когда адиабатически сжимается обычный стальной стержень, происходит аналогичное, очень малое повышение температуры. Начальная температура может быть восстановлена затем путем отнятия тепла. Такое изменение температуры изменяет и деформацию, однако это изменение касается очень малой доли адиабатической деформации. Если бы это было не так, то между адиабатическим и изотермическим модулями упругости наблюдалось бы значительное различие. В действительности это различие для обычных металлов очень мало¹). Например, адиабатический модуль Юнга для железа превышает изотермический модуль всего на 0,26%. Такого рода различиями мы будем здесь пренебрегать²). Работа, затраченная на деформацию элемента, переходит в накапливаемую в нем энергию, называемую энергией деформации. При этом предполагается, что элемент остается упругим и не образуется кинетическая энергия.

Те же соображения используются и в том случае, когда на элемент действуют все шесть компонент напряжения σ_x , σ_y , σ_z , τ_{xy} , τ_{yz} , τ_{zx} (рис. 3). Сохранение энергии требует, чтобы работа зависела только от конечных значений, но не от порядка, в котором прикладываются силы. В противном случае, производя нагружение в одном порядке, а разгрузку—в другом, мы могли бы получить большее количество работы. Следовательно, при полном цикле деформирования из элемента можно было бы извлечь некоторую величину работы.

Определение совершенной работы проще всего произвести, если силы или напряжения возрастают одновременно в одном и том же отношении. Тогда зависимость между каждой силой и соответствующим ей перемещением остается линейной, как показано на рис. 130, δ , и работа, совершенная этими силами, равна $dV = V_0 dx dy dz$, (6)

где

$$V_{0} = \frac{1}{2} \left(\sigma_{x} \varepsilon_{x} + \sigma_{y} \varepsilon_{y} + \sigma_{z} \varepsilon_{z} + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{xz} \gamma_{xz} \right).$$
(B)

Таким образом, V_0 представляет собой суммарную работу, приходящуюся на единицу объема, или энергию деформации в единице объема.

В предыдущих рассуждениях напряжения на противоположных гранях элемента считались равными и предполагалось, что объемных сил нет. Рассмотрим теперь работу, совершенную над элементом, когда напряжения по

¹) Его исследовал Кельвин (Kelvin Quart. J. Math., 1855). Вторичная публикация в Phil. Mag., ser. 5, № 5, 4—27, 1878. Библиографию более ранних исследований см. в книге: А. Ляв, Математическая теория упругости, ОНТИ, 1935.

²⁾ Дальнейшее исследование этого вопроса дано, например, в книге С. Е. Реагson, Theoretical Elasticity, Harvard University Press, Cambridge, Mass., 1959.

§ 90]

ЭНЕРГИЯ ДЕФОРМАЦИИ

объему тела изменяются и имеются объемные силы. Рассмотрим сначала усилие $\sigma_x dy dz$ на грани 1 элемента (рис. 130, *a*); оно совершает работу на перемещении *u* этой грани, и величина этой работы равна $\frac{1}{2} (\sigma_x u)_1 dy dz$, где индекс 1 показывает, что функции σ_x и *u* должны определяться в точке 1. Сила $\sigma_x dy dz$ на грани 2 совершает работу $-\frac{1}{2} (\sigma_x u)_2 dy dz$. Полная работа на обеих гранях

$$\frac{1}{2} [(\sigma_x u)_1 - (\sigma_x u)_2] dy dz$$
$$\frac{1}{2} \frac{\partial}{\partial x} (\sigma_x u) dx dy dz.$$
(r)

в пределе будет равна

Вычисляя работу, совершенную касательными напряжениями τ_{xy} , $\tau_{x\tau}$ на гранях 1 и 2 и складывая ее с работой, определяемой выражением (г), находим работу, совершенную на обеих гранях всеми тремя компонентами напряжения:

$$\frac{1}{2}\frac{\partial}{\partial x}\left(\sigma_{x}u+\tau_{xy}v+\tau_{xz}w\right)\,dx\,dy\,dz,$$

где v и w — компоненты перемещения в направлениях у и z. Подобным же образом может быть определена работа, совершенная на двух других парах граней. Для полной работы, совершенной напряжениями на всех этих гранях, получаем выражение

$$\frac{1}{2} \left[\frac{\partial}{\partial x} (\sigma_{x} u + \tau_{xy} v + \tau_{xz} w) + \frac{\partial}{\partial y} (\sigma_{y} v + \sigma_{yz} w + \tau_{xy} u) + \frac{\partial}{\partial z} (\sigma_{z} w + \tau_{xz} u + \tau_{yz} v) \right] dx dy dz.$$
(1)

При нагружении тела объемные силы X dx dy dz и прочие совершают работу

$$\frac{1}{2} (Xu + Yv + Zw) \, dx \, dy \, dz. \tag{e}$$

Полная работа, совершенная над элементом, представляется суммой работ (д) и (е). Выполняя в (д) дифференцирование, находим для этой полной работы выражение

$$\frac{1}{2} \left[\sigma_x \frac{\partial u}{\partial x} + \sigma_y \frac{\partial v}{\partial y} + \sigma_z \frac{\partial w}{\partial z} + \tau_{xy} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \tau_{yz} \left(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) + + \tau_{xz} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) + u \left(\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X \right) + + v \left(\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + \frac{\partial \tau_{xy}}{\partial x} + Y \right) + w \left(\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + Z \right) \right] dx \, dy \, dz.$$

Согласно уравнениям равновесия (123), выведенным в § 84, множители в скобках при u, v, w равны нулю. Величины, умножаемые на компоненты напряжения, согласно формулам (2), равны ε_x , ..., γ_{xy} , ... соответственно. Следовательно, полная работа, совершенная над элементом, сводится к значению, определяемому выражениями (б) и (в). Таким образом, эти формулы будут определять работу, совершенную над элементом упругого тела, или энергию, накопленную им, и в том случае, когда напряжения распределены по телу неоднородно и имеются объемные силы.

С помощью закона Гука (см. равенства (3) и (6)) мы можем выразить функцию V_0 , определяемую равенством (в), как функцию одних только компонент напряжения:

$$V_{0} = \frac{1}{2E} (\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2}) - \frac{\nu}{E} (\sigma_{x}\sigma_{y} + \sigma_{y}\sigma_{z} + \sigma_{z}\sigma_{x}) + \frac{1}{2G} (\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{xz}^{2}).$$
(131)

Легко проверить, что

$$V_{0} = \frac{1}{2E} \left[I_{1}^{2} - 2 \left(1 + v \right) I_{2} \right],$$

где I₁, I₂—инварианты напряжения, введенные в § 78. Поступая несколько иначе, мы можем использовать соотно-шения (11) и выразить V₀ как функцию одних только компонент леформации. Тогда

$$V_{0} = \frac{1}{2} \lambda e^{2} + G \left(\varepsilon_{x}^{2} + \varepsilon_{y}^{2} + \varepsilon_{z}^{2}\right) + \frac{1}{2} G \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{xz}^{2}\right), \quad (132)$$

гле

$$e = \varepsilon_x + \varepsilon_y + \varepsilon_z, \quad \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

Формула (132) непосредственно показывает, что величина V_о всегда положительна.

Легко показать, что производная от функции V₀, определяемой формулой (132), по любой компоненте деформации дает соответствующую компоненту напряжения. Так, например, взяв про-изводную по ε_x и используя первое из соотношений (11), находим. что

$$\frac{\partial V_{\mathbf{0}}}{\partial e_{\mathbf{x}}} = \lambda e + 2G \epsilon_{\mathbf{x}} = \sigma_{\mathbf{x}}. \tag{(w)}$$

Для случая плоского напряженного состояния, в котором $\sigma_z = \tau_{xz} = \tau_{yz} = 0$, выражение (131) принимает вид

$$V_{o} = \frac{1}{2E} \left(\sigma_{x}^{2} + \sigma_{y}^{2} \right) - \frac{\nu}{E} \sigma_{x} \sigma_{y} + \frac{1}{2G} \tau_{xy}^{2}$$
(133)

или через компоненты деформации

$$V_{0} = \frac{E}{2(1-\nu^{2})} \left(\varepsilon_{x}^{2} + \varepsilon_{y}^{2} + 2\nu\varepsilon_{x}\varepsilon_{y}\right) + \frac{G}{2} \gamma_{xy}^{2}.$$
(134)

Полная энергия диформации V деформируемого упругого тела получается из энергии деформации в единице объема V₀ путем интегрирования. Обозначая элемент объема через dt, получаем

$$V = \int V_0 d\tau. \tag{135}$$

Эта формула определяет полную работу по преодолению сопро-тивления внутренних сил, совершенную при нагружении. Если мы представим себе тело как совокупность очень большого числа частиц, соединенных пружинами, то эта формула будет представлять работу, совершаемую при растяжении и сжатии пружин. Для получения работы, которую совершили над частицами тела внутренние силы, нужно поменять знак на обратный.

Величина энергии деформации, накопленной в единице объема материала, иногда используется как критерий для определения предельного напряжения, при котором происходит разрушение¹). Чтобы согласовать теорию с тем фактом, что изотропные материалы могут выдерживать очень большие гидростатические давления без возникновения течения, было предложено разделить энергию деформации на две части, одна из которых связана с изменениями объема, а другая — со сдвигами, и считать, что прочность определяется лишь второй частью энергии²).

Мы знаем, что изменение объема пропорционально сумме трех нормальных компонент напряжения (см. формулу (8)), так что если эта сумма равна нулю, то деформация связана только с изменением формы. Каждую компоненту напряжения можно разложить на две части

$$\sigma_{\mathbf{x}} = \sigma'_{\mathbf{x}} + p, \quad \sigma_{\mathbf{y}} = \sigma'_{\mathbf{y}} + p, \quad \sigma_{\mathbf{z}} = \sigma'_{\mathbf{z}} + p, \quad (\mathbf{H})$$

$$p = \frac{1}{3} (\sigma_{\mathbf{x}} + \sigma_{\mathbf{y}} + \sigma_{\mathbf{z}}) = \frac{1}{3} \Theta.$$

Поскольку отсюда

$$\sigma_x + \sigma_y + \sigma_z = 0,$$

напряженное состояние J'_x , J'_y , J'_x вызывает только формоизменение, а изменение объема зависит лишь от величины равномерного растяжения p. Часть полной энергии, связанная с этим изменением объема, согласно формуле (8), равна

$$\frac{e\rho}{2} = \frac{3(1-2v)}{2E} \rho^{2} = \frac{1-2v}{6E} (\sigma_{x} + \sigma_{y} + \sigma_{z})^{2}.$$
 (K)

Вычитая это выражение из (131) и используя тождество

$$\sigma_x \sigma_y + \sigma_y \sigma_z + \sigma_z \sigma_x = -\frac{1}{2} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 \right] + \left(\sigma_x^2 + \sigma_y^2 + \sigma_z^2 \right),$$

мы можем представить ту часть полной эмергии, которая связана с формоизменением, в виде

$$V_{0} - \frac{1 - 2v}{6E} (\sigma_{x} + \sigma_{y} + \sigma_{z})^{2} = \frac{1 + v}{6E} [(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{3}] + \frac{1}{2G} (\tau_{xy}^{3} + \tau_{xz}^{2} + \tau_{yz}^{2}). \quad (136)$$

В случае простого растяжения в направлении х отлична от нуля только величина σ_x и энергия формоизменения (136) равна $(1+\nu)\sigma_x^2/(3E)$. В случае чистого сдвига, скажем, между плоскостями *xz* и *yz*, от нуля отлична только компонента τ_{xy} и энергия формоизменения равна $(1/2G)\tau_{xy}^2$. Если верно, что при любой системе напряжений разрушение происходит тогда, когда энергия формоизменения достигает определенного предела (характерного для материала),

энергия деформации

257

где

¹) Различные теории прочности обсуждаются в книге: С. П. Тимошенко, Сопротивление материалов, т. 2, Физматгиз, 1960.

²) См. М. Т. Huber, Czasopismo Technizne, Lwóv, 1904. См. также R. Mises, Göttingen Nachrichten, Math.-Phys. Klasse, 1913, стр. 582; F. Schleicher, Z. Ang. Math. Mech. 5, 199 (1925). Экспериментальные данные см. в книге: R. Hill, Mathematical Theory of plasticity, Oxford Univ. Press, Fair Lawn, 1950. [См. русский перевод: Р. Хилл, Математическая теория пластичности, Гостехиздат, 1956].

³) Касательные компоненты т_{ху}, т_{у2}, т_{хх} вызывают деформации сдвига, которые с точностью до малых первого порядка относительно малых деформаций не влияют на изменения объема.

то отношение между критическим значением самого по себе растягивающего напряжения и самого по себе касательного напряжения находятся из уравнения $\frac{1}{2G} \tau_{xy}^2 = \frac{1+\nu}{3F} \sigma_x^2,$

откуда

$$\tau_{xy} = \frac{1}{\sqrt{3}} \sigma_x = 0.557 \sigma_x. \tag{(1)}$$

Эксперименты со сталью показывают ¹), что отношение между пределом текучести на растяжение и пределом текучести на сдвиг находится в очень хорошем согласии с уравнением (л). Вводя в рассмотрение энергию деформации, можно связать принцип Сен-Венана (см. стр. 57) с накоплением энергии ²). Этот принцип эквивалентен утверждению, что самоуравновешенное распределение усилий на малой части упругого тела вызывает лишь местные напряжения.

При таком распределении приложенные усилия совершают работу лишь за счет деформации нагруженной области. Зафиксируем положение и орнентацию некоторого поверхностного элемента этой области. Если обозначить через *р* порядок величины (например, среднее значение) силы, действующей на единицу площади, а через *a*— характерный линейный размер (например, диаметр) нагруженной части, то компоненты деформации будут иметь порядок *p/E*, а относительные перемещения в пределах нагруженной части будут порядка *pa/E*. Совершенная работа будет иметь порядок *pa²* (*pa/E*), или *p²a³/E*.

С другой стороны, компоненты напряжения порядка р вызывают энергию в единице объема порядка p²/E. Следовательно, в соответствии с формулировкой принципа совершенная работа достаточна лишь для объема порядка a³.

Здесь предполагалось, что тело имеет строго заданную форму и следует закону Гука. Последнее ограничение можно снять, если считать, что Е в вышеприведенных рассуждениях определяет просто порядок величины наклона кривых напряжения — деформация для рассматриваемого материала. Если тело не является существенно трехмерным, как это имеет место, например, в случае балки с очень тонкой стенкой или тонкой цилиндрической оболочки, то самоуравновешенное распределение усилий на одном конце может передаваться на расстояния, во много раз превышающие высоту балки или диаметр оболочки ³).

Приведенные выше рассуждения можно без изменения повторить для нагрузки с ненулевой результирующей, если в пределах нагруженной части или вблизи нее имеется закрепленный элемент поверхности. Таким образом, если деформируемый материал скреплен с абсолютно твердым, то давление, приложенное к малой части первого материала вблизи закрепления вызовет лишь местные напряжения 4).

§ 91. Энергия деформации для краевой дислокации

В § 34 было показано, что создание краевой дислокации с перемещением δ (рис. 48, δ) требует приложения пары сил *P*. Зависимость между *P* и δ , определяемая формулой (б) из § 34

³) В. З. Власов, Тонкостенные упругие стержни, Гостехиздат, 1940; J. N. Goodier, M. V. Barton, J. Appl. Mech. 11, А-35 (1944); N. J. Hoff, J. Aeron. Sci. 12, 455 (1945); L. H. Donnell, J. Appl. Mech. 29, 792—793 (1962). ⁴) J. N. Goodier, J. Appl. Phys. 13, 167 (1942).

¹⁾ См. статьи: W. Lode, Z. Physik 36, 913 (1926); Forschungsarbeiten, № 303, Berlin, 1928.

²) J. N. Goodier, Phil. Mag., ser. 7, 24, 325 (1937); J. Appl. Physics, 13, 167 (1942).

§ 91]

с учетом формулы (ж) из § 33 имеет вид

$$P = \frac{N}{a^2 + b^2} \frac{E}{4\pi} \,\delta,\tag{a}$$

где

$$N = a^2 - b^2 + (a^2 + b^2) \ln \frac{b}{a}.$$
 (6)

Полная энергия деформации кольца равна работе, производимой нарой сил *P* в процессе нагружения. Таким образом, используя (а), для пластинки единичной толщины имеем

$$V = \frac{1}{2} P \delta = \frac{E}{8\pi} \frac{N}{a^2 + b^2} \delta^2.$$
 (B)

Эта формула справедлива для плоского напряженного состояния. Для плоской деформации функция напряжения φ не изменится, а деформации ε_x , ε_y , γ_{xy} , а следовательно и перемещения u, v из тех, которые имеют место при плоском напряженном состоянии, получаются путем замены упругих постоянных, как указано в § 20. Таким образом, чтобы перейти к случаю $\varepsilon_z = 0$, отвечающему плоской деформации, мы должны заменить в (д) E на $E/(1-v^2)$. Тогда вместе с (в) и (б), для энергии деформации на единицу длины тела вдоль оси *Oz* имеем следующее выражение:

$$V = \frac{\delta^2}{8\pi} \frac{E}{1 - v^2} \left(\ln \frac{b}{a} - \frac{b^2 - a^2}{b^2 + a^2} \right). \tag{(r)}$$

Эта формула используется обычно в материаловедении для определения энергии дислокаций в кристалле¹). Переменные *a* и *b* должны иметь конечные значения, ибо в противном случае энергия будет бесконечной. Внешний радиус *b* связан с общими размерами кристалла, внутренний радиус *a* связан с расстояниями между атомами в кристаллической решетке.

В краевых задачах теории упругости границы тела обычно задаются. Однако центр дислокации в кристалле может перемещаться по нему, подобно тому, как внутренняя граница круга (r=a) может переноситься, тогда как внешняя (r=b), остается неподвижной. Если одновременно существуют две дислокации, одна положительная (т. е. с положительным δ), а другая отрицательная (т. е. с отрицательным δ), то пока их центры раздельны, существует результирующая полная энергия деформации. Если же эти центры совпадают, то обе дислокации аннулируют друг друга. В этом случае не возникают ни напряжения, ни деформации; не происходит и изменения энергии. Очевидно, сближение двух центров

¹) См., например, А. Н. Cottrell, Dislocation and Plastic Flow in Crystals, стр. 38, Oxford University Press, Fair Lawn, New Jersey, 1953. [Русский перевод: А.Котрелл, Дислокации и пластическое течение в кристаллах, Металлургиздат, М., 1958.]

общие теоремы

дислокаций уменьшает полную энергию деформации. Поскольку в данных условиях эта энергия представляет всю потенциальную энергию системы, то центры будут стремиться притягивать друг друга¹), и при их слиянии энергия перейдет в другую форму, например вызовет волновое движение по кристаллу.

§ 92. Принцип виртуальной работы

При решении задач теории упругости иногда удобно использовать принцип виртуальной работы. Для случая одной частицы этот принцип гласит, что если частица находится в состоянии равновесия, то полная работа всех сил, действующих на частицу, на любом виртуальном перемещении равна нулю.

Если δu , δv , δw суть компоненты виртуального перемещения в направлениях x, y, z, a $\sum X$, $\sum Y$, $\sum Z$ —суммы проекций всех сил на эти направления, то принцип виртуальной работы дает

$$\delta u \sum X = 0, \quad \delta v \sum Y = 0, \quad \delta w \sum Z = 0.$$
 (a)

Эти уравнения выполняются для любого виртуального перемещения, если

$$\sum X = 0, \quad \sum Y = 0, \quad \sum Z = 0. \tag{6}$$

Обратно, если даны уравнения (б), то, умножая их на произвольные множители δu , δv , δw , получаем (а). При такой трактовке эти произвольные множители можно назвать виртуальными перемещениями. Силы же сохраняют свой прежний смысл.

Упругое тело, находящееся в состоянии покоя под действием массовых и поверхностных сил, представляет собой систему частиц, на каждую из которых действует система сил, находящаяся в равновесии. На любом виртуальном перемещении полная работа всех сил, совершенная над каждой частицей, обращается в нуль, а следовательно, обращается в нуль и полная работа, совершенная всеми силами данной системы.

В качестве виртуального перемещения в случае упругого тела можно принять любое малое²) перемещение, совместимое с условиями сплошности материала и с условиями, наложенными на перемещения точек поверхности тела, если такие условия заданы. Если, например, задано условие, что некоторая часть поверхности тела (скажем, заделанный конец балки) неподвижна или имеет заданные перемещения, то виртуальное перемещение для такой части поверхности равно нулю.

¹) G. I. Taylor, Proc. Roy. Soc. (London), ser. A, 134, 362-387 (1934).

²⁾ Малость по сравнению с действительными перемещениями предполагается для удобства.

Обозначим через u, v, w компоненты действительного переме-щения, вызванного нагрузками, а через $\delta u, \delta v, \delta w$ — компоненты виртуального перемещения. Эти последние могут быть произ-вольными непрерывными функциями переменных x, y, z, малыми по абсолютной величине.

Виртуальные перемещения δ*u*, δ*v*, δ*w* соответствуют прира-шениям шести компонент деформации, определяемым формулами

$$\delta \varepsilon_x = \frac{\partial}{\partial x} \, \delta u, \, \ldots, \, \, \delta \gamma_{xy} = \frac{\partial}{\partial x} \, \delta v + \frac{\partial}{\partial y} \, \delta u, \, \ldots, \tag{B}$$

а соответствующая виртуальная работа для некоторого элемента объема будет

$$(\sigma_x \delta \varepsilon_x + \sigma_y \delta \varepsilon_y + \sigma_z \delta \varepsilon_z + \tau_{xy} \delta \gamma_{xy} + \tau_{yz} \delta \gamma_{yz} + \tau_{zx} \delta \gamma_{zx}) \, dx \, dy \, dz. \qquad (r)$$

Согласно формуле (ж) на стр. 256 соотношение (г) эквивалентно выражению

$$\delta V_0 dx \, dy \, dz,$$
 (д)

если, согласно (132), считать V_0 функцией компонент деформации. Как уже было установлено, это изменение энергии деформа-ции определяет работу, совершенную против сил взаимодействия между частицами (как и в случае растягиваемых пружин). Чтобы получить работу, совершаемую силами взаимодействия над час-тицами, нужно поменять знак этой работы на обратный. Внешние силы слагаются из: 1) краевых поверхностных сил

 $\overline{X} dS, \overline{Y} dS, \overline{Z} dS$, действующих на каждый элемент поверхности dS, и 2) объемных сил $X d\tau$, $Y d\tau$, $Z d\tau$, действующих на каждый элемент объема $d\tau$, или dx dy dz.

Утверждение, что полная виртуальная работа для всего тела равна нулю, теперь принимает форму

$$\int (\overline{X} \,\delta u + \overline{Y} \,\delta v + \overline{Z} \,\delta w) \,dS + \int (X \,\delta u + Y \,\delta v + Z \,\delta w) \,d\tau - - \int \delta V_0 \,d\tau = 0.$$
(137)

Поскольку в соотношении (137) заданные внешние силы и дей-ствительные компоненты напряжения являются неизменными, знак вариации δ можно вынести за знак интеграла. Тогда, изменяя всюду знаки на обратные, можно записать

$$\delta \left[\int V_0 \, d\tau - \int \left(Xu + Yv + Zw \right) d\tau - \int \left(\overline{X}u + \overline{Y}v + \overline{Z}w \right) dS \right] = 0, \, (137')$$

учитывая, что операция варьирования δ не влияет на силы, за-писанные в явной форме. Первый интеграл в квадратных скобках представляет собой энергию деформации и, поскольку он равен энергии, накопленной до начала разгрузки, его можно назвать *потенциальной энергией деформации*. Второй интеграл представ-ляет собой потенциальную энергию объемных сил, значения кото-

рых зафиксированы независимо от u, v, w. Когда u = v = w = 0, эта энергия равна нулю. Подобным же образом третий интеграл представляет собой потенциальную энергию поверхностных сил. Все выражение в скобках является, по определению, полной потенциальной энергией системы. Тогда уравнение (137) показывает, что действительные перемещения u, v, w при заданных внешних силах (и заданных условиях закрепления) таковы, что для любого виртуального перемещения первая вариация полной потенциальной энергии равна нулю, или короче, полная потенциальная энергия стационарна.

Термины виртуальное перемещение и виртуальная работа, хотя и имеют исторический смысл, означают не более чем использование произвольных множителей, представленных здесь величинами би, бv, бw, вместе с уравнениями равновесия. Удобно, как это делалось в предыдущих параграфах, рассматривать их как вариации действительных перемещений и, v, w.

Чтобы исследовать устойчивость равновесия, мы можем вообразить импульсные возмущения, за которыми следуют действительные вариации равновесных перемещений. Поскольку диссипации энергии нет, сумма потенциальной и кинетической энергий остается постоянной. Если при отклонении от равновесной конфигурации потенциальная энергия должна увеличиваться, то кинетическая энергия должна уменьшаться. Однако если потенциальная энергия должна уменьшаться, то кинетичеткая энергия будет возрастать. Эти два случая описываются соответственно как устойчивый и неустойчивый по отношению к малым возмущениям. Устойчивость, очевидно, требует, чтобы потенциальная энергия в положении равновесия достигала минимума, а неустойчивость --- чтобы она была максимальной. При таком использовании потенциальной энергии подразумевается, что в движении, следующем за возмущением: 1) объемные и поверхностные силы двигаются вместе с элементами материала, на которые они действуют в равновесной конфигурации, и 2) эти силы не меняют ни величины, ни направления.

Рассмотрим снова потенциальную энергию, отнесенную к единице объема для плоского напряженного состояния в форме (134). Вслед за импульсным возмущением компоненты деформации в равновесном состоянии считаются возрастающими за короткий промежуток времени на величины $\delta \varepsilon_x$, $\delta \varepsilon_y$, $\delta \varepsilon_z$. Тогда, на основании (134), новое полное значение V_0 будет равно

$$\frac{E}{2(1-\nu^2)} \left[(\varepsilon_x + \delta \varepsilon_x)^2 + 2\nu (\varepsilon_x + \delta \varepsilon_x) (\varepsilon_y + \delta \varepsilon_y) + (\varepsilon_y + \delta \varepsilon_y)^2 \right] + \frac{\partial}{2} (\gamma_{xy} + \delta \gamma_{xy})^2.$$

Вычитая из него равновесное значение, получаемое непосредст-

венно по формуле (134), находим полное приращение энергии

$$\frac{E}{2(1-\nu^2)} \left[2\varepsilon_x \delta \varepsilon_x + 2\nu \left(\varepsilon_x \delta \varepsilon_y + \varepsilon_y \delta \varepsilon_x \right) + 2\varepsilon_y \delta \varepsilon_y \right] + \frac{G}{2} 2\gamma_{xy} \delta \gamma_{xy} + \frac{E}{2(1-\nu^2)} \left[(\delta \varepsilon_x)^2 + 2\nu \delta \varepsilon_x \delta \varepsilon_y + (\delta \varepsilon_y)^2 \right] + \frac{G}{2} (\delta \gamma_{xy})^2.$$

Здесь *первая* строчка представляет *приращение первого порядка* н в точности соответствует формуле (д), если не считать объемного множителя dx dy dz. Вторая строчка представляет собой *приращение второго порядка* и положительна, так как величина V_0 в (134) положительна при любых значениях ε_x , ε_y , γ_{xy} .

В выражение для полной потенциальной энергии, представленное с учетом приведенных выше постулатов 1) и 2) членами в скобках в (137'), не входят приращения второго порядка от массовых и поверхностных сил. Приращения первого порядка обращаются в нуль, так как действительные перемещения u, v, w в этом виде возмущения можно принять за виртуальные. Поскольку приращение второго порядка должно быть положительным, состояние является устойчивым в определенном здесь смысле. Мы увидим, что этот вывод связан с использованием закона Гука, а также постулатов 1) и 2)¹). Для нелинейных зависимостей между напряжениями и деформациями возможны приращения порядка выше двух.

Общие соображения относительно полной энергии системы были использованы А. Гриффитсом при развитии его теории разрушения хрупких материалов²). Известно, что материалы всегда проявляют намного меньшую прочность, чем можно было бы ожидать на основе анализа молекулярных сил. Для одного из видов стекла Гриффитс обнаружил теоретическую прочность на растяжение порядка 112 000 кГ/см², тогда как опыты на растяжение со стек-

§ 92]

¹) В теории устойчивости материал может подчиняться закону Гука, однако стойка или пластинка под действием сжимающей нагрузки, превышающей эйлерово критическое значение, не будет устойчивой в рассматриваемом смысле. Однако задачи устойчивости исключаются из линеаризованной теории упругости предположением о малости перемещений. Например, граничные условия для задачи, соответствующей рис. 37, на вертикальных гранях принимаются в виде $\sigma_x = \tau_{xy} = 0$ на $x = \pm l$. Точные граничные условия должы были бы состоять в том, что *деформированные* грани свободны от нормальных и касательных нагрузок.

²) A. A. Griffith, Trans. Roy. Soc. (London), ser. A, **221**, 163-198 (1921); Proc. Intern. Congr. Appl. Mech., Delft, 55-63, 1924.

Ссылки на работы по механике разрушения см. в книгах и обзорных статьях: А. H. Cottrell. The Mechanical Properties of Matter, гл. 11, John Wiley, New York, 1964; D. C. Drucker, J. J. Gilman (ред.), Fracture in Solids, Academic Press, New York, 1962 [Русск. пер. Разрушение твердых тел. М. 1967]: Intern. J. Fracture Mech. (выходит с марта 1965 г.). [См. недавно опубликованные монографии: Г. И. Черепанов, Механика хрупкого разрушения, «Наука», 1974; Л. М. Качанов, Основы механики разрушения, Наука. 1974; см. также сборник «Механика в СССР за 50 лет», т. 3, «Наука», 1972 (Прим. ред.)]

лянными стержнями дали лишь 1830 кГ/см². Гриффитс показал, что это расхождение теории с экспериментом можно объяснить тем, что в таких материалах, как стекло, существуют микроскопические трещины или дефекты, вызывающие высокую концентрацию напряжений, а с нею и дальнейшее распространение трещин. Для вычислительных целей Гриффитс принимает трещину

в форме очень узкого эллиптического отверстия, большая ось которого перпендикулярна к направлению растягивающей силы. Рассмотрим пластинку, закрепленную вдоль сторон *ab* и *cd* и растягиваемую равномерно распределенным растягивающим напряжением *S*, приложенным к тем же сторонам (рис. 131). Если в пластинке создать микроскопическое эллиптическое отверстие *AB* длиной *l*, а стороны *ab* и *cd* фиксировать, то начальная энергия де-

формации, вызванная растягивающими напряжениями S, в результате появления отверстия уменьшится. Это уменьшение можно вычислить, используя решение для эллиптического отверстия (см. § 63) в пластинке единичной толщины. Это уменьшение энергии деформации равно

$$V = \frac{\pi l^2 S^2}{4E}.$$
 (e)

Если трещина удлиняется, происходит дальнейшее уменьшение энергии деформации, накопленной пластинкой. Однако удлинение трещины означает также увеличение поверхностикой энергии, поскольку поверхность твердого тела, как и поверхность жидкости, обладает поверхностным натяжением. Гриффитс обнаружил, например, что для стекла того вида, который он использовал в своих экспериментах, поверхностная энергия на единицу площади поверхности имела порядок $0,56 \cdot 10^{-3} \ cm \cdot \kappa\Gamma/cm^2$. Поскольку удлинение трещины требует увеличения поверхностной энергии, которое может быть получено за счет уменьшения энергии деформации, то удлинение может произойти и без увеличения полной энергии. Условие самопроизвольности распространения трещины состоит в равенстве этих двух значений энергии: используя выражение (е), находим

$$\frac{dV}{dl}\,dl = \frac{\pi l S_{kp}^2}{2E}\,dl = 2dlT,$$

откуда следует, что критическое напряжение

$$S_{\rm Kp} = \sqrt{\frac{4ET}{\pi l}}.$$
 (ж)

Эксперименты, в которых трещины известной длины создавались с помощью стеклорезного алмаза, оказались в очень хорошем соответствии с уравнением (ж). Было также экспериментально показано, что если принять меры предосторожности для исключения микроскопических трещин, можно получить прочность, намного превышающую обычную. Некоторые стеклянные стержни, испытанные Гриффитсом, показали предел прочности порядка 60 000 кГ/см², который составляет более половины вышеупомянутой теоретической прочности.

Спорный вопрос о возникновении бесконечного напряжения по концам трещины в теории Гриффитса был снят Г. И. Баренблаттом¹), который ввел вместо него большое, но конечное напряжение, представляющее атомные силы сцепления.

§ 93. Теорема Кастильяно

В предыдущем параграфе равновесная форма упругого тела, подвергнутого действию заданных массовых сил и при заданных граничных условиях, сопоставлялась со смежными формами, получающимися в результате виртуальных перемещений δu , δv , δw из положения равновесия. Было установлено, что истинные перемещения, отвечающие положению устойчивого равновесия, доставляют минимум потенциальной энергии системы.

Рассмотрим теперь вместо перемещений напряжения, отвечающие положению равновесия. Мы знаем, что дифференциальные уравнения равновесия (123) вместе с граничными условиями (124) недостаточны для определения компонент напряжения. Мы можем найти множество различных распределений напряжений, удовлетворяющих уравнениям равновесия и граничным условиям; в связи с этим возникает вопрос: как отличить истинное напряженное состояние от всех других статически возможных распределений напряжений?

Обозначим через σ_x и т. д. компоненты истинного напряжения, отвечающие положению равновесия, а через $\delta \sigma_x$ и т. д. малые вариации этих компонент, такие, что новые компоненты напряжения $\sigma_x + \delta \sigma_x$ и т. д. удовлетворяют тем же уравнениям равновесия (123). Затем, вычитая уравнения для одной системы из уравнений для другой системы, находим, что вариации компонент напряжения удовлетворяют трем уравнениям вида

$$\frac{\partial \delta \sigma_x}{\partial x} + \frac{\partial \delta \tau_{xy}}{\partial y} + \frac{\partial \delta \tau_{xz}}{\partial z} = 0.$$
 (a)

G. I. Barenblatt, Advances in Applied Mechanics 7, 55—129, Academic Press, New York, 1962 [см. также Γ. И. Баренблатт, ПМТФ, № 2, 3—56 (1961). Дальнейший анализ критерия хрупкого разрушения у концов трещин дан В. В. Новожиловым (см. ПММ 33, № 2, 212—222; № 5, 797—812 (1969) (Прим. ред.)].

ОБЩИЕ ТЕОРЕМЫ

Этой вариации компонент напряжения будут соответствовать вариации поверхностных усилий. Обозначим через $\delta \overline{X}$, $\delta \overline{Y}$ и $\delta \overline{Z}$ эти малые изменения поверхностных усилий; тогда, на основании граничных условий (124), находим три уравнения вида

$$\delta \sigma_{\mathbf{x}} l + \delta \tau_{\mathbf{x}y} m + \delta \tau_{\mathbf{x}\mathbf{z}} n = \delta \overline{X}.$$
 (6)

Рассмотрим теперь изменение энергии деформации тела, вызванное вышеописанными изменениями компонент напряжения. Взяв энергию деформации в единице объема в виде функции компонент напряжения (131), получим для изменения этой энергии выражение

$$\delta V_{0} = \frac{\partial V_{0}}{\partial \sigma_{x}} \,\delta \sigma_{x} + \ldots + \frac{\partial V_{0}}{\partial \tau_{xy}} \,\delta \tau_{xy} + \ldots, \tag{B}$$

имеющее в правой части шесть членов, причем

$$\frac{\partial V_0}{\partial \sigma_x} = \frac{1}{E} \left[\sigma_x - \nu \left(\sigma_y + \sigma_z \right) \right] = \varepsilon_x$$

и т. д., а также

$$\frac{\partial V_0}{\partial \tau_{xy}} = \frac{1}{G} \tau_{xy} = \gamma_{xy}$$

и т. д., откуда

$$\delta V_{\mathbf{0}} = \varepsilon_x \delta \sigma_x + \ldots + \gamma_{xy} \delta \tau_{xy} + \ldots$$

Следовательно, полное изменение потенциальной энергии, вызванное изменениями компонент напряжения, составит

$$\delta V = \int \delta V_o d\tau = \int (e_x \delta \sigma_x + \ldots + \gamma_{xy} \delta \tau_{xy} + \ldots) d\tau. \qquad (\Gamma)$$

Исследуем это изменение энергии. Чтобы учесть граничные условия (б), нам потребуется теорема, известная под названием теоремы о дивергенции¹), или теоремы Гаусса, или леммы Грина. Пусть в некоторой области, ограниченной поверхностью S, которая имеет направляющие косинусы внешней нормали l, m, n, существуют три функции пространственных координат U, V, W. Теорема формулируется в виде равенства

$$\int \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}\right) d\tau = \int (lU + mV + nW) \, dS, \qquad (138)$$

где объемный интеграл в левой части берется по всему объему, ограниченному поверхностью S, а поверхностный интеграл в правой части — по всей ограничивающей поверхности S. Поверхность S

¹) Доказательство и условия применимости этой теоремы даются почти во всех книгах по математическому анализу или векторному анализу. См., например, I. S. Sokolnikoff, R. M. Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill, New York, 1958, стр, 389. [См. также В. И. Смирнов, Курс высшей математики, т. 2. В советской литературе эту теорему называют обычно теоремой Остроградского – Гаусса. (Прим. перев.)]

может представлять внешнюю поверхность тела, а вместе с ней и поверхности одной или нескольких внутренних областей (полостей). Для наших целей удобно сперва принять

$$U = u \delta \sigma_x, \quad V = u \delta \tau_{xy}, \quad W = u \delta \tau_{xz}. \tag{A}$$

Тогда теорема (138) дает

$$\int \left[\frac{\partial}{\partial x}(u\delta\sigma_x) + \frac{\partial}{\partial y}(u\delta\tau_{xy}) + \frac{\partial}{\partial z}(u\delta\tau_{xz})\right] d\tau = \int u \left(l\delta\sigma_x + m\delta\tau_{xy} + n\delta\tau_{xz}\right) dS. \quad (e)$$

Выполняя дифференцирование внутри квадратных скобок в левой части, получаем

$$u\left(\frac{\partial\delta\sigma_{x}}{\partial x}+\frac{\partial\delta\tau_{xy}}{\partial y}+\frac{\partial\delta\tau_{xz}}{\partial z}\right)+\frac{\partial u}{\partial x}\delta\sigma_{x}+\frac{\partial u}{\partial y}\delta\tau_{xy}+\frac{\partial u}{\partial z}\delta\tau_{xz}.$$
 (ж)

Согласно зависимости (а) выражение в скобках обращается в нуль. Теперь соотношение (е) принимает вид

$$\int \left(\frac{\partial u}{\partial x}\,\delta\sigma_x + \frac{\partial u}{\partial y}\,\delta\tau_{xy} + \frac{\partial u}{\partial z}\,\delta\tau_{xz}\right)d\tau = \int u\,\,\delta\overline{X}\,dS.\tag{H}$$

Таким же путем, приняв вначале вместо (д) выражения

$$V = v \, \delta \sigma_y, \quad W = v \, \delta \tau_{yz}, \quad U = v \, \delta \tau_{yx},$$

получаемые с помощью циклической перестановки в (д), приходим к результату, который выписан ниже с помощью циклической перестановки в (и):

$$\int \left(\frac{\partial v}{\partial y} \,\delta\sigma_y + \frac{\partial v}{\partial z} \,\delta\tau_{yz} + \frac{\partial v}{\partial x} \,\delta\tau_{yx}\right) d\tau = \int v \,\delta\overline{Y} \,dS. \tag{K}$$

Далее с помощью еще одной циклической перестановки имеем

$$\int \left(\frac{\partial w}{\partial z}\,\delta\sigma_{z} + \frac{\partial w}{\partial x}\,\delta\tau_{zx} + \frac{\partial w}{\partial y}\,\delta\tau_{zy}\right)\,d\tau = \int w\,\delta\overline{Z}\,dS\,.\tag{A}$$

Складывая соотношения (и), (к) и (л) и используя зависимость между перемещениями и деформациями (2), находим

$$\int (\varepsilon_x \delta \sigma_x + \varepsilon_y \delta \sigma_y + \varepsilon_z \delta \sigma_z + \gamma_{xy} \delta \tau_{xy} + \gamma_{yz} \delta \tau_{yz} + \gamma_{zx} \delta \tau_{zx}) d\tau = = \int (u \ \delta \overline{X} + v \ \delta \overline{Y} + w \ \delta \overline{Z}) dS. \quad (M)$$

Левая часть этого равенства, как и в равенстве (г), равна δV . Таким образом, при сохранении равновесия вариация энергии деформации в форме (131), отвечающая вариациям компонент напряжения дается формулой

$$\delta V = \int \left(u \, \delta \overline{X} + v \, \delta \overline{Y} + w \, \delta \overline{Z} \right) dS. \tag{139}$$

Истинными напряжениями являются те, которые удовлетворяют

общие теоремы

этому уравнению. Такие вариации являются математическими, а не физическими. Физические вариации напряжений, вызываемые вариациями граничных нагрузок, подвержены более жестким ограничениям, нежели уравнения равновесия в форме (а). Однако с математической точки зрения интеграл в формуле (139), если V₀ есть функция шести переменных, а именно, согласно (131), шести компонент напряжения, обладает вариацией независимо от способа изменения этих шести переменных.

В строительной механике энергия деформации линейно-упругой конструкции под действием системы сосредоточенных сил P_1 , P_2 , ... может быть выражена в виде квадратичной функции от этих сил. Тогда

$$\delta V = \frac{\partial V}{\partial P_1} \, \delta P_1 + \frac{\partial V}{\partial P_2} \, \delta P_2 + \ldots,$$

и мы получаем теорему Кастильяно¹) для соответствующих компонент перемещения d_1, d_2, \ldots :

$$d_1 = \frac{\partial V}{\partial P_1}, \quad d_2 = \frac{\partial V}{\partial P_2}, \quad \dots,$$

из того факта, что

 $\delta V = d_1 \delta P_1 + d_2 \delta P_2 + \dots \tag{140}$

Аналогия между (140) и (139) очевидна. Теорему (140) часто называют теоремой Кастильяно.

Возвращаясь к формуле (139), отметим, что вариации напряжения могут быть и такими, что краевые усилия \overline{X} , \overline{Y} , \overline{Z} остаются неизменными. Тогда $\delta \overline{X}$, $\delta \overline{Y}$, $\delta \overline{Z}$ в трех условиях вида (б) равны нулю, а формула (139) принимает простой вид

$$\delta V = 0. \tag{141}$$

Следовательно, для таких вариаций функция V стационарна. Мы исследовали, начиная с (в), только приращения и вариации первого порядка. Из рассмотрения вариаций второго порядка можно показать, что V в действительности достигает минимума. Теорему (141) иногда называют принципом минимальной работы, как и ее аналог для сосредоточенных сил в строительной механике.

Для плоской деформации или плоского напряженного состояния имеем $\omega = 0$ или $\delta \overline{Z} = 0$ и (139) немедленно приводится к виду

$$\delta V = \int \left(u \, \delta \overline{X} + v \, \delta \overline{Y} \right) \, ds, \qquad (142)$$

где V берется в соответствующей форме, например в форме (133) для плоского напряженного состояния, а интеграл при единичной

¹⁾ См., например, S. Timoshenko, D. H. Young, Theory of Structures, McGraw-Hill, New York, 1965, стр. 234.

§ 94]

толщине слоя представляет собой контурный интеграл вдоль граничной кривой с элементом дуги ds.

Сформулированы и более общие вариационные принципы, в которых одновременно варьируются как напряжения, так и перемещения¹).

§ 94. Приложения принципа минимальной работы. Прямоугольные пластинки

В качестве примера рассмотрим прямоугольную пластинку. Ранее (стр. 70) было показано, что, используя тригонометрические ряды, можно удовлетворить граничным условиям на двух сторонах прямоугольной пластинки. Решения, полученные таким образом, могут представить практический интерес, если их использовать для пластинки, ширина которой мала по сравнению с длиной. Если оба размера пластинки имеют один и тот же порядок, следует рассматривать условия по всем четырем сторонам. При решении задач такого рода иногда может успешно применяться прин-

цип минимальной работы.

Рассмотрим случай прямоугольной пластинки в условиях растяжения, когда растягивающие усилия на концах распределены по параболическому закону²) (рис. 132). Граничные условия в этом случае имеют вид:

при $x = \pm a$

$$\tau_{xy} = 0, \quad \sigma_x = S\left(1 - \frac{y^2}{b^2}\right); \quad (a)$$

при $y = \pm b$

$$\tau_{xy}=0, \quad \sigma_y=0.$$

Рис. 132.

Энергия деформации для пластинки единичной толщины, согласно уравнению (133), выражается формулой

$$V = \frac{1}{2E} \iint \left[\sigma_x^2 + \sigma_y^2 - 2\nu \sigma_x \sigma_y + 2(1+\nu) \tau_{xy}^2 \right] dx \, dy. \tag{6}$$

Следует отметить, что в случае односвязной границы, которую мы имеем в данном случае, распределение напряжений не зависит от упругих констант материала (см. стр. 148)], Поэтому дальнейшие вычисления можно упростить, положив коэффициент Пуассона v равным нулю. Тогда, введя функцию иапряжений ф и подставляя в (б) равенства

$$\sigma_x = \frac{\partial^2 \varphi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \varphi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \varphi}{\partial x \partial y}, \quad v = 0,$$

получаем

$$V = \frac{1}{2E} \iint \left[\left(\frac{\partial^2 \varphi}{\partial y^2} \right)^2 + \left(\frac{\partial^2 \varphi}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 \varphi}{\partial x \partial y} \right)^2 \right] dx \, dy. \tag{B}$$

Корректное выражение функции напряжений удовлетворяет условиям (а) и доставляет минимум энергии деформации (в).

¹) Э. Рейсснер, О некоторых вариационных теоремах в механике сплошной среды. В сб., посвященном 70-летию Н. И. Мусхелишвили, «Наука», 1961.

²) S. Timoshenko, Phil. Mag. 47, 1095 (1924).

ОБЩИЕ ТЕОРЕМЫ

Если для определения минимума (в) использовать вариационное исчисление, то мы придем к уравнению (30) для функции напряжений ф. Вместо этого используем следующую процедуру приближенного решения задачи¹). Представим функцию напряжений в виде ряда

$$\varphi = \varphi_0 + \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \alpha_3 \varphi_3 + \dots \qquad (r)$$

такого, что удовлетворяются граничные условия (а). Здесь $\alpha_1, \alpha_2, \ldots$ постоянные, которые подлежат определению. Значения этих постоянных можно найти из условий

$$\frac{\partial V}{\partial \alpha_1} = 0, \quad \frac{\partial V}{\partial \alpha_2} = 0, \quad \frac{\partial V}{\partial \alpha_3} = 0, \dots,$$
 (1)

которые являются линейными уравнениями относительно а1, а2, а3, ...

С помощью надлежащего выбора функций φ_1 , φ_2 ,... мы можем получить удовлетворительное приближенное решение, удержав в ряду (г) лишь несколько членов. В рассматриваемом случае граничные условия (а) удовлетворяются, если положить

$$\varphi_0 = \frac{1}{2} Sy^2 \left(1 - \frac{1}{6} \frac{y^2}{b^2} \right).$$

поскольку тогда

$$\sigma_y = \frac{\partial^2 \varphi_0}{\partial x^2} = 0, \quad \tau_{xy} = -\frac{\partial^2 \varphi_0}{\partial x \partial y} = 0, \quad \sigma_x = \frac{\partial^2 \varphi_0}{\partial y^2} = S\left(1 - \frac{y^2}{b^2}\right).$$

Остальные функции $\varphi_1, \varphi_2, \ldots$ следует выбрать таким образом, чтобы соответствующие им напряжения на границе были равны нулю. Чтобы добиться этого, возьмем в качестве множителя во всех функциях выражение $(x^2 - a^2)^2 \times (y^2 - b^2)^2$; вторая производная по x от этого выражения на сторонах $y = \pm b$ обращается в нуль, тогда как вторая производная по y обращается в нуль на сторонах $x = \pm a$. Вторая производная $d^2/dx \, dy$ равна нулю по всем четырем сторонам пластинки. Отсюда функцию напряжений можно взять в виде

$$\varphi = \frac{1}{2} Sy^2 \left(1 - \frac{1}{6} \frac{y^2}{b^2} \right) + (x^2 - a^2)^2 (y^2 - b^2)^2 (\alpha_1 + \alpha_2 x^2 + \alpha_3 y^2 + \dots).$$
 (e)

В этом ряду сохранены лишь четные степени x и y, поскольку распределение напряжений симметрично относительно осей x и y. Ограничиваясь одним членом α_1 в последних скобках, имеем

$$y = \frac{1}{2} Sy^2 \left(1 - \frac{1}{6} \frac{y^2}{b^2} \right) + \alpha_1 (x^2 - a^2)^2 (y^2 - b^2)^2.$$

Первое из уравнений (д) тогда принимает вид

$$\alpha_1\left(\frac{64}{7} + \frac{256}{49}\frac{b^2}{a^2} + \frac{64}{7}\frac{b^4}{a^4}\right) = \frac{S}{a^4b^2}.$$

Для квадратной пластинки (a=b) находим

$$\alpha = 0,04253 \frac{S}{a^6}$$
,

и все компоненты напряжения определяются по формулам

$$\sigma_{x} = S\left(1 - \frac{y^{2}}{a^{2}}\right) - 0,1702 S\left(1 - \frac{3y^{2}}{a^{2}}\right) \left(1 - \frac{x^{2}}{a^{2}}\right)^{2},$$

$$\sigma_{y} = -0,1702 S\left(1 - \frac{3x^{2}}{a^{2}}\right) \left(1 - \frac{y^{2}}{a^{3}}\right)^{2},$$

$$\tau_{xy} = -0,6805 S\frac{xy}{a^{2}} \left(1 - \frac{x^{2}}{a^{2}}\right) \left(1 - \frac{y^{2}}{a^{2}}\right).$$

¹⁾ Метод Ритца или Рэлея — Ритца. См. W. Ritz, Z. Reine Angew. Math. 135, 1—61 (1908); W. Ritz, Gesammelte Werke, Gauthier-Villars, Paris, стр. 192—250, 1911.

р_{аспределение} σ_x по поперечному сечению x = 0 представлено кривой // ¹) (рис. 133).

" Чтобы получить более точное приближение, возьмем теперь в ряду (е) три члена. Тогда уравнения (д) для определения постоянных α_1 , α_2 , α_3 будут такими:

$$\alpha_{1} \left(\frac{64}{7} + \frac{256}{49} \frac{b^{2}}{a^{2}} + \frac{64}{7} \frac{b^{4}}{a^{4}} \right) + \alpha_{2} a^{2} \left(\frac{64}{77} + \frac{64}{49} \frac{b^{4}}{a^{4}} \right) + \alpha_{3} a^{2} \left(\frac{64}{49} \frac{b^{2}}{a^{2}} + \frac{64}{77} \frac{b^{6}}{a^{6}} \right) = \frac{S}{a^{4}b^{2}},$$

$$\alpha_{1} \left(\frac{64}{11} + \frac{64}{7} \frac{b^{4}}{a^{4}} \right) + \alpha_{2} a^{2} \left(\frac{192}{143} + \frac{256}{77} \frac{b^{2}}{a^{2}} + \frac{192}{7} \frac{b^{4}}{a^{4}} \right) + \alpha_{3} a^{2} \left(\frac{64}{77} \frac{b^{2}}{a^{2}} + \frac{64}{77} \frac{b^{6}}{a^{6}} \right) = \frac{S}{a^{4}b^{2}},$$

$$\alpha_{1} \left(\frac{64}{7} + \frac{64}{11} \frac{b^{4}}{a^{4}} \right) + \alpha_{2} a^{2} \left(\frac{64}{77} + \frac{64}{77} \frac{b^{4}}{a^{4}} \right) + \alpha_{3} a^{2} \left(\frac{192}{7} \frac{b^{2}}{a^{2}} + \frac{256}{77} \frac{b^{4}}{a^{4}} + \frac{192}{143} \frac{b^{6}}{a^{6}} \right) = \frac{S}{a^{4}b^{2}}.$$

$$(ж)$$

Для квадратной пластинки эти уравнения дают

$$\alpha_1 = 0,04040 \frac{S}{a^6}, \quad \alpha_2 = \alpha_3 = 0,01174 \frac{S}{a^8}.$$

Распределение σ_x по поперечному сечению x = 0 определяется зависимостью

$$(\sigma_x)_{x=0} = S\left(1 - \frac{y^2}{a^2}\right) - 0,1616 S\left(1 - 3\frac{y^2}{a^2}\right) + 0,0235\left(1 - 12\frac{y^2}{a^2} + 15\frac{y^4}{a^4}\right).$$

На рис. 133 это распределение напряжений показано кривой ///²).

С увеличением длины пластинки распределение напряжения по поперечному сечению x = 0 становится все более и более однородным. Если мы положим, например, a = 2b, то из уравнения (ж) найдем

$$\alpha_1 = 0,07983 \frac{S}{a^4 b^2},$$

$$\alpha_2 = 0,1250 \frac{S}{a^6 b^2},$$

$$\alpha_3 = 0,01826 \frac{S}{a^6 b^2}.$$

Соответствующие значения σ_x по поперечному сечению x=0 характернзуются числами

$$\frac{y}{b} = 0 \qquad 0.2 \qquad 0.4 \qquad 0.6 \qquad 0.8 \qquad 1.0 \\ \sigma_x = 0.690S \qquad 0.684S \qquad 0.669S \qquad 0.653S \qquad 0.649S \qquad 0.675S$$

Это распределение напряжений представлено на рис. 133 штриховой линией. Мы видим, что в этом случае отклонение от среднего значения 2/3S очень мало.

Чтобы исследовать другие симметричные распределения напряжений по граням $x = \pm a$, нам нужно лишь изменить форму функции φ_0 в выражении (е). При этом в уравнениях (ж) потребуется изменить одни только правые части.

271

Кривая I представляет параболическое распределение напряжений по концам пластинки.

²) Подобные результаты получили Инглис (С. Е. Inglis, Proc. Roy. Soc. (London), ser. A, 103 (1923) и Пикет (G. Pickett, J. Appl. Mech. 11, 176 (1944)).

В качестве примера распределения напряжений, несимметричного относительно оси x, рассмотрим случай изгиба, показанный на рис. 134^{1}), в котором приложениие по концам усилия изменяются по закому (σ_x)_{жжжа} $= Ay^3$ (кривая б на рис. 134, б). Очевидно, распределение напряжений будет несимметричным

относительно оси х и симметричным относительно оси у. Эти условия удовлетворяются, осли принять функцию напряжений в форме

$$\varphi = \frac{1}{20} Ay^5 + (x^2 - a^2)^2 (y^2 - b^2)^2 (\alpha_1 y + \alpha_2 y x^2 + \alpha_2 y^3 + \alpha_4 x^2 y^3 + \ldots).$$
 (4)

Первый член, как и раньше, удовлетворяет граничным условиям для ϕ . Подставляя равенство (и) с четырьмя коэффициентами α_1 , α_2 , α_3 , α_4 в уравнении (д), для случая квадратной пластинки (a = b) находим

$$\sigma_{x} = \frac{\partial^{2} \varphi}{\partial \mu^{2}} = 2Aa^{3} \left\{ \frac{1}{2} \eta^{3} - (1 - \xi^{2})^{2} [0,08392 (5\eta^{3} - 3\eta) + 0,004108 (21\eta^{5} - 20\eta^{3} + 3\eta)] - \xi^{2} (1 - \xi^{2})^{2} [0,07308 (5\eta^{3} - 3\eta) + 0,04179 (21\eta^{5} - 20\eta^{3} + 3\eta)] \right\}, \quad (k)$$

где $\xi = x/a$ и $\eta = y/b$. Распределение напряжения по среднему сечению x = 0близно к линейному. На рис. 134, б оно показано кривой a.

§ 95. Эффективная ширина широких полок балок

В качестве другого примера применения принципа минимальной энергии к двумерным задачам для прямоугольных областей рассмотрим балку с очень широкими полками (рис. 135). Такие балки очень часто встречаются в железобетонных конструкциях и в конструкциях корабельных корпусов. Элементарная теория изгиба предполагает, что напряжения изгиба пропорциональны расстоянию от нейтральной оси, т, е. что напряжения по ширине полки не меняются. Однако известно, что если при изгибе ширина полки очень велика. части полок, удаленные от стенки балки, не вносят полного вклада в момент сопротивления, и балка оказывается слабее, чем это следует из элементарной теории изгиба. Обычно при определении напряжений в таких балках действительную ширину полок заменяют некоторой приведенной шириной таким образом, чтобы элементарная теория изгиба, примененная к приведенному сечению, давала корректные значения максимальных напряжений изгиба. Эга приведенная ширина полок называется эффективной шириной. Дальнейшие рассуждения дают теоретическую основу для определения этой эффективной ширины.

¹) Эти выкладки взяты из декторской диссертации Гудьера (J. N. Goodier), защищениой в Мичиганском университете в 1931 г. См. также J. N. Goodier, Trans. ASME 54, 173 (1932).

Чтобы возможно более упростить задачу, допустим, что рассматривается бесконечная неразрезная балка на равноотстоящих опорах. Все пролеты балки одинаковым образом нагружены силами, симметричными относительно середин пролетов. Одна из опор, представленная на рис. 135, принимается за начало координат, а ось х считается совпадающей с осью балки. В силу

симметрии достаточно рассмотреть только один пролет и только одну полку, соответствующую, скажем, положительным значениям y. Ширина полки принимается бесконечно оольшой, а толщина h—очень малой по сравнению с высотой балки. Вследствие этого изгибом полки как тонкой пластинки можно пренебречь и считать, что при изгибе балки усилия передаются на полку в ее срединной плоскости, так что распределение напряжений в полке является двумерным. Соответствующая функция напряжений φ , удовлетворяющая дифференциальному уравнению

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0, \qquad (a)$$

может быть принята для рассматриваемого сниметричного случая в виде ряда

$$\varphi = \sum_{n=1}^{n=\infty} f_n(y) \cos \frac{n\pi x}{l}, \qquad (6)$$

в котором $f_n(y)$ являются функциями только одной переменной y. Подставляя (б) в уравнение (а), находим для $f_n(y)$ следующее выражение:

$$\underbrace{f_n(y) = A_n e^{-\frac{n\pi y}{l}} + B_n\left(1 + \frac{n\pi y}{l}\right) e^{-\frac{n\pi y}{l}} + C_n e^{\frac{n\pi y}{l}} + D_n\left(1 + \frac{n\pi y}{l}\right) e^{\frac{n\pi y}{l}}, \dots \quad (B)$$

¹) Этот вопрос исследовал Карман (Т. Kármán, Festschrift August Föppl, 1923, стр. 114. См. также G. Schnadel, Werft und Reederei 9, 92(1928); E. Reissner, Der Stahlbau, 1934, стр. 206; E. Chwalla, Der Stahlbau, 1936; L. Beschkin, Publs. Intern. Assoc. Bridge Struct. Eng. 5, 65(1938). Дальнейшие исследования и библиографию можно найти в книге Thein Wah (ред.), A Guide for the Analysis of Ship Structures, стр. 370—391, Office of Technical Services, Washington, 1960.

Чтобы удовлетворить условию обращения напряжений в нуль при бесконечных значениях y, примем $C_n = D_n = 0$. Выражение для функции напряжений тогда примет вид

$$\varphi = \sum_{n=1}^{\infty} \left[A_n e^{-\frac{n\pi y}{l}} + B_n \left(1 + \frac{n\pi y}{l} \right) e^{-\frac{n\pi y}{l}} \right] \cos \frac{n\pi x}{l}.$$
 (r)

Коэффициенты A_n и B_n теперь можно определить из условия, что действительное распределение напряжений доставляет суммарной энергии деформации в полке и в стенке минимум. Подставляя

$$\sigma_x = \frac{\partial^2 \varphi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \varphi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \varphi}{\partial x \partial y}$$

в выражение для энергии деформации

$$V_1 = 2 \frac{h}{2E} \int_0^\infty \int_0^{2l} \left[\sigma_x^2 + \sigma_y^2 - 2\nu \sigma_x \sigma_y + 2 (1+\nu) \tau_{xy}^2 \right] dx \, dy$$

и используя уравнение (г) для функции напряжений, получаем для энергии деформации полки выражение ¹)

$$V_1 = 2h \sum_{n=1}^{\infty} \frac{n^3 \pi^3}{l^2} \left(\frac{B_n^2}{E} + \frac{A_n B_n}{2G} + \frac{A_n^2}{2G} \right). \tag{I}$$

Рассматривая отдельно энергию деформации стенки, обозначим через A ее поперечное сечение, через I—момент инерции относительно горизонтальной оси, проходящей через центр тяжести C, и через e—расстояние от центра тяжести стенки до срединной плоскости полки (рис. 135). Полный изгибающий момент, передаваемый любым сечением стенки вместе с полкой, может быть представлен для нашего симметричного случая рядом

$$M = M_0 + M_1 \cos \frac{\pi x}{l} + M_2 \cos \frac{2\pi x}{l} + \dots$$
 (e)

В этом ряду M_0 — статически неопределимая величина, зависящая от величины изгибающего момента на опоре, а все прочие коэффициенты M_1, M_2, \ldots следует определить из условий нагружения. Обозначив через N сжимающее усилие в полке (рис. 135, *s*), разобъем изгибающий момент M на две части: часть M', воспринимаемую стенкой, и часть M'' = Ne, возникающую от продольных усилий N в стенке и полке. Из статических соображений замечаем, что нормальные напряжения по любому сечению всей балки дают момент M; отсюда

$$N+2h\int_{0}^{\infty}\sigma_{x}\,dy=0,\qquad M'-2he\int_{0}^{\infty}\sigma_{x}\,dy=M,\qquad (\mathbf{x})$$

где — $2he \int_{0}^{x} \sigma_{x} dy = M''$ — часть изгибающего момента, воспринимаемая полкой.

Энергия деформации стенки определяется зависимостью

$$V_{2} = \int_{0}^{2l} \frac{N^{2} dx}{2AE} + \int_{0}^{2l} \frac{M'^{2} dx}{2EI}.$$
 (a)

¹⁾ Интегралы, входящие в выражение энергии деформации, были вычислены в упомянутой статье Кармана (Kármán).

§ 95]

Из первого уравнения (ж) находим

$$N = -2h \int_{0}^{\infty} \sigma_{x} dy = -2h \int_{0}^{\infty} \frac{\partial^{2} \varphi}{\partial y^{2}} dy = 2h \left| \frac{\partial \varphi}{\partial y} \right|_{\infty}^{0}.$$

Из выражения (г) для функции напряжений можно видеть, что

$$\left(\frac{\partial \varphi}{\partial y}\right)_{y=\infty} = 0, \quad \left(\frac{\partial \varphi}{\partial y}\right)_{y=0} = \sum_{n=1}^{\infty} \frac{n\pi}{l} A_n \cos \frac{n\pi x}{l}$$

Отсюда

$$N = 2h \sum_{n=1}^{\infty} \frac{n\pi}{l} A_n \cos \frac{n\pi x}{l},$$

$$M' = M + 2he \int_{0}^{\infty} \sigma_x \, dy = M - Ne = M - 2he \sum_{n=1}^{\infty} \frac{n\pi}{l} A_n \cos \frac{n\pi x}{l}$$

Если же использовать обозначение

$$2h \frac{n\pi}{l} A_n = X_n,$$

можно записать

$$N = \sum_{n=1}^{\infty} X_n \cos \frac{n\pi x}{l},$$

$$M' = M - e \sum_{n=1}^{\infty} X_n \cos \frac{n\pi x}{l} = M_0 + \sum_{n=1}^{\infty} (M_n - eX_n) \cos \frac{n\pi x}{l}.$$
(K)

Подставляя (к) в (и) и учитывая, что

$$\int_{0}^{2l} \cos^{2} \frac{n\pi x}{l} dx = l, \quad \int_{0}^{2l} \cos \frac{n\pi x}{l} \cos \frac{m\pi x}{l} dx = 0 \quad (\text{при } m \neq n),$$

получаем

$$V_{2} = \frac{l}{2AE} \sum_{n=1}^{\infty} X_{n}^{2} + \frac{M_{0}^{2}l}{El} + \frac{l}{2EI} \sum_{n=1}^{\infty} (M_{n} - eX_{n})^{2}.$$

Прибавляя эту величину к энергии деформации полки (д) и используя в выражении для последней обозначения

$$2h\frac{n\pi}{l}A_n = X_n, \quad 2h\frac{n\pi}{l}B_n = Y_n,$$

получаем следующее выражение для полной энергии деформации:

$$V = \frac{\pi}{2hE} \sum_{n=1}^{\infty} n \left[Y_n^2 + (1+\nu) X_n Y_n + (1+\nu) X_n^2 \right] + \frac{l}{2AE} \sum_{n=1}^{\infty} X_n^2 + \frac{M_0^2 l}{EI} + \frac{l}{2EI} \sum_{n=1}^{\infty} (M_n - eX_n)^2. \quad (n)$$

Величины M_0 , X_n , Y_n должны определяться из условия минимума энергии деформации (л). Можно видеть, что момент M_0 входит только в член $M_0^2 l/El$ и из требования минимума для (л) следует, что $M_0 = 0$.

Из условия

$$\frac{\partial V}{\partial Y_n} = 0$$

находим

$$2Y_n + (1+v) X_n = 0, \quad Y_n = -\frac{1+v}{2} X_n.$$

Подставляя эти эначения в уравнение (л) вместе с равенством $M_0 = 0$, получаем следующее выражение для энергии деформации:

$$V = \frac{\pi}{2hE} \frac{3 + 2\nu - \nu^2}{4} \sum_{n=1}^{\infty} nX_n^2 + \frac{l}{2AE} \sum_{n=1}^{\infty} X_n^2 + \frac{l}{2EI} \sum_{n=1}^{\infty} (M_n - eX_n)^2.$$
(M)

Из условия, что величина X_n должна доставлять минимум V, следует, что

$$\frac{\partial V}{\partial X_n} = 0,$$

откуда находим

$$X_n = \frac{M_n}{e} \frac{1}{1 + (I/Ae^2) + (n\pi I/hle^2) [(3 + 2\nu - \nu^2)/4]}.$$
 (H)

Рассмотрим частный случай, когда эпюра изгибающего момента представляется простой косинусоидной, скажем $M = M_1 \cos{(\pi x/l)}$. Тогда из выражения (н)

$$X_1 = \frac{M_1}{e} \frac{1}{1 + (I/Ae^2) + (\pi I/he^2 l) \left[(3 + 2\nu - \nu^2)/4 \right]},$$

и, согласно формулам, (к), момент, связанный с усилием N в полке, равен

$$M'' = eN = eX_1 \cos \frac{\pi x}{l} = \frac{M}{1 + (l/Ae^2) + (\pi l/he^2)[(3 + 2\nu - \nu^2)/4]}.$$
 (II)

Распределение напряжений σ_x по ширине полки можно теперь определить по формуле (г), приняв все коэффициенты A_n и B_n , кроме A_1 и B_1 , равными нулю и полагая (в принятых выше обозначениях)

$$A_1 = \frac{lX_1}{2\pi h}, \quad B_1 = -\frac{1+\nu}{2}A_1 = -\frac{(1+\nu)lX_1}{4\pi h}$$

Это распределение напряжений σ_x показано на рис. 135, *а*. Напряжения σ_x убывают с увеличением расстояния от стенки.

Определим теперь такую ширину 2λ полки тавровой балки (рис. 135, а), чтобы равномерное распределение напряжения по поперечному сечению полки, показанному штриховкой, дало вычисленный выше момент M'' (формула (п)). Это и будет эффективной шириной полки.

Обозначим, как и ранее, через М' и М" части изгибающего момента, воспринимаемые стенкой и полкой, через σ_C —напряжение в центре тяжести стенки С и через σ_e —напряжение в срединной плоскости полки; тогда по элементарной теории изгиба

$$\sigma_e = \sigma_C - \frac{M_e}{l}, \qquad (p)$$

а из уравнений статики

 $2\lambda h\sigma_e + \sigma_C A = 0, \quad -2\lambda h\sigma_e e = M''.$ (c)

Выражения для двух частей изгибающего момента, согласно уравнениям (р) и (с), имеют вид

$$M' = -\frac{1}{e} \left(\sigma_e - \sigma_C \right) = -\frac{1}{e} \left(1 + \frac{2\lambda h}{A} \right) \sigma_e, \quad M'' = -2\lambda he\sigma_e.$$

ЭФФЕКТИВНАЯ ШИРИНА ШИРОКИХ ПОЛОК БАЛОК

Отношение М" к полному изгибающему моменту равно

$$\frac{M''}{M'+\tilde{M}''} = \frac{2\lambda he\sigma_e}{2\lambda he\sigma_e + (I/e) \left[1 + (2\lambda h/A)\right]\sigma_e} = \frac{1}{1 + (I/Ae^2) + (I/2\lambda he^2)}.$$
 (r)

Чтобы сделать это отношение равным отношению M"/M, полученному из точного решения (п), нам нужно принять

$$\frac{I}{2\lambda he^2} = \frac{\pi I}{he^2 l} \frac{3+2\nu-\nu^2}{4}.$$

Отсюда получаем следующее выражение для эффективной ширины полки:

$$2\lambda = \frac{4l}{\pi (3+2\nu-\nu^2)},$$

Принимая, например, v = 0.3, находим

$$2\lambda = 0,181 (2l),$$

т. е. для принятой диаграммы изгибающего момента эффективная ширина полки составляет примерно 18% от пролета.

Для случая неразрезной балки с одинаковыми сосредоточенными силами, приложенными в центре пролетов, эпюра изгибающих моментов показана на

Рис. 136.

Рис. 137.

рис. 136. Представляя это распределение моментов с помощью ряда Фурье и используя развитый ранее общий метод находим, что эффективная ширина на опоре определяется формулой

$$2\lambda = 0,85 \frac{4l}{\pi (3+2\nu-\nu^2)},$$

т. е. она получается несколько меньшей, чем для случая эпюры моментов в виде косинусоиды.

Проблема, подобная рассмотренной в § 94, встречается при расчете подкрепленных тонкостенных конструкций. Рассмотрим коробчатую балку (рис. 137), образованную двумя швеллерами ABFE и DCGH, к которым с помощью заклепок и сварки по краям прикреплены два тонких листа ABCD и EFGH. Если вся балка заделана левым концом и нагружена, как консоль, двумя силами P, приложенными к швеллерам на другом конце, то, согласно элементарной теории изгиба, растягивающие напряжения изгиба в листе ABCD равномерно распределены по любому сечению, параллельному BC. В действительности, однако, лист воспринимает растяжение от касательных напряжений по его краям, связанным со швеллерами, как показано на рис. 137, и распределение растягивающих напряжений по его ширине не будет постоянным; в соответствии с эпюрой напряжений на рис. 137, напряжения, будут выше, чем посередине. Такое отклонение от принятого в элементарной

§ 95]

ОБЩИЕ ТЕОРЕМЫ

теории распределения называется сдвиговой задержкой (shear lag), поскольку оно связано с деформациями сдвига в листах. Эта задача рассматривалась с помощью энергетического и других методов на основе некоторых упрощающих допущений ¹).

ЗАДАЧИ

1. Почему следует ожидать, что для любого обычного металла изотермический модуль Юнга меньше его адиабатического модуля?

2. Выразить через σ_x , σ_y , τ_{xy} энергию деформации, отнесенную к единице толщины цилиндра или призмы при плоской деформации.

3. Записать интеграл для энергии деформации V в полярных координатах.

Распределение напряжений, определяемое уравнениями (79), решает задачу, показанную на рис. 138, где момент *М* прикладывается с помощью равномерного сдвига внутри кольца, а уравновешивающий момент прикладывается к внешней части кольца. Найти энергию деформации кольца и, приравняв ее работе нагрузки, определить угол поворота внешней окружности кольца, если оно закреплено на внутренней окружности (ср. с задачей 3, стр. 157).

4. Определить потенциальную энергию, отнесенную к единице длины цилиндра a < r < b, под действием внутреннего давления p_i . Концы цилиндра свободны ($\sigma_r = 0$).

5. Интерпретировать равенство

$$\iint V_0 \, dx \, dy = \frac{1}{2} \iint (Xu + Yv) \, dx \, dy + \frac{1}{2} \int (\overline{X}u + \overline{Y}v) \, ds$$

и объяснить появление множителя 1/2 в правой части.

6. На основании равенства (131) показать, что если сравнить случай плоского напряженного состояния и соответствующий случай плоской деформации ($\varepsilon_z = 0$) с теми же напряжениями σ_x , σ_y , τ_{xy} , то отнесенная к единице толщины энергия деформации окажется в первом случае более высокой.

7. На рис. 139, а изображена сжатая полоса, напряжение в которой распространяется повсюду. В случае, показанном на рис. 139, б, деформируемая полоса на верхней и нижней гранях ограничена абсолютно жесткими

плитами. Будут ли напряжения в полосе распространяться повсюду или они локализуются у концов? В случае, изображенном на рис. 139, в, как в случае, показанном на рис. 139, а, но нижняя грань зафиксирована. Будет ли напряжение при этом местным или нет?

¹) E. Reissner, Quart. Appl. Math. 4, 268(1946); J. Hadji-Argyris, Brit. Aeron. Res. Council Repts. Mem., 2038, 1944; J. Hadji-Argyris, H. L. Cox, Brit. Aeron. Res. Council Repts. Mem., 1969, 1944.

Ссылки на более ранние исследования можно найти в этих статьях. См. также примечание 1 на стр. 273.

ЕДИНСТВЕННОСТЬ РЕШЕНИЯ

8. Исходя из того, что в состоянии устойчивого равновесия система обладает меньшей потенциальной энергией, чем в любой смежной форме, показать без вычислений, что энергия деформации пластинки, изображенной на рис. 131, будет либо уменьшаться, либо оставаться постоянной, если сделан разрез AB.

9. Сформулировать теорему Кастильяно, выраженную уравнением (142) в форме, пригодной для использования в полярных координатах, заменив граничные усилия \overline{X} и \overline{Y} радиальными и тангенциальными компонентами \overline{R} и \overline{T} и компоненты перемещения — полярными компонентами u и v из главы 4.

10. Уравнение (142) справедливо, когда бV, бX, бY вызываются малыми изменениями в компонентах напряжения, которые удовлетворяют уравнениям равновесия (а) § 93 независимо от того, нарушают ли эти изменения условия совместности (§ 16) или нет. В последнем случае изменения напряжений совпадают с теми, которые в действительности имеют место при изменении граничных усилий на бX, бY. Справедливо ли такое утверждение? 11. Уравнение (ж) на стр. 256 относится к материалу, подчиняющемуся

11. Уравнение (ж) на стр. 256 относится к материалу, подчиняющемуся закону Гука. Допустим, что материал не подчиняется закону Гука, но обладает функцией энергии деформации V₀, которая также является функцией от компонент деформации, но более сложной, чем (132). Показать, что нелинейные зависимости между напряжениями и деформациями по-прежнему даются соотношениями вида

$$\sigma_x = \partial V_0 / \partial e_x, \quad \tau_{xy} = \partial V_0 / \partial \gamma_{xy}.$$

(Рассмотреть приращение одной компоненты деформации, считая остальные неизменными.)

§ 96. Единственность решения

Рассмотрим теперь вопрос о том, может ли превышать единицу число решений уравнений теории упругости, отвечающих заданным поверхностным и массовым силам.

Пусть символы $\sigma'_x, \ldots, \tau'_{xy}, \ldots$ представляют решение для нагрузок $\overline{X}, \ldots, X, \ldots$, а символы $\sigma''_x, \ldots, \tau''_{xy}, \ldots$ представляют другое решение для тех же нагрузок $\overline{X}, \ldots, \overline{X}, \ldots$ Тогда для первого решения справедливы уравнения

$$\frac{\partial \sigma'_x}{\partial x} + \frac{\partial \tau'_{xy}}{\partial y} + \frac{\partial \tau'_{xz}}{\partial z} + X = 0,$$

$$\overline{X} = \sigma'_x l + \tau'_{xy} m + \tau'_{xz} n,$$

а также соответствующие условия совместности. Для второго решения имеем

$$\frac{\partial \sigma_x^{''}}{\partial x} + \frac{\partial \tau_{xy}^{''}}{\partial y} + \frac{\partial \tau_{xz}^{''}}{\partial z} + X = 0,$$

$$\overline{X} = \sigma_x^{''} t + \tau_{xy}^{''} m + \tau_{xz}^{''} n,$$

а также условия совместности.

Путем вычитания находим, что распределение напряжений, определяемое разностями $\sigma'_x - \sigma''_x$, ..., $\tau'_{xu} - \tau''_{xu}$, ..., удовлетворяет

уравнениям

$$\frac{\partial \left(\sigma_{x}^{\prime}-\sigma_{x}^{\prime}\right)}{\partial x} + \frac{\partial \left(\tau_{xy}^{\prime}-\tau_{xy}^{\prime}\right)}{\partial y} + \frac{\partial \left(\tau_{xz}^{\prime}-\tau_{xz}^{\prime}\right)}{\partial z} = 0$$

$$0 = \left(\sigma_{x}^{\prime}-\sigma_{x}^{\prime\prime}\right)l + \left(\tau_{xy}^{\prime}-\tau_{xy}^{\prime\prime}\right)m + \left(\tau_{xz}^{\prime}-\tau_{xz}^{\prime\prime}\right)n,$$

в которых отсутствуют внешние силы. Условия совместности (125) также будут удовлетворяться соответствующими компонентами деформации $\varepsilon'_x - \varepsilon''_x$, ..., $\gamma'_{xy} - \gamma''_{xy}$, ...

Таким образом, это распределение напряжений отвечает нулевым поверхностным и объемным силам. Работа, совершаемая этими силами в процессе нагружения, равна нулю; отсюда следует, что интеграл $\iiint V_0 dx dy dz$ обращается в нуль. Однако, как показывает уравнение (132), величина V_0 положительна для всех деформированных состояний, и следовательно, этот интеграл может обращаться в нуль лишь тогда, когда V_0 равно нулю во всех точках тела. Но это требует, чтобы и каждая из компонент деформации $\varepsilon'_x - \varepsilon''_x, \ldots, \gamma'_{xy} - \gamma''_{xy}, \ldots$ равнялась нулю. Таким образом, два состояния деформаций $\varepsilon'_x, \ldots, \gamma_{xy}, \ldots$ и $\varepsilon''_x, \ldots, \gamma''_{xy}, \ldots$ и $\sigma''_x, \ldots, \tau'_{xy}, \ldots$ тождественно совпадают. Иначе говоря, рассматриваемые уравнения при заданных нагрузках могут иметь лишь одно решение ¹).

Доказательство единственности решения основывалось на предположении о том, что потенциальная энергия, а следовательно, и напряжения в теле исчезают, если оно свободно от внешних сил. Однако бывают случаи, когда и при отсутствии внешних сил в теле могут существовать начальные напряжения. С примером такого рода мы встречались при исследовании кругового кольца (см. § 43). Если вырезать часть кольца, расположенную между двумя соседними поперечными сечениями, и снова соединить концы кольца с помощью сварки или другим способом, то получим кольцо с начальными напряжениями²). Несколько

¹) Эта теорема принадлежит Кирхгофу. См. G. K ir chhoff, Vorlesungen über Mathematische Physik, Mechanik.

²) Кольцо представляет собой простейший пример многосвязного тела. Для таких тел общие уравнения теории упругости, выраженные через компоненты напряжения, недостаточны для определения напряженного состояния, и чтобы получить полное решение, требуется дополнительное исследование перемещений. Первые исследования такого рода провел Мичелл (J. H. Michell, Proc. London Math. Soc. 31, 103 (1899)). См. также L. N. G. Filon, Brit. Assoc. Advanc. Sci. Rept., 1921, стр. 305; V. Volterra, Ann. Ecole Norm., Paris, ser. 3, 24, 401—517 (1907). Дальнейшая библиография по начальным напряжениям дана в работе: P. Nemenyi, Z. Angew. Math. Mech. 11, 59 (1931).

примеров такого рода мы обсуждали при исследовании двумерных задач.

Начальные напряжения в односвязном теле могут возникнуть также из-за неупругих деформаций, порожденных в процессе формовки тела. Например, значительные начальные напряжения могут возникнуть в крупных поковках вследствие неравномерного охлаждения, а также в катаных металлических стержнях вследствие пластических деформаций, возникных при холодной обработке. Для определения этих начальных напряжений уравнений теории упругости недостаточно, и требуется дополнительная информация, касающаяся процесса обработки тела.

Следует отметить, что во всех случаях, когда может использоваться принцип суперпозиции, деформации и напряжения, вызываемые внешними силами, не зависят от начальных напряжений и могут определяться в точности таким же путем, как это делается при отсутствии начальных напряжений. В таких случаях полные напряжения находятся в результате суперпозиции напряжений, вызванных внешними силами, на начальные напряжения. В случаях, когда привцип суперпозиции неприменим, напряжения, вызываемые внешними силами, нельзя определить, не зная начальных напряжений. Мы не можем, например, найти напряжения изгиба, вызываемые поперечными нагрузками в тонком стержне, есля этот стержень имеет начальное растяжение или сжатие, не зная величины начальных напряжений.

§ 97. Теорема взаимности

Рассмотрим теперь некоторое упругое тело, находящееся под действием системы заданных поверхностных сил $\overline{X}', \overline{Y}', \overline{Z}'$ и массовых сил X', Y', Z', и будем считать перемещения, деформации и напряжения известными. Обозначим их через u', ε'_x , $\gamma'_{xy}, \sigma'_x, \tau'_{xy}$ и т. д. Затем, независимо, рассмотрим другую систему сил $\overline{X}'', \ldots, X'', \ldots$ и обозначим результаты решения второй задачи через $u'', \varepsilon''_x, \tau''_{xy}$ и т. д.

Мы имеем два разных решения двух разных задач. Однако в силу того, что они относятся к одному и тому же упругому телу, между этими решениями существуют связи. Здесь мы рассмотрим одну из таких связей, выраженную в виде *теоремы* взаимности¹).

281

¹⁾ E. Betti, Il nuovo Cimento, ser. 2, 7, 8 (1872). Такого же рода теоремы известны и в других разделах науки. См. Rayleigh, Proc. London. Math. Soc. 4 (1873); и его же Theory of Sound, Dover Publications, New York; H. Lamb, Higher Mechanics, Cambridge University Press, New York, 1920.

ОБЩИЕ ТЕОРЕМЫ

Из двух решений мы можем чисто математическим путем образовать величину 'T", определяемую формулой

$$T'' = \int (\overline{X}' u'' + \overline{Y}' v'' + \overline{Z}' w'') dS + \int (X' u'' + Y' v'' + Z' w'') d\tau.$$
 (a)

Меняя всюду местами одиночный и двойной штрихи, получаем

$$T' = \int (\overline{X}'' u' + \ldots + \ldots) dS + \int (X'' u' + \ldots + \ldots) d\tau.$$
 (6)

Теорема утверждает, что

$$'T'' = ''T'.$$
 (B)

Для доказательства воспользуемся вновь теоремой о дивергенции (138). Рассмотрим в формуле (а) член

$$\int \overline{X}' u'' \, dS, \qquad (r)$$

который представляет собой то же, что и

$$\int (l\sigma'_{x} + m\tau'_{xy} + n\tau'_{xz}) u'' dS.$$
 (д)

В (138) можно положить

$$U = u'' \sigma'_x, \quad V = u'' \tau'_{xy}, \quad W = u'' \tau'_{xz}, \tag{e}$$

чтобы придать правой части (138) вид поверхностного интеграла (д).

Затем пойдем путем, аналогичным выкладкам (е) и (ж) в § 93, используя три уравнения равновесия вида

$$\frac{\partial \sigma'_{x}}{\partial x} + \frac{\partial \tau'_{xy}}{\partial y} + \frac{\partial \tau'_{xz}}{\partial z} + X' = 0.$$
 (ж)

Вместо выражения (м) из § 93 получаем соотношение $\int (\varepsilon_x^{"}\sigma_x' + \ldots + \cdots + \gamma_{xy}^{"}\tau_{xy}' + \ldots + \ldots) d\tau =$ $= \int (\overline{X}'u'' + \overline{Y}'v'' + \overline{Z}'\omega'') dS + \int (X'u'' + Y'v'' + Z'\omega'') d\tau,$

показывающее возможность преобразования формулы (а) к виду

$$T'' = \int \left(\varepsilon_x \sigma_x' + \ldots + \cdots + \gamma_{xy} \tau_{xy}' + \ldots + \ldots \right) d\tau. \tag{K}$$

Можно записать формулу (к) полностью или через компоненты напряжения, или через компоненты деформации. Выбирая последнее, удобно воспользоваться законом Гука в форме (11) и (6). Далее для подынтегрального выражения в (к) находим

$$\begin{split} \varepsilon_{\mathbf{x}}^{\mathbf{x}} \sigma_{\mathbf{x}}^{\mathbf{y}} + \ldots + \ldots + \gamma_{xy}^{\mathbf{x}} \tau_{\mathbf{x}y}^{\mathbf{y}} + \ldots + \ldots = \\ = \lambda \varepsilon^{\mathbf{x}} \varepsilon^{\mathbf{x}} + 2G \left(\varepsilon_{\mathbf{x}}^{\mathbf{x}} \varepsilon_{\mathbf{x}}^{\mathbf{x}} + \varepsilon_{\mathbf{y}}^{\mathbf{y}} \varepsilon_{\mathbf{y}}^{\mathbf{y}} + \varepsilon_{\mathbf{z}}^{\mathbf{z}} \varepsilon_{\mathbf{z}}^{\mathbf{y}} \right) + G \left(\gamma_{\mathbf{x}y}^{\mathbf{x}} \gamma_{\mathbf{x}y}^{\mathbf{x}} + \gamma_{\mathbf{y}z}^{\mathbf{y}} \gamma_{\mathbf{y}z}^{\mathbf{y}} + \gamma_{\mathbf{z}x}^{\mathbf{z}} \gamma_{\mathbf{z}x}^{\mathbf{y}} \right), \quad (\pi) \end{split}$$

где

$$\varepsilon' = \varepsilon'_x + \varepsilon'_y + \varepsilon'_z, \quad \varepsilon'' = \varepsilon''_x + \varepsilon''_y + \varepsilon''_z.$$

Результат (л), очевидно, не изменится, если поменять местами двойные и одиночные штрихи. Однако такая замена — это все, что требуется заменить в (к), чтобы это выражение соответствовало "T' вместо 'T". Это и доказывает теорему (в).

(и)

Правую часть (а) часто называют работой сил первого состояния (одиночный штрих) на перемещениях второго состояния (двойной штрих).

Если в качестве объемных сил в задачу входят силы инерции, то эта теорема немедленно распространяется на динамический случай.

Статическая форма теоремы имеет много важных приложений. Здесь мы приведем два иллюстративных примера. Другие приложения к задачам о термоупругих напряжениях даются в главе 13.

Рассмотрим сначала однородный стержень, сжатый двумя равными и противоположно направленными силами¹) *P*, рис. 140, *a*.

Задача отыскания напряжений, вызываемых этими силами, является довольно сложной. Допустим, однако, что нас интересует не напряжение, а полное удлинение стержня б. На этот вопрос можно ответить, используя теорему взаимности. С этой целью рассмотрим в дополнение к заданному нагружению, представленному на рис. 140, *a*, простое осевое растяжение стержня, показанное на рис. 140, *б*. Для этого второго случая найдем поперечное сужение, равное $\delta_1 = v (Qh/AE)$, где A— площадь поперечного сечения стержня. Тогда теорема взаимности дает нам уравнение

$$P v \, \frac{Qh}{AE} = Q \, \delta,$$

и удлинение стержня, вызываемое двумя силами *P*, приложенными, как показано на рис. 140, *a*, будет равно

$$\delta = \frac{\nu P h}{AE}$$

независимо от формы поперечного сечения.

Рассмотрим другой пример. Определим уменьшение объема упругого тела, вызванное двумя равными по величине и противоположными по знаку силами *P* (рис. 141, *a*). В качестве второго состояния рассмотрим состояние, вызванное действием на то же тело равномерно распределенного давления *p*. В этом последнем

¹) Мы можем предполагать, чтобы избежать особенностей, что эти силы распределены по малой площади.

ОВЩИЕ ТЕОРЕМЫ

случае мы будем иметь в каждой точке тела всестороннее равномерное сжатие величиной (1-2v) p/E (см. уравнение (8)) и расстояние l между точками приложения сил A и B уменьшится на величину (1-2v) pl/E. Применительно к двум состояниям, изображенным на рис. 141, теорема взаимности¹) дает

$$P\,\frac{(1-2\nu)\,\rho l}{E}=\Delta p,$$

откуда получаем уменьшение объема тела

$$\Delta = \frac{Pl(1-2\nu)}{E}.$$

§ 98. Приближенный характер решений для плоского напряженного состояния

На стр. 49 отмечалось, что система уравнений для задач о плоском напряженном состоянии при сделанных предположениях ($\sigma_x = \tau_{xz} = \tau_{yz} = 0$, σ_x , σ_y , τ_{xy} не зависят от z), которую мы сочли достаточной, не обеспечивает удовлетворение всех условий совместности. Эти предположения требуют, чтобы величины ε_x , ε_y , ε_z , γ_{xy} не зависели от z и чтобы γ_{xz} и γ_{yz} равнялись нулю. Первое из условий совместности (125) включалось в теорию плоского напряженного состояния в качестве уравнения (21). Легко проверить, что остальные пять уравнений удовлетворяются только в том случае, когда ε_z представляет собой линейную функцию от x и y, что является скорее исключением, чем правилом, в решениях, полученных в главах 3—6. Очевидно, что эти решения не могут быть точными, однако, как мы сейчас покажем, они являются достаточно близким приближением для тонких пластинок.

Найдем точное решение уравнений трехмерной задачи для случая 2)

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

приняв объемные силы равными нулю. Такие решения должны удовлетворять уравнениям равновесия (123) и условиям совместности (126).

Поскольку σ_z , τ_{zx} , τ_{zy} равны нулю, третье, четвертое и пятое уравнения (126) (считая по столбцам) дают

$$\frac{\partial}{\partial z}\left(\frac{\partial \Theta}{\partial z}\right) = 0, \quad \frac{\partial}{\partial y}\left(\frac{\partial \Theta}{\partial z}\right) = 0, \quad \frac{\partial}{\partial x}\left(\frac{\partial \Theta}{\partial z}\right) = 0,$$

а это означает, что значение производной $\partial \Theta / \partial z$ постоянно. Обозначая это значение через k, после интегрирования по z получаем

$$\Theta = kz + \Theta_0, \tag{a}$$

где Θ_0 — пока неизвестная функция x и y.

Третье из уравнений (123) удовлетворяется тождественно, а первые два сводятся к двумерным уравнениям

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} = 0,$$

которые, как и ранее, удовлетворяются, если положить

$$\sigma_{\mathbf{x}} = \frac{\partial^2 \varphi}{\partial u^2}, \quad \sigma_{\mathbf{y}} = \frac{\partial^2 \varphi}{\partial x^2}, \quad \tau_{\mathbf{x}\mathbf{y}} = -\frac{\partial^2 \varphi}{\partial \mathbf{x} \partial \mathbf{y}}; \tag{6}$$

однако здесь ф является уже функцией x, y, z.

¹) Другие приложения такого рода см. в цитированной выше книге А. Лява, стр. 184—185 (русское издание).

2) A. Clebsch, Elästizität, § 39.

§ 98]

приближенный характер решений

Возвращаясь к уравнению (126), заметим, что после сложения трех уравнений, стоящих слева с учетом равенства $\Theta = \sigma_x + \sigma_y + \sigma_z$ имеем

$$\nabla^2 \Theta = 0, \qquad (B)$$

$$\nabla_1^2 \Theta_0 = 0, \qquad (\Gamma)$$

где

$$\nabla_1^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Кроме того, поскольку σ_z равно нулю, а σ_x и σ_y определяются первыми двумя уравнениями (б), мы можем записать $\nabla_1^2 \varphi = \Theta$, откуда, с учетом (а), получаем

$$\nabla_1^2 \varphi = kz + \Theta_0, \qquad (A)$$

где Θ_0 — функция x и y, удовлетворяющая уравнению (r). Используя (а) и первое из соотношений (б), запишем первое из уравнений (126) в виде

$$(1+\nu) \nabla^{2} \frac{\partial^{2} \varphi}{\partial y^{2}} + \frac{\partial^{2} \Theta_{0}}{\partial x^{2}} = 0.$$
 (e)

Используя равенство (д), получаем

(

$$\nabla^2 \frac{\partial^2 \varphi}{\partial y^2} = \frac{\partial^2}{\partial y^2} \nabla^2 \varphi = \frac{\partial^2}{\partial y^3} \left(\nabla_1^2 \varphi + \frac{\partial^2 \varphi}{\partial z^2} \right) = \frac{\partial^2}{\partial y^2} \left(\Theta_0 + \frac{\partial^2 \varphi}{\partial z^2} \right).$$

Кроме того, используя (г), мы можем заменить в (е) д²Θ₀/дx² на — д²Θ₀/дy². Тогда (е) принимает вид

$$1+\nu)\frac{\partial^{2}}{\partial y^{2}}\left(\Theta_{0}+\frac{\partial^{2}\varphi}{\partial z^{2}}\right)-\frac{\partial^{2}\Theta_{0}}{\partial y^{2}}=0,$$
$$\frac{\partial^{2}}{\partial y^{2}}\left(\frac{\partial^{2}\varphi}{\partial z^{2}}+\frac{\nu}{1+\nu}\Theta_{0}\right)=0.$$
(**)

или .

Это уравнение можно использовать вместо первого уравнения (126). Аналогично второе и последнее равенства (126) можно заменить уравнениями

$$\frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 \varphi}{\partial z^2} + \frac{\nu}{1+\nu} \Theta_0 \right) = 0, \quad \frac{\partial^2}{\partial x \, \partial y} \left(\frac{\partial^2 \varphi}{\partial z^2} + \frac{\nu}{1+\nu} \Theta_0 \right) = 0.$$

Эти уравнения вместе с (ж) показывают, что обращаются в нуль все три вторые производные по x и y от. входящей в скобки функции, зависящей от x, y и z. Таким образом, эта функция должна быть линейной по x и y, и можно записать

$$\frac{\partial^2 \varphi}{\partial z^2} + \frac{v}{1+v} \Theta_0 = a + bx + cy, \qquad (H)$$

где a, b и c-произвольные функции от z.

Интегрируя это уравнение дважды по z, получаем

$$\varphi = -\frac{1}{2} \frac{v}{1+v} \Theta_0 z^2 + A + Bx + Cy + \varphi_1 z + \varphi_0, \qquad (\kappa)$$

где A, B и C — функции от z, полученные двукратным интегрированием a, b и c, $\underline{a} \varphi_1$ и φ_0 — пока произвольные функции от x и y.

Если определить σ_x , σ_y , τ_{xy} из (к) с помощью формул (б), то члены

$$A + Bx + Cy$$

не будут играть роли. Поэтому мы можем положить A, B и C равными нулю, соответственно приняв в (и) равными нулю a, b и c.

Если ограничиться задачами, в которых распределение напряжений симметрично относительно срединной плоскости пластинки z=0, член $\varphi_1 z$ также должен быть равным нулю. То же относится и к коэффициенту k в выражении (а).

Тогда (к) приводится к виду

$$\varphi = \varphi_0 - \frac{1}{2} \frac{\nu}{1+\nu} \Theta_0 z^2. \tag{(1)}$$

Однако φ и Θ_0 связаны соотношением (д), в котором мы можем теперь положить k=0. Таким образом, подставляя (л) в (д) и используя (г), получаем

$$\nabla_1^2 \varphi_0 = \Theta_0, \tag{M}$$

откуда, согласно (г),

$$\nabla_1^4 \varphi_0 = 0. \tag{H}$$

Остальные уравнения (126) удовлетворяются с учетом уравнения (а) и равенства нулю σ_z , τ_{zx} , τ_{zy} .

Мы можем теперь получить распределение напряжений путем выбора функции ϕ_0 от x и y, которая удовлетворяет уравнению (н), находя Θ_0 из уравнения (м) и ϕ из уравнения (л). После этого напряжения определяются по формулам (б). Каждое из них, согласно (л), состоит из двух частей, из которых первая вычисляется по ϕ_0 , а вторая—из члена — $(1/2) (\nu/1 + \nu) \Theta_0 z^2$. В силу уравнения (н) первая часть в точности отвечает компонентам плоского напряженного состояния, найденным в главах 3—6. Вторая часть, будучи пропорциональна z^2 , может быть сделана сколь угодно малой по сравнению с первой, если ограничиться достаточно тонкими пластинками. Отсюда следует, что полученные нами в главах 3—6 решения, хотя и не удовлетворяют условиям совместности, но тем не менее служат хорошим приближением для тонких

«Точные» решения, представленные функциями напряжений в форме (л), требуют, чтобы напряжения как на границе, так и всюду, изменялись по толщине параболически. Однако всякое отклонение от такого закона изменения напряжений, если он не меняет интенсивности усилия на единицу длины границы, будет менять лишь напряжения в непосредственной близости от границы, это следует из принципа Сен-Венана, стр. 57. Рассмотренный выше тип решения всегда представляет действительные напряжения, и компонентами σ_z , τ_{xz} , τ_{yz} на практике можно пренебречь, исключая области, близкие к границе¹).

ЗАДАЧИ

1. Показать, что

$$\varepsilon_x = k (x^2 + y^2), \quad \varepsilon_y = k (y^2 + z^2), \quad \gamma_{xy} = k' xyz, \quad \varepsilon_z = \gamma_{xz} = \gamma_{yz} = 0,$$

где k, k' малые постоянные, представляет собой невозможное деформированное состояние.

2. Твердое тело неравномерно нагревается до температуры T, являющейся функцией x, y, z. Если предположить, что каждый элемент обладает неограниченным тепловым расширением, компоненты деформации будут иметь вид

$$\varepsilon_x = \varepsilon_y = \varepsilon_z = \alpha T, \quad \gamma_{xy} = \gamma_{yz} = \gamma_{xz} = 0,$$

где а -- постоянный коэффициент теплового расширения.

¹) В соответствии с этим принцип усреднения по толщине пластинки, выраженный в понятии «обобщенного плоского напряженного состояния», дает мало выгод. Исключая области вблизи границы, всюду преобладает простое параболическое изменение. Вблизи границы изменение напряжений по z отличается от параболического и зависит от изменения по z внешней нагрузки.

ЗАДАЧИ

Доказать, что это деформированное состояние возможно лишь тогда, когда *T* является линейной функцией от *x*, *y* и *z*. Напряжения и связанные с ними деформации для случая, когда *T* не является линейной функцией, исследуются в главе 13.

3. Диск или цилиндр, форма которого показана на рис. 141, а, в точках С и D сжимается силами P, действующими вдоль линии CD и вызывающими удлинение линии AB. Затем он сжимается силами P вдоль линии AB (рис. 141, а), вызывающими удлинение линии CD. Показать, что эти удлинения друг другу равны.

4. Какой выбор функций φ_0 , φ_1 , φ_3 , φ_3 в общем решении из § 88 даст общее решение для плоской деформации ($\omega = 0$)?

5. Исследовать связь уравнения (e) § 85 с уравнением (25) § 16. Показать, что первое из них можно свести ко второму при постулатах плоского напряженного состояния ($\sigma_z = \tau_{xz} = \tau_{yz} = 0$, Z = 0), использованных в точной теории из § 82.

Глава 9

ЭЛЕМЕНТАРНЫЕ ТРЕХМЕРНЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ

§ 99. Однородное папряженное состояние

При исследовании уравнений равновесия (123) и граничных условий (124) было установлено, что корректное решение задачи должно удовлетворять не только уравнениям (123) и (124), но и условиям совместности (§ 85). Эти последние условия при отсутствии объемных сил или при их постоянстве содержат лишь вторые производные от компонент напряжения. Таким образом, если уравнения (123) и граничные условия (124) можно удовлетворить, принимая компоненты напряжения постоянными или линейными функциями координат, то условия совместности удовлетворяются тождественно и эти напряжения представляют корректное решение задачи.

В качестве очень простого примера рассмотрим растяжение стержня в осевом направлении (рис. 142). Объемными силами можно пренебречь. Уравнения равновесия удовлетворяются, если принять

$$\sigma_x = \text{const}, \quad \sigma_y = \sigma_z = \tau_{xy} = \tau_{xz} = \tau_{yz} = 0.$$
 (a)

Очевидно, граничные условия (124) для боковых поверхностей стержня, свободных от внешних сил, удовлетворяются, поскольку

Рис. 142.

исключением σ_x , равны нулю. Граничные условия на концах стержня имеют вид

компоненты напряжения.

$$\sigma_x = \overline{X},$$
 (6)

за

т. е. мы имеем равномерное распределение растягивающих напряжений по всем поперечным сечениям стержня, если по его концам равномерно распределены растягивающие» напряжения. В этом случае решение (а) удовлетворяет уравнениям (123) и (124) и является корректным решением задачи, так как условия совместности (126) удовлетворяются тождественно.

Если растягивающие напряжения распределены по концам неравномерно, решение (а) уже не является точным, так как оно не удовлетворяет граничным условиям на концах. Корректное решение становится более сложным, так как напряжения по поперечным сечениям уже не распределяются равномерно. Примеры
§ 100]

такого неравномерного распределения встречались при исследовании двумерных задач (см. стр. 75 и 269).

В качестве второго примера рассмотрим случай равномерного гидростатического давления без учета массовых сил. Уравнения равновесия удовлетворяются, если положить

$$\sigma_x = \sigma_y = \sigma_z = -p, \quad \tau_{xy} = \tau_{xz} = \tau_{yz} = 0.$$
 (B)

Эллипсоид напряжений в этом случае является шаром. Любые три перпендикулярных направления можно принять за главные, и напряжение на любой площадке представляет собой нормальное сжимающее напряжение, равное *р*. Условия на поверхности (124), очевидно, будут удовлетворены, если давление *р* равномерно распределено по поверхности тела.

§ 100. Растяжение призматического стержня под действием собственного веса

Если ρg — удельный вес стержня (рис. 143), то объемные силы будут равны

$$X = Y = 0, \quad Z = -\rho g. \tag{a}$$

Дифференциальные уравнения равновесия (123) удовлетворяются, если положить z

$$\sigma_z = \rho g z, \quad \sigma_x = \sigma_y = \tau_{xy} = \tau_{yz} = \tau_{xz} = 0, \quad (6)$$

т. е. принять, что в каждом поперечном сечении мы имеем равномерное растяжение, вызываемое весом нижележащей части стержня. Легко видеть, что граничные условия на боковой поверхности, которая свободна от напряжений, удовлетворяются. Граничные условия дают нулевые напряжения для нижнего конца стержня, а для верхнего конца равномерное распределенное растягивающее напряжение $\sigma_z = \rho g l$, где l — длина стержня.

Условия совместности (126) также удовлетворяются решением (б); таким образом, это корректное решение задачи для равномерного распределения усилий в верхнем сечении. Оно совпадает с решением, которое обычно дается в элементарных курсах сопротивления материалов.

Рассмотрим теперь перемещения (см. § 86). Из закона Гука, используя уравнения (3) и. (6), находим

$$\varepsilon_z = \frac{\partial w}{\partial z} = \frac{\sigma_z}{E} = \frac{\rho g z}{E} , \qquad (B)$$

$$\varepsilon_x = \varepsilon_y = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -v \frac{\rho g z}{E}$$
, (r)

$$\gamma_{xy} = \gamma_{xz} = \gamma_{yz} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0.$$
(A)

Перемещения *u*, *v*, *w* можно теперь найти путем интегрирования уравнений (в), (г) и (д). Уравнение (в) дает

$$w = \frac{\rho g z^2}{2E} + w_0, \qquad (e)$$

где w_0 — функция от x и y, которая подлежит определению. Подставляя (е) во второе и третье уравнения (д), получаем

$$\frac{\partial w_0}{\partial x} + \frac{\partial u}{\partial z} = 0, \quad \frac{\partial w_0}{\partial y} + \frac{\partial v}{\partial z} = 0$$

откуда

$$u = -z \frac{\partial w_0}{\partial x} + u_0, \quad v = -z \frac{\partial w_0}{\partial y} + v_0, \quad (\mathbf{x})$$

где u_0 и v_0 суть функции только от x и y. Подставляя выражение (ж) в уравнения (г), получаем

$$-z\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial u_0}{\partial x} = -\nu \frac{\rho g z}{E}, \quad -z\frac{\partial^2 w_0}{\partial y^2} + \frac{\partial v_0}{\partial y} = -\nu \frac{\rho g z}{E}.$$
(H)

Учитывая, что u_0 и v_0 не зависят от z, уравнениям (и) можно удовлетворить только в том случае, если принять

$$\frac{\partial u_0}{\partial x} = \frac{\partial v_0}{\partial y} = 0, \quad \frac{\partial^2 w_0}{\partial x^2} = \frac{\partial^2 w_0}{\partial y^2} = \frac{v \rho g}{E} . \tag{K}$$

Подставляя выражения (ж) для *и* и *v* в первое из уравнений (д), находим

$$-2z\frac{\partial^2 w_0}{\partial x \partial y} + \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} = 0.$$

Так как u_0 и v_0 не зависят от z, то имеем

$$\frac{\partial^2 w_0}{\partial x \partial y} = 0, \quad \frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x} = 0.$$
 (π)

Из уравнений (к) и (л) можно теперь выписать общие выражения для функций u_0 , v_0 , w_0 . Легко показать, что все эти уравнения удовлетворяются, если положить

$$u_0 = \delta y + \delta_1, \quad v_0 = -\delta x + \gamma_1, \quad w_0 = \frac{v \rho g}{2E} (x^2 + y^2) + \alpha x + \beta y + \gamma,$$

где α , β , γ , δ , δ_1 , γ_1 — произвольные постоянные. Теперь из уравнений (е) и (ж) следуют общие выражения для перемещений

$$u = -\frac{v\rho g xz}{E} - \alpha z + \delta y + \delta_{1},$$

$$v = -\frac{v\rho g yz}{E} - \beta z - \delta x + \gamma_{1},$$

$$w = -\frac{\rho g z^{2}}{2E} + \frac{v\rho g}{2E} (x^{2} + y^{2}) + \alpha x + \beta y + \gamma.$$

(M)

Шесть произвольных постоянных можно определить из условий на опорном сечении. Опирание должно быть таким, чтобы воспрепятствовать любому движению стержня как абсолютно твердого тела. Чтобы воспрепятствовать поступательному движению стержня, закрепим центр тяжести верхнего конца A так, чтобы при x = y = 0, z = l выполнялось u = v = w = 0. Чтобы исключить вращение стержня относительно осей, проходящих через точку Aи параллельных осям x и y, закрепим элемент оси z в точке A. Тогда в этой точке $\partial u/\partial z = \partial v/\partial z = 0$. Возможность вращения относительно оси z исключается в силу закрепления элементарной площадки, проходящей через точку A и параллельной плоскости zx. Тогда $\partial v/\partial x = 0$ в точке A. Используя уравнения (м), придаем шести условиям в точке A вид

$$-\alpha l + \delta_1 = 0, \quad -\beta l + \gamma_1 = 0, \quad \frac{\rho g l^2}{2E} + \gamma = 0,$$

$$\alpha = 0, \qquad \beta = 0, \qquad \delta = 0.$$

Отсюда

$$\delta_1=0, \quad \gamma_1=0, \quad \gamma=-\frac{\rho g l^2}{2E},$$

и окончательные выражения для перемещений будут

$$u = -\frac{\mathbf{v} \rho g x z}{E}, \quad v = -\frac{\mathbf{v} \rho g y z}{E}, \quad w = \frac{\rho g z^2}{2E} + \frac{\mathbf{v} \rho g}{2E} (x^2 + y^2) - \frac{\rho g I^2}{2E}.$$

Можно видеть, что точки на оси *г* имеют только вертикальные перемещения

$$w = -\frac{\rho g}{2E} \left(l^2 - z^2 \right).$$

Ввиду поперечного сужения другие точки стержня имеют не только вертикальные, но горизонтальные перемещения. Линии, параллельные до деформации оси z, после деформации становятся наклонными к этой оси; форма стержня после деформации показана на рис. 143 штриховыми линиями. Поперечные сечения стержня, перпендикулярные к оси z, после деформации искривляются, образуя параболическую поверхность. Точки поперечного сечения z = C, например, после деформации оказываются на поверхности

$$z=c+w=c+\frac{\rho g c^2}{2E}+\frac{\nu \rho g}{2E}(x^2+y^2)-\frac{\rho g l^2}{2E}.$$

Эта поверхность перпендикулярна ко всем продольным волокнам стержня, которые после деформации приобретают наклон по отношению к оси z, так что деформация сдвига γ_{xy} и γ_{xz} отсутствуют.

[гл. 9

§ 101. Кручение круглых валов постоянного поперечного сечения

Согласно элементарной теории кручения круглых валов касательное напряжение т в любой точке поперечного сечения

ны вала, так что

$$\tau = G\theta r, \qquad (a)$$

где G-модуль упругости при сдвиге. Разлагая это напряжение на две компоненты, параллельные осям х и у, находим

$$\tau_{yz} = G \theta r \frac{x}{r} = G \theta x, \quad \tau_{xz} = -G \theta r \frac{y}{r} = -G \theta y.$$
 (6)

Элементарная теория предполагает также, что

$$\sigma_x = \sigma_y = \sigma_z = \tau_{xy} = 0.$$

Можно показать, что при определенных условиях это элементарное решение является точным. Поскольку компоненты напряжения являются или

Рис. 144.

Рис. 144. линейными функциями координат, или равны нулю, достаточно рассмотреть только уравнения равновесия (123) и граничные условия (124). Подставляя выписанные выше выражения для компонент напряжения в уравнения (123), находим, что эти уравнения удовлетворяются, если отсутствуют массовые силы. Боковая поверхность вала свободна от усилий, и гранич-ные условия (124), с учетом того, что для поверхности цилиндра $\cos(Nz) = n = 0$, приводятся к виду

$$0 = \tau_{xz} \cos(Nx) + \tau_{yz} \cos(Ny). \tag{B}$$

Для случая круглого цилиндра, кроме того, имеем

$$\cos(Nx) = \frac{x}{r}, \quad \cos(Ny) = \frac{y}{r}.$$
 (r)

Подставляя эти значения и выражения (б) для компонент напряжения в уравнение (в), легко убедиться, что оно удовлетво-ряется. Очевидно также, что для поперечного сечения, отличного от кругового, для которого уравнения (г) не соблюдаются, компоненты напряжения (б) не удовлетворяют граничным условиям (в), и следовательно, решение (а) неприменимо. Такие более сложные задачи кручения будут рассмотрены ниже (см. главу 10). Рассмотрим теперь граничные условия на концах вала; мы

видим, что поверхностные касательные усилия на этих поверхностях должны распределяться в точности так же, как и напряжения т_х, н т_и в промежуточных сечениях вала. Только в этом случае распределение напряжений, определяемое уравнениями (б), является точным решением задачи. Однако практическое применение данного решения не ограничивается этими случаями. Из принципа Сен-Венана можно сделать вывод, что в длинном закручиваемом стержне на достаточном расстоянии от концов напряжения зависят только от величины крутящего момента M_t и практически не зависят от способа, по которому усилия распределяются на концах стержня.

Перемещения для этого случая можно найти таким же путем, как и в предыдущем параграфе. Приняв те же условия закрепления в точке A, что и в предыдущей задаче, находим

$$u = -\theta uz$$
, $v = \theta xz$, $w = 0$.

Следовательно, предположение о том, что поперечные сечения остаются плоскими, а радиусы — прямыми, которое обычно делается в элементарной теории кручения, справедливо.

§ 102. Чистый изгиб призматических стержней

Рассмотрим призматический стержень, изгибаемый в одной из главных плоскостей двумя равными и противоположными моментами *M* (рис. 145). Взяв начало координат в центре тяжести поперечного сечения, а плоскость *xz* — в главной плоскости

Рис. 145.

изгиба, получим следующие значения компонент напряжения, определяемые элементарной теорией:

$$\sigma_z = \frac{Ex}{R}, \quad \sigma_y = \sigma_x = \tau_{xy} = \tau_{xz} = \tau_{yz} = 0, \quad (a)$$

где R—радиус кривизны стержня после изгиба. Подставляя выражения (а) для компонент напряжений в уравнения равновесия (123), получаем, что эти уравнения удовлетворяются при отсутствии объемных сил. Граничные условия (124) для боковой поверхности стержня, которая свободна от внешних сил, также удовлетворяются. Граничные условия (124) по концам требуют, чтобы поверхностные силы распределялись по концам таким же образом, как и напряжения σ_z . Только при таком условии напряжения (а) представляют точное решение задачи. Изгибающий момент М определяется формулой

$$M = \int \sigma_z x \, dA = \int \frac{Ex^2 \, dA}{R} = \frac{EI_y}{R} \,,$$

в которой I_y — момент инерции поперечного сечения балки относительно нейтральной оси, параллельной оси y. Из этого соотношения находим

$$\frac{1}{R} = \frac{M}{EI_u}$$

- хорошо известную формулу элементарной теории изгиба.

Рассмотрим теперь перемещения для случая чистого изгиба. Используя закон Гука и уравнения (2), из решения (а) находим

$$\varepsilon_z = \frac{\partial \omega}{\partial z} = \frac{x}{R} , \qquad (6)$$

$$\varepsilon_x = \frac{\partial u}{\partial x} = -v \frac{x}{R}, \quad \varepsilon_y = \frac{\partial v}{\partial y} = -v \frac{x}{R},$$
 (B)

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = 0.$$
 (r)

Используя эти дифференциальные уравнения и учитывая условия закрепления стержня, можно таким же путем, как и в § 100, получить перемещения.

Из уравнения (б) имеем

$$w = \frac{xz}{R} + w_0,$$

где w_0 есть функция только от x и y. Второе и третье из уравнений (г) дают

$$\frac{\partial u}{\partial z} = -\frac{z}{R} - \frac{\partial w_0}{\partial x}, \quad \frac{\partial v}{\partial z} = -\frac{\partial w_0}{\partial y},$$

откуда

$$u = -\frac{z^2}{2R} - z \frac{\partial w_0}{\partial x} + u_0, \quad v = -z \frac{\partial w_0}{\partial y} + v_0. \tag{A}$$

Эдесь через u_0 и v_0 обозначены неизвестные функции от x и y, которые будут определены далее. Подставляя выражения (д) в уравнения (в), получаем

$$-z\frac{\partial^2 w_0}{\partial x^2} + \frac{\partial u_0}{\partial x} = -\frac{vx}{R}, \quad -z\frac{\partial^2 w_0}{\partial y^2} + \frac{\partial v_0}{\partial y} = -v\frac{x}{R}.$$

Эти уравнения должны удовлетворяться для любых значений *z*, откуда

$$\frac{\partial^2 \omega_0}{\partial x^2} = 0, \quad \frac{\partial^2 \omega_0}{\partial y^2} = 0,$$
 (e)

и после интегрирования

$$u_{0} = -\frac{vx^{2}}{2R} + f_{1}(y), \quad v_{0} = -\frac{vxy}{R} + f_{2}(x). \tag{(#)}$$

Теперь, подставляя (д) и (ж) в первое из уравнений (г), находим $2z \frac{\partial^2 w_0}{\partial x \partial y} - \frac{\partial f_1(y)}{\partial y} - \frac{\partial f_2(x)}{\partial x} + \frac{vy}{R} = 0.$

Заметив, что только первый член в этом уравнении зависит от г, приходим к выводу, что необходимо выполнение следующих vсловий:

$$\frac{\partial^2 w_0}{\partial x \, \partial y} = 0, \quad \frac{\partial f_1(y)}{\partial y} + \frac{\partial f_2(x)}{\partial x} - \frac{vy}{R} = 0.$$

Эти уравнения и уравнение (е) требуют, чтобы

$$w_0 = mx + ny + p,$$

$$f_1(y) = \frac{vy^2}{2R} + \alpha y + \gamma, \quad f_2(x) = -\alpha x + \beta,$$

где *m*, *n*, *p*, *a*, *β*, *γ*—произвольные постоянные. Выражения для перемещений теперь принимают вид

$$u = -\frac{z^2}{2R} - mz - \frac{vx^2}{2R} + \frac{vy^2}{2R} + \alpha y + \gamma,$$

$$v = -nz - \frac{vxy}{R} - \alpha x + \beta,$$

$$w = \frac{xz}{R} + mx + ny + p.$$

Произвольные постоянные определяются из условий закрепления. Предположим, что закреплены точка А (центр тяжести левого конца стержня), а также элемент оси z и элемент плоскости *хг*. Тогда при x = y = z = 0 имеем

$$u=v=w=0, \quad \frac{\partial u}{\partial z}=\frac{\partial v}{\partial z}=\frac{\partial v}{\partial x}=0.$$

Эти условия удовлетворяются, если принять все произвольные постоянные равными нулю. Тогда

$$u = -\frac{1}{2R} [z^2 + v (x^2 - y^2)], \quad v = -\frac{vxy}{R}, \quad w = \frac{xz}{R}.$$
(H)

Чтобы получить кривую прогибов оси стержня, подставим x = y = 0 в уравнения (и). Отсюда

$$u = -\frac{z^2}{2R} = -\frac{Mz^2}{2EI_y}, \quad v = w = 0.$$

Это совпадает с кривой прогибов, которую дает элементарная теория изгиба.

Рассмотрим теперь произвольное поперечное сечение z = c на расстоянии с от левого конца стержня. После деформации точки этого поперечного сечения будут находиться в плоскости

$$z=c+w=c+\frac{cx}{R},$$

т, е, при чистом изгибе поперечные сечения остаются плоскими, как это предполагается в элементарной теории. Чтобы исследовать деформацию поперечного сечения в его плоскости, рассмотрим стороны у - 1:6 (рис. 145, б), После изгиба имеем

$$y = \{b \mid \sigma \in A; b \left(1 - \frac{\gamma_X}{R} \right),$$

Стороны приобретают наклоп, как показано на рисупке пунктирнымя линиями.

Две другие стороны поперечного сечения после изгиба представляются уравнениями

$$x = \left[\pm a + u = \pm a - \frac{1}{2R} \left[e^{a} + v \left(a^{a} - y^{a} \right) \right],$$

Следовательно, они изгибаются по параболам, которые с достаточной точностью можно заменить дугой окружности радиуса R/r,

если деформация мала, цели рассмотреть верхнюю и нижнюю

Pac, 146,

грани стержил, то становится очевидным, что после изгиба кривизна этих граней в продольном направлении обращена выпуклостью вниз, а в поперечном направлении – выпуклостью вверх, Горизонтали этой седлообразной поверхности показаны на .рис. [46, а. Принимая в первом из уравнений (и) х и у постоянными, находим, что уравнение горизонталей имеет вид

Следовательно, сами горизонтали являются типерболами с асими-

$$z^3 \rightarrow \gamma y^3 = 0,$$

Из этого уравнения для угла « (рис. 146, а) получаем следую-

$$\lg^3 \alpha = \frac{1}{\sqrt{2}},$$

Это уравнение использовалось для определения кожфиниента

296

Пуассона v^1). Если верхняя поверхность балки отполирована и на нее положена стеклянная пластинка, то после изгиба между стеклянной пластинкой и криволинейной поверхностью балки создается воздушный просвет переменной толщины. Эти переменные толщины можно замерить оптическим путем. Луч монохроматического света, скажем, желтого света натрия, перпендикулярный поверхности пластинки, будет частично отражаться пластинкой, а частично поверхностью балки. Два отраженных световых луча интерферируют друг с другом в точках, где толщина воздушной прослойки такова, что разность между длинами путей двух этих лучей равна нечетному числу световых полуволн. Таким путем получена картина гиперболических горизонталей, показанная на рис. 146, δ .

§ 103. Чистый изгиб пластинок

Результаты предыдущего параграфа можно использовать при исследовании изгиба пластинок постоянной толщины. Если напряжения $\sigma_x = Ez/R$ распределяются по грани пластинки, параллельной оси *у* (рис. 147), то поверхность пластинки станет²)

седлообразной поверхностью, кривизна которой в плоскостях, параллельных плоскости xz, равна 1/R, а в перпендикулярном направлении $-\nu/R$. Если через h обозначить толщину пластинки, через M_1 —изгибающий момент на единицу длины границы, параллельной оси y, а через

$$I_y = \frac{h^3}{12}$$

— момент инерции на единицу длины, то зависимость между M_1 и R из предыдущего параграфа примет вид

$$\frac{1}{R} = \frac{M_1}{E I_y} = \frac{12M_1}{E h^3}.$$
 (a)

Когда изгибающие моменты действуют в двух перпендикулярных направлениях (рис. 148), кривизны упругой поверхности пластинки можно получить с помощью суперпозиции. Обозначим через 1/R₁ и 1/R₂ кривизны упругой поверхности в плоскостях,

¹) А. Согпи, Compt. Rend. 69, 333 (1869). См. также R. Straubel Wied. Ann., 68, 369 (1899).

²⁾ Предполагается, что прогибы малы по сравнению с толщиной пластинки.

параллельных соответственно координатным плоскостям гх и гу; через М, и М, обозначим изгибающие моменты, отнесенные к единице длины краев, параллельных соответственно осям yи x. Тогда, используя уравнение (а) и применяя принцип суперпозиции, нахолим

$$\frac{1}{R_1} = \frac{12}{Eh^3} \left(M_1 - \nu M_2 \right), \quad \frac{1}{R_2} = \frac{1}{Eh^3} \left(M_2 - \nu M_1 \right). \tag{6}$$

Моменты считаются положительными, если они вызывают изгиб пластинки выпуклостью вниз. Решая уравнения (б) относительно М. и М., получаем

$$M_{1} = \frac{Eh^{3}}{12(1-\nu^{2})} \left(\frac{1}{R_{1}} + \nu \frac{1}{R_{2}} \right), \quad M_{2} = \frac{Eh^{3}}{12(1-\nu^{2})} \left(\frac{1}{R_{2}} + \nu \frac{1}{R_{1}} \right).$$
(B)

Для малых прогибов можно использовать аппроксимацию

$$\frac{1}{R_1} = -\frac{\partial^2 \omega}{\partial x^2}, \quad \frac{1}{R_2} = -\frac{\partial^2 \omega}{\partial y^2}.$$

Тогда, записывая

$$\frac{Eh^3}{12(1-v^2)} = D,$$
(143)

находим

$$M_{1} = -D\left(\frac{\partial^{2}\omega}{\partial x^{2}} + v\frac{\partial^{2}\omega}{\partial y^{2}}\right), \quad M_{2} = -D\left(\frac{\partial^{2}\omega}{\partial y^{2}} + v\frac{\partial^{2}\omega}{\partial x^{2}}\right). \quad (144)$$

Постоянная D называется изгибной жесткостью пластинки. В частном случае, когда пластинка изгибается по цилиндрической поверхности с образующими, параллельными оси y, мы имеем $\partial^2 w / \partial y^2 = 0$ и из уравнений (144)

$$M_1 = -D \frac{\partial^2 \omega}{\partial x^2}, \quad M_2 = -v D \frac{\partial^2 \omega}{\partial x^2}.$$
 (145)

Для частного случая, в котором $M_1 = M_2 = M$, имеем

$$\frac{1}{R_1} = \frac{1}{R_2} = \frac{1}{R}.$$

Пластинка при этом изгибается по сферической поверхности и зависимость между кривизной и изгибающим моментом, согласно уравнению (в), имеет вид

$$M = \frac{Eh^3}{12(1-\nu)} \frac{1}{R} = \frac{D(1+\nu)}{R}.$$
 (146)

Этими результатами мы будем пользоваться в дальнейшем.

Этими результатами мы будем пользоваться в дальнеишем. Формулы (144) используются в теории пластинок, когда изги-бающие моменты распределены неравномерно и сопровождаются присутствием поперечных сил и поверхностного давления. При этих условиях формулы (144) можно получить из общих урав-нений главы 8 в качестве аппроксимации, справедливой лишь для тонких пластинок. Подобным же образом можно связать с общими уравнениями и элементарную теорию изгиба стержней¹).

¹) J. N. Goodier, Trans. Roy. Soc. Can., sect. III, ser. 3, 32, 65 (1938).

Глава 10

КРУЧЕНИЕ ¹)

§ 104. Кручение прямолинейных стержней

Как было показано (§ 101), точное решение задач о кручении круглых валов получается, если предположить, что поперечные сечения стержня остаются плоскими и в процессе кручения поворачиваются без искажения. Эта теория, развитая Кулоном²),

была применена позднее Навье 3) к стержням некругового поперечного сечения. Сдевышеупомянутое допущение, Навье лав к ошибочному заключению, пришел что при заданном крутящем моменте угол закручивания стержня обратно пропорционален полярному моменту инерции поперечного сечения и что максимальное касательное напряжение действует в точках, наиболее

удаленных от центра тяжести сечения 4). Легко видеть, что вышеприведенные допущения находятся в прямом противоречии с граничными условиями. Взяв для примера стержень прямоугольного поперечного сечения (рис. 149), получим, согласно гипотезе Навье, что в любой точке A на границе касательное напряжение должно действовать в направлении, перпендикулярном радиусу OA. Разлагая это напряжение на две составляющие τ_{xz} и τ_{yz} , можно видеть, что необходимо добавочное касательное напряжение, равное по величине τ_{yz} и действующее на элемент боковой поверхности стержня в точке A (см. стр. 25), что находится в противоречии с предположением об отсутствии на боковой поверхности внешних усилий, если кручение вызывается лишь моментами, приложенными к концам стержня. Простой эксперимент со стержнем прямоугольного сечения, представленный на рис. 150, показывает, что поперечные сечения стержня

¹) Проблеме кручения посвящена общирная монография Н. Х. Арутюняна и Б. Л. Абрамяна Кручение упругих тел, Физматгиз, М. 1963 (Прим. ред.)

²) Coulomb, Histoire de l'Académie, 1784, Paris, 1787, crp. 229-269.

³) N a v i e r, Résumé des Leçons sur l'Application de la Mécanique, Paris, 1864 (под ред. Сен-Венана).

⁴) Эти выводы справедливы для некоторого тонкого слоя, соответствующего ломтику стержня между двумя поперечными сечениями, прикрепленному к абсолютно жестким плитам. См. J. N. Goodier, J. Appl. Phys. 13, 167 (1942).

[rn, 10

при кручения не остаются плоскимя и это искажения нрямоугольного элемента на поверхности стержия наиболее велики посередние граней, т. с. в точках, ближайных к оси стержия,

Корректное решение задачи о кручении стержнея силами, приложенными по его концам, дал Сен Венан ').

Сен-Венан использовал так называемый полуобратный метод. Вначале им были сделаны определенные допущения относительно

> деформаций скручиваемого стержия; затем было показано, что при этих допущениях можно удовлетворить уравнениям равновесия (123) и граничным условиям (124), Тогда из условия единственности решения

2ac. 150.

Pae. 151,

задач теории упругости (§ 96) следует, что сделанные впачале допущения являются корректными и что полученное решение представляет собой точное решение задачи о кручения, если моменты по концамприложены с помощью касательных рапряжений, распределенных в точности так, как это требуется решением.

Рассмотрям однородный стержень произвольного понеречного сечения, скручиваемый моментами, приложенными по его концам (рис. 151). Руководствуясь решением для круглого вала (стр. 292), Сен-Венан предположил, что деформация скручиваемого стержня состоит из двух частей: 1) поворотов понеречных сечений стержия, которые будут такими же, как и для круглого вала, и 2) децланации понеречных сечений, которая для всех понеречных сечений одинакова. Взяв начало координат в концевом понеречном сечении (рис. 151), паходим, что перемещения, отвечающие новороту понеречных сечений, будут

$$u \approx \dots 0 2 y, \quad v \approx 0 2 x, \tag{a}$$

4) B. Saint-Venant, Mémoires Savants Étrangers 14, 1855. См. также примечания Сеп-Венлиа к книге Цавье, удомянутой выше, а также 1. Тофhunter, К. Реасзон, flistory of the theory of Elasticity, т. 2. § 104]

где θz — угол закручивания поперечного сечения на расстоянии z от начала координат.

Депланация поперечных сечений определяется функцией ψ по формуле

$$w = \theta \psi(x, y). \tag{6}$$

При сделанных предположениях¹) (а) и (б) относительно перемещений, мы можем вычислить из уравнений (2) компоненты деформации, которые в данном случае имеют вид

$$\begin{aligned} \varepsilon_{x} &= \varepsilon_{y} = \varepsilon_{z} = \gamma_{xy} = 0, \\ \gamma_{xz} &= \frac{\partial \omega}{\partial x} + \frac{\partial u}{\partial z} = \theta \left(\frac{\partial \psi}{\partial x} - y \right), \\ \gamma_{yz} &= \frac{\partial \omega}{\partial y} + \frac{\partial v}{\partial z} = \theta \left(\frac{\partial \psi}{\partial y} + x \right). \end{aligned}$$
(B)

Соответствующие компоненты напряжений, согласно уравнениям (3) и (6), равны

$$\sigma_{x} = \sigma_{y} = \sigma_{z} = \tau_{xy} = 0,$$

$$\tau_{xz} = G\theta \left(\frac{\partial \psi}{\partial x} - y\right),$$

$$\tau_{yz} = G\theta \left(\frac{\partial \psi}{\partial y} + x\right).$$
(r)

Можно видеть, что при допущениях (а) и (б) относительно деформаций не возникают нормальные напряжения, действующие между продольными волокнами стержня или в направлении самих волокон. Не возникают и искажения плоскостей поперсчных сечений, поскольку ε_x , ε_y и γ_{xy} обращаются в нуль. В каждой точке мы имеем чистый сдвиг, определяемый компонентами τ_{xz} н τ_{yz} . Функция $\psi(x, y)$, определяющая депланацию поперечного сечения, должна быть выбрана таким образом, чтобы удовлетворялись уравнения равновесия (123). Подставляя выражения (г) в эти уравнения и пренебрегая массовыми силами, находим, что функция ψ должна удовлетворять уравнению

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0.$$
(147)

Рассмотрим теперь граничные условия (124). Для боковой поверхности стержня, которая свободна от внешних сил и имеет нормали, перпендикулярные к оси z, имеем $\overline{X} = \overline{Y} = \overline{Z} = 0$ и сов Nz = n = 0. Первые два из уравнений (124) удовлетворяются

¹) Было показано, что если каждый тонкий диск, вырезанный из стержня, находится в одном и том же состоянии, то никакая другая форма перемсщений, линсйных относительно угла закручивания θ, существовать не может. См. J. N. Goodier, W. S. Shaw, J. Mech. Phys. Solids 10, 35-52 (1962).

тождественно, а третье дает

$$\tau_{xz}l + \tau_{yz}m = 0. \tag{A}$$

Это означает, что результирующее касательное напряжение на границе направлено вдоль касательной к границе (рис. 152). Ранее было показано (см. стр. 299), что этому условию можно

удовлетворить, если боковая поверхность стержня свободна от внешней нагрузки.

Рассматривая бесконечно малый элемент *abc* на границе и предполагая, что *s* увеличивается в направлении от *c* к *a*, имеем

$$l = \cos Nx = \frac{dy}{ds} ,$$

$$m = \cos Ny = -\frac{dx}{ds} ,$$

и уравнение (д) принимает вид

 $\left(\frac{\partial \psi}{\partial x} - y\right) \frac{dy}{ds} - \left(\frac{\partial \varphi}{\partial y} + x\right) \frac{dx}{ds} = 0.$

Рис. 152.

Таким образом, любая задача о кручении сводится к задаче отыскания функции ψ , удовлетворяющей уравнению (147) и граничным условиям (148).

Другая процедура, которая обладает тем преимуществом, что приводит к более простым граничным условиям, состоит в следующем. Ввиду обращения в нуль величин σ_x , σ_y , σ_z , τ_{xy} (уравнения (г) уравнения равновесия (123) приводятся к виду

$$\frac{\partial \tau_{xz}}{\partial z} = 0, \quad \frac{\partial \tau_{yz}}{\partial z} = 0, \quad \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = 0.$$

Первые два из этих уравнений уже удовлетворены, так как τ_{xz} и τ_{yz} , определяемые уравнениями (г), не зависят от z. Третье уравнение означает, что мы можем выразить τ_{xz} и τ_{yz} в виде

$$\tau_{xz} = \frac{\partial \varphi}{\partial y}, \quad \tau_{yz} = -\frac{\partial \varphi}{\partial x}, \quad (149)$$

где ф—функция х и у, называемая функцией напряжений¹). Из уравнений (149) и (г) имеем

$$\frac{\partial \varphi}{\partial y} = G\theta \left(\frac{\partial \psi}{\partial x} - y \right), \quad -\frac{\partial \varphi}{\partial x} = G\theta \left(\frac{\partial \psi}{\partial y} + x \right). \quad (e)$$

Исключая ψ путем дифференцирования первого уравнения по y, второго — по x, и вычитания второго уравнения из первого, находим, что функция напряжений должна удовлетворять диф-

1) Ее ввел Прандтль (L. Prandtl, Physik Z. 4 (1903)).

(148)

ференциальному уравнению

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = F, \qquad (150)$$

где

$$F = -2G\theta. \tag{151}$$

С помощью уравнения (149), граничное условие (д) принимает вид

$$\frac{\partial \varphi}{\partial y} \frac{dy}{ds} + \frac{\partial \varphi}{\partial x} \frac{dx}{ds} = \frac{d\varphi}{ds} = 0.$$
(152)

Это показывает, что функция напряжений ф должна быть постоянной вдоль границы поперечного сечения. В случае односвязных сечений, например для сплошных стержней, эту константу можно выбирать произвольно, и в последующем мы будем принимать ее равной нулю. Таким образом, определение распределения напряжений по поперечному сечению скручиваемого стержня состоит в отыскании функции ф, которая удовлетворяет уравнению (150) и равна нулю на границе. Позже мы покажем приложение этой общей теории к случаям поперечных сечений различной формы.

Рассмотрим теперь условия по концам скручиваемого стержня. Нормали к концевым поперечным сечениям параллельны оси г. Следовательно, $l = m = 0, n = \pm 1, и условия (124) принимают вид$

$$\overline{X} = \pm \tau_{xz}, \quad \overline{Y} = \pm \tau_{yz},$$
 (ж)

где знак + должен приниматься для того конца стержня, для которого внешняя нормаль совпадает с положительным направлением оси z; это, например, имеет место для нижнего конца стержня, изображенного на рис. 151. Мы видим, что на концах касательные усилия распределяются таким же образом, как и касательные напряжения по поперечным сечениям стержня. Легко доказать, что эти усилия приводятся к крутящему моменту. Подставляя в уравнения (ж) равенства (149) и замечая, что функция ф на границе равна нулю, находим

$$\iint \overline{X} \, dx \, dy = \iint \tau_{xz} \, dx \, dy = \iint \frac{\partial \varphi}{\partial y} \, dx \, dy = \iint dx \iint \frac{\partial \varphi}{\partial y} \, dy = 0,$$

$$\iint \overline{Y} \, dx \, dy = \iint \tau_{yz} \, dx \, dy = -\iint \frac{\partial \varphi}{\partial x} \, dx \, dy = -\iint dy \iint \frac{\partial \varphi}{\partial x} \, dx = 0.$$

Таким образом, результирующая усилий, распределенных по концам стержня, равна нулю и эти силы сводятся к моменту, величина которого равна-

$$M_t = \iint (\overline{Y}x - \overline{X}y) \, dx \, dy = -\iint \frac{\partial \varphi}{\partial x} \, x \, dx \, dy - \iint \frac{\partial \varphi}{\partial y} \, y \, dx \, dy. \quad (\mathbf{H})$$

Интегрируя это выражение по частям и учитывая, что на границе $\varphi = 0$, получаем

$$M_t = 2 \iint \varphi \, dx \, dy. \tag{153}$$

Каждый из интегралов в правой части уравнения (и) дает половину этого крутящего момента.

Мы видим, что, принимая перемещения в форме (а) и (б) и определяя компоненты напряжений τ_{xz} , τ_{yz} из соотношений (149), (150) и (152), мы получаем распределение напряжений, которое удовлетворяет уравнениям равновесия (123), оставляет боковую поверхность стержня свободной от внешней нагрузки и дает на концах стержня крутящие моменты, определяемые выражением (153). Условия совместности (126) при этом рассматривать не нужно. Напряжения были определены, исходя из перемещений (а) и (б). Вопрос совместности сводится к доказательству существования единственной функции перемещений ψ , которое обеспечивается уравнением (150), получающимся в результате исключения ψ из (е). Таким образом, все уравнения теоремы упругости удовлетворяются-и полученное решение представляет собой точное решение задачи о кручении.

Уже отмечалось, что это решение требует, чтобы силы по концам стержня распределялись некоторым определенным образом. Однако практическое приложение такого решения не ограничивается этими случаями. Из принципа Сен-Венана следует, что на достаточном расстоянии от концов длинного скручиваемого стержня напряжения зависят только от величины крутящего момента M_t и практически не зависят от способа, по которому усилия распределяются по концевым сечениям.

§ 105. Эллиптическое поперечное сечение

Пусть граница поперечного сечения (рис. 153) задается уравнением

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0.$$
 (a)

Тогда уравнение (150) и граничное условие (152) удовлетворяются, если принять функцию напряжений в форме

$$\varphi = m\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right),$$
 (6)

где *т*-постоянная. Подставляя (б) в уравнение (150), находим

$$m=\frac{a^2b^2}{2(a^2+b^2)}F.$$

Отсюда

$$\varphi = \frac{a^2 b^2 F}{2(a^2 + b^2)} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right).$$
 (B)

Величина постоянной F теперь определяется из условия (153). Подставляя в (153) выражение ф, определяемое по формуле § 105]

(в), найдем

$$M_t = \frac{a^2 b^2 F}{a^2 + b^2} \left(\frac{1}{a^2} \iint x^2 dx \, dy + \frac{1}{b^2} \iint y^2 dx \, dy - \iint dx \, dy \right).$$
(r)

Поскольку

$$\iint x^2 dx \, dy = I_y = \frac{\pi b a^3}{4}, \quad \iint y^2 dx \, dy = I_x = \frac{\pi a b^3}{4}, \quad \iint dx \, dy = \pi a b,$$

то из формулы (г) получаем

$$M_t = -\frac{\pi a^3 b^3 F}{2 \left(a^2 + b^2\right)},$$

откуда

$$F = -\frac{2M_t (a^2 + b^2)}{\pi a^3 b^3} \, .$$

Тогда, согласно формуле (в),

$$\varphi = -\frac{M_t}{\pi ab} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right). \quad (e)$$

Подставляя это выражение в соотношения (149), получаем для компонент напряжений выражения

$$\tau_{xz} = -\frac{2M_t y}{\pi a b^3}, \quad \tau_{yz} = \frac{2M_t x}{\pi a^3 b}.$$
 (154)

Отношение этих компонент напряжений пропорционально отношению y/x и, следовательно, является постоянным вдоль любого радиуса, такого, как OA (рис. 153). Эго означает, что результирующее касательное напряжение совпадает с направлением касательной к границе в точке A. Вдоль вертикальной оси OBкомпонента напряжения τ_{yz} равна нулю, а результирующее напряжение равно τ_{xz} . Вдоль горизонтальной оси OD результирующее касательное напряжение равно τ_{yz} . Очевидно, максимальное напряжение действует на границе, и можно легко показать, что это максимальное напряжение возникает по концам малой оси эллипса. Подставляя y = b в первое из уравнений (154), находим, что абсолютное значение этого максимума есть

$$\tau_{\max} = \frac{2M_t}{\pi a b^2} \,. \tag{155}$$

При *a* = *b* эта формула совпадает с хорошо известной формулой для кругового поперечного сечения.

Подставляя выражение (д) в соотношение (151), находим выражение для угла закручивания

$$\theta = M_t \frac{a^2 + b^2}{\pi a^3 b^3 G} \,. \tag{156}$$

Множитель, на который мы делим крутящий момент, чтобы получить закручивание на единицу длины, называется крутильной

КРУЧЕНИЕ

[гл. 10

жесткостью. Обозначим эту величину через C; тогда из (156) для эллиптического поперечного сечения

$$C = \frac{\pi a^3 b^3 G}{a^2 + b^2} = \frac{G}{4\pi^2} \frac{(A)^4}{I_p}, \qquad (157)$$

где

$$A = \pi ab, \qquad I_p = \frac{\pi ab^3}{4} + \frac{\pi ba^3}{4}$$

— соответственно площадь и центральный полярный момент инерции сечения.

Имея компоненты напряжений (154), мы можем легко получить перемещения. Компоненты и и v определяются формулами

(а) из § 104. Перемещение *w* находится из соотношений (г) и (б) из § 104. Подставляя в эти соотношения значения компонент напряжений (154) и угла закручивания (156) и интегрируя их, находим

$$w = M_t \frac{(b^2 - a^2) xy}{\pi a^3 b^3 G}.$$
 (158)

Рис. 154.

Это показывает, что для искаженного поперечного сечения гори-

зонтали являются гиперболами, имеющими в качестве асимптот главные оси эллипса (рис. 154).

§ 106. Другие элементарные решения

При исследовании задачи о кручении Сен-Венан рассмотрел несколько решений уравнений (150) в виде полиномов. Для решения соответствующей задачи представим функцию напряжений в форме

$$\varphi = \varphi_1 + \frac{F}{4} (x^2 + y^2).$$
 (a)

Тогда из уравнения (150) следует

$$\frac{\partial^2 \varphi_1}{\partial x^2} + \frac{\partial^2 \varphi_1}{\partial y^2} = 0 \tag{6}$$

и вдоль границы, согласно уравнению (152),

$$\varphi_1 + \frac{F}{4} (x^2 + y^2) = \text{const.}$$
 (B)

Таким образом, задача о кручении сводится к отысканию решений уравнения (б), удовлетворяющих граничным условиям (в). Чтобы получить эти решения в форме полиномов, воспользуемся функцией комплексного переменного

$$(x+iy)^n. \tag{r}$$

Действительная и мнимая части этого выражения являются в отдельности решениями уравнения (б) (см. стр. 182). Принимая, например, n = 2, получаем

решения $x^2 - y^2$ и 2xy. При n = 3 получаем решения $x^3 - 3xy^2$ и $3x^2y - y^3$. При n = 4 приходим к решениям в форме однородных функций четвертой степени и т. д. Комбинируя эти решения, можно получать различные решения в форме полиномов.

Взяв, например,

$$\varphi = \frac{F}{4} (x^2 + y^2) + \varphi_1 = \frac{F}{2} \left[\frac{1}{2} (x^2 + y^2) - \frac{1}{2a} (x^3 - 3xy^2) + b \right], \qquad (A)$$

получаем решение уравнения (150) в форме полиномов третьей степени с постоянными *а* и *b*, которые будут определены дальше. Этот полином является решением задачи о кручении, если он удов-

решением задачи о кручении, если он удовлетворяет условию (152), т. е. если граница поперечного сечения стержня задается уравнением

$$\frac{1}{2}(x^2+y^2)-\frac{1}{2a}(x^3-3xy^2)+b=0.$$
 (e)

Изменяя в этом выражении постоянную b, можно получить поперечные сечения различной формы.

Взяв $b = -2/27a^2$, приходим к решению для сечения в форме равностороннего треугольника. Уравнение (е) в этом случае может быть представлено в виде

$$\left(x-\sqrt{3}y-\frac{2}{3}a\right)\left(x+\sqrt{3}y-\frac{2}{3}a\right)\left(x+\frac{1}{3}a\right)=0,$$

т. е. в виде произведения уравнений трех сторон треугольника, показанного на рис. 155. Учитывая, что $F = -2G\theta$ и подставляя в равенства (149) значение

$$\varphi = -G\theta \left[\frac{1}{2} (x^2 + y^2) - \frac{1}{2a} (x^3 - 3xy^2) - \frac{2}{27} a^2 \right], \qquad (x)$$

получаем компоненты напряжений τ_{xz} и τ_{yz} . Вдоль оси x в силу симметрии $\tau_{xz} = 0$, и из (ж) находим

$$\tau_{yz} = \frac{3G\theta}{2a} \left(\frac{2ax}{3} - x^2 \right). \tag{4}$$

Максимальное напряжение получается посередине сторон треугольника, где, согласно формуле (и),

$$\tau_{\max} = \frac{G \theta a}{2}$$
. (K)

По углам треугольника касательное напряжение равно нулю (см. рис. 155). Подставляя функцию ф, определяемую формулой (ж), в (153), находим

$$M_t = \frac{G\theta a^4}{15 \sqrt{3}} = \frac{3}{5} \theta G I_p. \tag{(\pi)}$$

Взяв решение уравнения (150) в форме полинома четвертой степени, содержащего только четные степени х и у, получаем функцию напряжений

$$\varphi = -G\theta \left[\frac{1}{2} (x^2 + y^2) - \frac{a}{2} (x^4 - 6x^2y^2 + y^4) + \frac{1}{2} (a - 1) \right].$$

Граничное условие (152) удовлетворяется, если контур поперечного сечения задается уравнением

$$x^{2} + y^{2} - a(x^{4} - 6x^{2}y^{2} + y^{4}) + a - 1 = 0.$$

Изменяя величину a, Сен-Венан получил семейство поперечных сечений, показанное на рис. 156, a. Комбинируя решения в форме полиномов четвертой и восьмой степеней, он получил поперечное сечение, показанное на рис. 156, б.

На основе своих исследований Сен-Венан сделал общие выводы, представляющие практический интерес. Он показал, что в случае односвязных сечений при заданной площади поперечного сечения крутильная жесткость увеличивается при уменьшении полярного момента инерции сечения. Отсюда следует, что при заданном объеме материала круглый вал будет обладать максимальной крутильной жесткостью. Подобные выводы можно сделать, и рассматривая максимальное касательное напряжение. При заданном крутящем моменте и площади поперечного сечения максимальное напряжение будет наименьшим для поперечного сечения с минимальным моментом инерции.

Сравнивая различные односвязные сечения, Сен-Венан обнаружил, что крутильную жесткость можно приближенно вычислить с помощью равенства (157), т. е. заменяя заданный вал валом эллиптического поперечного сечения, имеющего ту же площадь и тот же полярный момент инерции, что и поперечное сечение рассматриваемого вала.

Максимальное напряжение во всех случаях, рассмотренных Сен-Венаном, имело место на границе в точках, которые расположены ближе всего к центру тяжести поперечного сечения. Более детальное исследование этого вопроса Файлоном¹) показало, что есть случаи, в которых точки, где действует максимальное напряжение, хотя и лежат на границе, но не являются ближайшими к центру тяжести сечения.

¹) L. N. G. Filon, Trans. Roy. Soc. (London) ser. A, 193 (1900); G. Pólya, Z. Angew. Math. Mech. 10, 353 (1930).

Положив в выражении (г) n = 1 и n = -1 и используя полярные координаты r и φ , получим следующие решения (б):

$$\varphi_1 = r \cos \psi, \qquad \varphi_1 = \frac{1}{r} \cos \psi.$$

Возьмем далее функцию напряжений (а) в виде

$$\varphi = \frac{F}{4} (x^2 + y^2) - \frac{Fa}{2} r \cos \psi + \frac{Fb^2}{2} \frac{a}{r} \cos \psi - \frac{F}{4} b^2, \qquad (M)$$

где a и b — постоянные. Это выражение удовлетворяет граничному условию (152), если на границе поперечного сечения нмеем $\phi = 0$ или, согласно (м),

$$r^2 - b^2 - 2a(r^2 - b^2) \frac{\cos \psi}{r} = 0,$$

т. е.

$$(r^2-b^2)\left(1-\frac{2a\cos\psi}{r}\right)=0,$$

что представляет собой уравнение контура поперечного сечения, показанного ¹) на рис. 157. Положив

$$r^2 - b^2 = 0$$
.

Рис. 157.

получим окружность радиуса b с центром в начале координат, а считая, что

 $1 - \frac{2a\cos\psi}{r} = 0,$

будем иметь окружность радиуса *а*, касающуюся оси *у* в начале координат. Максимальное касательное напряжение действует в точке *А* и определяется по формуле

$$\tau_{\max} = G\theta \ (2a - b). \tag{(1)}$$

Если *b* мало по сравнению с *a*, т. е. когда рассматривается полукруглая продольная выемка очень малого диаметра, напряжение на дне выемки равно удвоенному максимальному напряжению в круглом валу без выемки.

§ 107. Мембранная аналогия

При решении задач о кручении очень ценной оказалась мембранная аналогия, введенная Прандтлем²). Представим себе однородную мембрану (рис. 158), опертую по краю того же очертания, что и поперечное сечение скручиваемого стержня. Мембрана находится под действием равномерного натяжения, приложенного по краю, и равномерного поперечного давления. Если обозначить через q давление на единицу площади мембраны, а

¹) Эту задачу исследовал Вебер (С. Weber, Forschungsatbeiten, № 249 (1921)).

²) L. Prandtl, Physik Z. 4, (1903). См. также Anthes, Dinglers Polytech. J., 1906, стр. 342. Дальнейшее развитие этой аналогии и ее приложение в разных случаях дали в своих статьях Гриффите и Тейлор (A. A. Griffith and G. J. Taylor, Tech. Rept. Adv. Comm. Aeron. 3, 910, 938 (1917—1918)).

КРУЧЕНИЕ

через S равномерное натяжение на единицу длины ее границы, то растягивающие усилия, действующие по сторонам ad и bc малого элемента abcd (рис. 158), дадут в случае малых прогибов мембраны результирующую в вертикальном направлении, равную — $S(\partial^2 z/\partial x^2) dx dy$. Аналогично, усилия, действующие по двум другим сторонам, дадут результирующую — $S(\partial^2 z/\partial y^2) dx dy$ и уравнение равновесия элемента примет вид

$$q\,dx\,dy + S\,\frac{\partial^2 z}{\partial x^2}\,dx\,dy + S\,\frac{\partial^2 z}{\partial y^2}\,dx\,dy = 0,$$

откуда

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = -\frac{q}{S}.$$
 (159)

На границе прогибы мембраны равны нулю. Сравнивая уравнение (159) и граничное условие для прогиба мембраны z с уравнением (150) и граничным условием (152) (см. стр. 303) для

Рис. 158.

функции напряжений φ , приходим к выводу, что эти две задачи тождественно совпадают. Отсюда по прогибам мембраны мы можем получить значения функции φ с помощью замены величины -q/S из уравнения (159) на величину $F = -2G\theta$ из уравнения (150).

Имея упругую поверхность мембраны, представленную горизонталями (рис. 159), можно получить несколько важных выводов, касающихся распределения напряжений при кручении. Рассмотрим произвольную точку *В* мембраны. Прогибы мембраны вдоль горизонтали, проходящей через эту точку, остаются постоянными, и мы имеем

$$\frac{\partial z}{\partial s} = 0.$$

Соответствующее уравнение для функции напряжений ф имеет вид

$$\frac{\partial \varphi}{\partial s} = \left(\frac{\partial \varphi}{\partial y}\frac{dy}{ds} + \frac{\partial \varphi}{\partial x}\frac{dx}{ds}\right) = \tau_{xz}\frac{dy}{ds} - \tau_{yz}\frac{dx}{ds} = 0.$$

Оно выражает тот факт, что проекция результирующего касательного напряжения в точке B на нормаль N к горизонтали равна нулю и, следовательно, мы можем сделать вывод, что касательное напряжение в точке B скручиваемого стержня действует в направлении касательной к горизонтали, проходящей через эту точку. Кривые, построенные на поперечном сечении скручиваемого стержня таким образом, что результирующее касательное напряжение в любой точке кривой действует в направлении касательной к этой кривой, называются *траекториями касательных напряжений*. Таким образом, для поперечного сечения скручиваемого стержня горизонтали мембраны являются траекториями касательных напряжений.

Значение касательного напряжения τ в точке *B* (рис. 159) получается с помощью проектирования на касательную компонент напряжения τ_{xz} и τ_{uz} . Отсюда

$$\tau = \tau_{uz} \cos{(Nx)} - \tau_{xz} \cos{(Ny)}.$$

Подставляя в это выражение

$$\tau_{xz} = \frac{\partial \varphi}{\partial y}$$
, $\tau_{yz} = -\frac{\partial \varphi}{\partial x}$, $\cos(Nx) = \frac{dx}{dn}$, $\cos(Ny) = \frac{dy}{dn}$,

получаем

$$\tau = -\left(\frac{\partial \varphi}{\partial x}\frac{dx}{dn} + \frac{d\varphi}{dy}\frac{dy}{dn}\right) = -\frac{d\varphi}{dn}.$$

Отсюда величина касательного напряжения в точке B определяется максимальным наклоном поверхности мембраны в этой точке. Нужно только в выражении для наклона заменить q/S на $2G\theta$. Отсюда можно сделать вывод, что максимальное касательное напряжение действует в точках, где горизонтали расположены ближе всего друг к другу.

Из равенства (153) можно сделать вывод, что если заменить q/S на 2G θ , то удвоенный объем, ограниченный изогнутой мембраной и плоскостью xy (рис. 159), определит величину крутящего момента.

Заметим, что форма мембраны, а следовательно, и распределение касательных напряжений, не зависят от того, какая точка поперечного сечения выбирается в качестве начала координат. Эта точка представляет, разумеется, ось вращения поперечного сечения. На первый взгляд кажется неожиданным, что поперечные сечения могут вращаться вокруг различных параллельных осей при одном и том же крутящем моменте. Однако это различие связано просто с вращением абсолютно твердого тела. Рассмотрим, например, круговой цилиндр, скручиваемый путем вращения его концевых сечений вокруг центральной оси. Образующая цилиндра на поверхности становится наклонной по отношению к ее первоначальному положению, но может быть приведена в прежнее положение с помощью вращения всего цилиндра как абсолютно

твердого тела вокруг диамстра. Тогда конечные положения поперечных сечений цилиндра отвечают повороту вокруг этой образующей как фиксированной оси. Эти поперечные сечения остаются плоскими, по будут наклонены по отношению к своему первоначальному положению благодаря вращению цилиндра как абсолютно твердого тела. В каждом сечении цилиндра произойдет депланация, и при заданном выборе осей наклон заданной элементарной площадки в концевом сечении будет определенным, причем $\partial w/\partial x$ и $\partial w/\partial y$ определятся уравнениями (г) и (б) из § 104. Такой элемент можно привести к его первоначальной ориентации с помощью вращения цилиндра как твердого тела относительно оси, лежащей в концевом сечении. Таким образом, это вращение приведет к параллельному переносу оси кручения. Следовательно, можно найти ось кручения или центр кручения, если задана конечная ориентация некоторого элемента.

Рассмотрим теперь условия равновесия части mn мембраны, ограниченной горизонталью (рис. 159). Наклон поверхности мембраны вдоль этой линии пропорционален в каждой точке касательному напряжению τ и равен $\tau(q/S)/(2G\theta)$. Обозначая через A горизонтальную проекцию части мембраны mn, получаем уравнение равновесия для этой части в виде

$$\int S\left(\tau \frac{q}{S} \frac{1}{2G\theta}\right) ds = qA$$
$$\int \tau ds = 2G\theta A.$$
(160)

или

Отсюда можно получить среднее значение касательного напряжения вдоль горизонтали.

Полагая q = 0, т. е. считая, что на мембрану не действует поперечная нагрузка, приходим к уравнению

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0, \qquad (161)$$

которое совпадает с уравнением (б) для функции φ_1 из предыдущего параграфа. Принимая ординаты мембраны на границе такими, что

$$z + \frac{F}{4}(x^2 + y^2) = \text{const},$$
 (162)

можно также удовлетворить граничному условию (в) предыдущего параграфа. Таким образом, если ординаты поверхности мембраны на границе имеют определенные значения, то функцию ф₁ можно определить на изогнутой поверхности ненагруженной мембраны. Ниже будет показано, что для определения экспериментальным путем поля напряжений в скручиваемых стержнях могут использоваться как нагруженная, так и ненагруженная мембраны.

Мембранная аналогия полезна, не только если скручиваемый стержень находится в пределах упругости, но и в случае, когда в некоторых частях поперечного сечения происходит течение материала¹). Допустим, что в процессе течения касательное напряжение остается постоянным. Тогда распределение напряжений в упругой области поперечного сечения, как и ранее, представляется прогибами мембраны; однако в пластической области напряжение будет определяться поверхностью, имеющей постоянный максимальный наклон, соответствующий пределу текучести. Вообразим такую поверхность в виде крыши, расположенной над поперечным сечением стержня, в то время как мембрана растянута и нагружена вышеописанным образом. При увеличении давления мы придем к условиям, при которых мем-брана начнет касаться крыши. Это будет соответствовать началу пластического течения стержня. По мере увеличения давления отдельные части мембраны придут в соприкосновение с крышей. Эти соприкасающиеся части дадут нам области пластического течения скручиваемого стержня. Интересные эксперименты. иллюстрирующие эту теорию, провел Надаи 2).

§ 108. Кручение стержня узкого прямоугольного поперечного сечения

В случае узкого прямоугольного поперечного сечения простое решение задач о кручении можно получить с помощью мембранной аналогии. Пренсбрегая влиянием коротких сторон прямоугольника и предполагая, что поверхность слегка прогнувшейся мембраны является цилиндрической (рис. 160, б), можно определить прогибы мембраны из элементарной формулы для параболической кривой прогибов гибкой нити при равномерной поперечной нагрузке

$$\delta = \frac{qc^2}{8S} \,. \tag{a}$$

Согласно известным свойствам параболических кривых максимальный наклон, который возникает в средней части длинной стороны прямоугольника равен

$$\frac{4\delta}{c} = \frac{qc}{2S} \,. \tag{6}$$

Объем в виде параболического цилиндра, ограниченный прогнутой мембраной и плоскостью *ху*, равен

$$V = \frac{2}{3}c\delta b = \frac{qbc^3}{12S}.$$
 (B)

 ¹) На это указал Прандтль; см. А. Nádai, Z. Angew. Math. Mech. 3.
 442 (1923). См. также Е. Trefftz, Z. Angew. Math. Mech. 5, 64 (1925).
 ²) См. А. Nàdai, Trans. ASME, AMD, 1930. См. также А. Nádai, Theory of Flow and Fracture of Solids, гл. 35, 36, 1950. [Русский перевод А. Надаи, Теория пластичности и разрушения твердых тел, ИЛ, М., 1954.]

Теперь, используя мембранную аналогию и подставляя в выражения (б) и (в) $2G\theta$ вместо q/S, находим

$$\tau_{\max} = cG\theta, \qquad M_t = \frac{1}{3} bc^3 G\theta, \qquad (\Gamma)$$

откуда

$$\theta = \frac{M_t}{\frac{1}{3} bc^3 G},$$
(163)

$$\tau_{\max} = \frac{M_t}{\frac{1}{3}bc^2}.$$
 (164)

Для параболической кривой прогибов (рис. 160, б)

$$z = \frac{4\delta}{c^2} \left(\frac{c^2}{4} - x^2 \right)$$

и наклон мембраны в любой точке равен

$$\frac{dz}{dx} = -\frac{8\delta x}{c^2} = -\frac{q}{S}x.$$

Соответствующее напряжение в скручиваемом стержне определяется по формуле

 $\tau_{uz} = 2G\theta x.$

Распределение напряжений следует линейному закону, как показано на рис. 160, а. Вычисляя величину крутящего момента,

соответствующего этому распределению напряжений, получаем $\frac{\tau_{max}}{4} c \frac{2}{3} cb = \frac{1}{6} bc^2 \tau_{max}.$

Это только половина полного момента, определяемого уравнением (164). Другая половина дается компонентами напряжения τ_{xz} , которыми мы полностью пренебрегли, когда предположили, что поверхность прогнутой мембраны является цилиндри-

ческой. Хотя эти напряжения имеют значительную величину лишь вблизи коротких сторон прямоугольника и их максимальное значение меньше, чем вычисленное ранее, но они действуют на большом расстоянии от оси стержня и создаваемый ими момент составляет вторую половину крутящего момента ¹).

Интересно отметить, что значение т_{тах}, определяемое первым из уравнений (г), вдвое больше, чем в случае круглого вала

> угол сечения, такие, как ного

Рис. 161.

a)

6)

(рис. 161, б), остаются нормальными к продольным волокнам стержня у углов, как показано в точках n и n₁. Общий сдвиг элемента abcd складывается из двух частей: части у1, вызванной вращением поперечного сечения относительно оси стержня и равной сдвигу в круглом стержне диаметром c, и части ү2, вызванной депланацией поперечных сечений. В случае узкого прямоугольного поперечного сечения $\gamma_2 = \gamma_1$ и результирующий сдвиг вдвое больше, чем в случае круглого стержня с диаметром *с*.

Выражения (163) и (164), полученные выше для случая узкого прямоугольника, можно также использовать для тонкостенных стержней таких поперечных сечений, как показано на рис. 162, если положить b равным развернутой длине сечения. Это следует из того факта, что если толщина с трубы с трещиной (рис. 162) мала по сравнению с диаметром, то максимальный наклон мембраны и объем, ограниченный мембраной, будут примерно такими же, как и для узкого прямоугольного по-перечного сечения шириной с, и той же длины, что и длина окружности срединной поверхности трубы. Аналогичный вывод

¹) Это обстоятельство было выяснено Кельвином (см. Kelvin, Tait, Natural Philosophy, T. 2 crp. 267).

можно сделать и для швеллера (рис. 162, б). Следует заметить, что в последнем случае имеет место значительная концентрация напряжений вблизи входящих углов, зависящая от величины

радиуса закругления *r*, и в этих точках формулу (164) применять нельзя. Более подробное обсуждение этого вопроса будет дано в § 112.

§ 109. Кручение прямоугольных стержней

Использование мембранной аналогии сводит задачу к отысканию прогибов равномерно нагруженной прямоугольной мембраны, показанной на рис. 163. Эти прогибы должны удовлетво-

рять уравнению (159)

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = -\frac{q}{S}$$
 (a)

и равняться нулю на границе.

Условие симметрии по отношению к оси у и граничные условия на сторонах прямоугольника $x = \pm a$ удовлетворяются, если принять z в виде ряда

$$z = \sum_{n=1, 3, 5, \dots}^{\infty} b_n \cos \frac{n\pi x}{2a} Y_n,$$
 (6)

в котором b_1, b_3, \ldots — постоянные коэффициенты, а Y_1, Y_3, \ldots — функции одной только переменной y. Подставляя выражение (б)

в уравнение (a) и замечая, что при — a < x < a постоянная в правой части (a) может быть представлена рядом Фурье

$$-\frac{q}{S} = -\sum_{n=1, 3, 5, \dots}^{\infty} \frac{q}{S} \frac{4}{n\pi} \left(-1\right)^{\frac{n-1}{2}} \cos \frac{n\pi x}{2a}, \qquad (B)$$

приходим к следующему уравнению для определения У_n:

$$Y_{n}^{"} - \frac{n^{2}\pi^{2}}{4a^{2}}Y_{n} = -\frac{q}{S}\frac{4}{n\pi b_{n}}\left(-1\right)^{\frac{n-1}{2}},$$
 (r)

из которого

$$Y_n = A \operatorname{sh} \frac{n\pi y}{2a} + B \operatorname{ch} \frac{n\pi y}{2a} + \frac{16qa^2}{Sn^3\pi^3 b_n} \left(-1\right)^{\frac{n-1}{2}}.$$
 (A)

Из условия симметрии поверхности прогибов мембраны относительно оси *x* следует, что постоянная интегрирования *A* должна быть равна нулю. Постоянная *B* определяется из условия, что прогибы мембраны равны нулю при $y = \pm b$, т. е. $(Y_n)_{y=\pm b} = 0$, § 109]

что дает

$$Y_n = \frac{16qa^2}{Sn^3\pi^3b_n} \left(-1\right)^{\frac{n-1}{2}} \left[1 - \frac{\operatorname{ch}\left(\frac{n\pi y}{2a}\right)}{\operatorname{ch}\left(\frac{n\pi b}{2a}\right)}\right].$$
 (e)

Общее выражение для поверхности прогибов мембраны, согласно формуле (е), принимает вид - (nmu)]

$$z = \frac{16qa^2}{S\pi^3} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^3} (-1)^{\frac{n-1}{2}} \left[1 - \frac{\operatorname{ch}\left(\frac{nny}{2a}\right)}{\operatorname{ch}\left(\frac{n\pi b}{2a}\right)} \right] \cos \frac{n\pi x}{2a}.$$

Заменяя q/S на 2G0, получаем функцию напряжений

$$\varphi = \frac{32G\theta a^2}{\pi^3} \sum_{n=1, 3, 5, \dots} \frac{1}{n^3} \left(-1\right)^{\frac{n-1}{2}} \left[1 - \frac{\operatorname{ch}\left(\frac{n\pi y}{2a}\right)}{\operatorname{ch}\left(\frac{n\pi b}{2a}\right)}\right] \cos\left(\frac{n\pi x}{2a}\right). \quad (\mathsf{m})$$

Компоненты напряжения теперь можно получить из уравнений (149) с помощью дифференцирования. Например, $\tau_{yz} = -\frac{\dot{\partial}\varphi}{\partial x} =$

$$=\frac{16G\theta a}{\pi^2}\sum_{n=1,\ 3,\ 5,\ \dots}^{\infty}\frac{1}{n^2}\left(-1\right)^{\frac{n-1}{2}}\left[1-\frac{\operatorname{ch}\left(\frac{n\pi y}{2a}\right)}{\operatorname{ch}\left(\frac{n\pi b}{2a}\right)}\right]\sin\frac{n\pi x}{2a}.$$
 (4)

Предполагая, что b > a, получаем, что максимальное касательное напряжение, соответствующее максимальному наклону мембраны, действует в средних точках длинных сторон $x = \pm a$ прямоугольника. Подставляя x = a, y = 0 в формулу (и), находим

$$\tau_{max} = \frac{16G\theta a}{\pi^2} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^2} \left[1 - \frac{1}{ch\left(\frac{n\pi b}{2a}\right)} \right]$$
или, учитывая, что¹)

$$1+\frac{1}{3^2}+\frac{1}{5^2}+\ldots=\frac{\pi^2}{8}$$

имеем

$$\tau_{\max} = 2G\theta a - \frac{16G\theta a}{\pi^2} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^2 \operatorname{ch}\left(\frac{n\pi b}{2a}\right)}.$$
 (165)

Бесконечный ряд в правой части при b > a сходится очень быстро и вычислить τ_{max} с достаточной точностью для любого частного случая b/a не представляет труда. Например, в случае

¹⁾ См., например, H. S. Carslow, Fourier Series and Integrals, изд. 3, Dover Public. Inc., N. Y., 1930.

КРУЧЕНИЕ

очень узкого прямоугольника *b/a* становится очень большим числом, в силу чего суммой бесконечного ряда в (165) можно пренебречь, и для этого случая получаем

 $\tau_{\rm max} = 2G\theta a.$

Эта формула совпадает с первым из уравнений (r) в предыдущем параграфе.

В случае квадратного поперечного сечения a = b, и мы находим из уравнения (165)

$$\tau_{\max} = 2G\theta a \left\{ 1 - \frac{8}{\pi^2} \left[\frac{1}{\operatorname{ch} \frac{\pi}{2}} + \frac{1}{9\operatorname{ch} \frac{3\pi}{2}} + \dots \right] \right\} = 2G\theta a \left[1 - \frac{8}{\pi^2} \left(\frac{1}{2,509} + \frac{1}{9 \cdot 55,67} + \dots \right) \right] = 1,351G\theta a. \quad (166)$$

В общем случае получаем

$$\tau_{\max} = k2G\theta a, \tag{167}$$

где *k*—численный множитель, зависящий от отношения *b/a*. Несколько значений этого множителя приведены в табл. 6.

таблица б

Коэффициенты в задаче о кручении стержня прямоугольного сечения

b/a	k	k _i	k 2	b/a	k	k1	k2
1,0	0,675	0,1406	0,208	3	0,985	0,263	0,267
1,2	0,759	0,166	0,219	4	0,997	0,281	0,282
1,5	0,848	0,196	0,231	5	0,999	0,291	0,291
2,0	0,930	0,229	0,246	10	1,000	0,312	0,312
2,5	0,968	0,249	0,258	∞	1,000	0,333	0,333

Определим теперь крутящий момент M_t как функцию угла закручивания θ . Используя для этой цели формулу (153), находим

$$M_{t} = 2 \int_{-a}^{a} \int_{-b}^{b} \varphi \, dx \, dy =$$

$$= \frac{64G\theta a^{2}}{\pi^{3}} \int_{-a}^{a} \int_{-b}^{b} \left\{ \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^{3}} (-1)^{\frac{n-1}{2}} \left[1 - \frac{\operatorname{ch} \frac{n\pi y}{2a}}{\operatorname{ch} \frac{n\pi b}{2a}} \right] \cos \frac{n\pi x}{2a} \right\} dx \, dy =$$

$$= \frac{32G\theta \, (2a)^{3} \, 2b}{\pi^{4}} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^{4}} - \frac{64G\theta \, (2a)^{4}}{\pi^{5}} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^{5}} \operatorname{th} \frac{n\pi b}{2a} ,$$

§ 110]

или, замечая, что

$$\frac{1}{1} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots = \frac{\pi^4}{96},$$

имеем

$$M_t = \frac{1}{3} G\theta (2a)^3 2b \left(1 - \frac{192}{\pi^5} \frac{a}{b} \sum_{n=1, 3, 5, \dots}^{\infty} \frac{1}{n^5} th \frac{n\pi b}{2a} \right).$$
(168)

Ряд в правой части сходится очень быстро, и момент M_t можно легко вычислить для любого значения отношения a/b. В случае узкого прямоугольника можно принять

th
$$\frac{n\pi b}{2a} = 1$$
.

Тогда

$$M_t = \frac{1}{3} G\theta \,(2a)^3 \,2b \left(1 - 0,630 \,\frac{a}{b}\right). \tag{169}$$

В случае квадрата a = b, и уравнение (168) дает

$$M_t = 0,1406G\theta \,(2a)^4. \tag{170}$$

В общем случае крутящий момент можно представить формулой $M_t = k_1 G \theta \, (2a)^3 \, 2b \,, \eqno(171)$

где k_1 —численный множитель, зависящий от величины отношения b/a. Несколько значений этого множителя даны в таблице 6.

Подставляя значение θ из формулы (171) в формулу (167), получаем максимальное касательное напряжение как функцию крутящего момента в виде

$$\tau_{\max} = \frac{M_t}{k_2 (2a)^2 2b},$$
 (172)

где k_2 —численный множитель, значения которого берутся из таблицы 6.

§ 110. Дополнительные результаты

Как показано в предыдущем параграфе, использование бесконечных рядов дает возможность решать задачи кручения и для некоторых других форм поперечных сечений.

В случае сектора круга¹) (рис. 164) границы задаются уравнениями $\psi = \pm \alpha/2$, r=0, r=a. Примем функцию напряжений в виде

$$\varphi = \varphi_1 + \frac{F}{4} (x^2 + y^2) = \varphi_1 - \frac{G \theta r^2}{2}.$$

¹) Эту задачу исследовал Сен-Венан (В. Saint-Venant, Compt. Rend. 87, 849, 893 (1878)). См. также А. G. Greenhill, Messenger of Math. 10, 83 (1880). Другой метод решения с использованием функций Бесселя дал А. Динник. (Известия Донского политехнического института, Новочеркасск, т. I, стр. 309). См. также А. Föppl, L. Föppl, Drang und Zwang, 1928, стр. 96. [Русский перевод: А. Феппль и Л. Феппль, Сила и деформация, т. II, ОНТИ, 1936].

Функция ф₁ должна удовлетворять уравнению Лапласа (см. § 106). Взяв решение этого уравнения в форме ряда

$$\varphi_1 = \frac{G\theta}{2} \left[\frac{r^2 \cos 2\psi}{\cos \alpha} + a^2 \sum_{n=1, 3, 5, \ldots}^{\infty} A_n \left(\frac{r}{a} \right)^{\frac{n\pi}{\alpha}} \cos \frac{n\pi\psi}{\alpha} \right],$$

приходим к функции напряжений

$$\varphi = \frac{G\theta}{2} \left[-r^2 \left(1 - \frac{\cos 2\psi}{\cos \alpha} \right) + a^2 \sum_{n=1, 3, 5, \ldots}^{\infty} A_n \left(\frac{r}{a} \right)^{\frac{n\pi}{\alpha}} \cos \frac{n\pi\psi}{\alpha} \right].$$

Это выражение равно нулю на границах

a $\alpha/2$ $\alpha/2$ $\alpha/2$ $\alpha/2$ $\alpha/2$ $\alpha/2$ $\alpha/2$

Чтобы сделать его равным нулю и вдоль круговой границы, мы должны положить

$$\sum_{n=1, 3, 5, \ldots}^{\infty} A_n \cos \frac{n\pi\psi}{\alpha} = 1 - \frac{\cos 2\psi}{\cos \alpha},$$

откуда обычным путем получаем

Рис. 164.

5

$$A_n = \frac{16\alpha^2}{\pi^3} \left(-1\right)^{\frac{n+1}{2}} \frac{1}{n\left(n + \frac{2\alpha}{\pi}\right)\left(n - \frac{2\alpha}{\pi}\right)}.$$

Следовательно, функция напряжений имеет вид

$$\varphi = \frac{G\theta}{2} \left[-r^2 \left(1 - \frac{\cos 2\psi}{\cos \alpha} \right) + \frac{16a^2\alpha^2}{\pi^3} \sum_{n=1, 3, 5, \dots}^{\infty} (-1)^{\frac{n+1}{2}} \left(\frac{r}{a} \right)^{\frac{n\pi}{\alpha}} \frac{\cos \frac{n\pi\psi}{\alpha}}{n \left(n + \frac{2\alpha}{\pi} \right) \left(n - \frac{2\alpha}{\pi} \right)} \right].$$

Подставляя ее в формулу (153), находим $M_t = 2 \int \int \varphi r \, d\psi \, dr = kGa^4 \theta$, где k — коэффициент, зависящий от угла α сектора. Некоторые значения k, вычисленные Сен-Венаном, приведены в табл. 7.

Максимальные касательные напряжения вдоль радиальных и круговой границ даются формулами $k_1Ga\theta$ и $k_2Ga\theta$. Несколько значений k_1 и k_2 приведены в таблице.

Решение для криволинейного четырехугольника, ограниченного двумя концентрическими круговыми дугами и двумя радиусами, может быть получено таким же образом¹). В случае равнобедренного прямоугольного треугольника²)

320

¹⁾ Сен-Венан, см. упомянутую выше работу. См. также: Ляв, Математическая теория упругости, стр. 326, Гостехиздат, 1935; А. G. Greenhill, Messenger of Math. 9, 35 (1879).

²⁾ Б. Г. Галеркин, Известия Академии наук, Петроград, 1919, стр. 111; G. Kolosoff, Compt. Rend. 178, 2057 (1924).

таблица 7

α=	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	51	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	2π
k k_1 k_2	0,0181	0,0349 0,452 0,490	0,0825	0,148 0,622 0,652	0,298 ¹) 0,728 0,849 ³)	0,572 ¹)	0,672 ²)	0,878²)

¹) Эти числа исправил Эссен (М. Aissen). См. G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, стр. 261, Princeton, 1951. [Русский перевод; Г. Полна, Г. Сеге, Изопериметрические неравенства в математической физике физматтиз, 1962.] ⁴) Исправлено А. Н. Динником, см. его работу, упомянутую выше,

⁸) Авторы благодарны Сеге (G. Szegö) за эту поправку.

угол закручивания определяется уравнением

$$\theta = 38,3 \, \frac{M_t}{Ga^4} \, ,$$

где а-длина равных сторон треугольника. Максимальное касательное напряжение действует посередине гипотенузы и определяется формулой

$$\tau_{\max} = 18,02 \frac{M_t}{a^3}.$$

Путем введения криволинейных координат было рассмотрено несколько других типов поперечных сечений. Используя эллиптические координаты (см. стр. 197) и сопряженные функции Е и η, определяемые уравнением

$$x + iy = c \operatorname{ch}(\xi + i\eta),$$

приходим к поперечным сечениям, ограниченным конфокальными эллипсами и гиперболами 1). Используя уравнение 2)

$$x+iy=\frac{1}{2}(\xi+i\eta)^2$$
,

получаем поперечные сечения, ограниченные ортогональными параболами.

Были получены решения и для многих других сечений³), сплошных и полых, включая многоугольники, углы, кардиоиды, лемнискаты 4) и окружности с одним или несколькими эксцентрическими отверстиями 5). Если сечение может быть конформно отображено на единичный круг, то решение можно записать в виде комплексного интеграла ⁶).

2) E. W. Anderson, D. L. Holl, Iowa State Coll. J. Sci. 3, 231 (1929). 3) Эти решения собрал Хиггинс (Т. J. Higgins, Am J. Phys. 10, 248 (1942)).

4) Ссылки на работы, где приводятся точные решения для таких сечений, слишком многочисленны, чтобы их можно было привести здесь, но их можно найти в реферативных журналах Applied Mechanics Reviews, Science Abstracts A, Mathematical Reviews, Zentralblatt für Mechanik. [См. также реферативный журнал «Mexaника». (Прим. перев.)] Большинство ссылок на стр. 372 также связано так или иначе с задачами кручения.

 ⁵) С. В. Ling, Quart. Appl. Math. 5, 168 (1947).
 ⁶) Согласно Н. И. Мусхелишвили (см. примечание 1 на стр. 205). См. также I. S. Sokolnikoff, Mathematical Theory of Elasticity, изд. 2, McGraw-Hill, N. Y, 1956. Другие примеры и ссылки на более поздние работы см. в статье: W. A. Bassali, J. Mech. Phys. Solids 8, 87-99 (1960).

¹) A. G. Greenhill, Quart. J. Math. 16 (1879).

§ 111. Решение задач о кручении энергетическим методом¹)

Мы видели, что решение задач о кручении в каждом частном случае сводится к определению функции напряжений, удовлетворяющей дифференциальному уравнению (150) и граничному условию (152). При выводе приближенного решения задачи полезно вместо обращения к дифференциальному уравнению определять функцию напряжений из условия минимума некоторого интеграла,²) который можно получить, рассматривая потенциальную энергию скручиваемого стержня. Потенциальная энергия скручиваемого стержня, приходящаяся на единицу длины, согласно выражению (136), определяется формулой

$$V = \frac{1}{2G} \iint \left(\tau_{xx}^2 + \tau_{yz}^2\right) dx \, dy = \frac{1}{2G} \iint \left[\left(\frac{\partial \varphi}{\partial x}\right)^2 + \left(\frac{\partial \varphi}{\partial y}\right)^2 \right] dx \, dy.$$

Если бф — некоторая малая, обращающаяся в нуль на контуре³) вариация функции напряжений ф, то вариация потенциальной энергии будет равна

$$\frac{1}{2G}\delta\int\int\left[\left(\frac{\partial\varphi}{\partial x}\right)^2+\left(\frac{\partial\varphi}{\partial y}\right)^2\right]dx\,dy,$$

а вариация крутящего момента, согласно уравнению (153), составит

$$2\int\int\delta\varphi\,dx\,dy.$$

Рассуждая далее так же, как это делалось при выводе уравнения (142), приходим к выводу, что

$$\frac{1}{2G}\delta\int\int\left[\left(\frac{\partial\varphi}{\partial x}\right)^2 + \left(\frac{\partial\varphi}{\partial y}\right)^2\right]dx\,dy = 2\theta\int\int\delta\varphi\,dx\,dy,$$

или

$$\delta \iint \left\{ \frac{1}{2} \left[\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 \right] - 2G\theta \varphi \right\} dx dy.$$

Таким образом, истинное выражение для функции напряжений ф обращает в нуль вариацию интеграла

$$U = \iint \left\{ \frac{1}{2} \left[\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 \right] - 2G\theta\varphi \right\} dx \, dy.$$
 (173)

К такому же выводу мы приходим, используя мембранную аналогию и принцип виртуальной работы (§ 92). Если обозначить через S равномерное растяжение в мембране, то приращение энергии деформации мембраны, вызван-

¹) Обзор по этому и другим приближенным методом решения см. в работе: T. J. Higgins (J. Appl. Phys. 14, 469 (1943)).

²) Этот метод предложил Ритц, который использовал его при решении задач об изгибе и колебаниях прямоугольных пластинок. (См. Z. Reine Angew. Math. 135 (1908); Ann. Phys., ser. 4, 28, 737 (1909)).

всли вариацию δφ принимать равной нулю на границе, то вариация φ не приведет к появлению на боковой поверхности никаких усилий.

ное прогибами, получается путем умножения растягивающего усилия S на приращение площади поверхности мембраны. Таким образом, получаем

$$\frac{1}{2}S\int\int\left[\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2\right]dx\,dy,$$

где 2-прогиб мембраны. Если мы теперь сообщим мембране виртуальное перемещение из положения равновесия, то изменение энергии деформации мембраны, вызванное этим перемещением, дожно быть равно работе, совершенной равномерной нагрузкой q на виртуальном перемещении. Отсюда получаем

$$\frac{1}{2}S\delta\!\int\!\!\int\left[\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2\right]dx\,dy=\!\int\!\!\int q\delta z\,dx\,dy,$$

и определение поверхности прогибов мембраны сводится к отысканию выражения для функции z, которое доставляет минимум интегралу

$$\iint \left\{ \frac{1}{2} \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 \right] - \frac{q}{S} z \right\} dx \, dy.$$

Если подставить в этом интеграл $2G\theta$ вместо q/S, то мы придем к записанному выше интегралу (173).

Для приближенного решения задач о кручении заменим вышеописанную задачу вариационного исчисления простой задачей отыскания минимума некоторой функции. Возьмем функцию напряжений в виде ряда

$$\varphi = a_0 \varphi_0 + a_1 \varphi_1 + a_2 \varphi_2 + \dots \qquad (a)$$

где $\phi_0, \phi_1, \phi_2, \ldots$ функции, удовлетворяющие граничным условиям, т. е. обращающиеся в нуль на границе. При выборе этих функций следует руководствоваться мембранной аналогией и принимать их в форме, удобной для представления функции ф. Величины a_0, a_1, a_2, \ldots являются числовыми коэффициентами. которые подлежат определению из условия минимума интеграла (173). Подставляя в этот интеграл ряд (а), после интегрирования получаем функцию второй степени относительно $a_0, a_1,$ а, ...; условие минимума этой функции имеет вид

$$\frac{\partial U}{\partial a_0} = 0, \quad \frac{\partial U}{\partial a_1} = 0, \quad \frac{\partial U}{\partial a_2} = 0, \dots$$
 (6)

Таким образом, мы получаем систему линейных уравнений, из которой можно определить коэффициенты а, а, а, ... Увеличивая число членов в ряду (а), мы увеличиваем точность приближенного решения, а используя бесконечный ряд. приходим к точному решению¹).

Возьмем в качестве примера случай прямоугольного поперечного сечения²) (рис. 163). Граница сечения задается уравнениями

¹⁾ Сходимость этого метода решения исследовал Ритц в упомянутой выше

работе. См. также Е. Т r e f t z, Handbuch der Physik, т. 6, 1928, стр. 130. ²) См. С. П. Тимошенко, Сборник института инженеров путей сооб-щения, Петербург, 1913, и Proc. London Math. Soc., ser. 2, 20, 389 (1921).

 $x = \pm a, y = \pm b$, и функция $(x^2 - a^2)(y^2 - b^2)$ на границе равна нулю. Ряд (а) можно взять в форме

$$\varphi = (x^2 - a^2) (y^2 - b^2) \sum \sum a_{mn} x^m y^n,$$
(B)

где в силу симметрии *m* и *n* должны быть четными.

Считая поперечное сечение квадратным и ограничиваясь первым членом ряда (в), примем

$$\varphi = a_0 (x^2 - a^2) (y^2 - a^2).$$
 (r)

Подставляя это выражение в (173), находим из условия минимума, что

$$a_0 = \frac{5}{8} \frac{G\theta}{a^2} \,.$$

Тогда, согласно (153), крутящий момент определяется формулой

$$M_t = 2 \iint \varphi \, dx \, dy = \frac{20}{9} \, G \theta a^4 = 0,1388 \, (2a)^4 \, G \theta.$$

Сравнивая это значение с корректным решением (170), мы видим, что ошибка в величине крутящего момента составляет около $1^{1}/_{3}$ %.

Чтобы получить лучшее приближение, сохраним в ряде (в) три первых члена. Тогда, используя условие симметрии, получаем

$$\varphi = (x^2 - a^2) (y^2 - a^2) [a_0 + a_1 (x^2 + y^2)]. \tag{1}$$

Подставляя это значение в уравнение (173) и используя выражения (б), находим

$$a_0 = \frac{5}{8} \frac{259}{277} \frac{G\theta}{a^2}$$
, $a_1 = \frac{5}{8} \frac{3}{2} \frac{35}{277} \frac{G\theta}{a^4}$.

Подстановка этих выражений в формулу (153) для крутящего момента дает

$$M_t = \frac{20}{9} \left(\frac{259}{277} + \frac{2}{5} \frac{3}{2} \frac{35}{277} \right) G\theta a^4 = 0,1404G\theta (2a)^4.$$

Это значение лишь на 0,15% меньше точного.

Значительно большей оказывается ошибка в величине максимального напряжения. Подставляя функцию (г) в выражения (149) для компонент напряжения, находим, что ошибка в максимальном напряжении составляет около 4%, и чтобы получить лучшее приближение, нужно удержать в ряде (в) большее количество членов.

На основе мембранной аналогии можно видеть, что, действуя описанным способом, мы получаем в общем случае значения крутящего момента, меньшие точного. Идеально гибкая мембрана, равномерно растянутая на границе и находящаяся под действием равномерной нагрузки, является системой с бесконечным числом степеней свободы. Оставление в ряде (в) малого числа членов эквивалентно наложению на систему связей, которые приводят
ее к системе с малым числом степеней свободы. Такие связи могут только уменьшить гибкость системы и тем самым уменьшить объем, ограниченный поверхностью прогибов мембраны. Следовательно, крутящий момент, полученный, исходя из такого объема, в общем случае будет меньше его истинного значения.

Треффц¹) предложил другой метод приближенного определения функции напряжений ф. По его методу приближенная величина крутящего момента оказывается больше точного значения. Следовательно, используя совместно методы Треффца и Ритца, можно установить границы погрешности приближенного решения.

При использовании приближенного метода Ритца мы не обязательно должны пользоваться полиномами (в). Мы можем взять функции φ_0 , φ_1 , φ_2 , ..., входящие в ряд (а) и в других формах, удобных для представления функции напряжений φ . Используя, например, тригонометрические функции и учитывая условия симметрии (рис. 163), получаем

$$\varphi = \sum_{n=1, 3, 5, \dots, n=1, 3, 5, \dots}^{\infty} a_{mn} \cos \frac{m\pi x}{2a} \cos \frac{n\pi y}{2b}.$$
 (e)

Подставляя это выражение в (173) и производя интегрирование, находим, что

$$U = \frac{\pi^2 ab}{8} \sum_{m=1, 3, 5, \dots, n=1, 3, 5, \dots}^{\infty} a_{mn}^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^3}\right) - \frac{2G\theta}{2} \sum_{m=1, 3, 5, \dots}^{\infty} \sum_{n=1, 3, 5, \dots}^{\infty} a_{mn} \frac{16ab}{mn\pi^3} (-1)^{\frac{(m+n)}{3}-1}.$$

Уравнения (б) принимают вид

$$\frac{\pi^2 ab}{4} a_{mn} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) - 2G\theta \frac{16ab}{mn\pi^2} \left(-1 \right)^{\frac{m+n}{2}-1} = 0,$$

и мы получаем

$$a_{mn} = \frac{128G\theta b^2 (-1)^{\frac{m+n}{2}-1}}{\pi^4 mn (m^2 \alpha^2 + n^2)},$$

где $\alpha = b/a$. Подставляя это значение a_{mn} в (е), получаем точное решение задачи в форме тригонометрических рядов. Крутящий момент будет при этом равен

$$M_t = 2 \int_{-a}^{a} \int_{-b}^{b} \varphi \, dx \, dy = \sum_{m=1, 3, \dots}^{\infty} \sum_{n=1, 3, \dots}^{\infty} \frac{128G\theta b^2}{\pi^4 mn \, (m^2 \alpha^2 + n^2)} \frac{32ab}{mn\pi^2} \,. \tag{(x)}$$

¹) E. Trefftz, Proc, 2d Intern. Congr. Appl. Mech. Zürich, 1926, crp. 131; N. M. Basu, Phil. Mag. 10, 886 (1930).

кручение

Это выражение приводится к виду, совпадающему с полученным ранее выражением (168), если учесть, что

$$\frac{1}{m^2} \sum_{n=1,3,5,\ldots}^{\infty} \frac{1}{n^2 (m^2 \alpha^2 + n^2)} = \frac{\pi^4}{96m^2} \frac{\operatorname{th}\left(\frac{m\alpha\pi}{2}\right) - \left(\frac{m\alpha\pi}{2}\right)}{-\frac{1}{3} \left(\frac{m\alpha\pi}{2}\right)^3}.$$

В качестве другого примера рассмотрим случай узкого прямоугольника, сторона которого *a* очень велика по сравнению с *b* (рис. 163). В первом приближении можно взять

$$\varphi = G\theta \left(a^2 - x^2\right); \tag{H}$$

соответствующее решение совпадает с решением, исследованным ранее (§ 108). Чтобы получить лучшее приближение, удовлетворяющее граничным условиям на коротких гранях прямоугольника, возьмем

$$\varphi = G\theta \left(a^2 - x^2\right) \left[1 - e^{-\beta (b-y)}\right] \tag{K}$$

и выберем величину β таким путем, чтобы она доставляла минимум интегралу (173). Таким путем находим

$$\beta = \frac{1}{a} \sqrt{\frac{5}{2}}.$$

Благодаря экспоненциальному члену, входящему в скобки в выражении (к), мы получаем распределение напряжений, которое практически совпадает с решением (и) во всех точках, находящихся на значительном расстоянии от коротких сторон прямоугольника. Вблизи этих сторон функция (k) удовлетворяет граничному условию (152). Подставляя выражение (к) в формулу (153) для крутящего момента, находим

$$M_t = 2 \int_{-a}^{a} \int_{-b}^{b} \varphi \, dx \, dy = \frac{1}{3} \, G\theta \, (2a)^3 \, 2b \left(1 - 0,632 \, \frac{a}{b} \right),$$

что находится в очень хорошем согласии с выражением (169), полученным ранее с применением бесконечных рядов.

Полиномиальное выражение для функции напряжений, аналогичное выражению (в), принятому выше для прямоугольника, может успешно использоваться во всех случаях поперечных сечений, ограниченных выпуклыми многоугольниками. Если принять уравнения сторон многоугольника в виде

$$a_1x + b_1y + c_1 = 0, \quad a_2x + b_2y + c_2 = 0, \ldots,$$

то функцию напряжений можно взять в форме

 $\varphi = (a_1x + b_1y + c_1)(a_2x + b_2y + c_2)\dots(a_nx + b_ny + c_n)\sum a_{mn}x^ny^m$

и, чтобы получить удовлетворительную точность обычно достаточно удержать несколько первых членов этого ряда.

Энергетический метод полезен также тогда, когда граница поперечного сечения (рис. 165) задана двумя кривыми¹)

$$y = a\psi \frac{x}{b}$$
 is $y = -a_1\psi \frac{x}{b}$,

гле

$$\psi \frac{x}{b} = \psi t = t^m (1 - t^p)^q.$$

Граничные условия будут удовлетворены, если принять для функции напряжений приближенное выражение

$$\varphi = A \left(y - a \psi \right) \left(y + a_1 \psi \right).$$

Подставляя его в интеграл (173), мы находим из уравнения dI/dA = 0

$$A = -\frac{G\theta}{1 + \frac{\alpha \left(a^2 + a_1^2 + aa_1\right)}{b^2}}, \quad \text{где} \quad \alpha = \frac{\int\limits_0^1 \psi^3 \left(\frac{d\psi}{dt}\right)^2 dt}{\int\limits_0^1 \psi^3 dt}.$$

Крутящий момент мы находим из формулы (153)

$$M_t = -A \frac{b (a+a_1)^3}{3} \int_0^1 \psi^3 dt.$$

В частном случае, когда m = 1/2, p = q = 1, $a = a_1$, имеем y = $=\pm a\psi(x/b) = \pm \sqrt{x/b} (1-x/b)$, и поэтому

Рис. 165.

Приближенное решение и сравнение с экспериментами для сечений, ограниченных дугой окружности и хордой, дал Вейганд²). Численные методы решения этих задач обсуждаются в приложе-НИЯХ.

¹⁾ Такие задачи рассматривал Л. С. Лейбензон. См. его книгу «Вариаци-учаль задач рассматривал г. С. леноснзон. См. его книгу «Бариаци-онные методы решения задач теории упругости», Москва, 1943. См. также
 W. J. Duncan, Phil. Mag., ser. 7, 25, 634 (1938).
 ²) A. Weigand, Lufifahrt-Forsch. 20, 1944 (английский перевод: NACA Tech. Mem., 1182, 1948).

§ 112. Кручение стержней прокатных профилей

При исследовании кручения прокатных профилей, таких, как уголки, швеллеры, двутавры, можно пользоваться формулами, выведенными для стержней узкого прямоугольного сечения (§ 108). Когда поперечное сечение имеет постоянную толщину, как это показано на рис. 166, угол закручивания с достаточной точностью определяется по формуле (163), если внести в эту формулу вместо *b* развернутую длину срединной линии сечения ¹), а именно b = 2a - c. В случае швеллера (рис. 166, б) грубо приближенное

Рис. 166.

решение для угла закручивания получается, если принять для полок среднюю толщину c_2 , разделив поперечное сечение на три прямоугольника и подставив $b_1c_1^3 + 2b_2c_2^3$ вместо bc^3 в уравнение (163), т. е. предполагая, что крутильная жесткость швеллера равна сумме крутильных жесткостей трех прямоугольников²). Тогда

$$\theta = \frac{3M_t}{(b_1 c_1^3 + 2b_2 c_2^3) G} \,. \tag{a}$$

Чтобы определить напряжение на границе в точках, находящихся на значительном удалении от углов поперечного сечения, мы можем вновь воспользоваться уравнением для узкого прямоугсльника и принять

$$\tau = c\theta G.$$

Тогда из уравнения (а) получаем для полок швеллера

$$\tau = \frac{3M_1c_2}{b_1c_1^3 + 2b_2c_2^3}.$$
 (6)

¹) Более точная формула, учитывающая увеличение жесткости за счет соединений отдельных прямоугольников, была получена на основе исследования мыльных пленок и опытов на кручение в работе: G. W. Trayer, H. W. March, Natl. Advisory Comm. Aeron. Rept. 1930, стр. 334.

²) Сравнение крутильных жесткостей, полученных таким путем, с экспериментальными данными для нескольких типов прокатных сечений и для различных размеров дано в статье: А. F ö p p l, Sitzber. Bayer. Akad. Wiss. München, 1921, стр. 295. См. также Bauingenieur, ser. 5, 3, 42 (1922).

Те же приближенные уравнения можно использовать и для двутавра (рис. 166, в).

У входящих углов наблюдается значительная концентрация напряжений, величина которых зависит от радиуса закругления. Грубо приближенное значение максимального напряжения в местах закруглений можно получить на основе мембранной аналогии. Рассмотрим поперечное сечение в форме уголка постоянной толщины *с* (рис. 167) с радиусом закругления входящего угла, равным *а*. Допустим, что поверхность мембраны у биссектрисы *ОО*₁ входящего угла приближенно представляется поверхностью вращения с осью, перпендикулярной к плоскости чертежа в точке *О*. Используя полярные координаты, можно привести уравнение (159) для поверхности прогибов мембраны к виду (см. стр. 85)

$$\frac{d^2z}{dr^2} + \frac{1}{r} \frac{dz}{dr} = -\frac{q}{S}.$$

Рис. 167.

Учитывая, что наклон мембраны dz/dr определяет касательное напряжение τ , если заменить q/S на 2G θ , находим из (в) следующее уравнение для касательного напряжения:

$$\frac{d\tau}{dr} + \frac{1}{r}\tau = -2G\theta. \tag{r}$$

(B)

Соответствующее уравнение для областей полок уголка, расположенных на значительном расстоянии от угла, т. е. там, где мембрана прогибается почти по цилиндрической поверхности, имеет вид

$$\frac{d\tau}{dn} = -2G\theta, \qquad (\mathbf{g})$$

где n—нормаль к границе. Обозначая через τ_i напряжение на границе, получаем из (д) уже известное нам решение для узкого прямоугольника $\tau_1 = G\theta c$. Используя его, получаем из уравнения (г) следующее уравнение:

$$\frac{d\tau}{dr} + \frac{1}{r} \tau = -\frac{2\tau_1}{c}, \qquad (r')$$

откуда после интегрирования находим, что

$$\tau = \frac{A}{r} - \frac{\tau_1 r}{c} , \qquad (e)$$

где А — постоянная интегрирования. Для определения этой постоянной предположим, что касательное напряжение обращается в нуль в точке O₁ на расстоянии c/2 от границы (рис. 167). Тогда из условия (е)

$$\frac{A}{a+\frac{c}{2}}-\frac{\tau_1\left(a+\frac{c}{2}\right)}{c}=0 \quad \text{if } A=\frac{\tau_1}{c}\left(a+\frac{c}{2}\right)^2.$$

Подставляя это выражение в (e) и полагая r = a, находим

$$\mathbf{t}_{\max} = \mathbf{\tau}_1 \left(1 + \frac{c}{4a} \right). \qquad (\mathbf{x})$$

При a = 0,5 c, как это имеет место на рис. 167, имеем $\tau_{max} = 1,5 \tau_1$. Для закругления очень малого радиуса максимальное касательное напряжение становится очень большим. Принимая, например, a == 0,1 c, находим: $\tau_{max} = 3,5 \tau_1$.

Более точные и полные результаты можно получить численно, основываясь на методе конечных разностей (см. Приложение I). Кривая τ_{max}/τ_1 как функция от a/c, полученная этим методом¹), показана на рис. 168 (кривая A) вместе с кривой, представляю-

щей уравнение (ж). Мы увидим, что эта простая формула дает хорошие результаты, когда *а/с* меньше 0,3.

§ 113. Экспериментальные аналогии

Мы видели, что мембранная аналогия оказывается очень полезной для наглядного представления о распределении напряжений по сечению скручиваемого стержня. Для прямых измерений напряжений использовались мембраны в виде мыльных пленок²). Пленки образуются над отверстиями требуемой формы в плоских пластинках. Чтобы сделать возможным прямое определение напряжений для сравнения оказалось необходимым иметь в той же пластинке круглое отверстие. Подвергая обе пленки одному и тому

330

¹) Метод принадлежит Хэту (J. H. Huth, J. Appl. Mech. 17, 388 (1950). Подъем кривой справа требуется в предельном случае, когда радиус закругления увеличивается по отношению к толщине. Ссылки на более ранние попытки решения этой задачи, включая измерения на мыльных пленках, даны в работе: I. Lyse, B. G. Johnston, Proc. ASCE, 1935, стр. 469, а также в вышеупомянутой статье Хэта.

в вышеупомянутой статье Хэта. ²) См. статьи Гриффитса и Тейлора (Griffith, Taylor), упомянутые выше, а также статью Трейера и Марча (Trayer, March). Обзор по этой и другим аналогиям для задачи кручения со ссылками дан в работе: Т. J. Higgins, Exp. Stress Anal. 2, № 2, 17 (1945).

\$ 1141

же давлению, получаем требуемые значения q/S¹) которые, отвечают одним и тем же значениям СО для обоих скручиваемых стержней. Следовательно, измеряя наклоны двух мыльных пленок, мы можем сравнить напряжения в стержне заданного поперечного сечения с напряжениями в круглом валу при условии, что они обладают одним и тем же углом закручивания в на единицу длины и одним и тем же модулем сдвига G. Соответствующее отношение крутящих моментов определяется отношением объемов между мыльными пленками и плоскостью поверхности пластинки²).

В точках концентрации напряжений, например в местах закруглений малого радиуса, мыльная пленка может, по-видимому, дать неточные результаты³). Более надежные значения можно получить из аналогии с листовым проводником⁴). Электропроводящий лист вырезается в форме поперечного сечения скручиваемого стержня. Если плотность тока имеет постоянную величину і на единицу площади по всей площади сечения, электрический потенциал V в листе будет удовлетворять уравнению

$$\nabla^2 V = -\rho i,$$

где о-постоянное сопротивление листа. Если на границе с помощью соединенной с ней собирательной шины поддерживается постоянный электрический потенциал, то имеем полную аналогию с задачей о кручении, представленной уравнениями (150) и (151) с граничным условием (152), требующим постоянства ф на единственной граничной кривой. Кривые с пометками T и I на рис. 168 были получены указанным методом⁵), а кривая A для уголкового сечения с помощью его получила подтверждение.

§ 114. Гидродинамические аналогии

Существует несколько аналогий между задачами о кручении и гидродинамическими задачами о движении жидкости в трубах. Кельвин⁶) заметил, что функция φ_1 (см. уравнение (a) § 106).

6) K. Kelvin, P. G. Tait, Natural Philosophy, 4. 2, crp. 242.

¹) Предполагается, что поверхностное натяжение в обеих пленках одинаково. Это с достаточной точностью подтвердилось опытами.

²) Более детальный анализ см. в книге: М. Hetényi (ред.), Handbook of Experimental Stress Analysis, гл. 16, John Wiley, New York, 1950. ³) См. статью: С. В. Вiezeno, J. M. Rademacher, De Ingenieur, № 52, 1931. См. также статьи: Р. А. Cushman, Trans. ASME, 1932, H. Quest, Ingenieur-Archiv 4, 510 (1933) и выше цитированную статью Хэта (J. H. Huth).

 ⁴⁾ N. S. Waner, W. W. Soroka, Proc. Soc. Exptl. Stress Anal. 2, 19-26 (1953). См. также W. W. Soroka, Analog Methods in Computation and Simulation.

⁵) С. W. Beadle, H. D. Conway, (1) Exptl. Mech., August, 1963; стр. 198—200; (2) J. Appl. Mech. **30**, 138—141 (1963). В последней статье даны дальнейшие результаты, полученные с помощью приближенного аналитического метода.

КРУЧЕНИЕ

которая иногда используется в задачах о кручении, тождественно совпадает с функцией тока для некоторого безвихревого движения идеальной жидкости в трубе того же поперечного сечения, что и скручиваемый стержень.

На другую аналогию указал Буссинеск¹). Он показал, что дифференциальное уравнение и граничное условие для опреде-

ления функции напряжений φ (см. уравнения (150) и (152)) тождественно совпадают с теми, которые служат для определения скоростей в ламинарном потоке вязкой жидкости по трубе того же сечения, что и скручиваемый стержень ²).

Гринхилл показал, что функция напряжений ф математически тождественна функции тока при движении идеальной жидкости, циркулирующей с постоянной интенсивностью вихря ³) в трубе того

же поперечного сечения, что и скручиваемый стержень⁴). Обозначим через u и v компоненты скорости циркулирующей жидкости в точке A (рис. 169). Тогда из условия несжимаемости идеальной жидкости имеем

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0.$$
 (a)

Условие постоянной вращательной скорости имеет вид

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \text{const.}$$
 (6)

Принимая

$$u = \frac{\partial \varphi}{\partial y},$$

$$v = -\frac{\partial \varphi}{\partial x},$$
(B)

мы удовлетворяем уравнению (а) и из уравнения (б) находим

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \text{const}, \qquad (r)$$

что совпадает с уравнением (150) для функции напряжений при кручении.

¹⁾ J. Boussinesque, J. Math, Pure Appl., ser. 2, 16 (1871).

²) Эту аналогию использовал Пашу (М. Paschoud, Compt. Rend. 179, 451 (1924). См. также Bull. Tech. Suisse Rom. (Lausanne), Nov. 1925.

³) Аналитическое выражение для интенсивности вихря то же, что и для вращения ω_z , рассмотренного на стр. 243, если через *и* и *v* обозначить компоненты скорости жидкости.

⁴⁾ A. G. Greenhill, Hydromechanics, Encyclopedia Britannica, изд. 11, 1910, стр. 115.

На границе скорость циркулирующей жидкости направлена по касательной к границе, и граничное условие для гидродинамической задачи совпадает с условием (152) для задачи о кручении. Таким образом, распределение скоростей в гидродинамической задаче математически тождественно распределению напряжений при кручении, и, применяя известные в гидродинамике решения, можно получить практически важные выволы.

В качестве первого примера рассмотрим случай малого кругового отверстия в скручиваемом круглом валу¹) (рис. 170). Влияние этого отверстия на распределение напряже-

ний подобно введению неподвижного сплошного цилиндра того же диаметра, что и отверстие, в поток циркулирующей жидкости гидродинамической модели. Такой цилиндр резко изменяет скорость течения в окрестной к нему области. Скорости в точках перед цилиндром и за ним снижаются до нуля, тогда как скорости в боковых точках *m* и *n* удваиваются. Следовательно, от-

Рис. 170.

верстие такого вида удваивает касательные напряжения в той части вала, в которой оно расположено. Малый полукруглый надрез на поверхности, параллельный оси вала (рис. 170), производит тот же эффект. Касательное напряжение на дне надреза в точке *m* примерно вдвое превышает напряжение на поверхности вала в точках, достаточно удаленных от надреза. Та же гидродинамическая аналогия объясняет влияние малого отверстия эллиптического сечения или полуэллиптического надреза. Если одна из главных осей а малого эллиптического отверстия расположена в радиальном направлении, а другая ось равна b, то напряжения на границе отверстия по концам оси а увеличиваются в пропорции (1+a/b):1. Максимальное напряжение, действующее в этом случае, зависит, таким образом, от величины отношения а/b. Влияние отверстия на напряжение будет больше, когда большая ось эллипса расположена в радиальном направлении, по сравнению со случаем, когда она расположена в окружном направлении. Поэтому радиальные трещины оказывают существенное ослабляющее влияние на прочность вала. Подобное влияние на распределение напряжений оказывает и полуэллиптический надрез на поверхности, параллельной оси вала.

Из гидродинамической аналогии можно также сделать вывод, что в выступающих углах поперечного сечения скручиваемого стержня касательные напряжения равны нулю, а на входящих углах они теоретически становятся бесконечно большими, т. е. даже самый малый крутящий момент вызывает здесь течение

¹) Cm. J. Larmor, Phil. Mag. 33, 76 (1892).

кручение

материала или трещину. Следовательно, в случае прямоугольной шпоночной канавки высокая концентрация напряжения имеет место у входящих углов на дне канав. Эти высокие напряжения можно понизить путем закругления углов¹).

§ 115. Кручение полых валов

До сих пор наши рассуждения относились к валам, поперечные сечения которых ограничивались одной кривой. Рассмотрим теперь полые валы, границы поперечных сечений которых состоят из двух (и более) контуров. Простейшая задача такого рода касается круглого вала, внутренняя граница которого совпадает с одной из траекторий напряжений (см. стр. 310) сплошного вала, имеющего ту же внешнюю границу, что и полый вал.

Рассмотрим, например, эллиптическое поперечное сечение (рис. 153). Функция наряжений для сплошного вала имеет вид

$$\varphi = \frac{a^2 b^2 F}{2 \left(a^2 + b^2\right)} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right).$$
 (a)

Кривая

$$\frac{x^2}{(ak)^2} + \frac{y^2}{(bk)^2} = 1 \tag{6}$$

является эллипсом, который геометрически подобен внешней границе поперечного сечения. Вдоль этого эллипса функция напряжений ф остается постоянной; следовательно, при k, меңьших единицы, этот эллипси является траекторией напряжений для сплошного эллиптического вала. Представим теперь эллиптическую поверхность, порождаемую этой траекторией напряжений, с осью, параллельной оси вала. Тогда из сделанного выше вывода относительно направления касательных напряжений следует, что в направлении, нормальном к этой цилиндрической поверхности, напряжения действовать не будут. Мы можем поэтому считать, что часть материала, ограниченная этой цилиндрической поверхностью, удалена без изменения распределения напряжений во внешней части вала. Следовательно, функция напряжений в форме (а) применима и к полому валу.

Для заданного угла закручивания в напряжения в полом валу будут такими же, как и в сплошном валу. Однако крутящий момент будет меньше на величину, которая в случае сплошного вала приходится на часть поперечного сечения, которую заняло отверстие. Из уравнения (156) мы видим, что эта часть

¹) Напряжения у вырезов исследовались с помощью мыльных пленок. См. стр. 938 статьи Гриффитса и Тейлора (Griffith и Taylor), упоминавшуюся выше (стр. 309). Формулы и таблицы для расчетов см. в книге: R. E. Peterson, Stress Concentration Design Factors, John Wiley, N. Y., 1953. См. также М. Ni-Sida, M. Hondo, Proc. Japan Nat. Congr. Appl. Mech. 2, 129—132 (1959).

находится в отношении k^4 :1 к полному крутящему моменту. Следовательно, для полого вала вместо выражения (156) будем иметь

$$\theta = \frac{M_t}{1-k^4} \frac{a^2+b^2}{\pi a^3 b^3 G} ,$$

и для функции напряжений (а) получаем

$$\varphi = -\frac{M_t}{\pi a b (1-k^4)} \left(\frac{x^2}{a^2} + \frac{y^3}{b^2} - 1 \right).$$

Формула для максимального касательного напряжения принимает вид

$$\tau_{\max} = \frac{2M_t}{\pi a b^2} \frac{1}{1-k^4}.$$

Согласно мембранной аналогии средняя часть мембраны, соответствующая отверстию в валу (рис. 171), должна быть заменена

горизонтальной пластинкой СĎ. Отметим, что равномерное давление, распределенное по части *CFD* мембраны, статически эквивалентно давлению той же величины, равномерно распределенному по пластинке *CD*, а растягивающие усилия в мембране, действующие вдоль границы этой пластинки, находятся в равновесии с равномерной нагрузкой на пластинке. Следовательно, в рассматриваемом случае может использоваться тот же экспериментальный ме-

Рис. 171.

тод с мыльной пленкой, что и раньше, так как замена части мембраны *CFD* пластинкой *CD* не вызывает изменений в конфигурации и в условиях равновесия остальной части мембраны. Рассмотрим теперь более сложный случай, когда границы отверстия уже не являются траекториями напряжений для сплошного вала. Из общей теории кручения мы знаем (см. § 104), что вдоль каждой границы функция напряжений должна быть постоянной, однако эти постоянные не могут выбираться произвольно. При рассмотрении многосвязных границ в двумерных задачах было показано, что в подобных случаях необходимо обращаться к выражениям для перемещений, и постоянные интегрирования следует подбирать таким образом, чтобы эти выражения становились однозначными. Аналогичная процедура необходима и по отношению к задачам о кручении полых валов. Постоянные значения функции напряжений вдоль границ следует определять таким образом, чтобы перемещения были однознанными. Тогда будет получено достаточное число уравнений для определения кручение

этих постоянных. Из соотношений (б) и (г) § 104 имеем

$$\tau_{xz} = G\left(\frac{\partial \omega}{\partial x} - \theta y\right), \quad \tau_{yz} = G\left(\frac{\partial \omega}{\partial y} + \theta x\right).$$
 (B)

Теперь вычислим интеграл

$$\int \tau \, ds \tag{r}$$

вдоль каждой границы. Используя формулы (в) и разлагая полное напряжение на компоненты, находим

$$\int \tau \, ds = \int \left(\tau_{xz} \frac{dx}{ds} + \tau_{yz} \frac{dy}{ds} \right) ds =$$

= $G \int \left(\frac{\partial \omega}{\partial x} \, dx + \frac{\partial \omega}{\partial y} \, dy \right) - \theta G \int (y \, dx - x \, dy).$ (174)

Первый интеграл должен обращаться в нуль из условия, что интегрирование производится по замкнутой кривой и что *w* является однозначной функцией. Отсюда

$$\int \tau \, ds = \theta G \int (x \, dy - y \, dx).$$

Интеграл в правой части равен удвоенной площади А области, заключенной внутри контура. Следовательно,

$$\int \tau \, ds = 2G\theta A. \tag{175}$$

Таким образом, мы должны определить постоянные значения функции напряжений вдоль границ отверстий так, чтобы для каждой границы удовлетворялось уравнение (175). Для любой замкнутой кривой, проведенной внутри попереч-

Для любой замкнутой кривой, проведенной внутри поперечного сечения и целиком лежащей внутри материала, первый и второй интегралы (174) представляют собой линейный интеграл от тангенциальной компоненты касательного напряжения т, взятого вдоль кривой, и по аналогии с циркуляцией в гидродинамике, его можно назвать циркуляцией касательных напряжений. Тогда соотношение (175) сохраняет силу и его можно назвать теоремой о циркуляции касательных напряжений.

Значение формулы (175) для мембранной аналогии рассматривалось на стр. 312. Оно показывает, что в мембране уровень каждой пластинки, такой, как пластинка *CD* (рис. 171), должен выбираться так, чтобы вертикальная нагрузка на пластинку была равна по величине и противоположна по знаку вертикальной компоненте результирующей растягивающих усилий, с которыми мембрана действует на пластинку. Если границы отверстия совпадают с траекториями напряжений для соответствующего сплошного вала, вышеприведенного условия достаточно, чтобы обеспечить равновесие пластинок. В общем случае этого условия недостаточно, и для удержания пластинки в равновесии в гори§ 115]

зонтальном положении приходится прибегать к специальным направляющим приспособлениям. Это усложняет эксперименты с мыльными пленками для круглых валов.

Чтобы устранить это затруднение, можно воспользоваться следующим приемом¹). В пластинке проделывается отверстие, соответствующее внешней границе сечения. Каждый из внутренних контуров, отвечающих полостям вала, устанавливается на вертикальной скользящей каретке, так что высоту ее можно легко менять. Принимая эти высоты произвольно и натягивая на границах пленку, получаем поверхность, которая удовлетворяет уравнению (150) и граничным условиям (152), но уравнение (175) в общем случае не будет удовлетворено, и пленка не будет представлять распределения напряжений в полом валу. Повторяя этот эксперимент столько раз, сколько имеется контуров, и каждый раз проводя измерения на пленке, мы получаем достаточно информации, чтобы определить истинные значения уровней внутренних границ и, наконец, натягиваем пленку нужным нам образом. Это доказывается следующим образом: если i — число контуров, и φ_1 , φ_2 , ..., φ_i — поверхности пленки, полученые при i различных положениях кареток, то функция

$$\varphi = m_1 \varphi_1 + m_2 \varphi_2 + \ldots + m_i \varphi_i, \qquad (a)$$

где m_1 , m_2 , ..., m_i — численные коэффициенты, также является решением уравнения (150), когда

$$m_1 + m_2 + \ldots + m_i = 1.$$

Теперь, учитывая, что касательное напряжение равно наклону мембраны, и подставляя выражение (д) в уравнения (175), получаем *i* уравнений вида

$$\int \frac{\partial \varphi}{\partial n} \, ds = 2G \theta A_i,$$

из которых можно получить коэффициенты m_1, m_2, \ldots, m_l как функции от θ . Затем из (д) находится истинная функция напряжений ²). Этот метод был применен Гриффитсом и Тейлором для определения напряжений в полом круглом валу, имеющем вырез. Таким путем было показано, что максимальное напряжение можно значительно уменьшить, тем самым повысив прочность вала, если расположить полость эксцентрично.

Крутящий момент для вала с одним или несколькими отверстиями можно получить, определяя удвоенный объем, заключенный между мембраной и пластинкой. Чтобы убедиться в этом, вычислим крутящий момент, вызываемый касательными напряжениями, распределенными по элементарному кольцу между двумя соседними траекториями напряжений, как показано на рис. 171, который теперь представляет произвольное полое сечение. Обозначая через δ переменную ширину кольца и рассматривая заштрихованный на рисунке элемент, получаем, что касательное усилие,

¹⁾ См. упомянутую выше статью Гриффитса и Тейлора (Griffith, Taylor), стр. 938.

²) Гриффитс и Тейлор сделали из своих экспериментов заключение, что при исследовании распределения напряжений в полых валах вместо пленок под постоянным давлением удобнее использовать пленки под нулевым давлением (см. стр. 312). Подробное изложение способа определения коэффициентов m_1, m_2, \ldots дается в их статье, упомянутой выше.

КРУЧЕНИЕ

действующее на элемент, равно $\tau \delta ds$, а его момент относительно точки O есть $\tau r \delta ds$. Тогда момент для элементарного кольца относительно той же точки равен

$$dM_t = \int r\tau \delta \, ds, \tag{e}$$

где интегрирование производится по всей длине кольца. Обозначив через A площадь, ограниченную кольцом, и учитывая, что τ —наклон мембраны, в силу чего $\tau\delta$ представляет собой разность уровней h для двух смежных контурных линий, из (е) находим

$$dM_t = 2hA, \qquad (\mathbf{w})$$

т. е. крутящий момент, соответствующий элементарному кольцу, определяется заштрихованным на рисунке удвоенным объемом его. Полный момент определяется суммой этих объемов, т. е. объемом между *АВ*, мембраной *АС* и *DB* и плоской пластинкой *CD*. Подобный вывод можно сделать и для случая нескольких отверстий.

§ 116. Кручение тонкостенных труб

Используя мембранную аналогию, легко получить решение задачи о кручении для тонкостенных труб. Обозначим через AB и CD (рис. 172) уровни внешней и внутренней границ, а через

Рис. 172.

АС и DB— поперечное сечение мембраны, натянутой на эти границы. В случае тонкой стенки мы можем пренебречь изменениями наклона мембраны по ее толщине и предположить что AC и BD— прямые линии. Это эквивалентно предположению, что касательные напряжения по толщине трубы распределены равномерно. Тогда, обозначая через h разность в уровне этих двух границ, а через δ — переменную толицину стен-

через δ— переменную толщину стенки, получаем, что напряжение в любой точке, определяемое наклоном мембраны, равно

$$\tau = \frac{h}{\delta} \,. \tag{a}$$

Таким образом, напряжение т обратно пропорционально толщине стенки и в силу этого достигает максимума там, где толщина стенки минимальна.

Чтобы установить зависимость между напряжением и крутящим моментом *M*, снова используем мембранную аналогию и определим крутящий момент, исходя из объема *ACDB*. Отсюда

$$M_t = 2Ah = 2A\delta\tau; \tag{6}$$

лесь А успелненное значение

здесь *А*— усредненное значение площади, заключенной между внешним и внутренним контурами поперечного сечения трубы. Из зависимости (б) получаем простую формулу для определения касательного напряжения

$$\tau = \frac{M_t}{2A\delta} \,. \tag{176}$$

Для определения угла закручивания в применим формулу (160). Тогда

$$\int \tau \, ds = \frac{M_t}{2A} \int \frac{ds}{\delta} = 2G\theta A, \qquad (B)$$

откуда 1)

 $\theta = \frac{M_t}{4A^2G} \int \frac{ds}{\delta} \,. \tag{177}$

В случае трубы постоянной толщины значение в постоянно и формула (177) дает

$$\theta = \frac{M_{ts}}{4A^2G\delta}, \qquad (178)$$

где s—длина срединной линии кольцевого сечения трубы.

Если труба имеет входящие углы, как в случае, представленном на рис. 173, в этих углах может возникнуть значительная кон-

центрация напряжений. Максимальное напряжение оказывается выше напряжения, полученного из уравнения (176), и зависит от радиуса *а* закругления входящего угла (рис. 173, б). Для определения этого максимального напряжения мы воспользуемся мембранной аналогией, как это уже делалось для входящих углов прокатных сечений (§ 112). Уравнение мембраны у входящего угла можно принять в форме

$$\frac{d^2z}{dr^2} + \frac{1}{r}\frac{dz}{dr} = -\frac{q}{S}.$$

Заменяя q/S на 2G θ и учитывая, что $\tau = - dz/dr$ (см. рис. 172), находим

$$\frac{d\tau}{dr} + \frac{1}{r}\tau = 2G\theta. \tag{r}$$

Если предположить, что труба имеет постоянную толщину δ и обозначить через τ₀ полученное по формуле (176) напряжение на

¹) Уравнения (176) и (177) для тонкостенных трубчатых сечений получил Бредт (R. Bredt, BDI, 40, 815 (1896)).

кручение

значительном расстоянии от угла, то из (в) найдем

$$2G\theta = \frac{\tau_0 s}{A} \,.$$

Подставляя этот результат в формулу (г), имеем

$$\frac{d\tau}{dr} + \frac{1}{r} \tau = \frac{\tau_0 s}{A} . \tag{A}$$

Общее решение этого уравнения имеет вид

$$\tau = \frac{C}{r} + \frac{\tau_{\bullet} sr}{2A} \,. \tag{e}$$

Предполагая, что выступающие углы поперечного сечения имеют закругления раднуса *a*, как показано на рисунке, можно определить постоянную интегрирования *C* из равенства

$$\int_{a}^{a+\delta} \tau dr = \tau_0 \delta, \qquad (\mathbf{x})$$

которое следует из гидродинамической аналогии (§ 114); действительно, если идеальная жидкость циркулирует по каналу, имеющему форму кольцевого поперечного сечения трубчатого элемента, то количество жидкости, проходящее через каждое поперечное сечение канала, должно оставаться постоянным. Подставляя выражение (е) для т в уравнение (ж) и производя интегрирование, находим

$$C = \tau_0 \delta \frac{1 - \frac{s}{4A} (2a + \delta)}{\ln \left(1 + \frac{\delta}{a}\right)};$$

далее из уравнения (е) следует

$$\tau = \frac{\tau_0 \delta}{r} \frac{1 - \frac{s}{4A} (2a + \delta)}{\ln\left(1 + \frac{\delta}{a}\right)} + \frac{\tau_0 sr}{2A} . \tag{H}$$

Для тонкостенной трубы отношения s. $(2a + \delta)/A$ и sr/A будут малыми, в силу чего формула (и) приводится к виду

$$\tau = \frac{\frac{\tau_0 \delta}{r}}{\ln\left(1 + \frac{\delta}{a}\right)}.$$
 (K)

Полагая r = a, получаем напряжение вблизи входящего угла. Оно показано на рис. 174. Другая кривая¹) (А на рис. 174) была

¹) См. упомянутую выше статью Хэта (Huth).

Tmax /To

3,5

3,0

2,5

2,0

1,5

1,0

цр.(к)

1.0

Рис. 174.

0,5

получена методом конечных разностей без предположения, что мембрана в угле имеет форму поверхности вращения. Эта кривая подтверждает справедливость уравнения (к) для малых радиусов τ_{max}/τ_n закруглений, скажем, до $a/\delta = 1/4$.

Для больших радиусов закруг-лений значения, даваемые уравнением (к), чрезмерно высоки.

Рассмотрим теперь случай, когда поперечное сечение трубчатого

элемента имеет не две, а большее число границ. Взяв для примера случай, показанный на рис. 175, и предполагая, что толщина стенки δ очень мала, исходя из мембранной аналогии, можно получить для касательных напряжений в каждой части стенки формулы

$$\tau_1 = \frac{h_1}{\delta_1}, \quad \tau_2 = \frac{h_2}{\delta_2}, \quad \tau_3 = \frac{h_1 - h_2}{\delta_3} = \frac{\tau_1 \delta_1 - \tau_2 \delta_2}{\delta_3}, \quad (\pi)$$

где h₁ и h₂—уровни внутренних контуров CD и EF¹). Величина крутящего момента, определяемая объемом ACDEFB, определится формулой

$$M_{t} = 2(A_{1}h_{1} + A_{2}h_{2}) = 2A_{1}\delta_{1}\tau_{1} + 2A_{2}\delta_{2}\tau_{2}, \qquad (M)$$

где A₁ и A₂—площади, показанные на рисунке штриховыми линиями.

Остальные уравнения, необходимые для решения задачи, по-лучаются с помощью применения уравнения (160) к замкнутым кривым показанным на рисунке штриховыми линиями. Считая толщины δ_1 , δ_2 , δ_3 постоянными и обозначая через s_1 , s_2 , s_3 длины соответствующих штриховых кривых, находим из рис. 175, что

$$\tau_1 s_1 + \tau_3 s_3 = 2G\theta A_1, \quad \tau_2 s_2 - \tau_5 s_3 = 2G\theta A_2.$$
 (H)

¹⁾ Предполагается, что пластинки поддерживаются в горизонтальном состоянии, см. стр. 337.

КРУЧЕНИЕ

Используя последнюю из формул (л) и соотношения (м) и (н), находим напряжения τ_1 , τ_2 , τ_3 как функции крутящего момента

$$\tau_{1} = \frac{M_{t} [\delta_{3} s_{2} A_{1} + \delta_{2} s_{3} (A_{1} + A_{2})]}{2 [\delta_{1} \delta_{3} s_{2} A_{1}^{2} + \delta_{2} \delta_{3} s_{1} A_{2}^{2} + \delta_{1} \delta_{2} s_{3} (A_{1} + A_{2})^{2}]}, \qquad (0)$$

$$\pi_{2} = \frac{M_{t} \left[\delta_{3} s_{1} A_{2} + \delta_{1} s_{3} \left(A_{1} + A_{2} \right) \right]}{2 \left[\delta_{1} \delta_{3} s_{2} A_{1}^{2} + \delta_{2} \delta_{3} s_{1} A_{2}^{2} + \delta_{1} \delta_{2} s_{8} \left(A_{1} + A_{2} \right)^{2} \right]}, \qquad (\Pi)$$

$$\tau_{3} = \frac{M_{t} (\delta_{1} s_{2} A_{1} - \delta_{2} s_{1} A_{2})}{2 \left[\delta_{1} \delta_{3} s_{2} A_{1}^{2} + \delta_{2} \delta_{3} s_{1} A_{2}^{2} + \delta_{1} \delta_{2} s_{3} (A_{1} + A_{2})^{2} \right]}.$$
 (p)

В случае симметричного поперечного сечения $s_1 = s_2$, $\delta_1 = \delta_2$, $A_2 = A_2$ и $\tau_3 = 0$. В этом случае крутящий момент воспринимается внешней стенкой трубы и промежуточная стенка остается ненапряженной¹).

Чтобы получить угол закручивания для любого сечения, подобного показанному на рис. 175, нужно подставить значения напряжений в одно из уравнений (н). Таким образом, угол θ можно получить как функцию крутящего момента M_t .

§ 117. Винтовые дислокации

В двух предыдущих параграфах мы учитывали требование, чтобы функция ω была однозначной, если она конкретным образом представляет состояние кручения. Обращаясь вновь к уравнениям (149), (150), (151) и граничному условию (152), легко видеть, что можно найти напряженные состояния, отвечающие условию $\theta = 0$. Функция напряжений φ должна удовлетворять уравнению Лапласа и быть постоянной на каждой из границ поперечного сечения. Однако вместо выражения $\theta \psi(x, y)$ в уравнении (б) на стр. 301 мы используем ω . Тогда равенства (е) на стр. 302 примут вид

$$\frac{\partial \varphi}{\partial y} = G \frac{\partial \omega}{\partial x}, \quad -\frac{\partial \varphi}{\partial x} = G \frac{\partial \omega}{\partial y}.$$
 (a)

Это — уравнения Коши — Римана (см. стр. 181) для функций Gw и φ . Следовательно, Gw + i φ будет аналитической функцией переменного x + iy. Отсюда

$$G\omega + i\varphi = f(x + iy). \tag{6}$$

Задание функции *f* соответствует определенному состоянию, в котором *w* будет единственной ненулевой компонентой перемещения.

Обозначим через r, ψ полярные координаты в плоскости поперечного сечения. Функция вида

$$f(x+iy) = -iA \ln (x+iy) = A\psi - iA \ln r$$
, (B)

¹⁾ В этом выводе пренебрегалось малыми напряжениями, отвечающими изменению наклона мембраны по толщине промежуточной стенки.

винтовые дислокации

где А — действительная постоянная, представляет особый интерес в дислокационной теории пластических деформаций (см. § 34). Согласно формуле (б) имеем

$$G\omega = A\psi, \quad \varphi = -A \ln r.$$
 (r)

Соответствующее касательное напряжение действует в окружном направлении и определяется полярными компонентами

$$\tau_{z\psi} = -\frac{\partial \varphi}{\partial r} = \frac{A}{r}, \quad \tau_{zr} = 0.$$
 (д)

Любая цилиндрическая граничная поверхность r = const свободна от нагрузки. Однако перемещение не является непрерывным. Мы можем применить данное решение к по-

лому цилиндру a < r < b (рис. 176). имеющему разрез по оси. Одна из граней разреза смещена вдоль оси цилиндра относительно другой, причем ей придано постоянное перемещение

$$w(r, 2\pi) - w(r, 0) = \frac{2\pi A}{G}$$
, (e)

получаемое из первого соотношения (г). Напряжение (д) можно рассмат-

ривать как вызванное наложением относительного перемещения на состояние, полученное в результате действия касательной нагрузки по концам, определяемой условиями (д). Эта нагрузка вызывает момент

$$2\pi \int_{a}^{b} \tau_{z\psi} r^{2} dr = \pi (b^{2} - a^{2}) A.$$

Равный по величине и противоположный по знаку момент можно ввести, накладывая состояние простого кручения (§ 101) с компонентами

$$\boldsymbol{\tau}_{\boldsymbol{z}\boldsymbol{\psi}} = B\boldsymbol{r}, \quad \boldsymbol{\tau}_{\boldsymbol{z}\boldsymbol{r}} = 0, \quad B = \frac{-2A}{a^2 + b^2}$$

при w = 0. Окончательно получаем напряжение

$$\mathbf{\tau}_{\mathbf{z}\psi} = A\left(\frac{1}{r} - \frac{2r}{a^2 + b^2}\right), \qquad (\mathbf{x})$$

возникновение которого можно приписать относительному перемещению (е) при нулевом моменте на конце. По концам по-преж-нему действует касательное напряжение, распределенное согласно формуле (ж). Поскольку результирующая этого напряжения об-ращается в нуль, согласно принципу Сен-Венана удаление этих напряжений будет иметь лишь местный эффект.

Рис. 176.

\$ 117]

кручение

Это конечное состояние в материаловедении называется винтовой дислокацией ¹). Полый цилиндр с разрезом может обладать шестью различными видами дислокаций, в каждом из которых деформация при пересечении разреза остается непрерывной. Винтовая дислокация, краевая дислокация из § 34, щелевая дислокация из § 34, примененная к тому же разрезу, и угловая дислокация из § 31 (рис. 45) представляют собой четыре из этих шести видов²).

§ 118. Кручение стержня, одно из поперечных сечений которого остается плоским

При рассмотрении задачи о кручении всегда предполагалось, что крутящий момент прикладывается с помощью касательных напряжений, определенным образом распределенных по концам стержня. Это распределение получается из решения уравнения (150) при граничном условии (152). Если распределение напряжений по концам стержня отлично от получаемого таким образом, то в поле напряжений возникают местные отклонения, и решение уравнений (150) и (152) будет сохранять достаточную точность лишь в областях, находящихся на достаточном удалении от концов стержня³).

Подобные отклонения встречаются и в тех случаях, когда не допускается депланация в силу каких-либо ограничений поперечного сечения скручиваемого стержня. Такого рода задачи иногда встречаются в инженерном деле ⁴). Простой пример приведен на рис. 177. Из симметрии можно сделать вывод, что среднее поперечное сечение стержня в процессе кручения остается плоским. Следовательно, распределение напряжений вблизи этого поперечного сечения должно отличаться от того, которое получено выше для стержня прямоугольного поперечного сечения (§ 109). При исследовании этих напряжений рассмотрим сначала случай очень узкого прямоугольного сечения ⁵) и предположим, что размер *а* велик по сравнению с размером *b*. Если депланация поперечных сечений не ограничена, то, согласно § 108, напряжения равны

$$\tau_{xz} = -2G\theta y, \quad \tau_{yz} = 0 \tag{a}$$

и соответствующие им перемещения, согласно формулам (а), (б) и (г) из § 104,

²) См. ссылки в примечании 1 на стр. 105. Описание винтовых дислокаций в полом конусе и полой сфере см. в статье J. N. Goodier, J. C. Wilhoit, Quart. Appl. Math. 13, 263—269 (1955).

³) Местные отклонения в распределении напряжений по концам стержня рассматривал Персер (F. Purser, Proc. Roy. Irish. Acad., Dublin, ser. A, 26, 54 (1906), См. также К. Wolf, Sitzber. Akad. Wiss. Wien, 125, 1149 (1916); А. Тітре, Math. Ann. 71, 480 (1912); G. Horvay, J. A. Mirabel, J. Appl. Mech. 25, 561—570 (1958); Н. D. Conway, J. R. Moynihan. там же 31, 346—348 (1964); М. Тапітura, Tech. Repts. Osaka, Univ. 12, № 497, 93—104 (1962).

4) Кручение двутавровых балок при таких условиях исследовал С. П. Тимошенко (S. Timoshenko, Z. Math. Physik, 58, 361 (1910). См. также С. Weber, Z. Angew. Math. Mech. 6, 85 (1926).

⁵) CM. S. Timoshenko, Proc. London Math. Soc. ser. 2, 20, 389 (1921).

¹) См., например, А. Н. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, Fair Lawn, New Jarsey, 1953. [Русский перевод: А. Х. Котрелл, Дислокации и пластическое течение в кристаллах. Металлургиздат, 1958].

определяются уравнениями

$$u = -\theta yz, \quad v = \theta xz, \quad w = -\theta xy.$$
 (6)

Чтобы предотвратить депланацию поперечных сечений, представленную перемещением ω , по поперечным сечениям нужно приложить нормальные напряжения σ_z . Мы получим приближенное решение, если предположим, что σ_z пропорционально ω и что это напряжение убывает с увеличением расстояния zот среднего поперечного сечения. Эти допущения удовлетворяются, если принять

$$\sigma_z = -mE\theta e^{-mz} xy, \tag{B}$$

где m — коэффициент, подлежащий о пределению. Благодаря множителю e^{-mz} напряжение σ_z убывает с увеличением z и на некотором расстоянии, зависящем от величины m, становится пренебрежимо малым.

Остальные компоненты напряжений требуется теперь выбрать таким образом, чтобы удовлетворялись уравнения равновесия (123) и граничные условия. Легко показать, что эти требования будут выполнены, если принять

$$\sigma_{x} = \sigma_{y} = 0,$$

$$\tau_{xy} = -\frac{1}{8} Em^{3}\theta e^{-mz} (a^{2} - x^{2}) (b^{2} - y^{2}),$$

$$\tau_{xz} = \frac{1}{4} Em^{2}\theta e^{-mz} (a^{2} - x^{2}) y - 2G\theta y,$$

$$\tau_{yz} = \frac{1}{4} Em^{2}\theta e^{-mz} (b^{2} - y^{2}) x.$$

При больших значениях z это распределение напряжений приближается к напряжениям (а) для простого кручения. Компонента напряже-

ния τ_{xy} обращается в нуль на границах $x = \pm a$ и $y = \pm b$; компоненты τ_{xz} и τ_{yz} равны нулю на границах $x = \pm a$ и $y = \pm b$. Следовательно, граничные условия удовлетворены, и боковая поверхность стержня свободна от усилий.

Для определения множителя *m* рассмотрим энергию деформации стержня и определим *m* так, чтобы сделать эту энергию минимальной. Используя формулу (131), находим

$$V = \frac{1}{2G} \int_{-l}^{l} \int_{-a}^{a} \int_{-b}^{b} \left[\tau_{xy}^{2} + \tau_{xz}^{2} + \tau_{yz}^{2} + \frac{1}{2(1+v)} \sigma_{z}^{2} \right] dx \, dy \, dz.$$

Подставляя сюда компоненты, определяемые по формулам (г), и замечая, что для длинного стержня мы можем с достаточной точностью положить

$$\int_{0}^{l} e^{-mz} dz = \frac{1}{m},$$

получаем

$$V = \frac{1}{9} E\theta^2 a^3 b^3 \left\{ -3m + (1+\nu) \left[\frac{2}{25} a^2 b^2 m^5 + \frac{1}{5} (a^2 + b^2) m^3 + \frac{12}{(1+\nu)^2} \frac{l}{a^2} \right] \right\}.$$
 (a)

Условие минимума энергии дает нам следующее уравнение для определения т:

$$(1+\nu)\left[\frac{2}{5}a^{2}b^{2}m^{4}+\frac{3}{5}(a^{2}+b^{2})m^{2}\right]=3,$$

КРУЧЕНИЕ

которое для случая узкого прямоугольника приближенно приводится к виду

$$m^2 = \frac{5}{(1+\nu)\,a^2}\,.$$
 (e)

Подставляя это значение *m* в (в) и (г), находим распределение напряжений для случая, когда среднее поперечное сечение стержня остается плоским.

Для определения угла закручивания ф положим потенциальную энергию (д) равной работе, совершенной крутящим моментом M_t:

$$\frac{M_t \psi}{2} = V,$$

откуда угол закручивания оказывается равным

$$\psi = \frac{3M_t}{16Gab^3} \left[l - \frac{\sqrt{5(1+\nu)}}{6} a \right].$$
(ж)

Сравнивая этот результат с уравнением (163), приходим к выводу, что, предотвращая депланацию поперечного сечения, мы увеличиваем жесткость стержня на кручение. Влияние местного отклонения в распределении напряжений на значение ф получается таким же, как и влияние уменьшения длины стержня на величину

$$a\frac{\sqrt{5(1+v)}}{6}.$$

Если принять v = 0.30, это уменьшение *l* составит 0,425*a*. Мы видим, что эффект закрепления среднего поперечного сечения мало сказывается на угле закручивания ψ , если размер *a* мал по сравнению с *l*.

Скручивание стержня эллиптического поперечного сечения можно рассмотреть аналогичным образом ¹). Большой эффект оказывает закрепление среднего сечения при кручении стержня двутаврового сечения. Определение угла закручивания в этом случае с учетом изгиба балок в процессе кручения было произведено приближенным методом ²).

§ 119. Кручение круглых валов переменного диаметра

Рассмотрим вал в форме тела вращения, скручиваемый парами, приложенными по концам (рис. 178). Мы можем принять ось вала за ось z и использовать полярные координаты r и θ для определения положения элемента в плоскости поперечного сечения. Обозначения для компонент напряжения будут в этом случае иметь вид σ_r , σ_{θ} , σ_z , τ_{rz} , $\tau_{r\theta}$, $\tau_{\theta z}$. Компоненты перемещения в радиальном и окружном направлениях можно обозначить через u и v, а компоненту перемещения в направлении z—через w. Тогда, используя формулы, полученные ранее для двумерных задач (§ 30), находим следующие выражения для компонент

346

¹⁾ A. Föppl, Sitzber. Bayer. Akad. Wiss., Math.-Phys. Klasse, München, 1920, crp. 261.

²) См. S. T i m o s h e n k o, Z. Math. Physik 58. 361 (1910); или Strength of Materials, т. 2, стр. 260, 1956. [Русский перевод: С. П. Тимошенко, Сопротивление материалов, т. 2, стр. 268, Физматгиз, 1960.]. Подобные приближенные методы для других стержней открытого и замкнутого профиля см. в статье о кручении в книге: W. Flügge (ред.), Handbook of Engineering Mechanics, McGraw-Hill, 1962.

деформации:

$$\varepsilon_{r} = \frac{\partial u}{\partial r} \quad \varepsilon_{\theta} = \frac{u}{r} + \frac{\partial v}{r \partial \theta} , \quad \varepsilon_{z} = \frac{\partial w}{\partial z} ,$$

$$\gamma_{r\theta} = \frac{\partial u}{r \partial \theta} + \frac{\partial v}{\partial r} - \frac{v}{r} , \quad \gamma_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} ,$$

$$\gamma_{z\theta} = \frac{\partial v}{\partial z} + \frac{\partial w}{r \partial \theta} .$$
(179)

Выписывая уравнения равновесия элемента (рис. 178), как мы это делали ранее для двумерного случая (§ 27), и предполагая, что объемные силы отсутствуют,

приходим к следующим дифференциальным уравнениям равновесия¹):

 $\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_r \theta}{\partial \theta} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0,$ $\frac{\partial \tau_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = 0,$ $\frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{\partial \tau_{\theta z}}{\partial z} + \frac{2\tau_{r\theta}}{r} = 0.$ (180)

Для применения этих уравнек задачам кручения восний пользуемся полуобратным методом (см. стр. 300) и допустим, что и и шравны нулю, т. е. что в процессе кручения частицы перемещаются только в тангенциальном направлении. Это допущение отличается от допущения, принятого в теории кручения круглого вала постоянного диаметра, тем, что тангенциальные перемещения уже не будут пропорциональны их расстоянию от оси; таким образом, радиусы поперечного сечения в результате деформации искривляются. Далее будет показано,

что решение, полученное на основе такого предположения, удовлетворяет всем уравнениям теории упругости и, следовательно, представляет истинное решение задачи.

Эти уравнения получили Ламе (Lame) и Клапейрон (Clapeyron); см. Crelle's J. 7 (1831).

кручение

Подставляя в (179) u = w = 0 и учитывая тот факт, что в силу симметрии перемещение v не зависит от угла θ , находим

$$\varepsilon_r = \varepsilon_{\theta} = \varepsilon_z = \gamma_{rz} = 0, \quad \gamma_{r\theta} = \frac{\partial v}{\partial r} - \frac{v}{r}, \quad \gamma_{\theta z} = \frac{\partial v}{\partial z}.$$
 (a)

Таким образом, из всех компонент напряжения отличны от нуля лишь $\tau_{r\theta}$ и $\tau_{\theta z}$. Первые два из уравнений (180) удовлетворяются тождественно, а третье из них дает

$$\frac{\partial \tau_{r\theta}}{\partial r} + \frac{\partial \tau_{\theta z}}{\partial z} + \frac{2 \tau_{r\theta}}{r} = 0.$$
 (6)

Это уравнение можно записать в виде

$$\frac{\partial}{\partial r} (r^2 \tau_{r\theta}) + \frac{\partial}{\partial z} (r^2 \tau_{\theta z}) = 0.$$
 (B)

Очевидно, это уравнение удовлетворяется, если использовать функцию напряжений φ , зависящую от *r* и *z*, такую, что

$$r^{2}\tau_{r\theta} = -\frac{\partial \varphi}{\partial z}, \quad r^{2}\tau_{\theta z} = \frac{\partial \varphi}{\partial r}.$$
 (r)

Чтобы удовлетворить условиям совместности, нужно использовать тот факт, что $\tau_{r\theta}$ и $\tau_{\theta z}$ являются функциями перемещения v. Из выражений (а) и (г) находим

$$\begin{aligned} \boldsymbol{\tau}_{r\theta} &= G\boldsymbol{\gamma}_{r\theta} = G\left(\frac{\partial v}{\partial r} - \frac{v}{r}\right) = Gr \frac{\partial}{\partial r}\left(\frac{v}{r}\right) = -\frac{1}{r^2}\frac{\partial \varphi}{\partial z}, \qquad (\boldsymbol{\pi})\\ \boldsymbol{\tau}_{\theta z} &= G\boldsymbol{\gamma}_{\theta z} = G \frac{\partial v}{\partial z} = Gr \frac{\partial}{\partial z}\left(\frac{v}{r}\right) = \frac{1}{r^2}\frac{\partial \varphi}{\partial r}. \end{aligned}$$

из этих уравнений следует

$$\frac{\partial}{\partial r}\left(\frac{1}{r^3}\frac{\partial\varphi}{\partial r}\right) + \frac{\partial}{\partial z}\left(\frac{1}{r^3}\frac{\partial\varphi}{\partial z}\right) = 0, \qquad (e)$$

или

$$\frac{\partial^2 \varphi}{\partial r^2} - \frac{3}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} = 0.$$
 (**)

Рассмотрим теперь граничные условия для функции ф. Из условия, что боковая поверхность вала свободна от внешних сил, заключаем, что в любой точке границы осевого сечения A (рис. 178) полное касательное напряжение должно действовать в направлении касательной к границе, а его проекция на нормаль к границе N должна равняться нулю. Отсюда

 $\tau_{r\theta}\,\frac{ds}{dz}-\tau_{\theta z}\,\frac{dr}{ds}=0,$

где ds — элемент границы. Подставляя из (г) значения напряжений, получаем

$$\frac{\partial \varphi}{\partial z} \frac{dz}{ds} + \frac{\partial \varphi}{\partial r} \frac{dr}{ds} = 0, \qquad (H)$$

откуда можно сделать вывод, что функция ф постоянна вдоль границы осевого сечения вала.

348

Уравнение (ж) вместе с граничным условием (и) полностью определяет функцию напряжений ф, по которой можно получить напряжения, удовлетворяющие уравнениям равновесия, условиям совместности и условиям на боковой поверхности вала¹).

Величину крутящего момента можно получить, если подсчитать момент, создаваемый касательными напряжениями т_{дг}. Имеем:

$$M_t = \int_0^a 2\pi r^2 \tau_{\theta z} \, dr = 2\pi \int_0^a \frac{\partial \varphi}{\partial r} \, dr = 2\pi \varphi \bigg|_0^a, \qquad (\kappa)$$

где *а*—внешний радиус поперечного сечения. Таким образом, крутящий момент легко получить, если известна разность между значениями функции напряжений на внешней границе и в центре поперечного сечения.

Для исследования перемещений при кручении вала, воспользуемся обозначением $\psi = v/r$ для угла вращения элементарного кольца радиуса *r* в поперечном сечении вала. Тогда ψ будет углом закручивания трубки. Поскольку радиусы поперечного сечения становятся криволинейными, отсюда следует, что ψ меняется с изменением *r*, и углы закручивания элементарных трубок для одного и того же поперечного сечения вала неодинаковы. Уравнения (д) можно теперь записать в форме

$$Gr^{3} \frac{\partial \psi}{\partial r} = -\frac{\partial \varphi}{\partial z}, \quad Gr^{3} \frac{\partial \psi}{\partial z} = \frac{\partial \varphi}{\partial r},$$
$$\frac{\partial}{\partial r} \left(r^{3} \frac{\partial \psi}{\partial r} \right) + \frac{\partial}{\partial z} \left(r^{3} \frac{\partial \psi}{\partial z} \right) = 0$$
$$\frac{\partial^{2} \psi}{\partial r^{2}} + \frac{3}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^{2} \psi}{\partial r^{2}} = 0. \tag{(1)}$$

откуда

или

Решение этого уравнения дает нам угол закручивания как функцию от r и z^2). Если положить в этом решении

$$\psi = \text{const},$$
 (M)

¹) Общее решение этой задачи принадлежит Мичеллу (J, H. Michell, Proc. London. Math. Soc. 31, 141 (1899)). См. также А. Föppl, Sitzber. Bayer. Akad. Wiss., München, 35, 249, 504 (1905). Книга Нейбера (Kerbspannugnslehre, Berlin, 1958) дает решения для гиперболоида вращения и для полости в виде эллипсоида вращения другим методом. Обзор литературы по этому вопросу дали Пешль (T. Pöschl, Z. Angew. Math. Mech. 2, 137 (1922)) и Т. Хиггинс (T. J. Higgins, Exp. Stress Anal. 3, № 1, 94 (1945)). ²) Решения в цилиндрических координатах *г*, *z* дали Рейсснер и Веннагель

²⁾ Решения в цилиндрических координатах r, z дали Рейсснер и Веннагель (H. Reissner, G. J. Wennagel, J. Appl. Mech. 17, 275—282 (1950)). Решения в сферических координатах дали Порицкий (H. Poritsky, Proc. Symp. Appl. Math. Am. Math. Soc. 3, 163—186 (1951)) и Уилхойт (J. C. Wilthoit, Jr., Quart. Appl. Math. 11, 499—501 (1954)).

КРУЧЕНИЕ

то получаем поверхность, все точки которой имеют одинаковый угол закручивания. На рис. 178 АА, представляет пересечение такой поверхности с осевым сечением вала. Из симметрии следует, что поверхности, определяемые уравнением (м), являются поверхностями вращения, а AA_1 будет меридианом такой поверхности, проходящим через точку A. В процессе кручения эти поверхности вращаются относительно оси г без искажения в точности так же, как и плоские сечения в случае круглого цилиндрического вала. Следовательно, полная деформация в любой точке меридиана AA_1 есть деформация чистого сдвига в плоскости, перпендикулярной меридиану, а соответствующее касательное напряжение в осевом сечении вала направ-

лено по нормали к меридиану. На границе это на-пряжение касательно к контуру поперечного сечения, а меридианы нормальны к нему. Если мы перейдем от поверхности $\psi = \text{const}$ к соседней поверхности, скорость изменения ф вдоль границы осевого сечения вала составит dw/ds, и так же, как и для цилиндрического вала кругового поперечного сечения (§ 101). имеем

$$\boldsymbol{\tau} = Gr \, \frac{d\psi}{ds} \, , \tag{H}$$

гле

$$\boldsymbol{\tau} = \boldsymbol{\tau}_{r\,\theta} \frac{dr}{ds} + \boldsymbol{\tau}_{\theta z} \frac{dz}{ds}$$

Рис. 179.

— результирующее касательное напряжение на контуре. Очевидно, значение этого касательного напряжения легко по-лучить, если найдены экспериментально значения $d\psi/ds^{-1}$. Рассмотрим теперь частный случай конического сечения²) (рис. 179). В этом случае отношение

$$\frac{z}{(r^2+z^2)^{1/2}}$$

на контуре поперечного сечения постоянно и равно соз α. Любая функция этого отношения будет удовлетворять граничному условию (и). Чтобы удовлетворить также уравнению (ж), примем

$$\varphi = c \left\{ \frac{z}{(r^2 + z^2)^{1/2}} - \frac{1}{3} \left[\frac{z}{(r^2 + z^2)^{1/2}} \right]^3 \right\}, \qquad (0)$$

где с-постоянная. Затем с помощью дифференцирования находим

$$\tau_{\theta z} = \frac{1}{r^2} \frac{\partial \varphi}{\partial r} = -\frac{crz}{\left(r^2 + z^2\right)^{5/2}}.$$
 (II)

¹) Такие эксперименты провел Зоннтаг (R. Sonntag, Z. Angew. Math. Mech. 9, 1 (1929)).

²) См. упоминавшуюся выше работу А. Фёппля (А. Föppl (примечание 1 на стр. 349).

Постоянная с находится из уравнения (k). Подставляя в это уравнение выражение (о), находим

$$c = -\frac{M_t}{2\pi \left(\frac{2}{3} - \cos \alpha + \frac{1}{3} \cos^3 \alpha\right)}.$$

Чтобы определить угол закручивания, воспользуемся уравнением (д), из которого находим выражение для ψ, удовлетворяющее равенству (л) и граничному условию

$$\psi = \frac{c}{3G(r^2 + z^2)^{3/2}}.$$
 (p)

Как мы видим, это уравнение определяет поверхность равного угла закручивания и является сфе-

рической поверхностью с центром в точке *O*.

Для вала в форме эллипсоида, гиперболоида или параболоида вращения решение можно получить тем же путем¹).

На практике встречаются задачи гораздо более сложной природы. Диаметр вала обычно меняется скачхом, как показано на рис. 180, *а*. Первое исследование такой задачи дал А. Фёппль. Рун-

Рис. 180.

ге предложил численный метод для приближенного решения этих задач, и было показано, что в точках m и n имеет место значительная концентрация напряжений. Величина максимального напряжения для вала с двумя различными диаметрами dи D (рис. 180, a) зависит от отношения радиуса закругления aк диаметру вала d, а также от отношения d/D^2).

¹) См. статьи: Е. Melan, Tech. Blätter, Prag, 1920; А. Н. Динник, Известия Донского политехнического института, Новочеркасск, 1912; W. А г n dt, Die Torsion von Wellen mit achsensymmetrischen Bohrungen und Hohlräumen, (диссертация), Göttingen, 1916; А. Т і m ре, Math. Ann. 480 (1911). Ссылки на дальнейшие работы даются в упоминавшемся в примечании 1 на стр. 349 обзоре Хиггинса. Номограммы приведены в упоминавшейся книге Петерсона (R. E. Peterson). Вал с острым углом в точках *m* и *n* (рис. 180, *a*) или с прямоугольной выточкой (вместо полукруглой, как показано на рис. 180, *б*) исследовал М. Танимура (М. Т а ń і m u r a, Tech. Repts Osaka, Univ., 12, № 498, 105—122, (1962)).

²) См. F. A. Willers, Z. Math. Phys. 55, 225 (1907). Другой приближенный метод развил Л. Фёппль (L. Föppl, Sitzber. Bayer. Akad. Wiss. München, 51, 61 (1921)) и Зоннтаг Р. (R. Sonntag, Z. Angew. Math. Mech. 9, 1 (1929)).

В случае полукруглого выреза очень малого радиуса максимальное напряжение на дне выреза (рис. 180, б) вдвое больше

> чем на поверхности цилиндрического вала без выреза¹).

> При исследовании концентрации напряжений у закруглений и вырезов скручиваемых круглых валов оказалась очень полезной электроаналогия (рис. 181)²). Общее уравнение для электрического тока в тонкой однородной пластинке переменной толщины имеет вид

$$\frac{\partial}{\partial x}\left(h\frac{\partial\psi}{\partial x}\right) + \frac{\partial}{\partial y}\left(h\frac{\partial\psi}{\partial y}\right) = 0,$$
(c)

где *h* — переменная толщина пластинки, а *ψ* потенциальная функция.

Допустим теперь, что пластинка имеет тот же контур, что

Рис. 182.

и осевое сечение вала (рис. 182), что оси x и y совпадают с осями z и r и что толщина пластинки пропорциональна кубу радиуса r,

Задачу о кручении валов с большими выточками см. в книге Петерсона (R. E. Peterson), упоминавшейся выше. См. также упоминавшуюся выше книгу под ред. В. Флюгге (W. Flügge).
 ²) См. статьи: L. S. Jacobsen, Trans. ASME 47, 619 (1925) и упомянутый

²) См. статьи: L. S. Jacobsen, Trans. ASME 47, 619 (1925) и упомянутый обзор Хиггинса (Т. J. Higgins). В последней статье обсуждаются расхождения между результатами этого и других методов. Другие сравнения и результаты тензометрических измерений, распространяющие данные рис. 181 до значений 2a/d = 50, даны в работе: A. Weigand, Luftfahrt-Forsch. 20, 217 (1943). (Английский перевод: NACA Tech. Mem. 1179, September 1947.)

так что $h = \alpha r^3$. Тогда уравнение (с) принимает вид

 $\frac{\partial^{\mathbf{e}}\psi}{\partial z^2} + \frac{3}{r}\frac{\partial\psi}{\partial r} + \frac{\partial^{\mathbf{e}}\psi}{\partial r} = 0.$

Это уравнение совпадает по виду с уравнением (л), и мы можем сделать вывод, что эквипотенциальные линии для пластинки описываются тем же уравнением, что линии равных углов закручивания в случае вала переменного диаметра.

Предполагая, что концы пластинки, отвечающие концам вала, обладают некоторой разностью потенциалов, так что ток течет вдоль оси z, получаем, что эквипотенциальные линии нормальны к боковой поверхности пластинки, т. е. мы имеем те же граничные условия, что и для линий постоянного угла закручивания. Если дифференциальные уравнения и граничные условия для обоих типов линий одинаковы, то линии совпадают. Следовательно, исследовав распределение потенциала в пластинке, можно получить ценную информацию относительно распределения напряжений в скручиваемом валу.

Максимальное напряжение действует на поверхности вала, и мы получаем это напряжение, используя уравнение (н). Из этого уравнения с применением электроаналогии следует, что напряжение пропорционально скорости падения потенциала вдоль края пластинки.

Практически измерения производились на стальной модели длиной 24 дюйма (61 см), шириной 6 дюймов (15,2 см) в самом широком месте и максимальной толщиной 1 дюйм (2,5 см) (рис. 182). Падение потенциала вдоль края образца mnpq исследовалось с использованием чувствительного гальванометра, концы которого были подсоединены к двум острым иглам, закрепленным на постоянном расстоянии друг от друга в 2 мм. Когда иглы касались пластинки, гальванометр показывал падение потенциала на расстоянии между иглами. Передвигая иглы вдоль закругления, можно было найти место максимального градиента электрического напряжения и замерить его. Отношение этого максимума к градиенту напряжения в отдаленной точке m (рис. 182, a) дает величину коэффициента концентрации k¹) в формуле

$$\tau_{\max} = k \, \frac{16 \, M_t}{\pi d^3} \, .$$

Результаты таких опытов для одного частного случая представлены на рис. 182, в, где падение потенциала, замеренное в каждой точке, выражается длиной нормали к краю пластинки в этой точке. При этом коэффициент концентрации получается равным 1,54. Величина этого коэффициента, полученная при раз-

¹⁾ Малыми изменениями радиуса r (уравнение (н)) можно в этом случае пренебречь.

кручение

личных соотношениях размеров вала, приведена на рис. 181, где абсциссы представляют отношения 2a/d радиуса закругления к меньшему радиусу вала, а ординаты — коэффициент концентрации напряжений k для различных значений отношения D/d(см. рис. 180).

ЗАДАЧИ

1. Рассмотрев равновесие стержня в целом, показать, что когда все компоненты напряжений, кроме τ_{xz} , τ_{yz} , обращаются в нуль, нагрузка должна состоять из одних только крутящих моментов (ср. с уравнением (и) § 104).

2. Показать, что функция напряжений $\phi = A(r^2 - a^2)$ служит решением задачи кручения для сплошного или полого вала. Определить A через G0. Используя уравнения (149) и (153), определить максимальное касательное напряжение и крутильную жесткость через M_t для сплошного вала и убедиться, что результаты согласуются с теми, которые получаются в сопротивлении материалов.

3. Показать, что при одном и том же угле закручивания эллиптическое сечение обладает большими касательными напряжениями, чем вписанное круговое сечение, радиус которого равен малой полуоси эллипса. Какое сечение воспринимает больший крутящий момент при том же допускаемом напряжении?

4. Используя уравнение (ж) из § 106 и уравнение (153), определить крутильную жесткость равностороннего треугольника и проверить формулу (л) из § 106.

5. Используя функцию напряжений (м) из § 106, выраженную в прямоугольных координатах, найти выражение для τ_{yz} вдоль средней линии Ax

> диться, что наибольшее значение напряжения вдоль этой линии дается формулой (п). 6. Определить крутильную жесткость сечения, показанного на рис. 157. Сильно ли она отличается от жесткости полного круго-

контура, изображенного на рис. 157, и убе-

вого сечения, когда выточка мала? 7. Показать, что выражение для функции напряжений φ, которое соответствует параболической мембране из § 108, имеет вид

$$\varphi = - G\theta \left(x^2 - \frac{c^2}{4} \right).$$

Для узкого заостренного сечения, подобного треугольнику, изображенному на рис. 183, приближенное решение¹) можно получить, предполагая, что на любом уровне у мембрана имеет

параболическую форму, отвечающую переменной ширине сечения. Доказать, что для треугольного сечения с высотой *b* крутящий момент описывается приближенной формулой

$$M_t = \frac{1}{12} G \,\theta b c_0^3.$$

8. Используя метод, указанный в задаче 7, найти приближенное выражение для крутильной жесткости тонкого симметричного сечения, ограниченного двумя параболами, показанными на рис. 184; ширина сечения с и высота у

¹) Погрешность этого приближенного решения исследовал Картер (W. J. Carter, J. Appl. Mech. 25, 115-121 (1958)).

связаны формулой

$$c = c_0 \left(1 - \frac{y^2}{b^2} \right).$$

9. Показать, что метод, указанный в задаче 7, дает для узкого эллиптического сечения приближенное значение функции напряжений по формуле

$$\varphi = - G \theta b^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 \right)$$
,

где эллипс имеет вид, представленный на рис. 153 при малом отношении *b/a*. Показать, что точное решение из § 105 стремится к этому решению при малых *b/a*.

Вывести приближенные формулы

$$M_t = \pi a b^3 G \theta, \qquad \tau_{\max} = 2G \theta b = \frac{2M_t}{\pi a b^2}$$

для узкого эллиптического сечения и сравнить их с соответствующими формулами для тонкого прямоугольного сечения с длиной 2a и шириной 2b.

10. Применить метод, приведенный в конце § 111, для определения приближенного значения крутильной жесткости сечения, описанного в задаче 8.

11. Сечение имеет одно отверстие, и функция напряжений ф определена таким образом, что она обращается в нуль на внешней границе и имеет постоянное значение ϕ_H на границе отверстия. Модифицируя рассуждения, изложенные на стр. 304, показать, что полный крутящий момент численно равен двум объемам, заключенным под поверхностью ϕ , плюс удвоенный объем под плоской крышей высотой ϕ_H , покрывающей отверстие (ср. стр. 337).

12. Замкнутая тоңкостенная труба имеет периметр *l* и постоянную толщину стенки δ. Труба размыкается с помощью тонкого продольного разреза, который проделывается в ней. Показать, что когда максимальные касательные напряжения в обеих трубах одинаковы, то

$$\frac{M_t^1}{M_t^2} = \frac{l\delta}{6A}, \quad \frac{\theta^1}{\theta^2} = \frac{2A}{l\delta},$$

где M_t^1 , M_t^2 — крутящие моменты для труб закрытого и открытого сечений, и что отношение крутильных жесткостей равно $l^2\delta^2/(12A^2)$, где A — площадь «отверстия».

Найти эти отношения для круглой трубы радиусом 2,5 см и толщиной 0,25 см).

13. Тонкостенная труба имеет поперечное сечение, изображенное на рис. 185; толщина стенки δ постоянна. Показать, что если трубу закручивать, то в центральной стенке не будет возникать напряжений.

Найти формулы для: а) касательного напряжения в стенках на удалении от углов, б) единичного угла закручивания в через крутящий момент.

14. Получить выражение для касательных напряжений в трубе поперечного сечения, изображенного на рис. 186, при постоянной толщине стенки δ .

15. При рассмотрении тонкостенных замкнутых сечений предполагалось, что касательное напряжение по толщине стенки постоянно, что соответствует постоянному наклону мембраны. Показать, что это не может быть строго справедливым для линейной части стенки (например, для сечения, изображенного на рис. 173, а) и что в общем случае поправка к этому касательному напряжению состоит в добавлении касательного напряжения в трубе, которая сделана «открытой» с помощью продольного разреза (см. задачу 12).

16. Теория, развитая в § 119, включает в качестве частного случая кручение однородного круглого вала. Каковы соответствующие формы функций ф и ф? Показать, что эти функции дают правильное соотношение между крутящим моментом и единичным углом закручивания. 17. Доказать, что функция напряжений

$$\varphi = rac{z}{R} + rac{Az^3}{R^3}$$
, rge $R = (r^2 + z^2)^{1/2}$,

удовлетворяет уравнению (ж) из § 119 только в том случае, когда постоянная A равна—1/3 (ср. с (о)).

18. В некоторой точке осевого сечения вала переменного диаметра произвольно выбраны под прямыми углами линейные элементы ds и dn, показанные

на рис. 187. Касательное напряжение выражено компонентами τ_s и τ_n вдольних. Показать, что

$$\tau_s = \frac{1}{r^2} \frac{\partial \varphi}{\partial n}$$
, $\tau_n = -\frac{1}{r^2} \frac{\partial \varphi}{\partial s}$, $\tau_s = Gr \frac{\partial \psi}{\partial s}$, $\tau_n = Gr \frac{\partial \psi}{\partial n}$

и вывести граничное условие, удовлетворяемое функцией ф.

Показать без вычислений, что функция, определяемая уравнением (р) из § 119, удовлетворяет этому граничному условию для конической границы с любым углом при вершине.

19. Доказать, что уравнение (р) из § 119 конкретно описывает функцию ф, соответствующую функции ф в уравнении (о).

20. Если модифицировать теорию, изложенную в § 119, опустив граничное условие $\phi = \text{const}$, то напряжение на границе будет вызываться некоторыми «кольцевыми сдвигами», а не только концевыми крутящими моментами. Рассматривая однородный круглый вал, описать решение задачи функцией $\phi = Czr^4$, где C - постоянная, при 0 < r < l.

21. Доказать, что относительное вращение концов конического сужающегося вала, изображенного на рис. 188, вызванное крутящим моментом M_t ,

356

равно

$$\frac{M}{2\pi\left(\frac{2}{3}-\cos\alpha+\frac{1}{3}\cos^3\alpha\right)}\frac{1}{3G}\left(\frac{1}{a^3}-\frac{1}{b^3}\right).$$

Если величины a и b достаточно велики при b - a = l и, следовательно, угол α мал, вышеприведенный результат должен давать приближенно решение задачи о вращении концов однородного вала длиной l и раднуса αa , вызванное крутящим моментом M_t . Показать, что это так. 22. Использовать функции, даваемые уравнениями (о) и (р) из § 119, чтобы

22. Использовать функции, даваемые уравнениями (о) и (р) из § 119, чтобы определить через M_t относительное вращение концов полого конического вала, показанного на рис. 189. Концы вала представляют собой сферические поверхности радиусов a и b с центром в точке O.

Глава 11 ИЗГИБ БРУСЬЕВ

§ 120. Изгиб консоли

При рассмотрении чистого изгиба (§ 102) было показано, что если брус изгибается в одной из главных плоскостей двумя равными и противоположными по знаку моментами, приложенными в этой плоскости к концам бруса, то изгиб происходит в той же плоскости и из шести компонент напряжения отлично от нуля лишь нормальное напряжение, параллельное оси стержня. Это напряжение пропорционально расстоянию от нейтральной оси. Таким образом, в этом случае точное решение совпадает с решением элементарной теории изгиба. При рассмотрении изгиба консоли узкого прямоугольного поперечного сечения силой, приложенной на конце (§ 21), было показано, что кроме нормальных напряжений, пропорциональных в каждом поперечном сечении

изгибающему моменту, будут действовать также касательные напряжения, пропорциональные поперечной силе.

Рассмотрим теперь более общий случай изгиба консоли постоянного поперечного сечения произвольной формы под действием

силы P, приложенной на конце и параллельной одной из главных осей поперечного сечения ¹) (рис. 190). Возьмем начало координат в центре тяжести заделанного конца консоли. Пусть ось zсовпадает со средней линией бруса, а оси x и y совпадают с главными осями поперечного сечения. Для решения задачи применим полуобратный метод Сен-Венана и с самого начала сделаем некоторые предположения относительно распределения напряжений. Допустим, что нормальные напряжения в некотором сечении на расстоянии z от заделанного конца распределяются таким же

¹⁾ Эту задачу решил Сен-Венан (Saint-Venant, J. Math. (Liouville), ser. 2, 1 (1856).

§ 120]

изгив консоли

образом, как и в случае чистого изгиба:

$$\sigma_z = -\frac{P(l-z)x}{l}.$$
 (a)

Допустим также, что в тех же поперечных сечениях действуют касательные напряжения, которые мы разложим в каждой точке на компоненты τ_{xz} и τ_{yz} . Предположим, что три остальные компоненты напряжений σ_x , σ_y и τ_{xy} равны нулю. Покажем теперь, что если нагрузка P на конце z = l и реакции в сечении z = 0 распределены таким образом, как этого требует решение, то, используя эти предположения, мы придем к решению, которое удовлетворяет всем уравнениям теории упругости и является в силу этого точным решением задачи.

При сделанных предположениях, пренебрегая объемными силами, дифференциальные уравнения равновесия (123) можно записать в виде

$$\frac{\partial \tau_{xz}}{\partial z} = 0, \qquad \frac{\partial \tau_{yz}}{\partial z} = 0,$$
 (6)

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} = -\frac{Px}{I}.$$
 (B)

Из уравнений (б) заключаем, что касательные напряжения не зависят от *z* и для каждого поперечного сечения бруса одинаковы.

Рассматривая теперь граничные условия (124) и применяя их к боковой поверхности стержня, свободной от внешних сил, получаем, что первые два из этих уравнений удовлетворяются тождественно, а третье дает

$$\tau_{xz}l+\tau_{vz}m=0.$$

Из рис. 190, б мы видим, что

$$l = \cos Nx = \frac{dy}{ds}$$
, $m = \cos Ny = -\frac{dx}{ds}$,

где ds—элемент кривой, ограничивающей поперечное сечение. Тогда условие на границе принимает вид

$$\tau_{xz} \frac{dy}{ds} - \tau_{yz} \frac{dx}{ds} = 0.$$
 (r)

Обратившись к уравнениям совместности (126), мы убеждаемся, что первые три из этих уравнений, содержащие нормальные компоненты напряжения, и последнее, содержащее τ_{xy} , удовлетворяются тождественно. Тогда система уравнений (126) сводится к двум уравнениям

$$\nabla^2 \tau_{yz} = 0, \quad \nabla^2 \tau_{xz} = -\frac{P}{I(1+\nu)}. \tag{A}$$

Таким образом, решение задачи об изгибе призматической кон-

ИЗГНЬ БРУСЬЕВ

соли произвольного поперечного сечения приводится к отысканию τ_{xz} и τ_{yz} как функций от x и y, удовлетворяющих уравнениям равновесия (в), граничному условию (г) и уравнениям совместности (д).

§ 121. Функция напряжений

При исследовании задач изгиба воспользуемся вновь функцией напряжений $\varphi(x, y)$. Легко видеть, что дифференциальные уравнения равновесия (б) и (в) предыдущего параграфа удовлетворяются, если принять

$$\tau_{xz} = \frac{\partial \varphi}{\partial y} - \frac{Px^2}{2I} + f(y), \qquad \tau_{yz} = -\frac{\partial \varphi}{\partial x}, \qquad (181)$$

где φ — функция напряжений, зависящая от координат x и y, а f(y)— функция только одной переменной y, которая будет определена ниже из граничных условий.

Подставив выражения (181) в уравнения совместности (д) предыдущего параграфа, получим

$$\frac{\partial}{\partial x}\left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2}\right) = 0, \quad \frac{\partial}{\partial y}\left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2}\right) = \frac{\nu}{1+\nu} \frac{P}{I} - \frac{d^2 f}{dy^2}.$$

Из этих уравнений заключаем, что

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{\nu}{1+\nu} \frac{Py}{I} - \frac{df}{dy} + c.$$
 (a)

где с— постоянная интегрирования. Эта постоянная имеет очень простой физический смысл. Рассмотрим вращение элементарной площадки в плоскости поперечного сечения консоли. Это вращение определяется формулой (см. стр. 243)

$$2\omega_z=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}.$$

Производную от угла поворота в направлении координаты г можно записать в виде

$$\frac{\partial}{\partial z}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)=\frac{\partial \gamma_{yz}}{\partial x}-\frac{\partial \gamma_{xz}}{\partial y}.$$

Используя закон Гука и выражения (181) для компонент напряжения, находим

$$\frac{\partial}{\partial z} (2\omega_z) = \frac{1}{G} \left(\frac{\partial \tau_{yz}}{\partial x} - \frac{\partial \tau_{xz}}{\partial y} \right) = -\frac{1}{G} \left(\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} - \frac{df}{dy} \right).$$

После подстановки этого выражения в уравнение (а) получим

$$-G\frac{\partial}{\partial z}(2\omega_z) = \frac{v}{1+v}\frac{Py}{I} + c.$$
 (6)

Если х является осью симметрии поперечного сечения бруса,
\$ 1211

изгибаемого силой Р относительно этой оси, то мы получаем в результате симметричное поле вращения ω₂ элементов поперечного сечения, отвечающее отрицательной кривизне, причем среднее значение для всего поперечного сечения будет равно нулю. нее значение для всего поперечного сечения будет равно нулю. Тогда среднее значение $\partial \omega_z / \partial z$ также должно равняться нулю, а это требует, чтобы была принята равной нулю постоянная с в равенстве (б). Если поперечное сечение не симметрично, мы можем *определить*¹) изгиб без кручения как такой изгиб, при котором среднее значение $\partial \omega_z / \partial z$ равно нулю, снова, разумеется, потребовав равенства нулю постоянной с. Тогда уравнение (б) показывает, что $\partial \omega_z / \partial z$ обращается в нуль для элементов поперечного сечения, расположенных в центрах тяжести сечений, т. е. элементов, лежащих вдоль осей, которые имеют равное нулю относительное вращение, и если один из них закрепить, то не будут вращаться и другие. При с, равном нулю, равенство (а) принимает вид

$$\frac{\partial^{\theta} \varphi}{\partial x^{\theta}} + \frac{\partial^{\theta} \varphi}{\partial y^{2}} = \frac{v}{1+v} \frac{Py}{l} - \frac{df}{dy} \,. \tag{182}$$

Подставив выражения (181) в граничное условие (г) предыдущего параграфа, находим

$$\frac{\partial \varphi}{\partial y} \frac{dy}{ds} + \frac{\partial \varphi}{\partial x} \frac{dx}{ds} = \frac{\partial \varphi}{\partial s} = \left[\frac{Px^2}{2I} - f(y)\right] \frac{dy}{ds}.$$
 (183)

Если задать функцию f(y), то из этого уравнения можно определить значения функции ф вдоль контура поперечного сечения. Уравнение (182) вместе с граничным условием (183) определяет функцию напряжений ф.

В задачах, которые рассматриваются ниже, мы будем задавать функцию f(y) таким образом, чтобы правая часть уравнения (183) обращалась в нуль²). При этом значение функции ф вдоль контура останется постоянным. Принимая эту постоянную равной нулю, мы сводим рассматриваемую задачу изгиба к решению дифференциального уравнения (182) с граничным условием $\phi = 0$. Эта задача аналогична задаче о прогибах равномерно растянутой мембраны, имеющей ту же форму, что и поперечное сечение изгибаемого бруса, и нагруженной непрерывной нагруз-кой, определяемой правой частью уравнения (182). Приведем несколько примеров использования этой аналогии.

¹) J. N. Goodier, J. Aeron. Sci. 11, 273 (1944). Другое определение предложил Треффи (Е. Trefitz, Z. Angew. Math. Mech. 15, 220 (1935)). ²) См. С. П. Тимошенко, Сборник института инженеров путей сооб-щения, С.-Петербург, 1913. См. также S. Timoshenko, Proc. London. Math. Soc., ser. 2, 20, 398 (1922).

§ 122. Круглое поперечное сечение

Пусть контур поперечного сечения определяется уравнением

$$x^2 + y^2 = r^2.$$
 (a)

Правая часть граничного условия (183) становится равной нулю, если принять

$$f(y) = \frac{P}{2l}(r^2 - y^2).$$
 (6)

Подставив это выражение в уравнение (182), получим для функции ф уравнение

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{1 + 2\nu}{1 + \nu} \frac{Py}{I}$$
(B)

с условием $\varphi = 0$ на контуре. Таким образом, функция напряжения определяется прогибами мембраны с круговым контуром радиуса *r*, равномерно растянутой и нагруженной поперечной нагрузкой, интенсивность которой пропорциональна

$$\frac{1+2\nu}{1+\nu}\frac{Py}{I}.$$

Легко убедиться, что уравнение (в) и граничное условие в этом случае удовлетворяются, если положить

$$\varphi = m \left(x^2 + y^2 - r^2 \right) y_{\downarrow} \tag{(r)}$$

где *m* — постюянный множитель. Эта функция равна нулю на контуре (а) и будет удовлетворять уравнению (в), если

$$m=\frac{(1+2\nu)P}{8(1+\nu)I}.$$

Равенство (г) тогда принимает вид

$$\varphi = \frac{(1+2\nu)P}{8(1+\nu)J}(x^2 + y^2 - r^2)y.$$
(A)

Затем по формулам (181) определяются компоненты напряжения

$$\tau_{xz} = \frac{(3+2\nu)P}{8(1+\nu)I} \left(r^2 - x^2 - \frac{1-2\nu}{3+2\nu} y^2 \right), \qquad \tau_{yz} = -\frac{(1+2\nu)Pxy}{4(1+\nu)I}.$$
(184)

Вертикальная компонента касательного напряжения τ_{xz} является четной функцией координат x и y, а горизонтальная компонента τ_{yz} — нечетной функцией тех же переменных. В силу этого распределение напряжений (184) дает результирующую, направленную вдоль вертикального диаметра кругового поперечного сечения.

Вдоль горизонтального диаметра поперечного сечения имеем x = 0; отсюда с помощью (184) находим

$$\tau_{xz} = \frac{(3+2v)P}{8(1+v)I} \left(r^2 - \frac{1-2v}{3+2v} y^2 \right), \quad \tau_{yz} = 0.$$
 (e)

§ 123]

Максимальное касательное напряжение получается в центре y=0, где

$$(\tau_{xz})_{\max} = \frac{(3+2v) Pr^3}{8(1+v)I}.$$
 (**)

Касательное напряжение по концам горизонтального диаметра равно

$$(\tau_{xz})_{y=\pm r} = \frac{(1+2v) Pr^2}{4(1+v)I}.$$
 (1)

Легко видеть, что величина касательного напряжения зависит от коэффициента Пуассона. Если принять v=0,3, то формулы (ж) и (и) примут вид

$$(\tau_{xz})_{\max} = 1,38 \frac{P}{A}, \quad (\tau_{xz})_{y=\pm r} = 1,23 \frac{P}{A}, \quad (\kappa)$$

где А—площадь поперечного сечения бруса. Элементарная теория изгиба, основанная на допущении, что касательные напряжения равномерно распределены вдоль горизонтального диаметра поперечного сечения, дает

$$\tau_{xz} = \frac{4}{3} \frac{P}{A} \, .$$

Погрешность элементарного решения в определении максимального напряжения составляет, таким образом, около 4%.

§ 123. Эллиптическое поперечное сечение

Метод, описанный в предыдущем параграфе, можно также использовать и в случае эллиптического поперечного сечения. Пусть уравнение контура поперечного сечения имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0.$$
 (a)

Правая часть уравнения (183) обратится в нуль, если принять

$$f(y) = -\frac{P}{2I} \left(\frac{a^2}{b^2} y^2 - a^2 \right).$$
 (6)

Подставляя выражение (б) в уравнение (182), находим.

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{Py}{I} \left(\frac{a^2}{b^2} + \frac{v}{1+v} \right). \tag{B}$$

Это уравнение вместе с граничным условием $\varphi = 0$ на контуре и служит для определения функции φ . Граничное условие и уравнение (в) удовлетворяются, если принять

$$\varphi = \frac{(1+\nu)a^2 + \nu b^2}{2(1+\nu)(3a^2 + b^2)} \frac{P}{I} \left(x^2 + \frac{a^3}{b^2} y^2 - a^2 \right) y.$$
 (r)

Когда a = b, это решение совпадает с решением (в) предыдущего параграфа.

ИЗГИВ БРУСЬЕВ

Подставляя (б) и (г) в формулы (181), получаем компоненты напряжения

$$\tau_{xz} = \frac{2(1+\nu)a^2+b^2}{(1+\nu)(3a^2+b^2)} \frac{P}{2I} \left[a^2 - x^2 - \frac{(1-2\nu)a^2}{2(1+\nu)a^2+b^2} y^2 \right],$$

$$\tau_{yz} = -\frac{(1+\nu)a^2+\nu b^2}{(1+\nu)(3a^2+b^2)} \frac{Pxy}{I}.$$
(185)

Для компонент напряжения на горизонтальной оси эллиптического поперечного сечения (x = 0) имеем

$$\mathbf{\tau}_{xz} = \frac{2(1+\nu)a^2+b^2}{(1+\nu)(3a^2+b^2)} \frac{P}{2I} \left[a^2 - \frac{(1-2\nu)a^2}{2(1+\nu)a^2+b^2} y^2 \right], \quad \mathbf{\tau}_{yz} = \mathbf{0}.$$

Максимальное напряжение действует в центре и определяется формулой

$$(\tau_{xz})_{max} = \frac{Pa^2}{2I} \left[1 - \frac{a^2 + vb^2/(1+v)}{3a^2 + b^2} \right].$$

Если *b* очень мало по сравнению с *a*, то членами, содержащими b^2/a^2 , можно пренебречь, и в этом случае

$$(\tau_{xz})_{\max} = \frac{Pa^2}{3I} = \frac{4}{3} \frac{P}{A}$$
,

что совпадает с решением элементарной теории изгиба. Если b очень велько по сравнению с a, получаем

$$(\tau_{xz})_{\max} = \frac{2}{1+\nu} \frac{P}{A}.$$

Напряжение по концам горизонтального диаметра ($y = \pm b$) для этого случая равно

$$\tau_{xz} = \frac{4\nu}{1+\nu} \frac{P}{A} \, .$$

Распределение напряжения вдоль горизонтального диаметра в этом случае очень далеко от однородного и зависит от величины коэффициента Пуассона v. Приняв v = 0,30, находим

$$(\tau_{xz})_{\max} = 1.54 \frac{P}{A}$$
, $(\tau_{xz})_{x=0, y=b} = 0.92 \frac{P}{A}$.

При этом максимальное напряжение оказывается примерно на 14% больше напряжения, получаемого по элементарной теории.

§ 124. Прямоугольное поперечное сечение

Уравнение контура в случае сечения в форме прямоугольника, показанного на рис. 191, имеет вид

$$(x^2 - a^2) (y^2 - b^2) = 0, \qquad (a)$$

Если подставить в уравнение (183) постоянную $Pa^2/(2I)$ вместо f(y), то выражение $Px^2/(2I) - Pa^2/(2I)$ вдоль сторон прямоуголь-

ника $x = \pm a$ становится равным нулю. Вдоль вертикальных сторон $y = \pm b$ равна нулю производная dy/ds. Следовательно, правая часть уравнения (183) вдоль всего контура равна нулю, и мы можем принять, что на контуре $\varphi = 0$. Дифференциальное уравнение (182) приобретает следующий вид:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{\nu}{1+\nu} \frac{Py}{I}.$$
 (6)

(в)

Это уравнение вместе с граничным условием полностью определяет функцию напряжений. Задача сводится к определению прогибов равномерно растянутой прямоугольной мембраны, вызванных распределенной нагрузкой, интен-

сивность которой пропорциональна

$$-\frac{\mathbf{v}}{1+\mathbf{v}}\frac{Py}{I}.$$

Пересечение этой мембраны с плоскостью yz на рис. 191 представляет кривая mnp. Из формул (181) мы видим, что касатель-ные напряжения можно разложить на две следующие системы напряжений

(1)
$$\tau'_{xz} = \frac{P}{2I} (a^2 - x^2), \quad \tau'_{yz} = 0,$$

(2)
$$\tau_{xz}^{"} = \frac{\partial \varphi}{\partial y}, \quad \tau_{yz}^{"} = -\frac{\partial \varphi}{\partial x}.$$

Первая система соответствует параболическо-

му распределению напряжений, которое Рис. 191. дает обычная элементарная теория изгиба. Вторая система, зависящая от функции ф, представляет необхо-димые поправки к элементарному решению. Величины этих поправок определяются наклоном мембраны. Вдоль оси у поправок определяются наклоном мембраны. Вдоль оси yв силу симметрии $\partial \varphi / \partial x = 0$, и поправками к элементарной тео-рии служат вертикальные касательные напряжения, определяе-мые наклоном $\partial \varphi / \partial y$. Согласно рис. 191 τ''_{xz} в точках m и pположительно и в точке n отрицательно. Следовательно, вдоль горизонтальной оси симметрии напряжение τ_{xz} не постоянно, как это следует из элементарной теории, а имеет максимумы по концам m и p и минимум в центре n. Из условия нагружения мембраны можно видеть, что φ яв-ляется четной функцией координаты x и нечетной — координаты y. Это требование, а также граничное условие, удовлетворяются, чтобы взять функцию напряжения φ в форме ряда Фурье

$$\varphi = \sum_{m=0}^{m=0} \sum_{n=1}^{n=0} A_{2m+1,n} \cos \frac{(2m+1)\pi x}{2a} \sin \frac{n\pi y}{b}.$$
 (r)

ИЗГИБ БРУСЬЕВ

Подставляя это выражение в уравнение (б) и применяя обычный метод определения коэффициентов ряда Фурье, приходим к уравнениям

$$\begin{aligned} A_{2m+1,n}\pi^2 ab \left[\left(\frac{2m+1}{2a}\right)^2 + \left(\frac{n}{b}\right)^2 \right] &= \\ &= -\frac{\nu}{1+\nu} \frac{P}{I} \int_{-a}^{a} \int_{-b}^{b} y \cos \frac{(2m+1)\pi x}{2a} \sin \frac{n\pi y}{b} \, dx \, dy, \\ A_{2m+1,n} &= -\frac{\nu}{1+\nu} \frac{P}{I} \frac{8b \left(-1\right)^{m+n-1}}{\pi^4 (2m+1) n \left[\frac{(2m+1)^2}{(2a)^2} + \left(\frac{n}{b}\right)^2\right]}. \end{aligned}$$

Подставив эти выражения в формулу (г), получим

$$\varphi = -\frac{\nu}{1+\nu} \frac{P}{I} \frac{8b^3}{\pi^4} \sum_{m=0}^{m=\infty} \sum_{n=1}^{n=\infty} \frac{(-1)^{m+n-1} \cos \frac{(2m+1)\pi x}{2a} \sin \frac{n\pi y}{b}}{(2m+1)n \left[(2m+1)^2 \frac{b^2}{4a^2} + n^2 \right]}$$

Получив функцию напряжений, можно найти компоненты касательного напряжения из формул (в).

Выведем теперь формулы для поправок к напряжениям вдоль оси *y*, которые дает элементарная теория. Из рассмотрения прогибов мембраны (рис. 191) можно видеть, что вдоль этой оси поправки имеют максимальные значения, и следовательно, максимальное напряжение действует в средних точках сторон $y=\pm b$. Вычислив производную $\partial \phi/\partial y$ и положив x=0, находим, что

$$(\tau''_{xz})_{x=0} = -\frac{v}{1+v} \frac{P}{I} \frac{8b^2}{\pi^3} \sum_{m=0}^{m=\infty} \sum_{n=1}^{n=\infty} \frac{(-1)^{m+n-1} \cos \frac{n\pi y}{b}}{(2m+1) \left[(2m+1)^2 \frac{b^2}{4a^2} + n^2 \right]} .$$

Отсюда находим следующие формулы для касательных напряжений в центре поперечного сечения (y = 0) и для середин вертикальных сторон прямоугольника:

$$(\tau''_{xz})_{x=0, y=0} = -\frac{\nu}{1+\nu} \frac{P}{I} \frac{8b^2}{\pi^3} \sum_{m=0}^{m=\infty} \sum_{n=1}^{n=\infty} \frac{(-1)^{m+n-1}}{(2m+1)\left[(2m+1)^2 \frac{b^2}{4a^2} + n^2\right]},$$

$$(\tau''_{xz})_{x=0, y=b} = -\frac{\nu}{1+\nu} \frac{P}{I} \frac{8b^2}{\pi^3} \sum_{m=0}^{m=\infty} \sum_{n=1}^{n=\infty} \frac{(-1)^{m-1}}{(2m+1)\left[(2m+1)^2 \frac{b^2}{4a^2} + n^2\right]}.$$

Суммирование этих рядов сильно упрощается, если использовать

известные формулы

$$\sum_{n=1}^{n=\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \sum_{n=1}^{n=\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12},$$
$$\sum_{m=0}^{m=\infty} \frac{(-1)^m}{(2m+1)\left[(2m+1)^2 + k^2\right]} = \frac{\pi^3}{32} \frac{\left(1 - \operatorname{sch} \frac{k\pi}{2}\right)}{\frac{1}{2} \left(\frac{k\pi}{2}\right)^2} \mathbf{1}.$$

Отсюда

$$(\tau''_{xz})_{x=0, y=0} = -\frac{\nu}{1+\nu} \frac{3P}{2A} \frac{b^2}{a^2} \left[\frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{n=\infty} \frac{(-1)^n}{n^2 \operatorname{ch} \frac{n\pi a}{b}} \right],$$

$$(\tau''_{xz})_{x=0, y=b} = \frac{\nu}{1+\nu} \frac{3P}{2A} \frac{b^2}{a^2} \left[\frac{2}{3} - \frac{4}{\pi^2} \sum_{n=1}^{n=\infty} \frac{1}{n^2 \operatorname{ch} \frac{n\pi a}{b}} \right],$$
(186)

где A = 4ab — площадь поперечного сечения. Эти ряды сходятся быстро, и для любого отношения a/b нетрудно вычислить поправки τ_{xz} . Эти поправки следует добавить к значению 3P/(2A), которое дает элементарная теория.

таблица 8

Точки	$\frac{a}{b} =$	2	1	1/2	1/4
$\begin{array}{c} x=0\\ y=0 \end{array}$	Точное значение	0,983	0,940	0,856	0,805
	Приближенное значение	0,981	0,986	0,856	0,826
x=0	Точное значение	1,033	1,126	1,396	1,988
y=0	Приближенное значение	1,040	1,143	1,426	1,934

1) Эту формулу можно получить следующим образом. Для случая шарнирно опертого стержня длиной *l* под действием растягивающей силы S и момента M на конце x=0 прогиб у можно найти в виде следующего ряда Фурье:

$$y = rac{2Ml^2}{EI\pi^3} \sum_{n=1}^{n=\infty} rac{\sinrac{n3\alpha}{l}}{n(n^2+k^2)}$$
, rge $k^2 = rac{Sl^2}{EI\pi^2}$.

Прогиб в точке x = 0,51 определяется формулой

$$\delta = \frac{2Ml^2}{E l \pi^3} \sum_{m=0}^{m-\infty} \frac{(-1)^m}{(2m+1)\left[(2m+1)^2 + k^2\right]}.$$
 (a)

Тот же прогиб получается путем интегрирования дифференциального уравнения упругой липии в виде

$$\delta = \frac{Ml^2}{2E l\pi^2 k^2} \left(1 - \operatorname{sch} \frac{k\pi}{2} \right).$$
 (6)

Сравнение выражений (а) и (б) и дает вышеприведенную формулу.

ИЗГИБ БРУСЬЕВ

В первых строках табл. 8 находятся численные коэффициен-ты, на которые нужно умножить приближенное значение каса-тельного напряжения 3P/(2A), чтобы получить точное значение¹. Коэффициент Пуассона v в этих вычислениях принимался равным Коэффициент Пуассона v в этих вычислениях принимался равным 0,25. Мы видим, что элементарная формула дает очень точные значения касательных напряжений, когда a/b ≥ 2. Для квадрат-ного сечения ошибка в определении максимального напряжения, получаемого по элементарной формуле, составляет около 10%. Если обе стороны прямоугольника являются величинами од-

ного порядка, то мы можем получить приближенное решение для распределения напряжений в полиномиальной форме, приняв функцию напряжений в виле

$$\varphi = (x^2 - a^2) (y^2 - b^2) (my + ny)^3.$$
 (д)

Определяя коэффициенты *m* и *n* из условия минимума потен-циальной энергии, находим²)

$$m = -\frac{v}{1+v} \frac{P}{8/b^2} \frac{\frac{1}{11} + \frac{8a^2}{b^2}}{\left(\frac{1}{7} + \frac{3a^2}{5b^2}\right) \left(\frac{1}{11} + \frac{8a^2}{b^2}\right) + \frac{1}{21} + \frac{9a^2}{35b^2}},$$

$$n = -\frac{v}{1+v} \frac{P}{8/b^4} \frac{1}{\left(\frac{1}{7} + \frac{3a^2}{5b^2}\right) \left(\frac{1}{11} + \frac{8a^2}{b^2}\right) + \frac{1}{21} + \frac{9a^2}{35b^2}}.$$

Касательные напряжения, получаемые из выражения (д), равны

$$(\tau_{xz})_{x=0, y=0} = \frac{Pa^2}{2I} + ma^2b^2,$$

$$(\tau_{xz})_{x=0, y=b} = \frac{Pa^2}{2I} - 2a^2b^2(m+nb^2).$$
(e)

Приближенные значения касательных напряжений, приведенные в табл. 8, получены с использованием этих формул. Как видим, приближенные формулы (е) в рассматриваемом диапазоне значе-ний *a/b* дают удовлетворительную точность. Мембранная аналогия позволяет получить и другие полезные приближенные формулы для определения касательных напряже-ний. Если *a* велико по сравнению с *b* (рис. 191), можно пред-положить, что в точках, достаточно удаленных от коротких сто-рон прямоугольника, поверхность мембраны является цилиндри-неской. Тогла уравнение (б) принимает вил ческой. Тогда уравнение (б) принимает вид

$$\frac{d^2\varphi}{dy^2}=\frac{v}{1+v}\frac{Py}{I},$$

¹⁾ Цифры в этой таблице несколько отличаются от приведенных Сен-Ве-наном. Проверка результатов Сен-Венана показала, что в его расчетах была допущена численная ошибка. ²) См. С. П. Тимощенко, примечание 2 на стр. 361.

§ 124]

и мы находим, что

$$\varphi = \frac{v}{1+v} \frac{P}{6I} (y^3 - b^2 y). \tag{(*)}$$

Подставляя это выражение в уравнения (в), получаем следующую формулу для напряжений вдоль оси:

$$\tau_{xz} = \frac{P}{2I} \left[a^2 + \frac{v}{1+v} \left(y^2 - \frac{b^2}{3} \right) \right]. \tag{H}$$

Легко заметить, что для сечения в виде узкого прямоугольника поправка к элементарной теории, даваемая вторым членом в скобках, всегда мала.

Если *b* велико по сравнению с *a*, прогибы мембраны в точках, удаленных от коротких сторон прямоугольника¹) можно считать линейной функцией от *y*. Тогда из уравнения (б) находим

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\nu}{1+\nu} \frac{Py}{I}, \qquad \varphi = \frac{\nu}{1+\nu} \frac{Py}{2I} (x^2 - a^2). \tag{K}$$

Подставляя это значение в уравнения (в), получаем для компонент касательного напряжения следующие формулы:

$$\tau_{xz} = \frac{1}{1+v} \frac{P}{2I} (a^2 - x^2), \quad \tau_{yz} = -\frac{v}{1+v} \frac{P}{I} xy.$$

В центре тяжести поперечного сечения (x = y = 0)

$$\mathbf{\tau}_{xz} = \frac{1}{1+\mathbf{v}} \frac{Pa^2}{2I}, \quad \mathbf{\tau}_{yz} = 0.$$

По сравнению с обычной элементарной теорией напряжение в этой точке уменьшается на коэффициент 1/(1 + v).

Однако для очень широких прямоугольников (b намного больше, чем a) в некоторых точках поперечного сечения получаются значения максимального напряжения, бо́льшие значения 3P/(2A), которое дает элементарная теория. Более того, если b/a превышает 15, максимальным напряжением будет уже не компонента τ_{xz} в точке $x = 0, y = \pm b$, т. е. в середине вертикальных сторон. Им становится горизонтальная компонента τ_{yz} в точках x = a, $y = \pm \eta$ на верхней и нижней гранях вблизи углов. Значения этих напряжений при v = 1/4 приводятся в табл. 9²).

Значения η даны в форме $(b - \eta)/(2a)$ в последнем столбце, где $b - \eta$ расстояние точки с максимальным напряжением от угла.

Приближенные формулы для других узких сечений и сравнения с более точными результатами, полученными с использованием метода конечных разностей, дал Картер (W. J. Carter, J. Appl. Mech. 25, 115—121 (1958)).
 ²) E. Reissner, G. B. Thomas, J. Math. Phys. 25, 241 (1946).

[гл. 11

b a	$\frac{(\mathfrak{r}_{xz})_{x=0, y=b}}{\frac{3P/2A}}$	$\frac{(\tau_{yz})_{x=a, y=\eta}}{3P/2A}$	$\frac{b-\eta}{2a}$	<u>b</u> a	$\frac{(\tau_{xz})_{x=0, y=b}}{3P/2A}$	$\frac{(\tau_{yz})_{x=a, y=\eta}}{\frac{3P/2A}}$	$\frac{b-\eta}{2a}$
0	1,000	0,000	0,000	10	3,770	3,226	0,810
2	1,39(4)	0,31(6)	0,31(4)	15	5,255	5,202	0,939
4	1,988	0,968	0,522	20	6,740	7,209	1,030
6	2,582	1,695	0,649	25	8,225	9,233	1,102
8	3,176	2,452	0,739	50	15,650	19,466	1,322

таблица 9

§ 125. Дополнительные результаты

Рассмотрим поперечное сечение, граница которого состоит из двух вертикальных сторон $y = \pm a$ (рис. 192) и двух гипербол¹)

$$(1+v)x^2-vy^2=a^2.$$
 (a)

Легко показать, что правая часть уравнения (183) обращается на контуре в нуль, если принять

$$f(y) = \frac{P}{2I} \left(\frac{v}{1+v} y^2 + \frac{a^2}{1+v} \right).$$

Подставляя это выражение в уравнение (182), находим

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial u^2} = 0.$$

Рис. 192.

Это уравнение и граничное условие (183) удовлетворяются, если положить $\varphi = 0$. Тогда компоненты касательного напряжения, согласно формулам (181), равны

$$\tau_{xz} = \frac{P}{2I} \left(-x^2 + \frac{v}{1+v} y^2 + \frac{a^2}{1+v} \right), \quad \tau_{yz} = 0.$$

В каждой точке поперечного сечения полное касательное напряжение направлено по вертикали. Это напряжение достигает максимума посередине вертикальных сторон поперечного сечения и определяется формулой

$$\tau_{\max} = \frac{Pa^2}{2I}.$$

Задачу можно также решить, если контур поперечного сечения определяется уравнением

$$\left(\pm\frac{y}{b}\right)^{1/\nu} = \left(1 - \frac{x^2}{a^2}\right), \quad a > x > -a.$$
(6)

При v = 1/4 этот контур имеет вид, изображенный на рис. 193. Если принять

$$f(y) = \frac{Pa^2}{2I} \left[1 - \left(\pm \frac{y}{b} \right)^{1/\nu} \right],$$

то левая часть граничного условия (183) обращается в нуль; таким образом, вдоль границы функция ф должна быть постоянной. Уравнение (182) прини-

¹⁾ Эту задачу исследовал Грасхоф (F. Grashof, Elastizität und Festigkeit, 1878, стр. 246).

§ 125]

мает вид

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{v}{1+v} \frac{Py}{I} \pm \frac{Pa^2}{2bIv} \left(\pm \frac{y}{b}\right)^{(1-v)/v}$$

Это уравнение и граничное условие удовлетворяются, если положить

$$\varphi = \frac{Pa^2 \nu}{2(1+\nu)I} \left[y\left(\frac{x^2}{a^2} - 1\right) \pm b\left(\pm \frac{y}{b}\right)^{(1+\nu)/\nu} \right].$$

Подставляя это выражение в формулы (181), находим

$$\tau_{xz} = \frac{P}{2(1+\nu)I} (a^2 - x^2), \qquad \tau_{yz} = -\frac{P\nu}{(1+\nu)I} xy.$$
(B)

К тому же результату можно прийти и другим путем. При исследовании напряжений в прямоугольной балке, ширина которой велика по сравнению с высотой, мы использовали в качестве приб-

лиженного решения для функции напряжений (уравнение (ж) § 124) выражение

$$\varphi = \frac{v}{1+v} \frac{Py}{2I} (x^2 - a^2),$$

из которого можно вывести выражения (в) для компонент напряжения. Уравнение контура можно найти из условия, что на границе касательное напряжение совпадает по направлению с касательной к контуру. Отсюда

$$\frac{dx}{\tau_{xz}} = \frac{dy}{\tau_{yz}}.$$

Подставляя сюда значения напряжений из (в) и интегрируя полученное дифференциальное уравнение, приходим к следующему уравнению контура:

$$y=b\ (a^2-x^2)^{\mathbf{v}}\ .$$

Используя энергетический метод (§ 124), можно прийти к приближенному решению для многих других случаев. Рассмотрим, например, поперечное сечение, показанное на рис. 194. Вертикальные стороны контура определяются уравнением $y = \pm b$, а две другие стороны являются дугами окружности

$$x^2 + y^2 - r^2 = 0. (r)$$

Правая часть уравнения (183) обращается в нуль, если

$$f(y) = \frac{P}{2I} (r^2 - y^2).$$

Тогда приближенное выражение для функции напряжений примет вид

$$\varphi = (y^2 - b^2) (x^2 + y^2 - r^2) (Ay + By^3 + \ldots),$$

где коэффициенты А, В, ... подлежат определению из условия минимума потенциальной энергии.

Для многих форм поперечных сечений решения были получены с использованием полярных и других криволинейных координат и функций комплексной переменной. Сюда входят задачи для сечений, ограниченных двумя окружностями, концентрическими¹) и неконцентрическими²), окружностью с

²) B. R. Seth, Proc. Indian Acad. Sci. 4, sec. A, 531 (1936); 5, 23 (1937).

¹) Решение дал Ляв (А. Ляв, Математическая теория упругости, ОНТИ, 1935, стр. 340); см. также I. S. Sokolnikov, Mathematical Theory of Elasticity, изд. 2., 1956.

ИЗГИБ БРУСЬЕВ

радиальной щелью¹), кардиондой²), улиткой³) Паскаля, эллиптической улиткой Паскаля 4), двумя софокусными эллипсами 5), эллипсом и софокусными гиперболами 6), треугольниками и многоугольниками 7), включая прямоугольник со щелью⁸) и сектором кругового кольца⁹).

§ 126. Несимметричные поперечные сечения

В качестве первого примера рассмотрим случай равнобедренного треугольника (рис. 195). Контур поперечного сечения в этом случае определяется уравнением

$$(y-a)$$
 $[x+(2a+y) \operatorname{tg} \alpha] [x-(2a+y) \operatorname{tg} \alpha] = 0.$

Правая часть уравнения (183) будет равна нулю, если взять

$$f(y) = \frac{P}{2I} (2a+y)^2 \operatorname{tg}^2 \alpha.$$

Уравнение (182) для определения функции напряжений ф тогда принимает вид

$$\frac{\partial^{2}\varphi}{\partial x^{2}} + \frac{\partial^{2}\varphi}{\partial y^{2}} = \frac{v}{1+v} \frac{Py}{I} - \frac{P}{I} (2a+y) \operatorname{tg}^{2} \alpha.$$
 (a)

Рис. 195.

Приближенное решение можно получить, используя энергетический метод. В частном случае, когда

> $tg^2 \alpha = \frac{v}{1+v} = \frac{1}{3}$ (6)

точное решение уравнения (а) получается, если взять функцию напряжений в виле

$$\varphi = \frac{P}{6I} \left[x^2 - \frac{1}{3} (2a + y)^2 \right] (y - a).$$

Согласно формулам (181) получаем в этом случае компоненты напряжения

$$\tau_{zx} = \frac{\partial \varphi}{\partial y} - \frac{Px^2}{2I} + \frac{P}{6I} (2a+y)^2 = \frac{2\sqrt{3}P}{27a^4} [-x^2 + a(2a+y)],$$

$$\tau_{yz} = -\frac{\partial \varphi}{\partial x} = \frac{2\sqrt{3}P}{27a^4} x (a-y).$$
(B)

Вдоль оси y имеем x = 0; результирующее касательное напряжение направлено

¹) W. M. Shepherd, Proc. Roy. Soc. (London), ser. A, **138**, 607 (1932); L. A. Wigglesworth, Proc. London Math. Soc., ser. 2. **47**, 20 (1940); Proc. Roy. Soc. (London), ser. A, **170**, 365 (1939).

¹ Soc. (London), ser. A, 170, 555 (1935).
²) W. M. Shepherd, Proc. Roy. Soc. (London), ser. A, 154, 500 (1936).
³) D. L. Holl, D. H. Rock, Z. Angew. Math. Mech. 19, 141 (1939).
⁴) A. C. Stevenson, Proc. London Math. Soc., ser. 2, 45, 126 (1939).
⁵) A. Love, см. примечание на предыдущей стр., стр. 336.

⁶) Б. Г. Галеркин, Вестник института инженеров путей сообщения, т. 96, 1927. См. также S. Ghosh, Bull. Calcutta Math. Soc. 27, 7 (1935).

- 7) B. R. Seth, Phil. Mag. 22, 582 (1936); 23, 745 (1937).

 ⁸) D. F. Gunder, Phys. 6, 38 (1935).
 ⁹) M. Seegar, K. Pearson, Proc. Roy. Soc. (London), ser. A. 96, 211 (1920).

§ 126!

по вертикали и выражается линейной функцией

$$(\tau_{xz})_{x=0} = \frac{2\sqrt{3P}}{27a^3}(2a+y).$$

Максимальное значение этого напряжения достигается на середине вертикальной стороны сечения и выражается формулой

$$\tau_{\max} = \frac{2\sqrt[4]{3}}{9a^2} \,. \tag{(r)}$$

Определив момент относительно оси z от касательных усилий, задаваемых напряжениями (в), можно показать, что в этом случае результирующая поперечной силы проходит через центр тяжести C поперечного сечения.

Рассмотрим теперь более общий случай поперечного сечения с горизонтальной осью симметрии (рис. 196), для которого верхняя и нижние части контура определяются уравнениями

$$x = \psi(y)$$
, если $x > 0$,
 $x = -\psi(y)$, если $x < 0$.

Тогда функция

$$[x + \psi(y)] [x - \psi(y)] = x^2 - [\psi(y)]^2$$

обращается в нуль вдоль границы сечения, и в наших выражениях для компонент напряжения (181) можно принять

$$f(y) = \frac{P}{2I} [\psi(y)]^2.$$

При таких предпосылках функция напряжений должна удовлетворять дифференциальному уравнению

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{v}{1+v} \frac{Py}{I} - \frac{P}{I} \psi(y) \frac{d\psi}{dy}$$

и быть постоянной на границе. Дело

сводится, таким образом, к отысканию прогибов равномерно растянутой мембраны, когда интенсивность нагрузки определяется правой частью записанного выше уравнения. Эту последнюю задачу можно обычно решить с достаточной точностью, используя энергетический метод, как было показано в случае прямоугольного поперечного сечения (стр. 365).

Подобным методом можно рассмотреть и случай, показанный на рис. 197. Допустим, например, что поперечное сечение представляет собой сегмент параболы и что уравнение параболы имеет вид

$$x^2 = A (y + u).$$

В этом случае принимаем

$$f(y) = \frac{P}{2I}A(y+a).$$

При таком выражении для f(y) первый сомножитель в правой части уравнения (183) вдоль параболической части контура обращается в нуль. Множитель dy/ds обращается в нуль вдоль прямолинейной части границы. Таким образом, мы снова получаем, что функция напряжений на границе постоянна и задачу можно рассмотреть с помощью энергетического метода.

§ 127. Центр изгиба

При исследовании задачи об изгибе консоли мы приняли в качестве оси z ось, проходящую через центр тяжести сечения, а в качестве осей x и y— оси инерции поперечного сечения. Предположим, что сила D параллельна оси x и находится на таком расстоянии от центра тяжести, что закручивание стержня не происходит. Это расстояние, которое важно для практических расчетов, можно легко найти, если известны напряжения, выраженные с помощью формул (181). С этой целью найдем момент касательных напряжений τ_{xz} и τ_{yz} относительно центра тяжести сечения. Этот момент, очевидно, равен

$$M_z = \iint (\tau_{xz}y - \tau_{yz}x) \, dx \, dy. \tag{a}$$

Замечая, что напряжения, распределенные по концевому поперечному сечению балки, статически эквивалентны действующей силе *P*, заключаем, что расстояние *d* силы *P* от центра тяжести поперечного сечения определяется формулой

$$d = \frac{|M_z|}{P}.$$
 (6)

Для положительных M_x расстояние *d* следует брать в направлении положительных *y*. Ранее было сделано предположение, что сила действует параллельно оси *x*.

Если сила P параллельна оси y, а не оси x, мы можем с помощью подобных вычислений установить положение линии действия силы P, для которой не происходит вращения элементов поперечного сечения, находящихся в центре тяжести. Полученная точка пересечения двух линий действия усилий изгиба имеет важное значение. Если сила, действующая перпендикулярно оси балки, прилагается в этой точке, мы можем разложить ее на две составляющие, параллельные осям x и y; на основе вышеприведенных рассуждений заключаем, что эта сила не вызовет вращения элементов поперечного сечения, находящихся в центре тяжести. Такая точка называется центром изгиба.

Если поперечное сечение балки обладает двумя осями симметрии, можно сразу же сделать вывод, что центр изгиба совпадает с центром тяжести поперечного сечения. Когда есть лишь одна ось симметрии, из условия симметрии заключаем, что центр изгиба должен лежать на этой оси. Приняв ось симметрии за ось *у*, можно определить положение центра изгиба из формулы (б).

Рассмотрим в качестве примера полукруглое поперечное сечение¹), показанное на рис. 198. Для определения касательных напряжений можно воспользоваться решением, полученным для балок круглого сечения (см. стр. 362). В этом случае в вертикальном диаметральном сечении *хг* напряжения отсутствуют. Мы можем представить себе, что балка разделена по плоскости *хг* на две половины, каждая из которых представляет балку полукру-

глого сечения, изгибаемую силой P/2. Напряжения задаются выражениями (184). Подставляя их в уравнение (а), интегрируя и деля M_z на P/2, находим следующую формулу для расстояния от начала координат результирующей поперечной силы:

$$e = \frac{2M_z}{P} = \frac{8}{15\pi} \frac{3+4\nu}{1+\nu} r.$$

Рис. 198.

Эта формула определяет положение силы, для которой элемент в точке О поперечного сечения, в центре круга, не вращается. В то же время элемент поперечного сечения, расположенный в центре тяжести сечения, будет поворачиваться на угол (см. формулу (б) на стр. 360):

$$\omega = \frac{\nu P \left(l - z \right)}{EI} \, 0,424r,$$

где 0,424*г* — расстояние от начала координат *O* до центра тяжести полукруга. Чтобы свести к нулю это вращение, нужно приложить, как показано на рис. 198, некоторый момент. Величину этого момента можно найти, используя таблицу на стр 321, которая дает для полукруглого поперечного сечения следующий угол закручивания на единицу длины:

$$\theta = \frac{M_t}{0,298Gr^4}.$$

Далее условие отсутствия вращения для элементов поперечного сечения, находящихся в центре тяжести, дает

$$\frac{M_t(l-z)}{0.298Gr^4} = \frac{\nu P(l-z)}{EI} 0.424r \quad \text{M} \quad M_t = \frac{\nu P(0.298r^4) 0.424r}{2(1+\nu)I}.$$

Этот крутящий момент можно получить путем смещения резуль-

¹⁾ С. П. Тимошенко, упомянутая выше статья в «Сборнике института инженеров путей сообщения» (см. стр 361). По-видимому, смещение изгибающей силы от центра тяжести поперечного сечения исследовалось в этой статье впервые.

тирующей изгибающей силы P/2 к оси z на величину

$$\delta = \frac{2M_t}{P} = \frac{8\nu(0,298)\,0,424r}{2\,(1+\nu)\,\pi}\,.$$

Чтобы получить расстояние центра изгиба от центра круга О, нужно вычесть эту величину из ранее найденного расстояния е. Полагая v = 0,3, имеем

$$e - \delta = 0.548r - 0.037r = 0.511r$$
.

В сечениях, показанных на рис. 196, компоненты касательного напряжения равны

$$\mathbf{\tau}_{xz} = \frac{\partial \varphi}{\partial y} - \frac{P}{2I} \left[x^2 - \psi^2 \left(y \right) \right], \qquad \mathbf{\tau}_{yz} = -\frac{\partial \varphi}{\partial x}.$$

Отсюла

$$M_{z} = \iint \left(\frac{\partial \varphi}{\partial y} y + \frac{\partial \varphi}{\partial x} x \right) dx \, dy - \frac{P}{2I} \iint \left[x^{2} - \psi^{2}(y) \right] y \, dx \, dy. \tag{B}$$

Интегрируя по частям и учитывая, что ф обращается в нуль на границе $x = \pm \psi(y)$, получаем

$$\iint \left(\frac{\partial \varphi}{\partial y}y + \frac{\partial \varphi}{\partial x}x\right) dx \, dy = -2 \iint \varphi \, dx \, dy,$$

$$\int \left[x^2 - \psi^2(y)\right] dx = \frac{2}{3} \psi^3(y) - 2\psi^3(y) = -\frac{4}{3} \psi^3(y),$$

$$\iint \left[x^2 - \psi^2(y)\right] y \, dx \, dy = -\frac{4}{3} \iint y \psi^3(y) \, dy,$$

$$I = \iint x^2 dx \, dy = \frac{2}{3} \iint \psi^3(y) \, dy.$$

Подставляя эти значения в формулу (в) и деля на Р, находим

$$d = \frac{|M_z|}{P} = \left| -\frac{2}{P} \iint \varphi \, dx \, dy + \frac{\int y \psi^3(y) \, dy}{\int \psi^3(y) \, dy} \right|$$

Зная $\psi(y)$ и пользуясь для определения φ мембранной аналогией, мы можем всегда найти¹) с достаточной точностью положение центра изгиба для рассматриваемых поперечных сечений.

Вопрос о центре изгиба становится особенно важным для тонкостенных сечений открытого профиля. Для таких сечений его можно легко определить с достаточной точностью, предполагая, что касательные напряжения по толщине сечения распределены равномерно и параллельны срединной поверхности²).

¹⁾ Примеры таких расчетов можно найти в книге: Л. С. Лейбензон,

С. Леибензон, Вариационные методы решения задач теории упругости, Москва, 1943.
 ²) Ссылки можно найти в книге S. Тітоshenko, Strength of Materials изд. 3, т. 1, 1955, стр. 240. [С. П. Тимошенко, Сопротивление материалов, Физматгиз, 1960.]

Положение центра изгиба поперечного сечения определяется только его формой. В то же время положение центра кручения (см. стр. 312) зависит от способа закрепления стержия. С номощью соответствующего выбора способа закрепления можно совместить ось закручивания с осью, на которой лежат центры изгиба. Можно показать, что это происходит тогда, когда стержень закреплен таким образом, что интеграл $\iint w^2 \, dx \, dy$ по всему поперечному сечению достигает минимума¹), где *w* депланация кручения (не определяемая линейной функцией от x и y до того, как было наложено это условие). Практически способ закрепления всегда вызывает возмущение напряженного состояния вблизи закрепленного конца; в частности, это возмущение имеет место в случае, когда закрепление полностью препятствует перемещениям концевого сечения. В этом случае, если рассматривать поперечную силу как сосредот эченную нагрузку, приложенную в центре изгиба и не вызывающую вращения, то теорема взаимности (стр. 281) показывает, что крутящий момент вызовет равный нулю прогиб центра изгиба²). Доказательство этого положения носит приближенный характер, так как существование центра кручения существенню связано с отсутствием деформаций поперечных сечений в их плоскостях, что не выполняется в возмущенной области вблизи заделанного конца.

§ 128. Решение задач изгиба с помощью метода мыльной пленки

Точные решения задач изгиба известны лишь для немногих частных случаев, в которых поперечные сечения имеют некоторые простые формы. Для целей практики важно иметь способы решения таких задач для любой заданной формы поперечного сечения. Этого можно достичь с помощью численных расчетов, основанных на методе конечных разностей, как показано в Приложении I, или экспериментальным путем с помощью метода мыльной пленки³), аналогично способу, использованному для решения задач о кручении (см. стр. 309). Для теоретического обоснования метода мыльной пленки воспользуемся уравнениями (181), (182) и (183). Приняв

$$f(y) = \frac{v}{2(1+v)} \frac{Py^2}{I}$$
,

согласно (182), приходим к следующему уравнению для функции напряжений:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$$
 (a)

¹) R. Kappus, Z. Angew. Math. Mech. 19, 347 (1939); A. Weinstein, Quart Appl. Math. 5, 79 (1947).

²) См. R. V. Southwell, Introduction to the Theory of Elasticity [Р. В. Саусвелл, Введение в теорию упругости, ИЛ, 1948]; W. J. Duncan, D. L. Ellis, C. Scruton, Phil. Mag. 16, 201 (1933).

³) Этот метод впервые предложил Венинг Мейнез (Vening Meinesz, De Ingenieur, 108, Holland, 1911). Независимо от него этот метод развили Гриффитси Г. И. Тейлор (A. A. Griffith, G. I. Taylor, Advisory Comm. Aeron. Tech. Rept. **3**, 950 (1917—1918)). Приведенные здесь результаты взяты из этой последней статьи.

13118 82YC5E8

То же уравнение описывает поведение равномерно растянутой мембраны без нагрузки (см. стр. 312), Граничное условие (183) принямает вид

$$\frac{\partial \varphi}{\partial s} \stackrel{\text{\tiny def}}{=} \left[\frac{\rho_{x^3}}{2l} \frac{\gamma}{2(l+\gamma)} \frac{\rho_{y^3}}{l} \right] \frac{dy}{ds}, \qquad (6)$$

Иатегрируя соотношение (б) вдоль контура, получаем выражение для функции напряжений

$$\varphi =: \frac{\rho}{l} \int \frac{x^3 \, dy}{2} \frac{\gamma}{(1+\gamma)} \frac{\rho y^3}{3l} + \text{const}, \tag{8}$$

из которого можно получить значение φ для каждой точки контура. Интеграл $\int (x^3/2) dy$ вдоль границы обращается в пуль, так как он представляет статический момент поперечного седения относительно осн у, проходящей через центр тяжести сечения. Следовательно, функция φ , определенная выражением (в), представится вдоль границы замкнутой кривой.

Вообразям теперь, что па эту, крявую патяпута мыльная пленка. Тогда поверхность мыльной пленкя будет удовлетворять

Фототрафия на рис. 1993) иллюстрирустметод, которыйиспользуется для построения контура мыльной пленки В топ-

кой металляческой пластипке вырезается отверстие такой формы, что после изгиба пластипке проекция границы отверстия на горизоптальную плоскость имеет то же очертацие, что и граница поперечного сечения балки. Пластипка изгибается таким образом, чтобы ординаты вдоль края отверстия представляли в некотором масштабе значения функции, определяемые уравнением (в),

Аналогия с мыльной пленкой применима только при малых прогябах мембраны. Желательно, чтобы максимальная разность ординат пленки не превышала одну десятую часть максимального горизонтального размера. Если это необходимо, дианазон

Ряс, 199,

¹) Сосиасно данным Кушмана (Р. А. Сцяйнан), Другяе эксперяментальные методы онясаны в княге: М. Пейе́нуі (ред.) Handbook of Experimental Stress Analysis, гл. 16, John Wiley, New York, 1950.

ординат функции вдоль границы можно уменьшить путем введения новой функции φ_1 вместо φ с помощью подстановки

$$\varphi = \varphi_1 + ax + by, \qquad (r)$$

где a и b—произвольные постоянные. Можно убедиться, что функция φ_1 также удовлетворяет уравнению мембраны (а). Значения функции φ_1 вдоль контура, согласно уравнениям (в) и (г), определяются выражением

$$\varphi_1 = \frac{P}{I} \int \frac{x^2}{2} dy - \frac{v}{2(1+v)} \frac{Py^3}{3I} - ax - by + \text{const.}$$
(A)

Уменьшение диапазона изменения функции φ_1 на контуре легко вызвать соответствующим подбором постоянных *a* и *b*.

Когда по мыльной пленке найдена функция φ_1 , функция φ определяется по формуле (г). Затем из формул (181) находятся касательные компоненты напряжений, которые теперь имеют вид

$$\tau_{xz} = \frac{\partial \varphi}{\partial y} - \frac{Px^2}{2I} + \frac{v}{2(1+v)} \frac{Py^2}{I}, \quad \tau_{yz} = -\frac{\partial \varphi}{\partial x}. \quad (e)$$

Компоненты напряжений легко находятся для каждой точки поперечного сечения, если известны значения производных $\partial \phi / \partial y$ и $\partial \phi / \partial x$ в этой точке. Эти производные определяются наклонами мыльной пленки по направлениям у и х. Для определения этих наклонов действуют так же, как и при решении задач кручепрежде всего строятся горизонтали поверхности ния, т. е. мыльной пленки. По горизонталям можно найти наклоны, проводя прямые линии, параллельные координатным осям и строя кривые, представляющие соответствующие сечения поверхности мыльной пленки. Полученные таким путем наклоны нужно внести в выражения (д) для компонент касательного напряжения. Точность этой операции можно проверить путем вычисления результирующей всех касательных напряжений, распределенных по поперечному сечению. Эта результирующая должна быть равна изгибающей силе, приложенной к концу консоли.

Эксперименты показывают, что использование метода мыльной пленки дает возможность добиться удовлетворительной точности при определении напряжения. Результаты, полученные для двутаврового сечения¹), показаны на рис. 200. Из него можно видеть, что обычные допущения элементарной теории изгиба о том, что стенка двутавровой балки воспринимает бо́льшую часть поперечной силы и что касательные напряжения по толщине стенки постоянны, полностью подтверждается. Максимальное касательное напряжение в нейтральной плоскости хорошо согласуется с тем, которое дает элементарная теория. Компонента т_{их} в стенке

¹⁾ Для такого симметричного случая достаточно исследовать лишь четверть поперечного сечения.

практически равна нулю и достигает максимума вблизи входящего угла. Величина этого максимума зависит от радиуса закругления входящего угла. При принятых пропорциях это значение составляет лишь около половины максимального напряжения τ_{xz} в нейтральной плоскости. На рис. 200 показаны линии равных касательных напряжений, дающие отношения этих напряжений к среднему касательному напряжению P/A.

Для случая двутавровой балки были изучены местные напряжения у входящего угла. Радиус закругления входящего угла увеличивался шагами и для каждого значения радиуса строились горизонтали. Таким путем было показано, что максимальное напряжение в углу равно максимальному напряжению в стенке, когда радиус закругления составляет около одной шестнадцатой толщины стенки.

§ 129. Перемещения

Когда компоненты напряжений найдены, перемещения u, vи w можно определить тем же путем, как это делалось в случае чистого изгиба (см. стр. 294). Рассмотрим кривую прогибов консоли. Кривизны этой линии в плоскостях xz и yz с достаточной степенью точности определяются значениями производных $\partial^2 u/\partial z^2$ и $\partial^2 v/\partial z^2$ при x = y = 0. Эти величины можно найти из уравнений

$$\frac{\partial^2 u}{\partial z^2} = \frac{\partial \gamma_{xz}}{\partial z} - \frac{\partial \varepsilon_z}{\partial x} = \frac{1}{G} \frac{\partial \tau_{xz}}{\partial z} - \frac{1}{E} \frac{\partial \sigma_z}{\partial x} = \frac{P(l-z)}{EI},$$

$$\frac{\partial^2 v}{\partial z^2} = \frac{\partial \gamma_{yz}}{\partial z} - \frac{\partial \varepsilon_z}{\partial y} = 0.$$
(a)

§ 130]

Мы видим, что ось консоли изгибается в плоскости xz, в которой действует нагрузка, и кривизна в каждой точке пропорциональна изгибающему моменту в этой точке, как это обычно предполагается в элементарной теории изгиба. Интегрируя первое из уравнений (a), находим

$$u = \frac{Plz^2}{2EI} - \frac{Pz^3}{6EI} + cz + d,$$
 (6)

где c и d — постоянные интегрирования, которые следует определить из условий на заданном конце консоли. Если закреплен конец осевой линии, величины u и du/dz равны нулю при z = 0, и следовательно, равны нулю постоянные c и d в уравнении (б).

Поперечные сечения балки не остаются плоскими. Под действием касательных напряжений они искривляются. Угол наклона элемента поверхности депланированного поперечного сечения, расположенного в центре тяжести, к кривой прогибов оси балки равен

$$\frac{\pi}{2} - \frac{(\tau_{xz})_{x=0, y=0}}{G}$$

и может быть найден, если известны касательные напряжения в центре тяжести сечения.

§ 130. Дальнейшие исследования изгиба брусьев

В предыдущих параграфах мы рассматривали задачу об нэгибе консоли, заделанной на одном конце и нагруженной на другом конце поперечной силой. Полученные решения являются точными, если внешние усилия распределены по концевым поперечным сечениям таким же образом, как и напряжения σ_z , τ_{xz} , τ_{yz} , найденные в решениях. Если это условие не выполняется, в распределении напряжений вблизи концов балки появятся местные отклонения. На основании принципа Сен-Венана мы можем, однако, предположить, что на достаточном удалении от концов, скажем на расстоянии, большем размеров поперечного сечения балки, наши решения будут достаточно точными. Используя тот же принцип Сен-Венана, можно распространить полученные выше решения на другие случаи нагружения и опирания балки. Мы можем с достаточной точностью предположить, что напряжения в любом поперечном сечении балки, достаточно удаленном от мест действия нагрузок, зависят только от величины изгибающего момента и поперечной силы в этом поперечном сечении и могут быть определены путем суперпозиции решений, полученных ранее для случая консоли.

Если изгибающие усилия наклонены по отношению к главным осям поперечного сечения балки, то их всегда можно разложить на две составляющие, действующие в направлении главных осей, и далее можно раздельно рассматривать изгиб в каждой из двух главных плоскостей. Полные напряжения и перемещения можно после этого получить с помощью принципа суперпозиции.

Вблизи точек приложения внешних усилий в распределении напряжений имеются отклонения, которые обсуждались ранее для частного случая узкого прямоугольного поперечного сечения (см. § 40). Подобные исследования для других типов поперечных сечений показывают, что эти отклонения носят местный характер¹).

Задача об изгибе решена также для некоторых видов распределенной нагрузки²). Показано, что в таких случаях ось балки обычно удлиняется или укорачивается так же, как и в рассмотренном ранее случае узкого прямоугольного поперечного сечения (см. § 22). Кривизна оси в этих случаях уже не пропорциональна изгибающему моменту, однако требуемые поправки малы и в практических задачах ими можно пренебречь. Например, в случае круглой балки, изгибаемой нагрузкой от собственного веса³), кривизна на заделанном конце определяется формулой

$$\frac{1}{r} = \frac{M}{EI} \left[1 - \frac{7 + 12v + 4v^2}{6(1+v)} \frac{a^2}{l^2} \right],$$

где a — радиус контура поперечного сечения, а l — длина консоли. Второй член в скобках представляет собой поправку к кривизне, вызванную распределенной нагрузкой. Эта поправка является малой величиной порядка a^2/l^2 . Этот вывод сохраняет силу и для балок других поперечных сечений, изгибаемых нагрузкой от собственного веса ⁴).

¹) См. L. Pochgammer, Untersuchungen über das Gleichgewicht des elastischen Stabes, Kiel, 1879. См. также статью J. Dougall, Trans. Roy. Soc. Edinburgh **49**, 895 (1914).

²) J. H. Michell, Quart, J. Math. **32** (1901); см. также К. Pearson, Quart. J. Math. **24** (1889); К. Pearson, L. N. G. Filon, Quart. J. Math. **31** (1900).

³⁾ Э́ту задачу рассматривал Ляв в упомянутой выше книге.

⁴⁾ Случай консоли эллиптического поперечного сечения рассмотрел А. М. Хлитчиев, Известия Петербургского политехнического института, т. 23, 1915, стр. 441.

Глава 12

ОСЕСИММЕТРИЧНЫЕ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ В ТЕЛАХ ВРАЩЕНИЯ¹)

§ 131. Общие уравнения

Нескольно задач о телах вращения, деформируемых нагрузками, симметричными относительно оси, встречались в предыдущих главах. Простейшими примерами являются круглый цилиндр под действием равномерного внешнего давления (§ 28) и вращающийся круглый диск (§ 32). Это примеры *осесимметричных* задач, в которых отсутствует *кручение*. В противоположность им мы рассматривали также кручение кругового цилиндра (см. задачу 2, стр. 354), в которой касательные напряжения зависят только от одной цилиндрической координаты *r*. В задаче о кручении круглых валов переменного диаметра (§ 119) не равные нулю компоненты напряжения $\tau_{r\theta}$ и $\tau_{\theta z}$ также являются функциями только *r* и *z* и не зависят от θ .

Данная глава (за исключением двух последних §§ 146 и 147) посвящена осесимметричным задачам, в которых отсутствует кручение. В цилиндрических координатах r, θ , z с соответствующими компонентами перемещения u, v, w компонента v обращается в нуль, а компоненты u и w не зависят от θ . Тогда компоненты напряжения также не зависят от θ , а двс из них $\tau_{r\theta}$ и $\tau_{\theta z}$ равны нулю. Это можно видеть из уравнений (179), которые представляют собой общие зависимости между деформациями и перемещениями в цилиндрических координатах. В рассматриваемом случае эти зависимости приводятся к виду

$$\varepsilon_r = \frac{\partial u}{\partial r}$$
, $\varepsilon_0 = \frac{u}{r}$, $\varepsilon_z = \frac{\partial w}{\partial z}$, $\gamma_{rz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}$. (187)

Уравнения равновесия элемента (180) приводятся к следующим:

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0, \qquad \frac{\partial r_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = 0.$$
(188)

Для многих задач оказывается удобным вновь ввести функцию напряжений²) ф.

¹) Более полное изложение этой теории дается в книгах А. И. Лурье «Пространственные задачи теории упругости». ГТТИ, М. 1955 и «Теория упругости», Наука, М. 1970 (Прим. ред.)

²) Это функция напряжений Лява. См. А. Ляв, Математическая теория упругости, ОНТИ, 1935, стр. 279. Обзор различных функций, используемых для напряжений и перемещений, дал Маргер (K. Marguerre, Z. Angew. Math. Mech. 35, 242—263 (1955)).

С помощью подстановки можно убедиться, что уравнения (188) удовлетворяются, если принять

$$\sigma_{r} = \frac{\partial}{\partial z} \left(\nu \nabla^{2} \varphi - \frac{\partial^{2} \varphi}{\partial r^{2}} \right), \quad \sigma_{\theta} = \frac{\partial}{\partial z} \left(\nu \nabla^{2} \varphi - \frac{1}{r} \frac{\partial \varphi}{\partial r} \right),$$

$$\sigma_{z} = \frac{\partial}{\partial z} \left[(2 - \nu) \nabla^{2} \varphi - \frac{\partial^{2} \varphi}{\partial z^{2}} \right], \quad (189)$$

$$\tau_{rz} = \frac{\partial}{\partial r} \left[(1 - \nu) \nabla^{2} \varphi - \frac{\partial^{2} \varphi}{\partial z^{2}} \right].$$

При этом функция напряжений о удовлетворяет уравнению

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}\right) \left(\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r}\frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2}\right) = \nabla^2 \nabla^2 \varphi = 0.$$
(190)

Символ ∇² обозначает оператор

$$\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}, \qquad (a)$$

что соответствует оператору Лапласа

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

в прямоугольных координатах (см. уравнение (и) § 27, стр. 85). Следует заметить, что функция напряжений φ не зависит от θ , в силу чего третий член в (а) обращается в нуль, если опера-тор ∇^2 применяется к функции φ . Легко найти перемещения u, v, w, соответствующие напряже-ниям, выраженным формулами (189). Для u из формул (187), (180) и (а) имсеси

(189) и (а) имеем

$$u = r\varepsilon_{\theta} = \frac{r}{E} \left[\sigma_{\theta} - \nu \left(\boldsymbol{\sigma}_{r} + \boldsymbol{\sigma}_{z} \right) \right] = -\frac{1 + \nu}{E} \frac{\partial^{2} \boldsymbol{\varphi}}{\partial r \, \partial z}.$$
(190')

Далее с помощью третьего уравнения (187) находим $\partial w/\partial z$, а с помощью четвертого — $\partial w/\partial r$. Отсюда

$$E \frac{\partial \omega}{\partial z} = \sigma_z - \nu \left(\sigma_r + \sigma_\theta\right) = \frac{\partial}{\partial z} \left[2 \left(1 - \nu^2\right) \nabla^2 \varphi - (1 + \nu) \frac{\partial^2 \varphi}{\partial z^2} \right].$$

Следовательно,

$$E\boldsymbol{w} = (1+\nu) \left[2 (1-\nu) \nabla^2 \varphi - \frac{\partial^2 \varphi}{\partial z^2} \right] + f(r), \qquad (6)$$

где f(r)-произвольная функция только одной переменной r. Подставляя выражение (190') в четвертое уравнение (187), получаем

$$G\frac{\partial \omega}{\partial r} = \tau_{rz} - G\frac{\partial u}{\partial z} = \frac{\partial}{\partial r} \left[(1 - v) \nabla^2 \varphi - \frac{1}{2} \frac{\partial^2 \varphi}{\partial z} \right].$$

Отсюда, учитывая, что 2(1 + v)G = E, находим

$$E\omega = (1 + v) \left[2 (1 - v) \nabla^2 \varphi - \frac{\partial^2 \varphi}{\partial z^2} \right] + g(z), \qquad (B)$$

где g(z)— произвольная функция только одной переменной z. Но поскольку выражения (б) и (в) должны совпадать, функции f(r) и g(z) должны быть равны во всех точках области. Отсюда

$$f(r) = g(z) = A.$$

Эта постоянная в выражениях (б) или (в) соответствует осевому перемещению абсолютно твердого тела и ее можно отбросить, подразумевая, что если этого потребуют условия закрепления, то постоянную A можно будет восстано-

вить. При этом компоненты перемещения, согласно (190), а также (б) или (в) выражаются в виде

$$2Gu = -\frac{\partial^2 \varphi}{\partial r \, \partial z}, \quad 2Gw = 2 (1 - v) \nabla^2 \varphi - \frac{\partial^2 \varphi}{\partial z^2}.$$
(190")

Если за отправный пункт принять перемещения, выраженные таким образом через функцию ф, удовлетворяющую дифферен-

циальному уравнению (190), то из них можно определить компоненты деформации (187), а затем компоненты напряжения (189). При этом не возникает вопроса о совместности, поскольку компоненты деформации выводятся непосредственно из компонент перемещения (190"). Любую задачу можно считать решенной, если мы можем найти такую функцию ф, которая удовлетворяет также граничным условиям. Несколько задач такого рода рассматриваются в §§ 133—144. В § 145 описываются другие методы.

В некоторых случаях полезно выразить уравнение (190) не в цилиндрических координатах r и z, а в полярных координатах R и ψ (рис. 201). Такое преобразование легко осуществить с помощью формул § 27. Получаем

$$\frac{\partial^2}{\partial r^2} + \frac{\partial^2}{\partial z^2} = \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial \psi^2},$$
$$\frac{1}{r} \frac{\partial}{\partial r} = \frac{1}{R \sin \psi} \left(\frac{\partial}{\partial R} \sin \psi + \frac{\cos \psi}{R} \frac{\partial}{\partial \psi} \right) = \frac{1}{R} \frac{\partial}{\partial R} + \frac{\operatorname{ctg} \psi}{R^2} \frac{\partial}{\partial \psi}.$$

Подставляя в (190), имеем

$$\left(\frac{\partial^{2}}{\partial R^{2}} + \frac{2}{R}\frac{\partial}{\partial R} + \frac{1}{R^{2}}\operatorname{ctg}\psi\frac{\partial}{\partial\psi} + \frac{1}{R^{2}}\frac{\partial^{2}}{\partial\psi^{2}}\right)\left(\frac{\partial^{2}\varphi}{\partial R^{2}} + \frac{2}{R}\frac{\partial\varphi}{\partial R} + \frac{1}{R^{2}}\operatorname{ctg}\psi\frac{\partial\varphi}{\partial\psi} + \frac{1}{R^{2}}\frac{\partial^{2}\varphi}{\partial\psi^{2}}\right) = 0.$$
(191)

В последующих параграфах мы применим некоторые решения этого уравнения к исследованию конкретных задач с осевой симметрией. осесимметричные напряжения и деформации [гл. 12

§ 132. Решение в полиномах

Рассмотрим решения уравнения (191), которые в то же время являются решениями уравнения Лапласа

$$\frac{\partial^2 \varphi}{\partial R^2} + \frac{2}{R} \frac{\partial \varphi}{\partial R} + \frac{1}{R^2} \operatorname{ctg} \psi \frac{\partial \varphi}{\partial \psi} + \frac{1}{R^2} \frac{\partial^2 \varphi}{\partial \psi^2} = 0.$$
(192)

Частное решение уравнения Лапласа можно искать в форме

$$\varphi_n = R^n \Psi_n, \qquad (a)$$

где Ψ_n — функция только одной переменной ψ . Подставляя (а) в уравнение (192), получаем следующее обыкновенное дифференциальное уравнение для функции Ψ_n :

$$\frac{1}{\sin\psi}\frac{d}{d\psi}\left(\sin\psi\frac{d\Psi_n}{d\psi}\right) + n\left(n+1\right)\Psi_n = 0.$$
 (6)

Если обозначить $\cos \psi$ через x и принять x за новую независимую переменную, то уравнение (б) примет вид

$$(1-x^2)\frac{d^2\Psi_n}{dx^2} - 2x\frac{d\Psi_n}{dx} + n(n+1)\Psi_n = 0.$$
(193)

Это уравнение Лежандра¹). Два его фундаментальных решения, для обозначения которых используются обычно символы $P_n(x)$ и $Q_n(x)$, являются функциями Лежандра первого и второго рода. При $n = 0, 1, 2, 3 \ldots$ функции $P_n(x)$ представляют собой полиномы Лежандра

$$\begin{split} P_{0}(x) &= 1, \quad P_{1}(x) = x, \quad P_{2}(x) = \frac{1}{2} (3x^{2} - 1), \\ P_{3}(x) &= \frac{1}{2} (5x^{3} - 3x), \qquad P_{4}(x) = \frac{1}{8} (35x^{4} - 30x^{2} + 3), \\ P_{5}(x) &= \frac{1}{8} (63x^{5} - 70x^{3} + 15x) \text{ H t. g.} \end{split}$$

Используя эти полиномы в качестве Ψ_n в формуле (а), получаем соответствующие решения уравнения (192). Каждое из этих решений можно умножить на произвольную постоянную A_n . Возвращаясь к переменным r и z по формулам

$$x = \cos \psi$$
, $Rx = z$, $R = \sqrt{r^2 + z^2}$,

¹) См., например, F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, 1962. [См. также, например, В. И. Смирнов, Курс высшей математики, т. III, М.—Л., Гостехиздат, 1949. (Прим. перев.)]

получаем полиномиальные решения уравнения (192) в форме

$$\begin{aligned} \varphi_{0} &= A_{0}, \\ \varphi_{1} &= A_{1}z, \\ \varphi_{2} &= A_{2} \left[z^{2} - \frac{1}{3} \left(r^{2} + z^{2} \right) \right], \\ \varphi_{3} &= A_{3} \left[z^{3} - \frac{3}{5} z \left(r^{2} + z^{2} \right) \right], \\ \varphi_{4} &= A_{4} \left[z^{4} - \frac{6}{7} z^{2} \left(r^{2} + z^{2} \right) + \frac{3}{35} \left(r^{2} + z^{2} \right)^{2} \right], \\ \varphi_{5} &= A_{5} \left[z^{5} - \frac{10}{9} z^{3} \left(r^{2} + z^{2} \right) + \frac{5}{21} z \left(r^{2} + z^{2} \right)^{2} \right], \end{aligned}$$
(194)

Эти полиномы являются также решениями уравнения (191). Из них мы можем получить новые решения уравнения (191), которые не являются решениями уравнения (192). Если $R^n \Psi_n$ служит решением уравнения (192), можно показать, что $R^{n+2}\Psi_n$ также будет решением уравнения (191). Выполняя операции, указанные в уравнении (191) в скобках, получаем

$$\left(\frac{\partial^2}{\partial R^2} + \frac{2}{R}\frac{\partial}{\partial R} + \frac{1}{R^2}\operatorname{ctg}\psi\frac{\partial}{\partial\psi} + \frac{1}{R^2}\frac{\partial^2}{\partial\psi^2}\right)R^{n+2}\Psi_n = 2(2n+3)R^n\Psi_n.$$
 (B)

Повторяя ту же операцию снова, как показано в уравнении (191), получаем нуль, так как правая часть выражения (в) является решением уравнения (192). Следовательно, $R^{n+2}\Psi_n$ является решением уравнения (191). Умножая решения (194) на $R^2 = r^2 + z^2$, мы получаем следующие новые решения:

§ 133. Изгиб круглой пластинки

С помощью приведенных решений можно исследовать некоторые задачи, представляющие практический интерес. В их числе находятся различные случаи изгиба симметрично нагруженных круглых пластинок (рис. 202). Беря, например, из (194) и (195) полиномы третьей степени, получаем функцию напряжений

$$\varphi = a_3 \left(2z^3 - 3r^2 z \right) + b_3 \left(r^2 z + z^3 \right).$$
 (a)

Подставляя это выражение в соотношения (189), находим

$$\sigma_{r} = 6a_{3} + (10v - 2)b_{3}, \qquad \sigma_{\theta} = 6a_{3} + (10v - 2)b_{3}, \qquad (196)$$

$$\sigma_{z} = -12a_{3} + (14 - 10v)b_{3}, \qquad \tau_{rz} = 0.$$

Таким образом, компоненты напряжения по всей плите являются постоянными. С помощью соответствующего подбора постоянных аз и b_3 мы можем определить напряжения в пластинке, когда на ее поверхности заданы любые постоянные значения σ_z и σ_r . Возьмем теперь из (194) и (195) полиномы четвертой степени,

что дает следующую функцию напряжений:

$$\varphi = a_4 \left(8z^4 - 24r^2z^2 + 3r^4 \right) + b_4 \left(2z^4 + r^2z^2 - r^4 \right). \tag{6}$$

Подставляя ее в формулы (189), находим

$$\begin{array}{c} \sigma_r = 96a_4z + 4b_4(14v - 1)z, \\ \sigma_z = -192a_4z + 4b_4(16 - 14v)z, (197) \\ \tau_{rz} = 96a_4r - 2b_4(16 - 14v)r. \\ \Pi ринимая \qquad 96a_4 - 2b_4(16 - 14v) = 0, \\ \Pi \rho инимая \qquad 96a_4 - 2b_4(16 - 14v) = 0, \\ \eta \rho y чаем \\ \rho_{HC. 202.} \qquad \sigma_z = \tau_{rz} = 0, \quad \sigma_r = 28(1 + v)b_4z. \quad (B) \end{array}$$

Если z — расстояние от срединной плоскости пластинки, решение (в) определяет случай чистого изгиба пластинки моментами, равно-

мерно распределенными вдоль ее границы. Чтобы получить решение для круглой пластинки при нагру-жении равномерной нагрузкой, возьмем функцию напряжений в форме полинома шестой степени. Рассуждая так же, как и прежде, находим

$$\varphi = \frac{1}{3} a_6 \left(16z^6 - 120z^4r^2 + 90z^2r^4 - 5r^6 \right) + b_6 \left(8z^6 - 16z^4r^2 - 21z^2r^4 + 3r^6 \right).$$

После подстановки функции ф в (189) получаем следующие выражения для напряжений:

$$\begin{split} \sigma_{r} &= a_{6} \left(320z^{3} - 720r^{2}z \right) + b_{6} \left\{ 64 \left(2 + 11v \right) z^{3} + \left[504 - 48 \cdot 22v \right] r^{2}z \right\}, \\ \sigma_{z} &= a_{6} \left(- 640z^{3} + 960r^{2}z \right) + b_{6} \left\{ \left[- 960 + 32 \cdot 22 \left(2 - v \right) \right] z^{3} + \left[384 - 48 \cdot 22 \left(2 - v \right) \right] r^{2}z \right\}, \\ \tau_{rz} &= a_{6} \left(960rz^{2} - 240r^{3} \right) + b_{6} \left\{ \left[- 672 + 48 \cdot 22v \right] z^{2}r + \left[432 - 12 \cdot 22v \right] r^{3} \right\}. \end{split}$$

К этим напряжениям добавим напряжения

$$\sigma_r = 96a_4z, \quad \sigma_z = -192a_4z, \quad \tau_{rz} = 96a_4r,$$

полученные из (197), если положить $b_4 = 0$, а также равномерное растяжение в направлении z, т. е. $\sigma_z = b$, которое получается из (196). Таким образом, приходим к выражениям для компонент напряжения, содержащим четыре постоянные а, b, a, b. Эти постоянные можно подобрать таким образом, чтобы удовлетворить граничным условиям на верхней и нижней поверхностях пластинки

(рис. 202). Названные условия имеют вид

$$\sigma_z = 0$$
 при $z = c$, $\sigma_z = -q$ при $z = -c$,
 $\tau_{rz} = 0$ при $z = c$, $\tau_{rz} = 0$ при $z = -c$. (r)

Здесь через q обозначена интенсивность равномерно распределенной нагрузки, а через 2c — толщина пластинки. Подставляя в эти уравнения выражения для компонент напряжения, определяем четыре постоянные a_6 , b_6 , a_4 , b. Используя эти значения, получаем выражения для компонент напряжения, удовлетворяющие условиям (Γ), в виде

$$\begin{split} \sigma_r &= q \left[\frac{2 + v}{8} \frac{z^3}{c^3} - \frac{3}{32} \frac{(3 + v)}{c^3} \frac{r^2 z}{c^3} - \frac{3}{8} \frac{z}{c} \right], \\ \sigma_z &= q \left(-\frac{z^3}{4c^3} + \frac{3}{4} \frac{z}{c} - \frac{1}{2} \right), \\ \tau_{rz} &= -\frac{3qr}{8c^3} (c^2 - z^2). \end{split}$$
(A)

Можно убедиться, что напряжения σ_z и τ_{rz} распределяются в точности таким же образом, как в случае равномерно нагруженной балки узкого прямоугольного поперечного сечения (§ 22). Радиальные напряжения σ_r выражаются нечетной функцией от z и на границе пластинки дают изгибающие моменты, равномерно распределенные вдоль границы. Чтобы получить решение для свободно опертой пластинки (рис. 202), наложим на (д) решение (в) для чистого изгиба и выберем постоянную b_4 так, чтобы получить на границе

$$\int_{-c}^{c} \sigma_r z \, dz = 0.$$

Тогда окончательное выражение для о, примет вид

$$\sigma_{r} = q \left[\frac{2+\nu}{8} \frac{z^{3}}{c^{3}} - \frac{3(3+\nu)}{32} \frac{r^{2}z}{c^{3}} - \frac{3}{8} \frac{2+\nu}{5} \frac{z}{c} + \frac{3(3+\nu)}{32} \frac{a^{2}z}{c^{3}} \right], \quad (193)$$

а выражение для этого напряжения в центре пластинки

$$(\sigma_r)_{r=0} = q \left[\frac{2+\nu}{8} \frac{z^3}{c^3} - \frac{3}{8} \frac{2+\nu}{5} \frac{z}{c} + \frac{3}{32} \frac{(3+\nu)}{32} \frac{a^2 z}{c^3} \right].$$
 (e)

Элементарная теория изгиба пластинок, основанная на допущении, что линейные элементы пластинки, перпендикулярные *срединной плоскости z = 0*, остаются прямолинейными и нормальными к изогнутой срединной поверхности пластинки¹), дает следующую

§ 133]

¹) Это предположение аналогично гипотезе плоских сечений в теории изгиба балок. Точную теорию изгиба пластинок развили Мичелл (J. H. Michell, Proc. London Math. Soc. 31, 114 (1899)) и Ляв (А. Е. Ляв, Математическая теория унругости, ГТТИ, 1935).

формулу для определения радиальных напряжений в центре:

$$\sigma_r = \frac{3(3+\nu)}{32} \frac{a^2 z}{c^3} q.$$
 (ж)

Сравнивая эту формулу с формулой (е), видим, что добавочные члены в точном решении малы, если толщина пластинки 2*с* мала по сравнению с радиусом *а*.

Следует отметить, что с помощью наложения чистого изгиба мы сняли изгибающие моменты вдоль границы пластинки. Однако существует еще радиальное напряжение на границе, определяемое выражением

$$(\sigma_r)_{r=a} = q \left(\frac{2+\nu}{8} \frac{z^3}{c^3} - \frac{3}{8} \frac{2+\nu}{5} \frac{z}{c} \right). \tag{H}$$

Результирующая этих напряжений на единицу длины границы и момент от них равны нулю. Отсюда, в соответствии с принципом Сен-Венгна, можно утверждать, что устранение этих напряжений незначительно повлияет на распределение напряжений в пластинке на некотором расстоянии от края.

Беря для функции напряжений полиномы более высокой степени чем шестая, мы можем исследовать случаи изгиба круглой пластинки при неравномерно распределенной нагрузке. Вводя функции $Q_n(x)$ так же, как $P_n(x)$ в § 132, можно найти решения для круглой пластинки с отверстием в центре¹). Все эти решения удовлетворительны лишь тогда, когда прогибы пластинки остаются малыми по сравнению с толщиной. Для больших прогибов следует учитывать растяжение срединной плоскости пластинки²).

§ 134. Трехмерная задача о вращающемся диске

В предшествующих рассуждениях предполагалось (§ 32), что напряжения по толщине диска не меняются. Рассмотрим теперь ту же задачу, предполагая лишь, что распределение напряжений симметрично по отношению к оси вращения. Дифференциальные уравнения равновесия получаются в этом случае с помощью введения в уравнения (188) центробежной силы. Тогда

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} + \rho \omega^2 r = 0, \qquad \frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = 0, \qquad (199)$$

где p-масса единицы объема и w-угловая скорость диска.

Уравнения совместности также следует изменить. Вместо системы (126) будем иметь три уравнения типа (ж) и три уравнения типа (и) из § 85.

390

¹) Ряд решений для симметрично нагруженных круглых пластинок рассмотрел А. Коробов, Известия Киевского политехнического института, 1913. Подобные решения были получены независимо Тимпе (А. Т і m р e, Z. Angew. Math. Mech. 4 (1924)).

²⁾ См. Kelvin, Tait, Natural Philosophy, т. 2, стр. 171, 1903.

Подставляя в эти уравнения компоненты объемной силы

$$X = \rho \omega^2 x, \quad Y = \rho \omega^2 y, \quad Z = 0.$$
 (a)

находим, что последние три уравнения в системе (126), содержащие компоненты касательного напряжения, остаются без изменения, тогда как первые три уравнения принимают вид

$$\nabla^{2}\sigma_{r} - \frac{2}{r^{2}}(\sigma_{r} - \sigma_{\theta}) + \frac{1}{1 + \nu} \frac{\partial^{2}\Theta}{\partial r^{2}} = -\frac{2\rho\omega^{2}}{1 - \nu},$$

$$\nabla^{2}\sigma_{\theta} + \frac{2}{r^{2}}(\sigma_{r} - \sigma_{\theta}) + \frac{1}{1 + \nu} \frac{1}{r} \frac{\partial\Theta}{\partial r} = -\frac{2\rho\omega^{2}}{1 - \nu},$$

$$\nabla^{2}\sigma_{z} + \frac{1}{1 + \nu} \frac{\partial^{2}\Theta}{\partial r^{2}} = -\frac{2\nu\rho\omega^{2}}{1 - \nu}.$$
(6)

Начнем с получения частного решения уравнений (199), удовлетворяющего условиям совместности. На это решение мы наложим решения в форме полиномов (194) и (195) и подберем постоянные в этих полиномах таким образом, чтобы удовлетворить граничным условиям задачи. Примем частное решение в следующем виле:

$$\sigma_r = Br^2 + Dz^2, \quad \sigma_z = Ar^2, \quad \sigma_\theta = Cr^2 + Dz^2, \quad \tau_{rz} = 0.$$
 (B)

Можно убедиться, что эти выражения удовлетворяют второму из уравнений равновесия. Они удовлетворяют также уравнениям совместности, которые содержат компоненты касательного напряжения. Остается определить постоянные А, В. С, D таким образом, чтобы удовлетворить четырем оставшимся уравнениям, а именно, первому из уравнений (199) и уравнениям (б). Подставляя в эти уравнения выражения (в), находим

$$A = \frac{\rho \omega^2 (1+3\nu)}{6\nu}, \quad B = -\frac{\rho \omega^2}{3}, \quad C = 0, \quad D = -\frac{\rho \omega^2 (1+2\nu) (1+\nu)}{6\nu (1-\nu)}.$$

Частное решение при этом принимает вид

$$\sigma_{r} = -\frac{\rho\omega^{2}}{3}r^{2} - \frac{\rho\omega^{2}(1+2\nu)(1+\nu)}{6\nu(1-\nu)}z^{2}, \quad \sigma_{z} = \frac{\rho\omega^{2}(1+3\nu)}{6\nu}r^{2}, \quad (200)$$

$$\sigma_{\theta} = -\frac{\rho\omega^{2}(1+2\nu)(1+\nu)}{6\nu(1-\nu)}z^{2}, \quad \tau_{rz} = 0.$$

Это решение можно использовать при исследовании осесимметричных напряжений в любом теле вращения, вращающемся относительно оси.

В случае круглого диска постоянной толщины мы налагаем на решение (200) распределение напряжений, полученное из функции напряжений в форме полинома пятой степени (см. уравнения (194) и (195))

$$\varphi = a_{\mathbf{5}} \left(8z^{\mathbf{5}} - 40r^{2}z^{\mathbf{3}} + 15r^{4}z \right) + b_{\mathbf{5}} \left(2z^{\mathbf{5}} - r^{2}z^{\mathbf{3}} - 3r^{4}z \right). \tag{(r)}$$

Далее из равенств (189) находим

$$\begin{split} \sigma_r &= -a_5 (180r^2 - 240z^2) + b_5 [(36 - 54v) r^2 + (1 + 18v) 6z^2], \\ \sigma_z &= -a_5 (-240r^2 + 480z^2) + b_5 [(96 - 108v) z^2 + (-102 + 54v) r^2], \\ \sigma_\theta &= a_5 (-60r^2 + 240z^2) + b_5 [(6 + 108v) z^2 + (12 - 54v) r^2]. \\ \tau_{rz} &= 480a_5rz - b_5 (96 - 108v) rz. \end{split}$$

Добавляя эти напряжения к напряжениям, определяемым по формулам (200), и определяя постоянные а5 и b5 таким образом, чтобы обратить в нуль результирующие напряжений τ_{rz} и σ_z, получаем

$$\sigma_r = -\rho\omega^2 \left[\frac{\nu(1+\nu)}{2(1-\nu)} z^2 + \frac{3+\nu}{8} r^2 \right], \qquad \sigma_\theta = -\rho\omega^2 \left[\frac{(1+3\nu)}{8} r^2 + \frac{\nu(1+\nu)}{2(1-\nu)} z^2 \right].$$
(e)

Чтобы снять результирующее радиальное сжатие вдоль границы, т. е. добиться выполнения условия

$$\left(\int_{-c}^{c}\sigma_{r}\,dz\right)_{r=a}=0,$$

налюжим на напряжения (е) однородное радиальное растяжение величиной

$$\frac{\rho\omega^2}{8}(3+\nu)\,a^2+\rho\omega^2\,\frac{\nu\,(1+\nu)}{2\,(1-\nu)}\frac{c^2}{3}.$$

Тогда полные напряжения определятся формулами¹)

$$\sigma_{r} = \rho \omega^{2} \left[\frac{3+\nu}{8} (a^{2}-r^{2}) + \frac{\nu (1+\nu)}{6(1-\nu)} (c^{2}-3z^{2}) \right],$$

$$\sigma_{\theta} = \rho \omega^{2} \left[\frac{3+\nu}{8} a^{2} - \frac{1+3\nu}{8} r^{2} + \frac{\nu (1+\nu)}{6(1-\nu)} (c^{2}-3z^{2}) \right],$$
(201)

$$\sigma_{z} = 0, \quad \tau_{rz} = 0.$$

Сравнивая эти выражения с предыдущим решением (54), мы обнаруживаем дополнительные члены с множителем ²) $c^2 - 3z^3$. В случае тонкого диска соответствующие напряжения малы, а их результирующая по толщию диска равна нулю. Если контур диска свободен от внешних сил, решение (201) представляет напряженное состояние в частях диска на некотором расстоянии от края.

Распределение напряжений во вращающемся диске ь виде плоского эллипсоида вращения исследовал Кри³).

§ 135. Сила, приложенная в некоторой точке бесконечного тела

Если сила приложена в начале координат, то некоторые или даже все компоненты напряжения должны иметь в этой точке особенности. Соответствующие решения можно получить, приняв за решение уравнения (192) равенство (а) на стр. 386. Считая значение n уже выбранным, сравним равенство (а) с тем, которое получается, если в (а) заменить n на -n-1, т. е. с равенством

$$\varphi_{-n-1} = R^{-n-1} \Psi_{-n-1}.$$
 (a)

Коэффициент n(n+1) в уравнении (б) на стр. 386 станет равным (-n-1)(-n), и следовательно, будет иметь для Ψ_{-n-1} то же значение, что и для Ψ_n . Но тогда вместо равенства (а) можно

392

¹⁾ Другим путем эти формулы вывел А. Ляв в упоминавшейся книге на стр. 158—159. Там приведены также выражения для перемещений и добавочные члены, вносимые центральным отверстием.

²) Эти члены имеют ту же природу, что и члены с z^2 , полученные в § 98. Уравнения (201) представляют плоское напряженное состояние, поскольку σ_z и τ_{rz} обращаются в нуль. Объемные силы (в данном случае центробежные силы), не учтенные в § 98, коль скоро они не зависят от z, не меняют общих выводов.

³) С. Сhree, Proc. Roy. Soc. (London) 58, 39 (1895). Для общего случая эллипсоида решение дали Голдберг и Садовский (М. A. Goldberg, M. Sadowsky, J. Appl. Mech. 26, 549—552 (1959)).

§ 135]

записать

$$\varphi_{-n-1} = R^{-n-1} \Psi_n. \tag{6}$$

Подставляя $P_n(x)$ вместо Ψ_n (см. стр. 387), находим следующее семейство решений уравнений (192) и (191):

$$\begin{aligned} \varphi_1 &= A_1 \left(r^2 + z^2 \right)^{-1/2}, \\ \varphi_2 &= A_2 z \left(r^2 + z^2 \right)^{-3/2}, \\ \varphi_3 &= A_3 \left[z^2 \left(r^2 + z^2 \right)^{-5/2} - \frac{1}{3} \left(r^2 + z^2 \right)^{-3/2} \right], \\ & \dots \\ \\$$

которые являются также решениями уравнения (191). Умножая уравнения (202) на $r^2 + z^2$ (см. стр. 387), получаем другую систему решений уравнения (191), а именно

$$\varphi_{1} = B_{1} (r^{2} + z^{2})^{1/2}, \qquad (203)$$

$$\varphi_{2} = B_{2} z (r^{2} + z^{2})^{-1/2}, \qquad \dots \qquad \dots \qquad \dots$$

Каждое из решений (202) и (203), а также любая их линейная комбинация, могут быть выбраны в качестве функции напряжений. Путем надлежащего подбора постоянных A_1 , A_2 , ..., B_1 , B_2 , ... можно находить решения различных задач.

Для случая сосредоточенной силы возьмем первое из решений (203). Если опустить индексы, то функция напряжений принимает вид

$$\varphi = B \, (r^2 + z^2)^{1/2},$$

где *В*—постоянная, которая подлежит определению. Подставляя это значение φ в формулы (189), находим соответствующие компоненты напряжения

$$\sigma_{r} = B \left[(1 - 2v) z (r^{2} + z^{2})^{-3/2} - 3r^{2} z (r^{2} + z^{2})^{-5/2} \right],$$

$$\sigma_{\theta} = B (1 - 2v) z (r^{2} + z^{2})^{-3/2},$$

$$\sigma_{z} = -B \left[(1 - 2v) z (r^{2} + z^{2})^{-3/2} + 3z^{3} (r^{2} + z^{2})^{-5/2} \right],$$

$$\tau_{rz} = -B \left[(1 - 2v) r (r^{2} + z^{2})^{-3/2} + 3rz^{2} (r^{2} + z^{2})^{-5/2} \right].$$
(204)

Все эти напряжения имеют особенность в начале координат, где приложена сосредоточенная сила. Ввиду этого примем начало координат за центр малой сферической полости (рис. 203) и рассмотрим усилия, действующие на ее поверхности, согласно уравнениям (204). Можно показать, что результирующая этих усилий представляет силу, приложенную в начале координат в направлении z. Из условия равновесия кольцевого элемента, примыкающего в полости (рис. 203), компонента поверхностной силы в направлении оси *z* равна

$$\overline{Z} = -(\tau_{rz}\sin\psi + \sigma_z\cos\psi).$$

Используя уравнения (204) и формулы

$$\sin \psi = r (r^2 + z^2)^{-1/2}, \quad \cos \psi = z (r^2 + z^2)^{-1/2},$$

находим, что

$$\overline{Z} = B \left[(1-2v) (r^2+z^2)^{-1} + 3z^2 (r^2+z^2)^{-2} \right].$$

Результирующая этих сил, приложенных по поверхности полости, равна

$$2\int_{0}^{\pi/2} \overline{Z} \sqrt{r^{2}+z^{2}} d\psi \, 2\pi r = 8B\pi \, (1-\nu).$$

Результирующая поверхностных сил в радиальном направлении равна нулю из условия симметрии. Если величину приложенной силы обозначить через *P*, то имеем

$$P=8B\pi\,(1-\nu).$$

Подставляя в формулы (204)

$$B = \frac{P}{8\pi (1-\nu)}, \qquad (205)$$

получаем напряжения, вызываемые силой *P*, приложенной в начале координат в направлении оси *z*¹). Эта сила уравновешивается поверхностными усилиями на сферической или какой-либо иной границе, как бы ни была она велика; этого требуют формулы (204). Решение задачи являются трехмерным аналогом решения двумерной задачи, рассмотренной в § 42.

Подставляя z = 0 в равенство (204), находим, что по координатной плоскости z = 0 нет нормальных напряжений. Касательные напряжения по той же плоскости определяются формулой

$$\tau_{rz} = -\frac{B(1-2v)}{r^2} = -\frac{P(1-2v)}{8\pi(1-v)r^2}.$$
 (B)

Эти напряжения обратно пропорциональны квадрату расстояния от точки приложения силы.

394

¹) Решение этой задачи дал Кельвин (Kelvin, Cambridge and Dublin Math. J., 1848). См. также Kelvin. Mathematical and Physical Papers, т. 1, стр. 37. Из его решения следует, что перемещения, соответствующие напряжениям (204), являются единственными, а это доказывает, что формулы (204) дают точное решение задачи (см. § 96). Это решение требует, разумеется, некоторого специального распределения усилий по поверхности полости, сколь бы ни была мала последняя.

§ 136. Сферический сосуд под действием внутреннего или внешнего равномерного давления

С помощью суперпозиции из решения, найденного в предыдущем параграфе, можно получить несколько новых решений, представляющих практический интерес. Начнем со случая дей-

ствия двух равных по величине и противоположных по знаку сил, находящихся на малом расстоянии d друг от друга и приложенных к упругому телу неограниченных размеров (рис. 204). Напряжения, вызываемые в каждой точке силой Р, приложенной в начале координат О, определяются формулами (204) и (205). Используя эти же формулы, можно также получить напряжения, вызываемые силой Р, действуюшей в точке О1.Учитывая, что вторая сила действует в противоположном на-

правлении и считая расстояние d бесконечно малым, в выражениях (204) мы должны заменить каждый член вида f (r, z) на -[f + (df/dz)d]. Накладывая напряжения, вызываемые обеими силами, и используя символ А для обозначения произведения Bd, находим

$$\sigma_{r} = -A \frac{\partial}{\partial z} [(1-2v) z (r^{2}+z^{2})^{-3/2} - 3r^{2} z (r^{2}+z^{2})^{-5/2}],$$

$$\sigma_{\theta} = -A \frac{\partial}{\partial z} [(1-2v) z (r^{2}+z^{2})^{-3/2}],$$

$$\sigma_{z} = A \frac{\partial}{\partial z} [(1-2v) z (r^{2}+z^{2})^{-3/2} + 3z^{3} (r^{2}+z^{2})^{-5/2}],$$

$$\tau_{rz} = A \frac{\partial}{\partial z} [(1-2v) r (r^{2}+z^{2})^{-3/2} + 3rz^{2} (r^{2}+z^{2})^{-5/2}].$$
(206)

Рассмотрим (рис. 204) компоненты напряжения о_R и т_{Rw}, действующего в точке И элементарной площадки, перпендикулярной радиусу ОМ, длина которого обозначена через R. Из условия равновесия малого треугольного элемента, показанного на рисунке, находим¹)

$$\sigma_{R} = \sigma_{r} \sin^{2} \psi + \sigma_{z} \cos^{2} \psi + 2\tau_{rz} \sin \psi \cos \psi,$$

$$\tau_{R\psi} = (\sigma_{r} - \sigma_{z}) \sin \psi \cos \psi - \tau_{rz} (\sin^{2} \psi - \cos^{2} \psi).$$
(a)

¹⁾ Компоненты напряжений σ_0 , действующие по граням малого элемента в меридиональных сечениях тела, дают результирующую более высокого порядка малости, и ими при выводе уравнений равновесия можно пренебречь.

Используя формулы (206) и полагая

$$\sin \psi = r \, (r^2 + z^2)^{-1/2} = \frac{r}{R} \,, \qquad \cos \psi = z \, (r^2 + z^2)^{-1/2} = \frac{z}{R} \,,$$

пол учаем

$$\sigma_R = -\frac{2(1+\nu)A}{R^3} \left[-\sin^2 \psi + \frac{2(2-\nu)}{1+\nu} \cos^2 \psi \right],$$

$$\tau_{R\psi} = -\frac{2(1+\nu)A}{R^3} \sin \psi \cos \psi.$$
(6)

Это распределение напряжений является симметричным по отношению к оси z и по отношению к координатной плоскости, перпендикулярной оси z.

Представим себе теперь, что мы имеем в начале координат наряду с системой двух сил *P*, действующих вдоль оси *P*, такую же систему сил вдоль оси *r* и еще одну систему сил, перпендикулярную плоскости *rz*. В силу сформулированного выше свойства симметрии мы получаем, таким образом, распределение напряжений, симметричное относительно начала координат. Если мы рассмотрим сферу с центром в начале координат, по поверхности этой сферы будет действовать лишь одно равномерно распределенное нормальное напряжение. Величину этого напряжения можно определить, используя первую из формул (б). Если рассмотреть это напряжение в точках, расположенных на окружности в плоскости rz, то первое из уравнений (б) даст часть его, вызванную действием двух сил вдоль оси г. Путем взаимной замены sin ψ и cos ψ , получаем нормальное напряжение на той же окружности, вызванное действием двух сил в направлении оси z. Нормальное напряжение, вызванное действием двух сил в направлении, перпендикулярном плоскости rz, получается путем подстановки в ту же формулу значения $\psi = \pi/2$. Накладывая действия трех взаимно перпендикулярных двойных сил, находим следующую формулу для нормального напряжения, действующего на поверхности сферы:

$$\sigma_R = -\frac{4\left(1-2\nu\right)A}{R^3}.$$
 (1)

Рассмотренная совокупность трех перпендикулярных двойных сил называется центром сжатия. Из формулы (в) мы видим, что соответствующее напряжение сжатия в радиальном направлении зависит только от расстояния от центра сжатия и будет обратно пропорционально кубу этого расстояния. Это сингулярное решение со сферической симметрией может использоваться при отыскании напряжений в полной сфере¹) при заданных

396

¹⁾ Эта задача легко решается непосредственно в радиальных перемещениях и_R.
внешнем и внутреннем давлениях p_i и p_0 (рис. 205). Накладывая на направление (в) равномерное сжатие или растяжение во всех направлениях, можно получить общее выражение для радиального нормального напряжения в виде

$$\sigma_R = \frac{C}{R^3} + D, \qquad (r)$$

где C и D — постоянные. Их величины определяются из условий на внутренней и енешней поверхностях сосуда; эти условия имеют вид

$$\frac{C}{a^3}+D=-p_i,\quad \frac{C}{b^3}+D=-p_0.$$

Тогда

$$C = \frac{(p_i - p_0) a^3 b^3}{a^3 - b^3}, \quad D = \frac{p_0 b^3 - p_i a^3}{a^3 - b^3},$$

$$\sigma_R = \frac{p_0 b^3 (R^3 - a^3)}{R^3 (a^3 - b^3)} + \frac{p_i a^3 (b^3 - R^3)}{R^3 (a^3 - b^3)}.$$
(207)

Давления p_0 и p_i вызывают в сфере также нормальные напряжения σ_t в окружном направлении, величину которых мы найдем из условия равновесия элемента, вырезанного из сферы

Рис. 205.

двумя концентрическими сферическими поверхностями радиусов R и R + dR и круговым конусом с малым центральным углом $d\psi$ (рис. 205). Это уравнение равновесия имеет вид

$$\sigma_t \frac{\pi R}{2} dR (d\psi)^2 = \frac{d\sigma_R}{dR} \frac{\pi R^2}{4} dR (d\psi)^2 + \sigma_R \frac{\pi R}{2} dR (d\psi)^2,$$

өткуда

$$\sigma_t = \frac{d\sigma_R}{dR} \frac{R}{2} + \sigma_R. \tag{A}$$

Используя выражение (207) для σ_R , формулу (д) можно записать в виде

$$\sigma_t = \frac{\rho_0 b^3 \left(2R^3 + a^3\right)}{2R^3 \left(a^3 - b^3\right)} - \frac{\rho_i a^3 \left(2R^3 + b^3\right)}{2R^3 \left(a^3 - b^3\right)} \,. \tag{208}$$

Если $p_0 = 0$,

$$\sigma_t = \frac{p_i a^3}{2R^3} \frac{(2R^3 + b^3)}{b^3 - a^3}.$$

Можно убедиться, что наибольшее тангенциальное растягивающее напряжение в рассматриваемом случае будет действовать на внутренней поверхности, где

$$(\sigma_t)_{\max} = \frac{p_i}{2} \frac{2a^3 + b^3}{b^3 - a^3}.$$

Все эти результаты принадлежат Ламе 1).

1) G. Lamé, Leçons sur la Theorie... de l'Elasticité, Paris, 1852.

§ 137. Местные напряжения вокруг сферической полости

В качестве второго примера рассмотрим распределение напряжений вокруг малой сферической полости в стержне, подвергнутом равномерному растяжению величиной S (рис. 206)¹). В случае сплошного растянутого стержня нор-

мальная и касательные компоненты напряжения, действующего на сферической поверхности, равны

$$\sigma_R = S \cos^2 \psi, \quad \tau_{R\psi} = -S \sin \psi \cos \psi.$$
 (a)

Чтобы получить решение для случая малой сферической полости радиуса *a*, мы должны наложить на поле простого растяжения систему напряжений, для которой компоненты напряжения на сферической поверхности равны по величине и противоположпы по знаку напряжениям, определяемым формулами (а), и обращаются в нуль на бесконечности.

Беря из предыдущего параграфа напряжения (б), вызванные действием двух сил в направлении *2*, и напряжения (в), вызванные центром сжатия, можно представить соответствующие напряжения, действующие по сфериче-

Рис. 206.

ской поверхности радиуса а в виде

$$\sigma'_{R} = -\frac{2(1+\nu)A}{a^{3}} \left(-1 + \frac{5-\nu}{1+\nu}\cos^{2}\psi \right), \quad \tau'_{R\psi} = -\frac{2(1+\nu)A}{a^{3}}\sin\psi\cos\psi, \quad (6)$$
$$\sigma''_{R} = \frac{B}{a^{3}}, \quad \tau''_{R\psi} = 0, \quad (B)$$

где A и B—постоянные, подлежащие определению. Как видим, комбинируя напряжения (б) и (в), нельза обратить в нуль напряжения от растяжения (а), и нужно добавить еще некоторое напряженное состояние.

Взяв из решения (202) функцию напряжений

$$\varphi = Cz (r^2 + z^2)^{-3/2}$$

получаем по формулам (189) соответствующие компоненты напряжения

$$\sigma_{r} = \frac{3C}{R^{\delta}} (-4 + 35 \sin^{2} \psi \cos^{2} \psi),$$

$$\sigma_{z} = \frac{3C}{R^{\delta}} (3 - 30 \cos^{2} \psi + 35 \cos^{4} \psi),$$

$$\sigma_{\theta} = \frac{3C}{R^{\delta}} (1 - 5 \cos^{2} \psi),$$

$$\tau_{rz} = \frac{15C}{R^{\delta}} (-3 \sin \psi \cos \psi + 7 \sin \psi \cos^{3} \psi).$$
(r)

¹) Решение этой задачи принадлежит Саусвеллу (R. V. Southwell, Phil. Mag., 1926). Случай включения из иного материала рассмотрен в статье: J. N. Goodier, Trans. ASME 55, 39 (1933). Задачу о полости в виде трехосного эллипсоида решили Штернберг и Садовский (E. Sternberg, M. Sadowsky, J Appl. Mech. 16, 149 (1949)). Обзор литературы по трехмерным задачам концентрации напряжений дан в работе: E. Sternberg, Appl. Mech. Rev. 11, 1-4 (1958).

Если теперь воспользоваться уравнениями (a) предыдущего параграфа, то компоненты напряжения, действующего на сферической поверхности раднуса *a*, будут

$$\sigma_{R}^{'''} = \frac{12C}{a^{5}} (-1 + 3\cos^{2}\psi), \quad \tau_{R\psi}^{'''} = \frac{24C}{a^{5}} \sin\psi\cos\psi.$$
 (a)

Комбинируя системы напряжений (б), (в), (д), находим

$$\sigma_{R} = \frac{2(1+\nu)A}{a^{3}} - 2(5-\nu)\frac{A}{a^{3}}\cos^{2}\psi + \frac{B}{a^{3}} - \frac{12C}{a^{5}} + \frac{36C}{a^{5}}\cos^{2}\psi,$$

$$\tau_{R\psi} = -\frac{2(1+\nu)A}{a^{3}}\sin\psi\cos\psi + \frac{24C}{a^{5}}\sin\psi\cos\psi.$$
 (e)

Накладывая эти напряжения на напряжения, определяемые формулами (a), получаем, что сферическая поверхность полости будет свободна от напряжений, если будут удовлетворены условия

$$\frac{2(1+\nu)A}{a^3} + \frac{B}{a^3} - \frac{12C}{a^5} = 0,$$

-2(5-\nu) $\frac{A}{a^3} + \frac{36C}{a^5} = -S, \quad -\frac{2(1+\nu)A}{a^3} + \frac{24C}{a^5} = S,$ (**)

откуда

$$\frac{A}{a^3} = \frac{5S}{2(7-5v)}, \quad \frac{B}{a^3} = \frac{S(1-5v)}{7-5v}, \quad \frac{C}{a^5} = \frac{S}{2(7-5v)}.$$
 (1)

Полное напряжение в любой точке получится теперь наложением на простое растяжение S напряжений, определяемых формулами (г), напряжений (206), вызванных действием двойных сил, и напряжений от центра сжатия, определяемых формулами (в) и (д) предыдущего параграфа.

Рассмотрим, например, напряжения, действующие по плоскости z = 0. Из условия симметрии на этой плоскости нет касательных напряжений. Из формул (г), подставляя $\psi = \pi/2$ и R = r, получаем

$$\sigma_{z}^{\prime} = \frac{9C}{r^{5}} = \frac{9Sa^{5}}{2(7-5v) r^{5}}.$$
 (K)

Из формул (206) при z = 0 имеем

$$\sigma_{z}^{"} = \frac{A(1-2v)}{r^{3}} = \frac{5(1-2v)S}{2(7-5v)} \frac{a^{3}}{r^{3}}.$$
 (1)

Из уравнения (д) предыдущего параграфа

$$\sigma_{z}^{\prime\prime\prime} = (\sigma_{t})_{z=0} = -\frac{B}{2r^{3}} = -\frac{S(1-5v)}{2(7-5v)}\frac{a^{3}}{r^{3}}.$$
 (M)

Полное напряжение на плоскости z=0 отсюда равно

$$\sigma_{z} = \sigma_{z}^{'} + \sigma_{z}^{''} + S = S \left[1 + \frac{4 - 5\nu}{2(7 - 5\nu)} \frac{a^{3}}{r^{3}} + \frac{9}{2(7 - 5\nu)} \frac{a^{5}}{r^{5}} \right].$$
(B)

При r = a находим

$$(\sigma_z)_{\max} = \frac{27 - 15\nu}{2(7 - 5\nu)} S.$$
 (o)

Полагая v = 0,3, получаем

$$(\sigma_z)_{\max} = \frac{45}{22} S.$$

Таким образом, максимальное напряжение оказывается примерно вдвое больше равномерного растяжения S, прилюженного к стержню. Это увеличение напряжения носит резко выраженный местный характер. С увеличением r напряжение (н) быстро приближается к значению S. Взяв, например, r = 2a, v = 0.3, находим $\sigma_z = 1.054$ S.

Таким же путем для точек на плоскости z = 0 находим

$$(\sigma_{\theta})_{z=0} = \frac{3C}{r^{5}} - \frac{A(1-2v)}{r^{3}} - \frac{B}{2r^{3}}.$$

Используя формулы (и) и полагая r = a, находим, что растягивающее напряжение вдоль экватора ($\psi = \pi/2$) полости составляет

$$(\sigma_{\theta})_{z=0, r=a} = \frac{15v-3}{2(7-5v)} S.$$

На полюсах полости ($\psi = 0$ или $\psi = \pi$) имеем

$$\sigma_r = \sigma_{\theta} = \frac{2(1-2\nu)A}{a^3} - \frac{12C}{a^5} - \frac{B}{2a^3} = -\frac{3+15\nu}{2(7-5\nu)}S.$$

Следовательно, продольное растяжение S вызывает в этих точках сжатие.

Комбинируя растяжение S в одном направлении и сжатие S в перпендикулярном направлении, мы можем получить решение для распределения напряжений вокруг сферической полости в случае чистого сдвига¹). Можно показать, что в этом случае максимальное касательное напряжение определяется формулой

$$\tau_{max} = \frac{15(1-v)}{7-5v} S.$$
 (r)

Результаты этого параграфа представляют интерес для практики при исследовании влияния малых полостей²) на предел выносливости образцов, подвергнутых действию циклических напряжений.

§ 138. Сила, приложенная на границе полубесконечного теля

Представим себе, что плоскость z = 0 является границей полубесконечного тела и что сила *P*, действующая на этой плоскости, направлена вдоль оси *z* (рис. 207)³). В § 135 было показано, что распределение напряжений, определяемое формулами (204), (205), может быть вызвано в полубесконечном теле

400

¹) Эту задачу рассматривал Лармор (J. Larmor, Phil. Mag., ser. 5, 33 (1892). См. также вышеупомянутую книгу Лява, стр. 264. Глава 11 этой книги содержит решения для более общих задач со сферическими границами. Осесимметричную задачу о полой сфере рассматривали Штернберг, Юбэнкс и Садовский (E. Sternberg, R. A. Eubanks, M. A. Sadowsky, Proc. 1st US Congr. Appl. Mech. 209—215 (1951)).

²) См., например, R. V. Southwell, H. J. Gough, Phil. Mag. 1, 71 (1926).

⁸) Решение этой задачи дал Буссинск (J. Boussinesq) (см. его Application des Potentiels a l'Etude l'Equilibre et du Mouvement des Solides Elastiques, Gauthier-Villars, Paris 1885). Что касается действия касательного усилия и других граничных условий на плоскости, то ссылки имеются в упоминавшейся книге Лява, § 167. Решение для силы, действующей во внутренней точке полубесконечного тола, дал Миндлин (R. D. Mindlin, Phys. 7, 195 (1936); Proc. 1st Midwestern Conf. Solid. Mech., 1953). Решение для закрепленной границы дал Ронгвед (L. Rongwed, J. Appl. Mech. 22, 545—546 (1955)).

сосредоточенной силой, приложенной в начале координат, и касательными усилиями, действующими на граничной плоскости z = 0, которые определяются формулой

$$\tau_{rz} = -\frac{B(1-2v)}{r^2}$$
. (a)

Чтобы снять эти усилия и прийти к решению задачи, показанной на рис. 207, воспользуемся распределением напряжений, отвечающим центру сжатия (см. стр. 396). В полярных координатах это распределение напряжений имеет вид

 $\sigma_R = \frac{A}{R^3}, \ \sigma_t = \frac{d\sigma_R}{dR} \frac{R}{2} + \sigma_R = -\frac{1}{2} \frac{A}{R^5},$

где A — постоянная. В цилиндрических координатах (рис. 207) имеем следующие выражения для компонент напряжения:

$$\sigma_{r} = \sigma_{R} \sin^{2} \psi + \sigma_{t} \cos^{2} \psi = A \left(r^{2} - \frac{1}{2} z^{2} \right) (r^{2} + z)^{-5/2},$$

$$\sigma_{z} = \sigma_{R} \cos^{2} \psi + \sigma_{t} \sin^{2} \psi = A \left(z^{2} - \frac{1}{2} r^{2} \right) (r^{2} + z^{3})^{-5/2},$$

$$\tau_{rz} = \frac{1}{2} (\sigma_{R} - \sigma_{t}) \sin 2\psi = \frac{3}{2} Arz (r^{2} + z^{2})^{-5/2},$$

$$\sigma_{\theta} - \sigma_{t} = -\frac{1}{2} \frac{A}{R^{3}} = -\frac{1}{2} A (r^{2} + z^{2})^{-5/2}.$$
(209)

Теперь допустим, что центры сжатия равномерно распределены вдоль оси z от z = 0 до $z = -\infty$. Тогда в силу принципа суперпозиции компоненты напряжения, вызванного в бесконечном теле, определяется из формул (209) с некоторой новой постоянной A_1 :

$$\sigma_{r} = A_{1} \int_{z}^{\infty} \left(r^{2} - \frac{1}{2} z^{2} \right) (r^{2} + z^{2})^{-5/2} dz =$$

$$= \frac{A_{1}}{2} \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} (r^{2} + z^{2})^{-1/2} - z (r^{2} + z^{2})^{-3/2} \right],$$

$$\sigma_{z} = A_{1} \int_{z}^{\infty} \left(z^{2} - \frac{1}{2} r^{2} \right) (r^{2} + z^{2})^{-5/2} dz = \frac{A_{1}}{2} z (r^{2} + z^{2})^{-3/2},$$

$$\sigma_{\theta} = -\frac{1}{2} A_{1} \int_{z}^{\infty} (r^{2} + z^{2})^{-5/2} dz = -\frac{A_{1}}{2} \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} (r^{2} + z^{2})^{-1/2} \right].$$
(210)

Для плоскости z = 0 находим, что нормальное напряжение равно нулю, а касательное напряжение определяется формулой

$$(\tau_{rz})_{z=0} = \frac{1}{2} \frac{A_1}{r^2} \,. \tag{6}$$

Теперь видно, что, комбинируя решения (204) и (210), мы можем с помощью соответствующего выбора постоянных A и B получить такое распределение напряжений, что плоскость z = 0 будет свободна от напряжений, а в начале координат будет действовать сосредоточенная сила P. Из (а) и (б) видим, что касательное напряжение на граничной плоскости будет снято, если положить

$$-B(1-2v)+\frac{A_1}{2}=0,$$

откуда

$$A_1 = 2B \left(1 - 2\nu \right).$$

Подставляя это значение в выражения (210) и складывая напряжения (204) и (210), находим

$$\sigma_{r} = B \left\{ (1 - 2\nu) \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} (r^{2} + z^{2})^{-1/2} \right] - 3r^{2}z (r^{2} + z^{2})^{-5/2} \right\},\$$

$$\sigma_{z} = -3Bz^{3} (r^{2} + z^{2})^{-5/2},$$

$$\sigma_{\theta} = B (1 - 2\nu) \left[-\frac{1}{r^{2}} + \frac{z}{r^{2}} (r^{2} + z^{2})^{-1/2} + z (r^{2} + z^{2})^{-3/2} \right],$$

$$\tau_{rz} = -3Brz^{2} (r^{2} + z^{2})^{-5/2}.$$
(B)

Это распределение напряжений удовлетворяет граничным условиям, так как $\sigma_z = \tau_{rz} = 0$ при z = 0. Остается определить постоянную *В* таким образом, чтобы усилия, распределенные по полусферической поверхности с центром в начале координат были статически эквивалентны силе *P*, действующей вдоль оси *z*. Если рассмотреть равновесие элемента, показанного на рис. 203, то компонента усилий, действующих на полусферу в направлении оси *z*, окажется равной

$$\overline{Z} = -(\tau_{rz}\sin\psi + \sigma_{z}\cos\psi) = 3Bz^{2}(r^{2} + z^{2})^{-2}.$$

Для определения В получаем уравнение

$$P = 2\pi \int_{0}^{\pi/2} \overline{Z} r (r^{2} + z^{2})^{1/2} d\psi = 6\pi B \int_{0}^{\pi/2} \cos^{2} \psi \sin \psi d\psi = 2\pi B,$$

из которого

$$B=\frac{P}{2\pi}.$$

Наконец, подставляя значение этой постоянной в (в), полу-чаем следующие выражения для компонент напряжений, вызван-ных нормальной силой *P*, действующей на плоской границе полубесконечного тела

$$\sigma_{r} = \frac{P}{2\pi} \left\{ (1-2\nu) \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} (r^{2}+z^{2})^{-1/2} \right] - 3r^{2}z (r^{2}+z^{2})^{-5/2} \right\},$$

$$\sigma_{z} = -\frac{3P}{2\pi} z^{3} (r^{2}+z^{2})^{-5/2},$$

$$\sigma_{\theta} = \frac{P}{2\pi} (1-2\nu) \left\{ -\frac{1}{r^{2}} + \frac{z}{r^{2}} (r^{2}+z^{2})^{-1/2} + z (r^{2}+z^{2})^{-3/2} \right\},$$

$$\tau_{rz} = -\frac{3P}{2\pi} rz^{2} (r^{2}+z^{2})^{-5/2}.$$
(211)

Это решение является трехмерным аналогом решения для полу-бесконечной пластинки (см. § 36).

Если взять элементарную площадку mn, перпендикулярную оси z (рис. 207), то отношение нормальной и касательной ком-понент напряжения на этой площадке, согласно равенствам (211), будет равно

$$\frac{\sigma_z}{\tau_{rz}} = \frac{z}{r} \,. \tag{(r)}$$

Следовательно, направление результирующего напряжения про-ходит через начало координат О. Величина этого напряжения определяется формулой

$$S = \sqrt{\sigma_z^2 + \tau_{rz}^2} = \frac{3P}{2\pi} \frac{z^2}{(r^2 + z^2)^2} = \frac{3P}{2\pi} \frac{\cos^2 \psi}{(r^2 + z^2)}.$$
 (212)

Таким образом, это напряжение пропорционально квадрату рас-стояния от точки приложения силы P. Представим себе сфери-ческую поверхность диаметра d, касающуюся плоскости z = 0в начале координат O. Для каждой точки этой поверхности

$$r^2 + z^2 = d^2 \cos^2 \psi. \tag{1}$$

Подставляя это значение в формулу (212), приходим к выводу, что для точек рассматриваемой сферы результирующее напряже-ние в горизонтальных плоскостях постоянно и равно $3P/(2\pi d^2)$. Рассмотрим теперь перемещения, вызываемые в полубесконеч-ном теле силой *P*. Из формул (187) для компонент деформации

имеем

$$u = \varepsilon_{\theta} r = \frac{r}{E} \left[\sigma_{\theta} - v \left(\sigma_r + \sigma_z \right) \right].$$

Подставляя сюда значения для компонент напряжений (211),

нмеем

$$u = \frac{(1-2\nu)(1+\nu)P}{2\pi E r} \left[z \left(r^2 + z^2 \right)^{-1/2} - 1 + \frac{1}{1-2\nu} r^2 z \left(r^2 + z^2 \right)^{-2/2} \right].$$
(213)

Для определения вертикального перемещения w, согласно (187), получаем

$$\frac{\partial w}{\partial z} = \varepsilon_z = \frac{1}{E} \left[\sigma_z - \nu \left(\sigma_r + \sigma_\theta \right) \right], \quad \frac{\partial w}{\partial r} = \gamma_{rz} - \frac{\partial u}{\partial z} = \frac{2 \left(1 + \nu \right) \tau_{rz}}{E} - \frac{\partial u}{\partial z} \,.$$

Подставляя значения компонент напряжений и перемещений и, полученные выше, находим

$$\frac{\partial \omega}{\partial z} = \frac{P}{2\pi E} \left\{ 3 \left(1 + \nu \right) r^2 z \left(r^2 + z^2 \right)^{-5/2} - \left[3 + \nu \left(1 - 2\nu \right) \right] z \left(r^2 + z^2 \right)^{-3/2} \right\}, \\ \frac{\partial \omega}{\partial r} = -\frac{P \left(1 + \nu \right)}{2\pi E} \left[2 \left(1 - \nu \right) r \left(r^2 + z^2 \right)^{-3/2} + 3r z^2 \left(r^2 + z^2 \right)^{-5/2} \right],$$

откуда после интегрирования находим

$$w = \frac{P}{2\pi E} \left[(1+v) \, z^2 \, (r^2 + z^2)^{-3/2} + 2 \, (1-v^2) \, (r^2 + z^2)^{-1/2} \right] \quad (214)$$

(произвольная постоянная принята равной нулю). Для граничной плоскости (z = 0) перемещения равны

$$(u)_{z=0} = -\frac{(1-2v)(1+v)P}{2\pi E r}, \quad (w)_{z=0} = \frac{P(1-v^2)}{\pi E r}.$$
 (215)

Это показывает, что произведение *wr* на границе постоянно. Следовательно, радиусы, проведенные на границе из начала координат, после деформации становятся гиперболами с асимптотами *Or* и *Oz*. В начале координат напряжения и перемещения становятся бесконечными. В силу этого мы должны вообразить, что материал вокруг начала координат вырезан полусферической поверхностью малого радиуса и сосредоточенная сила *P* заменяется статически эквивалентными силами, распределенными по этой поверхности так, как того требует решение.

§ 139. Нагрузка, распределенная по части границы полубесконечного тела

Имея решение для сосредоточенной силы, действующей на границе полубесконечного тела, мы можем найти перемещения и напряжения, вызванные распределенной нагрузкой, с помощью суперпозиции. В качестве простого примера возъмем случай равномерной нагрузки, распределенной по поверхности круга радиуса *a* (рис. 208), и рассмотрим перемещение в направлении действия нагрузки точки *M*, находящейся на поверхности тела на расстоянии *r* от центра круга. Взяв малый элемент нагруженной площади (на рисуние заштрихован), который ограничен

404

двумя радиусами, заключающими угол $d\psi$, и двумя дугами окружности с радиусами s и s + ds и центром в той же точке M, получаем, что нагрузка на рассматриваемый элемент равна $qs d\bar{\psi} ds$. Соответствующее перемещение точки M, согласно уравнению (215), составляет

$$\frac{(1-v^2) q}{\pi E} \frac{s d\psi ds}{s} = \frac{(1-v^2) q}{\pi E} d\psi ds.$$

Полное перемещение получится теперь с помощью двойного интегрирования

$$\boldsymbol{\omega} = \frac{(1-\boldsymbol{v}^2)\,q}{\pi E} \int \int d\boldsymbol{\psi}\,ds$$

Интегрируя по *s* и учитывая тот факт, что длина хорды *mn* равна $2\sqrt{a^2-r^2}\sin\psi$, находим

$$\boldsymbol{\omega} = \frac{4 (1 - v^2) q}{\pi E} \int_{\boldsymbol{\theta}}^{\psi_1} \sqrt{a^2 - r^2 \sin^2 \psi} \, d\psi, \qquad (a)$$

где ψ_1 — максимальное значение ψ , т. е. угол между r и касательной к окружности. Вычисление интеграла (а) можно упростить, если ввести вместо переменной ψ угол θ . Согласно рис. 208 имеем

$$a \sin \theta = r \sin \psi$$
,

откуда

$$d\psi = \frac{a\cos\theta \,d\theta}{r\cos\psi} = \frac{a\cos\theta \,d\theta}{r\sqrt{1-\left(\frac{a^2}{r^2}\right)\sin^2\theta}}.$$

Подставляя это значение в формулу (а) и учитывая, что когда θ меняется от 0 до $\pi/2$, то ψ меняется от 0 до ψ_1 , находим

$$w = \frac{4 (1 - v^2) q}{\pi E} \int_{0}^{\pi/2} \frac{a^2 \cos^2 \theta \, d\theta}{r \, \sqrt{1 - \left(\frac{a^2}{r^2}\right) \sin^2 \theta}} = \frac{4 (1 - v^2) qr}{\pi E} \left[\int_{0}^{\pi/2} \sqrt{1 - \left(\frac{a^2}{r^2}\right) \sin^2 \theta} \, d\theta - \frac{-\left(1 - \frac{a^2}{r^2}\right) \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - \left(\frac{a^2}{r^2}\right) \sin^2 \theta}} \right].$$
(216)

Интегралы, входящие в это равенство, называются полными

эллиптическими интегралами, и их значения для любых отношений *a/r* можно взять из таблиц¹).

Чтобы получить смещение на границе нагруженного круга, положим в формуле (216) r = a и найдем

$$(w)_{r=a} = \frac{4 (1 - v^2) qa}{\pi E} . \tag{217}$$

Если точка *М* находится внутри нагруженного круга (рис. 209, *a*), можно снова рассмотреть смещение, вызванное

Рис. 209.

заштрихованным элементом, на который действует нагрузка *qs ds d*ψ. Тогда полное смещение равно

$$w = \frac{(1-v^2)\,q}{\pi E} \iint ds \,d\psi.$$

Длина хорды mn равна $2a\cos\theta$, а ψ меняется от 0 до $\pi/2$, поэтому

$$w = \frac{4 (1-v^2) q}{\pi E} \int_0^{\pi/2} a \cos \theta \, d\psi,$$

или, поскольку $a \sin \theta = r \sin \psi$,

$$w = \frac{4 (1 - v^2) q a}{\pi E} \int_{0}^{\pi/2} \sqrt{1 - \left(\frac{r^2}{a^2}\right) \sin^2 \psi} \, d\psi.$$
 (218)

Таким путем легко найти смещения для любого отношения *r/a*, используя таблицы эллиптических интегралов. Максимальное смещение имеет место, разумеется, в центре круга. Подставляя

406

¹) См. например, Е. Jahnke, F. Emde, F. Lösch, Tables of Higher Functions, McGraw-Hill, N. Y., 1960. [См. также русский перевод предшествующего немецкого издания этой книги: Е. Янке и Ф. Эмде, Таблицы функций с формулами и кривыми, Физматгиз, 1959. (Прим. nepes.)]

r = 0 в формулу (218), находим

$$(w)_{\max} = \frac{2(1-v^2)\,qa}{E}$$
. (219)

Сравнивая это значение со смещением на границе круга, находим, что последнее меньше максимального в $\pi/2$ раза¹). Интересно отметить, что при заданной интенсивности нагрузки qмаксимальное смещение не будет постоянным, а будет увеличиваться в том же отношении, что и радиус нагруженного круга²).

Используя принцип суперпозиции, можно также найти напряжения. Рассмотрим, например, напряжения в точке, принадлежащей оси z (рис. 209, δ). Напряжение σ_z , вызываемое в такой точке нагрузкой, распределенной по кольцу радиуса r и шириной dr, получается путем подстановки во второе уравнение (211) $2\pi r dr q$ вместо P. Тогда напряжение σ_z , вызываемое равномерной нагрузкой, распределенной внутри круговой области радиуса a, равно

$$\sigma_{z} = -\int_{0}^{5} 3qr \, dr \, z^{3} (r^{2} + z^{2})^{-5/2} = qz^{3} \left| (r^{2} + z^{2})^{-3/2} \right|_{0}^{d} =$$
$$= q \left[-1 + \frac{z^{3}}{(a^{2} + z^{2})^{3/2}} \right]. \tag{6}$$

Это напряжение равно — q на поверхности тела и постепенно уменьшается с увеличением расстояния z. При определении напряжений σ_r и σ_{θ} в той же точке рассмотрим два элемента 1 и 2нагруженной площади (рис. 209, δ) с нагрузками $qr \, d\varphi \, d\sigma$. Напряжения, вызываемые этими двумя элементарными нагрузками в некоторой точке на оси z, согласно первому и третьему из уравненией (211) равны

$$d\sigma'_{r} = \frac{qr\,d\varphi\,dr}{\pi} \left\{ (1-2\nu) \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} \left(r^{2} + z^{2} \right)^{-1/2} \right] - 3r^{2}z \left(r^{2} + z^{2} \right)^{-5/2} \right\}, \\ d\sigma'_{\theta} = \frac{qr\,d\varphi\,dr}{\pi} \left(1-2\nu \right) \left[-\frac{1}{r^{2}} + \frac{z}{r^{2}} \left(r^{2} + z^{2} \right)^{-1/2} + z \left(r^{2} + z^{2} \right)^{-3/2} \right].$$
(B)

Нормальные напряжения, вызываемые в тех же плоскостях

¹) Решение этой задачи дал Буссинеск в упомянутой выше работе. См. также H. Lamb, Proc. London Math. Soc. 34, 276 (1902); К. Тегаzawa, J. Coll. Sci., Univ. Tokyo 37 (1916); F. Schleicher, Bauingenieur 7 (1926); Bauingenieur 14, 242 (1933). Полное исследование этой задачи, а также случай, когда нагрузка распределена по прямоугольнику, дано в статье: A. Love, Trans. Roy. Soc. (London), ser. A, 288 (1929). На некоторые свойства деформаций и напряжений в общем случае указал Уэй (S. Way, J. Appl. Mech. 7, A-147 (1940)).

²⁾ Э́то свойство, ́а также его обобщение на случаи некруговой области нагружения следует из простого анализа размерностей величин, используемых в задаче.

элементарными нагрузками в точках 3 и 4, составляют

$$d\sigma_{\theta}^{"} = \frac{qr \, d\varphi \, dr}{\pi} (1-2v) \left[-\frac{1}{r^{2}} + \frac{z}{r^{2}} (r^{2}+z^{2})^{-1/2} + z \, (r^{2}+z^{2})^{-3/2} \right],$$

$$d\sigma_{\theta}^{"} = \frac{qr \, d\varphi \, dr}{\pi} \left\{ (1-2v) \left[\frac{1}{r^{2}} - \frac{z}{r^{2}} (r^{2}+z^{2})^{-1/2} \right] - 3r^{2} z \, (r^{2}+z^{2})^{-5/2} \right\}.$$
(r)

Складывая соотношения (в) и (г), находим, что четыре элементарных нагрузки, показанные на рисунке, вызывают напряжения

$$d\sigma_{r} = d\sigma_{\theta} = \frac{qr \, d\varphi \, dr}{\pi} \left[(1 - 2v) \, z \, (r^{2} + z^{2})^{-3/2} - 3r^{2} z \, (r^{2} + z^{2})^{-5/2} \right] = \frac{qr \, d\varphi \, dr}{\pi} \left[-2 \, (1 + v) \, z \, (r^{2} + z^{2})^{-5/2} + 3z^{3} (r^{2} + z^{2})^{-5/2} \right].$$
(A)

Чтобы получить напряжения, вызываемые всей нагрузкой, равномерно распределенной по площади круга радиуса a, проинтегрируем выражение (д) по φ в пределах от 0 до $\pi/2$ и по r от 0 до a. Отсюда

$$\sigma_{r} = \sigma_{\theta} = \frac{q}{2} \int_{0}^{a} \left[-2(1+\nu) z (r^{2}+z^{2})^{-s/2} + 3z^{2} (r^{2}+z^{2})^{-s/2} \right] r \, dr =$$
$$= \frac{q}{2} \left[-(1+2\nu) + \frac{2(1+\nu) z}{\sqrt{a^{2}+z^{2}}} - \left(\frac{z}{\sqrt{a^{2}+z^{2}}}\right)^{3} \right]. \quad (e)$$

Для точки О центра нагруженного круга из формул (б) и (е) находим

$$\sigma_z = -q, \quad \sigma_r = \sigma_0 = -\frac{q(1+2\nu)}{2}.$$

Полагая v = 0,3, получаем $\sigma_r = \sigma_\theta = -0,8q$. Максимальное касательное напряжение в точке O, действует по плоскостям, проходящим под углом 45° к оси z, и равно 0,1q. Предполагая, что течение материала определяется максимальным касательным напряжением, можно показать, что точка O, рассмотренная выше, не является самой неблагоприятной точкой на оси z. Максимальное касательное напряжение в любой точке на оси z (рис. 209, δ), согласно уравнениям (б) и (е), равно

$$\frac{1}{2} (\sigma_r - \sigma_z) = \frac{q}{2} \left[\frac{1 - 2\nu}{2} + (1 + \nu) \frac{z}{\sqrt{a^2 + z^2}} - \frac{3}{2} \left(\frac{z}{\sqrt{a^2 + z^2}} \right)^3 \right]. \quad (\mathsf{m})$$

Это выражение принимает максимальное значение, когда

$$\frac{z}{Va^2 + z^2} = \frac{1}{3} \sqrt{2(1+v)},$$

$$z = a \sqrt{\frac{2(1+v)}{7-2v}}.$$
(H)

откуда

Подетавляя это значение в выражение (ж), имеем

$$\tau_{\max} = \frac{q}{2} \left[\frac{1-2\nu}{2} + \frac{2}{9} (1+\nu) \sqrt{2(1+\nu)} \right]. \quad (\kappa)$$

Полагая v = 0,3, находим из уравнений (и) и (к)

$$z = 0,638a, \quad \tau_{max} = 0,33q.$$

Это показывает, что максимальное касательное напряжение для точек, расположенных на оси г, достигается на определенной глубине, приближенно равной двум третям радиуса нагруженного круга, а величина этого максимума составляет около одной трети приложенного равномерного давления q.

Для случая равномерного давления, распределенного по поверхности квадрата со сторонами 2а, максимальное перемещение в центре составляет

$$w_{\max} = \frac{8}{\pi} \ln \left(\sqrt{2} + 1 \right) \frac{q \alpha \left(1 - \nu^2 \right)}{E} = 2,24 \frac{q \alpha \left(1 - \nu^2 \right)}{E} \,. \tag{220}$$

Перемещения по углам квадрата составляют лишь половину перемещения в центре, а среднее перемещение равно

$$w_{cp} = 1,90 \frac{qa(1-v^2)}{E}$$
 (221)

Аналогичные расчеты можно проделать и для равномерного давления распределенного по прямоугольнику при различных отношениях сторон $\alpha = a/b$. Все эти результаты можно представить в форме¹)

$$\boldsymbol{w}_{cp} = m \, \frac{P \, (1 - \nu^2)}{E \, \sqrt{A}} \,, \tag{222}$$

где *т*-числовой коэффициент, зависящий от *α*, *А*-величина площади нагруженной области, Р-полная нагрузка. Некоторые значения коэффициента т приведены в табл. 10. Мы убеждаемся, что при заданной нагрузке Р и площади А перемещения увеличиваются с уменьшением отношения периметра нагруженной области к площади. Уравнение (222) иногда используется при исследовании осадок фундаментов 1) инженерных сооружений. Чтобы получить для разных частей сооружения одинаковые осадки, среднее давление на основание должно находиться в некоторой зависимости от формы и размеров нагруженной области²).

См. упомянутую выше работу Шлейхера (F. Schleicher).
 Решения для полупространства обобщены многими авторами на случай слоистых сред. См., например, В. С. Никишин, Г. С. Шапиро, Пространственные задачи теории упругости для многослойных сред. ВЦ АН СССР М., 1970. (Прим. 190.)

таблица 10

	Окруж-	Квадрат	Прямоугольники с различными отношениями $\alpha = a/b$							
	ность		1,5	2	3	5	10	100		
- m =	0,96	0,95	0,94	0,92	0,88	0,82	0,71	0,37		

Коэффициенты т в формуле (222)

В предшествующих рассуждениях предполагалось, что нагрузка задана, и разыскивались перемещения, вызываемые этой нагрузкой. Рассмотрим теперь случай, когда заданы перемещения и требуется найти соответствующее распределение давлений по плоскости границы. Возьмем, например, случай, жесткого штампа в виде круглого цилиндра, вдавливаемого в плоскую границу полубесконечного упругого тела. В таком случае перемещение w по всей площади кругового основания цилиндра постоянно. Распределение давления при этом непостоянно, и его интенсивность определяется формулой¹)

$$q = \frac{P}{2\pi a \ V \ a^2 - r^2} , \qquad (223)$$

где *Р*-полная нагрузка на штамп, *а*-радиус штампа, а *г*расстояние от центра круга, на котором действует давление. Это распределение давления, очевидно, не является равномер-ным, и его минимальное значение имеет место в центре (r = 0), где

$$q_{\min} = \frac{P}{2\pi a^2}$$
,

т. е. равно половине среднего давления на круговой области контакта. На границе области (r = a) давление становится бесконечным. Практически вдоль границы происходит течение материала. Это течение носит, однако, местный характер и несущественно влияет на распределение давления (223) в точках, находящихся на некотором расстоянии от границы круга.

Перемещение штампа определяется формулой

$$w = \frac{P(1-v^2)}{2aE}.$$
 (224)

Мы видим, что при заданном значении среднего давления на граничной плоскости, перемещение не постоянно, а увеличивается пропорционально радиусу штампа²).

Это решение дал Буссинеск в упомянутой выше работе.
 См. примечание ² на стр. 406, которое применимо и здесь.

Для сравнения приведем также формулу для среднего перемещения в случае равномерного распределения давления (см. формулу (218))

$$w_{cp} = \frac{\int_{0}^{0} w \, 2\pi r \, dr}{\pi a^2} = \frac{16}{3\pi^2} \frac{P \, (1 - \nu^2)}{aE} = 0.54 \, \frac{P \, (1 - \nu^2)}{aE} \,. \tag{225}$$

Это среднее перемещение не очень сильно отличается от перемещения (224) для абсолютно жесткого штампа. Опубликовано много решений для некруговых штампов¹); в том числе решения некоторых динамических задач для движущихся штампов.

§ 140. Давление между двумя соприкасающимися сферическими телами

Результаты предыдущего параграфа можно использовать при исследовании распределения давления между двумя соприкасающимися телами²). Предположим, что в точке контакта эти тела имеют сферические поверхности с радиусами R_1 и R_2 (рис. 210). Если между телами не действует давление, то мы имеем касание в одной точке O. Расстояния от плоскости, касательной в точке O, до точек M и N, расположенных на меридиональном сечении сферы и находящихся на малом расстоянии³) r от осей z_1 и z_2 , можно с достаточной точностью представить формулами

$$z_1 = \frac{r^2}{2R_1}, \quad z_2 = \frac{r^2}{2R_2}.$$
 (a)

Взаимное расстояние между этими точками равно

$$z_1 + z_2 = r^2 \left(\frac{1}{2R_1} + \frac{1}{2R_2} \right) = \frac{r^2 (R_1 + R_2)}{2R_1 R_2}.$$
 (6)

В разделе, посвященном теории упругости в книге J. N. Goodier, P. G. Hodge, Elasticity and Plasticity, т. 1, Surveys in Applied Mechanics, 1958) [русский перевод: Дж. Гудьер, Ф. Г. Ходж, Упругость и пластичность, ИЛ, 1960] дается обзор некоторых решений, содержащихся в книге: Л. А. Галин, Контактные задачи теории упругости, Гостехиздат, 1953.
 Эту задачу решил Герц (H. Hertz, J. Math. (Crelle's J.) 92 (1881). См. также H. Herz, Gesammelte Werke, т. 1, стр. 155, Leipzig, 1895. При этом считалось, что контакт происходит без трения. Когда при распрострачения, области контакта межих, соприкасномите поерхностянии не происхо.

²) Эту задачу решил Герц (Н. Негtz, J. Math. (Crelle's J.) 92 (1881). См. также Н. Негz, Gesammelte Werke, т. 1, стр. 155, Leipzig, 1895. При этом считалось, что контакт происходит без трения. Когда при распространении области контакта между соприкасающимися поверхностями не происходит проскальзывания, задача видоизменяется, если только обе сферы не в точности одинаковы. Решение при отсутствии проскальзывания для одинаковых сфер дал в 1962 г. Гудмэн (L. E. Goodman). Касательные усилия и крутящие моменты в области контакта учел в своей работе 1949 г. Миндлин (R. D. Mindlin). Ссылки на эти работы, а также другие решенные задачи можно найти в книге: W. Flügge (ред.), Handbook of Engineering Mechanics, McGraw-Hill, N. Y., 1962 (в главе, написанной Лубкиным (J. L. Lubkin), о контактных задачах).

³) г мало по сравнению с R₁ и R₂.

412

В частном случае контакта сферы и плоскости (рис. 211, *a*) отно-шение 1/*R*₁ равно нулю, и формула (б) для расстояния *MN* дает

$$\frac{r^2}{2R_2}.$$
 (B)

В случае касания шара и сферической выемки (рис. 211, б) в (б) величина R₁ отрицательна, откуда

$$z_2 - z_1 = \frac{r^2 (R_1 - R_2)}{2R_1 R_2}$$
. (B')

Если тела сжимаются вдоль норма-ли в точке О силой P, в точке контакта возникнут местные деформации, приводящие к контакту по некоторой малой поверхности с круговой границей, называемой поверх-ностью контакта. Предполагая, что радиусы кривизны R_1 и R_2 очень вели-ки по сравнению с радиусом границы поверхности контакта, мы можем при исследовании поверхности кон-

Рис. 210.

такта применить результаты, полученные ранее для полубеско-нечных тел. Обозначим через w_1 перемещение, вызванное местной деформацией в направлении z_1 точки M поверхности нижней

Рис. 211.

сферы (рис. 210), и через w_2 — такое же перемещение в направлении z_2 для точки N верхней сферы. Если считать, что в процессе местного сжатия плоскость касания в точке O остается неподвижной, то любые две точки тел, расположенные на осях z_1 и z_2 на достаточно большом¹) расстоянии от точки O, сбли-зятся друг с другом на некоторую величину α , а расстояние между точками M и N (рис. 210) уменьшится на $\alpha - (w_1 + w_2)$. Если, наконец, вследствие местного сжатия точки M и N войдут в область контакта, то получаем

$$\alpha - (w_1 + w_2) = z_1 + z_2 = \beta r^2, \qquad (r)$$

¹⁾ Эти расстояния таковы, что деформациями, вызванными сжатием в этих точках, можно пренебречь.

где β — постоянная, зависящая от радиусов R_1 и R_2 и определяемая уравнениями (б), (в) или (в'). Таким образом, из геометрических соображений мы находим для любой точки поверхности контакта зависимость

$$w_1 + w_2 = \alpha - \beta r^2. \tag{A}$$

Рассмотрим теперь местные деформации. Из условия симметрии интенсивность q давления между соприкасающимися телами и соответствующие деформации симметричны относительно центра О поверхности контакта. Считая, что рис. 209, a изображает поверхность контакта и что M — точка на поверхности контакта нижней сферы, на основании предыдущего параграфа получим для перемещения w_1 этой точки формулу

$$w_1 = \frac{(1-v_1^2)}{\pi E_1} \int \int q \, ds \, d\psi, \qquad (e)$$

где v₁ и E₁— упругие постоянные для нижней сферы и интегрирование производится по всей области контакта. Аналогичная формула справедлива и для верхней сферы. Отсюда

$$w_1 + w_2 = (k_1 + k_2) \iint q \, ds \, d\psi,$$
 (*)

ГД€

$$k_1 = \frac{1 - v_1^2}{\pi E_1}, \quad k_2 = \frac{1 - v_2^2}{\pi E_2}.$$
 (226)

Из формул (д) и (е)

$$(k_1 + k_2) \iint q \, ds \, d\psi = \alpha - \beta r^2. \tag{H}$$

Следовательно, нам нужно найти выражение для q, которое удовлетворяло бы уравнению (и). Покажем, что это требование удовлетворяется, если предположить, что распределение давления q по поверхности контакта определяется координатами полусферы радиуса a, построенной на поверхности контакта. Если q_0 —давление в центре O поверхности контакта, то

$$q_0 = ka$$
,

где $k = q_0/a$ — постоянный множитель, определяющий масштаб принятого распределения давления. Вдоль хорды *mn* давление *q* меняется так, как показано на рис. 209 пунктирной полуокружностью. Производя интегрирование вдоль этой хорды, находим

$$\int q\,ds = \frac{q_0}{a}\,A\,,$$

где A — площадь полукруга, отмеченного пунктирной линией, равная $0,5\pi (a^2 - r^2 \sin^2 \psi)$. Подставляя это значение в уравнение (и), находим, что

$$\frac{\pi (\underline{k_1} + \underline{k_2}) q_0}{a} \int_{0}^{\pi/2} (a^2 - r^2 \sin^2 \psi) d\psi = \alpha - \beta r^2.$$

или

откуда

$$(k_1 + k_2) \frac{q_0 \pi^2}{4a} (2a^2 - r^2) = \alpha - \beta r^2.$$

Это уравнение должно выполняться при любых значениях r, и следовательно, принятое распределение давления корректно лишь в том случае, если перемещение α и радиус поверхности контакта a определяются следующими соотношениями:

$$\alpha = (k_1 + k_2) q_0 \frac{\pi^2 a}{2}, \quad a = (k_1 + k_2) \frac{\pi^2 q_0}{4\beta}.$$
 (227)

Значение максимального давления q₀ получается приравниванием суммы давлений по площади контакта сжимающей силы *P*. Для полусферического распределения давления это дает

$$\frac{q_0}{a} \frac{2}{3} \pi a^3 = P,$$

$$q_0 = \frac{3P}{2\pi a^2},$$
(228)

т. е. максимальное давление в полтора раза превышает среднее давление по поверхности контакта. Подставляя это значение q_0 в уравнения (227) и приняв, согласно формуле (б),

$$\beta = \frac{R_1 + R_2}{2R_1R_2}$$
,

находим для двух соприкасающихся шаров (рис. 207) зависимости

$$a = \sqrt[3]{\frac{3\pi}{4} \frac{P(k_1 + k_2) R_1 R_2}{R_1 + R_2}},$$

$$\alpha = \sqrt[3]{\frac{9\pi^2}{16} \frac{P^2(k_1 + k_2)^2(R_1 + R_2)}{R_1 R_2}}.$$
(229)

Предполагая, что оба шара обладают одними и теми же упругими свойствами и принимая v = 0,3, приведем эти зависимости к виду

$$a = 1,109 \sqrt[3]{\frac{P}{E} \frac{R_1 R_2}{R_1 + R_2}}, \quad \alpha = 1,23 \sqrt[3]{\frac{P^2}{E^2} \frac{R_1 + R_2}{R_1 R_2}}.$$
 (230)

Соответствующее максимальное давление

$$q_{0} = \frac{3}{2} \frac{P}{\pi a^{2}} = 0,388 \sqrt[3]{PE^{2} \frac{(R_{1} + R_{2})^{2}}{R_{1}^{2}R_{2}^{2}}}.$$
 (231)

Для случая шара, вдавливаемого в плоскую поверхность с теми же, что и у шара, упругими постоянными, подставляя $1/R_1 = 0$ в выражения (230) и (231), получаем следующие формулы: $a = 1,109 \sqrt[3]{\frac{PR_2}{E}}, \quad \alpha = 1,23 \sqrt[3]{\frac{P^2}{E^2R_2}}, \quad q_0 = 0,388 \sqrt[3]{\frac{PE^2}{R_2^2}}.$ (232)

414

Считая R_1 отрицательным, мы можем также выписать уравнения для шара, вдавливаемого в сферическую выемку (рис. 211, δ).

Зная размер поверхности контакта и действующие на нее давления, можно определить напряжения, пользуясь методом, изложенным в предыдущем параграфе¹). Результаты этих расчетов для точек, расположенных вдоль

осей Oz_1 и Oz_2 , показаны на рис. 212. За единицу напряжения принято максимальное давление q_0 в центре поверхности контакта. При измерении расстояний вдоль оси *z* за единицу принимается радиус поверхности контакта *a*.

Наибольшим напряжением является сжимающее напряжение σ_z в центре поверхности контакта, а два других глав- 2а ных напряжения в той же точке равны $0,5(1+2\nu)\sigma_z$. Следовательно, максимальное касательное напряжение, от которого зависит текучесть такого материала, как сталь, в этой точке сравнительно мало. Точка с максимальным касательным напряжением лежит на оси z

Рис. 212.

на глубине, равной примерно половине радиуса поверхности контакта. Эту точку для такого материала, как сталь, можно считать самой опасной. Максимальное касательное напряжение в этой точке при $\nu = 0.3$ составляет около $0.31q_0$.

Для хрупких материалов разрушение определяется максимальным растягивающим напряжением. Это напряжение действует на круговой границе поверхности контакта. Оно действует в радиальном направлении и имеет величину

$$\sigma_r = \frac{(1-2\nu)}{3} q_0.$$

Другое главное напряжение, действующее в окружном направлении, численно равно приведенному выше радиальному напряжению, но противоположно ему по знаку. Следовательно, вдоль границы поверхности контакта, где нормальное давление на поверхности становится равным нулю, мы имеем чистый сдвиг величиной $q_0 (1-2v)/3$. Полагая v = 0,3, получаем значение касательного напряжения $0,133q_0$. Это напряжение намного меньше, чем максимальное касательное напряжение, выше,

¹) Такие расчеты провел А. Н. Динник, Известия Киевского политехнического института, Киев, 1909. См. также М. Т. Huber, Ann. Physik 14, 153 (1904); S. Fuchs, Physik Z. 14, 1282 (1913); М. С. Huber, S. Fuchs, Physik Z. 15, 298 (1914); W. B. Morton, L. J. Close, Phil. Mag. 43, 320 (1922).

но больше касательного напряжения в центре поверхности контакта, где нормальное давление является наибольшим.

Многочисленные эксперименты подтвердили теоретические результаты Герца для материалов, следующих по закону Гука, и ири мапряжениях, не превышающих предела упругости¹).

§ 141. Давление между двумя соприкасающимися телами. Более общий случай²)

Более общий случай сжатия соприкаєающихся упругих тел можно исследовать таким же образом, как и случай сжатия сферических тел, рассмотренный в предыдущем параграфе. Проведем касательную плоскость в точке контакта О и примем ее за плоскость xy (рис. 210). Поверхности тел вблизи контакта, если пренебречь малыми величинами высших порядков, можно представить уравнениями ³)

$$z_1 = A_1 x^2 + A_2 xy + A_3 y^2,$$

$$z_2 = B_1 x^2 + B_2 xy + B_3 y^2.$$
(a)

Расстояние между двумя точками *М* и *N* определится тогда формулой

$$z_1 + z_2 = (A_1 + B_1) x^2 + (A_2 + B_2) xy + (A_3 + B_3) y^2.$$
 (6)

Осям x и y можно всегда придать такие направления, чтобы исчезли члены, содержащие произведения xy. Тогда

$$z_1 + z_2 = Ax^2 + By^2$$
, (B)

где A и B— постоянные, зависящие от величин главных кривизн соприкасающихся поверхностей и от угла между плоскостями главных кривизн для этих поверхностей. Если обозначить через R_1 и R'_1 главные радиусы кривизны в точке контакта для одного из тел, а через R_2 и R'_2 —те же величины для другого тела⁴), и через ψ обозначить угол между нормальными плоскостями, содержащими радиусы кривизны R_1 и R_2 , то постоянные A и B

¹⁾ Ссылки на соответствующие работы можно найти в статье Берндта (G. Berndt, Z. Tech. Physik 3, 14 (1922)). См. также Handbuch der physikalischen und technischen Mechanik, т. 3, стр. 120.

²) Эта теория также принадлежит Герцу, см. его упомянутую выше работу.

³) Предполагается, что вблизи точки касания поверхность является гладкой и может рассматриваться как поверхность второго порядка.

⁴⁾ Кривизна тела считается положительной, если раднус кривизны в рассматриваемой точке лежит внутри материала. На рис. 210 обе кривизны тел положительны. Сферическая выемка на рис. 211 имеет отрицательную кривийну.

определятся из следующих уравнений:

$$A + B = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_1'} + \frac{1}{R_2} + \frac{1}{R_2'} \right),$$

$$B - A = \frac{1}{2} \left[\left(\frac{1}{R_1} - \frac{1}{R_1'} \right)^2 + \left(\frac{1}{R_2} - \frac{1}{R_2'} \right)^2 + \frac{1}{R_1'} + 2 \left(\frac{1}{R_1} - \frac{1}{R_1'} \right) \left(\frac{1}{R_2} - \frac{1}{R_2'} \right) \cos 2\psi \right]^{1/2}.$$
 (r)

Можно показать, что входящие в (в) величины A и B положительны, так как должна быть положительной сумма $z_1 + z_2$. Отсюда можно сделать вывод, что все точки с одним и тем же расстоянием $z_1 + z_2$ лежат на эллипсе. Следовательно, если тела сдавливаются в направлении, нормальном к касательной плоскости в точке O, то поверхность контакта будет иметь эллиптическую границу.

Пусть величины α , w_1 , w_2 имеют тот же смысл, что и в предыдущем параграфе. Тогда для точек на поверхности контакта имеем

 $w_1 + w_2 + z_1 + z_2 = \alpha,$

или

$$w_1 + w_2 = \alpha - Ax^2 - By^2.$$

Эта зависимость получена из геометрических соображений. Рассмотрим теперь местную деформацию поверхности контакта. Считая, что эта поверхность очень мала, и применяя уравнение (215), полученное для полубесконечных тел, получаем для суммы перемещений $w_1 + w_2$ следующее выражение:

$$w_1 + w_2 = \left(\frac{1 - v_1^2}{\pi E_1} + \frac{1 - v_2^2}{\pi E_2}\right) \iint \frac{q dA}{r}, \qquad (e)$$

где $q \, dA$ — давление, действующее на бесконечно малый элемент поверхности контакта, а r — расстояние от этого элемента до рассматриваемой точки. Интегрирование должно распространяться по всей области поверхности контакта. Используя обозначения (226), из формул (д) и (е) получаем

$$(k_1+k_2)\int\int \frac{q\,dA}{r} = \alpha - Ax^2 - By^2.$$
 (**)

Задача теперь состоит в том, чтобы найти распределение давления, удовлетворяющее уравнению (ж). Герц показал, что это требование удовлетворяется, если предположить, что интенсивность давления q на поверхности контакта представляется ординатами полуэллипсоида, построенного на поверхности контакта. Максимальное давление тогда, очевидно, будет действовать в центре поверхности контакта. Обозначая его через q_0 , а через a и b— полуоси эллиптической границы поверхности контакта, можно

(д)

получить максимальное давление из уравнения

$$P = \iint q \, dA = \frac{2}{3} \pi a b q_0,$$

$$q_0 = \frac{3}{2} \frac{P}{\pi a b}.$$
(233)

откуда

$$a = m \sqrt[3]{\frac{3\pi}{4} \frac{P(k_1 + k_2)}{(A+B)}}, \quad b = n \sqrt[3]{\frac{3\pi}{4} \frac{P(k_1 + k_2)}{(A+B)}}, \quad (234)$$

где величина A + B определяется из уравнений (г), а коэффициенты m и n являются числами, зависящими от отношения (B-A)/(A+B). Используя обозначение

$$\cos\theta = \frac{B-A}{A+B},\qquad (H)$$

получаем значения m и n для различных значений θ , представленные в приведенной ниже табл. 11¹).

таблица 11

θ=		30		35		40		45		50	55		60
m = n =	2 0	,731 ,493	2 0	, 397 , 530	2 0	,136 ,567	1	,926 ,604	1 0	,754 ,641	1,61 0,67	1 8	1,486 0,717
θ=		65		70		75		80		8	5		90
m= n=		1,37 0,75	'8 9	1,28 0,80	34)2	1,20 0,84)2 6	1,12 0,89	28 13	1,0 0,9	061 944		1,000 1,000

Рассматривая, например, контакт колеса с цилиндрическим ободом радиуса $R_1 = 40 \ cm$ с рельсом, имеющим цилиндрический радиус головки $R_2 = 30 \ cm$, найдем при подстановке $1/R_1 = 1/R_2 = 0$ и $\psi = \pi/2$ в уравнения (г)

$$A + B = \frac{7}{240}$$
, $B - A = \frac{1}{240}$, $\cos \theta = 0.135$, $\theta = 82^{\circ}15'$.

¹) Эта таблица взята из статьи Н. L. Whittemore, S. N. Petrenko, Natl. Bur. Std. Tech Paper 201, (1921). Обобщение на случай 0 < θ < 30° дал Корнхаузер (М. Когпhauser, J. Appl. Mech. 18, 251—252 (1951)).

418

Затем путем интерполяции находим из таблицы

$$m = 1,104, n = 0,911.$$

Подставляя найденные значения в уравнения (234) и принимая $E = 2\,100\,000 \,\kappa\Gamma/cm^2$ и $v = 0.25^{1}$), находим

$$a = 0,0314 \sqrt[3]{P}, \quad b = 0,0259 \sqrt[3]{P}.$$

При силе Р, равной 450 кГ, получаем

$$a = 0,241 \text{ cm}, \quad b = 0,198 \text{ cm}, \quad \pi ab = 0,150 \text{ cm}^2,$$

где *паb* площадь контакта, и наибольшее давление в центре будет

$$q_0 = \frac{3}{2} \frac{P}{\pi ab} = 4500 \ \kappa \Gamma / c M^2.$$

Зная распределение давления, можно найти напряжения в любой точке²). Таким путем было показано, что точка максимального касательного напряжения лежит на оси z на некоторой малой глубине z_1 , зависящей от величины полуосей a и b. Например, $z_1 = 0.47a$, когда b/a = 1, и $z_1 = 0.24a$, когда a/b = 0.34. Соответствующие значения максимального касательного напряжения составляют (при $\nu = 0.31$ и $\tau_{max} = 0.32q_0$.

Рассматривая точки на эллиптической поверхности контакта и направляя оси x и y по полуосям a и b, получаем для главных напряжений в центре поверхности контакта формулы

$$\sigma_{x} = -2\nu q_{0} - (1 - 2\nu) q_{0} \frac{b}{a+b}, \quad \sigma_{y} = -2\nu q_{0} - (1 - 2\nu) q_{0} \frac{a}{a+b}, \\ \sigma_{z} = -q_{0}. \quad (K)$$

Для концов осей эллипса находим $\sigma_x = -\sigma_y$ и $\tau_{xy} = 0$. Растягивающие напряжения в радиальном направлении равны сжимающим напряжениям в окружном направлении. Следовательно, в этих точках действует чистый сдвиг. Величина этого сдвига для концов большой оси ($x = \pm a$, y = 0) равна

$$\tau = (1-2\nu) q_0 \frac{\beta}{e^2} \left(\frac{1}{e} \operatorname{arcth} e - 1\right), \qquad (\pi)$$

¹⁾ Если v увеличивается от 0,25 до 0,30, полуоси эллипса, определенные по формулам (234), уменьшаются на 1%, а максимальное давление q_0 увеличивается примерно на 2%

²) Такие исследования проделал Н. М. Беляев (см. Сборник института инженеров путей сообщения, Петроград, 1917 и сборник статей «Инженерные сооружения и строительная механика», Петроград, 1924). См. также H. R. Thomas, V. A. Hoersch, Univ. Illinois Eng. Exptl. Sta. Bull. 212, (1930); G. Lundberg, F. K. G. Odqvist, Proc. Ingeniörs Vetenskaps Akad., № 116, Stockholm, 1932. Набор формул и кривых дан в книге: С. Lipson, R. C. Juvinall, Handbook of Stress and Strength, гл. 7, N. Y. 1963.

а для концов малой оси
$$(x = 0, y = \pm b)$$

 $\tau = (1 - 2\nu) q_0 \frac{\beta}{e^2} \left(1 - \frac{\beta}{e} \operatorname{arcth} \frac{e}{\beta} \right),$ (м)

где $\beta = b/a$, $e = (1/a) \sqrt{a^2 - b^2}$. Когда *b* приближается к *a* и граница поверхности контакта приближается к окружности, напряжения, определяемые формулами (к), (л) и (м), приближаются

к напряжениям, полученным в предыдущем параграфе для случая сжатия шаров.

Более детальное исследование напряжений для всех точек на поверхности контакта показывает ¹), что при e < 0,89 максимальное касательное напряжение определяется формулой (л). При e > 0,89 максимальное касательное напряжение действует в центре эллипса и может быть найдено из приведенного выше уравнения (к).

При увеличении отношения a/b получаем все более и более узкие эллипсы контакта, и в пределе при $a/b \longrightarrow \infty$ приходим к случаю контакта двух цилиндров с параллельными осями ²). Поверхность контакта в этом случае превращается в узкий пря-

моугольник. Распределение давления q по ширине поверхности контакта (рис. 213) представится полуэллипсом. Если ось x перпендикулярна плоскости рисунка, через b обозначена половина ширины поверхности контакта, а через P'— нагрузка на единицу длины поверхности контакта, то из полуэллиптического распределения давления получаем

 $P' = \frac{1}{2} \pi b q_0,$

$$q_0 = \frac{2P'}{\pi b} \,. \tag{235}$$

Исследование местной деформации дает для величины *b* следующее выражение:

$$b = \sqrt{\frac{4P'(k_1 + k_2)R_1R_2}{R_1 + R_2}},$$
(236)

¹) См. упомянутую выше работу Н. М. Беляева.

²⁾ Прямой способ получения решения для этого случая с учетом касательных напряжений на поверхности контакта дал Порицкий (H. Poritzky, J. Appl. Mech. 17, 191 (1950)).

§ 142]

СОУДАРЕНИЕ ШАРОВ

где R_1 и R_2 — радиусы цилиндра, а k_1 и k_2 — постоянные, определяемые уравнениями (226). Если оба цилиндра состоят из одного и того же материала, а v = 0,3, то

$$b = 1,52 \quad \sqrt{\frac{P'R_1R_2}{E(R_1 + R_2)}}.$$
 (237)

В случае двух равных радиусов $R_1 = R_2 = R$

$$b = 1,08 \, \sqrt{\frac{\overline{P'R}}{E}} \,. \tag{238}$$

Для случая контакта цилиндра с плоской поверхностью:

$$b = 1,52 \sqrt{\frac{P'R}{E}}.$$
 (239)

Исключая b из равенств (236) и (235), находим

$$q_0 = \sqrt{\frac{P'(R_1 + R_2)}{\pi^2 (k_1 + k_2) R_1 R_2}}.$$
 (240)

Если оба цилиндра состоят из одного и того же материала и v = 0,3, то

$$q_0 = 0.418 \sqrt{\frac{P'E(R_1 + R_2)}{R_1R_2}}.$$
 (241)

В случае контакта цилиндра с плоской поверхностью

$$q_0 = 0.418 \ \sqrt{\frac{P'E}{R}}$$
 (242)

Зная q_0 и b, можно определить напряжения в любой точке. Эти расчеты показывают¹), что точка с максимальным касательным напряжением лежит на оси z на определенной глубине. Изменение компонент напряжения с глубиной при v = 0,3 показано на рис. 213. Максимальное касательное напряжение достигается на глубине $z_1 = 0,78b$ и его величина составляет²) $0,304q_0$.

§ 142. Соударение шаров

Результаты последних двух параграфов можно использовать при исследовании соударения упругих тел. Рассмотрим, например, соударение двух шаров (рис. 214), движущихся вдоль оси соединяющей их центры. Как только шары при своем движении по отношению друг к другу придут в соприкосновение в точке O, начнут действовать сжимающие силы P, которые изменяют скорости шаров. Если обозначить через v_1 и v_2 величины этих скоростей, то

¹) См. упомянутую выше работу Н. М. Беляева.

²) Контактная теория Герца нашла широкое практическое применение. Сообщалось об определении контактных напряжений, приближающихся к 10⁵ кГ/см². См., например, Ј. В. В i d w ell (ред.), Rolling Contact Phenomena, Elsevier Publishing, Amsterdam, стр. 430, 406, 1962 [см. также: Н. А. Кильчевский, Теория соударений твердых тел, Гостехиздат, 1949 (Прим. пер.)].

их производные в процессе соударения определятся уравнениями

$$m_1 \frac{dv_1}{dt} = -P, \quad m_2 \frac{dv_2}{dt} = -P,$$
 (a)

где m_1 и m_2 — массы шаров. Обозначим через α расстояние, на которое сближаются шары в результате местного сжатия в точке O. Скорость этого сближения будет равна

и из формул (а) мы находим

$$\ddot{a} = -P \frac{m_1 + m_2}{m_1 m_2}$$
. (6)

Для шаров, у которых размеры и свойства различаются не слишком сильно, продолжительность соударения, т. е. время, в течение которого шары сохраняют

 $\dot{\alpha} = v_1 + v_2$

контакт, очень велика по сравнению с периодом низшей формы колебаний шаров¹). Следовательно, можно пренебречь колебаниями и считать, что уравнение (229), которое было выведено для статических условий, сохраняет силу и при соударении. Используя обозначения

$$n = \sqrt{\frac{16}{9\pi^2} \frac{R_1 R_2}{(k_1 + k_2)^2 (R_1 + R_2)}}, \quad n_1 = \frac{m_1 + m_2}{m_1 m_2}, \quad (B)$$

из (229) находим

$$P = n\alpha^{3/2} \tag{(r)}$$

и уравнение (б) принимает вид

$$\ddot{\alpha} = -nn_1 \alpha^{3/2} \,. \tag{I}$$

Умножая обе части этого уравнения на α , получаем

$$\frac{1}{2} d(\dot{\alpha})^2 = -nn_1 \alpha^{3/2} d\alpha,$$

откуда после интегрирования

$$\frac{1}{2}(\dot{\alpha}^2 - v^2) = -\frac{2}{5}nn_1\alpha^{5/2},$$
 (e)

где v — скорость сближения двух шаров в начале удара. Если подставить в это уравнение $\alpha = 0$, то найдем величину сближения в момент максимальной деформации сжатия. Обозначив эту величину через α_1 , получим

$$\alpha_1 = \left(\frac{5}{4} \frac{v^2}{nn_1}\right)^{2/5}.$$
 (**)

Зная α_1 , мы можем, пользуясь уравнениями (229), вычислить максимальное сжимающее усилие *P*, возникающее между шарами в процессе удара, а также соответствующий радиус поверхности контакта.

¹) Rayleigh. Phil. Mag., ser. 6, **11**, 283 (1906). Если шары сильно различаются, в частности, если один из них может рассматриваться как шар бесконечных размеров, то период становится очень большим и даже бесконечным; в таких условиях это утверждение несправедливо. Тем не менее измеренные продолжительности соударения хорошо согласуются с результатами этой квазистатической теории. См., например, J. N. Goodier, W. E. Jahsman, E. A. Ripperger, J. Appl. Mech. **26**, 3 (1959).

Для определения продолжительности соударения запишем уравнение (e) в следующей форме:

$$dt = \frac{d\alpha}{\sqrt{v^2 - \frac{4}{5} n n_1 \alpha^{5/4}}}$$

Обозначая $\alpha/\alpha_1 = x$ и используя уравнение (ж), находим, что

$$dt = \frac{\alpha_1}{v} \frac{dx}{\sqrt{1-x^{5/2}}},$$

откуда получаем для продолжительности соударения выражение

$$t = \frac{2\alpha_1}{v} \int_0^1 \frac{dx}{\sqrt{1 - x^{5/2}}} = 2,94 \frac{\alpha_1}{v} .$$
 (243)

В частном случае двух одинаковых шаров (сделанных из одного и того же материала) радиуса R, согласно формуле (ж), имеем

$$\alpha_1 = \left(\frac{5 \sqrt{2} \pi \rho}{4} \frac{1 - \nu^2}{E} v^2\right)^{2/5} R, \quad t = 2,94 \left(\frac{5 \sqrt{2} \pi \rho}{4} \frac{1 - \nu^2}{E}\right)^{2/5} \frac{R}{v^{1/5}}, (244)$$

где *р*-масса единицы объема шара.

Мы видим, что продолжительность соударения пропорциональна радиусу шаров и обратно пропорциональна $v^{1/5}$. Этот результат был проверен несколькими экспериментаторами¹). В случае длинных стержней со сферическими концами период основного тона колебаний может быть того же порядка, что и продолжительность соударения и при исследовании местного сжатия в точке контакта эти колебания²) нужно учитывать.

§ 143. Симметричная деформация круглого цилиндра

В случае круглого цилиндра, находящегося под действием осесимметричных сил, приложенных к его боковой поверхности, введем функцию напряжений φ в цилиндрических координатах и применим уравнение (190)³). Это уравнение удовлетворяется, если взять для функции напряжений φ решение

¹) М. Натburger, Wied. Ann. 28, 653 (1886); А. Н. Динник, Записки русского физико-химического общества. 38, 242 (1906); 41, 57 (1909). Дальнейшая библиография по этому вопросу дана в книге: Handbuch der physikalischen und technischen Mechanik т. 3, стр. 448, 1927.

²) См. стр. 508. Продольное соударение стержней со сферическими концами было рассмотрено в статьях: J. E. Sears, Proc. Cambridge Phil. Soc. 14, 257 (1908); Trans. Cambridge Phil. Soc. 21, 49 (1912). Продольное соударение стержней с учетом местного сжатия исследовал С. П. Тимошенко (S. Timoshenko, Z. Math. Physik 62, 198 (1914)).

⁸) Задача о деформации круглого цилиндра под действием сил, приложенных к его поверхности, рассматривалась Похгаммером (L. Pochgammer, Crelle's J. 81 (1876)). Некоторые задачи о симметричной деформации цилиндров рассматривал Кри (C. Chree, Trans. Cambridge Phil. Soc. 14, 250 (1889)). См. также статью L. N. G. Filon, Trans. Roy. Soc. (London), ser. A, 198 (1902), которая содержит решения нескольких задач о симметричной деформации цилиндра, представляющих практический интерес.

ОСЕСИММЕТРИЧНЫЕ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ [ГЛ. 12

уравнения

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$
 (a)

в форме

$$\varphi = f(r) \sin kz, \tag{6}$$

где f— функция только одной переменной r. Подставляя выражение (б) в уравнение (а) для определения f(r), получаем следующее обыкновенное дифференциальное уравнение:

$$\frac{d^2f}{dr^2} + \frac{1}{r}\frac{df}{dr} - k^2f = 0.$$
 (B)

Этому дифференциальному уравнению удовлетворяют модифицированные функции Бесселя (первого и второго рода) нулевого порядка с аргументом kr. Решение, соответствующее сплошному цилиндру, легко получается непосредственно в виде ряда

$$f(r) = a_0 + a_1 r^2 + a_2 r^2 + a_3 r^3 + \dots$$
(r)

Подставляя этот ряд в уравнение (в), получаем следующее соотношение между последовательными коэффициентами ряда

$$(2n)^2 a_n - k^2 a_{n-1} = 0$$
,

откуда

$$a_1 = \frac{k^2}{2^2} a_0, \quad a_2 = \frac{k^2}{4^2} a_1 = \frac{k^4}{2^2 \cdot 4^2} a_0 \dots$$

Подставляя эти зависимости в ряд (г), имеем

$$f(r) = a_0 \left[1 + \frac{k^2 r^2}{2^2} + \frac{k^4 r^4}{2^2 \cdot 4^2} + \frac{k^6 r^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots \right].$$
 (a)

Ряд в скобках в уравнении (д) является функцией Бесселя нулевого порядка от мнимого аргумента ikr, которая обычно обозначается через $I_0(kr)$. В последующем мы будем пользоваться для этой функции обозначением $J_0(ikr)$ и записывать функцию напряжений (б) в виде

$$\varphi_1 = a_0 J_0 (ikr) \sin kz. \tag{e}$$

Уравнение (190) имеет также решения, отличные от решений уравнения (а). Одно из этих решений можно получить из вышеприведенной функции $J_0(ikr)$. После дифференцирования имеем

$$\frac{dJ_0(ikr)}{d(ikr)} = -\frac{ikr}{2} \left[1 + \frac{k^2r^2}{2\cdot 4} + \frac{k^4r^4}{2\cdot 4^2\cdot 6} + \frac{k^6r^6}{2\cdot 4^2\cdot 6^2\cdot 8} + \cdots \right].$$
(*)

Эта производная, записанная с отрицательным знаком, называется функцией Бесселя первого порядка и обозначается через J_1 (*ikr*). Рассмотрим теперь функцию

$$f_1(r) = r \frac{d}{dr} J_0(ikr) = -ikr J_1(ikr) = \frac{k^2 r^2}{2} \left[1 + \frac{k^2 r^2}{2 \cdot 4} + \frac{k^4 r^4}{2 \cdot 4^2 \cdot 6} + \dots \right]. \quad (n)$$

Путем дифференцирования можно показать, что

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - k^2\right)f_1(r) = 2k^2J_0(ikr).$$

Затем, учитывая, что $J_0(ikr)$ является решением уравнения (в), получаем, что $f_1(r)$ будет решением уравнения

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - k^2\right) \left(\frac{d^2f_1}{dr^2} + \frac{1}{r}\frac{df_1}{dr} - k^2f_1\right) = 0.$$

§ 1431

Следовательно, решение уравнения (190) можно принять в форме

$$\varphi_2 = a_1 \sin kz \,(ikr) \,J_1 \,(ikr). \tag{K}$$

Комбинируя решения (е) и (к), мы можем взять функцию напряжений в виде

$$\varphi = \sin kz \left[a_0 J_0 (ikr) + a_1 (ikr) J_1 (ikr) \right]. \tag{(n)}$$

Подставляя эту функцию напряжений в уравнения (189), находим следующие выражения для компонент напряжений:

$$\sigma_r = \cos kz \left[a_0 F_1(r) + a_1 F_2(r) \right] \qquad \tau_{rz} = \sin kz \left[a_0 F_3(r) + a_1 F_4(r) \right], \qquad (M)$$

где $F_1(r), \ldots, F_4(r)$ — некоторые функции от r, содержащие $J_0(ikr)$ и $J_1(ikr)$. Используя таблицы бесселевых функций, можно легко вычислить значения $F_1(r), \ldots, F_4(r)$ для любого r.

Если обозначить через *а* внешний радиус цилиндра, то силы, приложенные к его поверхности, согласно формулам (м), определятся следующими значениями компонент напряжений:

$$\sigma_r = \cos kz \left[a_0 F_1(a) + a_1 F_2(a) \right], \qquad \tau_{rz} = \sin kz \left[a_0 F_3(a) + a_1 F_4(a) \right]. \tag{H}$$

Путем соответствующего подбора постоянных k, a₀, a₁ можно исследовать различные случаи симметричного нагружения цилиндра. Обозначая длину цилиндра через l и принимая

$$k = \frac{n\pi}{l}$$
, $a_0F_1(a) + a_1F_2(a) = -A_n$, $a_0F_3(a) + a_1F_4(a) = 0$,

получаем значения постоянных a_0 и a_1 для случая, когда на боковой поверхности цилиндра действует нормальное давление $A_n \cos(n\pi z/l)$. Случай, когда n = 1, представлен на рис. 215. Аналогичным образом можно получить решение в случае, когда на поверхности цилиндра действуют касательные усилия интенсивности $B_n \sin(n\pi z/l)$.

Полагая n = 1, 1, 3, ... и используя принцип суперпозиции, приходим к решениям задач, в которых нормальные давления по поверхности цилиндра можно представить рядом вида

$$A_1 \cos \frac{\pi z}{l} + A_2 \cos \frac{2\pi z}{l} + A_3 \cos \frac{3\pi z}{l} + \dots,$$
 (o)

а касательные усилия — рядом вида

$$B_1 \sin \frac{\pi z}{l} + B_1 \sin \frac{2\pi z}{l} + B_2 \sin \frac{2\pi z}{l} + \dots$$
(n)

Если выражение для функции напряжений φ вместо (б) искать в виде $\varphi = f(r) \cos kz$,

и рассуждать далее так же, как и раньше, то вместо выражения (л) получим функцию напряжений

$$\varphi = \cos kz \left[b_0 J_0 (ikr) + b_1 (ikr) J_1 (ikr) \right].$$
 (p)

С помощью надлежащего выбора постоянных k, b_0 , b_1 получаем решение для случая, когда нормальные давления, действующие на цилиндр, представляются рядом по синусам, а касательные усилия — рядом по косинусам. Таким образом, комбинируя решения (л) и (р), мы можем получить любое осесимметричное распределение нормальных и касательных усилий по поверхности цилиндра. В то же время могут также действовать усилия, распределенные по концам цилиндра. Накладывая простое растяжение или сжатие, мы всегда можем сделать результирующие этих усилий равными нулю, и тогда в соответствии с принципом Сен-Венана их влиянием на распределение напряжений вдали от концов можно пренебречь. Несколько примеров симметричного нагружения цилиндров рассмотрел Файлон в уже упоминавшейся статье¹). Мы приведем здесь конечные результаты его решения для случая, показан-

Рис. 215.

Рис. 216.

ного на рис. 216. Цилиндр, длина которого равна ла, подвергается растяжению касательными усилиями, равномерно распределенными по указанным на ри-

сунке частям поверхности. Представляет практический интерес распределение нормального напряжения о, по поперечным сечениям цилиндра. В табл. 12 приведены отношения этих напряжений к среднему растягивающему напряжению, полученному делением полного растягивающего усилия на площадь поперечного сечения цилиндра. Можно убечто местные растягивающие напряжения диться. вблизи нагруженных частей поверхности быстро

убывают по мере удаления от указанных частей поверхности и приближаются к среднему значению.

таблица 12

z	r=0	r=0,2a	r=0,4a	r=0,6a	r=a
0	0,689	0,719	0,810	0,962	1,117
0.051	0,673	0,700	0,786	0,937	1,163
0,101	0,631	0,652	0,720	0,859	1,344
0,151	0,582	0,594	0,637	0,737	2,022
0,201	0,539	0,545	0,565	0,617	1,368
-					

Другое приложение общего решения задачи, выраженное через бесселевы функции, было дано Надаи при исследовании изгиба круглых пластинок силой, приложенной в центре²) (рис. 217). Метод, основанный на использовании преобразования Ханкеля и применимый к толстым плитам, полубесконечному телу, контактным задачам и задачам о круговой трещине, широко использовал Снеддон 3).

¹⁾ См. упомянутую выше работу. См. также G. Picket, J. Appl. Mech. 11, 176 (1944).

A. Nádai, Elastische Platten, 1925, crp. 315.
 J. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. [Русский перевод: И. Н. Снеддон, Преобразования Фурье, ИЛ, 1957].

§ 144. Круглый цилиндр под действием опоясывающего давления ¹)

Когда производится посадка короткого кольца на значительно более длинный вал, то обычные формулы расчета посадки, предполагающие, что кольцо и вал имеют одинаковую длину, являются неточными. Намного лучшее приближение можно получить, рассматривая задачу, показанную на рис. 218, а,

Рис. 218.

т. е. задачу для длинного цилиндра при равномерном нормальном давлении³) *р*, действующим на опоясывающей части поверхности *ABCD*.

Искомое решение можно, очевидно, получить, накладывая друг на друга решения для двух распределений давлений, показанных на рис. 218, б. Таким образом, основная задача, решение которой мы сейчас дадим, состоит в определении действия давления p/2 на нижней половине цилиндрической поверхности и -p/2 на ее верхней половине.

Начнем с определения функции напряжений, описываемой уравнением (p) § 143, записывая $I_0(kr)$ вместо $J_0(ikr)$ и $iI_1(kr)$ вместо $J_1(ikr)$. Положим также $b_0 = \rho b_1$. Тогда

$$\varphi = [\rho I_0(kr) - kr I_1(kr)] b_1 \cos kz.$$
 (a)

Эта функция напряжений удовлетворяет уравнению (190) при любых значениях k. Если считать, что k меняется в некоторой области, мы можем предположить, что b_1 зависит от k и от приращения dk, и записать

$$b_1 = f(k) dk$$
.

Подставляя это выражение в формулу (а) и складывая все полученные таким

¹) М. V. Barton, J. Appl. Mech, **8**, A-97 (1941); A. W. Rankin, там же **11**, A-77 (1944); C. J. Tranter, J. W. Craggs, Phil. Mag. **36**, 241 (1945).

²) Расчет упругого кольца, посаженного с нагревом на длинный упругий вал, без учета трения дал Окубо (Н. Окиbo, Z. Angew. Math. Mech. 32, 178—186 (1952)). Приближенные решения для случая посадки жесткой муфты с трением и без него дали Конвей и Фарнхэм (Н. D. Conway, К. A. Farnham, Intern. J. Eng. Sci. 5, 541—554 (1967); см. также W. F. Yau, SIAM J. Appl. Math. 15, 219—227 (1967).

Закругление острых углов понижает особенность в напряжениях, сводя ее к местному пику, формулы для определения которого дали (без учета трения) Гудьер и Лоутценгейзер (J. N. Goodier, C. B. Loutzenheiser, J. Appl. Mech. 32, 462—463 (1965)).

образом функции напряжений, получаем более общую функцию напряжений в форме

$$\varphi = \int_{0}^{\infty} \left[\rho I_{0} \left(kr \right) - kr I_{1} \left(kr \right) \right] f(k) \cos kz \, dk. \tag{6}$$

Убедимся теперь, что можно выбрать функцию f (k) таким образом, чтобы рассматриваемая функция напряжений дала решение нашей задачи.

Из формул (189) находим, что касательное напряжение выражается формулой

$$\boldsymbol{\tau}_{rz} = \int_{0}^{\infty} \left[\rho k I_{0}'(kr) - k^{2} r I_{1}'(kr) - k I_{1}(kr) - 2k (1-\nu) I_{0}'(kr) \right] k^{2} f(k) \cos kz \, dk, \quad (B)$$

где штрих обозначает дифференцирование по kr. Это напряжение должно обращаться в нуль на поверхности r = a. Полагая в выражении в скобках r = a и приравнивая эту скобку нулю, получаем уравнение для ρ , которое дает

$$\rho = 2(1 - v) + ka \frac{I_0(ka)}{I_1(ka)}.$$
 (r)

Остальные граничные условия имеют вид

$$\sigma_r = \frac{p}{2} \quad \text{при} \quad r = a, \quad z > 0,$$

$$\sigma_r = -\frac{p}{2} \quad \text{при} \quad r = a, \quad z < 0.$$
 (A)

Значение о_г, полученное из (б) с помощью формул (189), имеет вид

$$\sigma_{r} = -\int_{0}^{\infty} \left[1 - 2\nu - \rho\right] I_{0}(kr) + \left(kr + \frac{\rho}{kr}\right) J_{1}(kr) \left[k^{3}f(k)\sin kz \, dk.\right]$$
(e)

Воспользуемся теперь известной формулой¹)

$$\int_{0}^{\infty} \frac{\sin kz}{k} dk = \begin{cases} \frac{\pi}{2} & \text{при } z > 0, \\ 0 & \text{при } z = 0, \\ -\frac{\pi}{2} & \text{при } z < 0. \end{cases}$$
(ж)

Умножив эти равенства на p/π , получим

$$\frac{p}{\pi} \int_{0}^{\infty} \frac{\sin kz}{k} dk = \begin{cases} \frac{p}{2} & \text{при } z > 0, \\ 0 & \text{при } z = 0, \\ -\frac{p}{2} & \text{при } z < 0, \end{cases}$$
(H)

где значения справа являются граничными величинами для σ_r , определяемыми формулами (д). Следовательно, граничные условия (д) удовлетворяются, если сделать правую часть уравнения (е) при r = a, тождественно равной левой

428

¹) См., например, I. S. Sokolnikoff, Advanced Calculus, McGraw-Hill, New York, 1939, стр. 362.

части уравнения (и). Это условие требует выполнения равенства

$$-\left[(1-2\nu-\rho) I_0(ka) + \left(ka + \frac{\rho}{ka}\right) I_1(ka)\right] k^3 f(k) = \frac{\rho}{\pi} \frac{1}{k}, \quad (K)$$

которое и служит для отыскания f (k). Компоненты напряжения находятся затем по функции напряжений (б) с помощью формул (189) и будут интегра-

лами того же вида, что и интегралы в формуле (е), кото-рая определяет о_г. Значения, полученные с помощью численного интегрирования, приведены в статье Ренкина, упомянутой на стр. 427. Кривые на рис. 219 показывают изменение напряжений в осевом направлении для различных значений радиального расстояния и дают также изменение перемещений на поверхности.

Эти кривые воспроизведены из статьи Бартона (см. стр. 427) и были получены другим методом с использованием рядов Фурье. Из этих кривых с по-

мощью суперпозиции можно получить результаты для задачи, показанной на рис. 218, как описывалось в начале этого параграфа. Кривые для напряжений и перемещений при полосах нагружения разной ширины приведены в упомянутых статьях. Когда ширина равна радиусу цилиндра, тангенциальное напряжение на поверхности и посередине нагруженной полосы достигает значения, примерно на 10% превышающего приложенное давление, и является, разумеется, сжимающим. Осевое напряжение о, на поверхности в месте, где кончается нагрузка, становится растягивающим и составляет примерно 45% от приложенного давления. Касательное напряжение тра достигает наибольшего значения, равного 31,8% приложенного давления, по концам нагруженной полосы AB и CD (рис. 218) в точках, близких к поверхности.

Если давление прикладывается по всей криволинейной поверхности цилиндра, то независимо от его длины получаем просто сжимающие напряжения σ_r и σ_{Θ} , равные приложенному давлению, и напряжения σ_z и τ_{rz} исчезают.

Таким же путем можно получить решения для опоясывающего давления на границе полости в бесконечном теле¹) и для опоясывающего давления у одного из концов сплошного цилиндра²).

§ 145. Решение Буссинеска в виде двух гармонических функций

Решения, полученные в этой главе для осесимметричных задач при отсутствии кручения, до сих пор были выражены через одну бигармоническую функцию Лява ф. Еще раньше общая форма решения, выраженного через две гармонические функции, была дана Буссинеском³). Позднее она широко использовалась в задачах, несколько более сложных, чем рассмотренные нами, например в решениях Нейбера для задач об осевом растяжении тел, ограни-

¹⁾ C. J. Tranter, Quart. Appl. Math. 4, 298 (1946); O. L. Bowie, Quart. Appl. Math. 5, 100 (1947). ²) C. J. Tranter, J. W. Craggs, Phil. Mag. 38, 214 (1947).

³) J. Boussinesq, Applications des Potentiels à l'Etude de l'Equilibre et du Mouvement des Solides Elastiques, Gautier-Villars, Paris, 1885.

ченных эллипсоидами и гиперболоидами вращения. Эти решения упоминаются на стр. 252 (другие задачи, приведенные там неосесимметричны) в связи с представлениями Папковича-Нейбера для перемещения через четыре гармонические функции. Выведем теперь из этих более общих представлений формулы Буссинеска. Для четырех гармонических функций φ_0 , φ_1 , φ_2 , φ_3 (см. § 88) принимаем следующие выражения (обозначив 4 $\alpha = 1/(1 - \gamma)$);

$$\varphi_0 = -\frac{1}{\alpha} \Phi(r, z), \quad \varphi_1 = \varphi_2 = 0, \quad \varphi_3 = -\alpha \Psi(r, z),$$
 (a)

где функции Ф и Ψ не зависят от θ и являются гармоническими, т. е.

$$\nabla^2 \Phi = 0, \quad \nabla^2 \Psi = 0. \tag{6}$$

Оператор Лапласа ∇^2 имеет здесь тот же вид (а), указанный на стр. 384.

Перемещение в равенствах (a) § 88 можно разложить на части, являющиеся вкладами функций $\varphi_0, \ldots, \varphi_3$ в отдельности. Тогда вклад в перемещение от φ_0 будет вектором — α grad φ_0 , который теперь определится следующими компонентами в цилиндрических координатах:

$$(u_1, v_1, w_1) = \left(\frac{\partial \Phi}{\partial r}, 0, \frac{\partial \Phi}{\partial z}\right).$$
 (B)

Вклад в перемещение от ф3 составит

$$(u_2, v_2, w_2) = \left(\frac{z \,\partial \Psi}{\partial r}, 0, \frac{z \,\partial \Psi}{\partial z}\right) - (3 - 4v) (0, 0, \Psi).$$
(r)

Перемещение

$$(u, v, w) = (u_1 + u_2, v_1 + v_2, w_1 + w_2)$$
 (A)

совпадает с формой для перемещения, данной Буссинеском¹).

§ 146. Растяжение винтовой пружины (винтовые дислокации в кольце)

Для некоторых важных задач, имеющих практический интерес, напряжения осесимметричны, тогда как поле перемещений не обладает этим свойством.

При этом, если недеформированная граница является поверхностью вращения, то деформированная ею не будет.

В качестве примера рассмотрим винтовую пружину, растягиваемую силами *P*. Любой отрезок пружины находится в равновесни под действием двух равных по величине и противоположных по знаку сил *P*, как показано на рис. 220. Касательные напряжения в любом сечении дают осевую результирующую силу *P* и могут быть для всех сечений одинаковыми. Если радиус сечения ро не мал по сравнению с радиусом витка *R*0, элементарная теория, хорошо известная в сопротивлении материалов, становится неверной. В ней каждый малый участок, расположенный между

двумя сечениями, рассматривается как прямой цилиндр, скручиваемый парой PR_0 . Соответствующее касательное напряжение имеет в цилиндрических координатах не равные нулю компоненты $\tau_{r\theta}$ и $\tau_{\theta z}$, которые не зависят от θ . Наличие шага осевой линии спирали не учитывается.

Относительно применений этой формы и формы Папковича—Нейбера см. обзорную статью Штернберга (Sternberg), упомянутую выше.

§ 146]

Чтобы найти решение общих уравнений, учитывающее кривизну витков 1/R₀, упростим сначала задачу с помощью полуобратного метода Сен-Венана. Рассмотрим перемещение в форме

$$u=0, v=r\Psi(r, z), w=c\theta,$$
 (a)

где c— постоянная, которую мы позже свяжем с P. Определяя компоненты деформации из формул (179), находим, что ε_r , ε_{θ} , ε_z и $\gamma_{r\theta}$ равны нулю и что

$$\frac{\tau_{r\theta}}{G} = r \frac{\partial \Psi}{\partial r}, \quad \frac{\tau_{\theta z}}{G} = r \frac{\partial \Psi}{\partial z} + \frac{c}{r}.$$
(6)

Таким образом, не равными нулю являются лишь компоненты напряжений $\tau_{r\theta}$ и $\tau_{\theta z}$. Будучи независимыми от θ , они для всех сечений одинаковы. Три уравнения равновесия (180) приводятся к уравнению (в) § 119 и мы снова получаем функцию напряжений $\varphi(r, z)$, входящую в формулы (г) § 119, которые имеют вид

$$r^2 \tau_{r\theta} = -\frac{\partial \varphi}{\partial z}, \quad r^2 \tau_{\theta z} = \frac{\partial \varphi}{\partial r}.$$
 (B)

Из условий (б) и (в) легко получить, что эти дифференциальные уравнения удовлетворяются, если ф и Ψ удовлетворяют в отдельности уравнениям

$$\frac{\partial^2 \varphi}{\partial r^2} - \frac{3\partial \varphi}{r \partial r} + \frac{\partial^2 \varphi}{\partial z^2} = -2Gc \qquad (r)$$

И

$$\frac{\partial^2 \Psi}{\partial r^2} + \frac{\partial \partial \Psi}{\partial r} + \frac{\partial^2 \Psi}{\partial z^2} = 0.$$
 (A)

С помощью оператора Лапласа

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}$$
 (e)

уравнения (г) и (д) можно переписать в виде

$$\left(\nabla^2 - \frac{4}{r^2}\right)\frac{\varphi}{r^2} = -2Gc\frac{1}{r^2}, \quad \left(\nabla^2 - \frac{1}{r^2}\right)r\Psi = 0.$$
 (*)

Перемещения (а) отличаются от тех, которые рассматривались в § 119, лишь введением компоненты $\omega = c\theta^{-1}$). Соответственно уравнения (б), (в), (г) и (д) сводятся к форме, приведенной в § 119, если принять c = 0.

Поскольку уравнения (в) совпадают с уравнениями (г) § 119, условие на свободной граничной поверхности вращения совпадет с равенством (и) § 119, т. е. будет иметь вид

$$\varphi = \text{const.}$$
 (N)

Если не учитывать наличия шага, один виток недеформированной винтовой пружины из круглой проволоки можно считать тором, порождаемым вращением относительно оси z круга, как показано на рис. 221. Два конца витка не соединены. На них действуют одинаковые по величине, но противоположные по знаку распределения касательного напряжения с результирующими P, направленными вдоль оси z. Если приложить эти силы, то между двумя концевыми сечениями возникнет разрыв в осевом перемещении, который в соответствии с (a) составляет

$$(w)_{\theta=2\pi} - (w)_{\theta=0} = c2\pi. \tag{K}$$

431

¹⁾ Перемещения в задаче § 117 также обладают такой компонентой и представляют фактически частный случай формул (а), получаемый, если принять функцию Ψ (r, z) равной Az.

Для решения задачи требуется найти функцию $\varphi(r, z)$, которая удовлетворяет уравнению (г) внутри окружности, изображенной на рис. 221, и постоянна на ней. Это решение в форме ряда в *тороидальных координатах* получил Фрейбергер¹). Координатные поверхности этой системы порождаются враще-

чремсертер). Координатые поверхност нием плоской биполярной системы, изображенной на рис. 120, относительно оси x, которую нужно считать вертикальной и соответствующей оси z на рис. 221 (третье семейство координатных поверхностей состоит из плоскостей $\theta = \text{солst}$). Выкладки, по необходимости довольно сложные, здесь не приводятся. Основные результаты ²) представлены в табл. 13 и на рис. 222. Таблица

Рис. 221.

Рис. 222.

дает зависимость между относительным осевым перемещением $2\pi c$ (получаемым по формуле (к)), соответствующим «растяжению» одного витка, и вызывающим его силой *P*. Сила *P* является осевой растягивающей силой в

таблица 13

R_0/ρ_0	3	4	5	6	8	10
δ	1,025	1,017	1,007	1,006	1,004	1,001

одно- или многовитковой «винтовой пружине с пренебрежимо малым шагом». Мы можем записать

$$\delta = \frac{(P/\pi\rho_0^2)}{G(2\pi c/\rho_0)} 4\pi \left(\frac{R_0}{\rho_0}\right)^3.$$
 (л)

Это соотношение представляет собой безразмерную зависимость, содержащую величины P и 2*лс.* Значения δ для нескольких значений R_0/ρ_0 приводятся в таблице. В каждом данном случае, зная R_0/ρ_0 и δ , находим из (л) значение отношения

$$\frac{P/\pi\rho_0^2}{G\left(2\pi c/\rho_0\right)}$$

¹) W. Freiberger, The Uniform Torsion of an Incomplete Tore, Australian J. Sci. Res., ser. A, 2, 354—375 (1949). Дальнейшие результаты, включая решения для проволоки прямоугольного сечения, обсуждаются в работе R. Schmidt, J. Appl. Mech. 31, 154 (1964).

²) Взятые из упомянутой работы Фрейбергера (Freiberger).
§ 147]

После этого при заданных ρ_0 и G будем иметь отношение $P/(2\pi c)$, т. е. жесткость одного витка пружины. Элементарная теория соответствует значению $\delta = 1$. Значение, даваемое таблицей при $R_0/\rho_0 = 10$, очень близко к 1. Даже при $R_0/\rho_0 = 3$ (толстая проволока) отклонение от 1 составляет лишь 0,025.

Касательное напряжение в круговом сечении на круговой границе будет обязательно направлено по дуге окружности. Оно достигает наибольшего значения в точке *A*, рис. 221. Наименьшее значение на круговой границе достигается в точке *B*. Эти значения можно получить с помощью безразмерного коэффициента *K*, входящего в формулу

$$\tau = K \frac{2R_0}{\pi \rho_0^3} P.$$

Зависимости K от R_0/ρ_0 для точки A (верхняя кривая) и для точки B (нижняя кривая) показаны на рис. 222. Элементарная теория дает значение K = 1 для тонкой проволоки (т. е. когда отношение R_0/ρ_0 велико). Как показывает рис. 222, отклонения от элементарного решения значительны, особенно для малых значений R_0/ρ_0 (т. е. для толстой проволоки).

Кривая¹), помеченная на рис. 222 символом W, получена из элементарной теории путем внесения поправок для кривизны $1/R_0$ и сдвигающего усилия P (по элементарной теории напряжение определяется только «крутящим» моментом PR_0). При расчете винтовых пружин может оказаться значительной также поправка, учитывающая шаг пружины²).

§ 147. Чистый изгиб части круглого кольца

Рассматривается задача, представленная графически на рис. 223. Напряженное состояние будет вновь осесимметричным, если изгибающие моменты М

приложены путем соответствующего распределения нормального напряжения по концевым сечениям. То же самое распределение в этом случае реализуется и в любом другом поперечном сечении, приведенном плоскостью, проходящей через ось z. Приближенные значения напряжений можно получить с помощью обычной теории тонких балок из сопротивления материалов и с помощью теории толстых кривых брусьв Винклера. Другое приближенное решение получил Гёнер из общих уравнений осесимметричной задачи теории упругости с помощью внесения ряда поправок в теорию изгиба тонких балок. В приведенной табл. 14 дано сравнение этих приближен-

ных значений с решением общих уравнений в рядах, полученным в работе Садовского и Штернберга, из статьи которых ³) и взята эта таблица. В этой статье освещается также история рассматриваемой задачи, а также задачи из § 146 со ссылками на литературу.

¹) Cm. A. M. Wahl, J. Appl. Mech. 2, A-35-37 (1935).

²) Систематическое исследование поправок, получаемых из общих решений как для кривизны, так и для наклона, дано в трех статьях Анкера и Гудьера (С. J. Ancker, J. N. Goodier, J. Appl. Mech. 25 (1958), стр. 466—470, 471—483, 484—495). См. также обсуждение этих статей в работе: A. M. Wahl, J. Appl. Mech. 26, 312—313 (1959).

³) M. A. Sadowsky, E. Sternberg, J. Appl. Mech. 20, 215-226 (1953).

	Садовский — Штернберг	Гёнер	Винклер	Теория тонких стержней
Точка А	-1,273	—1,200	—1,175	-1
Точка В	0,891	0,851	0,867	1

таблица 14

В таблице даны значения $\pi \rho_0^3 \sigma/(4M)$ в точках A и B (рис. 223) для иллюстративного случая $R_0/\rho_0 = 5$, $\nu = 0,3$.

Глава 13

ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

§ 148. Простейшие случаи распределения температурных напряжений. Метод устранения деформаций

Одной из причин появления напряжений в сплошном теле является неравномерный нагрев. С увеличением температуры элементы тела расширяются. Такое расширение в сплошном теле обычно не может происходить свободно, и вследствие нагрева возникают напряжения.

С этими напряжениями можно связать, например, появление трещин в стекле, когда его поверхность подвергается быстрому

нагреву. Другим примером является усталостное разрушение¹) в результате изменений температуры. Последствия таких температурных напряжений следует учитывать во многих видах инженерных расчетов, например в расчетах турбин, реактивных двигателей и ядерных реакторов.

Простые задачи о температурных напряжениях можно легко свести к уже рассмотренного типа задачам о действии усилий на границе тела. В качестве первого примера рассмотрим тонкую прямоугольную пластинку постоянной толщины, в которой температура T является четной функцией от y (рис. 224) и не зависит от x и z. Продольное температурное расширение αT будет полностью устранено, если приложить к каждому элементу

¹) См., например, L. F. Coffin, Trans. ASME 76, 931 (1954).

пластинки продольное напряжение

$$\sigma'_{x} = -\alpha T E, \qquad (a)$$

которое является сжимающим, если температура T положительна. Поскольку в поперечном направлении пластинка расширяется свободно, приложение напряжения (а) не вызовет поперечных нормальных напряжений. Для того чтобы напряжение (а) действовало по всей пластинке, остается только распределить сжимающие усилия величиной (а) по концам пластинки. Эти сжимающие усилия полностью устранят любое расширение пластинки в направлении оси x, связаннсе с ростом температуры T. Чтобы получить *температурные напряжения* в пластинке, свободной от внешних усилий, мы должны наложить на напряжения (а) такие напряжения, которые вызываются в пластинке растягивающими усилиями интенсивностью αTE , распределенными по концам. Эти силы имеют результирующую

 $\int_{-a}^{+c} \alpha T E \, dy$

и на достаточном расстоянии от концов вызывают приблизительно равномерное распределение растягивающих напряжений интенсивностью

$$\frac{1}{2c}\int_{-c}^{+c}\alpha TE\,dy.$$

При этом температурные напряжения в пластинке со свободными концами, на достаточном удалении от последних, определятся формулой

$$\sigma_x = \frac{1}{2c} \int_{-c}^{+c} \alpha T E \, dy - \alpha T E. \tag{6}$$

Считая, например, что температура распределяется по параболическому закону

$$T=T_0\left(1-\frac{y^2}{c^2}\right),$$

из уравнения (б) получаем

$$\sigma_x = \frac{2}{3} \alpha T_0 E - \alpha T_0 E \left(1 - \frac{y^2}{c^2} \right). \tag{B}$$

Это распределение напряжений показано на рис. 224, б. Вблизи концов распределение напряжений, вызываемых растягивающими усилиями, неоднородно и должно рассчитываться методами, учитывающими влияние концов, подобно тому, как это сделано в § 28 и 93.

Если распределение температуры Т не симметрично по отношению к оси х, то следует вновь исходить из сжимающего напряжения (a), устраняющего деформацию є. В несимметричных случаях это напряжение вызывает не только результирующее усилие — $\int_{-c}^{+c} \alpha ET \, dy$, но также и результирующий момент $\int_{0}^{+c} \alpha ETy \, dy$. Чтобы удовлетворить условиям равновесия, нужно наложить на сжимающие напряжения (а) равномерное растяжение, определенное так же, как и ранее, и напряжения изгиба $\sigma_x'' = \sigma y/c$, определенные из условия, чтобы момент от усилий, распределенных по поперечному сечению, равнялся нулю. Тогда

$$\int_{-c}^{+c} \frac{\sigma y^2 \, dy}{c} - \int_{-c}^{+c} \alpha ETy \, dy = 0,$$

откуда

$$\frac{\sigma}{c} = \frac{3}{2c^3} \int_{-c}^{+c} \alpha ETy \, dy, \quad \sigma_x^{"} = \frac{3y}{2c^3} \int_{-c}^{+c} \alpha ETy \, dy.$$

В результате полное напряжение

$$\sigma_{\mathbf{x}} = -\alpha ET + \frac{1}{2c} \int_{-c}^{+c} \alpha ET \, dy + \frac{3y}{2c^3} \int_{-c}^{+c} \alpha ETy \, dy. \tag{(r)}$$

При этом предполагается, что пластинка является тонкой в направлении оси г. Допустим теперь, что ее размер в направлении оси z велик. Тогда получим пластинку со срединной плоскостью xz и толщиной 2c. Пусть, как и ранее, температура T не зависит от х и г и является функцией одной только переменной *и*.

Свободное температурное расширение элемента пластинки в направлениях х и г будет полностью устраняться приложением напряжений σ_x и σ_z , полученных из соотношений (3), в которых полагается $\varepsilon_x = \varepsilon_z = -\alpha T$, $\sigma_u = 0$. Эти соотношения тогда дадут

$$\sigma_x = \sigma_z = -\frac{\alpha ET}{1-\nu} \,. \tag{1}$$

Элементы можно привести в такое состояние с помощью приложения к краям x = const, y = const сжимающих усилий, распределение которых дается формулой (д). Температурные напряжения в пластинке, свободной от внешних усилий, получаются наложением на напряжения (д) напряжений, вызванных приложением по краям равных по величине и противоположных по знаку усилий. Если Т-четная функция у, такая, что ее среднее

[гл. 13

значение по толщине пластинки равно нулю, то результирующее усилие на единицу длины края также равно нулю, и согласно принципу Сен-Венана (§ 19) оно вызывает напряжения только вблизи края.

Если среднее значение температуры T не равно нулю, то равномерное растяжение в направлениях x и z, отвечающее результирующему усилию на краю, должно быть наложено на сжимающие напряжения (д). Кроме того, если распределение температуры несимметрично относительно плоскости xz, мы должны добавить напряжения изгиба. Таким путем приходим окончательно к формуле

$$\sigma_{x} = \sigma_{z} = -\frac{\alpha T E}{1-\nu} + \frac{1}{2c(1-\nu)} \int_{-c}^{+c} \alpha T E \, dy + \frac{3y}{2c^{3}(1-\nu)} \int_{-c}^{+c} \alpha T E y \, dy, \quad (e)$$

которая аналогична формуле (г). По формуле (е) легко найти температурные напряжения в пластинке, если известно распределение температуры по ее толщине.

Рассмотрим, например, пластинку, которая вначале имеет всюду одинаковую температуру T_0 , а затем охлаждается путем установления на поверхностях $y = \pm c$ постоянной температуры T_1). С помощью метода Фурье распределение температуры в каждый момент времени t можно определить выражением

$$T = T_1 + \frac{4}{\pi} (T_0 - T_1) \left(e^{-p_1 t} \cos \frac{\pi y}{2c} - \frac{1}{3} e^{-p_s t} \cos \frac{3\pi y}{2c} + \dots \right), \qquad (\mathbf{x})$$

где $p_1, p_3 = 3^2 p_1, \ldots, p_n = n^2 p_1, \ldots$ некоторые постоянные. Подставляя (ж) в равенство (е), находим

$$\sigma_{x} = \sigma_{z} = \frac{4\alpha E (T_{0} - T_{1})}{\pi (1 - \nu)} \left[e^{-p_{y}t} \left(\frac{2}{\pi} - \cos \frac{\pi y}{2c} \right) + \frac{1}{3} e^{-p_{y}t} \left(\frac{2}{3\pi} + \cos \frac{3\pi y}{2c} \right) + \frac{1}{5} e^{-p_{y}t} \left(\frac{2}{5\pi} - \cos \frac{5\pi y}{2c} \right) + \dots \right].$$
(H)

По прошествии некоторого времени первый член приобретает доминирующее значение, и мы можем принять

$$\sigma_x = \sigma_z = \frac{4\alpha E \left(T_0 - T_1\right)}{\pi \left(1 - \nu\right)} e^{-p_1 t} \left(\frac{2}{\pi} - \cos \frac{\pi y}{2c}\right).$$

При $y = \pm c$ получаем растягивающие напряжения

$$\sigma_{x} = \sigma_{z} = \frac{4\alpha E (T_{0} - T_{1})}{\pi (1 - \nu)} e^{-p_{1}t} \frac{2}{\pi}.$$

На срединной плоскости y = 0 имеем сжимающие напряжения

$$\sigma_{\mathbf{x}} = \sigma_{\mathbf{z}} = -\frac{4\alpha E \left(T_{0} - T_{1}\right)}{\pi \left(1 - \nu\right)} e^{-p_{1}t} \left(1 - \frac{2}{\pi}\right).$$

¹⁾ Эту задачу рассматривал Рэлей (Rayleigh, Phil. Mag., ser. 6, 1, 169 (1901)).

§ 148]

Точки с нулевыми напряжениями получаются из уравнения

$$\frac{2}{\pi} - \cos \frac{\pi y}{2c} = 0,$$

откуда

$$y = \pm 0,560c.$$

Если на поверхностях пластинки $y = \pm c$ устанавливается различная температура T_1 и T_2 , то через некоторое время возникнет стационарное состояние теплового потока и температура после этого определяется линейной функцией

$$T = \frac{1}{2} (T_1 + T_2) + \frac{1}{2} (T_1 - T_2) \frac{y}{c}.$$
 (K)

Подстановка выражения (к) в равенство (е) показывает, что температурные напряжения будут равны нулю¹), если, конечно, на пластинку не наложены внешние связи. Если ее края полностью защемлены и не могут перемещаться и вращаться, то напряжения, вызываемые нагревом, определятся уравнениями (д). Например, если $T_2 = -T_1$, то из (к) имеем

$$T = T_1 \frac{y}{c} , \qquad (\pi)$$

а уравнения (д) дают

$$\sigma_{x} = \sigma_{z} = -\frac{\alpha E}{1 - \nu} T_{1} \frac{y}{c}. \tag{M}$$

Максимальное напряжение определяется по формуле

$$(\sigma_x)_{\max} = (\sigma_z)_{\max} = \frac{\alpha ET_1}{1 - \nu}.$$
 (H)

Толщина пластинки в эту формулу не входит, однако в случае толстых пластинок разность температур между поверхностями обычно больше, чем для тонких. Следовательно, толстая пластинка из хрупкого материала более подвержена разрушению из-за температурных напряжений, чем тонкая.

Если, как это встречается во многих приложениях, одна поверхность пластинки находится в контакте с нагретым газом с периодически меняющейся температурой, температура *T* в пластинке будет испытывать соответствующие циклические изменения, которые накладываются на стационарный тепловой поток. Амплитуда температурных изменений в материале пластинки у ее

$$\varepsilon_x = \varepsilon_y = \varepsilon_z = \alpha T$$
, $\gamma_{xy} = \gamma_{yz} = \gamma_{zx} = 0$.

¹⁾ В общем случае, когда Т является линейной функцией x, y, z, деформации, отвечающие свободному температурному расширению элемента, определяются по формулам

Они удовлетворяют условиям совместности (125) и не вызывают температурных напряжений (см. задачу 2 на стр. 286).

поверхности обычно мала по сравнению с температурой нагре-того газа. Кроме того, амплитуда температуры в пластинке быстро убывает¹) с увеличением расстояния от поверхности пластинки. Например, при 110 циклах в минуту амплитуда тем-пературы в стальной пластинке толщиной 3,5 см оказалась равной 10°С на поверхности и 0,33°С на глубине 0,5 см ниже поверхности, тогда как температура газа обладала амплитудой 640 °C. В таких условиях второй и третий члены в выражении (е) становятся очень малыми по сравнению с первым, что дает изменение напряжения $\pm 376 \kappa \Gamma/cm^2$ при T = 10 °С, $\alpha = 1.25 \cdot 10^{-5}$ г).

В качестве следующего элементарного примера рассмотрим шар большого радиуса и допустим, что в малом сферическом объеме радиуса а в центре большого шара происходит повышение температуры на величину Т. Поскольку малый сферический элемент не может свободно расширяться, на его поверхности возникнет давление р. Радиальное и тангенциальное напряжения, вызываемые этим давлением в любой точке шара радиуса r > a, можно вычислить по формулам (207) и (208). Считая, что внешний радиус шара очень велик по сравнению с a, получаем из этих формул

$$\sigma_r = -\frac{pa^3}{r^3}, \quad \sigma_t = \frac{pa^3}{2r^3}.$$
 (0)

На расстоянии r = a от центра получаем

$$\sigma_r = -p, \qquad \sigma_t = \frac{1}{2}p,$$

и увеличение этого радиуса, вызванное приложением давления р. составляет

$$\Delta r = (a\varepsilon_t)_{r=a} = \frac{a}{E} \left[\sigma_t - \nu \left(\sigma_r + \sigma_t \right) \right]_{r=a} = \frac{pa}{2E} \left(1 + \nu \right).$$

Это приращение должно быть равно приращению радиуса на-гретого сферического элемента, вызываемого повышением темпе-ратуры и давлением *p*. Таким образом, получаем уравнение

$$\alpha Ta - \frac{pa}{E} (1-2v) = \frac{pa}{2E} (1+v),$$

откуда

$$p = \frac{2}{3} \frac{\alpha T E}{1 - \nu}.$$
 (1)

Подставляя это значение в уравнение (о), получаем формулы для напряжений вне нагретого элемента

$$\sigma_r = -\frac{2}{3} \frac{\alpha T E a^3}{(1-\nu) r^3}, \quad \sigma_t = \frac{1}{3} \frac{\alpha T E a^3}{(1-\nu) r^3}.$$
 (p)

Решения таких температурных задач даются в книгах по теплопроводности. См., например, Н. S. Carlslaw, J. C. Jaeger, Heat Conduction in Solids, изд. 2., Oxford University Press, Fair Lawn, N. J., 1959.
 2) G. Eichelberg, Forschungarbeiten, № 263 (1923).

где

ЗАДАЧИ

1. При выводе уравнения (г) предполагалось, что величина Е не изменяется, а также что толщина пластинки (в направлении оси 2) постоянна.

Предположить вместо этого, что Е может меняться с изменением у непрерывно или (как это имеет место в композитной «сэндвичевой» полосе) разрывно, а также что толщина h может непрерывно изменяться в зависимости от у. Показать, что уравнение (г) следует теперь заменить следующим:

$$\sigma_{\mathbf{r}} = E \left(-\alpha T + \varepsilon + \beta \boldsymbol{\mu} \right),$$

Убедиться, что когда Е и h постоянны, это согласуется с выражением (г). 2. Получить результаты, аналогичные уравнениям (п) и (р), для случая нагрева до постоянной температуры T центральной круговой области в: а) большой тонкой пластинке и б) в большой плите при плоской деформации. В последнем случае считать, что деформация ε_z , вначале (при T=0) равная нулю, становится и остается равной нулю всюду в силу выбора соответствующего значения σ_z на гранях z = const. Нагретая область определяется неравенством

$$r^2 < a^2$$
, где $r^2 = x^2 + y^2$;

температура вне нагретой области равна нулю.

§ 149. Продольное изменение температуры в полосе

Предположим, что полоса, вырезанная из тонкой пластинки (рис. 225), подвергается неравномерному нагреву, так что температура Т является функцией только одной продольной координаты х. будучи постоянной в любом заданном поперечном сечении.

Если пластинка разрезана на полоски вида AB (рис. 225, a), то эти полоски расширятся по вертикали на разные величины. Ввиду взаимного сдерживания при этом возникнут напряжения, так как полоски в действительности присоединены друг к другу, являясь частями пластинки.

Если рассмотреть полоски как не связанные друг с другом, то их вертикальное расширение будет устранено, если приложить сжимающие напряжения

$$\sigma_{\nu} = -\alpha ET \tag{a}$$

по концам A и B каждой полоски. Полоски станут примыкать друг к другу, как и в ненагретой пластинке, если не считать поперечного расширения, которое предполагается свободным и приводит к горизонтальному переносному перемещению каждой полоски как абсолютно твердого тела. Чтобы найти температурные напряжения, мы должны наложить на состояние (а) напряжения, вызванные приложением равных и противоположных по знаку сил, т. е. растяжения интенсивностью αET вдоль края полоски $y = \pm c$.

Если нагрев происходит в пределах длины полоски, малой по сравнению с ее шириной 2c, например полоски *CDFE* (рис. 225), то влияние такого растяжения усилием αET будет ощущаться только вблизи отрезков *CD* на верхнем крае и *EF* на нижнем крае. Каждое из таких нагружений можно рассматривать как задачу типа, описанного в § 37. На стр. 122 отмечалось, что нормальное напряжение, приложенное на прямолинейной границе, вызывает на ней такие же параллельные ей нормальные напряжения. Следовательно, растягивающие напряжения αET вызовут такие же растягивающие напряжения αET вызовут такие же растягивающие напряжения αET вызовут такие же растягивающие напряжения αET вызовут такие ме растягивающие напряжение σ_x , которое равно αET и является для положительного T растягивающим. У середины наибольшим становится напряжение σ_y , сжимающее напряжение величины αET при положительном T. Максимальные напряжения имеют величину αET_{max} .

Если температура *Т* является периодической функцией от *x*, то приложение на краю растягивающих усилий *сET* приводит к задаче типа, рассмотренного в § 24. Когда

$$T = T_0 \sin \alpha x \tag{6}$$

из уравнений (м) § 24, полагая $A = B = -\alpha ET_0$, в соответствии

¹⁾ J. N. Goodier, Phys. 7, 156 (1936).

с равенством (е) находим

$$\sigma_{x} = -2\alpha ET_{0} \frac{(\alpha c \operatorname{ch} \alpha c - \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \alpha y \operatorname{sh} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \sin \alpha x,$$

$$\sigma_{y} = 2\alpha ET_{0} \frac{(\alpha c \operatorname{ch} \alpha c + \operatorname{sh} \alpha c) \operatorname{ch} \alpha y - \alpha y \operatorname{sh} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \sin \alpha x,$$

$$\tau_{xy} = 2\alpha ET_{0} \frac{\alpha c \operatorname{ch} \alpha c \operatorname{sh} \alpha y - \alpha y \operatorname{ch} \alpha y \operatorname{sh} \alpha c}{\operatorname{sh} 2\alpha c + 2\alpha c} \cos \alpha x.$$

формулой (а), эти напряжения дают поле температурных напряжений в пластинке¹). На рис. 226 показано распределение о, вдоль линий с максимальной температурой при различных длинах волн 2l = $= 2\pi/\alpha$. Мы видим, что максимальное напряжение увеличивается с уменьшением длины волны и приближается к величине αET_{0} . Имея решение для синусоидального распределения температуры, можно рассмотреть и другие случаи, в которых температура является некоторой периодической функцией от х. Кроме того, отсюда можно заключить, что максимальное напряжение в пластинках конечной длины может

Вместе со сжимающим напряжением $\sigma_v = -\alpha ET$, определяемым

лишь незначительно отличаться от значения αET_0 , полученного для бесконечной полосы.

В этом и в предыдущем параграфах в каждой задаче, исключая случай сферы (стр. 440), у нас имелись усилия, необходимые для того, чтобы устранить компоненту деформации, возникающую вследствие температурного расширения. Этот метод устранения деформации можно применять и более систематически, прикладывая усилия с целью устранения всех трех компонент деформации, вызываемых расширением. Общие уравнения для трехмерной задачи будут выводиться и обсуждаться с этой точки зрения в § 153.

Задачи о температурных напряжениях можно рассматривать и другим путем, независимым с самого начала от первого способа. Задача о наложении нагрузки или деформации может рассматриваться как частный случай более общей задачи, допус-

¹) Эту задачу рассматривал Ден-Гартог (J. P. Den Hartog, J. Franklin Inst, 222, 149 (1936)) в связи с задачей о температурных напряжениях, возникающих в процессе сварки.

ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

кающей одновременное исследование неоднородного распределения температуры и наложения нагрузки или деформации. В последующих трех параграфах мы рассмотрим простейшие задачи такого типа для диска, цилиндра и сферы.

§ 150. Тонкий круглый диск: распределение температуры, симметричное относительно центра

Если температура T не меняется по толщине диска, мы можем предположить, что напряжения и перемещения, вызванные нагревом, также не меняются по толщине. Напряжения σ_r и σ_{θ} удовлетворяют уравнению равновесия

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0.$$
 (a)

Касательное напряжение т_го равно нулю ввиду симметрии поля деформаций.

Обычные соотношения (51) между напряжением и деформацией при плоском напряженном состоянии требуют модификации, поскольку теперь деформация частично вызвана температурным расширением, а частично действием напряжения. Если через ε_r обозначить полную радиальную деформацию, а через $\varepsilon_r - \alpha T$ ее часть, вызванную действием напряжения, то получаем

$$\varepsilon_r - \alpha T = \frac{1}{E} (\sigma_r - \nu \sigma_{\theta})$$
 (6)

и аналогично

$$\varepsilon_{\theta} - \alpha T = \frac{1}{E} (\sigma_{\theta} - \nu \sigma_{r}).$$
 (B)

Разрешая соотношения (б) и (в) относительно σ_r, σ_θ, находим

$$\sigma_{r} = \frac{E}{1 - v^{2}} [\varepsilon_{r} + v\varepsilon_{\theta} - (1 + v) \alpha T],$$

$$\sigma_{\theta} = \frac{E}{1 - v^{2}} [\varepsilon_{\theta} + v\varepsilon_{r} - (1 + v) \alpha T].$$
 (r)

С учетом этого уравнение (а) принимает вид

$$r \frac{d}{dr} (\varepsilon_r + v \varepsilon_{\theta}) + (1 - v) (\varepsilon_r - \varepsilon_{\theta}) = (1 + v) \alpha r \frac{dT}{dr}.$$
(A)

Если через u обозначить радиальное перемещение, то, согласно § 30, имеем

$$\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_{\theta} = \frac{u}{r}.$$
 (e)

Подставляя эти выражения в уравнение (д), получаем уравнение

$$\frac{d^2u}{dr^2} + \frac{1}{r} \frac{du}{dr} - \frac{u}{r^2} = (1+v) \alpha \frac{dT}{dr},$$

тонкий круглый диск

которое можно переписать также в виде

$$\frac{d}{dr}\left[\frac{1}{r}\frac{d(ru)}{dr}\right] = (1+v)\alpha\frac{dT}{dr}.$$
(ж)

Интегрирование этого уравнения дает

$$u = (1 + v) \alpha \frac{1}{r} \int_{a}^{r} Tr \, dr + C_{1}r + \frac{C_{2}}{r}, \qquad (u)$$

где нижний предел *a* интегрирования может быть выбран произвольно. Для диска с отверстием *a* можно положить равным радиусу отверстия, а для сплошного диска—считать равным нулю.

Компоненты напряжений находятся теперь путем подстановки равенства (и) в соотношения (е) и последующей подстановки результатов в уравнения (г). Отсюда

$$\sigma_r = -\alpha E \frac{1}{r^2} \int_a^b Tr \, dr + \frac{E}{1-v^2} \left[C_1 (1+v) - C_2 (1-v) \frac{1}{r^2} \right], \qquad (K)$$

$$\sigma_{\theta} = \alpha E \frac{1}{r^2} \int_{a}^{r} Tr \, dr - \alpha ET + \frac{E}{1 - \nu^2} \left[C_1 \left(1 + \nu \right) + C_2 \left(1 - \nu \right) \frac{1}{r^2} \right]. \tag{A}$$

Постоянные С₁ и С₂ определяются из граничных условий.

Для сплошного диска полагаем *а* равным нулю и, учитывая, что

$$\lim_{r\to 0}\frac{1}{r}\int_0^r Tr\,dr=0,$$

из соотношения (и) заключаем, что член с C_2 должен быть отброшен, чтобы перемещение *и* было равно нулю в центре. На краю r = b должно выполняться условие $\sigma_r = 0$, откуда, в соответствии с выражением (к),

$$C_1 = (1 - v) \frac{\alpha}{b^2} \int_0^b Tr \, dr.$$

Окончательные выражения для напряжений принимают вид

$$\sigma_r = \alpha E \left(\frac{1}{b^2} \int_0^b Tr \, dr - \frac{1}{r^2} \int_0^r Tr \, dr \right), \qquad (245)$$

$$\sigma_{\theta} = \alpha E \bigg(-T + \frac{1}{b^2} \int_{0}^{b} Tr \, dr + \frac{1}{r^2} \int_{0}^{r} Tr \, dr \bigg).$$
(246)

В центре диска напряжения, определяемые по этим формулам, конечны, поскольку

$$\lim_{r \to 0} \frac{1}{r^2} \int_0^r Tr \, dr = \frac{1}{2} T_0,$$

где T_o-температура в центре диска.

§ 151. Длинный круглый цилиндр

Температура в этой задаче считается распределенной симметрично относительно оси и не зависящей от осевой координаты z^1). Предположим сперва, что осевое перемещение w всюду равно нулю, а затем модифицируем решение на случай свободных концов.

Плоская деформация. В этом случае мы имеем три компоненты напряжений σ_r , σ_θ , σ_z ; все три деформации сдвига и касательные напряжения равны нулю в силу симметрии относительно оси и постоянства условий в осевом направлении. Соотношения между напряжениями и деформациями имеют вид

$$\varepsilon_{r} - \alpha T = \frac{1}{E} \left[\sigma_{r} - \nu \left(\sigma_{\theta} + \sigma_{z} \right) \right], \quad \varepsilon_{\theta} - \alpha T = \frac{1}{E} \left[\sigma_{\theta} - \nu \left(\sigma_{r} + \sigma_{z} \right) \right],$$

$$\varepsilon_{z} - \alpha T = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{r} + \sigma_{\theta} \right) \right].$$
(247)

Так как $\omega = 0$, имеем $\varepsilon_z = 0$, и третье из уравнений (247) дает

$$\sigma_z = v \left(\sigma_r + \sigma_\theta \right) - \alpha ET. \tag{a}$$

После подстановки этого значения в первые два уравнения (247) они принимают вид

$$\varepsilon_{r} - (1 + \nu) \alpha T = \frac{1 - \nu^{2}}{E} \left(\sigma_{r} - \frac{\nu}{1 - \nu} \sigma_{\theta} \right),$$

$$\varepsilon_{\theta} - (1 + \nu) \alpha T = \frac{1 - \nu^{2}}{E} \left(\sigma_{\theta} - \frac{\nu}{1 - \nu} \sigma_{r} \right).$$
(6)

Можно сразу же видеть, что эти уравнения получаются из соответствующих уравнений для плоского напряженного состояния, т. е. соотношений (б) и (в) § 150, если в последних E заменить на $E/(1-v^2)$, v на v/(1-v) и α на $(1+v)\alpha$.

Уравнения (а) и (е) из предыдущего параграфа здесь остаются справедливыми, и решение для u, σ , и σ_{θ} получается тем же самым путем. В силу этого мы можем выписать результаты, произведя соответствующие подстановки в соотношениях (и), (к)

[гл. 13

¹) Первое решение этой задачи принадлежит Дюгамелю (J. M. C. D u h amel, Memoires ... par Divers Savants, т. 5, стр. 440, Paris, 1838).

н (л). Таким образом, для рассматриваемой задачи имеем

$$u = \frac{1+v}{1-v} \alpha \frac{1}{r} \int_{a}^{b} Tr \, dr + C_1 r + \frac{C_2}{r}, \qquad (B)$$

$$\sigma_{r} = -\frac{\alpha E}{1-\nu} \frac{1}{r^{2}} \int_{a}^{r} Tr \, dr + \frac{E}{1+\nu} \left(\frac{C_{1}}{1-2\nu} - \frac{C^{2}}{r^{2}} \right), \qquad (r)$$

$$\sigma_{\theta} = \frac{\alpha E}{1 - \nu} \frac{1}{r^2} \int_{a}^{r} Tr \, dr - \frac{\alpha ET}{1 - \nu} + \frac{E}{1 + \nu} \left(\frac{C_1}{1 - 2\nu} + \frac{C_2}{r^2} \right); \qquad (A)$$

далее из уравнения (а) находим

$$\sigma_{z} = -\frac{\alpha ET}{1-\nu} + \frac{2\nu EC_{1}}{(1+\nu)(1-2\nu)}.$$
 (e)

Чтобы всюду выполнялось условие $\omega = 0$, к концам цилиндра нужно приложить нормальные усилия, распределенные в соот-ветствии с формулой (е). Но теперь следует наложить постоян-ное осевое напряжение $\sigma_z = C_3$, выбрав C_3 таким образом, чтобы результирующее усилие по торцам цилиндра равнялось нулю. Согласно принципу Сен-Венана (стр. 57) самоуравновешенные

Согласно принципу Сен-Венана (стр. 57) самоуравновешенные распределения усилий, остающиеся при этом на обоих торцах, будут вызывать вблизи них только местные эффекты. Напряжения σ_r , σ_0 будут по-прежнему определяться уравне-ниями (г) и (д). На перемещение и влияет, однако, осевое на-пряжение C_3 . К правой части уравнения (в) должен быть добавлен член $-vC_3r/E$. Такое осевое перемещение будет соот-ветствовать однородному распределению напряжения C_3 . Сплошной цилиндр. В этом случае мы можем принять равным нулю нижний предел *а* в интегралах, входящих в уравнения (в), (г) и (д). Перемещение *и* должно обращаться в нуль, когда r=0. Поэтому мы должны отбросить член, содержащий C_2 . Постоянная C_1 находится из условия, что криволинейная поверхность r=b свободна от усилий, откуда (σ_r)_{r=b}=0. Таким образом, из уравнения (г), полагая $C_1=0$, a=0, находим</sub>

$$\frac{C_1}{(1+\nu)(1-2\nu)} = \frac{\alpha}{1-\nu} \frac{1}{b^2} \int_0^b Tr \, dr.$$
 (ж)

Результирующая осевого напряжения (е) составляет

$$\int_{0}^{b} \sigma_{z} 2\pi r \, dr = -\frac{2\pi \alpha E}{1-\nu} \int_{0}^{b} Tr \, dr + \frac{2\nu EC_{1}}{(1+\nu)(1-2\nu)} \pi b^{2},$$

а результирующая постоянного осевого напряжения $C_{\rm s}$ равна $C_{\rm s} \pi b^2$. Значение $C_{\rm s}$, которое обращает в нуль полную осевую

силу, определяется отсюда формулой

$$C_{3}\pi b^{2} = \frac{2\pi aE}{1-\nu} \int_{0}^{b} Tr \, dr - \frac{2\nu EC_{1}}{(1+\nu)(1-2\nu)} \pi b^{2}. \tag{H}$$

При равной нулю осевой деформации ($\varepsilon_z = 0$) окончательные выражения для u, σ_r , σ_θ , σ_z , согласно уравнениям (в), (г), (д), (е), (ж) и (и) имеют вид

$$u = \frac{1+\nu}{1-\nu} \alpha \left[(1-2\nu) \frac{r}{b^2} \int_0^b Tr \, dr + \frac{1}{r} \int_0^r Tr \, dr \right], \qquad (248)$$

$$\sigma_{r} = \frac{\alpha E}{1 - \nu} \left(\frac{1}{b^{2}} \int_{0}^{b} Tr \, dr - \frac{1}{r^{2}} \int_{0}^{r} Tr \, dr \right), \tag{249}$$

$$\sigma_{\theta} = \frac{\alpha E}{1 - \nu} \left(\frac{1}{b^2} \int_{0}^{b} Tr \, dr + \frac{1}{r^2} \int_{0}^{r} Tr \, dr - T \right), \tag{250}$$

$$\sigma_z = \frac{\alpha E}{1 - \nu} \left(\frac{2\nu}{b^2} \int_0^b Tr \, dr - T \right). \tag{251}$$

При равном нулю осевом усилии ($F_z = 0$) напряжения σ_r и σ_{θ} определяются формулами (249) и (250): для u и σ_z имеем

$$u = \frac{1+v}{1-v} a \left(\frac{1-3v}{1+v} \frac{r}{b^2} \int_{0}^{b} Tr dr + \frac{1}{r} \int_{0}^{r} Tr dr \right), \qquad (252)$$

$$\sigma_z = \frac{\alpha E}{1 - \nu} \left(\frac{2}{b^2} \int_0^b Tr \, dr - T \right). \tag{253}$$

Рассмотрим, например, длинный цилиндр при постоянной всюду начальной температуре T_0 . Если, начиная с некоторого момента t = 0, боковая поверхность цилиндра приобретает равную нулю температуру¹), то распределение температуры в любой момент времени t выразится в виде ряда²)

$$T = T_0 \sum_{n=1}^{\infty} A_n J_0 \left(\beta_n \frac{r}{b}\right) e^{-P_n t}, \qquad (K)$$

¹⁾ Считаем, что поверхность цилиндра приобретает нулевую температуру внезапно. Если температура поверхности равна не нулю, а T₁, то в наших

внезапно. Если температура поверхности равна не нулю, а T_1 , то в наших уравнениях всюду должно быть $T_0 - T_1$ вместо T_0 . ²) См. В уег l у, Fourier Series and Spherical Harmonics, стр. 229. Расчет температурных напряжений для этого случая дал А. Н. Динник (см. А. Н. Динник, Применение бесселевых функций к задачам упругости, ч. 2, Екатеринослав, 1915. См. также С. Н. Lees, Proc. Roy. Soc. (London) 101, 411 (1922)).

где $J_0(\beta_n r/b) - \phi$ ункция Бесселя нулевого порядка, а $\beta_n - \kappa$ орни уравнения $J_0(\beta) = 0$. Коэффициенты ряда (к) имеют вид

$$A_n = \frac{2}{\beta_n J_1(\beta_n)} ,$$

а постоянные *p_n* определяются формулой

$$p_n = \frac{k}{c\rho} \frac{\beta_n^2}{b^2}, \qquad (\pi)$$

где *k*—коэффициент теплопроводности, *с*—удельная теплоемкость материала и ρ—плотность. Подставляя ряд (к) в уравнение (249) и учитывая, что¹)

$$\int_{\mathbf{0}} J_{\mathbf{0}}\left(\beta_{n} \frac{r}{b}\right) r \, dr = \frac{br}{\beta_{n}} J_{\mathbf{1}}\left(\beta_{n} \frac{r}{b}\right),$$

получаем

$$\sigma_{r} = \frac{2\alpha ET_{0}}{1-\nu} \sum_{n=1}^{\infty} e^{-P_{n}t} \left\{ \frac{1}{\beta_{n}^{2}} - \frac{1}{\beta_{n}^{2}} \frac{b}{r} \frac{J_{1}\left(\beta_{n} \frac{r}{b}\right)}{J_{1}\left(\beta_{n}\right)} \right\}.$$
 (M)

Таким же путем, подставляя ряд (к) в соотношение (250), находим

$$\sigma_{\theta} = \frac{2\alpha ET_{\theta}}{1-\nu} \sum_{n=1}^{\infty} e^{-P_{n}t} \left\{ \frac{1}{\beta_{n}^{2}} + \frac{1}{\beta_{n}^{2}} \frac{b}{r} \frac{J_{1}\left(\beta_{n} \frac{r}{b}\right)}{J_{1}\left(\beta_{n}\right)} - \frac{J_{0}\left(\beta_{n} \frac{r}{b}\right)}{\beta_{n}J_{1}\left(\beta_{n}\right)} \right\}.$$
(H)

Подстановка ряда (к) в соотношение (253) дает

$$\sigma_{z} = \frac{2\alpha ET_{0}}{1-\nu} \sum_{n=1}^{\infty} e^{-P_{n}t} \left\{ \frac{2}{\beta_{n}^{2}} - \frac{J_{0}\left(\beta_{n}\frac{t}{b}\right)}{\beta_{n}J_{1}\left(\beta_{n}\right)} \right\}.$$
 (o)

Формулы (м), (н) и (о) представляют полное решение задачи. Несколько численных примеров можно найти в статьях²) А. Н. Динника и Лиса.

На рис. 227 представлено³) распределение температуры в стальном цилиндре. Считается, что первоначально температура в цилиндре всюду равнялась нулю и что, начиная с момента t=0, температура поверхности цилиндра сохраняет значение T_1 . Распределение температуры вдоль радиуса при различных значениях t/b^2 (t измеряется в секундах и b в сантиметрах) представлено на рис. 227 кривыми. Из уравнений (к) и (л) можно видеть, что если время нагрева t пропорционально квадрату

¹) Cm. E. Jahnke, F. Emde, F. Lösch, Tables of Higher Functions McGraw-Hill, New York, 1960.

²) См. примечание на стр. 448.

³) Этот рисунок взят из книги: A. Stodola, Dampf- und Gasturbinen изд. 6, 1924, стр. 961.

диаметра, то распределение температуры для цилиндров разных диаметров будет одинаковым. С помощью рисунка можно определить среднюю температуру всего цилиндра, а также температуру его внутренней части радиуса *г.* Зная их, по формулам

сего цилиндра, а также темпераадиуса *r*. Зная их, по формулам (249), (250) и (253) находим температурные напряжения. Если принять для *t* очень малое значение, то вышеупомянутые средние температуры будут близки к нулю и мы получим на поверхности

$$\sigma_r = 0, \quad \sigma_\theta = \sigma_z = -\frac{\alpha E T_1}{1-\nu}.$$

Последнее выражение представляет численно максимальное температурное напряжение, возникающее в цилиндре вследствие нагрева. Оно равно напряжению, необходимому для полного устранения теплового расшире-

ния у поверхности (но не по нормали к ней). При нагреве это напряжение будет сжимающим, при охлаждении — растягивающим. Чтобы уменьшить это максимальное напряжение, обычно начинают нагрев валов и роторов с температуры, несколько меньшей, чем конечная температура T_1 , и увеличивают время нагрева пропорционально квадрату диаметра.

Цилиндр с концентрическим круглым отверстием ¹). Пусть радиус отверстия равен a, а внешний радиус цилиндра b; тогда постоянные C_1 и C_2 в формулах (в), (г) и (д) следует определить таким образом, чтобы напряжение σ_1 при этих двух значениях радиусов было равно нулю. Отсюда

$$\frac{C_1}{1-2\nu} - \frac{C_2}{a^2} = 0, \quad -\frac{\alpha E}{1-\nu} \frac{1}{b^2} \int_a^b Tr \, dr + \frac{E}{1+\nu} \left(\frac{C_1}{1+2\nu} - \frac{C_2}{b^2} \right) = 0.$$

Из этих соотношений следует

$$\frac{EC_2}{1+v} = \frac{\alpha E}{1-v} \frac{a^2}{b^2-a^2} \int_a^b Tr \, dr, \quad \frac{EC_1}{(1+v)(1-2v)} = \frac{\alpha E}{1-v} \frac{1}{b^2-a^2} \int_a^b Tr \, dr.$$

Подставляя эти значения в (г), (д) и (е) и добавляя к последнему выражению осевое напряжение C_3 , требуемое для того, чтобы обратить в нуль результирующую осевую силу, получаем

1) R. Lorenz, Z. Ver. Deutsch. Ing. 51, 743 (1907).

формулы

$$\sigma_{r} = \frac{\alpha E}{1 - \nu} \frac{1}{r^{2}} \left(\frac{r^{2} - a^{2}}{b^{2} - a^{2}} \int_{a}^{b} Tr \, dr - \int_{a}^{r} Tr \, dr \right), \tag{254}$$

$$\sigma_{\theta} = \frac{\alpha E}{1 - \nu} \frac{1}{r^2} \left(\frac{r^2 + a^2}{b^2 - a^2} \int_{a}^{b} Tr \, dr + \int_{a}^{r} Tr \, dr - Tr^2 \right), \qquad (255)$$

$$\sigma_z = \frac{\alpha E}{1 - \nu} \left(\frac{2}{b^2 - a^2} \int_a^b Tr \, dr - T \right). \tag{256}$$

В качестве примера рассмотрим стационарный тепловой поток. Если T_i — температура на внутренней поверхности цилиндра, а температура на внешней поверхности равна нулю, то температура T на любом расстоянии r от центра представляется выражением

$$T = \frac{T_{i}}{\ln \frac{b}{a}} \ln \frac{b}{r}.$$
 (1)

Подставляя это значение в формулы (254), (255) и (256), находим следующие выражения для температурных напряжений¹):

$$\sigma_{r} = \frac{\alpha ET_{i}}{2(1-\nu)\ln\frac{b}{a}} \left[-\ln\frac{b}{r} - \frac{a^{2}}{b^{2}-a^{2}} \left(1 - \frac{b^{2}}{r^{2}}\right)\ln\frac{b}{a} \right],$$

$$\sigma_{\theta} = \frac{\alpha ET_{i}}{2(1-\nu)\ln\frac{b}{a}} \left[1 - \ln\frac{b}{r} - \frac{a^{2}}{b^{2}-a^{2}} \left(1 + \frac{b^{2}}{r^{2}}\right)\ln\frac{b}{a} \right], \quad (257)$$

$$\sigma_{z} = \frac{\alpha ET_{i}}{2(1-\nu)\ln\frac{b}{a}} \left[1 - 2\ln\frac{b}{r} - \frac{2a^{2}}{b^{2}-a^{2}}\ln\frac{b}{a} \right].$$

Если температура T положительна, то радиальное напряжение во всех точках является сжимающим и обращается в нуль на внутренней и внешней поверхностях цилиндра. Компоненты напряжения σ_{θ} и σ_{z} достигают максимального и минимального абсолютных значений на внутренней и внешней поверхностях цилиндра. Полагая r = a, находим, что

$$(\sigma_{\theta})_{r=a} = (\sigma_{z})_{r=a} = \frac{\alpha ET_{i}}{2(1-\nu)\ln\frac{b}{a}} \left(1 - \frac{2b^{2}}{b^{2} - a^{2}}\ln\frac{b}{a}\right).$$
(258)

При r = b получаем

$$(\sigma_{\theta})_{r=b} = (\sigma_z)_{r=b} = \frac{\alpha E T_i}{2 (1-\nu) \ln \frac{b}{a}} \left(1 - \frac{2a^2}{b^2 - a^2} \ln \frac{b}{a} \right).$$
(259)

§ 151]

¹) Номограммы для быстрого определения напряжений по формулам (257) дал Баркер (L. Barker, Eng. 124, 443 (1927)).

Распределение температурных напряжений по толщине стенки для частного случая a/b = 0,3 показано на рис. 228. Если температура T положительна, то напряжения являются сжимающими

Рис. 228.

на внутренней поверхности и растягивающими на внешней. В таких материалах, как камень, кирпич или бетон, которые плохо сопротивляются растяжению, при вышеописанных условиях трещины обычно появляются на внешней поверхности.

Если толщина стенки мала по сравнению с внешним радиусом цилиндра, уравнения (258) и (259) можно упростить, полагая

$$\frac{b}{a} = 1 + m, \quad \ln \frac{b}{a} = m - \frac{m^2}{2} + \frac{m^3}{3} - \dots$$

и считая т малой величиной. Тогда

$$(\sigma_{\theta})_{r=a} = (\sigma_z)_{r=a} = -\frac{\alpha ET_i}{2(1-\nu)} \left(1 + \frac{m}{3}\right),$$
 (258')

$$(\sigma_{\theta})_{r=b} = (\sigma_z)_{r=b} = \frac{\alpha E T_i}{2(1-\nu)} \left(1 - \frac{m}{3}\right).$$
(259')

Если температура на внешней поверхности цилиндра отлична от нуля, вышеприведенные результаты можно использовать, подставляя в полученные формулы разность $T_i - T_o$ вместо T_i .

ставляя в полученные формулы разность $T_i - T_0$ вместо T_i . В случае очень тонкой стенки можно получить дальнейшие упрощения и в формулах (258') и (259') пренебречь членами m/3 по сравнению с единицей. Тогда

$$(\sigma_{\theta})_{r=a} = (\sigma_z)_{r=a} = -\frac{\alpha E T_i}{2(1-\nu)},$$

$$(\sigma_{\theta})_{r=b} = (\sigma_z)_{r=b} = \frac{\alpha E T_i}{2(1-\nu)}$$
(260)

и распределение температурных напряжений по толщине стенки будет таким же, как и в случае плоской пластинки толщиной 2c = b - a, когда температура определяется формулой (рис. 224)

$$T=\frac{T_iy}{b-a},$$

и края пластинки заделаны, в силу чего предотвращен ее изгиб от неравномерного нагревания (см. уравнение (м), § 148).

До сих пор предполагалось, что цилиндр является очень длинным и что рассматриваются напряжения, возникающие на достаточном удалении от концов. Вблизи концов задача о распределении температурных напряжений становится сложнее ввиду местных возмущений. Рассмотрим эту задачу для случая цилиндра с тонкой стенкой. Решение (260) требует, чтобы по торцам цилиндра мормальные усилия были распределены так, как показано на рис. 229, а. § 151]

Чтобы найти напряжения в цилиндре со свободными концами, мы должны наложить на напряжения (260) напряжения, вызываемые силами, равными по всличине и противоположными по знаку тем, которые показаны на рис. 229, a. В случае тонкой стенки с толщиной h эти силы можно привести к изгибающим моментам M, как показано на рис. 229, 6, равномерно распределенным по краю цилиндра и равным

$$M = \frac{\alpha ET_i}{2(1-\nu)} \frac{\hbar^2}{6} \tag{p}$$

. h

€ Ø →

на единицу длины края. Чтобы определить напряжения, вызванные этими моментами, рассмотрим продоль-

ную полоску единичной ширины, вырезанную из цилиндрической оболочки. Такую полоску можно рассматривать как балку на упругом основании. Кривая прогибов этой полоски определяется уравнением ¹)

$$u = \frac{Me^{-\beta z}}{2\beta^2 D} (\cos \beta z - \sin \beta z), \quad (c)$$

где

а *с*—раднус срединной поверхности оболочки. Имея эту формулу для кривой прогибов, можно для любого значения *z* вычислить соответствующие напряжения изгиба σ_z и тангенциальные напряжения σ_{θ} . Максимальный прогиб полоски, очевидно, возникнет на конце z = 0, где

$$(u)_{z=0} = \frac{M}{2\beta^2 D} = \frac{\alpha T_i \sqrt{1-\nu^2}}{2\sqrt{3}(1-\nu)}.$$

Соответствующая компонента деформации в тангенциальном направлении равна

$$\varepsilon_{\theta} = \frac{u}{c} = \frac{\alpha T_i \sqrt{1 - \nu^2}}{2 \sqrt{3} (1 - \nu)}$$
 (y)

Компонента напряжений в тангенциальном направлении на внешней поверхности цилиндра получается тогда с помощью закона Гука из формулы

$$\sigma_{\theta} = E \varepsilon_{\theta} + v \sigma_z = \frac{\alpha E T_i \sqrt{1 - v^2}}{2 \sqrt{3} (1 - v)} - \frac{v \alpha E T_i}{2 (1 - v)}.$$

Если добавить это напряжение к соответствующему напряжению, полученному из формул (260), то максимальное тангенциальное напряжение на свободном конце тонкостенного цилиндра оказывается равным

$$(\sigma_{\theta})_{\max} = \frac{\alpha ET_i}{2(1-\nu)} \left(\frac{\sqrt{1-\nu^2}}{\sqrt{3}} - \nu + 1 \right).$$
(261)

Полагая v = 0,3, находим

$$(\sigma_{\theta})_{\max} = 1,25 \frac{\alpha ET_i}{2(1-\nu)}.$$

1) См. S. Timoshenko, Strength of Materials, изд. 3. Van Norstrand, Princeton, 1956, стр. 126—137.

Таким образом, максимальное растягивающее напряжение на свободном конце цилиндра на 25% больше напряжения, получаемого по формулам (260) для точек, удаленных от концов. Из уравнения (с) можно видеть, что увеличение напряжения вблизи свободного конца цилиндра вследствие того, что оно зависит от прогиба *и*, носит местный характер и быстро убывает с увеличением расстояния от конца *z*.

Приближенный метод определения температурных напряжений в тонкостенном цилиндре, использующий кривую прогибов балки на упругом основании, можно также применить в случае, когда температура вдоль оси цилиндрической оболочки меняется ¹). Соответствующее внешнее давление будет устранять радиальное расширение каждого элементарного кольца, тогда как осевое расширение происходит свободно. Устранение этого давления с целью соединения отдельных колец представляет собой легко решаемую задачу, уже не связанную с действием температуры.

ЗАДАЧИ

1. Определить σ_r и σ_{θ} при r=0 из формул (249) и (250). Объяснить, почему результаты должны совпасть.

Найти выражение для перемещения w в цилиндре с концентрическим круговым отверстием и при равной нулю осевой силе. Объяснить, почему оно несправедливо вблизи концов, когда условие на конце имеет вид: $\sigma_z = 0$.

2. Если положить a=0 в формулах (254)—(256), то результаты совпадут с полученными по формулам (249) и (250), и σ_r при r=0 не будет равно нулю (см. задачу 1). Однако выражение (254) удовлетворяет граничному условию $\sigma_r=0$ при r=a и продолжает ему удовлетворять, как бы ни было мало a.

Разъяснить этот факт, рассматривая напряженное состояние вблизи отверстия, когда последнее очень мало. Начать со сплошного цилиндра, а затем устранить напряжение о, на границе отверстия.

§ 152. Copepa

Рассмотрим теперь простой случай, когда распределение температуры симметрично относительно центра и является в силу этого функцией одного лишь радиального расстояния r^{2}).

В силу симметрии ненулевыми будут лишь три компоненты напряжения, радиальная компонента σ_t и две окружные компоненты σ_t , как и в § 136. Они должны удовлетворять условию равновесия элемента шара в радиальном направлении (см. рис. 205, уравнение (д), стр. 397)

$$\frac{d\sigma_r}{dr} + \frac{2}{r} \left(\sigma_r - \sigma_t\right) = 0.$$
 (a)

¹) S. Timoshenko, J. M. Lessels, Applied Elasticity, 1925, стр. 147. [Русский перевод С. Тимошенко, Дж. Лессельс; Прикладная теория упругости, ОНТИ, 1932.] С. Н. Kent, Trans. ASME, Applied Mechanics Division 53, 167 (1931).

²) Эту задачу решили Дюгамель (Duhamel) в упомянутой выше работе и Нейман (F. Neuman, Abhandl. Akad. Wiss., Berlin, 1841). См. также его Vorlesungen über die Theorie der Elastizität der festen Körper, 1885; а также J. Hopkinson, Messenger Math. 8, 168 (1879). Несимметричное распределение температуры рассмотрел Борхардт (C. W. Borchardt, Monatsber. Akad. Wiss., Berlin, 1873, стр. 9).

§ 152]

СФЕРА

Зависимости между напряжениями и деформациями имеют вид

$$\varepsilon_r - \alpha T = \frac{1}{E} \left(\sigma_r - 2\nu \sigma_t \right), \tag{6}$$

$$\varepsilon_t - \alpha T = \frac{1}{E} \left[\sigma_t - v \left(\sigma_r + \sigma_t \right) \right].$$
 (B)

Если и — радиальное перемещение, то имеем

$$\varepsilon_r = \frac{du}{dr}, \quad \varepsilon_t = \frac{u}{r}.$$
 (r)

Из (б) и (в) находим

$$\sigma_r = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_r + 2\nu\varepsilon_t - (1+\nu)\alpha T], \qquad (A)$$

$$\sigma_t = \frac{E}{(1+\nu)(1-2\nu)} [\varepsilon_t + \nu \varepsilon_r - (1+\nu) \alpha T].$$
 (e)

Подставляя эти выражения в (а) и заменяя ε_r и ε_t значениями, даваемыми формулами (г), получаем для *и* следующее дифференциальное уравнение:

$$\frac{d^2u}{dr^2} + \frac{2}{r}\frac{du}{dr} - \frac{2u}{r^2} = \frac{1+v}{1-v}\alpha \frac{dT}{dr}, \qquad (34)$$

которое можно переписать в виде

$$\frac{d}{dr}\left[\frac{1}{r^2}\frac{d}{dr}(r^2\mu)\right] = \frac{1+\nu}{1-\nu}\alpha \frac{dT}{dr}.$$

Его решение имеет вид

$$u = \frac{1+v}{1-v} \alpha \frac{1}{r^2} \int_{a}^{r} Tr^2 dr + C_1 r + \frac{C_2}{r^2}, \qquad (H)$$

где C_i и C_2 —постоянные интегрирования, которые подлежат определению из граничных условий, а a—любой удобный нижний предел интегрирования, например внутренний радиус полого шара.

Подставляя это решение в формулы (г) и используя затем выражения (д) и (е), получим

$$\sigma_{r} = -\frac{2\alpha E}{1-\nu} \frac{1}{r^{3}} \int_{a}^{r} Tr^{2} dr + \frac{EC_{1}}{1-2\nu} - \frac{2EC_{2}}{1+\nu} \frac{1}{r^{3}}, \qquad (\kappa)$$

$$\sigma_t = \frac{\alpha E}{1 - \nu} \frac{1}{r^3} \int_a^r Tr^2 dr + \frac{EC_1}{1 - 2\nu} + \frac{EC_2}{1 + \nu} \frac{1}{r^3} - \frac{\alpha ET}{1 - \nu}.$$
 (J)

Рассмотрим теперь несколько частных случаев.

Сплошная сфера. В этом случае нижний предел интеграла a можно считать равным нулю. При a = 0 мы должны иметь u = 0,

откуда

$$\lim_{r \to 0} \frac{1}{r^2} \int_0^r Tr^2 dr = 0.$$

Это означает, что в уравнении (и) мы должны отбросить член, содержащий C_2 . Компоненты напряжения, определяемые формулами (к) и (л), будут теперь конечными в центре сферы, поскольку

$$\lim_{r \to 0} \frac{1}{r^3} \int_{0}^{r} Tr^2 dr = \frac{T_0}{3},$$

где T_0 — температура в центре. Постоянная C_1 определяется из условия, что внешняя поверхность r = b свободна от усилий, в силу чего $\sigma_r = 0$. Тогда из уравнения (к), полагая $\sigma_r = 0$, $a=0, C_{2}=0, r=b,$ находим

$$\frac{EC_1}{1-2v} = \frac{2\alpha E}{1-v} \frac{1}{b^3} \int_0^b Tr^2 dr,$$

а компоненты напряжений выразятся формулами

$$\sigma_{r} = \frac{2\alpha E}{1-\nu} \left(\frac{1}{b^{3}} \int_{0}^{b} Tr^{2} dr - \frac{1}{r^{3}} \int_{0}^{r} Tr^{2} dr \right),$$

$$\sigma_{t} = \frac{\alpha E}{1-\nu} \left(\frac{2}{b^{3}} \int_{0}^{b} Tr^{2} dr + \frac{1}{r^{3}} \int_{0}^{r} Tr^{2} dr - T \right).$$
(262)

Средняя температура сферы внутри радиуса г составит

$$\frac{4\pi\int_{0}^{r}Tr^{2}\,dr}{\frac{4}{3}\pi r^{3}}=\frac{3}{r^{3}}\int_{0}^{r}Tr^{2}\,dr.$$

Следовательно, напряжение о, при любом радиусе г пропорционально разности между средней температурой всей сферы-и средней температурой сферы радиуса г. Если это распределение температуры известно, то определение напряжений в каждом частном случае произвести нетрудно¹). Интересный пример таких вычислений дал Грюнберг²) в связи с исследованием прочности изотропных материалов, подвергнутых всестороннему равномерному растяжению. Если сплошную сферу, имеющую постоянную температуру То, поместить в жидкость с более высокой

456

 ¹) Несколько примеров таких расчетов приведены в статье: Е. Нопеgger, Festschrift Prof. A. Stodola, Zürich, 1929.
 ²) G. Grünberg, Z. Physik 35, 548 (1925).

§ 152]

температурой T_1 , то внешняя часть сферы будет расширяться и вызовет в ее центре всестороннее равномерное растяжение. Максимальное значение этого растягивающего напряжения возникнет в момент времени

$$t = 0,0574 \frac{b^2 c \rho}{k} \,. \tag{M}$$

Здесь **b**—радиус шара, **k**—коэффициент теплопроводности, с—теплоемкость материала, р—плотность. Величина этого максимального растягивающего напряжения определится формулой ¹)

$$\sigma_r = \sigma_t = 0,771 \frac{\alpha E}{2(1-\nu)} (T_1 - T_0). \tag{H}$$

Максимальное сжимающее напряжение действует на поверхности шара в момент приложения температуры T_1 и равно $\alpha E (T_1 - T_0)/(1 - \nu)$. Ту же величину мы получили ранее для цилиндра (см. стр. 450). Применяя уравнения (м) и (н) к случаю стали и принимая $b = 10 \, cm$ и $T_1 - T_0 = 100^{\circ}$ С, получаем $\sigma_r = \sigma_t = 1270 \, \kappa \Gamma / cm^2$ и $t = 33,4 \, ce\kappa$.

Сфера с полостью в центре. Обозначив через a и b внутренний и внешний радиусы сферы, определим постоянные C_1 и C_2 в (к) и (л) из условий, что напряжение σ_r на внутренней и внешней поверхностях равно нулю. Тогда из формулы (к) имеем

$$\frac{EC_1}{1-2\nu} - \frac{2EC_2}{1+\nu} \frac{1}{a^3} = 0, \qquad -\frac{2\alpha E}{1-\nu} \frac{1}{b^3} \int_a^b Tr^3 dr + \frac{EC_1}{1-2\nu} - \frac{2EC_2}{1+\nu} \frac{1}{b^2} = 0.$$

Решая эти уравнения относительно C₁ и C₂ и внося результаты в выражения (к) и (л), находим

$$\sigma_{r} = \frac{2\alpha E}{1-\nu} \left[\frac{r^{3}-a^{3}}{(b^{3}-a^{3})r^{3}} \int_{a}^{b} Tr^{2} dr - \frac{1}{r^{3}} \int_{a}^{r} Tr^{2} dr \right],$$

$$\sigma_{t} = \frac{2\alpha E}{1-\nu} \left[\frac{2r^{3}+a^{3}}{2(b^{3}-a^{3})r^{3}} \int_{a}^{b} Tr^{2} dr + \frac{1}{2r^{3}} \int_{a}^{r} Tr^{2} dr - \frac{1}{2}T \right].$$
(263)

Таким образом, если задано распределение температуры, то можно определить и компоненты напряжений.

Рассмотрим в качестве примера случай стационарного теплового потока. Обозначим температуру внутренней поверхности через T_i , температуру внешней поверхности примем равной нулю. Тогда температура на любом расстоянии r от центра сферы определится формулой

$$T = \frac{T_i a}{b - a} \left(\frac{b}{r} - 1 \right). \tag{0}$$

¹) При анализе предполагалось, что поверхность шара мгновенно принимает температуру жидкости T₁.

Подставляя это значение в выражения (263), находим

$$\sigma_{r} = \frac{\alpha ET_{i}}{1-\nu} \frac{ab}{b^{3}-a^{3}} \left[a+b-\frac{1}{r} \left(b^{2}+ab+a^{2} \right) + \frac{a^{2}b^{2}}{r^{3}} \right],$$

$$\sigma_{t} = \frac{\alpha ET_{i}}{1-\nu} \frac{ab}{b^{3}-a^{3}} \left[a+b-\frac{1}{2r} \left(b^{2}+ab+a^{2} \right) - \frac{a^{2}b^{2}}{2r^{3}} \right].$$

Мы видим, что напряжение σ , равно нулю при r = a и r = b. Оно становится максимальным или минимальным, когда

$$r^2 = \frac{3a^2b^2}{a^2 + ab + b^2}$$
.

Напряжение σ_t при $T_i > 0$ увеличивается с ростом r. При r = a имеем

$$\sigma_t = -\frac{\alpha ET_i}{2(1-\nu)} \frac{b(b-a)(a+2b)}{b^3 - a^3}.$$
 (II)

При r = b получаем

$$\sigma_t = \frac{\alpha ET_i}{2(1-\nu)} \frac{a(b-a)(2a+b)}{b^3 - a^3}.$$
 (p)

В случае сферической оболочки малой толщины можно принять b = a (1 + m),

где *m*—малая величина. Подставляя это значение в (п) и (р) и пренебрегая высшими степенями *m*, получаем:

при r = a

$$\sigma_t = -\frac{\alpha ET_i}{2(1-\nu)} \left(1 + \frac{2}{3}m\right),$$

при r=b

$$\sigma_t = \frac{\alpha ET_i}{2(1-\nu)} \left(1 - \frac{2}{3} m \right).$$

Если пренебречь величиной 2/3m, то приходим к тем же значениям для тангенциальных напряжений, которые мы получили для тонкой цилиндрической оболочки (см. уравнения (260)) и для тонкой пластинки с заделанными краями.

§ 153. Общие уравнения

Дифференциальные уравнения равновесия в перемещениях (128) можно обобщить на случай температурных напряжений и деформаций. Соотношения между напряжениями и деформациями в трехмерном случае имеют вид

$$\boldsymbol{\varepsilon}_{\boldsymbol{x}} - \alpha T = \frac{1}{E} \left[\boldsymbol{\sigma}_{\boldsymbol{x}} - \boldsymbol{\nu} \left(\boldsymbol{\sigma}_{\boldsymbol{y}} + \boldsymbol{\sigma}_{\boldsymbol{z}} \right) \right], \quad \boldsymbol{\varepsilon}_{\boldsymbol{y}} - \alpha T = \frac{1}{E} \left[\boldsymbol{\sigma}_{\boldsymbol{y}} - \boldsymbol{\nu} \left(\boldsymbol{\sigma}_{\boldsymbol{x}} + \boldsymbol{\sigma}_{\boldsymbol{z}} \right) \right], (a)$$
$$\boldsymbol{\varepsilon}_{\boldsymbol{z}} - \alpha T = \frac{1}{E} \left[\boldsymbol{\sigma}_{\boldsymbol{z}} - \boldsymbol{\nu} \left(\boldsymbol{\sigma}_{\boldsymbol{x}} + \boldsymbol{\sigma}_{\boldsymbol{y}} \right) \right],$$
$$\boldsymbol{\gamma}_{\boldsymbol{x}\boldsymbol{y}} = \frac{\tau_{\boldsymbol{x}\boldsymbol{y}}}{G}, \quad \boldsymbol{\gamma}_{\boldsymbol{y}\boldsymbol{z}} = \frac{\tau_{\boldsymbol{y}\boldsymbol{z}}}{G}, \quad \boldsymbol{\gamma}_{\boldsymbol{x}\boldsymbol{z}} = \frac{\tau_{\boldsymbol{x}\boldsymbol{z}}}{G}. \tag{6}$$

На уравнения (б) температура не влияет, поскольку свободное температурное расширение в изотропном материале не вызывает искажения углов.

Складывая уравнения (а) и используя обозначения, принятые в равенствах (7), находим

$$e=\frac{1}{E}(1-2v)\Theta+3\alpha T.$$

Используя эту зависимость и разрешая уравнения (а) относительно напряжений, получаем

$$\sigma_x = \lambda e + 2 G \varepsilon_x - \frac{\alpha ET}{1 - 2\nu}.$$
 (B)

Подставляя это выражение и выражения из формул (6) в уравнения равновесия (123) и считая, что объемные силы отсутствуют, получаем три уравнения равновесия, первое из которых имеет вид

$$(\lambda+G)\frac{\partial e}{\partial x}+G\nabla^2 u-\frac{\alpha E}{1-2\nu}\frac{\partial T}{\partial x}=0.$$
(264)

При определении температурных напряжений эти уравнения заменяют уравнения (127). Граничные условия (124) после использования равенств (в) и (6) и в предположении отсутствия объемных сил принимают вид

$$\frac{\partial ET}{1-2\nu}l = \lambda el + G\left(\frac{\partial u}{\partial x}l + \frac{\partial u}{\partial y}m + \frac{\partial u}{\partial z}n\right) + G\left(\frac{\partial u}{\partial x}l + \frac{\partial v}{\partial x}m + \frac{\partial w}{\partial x}n\right),$$
(265)

.

Сравнивая уравнения (264) и (265) с уравнениями (127) и (130), видим, что члены

$$-\frac{\alpha E}{1-2\nu}\frac{\partial T}{\partial x}, \quad -\frac{\alpha E}{1-2\nu}\frac{\partial T}{\partial y}, \quad -\frac{\alpha E}{1-2\nu}\frac{\partial T}{\partial z}$$

занимают место компонент объемных сил X, Y, Z, а члены

$$\frac{\alpha ET}{1-2\nu}l, \qquad \frac{\alpha ET}{1-2\nu}m, \qquad \frac{\alpha ET}{1-2\nu}n$$

заменяют компоненты \overline{X} , \overline{Y} , \overline{Z} поверхностных усилий. Таким образом, перемещения u, v, w, вызываемые изменением температуры T, совпадают с перемещениями, вызываемыми объемными силами

$$X = -\frac{\alpha E}{1-2\nu} \frac{\partial T}{\partial x}, \quad Y = -\frac{\alpha E}{1-2\nu} \frac{\partial T}{\partial y}, \quad Z = -\frac{\alpha E}{1-2\nu} \frac{\partial T}{\partial z} \quad (r)$$

и нормальными усилиями

$$\frac{\alpha ET}{1-2\nu}$$
, (д)

распределенными по поверхности тела.

Если найдено решение уравнения (264), удовлетворяющее граничным условиям (265) и дающее перемещения *u*, *v*, *w*, то соответствующие касательные напряжения можно определить по формулам (б), а нормальные напряжения — по формулам (в). Из последних формул видно, что компоненты нормального напряжения состоят из двух частей: 1) части, получаемой обычным путем с использованием компонент деформации, 2) гидростатического давления величиной

$$\frac{\alpha ET}{1-2\nu},$$
 (e)

в каждой точке пропорционального изменению температуры в этой точке. Таким образом, полное напряжение, вызываемое неравномерным нагревом, получается с помощью наложения гидростатического давления (е) на напряжения, вызываемые объемными силами (г) и поверхностными силами (д).

Метод устранения деформации. Тот же вывод можно получить и с помощью метода устранения деформации. Представим себе, что тело подвергается неравномерному нагреву и разделено на бесконечно малые элементы. Пусть свободным температурным деформациям этих элементов $\varepsilon_x = \varepsilon_y = \varepsilon_z = \alpha T$ противодействует приложенное к каждому элементу равномерное давление *p*, величина которого определяется формулой (е). Тогда свободная температурная деформация будет полностью устранена. Все элементы окажутся пригнанными друг к другу и образуют непрерывное тело первоначальной формы и размеров. Распределение давления (е) можно реализовать с помощью приложения к названному телу, составленному из элементов, некоторых объемных сил и поверхностных давлений. Эти силы должны удовлетворять уравнениям равновесия (123) и граничным условиям (124). Подставляя в эти уравнения значения

$$\sigma_x = \sigma_y = \sigma_z = -p = -\frac{\alpha ET}{1-2\nu}, \quad \tau_{xy} = \tau_{xz} = \tau_{yz} = 0, \quad (\aleph)$$

находим, что для придания телу, составленному из элементов, его начальной формы, необходимо приложить объемные силы

$$X = \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial x}, \quad Y = \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial y}, \quad Z = \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial z}, \quad (u)$$

а к поверхности следует приложить давление (е).

Предположим теперь, что элементы соединены друг с другом и устраним силы (и) и поверхностное давление (е). Тогда температурные напряжения, очевидно, можно получить с помощью наложения на давления (е) напряжений, которые вызываются в упругом теле объемными силами

$$X = -\frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial x} , \quad Y = -\frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial y} , \quad Z = -\frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial z}$$

и нормальным растяжением на поверхности, равным

$$\frac{\alpha ET}{1-2\nu}$$
.

Таким образом, температурные напряжения должны удовлетворять уравнениям равновесия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} - \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial x} = 0,$$

$$\frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yz}}{\partial z} - \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial y} = 0,$$

$$\frac{\partial \sigma_z}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} - \frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial z} = 0,$$
(266)

граничным условиям

$$\sigma_{x}l + \tau_{xy}m + \tau_{xz}n = \frac{\alpha ET}{1 - 2\nu}l,$$

$$\sigma_{y}m + \tau_{yz}n + \tau_{xy}l = \frac{\alpha ET}{1 - 2\nu}m,$$

$$\sigma_{z}n + \tau_{xz}l + \tau_{yz}m = \frac{\alpha ET}{1 - 2\nu}n,$$
(267)

а также условиям совместности, рассмотренным в § 85. Им сопутствуют перемещения u, v, w и деформации $\varepsilon_x = \frac{\partial u}{\partial x}$ и т. д. $\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$ и т. д. Напряжения связаны с этими деформациями законом Гука (см. (3) и (6)). Уравнения закона Гука вместе с уравнениями (266) и (267) определяют задачу об «обычном» (изотермическом) нагружении, в которой объемные и поверхностные силы определяются через температурное поле T(x, y, z) исходной термоупругой задачи. Решение этой *обычной задачи*, очевидно, дает истинные термоупругие перемещения.

Теперь должно быть ясно, что методы и теоремы, уже установленные для обычных задач, можно сразу же перенести на решения термоупругих задач. Например, теорема единственности (§ 96) обеспечивает нам, что в данном теле при данном поле температуры в условиях линейной теории малых деформаций возможно лишь одно решение для напряжений и деформаций. Явление выпучивания, разумеется, этим условиям не отвечает.

Для непосредственного решения задач термоупругости на основе существующих решений обычных задач особенно полезна теорема взаимности (§ 97). Объясним этот метод и приведем несколько частных примеров.

§ 154. Теорема взаимности в термоупругости

В качестве первого состояния (соответствующего символам, помеченным одним штрихом) в теореме из § 97 примем решение описанной выше «обычной задачи». Второе состояние в этой теореме, как и в § 97, сохранено в общем виде. В приложениях оно выбирается так, чтобы привести к искомому результату.

Обозначив для краткости

$$\beta = \frac{E}{1-2\nu}, \qquad (a)$$

запишем указанную теорему в виде

$$\int (X''u + Y''v + Z''w) d\tau + \int (\overline{X}''u + \overline{Y}''v + \overline{Z}''w) dS =$$

$$= -\beta \int \left(u'' \frac{\partial}{\partial x} \alpha T + v'' \frac{\partial}{\partial y} \alpha T + w'' \frac{\partial}{\partial z} \alpha T \right) d\tau +$$

$$+\beta \int (lu'' + mv'' + nw'') \alpha T dS, \quad (6)$$

где *u*, *v*, *w*—истинные компоненты термоупругих перемещений. Теорема дивергенции (формула (138)) дает уравнение

$$\int \left[\frac{\partial}{\partial x}(u''\alpha T) + \frac{\partial}{\partial y}(v''\alpha T) + \frac{\partial}{\partial z}(\omega''\alpha T)\right] d\tau = \int (lu'' + mv'' + n\omega'') \alpha T \, dS. \quad (B)$$

Интеграл в правой части уравнения (в) равен второму интегралу в правой части равенства (б). В левой части соотношения (в) можно записать

$$\frac{\partial}{\partial x}(u''\alpha T) = u''\frac{\partial}{\partial x}\alpha T + \frac{\partial u''}{\partial x}\alpha T$$
 и т.д.

Подставим эти выражения в первый интеграл правой части соотношения (б). Тогда соотношение (б) примет вид

$$\int (X''u + Y''v + Z''w) d\tau + \int (\overline{X}''u + \overline{Y}''v + \overline{Z}''w) dS = \int \Theta''\alpha T d\tau, \quad (268)$$

где (см. (7) и (8))

$$\partial'' = \beta \left(\frac{\partial u''}{\partial x} + \frac{\partial v''}{\partial y} + \frac{\partial w''}{\partial z} \right) = \sigma''_x + \sigma''_y + \sigma''_z.$$
(r)

Уравнение (268) выражает теорему взаимности теории термоупругости¹). Левую часть можно назвать работой внешних объемных (X'', ...) и поверхностных ($\overline{X''}$, ...) сил из вспомогательной задачи, (или вспомогательного состояния) на истинных перемещениях (u, v, w) термоупругой задачи.

¹) Этот вывод из «обычной» теоремы взаимности из § 97 дан в статье J. N. Goodier, Proc. 3d US Nat. Congr. Appl. Mech., 1958, стр. 343. В сущности та же теорема была получена ранее В. М. Майзелем из уравнений теории термоупругости (Доклады АН СССР, новая серия 30, 115—118 (1941)).

§ 155. Полные термоупругие деформации. Произвольное распределение температуры

В последующих приложениях¹) предшествующей теоремы вспомогательная задача будет либо элементарной, либо будет выбрана из числа задач, решенных ранее в этой книге. В каждом случае будет получена простая общая формула, полезная в расчетной практике.

Изменение объема. Рассмотрим тело произвольной формы с полостями или сплошное. В качестве вспомогательного состояния примем то, которое вызывается равномерной нормальной (растягивающей) нагрузкой о", распределенной по всей поверхности тела, включая полости, если они существуют. Тогда в любой точке материала

$$\sigma_x^{"} = \sigma_y^{"} = \sigma_z^{"} = \sigma^{"} \quad \text{i} \quad \Theta^{"} = 3\sigma^{"}. \tag{a}$$

Работа сил этого вспомогательного состояния на термоупругих перемещениях u, v, w, отвечающих произвольному повышению температуры²) T(x, y, z), равна просто $\sigma'' \Delta \tau$, где $\Delta \tau$ —термоупругое приращение объема сплошного материала. Теорема (268) теперь дает

$$\sigma'' \Delta \tau = \int 3\sigma'' \alpha T \, d\tau, \quad \tau. \text{ e. } \Delta \tau = \int 3\alpha T \, d\tau. \tag{6}$$

Это означает, что изменение объема вызывается просто свободным температурным расширением. Хотя при этом имеются температурные напряжения и вызываемые ими упругие деформации, соответствующее изменение объема будет в одних частях тела положительно, в других отрицательно, а в сумме равно нулю³).

Изменение объема полости. Пусть тело содержит полость. Объем, заключенный в полости при произвольном повышении температуры T(x, y, z), увеличивается на $\Delta \tau_c$. Мы можем определить $\Delta \tau_c$, если известно решение вспомогательной задачи о действии в полости равномерно распределенного внутреннего давления. Если такое напряженное состояние вызвано действием только одного внутреннего давления p_i^r , то

$$\Theta'' = p_i''S. \tag{B}$$

Взятых из статьи Гудьера, упомянутой в предыдущем примечании.
 В качестве нулевого принимается состояние с равномерным распределением температуры.

³) Этот простой результат оставался, по-видимому, неизвестным до 1954 г. Его получили для анизотропных тел Новацкий (W. Nowacki, Arch. Mech. Stos. 6, 487 (1954)) и независимо Хике (M. Hieke, Z. Angew. Math. Mech. 35, 285—294 (1955)). Он остается справедливым и в более общем случае линейно упругого тела с произвольными начальными напряжениями как при действии неравномерного нагрева, так и без него (см. § 158).

464

Тогда теорема (268) дает

$$p_i^r \Delta \tau_c = \int p_i^r S \alpha T d\tau$$
, или $\Delta \tau_c = \int S \alpha T d\tau$. (г)

Рассмотрим, например, полую сферу. Решение для случая действия внутреннего давления (стр. 397) дает сумму трех главных напряжений в виде

$$\Theta^{*} = \sigma_{R}^{"} + 2\sigma_{t}^{"} = p_{l}^{"} \frac{3a^{3}}{b^{3} - a^{3}}.$$
 (д)

Сравнивая с (в), получаем для этого случая значение S, и формула (г) тогда принимает вид

$$\Delta \tau_c = \frac{a^3}{b^3 - a^3} \int_{R=a}^{R=b} 3aT \, d\tau. \tag{e}$$

Интеграл выражает просто полное свободное объемное расширение элементов материала. Если внешний радиус *b* бесконечен и интеграл (e) остается конечным, то объем полости не изменится вообще.

Удлинение стержня. Для стержня произвольного постоянного поперечного сечения среднее удлинение, вызванное произвольным повышением температуры T(x, y, z), можно определить, выбрав в качестве вспомогательного состояния одноосное растяжение с напряжениями

$$\sigma_x'' = \sigma, \quad \sigma_y'' = \sigma_z'' = 0, \quad \Theta'' = \sigma.$$

Если определить ΔL как удлинение линий, параллельных оси стержня, усредненное по площади поперечного сечения A, то теорема (268) дает

$$\Delta L = \frac{1}{A} \int \alpha T \, d\tau. \tag{(x)}$$

Вообще говоря, помимо такого удлинения, стержень будет иметь еще и другие деформации.

Взаимное вращение концевых сечений при изгибе стержня. Среднее термоупругое вращение ω одного концевого сечения стержня относительно другого можно получить, взяв в качестве вспомогательного состояния чистый изгиб (§ 102). Тогда, приняв, что в плоскости *xz* действует вместо *M* (рис. 145) изгибающий момент *M*", имеем

$$\sigma_{z}^{"}=\frac{M^{"}x}{I_{y}}, \quad \sigma_{x}^{"}=\sigma_{y}^{"}=0, \quad \Theta^{"}=\frac{M^{"}x}{I_{y}}.$$

Теорема (268) позволяет определить ω . Для этого нужно в (268) записать член, выражающий работу, как $M''\omega$. Тогда после исключения M'', получаем

$$\omega = \frac{1}{I_y} \int \alpha T x \, d\tau. \tag{H}$$

§ 156]

Прогиб консоли. Взяв в качестве вспомогательного состояния решение задачи Сен-Венана об изгибе консоли из § 120 и заменяя *P* на *P*", имеем

$$\sigma_z'' = -P''(l-x)\frac{x}{l}, \quad \sigma_x'' = \sigma_y'' = 0, \quad \Theta'' = \sigma_z'.$$

Левая часть равенства (268) представит работу нагрузки P на нагруженном конце z = l (рис. 190) и реакций на «закрепленном» конце z = 0 на термоупругих перемещениях, вызванных температурой T. Консоль может быть закреплена путем фиксации одного элемента на конце z = 0 по его положению и ориентации. Если стержень тонкий, то перемещения на этом конце можно рассматривать как малые, и соответствующей работой можно пренебречь. Средний прогиб δ в направлении x на нагруженном конце z = l можно определить путем представления работы в левой части равенства (268) в виде $P''\delta$. Тогда

$$\delta = -\frac{1}{I} \int \alpha T x \left(l - z \right) d\tau. \tag{K}$$

Взаимное вращение концевых сечений при кручении стержня. В качестве вспомогательной задачи принимается задача Сен-Венана о кручении из § 104. Компоненты напряжения $\sigma_x^{"}$, $\sigma_y^{"}$, $\sigma_z^{"}$ обращаются в нуль, а с ними и $\Theta^{"}$. Таким образом, правая часть уравнения (268) равна нулю. В силу этого и термоупругое вращение одного конца стержня относительно другого конца в рассматриваемом здесь усредненном смысле также равно нулю.

При кручении стержня с переменным сечением (теория Мичелла, изложенная в § 119) нормальные компоненты напряжения σ_r^{z} , σ_{θ}^{z} , σ_z^{z} обращаются в нуль (см. формулы (a) § 119), и в силу этого относительное вращение концов при кручении равно нулю.

§ 156. Термоупругие перемещения. Интегральное решение В. М. Майзеля

Термоупругое перемещение в любой точке можно найти, если мырасполагаем решением вспомогательной задачи для напряжений, вызванных сосредоточенной силой, приложенной в этой точке. Рис. 230 изображает упругое тело, опертое таким образом, что оно обладает определенными перемещениями, и нагруженное в точке A силой P'_x , действующей в направлении оси x. Это означает, что точка A рассматривается как центр малой сферической полости так же, как и в задаче из § 135. Решение этой вспомогательной задачи дает Θ'' как функцию положения. Она будет пропорциональна P'_x , и мы можем записать:

$$\Theta'' = P''_x \Theta''_{1x}, \qquad (a)$$

так что $\Theta_{1x}^{"}$ соответствует нагрузке $P_x^{"}$ единичной величины.

Если теперь обратиться к формуле (268), то левая часть этого равенства будет представлять работу силы P_x^* на термоупругом перемещении u в точке A, сложенную с работой опорных реак-

ций на соответствующих им термо-упругих перемещениях. Но сейчас мы потребуем, чтобы эта работа опорных реакций равнялась нулю. Этого можно добиться, например, полностью закрепив опорные точки. Тогда теорема (268) сразу же даст

$$\mu = \int \Theta_{1x}^{"} \alpha T \, d\tau. \tag{6}$$

Таким образом, для и получим выражение в виде объемного ин-

выражение в виде объемного ин-теграла по всему объему тела. Сингулярность функции Θ_{1x}^r в точке A не порождает никаких трудностей, как можно сразу же видеть, рассмотрев выражение $d\tau$ в сферических полярных коор-динатах с центром в точке A. Подобным образом, заменяя в (a) индексы x на y, а затем на z, что соответствует силам P_y^r и P_z^r в направлениях y и z, получим¹)

$$v = \int \Theta_{1y}^{r} \alpha T d\tau, \quad w = \int \Theta_{1z}^{r} \alpha T d\tau.$$
 (B)

Очевидно, точку А можно выбрать на поверхности тела. Тогда во вспомогательной задаче малая сферическая полость за-менится малой полусферической (как в задаче из § 138) или какой-либо иной открытой поверхностью.

Решение, представленное выше формулами (б) и (в), имеет очень широкие приложения¹), так как мы располагаем решениями многочисленных вспомогательных задач о действии сосредоточенмногочисленных вспомогательных задач о деиствии сосредоточен-ных сил. Приближенные результаты для тонких балок, кривых брусьев, колец, тонких пластинок и тонких оболочек также могут использоваться в формулах (б) и (в) для получения соот-ветствующих термоупругих результатов²), справедливых для про-извольного распределения температуры. При этом предположение о линейном изменении температуры по толщине пластинки или оболочки, которое широко используется, уже перестает быть необходимым.

В качестве примера рассмотрим нормальную компоненту перемещения плоской поверхности z = 0 полубесконечного тела z > 0. Возрастание температуры T(x, y, z) считается четной

См. упомянутую выше работу В. М. Майзеля.
 Ресколько примеров привели Гудьер и Невилл мл. в своем отчете Военно-Морскому ведомству (Applications of a Reciprocal Theorem of Linear Thermoelasticity; 1961), а также в докторской диссертации Невилла мл. (G. E. Nevill, Jr., Division of Engineering Mechanics, Stanford University, 1961).

функцией от x, т. е. должно быть симметричным относительно плоскости yz, но в остальном может быть произвольным.

В задаче термоупругости (рис. 231, *a*) мы можем определить в плоскости *xz* перемещение любой точки *A* поверхности относительно ее начального положения, приняв в качестве вспомогательной задачу, представленную на рис. 231, *б*. Силу *P*", приложенную в начале координат, можно отождествить с силой *P* на

Рис. 231.

рис. 207 и в § 138. Компоненты напряжения определятся в цилиндрических координатах формулами (211), откуда имеем

$$(\Theta_{1z})_0 = \sigma_r^r + \sigma_{\theta}^r + \sigma_z^r = -\frac{1}{\pi} (1+\nu) P^r \frac{2}{R^3}, \qquad (r)$$

где

$$R^2 = x^2 + y^2 + z^2. \tag{A}$$

Таким же образом две направленные вверх силы *Р"/2* на рис. 231, б вызовут напряжения, для которых

$$(\Theta_{12}'')_{AB} = \frac{1}{\pi} (1+\nu) \frac{1}{2} P'' z \left(\frac{1}{R_A^3} + \frac{1}{R_B^3}\right), \qquad (e)$$

где R_A и R_B — положительные радиусы, определяемые по формулам

$$R_A^2 = (x-a)^2 + y^2 + z^2,$$

$$R_B^2 = (x+a)^2 + y^2 + z^2.$$
(**)

Отсюда для полной вспомогательной задачи (рис. 231, б) имеем

$$\Theta_{12}^{*} = -\frac{1}{\pi} (1+\nu) \frac{1}{2} P^{\prime\prime} z \left(\frac{2}{R^3} - \frac{1}{R_A^3} - \frac{1}{R_B^3} \right). \tag{H}$$

Обозначая через w_0 нормальное перемещение в точке O, а через w_A — нормальные перемещения в точках A и B, по теореме (268) находим

$$P''w_0 - 2\frac{1}{2}P''w_A = -\frac{1}{2\pi}(1+\nu)P''\int z\left(\frac{2}{R^3} - \frac{1}{R_A^3} - \frac{1}{R_B^3}\right)\alpha T\,d\tau,$$

или

$$w_A - w_0 = \frac{1}{\pi} \left(1 + \nu \right) \int \left(\frac{1}{R^3} - \frac{1}{R_A^3} \right) \alpha T \, d\tau$$

Требование равенства нулю работы опорных реакций накладывает на T некоторое условие. Сила P'' вместе с двумя силами P''/2 (см. рис. 231, 6) вызывает напряжения, компоненты которых на бесконечности стремятся к нулю, как R^{-3} . Работа, которую совершает на термоупругих перемещениях соответствующая нагрузка, приложенная на бесконечной полусфере, также должна стремиться к нулю. Это гарантируется тем, что и сами термоупругие перемещения стремятся к нулю. Последнее имеет место в том случае, когда ненулевые значения T действуют в конечном объеме вблизи плоской поверхности, как можно легко убедиться с помощью метода устранения деформаций, разъясненного в § 153 в связи с принципом Сен-Венана.

Для внутренних точек полубесконечного тела вспомогательное решение можно взять из статьи Миндлина, упомянутой в сноске 3 на стр. 400. Для внутренних точек бесконечного тела имеем решение, данное в § 135. Термоупругие перемещения для этой задачи будут найдены ниже (стр. 480—481) другим методом.

Двумерные решения, приведенные в главе 4 для сосредоточенных сил, действующих на полубесконечную область (§ 36), клин (§ 38), круговую область (§ 41) и бесконечную область (§ 42), также полезны в качестве вспомогательных решений, немедленно приводящих к формулам для термоупругих перемещений.

Теорема взаимности теории термоупругости из § 154 может также успешно использоваться в сочетании с методом Фурье для синусоидальной (взамен сосредоточенной) нагрузки. Примеры такого рода приводятся в статье и диссертации, упомянутых в сноске на стр. 466.

ЗАДАЧИ

1. Кривой брус, представленный на рис. 42, испытывает повышение температуры на $T(r, \theta)$. Считая напряженное состояние плоским, получить интегральную формулу для среднего термоупругого вращения одного кольца стержня относительно другого.

Что следует в точности понимать под «средней» величиной здесь, а также в ω из уравнения (и), § 155?

2. Записать последовательные шаги вычислений для отыскания укорочения диаметра, вызванного повышением температуры T(x, y) в диске, показанном на рис. 75, при плоском напряженном состоянии.

3. Выполнить в деталях проверку, описанную в § 156, для распределения температуры T, когда она постоянна и равна T_0 внутри полусферической области R < b и равна нулю—вне ее.

§ 157. Начальные напряжения

Метод устранения деформаций, описанный в § 153, можно применить и к более общей задаче о начальных напряжениях. Представим себе тело, разделенное на малые элементы, и предположим, что каждый из элементов обладает некоторой остаточной пластической деформацией или формоизменением, вызываемыми металлографическими превращениями. Пусть эта деформация
\$ 1571

определяется компонентами

$$\varepsilon'_{x}, \varepsilon'_{y}, \varepsilon'_{z}, \gamma'_{xy}, \gamma'_{yz}, \gamma'_{zx}.$$
 (a)

Допустим, что эти компоненты деформации малы и представляются непрерывными функциями координат. Если они удовлетворяют также условиям совместности (125), то элементы, на которые разделено тело, после деформаций (а) будут плотно прилегать друг к другу и не возникнет никаких начальных напряжений.

Рассмотрим теперь общий случай, когда компоненты деформации (а) не удовлетворяют условиям совместности, так что элементы, на которые разделяется тело, не будут прилегать друг к другу; тогда, чтобы удовлетворялись условия совместности, к этим элементам нужно приложить некоторые усилия. Предполагая, что после приобретения остаточных деформаций (а) материал остается идеально упругим, и, применяя закон Гука, из уравнений (11) и (6) находим, что систему деформаций (а) можно устранить, если приложить к каждому элементу поверхностные усилия

$$\sigma'_{x} = -(\lambda e' + 2G\varepsilon'_{x}), \quad \dots, \quad \tau'_{xy} = -G\gamma'_{xy}, \quad \dots, \quad (6)$$
$$e' = e'_{x} + e'_{y} + \varepsilon'_{z}.$$

где

$$X = \frac{\partial}{\partial x} (\lambda e' + 2Ge'_{x}) + \frac{\partial}{\partial y} (G\gamma'_{xy}) + \frac{\partial}{\partial z} (G\gamma'_{xz}),$$
(B)

а поверхностные силы — выражениями

$$\overline{X} = -(\lambda e' + 2Ge'_{x}) l - G\gamma'_{xy}m - G\gamma'_{xz}n \qquad (r)$$

Прилагая объемные силы (в) и поверхностные силы (г), мы устраним начальную систему остаточных деформаций (а), так что теперь элементы будут плотно прилегать друг к другу и образуют непрерывное тело. Допустим теперь, что элементы, на которые разделено тело, соединены вместе, и устраним силы (в) и (г). Тогда, очевидно, начальные напряжения получатся наложением на напряжения (б) напряжений, вызываемых в упругом теле объемными силами:

$$X = -\frac{\partial}{\partial x} (\lambda e' + 2Ge'_{x}) - \frac{\partial}{\partial y} (G\gamma'_{xy}) - \frac{\partial}{\partial z} (G\gamma'_{xz}), \qquad (a)$$

и поверхностными силами

$$\overline{X} = (\lambda e' + 2Ge'_x) l + G\gamma'_{xy}m + G\gamma'_{xz}n, \qquad (e)$$

Таким образом, задача определения начальных напряжений сводится к обычной системе уравнений теории упругости в которой величины фиктивных объемных и поверхностных сил полностью определены, если задана система деформаций (а).

В частном случае, когда $\varepsilon'_x = \varepsilon'_y = \varepsilon'_z = \alpha T$ и $\gamma'_{xy} = \gamma'_{xz} = \gamma'_{yz} = 0$ приведенные выше уравнения совпадут с уравнениями, полученными для отыскания температурных напряжений. Рассмотрим теперь обратную задачу когда начальные напряжения известны и требуется определить систему деформаций (а), которая вызывает эти напряжения. Для прозрачных материалов, таких, как стекло, начальные напряжения можно исследовать фотоупругим методом (глава 5). В других случаях эти напряжения можно определять, разрезая тело на малые элементы и замеряя деформации, которые происходят в результаге освобождения этих элементов от поверхностных сил, представляющих начальные напряжения в неразрезанном теле. Из приведенных рассуждений ясно, что начальная деформация вызывает начальные напряжения лишь в том случае, когда компоненты деформации могут существовать, и не вызывая напряжений. Отсюда следует, что для определения компонент деформации (а) знания начальных напряжений недостаточно. Если решение для этих компонент получено, можно наложить на это решение любую однородную систему деформаций, удовлетворяющих условиям совместности, не оказав влияния на начальные напряжения ¹).

Начальные напряжения, вызывающие в стекле двойное лучепреломление, создают большие трудности при производстве оптических приборов. Чтобы устранить эти трудности, стекло обычно отпускают. Предел упругости стекла

при высокой температуре очень низок, и от действия начальных напряжений материал начинает течь. Если прошло достаточное время, то отпуск материала при высокой температуре дает возможность значительно уменьшить начальные напряжения. Аналогичное влияние оказывает отпуск на различные металлические отливки и поковки.

Разрезание больших тел на малые куски снимает начальные напряжения вдоль поверхностей разреза и уменьшает общее количество потенциальной энергии, связанной с начальными напряжениями; однако такие разрезы не всегда уменьшают величину максимальных начальных напряжений. Рассмотрим,

например, круговое кольцо (рис. 232). Пусть оно имеет начальные напряжения, симметрично распределенные относительно центра кольца, и пусть компонента начального напряжения σ_{θ}' изменяется вдоль поперечного сечения mn по линейному закону (линия ab на рисунке). Разрезав кольцо в радиальном направлении, как показано на рисунке пунктиром, мы снимем напряжения σ_{θ}' вдоль разрезов. Это равносильно приложению к концам каждой части кольца двух равных по величине и противоположных по знаку моментов, вызывающих чистый изгиб. Распределение напряжения σ_{θ} вдоль линии mn, вызванное этим изгибом, близко к гиперболическому (см. § 29), как показано кривой cde. Распределения остаточных напряжений вдоль mn после разреза определяются выражением $\sigma_{\theta} + \sigma_{\theta}'$ и показаны на рисунке заштрихованной площадью. Если внутренний радиус кольца мал, у внутренней границы возникнет высокая концентрация напряжений, и максимальное начальное напряжение после разрезания, представленное на рис. 222 линией bc, может превысить максимальное начальное напряжение до разрезания. Эта и подобные ей причины служат

¹⁾ Тот факт, что однородная система (а) не определяется полностью величинами начальных напряжений, рассмотрен подробно в статье: H. R e issner, Z. Angew. Math. Mech. 11, 1 (1931).

²) Несколько примеров определения начальных напряжений в частях, вырезанных из круглой пластинии, обсуждается в статье М. V. Laue, Z. Tech. Physik, 11, 385 (1930). Различные методы определения остаточных напряжений в холоднотянутых трубах рассмотрел Н. Н. Давиденков (N. Dawidenkow, Z. Metallkunde 14, 25 (1932)).

§ 158. Общее изменение объема, связанное с начальными напряжениями

Рассуждения, приведенные в § 157, показывают, что перемещения и, v, w, которые в действительности возникают в теле, когда в каждом его элементе существуют несовместные компоненты деформации (а), совпадают с теми, которые возникают в обычном упругом теле при действии объемных сил (д) и поверхностных сил (е). Однако некоторые общие особенности такой деформации можно вывести из условий равновесия в предположении, что после введения деформаций (а) поведение элементов подчиняется закону Гука. Рассмотрим, например, тело, в котором имеются начальные напряжения $\sigma_x, ..., \tau_{xy}, ...,$

причем тело в целом свободно от какихлибо нагрузок или связей (рис. 233). Для любой части тела, находящейся справа от плоского сечения АА, параллельного плоскости уг, равновесие требует, чтобы

$$\int \int \sigma_x dy \, dz = 0. \tag{a}$$

Интегрируя это равенство сперва для диска толщиной dx, а затем по всему объему, получаем

$$\int \sigma_x d\tau = 0. \tag{6}$$

Рис. 233.

Подобным образом должны обратиться в нуль объемные интегралы от компонент напряжения σ_v и σ_z . Отсюда

$$\int (\sigma_x + \sigma_y + \sigma_z) dr = 0.$$
 (B)

Из закона Гука следует, что полное изменение объема, отвечающее деформациям, вызванным этими компонентами напряжения, равно нулю. Истинное полное изменение объема вызывается в силу этого несовместными компонентами деформации (а) из § 157, относящимися к разделенным элементам.

Отсюда выражение для изменения объема при простом температурном расширении имеет вид

$$\Delta \tau = \int 3\alpha T \, d\tau, \qquad (r)$$

как уже было показано другим путем в виде формулы (б) § 155.

Возвращаясь к уравнению (б) и ему сопутствующим, мы видим, что объемный интеграл по всему телу от любой линейной функции компонент напряжения должен быть равен нулю. Следовательно, любая линейная зави симость между компонентами напряжения и деформации обеспечивает равенство нулю объемного интеграла от любой компоненты деформации. При этом не требуется изотропии материала; в частности, равно нулю и изменение объема материала, вызываемое таким напряженным состоянием.

Дальнейшие соотношения с очевидностью следуют из условий равновесия моментов в сечениях типа АА, показанного на рис. 233.

§ 159. Плоская деформация и плоское напряженное состояние. Метод устранения деформаций

Плоская деформация в длинном цилиндрическом или призматическом теле возникает, когда температура изменяется по его поперечному сечению, но не меняется вдоль линий, параллельных оси цилиндра или призмы (оси z). В этом случае Т не зависит от z.

ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

Если вновь исходить из напряженного состояния, определяемого формулами (ж) § 153, которое приводит к равным нулю деформациям, то необходимые объемные силы определятся зависимостями (и), где теперь следует принять Z = 0, а к поверхности тела, включая его торцы, должно быть приложено давление, определяемое по формуле (е).

Затем, считая, что элементы тела соединены друг с другом, снимем объемные силы, а также давление, приложенное к криволинейной части поверхности так, чтобы осевая деформация оставалась равной нулю. Влияние этого снятия нагрузки можно получить, решив задачу плоской деформации тела ($\varepsilon_z = 0$), когда к нему приложены объемные силы вида

$$X = -\frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial x}, \quad Y = -\frac{\alpha E}{1 - 2\nu} \frac{\partial T}{\partial y}$$
(a)

и нормальные растягивающие напряжения величины

$$\frac{\alpha ET}{1-2\nu} \tag{6}$$

по криволинейной части его поверхности. Эта задача относится к типу, рассмотренному в конце § 17, если не считать того, что вместо равенства (32) для плоского напряженного состояния следует использовать соответствующее равенство для плоской деформации, заменив ν на $\nu/(1-\nu)$. Отсюда вместо уравнений (31) и (32) будем иметь

$$\sigma_{x} - \frac{\alpha ET}{1 - 2\nu} = \frac{\partial^{2} \varphi}{\partial y^{2}}, \quad \sigma_{y} - \frac{\alpha ET}{1 - 2\nu} = \frac{\partial^{2} \varphi}{\partial x^{2}}, \quad \tau_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y}.$$
 (B)

а также

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = -\frac{\alpha E}{1 - \nu} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right). \tag{r}$$

Искомая функция напряжений должна удовлетворять уравнению (г) и доставлять на границе нормальное растягивающее напряжение (б). После определения ф напряжения можно найти по формулам (в). На эти напряжения следует наложить напряжения, определяемые по формулам (ж) § 153.

Осевые напряжения σ_z можно получить, складывая выражение, определяемое по формуле (ж) § 153, с выражением $v(\sigma_x + \sigma_y)$ из (в). Результирующее осевое усилие и изгибающий момент на конце можно снять путем наложения одноосного растяжения и изгиба.

Плоское напряженное состояние возникает в тонкой пластинке, если температура по ее толщине не меняется. Принимая плоскость xy за срединную плоскость пластинки, мы можем положить $\sigma_z = \tau_{xz} = \tau_{yz} = 0$. Кроме того, каждый элемент пластинки можно считать свободно удлиняющимся в направлении z. Чтобы обеспечить совместность элементов, достаточно устранить расширение в направлениях x и y. Это требует приложения напряжений

$$\sigma_x = \sigma_y = -\frac{\alpha ET}{1-\nu}, \quad \tau_{xy} = 0. \tag{A}$$

Подставляя эти выражения в уравнения равновесия (18), находим требуемые объемные силы

$$X = \frac{\alpha E}{1 - \nu} \frac{\partial T}{\partial x}, \quad Y = \frac{\alpha E}{1 - \nu} \frac{\partial T}{\partial y}, \quad (e)$$

которые вместе с нормальным давлением $\alpha ET/(1-\nu)$ нужно приложить к краям пластинки.

Снимая эти силы, приходим к заключению, что температурные напряжения можно определить путем наложения поля напряжений (д) на плоское

напряженное оостояние, вызванное объемными силами

$$X = -\frac{\alpha E}{1-\nu} \frac{\partial T}{\partial x}, \quad Y = -\frac{\alpha E}{1-\nu} \frac{\partial T}{\partial y}, \quad (*)$$

и нормальными растягивающими напряжениями $\alpha ET/(1-v)$, приложенными вдоль краев тела. Отыскание этого плоского напряженного состояния снова приводит нас к задаче типа, рассмотренного в § 17. Нам следует лишь положить в уравнениях (31) и (32)

$$V = \frac{\alpha ET}{1 - \nu},$$

что является потенциалом объемных сил (ж).

§ 160. Двумерные задачи со стационарным потоком тепла

При наличии стационарного потока тепла, параллельного плоскости ху, как это имеет место в тонкой пластинке или в длинном цилиндре при отсутствии изменения температуры в осевом (z) направлении, температура T должна удовлетворять уравнению

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0.$$
 (a)

Рассмотрим цилиндр (не обязательно круглый), находящийся в состоянии плоской деформации (при $\varepsilon_x = \gamma_{xz} = \gamma_{yz} = 0$). Соотношения между напряжениями и деформациями в декартовых координатах аналогичны уравнениям (а) и (б) в § 151 для случая плоской деформации. По аналогии с уравнениями (б) получаем

$$\varepsilon_{\mathbf{x}} - (1+\nu) \alpha T = \frac{1-\nu^2}{E} \left(\sigma_{\mathbf{x}} - \frac{\nu}{1-\nu} \sigma_{\mathbf{y}} \right),$$

$$\varepsilon_{\mathbf{y}} - (1+\nu) \alpha T = \frac{1-\nu^2}{E} \left(\sigma_{\mathbf{y}} - \frac{\nu}{1-\nu} \sigma_{\mathbf{x}} \right).$$
(6)

Зададимся теперь вопросом: могут ли σ_x , σ_y и τ_{xy} быть равными нулю? Полагая в уравнениях (б) $\sigma_x = \sigma_u = 0$, находим

$$\varepsilon_x = (1 + v) \alpha T, \quad \varepsilon_y = (1 + v) \alpha T,$$
 (B)

и, разумеется, $\gamma_{xy} = 0$.

Эти компоненты деформации физически возможны лишь в том случае, если они удовлетворяют условиям совместности (125). Поскольку $\varepsilon_z = 0$, а остальные компоненты деформации не зависят от z. все условия (125), за исключением первого, удовлетворяются.

Первое условие приводится к уравнению

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = 0.$$

Но с учетом соотношений (в) и (а) это уравнение также удовлетворяется. Отсюда мы находим, что при стационарном потоке тепла уравнения равновесия, граничное условие, выражающее отсутствие нагрузки на криволинейной поверхности, и условия совместности удовлетворяются, если принять

$$\sigma_x = \sigma_y = \tau_{xy} = 0, \quad \sigma_z = -\alpha ET. \tag{(r)}$$

Для сплошного цилиндра вышеприведенные условия являются полными, и мы можем сделать вывод, что при стационарном состоянии двумерной теплопередачи не будет температурных напряжений, за исключением осевого напряжения σ_z , определяемого по формуле (г), которое служит для выполнения условия $\varepsilon_z = 0$ плоской деформации. В случае длинного цилиндра *без связей*, наложенных на концах, мы получаем приближенное решение, справедливое всюду, кроме окрестности концов, если наложить одноосное растяжение сжатие и чистый изгиб таким образом, чтобы свести к нулю результирующие усилия и моменты по концам, связанные с напряжениями σ_z .

Для полого цилиндра мы не можем, однако, сделать вывод, что формулы (г) служат решением задачи о плоской деформации.

Рис. 234.

Необходимо исследовать соответствующие перемещения. Весьма возможно, что они окажутся разрывными, подобно тому, как это описано на стр. 95 и 104—105. Допустим, например, что цилиндр представляет собой трубу и что в нем сделан продольный разрез, как показано на рис. 234, б.

Если внутренняя часть стенки трубы теплее наружной, то труба будет стремиться развернуться, а щель будет раскрываться. Между двумя стенками щели будет иметь место разрыв перемещения. Следовательно, перемещение должно быть представлено разрывными функциями от θ . Поперечное сечение в этом случае является сплошным, т. е. односвязным, и напряжения для задачи плоской деформации даются в точности формулами (г). Однако если труба не имеет щели (рис. 234, *a*), разрывы перемещения физически невозможны. Это показывает, что принятое распределение температуры вызовет фактически компоненты напряжения σ_x , σ_y , τ_{xy} , которые представляют напряженное состояние, вызванное стягиванием друг к другу разделенных граней щели вплоть до их соединения. Такая операция повлияет также на компоненту σ_x .

Для дальнейшего исследования этого вопроса перепишем уравнения (в) в виде

$$\frac{\partial u}{\partial x} = \varepsilon', \quad \frac{\partial v}{\partial y} = \varepsilon',$$
 (д)

где $\varepsilon' = (1 + v) \alpha T$. Поскольку $\gamma_{xu} = 0$, мы можем записать

$$\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = 0, \qquad (e)$$

а также

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 2\omega_x, \qquad (*)$$

где од — компонента вращения (см. стр. 243). Уравнения (с) и (ж) дают в этом случае

$$\frac{\partial u}{\partial y} = -\omega_z, \quad \frac{\partial v}{\partial x} = \omega_z, \tag{4}$$

что в сочетании с соотношениями (д) приводит к условиям

$$\frac{\partial \varepsilon'}{\partial x} = \frac{\partial \omega_z}{\partial y}, \quad \frac{\partial \varepsilon'}{\partial y} = -\frac{\partial \omega_z}{\partial x}.$$
 (K)

Уравнения (к) представляют собой уравнения Коши — Римана, обсуждавшиеся в § 55. Они показывают, что функция є' + іш, является аналитической функцией комплексной переменной x + iy. Обозначая эту функцию через Z, получаем

$$Z = \varepsilon' + i\omega_z. \tag{(1)}$$

Если и1, v1, и2, v2-значения компонент и, v в точках 1 и 2 поперечного сечения цилиндра, то разности $u_2 - u_1$ и $v_2 - v_1$ можно выразить формулами

$$u_{2}-u_{1}=\int_{1}^{2}\left(\frac{\partial u}{\partial x}\,dx+\frac{\partial u}{\partial y}\,dy\right),\quad v_{2}-v_{1}=\int_{1}^{2}\left(\frac{\partial v}{\partial x}\,dx+\frac{\partial v}{\partial y}\,dy\right).$$

где интегралы берутся вдоль любой кривой, соединяющей эти две точки и лежащей целиком внутри сечения. Умножая второе соотношение на і и складывая с первым, находим

$$u_{\mathbf{s}} - u_{\mathbf{1}} + i \left(v_{\mathbf{s}} - v_{\mathbf{1}} \right) = \int_{\mathbf{1}}^{2} \left[\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + i \left(\frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right) \right]. \tag{M}$$

С помощью уравнений (д) и (и) легко убедиться, что интеграл в правой части равен $\int (\varepsilon' + i\omega_z) (dz + i dy)$ или $\int Z dz$. Таким образом, уравнение (м) при-

нимает вид

$$u_2 - u_1 + i(v_2 - v_1) = \int_1^2 Z \, dz.$$
 (H)

Перемещения будут однозначными, если этот интеграл обращается в нуль для любого замкнутого контура (например, для окружности, изображенной пунктиром на рис. 234), находящегося целиком в пределах поперечного сечения. Ниже мы воспользуемся этим результатом при решении задачи о температурных напряжениях в полом круглом цилиндре.

Для вращения ω_z (см. § 83) имеем зависимость

$$(\omega_z)_2 - (\omega_z)_1 = \int_1^2 \left(\frac{\partial \omega_z}{\partial x} \, dx + \frac{\partial \omega_z}{\partial y} \, dy \right),$$

которая с использованием (к) приводится к виду

$$(\omega_z)_2 - (\omega_z)_1 = \int_1^2 \left(-\frac{\partial \varepsilon'}{\partial y} dx + \frac{\partial \varepsilon'}{\partial x} dy \right).$$

Поскольку деформация є' пропорциональна T, этот интеграл пропорционален количеству тепла, проходящего за единицу времени через дугу единичной длины, вырезанную из кривой, соединяющей точки I и 2. Если эта кривая замкнутая, разность $(\omega_z)_2 - (\omega_z)_1$ должна обращаться в нуль, и следовательно, должен быть равен нулю и общий поток тепла, пересекающий эту кривую ¹). Если поток тепла направлен от внутренней поверхности трубы к внешней или наоборог, это условие не выполняется, и формулы (г) для напряжения будут некорректны.

Однако если труба имеет разрез (щель), как показано на рис. 234, б, то перемещение или вращение в точке 2 могут отличаться от соответствующих величин в точке 1, например, в том случае, когда нагрев вызывает раскрытие щели. Тогда простое напряженное состояние, определяемое формулами (г), будет корректным решением задачи. Чтобы прийти к напряженному состоянию в трубе при отсутствии щели, нам следует наложить напряженное состояние, вызываемое состояние, вызываемое состояние, наложить напряженное состояние, напряженное состояние наложить напряженное состояние, в трубе при отсутствии щели. Определение таких дислокационных напряжений²) включает решение задач типа, представленного на рис. 45 и 48.

Рассмотрим, например, полый круговой цилиндр с внешним радиусом bи с центральным отверстием радиуса a. Если температура T_i на внутренней поверхности распределена равномерно, а температура на внешней поверхности равна нулю, то температура T в точке, определяемой любым радиусом r. дается формулой (п) из § 151. Мы можем записать эту формулу в виде

$$T = -A \ln b + A \ln r, \tag{0}$$

где

$$A = -\frac{T_i}{\ln\left(b/a\right)}.$$

Постоянный член — $A \ln b$ в формуле (о) можно отбросить, так как однородное изменение температуры не вызывает температурных напряжений. Далее, поскольку $\ln z = \ln r + i\theta$, имеем

$$Z = \varepsilon' + i\omega_z = (1 + v) \alpha T + i\omega_z = (1 + v) \alpha A \ln r + i\omega_z = (1 + v) \alpha A \ln z$$

Обозначая $(1 + v) \alpha A$ через B, из уравнения (н) имеем

$$u_2 - u_1 + i (v_2 - v_1) = B \int_1^2 \ln z \, dz = B [z (\ln z - 1)]_1^2.$$
 (p)

¹⁾ Если поток тепла равен нулю, дополнительно к напряжениям (г) могуг действовать другие температурные напряжения. См. § 161.

²) Зависимость между температурными напряжениями в стационарном потоке тепла и дислокационными напряжениями была установлена Н. И. Мусхелишвили (см. Известия электротехнического института. С.-Петербург, т. 13, 1916, стр. 23) и независимо Био (М. А. В i o t, Phil. Mag., ser. 7, 19, 540 (1935)). Температурные напряжения в полом круговом цилиндре и в квадратном цилиндре с круговым отверстием определил методом фотоупругости Вейбель (Е. Е. W e i be l, Proc. 5th Intern. Congr. Appl. Mech., Cambridge, Mass., 1938, стр. 213).

§ 160]

Это уравнение применимо к любой кривой, соединяющей точки 1 и 2 и целиком лежащей внутри сечения. Оно дает относительное перемещение этих двух точек для случая, когда температура определяется формулой (о), а напряжения — формулами (г).

Применяя это уравнение к круговому пути радиуса r, начинающемуся в точке 1 (рис. 234), огибающему отверстие, и заканчивающемуся в точке 2, поскольку $\theta_1 = 0$, $\theta_2 = 2\pi$, имеем

$$[z(\ln z - 1)]_1^2 = re^{i2\pi} (\ln r + i2\pi) - re^{i0} (\ln r + i0) = i2\pi r.$$

Подставляя эту зависимость в (р), находим

$$u_2 - u_1 = 0, \quad v_2 - v_1 = B \cdot 2\pi r.$$
 (c)

Относительное перемещение не равно нулю, и следовательно, нужно считать, что цилиндр имеет щель, ввиду наличия которой точка 2 может смещаться относительно точки 1 по вертикали на величину $2\pi R$ (рис. 234, 6). Движение верхней стенки щели относительно нижней равносильно вращению на угол $2\pi B$ в направлении часовой стрелки относительно центра сечения цилиндра. При этом B отрицательно, если величина T положительна. В этом случае щель раскрывается на величину центрального угла— $2\pi B$. Задача о смыкании стенок такой щели уже решалась на стр. 95 для случая плоского напряженного состояния. Это решение можно преобразовать для случая плоской деформации с помощью подстановок, приведенных на стр. 446. Компоненты напряжения, получающиеся в результате, в сочетании с осевым напряжением $\sigma_z = - \alpha ET$, получаемым по формулам (г), становятся тождественно равными компонентам, определяемым уравнениями (257) при отсутствии осевой силы.

Температуры на внутренней и внешней поверхностях цилиндра, изменяющиеся вдоль круговых границ, можно представить в виде рядов Фурье

$$T_{i} = A_{0} + A_{1} \cos \theta + A_{2} \cos 2\theta + \dots + B_{1} \sin \theta + B_{2} \sin 2\theta + \dots,$$

$$T_{0} = A_{0} + A_{1} \cos \theta + A_{2} \cos 2\theta + \dots + B_{1} \sin \theta + B_{2} \sin 2\theta + \dots,$$
(7)

Температурные напряжения, вызванные несколькими членами этих рядов, можно рассматривать раздельно, температурные напряжения, связанные постоянными членами A_0 , A'_0 , рассматривались в предыдущем случае при $T_i = A_0 - A'_0$. Членам соз θ , sin θ ; соз 2θ , sin 2θ и т. д. в функции Z соответствуют члены, пропорциональные

$$z, z^{-1}, z^2, z^{-2}$$
 и т. д. (y)

Теперь интеграл $\int z^n dz$, взятый вдоль полной окружности радиуса *r*, обратится в нуль (если только $n \neq -1$), так как

$$\int z^n dz = \int r^{n} e^{in\theta} r e^{i\theta} i d\theta = ir^{n+1} \int_0^{2\pi} e^{i(n+1)\theta} d\theta =$$
$$= ir^{n+1} \int_0^{2\pi} [\cos(n+1)\theta + i\sin(n+1)\theta] d\theta.$$

Это выражение, очевидно, равно нулю, если только $n+1 \neq 0$. Если же n+1=0, то получаем

$$\int \frac{dz}{z} = 2\pi i. \tag{(Φ)}$$

Таким образом, единственным членом в (у), который дает ненулевое значение интеграла в правой части уравнения (н), является член z^{-1} . Отсюда следует, что члены, содержащие соз 20, sin 20, и высшие гармоники в рядах (т), пред-

ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

[гл. 13

ставляющих температуры, не вызывают относительного перемещения двух граней щели в трубе с разрезом. Результирующий тепловой поток от внутренней поверхности трубы к ее внешней поверхности, отвечающий таким членам, равен нулю, и они вызывают только напряжения, определяемые формулами (г).

Членами в рядах (т), которые приводят к членам, содержащим z^{-1} , в функции Z, являются члены с сов θ и sin θ . При этом достаточно рассмотреть лишь члены с сов θ , так как влияние членов с sin θ можно получить из формул, соответствующих сов θ , изменив начало отсчета $\theta = 0$. В связи с этим рассмотрим лишь

$$T_i = A_1 \cos \theta, \quad T_0 = A'_1 \cos \theta.$$
 (x)

Задача об отыскании стационарного распределения температуры, отвечающего этим ее значениям на границах, решается, если считать температуру T действительной частью функции

$$\frac{C_1}{z} + C_2 z \tag{1}$$

и найти такие значения C_1 и C_2 , при которых удовлетворяются условия (х). Эти значения таковы:

$$C_1 = \frac{a^2 b^2}{b^2 - a^2} \left(\frac{A_1}{a} - \frac{A_1'}{b} \right), \quad C_2 = \frac{A_1' b - A_1 a}{b^2 - a^2}.$$
(4)

Член C1/z в (ц) отвечает значению функции

$$(1+v)\alpha\frac{C_1}{z}$$
.

Внося это значение в уравнение (н), находим, что разрыв в перемещении определяется формулой

$$u_2 - u_1 + i (v_2 - v_1) = i2\pi (1 + v) \alpha C_1,$$

откуда

$$u_2 - u_1 = 0$$
, $v_2 - v_1 = 2\pi (1 + v) \alpha C_1$.

Это означает, что верхняя граница разреза на рис. 234 перемещается вниз на величину $2\pi (1+\nu) \alpha C_1$ в пространство, занимаемое нижней гранью и находящимся под ней материалом. Физически это, разумеется, невозможно, и этому препятствуют действующие между гранями усилия, достаточные для создания противодействующего перемещения. Напряженное состояние, вызываемое этими противодействующими перемещениями, определяется так, как это описано в конце § 43, но теперь уже, конечно, для случая плоской деформации.

Для этого случая (ε_z=0) получаем

$$\sigma_r = (\varkappa \cos \theta) r \left(1 - \frac{a^2}{r^2} \right) \left(\frac{b^2}{r^2} - 1 \right),$$

$$\sigma_\theta = (\varkappa \cos \theta) r \left(\frac{a^2 b^2}{r^4} + \frac{a^2 + b^2}{r^2} - 3 \right),$$

$$\tau_{r\theta} = (\varkappa \sin \theta) r \left(1 - \frac{a^2}{r^2} \right) \left(\frac{b^2}{r^2} - 1 \right)$$

и аналогично тому, как получена формула (a) § 151, находим

$$\sigma_{z} = v \left(\sigma_{r} + \sigma_{\theta} \right) - E \alpha T;$$

здесь

$$\varkappa = -\frac{-\alpha E}{2(1-\nu)} \left(\frac{A_1}{a} - \frac{A_1'}{b}\right) \frac{a^2 b^2}{b^4 - a^4} \cdot$$

Если концы свободны, то следует также рассмотреть осевые напряжения, связанные со снятием усилий и моментов на каждом конце.

§ 161]

§ 161. Плоское термонапряженное состояние, вызванное возмущением однородного потока тепла изолированным отверстием

Если однородный в остальных отношениях поток тепла возмущается отверстием, полостью или включением из другого материала, то такое изменение потока вызывает температурные напряжения. Задача об изолированном круговом отверстии в бесконечном теле решается с помощью использования развитой выше теории. Если невозмущенный поток движется в отрицательном направлении y с градиентом температуры τ , то можем записать $T = \tau y$. При наличии отверстия имеем

$$T=\tau\left(r+\frac{a^2}{r}\right)\sin\theta.$$

Рассмотрим на этот раз не плоскую деформацию, а плоское напряженное состояние, и припоминая правило перехода от одного из двух состояний к другому, подробно поясненному на стр. 447, примем

$$Z=-i\alpha\tau\left(z-\frac{a^2}{z}\right),$$

где *а*—радиус отверстия. Разрыв перемещения, отвечающий равному нулю напряжению, снова определяется формулой (н), которая теперь дает

$$(u)_{\theta=0} - (u)_{\theta=2\pi} = 2\pi a^2 \alpha \tau,$$

$$(v)_{\theta=0} - (v)_{\theta=2\pi} = 0.$$

Этот разрыв устраняется с помощью краевой дислокации типа, рассмотренного в § 34. Окончательно компоненты напряжений для плоского напряженного состояния ¹) даются формулой

$$\sigma_r, \sigma_\theta, \tau_{r\theta} = -\frac{1}{2} E \alpha \tau a \left[\left(\frac{a}{r} - \frac{a^3}{r^3} \right) \sin \theta, \left(\frac{a}{r} + \frac{a^3}{r^3} \right) \sin \theta, - \left(\frac{a}{r} - \frac{a^3}{r^3} \right) \cos \theta \right].$$

Напряжение σ_{θ} приобретает наибольшее значение, равное *Е*ата, у «полюсов» $\theta = \pi/2$, $\theta = \pi/2$, $\theta = 3\pi/2$, причем на нагретом полюсе имеет место сжатие, а на охлажденном — растяжение. При $2\tau a = 37,8$ °C оно составляет около $315 \kappa \Gamma/cm^2$ (для стали).

Решение соответствующей задачи было получено и для других форм²) отверстий, а также для круглого отверстия в полубесконечном теле³). Кроме того, с помощью рядов была рассмотрена осесимметричная задача о сферической полости⁴).

¹) A. L. Florence, J. N. Goodier, J. Appl. Mech. 26, 293-294 (1959).

²) A. L. Florence, J. N. Goodier, J. Appl. Mech. 27, 635-639 (1960); CM. TAKWE H. Deresiewicz, J. Appl. Mech. 28, 147-149 (1961). ³) J. N. Goodier, A. L. Florence, Quart. J. Mech. Appl. Math. 16,

³) J. N. Goodier, A. L. Florence, Quart. J. Mech. Appl. Math. 16, 273-282 (1963).

⁴⁾ A. L. Élorence, J. N. Goodier, Proc. 4th US Nat. Congr. Appl. Mech. 595—602 (1962).

§ 162. Решения общих уравнений. Термоупругий потенциал перемещения

Любое частное решение уравнений (264) сводит задачу об определении температурных напряжений к обычной задаче о действии на тело поверхностных сил. Решение для u, v, w с помощью равенств (а) и (б) § 153 и с использованием уравнений (2) приводит к значениям компонент напряжений. Требуемые поверхностные усилия, которые должны действовать вместе с неоднородным распределением температуры, чтобы вызвать эти напряжения, находятся затем из уравнений (124). Устранение этих усилий с целью освобождения границ от нагрузки, для того чтобы напряжения вызывались исключительно неоднородным распределением температуры, представляет собой обычную задачу о действии нагрузок на поверхности упругого тела.

Один из способов получения частных решений уравнений (264) состоит в том, что принимается

$$u = \frac{\partial \psi}{\partial x}, \quad v = \frac{\partial \psi}{\partial y}, \quad w = \frac{\partial \psi}{\partial z},$$
 (a)

где ψ — функция переменных x, y, z, а также времени t, если температура меняется со временем. Такая функция называется термоупругим потенциалом перемещений.

Используя формулы (5) и (10), мы можем записать уравнения (264) в форме

$$\frac{\partial e}{\partial x} + (1 - 2v) \nabla^2 u = 2 (1 + v) \alpha \frac{\partial T}{\partial x},$$

$$\frac{\partial e}{\partial y} + (1 - 2v) \nabla^2 v = 2 (1 + v) \alpha \frac{\partial T}{\partial y},$$

$$\frac{\partial e}{\partial z} + (1 - 2v) \nabla^2 w = 2 (1 + v) \alpha \frac{\partial T}{\partial z}.$$
(6)

Поскольку $e = \partial u/\partial x + \partial v/\partial y + \partial \omega/\partial z$, уравнения (а) приводят к формуле $e \Rightarrow \nabla^3 \psi$, а соотношения (б) принимают вид

$$(1-\nu)\frac{\partial}{\partial x}\nabla^{2}\psi = (1+\nu)\alpha\frac{\partial T}{\partial x}, \quad (1-\nu)\frac{\partial}{\partial y}\nabla^{2}\psi = (1+\nu)\alpha\frac{\partial T}{\partial y},$$
$$(1-\nu)\frac{\partial}{\partial z}\nabla^{2}\psi = (1+\nu)\alpha\frac{\partial T}{\partial z}$$
(B)

(второе и третье уравнения получены из первого заменой $\partial/\partial x$ на $\partial/\partial y$ и $\partial/\partial z$). Все эти три уравнения, очевидно, будут удовлетворяться, если принять функцию¹) ψ в форме решения уравнения

$$\nabla^2 \psi = \frac{1+\nu}{1-\nu} \alpha T. \tag{(r)}$$

Решения уравнений этого типа рассматриваются в теории потенциала²). Решение можно выписать в виде потенциала тяготения для распределения ве-

¹) Функции такого вида использовал Альманзи (E. Almansi) для задачи о сфере. См. Е. Almansi, (1) Atti Reale Accad. Sci., Torino, **32**, 963 (1896 — 1897); (2) Mem. Reale Accad. Sci. Torino, ser. 2, **47** (1897).

²) См., например, W. D. Mac Millan, Theory of the Potential, New York, 1930.

щества с плотностью — $(1 + v) \alpha T / [4\pi (1 - v)]$, который выражается формулой ¹)

$$\psi = -\frac{(1+\nu)\alpha}{4\pi(1-\nu)} \iiint T (\xi, \eta, \zeta) \frac{1}{r'} d\xi d\eta d\zeta, \qquad (\pi)$$

где T (ξ , η , ζ) — температура точки с координатами ξ , η , ζ , определяющими положение элемента объема $d\xi \, d\eta \, d\zeta$, а r' — расстояние между этой точкой и точкой с координатами x, y, z. Уравнение (д) дает полное решение задачи о температурных напряжениях в бесконечном теле, в котором температура равна нулю всюду, кроме некоторой нагретой или охлажденной области²). Исследованы случаи, когда такая область имеет форму эллипсоида вращения и равномерно нагретого полубесконечного круглого цилиндра³). Для случая области в виде эллипсонда максимальное напряжение, которое может возникнуть, равно $\alpha ET/(1-\nu)$ и направлено по нормали к поверхности эллипсоида в точках наибольшей кривизны образующего эллипса. Такая величина напряжения встречается лишь для двух предельных случаев сильно сплюснутого или сильно вытянутого эллипсоидов вращения. В промежуточных случаях максимальные напряжение составляет две трети от вышеприведенного.

Когда T не зависит от z и w = 0, получаем случай плоской деформации, в котором ψ , u и v не зависят от z. Уравнение (г) принимает вид

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{1+\nu}{1-\nu} \alpha T.$$
 (e)

Его частное решение дает логарифмический потенциал

$$\psi = \frac{1}{2\pi} \frac{1+\nu}{1-\nu} \alpha \iint T (\xi, \eta) \ln r' d\xi d\eta, \qquad (ж)$$

где

$$r' = [(x-\xi)^2 + (y-\eta)^2]^{1/2}.$$

Для тонкой пластинки при постоянной по толщине температуре T мы можем считать напряженное состояние плоским, т. е. считать, что $\sigma_z = \tau_{xz} = \tau_{yz} = 0$ и функции $u, v, \sigma_x, \sigma_y, \tau_{xy}$ не зависят от z. Тогда зависимости между напряжениями и деформациями (ср. с уравнениями (г) из § 150) примут вид

$$\sigma_{x} = \frac{E}{1-v^{2}} \left[\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} - (1+v) \alpha T \right],$$

$$\sigma_{y} = \frac{E}{1-v^{2}} \left[\frac{\partial v}{\partial y} + v \frac{\partial u}{\partial x} - (1+v) \alpha T \right],$$

$$\sigma_{xy} = \frac{E}{2(1+v)} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right).$$
(B)

Подставляя эти значения напряжений в уравнения равновесия (18), при

¹⁾ Эту потенциальную функцию использовал Борхарт для задачи о сфере. См. С. W. Borchardt, Monatsber. Königl. Preuss. Akad. Wiss., Berlin, 1873, стр. 9.

²) J. N. Goodier, Phil. Mag., 23, 1017 (1937). Полубесконечное тело рассмотрено в работе R. D. Mindlin, D. H. Cheng, J. Appl. Phys. 21, 926, 931 (1950).

<sup>926, 931 (1950).
&</sup>lt;sup>3</sup>) N. O. Miklestad, J. Appl. Mech. A-131, 1942; Эдвардс (R. H. Edwards, J. Appl. Mech. 18, 19—30 (1951)) решил эту задачу для различных значений упругих постоянных внутри нагретой эллипсоидальной области.

отсутствии объемных сил получаем равенства

$$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{1 - v}{1 + v} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 2\alpha \frac{\partial T}{\partial x},$$

$$\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{1 - v}{1 + v} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) = 2\alpha \frac{\partial T}{\partial y}.$$
 (K)

Эти уравнения удовлетворяются, если принять

$$u = \frac{\partial \psi}{\partial x}, \quad v = \frac{\partial \psi}{\partial y},$$
 (1)

где ф — решение уравнения

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = (1+\nu) \alpha T.$$
(M)

Сравнивая (м) с уравнением (е), мы видим, что частное решение (м) дается логарифмическим потенциалом (ж), у которого в знаменателе отброшен мно-

житель 1-v. Это дает полное решение задачи о локальном нагреве в бесконечной пластинке, в которой напряжения и деформации на бесконечности должны стремиться к нулю.

В. качестве первого примера такого рода расбмотрим бесконечную пластинку, которая имеет температуру, равную нулю, всюду, за исключением прямоугольной области ABCD со сторонами 2a и 2b (рис. 235), внутри которой температура постоянна и равна T¹). Требуемый логарифмический потенциал имеет вид

 $+(y-\eta)^2 d\xi d\eta$

(н)

 $\psi = \frac{1}{2\pi} (1+\nu) \alpha T \int_{-\infty}^{b} \int_{-\infty}^{a} \frac{1}{2} \ln [(x-\xi)^{2} +$

Рис. 235.

В соответствии с формулами (л) перемещения получаются с помощью дифференцирования, а затем с помощью формул (и) можно найти компоненты напряжения. В результате получается, что напряжения σ_x и τ_{xy} в точке *P* вне нагретой прямоугольной области определятся выражениями

$$\sigma_{x} = E\alpha T \frac{1}{2\pi} (\psi_{1} - \psi_{2}), \quad \tau_{xy} = E\alpha T \frac{1}{4\pi} \ln \frac{r_{1}r_{3}}{r_{2}r_{4}}, \quad (o)$$

где обозначения углов ψ_1 и ψ_2 , а также расстояний r_1, r_2, r_3, r_4 ясны из рис. 235. Упомянутые углы с вершиной в точке *P* противолежат двум сторонам прямоугольника *AD* и *BC*, параллельным оси *x*. Выражение для σ_y получается из первого уравнения (о) с использованием вместо ψ_1 и ψ_2 углов, противолежащих двум другим сторонам прямоугольника *AB* и *DC*.

Значение о, в точке, лежащей чуть ниже AD и чуть левее точки A, равно

$$E\alpha T\,\frac{1}{2\pi}\left(\pi-\arctan\frac{a}{b}\right).$$

¹⁾ J. N. Goodier, Phil. Mag. 23 (1937). Решение трехмерной задачи для нагретой области в виде параллелепипеда дали Игначек и Новацкий (J. Ignaczak, W. Nowacki) в 1958 г.; оно приведено в книге: W. Nowacki, Thermoelasticity, Pergamon Press, New York, 1962.

§ 162]

Для прямоугольника, бесконечно длинного в направлении оси y, оно является наибольшим и составляет $0,5E\alpha T$. При обходе вокруг угла прямоугольника обе нормальные компоненты напряжений резко меняются. Касательное напряжение τ_{xy} при приближении к углу стремится к бесконечности. Эти особенности являются, разумеется, следствием идеальной заостренности углов нагретого прямоугольника.

РЕШЕНИЯ ОБЩИХ УРАВНЕНИЙ

Если нагретая область имеет не прямоугольную, а эллиптическую форму¹), с границей, заданной уравнением эллипса

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
,

то значение напряжения σ_y вблизи эллиптической границы, но вне ее, у конца большой оси составляет $\frac{E\alpha T}{1+\frac{b}{2}}$,

что для очень узкого эллипса приближается к $E\alpha T$. Если нагретая область является кругом, то напряжение σ_y в этой точке равно 0,5 $E\alpha T$. Значение σ_x у конца малой оси составляет

$$\frac{E\alpha T}{1+\frac{a}{b}}$$

и для очень узкого эллипса приближается к нулю.

Метод, изложенный в этом параграфе, становится особенно простым, когда температура, меняясь со временем, удовлетворяет дифференциальному уравнению теплопроводности²)

$$\frac{\partial T}{\partial t} = \varkappa \nabla^2 T, \tag{II}$$

где ж — коэффициент теплопроводности, деленный на теплоемкость и плотность. Дифференцируя уравнение (г) по t и затем подставляя выражение для $\partial T/\partial t$ из формулы (п), находим, что функция ψ должна удовлетворять уравнению

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{1+\nu}{1-\nu} \alpha \times \nabla^2 T.$$

Следовательно, можно принять

$$\frac{\partial \psi}{\partial t} = \frac{1+\nu}{1-\nu} \alpha \kappa T.$$

Интеграл от этого выражения, пригодный для случая, когда температура со временем стремится к нулю, имеет вид

$$\psi = -\frac{1+\nu}{1-\nu} \alpha \varkappa \int_{t}^{\infty} T dt, \qquad (p)$$

в чем можно убедиться путем подстановки (р) в уравнение (г) и использования уравнения (п).

В качестве примера рассмотрим длинный круговой цилиндр (случай плоской деформации), который охлаждается или нагревается до стационарного состояния. Распределение температуры не симметрично относительно оси, но не зависит от осевой координаты z. Температура в этом случае представляется

¹⁾ Cm. Goodier, Phil. Mag. 23 (1937).

²⁾ См., например, упомянутую выше работу Н. S. Carslaw, J. C. Jaeger, Heat Conduction in Solids, 1959.

в форме ряда, члены которого имеют вид

$$T_{sn} = -e^{-\varkappa s^2 t} J_n(sr) e^{tn\theta}, \qquad (c)$$

где действительные и мнимые части $e^{in\theta}$ равны $\cos n\theta$ и $\sin n\theta$. Согласно уравнению (а) функция ψ , соответствующая этому температурному члену, будет иметь следующее выражение:

$$\psi_{sn} = -\frac{1+\nu}{1-\nu} \alpha \varkappa \frac{1}{s^2} T_{sn}.$$
 (T)

Ряд таких членов, отвечающий ряду для температуры *T*, будет представлять частное решение общих уравнений (б). Перемещения можно вычислить с помощью уравнений (а) или их аналогов в полярных координатах:

$$u = \frac{\partial \psi}{\partial r}$$
, $v = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$,

где и и v — радиальная и окружная компоненты перемещения. Осевая компонента w в случае плоской деформации равна нулю.

Компоненты деформации получаются с использованием результатов § 30. Компоненты напряжений после этого можно найти по формулам (а) и (б) для плоской деформации из § 153, а для компоненты т_г воспользоваться последним из уравнений (51).

Когда такое решение получено, то в общем случае оказывается, что оне дает ненулевые усилия (σ_r , τ_{r0}) на криволинейной поверхности цилиндра. Влияние устранения этих усилий находится с помощью решения обычной задачи для плоской деформации с использованием общей функции напряжений в полярных координатах, приведенной в § 43¹).

В более общем случае можно включать в условия задачи внутреннее выделение тепла в единице объема со скоростью q. Тогда к правой части уравнения (п) нужно добавить член $q/c\rho$, где c — теплоемкость, а ρ — плотность. Выражение

$$\psi = \frac{1+\nu}{1-\nu} \alpha \int_{t_1}^t (xT+Q) dt + f(x, y, z)$$

удовлетворяет уравнению (г), если

$$\nabla^2 Q = \frac{q}{c\rho}$$
 и $\nabla^2 f = \frac{1+\nu}{1-\nu} \alpha T.$

Здесь Q в общем случае является функцией как переменной t, так и переменных x, y, z, a через T_1 обозначена температура T в момент t_1 .

§ 163. Общая двумерная задача для круговых областей

В §§ 160 и 162 мы использовали по-разному дифференциальные уравнения теплопроводности. Если мы хотим рассмотреть совершенно произвольное распределение температуры, скажем, некоторое заданное начальное распределение температуры во всем теле, то потребуются другие методы. Рассмотрим сейчас один из таких методов для случаев плоской деформации или плоского напряженного состояния в полярных координатах.

Используя термоупругий потенциал перемещений ф, позволяющий определить перемещения (см. уравнение (м) § 162), можно записать уравнение (е)

¹⁾ Эта задача была исследована для случая круглого цилиндра при температуре, меняющейся в соответствии с формулой (с), в упомянутой выше статье Гудьера.

§ 163]

для случая плоской деформации и уравнение (м) для плоского напряженного состояния в полярных координатах в виде

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \beta T, \qquad (a)$$

где для плоской деформации $\beta = (1 + \nu)/(1 - \nu)\alpha$, а для плоского напряженного состояния $\beta = (1 + \nu)\alpha$.

Компоненты перемещения в полярных координатах имеют вид

$$u = \frac{\partial \psi}{\partial r}, \quad v = \frac{1}{r} \frac{\partial \psi}{\partial \theta}.$$
 (6)

Температура T как функция от r и θ берется в виде ряда Фурье

$$T = \sum_{n=0}^{\infty} T_n(r) \cos n\theta + \sum_{n=1}^{\infty} T'_n(r) \sin n\theta.$$
 (B)

Мы ограничимся здесь косинусоидальным рядом, так как с синусоидальным рядом можно поступить таким же образом. Соответственно примем

$$\psi = \sum_{n=0}^{\infty} \psi_n(r) \cos n\theta.$$
 (r)

Тогда уравнение (а) требует, чтобы

$$\frac{d^2\psi_n}{dr^2} + \frac{1}{r}\frac{d\psi_n}{dr} - \frac{n^2}{r^2}\psi_n = \beta T_n(r).$$
(a)

Частное решение этого уравнения, получаемое методом вариации произвольных постоянных, имеет вид

$$\psi_{n} = -\frac{\beta}{2n} \left[r^{n} \int_{r}^{b} T_{n}(\rho) \rho^{1-n} d\rho + r^{-n} \int_{a}^{r} T_{n}(\rho) \rho^{1+n} d\rho \right], \qquad (e)$$

где n = 1, 2, 3, ... При n = 0 из (д) непосредственно находим

$$\psi_{0} = \beta \left[-\ln r \int_{a}^{r} \rho T_{0}(\rho) \, d\rho + \int_{r}^{b} \rho T_{0}(\rho) \ln \rho \, d\rho \right].$$
(*)

Здесь а и *b*—внутренний и внешний радиусы кольцевой области, а ρ —немая переменная интегрирования. Функции, определяемые зависимостями (е) и (ж), вводятся в (е). Затем из формул (б) находятся перемещения, а по ним с помощью формул (48), (49) и (50)—компоненты деформации ε_r , ε_θ , $\gamma_{r\theta}$. Они в свою очередь приводят к напряжениям путем использования уравнений (б) и (в) из § 150 для плоского напряжениого состояния и уравнений (б) из § 151 для плоской деформации. Зависимость между касательным напряжением и деформацией сдвига имеет просто вид $\tau_{r\theta} = G\gamma_{r\theta}$.

Такое напряженно-деформируемое состояние, полученное из потенциала перемещений в виде частного решения дифференциальных уравнений, само по себе не будет удовлетворять заданным граничным условиям на окружностях r = a и r = b. Для удовлетворения этих граничных условий потребуется приложить некоторые усилия на границе, которые можно, разумеется, определить из решения, описанного выше, отыскав σ_r и $\tau_{r\theta}$ при r = a и r = b. Однако задачу удовлетворения граничных условий, например условий $\sigma_r = 0$ и $\tau_{r\theta} = 0$ на граничных окружностях, можно теперь решить также путем наложения изотермического решения Фурье (см. § 43). ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

Следует отметить что ψ_0 , определенное в соответствии с формулой (ж), ведет к решениям, уже описанным в §§ 150 и 151 для случая температуры, не зависящей от θ . В силу этого очевидно, что потенциал ψ_n , определяемый уравнением (е). ведет к некоторому обобщению ¹) этих решений на температуры, зависящие как от θ , так и от r.

§ 164. Общая двумерная задача. Решение в комплексных потенциалах

Мы уже видели, что любой потенциал перемещений Ψ , соответствующий заданному распределению температуры T и дающий непрерывное поле перемещений, приводит задачу к виду, в котором имеется лишь нагрузка на границе тела. Следовательно, если найден соответствующий потенциал перемещений, то можно воспользоваться комплексными потенциалами $\psi(z)$ и $\chi(z)$, как это делалось в главе 6 для плоской деформации и плоского напряженного состояния.

Обозначая этот потенциал через Ψ и считая его функцией только от x и y, для плоской деформации получаем

$$u+iv = \frac{\partial \Psi}{\partial x} + i \frac{\partial \Psi}{\partial y}, \quad w = 0,$$
 (a)

а потенциал Ψ должен удовлетворять уравнению (e) § 162, т. е.

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\Psi = \frac{1+\nu}{1-\nu}\alpha T.$$
 (6)

Температура T должна быть, разумеется, функцией одних лишь переменных x и y. Как и в главе 6, записываем здесь z = x + iy и $\overline{z} = x - iy$. Кроме того,

$$x = \frac{1}{2}(z + \bar{z}), \quad y = \frac{1}{2i}(z - \bar{z}).$$
 (B)

Если подставить эти выражения в T(x, y), то получаем функцию t(z, z). Таким образом,

$$T(x, y) = t(z, \overline{z}).$$
(r)

Формально мы можем взять частные производные

$$\frac{\partial}{\partial z} t(z, \bar{z}), \quad \frac{\partial}{\partial \bar{z}} t(z, \bar{z}), \qquad (\mathbf{z})$$

несмотря на то, что мы не можем изменить z как координату точки на плоскости xy, не изменив в то же время z. Мы можем также ввести неопределенные интегралы

$$\int t(z, \overline{z}) dz, \quad \int t(z, \overline{z}) d\overline{z}, \qquad (e)$$

а также

$$\int \int t(z, \overline{z}) dz d\overline{z}. \tag{x}$$

[гл. 13

¹) Это обобщение дал Н. Н. Лебедев в книге «Температурные напряжения в теории упругости», ОНТИ, 1937. Приведенный выше вывод взят из докторской диссертации: С. Е. Wallace, Thermoelastic Stress in Plates — Problems in Curvilinear Coordinates. В ней рассматриваются также эллиптические и биполярные координаты и задачи с разрывными температурами (когда, например, одна половина диска охлаждена, а другая половина нагрета), для которых ряды Фурье неприменимы в силу их медленной сходимости.

§ 164]

Сразу же можно показать, что соответствующая форма потенциала перемещений имеет вид

$$\Psi(x, y) = f(z, \bar{z}) = \frac{1}{4} \frac{1+v}{1-v} \alpha \iint t(z, \bar{z}) dz d\bar{z}, \qquad (H)$$

Из него следуют перемещения и напряжения в виде¹)

$$2G(u+iv) = \frac{E\alpha}{2(1-v)} \int t(z,\bar{z}) dz, \quad \sigma_x + \sigma_y = -\frac{E\alpha}{1-v} t(z,\bar{z}),$$

$$\sigma_y - \sigma_x + 2i\tau_{xy} = \frac{E\alpha}{1-v} \int \frac{\partial}{\partial\bar{z}} t(z,\bar{z}) dz.$$
 (K)

Это состояние создается нагрузками на границе тела, которые можно определить по только что приведенным формулам и заданному распределению температуры *T*. Задача о действии равной по величине и противоположной по знаку нагрузки на криволинейной или боковой поверхностях может быть затем решена с помощью комплексных потенциалов $\psi(z)$ и $\chi(z)$ для случая плоской деформации без учета объемных сил, как это описывалось в главе 6.

Для вывода уравнений (и) и (к) сначала заметим, что, согласно формулам (г),

$$\frac{\partial T}{\partial x} = \frac{\partial t}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial t}{\partial \overline{z}} \frac{\partial \overline{z}}{\partial x} = \frac{\partial t}{\partial z} + \frac{\partial t}{\partial \overline{z}}, \quad i \frac{\partial T}{\partial y} = \frac{\partial t}{\partial \overline{z}} - \frac{\partial t}{\partial z}.$$
 (*n*)

Отсюда

$$2\frac{\partial t}{\partial z} = \frac{\partial T}{\partial x} - i\frac{\partial T}{\partial y}, \quad 2\frac{\partial t}{\partial \overline{z}} = \frac{\partial T}{\partial x} + i\frac{\partial T}{\partial y}, \quad (M)$$

и, если применить к последнему уравнению операцию 2∂/∂z, то находим

$$4\frac{\partial^2 t}{\partial z\,\partial \overline{z}} = \left(\frac{\partial}{\partial x} - i\,\frac{\partial}{\partial y}\right) \left(\frac{\partial T}{\partial x} + i\,\frac{\partial T}{\partial y}\right) = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$

Здесь T — произвольная функция от x и y. Таким образом, мы можем подставить последний результат в ловую часть уравнения (б), а в его правую часть подставить уравнение (г). В результате имеем

$$4 \frac{\partial^2}{\partial z \,\partial \overline{z}} f(z, \overline{z}) = 4\beta \alpha t(z, \overline{z}), \tag{H}$$

где

$$4\beta = \frac{1+\nu}{1-\nu}.$$
 (0)

Интегрируя уравнение (н) по г, фиксируя г, получаем

$$\frac{\partial}{\partial \overline{z}}f(z,\overline{z}) = \beta \alpha \int t(z,\overline{z}) dz.$$
(1)

В соответствии с первым из уравнений (а) и вторым из уравнений (м) находим

$$u + iv = 2 \frac{\partial}{\partial \bar{z}} f(z, \bar{z}) = \beta \alpha \int t(z, \bar{z}) dz, \qquad (p)$$

откуда следует первое из уравнений (к).

¹) Н. Н. Лебедев, Температурные напряжения в теории упругости, ОНТИ, 1937, стр. 55—56. Третье из приведенных выше уравнений (к) отличается от полученного Н. Н. Лебедевым, который вводил сопряженную функцию к $t(z, \bar{z})$. Подобный вывод дал также Гэйтвуд (В. Е. Gatewood, Phil. Mag. 32, 282—301 (1941)).

Неопределенный интеграл в правой части уравнения (п) снова является функцией от z и z. Интегрирование по z, если фиксировать z, дает

$$f(z, \overline{z}) = \beta \alpha \int \left[\int t(z, \overline{z}) dz \right] d\overline{z}, \qquad (c)$$

что эквивалентно уравнению (и). Никакие произвольные функции при интегрировании не вводятся, так как нам требуется лишь простейшее решение уравнения (б) или (н). Чтобы вывести второе из уравнений (к), обратимся к зависимостям между напряжениями и деформациями для случая плоской деформации. Их можно получить из трехмерных форм, приведенных в § 153, если учесть, что для плоской деформации $\varepsilon_z = 0$, а также $\gamma_{yz} = \gamma_{xz} = 0$. Первые два из трех уравнений (в) из § 153 имеют вид

$$\sigma_{x} = \lambda e + 2G\varepsilon_{x} - \frac{\alpha ET}{1 - 2\nu}, \quad \sigma_{y} = \lambda e + 2G\varepsilon_{y} - \frac{\alpha ET}{1 - 2\nu}.$$
 (r)

Отсюда, поскольку $e = \varepsilon_x + \varepsilon_y$, имеем

$$\sigma_x + \sigma_y = 2 (\lambda + G) e - 2 \frac{\alpha ET}{1 - 2\nu}.$$
 (y)

Однако уравнения (а) и (б) этого параграфа показывают, что для состояния. полученного из потенциала перемещений Ψ, мы должны иметь

$$\varepsilon_x + \varepsilon_y = \frac{1+\nu}{1-\nu} \alpha T.$$
 (\$\phi\$)

С учетом этого и зависимости между упругими постоянными, описываемой уравнениями (5) и (10), уравнение (у) принимает вид

$$\sigma_x + \sigma_y = -\frac{E\alpha}{1-\alpha}T.$$

С учетом уравнения (г) это соотношение совпадает со вторым из уравнений (к).

Чтобы убедиться в справедливости третьего из уравнений (к), начнем с первого из них и применим к его правой части операцию $2\partial/\partial z$, а к левой — равносильную операцию $\partial/\partial x + i\partial/\partial y$. Тогда получим

$$2G\left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i\left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)\right] = \frac{E\alpha}{1 - v} \frac{\partial}{\partial \overline{z}} \int t(z, \overline{z}) dz.$$
(x)

Но из уравнений (т) имеем

$$\sigma_{x} - \sigma_{y} = 2G \left(\varepsilon_{x} - \varepsilon_{y} \right) = 2G \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right).$$

В левой части уравнения (x) выражение в скобках есть γ_{xy} . В правой части мы можем при соответствующих ограничениях на функцию $t(z, \overline{z})$ применить к ней операцию дифференцирования. Тогда (x) примет вид

$$\sigma_{x} - \sigma_{y} + 2i\tau_{xy} = \frac{E\alpha}{1-\alpha} \int \frac{\partial}{\partial \overline{z}} t(z, \overline{z}) dz,$$

а это совпадает с третьим из уравнений (к).

Глава 14

РАСПРОСТРАНЕНИЕ ВОЛН В УПРУГОЙ СПЛОШНОЙ СРЕДЕ 1)

§ 165. Введение

В предшествующих главах рассматривались задачи статики упругого тела. Предполагалось, что под действием не изменяющихся во времени внешних сил тело находится в состоянии покоя. Если же такие изменения и допускались, то они считались достаточно медленными, чтобы можно было оправдать предположение о статическом состоянии тела в любой момент времени (например, в теории удара Герца, стр. 421), т. е. рассматривались квазистатические задачи.

Внезапное нагружение, например нагружение, вызванное взрывом или сейсмическим толчком, приводит к существенно динамическим задачам. При этом уравнения равновесия необходимо заменять уравнениями движения. При приложении нагрузки ее действие не передается мгновенно всем частям тела: от нагруженной области начинают излучаться с конечной скоростью волны напряжений и деформаций. Так же, как и в известном случае распространения звука в воздухе, в каждой точке не возникает возмущения, пока ее не достигнет волна. Однако в упругом теле существует не один, а несколько типов волн и эти волны имеют разные скорости распространения.

Мы начнем с рассмотрения общих уравнений для трехмерной задачи в прямоугольных координатах и простейших решений, отвечающих простейшим типам волн²). Приближенные представления волновых движений в частных случаях, например волны растяжения в стержнях, будут рассмотрены позже, когда в нашем распоряжении уже будет общая теория, позволяющая разъяснить природу сделанных допущений.

¹⁾ Сведения о современном состоянии вопроса содержатся, например, в обзорах: Н. В. Зволинский, Изв. АНСССР, механика, № 1, 109—123 (1965); Н. В. Зволинский, М. И. Рейтман, Г. С. Шапиро, Динамика деформируемых твердых тел (в сб. «Механика в СССР за 50 лет», т. 3, «Наука», М. 1972, стр. 291—324). Прим. ред.

²⁾ Другие формы движения, например колебания, здесь не рассматриваются. Исследования колебаний стержней, колец и пластинок см., например, в книге: S. T i m o s h e n k o, Vibration Problems in Engineering, гл. 5, McGraw-Hill, New York, 1955. [Русский перевод: С. П. Тимошенко, Колебания в инженерном деле, «Наука», 1967.]

§ 166. Волны расширения и волны искажения в изотропной упругой среде

При исследовании распространения волн в упругой среде удобно воспользоваться дифференциальными уравнениями в перемещениях (127). Чтобы из этих уравнений равновесия получить уравнения движения при малых перемещениях, достаточно лишь добавить к ним инерционные члены. Тогда уравнения движения, в предположении отсутствия объемных сил, примут вид

$$(\lambda + G)\frac{\partial e}{\partial x} + G\nabla^{2}u - \rho\frac{\partial^{2}u}{\partial t^{2}} = 0,$$

$$(\lambda + G)\frac{\partial e}{\partial y} + G\nabla^{2}v - \rho\frac{\partial^{2}v}{\partial t^{2}} = 0,$$

$$(\lambda + G)\frac{\partial e}{\partial z} + G\nabla^{2}w - \rho\frac{\partial^{2}w}{\partial t^{2}} = 0,$$
(269)

где е—объемное расширение, а символ ∇² обозначает операцию

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \,.$$

Предположим вначале, что при производимых волнами деформациях объемное расширение равно нулю, т.е. что деформации состоят лишь из искажений сдвига и вращений. Тогда уравнения (269) приведутся к форме

$$G\nabla^2 u - \rho \frac{\partial^2 u}{\partial t^2} = 0, \quad G\nabla^2 v - \rho \frac{\partial^2 v}{\partial t^2} = 0, \quad C\nabla^2 w - \rho \frac{\partial^2 w}{\partial t^2} = 0.$$
(270)

Мы получили уравнения волн, называемых эквиволюминальными волнами или волнами искажений.

Рассмотрим теперь случай, когда деформации, производимые волнами, не сопровождаются вращениями. Вращение любого элемента среды определяется формулами (см. § 83)

$$\omega_{x} = \frac{1}{2} \left(\frac{\partial \omega}{\partial y} - \frac{\partial v}{\partial z} \right), \quad \omega_{y} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right), \quad \omega_{z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right). \quad (a)$$

Следовательно, условие, что деформации не сопровождаются вращениями, можно представить в форме

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0, \quad \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} = 0, \quad \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} = 0.$$
(6)

Если эти условия удовлетворяются, перемещения *u*, *v*, *w* можно вывести из одной функции *q* следующим образом:

$$u = \frac{\partial \varphi}{\partial x}, \quad v = \frac{\partial \varphi}{\partial y}, \quad w = \frac{\partial \varphi}{\partial z}.$$
 (B)

Тогда имеем

$$e = \nabla^2 \varphi, \quad \frac{\partial e}{\partial x} = \frac{\partial}{\partial x} \nabla^2 \varphi = \nabla^2 u.$$

Подставляя эти выражения в уравнения (269), находим, что

$$(\lambda + 2G) \nabla^{2} u - \rho \frac{\partial^{2} u}{\partial t^{2}} = 0,$$

$$(\lambda + 2G) \nabla^{2} v - \rho \frac{\partial^{2} v}{\partial t^{2}} = 0,$$

$$(\lambda + 2G) \nabla^{2} w - \rho \frac{\partial^{2} w}{\partial t^{2}} = 0.$$
(271)

Волны, определяемые этими уравнениями, называются безвихревыми волнами или волнами расширения¹).

Общий случай распространения волн в упругой среде получается в результате суперпозиции волн искажения и волн расширения²). Для обоих видов волн уравнения движения выражаются в общей форме

$$\frac{\partial^2 \psi}{\partial t^2} = a^2 \nabla^2 \psi, \qquad (272)$$

где для случая волн расширения

$$a = c_1 = \sqrt{\frac{\lambda + 2G}{\rho}} \tag{273}$$

и для случая волн искажения

$$a = c_s = \sqrt{\frac{\overline{G}}{\rho}} \,. \tag{274}$$

Покажем теперь, что величины c_1 и c_2 представляют собой скорости распространения волн расширения и искажения.

§ 167. Плоские волны

Если в некоторой точке упругой среды производится какоелибо возмущение, то из этой точки во все стороны начинают излучаться волны. На большом расстоянии от центра возмущения эти волны можно рассматривать как *плоские* и считать, что все частицы движутся параллельно направлению распространения волны (продольные волны) или перпендикулярно этому направлению (поперечные волны). В первом случае мы будем иметь волны расширения, во втором — волны искажения.

Рассмотрим сначала продольные волны. Если выбрать ось x в направлении распространения волны, то v = w = 0 и u будет функцией только одной координаты x. Уравнения (271) в этом случае дают

$$\frac{\partial^2 u}{\partial t^2} = c_1^2 \frac{\partial^2 u}{\partial x^2}.$$
 (275)

Хотя в общем случае расширение сопровождается деформациями сдвига.
 Относительно общности такого сочетания и его связи со статикой упру-

²) Относительно общности такого сочетания и его связи со статикой упругого тела см. E. Sternberg, Arch. Rational. Mech. and Anal. 6, 34—50 (1960).

С помощью подстановки можно показать, что любая функция $f(x+c_1t)$ является решением уравнения (275). Любая функция $f_1(x-c_1t)$ также является решением этого уравнения, и его общее решение можно представить в форме

$$u = f(x + c_1 t) + f_1(x - c_1 t).$$
(276)

Это решение имеет очень простую физическую интерпретацию, которую легко пояснить следующим образом. Рассмотрим второй член в правой части формулы (276). Для любого заданного момента времени t этот член является функцией только одной переменной x и может быть представлен некоторой кривой, например mnp (рис. 236, a), форма которой зависит от вида

функции f_1 . Через интервал времени Δt аргумент функции f_1 примет вид $x - c_1(t + \Delta t)$. Значение функции f_1 останется неизменным, если одновременно с увеличением t на величину Δt абсцисса увеличится на величину Δx , равную $c_1\Delta t$. Это означает, что кривая *mnp*, построенная для момента времени t, может также использоваться для момента $t + \Delta t$, если ее сместить в направлении x на расстояние $\Delta x = c_1\Delta t$, как показано на рисунке пунктиром. Таким же путем можно показать, что первый член решения (276) представляет волну, движущуюся в противоположном направлении. Таким образом, общее решение (276) представляет две волны, движущиеся вдоль оси xв двух противоположных направлениях с постоянной скоростью c_1 , определяемой формулой (273). Эту скорость можно выразить через E и v, подставляя в формулу (273) выражения λ и G, которые даются равенствами (10) и (5). Тогда будем иметь

$$c_{1} = \sqrt{\frac{E(1-\nu)}{(1+\nu)(1-2\nu)\rho}}.$$
 (277)

Для стали с₁ можно принять равным 6070 м/сек.

Рассматривая «прямое» движение волны, представленное функцией $f_1(x-c_1t)$ в формуле (276), получаем следующее выражение § 167]

плоские волны

для скорости частицы и:

$$\dot{u} = \frac{\partial u}{\partial t} = -c_1 f_1'(\xi), \qquad (a)$$

где $\xi = x - c_1 t$ и штрих обозначает дифференцирование функции $f_1(\xi)$ по ξ . Кинетическая энергия элемента $dx \, dy \, dz$ получается при этом в виде

$$\frac{1}{2}\rho\,dx\,dy\,dz\,\left(\frac{\partial u}{\partial t}\right)^2 = \frac{1}{2}\,\rho\,dx\,dy\,dz\,c_1^2\,[f_1'\,(\xi)]^2.$$
(6)

Потенциальная энергия совпадает с энергией деформации. Компоненты деформации имеют вид

$$\varepsilon_x = \frac{\partial u}{\partial x} = f'_1(\xi), \quad \varepsilon_y = \varepsilon_z = 0.$$
 (B)

В соответствии с выражением (132) энергия деформации элемента равна

$$V_0 \, dx \, dy \, dz = \frac{1}{2} \, (\lambda + 2G) \, [f_1'(\xi)]^2 \, dx \, dy \, dz. \tag{r}$$

Если сопоставить соотношения (б) и (г) и учесть формулу (273), то становится ясным, что кинетическая и потенциальная энергии в любой момент времени совпадают.

Для напряжений имеем следующие зависимости:

$$\sigma_x = (\lambda + 2G) \varepsilon_x, \quad \sigma_y = \sigma_z = \lambda \varepsilon_x,$$
 (д)

откуда

$$\frac{\sigma_y}{\sigma_x} = \frac{\sigma_z}{\sigma_x} = \frac{\lambda}{\lambda + 2G} = \frac{\nu}{1 - \nu}.$$
 (e)

Такие компоненты σ_y , σ_z требуются для выполнения условия $\varepsilon_y = \varepsilon_z = 0$. Сравнивая выражение (Д) для σ_x с выражением (д) для \dot{u} и используя зависимость $\varepsilon_x = f'_1(\xi)$ из (в), находим, что

$$\sigma_x = -\rho c_1 u. \tag{(x)}$$

Если бы мы рассматривали «обратное» движение волны, представленное в формуле (276) только одной функцией $f(x+c_1t)$, то в формулах (а) и (ж) знаки «минус» следовало бы заменить знаками «плюс».

Функции f и f_1 для каждого частного случая нужно определять из начальных условий в момент t = 0. Для этого момента из формулы (276) имеем

$$(u)_{t=0} = f(x) + f_1(x),$$

$$\left(\frac{\partial u}{\partial t}\right)_{t=0} = c \left[f'(x) - f'_1(x)\right].$$
(H)

Предположим, например, что начальная скорость равна нулю

и начальное перемещение определяется формулой $(u)_{t=0} = F(x).$

Условия (и) будут удовлетворены, если принять

$$f(x) = f_1(x) = \frac{1}{2}F(x).$$

Следовательно, в этом случае начальное перемещение расщепляется на две половины, которые распространяются как волны в двух противоположных направлениях (рис. 236, б).

Рассмотрим теперь поперечные волны. Если ось х направлена в сторону распространения волны, а ось у имеет направление поперечного перемещения, то получаем, что перемещения и и w равны нулю, а перемещение v будет функцией от x и t. Тогда из уравнений (270)

$$\frac{\partial^2 v}{\partial t^2} = c_2^2 \frac{\partial^2 v}{\partial x^2}.$$
 (K)

Это уравнение имеет тот же вид, что и уравнение (275), и мы можем сделать вывод, что волны искажения распространяются вдоль оси x со скоростью

 $c_{2} = \sqrt{\frac{G}{o}}$

$$c_2 = c_1 \sqrt{\frac{1-2\nu}{2(1-\nu)}}.$$

При v = 0,25 вышеприведенная формула дает

$$c_2 = \frac{c_1}{\sqrt{3}} \,.$$

$$f(x - c_2 t) \tag{(1)}$$

Любая функция

является решением уравнения (к) и представляет волну, распространяющуюся в направлении x со скоростью c_2 . Возьмем, например, решение (л) в форме

$$v = v_0 \sin \frac{2\pi}{l} (x - c_2 t).$$
 (M)

В этом случае волна имеет синусоидальную форму. Длина волны равна *l*, а амплитуда *v*₀. Скорость поперечного движения равна

$$\frac{\partial v}{\partial t} = -\frac{2\pi c_2}{l} v_0 \cos \frac{2\pi}{l} (x - c_2 t). \tag{H}$$

Эта скорость равна нулю, когда перемещение (м) максимально, и достигает наибольшей величины, когда перемещение равно нулю. Деформация сдвига, вызываемая этой волной, определяется формулой

$$\gamma_{xy} = \frac{\partial v}{\partial x} = \frac{2\pi v_0}{l} \cos \frac{2\pi}{l} (x - c_2 t). \tag{0}$$

Можно убедиться, что максимальное искажение (о) и максимальное абсолютное значение скорости (н) достигаются в заданной точке одновременно.

Распространение волн этого вида можно представить следующим образом. Пусть mn (рис. 237) — тонкое волокно, выделенное из упругой среды. Когда вдоль оси x распространяется синусоидальная волна (м), элемент A испытывает перемещения и искажения, последовательные изменения которых показаны с помощью

Рис. 237.

заштрихованных элементов 1, 2, 3, 4, 5, ... В момент t=0элемент A имеет положение, обозначенное цифрой 1. В этот момент его искажение и скорость равны нулю. Затем он приобретает положительную скорость и после некоторого промежутка времени, равного $l/4c_2$, его искажение показано цифрой 2. В этот момент перемещение элемента равно нулю, а его скорость максимальна. Через промежуток времени, равный $l/4c_2$, условия, в которых находится элемент, показаны цифрой 3 и т. д.

Пусть поперечное сечение волока равно dy dz, тогда кинетическая энергия элемента A

$$\frac{1}{2}\rho\,dx\,dy\,dz\,\left(\frac{\partial v}{\partial t}\right)^2 = \frac{1}{2}\rho\,dx\,dy\,dz\,\frac{4\pi^2 c_2^2}{l^2}v_0^2\cos^2\frac{2\pi}{l}\,(x-c_2t),$$

а энергия деформации

$$\frac{1}{2} G \gamma_{xy}^2 \, dx \, dy \, dz = \frac{1}{2} G \, \frac{4\pi^2 v_0^2}{l^2} \cos^2 \frac{2\pi}{l} (x - c_2 t) \, dx \, dy \, dz.$$

Учитывая, что $c_2^2 = G/\rho$, можно сделать вывод, что кинетическая и потенциальная энергии элемента в любой момент времени равны.

В случае землетрясения в толще земли со скоростями с₁ и с₂ распространяются оба вида волн: волны расширения и волны искажения. Их можно зарегистрировать с помощью сейсмографа, и интервал времени между прибытием этих двух видов волн позволяет получить некоторую информацию относительно расстояния регистрирующей станции от центра возмущения.

Чтобы удовлетворить физическим условиям на свободной поверхности или на поверхности раздела между двумя различными средами, можно комбинировать плоские волны синусоидальной и другой формы различными способами. Если направление распространения не параллельно поверхности, можно получить результаты, отвечающие отражению волны от свободной поверхности или отражению и преломлению на поверхности раздела¹). Движение волны, распространяющейся параллельно плоской свободной поверхности со скоростью, отличной от c_1 и c_2 (поверхностной волной Рэлея), рассматривается ниже в § 170.

§ 168. Продольные волны в стержнях постоянного сечения. Элементарная теория

Простые плоские продольные волны, рассмотренные в § 167, могут существовать в стержне прямоугольного поперечного сечения только тогда, когда на боковых гранях действуют компоненты напряжений σ_y и σ_z , определяемые уравнениями (1). Для стержня произвольного поперечного сечения также требуется действие соответствующих усилий на боковой поверхности.

Если боковая поверхность стержня свободна от усилий, получить требуемые решения полных уравнений движения²) (269) гораздо труднее. Однако есть много практически интересных случаев, для которых справедлива значительно более простая теория. В этой элементарной теории предполагается, что каждый элемент стержня испытывает простое растяжение, отвечающее осевой деформации $\partial u/\partial x$, где *и* является функцией только от переменных *x* и *t*. Тогда

$$\sigma_x = E \frac{\partial u}{\partial x}.$$
 (a)

Другие компоненты напряжений считаются пренебрежимо малыми. Рассматривая элемент, который первоначально находится между поперечными сечениями x и x + dx (рис. 238), получаем уравнение движения в виде

$$\frac{\partial \sigma_x}{\partial x} dx = \rho dx \frac{\partial^2 u}{\partial t^2} ,$$

496

¹⁾ См., например, Н. Kolsky, Stress Waves in Solids, Oxford University Press, Fair Lawn, 1953. [Русский перевод: Г. Кольский, Волны напряжения в твердых телах, ИЛ, 1955.]

 ²) Численные результаты для частных случаев были получены с помощью
 ЭВМ. См., например, L. D. Bertholf, J. Appl. Mech. 34, 725—734 (1967). Общий обзор проблемы распространения волн в стержнях, а также других

Общий обзор проблемы распространения волн в стержнях, а также других основных задач распространения волн напряжений с обширной библиографией см. в главах, написанных Микловицем и Дэвисом (J. Miklowitz, Elastic Wave Propagation, стр. 809—839 и R. M. Davies, Stress Waves in Solids, стр. 803—807) книги H. N. A bramson, H. Liebowitz, J. M. Crowley, S. Juhasz (ред). Applied Mechanics Surveys, Spartan Books, Washington, 1966. [См. Р. М. Дэвис, Волны напряжений в твердых телах, ИЛ, 1961. (Прим. ред.)]

§ 168]

или

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} , \qquad (6)$$

где

$$c = \sqrt{\frac{E}{\rho}}.$$
 (278)

Уравнение (б) имеет тот же вид, что и уравнение (275) § 167, и его общее решение можно представить так:

$$u = f(x + ct) + f_1(x - ct).$$
 (B)

Интерпретация этого решения была дана ранее для уравнения (276). Однако в данном случае скорость распространения волны¹)

скорости волны c₁, определяемой формулой (277). Отношение этих скоростей равно

$$\frac{c_1}{c} = \sqrt{\frac{1-v}{(1+v)(1-2v)}}.$$

При v = 0.30 отношение $c_1/c = 1.16$. Для стали можно принять $c = 5150 \ \text{м/сек}$.

Если в уравнении (в) удерживается лишь функция f_1 (распространение прямой волны), то из этого уравнения и уравнения (а) имеем

$$\sigma_x = -\rho c u, \qquad (\Gamma)$$

тогда как при удержании одной лишь функции f (распространение обратной волны) имеем

$$\sigma_x = \rho c u. \tag{1}$$

Результаты, выраженные формулами (278) и (г), можно получить и не обращаясь к дифференциальным уравнениям. Рассмотрим равномерно распределенные сжимающие напряжения, внезапно приложенные к левому концу стержня (рис. 239). В первый момент они вызовут однородное сжатие бесконечно тонкого слоя на конце стержня. Это сжатие затем передается соседнему слою и т. д. Вдоль стержня с некоторой скоростью c начнет распространяться волна сжатия, и через промежуток времени t часть

¹⁾ Ее называют иногда «стержневой скоростью».

стержня длиной *ct* будет сжата, а остальная его часть будет находиться в состоянии покоя и будет свободна от напряжений.

Следует различать скорость распространения волны c и скорость v, сообщаемую частицам в сжатой зоне стержня сжимающими усилиями. Скорость частиц v можно найти, если принять во внимание тот факт, что под действием сжимающих напряжений σ заштрихованная на рисунке сжатая зона укорачивается на величину (σ/E) ct. Следовательно, скорость левого конца стержня, равная скорости частиц в сжатой зоне, определится формулой

$$v = \frac{c\sigma}{E}$$
. (e)

Скорость распространения волны с можно найти, используя уравнение количества движения. Вначале заштрихованная часть стержня находится в покое. По прошествии промежутка времени t она будет иметь скорость v и количество движения Actpv. Приравнивая это количество движения импульсу сжимающего усилия, получаем

$$A\sigma t = Actov. \tag{(*)}$$

Используя формулу (е), находим для с значение, определяемое формулой (278)¹), а для скорости частиц получаем выражение

$$v = \frac{\sigma}{\sqrt{E\rho}} . \tag{279}$$

Это соотношение соответствует уравнению (\mathbf{r}), в котором через *и* обозначена скорость частиц. Можно убедиться, что в то время, как скорость распространения волны *с* не зависит от сжимающего усилия, скорость частиц *v* пропорциональна напряжению σ .

Если к концу стержня вместо сжимающей внезапно приложена растягивающая нагрузка, то вдоль стержня со скоростью с будет распространяться растяжение. Скорость частиц снова определится формулой (279). Однако направление этой скорости будет противоположно направлению оси x. Таким образом, для волны сжатия скорость частиц v направлена в ту же сторону, что и скорость распространения волны, а для волны растяжения скорость v направлена в сторону, противоположную направлению распространения волны.

Из уравнений (278) и (279) получаем

$$\sigma = E \frac{v}{c} \,. \tag{280}$$

Таким образом, напряжение на фронте волны определяется отношением обеих скоростей и модулем упругости Е материала. Если

¹⁾ Этот элементарный вывод формулы скорости распространения волны принадлежит Бабине (Babinet); см. Clebsch, Théorie de Elasticité des Corps Solides; (перевод Сен-Венана), стр. 480, 1883.

абсолютно твердое тело, движущееся со скоростью v, производит продольный удар по левому концу стержня, то в начальный момент времени сжимающее напряжение на поверхности контакта определится формулой (280)¹). Если скорость v ударяющего тела превосходит некоторый предел, зависящий от механических свойств материала стержня, то даже если масса тела очень мала, в стержне возникнут остаточные деформации²).

Рассмотрим теперь энергию для волны, показанной штриховкой на рис. 239. Эта энергия состоит из двух частей: энергии деформации, равной

$$\frac{Act\sigma^2}{2E}$$
,

и кинетической энергии, равной

$$\frac{Act\rho v^2}{2} = \frac{Act\sigma^2}{2E}.$$

Можно убедиться, что полная энергия волны, равная работе, производимой сжимающей силой А о, действующей на расстоянии

Рис. 240.

(σ/E) ct, состоит наполовину из потенциальной, а наполовину из кинетической энергии.

Уравнение (б), определяющее распространение волн, линейно, в силу чего сумма двух решений этого уравнения также будет его решением. Отсюда следует, что при исследовании волн, распространяющихся вдоль стержня, можно использовать метод суперпозиции. Если встречаются две волны, распространяющиеся в разных направлениях (рис. 240), то получающиеся при этом напряжения и скорости частиц можно получить путем суперпозиции. Если, например, обе волны являются волнами сжатия, то, как показано на рис. 240, б, результирующие сжимающие

¹) Этот вывод принадлежит Томасу Юнгу (Thomas Young, Course of Lectures on Natural Philosophy... т. 1, стр. 135, 144, 1807.

²) Предполагается, что контакт происходит одновременно во всех точках концевого сечения стержня.

[гл. 14

напряжения получаются путем простого сложения, а результирующие скорости частиц — путем вычитания. После прохождения рассматриваемого участка волны вернутся к своей первоначальной форме, как показано на рис. 240, в.

Рассмотрим волну сжатия, распространяющуюся вдоль стержня в направлении оси x, и волну растяжения той же длины и с той же величиной напряжения, распространяющуюся в противоположном направлении (рис. 241). Когда волны встречаются, сжатие и растяжение взаимно уничтожают друг друга, и в той части стержня, где обе волны накладываются друг на друга, напряжения отсутствуют. В то же время скорости частиц в этой части стержня удваиваются и становятся равными 2v. После прохождения рассматриваемого участка волны приобретают свою первоначальную форму, как показано на рис. 241, б. В среднем поперечном сечении *mn* напряжение все время будет равно нулю, и это сечение можно рассматривать как свободный конец стержня (рис. 241, e). Сравнивая рис. 241, a и b, отсюда можно сделать вывод, что в случае свободного конца волна сжатия отражается в виде подобной ей волне растяжения и наоборот.

Если две одинаковые волны, движущиеся навстречу друг другу, рис. 242, *a*, встречаются, то в той части стержня, где эти волны накладываются друг на друга, возникнут удвоенные напряжения, а скорости будут равны нулю. В среднем поперечном сечении *mn* скорость всегда будет равна нулю. При прохождении волн это сечение остается неподвижным и его можно рассматривать как заделанный конец стержня (рис. 242, *в*). Из сравнения рис. 242, *a* и *б* можно сделать вывод, что волна, отразившись от заделанного конца стержня, совершенно не меняется.

§ 169. Продольное соударение стержней

Если происходит продольное соударение двух одинаковых стержней из одного и того же материала, движущихся со ско-

ростью v (рис. 243, a), то в процессе удара плоскость контакта mn будет неподвижна¹), а вдоль обоих стержней со скоростью c начнут распространяться две одинаковые волны сжатия. Скорости частиц в волнах, наложенные на начальные скорости стержней, приведут зоны волн в состояние покоя, и в момент, когда эти вол-

ны достигнут свободных концов стержней (t = l/c), оба стержня будут подвергнуты равномерному сжатию и находиться в состоянии покоя. Затем волны сжатия отразятся от свободных концов в виде волн растяжения, которые начнут распространяться в направлении поперечного сечения контакта *mn*. В этих волнах скорости частиц, равные v, будут теперь направлены от сечения *mn*, и когда волны достигнут плоскости контакта, стержни разделятся со скоростью, равной их начальной скорости v. Продолжительность соударения в этом случае будет, очевидно, равна 2l/c, а сжимающее напряжение, согласно формуле (279), станет равным $v \sqrt{E_{0}}$.

Рассмотрим теперь более общий случай, когда стержни 1 и 2 (рис. 243, б) движутся со скоростями ²) v_1 и v_2 , причем $v_1 > v_2$. В момент удара в обоих стержнях начнут распространяться две одинаковые волны сжатия. Соответствующие скорости частиц

¹⁾ Предполагается, что контакт происходит одновременно по всей поверхности концов стержней.

²) Скорости считаются положительными, если их направление совпадает с направлением оси *х*.

относительно напряженных частей движущихся стержней будут равны и в каждом стержне направлены от поверхности контакта. Чтобы абсолютные скорости частиц обоих стержней на поверхности контакта были одинаковы, величина этих скоростей должна быть равна $(v_1 - v_2)/2$. Через промежуток времени, равный l/c, волны сжатия достигнут свободных концов стержней. Оба стержня в этот момент будут находиться в состоянии однородного сжатия, абсолютные значения скоростей всех частиц стержней будут равны

$$v_1 - \frac{v_1 - v_2}{2} = v_2 + \frac{v_1 - v_2}{2} = \frac{v_1 + v_2}{2}$$

Затем волны сжатия отразятся от свободных концов в виде волн растяжения и в момент t = 2l/c, когда эти волны достигнут поверхности контакта двух стержней, скорости стержней 1 и 2

станут равными

 $\frac{v_1 + v_2}{2} - \frac{v_1 - v_2}{2} = v_2,$ $\frac{v_1 + v_2}{2} + \frac{v_1 - v_2}{2} = v_1.$

Таким образом, стержни в процессе удара обмениваются скоростями.

Если рассмотренные стержни имеют разные дли-

ны l_1 и l_2 (рис. 244, *a*), условия соударения вначале будут такими же, как и в предыдущем случае. Однако после промежутка времени $2l_1/c$, когда отраженная волна в более коротком стержне достигнет поверхности контакта *mn*, она начнет распространяться вдоль более длинного стержня и возникнет состояние, изображенное на рис. 244, б. Волна растяжения от стержня l_1 уничтожит сжатие на поверхности контакта стержней, но контакт будет продолжаться, пока волна сжатия в более длинном стержне (заштрихованная на рисунке) не вернется после отражения к поверхности контакта в момент $t = 2l_2/c$.

В случае двух стержней одинаковой длины каждый из них после отскока будет иметь во всех точках одну и ту же скорость и будет двигаться как абсолютно твердое тело. Их полная энергия будет энергией постунательного движения. В случае стержней разной длины более длинный стержень после отскока будет содержать движущуюся в нем волну, и при определении полной энергии стержня следует учитывать и энергию этой волны¹).

¹) Вопрос о потере кинетической энергии переносного движения в случае продольного соударения стержней рассматривали Коши, Пуассон и, наконец, Сен-Венан; см. Compt. Rend., 1108 (1883) и J. Mathémat (Liouville), 257, 376 (1867).

Рассмотрим теперь более сложную задачу о стержне с заделанным концом, другой конец которого испытывает удар движущейся массой (рис. 245)¹). Обозначим через *М* массу движущегося тела, отнесенную к единице площади поперечного сечения стерж-

ня, а через v_0 — начальную скорость тела. Если считать тело абсолютно твердым, то скорость частиц на конце стержня в момент соударения (t=0) будет равна v_0 , а начальное напряжение сжатия, согласно формуле (279),

$$\sigma_0 = v_0 \sqrt{E\rho}. \qquad (a)$$

Вследствие сопротивления стержня скорость движущегося тела, а следовательно, и давление на стержень будут постепенно умень-

шаться, и мы получаем распространяющуюся вдоль стержня волну сжатия с уменьшающимся сжимающим напряжением (рис. 245, б). Изменение сжимающего усилия во времени легко найти из уравнения движения тела. Обозначая через о переменное сжимающее напряжение на конце стержня и через v— переменную скорость тела, получаем

$$M\frac{dv}{dt} + \sigma = 0. \tag{6}$$

Подставляя вместо скорости v ее выражение согласно формуле (279), находим

$$\frac{M}{\sqrt{E\rho}}\frac{d\sigma}{dt} + \sigma = 0,$$

$$\sigma = \sigma_{0}e^{-(t\sqrt{E\rho}/M)}.$$
(B)

откуда

Это уравнение можно использовать, пока t < 2l/c. При t = 2l/c волна сжатия с давлением σ_0 на фронте возвратится к концу стержня, который находится в контакте с ударяющим телом. Скорость тела не может измениться скачком, поэтому эта волна отразится от места контакта как от заделанного конца. Сжимаю-

¹) Эту задачу рассматривали несколько авторов. Окончательное решение получил Буссинеск (J. Boussinesq, Compt. Rend., 154 (1883)). Историю этой задачи можно найти в примечании Сен-Венана к § 60 уже упоминавшейся книги Клебша (Clebsch, Théorie de l'Elasticité des Corps Solides). Эту задачу рассматривал также Доннел (L. H. Donnell). Использовав закон распространения волн, он упростил решение и распространил его на случай конического стержня. См. Trans. ASME, Applied Mechanics Division, 1930.

щее напряжение на поверхности контакта увеличится скачком на величину 20, как показано на рис. 245, в. Такое внезапное повышение давления будет происходить в процессе удара в конце каждого интервала времени T = 2l/c, и для каждого такого интервала мы должны получить различные выражения для σ . Для первого интервала 0 < t < T используем уравнение (в). Для второго интервала T < t < 2T имеем условия, представленные на рис. 245, в; сжимающее напряжение о будет вызвано двумя волнами, движущимися от ударяемого конца, и одной волной, движущейся κ этому концу. Обозначим через $s_1(t)$, $s_2(t)$, $s_3(t)$, ... полные сжимающие напряжения, возникающие на ударяемом конце от всех волн, движущихся от этого конца, после прошествия интервалов времени Т, 2Т, 3Т, Волны, приходящие назад к ударяемому концу, - это волны, посланные в предыдущем интервале времени и отставшие на время Т за счет того, что они прошли вдоль стержня путь туда и обратно. Таким образом, сжатие, вызываемое этими волнами на ударяемом конце, получается путем подстановки t-T вместо T в выражение для сжатия от волн, посланных ударяемым концом в предыдущем интервале времени. Общее выражение для полного сжимающего напряжения в промежутке nT < t < (n+1)T находится отсюда по формуле

$$\sigma = s_n(t) + s_{n-1}(t-T). \tag{(f)}$$

Скорость частиц на ударяемом конце получается как разность между скоростью давления $s_n(t)$ волн, уходящих от ударяемого конца, и давления $s_{n-1}(t-T)$ волн, движущихся к ударяемому концу. Таким образом, согласно формуле (279), получаем

$$v = \frac{1}{\sqrt{E\rho}} [s_n(t) - s_{n-1}(t-T)].$$
(A)

Зависимость между $s_n(t)$ и $s_{n-1}(t)$ можно теперь получить, используя уравнение движения (б) ударяющего тела. Обозначив через α отношение массы стержня к массе ударяющего тела, получаем

$$\alpha = \frac{l\rho}{M}, \quad \frac{\sqrt{E\rho}}{M} = \frac{cl\rho}{Ml} = \frac{2\alpha}{T}.$$
 (e)

Используя эту зависимость вместе с соотношениями (г) и (д), приводим уравнение (б) к виду

$$\frac{d}{dt}[s_n(t) - s_{n-1}(t-T)] + \frac{2\alpha}{T}[s_n(t) + s_{n-1}(t-T)] = 0.$$

Умножая это уравнение на $e^{2\alpha t/T}$, получаем

$$e^{2\alpha t/T} \frac{ds_n(t)}{dt} + \frac{2\alpha}{T} e^{2\alpha t/T} s_n(t) = \\ = e^{2\alpha t/T} \frac{ds_{n-1}(t-T)}{dt} + \frac{2\alpha}{T} e^{2\alpha t/T} s_{n-1}(t-T) - \frac{4\alpha}{T} e^{2\alpha t/T} s_{n-1}(t-T),$$
§ 169]

или

$$\frac{d}{dt}[e^{2\alpha t/T}s_n(T)] = \frac{d}{dt}[e^{2\alpha t/T}s_{n-1}(t-T)] - \frac{4\alpha}{T}e^{2\alpha t/T}s_{n-1}(t-T),$$

откуда

$$s_{n}(t) = s_{n-1}(t-T) - \frac{4\alpha}{T} e^{-2\alpha t/T} \left[\int e^{2\alpha t/T} s_{n-1}(t-T) dt + C \right], \quad (\mathbf{w})$$

где С-постоянная интегрирования. Воспользуемся теперь этой зависимостью для вывода выражений последовательных значений s_1, s_2, \ldots В течение первого интервала времени 0 < t < Tсжимающие напряжения даются формулой (в), и мы можем положить

$$s_0 = \sigma_0 e^{-(2\alpha t/T)}.$$
 (N)

Подставляя это значение вместо s_{n-1} в формулу (ж), имеем

$$s_{1}(t) = \sigma_{0}e^{-2\alpha}\left[(t/T)-1\right] - \frac{4\alpha}{T}e^{-(2\alpha t/T)}\left(\int \sigma_{0}e^{2\alpha}dt + C\right) = \\ = \sigma_{0}e^{-2\alpha}\left[(t/T)-1\right]\left(1-\frac{4\alpha t}{T}\right) - C\frac{4\alpha}{T}e^{-2\alpha t/T}.$$
 (K)

Постоянная интегрирования С находится из условия, что в момент t = T сжимающие напряжения на ударяемом конце внезапно увеличиваются на величину 20, (рис. 245, в). Отсюда, используя формулу (г), получаем

$$[\sigma_0 e^{-(2\alpha t/T)}]_{t=T} + 2\sigma_0 = \left\{ \sigma_0 e^{-2\alpha \left[(t/T) - 1 \right]} + \sigma_0 e^{-2\alpha \left[(t/T) - 1 \right]} \left(1 - \frac{4\alpha t}{T} \right) - C \frac{4\alpha}{T} e^{-(2\alpha t/T)} \right\}_{t=T},$$
откуда $\sigma_T T$

$$C = -\frac{\sigma_0 T}{4\alpha} (1 + 4\alpha e^{2\alpha}).$$

Подставляя это значение постоянной в формулу (к), имеем

$$s_1 = s_0 + \sigma_0 e^{-2\alpha [(t/T) - 1]} \left[1 + 4\alpha \left(1 - \frac{t}{T} \right) \right]. \tag{(\pi)}$$

Поступая далее таким же образом и подставляя в формулу (ж) S_1 вместо S_{n-1} , находим

$$s_{2} = s_{1} + \sigma_{0}e^{-2\alpha \left[(t/T) - 2\right]} \left[1 + 2 \cdot 4\alpha \left(2 - \frac{t}{T}\right) + 2 \cdot 4\alpha^{2} \left(2 - \frac{t}{T}\right)^{2} \right].$$
(M)

Далее тем же путем получаем

$$s_{s} = s_{s} + \sigma_{0}e^{-2\alpha \left[\left(t/T \right) - s \right]} \left[1 + 2 \cdot 6\alpha \left(3 - \frac{t}{T} \right) + 2 \cdot 3 \cdot 4\alpha^{2} \left(3 - \frac{t}{T} \right)^{2} + \frac{2 \cdot 2 \cdot 3}{3 \cdot 3} 8\alpha^{3} \left(3 - \frac{t}{T} \right)^{3} \right]$$
(H)

и т. д. ¹). На рис. 246 графически представлены функции s_0, s_1, s_2, \ldots для $\sigma_0 = 1$ и для четырех разных значений²) $\alpha = 1/6, 1/4, 1/2, 1$. Если использовать эти кривые, то сжимающие напряжения на ударяемом конце легко найти по формуле (г). На рис. 247 это

Рис. 247.

напряжение представлено графически для $\sigma_0 = 1$ и $\alpha = 1/4, 1/2, 1$. В конце интервалов $T, 2T, \ldots$ оно меняется скачками. Максимальное значение этого напряжения зависит от отношения α . При $\alpha = 1/2$ и $\alpha = 1$ напряжение имеет максимальное значение при t = T. В случае $\alpha = 1/4$ максимальное напряжение возникает в момент t = 2T. Момент, когда о становится равным нулю, указывает на окончание удара. Можно убедиться, что продолжи-

¹) Влияние последовательных отражений, проиллюстрированное в этой задаче, легко вывести с помощью преобразований Лапласа. См., например, W. T. Thomson, Laplace Transformation Prentice-Hall, 1950, стр. 123.

W. T. Thomson, Laplace Transformation Prentice-Hall, 1950, стр. 123. ²) Эти кривые нашли Сен-Венан и Фламан (Saint-Venant, Flamant). См. статьи в Compt. Rend., 1883, стр. 127, 214, 281, 353.

тельность удара увеличивается с уменьшением α. Расчеты Сен-Венана дают следующие значения для продолжительности удара.

α==	1/6	1/4	1/2	1
$\frac{2t}{T} =$	7,419	5,900	4,708	3,068

Для малых значений а время контакта можно вычислить по элементарной формуле

$$t = \frac{\pi l}{c} \sqrt{\frac{1}{\alpha}}, \qquad (0)$$

которая получается, если пренебречь массой стержня и предположить, что продолжительность удара равна половине периода простого гармонического колеба-

ния тела, прикрепленного к концу стержня.

Функции s_1, s_2, s_3 , определенные выше, можно использовать также для определения напряжений в любом другом поперечном сечении стержня. Полное напряжение всегда равно сумме двух значений s (формула (г)); одно определяется результирующей волной, движущейся к заданному концу, а другое — результируюволной противоположного шей направления. Когда часть волны, соответствующая максимальному значению s (т. е. наивыс-

Рис. 248.

шей точке для одной из кривых на рис. 246), приходит к заделанному концу стержня и отражается от него, то обе вышеупомянутые волны достигают максимального значения: полное сжимающее напряжение в этой точке в этот момент времени будет наибольшим, которое может быть достигнуто при ударе. Отсюда мы видим, что при ударе возникает максимальное напряжение на заделанном конце стержня и оно равно удвоенному максимальному значению s. Из. рис. 246 можно сделать вывод, что при $\alpha = 1/6$, 1/4, 1/2, 1 максимальные сжимающие напряжения равны $2 \cdot 1,752 \sigma_0$, $2 \cdot 1,606 \sigma_0$, $2 \cdot 1,368 \sigma_0$ и $2 \cdot 1,135 \sigma_0$. На рис. 248 приведены значения σ_{max}/σ_0 при различных величинах отношения $\alpha = \rho l/M^1$). Для сравнения ниже приведена также параболическая

¹) См. статьи Сен-Венана и Фламана, упомянутые в примечании 2 на стр. 506.

кривая, полученная по формуле

$$\sigma = \sigma_0 \sqrt{\frac{M}{\rho l}} = \frac{\sigma_0}{\sqrt{\alpha}}, \qquad (n)$$

которую можно легко получить элементарным способом, пренебрегая массой стержня и приравнивая энергию деформации стержня кинетической энергии ударяющего тела. Пунктирная кривая показывает эту параболическую кривую¹), определяемую формулой

$$\sigma = \sigma_0 \left(\sqrt{\frac{M}{\rho l}} + 1 \right). \tag{p}$$

Легко видеть, что при больших значениях 1/а эта формула всегда дает хорошее приближение.

Изложенная выше теория удара основана на допущении, что контакт происходит мгновенно по всей поверхности конца стержня.

Рис. 249. Осциллограммы сигналов от датчиков информации, показывающие зависимость формы волны от скорости удара. Диаметр стержня 12 мм, датчики деформации расположены на расстоянии 75 см от места удара; скорости ударяющего тела: а) 15 см/сек, б) 10 см/сек, в) 7,5 см/сек.

Это условие трудно реализовать на практике. Чтобы обеспечить в точности плоские поверхности торцов стержней, точно выверить их движение и свести к минимуму влияние воздушной пленки, уловленной между ударяющимися концами стержней, необходимы тщательные меры предосторожности. Только тогда опытные данные о распространении волн можно согласовать с изложенной элементарной теорией. Рис. 249, взятый из статьи Беккера и Конвея²), показывает осциллографические записи формы волн, которые передаются вдоль круглых стержней и отражаются от плоских концов, причем в случае рис. 249, в с пренебрежимым искажением. В более ранних экспериментальных работах³) уда-

508

¹) Эту кривую предложил Буссинеск (J. Boussinesq, Compt. Rend. 154 (1883)).

²) E. C. H. Becker, H. D. Conway, Brit. J. Appl. Phys. 15, 1225-1231 (1964).

³) Такое исследование провел Сирс (J. E. Sears, Trans. Cambridge Phil. Soc. 21, 49 (1908). См. также J. E. P. Wagstaff, Proc. Roy. Soc. (London), ser. A, 105, 544 (1924); W. A. Prowse, Phil. Mag. 22, 209 (1936).

\$ 1701

ряющимся концам стержней придавали криволинейную сферическую форму и местные деформации в области контакта учиты-вались на основе теории Герца.

§ 170. Поверхностные волны Рэлея

В §§ 166, 167 распространение возмущений в изотропной однородной среде, подчиняющейся закону Гука, представлялось с помощью суперпозиции волн, имеющих скорость с1, и эквиволюминальных волн, имеющих скорость c_2 . Если начальное возмущение ограничено конечной областью внутри тела¹), величины c_1 и c_2 являются единственно возможными скоростями распространения волн в бесконечной среде даже в тех случаях, когда на фронтах волн имеются разрывы скоростей частиц.

Когда существуют свободные границы (или поверхности раздела между двумя средами), возможны и другие скорости распространения. При этом могут появляться «поверхностные волны», при которых движение происходит по существу лишь в тонком слое. Они подобны кругам на гладкой поверхности жидкости, вызываемым брошенным в нее камнем, и тесно связаны с поверх-ностным эффектом в проводниках, по которым течет переменный ток высокой частоты. Рэлей 2), впервые обнаруживший существование поверхностно-волновых решений общих уравнений, заметил: «Не исключена возможность, что рассмотренные здесь поверхностные волны играют важную роль при землетрясениях и при соударении упругих тел. Распространяясь только в двух направлениях, они должны с удалением от источника приобре-тать все большее значение». Изучение записей сейсмических волн подтверждает предположение Рэлея.

На большом расстоянии от источника деформации, вызываемые такими волнами, можно считать двумерными. Предположим, что тело ограничено плоскостью и = 0, и будем считать положительным направление оси у внутрь тела, а оси х-в сторону распространения волн. Выражения для перемещений получаются путем комбинирования волн расширения (уравнения (271)) и волн искажения (уравнения (270)). Считая в обоих случаях, что w = 0, решение уравнений (271), представляющих волны расширения. можно принять в виде

$$u_1 = se^{-ry} \sin(pt - sx), v_1 = -re^{-ry} \cos(pt - sx),$$
 (a)

где p, r и s-постоянные. Экспоненциальный множитель в этих выражениях показывает, что при действительных положительных

¹) А. Ляв, Математическая теория упругости, ОНТИ, 1935. ²) Rayleigh, Proc. London. Math. Soc. 17, 4—11 (1885) (или Scientific Papers T. 2, CTP. 441-447, Cambridge University Press, New York, 1927).

значениях *r* амплитуда волн быстро уменьшается с возрастанием глубины *y*. Аргумент тригонометрических функций *pt—sx* показывает, что волны распространяются в направлении *x* со скоростью

$$c_{\rm s} = \frac{p}{s} \,. \tag{281}$$

Подставляя выражения (а) в уравнения (271), находим, что эти уравнения будут удовлетворены при

$$r^2 = s^2 - \frac{\rho p^2}{\lambda + 2G}.$$

Используя обозначение

$$\frac{\rho p^2}{\lambda + 2G} = \frac{p^2}{c_1^2} = h^2,$$
 (6)

получаем

$$r^2 = s^2 - h^2. \tag{B}$$

Возьмем решения уравнений (270), представляющих волны искажения, в виде

$$u_2 = Abe^{-by} \sin(pt - sx), \quad v_2 = -Ase^{-by} \cos(pt - sx), \quad (r)$$

где A—постоянная, а b—некоторое положительное число. Можно показать, что объемное расширение, соответствующее перемещениям (г), равно нулю и что уравнения (270) удовлетворяются, если принять $b^2 = s^2 - \frac{\rho p^2}{G}.$

Используя обозначение

$$\frac{\rho p^2}{G} = \frac{p^2}{c_2^2} = k^2,$$
 (д)

получаем

$$b^2 = s^2 - k^2$$
. (e)

Комбинируя решения (а) и (г) и полагая $u = u_1 + u_2$, $v = v_1 + v_2$, определим теперь постоянные A, b, p, r, s таким образом, чтобы были удовлетворены граничные условия. Граница тела свободна от внешних нагрузок; следовательно, при y = 0 имеем $\bar{X} = 0$ и $\bar{Y} = 0$. Подставляя эти значения в уравнения (130) и принимая l = n = 0, m = -1, получаем

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = 0, \quad \lambda e + 2G \frac{\partial v}{\partial y} = 0.$$
 (ж)

Уравнения (ж) записаны для свободной границы тела. Первое из них показывает, что равны нулю касательные напряжения, а вторсе, — что равны нулю нормальные напряжения. Подставляя в эти уравнения полученные выше выражения для *и* и *v*, § 170]

находим

$$2rs + A(b^{2} + s^{2}) = 0,$$

$$\left(\frac{k^{2}}{h^{2}} - 2\right)(r^{2} - s^{2}) + 2(r^{2} + Abs) = 0,$$
(H)

где, согласно (б) и (д),

$$\frac{k^2}{h^2} - 2 = \frac{\lambda}{G}.$$

Исключая из уравнений (и) постоянную А и используя соотношения (в) и (е), получаем

$$(2s^2 - k^2)^2 = 4brs^2,$$
 (K)

или, с учетом (б) и (е),

$$\left(\frac{k^2}{s^2}-2\right)^4 = 16\left(1-\frac{h^2}{s^2}\right)\left(1-\frac{k^2}{s^2}\right).$$

Используя уравнения (б), (д) и (281), можно все величины, входящие в это уравнение, выразить через скорости волн расширения c_1 , волн искажения c_2 и поверхностных волн c_3 ; в результате будем иметь

$$\left(\frac{c_3^2}{c_2^2} - 2\right)^4 = 16\left(1 - \frac{c_3^2}{c_1^2}\right)\left(1 - \frac{c_3^2}{c_2^2}\right).$$
 (*n*)

Используя обозначение

$$\frac{c_3}{c_2} = \alpha$$

и учитывая, что

$$\frac{c_2^2}{c_1^2} = \frac{1-2\nu}{2(1-\nu)},$$

уравнению (л) можно придать вид

$$\alpha^{6} - 8\alpha^{4} + 8\left(3 - \frac{1 - 2\nu}{1 - \nu}\right)\alpha^{2} - 16\left[1 - \frac{1 - 2\nu}{2(1 - \nu)}\right] = 0.$$
 (M)

Полагая, например, v = 0,25, получаем

$$3\alpha^6 - 24\alpha^4 + 56\alpha^2 - 32 = 0$$
,

или

$$(\alpha^2 - 4) (3\alpha^4 - 12\alpha^2 + 8) = 0.$$

Три корня этого уравнения имеют вид

$$\alpha^2 = 4$$
, $\alpha^2 = 2 + \frac{2}{\sqrt{3}}$, $\alpha^2 = 2 - \frac{2}{\sqrt{3}}$.

Из этих трех корней только последний удовлетворяет условию, что величины r² и b², определяемые уравнениями (в) и (е), являются положительными числами. Отсюда

$$c_3 = \alpha c_2 = 0,9194 \sqrt{\frac{G}{\rho}}.$$

В предельном случае v = 1/2 уравнение (м) принимает вид $\alpha^6 - 8\alpha^4 + 24\alpha^2 - 16 = 0$, и мы находим $c_3 = 0.9553 \sqrt{G/\rho}$. В обоих случаях скорость поверхностных волн оказывается

В обоих случаях скорость поверхностных воли оказывается несколько меньшей, чем скорость распространения воли искаже-ния. Имея α , можно найти отношение амплитуд горизонтального и вертикального перемещений на поверхности тела. При v = 1/4это отношение равно 0,681. Полученную выше скорость распро-странения поверхностных воли можно также получить из рас-смотрения колебаний тела, ограниченного двумя параллельными плоскостями¹).

§ 171. Волны со сферической симметрией в бесконечной среде

Возмущения типа симметричного взрыва внутри сферической полости излучают волны или импульсы, которые также обладают сферической симметрией. Перемещения при этом будут чисто радиальными. Перемещения *и* являются функцией сферической радиальной координаты²) *г* и времени *t*. В силу симметрии эти деформации являются безвихревыми, и следовательно, мы будем иметь дело только содной скоростью распространения *c*₁ (см. (273) или (277)).

Дифференциальное уравнение для *и* лег-ко найти путем рассмотрения типичного элемента объема, определяемого четырьмя радиусами, как показано на рис. 250, т.е. малого «сферического квадрата» с радиальной толщиной dr. Динамическое уравнение для радиального движения в этом случае имеет вид

$$\frac{\partial \sigma_r}{\partial r} + \frac{2}{r} (\sigma_r - \sigma_t) = \rho \frac{\partial^2 u}{\partial t^2}.$$
 (a)

Компоненты деформации определяются формулами

$$\epsilon_r = \frac{\partial u}{\partial r}, \quad \epsilon_t = \frac{u}{r},$$
 (6)

а закон Гука дает

$$\sigma_r = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu)\frac{\partial u}{\partial r} + 2\nu \frac{u}{r} \right],$$

$$\sigma_t = \frac{E}{(1+\nu)(1-2\nu)} \left(\frac{u}{r} + \nu \frac{\partial u}{\partial r} \right).$$
(B)

См. Н. Lamb, Proc. Roy. Soc. (London), ser. A, 93, 114 (1917). См. также S. Timoshenko, Phil. Mag. 43, 125 (1922).
 В главе 12 эта координата обозначалась через R, а символ r обозна-чал радиальную координату в цилиндрической координатной системе.

Внося эти значения в уравнение (а), находим

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} - \frac{2u}{r^2} = \frac{1}{c_1^2} \frac{\partial^2 u}{\partial t^2} \,. \tag{r}$$

Введем функцию ф аналогично тому, как это сделано в § 166 следующей формулой:

$$u = \frac{\partial \varphi}{\partial r} \,. \tag{A}$$

Тогда (как легко проверить, выполняя дифференцирование в левой части) получим, что уравнение (г) эквивалентно следующему:

$$\frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} \left(r \varphi \right) \right] = \frac{1}{c_1^2} \frac{\partial}{\partial r} \frac{\partial^2 \varphi}{\partial t^2} \,. \tag{e}$$

Отсюда

$$\frac{1}{r}\frac{\partial^{\mathbf{e}}}{\partial r^{2}}(r\varphi) - \frac{1}{c_{1}^{2}}\frac{\partial^{\mathbf{e}}\varphi}{\partial t^{2}} = F(t), \qquad (\mathbf{x})$$

где F(t) — произвольная функция. Если она не равна нулю, то мы можем найти частное решение уравнения (ж), которое также является функцией только одной переменной t, скажем, $\varphi(t)$. Однако это не внесет никакого вклада в перемещение (д). Таким образом, функцию F(t) можно положить равной нулю. Умножая уравнение (ж) на r. получаем

$$\frac{\partial^2}{\partial r^2}(r\varphi) = \frac{1}{c_1^2} \frac{\partial^2}{\partial t^2}(r\varphi).$$
(282)

Сравнение с уравнением (275) и его решением (276) показывает, что общее решение уравнения (е) определяется выражением

$$r\varphi = f(r - c_1 t) + g(r + c_1 t).$$
 (283)

Интерпретация этого выражения подобна той, которая использовалась для формулы (276). Функция $f(r-c_1t)$ представляет исходящую из начала координат волну, а функция $g(r+c_1t)$ волну, приходящую из начала координат волну, а функция g ($7 \pm c_1(7)$ волну, приходящую в начало координат. Первая из них удобна для исследования задачи о *взрыве* в полости тела. Последняя при-годна для решения задачи о взрыве на внешней границе тела. Примером последнего служит распространение волны, сходящейся к центру сплошного шара конечных размеров после внезапного приложения давления на всей его внешней поверхности.

§ 172. Взрывное давление в сферической полости

Если в уравнении (283) отбросить функцию g, то задача сведется к определению одной функции f, удовлетворяющей граничным условиям задачи, а также начальным условиям.

Начальные условия состоят в том, что в момент t=0 бесконечная среда со сферической полостью имеет всюду равные нулю перемещения и равные нулю скорости. При t > 0 на границе полости r = a действует давление, определяемое произвольной заданной функцией t. В этом состоит одно из граничных условий. Другое граничное условие состоит в том, что материал на бесконечности остается невозмущенным.

Поскольку мы имеем граничное условие при r = a, удобно использовать вместо выражения (283) форму

$$\varphi = \frac{1}{r} f(\tau), \quad r ge \quad \tau = t - \frac{1}{c_1} (r - a). \tag{a}$$

Тогда при r = a получаем $\tau = t$. Кроме того, с физической точки зрения τ представляет собой время, за которое сигнал, посланный в момент t = 0 от границы радиуса a, достигает границы радиуса r > a. Вводя обозначения $f' = \frac{d}{d\tau} f(\tau)$, находим из формул (д) и (в) (§ 171)

$$u = -\frac{1}{c_1} \frac{1}{r} f' - \frac{1}{r^2} f,$$
 (6)

$$\frac{1}{\rho c_1^2} (1-\nu) \sigma_r = (1-\nu) \frac{1}{c_1^2} \frac{1}{r} f'' + 2 (1-2\nu) \left(\frac{1}{c_1} \frac{1}{r^2} f' + \frac{1}{r^3} f \right), \qquad (B)$$

$$\frac{1}{\rho c_1^2} \left(1 - \nu\right) \sigma_t = \nu \frac{1}{c_1^2} \frac{1}{r} f'' - \left(1 - 2\nu\right) \left(\frac{1}{c_1} \frac{1}{r^2} f' + \frac{1}{r^2} f\right).$$
(r)

Краевое условие на границе полости имеет вид $\sigma_r = -p(t)$ при r = a. Подставим это значение σ_r в левую часть уравнения (в) и положим в правой части r = a, учитывая при этом, что $\tau = t$. Таким образом, граничное условие приводит к соотношению

$$f''(t) + 2\gamma f'(t) + 2\gamma \frac{c_1}{a} f(t) = -\frac{a}{\rho} p(t),$$
 (д)

где штрих теперь означает дифференцирование по t, и

$$\gamma = \frac{1 - 2\nu}{1 - \nu} \frac{c_1}{a} \,. \tag{e}$$

Обыкновенное дифференциальное уравнение (д) принадлежит к классу уравнений вида

$$x''(t) + a_1 x'(t) + a_0 x(t) = F(t), \qquad (\mathbf{x})$$

где a_1 , a_0 — постоянные. Это уравнение хорошо известно в динамике как описывающее вынужденные колебания системы с одной степенью свободы с учетом вязкого демлфирования. Его общее решение может быть выражено в виде

$$x(t) = \int_{0}^{t} F(\xi) g_{1}(t-\xi) d\xi + C_{1}e^{\alpha t} + C_{2}e^{\beta t}.$$
 (II)

Здесь C_1 и C_2 произвольные постоянные общего решения однородного уравнения, в котором α и β два корня квадратного характеристического уравнения относительно z вида

$$z^2 + a_1 z + a_0 = 0.$$
 (K)

Входящая под знак интеграла, который представляет частное решение неоднородного уравнения (ж), функция $g_1(t-\xi)$ получается из функции

$$g_{1}(t) = \frac{1}{\alpha - \beta} (e^{\alpha t} - e^{\beta t}). \tag{1}$$

Последняя является общим решением однородного уравнения с постоянными C_1 и C_2 , выбранными таким образом, что

$$g_1(0) = 0, \quad g'_1(0) = 1.$$
 (M)

Частное решение уравнения (д), отвечающее интегралу в формуле (и), имеет вид

$$f(t) = -\frac{1}{\alpha - \beta} \frac{a}{\rho} \int_{0}^{t} p\left(\xi\right) \left[e^{\alpha \left(t - \xi\right)} - e^{\beta \left(t - \xi\right)}\right] d\xi, \qquad (H)$$

где теперь

$$\alpha = \gamma (-1+is), \quad \beta = \gamma (-1-is) \quad H s = \sqrt{\frac{1}{1-2\nu}}, \quad (o)$$

а s и γ (γ определяется формулой (е)) являются действительными положительными числами. Хотя α и β являются здесь комплексными числами, правая часть уравнения (н) действительна.

Теперь мы можем показать, что частное решение (н) полностью определяет решение задачи о взрыве. Начальное условие равенства нулю перемещения, согласно уравнению (б) при t = 0, требует

$$\frac{1}{c_1} \frac{1}{r} f'\left(-\frac{r-a}{c_1}\right) - \frac{1}{r^2} f\left(\frac{r-a}{c_1}\right) = 0 \text{ при } r \ge a.$$
(п)

Начальное условие равенства нулю скорости можно получить из выражения для первой производной уравнения (б) по t:

$$\frac{\partial u}{\partial t} = -\frac{1}{c_1} \frac{1}{r} f''(\tau) - \frac{1}{r^2} f'(\tau),$$

положив здесь $\tau = -\frac{r-a}{c_1}$, т. е. t = 0. Тогда это условие принимает форму

$$-\frac{1}{c_1}\frac{1}{r}f''\left(-\frac{r-a}{c_1}\right)-\frac{1}{r^2}f'\left(-\frac{r-a}{c_1}\right)=0.$$
 (p)

До сих пор мы рассматривали в качестве аргумента функции f(t) лишь положительные значения t. Однако в начальных условиях (п) и (р) аргументом служит выражение $-(r-a)/c_1$,

которое для рассматриваемой нами области r > a отрицательно. В силу этого функцию $f(\eta)$ нужно определить для любого действительного аргумента η как положительного, так и отрицательного.

Дадим следующее определение: функция $f(\eta)$ определяется формулой (н), приведенной выше, когда аргумент η , представленный вместо t, положителен, и та же функция равна нулю, когда величина η отрицательна.

Тогда, если величина η отрицательна, производные $f'(\eta)$, $f''(\eta)$ также равны нулю, и начальные условия (п) и (р) удовлетворяются. Кроме того, из (и) следует, что при положительном τ

$$\lim_{\tau \to 0} f(\tau) = 0, \quad \lim_{\tau \to 0} f'(\tau) = 0.$$
 (c)

Отсюда, учитывая уравнение (б), получаем, что перемещение в точке, определяемой радиусом r, остается нулевым, пока $t = (r - a)/c_1$, т. е. пока $\tau = 0$, а затем это значение изменяется непрерывно. Кроме того, отсюда следует, что на бесконечности материал остается неподвижным. Если мы рассмотрим весь диапазон изменения r в любой момент времени, разрывов в перемещениях не встретится, как того и требуют физические условия. Отсюда ясно, что определение, данное для функции $f(\eta)$, удовлетворяет всем условиям задачи¹).

Внезапно приложенное постоянное давление внутри полости. В этом случае мы можем принять $p(t) = p_0 = \text{const}^2$ при t > 0. Тогда в уравнении (н) имеем $p(\xi) = p_0$ и интеграл легко вычисляется. В результате после замены t на т имеем

$$f(\tau) = -\frac{p_0 a^2}{2\rho \gamma c_1} \left[1 - e^{-\gamma \tau} \left(\cos \gamma \, s\tau + \frac{1}{s} \sin \gamma s\tau \right) \right]. \tag{T}$$

Используя это выражение в уравнениях (б), (в) и (г), легко найти перемещение и напряжение. С.Хантер (см. статью Гопкинса) определил относительную разность напряжений $(\sigma_t - \sigma_r)/p_0$ на границе полости как функцию от безразмерного времени $\overline{t} = c_1 t/a$. При $\overline{t} = 0$, когда внезапно прикладывается давление, это отношение возрастает скачком до 0,592. Затем оно повышается до 1,75 при $\overline{t} = 2,19$ и асимптотически падает до 1,5, что является значением, соответствующим статической задаче.

516

¹) Несколько решений, полученных методом интегральных преобразований и появившихся после 1935 г., приведены в статье Н. G. Hopkins, Dynamic Expansion of Spherical Cavities in Metals (Progress in Applied Mechanics, т. 1, 1960, стр. 84—164, где имеется также обзор обобщений на случаи упруго-пластической среды и больших деформаций. [См. также русский перевод указанной статьи Г. Гопкинса в книге «Динамические неупругие деформации металлсв», «Мир», 1964. (Прим. перев.)]

²⁾ Ссылки на более ранние работы по этой и родственным ей задачам см. Дж. Гудъер, Ф. Ходж, Упругость и пластичность, ИЛ, 1960.

Приложение І

ПРИМЕНЕНИЕ КОНЕЧНО-РАЗНОСТНЫХ УРАВНЕНИЙ В ТЕОРИИ УПРУГОСТИ

§ 1. Вывод конечно-разностных уравнений

Мы видели, что задачи теории упругости обычно сводятся к решению уравнений в частных производных с заданными граничными условиями. Эти уравнения допускают точное решение лишь для границ простой формы. Очень часто мы не можем получить точного решения и вынуждены обращаться к приближенным методам. В качестве одного из этих методов рассмотрим численный метод, основанный на замене дифференциальных уравнений соответствующими уравнениями в конечных разностях¹).

Если гладкая функция y(x) задается рядом значений y_0, y_1, y_2, \ldots в равноотстоящих точках $x = 0, x = \delta, x = 2\delta, \ldots$, можно путем вычитания найти первые разности $(\Delta_1 y)_{x=0} = y_1 - y_0, (\Delta_1 y)_{x=\delta} = y_2 - y_1, (\Delta_1 y)_{x=2\delta} = y_3 - y_2$. Разделив эти разности на длину промежутка между точками δ , получаем приближенные значения первой производной y(x) в соответствующих точках

$$\left(\frac{dy}{dx}\right)_{x=0} \approx \frac{y_1 - y_0}{\delta}, \quad \left(\frac{dy}{dx}\right)_{x=\delta} \approx \frac{y_2 - y_1}{\delta}, \quad \dots$$
 (1)

¹⁾ По-видимому, первое применение конечно-разностных уравнений в теории упругости принадлежит Рунге, который использовал этот метод при решении задач о кручении (С. R unge, Z. Math. Phys. 56, 225 (1908)). Он свел задачу к решению системы линейных алгебраических уравнений. Дальнейшее развитие метода дал Ричардсон (L. F. Richardson, Trans. Roy. Soc. (London), ser. A, **210**, 307 (1910)), который пользовался для решения получающихся алгебраических уравнений некоторым итерационным процессом и получил таким образом приближенные значения напряжений, возникающих в гравитационных плотинах под действием силы тяжести и давления воды. Другой итерационный процесс и доказательство его сходимости дал Либман (H. Liebmann, Sitzber. Bayer. Akad. Wiss., 385 (1918)). Сходимость этого итерационного процесса для случаев гармонического и бигармонического уравнений обсуждали затем Вольф (F. Wolf, Z. Angew. Math. Mech. 6, 118 (1926)) и Курант (R. Courant, Z. Angew. Math. Mech. 6, 322 (1926)). В теории пластинок метод конечных разностей успешно применяли Маркус (H. Marcus, Armierter Beton, 107, 1919) и Генки (Н. Непску, Z. Angew. Math. Mech. 1. 81 (1921) и 2, 58 (1922)). В дальнейшем метод конечных разностей нашел очень широкое применение в публикациях Саусвелла и его учеников. См. R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford University Press, Fair Lawn, N. J., 1946. Практические возможности метода значительно расширили электронные вычислительные машины, позволяющие за несколько минут находить решения систем, содержащих до нескольких тысяч линейных алгебраических уравнений.

Используя первые разности, можно найти вторые разности, если использовать следующие формулы:

$$(\Delta_2 y)_{x=\delta} = (\Delta_1 y)_{x=\delta} - (\Delta_1 y)_{x=0} = y_2 - 2y_1 + y_0.$$

С помощью вторых разностей получаем приближенные значения вторых производных

$$\left(\frac{d^2 y}{dx^2}\right)_{x=\delta} \approx \frac{(\Delta_2 y)_{x=\delta}}{\delta^2} = \frac{y_2 - 2y_1 + y_0}{\delta^2}.$$
 (2)

Если мы имеем гладкую функцию двух независимых переменных w(x, y), то по формулам, подобным (1) и (2), можно получить приближенные значения производных. Допустим, например, что рассматривается прямоугольная область (рис. 1) и

что нам известны значения функции w в узловых точках регулярной квадратной сетки с размером ячейки б. Тогда для определения приближенных значений частных производных функций w в некоторой точке O можно использовать следующие выражения:

$$\frac{\partial \omega}{\partial x} \approx \frac{w_1 - w_0}{\delta}, \quad \frac{\partial \omega}{\partial y} \approx \frac{w_2 - w_0}{\delta}, \\ \frac{\partial^2 \omega}{\partial x^2} \approx \frac{w_1 - 2w_0 + w_3}{\delta^2}, \quad \frac{\partial^2 \omega}{\partial y^2} \approx \frac{w_2 - 2w_0 + w_4}{\delta^2}.$$
(3)

Рис. 1.

Подобным образом можно вывести также приближенные выражения для частных производных высших порядков. Имея такие

выражения, можно преобразовать уравнения в частных производных к уравнениям в конечных разностях.

В качестве первого примера рассмотрим кручение призматических стержней. Как мы уже видели¹), задачу можно свести к интегрированию следующего дифференциального уравнения:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = -2G\theta, \qquad (4)$$

где φ — функция напряжений, которая вдоль границы поперечного сечения должна быть постоянной, θ — угол закручивания на единицу длины стержня и G— модуль сдвига. Используя формулы (3), мы можем преобразовать это уравнение в следующее уравнение в конечных разностях:

$$\frac{1}{\delta^2} (\phi_1 + \phi_2 + \phi_3 + \phi_4 - 4\phi_0) = -2G\theta.$$
 (5)

Таким путем любая задача кручения сводится к определению

¹⁾ См. уравнение (150), стр. 303.

системы численных значений функции напряжений ф, которая удовлетворяет уравнению (5) в каждом узле в пределах границы поперечного сечения и постоянна вдоль границы.

В качестве простейшего примера рассмотрим стержень квадратного поперечного сечения размером $a \times a$ (рис. 2) и воспользуемся сеткой конечных разностей с размером ячейки $\delta = \frac{1}{4} a$. Из симметрии заключаем, что в этом случае достаточно рассмотреть лишь одну восьмую часть поперечного сечения, заштрихованную на рисунке. Если мы определим значения α , β , γ функции φ в этих трех точках, показанных на рис. 2, то будем знать значения φ во всех узловых точках внутри заданной границы. Вдоль границы можно принять функцию φ равной нулю. Таким образом, задача сводится к определению трех значений α , β , γ , для которых мы выпишем три уравнения в форме (5). Учитывая условия симметрии, получаем

$$2\beta - 4\alpha = -2G\theta\delta^{2},$$

$$2\alpha + \gamma - 4\beta = -2G\theta\delta^{2},$$

$$4\beta - 4\gamma = -2G\theta\delta^{2}.$$

Решая эти уравнения, находим

 $\alpha = 1,375G\theta\delta^{2},$ $\beta = 1,750G\theta\delta^{2},$ $\gamma = 2,250G\theta\delta^{2}.$

Таким образом, искомая функция напряжений определяется приведенными выше численными значениями во всех узловых точках внутри заданной области и равна нулю на ее границе.

Чтобы найти частные производные этой функции напряжений, представим себе гладкую поверхность, координаты которой в узловых точках имеют вычисленные значения. Наклон этой поверхности в любой точке даст нам соответствующее приближенное значение касательного напряжения при кручении. Максимальные напряжения действуют в серединах сторон контура сечения. Чтобы получить некоторое представление о точности, которой можно добиться с принятым малым числом узловых точек сетки, найдем вызванные кручением напряжения в точке O (рис. 2). Для получения необходимого наклона рассмотрим некоторую гладкую кривую, имеющую в узловых точках на оси x вычисленные значения α , β и γ . Эти значения, деленные на $1/4G0\delta^2$, приведены во второй строке табл. I.1. Остальные строки таблицы дают значения конечных разностей последовательно возрастающего

таблица I.1

x =	0	δ	28	3δ	4δ
φ=	0	7	9	7	0
$\Delta_1 =$	7	2	-2	_7	
$\Delta_2 =$	5	-4	5		
Δ3=	1	1			
$\Delta_4 =$	-2				

порядка¹). Искомая гладкая кривая дается интерполяционной формулой Ньютона

$$\varphi = \varphi_0 + x \frac{\Delta_1}{\delta} + x (x - \delta) \frac{\Delta_2}{1 \cdot 2\delta^2} + x (x - \delta) (x - 2\delta) (x - 2\delta) \frac{\Delta_3}{1 \cdot 2 \cdot 3\delta^3} + x (x - \delta) (x - 2\delta) (x - 3\delta) \frac{\Delta_4}{1 \cdot 2 \cdot 3 \cdot 4\delta^4} .$$

Беря производные от ϕ и подставляя значения $\Delta_1, \Delta_2, \ldots$, взяна 8

Рис. 3.

тые из таблицы и умноженные с
$$G\theta\delta^2/4$$
, получаем для $x=0$

$$\left(\frac{\partial \varphi}{\partial x}\right)_{x=0} = \frac{124}{48} G\theta \delta = 0,646G a\theta.$$

Сравнивая этот результат с точным значением, приведенным на стр. 318, видим, что ошибка в этом случае составляет около 4.3%.

Чтобы получить большую точность, нужно использовать более густую сетку. Приняв, например, $\delta = a/6$ (рис. 3), мы должны

решить систему из шести уравнений; в результате получим

 $\alpha = 0.952 \cdot 2G\theta\delta^2$, $\beta = 1.404 \cdot 2G\theta\delta^2$, $\gamma = 1.539 \cdot 2G\theta\delta^2$, $\alpha_1 = 2,125 \cdot 2G\theta \delta^2, \quad \beta_1 = 2,348 \cdot 2G\theta \delta^2, \quad \gamma_1 = 2,598 \cdot 2G\theta \delta^2.$

¹⁾ Мы рассматриваем здесь все разности как относящиеся к одному концу системы величин и используем их в интерполяционной формуле Ньютона.

Используя теперь семь точек вдоль оси x и определяя¹) наклон в точке О. получаем для максимального касательного напряжения значение

$$\left(\frac{\partial \varphi}{\partial x}\right)_{x=0} = 0,661 G \theta a.$$

Погрешность этого результата составляет около 2%. Имея результаты для $\delta = \frac{1}{4}a$ и $\delta = \frac{1}{6}a$, можно получить лучшее приближение с помощью экстраполяции 1). Можно показать 2), что погрешность в определении производной функции напряжений ф, вызваниспользованием конечно-разностных уравнений вместо ная дифференциальных, пропорциональна квадрату шага сетки, когда этот шаг мал. Если погрешность в определении максимального напряжения при $\delta = \frac{1}{4}a$ обозначить через Δ , то при $\delta = \frac{1}{6}a$ ее можно принять равной $\Delta\left(\frac{2}{3}\right)^2$. Используя вычисленные выше значения максимального напряжения, получаем Δ из уравнения

$$\Delta - \Delta (2/3)^2 = 0,015G\theta a,$$

откуда

$$\Delta = 0,027G\theta a.$$

Более точное значение напряжения составит тогда

 $0.646G\theta a + 0.027G\theta a = 0.673G\theta a$.

что отличается от точного значения 0.675G0a менее чем на 1/3%.

§ 2. Методы последовательных приближений

Из простого примера, рассмотренного в предыдущем параграфе, видно, что для увеличения точности метода конечных разностей нужно переходить ко все более густым сеткам. Но тогда все более возрастает число уравнений, которые приходится решать 3). Решение уравнений можно намного упростить, если использовать метод последовательных приближений. Чтобы проиллюстрировать это, рассмотрим уравнение 4)

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$$
 (6)

Согласно соотношению (5) соответствующее конечно-разностное

²) См. упомянутую выше работу Ричардсона (Richardson).
 ³) Использование ЭВМ обсуждается в § 10.

521

\$ 21

¹⁾ Определение производных от интерполирующей кривой намного упрощается, если использовать таблицы, вычисленные Бикли (W. G. Bickley). Эти таблицы приведены в упомянутой выше книге Cayсвелла (Southwell).

⁴⁾ На стр. 306 было показано, что задачи о кручении можно свести к решению этого уравнения с заданными значениями ф на границе.

уравнение имеет вид

$$\varphi_o = \frac{1}{4} (\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4). \tag{7}$$

Это уравнение показывает, что истинное значение функции ф в узловой точке О квадратной сетки равно среднему значению функции в четырех соседних узловых точках. Используем теперь это обстоятельство для вычисления значений ф методом последовательных приближений. Рассмотрим сначала в качестве примера случай квадратной границы (рис. 4) и предположим, что граничные значения такие, как показано на рисунке. В

ие, как показано на рисунке. В силу симметрии этих значений относительно вертикальной центральной оси заключаем, что функция φ также симметрична относительно этой оси. Таким образом, нам нужно вычислить лишь шесть узловых значений a, b, a_1 , b_1 , a_2 , b_2 функции φ . Это можно легко сделать, выписав и решив шесть уравнений (7), которые в этом случае весьма просты; имеем $\varphi_a = 854$, $\varphi_b = 914$, $\varphi_{a_1} = 700$, $\varphi_{b_1} = 750$, $\varphi_{a_2} = 597$, $\varphi_{b_2} = 686^{-1}$. Можно поступить и иначе. Допустим, что функция φ имеет в узлах некоторые значения, на-

пример те, которые указаны вверху каждого столбца на рис. 4. Чтобы получить для φ лучшее приближение, воспользуемся для каждого узла равенством (7). Рассматривая точку a, примем в качестве первого приближения значение

$$\varphi_a' = \frac{1}{4} (800 + 1000 + 1000 + 900) = 925.$$

При вычислении первого приближения для точки *b* воспользуемся уже вычисленным значением φ'_a , а также условием симметрии, в силу которого $\varphi'_c = \varphi'_a$. Тогда из равенства (7) имеем

$$\varphi_b' = \frac{1}{4} (925 + 1200 + 925 + 900) = 988.$$

Производя подобные вычисления для всех внутренних узловых точек, получаем первое приближение, которое определяется вторым сверху числом в каждом столбце. Используя эти числа,

522

¹) Мы провели вычисления с точностью до трех значащих цифр и отбросили десятичные дробные части.

можем найти вторые приближения

$$\varphi_a^{"} = \frac{1}{4} (800 + 1000 + 988 + 806) = 899,$$

 $\varphi_b^{"} = \frac{1}{4} (899 + 1200 + 899 + 850) = 962,$

Эти вторые приближения также выписаны на рис. 4; по ним можно видеть, как последовательные приближения постепенно приближаются к приведенным выше точным значениям. После десятикратного повторения этих вычислений получаем в этом

случае результаты, отличающиеся от истинных значений не более чем на единицу в последней цифре. Такое приближение можно считать приемлемым.

В общем случае количество шагов вычислений, необходимое для достижения удовлетворительной точности, очень сильно зависит от выбора начальных значений функции ф. Чем лучше начальная система значений, тем меньше труда потребуют последующие поправки.

Удобно начинать вычисления с грубой сеткой, которая имеет

лишь несколько внутренних точек. Значения ф в этих точках можно получить с помощью прямого решения уравнений (7) или каким-либо из описанных выше итерационных приемов. После этого можно перейти к более густой сетке, показанной на рис. 5, где более грубая сетка представлена жирными линиями. Имея значения ф для узловых точек, показанные светлыми кружочками, и применяя формулу (7), вычисляем значения для точек, помеченных крестиками. Используя далее обе системы значений для точек, помеченных крестиками и светлыми кружочками, и применяя снова уравнение (7), получаем значения для точек, помеченных черными кружочками. Таким путем можно найти значения для всех точек более густой сетки, показанной тонкими линиями, и начать с них итерационный процесс для более густой сетки.

Вместо вычисления значений ф мы можем определить поправки ψ к принятым вначале значениям ф⁰ функции ф¹). В этом случае

$$\boldsymbol{\varphi} = \boldsymbol{\varphi}^{\boldsymbol{0}} + \boldsymbol{\psi}_{\boldsymbol{0}}$$

¹) Этот метод упрощает вычисления, так как приходится иметь дело со сравнительно малыми числами.

Поскольку функция ϕ удовлетворяет уравнению (6), сумма $\phi^0 + \psi$ также должна удовлетворять этому уравнению, и мы получаем

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\left(\frac{\partial^2 \varphi^0}{\partial x^2} + \frac{\partial^2 \varphi^0}{\partial y^2}\right).$$
(8)

На границе значения φ нам заданы, а это означает, что там поправки ψ равны нулю. Таким образом, задача теперь состоит в отыскании функции φ , удовлетворяющей уравнению (8) в каждой внутренней точке и образующейся в нуль на границе. Заменяя уравнение (8) соответствующим уравнением в конечных разностях, получаем для каждой точки О квадратной сетки (рис. 1)

 $\psi_1 + \psi_2 + \psi_3 + \psi_4 - 4\psi_0 = -(\phi_1^0 + \phi_2^0 + \phi_3^0 + \phi_4^0 - 4\phi_0^0). \tag{8'}$

Правую часть этого уравнения можно определить для любой внутренней узловой точки с использованием принятых значений φ^0 для функции φ . Таким образом, задача определения поправок для функции ψ сводится к решению системы уравнений, подобных уравнениям (5) из предыдущего параграфа, а это решение можно получить методом итераций.

§ 3. Метод релаксации

Один из методов решения разностных уравнений типа уравнений (8') из предыдущего параграфа развил Р. В. Саусвелл, который назвал его методом релаксации. Саусвелл исходил из мембранной аналогии Л. Прандтля¹), которая основывается на том факте, что дифференциальное уравнение (4) для задач кручения имеет тот же вид, что и уравнение

$$\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = -\frac{q}{S}, \qquad (9)$$

определяющее прогиб равномерно растянутой и нагруженной в поперечном направлении мембраны. В этом уравнении через wобозначен прогиб, отсчитываемый от горизонтальной плоской в начальном положении поверхности мембраны, q—интенсивность распределенной нагрузки, а S—постоянное растягивающее усилие на единицу длины контура мембраны. Задача сводится к отысканию прогибов w как функции переменных x и y, которая удовлетворяет уравнению (9) в каждой точке мембраны и обращается в нуль на ее границе.

Выведем теперь соответствующее уравнение в конечных разностях. Для этой цели заменим мембрану квадрагной сеткой из

¹) См. стр. 309.

равномерно растянутых нитей (рис. 1). Рассматривая точку O и обозначая через $S\delta$ растягивающее усилие в нити, видим, что действие нитей O1 и O3 на узел O (рис. 6) приводится к направленному вверх усилию, равному¹)

$$S\delta\left(\frac{\omega_0-\omega_1}{\delta}+\frac{\omega_0-\omega_3}{\delta}\right).$$
 (10)

Подобное выражение можно записать и для усилия, к которому сводится действие на узел двух других нитей О2 и О4. Заменяя непрерывную нагрузку, действую-

щую на мембрану, сосредоточенными силами $q\delta^2$, приложенными в узлах, мы можем теперь записать уравнение равновесия узла в виде

 $q\delta^{2} + S(\omega_{1} + \omega_{2} + \omega_{3} + \omega_{4} - 4\omega_{0}) = 0.$ (11)

Это и есть конечно-разностное уравнение, соответствующее дифференциальному уравнению (9). Чтобы решить задачу, нам нужно найти такую систему значений прогибов *w*, при которой уравнение (11) будет удовлетворяться в каждом узле сетки.

Мы будем исходить из некоторых начальных значений прогибов w_0 , w_1^0 , w_2^0 , w_3^0 , w_4^0 , Подставляя их в уравнение (11), как правило, получаем, что условия равновесия не удовлетворяются, и, чтобы сохранить принятые прогибы мембраны, нужно ввести в узловых точках опоры. Тогда величины

$$R_{0} = q\delta^{2} + S\left(\omega_{1}^{0} + \omega_{2}^{0} + \omega_{3}^{0} + \omega_{4}^{0} - 4\omega_{0}^{0}\right)$$
(12)

будут представлять части нагрузки, передаваемой на эти опоры. Назовем эти величины остаточными усилиями или невязками. Представим себе теперь, что опоры принадлежат к типу винтовых домкратов, так что в любой узловой точке можно вызвать любое требуемое перемещение. Тогда с помощью соответствующего выбора перемещений опор мы можем обратить в нуль все невязки (12). Такие перемещения будут представлять поправки, которые нужно добавить к принятым вначале прогибам w_0^0, w_1^0, \ldots , чтобы получить истинные значения w.

Процедура, которой следует Саусвелл, манипулируя с перемещениями опор, подобна той, которую развил К. А. Чалышев для рам с высокой степенью статической неопределимости ²).

¹⁾ Прогибы, мембраны мы считаем очень малыми.

²) К. А. Calisev, Technicki List, Zagreb, 1922—1923. Немецкий перевод этой статьи см. в Publ. Intern. Assos. Bridge Structural Eng. **4**, 199 (1936). См. также Н. Cross, Trans. ASCE **96**, 1—10 (1932).

Сначала смещаем одну из опор, скажем, опору O (рис. 6), считая все другие опоры закрепленными. Из уравнений типа (11) можно видеть, что смещению опоры вниз на величину w'_0 будет соответствовать вертикальная сила — $4Sw'_0$, действующая в узловой точке O. Знак минус показывает, что сила направлена вверх. Выбирая величину перемещения так, чтобы выполнялось требование

$$R_0 - 4S \omega'_0 = 0, \quad \text{t. e. } \omega'_0 = \frac{R_0}{4S}, \quad (13)$$

мы обращаем остаточное усилие (12) в нуль; на опору O больше не будет передаваться никакого давления, но в то же время давление Sw'_0 передается на соседние опоры, и их остаточные усилия увеличатся на ту же величину. Поступая таким же образом со всеми прочими опорами и повторяя эту процедуру несколько раз, мы приведем все невязочные усилия к малым величинам, которыми можно пренебречь. Полные перемещения опор, накопленные при выполнении такой процедуры, должны быть сложены с соответствующими знаками с начальными значениями w_0^0 , w_1^0 , w_2^0 , ..., что дает в сумме истинные перемещения растянутой квадратной сетки.

Чтобы упростить вычисления, требуемые при этой процедуре, приведем уравнение (11) к безразмерной форме с помощью подстановки

$$\omega = \frac{q\delta^2}{S}\psi.$$
 (14)

Таким образом, получаем

$$l + (\psi_1 + \psi_2 + \psi_3 + \psi_4 - 4\psi_0) = 0, \qquad (15)$$

где ψ_0 , ψ_1 , ... — безразмерные величины.

Задача сводится теперь к отысканию такого набора значений ф, чтобы уравнение (15) удовлетворялось во всех внутренних точках сетки. При этом на границе функция должна быть равна нулю. Для нахождения решения используем описанный выше способ и примем некоторые начальные значения ψ_0^0 , ψ_1^0 , ψ_2^0 , ... Они не будут удовлетворять уравнениям равновесия (15), и у нас появятся невязки

$$r_0 = 1 + (\psi_1^0 + \psi_2^0 + \psi_3^0 + \psi_4^0 - 4\psi_0^0), \qquad (16)$$

которые в этом случае будут безразмерными числами.

Наша задача состоит в том, чтобы добавить к принятым значениям ψ_0^0 , ψ_1^0 , ψ_2^0 , ... такие поправки, которые ликвидировали бы невязки. Добавляя к ψ_0^0 поправку ψ_0^\prime , мы добавляем к невязке r_0 величину — $4\psi_0^\prime$, а к невязкам соседних точек — величины ψ_0^\prime . Приняв $\psi_0^\prime = r_0/4$, мы устраняем невязку в узловой точке O и как-то изменим невязки в соседних точках. Действуя таким же путем во всех узлах сетки и повторяя эту процедуру

МЕТОД РЕЛАКСАЦИИ

много раз, мы уменьшим остаточные усилия до пренебрежимо малых значений и, следовательно, получим с достаточной точностью значения ψ. Соответствующие значения ω могут быть после этого получения по формуле (14).

Чтобы проиллюстрировать эту процедуру, рассмотрим задачу о кручении стержня квадратного сечения, уже рассмотренную ранее в § 1. В этом случае имеем дифференциальное уравнение (4). Чтобы привести его к безразмерной форме, положим

$$\varphi = \frac{2G\theta\delta^2}{1000}\psi.$$
 (17)

Тогда конечно-разностное уравнение (5) примет вид

$$1000 + (\psi_1 + \psi_2 + \psi_3 + \psi_4 - 4\psi_0) = 0.$$
 (18)

Знаменатель 1000 введен в уравнение (17) с той целью, чтобы сделать ф достаточно большими числами, для которых в последней цифре позволительно пренебречь половиной по сравнению с единицей. Таким образом, нам придется оперировать только целыми числами. Чтобы сделать наш пример возможно более простым, начнем с грубой сетки, представленной на рис. 2. Тогда нам придется искать значения у лишь для трех точек, для которых мы уже знаем точные значения (см. стр. 520). Вычертим квадратную сетку в достаточно крупном масштабе, чтобы на ней можно было записывать результаты промежуточных вычислений (рис. 7). Расчет начинается с принятых начальных значений ψ, которые мы запишем левей и выше каждой узловой точки. Значения 700, 900 и 1100 намеренно взяты несколько отличными от полученных ранее точных значений. Подставляя эти значения вместе с нулевыми значениями на границе в левую часть уравнения (18), находим остаточные усилия для всех узлов. Эти усилия записаны правее и выше каждого узла. Наибольшее остаточное усилие, равное 200, получается в центре сетки, и мы начнем процесс релаксации с этого узла. Добавляя к принятому значению 1100 поправку 50, которая записана на рисунке над числом 1100, полностью устраним невязку в центре. Поэтому вычеркиваем число 200 и ставим вместо него нуль. Теперь нам нужно изменить невязки в соседних узлах. Прибавим 50 к каждой из невязок и выпишем новое значение -50 над первоначальными значениями, как показано на рисунке. На этом заканчивается работа с центральным узлом сетки. Теперь мы имеем четыре симметрично расположенные точки с невязками, равными — 50, и поправки удобно внести во все эти значения одновременно. Примем для всех этих точек одну и ту же поправку, равную -121). Эти поправки напишем над

¹) Мы приняли поправку —12 вместо —50/4 = —12,5, так как предпочтительнее работать с целыми числами.

начальным значением, равным 900. С учетом этих поправок к предыдущим невязкам, равным —50, следует добавить величины $12 \cdot 4 = 48$, и мы получим невязки, равные —2, как показано на рисунке. В то же время к невязкам во всех соседних точках нужно добавить остаточные усилия, равные —12. Таким образом, как легко видеть, к невязке в центре следует прибавить $-12 \cdot 4 = -48$, а в узлах, расположенных ближе всего к углам,

Рис. 7.

следует прибавить — $12 \cdot 2 = -24$. На этом заканчивается первый шаг вычислений. Второй шаг снова начинается с центрального узла, и делается поправка — 12, которая устраняет невязку в этом узле и добавляет — 12 к невязкам соседних точек. Обращаясь теперь к узлам вблизи углов и внося в них поправки — 6, мы устраняем невязки в этих точках и делаем равными — 26 невязки в четырех симметрично расположенных точках. Чтобы завершить второй шаг, введем в этих узлах поправки — 6. На рисунке показаны дальнейшие поправки во всех точках, которые приводят к нулю невязки в центре и в четырех узлах, расположенных вблизи углов. Невязки в оставшихся четырех симметрично расположенных точках составляют — 2, и следовательно, в этих точках вместо строгого удовлетворения (18) имеем

 $\psi_1 + \psi_2 + \psi_3 + \psi_4 - 4\psi_0 = -1000 - 2.$

Невязку справа, равную —2, нужно сравнить с —1000. Очевидно, эта невязка соответствует очень малому остаточному усилию. Чтобы найти значения ф, прибавим к начальным значениям все введенные поправки. Получим

$$700-6-3-2-1=688$$
, $900-12-6-3-2-1=876$,
 $1100+50-12-6-3-2-1=1126$.

После этого формула (17) дает для ф следующие значения:

 $\frac{688}{500} G\theta\delta^2 = 1,376G\theta\delta^2 = 0,0860G\thetaa^2,$ $\frac{876}{500} G\theta\delta^2 = 1,752G\theta\delta^2 = 0,1095G\thetaa^2,$ $\frac{1126}{500} G\theta\delta^2 = 2,252G\theta\delta^2 = 0,1408G\thetaa^2,$

которые находятся в очень хорошем согласни с результатами, полученными рансе (см. стр. 520).

Как видим, метод Саусвелла дает нам физическую картину итерационного процесса решения уравнений (15), что может оказаться полезным при выборе порядка, в котором следует рассматривать узлы сетки.

Чтобы получить лучшее приближение, нам нужно перейти к более густой сетке. Используя метод, проиллюстрированный на рис. 5, мы получаем начальные значения ψ для квадратной сетки с размером ячейки $\delta = \frac{1}{4}a$. Применяя к этим значениям стандартную процедуру релаксации, можно получить значения ψ для более густой сетки и вычислить более точное значение максимального напряжения. Имея два значения максимального напряжения, найденные при $\delta = \frac{1}{4}a$ и при $\delta = \frac{1}{8}a$, можно с помощью экстраполяции получить лучшее приближение, как это поясняется в § 1.

§ 4. Треугольные и шестиугольные сетки

В предыдущих рассуждениях использовалась квадратная сетка, однако иногда предпочтительнее использование треугольной или шестиугольной сетки (рис. 8, а и б). Рассматривая треугольную сетку (рис. 8, а), мы видим, что в пределах шестиугольника, показанного пунктиром, распределенная нагрузка будет передаваться на узловую точку О. Если обозначить через б размер стороны ячейки, то сторона вышеупомянутого шестиугольника будет равна $\delta/V3$, а его площадь $\sqrt{3} \delta^2/2$, в силу чего нагрузка, передаваемая на каждый узел, будет равна $\sqrt{3} \delta^2 q/2$. Эта нагрузка должна уравновешиваться усилиями в нитях O1, O2, O6. Чтобы сетка нитей соответствовала равномерно растянутой мембране, растягивающие усилия в каждой нити должны быть равны растягивающим усилиям в мембране, передаваемым через одну сторону шестиугольника, т. е. должны быть равны SoV 3.

Рис. 8.

Действуя дальше таким же путем, как и в предыдущем параграфе, получаем для узла О следующее уравнение равновесия:

$$\frac{w_1 + w_2 + w_3 + w_4 - 6w_0}{\delta} \frac{S\delta}{\sqrt{3}} + \frac{\sqrt{3}q\delta^2}{2} = 0,$$

или

$$w_1 + w_2 + \ldots + w_6 - 6w_0 + \frac{3}{2} \frac{q\delta^2}{S} = 0.$$
 (19)

Введем безразмерную функцию ф, определяемую формулой

$$w = \frac{3}{2} \frac{q\delta^2}{S} \psi. \tag{20}$$

После этого конечно-разностное уравнение примет вид

$$\psi_1 + \psi_2 + \psi_3 + \psi_4 + \psi_5 + \psi_6 - 6\psi_0 + 1 = 0.$$
 (21)

Такое же уравнение можно записать для каждого внутреннего узла, и для решения этих уравнений можно использовать методы итерации или релаксации.

В случае шестиугольной сетки (рис. 8, б) на узел О будет передаваться нагрузка, распределенная по площади равностороннего треугольника, показанного на рисунке пунктиром. Обозначив через δ длину стороны ячейки, видим, что длина стороны треугольника будет равна $\delta \sqrt{3}$, а его площадь $3\sqrt{3}\delta^2/4$. Соответствующая нагрузка равна $3\sqrt{3}q\delta^2/4$. Эта нагрузка должна уравновешиваться растягивающими усилиями в трех нитях

[п. 1

01, 02, 03. Чтобы сетка таких нитей соответствовала равномерно растянутой мембране, растягивающие усилия в нитях следует принять равными $S\delta\sqrt{3}$. Уравнение равновесия тогда будет иметь вид

$$\frac{w_2 + w_2 + w_3 - 3w_0}{\delta} S\delta \sqrt{3} + \frac{3\sqrt{3}q\delta^2}{4} = 0,$$

или

$$w_1 + w_2 + w_3 - 3w_0 + \frac{3}{4} \frac{q}{S} \delta^2 = 0.$$
 (22)

Чтобы получить конечно-разностные уравнения для задач о кручении, мы должны подставить в уравнения (19) и (22) 2G0 вместо q/S.

В качестве примера рассмотрим кручение стержня, поперечное сечение которого представляет собой равносторонний треугольник¹) (рис. 9). Точное решение для этого случая дано на стр. 307.

При использовании метода релаксации естественно выбрать для этого случая треугольную сетку. Начав с грубой сетки, примем размер ячейки б равным одной трети длины *а* стороны

треугольника. Тогда в сетке будет лишь одна внутренняя точка O, а во всех соседних точках $1, 2, 3, \ldots, 6$ искомые значения функции напряжений ф должны равняться нулю, поскольку эти точки лежат на границе. Конечно-разностное уравнение для точки O получается тогда из уравнения (19) путем подстановки ϕ_0 вместо w_0 и $2G\theta$ вместо q/S, что в результате дает

 $6\varphi_0 = 3G\theta\delta^2 = \frac{G\theta a^2}{3}$

$$\varphi_0 = \frac{G\theta a^2}{18}.$$
 (23)

Перейдем теперь к более густой сетке. Чтобы получить для такой сетки какие-то начальные значения, рассмотрим точку a, центр тяжести треугольника 120. Допустим, что эта точка соединена с узлами 0, 1 и 2 тремя нитями a0, a1, a2 длиной $\delta/\sqrt{3}$. Рассматривая точку a как узел шестиугольной сетки (рис. 8, δ), подставляя в уравнение (22) $\delta/\sqrt{3}$ вместо δ , 2G0 вместо q/S и полагая $w_1 = w_2 = 0$, $w_3 = \phi_0$, $w_0 = \phi_a$, получаем

$$\varphi_a = \frac{1}{3} \left(\varphi_0 + \frac{G\theta\delta^2}{2} \right) = \frac{G\thetaa^2}{27}.$$
 (24)

531

¹⁾ Эта задача подробно рассматривается в упомянутой выше книге Southwell, Relaxation Methods in Theoretical Physics, 1946.

Те же значения для функции напряжений можно принять также для точек b, c, d, e и f на рис. 9. Чтобы получить значения функции напряжений в точках k, l, m, снова воспользуемся уравнением (22). Учитывая, что в этом случае

 $w_1 = w_2 = w_3 = 0,$

на ходим

$$\varphi_{k} = \varphi_{m} = \varphi_{l} = \frac{G\theta a^{2}}{54}.$$
 (25)

Таким путем определяются значения во всех узловых точках, отмеченных на рис. 10 черными кружками. Мы видим, что в каждой из узловых точек *a*, *c* и *e* имеется шесть нитей, как и требуется при треугольной сетке (рис. 8, *a*). Од-нако в остальных точках число нитей меньше шести. Чтобы удовлетворить

условиям, которые накладывает треугольная сетка на все внут-ренние точки, продолжим наши действия так, как показано пунктирными линиями на верхней части рис. 10. Тогда попе-речное сечение будет разделено на равносторонние треугольники

со сторонами $\delta = a/9$. Из условия симметрии заключаем, что доста-точно рассмотреть только одну шестую поперечного сечения, кото-рая показана на рис. 11, а. Значения φ в узловых точках O, a, bи k уже определены. Значения в узлах I, 2 и 3 следует теперь определить, как и раньше, с помощью уравнения (22) и значе-ния φ в трех соседних точках. Для точки I, например, получаем

$$\varphi_{\mathbf{0}}+\varphi_{\mathbf{b}}+\varphi_{\mathbf{a}}-3\varphi_{\mathbf{1}}+\frac{3}{4}2G\theta\left(\frac{a}{9}\right)^{2}=0.$$

Подставляя вместо φ_a , φ_b , φ_0 ранее вычисленные значения, находим

$$\varphi_1 = \frac{4}{81} G \theta a^2. \tag{26}$$

Подобным образом определяются значения φ_2 и φ_3 . Все эти значения выписаны слева от соответствующих узлов на рис. 11, a^1). Их следует принять в качестве исходных в процессе релаксации.

Для случая кручения уравнение (19) заменится уравнением

$$\varphi_1+\varphi_2+\ldots+\varphi_6-6\varphi_{\sigma}+3G\theta\frac{a^2}{81}=0.$$

Чтобы привести его к безразмерной форме, введем обозначения 2)

$$\varphi = \frac{G \theta a^2 \psi}{486}$$
, или $\psi = \frac{486 \varphi}{G \theta a^2}$. (27)

Тогда получим

$$\psi_1 + \psi_2 + \ldots + \psi_6 - 6\psi_0 + 18 = 0.$$
 (28)

Начальные значения ψ , вычисленные из формулы (27), записаны слева от узловых точек на рис. 11, δ . Подставляя эти значения в правую часть уравнения (28), находим соответствующие невязки:

$$R_0 = \psi_1^0 + \psi_2^0 + \ldots + \psi_6^0 - 6\psi_0^0 + 18.$$
⁽²⁹⁾

Невязки, вычисленные таким путем, записаны справа от каждой узловой точки на рис. 11, б. Устранение этих невязок начинается с точки а. Придавая этой точке перемещение $\psi'_a = -2$, прибавим (см. уравнение (29)) +12 к этой невязке в точке а и -2 к невязкам в соседних точках. Таким образом, невязка в узле а будет устранена и в узле b появится невязка -2. Невязок на границе мы не касаемся, поскольку там установлены неподвижные опоры. Рассматривая теперь точку с и вводя в ней перемещение +2, приводим к нулю невязку в этой точке и прибавляем +2 к невязкам в точках b, d и e. Все остальные невязки можно теперь привести к нулю, накладывая в точке f перемещение -2. Прибавляя все выписанные поправки к начальным значениям функции ψ , получаем искомые значения ψ , а из формулы (27) находим значения φ . Эти значения, поделенные на $G \partial a^2$, представлены на рис. 11, в. Они совпадают со значениями, которые могут быть найдены из точного решения (ж) на стр. 307.

¹⁾ Постоянный множитель G0a² на этом рисунке опущен.

²⁾ Число 486 введено для того, чтобы в дальнейшем можно было иметь дело только с целыми числами.

§ 5. Блочная и групповая релаксации

До сих пор операция ликвидации невязок состояла в манипулировании одиночными узловыми точками, тогда как остальные точки считались фиксированными. Иногда лучше смещать

одновременно целую группу узловых точек. Допустим, например, что рис. 12 представляет часть квадратной сетки и что мы придали всем точкам, расположенным внутри заштрихованной площади, перемещение, равное единице, тогда как все остальные узловые точки остались фиксированными. Мы можем вообразить, что все узловые точки заштрихованной области связаны с абсолютно жесткой невесомой плитой и что плите придано единичное перемещение в направлении, ортогональном ее плоскости. Из

условий равновесия (рис. 6) заключаем, что описанное перемещение вызовет изменения невязок в концевых точках нитей, соединяющих заштрихованную часть пластинки с остальной частью сетки. Если через О и 1 обозначить узлы по концам одной нити, то вклад в невязки, вызванный перемещениями ω_0 и ω_1 , составит

$$R_0 = -S\delta \frac{w_0 - w_1}{\delta} \quad \text{if } \quad R_1 = S\delta \frac{w_0 - w_1}{\delta}.$$

Если теперь зафиксировать узел 1 и придать углу O дополнительное перемещение Δw_0 , то получим следующие приращения остаточных усилий:

$$\Delta R_0 = -S\Delta w_0, \quad \Delta R_1 = S\Delta w_0.$$

Вводя в соответствии с нашими прежними обозначениями безразмерные величины

$$\frac{R}{q\delta^2}=r, \quad \omega=\frac{q\delta^2}{S}\psi,$$

находим

$$\Delta r_0 = -\Delta \psi_0, \quad \Delta r_1 = \Delta \psi_0.$$

Мы видим, что единичное приращение ψ₀ вызывает изменения в невязках, равные

$$\Delta_0 r = -1, \quad \Delta r_1 = +1.$$

Эти изменения показаны на рисунке. Невязки в остальных узловых точках сетки останутся прежними. Если через *n* обозначить число нитей, связывающих заштрихованную плиту с остальной частью сетки, то единичное перемещение плиты приводит к уменьшению на *n* результирующей невязочных усилий в остальной части сетки. Выбирая перемещения таким образом, чтобы эта результирующая обращалась в нуль, получаем оста-

точные усилия, которые в силу своей самоуравновешенности лучше поддаются устранению с помощью последующей точечной релаксации обычного вида. В практических приложениях бывает полезно перемежать последовательности блочных перемещений с последовательностями точечной релаксации. Допустим, на-

пример, что заштрихованная площадь на рис. 13 представляет часть треугольной сетки. Число нитей *n*, соединяющих эту часть с остальной сеткой, равно 16, а результирующая невязок, показанная на рисунке, равна 8,8. Следовательно, соответствующее блочное перемещение в этом случае будет равно 8,8/16 = 0,55. После такого перемещения результирующая остаточных усилий, действующих на заштрихованную часть сетки, обращается в нуль, и устранение невязок при последующей точечной релаксации происходит быстрее.

Вместо придания фиктивной плите перемещения, ортогонального плоскости этой плиты и постоянного для всех узловых точек плиты, мы можем вращать плиту относительно оси, лежащей в ее срединной плоскости. Соответствующие перемещения узловых точек и изменения невязок можно легко вычислить. Таким путем мы можем устранить не только результирующее остаточное усилие, воспринимаемое фиктивной плитой, но и результирующий невязочный момент относительно любой оси, выбранной в плоскости плиты.

Мы можем также отказаться от понятия фиктивной плиты и придать произвольно выбранные перемещения группе узловых точек. Если у нас имеется некоторое представление о форме изогнутой поверхности сетки, то мы можем выбрать групповые перемещения таким образом, чтобы ускорить процесс устранения невязок.

§ 6. Кручение стержней с многосвязными поперечными сечениями

Мы видели¹), что в случае стержней с многосвязными поперечными сечениями функция напряжений ф должна не только удовлетворять уравнению (4), но также удовлетворять вдоль

¹) См. стр. 335.

контура каждого отверстия уравнению

$$-\int \frac{\partial \varphi}{\partial n} \, ds = 2G \theta A, \tag{30}$$

где А — площадь отверстия.

При использовании мембранной аналогии соответствующее соотношение имеет вид

$$-S\int \frac{\partial w}{\partial n} \, ds = qA. \tag{31}$$

Это означает, что нагрузка, равномерно распределенная по площади отверстия¹), уравновешивается растягивающими усилиями

в мембране. Теперь, применяя конечно-разностные уравнения и квадратную сетку, обозначим через $S\delta$ растягивающее усилие в нити, через w_0 — прогиб границы отверстия и через w_i — прогиб узловой точки *i*, смежной с отверствием. Вместо (31) тогда будем иметь

$$S\delta\sum\frac{w_i-w_0}{\delta}+qA=0,$$

$$S\left(\sum_{i=1}^{n} w_i - nw_0\right) + qA = 0, \quad (32)$$

где n—число нитей, соединяющих площадь отверстия с остальной частью сетки. Уравнение равновесия (11) является лишь частным случаем уравнения (32), в котором n = 4.

Мы можем записать столько уравнений типа (32), сколько имеется отверстий в поверочном сечении. Эти уравнения вместе с уравнениями (11), записанными для каждой точки квадратной сетки, достаточны для определения прогибов всех узловых точек сетки и всех границ отверстий.

Рассмотрим в качестве примера случай квадратной трубы. поперечное сечение которой представлено на рис. 14. Принимая грубую квадратную сетку, показанную на рисунке, и учитывая условия симметрии, замечаем, что в этом случае нужно определить только пять значений функции напряжений a, b, c, d и e. Необходимые уравнения получаются с помощью уравнения (32) и четырех уравнений (11), записанных для узловых точек a, b, c, d. Подставляя 2 $G\theta$ вместо q/S и учитывая, что n = 20 и $A = 16\delta^2$.

536

¹⁾ Отверстие представляется невесомой абсолютно жесткой пластинкой, которая может двигаться по нормали к начальной плоскости растянутой мембраны.

запишем эти уравнения в следующем виде:

$$20e - 8b - 8c - 4d = 16 \cdot 2G\theta\delta^{2},$$

$$2b - 4a = -2G\theta\delta^{2},$$

$$a - 4b + c + e = -2G\theta\delta^{2},$$

$$b - 4c + d + e = -2G\theta\delta^{2},$$

$$2c - 4d + e = -2G\theta\delta^{2}.$$

Эти уравнения легко решить, откуда находим

$$e = \frac{1170}{488} 2G\theta\delta^2$$
,

а также значения a, b, c и d.

Эти значения, полученные с помощью весьма грубой сетки, не дают достаточно точных величин напряжений: необходим переход к более мелкой сетке. Результаты таких более точных вычислений можно найти в книге Саусвелла¹).

§ 7. Точки, расположенные вблизи границы

В наших прежних примерах узловые точки сетки оказывались строго на границе и для всех точек применялась одна и та же стандартная процедура релаксации. Но часто точки, лежащие

вблизи границы, соединяются с ней более короткими нитями. Ввиду различия в длинах нитей приходится вносить некоторые изменения и в уравнения равновесия (11) и (19). Эти изменения будут сейчас рассмотрены в связи с примером, представленным на рис. 15. Плоский образец с полукруглыми вырезами подвер-

Рис. 15.

гается действию растягивающих усилий, равномерно распределенных по концам. Допустим, что разность главных напряжений в любой точке определена фотоупругим методом, как это объяснено в главе 5, и что нам нужно определить сумму главных напряжений, которая, как мы уже видели (стр. 49), должна удовлетворять дифференциальному уравнению (6). Для точек, расположенных на границе, одно из главных напряжений известно; используя результаты фотоупругих экспериментов, можно определить и второе главное напряжение, в силу чего сумма главных напряжений вдоль границы будет известна. Таким образом, мы должны решать дифференциальное уравнение (6) при заданных значениях ф на границе. При использовании метода

§ 7]

¹⁾ CM. R. V. Southwell, Relaxation Methods in Theoretical Physics, oxford University Press, 1946, crp. 60.

конечных разностей и принимая квадратную сетку, заключаем, что в силу симметрии достаточно рассматривать лишь одну четверть образца. Эта часть образца, а также граничные значения функции φ показаны на рис. 16. Рассматривая на нем точку A, мы видим, что три нити, сходящиеся в этой точке, имеют стандартную длину δ , тогда как четвертая короче их и имеет, скажем, длину $m\delta$ (в нашем случае $m \approx 0,4$). Это можно учесть

Рис. 16.

при выводе уравнения равновесия точки А. Его следует записать следующим образом:

$$S\delta\left(\frac{\varphi_a-\varphi_1}{\delta}+\frac{\varphi_a-\varphi_2}{\delta}+\frac{\varphi_a-\varphi_3}{\delta}+\frac{\varphi_a-\varphi_4}{m\delta}\right)=0,$$

или

$$\varphi_1+\varphi_2+\varphi_3+\frac{1}{m}\varphi_4-\left(3+\frac{1}{m}\right)\varphi_a=0.$$

Применяя к точке A стандартную процедуру релаксации и придавая φ_a приращение, равное единице, мы внесем показанные на рис. 17, a изменения в невязки. Эта схема должна использоваться при устранении невязок в точке A. Рассматривая точку B, мы видим, что в ней сходятся две укороченные нити. Обозначая их длины через $m\delta$ и $n\delta$, находим, что при устранении невязок в точке B следует использовать схему, показанную на рис. 17, δ . Внося эти изменения в узлах, находящихся вблизи границы, и используя для осгальных узлов стандартный процесс релаксации, можно получить значения φ , представленные на рис. 16¹).

¹) Этот пример с использованием другого приближения для *В* рассматривали Веллер и Шортли (R. Weller, G. H. Shortley, J. Appl. Mech. 6, A-71-78 (1939)). Вывод их уравнения можно найти в книге S. H. Crandall, Engineering Analysis, McGraw-Hill, New York, 1956.

Численные результаты полной задачи определения напряжений такого типа и сравнение с более ранними результатами Саусвелла даны в статье: D. S. Griffin, R. S. Varga, J. Soc. Ind. Appl. Math. 2, 1047—1062 (1963).

В более общем случае, когда рассматривается уравнение (9) и в узловых точках приложены внешние нагрузки, обозначим через $m\delta$, $n\delta$, $r\delta$, $s\delta$ длины нитей в нерегулярной точке O квадратной сетки и будем считать, что в точке O действует нагрузка, отвечающая давлению q, т. е. $1/4q\delta^2(m+n+r+s)$. Тогда уравнение равновесия примет вид¹)

$$\frac{q\delta^{2}}{4}(m+n+r+s)+ \\ +S\left[\frac{\omega_{1}}{m}+\frac{\omega_{2}}{n}+\frac{\omega_{3}}{r}+\frac{\omega_{4}}{s}-\omega_{0}\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{r}+\frac{1}{s}\right)\right].$$
(33)

При m = n = r = s = 1 это уравнение совпадает с нашим прежним уравнением (11), выведенным для регулярной точки. Используя уравнение (33), можно для каждого частного случая построить схему, подобную показанной на +/ рис. 17. С помощью изменений, q Рис. 17. b

рассмотренных в этом параг-

рафе, процесс релаксации можно распространить на случаи, в которых нерегулярные точки располагаются вблизи границы.

§ 8. Бигармоническое уравнение

Мы видели (стр. 50), что в случае двумерных задач теории упругости при отсутствии объемных сил и при заданных усилиях на границе напряжения определяются функцией напряжений φ , которая удовлетворяет бигармоническому уравнению

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0$$
(34)

и граничным условиям (20), которые в данном случае принимают вид

$$l\frac{\partial^2\varphi}{\partial y^2} - m\frac{\partial^2\varphi}{\partial x\,\partial y} = \overline{X}, \quad m\frac{\partial^2\varphi}{\partial x^2} - l\frac{\partial^2\varphi}{\partial x\,\partial y} = \overline{Y}.$$
 (35)

Зная усилия, распределенные вдоль границы, мы можем с помощью интегрирования²) уравнений (35) найти функцию ф. Таким образом, задача сводится к определению функции ф, которая удовлетворяет уравнению (34) в каждой точке внутри области, а на

539

¹) Саусвелл (см. примечание 1, стр. 517) получил уравнение равновесия для узловой точки с N перавными нитями, разделенными равными углами. Уравнение (33) является частным случаем такого уравнения при N = 4.

²) Здесь рассматриваются только односвязные области.

границе принимает вместе со своими первыми производными заданные значения. Используя метод конечных разностей, примем квадратную сетку (рис. 18) и преобразуем уравнение (34) к конечноразностному виду. Зная выражения для вторых производных

$$\begin{pmatrix} \frac{\partial^2 \varphi}{\partial x^2} \end{pmatrix}_{\mathbf{0}} \approx \frac{1}{\delta^2} \left(\varphi_1 - 2\varphi_0 + \varphi_3 \right), \quad \left(\frac{\partial^2 \varphi}{\partial x^2} \right)_{\mathbf{1}} \approx \frac{1}{\delta^2} \left(\varphi_5 - 2\varphi_1 + \varphi_0 \right), \\ \left(\frac{\partial^2 \varphi}{\partial x^2} \right)_{\mathbf{3}} \approx \frac{1}{\delta^2} \left(\varphi_0 - 2\varphi_3 + \varphi_0 \right),$$

заключаем, что

 $\begin{aligned} & \left(\frac{\partial^4 \varphi}{\partial x^4}\right)_{\mathbf{0}} = \frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 \varphi}{\partial x^2}\right) \approx \\ & \approx \frac{1}{\delta^2} \left[\left(\frac{\partial^2 \varphi}{\partial x^2}\right)_{\mathbf{1}} - 2 \left(\frac{\partial^2 \varphi}{\partial x^2}\right)_{\mathbf{0}} + \left(\frac{\partial^2 \varphi}{\partial x^2}\right)_{\mathbf{3}} \right] \approx \frac{1}{\delta^4} \left(6\varphi_{\mathbf{0}} - 4\varphi_{\mathbf{1}} - 4\varphi_{\mathbf{3}} + \varphi_{\mathbf{5}} + \varphi_{\mathbf{0}}\right). \end{aligned}$

Подобным образом находим

$$\frac{\partial^4 \varphi}{\partial y^4} \approx \frac{1}{6} \left(6\varphi_0 - 4\varphi_2 - 4\varphi_4 + \varphi_7 + \varphi_{11} \right),$$

$$\frac{\partial^4 \varphi}{\partial x^3 \partial y^2} \approx \frac{1}{\delta^4} 4 \left[\varphi_0 - 2 \left(\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 \right) + \varphi_6 + \varphi_8 + \varphi_{10} + \varphi_{12} \right].$$

Подставляя эти выражения в уравнение (34), получаем требуемое

уравнение в конечных разностях

$$20\varphi_{0} - 8(\varphi_{1} + \varphi_{2} + \varphi_{3} + \varphi_{4}) + + 2(\varphi_{6} + \varphi_{8} + \varphi_{10} + \varphi_{12}) + + \varphi_{5} + \varphi_{7} + \varphi_{9} + \varphi_{11} = 0.$$
(36)

Это уравнение должно удовлетворяться в каждой узловой точке сетки внутри границы пластинки. Чтобы найти граничные значения функции напряжений ф, проинтегрируем уравнения (35). Учитывая, что

$$l = \cos \alpha = \frac{dy}{ds}$$
 is $m = \sin \alpha = -\frac{dx}{ds}$,

запишем уравнения (35) в следующей форме:

$$\frac{dy}{ds}\frac{\partial^2\varphi}{\partial y^2} + \frac{dx}{ds}\frac{\partial^2\varphi}{\partial x\,\partial y} = \frac{d}{ds}\left(\frac{\partial\varphi}{\partial y}\right) = \vec{X}, \quad -\frac{dx}{ds}\frac{\partial^2\varphi}{\partial x^2} - \frac{dy}{ds}\frac{d^2\varphi}{\partial x\,\partial y} = -\frac{d}{ds}\left(\frac{\partial\varphi}{\partial x}\right) = \vec{Y}.$$
(37)

После интегрирования получим 1)

$$-\frac{\partial \varphi}{\partial x} = \int \overline{Y} \, ds, \ \frac{\partial \varphi}{\partial y} = \int \overline{X} \, ds.$$
(38)

¹⁾ Эквивалентные формулы были получены в § 59 в виде равенств (г) и (д).
§ 8]

Чтобы найти ф, воспользуемся уравнением

$$\frac{\partial \varphi}{\partial s} = \frac{\partial \varphi}{\partial x} \frac{dx}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds},$$

которое после интегрирования по частям дает

$$\varphi = x \frac{\partial \varphi}{\partial x} + y \frac{\partial \varphi}{\partial y} - \int \left(x \frac{d}{ds} \frac{\partial \varphi}{\partial x} + y \frac{d}{ds} \frac{\partial \varphi}{\partial y} \right) ds.$$
(39)

Подставляя в это равенство значения производных, определяемые уравнениями (37) и (38), мы можем найти граничные значения φ . Следует заметить, что при определении первых производных по формуле (38) появятся две постоянные интегрирования, скажем, A и B, а интегрирование в уравнении (39) введет третью постоянную, скажем, C, в силу чего окончательное выражение для φ будет содержать линейную функцию Ax + By + C. Поскольку компоненты напряжений представляются вторыми производными от функции φ , эта линейная функция не повлияет на распределение напряжений, и постоянные A, B, C можно выбрать произвольно.

По граничным значениям функции φ и ее первых производных мы можем определить приближенные значения φ в узловых точках сетки вблизи границы, например в точках A, C и E на рис. 19. Имея, например, в точке B значения φ_B и $(\partial \varphi / \partial x)_B$, получаем

$$\varphi_{C} = \varphi_{B} + \left(\frac{\partial \varphi}{\partial x}\right)_{B} \delta,$$
$$\varphi_{A} = \varphi_{B} - \left(\frac{\partial \varphi}{\partial x}\right)_{B} \delta.$$

Подобные же формулы можно записать также для точки *E*. Мы получим для этих величин несколько лучшую аппроксимацию ниже, когда на основе дальнейших расчетов станет приближенно

известна форма поверхности, представляющей функцию напряжений ф. Отыскав приближенные значения ф в узловых точках вблизи границы и выписав для остальных узлов точек, расположенных внутри области уравнения в форме (36), получим систему линейных уравнений, достаточную для определения всех узловых значений функции ф. Затем для приближенного вычисления напряжений можно использовать вторые разности функции ф.

Систему уравнений (36) можно решить непосредственно или найти ее приближенное решение с помощью одного из описанных выше процессов. Мы проиллюстрируем различные методы решения

на простом примере квадратной пластинки, нагруженной, как показано¹) на рис. 20.

Приняв координатные оси согласно этому рисунку²), определим граничные значения функции ф, отправляясь от начала

координат. От x = 0 до x = 0,4a к границе не приложено никаких усилий; отсюда

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial^2 \varphi}{\partial x \, \partial y} = 0.$$

Интегрирование этих уравнений дает

$$\frac{\partial \varphi}{\partial x} = A, \quad \varphi = Ax + B, \quad \frac{\partial \varphi}{\partial y} = C.$$

Здесь A, B, C постоянны вдоль оси x, и, как уже отмечалось ранее, их можно выбрать произвольно. Положим A = B = C = 0.

¹⁾ Численные решения получены для многих случаев таких «балок-стенок». Обзор L. Chow, H. D. Conway, G. Winter, Proc. ASCE 78, 1952, включает несколько работ Бэя (H. Bay) (1931). Наше изложение следует работе П. М. Варвака («Сборник статей по строительной механике», вып. 3, стр. 143, Киевский строительный институт, 1936).

²) Эта система получена с помощью вращения по часовой стрелке на угол **л** осей, использованных на рис. 20.

Тогда функция φ вдоль ненагруженной части нижней стороны пластинки обращается в нуль, что обеспечивает симметрию функции φ относительно оси y. Начиная с точки x = 0,4a и до x = 0,5a на нижней стороне пластинки действует равномерно распределенная нагрузка интенсивностью 4p, и уравнения (38) дают

$$\frac{\partial \varphi}{\partial x} = -\int 4p \, dx = -4px + C_1, \quad \frac{\partial \varphi}{\partial y} = 0.$$

Второе интегрирование дает зависимость

$$\varphi = -2\rho x^2 + C_1 x + C_2.$$

Постоянные интегрирования можно определить из условий, что для точки x = 0,4a, общей точки обеих частей границы, значения φ и $\partial \varphi / \partial x$, вычисленные слева и справа, должны совпадать. Отсюда

$$(-4px+C_1)_{x=0,4a}=0, \quad (-2px^2+C_1x+C_2)_{x=0,4a}=0,$$

и мы получаем

$$C_1 = 1,6pa, \quad C_2 = -0,32pa^2.$$

Функция напряжений ϕ на участке границы от x = 0,4a до x = 0,5a должна представляться параболой

$$\varphi = -2px^2 + 1,6pax - 0,32pa^2.$$
 (a)

В углу пластинки получаем

$$(\varphi)_{x=0,5a} = -0.02 \, pa^2, \quad \left(\frac{\partial \varphi}{\partial x}\right)_{x=0,5a} = -0.4 \, pa.$$
 (6)

Вдоль вертикальной стороны пластинки усилий не приложено, и, исходя из уравнения (38), заключаем, что вдоль этой стороны значения $\partial \phi / \partial x$ и $\partial \phi / \partial y$ должны быть теми же, что и в нижнем углу, т.е.

$$\frac{\partial \varphi}{\partial x} = -0,4pa, \quad \frac{\partial \varphi}{\partial y} = 0.$$
 (B)

Отсюда следует, что вдоль вертикальной стороны пластинки функция ф остается постоянной. Эта постоянная должна быть равна — 0,02*pa*², как было найдено выше для нижнего угла. Вдоль ненагруженной части верхней стороны пластинки пер-вые производные от ф остаются постоянными и будут иметь то же значение (в), которое вычислено для верхнего угла. Таким образом, функция напряжений будет иметь вид

$$\varphi = -0,4pax + C.$$

Поскольку в верхнем левом углу функция φ должна иметь ранее вычисленное значение, равное — $0,02pa^2$, приходим к выводу, что $C = 0,18pa^2$ и что функция напряжений имеет вид

$$\varphi = -0.4pax + 0.18pa^2.$$
 (r)

Рассматривая теперь нагруженную часть верхней стороны пластинки и учитывая, что для этой части ds = -dx и $\overline{Y} = p$, $\overline{X} = 0$, из уравнений (38) получаем

$$\frac{\partial \varphi}{\partial x} = -px + C_1, \quad \frac{\partial \varphi}{\partial y} = C_2.$$

При x = 0,4a эти величины должны совпадать с величинами, определяемыми по формулам (в). Отсюда $C_1 = C_2 = 0$ и функция напряжений должна иметь форму

$$\varphi = -\frac{px^2}{2} + C.$$

При x = 0,4a она должна принимать значение, равное получаемому по формуле (г). Отсюда заключаем, что $C = 0,1pa^2$ и

$$\varphi = -\frac{px^2}{2} + 0,1pa^2. \tag{A}$$

Эта функция напряжений представляется параболой, симметричной относительно оси *у*. Тем самым заканчивается определение значений функции φ и ее первых производных на границе пластинки, так как для правой части границы все эти величины определяются по симметрии.

Пользуясь обозначениями

$$\frac{pa^2}{36}=B,$$

мы можем теперь записать все вычисленные значения функции ф на границе, как показано на рис. 20.

Далее с помощью экстраполяции найдем значения φ для узловых точек, расположенных вне границы. Начиная вновь с нижней стороны пластинки и учитывая, что вдоль этой стороны $\partial \varphi / \partial y$ обращается в нуль, примем для только что названных точек те же значения φ_{13} , φ_{14} , φ_{15} , что и для внутренних точек, смежных с границей¹). Таким же образом поступаем и с верхней стороной пластинки. Вдоль вертикальной стороны пластинки имеем значение производной

$$\left(\frac{\partial \varphi}{\partial x}\right)_{x=0,5a} = -0,4a$$

и можем в качестве приближенных значений получить величины функции ф для точек вне контура, вычитая величину

$$0,4pa\cdot 2\delta = \frac{0,4pa^2}{3} = 4,8B$$

из значений ф для внутренних точек, смежных с границей (см. рис. 20).

¹) Этот способ экстраполяции, использованный в статье П. М. Варвака (см. примечание на стр. 542), отличен от описанного на стр. 541.

БИГАРМОНИЧЕСКОЕ УРАВНЕНИЕ

Теперь можно начать вычисление значений ф для внутренних узлов сетки. Используя метод прямого решения разностных уравнений, мы должны в симметричном случае выписать уравнения (36) для 15 точек, показанных на рис. 20. Решение этих уравнений дает значения ф, представленные в табл. I.2.

ΤA	Б	л	И	Ц	A	1.2	,
----	---	---	---	---	---	-----	---

	1	2	3	4	5	6	7
φ/ <i>B</i>	3,356	2,885	1,482	2,906	2,512	1,311	2,306
8	9	10	11	12	13	14	15
2,024	1,097	1,531	1,381	0,800	0,634	0,608	0,396

Вычислим нормальное напряжение σ_x вдоль оси *y*. Значения этого напряжения определяются второй производной $\partial^2 \varphi / \partial y^2$. Используя конечные разности, получаем для верхней точки (y = a) (σ_x), $\sigma_x \approx c_x$

$$\approx^{1/y=a} \approx \frac{(3,356-2\cdot3,600-3,356)B}{\delta^2} = -\frac{0,488pa^2}{36\delta^2} = -0,488p.$$

Для нижней точки (y = 0) находим

$$(\sigma_x)_{y=a} \approx \approx \frac{(0,634-0+0,634)B}{8^3} = 1,268p.$$

Если рассматривать пластинку как балку на двух опорах и предположить линейное распределение σ_x по поперечному сече-

деление σ_x по поперечному сечению (x = 0), то найдем (σ_x)_{тах} = 0,60*p*. Мы видим, что для пластинки таких пропорций обычная формула элементарной теории изгиба дает совершенно неудовлетворительный результат.

Для решения конечно-разностных уравнений (36) методом итераций примем некоторые начальные значения функции напряжения ϕ_1 , ϕ_2 , ... ϕ_{15} . Подставляя их в уравнения (36), получим остаточные усилия для всех внутренних точек, которые можно затем устранить методом релаксации. Соответствующая

схема, полученная из уравнений (36), показана на рис. 21, где даны изменения остаточных усилий, вызванных единичным изменением значения ф. При применении этого метода к квадратным пластинкам, рассмотренным выше, следует учитывать, что значения ф вдоль границы подчиняются граничным условиям;

Рис. 22.

это означает, что остаточные усилия в точках на границе устранять не нужно.

Теперь можно перейти к более мелкой сетке, взяв начальные значения ф из результатов вычислений для грубой сетки.

В случае несимметричного нагружения, например такого, как показано на рис. 22, а, мы можем разбить нагрузку, согласно рис. 22, б и в, на симметричную и антисимметричную части.

Рис. 23.

В обоих случаях нам достаточно рассматривать лишь половину пластинки, так как для симметричного нагружения $\varphi(x, y) = -\varphi(-x, y)$, а для антисимметричного $\varphi(x, y) = -\varphi(-x, y)$. Количество вычислений можно еще более сократить, если

Количество вычислений можно еще более сократить, если есть также симметрия прямоугольной пластинки относительно горизонтальной оси. Нагрузка, представленная на рис. 20, может

быть разложена на симметричную и антисимметричную части, как показано на рис. 23. Для каждого из таких случаев нагружения при определении функции напряжений достаточно рассматривать лишь одну четверть пластинки.

§ 9. Кручение круглых валов переменного диаметра

В этом случае, как мы видели (стр. 348), необходимо найти функцию напряжений, которая удовлетворяет дифференциальному уравнению

$$\frac{\partial^2 \varphi}{\partial r^2} - \frac{3}{r} \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$
(40)

в каждой точке осевого сечения вала (рис. 24) и постоянна вдоль границы этого сечения. Точное решение задачи можно

получить лишь в нескольких простых случаях; на практике обычно приходится прибегать к приближенным методам.

Используя метод конечных разностей, примем квадратную сетку. При рассмотрении узловой точки О (рис. 24) мы можем определить вторые производные в уравнении (40) тем же путем, что и раньше. Для первой производной можно принять выражение

$$\left(\frac{\partial \varphi}{\partial r}\right)_{r=r_0} \approx \frac{1}{2} \left(\frac{\varphi_1 - \varphi_0}{\delta} + \frac{\varphi_0 - \varphi_3}{\delta}\right) = \frac{\varphi_1 - \varphi_3}{2\delta}.$$

Тогда конечно-разностное уравнение, соответствующее уравнению (40), примет вид

$$\varphi_1 + \varphi_s + \varphi_s + \varphi_s - 4\varphi_0 - \frac{3\delta}{2r_0}(\varphi_1 - \varphi_s) = 0.$$
 (41)

Задача состоит в отыскании такого набора значений ф, чтобы уравнения (41) удовлетворялись для каждой узловой точки сетки, а на границе функция ф равнялась заданному постоянному значению. В этой задаче можно либо непосредственно решить уравнения (41), либо пользоваться одним из итерационных методов. В качестве примера рассмотрим случай, показанный на рис. 25. В области быстрого изменения диаметра функция напряжений будет иметь сложный вид, но на значительном расстоянии от галтели с достаточной точностью будет справедливо решение Кулона, и функция напряжений не будет зависеть от z. У равнение (40) для таких точек принимает вид

$$\frac{d^2\varphi}{dr^2} - \frac{3}{r}\frac{d\varphi}{dr} = 0.$$
(42)

Оно имеет общее решение

$$\varphi = Ar^4 + B \tag{43}$$

и соответствующие напряжения равны (см. стр. 348)

$$\tau_{z\theta} = \frac{1}{r^2} \frac{d\varphi}{dr} = 4Ar, \quad \tau_{r\theta} = 0.$$

Сравнивая этот результат с решением Кулона, находим $4A = M_t/I_p$, где M_t — приложенный к валу крутящий момент, а I_p — полярный момент инерции вала. Отбросив в общем решении постоянную B, не оказывающую влияния на распределение напряжений, получаем выражения для функции напряжений на достаточно больших расстояниях от галтели:

$$\phi_a = \frac{M_t}{2\pi a^4} r^4, \quad \phi_b = \frac{M_t}{2\pi b^4} r^4.$$
(44)

Эти выражения обращаются в нуль на оси вала, а на контуре его сечения принимают одно и то же значение $M_t/(2\pi)$. Поскольку функция ф вдоль контура постоянна, значение $M_t/(2\pi)$ остается справедливым и для галтели. Таким образом, выбор постоянной на контуре при решении уравнений (41) равносилен принятию определенного значения для крутящего момента.

При решении уравнений (41) мы можем снова применить мембранную аналогию. Начнем с точек, для которых справедливо уравнение (42). Соответствующее конечно-разностное уравнение имеет вид

$$\varphi_1 + \varphi_3 - 2\varphi_0 - \frac{3\delta}{2r_0}(\varphi_1 - \varphi_3) = 0.$$
 (45)

Это уравнение имеет тот же вид, что и уравнение для прогибов при циклическом изгибе мембраны, натяжение которой обратно пропорционально r^{8} . Чтобы показать это, рассмотрим три соседних узла сетки (рис. 26). Соответствующие прогибы обозначим через w_{8} , w_{0} , w_{1} .

Натяжение посередине нитей 30 и 01 будет равно

$$\frac{S\delta}{\left(r_{0}-\frac{\delta}{2}\right)^{3}}\approx\frac{S\delta}{r_{0}^{3}}\left(1+\frac{3\delta}{2r_{0}}\right)$$

548

[n. 1

И

$$\frac{S\delta}{\left(r_{0}+\frac{\delta}{2}\right)^{3}}\approx\frac{S\delta}{r_{0}^{3}}\left(1-\frac{3\delta}{2r_{0}}\right).$$

Уравнение равновесия для точки О примет тогда вид

$$\frac{\delta\delta}{r_0^3}\left(1-\frac{3\delta}{2r_0}\right)\frac{w_1-w_0}{\delta}+\frac{\delta\delta}{r_0^3}\left(1+\frac{3\delta}{2r_0}\right)\frac{w_3-w_0}{\delta}=0,$$

или

$$w_1 - 2w_0 + w_3 - \frac{3\delta}{2r_0}(w_1 - w_0) = 0.$$

Это соотношение совпадает с уравнением (45).

Таким же путем в общем случае, учитывая, что растягивающее усилие в мембране не зависит от *z*, получаем уравнение

$$w_1 + w_2 + w_3 + w_4 - 4w_0 - \frac{3\delta}{2r_0}(w_1 - w_3) = 0, \qquad (46)$$

которое согласуется с уравнением (41). Как видим, функцию напряжений можно определить как прогиб мембраны с неоднородным

натяжением, имеющей постоянный прогиб $M_t/(2\pi)$ вдоль контура и прогибы (44) в точках, которые расположены на большом расстоянии от галтели. Примем для ω в узловых точках некоторые начальные значения, подставим их в левые части уравнений (46) и определим невязки. Теперь задача состоит в том, чтобы устранить все эти невязки в процессе релаксации. Из рис. 26 видим, что, придавая точке O единичное перемещение, мы добавляем к невязкам в точках 1 и 3 величины

$$\frac{S}{r_0^3}\left(1-\frac{3\delta}{2r_0}\right) \quad \text{M} \quad \frac{S}{r_0^3}\left(1+\frac{3\delta}{2r_0}\right).$$

Это показывает, что схема процесса релаксации имеет вид, показанный на рис. 27. Она меняется от точки к точке с изменением радиального расстояния r_0 . Вычисления такого рода выполнили Р. В. Саусвелл и Д. Н. Аллен¹).

¹⁾ D. N. G. Allen, Proc. Roy. Soc. (London), ser. A. 183, 125—134. См. также упомянутую выше книгу: Southwell, Relaxation Methods ...

§ 10. Решение задач с помощью ЭВМ 1)

В плоских и осесимметричных задачах с более сложными контурами и более сложными условиями нагружения, чем в рассмотренных нами простых случаях, число конечно-разностных уравнений, необходимых для достижения требуемой на практике точности, становится слишком большим для ручного счета. В таких случаях для решения задач составляются программы и используются электронные цифровые вычислительные машины (ЭВМ).

Программа должна реализовать тот или иной из основных методов решения таких систем уравнений. Метод релаксации для машинных вычислений не вполне пригоден. С применением ЭВМ можно использовать прямые методы, например метод гауссовых исключений или правило Крамера, однако число рассматриваемых уравнений при этом остается весьма ограниченным. В то же время итерационные схемы²) позволяют эффективно решать системы с несколькими тысячами неизвестных, если матрица системы уравнений обладает определенными свойствами. Последнее требование делает более удобным решение задач в перемещениях, а не в функциях напряжений.

Результаты, полученные для неоднородной сетки, имеющей 525 внутренних и граничных точек, показаны на рис. 28. Физическая задача состоит в отыскании напряжений в цилиндре под действием внутреннего давления, причем толщина стенки цилиндра меняется в виде галтели, как показывает осевое сечение на рис. 29. Задача является осесимметричной и в каждой точке имеет по две компоненты перемещения; всего следует найти 1050 неизвестных. Кривые на рис. 28 показывают значения поверхностных напряжений в зоне галтели (угловая координата α показана на рис. 28). Кружками и квадратиками показаны результаты фотоупругих измерений⁸), приведенные для сравнения.

Конечно-разностные уравнения, которые нужно решать на ЭВМ, можно вывести различными способами. В § 1 настоящего Приложения показано, как их можно получить путем математического перехода от дифференциальных уравнений сплошной

¹⁾ Этот параграф основан на статье D. S. Griffin, R. B. Kellogg., A Nu--) этот параграф основан на статье D. S. Griffin, R. B. Kellogg., A Nu-merical Solution for Axially Symmetrical and Plane Elasticity Problems, Intern. J. Solids Struct. 3, 781—794 (1967); рис. 28 и 29 взяты из этой статьи. Машин-ные методы решения задач за пределами линейной упругости иллюстрируются в книге: B. Alder, S. Gernbach, M. Rötenberg (ред.), Methods in Computational Physics. Acad. Press, 1964 (в частности в статье M. L. Wi-lkins, Calculation of Elastic Plastic Flow) См. также примечание 1 на стр. 551.

²) См., например, G. E. Forsythe, W. R. Wasow, Finite Difference Equations for Partial Differential Equations, John Wiley, 1960; R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962. *) Согласно Левену (М. М. Leven).

среды в частных производных. Но можно использовать также вариационные методы. Например, в задаче, изображенной на рис. 29, потенциальная энергия системы выражалась сначала

Рис. 28.

в виде суммы, включавшей узловые перемещения, а затем минимизировалась. В § 3 настоящего Приложения указан способ «физического» перехода от сплошной системы мембраны к сетке

Рис. 29.

равномерно растянутых нитей. Конечно-разностные уразнения выводятся при этом как физические уравнения равновесия для конечного элемента сетки. Аналогичные процедуры для более сложных задач используются в так называемом методе конечных элементов¹).

¹⁾ См., например, R. W. Clough, The Finite Element Method in Structural Mechanics (в книге Ол С. Zienkiewicz, G. S. Hollister (рец.), Stress Analysis, John Wiley, 1965, стр. 85—119, а также некоторые статьи Аргириса (J. H. Argyris, J. Roy, Aeron. Soc. 69, 70 (1965, 1966)).

Абрамсон (Abramson H. N.) 177, 205, 496 Абрамян Б. П. 299 Александров А. Я. 163 Аллен (Allen D. N. G.) 549 Альвар (Alwar R. S.) 79 Альдер (Alder B.) 550 Альманзи (Almansi E.) 480 Андерсон (Anderson E. W.) 321 Анкер (Ancker C. J.) 433 Аргирис (Argyris J. N.) 278, 551 Арндт (Arndt W.) 351 Арутюнян Н. Х. 299 Ахметзянов М. Х. 163 Бабине (Babinet J.) 498 Бакер (Barker L. H.) 451 Баренблатт Г. И. 265 Бартон (Barton M. V.) 258, 427, 429 Барянский (Barjansky A.) 212 Бассали (Bassali W. A.) 321 Бейер (Beyer K.) 77 Бейзу (Basu N. M.) 325 Беккер (Becker E. C. H.) 508 Беляев Н. М. 419, 420, 421 Бентем (Benthem J. P.) 78, Берндт (Berndt G.) 416 Бертхолф (Bertholf L. D.) 496 79, 156 Бескин (Beschkin L.) 273 Бетти (Betti E.) 281 Бетсер (Betser A. A.) 129 Бидвел (Bidwell J. B.) 421 Бидл (Beadle C. W.) 331 Бикли (Bickely W. G.) 111, 521 Билевиц (Bilevicz V.) 91 Био (Biot M. A.) 51, 75, 476 Бирли (Byerly) 73, 448 Бицено (Biezeno C. B.) 331 Бишоп (Bishopp K. E.) 99 Блейх (Bleich F.) 73, 76 Бови (Bowie O. L.) 429 Борн (Born J. S.) 78, 79 Борхардт (Borchardt C. W.) 454, 481 Бредт (Bredt R.) 339 Брок (Brock J. E.) 90 Брюстер Д. (Brewster D.) 162, 174 Бубнов И. Г. 10

Буссинеск (Boussinesq J.) 112, 251, 400, 407, 410, 429, 430, 503, 508 Бэй (Вау Н.) 74, 542 Ва Чейн (Wah Thein) 109, 273 Вагстаф (Wagstaff J. E. P.) 508 Ванг (Wang C. K)) 111 Варвак П. М. 542, 544 Варга (Varga R. S.) 538, 550 Васов (Wasow W. R.) 550 Ватсон (Watson G. N.) 179 Вебер (Weber C.) 212, 213, 309, 344 Вебстер (Webster E. D.) 18 Вейбель (Weibel E. E.) 18, 170, 171, 476 Вейганд (Weigand A.) 327, 352 Вейнел (Weinel E.) 212 Вейнштейн (Weinstein A.) 377 Веллер (Weller R.) 538 Веннагель (Wennagel G. J.) 350 Венстра (Veenstra L. S.) 18 Вестергард (Westergaard H. M.) 233 Виглесворт (Wigglesworth L. A.) 372 Вигхардт (Wieghardt K.) 149 Вилкинс (Wilkins M. L.) 550 Виллерс (Willers F. А.) 351 Вилье (Wylie C. R.) 116 Вильсон (Wilson C.) 112, 126, 163 Вильямс (Williams M. L.) 156 Винклер (Winkler E.) 90, 432, 434 Винтер (Winter G.) 542 Власов В. 3, 258 Войновский-Кригер С. 9 Волац (Wallace C. E.) 486 Вольтерра (Volterra V.) 105, 280 Вольф К. (Wolf K.) 69, 110, 204, 344 Вольф Ф. (Wolf F.) 517 Вуд (Wood L. A.) 112 Вэл (Wahl A. M.) 206, 433 Вэнер (Waner N. S.) 331 Галеркин Б. Г. 251, 320, 372 Галин Л. А. 123, 411 Гейвуд (Heywood R. B.) 173, 176

Генки (Hencky H.) 517 Гере (Gere T. M.) 9

- Гернбах (Gernbach S.) 550 Герц (Hertz H.) 138, 411, 416, 417, 421, 489, 509 Генер (Gohner O.) 433, 434 Гилмэн (Gilman J. J.) 263 Гиркман (Girkmann K.) 137 Голдберг (Goldberg M. A.) 392 Головин X. С. 90, 99, 107 Гопкинс Г. (Hopkins H. G.) 516 Гопкинсон (Hopkinson J.) 454 Горнсей (Guernsey J.) 116 Гош (Ghosh S.) 372 Грасхоф (Grashof F.) 67, 90, 130, 136, 370 Грин (Green A. E.) 112, 204, 212, 213 Гринспэн (Greenspan M.) 213 Гринхил (Greenhill A. G.) 319, 320 321, 332 Гриффин (Griffin D. S.) 538, 550 Гриффитс (Griffith A. A.) 205. 263. 264, 265, 309, 330, 334, 337, 377 Гродский Г. Д. 261 Гроулей (Growlay J. M.) 205 Грэмер (Graemer H.) 77 483 Грюблер (Grübler M.) 99 Грюнберг (Grünberg G.) 456 Гудмэн (Goodman L. E.) 411 Гудьер Дж. (Goodier J. N.) 9, 12, 13, 17, 74, 76, 78, 104, 109, 110, 111, 123, 136, 138, 146, 163, 178, 190, 213, 218, 258, 272, 298, 300, 344, 361, 398, 408, 411, 422, 427, 433, 442, 462, 463, 466, 479, 481, 482, 483, 484, 516 Гундер (Gunder D. F.) 372 Typca (Goursat E.) 185 Гэйтвуд (Gatewood B. E.) 69, 487 Давиденков Н. 470 Ден-Гартог (den Hartog J. P.) 174, 443 Дересевиц (Deresiewicz H.) 479 Джеффри (Jeffery G. B.) 88, 109, 208, 211Джонсон М. (Johnson M. W.) 78 Джонстон Б. (Johnston B. G.) 330 Динник А. Н. 319, 351, 415, 423, 448. 449 Донат (Donat M.) 99 Доннел В. (O'Donnell W. J.) 63 Доннел Л. (Donnell L. H.) 18, 111. 204, 258, 503 Друккер (Drucker D. C.) 174, 263 Дугаль (Dougall J.) 382 Дункан (Duncan W. J.) 327, 377 Дэвидс (Davids N.) 150 Девис Р. М. (Davies R. M.) 496
- Дэйль (Dale R.) 69

Дюгамель (Duhamel J. M. C.) 446, 454 Дюрелли (Durelli A. J.) 177, 228

- Зволинский Н. В. 489
- Зеевальд (Seewald F.) 69, 74, 131, 135 Зенкевич (Zienkiewicz O. C) 551 Зерна (Zerna W.) 212 Зетц (Seth B. R.) 371, 372 Зигер (Seegar M.) 372 Зоннтаг Г. (Sonntag G.) 157
- Зоннтаг Р. (Sonntag R.) 350, 351
- Игначек (Ignaczak J.) 482
- Инглис (Inglis C. E.) 126, 198, 271
- Исида (Isida M.) 110, 116 Иенгер (Iyengar K. T. S.) 79
- Ияо (Yau W. F.) 427
- Kannyc (Kappus R.) 377 Карлслоу (Garlslow H. S.) 317, 440,
- Карман (Karman T.) 67, 273, 274
- Kaporepc (Carothers S. D.) 69, 122, 126
- Картер (Carter W. J.) 354, 369
- Кастильяно (Castigliano A.) 265, 268 Качанов Л. М. 263
- Квест (Quest H.) 331
- Kеллог (Kellog R. B.) 550
- Кельвин (Kelvin K.) 251, 254, 315, 331, 390, 394 Кент (Kent C. H.) 454
- Кикукава (Kikukawa M.) 213
- Кильчевский Н. И. 421
- Кирхгоф (Kirchhoff G.) 280
- Кирш (Kirsch G.) 107
- Клапейрон (Clapeyron B. P. E.) 347
- Клаф Х. (Clough H. J.) 400
- Клаф Р. (Clough R. W.) 551
- Клебш (Clebsch A.) 284, 498, 503
- Клоус (Close L. J.) 415
- Койтер (Koiter W. T.) 57, 109, 127, 156, 212
- Кокер (Coker E. C.) 149, 163, 204, 211
- Кокс (Cox H. L.) 278
- Колосов Г. В. 188, 196, 198, 320 Колчин Г. Б. 74
- Кольский Г. (Kolsky H.) 497
- Конвей (Conway H. D.) 331, 334, 427 508, 542
- Kophxaysep (Kornhauser M.) 418
- Корню (Согпи А.) 297
- Коробов А. 390
- Котрелл (Cottrell A. H.) 104, 259, 263, 344

Коши (Cauchy A. L.) 502 Кри (Chree C.) 96, 392, 423 Кровлей (Crowley J. M.) 177, 205, 496 Kpocc (Cross H.) 525 Kporc (Craggs J. W.) 427, 429 Крэмер (Craemer H.) 77 Крэнделл (Crandall S. H.) 538 Ky (Ku Ta-Cheng) 98 Кулон (Coulomb C. A.) 299 Курант (Courant R.) 517 Куршин Л. М. 144 Кушман (Cushman P. A.) 331, 378 Ламе (Lame G.) 86, 192, 344, 397 Ландсберг (Landsberg D.) 116, 173 Лармор (Larmor J.) 331, 400 Лебедев Н. Н. 486, 487 Левен (Leven M. M.) 163, 176 Леви (Levi S.) 109 Леви (Levy M.) 69, 153 Лейбензон Л. С. 327, 376 Лейе (Laue M.) 470 Лессельс (Lessels S. M.) 454 Леффлер (Löffler K.) 96, 99 Либман (Liebman H.) 517 Либовиц (Liebowitz H.) 177, 205, 496 Лизе (Lyse J.) 330 Линг (Ling C. B.) 110, 111, 116, 212, 321 Липсон (Lipson C.) 419 Лис (Lees C. H.) 448, 449 Литл (Little R. W.) 78 Лоде (Lode W.) 258 Лоутзенхейзер (Loutzenheiser C. B.) 123, 427 Лоренц (Lorenz R.) 450 Лош (Losch F.) 406, 449 Лубкин (Lubkin J. L.) 411 Лундберг (Lundberg G.) 419 Лурье А. И. 191 Лэмб (Lamb H.) 130, 281, 407, 511 Ляв (Love A. E. H.) 105, 144, 186. 247, 254, 284, 320, 371, 372, 382, 383, 392, 400, 407, 509 Майзель В. М. 462, 465, 466 Маккелаф Дж. (MacCullough G. H.) 18 Макмиллан (MacMillan W. D.) Макпирсон (Mc Pherson A. E.) Максвелл (Maxwell J. C.) 162, Маргер (Marguerre K.) 74, 383 480 109 174 Маркус (Marcus H.) 517 Маркушевич А. И. 181, 217, 218

Мартин (Martin H. M.) 99 Марч (March H. W.) 328 Матар (Mathar J.) 152 Матье (Mathieu E.) 70, 77 Мейнез (Meinesz V.) 377 Мелан (Melan E.) 144, 212, 351 Менаже (Mesnager A.) 53, 124, 163, 173 Месмер (Mesmer G.) 74 Мизес (Mises R.) 57, 143, 257 Миклестад (Miklestad N. O.) 481 Микловиц (Miklowitz J.) 496 Миндлин (Mindlin R. D.) 109, 174, 191, 212, 400, 411, 468, 481 Мирабель (Mirabel J.) 344 Миура (Miura A.) 125 Мичелл (Michell J. N.) 112, 120, 124, 138, 140, 145, 148, 280, 349, 382, 389, 465 Мойнигэн (Moynihan J. R.) 344 Mop (Mohr O.) 37, 233 Морковин (Morkovin V.) 213 Мортон (Morton W. B.) 415 Мусхелишвили Н. И. 12, 13, 123, 185, 204, 205, 213, 214, 221, 225, 321, 476 Мэйнзелл (Maunsell F. G.) 116 Мэрфи (Murphy G.) 44 Мюллер (Muller I.) 69 Мюррей (Murray W. M.) 228 Навье (Navier C. L. M. H.) 247, 299, 300 Нагди (Naghdi P. M.) 252 Надан (Nadai A.) 313, 426 Найт (Knight R. C.) 110, 111 Невилл (Nevill G. É.) 466 Нейбер (Neuber H.) 116, 157, 176, 204. 205, 206, 213, 251, 252, 349, 430 Нейман (Neuman F. E.) 454 Немени (Nemenyi P.) 280 Никишин В. С. 74, 409 Нисида (Nisida M.) 334 Нишимура (Nishimura G.) 111 Новацкий (Nowacki W.) 463, 482

- Новацкий (Ноwacki W.) 400, Новожилов В. В. 265
- Нуляер Б. М. 78

Одквист (Odqvist F. K. C.) 419 Окубо (Okybo H.) 427 Осгуд В. Р. (Osgood W. R.) 68 Осгуд В. Ф. (Osgood W. F.) 73

Папкович П. Ф. 78, 261, 430 Пашу (Paschoud M.) 332

Коффин (Coffin L. F.) 435

Персер (Purser F.) 344 Петерсон (Peterson R. E.) 110, 173, 206, 334, 351, 352 Петренко (Petrenko S. N.) 418 Пёшль (Poschl T.) 198, 212 Пижо (Pigeud M.) 74 Пикет (Picket G.) 271, 426 Пирсон (Pearson C. E.) 254 Пирсон (Pearson K.) 67, 69, 90, 251, 300, 372, 382 Полиа (Polya G.) 308 Поллард (Pollard C.) 69 Порицкий (Porizky H.) 116, 350, 420 Похгаммер (Pochgammer L.) 382, 423 Прандтль (Prandtl L.) 90, 309, 313, 524 Проус (Prowse W. A.) 508 Пуассон (Poisson M.) 502 Редхеффер (Redheffer R. M.) 266 Резаль (Resal H.) 90 Рейсснер (Reissner H.) 151, 153, 350, 470 Рейсснер Э. (Reissner E.) 269, 273, 278, 369 Рейтман М. И. 11, 490 Ренкин (Rankin A. W.) 427, 429 Ренкин (Rankine W. J. M.) 67, 130, 136 Рибьер (Ribiere M. C.) 73, 90, 103 Риппергер (Ripperger E. A.) 150, 422 Ритц (Ritz W.) 270, 322, 323 Ричардсон (Richardson L. F.) 69, 517, 521 Родемахер (Rademacher J. M.) 331 Рокк (Rock D. H.) 372 Ронгвед (Rongwed L.) 400 Ротенберг (Rotenberg M.) 550 Рунге (Runge C.) 351, 517 Рэлей (Rayleigh) 281, 438, 509 Саад (Saad C.) 129 Савин Г. Н. 9, 110, 205 Садовский М. (Sadowsky M. A.) 17, 111, 112, 123, 392, 398, 400, 433, 434 Cayсвелл P. B. (Southwell R. V.) 377, 398, 400, 517, 521, 524, 525, 531, 537, 538, 539, 549 Сезава (Sezawa K.) 111 Сен (Sen B.) 212 Сен-Венан (Barre de Saint-Venant) 57, 247, 299, 300, 308, 319, 320, 358, 368, 498, 502, 505, 507 Симондс (Symonds P. S.) 204

- Сирс (Sears J. E.) 423, 508

Скратон (Scruton C.) 317

- Смирнов В. И. 73, 266, 386
 - Смит (Smith F. C.) 109
 - Снеддон (Sneddon I. N.) 427 Снивли (Snively H. D.) 116

 - Сокольников (Sokolnikoff I. S.) 347, 266, 321, 371, 428
 - Сорока (Soroka W. W.) 331
 - Стивенсон (Stevenson A. C.) 110, 198, 372
 - Стодола (Stodola A.) 449

Стокс (Stokes C. G.) 128, 129

Страубель (Straubel R.) 297

- Тагамя (Tagami S.) 110
- Тайт (Tait P. G.) 315, 331, 390
- Такемура (Такетига К.) 152
- Танимура (Tanimura M.) 344, 351
- Тейлор Г. И. (Taylor G. I.) 104, 260, 309, 330, 334, 337, 377
- P.) Теодореску (Teodorescu Р. 205 Теокарис (Theocaris P. S.) 76, 152, 177
- Терасава (Terasawa K.) 407
- Тибодо (Thibodeau W. E.) 112
- Тимошенко С. П. (Timoshenko S. P.) 9, 10, 14, 28, 67, 87, 103, 107, 109, 148, 152, 206, 257, 268, 269, 323, 344, 346, 361, 368, 375, 376, 423, 453, 454, 489, 511
- Тимпе (Тітре А.) 63, 68, 74, 90, 105, 145, 204, 344, 351, 390
- Тодхантер (Todhunter I.) 251. 300
- Tomac (Thomas G. B.) 369
- Томас (Thomas H. R.) 419
- Томсон (Thomson W. T.) 506
- Трейер (Trayer G. W.) 328, 330
- Треффц (Trefftz E.) 313, 323, 325, 361 Трэнтер (Tranter C. J.) 153, 427, 429
- Туци (Tuzi Z.) 110
- Уилхойт (Wilhoit J. C.) 146, 218, 344, 350 Уиттекер Э. (Whittaker E. T.) 179 Уиттеморе (Whittemore H. L.) 418 Уфлянд Я. С. 208 Уэй (Way S.) 407
- Фаверман Э. В. 74
- Фадле (Fadle J.) 78
- Файлон (Filon L. N. G.) 74, 130, 148, 151, 163, 204, 211, 280, 308, 382, 423, 426
- Фарнхэм (Farnham K. A.) 427

- Фёппль А. (Foppl A.) 90, 233, 319, 328, 344, 349, 350, 351 Фёппль Л. (Foppl L.) 233, 319, 351
- Филланжер (Fillunger P.) 69, 153
- Филоненко-Бородич М. М. 87
- Фишер (Fisher A.) 99
- Фламан (Flamant A.) 112, 506, 507
- Флоренс (Florence A. L.) 479
- Флюгге (Flugge W.) 346, 352, 411 Форсайт (Forsythe G. E.) 550 Фрейбергер (Freiberger W.) 432

- Фрохт М. (Frocht M. M.) 116, 129, 152, 163, 171, 173, 206
- Фукс (Fuchs S.) 411
- J.) Хаджи-Аргирис (Hadji-Argyris (см. Аргирис)
- Хамбургер (Hamburger M.) 423
- Хантер (Hunter S. C.) 516
- Хаулэнд (Howland R. C. J.) 110, 131, 144
- Хвалла (Chwalla E.) 273
- Хенгст (Hengst H.) 111
- Хендри (Hendry Á. W.) 129 Хетенай (Hetenyi M.) 43, 163, 175, 176, 331, 378
- Хиггинс (Higgins T. J.) 321, 322, 330, 349, 351, 352 Хике (Hieke M.) 463
- Хилл (Hill R.) 257
- Хильдебранд (Hildebrand F. B.) 386
- Хлитчиев А. М. 382
- Ходж (Hodge P. G.) 11, 78, 109, 110, 213, 408, 411, 516
- Ходкинсон (Hodkinson B.) 99
- Хозокава (Hosokawa Y.) 152
- Холл (Holl D. L.) 321, 372
- Холлистер (Hollister G. S.) 551
- Хондо (Hondo M.) 334
- Хонеггер (Honegger E.) 456
- Хорвей (Horway G.) 78, 79, 344
- Хоурш (Hoersch V. A.) 419
- Хофф (Hoff N. J.) 163, 258
- Хубер М. К. (Huber M. C.) 415 Хубер М. Т. (Hyber M. T.) 257, 411
- Хэт (Huth J, H.) 330, 331, 340

- Чалышев (Calisev K. A.) 519 Ченг (Cheng D. H.) 481 Черепанов Г. П. 263 Черчилль (Churchill R. V.) 73, 217, 218Hoy (Chow L.) 542
- Шапиро Г. С. 74, 489 Шеферд (Shepherd W. M.) 372 Шифф П. А. 78, 409 Шлейхер (Schleicher F.) 257, 407, 409 Шмидт (Schmidt R.) 432 Шнадель (Schnadel G.) 273
- Шортли (Shortley G. H.) 538
- Шоу (Shaw W. S.) 301
- Шошин А. Н. 10
- Штернберг (Sternberg E.) 57, 112, 127, 143, 156, 398, 400, 430, 431, 433, 434, 491
- Штехер (Stecher M.) 177
- Штраух (Strauch F.) 151
- Шу К. (Hsu C. S.) 242 Шу М. (Hsu M. C.) 111
- Шульц (Schulz K. J.) 110
- Эбрахамсон (Abrahamson G. R.) 74
- Эван-Ивановски (Evan-Ivanowski R. M.) 212
- Эдвардс (Edwards R. H.) 481
- Эйгельберг (Eichelberg G.) 440
- Эллис (Ellis D. L.) 377
- Эмде (Emde F.) 406, 449
- Энтес (Anthes H.) 309
- Эри (Airy G. B.) 50
- Юбенкс (Eubanks R. A.) 400 Ювеналь (Juvinall R. C.) 419 Юнг Д. (Young D. H.) 9, 17, 268 Юнг T. (Young Thomas) 499 Юхац (Juhasz S.) 177, 205, 497
- Ягер (Jaeger J. C.) 440, 483 Якобсен (Jacobsen L. S.) 352 Янке (Jahnke E.) 406, 449 Ясинский Ф. С. 10 Ясман (Jahsman W. E.) 422

предметный указатель

Анализатор 163 Деформация сдвига 26 Аналогия гидродинамическая Бусси-- средняя 33 неска 332 Диск вращающийся 134, 390 — — Гринхилла 332 Дисклокация винтовая 344 — — Кельвина 331 краевая 104 — мембранная 309 — угловая 344 - с листовым проводником 331 — щелевая 344 электрическая (электроаналогия) 352 Единственность решения уравнений теории упругости 279 Балка коробчатая 277 с широкими полками 272 Жесткость изгибания пластинки 298 — крутильная 305 Вдавливание жесткого штампа 410 Взрыв в полости сферической 513 Задача Буссинеска 400 — — тела 512 — Ламе 86 на внешней границе тела 512 термоупругости общая двумерная Влияние поперечной силы на прогибы 486 балки 63 Задачи динамические 489 Волна растяжения 500 квазистатические 489 – сжатия 497 Задержка сдвиговая 277 Волны безвихревые (волны расшире-Закон Гука 27 ния) 491 — плоские 491 — искажения (продольные) 491 Изгиб балки параболической нагруз-— — расширения (поперечные) 491 кой 69 — произвольной нагрузкой 70 поверхностные (Рэлея) 496, 509 со сферической симметрией 512 — равномерно распределенной на- эквиволюминальные (волны искагрузкой 63 жений) 490 — — собственным весом 66 Вращение 242 без кручения несимметричного се-Время соударения шаров 423 чения 361 консоли 59, 359 — круглого поперечного сечения 362 Давление взрывное в сферической по-— несимметричного поперечного лости 514 сечения 372 — постоянное 516 под гидростатическим давлени- соприкасающихся тел (задача Герем 68 ца) 411 прямоугольного поперечного се-Девиатор напряжений 33 чения 364 Деформации главные 43, 241 симметричного поперечного се-Деформация девиаторная 33 чения 363 неоднородная 238 треугольного поперечного однородная 238 чения 372 — плоская 35 — эллиптического поперечного се-— в термоупругости 471 чения 363

ce-

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Изгиб круглой пластинки 387 — — Силой, приложенной в центре 426 — чистый пластинки 297 — — призматического стержня 293 — части кольца 433 Изоклины 166 Изотеты 178 Изохромы 167 Инварианты напряжений 234

- Индекс немой 32
- Интегралы полные эллиптические 406
- Интенсивность (сил) 22
- Интерпретация решения волнового уравнения 492

Картина полос в пластинке 105 — для кривого бруса 164
 — изгибаемой балки 171 Кольцо, сжатое двумя силами 149 Компоненты вращения 243, 244 — деформаций 27 — — в полярных координатах 92 — напряжений 25 — в криволинейных координатах 195 — перемещений 26 Константы Ламе 20 Контакт колеса с рельсом 418 Концентрация напряжений вокруг отверстий 98, 108 — — у входящих углов 329 Координаты биполярные 207 криволинейные 192, 212—213 — полярные 192 тороидальные 432 — эллиптические 193 Коэффициент концентрации напряжений 116, 171, 173 — оптико-механический 165 — Пуассона 27 — , экспериментальное определение 297 Кривая прогибов оси стержня при изгибе 295 Кривизна при изгибе балки распределенной нагрузкой 67 Kpyr Mopa 38 Кручение валов круглых 292 — — — переменного диаметра 346 — — — — , метод конечных разностей 547 — — полых 334 — стержней 299

- прокатных профилей 328
- прямоугольного сечения 316

Кручение стержней узкого прямоугольного сечения 313 треугольного сечения 307 — эллиптического сечения 304 тонкостенных труб 338 Лемма Грина 266 Линия влияния 119 Метод конечных элементов 551, 552 — муара 177 мыльной пленки 377 наложения 28 перекрестной суперпозиции 77 полуобратный Сен-Венана 300 последовательных приближений 521 — релаксации 524 — Рэлея — Ритца 270 — рядов Фурье 70 устранения деформаций 460 фотоупругости 162 – энергетический Ритца 322 Методы Мусхелишвили 12, 13, 213 Модуль объемного расширения 30, 33 упругости при растяжении 27 — — сдвиге (модуль сдвига) 30 Юнга адиабатический 254 — изотермический 254 Нагрев полосы неравномерный 441 - тонкого круглого диска 444 Нагрузка, распределенная по части границы тела 405 Направления главные 37, 232 Напряжение 22 девиаторное 33 касательное 23 — максимальное 236 — октаэдрическое 237 критическое (для трещины) 264 — на фронте волны 498 нормальное 23 — шаровое 33 Напряжения в каменных плотинах 68, 69 — клине 124, 126, 152 — круглом диске 136 — главные 23 — нормальные местные вокруг полости 398 начальные 280, 468

- — в кольце 95
- — многосвязном теле 95

Напряжения начальные в стекле 470 — — , изменение объема 471 — —, обратная задача 469 — —, определение 469 –, снятие 470 температурные 435 — в сплошной сфере 455 — — — сплошном цилиндре 447 — — — сфере с полостью в центре 457 — — цилиндре с отверстием 450 — — — — тонкой стенкой 452 Невязки 525 Обозначения индексные 31 компонент деформаций 27 — — напряжений 24 Оси деформации главные 241 Ось кручения 312 Отображение конформное 214 Перемещения виртуальные 260 Пластинка бесконечная под действием силы 140 в четверть волны 168 поляроидная 163 Плоскость поляризации 163 Площадки главные 232 – главных деформаций 241 Поверхность контакта сжатых тел 412 напряжений 231 — — напрявляющая 233 Полиномы Лежандра 386 Полосы муаровые 177 Поляризатор 163 Поляризация круговая 168 Полярископ круговой 168 Посадка кольца на вал 427 Потенциал логарифмический 481 термоупругий перемещений 480 – тяготения 480 Правило суммирования 32 Призма Николя 163 Принцип виртуальной работы 260 минимальной работы 268 - Сен-Венана 57 суперпозиции 253 Продолжительность соударения стержней 507 - — шаров 423 Работа виртуальная 262 внутренних сил 256 Растяжение винтовой пружины 430 - стержня 288 — под действием собственного веca 289

Расширение объемное 30 Релаксация блочная 534 — групповая 535 Решение бигармонического уравнения методом конечных разностей 539 - Бруссинеска (в виде двух гармонических функций) 429 — в полиномах 54—56 Майзеля задачи термоупругости 465 — Фламана 74 Розетка (датчиков) 44 Свет поляризованный 163 Сдвиг чистый 29 Сейсмограф 494 Сетка грубая 523 — квадратная 518 треугольная 531 — шестиугольная 530 Сила сосредоточенная в бесконечном теле 393 — —, действующая на балку 127 — — на границе тела 400 Силы массовые 23 — объемные 23 поверхностные 23 Символ Кронекера 32 Скорости стержней при ударе 502 Скорость поверхностных волн 511 поперечных волн 494 — продольных волн 492 — — для стали 492 - сближения шаров при ударе 422 -- «стержневая» 497 частицы (при распространении волны) 493 Состояние плоское напряженное 34 — — в термоупругости 472 Сосуд под давлением 395 Соударение стержней продольное 423, 502 — шаров 421 Сумма нормальных напряжений 30 Суперпозиция 28 Тело идеальное упругое 21 изотропное 21 95 — многосвязное Тензодатчик электрический 43 Теорема взаимности 281 — — в термоупругости 462 —, ее приложения 463—465

 единственности решения для температурных задач 461 Теорема Кастильяно 268

- Кирхгофа (о единственности решения) 280
- об эквивалентных разрезах 105
- Теория изгиба пластинок точная 389
- разрушения Гриффитса 263
- Точки изотропные 167
- узловые 518 — на границе 537
- Траекторий касательных напряжений 311
- Угол эксцентрический точки на эллипce 193
- Удар по стержню с заделанным концом 504
- Удлинение относительное 26
- Упругость 21
- Уравнение вынужденных колебаний с учетом вязкого демпфирования 513
- для функции напряжений 50, 51
- — в полярных координатах 85
- Лапласа 182
- Лежандра 386
- плоских поперечных волн 491
- — продольных волн 491
- Уравнения в конечных разностях 517 волн искажения 490
- — расширения 491
- Коши Римана (Даламбера Эйлера) 181
- равновесия в декартовых координатах 46, 246
- — перемещениях 250, 251
- — полярных координатах 83
- — для двумерной задачи 46
- — температурной задачи 458
- — трехмерного случая 246
- Условие распространения трещины 264 — совместности 47, 247
- — в напряжениях 48, 49
- Условия граничные 46, 246

Формула Коши интегральная 217 — — для внешней области 221

- Формула Ньютона интерполяционная 520
- Функции аналитические 180
- Лежандра 386
- собственные 79
- сопряженные гармонические 182
- Функция Бесселя нулевого порядка 424
- первого порядка 424
- комплексная 181
- напряжений Кармана 131
- — комплексная 182
- — Лява 383
- Прандтля 302
- при изгибе 360
- — Эри 50
- сопряженная 180, 187
- Цена полосы 161
- Центр изгиба 374
- кручения 312, 313, 377
- сжатия 396
- Цилиндр круглый, деформация симметричная 423
- под опоясывающим давлением 427

Ширина эффективная полки балки 272

Электроаналогия 352

Эллипсоид напряжений 232

- Энергия волны 499
- деформации 254
- в единице объема 254
- дислокации краевой 259
- для пластинки при растяжении 269
- изменения объема 257
- полки балки при изгибе 274
- — потенциальная 261
- — стенки балки при изгибе 274
- формоизменения 257
- потенциальная объемных сил 261
- поверхностных сил 262