

THE LOEB CLASSICAL LIBRARY
 FOUNDED BY JAMES LOEB, LL.D.

EDITED BY
\dagger T. E. PAGE, о.н., Litt.d.
\dagger E. CAPPS, ph.d., LL.d.
\dagger W. H. D. ROUSE, Litt.d.
L. A. POST, m.a. E. H. WARMINGTON, m.A., f.r.hist.soc.

GREEK MATHEMATICS

SELECTIONS
 ILLUSTRATING THE HISTORY OF
 GREEK MATHEMATICS
 WITH AN ENGLISH TRANSLATION BY
 IVOR THOMAS

FORMERLY SCHOLAR OF ST. JOHN'S AND SENIOR DEMY OF MAGDALEN COILEGE, OXFORD

IN TWO VOLUMES
II
FROM ARISTARCHUS TO PAPPUS

LONDON
WILLIAM HEINEMANN LTD
Cambridge, massachuserts
HARVARD UNIVERSITY PRESS

MCMLVII

> First printed 1941
> Reprinted 1951,1957

Printed in Great Britain

CONTENTS OF VOLUME II

page
XVI. Aristarchus of Samos-
(a) General 2
(b) Distances of the sun and moon 4
(c) Continued fractions (?) 14
XVII. Archimedes-
(a) General 18
(b) Surface and volume of the cylinder
and sphere 40
(c) Solution of a cubic equation 126
(d) Conoids and spheroids-
(i) Preface 164
(ii) Two lemmas 164(iii) Volume of a segment of aparaboloid of revolution . 170
(e) The spiral of Archimedes-
(i) Definitions 182
(ii) Fundamental property 184
(iii) A verging 186
(iv) Property of the subtangent 190
(f) Semi-regular solids 194

CONTENTS

(g) System of expressing largenumbers198
(h) Indeterminate analysis: the Cattle Problem 202
(i) Mechanics : centres of gravity-
(i) Postulates 206
(ii) Principle of the lever 208
(iii) Centre of gravity of a parallelo- gram 216
(j) Mechanical method in geometry 220
(k) Hydrostatics-
(i) Postulates 242
(ii) Surface of fluid at rest 244
(iii) Solid immersed in a fluid 248
(iv) Stability of a paraboloid of revolution 252
XVIII. Eratosthenes-
(a) General 260
(b) On means 262
(c) The Platonicus 264
(d) Measurement of the earth 266
XIX. Apollonius of Perga-
(a) The conic sections-
(i) Relation to previous works 276
(ii) Scope of the work 280
(iii) Definitions 284
(iv) Construction of the sections 288
(v) Fundamental properties 304
(vi) Transition to new diameter 328

CONTENTS

PAGI
(b) Other works-
(i) General 336
(ii) On the Cutting-off of a Ratio 336
(iii) On the Cutting-off of an Area 338
(iv) On Determinate Section 339
(v) On Tangencies 340
(vi) On Plane Loci 344
(vii) On Vergings 344
(viii) On the dodecahedron and theicosahedron . . . 348
(ix) Principles of mathematics 348
(x) On the Cochlias 350
(xi) On unordered irrationals 350
(xii) Measurement of a circle 352
(xiii) Continued multiplications 352
(xiv) On the Burning Mirror 356
XX. Later Developments in Geometry-
(a) Classification of curves 360
(b) Attempts to prove the parallelpostulate-
(i) General 366
(ii) Posidonius and Geminus 370
(iii) Ptolemy 372
(iv) Proclus 382
(c) Isoperimetric figures 386
(d) Division of zodiac circle into 360
parts: Hypsicles 394(e) Handbooks-
(i) Cleomedes 396
(ii) Theon of Smyrna 400

CONTENTS

XXI. Trigonometry-

1. Hipparchus and Menelaus 406
2. Ptolemy -
(a) General 408(b) Table of sines-
(i) Introduction 412
(ii) $\sin 18^{\circ}$ and $\sin 36^{\circ}$ 414
(iii) $\sin ^{2} \theta+\cos ^{2} \theta=1$ 420
(iv) Ptolemy's theorem 422
(v) $\sin (\theta-\phi)=\sin \theta \cos \phi-$ $\cos \theta \sin \phi$ 424
(vi) $\sin ^{2} \frac{1}{2} \theta=\frac{1}{2}(1-\cos \theta)$ 428(vii) $\cos (\theta+\phi)=\cos \theta \cos \phi-$$\sin \theta \sin \phi$430
(viii) Method of interpolation 434
(ix) The table 442
(c) Menelaus's theorem-
(i) Lemmas
446
(ii) The theorem458
XXII. Mensuration : Heron of Alex-andria-
(a) Definitions 466
(b) Measurement of areas and volumes-
(i) Area of a triangle given the sides 470
(ii) Volume of a spire 476
(iii) Division of a circle 482
(iv) Measurement of an irregu- lar area 484

CONTENTS

PAOE(c) Mechanics
(d) Optics : equality of angles of inci- dence and reflection 496
(e) Quadratic equations 502
(f) Indeterminate analysis 504
XXIII. Algebra: Diophantus-
(a) General 512
(b) Notation 518
(c) Determinate equations-
(i) Pure determinate equations 524
(ii) Quadratic equations 526
(iii) Simultaneous equations lead- ing to a quadratic 536
(iv) Cubic equation 538
(d) Indeterminate equations-
(i) Indeterminate equations of thesecond degree-
(a) Single equations 540
(β) Double equations 542
(ii) Indeterminate equations of higher degree 548
(e) Theory of numbers: sums of squares 550
(f) Polygonal numbers . . . 560XXIV. Revival of Geometry: Pappus ofAlexandria -
(a) General 564
(b) Problems and theorems 566

CONTENTS

PACE
(c) The theory of means 568
(d) The paradoxes of Erycinus 570
(e) The regular solids 572
(f) Extension of Pythagoras's theorem 574
(g) Circles inscribed in the $\alpha \rho \beta \beta \eta \lambda_{0}$ 578
(h) Spiral on a sphere 580
(i) Isoperimetric figures 588
(j) Apparent form of a circle 592
(k) The Treasury of Analysis 596
(l) Locus with respect to five or six lines 600
(m) Anticipation of Guldin's theorem 604
(n) Lemmas to the treatises-
(i) To the Determinate Section of Apollonius 606
(ii) To the Porisms of Euclid 610
(o) Mechanics 614
Index 622
List of Ancient Texts cited 650
Index of Greek Terms 655

XVI. ARISTARCHUS OF SAMOS

XVI. ARISTARCHUS OF SAMOS

(a) General

Act. i. 15. 5 ; Doxographi Graeci, ed. Diels 313. 16-18

 є́ $\pi \iota \pi \imath \pi \tau o \nu$.

Archim. Aren. 1, Archim. ed. Heiberg ii. 218. 7-18

 $\tau \dot{\alpha} \nu \quad \delta \grave{\epsilon} \tau \hat{\omega} \nu \dot{\alpha} \pi \lambda \alpha \nu \epsilon \in \omega \nu \quad \alpha ้ \sigma \tau \rho \omega \nu \quad \sigma \phi \alpha \hat{\rho} \rho \nu \quad \pi \epsilon \rho \grave{i} \tau \grave{o}$

[^0]
XVI. ARISTARCHUS OF SAMOS

(a) General

Aëtius i. 15.5; Doxographi Graeci, ed. Diels 313. 16-18
Aristarchus of Samos, a mathematician and pupil of Strato, ${ }^{a}$ held that colour was light in pinging on a substratum.

> Archimedes, Sand-Reckoner 1, Archim. ed. Heiberg ii. 218. 7 -18

Aristarchus of Samos produced a book based on certain hypotheses, in which it follows from the premises that the universe is many times greater than the universe now so called. His hypotheses are that the fixed stars and the sun remain motionless, that the earth revolves in the circumference of a circle about the sun, which lies in the middle of the orbit, and that the sphere of the fixed stars, situated

Archimedes and Scopinas of Syracuse, who were equally proficient in all branches of science. Vitruvius, loc. cit. ix. 8. 1 , is also our authority for believing that he invented a sun-dial with a hemispherical bowl. His greatest achievement, of course, was the hypothesis that the earth moves round the sun, but as that belongs to astronomy it can be mentioned only casually here. A full and admirable discussion will be found in Heath, Aristarchus of Samos: The Ancient Copernicus, together with a critical text of Aristarchus's only extant work.

GREEK MATHEMATICS

 каúтаע $\epsilon i \hat{i} \mu \epsilon \nu, \ddot{\omega} \sigma \tau \epsilon \tau \grave{\partial} \nu \kappa \cup ́ \kappa \lambda о \nu, \kappa \alpha \theta^{\prime}$ of $\nu \tau \grave{\alpha} \nu \gamma \hat{\alpha} \nu$

Plat. De face in orle lunate 6, 922 F-923 A
Kai ó $\Lambda \epsilon$ úкıos $\gamma \epsilon \lambda$ aa $\sigma a s$, " Móvov," $\epsilon i \pi \epsilon \nu$, " $\dot{\omega}$

(b) Distances of the Sun and Moon

Aristarch. Sam. De Mag. et Dist. Solis et Lunae, ed. Heath (Aristarchus of Samos: The Ancient Copernicus) 352. 1-354. 6

$\left\langle{ }^{〔} \Upsilon \pi o \theta \epsilon ́ \sigma \epsilon \epsilon s^{1}\right\rangle$

α^{\prime}. T $\eta ̀ \nu \sigma \epsilon \lambda \eta{ }_{\eta} \nu \eta \nu \pi a \rho \grave{\alpha} \tau o \hat{v} \eta \dot{\eta} \lambda i o v ~ \tau o ̀ ~ \phi \hat{\omega} s ~ \lambda a \mu \beta \alpha ́-$ $\nu \in \iota$.
 $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \tau \hat{\eta} s ~ \sigma \epsilon \lambda \eta \prime \nu \eta s$ $\sigma \phi a i ̂ \rho a \nu$.
 ${ }^{1} \dot{\nu} \pi \sigma \theta \dot{\epsilon} \sigma \epsilon \epsilon s$ add. Heath.

- Aristarchus's last hypothesis, if taken literally, would mean that the sphere of the fixed stars is infinite. All that he implies, however, is that in relation to the distance of the

ARISTARCHUS OF SAMOS

about the same centre as the sun, is so great that the circle in which he supposes the earth to revolve has such a proportion to the distance of the fixed stars as the centre of the sphere bears to its surface. ${ }^{a}$

Plutarch, On the Face in the Moon 6, 922 f-923 A
Lucius thereupon laughed and said: " Do not, my good fellow, bring an action against me for impiety after the manner of Cleanthes, who held that the Greeks ought to indict Aristarchus of Samos on a charge of impiety because he set in motion the hearth of the universe; for he tried to save the phenomena by supposing the heaven to remain at rest, and the earth to revolve in an inclined circle, while rotating at the same time about its own axis." ${ }^{b}$
(b) Distances of the Sun and Moon

Aristarchus of Samos, On the Sizes and Distances of the Sun and Moon, ed. Heath (Aristarchus of Samos: The Ancient Copernicus) 352. 1-354. 6

hYPOTHESES

1. The moon receives its light from the sun.
2. The earth has the relation of a point and centre to the sphere in which the moon moves. ${ }^{c}$
3. When the moon appears to us halved, the great
fixed stars the diameter of the earth's orbit may be neglected. The phrase appears to be traditional (v. Aristarchus's second hypothesis, infra).

Heraclides of Pontus (along with Ecphantus, a Pythagorean) had preceded Aristarchus in making the earth revolve on its own axis, but he did not give the earth a motion of translation as well.

- Lit. " sphere of the moon."

GREEK MATHEMATICS

 кช์к $\lambda о \nu$.

 بорíov т仑̂ то仑 $\tau \in \tau \alpha \rho \tau \eta \mu о \rho i ́ v$ трıакобт $\hat{\varphi}$ ．
ϵ^{\prime} ．Tò $\tau \hat{\eta} s$ $\sigma \kappa \iota \hat{\alpha} s$ $\pi \lambda \alpha ́ \tau o s ~ \sigma \epsilon \lambda \eta \nu \hat{\omega} \nu$ єlvà vo．
5＇．Т $\eta \nu \nu ~ \sigma \epsilon \lambda \eta ́ \nu \eta \nu ~ \dot{v} \pi о \tau \epsilon i ́ \nu \epsilon \iota \nu$ ímò $\pi \epsilon \nu \tau \epsilon \kappa \alpha \iota \epsilon ́ \kappa \alpha \tau о \nu$ $\mu \epsilon ́ \rho o s ~ \zeta \psi \delta i ́ o v . ~$

 ar $\pi о \sigma \tau \eta \prime \mu a \tau \alpha$ 入óyov，$\tau \eta ิ S\left\langle\tau \epsilon^{1}\right\rangle \pi \epsilon \rho i$ тท̀v $\sigma \kappa \iota a ̀ \nu$

Ibid．，Prop．7，ed．Heath 376．1－380． 28
 ${ }^{1} \tau \epsilon$ add．Heath．
＂Lit．＂verges towards our eye．＂For＂verging，＂v．vol．i． p． 244 n．a ．Aristarchus means that the observer＇s eye lies in the plane of the great circle in question．A great circle is a circle described on the surface of the sphere and having the same centre as the sphere；as the Greek implies，a great circle is the＂greatest circle＂that can be described on the sphere．

6

ARISTARCHUS OF SAMOS

circle dividing the dark and the bright portions of the moon is in the direction of our eye. ${ }^{a}$
4. When the moon appears to us halved, its distance from the sun is less than a quadrant by one-thirtieth of a quadrant. ${ }^{b}$
5. The breadth of the earth's shadow is that of two moons. ${ }^{c}$
6. The moon subtends one-fifteenth part of a sign of the zodiac. ${ }^{d}$

It may now be proved that the distance of the sun from the earth is greater than eighteen times, but less than twenty times, the distance of the moon-this follows from the hypothesis about the halved moon; that the diameter of the sun has the aforesaid ratio to the diameter of the moon; and that the diameter of the sun has to the diameter of the earth a ratio which is greater than $19: 3$ but less than $43: 6$-this follows from the ratio discovered about the distances, the hypothesis about the shadow, and the hypothesis that the moon subtends one-fifteenth part of a sign of the zodiac.

$$
\text { Ibid., Prop. 7, ed. Heath 376. 1-380. } 28
$$

The distance of the sun from the earth is greater than

[^1]
GREEK MATHEMATICS

 éni тò Δ.

that the sun and moon had the same angular diameter he must, therefore, have found the approximately correct angular diameter of $\frac{1}{2}^{\circ}$ after writing his treatise On the Sizes and Distances of the Sun and Moon.

ARISTARCHUS OF SAMOS

eighteen times, but less than twenty times, the distance of the moon from the earth.

For let A be the centre of the sun, B that of the earth ; let $A B$ be joined and produced; let Γ be the centre of the moon when halved; let a plane be drawn through $A B$ and Γ, and let the section made by it in the sphere on which the centre of the sun moves be the great circle $A \triangle E$, let $A \Gamma, ~ Г В$ be joined, and let $В \Gamma$ be produced to Δ.
'Then, because the point Γ is the centre of the moon when halved, the angle AI'B will be right.

GREEK MATHEMATICS

АГВ. $\eta^{\eta} \chi \theta \omega$ $\delta \grave{\eta}$ à $\pi o ̀ ~ \tau o \hat{v} \mathrm{~B} \tau \hat{\eta} \mathrm{BA} \pi \rho o ̀ s ~ o \rho \theta \grave{\alpha} s$

 €̈入aббov $\tau \epsilon \tau \alpha \rho \tau \eta \mu \circ \rho i o v ~ \tau \hat{\varphi} \tau о \hat{v} \tau \epsilon \tau \alpha \rho \tau \eta \mu о \rho i o v \lambda^{\prime}$.
 $\sigma v \mu \pi \epsilon \pi \lambda \eta \rho \omega ́ \sigma \theta \omega$ бウ̀ $\tau \grave{o} \mathrm{AE} \pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho a \mu \mu о \nu$,
 $\gamma \omega \nu i a \quad \dot{\eta} \mu i \sigma \in \iota a \quad$ ó $\rho \theta \hat{\eta} s . \quad \tau \epsilon \tau \mu \eta \eta^{\prime} \sigma \theta \omega \quad \dot{\eta}$ vi $\pi \dot{o}$ $\tau \hat{\omega} \nu$

 $\eta \nexists \epsilon \rho \rho \dot{\eta}$ ن́ $\pi \grave{o} \tau \hat{\omega} \nu \mathrm{HBE} \gamma \omega \nu i \alpha a \quad \pi \rho o ̀ s ~ \tau \eta े \nu ~ \dot{v} \pi \grave{o} \tau \hat{\omega} \nu$ $\Delta \mathrm{BE} \gamma \omega \nu i a \nu, \dot{\eta}$ à $\rho a \mathrm{HE} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{E} \Theta \mu \in i \zeta o \nu a$

${ }^{1}$ éctiv add. Nizze.
${ }^{2}$ éx $\chi \iota$ add. Wallis.
${ }^{3}$ ôv τ à add. Wallis.
${ }^{\text {a }}$ Lit. " circumference," as in several other places in this proposition.

ARISTARCHUS OF SAMOS

From B let BE be drawn at right angles to BA. Then the arc ${ }^{a} \mathrm{E} \Delta$ will be one-thirtieth of the arc $\mathrm{E} \Delta \mathrm{A}$; for, by hypothesis, when the moon appears to us halved, its distance from the sun is less than a quadrant by one-thirtieth of a quadrant [Hypothesis 4]. Therefore the angle EBP is also one-thirtieth of a right angle. Let the parallelogram AE be completed, and let BZ be joined. Then the angle ZBE will be one-half of a right angle. Let the angle ZBE be bisected by the straight line BH ; then the angle HBE is one-fourth part of a right angle. But the angle $\triangle \mathrm{BE}$ is one-thirtieth part of a right angle ; therefore angle HBE : angle $\triangle \mathrm{BE}=15: 2$; for, of those parts of which a right angle contains 60 , the angle HBE contains 15 and the angle $\triangle \mathrm{BE}$ contains 2.

Now since

$$
\mathrm{HE}: \mathrm{E} \theta>\text { angle } \mathrm{HBE}: \text { angle } \triangle \mathrm{BE}, \boldsymbol{b}
$$

therefore $\mathrm{HE}: \mathrm{E} \theta>15: 2$.
And since $\mathrm{BE}=\mathrm{EZ}$, and the angle at E is right, therefore

$$
\mathrm{ZB}^{2}=2 \mathrm{BE}^{2} .
$$

But

$$
\mathrm{ZB}^{2}: \mathrm{BE}^{2}=\mathrm{ZH}^{2}: \mathrm{HE}^{2} .
$$

Therefore
Now

$$
\mathrm{ZH}^{2}=2 \mathrm{HE}^{2} .
$$

so that

$$
49<2.25,
$$

Therefore

$$
\begin{array}{r}
\mathrm{ZH}^{2}: \mathrm{HE}^{2}>49: 25 . \\
\mathrm{ZH}: \mathrm{HE}^{>}>7: 5 .
\end{array}
$$

- Aristarchus's assumption is equivalent to the theorem

$$
\frac{\tan a}{\tan \beta}>\frac{a}{\beta},
$$

where $\beta<a \leq \frac{1}{2} \pi$. Euclid's proof in Optics 8 is given in vol. i. pp. 502-505.

GREEK MATHEMATICS

 $\pi \rho o ̀ s \tau \dot{a} \bar{\epsilon}, \tau o u \tau \epsilon ́ \epsilon \tau \tau \nu$, グ $\hat{o} \nu\left\langle\tau \dot{\alpha}^{2}\right\rangle \lambda_{S} \pi \rho o ̀ s \tau \dot{\alpha} \bar{\epsilon} \bar{\epsilon}$ ．

 $\pi \rho o ̀ s ~ \tau \grave{\alpha}$ रúo，$\tau 0 v \tau \epsilon ́ \sigma \tau \iota \nu, \dddot{\eta}$ ôv $\tau \grave{a}$ ī $\pi \rho o ̀ s ~ \bar{a} \cdot \hat{\eta}$

 $\dot{\eta} \mathrm{AB} \pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{~B}$ ，$\delta \iota \grave{\alpha} \tau \grave{\eta} \nu$ ó $\mu о \iota o ́ \tau \eta \tau \alpha \tau \hat{\omega} \nu \tau \rho \iota-$

 то仑̂ $\Delta \tau \hat{\eta} \mathrm{EB} \pi \alpha \rho a ́ \lambda \lambda \eta \lambda$ ог $\dot{\eta} \Delta \mathrm{K}$ ，каi $\pi \epsilon \rho i ̀ \tau o ̀ ~ \Delta \mathrm{~KB}$

 $\pi \rho o ̀ s ~ \tau \hat{\varphi} \mathrm{~K}$ бшvíav．каi є́vŋриórөш $\dot{\eta} \mathrm{B} \Lambda$

[^2]
ARISTARCHUS OF SAMOS

Therefore, componendo, $\quad Z E: E H>12: 5$,
that is,
ZE: $\mathrm{EH}>36: 15$.
But it was also proved that
$\mathrm{HE}: \mathrm{E} \Theta>15: 2$.
Therefore, ex aequali, ${ }^{\text {a }} \quad \mathrm{ZE}: \mathrm{E} \triangle>36: 2$,
that is,
$Z \mathrm{E}: \mathrm{E} \Theta>18: 1$.
Therefore ZE is greater than eighteen times $\mathrm{E} \theta$. And $Z E$ is equal to BE . Therefore BE is also greater than eighteen times E θ. Therefore BH is much greater than eighteen times θE.

But
$\mathrm{B} \theta: \theta \mathrm{E}=\mathrm{AB}: \mathrm{B} \mathrm{\Gamma}$,
by similarity of triangles. Therefore $A B$ is also greater than eighteen times BI . And AB is the distance of the sun from the earth, while ΓB is the distance of the moon from the earth; therefore the distance of the sun from the earth is greater than eighteen times the distance of the moon from the earth.

I say now that it is less than twenty times. For through Δ let ΔK be drawn parallel to EB , and about the triangle $\Delta \mathrm{KB}$ let the circle $\Delta \mathrm{KB}$ be drawn; its diameter will be ΔB, by reason of the angle at K being right. Let $B \Lambda$, the side of a hexagon, be fitted into the circle. Then, since the angle $\triangle \mathrm{BE}$ is onethirtieth of a right angle, therefore the angle $\mathrm{B} \Delta \mathrm{K}$ is also one-thirtieth of a right angle. Therefore the arc BK is one-sixtieth of the whole circle. But BA is one-sixth part of the whole circle.

Therefore $\quad \operatorname{arc} B \Lambda=10$. arc BK.
And the arc $B \Lambda$ has to the arc $B K$ a ratio greater - For the proportion ex aequali, v. vol. i. pp. 448-451.

GREEK MATHEMATICS

 ठє́ каi $\mu \in i ̂ \zeta о \nu \ddot{\eta} \bar{\eta}$.

(c) Continued Fractions (?)

Ibid., Prop. 13, ed. Heath 396. 1-2
${ }^{*} \mathrm{E}_{\chi \in \iota} \delta \dot{\epsilon}$ каi $\tau \dot{\alpha} \bar{\zeta} \overline{\zeta \lambda \kappa \alpha} \pi \rho o ̀ s, \overline{\delta v} \mu \epsilon i \zeta о \nu \alpha$ 入ó $\gamma о \nu$ $\eta{ }^{\prime} \pi \epsilon \rho \tau \dot{\alpha} \bar{\pi} \bar{\eta} \pi \rho \dot{o} s \overline{\mu \epsilon}$.

Ibid., Prop. 15, ed. Heath 406. 23-24
 $\lambda o ́ \gamma o \nu \eta$ ŋ̆ ôv $\tau \dot{\alpha} \overline{\mu \gamma} \pi \rho o ̀ s \overline{\lambda \zeta}$.
${ }^{2} r \grave{\eta} \nu$ add. Wallis.
${ }^{a}$ This is proved in Ptolemy's Syntaxis i. 10, v. infra, pp. 435-439.

- If $\frac{7921}{4050}$ is developed as a continued fraction, we obtain the approximation $1+\frac{1}{1+} \frac{1}{2} \frac{1}{2}$, which is $\frac{88}{45}$. Similarly, if $\frac{71755875}{61735500}$ or $\frac{21261}{18292}$ is developed as a continued fraction, we

ARISTARCHUS OF SAMOS

than that which the straight line $B \Lambda$ has to the straight line BK. ${ }^{a}$

Therefore
And
Therefore
But
Therefore
And $A B$ is the distance of the sun from the earth, while $B \Gamma$ is the distance of the moon from the earth; therefore the distance of the sun from the earth is less than twenty times the distance of the moon from the earth. And it was proved to be greater than eighteen times.

(c) Continued Fractions (?)

> Ibid., Prop. 13, ed. Heath 396. 1-2

But 7921 has to 4050 a ratio greater than that which 88 has to 45.

Ibid., Prop. 15, ed. Heath 406. 23-24
But 71755875 has to 61735500 a ratio greater than that which 43 has to $37 .{ }^{\text {b }}$
obtain the approximation $1+\frac{1}{6+} \frac{1}{6}$ or $\frac{43}{37}$. The latter result was first noticed in 1823 by the Comte de Fortia D’Urban (Traité d'Aristarque de Samos, p. 186 n. 1), who added: " Ainsi les Grecs, malgré l'imperfection de leur numération, avaient des méthodes semblables aux nôtres." Though these relations are hardly sufficient to enable us to say that the Greeks knew how to develop continued fractions, they lend some support to the theory developed by D'Arcy W. Thompson in Mind, xxxviii. pp. 43-55, 1929.

XVII. ARCHIMEDES

XVII．ARCHIMEDES

（a）General

Tzetzes，Chil．ii．103－144

 X

 П $\epsilon \nu \tau \epsilon \mu v р \iota о \mu \epsilon ́ \delta \iota \mu \nu о \nu$ ка $\theta \epsilon і \lambda \kappa v \sigma \epsilon \nu$ ó $\lambda \kappa \alpha ́ \delta a$ Kai то仑̂ Маркє́入入ov $\sigma \tau \rho \alpha \tau \eta \gamma о \hat{v}$ тотє $\delta \dot{\epsilon} \tau \hat{\omega} \nu$ ${ }^{\prime} \mathrm{P} \omega \mu \alpha i \omega \nu$
Т $\hat{\eta}$ इvракоv́वך катà $\gamma \hat{\eta} \nu \quad \pi \rho о \sigma \beta a ́ \lambda \lambda о \nu \tau о s ~ к \alpha i ̀$ то́vтov，
Tıvàs $\mu \grave{\epsilon} \nu \pi \rho \hat{\omega} \tau o \nu \quad \mu \eta \chi a \nu a i ̂ s ~ a ̀ \nu \epsilon i ́ \lambda \kappa v \sigma \epsilon \nu$ ó $\lambda \kappa \alpha ́ \delta a s$ Kai $\pi \rho o ̀ s ~ \tau o ̀ ~ \Sigma v \rho a к о v ́ \sigma ı o \nu ~ \tau \epsilon i ̂ \chi o s ~ \mu \epsilon \tau \epsilon \omega \rho i ́ \sigma a s ~$

a A life of Archimedes was written by a certain Heraclides －perhaps the Heraclides who is mentioned by Archimedes himself in the preface to his book On Spirals（Archim．ed． Heiberg ii．2．3）as having taken his books to Dositheus．We know this from two references by Eutocius（Archim．ed． Heiberg iii．228．20，Apollon．ed．Heiberg ii．163．3，where，
 survived．The surviving writings of Archimedes，together with the commentaries of Eutocius of Ascalon（fl．A．d．520）， have been edited by J．L．Heiberg in three volumes of the Teubner series（references in this volume are to the 2nd ed．， Leipzig，1910－1915）．They have been put into mathematical notation by T．L．Heath，The Works of Archimedes（Cam－ 18

XVII. ARCHIMEDES ${ }^{\text {a }}$

(a) General

Tzetzes, Book of Histories ii. 103-144 ${ }^{\text {b }}$

Archimedes the wise, the famous maker of engines, was a Syracusan by race, and worked at geometry till old age, surviving five-and-seventy-years ${ }^{c}$; he reduced to his service many mechanical powers, and with his triple-pulley device, using only his left hand, he drew a vessel of fifty thousand medimni burden. Once, when Marcellus, the Roman general, was assaulting Syracuse by land and sea, first by his engines he drew up some merchant-vessels, lifted them up against the wall of Syracuse, and sent them in a heap again to the bottom, crews and all. When Marcellus had withdrawn his ships a little distance, the old man gave all the Syracusans power to lift bridge, 1897), supplemented by The Method of Archimedes (Cambridge, 1922), and have been translated into French by Paul Ver Eecke, Les Euvres complètes d'Archimide (Brussels, 1921).
"The lines which follow are an example of the "political" (π oдıтькós, popular) verse which prevailed in Byzantine times. The name is given to verse composed by accent instead of quantity, with an accent on the last syllable but one, esfecially an iambic verse of fifteen syllables. The twelfthcentury Byzantine pedant, John Tzetzes, preserved in his Book of Histories a great treasure of literary, historical, theological and scientific detail, but it needs to be used with caution. The work is often called the Chiliades from its arbitrary division by its first editor (N. Gerbel, 1546) into books of 1000 lines each-it actually contains 12,674 línes.
c As he perished in the sack of Syracuse in 212 b.c., he was therefore born about 287 в.с.

GREEK MATHEMATICS

 Kai тòv каӨ'́va $\pi \dot{\epsilon} \mu \pi о \nu \tau a s^{1} \beta v \theta i ́ \zeta \epsilon \iota \nu \tau a ̀ s ~ o ̀ д к а ́ \delta a s . ~$

[^3]
ARCHIMEDES

stones large enough to load a waggon and, hurling them one after the other, to sink the ships. When Marcellus withdrew them a bow-shot, the old man constructed a kind of hexagonal mirror, and at an interval proportionate to the size of the mirror he set similar small mirrors with four edges, moved by links and by a form of hinge, and made it the centre of the sun's beams-its noon-tide beam, whether in summer or in mid-winter. Afterwards, when the beams were reflected in the mirror, a fearful kindling of fire was raised in the ships, and at the distance of a bow-shot he turned them into ashes. ${ }^{a}$ In this way did the old man prevail over Marcellus with his weapons. In his Doric ${ }^{b}$ dialect, and in its Syracusan variant, he declared : " If I have somewhere to stand, I will move the whole earth with my charistion." ${ }^{\text {c }}$
text. The hand of an interpolator-often not particularly skilful-can be repeatedly detected, and there are many loose expressions which Archimedes would not have used, and occasional omissions of an essential step in his argument. Sometimes the original text can be inferred from the commentaries written by Eutocius, but these extend only to the books On the Sphere and Cylinder, the Measurement of a Circle, and On Plane Equilibriums. A partial loss of Doric forms had alrcady occurred by the time of Eutocius, and it is believed that the works most widely read were completely recast a little later in the school of Isidorus of Miletus to make them more easily intelligible to pupils.

- The instrument is otherwise mentioned by Simplicius (in Aristot. Phys., ed. Diels 1110. 2-5) and it is implied that it

 $\kappa \iota \nu \hat{\omega}$ тà̀ $\gamma \hat{a} \nu . "$ As Tzetzes in another place (Chil. iii. 61:
 tìv x ©óva ") writes of a triple-pulley device in the same connexion, it may be presumed to have been of this nature.

GREEK MATHEMATICS

 Еїтє, катд̀ то̀v $\Delta_{i} \omega \nu a$, ' $\mathrm{P} \omega \mu \alpha i o \iota s ~ \pi о р \theta \eta \theta \epsilon i ́ \sigma \eta s, ~$ 'А $\rho \tau \epsilon ́ \mu \iota \delta \iota \tau \hat{\omega} \nu \pi о \lambda \iota \tau \omega ิ \nu \tau o ́ \tau \epsilon \pi \alpha \nu \nu v \chi \iota \zeta o ́ v \tau \omega \nu$,

 'Pwuaîov єìvau, ' $\mathrm{E} \beta o ́ a$, " $\tau i \mu \eta \chi$ á $\nu \eta \mu a$ $\tau i s \tau \hat{\omega} \nu \stackrel{\epsilon}{\epsilon} \mu \hat{\omega} \nu \mu о \iota \delta o ́ \tau \omega$."

Plut. Marcellus xiv. 7-xvii. 7

 $\kappa \alpha i$ $\delta \in i ̂ \xi \alpha i ́ \tau \iota \tau \hat{\omega} \nu \mu \epsilon \gamma \alpha ́ \lambda \omega \nu \kappa \iota \nu о u ́ \mu \epsilon \nu о \nu$ víjò $\sigma \mu \iota \kappa \rho \hat{\alpha} s$
 $\mu \epsilon \gamma \alpha ́ \lambda \omega$ каi $\chi \epsilon \varrho \rho i \quad \pi о \lambda \lambda \hat{\eta} \quad \nu \epsilon \omega \lambda \kappa \eta \theta \epsilon i \sigma a \nu, \epsilon \epsilon \mu \beta \alpha \lambda \dot{\omega} \nu$

[^4]
ARCHIMEDES

Whether, as Diodorus ${ }^{a}$ asserts, Syracuse was betrayed and the citizens went in a body to Marcellus, or, as Dion ${ }^{b}$ tells, it was plundered by the Romans, while the citizens were keeping a night festival to Artemis, he died in this fashion at the hands of one of the Romans. He was stooping down, drawing some diagram in mechanics, when a Roman came up and began to drag him away to take him prisoner. But he, being wholly intent at the time on the diagram, and not perceiving who was tugging at him, said to the man: "Stand away, fellow, from my diagram." ${ }^{\text {c }}$ As the man continued pulling, he turned round and, realizing that he was a Roman, he cried, " Somebody give me one of my engines." But the Roman, scared, straightway slew him, a feeble old man but wonderful in his works.

Plutarch, Marcellus xiv. 7-xvii. 7

Archimedes, who was a kinsman and friend of King Hiero, wrote to him that with a given force it was possible to move any given weight ; and emboldened, as it is said, by the strength of the proof, he averred that, if there were another world and he could go to it, he would move this one. Hiero was amazed and besought him to give a practical demonstration of the problem and show some great object moved by a small force; he thereupon chose a three-masted merchantman among the king's ships which had been hauled ashore with great labour by a large band of men, and after putting on board many men and the usual cargo, sitting some distance away and without any special effort, he pulled gently with his hand at
 them come at my head," he said, "but not at my line."

GREEK MATHEMATICS

 $\pi \rho o ̀ s ~ \pi a ̂ \sigma a \nu ~ i \delta ́ \epsilon ́ a \nu ~ \pi o \lambda \iota o \rho к i ́ a s, ~ o i ̂ s ~ a v ̀ \tau o ̀ s ~ \mu \epsilon ̀ \nu ~ o v ̉ k ~$ є́ Хрฑ́бато, тồ ßiov тò $\pi \lambda \epsilon i ̂ \sigma \tau o \nu ~ a ̀ ~ a ́ o ́ \lambda \epsilon \mu о \nu ~ к а i ~$

 $\pi \alpha \rho a \sigma \kappa \epsilon v \eta$ रो oo $\delta \eta \mu \iota o v \rho \gamma$ ós.

 тобаúт $\eta \nu . \quad \sigma \chi \alpha ́ \sigma a \nu \tau o s ~ \delta \grave{\epsilon} \tau$ às $\mu \eta \chi a \nu \alpha{ }^{\prime} s$ тồ 'A $\rho \chi$ -

 on $\lambda^{2} \omega_{s}$ тò $\beta \rho i ̂ \theta o s ~ \sigma \tau \epsilon ́ \gamma o \nu \tau o s ~ a ̀ \theta \rho o ́ o u s ~ a ̀ \nu a \tau \rho \epsilon \pi o ́ v \tau \omega \nu ~$ тоv̀s víтолíлтоvтas каi τ às $\tau a ́ \xi \epsilon \iota s ~ \sigma v \gamma \chi \epsilon o ́ v \tau \omega \nu$,

 $\sigma \iota \delta \eta \rho a i ̂ s ~ \eta ̀ ~ \sigma \tau o ́ \mu a \sigma \iota \nu ~ \epsilon i к a \sigma \mu \epsilon ́ v o \iota s ~ \gamma \epsilon \rho a ́ v \omega \nu$ ab $\nu \alpha-$

[^5]
ARCHIMEDES

the end of a compound pulley ${ }^{a}$ and drew the vessel smoothly and evenly towards himself as though she were running along the surface of the water. Astonished at this, and understanding the power of his art, the king persuaded Archimedes to construct for him engines to be used in every type of siege warfare, some defensive and some offensive ; he had not himself used these engines because he spent the greater part of his life remote from war and amid the rites of peace, but now his apparatus proved of great advantage to the Syracusans, and with the apparatus its inventor. ${ }^{b}$

Accordingly, when the Romans attacked them from two elements, the Syracusans were struck dumb with fear, thinking that nothing would avail against such violence and power. But Archimedes began to work his engines and hurled against the land forces all sorts of missiles and huge masses of stones, which came down with incredible noise and speed; nothing at all could ward off their weight, but they knocked down in heaps those who stood in the way and threw the ranks into disorder. Furthermore, beams were suddenly thrown over the ships from the walls, and some of the ships were sent to the bottom by means of weights fixed to the beams and plunging down from above ; others were drawn up by iron claws, or crane-like beaks, attached to the prow and were
p. xx, suggests that the vessel, once started, was kept in motion by the system of pulleys, but the first impulse was given by a machine similar to the кох入ías described by Pappus viii. ed. Hultsch 1066, 1108 ff., in which a cog-wheel with oblique teeth moves on a cylindrical helix turned by a handle.
${ }^{b}$ Similar stories of Archimedes' part in the defence are told by Polybius viii. 5. 3-5 and Livy xxiv. 34.

GREEK MATHEMATICS

 $\mu \in \nu \alpha \iota ~ \tau o i ̂ s ~ \dot{v} \pi o ̀ ~ \tau o ̀ ~ \tau \epsilon i ̂ \chi o s ~ \pi \epsilon ф v к o ́ \sigma \iota ~ к \rho \eta \mu \nu о i ̂ s ~ к а i ~$ $\sigma \kappa о \pi \epsilon ́ \lambda o \iota s ~ \pi \rho о \sigma \eta \prime \rho \alpha \sigma \sigma o \nu, ~ \stackrel{a}{\mu} \mu \alpha$ фӨóp π т $\lambda \lambda \hat{\varphi} \tau \hat{\omega} \nu$

 $\mu \epsilon ́ \chi \rho \iota ~ o \hat{v} \tau \hat{\omega} \nu \dot{\alpha} \nu \delta \rho \hat{\omega} \nu \dot{\alpha} \pi \tau \rho \rho \rho ф \epsilon \in \nu \tau \omega \nu$ каi $\delta \iota a \sigma \phi \in \nu-$

 ν vuđìv à $\pi о \pi \lambda \epsilon i ̂ v ~ к а \tau \grave{\alpha} \tau \alpha ́ \chi o s ~ к а i ~ \tau о i ̂ s ~ \pi \epsilon \zeta о i ̂ s ~ a ̉ \nu \alpha-~$ $\chi \omega \rho \eta \sigma \iota \nu \pi \alpha \rho \epsilon \gamma \gamma v \eta$ $\sigma \alpha \iota$.

${ }^{1}$ au่ $\bar{\eta}$ Coraës, au่т \hat{s} codd.
${ }^{2}$ тò teîzos add. Sintenis ex Polyb.

ARCHIMEDES

plunged down on their sterns, or were twisted round and turned about by means of ropes within the city, and dashed against the cliffs set by Nature under the wall and against the rocks, with great destruction of the crews, who were crushed to pieces. Often there was the fearful sight of a ship lifted out of the sea into mid-air and whirled about as it hung there, until the men had been thrown out and shot in all directions, when it would fall empty upon the walls or slip from the grip that had held it. As for the engine which Marcellus was bringing up from the platform of ships, and which was called sambuca from some resemblance in its shape to the musical instrument, ${ }^{a}$ while it was still some distance away as it was being carried to the wall a stone ten talents in weight was discharged at it, and after this a second and a third; some of these, falling upon it with a great crash and sending up a wave, crushed the base of the engine, shook the framework and dislodged it from the barrier, so that Marcellus in perplexity sailed away in his ships and passed the word to his land forces to retire.

In a council of war it was decided to approach the walls, if they could, while it was still night; for they thought that the ropes used by Archimedes, since they gave a powerful impetus, would send the missiles over their heads and would fail in their object at close quarters since there was no space for the cast. But Archimedes, it seems, had long ago prepared for such a contingency engines adapted to all distances and missiles of short range, and through openings in the

[^6]
GREEK MATHEMATICS

ठє̀ каi $\sigma \nu \nu \epsilon \chi \omega ิ \nu \tau \rho \eta \mu a ́ \tau \omega \nu\left\langle o ้ \nu \tau \omega \nu^{1}\right\rangle$, oi $\sigma \kappa о \rho \pi i ́ o \iota$
 áópaтo七 тоîs по入є μ iots.
' Ω_{s} oủv $\pi \rho \circ \sigma \epsilon ́ \mu \iota \xi \alpha \nu$ oió $\mu \epsilon \nu \circ \iota \lambda a \nu \theta a ́ v \epsilon \iota \nu, a v ̂ \theta \iota s$ av̉

 $\kappa \alpha ́ \theta \epsilon \tau о \nu, ~ \tau о \hat{v}$ ס̀̀ $\tau \epsilon i ́ \chi o v s ~ \tau о \xi \epsilon \cup ́ \mu a \tau a ~ \pi а \nu \tau а \chi o ́ \theta \epsilon \nu$

 ov̉ δ èv $\dot{\alpha} \nu \tau \tau \delta \rho a ̂ \sigma a \iota ~ \tau o v ̀ S ~ \pi o \lambda \epsilon \mu i o v s ~ \delta v v a \mu \epsilon ́ v \omega \nu . ~ \tau \grave{\alpha}$

 $\epsilon ่ \pi \iota \chi \epsilon о \mu \epsilon ́ \nu \omega \nu$.

 ă árvà каi $\pi \rho o ̀ s ~ a ̀ \sigma \phi a ́ \lambda \epsilon \iota a \nu . ~ \tau \epsilon ́ \lambda o s ~ \delta \grave{\epsilon}$ тov̀s 'Pupaiovs oüт $\pi \epsilon \rho \iota \phi o ́ \beta o v s$ $\gamma \epsilon \gamma o v o ́ \tau a s ~ o ́ \rho \hat{\nu} \nu$ ó
 ${ }^{1}$ ör $v \tau \omega$ add. Sintenis ex Polyb.

ARCHIMEDES

wall, small in size but many and continuous, shortranged engines called scorpions could be trained on objects close at hand without being seen by the enemy.

When, therefore, the Romans approached the walls, thinking to escape notice, once again they were met by the impact of many missiles; stones fell down on them almost perpendicularly, the wall shot out arrows at them from all points, and they withdrew to the rear. Here again, when they were drawn up some distance away, missiles flew forth and caught them as they were retiring, and caused much destruction among them; many of the ships, also, were dashed together and they could not retaliate upon the enemy. For Archimedes had made the greater part of his engines under the wall, and the Romans seemed to be fighting against the gods, inasmuch as countless evils were poured upon them from an unseen source.

Nevertheless Marcellus escaped, and, twitting his artificers and craftsmen, he said: "Shall we not cease fighting against this geometrical Briareus, who uses our ships like cups to ladle water from the sea, who has whipped our sambuca and driven it off in disgrace, and who outdoes all the hundred-handed monsters of fable in hurling so many missiles against us all at once ?" For in reality all the other Syracusans were only a body for Archimedes' apparatus, and his the one soul moving and turning everything: all other weapons lay idle, and the city then used his alone, both for offence and for defence. In the end the Romans became so filled with fear that, if they saw a little piece of rope or of wood projecting over
${ }^{2}$ raîs $\mu \grave{\iota} \nu$ vavaiv . . . jamíl $\omega \nu$ an anonymous correction from
 codd.

GREEK MATHEMATICS

 тодьоркіал $\theta \epsilon ́ \mu \epsilon \nu о s$.

 à $\lambda \lambda \grave{\alpha} \tau \grave{\eta} \nu \pi \epsilon \rho i \quad \tau \dot{\alpha} \mu \eta \chi \alpha \nu \kappa \kappa \dot{\alpha} \pi \rho a \gamma \mu a \tau \epsilon i ́ a \nu \kappa \alpha i \pi a ̂ \sigma \alpha \nu$

 т $̀ \nu$ aúzov̂ фı入отıцıáv oís тò ка入òv каi $\pi \epsilon \rho \iota \tau \tau \grave{\nu} \nu$ ả $\mu \iota \gamma \epsilon \grave{s}$ то仑̂ ảvaүкаíov $\pi \rho o ́ \sigma \epsilon \sigma \tau \iota \nu$ ，á $\sigma \dot{\gamma} \gamma \kappa \rho \iota \tau \alpha \mu \dot{\nu} \nu$
 $\tau \hat{\eta}$ à $\pi o \delta \epsilon i \xi \epsilon \epsilon \iota, \tau \hat{\eta} \varsigma \mu \dot{\epsilon} \nu$ тò $\mu \epsilon ́ \gamma \epsilon \theta$ оs каi тò кádخos， $\tau \hat{\eta} S ~ \delta \dot{\epsilon} \tau \grave{\eta} \nu$ ảкрíßєıav каi т $\boldsymbol{\eta} \nu \quad \delta u ́ v a \mu \iota \nu \quad \dot{v} \pi \epsilon \rho \phi и \hat{\eta}$

 $\lambda a \beta \epsilon i ̂ v$ каi каӨарштє́ $\rho \circ \iota s$ бтоıхєioıs үрафонє́vas．

 є́ $\lambda \epsilon ́ \lambda \eta \sigma \tau о$ каi бíтои каi $\theta \epsilon \rho a \pi \epsilon i a s ~ \sigma \omega ́ \mu a \tau о s ~ \epsilon ’ \xi-~$
 30

ARCHIMEDES

the wall, they cried, " There it is, Archimedes is training some engine upon us," and fled ; seeing this Marcellus abandoned all fighting and assault, and for the future relied on a long siege.

Yet Archimedes possessed so lofty a spirit, so profound a soul, and such a wealth of scientific inquiry, that although he had acquired through his inventions a name and reputation for divine rather than human intelligence, he would not deign to leave behind a single writing on such subjects. Regarding the business of mechanics and every utilitarian art as ignoble and vulgar, he gave his zealous devotion only to those subjects whose elegance and subtlety are untrammelled by the necessities of life; these subjects, he held, cannot be compared with any others ; in them the subject-matter vies with the demonstration, the former possessing strength and beauty, the latter precision and surpassing power ; for it is not possible to find in geometry more difficult and weighty questions treated in simpler and purer terms. Some attribute this to the natural endowments of the man, others think it was the result of exceeding labour that everything done by him appeared to have been done without labour and with ease. For although by his own efforts no one could discover the proof, yet as soon as he learns it, he takes credit that he could have discovered it: so smooth and rapid is the path by which he leads to the conclusion. For these reasons there is no need to disbelieve the stories told about him-how, continually bewitched by some familiar siren dwelling with him, he forgot his food and neglected the care of his body ; and how, when he was dragged by main force, as often happened, to the

GRELK MATHEMATICS

 $\gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \bar{\omega} \nu$, каi $\tau о \hat{v} \sigma \dot{\omega} \mu \alpha \tau о \varsigma \dot{a} \lambda \eta \lambda \iota \mu \mu \epsilon \in \nu о v \delta \iota \hat{\eta} \gamma \epsilon$

 $\tau \epsilon \lambda \epsilon v \tau \dot{\eta} \nu \dot{\epsilon} \pi \iota \sigma \tau \eta \dot{\eta} \sigma \omega \sigma \iota \tau \hat{\omega} \tau \alpha ́ \phi \omega$ тòv $\pi \epsilon \rho \iota \lambda \alpha \mu \beta \alpha ́ v o \nu \tau \alpha$

 тò $\pi \epsilon \rho \iota \epsilon \chi о ́ \mu \epsilon \nu \circ \nu$.

Ibid. xix. 4-6

 ó $\gamma \gamma \iota \sigma \theta \epsilon i s$ каi $\sigma \pi a \sigma a ́ \mu \epsilon \nu o s ~ \tau o ̀ ~ \xi i ́ \phi o s ~ a ̉ \nu \epsilon i ̀ \lambda \epsilon \nu ~ a v ̉ \tau o ́ v . ~$

 iठóvта $\delta \epsilon i ̂ \sigma \theta a \iota ~ к а i ~ a ̀ v \tau \iota \beta о \lambda \epsilon i ̂ v ~ a ̉ \nu a \mu \epsilon i ̂ v a \iota ~ \beta \rho a \chi \grave{v} v$

 $\pi \rho o ̀ s ~ М \alpha ́ \rho к є \lambda \lambda о \nu ~ a v ̇ \tau \hat{\varrho} \tau \hat{\omega} \nu \mu \alpha \theta \eta \mu a \tau \iota \kappa \hat{\omega} \nu$ o’ $\rho \gamma a ́ v \omega \nu$

[^7] 32

ARCHIMEDES

place for bathing and anointing, he would draw geometrical figures in the hearths, and draw lines with his finger in the oil with which his body was anointed, being overcome by great pleasure and in truth inspired of the Muses. And though he made many elegant discoveries, he is said to have besought his friends and kinsmen to place on his grave after his death a cylinder enclosing a sphere, with an inscription giving the proportion by which the including solid exceeds the included. ${ }^{a}$

Ibid. xix. 4-6

But what specially grieved Marcellus was the death of Archimedes. For it chanced that he was alone, examining a diagram closely; and having fixed both his mind and his eyes on the object of his inquiry, he perceived neither the inroad of the Romans nor the taking of the city. Suddenly a soldier came up to him and bade him follow to Marcellus, but he would not go until he had finished the problem and worked it out to the demonstration. Thereupon the soldier became enraged, drew his sword and dispatched him. Others, however, say that the Roman came upon him with drawn sword intending to kill him at once, and that Archimedes, on seeing him, besought and entreated him to wait a little while so that he might not leave the question unfinished and only partly investigated ; but the soldier did not understand and slew him. There is also a third story, that as he was carrying to Marcellus some of his mathematical instruments, such as sundials, spheres and grown with vegetation, but still bearing the cylinder with the sphere, and he restored it (Tusc. Disp. v. 64-66). The theorem proving the proportion is given infra, pp. 124-127.

GREEK MATHEMATICS

 $\kappa а i ~ \tau o ̀ v ~ a v ̉ \tau o ́ \chi \epsilon \iota \rho a ~ \tau o v ̂ ~ a ̉ \nu \delta \rho o ̀ s ~ a ̉ \pi \epsilon \sigma \tau \rho a ́ \phi \eta ~ \kappa а \theta a ́ \pi \epsilon \epsilon ~$
 $\lambda о \gamma \in i \tau a \iota$.

Papp. Coll. viii. 11. 19, ed. Hultsch 1060. 1-4

 єiрךкє́val" " $\delta o ́ s ~ \mu o i ́ ~(\phi \eta \sigma \iota) ~ \pi о \hat{v} \sigma \tau \hat{\omega} \kappa \alpha i ้ ~ \kappa \iota \nu \hat{\omega} \tau \eta ̀ \nu$ $\gamma \hat{\eta} \nu$.

Diod. Sic. i. 34. 2

 ох ${ }^{\prime} \mu а т о$ кох кías.

Ibid. $\mathbf{\text { v. 37. }} \mathbf{3}$

Tò $\pi a ́ v \tau \omega \nu \pi a \rho a \delta o \xi o ́ \tau a \tau o v, ~ \dot{\alpha} \pi a \rho v ́ \tau o v \sigma \iota ~ \tau a ̀ s$

 ö $\tau \epsilon \pi \alpha \rho \epsilon ́ \beta a \lambda \epsilon \nu$ єis A ${ }^{\prime} \gamma v \pi \tau о \nu$.
${ }^{1} \lambda^{\prime} \hat{\epsilon} \ell \epsilon \tau a \iota$ om. Hultsch.

[^8]
ARCHIMEDES

angles adjusted to the apparent size of the sun, some soldiers fell in with him and, under the impression that he carried treasure in the box, killed him. What is, however, agreed is that Marcellus was distressed, and turncd away from the slayer as from a polluted person, and sought out the relatives of Archimedes to do them honour.

Pappus, Collection viii. 11. 19, ed. Hultsch 1060. 1-4
To the same type of inquiry belongs the problem: To move a given weight by a given force. This is one of Archimedes' discoveries in mechanics, whereupon he is said to have exclaimed : "Give me somewhere to stand and I will move the earth."

Diodorus Siculus i. 34. 2

As it is made of silt watered by the river after being deposited, it ${ }^{a}$ bears an abundance of fruits of all kinds; for in the annual rising the river continually pours over it fresh alluvium, and men easily irrigate the whole of it by means of a certain instrument conceived by Archimedes of Syracuse, and which gets its name because it has the form of a spiral or screw.

$$
\text { Ibid. v. } 37.3
$$

Most remarkable of all, they draw off streams of water by the so-called Egyptian screws, which Archimedes of Syracuse invented when he went by ship to Egypt. ${ }^{b}$
the preface to his books On the Sphere and Cylinder shows, he used to communicate his discoveries before publication, and Eratosthenes of Cyrene, to whom he sent the Method and probably the Cattle Problem.

GREEK MATHEMATICS

Vitr. De Arch. ix., Praef. 9-12

Archimedis vero cum multa miranda inventa et varia fuerint, ex omnibus etiam infinita sollertia id quod exponam videtur esse expressum. Nimium Hiero Syracusis auctus regia potestate, rebus bene gestis cum auream coronam votivam diis immortalibus in quodam fano constituisset ponendam, manupretio locavit faciendam et aurum ad sacoma adpendit redemptori. Is ad tempus opus manu factum subtiliter regi adprobavit et ad sacoma pondus coronae visus est praestitisse. Posteaquam indicium est factum dempto auro tantundem argenti in id coronarium opus admixtum esse, indignatus Hiero se contemptum esse neque inveniens qua ratione id furtum deprehenderet, rogavit Archimeden uti insumeret sibi de eo cogitationem. Tunc is cum haberet eius rei curam, casu venit in balineum ibique cum in solium descenderet, animadvertit quantum corporis sui in eo insideret tantum aquae extra solium effluere. Idque cum eius rei rationem explicationis ostendisset, non est moratus sed exsiluit gaudio motus de solio et nudus vadens domum versus significabat clara voce invenisse quod quaereret. Nam currens identidem graece clamabat єi̋ $р к \alpha є ข ँ \rho \eta к а$.

Tum vero ex eo inventionis ingressu duas fecisse dicitur massas aequo pondere quo etiam fuerat corona, unam ex auro et alteram ex argento. Cum ita fecisset, vas amplum ad summa labra implevit
a "I have found, I have found."

ARCHIMEDES

Vitruvius, On Architecture ix., Preface 9-1

Archimedes made many wonderful discoveries of different kinds, but of all these that which I shall now explain seems to exhibit a boundless ingenuity. When Hiero was greatly exalted in the royal power at Syracuse, in return for the success of his policy he determined to set up in a certain shrine a golden crown as a votive offering to the immortal gods. He let out the work for a stipulated payment, and weighed out the exact amount of gold for the contractor. At the appointed time the contractor brought his work skilfully executed for the king's approval, and he seemed to have fulfilled exactly the requirement about the weight of the crown. Later information was given that gold had been removed and an equal weight of silver added in the making of the crown. Hiero was indignant at this disrespect for himself, and, being unable to discover any means by which he might unmask the fraud, he asked Archimedes to give it his attention. While Archimedes was turning the problem over, he chanced to come to the place of bathing, and there, as he was sitting down in the tub, he noticed that the amount of water which flowed over the tub was equal to the amount by which his body was immersed. This indicated to him a means of solving the problem, and he did not delay, but in his joy leapt out of the tub and, rushing naked towards his home, he cried out with a loud voice that he had found what he sought. For as he ran he repeatedly shouted in Greek, heureka, heureka. ${ }^{a}$

Then, following up his discovery, he is said to have made two masses of the same weight as the crown, the one of gold and the other of silver. When he had so done, he filled a large vessel right up to the brim

GREEK MATHEMATICS

aqua, in quo demisit argenteam massam. Cuius quanta magnitudo in vase depressa est, tantum aquae effluxit. Ita exempta massa quanto minus factum fuerat refudit sextario mensus, ut eodem modo quo prius fuerat ad labra aequaretur. Ita ex eo invenit quantum pondus argenti ad certam aquae mensuram responderet.

Cum id expertus esset, tum auream massam similiter pleno vase demisit et ea exempta eadem ratione mensura addita invenit deesse aquae non tantum sed minus, quanto minus magno corpore eodem pondere auri massa esset quam argenti. Postea vero repleto vase in eadem aqua ipsa corona demissa invenit plus aquae defluxisse in coronam quam in auream eodem pondere massam, et ita ex eo quod defuerit plus aquae in corona quam in massa, ratiocinatus deprehendit argenti in auro mixtionem et manifestum furtum redemptoris.
a The method maybe thus expressed analytically.
Let w be the weight of the crown, and let it be made up of a weight w_{1} of gold and a weight w_{2} of silver, so that $w=w_{1}+w_{2}$.

Let the crown displace a volume v of water.
Let the weight w of gold displace a volume v_{1} of water; then a weight w_{1} of gold displaces a volume $\frac{w_{1}}{w} \cdot v_{1}$ of water.

Let the weight $v o$ of silver displace a volume $v_{\mathbf{2}}$ of water ; 38

ARCHIMEDES

with water, into which he dropped the silver mass. The amount by which it was immersed in the vessel was the amount of water which overflowed. Taking out the mass, he poured back the amount by which the water had been depleted, measuring it with a pint pot, so that as before the water was made level with the brim. In this way he found what weight of silver answered to a certain measure of water.

When he had made this test, in like manner he dropped the golden mass into the full vessel. Taking it out again, for the same reason he added a measured quantity of water, and found that the deficiency of water was not the same, but less; and the amount by which it was less corresponded with the excess of a mass of silver, having the same weight, over a mass of gold. After filling the vessel again, he then dropped the crown itself into the water, and found that more water overflowed in the case of the crown than in the case of the golden mass of identical weight ; and so, from the fact that more water was needed to make up the deficiency in the case of the crown than in the case of the mass, he calculated and detected the mixture of silver with the gold and the contractor's fraud stood revealed. ${ }^{a}$
then a weight w_{2} of silver displaces a volume $\frac{w_{2}}{w} \cdot v_{2}$ of water.
It follows that

$$
\begin{aligned}
v & =\frac{w_{1}}{w} \cdot v_{1}+\frac{w_{2}}{w} \cdot v_{2} \\
& =\frac{w_{1} v_{1}+w_{2} v_{2}}{w_{1}+w_{2}},
\end{aligned}
$$

so that

$$
\frac{w_{1}}{w_{2}}=\frac{v_{2}-v}{v-v_{1}} .
$$

For an alternative method of solving the problem, v. infra, pp. 248-251.

GREEK MATHEMATICS

(b) Surface and Volume of the Cylinder and Sphere

Archim. De Sphaera et Cyl. i., Archim. ed. Heiberg i. 2-132. 3

 бфаípas $\dot{\eta}$ є̇ $\pi \iota \phi a ́ v \epsilon \iota a \quad \tau \epsilon \tau \rho a \pi \lambda a \sigma i ́ a ~ \epsilon ̇ \sigma \tau i v ~ \tau o \hat{v} \mu \epsilon \gamma i ́-$

a The chief results of this book are described in the arefatory letter to Dositheus. In this selection as much as possible is given of what is essential to finding the proportions between the surface and volume of the sphere and the surface and volume of the enclosing cylinder, which Archimedes regarded as his crowning achievement (supra, p. 32). In the case of the surface, the whole series of propositions is reproduced so that the reader may follow in detail the majestic chain of reasoning by which Archimedes, starting from seemingly remote premises, reaches the desired conclusion ; in the case of the volume only the final proposition (34) can be given, for reasons of space, but the reader will be able to prove the omitted theorems for himself. Mari passe with 40

ARCHIMEDES

(b) Surface and Volume of the Cylinder and Sphere

Archimedes. On the Sphere and Cylinder i., Archim. ed. Heiberg i. 2-132. 3^{a}

Archimedes to Dositheus greeting

On a previous occasion I sent you, together with the proof, so much of my investigations as I had set down in writing, namely, that any segment bounded by a straight line and a section of a right-angled cone is fourthirds of the triangle having the same base as the segment and equal height. ${ }^{\text {b }}$ Subsequently certain theorems deserving notice occurred to me, and I have worked out the proofs. They are these : first, that the surface of any sphere is four times the greatest of the circles in it ${ }^{\circ}$; then, that the surface of any segment of a sphere is equal to a circle whose radius is equal to the straight line drann from the vertex of the segment to the circumference of the circle which is the base of the segment ${ }^{d}$; and, this demonstration, Archimedes finds the surface and volume of any segment of a sphere. The method in each case is to inscribe in the sphere or segment of a sphere, and to circumscribe about it, figures composed of cones and frusta of cones. The sphere or segment of a sphere is intermediate in surface and volume between the inscribed and circumscribed figures, and in the limit, when the number of sides in the inscribed and circumscribed figures is indefinitely increased, it would become identical with them. It will readily be appreciated that Archimedes' method is fundamentally the same as integration, and on p. $116 \mathrm{n} . b$ this will be shown trigonometrically.
${ }^{\circ}$ This is proved in Props. 17 and 24 of the Quadrature of the Paralola, sent to Dositheus of Pelusium with a prefatory letter, v. pp. 228-243, infra.
' De Sphaera et Cyl. i. 30. "The greatest of the circles," here and elsewhere, is equivalent to "a great circle."
${ }^{d}$ Ibid. i. 42, 43.

GREEK MATHEMATICS

 $\delta \dot{\epsilon} \tau \dot{\alpha} \sigma v \mu \pi \tau \dot{\omega} \mu \alpha \tau \alpha \tau \hat{\eta} \phi \dot{v} \sigma \epsilon \iota \pi \rho o v \pi \hat{\eta} \rho \chi \in \nu \pi \epsilon \rho i \quad \tau \dot{\alpha}$
 $\pi \epsilon \rho i ̀ ~ \gamma \epsilon \omega \mu \epsilon \tau \rho i ́ a \nu$ à $\nu \epsilon \sigma \tau \rho a \mu \mu \epsilon ́ v \omega \nu$ ov̉ $\delta \epsilon \nu o ̀ s$ aủ $\tau \hat{\omega} \nu$

 $\sigma \kappa \epsilon ́ \psi a \sigma \theta a \iota$ тoîs $\delta v \nu \eta \sigma o \mu \epsilon ́ v o \iota s . ~ \omega ̈ \phi \epsilon \iota \lambda \epsilon ~ \mu \grave{v} \nu$ oủv
 ن́ $\pi о \lambda a \mu \beta \alpha ́ v o \mu \epsilon ́ v ~ \pi o v ~ \mu a ́ \lambda \iota \sigma \tau \alpha ~ a ̊ \nu ~ \delta u ́ v a \sigma \theta a \iota ~ \kappa \alpha \tau \alpha-~$

 є' $\chi \epsilon \iota \nu \quad \mu \epsilon \tau \alpha \delta \iota \delta o ́ v a \iota ~ \tau о i ̂ s ~ o i к є$ ióos $\tau \hat{\omega} \nu \mu \alpha \theta \eta \mu \alpha ́ \tau \omega \nu$

 фо $\mu \in ́ \nu o \iota s ~ \epsilon ̇ \pi \iota \sigma \kappa \epsilon ́ \psi a \sigma \theta a \iota . ~ \epsilon ’ \rho \rho \omega \mu \epsilon ́ \nu \omega s . ~$
$\Gamma \rho a ́ \phi о \nu \tau \alpha \iota \pi \rho \bar{\omega} \tau о \nu \tau \alpha \dot{\alpha} \tau \epsilon \mathfrak{a} \xi \iota \omega ́ \mu \alpha \tau \alpha$ каi $\tau \dot{a} \lambda \alpha \mu \beta \alpha-$ $\nu o ́ \mu \epsilon \nu a$ єis $\tau \grave{\alpha} s \dot{\alpha} \pi \sigma \delta \epsilon i \xi \epsilon \iota s$ aù $\tau \hat{\omega} \nu$.
'A $\xi \iota \omega \prime \mu \alpha \tau \alpha$
 $\pi \epsilon \pi \epsilon \rho a \sigma \mu \epsilon ́ v a \iota, ~ a i ̂ ~ \tau \hat{\omega} \nu \tau \dot{\alpha} \pi \dot{\epsilon} \rho a \tau \alpha$ é $\pi \iota \zeta \epsilon v \gamma \nu v o v \sigma \hat{\omega} \nu$

${ }^{a}$ De Sphaera et Cyl. i. 34 coroll. The surface of the cylinder here includes the bases.

ARCHIMEDES

further, that, in the case of any sphere, the cylinder having its base equal to the greatest of the circles in the sphere, and height equal to the diameter of the sphere, is one-and-a-half times the sphere, and its surface is one-and-a-half times the surface of the sphere. ${ }^{a}$ Now these properties were inherent in the nature of the figures mentioned, but they were unknown to all who studied geometry before me, nor did any of them suspect such a relationship in these figures. ${ }^{\text {b }}$. . . But now it will be possible for those who have the capacity to examine these discoveries of mine. They ought to have been published while Conon was still alive, for I opine that he more than others would have been able to grasp them and pronounce a fitting verdict upon them; but, holding it well to communicate them to students of mathematics, I send you the proofs that I have written out, which proofs will now be open to those who are conversant with mathematics. Farewell.

In the first place, the axioms and the assumptions used for the proofs of these theorems are here set out.

AXIOMS ${ }^{c}$

1. There are in a plane certain finite bent lines which either lie wholly on the same side of the straight lines joining their extremities or have no part on the other side.
2. I call concave in the same direction a line such that, if any two points whatsoever are taken on it, either
[^9]GREEK MATHEMATICS

 $\epsilon ่ \pi \iota \phi a \nu \epsilon i ́ a s, ~ \grave{\epsilon} v$ aîs ả้ δ र́o $\sigma \eta \mu \epsilon i ́ \omega \nu \lambda \alpha \mu \beta a \nu o \mu \epsilon ́ v \omega \nu$

 $\mu \eta \delta \epsilon \mu i \alpha$.

 $\tau \hat{\eta} s$ oфaípas, тò є́ $\mu \pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu$ o $\chi \hat{\eta} \mu a$ vimó $\tau \epsilon$
 oфaípas є̇vтòs тô кúvov.

 $\kappa \propto ́ \nu о \iota \nu ~ \sigma v \gamma \kappa є i ́ \mu \epsilon \nu о \nu ~ \sigma \tau \epsilon \rho \epsilon \grave{\partial} \nu \sigma \chi \hat{\eta} \mu a$.

Манßаvó $\mu \epsilon \nu a$
$\Lambda \alpha \mu \beta a ́ v \omega$ б̀̀ $\tau \alpha \hat{v} \tau \alpha$.
 є́ $\lambda a \chi i \sigma \tau \eta \nu$ єivaı $\tau \dot{\eta} \nu ~ \epsilon \dot{v} \theta \epsilon i \hat{i} \alpha$.
44

ARCHIMEDES

all the straight lines joining the points fall on the same side of the line, or some fall on one and the same side while others fall along the line itself, but none fall on the other side.
3. Similarly also there are certain finite surfaces, not in a plane themselves but having their extremities in a plane, and such that they will either lie wholly on the same side of the plane containing their extremities or will have no part on the other side.
4. I call concave in the same direction surfaces such that, if any two points on them are taken, either the straight lines between the points all fall upon the same side of the surface, or some fall on one and the same side while others fall along the surface itss lf, but none falls on the other side.
5. When a cone cuts a sphere, and has its vertex at the centre of the sphere, I call the figure comprehended by the surface of the cone and the surface of the sphere within the cone a solid sector.
6. When two cones having the same base have their vertices on opposite sides of the plane of the base in such a way that their axes lie in a straight line, I call the solid figure formed by the two cones a solid rhombus.

POSTULATES

I make these postulates :

1. Of all lines which have the same extremities the straight line is the least. ${ }^{a}$

- Proclus (in Eucl., ed. Friedlein 110. 10-14) saw in this statement a connexion with Euclid's definition of a straight line as lying evenly with the points on itself: $\dot{\delta} \delta^{\prime}$ a \hat{v}

 aủrà π épata èx χ vā̂v.

GREEK MATHEMATICS

 $\tau \grave{\eta} \nu \pi \epsilon \rho \iota \lambda \alpha \mu \beta \alpha \nu \circ \mu \epsilon ́ \nu \eta \nu$.

 єiva८ т $̀ \nu \pi \epsilon \rho \iota \lambda \alpha \mu \beta \alpha \nu о \mu \epsilon ́ v \eta \nu$.
$\epsilon^{\prime} .{ }^{2}$ E $\tau \iota \delta \frac{\epsilon}{\epsilon} \tau \hat{\omega} \nu$ ar $\nu i \sigma \omega \nu \gamma \rho \alpha \mu \mu \hat{\omega} \nu \kappa \alpha i \tau \hat{\omega} \nu$ ảvíб $\omega \nu$

[^10]
ARCHIMEDES

2. Of other lines lying in a plane and having the same extremities, [any two] such are unequal when both are concave in the same direction and one is either wholly included between the other and the straight line having the same extremities with it, or is partly included by and partly common with the other ; and the included line is the lesser.
3. Similarly, of surfaces which have the same extremities, if those extremities be in a plane, the plane is the least.
4. Of other surfaces having the same extremities, if the extremities be in a plane, [any two] such are unequal when both are concave in the same direction, and one surface is either wholly included between the other and the plane having the same extremities with it, or is partly included by and partly common with the other ; and the included surface is the lesser.
5. Further, of unequal lines and unequal surfaces and unequal solids, the greater exceeds the less by such a magnitude as, when added to itself, can be made to exceed any assigned magnitude among those comparable with one another. ${ }^{a}$

With these premises, if a polygon be inscribed in a circle, it is clear that the perimeter of the inscribed polygon is less than the circumference of the circle; for each of the sides of the polygon is less than the are of the circle cut off by it.
in Euclid x. 1, for which v. vol. i. pp. 459-455. The axiom can be shown to be equivalent to Dedekind's principle, that a section of the rational points in which they are divided into two classes is made by a single point. Applied to straight lines, it is equivalent to saying that there is a complete correspondence between the aggregate of real numbers and the aggregate of points in a straight line; v. E. W. Hobson, The Theory of Functions of a Real Variable, 2nd ed., vol. i. p. 55.

GREEK MATHEMATICS

a^{\prime}

 $\tau \hat{\eta} s \pi \epsilon \rho ц \mu \epsilon ́ \tau \rho \circ v$ тоv̂ кv́кдоv.
 $\dot{v} \pi о к є і ́ \mu \epsilon \nu о \nu . ~ \lambda \epsilon ́ \gamma \omega$, öть $\dot{\eta} \pi \epsilon \rho i ́ \mu \epsilon \tau \rho о s ~ \tau о \hat{v} \pi о \lambda v-$ $\gamma \omega ́ \nu o v \mu \epsilon i \zeta \omega \nu$ є́वтiv тर̂S $\pi \epsilon \rho \iota \mu \epsilon ́ \tau \rho o v ~ \tau o v ̂ ~ \kappa v ́ к \lambda o v . ~$

 ठє̀ каi бvขацфóтєроs $\mu \epsilon ̀ \nu ~ \dot{\eta} \Delta \Gamma, ~ Г В ~ т \eta ̂ s ~ \Delta В, ~$

 $\Delta \mathrm{E}, \mathrm{EZ} \tau \hat{\eta} s \quad \Delta \mathrm{Z}$, ö̀ $\lambda \eta$ ${ }^{\alpha} \rho \alpha \dot{\eta}^{\dot{\eta}} \pi \epsilon \rho i ́ \mu \epsilon \tau \rho o s$ тov̂ $\pi о \lambda v \gamma \dot{\omega} \nu o v \quad \mu \epsilon i \zeta \omega \nu \quad \dot{\epsilon} \sigma \tau i \quad \tau \hat{\eta} s \quad \pi \epsilon \rho \iota \phi \in \epsilon i a s \quad \tau о \hat{v}$ ки́кдоv.

- It is here indicated, as in Prop. 3, that Archimedes added a figure to his own demonstration.

ARCHIMEDES

Prop. 1

If a polygon be circumscribed about a circle, the perimeter of the circumscribed polygon is greater than the circumference of the circle.

For let the polygon be circumscribed about the circle as below. ${ }^{\text {a }}$ I say that the perimeter of the polygon is greater than the circumference of the circle.

For since $\quad B A+A \Lambda>$ arc $B \Lambda$,
owing to the fact that they have the same extremities as the arc and include it, and similarly
and further

$$
\begin{aligned}
& \Delta \Gamma+\Gamma B>[\operatorname{arc}] \Delta B, \\
& \Lambda K+K \theta>[\operatorname{arc}] \Lambda \theta, \\
& Z H+H \theta>[\operatorname{arc}] Z \theta,
\end{aligned}
$$

therefore the whole perimeter of the polygon is greater than the circumference of the circle.

GREEK MATHEMATICS

β^{\prime}

$\mathrm{K} \epsilon i ́ \sigma \theta \omega$ ठı̀ $\tau \grave{o} \beta^{\prime} \tau o \hat{v} a^{\prime} \tau \hat{\omega} \nu$
 $\kappa \epsilon i ́ \sigma \theta \omega \tau \iota s ~ \epsilon \dot{v} \theta \epsilon i \hat{a} \quad \gamma \rho a \mu \mu \dot{\eta} \dot{\eta} \mathrm{ZH}$. тò $\delta \dot{\eta}$ ГА є́avт $\hat{\varphi} \epsilon$ є́ $\pi \iota \sigma v \nu \tau \iota \theta \epsilon ́ \mu \epsilon \nu о \nu$ $\dot{v} \pi \epsilon \rho \epsilon ́ \xi \epsilon \iota \tau \circ \hat{v} \Delta$. $\quad \pi \epsilon \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota-$
 ó $\sigma \alpha \pi \lambda \alpha ́ \sigma \iota o ́ v ~ \epsilon ̇ \sigma \tau \iota ~ \tau o ̀ ~ A \Theta ~ \tau o v ̂ ~ А \Gamma, ~$

 $\mathrm{A} \mathrm{\Gamma}$, ой $\tau \omega s$ $\dot{\eta} \mathrm{ZH}$ тоо̀s HE - каі
 HZ , oű $\tau \omega$ s тò $\mathrm{A} \Gamma \pi \rho o ̀ s ~ A \Theta$.
 Δ, тovтє́ซт८ тov̂ ГВ, тò à ρa ГА $\pi \rho o ̀ s ~ \tau o ̀ ~ A \Theta ~ \lambda o ́ \gamma o v ~ \epsilon ̉ \lambda a ́ \sigma \sigma o v a ~ \epsilon ै \chi \epsilon \iota ~$ $\eta ้ \pi \epsilon \rho \tau o ̀ ~ Г А ~ \pi л \rho o ̀ ~ Г В . ~ \alpha ̀ \lambda \lambda ' ~ \omega ́ s ~$ тò ГА $\pi \rho o ̀ s ~ A \Theta$, oư $\tau \omega s \dot{\eta}$ EH $\pi \rho o ̀ s ~ H Z \cdot \dot{\eta} \mathrm{EH}$

ARCHIMEDES

Prop. 2
Given two unequal magnitudes, it is possible to find two unequal straight lines such that the greater straight line has to the less a ratio less than the greater magnitude has to the less.

Let AB, Δ be two unequal magnitudes, and let $A B$ be the greater. I say that it is possible to find two unequal straight lines satisfying the aforesaid requirement.

By the second proposition in the first book of Euclid let $B \Gamma$ be placed equal to Δ, and let $Z H$ be any straight line ; then IA, if added to itself, will exceed Δ. [Post. 5.] Let it be multiplied, therefore, and let the result be $A \Theta$, and as $A \theta$ is to $А Г$, so let ZH be to HE ; therefore

$$
\theta \mathrm{A}: \mathrm{A} \mathrm{\Gamma}=\mathrm{ZH}: \mathrm{HE} \quad[c f . \text { Eucl. v. } 15
$$

and conversely, $\mathrm{EH}: \mathrm{HZ}=\mathrm{A} \Gamma: \mathrm{A} \theta$.
[Eucl. v. 7, coroll.
And since

$$
\mathrm{A} \theta>\Delta
$$

$$
>\Gamma \mathrm{\Gamma B},
$$

therefore
$\Gamma А: А \Theta<\Gamma А: \Gamma В$.
[Eucl. v. 8
But
therefore
componendo,
Now
$\Gamma \mathrm{A}: \mathrm{A} \Theta=\mathrm{EH}: \mathrm{HZ}$;
$\mathrm{EH}: \mathrm{HZ}<\mathrm{FA}: \mathrm{FB}$;
EZ: ZH $<\mathrm{AB}$: ВГ. ${ }^{\boldsymbol{a}}$
$\mathrm{B} \Gamma=\Delta$;
therefore
EZ: ZH $<\mathrm{AB}: \Delta$.
${ }^{a}$ This and related propositions are proved by Eutocius [Archim. ed. Heiberg iii. 16. 11-18. 22] and by Pappus, Coll. ed. Hultsch 684. 20 ff . It may be simply proved thus. If $a: b<c: d$, it is required to prove that $a+b: b<c+d: d$. Let e be taken so that $a: b: e: d$. Then $e: d<c: d$. Therefore $e<c$, and $e+d: d<c+d: d$. But $e: d: d=a+b: b$ (ex hypothesi, componendo). Therefore $a+b: b<c+d: d$.

[^11]
GREEK MATHEMATICS

Evip $\eta \mu \epsilon ́ \nu a \iota ~ \epsilon i \sigma i ้ \nu a ้ \rho a ~ \delta v ́ o ~ \epsilon \dot{v} \theta \epsilon i ̂ a \iota ~ a ̈ \nu \iota \sigma o \iota ~ \pi o \iota o v ̂ \sigma a \iota ~$

γ^{\prime}

 ä入入o $\pi \epsilon \rho \iota \gamma \rho \alpha ́ \psi \alpha \iota$ ，ö $\pi \tau \omega s$ ท̀ $\tau \circ \hat{v} \pi \epsilon \rho \iota \gamma \rho a \phi о \mu \epsilon ́ v o v$

 $\mu \epsilon i ̂ \zeta o \nu \mu \epsilon ́ \gamma \epsilon \theta$ os $\pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon e ́ \lambda a \tau \tau o \nu . ~$

 $\mu \epsilon i \zeta \omega \nu$ 光 $\sigma \tau \omega \stackrel{\grave{\eta}}{ } \Theta, \stackrel{\ddot{\omega} \sigma \tau \epsilon}{ } \tau \grave{\eta} \nu \Theta \pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{~K} \Lambda$

ARCHIMEDES

Accordingly there have been discovered two unequal straight lines fulfilling the aforesaid requirement.

$$
\text { Prop. } 3
$$

Given two unequal magnitudes and a circle, it is possible to inscribe a [regular] polygon in the circle and to circumscribe another, in such a manner that the side of the circumscribed polygon has to the side of the inscribed polygon a ratio less than that which the greater magnitude has to the less.

Let A, B be the two given magnitudes, and let the

given circle be that set out below. I say then that it is possible to do what is required.

For let there be found two straight lines $\theta, K \Lambda$, of which θ is the greater, such that Θ has to $K \Lambda$ a ratio

[^12]
GREEK MATHEMATICS

 [δ vvaтòv $\gamma \dot{\alpha} \rho$ тои̃тo], ${ }^{1}$ каi ${ }^{\prime \prime} \chi \theta \omega \sigma \alpha \nu ~ \tau о \hat{v} ~ к u ́ к \lambda о v ~$ ठúo $\delta \iota a ́ \mu \epsilon \tau \rho \circ \iota \pi \rho o ̀ s ~ o ’ \rho \theta a ̀ s ~ a ̉ \lambda \lambda \eta ́ \lambda a \iota s ~ a i ~ \Gamma E, ~ \Delta Z . ~ . ~$

 $\pi \lambda a \sigma i ́ a \nu \quad \tau \hat{\eta} s \quad \dot{v} \pi \dot{o} \quad \Lambda \mathrm{KM}$. $\lambda \epsilon \lambda \epsilon i \phi \theta \omega$ каi $\epsilon^{\prime \prime} \sigma \tau \omega \dot{\eta}$

 v̇тò NHГ $\gamma \omega \nu i ́ a ~ \mu \epsilon \tau \rho \in \hat{\imath} ~ \tau \eta ̀ \nu ~ v i \pi o ̀ ~ \Delta H \Gamma ~ o ’ ~ \rho \theta \grave{\eta} \nu$

 $\gamma \omega ́ v o v ~ \epsilon ́ \sigma \tau i ~ \pi \lambda \epsilon \cup \rho a ̀ ~ \tau o ̂ ~ \pi \epsilon \rho \imath \gamma \rho \alpha ф о \mu \epsilon ́ v o v ~ \pi \epsilon \rho i ̀ ~ \tau o ̀ \nu ~$

 $\tau \epsilon ́ \sigma \tau \iota \nu$ ท Π О $\pi \rho o ̀ s ~ N \Gamma, ~ \eta ̈ \pi \epsilon \rho ~ \dot{\eta}$ MK $\pi \rho o ̀ s ~ K \Lambda$.
 тò $\mathrm{A} \pi \rho o ̀ s ~ \tau o ̀ ~ B . ~ к а i ́ ~ \epsilon ́ \sigma \tau \iota \nu ~ \hat{\eta} \mu \epsilon ̀ \nu ~ П О ~ \pi \lambda \epsilon u \rho \grave{\alpha}$

ARCHIMEDES

less than that which the greater magnitude has to the less [Prop. 2], and from Λ let ΛM be drawn at right angles to ΛK, and from K let $K M$ be drawn equal to θ, and let there be drawn two diameters of the circle, $\Gamma \mathrm{E}, \Delta \mathrm{Z}$, at right angles one to another. If we bisect the angle $\Delta H \Gamma$ and then bisect the half and so on continually we shall leave a certain angle less than double the angle $A K M$. Let it be left and let it be the angle NH Γ, and let NГ be joined; then $\mathrm{N} \mathrm{\Gamma}$ is the side of an equilateral polygon. Let the angle $\Gamma \mathrm{HN}$ be bisected by the straight line $\mathrm{H} \Xi$, and through \exists let the tangent $O \Xi \Pi$ be drawn, and let HNП, НГO be produced; then ΠO is a side of an equilateral polygon circumscribed about the circle. Since the angle NHP is less than double the angle $\Lambda \mathrm{KM}$ and is double the angle THP, therefore the angle THP is less than the angle $\Lambda \mathrm{KM}$. And the angles at Λ, T are right ; therefore

$$
\text { MK : } \Lambda \mathrm{K}>\Gamma \mathrm{H}: \mathrm{HT}^{a}
$$

But

Therefore	$\mathrm{H} \exists \mathrm{HT}<\mathrm{MK}: \mathrm{K} \Lambda$,
that is,	$\Pi O: N \Gamma<M K: K \Lambda .^{b}$
Further,	$\mathrm{MK}: \mathrm{K} \Lambda<\mathrm{A}: \mathrm{B} .{ }^{\circ}$
[Therefore	$\Pi O: \mathrm{N} \Gamma<\mathrm{A}: \mathrm{B}]$.

${ }^{a}$ This is proved by Eutocius and is equivalent to the assertion that if $a<\beta \leq \frac{\pi}{2}, \operatorname{cosec} \beta>\operatorname{cosec} \alpha$.

[^13]
GREEK MATHEMATICS

 є่ $\gamma \gamma \rho \alpha ф о \mu \epsilon ́ v o v \cdot$ öтєє $\pi \rho о є ́ \kappa \epsilon \iota \tau о ~ \epsilon \dot{v} \rho \epsilon \hat{\imath} \nu$.

$$
\epsilon^{\prime}
$$

 є $\gamma \gamma \rho \alpha ́ \psi \alpha \iota, \check{\omega} \sigma \tau \epsilon$ тò $\pi \epsilon \rho \iota \gamma \rho a \phi \dot{\iota} \nu \quad \pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon ́ \gamma \gamma \rho \alpha \phi \epsilon ̀ \nu ~$
 то̀ $\epsilon \neq \lambda \alpha \sigma \sigma \sigma$.

E

 $\hat{\omega} \nu \mu \epsilon i \zeta \omega \nu \stackrel{้}{\epsilon} \sigma \tau \omega \dot{\eta} \Gamma, \dot{\omega} \omega \tau \tau \epsilon \tau \dot{\eta} \nu \quad \Gamma \pi \rho o ̀ s \tau \grave{\eta} \nu \Delta$ 56

ARCHIMEDES

And ΠO is a side of the circumscribed polygon, ΓN of the inscribed ; which was to be found.

Prop. 5

Given a circle and two unequal magnitudes, to circumscribe a polygon about the circle and to inscribe another, so that the circumscribed polygon has to the inscribed polygon a ratio less than the greater magnitude has to the less.

Let there be set out the circle A and the two unequal magnitudes E, Z, and let E be the greater ; it is therefore required to inscribe a polygon in the circle and to circumscribe another, so that what is required may be done.

For I take two unequal straight lines Γ, Δ, of which let Γ be the greater, so that Γ has to Δ a ratio

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \Gamma, \Delta \mu \epsilon \in \sigma \eta s$ à $\nu \alpha ́ \lambda o \gamma o \nu \lambda \eta \phi \theta \epsilon i \sigma \eta s ~ \tau \eta{ }_{\rho} \mathrm{H} \mu \epsilon i \zeta \omega \nu$

 каi ó $\delta \iota \pi \lambda a ́ \sigma \iota o s ~ \lambda o ́ \gamma o s ~ \tau o v ~ \delta \iota \pi \lambda a \sigma i o v ~ \epsilon ́ \lambda a ́ \sigma \sigma \omega \nu ~$ є́ $\sigma \tau i ́$. каì $\tau o \hat{v} \mu \epsilon ̀ \nu \tau \hat{\eta} S \pi \lambda \epsilon v \rho a ̂ s, \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \pi \lambda \epsilon v \rho \grave{a} \nu$

 тò Z .

η^{\prime}

'Eà̀ $\pi \epsilon \rho i ̀ ~ к \omega ิ \nu о \nu ~ i \sigma о \sigma \kappa \epsilon \lambda \hat{\eta} \pi v \rho a \mu i s ~ \pi \epsilon \rho \iota \gamma \rho a \phi \hat{\eta}$,

 $\mu \epsilon ́ \tau \rho \omega$ тท̂s $\beta \alpha ́ \sigma \epsilon \omega s, ~ v ̋ \psi o s ~ \delta e ̀ ~ \tau \eta ̀ \nu ~ \pi \lambda \epsilon \cup \rho a ̀ \nu ~ \tau o v ̂ ~$ к α vov. . . .

θ^{\prime}

 $\dot{\alpha} \pi \dot{o}$ $\delta \dot{\epsilon} \tau \hat{\omega} \nu \quad \pi \epsilon \rho a ́ \tau \omega \nu$ av̉тท̂s $\epsilon \dot{v} \theta \epsilon \hat{i} a \iota ~ \gamma \rho a \mu \mu a i ́ ~$

 58

ARCHIMEDES

less than that which E has to Z [Prop. 2] ; if a mean proportional H be taken between Γ, Δ, then Γ will be greater than H [Eucl. vi. 13]. Let a polygon be circumscribed about the circle and another inscribed, so that the side of the circumscribed polygon has to the side of the inscribed polygon a ratio less than that which Γ has to H [Prop. 3]; it follows that the duplicate ratio is less than the duplicate ratio. Now the duplicate ratio of the sides is the ratio of the polygons [Eucl. vi. 20], and the duplicate ratio of Γ to H is the ratio of Γ^{\prime} to Δ [Eucl. v. Def. 9] ; therefore the circumscribed polygon has to the inscribed polygon a ratio less than that which Γ has to Δ; by much more therefore the circumscribed polygon has to the inscribed polygon a ratio less than that which E has to Z.

$$
\text { Prop. } 8
$$

If a pyramid be circumscribed about an isosceles cone, the surface of the pyramid without the base is equal to a triangle having its base equal to the perimeter of the base [of the pyramid] and its height equal to the side of the cone. . . . ${ }^{a}$

Prop. 9

If in an isosceles cone a straight linc [chord] fall in the circle which is the base of the cone, and from its extremities straight lines be drawn to the vertex of the cone, the triangle formed by the chord and the lines joining it to

[^14][^15]
GREEK MATHEMATICS

 корифウ̀ $\nu \epsilon ̇ \pi \iota \zeta \epsilon \cup \chi \theta \epsilon \iota \sigma \hat{\omega} \nu$.

 $\mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{~A} \Delta \Gamma$.

 ВГ $\tau \mu \eta \mu a ́ \tau \omega \nu$ er $\lambda a \sigma \sigma o ́ v ~ \epsilon ̇ \sigma \tau \iota \nu ~ \eta ̈ ~ o u ̃ . ~$

ARCHIMEDES

the vertex will be less than the surface of the cone between the lines drawn to the vertex.

Let the circle ABC be the base of an isosceles cone, let Δ be its vertex, let the straight line $A \Gamma$ be drawn in it, and let $A \Delta, \Delta \Gamma$ be drawn from the vertex to A, Γ; I say that the triangle $A \Delta \Gamma$ is less than the surface of the cone between $A \Delta, \Delta \Gamma$.

Let the arc $A B \Gamma$ be bisected at B, and let $A B$, $\Gamma B, \Delta \mathrm{~B}$ be joined; then the triangles $\mathrm{AB} \Delta, \mathrm{B} \Gamma \Delta$ will be greater than the triangle $A \Delta \Gamma .^{a}$ Let θ be the excess by which the aforesaid triangles exceed the triangle $A \Delta \Gamma$. Now θ is either less than the sum of the segments $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ or not less.
${ }^{a}$ For if h be the length of a generator of the isosceles cone, triangle $\mathrm{AB} \Delta=\frac{1}{2} h . \mathrm{AB}$, triangle $\mathrm{B} \Gamma \Delta=\frac{1}{2} h . \mathrm{B} \mathrm{\Gamma}$, triangle $\mathrm{A} \Delta \Gamma=\frac{1}{2} h . \mathrm{A} \mathrm{\Gamma}$, and $\mathrm{AB}+\mathrm{B} \mathrm{\Gamma}>\mathrm{A} \Gamma$.

GREEK MATHEMATICS

 є́ $\pi \iota \alpha \dot{\alpha} \nu \epsilon \iota \alpha \dot{\eta} \mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{~A} \Delta \mathrm{~B} \mu \epsilon \tau \alpha \dot{\alpha} \tau 0 \hat{v} \mathrm{AEB}$
 $\mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{~B} \Delta \Gamma \mu \epsilon \tau \dot{\alpha} \tau o \hat{v}$ ГZB $\tau \mu \eta{ }_{\eta}^{\prime} \mu \alpha \tau o s ~ \mu \epsilon i \zeta \omega \nu$

 єíp $\eta \mu \epsilon ́ \nu \omega \nu \tau \rho \iota \gamma \omega ́ \nu \omega \nu . \quad \underset{\alpha}{\alpha} \delta \grave{\epsilon}$ єipquє́va $\tau \rho i \gamma \omega \nu a$

 $\kappa \omega \nu \iota \kappa \grave{\eta} \dot{\epsilon} \pi \iota \phi \dot{\alpha} \nu \epsilon \iota \alpha \dot{\eta} \quad \mu \epsilon \tau \alpha \xi \dot{v}$ т $\hat{\omega} \nu \mathrm{A} \Delta \Gamma \quad \mu \epsilon i \zeta \omega \nu$

${ }^{2} \mathrm{E} \sigma \tau \omega \delta \dot{\eta} \tau \grave{o} \Theta$ én $\lambda \alpha \sigma \sigma o \nu \tau \hat{\omega} \nu \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \tau \mu \eta \mu \alpha ́ \tau \omega \nu$. $\tau \epsilon ́ \mu \nu o \nu \tau \epsilon s$ ס̀̀ $\tau \grave{\alpha} s, \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a s$ סíxa каi

 $\tau \hat{\omega} \nu \mathrm{AE}, \mathrm{EB}, \mathrm{BZ}, \mathrm{Z} \Gamma \epsilon \dot{v} \theta \epsilon \iota \omega \hat{\nu}, \kappa \alpha i \epsilon \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma \alpha \nu$ ai $\Delta \mathrm{E}, \Delta \mathrm{Z}$. $\pi \alpha ́ \lambda \iota \nu \tau o i ́ v v \nu ~ \kappa a \tau a ̀ ~ \tau a ̀ ~ a u ̛ \tau a ̀ ~ \grave{\eta} \mu \epsilon ̀ v$ є̇ $\pi \iota \phi \alpha ́ v \in \iota \alpha$ тov̂ кćvov $\hat{\eta} \mu \epsilon \tau \alpha \xi \underline{v} \tau \hat{\omega} \nu \mathrm{~A} \Delta \mathrm{E} \mu \epsilon \tau \grave{\alpha}$
 $\tau \rho \tau \gamma \omega \dot{\nu} \circ v, \dot{\eta} \delta \dot{\epsilon} \quad \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{E} \Delta \mathrm{B} \mu \epsilon \tau \dot{\alpha}$ тov̂ $\dot{\epsilon} \pi i$

 $\tau \hat{\omega} \nu \epsilon \epsilon \pi i \tau \hat{\omega} \nu \mathrm{AE}, \mathrm{EB} \tau \mu \eta \mu a ́ \tau \omega \nu \mu \epsilon i \zeta \omega \nu$ є́ãiv $\tau \hat{\omega} \nu \mathrm{A} \Delta \mathrm{E}, \mathrm{EB} \Delta \tau \rho \iota \gamma \omega \dot{\omega} \nu \nu . \quad \epsilon \pi \pi \epsilon$ ठ $\epsilon \tau \grave{\alpha} \mathrm{AE} \Delta$,

 $\kappa \kappa \dot{\omega} \nu o v$ 并 $\mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{~A} \Delta \dot{\mathrm{~B}} \mu \epsilon \tau \dot{\alpha} \tau \hat{\omega} \nu \dot{\epsilon} \pi i \tau \bar{\omega} \nu \mathrm{AE}$, 62

ARCHIMEDES

Firstly, let it be not less. Then since there are two surfaces, the surface of the cone between $A \Delta$, $\Delta \mathrm{B}$ together with the segment AEB and the triangle $A \Delta B$, having the same extremity, that is, the perimeter of the triangle $A \Delta B$, the surface which includes the other is greater than the included surface [Post. 3]; therefore the surface of the cone between the straight lines $\mathrm{A} \Delta, \Delta \mathrm{B}$ together with the segment AEB is greater than the triangle $A B \Delta$. Similarly the [surface of the cone] between $B \Delta, \Delta \Gamma$ together with the segment $\Gamma Z B$ is greater than the triangle $B \Delta \Gamma$; therefore the whole surface of the cone together with the area θ is greater than the aforesaid triangles. Now the aforesaid triangles are equal to the triangle $A \Delta \Gamma$ and the area θ. Let the common area θ be taken away; therefore the remainder, the surface of the cone between $A \Delta, \Delta \Gamma$ is greater than the triangle $A \Delta \Gamma$.

Now let θ be less than the segments $A B, B \Gamma$. Bisecting the arcs $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ and then bisecting their halves, we shall leave segments less than the area θ [Eucl. xii. 2]. Let the segments so left be those on the straight lines $\mathrm{AE}, \mathrm{EB}, \mathrm{BZ}, \mathrm{Z} \mathrm{\Gamma}$, and let $\triangle \mathrm{E}, \Delta \mathrm{Z}$ be joined. Then once more by the same reasoning the surface of the cone between $A \Delta, \Delta \mathrm{E}$ together with the segment $A E$ is greater than the triangle $A \Delta E$, while that between $E \Delta, \Delta B$ together with the segment EB is greater than the triangle $\mathrm{E} \Delta \mathrm{B}$; therefore the surface between $A \Delta, \Delta B$ together with the segments AE, EB is greater than the triangles $\mathrm{A} \triangle \mathrm{E}$, $\mathrm{EB} \Delta$. Now since the triangles $\mathrm{AE} \Delta, \triangle \mathrm{EB}$ are greater than the triangle $A B \Delta$, as was proved, by much more therefore the surface of the cone between $A \Delta, \Delta B$ together with the segments $A E, E B$ is

GREEK MATHEMATICS

EB $\tau \mu \eta \mu \alpha ́ \tau \omega \nu \mu \epsilon i \zeta \omega \nu$ є’ $\sigma \tau i$ то仑̂ $\mathrm{A} \Delta \mathrm{B} \tau \rho \iota \gamma \dot{\nu} \nu o v$.
 $\mathrm{B} \Delta \Gamma \mu \epsilon \tau \dot{\alpha} \tau \hat{\omega} \nu \dot{\epsilon} \pi i \grave{\imath} \tau \hat{\omega} \nu \mathrm{BZ}, \mathrm{Z} \Gamma \tau \mu \eta \mu \alpha ́ \tau \omega \nu \mu \epsilon i \zeta \omega \nu$
 $\mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{~A} \Delta \Gamma \mu \epsilon \tau \alpha \dot{\alpha} \tau \hat{\omega} \nu \epsilon i \rho \eta \mu \epsilon \in \nu \omega \nu \tau \mu \eta \mu a ́ \tau \omega \nu$ $\mu \epsilon i \zeta \omega \nu$ ढ'бтi $\tau \hat{\omega} \nu \mathrm{AB} \Delta, \Delta \mathrm{B} \Gamma \tau \rho \imath \gamma(\omega \nu \omega \nu$. таv̂та $\delta \epsilon ́ \epsilon ̇ \sigma \tau \iota \nu \imath ̈ \sigma \alpha \tau \hat{\varphi} \mathrm{~A} \Delta \Gamma \tau \rho \iota \gamma \omega ́ \nu \omega$ каi $\tau \hat{\omega} \Theta \chi \omega \rho i \not \varphi \cdot$ $\hat{\omega} \nu \tau \alpha ̀ ~ \epsilon i \rho \eta \mu \epsilon ́ v a ~ \tau \mu \eta \prime \mu \alpha \tau \alpha ~ \epsilon ̀ \lambda \alpha ́ \sigma \sigma o v a ~ \tau о \hat{v} \Theta ~ \chi \omega \rho i ́ o v . ~$
 є́ $\tau \tau \iota \nu \tau o \hat{v} \mathrm{~A} \Delta \Gamma \tau \rho \iota \gamma \omega ́ v o v$.

 $\dot{\alpha} \phi \hat{\omega} \nu$ каi $\tau \hat{\eta} s \quad \sigma v \mu \pi \tau \omega \dot{\omega} \sigma \omega s$ єं $\pi i \quad \tau \grave{\eta} \nu$ корифض̀v $\tau о \hat{v}$ $\kappa \omega ́ \nu o v ~ \epsilon \dot{v} \theta \epsilon \hat{\imath} \alpha \iota ~ a ̉ \chi \theta \hat{\omega} \sigma \iota \nu$, $\tau \grave{\alpha} \pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu \alpha$ т $\tau \dot{\gamma} \gamma \omega \nu \alpha$

 ن́ π^{\prime} à̉ $\frac{\omega}{\nu} \nu$. . . .

${ }^{\iota} \beta^{\prime}$

 $\stackrel{\omega}{\omega} \sigma \tau \epsilon \kappa \alpha i$ ö̀ $\lambda \eta \dot{\eta} \dot{\epsilon} \pi \iota \phi \alpha ́ \nu \epsilon \iota \alpha \tau \hat{\eta} s \pi v \rho a \mu i ́ \delta o s ~ \chi \omega \rho i s ~ \tau \hat{\eta} s$ 64

ARCHIMEDES

greater than the triangle $\mathrm{A} \Delta \mathrm{B}$. By the same reasoning the surface between $B \Delta, \Delta \Gamma$ together with the segments $B Z, Z \Gamma$ is greater than the triangle $B \Delta \Gamma$; therefore the whole surface between $\mathrm{A} \Delta, \Delta \Gamma$ together with the aforesaid segments is greater than the triangles $\mathrm{AB} \Delta, \Delta \mathrm{B} \Gamma$. Now these are equal to the triangle $A \Delta \Gamma$ and the area θ; and the aforesaid segments are less than the area θ; therefore the remainder, the surface between $A \Delta, \Delta \Gamma$ is greater than the triangle $A \Delta \Gamma$.

Prop. 10

If tangents be drann to the circle which is the base of an [isosceles] cone, being in the same plane as the circle and meeting one another, and from the points of contact and the point of meeting straight lines be drawn to the vertex of the cone, the triangles formed by the tangents and the lines drawn to the vertex of the cone are together greater than the portion of the surface of the cone included by them. . . . ${ }^{a}$

Prop. 12
. . . From what has been proved it is clear that, if a pyramid is inscribed in an isosceles cone, the surface of the pyramid without the base is less than the surface of the cone [Prop. 9], and that, if a pyramid
a The proof is on lines similar to the preceding proposition.
${ }^{1}$ є́ πi. . . $\pi \rho о є \iota \rho \eta \mu \epsilon ́ v \omega \nu$ om. Heiberg.

GREEK MATHEMATICS

 íбooкє $\lambda \hat{\eta}$ тv

 $\left.\sigma \nu \nu \in \chi \in \grave{\epsilon} \epsilon^{\epsilon} \kappa \epsilon i \nu \omega\right] .{ }^{2}$

 $\chi \omega$ pis тท̂s β áceढs.
' $\boldsymbol{\gamma}^{\prime}$

 $\chi \omega \rho i s ~ \tau \hat{\eta} s \beta a ́ \sigma \epsilon \omega s$.
 66

ARCHIMEDES

is circumscribed about an isosceles cone, the surface of the pyramid without the base is greater than the surface of the cone without the base [Prop. 10].

From what has been demonstrated it is also clear that, if a right prism be inscribed in a cylinder, the surface of the prism composed of the parallelograms is less than the surface of the cylinder excluding the bases ${ }^{a}$ [Prop. 11], and if a right prism be circumscribed about a cylinder, the surface of the prism composed of the parallelograms is greater than the surface of the cylinder excluding the bases.

Prop. 13

The surface of any right cylinder excluding the bases ${ }^{\text {b }}$ is equal to a circle whose radius is a mean proportional betreen the side of the cylinder and the diameter of the base of the cylinder.

Let the circle A be the base of a right cylinder, let $\Gamma \Delta$ be equal to the diameter of the circle A, let $E Z$ be equal to the side of the cylinder, let H be a mean proportional between $\Delta \Gamma, E Z$, and let there be set out a circle, B , whose radius is equal to H ; it is required to prove that the circle B is equal to the surface of the cylinder excluding the bases. ${ }^{b}$

For if it is not equal, it is either greater or less.
${ }^{a}$ Here, and in other places in this and the next proposition, Archimedes must have written $\chi \omega \rho i s \tau \hat{\omega} \nu \beta \dot{\alpha} \sigma \epsilon \omega \nu$, not $\chi \omega p i s$

See preceding note.
 monstration is interpolated. Why give a proof of what is фаvéóv?
${ }_{2}^{2}$ кaтà . . . ̇iкєivu om. Heiberg.
 proof is interpolated.

GREEK MATHEMATICS

 Súo $\delta \grave{\eta} \mu \epsilon \gamma \epsilon \theta \hat{\omega} \nu$ on $\nu \omega \nu$ ảvío $\omega \nu \quad \tau \hat{\eta} S \quad \tau \epsilon$ ढ̇ $\pi \iota \phi a \nu \epsilon i a s$

 каi ằ入до $\pi \epsilon \rho \iota \gamma \rho a ́ \psi \alpha \iota, \stackrel{\omega}{\omega} \sigma \tau \epsilon$ тò $\pi \epsilon \rho \imath \gamma \rho a \phi \epsilon ̀ \nu ~ \pi \rho o ̀ s$

 $\kappa \alpha i ̀ \pi \epsilon \rho i ̀ \tau o ̀ \nu \mathrm{~A} \kappa v ́ \kappa \lambda о \nu \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a ́ \phi \theta \omega \epsilon$ vi $\theta \dot{v} \gamma \rho a \mu \mu \alpha \nu$

 סє̀ каi $\tau \hat{\eta} \pi \epsilon \rho \iota \epsilon \in \tau \rho \omega$ тôv $\epsilon \dot{v} \theta v \gamma \rho a ́ \mu \mu о v$ то̂ $\pi \epsilon \rho i$

- One ms. has the marginal note, "equalis altitudinis chylindro," on which Heiberg comments: "nee hoc omiserat Archimedes." Heiberg notes several places in which the text is clearly not that written by Archimedes. 68

ARCHIMEDES

Let it first be, if possible, less. Now there are two unequal magnitudes, the surface of the cylinder and the circle B , and it is possible to inscribe in the circle B an equilateral polygon, and to circumscribe another, so that the circumscribed has to the inscribed a ratio

less than that which the surface of the cylinder has to the circle B [Prop. 5]. Let the circumscribed and inscribed polygons be imagined, and about the circle A let there be circumscribed a rectilineal figure similar to that circumscribed about B, and on the rectilineal figure let a prism be erected ${ }^{a}$; it will be circumscribed about the cylinder. Let $\mathrm{K} \Delta$ be equal

GREEK MATHEMATICS

 $\pi \lambda \epsilon v \rho a \widehat{s} \tau о \hat{v} \kappa v \lambda i ́ v \delta \rho o v ~ к а i ~ \tau \hat{\eta} s ~ i ̈ \sigma \eta s ~ \tau \hat{\eta} \pi \epsilon \rho \mu \epsilon ́ \tau \rho \omega$

 $\dot{\eta}^{\mathrm{T}} \Delta \pi \rho o ̀ s \mathrm{PZ} \mu \eta{ }^{\prime} \kappa \epsilon \iota[\dot{\eta} \gamma \dot{\alpha} \rho \mathrm{H} \tau \hat{\omega} \nu \mathrm{T} \Delta, \mathrm{PZ} \mu \epsilon ́ \sigma \eta$

 oữ ω s $\dot{\eta} \mathrm{PZ} \pi \rho o ̀ s ~ Z E . ~ \tau o ̀ ~ \alpha ै \rho a ~ v i \pi o ̀ ~ \tau \hat{\omega} \nu \Gamma \Delta, ~ \mathrm{EZ}$

${ }^{1}$ є̇лєє $\delta \grave{\eta}$. . . кúк久ov om. Heiberg.
${ }^{2} \dot{\epsilon} \pi \epsilon \iota \delta \grave{\eta} . . . \pi \rho i \sigma \mu a \tau o s$ om. Heiberg.
${ }^{2}$ та є $\dot{v} \theta \dot{\theta} \gamma \rho a \mu \mu a$ om. Torellius.

ARCHIMEDES

to the perimeter of the rectilineal figure about the circle A, let ΛZ be equal to $K \Delta$, and let ΓT be half of $\Gamma \Delta$; then the triangle $K \Delta T$ will be equal to the rectilineal figure circumscribed about the circle A, ${ }^{a}$ while the parallelogram $E \Lambda$ will be equal to the surface of the prism circumscribed about the cylinder. ${ }^{b}$ Let EP be set out equal to EZ; then the triangle $\mathrm{ZP} \Lambda$ is equal to the parallelogram $\mathrm{E} \Lambda$ [Eucl. i. 41], and so to the surface of the prism. And since the rectilineal figures circumscribed about the circles A, B are similar, they will stand in the same ratio as the squares on the radii ${ }^{c}$; therefore the triangle $\mathrm{KT} \Delta$ will have to the rectilineal figure circumscribed about the circle B the ratio $T \Delta^{2}: \mathrm{H}^{2}$.
But $\quad T \Delta^{2}: \mathrm{H}^{2}=\mathrm{T} \Delta:$ PZ. ${ }^{d}$

- Because the base $K \Delta$ is equal to the perimeter of the polygon, and the altitude ΔT is equal to the radius of the circle A, i.e., to the perpendiculars drawn from the centre of A to the sides of the polygon.
' b Because the base ΛZ is made equal to ΔK and so is equal to the perimeter of the polygon forming the base of the prism, while the altitude EZ is equal to the side of the cylinder and therefore to the height of the prism.
${ }^{-}$Eutocius supplies a proof based on Eucl. xii. 1, which proves a similar theorem for inscribed figures.
${ }^{d}$ For, by hypothesis, $\mathrm{H}^{2}=\Delta \Gamma$. EZ

$$
\begin{aligned}
& =2 \mathrm{~T} \Delta \cdot \frac{1}{2} \mathrm{PZZ} \\
& =\mathrm{T} \Delta \cdot \mathrm{PZ}
\end{aligned}
$$

Heiberg would delete the demonstration in the text on the ground of excessive verbosity, as Nizze had already perceived to be necessary.

GREEK MATHEMATICS

 $\pi \rho o ̀ s ~ \tau o ̀ ~ P \Lambda Z ~[' ̇ \pi \epsilon \iota \delta \eta ं \pi \epsilon \rho ~ i ́ \sigma a \iota ~ \epsilon i \sigma i v ~ a i ~ K ~, ~ \Lambda Z] ~ . ~ . ~$
 тò $\epsilon \dot{v} \theta$ v́ $\gamma \rho \alpha \mu \mu о \nu$ тò $\pi \epsilon \rho i$ тòv B кv́клоข $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu-$

 $\epsilon \dot{v} \theta \dot{\gamma} \gamma \rho а \mu \mu о \nu \tau o ̀ ~ \epsilon ’ \nu ~ \tau \hat{\varphi} \kappa v ́ \kappa \lambda \omega \tau \hat{\omega} \mathrm{~B} \epsilon \in \gamma \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o \nu$

 $\tau o \hat{v} \pi \rho i ́ \sigma \mu a \tau o s ~ \tau o \hat{v}$ $\pi \epsilon \rho \imath \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon$ vov $\pi \epsilon \rho i$ тòv

 тоิ̂ кv入ì $\delta \rho \circ$.

[^16]
ARCHIMEDES

$\mathrm{T} \Delta: \mathrm{PZ}=$ triangle $\mathrm{KT} \Delta$: triangle $\mathrm{P} \Lambda Z .{ }^{\text {a }}$ Therefore the ratio which the triangle KT Δ has to the rectilineal figure circumscribed about the circle B is the same as the ratio of the triangle TK Δ to the triangle $\mathrm{PZ} \Lambda$. Therefore the triangle TK Δ is equal to the rectilineal figure circumscribed about the circle B [Eucl. v. 9] ; and so the surface of the prism circumscribed about the cylinder A is equal to the rectilineal figure about B. And since the rectilineal figure about the circle B has to the inscribed figure in the circle a ratio less than that which the surface of the cylinder A has to the circle B [ex hypothesi], the surface of the prism circumscribed about the cylinder will have to the rectilineal figure inscribed in the circle B a ratio less than that which the surface of the cylinder has to the circle B; and, permutando, [the prism will have to the cylinder a ratio less than that which the rectilineal figure inscribed in the circle B has to the circle $B]^{b}$; which is absurd. ${ }^{c}$ Therefore the circle B is not less than the surface of the cylinder.

- By Eucl. vi. 1, since $\Lambda Z=K \Delta$.
- From Eutocius's comment it appears that Archimedes

 ки́клог ö $\pi \epsilon \rho$ äтотоv. This is what I translate.
${ }^{\text {c }}$ For the surface of the prism is greater than the surface of the cylinder [Prop. 12], but the inscribed figure is less than the circle B; the explanation in our text to this effect is shown to be an interpolation by the fact that Eutocius supplies a proof in his own words.

[^17]
GREEK MATHEMATICS

${ }^{2} \mathrm{E} \sigma \tau \omega$ $\delta \dot{\eta}, \quad \epsilon i \quad \delta \nu \nu a \tau o ́ v, \mu \epsilon i \zeta \omega \nu . \quad \pi a ́ \lambda \iota \nu \quad \delta \grave{\eta}$

 $\tau о \hat{v} \kappa v \lambda \grave{\iota} \nu \delta \rho о v$, каi $\epsilon \gamma \gamma \epsilon \gamma \rho a ́ \phi \theta \omega$ ais тòv $\mathrm{A} \kappa v ́ \kappa \lambda о \nu$

 $\tau о \hat{v} \pi \rho i \sigma \mu a \tau o s, \tau \hat{\eta}$ є́к $\tau \hat{\omega} \nu \quad \pi \alpha \rho a \lambda \lambda \eta \lambda о \gamma \rho a ́ \mu \mu \omega \nu$

 रра́ $\mu \mu о v$, on є́ $\sigma \tau \iota \nu ~ \beta a ́ \sigma \iota s ~ \tau о \hat{v} \pi \rho i ́ \sigma \mu a \tau o s] . ~ \check{\omega} \sigma \tau \epsilon ~ к а і ~$

$$
{ }^{1} \text { Sıótı . . . каӨ́́tov om. Heiberg. }
$$

[^18] 74

ARCHIMEDES

Now let it be, if possible, greater. Again, let there be imagined a rectilineal figure inscribed in the circle B, and another circumscribed, so that the circumscribed figure has to the inscribed a ratio less than that which the circle B has to the surface of the cylinder [Prop. 5], and let there be inscribed in the circle A a polygon similar to the figure inscribed in the circle B, and let a prism be erected on the polygon inscribed in the circle [A]; and again let $K \Delta$ be equal to the perimeter of the rectilineal figure inscribed in the circle A, and let $Z \Lambda$ be equal to it. Then the triangle K'T Δ will be greater than the rectilineal figure inscribed in the circle $A,{ }^{a}$ and the parallelogram $\mathrm{E} \Lambda$ will be equal to the surface of the prism composed of the parallelograms ${ }^{b}$; and so the triangle P $A Z$ is equal to the surface of the prism. And since the rectilineal figures inscribed in the circles A, B are similar, they have the same ratio one to the other as the squares of their radii [Eucl. xii. 1]. But the triangles KT Δ, ZPA have one to the other the same ratio as the squares of the radii ${ }^{\text {c }}$; therefore the rectilineal figure inscribed in
circle A, is greater than the perpendiculars drawn from the centre of the circle to the sides of the polygon; but Heiberg regards the explanation to this effect in the text as an interpolation.

- Because the base $\mathrm{Z} \Lambda$ is made equal to $\mathrm{K} \Delta$, and so is equal to the perimeter of the polygon forming the base of the prism, while the altitude EZ is equal to the side of the cylinder and therefore to the height of the prism.
- For triangle $\mathrm{KT} \Delta$: triangle $\mathrm{ZP} \Lambda=\mathrm{T} \Delta$: ZP

$$
=T \Delta^{2}: \mathrm{H}^{2}
$$

[cf. p. 71 n. d.
But $T \Delta$ is equal to the radius of the circle A, and H to the radius of the circle B.

GREEK MATHEMATICS

 є́ $\sigma \tau \iota \tau o ̀ ~ \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v o \nu \pi \epsilon \rho i ̀ \tau o ̀ \nu ~ B ~ к v ́ к \lambda о \nu ~ \tau о \hat{v} \mathrm{~B}$

 äpa є̇бтì.

$$
\iota \delta^{\prime}
$$

 к ω vov.

[^19]
ARCHIMEDES

the circle A has to the rectilineal figure inscribed in the circle B the same ratio as the triangle $\mathrm{KT} \Delta$ has to the triangle $\Lambda Z \mathrm{P}$. But the rectilineal figure inscribed in the circle A is less than the triangle $\mathrm{K} T \Delta$; therefore the rectilineal figure inscribed in the circle B is less than the triangle $Z P \Lambda$; and so it is less than the surface of the prism inscribed in the cylinder; which is impossible. ${ }^{a}$ Therefore the circle B is not greater than the surface of the cylinder. But it was proved not to be less. Therefore it is equal.

Prop. 14

The surface of any cone without the base is equal to a circle, whose radius is a mean proportional betveen the side of the cone and the radius of the circle which is the base of the cone.

Let there be an isosceles cone, whose base is the circle A, and let its radius be Γ, and let Δ be equal inscribed figure is greater than the surface of the cylinder, and a fortiori is greater than the surface of the prism [Prop. 12]. An explanation on these lines is found in our text, but as the corresponding proof in the first half of the proposition was unknown to Eutocius, this also must be presumed an interpolation.

GREEK MATHEMATICS

 є̇ $\pi \iota \phi \alpha \nu \epsilon i ́ a ~ \tau o v ~ \kappa c ́ v o v ~ \chi \omega \rho i s ~ \tau \eta ̂ S ~ \beta a ́ \sigma \epsilon \omega s . ~$

 $\delta \grave{\eta} \kappa \alpha i \quad \pi \epsilon \rho i$ тò $\nu \mathrm{A} \kappa v ́ \kappa \lambda о \nu \pi о \lambda u ́ \gamma \omega \nu o \nu \pi \epsilon \rho \iota \gamma \epsilon-$

 78

ARCHIMEDES

to the side of the cone, and let E be a mean proportional between 1 ', Δ, and let the circle B have its

radius equal to E ; I say that the circle B is equal to the surface of the cone without the base.

For if it is not equal, it is either greater or less. First let it be less. Then there are two unequal magnitudes, the surface of the cone and the circle B, and the surface of the cone is the greater; it is therefore possible to inscribe an equilateral polygon in the circle B and to circumscribe another similar to the inscribed polygon, so that the circumscribed polygon has to the inscribed polygon a ratio less than that which the surface of the cone has to the circle B [Prop. 5]. Let this be imagined, and about the circle A let a polygon be circumscribed similar to the polygon circumscribed about the circle B, and on the polygon circumscribed about the circle A let a pyramid be raised having the same vertex as the cone. Now since the polygons circumscribed about

GREEK MATHEMATICS

тoùs A, B ки́кरोovs $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v a$, тòv aủтòv

 $\pi \rho o ̀ s ~ \tau \eta ̀ v ~ \epsilon ̇ \pi \iota ф a ́ v \epsilon \iota a \nu ~ \tau \eta ̂ S ~ \pi v \rho a \mu i ́ o o s ~ \tau \hat{\eta} S ~ \pi \epsilon \rho \iota-$

 $\tau \hat{\varrho} \pi \epsilon \rho i ̀ \tau o ̀ \nu \mathrm{~B} \kappa v ́ \kappa \lambda о \nu \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ \nu \omega$. Є̇ $\pi \epsilon i$ oưv

 80

ARCHIMEDES

the circles A, B are similar, they have the same ratio one toward the other as the square of the radii have one toward the other, that is $\Gamma^{2}: \mathrm{E}^{2}$, or $\Gamma: \Delta$ [Eucl. vi. 20, coroll. 2]. But $\Gamma: \Delta$ is the same ratio as that of the polygon circumscribed about the circle A to the surface of the pyramid circumscribed about the cone ${ }^{a}$; therefore the rectilineal figure about the circle A has to the rectilineal figure about the circle B the same ratio as this rectilineal figure [about A] has to the surface of the pyramid circumscribed about the cone ; therefore the surface of the pyramid is equal to the rectilineal figure circumscribed about the circle B. Since the rectilineal figure circumscribed about the circle B has towards the inscribed [rectilineal figure] a ratio less than that which the surface of the cone has to the circle B, therefore the surface of the pyramid circumscribed about the cone will have to the rectilineal figure inscribed in the circle B a ratio less than that which the surface of the cone has to the circle B ; which is impossible. ${ }^{b}$ Therefore the circle B will not be less than the surface of the cone.

[^20][^21]
GREEK MATHEMATICS

 $\gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o \nu, \stackrel{\omega}{\omega} \sigma \tau \epsilon$ тò $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ \nu Q \nu \pi \rho o ̀ s ~ \tau o ̀ ~$

 $\tau \grave{\eta} \nu \Delta \mu \dot{\eta} \kappa \epsilon \iota$. $\quad \dot{\eta}$ ठє̀ $\Gamma \pi \rho o ̀ s \tau \eta ̀ \nu \Delta \mu \epsilon i \zeta o v a$ 入ó $\Delta о \nu$

- Eutocius supplies a proof. $\mathrm{Z} \Theta \mathrm{K}$ is the polygon inscribed in the circle A (of centre A), AH is drawn perpendicular to 82

ARCHIMEDES

I say now that neither will it be greater. For if it is possible, let it be greater. Then again let there be imagined a polygon inscribed in the circle B and another circumscribed, so that the circumscribed has to the inscribed a ratio less than that which the circle B has to the surface of the cone [Prop. 5], and in the circle A let there be imagined an inscribed polygon similar to that inscribed in the circle B, and on it let there be drawn a pyramid having the same vertex as the cone. Since the polygons inscribed in the circles A, B are similar, therefore they will have one toward the other the same ratio as the squares of the radii have one toward the other; therefore the one polygon has to the other polygon the same ratio as Γ to Δ [Eucl. vi. 20, coroll. 2]. But Γ has to Δ a ratio greater than that which the polygon inscribed in the circle A has to the surface of the pyramid inscribed in the cone ${ }^{a}$; therefore the polygon in-
$K \Theta$ and meets the circle in M, Λ is the vertex of the isosceles cone (so that $\Lambda \mathrm{H}$ is perpendicular to $\mathrm{K} \Theta$), and HN is drawn parallel to MA to meet $\Lambda \mathrm{A}$ in N . Then the area of the polygon inscribed in the circle $=\frac{1}{2}$ perimeter of polygon. AH, and the area of the pyramid inscribed in the cone $=\frac{1}{2}$ perimeter of poly gon. $\Lambda \mathrm{H}$, so that the area of the polygon has to the area of the pyramid the ratio AH: $\Lambda \mathrm{H}$. Now, by similar triangles, AM : MA $=$ $\mathrm{AH}: \mathrm{HN}$, and $\mathrm{AH}: \mathrm{HN}>\mathrm{AH}: \mathrm{HA}$, for $\mathrm{H} \Lambda>\mathrm{HN}$. Therefore AM : MA $>\mathrm{AH}: \mathrm{H} \Lambda$; that is, $\Gamma: \Delta$ exceeds the ratio of the polygon to the surface of the pyramid.

88

GREEK MATHEMATICS

 $\nu o \nu \pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon ่ \gamma \gamma є \gamma \rho а \mu \mu \epsilon ́ v o \nu ~ \eta ̈ ~ o ́ ~ B ~ к v ́ к \lambda о s ~ \pi \rho o ̀ s ~ \tau \grave{\eta \nu}$

15^{\prime}

 84

ARCHIMEDES

scribed in the circle A has to the polygon inscribed in the circle B a ratio greater than that which the same polygon [inscribed in the circle A] has to the surface of the pyramid ; therefore the surface of the pyramid is greater than the polygon inscribed in B. Now the polygon circumscribed about the circle B has to the inscribed polygon a ratio less than that which the circle B has to the surface of the cone; by much more therefore the polygon circumscribed about the circle B has to the surface of the pyramid inscribed in the cone a ratio less than that which the circle B has to the surface of the cone ; which is impossible. ${ }^{a}$ Therefore the circle is not greater than the surface of the cone. And it was proved not to be less; therefore it is equal.

Prop. 16

If an isosceles cone be cut by a plane parallel to the base, the portion of the surface of the cone between the parallel planes is equal to a circle whose radius is a mean proportional between the portion of the side of the cone between the parallel planes and a straight line equal to the sum of the radii of the circles in the parallel planes.

Let there be a cone, in which the triangle through the axis is equal to $A B \Gamma$, and let it be cut by a plane parallel to the base, and let [the cutting plane] make the section $\Delta \mathrm{E}$, and let BH be the axis of the cone,

[^22][^23]
GREEK MATHEMATICS

 $\kappa \omega$,

 86

ARCHIMEDES

and let there be set out a circle whose radius is a mean proportional between $\mathrm{A} \Delta$ and the sum of ΔZ, HA, and let θ be the circle; I say that the circle θ is equal to the portion of the surface of the cone between $\triangle \mathrm{E}, \mathrm{A}$.

For let the circles Λ, K be set out, and let the square of the radius of K be equal to the rectangle contained by $\mathrm{B} \Delta, \Delta \mathrm{Z}$, and let the square of the radius of Λ be equal to the rectangle contained by BA, AH; therefore the circle Λ is equal to the surface of the cone $A B \Gamma$, while the circle K is equal to the surface of the cone $\triangle \mathrm{EB}$ [Prop. 14]. And since

$$
\mathrm{BA} \cdot \mathrm{AH}=\mathrm{B} \Delta \cdot \Delta \mathrm{Z}+\mathrm{A} \Delta \cdot(\Delta \mathrm{Z}+\mathrm{AH})
$$

because $\Delta \mathrm{Z}$ is parallel to $\mathrm{AH},{ }^{a}$ while the square of the radius of Λ is equal to $\mathrm{AB} . \mathrm{AH}$, the square of the radius of K is equal to $B \Delta . \Delta Z$, and the square of the radius of θ is equal to $\Delta \mathrm{A} .(\Delta \mathrm{Z}+\mathrm{AH})$, therefore the square on the radius of the circle Λ is equal to the sum of the squares on the radii of the circles K, θ; so that the circle Λ is equal to the sum of the circles

- The proof is given by Eutocius as follows:

$$
\mathrm{BA}: \mathrm{AH}=\mathrm{B} \Delta: \Delta \mathrm{Z}
$$

$\therefore \quad \mathrm{BA} . \Delta \mathrm{Z}=\mathrm{B} \Delta . \mathrm{AH}$.
But $\mathrm{BA} . \Delta \mathrm{Z}=\mathrm{B} \Delta . \Delta \mathrm{Z}+\mathrm{A} \Delta . \Delta \mathrm{Z}$.
[Eucl. vi. 16
[Eucl. ii. 1
$\therefore \quad \mathrm{B} \Delta . \mathrm{AH}=\mathrm{B} \Delta \cdot \Delta \mathrm{Z}+\mathrm{A} \Delta . \Delta \mathrm{Z}$.
Let $\Delta \mathrm{A} . \mathrm{AH}$ be added to both sides.
Then $\quad B \Delta . A H+\Delta A+A H$,
i.e. $\mathrm{BA} \cdot \mathrm{AH}=\mathrm{B} \Delta \cdot \Delta \mathrm{Z}+\mathrm{A} \Delta \cdot \Delta \mathrm{Z}+\mathrm{A} \Delta . \mathrm{AH}$.

GREEK MATHEMATICS

 Θ ки́к $\lambda \omega$.

κa^{\prime}

 $\pi \lambda \epsilon \nu \rho o ́ v ~ \tau \epsilon ~ к а і ~ і ̈ \sigma o ́ \pi \lambda \epsilon v \rho о \nu, ~ к а і ~ \delta \iota а \chi \theta \hat{\omega} \sigma \iota \nu ~ \epsilon \grave{v} \theta \epsilon \hat{\iota} a \iota$

 $\pi о \lambda v \gamma \omega \dot{v o v}$.
 $\dot{\epsilon} \gamma \gamma \epsilon \gamma \rho a ́ \phi \theta \omega$ тò $\mathrm{AEZBH} \Theta \Gamma \mathrm{MN} \Delta \Lambda \dot{\mathrm{K}}$, каі $\dot{\epsilon} \pi-$ $\epsilon \zeta \epsilon \dot{\chi} \theta \omega \sigma \alpha \nu$ ai $\mathrm{EK}, \mathrm{Z} \Lambda, \mathrm{B} \Delta, \mathrm{HN}, \Theta \mathrm{M} \cdot \delta \hat{\eta} \lambda o \nu \delta{ }_{\eta}^{\prime}$, őть $\pi a \rho a ́ \lambda \lambda \eta \lambda o i ́ ~ \epsilon i \sigma \iota \nu ~ \tau \hat{\eta}$ v́mò δ v́o $\pi \lambda \epsilon u \rho a ̀ s ~ \tau o \hat{v}$

'E $\pi \epsilon \zeta \epsilon u ́ \chi \theta \omega \sigma \alpha \nu$ रà ρ ai $\mathrm{ZK}, \Lambda \mathrm{B}, \mathrm{H} \Delta, \Theta \mathrm{N}$. $\pi \alpha \rho a ́ \lambda \lambda \eta \lambda o s ~ a ̈ \rho a ~ \dot{\eta} \mu \in \dot{\nu}$ ZK $\tau \hat{\eta} \mathrm{EA}, \dot{\eta} \delta \dot{\epsilon} \mathrm{B} \Lambda \tau \hat{\eta}$
 каi ${ }_{\eta}$ ГМ $\tau \hat{\eta}$ @N [каi $\epsilon \pi \epsilon \epsilon i$ бvo $\pi a \rho a ́ \lambda \lambda \eta \lambda о i ́ ~ \epsilon i \sigma \iota \nu ~$ ai EA, KZ, каi סvóo סı$\eta \gamma \mu \epsilon ́ v a \iota ~ \epsilon i \sigma i \nu ~ a i ~ E K, ~ A O] ¹ . ~ . ~$ є̈ $\sigma \tau \iota \nu \stackrel{\alpha}{ } \rho a, \omega_{s} \dot{\eta} \mathrm{E} \Xi \pi \rho o ̀ s ~ \Xi \mathrm{~A}$, ò $\mathrm{K} \Xi \pi \rho o ̀ s ~ \Xi \mathrm{O}$.

ARCHIMEDES

K, θ ．But Λ is equal to the surface of the cone ВАГ， while K is equal to the surface of the cone $\triangle B E$ ； therefore the remainder，the portion of the surface of the cone between the parallel planes $\triangle \mathrm{E}, ~ \mathrm{~A} \mathrm{\Gamma}$ ，is equal to the circle θ ．

Prop． 21

If a regular polygon with an even number of sides be inscribed in a circle，and straight lines be drawn joining the angles ${ }^{\text {a }}$ of the polygon，in such a manner as to be parallel to any one whatsoever of the lines subtended by tno sides of the polygon，the sum of these connecting lines bears to the diameter of the circle the same ratio as the straight line subtended by half the sides less one bears to the side of the polygon．

Let $\mathrm{AB} \mathrm{\Gamma} \Delta$ be a circle，and in it let the polygon AEZBH $\ominus \Gamma M N \triangle \Lambda K$ be inscribed，and let EK，Z Λ ， $\mathrm{B} \Delta, \mathrm{HN}, \theta \mathrm{M}$ be joined；then it is clear that they are parallel to a straight line subtended by two sides of the polygon ${ }^{b}$ ；I say therefore that the sum of the aforementioned straight lines bears to $А \Gamma$ ，the dia－ meter of the circle，the same ratio as ΓE bears to EA．

For let $\mathrm{ZK}, \Lambda \mathrm{B}, \mathrm{H} \Delta, \theta \mathrm{N}$ be joined；then ZK is parallel to $\mathrm{EA}, \mathrm{B} \Lambda$ to ZK ，also $\Delta \mathrm{H}$ to $\mathrm{B} \Lambda, \theta \mathrm{N}$ to $\triangle \mathrm{H}$ and ΓM to $\theta \mathrm{N}^{c}$ ；therefore

But
E寻: EA = Kヨ: 包O.
a＂Sides＂according to the text，but Heiberg thinks Archimedes probably wrote $\gamma \omega v i a s$ where we have $\pi \lambda \epsilon u \rho a s$.
${ }^{\circ}$ For，because the arcs $\mathrm{K} \Lambda, \mathrm{EZ}$ are equal，$\angle E K Z=\angle K Z \Lambda$ ［Eucl．iii．27］；therefore EK is parallel to ΛZ ；and so on．
－For，as the arcs AK，EZ are equal，$\angle \mathrm{AEK}=\angle \mathrm{EKZ}$ ， and therefore AE is parallel to ZK ；and so on．

GREEK MATHEMATICS

$\dot{\eta} \mathrm{Z} \Pi$ тлòs $\Pi \mathrm{O}, \dot{\eta} \Lambda \Pi$ трòs $\Pi \mathrm{P}$, ผ́s δ è $\dot{\eta} \Lambda \Pi$

 MX $\pi \rho o ̀ s ~ Х \Gamma ~[\kappa \alpha i ~ \pi a ́ v \tau \alpha ~ a ̉ \rho a ~ \pi \rho o ̀ s ~ \pi a ́ v \tau \alpha ~ \epsilon ่ \sigma \tau i v, ~$
 $\Xi \mathrm{A}$, oü $\tau \omega \mathrm{s}$ ai $\mathrm{EK}, \mathrm{Z} \Lambda, \mathrm{B} \Delta, \mathrm{HN}, \Theta \mathrm{M} \pi \rho o ̀ s \tau \dot{\eta} v$

 oṽ̃ ω тâoaı ai $\mathrm{EK}, \mathrm{Z} \Lambda, \mathrm{B} \Delta, \mathrm{HN}, \Theta \mathrm{M}$ тןòs $\tau \grave{\nu} \nu \mathrm{A} \Gamma \delta_{\iota} \alpha ́ \mu \epsilon \tau \rho о \nu$.

$$
{ }^{1} \text { каi . . . ėva om. Heiberg. }
$$

ARCHIMEDES

while	ZП : $\Pi 0=\Lambda \Pi: \Pi Р, \quad[i b i d$.
and	$\Lambda \Pi: \Pi P=B \Sigma: \Sigma P$. [ibid.
Again,	$\mathrm{B} \mathrm{\Sigma}: \Sigma \mathrm{P}=\Delta \Sigma: \Sigma \mathrm{T}$, [ibid.
while	$\Delta \Sigma: \Sigma T=H Y: Y T$. [ibid.
Again,	$\mathrm{HY}: \mathrm{YT}=\mathrm{NY}: \mathrm{Y} \mathrm{\Phi}$, [ibid.
while	$N \mathrm{~N}: \Upsilon \Phi=\theta \mathrm{X}: \mathrm{X} \mathrm{\Phi}$. [ibid.
Again,	ӨX : $\mathrm{X} \Phi=\mathrm{MX}: \mathrm{X} \mathrm{\Gamma}, \mathrm{[ibid}$.
therefore	E : $: ⿹ \mathrm{EA}=\mathrm{EK}+\mathrm{Z} \Lambda+\mathrm{B} \Delta+\mathrm{HN}+$
	ӨM : АГ. ${ }^{a}$ [Eucl. v. 12
But	
therefore	$\Gamma \mathrm{E}: \mathrm{EA}=\mathrm{EK}+\mathrm{Z} \Lambda+\mathrm{B} \Delta+\mathrm{HN}+$

- By adding all the antecedents and consequents, for $\mathrm{EE}: \Xi \mathrm{A}=\mathrm{E} \Xi+\mathrm{K} \Xi+\mathrm{Z} \mathrm{\Pi}+\Lambda \Pi+\mathrm{B} \mathrm{\Sigma}+\Delta \Sigma+\mathrm{HY}+\mathrm{Nr}+\Theta \mathrm{X}+$ $M X: \Xi A+\Xi O+\Pi O+\Pi P+\Sigma P+\Sigma T+\Upsilon T+\Upsilon \Phi$ $+\mathrm{X} \Phi+\mathrm{X} \mathrm{\Gamma}$

$$
=\mathrm{EK}+\mathrm{Z} \Lambda+\mathrm{B} \Delta+\mathrm{HN}+\Theta \mathrm{M}: \mathrm{Ar} .
$$

- If the polygon has $4 n$ sides, then

$$
\begin{aligned}
& \angle \mathrm{E} \Gamma \mathrm{~K}=\frac{\pi}{2 n} \text { and } \mathrm{EK}: \mathrm{A} \Gamma=\sin \frac{\pi}{2 n}, \\
& \angle \mathrm{Z} \Lambda=\frac{2 \pi}{2 n} \text { and } \mathrm{Z} \mathrm{\Lambda}: \mathrm{A} \Gamma=\sin \frac{2 \pi}{2 n}, \\
& \angle \Theta \Gamma \mathrm{M}=(2 n-1) \frac{\pi}{2 n} \text { and } \Theta \mathrm{M}: \mathrm{A} \Gamma=\sin (2 n-1) \frac{\pi}{2 n} .
\end{aligned}
$$

Further, $\angle \mathrm{A} \Gamma \mathrm{E}=\frac{\pi}{4 n}$ and IE : $\mathrm{EA}=\cot \frac{\pi}{4 n}$.
Therefore the proposition shows that

$$
\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin (2 n-1)_{2 n} \frac{\pi}{2 n}=\cot \frac{\pi}{4 n} .
$$

GREEK MATHEMATLCS

$\kappa \gamma^{\prime}$

"Ебт $\bar{\epsilon} \nu$ бфаípa $\mu \epsilon ́ \gamma \iota \sigma \tau о s ~ к u ́ к \lambda о s ~ o ́ ~ А В Г \Delta, ~ к а i ̀ ~$

 АВГД ки́клоs ${ }_{\epsilon}^{\epsilon} \chi \omega \nu$ тò $\pi о \lambda \cup ́ \gamma \omega \nu o v, ~ \delta \hat{\eta} \lambda o v$, öтє $\dot{\eta}$

 $\chi \omega \rho i s ~ \tau \hat{\omega} \nu \pi \rho o ̀ s ~ \tau о i ̂ s ~ А, ~ Г ~ о \eta \mu \epsilon i o 七 s ~ к а \tau a ̀ ~ к u ́ к \lambda \omega \nu ~$
 oфаípas $\gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ \nu \omega \nu$ ó $\rho \theta \omega \hat{\omega}$ т $\pi \rho$ òs тòv АВГ Δ

 ov̂ซa८. ai $\delta \grave{\epsilon}$ тov̂ $\pi о \lambda v \gamma \omega ́ \nu o v ~ \pi \lambda \epsilon v \rho \alpha i ~ \kappa \alpha \tau \alpha ́ ~ \tau \iota \nu \omega \nu$ $\kappa \omega ́ \nu \omega \nu$ '่ $\nu \epsilon \chi \theta \dot{\eta} \sigma о \nu \tau \alpha \iota$, aí $\mu \epsilon ̀ \nu \mathrm{AZ}, \mathrm{AN} \kappa \alpha \tau^{\prime} \epsilon \in \pi \iota-$ фаvєías кй́vov, ov̂ β áбıs $\mu \epsilon ̀ \nu ~ o ́ ~ к v ́ к \lambda о s ~ o ́ ~ \pi \epsilon \rho i ~$ $\delta \iota a ́ \mu \epsilon \tau \rho \circ \nu \tau \eta ̀ \nu \mathrm{ZN}, \kappa o \rho v \phi \grave{\eta} \delta \grave{\epsilon} \tau o ̀ \mathrm{~A} \sigma \eta \mu \epsilon i ̄ o \nu$, ai $\delta \dot{\epsilon}$ 92

ARCHIMEDES

$$
\text { Prop. } 23
$$

Let $A B \Gamma \Delta$ be the greatest circle in a sphere, and let there be inscribed in it an equilateral polygon, the number of whose sides is divisible by four, and let $\mathrm{A} \Gamma, \Delta \mathrm{B}$ be diameters. If the diameter $\mathrm{A} \Gamma$ remain stationary and the circle $\mathrm{AB} \mathrm{\Gamma} \Delta$ containing the polygon be rotated, it is clear that the circumference of the circle will traverse the surface of the sphere, while the angles of the polygon, except those at the points A, Γ, will traverse the circumferences of circles described on the surface of the sphere at right angles to the circle $\mathrm{AB} \mathrm{\Gamma} \triangle$; their diameters will be the [straight lines] joining the angles of the polygon, being parallel to $B \Delta$. Now the sides of the polygon will traverse certain cones; AZ, AN will traverse the surface of a cone whose base is the circle about the diameter ZN and whose vertex is the point $\mathrm{A} ; \mathrm{ZH}$,

GREEK MATHEMATICS

 MH , корифウ̀ $\delta \grave{\epsilon}$ тò $\sigma \eta \mu \epsilon i ̂ o \nu, \kappa \alpha \theta^{\prime}$ ó $\sigma v \mu \beta a ́ \lambda \lambda о v \sigma \iota \nu$

 бьá $\mu \epsilon \tau \rho о \nu \tau \eta \grave{\nu} \mathrm{~B} \Delta$ ó $\rho \theta$ òs $\pi \rho o ̀ s ~ \tau o ̀ v ~ А В Г \Delta ~ к v ́ к \lambda о \nu, ~$
 $\beta a \lambda \lambda o ́ \mu \epsilon \nu a \iota$ ai $\mathrm{BH}, \Delta \mathrm{M} \alpha \lambda \lambda \eta \eta^{\prime} \lambda a \iota s \tau \epsilon \kappa \alpha i \tau \hat{\eta}$ ГА-

 $\pi \rho o ̀ s ~ \tau o ̀ \nu ~ А В Г \Delta ~ к и ́ к \lambda о \nu-к а i ́ ~ \epsilon i \sigma \iota \nu ~ \grave{\alpha} \mu ф о ́ \tau \epsilon \rho a \iota ~ \epsilon ̇ \pi i ~$

[^24]
ARCHIMEDES

MN will traverse the surface of a certain cone whose base is the circle about the diameter MH and whose vertex is the point in which ZH , MN produced meet one another and with $A \Gamma$; the sides $B H, M \Delta$ will traverse the surface of a cone whose base is the circle about the diameter $B \Delta$ at right angles to the circle $A B \Gamma \Delta$ and whose vertex is the point in which $\mathrm{BH}, \Delta \mathrm{M}$ produced meet one another and with $\mathrm{\Gamma A}$; in the same way the sides in the other semicircle will traverse surfaces of cones similar to these. As a result there will be inscribed in the sphere and bounded by the aforesaid surfaces of cones a figure whose surface will be less than the surface of the sphere.

For, if the sphere be cut by the plane through B Δ at right angles to the circle $A B \Gamma \Delta$, the surface of one of the hemispheres and the surface of the figure inscribed in it have the same extremities in one plane; for the extremity of both surfaces is the circumference of the circle about the diameter $\mathrm{B} \Delta$ at right angles to the circle $\mathrm{AB} \mathrm{\Gamma} \Delta$; and both are concave in the same direction, and one of them is included by the other surface and the plane having the same extremities with it. ${ }^{a}$ Similarly the surface of the figure inscribed in the other hemisphere is less than the surface of the hemisphere; and therefore the whole surface of the figure in the sphere is less than the surface of the sphere.
tion, from Postulate 4, that the surface of the figure inscribed in the hemisphere is less than the surface of the hemisphere.

GREEK MATHEMATICS

$\kappa \delta^{\prime}$

 ov̋́aus $\tau \hat{\eta}$ vimò δ v́o $\pi \lambda \epsilon \cup \rho a ̀ s ~ \tau o v ̂ ~ \pi o \lambda u \gamma \omega ́ v o v ~ v i \pi o-~$ $\tau \epsilon \iota \nu \circ \cup \cup \sigma \eta$ єv̀ $\theta \epsilon i ́ a$.

 $\mathrm{EZ}, \mathrm{H} \Theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN} \pi a \rho a ́ \lambda \lambda \eta \lambda o \iota ~ o u ̛ \sigma a \iota ~ \tau \hat{\eta}$ ن́ $\pi \grave{o}$

 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu$ úтó $\tau \epsilon \tau \hat{\eta} s$ AE каi $\tau \hat{\eta} s$ üбŋs $\tau a i ̂ s$

 र $\alpha ф о \mu \epsilon ́ v o v ~ \sigma \chi \eta ́ \mu а т о s . ~$

 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu$ víó $\tau \epsilon \tau \hat{\eta} s$ EA каi $\tau \hat{\eta} S$ ท $\dot{\eta} \mu \iota \sigma \epsilon i ́ a s ~ \tau \hat{\eta} S$

 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu \circ \nu$ víò $\tau \hat{\eta} s$ EA каi $\tau \hat{\eta} s$ ท̀ $\mu \iota \sigma \epsilon$ ías $\tau \hat{\omega} \nu$
 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu=\nu$ viлó $\tau \epsilon \tau \hat{\eta} s$ EA каi $\tau \hat{\eta} s$ ท̂ $\mu \iota \sigma \epsilon i a s$

 96

ARCHIMEDES

Prop. 24

The surface of the figure inscribed in the sphere is equal to a circle, the square of whose radius is equal to the rectangle contained by the side of the figure and a straight line equal to the sum of the straight lines joining the angles of the polygon, being parallel to the straight line subtended by two sides of the polygon.

Let $\mathrm{AB} \mathrm{\Gamma} \Delta$ be the greatest circle in a sphere, and in it let there be inscribed an equilateral polygon, the number of whose sides is divisible by four, and, starting from the inscribed polygon, let there be imagined a figure inscribed in the sphere, and let $\mathrm{E} Z, \mathrm{H} \theta$, $\Gamma \Delta, K \Lambda, M N$ be joined, being parallel to the straight line subtended by two sides; now let there be set out a circle \exists, the square of whose radius is equal to the rectangle contained by AE and a straight line equal to the sum of $E Z, H \theta, \Gamma \Delta, K \Lambda, M N$; I say that this circle is equal to the surface of the figure inscribed in the sphere.

For let the circles O, II, P, $\mathrm{\Sigma}, \mathrm{~T}, \mathrm{Y}$ be set out, and let the square of the radius of O be equal to the rectangle contained by EA and the half of EZ, let the square of the radius of Π be equal to the rectangle contained by EA and the half of $\mathrm{EZ}+\mathrm{H} \theta$, let the square of the radius of P be equal to the rectangle contained by EA and the half of $\mathrm{H} \theta+\Gamma \Delta$, let the square of the radius of Σ be equal to the rectangle contained by EA and the half of $\mathrm{\Gamma} \Delta+\mathrm{K} \Lambda$, let the square of the radius of T be equal to the rectangle

GREEK MATHEMA'TICS

 $\tau o ̀ ~ \pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu \circ \nu$ vंтó $\tau \epsilon \tau \hat{\eta} s$ AE каi $\tau \hat{\eta} s$ $\dot{\eta} \mu \iota \sigma \epsilon i a s$

 $\mathrm{P} \tau \hat{\eta} \mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{H} \Theta, \Gamma \Delta$, ó $\delta \dot{\epsilon} \Sigma \tau \hat{\eta} \mu \in \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu$

 rô̂ к ω vov $\tau \hat{\eta} \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{~K} \Lambda, \mathrm{MN}, \delta \delta \dot{\epsilon} \Upsilon \tau \hat{\eta}$

 кє́vтр $\omega \nu \tau \hat{\omega} \nu \mathrm{O}, ~ П, ~ Р, ~ \Sigma, ~ Т, ~ \Upsilon ~ к u ́ к \lambda \omega \nu ~ \delta u ́ v a \nu \tau \alpha \iota ~$ тò $\pi \epsilon \rho \iota \in \chi o ́ \mu \epsilon \nu о \nu$ víó $\tau \epsilon \tau \hat{\eta} s$ AE каi δi is $\tau \hat{\omega} \nu \dot{\eta} \mu i-$ $\sigma \epsilon \omega \nu \tau \hat{\eta} s \mathrm{EZ}, \mathrm{H} \Theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN}$, aî ö̀ $\lambda a \iota$ єioiv 98

ARCHIMEDES

contained by AE and the half of $\mathrm{K} \Lambda+\mathrm{MN}$, and let the square of the radius of Y be equal to the rect angle contained by AE and the half of MN. Now by these constructions the circle 0 is equal to the surface of the cone AEZ [Prop. 14], the circle Π is equal to the surface of the conical frustum between $E Z$ and $H \theta$, the circle P is equal to the surface of the conical frustum between $\mathrm{H} \theta$ and $\Gamma \Delta$, the circle Σ is

equal to the surface of the conical frustum between $\Delta \Gamma$ and $K \Lambda$, the circle T is equal to the surface of the conical frustum between K Λ, MN [Prop. 16], and the circle Υ is equal to the surface of the cone MBN [Prop. 14] ; the sum of the circles is therefore equal to the surface of the inscribed figure. And it is manifest that the sum of the squares of the radii of the circles $O, \Pi, P, \Sigma, T, \Upsilon$ is equal to the rectangle contained by AE and twice the sum of the halves of $\mathrm{EZ}, \mathrm{H} \theta, \Gamma \Delta, K \Lambda, M N$, that is to say, the sum of EZ ,

GREEK MATHEMATICS

 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu \frac{\nu}{\text { v }} \pi o ́ \quad \tau \epsilon \tau \hat{\eta} s$ AE каi $\pi \alpha \sigma \hat{\omega} \nu \tau \hat{\omega} \nu \mathrm{EZ}$, $\mathrm{H} \Theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN}$. ảd入̀̀ каì $\mathfrak{\eta}$ є̇к то̂̂ кévтроv
 $\sigma v \gamma \kappa \epsilon \iota \epsilon \in \nu \eta s \epsilon \in \kappa \pi a \sigma \hat{\nu} \nu \tau \hat{\omega} \nu \mathrm{EZ}, \mathrm{H} \Theta, Г \Delta, \mathrm{~K} \Lambda$,
 $\tau \dot{\alpha}$ à $\tau \grave{o} \tau \hat{\omega} \nu \dot{\epsilon} \kappa \tau \hat{\omega} \nu \kappa \epsilon \in \nu \tau \rho \omega \nu \tau \hat{\omega} \nu \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}$,
 $\Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon$ кúкдоьs. oi $\delta \dot{\epsilon} \mathrm{O}, \Pi, \mathrm{P}, \Sigma, \mathrm{T}, \Upsilon$

 $\tau \hat{\eta} \epsilon \in \pi \iota \phi a \nu \epsilon i ́ a ~ \tau о \hat{v} \sigma \chi \eta \dot{\eta} \mu a \tau о s$.

$\kappa \epsilon^{\prime}$

Tồ $\epsilon \gamma \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v ~ \sigma \chi \eta \dot{\eta} \mu \alpha \tau о s$ єís $\tau \grave{\eta} \nu \quad \sigma \phi a i ̂ \rho \alpha \nu$

 $\pi \lambda \epsilon v \rho o \nu$, ov̂ ai $\pi \lambda \epsilon v \rho a i$ vinò $\tau \epsilon \tau \rho a ́ \delta o s ~ \mu \epsilon \tau \rho \circ \hat{\nu} \nu \tau \alpha \iota$,

${ }^{a}$ If the radius of the sphere is a this proposition shows that Surface of inscribed figure $=$ circle Ξ

$$
=\pi \cdot \mathrm{AE} \cdot(\mathrm{EZ}+\mathrm{H} \Theta+\Gamma \Delta+\underset{\mathrm{KN}}{\mathrm{~K}})
$$

Now $\mathrm{AE}=2 a \sin \frac{\pi}{4 n}$, and by p. 91 n. b

ARCHIMEDES

$\mathrm{H} \theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN}$; therefore the sum of the squares of the radii of the circles O, Π, P, Σ, T, Y is equal to the rectangle contained by AE and the sum of EZ, $\mathrm{H} \theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN}$. But the square of the radius of the circle $\#$ is equal to the rectangle contained by AE and a straight line made up of $\mathrm{EZ}, \mathrm{H} \Theta, \Gamma \Delta, \mathrm{K} \Lambda, \mathrm{MN}$ [ex hypothesi]; therefore the square of the radius of the circle Ξ is equal to the sum of the squares of the radii of the circles $0, \Pi, P, \Sigma, T, \Upsilon$; and therefore the circle Ξ is equal to the sum of the circles $0, \Pi, P, \Sigma, T, \Upsilon$. Now the sum of the circles O, Π, $\mathrm{P}, \Sigma, \mathrm{T}, \mathrm{Y}$ was shown to be equal to the surface of the aforesaid figure ; and therefore the circle Ξ will be equal to the surface of the figure. ${ }^{a}$

Prop. 25

The surface of the figure inscribed in the sphere and bounded by the surfaces of cones is less than four times the greatest of the circles in the sphere.

Let $A B \Gamma \triangle$ be the greatest circle in a sphere, and in it let there be inscribed an equilateral polygon, the number of whose sides is divisible by four, and, starting from it, let a surface bounded by surfaces of
$\mathrm{EZ}+\mathrm{H} \Theta+\Gamma \Delta+\mathrm{K} \Lambda+\mathrm{MN}=2 a\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin \right.$

$$
\left.(2 n-1) \frac{\pi}{2 n}\right] .
$$

\therefore Surface of inscribed figure $=4 \pi a^{2} \sin \frac{\pi}{4 n}\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}\right.$

$$
\left.+\ldots+\sin (2 n-1) \frac{\pi}{2 n}\right]
$$

$=4 \pi a^{2} \cos \frac{\pi}{4 n}$
[by p. 91 n. b.

GREEK MATHEMATICS

$\kappa \omega \nu \iota \kappa \hat{\omega} \nu$ є̇ $\pi \iota \phi а \nu \epsilon \iota \omega ิ \nu \pi \epsilon \rho \iota \epsilon \chi о \mu \epsilon ́ \nu \eta \cdot \lambda \epsilon \in \gamma \omega$, öт८ ทं

'Е $\pi \epsilon \zeta \epsilon u ́ \chi \theta \omega \sigma \alpha \nu$ रà ρ ai $\dot{v} \pi \grave{o}$ रv́o $\pi \lambda \epsilon v \rho a ̀ s$ vi $\pi \dot{o}-$

 $\mathrm{ZK}, \mathrm{B} \Delta, \mathrm{H} \Lambda, ~ \Theta \mathrm{M} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \delta \iota \alpha ́ \mu \epsilon \tau \rho \circ \nu \tau о \hat{v} \kappa v ́ \kappa \lambda о v$

ARCHIMEDES

cones be imagined; I say that the surface of the inscribed figure is less than four times the greatest of the circles inscribed in the sphere.

For let EI, θM, subtended by two sides of the polygon, be joined, and let $\mathrm{ZK}, \Delta \mathrm{B}, \mathrm{H} \Lambda$ be parallel

to them, and let there be set out a circle P, the square of whose radius is equal to the rectangle contained by EA and a straight line equal to the sum of EI, $\mathrm{ZK}, \mathrm{B} \Delta, \mathrm{H} \Lambda, \theta \mathrm{M}$; by what has been proved above, the circle is equal to the surface of the aforesaid figure. And since it was proved that the ratio of the sum of $\mathrm{EI}, \mathrm{ZK}, \mathrm{B} \Delta, \mathrm{H} \Lambda, \theta \mathrm{A}$ to $\mathrm{A} \mathrm{\Gamma}$, the diameter of the circle, is equal to the ratio of $\Gamma \mathrm{E}$ to EA [Prop. 21], therefore

$$
\mathrm{EA} \cdot(\mathrm{EI}+\mathrm{ZK}+\mathrm{B} \Delta+\mathrm{H} \Lambda+\theta \mathrm{M})
$$

that is, the square on the radius of the circle P

$$
=\mathrm{A} \Gamma . \Gamma \mathrm{E} .
$$

$$
\text { [Eucl. vi. } 16
$$

But $A \Gamma . \Gamma E<A \Gamma^{2}$.

$$
A \Gamma . \Gamma E<A \Gamma^{2} .
$$

[Eucl. iii. 15
Therefore the square on the radius of P is less than the square on $A \Gamma$; therefore the circle P is less

GREEK MATHEMATICS

$\kappa \eta^{\prime}$

 $\tau \hat{\omega} \nu \pi \lambda \epsilon v \rho \hat{\omega} \nu$ av่ $\tau o \hat{v} \mu \epsilon \tau \rho \epsilon i \sigma \theta \omega$ vitò $\tau \epsilon \tau \rho \alpha ́ \delta o s$, $\tau \grave{o}$
 ки́клоs $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v o s ~ \pi \epsilon \rho \iota \lambda a \mu \beta \alpha \nu \epsilon ́ \tau \omega ~ \pi \epsilon \rho i ~ \tau o ̀ ~$

 $\phi a \nu \epsilon i a s ~ \tau \hat{\eta} s$ oфaípas oí $\theta \eta \dot{\eta} \sigma \epsilon \tau \alpha \iota, \dot{\eta} \delta \dot{\epsilon} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha$
 104

ARCHIMEDES

than four times the greatest circle. But the circle P was proved equal to the aforesaid surface of the figure; therefore the surface of the figure is less than four times the greatest of the circles in the sphere.

Prop. 28
Let $A B \Gamma \triangle$ be the greatest circle in a sphere, and about the circle $\mathrm{ABI} \Delta$ let there be circumscribed

an equilateral and equiangular polygon, the number of whose sides is divisible by four, and let a circle be described about the polygon circumscribing the circle, having the same centre as ABГD. While EH remains stationary, let the plane EZH θ, in which lie both the polygon and the circle, be rotated; it is clear that the circumference of the circle $A B \Gamma \Delta$ will traverse the surface of the sphere, while the circumference of EZHӨ will traverse the surface of another

GREEK MATHEMATICS
av̀тò кévт

 vov $\chi \omega \rho i s \tau \bar{\omega} \nu \pi \rho o ̀ s ~ \tau o i ̂ s ~ E, ~ H ~ \sigma \eta \mu \epsilon i o \iota s ~ к а \tau \grave{\alpha} \kappa v ́-~$
 $\mu \epsilon$ '́hovos oфaípas $\gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v \omega \nu$ ó $\rho \theta \hat{\omega} \nu$ $\pi \rho o ̀ s ~ \tau o ̀ \nu ~$

 $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a \quad \tau о \hat{v} \pi \epsilon \rho i \quad \delta \iota \alpha ́ \mu \epsilon \tau \rho о \nu \tau \grave{\eta} \nu \mathrm{~K} \Delta$ ò $\rho \theta o \hat{v} \pi \rho \rho \grave{s}$ то̀v $\mathrm{AB} \mathrm{\Gamma} \mathrm{\Delta} \mathrm{ки́к} \mathrm{\lambda о} \mathrm{\nu} \mathrm{каi} \mathrm{єi} \mathrm{\sigma} \mathrm{\iota} \mathrm{\nu} \mathrm{à} \mathrm{\mu фó} \mathrm{\tau} \mathrm{\epsilon} \mathrm{\rho а} \mathrm{\iota} \mathrm{\epsilon ̇} \mathrm{\pi i} \mathrm{\tau à}$

 фávєıa $\tau \hat{\eta} s$ є̀ $\pi \iota \phi a \nu \epsilon i ́ a s ~ \tau o \hat{v} ~ \sigma \chi \eta ́ \mu a \tau o s ~ \tau o \hat{v} \pi \epsilon \rho \iota-$ 106

ARCHIMEDES

sphere, having the same centre as the lesser sphere ; the points of contact in which the sides touch [the smaller circle] will describe circles on the lesser sphere at right angles to the circle $A B \Gamma \Delta$, and the angles of the polygon, except those at the points E, H will traverse the circumferences of circles on the surface of the greater sphere at right angles to the circle EZH θ, while the sides of the polygon will traverse surfaces of cones, as in the former case ; there will therefore be a figure, bounded by surfaces of cones, described about the lesser sphere and inscribed in the greater. That the surface of the circumscribed figure is greater than the surface of the sphere will be proved thus.

Let $\mathrm{K} \Delta$ be a diameter of one of the circles in the lesser sphere, K, Δ being points at which the sides of the circumscribed polygon touch the circle $A B \Gamma \triangle$. Now, since the sphere is divided by the plane containing $\mathrm{K} \Delta$ at right angles to the circle $\mathrm{AB} \Gamma \Delta$, the surface of the figure circumscribed about the sphere will be divided by the same plane. And it is manifest that they ${ }^{a}$ have the same extremities in a plane ; for the extremity of both surfaces ${ }^{b}$ is the circumference of the circle about the diameter $\mathrm{K} \Delta$ at right angles to the circle $A B \Gamma \Delta$; and they are both concave in the same direction, and one of them is included by the other and the plane having the same extremities; therefore the included surface of the segment of the sphere is less than the surface of

[^25]
GREEK MATHEMATICS

T η ढ́ $\pi \iota \phi \alpha \nu \epsilon i ́ a ~ \tau o \hat{v} \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v$ $\sigma \chi \eta \dot{\eta} \mu a \tau o s$

 є́ $\pi \iota \zeta \epsilon \cup \gamma \nu v o v ́ \sigma \alpha \iota s ~ \tau \dot{\alpha} s ~ \gamma \omega v i ́ a s ~ \tau o v ̂ ~ \pi o \lambda v \gamma \omega ́ v o v ~ o v ̋ \sigma a \iota s ~$ $\pi \alpha \rho a ́ ~ \tau \iota v \alpha ~ \tau \omega ิ \nu ~ u ̛ \pi o ̀ ~ \delta v ́ o ~ \pi \lambda \epsilon v \rho \alpha ̀ s ~ \tau o \hat{v} \pi o \lambda v \gamma \omega ́ v o v$ $\dot{v} \pi о \tau \epsilon \iota \nu 0 v \sigma \omega ิ \nu$.

 $\tau \hat{\omega} \nu$ ढ̇ $\pi \iota \phi а \nu \epsilon \iota \hat{\omega} \nu \tau \hat{\omega} \nu \kappa \omega \nu \iota \kappa \bar{\omega} \nu \quad \delta \epsilon ́ \delta \epsilon \iota \kappa \tau \alpha \iota$ ö $\tau \iota \tau \hat{\eta}$

 ov́raıs $\tau \alpha ̀ s ~ \gamma \omega v i ́ a s ~ \tau o \hat{v} ~ \pi o \lambda u \gamma \omega ́ v o v ~ o v ̌ \sigma a \iota s ~ \pi a \rho a ́ ~$
 oûv $\epsilon \sigma \tau \iota ~ \tau o ̀ ~ \pi \rho о є \iota \rho \eta \mu \epsilon ́ v o v . ~$

[^26]
ARCHIMEDES

the figure circumscribed about it [Post. 4]. Similarly the surface of the remaining segment of the sphere is less than the surface of the figure circumscribed about it ; it is clear therefore that the whole surface of the sphere is less than the surface of the figure circumscribed about it.

Prop. 29

The surface of the figure circumscribed about the sphere is equal to a circle, the square of whose radius is equal to the rectangle contained by one side of the polygon and a straight line equal to the sum of all the straight lines joining the angles of the polygon, being parallel to one of the straight lines subtended by two sides of the polygon.

For the figure circumscribed about the lesser sphere is inscribed in the greater sphere [Prop. 28]; and it has bcen proved that the surface of the figure inscribed in the sphere and formed by surfaces of cones is equal to a circle, the square of whose radius is equal to the rectangle contained by one side of the polygon and a straight line equal to the sum of all the straight lines joining the angles of the polygon, being parallel to one of the straight lines subtended by two sides [Prop. 24] ; what was aforesaid is therefore obvious. ${ }^{a}$

$$
\begin{array}{r}
=4 \pi a^{\prime 2} \sin \frac{\pi}{4 n}\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin (2 n-1) \frac{\pi}{2 n}\right] \\
\text { or } 4 \pi a^{\prime 2} \cos \frac{\pi}{4 n}[\text { by p. } 91 \text { n. b }
\end{array}
$$

$=4 \pi a^{2} \sec ^{2} \frac{\pi}{4 n} \sin \frac{\pi}{4 n}\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin (2 n-1) \frac{\pi}{2 n}\right]$,

$$
\text { or } 4 \pi a^{2} \sec \frac{\pi}{4 n}
$$

GREEK MATHEMATICS

λ^{\prime}

Θ

 110

ARCHIMEDES

Prop. 30

The surface of the figure circumscribed about the sphere is greater than four times the greatest of the circles in the sphere.

For let there be both the sphere and the circle and the other things the same as were posited before, and let the circle Λ be equal to the surface of the given figure circumscribed about the lesser sphere.

Therefore since in the circle EZH θ there has been inscribed an equilateral polygon with an even number of angles, the [sum of the straight lines] joining the sides of the polygon, being parallel to $Z \theta$, have the same ratio to $\mathrm{Z} \Theta$ as $\theta \mathrm{K}$ to KZ [Prop. 21]; therefore the rectangle contained by one side of the polygon and the straight line equal to the sum of the straight lines joining the angles of the polygon is equal to the rectangle contained by $\mathrm{Z} \Theta, \Theta \mathrm{K}$ [Eucl. vi. 16] ; so that the square of the radius of the circle Λ is equal to the rectangle contained by $Z \theta, \theta \mathrm{~K}$

GREEK MATHEMATICS

 $\ddot{\eta} \tau \epsilon \tau \rho a \pi \lambda \alpha ́ \sigma \iota o s$ ó Λ ки́клоs, тоvтє́бтьv $\dot{\eta}$ є́ $\pi \iota-$ фávєıa тô̂ $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v ~ \sigma \chi \eta ́ \mu a \tau о s ~ \pi \epsilon \rho i ~ \tau \grave{\eta} \nu$
 oфаípa.

$$
\lambda \gamma^{\prime}
$$

"Ебт $\quad \gamma$ à ρ бфаîpá тıs, каi ${ }^{\epsilon} \sigma \tau \omega ~ \tau \epsilon \tau \rho a \pi \lambda a ́ \sigma \iota o s ~$

 $\pi \rho o ́ \tau \epsilon \rho o \nu ~ \mu \epsilon i \zeta \omega \nu \dot{\eta} \epsilon \in \pi \iota \phi a ́ \nu \epsilon \iota a \quad \tau \hat{\eta} s$ $\sigma \phi a i \rho a s ~ \tau о \hat{v}$

 $\lambda \alpha \beta \epsilon i ̂ v ~ \delta u ́ o ~ \epsilon v ̉ \theta \epsilon i a s ~ a ̉ v i ́ \sigma o v s, ~ \check{\sigma} \sigma \tau \epsilon \tau \grave{\eta} \nu \mu \epsilon i \zeta o v a$ $\pi \rho o ̀ s$

$$
{ }^{1} \text { סıплашia . . . кúкגov om. Heiberg. }
$$

[^27]
ARCHIMEDES

[Prop. 29]. Therefore the radius of the circle Λ is greater than $\Theta K .{ }^{a}$ Now $\theta \mathrm{K}$ is equal to the diameter of the circle $\mathrm{AB} \Gamma \Delta$; it is therefore clear that the circle Λ, that is, the surface of the figure circumscribed about the lesser sphere, is greater than four times the greatest of the circles in the sphere.

Prop. 33

The surface of any sphere is four times the greatest of the circles in it.

For let there be a sphere, and let A be four times the greatest circle; I say that A is equal to the surface of the sphere.

For if not, either it is greater or less. First, let the surface of the sphere be greater than the circle.

Then there are two unequal magnitudes, the surface of the sphere and the circle A; it is therefore possible to take two unequal straight lines so that the greater bears to the less a ratio less than that which the sur-

GREEK MATHEMATICS

 $\tau \epsilon \tau \mu \eta \mu \epsilon ́ \nu \eta$ ठıà тồ кє́vтроv катà тòv EZH@

 $\pi о \lambda v \gamma \dot{\omega} \nu \omega$ каi т $\grave{\eta} \nu$ то仑 $\pi \epsilon \rho \tau \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v ~ \pi \lambda \epsilon v \rho \grave{\nu} \nu$

 $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v \quad \sigma \tau \epsilon \rho \epsilon 0 \hat{v} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$ ढ่ $\pi \iota \phi \alpha ́ \nu \epsilon \iota \alpha \nu \tau o \hat{v}$

 фávєıav тov̂ є́ $\gamma \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o v ~ \sigma \chi \eta \prime \mu \alpha \tau о s ~ \epsilon ̀ \lambda \alpha ́ \sigma \sigma o v a ~$

 $\mu \epsilon i \zeta \omega \nu$ є̇ $\sigma \tau i$ тov̂ A ки́клоv.

$$
\begin{aligned}
& { }^{1} \text { каі . . . є́ } \gamma \gamma є \gamma \rho a \mu \mu \epsilon ́ v o v \text { om. Heiberg. }
\end{aligned}
$$

om. Heiberg.

ARCHIMEDES

face of the sphere bears to the circle [Prop. 2]. Let B, Γ be so taken, and let Δ be a mean proportional between B, Γ, and let the sphere be imagined as cut

through the centre along the [plane of the] circle EZHO, and let there be imagined a polygon inscribed in the circle and another circumscribed about it in such a manner that the circumscribed polygon is similar to the inscribed polygon and the side of the circumscribed polygon has [to the side of the inscribed polygon] ${ }^{a}$ a ratio less than that which B has to Δ [Prop. 3]. Therefore the surface of the figure circumscribed about the sphere has to the surface of the inscribed figure a ratio less than that which the surface of the sphere has to the circle A; which is absurd; for the surface of the circumscribed figure is greater than the surface of the sphere [Prop. 28], while the surface of the inscribed figure is less than the circle A [Prop. 25]. Therefore the surface of the sphere is not greater than the circle A.
a Archimedes would not have omitted: $\pi \rho \dot{\rho} s \tau \grave{\eta} \nu \tau o \hat{v}$ द́ $\gamma \gamma \epsilon-$ үра $\mu \mu$ évov.

GREEK MATHEMATICS

 $\kappa \alpha i \quad \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha ́ \phi \theta \omega \pi \alpha ́ \lambda \iota \nu, \stackrel{\ddot{\omega} \sigma \tau \epsilon}{\dot{\omega}} \boldsymbol{\eta} \nu \quad \tau 0 \hat{v} \pi \epsilon \rho \iota \gamma \epsilon-$

$$
\begin{aligned}
& { }^{1} \text { каì . . . äpa om. Heiberg. } \\
& { }^{2} \dot{\eta}^{\mathrm{B}} \text {. . . } \eta_{\eta \pi \epsilon} \text { om. Heiberg. }
\end{aligned}
$$

a Archimedes would not have omitted these words.
${ }^{b}$ On p. 100 n . a it was proved that the area of the inscribed figure is

$$
\begin{array}{r}
4 \pi a^{2} \sin \frac{\pi}{n}\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin (2 n-1) \frac{\pi}{2 n}\right] \\
\text { or } 4 \pi a^{2} \cos \frac{\pi}{4 n} .
\end{array}
$$

On p. 108 n. a it was proved that the area of the circumscribed figure is

$$
\begin{array}{r}
4 \pi a^{2} \sec ^{2} \frac{\pi}{4 n} \sin \frac{\pi}{4 n}\left[\sin \frac{\pi}{2 n}+\sin \frac{2 \pi}{2 n}+\ldots+\sin (2 n-1) \frac{\pi}{2 n}\right] \\
\text { or } 4 \pi a^{2} \sec \frac{\pi}{4 n}
\end{array}
$$

ARCHIMEDES

I say now that neither is it less. For, if possible let it be ; and let the straight lines B, Γ be similarly found, so that B has to Γ a less ratio than that which the circle A has to the surface of the sphere, and let Δ be a mean proportional between B, I, and let [polygons] be again inscribed and circumscribed, so that the [side] of the circumscribed polygon has [to the side of the inscribed polygon] ${ }^{a}$ a less ratio than that of B to Δ; then the surface of the circumscribed polygon has to the surface of the inscribed polygon a ratio less than that which the circle A has to the surface of the sphere; which is absurd ; for the surface of the circumscribed polygon is greater than the circle A, while that of the inscribed polygon is less than the surface of the sphere.

Therefore the surface of the sphere is not less than the circle A. And it was proved not to be greater ; therefore the surface of the sphere is equal to the circle A, that is to four times the greatest circle. ${ }^{b}$

When n is indefinitely increased, the inscribed and circumscribed figures become identical with one another and with the circle, and, since $\cos \frac{\pi}{4 n}$ and sec $\frac{\pi}{4 n}$ both become unity, the above expressions both give the area of the circle as $4 \pi a^{2}$.

But the first expressions are, when n is indefinitely increased, precisely what is meant by the integral

$$
4 \pi a^{2} \cdot \frac{1}{2} \int_{0}^{\pi} \sin \phi d \phi,
$$

which is familiar to every student of the calculus as the formula for the area of a sphere and has the value $4 \pi a^{2}$.

Thus Archimedes' procedure is equivalent to a genuine integration, but when it comes to the last stage, instead of saying, " Let the sides of the polygon be indefinitely

GREEK MATHEMATICS

$\lambda \delta^{\prime}$

increased," he prefers to prove that the area of the sphere cannot be either greater or less than $4 \pi a^{2}$. By this double reductio ad absurdum he avoids the logical difficulties of dealing with indefinitely small quantities, difficulties that were not fully overcome until recent times.

The procedure by which in this same book Archimedes 118

ARCHIMEDES

Prop. 34

Any sphere is four times as great as the cone having a base equal to the greatest of the circles in the sphere and height equal to the radius of the sphere.

For let there be a sphere in which $А В \Gamma \triangle$ is the greatest circle. If the sphere is not four times the

aforesaid cone, let it be, if possible, greater than four times; let ξ be a cone having a base four times the circle ABID and height equal to the radius of the sphere; then the sphere is greater than the cone E. Accordingly there will be two unequal magnitudes, the sphere and the cone; it is therefore possible to take two unequal straight lines so that
finds the surface of the segment of a sphere is equivalent to the integration

$$
\pi a^{2} \int 2 \sin \theta d \theta=2 \pi a^{2}(1-\cos a) .
$$

Concurrently Archimedes finds the volumes of a sphere and segment of a sphere. He uses the same inscribed and circumscribed figures, and the procedure is equivalent to multiplying the above formulae by $\frac{1}{\frac{1}{a} a}$ throughout. Other " integrations" effected by Archimedes are the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, the volume of a segment of a spheroid, the area of a spiral and the area of a segment of a parabola. He also finds the area of an ellipse, but not by a method equivalent to integration. The subject is fully treated by Heath, The Works of Archimedes, pp. cxlii-cliv, to whom I am much indebted in writing this note.

GREEK MATHEMATICS

$\mu \in i \zeta$ ova $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \epsilon ̇ \lambda \alpha ́ \sigma \sigma o v a ~ \epsilon ́ \lambda \alpha ́ \sigma \sigma o v a ~ \lambda o ́ \gamma o \nu ~ \tau o \hat{v}, ~ o ̂ v ~$
 K, H, ai $\delta \grave{\epsilon} \mathrm{I}, \Theta \epsilon i \lambda \eta \mu \mu \epsilon \in v \alpha \iota, \stackrel{̈}{\omega} \sigma \tau \epsilon \tau \hat{\omega}$ ıै $\sigma \omega \dot{\alpha} \lambda \lambda \lambda_{\eta}-$ $\lambda \omega \nu \dot{v} \pi \epsilon \rho \epsilon \in \notin \epsilon \iota \nu \tau \eta ̀ \nu \mathrm{~K} \tau \hat{\eta} s \mathrm{I}$ каi $\tau \grave{\eta} \nu \mathrm{I} \tau \hat{\eta} s \Theta$ каі

 $\delta \grave{\epsilon} \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ \nu \circ \nu$, каі ${ }_{\epsilon}{ }^{\prime} \xi \in \iota$ тò $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v о \nu$ $\pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon ̀ ~ \epsilon \gamma \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ v o \nu ~ \tau \rho ı \pi \lambda a \sigma i o v a ~ \lambda o ́ \gamma o \nu ~ \eta ̈ \pi \epsilon \rho ~ \dot{\eta}$

 $\pi \rho o ̀ s ~ \tau \eta \grave{\eta} \mathrm{I} \cdot \stackrel{山}{\omega} \sigma \tau \epsilon$ тò $\sigma \chi \hat{\eta} \mu a$ тò $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon \in \nu o \nu$

${ }^{1}$ бхŋ́भатa Heiberg, тò $\sigma \chi \hat{\eta} \mu a$ cod.

a Eutocius supplies a proof on these lines. Let the lengths of K, I, Θ, H be a, b, c, d. Then $a-b=b-c=c-d$, and it is required to prove that $a: d>a^{3}: b^{3}$.

Take x such that Then
and since $a>b$,
But, by hypothesis,
Therefore
and so
120

$$
\begin{aligned}
a: b & =b: x . \\
a-b: a & =b-x: b, \\
a-b & >b-x . \\
a-b & =b-c . \\
b-c & >b-x, \\
x & >c .
\end{aligned}
$$

ARCHIMEDES

the greater will have to the less a less ratio than that which the sphere has to the cone \exists. Therefore let the straight lines K, H, and the straight lines I, θ, be so taken that K exceeds I, and I exceeds θ and θ exceeds H by an equal quantity; let there be imagined inscribed in the circle $A B \Gamma \Delta$ a polygon the number of whose sides is divisible by four ; let another be circumscribed similar to that inscribed so that, as before, the side of the circumscribed polygon has to the side of the inscribed polygon a ratio less than that $\mathrm{K}: \mathrm{I}$; and let $\mathrm{A} \Gamma$, $\mathrm{B} \Delta$ be diameters at right angles. Then if, while the diameter AГ remains stationary, the surface in which the polygons lie be revolved, there will result two [solid] figures, one inscribed in the sphere and the other circumscribed, and the circumscribed figure will have to the inscribed the triplicate ratio of that which the side of the circumscribed figure has to the side of the figure inscribed in the circle $\mathrm{AB} \mathrm{\Gamma} \triangle$ [Prop. 32]. But the ratio of the one side to the other is less than $\mathrm{K}: \mathrm{I}$ [ex hypothesi] ; and so the circumscribed figure has [to the inscribed] a ratio less than $\mathrm{K}^{3}: \mathrm{I}^{3}$. But ${ }^{a} \mathrm{~K}: \mathrm{H}>\mathrm{K}^{3}: \mathrm{l}^{3}$; by much more there-

Again, take y such that	$b: z=x: y$.
Then, as before	$b-x>x-y$.
Therefore, a fortiori,	$b-c>x-y$.
But, by hypothesis,	$b-c=c-d$.
Therefore	$c-d>x-y$.
But	$x>c$,
and so	$y>d$.

But, by hypothesis, $a: b=b: x=x: y$,

$$
a: y=a^{3}: b^{3} \quad \text { [Kucl. v. Def. 10, also vol. i. }
$$ p. 258 n. 6.

Therefore $a: d>a^{3}: b^{3}$.

GREEK MATHEMATICS

 $\lambda \eta \mu \mu \alpha ́ \tau \omega \nu]^{1} \cdot \pi o \lambda \lambda \hat{\varphi}$ ă ρa тò $\pi \epsilon \rho \iota \gamma \rho a \phi \grave{\iota} \nu \pi \rho o ̀ s ~ \tau o ̀ ~$
 $\pi \rho o ̀ s ~ H . ~ \dot{\eta} \delta \dot{\epsilon} \mathrm{~K}$ трòs H є̀ $\lambda \alpha ́ \sigma \sigma \sigma o v a$ 入óүov ${ }^{\prime \prime} \chi \in \iota$

 єiр $\eta \mu$ є́vov.
${ }^{\prime} \mathrm{E} \sigma \tau \omega, \epsilon i \quad \delta v \nu \alpha \tau o ́ \nu, ~ \in ’ \lambda \alpha ́ \sigma \sigma \omega \nu \quad$ ท̀ $\tau \epsilon \tau \rho \alpha \pi \lambda \alpha \sigma i a \cdot$

ARCHIMEDES

fore the circumscribed figure has to the inscribed a ratio less than $\mathrm{K}: \mathrm{H}$. But $\mathrm{K}: \mathrm{H}$ is a ratio less than that which the sphere has to the cone \exists [ex hypothesi]; [therefore the circumscribed figure has to the inscribed a ratio less than that which the sphere has to the cone 旬]; and permutando, [the circumscribed figure has to the sphere a ratio less than that which the inscribed figure has to the conc] ${ }^{a}$; which is impossible ; for the circumscribed figure is greater than the sphere [Prop. 28], but the inscribed figure is less than the cone \exists [Prop. 27]. Therefore the sphere is not greater than four times the aforesaid cone.

Let it be, if possible, less than four times, so that the sphere is less than the cone Ξ. Let the straight lines K, H be so taken that K is greater than H and $\mathrm{K}: \mathrm{H}$ is a ratio less than that which the cone \exists has to the sphere [Prop. 2] ; let the straight lines θ, I be placed as before ; let there be imagined in the circle $А В \Gamma \triangle$ one polygon inscribed and another circumscribed, so that the side of the circumscribed figure has to the side of the inscribed a ratio less than $\mathrm{K}: \mathrm{I}$; and let the other details in the construction be done as before. Then the circumscribed solid figure will have to the inscribed the triplicate ratio of that which the side of the figure circumscribed about the circle $A B \Gamma \Delta$ has to the side of the inscribed figure [Prop. 32]. But the ratio of the sides

[^28][^29]
GREEK MATHEMATICS

$\ddot{\eta} \pi \epsilon \rho \rho \dot{\eta} \mathrm{K} \pi \rho o ̀ s \mathrm{I} \cdot{ }^{\epsilon} \xi \xi \epsilon \iota$ ov̂ע $\tau \grave{o} \sigma \chi \hat{\eta} \mu a$ тò $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu-$ $\mu \epsilon ́ v o \nu \pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon ̇ \gamma \gamma є \gamma \rho a \mu \mu \epsilon ́ v o \nu ~ \epsilon ̇ \lambda a ́ \sigma \sigma o v a ~ \lambda o ́ \gamma o v ~ श ̃ ~$ $\tau \rho \iota \pi \lambda \alpha ́ \sigma \iota o v \tau o \hat{v}, o ̂ \nu \epsilon \notin \chi \in \iota \dot{\eta} \mathrm{~K} \pi \rho o ̀ s \tau \eta ̀ \nu \mathrm{I}$. $\dot{\eta} \delta \dot{\epsilon} \mathrm{K}$

 $\mu \epsilon ́ v o \nu$ グ $\dot{\eta} \mathrm{K} \pi \rho o ̀ s \tau \eta \grave{\nu} \mathrm{H}$. $\dot{\eta} \delta \dot{\epsilon} \mathrm{K} \pi \rho o ̀ s \tau \eta ̀ \nu \mathrm{H}$

 oưठє $\mu \epsilon i \zeta \omega \nu \cdot \tau \epsilon \tau \rho \alpha \pi \lambda \alpha \sigma i \alpha a$ ä $\rho \alpha$.

$[\text { По́р } \iota \mu \alpha]^{1}$

 фávєıa aưтô $\mu \epsilon \tau \dot{\alpha} \tau \hat{\omega} \nu$ ßá $\sigma \epsilon \omega \nu$ ท̀ $\mu \iota o \lambda i ́ a ~ \tau \hat{\eta} S$ émıфаvєías тฑ̂s $\sigma \phi a i ́ p a s$.

 бфаípas. $\pi \alpha ́ \lambda \iota \nu, ~ \epsilon ̇ \pi \epsilon i ~ \grave{\eta} \epsilon \epsilon \pi \iota \phi a ́ v \epsilon \iota a ~ \tau о \hat{v} ~ к v \lambda i ́ v \delta \rho о v ~$

[^30]
ARCHIMEDES

is less than K:I [ex hypothesi]; therefore the circumscribed figure has to the inscribed a ratio less than $\mathrm{K}^{3}: \mathrm{I}^{3}$. But $\mathrm{K}: \mathrm{H}>\mathrm{K}^{3}: \mathrm{I}^{3}$; and so the circumscribed figure has to the inscribed a ratio less than $\mathrm{K}: \mathrm{H}$. But $\mathrm{K}: \mathrm{H}$ is a ratio less than that which the cone 灵 has to the sphere [ex hypothesi]; [therefore the circumscribed figure has to the inscribed a ratio less than that which the cone Ξ has to the sphere] ${ }^{a}$; which is impossible; for the inscribed figure is less than the sphere [Prop. 28], but the circumscribed figure is greater than the cone \exists [Prop. 31, coroll.]. Therefore the sphere is not less than four times the cone having its base equal to the circle $A B \Gamma \triangle$, and height equal to the radius of the sphere. But it was proved that it cannot be greater; therefore it is four times as great.

[Corollary]

From what has been proved above it is clear that any cylinder having for its base the greatest of the circles in the sphere, and having its height equal to the diameter of the sphere, is one-and-a-half times the sphere, and its surface including the bases is one-and-a-half times the surface of the sphere.

For the aforesaid cylinder is six times the cone having the same basis and height equal to the radius [from Eucl. xii. 10], while the sphere was proved to be four times the same cone [Prop. 34]. It is obvious therefore that the cylinder is one-and-a-half times the sphere. Again, since the surface of the cylinder excluding the bases has been proved equal to a circle

[^31]
GREEK MATHEMATICS

 $\epsilon i \rho \eta \mu \epsilon ́ \nu o v ~ \kappa v \lambda i ́ v \delta \rho o v ~ \tau o ̂ ~ \pi \epsilon \rho i ̀ \tau \grave{\eta} \nu \quad \sigma \phi a i ̂ \rho a \nu \dot{\eta} \pi \lambda \epsilon v \rho \grave{~}$

 $\lambda i ́ v \delta \rho o v ~ \chi \omega \rho i s ~ \tau \hat{\omega} \nu \beta \alpha ́ \sigma \epsilon \omega \nu \quad \tau \epsilon \tau \rho a \pi \lambda a \sigma i a \operatorname{\tau ov} \mu \epsilon-$

 є́тıфаvєías $\tau \bar{\eta} s$ oфaipas.

(c) Solution of a Cubic Equation

Archim. De Sphaera et Cyl. ii., Prop. 4, Archim. ed. Heiberg i. 186. 15-192. 6
$\mathrm{T} \grave{\eta} \nu \delta o \theta \epsilon i \sigma \alpha \nu \nu \phi \alpha \hat{\imath} \rho a \nu \quad \tau \epsilon \mu \epsilon \hat{\imath} \nu, \stackrel{\ddot{\omega}}{\omega} \sigma \tau \epsilon \tau \grave{\alpha} \tau \mu \dot{\eta} \mu \alpha \tau \alpha$

${ }^{1} \delta \hat{\eta} \lambda o \nu . .$. . β á $\sigma \epsilon \omega s$ om. Heiberg.
a As the geometrical form of proof is rather diffuse, and may conceal from the casual reader the underlying nature of the operation, it may be as well to state at the outset the various stages of the proof. The problem is to cut a given sphere by a plane so that the segments shall have a given ratio, and the stages are :
(a) Analysis of this main problem in which it is reduced to a particular case of the general problem, " so to cut a given straight line ΔZ at X that $X Z$ bears to the given 126

ARCHIMEDES

whose radius is a mean proportional between the side of the cylinder and the diameter of the base [Prop. 13], and the side of the aforementioned cylinder circumscribing the sphere is equal to the diameter of the base, while the circle having its radius equal to the diameter of the base is four times the base [Eucl. xii. 2], that is to say, four times the greatest of the circles in the sphere, therefore the surface of the cylinder excluding the bases is four times the greatest circle; therefore the whole surface of the cylinder, including the bases, is six times the greatest circle. But the surface of the sphere is four times the greatest circle. Therefore the whole surface of the cylinder is one-and-a-half times the surface of the sphere.

(c) Solution of a Cubic Equation

Archimedes, On the Sphere and Cylinder ii.,
Prop. 4, Archim. ed. Heiberg i. 186. 15-192. 6
To cut a given sphere, so that the segments of the sphere shall have, one towards the other, a given ratio. ${ }^{a}$
straight line the same ratio as a given area bears to the square on $\Delta \mathrm{X}$ "; in algebraical notation, to solve the equation

$$
\frac{a-x}{b}=\frac{c^{2}}{x^{2}}, \text { or } x^{2}(a-x)=b c^{2} .
$$

(b) Analysis of this general problem, in which it is shown that the required point can be found as the intersection of a parabola $\left[a x^{2}=c^{2} y\right.$] and a hyperbola [$(a-x) y=a b$]. It is stated, for the time being without proof, that $x^{2}(a-x)$ is greatest when $x=\frac{2}{3} a$; in other words, that for a real solution

(c) Synthesis of this general problem, according as $b c^{2}$ is greater than, equal to, or less than $\frac{\pi^{4}}{27} a^{3}$. If it be greater, there is no real solution; if equal, there is one real solution ; if less, there are two real solutions.
(d) Proof that $x^{2}(a-x)$ is greatest when $x=\frac{2}{8} a$, deferred

GREEK MATHEMATICS

 $\mathrm{A} \Delta \Gamma \tau \mu \dot{\eta} \mu a \tau o s ~ \tau \hat{\eta} s$ oфaipas $\pi \rho o ̀ s ~ \tau \grave{o} \mathrm{AB} \mathrm{\Gamma} \tau \mu \hat{\eta} \mu a$

 $\dot{\eta} \mathrm{KBX} \pi \rho \grave{s} \mathrm{BX}$, oür $\omega \mathrm{s} \dot{\eta} \Lambda \mathrm{X}$ трòs $\mathrm{X} \Delta$, каi $\epsilon \epsilon \epsilon \zeta \epsilon \dot{\prime} \chi \theta \omega \sigma a \nu$ ai $\mathrm{A} \Lambda, \Lambda \Gamma, \mathrm{AP}, \mathrm{P} \mathrm{\Gamma}$. "бos ä ρa

 ААГ кćvvov $\pi \rho o ̀ s ~ \tau o ̀ v ~ А Р Г ~ к и ̂ v o v ~ \delta o \theta \epsilon i ́ s . ~ \omega ं s ~$ $\delta \grave{\epsilon}$ ó $\kappa \hat{\omega} \nu o s ~ \pi \rho o ̀ s ~ \tau o ̀ \nu ~ \kappa \omega ̂ \nu o \nu, ~ o u ̈ \tau \omega s ~ \dot{\eta} \Lambda \mathrm{X} \pi \rho o{ }_{\varsigma}$
 ठ七áभєт
 ${ }^{1}$ ėлeitє̧ . . . кúkגov om. Heiberg.
in (b). This is done in two parts, by showing that (1) if x has any value less than ${ }_{5}^{2} a$, (2) if x has any value greater than ${ }_{3}^{3} a$, then $x^{2}(a-x)$ has a smaller value than when $x=\frac{2}{3} a$.
(e) Proof that, if $b c^{2}<\frac{4}{27} a^{3}$, there are always two real solutions.
(f) Proof that, in the particular case of the general problem to which Archimedes has reduced his original problem, there is always a real solution.
(g) Synthesis of the original problem.

Of these stages, (a) and (g) alone are found in our texts of Archimedes ; but Eutocius found stages (b)-(d) in an old book, which he took to be the work of Archimedes; and hc added stages (e) and (f) himself. When it is considered that all these stages are traversed by rigorous geometrical 128

ARCHIMEDES

Let $A B \Gamma \triangle$ be the given sphere; it is required so to cut it by a plane that the segments of the sphere shall have, one towards the other, the given ratio.

Let it be cut by the plane AD; then the ratio of the segment $A \Delta \Gamma$ of the sphere to the segment $A B \Gamma$ of the sphere is given. Now let the sphere be cut through the centre [by a plane perpendicular to the plane through $A \Gamma$], and let the section be the great circle $A B \Gamma \Delta$ of centre K and diameter $\triangle B$, and let [A, P be taken on $\mathrm{B} \Delta$ produced in either direction so that]

$$
\begin{aligned}
& \mathrm{K} \Delta+\Delta \mathrm{X}: \Delta \mathrm{X}=\mathrm{PX}: \mathrm{XB} \\
& \mathrm{~KB}+\mathrm{BX}: \mathrm{BX}=\Lambda \mathrm{X}: \mathrm{X} \Delta,
\end{aligned}
$$

and let $A \Lambda, \Lambda \Gamma, A P, P \Gamma$ be joined; then the cone $A \Lambda \Gamma$ is equal to the segment $A \Delta \Gamma$ of the sphere, and

the cone AP厂 to the segment ABC [Prop. 2]; therefore the ratio of the cone AAF to the cone APए is given. But cone $\mathrm{A} \Lambda \Gamma$: cone $\mathrm{AP} \mathrm{\Gamma}=\Lambda \mathrm{X}: \mathrm{XP} .^{a}$ Therefore the ratio $\Lambda \mathrm{X}: \mathrm{XP}$ is given. And in the
methods, the solution must be admitted a veritable tour de force. It is strictly analogous to the modern method of solving a cubic equation, but the concept of a cubic equation did not, of course, come within the purview of the ancient mathematicians.
${ }^{\text {a }}$ Since they have the same base.

GREEK MATHEMATICS

 $\mathrm{KB} \pi \rho o ̀ s \mathrm{BP}$ каi $\dot{\eta} \Delta \mathrm{X} \pi \rho o ̀ s \mathrm{XB}$. каi $\grave{\epsilon} \pi \epsilon i ́ \epsilon ̇ \sigma \tau \iota \nu$, $\dot{\omega} s \dot{\eta} \mathrm{~PB} \pi \rho o ̀ s \mathrm{BK}, \dot{\eta} \mathrm{K} \Delta \pi \rho o ̀ s ~ \Lambda \Delta$, $\sigma v \nu \theta \dot{\epsilon} \nu \tau \iota$, ${ }_{\mathrm{\omega}}$

 $\pi a ́ \lambda \iota \nu, ~ \dot{\epsilon} \pi \epsilon i ́ \epsilon \in \sigma \tau \iota \nu, \omega_{s} \dot{\eta} \Lambda \mathrm{X}$ тоòs $\Delta \mathrm{X}$, ovva $\mu-$ фо́тєроs $\dot{\eta} \mathrm{KB}, \mathrm{BX} \pi \rho o ̀ s \mathrm{BX}, \delta \iota \in \lambda o ́ v \tau \iota$, $\dot{\omega} \dot{\eta} \Lambda \Delta$

 $\mathrm{ZB} \pi \rho o ̀ s \mathrm{BX} \cdot \dot{\omega} \sigma \tau \epsilon \kappa \kappa \alpha i$, ш́s $\dot{\eta} \Delta \Lambda \pi \rho o ̀ s ~ \Lambda X, \dot{\eta}$

${ }^{1}$ каi . . . $\pi \rho o \dot{s} \mathrm{BX}$. The words каi . . . àm $\Delta \mathrm{X}$ are shown by Eutocius's comment to be an interpolation. The words тádıv . . . трós BX and кai . . . трòs ZX must also be interpolated, as, in order to prove that $\Delta \Lambda: \Lambda \mathrm{X}$ is given, Eutocius first proves that $\mathrm{BZ}: \mathrm{ZX}=\Lambda \Delta: \Lambda \mathrm{X}$, which he would hardly have done if Archimedes had himself provided the proof.
${ }^{2}$ каi . . . $\pi \rho \dot{s} \mathbf{S X X}$; v. preceding note.

- This is proved by Eutocius thus:

Since
dirimendo, and permutando,
i.e.,

Again, since 180

$$
\begin{aligned}
\mathrm{K} \Delta+\Delta \mathrm{X}: \Delta \mathrm{X} & =\mathrm{PX}: \mathrm{XB}, \\
\mathrm{~K} \Delta: \Delta \mathrm{X} & =\mathrm{PB}: \mathrm{BX}, \\
\mathrm{~K} \Delta: \mathrm{BP} & =\Delta \mathrm{X}: \mathrm{XB}, \\
\mathrm{~KB}: \mathrm{BP} & =\Delta \mathrm{X}: \mathrm{XB} \\
\mathrm{~KB}+\mathrm{BX}: \mathrm{XB} & =\Lambda \mathrm{X}: \mathrm{X} \Delta
\end{aligned}
$$

ARCHIMEDES

same way as in a previous proposition [Prop. 2], by construction,

$$
\Lambda \Delta: \mathrm{K} \Delta=\mathrm{KB}: \mathrm{BP}=\Delta \mathrm{X}: \mathrm{XB} \cdot{ }^{a}
$$

And since $\quad \mathrm{PB}: \mathrm{BK}=\mathrm{K} \Delta: \Lambda \Delta$, [Eucl. v. 7, coroll.
componendo,
$\mathrm{PK}: K B=\mathrm{K} \Lambda: \Lambda \Delta$,
[Eucl. v. 18
$\mathrm{PK}: \mathrm{K} \Delta=\mathrm{K} \Lambda: \Lambda \Delta$.
$P \Lambda: K \Lambda=K \Lambda: \Lambda \Delta$.
[Eucl. v. 12
$\mathrm{P} \Lambda . \Lambda \Delta=\Lambda \mathrm{K}^{2}$. $\mathrm{P} \Lambda: \Lambda \Delta=\mathrm{K} \Lambda^{2}: \Lambda \Delta^{2}$.
And since $\quad \Lambda \Delta: \Delta K=\Delta X: X B$,
invertendo et $\mathrm{K} \Lambda: \Lambda \Delta=\mathrm{B} \Delta: \Delta \mathrm{X}$. [Eucl. v. 7, componendo,
[Eucl. vi. 17

Let BZ be placed equal to KB . It is plain that [$[\mathrm{Z}]$ will fall beyond $P .^{b}$ Since the ratio $\Delta \Lambda: \Lambda X$ is given, therefore the ratio $\mathrm{PA}: \Lambda \mathrm{X}$ is given. ${ }^{\circ}$ Then, $\begin{array}{lr}\text { dirimendo et permutandor } & \begin{array}{l}\Delta \mathrm{X}: \mathrm{XB}=\Lambda \Delta: \Delta \mathrm{K} . \\ \Delta \mathrm{X}: \mathrm{XB}=\mathrm{KB}: \mathrm{BP} \\ \text { Now } \\ \text { Therefore }\end{array} \\ & \Lambda \Delta: \Delta \mathrm{K}=\Delta \mathrm{X}: \mathrm{XB}=\mathrm{KB}: \mathrm{BP} .\end{array}$

- Since $\mathrm{X} \Delta: \mathrm{XB}=\mathrm{KB}: \mathrm{BP}$, and $\Delta \mathrm{X}>\mathrm{XB}, \therefore \mathrm{KB}>\mathrm{BP}$. $\therefore \mathrm{BZ}>\mathrm{BP}$.
- As Eutocius's note shows, what Archimedes wrote was: " Since the ratio $\Delta \Lambda: \Lambda X$ is given, and the ratio $P \Lambda: \Lambda X$, therefore the ratio $P \Lambda: \Lambda \Delta$ is also given." Eutocius's proof is :
Since

$$
\begin{aligned}
\mathrm{KB}+\mathrm{BX}: \mathrm{BX} & =\Lambda \mathrm{X}: \mathrm{X} \Delta \\
\mathrm{ZX}: \mathrm{XB} & =\Lambda \mathrm{X}: \mathrm{X} \Delta ; \\
\mathrm{XZ}: \mathrm{ZB} & =\mathrm{X} \Lambda: \Lambda \Delta ; \\
\mathrm{BZ}: \mathrm{ZX} & =\Lambda \Delta: \Lambda \mathrm{X}
\end{aligned}
$$

But the ratio $\mathrm{BZ}: \mathrm{ZX}$ is given because ZB is equal to the radius of the given sphere and $B X$ is given. Therefore $\Lambda \Delta: \Lambda X$ is given.

Again, since the ratio of the segments is given, the ratio of

GREEK MATHEMATICS

סoөєís. Є̇ $\pi \epsilon i$ oûv ơ $\tau \hat{\eta} s \mathrm{P} \Lambda \pi \rho o ̀ s ~ \Lambda X ~ \lambda o ́ \gamma o s ~ \sigma v \nu-~$

 ámò $\Delta \mathrm{B} \pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ \pi o ̀ ~ \Delta X, ~ e ́ s ~ \delta e ̀ ~ \grave{\eta} \Delta \Lambda \pi \rho o ̀ s ~ \Lambda X, ~$

 $\pi \rho o ̀ s ~ \tau o ̀ ~ a ̉ \pi o ̀ ~ \Delta X, ~ к а i ~ \eta ~ 讠 ~ B Z ~ \pi \rho o ̀ s ~ Z X . ~ \pi \epsilon \pi о \iota \eta ́ \sigma \theta \omega ~$
 $\tau \hat{\eta} s \mathrm{P} \Lambda \pi \rho o ̀ s ~ \Lambda \mathrm{X}$ סоөєi's. גózos à ρa каi $\tau \hat{\eta} s \mathrm{ZB}$ $\pi \rho o ̀ s ~ Z \Theta ~ \delta o \theta \epsilon i ́ s . ~ \delta o \theta \epsilon i ̂ \sigma a ~ \delta є ̀ ~ ท ̛ ~ B Z-i \sigma \eta ~ \gamma a ́ \rho ~ \epsilon ́ \sigma \tau \tau ~$

 трòs ZX . à $\lambda \lambda^{\prime}$ ó BZ т $\rho o ̀ s ~ Z \Theta ~ \lambda o ́ \gamma o s ~ \sigma v \nu \eta ̄ \pi \tau \alpha \iota ~$

 $\pi \rho o ̀ s ~ \delta o \theta \epsilon ́ v . ~ к а i ́ ~ \epsilon ̇ \sigma \tau \tau \nu ~ \delta o \theta \epsilon i ̂ \sigma \alpha ~ \grave{\eta}$ Z $\Delta \quad \epsilon \dot{v} \theta \epsilon i ̂ a \cdot$
 $\mathrm{X} \kappa \alpha i \pi<\epsilon \epsilon i v, \omega s \tau \grave{\eta} \nu \mathrm{XZ} \pi \rho o ̀ s ~ \delta o \theta \epsilon i ̂ \sigma a \nu[\tau \eta ̀ \nu \mathrm{Z} \Theta]$, ${ }^{2}$

${ }^{1}$ кouvòs . . . $\pi \rho$ òs ZX. Eutocius's comment shows that these words are interpolated.
${ }^{2} \tau \grave{\nu} \nu \mathrm{ZQ}$, тò à à $\mathrm{B} \Delta$. Eutocius's comments show these words to be glosses.
the cones $\Lambda \Lambda \Gamma, \mathrm{AP} \mathrm{\Gamma}$ is also given, and therefore the ratio $\Lambda \mathrm{X}: \mathrm{XP}$. Therefore the ratio PA: $\Lambda \mathrm{X}$ is given. Since the ratios P $\mathrm{P}: \Lambda \mathrm{X}$ and $\Lambda \Delta: \Lambda \mathrm{X}$ are given, it follows that the ratio P $A: \Lambda \Delta$ is given.
132

ARCHIMEDES

since the ratio $\mathrm{P} \Lambda: \Lambda \mathrm{X}$ is composed of the ratios $\mathrm{P} \Lambda: \Lambda \Delta$ and $\Delta \Lambda: \Lambda \mathrm{X}$,
and since $\quad P \Lambda: \Lambda \Delta=\Delta B^{2}: \Delta X^{2}, a$

$$
\Delta \Lambda: \Lambda X=B Z: Z X
$$

therefore the ratio $\mathrm{P} \Lambda: \Lambda \mathrm{X}$ is composed of the ratios $\mathrm{B} \Delta^{2}: \Delta \mathrm{X}^{2}$ and $\mathrm{BZ}: Z X$. Let [θ be chosen so that]

$$
\mathrm{P} \Lambda: \Lambda \mathrm{X}=\mathrm{BZ}: \mathrm{Z} \Theta .
$$

Now the ratio $\mathrm{P} \Lambda: \Lambda \mathrm{X}$ is given; therefore the ratio $Z B$: $Z \theta$ is given. Now $B Z$ is given-for it is equal to the radius ; therefore $Z \theta$ is also given. Therefore ${ }^{b}$ the ratio $\mathrm{BZ}: \mathrm{Z} \theta$ is composed of the ratios $\mathrm{B} \Delta^{2}: \Delta \mathrm{X}^{2}$ and $\mathrm{BZ}: \mathrm{ZX}$. But the ratio $\mathrm{BZ}: \mathrm{Z} \theta$ is composed of the ratios $B Z: Z X$ and $Z X: Z \theta$. Therefore, the remainder ${ }^{c} B \Delta^{2}: \Delta \mathrm{X}^{2}=\mathrm{XZ}: Z \theta$, in which $B \Delta^{2}$ and $Z \theta$ are given. And the straight line $Z \Delta$ is given; therefore it is required so to cut the given straight line $\Delta \mathrm{Z}$ at X that XZ bears to a given straight line the same ratio as a given area bears to the square on $\Delta \mathrm{X}$. When the problem is stated in this general form, ${ }^{d}$ it is necessary to investigate the limits of possibility,

- For

$$
\begin{aligned}
\mathrm{P} \Lambda: \Lambda \Delta & =\Lambda \mathrm{K}^{2}: \Delta \Lambda^{2} \\
& =\mathrm{B} \Delta^{2}: \Delta \mathrm{X} . .^{2}
\end{aligned}
$$

- "Therefore " refers to the last equation.
${ }^{6}$ i.e. the remainder in the process given fully by Eutocius as follows:

$$
\left(\mathrm{B} \Delta^{2}: \Delta \mathrm{X}^{2}\right) \cdot(\mathrm{BZ}: \mathrm{ZX})=\mathrm{BZ}: \Theta \mathrm{Z}=(\mathrm{BZ}: \mathrm{ZX}) \cdot(\mathrm{XZ}: \mathrm{ZQ}) .
$$

Removing the common element $\mathrm{BZ}: \mathrm{ZX}$ from the extreme terms, we find that the remainder $B \Delta^{2}: \Delta \mathrm{X}^{2}=\mathrm{XZ}: \mathrm{Z} \Theta$.
${ }^{d}$ In algebraic notation, if $\Delta \mathrm{X}=x$ and $\Delta \mathrm{Z}=a$, while the given straight line is b and the given area is c^{2}, then
or

$$
\begin{array}{r}
\frac{a-x}{b}=\frac{c^{2}}{x^{2}} \\
x^{2}(a-x)=b c^{2} .
\end{array}
$$

GREEK MATHEMATICS

$\pi \rho о \sigma \tau \iota \theta \epsilon \mu \epsilon ́ \nu \omega \nu$ غ̀̀ $\tau \hat{\omega} \nu \pi \rho \circ \beta \lambda \eta \mu \alpha ́ \tau \omega \nu \tau \hat{\omega} \nu \dot{\epsilon} \nu \theta \alpha{ }^{\prime} \delta \epsilon$
 $\Delta \mathrm{B} \tau \hat{\eta} s \mathrm{BZ} \kappa \alpha i$ тô $\mu \epsilon i \zeta o v a \tau \hat{\eta} s \mathrm{Z} \mathrm{\Theta} \tau \grave{\nu} \nu \mathrm{ZB}$, $\dot{\omega} s$
 то̀ $\pi \rho o ́ \beta \lambda \eta \mu \alpha ~ \tau о \iota o \hat{\tau} \tau o \nu \cdot$ रv́o $\delta о \theta \epsilon \iota \sigma \hat{\omega} \nu \epsilon \hat{\theta} \theta \epsilon \iota \hat{\omega} \nu \tau \hat{\omega} \nu$

Eutoc. Comm. in Archim. De Sphaera et Cyl. ii., Archim. ed. Heiberg iii. 130. 17-150. 22

 є́ $\pi a ́ \gamma \gamma \epsilon \lambda \mu a$. o̊ $\theta \epsilon \nu$ каì $\Delta \iota \nu v \sigma o ́ \delta \omega \rho о \nu \quad \mu \epsilon ̀ \nu ~ \epsilon \dot{v} \rho i ́-$

 $\kappa а \tau \alpha \sigma \kappa \epsilon v a ́ \zeta о \nu ~ \tau o ̀ ~ \pi \rho o ́ \beta \lambda \eta \mu \alpha$. ${ }^{\epsilon} \nu \tau \iota \nu \iota \mu \epsilon ́ \nu \tau о \iota ~ \pi a \lambda \alpha \iota \hat{\varphi}$
${ }^{1}$ тovtéart . . . àvádvaıv. Eutocius's notes make it seem likely that these words are interpolated.

[^32]
ARCHIMEDES

but under the conditions of the present case no such investigation is necessary. ${ }^{a}$ In the present case the problem will be of this nature: Given two straight lines $\mathrm{B} \Delta, \mathrm{BZ}$, in which $\mathrm{B} \Delta=2 \mathrm{BZ}$, and a point θ upon BZ , so to cut $\Delta \mathrm{B}$ at X that

$$
\mathrm{B} \Delta^{2}: \Delta \mathrm{X}^{2}=\mathrm{XZ}: \mathrm{Z} \theta ;
$$

and the analysis and synthesis of both problems will be given at the end. ${ }^{b}$

Eutocius, Commentary on Archimedes' Sphere and
Cylinder ii., Archim. ed. Heiberg iii. 130. 17-150. 22
He promised that he would give at the end a proof of what is stated, but the fulfilment of the promise cannot be found in any of his extant writings. Dionysodorus also failed to light on it, and, being unable to tackle the omitted lemma, he approached the whole problem in an altogether different way, which I shall describe in due course. Diocles, indeed, in his work On Burning Mirrors maintained that Archimedes made the promise but had not fulfilled it, and he undertook to supply the omission himself, which attempt I shall also describe in its turn; it bears, however, no relation to the missing discussion, but, like that of Dionysodorus, it solves the problem by a construction reached by a different proof. But
general problem requires a diorismos, for which v. vol. i. p. 151 n. h and p. 396 n. a. In algebraic notation, there must be limiting conditions if the equation

$$
x^{2}(a-x)=b c^{2}
$$

is to have a real root lying between 0 and a.
b Having made this promise, Archimedes proceeded to give the formal synthesis of the problem which he had thus reduced.

GREEK MATHEMATICS

 $\mu \epsilon \nu-\dot{\epsilon} \nu \tau \epsilon \tau \dot{v} \chi a \mu \epsilon \nu \quad \theta \epsilon \omega \rho \eta$ ク́ $\mu a \sigma \iota \quad \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v o \iota s$ ov̉к

 ís $\gamma \epsilon ́ \gamma \rho a \pi \tau \alpha \iota$, סıà $\pi \lambda \hat{\eta} \theta_{o s}, \dot{\omega} s \epsilon i ้ \rho \eta \tau \alpha \iota, \tau \hat{\omega} \nu \pi \tau \alpha \iota-$

 $\sigma \epsilon \tau a!$.

 $\sigma \eta \mu \epsilon i \hat{o} \nu$ ш́s тò $\mathrm{E}, \stackrel{\omega}{\omega} \sigma \tau \epsilon \epsilon \mathfrak{i v a \iota}, \dot{\omega} \tau \tau \grave{\eta} \nu \mathrm{AE} \pi \rho o ̀ s$

 $\eta \not \eta \theta \omega$ $\delta \iota \dot{\alpha} \tau o \hat{v} \Gamma \tau \hat{\eta} \mathrm{AB} \pi \alpha \rho a ́ \lambda \lambda \eta \eta$ дos $\dot{\eta} \Gamma \mathrm{H}, \delta \iota \grave{a}$ $\delta \grave{\epsilon} \tau o \hat{v} \mathrm{~B} \tau \hat{\eta} \mathrm{~A} \Gamma \pi \alpha \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{ZBH} \sigma v \mu \pi i \pi \tau o v \sigma \alpha$ 136

ARCHIMEDES

in a certain ancient book-for I pursued the inquiry thoroughly-I came upon some theorems which, though far from clearowing to errors and to manifold faults in the diagrams, nevertheless gave the substance of what I sought, and furthermore preserved in part the Doric dialect beloved by Archimedes, while they kept the names favoured by ancient custom, the parabola being called a section of a rightangled cone and the hyperbola a section of an obtuseangled cone ; in short, I felt bound to consider whether these theorems might not be what he had promised to give at the end. For this reason I applied myself with closer attention, and, although it was difficult to get at the true text owing to the multitude of the mistakes already mentioned, gradually I routed out the meaning and now set it out, so far as I can, in more familiar and clearer language. In the first place the theorem will be treated generally, in order to make clear what he says about the limits of possibility ; then will follow the special form it takes under the conditions of his analysis of the problem.
" Given a straight line AB and another straight line $A \Gamma$ and an area Δ, let it be required to find a point E on AB such that $\mathrm{AE}: \mathrm{AI}^{\prime}=\Delta: \mathrm{EB}^{2}$.
" Suppose it found, and let $A \Gamma$ be at right angles to $A B$, and let ΓE be joined and produced to Z, and through Γ let ΓH be drawn parallel to $A B$, and through B let ZBH be drawn parallel to $\mathrm{A} \Gamma$, meeting

GREEK MATHEMATICS

є́катє́pa т $\omega \hat{\nu}$ ГЕ, ГН, каі $\sigma v \mu \pi \epsilon \pi \lambda \eta \rho \omega ́ \sigma \theta \omega$ то̀ $\mathrm{H} \Theta \pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho a \mu \mu о \nu, \kappa \alpha i, \delta \iota \grave{\alpha}$ то仑 E о́тотє́ ρa

 $\mathrm{EB}, ~ \tau о v \tau \epsilon ́ \sigma \tau \iota ~ \pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ \pi o ̀ ~ K Z . ~ к а i ~ \epsilon ̇ v a \lambda \lambda a ́ \xi, ~ w i s ~$

 $\dot{\eta}$ ГН $\pi \rho o ̀ s ~ H M, ~ \tau \eta ̂ s ~ H Z ~ к o \iota \nu o v ̂ ~ u ̈ \psi o v s ~ \lambda a \mu \beta a \nu o-~$ $\mu \epsilon ́ v \eta s$ oữ ωs тò vinò $\Gamma \mathrm{HZ}$ трòs $\tau \grave{̀}$ vinò MHZ .

 138

ARCHIMEDES

both ΓE and ΓH, and let the parallelogram $\mathrm{H} \Theta$ be completed, and through E let $\mathrm{KE} \Lambda$ be drawn parallel

to either $\Gamma \Theta$ or $H Z$, and let [M be taken so that] $\Gamma \mathrm{H} . \mathrm{HM}=\Delta$.
" Then, since EA : AГ $\quad=\Delta$: EB ${ }^{2} \quad$ [ex hyp.
and
$\mathrm{EA}: \mathrm{A} \Gamma \quad=\Gamma \mathrm{H}: \mathrm{HZ}$,
and
ГН : HZ $\quad=\Gamma \mathrm{H}^{2}: \Gamma \mathrm{H} . \mathrm{HZ}$,
$\Gamma H^{2}: \Gamma \mathrm{H} . \mathrm{HZ}=\Delta: \mathrm{EB}^{2}$

$$
=\Delta: K Z^{2} ;
$$

and, permutando, $\Gamma H^{2}: \Delta \quad\left[=\Gamma Н . H Z: \mathrm{ZK}^{2}\right.$, $]$
i.e.,
$\Gamma \mathrm{H}^{2}: \Gamma \mathrm{H} . \mathrm{HM}=\Gamma \mathrm{H} . \mathrm{HZ}: \mathrm{ZK}^{2}$.
But
$\Gamma H^{2}: \Gamma Н . Н М=\Gamma Н: H M$;
$\Gamma \mathrm{H}: \mathrm{HM} \quad=\Gamma \mathrm{H} . \mathrm{HZ}: \mathrm{ZK}^{2}$.
But, by taking a common altitude HZ, ГH: HM= $\mathrm{FH} . \mathrm{HZ}: \mathrm{MH} . \mathrm{HZ}$;
$\therefore \quad \Gamma \mathrm{H} . \mathrm{HZ}: \mathrm{MH} . \mathrm{HZ}=\Gamma \mathrm{H} . \mathrm{HZ}: \mathrm{ZK}^{2}$;
$\therefore \quad \mathrm{MH} . \mathrm{HZ}=\mathrm{ZK}^{2}$.

GREEK MATHEMATICS

$\gamma \rho \alpha \phi \hat{\eta}$ סı̀̀ $\tau о \hat{v} \mathrm{H} \pi \alpha \rho \alpha \beta о \lambda \eta{ }_{\eta}, \ddot{\omega} \sigma \tau \epsilon \tau \dot{\alpha} s$ катаүо-

 $\tau \grave{\eta} \nu \mathrm{HM} \tau \hat{\varphi} \mu \epsilon \gamma \epsilon \in \theta \epsilon \iota \pi \epsilon \rho \iota \epsilon ́ \chi o v \sigma \alpha \nu \quad \mu \in \tau \dot{\alpha} \tau \hat{\eta} S \mathrm{H} \Gamma$
 $\delta \epsilon \delta o \mu \epsilon ́ \nu \eta s \pi \alpha \rho \alpha \beta o \lambda \eta \eta_{\eta} . \quad \gamma \epsilon \gamma \rho \alpha ́ \phi \theta \omega$ ov̂v, $\omega_{s} \epsilon i ้ \eta \eta \tau \alpha \iota$, каi $\epsilon \not \epsilon \tau \tau \omega$ ws $\dot{\eta} \mathrm{HK}$.

 $\tau o \hat{v} \eta^{\prime} \theta \epsilon \omega \rho \eta \eta_{\mu} \alpha \tau o s$ тô̂ $\delta \epsilon v \tau \epsilon ́ \rho o v \quad \beta \iota \beta \lambda i ́ o v ~ \tau \omega ิ \nu$

 $\dot{\eta} \mathrm{EA} \pi \rho o ̀ s \tau \grave{\eta} \nu \delta o \theta \epsilon \hat{\imath} \sigma \alpha \nu \tau \dot{\eta} \nu \mathrm{~A} \Gamma$, oṽ $\tau \omega s \delta_{0} \theta \dot{\epsilon} \nu \tau \dot{\nu}$

a Let $\mathrm{AB}=a, \mathrm{~A} \Gamma=b$, and $\Delta=\Gamma \mathrm{H} . \mathrm{HM}=c^{2}$, so that $\mathrm{HM}=\frac{c^{2}}{a}$. Then if $\mathrm{H} \mathrm{\Gamma}$ be taken as the axis of x and HZ as the axis of y, the equation of the parabola is

$$
x^{2}=\frac{c^{2}}{a} y,
$$

and the equation of the hyperbola is

$$
(a-x) y=a b
$$

Their points of intersection give solutions of the equation

$$
x^{2}(a-x)=b c^{2}
$$

ARCHIMEDES

If, therefore, a parabola be drawn through H about the axis ZH with the parameter HM, it will pass through K [Apoll. Con. i. 11, converse], and it will be given in position because HM is given in magnitude [Eucl. Data 57], comprehending with the given straight line HI the given area Δ; therefore K lies on a parabola given in position. Let it then be drawn, as described, and let it be HK.
" Again, since the area $\theta \Lambda=\Gamma B \quad$ [Eucl. i. 43
i.e.,
$\theta \mathrm{K} . \mathrm{K} \Lambda=\mathrm{AB} . \mathrm{BH}$,
if a hyperbola be drawn through B having $Ө \Gamma, \Gamma \mathrm{H}$ for asymptotes, it will pass through K by the converse to the eighth theorem of the second book of Apollonius's Elements of Conics, and it will be given in position because both the straight lines $Ө Г, \Gamma H$, and also the point B , are given in position. Let it be drawn, as described, and let it be KB; therefore K lies on a hyperbola given in position. But it lies also on a parabola given in position ; therefore K is given. ${ }^{a}$ And KE is the perpendicular drawn from it to the straight line $A B$ given in position ; therefore E is given. Now since the ratio of EA to the given straight line $A \Gamma$ is equal to the ratio of the given area Δ to the square on EB , we have two solids, whose bases are the square on EB and Δ and whose altitudes are EA, AГ, and the bases are inversely pro-
to which, as already noted, Archimedes had reduced his problem. (N.B.-The axis of x is for convenience taken in a direction contrary to that which is usual; with the usual conventions, we should get slightly different equations.)

GREEK MATHEMATICS

 EA.

 $\check{\omega} \sigma \tau \epsilon \epsilon \mathfrak{i v} \nu a \iota, \dot{\omega} s \tau \grave{o} \epsilon ้ \nu \tau \mu \hat{\eta} \mu \alpha \pi \rho o ̀ s \tau \grave{\eta} \nu \delta 0 \theta \epsilon i \sigma \alpha \nu \tau \grave{\eta} \nu$ $\mathrm{A} \Gamma$, oṽ $\tau \omega s$ тò $\delta o \theta \grave{\epsilon} \nu$ тò $\Delta \pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ ~ a ̀ o ̀ ~ \tau o v ̂ ~ \lambda o ı \pi o \hat{v}$ $\tau \mu \eta \dot{\eta} \mu \boldsymbol{\tau}$ оs.

 $\tau \hat{\omega} \nu \quad \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu \quad \alpha \quad \alpha \nu \iota \pi \epsilon \pi o ́ v \theta a \sigma \iota \nu$ ai $\beta a ́ \sigma \epsilon \iota S$ тoîS
 $\Delta \pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ m o ̀ ~ B E . ~$

 $\mathrm{A} \Gamma \pi \rho o ̀ s ~ o ̀ \rho \theta \grave{\alpha} s \tau \hat{\eta} \mathrm{AB}, \kappa \alpha i \delta_{\iota} \dot{\alpha} \tau o \hat{v} \Gamma \tau \hat{\eta} \mathrm{AB} \pi \alpha \rho-$

[^33]
ARCHIMEDES

portional to the altitudes; therefore the solids are equal [Eucl. xi. 34]; therefore

$$
\mathrm{EB}^{2} \cdot \mathrm{EA}=\triangle . \Gamma A,
$$

in which both Δ and ΓA are given. But, of all the figures similarly taken upon $\mathrm{BA}, \mathrm{BE}^{2}$. BA is greatest when $\mathrm{BE}=2 \mathrm{EA},{ }^{a}$ as will be proved; it is therefore necessary that the product of the given area and the given straight line should not be greater than

$$
\mathrm{BE}^{2} \text {. EA. }{ }^{6}
$$

" The synthesis is as follows: Let $A B$ be the given straight line, ${ }^{\circ}$ let $A \Gamma$ be any other given straight line, let Δ be the given area, and let it be required to cut $A B$ so that the ratio of one segment to the given straight line $A \Gamma$ shall be equal to the ratio of the given area Δ to the square on the remaining segment.
" Let AE be taken, the third part of $A B$; then $\Delta . \mathrm{A} \Gamma$ is greater than, equal to or less than BE^{2}. EA.
" If it is greater, no synthesis is possible, as was shown in the analysis; if it is equal, the point E satisfies the conditions of the problem. For in equal solids the bases are inversely proportional to the altitudes, and $\mathrm{EA}: \mathrm{A} \mathrm{\Gamma}=\Delta: \mathrm{BE}^{2}$.
" If $\Delta . A \Gamma$ is less than BE^{2}. EA, the synthesis is thus accomplished: let $A \Gamma$ be placed at right angles to AB , and through Γ let ΓZ be drawn parallel to
a stationary value when $2 a x-3 x^{2}=0$, i.e., when $x=0$ (which gives a minimum value) or $x=\frac{2}{3} a$ (which gives a maximum). No such easy course was open to Archimedes.
"Sc. " not greater than BE^{2}. EA when BE=2EA."

- Figure on p. 146.

GREEK MATHEMATICS

 $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda о s ~ \eta ้ \chi \theta \omega$ ท BZ каi $\sigma \nu \mu \pi \iota \pi \tau \epsilon ่ \tau \omega ~ \tau \hat{\eta}$ ГЕ є́к $\beta \lambda \eta \theta \epsilon i \sigma \eta$ катà тò H , каі $\sigma \nu \mu \pi \epsilon \pi \lambda \eta \rho \omega \dot{\omega} \sigma \theta \omega$ тò $\mathrm{Z} \Theta \pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho a \mu \mu o v, ~ к \alpha i ~ \delta \iota \grave{\alpha} ~ \tau o \hat{v} \mathrm{E} \tau \hat{\eta} \mathrm{ZH}$

 $\tau \iota \tau o \hat{v} \alpha \pi \grave{̀} \tau \hat{\eta} S \mathrm{BE}$, $\tau 0 v \tau \epsilon \in \sigma \tau \iota ~ \tau o v ̂ ~ \alpha ̉ \pi o ̀ ~ \tau \eta ̂ S ~ H K . ~$

 oữ ωs тò vimò ГZN $\pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ \pi o ̀ ~ H M \cdot ~ к а i ~ \epsilon ̇ v a \lambda \lambda a ́ \xi, ~$

 $\pi \rho o ̀ s ~ \tau o ̀ ~ u ́ \pi o ̀ ~ \Gamma Z N, ~ \dot{\eta} ~ \Gamma Z ~ \pi \rho o ̀ s ~ Z N, ~ \omega ́ s ~ \delta \grave{\epsilon} \dot{\eta} \Gamma \mathrm{Z}$ $\pi \rho o ̀ s ~ Z N, ~ \tau \hat{\eta} s \mathrm{ZH}$ коьоô v̈భovs $\lambda a \mu \beta a \nu о \mu \epsilon ́ v \eta s$

 ГZH $\pi \rho o ̀ s ~ \tau o ̀ ~ a ̉ \pi o ̀ ~ H M \cdot ~ i ̆ \sigma o v ~ a ̆ \rho a ~ \epsilon ̇ \sigma \tau i ~ \tau o ̀ ~ a ̉ \pi o ̀ ~ H M ~$ $\tau \hat{\varphi}$ víò HZN.

 144

ARCHIMEDES

AB , and through B let BZ be drawn parallel to $\mathrm{A} \mathrm{\Gamma}$, and let it meet ΓE produced at H, and let the parallelogram ZӨ be completed, and through E let $\mathrm{KE} \Lambda$ be drawn parallel to $Z \mathrm{H}$. Now

since	$\Delta . \mathrm{Ar}$	$<\mathrm{BE}^{2}$. EA,
\therefore	EA : A	$=\Delta$: (the square of some quantity less than BE) $=\Delta:$ (the square of some quantity less than HK).
Let	EA : AГ	$=\Delta: \mathrm{HM}^{2}$,
and let	Δ	$=12 . \mathrm{ZN}$.
Then	EA : A「	$=\Delta: \mathrm{HM}^{2}$
		$=\Gamma \mathrm{Z} . \mathrm{ZN}: \mathrm{HM}^{2}$.
But	EA: AГ	$=\Gamma \mathrm{C}: \mathrm{ZH}$,
and	「Z: ZH	$=\Gamma Z^{2}: \Gamma Z . Z H ;$
\therefore	$\Gamma \chi^{2}: \Gamma Z$	H = ГZ. ZN : H ${ }^{2}$;
and permutando,	$\Gamma^{\prime} Z^{2}: \Gamma Z$	$\mathrm{N}=\mathrm{I} Z . \mathrm{ZH}: \mathrm{H}_{\text {a }}{ }^{2}$.
But	$\Gamma Z^{2}: \Gamma Z$	$\mathrm{N}=\Gamma \mathrm{Z}: \mathrm{ZN}$,
and	IZ: ZN	$=\Gamma Z . Z H: N Z . Z H$,

by taking a common altitude ZH ;
and. $\quad \quad \quad \mathrm{ZZ} . \mathrm{ZH}: \mathrm{NZ} . \mathrm{ZH}=\mathrm{\Gamma Z} . \mathrm{ZH}: \mathrm{HM}^{2}$;
\therefore

$$
\mathrm{HM}^{2}=\mathrm{HZ} . \mathrm{ZN} .
$$

" Therefore if we describe through Z a parabola about the axis $Z H$ and with parameter $Z N$, it will pass through M. Let it be described, and let it be as MEZ. Then since

$$
\theta \Lambda=A Z,
$$

[Eucl. i. 43
i.e. $\Theta \mathrm{K} \cdot \mathrm{K} \Lambda=\mathrm{AB} \cdot \mathrm{BZ}$,

GREEK MATHEMATICS

тô $\mathrm{B} \pi \epsilon \rho i$ ả $\sigma v \mu \pi \tau \omega ́ \tau o v s ~ \tau a ̀ s ~ @ \Gamma, ~ Г Z ~ \gamma \rho a ́ \psi \omega \mu \epsilon \nu$

 $\pi \rho o ̀ s \mathrm{~A} \mathrm{\Gamma}$, ov̈т $\omega \mathrm{s} \dot{\eta} \mathrm{OB} \pi \rho o ̀ s \mathrm{~B} \mathrm{\Sigma}$, тovтє́ซтıv $\dot{\eta} \mathrm{\Gamma Z}$
 v̌భovs $\lambda a \mu \beta a \nu o \mu \epsilon ́ v \eta s$ oüтшs тò vimò ГZN $\pi \rho o ̀ s$

 146

ARCHİMEDES

if we describe through B a hyperbola in the asym－ ptotes $\Theta \Gamma, \Gamma Z$ ，it will pass through K by the converse of the eighth theorem［of the second book］of Apollonius＇s Elements of Conics．Let it be described， and let it be as BK cutting the parabola in Ξ ，and from Ξ let $\xi O \Pi$ be drawn perpendicular to $A B$ ，and through Ξ let P 汥 Σ be drawn parallel to AB ．Then since $B \Xi K$ is a hyperbola and $Ө \Gamma, \Gamma Z$ are its asym－ ptotes，while P 妇，色 Π are parallel to AB, BZ ，

$$
\begin{aligned}
\mathrm{P} \exists . & \text { 当 } \Pi
\end{aligned}=\mathrm{AB} . \mathrm{BZ} ; \quad \text { [Apoll. ii. } 12
$$

Therefore if a straight line be drawn from Γ to Σ it will pass through O［Eucl．i．43，converse］．Let it be drawn，and let it be as $\Gamma O \Sigma$ ．Then since

$$
\begin{aligned}
\mathrm{OA}: \mathrm{A} \Gamma & =\mathrm{OB}: \mathrm{B} \mathrm{\Sigma} \quad \text { [Eucl. vi. } 4 \\
& =\Gamma Z: \mathrm{Z} \mathrm{\Sigma}, \\
\text { and } \quad \Gamma Z: \mathrm{ZS} & =\Gamma \mathrm{Z} \cdot \mathrm{ZN}: \Sigma \mathrm{Z} \cdot \mathrm{ZN},
\end{aligned}
$$

by taking a common altitude ZN ，
$\therefore \quad 0 A: A \Gamma=\Gamma Z . Z N: \Sigma Z . Z N$ ．
And $\quad \Gamma Z . Z N=\Delta, \Sigma Z . Z N=\Sigma \Xi^{2}=B^{2}$ ，by the property of the parabola［Apoll．i．11］．

$$
\mathrm{OA}: \mathrm{A} \mathrm{\Gamma}=\Delta: \mathrm{BO}^{2} ;
$$

GREEK MATHEMATICS

 б $\eta \mu \epsilon i o v ~ \pi o \iota o ̂ ̂ \nu ~ \tau o ̀ ~ \pi \rho o ́ \beta \lambda \eta \mu a . ~$

 148

ARCHIMEDES

therefore the point O has been found satisfying the conditions of the problem.
" That BE^{2}. EA is the greatest of all the figures similarly taken upon BA when $\mathrm{BE}=2 \mathrm{EA}$ will be thus proved. Let there again be, as in the analysis, a given straight line $A \Gamma$ at right angles to $A B,{ }^{a}$ and let IE be joined and let it, when produced, meet at Z the line through B drawn parallel to A , and through I ', Z let $\Theta Z, \Gamma H$ be drawn parallel to $A B$, and let ГA be produced to θ, and through E let KEA be drawn parallel to it, and let

$$
\mathrm{EA}: \mathrm{A} \mathrm{\Gamma}=\Gamma \mathrm{H} . \mathrm{HM}: \mathrm{EB}^{2} ;
$$

then $\quad \mathrm{BE}^{2} . \mathrm{EA}=(\Gamma \mathrm{H} . \mathrm{HM}) . \mathrm{A}$,
owing to the fact that in two [equal] solids the bases are inversely proportional to the altitudes. I assert, then, that ($\Gamma \mathrm{H} . \mathrm{HM}$). $\mathrm{A} \Gamma$ is the greatest of all the figures similarly taken upon BA.
" For let there be described through II a parabola about the axis ZH and with parameter HM ; it will pass through K, as was proved in the analysis, and, if produced, it will meet $\theta \Gamma$, being parallel to the axis ${ }^{b}$ of the parabola, by the twenty-seventh theorem of the first book of Apollonius's Elements of Conics.c Let it be produced, and let it meet at N, and through B let a hyperbola be drawn in the asymptotes NI, ГH; it will pass through K , as was shown in the analysis. Let it be described as BK, and let ZH be produced to Ξ so that $Z H=H \exists$, and let $\Xi \mathrm{K}$ be joined

[^34]
GREEK MATHEMATICS

 то仑 $\tau \epsilon \tau \alpha ́ \rho \tau о v$ каi трıакобто仑 $\theta \epsilon \omega \rho \eta \eta^{\mu} \alpha \tau о s ~ \tau о \hat{v}$
 $\chi \epsilon i \omega \nu$. $\epsilon \pi \pi \epsilon i$ oûv $\delta \iota \pi \lambda \hat{\eta} \epsilon ่ \sigma \tau \iota \nu \quad \dot{\eta} \mathrm{BE} \tau \hat{\eta} s \mathrm{EA}-$

- Apoll. i. 33 in our texts.

ARCHIMEDES

and produced to O ; it is clear that it will touch the parabola by the converse of the thirty-fourth

theorem of the first book of Apollonius's Elements of Conics. ${ }^{a}$ Then since $\mathrm{BE}=2 \mathrm{EA}$-for this hypothesis has been made-therefore $\mathrm{ZK}=2 \mathrm{~K} \theta$, and the triangle

GREEK MATHEMATICS

$\kappa \alpha i ́ ~ \epsilon ̇ \sigma \tau \iota \nu ~ o ̈ \mu o \iota o \nu ~ \tau o ̀ ~ O @ K ~ \tau \rho i ́ \gamma \omega \nu o \nu ~ \tau \hat{\varphi} \quad \Xi Z K$

 то̀ K .
" $\mathrm{N} \epsilon \nu \circ \eta \dot{\gamma} \sigma \theta \omega$ oûv каi $\dot{\eta}$ نं $\pi \epsilon \epsilon \beta$ о入ウ̀ $\pi \rho о \sigma \epsilon \kappa \beta \alpha \lambda-$
 тvхòv $\sigma \eta \mu \epsilon i ̂ o v ~ \tau o ̀ ~ \Sigma \Sigma, ~ к a i ~ \delta ı a ̀ ~ \tau o \hat{v} \Sigma \tau \hat{\eta} \mathrm{~K} \Lambda \pi \alpha \rho \alpha ́ \lambda-$

[^35]
ARCHIMEDES

$O Ө \mathrm{~K}$ is similar to the triangle $\Xi Z \mathrm{~K}$, so that $\Xi \mathrm{K}=2 \mathrm{KO}$. But $\Xi K=2 \mathrm{~K} \Pi$ because $\Xi Z=2 \Xi \mathrm{H}$ and $\Pi \mathrm{H}$ is parallel to KZ; therefore OK=KI. Therefore OKII, which meets the hyperbola and lies between the asymptotes, is bisected; therefore, by the converse of the third thcorem of the second book of Apollonius's Elements of Conics, it is a tangent to the hyperbola. But it touches the parabola at the same point K. Therefore the parabola touches the hyperbola at K. ${ }^{a}$
" Let the hyperbola be therefore conceived as produced to P, and upon $A B$ let any point Σ be taken, and through Σ let TEY be drawn parallel to $K \Lambda$ and let it meet the hyperbola at T , and through T let $\Phi T X$ be drawn parallel to ΓH. Now by virtue of the property of the hyperbola and its asymptotes, $\Phi \Upsilon=\Gamma B$, and, the common element $\Gamma \Sigma$ being subtracted, $\Phi \Sigma=\Sigma \mathrm{H}$, and therefore the straight line drawn from Γ to X will pass through Σ [Eucl. i. 43, conv.]. Let it be drawn, and let it be as $\Gamma \Sigma \mathrm{X}$. Then since, in virtue of the property of the parabola,

$$
\Psi \mathrm{X}^{2}=\mathrm{XH} \cdot \mathrm{H} M,
$$

[Apoll. i. 11
line $9 b x-a y-3 a b=0$, as may easily be shown. We may prove this fact in the following simple manner. Their points of intersection are given by the equation

$$
x^{2}(a-x)=b c^{2},
$$

which may be written

$$
\begin{array}{r}
x^{3}-a x^{2}+\frac{4}{27} a^{3}=\frac{4}{27} a^{3}-b c^{2}, \\
\left(x-\frac{2}{3}\right)^{2}\left(x+\frac{a}{3}\right)=\frac{4}{27} a^{3}-b c^{2} .
\end{array}
$$

or
Therefore, when $b c^{2}=\frac{4}{27} a^{3}$ there are two coincident solutions, $x=\frac{2}{3} a$, lying between 0 and a, and a third solution $x=-\frac{a}{3}$, outside that range.

GREEK MATHEMATICS

 $\sigma \eta \mu \epsilon i ́ \omega \nu \tau \hat{\omega} \nu \mu \epsilon \tau \alpha \xi v ̀ ̀ \lambda \alpha \mu \beta \alpha \nu o \mu \epsilon ́ \nu \omega \nu \tau \hat{\omega} \nu \mathrm{E}, \mathrm{B}$.
'A $\lambda \lambda \alpha{ }_{\alpha} \delta \eta{ }^{\prime} \epsilon i \lambda \eta{ }^{\prime} \phi \theta \omega \quad \mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{E}, \mathrm{A} \sigma \eta \mu \epsilon i o \nu$

 $\tau \hat{\eta} \dot{v} \pi \epsilon \rho \beta \circ \lambda \hat{\eta} \kappa \alpha \tau \dot{\alpha} \tau o \dot{P} \cdot \sigma v \mu \beta \alpha \lambda \epsilon \hat{\imath} \gamma \dot{\alpha} \rho \alpha u \dot{\jmath} \tau \hat{\eta} \delta_{\iota \alpha}^{\alpha}$ тò $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda о s ~ \epsilon i v \alpha \iota ~ \tau \hat{\eta} \alpha$ à $\sigma \nu \mu \pi \tau \omega ́ \tau \omega \cdot$ каi $\delta \iota \alpha ̀ ~ \tau о \hat{v}$ $\mathrm{P} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \frac{\alpha}{\alpha} \chi \theta \epsilon i ̄ \sigma \alpha \tau \hat{\eta} \mathrm{AB} \dot{\eta} \mathrm{A}^{\prime} \mathrm{PB}^{\prime}{ }_{\sigma v \mu \beta \alpha \lambda \lambda \epsilon ́ \tau \omega}$

 $\pi \alpha ́ \lambda \iota \nu ~ \delta \iota \grave{\alpha} \tau \grave{\eta} \nu \pi \alpha \rho \alpha \beta о \lambda \eta ̀ \nu$ ıै $\sigma o \nu ~ \epsilon ́ \sigma \tau i ~ \tau o ̀ ~ a ́ \pi o ̀ ~ A ~ A ~ B ' ~$

 $\mathrm{B}^{\prime} \mathrm{H} \Omega$. $\epsilon \pi \epsilon i$ oûv $\epsilon \sigma \tau \iota \nu$, $\dot{\omega} \dot{\eta} 5 \mathrm{~A} \pi \rho o ̀ s ~ А \Gamma$, oư $\tau \omega s$ $\dot{\eta}$ ГН $\pi \rho o ̀ s \mathrm{HB}^{\prime}$, à $\lambda \lambda^{\prime}$ ผ́s $\dot{\eta}$ ГН $\pi \rho o ̀ s \mathrm{HB}^{\prime}, \tau \hat{\eta} s$

[^36]
ARCHIMEDES

| \therefore | $T^{2} \quad<X H \cdot H M$. |
| :--- | :--- | :--- |
| Let | $T X^{2} \quad=X H \cdot H \Omega$. |
| Then since | $\Sigma A: A \Gamma=\Gamma H: H X$, |
| while | $\Gamma H: H X=\Gamma H \cdot H \Omega: X H . H \Omega$, |

by taking a common altitude $\mathrm{H} \Omega$,

$$
\begin{aligned}
& =\Gamma \mathrm{H} \cdot \mathrm{H} \Omega: \mathrm{XT}^{2} \\
& =\Gamma \mathrm{H} \cdot \mathrm{H} \Omega: \mathrm{B}^{2}, \\
\mathrm{~B} \mathrm{\Sigma}^{2} \cdot \Sigma \mathrm{~A} & =(\Gamma \mathrm{H} \cdot \mathrm{H} \Omega) \cdot \Gamma \mathrm{A} .
\end{aligned}
$$

But (ГН. $\mathrm{H} \Omega$). $\mathrm{\Gamma A}<(\Gamma Н . Н М) . Г А ;$
$\therefore \quad B \Sigma^{2} . \Sigma A<\mathrm{BE}^{2}$. EA.
This can be proved similarly for all points taken between E, B.
" Now let there be taken a point ς between E, A. I assert that in this case also $\mathrm{BE}^{2} . \mathrm{EA}>\mathrm{B} 5.5 \mathrm{~A}$.
" With the same construction, let $\varsigma_{\zeta} \mathrm{P}$ be drawn ${ }^{a}$ through 5 parallel to $\mathrm{K} \Lambda$ and let it meet the hyperbola at P; it will meet the hyperbola because it is parallel to an asymptote [Apoll. ii. 13]; and through P let $\mathrm{A}^{\prime} \mathrm{PB}^{\prime}$ be drawn parallel to AB and let it meet HZ produced in B^{\prime}. Since, in virtue of the property of the hyperbola, $\Gamma^{\prime} \varsigma=A H$, the straight line drawn from Γ to B^{\prime} will pass through 5 [Eucl. i. 43, conv.]. Let it be drawn and let it be as $\Gamma 5 \mathrm{~B}^{\prime}$. Again, since, in virtue of the property of the parabola,

	$\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}=\mathrm{B}^{\prime} \mathrm{H} \cdot \mathrm{HM}$,	
\therefore	$\mathrm{PB}^{\prime 2}=\mathrm{B}^{\prime} \mathrm{H} \cdot \mathrm{HM}$,	
Let	$\mathrm{PB}^{\prime 2}=\mathrm{B}^{\prime} \mathrm{H} \cdot \mathrm{H} \Omega$.	
Then since	$\varsigma \mathrm{A}: \mathrm{A} \mathrm{\Gamma}=\Gamma \mathrm{H}: H B^{\prime}$,	
while	$\Gamma H: H B^{\prime}=$	$=\Gamma H \cdot H \Omega: \mathrm{B}^{\prime} \mathrm{H} \cdot \mathrm{H} \Omega$,

GREEK MATHEMATICS

 156

ARCHIMEDES

by taking a common altitude $\mathrm{H} \Omega$,

$$
\begin{array}{rlrl}
& =\Gamma \mathrm{H} \cdot \mathrm{H} \Omega: \mathrm{PB}^{\prime 2} \\
& & =\Gamma \mathrm{H} \cdot \mathrm{H} \Omega: \mathrm{B} \varsigma^{2}, \\
\therefore \quad & & B 5^{2} \cdot 5 \mathrm{~A} & =(\Gamma \mathrm{H} \cdot \mathrm{H} \Omega) \cdot \Gamma \mathrm{A} . \\
\text { And } \quad & \Gamma H \cdot H M & >\Gamma \mathrm{H} \cdot \mathrm{H} \Omega ; \\
\therefore \quad & B E^{2} \cdot \mathrm{EA} & >B 5^{2} \cdot 5 \mathrm{~A} .
\end{array}
$$

$$
\therefore
$$

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \quad \sigma \eta \mu \epsilon i \omega \nu \tau \hat{\omega} \nu \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{E}, \mathrm{A} \lambda \alpha \mu \beta \alpha \nu o \mu \epsilon ́ v \omega \nu$.

 $\mu \epsilon ́ \gamma \iota \sigma \tau o ́ v ~ \epsilon ่ \sigma \tau \iota \nu ~ \tau o ̀ ~ a ̀ \pi o ̀ ~ \tau \hat{\eta} S \mathrm{BE}$ є̇лі $\tau \grave{\eta} \nu \mathrm{EA}$, öта⿱ ท̉ $\delta \iota \pi \lambda a \sigma i a \mathfrak{\eta}$ BE $\tau \hat{\eta} s$ EA.'

 є̋ $\lambda a \sigma \sigma o \nu ~ \tau o v ̂ ~ a ̀ \pi o ̀ ~ B E ~ \epsilon ̇ \pi i ~ \tau \grave{\eta \nu ~} \mathrm{EA}$, $\delta v \nu a \tau o ́ v ~ \epsilon ่ \sigma \tau \iota ~$

 $\pi \rho o ́ \beta \lambda \eta \mu a$. тоv̂тo δ ѐ $\gamma i v є \tau \alpha \iota, ~ \epsilon i \quad \nu о \eta ́ \sigma \alpha \iota \mu \epsilon \nu \pi \epsilon \rho i$ $\delta \iota \alpha ́ \mu \epsilon \tau \rho o \nu \tau \grave{\eta} \nu \mathrm{XH} \gamma \rho a \phi о \mu \epsilon ́ \nu \eta \nu \pi \alpha \rho \alpha \beta о \lambda \eta{ }^{\prime} \nu, \stackrel{\omega}{\omega} \sigma \tau \epsilon$

a There is some uncertainty where the quotation from Archimedes ends and Eutocius's comments are resumed. Heiberg, with some reason, makes Eutocius resume his comments at this point.
${ }^{6}$ In the mss. the figures on pp. 150 and 156 are com158

ARCHIMEDES

This can be proved similarly for all points taken between E,A. And it was proved for all points between E, B; therefore for all figures similarly, taken upon $\mathrm{AB}, \mathrm{BE}^{2}$. EA is greatest when $\mathrm{BE}=2 \mathrm{EA}$."

The following consequences ${ }^{a}$ should also be noticed in the aforementioned figure. ${ }^{b}$ Inasmuch as it has been proved that

$$
\mathrm{B}^{2} \cdot \mathrm{\Sigma A}<\mathrm{BE}^{2} .
$$

and
$\mathrm{B} 5^{2} .5 \mathrm{~A}<\mathrm{BE}^{2}$. EA ,
if the product of the given space and the given straight line is less than BE^{2}. EA, it is possible to cut $A B$ in two points satisfying the conditions of the original problem. ${ }^{c}$ This comes about if we conceive a parabola described about the axis XH with parameter $H \Omega$; for such a parabola will necessarily pass through T. ${ }^{d}$ And since it must necessarily meet ΓN, bcing parallel to a diameter [Apoll. Con. i. 26], it is clear that it cuts the hyperbola in another point above K, as at P in this case, and a perpendicular drawn from P to AB , as P 5 in this case, will cut AB in 5 , so that the point 5 satisfies the conditions of the
bined; in this edition it is convenient, for the sake of clarity, to give separate figures.

- With the same notation as before this may be stated: when $b c^{2}<\frac{4}{27} a^{3}$, there are always two real solutions of the cubic equation $x^{2}(a-x)=b c^{2}$ lying between 0 and a. If the cubic has two real roots it must, of course, have a third real root as well, but the Greeks did not recognize negative solutions.
${ }^{4}$ By Apoll. i. 11, since $T X^{2}=X H . H \Omega$.

GREEK MATHEMATICS

 $\beta \alpha ́ v \epsilon \iota \nu$ グ $\tau \grave{o} \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{E}, \mathrm{B} \not \ddot{\eta} \tau \grave{o} \mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{\omega} \nu \mathrm{E}$, A. $\epsilon i ̉ \mu \epsilon ̀ \nu \gamma$ à $\rho \tau \grave{o} \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \mathrm{E}, \mathrm{B}, \dot{\omega}_{S} \epsilon i \not \rho \eta \tau \alpha \iota$, $\tau \hat{\eta} S \delta \iota \dot{\alpha} \tau \hat{\omega} \nu \mathrm{H}, \mathrm{T} \sigma \eta \mu \epsilon i \omega \nu$ र $\rho a \phi о \mu \epsilon ́ v \eta s \pi \alpha \rho a \beta \circ \lambda \hat{\eta} s$

 $\Delta \mathrm{Z} \tau \epsilon \mu \epsilon i ̂ v$ кат̀̀ $\tau \grave{o} \mathrm{X}, \stackrel{\omega}{\omega} \sigma \tau \epsilon \epsilon i v a \iota, \dot{\omega}_{s} \tau \grave{\eta} \nu \mathrm{XZ}$ $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \delta o \theta \epsilon i ̂ \sigma \alpha \nu, ~ o u ̛ \tau \omega s ~ \tau o ̀ ~ \delta o \theta \epsilon ̀ \nu ~ \pi \rho o ̀ s ~ \tau o ̀ ~ a ̀ \pi o ̀ ~$ $\tau \hat{\eta} S \quad \Delta \mathrm{X}$. $\tau \circ \hat{v} \tau o ~ \delta \grave{\epsilon}$ à $\pi \lambda \hat{\omega}_{S} \mu \grave{\epsilon} \nu \quad \lambda \epsilon \gamma o ́ \mu \epsilon \nu o \nu{ }^{\prime \prime} \chi \in \iota$

[^37]
ARCHIMEDES

problem, and $\mathrm{B} \Sigma^{2} . \Sigma \mathrm{A}=\mathrm{B} \varsigma^{2} \cdot \varsigma \mathrm{~A}$, as is clear from the above proof. Inasmuch as it is possible to take on BA two points satisfying what is sought, it is permissible to take whichever one wills, either the point between E, B or that between E, A. If we choose the point between E, B, the parabola described through the points H, I ' will, as stated, cut the hyperbola in two points ; of these the one nearer to H , that is to the axis of the parabola, will determine the point between E, B, as in this case ' I determines Σ, while the point farther away will determine the point between E, A, as in this case P determines 5 .

The analysis and synthesis of the general problem have thus been completed; but in order that it may be harmonized with Archimedes' words, let there be conceived, as in Archimedes' own figure, ${ }^{a}$ a diameter $\Delta \mathrm{B}$ of the sphere, with radius [equal to] BZ , and a given straight line ZO. We are therefore faced with the problem, he says, " so to cut ΔZ at X that $X Z$ bears to the given straight line the same ratio as the given area bears to the square on $\Delta \mathrm{X}$. When the problem is stated in this general form, it is necessary to investigate the limits of possibility." ${ }^{b}$ If therefore the product of the given area and the given straight line chanced to be greater than $\Delta B^{2} . B Z,{ }^{c}$ the problem would not admit a solution, as was proved, and if it were equal the point B would satisfy the conditions of the problem, which also would be of no avail for the purpose Archimedes set himself at the outset; for the sphere would not be

[^38]
GREEK MATHEMATICS

 " $\pi \rho \circ \sigma \tau \iota \theta \epsilon \mu \epsilon \in \nu \omega \nu$ ठє̀ $\tau \hat{\omega} \nu \pi \rho o \beta \lambda \eta \mu a ́ \tau \omega \nu \tau \hat{\omega} \nu \dot{\epsilon} \nu \theta \alpha ́ \delta \epsilon$

 ö $\pi \omega s$ т $\pi о \beta a i v є \iota ~ \tau o ̀ ~ \pi \rho o ́ \beta \lambda \eta \mu а . ~$
a Eutocius proceeds to give solutions of the problem by Dionysodorus and Diocles, by whose time, as he has explained, Archimedes' own solution had already disappeared. Dionysodorus solves the less general equation by means of the intersection of a parabola and a rectangular hyperbola; Diocles solves the general problem by the intersection of an ellipse with a rectangular hyperbola, and his proof is both ingenious and intricate. Details may be consulted in Heath, H.G.M. ii. 46-49 and more fully in Heath, 162

ARCHIMEDES

cut in the given ratio. Therefore when the problem was stated generally, an investigation of the limits of possibility was necessary as well; "but under the conditions of the present case," that is, if $\Delta \mathrm{B}=2 \mathrm{ZB}$ and $B Z>Z \theta$, " no such investigation is necessary." For the product of the given area ΔB^{2} into the given straight line $Z \theta$ is less than the product of $\Delta \mathrm{B}^{2}$ into $B Z$ by reason of the fact that $B Z$ is greater than $Z \theta$, and we have shown that in this case there is a solution, and how it can be effected. ${ }^{a}$

The Works of Archimedes, pp. cxxiii-cxli, which deals with the whole subject of cubic equations in Greek mathematical history. It is there pointed out that the problem of finding mean proportionals is equivalent to the solution of a pure cubic equation, $\frac{a^{3}}{x^{3}}=\frac{a}{b}$, and that Menaechmus's solution, by the intersection of two conic sections (v. vol. i. pp. 278-283), is the precursor of the method adopted by Archimedes, Dionysodorus and Diocles. The solution of cubic equations by means of conics was, no doubt, found easier than a solution by the manipulation of parallelepipeds, which would have been analogous to the solution of quadratic equations by the application of areas (v. vol. i. pp. 186-215). No other examples of the solution of cubic equations have survived, but in his preface to the book On Conoids and Spheroids Archimedes says the results there obtained can be used to solve other problems, including the following, "from a given spheroidal figure or conoid to cut off, by a plane drawn parallel to a given plane, a segment which shall be equal to a given cone or cylinder, or to a given sphere" (Archim. ed. Heiberg i. 258. 11-15); the case of the paraboloid of revolution does not lead to a cubic equation, but those of the spheroid and hyperboloid of revolution do lead to cubics, which Archimedes may be presumed to have solved. The conclusion reached by Heath is that Archimedes solved completely, so far as the real roots are concerned, a cubic equation in which the term in x is absent : and as all cubic equations can be reduced to this form, he may be regarded as having solved geometrically the general cubic.

GREEK MATHEMATICS

(d) Conoids and Spheroids

(i.) Preface

Archim. De Con. et Sphaer., Praef., Archim. ed. Heiberg i. 246. 1-14

 $\kappa \alpha i \quad \pi \epsilon \rho i \quad \sigma \phi a \iota \rho о \epsilon \iota \delta \epsilon ́ \omega \nu \quad \sigma \chi \eta \mu a ́ \tau \omega \nu$, $\hat{\omega} \nu \tau \grave{\alpha} \mu \epsilon ̀ \nu$ $\pi \alpha \rho \alpha \mu \alpha ́ к є \alpha, \tau \dot{\alpha} \delta \dot{\epsilon} \epsilon ่ \pi \iota \pi \lambda \alpha \tau \epsilon ́ a ~ к \alpha \lambda \epsilon ́ \omega$.

(ii.) Two Lemmas

Ibid., Lemma ad Prop. 1, Archim. ed. Heiberg i. 260. 17-24

[^39]
ARCHIMEDES

(d) Conoids and Spheroids
(i.) Preface

Archimedes, On Conoids and Spheroids, Preface, Archim. ed. Heiberg i. 246. 1-14
Archimedes to Dositheus greeting.
I have written out and now send you in this book the proofs of the remaining theorems, which you did not have among those sent to you before, ${ }^{a}$ and also of some others discovered later, which I had often tried to investigate previously but their discovery was attended with some difficulty and I was at a loss over them ; and for this reason not even the propositions themselves were forwarded with the rest. But later, when I had studied them more carefully, I discovered what had left me at a loss before. Now the remainder of the earlier theorems were propositions about the right-angled conoid ${ }^{b}$; but the discoveries now added relate to an obtuse-angled conoid ${ }^{\circ}$ and to spheroidal figures, of which I call some oblong and others flat. ${ }^{d}$

(ii.) Two Lemmas

> Ibid., Lemma to Prop. 1, Archim. ed. Heiberg i. $260.17-24$

If there be a series of magnitudes, as many as you please, in which each term exceeds the previous term by an ellipse about its major axis, a flat spheroid by the revolution of an ellipse about its minor axis.
In the remainder of our preface Archimedes gives a number of definitions connected with those solids. They are of importance in studying the development of Greek mathematical terminology.

GREEK MATHEMATICS

 тои́тоv фаvєра́.

Ibid., Prop. 1, Archim. ed. Heiberg 1. 260. 26-261. 22

"E $\sigma \tau \omega \tau \iota \nu \grave{a} \mu \epsilon \gamma \epsilon \epsilon \epsilon \alpha \tau \grave{\alpha} \mathrm{~A}, \mathrm{~B}, \Gamma, \Delta, \mathrm{E}, \mathrm{Z}$ ä $\lambda \lambda$ oıs $\mu \epsilon \gamma \epsilon \in \theta \epsilon \sigma \iota \nu$ ıै $\sigma o \iota s \tau \hat{\varphi} \pi \lambda \eta^{\prime} \theta \epsilon \iota \tau$ тồs, $\mathrm{H}, \mathrm{\Theta}, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M}$

[^40]
ARCHIMEDES

equal quantity, which common difference is equal to the least term, and if there be a second series of magnitudes, equal to the first in number, in which each term is equal to the greatest term [in the first series], the sum of the magnitudes in the series in which each term is equal to the greatest term is less than double of the sum of the magnitudes differing by an equal quantity, but greater than double of the sum of those magnitudes less the greatest term. The proof of this is clear. ${ }^{a}$

Ibid., Prop. 1, Archim. ed. Heiberg i. 260. 26-261. 22
If there be a series of magnitudes, as many as you please, and it be equal in number to another series of magnitudes, and the terms have the same ratio two by tro, and if any or all of the first series of magnitudes form any proportion with another series of magnitudes, and if the second series of magnitudes form the same proportion with the corresponding terms of another series of magnitudes, the sum of the first series of magnitudes bears to the sum of those with which they are in proportion the same ratio as the sum of the second series of magnitudes bears to the sums of the terms with which they are in proportion.

Let the series of magnitudes $A, B, \Gamma, \Delta, E, Z$ be equal in number to the series of magnitudes H, θ, I,
terms of the arithmetical progression and produced until each is equal to the greatest term. It is equivalent to this algebraical proof :
Let
Then

$$
\mathrm{S} n=h+2 h+3 h+\ldots+n h .
$$

Adding,

$$
2 \mathrm{~S} n=n(n+1) h,
$$

and so

$$
2 S_{n-1}=(n-1) n h .
$$

Therefore

$$
\mathrm{S} n=n h+(n-1) h+(n-2) h+\ldots+h .
$$

$2 S_{n-1}<n^{2} h<2 S n$.

GREEK MATHEMATICS

 $\Gamma, \Delta, \mathrm{E}, \mathrm{Z} \mu \epsilon \gamma \epsilon^{\prime} \theta \epsilon \alpha$ тот' ${ }^{\alpha} \lambda \lambda \alpha \mu \mu \epsilon \gamma^{\prime} \theta \epsilon \alpha \tau \grave{\alpha} \mathrm{N}, \Xi$, $\mathrm{O}, \Pi, \mathrm{P}, \Sigma \epsilon \in \nu$ дójoıs ótoooloov̂v, $\tau \grave{\alpha} \delta \dot{\epsilon} \mathrm{H}, \Theta, \mathrm{I}$, $\mathrm{K}, \Lambda, \mathrm{M} \pi о \tau^{\prime}{ }^{\prime} \lambda \lambda \lambda \tau \grave{\alpha} \mathrm{T}, \Upsilon, \Phi, \mathrm{X}, \Psi, \Omega, \tau \dot{\alpha}$

 $\pi \alpha ́ \nu \tau \alpha \tau \dot{\alpha} \mathrm{~A}, \mathrm{~B}, \Gamma, \Delta, \mathrm{E}, \mathrm{Z} \pi о \tau i \pi_{\alpha}^{\prime} \nu \tau \alpha \tau \grave{\alpha} \mathrm{N}, \Xi$,
 $\mathrm{H}, \Theta, \mathrm{I}, \mathrm{K}, \Lambda, \mathrm{M} \pi o \tau i \pi_{\alpha} \nu \tau \alpha \tau \dot{\alpha} \mathrm{T}, \mathrm{X}, \Phi, \mathrm{X}, \Psi, \Omega$.

\quad a Since	$\mathrm{N}: \mathrm{A}=\mathrm{T}: \mathrm{H}, \mathrm{A}: \mathrm{B}=\mathrm{H}: \Theta$,	[ex hyp.
\therefore ex aequo	$\mathrm{N}: \mathrm{B}=\mathrm{T}: \Theta$.	[Eucl. v .22
But	$\mathrm{B}: \Xi=\Theta: \mathrm{r} ;$	[ex hyp.
\therefore ex aequo	$\mathrm{N}: \Xi=\mathrm{T}: \mathrm{r}$.	[Eucl. v. 22

Similarly

$$
\Xi: O=\mathrm{Y}: \Phi, \mathrm{O}: \Pi=\Phi: \mathrm{X}, \Pi: \mathrm{P}=\mathrm{X}: \Psi, \mathrm{P}: \Sigma=\Psi: \Omega .
$$

Now since

$$
\mathrm{A}: \mathrm{B}=\mathrm{H}: \Theta,
$$

[ex hyp.
\therefore componendo $\quad \mathrm{A}+\mathrm{B}: \mathrm{A}=\mathrm{H}+\Theta: \mathrm{H}$,
i.e., permutando $\mathrm{A}+\mathrm{B}: \mathrm{H}+\Theta=\mathrm{A}: \mathrm{H}$.

But since
$\mathrm{N}: \mathrm{A}=\mathrm{T}: \mathrm{H}$,
$\mathrm{A}: \mathrm{H}=\mathrm{N}: \mathrm{T}$

$$
\begin{aligned}
& =\Xi: \mathrm{r} \\
& =0: \Phi \\
& =\Gamma: \mathrm{I} .
\end{aligned}
$$

[Eucl. v. 18
[Eucl. v. 16
[ex hyp. [Eucl. v. 16
[ibid.
[ibid.
[ibid.

$$
\mathrm{A}+\mathrm{B}: \mathrm{H}+\Theta=\Gamma: \mathrm{I} .
$$

$$
\begin{aligned}
\mathrm{A}+\mathrm{B}+\mathrm{\Gamma}: \mathrm{H}+\Theta+\mathrm{I} & =\Gamma: \mathrm{I} \\
& =0: \Phi
\end{aligned}
$$

[Eucl. v. 18
[Eucl. v. 16

ARCHIMEDES

K, Λ, M, and let them have the same ratio two by two, so that

$$
A: B=H: \theta, B: \Gamma=\theta: I,
$$

and so on, and let the series of magnitudes A, B, Γ, Δ, E, Z form any proportion with another series of magnitudes $\mathrm{N}, \Xi, O, \Pi, P, \Sigma$, and let $H, \theta, I, K, \Lambda, M$ form the same proportion with the corresponding terms of another series, T, $\Upsilon, \Phi, \mathrm{X}, \Psi, \Omega$ so that

$$
A: N=H: T, B: ⿹=\Theta: \Upsilon,
$$

and so on ; it is required to prove that

$$
\frac{A+B+\Gamma+\Delta+E+Z}{\bar{N}+\Xi+O+\Pi+P+\Sigma}=\frac{H+\theta+I+K+\Lambda+M}{T+Y+\Phi+X+\Psi+\Omega} \cdot a
$$

$$
\begin{aligned}
& =\Pi: X \\
& =\Delta: K .
\end{aligned}
$$

[ibid.
[ibid.
By pursuing this method it may be proved that

$$
A+B+\Gamma+\Delta+E+Z: H+\Theta+I+K+\Lambda+M=A: H,
$$

or, permutando,

$$
\begin{equation*}
\mathrm{A}+\mathrm{B}+\mathrm{\Gamma}+\Delta+\mathrm{E}+\mathrm{Z}: \mathrm{A}=\mathrm{H}+\Theta+\mathrm{I}+\mathrm{K}+\Lambda+\mathrm{M}: \mathrm{H} \tag{1}
\end{equation*}
$$

Now

$$
N: \Xi=T: r ;
$$

\therefore componendo et permutando,

$$
\begin{align*}
\mathrm{N}+\Xi: \mathrm{T}+\mathrm{Y} & =\Xi: \mathrm{Y} & \text { [Eucl. v. 18, v. } 16 \\
& =\mathrm{O}: \Phi ; & \text { [Eucl. v. } 16 \\
\mathrm{O}: \mathrm{T}+\mathrm{Y}+\Phi & =\mathrm{O}: \Phi, & \text { [Eucl. v. } 18
\end{align*}
$$

whence $\mathrm{N}+\boldsymbol{\Xi}+\mathrm{O}: \mathrm{T}+\mathrm{\Upsilon}+\Phi=0: \Phi$,
and so on until we obtain
$\mathrm{N}+\Xi+\mathrm{O}+\Pi+\mathrm{P}+\mathrm{\Sigma}: \mathrm{T}+\mathrm{Y}+\Phi+\mathrm{X}+\Psi+\Omega=\mathrm{N}: \mathrm{T}$.
But
\therefore by (1) and (2),
$\mathrm{A}: \mathrm{N}=\mathrm{H}: \mathrm{T} ; \quad$ ex hyp.

$$
\frac{A+B+\Gamma+\Delta+E+Z}{N+\Xi+O+\Pi+P+\Sigma}=\frac{H+\Theta+I+K+\Lambda+M}{T+Y+\Phi+X+\Psi+\Omega}
$$

GREEK MATHEMATICS

(iii.) Volume of a Segment of a Paraboloid of Revolution

Ibid., Prop. 21, Archim. ed. Heiberg i. 344. 21-354. 20

 каi ar ${ }^{\circ}$ ога.

 170

ARCHIMEDES

(iii.) Volume of a Segment of a Paraboloid of Revolution

Ibid., Prop. 21, Archim. ed. Heiberg i. 344. 21-354. 20
Any segment of a right-angled conoid cut off by a plane perpendicular to the axis is one-and-a-half times the cone having the same base as the segment and the same axis.

For let there be a segment of a right-angled conoid cut off by a plane perpendicular to the axis, and let it be cut by another plane through the axis, and let the section be the section of a right-angled cone $\mathrm{AB} \mathrm{\Gamma},{ }^{a}$ and let $\Gamma \mathrm{A}$ be a straight line in the plane cutting off the segment, and let $\mathrm{B} \Delta$ be the axis of the segment, and let there be a cone, with vertex B, having the same base and the same axis as the segment. It is required to prove that the segment of the conoid is one-and-a-half times this cone.

For let there be set out a cone Ψ one-and-a-half times as great as the cone with base about the diameter $A \Gamma$ and with axis $B \Delta$, and let there be a

- It is proved in Prop. 11 that the section will be a parabola.

GREEK MATHEMATICS

$$
{ }^{1} \text { è } \pi \epsilon і \pi \epsilon \rho \text {. . . к } \omega \text { vov om. Heiberg. }
$$

[^41]
ARCHIMEDES

cylinder having for its base the circle about the diameter $A \Gamma$ and for its axis $B \Delta$; then the cone Ψ is one-half of the cylinder ${ }^{a}$; I say that the segment of the conoid is equal to the cone Ψ.

If it be not equal, it is either greater or less. Let it first be, if possible, greater. Then let there be inscribed in the segment a solid figure and let there be circumscribed another solid figure made up of cylinders having an equal altitude, ${ }^{b}$ in such a way that the circumscribed figure exceeds the inscribed figure by a quantity less than that by which the segment of the conoid exceeds the cone Ψ [Prop. 19]; and let the greatest of the cylinders composing the circumscribed figure be that having for its base the circle about the diameter $\mathrm{A} \Gamma$ and for axis $\mathrm{E} \Delta$, and let the least be that having for its base the circle about the diameter $\Sigma \mathrm{T}$ and for axis BI ; and let the greatest of the cylinders composing the inscribed figure be that having for its base the circle about the diameter $\mathrm{K} \Lambda$ and for axis $\Delta \mathrm{E}$, and let the least be that having for its base the circle about the diameter $\Sigma \mathrm{T}$ and for axis $\Theta \mathrm{I}$; and let the planes of all the cylinders be
half times, as great as the same cone; but because $\tau 0 \hat{v}$ aúrov̂ к巛́vov is obscure and è ėєimep often introduces an interpolation, Heiberg rejects the explanation to this effect in the text.

- Archimedes has used those inscribed and circumscribed figures in previous propositions. The paraboloid is generated by the revolution of the parabola $\mathrm{AB} \mathrm{\Gamma}$ about its axis $\mathrm{B} \Delta$. Chords $\mathrm{K} \Lambda \ldots \Sigma \mathrm{T}$ are drawn in the parabola at right angles to the axis and at equal intervals from each other. From the points where they meet the parabola, perpendiculars are drawn to the next chords. In this way there are built up inside and outside the parabola "staggered" figures consisting of decreasing rectangles. When the parabola revolves, the rectangles become cylinders, and the segment of the paraboloid lies between the inscribed set of cylinders and the circumscribed set of cylinders.

GREEK MATHEMATICS

 $\pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ \nu \circ \nu \quad \sigma \chi \hat{\eta} \mu \alpha$ тєєi тò $\tau \mu \hat{a} \mu a$ є̀ $\lambda \alpha ́ \sigma \sigma о \nu \iota$

 $\delta \iota \alpha ́ \mu \epsilon \tau \rho o \nu \tau \alpha \grave{\alpha} \nu \mathrm{~A},{ }_{\alpha}^{\alpha} \xi \omega \nu \delta \delta_{\epsilon}[\hat{\epsilon} \sigma \tau \iota \nu]^{1} \dot{\alpha}, \Delta \mathrm{I} \epsilon \dot{v} \theta \epsilon \hat{\epsilon} \alpha$,

 174

ARCHIMEDES

produced to the surface of the cylinder having for its base the circle about the diameter $A \Gamma$ and for axis $\mathrm{B} \Delta$; then the whole cylinder is divided into cylinders equal in number to the cylinders in the circumscribed figure and in magnitude equal to the greatest of them. And since the figure circumscribed about the segment exceeds the inscribed figure by a quantity less than that by which the segment exceeds the cone, it is clear that the figure inscribed in the segment is greater than the cone $\Psi .{ }^{a}$ Now the first cylinder of those in the whole cylinder, that having ΔE for its axis, bears to the first cylinder in the inscribed figure, which also has $\Delta \mathrm{E}$ for its axis, the ratio $\Delta \mathrm{A}^{2}: \mathrm{KE}^{2}$ [Eucl. xii. 11 and xii. 2]; but $\Delta \mathrm{A}^{2}: \mathrm{KE}^{2}=\mathrm{B} \Delta: \mathrm{BE}^{b}=\Delta \mathrm{A}: \mathrm{E}$ 妇. Similarly it may be proved that the second cylinder of those in the whole cylinder, that having EZ for its axis, bears to the second cylinder in the inscribed figure the ratio $\Pi \mathrm{E}: \mathrm{ZO}$, that is, $\triangle \mathrm{A}: \mathrm{ZO}$, and each of the other cylinders in the whole cylinder, having its axis equal to ΔE, bears to each of the cylinders in the inscribed figure, having the same axis in order, the same ratio as half the diameter of the base bears to the part cut off between the straight lines $\mathrm{AB}, \mathrm{B} \Delta$; and therefore the sum of the cylinders in the cylinder having for its base the circle about the diameter $А \Gamma$ and for axis the straight line ΔI bears to the sum of the cylinders in the inscribed figure the same ratio as the sum of

[^42]
GREEK MATHEMATICS

$\pi \hat{a} \sigma \alpha \iota \alpha i \hat{i} \epsilon \dot{v} \theta \epsilon \hat{i} \alpha \iota ~ a i ́ ~ \epsilon ’ \kappa ~ \tau \hat{\omega} \nu \kappa \epsilon ́ \nu \tau \rho \omega \nu \tau \hat{\omega} \nu \kappa v ́ \kappa \lambda \omega \nu$,

 тỗ Ψ к ω fou.

 тò $\pi \epsilon \rho \iota \gamma \rho a \phi \epsilon ̀ \nu ~ \sigma \chi \hat{\eta} \mu a$ то仑̂ $\Psi{ }^{\prime}$ кผ́vov. $\pi a ́ \lambda \iota \nu ~ \delta \grave{\epsilon}$ ó
 є̇катє́pou).

$$
\begin{aligned}
& \text { - ie., } \frac{\text { First cylinder in whole cylinder }}{\text { First cylinder in inscribed figure }}=\frac{\Delta A}{\mathrm{EE}} \\
& \text { Second cylinder in whole cylinder } \\
& \text { Second cylinder in inscribed figure }=\frac{\mathrm{E} \Pi}{\mathrm{ZO}},
\end{aligned}
$$

and so on.
$\therefore \quad \frac{\text { Whole cylinder }}{\text { Inscribed figure }}=\frac{\Delta \mathrm{A}+\mathrm{EI}+\ldots}{\mathrm{E} \Xi+\mathrm{ZO}+\ldots}$.

ARCHIMEDES

the radii of the circles, which are the bases of the aforesaid cylinders, bears to the sum of the straight lines cut off from them between $\mathrm{AB}, \mathrm{B} \Delta .^{a}$ But the sum of the aforesaid straight lines is greater than double of the aforesaid straight lines without $\mathrm{A} \Delta^{\boldsymbol{b}}$; so that the sum of the cylinders in the cylinder whose axis is ΔI is greater than double of the inscribed figure; therefore the whole cylinder, whose axis is $\Delta \mathrm{B}$, is greater by far than double of the inscribed figure. But it was double of the cone Ψ; therefore the inscribed figure is less than the cone Ψ; which is impossible, for it was proved to be greater. Therefore the conoid is not greater than the cone Ψ.

Similarly [it can be shown] not to be less; for let the figure be again inscribed and another circumscribed so that the excess is less than that by which the cone Ψ exceeds the conoid, and let the rest of the construction be as before. Then because the inscribed figure is less than the segment, and the inscribed figure is less than the circumscribed by some quantity less than the difference between the segment and the cone Ψ, it is clear that the circumscribed figure is less than the cone Ψ. Again, the first

This follows from Prop. 1, for

$$
\frac{\text { First cylinder in whole cylinder }}{\text { Second cylinder in whole cylinder }}=1=\frac{\Delta \mathrm{A}}{\text { EII }} \text {, }
$$

and so on, and thus the other condition of the theorem is satisfied.
${ }^{6}$ For $\triangle \mathrm{A}, \mathrm{E}, \mathrm{ZO} . \mathrm{i}$ is a series diminishing in arithmetical progression, and $\Delta \mathrm{A}, \mathrm{EII}$. . . is a series, equal in number, in which each term is equal to the greatest in the arithmetical progression. Therefore, by the Lemma to Prop. 1,

$$
\Delta \mathrm{A}+\mathrm{EII}+\ldots . .>2(\mathrm{EE}+\mathrm{ZO}+\ldots . .) .
$$

GREEK MATHEMATICS

 $\pi о \tau i \tau \alpha \dot{\alpha} \mathrm{BE}, \kappa \alpha i \tau \hat{\varphi}$, ồ ${ }_{\epsilon}^{\epsilon} \chi \epsilon \iota$ à $\Delta \mathrm{A} \pi о \tau i \tau \grave{\alpha} \nu \mathrm{E} \Xi$.

 $\tau \hat{\omega} \nu \kappa \nu \lambda \iota \nu \delta \rho \omega \nu \tau \hat{\omega} \nu \epsilon ้ \nu \tau \hat{\varphi} \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu \mu \epsilon ́ \nu \omega$ б $\chi \eta \dot{\eta} \mu \alpha \tau \iota$

 $\pi a ́ v \tau \alpha s$ тov̀s кv入ívסpovs тov̀s є̇v $\tau \hat{\omega} \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho a \mu-$

- As before,

$\begin{aligned} & \text { First cylinder in whole cylinder } \\ & \text { First cylinder in circumscribed figure }\end{aligned}=\frac{\Delta \mathrm{A}}{\Delta \mathrm{A}}$
$\frac{\text { Second cylinder in whole cylinder }}{\text { Second cylinder in circumscribed figure }}=\frac{\Delta \mathrm{A}}{\mathrm{E} \Xi}=\frac{\mathrm{EI}}{\mathrm{E}}{ }^{\prime}$ and so on.

ARCHIMEDES

cylinder of those in the whole cylinder, having $\Delta \mathrm{E}$ for its axis, bears to the first cylinder of those in the circumscribed figure, having the same axis $\mathrm{E} \Delta$, the ratio $\mathrm{A} \Delta^{2}: \mathrm{A} \Delta^{2}$; the second cylinder in the whole cylinder, having EZ for its axis, bears to the second cylinder in the circumscribed figure, having EZ also for its axis, the ratio $\Delta \mathrm{A}^{2}: \mathrm{KE}^{2}$; this is the same as $\mathrm{B} \Delta: \mathrm{BE}$, and this is the same as $\triangle \mathrm{A}: \mathrm{E} \exists$; and each of the other cylinders in the whole cylinder, having its axis equal to $\Delta \mathrm{E}$, will bear to the corresponding cylinder in the circumscribed figure, having the same axis, the same ratio as half the diameter of the base bears to the portion cut off from it between the straight lines $A B, B \Delta$; and therefore the sum of the cylinders in the whole cylinder, whose axis is the straight line $B \Delta$, bears to the sum of the cylinders in the circumscribed figure the same ratio as the sum of the one set of straight lines bears to the sum of the other set of straight lines. ${ }^{a}$ But the sum of the radii of the circles which are the bases of the cylinders is less than double of the sum of the straight lines cut off from them together with $\mathrm{A} \Delta^{b}$; it is therefore clear

And

First cylinder in whole cylinder
Second cylinder in whole cylinder

$$
=1=\frac{\Delta \mathrm{A}}{\mathrm{EII}},
$$ and so on.

Therefore the conditions of Prop. 1 are satisfied and
$\frac{\text { Whole cylinder }}{\text { Circumscribed figure }}=\frac{\Delta \mathrm{A}+\mathrm{E} \Pi+\ldots}{\Delta \mathrm{A}+\mathrm{EE}+\ldots}$.

- As before, $\triangle \mathrm{A}, \mathrm{EE}$. . . is a series diminishing in arithmetical progression, and $\Delta \mathrm{A}, \mathrm{E} \Pi \ldots$ is a series, equal in number, in which each term is equal to the greatest in the arithmetical progression.

Therefore, by the Lemma to Prop. 1,

$$
\Delta \mathrm{A}+\mathrm{E} \Pi+\ldots<2(\Delta \mathrm{~A}+\mathrm{EE}+\ldots . .
$$

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \kappa v \lambda i ́ \nu \delta \rho \omega \nu \tau \hat{\omega} \nu$ '̇v $\tau \hat{\varphi} \pi \epsilon \rho \iota \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon ́ v \omega{ }_{\omega} \sigma \chi \eta \eta_{-}^{-}$

${ }^{a}$ Archimedes' proof may be shown to be equivalent to an integration, as Heath has done (The Works of Archimedes, cxlvii-exlviii).

For, if n be the number of cylinders in the whole cylinder, and $\mathrm{A} \Delta=n h$, Archimedes has shown that

Whole cylinder
Inscribed figure

$$
=\frac{n^{2} h}{h+2 h+3 h+\cdots(n-1) h}
$$

$$
>2, \quad[\text { Lemma to Prop. } 1
$$

and
Whole cylinder
Circumscribed figure

$$
=\frac{n^{2} h}{n+2 h+3 h+\ldots+n h}
$$

$$
<2
$$

[ibid.
In Props. 19 and 20 he has meanwhile shown that, by increasing n sufficiently, the inscribed and circumscribed figures can be made to differ by less than any assigned volume.

ARCHIMEDES

that the sum of all the cylinders in the whole cylinder is less than double of the cylinders in the circumscribed figure; therefore the cylinder having for its base the circle about the diameter $A \Gamma$ and for axis $\mathrm{B} \Delta$ is less than double of the circumscribed figure. But it is not, for it is greater than double; for it is double of the cone Ψ, and the circumscribed figure was proved to be less than the cone Ψ. Therefore the segment of the conoid is not less than the cone Ψ. But it was proved not to be greater ; therefore it is one-and-a-half times the cone having the same base as the segment and the same axis. ${ }^{a}$

When n is increased, h is diminished, but their product remains constant ; let $n h=c$.
Then the proof is equivalent to an assertion that, when n is indefinitely increased,
limit of $\quad h[h+2 h+3 h+\ldots \quad+(n-1) h]=\frac{1}{2} c^{2}$, which, in the notation of the integral calculus reads,

$$
\int_{0}^{c} x d x=\frac{1}{2} r^{2} .
$$

If the paraboloid is formed by the revolution of the parabola $y^{2}=a x$ about its axis, we should express the volume of a segment as

$$
\int_{0}^{c} \pi y^{2} d x,
$$

or

$$
\pi a . \int_{0}^{c} x d x .
$$

The constant does not appear in Archimedes' proof because he merely compares the volume of the segment with the cone, and does not give its absolute value. But his method is seen to be equivalent to a genuine integration.
As in other cases, Archimedes refrains from the final step of making the divisions in his circumscribed and inscribed figures indefinitely large; he proceeds by the orthodox method of reductio ad absurdum.

GREEK MATHEMATICS

（e）The Spiral of Archimedes
（i．）Definitions
Archim．De Lin．Spir．，Deff．，Archim．ed．Heiberg H． 44．17－46． 21

 $\pi \epsilon \rho \iota \phi о \rho \hat{a ̆ ~ \tau o ̀ ~ a u ̀ \tau o ̀ ~ \sigma a \mu \epsilon i ̂ o v ~ \delta ı a \nu v ́ \sigma \eta, ~ \delta \epsilon v \tau \epsilon ́ \rho a, ~ к а i ~}$
 фopaîs ка入єíot $\omega \sigma \alpha \nu$ ．
ϵ^{\prime} ．Tò $\delta \grave{\epsilon}, \chi \omega \rho i o \nu$ тò $\pi \epsilon \rho \iota \lambda a \phi \theta \grave{\epsilon} \nu$ vitó $\tau \epsilon \tau \hat{\alpha} S$

 ov゙т ω ка入єí $\theta \omega$ ．

 182

ARCHIMEDES

(e) The Spiral of Archimedes

(i.) Definitions

Archimedes, On Spirals, Definitions, Archim. ed. Heiberg ii. 44. 17-46. 21

1. If a straight line drawn in a plane revolve uniformly any number of times about a fixed extremity until it return to its original position, and if, at the same time as the line revolves, a point move uniformly along the straight line, beginning at the fixed extremity, the point will describe a spiral in the plane.
2. Let the extromity of the straight line which remains fixed while the straight line revolves be called the origin of the spiral.
3. Let the position of the line, from which the straight line began to revolve, be called the initial line of the revolution.
4. Let the distance along the straight line which the point moving along the straight line traverses in the first turn be called the first distance, let the distance which the same point traverses in the second turn be called the second distance, and in the same way let the other distances be called according to the number of turns.
5. Let the area comprised between the first turn of the spiral and the first distance be called the first area, let the area comprised between the second turn of the spiral and the second distance be called the second area, and let the remaining areas be so called in order.
6. And if any straight line be drawn from the origin, let [points] on the side of this straight line in

GREEK MATHEMATICS

(ii.) Fundamental Property

Ibid., Prop. 14, Archim. ed. Heiberg ii. 50. 9-52. 15

 aủ兀òv є́ $\xi \circ \hat{v} \nu \tau \iota ~ \lambda o ́ \gamma o v ~ a i ~ \pi о \tau i ~ \tau а ̀ ̀ \nu ~ \epsilon ́ \lambda \iota к а ~ п о т \iota \pi i \pi-~$ тоvбaı $\pi о \tau^{\prime}$ à $\lambda \lambda$ ádas, ôv ai $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a \iota ~ \tau о \hat{v} \kappa v ́ к \lambda о v$

 каі ки́клоs ó $\Theta \mathrm{KH}$ є́ $\sigma \tau \omega$ ó $\pi \rho \hat{\omega} \tau о s, \pi о \tau \iota \pi \iota \pi \tau o ́ \nu \tau \omega \nu$

 $\pi о \tau i \tau \alpha \grave{\alpha} \varrho \mathrm{KH} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha \nu$.
 184

ARCHIMEDES

the direction of the revolution be called forvard, and let those on the other side be called rearrard.
7. Let the circle described with the origin as centre and the first distance as radius be called the first circle, let the circle described with the same centre and double of the radius of the first circle ${ }^{a}$ be called the second circle, and let the remaining circles in order be called after the same manner.

(ii.) Fundamental Property

Ibid., Prop. 14, Archim. ed. Heiberg ii. 50. 9-52. 15
If, from the origin of the spiral, two straight lines be drawn to meet the first turn of the spiral and produced to meet the circumference of the first circle, the lines drawn to the spiral will have the same ratio one to the other as the arcs of the circle between the extremity of the spiral and the extremities of the straight lines produced to meet the circumference, the arcs being measured in a forward direction from the extremity of the spiral.

Let $А В Г \triangle \mathrm{E} \Theta$ be the first turn of a spiral, let the point A be the origin of the spiral, let θA be the initial line, let ӨKH be the first circle, and from the point A let $A E, A \Delta$ be drawn to meet the spiral and be produced to meet the circumference of the circle at Z, H. It is required to prove that $\mathrm{AE}: \mathrm{A} \Delta=\operatorname{arc} \theta \mathrm{KZ}: \operatorname{arc} \theta \mathrm{KH}$.

When the line $A \theta$ revolves it is clear that the point

[^43]
GREEK MATHEMATICS

 $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i ́ a s ~ \phi \epsilon \rho o ́ \mu \epsilon \nu о \nu \tau \grave{\alpha} \nu$ ఆKZ $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha \nu$, тò Sè A $\tau \grave{\alpha} \nu \mathrm{AE} \epsilon \dot{v} \theta \epsilon i \hat{\alpha} \nu$, каì $\pi \alpha ́ \lambda \iota \nu$ тó $\tau \epsilon \mathrm{A} \sigma \alpha \mu \epsilon \hat{\imath} о \nu$ $\tau \dot{\alpha} \nu \mathrm{A} \Delta$ у $\rho \mu \mu \dot{\alpha} \nu \kappa \alpha i \tau \grave{o} \Theta \tau \dot{\alpha} \nu \Theta \mathrm{KH} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha \nu$,

 öтı тò av̉тò $\sigma v \mu \beta$ aívєı.

(iii.) A Verging

Ibid., Prop. 7, Archim. ed. Heiberg ii. 22. 14-24. 7
 $\epsilon \dot{v} \theta \epsilon i ́ a s \quad \dot{\epsilon} \kappa \beta \in \beta \lambda \eta \mu \epsilon ́ v a s ~ \delta v \nu a \tau o ́ v ~ \grave{\epsilon} \sigma \tau \iota \nu ~ \dot{\alpha} \pi o ̀ ~ \tau о \hat{v}$ 186

ARCHIMEDES

θ moves uniformly round the circumference $\theta \mathrm{KH}$ of the circle while the point A, which moves along the straight line, traverses the line $A \theta$; the point θ which moves round the circumference of the circle traverses the arc $\theta K Z$ while A traverses the straight line $A E$; and furthermore the point A traverses the line $A \Delta$ in the same time as θ traverses the arc $\theta K H$, each moving uniformly ; it is clear, therefore, that $\mathrm{AE}: \mathrm{A} \Delta=\operatorname{arc} \theta \mathrm{K} Z: \operatorname{arc} \theta \mathrm{KH}$ [Prop. 2].

Similarly it may be shown that if one of the straight lines be drawn to the extremity of the spiral the same conclusion follows. ${ }^{a}$

$$
\text { (iii.) A Verging }{ }^{b}
$$

Ibid., Prop. 7, Archim. ed. Heiberg ii. 22. 14-24. 7
With the same data and the chord in the circle produced, ${ }^{c}$ it is possible to drave a line from the centre to meet

- In Prop. 15 Archimedes shows (using different letters, however) that if AE, A Δ are drawn to meet the second turn of the spiral, while AZ, AH are drawn, as before, to meet the circumference of the first circle, then
$\mathrm{AE}: \mathrm{A} \Delta=\operatorname{arc} \Theta \mathrm{KZ}+$ circumference of first circle : arc $\Theta \mathrm{KH}+$ circumference of first circle, and so on for higher turns.

In general, if E, Δ lie on the nth turn of the spiral, and the circumference of the first circle is c, then

$$
\mathrm{AE}: \mathrm{A} \Delta=\operatorname{arc} \Theta \mathrm{KZ}+\overline{n-1} c: \operatorname{arc} \Theta \mathrm{KH}+\overline{n-1} c .
$$

These theorems correspond to the equation of the curve $\tau=a \theta$ in polar co-ordinates.

- This theorem is essential to the one that follows.
- See n. a on this page.

GREEK MATHEMATICS

 $\pi о \tau i \quad \tau \dot{\alpha} \nu ~ \epsilon ̇ \pi \iota \zeta \epsilon u \chi \theta \epsilon \hat{\imath} \sigma \alpha \nu$ à $\pi \grave{o}$ то̂ $\pi \epsilon ́ \rho \alpha \tau о S ~ \tau \hat{\alpha} S$

 $\pi о \tau i ~ I N ~ \nu \epsilon v ́ o v \sigma a \nu ~ \epsilon ̇ \pi i ~ \tau o ̀ ~ \Gamma-\delta v \nu a \tau o ̀ \nu ~ \delta \epsilon ́ ~ \epsilon ̇ \sigma \tau \iota \nu ~$

入órov á $\mathrm{K} \Gamma$ тотi IN , ôv á Z тотi H , каi a a EI

[^44]
ARCHIMEDES

the produced chord so that the distance between the circumference and the produced chord shall bear to the distance between the extremity of the line intercepted [by the circle] and the extremity of the produced chord an assigned ratio, provided that the given ratio is greater than that which half of the given chord in the circle bears to the perpendicular drawn to it from the centre.

H——
z
Let the same things be given, ${ }^{a}$ and let the chord in the circle be produced, and let the given ratio be $Z: H$, and let it be greater than $\Gamma \Theta: \Theta \mathrm{K}$; therefore it will be greater than $\mathrm{K} \mathrm{\Gamma}: \Gamma \Lambda$ [Eucl. vi. 4]. Then $Z: H$ is equal to the ratio of $K \Gamma$ to some line less than $\Gamma \Lambda$ [Eucl. v. 10]. Let it be to IN verging upon Γ-for it is possible to make such an interceptand IN will fall within $\Gamma \Lambda$, since it is less than $\Gamma \Lambda$. Then since
$K \Gamma: I N=Z: H$,
therefore ${ }^{b}$
EI: IF =Z:H. ${ }^{\circ}$
the construction is to be accomplished, though he was presumably familiar with a solution.
In the figure of the text, let T be the foot of the perpen-

GREEK MATHEMATICS

(iv.) Property of the Subtangent

Ibid., Prop. 20, Archim. ed. Heiberg ii. 72. 4-74. 26

 $\pi \epsilon \rho \iota \phi \in \rho \in i ́ a ~ \tau о \hat{v}$ र $\rho a \phi \epsilon ́ v \tau о s$ ки́клоv $\tau \hat{a} \mu \epsilon \tau \alpha \xi \dot{v} \tau \hat{a} s$

 $\mu \epsilon \nu a, \lambda \alpha \mu \beta \alpha \nu o \mu \epsilon ́ v a s$ тâs $\pi \epsilon \rho \iota \phi \in \rho \epsilon i a s$ à à $\tau \boldsymbol{\partial}$

dicular from Γ to $\mathrm{B} \Lambda$, and let Δ be the other extremity of the diameter through B . Let the unknown length $\mathrm{KN}=x$, let $\Gamma T=a, \mathrm{KT}=b, \mathrm{~B} \Delta=2 c$, and let $\mathrm{IN}=k$, a given length.
Then

$$
\mathrm{NI} . \mathrm{N} \Gamma=\mathrm{N} \Delta . \mathrm{NB},
$$

i.e., $\quad k \sqrt{a^{2}+(x-b)^{2}}=(x-c)(x+c)$,
which, after rationalization, is an equation of the fourth degree in x.

Alternatively, if we denote Nए by y, we can determine x and y by the two equations

$$
\begin{aligned}
& y^{2}=a^{2}+(x-b)^{2} \\
& k y=x^{2}-c^{3}
\end{aligned}
$$

ARCHIMEDES

(iv.) Property of the Subtangent

Ibid., Prop. 20, Archim. ed. Heiberg ii. 72. 4-74. 26
If a straight line touch the first turn of the spiral other than at the extremity of the spiral, and from the point of contact a straight line be drawn to the origin, and with the origin as centre and this connecting line as radius a circle be drawn, and from the origin a straight line be drawn at right angles to the straight line joining the point of contact to the origin, it will meet the tangent, and the straight line betvveen the point of meeting and the origin will be equal to the arc of the circle betveen the point of contact and the point in which the circle cuts the initial line, the arc being measured in the forvard direction from the point on the initial line.

Let $A B \Gamma \triangle$ lie on the first turn of a spiral, and let

the straight line EZ touch it at Δ, and from Δ let $A \Delta$ so that values of x and y satisfying the conditions of the problem are given by the points of intersection of a certain parabola and a certain hyperbola.

The whole question of vergings, including this problem, is admirably discussed by Heath, The Works of Archimedes, c-cxxii.

GREEK MATHEMATICS

 ó $\Delta \mathrm{MN}, \tau \epsilon \mu \nu \epsilon \in \tau \omega \delta^{\prime}$ ov̂̃os $\tau \grave{\alpha} \nu \dot{\alpha} \rho \chi \grave{\alpha} \nu \tau \hat{\alpha} S \pi \epsilon \rho ı \phi o \rho \hat{a} s$

 $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i ́ a s ~ \mu \epsilon i \zeta \omega \nu$. $\pi \alpha ́ \lambda \iota \nu ~ \delta \grave{\eta}$ кv́кдоs є́бтiv ó

 oûv $\epsilon \sigma \tau \tau \nu$ àmò $\tau 0 \hat{v} \mathrm{~A} \pi о \tau \iota \beta a \lambda \epsilon i ̂ \nu \tau a ̀ \nu \mathrm{AE} \pi o \tau i ̀ \tau \grave{\alpha} \nu$ $\mathrm{N} \Delta ~ \epsilon ̇ \kappa \beta \epsilon \beta \lambda \eta \mu \epsilon ́ v \alpha \nu, \stackrel{\omega}{\omega} \sigma \tau \epsilon \tau \grave{\alpha} \nu \mathrm{EP} \pi о \tau \grave{\iota} \tau \grave{\alpha} \nu \quad \Delta \mathrm{P}$

 $\mathrm{EP} \pi о \tau i \tau \dot{\alpha} \nu \mathrm{AP} \tau \grave{\nu} \nu$ aúzòv $\lambda o ́ \gamma o \nu, o ̂ \nu \dot{\alpha} \Delta \mathrm{P} \pi о \tau i$
光 $\chi \in \iota \quad \ddot{\eta}$ à $\Delta \mathrm{P}$ тєрıф́́ $\rho \epsilon \iota \alpha$ тотi $\tau \grave{\alpha} \nu \mathrm{KM} \Delta \pi \epsilon \rho \iota-$

 $\pi о \tau i \mathrm{PA} \ddot{\eta} \dot{\alpha} \Delta \mathrm{P} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha$ тотi $\tau \dot{\alpha} \nu \mathrm{KM} \Delta \pi \epsilon \rho \iota-$
 є̈ $\chi \epsilon \iota$ ŋु $\dot{\alpha}$ KMP $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha$ тотi $\tau \dot{\alpha} \nu \mathrm{KM} \Delta \pi \epsilon \rho \iota-$

[^45]
ARCHIMEDES

be drawn to the origin, and with centre A and radius $A \Delta$ let the circle $\Delta M N$ be described, and let this circle cut the initial line at K , and let ZA be drawn at right angles to $\mathrm{A} \Delta$. That it will meet $[\mathrm{Z} \Delta]$ is clear ${ }^{a}$; it is required to prove that the straight line ZA is equal to the arc KMN Δ.

If not, it is either greater or less. Let it first be, if possible, greater, and let $\Lambda \mathrm{A}$ be taken less than the straight line ZA, but greater than the arc KMN Δ [Prop. 4]. Again, KMN is a circle, and in this circle $\Delta \mathrm{N}$ is a line less than the diameter, ${ }^{b}$ and the ratio $\Delta \mathrm{A}: \mathrm{A} \Lambda$ is greater than the ratio of half $\Delta \mathrm{N}$ to the perpendicular drawn to it from A^{c}; it is therefore possible to draw from A a straight line AE meeting $\mathrm{N} \Delta$ produced in such a way that

$$
\mathrm{EP}: \Delta \mathrm{P}=\Delta \mathrm{A}: \mathrm{A} \Lambda ;
$$

for this has been proved possible [Prop. 7] ; therefore $E P: A P=\Delta P: A \Lambda .^{d}$
But $\quad \Delta \mathrm{P}: \mathrm{A} \Lambda<\operatorname{arc} \Delta \mathrm{P}: \operatorname{arc} \mathrm{KM} \Delta$,
since $\Delta \mathrm{P}$ is less than the arc $\Delta \mathrm{P}$, and $\mathrm{A} \Lambda$ is greater than the arc $K M \Delta$;

$$
\begin{array}{ll}
\therefore & \quad \mathrm{EP}: \mathrm{PA}<\operatorname{arc} \triangle \mathrm{P}: \operatorname{arc} \mathrm{KM} \Delta ; \\
\therefore & \mathrm{AE}: \mathrm{AP}<\operatorname{arc} \mathrm{KMP}: \operatorname{arc} K M \Delta .
\end{array}
$$ [Eucl. v. 18

$\Delta \mathrm{N}$ [Eucl. iii. 3] and divides triangle $\Delta \mathrm{AZ}$ into two triangles of which one is similar to triangle $\Delta \mathrm{AZ}$ [Eucl. vi. 8] ; therefore $\Delta \mathrm{A}: \mathrm{AZ}=\frac{1}{2} \mathrm{~N} \Delta:$ (perpendicular from A to $\mathrm{N} \Delta$).
[Eucl. vi. 4
But $\quad \mathrm{AZ}>\mathrm{A} \Lambda$;
$\therefore \quad \Delta \mathrm{A}: \mathrm{AA}>\frac{1}{2} \mathrm{~N} \Delta$: (perpendicular from A to $\mathrm{N} \Delta$).
${ }^{d}$ For $\Delta \mathrm{A}=\mathrm{AP}$, being a radius of the same circle; and the proportion follows permutando.

GREEK MATHEMATICS

 KM $\Delta \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a \nu$, то̂̂тov $\epsilon^{\prime} \chi \in \iota$ à XA $\pi о \tau i \mathrm{~A} \Delta$.

 ï σa ă ${ }^{2} \rho a$.

(f) Semi-Regular Solids

Papp. Coll. v. 19, ed. Hultsch i. 352. 7-354. 10
По入入̀̀ $\gamma \grave{\alpha} \rho$ є́ $\pi \iota \nu o \eta ̂ \sigma a \iota ~ \delta \nu \nu a \tau o ̀ \nu ~ \sigma \tau \epsilon \rho \epsilon \grave{a} ~ \sigma \chi \eta ́ \mu a \tau a$

 $\tau \epsilon \kappa \alpha i{ }^{2} \delta \omega \delta \epsilon \kappa \alpha \dot{\alpha} \epsilon \delta \rho о \nu, \pi \epsilon ́ \mu \pi \tau о \nu \delta^{\prime}$ єікоба́ $\epsilon \delta \rho о \nu, \dot{a} \lambda \lambda \grave{\alpha}$

 ov̀ χ ó $\mu \circ i ́ \omega \nu \nu \dot{\epsilon} \pi о \lambda v \gamma \omega \dot{\nu} \omega \nu \pi \epsilon \rho \iota \epsilon \chi о ́ \mu \epsilon \nu \alpha$.
${ }^{1}$ каi . . . $\pi 0 \lambda \nu \dot{\varepsilon} \delta \rho a$ om. Hultsch.

- This part of the proof involves a verging assumed in Prop. 8, just as the earlier part assumed the verging of Prop. 7. The verging of Prop. 8 has already been described (vol. i. p. 350 n. b) in connexion with Pappus's comments on it.
- Archimedes goes on to show that the theorem is true even if the tangent touches the spiral in its second or some higher turn, not at the extremity of the turn ; and in Props. 18 and 19 he has shown that the theorem is true if the tangent should touch at an extremity of a turn.

ARCHIMEDES

Now $\operatorname{arc} \mathrm{KMP}: \operatorname{arc} \mathrm{KM} \Delta=\mathrm{XA}: \mathrm{A} \Delta$; [Prop. 14
$\therefore \quad \mathrm{EA}: \mathrm{AP}<\mathrm{AX}: \triangle \mathrm{A}$;
which is impossible. Therefore ZA is not greater than the arc KM Δ. In the same way as above it may be shown to be not less ${ }^{a}$; therefore it is equal. ${ }^{b}$

(f) Semi-Regular Solids

Pappus, Collection v. 19, ed. Hultsch i. 352. 7-354. 10
Although many solid figures having all kinds of surfaces can be conceived, those which appear to be regularly formed are most deserving of attention. Those include not only the five figures found in the godlike Plato, that is, the tetrahedron and the cube, the octahedron and the dodecahedron, and fifthly the icosahedron, ${ }^{c}$ but also the solids, thirteen in number, which were discovered by Archimedes ${ }^{d}$ and are contained by equilateral and equiangular, but not similar, polygons.

As Pappus (ed. Hultsch 302. 14-18) notes, the theorem can be established without recourse to propositions involving solid loci (for the meaning of which see vol. i. pp. 348-349), and proofs involving only "plane" methods have been developed by Tannery, Mémoires scientifiques, i., 1912, pp. 300-316 and Heath, H.G.M. ii. 556-561. It must remain a puzzle why Archimedes chose his particular method of proof, especially as Heath's proof is suggested by the figures of Props. 6 and 9 ; Heath (loc. cit., p. 557) says " it is scarcely possible to assign any reason except his definite predilection for the form of proof by reductio ad absurdum based ultimately on his famous 'Lemma' or Axiom."

- For the five regular solids, see vol. i. pp. 216-225.
${ }^{d}$ Heron (Definitions 104, ed. Heiberg 66. 1-9) asserts that two were known to Plato. One is that described as P_{2} below, but the other, said to be bounded by eight squares and six triangles, is wrongly given.

GREEK MATHEMATICS

 тò $\mu \epsilon ̀ \nu \pi \rho \hat{\omega} \tau о \nu \pi \epsilon \rho \iota \epsilon ́ \chi \epsilon \tau \alpha \iota ~ \tau \rho \iota \gamma \omega ́ \nu o \iota s \bar{\eta}$ каi $\tau \epsilon \tau \rho a-$

 тò $\mu \epsilon ̀ \nu \pi \rho \omega ิ \tau о \nu \pi \epsilon \rho \iota \epsilon ́ \chi \epsilon \tau \alpha \iota ~ \tau \rho \iota \gamma \omega ́ \nu o \iota s \bar{\eta}$ каі $\tau \epsilon \tau \rho a-$

 $\hat{\omega} \nu \tau o ̀ ~ \mu \epsilon ̀ v ~ \pi \rho \hat{\omega} \tau о \nu \pi \epsilon \rho \iota \epsilon ́ \chi \epsilon \tau \alpha \iota ~ \tau \rho \iota \gamma \omega ́ \nu о \iota ร ~ \bar{\kappa} \kappa а \grave{i}$

 $\delta \in \kappa \alpha \gamma \omega ́ \nu o \iota s \bar{\iota} \bar{\beta}$.
 $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu о \nu$ vt $\pi \grave{o} \tau \rho \iota \gamma \omega \dot{\nu} \omega \nu \overline{\lambda \beta}$ каi $\tau \epsilon \tau \rho \alpha \gamma \omega \nu \omega \nu \bar{\zeta}$.
 ஸ̂v тò $\mu \epsilon ̀ \nu ~ \pi \rho \hat{\omega} \tau о \nu \pi \epsilon \rho \iota \epsilon ́ \chi \epsilon \tau \alpha \iota ~ \tau \rho \iota \gamma \omega ́ v o \iota s \bar{\kappa}$ каі

 коขт $\dot{\epsilon} \epsilon \delta \rho о \nu$, on $\pi \epsilon \rho \iota \in ́ \chi \epsilon \tau \alpha \iota ~ \tau \rho \iota \gamma \omega ́ \nu о \iota s \bar{\pi}$ каi $\pi \epsilon \nu \tau \alpha-$ γ б́voıs « β.
${ }^{a}$ For the purposes of $n . b$, the thirteen polyhedra will be designated as $P_{1}, P_{2} \ldots P_{13}$.

- Kepler, in his Harmonice mundi (Opera, 1864, v. 123126), appears to have been the first to examine these figures systematically, though a method of obtaining some is given in a scholium to the Vatican ms. of Pappus. If a solid angle of a regular solid be cut by a plane so that the same length is cut off from each of the edges meeting at the solid angle, 196

ARCHIMEDES

The first is a figure of eight bases, being contained by four triangles and four hexagons $\left[P_{1}\right] \cdot{ }^{a}$

After this come three figures of fourteen bases, the first contained by eight triangles and six squares $\left[P_{2}\right]$, the second by six squares and eight hexagons [P_{3}], and the third by eight triangles and six octagons [P_{4}].

After these come two figures of twenty-six bases, the first contained by eight triangles and eighteen squares $\left[P_{5}\right]$, the second by twelve squares, eight hexagons and six octagons [P_{6}].

After these come three figures of thirty-two bases, the first contained by twenty triangles and twelve pentagons [P_{7}], the second by twelve pentagons and twenty hexagons $\left[P_{8}\right]$, and the third by twenty triangles and twelve decagons [P_{9}].

After these comes one figure of thirty-eight bases, being contained by thirty-two triangles and six squares $\left[P_{10}\right]$.

After this come two figures of sixty-two bases, the first contained by twenty triangles, thirty squares and twelve pentagons $\left[P_{11}\right]$, the second by thirty squares, twenty hexagons and twelve decagons [P_{12}].

After these there comes lastly a figure of ninetytwo bases, which is contained by eighty triangles and twelve pentagons [P_{13}]. ${ }^{b}$
the section is a regular polygon which is a triangle, square or pentagon according as the solid angle is composed of three, four or five plane angles. If certain equal lengths be cut off in this way from all the solid angles, regular polygons will also be left in the faces of the solid. This happens (i) obviously when the cutting planes bisect the edges of the solid, and (ii) when the cutting planes cut off a smaller length from each edge in such a way that a regular polygon is left in each face with double the number of sides. This method gives (1) from the tetrahedron, P_{1}; (2) from the

GREEK MATHEMATICS

(g) System of expressing Large Numbers

Archim. Aren. 3, Archim. ed. Heiberg ii. 236. 17-240. 1

 $\mu v \rho i ́ a s ~ \mu v \rho \iota \alpha ́ \delta a s ~ \pi \rho \omega ิ \tau о \iota ~ к а \lambda о ข \mu \epsilon ́ v o \iota, ~ \tau \omega ิ \nu ~ \delta e ̀ ~ \pi \rho \omega ́-~$ $\tau \omega \nu$ à $\iota \iota \mu \omega \bar{\nu}$ ai $\mu v ́ p \iota a \iota ~ \mu \nu \rho \iota \alpha ́ \delta \epsilon s$ $\mu о \nu a ̀ s ~ к а \lambda \epsilon i ́ \sigma \theta \omega ~$ $\delta \epsilon \nu \tau \epsilon \in \rho \omega \nu \dot{\alpha} \rho \iota \theta \mu \hat{\omega} \nu$, каi ${ }_{\alpha} \rho \iota \theta \mu \epsilon i \sigma \theta \omega \nu \tau \hat{\omega} \nu \delta \epsilon \nu \tau \epsilon \prime \rho \omega \nu$

 $\mu v \rho \iota a ́ \delta a s ., \pi a ́ \lambda \iota \nu ~ \delta e ̀ ~ к а i ~ a i ~ \mu u ́ p ı a \iota ~ \mu \nu \rho ı a ́ \delta \epsilon s ~ \tau \hat{\omega} \nu$ $\delta \epsilon \nu \tau \epsilon ́ \rho \omega \nu$ ápı $\theta \mu \hat{\omega} \nu \mu о \nu a ̀ s ~ \kappa а \lambda \epsilon i ́ \sigma \theta \omega ~ \tau \rho i ́ \tau \omega \nu \dot{a} \rho \iota \theta \mu \hat{\omega} \nu$, $\kappa \alpha i a^{a} \rho ı \theta \mu \epsilon i \sigma \theta \omega \nu \tau \hat{\omega} \nu \tau \rho i \tau \omega \nu$ á $\rho \iota \theta \mu \hat{\omega} \nu \mu о \nu a ́ \delta \epsilon s$ каi
 $\chi \iota \lambda \iota a ́ \delta \epsilon S$ каi $\mu v p ı a ́ \delta \epsilon s$ Є's τ às $\mu v \rho i ́ a s ~ \mu v p ı o ́ \delta a s . ~$

${ }^{1} \mu \hat{\nu} \nu \mathrm{om}$. Heiberg.
cube, P_{2} and $P_{4} ;(3)$ from the octahedron, P_{2} and $P_{3} ;(4)$ from the icosahedron, P_{7} and P_{8}; (5) from the dodecahedron, P_{7} and P_{9}. It was probably the method used by Plato.

Four more of the semi-regular solids are obtained by first cutting all the edges symmetrically and equally by planes parallel to the edges, and then cutting off angles. This 198

ARCHIMEDES

(g) System of expressing Large Numbers

Archimedes, Sand-Reckoner 3, Archim. ed.
Heiberg ii. 236. 17-240. 1
Such are then the assumptions I make; but I think it would be useful to explain the naming of the numbers, in order that, as in other matters, those who have not come across the book sent to Zeuxippus may not find themselves in difficulty through the fact that there had been no preliminary discussion of it in this book. Now we already have names for the numbers up to a myriad $\left[10^{4}\right]$, and beyond a myriad we can count in myriads up to a myriad myriads $\left[10^{8}\right]$. Therefore, let the aforesaid numbers up to a myriad myriads be called numbers of the first order [numbers from 1 to 10^{8}], and let a myriad myriads of numbers of the first order be called a unit of numbers of the second order [numbers from 10^{8} to $\left.10^{16}\right]$, and let units of the numbers of the second order be enumerable, and out of the units let there be formed tens and hundreds and thousands and myriads up to a myriad myriads. Again, let a myriad myriads of numbers of the second order be called a unit of numbers of the third order [numbers from 10^{16} to $\left.10^{24}\right]$, and let units of numbers of the third order be enumerable, and from the units let there be formed tens and hundreds and thousands and myriads up to a myriad myriads. In the same manner, let a myriad myriads of numbers of the third order be gives (1) from the cube, P_{5} and P_{8}; (2) from the icosahedron, P_{11}; (3) from the dodecahedron, P_{12}.

The two remaining solids are more difficult to obtain; P_{10} is the snub cube in which each solid angle is formed by the angles of four equilateral triangles and one square; P_{13} is the snub dodecahedron in which each solid angle is formed by the angles of four equilateral triangles and one regular pentagon.

GREEK MATHEMATICS

$\kappa \alpha i$ ai $\tau \hat{\omega} \nu \tau \epsilon \tau \alpha ́ \rho \tau \omega \nu$ ả $\rho \iota \theta \mu \hat{\omega} \nu$ нv́pıaı $\mu v \rho \iota a ́ \delta \epsilon s$ $\mu o v a ̀ s ~ к а \lambda \epsilon i ́ \sigma \theta \omega \pi \epsilon ́ \mu \pi \tau \omega \nu ~ \alpha ́ \rho \iota \theta \mu \hat{\nu} \nu$, каi $\dot{\alpha} \epsilon i$ оṽ $\tau \omega s$
 $\mu v р \iota а к \iota \sigma \mu \nu \rho \iota \sigma \tau \omega \bar{\nu}$ ápı $\theta \mu \omega \hat{\nu}$ иขрías $\mu v \rho \iota a ́ \delta a s$.

 $\pi \rho \omega ́ \tau \alpha s$ $\pi \epsilon \rho เ o ́ \delta o v ~ \mu o v a ̀ s ~ к а \lambda \epsilon i \sigma \theta \omega ~ \delta \epsilon v \tau \epsilon ́ \rho a s ~ \pi \epsilon \rho \iota-~$ ódov $\pi \rho \omega ́ \tau \omega \nu \dot{\alpha} \rho \iota \theta \mu \bar{\omega} \nu$. $\pi \alpha ́ \lambda \iota \nu ~ \delta \grave{\epsilon}$ каì аi $\mu v ́ \rho \iota a \iota$ $\mu v \rho \iota a ́ \delta \epsilon s$ тâs $\delta \epsilon v \tau \epsilon ́ \rho a s \pi \epsilon \rho t o ́ \delta o v ~ \pi \rho \omega ́ \tau \omega \nu \dot{\alpha} \rho \iota \theta \mu \hat{\omega \nu}$ $\mu o v a ̀ s$ калєía $\theta \omega$ тâs $\delta \epsilon v \tau \epsilon ́ \rho a s ~ \pi \epsilon \rho \iota o ́ \delta o v ~ \delta \epsilon v \tau \epsilon ́ \rho \omega \nu$

 $\mu v \rho \iota o \sigma \tau \hat{\omega} \nu \alpha \dot{\alpha} \rho \ell \mu \hat{\omega} \nu$ uvpías $\mu v \rho \iota \alpha ́ \delta a s$.
 $\pi \epsilon \rho ⿺ o ́ \delta o v ~ \mu o \nu a ̀ s ~ к а \lambda \epsilon i ́ \sigma \theta \omega ~ \tau \rho i ́ \tau \alpha s ~ \pi \epsilon \rho \iota o ́ \delta o v ~ \pi \rho \omega ́ \tau \omega \nu ~$
 $\kappa \iota \sigma \mu \nu \rho \iota \sigma \sigma \tau \hat{\alpha} s \pi \epsilon \rho \iota o ́ \delta o v \mu v \rho \iota \alpha \kappa \iota \sigma \mu v \rho \iota \sigma \tau \tau \hat{\omega} \nu \dot{\alpha} \rho \iota \theta \mu \hat{\omega} \nu$ $\mu v \rho i a s ~ \mu v p ı a ́ \delta a s$.

[^46]
ARCHIMEDES

called a unit of numbers of the fourth order [numbers from 10^{24} to 10^{32}], and let a myriad myriads of numbers of the fourth order be called a unit of numbers of the fifth order [numbers from 10^{32} to 10^{40}], and let the process continue in this way until the designations reach a myriad myriads taken a myriad myriad times $\left[10^{8} \cdot 10^{8}\right]$.

It is sufficient to know the numbers up to this point, but we may go beyond it. For let the numbers now mentioned be called numbers of the first period [1 to $\left.10^{8} \cdot 10^{8}\right]$, and let the last number of the first period be called a unit of numbers of the first order of the second period $\left[10^{8} \cdot 10^{8}\right.$ to $\left.10^{8} \cdot 10^{8} \cdot 10^{8}\right]$. And again, let a myriad myriads of numbers of the first order of the second period be called a unit of numbers of the second order of the second period $\left[10^{8} \cdot 10^{8} .10^{8}\right.$ to $\left.10^{8} \cdot 10^{8} \cdot 10^{16}\right]$. Similarly let the last of these numbers be called a unit of numbers of the third order of the second period [$10^{8} \cdot 10^{8} \cdot 10^{16}$ to $\left.10^{8} \cdot 10^{8} \cdot 10^{24}\right]$, and let the process continue in this way until the designations of numbers in the second period reach a myriad myriads taken a myriad myriad times $\left[10^{8} \cdot 10^{8} \cdot 10^{8} \cdot 10^{8}\right.$, or $\left.\left(10^{8} \cdot 10^{8}\right)^{2}\right]$.

Again, let the last number of the second period be called a unit of numbers of the first order of the third period $\left[\left(10^{8} \cdot 10^{8}\right)^{2}\right.$ to $\left.\left(10^{8} \cdot 10^{8}\right)^{2} \cdot 10^{8}\right]$, and let the process continue in this way up to a myriad myriad units of numbers of the myriad myriadth order of the myriad myriadth period $\left[\left(10^{8} \cdot 10^{8}\right)^{10^{8}}\right.$ or $\left.10^{8} \cdot 10^{16}\right] . a^{a}$
sphere of the fixed stars is less than 10^{7} times the sphere in which the sun's orbit is a great circle, Archimedes shows that the number of graius of sand which would fill the universe is less than " $10,000,000$ units of the eighth order of numbers," or 10^{63}. The work contains several references important for the history of astronomy.

GREEK MATHEMATICS

(h) Indeterminate Analysis: The Cattle

Problem

Archim. (?) Prob. Bov., Archim. ed. Heiberg ii. 528. $1-532.9$

$\Pi \rho о ́ \beta \lambda \eta \mu a$

 'А $\lambda \epsilon \xi \alpha \nu \delta \rho \epsilon i ́ a ~ \pi \epsilon \rho i ̀ ~ \tau a v ̂ \tau a ~ \pi \rho a \gamma \mu a \tau \epsilon v o \mu \epsilon ́ v o ı s ~ \zeta \eta \tau \epsilon i ̂ \nu$
 vaîov ढ̇াıбто $\hat{\eta}$.

 $\kappa v a \nu \epsilon ́ \omega \delta^{\prime}$ є'тєроv $\chi \rho \omega \dot{\mu} \mu \alpha \tau \iota ~ \lambda а \mu \pi о ́ \mu \epsilon \nu о \nu$,

 $\kappa v a \nu \epsilon ́ \omega \nu \quad \tau \alpha v \not \rho \omega \nu \quad \dot{\eta} \mu i ́ \sigma \epsilon \iota \grave{\eta} \delta \dot{\epsilon} \tau \rho i \not \tau \omega$
 aủ $\frac{1}{\rho} \rho$ кvavє́ovs $\tau \hat{\varphi}$ тє $\tau \rho a ́ \tau \varphi ~ \tau \epsilon \mu \epsilon ́ \rho \in \iota$

 aù $\dot{\alpha} \rho$ кvávєal $\tau \hat{\varphi} \tau \epsilon \tau \rho \alpha ́ \tau \omega ~ \tau \epsilon \pi \alpha ́ \lambda \iota \nu$ $\mu \iota к т о \chi \rho о ́ \omega \nu$ каi $\pi \epsilon ́ \mu \pi \tau \varphi$ о́ $\mu о \hat{v} \mu \epsilon ́ \rho \in \iota ~ i \sigma \alpha ́ \zeta о \nu \tau о$
 202

ARCHIMEDES

(h) Indeterminate Analysis: The Cattle Problem

Archimedes (?), Cattle Problem, ${ }^{\text {a }}$ Archim. ed. Heiberg ii. 528. 1-532. 9

A Problem

which Archimedes solved in epigrams, and which he communicated to students of such matters at Alexandria in a letter to Eratosthenes of Cyrene.

If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of different colours, one milk white, another a glossy black, the third yellow and the last dappled. In each herd were bulls, mighty in number according to these proportions: Understand, stranger, that the white bulls were equal to a half and a third of the black together with the whole of the yellow, while the black were equal to the fourth part of the dappled and a fifth, together with, once more, the whole of the yellow. Observe further that the remaining bulls, the dappled, were equal to a sixth part of the white and a seventh, together with all the yellow. These were the proportions of the cows: The white were precisely equal to the third part and a fourth of the whole herd of the black; while the black were equal to the fourth part once more of the dappled and with it a fifth part, when all, including the bulls, went to pasture together. Now
${ }^{a}$ It is unlikely that the epigram itself, first edited by G. E. Lessing in 1773, is the work of Archimedes, but there is ample evidence from antiquity that he studied the actual problem. The most important papers bearing on the subject have already been mentioned (vol. i. p. $16 \mathrm{n} . c$), and further references to the literature are given by Heiberg ad loc.

GREEK MATHEMATICS

 кєкрциє́vos таúтŋ γ^{\prime} on $\mu \pi \nu \iota o s$ ėv бoфín.

$$
{ }^{1} \pi \lambda \lambda^{\prime} \text { ores Krumbiegel, } \pi \lambda i v \theta o v \text { cod. }
$$

[^47]
ARCHIMEDES

the dappled in four parts ${ }^{a}$ were equal in number to a fifth part and a sixth of the yellow herd. Finally the yellow were in number equal to a sixth part and a seventh of the white herd. If thou canst accurately tell, O stranger, the number of cattle of the Sun, giving separately the number of well-fed bulls and again the number of females according to each colour, thou wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou be numbered among the wise. But come, understand also all these conditions regarding the cows of the Sun. When the white bulls mingled their number with the black, they stood firm, equal in depth and breadth, ${ }^{b}$ and the plains of Thrinacia, stretching far in all ways, were filled with their multitude. Again, when the yellow and the dappled bulls were gathered into one herd they stood in such a manner that their number, beginning from one, grew slowly greater till it completed a triangular figure, there being no bulls of other colours in their midst nor none of them lacking. If thou art able, O stranger, to find out all these things and gather them together in your mind, giving all the relations, thou shalt depart crowned with glory and knowing that thou hast been adjudged perfect in this species of wisdom. ${ }^{c}$
© If
X, x are the numbers of white bulls and cows respectively,

Y, y	$"$	$"$	$"$	black	$"$	$"$
Z, z	$"$	$"$	$"$	yellow	$"$	$"$
W, w	$"$	$"$	$"$	dappled	$"$,	$"$

the first part of the epigram states that
(a)

$$
\begin{array}{lllll}
X=\left(\frac{1}{2}+\frac{1}{3}\right) Y+Z & \cdot & \cdot & \cdot & (1) \\
Y=\left(\frac{1}{4}+\frac{1}{8}\right) W+Z & \cdot & \cdot & \cdot & (2) \\
W=\left(\frac{1}{6}+\frac{1}{7}\right) X+Z & \cdot & \cdot & \cdot & (3) \\
& & & & 205
\end{array}
$$

GREEK MATHEMATICS

(i) Mechanics: Centres of Gravity

(i.) Postulates

Archim. De Plan. Aequil., Deff., Archim. ed. Heiberg ii. 124. 3-126. 3

(b)

$$
\begin{aligned}
& x=\left(\frac{1}{3}+\frac{1}{4}\right)(Y+y) \\
& y=\left(\frac{1}{4}+1\right)(W+w) \\
& w=\left(\frac{1}{1}+\frac{1}{6}\right)(Z+z) \\
& z=\left(\frac{1}{6}+\frac{1}{6}\right)(X+x)
\end{aligned} \quad \bullet \quad: \quad: \quad: \quad(4)
$$

The second part of the epigram states that

$$
\begin{aligned}
& X+Y=\text { a rectangular number } \\
& Z+W=\text { a triangular number } .
\end{aligned} \quad . \quad(8)
$$

This was solved by J. F. Wurm, and the solution is given by A. Amthor, Zeitschrift für Math. u. Physik. (llist.-litt. Abtheilung), xxv. (1880), pp. 153-171, and by Heath, The Works of Archimedes, pp. 319-326. For reasons of space, only the results can be noted here.

Equations (1) to (7) give the following as the values of the unknowns in terms of an unknown integer n :

$$
\begin{array}{rlrl}
X & =10366482 n & x & =7206360 n \\
Y & =7460514 n & y & =4893246 n \\
Z & =4149387 n & z & =5439213 n \\
W & =7358060 n & w & =3515820 n .
\end{array}
$$

We have now to find a value of n such that equation (9) is also satisfied-equation (8) will then be simultaneously satisfied. Equation (9) means that

$$
Z+W=\frac{p(p+1)}{2}
$$

where p is some positive integer, or

$$
(4149387+7358060) n=\frac{p(p+1)}{2}
$$

ARCHIMEDES

(i) Mechanics: Centres of Gravity

(i.) Postulates

Archimedes, On Plane Equilibriums, ${ }^{a}$ Definitions, Archim. ed. Heiberg ii. 124. 3-126. 3

1. I postulate that equal weights at equal distances balance, and equal weights at unequal distances do not balance, but incline towards the weight which is at the greater distance.
i.e.

$$
2471.4657 n=\frac{p(p+1)}{2} .
$$

This is found to be satisfied by

$$
n=3^{3} .4349
$$

and the final solution is

$$
\begin{array}{rlr}
X & =1217263415886 & x=846192410280 \\
Y & =876035935422 & y=574579625058 \\
Z & =487233469701 & z=638688708099 \\
W=864005479380 & w=412838131860
\end{array}
$$

and the total is 5916837175686 .
If equation (8) is taken to be that $X+Y=$ a square number, the solution is much more arduous; Amthor found that in this case,

$$
W=1598\langle 206541\rangle
$$

where $\langle\overline{206541}\rangle$ means that there are 206541 more digits to follow, and the whole number of cattle $=7766$ (206541 . Merely to write out the eight numbers, Amthor calculates, would require a volume of 660 pages, so we may reasonably doubt whether the problem was really framed in this more difficult form, or, if it were, whether Archimedes solved it.
${ }^{a}$ This is the earliest surviving treatise on mechanics; it presumably had predecessors, but we may doubt whether mechanics had previously been developed by rigorous geometrical principles from a small number of assumptions. References to the principle of the lever and the parallelogram of velocities in the Aristotelian Mechanics have already been given (vol. i. pp. 430-433).

GREEK MATHEMATICS

 $\pi о \tau \epsilon \tau \epsilon \in \theta$.

 є่ πi т̀̀ $\beta a ́ \rho o s, ~ a ̀ \phi ’ ~ o \hat{v}$ оủ火 aं $\phi \eta \rho \epsilon ́ \theta \eta$.

 $\lambda \epsilon ́ \gamma о \mu \epsilon S ~ \sigma \alpha \mu \epsilon i ̂ \alpha ~ к \epsilon ́ \epsilon \sigma \theta a \iota ~ \pi о \tau i ~ \tau \dot{\alpha}$ ó $\mu о i ̂ \alpha ~ \sigma \chi \eta \prime \mu a \tau \alpha$,
 тоьє́оить $\gamma \omega v i ́ a s ~ i ̈ \sigma a s ~ \pi о \tau i ̀ ~ \tau a ̀ s ~ o ́ \mu о \lambda o ́ \gamma о v s ~ \pi \lambda є v \rho a ́ s . ~$

 iбо $\rho \rho о \pi \eta \quad \sigma \in \iota$.
ζ^{\prime}. Пavтòs $\sigma \chi \eta^{\prime} \mu a \tau о s$, o \hat{v} ка à $\pi \epsilon \rho i \mu \epsilon \tau \rho о s$ є̇ πi
 $\delta \in \hat{\imath} \tau o \hat{v} \sigma \chi \eta$ ŋ́ $\mu a \tau o s$.

(ii.) Principle of the Lever

Ibid., Props. 6 et 7, Archim. ed. Heiberg ii. 132. 13-138. 8

5^{\prime}

 $\beta \alpha ́ \rho \in \sigma \iota \nu$.

 208

ARCHIMEDES

2. If weights at certain distances balance, and something is added to one of the weights, they will not remain in equilibrium, but will incline towards that weight to which the addition was made.
3. Similarly, if anything be taken away from one of the weights, they will not remain in equilibrium, but will incline towards the weight from which nothing was subtracted.
4. When equal and similar plane figures are applied one to the other, their centres of gravity also coincide.
5. In unequal but similar figures, the centres of gravity will be similarly situated. By points similarly situated in relation to similar figures, I mean points such that, if straight lines be drawn from them to the equal angles, they make equal angles with the corresponding sides.
6. If magnitudes at certain distances balance, magnitudes equal to them will also balance at the same distances.
7. In any figure whose perimeter is concave in the same direction, the centre of gravity must be within the figure.

(ii.) Principle of the Lever

> Ibid., Props. 6 and 7, Archim. ed. Heiberg ii. $132.13-138.8$

Prop. 6

Commensurable magnitudes balance at distances reciprocally proportional to their weights.

Let A, B be commensurable magnitudes with centres [of gravity] A, B, and let $\mathrm{E} \Delta$ be any distance, and let
$A: B=\Delta \Gamma: \Gamma E ;$

GREEK MATHEMATICS

 то̀ Γ.

$$
\stackrel{N}{N}
$$

 $\Lambda \mathrm{H}$ тоті HK - $\delta \iota \pi \lambda \alpha \sigma i ́ a ~ \gamma \mathrm{à} \mathrm{\rho} \rho$ є́катє́ $\rho \alpha$ є́ккаєє́ $\rho a s$

 210

ARCHIMEDES

it is required to prove that the centre of gravity of the magnitude composed of both A, B is Γ.

Since

$$
A: B=\Delta \Gamma: \Gamma E
$$

and A is commensurate with B, thercfore $\Gamma \Delta$ is commensurate with $\Gamma \mathrm{E}$, that is, a straight line with a straight line [Eucl. x. 11] ; so that ЕГ, $\Gamma \Delta$ have a common measure. Let it be N, and let $\Delta H, \Delta K$ be each equal to $\mathrm{E} \Gamma$, and let $\mathrm{E} \Lambda$ be equal to $\Delta \Gamma$. Then since $\Delta \mathrm{H}=\Gamma \mathrm{E}$, it follows that $\Delta \Gamma=\mathrm{EH}$; so that $\Lambda \mathrm{EE}=\mathrm{H}$. Therefore $\Lambda \mathrm{H}=2 \Delta \Gamma$ and $\mathrm{HK}=2 \Gamma \mathrm{E}$; so that N measures both $\Lambda \mathrm{H}$ and HK , since it measures their halves [Eucl. x. 12]. And since

$$
A: B=\Delta \Gamma: \Gamma E,
$$

while

$$
\Delta \Gamma: \Gamma E=\Lambda H: H K-
$$

for each is double of the other-
therefore
$A: B=\Lambda H: H K$.
Now let Z be the same part of A as N is of ΛH;

GREEK MATHEMATICS

 $\tau \hat{a} \mathrm{HE}$.

 212

ARCHIMEDES

then

$$
\Lambda \mathrm{H}: \mathrm{N}=\mathrm{A}: \mathrm{Z}
$$

And
$\mathrm{KH}: \Lambda \mathrm{H}=\mathrm{B}: \mathrm{A}$;
[Eucl. v., Def. 5
therefore, ex aequo,
$\mathrm{KH}: \mathrm{N}=\mathrm{B}: \mathrm{Z} ; \quad$ [Eucl. v. 22
therefore Z is the same part of B as N is of KH. Now A was proved to be a multiple of Z; therefore Z is a common measure of A, B. Therefore, if ΛH is divided into segments equal to N and A into segments equal to Z, the segments in ΛH equal in magnitude to N will be equal in number to the segments of A equal to Z. It follows that, if there be placed on each of the segments in $\Lambda \mathrm{H}$ a magnitude equal to Z, having its centre of gravity at the middle of the segment, the sum of the magnitudes will be equal to A, and the centre of gravity of the figure compounded of them all will be E; for they are even in number, and the numbers on either side of E will be equal because $\Lambda \mathrm{E}=\mathrm{HE}$. [Prop. 5, coroll. 2.]

Similarly it may be proved that, if a magnitude equal to Z be placed on each of the segments [equal to N] in KH, having its centre of gravity at the middle of the segment, the sum of the magnitudes will be equal to B, and the centre of gravity of the figure compounded of them all will be Δ [Prop. 5, coroll. 2]. Therefore A may be regarded as placed at E, and B at Δ. But they will be a set of magnitudes lying on a straight line, equal one to another, with their centres of gravity at equal intervals, and even in number ; it is therefore clear that the centre of gravity of the magnitude compounded of them all is the point of bisection of the line containing the centres [of gravity] of the middle magnitudes [from Prop. 5, coroll. 2].
${ }^{2}$ бv $\boldsymbol{\sigma} \kappa \in i \mu \epsilon \nu a$ om. Heiberg.

GREEK MATHEMATICS

ζ^{\prime}

 $\tau \omega_{s} \tau \grave{\nu} \nu$ av̇тòv $\lambda o ́ \gamma o \nu$ Є́ $\chi o ́ \nu \tau \omega \nu$ тoîs $\mu \epsilon \gamma \epsilon \in \theta \epsilon \sigma \iota \nu$.

 то仑̂ β ápєós є̀aтı тò E ．

 íoор $о \pi \epsilon \hat{\imath v, ~ \check{\omega} \sigma \tau \epsilon[\tau \grave{o}]^{2}}$ 入о七тòv тò A $\sigma u ́ \mu \mu \epsilon \tau \rho о \nu$ 214

ARCHIMEDES

And since $\Lambda \mathrm{E}=\Gamma \Delta$ and $\mathrm{E} \Gamma=\Delta \mathrm{K}$, therefore $\Lambda \Gamma=\Gamma \mathrm{K}$; so that the centre of gravity of the magnitude compounded of them all is the point Γ. Therefore if A is placed at E and B at Δ, they will balance about Γ.

Prop. 7

And now, if the magnitudes be incommensurable, they will likewise balance at distances reciprocally proportional to the magnitudes.

Let $(A+B), \Gamma$ be incommensurable magnitudes, ${ }^{a}$ and let $\triangle E, E Z$ be distances, and let

$$
(\mathrm{A}+\mathrm{B}): \Gamma=\mathrm{E} \Delta: \mathrm{EZ} ;
$$

I say that the centre of gravity of the magnitude composed of both $(A+B), \Gamma$ is E.

For if $(A+B)$ placed at Z do not balance Γ placed at Δ, either $(A+B)$ is too much greater than Γ to balance or less. Let it [first] be too much greater, and let there be subtracted from ($\mathrm{A}+\mathrm{B}$) a magnitude less than the excess by which ($A+B$) is too much greater than Γ to balance, so that the remainder A is
${ }^{a}$ As becomes clear later in the proof, the first magnitude is regarded as made up of two parts-A, which is commensurate with Γ and B, which is not commensurate ; if ($\mathrm{A}+\mathrm{B}$) is too big for equilibrium with Γ, then B is so chosen that, when it is taken away, the remainder A is still too big for equilibrium with Γ. Similarly if $(A+B)$ is too small for equilibrium.

GREEK MATHEMATICS

 à $\pi o ̀ ~ \tau \hat{\omega} \nu \Delta \mathrm{E}, \mathrm{EZ} \mu a \kappa \epsilon ́ \omega \nu, \tau \epsilon \theta \epsilon ́ v \tau o s ~ \tau o \hat{v} \mu \epsilon ̀ v \mathrm{~A}$

(iii.) Centre of Gravity of a Parallelogram

Ibid., Props. 9 et 10, Archim. ed. Heiberg ii. 140. 16-144. 4

$$
\theta^{\prime}
$$

 доүра́ $\mu \mu о v \pi \lambda є v \rho \hat{\nu}$.

 то仑̂ $\mathrm{AB} \mathrm{\Gamma} \mathrm{\Delta} \mathrm{\pi а} \mathrm{\rho а} \mathrm{\lambda} \mathrm{\lambda} \mathrm{\eta} \mathrm{\lambda о} \mathrm{\gamma} \mathrm{\rho á} \mathrm{\mu} \mathrm{\mu оv} \mathrm{\tau ò} \mathrm{к} \mathrm{\epsilon ́v} \mathrm{\tau} \mathrm{\rho о} \mathrm{\nu} \mathrm{\tau о} \mathrm{\hat{v}}$

 $\pi \alpha \rho \dot{\alpha} \tau \grave{\alpha} \nu \mathrm{AB}$ à $\Theta \mathrm{I} . \tau \hat{\alpha} s[\delta \dot{\epsilon}]^{1} \delta \grave{\eta} \mathrm{~EB} \delta \iota \chi o \tau о \mu о v-$ $\mu \epsilon ́ v a s ~ \alpha i ́ \epsilon i ̀ ~ \epsilon ' \sigma \sigma \epsilon i ̂ \tau \alpha i ́ ~ \pi о к а ~ a ̀ ~ к а \tau \alpha \lambda \epsilon \iota \pi о \mu \epsilon ́ v a ~ \epsilon ́ \lambda \alpha ́ \sigma \sigma \omega \nu ~$
${ }^{1}$ § $\mathrm{\epsilon}$ om. Heiberg.

[^48]
ARCHIMEDES

commensurate with Γ. Then, since A, Γ are commensurable magnitudes, and

$$
\mathrm{A}: \Gamma<\Delta \mathrm{E}: \mathrm{EZ}
$$

A, Γ will not balance at the distances $\triangle E, E Z, A$ being placed at Z and Γ at Δ. By the same reasoning, they will not do so if Γ is greater than the magnitude necessary to balance $(A+B) \cdot{ }^{a}$

(iii.) Centre of Gravity of a Parallelogram ${ }^{\text {b }}$

Ibid., Props. 9 and 10, Archim. ed. Heiberg
ii. 140. 16-144. 4

$$
\text { Prop. } 9
$$

The centre of gravity of any parallelogram is on the straight line joining the points of bisection of opposite sides of the parallelogram.

Let $А В Г \Delta$ be a parallelogram, and let $E Z$ be the straight line joining the mid-points of $\mathrm{AB}, \mathrm{\Gamma} \Delta$; then I say that the centre of gravity of the parallelogram ABI Δ will be on EZ.

For if it be not, let it, if possible, be θ, and let θ I be drawn parallel to AB. Now if EB be bisected, and the half be bisected, and so on continually, there will be left some line less than $\mathrm{I} \theta$; [let EK be less than tion necessary to produce equilibrium, so that Z remains depressed. Therefore $(\mathrm{A}+\mathrm{B})$ is not greater than the magnitude necessary to produce equilibrium ; in the same way it can be proved not to be less; therefore it is equal.

- The centres of gravity of a triangle and a trapezium are also found by Archimedes in the first book; the second book is wholly devoted to finding the centres of gravity of a parabolic segment and of a portion of it cut off by a parallel to the base.

GREEK MATHEMATICS

$\tau \hat{s} \mathrm{I} \Theta \cdot \kappa \alpha i \delta_{\imath \eta \rho \eta}^{\eta} \sigma \theta \omega$ є́катє́pa $\tau \hat{\alpha} \nu \mathrm{AE}, \mathrm{EB}$ єis

$\sigma \alpha \mu \epsilon i \omega \nu \stackrel{\alpha}{ }{ }^{\prime} \theta \omega \sigma \alpha \nu \pi \alpha \rho \alpha ̀ \tau \grave{\alpha} \nu \mathrm{EZ} \cdot \delta \iota \alpha \iota \rho \epsilon \theta \dot{\eta} \sigma \epsilon \tau \alpha \iota \quad \delta \grave{\eta}$

 $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \alpha$ ї $\sigma \alpha$ $\tau \hat{\varphi} \mathrm{KZ}$, ${ }^{\prime} \rho \tau \iota \alpha$ $\tau \hat{\varphi} \pi \lambda \eta_{\eta} \theta \in \iota$,

 $\delta \epsilon ́ \cdot \tau o ̀ ~ \gamma \grave{\alpha} \rho \Theta$ éктós $\dot{\epsilon} \sigma \tau \iota \tau \hat{\omega} \nu \mu \epsilon ́ \sigma \omega \nu \quad \pi \alpha \rho \alpha \lambda \lambda \eta \lambda \lambda o-$

 रра́ $\mu \mu$ оу.

 $\pi i \pi \tau 0 \nu \tau \iota$.
218

ARCHIMEDES

IO,] and let each of AE, EB be divided into parts equal to EK, and from the points of division let straight lines be drawn parallel to $E Z$; then the whole parallelogram will be divided into parallelograms equal and similar to KZ. Therefore, if these parallelograms equal and similar to KZ be applied to each other, their centres of gravity will also coincide [Post. 4]. Thus there will be a set of magnitudes, being parallelograms equal to KZ, which are even in number and whose centres of gravity lie on a straight line, and the middle magnitudes will be equal, and the magnitudes on either side of the middle magnitudes will also be equal, and the straight lines between their centres [of gravity] will be equal ; therefore the centre of gravity of the magnitude compounded of them all will be on the straight line joining the centres of gravity of the middle areas [Prop. 5, coroll. 2]. But it is not ; for θ lies without the middle parallelograms. It is therefore manifest that the centre of gravity of the parallelogram $A B \Gamma \Delta$ will be on the straight line EZ.

$$
\text { Prop. } 10
$$

The centre of gravity of any parallelogram is the point in which the diagonals meet.

GREEK MATHEMATICS

 $\sigma v \mu \pi i \pi \tau \sigma \nu \tau \iota \cdot \stackrel{\ddot{\omega} \sigma \tau \epsilon}{ } \delta_{\epsilon ́ \delta \epsilon} \epsilon \iota \tau \alpha \iota$ тò $\pi \rho о \tau \epsilon \theta \epsilon \in \nu$.
(j) Mechanical Method in Geometry

Archim. Meth., Praef., Archim. ed. Heiberg
ii. 426. 3-430. 22

- According to Heath (H.G.M. ii. 21), Wallis has observed that Archimedes might seem, " as it were of set purpose to have covered up the traces of his investigation, as if he had grudged posterity the secret of his method of inquiry, while he wished to extort from them assent to his results." A comparison of the Method with other treatises now reveals to us how Archimedes found the areas and volumes of certain figures. His method was to balance elements of the figure against elements of another figure whose mensuration was 220

ARCHIMEDES

For let $\mathrm{AB} \mathrm{\Gamma} \Delta$ be a parallelogram, and in it let EZ bisect $\mathrm{AB}, \mathrm{\Gamma} \Delta$ and let $\mathrm{K} \Lambda$ bisect $\mathrm{A} \Gamma, \mathrm{B} \Delta$; now the centre of gravity of the parallelogram $A B \Gamma \Delta$ is on EZ-for this has been proved. By the same reasoning it lies on $K \Lambda$; therefore the point θ is the centre of gravity. And the diagonals of the parallelogram meet at Θ; so that the proposition has been proved.

(j) Mechanical Method in Geometry ${ }^{a}$

> Archimedes, The Method, ${ }^{\text {b }}$ Preface, Archim. ed. Heiberg ii. 426. 3-430. 22

Archimedes to Eratosthenes ${ }^{c}$ greeting . . .
Moreover, seeing in you, as I say, a zealous student and a man of considerable eminence in philosophy,
known. This gave him the result, and then he proved it by rigorous geometrical methods based on the principle of reductio ad absurdum.

The case of the parabola is particularly instructive. In the Method, Prop. 1, Archimedes conceives a segment of a parabola as made up of straight lines, and by his mechanical method he proves that the segment is four-thirds of the triangle having the same base and equal height. In his Quadrature of a Parabola, Prop. 14, he conceives the parabola as made up of a large number of trapezia, and by mechanical methods again reaches the same result. This is more satisfactory, but still not completely rigorous, so in Prop. 24 he proves the theorem without any help from mechanics by reductio ad absurdum.
${ }^{b}$ The Method had to be classed among the lost works of Archimedes until 1906, when it was discovered at Constantinople by Heiberg in the ms. which he has termed C. Unfortunately the ms. is often difficult to decipher, and students of the text should consult Heiberg's edition. Moreover, the diagrams have to be supplied as they are undecipherable in the ms.

- For Eratosthenes, v. infra, pp. 260-273 and vol. i. pp. 100-103, 256-261, and 290-299.

GREEK MATHEMATICS

 $\theta \epsilon \omega \rho \eta \mu \alpha ́ \tau \omega \nu$. каi γ á $\rho \tau \nu \alpha$ т $\omega \bar{\nu} \pi \rho o ́ \tau \epsilon \rho о \nu ~ \mu о \iota$

 $\zeta \eta \tau \eta \mu \alpha ́ \tau \omega \nu \pi о \rho i ́ \sigma \alpha \sigma \theta \alpha \iota ~ \tau \grave{\eta} \nu \quad \dot{\alpha} \pi o ́ \delta \epsilon \iota \xi \iota \nu \quad \mu \hat{\alpha} \lambda \lambda_{o \nu} \dot{\eta}$ $\mu \eta \delta \in \nu o ̀ s ~ \epsilon ́ \gamma \nu \omega \sigma \mu \epsilon ́ v o v ~ \zeta \eta \tau \epsilon i ̂ \nu . ~ . ~ . ~ \gamma \rho a ́ \phi o \mu \epsilon \nu ~ o v ̃ \nu ~$

1bid., Prop. 1, Archim. ed. Heiberg ii. 434. 14-438. 21

"Е $\sigma \tau \omega \tau \mu \hat{\eta} \mu a$ тò $\mathrm{AB} \Gamma \pi \epsilon р \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu$ viтò $\epsilon \dot{v} \theta \epsilon i ́ a s$

 $\delta \iota \alpha ́ \mu \epsilon \tau \rho \circ \nu \quad \eta ้ \chi \theta \omega \quad \dot{\eta} \quad \triangle \mathrm{BE}$, каi $\epsilon^{\prime} \pi \epsilon \zeta \epsilon \gamma^{\chi} \chi \theta \omega \sigma \alpha \nu$ ai $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$.
 АВГ т $\rho \iota \gamma \omega ́ \nu о v$.
" $\mathrm{H} \chi \theta \omega \sigma \alpha \nu \dot{\alpha} \pi \grave{o}$ $\tau \hat{\omega} \nu \mathrm{A}, \Gamma \sigma \eta \mu \epsilon i \omega \nu \quad \dot{\eta} \mu \epsilon ̀ \nu \mathrm{AZ}$

 222

ARCHIMEDES

who gives due honour to mathematical inquiries when they arise, I have thought fit to write out for you and explain in detail in the same book the peculiarity of a certain method, with which furnished you will be able to make a beginning in the investigation by mechanics of some of the problems in mathematics. I am persuaded that this method is no less useful even for the proof of the theorems themselves. For some things first became clear to me by mechanics, though they had later to be proved geometrically owing to the fact that investigation by this method does not amount to actual proof ; but it is, of course, easier to provide the proof when some knowledge of the things sought has been acquired by this method rather than to seek it with no prior knowledge. . . . At the outset therefore I will write out the very first theorem that became clear to me through mechanics, that any segment of a section of a right-angled cone is four-thirds of the triangle having the same base and equal height.

Ibid., Prop. 1, Archim. ed. Heiberg ii. 434. 14-438. 21

Let $A B \Gamma$ be a segment bounded by the straight line $A \Gamma$ and the section $A B \Gamma$ of a right-angled cone, and let $A \Gamma$ be bisceted at Δ, and let $\triangle B E$ be drawn parallel to the axis, and let $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ be joined.

I say that the segment ABP is four-thirds of the triangle $A B \Gamma$.

From the points A, Γ let $A Z$ be drawn parallel to $\triangle B E$, and let ΓZ be drawn to touch the section, and let ΓB be produced to K, and let $K \theta$ be placed equal to ΓK. Let $\Gamma \Theta$ be imagined to be a balance

GREEK MATHEMATICS

 ME.

 тov̂тo, кai ठóóт $\pi a \rho a ́ \lambda \lambda \eta \lambda o i ́ ~ \epsilon i \sigma v \nu$ ai $\mathrm{ZA}, \mathrm{ME} \tau \hat{\eta}$

 aùrô̂ $\mu \epsilon v o v ́ \sigma \eta ~ \delta i a ̀ ~ \tau o ̀ ~ a ̀ ~ a ̀ \tau \iota \pi \epsilon \pi o v \theta o ́ \tau \omega s ~ \tau \epsilon \tau \mu \hat{\eta} \sigma \theta a \iota$ 224

ARCHIMEDES

with mid-point K, and let $\mathrm{M} \exists$ be drawn parallel to $\mathrm{E} \Delta$.

Then since $\Gamma B A$ is a parabola, ${ }^{a}$ and ΓZ touches it, and $\Gamma \Delta$ is a semi-ordinate, $\mathrm{EB}=\mathrm{B} \Delta$-for this is proved in the elements ${ }^{b}$; for this reason, and because ZA, $\mathrm{M} \exists$ are parallel to $\mathrm{E} \Delta, \mathrm{MN}=\mathrm{N}$ 妇 and $Z \mathrm{~K}=\mathrm{KA}$ [Eucl. vi. 4, v. 9]. And since

$$
\begin{array}{r}
\Gamma A: A \Xi=M \Xi: \Xi O, \quad[\text { Quad. parab. } 5, \\
\text { Eucl. v. } 18
\end{array}
$$

and $\quad \Gamma A: A \Xi=\Gamma K: K N, \quad[$ Eucl. vi. 2, v. 18
while

$$
\Gamma K=K \Theta
$$

therefore ӨK : KN=ME: EO.

And since the point N is the centre of gravity of the straight line $\mathrm{M} \exists$, inasmuch as $\mathrm{MN}=\mathrm{N} \exists$ [Lemma 4], if we place $\mathrm{TH}=\boldsymbol{\exists} \mathrm{O}$, with θ for its centre of gravity, so that $\mathrm{T} \theta=\theta \mathrm{H}$ [Lemma 4], then $\mathrm{T} \theta \mathrm{H}$ will balance $M \Xi$ in its present position, because $\theta \mathrm{N}$ is cut
a Archimedes would have said " section of a right-angled

- The reference will be to the Elements of Conics by Euclid and Aristaeus for which v. vol. i. pp. 486-491 and infra, p. 280 n. a; cf. similar expressions in On Conoids and Spheroids, Prop. 3 and Quadrature of a Parabola, Prop. 3; the theorem is Quadrature of a Parabola, Prop. 2.

[^49]
GREEK MATHEMATICS

 $\pi \rho o ̀ s \mathrm{KN}$, oṽ $\tau \omega \mathrm{s} \tau \grave{\eta} \nu \mathrm{M} \Xi \pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{HT} \cdot \tilde{\omega} \sigma \tau \epsilon \tau 0 \hat{v}$

 $\tau \hat{\eta}$ ЕО $\lambda \alpha \mu \beta \alpha \nu о \mu \epsilon ́ v \omega \nu \sigma v \nu \epsilon ́ \sigma \tau \eta \kappa \epsilon \tau o ̀ \mathrm{AB} \mathrm{\Gamma} \tau \mu \hat{\eta} \mu \alpha$,

 ả $\mu \phi о \tau \epsilon ́ \rho \omega \nu$ кє́vт $\rho o \nu$ єival тov̂ ßápovs тò K . тє-

 $\tau \epsilon \theta \epsilon ́ v \tau \iota \pi \epsilon \rho i$ тò Θ кє́́vт $\frac{1}{}$

 XK. $\tau \rho \iota \pi \lambda a \sigma i ́ a ~ \delta \epsilon ́ ~ \epsilon ่ \sigma \tau \iota \nu ~ \grave{\eta}$. @K $\tau \hat{\eta} s \mathrm{KX} \cdot \tau \rho \iota-$ $\pi \lambda \alpha ́ \sigma \iota o v$ á $\rho \alpha$ каi тò $\mathrm{AZ} \mathrm{\Gamma} \mathrm{т} \mathrm{\rho í} \mathrm{\gamma} \mathrm{\omega} \mathrm{\nu ov} \mathrm{\tau оv} \mathrm{АВГ}$

 ZK $\tau \hat{\eta} \mathrm{KA}, \tau \dot{\eta} \nu \delta \dot{\epsilon} \mathrm{A} \Delta \tau \hat{\eta} \Delta \Gamma \cdot \epsilon \pi i \tau \rho \iota \tau o \nu \alpha{ }^{\prime} \rho \alpha$ є́cтiv тò $\mathrm{AB} \mathrm{\Gamma} \tau \mu \hat{\eta} \mu \alpha$ тô̂ $\mathrm{AB} \Gamma \tau \rho \iota \gamma \omega ้ v o v . ~[\tau o \hat{\tau} \tau o ~ o v ̂ \nu$ фаvє $\left.\rho^{\prime} \nu \epsilon \in \sigma \tau \nu \nu\right] .{ }^{1}$
${ }^{1}$ тои̂тo . . . ่̇̇ฮтıv om. Heiberg.
226

ARCHIMEDES

in the inverse proportion of the weights TH，Mヨ，
and $\theta K: K N=M \Xi: H T ;$
therefore the centre of gravity of both［TH，Mヨ］ taken together is K ．In the same way，as often as parallels to $\mathrm{E} \Delta$ are drawn in the triangle ZAГ， these parallels，remaining in the same position， will balance the parts cut off from them by the section and transferred to θ ，so that the centre of gravity of both together is K ．And since the triangle ГZA is composed of the［straight lines drawn］in ГZA，and the segment $A B \Gamma$ is composed of the lines in the section formed in the same way as 录O，therefore the triangle ZAГ in its present position will be balanced about K by the segment of the section placed with θ for its centre of gravity， so that the centre of gravity of both combined is K ．Now let ΓK be cut at X so that $\Gamma K=3 K X$ ； then the point X will be the centre of gravity of the triangle AZए ；for this has been proved in the books On Equilibriums．${ }^{a}$ Then since the triangle ZAT in its present position is balanced about K by the segment BAГ placed so as to have θ for its centre of gravity， and since the centre of gravity of the triangle ZAT is X ，therefore the ratio of the triangle $A Z \Gamma$ to the segment $A B \Gamma$ placed about θ as its centre［of gravity］ is equal to $\theta \mathrm{K}$ ：XK．But $\theta \mathrm{K}=3 \mathrm{KX}$ ；therefore
triangle $A Z \Gamma=3$ ．segment $A B \Gamma$ ．
And
triangle $\mathrm{ZA} \Gamma=4$ ．triangle $\mathrm{AB} \mathrm{\Gamma}$ ，
because
therefore $Z K=K A$ and $A \Delta=\Delta \Gamma$ ；
segment $A B \Gamma=\frac{4}{8}$ triangle $A B \Gamma$ ．
－Cf．De Plan．Equil．i． 15.

GREEK MATHEMATICS

Archim. Quadr. Parab., Praef., Archim. ed. Heiberg ii. 262. 2-266. 4

'Акои́баs Kóvшva $\mu \epsilon ̇ \nu \quad \tau \epsilon \tau \epsilon \lambda \epsilon v \tau \eta \kappa$ ќval, ôs ग̄v
 $\gamma \nu \omega ́ \rho \iota \mu о \nu \quad \gamma \epsilon \gamma \epsilon \nu \hat{\eta} \sigma \theta a \iota$ каì $\gamma \epsilon \omega \mu \epsilon \tau \rho i a s$ оíкє̂̂ov $\epsilon i \mu \epsilon \nu$

 $\mu a ́ \tau \epsilon \sigma \sigma \iota \quad \theta a v \mu a \sigma \tau o \hat{v} \tau \iota \nu o s, \epsilon ่ \pi \rho \circ \chi \epsilon \iota \rho \iota \zeta \alpha ́ \mu \epsilon \theta a \quad \delta \grave{\epsilon}$ ảтобтєì入aí то८ र $\rho \alpha ́ \psi \alpha \nu \tau \epsilon s, ~ \dot{s}$ Kóv $\omega \nu \iota \gamma \rho a ́ \phi \epsilon \iota \nu$ є́ $\gamma \nu \omega \kappa o ́ \tau \epsilon S$ ท̉ $\mu \epsilon \varsigma, \gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \hat{\omega} \nu \quad \theta \epsilon \omega \rho \eta \mu \alpha \dot{\tau} \tau \omega \nu$, ô
 $\dot{\alpha} \mu \hat{\omega} \nu \quad \tau \epsilon \theta \epsilon \omega \dot{\omega} \eta \tau \alpha \iota, \pi \rho o ́ \tau \epsilon \rho о \nu \quad \mu \dot{\iota} \nu \delta \iota \dot{\alpha} \quad \mu \eta \chi \alpha \nu \iota \kappa \hat{\omega} \nu$
 $\delta \epsilon \iota \chi \theta \epsilon ́ \nu . \quad \tau \hat{\omega} \nu \mu \epsilon ̀ \nu$ ov̉ע $\pi \rho o ́ \tau \epsilon \rho \circ \nu \pi \epsilon \rho i \quad \gamma \epsilon \omega \mu \epsilon \tau \rho i ́ \alpha \nu$ $\pi \rho a \gamma \mu \alpha \tau \epsilon v \theta \epsilon ́ \nu \tau \omega \nu$ є่ $\pi \epsilon \chi \epsilon i ́ \rho \eta \sigma \alpha ́ \nu \quad \tau \iota \nu \epsilon S$ र $\rho \alpha \dot{\phi} \phi \epsilon \iota \nu \dot{\omega} s$

 $\mu \epsilon \tau \alpha ̀ ~ \tau \alpha \hat{v} \tau a$ тò $\pi \epsilon \rho \iota \chi \chi o ́ \mu \epsilon \nu o \nu ~ \chi \omega \rho i ́ o \nu ~ v i \pi o ́ ~ \tau \epsilon ~ \tau a ̂ S ~$

[^50]
ARCHIMEDES

This, indeed, has not been actually demonstrated by the arguments now used, but they have given some indication that the conclusion is true ; seeing, therefore, that the theorem is not demonstrated, but suspecting that the conclusion is true, we shall have recourse ${ }^{a}$ to the geometrical proof which I myself discovered and have already published. ${ }^{b}$

Archimedes, Quadrature of a Parabola, Preface, Archim. ed. Heiberg ii. 262. 2-266. 4
Archimedes to Dositheus greeting.
On hearing that Conon, who fulfilled in the highest degree the obligations of friendship, was dead, but that you were an acquaintance of Conon and also versed in geometry, while I grieved for the death of a friend and an excellent mathematician, I set myself the task of communicating to you, as I had determined to communicate to Conon, a certain geometrical theorem, which had not been investigated before, but has now been investigated by me, and which I first discovered by means of mechanics and later proved by means of geometry. Now some of those who in former times engaged in mathematics tried to find a rectilineal area equal to a given circle ${ }^{c}$ and to a given segment of a circle, and afterwards they tried to square the area bounded by the section
${ }^{\text {a }}$ I have followed Heath's rendering of $\tau \dot{\alpha} \xi \circ \mu \epsilon \nu$, which seems more probable than Heiberg's "suo loco proponemus," though it is a difficult meaning to extract from $\tau \dot{\xi} \xi^{\prime} \circ \mu \epsilon \nu$.
${ }^{6}$ Presumably Quadr. Parab. 24, the second of the proofs now to be given. The theorem has not been demonstrated, of course, because the triangle and the segment may not be supposed to be composed of straight lines.
${ }^{c}$ This seems to indicate that Archimedes had not at this time written his own book On the Measurement of a Circle. For attempts to square the circle, v. vol. i. pp. 303-347.

GREEK MATHEMATICS

 $\gamma \omega \nu i \zeta \epsilon \iota \nu \dot{\epsilon} \pi \iota \sigma \tau \alpha \dot{\mu} \mu \epsilon \theta \alpha$, ô $\delta \dot{\eta} \nu \hat{v} \nu \dot{v} \phi^{\prime} \dot{\alpha} \mu \hat{\omega} \nu \epsilon \cup ँ \rho \eta \tau \alpha \iota \cdot$

 $\gamma \epsilon \omega \mu \epsilon ́ \tau \rho a \iota \tau \hat{\omega} \delta \epsilon \tau \hat{\varphi} \lambda \eta \eta_{\mu \mu} \mu \tau \iota \cdot \tau 0$ ús $\tau \epsilon \gamma$ à ρ кúкגоvs

 $\lambda а \mu \beta a ́ \nu о \nu \tau \epsilon s$ є́ $\gamma \rho a \phi o \nu . \quad \sigma v \mu \beta a i v \epsilon \iota \delta \dot{\epsilon} \tau \hat{\omega} \nu \pi \rho о \epsilon \iota \rho \eta-$

 230

ARCHIMEDES

of the whole cone and a straight line, ${ }^{a}$ assuming lemmas far from obvious, so that it was recognized by most people that the problem had not been solved. But I do not know that any of my predecessors has attempted to square the area bounded by a straight line and a section of a right-angled cone, the solution of which problem I have now discovered ; for it is shown that any segment bounded by a straight line and a section of a right-angled cone is four-thirds of the triangle which has the same base and height equal to the segment, and for the proof this lemma is assumed: given [two] unequal areas, the excess by which the greater exceeds the less can, by being added to itself, be made to exceed any given finite area. Earlier geometers have also used this lemma: for, by using this same lemma, they proved that circles are to one another in the duplicate ratio of their diameters, and that spheres are to one another in the triplicate ratio of their diameters, and also that any pyramid is a third part of the prism having the same base as the pyramid and equal height ; and, further, by assuming a lemma similar to that aforesaid, they proved that any cone is a third part of the cylinder having the same base as the cone and equal height. ${ }^{b}$ In the event, each of the aforesaid theorems has been accepted, no less than those proved without this lemma; and it will satisfy me if the theorems now published by me obtain the same degree of acceptance. I have therefore written out the proofs, and now send them, first

[^51]
GREEK MATHEMATICS

Ilid., Prop. 14, Archim. ed. Heiberg ii. 284. 24-290. 17
${ }^{2} \mathrm{E} \tau \tau \omega \tau \mu \bar{a} \mu \alpha$ тò $\mathrm{B} \Theta \Gamma \pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu$ vimò $\epsilon \dot{v} \theta \epsilon$ 'ias

 $\kappa а \tau \alpha ̀ ~ \tau o ̀ ~ \Gamma \cdot ~ \epsilon ́ \sigma \sigma \epsilon i ̄ \tau a \iota ~ \delta \grave{\eta} ~ \tau o ̀ ~ B \Gamma \Delta ~ \tau \rho i ́ \gamma \omega v o \nu ~ o ́ \rho \theta o-~$

 232

ARCHIMEDES

as they were investigated by means of mechanics, and also as they may be proved by means of geometry. By way of preface are included the elements of conics which are needed in the demonstration. Farewell.

Ibid., Prop. 14, Archim. ed. Heiberg ii. 284. 24-290. 17
Let $B \ominus \Gamma$ be a segment bounded by a straight line and a section of a right-angled cone. First let $B \Gamma$ be at right angles to the axis, and from B let $B \Delta$ be drawn parallel to the axis, and from Γ let $\Gamma \Delta$ be drawn touching the section of the cone at Γ; then the triangle $\mathrm{B} \Gamma \Delta$ will be right-angled [Eucl. i. 29]. Let $B \Gamma$ be divided into any number of equal segments $\mathrm{BE}, \mathrm{EZ}, \mathrm{ZH}, \mathrm{HI}, \mathrm{I} \Gamma$, and from the points of section let EL, ZT, HY, I妇 be drawn parallel to the axis, and from the points in which these cut the

GREEK MATHEMATICS

 $\tau \grave{o} \mathrm{~B} \Delta \Gamma \tau \hat{\omega} \nu \mu \grave{\epsilon} \nu \tau \rho a \pi \epsilon \zeta \grave{\iota} \omega \nu \tau \hat{\omega} \nu \mathrm{KE}, \Lambda \mathrm{Z}, \mathrm{MH}$,

 IOГ $\tau \rho \iota \gamma \omega ́ \nu o v ~ \mu \epsilon \hat{\imath}$ రóv $[\hat{\epsilon} \sigma \tau \iota \nu]^{1} \eta$ ท̀ $\tau \rho \iota \pi \lambda \alpha ́ \sigma \iota o \nu$.

 $\kappa \rho \epsilon \mu a ́ \sigma \theta \omega$ ठє̀ каi тò $\mathrm{B} \Delta \Gamma$ є́к то̂̂ ऍvүov̂ катà т̀̀
 $\mu a ́ \sigma \theta \omega \tau \grave{\alpha} \mathrm{P}, \mathrm{X}, \Psi, \Omega, \frac{\Delta}{s} \chi \omega \rho i \alpha$ кат̀̀ $\tau \grave{o} \mathrm{~A}$, каі

 тò $\Delta \mathrm{E} \tau \rho a \pi \epsilon ́ \zeta \iota o \nu \pi o \tau i$ тò KE . о μ о'íws $\delta \dot{\epsilon} \delta \epsilon \iota \chi \theta \eta^{\prime}-$ $\sigma \epsilon \tau \alpha \iota ~ a ̀ ~ A B ~ \pi о \tau i ̀ ~ \tau \alpha ̀ \nu ~ B Z ~ \tau o ̀ v ~ a v ̀ \tau o ̀ \nu ~ \epsilon ̌ \chi o v \sigma a ~ \lambda o ́ \gamma o v, ~$

${ }^{1}$ '่̇สтıv om. Heiberg.

ARCHIMEDES

section of the cone let straight lines be drawn to Γ and produced. Then I say that the triangle $B \Delta \Gamma$ is less than three times the trapezia KE, $\Lambda \mathrm{Z}, \mathrm{MH}, \mathrm{NI}$ and the triangle $\Xi I \Gamma$, but greater than three times the trapezia $\mathrm{Z} \Phi, \mathrm{H} \Theta$, II and the triangle 10Γ.

For let the straight line $A B \Gamma$ be drawn, and let $A B$ be cut off equal to $B \Gamma$, and let $A \Gamma$ be imagined to be a balance ; its middle point will be B; let it be suspended from B, and let the triangle $B \Delta \Gamma$ be suspended from the balance at B, Γ, and from the other part of the balance let the areas $\mathrm{P}, \mathrm{X}, \Psi, \Omega, \frac{\Delta}{s}$ be suspended at A, and let the area P balance the trapezium $\Delta \mathrm{E}$ in this position, let X balance the trapezium $Z \Sigma$, let Ψ balance TH, let Ω balance YI , and let $\frac{\Delta}{s}$ balance the triangle $\Xi I \Gamma$; then the whole will balance the whole; so that the triangle $B \Delta \Gamma$ will be three times the area $P+X+\Psi+\Omega+\Delta$ [Prop. 6]. And since $В \Gamma \Theta$ is a segment bounded by a straight line and a section of a right-angled cone, and $B \Delta$ has been drawn from B parallel to the axis, and $\Gamma \Delta$ has been drawn from Γ touching the section of a cone at Γ, and another straight line $\Sigma \mathrm{E}$ has been drawn parallel to the axis,

$$
\mathrm{B} \mathrm{\Gamma}: \mathrm{BE}=\Sigma \mathrm{E}: \mathrm{E} \Phi ; \quad \text { Prop. } 5
$$

therefore $\mathrm{BA}: \mathrm{BE}=$ trapezium $\Delta \mathrm{E}$: trapezium KE. ${ }^{\boldsymbol{a}}$
Similarly it may be proved that

$$
\begin{aligned}
& \mathrm{AB}: \mathrm{BZ}=\mathrm{\Sigma Z}: \Lambda Z, \\
& \mathrm{AB}: \mathrm{BH}=\mathrm{TH}: M H, \\
& \mathrm{AB}: \mathrm{BI}=\mathrm{YI}: N \mathrm{I} .
\end{aligned}
$$

Therefore, since $\Delta \mathrm{E}$ is a trapezium with right angles

$$
{ }^{-} \text {For } \mathrm{BA}=\mathrm{B} \mathrm{\Gamma} \text { and } \Delta \mathrm{E}: \mathrm{KE}=\Sigma \mathrm{E}: \mathrm{E} \Phi .
$$

GREEK MATHEMATICS

 тò KE $\chi \omega \rho i ́ o \nu ~ \tau o ̂ ̂ ~ P ~ \chi \omega \rho i ́ o v \cdot ~ \delta \epsilon ́ \delta ́ \epsilon \iota к \tau \alpha \iota ~ \gamma a ̀ \rho ~ \tau о и ̂ \tau о . ~$

 $\pi о \tau i$ тò $\Lambda \mathrm{Z}$. єïך oûv ка тò $\mathrm{X} \chi \omega \rho$ iov тô̂ μ èv $\Lambda \mathrm{Z}$

 $\chi \omega \rho i o v, ~ \tau o ̀ ~ \delta \grave{\epsilon} \Lambda \mathrm{Z}$ тov̂ X , тò $\delta \grave{\epsilon} \mathrm{MH}$ тov̂ Ψ, тò

 $\mu \epsilon ́ p o s ~ \tau o ̂ ~ В ~ В Г \Delta ~ \tau \rho \iota \gamma \omega ́ v o v \cdot ~ \delta \tilde{\eta} \lambda o v ~ a ้ \rho \alpha, ~ o ̈ \tau \iota ~ \tau o ̀ ~ В Г \Delta ~$

 тô̂ $\mathrm{X} \chi \omega \rho i o v, ~ \tau o ̀ ~ \delta e ̀ ~ \Theta H ~ \tau o v ̂ ~ \Psi, ~ \tau o ̀ ~ \delta e ̀ ~ I \Pi ~ \tau o v ̂ ~ \Omega, ~$
 236

ARCHIMEDES

at the points B, E and with sides converging on Γ, and it balances the area P suspended from the balance at A, if the trapezium be in its present position, while
therefore

$$
\mathrm{BA}: \mathrm{BE}=\triangle \mathrm{E}: \mathrm{KE},
$$

for this has been proved [Prop. 10]. Again, since ZI is a trapezium with right angles at the points Z, E and with ΣT converging on Γ, and it balances the area X suspended from the balance at A, if the trapezium be in its present position, while

$$
\begin{aligned}
& \mathrm{AB}: \mathrm{BE}=\mathrm{Z} \mathrm{\Sigma}: \mathrm{Z} \mathrm{\Phi}, \\
& \mathrm{AB}: \mathrm{BZ}=\mathrm{Z} \mathrm{\Sigma}: \Lambda \mathrm{Z},
\end{aligned}
$$

therefore $\quad \Lambda Z>X>Z \Phi$;
for this also has been proved [Prop. 12]. By the same reasoning
and
and similarly $\quad \exists I \Gamma>\underset{\varsigma}{\Delta}>\Gamma I O$.
Then, since $\mathrm{KE}>\mathrm{P}, \Lambda Z>\mathrm{X}, \mathrm{MH}>\Psi, \mathrm{NI}>\Omega$, $\Xi \mathrm{I} \Gamma>\stackrel{\Delta}{\varsigma}$, it is clear that the sum of the aforesaid areas is greater than the area $P+X+\Psi+\Omega+\frac{\Delta}{s}$. But

$$
\mathrm{P}+\mathrm{X}+\Psi+\Omega+\frac{\Delta}{s}=\frac{1}{3} \mathrm{~B} \mathrm{\Gamma} \Delta ; \quad[\text { Prop. } 6
$$

it is therefore plain that

$$
\mathrm{B} \Gamma \Delta<3(\mathrm{KE}+\Lambda \mathrm{Z}+\mathrm{MH}+\mathrm{NI}+\Xi \mathrm{I} \Gamma) .
$$

Again, since $Z \Phi<\mathrm{X}, \theta \mathrm{H}<\Psi$, $\mathrm{III}<\Omega$, IO \ll, it is

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \pi \rho \sigma \gamma \epsilon \gamma \rho \alpha \mu \mu \epsilon \in \nu \omega \nu$.

Ibid., Prop. 24, Archim. ed. Heiberg ii. 312. 2-314. 27
Пิ̂̀ $\tau \mu \hat{\alpha} \mu a$ тò $\pi \epsilon \rho เ \epsilon \chi o ́ \mu \epsilon \nu o \nu ~ v i \pi o ̀ ~ \epsilon \grave{v} \theta \epsilon i ́ a s ~ к а i ~$

 А \triangle BEГ $\tau \mu \alpha ́ \mu \alpha \tau \iota$.

 $\tau \mu \hat{a} \mu a \quad \tau o \hat{v} \mathrm{~K}$ хшрíov. Є̇vє́ $\gamma \rho \alpha \psi a \quad \delta \grave{\eta} \tau \grave{\alpha} \mathrm{~A} \Delta \mathrm{~B}$,

 238

ARCHIMEDES

clear that the sum of the aforesaid areas is greater than the area $\Delta+\Omega+\Psi+X$;
it is therefore manifest that

$$
\mathrm{B} \Delta \Gamma>3(\Phi \mathrm{Z}+\Theta \mathrm{H}+\mathrm{I} \Pi+\mathrm{I} \Gamma \mathrm{O}),{ }^{a}
$$

but is less than thrice the aforementioned areas. ${ }^{\text {b }}$
Ibid., Prop. 24, Archim. ed. Heiberg ii. 312. 2-314. 27
Any segment bounded by a straight line and a section of a right-angled cone is four-thirds of the triangle having the same base and equal height.

For let $\mathrm{A} \triangle \mathrm{BE} \Gamma$ be a segment bounded by a straight line and a section of a right-angled cone, and let $A B \Gamma$ be a triangle having the same base as the segment and equal height, and let the area K be four-thirds of the triangle $A B \Gamma$. It is required to prove that it is equal to the segment $A \triangle B E \Gamma$.

For if it is not equal, it is either greater or less. Let the segment $A \triangle B E \Gamma$ first be, if possible, greater than the area K. Now I have inscribed the triangles $A \triangle B, В E \Gamma$, as aforesaid, ${ }^{c}$ and I have inscribed in the remaining segments other triangles having the same

- For $\mathrm{B} \Delta \Gamma=3(\mathrm{P}+\mathrm{X}+\Psi+\Omega+\underset{s}{2})>3(\Delta \underset{s}{ }+\Omega+\Psi+\mathrm{X})$.
- In Prop. 15 Archimedes shows that the same theorem holds good even if $B \Gamma$ is not at right angles to the axis. It is then proved in Prop. 16, by the method of exhaustion, that the segment is equal to one-third of the triangle ВГД. This is done by showing, on the basis of the " Axiom of Archimedes," that by taking enough parts the difference between the circumscribed and the inscribed figures can be made as small as we please. It is equivalent to integration. From this it is easily proved that the segment is equal to four-thirds of a triangle with the same base and equal height (Prop. 17).
- In earlier propositions Archimedes has used the same procedure as he now describes. Δ, E are the points in which the diameter through the mid-points of $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$ meet the curve.

GREEK MATHEMATICS

 $\chi \omega \rho i ́ a ~ \epsilon ’ \nu ~ \tau \hat{\varphi} \tau \epsilon \tau \rho \alpha \pi \lambda \alpha \sigma i o v \iota ~ \lambda o ́ \gamma \omega, \pi \rho \hat{\omega} \tau о \nu \mu \epsilon ̀ \nu \tau \grave{̀}$ $\mathrm{AB} \mathrm{\Gamma} \tau \rho i \gamma \omega \nu o \nu \tau \epsilon \tau \rho a \pi \lambda \alpha ́ \sigma \iota \nu \tau \tau \hat{\omega} \nu \mathrm{~A} \Delta \mathrm{~B}, \mathrm{BE} \Gamma$

 $\tau \grave{\mathrm{O}} \mathrm{A} \Delta \mathrm{BE} \Gamma \tau \mu \hat{\alpha} \mu \alpha$ тô $\mathrm{K} \chi \omega \rho \dot{o}{ }^{\circ}$.

[^52]
ARCHIMEDES

base as the segments and equal height, and so on continually I inscribe in the resulting segments two

triangles having the same base as the segments and equal height ; then there will be left [at some time] segments less than the excess by which the segment $A \triangle B E \Gamma$ exceeds the area K [Prop. 20, coroll.]. Therefore the inscribed polygon will be greater than K; which is impossible. For since the areas successively formed are each four times as great as the next, the triangle ABI being four times the triangles $\mathrm{A} \triangle \mathrm{B}, \mathrm{BE} \Gamma$ [Prop. 21], then these last triangles four times the triangles inscribed in the succeeding segments, and so on continually, it is clear that the sum of all the areas is less than four-thirds of the greatest [Prop. 23], ${ }^{\text {a }}$ and K is equal to four-thirds of the greatest area. Therefore the segment $\mathrm{A} \triangle \mathrm{BE} \Gamma$ is not greater than the area K .

Now let it be, if possible, less. Then let

$$
Z=A B \Gamma, H=\frac{1}{4} Z, \theta=\frac{1}{4} H,
$$

and so on continually, until the last [area] is less than

GREEK MATHEMATICS

 $\mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}$ каi $\tau \hat{\varphi} \tau \rho i \tau \omega \mu \notin \rho \in \iota ~ \tau о \hat{v} \mathrm{I}$. Є̇ $\pi \epsilon i$ ov̉v $\tau \grave{o} \mathrm{~K} \chi \omega \rho i o \nu \tau \hat{\omega} \nu \dot{\mu} \epsilon \nu \mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I} \chi \omega \rho i \omega \nu \dot{v} \pi \epsilon \epsilon \in \in \chi \chi \epsilon \iota$

 каі тò $\mathrm{A} \triangle \mathrm{BE} \Gamma$ ar $\rho \alpha$ т $\mu \hat{a} \mu \alpha$ є̀ $\pi i \tau \rho \iota \tau o ́ v ~ \epsilon ́ \sigma \tau \iota ~ \tau о \hat{v}$ АВГ т $\rho \iota \gamma$ ต́vov.
(k) Hydrostatics
(i.) Postulates

Archim. De Torpor. Fluit. i., Archim. ed. Heiberg
ii. 318. 2-8

[^53]
ARCHIMEDES

the excess by which the area K exceeds the scgment [Eucl. x. 1], and let I be [the area] less [than this excess]. Now

$$
\mathrm{Z}+\mathrm{H}+\Theta+\mathrm{I}+\frac{1}{3} \mathrm{I}=\frac{4}{3} \mathrm{Z} . \quad[\text { Prop. } 23
$$

But
$\mathrm{K}=\frac{4}{8} \mathrm{Z}$;
therefore
$\mathrm{K}=\mathrm{Z}+\mathrm{H}+\theta+\mathrm{I}+\frac{1}{3} \mathrm{I}$.
Therefore since the area K exceeds the areas Z, H, θ, I by an excess less than I, and exceeds the segment by an excess greater than I, it is clear that the areas $\mathrm{Z}, \mathrm{H}, \Theta, \mathrm{I}$ are greater than the segment ; which is impossible; for it was proved that, if there be any number of areas in succession such that each is four times the next, and the greatest be equal to the triangle inscribed in the segment, then the sum of the areas will be less than the segment [Prop. 22]. Therefore the segment $A \triangle B E \Gamma$ is not less than the area K. And it was proved not to be greater ; therefore it is equal to K. But the area K is four-thirds of the triangle ABF ; and therefore the segment $\mathrm{A} \triangle \mathrm{BE} \Gamma$ is four-thirds of the triangle ABI.

(k) Hydrostatics

(i.) Postulates

Archimedes, On Floating Bodies a i., Archim. ed. Heiberg ii. 318. 2-8
Let the nature of a fluid be assumed to be such that, of its parts which lie evenly and are continuous, since lost, it is possible to supply the missing parts in Latin, as is done for part of Prop. 2. From a comparison with the Greek, where it survives, William's translation is seen to be so literal as to be virtually equivalent to the original. In each case Heiberg's figures are taken from William's translation, as they are almost unrecognizable in C ; for convenience in reading the Greek, the figures are given the appropriate Greek letters in this edition.

GREEK MATHEMATICS

 $\mu \epsilon \rho \epsilon ́ \omega \nu$ aủтov̂ $\theta \lambda i ́ \beta \epsilon \sigma \theta \alpha \iota \tau \hat{\varphi}$ vi $\pi \epsilon \rho a ́ v \omega$ aủ $\tau o \hat{v}$ vi $\gamma \rho \hat{\varphi}$
 $\mu \epsilon ́ v o v ~ \epsilon ̈ ้ \nu ~ \tau \iota \nu \iota ~ к а i ~ v i \pi o ̀ ~ a ̆ ~ a ̆ \lambda \lambda o v ~ \tau \iota v o ̀ s ~ \theta \lambda \iota \beta o ́ \mu \epsilon v o v . ~$

Ibid. i., Archim. ed. Heiberg ii. 336. 14-16

(ii.) Surface of Fluid at Rest

Ibid. i., Prop. 2, Archim. ed. Heiberg ii. 319. 7-320. 30
Omnis humidi consistentis ita, ut maneat inmotum, superficies habebit figuram sperae habentis centrum idem cum terra.

Intelligatur enim humidum consistens ita, ut maneat non motum, et secetur ipsius superficies plano per centrum terrae, sit autem terrae centrum K, superficiei autem sectio linea ABGD. Dico itaque,

lineam ABGD circuli esse periferiam, centrum autem ipsius K.

Si enim non est, rectae a K ad lineam ABGD 244

ARCHIMEDES

that which is under the lesser pressure is driven along by that under the greater pressure, and each of its parts is under pressure from the fluid which is perpendicularly above it, except when the fluid is enclosed in something and is under pressure from something else.

Ibid. i., Archim. ed. Heiberg ii. 336. 14-16
Let it be assumed that, of bodies which are borne upwards in a fluid, each is borne upwards along the perpendicular drawn through its centre of gravity. ${ }^{a}$

(ii.) Surface of Fluid at Rest

Ibid. i., Prop. 2, ${ }^{\text {b }}$ Archim. ed. Heiberg ii. 319. 7-320. 30
The surface of any fluid at rest is the surface of a sphere having the same centre as the earth.

For let there be conceived a fluid at rest, and let its surface be cut by a plane through the centre of the earth, and let the centre of the earth be K , and let the section of the surface be the curve $A B \Gamma \triangle$. Then I say that the curve $A B \Gamma \Delta$ is an arc of a circle whose centre is K .

For if it is not, straight lines drawn from K to the

- These are the only assumptions, other than the assumptions of Euclidean geometry, made in this book by Archimedes ; if the object of mathematics be to base the conclusions on the fewest and most "self-evident" axioms, Archimedes' treatise On Floating Bodies must indeed be ranked highly.
- The earlier part of this proposition has to be given from William of Moerbeke's translation. The diagram is here given with the appropriate Greek letters.

GREEK MATHEMATICS

occurrentes non erunt aequales. Sumatur itaque alíqua recta, quae est quarundam quidem a K occurrentium ad lineam ABGD maior, quarundam autem minor, et centro quidem K , distantia autem sumptae lineae circulus describatur; cadet igitur periferia circuli habens hoc quidem extra lineam ABGD, hoc autem intra, quoniam quae ex centro quarundam quidem a K occurrentium ad lineam ABGD est maior, quarundam autem minor. Sit igitur descripti circuli periferia quae ZBH , et a B ad K recta ducatur, et copulentur quae ZK , KEL aequales facientes angulos, describatur autem et centro K periferia quaedam quae XOP in plano et in humido; partes itaque humidi quae secundum XOP periferiam ex aequo sunt positae et continuae inuicem. Et premuntur quae quidem secundum XO periferiam humido quod secundum ZB locum, quae autem secundum periferiam OP humido quod secundum BE locum; inaequaliter igitur premuntur partes humidi quae secundum periferiam XO ei quae

 то̀ K. о $\mu о i \not \omega s ~ \delta \grave{\eta} \delta \epsilon \iota \chi \theta \dot{\eta} \sigma \epsilon \tau \alpha \iota ~ к а і$, , ö $\pi \omega s$ ка ẳ $\lambda \lambda \omega s$

[^54]
ARCHIMEDES

curve $\mathrm{AB} \mathrm{\Gamma} \Delta$ will not be equal. Let there be taken, therefore, any straight line which is greater than some of the straight lines drawn from K to the curve $A B \Gamma \Delta$, but less than others, and with centre K and radius equal to the straight line so taken let a circle be described; the circumference of the circle will fall partly outside the curve $\mathrm{AB} \Gamma \Delta$, partly inside, inasmuch as its radii are greater than some of the straight lines drawn from K to the curve $А В \Gamma \Delta$, but less than others. Let the arc of the circle so described be ZBH, and from B let a straight line be drawn to K , and let $Z \mathrm{~K}, \mathrm{KE} \Lambda$ be drawn making equal angles [with KB], and with centre K let there be described, in the plane and in the fluid, an arc $\Xi O \Pi$; then the parts of the fluid along 录Oח lie evenly and are continuous [v. supra, p. 243]. And the parts along the are $Z O$ are under pressure from the portion of the fluid between it and $Z B$, while the parts along the arc $O \Pi$ are under pressure from the portion of the fluid between it and BE ; therefore the parts of the fluid along Ξ_{0} and the parts of the fluid along $O \Pi$ are under unequal pressures ; so that the parts under the lesser pressure are thrust along by the parts under the greater pressure [v. supra, p. 245]; therefore the fluid will not remain at rest. But it was postulated that the fluid would remain unmoved; therefore the curve $\mathrm{AB} \Gamma \Delta$ must be an arc of a circle with centre K. Similarly it may be shown that, in whatever other manner the surface be cut by a plane through the centre of the earth, the section is an arc of a circle and its centre will also be the centre of the earth. It is therefore clear that the surface of the fluid remaining at rest has the form of a sphere with the same centre as the earth, since it is such

GREEK MATHEMATICS

(iii.) Solid immersed in a Fluid

Ilid. i., Prop. 7, Archim. ed. Heiberg ii. 332. 21-336. 13

[^55]
ARCHIMEDES

that, when it is eut [by a plane] always passing through the same point, the section is an are of a circle having for centre the point through which it is cut by the plane [Prop. 1].

(iii.) Solid immersed in a Fluid

Ibid. i., Prop. 7, Archim. ed. Heiberg ii. 332. 21-336. 13
Solids heavier than a fluid nill, if placed in the fluid, sink to the bottom, and they will be lighter [if weighed] in the fluid by the weight of a volume of the fluid equal to the volume of the solid. ${ }^{a}$

That they will sink to the bottom is manifest ; for the parts of the fluid under them are under greater pressure than the parts lying evenly with them, since it is postulated that the solid is heavier than water; that they will be lighter, as aforesaid will be [thus] proved.

Let A be any magnitude heavier than the fluid, let the weight of the magnitude A be $B+\Gamma$, and let the wcight of fluid having the same volume as A be B. It is required to prove that in the fluid the magnitude A will have a weight equal to Γ.

For let there be taken any magnitude Δ lighter than the same volume of the fluid such that the weight of the magnitude Δ is equal to the weight B, while the weight of the fluid having the same volume as the magnitude Δ is equal to the weight $B+\Gamma$.

GREEK MATHEMATICS

 є́ $\sigma \sigma \epsilon i \tau \alpha a \iota \tau \hat{\varphi}$ vi $\gamma \rho \hat{\omega}$. $\epsilon \sigma \tau \iota \gamma \dot{a} \rho \tau \hat{\omega} \nu \quad \mu \epsilon \gamma \epsilon \theta \epsilon \epsilon \omega \nu \quad \sigma v \nu-$
 $\beta \alpha ́ \rho \in \sigma \iota \nu \tau \hat{\varphi} \tau \epsilon \mathrm{~B} \mathrm{\Gamma} \kappa \alpha i \tau \hat{\varphi} \mathrm{~B}, \tau o \hat{v}$ ठè $\dot{v} \gamma \rho \circ \hat{v} \tau о \hat{v}$

[^56]
ARCHIMEDES

Then if we combine the magnitudes A, Δ, the combined magnitude will be equal to the weight of the same volume of the fluid; for the weight of the combined magnitudes is equal to the weight $(B+\Gamma) \div B$, while the weight of the fluid having the same volume as both the magnitudes is equal to the same weight. Therefore if the [combined] magnitudes are placed in the fluid, they will balance the fluid, and will move neither upwards nor downwards [Prop. 9] ; for this reason the magnitude A will move downwards, and will be subject to the same force as that br which the magnitude Δ is thrust upwards, and since Δ is lighter than the fluid it will be thrust upwards by a force equal to the weight Γ; for it has been proved that when solid magnitudes lighter than the fluid are forcibly immersed in the fluid, they will be thrust upwards by a force qual to the difference in weight between the magnitude and an equal volume of the fluid [Prop. 6]. But the fluid having the same volume as Δ is heavier than the magnitude $\Delta \mathrm{by}$ the weight Γ; it is therefore plain that the magnitude A will be borne upwards by a force equal to Γ. ${ }^{\text {a }}$

Now take a weight x of silser and weigh it in the fluid, and let the loss of weight be P_{g}. Then the loss of weight when a weight x_{2} of silver is weighed in the fluid, and consequently the weight of fluid displaced, will be $\frac{v_{2}}{v_{2}}, P_{s}$

Finally, weigh the crown itself in the fluid, and let the loss of weight, and consequently the weight of fluid displaced, be P.
It follows that

$$
\begin{aligned}
\frac{v_{2}}{w} \cdot P_{1}+\frac{w_{2}}{w_{2}} \cdot P_{2} & =P, \\
\frac{w_{1}}{v_{2}} & =\frac{P_{2}-P}{P-P_{1}} .
\end{aligned}
$$

GREEK MATHEMATICS

(iv.) Stability of a Paraboloid of Revolution

Ibid. ii., Prop. 2, Archim. ed. Heiberg ii. 348. 10-352. 19

 $\dot{\alpha} \lambda \lambda^{\prime} \dot{\alpha} т о к \alpha \tau \alpha \sigma \tau \alpha \sigma \epsilon і ̈ \tau \alpha \iota$ on ρ Oóv.

 $\kappa \kappa ́ \nu о v ~ \tau о \mu \alpha ́, ~ a ̈ \xi \omega \nu ~ \delta є ̀ ~ \tau о \hat{v} \tau \mu \alpha ́ \mu а \tau о s ~ к а i ~ \delta \iota \alpha ́ \mu \epsilon \tau \rho о s$
 $\tau о \mu \dot{\alpha}$ à $I \Sigma$. Є̇тєi oûv to $\tau \mu \hat{\alpha} \mu \alpha$ ov̉к Є̇ $\sigma \tau i \nu$ ob $\rho \theta o ́ v$,

[^57]
ARCHIMEDES

(iv.) Stability of a Paraboloid of Revolution ${ }^{a}$

Ibid. ii., Prop. 2, Archim. ed. Heiberg ii. 348. 10-352. 19
If there be a right segment of a right-angled conoid, whose axis is not greater than one-and-a-half times the line drawn as far as the axis, ${ }^{b}$ and whose weight relative to the fluid may have any ratio, and if it be placed in the fluid in an inclined position in such a manner that its base do not touch the fluid, it nill not remain inclined but will return to the upright position. I mean by returning to the upright position the figure formed when the plane cutting off the segment is parallel to the surface of the fluid.

Let there be a segment of a right-angled conoid, such as has been stated, and let it be placed in an inclined position. It is required to prove that it will not remain there but will return to the upright position.

Let the segment be cut by a plane through the axis perpendicular to the plane which forms the surface of the fluid, and let AПOA be the section of the segment, being a section of a right-angled cone [De Con. et Sphaer. 11], and let NO be the axis of the segment and the axis of the section, and let IV be the section of the surface of the liquid. Then since the segment is not upright, $A \Lambda$ will not be parallel to IL; and therefore NO will not make a right angle
right-angled cone from which the generating parabola is derived. The latus rectum is "the line which is double of
 agovos); and so the condition laid down by Archimedes is that the axis of the segment of the paraboloid of revolution shall not be greater than three-quarters of the latus rectum or principal parameter of the generating parabola.

GREEK MATHEMATICS

ov̂v $\pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ a ́ ~ \epsilon ́ \phi a \pi \tau o \mu \epsilon ́ v a ~ a ̊ ~ K \Omega ~ \tau a ̂ s ~ \tau o v ̂ ~$ $\kappa \omega ́ v o v ~ \tau о \mu \alpha ̂ S ~ к а \tau \grave{\alpha} \tau \grave{o} \Pi$, каі $\dot{\alpha} \pi \grave{o} \tau о \hat{v} \Pi \pi \alpha \rho \alpha ̀ ~ \tau \grave{\alpha} \nu$

 PN $\delta \iota \pi \lambda \alpha \sigma i a \nu ~ \epsilon i ̂ \mu \epsilon \nu$. $\epsilon \sigma \sigma \epsilon i \tau \alpha \iota ~ \delta \grave{\eta}$ тồ $\mu \epsilon i \zeta o \nu o s$

 $\kappa \omega \nu о є \iota \delta \epsilon ́ o s ~ \tau \mu a ́ \mu \alpha \tau о s ~ \tau o ̀ ~ к \epsilon ́ \nu \tau \rho o \nu ~ \tau о \hat{v} \beta a ́ \rho \epsilon o ́ s ~ \epsilon ̇ \sigma \tau \iota \nu$

 254

ARCHIMEDES

with II. Therefore let $\mathrm{K} \Omega$ be drawn parallel [to IS] and touching the section of the cone at Π, and from Π let $\Pi \Phi$ be drawn parallel to NO ; then $\Pi \Phi$ bisects IS—for this is proved in the [Elements of] Conics. ${ }^{\text {a }}$ Let $\Pi \Phi$ be cut so that $\Pi B=2 B \Phi$, and let $N O$ be cut at P so that $O P=2 P N$; then P will be the centre of gravity of the greater segment of the solid, and B that of IHOL; for it is proved in the books $O n$ Equilibriums that the centre of gravity of any segment of a right-angled conoid is at the point dividing the axis in such a manner that the segment towards the vertex of the axis is double of the remainder. ${ }^{b}$ Now if the solid segment IIOS be taken away from the whole, the centre of gravity of the remainder will lie upon the straight line $B \Gamma$; for it has been proved in the Elements of Mechanics that if any magnitude be taken away not having the same centre of gravity as the whole magnitude, the centre of gravity of the remainder will be on the straight line joining the centres [of gravity] of the whole magnitude and of the part

- Presumably in the works of Aristaeus or Euclid, but it is also Quad. Parab. 1.
- The proof is not in any extant work by Archimedes.

GREEK MATHEMATICS

 ßápєos то̂̀ $\lambda o \iota \pi o \hat{v} \mu \epsilon \gamma \epsilon \epsilon \theta \epsilon \circ s$. $\epsilon \pi \epsilon i$ oûv à NO $\tau \hat{\alpha} S$

 $\mu \epsilon \tau \alpha \xi \grave{v} \pi \epsilon \sigma \epsilon i ̂ \tau \alpha \iota \tau \hat{\omega} \nu \Pi, \Omega$. $\pi \iota \pi \tau \epsilon \prime \tau \omega$ ผ́s à $\mathrm{P} \Theta$.

 aủтàv ка́ $\theta \epsilon \tau о \nu \dot{a} \lambda \lambda a ́ \lambda o \iota s ~ a ̀ \nu \tau \iota \theta \lambda i ́ \beta o \nu \tau a \iota$, ov $\mu \epsilon \nu \epsilon \hat{\imath} \tau \grave{~}$

${ }^{1}$ атотєтнако̀s, rf. supra, p. 952 line 8; Heiberg prints

[^58]
ARCHIMEDES

taken away, produced from the extremity which is the centre of gravity of the whole magnitude [De Plan. Aequil. i. 8]. Let BP then be produced to Γ, and let Γ be the centre of gravity of the remaining magnitude. Then, since $\mathrm{NO}=\frac{3}{2} \cdot \mathrm{OP}$, and $\mathrm{NO}+$ $\frac{3}{2} \cdot$ (the line drawn as far as the axis), it is clear that $\mathrm{PO}>$ (the line drawn as far as the axis) ; therefore MP makes unequal angles with $\mathrm{K} \Omega$, and the angle $\mathrm{P} \Pi \Omega$ is acute ${ }^{a}$; therefore the perpendicular drawn from P to $\Pi \Omega$ will fall between Π, Ω. Let it fall as $\mathrm{P} \theta$; then $\mathrm{P} \theta$ is perpendicular to the cutting plane containing ΣI, which is on the surface of the fluid. Now let lines be drawn from B, Γ parallel to $\mathrm{P} \Theta$; then the portion of the magnitude outside the fluid will be subject to a downward force along the line drawn through Γ-for it is postulated that each weight is subject to a downward force along the perpendicular drawn through its centre of gravity ${ }^{b}$; and since the magnitude in the fluid is lighter than the fluid, ${ }^{c}$ it will be subject to an upward force along the perpendicular drawn through B. ${ }^{d}$ But, since they are not subject to contrary forces along the same perpendicular, the figure will not remain at rest but the portion on the side of A will move upwards and the portion on the side of Λ will move downwards, and this will go on continually until it is restored to the upright position.
${ }^{\text {b }}$ Cf. supra, p. 245 ; possibly a similar assumption to this effect has fallen out of the text.
c A tacit assumption, which limits the generality of the opening statement of the proposition that the segment may have any weight relative to the fluid.
d v. supra, p. 251.

XVIII. ERATOSTHENES

XVIII. ERATOSTHENES

(a) General

Suidas, s.v. 'Eparoa日évns

2 B $\hat{\eta} \tau \alpha$ Gloss. in Psalmos, Hesych. Mil., $\tau \dot{\alpha} \beta \eta{ }^{\prime} \mu a \tau \alpha$ codd.

[^59]
XVIII. ERATOSTHENES ${ }^{a}$

(a) General

Suidas, s.v. Eratosthenes

Eratosthenes, son of Aglaus, others say of Ambrosius; a Cyrenean, a pupil of the philosopher Ariston of Chios, of the grammarian Lysanias of Cyrene and of the poet Callimachus ${ }^{b}$; he was sent for from Athens by the third Ptolemy ${ }^{c}$ and stayed till the fifth. ${ }^{d}$ Owing to taking second place in all branches of learning, though approaching the highest excellence, he was called Beta. Others called him a Second or Ners Plato, and yet others Pentathlon. He was born in the 126th Olympiad ${ }^{e}$ and died at the age

Hermes have survived. He was the first person to attempt a scientific chronology from the siege of Troy in two separate works, and he wrote a geographical work in three books. His writings are critically discussed in Bernhardy's Eratosthenica (Berlin, 1822).

- Callimachus, the famous poet and grammarian, was also a Cyrenean. He opened a school in the suburbs of Alexandria and was appointed by Ptolemy Philadelphus chief librarian of the Alexandrian library, a post which he held till his death c. 240 b.c. Eratosthenes later held the same post.
${ }^{\text {c }}$ Euergetes I (reigned 246-221 в.c.), who sent for him to be tutor to his son and successor Philopator (v. vol. i. pp. 256, 296).
${ }^{d}$ Epiphanes (reigned 204-181 в.c.). - 276-273 в.с.

GREEK MATHEMATICS

 $\sigma \chi o ́ \mu \epsilon \nu$ оs $\tau \rho \circ \phi \hat{\eta} s$ ठıà тò $\alpha \mu \beta \lambda \nu \omega ́ \tau \tau \epsilon \iota \nu, \mu a \theta \eta \tau \grave{\nu} \nu$

 аі $\rho \in ́ \sigma \epsilon \omega \nu, ~ П \epsilon \rho i ~ a ̉ \lambda \nu \pi i a s, ~ \delta ı a \lambda o ́ \gamma o v s ~ \pi о \lambda l o u ̀ s ~ к а i ~$ үрацнатıка̀ $\sigma v \chi \nu \alpha ́$.

(b) On Means

Papp. Coll. vii. 3, ed. Hultsch 636. 18-25

 $\mu \epsilon \sigma о \tau \eta \eta_{\tau} \omega \nu$ סv́o.

Papp. Coll. vii. 21, ed. Hultsch 660. 18-662. 18

 бךルєiov $\mu \dot{\epsilon} \nu$ то́тоע $\sigma \eta \mu \epsilon \hat{i} о \nu, ~ \gamma р а \mu \mu \eta ̄ s ~ \delta \grave{\epsilon}$ то́тор

a Not, of course, Aristarchus of Samos, the mathematician, but the celebrated Samothracian grammarian.

- Mnaseas was the author of a work entitled Ieplmious, whose three sections dealt with Europe, Asia and Africa, and a collection of oracles given at Delphi.
c This work is extant, but is not thought to be genuine in 262

ERATOSTHENES

of eighty of voluntary starvation, having lost his sight; he left a distinguished pupil, Aristophanes of Byzantium ; of whom in turn Aristarchus ${ }^{a}$ was a pupil. Among his pupils were Mnaseas, ${ }^{b}$ Menander and Aristis. He wrote philosophical works, poems and histories, Astronomy or Placings Among the Stars, ${ }^{c}$ On Philosophical Divisions, On Freedom from Pain, many dialogues and numerous grammatical works.

(b) On Means

Pappus, Collection vii. 3, ed. Hultsch 636. 18-9.5
The order of the aforesaid books in the Treasury of Analysis is as follows . . . the two books of Eratosthenes On Means. ${ }^{d}$

Pappus, Collection vii. 21, ed. Hultsch 660. 18-662. 18
Loci in general are termed fixed, as when Apollonius at the beginning of his own Elements says the locus of a point is a point, the locus of a line is a line, the locus of a surface is a surface and the locus of a solid is a solid ; or progressive, as when it is said that the locus of a point is a line, the locus of a line is a surface and the locus of a surface is a solid; or circumambient as
its extant form ; it contains a mythology and description of the constellations under forty-four heads. The general title
 it is alluded to under the title Karádoyou.
${ }^{a}$ The inclusion of this work in the Treasury of Analysis, along with such works as those of Euclid, Aristaeus and Apollonius, shows that it was a standard treatise. It is not otherwise mentioned, but the loci with reference to means referred to in the passage from Pappus next cited were presumably discussed in it.

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \dot{v} \pi \pi \circ \theta \dot{\epsilon} \sigma \epsilon \omega \nu$. . . $\epsilon \in \epsilon \in i v o \iota s.]^{1}$

(c) The " Platonicus"

Theon Smyr., ed. Hiller 81. 17-82. 5

 $\mu o ́ v o \nu, \hat{\eta} \kappa \alpha \tau \dot{\alpha}$ тò $\mu \epsilon ́ \gamma \epsilon$ Өоs $\hat{\eta}$ ката̀ тоьóтทта $\hat{\eta}$ кат̀̀

${ }^{1}$ The passage of which this forms the concluding sentence is attributed by Hultsch to an interpolator. To fill the
 Halley's rendering, " diversa sunt ab illis."
${ }^{2}$ кai èv ảdıaфópoıs add. Hiller.
a Tannery conjectured that these were the loci of points such that their distances from three fixed lines provided a " médiété," i.e., loci (straight lines and conics) which can be represented in trilinear co-ordinates by such equations as

$$
\begin{gathered}
2 y=x+z, y^{2}=x z, y(x+z)=2 x z, x(x-y)=z(y-z) \\
x(x-y)=y(y-z)
\end{gathered}
$$

these represent respectively the arithmetic, geometric and harmonic means, and the means subcontrary to the harmonic and geometric means (v. vol. i. pp. 122-125). Zeuthen has 264

ERATOSTHENES

when it is said that the locus of a point is a surface and the locus of a line is a solid. [. . . the loci described by Eratosthenes as having reference to means belong to one of the aforesaid classes, but from a peculiarity in the assumptions are unlike them.] ${ }^{a}$

(c) The " Platonicus "

Theon of Smyrna, ed. Hiller 81. 17-82. 5
Eratosthenes in the Platonicus ${ }^{b}$ says that interval and ratio are not the same. Inasmuch as a ratio is a sort of relationship of two magnitudes one towards the other, ${ }^{c}$ there exists a ratio both between terms that are different and also between terms that are not different. For example, the ratio of the perceptible to the intelligible is the same as the ratio of opinion to knowledge, and the difference between the intelligible and the known is the same as the difference of opinion from the perceptible. ${ }^{d}$ But there can be an interval only between terms that are different, according to magnitude or quality or position or in some other way. It is thence clear that ratio is
an alternative conjecture on similar lines ($\mathrm{Die}_{\text {e }}$ Lehre von den Kegelschnitten im Altertum, pp. 320-321).
© Theon cites this work in one other passage (ed. Hiller 2. 3-12) telling how Plato was consulted about the doubling of the cube ; it has already been cited (vol. i. p. 256). Eratosthenes' own solution of the problem has already been given in vol. i. pp. 290-297, and a letter purporting to be from Eratosthenes to Ptolemy Euergetes is given in vol. i. pp. 256261. Whether the Platonicus was a commentary on Plato or a dialogue in which Plato was an interlocutor cannot be decided.
${ }^{c} C f$. Eucl. v. Def. 3, cited in vol. i. p. 444.
${ }^{d}$ A reference to Plato, Rep. vi. 509 d-511 e, vii. 517 A518 в.

GREEK MATHEMATICS

 тò $\delta \iota \pi \lambda \alpha ́ \sigma \iota \circ \nu\langle\kappa a i ~ \tau o ̀ ~ \delta \iota \pi \lambda a ́ \sigma \iota o v ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \eta ँ \mu \iota \sigma v\rangle{ }^{1}$

（d）Measurement of the Earth

Cleom．De motu circ．i．10．52，ed．Ziegler 94．23－100． 23

 $\dot{\eta} \mu \hat{\omega} \nu . \quad \dot{v} \pi о \kappa є i \sigma \theta \omega \quad \hat{\eta} \mu \hat{\imath} \nu \quad \pi \rho \hat{\omega} \tau о \nu \quad \mu \grave{\epsilon} \nu \kappa \alpha ̉ \nu \tau \alpha \hat{v} \theta a$ ，

 $\mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \pi o ́ \lambda \epsilon \omega \nu \pi \epsilon \nu \tau \alpha \kappa \iota \sigma \chi \iota \lambda i \omega \nu \nu \sigma \alpha \alpha i ́ \omega \nu$ єivaı，

 $\beta \epsilon \beta \eta \kappa v i a s$ тєрıфєрєías ó μ оías єivaı，тоитє́ $\sigma \tau \iota ~ т \grave{\eta} \nu$
 rov̀s oíкєiovs кúкגоvs，$\delta \in \iota \kappa \nu v \mu \epsilon ́ v o v ~ к а і ~ т о и ́ т о v ~$ $\pi \alpha \rho \grave{a}$ тoîs $\gamma \epsilon \omega \mu \epsilon ́ \tau \rho a \iota s$ ．óтóта⿱亠乂 γ à ρ $\pi \epsilon \rho \iota \phi \in ́ \rho \in \iota a \iota$

${ }^{1}$ каі ．．．${ }^{\prime} \mu \iota \sigma v$ add．Hiller．
a The difference between ratio and interval is explained a little more neatly by Theon himself（ed．Hiller 81．6－9）： 266

ERATOSTHENES

different from interval ; for the relationship of the half to the double and of the double to the half does not furnish the same ratio, but it does furnish the same interval. ${ }^{a}$
(d) Measurement of the Earth

Cleomedes, ${ }^{b}$ On the Circular Motion of the Heavenly Bodies i. 10. 52, ed. Ziegler 94. 23-100. 23

Such then is Posidonius's method of investigating the size of the earth, but Eratosthenes' method depends on a geometrical argument, and gives the impression of being more obscure. What he says will, however, become clear if the following assumptions are made. Let us suppose, in this case also, first that Syene and Alexandria lie under the same meridian circle ; secondly, that the distance between the two cities is 5000 stades; and thirdly, that the rays sent down from different parts of the sun upon different parts of the earth are parallel ; for the geometers proceed on this assumption. Fourthly, let us assume that, as is proved by the geometers, straight lines falling on parallel straight lines make the alternate angles equal, and fifthly, that the ares subtended by equal angles are similar, that is, have the same proportion and the same ratio to their proper circles-this also being proved by the geometers. For whenever arcs of circles are subtended by equal angles, if any one of these is (say) one-tenth

${ }^{b}$ Cleomedes probably wrote about the middle of the first century в.с. His handbook De motu circulari corporum caelestium is largely based on Posidonius.

GREEK MATHEMATICS

 оікєí $\omega \nu$ ки́к $\lambda \omega \nu$.

 $\theta \epsilon \rho \iota \nu \alpha{ }_{s} \pi о \iota \omega ิ \nu \tau \rho о \pi \alpha ̀ s ~ \alpha \dot{\alpha} \rho \iota \beta \hat{\omega} s \mu \epsilon \sigma о v \rho а \nu \eta, \sigma \eta$, ä $\sigma \kappa \iota \circ \iota$ үívov $\tau \alpha \iota$ oi $\tau \hat{\omega} \nu \dot{\omega} \rho о \lambda о \gamma^{\prime} \omega \nu \quad \gamma \nu \omega \dot{\mu} \mu \nu \epsilon s$ ávaүкаíшs, $\kappa \alpha \tau \dot{\alpha} \kappa \alpha ́ \theta \epsilon \tau о \nu \dot{\alpha} \kappa \rho \iota \beta \hat{\eta} \tau о \hat{v} \dot{\eta} \lambda i ́ o v ~ \dot{v} \pi \tau \rho \kappa є \iota \mu \epsilon ́ v o v \cdot \kappa \alpha i ̀$

 268

ERATOSTHENES

of its proper circle, all the remaining arcs will be tenth parts of their proper circles.

Anyone who has mastered these facts will have no difficulty in understanding the method of Eratosthenes, which is as follows. Syene and Alexandria, he asserts, are under the same meridian. Since meridian circles are great circles in the universe, the circles on the earth which lie under them are necessarily great circles also. Therefore, of whatever size this method shows the circle on the earth through Syene and Alexandria to be, this will be the size of the great circle on the earth. He then asserts, as is indeed the case, that Syene lies under the summer tropic. Therefore, whenever the sun, being in the Crab at the summer solstice, is exactly in the middle of the heavens, the pointers of the sundials necessarily throw no shadows, the sun being in the exact vertical line above them ; and this is said to be true over a space 300 stades in diameter. But in Alexandria at the same hour the pointers of the sundials throw shadows, because this city lies farther to the north than Syene. As the two cities lie under the same meridian great circle, if we draw an arc from the extremity of the shadow of the pointer to the base of the pointer of the sundial in Alexandria, the arc will be a segment of a great circle in the bowl of the sundial, since the bowl lies under the great circle. If then we conceive straight lines produced in order from each of the pointers through the earth, they

GREEK MATHEMATICS

 $\kappa \alpha \tau \dot{\alpha} \sigma \cup \cup \mu \pi \tau \omega \sigma \iota \nu, \tau \hat{\omega} \nu \epsilon \dot{v} \theta \epsilon \iota \omega \nu$, ait ar $\pi \dot{\prime}{ }^{\prime} \tau \hat{\omega} \nu \dot{\omega} \rho o-$

 'А $\lambda \epsilon \xi \alpha \prime \nu \delta \rho \epsilon \iota \alpha \nu \quad \eta ँ \kappa о v \sigma a ., \quad \dot{\eta} \delta \epsilon \quad \gamma \epsilon \epsilon \in \nu \quad \tau \hat{\eta} \quad \sigma \kappa \alpha ́ \phi \eta$

 270

ERATOSTHENES

will meet at the centre of the earth. Now since the sundial at Syene is vertically under the sun, if we conceive a straight line drawn from the sun to the top of the pointer of the sundial, the line stretching from the sun to the centre of the earth will be one straight line. If now we conceive another straight line drawn upwards from the extremity of the shadow of the pointer of the sundial in Alexandria, through the top of the pointer to the sun, this straight line and the aforesaid straight line will be parallel, being straight lines drawn through from different parts of the sun to different parts of the earth. Now on these parallel straight lines there falls the straight line drawn from the centre of the earth to the pointer at Alexandria, so that it makes the alternate angles equal ; one of these is formed at the centre of the earth by the intersection of the straight lines drawn from the sundials to the centre of the earth; the other is at the intersection of the top of the pointer in Alexandria and the straight line drawn from the extremity of its shadow to the sun through the point where it meets the pointer. Now this latter angle subtends the arc carried round from the extremity of the shadow of the pointer to its base, while the angle at the centre of the earth subtends the arc stretching from Syene to Alexandria. But the arcs are similar since they are subtended by equal angles. Whatever ratio, therefore, the arc in the bowl of the sundial has to its proper circle, the arc reaching from Syenc to Alexandria has the same ratio. But the are in the bowl is found to be the fifticth part of its proper circle. Therefore the distance from Syene to Alexandria must necessarily be a fiftieth part of the great

GREEK MATHEMATICS

 є"申обоs тоぃаи́т η.

Heron, Dioptra 36, ed. H. Schöne 302. 10-17

 $\dot{\alpha} \nu \alpha \mu \epsilon \tau \rho \eta{ }_{\eta} \sigma \epsilon \omega s \tau \hat{\eta} s \gamma \hat{\eta} s$.
${ }^{1}$ rê̂ add. H. Schöne.
a The attached figure will help to elucidate Cleomedes. S is Syene and A Alexandria; the
 centre of the earth is O. The sun's rays at the two places are represented by the broken straight lines. If a be the angle made by the sun's rays with the pointer of the sundial at Alexandria (OA produced), the angle SOA is also equal to a, or one-fiftieth of four right angles. The arc SA is known to be 5000 stades and it follows that the whole circumference of the earth must be 250000 stades.

ERATOSTHENES

circle of the earth. And this distance is 5000 stades. Therefore the whole great circle is 250000 stades. Such is the method of Eratosthenes. ${ }^{a}$

Heron, Dioptra 36, ed. H. Schöne 302. 10-17
Let it be required, perchance, to measure the distance between Alexandria and Rome along the are of a great circle, ${ }^{b}$ on the assumption that the perimeter of the earth is 252000 stades, as Eratosthenes, who investigated this question more accurately than others, shows in the book which he wrote On the Measurement of the Earth. ${ }^{c}$
" Lit. " along the circumference of the greatest circle on the earth."
${ }^{6}$ Strabo (ii. 5. 7) and Theon of Smyrna (ed. Hiller 124. 10-12) also give Eratosthenes' measurement as 252000 stades against the 250000 of Cleomedes. "The reason of the discrepancy is not known ; it is possible that Eratosthenes corrected 250000 to 252000 for some reason, perhaps in order to get a figure devisible by 60 and, incidentally, a round number (700) of stades for one degree. If Pliny (N.H. xii. 13.53) is right in saying that Eratosthenes made 40 stades equal to the Egyptian oxoivos, then, taking the oxoivos at 12000 Royal cubits of 0.525 metres, we get 300 such cubits, or 157.5 metres, i.e., 516.73 feet, as the length of the stade. On this basis 252000 stades works out to 24662 miles, and the diameter of the earth to about 7850 miles, only 50 miles shorter than the true polar diameter, a surprisingly close approximation, however much it owes to happy accidents in the calculation " (Heath, H.G.M. ii. 107).
XIX. APOLLONIUS OF PERGA

XIX. APOLLONIUS OF PERGA

(a) The Conic Sections

(i.) Relation to Previous Works

Eutoc. Comm. in Con., Apoll. Berg. ed. Heiberg ii. 168. 5-170. 26

 $\kappa \alpha i ́ ~ \phi \eta \sigma \iota ~ \tau \grave{\alpha} \kappa \omega \nu \iota \kappa \grave{\alpha} \quad \theta \epsilon \omega \rho \eta \eta \mu \tau \alpha \dot{\epsilon} \pi \iota \nu \circ \eta{ }_{\eta} \sigma \alpha \iota \quad \mu \dot{\epsilon} \nu$

[^60]
XIX. APOLLONIUS OF PERGA

(a) The Conic Sections
(i.) Relation to Previous Works

Eutocius, Commentary on Apollonius's Conics. Apoll. Perg. ed. Heiberg ii. 168. 5-170. 26
Apollonius the geometer, my dear Anthemius, flourished at Perga in Pamphylia during the time of Ptolemy Euergetes, ${ }^{a}$ as is related in the life of Archimedes written by Heraclius, ${ }^{\text {b }}$ who also says that Archimedes first conceived the theorems in conics and that Apollonius, finding they had been discovered by Archimedes but not published, appropriated them for himself, but in my opinion he errs. For in many places Archimedes appears to refer to the elements of conics as an older work, and moreover Apollonius does not claim to be giving his own discoveries; otherwise he would not have described his purpose as " to investigate these properties more fully and more nomer named Apollonius who flourished in the time of Ptolemy Philopator (221-204 b.c.), the great geometer is probably meant. This fits in with Apollonius's dedication of Books iv.-viii. of his Conics to King Attalus I (247-197 r.c.). From the preface to Book i., quoted infra (p. 281), we gather that Apollonius visited Eudemus at Pergamum, and to Eudemus he dedicated the first two books of the second edition of his work.

- More probably Heraclides, v. supra, p. 18 n. a.

GREEK MATHEMATICS

 ï $\sigma \alpha \iota ~ \epsilon i \sigma i ้ \nu \cdot ~ o v ̃ \tau \omega s ~ к а i ~ \epsilon ่ \pi i ~ \tau \hat{\omega} \nu ~ \tau о \hat{v} \kappa \omega ́ \nu o v ~ \tau о \mu \omega ิ \nu \cdot$

 ôv каi $\theta_{\alpha \nu \mu a ́ \sigma \alpha \nu \tau \epsilon S ~ o i ~ к а \tau ' ~ a u ̉ \tau o ̀ v ~ \gamma є \nu o ́ ~}^{\mu \epsilon v o \iota ~ \delta \iota a ̀ ~}$
 $\theta \epsilon \omega \rho \eta \mu \alpha ́ \tau \omega \nu \quad \mu \epsilon ́ \gamma \alpha \nu \quad \gamma \epsilon \omega \mu \epsilon ́ \tau \rho \eta \nu$ є́ка́خоขv. $\tau \alpha \hat{v} \tau \alpha$ 278

APOLLONIUS OF PERGA

generally than is done in the works of others." a But what Geminus says is correct: defining a cone as the figure formed by the revolution of a right-angled triangle about one of the sides containing the right angle, the ancients naturally took all cones to be right with one section in each-in the right-angled cone the section now called the parabola, in the obtuse-angled the hyperbola, and in the acute-angled the ellipse; and in this may be found the reason for the names they gave to the sections. Just as the ancients, investigating each species of triangle separately, proved that there were two right angles first in the equilateral triangle, then in the isosceles, and finally in the scalene, whereas the more recent geometers have proved the general theorem, that in any triangle the three internal angles are equal to two right angles, so it has been with the sections of the cone; for the ancients investigated the so-called section of a rightangled cone in a right-angled cone only, cutting it by a plane perpendicular to one side of the cone, and they demonstrated the section of an obtuse-angled cone in an obtuse-angled cone and the section of an acute-angled cone in the acute-angled cone, in the cases of all the cones drawing the planes in the same way perpendicularly to one side of the cone ; hence, it is clear, the ancient names of the curves. But later Apollonius of Perga proved generally that all the sections can be obtained in any cone, whether right or scalene, according to different relations of the plane to the cone. In admiration for this, and on account of the remarkable nature of the theorems in conics proved by him, his contemporaries called him the "Great

[^61]
GREEK MATHEMATICS

 $\mu a \forall \eta \mu a ́ \tau \omega \nu \quad \theta \epsilon \omega \rho i a s$.

(ii.) Scope of the Work

Apoll. Conic. i., Praef., Apoll. Perg. ed. Heiberg i. 2. 2-4. 28

 $\pi \rho \hat{\omega} \tau о \nu$ ßıß入íov $\delta \iota \circ \rho \theta \omega \sigma \alpha ́ \mu \epsilon \nu о s, \tau \grave{\alpha}$ Sє̀ $\lambda о \iota \pi \alpha ́$, ö $\tau \alpha \nu$

[^62]
APOLLONIUS OF PERGA

Geometer." Geminus relates these details in the sixth book of his Theory of Mathematics. ${ }^{\text {a }}$

(ii.) Scope of the Work

Apollonius, Conics i., Preface, Apoll. Perg. ed. Heiberg i. 2. 2-4. 28

Apollonius to Eudemus ${ }^{b}$ greeting.
If you are in good health and matters are in other respects as you wish, it is well; I am pretty well too. During the time I spent with you at Pergamum, I noticed how eager you were to make acquaintance with my work in conics; I have therefore sent to you the first book, which I have revised, and I will send the remaining books when I am satisfied with them. I suppose you have not forgotten hearing me say that I took up this study at the request of Naucrates the geometer, at the time when he came

Conics was in four books. The work of Aristaeus was obviously more original and more specialized; that of Euclid was admittedly a compilation largely based on Aristaeus. Euclid flourished about 300 в.c. As noted in vol. i. p. 495 n. a, the focus-directrix property must have been known to Euclid, and probably to Aristaeus; curiously, it does not appear in Apollonius's treatise.

Many properties of conics are assumed in the works of Archimedes without proof and several have been encountered in this work ; they were no doubt taken from the works of Aristacus or Euclid. As the reader will notice, Archimedes' terminology differs in several respects from that of Apollonius, apart from the fundamental difference on which Geminus laid stress.

The history of the conic sections in antiquity is admirably treated by Zeuthen, Die Lehre von den Kegelschnitten im Altertum (1886) and Heath, Apollonius of Perga, xvii-clvi.
${ }^{b}$ Not, of course, the pupil of Aristotle who wrote the famous History of Geometry, unhappily lost.

GREEK MATHEMATICS

 $\pi \epsilon ́ \pi \tau \omega \kappa \epsilon \nu$ єis ả $\gamma \omega \gamma \eta \grave{\eta} \nu \quad \sigma \tau \sigma \iota \chi \epsilon \iota \omega ́ \delta \eta, \pi \epsilon \rho \iota \in ́ \chi \in \iota$ $\delta \dot{\epsilon} \tau$ т̀̀
 $\tau \hat{\omega} \nu \dot{\alpha} \nu \tau \iota \kappa \epsilon \iota \mu \epsilon \in \nu \omega \nu \kappa \alpha i \tau \grave{\alpha} \epsilon ้ \nu \alpha u ̉ \tau \alpha i ̂ s ~ \alpha ̀ \rho \chi \iota \kappa \dot{\alpha} \sigma v \mu \pi \tau \omega ́-$

 ä入入а $\gamma \epsilon \nu \iota \kappa \eta ̀ \nu$ каi àvaүкаíav $\chi \rho є i \alpha \nu ~ \pi а \rho є \chi o ́ \mu є \nu а ~$

 тò $\delta \grave{\epsilon} \tau \rho i ́ \tau o \nu \pi o \lambda \lambda \grave{\alpha}$ каi $\pi \alpha \rho \alpha ́ \delta o \xi a ~ \theta \epsilon \omega \rho \eta ́ \mu a \tau \alpha$ $\chi \rho \eta ́ \sigma \iota \mu \alpha$ т $\rho o ́ s, \tau \epsilon \tau \grave{s} \sigma \nu \nu \theta \epsilon ́ \sigma \epsilon \iota s, \tau \hat{\omega} \nu \quad \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu$

- A necessary observation, because Archimedes had used the terms in a different sense.
282

APOLLONIUS OF PERGA

to Alexandria and stayed with me, and that, when I had completed the investigation in eight books, I gave them to him at once, a little too hastily, because he was on the point of sailing, and so I was not able to correct them, but put down everything as it occurred to me, intending to make a revision at the end. Accordingly, as opportunity permits, I now publish on each occasion as much of the work as I have been able to correct. As certain other persons whom I have met have happened to get hold of the first and second books before they were corrected, do not be surprised if you come across them in a different form.

Of the eight books the first four form an elementary introduction. The first includes the methods of producing the three sections and the opposite branches [of the hyperbola] and their fundamental properties, which are investigated more fully and more generally than in the works of others. The second book includes the properties of the diameters and the axes of the sections as well as the asymptotes, with other things generally and necessarily used in determining limits of possibility; and what I call diameters and axes you will learn from this book. ${ }^{a}$ The third book includes many remarkable theorems useful for the syntheses of solid loci and for determining limits of possibility ; most of these theorems, and the most elegant, are new, and it was their discovery which made me realize that Euclid had not worked out the synthesis of the locus with respect to three and four lines, but only a chance portion of it, and that not successfully; for the synthesis could not be completed without the theorems discovered by me. ${ }^{b}$

[^63]
GREEK MATHEMATICS

 ки́клоv тєр८фє́рєєа ката̀ то́ба $\sigma \eta \mu \epsilon i ̂ a ~ \sigma v \mu \beta a ́ \lambda-~$入ovaı.

 $\beta \lambda \eta \mu \alpha ́ \tau \omega \nu$ к $\omega \nu \kappa \kappa \hat{\omega} \nu \quad \delta \iota \omega \rho \iota \sigma \mu \epsilon ́ \nu \omega \nu$. ờ $\mu \grave{\eta} \nu \dot{\alpha} \lambda \lambda \grave{\alpha}$

 єu่ $\tau \cup ̛ \chi \in \iota$.

(iii.) Definitions

Ibid., Deff., Apoll. Perg. ed. Heiberg i. 6. 2-8. 20

 каi $\mu \epsilon ́ \nu о \nu \tau о s ~ \tau o \hat{v} ~ \sigma \eta \mu \epsilon i o v ~ \hat{\eta} \epsilon \dot{v} \theta \epsilon i ̂ a ~ \pi \epsilon \rho \iota \epsilon \nu \epsilon \chi \theta \epsilon \hat{\imath} \sigma a$

a Only the first four books survive in Greek. Books v.-vii. have survived in Arabic, but Book viii. is wholly lost. Halley (Oxford, 1710) edited the first seven books, and his edition is still the only source for Books vi. and vii. The first four books have since been edited by Heiberg (Leipzig, 1891-1893) and Book v. (up to Prop. 7) by L. Nix (Leipzig, 1889). The 284

APOLLONIUS OF PERGA

The fourth book investigates how many times the sections of cones can meet one another and the circumference of a circle; in addition it contains other things, none of which have been discussed by previous writers, namely, in how many points a section of a cone or a circumference of a circle can meet [the opposite branches of hyperbolas].

The remaining books are thrown in by way of addition : one of them discusses fully minima and maxima, another deals with equal and similar sections of cones, another with theorems about the determinations of limits, and the last with determinate conic problems. When they are all published it will be possible for anyone who reads them to form his own judgement. Farewell. ${ }^{a}$

(iii.) Definitions

Ibid., Definitions, Apoll. Perg. ed. Heiberg i. 6. 2-8. 20
If a straight line be drawn from a point to the circumference of a circle, which is not in the same plane with the point, and be produced in either direction, and if, while the point remains stationary, the straight line be made to move round the circumference of the circle until it returns to the point whence it set out, I call the surface described by the straight line a conical surface ; it is composed of two surfaces lying vertically opposite to each other, of which each surviving books have been put into mathematical notation by T. L. Heath, Apollonius of Perga (Cambridge, 1896) and translated into French by Paul Ver Eecke, Les Coniques d' Apollonius de Perga (Bruges, 1923).
In ancient times Eutocius edited the first four books with a commentary which still survives and is published in Heiberg's edition. Serenus and Hypatia also wrote commentaries, and Pappus a number of lemmas.

GREEK MATHEMATICS

 $\phi \grave{\eta} \nu \delta \dot{\epsilon} \tau 0 \hat{v} \kappa \omega ́ v o v ~ \tau o ̀ ~ \sigma \eta \mu \epsilon i ̂ o \nu, ~ o ̂ ~ к а i ~ \tau \eta ̂ S ~ \epsilon ̇ \pi \iota \phi а \nu \epsilon i ́ a s ~$

 ä ${ }^{\text {g }}$ ovas.

 $\epsilon \bar{\epsilon} \pi \stackrel{\tau}{\eta} \nu \quad \delta \iota \alpha ́ \mu \epsilon \tau \rho \circ \nu \kappa \alpha \tau \hat{\eta} \chi \theta \alpha \iota \in \in \kappa \alpha ́ \sigma \tau \eta \nu \tau \hat{\omega} \nu \pi \alpha \rho a \lambda-$ $\lambda \eta \quad \lambda \omega \nu$.

 $\epsilon \dot{v} \theta \epsilon \hat{\imath} \alpha \nu \delta i \chi \chi \alpha ~ \tau \epsilon ́ \mu \nu \epsilon \iota$, корvфа̀s $\delta \dot{\epsilon} \tau \hat{\omega} \nu \quad \gamma \rho \alpha \mu \mu \hat{\omega} \nu \tau \dot{\alpha}$ $\pi \rho o ̀ s ~ \tau \alpha i ̂ s ~ \gamma \rho a \mu \mu a i ̂ s ~ \pi \epsilon ́ \rho a \tau a ~ \tau \eta ̂ s ~ \delta \iota a \mu \epsilon ́ \tau \rho o v, ~ o ̉ \rho \theta i ́ a \nu ~$

 $\dot{\alpha} \pi о \lambda \alpha \mu \beta \alpha \nu о \mu \epsilon ́ \nu a s \quad \mu \epsilon \tau \alpha \xi \dot{v} \quad \tau \hat{\omega} \nu \quad \gamma \rho a \mu \mu \hat{\omega} \nu \quad \delta_{\chi}^{\prime} \chi \alpha$ 286

APOLLONIUS OF PERGA

extends to infinity when the straight line which describes them is produced to infinity; I call the fixed point the vertex, and the straight line drawn through this point and the centre of the circle I call the axis.

The figure bounded by the circle and the conical surface between the vertex and the circumference of the circle I term a cone, and by the vertex of the cone I mean the point which is the vertex of the surface, and by the axis I mean the straight line drawn from the vertcx to the centre of the circle, and by the base I mean the circle.

Of cones, I term those right which have their axes at right angles to their bases, and scalene those which have their axes not at right angles to their bases.

In any plane curve I mean by a diameter a straight line drawn from the curve which bisects all straight lines drawn in the curve parallel to a given straight line, and by the vertex of the curve I mean the extremity of the straight line on the curve, and I describe each of the parallels as being drawn ordinatenise to the diameter.

Similarly, in a pair of plane curves I mean by a transverse diameter a straight line which cuts the two curves and bisects all the straight lines drawn in either curve parallel to a given straight line, and by the vertices of the curves I mean the extremities of the diameter on the curves ; and by an erect diameter I mean a straight line which lies between the two curves and bisects the portions cut off between the curves of all straight lines drawn parallel to a given

GREEK MATHEMATICS

 є́ка́бтך $\tau \hat{\omega} \nu \pi \alpha \rho \alpha \lambda \lambda \eta \dot{\eta} \lambda \omega \nu$.

 є́катє́pa $\delta \iota \alpha ́ \mu \epsilon \tau \rho о s$ ov̂ α тàs $\tau \hat{\eta}$ є́ $\tau \in ́ \rho a ~ \pi \alpha \rho a \lambda-~$ $\lambda \eta$ خ̀dovs $\delta i ́ \chi a ~ \delta \iota a \iota \rho \in i ̂ . ~$
"А ξ ova $\delta \dot{\epsilon} \kappa \alpha \lambda \hat{\omega} \kappa \alpha \mu \pi v ́ \lambda \eta s ~ \gamma \rho a \mu \mu \eta ̂ s ~ к \alpha i ~ \delta v ́ o ~$

 $\tau \alpha{ }_{s} \pi \alpha \rho \alpha \lambda \lambda \eta$ jovov.

 $\pi \alpha \rho \alpha \lambda \lambda \eta \eta^{\lambda}$ ovs.

(iv.) Construction of the Sections

Ibid., Props. 7-9, Apoll. Perg. ed. Heiberg i. 22. 26-36. 5

$$
\zeta^{\prime}
$$

 $\lambda \eta \lambda o \iota \tau \hat{\eta}$ т $\rho o ̀ s ~ o ̀ \rho \theta a ̀ s ~ \tau \hat{\eta} \beta a ́ \sigma \epsilon \iota ~ \tau о \hat{v} ~ \tau \rho \iota \gamma \omega ́ v o v ~$
 ${ }^{1}$ 吝o om. Heiberg.

[^64]
APOLLONIUS OF PERGA

straight line ; and I describe each of the parallels as drawn ordinate-nise to the diameter.

By conjugate diameters in a curve or pair of curves I mean straight lines of which each, being a diameter, bisects parallels to the other.

By an axis of a curve or pair of curves I mean a straight line which, being a diameter of the curve or pair of curves, bisects the parallels at right angles.

By conjugate axes in a curve or pair of curves I mean straight lines which, being conjugate diameters, bisect at right angles the parallels to each other.

(iv.) Construction of the Sections

Ibid., Props. 7-9, Apoll. Perg. ed. Heiberg i. 22. 26-36. 5

Prop. 7^{a}

If a cone be cut by a plane through the axis, and if it be also cut by another plane cutting the plane containing the base of the cone in a straight line perpendicular to the base of the axial triangle, ${ }^{b}$ or to the base produced, a section will be made on the surface of the cone by the cutting plane, and straight lines drawn in it parallel to the straight line perpendicular to the base of the axial triangle mill meet the common section of the cutting plane and the axial later in the work (i. $52-58$) that the principal axes are introduced as diameters at right angles to their ordinates. The proposition is an excellent example of the generality of Apollonius's methods.
Apollonius followed rigorously the Euclidean form of proof. In consequence his general enunciations are extremely long and often can be made tolerable in an English rendering only by splitting them up; but, though Apollonius seems to have taken a malicious pleasure in their length, they are formed on a perfect logical pattern without a superfluous word.
" Lit. " the triangle through the axis."

GREEK MATHEMATICS

"Е $\sigma \tau \omega \kappa \kappa \hat{\omega} \nu o s, ~ o \hat{v}$ корvфทे $\mu \epsilon ่ \nu$ тò A $\sigma \eta \mu \epsilon \hat{\imath} о \nu$,阝áбıs бє̀ ó ВГ ки́клоs, каi $\tau \epsilon \tau \mu \eta ́ \sigma \theta \omega$ є́ $\pi \iota \pi \epsilon ́ \delta \omega ~ \delta \iota a ̀ ~$

 290

APOLLONIUS OF PERGA

triangle and, if produced to the other part of the section, will be bisected by it; if the cone be right, the straight line in the base nill be perpendicular to the common section of the cutting plane and the axial triangle; but if it be scalene, it will not in general be perpendicular, but only when the plane through the axis is perpendicular to the base of the cone.

Let there be a cone whose vertex is the point A and whose base is the circle $\mathrm{B} \Gamma$, and let it be cut by a

plane through the axis, and let the section so made be the triangle $A B \Gamma$. Now let it be cut by another plane cutting the plane containing the circle $\mathrm{B} \mathrm{\Gamma}$ in a straight line $\Delta \mathrm{E}$ which is either perpendicular to $\mathrm{B} \mathrm{\Gamma}$ or to $\mathrm{B} \Gamma$ produced, and let the section made on the surface of the cone be $\triangle Z E{ }^{a}$; then the common section of the cutting plane and of the triangle $A B \Gamma$

[^65]
GREEK MATHEMATICS

 каì $\eta \not \chi \theta \omega$ סıà то仑̂ $\Theta \tau \hat{\eta} \Delta \mathrm{E} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o s ~ \dot{\eta} \Theta \mathrm{~K}$.

 $\tau \mu \eta \theta \dot{\eta} \sigma \epsilon \tau \alpha \iota$ vinò $\tau \eta$ й ZH єvं $\theta \epsilon i ́ a s$.

 $\sigma \nu \mu \beta a \lambda \epsilon \hat{\imath} \tau \hat{\omega} \mathrm{AB} \mathrm{\Gamma} \tau \rho \iota \gamma \omega \dot{\nu} \omega$ каi $\pi \rho о \sigma \epsilon \kappa \beta \alpha \lambda \lambda о \mu \epsilon \in \nu \eta$

 $\tau \hat{\eta} \Delta \mathrm{E} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o s$ à $\gamma о \mu \epsilon ́ \nu \eta$ $\sigma v \mu \beta \alpha{ }^{\lambda} \lambda \lambda_{\epsilon \iota} \tau \hat{\omega} \mathrm{AB} \mathrm{\Gamma}$

 єvं θ cías.

 $\kappa v ́ \kappa \lambda о \nu$, ทै ov̉ $\delta \in ́ \tau \epsilon \rho \circ \nu$.

 292

APOLLONIUS OF PERGA

is ZH. Let any point θ be taken on $\triangle Z E$, and through θ let $\theta \mathrm{K}$ be drawn parallel to $\Delta \mathrm{E}$. I say that $\theta \mathrm{K}$ intersects ZH and, if produced to the other part of the section $\triangle Z E$, it will be bisected by the straight line ZH.

For since the cone, whose vertex is the point A and base the circle $B \Gamma$, is cut by a plane through the axis and the section so made is the triangle $A B \Gamma$, and there has been taken any point θ on the surface, not being on a side of the triangle $A B \Gamma$, and ΔH is perpendicular to $\mathrm{B} \mathrm{\Gamma}$, therefore the straight line drawn through θ parallel to $\Delta \mathrm{H}$, that is $\theta \mathrm{K}$, will meet the triangle $A B \Gamma$ and, if produced to the other part of the surface, will be bisected by the triangle [Prop. 6]. Therefore, since the straight line drawn through Θ parallel to $\triangle \mathrm{E}$ meets the triangle $\mathrm{AB} \mathrm{\Gamma}$ and is in the plane containing the section $\triangle Z E$, it will fall upon the common section of the cutting plane and the triangle $\mathrm{AB} \mathrm{\Gamma}$. But the common section of those planes is ZH ; therefore the straight line drawn through θ parallel to $\Delta \mathrm{E}$ will meet ZH ; and if it be produced to the other part of the section $\Delta \mathrm{ZE}$ it will be bisected by the straight line ZH .

Now the cone is right, or the axial triangle $A B \Gamma$ is perpendicular to the circle $\mathrm{B} \mathrm{\Gamma}$, or neither.

First, let the cone be right ; then the triangle $A B \Gamma$ will be perpendicular to the circle $\mathrm{B} \mathrm{\Gamma}$ [Def. 3 ; Eucl. xi. 18]. Then since the plane $A B \Gamma$ is perpendicular to the plane $\mathrm{B} \mathrm{\Gamma}$, and $\Delta \mathrm{E}$ is drawn in one of the planes perpendicular to their common section $B \Gamma$, therefore

GREEK MATHEMATICS
 $\pi \rho o ̀ s ~ \pi a ́ \sigma a s ~ a ้ \rho a ~ \tau a ̀ s ~ a ̀ ~ \pi \tau о \mu \epsilon ́ v a s ~ a u ̀ \tau \eta ̂ s ~ \epsilon u ̛ \theta \epsilon i ́ a s ~$

По́ $\iota \iota \sigma а$

$$
\eta^{\prime}
$$

 294

APOLLONIUS OF PERGA

$\triangle \mathrm{E}$ is perpendicular to the triangle $\mathrm{AB} \mathrm{\Gamma}$ [Eucl. xi. Def. 4]; and therefore it is perpendicular to all the straight lines in the triangle $A B \Gamma$ which meet it [Eucl. xi. Def. 3]. Therefore it is perpendicular to ZH.

Now let the cone be not right. Then, if the axial triangle is perpendicular to the circle $B \Gamma$, we may similarly show that $\Delta \mathrm{E}$ is perpendicular to ZH . Now let the axial triangle $A B \Gamma$ be not perpendicular to the circle BI . I say that neither is $\Delta \mathrm{E}$ perpendicular to ZH. For if it is possible, let it be ; now it is also perpendicular to $\mathrm{B} \mathrm{\Gamma}$; therefore $\Delta \mathrm{E}$ is perpendicular to both $\mathrm{B} \mathrm{\Gamma}, \mathrm{ZH}$. And therefore it is perpendicular to the plane through $\mathrm{B} \mathrm{\Gamma}, \mathrm{ZH}$ [Eucl. xi. 4]. But the plane through $\mathrm{B} \mathrm{\Gamma}, \mathrm{HZ}$ is $\mathrm{AB} \mathrm{\Gamma}$; and therefore $\triangle \mathrm{E}$ is perpendicular to the triangle $А В \Gamma$. Therefore all the planes through it are perpendicular to the triangle $\mathrm{AB} \mathrm{\Gamma}$ [Eucl. xi. 18]. But one of the planes through ΔE is the circle $B \Gamma$; therefore the circle $B \Gamma$ is perpendicular to the triangle $А B \Gamma$. Therefore the triangle $\mathrm{AB} \mathrm{\Gamma}$ is perpendicular to the circle $\mathrm{B} \mathrm{\Gamma}$; which is contrary to hypothesis. Therefore $\Delta \mathrm{E}$ is not perpendicular to $Z \mathrm{ZH}$.

Corollary

From this it is clear that ZH is a diameter of the section $\triangle Z E$ [Def. 4], inasmuch as it bisects the straight lines drawn parallel to the given straight line $\Delta \mathrm{E}$, and also that parallels can be bisected by the diameter ZH without being perpendicular to it.

Prop. 8
If a cone be cut by a plane through the axis, and it be

GREEK MATHEMATICS

 то仑̂ кćvov кат' єù $\theta \epsilon i ̂ a \nu ~ \pi \rho o ̀ s ~ o ̉ \rho \theta a ̀ s ~ o v ̂ \sigma a \nu ~ \tau \hat{\eta} \beta a ́ \sigma \epsilon \iota ~$

 296

APOLLONIUS OF PERGA

also cut by another plane cutting the base of the cone in a line perpendicular to the base of the axial triangle, and if the diameter of the section made on the surface be either parallel to one of the sides of the triangle or meet it beyond the vertex of the cone, and if the surface of the cone and the cutting plane be produced to infinity, the section will also increase to infinity, and a straight line can be drawn from the section of the cone parallel to the straight line in the base of the cone so as to cut off from the diameter of the section towards the vertex an intercept equal to any given straight line.

Let there be a cone whose vertex is the point A and base the circle Br , and let it be cut by a plane through the axis, and let the section so made be the triangle

GREEK MATHEMATICS

 $\mathrm{AB}, \mathrm{A} \mathrm{\Gamma}, \mathrm{ZH} \sigma v \nu \epsilon \kappa \beta \lambda \eta \theta_{\eta}^{\sigma} \sigma о \tau \tau \alpha, \quad \epsilon \epsilon \epsilon \epsilon i \quad \dot{\eta} \mathrm{ZH} \tau \hat{\eta}$

 $\tau \iota \sigma \eta \mu \epsilon i ̂ o \nu ~ \epsilon ̇ \pi i ~ \tau \hat{\eta} s \mathrm{ZH} \tau v \chi o ̀ \nu ~ \tau o ̀ ~ \Theta, ~ к а i ~ \delta \iota \grave{\alpha} \tau о \hat{v}$ $\Theta \sigma \eta \mu \epsilon i o v \tau \hat{\eta} \mu \epsilon \dot{\nu} \mathrm{~B} \Gamma \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \lambda o s{ }_{\eta}{ }^{\prime} \chi \theta \omega \dot{\eta} \mathrm{K} \Theta \Lambda$,
 K $\Lambda, \mathrm{MN} \epsilon \nexists i \pi \epsilon \epsilon \delta o \nu \pi a \rho \alpha ́ \lambda \lambda \eta \lambda o ́ v ~ \epsilon ̇ \sigma \tau \iota \tau \hat{\omega} \delta \iota \grave{\alpha} \tau \hat{\omega} \nu$
 $\kappa \alpha i \grave{\epsilon} \pi \epsilon \epsilon \tau \grave{\alpha} \Delta$, $\mathrm{E}, \mathrm{M}, \mathrm{N} \sigma \eta \mu \epsilon i ̂ a ~ \epsilon ̀ \nu ~ \tau \hat{\varphi} \tau \epsilon ́ \mu \nu о \nu \tau i$

 $\alpha{ }^{\alpha} \rho a \dot{\eta} \Delta \mathrm{ZE} \mu \notin \chi \rho \iota \tau \hat{\omega} \nu \mathrm{M}, \mathrm{N} \sigma \eta \mu \epsilon i \omega \nu$. av̉ $\eta \theta \epsilon \epsilon i \sigma \eta s$

 298

APOLLONIUS OF PERGA

$\mathrm{AB} \mathrm{\Gamma}$; now let it be cut by another plane cutting the circle $B \Gamma$ in the straight line $\Delta \mathrm{E}$ perpendicular to $\mathrm{B} \mathrm{\Gamma}$, and let the section made on the surface be the curve $\triangle Z E$; let $Z H$, the diameter of the section $\triangle Z E$, be either parallel to $A \Gamma$ or let it, when produced, meet $A \Gamma$ beyond the point A. I say that if the surface of the cone and the cutting plane be produced to infinity, the section $\Delta \mathrm{ZE}$ will also increase to infinity.

For let the surface of the cone and the cutting plane be produced ; it is clear that the straight lines, AB , Ar, ZH are simultaneously produced. Since ZH is either parallel to $\mathrm{A} \Gamma$ or meets it, when produced, beyond the point A, therefore $\mathrm{ZH}, \mathrm{A} \mathrm{\Gamma}$ when produced in the directions H, Γ, will never meet. Let them be produced accordingly, and let there be taken any point θ at random upon $Z H$, and through the point θ let $K \theta \Lambda$ be drawn parallel to $B \Gamma$, and let MON be drawn parallel to $\Delta \mathrm{E}$; the plane through $\mathrm{K} \Lambda$, MN is therefore parallel to the plane through $\mathrm{B} \mathrm{\Gamma}, \Delta \mathrm{E}$ [Eucl. xi. 15]. Therefore the plane K $\Lambda M N$ is a circle [Prop. 4]. And since the points $\Delta, \mathrm{E}, \mathrm{M}, \mathrm{N}$ are in the cutting plane, and are also on the surface of the cone, they are therefore upon the common section ; therefore $\Delta Z E$ has increased to M, N. Therefore, when the surface of the cone and the cutting plane increase up to the circle $K \Lambda M N$, the section $\triangle Z E$ increases up to the points M, N. Similarly we may prove that, if the surface of the cone and the cutting plane be produced to infinity, the section MDZEN will increase to infinity.

And it is clear that there can be cut off from the

GREEK MATHEMATICS

 $\sigma v \mu \pi \epsilon \sigma \epsilon \hat{\imath} \tau \alpha \iota ~ \tau \hat{\eta}$ то $\mu \hat{\eta}, \stackrel{\omega}{\omega} \sigma \pi \epsilon \rho$ каi $\dot{\eta}$ סıà $\tau о \hat{v} \Theta$ $\dot{\alpha} \pi \epsilon \delta \epsilon i \chi \chi \eta \quad \sigma v \mu \pi i \pi \tau \tau \sigma \sigma \alpha \quad \tau \hat{\eta} \tau о \mu \hat{\eta}$ катà $\tau \grave{\alpha} \mathrm{M}, \mathrm{N}$

 бпиєі φ.

θ^{\prime}

' $\mathrm{E} \alpha ̀ \nu$ к $\hat{\omega} \nu o s ~ \epsilon ่ \pi \iota \pi \epsilon ́ \delta \omega ~ \tau \mu \eta \theta \hat{\eta} \quad \sigma \nu \mu \pi i \pi \tau o \nu \tau \iota, \mu \epsilon ̀ \nu$

 300

APOLLONIUS OF PERGA

straight line $Z \theta$ in the direction of the point Z an intercept equal to any given straight line. For if we place $\mathrm{Z} \exists$ equal to the given straight linc and through尼 draw a parallel to $\Delta \mathrm{E}$, it will meet the section, just as the parallel through Θ was shown to meet the section at the points M, N; therefore a straight line parallel to $\Delta \mathrm{E}$ has been drawn to meet the section so as to cut off from ZH in the direction of the point Z an intercept equal to the given straight line.

Prop. 9

If a cone be cut by a plane meeting either side of the axial triangle, but neither parallel to the base nor subcontrary, ${ }^{a}$ the section will not be a circle.

Let there be a cone whose vertex is the point A and base the circle $\mathrm{B} \mathrm{\Gamma}$, and let it be cut by a plane neither parallel to the base nor subcontrary, and let

- In the figure of this theorem, the section of the cone by the plane $\Delta \mathrm{E}$ would be a subcontrary section (únevavia roн if the triangle $\mathrm{A} \triangle \mathrm{E}$ were similar to the triangle ABF , but in a contrary sense, i.e., if angle $\mathrm{A} \triangle \mathrm{E}=$ angle $\mathrm{A} \mathrm{A}^{2}$. Apollonius proves in i. 5 that subcontrary sections of the cone are circles; it was proved in i. 4 that all sections parallel to the base are circles.

GREEK MATHEMATICS

 є̈́ттає кúкдоs.
$\mathrm{Ei} \gamma \dot{\alpha} \rho$ סuvaтóv, ${ }^{\epsilon} \sigma \sigma \tau \omega$, каi $\sigma v \mu \pi \iota \pi \tau \epsilon \in \tau \omega$ тò

 $\mathrm{ZH} \dot{\eta} \Theta \mathrm{H}$, каi $\epsilon \in \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega$ ठıà $\tau \hat{\eta} s \mathrm{H} \Theta$ каi то仑

 $\mathrm{E}, \mathrm{H} \quad \sigma \eta \mu \epsilon \hat{\imath} \alpha \stackrel{\imath}{\epsilon} \nu \quad \tau \epsilon \tau \hat{\omega} \delta_{\iota \alpha}^{\alpha} \tau \hat{\eta} s \quad \Delta \mathrm{KE} \epsilon \bar{\epsilon} \pi \iota \pi \epsilon \in \delta \varphi$
 Δ, $\mathrm{E}, \mathrm{H} \sigma \eta \mu \epsilon \hat{i} \alpha ~ \epsilon ่ \pi i ~ \tau \eta ̂ s ~ к о \iota \nu \hat{\eta} s ~ \tau о \mu \eta ̂ s ~ \tau \omega ิ \nu ~ \epsilon ่ \pi \iota-~$

 $\mu \epsilon \tau \rho o ́ s ~ \epsilon ’ \sigma \tau \iota ~ \tau о \hat{v} \quad \Delta \mathrm{~K} \Lambda \mathrm{E}$ кv́клоv. $\eta \eta \chi \theta \omega$ $\delta \grave{\eta}$ $\delta \iota \grave{a}$

入os. $\epsilon \sigma \tau \tau \omega$ ó NKE. каi $\epsilon \pi \epsilon \epsilon i \dot{\eta} \mathrm{ZH} \tau \hat{\eta} \mathrm{BH} \pi \rho o ̀ s$

 302

APOLLONIUS OF PERGA

the section so made on the surface be the curve $\triangle K E$ ． I say that the curve $\triangle \mathrm{KE}$ will not be a circle．

For，if possible，let it be，and let the cutting plane meet the base，and let the common section of the planes be ZH ，and let the centre of the circle $\mathrm{B} \mathrm{\Gamma}$ be θ ， and from it let $\theta \mathrm{H}$ be drawn perpendicular to ZH ， and let the plane through $\mathrm{H} \theta$ and the axis be pro－ duced，and let the sections made on the conical sur－ face be the straight lines BA，AГ．Then since the points $\Delta, \mathrm{E}, \mathrm{H}$ are in the plane through $\Delta \mathrm{KE}$ ，and are also in the plane through A, B, Γ ，therefore the points $\Delta, \mathrm{E}, \mathrm{H}$ are on the common section of the planes； therefore $\mathrm{HE} \Delta$ is a straight line［Eucl．xi．3］．Now let there be taken any point K on the curve $\Delta K E$ ，and through K let $\mathrm{K} \Lambda$ be drawn parallel to ZH ；then $K M$ will be equal to $M \Lambda$［Prop．7］．Therefore $\Delta \mathrm{E}$ is a diameter of the circle $\triangle \mathrm{KE} \Lambda$［Prop．7，coroll．］．Now let NME be drawn through M parallel to $\mathrm{B} \mathrm{\Gamma}$ ；but $\mathrm{K} \Lambda$ is parallel to ZH ；therefore the plane through $N \Xi, \mathrm{KM}$ is parallel to the plane through Br, ZH ［Eucl．xi．15］，that is to the base，and the section will be a circle［Prop．4］．Let it be NKE．And since ZH is perpendicular to BH, KM is also perpendicular to Nヨ［Eucl．xi．10］；therefore NM．ME＝KM2．But $\Delta \mathrm{M} \cdot \mathrm{ME}=K \mathrm{M}^{2}$ ；for the curve $\triangle \mathrm{KE} \Lambda$ is by hypothesis a circle，and ΔE is a diameter in it．Therefore NM．Mヨ $=\Delta \mathrm{M}$ ．ME．Therefore MN：M $\Delta=E M: M$ ． Therefore the triangle $\triangle \mathrm{MN}$ is similar to the triangle测，and the angle $\triangle N M$ is equal to the angle MEE．

GREEK MATHEMATICS

$\dot{\eta}$ vinò $\Delta \mathrm{NM} \gamma \omega \nu \dot{\alpha} \alpha \quad \tau \hat{\eta}$ v́mò $\mathrm{AB} \mathrm{\Gamma}$ є́ $\sigma \tau \iota \nu$ í $\sigma \eta$ $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o s ~ \gamma \alpha ̀ \rho ~ \hat{\eta} \mathrm{~N} \Xi \tau \hat{\eta} \mathrm{~B} \mathrm{\Gamma}$. каi $\mathfrak{\eta}$ ن́mò $\mathrm{AB} \mathrm{\Gamma}$

 єоттіц $\dot{\eta} \Delta \mathrm{KE} \gamma \rho \alpha \mu \mu \dot{\eta}$.

(v.) Fundamental Properties

Ilid., Props. 11-14, Apoll. Perg. ed. Heiberg i. 36. 26-58. 7

ιa^{\prime}

 $\dot{\eta}$ тоцаv́т η то $\mu \grave{\eta} \pi \alpha \rho \alpha \beta о \lambda \eta$.

 304

APOLLONIUS OF PERGA

But the angle $\triangle \mathrm{NM}$ is equal to the angle $\mathrm{AB} \mathrm{\Gamma}$; for $N E$ is parallel to $\mathrm{B} \mathrm{\Gamma}$; and therefore the angle $\mathrm{AB} \mathrm{\Gamma}$ is equal to the angle MEE. Therefore the section is subcontrary [Prop. 5] ; which is contrary to hypothesis. Therefore the curve $\triangle \mathrm{KE}$ is not a circle.

(v.) Fundamental Properties

Ibid., Props. 11-14, Apoll. Perg. ed. Heiberg i. 36. 26-58. 7

Prop. 11

Let a cone be cut by a plane through the axis, and let it be also cut by another plane cutting the base of the cone in a straight line perpendicular to the base of the axial triangle, and further let the diameter of the section be parallel to one side of the axial triangle; then if any straight line be drawn from the section of the cone parallel to the common section of the cutting plane and the base of the cone as far as the diameter of the section, its square will be equal to the rectangle bounded by the intercept made by it on the diameter in the direction of the vertex of the section and a certain other straight line; this straight line will bear the same ratio to the intercept between the angle of the cone and the vertex of the segment as the square on the base of the axial triangle bears to the rectangle bounded by the remaining two sides of the triangle; and let such a section be called a parabola.

For let there be a cone whose vertex is the point A and whose base is the circle $\mathrm{B} \mathrm{\Gamma}$, and let it be cut by a plane through the axis, and let the section so made be the triangle $А В \Gamma$, and let it be cut by another plane cutting the base of the cone in the straight line

GREEK MATHEMATICS

 $\tau \hat{\varphi} \dot{\psi} \dot{\pi} \delta \dot{\partial} \tau \hat{\omega} \nu \mathrm{Z} \Lambda$.
" $\mathrm{H} \chi \theta \omega$ रà $\rho \delta_{c a ̀} \tau o \hat{v} \Lambda \tau \hat{\eta} \mathrm{~B} \mathrm{\Gamma} \pi \alpha \rho a ́ \lambda \lambda \eta \lambda o s ~ \dot{\eta}$

APOLLONIUS OF PERGA

$\Delta \mathrm{E}$ perpendicular to $\mathrm{B} \mathrm{\Gamma}$, and let the section so made on the surface of the cone be $\Delta \mathrm{ZE}$, and let ZH , the diameter of the section, be parallel to $A \Gamma$, one side of the axial triangle, and from the point Z let $Z \theta$ be drawn perpendicular to ZH , and let $\mathrm{B} \Gamma^{2}: \mathrm{BA} . \mathrm{A} \mathrm{\Gamma}=$ $Z \theta: Z A$, and let any point K be taken at random on the section, and through K let $\mathrm{K} \Lambda$ be drawn parallel to $\Delta \mathrm{E}$. I say that $\mathrm{K} \Lambda^{2}=\theta Z . \mathrm{Z} \mathrm{\Lambda}$.

For let MN be drawn through Λ parallel to BI ; but $\mathrm{K} \Lambda$ is parallel to $\Delta \mathrm{E}$; therefore the plane through

$\mathrm{K} \Lambda$, MN is parallel to the plane through $\mathrm{B} \mathrm{\Gamma}, \Delta \mathrm{E}$ [Eucl. xi. 15], that is to the base of the cone. Therefore the plane through $\mathrm{K} \Lambda$, MN is a circle, whose diameter is MN [Prop. 4]. And K Λ is perpendicular to MN , since $\Delta \mathrm{E}$ is perpendicular to $\mathrm{B} \mathrm{\Gamma}$ [Eucl. xi. 10]; therefore $\quad M \Lambda . \Lambda N=K \Lambda^{\mathbf{2}}$.
And since $B \Gamma^{2}: B A . A \Gamma=\theta Z: Z A$,

GREEK MATHEMATICS

 $\dot{\eta} \mathrm{MN} \pi \rho o ̀ s \mathrm{NA}$, тovtध́бть้ $\dot{\eta} \mathrm{M} \Lambda \pi \rho o ̀ s ~ \Lambda \mathrm{Z}$, $\dot{\omega} s$ ठ̀̀ $\dot{\eta}$ BГ $\pi \rho o ̀ s \mathrm{BA}$, oṽ $\tau \omega s \dot{\eta}^{\eta} \mathrm{MN} \pi \rho o ̀ s \mathrm{MA}$, тov-

 $\tau \hat{\eta} s \mathrm{M} \Lambda \pi \rho o ̀ s ~ \Lambda Z ~ к \alpha i ~ \tau о \hat{v} \tau \hat{\eta} s \mathrm{~N} \Lambda \pi \rho o ̀ s \mathrm{ZA} . \dot{o}$

 $\pi \rho o ̀ s ~ Z A, ~ \tau \hat{\eta} s ~ Z \Lambda ~ к o \iota \nu o v ̂ ~ v ̃ \psi o v s ~ \lambda a \mu \beta a \nu o \mu \epsilon ́ v \eta s ~$

 $\epsilon \epsilon \sigma \tau \tau \hat{\omega}$ vinò $\tau \hat{\omega} \nu \Theta \mathrm{Z} \Lambda$.

 òp ${ }^{\circ} \mathrm{i} a$.

β^{\prime}

[^66]
APOLLONIUS OF PERGA

while
therefore

$$
\theta Z: Z A=(B \Gamma: \Gamma A)(\Gamma B: B A) .
$$

But

$$
B \Gamma: \Gamma A=M N: N A
$$

$$
=M A: \Lambda Z,[\text { Eucl. vi. } 4
$$

and
$\mathrm{BI}: \mathrm{BA}=\mathrm{MN}: \mathrm{MA}$
$=\Lambda \mathrm{M}: \mathrm{MZ} \quad[$ [ibid.
$=\mathrm{N} \Lambda: \mathrm{ZA}$. [Eucl. vi. 2
$=\Lambda \mathrm{M}: \mathrm{MZ} \quad[$ ibid.
$=\mathrm{N} \Lambda: Z \mathrm{ZA}$. [Eucl. vi. 2] $\theta Z: Z A=(M A: \Lambda Z)(N \Lambda: Z A)$.
Therefore

$$
B \Gamma^{2}: В А \cdot A \Gamma=(B \Gamma: \Gamma A)(B \Gamma: В A),
$$

But $\quad(M \Lambda: \Lambda Z)(\Lambda N: Z A)=M \Lambda . \Lambda N: \Lambda Z . Z A$.
Therefore
But
by taking a common height $Z \Lambda$;
therefore $M \Lambda . \Lambda N: \Lambda Z . Z A=\theta Z . Z \Lambda: \Lambda Z . Z A$.

Therefore
But
and therefore
$M \Lambda . \Lambda N=\theta Z . Z \Lambda$. [Eucl. v. 9
$\mathrm{M} \Lambda . \Lambda N=K \Lambda^{2}$;
$K \Lambda^{2}=\theta Z . Z \Lambda$.

Let such a section be called a parabola, and let ΘZ be called the parameter of the ordinates to the diameter ZH , and let it also be called the erect side (latus rectum). ${ }^{a}$

$$
\text { Prop. } 12
$$

Let a cone be cut by a plane through the axis, and let it be cut by another plane cutting the base of the cone in of the rectangle $\Theta \mathrm{Z} . \mathrm{Z} \mathrm{\Lambda}$, and is exactly equal to this rectangle. It was Apollonius's most distinctive achievement to have based his treatment of the conic sections on the Pythagorean theory of the application of areas (π aрaßoג $\bar{\eta} \tau \hat{\omega} \nu$ x $\omega \rho i \omega v$), for which v. vol. i. pp. 186-215. The explanation of the term latus rectum will become more obvious in the cases of the hyperbola and the ellipse; v. infra, p. $317 \mathrm{n} . a$.

GREEK MATHEMATICS

 $\tau \hat{\eta} \kappa \circ \nu \hat{\eta} \tau \circ \mu \hat{\eta}$ тov̂ $\tau \epsilon ́ \mu \nu о \nu \tau o s ~ \epsilon ่ \pi \iota \pi \epsilon \epsilon ́ \delta o v ~ \kappa \alpha i ~ \tau \eta ̂ S ~$
 $\delta v \nu \eta \quad \sigma \epsilon \tau \alpha i \quad \tau \iota \quad \chi \omega \rho i o v \pi \alpha \rho \alpha \kappa \epsilon i \mu \epsilon \nu о \nu \quad \pi a \rho \alpha$ тьva

 $\tau o \hat{v} \tau \rho \iota \gamma \omega ́ v o v ~ \gamma \omega \nu i ́ \alpha \nu$, ôv τ ò $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu \tau \grave{\alpha}$ à $\pi \grave{̀}$

 $\Delta \mathrm{ZE} \gamma \rho \alpha \mu \mu \eta{ }^{\prime} \nu, \dot{\eta} \delta \dot{\epsilon}$ ठıá $\mu \epsilon \tau \rho o s \tau \hat{\eta} s \tau o \mu \hat{\eta} s \dot{\eta}^{\mathrm{\eta}} \mathrm{ZH}$

 310

APOLLONIUS OF PERGA

a straight line perpendicular to the base of the axial triangle, and let the diameter of the section, when produced, meet one side of the axial triangle beyond the vertex of the cone; then if any straight line be drann from the section of the cone parallel to the common section of the cutting plane and the base of the cone as far as the diameter of the section, its square will be equal to the area applied to a certain straight line; this line is such that the straight line subtending the external angle of the triangle, lying in the same straight line with the diameter of the section, nill bear to it the same ratio as the square on the line drawn from the vertex of the cone parallel to the diameter of the section as far as the base of the triangle bears to the rectangle bounded by the segments of the base made by the line so drawn; the breadth of the applied figure will be the intercept made by the ordinate on the diameter in the direction of the vertex of the section; and the applied figure nill exceed by a figure similar and similarly situated to the rectangle bounded by the straight line subtending the external angle of the triangle and the parameter of the ordinates; and let such a section be called a hyperbola.

Let there be a cone whose vertex is the point A and whose base is the circle $B \Gamma$, and let it be cut by a plane through the axis, and let the section so made be the triangle $A B \Gamma$, and let it be cut by another plane cutting the base of the cone in the straight line $\Delta \mathrm{E}$ perpendicular to $\mathrm{B} \Gamma$, the base of the triangle ABI , and let the section so made on the surface of the cone be the curve $\Delta \mathrm{ZE}$, and let ZH , the diameter of the section, when produced, meet $A \Gamma$, one side of the triangle $\mathrm{AB} \mathrm{\Gamma}$, beyond the vertex of the cone at θ, and through A let AK be drawn parallel to ZH, the

 $\mathrm{M} \tau \hat{\eta} \Delta \mathrm{E} \pi \alpha \rho a ́ \lambda \lambda \eta$ дos $\eta^{\prime} \chi \theta \omega \dot{\eta} \mathrm{MN}, \delta i a ̀ ~ \delta \dot{\epsilon} \tau o \hat{v} \mathrm{~N}$ $\tau \hat{\eta} \mathrm{Z} \Lambda$ тарád $\lambda \eta$ доs $\dot{\eta}$ NOE, каi $\bar{\epsilon} \pi \iota \zeta \epsilon v \chi \theta \epsilon i \sigma \alpha \quad \dot{\eta}$
 ZN $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda о \iota ~ \eta ้ \chi \theta \omega \sigma \alpha \nu$ ai $\Lambda 0$, $\Xi \Pi$. $\lambda \epsilon \in \gamma \omega$, ö $\tau \iota$ $\grave{\eta}$ MN δ v́vaтає тò Z Ξ, ó тара́кєєтає тарà тウ̀v
 $\Lambda \Xi$ о́ $\mu \circ i \not \omega$ őv $\tau \iota \tau \hat{\omega}$ vंтò $\tau \hat{\omega} \nu \Theta \mathrm{Z} \Lambda$.

 312

APOLLONIUS OF PERGA

diameter of the section, and let it eut $В \Gamma$, and from Z let $\mathrm{Z} \Lambda$ be drawn perpendicular to ZH , and let $\mathrm{KA}^{2}: \mathrm{BK} . \mathrm{K} \Gamma=\mathrm{ZO}: \mathrm{Z} \Lambda$, and let there be taken at random any point M on the section, and through M let MN be drawn parallel to $\Delta \mathrm{E}$, and through N let NOE be drawn parallel to $Z \Lambda$, and let $\theta \Lambda$ be joined and produced to Ξ, and through Λ, Ξ, let $\Lambda 0$, 寻II be drawn parallel to ZN. I say that the square on MN is equal to $Z \Xi$, which is applied to the straight line Z Λ, having ZN for its breadth, and exceeding by the figure $\Lambda \Xi$ which is similar to the rectangle contained by $\theta Z, Z \Lambda$.

For let PNE be drawn through N parallel to $\mathrm{B} \mathrm{\Gamma}$; but NM is parallel to $\Delta \mathrm{E}$; therefore the plane through

GREEK MATHEMATICS

 КГ каi $\dot{\eta}$ AK $\pi \rho o ̀ s \mathrm{~KB}$. $\dot{\alpha} \lambda \lambda$ ' $\dot{\text { s }} \mu \dot{\epsilon} \nu \quad \dot{\eta} \mathrm{AK}$
 $\pi \rho o ̀ s \mathrm{~N} \Sigma$, $\dot{\omega}$ s $\delta \dot{\epsilon} \dot{\eta} \mathrm{AK} \pi \rho o ̀ s \mathrm{~KB}$, oṽ $\tau \omega s$ 并 $\mathrm{ZH} \pi \rho o ̀ s$ HB , тоvтє́ $\sigma \tau \iota \nu \dot{\eta} \mathrm{ZN} \pi \rho o ̀ s \mathrm{NP}$. ó ảpa $\tau \hat{\eta} s \mathrm{QZ}$ $\pi \rho o ̀ s ~ Z \Lambda ~ \lambda o ́ \gamma o s ~ \sigma v ́ \gamma к є \iota \tau \alpha \iota ~ \epsilon ั ้ \kappa ~ \tau \epsilon ~ \tau о \hat{v} \tau \hat{\eta} s$ @N $\pi \rho o ̀ s$

 $\dot{\eta} \Theta \mathrm{N} \pi \rho o ̀ s \mathrm{~N} \Xi . \quad \dot{\alpha} \lambda \lambda{ }^{\prime} \dot{\omega}_{s} \dot{\eta} \Theta \mathrm{~N} \pi \rho o \dot{s} \mathrm{~N} \Xi, \tau \hat{\eta} s$ ZN коıvô̂ v̈భovs $\lambda a \mu \beta \alpha v o \mu \epsilon ́ v \eta s$ ov̈ $\tau \omega s$ тò $\dot{v} \pi \grave{o}$ $\tau \hat{\omega} \nu \Theta \mathrm{NZ} \pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \tau \hat{\omega} \nu \mathrm{ZN} \mathrm{\Xi}$. каi $\dot{\omega} s$ ä $\rho \alpha$

APOLLONIUS OF PERGA

$\mathrm{MN}, \mathrm{P} \mathrm{\Sigma}$ is parallel to the plane through $\mathrm{B} \mathrm{\Gamma}, \triangle \mathrm{E}$ [Eucl. xi. 15], that is to the base of the cone. If, then, the plane through MN, PE be produced, the section will be a circle with diameter PNE [Prop. 4]. And MN is perpendicular to it ; therefore

	PN. $\mathrm{N} \Sigma=\mathrm{MN}^{2}$.
And since	$\mathrm{AK}^{2}: \mathrm{BK} . \mathrm{K} \mathrm{\Gamma}=\mathrm{Z} \theta: Z \Lambda$,
while	$\mathrm{AK}^{2}: \mathrm{BK} \cdot \mathrm{K} \Gamma=(\mathrm{AK}: \mathrm{K} \mathrm{\Gamma})(\mathrm{AK}: \mathrm{KB})$,
refore	$\mathrm{Z} \theta: \mathrm{ZA}=(\mathrm{AK}: \mathrm{K} \mathrm{\Gamma})(\mathrm{AK}: \mathrm{KB})$.
But	AK : $\mathrm{K} \Gamma=\Theta \mathrm{H}: \mathrm{H} \mathrm{\Gamma}$,
	$=\theta \mathrm{N}: \mathrm{N} \Sigma$, [Eucl. vi. 4
and	$\mathrm{AK}: \mathrm{KB}=\mathrm{ZH}: \mathrm{HB}$,
i.e.	= ZN : NP. [ibid
refore	$\theta Z: Z \Lambda=(\theta \mathrm{N}: N \Sigma)(\mathrm{ZN}: N P)$.
	NZ)(ZN : NP) $=\theta \mathrm{N} . \mathrm{NZ}: \mathrm{EN} . \mathrm{NP}$;
there	

$$
\theta N \cdot N Z: \Sigma N \cdot N P=\theta Z: Z \Lambda
$$

$$
=\theta \mathrm{N}: \mathrm{N} \Xi . \quad[i b i d .
$$

But

$$
\theta \mathrm{N}: \mathrm{N} \exists=\mathrm{AN} \cdot \mathrm{NZ}: \mathrm{ZN} \cdot \mathrm{NE}
$$

by taking a common height ZN.
And therefore

Therefore
But
as was proved;
and therefore $\quad M N N^{2}=\Xi N . N Z$.
But the rectangle $\Xi \mathrm{EN} . \mathrm{NZ}$ is the parallelogram ΞZ.

GREEK MATHEMATICS

 ai є́ $\pi i \tau \grave{\eta} \nu \mathrm{ZH}$ катаүо́ $\mu \in \nu a \iota ~ \tau \epsilon \tau \alpha \gamma \mu \epsilon ́ v \omega \varsigma^{\cdot} \kappa \alpha \lambda \epsilon i \sigma \theta \omega$

$\iota \gamma^{\prime}$

 тov ä乡ovos $\tau \rho \iota \gamma \dot{\omega} \nu o v \hat{\eta} \tau \hat{\eta} \epsilon \dot{\epsilon} \pi^{\prime} \epsilon \dot{v} \theta \epsilon i ́ a s ~ a v ่ \tau \hat{\eta}, \eta \geqslant \tau \iota S$ åv $\dot{\alpha} \pi \dot{o} \tau \hat{\eta} S ~ \tau о \mu \hat{\eta} S ~ \tau o \hat{v} \kappa \omega ́ v o v ~ \pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \dot{\alpha} \chi \theta \hat{\eta} \tau \hat{\eta}$

 316

APOLLONIUS OF PERGA

Therefore the square on MN is equal to ΞZ, which is applied to $\mathrm{Z} \Lambda$, having ZN for its breadth, and exceeding by $\Lambda \boldsymbol{\exists} \boldsymbol{\#}$ similar to the rectangle contained by $\theta Z, Z \Lambda$. Let such a section be called a hyperbola, let ΛZ be called the parameter to the ordinates to ZH ; and let this line be also called the erect side (latus rectum), and $\mathrm{Z} \Theta$ the transverse side. ${ }^{a}$

Prop. 13

Let a cone be cut by a plane through the axis, and let it be cut by another plane meeting each side of the axial triangle, being neither parallel to the base nor subcontrary, and let the plane containing the base of the cone meet the cutting plane in a straight line perpendicular either to the base of the axial triangle or to the base produced; then if a straight line be drawn from any point of the section of the cone parallel to the common section of the planes as far as the diameter of the section, its square will be equal to an area applied to a certain straight line; this line is such that the diameter of the section nill bear to it the same ratio as the square on the line drawn from the vertex of the cone parallel to the diameter of the section as far as the base of the triangle bears to the rectangle contained by the intercepts made by it on the sides of the triangle; the breadth of the applied figure will be the intercept made by it on the diameter in the direction of the vertex of the section; and the applied figure will be deficient by a figure similar and similarly situated to the rectangle bounded by the diameter and the parameter; and let such a section be called an ellipse.

Let there be a cone, whose vertex is the point A

[^67]
GREEK MATHEMATICS

 $\chi \omega \rho i ́ o \nu, ~ o ̂ ~ \pi \alpha \rho \alpha ́ к є \iota \tau \alpha \iota ~ \pi \alpha \rho \alpha ̀ ~ \tau \eta ̀ \nu ~ \mathrm{E} \Theta, \pi \lambda a ́ \tau o s ~ \epsilon ้ \chi o \nu$

' $\mathrm{E} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \quad \gamma \dot{\alpha} \rho \dot{\eta} \Delta \Theta$, каi $\delta \iota \dot{\alpha} \mu \grave{\epsilon} \nu$ то仑̂ $\mathrm{M} \tau \hat{\eta}$ 318

APOLLONIUS OF PERGA

and whose base is the circle $\mathrm{B} \mathrm{\Gamma}$, and let it be cut by a plane through the axis, and let the section so made be the triangle $A B \Gamma$, and let it be cut by another plane meeting either side of the axial triangle, being drawn neither parallel to the base nor subcontrary, and let the section made on the surface of the cone be the curve $\Delta \mathrm{E}$; let the common section of the cutting plane and of that containing the base of the cone be ZH , perpendicular to $\mathrm{B} \mathrm{\Gamma}$, and let the diameter of the section be $\mathrm{E} \Delta$, and from E let $\mathrm{E} \theta$ be drawn perpendicular to $\mathrm{E} \Delta$, and through A let AK be drawn parallel to $\mathrm{E} \Delta$, and let $\mathrm{AK}^{2}: \mathrm{BK} . \mathrm{K} \Gamma=\Delta \mathrm{E}: \mathrm{E} \theta$, and let any point Λ be taken on the section, and through Λ let ΛM be drawn parallel to ZHI. I say that the square on $\Lambda \mathrm{M}$ is equal to an area applicd to the straight line E Θ, having EM for its breadth, and being deficient by a figure similar to the rectangle contained by $\Delta \mathrm{E}, \mathrm{E} \Theta$.

For let $\Delta \theta$ be joined, and through M let $M \Xi N$ be

GREEK MATHEMATICS

$\Theta \mathrm{E} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda_{0}{ }^{\eta} \chi \chi \theta \omega \dot{\eta} \mathrm{M} \Xi \mathrm{N}, \delta \iota \dot{\alpha}$ 交 $\tau \hat{\omega} \nu \Theta, \Xi$ $\tau \hat{\eta} \mathrm{EM} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \lambda \iota \imath \geqslant \chi \theta \omega \sigma \alpha \nu$ ai $\Theta \mathrm{N}$ ，छО，каi $\delta \iota \dot{\alpha}$

 $\dot{\eta} \Lambda \mathrm{M} \tau \hat{\eta} \mathrm{ZH} \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o s, \tau o ̀ ~ a ̉ p a ~ \delta \iota \alpha ̀ ~ \tau \hat{\omega} \nu ~ \Lambda \mathrm{M}$ ，

 ки́клоs $\notin \sigma \tau \alpha \iota$ ，ồ $\delta \iota a ́ \mu \epsilon \tau \rho o s ~ \dot{\eta}$ ПР．каí є́ $\sigma \tau \iota$

 á $\pi \grave{o} \tau \eta \bar{\eta} \mathrm{AK} \pi \rho o ̀ s \tau o ̀ ~ v ́ \pi o ̀ ~ \tau \hat{\omega} \nu \mathrm{BK} \Gamma$ ，oữ $\omega \mathrm{s} \dot{\eta} \mathrm{E} \Delta$

 трòs KB ，oư $\tau \omega s$ 市 EH т $\rho o ̀ s \mathrm{HB}$ ，тov ϵ＇́ $\sigma \tau \tau \nu \dot{\eta}$
 $\Delta \mathrm{H}$ трòs $\mathrm{H} \Gamma$ ，тоvтє́бт兀ь $\dot{\eta} \Delta \mathrm{M}$ т $\rho o ̀ s \mathrm{MP}$ ，ó ả ρa
 $\tau \hat{\eta} s$ EM $\pi \rho o ̀ s ~ М П ~ к \alpha i ̀ ~ \tau о \hat{~} \tau \hat{\eta} s \Delta \mathrm{M} \pi \rho o ̀ s ~ M P . ~ \delta ~$

 $\tau o ̀ ~ v i \pi o ̀ ~ \tau \hat{\omega} \nu \mathrm{EM} \Delta \pi \rho o ̀ s ~ \tau o ̀ ~ u ́ \pi o ̀ ~ \tau \hat{\omega} \nu ~ \Pi М Р, ~ o u ̋ \tau \omega s$ $\dot{\eta} \Delta \mathrm{E} \pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{E}$ ，$\tau 0 v \tau \epsilon \in \sigma \tau \iota \nu \quad \dot{\eta} \Delta \mathrm{M}$ т $\rho o ̀ s \tau \dot{\eta} \nu$ ME ．$\dot{\omega} s \delta \dot{\epsilon} \dot{\eta}, \Delta \mathrm{M}$ тоòs $\mathrm{M} \Xi, \tau \hat{\eta} s \mathrm{ME}$ ко七го̂

 320

APOLLONIUS OF PERGA

drawn parallel to $\theta \mathrm{E}$, and through $\theta, \Xi, \operatorname{let} \theta \mathrm{N}, \boldsymbol{\Xi}$ be drawn parallel to EM, and through M let IMP be drawn parallel to BF . Then since MP is parallel to $B \Gamma$, and ΛM is parallel to ZH , therefore the plane through $\Lambda \mathrm{M}$, ПP is parallel to the plane through ZH, BГ [Eucl. xi. 15], that is to the base of the cone. If, therefore, the plane through $\Lambda \mathrm{M}$, IIP be produced, the section will be a circle with diameter IIP [Prop. 4]. And ΛM is perpendicular to it; therefore

$$
\Pi M . M P=\Lambda M^{2} .
$$

And since $\quad \mathrm{AK}^{2}: \mathrm{BK} \cdot \mathrm{K} \Gamma=\mathrm{E} \Delta: \mathrm{E} \theta$,
and $\quad \mathrm{AK}^{2}: \mathrm{BK} . \mathrm{K} \Gamma=(\mathrm{AK}: \mathrm{KB})(\mathrm{AK}: \mathrm{K} \mathrm{\Gamma})$,
while

$$
\begin{aligned}
\mathrm{AK}: \mathrm{KB} & =\mathrm{EH}: \mathrm{HB} \\
& =\mathrm{EM}: \text { MII, [Eucl. vi. } 4
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{AK}: \mathrm{K} \mathrm{\Gamma} & =\Delta \mathrm{H}: \mathrm{H} \Gamma \\
& =\Delta \mathrm{M}: \mathrm{MP}, \quad \quad \quad \text { ibid. }
\end{aligned}
$$

therefore
$\Delta \mathrm{E}: \mathrm{E} \theta=(\mathrm{EM}: \mathrm{MI})(\Delta \mathrm{M}: \mathrm{MP})$.
But (EM : MII) (\triangle M : MP) =EM.M M : ILM. MP.
Therefore

$$
\begin{aligned}
\mathrm{EM} \cdot \mathrm{M} \mathrm{\Delta}: \text { MM } \cdot \mathrm{MP} & =\Delta \mathrm{E}: \mathrm{E} \Theta \\
& =\Delta \mathrm{M}: \mathrm{M} \exists \\
\Delta \mathrm{M}: \mathrm{M} & =\Delta \mathrm{M} \cdot \mathrm{ME}: \Xi \mathrm{G} . \mathrm{ME},
\end{aligned}
$$

But
by taking a common height ME.
Therefore $\triangle M$. ME : IIM. MP = $\triangle M . M E: \Xi M . M E$.
Therefore \quad MM.MP = ヨM. ME. [Eucl. v. 9
But
$\Pi M . M P=\Lambda M^{2}$,
as was proved;
and therefore $\quad E M . M E=\Lambda M^{2}$.

GREEK MATHEMATICS

ä ρa סúvaтaı $\tau \grave{\mathrm{O}} \mathrm{MO}$, ô $\pi \alpha \rho \alpha ́ \kappa \epsilon \iota \tau \alpha \iota \pi \alpha \rho \grave{~} \tau \grave{\eta} \nu \Theta \mathrm{E}$,

$1 \delta^{\prime}$

 $\tau \hat{\omega} \nu \kappa о \rho v \phi \hat{\omega} \nu \tau \hat{\omega} \nu \tau о \mu \hat{\omega} \nu \cdot \kappa \alpha \lambda \epsilon i \sigma \theta \omega \sigma \alpha \nu$ $\delta \grave{\epsilon}$ аi

 корифウ̀ $\tau \grave{\mathrm{o}} \mathrm{A} \sigma \eta \mu \epsilon \hat{\imath} о \nu, \kappa \alpha i \quad \tau \epsilon \tau \mu \eta \dot{\sigma} \theta \omega \sigma \alpha \nu \dot{\epsilon} \pi \iota \pi \epsilon \in \delta \omega$

[^68]
APOLLONIUS OF PERGA

Therefore the square on ΛM is equal to MO , which is applied to $\Theta \mathrm{E}$, having EM for its breadth, and being deficient by the figure ON similar to the rectangle $\Delta \mathrm{E} . \mathrm{E} \theta$. Let such a section be called an eclipse, let $\mathrm{E} \Theta$ be called the parameter to the ordinates to $\Delta \mathrm{E}$, and let this line be called the erect side (latus rectum), and $\mathrm{E} \Delta$ the transverse side. ${ }^{a}$

Prop. 14

If the vertically opposite surfaces [of a double cone] be cut by a plane not through the vertex, there will be formed on each of the surfaces the section called a hyperboia, and the diameter of both sections will be the same, and the parameter to the ordinates dravn parallel to the straight line in the base of the cone will be equal, and the transverse side of the figure will be common, being the straight line between the vertices of the sections; and let such sections be called opposite.

Let there be vertically opposite surfaces having the point A for vertex, and let them be cut by a plane not through the vertex, and let the sections so made on the surface be $\triangle \mathrm{EZ}, \mathrm{H} \theta \mathrm{K}$. I say that each of the sections $\triangle E Z, H Ө K$ is the so-called hyperbola.
and $y^{y^{2}}=p x$
(the parabola),

$$
y^{2}=p x \pm \frac{p}{d} x^{4} \text { (the hyperbola and ellipse respectively). }
$$

It is the essence of Apollonius's treatment to express the fundamental properties of the conics as equations between areas, whereas Archimedes had given the fundamental properties of the central conics as proportions

$$
y^{2}:\left(a^{2} \pm x^{2}\right)=a^{2}: b^{2} .
$$

This form is, however, equivalent to the Cartesian equations referred to axes through the centre.

GREEK MATHEMATICS

 324

APOLLONIUS OF PERGA

For let $\mathrm{B} \Delta \Gamma Z$ be the circle round which revolves the straight line describing the surface, and in the vertically opposite surface let there be drawn parallel to it a plane 田HOK ; the common sections of the sections $\mathrm{H} \theta \mathrm{K}, \mathrm{ZE} \Delta$ and of the circles [Prop. 4] will be $\mathrm{Z} \Delta, \mathrm{HK}$; and they will be parallel [Eucl. xi. 16]. Let the axis of the conical surface be $\Lambda A Y$, let the centres of the circles be Λ, Υ, and from Λ let a perpendicular be drawn to $\mathrm{Z} \Delta$ and produced to the points B, Γ, and let the plane through $B \Gamma$ and the axis be produced; it will make in the circles the parallel straight lines 弱, $В$ Г , and on the surface $\mathrm{BAO}, ~ Г А Э$;

GREEK MATHEMATICS

 396

APOLLONIUS OF PERGA

now $E O$ will be perpendicular to $H K$, since $B \Gamma$ is perpendicular to $Z \Delta$, and each is parallel [Eucl. xi. 10]. And since the plane through the axis meets the sections at the points M, N within the curves, it is clear that the plane cuts the curves. Let it cut them at the points θ, E; then the points M, E, θ, N are both in the plane through the axis and in the plane containing the curves; therefore the line ME日N is a straight line [Eucl. xi. 3]. And it is clear that $\Theta, \theta, A, \Gamma$ are on a straight line, and also B, E, A, O; for they are both on the conical surface and in the plane through the axis. Now let $\Theta \mathrm{P}, \mathrm{E} \mathrm{\Pi}$ be drawn from θ, E perpendicular to θE, and through A let $\Sigma A T$ be drawn parallel to MEON, and let

$$
A \Sigma^{2}: B \Sigma \cdot \Sigma \Gamma=\theta \mathrm{E}: \mathrm{E} \Pi
$$

and

$$
\mathrm{AT}^{2}: \mathrm{OT} \cdot \mathrm{~T} \Xi=\mathrm{E} \Theta: \theta \mathrm{P} .
$$

Then since the cone, whose vertex is the point A and whose base is the circle $В \Gamma$, is cut by a plane through the axis, and the section so made is the triangle $A B \Gamma^{r}$, and it is cut by another plane cutting the base of the cone in the straight line $\triangle \mathrm{MZ}$ perpendicular to $\mathrm{B} \mathrm{\Gamma}$, and the section so made on the surface is $\Delta \mathrm{E} Z$, and the diameter ME produced meets one side of the axial triangle beyond the vertex of the cone, and $A \Sigma$ is drawn through the point A parallel to the diameter of the section EM, and EM is drawn from E perpendicular to EM , and $\mathrm{A} \Sigma^{2}: \mathrm{B} \mathrm{\Sigma} . \mathrm{\Sigma} \Gamma=\mathrm{E} \theta: \mathrm{E} \Pi$, therefore the section $\triangle E Z$ is a hyperbola, in which $E \Pi$ is the parameter to the ordinates to EM , and $\theta \mathrm{E}$ is the

GREEK MATHEMATICS

 $\dot{\eta} \Theta \mathrm{E}$.

 $\mathrm{A} \Sigma \pi \rho o ̀ s ~ \Sigma \Gamma$ 入óyos $\mu \in \tau \dot{\alpha}$ тồ $\tau \eta \bar{S} \mathrm{~A} \Sigma \pi \rho o ̀ s ~ \Sigma \mathrm{~B}$
 AT $\pi \rho o ̀ s ~ T E ~ \mu \epsilon \tau \grave{a} ~ \tau o \hat{v} \tau \hat{\eta} s$ AT $\pi \rho o ̀ s ~ T O ~ o ́ ~ \tau o \hat{v}$

 є́aтiv $\dot{\eta} \mathrm{E} \Pi \tau \hat{\eta} \Theta \mathrm{P}$.

(vi.) Transition to New Diameter

Ibid., Prop. 50, Apoll. Perg. ed. Heiberg i. 148. 17-154. 8

 $\mu \epsilon ́ \nu \omega s$ кат $\eta \gamma \mu \epsilon ́ \nu \eta \nu \sigma v \mu \pi i \pi \tau \eta \tau \hat{\eta} \delta_{\iota} \dot{\alpha} \tau \hat{\eta} S \dot{a} \phi \hat{\eta} S \kappa \alpha i$

[^69]
APOLLONIUS OF PERGA

transverse side of the figure [Prop. 12]. Similarly $H \theta K$ is a hyperbola, in which $\theta \mathrm{N}$ is a diameter, $\theta \mathrm{P}$ is the parameter to the ordinates to $\theta \mathrm{N}$, and $\theta \mathrm{E}$ is the transverse side of the figure.

I say that $\Theta \mathrm{P}=\mathrm{EII}$. For since $\mathrm{B} \Gamma$ is parallel to $\Xi \mathrm{O}$,

$$
\mathrm{A} \mathrm{\Sigma}: \Sigma \Gamma=\mathrm{AT}: \mathrm{T} \Xi,
$$

and $\mathrm{A} \Sigma: \Sigma \mathrm{B}=\mathrm{AT}: \mathrm{TO}$.
But $(\mathrm{A} \Sigma: \Sigma \Gamma)(\mathrm{A} \Sigma: \Sigma \mathrm{B})=\mathrm{A} \Sigma^{2}: \mathrm{B} \Sigma . \Sigma \Gamma$,
and (AT:TE)(AT :TO)=AT ${ }^{2}:$ 鳬T.TO.
Therefore $\quad A \Sigma^{2}: B \Sigma . \Sigma \Gamma=A T^{2}: \Xi T . T O$.
But $\quad A \Sigma^{2}: B \Sigma . \Sigma \Gamma=\theta E: E \Pi$,
while $\quad \mathrm{AT}^{2}: \Xi \mathrm{T} . \mathrm{TO}=\theta \mathrm{E}: \theta \mathrm{P}$;
therefore $\quad \theta \mathrm{E}: \mathrm{EH}=\mathrm{E} \theta: \Theta \mathrm{P}$.
Therefore
$E \Pi=\theta P .{ }^{a}$
[Eucl. v. 9

(vi.) Transition to New Diameter

Ibid., Prop. 50, Apoll. Perg. ed. Heiberg i. 148. 17-154. 8
Prop. 50
In a hyperbola, ellipse or circumference of a circle let a straight line be drann to touch [the curve] and meet the diameter, and let the straight line through the point of contact and the centre be produced, and from the vertex let a straight line be drawn parallel to a straight line drawn ordinate-mise so as to meet the straight line drawn
curve. It is his practice, however, where possible to discuss the single-branch hyperbola (or the hyperbola simpliciter as he would call it) together with the ellipse and circle, and to deal with the opposite branches separately. But occasionally, as in i. 30, the double-branch hyperbola and the ellipse are included in one enunciation.

GREEK MATHEMATICS

 $\tau \mu \hat{\eta} \mu \alpha \tau \hat{\eta} S$ '่ $\phi \alpha \pi \tau о \mu \epsilon ́ \nu \eta S$ тò $\mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\eta} S \dot{\alpha} \phi \hat{\eta} S$ каi
 $\tau \hat{\eta} S \dot{\alpha} \phi \hat{\eta} S$ каi $\tau о \hat{v} \kappa \epsilon ́ \nu \tau \rho о v$ тò $\mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\eta} S$ aं $\phi \hat{\eta} S$

 $\chi \omega \rho i ́ o \nu$ ỏ $\rho \theta о \gamma \omega ́ \nu \iota о \nu \pi \alpha \rho а к є i ́ \mu \epsilon \nu о \nu \pi а \rho \alpha ̀ ~ \tau \grave{\eta} \nu \pi о \rho \iota-$

 ZЕ $\pi \rho o ̀ s \mathrm{EH}$, oư $\tau \omega s$ í $\mathrm{E} \Theta \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \delta_{\iota} \pi \lambda \alpha \sigma i \alpha \nu \tau \hat{\eta} s$

 $\alpha u ̉ \tau o v ̂ \tau \hat{\eta} \mathrm{E} \Delta \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o s{ }_{\eta} \chi \theta \omega \quad \dot{\eta} \Lambda \mathrm{ME}, \tau \hat{\eta} \delta \dot{\epsilon}$

[^70]
APOLLONIUS OF PERGA

through the point of contact and the centre, and let the segment of the tangent between the point of contact and the line drawn ordinate-nise bear to the segment of the line drawn through the point of contact and the centre between the point of contact and the line drawn ordinatewise the same ratio as a certain straight line bears to double the tangent; then if any straight line be drawn from the section parallel to the tangent so as to meet the straight line drawn through the point of contact and the centre, its square will be equal to a certain rectilineal area applied to the postulated straight line, having for its breadth the intercept between it and the point of contact, in the case of the hyperbola exceeding by a figure similar to the rectangle bounded by double the straight line between the centre and the point of contact and the postulated straight line, in the case of the ellipse and circle falling short. ${ }^{a}$

In a hyperbola, ellipse or circumference of a circle, with diameter $A B$ and centre Γ, let $\Delta \mathrm{E}$ be a tangent, and let ΓE be joined and produced in either direction, and let $\Gamma \mathrm{K}$ be placed equal to $\mathrm{E} \Gamma$, and through B let BZH be drawn ordinate-wise, and through E let $\mathrm{E} \Theta$ be drawn perpendicular to $\mathrm{E} \Gamma$, and let $\mathrm{ZE}: \mathrm{EH}=\mathrm{E} \theta: 2 \mathrm{E} \Delta$, and let $\theta \mathrm{K}$ be joined and produced, and let any point Λ be taken on the section, and through it let $\Lambda \mathrm{M} \exists$ be drawn parallel to $\mathrm{E} \Delta$ and purpose of this important proposition is to show that, if any other diameter be taken, the ordinate-property of the conic with reference to this diameter has the same form as the ordinate-property with reference to the original diameter. The theorem a mounts to a transformation of co-ordinates from the original diameter and the tangent at its extremity to any diameter and the tangent at its extremity. In succeeding propositions, showing how to construct conics from certain data, Apollonius introduces the axes for the first time as special cases of diameters.

GREEK MATHEMATICS

 $\Theta \mathrm{E} \pi \rho o ̀ s \tau \grave{\eta} \nu \delta \iota \pi \lambda \alpha \sigma i \alpha \nu \tau \eta{ }^{\prime} \mathrm{E} \Delta$, каí $\epsilon^{\prime} \sigma \tau \iota \tau \hat{\eta} s \mathrm{E} \Theta$
 $\nu \mathrm{E} \pi \rho o ̀ s \mathrm{E} \Delta$. $\dot{\omega} \delta_{\text {è }}^{\eta} \mathrm{ZE} \pi \rho o ̀ s \mathrm{EH}, \dot{\eta} \Lambda \mathrm{M} \pi \rho o ̀ s$ MP. $\dot{\omega}$ ápa $\dot{\eta} \Lambda \mathrm{M} \pi \rho o ̀ s \mathrm{MP}, \dot{\eta} \Sigma \mathrm{E} \pi \rho o ̀ s \mathrm{E} \Delta$.

 332

APOLLONIUS OF PERGA

APN parallel to BII，and let MII be drawn parallel to EӨ．I say that $\Lambda \mathrm{N}^{2}=\mathrm{EM}$ ．MII．

For through I let I $\Sigma(O$ be drawn parallel to KII． Then since
and
therefore
And since
and
therefore
But
therefore
And since it has been proved［Prop．43］that in the hyperbola triangle $P N \Gamma=$ triangle $H B \Gamma+$ triangle $\Lambda N \Xi$ ， i．e．，triangle $\mathrm{PN} \mathrm{\Gamma}=$ triangle $\Gamma \Delta \mathrm{E}+$ triangle $\Lambda \mathrm{N} \exists, \boldsymbol{a}$ while in the cllipse and the circle triangle PNT $=$ trianglc $\mathrm{H}^{-1} \Gamma^{-}$ triangle $\Lambda \mathrm{N}^{\mathrm{V}}$ ，
i．e．，triangle $\mathrm{PN} \Gamma+$ triangle ΛN 寻 $=$ triangle $\Gamma \Delta \mathrm{E},{ }^{b}$ therefore by taking away the common elements－in the hyperbola the triangle $\mathrm{E} \Gamma \Delta$ and the quadrilateral NPM $コ$ ，in the ellipse and the circle the triangle MヨI， triangle $\Lambda M P=$ quadrilateral $M E \Delta \Xi$ ．
${ }^{\text {a }}$ For this step v ．Eutocius＇s comment on Prop． 43. ${ }^{6}$ See Eutocius．

GREEK MATHEMATICS

$\pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{ME} \tau \hat{\eta} \Delta \mathrm{E}, \dot{\eta} \delta \dot{\epsilon} \dot{v} \pi \grave{o}$ МMP $\tau \hat{\eta} \dot{讠} \pi \dot{\partial}$
 $\dot{v} \pi \grave{̀} \tau \hat{\eta} s \mathrm{EM} \kappa \alpha i$ бvvaцфотє́pov $\tau \hat{\eta} s \mathrm{E} \Delta$, MЕ. каi

 $\mathrm{ME} \pi \rho o ̀ s ~ \Delta \mathrm{E}$. каi $\sigma v \nu \theta \in ́ v \tau \iota$, 由̀s $\sigma v \nu \alpha \mu \phi o ́ \tau \epsilon \rho o s ~ \dot{\eta}$ $\mathrm{MO}, ~ \Sigma \mathrm{E} \pi \rho o ̀ s \mathrm{E} \Sigma$, oṽт $\tau \omega s$ ovvaцфó $\tau \epsilon \rho o s \dot{\eta} \mathrm{ME}$,
 $\Sigma \mathrm{E} \pi \rho o ̀ s ~ \sigma v \nu а \mu \phi o ́ \tau \epsilon \rho o \nu ~ \tau \grave{\eta} \nu \mathrm{\Xi}, \mathrm{E} \Delta \dot{\eta} \mathrm{\Sigma}$ Е $\pi \rho o ̀ s$
 $\sigma v \nu \alpha \mu \phi o ́ \tau \epsilon \rho о \nu \tau \grave{\eta} \nu \mathrm{M} \Xi, \Delta \mathrm{E}$, тò $\dot{v} \pi \grave{̀} \sigma v \nu \alpha \mu \phi о \tau \epsilon ́ \rho o v$

 $\mathrm{E} \Delta, \dot{\eta} \mathrm{ZE} \pi \rho o \grave{s} \mathrm{EH}$, тоvтє́бтьь $\dot{\eta} \Lambda \mathrm{M} \pi \rho o \grave{s} \mathrm{MP}$,

 $\pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \sigma v \nu a \mu \phi o \tau \epsilon ́ \rho o v ~ \tau \eta ̂ s ~ M E, ~ E \Delta ~ \kappa а i ~ \tau \eta ̂ s ~$ $\mathrm{EM}, ~ \tau o ̀ ~ a ̀ \pi o ̀ ~ \Lambda M ~ \pi ~ \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \Lambda M P . ~ к а i ~ \epsilon ́ v a \lambda \lambda a ́ \xi, ~$

 т $\hat{s} \mathrm{ME}, \mathrm{E} \Delta$ каi $\tau \hat{\eta} s \mathrm{ME} \pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \Lambda M P . ~$

 íлò $\mathrm{EM} \kappa \alpha i$ ovvaцфотє́pov $\tau \hat{\eta} s \mathrm{MO}, \mathrm{E} \Sigma$. каí
 á ρa тò à $\pi \grave{o} \Lambda \mathrm{M} \tau \hat{\varphi}$ vimò EMП. 334

APOLLONIUS OF PERGA

But $\mathrm{M} \exists$ is parallel to $\Delta \mathrm{E}$ and angle $\Lambda \mathrm{MP}=$ angle EM寻 (Eucl. i. 15] ;
therefore
And since
and
therefore
Componendo,
$\Lambda M . M P=E M .(E \Delta+M$ M $)$.
MГ : ГЕ = M寻: E Δ,
$\mathrm{M} \mathrm{\Gamma}: \Gamma \mathrm{E}=\mathrm{MO}: \mathrm{E} \mathrm{\Sigma}$,
[Eucl. vi. 4
$\mathrm{MO}: \mathrm{E} \mathrm{\Sigma}=\mathrm{M} \exists \mathrm{B}: \Delta \mathrm{E}$.
$\mathrm{MO}+\mathrm{\Sigma E}: \mathrm{E} \Sigma=\mathrm{M} \Xi+\mathrm{E} \Delta: \mathrm{E} \Delta ;$
and permutando

$$
\mathrm{MO}+\mathrm{\Sigma E}: \overrightarrow{\mathrm{E}} \mathrm{M}+\mathrm{E} \Delta=\Sigma \mathrm{E}: \mathrm{E} \Delta \text {. }
$$

But

$$
\begin{aligned}
\mathrm{MO}+\mathrm{EE}: \Xi \mathrm{M}+\mathrm{E} \Delta= & (\mathrm{MO}+\mathrm{E} \mathrm{\Sigma}) \cdot \mathrm{EM}: \\
& (\mathrm{M} \Xi+\mathrm{E} \Delta) \cdot \mathrm{EM},
\end{aligned}
$$

$$
\Sigma \mathrm{E}: \mathrm{E} \Delta=\mathrm{ZE}: \mathrm{EH}
$$

$$
=\Lambda \mathrm{M}: \mathrm{MP}
$$

[Eucl. vi. 4
$=\Lambda \mathrm{M}^{2}: \Lambda \mathrm{M} . \mathrm{MP}$;
therefore
$(\mathrm{MO}+\mathrm{EL}) . \mathrm{ME}:(\mathrm{M} \exists \mathrm{Z}+\mathrm{E} \Delta) . \mathrm{EM}=\Lambda \mathrm{M}^{2}: \Lambda \mathrm{M} . \mathrm{MP}$.
And permutando

$$
\begin{array}{r}
(\mathrm{MO}+\mathrm{E} \Sigma) \cdot \mathrm{ME}: M \Lambda^{2}=(\mathrm{ME}+\mathrm{E} \Delta) \cdot \mathrm{ME}: \\
\Lambda M \cdot \mathrm{MP} .
\end{array}
$$

But
therefore
And
therefore
$\Lambda \mathrm{M} . \mathrm{MP}=\mathrm{ME} .(\mathrm{M} \exists+\mathrm{E} \Delta) ;$
$\Lambda M^{2}=E M .(M O+E 2)$.
$\Sigma \mathrm{E}=\Sigma \theta$, while $\Sigma \theta=O \Pi$ [Eucl. i. 34];
$\Lambda M^{2}=$ EM . M

GREEK MATHEMATICS

(b) Other Works

(i.) General

Papp. Coll. vii. 3, ed. Hultsch 636. 18-23
 $\dot{\eta} \tau \alpha ́ \xi \iota s ~ \epsilon ’ \sigma \tau i \nu ~ \tau o \iota a v ́ \tau \eta . ~ E v ̉ \kappa \lambda \epsilon i ́ \delta o v ~ \Delta \epsilon \delta о \mu \epsilon ́ v \omega \nu ~$ $\beta \iota \beta \lambda i o v ~ \bar{\alpha}, ~ ' A \pi о \lambda \lambda \omega v i ́ o v ~ \Lambda o ́ \gamma o v ~ \dot{\alpha} \pi о \tau о \mu \eta ิ s ~ \bar{\beta}$, X ω рíov $\alpha \pi о \tau о \mu \hat{\eta} s \quad \bar{\beta}, \Delta \iota \omega \rho \sigma \mu \epsilon ́ v \eta s$ то $\mu \hat{\eta} s$ रúo, ${ }^{\prime} \mathrm{E} \pi \alpha \phi \hat{\omega} \nu$

 $\mathrm{K} \omega \nu \iota \kappa \omega \hat{\nu} \bar{\eta}$.

(ii.) On the Cutting-off of a Ratio

> Ibid. vii. 5-6, ed. Hultsch 640. 4-22
$\mathrm{T} \hat{\eta} s \delta^{\prime}$ ' $А \pi о \tau о \mu \hat{\eta} s$ тồ $\lambda o ́ \gamma o v ~ \beta \iota \beta \lambda i \omega \nu$ öv $\nu \tau \omega \nu \bar{\beta}$ тро́табís є́ $\sigma \tau \iota \nu ~ \mu i ́ a ~ i ́ т о \delta ı \eta \rho \eta \mu \epsilon ́ v \eta, ~ \delta \iota o ̀ ~ к а і ~ \mu i ́ a \nu ~$
 $\epsilon \dot{\theta} \theta \epsilon \hat{\imath} \alpha \nu \quad \gamma \rho \alpha \mu \mu \grave{\eta} \nu$ ả $\gamma \alpha \gamma \epsilon \hat{\imath} \nu \quad \tau \epsilon ́ \mu \nu o v \sigma \alpha \nu$ ả $\pi \grave{o} \tau \hat{\omega} \nu \tau \hat{\eta}$

 $\delta \iota \delta o \mu \epsilon ́ \nu \omega \nu \quad \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu$ каi $\tau \hat{\omega} \nu$ रıaфóp $\omega \nu \pi \tau \kappa \dot{\sigma} \sigma \epsilon \omega \nu$

[^71]
APOLLONIUS OF PERGA

(b) Other Works

(i.) General

Pappus, Collection vii. 3, ed. Hultsch 636. 18-23
The order of the aforesaid books in the Treasury of Analysis is as follows : the one book of Euclid's Data, the two books of Apollonius's On the Cutting-otf of a Ratio, his two books On the Cutting-off of an Area, his two books On Determinate Section, his two books On Tangencies, the three books of Euclid's Porisms, the two books of Apollonius's On Vergings, the two books of the same writer On Plane Loci, his eight books of Conics. ${ }^{\text {a }}$

(ii.) On the Cutting-off of a Ratio

Ibid. vii. 5-6, ed. Hultsch 640. 4-22

In the two books On the Cutting-off of a Ratio there is one enunciation which is subdivided, for which reason I state one enunciation thus: Through a given point to draw a straight line cutting off from two straight lines given in position intercepts, measured from two given points on them, which shall have a given ratio. When the subdivision is made, this leads to many different figures according to the position of the given straight lines in relation one to another and according to the different cases of the given point, and owing to the analysis and the synthesis both of these cases and of the propositions determining the limits of possibility. The first book of those On the Cutting-off of a
Ratio, and that only in Arabic. Halley published a Latin translation in 1706. But the contents of the other works are indicated fairly closely by Pappus's references.

GREEK MATHEMATICS

тótovs $\bar{\zeta}, \pi \tau \omega \dot{\sigma} \epsilon \iota \varsigma \overline{\kappa \delta}$, $\delta \iota o \rho \imath \sigma \mu o v ̀ s ~ \delta \grave{\epsilon} \bar{\epsilon}, \hat{\omega} \nu \tau \rho \epsilon \hat{\iota} S$

 $\pi \tau \omega ́ \sigma \epsilon \iota s$ ס̀̀ $\overline{\xi \gamma}, \delta \iota o \rho \iota \sigma \mu o v ̀ s ~ \delta \grave{\epsilon} \tau o v ̀ s ~ \grave{\epsilon} \kappa ~ \tau o \hat{v} \pi \rho \omega ́ \tau o v$. $\dot{\alpha} \pi \alpha \dot{\alpha} \gamma \epsilon \tau \alpha \iota \gamma \grave{\alpha} \rho$ ó $\lambda о \nu$ єis $\tau \grave{o} \pi \rho \hat{\omega} \tau о \nu$.

(iii.) On the Cutting-off of an Area

Ibid. vii. 7, ed. Hultsch 640. 26-642. 5

(iv.) On Determinate Section

Ibid. vii. 9, ed. Hultsch 642. 19-644. 16
' $\mathrm{E} \xi \hat{\eta} s$ тov́тoıs ${ }^{2} \nu a \delta \epsilon ́ \delta o \nu \tau \alpha \iota ~ \tau \hat{\eta} s \quad \Delta \iota \omega \rho \iota \sigma \mu \epsilon ́ \imath \eta s$
 $\pi \rho o ́ \tau \alpha \sigma \iota \nu \pi \alpha ́ \rho \epsilon \sigma \tau \iota \nu \lambda \epsilon ́ \gamma \epsilon \iota \nu, \delta \iota \epsilon \zeta \epsilon v \gamma \mu \epsilon ́ \nu \eta \nu \delta \dot{\epsilon} \tau \alpha u ́ \tau \eta \nu \cdot$
a The Arabic text shows that Apollonius first discussed the cases in which the lines are parallel, then the cases in which the lines intersect but one of the given points is at the point of intersection; in the second book he proceeds to the general case, but shows that it can be reduced to the case where one 888

APOLLONIUS OF PERGA

Ratio contains seven loci, twenty-four cases and five determinations of the limits of possibility, of which three are maxima and two are minima. . . . The second book On the Cutting-off of a Ratio contains fourteen loci, sixty-three cases and the same determinations of the limits of possibility as the first; for they are all reduced to those in the first book. ${ }^{\text {a }}$

(iii.) On the Cutting-off of an Area

Ilid. vii. 7, ed. Hultsch 640. 26-642. 5
In the work On the Cutting-off of an Area there are two books, but in them there is only one problem, twice subdivided, and the one enunciation is similar in other respects to the preceding, differing only in this, that in the former work the intercepts on the two given lines were required to have a given ratio, in this to comprehend a given area. ${ }^{\text {b }}$

(iv.) On Determinate Section

Ibid. vii. 9, ed. Hultsch 642. 19-644. 16
Next in order after these are published the two books On Determinate Section, of which, as in the previous cases, it is possible to state one comprehen-
of the given points is at the intersection of the two lines. By this means the problem is reduced to the application of a rectangle. In all cases Apollonius works by analysis and synthesis.
${ }^{6}$ Halley attempted to restore this work in his edition of the De sectione rationis. As in that treatise, the general case can be reduced to the case where one of the given points is at the intersection of the two lines, and the problem is reduced to the application of a certain rectangle.

GREEK MATHEMATICS

 $\stackrel{\ddot{\omega}}{\omega} \tau \tau \epsilon \tau \hat{\omega} \nu \quad \dot{\alpha} \pi о \lambda \alpha \mu \beta \alpha \nu o \mu \epsilon ́ \nu \omega \nu \quad \epsilon \dot{v} \theta \epsilon \iota \omega \bar{\omega} \nu \quad \pi \rho o ̀ s ~ \tau o i ̂ s$
 $\tau \in \tau \rho a ́ \gamma \omega \nu o \nu ~ \eta ̈ ~ \tau o ̀ ~ v i \pi o ̀ ~ \delta u ́ o ~ a ̉ \pi o \lambda \alpha \mu \beta \alpha \nu o \mu \epsilon ́ v \omega \nu ~$

 то̀ vं$\pi o ̀ ~ \delta v ́ o ~ a ̀ \pi о \lambda а \mu \beta а \nu о \mu ' ́ v \omega \nu ~ \pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu о \nu ~ o ’ \rho \theta o-~$

 $\bar{\theta}$, ठıopıб就 $\bar{\gamma}$.

(v.) On Tangencies

Ilid. vii. 11, ed. Hultsch 644. 23-646. 19

 бך $\mu \epsilon i \omega \nu$ каì $\epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu$ каi кv́кд $\omega \nu \tau \rho \iota \hat{\omega} \nu$ ó $\pi о \iota \omega \nu о \hat{v} \nu$
 $\delta o \theta \epsilon ́ v \tau \omega \nu \quad \sigma \eta \mu \epsilon i ́ \omega \nu, \quad \epsilon i \quad \delta o \theta \epsilon i ̀ \eta, \quad \dddot{\eta} \quad \epsilon \phi a \pi \tau o ́ \mu \epsilon \nu \nu \nu$

[^72]
APOLLONIUS OF PERGA

sive enunciation thus: To cut a given infinite straight line in a point so that the intercepts between this point and given points on the line shall furnish a given ratio, the ratio being that of the square on one intercept, or the rectangle contained by two, towards the square on the remaining intercept, or the rectangle contained by the remaining intercept and a given independent straight line, or the rectangle contained by two remaining intercepts, whichever way the given points [are situated]. . . . The first book contains six problems, sixteen subdivisions and five limits of possibility, of which four are maxima and one is a minimum. . . . The second book On Determinate Section contains three problems, nine subdivisions, and three limits of possibility. ${ }^{a}$

(v.) On Tangencies

Ibid. vii. 11, ed. Hultsch 644. 23-646. 19

Next in order are the two books On Tangencies. Their enunciations are more numerous, but we may bring these also under one enunciation thus stated: Given three entities, of which any one may be a point or a straight line or a circle, to drav a circle which shall pass through each of the given points, so far as it is points which are given, or to touch each of the given lines. ${ }^{b}$ In
application of areas. But the fact that limits of possibility, and maxima and minima were discussed leads Heath (H.G.M. ii. 180-181) to conjecture that Apollonius investigated the series of point-pairs determined by the equation for different values of λ, and that "the treatise contained what amounts to a complete Theory of Involution." The importance of the work is shown by the large number of lemmas which Pappus collected.
b The word " lines " here covers both the straight lines and the circles.

GREEK MATHEMATICS

 каi $\sigma \eta \mu \epsilon i ̂ o \nu ~ \eta ̄ \eta ~ \delta v ́ o ~ \epsilon v ่ \theta \epsilon i ̂ a \iota ~ к а i ~ к v ́ к \lambda о s ~ \eta ̈ ~ \delta v ́ o ~ к v ́ к \lambda о \iota ~$

 $\epsilon_{\epsilon} \nu \tau \hat{\varphi} \delta^{\prime} \beta \iota \beta \lambda_{i}^{\prime} \omega \tau \hat{\omega} \nu \pi \rho \omega ́ \tau \omega \nu \Sigma \tau o \iota \chi \epsilon i \omega \nu, \delta \iota o ̀ ~ \pi \alpha \rho i \epsilon \iota$

 $\theta \epsilon \iota \sigma \hat{\omega} \nu \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu \mu \grave{\eta} \pi \alpha \rho \alpha \lambda \lambda \eta \eta^{\prime} \lambda \omega \nu$ ova $\sigma \hat{\omega} \nu, \dot{\alpha} \lambda \lambda \grave{\alpha} \tau \hat{\omega} \nu$

 $\tau \hat{\nu} \nu \kappa v ́ \kappa \lambda \omega \nu$ тє каi $\epsilon \dot{v} \theta \epsilon \iota \omega \hat{\nu} \pi \lambda \epsilon i o \nu a s$ ov้ซas каi $\pi \lambda \epsilon \iota o ́ v \omega \nu$ ঠıорıб $\mu \omega ิ \nu \delta \epsilon о \mu \epsilon ́ v a s$.

- Encl. iv. 5 and 4.
- The last problem, to describe a circle touching three 342

APOLLONIUS OF PERGA

this problem, according to the number of like or unlike entities in the hypotheses, there are bound to be, when the problem is subdivided, ten enunciations. For the number of different ways in which three entities can be taken out of the three unlike sets is ten. For the given entities must be (1) three points or (2) three straight lines or (3) two points and a straight line or (4) two straight lines and a point or (5) two points and a circle or (6) two circles and a point or (7) two straight lines and a circle or (8) two circles and a straight line or (9) a point and a straight line and a circle or (10) three circles. Of these, the first two cases are proved in the fourth book of the first Elements, ${ }^{,}$for which reason they will not be described; for to describe a circle through three points, not being in a straight line, is the same thing as to circumscribe a given triangle, and to describe a circle to touch three given straight lines, not being parallel but meeting each other, is the same thing as to inscribe a circle in a given triangle ; the case where two of the lines are parallel and one meets them is a subdivision of the second problem but is here given first place. The next six problems in order are investigated in the first book, while the remaining two, the case of two given straight lines and a circle and the case of three circles, are the sole subjects of the second book on account of the manifold positions of the circles and straight lines with respect one to another and the need for numerous investigations of the limits of possibility. ${ }^{b}$
given circles, has been investigated by many famous geometers, including Newton (Arithmetica Universalis, Prob. 47). The lemmas given by Pappus enable Heath (H.G.M. ii. 182-185) to restore Apollonius's solution-a "plane" solution depending only on the straight line and circle.

GREEK MATHEMATICS

(vi.) On Plane Loci

Ibid. vii. 23, ed. Hultsch 662. 19-664. 7

 $\tau \alpha \dot{\xi} \epsilon \omega_{s} \pi \rho o ́ \tau \epsilon \rho a \mu \iota \hat{\alpha} \pi \epsilon \rho \iota \lambda \alpha \beta \grave{\omega \nu} \pi \rho о \tau \alpha ́ \sigma \epsilon \iota \quad \tau \alpha v ́ \tau \eta \cdot$

 $\pi \alpha \rho a ́ \lambda \lambda \eta \lambda o \iota ~ \dddot{\eta} \delta \epsilon \delta о \mu \epsilon ́ v \eta \nu \quad \pi \epsilon \rho \iota \epsilon ́ \chi o v \sigma a \iota \gamma \omega v i a \nu$ каi

 є̇vavтíws. таû̃a סє̀ $\gamma i v \epsilon \tau \alpha \iota ~ \pi \alpha \rho a ̀ ~ \tau a ̀ s ~ \delta \iota a \phi o \rho a ̀ s ~$ $\tau \hat{\omega} \nu \dot{v} \pi о \kappa \epsilon \iota \mu \epsilon ́ \nu \omega \nu$.

(vii.) On Vergings

lidid. vii. 27-28, ed. Hultsch 670. 4-679. 3

 ${ }^{1}$ roúr $\omega \nu$ is attributed by Hultsch to dittography.

[^73]
APOLLONIUS OF PERGA

(vi.) On Plane Loci

Ibid. vii. 23, ed. Hultsch 662. 19-664. 7
The ancients had regard to the arrangement ${ }^{a}$ of these plane loci with a view to instruction in the elements; heedless of this consideration, their successors have added others, as though the number could not be infinitely increased if one were to make additions from outside that arrangement. Accordingly I shall set out the additions later, giving first those in the arrangement, and including them in this single enunciation :

If two straight lines be drann, from one given point or from two, which are in a straight line or parallel or include a given angle, and either bear a given ratio one towards the other or contain a given rectangle, then, if the locus of the extremity of one of the lines be a plane locus given in position, the locus of the extremity of the other nill also be a plane locus given in position, which nill sometimes be of the same kind as the former, sometimes of a different kind, and will sometimes be similarly situated nith respect to the straight line, ${ }^{b}$ sometimes contrariwise. These different cases arise according to the differences in the suppositions. ${ }^{\circ}$!

(vii.) On Vergings ${ }^{a}$

Ibid. vii. 27-28, ed. Hultsch 670. 4-672. 3
A line is said to verge to a point if, when produced, it passes through the point. [. . .] The general

- Pappus proceeds to give seven other enunciations from the first book and eight from the second book. These have enabled reconstructions of the work to be made by Fermat, van Schooten and Robert Simson.
${ }^{d}$ Examples of vergings have already been encountered several times; v. pp. 186-189 and vol. i. p. 244 n. a.

GREEK MATHEMATICS

 $\rho \omega ́ \sigma \alpha \nu \tau \epsilon s \tau \grave{\alpha} \pi \rho o ̀ s \pi o \lambda \lambda \grave{\alpha} \chi \rho \eta \sigma \iota \omega \dot{\tau} \tau \rho \alpha$ Є̋ $\delta \epsilon \iota \xi \alpha \nu \tau \grave{\alpha}$ $\pi \rho о \beta \lambda \eta \eta^{\prime} \alpha \tau \alpha$ таиิта.

 є́ $\chi o ́ v \tau \omega \nu$ тàs β á $\sigma \epsilon \iota s$ $\theta \epsilon i ̂ \nu a \iota ~ \delta o \theta \epsilon i ̂ \sigma a \nu ~ \tau \hat{\varphi} \mu \epsilon \gamma \epsilon ́ \theta \epsilon \iota$

 $\gamma \omega \nu i ́ a \nu$.

 $\tau \hat{\eta} S \epsilon \dot{v} \theta \epsilon i \alpha a$.

APOLLONIUS OF PERGA

problem is: Two straight lines being given in position, to place between them a straight line of given length so as to verge to a given point. When it is subdivided the subordinate problems are, according to differences in the suppositions, sometimes plane, sometimes solid, sometimes linear. Among the plane problems, a selection was made of those more generally useful, and these problems have been proved:

Given a semicircle and a straight line perpendicular to the base, or two semicircles with their bases in a straight line, to place a straight line of given length between the two lines and verging to an angle of the semicircle [or of one of the semicircles];

Given a rhombus with one side produced, to insert a straight line of given length in the external angle so that it verges to the opposite angle;

Given a circle, to insert a chord of given length verging to a given point.

Of these, there are proved in the first book four cases of the problem of one semicircle and a straight line, two cases of the circle, and two cases of the rhombus; in the second book there are proved ten cases of the problem in which two semicircles are assumed, and in these there are numerous subdivisions concerned with limits of possibility according to the given length of the straight line. ${ }^{a}$

- A restoration of Apollonius's work On Vergings has been attempted by several writers, most completely by Samuel Horsley (Oxford, 1770). A lemma by Pappus enables Apollonius's construction in the case of the rhombus to be restored with certainty ; v. Heath, H.G.M. ii. 190-192.

GREEK MATHEMATICS

(viii.) On the Dodecahedron and the Icosahedron

Hypsicl. [Eucl. Elem. xiv.], Eucl. ed. Heiberg v. 6. 19-8. 5

" O aủтòs кúкגоs $\pi \epsilon \rho \iota \lambda \alpha \mu \beta$ д́vєı тó $\tau \epsilon \tau о \hat{v} \delta \omega \delta \epsilon$ $\kappa \alpha \epsilon ́ \delta \rho о v ~ \pi \epsilon \nu \tau \alpha ́ \gamma \omega \nu о \nu ~ \kappa а i ~ \tau o ̀ ~ \tau о \hat{v} \epsilon і к о \sigma \alpha \epsilon ́ \delta \rho о v ~$

 то仑 $\delta \omega \delta є к а \epsilon ́ \delta \rho о v ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \epsilon і к о \sigma \alpha ́ \epsilon \delta \rho о \nu, ~ o ̈ \tau \iota ~ \epsilon ̇ \sigma \tau i v, ~$ $\dot{\omega} s \dot{\eta} \tau o v ̂ ~ \delta \omega \delta \epsilon \kappa а \epsilon ́ \delta \rho o v ~ \epsilon ̇ \pi \iota \phi \alpha ́ \nu \epsilon \iota a ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \tau o \hat{v}$

 то仑̂ $\delta \omega \delta \epsilon \kappa \alpha \epsilon ́ \delta \rho о v ~ \pi \epsilon \nu \tau \alpha ́ \gamma \omega \nu о \nu ~ к а і ~ \tau o ̀ ~ \tau о \hat{v} ~ \epsilon і к о-~$ $\sigma \alpha \epsilon ́ \delta \rho о v \tau \rho i ́ \gamma \omega \nu о \nu$.

(ix.) Principles of Mathematics

Marin. in Eucl. Dat., Eucl. ed. Heiberg vi. 234. 13-17
$\Delta \iota \dot{o} \tau \hat{\omega} \nu \dot{\alpha} \pi \lambda o v ́ \sigma \tau \epsilon \rho o \nu^{1} \kappa \alpha i \mu \mu \iota \hat{a} \tau \iota \nu \iota \delta \iota \alpha \phi o \rho \hat{a} \pi \epsilon \rho \iota-$ $\gamma \rho a ́ \phi \epsilon \iota \nu$ тò $\delta \epsilon \delta о \mu \epsilon ́ \nu O \nu \pi \rho \circ \theta \epsilon \mu \epsilon ́ \nu \omega \nu$ oi $\mu \epsilon ̀ \nu \tau \epsilon \tau \alpha \gamma-$

$$
1 \dot{\alpha} \pi \lambda o v ́ \sigma \tau \epsilon \rho o \nu \text { Heiberg, } \dot{\alpha} \pi \lambda o v \sigma \tau \epsilon ́ \rho \omega \nu \text { cod. }
$$

APOLLONIUS OF PERGA

(viii.) On the Dodecahedron and the Icosahedron

Hypsicles [Euclid, Elements xiv.], ${ }^{a}$ Eucl. ed. Heiberg v. 6. 19-8. 5

The pentagon of the dodecahedron and the triangle of the icosahedron ${ }^{6}$ inscribed in the same sphere can be included in the same circle. For this is proved by Aristaeus in the work which he wrote On the Comparison of the Five Figures, ${ }^{\text {c }}$ and it is proved by Apollonius in the second edition of his work On the Comparison of the Dodecahedron and the Icosahedron that the surface of the dodecahedron bears to the surface of the icosahedron the same ratio as the volume of the dodecahedron bears to the volume of the icosahedron, by reason of there being a common perpendicular from the centre of the sphere to the pentagon of the dodecahedron and the triangle of the icosahedron.

(ix.) Principles of Mathematics

Marinus, Commentary on Euclid's Data, Eucl. ed. Heiberg vi. 234. 13-17
Therefore, among those who made it their aim to define the datum more simply and with a single differentia, some called it the assigned, such as Apollonius in his book On Vergings and in his

[^74]
GREEK MATHEMATICS

 Δ ıódopos.
(x.) On the Cochlias

Procl. in Eucl. i., ed. Friedlein 105. 1-6

 Пєрì тои̂ кох入íov үра́црать $\delta \in i к v v \sigma \iota \nu$.

(xi.) On Unordered Irrationals

Procl. in Eucl. i., ed. Friedlein 74. 23-24

Schol. i. in Eucl. Elem. x., Eucl. ed. Heiberg v. 414. 10-16
'Е $\nu \mu$ ย̀v oưv тoîs $\pi \rho \omega ́ \tau o \iota s ~ \pi \epsilon \rho i ́ ~ \sigma v \mu \mu \epsilon ́ \tau \rho \omega \nu ~ к а i ~$

[^75]
APOLLONIUS OF PERGA

General Treatise, ${ }^{\text {a }}$ others the known, such as Diodorus. ${ }^{\text {b }}$

(x.) On the Cochlias

Proclus, On Euclid i., ed. Friedlein 105. 1-6
The cylindrical helix is described when a point moves uniformly along a straight line which itself moves round the surface of a cylinder. For in this way there is generated a helix which is homoeomeric, any part being such that it will coincide with any other part, as is shown by Apollonius in his work On the Cochlias.

(xi.) On Unordered Irrationals

Proclus, On Euclid i., ed. Friedlein 74. 23-24
The theory of unordered irrationals, which Apollonius fully investigated.

> Euclid, Elements x., Scholium i., ${ }^{e}$ ed. Heiberg v. $414.10-16$

Therefore in the first [theorems of the tenth book] he treats of symmetrical and asymmetrical magnitudes, investigating them according to their nature, and in the succeeding theorems he deals with rational and irrational quantities, but not all, which is held up against him by certain detractors; for he dealt only with the simplest kinds, by the combination of which
${ }^{6}$ Possibly Diodorus of Alexandria, for whom v. vol. i. p. 300 and p. 301 n. b.

- In Studien über Euklid, p. 170, Heiberg conjectured that this scholium was extracted from Pappus's commentary, and he has established his conjecture in Videnskabernes Selskabs Skrifter, 6 Raekke, hist.-philos. Afd. ii. p. 236 seq. (1888).

GREEK MATHEMATICS

(xii.) Measurement of a Circle

Eutoc. Comm. in Archim. Dim. Circ., Archim. ed. Heiberg iii. 258. 16-22

 $\tau \alpha \dot{s} \dot{\epsilon}^{\nu} \tau \hat{\varphi} \beta i \underline{\omega} \chi \rho \epsilon i ́ a s$.

(xiii.) Continued Multiplications

Papp. Coll. ii. 17-21, ed. Hultsch 18. 23-24. 20^{1}
 є̈ $\sigma \tau \iota \nu ~ \tau o ̀ v ~ \delta о \theta \epsilon ́ v \tau a ~ \sigma \tau i ́ \chi o v ~ \pi о \lambda \lambda а \pi \lambda а \sigma \iota a ́ \sigma \alpha \iota ~ к а i ~$
 $\dot{\alpha} \rho \iota \theta \mu \dot{o} \nu$ ôv $\epsilon \grave{\iota} \lambda \eta \phi \epsilon \tau \dot{o} \pi \rho \hat{\omega} \tau о \nu \tau \hat{\omega} \nu \quad \gamma \rho \alpha \mu \mu \alpha ́ \tau \omega \nu \epsilon \dot{\epsilon} \pi i$
 $\gamma \rho a \mu \mu a ́ \tau \omega \nu$ тод $\lambda а \pi \lambda a \sigma \iota \alpha \sigma \theta \hat{\eta} \nu a \iota ~ к а i ~ \tau o ̀ \nu ~ \gamma \epsilon \nu о ́ \mu \epsilon \nu о \nu$

$$
{ }^{1} \text { The extensive interpolations are omitted. }
$$

[^76]
APOLLONIUS OF PERGA

an infinite number of irrationals are formed, of which latter Apollonius also describes some. ${ }^{\boldsymbol{a}}$

(xii.) Measurement of a Circle

Eutocius, Commentary on Archimedes' Measurement of a Circle, Archim. ed. Heiberg iii. 258. 16-22
It should be noticed, however, that Apollonius of Perga proved the same thing (sc. the ratio of the circumference of a circle to the diameter) in the Quick-deliverer by a different calculation leading to a closer approximation. This appears to be more accurate, but it is of no use for Archimedes' purpose; for we have stated that his purpose in this book was to find an approximation suitable for the everyday needs of life. ${ }^{b}$

(xiii.) Continued Multiplications ${ }^{\circ}$

Pappus, Collection ii. 17-21, ed. Hultsch 18. 23-24. 20^{d}
This theorem having first been proved, it is clear how to multiply together a given verse and to tell the number which results when the number represented by the first letter is multiplied into the number represented by the second letter and the product is multiplied into the number represented by the third découvrit la science des quantités appelées (irrationnelles) inordonnées, dont il produisit un très-grand nombre par des méthodes exactes."

- We do not know what the approximation was.
- Heiberg (Apollon. Perg. ed. Heiberg ii. 124, n. 1) suggests that these calculations were contained in the ' Ω китоккоо, but there is no definite evidence.
© The passages, chiefly detailed calculations, adjudged by Hultsch to be interpolations are omitted.

GREEK MATHEMATICS

 à $\rho \chi \hat{\eta}$ ou゙ $\tau \omega{ }^{\circ}$ ．

＇Е $\pi \epsilon i$ ov̂v $\gamma \rho \alpha ́ \mu \mu a \tau \alpha ́ \epsilon$＇่ $\sigma \tau \iota \nu \overline{\lambda \eta} \tau o \hat{v} \sigma \tau i ́ \chi o v, \tau \alpha \hat{v} \tau \alpha$

 тov̀s 入o九тov̀s $\overline{\iota \alpha}$ rov̀s $\bar{\alpha} \bar{\epsilon} \bar{\delta} \bar{\epsilon} \bar{\epsilon} \bar{a} \bar{\epsilon} \bar{\epsilon} \bar{\epsilon} \bar{\alpha} \bar{\alpha},{ }_{\omega}^{\omega} \nu$

$$
\begin{gathered}
\bar{\alpha} \bar{\gamma} \bar{\beta} \bar{\gamma} \bar{\alpha} \bar{\gamma} \bar{\beta} \bar{\zeta} \bar{\delta} \bar{\alpha} \\
\bar{\delta} \bar{\alpha} \bar{\zeta} \bar{\beta} \bar{\gamma} \bar{\alpha} \bar{\beta} \bar{\zeta} \bar{\zeta} \bar{\zeta} \bar{\zeta} \bar{\epsilon} \bar{\epsilon} \bar{\epsilon} \bar{\beta} \bar{\zeta} \bar{\alpha},
\end{gathered}
$$

[^77]
APOLLONIUS OF PERGA

letter and so on in order until the end of the verse which Apollonius gave in the beginning, that is
(where he says $\kappa \lambda \epsilon \hat{i} \tau \epsilon$ for $\dot{v} \pi о \mu \nu \hat{\eta} \sigma a \tau \epsilon$, recall to mind).
Since there are thirty-eight letters in the verse, of which ten, namely $\bar{\rho} \bar{\tau} \bar{\sigma} \bar{\tau} \bar{\rho} \bar{\tau} \bar{\sigma} \bar{\chi} \bar{v} \bar{\rho}(=100,300,200$ $300,100,300,200,600,400,100$), represent numbers less than 1000 and divisible by 100 , and seventeen, namely $\bar{\mu} \bar{\sigma} \bar{\sigma} \bar{\kappa} \bar{\lambda} \bar{i} \bar{\kappa} \bar{\xi} \bar{\xi} \bar{o} \bar{o} \bar{\nu} \bar{\nu} \bar{\nu} \bar{\kappa} \bar{o} \bar{i}(=40,10,70,20$, $30,10,20,70,60,70,70,50,50,50,20,70,10$), represent numbers less than 100 and divisible by 10 , while the remaining eleven, namely, $\bar{a} \bar{\epsilon} \bar{\delta} \bar{\epsilon} \bar{\epsilon} \bar{\alpha} \bar{\epsilon} \bar{\epsilon} \bar{\epsilon} \bar{\alpha} \bar{\alpha}$ ($=1,5,4,5,5,1,5,5,5,1,1$), represent numbers less than 10 , then if for those ten numbers we substitute an equal number of hundreds, and if for the seventeen numbers we similarly substitute seventeen tens, it is clear from the above arithmetical theorem, the twelfth, that the ten hundreds together with the seventeen tens make $10.10000^{9} .{ }^{a}$

And since the bases of the numbers divisible by 100 and those divisible by 10 are the following twentyseven

$$
\begin{gathered}
1,3,2,3,1,3,2,6,4,1 \\
4,1,7,2,3,1,2,7,6,7,7,5,5,5,2,7,1
\end{gathered}
$$

Pappus they are sometimes abbreviated to $\mu^{\alpha}, \mu_{\beta}, \mu^{\gamma}$ and so on.

From Pappus, though the text is defective, A pollonius's procedure in multiplying together powers of 10 can be seen to be equivalent to adding the indices of the separate powers of 10 , and then dividing by 4 to obtain the power of the myriad which the product contains. If the division is exact, the number is the n-myriad, say, meaning 10000^{n}. If there is a remainder, 3,2 or 1 , the number is 1000,100 or 10 times the n-myriad as the case may be.

GREEK MATHEMATICS

 $\tau \epsilon ́ \sigma \tau \iota \nu$ á $\rho \iota \theta \mu o i$ oi

$$
\bar{\alpha} \bar{\epsilon} \bar{\delta} \bar{\epsilon} \bar{\epsilon} \bar{\alpha} \bar{\epsilon} \bar{\epsilon} \bar{\epsilon} \bar{\alpha} \bar{\alpha},
$$

 $\pi v \theta \mu \epsilon ́ v \omega \nu \quad \sigma \tau \epsilon \rho \epsilon \grave{\partial} \nu \delta \iota^{\prime} \dot{a} \lambda \lambda \eta_{\eta} \lambda \omega \nu \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha ́ \sigma \omega \mu \epsilon \nu$,
 $\tau \rho \iota \pi \lambda \hat{\omega} \nu, \overline{,}{ }^{\sigma \lambda \sigma} \kappa \alpha i \delta_{\iota \pi \lambda} \omega \nu$, $\overline{, \eta \pi}$.

 $\mu v \rho \iota \alpha ́ \delta a s$ т $\rho \iota \sigma \kappa \alpha \iota \delta \epsilon \kappa \alpha \pi \lambda \hat{\alpha} \bar{\rho} \overline{\varsigma_{\zeta}}, \delta \omega \delta \epsilon \kappa \alpha \pi \lambda \hat{\alpha} s \overline{\tau \xi} \bar{\eta}$, $\epsilon \dot{\epsilon} \delta \epsilon \kappa \alpha \pi \lambda \hat{a} s, \overline{\delta \omega}$.

(xiv.) On the Burning Mirror

Fragmentum mathematicum Bobiense 113. 28-33, ed.
Belger, Hermes, xvi., 1881, 279-280 ${ }^{1}$

 $\pi v \rho i ́ o v$.
${ }^{1}$ As amended by Heiberg, Zeitschrift für Mathematik und Physik, xxviii., 1883, hist. Abth. 124-125.

APOLLONIUS OF PERGA

while there are eleven less than ten, that is the numbers

$$
1,5,4,5,5,1,5,5,5,1,1,
$$

if we multiply together the solid number formed by these eleven with the solid number formed by the twenty-seven the result will be the solid number

$$
19 \cdot 10000^{4}+6036 \cdot 10000^{3}+8480 \cdot 10000^{2} .
$$

When these numbers are multiplied into the solid number formed by the hundreds and the tens, that is with 10.10000^{9} as calculated above, the result is
$196.10000^{13}+368.10000^{12}+4800.10000^{11}$.

(xiv.) On the Burning Mirror

Fragmentum mathematicum Bobienss 113. 28-33, ${ }^{a}$ ed. Belger, Hermes, xvi., 1881, 279-280
The older geometers thought that the burning took place at the centre of the mirror, but Apollonius very suitably showed this to be false . . . in his work on mirrors, and he explained clearly where the kindling takes place in his works On the Burning Mirror. ${ }^{\text {b }}$

- This fragment is attributed to Anthemius by Heiberg, but its antiquated terminology leads Heath (H.G.M. ii. 194) to suppose that it is much earlier.
b Of Apollonius's other achievements, his solution of the problem of finding two mean proportionals has already been mentioned (vol. i. p. 267 n. b) and sufficiently indicated ; for his astronomical work the reader is referred to Heath, H.G.M. ii. 195-196.

. . $\%$

$$
\begin{gathered}
i \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{gathered}
$$

XX. LATER DEVELOPMENTS IN GEOMETRY

XX. LATER DEVELOPMENTS IN GEOMETRY

(a) Classification of Curves

Procl. in Eucl. i., ed. Friedlein 111. 1-112. 11
$\Delta \iota a \iota \rho \in \hat{\imath} \delta^{\prime} \alpha \hat{v}$ тウ̀̀ $\nu \quad \gamma \rho \alpha \mu \mu \grave{\eta} \nu$ ó $\Gamma \epsilon ́ \mu \iota \nu o s^{1} \pi \rho \hat{\omega} \tau о \nu$

 $\tau \grave{\eta} \nu \tau 0 \hat{v} \dot{\alpha} \mu \beta \lambda v \gamma \omega \nu i ́ o v, \tau \grave{\eta} \nu \kappa о \gamma \chi о \epsilon i \delta \hat{\eta}, \tau \grave{\eta} \nu \epsilon \dot{u} \theta \epsilon i \hat{a} \nu$, $\pi a ́ \sigma a s ~ \tau a ̀ s ~ \tau o \iota a v ́ т a s . ~ к а i ~ \pi a ́ \lambda \iota \nu ~ к а \tau ' ~ a ̈ \lambda \lambda о \nu ~ \tau \rho o ́ т о \nu ~$

 $\tau \grave{\eta} \nu \mu \dot{\nu} \nu \dot{\epsilon} \nu \alpha u ̛ \tau \hat{\eta} \sigma v \mu \pi i \pi \tau \epsilon \iota \nu \dot{\omega}_{s}^{\tau} \tau \dot{\eta} \nu \kappa \iota \tau \tau 0 \epsilon \iota \delta \hat{\eta}$, $\tau \dot{\eta} \nu$

${ }^{1}$ Гє́ $\mu \iota v o s$ Tittel, $\Gamma \epsilon \mu i v o s$ Friedlein.
2 oúv $\theta \epsilon \tau \circ \nu$ codd., correxi.

[^78]
XX. LATER DEVELOPMENTS IN GEOMETRY ${ }^{a}$

(a) Classification of Curves

Proclus, On Euclid i., ed. Friedlein 111. 1-112. 11
Geminus first divides lines into the incomposite and the composite, meaning by compositc the broken line forming an angle ; and then he divides the incomposite into those forming a figure and those extending nithout limit, including among those forming a figure the circle, the ellipse and the cissoid, and among those not forming a figure the parabola, the hyperbola, the conchoid, the straight line, and all such lines. Again, in another manner he says that some incomposite lines are simple, others mixed, and among the simple are some forming a figure, such as the circle, and others indeterminate, such as the straight line, while the mixed include both lines on planes and lines on solids, and among the lines on planes are lines meeting themselves, such as the cissoid, and others extending nithout limit, and among lines on solids are
the limits imposed by their methods, and the recorded additions to the corpus of Greek mathematics may be described as reflections upon existing work or "stock-taking." On the basis of geometry, however, the new sciences of trigonometry and mensuration were founded, as will be described, and the revival of geometry by Pappus will also be reserved for separate treatment.

GREEK MATHEMATICS

 $\dot{a} \pi \grave{o} \tau \sigma \iota \hat{\alpha} \sigma \delta \epsilon \tau \sigma \mu \hat{\eta} S \quad \gamma \epsilon \nu \nu \hat{a} \sigma \theta a \iota \tau \hat{\omega} \nu \quad \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu$ ．$\epsilon \pi \pi \iota-$ $\nu \epsilon \nu o \eta ̂ \sigma \theta a \iota ~ \delta \grave{\epsilon} \tau a u ́ \tau a s ~ \tau \alpha ̀ s ~ \tau o \mu a ̀ s ~ \tau a ̀ s ~ \mu \dot{\epsilon} \nu ~ v i \pi o ̀ ~ M \epsilon v a i ́-~$

 ＇่ $\pi i ̀ \tau \hat{\eta} \epsilon \dot{v} \rho \in ́ \sigma \epsilon \iota-$

 тò $\pi \lambda \hat{\eta} \theta$ os à áє́ $\rho a \nu \tau o ́ v ~ \epsilon ่ \sigma \tau \iota \nu \cdot ~ к \alpha i ~ \gamma \grave{\alpha} \rho$ $\sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu$
 бvvíवта⿱亠乂ає modvєıঠєîs．

Ibid．，ed．Friedlein 356．8－12

 $\gamma \rho а \mu \mu \hat{\nu} \nu \tau i ́ \tau o ̀ ~ \sigma u ́ \mu \pi \tau \omega \mu \alpha ~ \delta є i к \nu v \sigma \iota, ~ к а i ~ o ́ ~ N \iota к о-~$

${ }^{a}$ v．vol．i．pp．296－297．
${ }^{\text {b }}$ For Perseus，v．p． 364 n．a and p． 365 n．b．

LATER DEVELOPMENTS IN GEOMETRY

lines conceived as formed by sections of the solids and lines formed round the solids. The helix round the sphere or cone is an example of the lines formed round solids, and the conic sections or the spiric curves are generated by various sections of solids. Of these sections, the conic sections were discovered by Menaechmus, and Eratosthenes in his account says: " Cut not the cone in the triads of Menaechmus" $"$; and the others were discovered by Perseus, ${ }^{b}$ who wrote an epigram on the discovery-

Three spiric lines upon five sections finding, Perseus thanked the gods therefor.

Now the three conic sections are the parabola, the hyperbola and the ellipse, while of the spiric sections one is interlaced, resembling the horse-fetter, another is widened out in the middle and contracts on each side, a third is elongated and is narrower in the middle, broadening out on either side. The number of the other mixed lines is unlimited; for the number of solid figures is infinite and there are many different kinds of section of them.

Ibid., ed. Friedlein 356. 8-12
For Apollonius shows for each of the conic curves what is its property, as does Nicomedes for the

GREEK MATHEMATICS

 $\sigma \pi \epsilon \iota \rho \iota \kappa \hat{\omega} \nu$.

Ibid., ed. Friedlenn 119. 8-17

 каi трєîs ai бтєєрєкаi то $\mu a i$ ката̀ тàs $\tau \rho \epsilon i ̂ S ~ \tau а u ́ \tau \alpha S ~$ sıaфopás.

[^79]
LATER DEVELOPMENTS IN GEOMETRY

conchoid and Hippias for the quadratices and Perseus for the spiric curves. ${ }^{\text {a }}$

Ibid., ed. Friedlein 119. 8-17

We say that this is the case with the spiric surface ; for it is conceived as generated by the revolution of a circle remaining perpendicular [to a given plane] and turning about a fixed point which is not its centre. Hence there are three forms of spire according as the centre is on the circumference, or within it, or without. If the centre is on the circumference, the spire gencrated is said to be continuous, if within interlaced, and if without open. And there are three spiric sections according to these three differences. ${ }^{b}$
Dionysodorus mentioned by Heron, Metrica ii. 13 (cited infra, p. 481), as the author of a book On the Spire.

- This last sentence is believed to be a slip, perhaps due to too hurried transcription from Geminus. At any rate, no satisfactory meaning can be obtained from the sentence as it stands. Tannery (Mémoires scientifiques ii. pp. 24-28) interprets Perseus' epigram as meaning "three curves in addition to five sections." He explains the passages thus : Let a be the radius of the generating circle, c the distance of the centre of the generating circle from the axis of revolution, d the perpendicular distance of the plane of section (assumed to be parallel to the axis of revolution) from the axis of revolution. Then in the open spire, in which $c>a$, there are five different cases:
(1) $c+a>d>c$. The curve is an oval.
(2) $d=c$. Transition to (3).
(3) $c>d>c-a$. The curve is a closed curve narrowest in the middle.
(4) $d=c-a$. The curve is the hippopede (horse-fetter), which is shaped like the figure of $8(v$. vol. i. pp. 414-415 for the use of this curve by Eudoxus).
(5) $c-a>d>0$. The section consists of two symmetrical ovals.

Tannery identifies the "five sections" of Perseus with these five types of section of the open spire; the three curves

GREEK MATHEMATICS

(b) Attempts to Prove the Parallel Postulate

(i.) General

Procl. in Eurl. i., ed. Friedlein 191. 16-193. 9

 ${ }_{\circ} \rho \theta \hat{\omega} \nu$ є $\epsilon \lambda \alpha ́ \tau \tau о \nu \epsilon s . "$

Tov̂тo каì $\pi \alpha \nu \tau \epsilon \lambda \hat{\omega} s$ ठ $\alpha \gamma \rho \alpha ́ \phi \epsilon \epsilon \nu ~ \chi \rho \eta े ~ \tau \hat{\omega} \nu \alpha i \tau \eta-$

 $\delta \epsilon o ́ \mu \epsilon \nu о \nu$ каi ó ош к каi $\theta \epsilon \omega \rho \eta \mu a ́ \tau \omega \nu$. каi тó $\gamma \epsilon$

described by Proclus are (1), (3) and (4). When the spire is continuous or closed, $c=a$ and there are only three sections corresponding to (1), (2) and (3) ; (4) and (5) reduce to two equal circles touching one another. But the interlaced spire, in which $c<a$, gives three new types of section, and in these Tannery sees his "three curves in addition to five sections." There are difficulties in the way of accepting this interpretation, but no better has been proposed.
Further passages on the spire by Heron, including a formula for its volume, are given infra, pp. 476-483.
${ }^{a}$ Eucl. i. Post. 5, for which v. vol. i. pp. 442-443, especially n. c.

Aristotle (Anal. Prior. ii. 16, 65 a 4) alludes to a petitio principii current in his day among those who "think they establish the theory of parallels "一тàs mapadiŋ̀خous yoápeıv. As Heath notes (The Thirteen Books of Euclid's Elements, 366

LATER DEVELOPMENTS IN GEOMETRY

(b) Attempts to Prove the Parallel Postulate

(i.) General

Proclus, On Euclid i., ed. Friedlein 191. 16-193. 9
"If a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than two right angles." ${ }^{a}$

This ought to be struck right out of the Postulates; for it is a theorem, and one involving many difficulties, which Ptolemy set himself to resolve in one of his books, and for its proof it needs a number of definitions as well as theorems. Euclid actually proves its converse as a theorem. Possibly some would erroneously consider it right to place this assumption among the Postulates, arguing that, as the angles are less than two right angles, there is
vol. i. pp. 191-192), Philoponus's comment on this passage suggests that the petitio principii lay in a direction theory of parallels. Euclid appears to have admitted the validity of the criticism and, by assuming his famous postulate once and for all, to have countered any logical objections.

Nevertheless, as the extracts here given will show, ancient geometers were not prepared to accept the undemonstrable character of the postulate. Attempts to prove it continued to be made until recent times, and are summarized by R. Bonola, "Sulla teoria delle parallele e sulle geometrie noneuclidee " in Questioni riguardanti la geometria elementare, and by Heath, loc. cit., pp. 204-219. The chapter on the subject in W. Rouse Ball's Mathematical Essays and Recreations, pp. 307-326, may also be read with profit. Attempts to prove the postulate were abandoned only when it was shown that, by not conceding it, alternative geometries could be built.

GREEK MATHEMATICS

$\tau \hat{\eta} S \quad \tau \hat{\omega} \nu \quad \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu \quad \sigma v \nu \epsilon \dot{\sigma} \sigma \epsilon \omega s$ каi $\sigma v \mu \pi \tau \omega \dot{\sigma} \epsilon \omega$ s. $\pi \rho o ̀ s$ ov̂s ó $\Gamma \epsilon \mu \hat{v} v o s$ ỏ $\rho \theta \hat{\omega} s$ ả $\pi \eta \eta_{\nu} \tau \eta \sigma \epsilon \lambda \epsilon \in \gamma \omega \nu$ ö τ

 $\pi \iota \theta a \nu a i ̂ s ~ \phi a \nu \tau \alpha \sigma i ́ a \iota s ~ \epsilon i s ~ \tau \eta ̀ \nu ~ \tau \omega ิ \nu ~ \lambda o ́ \gamma \omega \nu ~ \tau \hat{\omega} \nu ~ \epsilon ’ \nu$ $\gamma \epsilon \omega \mu \epsilon \tau \rho i ́ a ~ \pi а \rho а \delta о \chi \eta ́ \nu . ~ o ̈ \mu о \iota о \nu ~ \gamma а ́ \rho ~ ф \eta \sigma \iota ~ к а і ~$

 тоиิто ả入ך θ є́s. т̀̀ γ à ρ єivaí, тьvas , $\gamma \rho a \mu \mu a ̀ s$

 ß $\eta \tau о \hat{v} \nu \tau \epsilon s$ 入ó $о \iota ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \sigma u ́ \mu \pi \tau \omega \sigma \iota \nu ~ \pi о \lambda \grave{v} ~ \tau o ̀ ~$

 $\dot{\eta} \mu \epsilon \tau \epsilon ́ \rho \alpha s$ $\pi \alpha \rho \alpha \delta o \chi \eta ิ s ;$

[^80]
LATER DEVELOPMENTS IN GEOMETRY

immediate reason for believing that the straight lines converge and meet. To such, Geminus ${ }^{\text {a }}$.rightly rejoined that we have learnt from the pioneers of this seience not to incline our mind to mere plausible. imaginings when it is a question of the arguments to be used in geometry. For Aristotle ${ }^{b}$ says it is as reasonable to demand scientific proof from a rhetorician as to accept mere plausibilities from a geometer, and Simmias is made to say by Plato ${ }^{c}$ that he " recognizes as quacks those who base their proofs on probabilities." In this case the convergence of the straight lines by reason of the lessening of the right angles is true and necessary, but the statement that, since they converge more and more as they are produced, they will some time meet is plausible but not necessary, unless some argument is produced to show that this is true in the case of straight lines. For the fact that there are certain lines which converge indefinitely but remain non-secant, although it seems improbable and paradoxical, is nevertheless true and well-established in the case of other species of lines. May not this same thing be possible in the case of straight lines as happens in the case of those other lines? For until it is established by rigid proof, the facts shown in the case of other lines may turn our minds the other way. And though the controversial arguments against the meeting of the two lines should contain much that is surprising, is that not all the more reason for expelling this merely plausible and irrational assumption from our accepted teaching ?

It is elear that a proof of the theorem in question must be sought, and that it is alien to the special

[^81]
GREEK MATHEMATICS

 $\chi \rho \dot{\omega} \mu \epsilon \nu о s . \quad \tau о ́ \tau \epsilon, \gamma \dot{\alpha} \rho$ àvaүкаîov aủтov̂ $\delta \in \hat{\imath} \xi \alpha \iota$
 $\dot{\alpha} \lambda \lambda \dot{\alpha} \delta \iota^{\prime} \dot{\alpha} \pi о \delta \epsilon i \xi \epsilon \omega \nu \gamma \nu \omega \rho \rho \iota о \nu \quad \gamma \iota \gamma \nu о \mu \epsilon \in \nu \eta \nu$.

(ii.) Posidonius and Geminus

Ibid., ed. Friedlein 176. 5-10

[^82]- Posidonius was a Stoic and the teacher of Cicero; he was born at Apamea and taught at Rhodes, flourishing 151-135 в.с. He contributed a number of definitions to elementary geometry, as we know from Proclus, but is more famous for a geographical work On the Ocean (lost but copiously quoted by Strabo) and for an astronomical work $\Pi \epsilon \rho i \quad \mu \epsilon \tau \epsilon \omega \dot{\omega} \rho \omega \nu$. In this he estimated the circumference of the earth (v. supra, p. 267) and he also wrote a separate work on the size of the sun.
c As with so many of the great mathematicians of antiquity, we know practically nothing about Geminus's life, not even his date, birthplace or the correct spelling of his name. As he wrote a commentary on Posidonius's $\Pi \epsilon \rho i \quad \mu \epsilon \tau \epsilon \omega \dot{\omega} \rho \omega \nu$, we have an upper limit for his date, and " the view most generally accepted is that he was a Stoic philosopher, born probably in the island of Rhodes, and a pupil of Posidonius, and that he wrote about 73-67 в.c." (Heath, H.G.M. ii. 223). Further details may be found in Manitius's edition of the so-called Gemini elementa astronomiae.

Geminus wrote an encyclopaedic work on mathematics

LATER DEVELOPMENTS IN GEOMETRY

character of the Postulates. But how it should be proved, and by what sort of arguments the objections made against it may be removed, must be stated at the point where the writer of the Elements is about to recall it and to use it as obvious. ${ }^{a}$ Then it will be necessary to prove that its obvious character does not appear independently of proof, but by proof is made a matter of knowledge.

(ii.) Posidonius ${ }^{b}$ and Geminus ${ }^{\circ}$

Ibid., ed. Friedlein 176. 5-10
Such is the manner in which Euclid defines parallel straight lines, but Posidonius says that parallels are lines in one plane which neither converge nor diverge
which is referred to by ancient writers under various names,
 pp. 280-281) was most probably the actual title. It is unfortunately no longer extant, but frequent references are made to it by Proclus, and long extracts are preserved in an Arabic commentary by an-Nairizi.

It is from this commentary that Geminus is known to have attempted to prove the parallel-postulate by a definition of parallels similar to that of Posidonius. The method is reproduced in Heath, H.G.M. ii. 228-230. It tacitly assumes " Playfair's axiom," that through a given point only one parallel can be drawn to a given straight line; this axiom -which was explicitly stated by Proclus in his commentary on Eucl. i. 30 (Procl. in Eucl. i., ed. Friedlein 374. 18-375. 3)is, in fact, equivalent to Euclid's Postulate 5. Saccheri noted an even more fundamental objection, that, before Geminus's definition of parallels can be used, it has to be proved that the locus of points equidistant from a straight line is a straight line; and this cannot be done without some equivalent postulate. Nevertheless, Geminus deserves to be held in honour as the author of the first known attempt to prove the parallel-postulate, a worthy predecessor to Lobachewsky and Riemann.

GREEK MATHEMATICS

$\pi a ́ \sigma \alpha s ~ \tau \alpha ̀ s ~ к а \theta є ́ \tau o v s ~ \tau \grave{a ̀ s ~ a ̉ \gamma o \mu \epsilon ́ v a s ~ a ̉ \pi o ̀ ~ \tau \hat{\omega} \nu ~ \tau \eta ̂ S ~}$

(iii.) Ptolemy

Ibid., ed. Friedlein 362. 12-363. 18

 то仑̂тo $\pi \rho \grave{o ̀} \pi a ́ \nu \tau \omega \nu \delta \epsilon \iota \kappa \nu v ̀ s ~ \tau o ̀ ~ \theta \epsilon \omega ́ \rho \rho \eta \mu a ~ \tau o ̀ ~ \delta v \epsilon i ̂ \nu ~$

"E $\sigma \tau \omega \sigma \alpha \nu$ dv́o $\epsilon \dot{v} \theta \epsilon i ̂ a \iota ~ a i ~ A B, \Gamma \Delta$, каì $\tau \epsilon \mu \nu \epsilon \in \tau \omega$

 $\lambda \epsilon ́ \gamma \omega$ öть $\pi a \rho a ́ \lambda \lambda \eta \lambda o i ́ ~ \epsilon i \sigma \iota \nu ~ a i ~ \epsilon v ่ \theta \epsilon i ̂ a \iota, ~ \tau о v \tau \epsilon ́ \sigma \tau \iota \nu ~$ 372

LATER DEVELOPMENTS IN GEOMETRY

but the perpendiculars drawn from points on one of the lines to the other are all equal.

> (iii.) Ptolemy a

Ibid., ed. Friedlein 362. 12-363. 18
How the writer of the Elements proves that, if the interior angles be equal to two right angles, the straight lines are parallel is clear from what has been written. But Ptolemy, in the work ${ }^{b}$ in which he attempted to prove that straight lines produced from angles less than two right angles will meet on the side on which the angles are less than two right angles, first proved this theorem, that if the interior angles be equal to two right angles the lines are parallel, and he proves it somewhat after this fashion.

Let the two straight lines be $\mathrm{AB}, \Gamma \Delta$, and let any straight line EZHӨ cut them so as to make the angles BZH and $\mathrm{ZH} \Delta$ equal to two right angles. I say that the straight lines are parallel, that is they are non-

[^83]
GREEK MATHEMATICS

 $\tau \omega \sigma \alpha \nu$ е̇к $\beta \alpha \lambda \lambda o ́ \mu \in \nu \alpha \iota$ ai $\mathrm{BZ}, \mathrm{H} \Delta$ ката̀ то̀ K.
 ỏp $\theta a i ̂ s ~ \imath ̋ \sigma a s ~ \pi o \iota \epsilon \hat{\imath} ~ \tau \grave{\alpha} s ~ v i \pi o ̀ ~ A Z H, ~ B Z H ~ \gamma \omega \nu i ́ a s . ~$

 ai $\tau \epsilon ́ \sigma \sigma \alpha \rho \epsilon s$ ă $\rho \alpha$ ai $\dot{\text { ú } \pi \grave{~} \mathrm{AZH}, \mathrm{BZH}, \Gamma \mathrm{HZ}, \triangle \mathrm{HZ}}$

 ϵi oûv ai ZB, HD

 そ̈ $\gamma \dot{\alpha} \rho, \kappa \alpha \tau^{\prime}$ à $\mu \phi o ́ \tau \epsilon \rho a \quad \sigma \nu \mu \pi \epsilon \sigma 0 v \hat{\nu \tau \alpha \iota}$ ai $\epsilon \dot{v} \theta \epsilon \hat{i} \alpha \iota$,
 ${ }_{\circ} \rho \theta \alpha i ̂ s ~ \epsilon i \sigma \iota \nu$ î́al. $\sigma v \mu \pi \iota \pi \tau \epsilon ́ \tau \omega \sigma \alpha \nu$ oûv ai ZA,

 $\sigma \nu \mu \pi i \pi \tau \epsilon \iota \nu$ тàs єù $\theta \epsilon i ́ a s$. $\pi \alpha \rho a ́ \lambda \lambda \eta \lambda o \iota ~ a ̃ \rho a ~ \epsilon i \sigma i ́ \nu . ~$

Ibid., ed. Friedlein 365. 5-367. 27
 $\tau \dot{\alpha} \xi \alpha \nu \tau \epsilon S$ то仑̂ $\tau \circ$ аї $\tau \eta \mu \alpha \pi \alpha \rho \dot{\alpha} \tau \hat{\omega} \Sigma \tau o \iota \chi \epsilon \iota \omega \tau \hat{\eta} \lambda \eta \phi \theta \dot{\epsilon} \nu$

[^84]
LATER DEVELOPMENTS IN GEOMETRY

secant. For, if it be possible, let $\mathrm{BZ}, \mathrm{H} \Delta$, when produced, meet at K . Then since the straight line HZ stands on $A B$, it makes the angles $A Z H, B Z H$ equal to two right angles [Eucl. i. 13]. Similarly, since HZ stands on I Δ, it makes the angles $\Gamma \mathrm{HZ}, \triangle \mathrm{HZ}$ equal to two right angles [ibid.]. Therefore the four angles $A Z H, B Z H, \Gamma H Z, \triangle H Z$ are equal to four right angles, and of them two, BZH, $\mathrm{ZH} \Delta$, are by hypothesis equal to two right angles. Therefore the remaining angles $\mathrm{AZH}, \Gamma \mathrm{HZ}$ are also themselves equal to two right angles. If then, the interior angles being equal to two right angles, $\mathrm{ZB}, \mathrm{H} \Delta$ meet at K when produced, $\mathrm{ZA}, \mathrm{H} \Gamma$ will also meet when produced. For the angles AZH, ГHZ are also equal to two right angles. Therefore the straight lines will either meet on both sides or on neither, since these angles also are equal to two right angles. Let ZA, $H \Gamma$ meet, then, at Λ. Then the straight lines $\Lambda A B K$, $\Lambda \Gamma \Delta K$ enclose a space, which is impossible. ${ }^{a}$ Therefore it is not possible that, if the interior angles be equal to two right angles, the straight lines should meet. Therefore they are parallel. ${ }^{b}$

Ibid., ed. Friedlein 365. 5-367. 27

Therefore certain others already classed as a theorem this postulate assumed by the writer of the Elements and demanded a proof. Ptolemy appears point of ZH so that ZH lies where HZ is in the figure, while ZK , HK lie along the sides H , ZA respectively ; and therefore IIF, ZA must meet at the point where K falls.
The proof is based on the assumption that two straight lines cannot enclose a space. But Kiemann devised a geometry in which this assumption does not hold good, for all straight lines having a common point have another point common also.

GREEK MATHEMATICS

 $\pi о \lambda \lambda \dot{\alpha} \pi \rho \circ \lambda \alpha \beta \dot{\omega} \nu \tau \hat{\omega} \nu \mu \epsilon ́ \chi \rho \iota ~ \tau o \hat{\delta} \delta \epsilon \tau о \hat{v}$ Өє $\omega \rho \eta{ }^{\prime} \mu \alpha \tau о s$ viлò то仑̂ $\Sigma \tau о \iota \chi \epsilon \iota \omega \tau о \hat{v} \pi \rho о \alpha \pi о \delta \epsilon \delta \epsilon \iota \gamma \mu \epsilon ́ v \omega \nu$. каі

 $\epsilon \dot{v} \theta \epsilon i ́ a s ~ \tau \grave{\alpha} s ~ \epsilon ̇ \nu \tau o ̀ s ~ к а i ~ \epsilon ́ \pi i ~ \tau \grave{\alpha}$ aù $\frac{\alpha}{\alpha} \mu \epsilon ́ \rho \eta ~ \gamma \omega \nu i a s$

 ai $\mathrm{AB}, \Gamma \Delta$, каi $\epsilon^{\epsilon} \mu \pi \iota \pi \tau \epsilon \in \tau \omega$ єis av̉ $\tau \grave{\alpha} s \dot{\eta}^{\mathrm{\eta}} \mathrm{HZ}$;

 $\lambda \eta \lambda o \iota \ddot{\eta} \mathrm{ZB}, \mathrm{H} \Delta, \ddot{\omega} \sigma \tau \epsilon \epsilon i \dot{\eta} \dot{\epsilon} \mu \pi \epsilon \sigma o v \sigma \sigma \alpha ~ \epsilon i s ~ \tau \grave{\alpha} s$
 376

LATER DEVELOPMENTS IN GEOMETRY

to have proved it in his book on the proposition that straight lines drawn from angles less than two right angles meet if produced, and he uses in the proof many of the propositions proved by the writer of the Elements before this theorem. Let all these be taken as true, in order that we may not introduce another mass of propositions, and by means of the aforesaid propositions this theorem is proved as a lemma, that straight lines drann from two angles together equal to two right angles do not meet when produced ${ }^{a}$-for this is common to both sets of preparatory theorems. I say then that the converse is also true, that if parallel straight lines be cut by one straight line the interior angles on the same side are equal to two right angles. ${ }^{b}$ For the straight line cutting the parallel straight lines must make the interior angles on the same side equal to two right angles or less or greater. Let $A B, \Gamma \Delta$ be parallel straight lines, and let $H Z$ cut them ; I say that it does not make the interior angles on the same side greater than two right angles. For if the angles $A Z H$, IHZ are greater than two right angles, the remaining angles $\mathrm{BZH}, \triangle \mathrm{HZ}$ are less than two right angles. ${ }^{c}$ But these same angles are greater than two right angles ; for $\mathrm{A} Z, \Gamma \mathrm{H}$ are not more parallel than $\mathrm{ZB}, \mathrm{H} \Delta$, so that if the straight line falling on AZ, ГH make the interior angles greater than two right angles, the same straight line falling

[^85]
GREEK MATHEMATICS

 $\mathrm{BZH}, \triangle \mathrm{HZ} \tau \in ́ \tau \rho a \sigma \iota \nu$ ỏ $\rho \theta a i ̂ s ~ i ̋ \sigma a \iota \cdot$ ő $\pi \epsilon \rho$ ả δ v́vaтov.

 $\lambda \epsilon i \pi \epsilon \tau \alpha \iota ~ \tau \grave{\eta} \nu$ є’ $\mu \pi i \pi \pi \tau o v \sigma \alpha \nu$ סv́o o’ $\rho \theta a i ̂ s ~ i ̈ \sigma a s ~ \pi o \iota \epsilon i ̂ \nu$

Toútov $\delta \grave{\eta}$ oûv $\pi \rho \circ \delta \epsilon \delta \epsilon \iota \gamma \mu \epsilon ́ v o v$ тò $\pi \rho о к \epsilon i ́ \mu \epsilon \nu о \nu$

 $\sigma v \mu \pi \epsilon \sigma о \hat{v} \nu \tau \alpha \iota$ aí $\epsilon \dot{v} \theta \epsilon i ̂ \alpha \iota ~ \epsilon ่ \kappa \beta a \lambda \lambda o ́ \mu \epsilon \nu \alpha \iota$, єो' â $\mu \epsilon ́ \rho \eta$
 $\pi \iota \pi \tau \epsilon ́ \tau \omega \sigma \alpha \nu$. $\dot{\alpha} \lambda \lambda^{\prime} \epsilon i$ àov́ $\mu \pi \tau \omega \tau o i ́ \epsilon i \sigma \iota \nu, \epsilon \in \phi ' \hat{a}$

 ò $\rho \theta a i ̂ s ~ i ̈ \sigma a \iota ~ к а i ~ \delta v ́ o ~ o ̀ ~ \rho \theta \hat{w \nu}$ ढ' $\lambda a ́ \sigma \sigma o v \epsilon s$, ö $\pi \epsilon \rho$ ảঠúvarov.

a See note c on p. 377.

- The fallacy lies in the assumption that "AZ, ГH are not more parallel than $\mathrm{ZB}, \mathrm{H} \Delta$," so that the angles $\mathrm{BZH}, \Delta \mathrm{HZ}$ must also be greater than two right angles. This assump378

LATER DEVELOPMENTS IN GEOMETRY

on $\mathrm{ZB}, \mathrm{H} \Delta$ also makes the interior angles greater than two right angles ; but these same angles are less than two right angles, for the four angles AZH, ГHZ, $\mathrm{BZH}, \triangle \mathrm{HZ}$ are equal to four right angles ${ }^{a}$; which is impossible. Similarly we may prove that a straight line falling on parallel straight lines does not make the interior angles on the same side less than two right angles. But if it make them neither greater nor less than two right angles, the only conclusion left is that the transversal makes the interior angles on the same side equal to two right angles. ${ }^{b}$

With this preliminary proof, the theorem in question is proved beyond dispute. I mean that if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced, will meet on that side on which are the angles less than two right angles. For [, if possible,] let them not meet. But if they are nonsecant on the side on which are the angles less than two right angles, by much more will they be nonsecant on the other side, on which are the angles greater than two right angles, so that the straight lines would be non-secant on both sides. Now if this should be so, they are parallel. But it has been proved that a straight line falling on parallel straight lines makes the interior angles on the same side equal to two right angles. Therefore the same angles are both equal to and less than two right angles, which is impossible.

Having first proved these things and squarely faced tion is equivalent to the hypothesis that through a given point only one parallel can be drawn to a given straight line; but this hypothesis can be proved equivalent to Euclid's postulate. It is known as "Playfair's Axiom," but is, in fact, stated by Proclus in his note on Eucl. i. 31.

GREEK MATHEMATICS

 ГД каi $\epsilon \mu \pi i \pi \tau \tau о v \sigma a ~ \epsilon i s ~ a u ̀ \tau \grave{\alpha} s \dot{\eta} \mathrm{EZH} \Theta \pi о \iota \epsilon i \tau \omega$

 K. $\epsilon \pi \epsilon \epsilon$ oưv ai $\mu \epsilon ่ \boldsymbol{\varepsilon} \nu$ vinò AZH каi $\Gamma \mathrm{HZ}$ бv́o

 380

LATER DEVELOPMENTS IN GEOMETRY

the theorem in question, Ptolemy tries to make a more precise addition and to prove that, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, not only are the straight lines not non-secant, as has been proved, but their meeting takes place on that side on which the angles are less than two right angles, and not on the side on which they are greater. For let $A B, \Gamma \Delta$ be two straight lines and let EZH θ fall on them and make the angles AZH, ГHZ less than two right angles. Then the remaining angles are greater than two right angles [Eucl. i. 13]. Now it has been proved that the straight lines are not non-secant. If they meet, they will meet either on the side of A, Γ or on the side of B, Δ. Let them meet on the side of B, Δ at K. Then since the angles AZH, ГHZ are less than two right angles, while the angles AZH, $B Z H$ are equal to two right angles, when the common angle AZH is taken away, the angle $\Gamma \mathrm{HZ}$ will be less

[^86]
GREEK MATHEMATICS

 $\kappa \alpha \tau \alpha ̀ ~ \tau \alpha v ิ \tau \alpha ~ \sigma v \mu \pi i \pi \tau o v \sigma \iota \nu . ~ \dot{\alpha} \lambda \lambda \grave{\alpha} \mu \grave{\eta} \nu \sigma v \mu \pi i \pi \tau \sigma v \sigma \iota$.
 â ai $\tau \hat{\omega} \nu$ סv́o ó $\rho \theta \hat{\omega} \nu$ єiotv $\epsilon^{\prime} \lambda a ́ \sigma \sigma o \nu \epsilon s$.

(iv.) Proclus

Ibid., ed. Friedlein 371. 23-373. 2

 $\kappa \alpha i \quad \tau \eta ̀ \nu \lambda o \iota \pi \eta \dot{\nu}$.
 $\tau \epsilon \mu \nu \epsilon ́ \tau \omega$ тウ̀ $\nu \mathrm{AB} \dot{\eta} \mathrm{EZH}$. $\lambda \epsilon ́ \gamma \omega$ ö ö τ тウ̀ $\nu \mathrm{\Gamma} \Delta$ $\tau \epsilon \mu \epsilon \hat{\imath}$.

 $\tau \circ \hat{v} \mathrm{Z}$, єis äँтєєроv $\dot{\epsilon}^{\prime} \kappa \beta a \lambda \lambda o ́ \mu \epsilon \nu \alpha \iota$ ai BZ, ZH,

 382

LATER DEVELOPMENTS IN GEOMETRY

than the angle BZH. Therefore the exterior angle of the triangle $\mathrm{KZH}_{\text {a }}$ will be less than the interior and opposite angle, which is impossible [Eucl. i. 16]. Therefore they will not meet on this side. But they do meet. Therefore their meeting will be on the other side, on which the angles are less than two right angles.

(iv.) Proclus

Ibid., ed. Friedlein 371. 23-373. 2
This having first been assumed, I say that, if any straight line cut one of parallel straight lines, it will cut the other also.

For let $\mathrm{AB}, \Gamma \Delta$ be parallel straight lines, and let EZH cut AB. I say that it will cut $\Gamma \Delta$.

For since BZ, ZH are two straight lines drawn from one point Z, they have, when produced indefinitely, a distance greater than any magnitude, so that it will also be greater than that between the parallels.

GREEK MATHEMATICS

入оぃт η_{ν}.

 र́vo $\dot{\rho} \rho \theta \hat{\omega} \nu, \tau \hat{\eta} \dot{v} \pi \epsilon \rho \circ \chi \hat{\eta} \tau \bar{\omega} \nu$ रivo $\dot{\rho} \rho \theta \hat{\omega} \nu$ द̆ $\sigma \tau \omega$ zै $\sigma \eta$

 $\Delta \mathrm{ZE}, \pi a \rho a ́ \lambda \lambda \eta \lambda o i ́ ~ \epsilon i \sigma v \nu$ ai $\Theta \mathrm{K}, \Gamma \Delta \epsilon \dot{v} \theta \epsilon i a \imath$. каi $\tau \epsilon \in \mu \nu \epsilon \tau \grave{\eta} \nu \mathrm{K} \Theta \dot{\eta} \mathrm{AB} \cdot \tau \epsilon \mu \epsilon \hat{\iota}$ ăpa каi $\tau \grave{\eta} \nu \Gamma \Delta \delta_{\iota \alpha}$ $\tau \grave{o} \pi \rho o \delta \epsilon \delta \epsilon \iota \gamma \mu \epsilon$ 'vov. $\sigma \nu \mu \pi \epsilon \sigma o \hat{\nu} \tau a \iota$ ä ρa ai AB ,

${ }^{1} \triangle E Z$ codd., correxi.

[^87]384

LATER DEVELOPMENTS IN GEOMETRY

Whenever, therefore, they are at a distance from one another greater than the distance between the parallels, ZH will cut $\Gamma \Delta$. If, therefore, any straight line cuts one of parallels, it will cut the other also.

This having first been established, we shall prove in turn the theorem in question. For let $A B, \Gamma \Delta$ be two straight lines, and let EZ fall on them so as to

make the angles BEZ, $\triangle Z E$ less than two right angles. I say that the straight lines will meet on that side on which are the angles less than two right angles.

For since the angles BEZ, $\triangle Z E$ are less than two right angles, let the angle $\theta E B$ be equal to the excess of the two right angles. And let $\theta \mathrm{E}$ be produced to K. Then since EZ falls on $K \theta, \Gamma \Delta$ and makes the interior angles $\theta E Z, \triangle Z E$ equal to two right angles, the straight lines $\theta K, \Gamma \Delta$ are parallel. And $A B$ cuts $\mathrm{K} \Theta$; therefore, by what was before shown, it will also cut $\Gamma \Delta$. Therefore $A B, \Gamma \Delta$ will meet on that side on which are the angles less than two right angles, so that the theorem in question is proved. ${ }^{a}$

GREEK MATHEMATICS

(c) Isoperimetric Figures

Theon. Alex. in Ptol. Math. Syn. Comm. i. 3, ed. Rome, Studi e Testi, lxxii. (1936), 354. 19-357. 22

 $\mu \epsilon i \zeta \omega \nu, \tau \hat{\omega} \nu$ $\delta \grave{\epsilon} \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu \quad \dot{\eta}$ oф $\alpha i ̂ \rho a . "$

 $\mu \epsilon ่ \tau \rho \omega \nu \quad \sigma \chi \eta \mu \alpha \dot{\tau} \omega \nu$.

[^88]
LATER DEVELOPMENTS IN GEOMETRY

(c) Isoperimetric Figures

Theon of Alexandria, Commentary on Ptolemy's Syntaxis i. 3, ed. Rome, Studi e Testi, lxxii. (1936), 354. 19-357. 22
" In the same way, since the greatest of the various figures having an equal perimeter is that which has most angles, the circle is the greatest among plane figures and the sphere among solid. ${ }^{a}$ "

We shall give the proof of these propositions in a summary taken from the proofs by Zenodorus ${ }^{b}$ in his book On Isoperimetric Figures.

Of all rectilinear figures having an equal perimeter-

extant, but Pappus also quotes from it extensively (Coll. $\mathrm{\nabla}_{\mathbf{o}}$ ad init.), and so does the passage edited by Hultsch (Papp. Coll., ed. Hultsch 1138-1165) which is extracted from an introduction to Ptolemy's Syntaxis of uncertain authorship (v. Rome, Studi e Testi, liv., 1931, pp. xiii-xvii). It is disputed which of these versions is the most faithful.

GREEK MATHEMATICS

$\theta v \gamma \rho \alpha ́ \mu \mu \omega \nu \quad \sigma \chi \eta \mu \alpha ́ \tau \omega \nu, \lambda \epsilon ́ \gamma \omega$ $\delta \grave{\eta}$ iбо $\pi \lambda \epsilon \cup ́ p \omega \nu \tau \epsilon$

 $\Delta \mathrm{EZ} \pi о \lambda v ́ \gamma \omega \nu \alpha \pi \epsilon \rho \imath \gamma \rho a \phi о \mu \epsilon ́ \nu \omega \nu$ кúкд$\omega \nu \tau \grave{\alpha} \mathrm{H}$, Θ, каi є̇ $\pi \epsilon \zeta \epsilon \dot{\chi} \chi \theta \omega \sigma \alpha \nu$ ai $\mathrm{HB}, \mathrm{H}, \Theta, \Theta, \Theta \mathrm{Z}$. каi

 $\mathrm{AB} \mathrm{\Gamma} \tau о \hat{v} \Delta \mathrm{EZ}, \pi \lambda \epsilon o \nu a ́ \kappa \iota s$ ท̂̀ $\mathrm{B} \mathrm{\Gamma} \tau \dot{\eta} \nu$ то̂ $\mathrm{AB} \mathrm{\Gamma}$ $\pi \epsilon \rho i \mu \epsilon \tau \rho \circ \nu \kappa \alpha \tau \alpha \mu \epsilon \tau \rho \epsilon \hat{\imath} \eta{ }^{\eta} \pi \epsilon \rho \dot{\eta} \mathrm{EZ} \tau \eta \nu \nu \tau 0 \hat{v} \Delta \mathrm{EZ}$.

 ảтодац阝ávєıv $\pi \epsilon \rho \iota \phi \in \rho \in i ́ a s ~ \tau о \hat{v} \quad \pi \epsilon \rho \iota \gamma \rho a \phi о \mu \epsilon ́ v o v$

 $\mathrm{AB} \mathrm{\Gamma}$, $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{~B} \mathrm{\Gamma}$ oṽ $\tau \omega s$ ai δ ỏ $\rho \theta a i \quad \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$
 $\tau \epsilon ́ \sigma \tau \iota \nu$ ท $\mathrm{E} \Lambda$ тлòs $\Lambda \mathrm{M}$, oüтшs каì $\dot{\eta}$ víò $\mathrm{E} \Theta \mathrm{Z}$
 $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ v i \pi o ̀ ~ B H K . ~ к \alpha i ~ \epsilon ̇ \pi \epsilon i ~ \dot{\eta} \mathrm{E} \Lambda \pi \rho o ̀ s ~ \Lambda M$

[^89]
LATER DEVELOPMEN'SS IN GEOMETRY

I mean equilateral and equiangular figures-the greatest is that which has most angles.

For let $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ be equilateral and equiangular figures having equal perimeters, and let $A B \Gamma$ have the morc angles. I say that $\mathrm{AB} \mathrm{\Gamma}$ is the greater.

For let H, θ be the centres of the circles circumscribed about the polygons $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$, and let HB , $\mathrm{H} \Gamma, \theta \mathrm{E}, \theta \mathrm{Z}^{a}$ be joined. And from H, θ let $\mathrm{HK}, \theta \Lambda$ be drawn perpendicular to $\mathrm{B} \mathrm{\Gamma}, \mathrm{EZ}$. Then since $\mathrm{AB} \mathrm{\Gamma}$ has more angles than $\triangle \mathrm{EZ}, \mathrm{B} \mathrm{\Gamma}$ is contained more often in the perimeter of $\mathrm{AB} \mathrm{\Gamma}$ than EZ is contained in the perimeter of $\triangle \mathrm{EZ}$. And the perimeters are equal. Therefore $\mathrm{EZ}>\mathrm{B} \mathrm{\Gamma}$; and therefore $\mathrm{E} \Lambda>\mathrm{BK}$. Let ΛM be placed equal to $B K$, and let θM be joined. Then since the straight line EZ bears to the perimeter of the polygon $\triangle \mathrm{EZ}$ the same ratio as the angle EOZ bears to four right angles-owing to the fact that the polygon is equilateral and the sides cut off equal arcs from the circumscribing circle, while the angles at the centre are in the same ratio as the arcs on which they stand [Eucl. iii. 26]-and the perimeter of $\triangle \mathrm{EZ}$, that is the perimeter of ABI , bears to BI' the same ratio as four right angles bears to the angle BHГ', therefore ex aequali [Eucl. v. 17]
$\mathrm{EZ}: \mathrm{B} \mathrm{\Gamma}=$ angle $\mathrm{E} \Theta Z$: angle $\mathrm{BH} \Gamma$,
i.e., $\quad \mathrm{E} \Lambda: \Lambda \mathrm{M}=$ angle $\mathrm{E} \Theta \mathrm{Z}$: angle BH ,
i.e.,
$\mathrm{E} \Lambda: \Lambda \mathrm{M}=$ angle $\mathrm{E} \Theta \Lambda$: angle BHK.
And since $\mathrm{E} \Lambda: \Lambda \mathrm{M}>$ angle $\mathrm{E} \Theta \Lambda$: angle $\mathrm{M} \Theta \Lambda$, as we shall prove in due course, ${ }^{\text {b }}$
and $\Theta \mathrm{M}$ as radius cutting $\Theta \mathrm{E}$ and $\Theta \Lambda$ produced, as in Eucl. Optic. 8 (v. vol. i. pp. 502-505) ; the proposition is equivalent to the formula $\tan a: \tan \beta>\alpha: \beta$ if $\frac{1}{2} \pi>\alpha>\beta$.

GREEK MATHEMATICS

 NM $\Lambda, ~ \dot{\alpha} \lambda \lambda \dot{\alpha}$ каi $\dot{\eta}_{\pi \rho o ̀ s ~}^{\tau \hat{\varphi}} \Lambda$ î $\sigma \eta \tau \hat{\eta} \pi \rho o ̀ s ~ \tau \hat{\varphi}$

Ibid. 358. 12-360. 3

 öт $\mu \in i \zeta \omega \nu$ モ́ $\sigma \tau i \nu$ ó кúклоs.

 то̀ Θ, каi $\pi \epsilon \rho \imath \gamma \epsilon \gamma \rho \alpha ́ \phi \theta \omega$ $\pi \epsilon \rho i ~ \tau o ̀ \nu ~ А В Г ~ к и ́ к \lambda о \nu ~$ 390

LATER DEVELOPMENTS IN GEOMETRY

and $\quad \mathrm{E} \Lambda: \Lambda \mathrm{M}=$ angle $\mathrm{E} \Theta \Lambda$: angle BHK ,
\therefore angle $\mathrm{E} \Theta \Lambda$: angle $\mathrm{BHK}>$ angle $\mathrm{E} \Theta \Lambda: \mathrm{M} \Theta \Lambda$.
\therefore

$$
\text { angle } \mathrm{M} \Theta \Lambda>\text { angle } \mathrm{BHK} \text {. }
$$

Now the right angle at Λ is equal to the right angle at K. Therefore the remaining angle HBK is greater than the angle $\theta M \Lambda$ [by Eucl. i. 32]. Let the angle $\Lambda M N$ be placed equal to the angle HBK, and let $\Lambda \theta$ be produced to N . Then since the angle HBK is equal to the angle $N M \Lambda$, and the angle at Λ is equal to the angle at K, while $B K$ is equal to the side $M \Lambda$, therefore HK is equal to N Λ [Eucl. i. 26]. Therefore $H K>\theta \Lambda$. Therefore the rectangle contained by the perimeter of $\mathrm{AB} \mathrm{\Gamma}$ and HK is greater than the rectangle contained by the perimeter of $\triangle \mathrm{EZ}$ and $\theta \Lambda$. But the rectangle contained by the perimeter of $A B \Gamma$ and $H K$ is double of the polygon $A B \Gamma$, since the rectangle contained by $\mathrm{B} \mathrm{\Gamma}$ and HK is double of the triangle $\mathrm{HB} \mathrm{\Gamma}$ [Eucl. i. 41]; and the rectangle contained by the perimeter of $\triangle \mathrm{EZ}$ and $\theta \Lambda$ is double of the polygon $\triangle E Z$. Therefore the polygon $A B \Gamma$ is greater than $\triangle E Z$.

$$
\text { Ibid. 358. 12-360. } 3
$$

This having been proved, I say that if a circle have an equal perimeter with an equilateral and equiangular rectilineal figure, the circle shall be the greater.

For let $\mathrm{AB} \mathrm{\Gamma}$ be a circle having an equal perimeter with the equilateral and equiangular rectilineal figure $\triangle E Z$. I say that the circle is the greater.

Let H be the centre of the circle $A B \Gamma, \theta$ the centre of the circle circumscribing the polygon $\triangle \mathrm{EZ}$; and let there be circumscribed about the circle $A B \Gamma$ the

GREEK MATHEMATICS

 $\mathrm{EZ} \eta \eta \chi \theta \omega \dot{\eta} \Theta \mathrm{N}$, каi є́ $\pi \epsilon \zeta \epsilon \tilde{v}^{\prime} \chi \theta \omega \sigma \alpha \nu$ ai $\mathrm{H} \Lambda, \Theta \mathrm{E}$.

 392

LATER DEVELOPMENTS IN GEOMETRY

polygon $\mathrm{K} \Lambda \mathrm{M}$ similar to $\triangle \mathrm{EZ}$, and let HB be joined, and from θ let $\theta \mathrm{N}$ be drawn perpendicular to EZ, and let $H \Lambda, \theta E$ be joined. Then since the perimeter

of the polygon $K \Lambda M$ is greater than the perimeter of the circle ABr, as Archimedes proves in his work On the Sphere and Cylinder, ${ }^{a}$ while the perimeter of the circle $A B \Gamma$ is equal to the perimeter of the polygon $\Delta E Z$, therefore the perimeter of the polygon $K \Lambda M$ is greater than the perimeter of the polygon $\triangle \mathrm{EZ}$. And the polygons are similar ; therefore $B \Lambda>N E$. And the triangle $H \Lambda B$ is similar to the triangle $\theta E N$,

- Prop. 1, v. supra, pp. 48-49.

GREEK MATHEMATICS

Ibid. 364. 12-14
 $\mu \omega \nu \quad \sigma \chi \eta \mu \alpha ́ \tau \omega \nu$ каi τ às $\pi \lambda \epsilon \nu \rho a ̀ s ~ i \sigma о \pi \lambda \eta \theta \epsilon i \hat{s}$

Ibid. 374. 12-14

 $\mu \epsilon ́ v o \iota s ~ \epsilon ่ \nu ~ \tau \varphi ̣ ̂ ~ \Pi є \rho i ~ \sigma \phi а i ́ \rho a s ~ к а i ~ к v \lambda i ́ v \delta \rho о v . ~$
(d) Division of Zodiac Circle into 360 Parts:

Hypsicles

Hypsicl. Anaph., ed. Manitius 5. 25-31

[^90]
LATER DEVELOPMENTS IN GEOMETRY

since the whole polygons are similar ; therefore $\mathrm{HB}>$ θN. And the perimeter of the circle $A B \Gamma$ is equal to the perimeter of the polygon $\triangle E Z$. Therefore the rectangle contained by the perimeter of the circle $A B \Gamma$ and $H B$ is greater than the rectangle contained by the perimeter of the polygon $\triangle E Z$ and θN. But the rectangle contained by the perimeter of the circle $A B \Gamma$ and $H B$ is double of the circle $A B \Gamma$ as was proved by Archimedes, ${ }^{a}$ whose proof we shall set out next; and the rectangle contained by the perimeter of the polygon $\triangle \mathrm{EZ}$ and $\theta \mathrm{N}$ is double of the polygon $\triangle \mathrm{EZ}$ [by Eucl. i. 41]. Therefore the circle $A B \Gamma$ is greater than the polygon $\triangle E Z$, which was to be proved.

Ibid. 364. 12-14

Now I say that, of all rectilineal figures having an equal number of sides and equal perimeter, the greatest is that which is equilateral and equiangular.

Ibid. 374. 12-14

Now I say that, of all solid figures having an equal surface, the sphere is the greatest; and I shall use the theorems proved by Archimedes in his work On the Sphere and Cylinder. ${ }^{\text {b }}$
(d) Division of Zodiac Circle into 360 Parts: Hypsicles
Hypsicles, On Risings, ed. Manitius ${ }^{\circ}$ 5. 25-31
The circumference of the zodiac circle having been

[^91]
GREEK MATHEMATICS

 $\mu \in ́ v o v, ~ Є ̈ к а \sigma \tau о s ~ \tau \hat{\omega} \nu ~ \chi \rho o ́ v \omega \nu ~ \mu о i ̂ \rho a ~ \chi \rho о \nu \iota к \eta ̀ ~ к а-~$ $\lambda \in i \sigma \theta \omega$.

(e) Handbooks

(i.) Cleomedes

Cleom. De motu circ. ii. 6, ed. Ziegler 218. 8-924. 8

a Hypsicles, who flourished in the second half of the second century b.c., is the author of the continuation of Euclid's Elements known as Book xiv. Diophantus attributed to him a definition of a polygonal number which is equivalent to the formula $\frac{1}{2} n\{2+(n-1)(a-2)\}$ for the nth a-gonal number.

The passage here cited is the earliest known reference in Greek to the division of the ecliptic into 360 degrees. This number appears to have been adopted by the Grecks from the Chaldaeans, among whom the zodiac was divided into twelve signs and each sign into thirty parts according to one system, sixty according to another (v. Tannery, Mémoires scientifiques, ii. pp. 256-268). The Chaldaeans do not, however, seem to have applied this system to other circles; Hipparchus is believed to have been the first to divide the 396

LATER DEVELOPMENTS IN GEOMETRY

divided into 360 equal arcs, let each of the arcs be called a degree in space, and similarly, if the time in which the zodiac circle returns to any position it has left be divided into 360 equal times, let each of the times be called a degree in time. ${ }^{\boldsymbol{a}}$
(e) Handbooks
(i.) Cleomedes ${ }^{\text {b }}$

Cleomedes, On the Circular Motion of the Heavenly Bodies ii. 6, ed. Ziegler 218. 8-224. 8

Although these facts have been proved with regard to the eclipse of the moon, the argument that the moon suffers eclipse by falling into the shadow of the earth seems to be refuted by the stories told about paradoxical eclipses. For some say that an eclipse of the moon may take place even when both luminaries are seen above the horizon. This should make it clear that the moon does not suffer cclipse by
circle in general into 360 degrees. The problem which Hypsicles sets himself in his book is: Given the ratio between the length of the longest day and the length of the shortest day at any given place, to find how many time-degrees it takes any given sign to rise. A number of arithmetical lemmas are proved.
${ }^{\circ}$ Cleomedes is known only as the author of the two books Кикдıк $\theta \epsilon \omega \rho i a \quad \mu \epsilon \tau \epsilon \omega \dot{\omega} \omega \omega$. This work is almost wholly based on Posidonius. He must therefore have lived after Posidonius and presumably before Ptolemy, as he appears to know nothing of Ptolemy's works. In default of better evidence, he is generally assigned to the middle of the first century b.c.

The passage explaining the measurement of the earth by Eratosthenes has already been cited (supra, pp. 266-273). This is the only other passage calling for notice.

GREEK MATHEMATICS

 $\pi а \lambda \alpha \iota o ́ \tau \epsilon \rho о \iota ~ \tau \hat{\omega} \nu \mu \alpha Ө \eta \mu a \tau \iota \kappa \hat{\omega} \nu$ oṽт ωs є่тєХєípovข

 є́ $\sigma \tau \hat{\omega} \tau \epsilon S$. . . . $\tau o \iota \alpha v ́ \tau \eta \nu ~ \mu \epsilon ̀ \nu$ oûv oi $\pi \alpha \lambda \alpha \iota o ́ \tau \epsilon \rho \circ \iota$ $\tau \hat{\omega} \nu \mu \alpha \theta \eta \mu \alpha \iota \kappa \hat{\omega} \nu \quad \tau \grave{\eta} \nu \tau \hat{\eta} s \quad \pi \rho о \sigma \alpha \gamma о \mu \epsilon ́ \nu \eta s$ à $\pi о \rho i a s$

 $\pi \epsilon \rho i \quad \tau \alpha \hat{v} \tau \alpha$ катаүıvoнévoıs $\tau \hat{\omega} \nu$ à $\sigma \tau \rho о \lambda o ́ \gamma \omega \nu$ каі $\phi \iota \lambda o \sigma o ́ \phi \omega \nu$. . . . $\pi о \lambda \lambda \omega \bar{\omega} \delta \grave{\epsilon}$ каi $\pi \alpha \nu \tau о \delta \alpha \pi \omega \hat{\nu} \pi \epsilon \rho i$

 $\tau \epsilon ́ \rho \rho o v ~ \pi \rho o ̀ s ~ \tau \hat{\eta}$ ठv́бєє ővтos каi $\lambda a \mu \pi \rho v \nu o \mu \epsilon ́ v o v$
 ảтотє́ $\mu \pi о \nu \tau о s ~ \ddot{\eta}$ à $\nu \eta \eta \lambda i ́ o v ~ \gamma \epsilon \nu о \mu \epsilon ́ \nu о v . ~ к а i ~ \gamma a ̀ \rho ~$

[^92]
LATER DEVELOPMENTS IN GEOMETRY

falling into the shadow of the earth, but in some other way. . . . The more ancient of the mathematicians tried to explain this difficulty after this fashion. They said that persons standing on the earth would not be prevented from seeing them both because they would be standing on the convexities of the earth. . . . Such is the solution of the alleged difficulty given by the more ancient of the mathematicians. But its soundness may be doubted. For, if our eye were situated on a height, the phenomenon in question might take place, the horizon becoming conical ${ }^{a}$ if we were raised sufficiently far above the earth, but it could in no wise happen if we stood on the earth. For though there might be some convexity where we stood, our sight itself becomes evanescent owing to the size of the earth. . . . The fundamental objection must first be made, that this story has been invented by certain persons wishing to make difficulty for the astronomers and philosophers who busy themselves with such matters. . . . Nevertheless, as the conditions which naturally arise in the air are many and various, it would not be impossible that, when the sun has just set and is below the horizon, we should receive the impression of its not having yet set, if there were a cloud of considerable density at the place of setting and if it were illumincd by the solar rays and transmitted to us an image of the sun, or if there were a mock sun. ${ }^{b}$ For such images are often
b Lit. " anthelion," defined in the Oxford English Dictionary as " a luminous ring or nimbus seen (chiefly in alpine or polar regions) surrounding the shadow of the observer's head projected on a cloud or fog bank opposite the sun." The explanation here tentatively put forward by Cleomedes is, of course, the true one.

GREEK MA'THEMATICS

 $\pi \epsilon \rho i$ тòv Пóvто⿱.

(ii.) Theon of Smyrna

Ptol. Math. Syn. x. 1, ed. Heiberg i. pars ii. 296. 14-16
'Ev $\mu \grave{\epsilon} \nu$ yà ρ таîs $\pi \alpha \rho \alpha ̀ ~ \Theta \epsilon ́ \omega v o s ~ \tau о \hat{v} \mu \alpha \theta \eta \mu \alpha \tau \iota к о \hat{v}$
 $\tau \hat{\varphi} \iota 5^{\prime}{ }^{\prime \prime} \tau \epsilon \iota{ }^{\prime} \mathrm{A} \delta \rho \iota \alpha \nu o \hat{v}$.

Theon Smyr., ed. Hiller 1. 1-2. 2
${ }^{*} \mathrm{O} \tau \iota \mu \epsilon ̀ \nu$ ov̉犭 oióv $\tau \epsilon$ ovvєîval $\tau \hat{\omega} \nu \mu a \theta \eta \mu a \tau \iota \kappa \hat{\omega} s$
 $\mu \in ́ v o \nu$ e่v тरी $\theta \epsilon \omega \rho i ́ a ~ \tau a u ́ \tau \eta, ~ \pi a ̂ s ~ a ̆ ้ \nu ~ \pi o v ~ o ́ ~ \mu о \lambda o-~$

 $\chi a ́ v \in \iota \nu$ накарıбтòv $\mu \epsilon ̀ \nu \in \grave{\nu} \tau \omega$

 каi $\sigma v ̛ v \tau о \mu о \nu ~ \pi о \iota \eta \sigma o ́ \mu \epsilon \theta a ~ \tau \hat{\omega} \nu \stackrel{\alpha}{\alpha} \nu а \gamma к а i ́ \omega \nu ~ к а і ~ \hat{\omega} \nu$ $\delta \in i ̂ ~ \mu a ́ \lambda \iota \sigma \tau \alpha ~ \tau o i ̂ s ~ \epsilon ̇ v \tau \epsilon v \xi o \mu \epsilon ́ v o \iota s ~ \Pi \lambda a ́ \tau \omega \nu \iota ~ \mu a \theta \eta$ $\mu a \tau \iota \kappa \hat{\nu} \nu \quad \theta \epsilon \omega \rho \eta \mu a ́ \tau \omega \nu \pi \alpha \rho \alpha ́ \delta o \sigma \iota \nu$, à $\rho \iota \mu \eta \tau \iota \kappa \hat{\omega} \nu \tau \epsilon$ $\kappa а i ~ \mu о \nu \sigma \iota \kappa \omega ิ \nu ~ к а i ~ \gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \omega ̂ \nu ~ \tau \hat{\omega} \nu \tau \epsilon \kappa а \tau \grave{\alpha}$ $\sigma \tau \epsilon \rho \epsilon о \mu \epsilon \tau \rho i ́ a \nu$ каi ảбтроvo ${ }^{\prime} \dot{a} \nu, \hat{\omega} \nu \quad \chi \omega \rho i s$ oủ χ 400

LATER DEVELOPMENTS IN GEOMETRY

seen in the air, and especially in the neighbourhood of Pontus.

(ii.) Theon of Smyrna

Ptolemy, Syntaxis x. 1, ed. I Heiberg i. pars ii. 296. 14-16
For in the account given to us by Theon the mathematician we find recorded an observation made in the sixteenth year of Hadrian. ${ }^{a}$

Theon of Smyrna, ed. Hiller 1. 1-2. 2

Everyone would agree that he could not understand the mathematical arguments used by Plato unless he were practised in this science; and that the study of these matters is neither unintelligent nor unprofitable in other respects Plato himself would seem to make plain in many ways. One who had become skilled in all geometry and all music and astronomy would be reckoned most happy on making acquaintance with the writings of Plato, but this cannot be come by easily or readily, for it calls for a very great deal of application from youth upwards. In order that those who have failed to become practised in these studies, but aim at a knowledge of his writings, should not wholly fail in their desires, I shall make a summary and concise sketch of the mathematical theorems which are specially necessary for readers of Plato, covering not only arithmetic and music and geometry, but also their application to stereometry and astronomy, for

[^93]
GREEK MATHEMATICS

 $\pi о \lambda \lambda \hat{\omega} \nu \pi \alpha ́ \nu v \quad \delta \eta \lambda \omega \dot{\sigma} \alpha s$ ผ́s ov่ $\chi \rho \grave{\eta} \tau \hat{\omega} \nu \mu \alpha \theta \eta \mu \alpha ́ \tau \omega \nu$ ${ }_{\alpha}^{\alpha} \mu \in \lambda \epsilon \hat{\imath} \nu$.

- By way of example, Theon proceeds to relate Plato's reply to the craftsmen about the doubling of the cube (v.

LATER DEVELOPMENTS IN GEOMETRY

without these studies, as he says, it is not possible to attain the best life, and in many ways he makes clear that mathematics should not be ignored. ${ }^{a}$
vol. i. p. 257), and also the Epinomis. Theon's work, which has often been cited in these volumes, is a curious hotchpotch, containing little of real value to the study of Plato and no original work.

$$
\begin{aligned}
& \mathrm{N}_{2} 3^{3+2} \\
& \text { (a) } \\
& 4 \\
& \text { - } \\
& \text { : }: \text { 纤 } \\
& 0 \\
& \text { 朝 } 6 \\
& \text { 紋 }
\end{aligned}
$$

XXI. TRIGONOMETRY

XXI. TRIGONOMETRY

1. HIPPARCHUS AND MENELAUS

Theon Alex. in Ptol. Math. Syn. Comm. i. 10, ed. Rome, Studi e Testi, lxxii. (1936), 451. 4-5

 $\mathrm{M} \epsilon \nu \in \lambda a ́ \omega \in \bar{\epsilon} \nu \bar{\zeta}$.

Heron, Metr. i. 22, ed. H. Schöne (Heron iii.) 58. 13-20

a The beginnings of Greek trigonometry may be found in the science of sphaeric, the geometry of the sphere, for which v. vol. i. p. 5 n. b. It reached its culminating point in the Sphaerica of Theodosins.

Trigonometry in the strict sense was founded, so far as we know, by Hipparchus, the great astronomer, who was born at Nicaea in Bithynia and is recorded by Ptolemy to have made observations between 161 and 126 B.C., the most important of them at Rhodes. His greatest achievement was the discovery of the precession of the equinoxes, and he made a calculation of the mean lunar month which differs by less than a second from the present accepted figure. Unfortunately the only work of his which has survived is his early Commentary on the Phenomena of Eudoxus and Aratus. It 406

XXI. TRIGONOMETRY

1. HIPPARCHUS AND MENELAUS

Theon of Alexandria, Commentary on Ptoleny's Syntaxis i. 10, ed. Rome, Studi \& Testi, Ixxii. (1936), 451. 4-5

An investigation of the chords in a circle is made by Hipparchus in twelve books and again by Menelaus in six. ${ }^{a}$

Heron, Metrics i. 22, ed. H. Schöne (Heron iii.) 58. 13-20
Let $\mathrm{ABI} \triangle \mathrm{EZH} \theta \mathrm{K}$ be an equilateral and equiangular enneagon, ${ }^{b}$ whose sides are each equal to 10. To find its area. Let there be described about it a circle with centre Λ, and let E Λ be joined and prois clear, however, from the passage here cited, that he drew up, as did Ptolemy, a table of chords, or, as we should say, a table of sines; and Heron may have used this table (v. the next passage cited and the accompanying note).

Menelaus, who also drew up a table of chords, is recorded by Ptolemy to have made an observation in the first year of Trajan's reign (a.d. 98). He has already been encountered (vol. i. pp. 348-349 and n. c) as the discoverer of a curve called "paradoxical." His trigonometrical work Sphaerica has fortunately been preserved, but only in Arabic, which will prevent citation here. A proof of the famous theorem in spherical trigonometry bearing his name can, however, be given in the Greek of Ptolemy (infra, pp. 458-463) ; and a summary from the Arabic is provided by Heath, H.G.M. ii. 262-273.

- i.e., a figure of nine sides.

GREEK MA'THEMATICS

 $\tau \hat{\omega} \nu \dot{\epsilon} \nu \kappa v ์ \kappa \lambda \omega \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu$, ö $\tau \iota \dot{\eta}$ ZE $\tau \hat{\eta} s$ EM $\tau \rho i \tau o \nu$ $\mu \epsilon ́ \rho o s \dot{\epsilon} \sigma \tau i \nu \stackrel{\omega}{\omega}$ є้ $\gamma \gamma \iota \sigma \tau a$.

2. PTOLEMY

(a) General

Suidas, s.v. Птодєнаios

Пто入є $\mu \alpha \hat{\imath} о s, ~ \delta ~ K \lambda a v ́ \delta \iota o s ~ \chi \rho \eta \mu а \tau i ́ \sigma a s, ~ ' A \lambda \epsilon \xi-~$

 $\dot{\alpha} \pi \lambda \alpha \nu \hat{\omega} \nu \beta \iota \beta \lambda \iota ́ a \bar{\beta},{ }^{\circ} \mathrm{A} \pi \lambda \omega \sigma \iota \nu$ є̇ $\pi \iota \phi a v \epsilon i ́ a s, \sigma \phi a i \rho a s$, Kavóva $\pi \rho o ́ \chi \in \iota \rho о \nu, ~ \tau o ̀ \nu ~ M є ́ \gamma а \nu ~ a ̉ \sigma \tau \rho о \nu o ́ \mu о \nu ~ \eta ̀ т о \iota ~$

[^94]
TRIGONOMETRY

duced to M, and let $M Z$ be joined. Then the triangle EZM is given in the enneagon. But it has been proved in the works on chords in a circle that ZE : EM is approximately $\frac{1}{3} .{ }^{a}$

2. PTOLEMY

(a) General

Suidas, s.v. Ptolemaeus

Ptolemy, called Claudius, an Alexandrian, a philosopher, born in the time of the Emperor Marcus. He wrote Mechanics, three books, On the Phases and Seasons of the Fixed Stars, two books, Explanation of the Surface of a Sphere, A Ready Reckoner, the Great Astronomy or Syntaxis ; and others. ${ }^{b}$
in the time of the Emperor Marcus [Aurelius] is not accurate as Marcus reigned from A.D. 161 to 180.

Ptolemy's Mechanics has not survived in any form ; but the books On Balancings and On the Elements mentioned by Simplicius may have been contained in it. The lesser astronomical works of Ptolemy published in the second volume of Heiberg's edition of Ptolemy include, in Greek, Фáates

 two titles in Suidas's notice. In the same edition is the Planisphaerium, a Latin translation from the Arabic, which can be identified with the "A $\pi \lambda \omega \sigma \iota s$ émioaveias obaipas of Suidas; it is an explanation of the stereographic system of projection by which points on the heavenly sphere are represented on the equatorial plane by projection from a polecircles are projected into circles, as Ptolemy notes, except great circles through the poles, which are projected into straight lines.
Allied to this, but not mentioned by Suidas, is Ptolemy's Analemma, which explains how points on the heavenly sphere can be represented as points on a plane by means of orthogonal projection upon three planes mutually at right angles-

GREEK MATHEMATICS

Simpl. in De caelo iv. 4 (Aristot. 311 b 1), ed. Heiberg 710. 14-19

Ibid. i. 2, 269 a 9, ed. Heiberg 20. 11

Ibid. i. 1, 268 a 6, ed. Heiberg 9. 21-27

'O ס̀̀ $\theta a v \mu a \sigma \tau o ̀ s ~ \Pi \tau о \lambda \epsilon \mu a i ̂ o s ~ \epsilon ’ v ~ \tau \hat{\varphi} \quad ~ \Pi \epsilon \rho \grave{~}$

the meridian, the horizontal and the " prime vertical." Only fragments of the Greek and a Latin version from the Arabic have survived; they are given in Heiberg's second volume.

Among the " other works" mentioned by Suidas are presumably the Inscription in Canobus (a record of some of
 $\tau \hat{\omega} \nu \pi \lambda a \nu \omega \mu \epsilon \mathcal{\nu} \omega \nu$, of which the first book is extant in Greek and the second in Arabic: and the Optics and the book On Dimension mentioned by Simplicius.

But Ptolemy's fame rests most securely on his Great Astronomy or Syntaxis as it is called by Suidas. Ptolemy himself called this majestic astronomical work in thirteen
 In due course the lesser astronomical works came to be called the Mıкро̀s á $\sigma \tau \rho о v o \mu о$ ú $\mu \in v o s(\tau o ́ \pi o s)$, the Little Astronomy, and the Syntaxis came to be called the Mєyád \quad av́vrasıs, or Great Collection. Later still the Arabs, combining their article Al 410

TRIGONOMETRY

Simplicius, Commentary on Aristotle's De caelo iv. 4 (31 l b 1), ed. Heiberg 710. 14-19
Ptolemy the mathematician in his work On Balancings maintains an opinion contrary to that of Aristotle and tries to show that in its own place neither water nor air has weight. And he proves that water has not weight from the fact that divers do not feel the weight of the water above them, even though some of them dive into considerable depths.

Ibid. i. 2, 269 a 9, ed. Heiberg 20. 11

Ptolemy in his book On the Elements and in his Optics . . . ${ }^{a}$

Ibid. i. 1, 268 a 6, ed. Heiberg 9. 21-27

The gifted Ptolemy in his book On Dimension showed that there are not more than three dimenwith the Greek superlative μ ধ́quoros, called it Al-majisti; corrupted into Almagest, this has since been the favourite name for the work.
The Syntaxis was the subject of commentaries by Pappus and Theon of Alexandria. The trigonometry in it appears to have been abstracted from earlier treatises, but condensed and arranged more systematically.

Ptolemy's attempt to prove the parallel-postulate has already been noticed (supra, pp. 372-383).
a Ptolemy's Optics exists in an Arabic version, which was translated into Latin in the twelfth century by Admiral Eugenius Siculus (v. G. Govi, L' ottica di Claudio Tolomeo di Eugenio Ammiraglio di Sicilia); but of the five books the first and the end of the last are missing. Until the Arabic text was discovered, Ptolemy's Optics was commonly supposed to be identical with the Latin work known as D_{e}. Speculis; but this is now thought to be a translation of Heron's Catoptrica by Williain of Moerbeke (v. infra, p. 502 n. a).

GREEK MATHEMATICS

 $\tau \rho i ́ \tau \eta \nu \delta \grave{\epsilon} \tau \eta ̀ \nu$ тò β áOos $\mu \epsilon \tau \rho \circ \hat{v} \sigma a \nu \cdot \ddot{\omega} \sigma \tau \epsilon, \epsilon \check{\iota} \tau \iota s$
 є̈̈ $\pi \alpha \nu \tau \epsilon \lambda \hat{\omega}$ каi ảópıбтоs.

(b) Table of Sines

(i.) Introduction

Ptol. Math. Syn. i. 10, ed. Heiberg i. pars i. 31. 7-32. 9
 $\epsilon \dot{\jmath} \theta \epsilon \iota \omega \hat{\nu}$

 $\theta \epsilon \omega \rho \eta \mu a ́ \tau \omega \nu \quad \epsilon \dot{v} \mu \epsilon \theta o ́ \delta \epsilon v \tau о \nu$ каі $\tau а \chi \epsilon i a \nu \tau \grave{\eta} \nu \in \in \pi \iota-$

 412

TRIGONOMETRY

sions; for dimensions must be determinate, and determinate dimensions are along perpendicular straight lines, and it is not possible to find more than three straight lines at right angles one to another, two of them determining a plane and the third measuring depth ; therefore, if any other were added after the third dimension, it would be completely unmeasurable and undetermined.

(b) Table of Sines

(i.) Introduction

Ptolemy, Syntaxis i. 10, ed. Heiberg i. pars i. 31. 7-32. 9
10. On the lengths of the chords in a circle

With a view to obtaining a table ready for immediate use, we shall next set out the lengths of these [chords in a circle], dividing the perimeter into 360 segments and by the side of the arcs placing the chords subtending them for every increase of half a degree, that is, stating how many parts they are of the diameter, which it is convenient for the numerical calculations to divide into 120 segments. But first we shall show how to establish a systematic and rapid method of calculating the lengths of the chords by means of the uniform use of the smallest possible number of propositions, so that we may not only have the sizes of the chords set out correctly, but may obtain a convenient proof of the method of calculating them based on geometrical considera-

GREEK MATHEMATICS

 тòv $\tau \hat{\eta} \varsigma$ є́ $\ddagger \eta \kappa о \nu \tau \alpha ́ \delta o s ~ \tau \rho o ́ \pi о \nu ~ \delta \iota \alpha ̀ ~ \tau o ̀ ~ \delta v ́ \sigma \chi \rho \eta \sigma \tau o \nu ~$

 катабтохаЧо́ $\mu \in \nu о \iota$, каі ка日’ ö ооv ằ то̀ тара-
 аїб $\theta \eta \sigma \iota \nu$ ảк $\rho \iota \beta$ о̂́s.

(ii.) $\sin 18^{\circ}$ and $\sin 36^{\circ}$

Ibid. 32. 10-35. 16

[^95]
TRIGONOMETRY

tions. ${ }^{a}$ In general we shall use the sexagesimal system for the numerical calculations owing to the inconvenience of having fractional parts, especially in multiplications and divisions, and we shall aim at a continually closer approximation, in such a manner that the difference from the correct figure shall be inappreciable and imperceptible.
(ii.) $\sin 18^{\circ}$ and $\sin 36^{\circ}$

Ibid. 32. 10-35. 16
First, let $A B \Gamma$ be a semicircle on the diameter $A \Delta \Gamma$ and with centre Δ, and from Δ let $\Delta \mathrm{B}$ be drawn per-

pendicular to $A \Gamma$, and let $\Delta \Gamma$ be bisected at E , and let EB be joined, and let EZ be placed equal to it, and let $Z B$ be joined. I say that $Z \Delta$ is the side of a decagon, and BZ of a pentagon. ${ }^{\text {b }}$

GREEK MATHEMATICS

 $\Delta \mathrm{B} \tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu a \cdot \tau \grave{o}$ ă $\rho \alpha$ v́тò $\tau \hat{\omega} \nu \Gamma \mathrm{Z}$ каі $\mathrm{Z} \Delta$
 $\tau \in \tau \rho a \gamma \omega ́ \nu o v$ ícov $\mathfrak{\epsilon} \sigma \tau \tau i \nu$ тoîs ảmò $\tau \hat{\omega} \nu \mathrm{E} \Delta, \Delta \mathrm{B}$

 $\delta_{\grave{\prime}} \mu \in \tau \rho \circ \nu \tau \mu \eta \mu a ́ \tau \omega \nu \overline{\rho \kappa}$, $\gamma і \nu \in \tau \alpha \iota \delta \iota a ̀ ~ \tau a ̀ ~ \pi \rho о к є i ́ \mu \in \nu \alpha$

[^96]
TRIGONOMETRY

For since the straight line $\Delta \Gamma$ is bisected at E, and the straight line ΔZ is added to it,

$$
\begin{aligned}
\Gamma Z . \mathrm{Z} \Delta+\mathrm{E} \Delta^{2} & =\mathrm{EZ}^{2} \quad \quad \text { Eucl. ii. } 6 \\
& =\mathrm{BE}^{2},
\end{aligned}
$$

since $\mathrm{EB}=\mathrm{ZE}$.
But $\quad \mathrm{E} \Delta^{2}+\Delta \mathrm{B}^{2}=\mathrm{EB}^{2} ; \quad$ EEucl. i. 47
therefore $\quad \Gamma Z . Z \Delta+E \Delta^{2}=E \Delta^{2}+\Delta B^{2}$.
When the common term $\mathrm{E} \Delta^{2}$ is taken away,
the remainder $\quad \Gamma Z . Z \Delta=\Delta B^{2}$
i.e.,

$$
=\Delta \Gamma^{2} ;
$$

therefore $Z \Gamma$ is divided in extreme and mean ratio at Δ [Eucl. vi., Def. 3]. Therefore, since the side of the hexagon and the side of the decagon inscribed in the same circle when placed in one straight line are cut in extreme and mean ratio [Eucl. xiii. 9], and $\Gamma \Delta$, being a radius, is equal to the side of the hexagon [Eucl. iv. 15, coroll.], therefore ΔZ is equal to the side of the decagon. Similarly, since the square on the side of the pentagon is equal to the rectangle contained by the side of the hexagon and the side of the decagon inscribed in the same circle [Eucl. xiii. 10], and in the right-angled triangle $B \Delta Z$ the square on BZ is equal [Eucl. i. 47] to the sum of the squares on $B \Delta$, which is a side of the hexagon, and ΔZ, which is a side of the decagon, therefore $B Z$ is equal to the side of the pentagon.

Then since, as I said, we made the diameter ${ }^{a}$ consist of 120^{p}, by what has been stated $\triangle \mathrm{E}$, being half the numeral with a single accent, and second-sixtieths by the numeral with two accents. As the circular associations of the system tend to be forgotten, and it is used as a general system of enumeration, the same notation will be used for the squares of parts.

GREEK MATHEMATICS

 $\overline{\tau \xi}$, тоьov́т $\omega \nu \stackrel{\prime}{\epsilon} \sigma \tau \alpha \iota \overline{\lambda \zeta} \bar{\delta} \overline{\nu \epsilon}$, oí $\omega \nu \dot{\eta} \delta \iota \alpha \underline{\mu} \epsilon \tau \rho \circ$ оs $\overline{\rho \kappa}$.

 $\dot{\eta} \mathrm{BZ} \tau \mu \eta \mu \alpha ́ \tau \omega \nu \overline{\text { o }} \overline{\lambda \beta} \bar{\gamma}{ }_{\epsilon}^{\epsilon} \gamma \gamma \iota \sigma \tau \alpha$. каі $\dot{\eta} \tau о \hat{v} \pi \epsilon \nu \tau \alpha-$

 oì $\omega \nu \dot{\eta}{ }^{\dot{\eta}} \delta \iota a ́ \mu \epsilon \tau \rho \circ s \overline{\rho \kappa}$.
 $\pi \lambda \epsilon v \rho a ́, ~ i ́ v o \tau \epsilon i ́ v o v \sigma \alpha ~ \delta \grave{\epsilon} \mu o i \rho a s ~ \vec{\xi}$, каi ĭ $\sigma \eta$ оv̂$\sigma \alpha$

 418

TRIGONOMETRY

of the radius, consists of 30^{p} and its square of 900^{p}, and $\mathrm{B} \Delta$, being the radius, consists of 60^{p} and its square of 3600^{p}, while EB^{2}, that is $E Z^{2}$, consists of 4500^{p}; therefore EZ is approximately $67^{p} 4^{\prime} 55^{\prime \prime},{ }^{a}$ and the remainder ΔZ is $37^{p} 4^{\prime} 55^{\prime \prime}$. Therefore the side of the decagon, subtending an arc of 36° (the whole circle consisting of 360°), is $37^{p} 4^{\prime} 55^{\prime \prime}$ (the diameter being 120^{p}). Again, since ΔZ is $37^{p} 4^{\prime} 55^{\prime \prime}$, its square is $1375^{p} 4^{\prime} 15^{\prime \prime}$, and the square on $\Delta \mathrm{B}$ is 3600^{p}, which added together make the square on $B^{\prime} /$ $4975^{p} 4^{\prime} 15^{\prime \prime}$, so that BZ is approximately $70^{p} 32^{\prime} 3^{\prime \prime}$. And therefore the side of the pentagon, subtending 72° (the circle consisting of 360°), is $70^{p} 32^{\prime} 3^{\prime \prime}$ (the diameter being 120^{p}).

Hence it is clear that the side of the hexagon, subtending 60° and being equal to the radius, is 60^{p}. Similarly, since the square on the side of the square, ${ }^{b}$ subtending 90°, is double of the square on the radius, and the square on the side of the triangle, subtending 120°, is three times the square on the radius, while the square on the radius is 3600^{p}, the square on the side of the square is 7200^{p} and the square on the side of the triangle is 10800^{p}. Therefore the chord subtending 90° is approximately $84^{p} 51^{\prime} 10^{\prime \prime}$ (the diameter

[^97]
GREEK MATHEMATICS

 $\overline{\nu \epsilon} \overline{k \gamma}$.

$$
\text { (iii.) } \sin ^{2} \theta+\cos ^{2} \theta=1
$$

Ibid. 35. 17-36. 12

[^98]
TRIGONOMETRY

consisting of 120^{p}), and the chord subtending 120° is $103^{p} 55^{\prime} 23^{\prime \prime} .{ }^{\text {a }}$

$$
\text { (iii.) } \sin ^{2} \theta+\cos ^{2} \theta=1
$$

Ibid. 35. 17-36. 12
The lengths of these chords have thus been obtained immediately and by themselves, ${ }^{\text {b }}$ and it will be thence clear that, among the given straight lines, the lengths are immediately given of the chords subtending the remaining ares in the semicircle, by reason of the fact that the sum of the squares on these chords is equal to the square on the diameter; for example, since the chord subtending 36° was shown to be $37^{p} 4^{\prime} 55^{\prime \prime}$ and its square $1375^{p} 4^{\prime} 15^{\prime \prime}$, while the square on the diameter is 14400^{p}, therefore the square on the chord subtending the remaining 144° in the semicircle is
double of the arc $A B$," which is the Ptolemaic form; as Ptolemy means by this expression precisely what we mean by $\sin \mathrm{AB}$, I shall interpolate the trigonometrical notation in the translation wherever it occurs. It follows that $\cos a$ $[=\sin (90-\alpha)]=\frac{1}{2}$ crd. $\left(180^{\circ}-2 \alpha\right)$, or, as Ptolemy says, "half the chord subtended by the remaining angle in the semicircle." Tan a and the other trigonometrical ratios were not used by the Greeks.

In the passage to which this note is appended Ptolemy proves that
side of decagon $\quad\left(=\right.$ crd. $\left.36^{\circ}=2 \sin 18^{\circ}\right)=37^{\circ} 4^{\prime} 55^{\prime \prime}$,
side of pentagon $\left(=\right.$ crd. $\left.72^{\circ}=2 \sin 36^{\circ}\right)=70^{\circ} 32^{\prime} 3^{\prime \prime}$,
side of hexagon $\left(=\right.$ crd. $\left.60^{\circ}=2 \sin 30^{\circ}\right)=60^{p}$,
side of square $\quad\left(=\right.$ crd. $\left.90^{\circ}=2 \sin 45^{\circ}\right)=84^{p} 51^{\prime} 10^{\prime \prime}$,
$\begin{gathered}\text { side of equilateral } \\ \text { triangle }\end{gathered}\left(=\operatorname{crd} .120^{\circ}=2 \sin 60^{\circ}\right)=103^{p} 55^{\prime} 23^{\prime \prime}$.

- i.e., not deduced from other known chords.

GREEK MATHEMATICS

$\stackrel{a}{\mathrm{M}}, \overline{\gamma \kappa \delta} \overline{\nu \epsilon} \overline{\mu \epsilon}$, av่ $\tau \dot{\eta} \delta \dot{\epsilon} \mu \dot{\eta} \kappa \epsilon \iota \tau \hat{\omega} \nu$ au่ $\hat{\omega} \nu \overline{\rho \iota \delta} \bar{\zeta} \overline{\lambda \zeta}$

 $\kappa \alpha \tau \dot{\alpha} \mu \epsilon ́ \rho о s ~ \delta о \theta \eta ́ \sigma о \nu \tau a l, \delta \epsilon i \xi о \mu \epsilon \nu \dot{\epsilon} \phi \epsilon \xi \eta ิ s \pi \rho о \epsilon \kappa \theta \epsilon ́-$ $\mu \epsilon \nu o \iota ~ \lambda \eta \mu \mu a ́ \tau \iota o \nu \epsilon v ้ \chi \rho \eta \sigma \tau о \nu \pi \alpha ́ v v \pi \rho o ̀ s ~ \tau \eta े \nu \pi \alpha \rho o \hat{\sigma} \sigma \alpha \nu$ $\pi \rho a \gamma \mu a \tau \epsilon i a \nu$.
(iv.) "Ptolemy's Theorem"

Tbid. 36. 13-37. 18

 $\tau \epsilon ́ \rho o \iota s \tau \hat{\varphi} \tau \epsilon \dot{v} \pi \grave{o} \tau \hat{\omega} \nu \mathrm{AB}, \Delta \Gamma \kappa \alpha i \tau \hat{\varphi}$ vi $\boldsymbol{\Delta} \dot{\partial} \tau \hat{\omega} \nu$ $\mathrm{A} \Delta, \mathrm{B} \Gamma$.

[^99]
TRIGONOMETRY

$13024^{D} 55^{\prime} 45^{\prime \prime}$ and the chord itself is approximately $114^{p} 7^{\prime} 37^{\prime \prime}$, and similarly for the other chords. ${ }^{a}$

We shall explain in due course the manner in which the remaining chords obtained by subdivision can be calculated from these, setting out by way of preface this little lemma which is exceedingly useful for the business in hand.

(iv.) " Ptolemy's Theorem"

Ibid. 36. 13-37. 18
Let $\mathrm{AB} \mathrm{\Gamma} \triangle$ be any quadrilateral inscribed in a circle, and let $A \Gamma$ and $B \Delta$ be joined. It is required to prove that the rectangle contained by $A \Gamma$ and $B \Delta$ is equal to the sum of the rectangles contained by $A B, \Delta \Gamma$ and $A \Delta, B \Gamma$.

For let the angle $A B E$ be placed equal to the angle

$\Delta \mathrm{B} \Gamma$. Then if we add the angle $\mathrm{EB} \Delta$ to both, the

GREEK MATHEMATICS

 äpa $\epsilon \sigma \tau i v$, ćs $\dot{\eta} \mathrm{BA} \pi \rho o ̀ s ~ \mathrm{AE}, \dot{\eta} \mathrm{B} \Delta \pi \rho o ̀ s ~ \Delta \Gamma$. тò ă $\rho \alpha$ vimò $\mathrm{BA}, \Delta \Gamma$ й $\sigma o \nu$ є́ $\sigma \tau i v \tau \hat{\varphi}$ vimò $\mathrm{B} \Delta$, AE .

$$
\text { (v.) } \sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi
$$

Ibid. 37. 19-39. 3

'Е $\pi \epsilon \zeta \epsilon v^{\prime} \chi \theta \omega \sigma \alpha \nu \gamma$ 人̀ ρ ai $\mathrm{B} \Delta, \Gamma \Delta \cdot \delta \epsilon \delta o \mu \epsilon ́ v a \iota ~ a ̈ p a$

 424

TRIGONOMETRY

angle $\mathrm{AB} \Delta=$ the angle $\mathrm{EB} \mathrm{\Gamma}$. But the angle $\mathrm{B} \triangle \mathrm{A}=$ the angle $В \Gamma E$ [Eucl. iii. 21], for they subtend the same segment ; therefore the triangle $\mathrm{AB} \Delta$ is equiangular with the triangle $\mathrm{B} \mathrm{\Gamma E}$.

$$
\begin{array}{ll}
\mathrm{B} \Gamma: \Gamma \mathrm{E}=\mathrm{B} \Delta: \Delta \mathrm{A} ; & \text { [Eucl. vi. 4 } \\
\mathrm{B} \Gamma \cdot \mathrm{~A} \Delta=\mathrm{B} \Delta . \Gamma \mathrm{E} . & \text { [Eucl. vi. } 6
\end{array}
$$

Again, since the angle $A B E$ is equal to the angle $\Delta \mathrm{Br}^{\prime}$, while the angle BAE is equal to the angle $\mathrm{B} \triangle \Gamma$ [Eucl. iii. 21], therefore the triangle $A B E$ is equiangular with the triangle $В \Gamma \Delta$;

$$
\begin{array}{lll}
\therefore & \mathrm{BA}: \mathrm{AE}=\mathrm{B} \Delta: \Delta \Gamma ; & \text { [Eucl. vi. } 4 \\
\therefore & \text { BA. } \Delta \Gamma=\mathrm{B} \Delta . \mathrm{AE.} & \text { [Eucl. vi. } 6
\end{array}
$$

But it was shown that
and \because

$$
\mathrm{B} \Gamma . \mathrm{A} \Delta=\mathrm{B} \Delta . \Gamma \mathrm{F} ;
$$

which was to be proved.
[Eucl. ii. 1

$$
\text { (v.) } \sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi
$$

Ibid. 37. 19-39. 3
This having first been proved, let $А В Г \Delta$ be a semicircle having $\mathrm{A} \Delta$ for its diameter, and from A let the two [chords] $A B, A \Gamma$ be drawn, and let each of them be given in length, in terms of the 120^{p} in the diameter, and let $\mathrm{B} \mathrm{\Gamma}$ be joined. I say that this also is given.

For let $B \Delta, \Gamma \Delta$ be joined ; then clearly these also are given because they are the chords subtending the remainder of the semicircle. Then since АВГД is a quadrilateral in a circle,

GREEK MATHEMATICS

 $\tau \dot{\alpha} s \bar{o} \beta$.

TRIGONOMETRY

$$
\mathrm{AB} \cdot \Gamma \Delta+\mathrm{A} \Delta \cdot \mathrm{~B} \Gamma=\mathrm{A} \Gamma \cdot \mathrm{~B} \Delta .
$$

[" Ptolemy's theorem "
And $\mathrm{A} \Gamma . \mathrm{B} \Delta$ is given, and also $\mathrm{AB} . \Gamma \Delta$; therefore the remaining term $\mathrm{A} \Delta . \mathrm{B} \mathrm{\Gamma}$ is also given. And $\mathrm{A} \Delta$ is the diameter; therefore the straight line $B \Gamma$ is given. ${ }^{a}$

And it has become clear to us that, if two arcs are given and the chords subtending them, the chord subtending the difference of the ares will also be given. It is obvious that, by this theorem we can inscribe ${ }^{b}$ many other chords subtending the difference between given chords, and in particular we may obtain the chord subtending 12°, since we have that subtending 60° and that subtending 72°.

- If Ar subtends an angle 2θ and AB an angle 2ϕ at the centre, the theorem asserts that crd. $\overline{2 \theta-2 \phi}$) $\cdot\left(\right.$ crd. $\left.180^{\circ}\right)=($ crd. $2 \theta) .\left(\right.$ crd. $\left.\overline{180^{\circ}-2 \phi}\right)-$ (crd. 2ϕ). (crd. $\left.180^{\circ}-2 \theta\right)$
i.e., $\quad \sin (\theta-\phi)=\sin \theta \cos \phi-\cos \theta \sin \phi$.
" Or "calculate," as we might almost translate ধ́ $\gamma \gamma \rho a ́ \psi \circ \mu \epsilon \nu ;$ cf. supra, p. 414 n. a on $\dot{\epsilon} \kappa \tau \hat{\omega} \nu \gamma \rho a \mu \mu \omega \hat{\nu}$.

GREEK MATHEMATICS

$$
\text { (vi.) } \sin ^{2} \frac{1}{2} \theta=\frac{1}{2}(1-\cos \theta)
$$

Ibid. 39. 4-41. 3

 ГВ, каі $\dot{\eta}$ ГВ $\pi \epsilon \rho \iota ф є ́ \rho \epsilon \iota a ~ \delta i ́ \chi а ~ \tau \epsilon \tau \mu \eta \dot{\gamma} \theta \omega$ кат̀̀ тò Δ, каi $\epsilon \pi \epsilon \zeta \epsilon \epsilon ́ \chi \theta \omega \sigma a \nu$ ai $\mathrm{AB}, \mathrm{A} \Delta, \mathrm{B} \Delta, \Delta \Gamma$,

 АГ $\dot{v} \pi \epsilon \rho \circ \chi \hat{\eta} s$.

 $\mathrm{A} \Delta$, δ v́o $\delta \grave{\eta}$ ai $\mathrm{AB}, \mathrm{A} \Delta$ रv́o $\tau a i ̂ s \mathrm{AE}, \mathrm{A} \Delta$ î́aı

 428

TRIGONOMETRY

$$
\text { (vi.) } \sin ^{2} \frac{1}{2} \theta=\frac{1}{2}(1-\cos \theta)
$$

Ibid. 39. 4-41. 3
Again, given any chord in a circle, let it be required to find the chord subtending half the arc subtended by the given chord. Let $\mathrm{AB} \mathrm{\Gamma}$ be a semicircle upon the diameter $A \Gamma$ and let the chord Γ Be given, and

let the arc ΓB be bisected at Δ, and let $\mathrm{AB}, \mathrm{A} \Delta, \mathrm{B} \Delta$, $\Delta \Gamma$ be joined, and from Δ let ΔZ be drawn perpendicular to AГ. I say that $Z \Gamma$ is half of the difference between $A B$ and $A \Gamma$.

For let $A E$ be placed equal to $A B$, and let $\triangle \mathrm{E}$ be joined. Since $A B=A E$ and $A \Delta$ is common, [in the triangles $\mathrm{AB} \Delta, \mathrm{AE} \Delta$] the two [sides] $\mathrm{AB}, \mathrm{A} \Delta$ are equal to $\mathrm{AE}, \mathrm{A} \Delta$ each to each; and the angle $\mathrm{BA} \triangle$ is equal to the angle EA Δ [Eucl. iii. 27] ; and therefore the base $\mathrm{B} \Delta$ is equal to the base $\Delta \mathrm{E}$ [Eucl. i. 4]. But $B \Delta=\Delta \Gamma$; and therefore $\Delta \Gamma=\Delta E$. Then since the triangle $\Delta \mathrm{E} \Gamma$ is isosceles and ΔZ has been drawn from the vertex perpendicular to the base, $\mathrm{EZ}=\mathrm{Z} \Gamma$ [Eucl. i. 26]. But the whole $E \Gamma$ is the difference between the chords $A B$ and $A \Gamma$; therefore $Z \Gamma$ is half of the difference. Thus, since the chord subtending the arc $\mathrm{B} \mathrm{\Gamma}$ is given, the chord AB subtending the remainder

GREEK MATHEMATICS

 $\dot{\eta} \mathrm{AB}, \delta о \theta \dot{\eta} \sigma \epsilon \tau \alpha \iota \kappa \alpha i \hat{\eta} \mathrm{Z} \Gamma \hat{\eta} \mu i ́ \sigma \epsilon \iota \alpha$ оṽ $\sigma \alpha \tau \hat{\eta} s \tau \hat{\omega} \nu$
 $\tau \hat{\varphi}$ АГ Δ каӨє́тоv ả $\chi \theta \epsilon i \neq \eta s ~ \tau \eta ̂ s ~ \Delta Z ~ i \sigma o \gamma \omega ́ v ı o v ~ \gamma i ́-~$
 $\dot{\eta}$ А $\Gamma \pi \rho o ̀ s ~ \Gamma \Delta, \dot{\eta} \Gamma \Delta \pi \rho o ̀ s ~ \Gamma Z, \tau o ̀ ~ \alpha a ́ \rho a ~ v i \pi o ̀ ~ \tau \hat{\omega} \nu$

Kai $\delta \iota \alpha ̀$ тov́тov $\delta \grave{\eta} \pi a ́ \lambda \iota \nu ~ \tau o v ̂ ~ \theta \epsilon \omega \rho \eta \eta^{\prime} \mu a \tau o s ~ a ̈ \lambda \lambda a \iota ~$

 aข่т $\omega \nu$ ○ $\overline{\mu \zeta} \bar{\eta}$.

$$
\begin{gathered}
\text { (vii.) } \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi \\
\text { Ibid. 41. 4-43.5 }
\end{gathered}
$$

[^100]
TRIGONOMETRY

of the semicircle is immediately given, and $Z \Gamma$ will also be given, being half of the difference between $A \Gamma$ and $A B$. But since the perpendicular ΔZ has been drawn in the right-angled triangle $А \Gamma \Delta$, the right-angled triangle $A \Delta \Gamma$ is equiangular with $\Delta \Gamma Z$ [Eucl. vi. 8], and

$$
A \Gamma: \Gamma \dot{\Delta}=\Gamma \Delta: \Gamma Z,
$$

and therefore

$$
A \Gamma . \Gamma Z=\Gamma \Delta^{2} .
$$

But $A \Gamma . \Gamma Z$ is given ; therefore $\Gamma \Delta^{2}$ is also given. Therefore the chord $\Gamma \Delta$, subtending half of the arc $\mathrm{B} \mathrm{\Gamma}$, is also given. ${ }^{\text {a }}$

And again by this theorem many other chords can be obtained as the halves of known chords, and in particular from the chord subtending 12° can be obtained the chord subtending 6° and that subtending 3° and that subtending $1 \frac{1}{2}^{\circ}$ and that subtending $\frac{1}{2}^{\circ}+\frac{1}{4}^{\circ}\left(=3^{\circ}{ }^{\circ}\right)$. We shall find, when we come to make the calculation, that the chord subtending $1 \frac{1}{2}^{\circ}$ is approximately $1^{p} 34^{\prime} 15^{\prime \prime}$ (the diameter being 120^{p}) and that subtending $\frac{3^{\circ}}{4}$ is $0^{p} 47^{\prime} 8^{\prime \prime} .{ }^{b}$

$$
\begin{gathered}
\text { (vii.) } \cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi \\
\text { Ibid. 41. 4-43. } 5
\end{gathered}
$$

Again, let $\mathrm{ABF} \Delta$ be a circle about the diameter $A \Delta$ and with centre Z, and from A let there be cut off in succession two given ares $\mathrm{AB}, \mathrm{B} \mathrm{\Gamma}$, and let there be joined $A B, B \Gamma$, which, being the chords subtending them, are also given. I say that, if we join $А \Gamma$, it also will be given.

$$
(\operatorname{crd} . \theta)^{2}=\frac{1}{2}(\text { crd. } 180) \cdot\left\{\left(\text { crd. } 180^{\circ}\right)-\text { crd. } \overline{180^{\circ}-2 \theta}\right\}
$$

i.e., $\quad \sin ^{2} \frac{1}{2} \theta=\frac{1}{2}(1-\cos \theta)$.
' The symbol in the Greek for O should be noted; \boldsymbol{v}. vol. i. p. 47 n. a.

GREEK MATHEMATICS

 $\dot{\eta} \mathrm{BZE}, \kappa \alpha i \dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{\gamma} \chi \theta \omega \sigma \alpha \nu$ ai $\mathrm{B} \Delta, \Delta \Gamma, \Gamma \mathrm{E}, \Delta \mathrm{E} \cdot$

 єícì ai $\mathrm{B} \Delta$, ГЕ, тò vi $\pi o ̀ ~ \tau \hat{\omega} \nu ~ \delta \iota \eta \gamma \mu \epsilon ́ \nu \omega \nu ~ \pi \epsilon \rho \iota-$

 $\dot{\eta}$ ovvaцфотє́pas $\tau \grave{\alpha} s \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i ́ a s$ кала̀ $\sigma u ́ v \theta \epsilon \sigma \iota \nu$

[^101]
TRIGONOMETRY

For through B let BZE, the diameter of the circle, be drawn, and let $\mathrm{B} \Delta, \Delta \Gamma, \Gamma \mathrm{E}, \Delta \mathrm{E}$ be joined ; it is

then immediately obvious that, by reason of BI' being given, $I^{\prime} E$ is also given, and by reason of $A B$ being given, both $B \Delta$ and ΔE are given. And by the same reasoning as before, since $B \Gamma \Delta E$ is a quadrilateral in a circle, and $B \Delta, \Gamma E$ are the diagonals, the rectangle contained by the diagonals is equal to the sum of the rectangles contained by the opposite sides. And so, since $\mathrm{B} \Delta$. $\Gamma \mathrm{E}$ is given, while $\mathrm{B} \mathrm{\Gamma} . \triangle \mathrm{E}$ is also given, therefore $B E . \Gamma \Delta$ is given. But the diameter BE is given, and [therefore] the remaining term $\Gamma \Delta$ will be given, and therefore the chord ГA subtending the remainder of the semicircle ${ }^{a}$; accordingly, if two arcs be given, and the chords subtending them, by this theorem the chord subtending the sum of the ares will also be given.

GREEK MATHEMATICS

 є́ $\gamma \gamma \rho a ́ \psi о \mu \epsilon \nu$, oóбає $\delta i s$ रıvó $\mu \in \nu \alpha \iota$ трíтоv $\mu \epsilon ́ \rho о s$

 бúv $\theta \epsilon \sigma \iota \nu$ каi $\tau \grave{\eta \nu} \dot{v} \tau \epsilon \epsilon \rho о \chi \grave{\eta} \nu \quad \tau \grave{\eta} \nu \quad \pi \rho o ̀ s ~ \tau \alpha ̀ s ~ \tau \grave{\alpha}$

 ö, кӓ̀ $\mu \grave{\eta}$ трòs тò каӨólov $\delta u ́ v \eta \tau \alpha \iota ~ \tau a ̀ s ~ \pi \eta \lambda \iota-~$
 $\pi \rho o ̀ s ~ \tau a ̀ s ~ ङ \rho \iota \sigma \mu \epsilon ́ v a s ~ a ̀ \pi a \rho a ́ \lambda \lambda a \kappa т о \nu ~ \delta u ́ v a \iota т ' ~ a ̆ \nu ~$ $\sigma \nu \nu \tau \eta \rho \epsilon i ้$.

(viii.) Method of Interpolation

Ibid. 43. 6-46. 20

 $\phi \epsilon ́ \rho \in \iota a \quad \pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ \epsilon ̀ \pi i ~ \tau \eta ̂ s ~ \epsilon ̇ \lambda \alpha ́ \sigma \sigma o v o s . ~$

TRIGONOMETRY

It is clear that, by continually putting next to all known chords a chord subtending $1 \frac{1}{2}^{\circ}$ and calculating the chords joining them, we may compute in a simple manner all chords subtending multiples of ${1 \frac{1}{2}^{\circ}}^{\circ}$, and there will still be left only those within the $1 \frac{1}{2}^{\circ}$ intervals-two in each case, since we are making the diagram in half degrees. Therefore, if we find the chord subtending $\frac{1}{2}^{\circ}$, this will enable us to complete, by the method of addition and subtraction with respect to the chords bounding the intervals, both the given chords and all the remaining, intervening chords. But when any chord subtending, say, $1 \frac{1}{2}^{\circ}$, is given, the chord subtending the third part of the same arc is not given by the [above] calculations-if it were, we should obtain immediately the chord subtending $\frac{1}{2}^{\circ}$; therefore we shall first give a method for finding the chord subtending 1° from the chord subtending $1 \frac{1}{2}^{\circ}$ and that subtending $\frac{3}{4}^{\circ}$, assuming a little lemma which, even though it canmot be used for calculating lengths in general, in the case of such small chords will enable us to make an approximation indistinguishable from the correct figure.

(viii.) Method of Interpolation

Ibid. 43. 6-46. 20
For I say that, if two unequal chords be dramn in a circle, the greater nill bear to the less a less ratio than that which the arc on the greater chord bears to the arc on the lesser.

For let $A B \Gamma \triangle$ be a circle, and in it let there be drawn two unequal chords, of which $A B$ is the lesser

GREEK MATHEMATICS

 $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota \alpha \pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{BA} \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon \iota \alpha \nu$.

 $\mu \epsilon i \zeta \omega \nu \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mu \grave{\epsilon} \nu \mathrm{~A} \Delta \tau \hat{\eta} s \mathrm{E} \Delta, \dot{\eta} \delta \dot{\epsilon} \mathrm{E} \Delta \tau \hat{\eta} s \Delta \mathrm{Z}$,

 $\sigma \epsilon i ̂ \tau \alpha \iota ~ \delta \grave{\epsilon} \tau \grave{\eta} \nu \Delta \mathrm{Z} . \quad \gamma \epsilon \gamma \rho \alpha \dot{\phi} \theta \omega$ $\delta \grave{\eta}$ ó HE , каі

$$
\text { - Lit. " let } \Delta \mathrm{Z} \Theta \text { be produced." }
$$

TRIGONOMETRY

and $B \Gamma$ the greater. I say that

$$
\Gamma \mathrm{B}: \mathrm{BA}<\operatorname{arc} \mathrm{B} \mathrm{\Gamma}: \operatorname{arc} \mathrm{BA} .
$$

For let the angle $A B \Gamma$ be bisected by $B \Delta$, and let

$A E \Gamma$ and $A \Delta$ and $\Gamma \Delta$ bc joined. Then since the angle ABF is bisected by the chord BE Δ, the chord $\Gamma \Delta=A \Delta$ [Eucl. iii. 26, 29], while $\Gamma E>$ EA [Eucl. vi. 3]. Now let ΔZ be drawn from Δ perpendicular to $\mathrm{AE} \Gamma$. Then since $\mathrm{A} \Delta>\mathrm{E} \Delta$, and $\mathrm{E} \Delta>\Delta Z$, the circle described with centre Δ and radius $\Delta \mathrm{E}$ will cut $\mathrm{A} \Delta$, and will fall beyond ΔZ. Let [the arc] HE θ be described, and let $\Delta \mathrm{Z}$ be produced to $\theta .^{a}$ Then since
sector $\Delta \mathrm{E} \theta>$ triangle $\triangle \mathrm{EZ}$,
and triangle $\Delta \mathrm{EA}>$ sector $\Delta \mathrm{EH}$,

GREEK MATHEMATICS

$\tau \rho i ́ \gamma \omega \nu o \nu \pi \rho o ̀ s ~ \tau o ̀ ~ \Delta E A ~ \tau \rho i ́ \gamma \omega \nu o \nu ~ \epsilon ́ \lambda \alpha ́ \sigma \sigma o v a ~ \lambda o ́ \gamma o \nu ~$
 $\dot{\omega} s \mu \epsilon ̀ \nu \tau o ̀ ~ \Delta \mathrm{EZ} \tau \rho i ́ \gamma \omega \nu o \nu \pi \rho o ̀ s ~ \tau o ̀ ~ \Delta \mathrm{EA} \tau \rho i ́ \gamma \omega \nu o \nu$,

 $\gamma \omega \nu i \alpha a \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$ víò $\mathrm{E} \Delta \mathrm{A} \cdot \hat{\eta}{ }^{\alpha} \rho \alpha \mathrm{ZE} \epsilon \dot{v} \theta \epsilon i \hat{\alpha} a \quad \pi \rho o ̀ s$
 $\gamma \omega \nu i ́ a ~ \pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ v i \pi o ̀ ~ E \Delta A . ~ к а i ~ \sigma v \nu \theta e ́ v \tau \iota ~ a ̆ \rho a ~ \dot{\eta}$

 $\gamma \omega \nu i ́ a ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$ ú $\pi \grave{o}$ Е $\Delta \mathrm{A}$ - каi $\delta \iota \in \lambda o ́ v \tau \iota ~ \dot{\eta}$ ГЕ

 $\mu \dot{\epsilon} \nu \dot{\eta}$ ГЕ $\epsilon \dot{v} \theta \epsilon \hat{\epsilon} a \quad \pi \rho \grave{s} \tau \boldsymbol{\eta} \nu \mathrm{EA}$, oṽ $\tau \omega s \dot{\eta}^{\boldsymbol{\eta}}$ ГВ $\epsilon \dot{v} \theta \epsilon \hat{\imath} a$

 $\phi \epsilon ́ \rho \epsilon \iota a \nu$.

 \bar{a}. $\epsilon \pi \epsilon i \quad \dot{\eta}$ AГ $\epsilon \dot{v} \theta \epsilon i ̂ a ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{BA} \epsilon \dot{v} \theta \epsilon i ̂ a \nu$

TRIGONOMETRY

\therefore triangle $\triangle \mathrm{E} Z$: triangle $\triangle \mathrm{EA}<$ sector $\triangle \mathrm{E} \theta$: sector $\triangle \mathrm{EH}$.
But triangle $\triangle \mathrm{EZ}$: triangle $\triangle \mathrm{EA}=\mathrm{EZ}$: EA,
[Eucl. vi. 1 and
sector $\triangle \mathrm{E} \theta$: sector $\triangle \mathrm{EH}=$ angle $\mathrm{Z} \Delta \mathrm{E}$: angle $\mathrm{E} \Delta \mathrm{A}$. $\therefore \quad Z E: E A<a n g l e ~ Z \Delta E$: angle $E \Delta A$.
\therefore componendo, $\mathrm{ZA}: \mathrm{EA}$ <angle $\mathrm{Z} \Delta \mathrm{A}$: angle $\mathrm{A} \Delta \mathrm{E}$; and, by doubling the antccedents, $\Gamma \mathrm{A}: \mathrm{AE}<$ angle $\Gamma \Delta \mathrm{A}$: angle $\mathrm{E} \Delta \mathrm{A} ;$ and dirimendo, $\quad \Gamma \mathrm{E}: \mathrm{EA}<$ angle $\Gamma \Delta \mathrm{E}$: angle $\mathrm{E} \Delta \mathrm{A}$. But $\quad \Gamma E: E A=\Gamma B: B A, \quad[E u c l . v i .3$ and angle $\Gamma \Delta B:$ angle $B \Delta A=\operatorname{arc} \Gamma B: \operatorname{arc} B A ;$
[Eucl. vi. 33
$\Gamma В: B A<\operatorname{arc} \Gamma B: \operatorname{arc} B A .{ }^{a}$
On this basis, then, let $\mathrm{AB} \Gamma$ be a circle, and in it let there be drawn the two chords $A B$ and $A \Gamma$, and let it first be supposed that $A B$ subtends an angle of $\frac{3^{\circ}}{4}$ and $A \Gamma$ an angle of 1°. Then since

$$
\mathrm{A} \mathrm{\Gamma}: \mathrm{BA}<\operatorname{arc} \mathrm{A} \mathrm{\Gamma}: \operatorname{arc} \mathrm{AB},
$$

while $\operatorname{arc} A \Gamma=\frac{4}{3} \cdot \operatorname{arc} A B$, $\therefore \quad \quad \Gamma A: B A<\frac{4}{3}$.
But the chord AB was shown to be $0^{0} 47^{\prime} 8^{\prime \prime}$ (the diameter being 120^{p}); therefore the chord ΓA
a If the chords $\Gamma B, B A$ subtend angles $2 \theta, 2 \phi$ at the centre, this is equivalent to the formula,

$$
\frac{\sin \theta}{\sin \phi}<\frac{\theta}{\phi},
$$

where $\theta<\phi<\frac{1}{2} \pi$.

GREEK MATHEMATICS
$\epsilon \dot{v} \theta \epsilon \hat{\iota} a \quad \grave{\epsilon} \lambda a ́ \sigma \sigma \omega \nu \dot{\epsilon} \sigma \tau i \nu \tau \hat{\omega} \nu$ aủ $\frac{\omega}{\nu} \nu \bar{a} \bar{\beta} \bar{\nu} \cdot \tau a v ̂ \tau a ~ \gamma \dot{a} \rho$

 АГ ${ }_{\alpha} \pi \epsilon \delta \epsilon i \xi a \mu \epsilon \nu$ тo七ov́т $\omega \nu$ ov̂ $\sigma \alpha \nu \bar{\alpha} \overline{\lambda \delta} \bar{\iota} \bar{\epsilon}$, oï $\omega \nu$ є́ativ $\dot{\eta} \delta \iota a ́ \mu \epsilon \tau \rho o s \overline{\rho \kappa} \cdot \dot{\eta}$ ă $\rho a \mathrm{AB} є \dot{v} \theta \epsilon i a \mu \epsilon i \zeta \omega \nu$
 ó入ıá є́ $\sigma \tau \iota \nu$ т̀̀ $\pi \rho о к \epsilon i \mu \epsilon \nu \alpha$ à $\overline{\lambda \delta} \overline{\iota \epsilon} . \quad \check{\omega} \sigma \tau \epsilon, \epsilon \in \pi \epsilon i$ $\tau \hat{\omega} \nu$ av่т $\hat{\omega} \nu \dot{\epsilon} \delta \epsilon i \chi \chi \theta \eta \kappa \alpha i \mu \epsilon i \zeta \omega \nu$ каi $\bar{\epsilon} \lambda \alpha ́ \sigma \sigma \omega \nu \hat{\eta} \tau \dot{\eta} \nu$

 440

TRIGONOMETRY

$<1^{p} 2^{\prime} 50^{\prime \prime}$; for this is approximately four-thirds of $0^{p} 47^{\prime} 8^{\prime \prime}$.

Again, with the same diagram, let the chord $A B$

be supposed to subtend an angle of 1°, and $A \Gamma$ an angle of $1 \frac{1}{2}^{\circ}$. By the same reasoning, since $\quad \operatorname{arc} \mathrm{A} \Gamma=\frac{3}{2}$. arc AB ,
$\therefore \quad \quad \Gamma \mathrm{BA}: \mathrm{BA}_{\frac{3}{2}}$.
But we have proved AГ to be $1^{p} 34^{\prime} 15^{\prime \prime \prime}$ (the diameter being 120^{p}) ; therefore the chord $\mathrm{AB}>1^{p} 2^{\prime} 50^{\prime \prime}$; for $1^{p} 34^{\prime} 15^{\prime \prime}$ is one-and-a-half times this number. Therefore, since the chord subtending an angle of 1° has been shown to be both greater and less than [approximately] the same [length], manifestly we shall find it to have approximately this identical value $1^{p} 2^{\prime} 50^{\prime \prime}$ (the diameter being 120^{p}), and by what has been proved before we shall obtain the chord subtending $\frac{1}{2}^{\circ}$, which is found to be approximately

GREEK MATHEMATICS
○ $\overline{\lambda \alpha} \overline{\kappa \epsilon} \stackrel{\varkappa}{\epsilon} \gamma \gamma \iota \sigma \tau \alpha$. каi $\sigma v \nu \alpha \nu a \pi \lambda \eta \rho \omega \theta \eta \dot{\eta} \sigma \tau \alpha \iota \tau \grave{\alpha}$

 $\pi \rho \omega ́ \tau o v ~ \delta \iota a \sigma \tau \eta \prime \mu a \tau o s ~ \sigma v \nu \theta \in ́ \sigma \in \omega s$ то仑 $\mathfrak{\eta} \mu \iota \mu о \iota \rho i o v$

(ix.) The Table

Ibid. 46. 21-63. 46

 каขóvıа ن́vтотá\}ouєv ảvà $\sigma \tau i ́ \chi o v s \overline{\mu \epsilon} \delta_{\iota a}$ тò $\sigma v ́ \mu-$ $\mu \epsilon \tau \rho \circ \nu$, $\hat{\omega} \nu \tau \grave{\alpha} \mu \epsilon \grave{\nu} \pi \rho \hat{\omega} \tau \alpha \mu \epsilon ́ \rho \eta \pi \epsilon \rho \iota \epsilon ́ \xi \in \iota \tau \grave{\alpha} \pi \eta \lambda \iota-$
 $\mu \epsilon ́ v a s, \tau a ̀ ~ \delta \epsilon ̀ ~ \delta \epsilon u ́ \tau \epsilon \rho a ~ \tau a ̀ s ~ \tau \omega ิ \nu \pi а \rho а к є \iota \mu \epsilon ́ \nu \omega \nu ~ \tau а i ̂ s ~$
 $\tau \hat{\omega} \nu \overline{\rho \kappa} \tau \mu \eta \mu a ́ \tau \omega \nu$ viтокєє $\mu \epsilon ́ \nu \eta s$, тà $\delta \dot{\epsilon} \tau \rho i ́ \tau \alpha$ тò λ^{\prime}

 кобто仑̂ $\mu \epsilon ́ \sigma \eta \nu ~ \epsilon ่ \pi \iota \beta o \lambda \eta ̀ \nu ~ a ̉ \delta \iota a ф o \rho o v ̂ \sigma a \nu ~ \pi \rho o ̀ s ~ a i ̆ \sigma \theta \eta-$

 $\delta_{\iota a} \tau \hat{\omega} \nu$ av̀ $\tau \hat{\omega} \nu$ каi $\pi \rho о к є \iota \mu \epsilon ́ v \omega \nu ~ \theta є \omega \rho \eta \mu a ́ \tau \omega \nu$,

 442

TRIGONOMETRY

$0^{p} 31^{\prime} 25^{\prime \prime}$. The remaining intervals may be completed, as we said, by means of the chord subtending $1 \frac{1}{2}^{\circ}$-in the case of the first interval, for example, by adding $\frac{1}{2}^{\circ}$ we obtain the chord subtending 2°, and from the difference between this and 3° we obtain the chord subtending $2 \frac{1}{2}^{\circ}$, and so on for the remainder.

> (ix.) The Table
> Ibid. $46.21-63.46$

The theory of the chords in the circle may thus, I think, be very easily grasped. In order that, as I said, we may have the lengths of all the chords in common use immediately available, we shall draw up tables arranged in forty-five symmetrical rows. ${ }^{a}$ The first section will contain the magnitudes of the arcs increasing by half degrees, the second will contain the lengths of the chords subtending the ares measured in parts of which the diameter contains 120, and the third will give the thirtieth part of the increase in the chords for each half degree, in order that for every sixtieth part of a degree we may have a mean approximation differing imperceptibly from the true figure and so be able readily to calculate the lengths corresponding to the fractions between the half degrees. It should be well noted that, by these same theorems now before us, if we should suspect an error in the computation of any of the chords in the table, ${ }^{b}$ we can easily make a test and
${ }^{\text {a }}$ As there are 360 half degrees in the table, the statement appears to mean that the table occupied eight pages each of 45 rows; so Manitius, Des Claudius Ptolemäus Handbuch der Astronomie, $1^{\text {er }}$ Bd., p. 35 n. a.
${ }^{6}$ Such an error might be accumulated by using the approximations for 1° and $\frac{1}{2}^{\circ}$; but, in fact, the sines in the table are generally correct to five places of decimals.

GREEK MATHEMATICS

$\pi \epsilon \rho \backslash \phi \rho \epsilon \epsilon \omega\rangle$	$\epsilon \dot{\chi} \theta \epsilon \epsilon \omega$ ¢ ν						
$\begin{aligned} & L^{\prime} \\ & a \\ & a L^{\prime} \end{aligned}$	0 α 0	$\begin{gathered} \lambda a \\ \beta \\ \lambda \delta \end{gathered}$	$\kappa \epsilon$ ν $\tau \epsilon$	0 0 0	$\underset{a}{a}$	β β β	ν ν ν
$\begin{aligned} & \beta \\ & \beta \\ & \beta \end{aligned}$	β β γ	\dagger λ η	μ δ $\kappa \eta$	$\begin{aligned} & \circ \\ & \mathrm{o} \\ & \mathrm{o} \end{aligned}$	${ }^{\text {a }}$	β β β	ν $\mu \eta$ $\mu \eta$
$\begin{aligned} & \gamma L^{\prime} \\ & \delta \\ & \delta L^{\prime} \end{aligned}$	γ δ δ	$\begin{aligned} & \lambda \theta \\ & \iota a \\ & \mu \beta \end{aligned}$	$\nu \beta$ $\stackrel{15}{\mu}$	$\begin{aligned} & \circ \\ & \circ \\ & \circ \end{aligned}$	a a a	β β β	$\mu \eta$ $\mu \zeta$ $\mu \zeta$
ξ	$\boldsymbol{\xi}$	0	-	0	0	$\nu \delta$	ка
$\begin{aligned} & \text { po5 } \\ & \text { pos } \\ & \text { pob } \end{aligned}$	$\begin{aligned} & \rho_{\nu} \theta \\ & \rho \theta \\ & \rho_{1} \theta \end{aligned}$	$\begin{aligned} & \nu \epsilon \\ & \nu \zeta \\ & \nu \zeta \end{aligned}$	$\begin{aligned} & \lambda \eta \\ & \lambda \theta \\ & \lambda \beta \end{aligned}$	\circ 0 0	O	β α a	$\stackrel{\gamma}{\mu}{ }_{\lambda}^{\boldsymbol{\mu}}$
$\rho o \zeta L^{\prime}$ pon po L^{\prime}	$\begin{aligned} & \rho \iota \theta \\ & \rho \theta \theta \\ & \rho_{\rho} \theta \end{aligned}$	$\begin{aligned} & \nu \eta \\ & \nu \eta \\ & \nu \theta \end{aligned}$	\downarrow ν $\nu \in$ $\kappa \delta$	\bigcirc	0 0 0	a 0 0	$1 / 8$ $\nu \zeta$ μa
$\begin{aligned} & \rho \rho \theta \\ & \rho \circ \theta L^{\prime} \\ & \rho \pi \end{aligned}$	$\rho \iota \theta$ $\rho \iota \theta$ $\rho \kappa$	$\nu \theta$ $\nu \theta$ 0	$\mu \delta$ ν 0	\circ 0 0	0 0 0	-	Kє θ 0

TRIGONOMETRY

apply a correction, either from the chord subtending double of the arc which is under investigation, or from the difference with respect to any others of the given magnitudes, or from the chord subtending the remainder of the semicircular arc. And this is the diagram of the table:
11. Table of the Chords in a Circle

Arcs	Chords			Sixtieths			
$\frac{1}{2}{ }^{\circ}$	0^{p}	31^{\prime}	25'	$0{ }^{\text {p }}$	$1^{\prime \prime}$	$2^{\prime \prime}$	$50^{\prime \prime \prime}$
1	1	2	50	0	1	2	50
12 $\frac{1}{2}$	1	34	15	0	1	2	50
2	2	5	40	0	1	2	50
$2 \frac{1}{2}$	2	37	4	0	1	2	48
3	3	8	28	0	1	2	48
$3 \frac{1}{2}$	3	39	52	0	1	2	48
4	4	11	16	0	1	2	47
$4 \frac{1}{2}$	4	42	40	0	1	2	47
$60\|60\| \quad 0 \quad\|\quad 0 \quad\| \quad 0\|0\| 54 \mid 21$							
176	119	55	38	0	0	2	3
$176{ }^{\frac{1}{2}}$	119	56	39	0	0	1	47
177	119	57	32	0	0	1	30
$\begin{aligned} & 177 \frac{1}{2} \\ & 178 \\ & 178 \frac{1}{2} \end{aligned}$	119	58	18	0	0	0	17
	119	58	55	0	0	0	57
	119	59	24	0	0	0	41
$\begin{aligned} & 179 \\ & 179 \frac{1}{2} \\ & 180 \end{aligned}$	119	59	44	0	0	0	25
	119	59	56	0	0	0	9
	120	0	0	0	0	0	0

GREEK MATHEMATICS

(c) Menelaus's Theorem
(i.) Lemmas

Ibid. 68. 14-74. 8

$\delta \epsilon i \xi \in i S$

 $\mu \epsilon ́ \rho o s ~ \gamma \iota \nu o \mu \epsilon ́ v a s ~ \pi \eta \lambda \iota \kappa o ́ \tau \eta \tau a s ~ \tau \hat{\omega} \nu$ à $\pi о \lambda a \mu \beta a \nu o-$ $\mu \epsilon ́ \nu \omega \nu \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon \iota \hat{\omega} \nu \mu \epsilon \tau \alpha \xi \grave{v} \tau 0 \hat{v} \tau \epsilon$ ī $\quad \eta \mu \epsilon \rho \iota \nu 0 \hat{v} \kappa \alpha i$
 $\mu \epsilon ́ \nu \omega \nu \mu \epsilon \gamma i \sigma \tau \omega \nu$ ки́к $\lambda \omega \nu$ סıà $\tau \hat{\omega} \nu$ тоv̂ ion $\mu \epsilon \rho \iota \nu o \hat{v}$

 $\sigma \tau \epsilon \rho о \nu$ каі $\mu \epsilon \theta$ обєкќтє $о о \nu$ то» $\eta \sigma о ́ \mu \epsilon \theta a$.

 446

TRIGONOMETRY

(c) Menelaus's Theorem

(i.) Lemmas

Ibid. 68. 14-74. 8
13. Preliminary matter for the spherical proofs

The next subject for investigation being to show the lengths of the arcs, intercepted between the celestial equator and the zodiac circle, of great circles drawn through the poles of the equator, we shall set out some brief and serviceable little lemmas, by means of which we shall be able to prove more simply and more systematically most of the questions investigated spherically.

Let two straight lines $B E$ and $\Gamma \Delta$ be drawn so as

to meet the straight lines $A B$ and $A \Gamma$ and to cut one

GREEK MATHEMATICS

 тov̂ $\tau \hat{\jmath} \mathrm{Z} \mathrm{ZB} \pi \rho o ̀ s \mathrm{BE}$.
 $\epsilon \in \pi \epsilon i$ тарá $\lambda \lambda \eta \eta \lambda o i ́ \epsilon i \sigma \iota \nu$ ai $\Gamma \Delta$ каi EH , ó $\tau \eta \hat{s}$ ГА
 EH. $\quad \ddot{\epsilon} \xi \omega \theta \epsilon \nu \delta \grave{\epsilon} \dot{\eta} \mathrm{Z} \Delta \cdot \delta$ ápa $\tau \hat{\eta} s \Gamma \Delta \pi \rho o ̀ s \mathrm{EH}$
 $\Delta \mathrm{Z}$ каi $\tau 0 \hat{v} \tau \hat{\eta} s \Delta \mathrm{Z} \pi \rho o ̀ s \mathrm{HE} \cdot \ddot{\omega} \sigma \boldsymbol{\tau} \tau \epsilon \kappa \alpha i$ ó $\tau \hat{\eta} s$ ГА $\pi \rho o ̀ s ~ A E ~ \lambda o ́ \gamma o s ~ \sigma u ́ \gamma к є \iota \tau \alpha \iota \iota ~ \epsilon ้ \kappa ~ \tau \epsilon ~ \tau о \hat{v} \tau \eta ̂ s ~ Г \Delta ~$

 BE . ӧ $\pi \epsilon \rho \pi \rho о є ́ \kappa є \iota \tau о ~ \delta \epsilon i \xi \alpha \iota$.

 $\tau \epsilon \tau о \hat{v} \tau \hat{\eta} s \Gamma \mathrm{Z}$ трòs $\Delta \mathrm{Z}$ каi тои̂ тท̂s $\Delta \mathrm{B}$ тоòs

[^102]
TRIGONOMETRY

another at the point Z. I say that

$$
\Gamma \mathrm{A}: \mathrm{AE}=(\Gamma \Delta: \Delta \mathrm{Z})(\mathrm{ZB}: \mathrm{BE}) \cdot{ }^{a}
$$

For through E let $E H$ be drawn parallel to $\Gamma \Delta$. Since $\Gamma \Delta$ and $E H$ are parallel,
$\Gamma A: E A=\Gamma \Delta: E H$.
[Eucl. vi. 4
But $Z \Delta$ is an external [straight line] ;
$\therefore \quad \mathrm{I} \Delta: \mathrm{EH}=(\mathrm{I} \Delta: \Delta Z)(\Delta Z: \mathrm{HE})$;
$\therefore \quad \quad \mathrm{\Gamma A}: \mathrm{AE}=(\mathrm{\Gamma} \Delta: \Delta Z)(\Delta Z: \mathrm{HE})$.
But
$\Delta Z: H E=Z B: B E$,
[Eucl. vi. 4 by reason of the fact that EH and $\mathrm{Z} \Delta$ are parallels; $\therefore \quad \quad \Gamma \mathrm{A}: \mathrm{AE}=(\Gamma \Delta: \Delta \mathrm{Z})(\mathrm{ZB}: \mathrm{BE})$;
which was set to be proved.
With the same premises, it will be shown by transformation of ratios that

$$
\Gamma \mathrm{E}: \mathrm{EA}=(\mathrm{\Gamma Z}: \Delta \mathrm{Z})(\Delta \mathrm{B}: \mathrm{BA}),
$$

a parallel to EB being drawn through A and $\Gamma \Delta \mathrm{H}$

GREEK MATHEMATICS

 $\pi \alpha ́ \lambda \iota \nu ~ \pi a \rho a ́ \lambda \lambda \eta \lambda o ́ s ~ \epsilon ่ \sigma \tau \iota \nu ~ \dot{\eta}$ AH $\tau \hat{\eta} \mathrm{EZ},{ }_{\epsilon} \sigma \tau \iota \nu, \dot{\omega} s$

 $\tau \hat{\eta} s$ ГЕ $\pi \rho o ̀ s$ EA κ каi ó $\tau \hat{\eta} s$ ГЕ ăpa $\pi \rho o ̀ s$ EA

 450

TRIGONOMETRY

being produced to it. For, again, since AH is parallel to EZ,

$$
\Gamma E: E A=\Gamma Z: Z H
$$

[Eucl. vi. 2
But, an external straight line $Z \Delta$ having been taken,
and

$$
\begin{aligned}
& \Gamma Z: Z H=(\Gamma Z: Z \Delta)(\Delta Z: Z H) ; \\
& \Delta \mathrm{Z}: \mathrm{ZH}=\Delta \mathrm{B}: \mathrm{BA},
\end{aligned}
$$

by reason of BA and ZH being drawn to meet the parallels AH and ZB ;

\therefore	$\Gamma Z: Z H=(\Gamma Z: \Delta Z)(\Delta B: B A)$.	
But	$\Gamma Z: Z H=\Gamma E: E A ;$	\quad supra
and \therefore	$\Gamma E: E A=(\Gamma Z: \Delta Z)(\Delta B: B A) ;$	(2)

Again, let ABI' be a circle with centre Δ, and let

there be taken on its circumference any three points

GREEK MATHEMATICS

$\tau \rho i ́ a ~ \sigma \eta \mu \epsilon i ̂ \alpha ~ \tau \dot{\alpha} \mathrm{~A}, \mathrm{~B}, \Gamma, \dot{\omega} \sigma \tau \epsilon \dot{\epsilon} \kappa \alpha \tau \epsilon ́ \rho \alpha \nu \tau \hat{\omega} \nu \mathrm{AB}$,

 $\tau \hat{\eta} S \mathrm{AB} \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a s \pi \rho o ̀ s \tau \grave{\eta} \nu \dot{v} \pi o ̀ ~ \tau \eta े \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s$ $\mathrm{B} \Gamma$, oṽ $\omega \omega$ s $\dot{\eta} \mathrm{AE} \epsilon \dot{v} \theta \epsilon i ̂ \alpha ~ \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \mathrm{E} \Gamma ~ \epsilon \dot{v} \theta \epsilon \hat{\epsilon} \alpha \nu$.

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o ́ s ~ \epsilon ̇ \sigma \tau \iota \nu ~ \dot{\eta} \mathrm{AZ} \tau \hat{\eta} \Gamma \mathrm{H}$, каi $\delta \iota \hat{\eta} \kappa \tau \alpha \iota ~ \epsilon i s$

入ózos ó т $\eta \mathrm{s} \mathrm{AZ} \pi \rho o ̀ s ~ Г Н ~ к а i ~ \tau \hat{\eta} s ~ \dot{v} \pi o ̣ ~ \tau \grave{\eta} \nu ~ \delta \iota \pi \lambda \hat{\eta} \nu$ $\tau \hat{\eta} S \mathrm{AB} \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i \alpha a s \pi \rho o ̀ s \tau \dot{\eta} \nu \dot{v} \pi \dot{o} \tau \dot{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} S$

 $\delta \iota \pi \lambda \hat{\eta} \nu \quad \tau \eta \hat{\rho} \mathrm{AB} \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$ vi $\pi \grave{o} \tau \eta \grave{\nu} \nu \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} S$ $\mathrm{B} \mathrm{\Gamma} \cdot \stackrel{\circ}{o} \pi \epsilon \rho{ }_{\epsilon}^{\epsilon} \delta \epsilon \iota \delta \epsilon \hat{\imath} \xi \alpha \iota$.
 $\tau \epsilon \mathrm{A} \Gamma$ ö $\lambda \eta \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a$ каi ó $\lambda o ́ \gamma o s$ ó $\tau \hat{\eta} S$ viтò $\tau \eta े \nu$ $\delta \iota \pi \lambda \eta \hat{\nu} \tau \hat{\eta} s \mathrm{AB} \pi \rho o ̀ s \tau \eta ̀ \nu \dot{v} \pi o ̀ ~ \tau \eta े \nu \delta \iota \pi \lambda \eta \nu \nu \hat{\eta} s \mathrm{~B} \mathrm{\Gamma}$,

 452

TRIGONOMETRY

A, B, Γ, in such a manner that each of the arcs $A B$, $\mathrm{B} \Gamma$ is less than a semicircle ; and upon the arcs taken in succession let there be a similar relationship; and let $A \Gamma$ be joined and $\triangle E B$. I say that
the chord subtended by double of the arc AB :
the chord subtended by double of the arc $B \Gamma$

$$
\left[\text { i.e., } \sin \mathrm{AB}: \sin \mathrm{B} \Gamma^{a}\right]=\mathrm{AE}: \mathrm{E} \Gamma \text {. }
$$

For let perpendiculars $A Z$ and ΓH be drawn from the points A and Γ to ΔB. Since $A Z$ is parallel to ГH, and the straight line AEГ has been drawn to meet them,

$$
\mathrm{AZ}: \Gamma \mathrm{H}=\mathrm{AE}: \mathrm{E} \Gamma . \quad[\text { Eucl. vi. } 4
$$

But $A Z: \Gamma H=$ the chord subtended by double of the $\operatorname{arc} \mathrm{AB}$:
the chord subtended by double of the are $B \Gamma$,
for each term is half of the corresponding term; and therefore
$\mathrm{AE}: E \Gamma=$ the chord subtended by double of the $\operatorname{arc} \mathrm{AB}$:
the chord subtended by double of the arc BГ.

$$
\begin{equation*}
[=\sin \mathrm{AB}: \sin \mathrm{B} \Gamma], \tag{3}
\end{equation*}
$$

which was to be proved.
It follows immediately that, if the whole are $\mathrm{A} \Gamma$ be given, and the ratio of the chord subtended by double of the are AB to the chord subtended by double of the arc $B \Gamma[i . e . \sin A B: \sin B \Gamma]$, each of the arcs AB and $\mathrm{B} \mathrm{\Gamma}$ will also be given. For let the same diagram be set out, and let $A \Delta$ be joined, and from $\Delta \operatorname{let} \Delta Z$ be drawn perpendicular to $A E \Gamma$. If the are

GREEK MATHEMATICS

 $\pi \rho o ̀ s ~ Е Г ~ \lambda o ́ \gamma o s ~ o ́ ~ a u ̀ \tau o ̀ s ~ \tilde{\omega} \nu \tau \hat{\omega} \tau \eta ̂ s ~ \dot{v} \pi o ̀ ~ \tau \grave{\eta} \nu ~ \delta \iota \pi \lambda \eta \hat{\eta} \nu$ $\tau \hat{\eta} S \mathrm{AB} \pi \rho o ̀ s \tau \grave{\eta} \nu \dot{v} \pi \grave{o} \tau \dot{\eta} \nu \delta_{\iota} \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s \mathrm{~B} \Gamma, \eta_{\eta} \tau \epsilon$

 $\mathrm{E} \Delta \mathrm{Z} \gamma \omega \nu i \alpha$ тои $\mathrm{E} \Delta \mathrm{Z}$ ò ρ Oo $\gamma \omega \nu i o v$ каi ò $\lambda \eta \eta_{\eta}^{\eta}$ vimò

 $\sigma \eta \mu \epsilon \hat{\imath} \alpha \tau \dot{\alpha} \mathrm{A}, \mathrm{B}, \Gamma, \stackrel{\omega}{\omega} \sigma \tau \epsilon$ ย́калє́pav $\tau \hat{\omega} \nu \mathrm{AB}, \mathrm{A} \Gamma$
 454

TRIGONOMETRY

$A \Gamma$ is given, it is then clear that the angle $A \Delta Z$, subtending half the same arc, will also be given and therefore the whole triangle $A \Delta Z$; and since the whole chord $A \Gamma$ is given, and by hypothesis
$A E: E \Gamma=$ the chord subtended by double of the $\operatorname{arc} \mathrm{AB}$:
the chord subtended by double of the are $\mathrm{B} \mathrm{\Gamma}$,

$$
[\text { i.e. }=\sin \mathrm{AB}: \sin \mathrm{B} \Gamma] \text {, }
$$

therefore AE will be given [Eucl. Dat. 7], and the remainder ZE. And for this reason, ΔZ also being given, the angle $\mathrm{E} \Delta \mathrm{Z}$ will be given in the right-angled triangle $\mathrm{E} \Delta \mathrm{Z}$, and [therefore] the whole angle $\mathrm{A} \Delta \mathrm{B}$; therefore the arc $A B$ will be given and also the remainder $\mathrm{B} \mathrm{\Gamma}$; which was to be proved.

Again, let $A B \Gamma$ be a circle about centre Δ, and let

three points A, B, Γ be taken on its circumference so that each of the arcs $\mathrm{AB}, \mathrm{A} \mathrm{\Gamma}$ is less than a semicircle ;

GREEK MATHEMATICS

 ГВ є́к $\beta \epsilon \beta \lambda \eta{ }^{\prime} \sigma \theta \omega \sigma \alpha \nu$ каі $\sigma \nu \mu \pi \iota \pi \tau \epsilon ́ \tau \omega \sigma a \nu$ катд̀ тò

 ГА $\pi \rho o ̀ s ~ \tau \grave{\eta} \nu ~ v i \pi o ̀ ~ \tau \grave{\eta} \nu \delta \iota \pi \lambda \bar{\eta} \nu \tau \hat{\eta} S \mathrm{AB}$, oữ $\tau \omega \bar{\eta}$

 $\delta \iota \pi \lambda \eta \hat{\nu} \tau \hat{\eta} s \mathrm{AB} \delta o \theta \hat{\eta}, \kappa \alpha i \dot{\eta} \mathrm{AB} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a \quad \delta o \theta \eta^{\prime}-$

$\tau \grave{\eta} \nu \mathrm{B} \mathrm{\Gamma} \tau \hat{\jmath} s \Delta \mathrm{Z} \dot{\eta} \mu \hat{\epsilon} \nu \dot{v} \pi \grave{o} \mathrm{~B} \Delta \mathrm{Z} \gamma \omega \nu i ́ \alpha, \tau \grave{\eta} \nu \dot{\eta} \mu i-$
 456

TRIGONOMETRY

and upon the arcs taken in succession let there be a similar relationship; and let $\Delta \mathrm{A}$ be joined and let ГВ be produced so as to meet it at the point E. I say that
the chord subtended by double of the arc ΓA : the chord subtended by double of the arc $A B$ $[$ i.e., $\sin \Gamma A: \sin A B]=\Gamma E: B E$.
For, as in the previous lemma, if from B and Γ we draw BZ and $\Gamma \mathrm{H}$ perpendicular to $\Delta \mathrm{A}$, then, by reason of the fact that they are parallel,

$$
\Gamma H: B Z=\Gamma E: E B . \quad[\text { Eucl. vi. } 4
$$

\therefore the chord subtended by double of the are Γ :
the chord subtended by double of the arc $A B$

$$
\begin{equation*}
[\text { i.e., } \sin \Gamma A: \sin A B]=\Gamma E: E B ; \tag{4}
\end{equation*}
$$

which was to be proved.
And thence it immediately follows why, if the are ΓB alone be given, and the ratio of the chord subtended by double of the arc ΓA to the chord subtended by double of the arc $A B[$ i.e., $\sin \Gamma A: \sin A B]$, the arc $A B$ will also be given. For again, in a similar diagram let $\Delta \mathrm{B}$ be joined and let $\Delta \mathrm{Z}$ be drawn perpendicular to $B \Gamma$; then the angle $B \Delta Z$ subtended by half the arc $\mathrm{B} \Gamma$ will be given; and therefore the

GREEK MATHEMATICS

 $\mathrm{AB} \pi \epsilon \rho \iota \phi \in ́ \rho \epsilon \iota a$ ध̈वта८ $\delta \epsilon \delta о \mu \epsilon ́ \nu \eta$.

(ii.) The Theorem

Ibid. 74. 9-76. 9
Tov́т $\omega \nu \quad \pi \rho \circ \lambda \eta \phi \theta \in ́ \nu \tau \omega \nu \quad \gamma \epsilon \gamma \rho \alpha ́ \phi \theta \omega \sigma \alpha \nu \dot{\epsilon} \pi i \quad \sigma \phi \alpha \iota-$

 акоvє́ $\theta \omega$.
 $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a s$ $\pi \rho \frac{\grave{s} s}{\tau \grave{\eta} \nu} \dot{v} \pi \grave{o}$ $\tau \grave{\eta} \nu \quad \delta \iota \pi \lambda \hat{\eta} \nu$ $\tau \hat{\eta} s$ EA
 $\Gamma \mathrm{Z} \pi \rho o ̀ s \tau \grave{\eta} \nu \dot{v} \pi \grave{̀} \tau \grave{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} S \mathrm{Z} \Delta \kappa \alpha i$ тov $\tau \hat{\eta} S$
 $\tau \hat{\eta} s \mathrm{BA}$.

 $\tau о \mu \dot{a} s \tau \hat{\omega} \nu \kappa v ์ \kappa \lambda \omega \nu \eta \eta^{\eta} \tau \epsilon \mathrm{HB}$ каi $\dot{\eta} \mathrm{HZ}$ каi $\dot{\eta} \mathrm{HE}$,

 $\tau \epsilon \mu \nu \epsilon ́ \tau \omega \sigma a \nu \tau \grave{\alpha} \mathrm{HZ}$ каі $\mathrm{HE} \kappa \alpha \tau \grave{\alpha}$ тò K каі Λ 458

TRIGONOMETRY

whole of the right-angled triangle $\mathrm{B} \Delta \mathrm{Z}$. But since the ratio $\Gamma \mathrm{E}: \mathrm{EB}$ is given and also the chord $\Gamma \mathrm{B}$, therefore EB will also be given and, further, the whole [straight line] EBZ ; therefore, since $\triangle Z$ is given, the angle $E \Delta Z$ in the same right-angled triangle will be given, and the remainder $\mathrm{E} \Delta \mathrm{B}$. Therefore the arc AB will be given.

(ii.) The Theorem

Ibid.74. 9-76. 9

These things having first been grasped, let there be described on the surface of a sphere arcs of great circles such that the two arcs BE and $\Gamma \Delta$ will meet the two arcs $A B$ and $A \Gamma$ and will cut one another at the point Z; let each of them be less than a semicircle ; and let this hold for all the diagrams.

Now I say that the ratio of the chord subtended by double of the arc IE to the chord subtended by double of the arc EA is compounded of (a) the ratio of the chord subtended by double of the arc ΓZ to the chord subtended by double of the arc $\mathrm{Z} \Delta$, and (b) the ratio of the chord subtended by double of the arc $\Delta \mathrm{B}$ to the chord subtended by double of the arc BA,

$$
\left[\text { i.e., } \frac{\sin \Gamma E}{\sin E A}=\frac{\sin \Gamma Z}{\sin Z \Delta} \cdot \frac{\sin \Delta \mathrm{~B}}{\sin \mathrm{BA}}\right] \text {. }
$$

For let the centre of the sphere be taken, and let it be H, and from H let $H B$ and $H Z$ and $H E$ be drawn to B, Z, E, the points of intersection of the circles, and let $\mathrm{A} \Delta$ be joined and produced, and let it meet HB produced at the point θ, and similarly let $\Delta \Gamma$ and $A \Gamma$ be joined and cut $H Z$ and $H E$ at K and the point

GREEK MATHEMATICS

 $\kappa \alpha \tau \alpha ̀ ~ \tau o ̀ ~ K ~ \sigma \eta \mu \epsilon i ̂ o v \cdot ~ o ́ ~ a ̈ p a ~ \tau \hat{\eta} s ~ \Gamma \Lambda ~ \pi \rho o ̀ s ~ \Lambda A ~ \lambda o ́ \gamma o s ~$

 $\delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s$ EA $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i ́ a s, ~ \omega ं s ~ \delta \grave{\epsilon} \dot{\eta}$ ГK $\pi \rho o ̀ s$ $\mathrm{K} \Delta$, oư $\tau \omega \mathrm{s}$ 并 $\dot{v} \pi \dot{o} \tau \dot{\eta} \nu \quad \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s \Gamma \mathrm{Z} \pi \epsilon \rho \iota \phi \epsilon \rho \in i a s$
 460

TRIGONOMETRY

Λ; then the points θ, K, Λ will lie on one straight line because they lie simultaneously in two planes, that of the triangle $\mathrm{A} \Gamma \Delta$ and that of the circle BZE, and therefore we have straight lines $\Theta \Lambda$ and $\Gamma \Delta$ meeting the two straight lines $Ө \mathrm{~A}$ and $\Gamma \mathrm{A}$ and cutting one another at the point K ; therefore

$$
\begin{equation*}
\Gamma \Lambda: \Lambda A=(\Gamma K: K \Delta)(\Delta \theta: \theta A) . \tag{2}
\end{equation*}
$$

But $\Gamma \Lambda: \Lambda \mathrm{A}=$ the chord subtended by double of the arc $\Gamma \mathrm{E}$:
the chord subtended by double of the arc EA

$$
\text { [i.e., } \sin \Gamma \mathrm{E}: \sin \mathrm{EA}],
$$

while $\Gamma \mathrm{K}: \mathrm{K} \Delta=$ the chord subtended by double of the are ΓZ :
the chord subtended by double of the arc $Z \Delta$

$$
\begin{equation*}
\text { [i.e., } \sin \Gamma Z: \sin Z \Delta], \tag{3}
\end{equation*}
$$

GREEK MATHEMATICS

 $\tau \grave{\eta} \nu$ vi $\pi o ̀ ~ \tau \grave{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} \varsigma \mathrm{BA}$.
 $\kappa \alpha \tau \alpha \gamma \rho \alpha \not \hat{\eta}_{S} \tau \hat{\omega} \nu \epsilon \dot{v} \theta \epsilon \iota \omega \hat{\nu} \delta \epsilon i \kappa \nu v \tau \alpha \iota$, on $\tau \iota \kappa \alpha i$ ó $\tau \hat{\eta} S$ ن́nò $\tau \eta \dot{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s$ ГА $\pi \rho o ̀ s \tau \grave{\eta} \nu \dot{v} \pi \dot{o} \tau \grave{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu$
 $\delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s \Gamma \Delta \pi \rho o ̀ s ~ \tau \eta े \nu ~ v i \pi \grave{o े} \tau \grave{\eta} \nu \delta \iota \pi \lambda \hat{\eta} \nu \tau \hat{\eta} s \Delta \mathrm{Z}$

[^103]
TRIGONOMETRY

and $\theta \Delta: \theta A=$ the chord subtended by double of the $\operatorname{arc} \Delta \mathrm{B}$:
the chord subtended by double of the are BA
[by (4)

$$
\text { [i.e., } \sin \Delta \mathrm{B}: \sin \mathrm{BA}],
$$

and therefore the ratio of the chord subtended by double of the arc ΓE to the chord subtended by double of the arc EA is compounded of (a) the ratio of the chord subtended by double of the arc IZ to the chord subtended by double of the arc $Z \Delta$, and (b) the ratio of the chord subtended by double of the arc $\Delta \mathrm{B}$ to the chord subtended by double of the $\operatorname{arc} B A$,

$$
\left[\text { i.e., } \frac{\sin \Gamma E}{\sin \mathrm{EA}}=\frac{\sin \Gamma Z}{\sin Z \Delta} \cdot \frac{\sin \Delta \mathrm{~B}}{\sin \mathrm{BA}}\right] \text {. }
$$

Now with the same premises, and as in the case of the straight lines in the plane diagram [by (1)], it is shown that the ratio of the chord subtended by double of the arc ΓA to the chord subtended by double of the arc EA is compounded of (a) the ratio of the chord subtended by double of the arc $\Gamma \Delta$ to the chord subtended by double of the arc ΔZ, and (b) the ratio of the chord subtended by double of the arc ZB to the chord subtended by double of the chord BE,

$$
\left[\text { i.e., } \frac{\sin \Gamma \mathrm{A}}{\sin \mathrm{EA}}=\frac{\sin \Gamma \Delta}{\sin \Delta Z} \cdot \frac{\sin Z \mathrm{~B}}{\sin \mathrm{BE}}\right] ;
$$

which was set to be proved.a
XXII. MENSURATION: HERON OF ALEXANDRIA

XXII. MENSURATION : HERON OF ALEXANDRIA

(a) Definitions

Heron, Deff., ed. Heiberg (Heron iv.) 14. 1-24

 $\pi \rho о ́ \tau \alpha \tau \epsilon, \tau \eta{ }^{\prime} \nu \quad \tau \epsilon$ à $\rho \chi \grave{\eta} \nu$ каi $\tau \grave{\eta} \nu$ ó $\lambda \eta \nu \sigma v^{\prime} \nu \tau \alpha \xi \iota \nu$

a The problem of Heron's date is one of the most disputed questions in the history of Greek mathematics. The only details certainly known are that he lived after Apollonius, whom he quotes, and before Pappus, who cites him, say between 150 b.c. and A.D. 250. Many scraps of evidence have been thrown into the dispute, including the passage here first citcd; for it is argued that the title λ ג $\mu \pi \rho$ ótaqos corresponds to the Latin clarissimus, which was not in common use in the third century a.d. Both Heiberg (Heron, vol. v. p. ix) and Heath (II.G.M. ii. 306) place him, however, in the third century A.D., only a little earlier than Pappus.

The chief works of Heron are now definitively published in five volumes of the Teubner series. Perhaps the best known are his Pneumatica and the Automata, in which he shows how to use the force of compressed air, water or steam ; they are of great interest in the history of physics, and have led some to describe Heron as "the father of the turbine," but 466

XXII. MENSURATION : HERON OF ALEXANDRIA ${ }^{a}$

(a) Definitions

Heron, Definitions, ed. Heiberg (Heron iv.) 14. 1-24
In setting out for you as briefly as possible, O most excellent Dionysius, a sketch of the technical terms premised in the elements of geometry, I shall take as my starting point, and shall base my whole arrangement upon, the teaching of Euclid, the writer of the elements of theoretical geometry ; for in this way I think I shall give you a good general understanding,
as they have no mathematical interest they cannot be noticed here. Heron also wrote a Belopoeica on the construction of engines of war, and a Mechanics, which has survived in Arabic and in a few fragments of the Greek.

In geometry, Heron's elaborate collection of Definitions has survived, but his Commentary on Euclid's Elements is known only from extracts preserved by Proclus and anNairizi, the Arabic cominentator. In mensuration there are extant the Metrica, Geometrica, Stereometrica, Geodaesia, Mensurae and Liber Gëponicus. The Metrica, discovered in a Constantinople ms. in 1896 by R. Schöne and edited by his son H. Schöne, seems to have preserved its original form more closely than the others, and will be relied on here in preference to them. Heron's Dioptra, describing an instrument of the nature of a theodolite and its application to surveying, is also extant and will be cited here.

For a full list of Heron's many works, v. Heath, H.G.M. ii. 308-310.

GREEK MATHEMATICS

 $\tau \hat{\omega} \nu$ єis $\gamma \epsilon \omega \mu \epsilon \tau \rho i \alpha \alpha \nu$ à $\nu \eta \kappa o ́ \nu \tau \omega \nu$. ${ }_{\alpha} \rho \xi \xi$ о $\mu \alpha \iota$ roívv ν à $\pi \grave{o}$, $\sigma \eta \mu \epsilon i ́ o v$.

 $\tau v \gamma \chi a ́ \nu o \nu . ~ \tau o \iota o v ̂ \tau o \nu ~ o u ̂ \nu ~ a u ̉ \tau o ́ ~ \phi a \sigma \iota \nu ~ \epsilon i v a \iota ~ o i ̂ o v ~ \epsilon ่ v ~$

 ба́ $\mu \alpha \tau о s$.

Ibid. 60. 22-62. 9

${ }^{1}$ є̈वть Friedlein, öтı codd..
a The first definition is that of Euclid i. Def. 1, the third in effect that of Plato, who defined a point as $\dot{\alpha} \rho \chi \dot{\eta} \gamma \rho a \mu \mu \hat{\eta} s$ (Aristot. Metaph. 992 a 20); the second is reminiscent of Nicomachus, Arith. Introd. ii. 7. 1, v. vol. i. pp. 86-89.

MENSURATION: HERON OF ALEXANDRIA

not only of Euclid's works, but of many others pertaining to geometry. I shall begin, then, with the point.

1. A point is that which has no parts, or an extremity without extension, or the extremity of a line, ${ }^{a}$ and, being both without parts and without magnitude, it can be grasped by the understanding only. It is said to have the same character as the moment in time or the unit having position. ${ }^{b}$ It is the same as the unit in its fundamental nature, for they are both indivisible and incorporeal and without parts, but in relation to surface and position they differ ; for the unit is the beginning of number, while the point is the beginning of geometrical being-but a beginning by way of setting out only, not as a part of a line, in the way that the unit is a part of number-and is prior to geometrical being in conception; for when a point moves, or rather is conceived in motion, a line is conceived, and in this way a point is the beginning of a line and a surface is the beginning of a solid body.

$$
\text { lbid. 60. 22-62. } 9
$$

97. A spire is generated when a circle revolves and returns to its original position in such a manner that its centre traces a circle, the original circle remaining at right angles to the plane of this circle; this same curve is also called a ring. A spire is open when there is a gap, continuous when it touches at one point, and self-crossing when the revolving circle cuts itself.
b The Pythagorean definition of a point: v. Proclus, in Eucl. i., ed. Friedlein 95. 22. Proclus's whole comment is worth reading, and among modern writers there is a full discussion in Heath, The Thirteen Books of Euclid's Elements, vol. i. pp. 155-158.

GREEK MATHEMATICS

 $\kappa \alpha i \grave{\epsilon} \kappa \mu \iota \kappa \tau \hat{\omega} \nu \dot{\epsilon} \pi \iota \phi a \nu \epsilon \iota \omega ิ \nu$.

(b) Measurement of Areas and Volumes

(i.) Area of a Triangle Given the Sides

Heron, Metr. i. 8, ed. H. Schöne (Heron iii.) 18. 12-24. 21

 $\pi \lambda \epsilon v \rho \alpha ̀ \nu$ oủk Є̈ $\chi о v \sigma \iota, ~ \lambda \eta \psi \psi o ́ \mu \epsilon \theta a, \mu \epsilon \tau \grave{\alpha}$ ठıaфópov
 $\tau \hat{\omega} \psi \kappa \tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu$ ós $\notin \sigma \tau \iota \nu$ ó $\overline{\psi \kappa \theta}$ каi $\pi \lambda \epsilon \nu \rho \dot{\alpha} \nu$ є’ $\chi \epsilon \iota$ тòv $\overline{\kappa \zeta}, \mu \epsilon ́ \rho \iota \sigma o v ~ \tau \grave{\alpha} s ~ \psi \vec{\kappa}$ єis тòv $\overline{\kappa \zeta} \cdot \gamma^{\prime} \gamma \nu \epsilon \tau \alpha \iota ~ \overline{\kappa \zeta}$

 ă $\rho a \tau o \hat{\psi} \overline{\psi \kappa} \dot{\eta} \pi \lambda \epsilon v \rho \dot{\alpha} \stackrel{\prime}{\epsilon} \gamma \gamma \iota \sigma \tau \alpha \tau \dot{\alpha} \overline{\kappa \bar{s}} \angle \gamma^{\prime} . \quad \tau \dot{\alpha} \gamma \dot{\alpha} \rho$ $\overline{\kappa 5} \angle \gamma^{\prime} \epsilon \phi^{\prime} \dot{\epsilon} \alpha v \tau \dot{\alpha} \gamma i \gamma \nu \epsilon \tau \alpha \iota \overline{\psi \kappa} \lambda 5^{\prime}$. $\stackrel{\omega}{\omega} \sigma \tau \epsilon \tau \dot{o}{ }^{\prime} \delta \iota \alpha ́-$
 470

MENSURATION: HERON OF ALEXANDRIA

Certain special curves are generated by sections of these spires. But the square rings are prismatic sections of cylinders; various other kinds of prismatic sections are formed from spheres and mixed surfaces. ${ }^{a}$

(b) Measurement of Areas and Volumes

(i.) Area of a Triangle Given the Sides

Heron, Metrica i. 8, ed. H. Schöne (Heron iii.) 18. 12-24. 21
There is a general method for finding, without drawing a perpendicular, the area of any triangle whose three sides are given. For example, let the sides of the triangle be 7, 8 and 9. Add together 7,8 and 9 ; the result is 24 . Take half of this, which gives 12. Take away 7 ; the remainder is 5. Again, from 12 take away 8 ; the remainder is 4 . And again 9 ; the remainder is 3 . Multiply 12 by 5 ; the result is 60 . Multiply this by 4 ; the result is 240 . Multiply this by 3 ; the result is 720. Take the square root of this and it will be the area of the triangle. Since 720 has not a rational square root, we shall make a close approximation to the root in this manner. Since the square nearest to 720 is 729 , having a root 27 , divide 27 into 720 ; the result is $26 \frac{2}{3}$; add 27 ; the result is $53 \frac{2}{3}$. Take half of this; the result is $26 \frac{1}{2}+\frac{1}{3}\left(=26 \frac{5}{6}\right)$. Therefore the square root of 720 will be very nearly 26_{6}^{5}. For 26_{6}^{5} multiplied by itself gives $720 \frac{1}{36}$; so that the difference is $\frac{1}{38}$. If we wish to make the difference less than $\frac{1}{38}$,

- The passage should be read in conjunction with those from Proclus cited supra, pp. 360-365; note the slight difference in terminology-self-crossing for interlaced.

GREEK MATHEMATICS

 $\tau \rho \tau \gamma \dot{\omega} \nu \circ v \delta^{\circ} \theta \epsilon \epsilon \sigma \hat{\omega} \nu \tau \hat{\omega} \nu \pi \lambda \epsilon \nu \rho \hat{\omega} \nu \epsilon \dot{v} \rho \epsilon i ̂ \nu ~ \tau o ̀ ~ \grave{\epsilon} \mu \beta a \delta o ́ v$.

 каӨє́тоv тò є̇ $\mu \beta a \delta o ̀ v ~ \pi о р і ́ \sigma \alpha \sigma \theta a \iota . ~$

$$
{ }^{1} \text {,ov̂ add. Heiberg. }
$$

${ }^{2}$ àrayóvra[s] corr. H. Schöne.
${ }^{a}$ If a non-square number A is equal to $a^{2} \pm b$, Heron's method gives as a first approximation to $\sqrt{\bar{A}}$,

$$
\alpha_{1}=\frac{1}{2}\left(a+\frac{\mathrm{A}}{a}\right),
$$

and as a second approximation,

$$
\alpha_{2}=\frac{1}{2}\left(a_{1}+\frac{\mathrm{A}}{a_{1}}\right) .
$$

An equivalent formula is used by Rhabdas (v. vol. 1. p. 30 n. b) and by a fourteenth century Calabrian monk Barlaam, who wrote in Greek and who indicated that the process could be continued indefinitely. Several modern writers have used the formula to account for Archimedes' approximations to $\sqrt{3}$ (v. vol. i. p. 322 n. a).

- Heron had previously shown how to do this.

MENSURATION : HERON OF ALEXANDRIA

instead of 729 we shall take the number now found, $720 \frac{1}{36}$, and by the same method we shall find an approximation differing by much less than $\frac{1}{36} .{ }^{a}$

The geometrical proof of this is as follows: In a triangle whose sides are given to find the area. Now it is possible to find the area of the triangle by drawing one perpendicular and calculating its magnitude, ${ }^{\text {b }}$ but let it be required to calculate the area without the perpendicular.

Let $A B \Gamma$ be the given triangle, and let each of

$A B, B \Gamma, \Gamma A$ be given; to find the area. Let the 473

GREEK MATHEMATICS

סóv. Є' $\gamma \gamma \epsilon \gamma \rho \alpha ́ \phi \theta \omega$ єis τ ò $\tau \rho i ́ \gamma \omega \nu o \nu$ кúклоs ó $\Delta \mathrm{EZ}$,
 $\mathrm{BH}, \Gamma \mathrm{H}, \Delta \mathrm{H}, \mathrm{EH}, \mathrm{ZH}$. тò $\mu \dot{\text { c̀v }}$ á ρa vimò $\mathrm{B} \mathrm{\Gamma}$,

 $\mu \epsilon ́ \tau \rho о v ~ \tau о \hat{v} \mathrm{AB} \mathrm{\Gamma} \tau \rho \iota \gamma \omega ́ \nu o v ~ к \alpha i ~ \tau \hat{\eta} s \mathrm{EH}$, тоvтє́бтє

 $\tau \hat{\eta} S \pi \epsilon \rho \iota \mu \epsilon ́ \tau \rho o v ~ \tau o \hat{v} \mathrm{AB} \mathrm{\Gamma} \tau \rho \iota \gamma \omega ́ \nu o v$ ठı̀ $\tau o ̀ ~ i ̋ \sigma \eta \nu$ $\epsilon \mathcal{L} \nu a \iota \tau \dot{\eta} \nu \mu \dot{\epsilon} \nu \mathrm{~A} \Delta \tau \hat{\eta} \mathrm{AZ}, \tau \eta \grave{\nu} \delta \delta \dot{\epsilon} \Delta \mathrm{B} \tau \hat{\eta} \mathrm{BE}, \tau \eta \dot{\eta} \nu$
 $\tau \hat{\omega} \mathrm{AB} \Gamma \tau \rho \iota \gamma \omega \dot{\nu} \omega$. $\dot{\alpha} \lambda \lambda \dot{\alpha} \tau \grave{o}$ vi $\pi \grave{o} \tau \hat{\omega} \nu \Gamma \Theta, \mathrm{EH}$

 $\tau \alpha i ̂ s ~ \dot{v} \pi \grave{̀} \tau \hat{\omega} \nu \mathrm{AH}, \Delta \mathrm{HB}$ каi $\tau \grave{\alpha}{ }^{2} \pi \alpha \alpha_{\sigma \alpha} \tau \in ́ \tau \rho \alpha \sigma \iota \nu$

 474

MENSURATION : HERON OF ALEXANDRIA

circle $\triangle E Z$ be inscribed in the triangle with centre H [Eucl. iv. 4], and let AH, BH, ГH, $\triangle \mathrm{H}, \mathrm{EH}, \mathrm{ZH}$ be joined. Then

$$
\begin{array}{ll}
\mathrm{B} \Gamma \cdot \mathrm{EH}=2 . \text { triangle } \mathrm{BH} \Gamma, & \text { [Eucl. i. } 41 \\
\Gamma \mathrm{~A} \cdot \mathrm{ZH}=2 \cdot \text { triangle } \mathrm{AH} \Gamma, & {[\text { ibid. }} \\
\mathrm{AB} \cdot \Delta \mathrm{H}=2 \cdot \text { triangle } \mathrm{ABH} . & {[\text { ibid. }}
\end{array}
$$

Therefore the rectangle contained by the perimeter of the triangle $\mathrm{AB} \mathrm{\Gamma}$ and EH , that is the radius of the circle $\triangle \mathrm{EZ}$, is double of the triangle $\mathrm{AB} \mathrm{\Gamma}$. Let I'B be produced and let $\mathrm{B} \theta$ be placed cqual to $\mathrm{A} \Delta$; then $\Gamma B \Theta$ is half of the perimeter of the triangle $A B \Gamma$ because $\mathrm{A} \Delta=\mathrm{AZ}, \Delta \mathrm{B}=\mathrm{BE}, \mathrm{Z} \Gamma=\Gamma \mathrm{E}$ [by Eucl. iii. 17]. Therefore

$$
\Gamma \Theta . \mathrm{EH}=\text { triangle } \mathrm{ABI} .
$$

[ibid.
But $\quad \Gamma \theta . \mathrm{EH}=\sqrt{\Gamma \theta^{2} \cdot \mathrm{EH}^{2}}$;
therefore $\quad(\text { triangle } \mathrm{AB} \mathrm{\Gamma})^{2}=\theta \Gamma^{2} \cdot \mathrm{EH}^{2}$.
Let $\mathrm{H} \Lambda$ be drawn perpendicular to $\Gamma \mathrm{H}$ and $\mathrm{B} \Lambda$ perpendicular to $\Gamma \mathrm{B}$, and let $\Gamma \Lambda$ be joined. Then since each of the angles $\Gamma Н \Lambda, \Gamma В \Lambda$ is right, a circle can be described about the quadrilateral ГНВ [by Eucl. iii. 31]; thercfore the angles $\Gamma Н В, ~ Г \Lambda B$ are together equal to two right angles [Eucl. iii. 22]. But the angles $\Gamma \mathrm{HB}, \mathrm{AH} \Delta$ are together equal to two right angles because the angles at H are bisected by AH, BH, ГH and the angles $\Gamma \mathrm{HB}, \mathrm{AH} \Delta$ together with $\mathrm{AH} \Gamma, \triangle \mathrm{HB}$ are equal to four right angles; therefore the angle $A H \Delta$ is equal to the angle $\Gamma \Lambda B$. But the right angle $\mathrm{A} \Delta \mathrm{H}$ is equal to the right angle $\Gamma \mathrm{B} \Lambda$; therefore the triangle $\mathrm{AH} \Delta$ is similar to the triangle ГВ Λ.

[^104]
GREEK MATHEMATICS

$\mathrm{B} \Lambda, \dot{\eta} \mathrm{A} \Delta \pi \rho o ̀ s ~ \Delta \mathrm{H}, \tau o v \tau \epsilon ́ \sigma \tau \iota \nu \quad \dot{\eta} \mathrm{~B} \Theta \pi \rho o ̀ s \mathrm{EH}$ ，

 $\Gamma \Theta \pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \tau \hat{\omega} \nu \Gamma \Theta, \Theta \mathrm{~B}$ ，ov゙ $\tau \omega s$ тò $\dot{v} \pi \grave{̀}$ $\mathrm{BE} \Gamma \pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ Г Е K, ~ \tau о v \tau \epsilon ́ \sigma \tau \iota ~ \pi \rho o ̀ s ~ \tau o ̀ ~ a ́ \pi o ̀ ~$

 ГВ，并 $\delta \dot{\epsilon} \mathrm{BE} \dot{\eta} \dot{v} \pi \epsilon \rho \circ \chi \dot{\eta}, \hat{\eta} \dot{v} \pi \epsilon \rho \epsilon \in \chi \epsilon \iota$ 市 $\dot{\eta} \mu i \sigma \epsilon \iota a$

 тò є́ $\mu \beta a \delta o ̀ \nu ~ \tau o v ~ А В Г ~ \tau \rho \iota \gamma ́ ́ v o v . ~$

（ii．）Volume of a Spire

Ibid．ii．13，ed．H．Schőne（Heron iii．）126．10－130． 3

${ }^{1}$ кט́кरдos add．H．Schöne．

MENSURATION : HERON OF ALEXANDRIA

Therefore

$$
\begin{aligned}
\mathrm{B} \mathrm{\Gamma}: \mathrm{B} \mathrm{\Lambda} & =\mathrm{A} \Delta: \Delta \mathrm{H} \\
& =\mathrm{B} \theta: \mathrm{EH},
\end{aligned}
$$

and permutando, $\quad \mathrm{\Gamma B}: \mathrm{B}=\mathrm{B} \Lambda: \mathrm{EH}$
$=\mathrm{BK}: \mathrm{KE}$,
because $\mathrm{B} \Lambda$ is parallel to EH , and componendo $\quad \Gamma \theta: \mathrm{B}=\mathrm{BE}: \mathrm{EK}$; therefore ${ }^{\Gamma} \Theta^{2}: \Gamma \Theta . Ө В=\mathrm{BE} . \mathrm{E} \Gamma: \Gamma \mathrm{E} . \mathrm{EK}$, i.e. $=\mathrm{BE} . \mathrm{E} \Gamma: \mathrm{EH}^{2}$,
for in a right-angled triangle EH has been drawn from the right angle perpendicular to the base; therefore $\Gamma \theta^{2} . \mathrm{EH}^{2}$, whose square root is the area of the triangle $A B \Gamma$, is equal to (Γ. $Ө$) $)(\Gamma \mathrm{E} . \mathrm{EB}$). And each of $\Gamma \theta, \ominus B, \mathrm{BE}, \Gamma \mathrm{F}$ is given ; for $\Gamma \theta$ is half of the perimeter of the triangle $A B \Gamma$, while BO is the excess of half the perimeter over $\Gamma \mathrm{B}, \mathrm{BE}$ is the excess of half the perimeter over $A \Gamma$, and EГ is the excess of half the perimeter over $A B$, inasmuch as $E \Gamma=\Gamma Z$, $\mathrm{B} \theta=\mathrm{A} \Delta=\mathrm{A} Z$. Therefore the area of the triangle $\mathrm{AB} \mathrm{\Gamma}$ is given. ${ }^{\text {a }}$
(ii.) Volume of a Spire

Ibid. ii. 13, ed. H. Schöne (Heron iii.) 126. 10-130. 3
Let AB be any straight line in a plane and A, B any two points taken on it. Let the circle $B \Gamma \Delta \mathrm{E}$ be taken perpendicular to the plane of the horizontal, in which lies the straight line $A B$, and, while the point
${ }^{6}$ If the sides of the triangle are a, b, c, and $s=\frac{1}{2}(a+b+c)$, Heron's formula may be stated in the familiar terms,

$$
\text { area of triangle }=\sqrt{s(s-a)(s-b)(s-c)} .
$$

Heron also proves the formula in his Dioptra 30, but it is now known from Arabian sources to have been discovered by Archimedes.

GREEK MATHEMATICS

 ä $\chi \rho \iota ~ o v ̉ ~ \epsilon i s ~ \tau o ̀ ~ a v ̉ \tau o ̀ ~ a ̀ \pi о к а \tau а \sigma \tau \alpha \theta \hat{\eta} \quad \sigma \nu \mu \pi \epsilon \rho ф \epsilon \rho о-$

 $\tau \iota \nu \dot{\alpha}$ є́ $\pi \iota \phi \alpha ́ v \epsilon \iota a \nu \quad \dot{\eta} \quad \mathrm{~B} \Gamma \Delta \mathrm{E} \quad \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a, \hat{\eta} \nu \quad \delta \dot{\eta}$

 $\tau \hat{\eta} s$ тоîs кíoбıv viтокєıиє́vךs бтєípas.

 $\mathrm{AB} \mu o \nu \alpha ́ \delta \omega \nu \bar{\kappa}, \dot{\eta} \delta \dot{\epsilon} \mathrm{~B} \Gamma \delta \iota a ́ \mu \epsilon \tau \rho o s \mu^{\mu} \nu \alpha ́ \delta \omega \nu \bar{\beta}$.

 ai $\Delta \mathrm{ZE}, \mathrm{HA} \mathrm{\Theta} .\mathrm{к} \mathrm{\alpha ì} \delta i \dot{\alpha} \tau \hat{\omega} \nu \Delta, \mathrm{E} \tau \hat{\eta} \mathrm{AB} \pi а \rho \alpha \lambda^{\lambda}-$ 478

MENSURATION : HERON OF ALEXANDRIA

A remains stationary, let $A B$ revolve in the plane until it concludes its motion at the place where it started, the circle BI' $\Delta \mathrm{E}$ remaining throughout perpendicular to the plane of the horizontal. Then the circumference $\mathrm{BL} \triangle \mathrm{E}$ will generate a certain surface, which is called spiric; and if the whole circle do not revolve, but only a segment of it, the segment of the circle will again generate a segment of a spiric surface, such as are the spirae on which columns rest; for as there are three surfaces in the so-called anagrapheus, which some call also emboleus, two concave (the extremes) and one (the middle) convex, when the three are moved round simultaneously they generate the form of the spira on which columns rest. ${ }^{a}$

Let it then be required to measure the spire generated by the circle $B \Gamma \Delta E$. Let $A B$ be given as 20 , and the diameter $\mathrm{B} \mathrm{\Gamma}$ as 12 . Let Z be the centre of the circle, and through ${ }^{b} A, Z$ let HA,$\triangle Z E$ be drawn perpendicular to the plane of the horizontal. And through Δ, E let $\Delta \mathrm{H}$, EO be drawn parallel to

[^105]
GREEK MATHEMATICS

 $\pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu о \nu\langle\delta o \theta \epsilon ́ \nu\rangle^{1} \cdot \stackrel{\omega}{\omega} \sigma \tau \epsilon \kappa \kappa \alpha$ тò $\eta^{\circ} \mu \tau \sigma v$
 $\dot{\eta}$ ГВ $\delta \iota a ́ \mu \epsilon \tau \rho o s . ~ \lambda o ́ \gamma o s ~ a ̆ \rho \alpha ~ \tau о \hat{v} ~ В Г \Delta \mathrm{E} \mathrm{кv́к} \mathrm{\lambda оv}$
 $\tau \hat{\eta} S ~ \sigma \pi \epsilon i \rho a s ~ \pi \rho o ̀ s ~ \tau o ̀ \nu ~ к u ́ \lambda \iota \nu \delta \rho o \nu ~ \lambda o ́ \gamma o s ~ \epsilon ̈ \sigma \tau \iota ~ \delta o \theta \epsilon i s . ~$
 $\sigma \tau \in \rho \epsilon \dot{o} \nu \tau \hat{\eta} s \quad \sigma \pi \epsilon i \rho a s$.

 каi $\mu \epsilon ́ \tau \rho \eta \sigma o \nu$ кv́клоע, ov̂ $\delta \iota a ́ \mu \epsilon \tau \rho o ́ s ~ \epsilon ่ \sigma \tau \iota ~ \mu о \nu a ́ \delta \omega \nu$
 $\overline{\rho \iota \gamma} \zeta^{\prime} \cdot \kappa \alpha i \lambda \alpha \beta \dot{\epsilon} \tau \hat{\omega} \nu \overline{\kappa \eta} \tau o ̀ ~ \eta \eta \mu \iota \sigma v \cdot \gamma^{\prime} \gamma \nu \epsilon \tau \alpha \iota \overline{i \delta}$.
 ${ }^{1}$ Sotév add. H. Schöne.

MENSURATION : HERON OF ALEXANDRIA

AB . Now it is proved by Dionysodorus ${ }^{a}$ in the book which he wrote On the Spire that the circle BГ $\Delta \mathrm{E}$ bears to half of the parallelogram $\triangle \mathrm{FH} \theta$ the same ratio as the spire generated by the circle BI' $\Delta \mathrm{E}$ bears to the cylinder having $\mathrm{H} \Theta$ for its axis and $\mathrm{E} \Theta$ for the radius of its base. Now, since BI is $12, Z \Gamma$ will be 6 . But $A \Gamma$ is 8 ; therefore $A Z$ will be 14 , and likewise $\mathrm{E} \theta$, which is the radius of the base of the aforesaid cylinder. Therefore the circle is given; but the axis is also given ; for it is 12 , since this is the length of $\Delta \mathrm{E}$. Therefore the aforesaid cylinder is also given ; and the parallelogram $\Delta \theta$ is given, so that its half is also given. But the circle $\mathrm{B} \Gamma \Delta \mathrm{E}$ is also given ; for the diameter I'B is given. Therefore the ratio of the circle $B \Gamma \Delta E$ to the parallelogram is given; and so the ratio of the spire to the cylinder is given. And the cylinder is given; therefore the volume of the spire is also given.

Following the analysis, the synthesis may thus be done. Take 12 from 20 ; the remainder is 8 . And add 20 ; the result is 28 . Let the measure be taken of the cylinder having for the diameter of its base 28 and for height 12; the resulting volume is 7392. Now let the area be found of a circle having a diameter 12; the resulting area, as we learnt, is $113 \frac{1}{1}$. Take the half of 28 ; the result is 14 . Multiply it by the half of 12 ; the result is 84 . Now multiply
${ }^{a}$ For Dionysodorus v. supra, p. 162 n. a and p. 364 n. a. If $\Delta \mathrm{E}=\mathrm{H} \Theta=2 r$ and $\mathrm{E} \Theta=a$, then the volume of the spire bears to the volume of the cylinder the ratio $2 \pi a . \pi r^{2}: 2 r . \pi a^{2}$ or $\pi r: a$, which, as Dionysodorus points out, is identical with the ratio of the circle to half the parallelogram, that is, $\pi r^{2}: r a$ or $\pi r: a$.

GREEK MATHEMATICS

 $\pi \alpha \rho \alpha ́ \beta a \lambda \epsilon \pi \alpha \rho a ̀$ тòv $\overline{\pi \delta} \cdot \gamma^{\prime} \gamma \nu \epsilon \tau \alpha \iota, \overline{\theta \lambda \nu \zeta} \frac{\zeta}{\delta}$. тобoúrov $\notin \sigma \tau \alpha \iota ~ \tau o ̀ ~ \sigma \tau \epsilon \rho \epsilon o ̀ \nu ~ \tau \hat{\eta} S ~ \sigma \pi \epsilon i p a s . ~$

(iii.) Division of a Circle

Ibid. iii. 18, ed. H. Schőne (Heron iii.) 172. 13-174. 2

 $\eta{ }_{\eta} \chi \theta \omega \dot{\eta} \Delta \mathrm{AE} \kappa \alpha i \dot{\epsilon} \pi \epsilon \zeta \epsilon v^{\prime} \chi \theta \omega \sigma \alpha \nu$ ai $\mathrm{B} \Delta, \Delta \Gamma$. $\lambda \epsilon ́ \gamma \omega$,

 482

MENSURATION : HERON OF ALEXANDRIA

7392 by $113 \frac{1}{7}$ and divide the product by 84 ; the result is $9956 \frac{4}{7}$. This will be the volume of the spire.

(iii.) Division of a Circle

Ibid. iii. 18, ed. H. Schöne (Heron iii.) 172. 13-174. 2
To divide a given circle into three equal parts by two straight lines. It is clear that this problem is not rational, and for practical convenience we shall make the division as closely as possible in this way. Let the given circle have A for its centre, and let there be inserted in it an equilateral triangle with side $B \Gamma$, and let $\triangle \mathrm{AE}$ be drawn parallel to it, and let $\mathrm{B} \Delta, \Delta \Gamma$

be joined. I say that the segment $\Delta B \Gamma$ is approximately a third part of the whole circle. For let BA, A 列 joined. Then the sector $А В Г Z B$ is a third part of the whole circle. And the triangle $A B \Gamma$ is equal to the triangle $B \Gamma \Delta$ [Eucl. i. 37]; therefore the figure $B \Delta \Gamma Z$ is a third part of the whole circle, and the excess of the segment $\Delta \mathrm{B} \Gamma$ over it is negligible in comparison with the whole circle. Similarly, if we

GREEK MATHEMATICS

$\pi \lambda \epsilon v \rho a ̀ \nu \quad i \sigma o \pi \lambda \epsilon \cup ́ \rho o v ~ \tau \rho \iota \gamma \omega ́ v o v ~ \epsilon ́ \gamma \gamma \rho a ́ \psi a \nu \tau \epsilon \varsigma ~ \dot{a} \phi \epsilon-$

 κ ќк入оv.
(iv.) Measurement of an Irregular Area

Heron, Diopt. 23, ed. H. Schöne (Heron iii.) 260.18-264. 15

 484

MENSURATION: HERON OF ALEXANDRIA

inscribe another side of the equilateral triangle, we may take away another third part ; and therefore the remainder will also be a third part of the whole circle. ${ }^{\text {a }}$

(iv.) Measurement of an Irregular Area

Heron, Dioptra ${ }^{b}$ 23, ed. H. Schöne (Heron iii.)
260. 18-264. 15

To measure a given area by means of the dioptra. Let the given area be bounded by the irregular line ABC $\triangle \mathrm{E} Z H \theta$. Since we learnt to draw, by setting the dioptra, a straight line perpendicular to any other straight line, I took any point B on the line en-
a Euclid, in his book On Divisions of Figures which has partly survived in Arabic, solved a similar problem-to draw in a given circle two parallel chords cutting off a certain fraction of the circle; Euclid actually takes the fraction as one-third. The general character of the third book of Heron's Metrics is very similar to Euclid's treatise.

It is in the course of this book (iii. 20) that Heron extracts the cube root of 100 by a method already noted (vol. i. pp. 60-63).
${ }^{6}$ The dioptra was an instrument fulfilling the same purposes as the modern theodolite. An elaborate description of the instrument prefaces Heron's treatise on the subject, and it was obviously a fine piece of craftsmanship, much superior to the " parallactic" instrument with which Ptolemy had to work-another piece of evidence against an early date for Heron.

[^106]
GREEK MATHEMATICS

тò B , каi ${ }_{\eta}^{\eta} \gamma \alpha \gamma о \nu \quad \epsilon \hat{v} \theta \epsilon i \alpha \nu \quad \tau v \chi o \hat{v} \sigma \alpha \nu$ $\delta \iota \grave{\alpha} ~ \tau \hat{\eta} S$

 $\dot{\epsilon} \pi i \quad \tau \hat{\omega} \nu \dot{\alpha} \chi \theta \epsilon \iota \sigma \hat{\omega} \nu \quad \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu \quad \sigma v \nu \epsilon \chi \hat{\eta} \quad \sigma \eta \mu \epsilon \hat{\imath} \alpha, \dot{\epsilon} \pi \dot{i} \mu \dot{\epsilon} \nu$ $\tau \hat{\eta} s \mathrm{BH} \tau \dot{\alpha} \mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \Xi, \mathrm{O} \cdot \dot{\epsilon} \pi i \delta \dot{\epsilon} \tau \hat{\eta} s \mathrm{~B} \mathrm{\Gamma} \tau \dot{\alpha}$ $\Pi, \mathrm{P} \cdot \dot{\epsilon} \pi \grave{\imath} \delta \dot{\epsilon} \tau \hat{\eta} S \Gamma \mathrm{Z} \tau \dot{\alpha} \Sigma, \mathrm{T}, \mathrm{X}, \Phi, \mathrm{X}, \Psi, \Omega$.

 $\pi \rho o ̀ s ~ o ̀ \rho \theta \grave{\alpha} s \eta^{\prime \prime} \gamma a \gamma o \nu$ $\tau \dot{\alpha} s \mathrm{~K} \lambda, ~ \Lambda \mathrm{~A}, \mathrm{M}, \mathrm{A}, \mathrm{N}, \mathrm{B}$, $\Xi, \Gamma, 0, \Delta, \Pi, E, \mathrm{P}, \varsigma, \Sigma, \mathrm{Z}, \mathrm{T}, \mathrm{H}, \mathrm{Y}, \Theta, \Phi \Delta$,
 $\pi \epsilon ́ \rho \alpha \tau \alpha \tau \hat{\omega} \nu \dot{\alpha} \chi \theta \epsilon \iota \sigma \hat{\omega} \nu \pi \rho o ̀ s ~ o \partial \rho \theta \grave{\alpha} s[\epsilon \bar{\epsilon} \pi \iota \zeta \epsilon v \gamma \nu v \mu \epsilon ́ \nu a s]^{3}$

 є́ $\mu \beta \alpha \delta \grave{o} \nu$ то̂ $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda о \gamma \rho \alpha ́ \mu \mu о v . ~ \tau \grave{\alpha} \delta^{\prime}$ є̇ктòs

 $\Gamma \mathrm{P}, 5, \Gamma \Sigma, \mathrm{Z}, \mathrm{Z} \Omega \mathrm{E}, \mathrm{Z} \varsigma \stackrel{\gamma}{\mathrm{M}}, \Theta \mathrm{H} \dot{\mathrm{M}} \cdot \tau \grave{\alpha}, \delta \dot{\epsilon}$ 入oっ $\pi \grave{\alpha}$
 $\tau \rho \epsilon i ̄ \tau \alpha \iota \tau \hat{\omega} \nu \pi \epsilon \rho i ̀ \tau \grave{\eta} \nu$ ó $\rho \theta \grave{\eta} \nu \quad \gamma \omega \nu i ́ \alpha \nu \pi о \lambda \lambda \alpha \pi \lambda \alpha \sigma \iota \alpha-$

 486

MENSURATION : HERON OF ALEXANDRIA

closing the area, and by means of the dioptra drew any straight line BH , and drew $\mathrm{B} \mathrm{\Gamma}$ perpendicular to it, and drew another straight line ΓZ perpendicular to this last, and similarly drew $Z \theta$ perpendicular to Γ. And on the straight lines so drawn I took a series of points-on BH taking $\mathrm{K}, \Lambda, \mathrm{M}, \mathrm{N}, \boldsymbol{\Xi}, \mathrm{O}$, on $\mathrm{B} \mathrm{\Gamma}$ taking Π, P, on ΓZ taking $\Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega$, and on $Z \theta$ taking $\varsigma, ~ ¢$. And from the points so taken on the straight lines designated by the letters, I drew the perpendiculars $K \lambda, \Lambda A, M, A, N, B, \Xi, \Gamma, O, \Delta, \Pi, E, P, 5, \Sigma, Z, T, H$, $\Upsilon, \Theta, \Phi \Delta, X \stackrel{a}{M}, \Psi \stackrel{\beta}{M}, \Omega E, \sigma \stackrel{\gamma}{\mathrm{M}}, \varsigma_{\mathrm{M}}^{\mathrm{K}}$ in such a manner that the extremities of the perpendiculars cut off from the line enclosing the area approximately straight lines. When this is done it will be possible to measure the area. For the parallelogram $B \Gamma Z M$ is right-angled ; so that if we measure the sides by a chain or measuring-rod, which has been carefully tested so that it can neither expand nor contract, we shall obtain the area of the parallelogram. We may similarly measure the right-angled triangles and trapezia outside this by taking their sides; for BK λ,
 angled triangles, and the remaining figures are right-angled trapezia. The triangles are measured by multiplying together the sides about the right angle and taking half the product. As for the trapezia-take half of the sum of the two parallel sides and multiply it by the perpendicular upon

[^107]
GREEK MATHEMATICS

 тò $\chi \omega \rho i o v$ ठıá тє nov $\mu \epsilon ́ \sigma o v ~ \pi а \rho а \lambda \lambda \eta \lambda о \gamma \rho a ́ \mu \mu о v ~$

 $\mu \in \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu \quad \Xi, \Gamma, O, \Delta \quad \gamma \rho a \mu \mu \eta े, \dot{\eta}, \Gamma, \Delta), \quad \alpha \lambda \lambda \grave{\alpha}$

 ${ }^{\eta}{ }^{\zeta}$ ie $\mu о \nu$ каi тò MM, Δ т $\quad i ́ \gamma \omega \nu о \nu$, каi тò ,ГМММ
 тò $\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu o \nu \quad \chi \omega \rho i ́ o \nu$ víó $\tau \epsilon \tau \hat{\eta} S$, ГММ, Δ $\gamma \rho \alpha \mu \mu \hat{\eta} s$ каi $\tau \hat{\omega} \nu, \Gamma \Xi,\langle\Xi O\rangle\rangle^{2} 0, \Delta \in \dot{v} \theta \epsilon \iota \hat{\omega} \nu$ $\mu \epsilon \mu \epsilon \tau \rho \eta \mu \in ́ v o \nu$.

(c) Mechanics

Heron, Diopt. 37, ed. H. Schöne (Heron iii.) 306. 22-312. 22

${ }^{1}$ rท̂ add. H. Schöne.
${ }^{2} \mathrm{EO}$ add. H. Schöne.

- Heron's Mechanics in three books has survived in Arabic, but has obviously undergone changes in form. It begins with the problem of arranging toothed wheels so as to move 488

MENSURATION : HERON OF ALEXANDRIA

them, as, for example, half of $\mathrm{K} \lambda, \mathrm{A} \Lambda$ by $\mathrm{K} \Lambda$; and similarly for the remainder. Then the whole area will have been measured by means of the parallelogram in the middle and the triangles and trapezia outside it. If perchance the curved line between the perpendiculars drawn to the sides of the parallelogram should not approximate to a straight line (as, for example, the curve $, \Gamma, \Delta$ between $\Xi, \Gamma, 0, \Delta)$, but 5
to an arc, we may measure it thus: Draw,$\Delta \mathrm{M}$ perpendicular to $0, \Delta$, and on it take a series of points
 5 M, Δ, so that the portions between the straight lines so drawn approximate to straight lines, and again we can measure the parallelogram ${ }^{5} \cong \mathrm{O}, \Delta$ and the tri-
 other trapezium, and so we shall obtain the area bounded by the line $\Gamma^{\prime} \mathrm{M}_{\mathrm{M}}^{\mathrm{K}}, \Delta$ and the straight lines , Г忥, 気O, O, Δ.

(c) Mechanics ${ }^{a}$

Heron, Dioptra 37, ed. H. Schöne (Heron iii.) 306. 22-312. 22
With a given force to move a given weight by the a given weight by a given force. This account is the same as that given in the passage here reproduced from the Dioptra, and it is obviously the same as the account found by Pappus (viii. 19, ed. Hultsch 1060. 1-1068. 23) in a work of Heron's (now lost) entitled Bapoùkós (" weight-lifter ")-though Pappus himself took the ratio of force to weight as $4: 160$ and the ratio of successive diameters as $2: 1$. It is suggested by Heath (H.G.M. ii. 346-347) that the chapter from the

GREEK MATHEMATICS

$\delta_{\iota \alpha}^{\alpha} \tau v \mu \pi \alpha ́ \nu \omega \nu$ ỏ óovт $\omega \tau \hat{\omega} \nu \pi \alpha \rho \alpha \theta \epsilon ́ \sigma \epsilon \omega s$. катєбкєขáбӨ $\pi \hat{\eta} \gamma \mu \alpha$ каӨáтєן $\gamma \lambda \omega \sigma \sigma о ́ к о \mu о \nu \cdot \epsilon i s ~ \tau o v ̀ s$

$\dot{\omega} \sigma \tau \epsilon \tau \dot{\alpha} \sigma u \mu \phi v \hat{\eta} \alpha u ̉ \tau o i ̂ s ~ o ̉ \delta o v \tau \omega \tau \dot{\alpha} \tau u ́ \mu \pi \alpha \nu \alpha \pi \alpha \rho \alpha-$
 $\delta \eta \lambda о \hat{\nu}$. ${ }^{\epsilon} \sigma \tau \omega$ тò $\epsilon i \rho \eta \mu \epsilon ́ v o \nu$, $\gamma \lambda \omega \sigma \sigma o ́ к о \mu о \nu$ тò

 4.90

MENSURATION : HERON OF ALEXANDRIA

juxtaposition of toothed wheels. ${ }^{a}$ Let a framework be prepared like a chest ; and in the long, parallel walls let there lie axles parallel one to another, resting at such intervals that the toothed wheels fitting on to them will be adjacent and will engage one with the other, as we shall explain. Let $A B \Gamma \Delta$ be the aforesaid chest, and let EZ be an axle lying in it, as stated above, and able to revolve freely. Fitting on to this axle let there be a toothed wheel HӨ whose diameter, say, is five times the diameter of the axle EZ. In order that the construction may serve as an illustration, let the weight to be raised be 1000 talents, and let the moving force be 5 talents, that is, let the man or slave who moves it be able by himself, without mechanical aid, to lift 5 talents. Then if the rope holding the load passes through some aperture in

Bapoudkós was substituted for the original opening of the Mechanics, which had become lost.

Other problems dealt with in the Mechanics are the paradox of motion known as Aristotle's wheel, the parallelogram of velocities, motion on an inclined plane, centres of gravity, the five mechanical powers, and the construction of engines. Edited with a German translation by L. Nix and W. Schmidt, it is published as vol. ii. in the Teubner Heron.
a Perhaps " rollers."
${ }^{1} \tau \eta$ s add. Vincentius.

GREEK MATHEMATICS

oṽ $\eta \eta\rangle^{1} \epsilon \dot{\epsilon} \nu \tau \hat{\varphi} \mathrm{AB} \tau 0 i ́ \chi \omega \dot{\epsilon} \epsilon \pi \epsilon \lambda \eta \eta \hat{\eta} \pi \epsilon \rho \dot{i} \tau \dot{\partial} \nu \mathrm{EZ}$

 $\tau \dot{v} \mu \pi \alpha \nu o \nu,\left\langle\delta \in i ̂ ~ \delta v \nu \alpha{ }^{\prime}\right\rangle \mu \epsilon \iota^{4} \dot{v} \pi \alpha ́ \rho \chi \epsilon \iota \nu \pi \lambda \epsilon \in о \nu \tau \alpha \lambda \alpha ́ \nu \tau \omega \nu$ ठıакобícv，$\delta \iota a ̀ ~ \tau o ̀ ~ \tau \grave{\eta} \nu ~ \delta \iota a ́ \mu \epsilon \tau \rho о \nu ~ \tau о \hat{v} \tau v \mu \pi a ́ v o v$

 $\bar{\epsilon} \delta v \nu \alpha ́ \mu \epsilon \omega \nu \dot{\alpha} \pi \sigma \delta \epsilon i \xi \epsilon \sigma \iota \nu . \quad \dot{a} \lambda \lambda \lambda^{\prime}\langle\ldots . .\rangle^{\circ} \epsilon^{\prime} \chi о \mu \epsilon \nu \tau i$ $\tau \grave{\eta} \nu$ ठv́vaцıv та入ávт $\omega \nu$ ठıакобí $\omega \nu$ ，à $\lambda \lambda \grave{\alpha} \pi \epsilon ́ v \tau \epsilon$ ．

 $\dot{\omega} \delta o \nu \tau \omega \mu \epsilon ́ \nu o \nu ~ \tau o ̀ ~ M N . ~ o ́ \delta o \nu \tau \omega \hat{\omega} \delta \epsilon s ~ \delta \grave{~} \kappa \alpha i$ тò $\mathrm{H} \Theta$

 $\Xi О$ тv $\tau \pi a ́ \nu o v ~ \tau o ̀ ~ \beta a ́ \rho o s ~ \epsilon ' \chi ~ \chi є \iota \nu ~ \delta u ́ v a \mu \iota \nu ~ \tau \alpha \lambda \alpha ́ \nu \tau \omega \nu ~$
 $\tau \alpha ́ \lambda \alpha \nu \tau \alpha \bar{\mu} . \quad \pi \alpha ́ \lambda \iota \nu$ ov̂v таракєї $\theta \omega$ 〈 $\tau \hat{\omega} \quad \Xi 0$

${ }^{1}$ ỏnท̂s oṽ $\sigma \eta \rho_{s}$ add．Hultsch et H．Schöne．
${ }^{2}$ After ä乡ova there is a lacuna of five letters．
 тои̂ фортíov є́ $\pi \lambda а \kappa \omega \nu ~ \epsilon \nu ~ \tau \iota \sigma \iota ~ т о ~ \beta a ́ p o s ~ c o d . ~$
＂$\delta \in \hat{\imath}$ $\delta v \nu \alpha ́ \mu \epsilon \iota$－＂septem litteris madore absumptis，supplevi dubitanter，＂H．Schöne．
${ }^{5}$ єlvaı add．H．Schöne．

MENSURATION : HERON OF ALEXANDRIA

the wall $A B$ and is coiled round the axle EZ, the rope holding the load will move the weight as it winds up. In order that the wheel HӨ may be moved, a force of more than 200 talents is necessary, owing to the diameter of the wheel being, as postulated, five times the diameter of the axle; for this was shown in the proofs of the five mechanical powers. ${ }^{\text {a }}$ We have [not, however . . .] a force of 200 talents, but only of 5. Therefore let there be another axle $\mathrm{K} \Lambda$, lying parallel to EZ, and having the toothed wheel MN fitting on to it. Now let the teeth of the wheel HӨ be such as to engage with the teeth of the wheel MN. On the same axle KA let there be fitted the wheel $\boldsymbol{\Xi} 0$, whose diameter is likewise five times the diameter of the wheel MN. Now, in consequence, anyone wishing to move the weight by means of the wheel ≈ 0 will need a force of 40 talents, since the fifth part of 200 talents is 40 talents. Again, then, let another toothed wheel IIP lie alongside the toothed wheel 忥O, and let there be fitted to the toothed wheel ПP another toothed wheel ΣT whose diameter is likewise five times the diameter of the wheel IIP; then the force needing to be applied to the wheel $\Sigma \mathrm{T}$ will be 8 talents; but the force actually available

- The wheel and axle, the lever, the pulley, the wedge and the screw, which are dealt with in Book ii. of Heron's Mechanics.

[^108]
GREEK MATHEMATICS

 $\mathrm{X} \Psi^{+} \omega \dot{\omega} \delta \nu \tau \omega \mu \epsilon ́ \nu o \nu$, ồ $\dot{\eta} \delta_{\iota \alpha} \mu \epsilon \tau \rho o s \pi \rho o ̀ s ~ \tau \grave{\eta} \nu$ тồ

 то̀ АВГД 〈 $\langle\lambda \omega \sigma \sigma o ́ к о \mu о \nu\rangle^{1} \mu \epsilon \tau \epsilon ́ \omega \rho о \nu \quad \kappa \epsilon$ í $\mu \epsilon \nu о \nu$,

 фонє́v$\omega \nu \tau \hat{\omega} \nu$ á ${ }^{\circ}$

 $\kappa \alpha i ~ \epsilon ̇ \pi \iota \sigma \pi a ́ \sigma \epsilon \tau \alpha \iota ~ \tau o ̀ ~ \beta a ́ \rho o s . ~ a ̀ v \tau i ~ \delta \grave{\epsilon}^{3} \tau \hat{\eta} S \pi \rho о \sigma \theta \epsilon \epsilon-$
 ג́ $\rho \mu о \sigma \tau \eta ̀ \nu ~ \tau o i ̂ S ~ o ́ \delta o v ̂ \sigma \iota ~ \tau o v ~ \tau v \mu \pi \alpha ́ \nu o v, ~ \sigma \tau \rho \epsilon \phi o ́ \mu \epsilon \nu o s$

 $\tau \epsilon \tau \rho a \gamma \omega \nu \iota \sigma \theta \epsilon \hat{\imath} \sigma \alpha \quad \lambda \alpha \beta \dot{\epsilon} \dot{\tau} \tau \omega \quad \chi \in \iota \rho \circ \hat{\lambda} \alpha \dot{\beta} \eta \nu \quad \tau \grave{\eta} \nu \quad \varsigma \varsigma, \delta i{ }^{\prime}$

 494

MENSURATION : HERON OF ALEXANDRIA

to us is 5 talents. Let there be placed another toothed wheel $\Upsilon \Phi$ engaging with the toothed wheel $\Sigma \mathrm{T}$; and fitting on to the axle of the wheel $\mathrm{Y} \Phi$ let there be a toothed wheel $\mathrm{X} \Psi$, whose diameter bears to the diameter of the wheel $\Upsilon \Phi$ the same ratio as 8 talents bears to the given force 5 talents.

When this construction is done, if we imagine the chest $A B \Gamma \Delta$ as lying above the ground, with the weight hanging from the axle EZ and the force raising it applied to the wheel $X \Psi$, neither of them will descend, provided the axles revolve freely and the juxtaposition of the wheels is accurate, but as in a beam the force will balance the weight. But if to one of them we add another small weight, the one to which the weight was added will tend to sink down and will descend, so that if, say, a mina is added to one of the 5 talents in the force it will overcome and draw the weight. But instead of this addition to the force, let there be a screw having a spiral which engages the teeth of the wheel, and let it revolve freely about pins in round holes, of which one projects beyond the chest through the wall $\Gamma \Delta$ adjacent to the screw; and then let the projecting piece be made square and be given a handle ¢ร. Anyone who takes this handle and turns, will turn the screw and the wheel $X \Psi$, and therefore the wheel $\Upsilon \Phi$ joined to it. Similarly the adjacent wheel $\Sigma \mathrm{T}$ ' will revolve, and ΠP joined to it, and then the adjacent wheel $\boldsymbol{\xi} O$, and then MN fitting

[^109]
GREEK MATHEMATICS

 є́к тоv $\pi \rho о \sigma \tau \epsilon \theta \hat{\eta} \nu \alpha \iota$ є́ $\tau \epsilon ́ \rho a \quad \delta v \nu \alpha ́ \mu \epsilon \iota$ 〈 $\tau \eta ̀ \nu\rangle^{1} \tau \hat{\eta} S$ $\chi \epsilon \iota \rho \frac{\lambda \alpha ́ \beta \eta s, ~ \eta ̈ \tau \iota s ~ \pi \epsilon \rho \iota \gamma \rho a ́ \phi є \iota ~ к u ́ к \lambda о \nu ~ т \eta}{\eta} s$ тоv кох入íov $\pi \epsilon \rho \iota \mu \epsilon ́ \tau \rho о v ~ \mu \epsilon i \zeta o v a \cdot ~ \dot{a} \pi \epsilon \delta \epsilon i ́ \chi \theta \eta$ रà ρ öть

(d) Optics: Equality of Angles of Incidence and Reflection

Damian. Opt. 14, ed. R. Schöne 20. 12-18

 $\epsilon \dot{\theta} \theta \epsilon i \alpha \iota \epsilon \in \lambda \alpha ́ \chi \iota \sigma \tau \alpha i ́ \epsilon i \sigma \iota \pi \alpha \sigma \hat{\omega} \nu^{2} \tau \hat{\omega} \nu$ àmò $\tau \hat{\eta} s$ aù $\tau \hat{\eta} S$

 т $̀ \nu \quad \dot{\eta} \mu \epsilon \tau \epsilon ́ \rho a \nu$ ő $\psi \iota \nu, \pi \rho o ̀ s ~ i \sigma a s ~ a u ̛ \tau \eta ̀ \nu ~ a ́ v a \kappa \lambda a ́ \sigma \epsilon \iota ~$ $\gamma \omega \nu i a s$.

Olympiod. In Meteor. iii. 2 (Aristot. 371 b 18), ed. Stüve 212. 5-213. 21
'Е $\pi \epsilon \iota \delta \grave{\eta}$ रà ρ тои̂тo $\dot{\omega} \mu о \lambda о \gamma \eta \mu \epsilon ́ \nu o \nu ~ \epsilon ’ \sigma \tau i ~ \pi a \rho \grave{\alpha}$

${ }^{1}$ ๆ $\grave{\nu} \nu$ add. H. Schöne.
${ }^{2} \pi a \sigma \hat{\omega} \nu$ G. Schmidt, $\tau \hat{\omega} \nu \mu \epsilon ́ \sigma \omega \nu$ codd.
${ }^{3}$ troós ávíoous $\gamma \omega$ viáas om. R. Schöne. 2

496
on to this last, and then the adjacent wheel $\mathrm{H} \theta$, and so finally the axle EZ fitting on to it ; and the rope, winding round the axle, will move the weight. That it will move the weight is obvious because there has been added to the one force that moving the handle which describes a circle greater than that of the screw; for it has been proved that greater circles prevail over lesser when they revolve about the same centre.
(d) Optics: Equality of Angles of Incidence and Reflection

$$
\begin{aligned}
& \text { Damianus, }{ }^{\text {a }} \text { On the Hypotheses in Optics 14, R. Schöne 20. 12-18 }
\end{aligned}
$$

For the mechanician Heron showed in his Catoptrica that of all [mutually] inclined straight lines drawn from the same homogenous straight line [surface] to the same [points], those are the least which are so inclined as to make equal angles. In his proof he says that if Nature did not wish to lead our sight in vain, she would incline it so as to make equal angles.

> Olympiodorus, Commentary on Aristotle's Meteora iii. 2 (371 b 18), ed. Stüve 212. 5-213. 21

For this would be agreed by all, that Nature does nothing in vain nor labours in vain; but if we do not grant that the angles of incidence and reflection are equal, Nature would be labouring in vain by following
a Damianus, or Heliodorus, of Larissa (date unknown) is the author of a small work on optics, which seems to be an abridgement of a large work based on Euclid's treatise. The full title given in some mss.- $\Delta a \mu \mu a v o \hat{v}$ фı入oóóoov rov̂
 uncertain which was his real name.

GREEK MATHEMATICS

 $\phi \theta \alpha \sigma \alpha \iota ~ \tau o ̀ ~ o ́ \rho \omega ́ \mu \mu \epsilon \nu o \nu ~ \tau \eta ̀ \nu ~ o ै \psi \iota \nu, ~ \delta \iota a ̀ ~ \mu а к \rho а \hat{s} \pi \epsilon \rho \iota o ́ \delta o v$
 $\gamma \grave{\alpha} \rho$ aí $\tau \grave{a} s$ ảvíoous $\gamma \omega v i a s ~ \pi \epsilon \rho \iota \in ́ \chi o v \sigma \alpha \iota ~ \epsilon \dot{v} \theta \epsilon \hat{i} \alpha \iota$,
 $\pi \rho o ̀ s ~ \tau o ̀ ~ к а ́ \tau о \pi \tau \rho о \nu ~ к \alpha \dot{\kappa \epsilon і ̈ \theta \epsilon \nu ~ \pi \rho o ̀ s ~ \tau o ̀ ~ o ́ \rho с ́ ́ \mu \epsilon \nu о \nu, ~}$

 $\gamma \omega \nu i ́ a ~ i \sigma \eta ~ \epsilon ̇ \sigma \tau i ~ \tau \hat{\eta}$ vimò $\Delta \mathrm{EB}$.
498

MENSURATION : HERON OF ALEXANDRIA

unequal angles, and instead of the eye apprehending the visible object by the shortest route it would do so by a longer. For straight lines so drawn from the eye to the mirror and thence to the visible object as to make unequal angles will be found to be greater than straight lines so drawn as to make equal angles. That this is true, is here made clear.

For let the straight line AB be supposed to be the mirror, and let Γ be the observer, Δ the visible object, and let E be a point on the mirror, falling on which the sight is bent towards the visible object, and let $\Gamma E, E \Delta$ be joined. I say that the angle AE厂 is equal to the angle $\triangle \mathrm{EB} .{ }^{a}$

- Different figures are given in different mss., with corresponding small variants in the text. With G. Schmidt, I have reproduced the figure in the Aldine edition.
${ }^{1}$ катала $\mu \beta$ ávovoa om. Ideler.

${ }^{3}$ ф́́povтau R. Schöne, $\phi є р о \mu$ évas codd.

GREEK MATHEMATICS

 ГЕ, $\mathrm{E} \Delta \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu$, aï $\tau \iota \nu \epsilon s$ тàs ${ }^{\prime} \sigma a s{ }^{\prime} \gamma \omega \nu i ́ a s ~ \pi \epsilon \rho \iota-$

 $\dot{\eta} \Delta \mathrm{H} \tau \hat{\eta} \mathrm{H} \Theta{ }_{\iota}^{\prime \prime} \sigma \eta, \kappa \alpha i \dot{\epsilon} \pi \epsilon \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \dot{\eta} \Theta \mathrm{Z} \kappa \alpha i \dot{\eta} \Theta \mathrm{E}$.
 $\tau \hat{\eta} \mathrm{H} \Theta, \dot{\alpha} \lambda \lambda \dot{\alpha} \kappa \alpha i \mathfrak{\eta}$ víò $\Delta \mathrm{HE} \gamma \omega \nu i \alpha ~ \tau \hat{\eta}$ vimò $\Theta \mathrm{HE}$

 є́бтi, каi 〈ai> ${ }^{2}$ doıтаi $\gamma \omega \nu i ́ a \iota ~ \tau a i ̂ s ~ \lambda o \iota \pi a i ̂ s ~ \gamma \omega \nu i ́ a \iota s . ~$

 $\grave{\eta} \mathrm{E} \mathrm{\Gamma}$, δ v́o ápa ai $\Gamma \mathrm{E}, \mathrm{E} \Delta$ dvai $\tau \alpha i ̂ s ~ \Gamma \mathrm{E}, \mathrm{E} \Theta$

MENSURATION: HERON OF ALEXANDRIA

For if it be not equal, let there be another point Z, on the mirror, falling on which the sight makes unequal angles, and let $\mathrm{T} Z, \mathrm{Z} \Delta$ be joined. It is clear that the angle $\Gamma Z A$ is greater than the angle $\triangle Z E$. I say that the sum of the straight lines $\Gamma Z, Z \Delta$ which make unequal angles with the base line $A B$, is greater than the sum of the straight lines ГE, $\mathrm{E} \Delta$, which make equal angles with AB . For let a perpendicular be drawn from Δ to AB at the point H and let it be produced in a straight line to θ. Then it is obvious that the angles at H are equal ; for they are right angles. And let $\Delta \mathrm{H}=\mathrm{H} \theta$, and let θZ and θE be joined. This is the construction. Then since $\Delta \mathrm{H}=\mathrm{H} \theta$, and the angle $\Delta \mathrm{HE}$ is equal to the angle $\Theta H E$, while HE is a common side of the two triangles, the triangle $\mathrm{H} \theta \mathrm{E}$ is equal to the triangle $\triangle H E$, and the remaining angles, subtended by the equal sides are severally equal one to the other [Eucl. i. 4]. Therefore $\theta \mathrm{E}=\mathrm{E} \Delta$. Again, since $\mathrm{H} \Delta=\mathrm{H} \theta$ and angle $\triangle H Z=$ angle $\Theta H Z$, while $H Z$ is common to the two triangles $\triangle \mathrm{HZ}$ and $\theta \mathrm{HZ}$, the triangle $\mathrm{ZH} \Delta$ is equal to the triangle $\theta H Z$ [ibid.]. Therefore $\theta Z=Z \Delta$. And since $\theta \mathrm{E}=\mathrm{E} \Delta$, let $\mathrm{E} \Gamma$ be added to both. Then the sum of the two straight lines IE, $\mathrm{E} \Delta$ is equal to the sum of the two straight lines TE , E θ. Therefore the whole $\Gamma \Theta$ is equal to the sum of the two straight lines $\Gamma \mathrm{E}, \mathrm{E} \Delta$. And since in any triangle the sum of two sides is always greater than

[^110]
GREEK MATHEMATICS

 $\tau \rho \iota \gamma \dot{\prime} \nu o v$ ă $\rho \alpha$ тov̂ $\Theta Z \Gamma$ ai ठv́o $\pi \lambda \epsilon v \rho \alpha i$ ai $\Theta \mathrm{Z}$,

 ai àpa τ às ávíaovs $\gamma \omega \nu i a s ~ \pi \epsilon \rho \iota \in ́ \chi o v \sigma a \iota ~ \mu \epsilon i \zeta o v e ́ s ~$
 $\delta \in i \hat{\xi} \alpha \iota$.

(e) Quadratic Equations

Heron, Geom. 21. 9-10, ed. Heiberg (Heron iv.) 380. 15-31

 $\mu v \rho \iota \alpha ́ \delta \epsilon s$ र̄ каі ${ }^{\prime} \beta \chi \mu \eta$. тои́тоьs $\pi \rho о \sigma \tau i \theta \epsilon \iota$ ка θ -

[^111]
MENSURATION : HERON OF ALEXANDRIA

the remaining side, in whatever way these may be taken [Eucl. i. 20], therefore in the triangle $\theta Z \Gamma$ the sum of the two sides $\theta Z, Z \Gamma$ is greater than the one side ГӨ. But

But

$$
\begin{aligned}
\Gamma \theta & =\Gamma E+E \Delta ; \\
\theta Z+Z \Gamma & >\Gamma E+E \Delta . \\
\theta Z & =Z \Delta ; \\
Z \Gamma+Z \Delta & >\Gamma E+E \Delta .
\end{aligned}
$$

\therefore
And IZ, $\mathrm{Z} \Delta$ make unequal angles; therefore the sum of straight lines making unequal angles is greater than the sum of straight lines making equal angles ; which was to be proved. ${ }^{\text {a }}$

(e) Quadratic Equations

Heron, Geometrica 21. 9-10, ed. Heiberg (Heron iv.) 380. 15-31
Given the sum of the diameter, perimeter and area of a circle, to find each of them separately. It is done thus : Let the given sum be 212. Multiply this by 154 ; the result is 32648 . To this add 841, making 33489, whose square root is 183 . From this take away 29 , leaving 154 , whose eleventh part is 14 ; this will be the diameter of the circle. If you wish to find the circumference, take 29 from 183, leaving 154 ; double this, making 308, and take the seventh part, which is 44 ; this will be the perimeter. To
usually held, that it is a translation of Heron's Catoptrica. The translation, made by William of Moerbeke in 1269, can be shown by internal evidence to have been made from the Greek original and not from an Arabic translation. It is published in the Teubner edition of Heron's works, vol. ii. part i .

GREEK MATHEMATICS

 $\tau \rho \iota \bar{\omega} \nu \dot{\alpha} \rho \iota \theta \mu \hat{\omega} \nu \mu о \nu a ́ \delta \epsilon s \bar{\sigma}_{\iota} \beta$.
(f) Indeterminate Analysis
Heron, Geom. 24. 1, ed. Heiberg (Heron iv.) 414. 28-415. 10

${ }^{\text {a }}$ If d is the diameter of the circle, then the given relation is that
i.e.

$$
\begin{aligned}
d+\frac{22}{7} d+\frac{11}{14} d^{2} & =212 \\
\frac{11}{14} d^{2}+\frac{29}{7} d & =212
\end{aligned}
$$

To solve this quadratic equation, we should divide by $1 \frac{1}{1}$ so as to make the first term a square; Heron makes the first term a square by multiplying by the lowest requisite factor, in this case 154 , obtaining the equation

$$
11^{2} d^{2}+2.29 .11 d=154 \cdot 212 .
$$

By adding 841 he completes the square on the left-hand side

$$
\begin{aligned}
(11 d+29)^{2} & =154 \cdot 212+841 \\
& =32648+841 \\
& =33489
\end{aligned}
$$

$$
\therefore \quad 11 d+29=183
$$

$$
\therefore \quad 11 d \quad=154
$$

$$
\text { and } \quad d \quad=14
$$

The same equation is again solved in Geom. 24. 46 and a similar one in Geom. 24. 47. Another quadratic equation is solved in Geom. 24. 3 and the result of yet another is given in Metr. iii. 4.
504

MENSURATION: HERON OF ALEXANDRIA

find the area. It is done thus: Multiply the diameter, 14, by the perimeter, 44, making 616 ; take the fourth part of this, which is 154 ; this will be the area of the circle. The sum of the three numbers is $212 .{ }^{a}$

(f) Indeterminate Analysis ${ }^{b}$

Heron, Geometrica 24. 1, ed. Heiberg
(Heron iv.) 414. 28-415. 10
To find two rectangles such that the area of the first is three times the area of the second. ${ }^{c}$ I proceed thus:
${ }^{6}$ 'The Constantinople ms. in which Heron's Metrica was found in 1896 contains also a number of interesting problems in indeterminate analysis; and two were already extant in Heron's Geëponicus. The problems, thirteen in all, are now published by Heiberg in Heron iv. 414. 28-426. 29.

- It appears also to be a condition that the perimeter of the second should be three times the perimeter of the first. If we substitute any factor n for 3 the general problem becomes: To solve the equations

$$
\begin{array}{cc}
u+v=n(x+y) \\
x y=n . u v
\end{array} \quad \text { • } \quad \text { • } \quad \text { • (1) }
$$

The solution given is equivalent to

$$
\begin{array}{ll}
x=2 n^{3}-1, & y=2 n^{3} \\
u=n\left(4 n^{3}-2\right), & v=n .
\end{array}
$$

Zeuthen (Bibliotheca mathematica, viii. (1907-1908), pp. 118134) solves the problem thus: Let us start with the hypothesis that $v=n$. It follows from (1) that u is a multiple of n, say $n z$. We have then
while by (2)
whence

$$
\begin{aligned}
x+y & =1+z, \\
x y & =n^{3} z, \\
x y & =n^{3}(x+y)-n^{3}
\end{aligned}
$$

or

$$
\left(x-n^{3}\right)\left(y-n^{3}\right)=n^{3}\left(n^{3}-1\right) .
$$

An obvious solution of this equation is

$$
x-n^{3}=n^{3}-1, y-n^{3}=n^{3},
$$

which gives $z=4 n^{3}-2$, whence $u=n\left(4 n^{3}-2\right)$. The other values follow.

GREEK MATHEMATICS

 $\lambda о \iota \pi \grave{\nu} \nu \gamma^{\prime} \nu 0 \nu \tau \alpha \iota \overline{\nu \gamma}$. $\quad \epsilon \sigma \tau \omega$ ov̂v $\dot{\eta} \mu \grave{\epsilon} \nu \mu i ́ a ~ \pi \lambda \epsilon v \rho \dot{\alpha}$

 $\tau \epsilon ́ \rho o v \pi \lambda \epsilon v \rho a ̀$ à $\pi o \delta \hat{\omega} \nu \overline{\tau \iota \eta}, \dot{\eta} \delta \dot{\epsilon}$ є́ $\tau \epsilon ́ \rho a \pi \lambda \epsilon v \rho a ̀ ~ \pi o \delta \hat{\omega} \nu$
 $\tau \circ \hat{v} a ̈ \lambda \lambda o v \pi о \delta \omega े \nu, \overline{\beta \omega \xi \beta}$.

Ibid. 24. 10, ed. Heiberg (Heron iv.) 422. 15-424. 5
 $\mu \epsilon ́ \tau \rho \circ v \pi o \delta \hat{\omega} \nu \overline{\sigma \pi} \cdot \dot{\alpha} \pi о \delta \iota a \sigma \tau \epsilon \hat{i} \lambda \alpha \iota ~ \tau \grave{\alpha} s \pi \lambda \epsilon v \rho \dot{\alpha} s$ каì

 $\eta^{\prime} \cdot \gamma^{\prime} \nu о \nu \tau \alpha \iota \pi o ́ \delta \epsilon S \overline{\lambda \epsilon}$. $\delta \iota a ̀ ~ \pi a \nu \tau o ̀ s ~ \lambda a ́ \mu \beta a \nu \epsilon ~ \delta v a ́ \delta a ~$ $\tau \hat{\omega} \nu \bar{\eta} \cdot \lambda о \iota \pi o ̀ \nu \mu \epsilon ́ v o v \sigma \iota \nu \bar{\zeta} \pi o ́ \delta \epsilon \epsilon$. т̀̀ oûv $\overline{\lambda \epsilon} \kappa a i$
 є́autá- үivovtal $\pi o ́ \delta \epsilon s, \overline{, \alpha \chi \pi a}$. $\tau \grave{\alpha} \overline{\lambda \epsilon} \bar{\epsilon} \pi i \quad \tau \grave{\alpha} \bar{\zeta}$.
 $\tau \alpha \iota \pi o ́ \delta \epsilon S, \overline{, \bar{\alpha} \pi}$. таиิтa $\hat{a} \rho о \nu$ à $\pi \grave{o} \tau \hat{\omega} \nu, \overline{, \bar{\alpha} \pi a}$. $\lambda o \iota \pi \grave{\partial} \nu \mu \epsilon ́ \nu \epsilon \iota \bar{a} \cdot \hat{\omega} \nu \pi \lambda \epsilon \nu \rho \grave{a} \tau \epsilon \tau \rho a \gamma \omega \nu \iota \kappa \grave{\eta} \gamma^{\prime} \nu \in \tau a \iota \bar{a}$.

 506

MENSURATION : HERON OF ALEXANDRIA

Take the cube of 3, making 27 ; double this, making 54. Now take away 1, leaving 53. Then let one side be 53 feet and the other 54 feet. As for the other rectangle, [I proceed] thus : Add together 53 and 54, making 107 feet : multiply this by 3, [making 321 ; take away 3], leaving 318. Then let one side be 318 feet and the other 3 feet. The area of the one will be 954 feet and of the other 2862 feet. ${ }^{\text {a }}$

Ibid. 24. 10, ed. Heiberg (Heron iv.) 422. 15-424. 5
In a right-angled triangle the sum of the area and the perimeter is 280 feet; to separate the sides and find the area. I proceed thus : Always look for the factors; now 280 can be factorized into 2.140, 4.70, $5.56,7.40,8.35,10.28,14.20$. By inspection, we find 8 and 35 fulfil the requirements. For take oneeighth of 280 , getting 35 feet. Take 2 from 8, leaving 6 feet. Then 35 and 6 together make 41 feet. Multiply this by itself, making 1681 feet. Now multiply 35 by 6 , getting 210 feet. Multiply this by 8, getting 1680 feet. Take this away from the 1681, leaving 1, whose square root is 1 . Now take the 41 and subtract 1 , leaving 40 , of which the half is 20 ; this is the perpendicular, 20 feet. And again take 41 and add 1 , getting 42 feet, of which the half is 21 ; and let this be the base, 21 feet. And take 35 and subtract 6, leaving 29 feet. Now multiply

[^112]
GREEK MATHEMATICS

${ }^{4}$ Heath (H.G.M. ii. 446-447) shows how this solution can be generalized. Let a, b be the sides of the triangle contraining the right angle, c the hypotenuse, S the area of the triangle, r the radius of the inscribed circle; and let

$$
s=\frac{1}{2}(a+b+c) .
$$

Then

$$
S=r s=\frac{1}{2} a b, r+s=a+b, c=s-r .
$$

Solving the first two equations, we have

$$
\left.\frac{a}{b}\right\}=\frac{1}{2}\left[r+s \mp \sqrt{ }\left\{(r+s)^{2}-8 r s\right\}\right]
$$

and this formula is actually used in the problem. The

MENSURATION : HERON OF ALEXANDRIA

the perpendicular and the base together, [getting 420], of which the half is 210 feet; and the three sides comprising the perimeter amount to 70 feet; add them to the area, getting 280 feet. ${ }^{a}$
method is to take the sum of the area and the perimeter $S+2 s$, separated into its two obvious factors $s(r+2)$, to put $s(r+2)=A$ (the given number), and then to separate A into suitable factors to which s and $r+2$ may be equated. They must obviously be such that $s r$, the area, is divisible by 6 .

In the given problem $A=280$, and the suitable factors are $r+2=8, s=35$, because r is then equal to 6 and $r s$ is a multiple of 6 . Then

$$
\begin{aligned}
& a=\frac{1}{2}\left[6+35-\sqrt{ }\left\{(6+35)^{2}-8 \cdot 6 \cdot 35\right\}\right]=\frac{1}{2}(41-1)=20, \\
& b=\frac{1}{2}(41+1)=21, \\
& c=35-6 \quad=29 .
\end{aligned}
$$

This problem is followed by three more of the same type.

- XXIII. ALGEBRA : DIOPHANTUS

XXIII. ALGEBRA : DIOPHANTUS

(a) General

> Anthol. Palat. xiv. 126, The Greek Anthology, ed. Paton (L.C.L.) v. $92-93$
 $\kappa \alpha i$ та́фоs є̇к тє́ $\chi \nu \eta s$ $\mu \epsilon ́ \tau \rho \alpha$ ßíoıo $\lambda \epsilon ́ \gamma \epsilon \iota$.

 тойठє каi $\dot{\eta}$ криєро̀s $\mu \epsilon ́ \tau \rho о \nu ~ є ́ \lambda \grave{\omega} \nu$ ßıóтоv. $\pi \epsilon ́ \nu$ nos $\delta^{\prime} \alpha \hat{v} \pi \iota \sigma u ́ \rho \epsilon \sigma \sigma \iota ~ \pi а \rho \eta \gamma о \rho \epsilon ́ \omega \nu ~ \epsilon ́ v \iota a \nu \tau o i ̂ s ~$

a There are in the Anthology 46 epigrams which are algebraical problems. Most of them (xiv. 116-146) were collected by Metrodorus, a grammarian who lived about A.D. 500 , but their origin is obviously much earlier and many belong to a type described by Plato and the scholiast to the Charmides (v. vol. i. pp. 16, 20).

Problems in indeterminate analysis solved before the time of Diophantus include the Pythagorean and Platonic methods of finding numbers representing the sides of right-angled triangles (v. vol. i. pp. 90-95), the methods (also Pythagorean) of finding "side- and diameter-numbers" (vol. i. pp. 132-139), Archimedes' Cattle Problem (v. supra, pp. 202205) and Heron's problems (v. supra, pp. 504-509).

XXIII. ALGEBRA : DIOPHANTUS

(a) General

> Palatine Anthology ${ }^{\text {a }}$ xiv. 126, The Greek Anthology, ed. Paton (L.C.L.) v. 92-93

This tomb holds Diophantus. Ah, what a marvel! And the tomb tells scientifically the measure of his life. God vouchsafed that he should be a boy for the sixth part of his life ; when a twelfth was added, his cheeks acquired a beard; He kindled for him the light of marriage after a seventh, and in the fifth year after his marriage He granted him a son. Alas! late-begotten and miserable child, when he had reached the measure of half his father's life, the chill grave took him. After consoling his grief by this science of numbers for four years, he reached the end of his life. ${ }^{b}$

Diophantus's surviving works and ancillary material are admirably edited by Tannery in two volumes of the Teubner series (Leipzig, 1895). There is a French translation by Paul Ver Eecke, Diophante d’Alexandre (Bruges, 1926). The history of Greek algebra as a whole is well treated by G. F. Nesselmann, Die Algebra der Griechen, and by T. L. Heath, Diophantus of Alexandria: A Study in the History of Greek Algebra, 2nd ed. 1910.

- If x was his age at death, then
whence

$$
\frac{1}{6} x+\frac{1}{12} x+\frac{1}{7} x+5+\frac{1}{2} x+4=x
$$

$$
x=84 .
$$

GREEK MATHEMATICS

Theon Alex. in Ptol. Math. Syn. Comm. i. 10, ed. Rome, Studi e Testi, lxxii. (1936), 453. 4-6
 $\dot{\alpha} \mu \epsilon \tau \alpha \theta \epsilon ́ \tau \sigma v$ оv̈бךs каi $\dot{\epsilon} \sigma \tau \omega ́ \sigma \eta S$ тávтотє, то̀

Dioph. De polyg. num. $\underset{470.27-472.4}{[5]}$, Dioph. ed. Tannery i.

 vं $\pi \epsilon \rho \circ \chi \hat{\eta}$ ó $\pi о \sigma o \iota o \hat{\nu}, \mu \circ \nu a ́ \delta o s ~ \mu \epsilon \nu o v ́ \sigma \eta s ~ \tau \eta ̂ s ~ \dot{v} \pi \epsilon \rho-$
 $\tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu o s, \tau \rho \iota \alpha ́ \delta o s ~ \delta \epsilon ́, \pi \epsilon \nu \tau \alpha ́ \gamma \omega \nu o s^{\cdot} \lambda \epsilon ́ \gamma \epsilon \tau \alpha \iota \delta \grave{\epsilon}$
 $\tau \hat{\eta} s \dot{v} \pi \epsilon \rho \circ \chi \hat{\eta} s, \pi \lambda \epsilon v \rho a i$ $\delta \dot{\epsilon}$ av่ $\tau \hat{\omega} \nu$ тò $\pi \lambda \hat{\eta} \theta$ os $\tau \hat{\omega} \nu$

Mich. Psell. Epist., Dioph. ed. Tannery ii. 38. 22-39. 1

 'Avaтó入ıos $\tau \dot{\alpha} \quad \sigma v \nu \epsilon \kappa \tau \iota \kappa \omega ́ \tau \alpha \tau \alpha ~ \mu \epsilon ́ \rho \eta ~ \tau \eta ิ s ~ к а \tau " ~$
${ }^{1}$ т $\tau i ́ \gamma \omega v o s$, ováסos $\delta \epsilon ́$ add. Bachet.

- $C f$. Dioph. ed. Tannery i. 8. 13-15. The word cloos, as will be seen in due course, is regularly used by Diophantus for a term of an equation.

ALGEBRA: DIOPHANTUS

Theon of Alexandria, Commentary on Ptolemy's Syntaxis i. 10, ed. Rome, Studi e Testi, Ixxii. (1936), 453. 4-6

As Diophantus says: "The unit being without dimensions and everywhere the same, a term that is multiplied by it will remain the same term." ${ }^{a}$

> Diophantus, On Polygonal Numbers [5], Dioph. ed. Tannery i. 470. 27-472. 4

There has also been proved what was stated by Hypsicles in a definition, namely, that " if there be as many numbers as we please beginning from 1 and increasing by the same common difference, then, when the common difference is 1 , the sum of all the numbers is a triangular number; when 2 , a square number; when 3, a pentagonal number [; and so on]. The number of angles is called after the number which exceeds the common difference by 2 , and the sides after the number of terms including $1 .{ }^{\prime \prime}$ b

> Michael Psellus, ${ }^{\circ}$ A Letter, Dioph. ed. Tannery ii. 38. 22-39.

Diophantus dealt more accurately with this Egyptian method, but the most learned Anatolius collected the most essential parts of the theory as stated by

- i.e., the nth a-gonal number (1 being the first) is $\frac{1}{2} n\{2+(n-1)(a-2)\} ; v$. vol. i. p. 98 n. a.
c Michael Psellus, " first of philosophers" in a barren age, flourished in the latter part of the eleventh century a.d. There has survived a book purporting to be by Psellus on arithmetic, music, geometry and astronomy, but it is clearly not all his own work. In the geometrical section it is observed that the most favoured method of finding the area of a circle is to take the mean between the inscribed and circumscribed squares, which would give $\pi=\sqrt{\overline{8}}=2.8284271$.

GREEK MATHEMATICS

Dioph. Arith. i., Praef., Dioph. ed. Tannery i. 14. 25-16. 7
$\mathrm{N} \hat{v} \nu \delta^{\prime} \epsilon \dot{\epsilon} \pi i \quad \tau$ às $\pi \rho o \tau \alpha ́ \sigma \epsilon \iota s \quad \chi \omega \rho \eta ́ \sigma \omega \mu \epsilon \nu$ ó óóv,

 $a v ̉ \tau \hat{\omega} \nu \mu \nu \eta \mu о \nu \epsilon v \theta \eta \dot{\eta} \sigma \epsilon \tau \alpha \iota$, $\tau \hat{\eta} s \pi \rho a \gamma \mu a \tau \epsilon i a s$ av่ $\tau \hat{\omega} \nu$ ѐv трıбкаі́ठєка $\beta \iota \beta$ خíoıs $\gamma є \gamma \epsilon \nu \eta \mu \epsilon ́ \nu \eta s$.

Ilid. v. 3, Dioph. ed. Tannery i. 316. 6

a The two passages cited before this one allow us to infer that Diophantus must have lived between Hypsicles and Theon, say 150 b.c. to A.d. 350. Before Tannery edited Michael Psellus's letter, there was no further evidence, but it is reasonable to infer from this letter that Diophantus was a contemporary of Anatolius, bishop of Laodicea about a.d. 280 (v. vol. i. pp. 2-3). For references by Plato and a scholiast to the Egyptian methods of reckoning, v. vol. i. pp. 16, 20.
${ }^{\circ}$ Of these thirteen books in the Arithmetica, only six 516

ALGEBRA: DIOPHANTUS

him in a different way and in the most concise form, and dedicated his work to Diophantus. ${ }^{a}$

Diophantus, Arithmetica i., Preface, Dioph. ed. Tannery i. 14. 25-16. 7

Now let us tread the path to the propositions themselves, which contain a great mass of material compressed into the several species. As they are both numerous and very complex to express, they are only slowly grasped by those into whose hands they are put, and include things hard to remember; for this reason I have tried to divide them up according to their subject-matter, and especially to place, as is fitting, the elementary propositions at the beginning in order that passage may be made from the simpler to the more complex. For thus the way will be made easy for beginners and what they learn will be fixed in their memory; the treatise is divided into thirteen books. ${ }^{b}$

Ibid. v. 3, Dioph. ed. Tannery i. 316. 6
We have it in the Porisms. ${ }^{\text {c }}$
have survived. Tannery suggests that the commentary on it written by Hypatia, daughter of Theon of Alexandria, extended only to these first six books, and that consequently little notice was taken of the remaining seven. There would be a parallel in Eutocius's commentaries on Apollonius's Conics. Nesselmann argues that the lost books came in the middle, but Tannery (Dioph. ii. xix-xxi) gives strong reasons for thinking it is the last and most difficult books which have been lost.

- Whether this collection of propositions in the Theory of Numbers, several times referred to in the Arithmetica, formed a separate treatise from, or was included in, that work is disputed; Hultsch and Heath take the former view, in my opinion judiciously, but Tannery takes the latter.

GREEK MATHEMATICS

(b) Notation

1bid. i., Praef., Dioph. ed. Tannery i. 2. 3-6. 21

 $\tau \epsilon \kappa \alpha i$ бv́vaцс ν.

 $\mu a ́ \theta \eta \sigma \iota \nu ~ \epsilon ̇ \pi \iota \theta \nu \mu i ́ a ~ \pi \rho о \sigma \lambda \alpha \beta о \hat{v} \sigma \alpha \delta_{\iota} \delta \alpha \chi \eta \eta^{\prime} \nu$.
'А入入̀̀ каi $\pi \rho o ̀ s ~ \tau о \imath ̂ \sigma \delta \epsilon ~ \gamma \iota \nu \omega ́ \sigma к о \nu \tau i ́ ~ \sigma о \iota ~ \pi a ́ v \tau \alpha s ~$

 $\kappa \alpha \lambda \epsilon i ̂ \tau \alpha \iota ~ \pi \lambda \epsilon v \rho a ̀ ~ \tau o v ̂ ~ \tau \epsilon \tau \rho a \gamma \omega ́ \nu o v \cdot$

 є́ ${ }^{\prime}$ ' $\in a v \tau o v ̀ s ~ \pi о \lambda \nu \pi \lambda \alpha \sigma \iota a \sigma \theta \epsilon ́ v \tau \tau \omega \nu$,

[^113]
ALGEBRA: DIOPHANTUS

(b) Notation ${ }^{a}$

Ibid. i., Preface, Dioph. ed. Tannery i. 2. 3-6. 21
Knowing that you are anxious, my most esteemed Dionysius, to learn how to solve problems in numbers, I have tried, beginning from the foundations on which the subject is built, to set forth the nature and power in numbers.

Perhaps the subject will appear to you rather difficult, as it is not yet common knowledge, and the minds of beginners are apt to be discouraged by mistakes; but it will be easy for you to grasp, with your enthusiasm and my teaching; for keenness backed by teaching is a swift road to knowledge.

As you know, in addition to these things, that all numbers are made up of some multitude of units, it is clear that their formation has no limit. Among them are-
squares, which are formed when any number is multiplied by itself; the number itself is called the side of the square ${ }^{b}$;
cubes, which are formed when squares are multiplied by their sides,
square-squares, which are formed when squares are multiplied by themselves;
square-cubes, which are formed when squares are

- This subject is admirably treated, with two original contributions, by Heath, Diophantus of Alexandria, 2nd ed., pp. 34-53. Diophantus's method of representing large numbers and fractions has already been discussed (vol. i. pp. 44-45). Among other abbreviations used by Diophantus are $\square^{o s}$, declined throughout its cases, for $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o s$; and ic. (apparently $\boldsymbol{\sigma} \boldsymbol{\sigma}$ in the archetype) for the sign $=$, connecting two sides of an equation.
- Or " square root."

GREEK MATHEMATICS

 $\pi \lambda \alpha \sigma \iota \alpha \sigma \theta \in ́ \nu \tau \omega \nu$,
 $\pi о \lambda \nu \pi \lambda a \sigma \iota \alpha \sigma \theta \epsilon ́ v \tau \omega \nu$,

 $\pi \lambda \epsilon ́ \kappa \epsilon \sigma \theta \alpha \iota \pi \lambda \epsilon і ̂ \sigma \tau \alpha \pi \rho о \beta \lambda \eta \eta_{\eta} \mu \tau \alpha$ ả $\rho \iota \theta \mu \eta \tau \iota \kappa \alpha{ }^{\prime} \cdot \lambda \dot{v} \epsilon \tau \alpha \iota$

 $\dot{\alpha} \rho \iota \theta \mu \eta \tau \iota \kappa \eta ̂ s$ $\theta \epsilon \omega \rho i ́ a s ~ \epsilon i \nu a \iota \cdot ~ к а \lambda \epsilon i ̂ \tau а \iota ~ o u ̂ \nu ~ o ́ ~ \mu \grave{\epsilon} \nu$

 єँ χ оу $\Upsilon, \mathrm{K}^{\mathrm{Y}}$ ки́ßos.

 $\Upsilon, \Delta \mathrm{K}^{\mathrm{Y}}$ биvаро́киßоз.

 є̌Хогта $\mathrm{Y}, \mathrm{K}^{\mathrm{Y}} \mathrm{K}$ киßо́киßоя. 520

ALGEBRA : DIOPHANTUS

multiplied by the cubes formed from the same side ;
cube-cubes, which are formed when cubes are multiplied by themselves;
and it is from the addition, subtraction, or multiplication of these numbers or from the ratio which they bear one to another or to their own sides that most arithmetical problems are formed; you will be able to solve them if you follow the method shown below.

Now each of these numbers, which have been given abbreviated names, is recognized as an element in arithmetical science; the square [of the unknown quantity] ${ }^{a}$ is called dynamis and its sign is Δ with the index \mathcal{Y}, that is $\Delta^{\mathbf{V}}$;
the cube is called cubus and has for its sign K with the index Υ, that is K^{Y};
the square multiplied by itself is called dynamodynamis and its sign is two deltas with the index Υ, that is $\Delta^{\mathrm{Y}} \Delta$;
the square multiplied by the cube formed from the same root is called dynamocubus and its sign is ΔK with the index Υ, that is $\Delta \mathrm{K}^{Y}$;
the cube multiplied by itself is called cubocubus and its sign is two kappas with the index $\Upsilon, K^{\mathbf{Y}} \mathrm{K}$.

[^114]
GREEK MATHEMATICS

 $\tau \hat{\omega} \nu \nu \bar{v} \nu \quad \epsilon ่ \pi o \nu o \mu \alpha \sigma \theta \epsilon ́ \nu \tau \omega \nu \dot{\alpha} \rho \iota \theta \mu \hat{\omega} \nu \quad \tau \dot{\alpha} \quad \dot{\delta} \mu \dot{\mu} \nu \nu \mu a$

тô̂ $\mu \epsilon ̀ \nu ~ a ̉ \rho \iota \theta \mu o \hat{v}$
$\tau \hat{\eta} S ~ \delta \grave{̀} \delta \nu v a ́ \mu \epsilon \omega s$
$\tau \circ \hat{v}$ ठє̀ кúßou
$\tau \hat{s} \delta \epsilon \grave{\epsilon} \delta v \nu a \mu o \delta v \nu a ́ \mu \epsilon \omega s$ тò $\delta v \nu a \mu o \delta v \nu a \mu о \sigma \tau o ́ v$,
то仑̂ δ є̀ $\delta v \nu а \mu о к и ́ \beta o v$
то仑̂ δ є киßоки́ßov

тò à $\rho \iota \theta \mu \sigma \sigma \tau o ́ v$,
тò $\delta v \nu a \mu o \sigma \tau o ́ v$,
то̀ киßобто́v, то̀ ঠvขацокиßобтóv, то̀ киßокиßобто́v.

 єǐoos.

- I am entirely convinced by Heath's argument, based on the Bodleian ms. of Diophantus and general considerations, that this symbol is really the first two letters of dopituós; this suggestion brings the symbol into line with Diophantus's abbreviations for $\delta \dot{v} v a \mu s$, кúßos, and so on. It may be declined throughout its cases, e.g., $s^{\omega \nu}$ for the genitive plural, infra p. 552 , line 5.
Diophantus has only one symbol for an unknown quantity, but his problems often lead to subsidiary equations involving other unknowns. He shows great ingenuity in isolating these subsidiary unknowns. In the translation I shall use 522

ALGEBRA: DIOPHANTUS

The number which has none of these characteristics, but merely has in it an undetermined multitude of units, is called arithmos, and its sign is $5[x] .{ }^{a}$

There is also another sign denoting the invariable element in determinate numbers, the unit, and its sign is M with the index O, that is $\stackrel{\circ}{M}$.

As in the case of numbers the corresponding fractions are called after the numbers, a third being called after 3 and a fourth after 4, so the functions named above will have reciprocals called after them :

arithmos $[x]$	arithmoston $\left[\frac{1}{x}\right]$,
dynamis $\left[x^{2}\right]$	dynamoston $\left[\frac{1}{x^{2}}\right]$,
cubus $\left[x^{3}\right]$	cuboston $\left[\frac{1}{x^{3}}\right]$,
dynamodynamis $\left[x^{4}\right]$	dynamodynamoston $\left[\frac{1}{x^{4}}\right]$,
dynamocubus $\left[x^{5}\right]$	dynamocuboston $\left[\frac{1}{x^{5}}\right]$,
cubocubus $\left[x^{6}\right]$	cubocuboston $\left[\frac{1}{x^{6}}\right]$.

And each of these will have the same sign as the corresponding process, but with the mark X to distinguish its nature. ${ }^{\text {b }}$
different letters for the different unknowns as they occur, for example, x, z, m.

Diophantus does not admit negative or zero values of the unknown, but positive fractional values are admitted.

- So the symbol is printed by Tannery, but there are many variants in the mss.

GREEK MATHEMATICS

Ibid. i., Praef., Dioph. ed. Tannery i. 12., 19-21

(c) Determinate Equations
(i.) Pure Determinate Equations

Ibid. i., Praef., Dioph. ed. Tannery i. 14. 11-20

 $\pi \lambda \eta \theta \hat{\eta} \delta \epsilon \in$, à $\pi \grave{o}$ є́катє́ $\rho \omega \nu \tau \omega \bar{\omega} \mu \epsilon \rho \bar{\omega} \nu \delta \epsilon \eta \sigma \sigma \epsilon \iota \dot{\alpha} \phi \alpha \iota-$

 ϵ โioos ката入є८ $\phi \theta \hat{\eta}$.

[^115]
ALGEBRA: DIOPHANTUS

Ibid. i., Preface, Dioph. ed. Tannery i. 12. 19-21
A minus multiplied by a minus makes a plus, ${ }^{a}$ a minus multiplied by a plus makes a minus, and the sign of a minus is a truncated Ψ turned upside down, that is $\boldsymbol{\pi} .{ }^{b}$
(c) Determinate Equations

(i.) Pure ${ }^{c}$ Determinate Equations

Ibid. i., Preface, Dioph. ed. Tannery i. 14. 11-20
Next, if there result from a problem an equation in which certain terms are equal to terms of the same species, but with different coefficients, it will be necessary to subtract like from like on both sides until one term is found equal to one term. If perchance there be on either side or on both sides any negative terms, it will be necessary to add the negative terms on both sides, until the terms on both sides become positive, and again to subtract like from like until on each side one term only is left. ${ }^{d}$
and cannot agree with Heath (I.G.M. ii. 459) that "the description is evidently interpolated." But Heath seems right in his conjecture, first made in 1885, that the sign $\mathbb{\AA}$ is a compendium for the root of the verb $\lambda \epsilon i \pi \epsilon \nu$, and is, in fact, a Λ with an I placed in the middle. When the sign is resolved in the manuscripts into a word, the dative $\lambda \epsilon i \psi \epsilon \iota$ is generally used, but there is no conclusive proof that Diophantus himself used this non-classical form.
${ }^{\text {c }}$ A pure equation is one containing only one power of the unknown, whatever its degree; a mixed equation contains more than one power of the unknown.
${ }^{d}$ In modern notation, Diophantus manipulates the equation until it is of the form $\mathrm{A} x^{n}=\mathrm{B}$; as he recognizes only one value of x satisfying this equation, it is then considered solved.

GREEK MATHEMATICS

(ii.) Quadratic Equations

Ibid. iv. 39, Dioph. ed. Tannery i. 298. 7-306. 8
 $\mu \epsilon i \zeta$ ovos каi $\tau 0 \hat{v}$ нé́aov $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \dot{v} \pi \epsilon \rho \circ \chi \eta े \nu ~ \tau o \hat{v}$

 $\nu 0 \nu$.

 Xíatov єivaı $\gamma^{\pi \lambda}$.

 $\stackrel{\circ}{\mathcal{\beta}} \wedge \equiv \bar{\alpha}$.

 $s \bar{\zeta} \stackrel{\circ}{\beta}$.

 $\gamma_{i v \in \tau a i ́}^{\prime} \mu \circ \iota \delta \iota \pi \lambda \hat{\eta}$ $\dot{\eta}$ íoó $\tau \eta s^{\text {. }}$
 є́бтьข $\dot{\eta}$ ï $\sigma \omega \sigma \iota s$.
${ }^{1}$ écri add. Bachet.

526

ALGEBRA: DIOPHANTUS

(ii.) Quadratic Equations ${ }^{\text {a }}$

lbid. iv. 39, Dioph. ed. Tannery i. 298. 7-306. 8
To find three numbers such that the difference of the greatest and the middle has to the difference of the middle and the least a given ratio, and further such that the sum of any two is a square.

Let it be laid down that the difference of the greatest and the middle has to the difference of the middle and the least the ratio $3: 1$.

Since the sum of the middle term and the least makes a square, let it be 4. Then the middle term >2. Let it be $x+2$. Then the least term $=2-x$.

And since the difference of the greatest and the middle has to the difference of the middle and the least the ratio $3: 1$, and the difference of the middle and the least is $2 x$, therefore the difference of the greatest and the middle is $6 x$, and therefore the greatest will be $7 x+2$.

There remain two conditions, that the sum of the greatest and the least make a square and the sum of the greatest and the middle make a square. And I am left with the double equation ${ }^{b}$

$$
\begin{aligned}
& 8 x+4=\text { a square } \\
& 6 x+4=\text { a square }
\end{aligned}
$$

And as the units are squares, the equation is convenient to solve.

- The quadratic equation takes up only a small part of this problem, but the whole problem will give an excellent illustration of Diophantus's methods, and especially of his ingenuity in passing from one unknown to another. The geometrical solution of quadratic equations by the application of areas is treated in vol. i. pp. 192-215, and Heron's algebraical formula for solving quadratics, supra, pp. 502-505.
- For double equations, v. infra p. 543 n.b.

GREEK MATHEMATICS

 $\stackrel{\circ}{\mathrm{M}} \bar{\delta}, \square^{\text {os }}$ є́ $\sigma \tau \iota, \gamma \epsilon \gamma o ́ v a \sigma \iota ~ \tau \rho \epsilon i ̂ s ~ \square \square^{0 \iota}, \mathrm{~s} \bar{\eta} \stackrel{\circ}{\mathrm{M}} \bar{\delta}$, каi

 є́ $\lambda a \chi i ́ \sigma \tau o v \gamma^{\circ \nu} \mu \epsilon ́ \rho o s ~ \epsilon ̇ \sigma \tau i \nu . ~ a ̀ \pi \hat{\eta} \kappa \tau \alpha \iota ~ o u ̂ \nu ~ \mu о \iota ~ \epsilon i s ~$
 тô̂ $\mu \epsilon i \grave{\zeta} o v o s ~ к a i ~ \tau o \hat{v} ~ \mu \epsilon ́ \sigma o v ~ \tau \hat{\eta} s ~ v i \pi \epsilon \rho o \chi \hat{\eta} s ~ \tau o \hat{v}$

${ }^{1}{ }_{\tau \rho \epsilon \mathrm{î}}$ add. Bachet.

- If we put
on subtracting,

$$
\begin{aligned}
8 x+4 & =(p+q)^{2} \\
6 x+4 & =(p-q)^{2} \\
2 x & =4 p q .
\end{aligned}
$$

Substituting $2 p=\frac{1}{2} x, 2 q=4$ (ie., $p=\frac{1}{4} x, q=2$) in the first equation we get
or

$$
\begin{aligned}
8 x+4 & =\left(\frac{1}{4} x+2\right)^{2}, \\
112 x & =x^{2}, \\
x & =112 .
\end{aligned}
$$

whence
528

ALGEBRA: DIOPHANTUS

I form two numbers whose product is $2 x$, according to what we know about a double equation ; let them be $\frac{1}{2} x$ and 4 ; and therefore $x=112 .{ }^{a}$ But, returning to the conditions, I cannot subtract x, that is 112, from 2 ; I desire, then, that x be found <2, so that $6 x+4<16$. For $2.6+4=16$.

Then since I seek to make $8 x+4=$ a square, and $6 x+4=$ a square, while $2.2=4$ is a square, there are three squares, $8 x+4,6 x+4$, and 4 , and the difference of the greatest and the middle is one-third ${ }^{b}$ of the difference of the middle and least. My problem therefore resolves itself into finding three squares such that the difference of the greatest and the middle is one-third of the difference of the middle and least, and further such that the least $=4$ and the middle <16.

This method of solving such equations is explicitly given by Diophantus in ii. 11, Dioph. ed. Tannery i. 96. 8-14:

 $i \neq 0 \nu \tau \hat{\omega} \mu \epsilon i \zeta o \nu$ - "i The equations will then be $x+2=$ a square, $x+3=$ a square ; and this species is called a double equation. It is solved in this manner: observe the difference, and seek two [suitable] numbers whose product is equal to the difference; they are 4 and $\frac{1}{4}$. Then, either the square of half the difference of these numbers is equated to the lesser, or the square of half the sum to the greater."
b The ratio of the differences in this subordinate problem has, of course, nothing to do with the ratio of the differences in the main problem; the fact that they are reciprocals may lead the casual reader to suspect an error.

GREEK MATHEMATICS

 $\epsilon i \sigma \iota \stackrel{\circ}{\mathrm{M}} \delta$. каі коьข$\hat{\omega} \nu \dot{\alpha} \phi \alpha \iota \rho \epsilon \theta \epsilon \iota \sigma \hat{\omega} \nu \quad \tau \hat{\omega} \nu \bar{\beta} \stackrel{\circ}{\mathrm{M}}$, ó

 $\mu \epsilon ́ v o v ~ к а і ~ \pi \rho о \sigma \lambda а \beta o ́ v т о s ~ \tau o ̀ v ~ i \beta, ~ \tau о ข \tau \epsilon ́ \sigma \tau \iota ~ \tau \hat{\eta} S$

 тıva ả $\rho \iota \theta \mu o ́ v$, ôs $\varsigma^{\kappa \kappa s} \gamma \in \nu o ́ \mu \epsilon \nu о s$ каi $\pi \rho о \sigma \lambda \alpha \beta \dot{\omega \nu}$ Мํ $\bar{\beta}$ каi $\mu \epsilon \rho \iota \zeta o ́ \mu \epsilon v o s ~ \epsilon i s ~ \tau \grave{\eta} \nu ~ \dot{v} \pi \epsilon \rho о \chi \eta े \nu ~ र ी ~ \dot{v} \pi \epsilon \rho \epsilon ́ \chi \epsilon \iota$
 ̇̇ λ á σ бovos $\stackrel{\circ}{\mathrm{M}} \bar{\beta}$.

ALGEBRA: DIOPHANTUS

Let the least be taken as 4 , and the side of the middle as $z+2$; then the square is $z^{2}+4 z+4$.

Then since the difference of the greatest and the middle is one-third of the difference of the middle and the least, and the difference of the middle and the least is $z^{2}+4 z$, so that the difference of the greatest and the least is $\frac{1}{3} z^{2}+1 \frac{1}{3} z$, while the middle term is $z^{2}+4 z+4$, therefore the greatest term $=1 \frac{1}{3} z^{2}+5 \frac{1}{3} z+4=$ a square. Multiply throughout by 9 :

$$
12 z^{2}+48 z+36=\text { a square } ;
$$

and take the fourth part :

$$
3 z^{2}+12 z+9=\text { a square }
$$

Further, I desire that the middle square <16, whence clearly its side <4. But the side of the middle square is $z+2$, and so $z+2<4$. Take away 2 from each side, and $z<2$.

My equation is now

$$
3 z^{2}+12 z+9=\text { a square }
$$

$$
\begin{aligned}
& =(m z-3)^{2}, \text { say }{ }^{a} \\
& z=\frac{6 m+12}{m^{2}-3},
\end{aligned}
$$

Then
and the equation to which my problem is now resolved is

$$
\frac{6 m+12}{m^{2}-3}<2
$$

ו.e.,

$$
<\frac{2}{1}
$$

[^116]
GREEK MATHEMATICS

 $\mu \epsilon \nu 0 s \in i s$
 $\eta_{\eta} \pi \epsilon \rho \bar{\beta} \pi \rho o ̀ s \bar{\alpha}$.

 $\Delta^{\mathrm{y}} \bar{\beta} \wedge \stackrel{\circ}{\mathrm{M}} \overline{5}$. каі кочขаі тробкєіб $\theta \omega \sigma \alpha \nu$ ai $\stackrel{\circ}{\mathrm{M}} \overline{\mathrm{s}}$.

 ${ }^{1}$ rivetac . . . vas Δ^{Y} add. Tannery.
${ }^{a}$ This is not strictly true. But since $\sqrt{45}$ lies between 6 and 7 , no smaller integral value than 7 will satisfy the conditions of the problem.

ALGEBRA: DIOPHANTUS

The inequality will be preserved when the term are cross-multiplied,
i.e.,
$(6 m+12) .1<2 \cdot\left(m^{2}-3\right) ;$
i.e., $6 m+12<2 m^{2}-6$.

By adding 6 to both sides,

$$
6 m+18<2 m^{2} .
$$

When we solve such an equation, we multiply half the coefficient of x [or m] into itself-getting 9 ; then multiply the coefficient of x^{2} into the units $-2.18=36$; add this last number to the $9-$ getting 45 ; take the square root-which is 47^{a}; add half the coefficient of x-making a number $\Varangle 10$; and divide the result by the coefficient of x^{2}-getting a number $\$ 5 .{ }^{b}$

My equation is therefore

$$
3 z^{2}+12 z+9=\text { a square on side }(3-5 z),
$$

and

$$
z=\frac{42}{22}=\frac{21}{11} .
$$

I have made the side of the middle square to be

- This shows that Diophantus had a perfectly general formula for solving the equation
namely

$$
\begin{aligned}
& a x^{2}=b x+c, \\
& x=\frac{1}{2} b+\sqrt{\frac{1}{4} b^{2}+a c} \\
& a
\end{aligned}
$$

From vi. 6 it becomes clear that he had a similar general formula for solving

$$
a x^{2}+b x=c,
$$

and from v. 10 and vi. 22 it may be inferred that he had a general solution for

$$
x x^{2}+c=b x
$$

GREEK MATHFMATICS
 $\stackrel{\circ}{\mathrm{M}} \underset{\text { акк }}{\text { ран }}$,$a \omega \mu \theta^{*}$

 סváסos.

 $\lambda \alpha ́ \beta \omega \mu \epsilon \nu \overline{\rho \kappa \alpha}, o ̋ ~ \epsilon ่ \sigma \tau \iota ~ \square^{\circ \varsigma}, \pi \alpha ́ \nu \tau \omega \nu$ oṽv тò ς°,
 $\beta^{o s} \overline{v \xi \theta L^{\prime}}$, ó $\delta \dot{\epsilon} \gamma^{o s} \overline{\iota \delta L^{\prime}}$.

 534

ALGEBRA: DIOPHANTUS

$z+2$; therefore the side will be $\frac{43}{11}$ and the square itself $\frac{1849}{121}$.

I return now to the original problem and make $\frac{1849}{121}$, which is a square, $=6 x+4$. Multiplying by 121 throughout, I get $x=\frac{1365}{726}$, which is <2.

In the conditions of the original problem we made the middle term $=x+2$, the least $=2-x$, and the greatest $7 x+2$.
Therefore

$$
\begin{aligned}
& \text { the greatest }=\frac{11007}{726}, \\
& \text { the middle }=\frac{2817}{726}, \\
& \text { the least }=\frac{87}{726} .
\end{aligned}
$$

Since the denominator, 726, is not a square, but its sixth part is, if we take 121, which is a square, and divide throughout by 6 , then similarly the numbers are

$$
\frac{1834 \frac{1}{2}}{121}, \frac{469 \frac{1}{2}}{121}, \frac{14 \frac{1}{2}}{121} .
$$

And if you prefer to use integers only, avoiding the $\frac{1}{2}$, multiply throughout by 4. Then the numbers will be

$$
\frac{7338}{484}, \quad \frac{1878}{484}, \quad \frac{58}{484} .
$$

And the proof is obvious.

GREEK MATHEMATICS

(iii.) Simultaneous Equations Leading to a Quadratic

Ibid. i. 28, Dioph. ed. Tannery i. 62. 20-64. 10

 $\stackrel{\circ}{\mathrm{M}} \bar{\kappa}, \tau \eta ̀ \nu \delta \dot{\epsilon} \sigma v{ }^{\prime} \nu \theta \epsilon \sigma \iota \nu \tau \hat{\omega} \nu \alpha{ }^{\prime} \pi^{\prime} \alpha v ̉ \tau \hat{\omega} \nu \tau \epsilon \tau \rho \alpha \gamma \omega \prime \nu \omega \nu$ $\pi о \iota \epsilon \hat{\nu} \mathrm{M} \overline{\sigma \eta}$.
 ó $\mu \epsilon i \zeta \omega \nu \lesssim \bar{\alpha}$ каi $\mathrm{M}_{\bar{i}}, \tau \hat{\omega} \nu \dot{\eta} \mu i ́ \sigma \epsilon \omega \nu \quad \pi \alpha ́ \lambda \iota \nu \tau о \hat{v}$

 $s \bar{\beta}$.
 $\tau \epsilon \tau \rho \alpha \gamma \omega \dot{\nu} \omega \nu \nu \pi \sigma \epsilon \hat{\nu} \nu \stackrel{\circ}{\mathrm{M}} \overline{\sigma \eta}$. $\dot{\alpha} \lambda \lambda \dot{\alpha}$ тò $\sigma u ́ v \theta \epsilon \mu \alpha \tau \hat{\omega} \nu$

[^117]
ALGEBRA: DIOPHANTUS

(iii.) Simultaneous Equations Leading to a Quadratic

Ibid. i. 28, Dioph. ed. Tannery i. 62. 20-64. 10
To find two numbers such that their sum and the sum of their squares are given numbers. ${ }^{a}$

It is a necessary condition that double the sum of their squares exceed the square of their sum by a square. This is of the nature of a formula. ${ }^{b}$

Let it be required to make their sum 20 and the sum of their squares 208.

Let their difference be $2 x$, and let the greater $=x+10$ (again adding half the sum) and the lesser $=10-x$.

Then again their sum is 20 and their difference $2 x$.
It remains to make the sum of their squares 208. But the sum of their squares is $2 x^{2}+200$.
Therefore

$$
\begin{aligned}
2 x^{2}+200 & =208, \\
x & =2 .
\end{aligned}
$$

To return to the hypotheses-the greater $=12$ and the lesser $=8$. And these satisfy the conditions of the problem.
and
i.e.,

$$
\begin{aligned}
(a+x)^{2}+(a-x)^{2} & =\mathrm{A}, \\
2\left(a^{2}+x^{2}\right) & =\mathrm{A} .
\end{aligned}
$$

A procedure equivalent to the solution of the pair of simultaneous equations $\xi+\eta=2 a, \xi \eta=\mathrm{A}$, is given in i. 27, and a procedure equivalent to the solution of $\xi-\eta=2 a, \xi \eta=\mathrm{A}$, in i. 30.
${ }^{6}$ In other words, $2\left(\xi^{2}+\eta^{2}\right)-(\xi+\eta)^{2}=$ a square; it is, in fact, $(\xi-\eta)^{2}$. I have followed Heath in translating $\tilde{\epsilon} \sigma \tau \iota \delta \dot{\epsilon}$
 Tannery evades the difficulty by translating "est et hoc formativum," but Bachet came nearer the mark with his " effictum aliunde." The meaning of $\pi \lambda a \sigma \mu a \tau \iota \kappa$ óv should be " easy to form a mould," i.e. the formula is easy to discover.

GREEK MATHEMATICS

(iv.) Cubic Equation

Ibid. vi. 17, Dioph. ed. Tannery i. 432. 19-434. 22

 кíßos.

 $\dot{\eta}$ є́ $\tau \epsilon \in \rho a \equiv \bar{\alpha}$.

$\mathrm{T} \epsilon \tau \alpha ́ \chi \theta \omega$ oưv $\dot{\eta} \mu \epsilon \grave{\nu} \tau o \hat{v} \square^{o v} \pi^{\lambda} \cdot \equiv \bar{\alpha} \stackrel{\circ}{\mathrm{M}} \bar{\alpha}, \dot{\eta} \delta \dot{\epsilon}$
 $\Delta^{\mathrm{Y}} \bar{\alpha} \equiv \bar{\beta} \stackrel{\circ}{\mathrm{M}} \bar{\alpha}, \quad$ of $\quad \delta \dot{\epsilon} \quad \kappa v ́ \beta o s, \quad K^{\mathrm{Y}} \bar{\alpha} \equiv \bar{\gamma} 爪 \Delta^{\mathrm{Y}} \bar{\gamma} \stackrel{\circ}{M} \bar{\alpha}$.

 $\stackrel{\circ}{\mathrm{K}}$.
 538

ALGEBRA : DIOPHANTUS

(iv.) Cubic Equation ${ }^{\text {a }}$

Ibid. vi. 17, Dioph. ed. Tannery i. 432. 19-434. 22
To find a right-angled triangle such that its area, added to one of the perpendiculars, makes a square, while its perimeter is a cube.

Let its area $=x$, and let its hypotenuse be some square number minus x, say $16-x$.

But since we supposed the area $=x$, therefore the product of the sides about the right angle $=2 x$. But $2 x$ can be factorized into x and 2 ; if, then, we make one of the sides about the right angle $=2$, the other $=x$.

The perimeter then becomes 18, which is not a cube ; but 18 is made up of a square [16]+2. It shall be required, therefore, to find a square number which, when 2 is added, shall make a cube, so that the cube shall exceed the square by 2.

Let the side of the square $=m+1$ and that of the cube $m-1$. Then the square $=m^{2}+2 m+1$ and the cube $=m^{3}+3 m-3 m^{2}-1$. Now I want the cube to exceed the square by 2. Therefore, by adding 2 to the square,

$$
m^{2}+2 m+3=m^{3}+3 m-3 m^{2}-1
$$

whence

$$
m=4 .
$$

Therefore the side of the square $=5$ and that of

- This is the only example of a cubic equation solved by Diophantus. For Archimedes' geometrical solution of a cubic equation, v. supra, pp. 126-163.

GREEK MATHEMATICS

 $\stackrel{\circ}{\kappa \zeta} \bar{\zeta}$.

 $\kappa \alpha ́ \theta \epsilon \tau о s ~ इ \bar{\alpha}$.

 s M $\chi к а$.
'Е πi ì̀̀s $\dot{v} \pi о \sigma \tau \alpha ́ \sigma \epsilon \iota s$ каí $\mu \epsilon ́ \nu \epsilon \iota$.

(d) Indeterminate Equations

(i.) Indeterminate Equations of the Second Degree
(a) Single Equations

Ibid. ii. 20, Dioph. ed. Tannery i. 114. 11-22

 $\tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu o \nu$.

- Diophantus makes no mention of indeterminate aquations of the first degree, presumably because he admits 540

ALGEBRA: DIOPHANTUS

the cube $=3$; and hence the square is 25 and the cube 27 .

I now transform the right-angled [triangle], and, assuming its area to be x, I make the hypotenuse $=$ $25-x$; the base remains $=2$ and the perpendicular $=x$.

The condition is still left that the square on the hypotenuse is equal to the sum of the squares on the sides about the right angle ;

$$
\begin{array}{rlrl}
\text { i.e., } & x^{2}+625-50 x & =x^{2}+4, \\
& \text { whence } & x & =\frac{621}{50} .
\end{array}
$$

This satisfies the conditions.

(d) Indeterminate Equations a

(i.) Indeterminate Equations of the Second Degree

(a) Single Equations

Ibid. ii. 20, Dioph. ed. Tannery i. 114. 11-22
To find two numbers such that the square of either, added to the other, shall make a square.

Let the first be x, and the second $2 x+1$, in order that the square on the first, added to the second, may make a square. There remains to be satisfied the condition that the square on the second, added to the first, shall make a square. But the square on the second, added to the first, is $4 x^{2}+5 x+1$; and therefore this must be a square.
rational fractional solutions, and the whole point of solving an indeterminate equation of the first degree is to get a solution in integers.

GREEK MATHEMATICS

 $\pi \rho o ́ \beta \lambda \eta \mu a$.

(β) Double Equations

Ibid. iv. 32, Dioph. ed. Tannery 268. 18-272. 15

 $\lambda \alpha ́ \beta \eta \tau o ̀ \nu \tau \rho i ́ \tau o \nu, ~ \in ’ a ́ \nu ~ \tau \epsilon ~ \lambda \epsilon i ́ \psi \eta, \pi o \iota \hat{\eta} \tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu$.
"Ебт ω of $\delta o \theta \epsilon i s$ ó $\overline{5}$.

a The problem, in its most general terms, is to solve the equation

$$
\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}=y^{2}
$$

Diophantus does not give a general solution, but takes a number of special cases. In this case A is a square number ($=a^{2}$, say), and in the equation

$$
a^{2} x^{2}+\mathrm{B} x+\mathrm{C}=y^{2}
$$

he apparently puts

$$
y^{2}=(a x-m)^{2}
$$

where m is some integer,
whence

$$
\infty=\frac{m^{2}-\mathrm{C}}{2 a m+\mathrm{B}} .
$$

ALGEBRA: DIOPHANTUS

I form the square from $2 x-2$; it will be $4 x^{2}+4-8 x$; and $x=\frac{3}{13}$.
The first number will be $\frac{3}{13}$, the second $\frac{19}{13}$, and they satisfy the conditions of the problem. ${ }^{\text {a }}$

(β) Double Equations ${ }^{\text {© }}$

Ibid. iv. 32, Dioph. ed. Tannery 268. 18-272. 15
To divide a given number into three parts such that the product of the first and second \pm the third shall make a square.

Let the given number be 6 .
Let the third part be x, and the second part any number <6, say 2 ; then the first part $=4-x$; and the two remaining conditions are that the product of the first and second \pm the third $=$ a square. There results the double equation

$$
\begin{aligned}
& 8-x=\text { a square, } \\
& 8-3 x=\text { a square. }
\end{aligned}
$$

And this does not give a rational result since the ratio

- Diophantus's term for a double equation is $\delta \iota \pi \lambda$ oicót ηs, $\delta_{i \pi \lambda \lambda}$ ióóns or $\delta i \pi \lambda \hat{\eta}$ ẗowats. It always means with him that two different functions of the unknown have to be made simultaneously equal to two squares. The general equations are therefore

$$
\begin{aligned}
& \mathrm{A}_{1} x^{2}+\mathrm{B}_{1} x+\mathrm{C}_{1}=u_{1}{ }^{2}, \\
& \mathrm{~A}_{2} x^{2}+\mathrm{B}_{2} x+\mathrm{C}_{2}=u_{2}{ }^{2} .
\end{aligned}
$$

Diophantus solves several examples in which the terms in x^{2} are missing, and also several forms of the general equation.

GREEK MATHEMATICS

 ôv $\square^{\text {os }}$ á $\left.\rho \iota \theta \mu o ̀ s \pi \rho o ̀ s\right\rangle^{1} \square^{o \nu}$ á $\rho \iota \theta \mu o ́ \nu$.

入ó

 544

ALGEBRA: DIOPHANTUS

of the coefficients of x is not the ratio of a square to a square.

But the coefficient 1 of x is $2-1$ and the coefficient 3 of x likewise is $2+1$; therefore my problem resolves itself into finding a number to take the place of 2 such that (the number +1) bears to (the number -1) the same ratio as a square to a square.

Let the number sought be y; then (the number +1$)=y+1$, and (the number-1) $=y-1$. We require these to have the ratio of a square to a square, say 4: 1. Now $(y-1) \cdot 4=4 y-4$ and $(y+1) .1=y+1$. And these are the numbers having the ratio of a square to a square. Now I put
giving

$$
\begin{aligned}
4 y-4 & =y+1, \\
y & =\frac{5}{3} .
\end{aligned}
$$

Therefore I make the second part $\frac{5}{3}$, for the third $=x$; and therefore the first $=\frac{13}{3}-x$.

There remains the condition, that the product of the first and second \pm the third $=$ a square. But the product of the first and second + the third $=$

$$
\frac{65}{9}-\frac{2}{3} x=\text { a square }
$$

and the product of the first and second - the third $=$

$$
\frac{65}{9}-2 \frac{2}{3} x=\text { a square }
$$

1 aủrô̂ . . . $\pi \rho o ̀ s$ add. Bachet.
${ }^{2}$ रivovtaı $s \bar{a} \stackrel{\circ}{\mathrm{M}} \overline{\mathrm{a}}$ add. Tannery.

GREEK MATHEMATICS

 $\gamma^{\prime} \nu \in \tau a \iota$ os $s \gamma^{\omega \nu} \bar{\eta}$.

- These are a pair of equations of the form

$$
\begin{aligned}
a m^{2} x+a & =u^{2}, \\
a n^{2} x+b & =v^{2} .
\end{aligned}
$$

Multiply by n^{2}, m^{2} respectively, getting, say

$$
\begin{aligned}
a m^{2} n^{2} x+a n^{2} & =u^{\prime 2}, \\
a m^{2} n^{2} x+b m^{2} & =v^{\prime 3}, \\
a n^{2}-b m^{2} & =u^{\prime 2}-v^{\prime 2} \\
a n^{2}-b m^{2} & =p q, \\
u^{\prime}+v^{\prime} & =p, \\
u^{\prime}-v^{\prime} & =q ;
\end{aligned}
$$

Let
and put
\therefore

$$
\begin{array}{r}
u^{\prime 2}=\frac{1}{4}(p+q)^{2}, v^{2}=\frac{1}{4}(p-q)^{2} \\
a m^{2} n^{2} x+a n^{2}=\frac{1}{4}(p+q)^{2} \\
a m^{2} n^{2} x+b m^{2}=\frac{1}{4}(p-q)^{2}
\end{array}
$$

whence, from either,

$$
x=\frac{\left.\frac{1}{(} p^{2}+q^{2}\right)-\frac{1}{2}\left(a n^{2}+b m^{2}\right)}{a m^{2} n^{2}} .
$$

ALGEBRA: DIOPHANTUS

Multiply throughout by 9 , getting

$$
65-6 x=\text { a square }
$$

and

$$
65-24 x=\text { a square }{ }^{a}
$$

Equating the coefficients of x by multiplying the first equation by 4, I get

$$
260-24 x=\text { a square }
$$

and

$$
65-24 x=\text { a square }
$$

Now I take their difference, which is 195, and split it into the two factors 15 and 13. Squaring the half of their difference, and equating the result to the lesser square, I get $x=\frac{8}{3}$.

Returning to the conditions-the first part will be $\frac{5}{3}$, the second $\frac{5}{3}$, and the third $\frac{8}{3}$. And the proof is obvious.

This is the procedure indicated by Diophantus. In his example,

$$
\begin{aligned}
p=15, q & =13, \\
\left\{\frac{1}{2}(15-13\}^{2}\right. & =65-24 x, \\
24 x & =64, \text { and } x=\frac{8}{3} .
\end{aligned}
$$

and
whence

GREEK MATHEMATICS

(ii.) Indeterminate Equations of Higher Degree

Ibid. iv. 18, Dioph. ed. Tannery i. 226. 2-228. 5
 $\kappa u ́ \beta o s ~ \pi \rho о \sigma \lambda \alpha \beta \dot{\omega} \nu$ тòv $\delta \epsilon u ́ \tau \epsilon \rho \circ \nu \pi о \iota \hat{\eta}$ кúßov, ó $\delta \grave{~}$ à $\pi \grave{o}$ тov̂ $\delta \epsilon \nu \tau \epsilon ́ \rho o v ~ \tau \epsilon \tau \rho a ́ \gamma \omega \nu o s ~ \pi \rho о \sigma \lambda a \beta \grave{\omega} \nu ~ \tau o ̀ \nu ~$ $\pi \rho \hat{\omega} \tau о \nu \pi \alpha \circ \stackrel{\imath}{\eta} \tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu$.

 $\lambda а \beta \grave{\omega} \nu$ то̀v $\beta^{\circ \nu}$, ки́ßos.
 $\pi \rho о \sigma \lambda \alpha \beta o ́ v \tau \alpha \quad$ тòv $a^{\circ \nu}$, $\pi \circ \iota \epsilon \hat{\imath} \nu \quad \square^{\circ \nu}$. ${ }^{\circ} \lambda \lambda^{\prime}$ ó

 $\tau \hat{\omega} \nu$ סis $\mathrm{K}^{\mathrm{Y}} \overline{i 5}$. oi $\delta \dot{\epsilon} \mathrm{K}^{\mathrm{x}} \overline{\iota 5} \epsilon i \sigma \iota \nu$ vinò $\tau \hat{\omega} \nu$ סis $\mathrm{M}^{\mathrm{M}} \bar{\eta}$

$$
{ }^{2} \text { тaû̃a . . . } \stackrel{\circ}{\mathrm{M}} \bar{\xi} \bar{\delta} \text { add. Bachet. }
$$

a As with equations of the second degree, these may be single or double. Single equations always take the form that an expression in x, of a degree not exceeding the sixth, is to be made equal to a square or cube. The general form is therefore

$$
\mathrm{A}_{0} x^{6}+\mathrm{A}_{1} x^{5}+\ldots+\mathrm{A}_{6}=y^{2} \text { or } y^{3} .
$$

Diophantus solves a number of special cases of different degrees.

In double equations, one expression is made equal to a 548

ALGEBRA: DIOPHANTUS

(ii.) Indeterminate Equations of Higher Degree ${ }^{\text {a }}$

lbid. iv. 18, Dioph. ed. Tannery i. 226. 2-228. 5
To find two numbers such that the cube of the first added to the second shall make a cube, and the square of the second added to the first shall make a square.

Let the first number be x. Then the second will be a cube number less x^{3}, say $8-x^{3}$. And the cube of the first, added to the second, makes a cube.

There remains the condition that the square on the second, added to the first, shall make a square. But the square on the second, added to the first, is $x^{6}+x+64-16 x^{3}$. Let this be equal to $\left(x^{3}+8\right)^{2}$, that is to $x^{6}+16 x^{3}+64 . .^{b}$ Then, by adding or subtracting like terms,

$$
32 x^{3}=x ;
$$

and, after dividing by x,

$$
32 x^{2}=1 .
$$

Now 1 is a square, and if $32 x^{2}$ were a square, my equation would be soluble. But $32 x^{2}$ is formed from 2. $16 x^{3}$, and $16 x^{3}$ is (2.8)(x^{3}), that is, it is formed
cube and the other to a square, but only a few simple cases are solved by Diophantus.

- The general type of the equation is

$$
x^{6}-\mathrm{A} x^{3}+\mathrm{B} x+c^{2}=y^{2} .
$$

Put $y=x^{3}+c$, then

$$
x^{2}=\frac{\mathrm{B}}{\mathrm{~A}+2 c},
$$

and if the right-hand expression is a square, there is a rational solution.

In the case of the equation $x^{6}-16 x^{3}+x+64=y^{2}$ it is not a square, and Diophantus replaces the equation by another, $x^{6}-128 x^{3}+x+4096=y^{2}$, in which it is a square.

GREEK MATHEMATICS

 $\delta^{\kappa \iota s} \gamma \epsilon \nu O ́ \mu \epsilon \nu O s \pi o \iota \in \hat{\imath} \square^{o \nu}$.

 тòv α ảтò $\tau 0 \hat{v} \beta^{o v} \square^{o \nu} \pi \rho о \sigma \lambda \alpha \beta o ́ v \tau \alpha ~ \tau \grave{\nu} \nu \alpha^{o \nu} \pi 0 \iota \epsilon \hat{\imath} \nu$

 ó S évòs $\mathfrak{w}^{\circ \mathrm{ov}}$.

(e) Theory of Numbers : Sums of Squares Ibid. ii. 8, Dioph. ed. Tannery i. 90. 9-21
Tòv є̇ $\pi \iota \tau \alpha \chi \theta \epsilon ́ \nu \tau a \quad \tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu \quad \delta_{\iota \epsilon \lambda \epsilon i ̂ \nu} \epsilon i s$ סv́o $\tau \epsilon \tau \rho a \gamma \omega ́ v o u s$.

[^118]
ALGEBRA: DIOPHANTUS

from 2.8. Therefore $32 x^{2}$ is formed from 4.8. My problem therefore becomes to find a cube which, when multiplied by 4, makes a square.

Let the number sought be y^{3}. Then $4 y^{3}=$ a square $=16 y^{2}$ say ; whence $y=4$. Returning to the con-ditions-the cube will be 64 .

I therefore take the second number as $64-x^{3}$. There remains the condition that the square on the second added to the first shall make a square. But the square on the second added to the first $=$

$$
\begin{aligned}
x^{6}+4096+x-128 x^{3} & =\text { a square } \\
& =\left(x^{3}+64\right)^{2}, \text { say }, \\
& =x^{6}+4096+128 x^{3}
\end{aligned}
$$

On taking away the common terms,
and

$$
\begin{aligned}
256 x^{3} & =x, \\
x & =\frac{1}{16} .
\end{aligned}
$$

Returning to the conditions-
first number $=\frac{1}{16}$, second number $=\frac{262148}{4096}$.
(e) Theory of Numbers: Sums of Squares

Ibid. ii. 8, Dioph. ed. Tannery i. 90. 9-21
To divide a given square number into two squares. ${ }^{a}$
to contain." Fermat claimed, in other words, to have proved that $x^{m}+y^{m}=z^{m}$ cannot be solved in rational numbers if $m>2$. Despite the efforts of many great mathematicians, a proof of this general theorem is still lacking.

Fermat's notes, which established the modern Theory of Numbers, were published in 1670 in Bachet's second edition of the works of Diophantus.

GREEK MATHEMATICS

 vows.

$\Pi \lambda \alpha ́ \sigma \sigma \omega ~ \tau \grave{\nu} \nu \square^{\circ \nu} \dot{\alpha} \pi \grave{o} \mathbf{s}^{\omega \nu}$ on $\sigma \omega \nu \quad \delta \eta \dot{\eta} \pi о \tau \epsilon \mathbb{\wedge}$

 $\tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu o s$.

Ibid. v. 11, Dioph. ed. Tannery 1. 342. 13-346. 12

 $\square^{\circ \nu}$.

[^119]
ALGEBRA: DIOPHANTUS

Let it be required to divide 16 into two squares.
And let the first square $=x^{2}$; then the other will be $16-x^{2}$; it shall be required therefore to make

$$
16-x^{2}=\text { a square } .
$$

I take a square of the form ${ }^{a}(m x-4)^{2}, m$ being any integer and 4 the root of 16 ; for example, let the side be $2 x-4$, and the square itself $4 x^{2}+16-16 x$. Then

$$
4 x^{2}+16-16 x=16-x^{2}
$$

Add to both sides the negative terms and take like from like. Then
and

$$
\begin{aligned}
5 x^{2} & =16 x, \\
x & =\frac{16}{5} .
\end{aligned}
$$

One number will therefore be $\frac{256}{25}$, the other $\frac{144}{25}$, and their sum is $\frac{400}{25}$ or 16 , and each is a square.

Ibid. v. 11, Dioph. ed. Tannery i. 342. 13-346. 18
To divide unity into three parts such that, if we add the same number to each of the parts, the results shall all be squares.

It is necessary that the given number be neither 2 nor any multiple of 8 increased by $2 .{ }^{b}$

Let it be required to divide unity into three parts such that, when 3 is added to each, the results shall all be squares.
numbers not of this form which also are not the sum of three squares. Fermat showed that, if $3 a+1$ is the sum of three squares, then it cannot be of the form $4^{n}(24 k+7)$ or $4^{n}(8 k+7)$, where $k=0$ or any integer.

GREEK MATHEMATICS

 $\tau \hat{\varphi} \lambda_{\pi \rho \rho \sigma \theta \epsilon i ̂ v a i ́ ~}^{\tau \iota} \mu o ́ \rho \iota o \nu ~ \tau \epsilon \tau \rho \alpha \gamma \omega \nu \iota \kappa o ̀ v$ каì тоьєîv

Ei oûv $\tau \alpha \hat{i} s \stackrel{\circ}{M} \bar{\lambda} \pi \rho o \sigma \tau i \theta \epsilon \tau \alpha \iota \stackrel{\circ}{M} \delta^{x}, \tau \alpha i ̂ s ~ ํ M ~ \bar{\gamma} \gamma^{x}$

- The method has been explained in $\nabla .19$, where it is proposed to divide 13 into two squares each >6. It will be sufficiently obvious from this example. The method is also used in $\mathbf{v} .10,12,13,14$. 554

ALGEBRA: DIOPHANTUS

Then it is required to divide 10 into three squares such that each of them>3. If then we divide 10 into three squares, according to the method of approximation, ${ }^{a}$ each of them will be >3 and, by taking 3 from each, we shall be able to obtain the parts into which unity is to be divided.

We take, therefore, the third part of 10 , which is $3 \frac{1}{3}$, and try by adding some square part to $3 \frac{3}{3}$ to make a square. On multiplying throughout by 9 , it is required to add to 30 some square part which will make the whole a square.
Let the added part be $\frac{1}{x^{2}}$; multiply throughout by x^{2}; then

$$
30 x^{2}+1=\text { a square }
$$

Let the root be $5 x+1$; then, squaring,

$$
25 x^{2}+10 x+1=30 x^{2}+1 ;
$$

whence

$$
x=2, x^{2}=4, \frac{1}{x^{2}}=\frac{1}{4} .
$$

If, then, to 30 there be added $\frac{1}{4}$, to $3 \frac{1}{3}$ there is added $\frac{1}{36}$, and the result is $\frac{121}{36}$. It is therefore required to divide 10 into three squares such that the side of each shall approximate to $\frac{11}{6}$.

But 10 is composed of two squares, 9 and 1 . We divide 1 into two squares, $\frac{9}{25}$ and $\frac{16}{25}$, so that 10 is composed of three squares, $9, \frac{9}{25}$ and $\frac{16}{25}$. It is there-

GREEK MATHEMATICS

' $\mathrm{A} \lambda \lambda \dot{\alpha} \kappa \alpha i$ ai π^{λ}. aù $\tau \hat{\omega} \nu \epsilon i \sigma \iota \nu{ }^{\circ} \mathrm{M} \bar{\gamma} \kappa \alpha i \mathrm{M}_{\delta}^{\epsilon} \kappa \alpha i$

 $\pi^{\lambda} \cdot \kappa а \tau \alpha \sigma \kappa \epsilon v \alpha ́ \sigma \alpha \iota ~ \overline{\nu \epsilon}$.

 $\rho 15^{.}$
 $\tau \hat{\omega} \nu \tau \epsilon \tau \rho \alpha \gamma \dot{\omega} \nu \omega \nu$ סoөєîoal, $\dot{\omega} \sigma \tau \epsilon$ кai aủ $\tau \circ i ́ . \quad \tau \grave{\alpha}$ $\lambda о \iota \pi \alpha \dot{\alpha} \delta \hat{\eta} \lambda \alpha$.

Ibid. iv. 29, Dioph. ed. Tannery i. 258. 19-260. 16
Evipєîv тє́ $\sigma \sigma a \rho a s$ ảpı $\theta \mu$ ov̀s 〈 $\tau \epsilon \tau \rho a \gamma \omega ́ v o v s\rangle$, oî
 $\sigma v \nu \tau \epsilon \theta \epsilon i \sigma \alpha s$ тoьov̂бı $\delta_{0} \theta \epsilon \epsilon \nu \tau \alpha$ ảpı $\theta \mu o ́ v$.

- The sides are, in fact, $\frac{1321}{711}, \frac{1288}{711}, \frac{1285}{711}$, and the squares are $\frac{1745041}{505521}, \frac{1658944}{505521}, \frac{1651225}{505521}$.

ALGEBRA: DIOPHANTUS

fore required to make each of the sides approximate to $\frac{11}{6}$.

But their sides are $3, \frac{4}{5}$ and $\frac{3}{5}$. Multiply throughout by 30 , getting 90,24 and 18 ; and $\frac{11}{6}$ [when multiplied by 30] becomes 55 . It is therefore required to make each side approximate to 55 .
[Now $3>\frac{55}{30}$ by $\frac{35}{30}, \frac{4}{5}<\frac{55}{30}$ by $\frac{31}{30}$, and $\frac{3}{5}<\frac{55}{30}$ by $\frac{37}{30}$. If, then, we took the sides of the squares as $3-\frac{35}{30}$, $\frac{4}{5}+\frac{31}{30}, \frac{3}{5}+\frac{37}{30}$, the sum of the squares would be $3 \cdot\left(\frac{11}{6}\right)^{2}$ or $\frac{363}{36}$, which >10.

Therefore] we take the side of the first square as $3-35 x$, of the second as $\frac{4}{5}+31 x$, and of the third as 3 $\frac{3}{5}+37 x$. The sum of the aforesaid squares
whence

$$
\begin{aligned}
3555 x^{2}+10-116 x & =10 ; \\
x & =\frac{116}{3555} .
\end{aligned}
$$

Returning to the conditions-as the sides of the squares are given, the squares themselves are also given. The rest is obvious. ${ }^{a}$

Ibid. iv. 29, Dioph. ed. Tannery i. 258. 19-260. 16
To find four square numbers such that their sum added to the sum of their sides shall make a given number.

GREEK MATHEMATICS
${ }^{\nu} \mathrm{E} \sigma \tau \omega \delta \dot{\eta} \tau \dot{\partial} \nu \bar{\iota}$.
${ }^{2} \mathrm{E} \pi \epsilon \mathrm{i}$ тâs $\square^{\text {os }} \pi \rho o \sigma \lambda \alpha \beta \grave{\omega} \nu$ тท̀ ν iठíav $\pi^{\lambda_{0}}$ каi

 $\tau \epsilon ́ \sigma \sigma a \rho a s \square^{\text {ovs. }}$ єioi $\delta \dot{\epsilon}$ каi ai $\mathrm{M}^{\circ} \bar{\beta} \quad \mu \epsilon \tau \dot{\alpha} \delta \delta^{\omega \nu}$, ő
 $\tau \epsilon \in \sigma \sigma \alpha \rho \alpha s ~ \square^{o v s}, \kappa \alpha i \frac{\alpha}{\alpha} \pi \grave{o} \tau \hat{\omega} \nu \pi \lambda \epsilon v \rho \hat{\omega} \nu, \dot{\alpha} \phi \epsilon \lambda \omega \dot{\nu}$

$\Delta \iota a \iota \rho \epsilon i ̂ \tau a \iota$ סє̀ ó $\overline{\iota \gamma}$ єis δ v́o $\square^{o v s}$, $\tau o ́ v ~ \tau \epsilon \delta$ каi $\bar{\theta}$.

ALGEBRA: DIOPHANTUS

Let it be 12 .

Since any square added to its own side and $\frac{1}{4}$ makes a square, whose side minus $\frac{1}{2}$ is the number which is the side of the original square, ${ }^{a}$ and the four numbers added to their own sides make 12 , then if we add $4 . \frac{1}{4}$ they will make four squares. But

$$
12+4 \cdot \frac{1}{4}(\text { or } 1)=13
$$

Therefore it is required to divide 13 into four squares, and then, if I subtract $\frac{1}{2}$ from each of their sides, I shall have the sides of the four squares.

Now 13 may be divided into two squares, 4 and 9 . And again, each of these may be divided into two squares, $\frac{64}{25}$ and $\frac{36}{25}$, and $\frac{144}{25}$ and $\frac{81}{25}$. I take the side of each $\frac{8}{5}, \frac{6}{5}, \frac{12}{5}, \frac{9}{5}$, and subtract half from each side, and the sides of the required squares will be

$$
\frac{11}{10}, \frac{7}{10}, \frac{19}{10}, \frac{13}{10} .
$$

The squares themselves are therefore respectively

$$
\frac{121}{100}, \frac{49}{100}, \frac{361}{100}, \frac{169}{100} . b
$$

- i.e., $x^{2}+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^{2}$.
- In iv. 30 and $v .14$ it is also required to divide a number into four squares. As every number is either a square or the sum of two, three or four squares (a theorem stated by Fermat and proved by Lagrange), and a square can always be divided into two squares, it follows that any number can be divided into four squares. It is not known whether Diophantus was aware of this.

GREEK MATHEMATICS

(f) Polygonal Numbers

Dioph. De polyg. rum., Pref., Dioph. ed. Tannery i. 450. 3-19

 of $\mu \epsilon ̀ \nu \bar{\gamma} \tau \rho i ́ \gamma \omega \nu o s, \delta$ of $\delta \grave{\delta} \delta \tau \epsilon \tau \rho a ́ \gamma \omega \nu o s$, oo $\delta \grave{\epsilon} \bar{\epsilon}$ $\pi \epsilon \nu \tau \alpha ́ \gamma \omega \nu \circ s, \kappa \alpha i$ тоиิто $\mathfrak{\epsilon} \xi \eta{ }_{\eta}$.
 $\epsilon \sigma \tau \eta \prime \kappa \alpha \sigma \iota ~ \tau \epsilon \tau \rho a ́ \gamma \omega \nu o \iota ~ \delta \iota \dot{\alpha}$ тò $\gamma \epsilon \gamma о \nu \epsilon ́ v a \iota ~ a u ̀ \tau o v ̀ s ~ \epsilon ' \xi ~$

 $\pi \lambda \eta \eta^{\theta}$ ovs $\tau \hat{\omega} \nu \quad \gamma \omega \nu \iota \hat{\omega} \nu$ av่то仑̂, каi $\pi \rho о \sigma \lambda \alpha \beta o ́ v \tau \alpha$
 $\pi \lambda \eta^{\prime}$ Oovs $\tau \hat{\omega} \nu \quad \gamma \omega \nu \iota \omega \hat{\nu}$ avi $\tau \hat{\omega} \nu$, фаívє $\sigma \theta a \iota ~ \tau \epsilon \tau \rho \alpha-$

 $\lambda а \mu \beta \alpha ́ v \in \tau \alpha \iota$.
${ }^{1} \pi \rho \omega \hat{\omega} \tau o s$ Sachet, $\pi \rho \bar{\omega} \tau o \nu$ cod.

[^120]
ALGEBRA: DIOPHANTUS

(f) Polygonal Numbers ${ }^{a}$

Diophantus, On Polygonal Numbers, Preface, Dioph. ed. Tannery i. 450. 3-19
From 3 onwards, every member of the series of natural numbers increasing by unity is the first (after unity) of a particular species of polygon, and it has as many angles as there are units in it; its side is the number next in order after the unit, that is, 2. Thus 3 will be a triangle, 4 a square, 5 a pentagon, and so on in order. ${ }^{b}$

In the case of squares, it is clear that they are squares because they are formed by the multiplication of a number into itself. Similarly it was thought that any polygon, when multiplied by a certain number depending on the number of its angles, with the addition of a certain square also depending on the number of its angles, would also be a square. This we shall establish, showing how any assigned polygonal number may be found from a given side, and how the side may be calculated from a given polygonal number.
$\frac{1}{2} n\{2+(n-1)(a-2)\}$ (v. supra, p. 396 n. a, and vol. i. p. 98 n.a). The method of proof contrasts with that of the Arithmetica in being geometrical. For polygonal numbers, v. vol. i. pp. 86-99.
${ }^{-}$The meaning is explained in vol. i. p. 86 n. a, especially in the diagram on p. 89. In the example there given, 5 is the first (after unity) of the series of pentagonal numbers 1,5 , 12, 22 . . . It has 5 angles, and each side joins 2 units.

XXIV. REVIVAL OF GEOMETRY : PAPPUS OF ALEXANDRIA

XXIV. REVIVAL OF GEOMETRY: PAPPUS OF ALEXANDRIA

(a) General

Suidas, s.v. Пáттоя

 Птодє μ aiov Kavóva. Bı $\beta \lambda i ́ a ~ \delta є ́ ~ a v ̀ \tau o ̂ ̀ ~ X \omega \rho o \gamma \rho a ф i ́ a ~$

[^121]
XXIV. REVIVAL OF GEOMETRY: PAPPUS OF ALEXANDRIA

(a) General

Suidas, s.v. Pappus
Pappus, an Alexandrian, a philosopher, born in the time of the Emperor Theodosius I, when Theon the philosopher also flourished, ${ }^{a}$ who commented on Ptolemy's Table. His works include a Universal Geography, a Commentary on the Four Books of 1878) was a notable event in the revival of Greek mathematical studies. The editor's only major fault is one which he shares with his generation, a tendency to condemn on slender grounds passages as interpolated.

Pappus also wrote a commentary on Euclid's Elements; fragments on Book x. are believed to survive in Arabic (v. vol. i. p. 456 n. a). A commentary by Pappus on Euclid's Data is referred to in Marinus's commentary on that work. Pappus (v. vol. i. p. 301) himself refers to his commentary on the Analemma of Diodorus. The Arabic Fihrist says that he commented on Ptolemy's Planisphaerium.
The separate books of the Collection were divided by Pappus himself into numbered sections, generally preceded by a preface, and the editors have also divided the books into chapters. References to the Collection in the selections here given (e.g., Coll. iii. 11. 28, ed. Hultsch 68. 17-70. 8) are first to the book, then to the number or preface in Pappus's division, then to the chapter in the editors' division, and finally to the page and line of Hultsch's edition. In the selections from Book vii. Pappus's own divisions are omitted as they are too complicated, but in the collection of lemmas the numbers of the propositions in Hultsch's edition are added as these are often cited.

GREEK MATHEMATICS

 иєßúך, 'Оขєıрокрєтька́.
(b) Problems and Theorems

Papp. Coll. iii., Praef. 1, ed. Hultsch 30. 3-32. 3
Oí rà è̀ $\gamma \epsilon \omega \mu \epsilon \tau \rho i ́ a ~ \zeta \eta \tau о u ́ \mu \epsilon \nu a \quad$ ßоu入ó $\mu \epsilon \nu 0 \iota$

 є̇ тьбv $\mu \beta a i ̂ \nu o \nu ~ \theta \epsilon \omega \rho \epsilon i ̂ \tau \alpha \iota, \tau \hat{\omega} \nu \pi a \lambda a \iota \omega \hat{\nu} \tau \hat{\omega} \nu \mu \epsilon ่ \nu$
 фабкóvт $\omega \nu$. ó $\mu \epsilon ̀ \nu$ oर̂̀ тò $\theta \epsilon \omega \dot{\rho} \eta \eta \mu \alpha \pi о \tau \epsilon i \nu \omega \nu$,

 $\kappa \alpha i \quad \pi \alpha \nu \tau \alpha ́ \pi \alpha \sigma \iota \nu \quad i \delta \iota \omega ́ \tau \eta s],{ }^{1}$ кầv ádv́vaтóv $\pi \omega s$

 тои̂то $\delta \iota o \rho i ́ \sigma a l, ~ \tau o ́ ~ \tau \epsilon ~ \delta v v a \tau o ̀ v ~ к а i ~ \tau o ̀ ~ a ̉ \delta u ́ v a \tau o v, ~$

 $\dot{\alpha} \pi \epsilon i \rho \omega s \pi \rho о \beta a ́ \lambda \lambda \omega \nu$, оv่к $\not{\epsilon} \sigma \tau \iota \nu$ aiтías ${ }_{\epsilon}^{\epsilon} \xi \omega$. $\pi \rho \varphi ́ \eta \nu$ रoûv $\tau \iota \nu \epsilon \in ~ \tau \hat{\omega} \nu ~ \tau \dot{\alpha} ~ \mu \alpha \theta \eta ́ \mu \alpha \tau \alpha ~ \pi \rho о \sigma \pi о ь о \nu \mu \epsilon ́ v \omega \nu$

$$
{ }^{1} \text { åv . . . iठı } \omega \text { т } \eta s \text { om. Hultsch. }
$$

[^122]
REVIVAL OF GEOMETRY: PAPPUS

> Ptolemy's Great Collection, ${ }^{a}$ The Rivers of Libya, On the Interpretation of Dreams.
(b) Problems and Theorems

Pappus, Collection iii., Preface 1, ed. Hultsch 30. 9-32. 3
Those who favour a more exact terminology in the subjects studied in geometry, most excellent Pandrosion, use the term problem to mean an inquiry in which it is proposed to do or to construct something, and the term theorem an inquiry in which the consequences and necessary implications of certain hypotheses are investigated, but among the ancients some described them all as problems, some as theorems. Therefore he who propounds a theorem, no matter how he has become aware of it, must set for investigation the conclusion inherent in the premises, and in no other way would he correctly propound the theorem; but he who propounds a problem, even though he may require us to construct something which is in some way impossible, is free from blame and criticism. For it is part of the investigator's task to determine the conditions under which a problem is possible and impossible, and, if possible, when, how and in how many ways it is possible. But when a man professing to know mathematics sets an investigation wrongly he is not free from censure. For example, some persons professing to have learnt mathematics from you lately gave me a wrong enunciation of problems. It is desirable that I should state some of the proofs of thirteen books. Pappus's commentary now survives only for Books v. and vi., which have been edited by A. Rome, Studi e Testi, liv., but it certainly covered the first six books and possibly all thirteen.

GREEK MATHEMATICS

 $\epsilon i s \omega^{\omega} \phi \epsilon ́ \lambda \epsilon \iota \alpha \nu \sigma \eta_{\nu} \nu \epsilon \kappa \alpha a i \tau \hat{\omega} \nu \phi \iota \lambda o \mu a \theta o v ̃ \nu \tau \omega \nu \dot{\epsilon} \nu \tau \hat{\omega}$
 $\pi \rho \hat{\omega} \tau o \nu \tau \hat{\omega} \nu \pi \rho o \beta \lambda \eta \mu a ́ \tau \omega \nu$ нє́ $\gamma \alpha$ s $\tau \iota s$ $\gamma \in \omega \mu \epsilon ́ \tau \eta S$

(c) The Theory of Means

Ibid. iii. 11. 28, ed. Hultsch 68. 17-70. 8
Tò $\delta \dot{\epsilon} \delta \epsilon v ́ \tau \epsilon \rho o \nu \tau \hat{\omega} \nu \pi \rho o \beta \lambda \eta \mu \alpha ́ \tau \omega \nu \hat{\eta} \nu \tau o ́ \delta \epsilon$.

 $\lambda \alpha \beta \grave{\omega} \nu$ тò Δ, каi á π^{\prime} aúтov̂ $\pi \rho o ̀ s ~ o ̉ \rho \theta \grave{\alpha} s ~ a ́ \gamma \alpha \gamma \grave{\omega} \nu$ $\tau \hat{\eta} \mathrm{E} \Gamma \tau \dot{\eta} \nu \Delta \mathrm{B}$, каi $\epsilon \pi \iota \zeta \epsilon v \dot{v}^{\prime} \alpha_{s} \tau \dot{\eta} \nu \mathrm{~EB}$, каi aù $\hat{\eta}$

 $\theta \epsilon i ̂ \sigma \theta a \iota, \tau \grave{\eta} \nu \mu \epsilon \grave{\nu} \mathrm{E} \Gamma \mu \epsilon ́ \sigma \eta \nu$ àpı $\theta \mu \eta \tau \iota \kappa \eta \eta_{\nu}, \tau \grave{\eta} \nu \delta \dot{\epsilon}$ $\Delta \mathrm{B} \mu \epsilon \in \sigma \eta \nu \gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \eta{ }_{\eta} \nu, \tau \eta ̀ \nu \delta \dot{\epsilon} \mathrm{BZ} \dot{\alpha} \rho \mu о \nu \iota \kappa \eta \eta^{\prime} \nu$.

[^123]
REVIVAL OF GEOMETRY: PAPPUS

these and of matters akin to them, for the benefit both of yourself and of other lovers of this science, in this third book of the Collection. Now the first of these problems was set wrongly by a person who was thought to be a great geometer. For, given two straight lines, he claimed to know how to find by plane methods two means in continuous proportion, and he even asked that I should look into the matter and comment on his construction, which is after this manner. ${ }^{a}$
(c) The Theory of Means

Ibid. iii. 11. 28, ed. Hultsch 68. 17-70. 8
The second of the problems was this :
A certain other [geometer] set the problem of exhibiting the three means in a semicircle. Describing a semicircle $A B \Gamma$, with centre E, and taking any point Δ on $A \Gamma$, and from it drawing $\Delta \mathrm{B}$ perpendicular to $E \Gamma$, and joining $E B$, and from Δ drawing ΔZ perpendicular to it, he claimed simply that the three means had been set out in the semicircle, EГ being the arithmetic mean, $\Delta \mathrm{B}$ the geometric mean and BZ the harmonic mean.

That $\mathrm{B} \Delta$ is a mean between $\mathrm{A} \Delta, \Delta \Gamma$ in geometrical

GREEK MATHFMATICS

$\tau \hat{\eta} \gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa \hat{\eta}$ ảva入o $\gamma_{i} \dot{a}, \dot{\eta} \delta \dot{\epsilon} \mathrm{E} \Gamma \tau \hat{\omega} \nu \mathrm{A} \Delta, \Delta \Gamma$

 $\mathrm{A} \Delta \pi \rho o ̀ s ~ \epsilon ́ a v \tau \dot{\eta} \nu$, oű $\tau \omega \mathrm{s} \dot{\eta} \tau \hat{\omega} \nu \mathrm{A} \Delta$, $\mathrm{AE} \dot{v} \pi \epsilon \rho o \chi \dot{\eta}$, $\tau о v \tau \epsilon ́ \sigma \tau \iota \nu \dot{\eta} \tau \hat{\omega} \nu \mathrm{~A} \Delta, \mathrm{E}, \pi \rho o ̀ s ~ \tau \grave{\eta} \nu \tau \omega ิ \nu \mathrm{E} \Gamma, \Gamma \Delta$.

 $\tau \rho i \tau \eta$ àvádoүóv є่ $\sigma \tau \iota \nu \tau \hat{\omega} \nu \mathrm{EB}, \mathrm{B} \Delta$, ả $\gamma v o \omega \hat{\nu}$ ö $\tau \iota$

 $\tau \eta \tau o s, \delta v ́ o ~ \delta e ̀ ~ a i ~ B \Delta ~ к а i ~ \mu i ́ a ~ \grave{\eta} \mathrm{BZ} \tau \eta ̀ \nu \mu \epsilon ́ \sigma \eta \nu, \mu i ́ a$

(d) The Paradoxes of Erycinus

Ibid. iii. 24. 58, ed. Hultsch 104. 14-106. 9
Tò $\delta \grave{\epsilon} \tau \rho i \not \tau o \nu \tau \hat{\omega} \nu \pi \rho o \beta \lambda \eta \mu a ́ \tau \omega \nu \eta \mathfrak{\eta} \nu \tau o ́ \delta \epsilon$.

REVIVAL OF GEOMETRY: PAPPUS

proportion, and $E \Gamma$ between $A \Delta, \Delta \Gamma$ in arithmetical proportion, is clear. For

$$
A \Delta: \Delta B=\Delta B: \Delta \Gamma \text {, [Eucl. iii. 31, vi. } 8 \text { Por. }
$$

and

$$
\begin{aligned}
\mathrm{A} \Delta: \mathrm{A} \Delta & =(\mathrm{A} \Delta-\mathrm{AE}):(\mathrm{E} \Gamma-\Gamma \Delta) \\
& =(\mathrm{A} \Delta-\mathrm{E} \mathrm{\Gamma}):(\mathrm{E} \Gamma-\Gamma \Delta) .
\end{aligned}
$$

But how ZB is a harmonic mean, or between what kind of lines, he did not say, but only that it is a third proportional to $\mathrm{EB}, \mathrm{B} \Delta$, not knowing that from $\mathrm{EB}, \mathrm{B} \Delta, \mathrm{B} Z$, which are in geometrical proportion, the harmonic mean is formed. For it will be proved by me later that a harmonic proportion can thus be formed-

$$
\begin{array}{ll}
\text { greater extreme } & =2 \mathrm{~EB}+3 \Delta \mathrm{~B}+\mathrm{BZ}, \\
\text { mean term } & =2 \mathrm{~B} \Delta+\mathrm{BZ}, \\
\text { lesser extreme } & =\mathrm{B} \Delta+\mathrm{BZ} . .^{a}
\end{array}
$$

(d) The Paradoxes of Erycinus

Ibid. iii. 24. 58, ed. Hultsch 104. 14-106. 9
The third of the problems was this :
Let $A B \Gamma$ be a right-angled triangle having the

- It is Pappus, in fact, who seems to have erred, for BZ is a harmonic mean between $A \Delta, \Delta \Gamma$, as can thus be proved:

Since $B \Delta E$ is a right-angled triangle in which ΔZ is perpendicular to BE ,
\therefore
i...,

But
$\stackrel{-}{\therefore \quad} \quad$
and $\therefore \mathrm{BZ}$ is a harmonic mean between $\mathrm{A} \Delta, \Delta \Gamma$.
The three means and the several extremes have thus been

GREEK MATHEMATICS

ढ̈ $\chi о \nu \quad \tau \grave{\eta} \nu \mathrm{~B} \gamma \omega \nu i \alpha \nu$, каi $\delta \iota \eta \eta^{\prime} \theta \omega$ тıs $\dot{\eta} \mathrm{A} \Delta$, каi

 ovvapфoтépas $\tau \alpha ̀ s ~ \Delta Z \Gamma ~ \delta v ́ o ~ \pi \lambda \epsilon v \rho a ̀ s ~ \epsilon ̇ v \tau o ̀ s ~ \tau o v ̂ ~$ $\tau \rho \iota \gamma \omega ́ v o v \mu \epsilon i \zeta o \nu a s ~ \tau \hat{\omega} \nu$ є่ктòs $\sigma v \nu \alpha \mu \phi о \tau \epsilon ́ \rho \omega \nu \tau \hat{\omega} \nu$ ВАГ $\pi \lambda \epsilon \nu \rho \omega \bar{\nu}$.

Kai $\epsilon \not \epsilon \tau \iota \iota ~ \delta \hat{\eta} \lambda o \nu . ~ \epsilon ่ \pi \epsilon i ~ \gamma \grave{a} \rho$ ai ГZA, тovтє́ $\sigma \tau \iota \nu$ ai $\Gamma \mathrm{ZE}, \tau \hat{\eta} s$ aA $\mu \epsilon i \zeta o \nu \epsilon ́ s ~ \epsilon i \sigma \iota \nu, ~ \imath ̋ \sigma \eta ~ \delta \grave{\epsilon} \dot{\eta} \Delta \mathrm{E} \tau \hat{\eta}$

 $\delta \iota \alpha \lambda \alpha \beta \epsilon i ̂ v$ ả $\pi \grave{~} \tau \hat{\omega} \nu \phi \epsilon \rho о \mu \epsilon ́ v \omega \nu \pi \alpha \rho a \delta o ́ \xi \omega \nu$ 'Eрvкívov $\pi \rho о \tau \epsilon i v o v \tau \alpha \varsigma$ oข̃т ω s.

(e) The Regular Solids

Ibid. iii. 40. 75, ed. Hultsch 132. 1-11
 $\pi о \lambda v ́ \epsilon \delta \rho a, \pi \rho о \gamma \rho a ́ \phi \epsilon \tau \alpha \iota \delta \epsilon ̀ \tau \alpha ́ \delta \epsilon$.

represented by five straight lines ($\mathrm{EB}, \mathrm{BZ}, \mathrm{A} \Delta, \Delta \Gamma, \mathrm{B} \Delta$). Pappus takes six lines to solve the problem. He proceeds to define the seven other means and to form all ten means as linear functions of three terms in geometrical progression (v. vol. i. pp. 124-129).

REVIVAL OF GEOMETRY: PAPPUS

angle B right, and let $A \Delta$ be drawn, and let ΔE be placed equal to $A B$, then if EA be bisected at Z, and $Z \Gamma$ be joined, to show that the sum of the two sides $\Delta Z, Z \Gamma^{\circ}$ within the triangle, is greater than the sum of the two sides $\mathrm{BA}, \mathrm{A} \mathrm{\Gamma}$ without the triangle.

And it is obvious. For

But it is clear that this type of proposition, according to the different ways in which one might wish to propound it, can take an infinite number of forms, and it is not out of place to discuss such problems more generally and [first] to propound this from the so-called paradoxes of Erycinus. ${ }^{a}$

(e) The Regular Solids ${ }^{b}$

Ibid. iii. 40. 75, ed. Hultsch 132. 1-11
In order to inscribe the five polyhedra in a sphere, these things are premised.

Let $A B I^{\prime}$ be a circle in a sphere, with diameter $A \Gamma$ and centre Δ, and let it be proposed to insert in the
a Nothing further is known of Erycinus. The propositions next investigated are more elaborate than the one just solved.

- This is the fourth subject dealt with in Coll. iii. For the treatment of the subject by earlier geometers, v. vol. i. pp. 216-225, 466-479.

GREEK MATHEMATICS

 АГ $\delta \iota a \mu \epsilon ́ \tau \rho о v$.

 $\pi a \rho a \lambda \lambda \eta \eta^{\prime} \lambda o v a ̉ \chi \theta \epsilon i \sigma \eta s \tau \hat{\eta} s \mathrm{ZH} \tau \hat{\eta} \mathrm{BE}$.
(f) Extension of Pythagoras's Theorem

Ibid. iv. 1. 1, ed. Hultsch 176. 9-178. 13
 $\mathrm{B} \mathrm{\Gamma}$ ávaүрафท̂ $\tau v \chi o ́ v \tau \alpha ~ \pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho а \mu \mu \alpha ~ \tau \grave{\alpha}$ $\mathrm{AB} \Delta \mathrm{E}, \mathrm{B} Г \mathrm{ZH}$, каi ai $\Delta \mathrm{E}, \mathrm{ZH} \epsilon \kappa \beta \lambda \eta \theta \hat{\omega} \sigma \iota \nu$
 574

REVIVAL OF GEOMETRY: PAPPUS

circle a chord parallel to the diameter $A \Gamma$ and equal to a given straight line not greater than the diameter АГ.

Let $\mathrm{E} \Delta$ be placed equal to half of the given straight line, and let EB be drawn perpendicular to the diameter $\mathrm{A} \Gamma$, and let BZ be drawn parallel to $\mathrm{A} \Gamma$; then shall this line be equal to the given straight line. For it is double of $\mathrm{E} \Delta$, inasmuch as ZH , when drawn, is parallel to BE , and it is therefore equal to $\mathrm{EH} .{ }^{a}$
(f) Extension of Pythagoras's Theorem
Ibid. iv. 1. 1, ed. Hultsch 176. 9-178. 13
If $\mathrm{AB} \mathrm{\Gamma}$ be a triangle, and on $\mathrm{AB}, \mathrm{B} \Gamma$ there be described any parallelograms $\mathrm{AB} \triangle \mathrm{E}, \mathrm{B} \Gamma Z \mathrm{H}$, and $\Delta \mathrm{E}, \mathrm{ZH}$ be produced to θ, and θB be joined, then the
a This lemma gives the key to Pappus's method of inscribing the regular solids, which is to find in the case of each solid certain parallel circular sections of the sphere. In the case of the cube, for example, he finds two equal and parallel circular sections, the square on whose diameter is two-thirds of the square on the diameter of the sphere. The squares inscribed in these circles are then opposite faces of the cube. In each case the method of analysis and synthesis is followed. The treatment is quite different from Euclid's.

GREEK MATHEMATICS

'Ек $\beta \in \beta \lambda \eta{ }^{\prime} \sigma \theta \omega \quad \gamma \dot{\alpha} \rho \dot{\eta} \Theta \mathrm{B}$ є́ πi тò K , каi $\delta \iota \dot{\alpha} \tau \hat{\omega} \nu$ А, Г $\tau \hat{\eta}$ @К $\pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda o \iota ~ \eta ้ \chi \theta \omega \sigma \alpha \nu$ ai А $\Lambda, ~ Г М$,
 є́वтьข тò $\mathrm{A} \Lambda \Theta \mathrm{B}$, ai $\mathrm{A} \Lambda, \Theta \mathrm{B}$ íซaı тє́ єiซıv каi

 є́бтьv $\sigma v \nu а \mu \phi о \tau \epsilon ́ \rho \mu ~ \tau \hat{\eta} \quad \tau \epsilon$ viтò ВАГ каi vimò
 $\kappa \alpha i$ є̀ $\pi \epsilon i$ тò $\triangle \mathrm{ABE} \pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu o \nu \tau \hat{\varphi} \Lambda \mathrm{AB} \Theta$
 576

REVIVAL OF GEOMETRY: PAPPUS

parallelograms $\mathrm{AB} \triangle \mathrm{E}, \mathrm{B} \Gamma \mathrm{ZH}$ are together equal to the parallelogram contained by $A \Gamma, \theta B$ in an angle which is equal to the sum of the angles ВАГ, $\Delta \theta B$.

For let ΘB be produced to K , and through A, Γ let
$A \Lambda, \Gamma M$ be drawn parallel to θK, and let ΛM be joined. Since $A \Lambda \theta B$ is a parallelogram, $A \Lambda, \theta B$ are equal and parallel. Similarly $M \Gamma, \theta B$ are equal and parallel, so that $\Lambda \mathrm{A}, \mathrm{M} \Gamma$ are equal and parallel. And therefore $\Lambda \mathrm{M}, \mathrm{A} \Gamma$ are equal and parallel ; therefore $A \Lambda M \Gamma$ is a parallelogram in the angle $\Lambda A \Gamma$, that is an angle equal to the sum of the angles BAI and $\Delta \theta \mathrm{B}$; for the angle $\Delta \theta \mathrm{B}=$ angle $\Lambda \mathrm{AB}$. And since the parallelogram $\triangle \mathrm{ABE}$ is equal to the parallelogram $\Lambda \mathrm{AB} \theta$ (for they are upon the same base AR and in the

GREEK MATHEMATICS

 $\triangle \mathrm{ABE}, \mathrm{BHZ} \mathrm{\Gamma} \mathrm{\pi} \mathrm{\alpha} \mathrm{\rho a} \mathrm{\lambda} \mathrm{\lambda} \mathrm{\eta} \mathrm{\lambda ó} \mathrm{\gamma} \mathrm{\rho a} \mathrm{\mu} \mathrm{\mu} \mathrm{\alpha} \mathrm{\tau} \mathrm{\hat{} \mathrm{\varphi}} \Lambda \mathrm{~A} \Gamma \mathrm{M}$ й $\sigma \alpha$

 $\mathrm{B} \Theta \Delta$. каі Єै $\sigma \tau \iota ~ \tau о \hat{\tau} \tau о ~ к \alpha \theta о \lambda \iota \kappa \omega ́ \tau \tau \rho о \nu ~ \pi о \lambda \lambda \hat{\varphi}$ то仑̂
 इтoıұєíoıs $\delta \in \delta \epsilon \iota \gamma \mu \epsilon ́ v o v$.

(g) Circles Inscribed in the äp $\beta \eta \lambda_{\text {o }}$

Ibid. iv. 14. 19, ed. Hultsch 208. 9-21

$\tau \grave{\alpha} \mathrm{AB} \mathrm{\Gamma}, \mathrm{~A} \Delta \mathrm{E}, \mathrm{EZ} \mathrm{\Gamma}, \kappa \alpha i$ єis $\tau \grave{o} \mu \epsilon \tau \alpha \xi \grave{v} \tau \hat{\omega} \nu$
 578

REVIVAL OF GEOMETRY: PAPPUS

same parallels $\mathrm{AB}, \Delta \theta$), while $\Lambda \mathrm{AB} \theta=\Lambda \mathrm{AKN}$ (for they are upon the same base $\Lambda \mathrm{A}$ and in the same parallels $\Lambda \mathrm{A}, \theta \mathrm{K}$), therefore $\mathrm{A} \triangle \mathrm{EB}=\Lambda \mathrm{AKN}$. By the same reasoning $B H Z \Gamma=N K \Gamma M$; therefore the parallelograms $\triangle \mathrm{ABE}, \mathrm{BHZ} \mathrm{\Gamma}$ are together equal to $\Lambda A \Gamma M$, that is, to the parallelogram contained by $A \Gamma, \theta B$ in the angle $\Lambda A \Gamma$, which is equal to the sum of the angles $\mathrm{BA} \mathrm{\Gamma}, \mathrm{~B} Ө \Delta$. And this is much more general than the theorem proved in the Elements about the squares on right-angled triangles. ${ }^{\text {a }}$

Ibid. iv. 14. 19, ed. Hultsch 208. 9-2
There is found in certain [books] an an ient proposition to this effect: Let $A B \Gamma, A \Delta E$, $\mathbf{~} Z \mathrm{Z} \Gamma$ be supposed to be three semicircles touching each other, and in the space between their circumferences, which

[^124]
GREEK MATHEMATICS

 $\kappa \epsilon ́ v \tau \rho \alpha \tau \grave{a} \mathrm{H}, \Theta, \mathrm{K}, \Lambda \cdot \delta \epsilon i ̂ \xi \alpha \iota \tau \grave{\eta} \nu \mu \epsilon ̀ \nu$ ả $\pi o ̀ ~ \tau o \hat{v} \mathrm{H}$
 то仑̂ $\pi \epsilon \rho i ̀ ~ \tau o ̀ ~ H ~ к u ́ к \lambda о v, ~ \tau \grave{\eta} \nu \delta^{\prime}$ à $\pi o ̀ ~ \tau о \hat{v} \Theta \kappa \alpha ́ \theta \epsilon \tau о \nu$
 $\tau \grave{\eta} \nu \delta^{\prime}$ ả $\pi \grave{o} \tau о \hat{u} \mathrm{~K}$ ка́ $\theta \epsilon \tau о \nu \tau \rho \iota \pi \lambda a \sigma i ́ a \nu$, каi $\tau \grave{\alpha} s$

(h) Spiral on a Sphere

1bid. iv. 35. 53-56, ed. Hultsch 264. 3-268. 21
 фєронє́vov апиєiov кат' єù $\theta \epsilon i \alpha a s ~ к v ́ к л \lambda о \nu ~ \pi \epsilon \rho \imath \gamma \rho \alpha-~$
 رıâs $\pi \lambda \epsilon v \rho a ̂ s ~ \tau \iota v ’ ~ \epsilon ́ \pi \iota \phi a ́ v \epsilon \iota a \nu ~ \pi \epsilon \rho \iota \gamma \rho a \phi o v ́ \sigma \eta S, ~$

"Е $\sigma \tau \omega$ èv $\sigma \phi$ аípa $\mu \epsilon ́ \gamma \iota \sigma \tau o s ~ к u ́ к \lambda о s ~ o ́ ~ K \Lambda M ~ \pi \epsilon \rho i ~$

[^125]580

REVIVAL OF GEOMETRY: PAPPUS

is called the " leather-worker's knife." let there be inscribed any number whatever of circles touching both the semicircles and one another, as those about the centres H, θ, K, Λ; to prove that the perpendicular from the centre H to $A \Gamma$ is equal to the diameter of the circle about H, the perpendicular from θ is double of the diameter of the circle about θ, the perpendicular from K is triple, and the [remaining] perpendiculars in order are so many times the diameters of the proper circles according to the numbers in a series increasing by unity, the inscription of the circles proceeding without limit. ${ }^{a}$

(h) Spiral on a Sphere ${ }^{b}$

Ilid. iv. 35. 53-56, ed. Hultsch 264. 3-268. 21
Just as in a plane a spiral is conceived to be generated by the motion of a point along a straight line revolving in a circle, and in solids [, such as the cylinder or cone, $]^{c}$ by the motion of a point along one straight line describing a certain surface, so also a corresponding spiral can be conceived as described on the sphere after this manner.

Let $K \Lambda M$ be a great circle in a sphere with pole θ, and from θ let the quadrant of a great circle θ NK be

[^126]
GREEK MATHEMATICS

 $\mu \epsilon \gamma i \sigma \tau о v$ ки́клоv $\pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a$, $\pi \rho o ̀ s \tau \grave{\eta} \nu \mathrm{~K} \Lambda \pi \epsilon \rho \iota-$

 $\dot{\epsilon} \pi \iota \zeta \epsilon \nu \chi \theta \hat{\eta} \dot{\eta} \Gamma \mathrm{A}, \gamma i v \epsilon \tau \alpha \iota$ ш̀s $\dot{\eta}$ тov̂ $\dot{\eta} \mu \iota \sigma \phi a \iota \rho i o v$

" $\mathrm{H} \chi \theta \omega \gamma \dot{\alpha} \rho$ '̀ $\phi \alpha \pi \tau о \mu \epsilon ́ v \eta ~ \tau \hat{\eta} s \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon$ ías $\dot{\eta}$ ГZ,

 582

REVIVAL OF GEOMETRY: PAPPUS

described, and, θ remaining stationary, let the arc $\theta N K$ revolve about the surface in the direction Λ, M

and again return to the same place, and [in the same time] let a point on it move from θ to K ; then it will describe on the surface a certain spiral, such as $\Theta O 1 K$, and if any arc of a great circle be drawn from θ [cutting the circle $\mathrm{K} \Lambda \mathrm{M}$ first in Λ and the spiral first in O], its circumference ${ }^{a}$ will bear to the arc $\mathrm{K} \Lambda$ the same ratio as $\Lambda \theta$ bears to θO. I say then that if a quadrant $\mathrm{AB} \mathrm{\Gamma}$ of a great circle in the sphere be set out about centre Δ, and ГA be joined, the surface of the hemisphere will bear to the portion of the surface intercepted between the spiral $Ө$ OIK and the arc KN Θ the same ratio as the sector $\mathrm{AB} \mathrm{\Gamma} \Delta$ bears to the segment ABГ.

For let ΓZ be drawn to touch the circumference, and with centre Γ let there be described through A the arc $A E Z$; then the sector $A B \Gamma \Delta$ is equal to the
a Or, of course, the circumference of the circle $\mathrm{K} \Lambda \mathrm{M}$ to which it is equal.

GREEK MATHEMATICS

 $\dot{\alpha} \lambda \lambda \dot{\eta} \lambda a s, ~ o v ̃ \tau \omega s$ ó $\mathrm{AEZ} \mathrm{\Gamma} \tau о \mu \epsilon \dot{v} s$ трòs тò $\mathrm{AB} \mathrm{\Gamma}$ $\tau \mu \hat{\eta} \mu a$.
 ки́клоv $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon$ ías, каì тò av̀тò $\mu \epsilon ́ \rho o s ~ \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a$ $\dot{\eta} \mathrm{ZE} \tau \bar{\eta} s \mathrm{ZA}, \kappa \alpha i \stackrel{\epsilon}{\epsilon} \pi \epsilon \zeta \epsilon \dot{\gamma} \chi \theta \omega \dot{\eta} \mathrm{E} \mathrm{\Gamma} \cdot{ }_{\epsilon}^{\epsilon} \sigma \tau \alpha \iota \delta \dot{\eta} \kappa \alpha i$
 $\tau \hat{\eta} s$ ö $\lambda \eta s$ $\pi \epsilon \rho \iota \phi \epsilon \rho \epsilon i a s, ~ \tau \grave{o}$ aủ $\tau \grave{o}$ каi $\dot{\eta} \Theta О \tau \hat{\eta} s$

 $\delta \iota a ̀ ~ \tau o \hat{v} \mathrm{O} \pi \epsilon \rho \iota \phi \epsilon ́ \rho \epsilon \iota a \dot{\eta} \mathrm{ON}, \kappa a i \delta_{i \alpha}^{\alpha} \tau о \hat{v} \mathrm{~B} \pi \epsilon \rho \grave{\imath}$

 píov є̇ $\pi \iota \phi a ́ v \epsilon \iota \alpha ~ \pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \tau о \hat{v} \tau \mu \eta \prime \mu \alpha \tau о s ~ \epsilon ̇ \pi \iota ф \alpha ́ v \epsilon \iota \alpha \nu$,
 $\epsilon \dot{v} \theta \epsilon i ́ a s ~ \tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu o \nu ~ \pi \rho o ̀ s ~ \tau o ̀ ~ \grave{\alpha} \pi o ̀ ~ \tau \eta ̂ s ~ \epsilon ̇ \pi i ~ \tau \grave{\alpha} \Theta$ @,

- Pappus's method of proof is, in the Archimedean manner, to circumscribe about the surface to be measured a figure consisting of sectors on the sphere, and to circumscribe about the segment $A B \Gamma$ a figure consisting of sectors of circles; in the same way figures can be inscribed. The divisions need, therefore, to be as numerous as possible. The conclusion can then be reached by the method of exhaustion.

REVIVAL OF GEOMETRY : PAPPUS

sector $А E Z \Gamma$ (for angle $A \Delta \Gamma=2$. angle $A \Gamma Z$, and $\left.\Delta \mathrm{A}^{2}=\frac{1}{2} \mathrm{~A} \mathrm{\Gamma}^{2}\right)$; I say, then, that the ratio of the aforesaid surfaces one towards the other is the same as the ratio of the sector AEZ

Let $Z E$ be the same [small] ${ }^{a}$ part of $Z A$ as $K \Lambda$ is of the whole circumference of the circle, and let EI be joined; then the are $B \Gamma$ will be the same part of the arc $А В \Gamma .{ }^{b}$ But ΘO is the same part of $\Theta O A$ as $\mathrm{K} \Lambda$ is of the whole circumference [by the property of the spiral]. And arc $Ө О \Lambda=\operatorname{arc} \mathrm{AB} \mathrm{\Gamma}$ [ex constructione]. Therefore $Ө О=$ ВГ. Let there be described through O about the pole θ the arc $O N$, and through B about centre Γ the are BH. Then since the [sector of the] spherical surface $\Lambda K \theta$ bears to the [sector] $O \Theta \mathrm{~N}$ the same ratio as the whole surface of the hemisphere bears to the surface of the segment with pole θ and circular base $O N,{ }^{c}$ while the surface of the hemisphere bears to the surface of the segment the same ratio as $\theta \Lambda^{2}$ to $\theta \mathrm{O}^{2},{ }^{d}$ or $E \Gamma^{2}$ to $B \Gamma^{2}$, therefore the sector $K \Lambda \Theta$ on the surface [of the sphere] bears to O日N the same ratio as the sector EZT [in the plane] bears to the sector ВНГ. Similarly we may show that all the sectors [on the surface of] the hemi-

[^127]
GREEK MATHEMATICS

 тò̀s $\pi \epsilon \rho \imath \gamma \rho \alpha \phi о \mu \epsilon ́ v o v s ~ \pi \epsilon \rho i ~ \tau \grave{̀} \mathrm{AB} \mathrm{\Gamma} \tau \mu \hat{\eta} \mu \alpha$ тò̀s

 $\mathrm{AZ} \mathrm{\Gamma}$ то $\mu \epsilon \dot{v} s$ трòs $\tau o v ̀ s ~ \epsilon ่ \gamma \gamma \rho a \phi o \mu \epsilon ́ v o v s ~ \tau \hat{\varphi} \mathrm{AB} \mathrm{\Gamma}$

 $\kappa \alpha i \quad \dot{\eta}$ то̂ $\dot{\eta} \mu \iota \sigma \phi a \iota \rho i ́ o v ~ \epsilon ̇ \pi \iota \phi \alpha ́ v \epsilon \iota a ~ \tau o \hat{v} ~ А В Г \Delta ~$

 $\tau \eta \hat{s}$ бфаípas $\tau \epsilon \tau \rho \alpha \gamma \omega \dot{\nu} \varphi$.

- This would be proved by the method of exhaustion. It is proof of the great part played by this method in Greek geometry that Pappus can take its validity for granted.
${ }^{b}$ For the surface of the hemisphere is double of the circle of radius $\mathrm{A} \Delta$ [Archim. De sph. et cyl. i. 33] and the sector $A B \Gamma \Delta$ is one-quarter of the circle of radius $A \Delta$.
- For the surface between the spiral and the base of the hemisphere is equal to the surface of the hemisphere less the surface cut off from the spiral in the direction $\Theta N K$,
i.e. \quad Surface in question $=$ surface of hemisphere -

8 segment ABr,
$=8$ sector $\mathrm{AB} \mathrm{\Gamma} \Delta-8$ segment $\mathrm{AB} \mathrm{\Gamma}$

REVIVAL OF GEOMETRY: PAPPUS

sphere equal to $K \Lambda \theta$, together making up the whole surface of the hemisphere, bear to the sectors described about the spiral similar to OON the same ratio as the sectors in $A Z \Gamma$ equal to $E Z \Gamma$, that is the whole sector AZF, bear to the sectors described about the segment $A B \Gamma$ similar to $\Gamma B H$. In the same manner it may be shown that the surface of the hemisphere bears to the [sum of the] sectors inscribed in the spiral the same ratio as the sector $A Z \Gamma$ bears to the [sum of the] sectors inscribed in the segment AB , so that the surface of the hemisphere bears to the surface cut off by the spiral the same ratio as the sector $A Z \Gamma$, that is the quadrant $A B \Gamma \Delta$, bears to the segment ABC. ${ }^{a}$ From this it may be deduced that the surface cut off from the spiral in the direction of the arc $\theta \mathrm{NK}$ is eight times the segment ABL (since the surface of the hemisphere is eight times the sector $A B \Gamma \Delta),{ }^{b}$ while the surface between the spiral and the base of the hemisphere is eight times the triangle $\mathrm{A} \Gamma \Delta$, that is, it is equal to the square on the diameter of the sphere. ${ }^{c}$

$$
\begin{aligned}
& =8 \text { triangle } \mathrm{A} \mathrm{\Gamma} \Delta \\
& =4 \mathrm{~A} \Delta^{2} \\
& =(2 \mathrm{~A} \Delta)^{2},
\end{aligned}
$$

and $2 \mathrm{~A} \Delta$ is the diameter of the sphere.
Heath (H.G.M. ii. 384-385) gives for this elegant proposition an analytical equivalent, which I have adapted to the Greek lettering. If ρ, ω are the spherical co-ordinates of O with reference to Θ as pole and the arc $\Theta N K$ as polar axis, the equation of the spiral is $\omega=4 \rho$. If A is the area of the spiral to be measured, and the radius of the sphere is taken as unity, we have as the element of area

$$
d A=d \omega(1-\cos \rho)=4 d \rho(1-\cos \rho)
$$

GREEK MATHEMATICS

(i) Isoperimetric Figures

Ibid. v., Fraef. 1-3, ed. Hultsch 304. 5-308. 5

$$
\begin{aligned}
& A=\int_{0}^{\frac{1}{2} \pi} 4 d \rho(1-\cos \rho) \\
& =2 \pi-4 \text {. } \\
& \therefore \\
& \frac{A}{\text { surface of hemisphere }}=\frac{2 \pi-4}{2 \pi} \\
& =\frac{\frac{1}{4} \pi-\frac{1}{2}}{\frac{1}{4}} \\
& =\frac{\text { segment } \mathrm{AB} \mathrm{\Gamma}}{\text { sector } \mathrm{AB} \Gamma \bar{\Delta}} \text {. }
\end{aligned}
$$

- The whole of Book v. in Pappus's Collection is devoted to isoperimetry. The first section follows closely the exposition of Zenodorus as given by Theon (v. supra, pp. 386-395), 588

REVIVAL OF GEOMETRY: PAPPUS

(i) Isoperimetric Figures ${ }^{a}$

Ibid. v., Preface 1-3, ed. Hultsch 304. 5-308. 5

Though God has given to men, most excellent Megethion, the best and most perfect understanding of wisdom and mathematics, He has allotted a partial share to some of the unreasoning creatures as well. To men, as being endowed with reason, He granted that they should do everything in the light of reason and demonstration, but to the other unreasoning creatures He gave only this gift, that each of them should, in accordance with a certain natural forethought, obtain so much as is needful for supporting life. This instinct may be observed to exist in many other species of creatures, but it is specially marked among bees. Their good order and their obedience to the queens who rule in their commonwealths are truly admirable, but much more admirable still is their emulation, their cleanliness in the gathering of honey, and the forethought and domestic care they give to its protection. Believing themselves, no doubt, to be entrusted with the task of bringing from the gods to the more cultured part of mankind a share of
except that Pappus includes the proposition that of all circular segments having the same circumference the semicircle is the greatest. The second section compares the volumes of solids whose surfaces are equal, and is followed by a digression, already quoted (supra, pp. 194-197) on the semi-regular solids discovered by Archimedes. After some propositions on the lines of Archimedes' De sph. et cyl., Pappus finally proves that of regular solids having equal surfaces, that is greatest which has most faces.
The introduction, here cited, on the sagacity of bees is rightly praised by Heath (H.G.M. ii. 389) as an example of the good style of the Greek mathematicians when freed from the restraints of technical language.

GREEK MATHEMATICS

 Ј $\chi \eta \mu a \tau \iota$ є $\ddagger a ́ \gamma \omega \nu \alpha$.

Тои̃то δ^{\prime} öт $\tau \kappa \alpha \tau \alpha ́ ~ \tau \iota \nu \alpha ~ \gamma \epsilon \omega \mu \epsilon \tau \rho \iota к \grave{\eta} \nu \mu \eta \chi \alpha \nu \hat{\omega} \nu \tau \alpha \iota$ $\pi \rho o ́ v o \iota a \nu$ ov̈ $\omega \omega$ àv $\mu a ́ \theta o \iota \mu \in \nu$. $\pi \alpha ́ \nu \tau \omega s ~ \mu \grave{\epsilon} \nu ~ \gamma \grave{a} \rho$

 $\mu \epsilon \tau \alpha \xi \grave{v} \pi \alpha \rho a \pi \lambda \eta \rho \omega \dot{\mu} \mu \sigma \iota \nu$ є́ $\mu \pi i \pi \tau о \nu \tau \alpha \dot{\alpha} \tau \iota \nu \alpha$ є́ $\tau \in \rho a$

 оűv iбónग $\epsilon \nu \rho \alpha ~ \tau \rho i ́ \gamma \omega \nu \alpha$ каi $\tau \epsilon \tau \rho a ́ \gamma \omega \nu \alpha$ каi $\tau \grave{\alpha}$

 є́ $\sigma \tau i \nu \quad$ o’ $\rho \theta \hat{\eta} s, \sigma v \mu \pi \lambda \eta \rho o \hat{\tau} \alpha a \iota, \tau \epsilon \sigma \sigma a ́ \rho \omega \nu$ $\delta \dot{\epsilon} \tau \epsilon \tau \rho a-$

 тó $\pi о \nu$, $\dot{v} \pi \epsilon \rho \beta a ́ \lambda \lambda \epsilon \iota ~ \delta \grave{\epsilon} \tau \grave{\alpha} \tau \epsilon ́ \sigma \sigma \alpha \rho \alpha \cdot \tau \rho \epsilon i ̂ s ~ \mu \grave{\epsilon} v$ रà ρ
 590

REVIVAL OF GEOMETRY: PAPPUS

ambrosia in this form, they do not think it proper to pour it carelessly into earth or wood or any other unseemly and irregular material, but, collecting the fairest parts of the sweetest flowers growing on the earth, from them they prepare for the reception of the honey the vessels called honeycombs, [with cells] all equal, similar and adjacent, and hexagonal in form.

That they have contrived this in accordance with a certain geometrical forethought we may thus infer. They would necessarily think that the figures must all be adjacent one to another and have their sides common, in order that nothing else might fall into the interstices and so defile their work. Now there are only three rectilineal figures which would satisfy the condition, I mean regular figures which are equilateral and equiangular, inasmuch as irregular figures would be displeasing to the bees. For equilateral triangles and squares and hexagons can lie adjacent to one another and have their sides in common without irregular interstices. For the space about the same point can be filled by six equilateral triangles and six angles, of which each is $\frac{2}{3}$. right angle, or by four squares and four right angles, or by three hexagons and three angles of a hexagon, of which each is $1 \frac{1}{3}$. right angle. But three pentagons would not suffice to fill the space about the same point, and four would be more than sufficient; for three angles of the pentagon are less than four right angles (inasmuch
${ }^{1}$ raûra . . . à δ v́váov om. Hultsch.
ः"aข่тov́ spurium, nisi forte av่тิิv dedit scriptor "Hultsch.

GREEK MATHEMATICS

反v́vaтaı $\tau \dot{i} \theta \epsilon \sigma \theta \alpha \iota$ кат⿳亠 $\tau \grave{\alpha} s \pi \lambda \epsilon v \rho \grave{\alpha} s \dot{\alpha} \lambda \lambda \eta \eta^{\lambda} \lambda o \iota s \pi \alpha \rho \alpha-$

 $\delta \grave{\eta}$ oûv $\tau \rho \iota \omega ิ \nu \sigma \chi \eta \mu a ́ \tau \omega \nu \tau \omega ิ \nu \epsilon \epsilon \xi$ av́ $\tau \hat{\omega} \nu \delta \nu \nu a \mu \epsilon ́ \nu \omega \nu$

（j）Apparent Form of a Circle

Ibid．vi．48．90－91，ed．Hultsch 580．12－27
＂Ебтн ки́кגоs ó $\mathrm{AB} \mathrm{\Gamma}$ ，о̂̉ кє́vтроע тò E ，каi
 592

REVIVAL OF GEOMETRY: PAPPUS

as each angle is $1 \frac{1}{5}$. right angle), and four angles are greater than four right angles. Nor can three heptagons be placed about the same point so as to have their sides adjacent to each other; for three angles of a heptagon are greater than four right angles (inasmuch as each is $1 \frac{3}{7}$. right angle). And the same argument can be applied even more to polygons with a greater number of angles. There being, then, three figures capable by themselves of filling up the space around the same point, the triangle, the square and the hexagon, the bees in their wisdom chose for their work that which has the most angles, perceiving that it would hold more honey than either of the two others.

Bees, then, know just this fact which is useful to them, that the hexagon is greater than the square and the triangle and will hold more honey for the same expenditure of material in constructing each. But we, claiming a greater share in wisdom than the bees, will investigate a somewhat wider problem, namely that, of all equilateral and equiangular plane figures having an equal perimeter, that which has the greater number of angles is always greater, and the greatest of them all is the circle having its perimeter equal to them.

(j) Apparent Form of a Cincle

Ibid. vi. ${ }^{a}$ 48. 90-91, ed. Hultsch 580. 12-27
Let $A B \Gamma$ be a circle with centre E, and from E let EZ be drawn perpendicular to the plane of the circle;

[^128]
GREEK MATHEMATICS

 $\tau \epsilon \theta \hat{n}$ ĭбaı ai $\delta \iota a ́ \mu \epsilon \tau \rho \circ \iota$ фаívovтаь то仑̂ кúк入ои.

Tov̂тo $\delta \grave{\epsilon} \delta \hat{\eta} \lambda o \nu \cdot a ̈ \pi \alpha a \sigma \alpha \iota ~ \gamma \dot{\alpha} \rho$ a८ $\dot{\alpha} \pi \grave{o}$ то̂ $\mathrm{Z} \pi \rho o ̀ s$

${ }^{2} \mathrm{H}_{\chi} \theta \omega \sigma a \nu$ रà ρ סvóo $\delta \iota a ́ \mu \epsilon \tau \rho o \iota$ ai $\mathrm{A} \Gamma, \mathrm{B} \Delta$, каi $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{U} \chi \theta \omega \sigma a \nu$ ai $\mathrm{ZA}, \mathrm{ZB}, \mathrm{Z}, \mathrm{Z} \Delta$. $\epsilon \pi \epsilon i$ ai 594

REVIVAL OF GEOMETRY: PAPPUS

I say that, if the eye be placed on EZ, the diameters of the circle appear equal. ${ }^{\text {a }}$

This is obvious ; for all the straight lines falling from Z on the circumference of the circle are equal one to another and contain equal angles.

Now let EZ be not perpendicular to the plane of the circle, but equal to the radius of the circle ; I say that, if the cye be at the point Z, in this case also the diameters appear equal.

For let two diameters $\mathrm{A} \Gamma, \mathrm{B} \Delta$ be drawn, and let $Z A, Z B, Z \Gamma, Z \Delta$ be joined. Since the three straight

- As they will do if they subtend an equal angle at the eye.

GREEK MATHEMATICS

(k) The "Treasury of Analysis"

Ibid. vii., Praef. 1-3, ed. Hultsch 634. 3-636. 30

 $\epsilon \dot{\cup} \rho \epsilon \tau \iota \kappa \grave{\eta} \nu \tau \hat{\omega} \nu \pi \rho о \tau \epsilon \iota \nu \circ \mu \epsilon ́ \nu \omega \nu$ av่тoîs $\pi \rho \circ \beta \lambda \eta \mu \alpha ́ \tau \omega \nu$,

 'Apıбтаíov то仑 $\pi \rho \epsilon \sigma \beta v \tau \epsilon ́ \rho о v, \kappa \alpha \tau \dot{\alpha}$ àvá $\lambda v \sigma \iota \nu$ каi

1 èvavâa om. Hultsch.

REVIVAL OF GEOMETRY : PAPPUS

lines $\mathrm{EA}, \mathrm{E} \Gamma, \mathrm{EZ}$ are equal, therefore the angle $\mathrm{AZ} \Gamma$ is right. And by the same reasoning the angle BZ Δ is right ; therefore the diameters $A \Gamma, B \Delta$ appear equal. Similarly we may show that all are equal.
(k) The "Treasury of Analysis"

Ibid. vii., Preface 1-3, ed. Hultsch 634. 3-636. 30
The so-called Treasury of Analysis, my dear Hermodorus, is, in short, a special body of doctrine furnished for the use of those who, after going through the usual elements, wish to obtain power to solve problems set to them involving curves, ${ }^{a}$ and for this purpose only is it useful. It is the work of three men, Euclid the writer of the Elements, Apollonius of Perga and Aristaeus the elder, and proceeds by the method of analysis and synthesis.

Now analysis is a method of taking that which is sought as though it were admitted and passing from it through its consequences in order to something which is admitted as a result of synthesis; for in analysis we suppose that which is sought to be already done, and we inquire what it is from which this comes about, and again what is the antecedent cause of the latter, and so on until, by retracing our steps, we light upon something already known or ranking as a first principle ; and such a method we call analysis, as being a reverse solution.

But in synthesis, proceeding in the opposite way, we suppose to be already done that which was last reached in the analysis, and arranging in their natural

[^129]
GREEK MATHEMATICS

 Ђทточนє́vov катабкєvฑิs* каi тоиิто ка入оขิ $\mu \epsilon \nu$ $\boldsymbol{\sigma} v \nu \theta \epsilon \sigma \iota \nu$.

 $\pi \rho о \beta \lambda \eta \mu \alpha \tau \iota \kappa o ́ v . ~ \epsilon ่ \pi i ~ \mu \epsilon ่ \nu ~ o u ̂ v ~ \tau о \hat{v} ~ \theta \epsilon \omega \rho \eta \tau \iota \kappa о \hat{v}$

 Є̈ $\sigma \tau \alpha \iota$ каі то̀ $\pi \rho o ́ \beta \lambda \eta \mu \alpha$.

 ${ }^{1} \lambda \epsilon ́ \gamma \epsilon \iota \nu$ om. Hultsch.

REVIVAL OF GEOMETRY: PAPPUS

order as consequents what were formerly antccedents and linking them one with another, we finally arrive at the construction of what was sought ; and this we call synthesis.

Now analysis is of two kinds, one, whose object is to seek the truth, being called theoretical, and the other, whose object is to find something set for finding, being called problematical. In the theoretical kind we suppose the subject of the inquiry to exist and to be true, and then we pass through its consequences in order, as though they also were true and established by our hypothesis, to something which is admitted; then, if that which is admitted be true, that which is sought will also be true, and the proof will be the reverse of the analysis, but if we come upon something admitted to be false, that which is sought will also be false. In the problematical kind we suppose that which is set as already known, and then we pass through its consequences in order, as though they were true, up to something admitted; then, if what is admitted be possible and can be done, that is, if it be what the mathematicians call given, what was originally set will also be possible, and the proof will again be the reverse of the analysis, but if we come upon something admitted to be impossible, the problem will also be impossible.

So much for analysis and synthesis.
This is the order of the books in the aforesaid Treasury of Analysis. Euclid's Data, one book, Apollonius's Cutting-off of a Ratio, two books, Cuttingoff of an Area, two books, Determinate Section, two books, Contacts, two books, Euclid's Porisms, three books, Apollonius's Vergings, two books, his Plane Loci, two books, Conics, eight books, Aristaeus's

GREEK MATHEMATICS

$\mathrm{K} \omega \nu \iota \kappa \hat{\nu} \nu \bar{\eta}, \quad$ 'A $\rho \iota \sigma \tau \alpha i o v$ То́ $\pi \omega \nu \quad \sigma \tau \epsilon \rho \epsilon \hat{\omega} \nu \pi \epsilon \in \nu \tau \epsilon$,

 $\beta_{\iota} \beta \lambda_{\iota} \alpha \bar{\lambda} \bar{\gamma}$, $\hat{\omega} \nu \tau \alpha \grave{s} \pi \epsilon \rho \iota o \chi \alpha ̀ s ~ \mu \epsilon ́ \chi \rho \iota ~ \tau \hat{\omega} \nu$ 'A $\pi о \lambda \lambda \omega \nu i ́ o v$
 $\pi \lambda \hat{\eta} \theta$ os $\tau \hat{\omega} \nu \tau o ́ \pi \omega \nu$ каi $\tau \hat{\omega} \nu \delta \omega \rho \iota \sigma \mu \hat{\omega} \nu \kappa \alpha i \tau \hat{\omega} \nu$

 є̇vó $\mu \zeta \zeta \%$.
(l) Locus with Respect to Five or Six Lines

Ibid. vii. 38-40, ed. Hultsch 680. 2-30

 $\kappa а \tau \eta \gamma \mu \epsilon ́ \nu \omega \nu \quad \pi \epsilon \rho \iota \epsilon \chi о \mu \epsilon ́ \nu \circ v \quad \sigma \tau \epsilon \rho \epsilon \circ \hat{v} \pi \alpha \rho a \lambda \lambda \eta \lambda \epsilon-$ $\pi \iota \pi \epsilon ́ \delta o v ~ o ̀ \rho \theta o \gamma \omega v i o v ~ \pi \rho o ̀ s ~ \tau o ̀ ~ v i \pi o ̀ ~ \tau \omega ิ \nu ~ \lambda o \iota \pi \hat{\omega} \nu ~ \delta v ́ o ~$ $\kappa а \tau \eta \gamma \mu \in ́ v \omega \nu$ каi $\delta о \theta \epsilon i ́ \sigma \eta s$ тıvòs $\pi \epsilon \rho \iota \in \chi o ́ \mu \epsilon \nu о \nu$

[^130]
REVIVAL OF GEOMETRY: PAPPUS

Solid Loci, five books, Euclid's Surface Loci, two books, Eratosthenes' On Means, two books. In all there are thirty-three books, whose contents as far as Apollonius's Conics I have set out for your examination, including not only the number of the propositions, the conditions of possibility and the cases dealt with in each book, but also the lemmas which are required; indeed, I believe that I have not omitted any inquiry arising in the study of these books.

(l) Locus with Respect to Five or Six Lines a

Ibid. vii. 38-40, ed. Hultsch 680. 2-30
If from any point straight lines be drawn to meet at given angles five straight lines given in position, and the ratio be given between the volume of the rectangular parallelepiped contained by three of them to the volume of the rectangular parallelepiped contained by the remaining two and a given straight line, the point will lie on a curve given in position. If there be six straight lines, and the ratio be given between the volume of the aforesaid solid formed by three of them to the volume of the solid formed by the remaining three, the point will again lie on a curve given in position. If there be more than six straight lines, it is no longer permissible to say " if the ratio be given between some figure contained by four of them to some figure contained by the remainder," since no figure can be contained in more
account of the Conics of Apollonius, who had worked out the locus with respect to three or four lines. It was by reflection on this passage that Descartes evolved the system of co-ordinates described in his Géométrie.

GREEK MATHEMATICS

$\pi \epsilon \rho \iota \epsilon \chi o ́ \mu \epsilon \nu \circ \nu$ víò $\pi \lambda \epsilon \iota o ́ v \omega \nu$ そ̈ $\tau \rho \iota \omega ิ \nu \delta \iota \alpha \sigma \tau \alpha ́ \sigma \epsilon \omega \nu$.

 $\epsilon \dot{v} \theta \epsilon i ́ a s ~ \kappa а \tau \alpha \chi \theta \hat{\omega} \sigma \iota \nu ~ \epsilon \dot{v} \theta \epsilon i ̂ a \iota ~ \epsilon ̇ v ~ \delta \epsilon \delta o \mu \epsilon ́ v a \iota s ~ \gamma \omega \nu i ́ a \iota s, ~$
 $\mu i ́ a ~ к а \tau \eta \gamma \mu \epsilon ́ v \eta ~ \pi \rho o ̀ s ~ \mu i ́ a \nu ~ к а i ~ \epsilon ́ \tau \epsilon ́ \rho а ~ \pi \rho o ̀ s ~ є ́ \tau \epsilon ́ \rho a \nu, ~$

 єióéval.
602

REVIVAL OF GEOMETRY: PAPPUS

than three dimensions. It is true that some recent writers have agreed among themselves to use such expressions, ${ }^{a}$ but they have no clear meaning when they multiply the rectangle contained by these straight lines with the square on that or the rectangle contained by those. They might, however, have expressed such matters by means of the composition of ratios, and have given a general proof both for the aforesaid propositions and for further propositions after this manner : If from any point straight lines be drawn to meet at given angles straight lines given in position, and there be given the ratio compounded of that which one straight line so drawn bears to another, that which a second bears to a second, that which a third bears to a third, and that which the fourth bears to a given straight line-if there be seven, or, if there be eight, that which the fourth bears to the fourth-the point nill lie on a curve given in position; and similarly, however many the straight lines be, and whether odd or even. Though, as I said, these propositions follow the locus on four lines, [geometers] have by no means solved them to the extent that the curve can be recognized. ${ }^{\text {b }}$
a As Heron in his formula for the area of a triangle, given the sides (supra, pp. 476-477).
${ }^{b}$ The general proposition can thus be stated: If p_{1}, p_{2} $p_{3} \ldots p_{n}$ be the lengths of straight lines drawn to meet n given straight lines at given angles (where n is odd), and a be a given straight line, then if

$$
\frac{p_{1}}{p_{2}} \cdot \frac{p_{3}}{p_{4}} \ldots \frac{p_{n}}{a}=\lambda_{1}
$$

where λ is a constant, the point will lie on a curve given in position. This will also be true if n is even and

$$
\frac{p_{1}}{p_{2}} \cdot \frac{p_{3}}{p_{4}} \ldots \frac{p_{n}-1}{p_{n}}=\lambda
$$

GREEK MATHEMATICS

(m) Anticipation of Guldin's Theorem

Ibid. vii. 41-42, ed. Hultsch 680. 30-682. 20

 $\delta \epsilon i \xi \alpha{ }^{\prime} \gamma \epsilon \pi о \lambda \lambda \hat{\omega}$ крєíवбоva каi $\pi о \lambda \lambda \dot{\eta} \nu \pi \rho о \phi \epsilon \rho o ́-$
 $\phi \theta \epsilon \gamma \xi \dot{\alpha} \mu \epsilon \nu \circ \varsigma \hat{\omega} \delta \epsilon \quad \chi \omega \rho \iota \sigma \theta \hat{\omega}$ тô̂ $\lambda o ́ \gamma o v, \tau \alpha \hat{\tau} \tau \alpha$ $\delta \omega ́ \sigma \omega$ тaîS ảva $\gamma \nu o \hat{v} \sigma \iota \nu \cdot$ ó $\mu \grave{\epsilon} \nu \tau \hat{\omega} \nu \tau \epsilon \lambda \epsilon i \omega \nu \dot{\alpha} \mu \phi o \iota-$ $\sigma \tau \iota \kappa \hat{\omega} \nu$ 入óरos $\sigma v \nu \eta ิ \pi \tau \alpha \iota$ є̈к $\tau \epsilon \tau \hat{\omega} \nu$ ả $\mu \phi \circ \iota \sigma \mu a ́ \tau \omega \nu$

 ó $\delta \grave{\epsilon} \tau \hat{\omega} \nu \dot{\alpha} \tau \epsilon \lambda \hat{\omega} \nu{ }^{\prime} \kappa \kappa \tau \epsilon \tau \hat{\omega} \nu \dot{\alpha} \mu \phi o \iota \sigma \mu a ́ \tau \omega \nu$ каі $\tau \hat{\omega} \nu$
 ßарıкӑ $\sigma \eta \mu \epsilon i ̂ a, ~ o ̀ ~ \delta \grave{\epsilon} ~ \tau о v ́ \tau \omega \nu ~ \tau \hat{\omega} \nu \pi \epsilon \rho \iota \phi \epsilon \rho \epsilon \iota \hat{\omega} \nu$

 $\pi \rho o ̀ s ~ \tau o \imath ̂ s ~ a ̉ \xi o \sigma \iota \nu ~ a ̉ \mu \phi о \iota \sigma \tau \iota \kappa \omega ิ \nu, ~ \gamma \omega \nu \iota \omega ิ \nu . \quad \pi \epsilon \rho \iota-$

[^131]
REVIVAL OF GEOMETRY: PAPPUS

(m) Anticipation of Guldin's Theorem a

1bid. vii. 41-42, ed. Hultsch 680. 30-682. $20^{\text {b }}$
The men who study these matters are not of the same quality as the ancients and the best writers. Seeing that all geometers are occupied with the first principles of mathematics and the natural origin of the subject matter of investigation, and being ashamed to pursue such topics myself, I have proved propositions of much greater importance and utility . . . and in order not to make such a statement with empty hands, before leaving the argument I will give these enunciations to my readers. Figures generated by a complete revolution of a plane figure about an axis are in a ratio compounded (a) of the ratio [of the areas] of the figures, and (b) of the ratio of the straight lines similarly drann to ${ }^{c}$ the axes of rotation from the respective centres of gravity. Figures generated by incomplete revolutions are in a ratio compounded (a) of the ratio [of the areas] of the figures, and (b) of the ratio of the arcs described by the centres of gravity of the respective figures, the ratio of the arcs being itself compounded (1) of the ratio of the straight lines similarly drawn [from the respective centres of gravity to the axes of rotation] and (2) of the ratio of the angles contained about the axes of revolution by the extremities of these straight lines. ${ }^{\text {d }}$ These propositions, which are practi-
is impossible; I have drawn on the translations made by Halley (v. Papp. Coll., ed. Hultsch 683 n. 2) and Heath (H.G.M. ii. 402-403). The obscurity of the language is presumably the only reason why Hultsch brackets the passage, as he says: "exciderunt autem in eodem loco pauciora plurave genuina Pappi verba."

- i.e., drawn to meet at the same angles.
d The extremities are the centres of gravity.

GREEK MATHEMATICS

Є́ $\chi o v \sigma \iota ~ \delta \grave{\epsilon}$ av̂̃a८ ai $\pi \rho о \tau \alpha ́ \sigma \epsilon \iota s, \sigma \chi \epsilon \delta o ̀ v$ ov̉ $\sigma \alpha \iota \mu i ́ a$, $\pi \lambda \epsilon i \sigma \tau a$ ö ó ка каi та⿱亠тoîa $\theta \epsilon \omega \rho \eta ́ \mu a \tau \alpha ~ \gamma \rho a \mu \mu \hat{\omega} \nu$

 $\dot{\omega} s \kappa \alpha i ̀ \tau \dot{\alpha} \epsilon \grave{\epsilon} \tau \hat{\varphi} \delta \omega \delta \epsilon \kappa \alpha ́ \tau \omega \tau \hat{\omega} \nu \delta \epsilon \tau \hat{\omega} \nu \sigma \tau \circ _\chi \epsilon i \omega \nu$.

> (n) Lemmas to the Treatises
(i.) To the " Determinate Section" of Apollonius Ibid. vii. 115, ed. Hultsch, Prop. 61, 756. 28-760. 4
$\mathrm{T} \rho \iota \hat{\omega} \nu \delta o \theta \epsilon \iota \sigma \hat{\omega} \nu \quad \epsilon \dot{v} \theta \epsilon \iota \hat{\omega} \nu \tau \hat{\omega} \nu \mathrm{AB}, \mathrm{B}, \Gamma \Delta$,

 606

REVIVAL OF GEOMETRY: PAPPUS

cally one, include a large number of theorems of all sorts about curves, surfaces and solids, all of which are proved simultaneously by one demonstration, and include propositions never before proved as well as those already proved, such as those in the twelfth book of these elements. ${ }^{\boldsymbol{a}}$

(n) Lemmas to the Treatises ${ }^{8}$

(i.) To the " Determinate Section" of Apollonius

Ibid. vii. 115, ed. Hultsch, Prop. 61, 756. 28-760. 4
Given three straight lines $\mathrm{AB}, \mathrm{B} \Gamma, \Gamma \Delta,{ }^{\circ}$ if $\mathrm{AB} . \mathrm{B} \Delta$: $\mathrm{A} \Gamma . \Gamma \Delta=\mathrm{BE}^{2}: \mathrm{E}^{2}$, then the ratio $\mathrm{AE} . \mathrm{E} \Delta: \mathrm{BE} . \mathrm{E} \Gamma$

- If the passage be genuine, which there seems little reason to doubt, this is evidence that Pappus's work ran to twelve books at least.
b The greater part of Book vii. is devoted to lemmas required for the books in the Treasury of Analysis as far as Apollonius's Conics, with the exception of Euclid's Data and with the addition of two isolated lemmas to Euclid's SurfaceLoci. The lemmas are numerous and often highly interesting from the mathematical point of view. The two here cited are given only as samples of this important collection : the first lemma to the Surface-Loci, one of the two passages in Greek referring to the focus-directrix property of a conic, has already been given (vol. i. pp. 492-503).
- It is left to be understood that they are in one straight line $A \Delta$.

GREEK MATHEMATICS

 $\mathrm{AB}, \Gamma \Delta$.
$\Gamma \epsilon \gamma \rho a ́ \phi \theta \omega \pi \epsilon \rho i \quad \tau \eta ̀ \nu \mathrm{~A} \Delta$ кv́клоs, каi ${ }^{\eta} \chi \theta \omega \sigma \alpha \nu$

 $\mathrm{BZ} \pi \rho o ̀ s ~ \tau o ̀ ~ a ̉ \pi o ̀ ~ \Gamma H, ~ o v ̃ \tau \omega s ~ \tau o ̀ ~ a ̉ \pi o ̀ ~ B E ~ \pi \rho o ̀ s ~ \tau o ̀ ~$

 $\dot{\eta}, \Delta \mathrm{K}$. каi $\delta i a ̀ ~ \delta \grave{\eta}$ тò $\pi \rho о \gamma є \gamma \rho a \mu \mu \epsilon ́ \nu o \nu ~ \lambda \eta \eta^{\prime} \mu \mu \alpha$

[^132]
REVIVAL OF GEOMETRY: PAPPUS

is singular and a minimum ; and I say that this ratio is equal to $\mathrm{A} \Delta^{2}:(\sqrt{\mathrm{A} \mathrm{\Gamma} \cdot \mathrm{~B} \Delta}-\sqrt{\mathrm{AB} \cdot \Gamma} \Delta)^{2}$.

Let a circle be described about A Δ, and let BZ, ГH be drawn perpendicular [to $A \Delta$]. Then since

$$
\mathrm{AB} \cdot \mathrm{~B} \Delta: \mathrm{A} \Gamma \cdot \Gamma \Delta=\mathrm{BE}^{2}: \mathrm{E}^{2}, \quad[\text { ex hyp. }
$$

i.e.,
\therefore
$\begin{aligned} \mathrm{BZ}^{2}: \Gamma \mathrm{H}^{2}= & \mathrm{BE}^{2}: \mathrm{E} \Gamma^{2}, \\ & \text { [Eucl. x. 33, Lemma }\end{aligned}$ $\mathrm{BZ}: \Gamma \mathrm{H}=\mathrm{BE}: \mathrm{E} \Gamma$.
Therefore Z, E, H lie on a straight line. ${ }^{\text {a }}$ Let it be $Z E H$, and let НГ be produced to θ, and let $Z \Theta$ be joined and produced to K, and let ΔK be drawn perpendicular to it. Then by the lemma just proved [Lemma 19]

$$
\begin{aligned}
& \mathrm{A} \mathrm{\Gamma} \cdot \mathrm{~B} \Delta=\mathrm{ZK}^{2} \\
& \mathrm{AB} \cdot \Gamma \Delta=\theta \mathrm{K}^{2}
\end{aligned}
$$

[on taking the roots and] subtracting,

$$
[Z \mathrm{~K}-\theta \mathrm{K}=] Z \theta=\sqrt{\mathrm{A} \mathrm{\Gamma} \cdot \mathrm{~B} \Delta}-\sqrt{\mathrm{AB} \cdot \Gamma \Delta} .
$$

Let $Z \Lambda$ be drawn through the centre, and let $\theta \Lambda$ be joined. Then since the right angle $Z \theta \Lambda=$ the right angle EI'H, and the angle at $\Lambda=$ the angle at H, therefore the triangles $[\mathrm{Z} \theta \Lambda, \mathrm{E} \Gamma \mathrm{H}]$ are equiangular;

\therefore	$\Lambda Z: \theta Z=E H: E \Gamma$,
i.e.,	$\mathrm{A} \Delta: \mathrm{Z} \Theta=\mathrm{EH}: \mathrm{E} \Gamma$;
\therefore	$\mathrm{A} \Delta^{2}: \mathrm{Z}^{2}=\mathrm{EH}^{2}: \mathrm{E} \Gamma^{2}$
	$=\mathrm{HE} . \mathrm{EZ}: \mathrm{BE} . \mathrm{E} \Gamma^{\text {b }}$
	$=\mathrm{AE} . \mathrm{E} \Delta:$ В . ЕГ.

[Eucl. iii. 35
And [therefore] the ratio $\mathrm{AE} . \mathrm{E} \Delta: \mathrm{BE} . \mathrm{E} \Gamma$ is

[^133]
GREEK MATHEMATICS

 ő $\pi \epsilon \rho: \sim$

(ii.) To the "Porisms" of Euclid

Ibid. vii. 198, ed. Hultsch, Prop. 130, 872. 23-874. 27

 $\dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota \dot{\alpha} \tau \hat{\omega} \nu \Theta, \mathrm{H}, \mathrm{Z} \sigma \eta \mu \epsilon i \omega \omega \nu$. 610

REVIVAL OF GEOMETRY: PAPPUS

singular and a minimum, while [, as proved above,] $Z \theta=\sqrt{A \Gamma \cdot B \Delta}-\sqrt{A B \cdot \Gamma \Delta}, \quad$ so that the same singular and minimum ratio $=$

$$
\mathrm{A} \Delta^{2}:(\sqrt{\mathrm{A} \Gamma} \cdot \mathrm{~B} \Delta-\sqrt{\mathrm{A}]} \cdot \Gamma \Delta)^{\mathrm{a}} . \quad \text { Q.E.D. }{ }^{a}
$$

(ii.) To the "Porisms" of Euclid ${ }^{\text {b }}$

Ibid. vii. 198, ed. Hultsch, Prop. 130, 872. 23-874. 27

Let $\mathrm{AB} \mathrm{\Gamma} \triangle \mathrm{EZH} \theta \mathrm{K} \Lambda$ be a figure, ${ }^{\text {e }}$ and let $\mathrm{AZ} . \mathrm{B} \mathrm{\Gamma}$: $A B . \Gamma Z=A Z . \Delta E: A \Delta . E Z ;[I$ say $]$ that the line through the points $\theta, \mathrm{H}, \mathrm{Z}$ is a straight line.
 In all Pappus proves this property for three different positions of the points, and it supports the view (v. supra, p. $341 \mathrm{n} . a$) that Apollonius's work formed a complete treatise on involution.
b v. vol. i. pp. 478-485.

- Following Breton de Champ and Hultsch I reproduce the second of the eight figures in the mss., which vary according to the disposition of the points.

GREEK MATHEMATICS

 тò v́тò $\mathrm{AZ}, \Delta \mathrm{E}$, тovтє́ $\sigma \tau \iota \nu$ ผ́s $\dot{\eta} \mathrm{B} \mathrm{\Gamma} \pi \rho o ̀ s ~ \tau \grave{\nu} \nu$
 à $\lambda \lambda^{\prime}$ ó $\mu \grave{\epsilon} \nu \tau \eta \hat{s} \mathrm{~B} \mathrm{\Gamma} \pi \rho o ̀ s \tau \eta ̀ \nu \Delta \mathrm{E} \sigma v \nu \eta ิ \pi \tau \alpha \iota$ 入ózos, є́àv $\delta \iota \dot{\alpha} ~ \tau o \hat{v} \mathrm{~K} \tau \hat{\eta} \mathrm{AZ} \pi a \rho \alpha ́ \lambda \lambda \eta \lambda o s \dot{\alpha} \chi \theta \hat{\eta} \quad \dot{\eta} \mathrm{KM}$,

 $\tau \hat{\eta} s$ NK $\pi \rho o ̀ s ~ K M \cdot ~ \lambda o \iota \pi o ̀ \nu ~ a ̆ \rho a ~ o ́ ~ \tau \hat{\eta} s ~ \Gamma Z ~ \pi \rho o ̀ s ~$

 $\tau \grave{\eta} \nu \mathrm{HE} \cdot \epsilon \dot{v} \theta \epsilon i \hat{a}{ }_{\alpha} \rho \alpha \hat{\eta}^{\hat{\eta}} \delta i \dot{\alpha} \tau \hat{\omega} \nu \Theta, \mathrm{H}, \mathrm{Z}$.
 $\tau \grave{\eta} \nu \mathrm{E} \Xi, \kappa \alpha i \quad \epsilon \pi \iota \zeta \epsilon v \chi \theta \epsilon i ̂ \sigma \alpha$ $\dot{\eta} \Theta \mathrm{H} \epsilon \epsilon \kappa \beta \lambda \eta \theta \hat{\eta}$ є่ πi тò Ξ, ó $\mu \grave{\epsilon} \nu$ тท̂s KH тןòs тท̀̀ HE 入ózos ó aủтós

 $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \mathrm{E} \Xi ~ \mu \epsilon \tau \alpha \beta \alpha ́ \lambda \lambda \epsilon \tau \alpha \iota ~ \epsilon i ́ s ~ \tau o ̀ v ~ \tau \hat{\eta} s$ ӨГ $\pi \rho o ̀ s$

 $\epsilon \dot{v} \theta \epsilon \hat{\iota} \alpha \dot{\epsilon} \epsilon ่ \sigma \tau \iota \nu$.

[^134]
REVIVAL OF GEOMETRY: PAPPUS

Since $A Z . B \Gamma: A B . \Gamma Z=A Z . \Delta E: A \Delta . E Z$, permutando

$$
\begin{aligned}
& \mathrm{AZ} \cdot \mathrm{~B} \mathrm{\Gamma}: \mathrm{AZ} \cdot \Delta \mathrm{E}=\mathrm{AB} \cdot \Gamma Z: \mathrm{A} \Delta \cdot \mathrm{EZ}, \\
\text { i.e., } & \mathrm{B} \mathrm{\Gamma}: \Delta \mathrm{E}=\mathrm{AB} \cdot \Gamma \mathrm{C}: \mathrm{A} \Delta . \mathrm{EZ} .
\end{aligned}
$$

But, if KM be drawn through K parallel to $A Z$,

$$
\mathrm{B} \Gamma: \Delta \mathrm{E}=(\mathrm{B} \mathrm{\Gamma}: \mathrm{KN}) \cdot(\mathrm{KN}: \mathrm{KM})
$$

and

$$
A B \cdot \Gamma Z: A \Delta \cdot E Z=(B A: A \Delta) \cdot(\Gamma Z: Z E) .
$$

Let the equal ratios $\mathrm{BA}: \mathrm{A} \Delta$ and $\mathrm{NK}: \mathrm{KM}$ be eliminated;
then the remaining ratio
i.e., $\quad \Gamma Z: Z E=(\Theta \Gamma: K \theta) .(\mathrm{KH}: \mathrm{HE})$;
then shall the line through θ, H, Z be a straight line.
For if through E I draw E ${ }^{\prime}$ ' parallel to OI^{\prime}, and if $\theta \mathrm{H}$ be joined and produced to $\underset{\sim}{\boldsymbol{E}}$,
$\mathrm{KH}: \mathrm{HE}=\mathrm{K} \theta: \mathrm{E} \Xi$,
and $\quad(\Gamma \theta: \theta K) \cdot(\theta \mathrm{K}: \mathrm{E} \Xi)=\theta \Gamma: \mathrm{E} \Xi$,

$$
\Gamma Z: Z E=\Gamma \Theta: E \Xi ;
$$

and since $\Gamma \theta$ is parallel to $\mathrm{E} \exists$, the line through θ, Ξ, Z is a straight line (for this is obvious ${ }^{a}$), and therefore the line through $\theta, \mathrm{H}, \mathrm{Z}$ is a straight line. ${ }^{b}$
transversal cut pairs of opposite sides and the diagonals in the points $\mathrm{A}, \mathrm{Z}, \Delta, \mathrm{F}, \mathrm{B}, \mathrm{E}$, then $\mathrm{Br}: \Delta \mathrm{E}=\mathrm{AB} . \mathrm{FZ}: \mathrm{A} \Delta . \mathrm{EZ}$. This is one of the ways of expressing the proposition enunciated by Desargues: The three pairs of opposite sides of a complete quadrilateral are cut by any transversal in three pairs of conjugate points of an involution (v. L. Cremona, Elements of Projective Geometry, tr. by C. Leudesdorf, 1885, pp. 106-108). A number of special cases are also proved by Pappus.

GREEK MATHEMATICS

(o) Mechanics

Ibid. viii., Praef. 1-3, ed. Hultsch 1022. 3-1028. 3

入oүías ä $\pi \tau \epsilon \tau \alpha$. $\sigma \tau \alpha{ }^{\prime} \sigma \epsilon \omega s$ үà ρ каi форâs $\sigma \omega \mu a ́ \tau \omega \nu$

 $\dot{\alpha} \rho \iota \theta \mu \eta \tau \iota \kappa \eta ̂ s$ каi $\dot{\alpha} \sigma \tau \rho о \nu о \mu i \alpha s ~ к а і ~ \tau \hat{\omega} \nu ~ \phi v \sigma \iota \kappa \omega ิ \nu$

[^135]
REVIVAL OF GEOMETRY: PAPPUS

(o) Mechanics ${ }^{a}$

Ibid. viii., Preface 1-3, ed. Hultsch 1022. 3-1028. 3
The science of mechanics, my dear Hermodorus, has many important uses in practical life, and is held by philosophers to be worthy of the highest esteem, and is zealously studied by mathematicians, because it takes almost first place in dealing with the nature of the material elements of the universe. For it deals generally with the stability and movement of bodies [about their centres of gravity], ${ }^{b}$ and their motions in space, inquiring not only into the causes of those that move in virtue of their nature, but forcibly transferring [others] from their own places in a motion contrary to their nature ; and it contrives to do this by using theorems appropriate to the subject matter. The mechanicians of Heron's school ${ }^{c}$ say that mechanics can be divided into a theoretical and a manual part ; the theoretical part is composed of geometry, arithmetic, astronomy and physics, the manual of work in metals, architecture, carpentering and painting and anything involving skill with the hands. The man who had been trained from his youth in the aforesaid sciences as well as practised in the aforesaid arts, and in addition has a versatile mind, would be, they say, the best architect and inventor of mechanical devices. But as it is impossible for the same person to familiarize himself with such
number of interesting theoretical problems are solved in the course of the book, including the construction of a conic through five points (viii. 13-17, ed. Hultsch 1079. 30-1084. 2).
${ }^{6}$ It is made clear by Pappus later (vii., Praef. 5, ed. Hultsch 1030. 1-17) that фopó has this meaning.
${ }^{c}$ With Pappus, this is practically equivalent to Heron himself: $c f$. vol. i. p. 184 n. b.

GREEK MATHEMATICS

$\tau \epsilon \tau о \sigma о u ́ \tau \omega \nu \quad \pi \epsilon \rho \iota \gamma \epsilon \nu \epsilon \in \sigma \theta a \iota$ каi $\mu a \theta \epsilon i ̂ \nu$ ä $\mu \boldsymbol{\alpha}$ тàs $\pi \rho о є \iota \rho \eta \mu \epsilon ́ \nu a s \tau \epsilon ́ \chi \nu a s ~ \pi a \rho a \gamma \gamma \epsilon ́ \lambda \lambda$ дov $\tau \iota \tau \hat{\varphi} \tau \dot{\alpha} \mu \eta \chi \alpha-$

 є̈ка⿱二小а хрєíaıs．

Мá入ıoта $\delta \dot{\epsilon} \pi \alpha ́ \nu \tau \omega \nu$ àvaүкаьóтата८ $\tau \epsilon ́ \chi \nu a \iota ~ \tau v \gamma-$ χ व́vovaıv $\pi \rho o ̀ s ~ \tau \eta ̀ \nu ~ \tau o ̂ ̂ ~ \beta i o v ~ \chi \rho \epsilon i ́ a \nu ~[~ \mu \eta \chi а \nu \iota к \grave{\eta}$

 $\pi o ́ \lambda \epsilon \mu о \nu \quad \dot{\alpha} \nu a \gamma \kappa \alpha i ́ \omega \nu$ ，калоv $\mu \epsilon ́ v \omega \nu$ бє̀ каi av̉т $\omega \nu$

 Өav $\mu a \sigma \iota o v \rho \gamma o u ́ s, ~ \hat{\omega} \nu$ oi $\mu \epsilon ̀ \nu \delta_{\imath \alpha} \pi \nu \epsilon \nu \mu a ́ \tau \omega \nu$ фi入o－

${ }^{1} \mu \eta \chi \alpha \nu \iota \kappa \grave{\eta}$ ．．．$\dot{\alpha} \rho \chi \iota \tau \epsilon \kappa \tau 0 \nu \eta ิ s ~ o m . ~ H u l t s c h . ~$

[^136]
REVIVAL OF GEOMETRY: PAPPUS

mathematical studies and at the same time to learn the above-mentioned arts, they instruct a person wishing to undertake practical tasks in mechanics to use the resources given to him by actual experience in his special art.

Of all the [mechanical] arts the most necessary for the purposes of practical life are : (1) that of the makers of mechanical poners, ${ }^{a}$ they themselves being called mechanicians by the ancients-for they lift great weights by mechanical means to a height contrary to nature, moving them by a lesser force; (2) that of the makers of engines of war, they also being called mechanicians-for they hurl to a great distance weapons made of stone and iron and suchlike objects, by means of the instruments, known as catapults, constructed by them ; (3) in addition, that of the men who are properly called makers of engines -for by means of instruments for drawing water which they construct water is more easily raised from a great depth ; (4) the ancients also describe as mechanicians the wonder-workers, of whom some work by means of pneumatics, as Heron in his Pneumatica, ${ }^{\text {b }}$ some by using strings and ropes, thinking to imitate the movements of living things, as Heron in his Automata and Balancings, ${ }^{b}$ some by means of floating bodies, as Archimedes in his book On Floating Bodies, ${ }^{\text {c }}$ or by using water to tell the time, as Heron in his Hydria, ${ }^{d}$ which appears to have affinities with the

Belopoeĩca, ed. Schneider 84. 12, Greek Papyri in the British Museum iii. (ed. Kenyon and Bell) 1164 n. 8.

$$
{ }^{\circ} \text { v. supra, p. } 466 \text { n. a. v. supra, pp. 242-257. }
$$

* This work is mentioned in the Pneumatica, under the title $\Pi \epsilon \rho i \dot{v} \delta \rho i \omega \nu \dot{\omega} \rho о \sigma \kappa о \pi \epsilon i \omega \nu$, as having been in four books. Fragments are preserved in Proclus (Hypotyposis 4) and in Pappus's commentary on Book v. of Ptolemy's Syntaxis.

GREEK MATHEMATICS

 v̋ठazos.

 $\pi \hat{a} \sigma \iota \nu \hat{a} \nu \theta \rho \omega ́ \pi o \iota s$ vi $\pi \epsilon \rho \beta a \lambda \lambda o ́ v \tau \omega s$ ú $\mu \nu o v ́ \mu \epsilon \nu o s, \tau \hat{\omega} \nu$ тє троךүоv $\mu \epsilon ́ v \omega \nu \quad \gamma \in \omega \mu \epsilon \tau \rho \iota \kappa \eta ิ s$ каi $\dot{\alpha} \rho \iota \theta \mu \tau \iota \kappa \eta ิ s$
 $\sigma \pi o v \delta a i ́ \omega s ~ \sigma v \nu \epsilon ́ \gamma \rho a \phi \epsilon \nu \cdot$ o̊s фаivєтal тàs єip $\eta \mu \epsilon ́ v a s$

 $\pi \tau \epsilon \tau \alpha \iota, ~ \sigma \omega \mu a \tau о \pi о \iota \epsilon \grave{\nu} \pi \epsilon \phi \cup \kappa v i ̂ a ~ \pi о \lambda \lambda \alpha ̀ s ~ \tau \epsilon ́ \chi \nu a s$,
 $\tau \epsilon \chi \nu \hat{\nu} \nu$ ov̉ $\beta \lambda \alpha ́ \pi \tau \epsilon \tau \alpha \iota$ ठià $\tau 0 \hat{v}$ ф $\rho о \nu \tau i \zeta \epsilon \iota \nu$ ó $\rho \gamma \alpha \nu \iota \kappa \hat{\eta} s$
 $\gamma \epsilon \omega \mu$ оía каi $\gamma \nu \omega \mu о \nu \iota \kappa \hat{\eta}$ каi $\mu \eta \chi \alpha \nu \iota \kappa \hat{\eta}$ каі бкךขо-

${ }^{1}$ motєîv om. Hultsch.
${ }^{2} \mu \dot{\eta} \tau \eta \rho$. . . $\tau \iota$ om. Hultsch.

REVIVAL OF GEOMETRY: PAPPUS

science of sun-dials; (5) they also describe as mechanicians the makers of spheres, who know how to make models of the heavens, using the uniform circular motion of water.

Archimedes of Syracuse is acknowledged by some to have understood the cause and reason of all these arts; for he alone applied his versatile mind and inventive genius to all the purposes of ordinary life, as Geminus the mathematician says in his book On the Classification of Mathematics. ${ }^{a}$ Carpus of Antioch ${ }^{\text {b }}$ says somewhere that Archimedes of Syracuse wrote only one book on mechanics, that on the construction of spheres, ${ }^{c}$ not regarding any other matters of this sort as worth describing. Yet that remarkable man is universally honoured and held in esteem, so that his praises are still loudly sung by all men, but he himself on purpose took care to write as briefly as seemed possible on the most advanced parts of geometry and subjects connected with arithmetic; and he obviously had so much affection for these sciences that he allowed nothing extraneous to mingle with them. Carpus himself and certain others also applied geometry to some arts, and with reason; for geometry is in no way injured, but is capable of giving content to many arts by being associated with them, and, so far from being injured, it is obviously, while itself

- For Geminus and this work, v. supra, p. 370 n. c.
- Carpus has already been encountered (vol. i. p. 334) as the discoverer (according to Iamblichus) of a curve arising from a double motion which can be used for squaring the circle. He is several times mentioned by Proclus, but his date is uncertain.
- This work is not otherwise known.

GREEK MATHEMATICS

 $\delta \epsilon \delta \dot{\nu} \tau \omega \stackrel{v}{v} \pi{ }^{\prime} \alpha \cup \mathfrak{v} \tau \hat{\omega} \nu$.
a With the great figure of Pappus, these selections illustrating the history of Greek mathematics may appropriately come to an end. Mathematical works continued to be written in Greek almost to the dawn of the Renaissance, and

REVIVAL OF GEOMETRY: PAPPUS

advancing those arts, appropriately honoured and adorned by them. ${ }^{\text {a }}$
they serve to illustrate the continuity of Greek influence in the intellectual life of Europe. But, after Pappus, these works mainly take the form of comment on the classical treatises. Some, such as those of Proclus, Theon of Alexandria, and Eutocius of Ascalon have often been cited already, and others have been mentioned in the notes.

INDEX

This index does nol include references to critical notes nor to authors cited, for which the separate catalogue should be consulted. References to vol. i. are cited by the page only, those to vol. ii. by volume and page. The abbreviations "incl." ="including" and "esp." $=$ "especially" are occasionally used.

Abaeus, 35 and nn. b and c
Achilles and the Tortoise, 369-371
Adam, James: The Republic of Plato, 399 nn . a and c
Addition in Greek mathematics, 46-48
Adrastus, on the geometric mean, 125 n. a
Aeschylus, 258 n. a
Aëtius: Placita, 217 and n. c

Agorastes, character in Lucian's Auction of Souls, 91
Alexander Aphrodisiensis, 173, 236 n. a, 315
Alexander the Great, 155 n. $b, 175$

Algebra:
Geometrical algebra of Pythagoreans, 186-215
Pure determinate equations, ii. 525
Quadratic equations : geometrical solution by Pythagoreans, 186-215;
solutions by Heron, ii. 503-505 (incl. n. a); by Diophantus, ii. 527535 (esp. ii. 533 n. b); v. also Square root, extraction of
Simultaneous equations leading to a quadratic, ii. 537

Cubic equations: Archimedes, ii. 127-163 (incl. n. a) ; Diophantus, ii. 539-541; v. also Cube root
Indeterminate equations: Pythagorean and Platonic formulae for rightangled triangles, $90-95$; side- and diameter-numbers, 132-139; "bloom" of Thymaridas, 139-141: " cattle problem" of Archimedes, ii. 203-205; Heron, ii. 505-509 : Diophantus, ii. 541-551
Sums of squares, ii. 551559
Allman, J. G., his Greek

Geometry from Thales to Euclid, 237 n. b
Almagest : Arabic name for
Ptolemy's Syntaxis, ii. 409 n. b

Alphabet, Greek: use as numerals, 42-44
Ameristus, 147 and n. b
Amthor, A., on Archimedes' cattle problem, 17 n. c, ii. 205 n. b
Amyclas (recte Amyntas) of Heraclea, 153 and n. b
Amyntas: v. Amyclas
Analemma : of Ptolemy, 301
n. b, ii. $409 \mathrm{n} . b$; of Diodorus, 301 and n. b
Analysis: discussion by Pappus, ii. 597-599 ; applied by Eudoxus to theory of " the section," 153 and
n. $a ; v$. also Leodamas

Anatolius, bishop of Laodicea: on the meaning of the name mathematics, 3; on the Egyptian method of reckoning, 3 n. a, ii. 515517 ; the classification of mathematics, 19 and n. b; his relation to Diophantus, ii. 517 n. a
Anaxagoras: wrote on squaring of circle while in prison, 308, 149 n. d; character in Plato's Rivals, 149 n. f
Anchor-ring, v. Tore
Angle : angle in semi-circle, 167-169; mixed angles, 429 n. c; equality of rightangles, 443 and n. b
Anharmonic ratios, 485 n. 6

Anthemius of Tralles, ii. 357 n. a
Anticleides, 175
Antiphon, 311 and n. $a, 313$ and n. $a, 315$ and n. a, 317 n. a
Apollodorus the Calculator, 169 and n. a
A pollonius of Perga :
Life: ii. 277 (esp. n. a)-281
Works:
Conics: Relation to previous works, 487489 (incl. n. a), ii. 277281; scope of the work, ii. 281-285; terminology, ii. 285289, ii. 309 and n. a, ii. 317 and n. a, ii. 323; construction of the sections, ii. 289-305; fundamental properties, ii. 305-329-parabola, ii. 305-309, hyperbola, ii. 309-317, ii. 323-329, ellipse, ii. 317-323; transition to new diameter, ii. 329335 ; introduction of axes, ii. 289 n. a, ii. 331 n. a; generality of his methods, ii. 289 n. a; form of his proofs, ii. 289 n. a; contrast with Archimedes' treatment, ii. $323 a$, and termino$\log y$, ii. 283 n. a; his distinctive achievement to have based his treatment on the theory of applied

INDEX

areas, ii. 309 n. a; first to have recognized two branches of hyperbola, ii. 329 n. a; focus - directrix property not used, 495 n. a, ii. 281 n. a

On the Cutting-off of a Ratio, ii. 337-339; included in Treasury of Analysis, ii. 337; Halley's Latin translation, ii. 337 n. a
On the Cutting-off of an Area, ii. 339 and n. b; inchuded in Treasury of Analysis, ii. 337
On Determinate Section, ii. 339-341 (incl. n. a) ; included in Treasury of Analysis, ii. 337; lemma by Pappus, ii. 607-611
On Tangencies, ii. 341343 (incl. n. b) ; problem of three circles and Newton's solution, ii. 343 n. b; included in Treasury of Analysis, ii. 337
On Plane Loci, ii. 345 and n. c; included in Treasury of Analysis, ii. 337; reconstructions by Fermat, van Schooten and Simson, ii. 345 n . c

On Vergings, ii. 345-347 (incl. n. a) ; included in Treasury of Analysis, ii. 337 ; described the datum as the
assigned, ii. 349 ; restoration by Samuel Horsley, ii. 347 n. a On the Dodecahedron and the Icosahedron, ii. 349 General Treatise, ii. 349351 (incl. n. a)
On the Cochlias, ii. 351 ; " sister of the cochloid,' 335 and n. c On Unordered Irrationals, ii. 351-353 (incl. n. a)
Quick-deliverer (on the measurement of a circle), ii. 353 and nn. b, c
On the Burning Mirror, ii. 357 and n. b

Other mathematical achievements :
Two mean proportionals, 267 n. b
Continued multiplications, ii. 353-357
Astronomy, ii. 357 n. b
Otherwise mentioned: ii. 363
Application of Areas, 186215 ; explanation and history, 186-187; a Pythagorean discovery, 187; Euclid's theorems, 189215 ; equivalence to solution of quadratic equations, 195 n. $a, 197$ n. a, 211 n. $a, 215 \mathrm{n} . a$; possible use by Hippocrates, 245 n . a; use by Apollonius in his treatment of the conic sections, ii. 305-323 (esp. ii. 309 n. a)

INDEX

Approximations to $\pi, 321-$
333 (incl. n. a), ii. 353
Archibald, R. C., his
Euclid's Book on Divisions of Figures, 157 n. c
Archimedes
Life: A Syracusan, ii. 19 ; born about 287 b.c., ii. 19 and n. c; his mechanical devices used in the defence of Syracuse, ii. 19-21, ii. 25-31; his death at the hands of a Roman soldier in 212 в.c., ii. 23, ii. 33-35; his sayings, ii. 21, ii. 23, ii. 35 ; his contempt for the utilitarian, ii. 31, ii. 619 ; his request for a cylinder enclosing a sphere as a monument, ii. 33 and n. a; his absorption in his work, ii. $31-33$, ii. 37 ; his solution of the problem of the crown, ii. 37-39, ii. 251 n. a; his Doric dialect, ii. 21 and n. b, ii. 137

Works :
On the Sphere and Cylinder, ii. 41-127; preface, ii. 41-43; axioms, ii. 43-45 ; postulates, ii. 45-47 ; surface of cylinder, ii. 67-77; surface of cone, ii. 7781 ; surface of sphere, ii. 113-117; volume of sphere, ii. 119-127; trigonometrical equivalents, ii. 91 n. b, ii.

101 n. a, ii. 109 n. a; equivalence to integration, ii. 41 n. a, ii. $117 \mathrm{n} . \quad b$; problem leading to solution of cubic equation, ii. 127-163 (incl. n. a); cited by Zenodorus. ii. 393, ii. 395 ; Eutocius's commentaries, ii. 73 n. a, ii. 77 n. a, ii. 127 n. a, ii. $135-$ 163; otherwise mentioned, ii. 165 n. a
On Conoids and Spheroids, ii. 165-181 ; preface, ii. 165; lemmas, ii. 165-169; volume of segment of paraboloid of revolution, ii. 171-181; equivalence to integration, ii. 181 n. a

On Spirals, ii. 183-195 ; definitions, ii. 183185; fundamental property, ii. 185-187; vergings assumed, ii. 187-189 (incl. n. c), ii. 195 n. a; property of sub-tangent, ii. 191195, and comments of Pappus, Tannery and Heath, ii. 195 n. b; curve used to square the circle, 335 and n. b
On the Measurement of a Circle, 317-333; Eutocius's commentary, 323 n. a; cited by Zenodorıs, ii. 395 and n. a

INDEX

Quadrature of a Parabola, ii. 229-243; prefatory letter to Dositheus, ii. 229-233; first (mechanical) proof of area of parabolic segment, ii. 233239 ; equivalence to integrations, ii. 239 n. b; second (geometrical) proof, ii. 239243 ; otherwise mentioned, ii. 41 n. b, ii. 221 n. a, ii. 225 and n. b

Method, ii. 221-229; discovery by Heiberg, ii. $221 \mathrm{n} . b$; prefatory letter to Eratosthenes, ii. 221-223 ; mechanical proof of area of parabolic segment, ii. 223-229; gives lemocritus credit for finding volume of cone and pyramid, 229-231, 411 n. a
Sand-reckoner, ii. 199201 (incl. n. a)
Cattle Problem, 17 n. c, ii. 203-205 (incl. n. a)

On Plane Equilibriums, ii. 207-221; postulates, ii. 207-209; principle of lever, ii. 209-217; centre of gravity of parallelogram, ii. 217-221; of a triangle, ii. 227 and n. a

On Floating Bodies, ii. 243-257 ; discovery of

Greek text by Helberg, ii. 242 n. a; William of Moerbeke's Latin translation, ii. 242 n. a; postulates, ii. 243245 ; surface of fluid at rest, ii. 245-249; loss of weight of solid immersed in a fluid" Archimedes' principle," ii. 249-251; use of this principle to solve problem of crown, ii. 251 n. a; stability of paraboloid of revolution, ii. 253257 : Heath's tribute to Book ii., ii. 252 n. a
Liber Assumptorum, ii. 581 n. a
Other achievements :
Discovery of 13 semiregular solids, 217 n. a, ii. 195-197 (incl. n. b)

Circles inscribed in the ${ }_{\alpha}^{\alpha} \rho \beta \eta \lambda o s$, ii. 581 n. a
Solution of cubic equations, ii. 127-163 (incl. n. a)

Inequalities, ii. 165-169
Summation of series, ii. 165-169, ii. 241 and n. a
" Archimedes' Axiom," 321 n. $a, 411$ n. $a, 455$ n. a, ii. 47 and n. a, ii. 195 n. b, ii. 231

Otherwise mentioned :
Vitruvius on his proficiency in all branches of science, ii. 3 n. a;

Pappus's tribute to his versatility, ii. 619; his method of evaluating areas, ii. 585 n. a
Archytas, 5 n. a; on the branches of mathematics (Pythagorean quadrivium), 5 and n. b; on means, 113-115, 153 n. a; his proof that a superparticular ratio cannot be divided into equal parts, 131-133; Proclus's comments on his work in geometry, 151; his solution of the problem of two mean proportionals, 285289 ; his work in stereometry, 7 n. $a, 13$ n. b; his method of representing the sum of two numbers, 131 n. $\epsilon, 429$ n. c

Aristaeus : his five books of Solid Loci (conic sections), 487 and n. a, ii. 281 n. a, ii. 255 n. a; first demonstrated focus-directrix property, 495 n. a; his (?) Comparison of the Five Regular Solids, 487 n. b
Aristarchus of Samos, ii. 315; a pupil of Strato of Lampsacus, ii. 3 and n. a; his theory of the nature of light, ii. 3 ; his heliocentric hypothesis, ii. 3-5 (incl. n. b); on the sizes and distances of the sun and moon, ii. $3-15$; use of continued fractions (?), ii. 15 and n. b
Aristophanes: reference to
the squaring of the circle, 309 and n. a
Aristotle : use of term mathematics, 3 n. c, 401 n. a; did not know how to square the circle, 335 ; on first principles of mathematics, 419-423; on the infinite, 425-429; proofs differing from Euclid's, 419 n. $a, 429-431$; method of representing angles, 429 n. c; on the principle of the lever, 431-433; on the parallelogram of velocities, 433 ; irrationality of $\sqrt{ } 2$, 111; on odd, even and prime numbers, $75 \mathrm{n} . a$, 78 n. a; on oblong and square numbers, 95 and n. b; on Zeno's paradoxes of motion, $366-375$; on nature of geometrical proof, ii. 369
Aristoxenus: on Plato's lecture on the Good, 389391 ; his pupil Cleonides, $157 \mathrm{n} . \mathrm{c}$
Arithmetic:
Its place in the Pythagorean quadrivium, 5 and $\mathrm{n} . b$; in the education of Plato's Guardians, 7-9; in Plato's Laws, 21-23; in Anatolius and Geminus, 19 and n. b; difference from logistic, 7 and n. $a, 17-$ 19 (incl. n. b); Greek arithmetical notation and the chief arithmetical operations, 41-63

Pythagorean arithmetic: first principles, 67-71; classification of numbers, 73-75; perfect numbers, 75-87; figured numbers, $87-99$; some properties of numbersthe "sieve" of Eratosthenes, 101-103, divisibility of squares, 103105; a theorem about cube numbers, 105-107; a property of the pythmen, 107-109 ; irrationality of $\sqrt{2}, 111$; theory of proportion and means -arithmetic, geometric and harmonic means, 111-115, seven other means, 115-125, Pappus's equations between means, 125-129, Plato on means between two squares or two cubes, 129-131, Archytas's proof that a superparticular ratio cannot be divided into equal parts, 131-133
See also Theory of numbers; Algebra; Irrational, the ; Approximations to π; Inequalities
Arithmetica, v. Diophantus Armillary sphere, 229 n. a Arrow of Zeno, 367, 371
Astronony: a full notice excluded, x; identical with sphaeric in the Pythagorean quadrivium, 5 n. b; in the education of Plato's Guardians, 15 ; in Ana-
tolius and Geminus, 19 and n. b; Isocrates' views, 29 ; work of Thales, 147 n. a; of Pythagoras, 149 n. b; of Ecphantus, ii. 5 n. b; of Oenopides, 149 n. e; of Philippus of Opus, 155 n. a; of Eudoxus, 15 n. $a, 411-415$; of Heraclides of Pontus, 15 n. a, ii. $5 \mathrm{n} . b$; of Autolycus of Pitane and Euclid, 490 n. a; of Aristarchus of Samos, ii. 3-15; of Eratosthenes, ii. 261 n. a, ii. 263 and n. c, ii. 267-273; of Apollonius of Perga, ii. 277 n. a, ii. 357 n. b; of Posidonius, ii. 371 n. b; of Hypsicles, ii. 395-397 ; of Cleomedes, ii. 399-401 ; of Hipparchus, ii. 407 n. a, 414 n. a; of Menelaus, ii. 407 n. a; of Ptolemy, ii. 409 and n. b, ii. 447 ; of Pappus, ii. 593 n. a; knowledge of astronomy necessary for reading Plato, ii. 401
Athenaeus of Cyzicus, 153 and $n . e$
" Attic " numerals, 41-42
August, E. F., 397 n. a
Autolycus of Pitane, 491 n. a
Axioms and postulates: Aristotle's discussion, 419423: Euclid's postulates, 443 ; attempt to prove the parallel-postulate, ii. 367385 ; Archimedes' postulates in his work On the Sphere and Cylinder, ii.

INDEX

45-47, in his work $O n$ Plane Equilibriums, ii. 207-209, in his work On Floating Bodies, ii. 243245 (incl. n. a) ; "Archimedes' Axiom," 321 n. a, 411 n. $a, 455$ n. a, ii. 47 and n. a, ii. 231

Bachet, ii. 537 n. b
Barlaam, 14th century Calabrian monk: his formula for approximation to a square root, ii. 472 n. a
Bede, the Venerable, 31 n. c Bees, Pappus on their choice of shape for cell, ii. 589593
Benecke, A., his Ueber die Geometrische Hypothesis in Platons Menon, 397 n. a
Besthorn, R. O. : his edition of an-Nairizi's commentary on Euclid's Elements, 185 n. b
Björnbo, A. A., on Hippocrates' quadratures, 311 n. b

Blass, C.: his De Platone mathematico, 387 n. a
Boeckh, A., 221 n. a
Boethius, citation of Archytas's proof that a superparticular ratio cannot be divided into equal parts, 131-133
Breton de Champ, P., ii. 611 n. c
Bretschneider, C. A., his Die Geometrie und die Geometer vor Eukleides, 153 n. a

Brochard, V., on Zeno's paradoxes, 367 n. a
Bryson, attempt to square the circle, 315-317
Burnet, J., on the astronomy in Plato's Republic, 15 n. a Butcher, S. H., on the hypothesis in Plato's Meno, 397 n. a

Callimachus, ii. 261 and n. b Canonic, theory of musical intervals, 19 and n. b
Cantor, (s., 42
Carpus of Antioch, 335,ii. 619
Case ($\pi \tau \omega \sigma \iota s$), ii. 347
Casting out of nines, 107-109
Catasterismi, work by Eratosthenes, ii. 263 n. a
Catoptrics, v. Euclid: Works Cattle-problem, v. Archimedes: Works
Centre of gravity: Archimedes' postulates, ii. 209 ; of a lever, ii. 209-217; of a parallelogram, ii. 217221 ; of a triangle, ii. 217 n. b, ii. 227 and n. a; of a trapezium and parabolic segment, ii. 217 n. b; of a segment of a paraboloid, ii. 225

Chaldaeans, ii. 397 n. a
Chasles, M., 485 n. e, ii. 581 n. c

Chords, Table of : Hipparchus and Menelaus, ii. 407, ii. 409 and n. a; Ptolemy, ii. 443-445

Chrysippus, 229 n. a
Cicero : restored monument to Archimedes, ii. 33 n. a

INDEX

Circle:
Division into degrees, ii. 395-397
Squaring of the circle: Anaxagoras's work in prison, 309 ; a reference by Aristophanes, 309 ; approximation by polygons - Antiphon, 311315, Bryson, 315-317, Archimedes, 317-333; solutions by higher curves - Simplicius's summary, 335, the quadratrix, 337-347; closer approximations by Archimedes, 333 n. a, and Apollonius, ii. 353 ; Pappus's collection of solutions, ii. 581 n. b
Apparent form of circle, ii. 593-597

Cissoid, viii ; discovered by Diocles, 271 n. a, ii. 365 n. a; and by him used for finding two mean proportionals, 271-279
Cleanthes, ii. 5
Cleomedes : life and works, ii. 267 n. b, ii. 397 n. a; on the measurement of the earth, ii. 267-273; on paradoxical eclipses, ii. 397-401
Cleonides, 157 n. c
Cochlias, 335, ii. 351
Cochloids, 301 n. $a, 335$ and n. $c, 297$ n. c

Commandinus, his edition of Pappus's Collection. 499 n. a, ii. 581 n. c

Concentrio spheres, Eu-
doxus's theory of, 411415
Conchoid, 297, 301 n. a; used by Nicomedes to trisect an angle, 297-309
Cone: double cone defined by Apollonius, ii. 285-287; single cone defined, ii. 287 ; volume enunciated by Democritus, 229-231; and proved by Eudoxus, 229-231, 409-411; subcontrary section a circle, ii. 301 n. a

Conic sections: discovered by Menaechmus, 279-283 (incl. n. a), 297, ii. 281 n. a; originally called sections of a right-angled, acute-angled and obtuseangled cone, 283 n. a, ii. 279 ; by Apollonius renamed parabola, ellipse and hyperbola, 283 n. a; treatises written by Aristaeus and Euclid, 487 and n. a, ii. 255 I. a, ii. 281 n. a; " locus with respect to three or four lines," 487489 ; Euclid on generation of ellipse, 491 ; focusdirectrix property assumed by Euclid, 495 and n. a; terminology of Archimedes, ii. 281 n. a, ii. 283 n. a; area of parabolic segment found by Archimedes mechanically, ii. 223-227, ii. 233-239, geometrically, ii. 239-245; properties assumed by Archimedes, ii. 171, ii. 175 ,

INDEX

ii. 253, ii. 255 ; relation of Apollonius's treatise to previous works, ii. 277281 ; scope of his treatise, ii. 281-285 ; definitions, ii. 285-289; construction of the sections, ii. 289-305; fundamental properties, ii. 305-3 29 ; meaning of didmeter, ii. 287 ; ordinates, ii. 289 ; conjugate diameters, ii. 289 ; transition to new diameter, ii. 329335 ; principle axes, ii. 289 and n. a, ii. $331 \mathrm{n} . a$; conjugate axes, ii. 289 ; opposite branches of hyperbola, ii. 323-329 (incl. n. a); basis of Apollonius's treatment the application of areas, ii. 309 n. a; "figure" of a conic section, ii. 317 n . a; latus rectum, ii. 309 and n. a, ii. 317 and n. a; transverse side, ii. 317 and n. a; Cartesian equivalents, 283 n. a, ii. 323 n. a; use of conic sections to solve cubic equations-by Archimedes, ii. 137-159; by Dionysodorus and Diocles, ii. 163 n. a; to find two mean proportionals, 279-283; to trisect an angle, 357-363
Conon of Samos, ii. 35 n. b, ii. 229

Conversion, in geometry, 159 and n. a
Cube: one of five regular solids, 217, 223, 379, 467475 ; inscription in sphere
by Pappus, ii. 575 n. a; duplication of cube task set to Delians and Plato's advice sought, 257 ; a poetic version, 257-259; reduced to finding of two mean proportionals, 259 ; collection of solutions by Eutocius, 263 n. a; by Pappus, ii. 581 n. b
Cube root: ${ }^{3} \sqrt{100}$ found by Heron, 61-63; Heron's value for ${ }^{3} \sqrt{ } 97050,63$ n. a; approximations by Philon of Byzantium, 63 n. a
Cubic equations: c.e. arising out of Archimedes' D_{s} Sph. et Cyl., ii. 133 n. d; solved by Archimedes by use of conics, ii. 137-159 (esp. 141 n. a); also by Dionysodorus and Diocles, ii. 163 n. a; Archimedes able to find real roots of general cubic, ii. 163 n. a; cubic equation solved by Diophantus, ii. 539-541

Damianus of Larissa, ii. 497 n. a; his book On the Hypotheses in Optics, ii. 497; an abridgement of a larger work based on Euclid, ii. 497 n. a
Definitions: discussed by Plato, 393 ; by Aristotle, 423; Euclid's d., 67-71, 437-441, 445-453, 479; Archimedes' d., ii. 43-45, ii. 165, ii. 183-185 ; Apollonius's d., ii. 285-289;

INDEX

Heron'sd., ii. 467-471 : Diophantus's d., ii. 519-523
De Fortia D'Urban, Comte, his Traité d'Aristarque de Samos, ii. 15 n. b
Demel, Seth: his Platons Verhältnis zur Mathematik, 387 n. a
Demetrius of Alexandria, 349 and n. b
Democritus : life and works, $229 \mathrm{n} . a$; reflections on the indefinitely small, 229 ; enunciated formulae for volumes of cone and pyramid, 229-231, 411 n. a
De Morgan, 447 n. a
Descartes, system of co-ordinates conceived through study of Pappus, ii. 601 n. a
Dichotomy of Zeno, 369 and n. b

Diels, H.: his Die Fragmente der Vorsokratiker, xvi, 5, 73, 75, 113, 173, 217
Digamma: use as numeral, 43
Dimension, 85, ii. 411-413, ii. 515, ii. 601-603
Dinostratus, 153 and n. d
Diocles: his date, ii. 365 n. a; his discovery of the cissoid, viii, 270-279 ; his solution of a cubic equation, ii. 135, ii. 163 n. a

Diodorus of Alexandria : his Analemma, 301 and n. b
Diodorus Siculus: his account of the siege of Syracuse, ii. 23 and n. a
Dionysius, a friend of Heron, ii. 467

Dionysodorus : of Caunus?,
ii. 364 n. a; his solution of a cubic equation, ii. 135 , ii. 163 n. a; his book On the Spire, ii. 481
Diophantus of Alexandria : life, ii. 513 , ii. 517 n. b; on the unit, ii. 515 ; on the Egyptian method of reckoning, ii. 515; his Arithmetica, ii. 517 and n. b : his work (?) entitled Porisms, ii. 517 and n. c; his treatise On Polygonal Numbers, ii. 515, ii. 561 ; his contributions to alge-bra-notation, ii. 519-525; pure determinate equations, ii. 525; quadratic equations, ii. 527-535, esp. ii. 533; simultaneous equations leading to a quadratic, ii. 537 ; cubic equation, ii. 539-541 ; indeterminate analysis, 139 n. b; indcterminate equations of the second degree, ii. 541547 ; indeterminate equations of higher degree, ii. 549-551 ; theory of num-bers-sums of squares, ii. 551-559
Dioptra: ancient theodolite, ii. 467 ; Heron's book, ii. 485-489
Diorismi, 151 and n. $h, 395-$ 397, ii. 135 n. a
Division in Greek mathematics, 51-61
Division of Figures : Euclid's book, 157 n. c; a problem in Heron's Metrica, ii. 483-485

INDEX

Dodecahedron: one of the five regular solids, 217, 223 and n. b; Hippasus said to have been drowned for revealing it, 223-225; comparison with the icosahedron, ii. 349
Dositheus of Pelusium : works dedicated to him by Archimedes, ii. 41, ii. 229
Dyad, 75 and n. $a, 427$ n. b
Earth : circumference calculated by Posidonius, ii. 267 ; by Eratosthenes, ii. 267-273
Ecliptic, 149 n. e
Ecphantus, ii. 5 n. b
Eecke, Paul Ver, v. Ver Eecke
Egyptian method of reckoning, 17, 21, ii. 515-517
Egyptian papyri, calculations in, 45-47
Egyptian se-qet, 165 n. b
Elements : meaning of term, 151 n. c; Leon's collection, 151 ; Euclid's Elements, 157, 437-479; Elements of Conics, 487 n. a, ii. 151, ii. 153; Pappus's Collection so described, ii. 607
Eneström, G., 63 n. a
Enneagon : relation of side of enneagon to diameter $\left(=\sin 20^{\circ}\right)$, ii. 409 n. a
Epanthema, "bloom," of Thymaridas, 139-141
Equations: v. Cubic equations, Quadratic equations
Eratosthenes: Life and achievements, 156 and n. a,
ii. 261 and n. a; his work On Means included in the Treasury of Analysis, ii. 263 and n. d; discussed loci with reference to means, ii. 263 n. d, ii. 265 and n. a; his Platonicus, 257 and ii. 265-267 ; his sieve for finding successive odd numbers, 100-103; letter of pseudo - Eratosthenes to Ptolemy Euergetes, 257261 ; his solution of the problem of two mean proportionals, 291-297; his solution derided by Nicomedes, 297-299; his measurement of the circumference of the earth, ii. 267-273; Archimedes' Method dedicated to him, ii. 221; Cattle Problem said to have been sent through him, ii. 203; his teachers and pupils, ii. 261-263; his nicknames, ii. 261-263; his other works, ii. 263
Erycinus, Paradoxes of, ii. 571-573
Euclid :
Life: Born in time of Ptolemy I, 155 and n. b; not to be confused with Euclid of Megara, 155 n. b; his school at Alexandria, 437 n. a, 489 , ii. 35 n. b; told Ptolemy there was no royal road in geometry, 155 (but v. n. b) ; contempt for those who

INDEX

studied mathematics for monetary gain, 437
Works :
Elements : meaning of the name, $151 \mathrm{n} . c$, Proclus's notice, 155157 ; definitions, postulates and common notions, 437-445; " Pythagoras's Theorem," 179-185; application of areas, 187215 ; theory of proportion, 445-451; arithmetical definitions, 67-71 ; theory of incommensurables, 451-459 ; method of exhaustion, 459-465 ; regular solids, 467479 ; Proclus's commentary on Book i., 145 n. a; an-Nairizi's commentary, 185 n. b; Scholia, 215-217, 379, 409 ; T. L. Heath, The Thirteen Books of Euclid's Elements : v. Heath, T. L.: The Thirteen Books, etc.
Data: General character, 479 n. a; definitions, 479 ; included in Treasury of Analysis, 479 n. a, ii. 337 ; cited, ii. 455
Porisms : Proclus's notice, 481 ; included in Treasury of Analysis, 481 and n. c, ii. 337 ; Pappus's comprehensive enuncia-
tion, 481-483; developments in theory of conics, 487 n. a; modern reconstructions, $485 \mathrm{n} . e ;$ a lemma by Pappus, ii. 611-613
Conics: a compilation based on Aristaeus, ii. 281 n. a; Pappus on Apollonins's debt, 487-489 ; ellipse obtained as section of cone or cylinder by a plane not parallel to the base, 491 and n. b; focus-directrix property assumed without proof, $495 \mathrm{n} . a$; cited by Archimedes, ii. 225

Surface Loci: 399 n. a, $487 \mathrm{n} . a$; included in Treasury of Analy$s i s, 491$ and n. c; Pappus's lemmas, 363 n. $a, 493-503$

Optics: Euclid's text and Theon's recension, 503 and n. b, 157 and n. c; proof that $\tan \alpha: \tan \beta<\alpha: \beta$, 503-505
On Divisions of Figures: Proclus's notice, 157 ; Woepcke's discovery of Arabic text, 157 n. $c ;$ R. C. Archibald's restoration, 157 n. c; a medieval Latin translation (by Gherard of Cremona?),

INDEX

157 n. c: similarity of Book iii. of Heron's Metrics, ii. 485 n. a; division of a circle into three equal parts, ii. 485 n. a
Pseudaria: attributed to Euclid by Proclus, 161 and n. a
Catoptrics: attributed to Euclid by Proclus, 157 ; but not otherwise known, and possibly written by Theon of Alexandria, 157 n. c
Phenomena: astronomical treatise, 491 n. a
Sectio Canonis, musical treatise doubtfully attributed to Euclid, 157 n. c
Introductio IIarmonica, musical treatise hy Cleonides, wrongly attributed to Euclid, 157 n. c
Elements of Music : attributed to Euclid by Proclus, 157
Euclidean geometry, viii ; its nature defined in the postulates-space an infinite, homogencous continuum, 443 and nn. a, b, the parallel-postulate, 443 and n. c; Proclus's objection to the postulate, ii. 367-371; attempts to prove the postulate--Posidonius and Gemimus, ii. 371-373, Ptolemy, ii. 373383, Proclus, ii. 383-385 ;

Euclid's genius in making it a postulate, 443 n. c, ii. 367 n. a; non-Euclidean geometry, 443 n. c
Eudemus: pupil of Aristotle, 145 n. a, ii. 281 ; his History of Geometry, 145 n. a; his account of Hippocrates' quadrature of lunes, 235-253 ; on sum of angles of a triangle, 177179 ; attributed Eucl. xii. 2 to Hippocrates, 239, 459 n. a

Eudemus, correspondent of Apollonius: Conics dedicated to him, ii. 281
Eudoxus of Cnidos: Proclus's notice, 151-153 ; discovered three subcontrary means, 153; increased theorems about "the section," 153; established theory of proportion, 409 ; credited with discovery of three subcontrary means, 121 n. a; gave proofs of volume of pyramid and cone, 409-411 ; must have used " Axiom of Archimedes," 411 n. a, ii. 231 ; established method of exhausting an area by polygons, $411 \mathrm{n} . a$; his theory of concentric spheres to account for planetary motions, 411-415; Menaechmus his pupil, 153; his work continued by Hermotimus of Colophon, 153 ; otherwise mentioned, 319 n. c

INDEX

Eugenius Siculus, Admiral, translated Ptolemy's Optics into Latin, ii. 411 n. a
Euripides, 259 n. a
Eutocius: On Archimedes' Sphere and Cylinder, 263 nn. a and $b, 277$ n. a, 299 n. a, ii. $159 \mathrm{n} . a$, ii. 163 n. a, ii. 621 n. a; On A.'s Measurement of a Circle. 323 n. a
Exhaustion, method of : originated by Antiphon, $315 \mathrm{n} . a$; or possibly by Hippocrates, 411 n. a; established by Eudoxus, 315 n. $a, 411$ n. a; used to prove that circles are to one another as the squares on their diameters, 239 n. $b, 459-465$; used for approximating to area of circle, 313-315

Fermat: reconstruction of Apollonius's On Plane Loci, ii. 345 n. c; his notes on Diophantus, ii. 551 n. a; sums of squares, ii. 559 n. b

Fractions in Greek mathematics, 45

Geëponicus, Liber, ii. 467 n. a, ii. 505 n. b

Geminus : life and works, ii. $371 \mathrm{n} . c$; on the classification of curves, ii. 361363 , ii. $365 \mathrm{nn} . a$ and b; his attempt to prove the parallel-postulate, ii. 371 n. c

Geometric mean : v. Means
Geometry : origins of, 145 (incl. n. b)-146; Proclus's summary, 145-161 ; Plato on its nature, 9-11; included in theoretical part of mechanics by Heron, ii. 615 ; for detailed subjects v. Table of Contents
Gnomon: in sundials, 87 n. a, ii. 269-2\% 1 ; gnomons of dots in figured numbers, 87 n. $a, 93$ n. $a, 95$ and n. $b, 99$ and n. $a ;$ gnomon of a parallelogram, 193 and n. $b, 197$ n. a
Gow, J., A Short History of Greek Mathematics, 43 n. b Guldin, Paul, ii. 605 n. a
Guldin's Theorem, ii. 605 (incl. n. a)

Halley, E., 485 n. b, ii. 337 n. a, ii. 339 n. b

Harmonic mean : v. Means Heath, T. L. (later Sir Thomas) :
A History of Greek Mathematics, x, xvi, 5 n. b, 23 n. $a, 27 \mathrm{n} . c, 35 \mathrm{nn}$. a and $b, 43$ n. $b, 93$ n. a, 107 n. $a, 117$ n. $a, 139$ n. $b, 145 \mathrm{nn} . a$ and b, 153 n. $a, 155$ n. $b, 157$ n. $a, 165 \mathrm{nn} . a$ and b, 169 n. $a, 237$ n. $b, 247$ n. $a, 271$ n. $a, 311$ n. b, 315 n. $a, 337$ n. $a, 357$ n. $a, 457$ n. $a, 485$ n.e, ii. 163 n. a, ii. 253 n. a, ii. 273 n. c, ii. $341 \mathrm{n} . a$, ii. 343 n. b, ii. 347 n. a,

INDEX

ii. 351 n. a, ii. 357 n. a,
ii. 371 n. c, ii. 407 n. a,
ii. 467 n. a, ii. 489 n. a,
ii. 525 n. b, ii. 587 n. c, ii. 589 n. a, ii. 605 n. b

A Manual of Greek Mathematics, 181 n. a
The Thirteen Books of
Euclid's Elements, 67
n. $a, 71$ n. $b, 85$ n. $a, 155$
n. $b, 159$ n. $b, 167$ n. b, 181 n. $a, 195$ n. $a, 211$ n. $a, 215 \mathrm{n} . a, 43^{\prime \prime} \mathrm{nn} . a$ and $c, 441 \mathrm{n} . a, 447 \mathrm{n} . a$, 457 n. a, ii. 367 n. a
Aristarchus of Samos, 411 n. $b, 415$ n. c, ii. 3 n. a

The Works of Archimedes, 17 n. $c, 61$ n. $b, 323$ n. a, 351 n. $b, 493$ n. b, ii. 25 n. a, ii. 117 n. b, ii. 163 n. a, ii. 181 n. a, ii. 205 n. b
The Method, ii. 19 n. a Apollonius of Perga, ii. 281 n. a
Diophantus of Alexandria, 139 n. b, ii. 513 n. a, ii. 517 n. c, ii. 519 n. a, ii. 523 n. a, ii. 537 n. b

Greek Astronomy, 157 n. a, 411 n. b
Heiben, J. L., 333 n. a Heiberg, J. L., 19 n. c, 297 n. $a, 311$ n. $b, 487$ n. b, 503 n. b, ii. 81 n. a, ii. 85 n. a, ii. 89 n. a, ii. 159 n. a, ii. 173 n. a, ii. 221 n. b, ii. 243 n. a, ii. 285 n. a, ii. 353 n. c, ii. 357 n. a, ii. 466 n. a

Helicon of Cyzicus, 263 n. b
Hendecagon, ii. 409 n. a
Heraclides of Pontus, ii. 5 n. b
Hermodorus, correspondent of Pappus, ii. 597
Hermotimus of Colophon, 153 and n. e
Herodotus, on the abacus, 35
Heron of Alexandria:
Life: his date a disputed question, ii. 467 n. \boldsymbol{a}; described as " the father of the turbine," ii. 467 n. a

Works, ii. 467 n. a :
Definitions: based on Euclid, ii. 467; definition of a point, ii. 469 ; of a spire, ii. 469 ; his terminology different from Proclus's, ii. 471 n. a Metrica: discovery by R. Schöne and edited by his son H. Schöne, ii. 467 n. a; has preserved its original form more closely than Heron's other geometrical works, ii. 467 n. a; formula $\sqrt{ } s(s-a)(s-b)(s-c)$ for area of a triangle, ii. 471-477, ii. 603 n. a; formula for approximation to a square root, ii. 471472 (incl. n. a); volume of a spire, ii. 477-483; division of a circle into three equal parts, ii. 483-

INDEX

485; similarity between Book iii. and Euclid's book On Divisions of Figures, ii. 485 n. a; extraction of $a^{3} \sqrt{ } 100,60-$ 63 ; Archimedes' approximation to $\pi, 333$
Dioptra: the dioptra, an instrument like a theodolite, ii. 467 n. a; measurement of an irregular area, ii. 485489 ; problem of moving a given force by a given weight using an arrangement of toothed wheels, ii. 489-497; similar solutions found in the Mechanics and in Pappus, ii. 489 n. a; proof of formula for area of a triangle, ii. 477 n. a
Mcchanics: has survived in Arabic, ii. $488 \mathrm{n} . a$, and in a few fragments of the Greek, ii. 467 n. a; problems discussed, ii. 489 n. a
Geometrica: quadratic equations, ii. 503505; indeterminate analysis, ii. 505-509
Pneumatica, Automata, etc., ii. 467 n. a, ii. 617
Otherwise mentioned : his addition to "Pythagoras's Theorem," 181 n. a and $185 \mathrm{n} . b$; his
solution of the problem of two mean proportionals, 267-271; possible censure by Pappus, ii. 603 and n. a; on branches of mechanics, ii. 615

Hexagon, its use by bees, ii. 589-593
Hipparchus : life and achievements, ii. 407 n. a; founded the science of trigonometry, ii. 407 n. a; drew up a table of sines, ii. 407 and n. a; discovered precession of the equinoxes, ii. 407 n. a; his Commentary on the Phenomena of Eudoxus and Aratus, ii. 407 n. a, ii. 415 n. a
Hippasus, a Pythagorean: credited with discovery of means, $153 \mathrm{n} . a$; said to have been drowned at sea for revealing secret of inscribing a dodecahedron in a sphere, 223-225 (incl. n. a)
Hippias of Elis: life and achievements, 149 n. a; his praise of Ameristus, 149 ; discovered the quadratrix, 149 n. $a, 337$ n. a Hippocrates of Chios: life and achievements, 235; his quadrature of lunes, 235-253; the views of Aristotle and the commentators on his quadratures, 311 and n. b; first reduced the problem of doubling the cube to the

INDEX

problem of finding two mean proportionals, 253, 259 ; possibly able to solve a quadratic equation, 245 n. a; discovered that circles are to one another as the squares on their diameters, 239 and n. $b, 459$ n. a

Hippopede (" horse-fetter '), name given by Eudoxus to a curve, 415
Homer, 31 n. a
Horsley, S., ii. 347 n. a
Hultsch, F.: his edition of Pappus's Collection, ii. 565 n. a, ii. 581 n. c, ii. 605 n. b, ii. 611 n. c

Hypatia: daughter of Theon of Alexandria, $48 \mathrm{n} . a$; helped him in revision of commentary on Ptolemy, 48 n. a; her commentary on Apollonius's Conics, ii. 285 n. a; her commentary on Diophantus's Arithmetica, ii. 517 n. b
Hypotenuse: square on, 179185; parallelogram on, ii. 575-579

Hypsicles: date, ii. 397 n. a; his division of the circle into 360 degrees, ii. 395397 ; his continuation of Euclid's Elements, ii. 349 nn. a and c, ii. 397 n. a; his definition of a polygonal number, ii. 397 n. a, ii. 515 and n. b

Iamblichus: on squaring of the circle, 335 ; on the
" bloom" of Thymaridas, $139 \mathrm{n} . b$; on a property of the pythmen, 109 n. a
Icosahedron, 221 and n. © ii. 349

Incommensurable: v. Irrational
Indeterminate analysis : Pythagorean and Platonic formulae for right-angled triangles, $90-95$; side- and diameter - numbers, 133139; Archimedes' Cattle Problem, ii. 202-205; Heron's problems, ii. 505509 ; Diophantus's problems, ii. 541-551
Indian mathematics, 181 n. a Involution, ii. 341 n. a, ii. 611 n. a
Irrational: Pythagoreans and the irrational, 149 n. o, 215-217, 225 n. a; " irrational diameters," 133-137 (esp. n. a), 399 n. c; proof by Theodorus and Theaetetus of irrationality of $\sqrt{3}$, $\sqrt{5} \ldots \sqrt{17}, 381-383$; Plato on irrational numbers, 401-403; Aristotle's proof of irrationality of $\sqrt{\overline{2}}$, 111 ; Euclid's theory, 451459 ; Apollonius's theory of unordered irrationals, ii. 351

Isocrates: on mathematics in Greek education, 27-29
Isoperimetric figures, ii. 387395, ii. 589-593

Karpinski, L. C., 75 n. a

INDEX

Keil, 43 n. b
Kepler, his investigation of semi-regular solids, ii. 197 n. b; on planets, 411 n. b Koppa, used as numeral, 43 Kubitschek, 35 n. b

Laird, A. G., on Plato's nuptial number, 399 n. b
Larfeld, W., on Greek alphabet, 42 n. b
Lemmas: Pappus's collection, ii. 607 (incl. n. b) -613, ii. 565 n. a, 493-503; lemmas to Menelaus's Theorem, ii. 447-459
Leodamas of Thasos: Proclus's notice, 151 ; Plato said to have communicated method of analysis to him, 151 n. e
Leon: made collection of Elements, and discovered diorismi, 151 and n. h
Line: defined, 437 ; straight line, 439 and n. a; different species of curved lines ii. 361-363
"Linear" loci and problems, 349
" Linear" numbers, 87 n. a
Loci : line loci, surface loci, and solid loci, 491-493 (incl. n. a); Surface Loci of Euclid, 349 and n. a, 487 n. a, ii. 601 ; Solid Loci of Aristaeus, 487, ii. 601
Locus with respect to three or four lines, 487-489; with respect to five or six lines, ii. 601-603
Logistic, 7, 17-19

Loria, G.: his Le scienze esatte nell' antica Grecia, 47 n. $a, 109$ n. $a, 139$ n. b, 271 n. a
Lucian, 91 n. a
Mamercus, 147 n. b
Marinus, his commentary on Euclid's Data, ii. 349, ii. 565 n a
Mathematics, meaning of the term, 3, 401 n. a
Means: three I'ythagorean means - arithmetic, geometric, subcontrary, 111115 ; subcontrary renamed harmonic, 113 ; three subcontrary means added, 119-121 (incl. n. a) ; five further means discovered, 121-125; Pappus's equations between means, 125129 ; Plato on means between two squares or two cubes, 129-131; duplication of cube reduced to problem of two mean proportionals, 259 and n. b; solutions, 261-309 ; Eratosthenes' work On Me:ms, ii. 263 ; loci with reference to means, ii. 265 and n. a; representation of means by lines in a circle, ii. 569-571 (incl. n. a)
Mechanics: Pappus on branches of mechanics, ii. 615-621 ; principle of lever, 431-433, ii. 209-217; parallelogram of velocities, 433; centres of gravity, ii. 207221; five mechanical

INDEX

powers, ii. 489 n. a; Archimedes' mechanical inventions, ii. 19-31 ; movement of larger weight by smaller by use of engaging wheels, ii. 489-497: Plato's dislike of mechanical solutions, 263 n. b; Archimedes' preference for theoretical mathematies, ii. 31, ii. 619; pseudo-Aristotelian Mechanics, 431-433; Archimedes' On Plane Equilibriums, ii. 207-221; his mechanical method in mensuration, ii. 221-229, ii. 233-239 ; Heron's Me chanics, ii. 467 n. a, ii. 489 (incl. n. a) -497
Menaechmus: solution of problem of two mean proportionals, 261, 279-283; discovered the conic sections, 283 n. a, 297 and n. b, ii. 281 n. a
Menelaus of Alexandria: made an observation under Trajan, ii. 407 n. a; discovered a curve called "paradoxical," 348-349 (incl. n. c) ; his Sphaerica, ii. $407 \mathrm{n} . a$, ii. $463 \mathrm{n} . a$; drew up a table of sines, ii. 407 ; " Menelaus's Theorem," ii. 459-463
Mensuration : area of triangle given the sides, ii. 471-477; volume of spire, ii. 477-483; measurement of irregular area, ii. 485489 ; area of parabolic segment, ii. 223-229, ii. 243

Meton, 309 and n. a
Metrodorus, ii. 513 n. a
Minus, Diophantus's sign for, ii. 525
Moeris, 175
Multiplication in Greek mathematics, 48; Apollonius's continued multiplications, ii. 353-357
Music: theoretical music (canonic) included by Greeks in mathematics, x, 3 n. $b, 19$ n. b; full discussion excluded, x; included in Pythagorean quadrivium, 5 ; in Plato's curriculum for the Guardians, 17 ; popular music, 3, 19
Musical interval, 3 n. $b, 113$ n. $b, 175$

Myriad; notation, 44-45; orders and periods of myriads in Archimedes' notation, ii. 199-201

Nagl, A., 35 n. b
an-Nairīzi, Arabic commentator on Euclid's Elements, 185 n. b, ii. 467 n. a Neoclides, 151 and n. h
Nesselmann, G. F., his Die Algebra der Griechen, 139 n. $b, \mathrm{ii} .513$ n. a, ii. 517 n. b Newton, Sir Isaac, ii. 343 n. b Nicolas Rhabdas : v. Rhabdas
Nicomachus of Gerasa, 67 n . $b, 69 \mathrm{nn} . a$ and $c, 75 \mathrm{n} . a$, 79 n. $a, 81$ n. $a, 87$ n. $a, 95$ n. $b, 101$ n. $a, 103$ n. $a, 105$ n. $a, 107$ n. $a, 121$ n. a, 123 n. c

INDEX

Nicomedes: date, 297 n. c; his conchoid and its use for finding two mean proportionals, 297-309
Nix, L., ii. 285 n. a
Number : defined by Euclid, 67 ; by Nicomachus, 73; fundamental concepts, 67 71 ; Plato on nature of number, 7; his nuptial number, 399 ; on generation of numbers, 401-405; odd and even numbers, 67-69, 101, 391 ; prime numbers, 69,87 n. $a, 101-$ 103; classification of numbers, 71, 73-75; perfect numbers, $71,75-87$; figured numbers, 87-99; some properties of numbers, 101109 ; Diophantus on sums of squares, ii. 551-559; on polygonal numbers, ii. 515, ii. 561

Numerals, Greek, 41-45
" Oblong " numbers, 95 (incl. n. b)

Octads, in Archimedes' system of enumeration, ii. 199-201
Octahedron, one of the five regular solids, 217, 221 and n. d
Odd and even numbers: v. Number
Oenopides of Chios, 149 and n. c

Olympiodorus, proof of equality of angles of incidence and reflection, ii. 503 n. a

Optics: Euclid's treatise, 157 n. $c, 503$ n. b; his theorem about apparent sizes of equal magnitudes, 503-505 ; Ptolemy's treatise, ii. 411 and n. a, ii. 503 n. a; Heron's treatise, ii. 503 n. a; his proof of equality of angles of incidence and reflection, ii. 497-503; Damianus's treatise, ii. 497 n. a

Pamphila, 167-169 (incl. n. a)

Pappus of Alexandria:
Life : Suidas's notice, ii. 565-567; date, ii. 565 and n. a
Works:
Synagoge or Collection, 145 n. a, ii. 565 n. a; contents-Apollonius's continued nultiplications, ii. 353-357; problems and theorems, ii. 567-569; theory of means, ii. 569-571; equations between means, 125-129; paradoxes of Erycinus, ii. 571573 ; regular solids, ii. 573-575 ; extension of Pythagoras's theorem, ii. 575-579; circles inscribed in the ${ }^{\alpha} \rho \beta \eta \lambda o s$, ii. 579-581; duplication of the cube, 299-309; squaring of the circle, 337347; spiral on a
sphere, ii. 581-587; trisection of an angle, 347-363 ; isoperimetric figures, ii. 589-593; apparent form of a circle, ii. 593-597; " Treasury of Analysis," ii. 597, ii. 599601, 479 n. $a, 481$ n.., 491 n. c, ii. 263, ii. 337; on the works of Apollonius, ii. 337-317, 487-489; locus with respect to five or six lines, ii. 601-603 ; anticipation of Guldin's theorem, ii. 605-607; lemmas to the Determinate Section of Apollonius, ii. 607-611: to the Porisms of Euclid, ii. 611-613; to the Surface Loci of Euclid, 493-503; mcchanics, ii. 615-621
Commentary on Ptolemy's Syntaxis, 48, ii. 409 n. b, ii. 565-567, ii. 617 n. d

Commentary on Euclid's Elements, ii. 565 n. a, 457 n. a
Commentary on Analemma of Diodorus, 301, ii. 565 n. a
Other works, ii. 565 (incl. n. a), 567
Paradoxes of Erycinus, ii. 571-573
Parallelogram of velocities, 433
Parmenides, 367 n. a

Pebbles, used for calculating, 35
Pentagon, regular, 223 n. b
Pentagram, Pythagorean figure, 225 and n. b
"Perfect" numbers, 71, 75-87
Perseus: life, ii. 365 n. a; discovered spiric curves, ii. 363-265
Phenomena of Eudoxus and Aratus, ii. 407 n. a; for Euclid's Phenomena, v. Euclid: Works
Philippus of Opus (or Medma), 155 and n. a
Philolaus, ii. 3 n. a
Philon of Byzantium : solution of problem of two mean proportionals, 263 n. $a, 267$ n. b; cube root, 63 n. a
Philoponus, Joannes, on quadrature of lunes, 311 n. b

Planisphaerium: v. Ptolemy Plato: his inscription over the doors of the Academy, 387 and n. b; his belief that " God is for ever playing the geometer," 387 ; his dislike of mechanical constructions, 263 n. b, 389 ; his identification of the Good with the One, 389 ; his philosophy of mathematics, 391-393; the problem in the Meno, 395397 ; the Nuptial Number in the Republic, 399 ; on the generation of numbers, 401-405; his reported solution of the problem of

INDEX

two mean proportionals, 263-267; his application of analysis to theorems about "the section," 153 and n. a; his knowledge of side- and diameter-numbers, 137 n . $a, 399 \mathrm{n} . c$; his formula for the sides of right-angled triangles, 93-95, his definition of a point, ii. 469 n. a; his use of the term mathematics, 3 n. $c, 401$ n. a; his curriculum for the Guardians in the Republic, 7-17; Proclus's notice, 151; taught by Theodorus, 151 n. b; his pupils -Eudoxus, 151, Amyclas of Heraclea, 153, Menaechmus, 153, Philippus, 155; Euclid said to have been a Platonist, 157 and n. b; modern works on Plato's mathematics, 387 n . $a, 397$ n. $a, 399$ n. $a, 405$ n. b
" Platonic " figures: v. Regular Solids
" Playfair's Axiom," ii. 371 n. c

Plutarch: on parallel section of a cone, 229 and n. a; on Plato's mathematics, 263 n. b, 387-389
Point, 437, ii. 469 and n. a
Polygonal numbers, 95-99, ii. 396 n. a, ii. 515 , ii. 561

Pontus, paradoxical eclipses near, ii. 401
Porism, 479-481
Porisms: v. Euclid: Works, and Diophantus of Alexandria

Posidonius : life and works, ii. $371 \mathrm{n} . b$; on the size of the earth, his definition of parallels, ii. 371-373
Postulates: v. Axioms and postulates
Prime numbers: v. Number Problems: plane, solid, linear, 349 ; distinction between problems and theorems, ii. 567
Proclus: life, 145 n. a; his Commentary on Euclid i., 145 n. a; summary of history of geometry, 145-161; his Commentary on Plato's Republic, 399 n. a; his criticism of the parallelpostulate, ii. 367-371; his attempt to prove the paral-lel-postulate, ii. 383-385
Proof: Aristotle on rigour of geometrical proof, ii. 369 ; Archimedes on mechanical and geometrical proofs, ii. 221-223, ii. 229

Proportion: Pythagorean theory of proportion and means, 111-125, 149 ; Eudoxus's new treatment applicable to all magnitudes, 409 and 447 n. a; Euclid's treatment, 445-451; v. also Means
Psammites: v. Archimedes: Works: Sand-reckoner Psellus, Michael, 3 n. a, ii. 515 and n. c. ii. 517 n. a Pseudaria: v. Euclid: Works Pseudo-Eratosthenes, letter to Ptolemy Euergetes, 257261

INDEX

Ptolemies : Euergetes I, 257 and n. a, ii. 261 and n. c; Philopator, 257 n. a, 297 ; Epiphanes, ii. 261 and n. d
Ptolemy, Claudius : life and works, ii. 409 and n. b; his work On Balancings, ii. 411; his Optics, ii. 411 and n. a, ii. 503 n. a; his book On Dimension, ii. 411-413; his Syntaxis (Great Collection, Almagest), ii. 409 and n. b; commentaries by Pappus and Theon, 48 and n. a, ii. 409 n. b, ii. $565-567$, ii. 621 n. a; his construction of a table of sines, ii. 413-445; his Planisphaerium, ii. 565 n. a; his Analemma, 301 n. b, ii. 409 n. b; his value for $\sqrt{3}, 61 \mathrm{n} . b$; on the par-allel-postulate, ii. 373-383
Pyramid: v. Tetrahedron
Pythagoras: life, 149 n . $b, 173$; called geometry inquiry, 21 ; transformed study of mathematics into liberal education, 149 ; discovered theory of proportionals (possibly irrationals), 149 ; discovered musical intervals, 175 ; sacrificed an ox on making a discovery, 169 n. $a, 175$, 177, 185 ; " Pythagoras's Theorem," 179-185; extension by Pappus, ii. 575579
Pythagoreans:
General: use of name mathematics, 3 ; esoteric
members called mathematicians, 3 n. d; Archytas a Pythagorean, 5 ; Pythagorean quadrivium, 5 and n. $b, 7$ n. a; stereometrical investigations, 7 n. a; declared harmony and astronomy to be sister sciences, 17 and n. b; how geometry was divulged, 21; views on monad and undetermined dyad, 173; their motto, 175-177
Pythagorean arithmetic: first principles, 67-71; classification of numbers, 73-75; perfect numbers, 75-83 ; figured numbers, 87-99; some properties of numbers, 101-109; irrationality of $\sqrt{2}, 111$ n. a; ancient Pythagoreans recognized three means, 111115 ; later Pythagorean list of means, 115-125; Archytas's proof that a superparticular ratio cannot be divided into equal parts, 131-133; developed theory of sideand diameter-numbers, 137-139; the "bloom" of Thymaridas, 139-141
Pythagorean geometry: definition of point, ii. 469 ; sum of angles of a triangle, 177-179 ; " Py thagoras's Theorem," 179-185; application of areas, 187-215; the irra-

INDEX

tional, 215-217 ; the five regular solids, 217, 219 n. a, 223-224; Archytas's solution of the problem of two mean proportionals, 285-289; squaring of the circle, 335
Otherwise mentioned : 245 n. $a, 403 \mathrm{nn} . c$ and d

Quadratic equations: v. Algebra: Quadratic equations
Quadratrix: discovered by Hippias, 149 n. $a, 337 \mathrm{n}$. a; used to square the circle, 337-347
Quadrivium, Pythagorean, 5 and n. $b, 7$ n. a
Quinary system of numerals, 31 n. a

Reduction of a problem : Proclus's definition, 253; Hippocrates' reduction of problem of doubling the cube, 253 and n. a
Reflection, equality of angles of incidence and reflection, ii. 497-503

Regular solids (" Platonic" or " cosmic" figures): definition and origin, 217 n. a; Pythagorean treatment, 217-225: Speusippus's treatment, 77 ; work of Theaetetus, 379 and n. a; Plato's use in Timaeus, 219-223; Euclid's treatment, 157 and n. $b, 467-$ 479 : Pappus's treatment,
ii. 573-575 (esp. n. a) ; Eva Sachs' work, 217 n. a, 379 n. 0
Rhabdas, Nicolas Artavasdas, $31 \mathrm{n} . b$; his fingernotation, 31-35
Right - angled triangle : square on hypotenuse equal to sum of squares on other two sides, 179-185 : extension by Pappus, ii. 575-579
Roberts, Colin, 45 n. a
Robertson, D. S., ii. 479 n. a Rome, A., ii. 565 n. a
Ross, W. D., 95 n. $b, 367$ n. a, 371 n. b
Rudio, F., 237 n. 6
Saccheri, Euclides ab omni naevo rindicatus, 443 n. c
Sachs, Eva, Dis fünf Platonischen Körper, 217 n. a, 379 n. c; $D e$ Theaeteto Atheniensi, 379 n. a
Salaminian table, 35 n. b, 37 n. a
Sampi : use as numeral, 43 Schiaparelli, G., 411 n. b, $415 \mathrm{n} . \mathrm{c}$
Schöne, H.: discovered Heron's Metrica, ii. 467 n. a Schöne, R.: edited Heron's Metrica, ii. 467 n. a
Scopinas of Syracuse, ii. 3 n. a

Sectio canonis: v. Euclid: Works
Semi-circle: angle in semicircle a right angle, 167169
Serenus: commentary on

INDEX

Apollonius's Conics, ii. 285 n. a

Sexagesimal system of numerals, 48-49
" Side-" and " diameternumbers," 133-139, esp. 137 n. $a, 399 \mathrm{n} . c$
Simon, M., Euclid und die sechs planimetrischen Bücher, 447 n. a
Simplicius : on Hippocrates' quadratures, 235-253, 310 n. $b, 313$ n. a; on Ptolemy, ii. $409 \mathrm{n} . b$; on oblong and square numbers, 95 n. b; on planets, 411 and n. b
Simson, R., ii. 345 n. c
Sines, Table of: v. Chords, Table of
" Solid " loci and problems, 349, 487, ii. 601
" Solid " numbers : v. Number : Figured numbers
Solids, five regular solids : v. Regular solids
Solon, 37
Sophocles, ix, 259 n. a
Speusippus, 75-77, 81 n. a
Sphaeric (geometry of sphere), 5 and n. $b, 407$ n. a Sphaerica: work by Theodosius, ii. $407 \mathrm{n} . a$; by Menelaus, ii. 407 n. a, ii. 462 n. a
Spiral: of Archimedes, ii. 183-195, on a sphere, ii. 581-587
Spiric sections: \boldsymbol{v}. Tore
Sporus, on the quadratrix, 339-341
Square numbers: divisi-
bility of squares, 103-105; sums of squares, ii. 551-559
Square root, extraction of, 53-61
Squaring of the circle: v. Circle
Stadium of Zeno, 371-375
Star-pentagon: v. Pentagram
Stenzel, Julius: his Zahl und Gestalt bei Platon und Aristoteles, $405 \mathrm{n} . b$
Stigma : use as numeral, 43
Subcontrary mean, 113-117, 117-119, 123
Subcontrary section of cone, ii. 301 n. a

Surface Loci: v. Euclid: Works
Synthesis, Pappus's discussion, ii. 597-599

Table of Chords : v. Chords, Table of
Tannery, P., 77 n. b, 237 n. $b, 261$ n. $b, 335$ n. $d, 493$ n. b, ii. 513 n . a, ii. 517 nn . a and c, ii. 523 n. b, ii. 537 n. b

Taylor, A. E., 23 n. b, 27 n. $b, 115$ n. $b, 223$ n. $c, 405$ n. $b, 427$ n. b
'Tetrads, in Apollonius's system of enumeration, ii. 355 n. a

Tetrahedron (pyramid), 83, 217 n. $a, 221$ n. $c, 379$
Thales: life, 147 n. a; Proclus's notice, 147 ; discovered that circle is bisected by its diameter, 165 and $\mathrm{n} . a$; that the angles

INDEX

at the base of an isosceles triangle are equal, 165; that the vertical and opposite angles are equal, 167 ; that the angle in a semicircle is a right angle, 167169 ; his method of finding distance of ships at sea, 167 and n. b
Theaetetus: life, 379 and n. $a ;$ Proclus's notice, 151 ; Suidas's notice, 379 ; his work on the regular solids, 379 and n. c; on the irrational, 381-383
Themistius: on quadrature of lunes, $310 \mathrm{n} . b$; on oblong and square numbers, 95 n. b
Theodorus of Cyrene: life, 151 n. $b, 381$ n. b; Proclus's notice, 151; his proof of incommensurability of $\sqrt{3}, \sqrt{5} \ldots \sqrt{17}$, 381 and n. c
Theodosius: his Sphaerica, ii. 407 n. a

Theodosius I, Emperor, ii. 565 and n. a
Theon of Alexandria : flourished under Theodosius I, 48 n. a, ii. 565 ; father of Hypatia, 48; to be distinguished from Theon of Smyrna, ii. 401 n. a; his commentary on Ptolemy's Syntaxis, 48, ii. 409 n. b, ii. $565-567$, ii. 621 n. a

Theon of Smyrna: referred to as "Theon the mathematician " by Ptolemy, ii. 401; made observations
under Hadrian, ii. 401 and n. a; referred to as " the old Theon" by Theon of Alexandria, ii. 401 n. a
Theophrastus, 217 n. c
Theorems, distinction from problems, ii. 567
Theudius of Magnesia, 153
Thymaridas: an early Pythagorean, 139 n. b; his "bloom," 139-141; on prime numbers, 87 n. a
Timaeus of Locri, 219 n. a
Tore (also spire, or anchorring) : defined, ii. 365, ii. 469 ; used by Archytas for the doubling of the cube, 285-289 ; sections of (Perseus), ii. 363-365; volume of (Dionysodorus and Heron), ii. 477-483
Treasury of Analysis : v. Pappus: Works
Triangle: angles at base of an isosceles triangle equal, 165 and n. b; equality of triangles, 167 and n, b; sum of angles equal to two right angles, 177-179, ii. 279 ; " Pythagoras's Theorem," 179-185; extension by Pappus, ii. 575579 ; Heron's formula $\sqrt{s(s-a)(s-b)(s-c)}$ for area, ii. 471-477, ii. 603 n. a
Triangular numbers, 91-95
Trigonometry: origins in sphaeric, ii. 407 n. a; developed by Hipparchus and Menelaus, ii. 407 and n. a; their tables of sines, ii. 407 n. a, ii. 409 and n. a;

Ptolemy's terminology, ii. 421 n. a; his construction of a table of sines, ii. 413445 ; value of $\sin 18^{\circ}$ and $\sin 36^{\circ}$, ii. 415-419, ii. 421 n. a; of $\sin 60^{\circ}, \sin 90^{\circ}$, $\sin 120^{\circ}$, ii. 419-421 (incl. n. a) ; proof of $\sin ^{2} \theta+$ $\cos ^{2} \theta=1$, ii. 421-423; of " Ptolemy's Theorem," ii. 423-425; of $\sin (\theta-\phi)$ $=\sin \theta \cos \phi-\cos \theta \sin \phi$, ii. 425-427 ; of $\sin ^{2} \frac{1}{2} \theta=$ $\frac{1}{2}(1-\cos \theta)$, ii. 429-431; of $\cos (\theta+\phi)=\cos \theta \cos \phi-$ $\sin \theta \sin \phi$, ii. 431-435; a method of interpolation, ii. 435-443 ; the table of sines, ii. 443-445 ; "Menelaus's Theorem" and lemmas, ii. 447-463; proof that $\tan a: \tan \beta<\alpha: \beta$, 503-505 (incl. n. a), ii. 11 n. b, ii. 389 and n. b; proof that $\sin \alpha: \sin \beta<\alpha: \beta$, ii. 439 n. a
Trisection of an angle: a "solid " problem, 353 ; solution by means of a verging, 353-357 ; direct solution by means of conics, 357-363 ; Pappus's collection of solutions, ii. $581 \mathrm{n} . b$

Unit, 67, 73, 89-91, ii. 469, ii. 515

Usener, 237 n. b
Valckenaer, 259 n. a
Ver Eecke, Paul, ii. 19 n. a, ii. 285 n. a, ii. 513 n. a

Vergings: Definition, 244
n. \boldsymbol{a}; use by Hippocrates of Chios, 245 ; by Pappus, 355-357 ; by Archimedes, ii. 189 and n. c; Apollonius's treatise, ii. 345347, ii. 337
Vieta's expression for $2 / \pi$, 315 n. a
Vitruvius, ii. 3 n. a, ii. 251 n. a

Viviani's curve of double curvature, 349 n. c

Wescher, C., his Poliorcétique des Grecs, 267 n. b
Wilamowitz - Moellendorf, U. v., 257 n. a

William of Moerbeke; his trans. of Archimedes' On Floating Bodies, ii. 242 n. a, ii. 245 n. b : De Speculis, ii. 503 n. a

Xenocrates, 75, 425 n. b
Zeno of Elea: life, 367 n. a; a disciple of Parmenides, ii. $367 \mathrm{n} . a$; four arguments on motion, 367-375
Zenodorus, ii. 387 n. b; on isoperimetric figures, ii. 387-397
Zero, 47 and n. a
Zeuthen : Die Lehre von den Kegelschnitten im Altertum, 493 n. b, ii. 265 n . a, ii. 281 n. a; Geschichte der Mathematik, 245 n. a; otherwise mentioned, 381 n. $a, 505$ n. a

Zodiac circle: division into 360 parts, ii. 395-397; signs of Zodiac, 223 n. 0

LIST OF ANCIENT TEXTS CITED

The figures in parentheses give the page or pages in this edition where the passage is cited; in the case of vol. i. the reference to the volume is omitted.

Aëtius
Plac. i. 15. 5 (ii. 2) ; ii. 6. 5 (216)

Alexander Aphrodisiensis
In Aristot. Soph. El. 11, 171 b 17 (314-316)
Anatolius
Ap. Heron, Def., ed. Heiberg 160. 8-162. 2 (2)
Ap. Heron, Def., ed. Heiberg 164. 9-18 (18)
Anthology, Palatine
xiv. 126 (ii. 512)

Apollonius Paradoxographus
Mirab. 6 (172)
Apollonius of Perga
Conic. i., Praef., Def., 7-9, 11-14, 50 (ii. 280-334)
Archimedes
De Sph. et Cyl. i., Praef. (408-410); i., Praef., Def., Post., Props. 1, 2, 3, 5 , $8,9,10,12,13,14,16$, $21,23,24,25,28,29,30$, 33,34 (ii. $40-126$) ; ii. 4 (ii. 126-134)

Dim. Circ. (316-332)
D6 Con.et Sphaer., Praef., 650

Lemma ad Prop. 1, 1 , 21 (ii. 164-180)
De Lin. Spir., Def., 7, 14, 20 (ii. 182-194)
Quadr. Parab., Praef., 24 (ii. 228-242)

Aren. (ii. 2-4) ; 3 (ii. 198200)

De Plan. Aequil., Def., $6,7,9,10$ (ii. 206220)

De Corpor. Fluit. i., Post., 2, 7 (ii. 242-250) ; ii. 2 (ii. 252-256)

Meth., Praef. (228, ii. 220222), 1 (ii. 222-228)

Prob. Bov. (ii. 202-204)
Archytas
Ap. Porphyr. In Ptol. Harm., ed. Wallis, Opera Math. iii. 236.40-237. $\mathrm{I}_{\text {; }}$ Diels, Vors. ${ }^{4}$. 330. 26331.8 (4)

Ap. Porphyr. In Ptol. Iarm., ed. Wallis, Opera Math. iii. 267.39-268.9; Diels, ${ }^{\prime}$ 'ors. i^{4}. 334. 16335. 13 (112-114)

LIST OF ANCIENT TEXTS CITED

Ap. Boeth. De Inst. Mus. iii. 11 (130-132)

Aristarchus of Samos
De Mag. et Dist. Solis et Lunae, Post., 7, 13, 15 (ii. 4-14)

Aristophanes
Aves 1001-1005 (308)
Aristotle
Anal. Pr. i. 23, 41 a 26-27 (110); i. 24, 41 b $5-22$ (428-430)
Anal. Post. i. 10, 76 a 3077 a 2 (418-422)
Phys. A 2, 185 a 14-17 (310) ; Г 4, 203 a 13-15 (94); Г 6, 206 a 9-18 (424) ; Г 6, 206 b 3-12 (424-426) ; Γ 6, 206 b 27-207 a 7 (426-428);「 7, 207 b 27-34 (428); Z 9, 239 b 5-240 a 18 (366-374)
Met. A 5, 985 b 23-26 (172) ; A 5, 987 b 14-18 (394) ; Λ 8, 1073 b 17-32 (410-412)
Prob. xv. 3,910 b 23-911 a 1 (28-30)
[Aristotle]
Mech. 1, 848 b (432) ; 3, 850 a-b (430-432)
Aristoxenus
Harm. ii. ad init., ed. Macran 122. 3-16 (388390)

Bobiense,
Fragmentum Mathematicum
113. 28-33, ed. Belger, Hermes, xvi., 1881, 279280 (ii. 356)

Boethius
De Inst. Mus. iii. 11 (130132)

Cleomedes

De Motu Circ. i. 10. 52 (ii. 266-272) ; ii. 6 (ii. 396400)

Damianus
Opt. 14 (ii. 496)
Diodorus Siculus
i. 34. 2 (ii. 34) ; v. 37. 3 (ii. 34)

Diogenes Laertius
De Clar. Phil. Vitis i. 2425 (166-168), i. 59 (36); viii. 11-12 (174), viii. 2425 (172-174)
Diophantus of Alexandria
Arithmetica i., Praef. (ii. 516, ii. 518-524), i. 28 (ii. 536) ; ii. 8 (ii. $550-$ 552), ii. 20 (ii. 540-542); iv. 18 (ii. 548-550), iv. 29 (ii. $556-558$), iv. 32 (ii. $542-546$), iv. 39 (ii. 526534) ; v. 3 (ii. 516), v. 11 (ii. 552-556) ; vi. 17 (ii. 538-540)
De Polyg. Num., Praef. (ii. 560), 5 (ii. 514)

Euclid
Elem. i., Def., Post. et Comm. Notit. (436-444); i. $44(188-190)$; i. 47 (178-184) ; ii. 5 (192194) ; ii. 6 (196) ; ii. 11 (198-200); v., Def. (444450) ; vi. 27 (202-204);

LIST OF ANCIENT TEXTS CITED

vi. 28 (204-210) ; vi. 29 (210-214) ; vii., Def. (66$70)$; x., Def. (450-452) ; x. 1 (452-454) ; x. 111, coroll. (456-458) ; xii. 2 (458-464) ; xiii. 18 (466478)

Dat., Def. (478)
Opt. 8 (502-504)
Eutocius
In Archim. De Sph. et Cyl. ii., ed. Heiberg 54. 2656. 12, 56. 13-58. 14, 58. $15-16,66.8-70.5,78$. 13-80. 24, 84. 12-88. 2, 88. 3-96. 27, 98. 1-7 (256-298) ; 130. 17-150. 22 (ii. 134-162)
In Archim. Dim. Circ., ed. Heiberg 242 ad init.(48); 258. 16-22 (ii. 352)

In Apollon. Conic., ed. Heiberg 168. 5-170. 26 (ii. 276-280)

Herodotus
Histor. ii. 36. 4 (34)
Heron of Alexandria
Metrica i. 8 (ii. 470-476) ; i. 22 (ii. 406) ; ii. 13 (ii. 476-482) ; iii. 18 (ii. 482-484) ; iii. 20 (60-62)
Definitiones, ed. Heiberg 14. 1-24 (ii. 466-468); 60. 22-62. 9 (ii. 468-470); 160.8-162.2 (2); 164.918 (18)
Dioptra 23 (ii. 484-488); 36 (ii. 272) ; 37 (ii. 488496)

Geom. 21. 9-10, 24. 1, 24. 10 (ii. 502-508)

Hypsicles
[Euclid,] Elem. xiv, Eucl. ed. Heiberg v. 6. 19-8. 5 (ii. 348)

Iamblichus
De Vita Pyth. 18.85 (222224), 18. 89 (20)

In Nicom. Arith. Introd., ed. Pistelli 62. 10-18(98), 62. 18-63. 2 (138-140), 100. 19-25 (110-112), 103. 10-104.13(106-108)

Theol. Arith., ed. de Falco 82. 10-85. 23 (74-82)

Isocrates
Panathen. 26-28, 238 в-D (26-28)

Lucian
Vit. Auct. 4 (90)
Marinus
Comm. in Eucl. Dat., Eucl. ed. Heiberg vi. 234. 13-17 (ii. 348-350)

Michigan Papyri
No. 145, vol. iii. p. 36 (46)
Nicomachus
Arith. Introd. i. 7 (79-74), i. 13. 2-4, (100-102) ; ii. 7. 1-3 (86-90), ii. 12. 2-4 (94-98), ii. 20. 5 (104106), ii. 28. 3-11 (114124)

Olympiodorus
In Aristot. Metear. iii. 2 (ii. 496-502)

Pappus of Alexandria
Coll. ii. 25. 17-21 (ii. 352-

LIST OF ANCIENT TEXTS CITED

356) ; iii., Praef. 1 (ii. 566-568), ii. 9. 26 (266270), iii. 11. 28 (ii. 568570), iii. 18.48 (124-126), iii. 23. 57 (126-128), iii. 24. 58 (ii. 570-572), iii. 40. 75 (ii. 572-574) ; iv. 1. 1 (ii. $574-578$), iv. 14. 19 (ii. $578-580$), iv. 26. 39-28. 43 (298-308), iv. 30. 45-32. 50 (336-346), iv. 35. 53-56 (ii. 580-586),
iv. 36. 57-59 (346-354), iv. 38. 62 (354-356), iv. 43. 67-44. 68 (356-362) ; v., Praef. 1-3 (ii. 588592) ; vi. 48. 90-91 (ii. 592-596) ; vii., Praef. 1-3 (ii. 596-600), vii. 3 (ii. 336), vii. 5-6 (ii. 336-338), vii. 7 (ii. 388), vii. 9 (ii. 338-340), vii. 11 (ii. 340342), vii. 13-20 (480-484), vii. 21 (ii. 262-264), vii. 23 (ii. 344), vii. 27-98 (ii. 344-346), vii. 30-36 (486488), vii. 312-316 (492502) ; viii., Praef. 1-3 (ii. 614-620), viii. 11. 19 (ii. 34)

Philolaus
Ap. Stob. Ecl. i., proem. 3 (216); i. 21. 7c (72)

Philoponus
In Aristot. Phys. A 2 (234)

Plato
Meno 86 е-87 в (394-396)
Resp. vi. 510 c-w (390); vii. 525 a-530 D (6-16) ; viii. 546 b-D (398)

Tim. 31 в-32 в (128-130), 53 c-55 с (218-222)
Theaet. 147 D-148 в (380382)

Leg, vii. 817 E-820 D (2026)

Epin. 990 c-991 в (400404)

Ep. vii. 342 a-343 в (390394)

Plutarch
Non posse suav. viv. sec. Epic. 11, 1094 в (176)
Quaest. Conv. viii. 2. 1 (386-388) ; viii. 2. 4, 720 a (176)
De Facie in Orbe Lnnae 6, 922 f-923 A (ii. 4)
Marcellus xiv. 7-xvii. 7, xix. 4-6 (ii. 22-34)

De Comm. Notit. 39. 3, 1079 E (228)
De Exil. 17, 607e, f (308) Polybius

Histor. v. 26. 13 (36)
Porphyry
In Ptol. Harm., ed. Wallis, Opera Math. iii. 267. 39-268. 9 ; Diels, Vors. i^{4}. 334. 16-335. 13 (112114)

Proclus
In Eucl. i., ed. Friedlein 64. 16-70. 18 (144-160), 74. 23-24 (ii. 350), 84. 1323 (174-176), 105. 1-6 (ii. 350), 15\%. 10-13 (164), 176. 5-10 (ii. 370372), 212. 24-213. 11 (252), 250. 22-251. 2 (164-166), 299. 1-5 (166), 301. 21-302. 13 (478-

LIST OF ANCIENT TEXTS CITED

480), 352. 14-18 (166), 362. 12-363. 18 (ii. 372374), 365. 5-367. 27 (ii. 374-382), 371. 23-373. 2 (ii. 382-384), 379. 2-16 (176-178), 394.16-395. 2 (490-492), 419. 15-420. 12 (186-188), 422. 24423. 5 (316), 426. 6-14 (184), 428. 7-429. 8 (9094), 429. 9-15 (184)

In Plat. Remp., ed. Kroll ii. 27. 11-22 (136-138)

Psellus, Michael
A Letter, Dioph. ed. Tannery ii. 38. 22-39. 1 (ii. 514)

Ptolemy
Math. Syn. i. 10-11 (ii. 412444), i. 13 (ii. 446-462) ; x. 1 (ii. 400)

Rhabdas, Nicolas
Ed. Tannery, Notices et extraits, etc., xxxii. i. 146-152 (30-34)

Scholia
In Plat. Charm. 165 e (1618)

In Eucl. Elem. v. (408)
In Eucl. Elem. x. (214-216, 380, ii. 350-352)
In Eucl. Elem. xiii. (378)
Simplicius
In Aristot. De Caelo i. 1, 268 a 6 (ii. 410-412) ; i. 2, 269 a 9 (ii. 410); ii. 12, 293 a 4 (412-414); iv. 4, 311 b 1 (ii. 410)

In Aristot. Phys. A 2, 185 a 14 (312-314, 234-252)
In Aristot. Cat. 7 (334)
Stobaeus
Ecl. i., proem. 3 (216); i. 21. 7c (72); ii. 31. 114 (436)

Suidas
 262), అєaír \quad тоs (378), Пámтos (ii. 564-566), $\Pi \tau о \lambda \epsilon \mu a i ̂ o s($ ii. 408)

Themistius
In Aristot. Phys. A 2, 185 a 14 (310-312)
Theon of Alexandria
In Ptol. Math. Syn. i. 3, ed. Rome 354. 19-357.22 (ii. 386-395) ; i. 10, 451. 4-5 (ii. 406) ; i. 10, 453. 4-6 (ii. 514) ; i. 10, 461. 1-462. 17 (50-52); i. 10, 469. 16-473. 8 (5260)

Theon of Smyrna
Ed. Hiller 1. 1-2. 2 (ii. 400402), 2. 3-12 (256), 35. 17-36. 2 (102-104), 42. 10-44. 17 (132-136), 45. 9-46. 19 (84-86), 81. 17-82. 5 (ii. 264-266)
Tzetzes
Chil. ii. 103-144 (ii. 1822) ; viii. 972-973 (386)

Vitruvius
De Archit. ix., Praef. 9-12 (ii. $36-38$)

INDEX OF GREEK TERMS

The purpose of this index is to give one or more typical examples of the use of Greek mathematical terms occurring in these volumes. Nonmathematical words, and the non-mathematical uses of words, are ignored, except occasionally where they show derivation. Greek mathematical terminology may be further studied in the Index Graecitatis at the end of the third volume of Hultsch's edition of Pappus and in Heath's notcs and essays in his editions of Euclid, Archimedes and Apollonius. References to vol. i. are by page atone, to vol. ii. by volume and page. A few common abbreviations are used. Words should be sought under their principal part, but a few crossreferences are given for the less obvious.
 $\mu \grave{\eta} \boldsymbol{v}$ à $\gamma a \gamma \epsilon \hat{\nu} v$, to draw a straight line, 442 (Eucl.);
 tangents be drawn, ii. 64 (Archim.) ; тара́ $\lambda^{\prime} \eta \lambda о \stackrel{1}{ }$ $\eta \gamma \chi \theta \omega \quad \dot{\eta} \mathrm{AK}$, let AK be drawn parallel, ii. 312 (Apollon.)
$\dot{a} \gamma \epsilon \omega \mu \epsilon ́ \tau \rho \eta \tau о \varsigma, o v$, ignorant of or unversed in geometry, 386 (Tzetzes)
àठıápeтos, ov, undivided, indivisible, 366 (Aristot.)
ádúvaros, ov, impossible, 394 (Plat.), ii. 566 (Papp.) ; $\stackrel{\circ}{\circ} \pi \epsilon \rho \in \sigma \tau i \nu \dot{a} .$, often without є́atív, which is impossible, a favourite conclusion to reasoning based on false premises, ii. 122 (Archim.); oi $\delta \dot{a}$ тồ à. $\pi \in \rho a i v o \nu \tau \in S$,
those who argue per impossibile, 110 (Aristot.)
à $\theta \rho o \iota \sigma \mu a$, aros, ró, collection;
ă. фıлотєұvóтaто⿱, a collection most skilfully framed, 480 (Рарр.)
 ai Ai. кадоú $\mu \in \nu a \iota \mu \in ́ \theta o \delta o \iota$
 (Schol. in Plat. Charm.)
aipeur, to take away, subtract, ii. 506 (IIeron)
ait $\epsilon \mathrm{iv}$, to postulate, 442 (Eucl.), ii. 206 (Archim.) aï $\tau \eta \mu$, a 420 (Aristot.), 440 (Eucl.), ii. 366 (Procl.)
dкivクtos, ov, that cannot be moved, immobile, fixed, 394 (Aristot.), ii. 246 (Archim.) dкодоv θ єiv, to follow, ii. 414 (Ptol.)

INDEX OF GREEK TERMS

ג́кólouӨos，ov，following，con－ sequential，corresponding， ii． 580 （Papp．）；as subst．， áко́доиӨог，тó，consequence， ii． 566 （Рарр．）
áкодоú $\theta \omega$ s，adv．，consistently， consequentially，in turn， 458 （Eucl．），ii． 384 （Procl．）
$\dot{\alpha} \kappa о \nu \sigma \mu a \tau \iota \kappa$ ós，η^{\prime} ，óv，eager to hear；as subst．，d．，ó， hearer，exoteric member of Pythagorean school， 3 n．d （Iambl．）
$\dot{\alpha} \kappa \rho \iota \beta \eta^{\prime}$, ＇́s，exact，accurate， precise，ii． 414 （Ptol．）
ärpos，a，ov，at the farthest end，extreme，ii． 270 （Cleom．）；of extreme terms in a proportion， 122 （Nicom．）；д．．каі μ ย́боs入óoos，extreme and mean ratio， 472 （Eucl．），ii． 416 （Ptol．）
ä $\lambda \lambda \omega \mathrm{s}, \quad$ alternatively，$\quad 356$ （Papp．）
ädoyos，ov，irrational， 420 （Aristot．）， 452 （Eucl．）， 456 （Eucl．）；Sı’ à ${ }^{\prime}{ }^{\prime} \gamma o u$, by ir－ rational means， 388 （Plut．） а $\mu \beta \lambda \nu \gamma \omega ́ v$ гos，ov，obtuse－ angled；à．т $\rho \dot{\prime} \gamma \omega \nu 0 \nu, 440$ （Eucl．）；a．кผ̂vos，ii． 278 （Eutoc．）
 $\gamma \omega \nu i a$, often without $\gamma \omega v i a$, obtuse angle， 438 （Eucl．）
 mutable ；μ ovádos ả．oṽoŋs， ii． 514 （Dioph．）
à $\mu \dot{\chi} \times \nu \mathrm{os}, \quad$ ov，impracticable， 298 （Eutoc．）
ä μ фоьт μ а，атоs，то́，revolving figure，ii． 604 （Papp．）
à $\mu \phi$ фиттıкós，$\dot{\eta}^{\prime}$ ，óv，described by revolution；á $\mu \phi о \varsigma \tau \iota \kappa o ́ v$, tó，figure generated by re－ volution，ii． 604 （Papp．）
àvarpá $\phi \epsilon c$ ，to describe，con－ struct， 180 （Eucl．），ii． 68 （Archim．）
ảvaкגâv，to bend back，incline， reflect（of light），ii． 496 （Damian．）
ává $\lambda \lambda \eta \mu \mu$ ，aтos，тó，a repre－ sentation of the sphere of the heavens on a plane， analemma；title of work by Diodorus， 300 （Papp．） àvadoyía，$\dot{\eta}$, proportion， 446 （Eucl．）；кирíws à．каі $\pi \rho \omega ́ \tau \eta$ ，proportion par ex－ cellence and primary，i．e．， the geometric propor－ tion， 125 n．a ；$\sigma v \nu \in \chi \grave{\eta}$ à．， continued proportion， 262 （Eutoc．）
ávádoyov，adv．，proportion－ ally，but nearly always used adjectivally， 70 （Eucl．）， 446 （Eucl．）
áva入v́єıv，to solve by analysis， ii． 160 （Archim．）；ó áva－ λ до́ $\mu \epsilon v$ оs то́тоя，the Treas－ ury of Analysis，often without тóтоs，e．g．，ò ка入оú－
 （Papp．）
ávádvacs，$\epsilon \omega s, \dot{\eta}$, solution of a problem by analytical methods，analysis，ii． 596 （Рарр．）
àva入uтıкós，クُ，óv，analytical． 158 （Procl．）

INDEX OF GREEK TERMS

ג̀ $\downarrow \boldsymbol{\alpha} \epsilon ́ \tau \rho \eta \sigma \iota, \epsilon \omega \varsigma, \dot{\eta}$, measure－ ment；Пєрi $\tau \hat{\eta} s$ à．$\tau \hat{\eta} s \gamma \hat{\eta} s$ ， title of work by Eratos－ thenes，ii． 272 （Heron）
д́váта入ıv，adv．，in a reverse direction；transformation of a ratio known as in－ vertendo， 448 （Eucl．）
à $\nu a \pi о \delta є \iota \kappa \tau \iota \kappa \omega ิ s$ ，adv．，inde－ pendently of proof，ii． 370 （Procl．）
ávaoт $\rho \in ́ \phi \in \iota v$ ，to convert a ratio according to the rule of Eucl．v．Def． 16 ；${ }^{2} \nu \alpha-$ aт κ ध́ $\psi a \nu \tau \iota$, lit．to one who has converted，convertendo， 466 （Eucl．）
ávaбт $\quad{ }^{\circ} \phi \dot{\eta}, \dot{\eta}$ ，conversion of a ratio according to the rule of Eucl．v．Def．16， 448 （Eucl．）
àvє ${ }^{2} \alpha i ́ \sigma \eta \tau o s, ~ o \nu$, unperceived， imperceptible；hence， negligible，ii． 482 （Heron）
ä̀coos，ov，unequal， 444 （Eucl．），ii． 50 （Ar－ chim．）
àvıarával，to set up，erect，ii． 78 （Archim．）
 76 （Theol．Arith．）
ávтıкєîatal，to be opposite， 114 （Nicom．）；roнаі àvrı－ $\kappa є i \mu \epsilon \nu a$, opposite branches of a hyperbola，ii． 322 （Apollon．）
ávтıสáaхєเv，to be recipro－ cally proportional， 114 （Nicom．）；ảv $\iota \iota \pi \epsilon \pi o \nu \theta$ ótcos， adv．，reciprocally，ii． 208 （Archim．）
$\dot{a} v \tau \iota a \tau \rho o \phi \dot{\eta}, \quad \dot{\eta}, \quad$ conversion，
converse，ii． 140 （Archim． ap．Eutoc．）
d’ ${ }^{\prime}(\omega \mu a$ ，aros，тó，axiom，pos－ tulate，ii． 42 （Archim．）
$a ̈ \xi \omega \nu$ ，ovos，ó，axis；of a cone， ii． 286 （Apollon．）；of any plane curve，ii． 288 （Apol－ lon．）；of a conic section，
 conjugate axes，ii． 288 （Apollon．）
áóptatos，ov，without boun－ daries，undefined，$\pi \lambda \hat{\eta} \theta$ os $\mu o v a ́ \delta \omega \nu \quad$ á．，ii． 522 （Dioph．）
$\dot{\alpha} \pi a \gamma \omega \gamma \dot{\eta}, \dot{\eta}$ ，reduction of one problem or theorem to another， 252 （Procl．）
àmapтi弓єiv，to make even；oi àmapтiॅаvтєs à $\rho \iota \theta \mu \circ$ í，fac－ tors，ii． 506 （Heron）
 number of ways，ii．572 （Papp．）
äтєєроs，ov，infinite；as subst．，ä äє $\rho \circ \nu_{,}$to，the in－ finite， 424 （Aristot．）；eis äтєє $\rho \circ v$ ，to infinity，in－ definitely， 440 （Eucl．）； $\dot{\epsilon} \pi^{\prime} \dot{\alpha} .$, ii． 580 （Papp．）
áтєvavtiov，adv．used adjec－ tivally，opposite；ai á． $\pi \lambda \epsilon \cup \rho a i, 444$（Eucl．）
á $\epsilon \in ́ \chi \epsilon \tau \nu$ ，to be distant， 470 （Eucl．），ii． 6 （Aristarch．）
à $\pi \lambda$ avク＇s，ϵ＇́s，motionless，fixed， ii． 9 （Archim．）
à $\pi \lambda a \tau \eta{ }^{\prime} s, \epsilon^{\prime}$, without breadth， 436 （Eucl．）
$\dot{\alpha} \pi \lambda o ́ o s, \eta$ ，ov，contr．$\dot{\alpha} \pi \lambda o v$ ， $\hat{\eta}$ ，ôv，simple；a．$\gamma \rho \alpha \mu \mu \dot{\eta}$ ， ii． 360 （Procl．）

INDEX OF GREEK TERMS

$\dot{\alpha} \pi \lambda \omega \bar{s}$ ，simply，absolutely，424 （Aristot．）；generally，ii． 132 （Archim．）
ä $\pi \lambda \omega \sigma \iota s, \epsilon \omega s, \dot{\eta}$ ，simplifica－ tion，explanation ；＂A．є̇ $\pi \iota-$ фaveías apaípas，Explana－ tion of the Surface of a Sphere，title of work by l＇tolemy，ii． 408 （Suidas）
ảnó，from ；rò ánò $\tau \hat{\eta} s$ sıa－ $\mu \epsilon ́ \tau \rho o v \quad \tau \in \tau \rho a ́ \gamma \omega v o v$ ，the square on the diameter， 332 （Archim．）；тò àтò ГН（sc．$\tau \in \tau \rho a ́ \gamma \omega v o \nu)$ ，the square on $\Gamma \mathrm{H}, 268$ （Eutoc．）
àmoঠєıктıкós，ท́，óv，affording proof，demonstrative， 420 （Aristot．）， 158 （Procl．）
$\dot{\alpha} \pi о \delta \epsilon \iota \kappa т \iota \kappa \bar{\omega}, \quad$ adv．，theo－ retically， 260 （Eutoc．）
ȧпó $\delta \epsilon \iota \xi \iota, \quad \epsilon \omega \mathrm{s}, \dot{\eta}, \quad$ proof， dernonstration，ii． 42 （Ar－ chim．），ii． 566 （Papp．）
д̇токаөьтта́⿱亠䒑⿱二小，to re－establish， restore ；pass．，to return to an original position，ii． 182 （Archim．）
aंто入ацßávetv，to cut off；$\dot{\eta}$
 440 （Eucl．）
ảnopia，$\dot{\eta}$ ，difficulty，perplex－ ity， 256 （＇Theon Smyr．）
ảmóवтך μ ，aтоs，тó，distance， interral，ii． 6 （Aristarch．）
ảmотон $\eta, \dot{\eta}$ ，cutting off，sec－
 piov dтотон η ，works by Apollonius，ii． 598 （Papp．）；compound ir－ rational straight line equi－ ralent to binomial surd
with negative sign，apo－ tome， 456 （Eucl．）
${ }^{\alpha} \pi \tau \epsilon \iota \nu$ ，to fasten to；mid．， ämt $\pi \sigma \theta a \iota$ ，to be in contact， meet， 438 （Eucl．），ii． 106 （Archim．）
${ }^{\alpha} \rho a$ ，therefore，used for the steps in a proof， 180 （Eucl．）
ä β ŋो入os，ó，semicircular knife used by leather－workers，a geometrical figure used by Archimedes and Pappus， ii． 578 （Papp．）
dं $\rho \theta \mu \epsilon \hat{\imath}$ ，to number，reckon， enumerate，ii． 198 （Ar－ chim．）， 90 （Luc．）
ápı $\theta \mu \eta \tau \iota \kappa$ ós，$\dot{\eta}$ ，óv，of or for reckoning or numbers；$\dot{\boldsymbol{\eta}}$
 arithmetic， 6 （Plat．），420 （Aristot．）；$\dot{\eta}$ ápı $\theta \mu \eta \tau \iota \kappa \grave{\eta}$ $\mu \epsilon ́ \sigma \eta$（sc．єü $\theta \in \hat{i} a$ ），arith－ metic mean，ii． 568 （Рарр．）：ả．$\mu \in \sigma o ́ \tau \eta s, 110$ （Iambl．）
ápı $\theta \mu \eta \tau$ ós，η ，óv，that can be counted，numbered， 16 （Plat．）
ápı0 0 ós，ó，number， 6 （Plat．）， 66 （Eucl．）；$\pi \rho \omega \bar{\tau} о \boldsymbol{\alpha}$ a．， prime number， 68 （Eucl．）； $\pi \rho \hat{\omega} \tau о \iota, \delta \epsilon v i \tau \epsilon \rho \circ \iota, \tau \rho i ́ \tau o \iota, \tau \epsilon \in-$ тартоь，пє́ $\mu \pi \tau о \iota ~ а ., ~ п и т-~$ bers of the first，second， third，fourth，fifth order， ii．198－199（Archim．）；$\mu \eta^{-}$ $\lambda_{i}^{\prime} \tau \eta s$ á．，problem about a number of sheep， 16 （Schol． in Plat．Charm．）；фьaiín a．，problem about a num－ ber of bowls（ibid．）

INDEX OF GREEK TERMS

dé $\rho\left(\theta \mu о \sigma т o v_{2}\right.$ тó, fraction whose denominator is unknown $\left[\frac{1}{x}\right]$, ii. 522 (Dioph.)
á $\rho \mu o ́ \zeta \epsilon \tau$, to fit together, ii. 494 (Heron)
$\dot{\text { d } \rho \mu o v i a, ~} \dot{\eta}, \quad$ musical scale, octave, music, harmony, 404 (Plat.) ; used to denote a square and a rectangle, 398 (Plat.)
ג́pноvєкós, ${ }_{\eta}^{\prime}$, óv, skilled in music, musical; $\dot{\eta}$ d $\rho \mu$ o- $^{-}$ $\nu \iota \kappa \grave{\eta}$ (sc. є̇ $\pi \iota \sigma \tau \eta \mu \eta$), mathematical theory of music, harmonic ; $\grave{\eta}$ á $\mu о \nu \iota к \grave{\eta} \mu \epsilon ́ \sigma \eta$, harmonic mean, 112 (Iambl.)
á $\rho \tau \iota a ́ к เ s$, adv., an even number of times; à. äprios ápı$\theta \mu$ ós, even-times even number, 66 (Eucl.)
á $\rho \tau$ tó $\pi \lambda \in v \rho \circ \mathrm{~s}, \mathrm{ov}$, having an even number of sides;
 chim.)
äprios, a, ov, complete, perfect; ä. àpı θ ós, even number, 66 (Eucl.)
$\dot{\alpha} \rho \chi \chi^{\prime}, \dot{\eta}$, beginning or principle of a proof or science, 418 (Aristot.); beginning of the motion of a point describing a curve; á ρ.
 spiral, ii. 182
ápхєкós, $\boldsymbol{\eta}_{2}$ óv, principal, fundamental; a. av́ $\pi \tau \omega \mu a$, principal property of a curve, ii. 282 (Apollon.), 338 (Papp.)
ápхıкы́татоs, ov, sovereign,
fundamental; d. ${ }^{\circ} i \zeta \alpha, 90$ (Nicom.)
ápхıтєктоvıкós, \quad и, óv, of or for an architect ; $\dot{\eta} \dot{\alpha} \rho \chi \iota \tau \epsilon-$ ктоขєкŋ̀ (sc. тє́ $\chi \downarrow \eta)$, architecture, ii. 616 (Papp.)
ふं $\sigma \tau$ родоүía, $\dot{\eta}$, astronomy, 388 (Aristox.)
 378 (Suidas)
$\dot{\alpha} \sigma \tau \rho o v o \mu i a, \dot{\eta}$, astronomy, 14 (Plat.)
ácó $\mu \mu \epsilon \tau \rho \circ \mathrm{s}, \mathrm{ov}$, incommensurable, irrational, 110 (Aristot.), 452 (Eucl.), ii. 214 (Archim.)
á $\sigma u ́ \mu \pi \tau \omega \tau o s$, ov, not falling in, non-secant, asymptotic, ii. 374 (Procl.) ; $\dot{\alpha} . \quad$ ($s c$. $\gamma \rho a \mu \mu \dot{\eta}), \dot{\eta}$, asymptote, ii. 282 (Apollon.)
 ả. $\quad \gamma \rho a \mu \mu \eta^{\prime}, \quad$ ii. $\quad 360$ (Procl.)
äтактоs, ov, unordered; $\Pi_{\epsilon р і}$ äт. $\dot{\alpha} \lambda o ́ \gamma \omega \nu$, title of work by Apollonius, ii 350 (Procl.)
à $\tau \epsilon \lambda \lambda^{\prime} s, \epsilon^{\prime}$, incomplete; à. à $\mu ф о и \sigma т ь \alpha ́, ~ f i g u r e s ~ g e n e r-~$ ated by an incomplets revolution, ii. 604 (Papp.)
äтоцоs, ov, indivisible; äтоноь $\gamma \rho a \mu \mu \alpha i, 424$ (Aristot.)
äтотоs, ov, out of place, absurd; ö $\pi \epsilon \rho$ ä $\tau \circ \pi о \nu$, which is absurd, a favourite conclusion to a piece of reasoning based on a false premise, e.g. ii. 114 (Archim.)

INDEX OF GREEK TERMS

aủgáveıv，to increase，to multi－ ply；тpis av̉乡そ θ єis， 398 （Plat．）
$\alpha \tilde{\xi \eta} \eta, \dot{\eta}$, increase，dimension， 10 （Ilat．）
aű̧ךбぃs，$\epsilon \omega \varsigma, \dot{\eta}$ ，increase， multiplication， 398 （Plat．）
aúтó α тоs，${ }^{\circ} \eta$ ，ov，self－acting； Av̉тó $\mu \alpha \tau \alpha$ ，тó，title of work by Heron，ii． 616 （Papp．）
àфаıрєîv，to cut off，take away， subtract， 444 （Eucl．）
$\dot{\alpha} \phi \dot{\eta}, \dot{\eta}$ ，point of concourse of straight lines；point of contact of circles or of a straight line and a circle， ii． 64 （Archim．）
＇A ${ }^{2} \downarrow \lambda \lambda \epsilon u^{\prime}, ~ \epsilon \in \omega s, o \delta$, Achilles，the first of Zeno＇s four argu－ ments on motion， 368 （Aristot．）

Búpos，ous，Ion．єos，тó， Weight，esp．in a lever，ii． 206 （Archim．），or system of pulleys，ii． 490 （Heron）； тò кध́vт $\rho \circ \nu \tau 0 \hat{v} \beta$ ápєos，centre of gravity，ii． 208 （Ar－ chim．）
ßароидкòs（sc．$\mu \eta \chi \alpha \nu \eta$ ），$\dot{\eta}$ ， lifting－screw invented by Archimedes，title of work by Heron，ii． 489 n．a
$\beta a ́ \sigma \iota s, \epsilon \omega s, \dot{\eta}$, base ；of a geo－ metrical figure；of a tri－ angle， 318 （Archim．）；of a cube， 222 （Plat．）；of a cylinder，ii． 42 （Archim．）； of a cone，ii．30．4（Apol－ lon．）；of a segment of a sphere，ii． 40 （Archim．）

Гєw反aıoia， $\mathfrak{\eta}$, land dividing， mensuration，geodesy， 18 （Anatolius）
$\gamma \epsilon \omega \mu \epsilon \tau \rho \epsilon \hat{\nu}$ ，to measure，to practise geometry；$\dot{\alpha} \in i \quad \gamma$ ． тòv $\theta \epsilon$ о́v， 386 （Plat．）； $\gamma \epsilon \omega \mu \epsilon \tau \rho \circ \cup \mu \epsilon ́ v \eta$ є̇ $\pi \iota ф \dot{\alpha} \nu \epsilon \iota a$ ， geometric surface，292 （Eutoc．），$\quad \gamma \epsilon \omega \mu \epsilon \tau \rho о \nu \mu \epsilon ́ \vartheta \eta$ ảmóócı $\xi_{\iota s}$ ，geometric proof， ii． 228 （Archim．）
$\gamma \epsilon \omega \mu \epsilon ́ \tau \rho \eta s, \quad o v, \quad \delta, \quad$ land measurer，geometer， 258 （Eutoc．）
$\gamma \epsilon \omega \mu \in \tau$ pia，$\dot{\eta}$ ，land measure－ ment，geometry， 256 （Theon Smyr．）， 144 （Procl．）
$\gamma \epsilon \omega \mu \epsilon \tau \rho \iota \kappa o ́ s, \dot{\eta}$ ，óv，pertaining to geometry，geometrical， ii． 590 （Papp．）， 298 （Eutoc．）
$\gamma \epsilon \omega \mu \epsilon \tau \rho \kappa \hat{\omega} s$, adv．，geometric－ ally，ii． 222 （Archim．）
riveotal，to be brought about； $\gamma є \gamma \circ \nu \epsilon ́ \tau \omega$ ，let it be done，a formula used to open a piece of analysis；of curves，to be generated，ii． 468 （Heron）；to be brought about by multiplication， i．e．，the result（of the multiplication）is，ii． 480 （Heron）；$\tau \dot{o} \gamma \epsilon \nu o ́ \mu \epsilon \nu о \nu, \tau \grave{\alpha}$ $\gamma \in \nu o ́ \mu \in \nu a$ ，the product，ii． 482 （Heron）
$\gamma \lambda \omega \sigma \sigma$ о́ко $о$ ，то́，chest，ii． 490 （Рарр．）
$\gamma \nu \omega \mu$ огікós，η^{η} ，óv，of or con－ cerning sun－dials，ii． 616 （Papp．）
$\gamma \nu \dot{\mu} \mu \omega \nu$ ，ovos，ó，carpenter＇s

INDEX OF GREEK TERMS

square；pointer of a sun－ dial，ii． 268 （Cleom．）； geometrical figure known as gnomon，number added to a figured number to get the next number， 98 （Iambl．）
रрацнй,$\dot{\eta}$, line，curve， 436 （Eucl．）；$\epsilon \dot{v} \theta \epsilon \hat{i} a \quad \gamma$ ．（often without γ ．），straight line， 438 （Eucl．）；є́к $\tau \hat{\omega} \nu \boldsymbol{\nu} \boldsymbol{\gamma} \alpha \mu-$ $\mu \hat{\omega} \nu$ ，rigorous proof by geometrical arguments，ii． 412 （Ptol．）
драццкко́s，$\dot{\eta}$ ，о́v，linear， 348 （Papp．）
$\gamma \rho a ́ \phi \epsilon \iota \nu$, to describe， 442 （Eucl．），ii． 582 （Papp．）， 298 （Eutoc．）；to prove， 380 （Plat．）， 260 （Eutoc．）
roa $\boldsymbol{\eta}^{\prime}$ ，$\dot{\eta}$ ，description，ac－ count， 260 （Eutoc．）；writ－ ing，treatise， 260 （Eutoc．） $\gamma \omega v i a, \dot{\eta}$ ，angle ；$\grave{\epsilon} \pi i \pi \epsilon \delta o s \gamma .$, plane angle（presumably including angles formed by curves）， 438 （Eucl．）； $\epsilon \dot{v} \theta \dot{v} \gamma \rho a \mu \mu o s \quad \gamma$ ．，rectilin－ eal angle（formed by straight lines）， 438 （Eucl．）； ó $\theta \dot{\eta}, \quad \dot{\alpha} \mu \beta \lambda \epsilon \hat{i} a, \quad \grave{o} \xi \epsilon i \hat{a} \quad \gamma .$, right，obtuse，acute angle， 4.40 （Eucl．）
 $\gamma \grave{\alpha} \rho \tau 0 \hat{v} \tau 0$ ，for this has been proved，ii． 220 （Archim．）； $\delta \epsilon \iota \kappa \tau \epsilon \in о \nu$ ötı，it is required to prove that，ii． 168 （Archim．）
$\delta \in \hat{i} v$ ，to be necessary，to be required；δ éov $\epsilon \sigma \tau \omega$ ，let it
be required；о̊тєр $\boldsymbol{\epsilon} \boldsymbol{\delta} \epsilon$ $\delta \in i \hat{\xi} a l$ ，quod erat demon－ strandum，which was to be proved，the customary end－ ing to a theorem，184， （Eucl．）；оо $\pi \epsilon \rho: \sim=$ ö $\pi \epsilon \rho$ Є̌ $\delta \epsilon \iota \delta \in i \hat{i} \alpha \iota$, ii． 610 （Papp．）
סєка́yшขov，тó，a regular plane figure with ten angles， decayon，ii． 196 （Archim．）
$\delta \bar{\eta} \lambda o s, \eta$ ，ov，also os，ov，mani－ fest，clear，obvious；ötı
 $\delta \hat{\eta} \lambda o v$, ii． 192 （Archim．）
סıá $\gamma \epsilon \iota \nu$ ，to draw through， 190 （Eucl．）， 290 （Eutoc．）
Sıáyранна，aтоs，тó，figure， diagram， 428 （Aristot．）
Sıaıfîv，to divide，cut，ii． 286 （Apollon．）；סıпр $\eta \mu$ е́vos， ov，divided；δ ．àvàoyía， discrete proportion， 262 （Eutoc．）；Sıє入óvтı，lit．to one having divided，diri－ mendo（or，less correctly， dividendo），indicating the transformation of the ratio $a: b$ into $a-b: b$ according to Eucl．v．15， ii． 130 （Archim．）
סıaípєəьs，$\epsilon \omega \mathrm{s}, \dot{\eta}$ ，division， separation， 368 （Aristot．）；反．入óyov，transformation of a ratio dividendo， 448 （Eucl．）
Sıa的vetv，to remain，to re－ main stationary， 258 （Eutoc．）
סıá $\mu \epsilon \tau \rho o s$, ov，diagonal，dia－ metrical ；as subst．，δ ．（sc． $\gamma \rho a \mu \mu \eta$ ），$\dot{\eta}$ ，diagonal；of a parallelogram，ii． 218

INDEX OF GREEK TERMS

（Archim．）；diameter of a circle， 438 （Eucl．）；of a sphere， 466 （Eucl．）；prin－ cipal axis of a conic section in Archim．，ii． 148 （Ar－ chim．）；diameter of any plane curve in Apollon．， ii． 286 （Apollon．）；$\pi \lambda a \gamma^{\prime} \alpha$ ס．，transverse diameter，ii． 286 （Apollon．）；$\sigma v \zeta$ そvєîs ס．，conjugate diameters，ii． 288 （Apollon．）
Eıáotaбıs，$\epsilon \omega \mathrm{s}, \dot{\eta}$ ，dimension， 412 （Simpl．）
$\delta_{\iota a \sigma \tau \epsilon ́ \lambda \lambda \epsilon \iota \nu, ~ t o ~ s e p a r a t e, ~ i i . ~}^{\text {in }}$ 502 （Heron）
Sıá $\tau \eta \mu \alpha$ ，aтоs，тó，interval； radius of a circle，ii． 192 （Archim．）， 442 （Eucl．）； interval or distance of a conchoid， 300 （Papp．）；in a proportion，the ratio between terms，$\tau \dot{\partial}$ 会 ν $\mu \epsilon \zeta \zeta^{\prime} \nu \omega \nu$ ӧр $\omega \nu$ ס．， 112 （Archytas ap．Porph．）； dimension， 88 （Nicom．）
Sıaфopá，$\dot{\eta}$ ，difference， 114 （Nicom．）
סifóval，to give；aor．part．， Soteis，єî̃a，ধ́v，given，ii． 598 （Рарр．）；$\Delta \in \delta о \mu$ є́va，тá， Data，title of work by Euclid，ii． 588 （Papp．）； $\theta \epsilon ́ \sigma \epsilon \iota$ каi $\mu \epsilon \gamma \epsilon \in \theta \epsilon \iota \quad \delta \in \delta \delta ́ \sigma \theta \theta \iota$ ， to be given in position and magnitude， 478 （Eucl．）

$\delta \iota є \chi$ グs，ϵ s，discontinuous； бтєipa δ ．，open spire，ii． 364 （Procl．）
סıopi乡єıv，to determine，ii． 566 （Papp．）；$\Delta \iota \omega \iota \iota \mu \epsilon e^{\nu} \eta$

тони́，Determinate Section， title of work by Apol－ lonius，ii． 598 （Papp．）
Sioptapos，$\dot{\text { o }}$ ，statement of the limits of possibility of a solution of a problem， diorismos， 150 （Procl．）
Sımגaoıáלєıv，to double， 258 （Eutoc．）
סıтлa⿱ıaбرós，$\dot{\delta}$ ，doubling， duplication；кúßov ס．， 258 （Eutoc．）
סıтлáolos，$a, ~ o v$, double， 302 （Papp．）；ঠ．入óyos，dupli－ cate ratio， 446 （Eucl．）
$\delta i \pi \lambda \alpha \sigma i \omega \nu$ ，ov，later form for סıл入áoıos，double， 326 （Archim．）
$\delta \iota \pi \lambda o ́ o s, \eta, o v$ ，contr．$\delta \iota \pi \lambda o v ̂ s$, $\hat{\eta}$ ，ô̂v，twofold，double， 326 （Archim．）；δ ioót $\eta \mathrm{s}$ ， double equation，ii． 528 （Dioph．）
Síxa，adv．，in two（equal） parts， 66 （Eucl．）：δ ． тє́ $\mu \nu \epsilon \epsilon \nu$, to bisect， 440 （Eucl．）
סıхотонí，$\dot{\eta}$ ，dividing in two；point of bisection，ii． 216 （Archim．）；Dicho－ tomy，first of Zeno＇s argu－ ments on motion， 368 （Aristot．）
Sixoто́ μ оs，ov，cut in two， halved，ii． 4 （Aristarch．）
סúvapıs，є $\omega \mathrm{s}, \dot{\eta}$ ，power，force， ii． 488 （Heron），ii． 616 （Papp．）；ai $\pi \epsilon \in \tau \epsilon \delta$ ．，the five mechanical powers （wheel and axle，lever， pulley，wedge，screw），ii． 492 （Heron）：power in

INDEX OF GREEK TERMS

the algebraic sense，esp． square；$\delta v v a ́ \mu \epsilon \iota$, in power， i．e．，squared， 322 （Ar－ chim．）；$\delta v v a ́ \mu \epsilon \iota ~ \sigma v ́ \mu \mu \epsilon \tau \rho o s$, commensurable in square， 450 （Eucl．）；$\delta v v \alpha ́ \mu \epsilon \iota ~ a ́ \sigma v ́ \mu-$ μ ет oos，incommensurable in square（ibid．）
 power of the unknown quantity $\quad\left[x^{4}\right], \quad$ ii． 522 （Dioph．）
סvvaцоסvvaцoaтóv，tó，the fraction $\quad \frac{1}{x^{n}}, \quad$ ii．$\quad 522$ （Dioph．）
Svvaцóкvßos，ó，square multi－ plied by a cube，fifth power of the unknown quantity ［ x^{5} ］，ii． 522 （Dioph．）
8vvaцокуßостóv，tó，the frac－ tion $\frac{1}{x^{t}}$ ，ii． 522 （Dioph．）
Suvapoatov，tó，the fraction $\frac{1}{x^{2}}$ ，ii． 522 （Dioph．）
Súvartat，to be able，to be equivalent to；δ úvaäaí $\tau \iota$ ， to be equivalent when squared to a number or area，ii． 96 （Archim．）；
 of a square， 452 （Eucl．）； av̉そŋ́rєıs סvvá $\mu \in \nu a \iota, 398$ （Plat．）；$\pi a \rho ’ \hat{\eta} \nu$ रúvavraı

 parameter of the ordi－ nates to the diameter ZH ， ii． 308 （Apollon．）
סvvaorєv́єt，to be powerful； pass．，to be concerned with
powers of numbers；av̉乡グ aєıs סuvaarєvó $\mu \epsilon \nu a \iota, 398$ （Plat．）
סuvarós， $\mathfrak{\eta}$, óv，possible，ii． 566 （Papp．）
бvокаьєขєขךкоขта́є $\delta \rho о$ ，то́， solid with ninety－two faces， ii． 196 （Archim．）
ठvокацє乡ๆкоита́ $\epsilon \delta \rho о \nu$, тó，solid with sixty－two faces，ii． 196 （Archim．）
 with thirty－two faces，ii． 196 （Archim．）
$\delta \omega \delta \epsilon \kappa \alpha ́ \epsilon \delta \rho o s, ~ o v$, with twelve faces ；as subst．，$\delta \omega \delta \epsilon \kappa \alpha ́-$ є $\delta \rho o v$, tó，body with twelve faces，dodecahedron， 472 （Eucl．）， 216 （Aët．）
 （Archim．）
द่ $\gamma \gamma \rho a ́ \phi \epsilon \iota \nu$, to inscribe， 470 （Eucl．），ii． 46 （Archim．）
є́ $\gamma \kappa$ и́кльos，ov，also a ，ov，cir－ cular，ii． 618 （Papp．）
єidos，ous，Ion．єos，tó，shape or form of a figured number， 94 （Aristot．）；figure giving the property of a conic section，viz．，the rectangle contained by the dia－ meter and the parameter， ii． 317 n．a， 358 （Papp．）， 282 （Eutoc．）；term in an equation，ii． 524 （Dioph．）； species－of number，ii． 522 （Dioph．），of angles 390 （Plat．）

INDEX OF GREEK TERMS

єікоба́є $\delta \rho о \mathrm{~s}$, ov，having twenty faces；єікоба́є $\delta \rho \circ \nu_{,}$，兀ó，body with twenty faces，icosa－ hedron， 216 （Aët．）
єікобат入áбLos，ov，twenty－ fold，ii． 6 （Aristarch．）
$\dot{\epsilon} \kappa а т о \nu \tau$ ás，ádos，$\dot{\eta}$ ，the num－ ber one hundred，ii． 198 （Archim．）
єк $\kappa \alpha \dot{\alpha} \lambda \lambda \epsilon \iota$ ，to produce（a straight line）， 442 （Eucl．）， li． 8 （Aristarch．）， 352 （Papp．）
є́ккаєєєкота́єброу，то́，solid with twenty－six faces，ii． 196 （Archim．）
$\dot{\epsilon} \kappa \kappa \epsilon \hat{\imath} \sigma \theta \alpha$ ，used as pass．of ধ́кть日＇́val，to be set out，be taken，ii． 96 （Archim．）， 298 （Papp．）
éккрои́єь，to take away， eliminate，ii． 612 （Papp．）
є̇клє́та⿱㇒⿻二亅⿱八乂，aтоs，то́，that which is spread out，un－ folded；＇Еклєтá $\sigma \mu a \tau a$ ，title of work by Democritus dealing with projection of armillary sphere on a plane， 229 n ．a
єє $\kappa \rho \iota \sigma \mu \alpha$ ，a $\tau о \varsigma$ ，ró，section sawn out of a cylinder， prismatic section，ii． 470 （Heron）
є̇кть⿴囗́vą，to set out，ii． 568 （Papp．）
éктós，adv．，without，outside ； as prep．，Є่．тои̂ кúклоv， 314 （Alex．Aphr．）；adv．used adjectivally， $\boldsymbol{\eta} \dot{\epsilon}$ ．（ $s c ., ~ \epsilon \dot{v} \theta \epsilon i a)$ ， external straight line， 314 （Simpl．）；$\dot{\eta}$ ย．$\gamma \omega \nu i a$ тov т $\rho \iota(\hat{\omega} \nu o v$, the external
angle of the triangle，il． 310 （Apollon．）
є̇ $\lambda \alpha ́ \sigma \sigma \omega \nu$ ，ov，smaller，less， $3 \gtrless 0$ （Archim．）；${ }^{*} \tau о \iota \quad \mu \in i \zeta \omega \nu$
 ć．ó $\rho \theta \hat{\eta} s$ ，less than a right angle， 438 （Eucl．）；$\dot{\eta} \epsilon$ ． （sc．$\epsilon \dot{\cup} \theta \epsilon \hat{\imath} \alpha)$ ，minor in Euclid＇s classification of straight lines， 458 （Eucl．）
é $\lambda \alpha ́ \chi ı \sigma т о s, ~ \eta, ~ o \nu, ~ s m a l l e s t, ~$ least，ii． 44 （Archim．）
 ii． 182 （Archim．）；spiral on a sphere，ii． 580 （Papp．）
є̈ $\lambda \boldsymbol{\lambda} \boldsymbol{\iota} \mu \mu \alpha$ ，aтоs，тó，defect， deficiency， 206 （Eucl．）
è $\lambda \lambda \epsilon i \pi \epsilon \iota \nu$ ，to fall short，be deficient， 394 （Plat．）， 188 （Procl．）
$\epsilon_{\epsilon} \lambda \lambda_{\epsilon u / \iota}, \epsilon \omega s, \dot{\eta}$, falling short， deficiency， 186 （Procl．）； the conic section ellipse，so called because the square on the ordinate is equal to a rectangle whose height is equal to the abscissa applied to the parameter as base but falling short （ $̇ \lambda \lambda \epsilon i \pi o \nu)$ ii． 316 （Apol－ lon．）， 188 （Procl．）
 （Heron）．
$\dot{\epsilon} \epsilon \beta{ }^{\prime} \lambda \lambda \epsilon \iota \nu$, to throw $i n$ ，insert， ii． 574 （Papp．）；multiply， ii． 534 （Dioph．）
$\dot{\epsilon} \mu \pi i \pi \tau \epsilon \nu$ ，to fall on，to meet， to cut， 442 （Eucl．），ii． 58 （Archim．）
$\dot{\epsilon} \mu \pi \lambda \epsilon \in \kappa \epsilon \nu$ ，to plait or weave in： $\boldsymbol{\sigma} \pi \epsilon \hat{i} \rho \alpha$ é $\mu \pi \epsilon \pi \lambda \epsilon \gamma \mu \in ́ \gamma \eta$ ，

INDEX OF GREEK TERMS

interlaced spire，ii．364， （Procl．）
éva入入ág，adv．，often used adjectivally，transforma－ tion of a ratio according to the rule of Eucl．v．Def．12， permutando， 448 （Eucl．）， ii． 144 （Archim．）；ϵ ． $\gamma \omega v i a \iota$, alternate angles
＇̇vavrióos，a，ov，opposite ；кат＇ $\dot{\epsilon} .$, ii． 216 （Archim．）
غ́vapuó̧ $\epsilon \downarrow$ ，to fit in，to insert， 284 （Eutoc．）
є́vtaøts，$\epsilon \omega$ ，$\dot{\eta}$ ，inscription， 396 （Plat．）
 $\tau \rho i \gamma \omega \nu \circ \boldsymbol{\epsilon}$ є．， 90 （Procl．）
̇̀vós，adv．used adjectivally， within，inside，interior； ai є．$\gamma \omega v i a \iota, 442$（Eucl．）
 є̇vvтá $\rho \chi$ оута，тá，positive terms，ii． 524 （Dioph．）
 є．ápı日นós， 96 （Nicom．）
 vov，тó，hexagon， 470 （Eucl．）
єंझŋкоото́s，${ }^{\eta}$ ，óv，sixtieth；in astron．，$\pi \rho \hat{\omega} \tau о \nu$ є́ $\xi \eta \kappa о \sigma \tau o ́ v, ~$ ró，first sixtieth，minute， סєúт $\epsilon \rho \frac{1}{\text { é，second sixtieth，}}$ second， 50 （Theon Alex．）
є́ $\bar{\eta} \mathrm{s}$ ，adv．，in order，succes－ sively，ii． 566 （Papp．）
$\dot{\epsilon} \pi a \phi \dot{\eta}, \dot{\eta}$, touching，tangency， contact， 314 （Simpl．）； ＇Eraфaí，On Tangencies， title of a book by Apol－ lonius，ii． 336 （Papp．）
$\epsilon \pi \epsilon \sigma \theta a t$, to be or come after， follow；тò є́mó $\mu \epsilon v o v$, con－
sequence，ii． 566 （Papp．）； $\tau \dot{\alpha}$ є̇по́ $\mu \in \imath a$ ，rearuard cle－ ments，ii． 184 （Apollon．）； in theory of proportion，$\tau \dot{\alpha}$ $\dot{\epsilon} \pi o ́ \mu \epsilon \nu a$, following terms， consequents， 448 （Eucl．）
$\dot{\epsilon} \pi i \prime$ ，prep．with acc．，upon，on to，on，єن̀ $\theta \epsilon i \hat{a} a \dot{\epsilon} \pi^{\prime} \epsilon \dot{v} \theta \epsilon i ̂ a \nu$ $\sigma \tau a \theta \in i ̂ \sigma a, 438$（Eucl．）
 608 （Papp．）；ai є̇ா८らєv－ $\chi \theta \epsilon i ̂ \sigma a \iota ~ \epsilon \dot{v} \theta \epsilon i ̂ a l$ ，connecting lines， 272 （Eutoc．）
є̇ $\pi \iota \lambda o \gamma i \zeta \epsilon \sigma \theta a 1$, to reckon，cal－ culate， 60 （Theon Alex．）
є̇лı入oүıбцós，غ́，reckoning， calculation，ii． 412 （Ptol．）
 фávєıa， 438 （Eucl．）；ϵ ． $\gamma \omega v i a, 438$（Eucl．）；є́． $\sigma \chi \eta \hat{\mu a}, 438$（Eucl．）；$\epsilon \cdot$ d $\alpha \iota-$
 $\beta \lambda \eta \mu \alpha, 348$（Papp．）
є́ $\pi \iota \pi \epsilon \dot{\delta} \omega \mathrm{s}$ ，adv．，plane－wise， 88 （Nicom．）
＇̇ $\pi \iota \pi \lambda a \tau \eta{ }^{\prime} s, \epsilon^{\prime} \varsigma$, flat，broad；
 （Archim．）
Є̇пітаүна，aтos，то́，injunc－ tion；condition，ii． 50 （Archim．），ii． 526 （Dioph．）； moteiv tò é．，to satisfy the condition；subdivision of a problem，ii． 340 （Рарp．）
є̇пítpıtos，ov，containing an integer and one－third，in the ratio 4：3，ii．22， （Archim．）
є́ $\pi \iota \phi$ ávєıa，$\dot{\eta}$, surface， 438 （Eucl．）；кшขєк̀े є́．，conical surface（double cone），ii． 286 （Apollon．）

INDEX OF GREEK TERMS

'̇mu孔av́єtv, to touch, ii. 190 (Archim.); $\dot{\eta}$ ढ̇тıభávova (sc. єن̀ $\theta \hat{i} a)$, tangent, ii. 64 (Archim.)
 sides, oblong, 440 (Eucl.)
єù $\theta \dot{v} \gamma \rho a \mu \mu \mathrm{~s}$, ov, rectilinear ; єù. $\gamma \omega v i a, 438$ (Eucl.) ; єv่. $\sigma \chi \hat{\eta} \mu \alpha, 440$ (Eucl.); as subst., єن̇Ө'́rpa $\mu \mu$, тó, rectilineal figure, 318 (Archim.)
$\epsilon \dot{v} \theta \dot{v} s, \epsilon i a, v^{\prime}$, straight $; ~ \epsilon \dot{v}$. रрa $\mu \mu \dot{\eta}$, straight line, 438 (Eucl.); єن̉Өєîa (sc. $\gamma \rho \alpha \mu \mu \eta$), $\dot{\eta}$, straight line, ii. 44 (Archim.) ; chord of a circle, ii. 412 (Ptol.) ; distance (first, second, etc.) in a spiral, ii. 182 (Archim.); кат' єن̀ θ єías, along a straight line, ii. 580 (Papp.)
єúmapaxஸ́pๆтos, ov, readily admissible, easily obvious ; єv่. $\lambda \eta^{\prime} \mu \mu a \tau a$, ii. 230 (Archim.)
$\epsilon \bar{\rho} \in \sigma \iota \varsigma, \epsilon \omega \varsigma, \eta$, discovery, solution, ii. 518 (Dioph.), 260 (Eutoc.)
$\epsilon \cup ̈ \rho \eta \mu a$, aтos, тó, discovery, 380 (Schol. in Eucl.)
є́̇рíбкєเv, to find, discover, solve, ii. 526 (Dioph.), 340 (Papp.), 262 (Eutoc.); ö $\pi \epsilon \rho$ єै $\delta \epsilon \iota \epsilon \dot{U} \rho \epsilon \hat{v}$, which was to be found, 282 (Eutoc.)
ev̀ $\chi \in \rho \eta^{\prime} s, \dot{\epsilon} s$, easy to solve, ii. 526 (Dioph.)
є่фа́ттєсӨal, to touch, ii. 224 (Archim.) ; є́фалто $\mu \epsilon ́ v \eta, \dot{\eta}$
(sc. $\epsilon \dot{v} \theta \epsilon i \alpha)$, tangent, 322 (Archim.)
'่фар geometrical elements, 340 (Papp.)
є́фарно́לєєv, to fit exactly, coincide with, 444 (Eucl.), ii. 208 (Archim.), 298 (Papp.) : pass. є́фариóऍєatal, to be applied to, ii. 208 (Archim.)
$\dot{\epsilon} \phi \epsilon \xi \hat{\eta}_{S}$, adv., in order, one after the other, successively, 312 (Them.); used adjectivally, as ai є́. $\gamma \omega v i ́ a$, the adjacent angles, 483 (Encl.)
'́фıorávau, to set up, erect; perf., '̇фєбтทкє́vat, intr., stand, and perf. part. act., є́ $\phi \epsilon \sigma \tau \eta \kappa \omega ́ s, ~ v \hat{\imath} a$, ós, standing, 438 (Eucl.)
'̈́foठos, $\dot{\eta}$, method, ii. 596 (Papp.) ; title of work by Archimedes
${ }_{\epsilon}^{\chi} \chi \epsilon \iota \nu$, to have ; dórov ${ }^{\text {E., to }}$ have a proportion or ratio, ii. 14 (Aristarch.) ; $\gamma \in \epsilon \in \epsilon \sigma \iota$ $\dot{\epsilon}$., to be generated (of a curve), 348 (Papp.)
$\epsilon \omega \varsigma$, as far as, to, ii. 290 (Apollon.)
$\mathrm{Z} \eta \tau \epsilon \mathrm{i} v$, to seek, investigate, ii. 222 (Archim.) ; Ђทroú$\mu \in v o v$, to, the thing sought, 158 (Procl.), ii. 596 (Papp.)
$\zeta \dot{\eta} \tau \eta \sigma \iota s, \epsilon \omega \varsigma, \dot{\eta}$, inquiry, investigation, 152 (Procl.)
そ̌úyıov, тó= ॅuyóv, тó, ii. 234 (Archim.)

INDEX OF GREEK TERMS

كuyóv，tó，beam of a balance， balance，ii． 234 （Archim．） $\zeta \varphi \dot{\varphi} \delta \iota o v, \tau o ́, ~ d i m . ~ o f ~ \zeta \hat{\varphi} o v$, lit． small figure painted or carved；hence sign of the Zodiac；ó $\tau \hat{\omega} v$ Z．кúклоs， Zodiac circle，ii． 394 （Hypsicles）
 тá，leading terms in a pro－ portion， 448 （Eucl．）
$\dot{\eta} \mu \kappa$ ќкльоs，ov，semicircular；
 semicircle， 440 （Eucl．），ii． 568 （Papp．）
і̇ $\boldsymbol{\iota \kappa u ́ \lambda \iota \nu \delta р о s , ~ o ́ , ~ h a l f - c y l i n d e r , ~}$ 260 （Eutoc．）；dim．$\dot{\eta} \mu \kappa v-$入ívסpıov，tó， 286 （Eutoc．）
$\dot{\eta} \mu \iota o ́ \lambda \iota o s, a, o v$, containing one and a half，half as much or as large again，one－and－a－ half times，ii． 42 （Archim．）
$\ddot{\eta} \mu \iota \sigma \cup 5, \epsilon \iota \alpha, v$, half，ii． 10 （Aristarch．）；as subst．， $\eta{ }_{\eta}^{\eta} \mu \sigma v, \tau o ́, 320$（Archim．）

ल́́б兀s，єшs，$\dot{\eta}$, setting，posi－ tion， 268 （Eutoc．）；θ ө́ $\sigma \epsilon \iota$ $\delta \epsilon \delta o ́ \sigma \theta a t$ ，to be given in position， 478 （Eucl．）
$\theta \epsilon \omega \rho \in i v$, to look into，investi－ gate，ii． 222 （Archim．）
$\theta \in \omega ́ \rho \eta \mu a$ ，aтos，тó，theorem， 228 （Archim．），ii． 566 （Papp．）， 150 （Procl．），ii． 366 （Procl．）
$\theta \epsilon \omega \rho \eta \tau \iota \kappa o ́ s, \dot{\eta}$ ，óv，able to per－ ceive，contemplative，specu－ lative，theoretical ；applied to species of analysis，ii． 598 （Papp．）
$\theta \epsilon \omega \boldsymbol{p}^{\prime} a, \dot{\eta}$, inquiry，theoretical investigation，theory，ii． 222 （Archim．），ii． 568 （Papp．）
$\theta v \rho$ сós，ó，shield， 490 （Eucl．）； $\dot{\eta}$（sc．$\gamma \rho \alpha \mu \mu \grave{\eta})$ то仑̂ $\theta .$, ellipse，ii． 360 （Procl．）
＇Iбáкıs，adv．，the same num－ ber of times，as many times；тà i．$\pi о \lambda \lambda a \pi \lambda a ́ \sigma \iota a$, equimultiples， 446 （Eucl．）
iooßapท́s，＇́s，equal in weight， ii． 250 （Archim．）
tбоүкоs，ov，equal in bulk， equal in volume，ii． 250 （Archim．）
ícoүćvıos，ov，equiangular．ii． 608 （Papp．）
 398 （Plat．）
iболєрíнєт $о$ оs，ov，of equal perimeter，ii． 386 （Theon Alex．）
íóm $\lambda \in u \rho o s$, ov，having all its sides equal，equilateral；i ． т $\rho i ́ \gamma \omega \nu \nu \nu, 440$（Eucl．），$i$ ． $\tau \epsilon \tau \rho a ́ \gamma \omega \nu o \nu, 440$（Eucl．）， i．$\pi \frac{\lambda}{}{ }^{\prime} \gamma \omega \nu o \nu$ ，ii．54，（Ar－ chim．）
ioon $\lambda \eta{ }^{\prime} \eta$ s，és，equal in num－ ber， 454 （Eucl．）
iooppoтєiv，to be equally ba－ lanced，be in equilibrium， balance，ii． 206 （Archim．）
＇I $\sigma о \rho \rho о \pi \iota \kappa \alpha$, ，$\tau$＇，title of work on equilibrium by Archi－ medes，ii． 226 （Archim．）
íoóppotos，ov，in equilibrium， ii． 226 （Archim．）
ӥoos，η ，ov，equal， 268 （Eutoc．）：és ícov，evenly，

INDEX OF GREEK TERMS

438 （Eucl．）；$\delta \iota^{\prime}$ й $\sigma o v, ~ e x$ aequali，transformation of a ratio according to the rule of Eucl．v．Def．17， 448 （Eucl．）
iбобкє λ خ＇s，＇́s，with equal legs，having two sides equal，isosceles；i．$\tau \rho i \gamma \omega \nu \circ v$, 440 （Eucl．）；i．кल̂ขos，ii． 58 （Archim．）
iботахє́ш๐，uniformly，ii． 182 （Archim．）
ioóт $\eta \mathrm{s}, \quad \eta$ тos，$\dot{\eta}, \quad$ equality， equation，ii． 526 （Dioph．）
iozával，to set up；єì $\theta \in i ̂ a$ $\epsilon \pi^{\prime} \quad \epsilon \dot{v} \theta \epsilon \hat{\epsilon} \alpha \nu \quad \sigma \tau a \theta \epsilon \hat{\imath} \sigma \alpha, 438$ （Eucl．）
ï $\sigma \sigma \iota s, \epsilon \omega s, \dot{\eta}$, making equal， equation，ii． 526 （Dioph．）

Ḱ́ $\theta \epsilon \tau$ оs，ov，let down，perpen－ dicular ；$\dot{\eta}$ к．（sc．$\gamma \rho \alpha \mu \mu \dot{\eta})$ ， perpendicular， 438 （Eucl．）， ii． 580 （Papp．）
каводько́s，${ }^{\eta}$ ，óv，general ；к． μ é ${ }^{\prime}$ oסos，ii． 470 （Heron）
$\kappa \alpha \theta$ одєк ω s，generally ；ка日－ одєк ω тєрои，more gener－ ally，ii． 572 （Papp．）
каӨólov，adv．，on the whole， in general；тà к．ка入оú $\mu \in \nu a$ $\theta \in \omega \rho \jmath^{\prime} \mu a \tau a, 152$（Procl．）
$\kappa \alpha \mu \pi u ́ \lambda o s, \eta$ ，ov，curved；к． уран α, ，ii． 42 （Archim．）； 260 （Eutoc．）
каขóvov，тó，table，ii． 444 （Ptol．）
каขорько́s，η^{\prime} ，óv，of or belong－ ing to a rule；$\dot{\eta}$ кауогєк （sc．тє́ $\chi \vee \eta$ ），the mathema－ tical theory of music， theory of musical intervals，
canonic， 18 （Anatolius）； κ ． $\boldsymbol{\epsilon} \kappa \theta \epsilon \sigma เ s$ ，display in the form of a table，ii． 412 （Ptol．）
каขผ́v，óvos，ó，straight rod， bar， 308 （Áristoph．）， 264 （Eutoc．）；rule，standard， table，ii． 408 （Suidas）
$\kappa \alpha \tau a ́ \gamma \epsilon \iota \nu$, to dravo down or out， ii． 600 （Papp．）
катаүраф ${ }^{\prime}, \dot{\eta}$, construction， 188 （Procl．）；draving， figure，ii． 158 （Eutoc．），ii． 444 （Ptol．），ii． 610 （Papp．） ката入а β ávєєv，to overtake， 368 （Aristot．）
каталєiтєєv，to leave， 454 （Eucl．），ii． 218 （Archim．）， ii． 524 （Dioph．）；т с ката－ $\lambda_{\epsilon \iota \pi o ́ \mu є \nu a, ~ t h e ~ r e m a i n d e r s, ~}^{\text {，}}$ 444 （Eucl．）
$\kappa a \tau \alpha \mu \epsilon \tau \rho \in \hat{\imath}$ ，to measure，i．e．， to be contained in an in－ tegral number of times， 444 （Eucl．）
катабкєváלєєv，to construct， 264 （Eutoc．），ii． 566 （Papp．）
катабкєขウ́，$\dot{\eta}, \quad$ construction， ii． 500 （Heron）
катабтєрเбнós，i，placing among the stars；Kaza－ $\sigma \tau \in \rho \iota \sigma \mu \circ i$ ，oi，title of work wrongly attributed to Era－ tosthenes，ii． 262 （Suidas） $\kappa а \tau а \tau о \mu \dot{\eta}, \dot{\eta}$, cutting，section； K．каvóvos，title of work by Cleonides， 157 n．c
катоттрєко́s，η^{η} ，óv，of or in a mirror；Катоттрєкá，тá， title of work ascribed to Euclid， 156 （Procl．）

INDEX OF GREEK TERMS

ка́тоттроу，тó，mirror，ii． 498 （Heron）
$\kappa \kappa \hat{\imath} \sigma \theta a \iota$, to lie，ii． 268 （Cleom．）；of points on a straight line， 438 （Eucl．）； as pass．of titéval，to be placed or made；of an angle， 326 （Archim．）； óнoíws к．，to be similarly situated，ii． 208 （Archim．）
кєитроßарıко́s，η^{η} ，óv，of or per－ taining to a centre of gravity；к．$\sigma \eta \mu \epsilon i a, ~ i i . ~ 604$ （Papp．）
кє́vтрог，тó，centre；of a circle， 438 （Eucl．），ii． 8 （Aristarch．），ii． 572 （Papp．）；of a semicircle， 440 （Eucl．）；$\dot{\eta}$（sc．$\gamma \rho \alpha \mu \mu \grave{\eta}$
 of a circle，ii． 40 （Archim．）； к．тоvิ β ápєos，centre of gravity，ii． 208 （Archim．）
$\kappa \iota \nu \epsilon i v$, to move， 264 （Eutoc．）
кivךбıs，$\epsilon \omega \mathrm{s}, \dot{\eta}$, motion， 264 （Eutoc．）
 ＇́s，like ivy；к．$\gamma \rho a \mu \mu \eta$ ， cissoid， 276 n．a
$\kappa \lambda \hat{a} \nu$ ，to bend，to inflect， 420 （Aristot．）， 358 （Papp．）； $\kappa \lambda \omega ́ \mu \epsilon \nu a \iota ~ \epsilon \dot{v} \theta \epsilon \hat{\imath ̂ a \iota}$ ，inclined straight lines，ii． 496 （Damian．）
$\kappa \lambda i ́ v \in \iota v$, to make to lean； pass．，to incline，ii． 252 （Archim．）
$\kappa \lambda$ íoss，$\epsilon \omega \mathrm{s}, \dot{\eta}, \quad$ inclination； $\boldsymbol{\tau} \hat{\nu} \nu \quad \gamma \rho а \mu \mu \omega ิ \nu \quad \kappa$ ．， 438 （Eucl．）
коүхоєьঠŋ́s，＇́s，resembling a mussel ；к．$\gamma \rho а \mu \mu i^{i}$（often
without $\gamma_{\text {．}), ~ c o n c h o i d a l ~}^{l}$ curves，conchoids， 296 （Eutoc．）
кої入os，η ，ov，concave；є́mì tà aúrà к．，concave in the same direction，ii． 42 （Archim．）， 338 （Papp．）
кoเvós，$\dot{\eta}, ~ o ́ v, ~ c o m m o n, ~ 412 ~$ （Aristot．）；к．$\pi \lambda \epsilon v \rho a ́$, ii． 500 （Heron）；к．${ }^{\text {én }} \boldsymbol{y}$ 444 （Eucl．）；к．то $\boldsymbol{\eta}$ и́，ii． 290 （Apollon．）；тò ко七ขóv， common element， 306 （Papp．）
кориф $\dot{\eta}^{\prime}, \dot{\eta}$, vertex ；of a cone， ii． 286 （Apollon．）；of a plane curre，ii． 286 （Apol－ lon．）；of a segment of a sphere，ii． 40 （Archim．）
кох入ías，ov，δ ，snail with spiral shell；hence any－ thing twisted spirally ； screw，ii． 496 （Heron）； screw of Archimedes，ii． 34 （Diod．Sic．）；$\Pi \epsilon \rho i ̀ \tau o v ̂ ~ к ., ~$ work by Apollonius，ii． 350 （Procl．）
кох入ıоєь $\delta \dot{\eta} s$, ＇́s，of or pertain－ ing to a shell fish；$\dot{\eta} \kappa$ ．（sc． үранн η^{\prime} ），cochloid， 334
 ＇s，as $\dot{\boldsymbol{\eta}}$ к．$\gamma \rho а \mu \mu \dot{\eta}, 302$ （Papp．）；probably an－ terior to $\dot{\eta}$ коухоєi $\delta \dot{\eta} s$ $\gamma \rho a \mu \mu \eta$ with same mean－ ing
крікоя，ó，ring；тєтра́үшขо九 κ ．，prismatic sections of cylinders，ii． 470 （Heron）
ки乃i弓єєv，to make into a cube， cube，raise to the third power，ii． 504 （Heron）

INDEX OF GREEK TERMS

куßєко́s，$\dot{\eta}^{\prime}$ ，óv，of or for a cube，cubic， 222 （Plat．）
кขßо́киßоs，ó，cube multiplied by a cube，sixth power of the unknown quantity $\left[x^{6}\right]$ ， ii． 522 （Dioph．）
кивокивобто́v，то́，the frac－ tion $\frac{1}{x^{6}}$ ，ii． 522 （Dioph．）
кúßos，ó，cube， 258 （Eutoc．）； cubic number，ii． 518 （Dioph．）；third power of unknown，ii． 522 （Dioph．） киßобто́v，тó，the fraction $\frac{1}{x^{3}}$, ii． 522 （Dioph．）
кขкдеко́s，ク́，óv，circular，ii． 360 （Procl．）
ки́клоs，ó，circle， 392 （Plat．），
 great circle（of a sphere）， ii． 8 （Aristarch．），ii． 42 （Archim．）
$\kappa v \lambda \iota \downarrow \delta \rho \iota \kappa$ ós，${ }^{\eta}$ ，óv，cylindri－ cal， 286 （Eutoc．）
кv́入̀८ঠסos，ov，í，cylinder，ii． 42 （Archim．）
кขрíws，adv．，in a special sense；к．àvadoyia，pro－ portion par excellence，i．e．， the geometric proportion， 125 n．a
$\kappa \omega \nu \kappa o ́ s, ~ \grave{\eta}$, óv，conical，conic ； κ ．є́mıфávєıa，conical sur－ face（double cone），ii． 286 （Apollon．）
 subst．к $\omega \nu$ оєє δ є́s，тó，conoid； ip日o $\boldsymbol{\gamma} \omega$ vıov к．，right－angled conoid，i．e．，paraboloid of revolution，ii． 164 ；$\dot{\alpha} \mu \beta \lambda \nu-$ бढ́viov к．，obtuse－angled
conoid，i．e．，hyperboloid of revolution，ii． 164
$\kappa \hat{\nu} \nu \mathrm{s}, \mathrm{ov}, \delta$, cone，ii． 286 （Apollon．）
$\kappa \kappa \nu о \tau о \mu \epsilon \hat{\imath}$ ，to cut the cone， 226 （Eratos．ap．Eutoc．）

पaußávetv，to take，ii． 112 （Archim．）；єỉ̀j̀ $\phi \theta \omega \tau \dot{\alpha}$ kévipa，let the centres be taken，ii． 388 （Theon Alex．）；λ ．tàs μ éaas，to take the means，294（Eu－ toc．）；to receive，postu－ late，ii． 44 （Archim．）
$\lambda \epsilon ́ \gamma \epsilon \iota \nu$ ，to choose，ii． 166 （Archim．）
$\lambda \epsilon i \pi \epsilon \iota \nu$ ，to leave，ii． 62 （Archim．）；גєітоvта єíठ η ， tá，negative terms，ii． 524 （Dioph．）
$\lambda \epsilon i ̂ \psi \iota s, \epsilon \omega s, \dot{\eta}$ ，negative term， minus，ii． 524 （Dioph．）
$\lambda \hat{\eta} \mu \mu a$ ，aтos，тó，auxiliary theorem assumed in prov－ ing the main theorem， lemma，ii． 608 （Papp．）
$\lambda \eta \mu \mu \dot{\tau} \tau \iota \nu$ ，тó，dim．of $\lambda \hat{\eta} \mu \mu a$ ， lemma
$\lambda \eta \bar{\psi} \psi s, \epsilon \omega \mathrm{~s}, \dot{\eta}$, taking hold， solution， 260 （Eutoc．）
入oyıкós，$\dot{\eta}$ ，óv，endowed with reason，theoretical，ii． 614 （Рарр．）
入oүıoтıкós，${ }^{\eta}$ ，óv，skilled or practised in reasoning or calculating；$\dot{\eta}$ 入оүьбтькฑे （ $s c . \tau \epsilon \in \nu \eta$ ），the art of mani－ pulating numbers，practi－ cal arithmetic，logistic， 17 （Schol．ad Plat． Charm．）

INDEX OF GREEK TERMS

入óyos，ó，ratio， 444 （Eucl．）；
पóyov àтотон ${ }^{\prime}$ ，Cutting－off of a Ratio，title of work by Apollonius，ii． 598 （Papp．）； λ ．ovvŋu μ évos，compound ratio，ii． 602 （Papp．）；入．μ ovaxós，singular ratio， ii． 606 （Рарр．）；ӑкроs каі μ é́oos λ ．，extreme and mean ratio， 472 （Eucl．）， ii． 416 （Ptol．）
גoıтós，${ }^{\prime}$ ，óv，remaining，ii． 600 （Papp．）；as subst．， $\lambda_{\text {oınóv，}}$ тó，the remainder， ii． 506 （Papp．）， 270 （Eutoc．）
גo乡ós，$\dot{\eta}$ ，óv，oblique，inclined： $\kappa a \tau \grave{\alpha} \lambda . \kappa$ ќклоv，ii． 4 （Plut．）
$\lambda v ́ \sigma t s, \epsilon \omega s, \dot{\eta}$ ，solution，ii． 596 （Papp．）

Mayүavápıos，í，mechanical engineer，maker of mechan－ ical powers，ii． 616 （Papp．） нárүavov，тó，block of a pulley， ii． 616 n．a（Heron）
$\mu \dot{́} \theta \eta \mu a$, тó，study， 8 （Plat．）， 4 （Archytas）；$\mu a \theta_{\eta}^{\prime} \mu a \tau \alpha, \tau \alpha ́$, mathematics；tà $\delta \dot{\epsilon}$ калоú－ $\mu \in \nu a$ idíms $\mu ., 2$（Anatolius）； 148 （Procl．），ii． 42 （Ar－ chim．），ii． 566 （Papp．）
$\mu a \theta \eta \mu a \tau \iota \kappa o ́ s, \quad{ }_{\eta}$ ，óv，mathe－ matical；$\mu a \theta \eta \mu a \tau ⿺ \kappa o ́ s, ~ o, ~$ mathematician，ii． 2 （Aët．）， ii． 61 （Papp．）；$\dot{\eta} \mu \alpha \theta \eta \mu a-$
 matics， 4 （Archytas）；$\tau \dot{\alpha} \mu$ ．， mathematics
$\mu ́ ́ \gamma \epsilon \theta o s$, ovs，Ion．cos，tó， magnitude， 444 （Eucl．），ii． 50 （Archim．），ii． 412 （Ptol．）
μ étooos，$\dot{\eta}$ ，following after， investigation，method， 90 （Procl．）
$\mu \epsilon i \zeta \omega \nu, \quad o v$, greater，more， 318 （Archim．）；${ }^{2} \tau \circ \iota \mu$ ．
 （Archim．）；$\quad \mu$ ．$\dot{\circ} \rho \theta \hat{\eta} s$ ， greater than a right angle， 438 （Eucl．）；${ }^{\boldsymbol{\eta}} \boldsymbol{\mu}$ ．（sc． $\epsilon \dot{v} \theta \epsilon \hat{\epsilon} a)$ ，major in Euclid＇s classification of irrationals， 458 （Eucl．）
$\mu \dot{\epsilon} \varphi \in \tau \nu$ ，to remain，to remain stationary， 98 （Nicom．）， 286 （Eutoc．）
$\mu \in \rho i \zeta \epsilon \iota \nu$ ，to divide，$\tau \iota \pi a \rho \alpha ́ \pi \iota$, 50 （Theon Alex．）
$\mu \epsilon \rho \imath \sigma \mu o ́ s, \quad \delta, ~ d i v i s i o n, ~ 16$ （Schol．in Plat．Charm．）， ii． 414 （Ptol．）
$\mu \epsilon ́ \rho o s$, ovs，Ion．єos，tó，part ； of a number， 66 （Eucl．）；of a magnitude， 444 （Eucl．）， ii．584（Papp．）；тà $\mu \epsilon ́ \rho \eta$ ， parts，directions，＇̀ ϕ^{\prime} є́ка́－ $\tau \in \rho a \tau \dot{\alpha} \mu$ ．，in both direc－ tions， 438 （Eucl．）
$\mu \epsilon \sigma \eta \mu \beta \rho \iota \nu o ́ s, \eta^{\prime}$ ，δv ，for $\mu \in \sigma \eta-$ $\mu \in \rho \tau$ ós，of or for noon； μ ．（sc．ки́клоs），ó，meri－ dian，ii． 268 （Cleom．）
 （sc．$\epsilon \dot{v} \theta \epsilon \hat{i} \alpha$ ），mean（ $\alpha \rho i \theta-$ $\mu \eta \tau \iota \kappa \eta, \quad \gamma \epsilon \omega \mu \in \tau \rho \iota \kappa \eta, \quad$ ap μo^{-} vıкท́），ii． 568 （Papp．）； $\mu \epsilon ́ \sigma \eta$ т $ิ \nu \Delta \mathrm{~K}, \mathrm{~K} \mathrm{\Gamma}$ ，mean between $\Delta \mathrm{K}, \mathrm{K}, 272$ （Eutoc．）；äкроs каi μ ．入óyos，extreme and mean ratio， 472 （Eucl．），ii． 416 （Ptol．）；$\dot{\eta} \mu$ 白 $\sigma \eta$（sc．єù $\theta \epsilon i ̂ \alpha$ ）， medial in Euclid＇s classi－

INDEX OF GREEK TERMS

fication of irrationals， 458 （Eucl．）；Є̇к δ र́o $\mu \epsilon ́ \sigma \omega \nu$ $\pi \rho \omega ́ \tau \eta$ ，first bimedial，є̇к §v́o $\mu \epsilon ́ \sigma \omega \nu$ סєuт́́pa，second bimedial，etc．，ibid．
$\mu \epsilon \sigma o ́ \tau \eta s, \eta \tau o s, \dot{\eta}$, mean，ii． 566 （Рарр．）；$\mu . \quad \dot{\alpha} \rho \iota \theta \eta \tau \iota \kappa \eta^{\prime}$, $\gamma \in \omega \mu \epsilon \tau \rho \iota \kappa \bar{\eta}, \dot{\alpha} \rho \mu о \nu \iota \kappa \bar{\eta}$（ $\dot{v} \pi-$ єvavtía），110－111（Iambl．）
$\mu \epsilon \tau \rho \epsilon i v$ ，to measure，contain an integral number of times， 68 （Eucl．），ii． 54 （Archim．）
$\mu \epsilon ́ \tau \rho o v$, тó，measure，relation， ii． 294 （Prob．Bov．）；коьข̀̀ μ ．，common measure，ii． 210 （Archim．）
$\mu^{\prime} \chi \rho \iota$ ，as far as，prep．with gen．；$\dot{\eta} \mu \epsilon ́ \chi \rho \iota ~ \tau o v ̂ ~ a ̈ \xi o v o s ~$ （sc．$\left.\gamma \rho \alpha \mu \mu \eta)^{\prime}\right), \quad$ ii． 256 （Archim．）
 length， 436 （Eucl．）；dis－ tance of weight from ful－ crum of a lever，ii． 206 （Archim．）
$\mu \eta$ и́окоз，ó，crescent－shaped figure，lune， 238 （Eudemus ap．Simplic．）
$\mu \eta \chi a \eta^{\prime}, \quad \dot{\eta}, \quad$ contrivance， machine，engine，ii． 26 （Plut．）
$\mu \eta \chi \alpha \nu ⿺ 𠃊 ⿴ 囗 十$ ós，η^{\prime} ，óv，of or for machines，mechanical，ii． 616 （Рарр．）；$\dot{\eta} \mu \eta \chi а \nu \iota \kappa \eta \quad$ （with or without τ＇́ $\chi \sim \eta$ ）， mechanics，ii． 614 （Papp．）； as subst．，$\mu \eta \chi a \nu \iota \kappa o ́ s, ~ \delta$, mechanician，ii． 616 （Papp．），ii． 496 （Damian．） $\mu \eta \chi$ avotoós，o，maker of en－ gines，ii． 616 （Papp．）

нккрós，á，óv，small，little ；
 тóтоs），Little Astronomy， ii． 409 n．b
$\mu \iota \kappa \tau o ́ s, ~ \eta \prime, ~ o ́ v, ~ m i x e d ; ~ \mu . ~$ $\gamma \rho \alpha \mu \mu \eta$ ，ii． 360 （Procl．）；μ ． є̇тьф́⿱㇒日ยєıa，ii． 470 （Heron）
$\mu o i ̂ \rho \alpha, ~ a s, ~ \hat{\eta}$, portion，part； in astron．，degree， 50 （Theon Alex．）；μ ．толєкй， $\chi \rho \circ \nu \iota \kappa \eta$ ，ii． 396 （Hypsicl．）
นovás，ádos，$\dot{\eta}$ ，unit，monad， 66 （Eucl．）
ноvaхós，ท́，óv，unique，singu－ lar：μ ．入óyos，ii． 606 （Papp．）
но́plov，тó，part， 6 （Plat．）
 á，óv，musical ；$\dot{\eta}$ ноvбєкウ̀ （sc．тє́ $\chi \downarrow \eta$ ），poetry sung to music，music， 4 （Archytas） $\mu v \rho \alpha^{\prime} s$, ádos，$\dot{\eta}$ ，the number ten thousand，myriad，ii． 198 （Archim．）；$\mu . \dot{a} \pi \lambda \alpha \hat{i}$, $\delta_{\iota \pi \lambda \alpha \hat{i},} \kappa \tau \lambda$ ．，a myriad raised to the first power， to the second power，and so on，ii． 355 n．a
μ úpıo七，al，a，ten thousand， myriad；μ ．$\mu v \rho \iota a ́ \delta \leftarrow s$, myriad myriads，ii． 198 （Archim．）
$\mathrm{N} \epsilon v \in \epsilon \nu$ ，to be in the direction of，ii． 6 （Aristarch．）；of a straight line，to verge，i．e．， to be so drawn as to pass through a given point and make a given intercept， 244 （Eudemus ap．Simpl．）， 420 （Aristot．），ii． 188 （Archim．）

INDEX OF GREEK TERMS

$\nu \in \hat{\sigma} \sigma \iota \varsigma, \epsilon \omega \mathrm{s}, \dot{\eta}$, inclination, verging, problem in which a straight line has to be drawn through a point so as to make a given intercept, 245 n. $a ; \sigma \tau \in \rho \in \dot{\alpha}$ v., solid verging, 350 (Papp.) ; Nev́ocis, title of work by Apollonius, ii. 598 (Papp.)
'OSós, $\dot{\eta}$, method, ii. 596 (Papp.)
oiкєios, $a, o v$, proper to a thing ; ó oi. кúкגos, ii. 270 (Cleom.)
óкта́ $\gamma \omega \nu$ оs, ov, eight-cornered; as subst., óкта́y ω vov, tó, regular plane figure with eight sides, octagon, ii. 196 (Archim.)
óктáєठpos, ov, with eight faces ; as subst., òктáє $\delta \rho \circ \nu$, tó, solid with eight faces, ii. 196 (Archim.)
óктатлáacos, a, ov, eightfold, ii. 584 (Papp.)

о́ктшкаьঠєкапла́б兀оs, ò, eigh-teen-fold, ii. 6 (Aristarch.)
о́ктшкаєтрєакоута́єбооу, то́, solid with thirty-eight faces, ii. 196 (Archim.)
ò $\lambda o ́ к \lambda \eta \rho o s, ~ o v, ~ c o m p l e t e, ~ e n-~$ tire ; as subst., д́ до́к $\lambda \eta \rho \circ \nu$, tó, integer, ii. 534 (Dioph.)
ธ̈ $\lambda \mathrm{os}, \quad \eta$, ov, whole ; $\tau \dot{\alpha}$ ö., 444 (Eucl.)
${ }_{\circ}^{\circ} \mu a \lambda$ ós, ${ }^{\eta}$, óv, even, uniform, ii. 618 (Papp.)
${ }_{\delta}^{\boldsymbol{\prime}} \mu \mathrm{a} \lambda \hat{\omega} \mathrm{s}$, adv., uniformly, 338 (Papp.)
©̈otos, a, ov, like, similar ; o. трí $\omega \nu \circ v, 288$ (Eutoc.);
 á $\rho \ell \theta \mu \mathrm{oi}, ~ 70$ (Eucl.)
ónoiws, adv., similarly, ii. 176 (Archim.) ; $\tau \dot{\alpha} \dot{\alpha}$ ó. $\tau \epsilon-$ $\tau \alpha \gamma \mu \epsilon \in ้ \alpha$, the corresponding terms, ii. 166 (Archim.); o. кє̂̂ofaı, to be similarly situated, ii. 208 (Archim.) ó μ оोоүєiv, to agree with, admit; pass., to be allowed, admitted; ті̀ ó μ о入oyoú$\mu \in v o v$, that which is admitted, premise, ii. 596 (Papp.)
ס́ μ ó ${ }^{\lambda}$ oरos, ov, corresponding ; ó. $\mu \epsilon \gamma^{\prime} \theta \epsilon \epsilon a$, ii. 166 (Archim.) ; ס. $\pi \lambda \epsilon v \rho a i ́$, ii. 208 (Archim.)
ó $о$ таyท's, द́s, ranged in the same row or line, co-ordinate with, corresponding to, similar to, ii. 586 (Papp.)
ővoua, a a os, тó, name ; $\dot{\eta}$ (sc.
 nomial in Euclid's classification of irrationals, 458 (Eucl.)
ósvyćvios, ov, acute-angled;
 ii. 278 (Eutoc.)
ò§ús, єîa, v́, acute ; ó. ү $\omega v i ́ a$, acute angle, often with $\gamma \omega v i a$ omitted, 433 (Eucl.) ó $\pi \tau \iota \kappa o ́ s, ~ \eta$, óv, of or for sight ; óттเка́, тá, theory of laws of sight ; as prop. name, title of work by Euclid, 156 (Procl.)
ópүavıкós, $\dot{\eta}$, óv, serving as instruments ; $\dot{0} . \lambda \hat{\eta} \psi \iota s$, mechanical solution, 260 (Eutoc.)

INDEX OF GREEK TERMS

 instruments， 292 （Eutoc．） öpravov，ró，instrument，294 （Eutoc．）；dim．ópraviov， 294 （Eutoc．）
${ }_{o}{ }^{\circ} \theta_{\text {Los，}} a, ~ o v$, upright，erect；
 $\pi \lambda \epsilon \nu \rho a ́)$ ，the erect side of the rectangle formed by the ordinate of a conic sec－ tion applied to the para－ meter as base，latus rectum， an alternative name for the parameter，ii． 316 （Apollon．），ii． 322 （Apol－ lon．）
ópooy＇́vıos，ov，having all its angles right，right－angled，
 440 （Eucl．）；o．тарал－ дәло́ура $\mu \boldsymbol{\nu}, 268$（Eutoc．） óp日ós，${ }^{\eta}$ ，óv，right ；ó．$\gamma \omega \nu$ ía， right angle，438， 442 （Eucl．）；o．к $\hat{\nu} \nu o s, ~ r i g h t ~$ cone，ii． 286 （Apol－ lon．）
ópí̧єiv，to separate，delimit， bound，define， 382 （Plat．）； є $\dot{v} \theta \epsilon i ̂ a ~ \dot{\omega} \rho \iota \sigma \mu \epsilon ́ v \eta$ ，finite straight line， 188 （Eucl．）
öpos，ó，boundary， 438 （Eucl．）；term in a propor－ tion， 112 （Archytas ap． Porph．）， 114 （Nicom．）
ouv，therefore，used of the steps in a geometrical proof， 326 （Eucl．）
óxєīOal，to be borne，to float in a liquid；$\Pi \epsilon \rho i \tau \omega \nu \nu$ oxov－ μ év $\omega \nu$, On floating bodies， title of work by Archi－ medes，ii． 616 （Papp．）

Парá，beside ；тараßа́д入єıv π. to apply a figure to a straight line， 188 （Eucl．）； тt π ．$\tau \iota \pi a \rho a \beta a ́ \lambda \lambda_{\epsilon เ \nu, ~ t o ~}$ divide $b y$ ，ii． 482 （Heron）
тараßá $\lambda \epsilon \epsilon \nu$ ，to throw beside； π ．тapá，to apply a figure to a straight line， 188 （Eucl．）；hence，since to apply a rectangle $x y$ to a straight line x is to divide $x y$ by $x, \pi .=t o$ divide，ii． 482 （Heron）
 division（ v. тараßа́入 $\lambda \epsilon \iota \nu$ ）， hence quotient，ii． 530 （Dioph．）；application of an area to a straight line， 186 （Encl．）；the conic sec－ tion parabola，so called because the square on the ordinate is equal to a rect－ angle whose height is equal to the abscissa ap－ plied to the parameter as base，ii．304（Apol－ lon．）， 186 （Procl．）， 280 （Eutoc．）
mapádoگos，ov，contrary to expectation，wonderful；$\dot{\eta}$ $\pi \cdot \gamma \rho a \mu \mu \eta$ ，the curve called paradoxical by Menelaus， 348 （Papp．）；$\tau \dot{\alpha}$ ．π ．，the paradoxes of Erycinus，ii． 572 （Papp．）
таракєїөal，to be adjacent， ii． 590 （Papp．）， 282 （Eutoc．）
$\pi а \rho a \lambda \lambda \eta \lambda \epsilon \pi i \pi \epsilon \delta o \nu, \tau o ́$, figure bounded by three pairs of parallel planes，parallel－ epiped，ii． 600 （Papp．）

INDEX OF GREEK TERMS

тара $\lambda \lambda \lambda_{\eta}$ ó $^{\prime} \rho а \mu \mu о$ ，ov，boun－ ded by parallel lines；as subst．，тара入入 η дó $\gamma \rho \alpha \mu \mu о \nu$ ， ró，parallelogram， 188 （Eucl．）
тарád $\lambda \eta \lambda \frac{1}{}$ ，ov，beside one another，side by side， parallel， 270 （Eutoc．）；π ． є̀̀ $\theta \epsilon i a \iota, 440$（Eucl．）
$\pi а р а \mu \eta \dot{\eta \eta s, ~ \epsilon s, ~ D o r . ~ \pi а р а-~}$ на́кəs，єs，oblong ；oфацро－ $\epsilon \iota$ ©̀s π ．，ii． 164 （Archim．）
$\pi а \rho а \pi \lambda \eta ́ \rho \omega \mu а$ ，aтоs，тó，inter－ stice，ii． 590 （Papp．）； complement of a parallelo－ gram， 190 （Eucl．）
mapareivecv，to stretch out along，produce， 10 （Plat．）
$\pi a \rho a v \not \xi \eta \sigma \iota s, \epsilon \omega \mathrm{~s}, \dot{\eta}$, increase， ii． 412 （Ptol．）
тари́ттtos，ov，hyper－supine； тapútriov，tó，a quadri－ lateral with a re－entrant angle， 482 （Papp．）
$\pi \hat{a} s, \pi \hat{a} \sigma a, \pi \hat{a} v$, all，the whole， every，any ；$\pi . \sigma \eta \mu \epsilon \hat{\imath} \circ \mathrm{o}$, any point， 442 （Eucl．）
$\pi \in v \tau a ́ \gamma \omega \nu \circ s$, ov，pentagonal； π ．á $\rho \iota \theta \mu$ ós， 96 （Nicom．）； as subst．，$\pi \in \nu \tau a ́ \gamma \omega \nu o \nu, ~ \tau o ́$, pentagon， 222 （Iambl．）
$\pi \in \rho a i v \in \iota \nu$, to bring to an end； тетєра⿱㇒日нє́vos，ov，termin－ ated， 280 （Eutoc．）；$\gamma \rho a \mu-$ наі $\pi \epsilon \pi \epsilon \rho a \sigma \mu \epsilon ́ v a \iota, ~ f i n i t e$ lines，ii． 42 （Archim．）
－tipas，atos，tó，end，extrem－ ity；of a line， 436 （Eucl．）； of a plane， 438 （Eucl．）
meparov̂v，to limit，bound；
 （Eucl．）
$\pi \epsilon \rho \iota \gamma \rho a ́ \phi \in \iota \nu$ ，to circumscribe， ii． 48 （Archim．）
$\pi \epsilon \rho \iota \in ́ \chi \in \iota \nu$, to contain，bound ； то̀ $\pi є \rho \iota \epsilon \chi$ о́ $\mu \epsilon \nu \frac{\nu}{v} \boldsymbol{v}$ о́，the rectangle contained by，ii． 108 （Archim．）：ai $\pi \epsilon \rho t-$
 438 （Eucl．）；тò $\pi \epsilon \rho \iota є \chi$ ó－$^{-}$ $\mu \epsilon \nu o \nu \sigma \chi \hat{\eta} \mu a, 440$（Eucl．）
$\pi \epsilon \rho \iota \lambda a \mu \beta \dot{\alpha} \nu \epsilon \iota \nu$, to contain， include，ii． 104 （Ar－ chim．）
$\pi \epsilon \rho i \mu \epsilon \tau \rho \circ \mathrm{~s}, \mathrm{ov}$ ，very large， well－fitting；$\dot{\eta} \pi$ ．（sc． $\left.\gamma \rho a \mu \mu \eta^{\prime}\right)=\pi \epsilon \rho i \mu \epsilon \tau \rho \circ \nu, \quad \tau$ о́， perimeter，ii． 318 （Ar－ chim．），ii． 502 （Heron）， ii． 386 （Theon Alex．）
$\pi \epsilon \rho \iota \sigma \sigma a ́ \kappa \iota s$, Att．$\pi \epsilon \rho \iota \tau \tau a ́ \kappa \iota s$, adv．，taken an odd num－ ber of times；π ．ä $\rho \tau \boldsymbol{\sigma}$ ápı日رós，odd－times even number， 68 （Eucl．）；π ． $\pi \epsilon p \iota \sigma \sigma o ̀ s \quad$ ảpı日 μ ós，odd－ times odd number， 68 （Eucl．）
$\pi \epsilon \rho \iota \sigma \sigma o ́ s$, Att．$\pi \epsilon \rho \iota \tau \tau o \dot{s}, \eta$ ， óv，superfluous；subtle； ápı $\theta \mu$ òs π ．，odd number， 66 （Eucl．）
$\pi \in \rho \iota \tau$ ยéval，to place or put around， 94 （Aristot．）
$\pi \epsilon \rho \iota ф \in ́ \rho є \iota a, \dot{\eta}$ ，circumference or periphery of a circle， arc of a circle， 440 （Eucl．）， ii． 412 （Ptol．）
$\pi \in \rho \iota \phi$ а́á，$\dot{\eta}$ ，revolution，turn of a spiral，ii． 182 （Ar－ chim．）
тทлєко́т η ，$\eta \tau \circ \varsigma, \dot{\eta}$, magni－ tude，size，ii． 412 （Ptol．）

INDEX OF GREEK TERMS

$\pi i \pi \tau \epsilon \iota \nu$ ，to fall；of points，ii． 44 （Archim．）；of a straight line， 286 （Eutoc．）
$\pi \lambda \alpha ́ \gamma$ tos，a ，ov，oblique ；π ． סıá $\mu \in \tau \rho \circ$ ，transverse dia－ meter of a conic section，ii． 286 （Apollon．）；$\pi . \pi \lambda \epsilon v \rho a ́$, transverse side of the rect－ angle formed by the ordi－ nate of a conic section applied to the parameter as base，ii． 316 （Apollon．） and ii． 322 （Apollon．）
$\pi \lambda a ́ \sigma \sigma \epsilon \iota \nu$ ，to form ；of num－ bers，ii． 528 （Dioph．）
тда́тоs，ous，Ion．єos，тó， breadth， 438 （Eucl．）
$\pi \lambda a \tau u ́ v \epsilon \iota \nu$, to widen，broaden， 88 （Nicom．）
$\pi \lambda \epsilon v \rho \alpha ́, a ̂ s, \dot{\eta}$ ，side ；of a tri－ angle， 440 （Eucl．）；of a parallelogram，ii． 216 （Archim．）；of a square， hence，square root，ii． 530 （Dioph．）；of a number， 70 （Eucl．）；$\pi \lambda a \gamma i a \quad \pi .$, latus rectum of a conic section， ii． 322 （Apollon．）；$\pi . ~ к а і ~$ Sıaرє́троs， 132 （Theon Smyr．）
$\pi \lambda \eta{ }^{\prime}$ os，ous，Ion．єos，tó， number，multitude， 66 （Eucl．）
$\pi \nu \in \nu \mu a \tau \iota \kappa o ́ s, \dot{\eta}$ ，óv，of wind or air；Пขєvцатıка́，т́́，title of work by Heron，ii． 616 （Papp．）
$\pi o \iota \epsilon \hat{\nu}$, to do，construct，ii． 566 （Papp．）；to make，$\pi . \tau о \mu \eta{ }^{2}$, ii． 290 （Apollon．）；to be equat to，to equal，ii． 526 （Dioph．）

тоД入ат入абıáלєıv，to multiply， 70 （Eucl．）
mo入lati入áoıos，α ，ov，many times as large，multiple； of a number， 66 （Eucl．）； of a magnitude，444， （Eucl．）；as subst．，$\pi \mathbf{o}$－ גaл入áv七ov，tó，multiple； тà ioákıs π ．，equimultiples， 446 （Eucl．）
$\pi о \lambda \lambda a \pi \lambda a \sigma i \omega \nu, \quad o \nu=\pi \sigma \lambda \lambda a \pi \lambda \alpha^{-}$ alos，ii． 212 （Archim．）
módos，ó，pole ；of a sphere， ii． 580 （Papp．）；of a con－ choid， 300 （Papp．）
mo λ и́ $\gamma \omega \nu$ os，ov，having many angles，polygonal；comp．， то入vүшขóтє $\rho \circ \varsigma, ~ o v, ~ i i . ~ 592$ （Papp．）；as subst．，modú－
 （Archim．）
moגv́єठ $\rho o s, ~ o \nu$ ，having many bases；as subst．，modư－ $\epsilon \delta \rho \circ \nu, \tau o ́$, polyhedron，ii． 572 （Рарр．）
$\pi о \lambda \nu \pi \lambda a \sigma \iota a \sigma \mu o ́ s, \quad i, \quad$ multi－ plication， 16 （Schol．in Plat．Charm．），ii． 414 （Apollon．）
тоди́тлєvpos，ov，many sided， multilateral， 440 （Eucl．）
$\pi о \rho i \zeta \epsilon \tau \nu$ ，to bring about，find． either by proof or by con－ struction，ii． 598 （Papp．）， 252 （Procl．）
тópıг μ a，aтos，тó，corollary to a proposition， 480 （Procl．）， ii． 294 （Apollon．）；kind of proposition intermediate between a theorem and a problem，porism， 480 （Procl．）

INDEX OF GREEK TERMS

торıбтıкós, ${ }^{\text {й }}$, óv, able to supply or find; порєбтєкò̀ то̂̂ трота日є́vтоs, ii. 598 (Рарр.)
$\pi \rho а ү \mu а т є i a, \quad \dot{\eta}, \quad$ theory, investigation, 148 (Procl.), ii. 406 (Theon Alex.)
$\pi \rho i \sigma \mu a$, atos, тó, prism, ii. 470 (Heron)
тоо́ $\beta \lambda \eta \mu \mathrm{a}$, aтоs, тó, problem, 14 (Plat.), 258 (Eutoc.), ii. 566 (Рарp.)
$\pi \rho о \beta \lambda \eta \mu a \tau \iota \kappa o ́ s, \dot{\eta}$, óv, of or for a problem; applied to species of analysis, ii. 598 (Papp.)
$\pi \rho o ́ \delta \eta \lambda o s$, ov, clear, manifest, ii. 496 (Heron)
$\pi \rho о \eta \gamma \epsilon \hat{i} \sigma \theta a$, to take the lead; $\pi \rho о \eta \gamma o v ́ \mu \epsilon \nu a, ~ \tau \alpha ́, ~ f o r w a r d$ points, i.e. those lying on the same side of a radius vector of a spiral as the direction of its motion, ii. 184 (Archim.)
трокатабкєงа́Қєเข, to construct beforehand, 276 (Eutoc.)
$\pi \rho о \mu \eta \dot{\kappa \eta}, \quad \epsilon \mathrm{~s}$, prolonged, oblong, 398 (Plat.)
$\pi \rho o ́ s$, Dor. $\pi о \tau i$, prep., towards; is $\dot{\eta} \Delta \mathrm{K}$ т ρ os KE , the ratio $\Delta \mathrm{K}: \mathrm{KE}, 272$ (Eutoc.)
$\pi \rho о \sigma \pi i \pi \tau \epsilon \nu$, to fall, 300 (Eutoc.) ; ai тробтímтоvбає єù θ єîal, 438 (Eucl.), ii. 594 (Papp.)
$\pi \rho o \sigma \tau \iota$ Ával, to add, 444 (Eucl.)
$\pi \rho o ́ т a \sigma \iota s, \epsilon \omega \varsigma, \dot{\eta}$, proposition, enunciation, ii. 566 (Papp.)

тротєiveıv, to propose, to enunciate a proposition, ii. 566 (Рарр.); то̀ тротє $\theta \epsilon \in \nu$, that which was proposed, proposition, ii. 220 (Archim.)
$\pi \rho \omega ́ \tau \iota \sigma t o s, \quad \eta, o \nu$, also os, ov, the very first, 90 (Nicom.)
$\pi \rho \omega \bar{\tau} о \varsigma, \eta, o v$, first ; т. ảpe θ óós, prime $^{\text {number, } 68}$ (Eucl.); but $\pi . ~ \dot{\alpha} \rho \iota \theta \mu о$, numbers of the. first order in Archimedes, ii. 198 (Archim.); in astron., π. є́ $\ddagger \eta \kappa о \sigma т o ́ v, ~ f i r s t ~ s i x t i e t h, ~$ minute, 50 (Theon Alex.); in geom., π. єv่өєîa, first distance of a spiral, ii. 182 (Archim.)
$\pi \tau \hat{\omega} \sigma \iota, \epsilon \omega s, \dot{\eta}$, case of a theoren or problem, ii. 600 (Papp.)
$\pi \nu 0 \mu \eta{ }^{\prime} \nu$, є́vos, δ, base, basic number of a series, i.e., lowest number possessing a given property, 398 (Plat.) ; number of tens, hundreds, etc., contained in a number, ii. 354 (Papp.)
тиранis, íoos, $\dot{\eta}$, pyramid, 228 (Archim.)
'Р' $\quad \pi \epsilon \iota \nu$, to incline; of the weights on a balance, ii. 208
 (Plat.), 452 (Eucl.)
jíla, Ion. j́íl $\eta, \dot{\eta}$, root; а́ $\rho \chi \iota к \omega \tau \alpha ́ \tau \eta ~ \dot{́} i \zeta \zeta а, ~ 90$ (Nicom.)

INDEX OF GREEK TERMS

$\dot{\rho о \mu} \beta$ оєь δ и́s，\quad є́s，rhombus－ shaped，rhomboidal；$\dot{\rho}$ ． $\sigma \chi \hat{\eta} \mu a, 440$（Eucl．）
pó μ ßos，ó，plane figure with four equal sides but with only the opposite angles equal，rhombus， 440 （Eucl．）；ρ ．atє $\boldsymbol{\sigma}$ ós，figure formed by two cones having the same base and their axes in a straight line，solid rhombus，ii． 44 （Archim．）

इquaiveıv，to signify， 188 （Procl．）
$\sigma \eta \mu \epsilon i ̂ o \nu$, Dor．$\sigma a \mu \epsilon i ̂ \nu \nu, \tau o ́$, point， 436 （Eucl．）；sign， ii． 522 （Dioph．）
окадךขós，＇̀＇，óv，also ós，óv， oblique，scalene；кผ̂vos o．， ii． 286 （Apollon．）
ткє́خos，ovs，Ion．єos，tó，leg； б．$\tau \hat{\eta} s$ ywi＇as， 264 （Eutoc．）
$\sigma \pi \epsilon \hat{\imath} \rho a, \dot{\eta}$ ，surface traced by a circle revolving about a point not its centre， spire，tore，torus，ii． 468 （Heron）
oтєьрькós，η^{\prime} ，óv，pertaining to a spire，spiric；o．тонаí， spiric sections，ii． 364 （Procl．）；$\sigma . ~ \gamma \rho а \mu \mu a i, ~ s p i r i c ~$ curves，ii． 364 （Procl．）
бтєрєós，á，óv，solid；$\sigma . \gamma \omega \nu i ́ a$, solid angle， 222 （Plat．）； o．ápı $\theta \mu$ ós，cubic number； o．тomoí，solid loci，ii． 600 （Apollon．）；o．$\pi \rho^{\prime}-$ $\beta \lambda \eta \mu \alpha$ ，solid problem， 348 （Papp．）；$\sigma . \quad \nu \in \hat{v} \sigma \iota s$, solid verging， 350 （Papp．）；as
subst．，oтєрєóv，тó，solid， 258 （Eutoc．）
$\sigma \tau \iota \gamma \mu{ }_{\eta}^{\prime}, \dot{\eta}$, point， 80 （Nicom．） बто८Хєîov，тó，element，ii． 596 （Papp．）；elementary book， 150 （Procl．）；इтоıхєîa，тá， the Elements，especially Euclid＇s
отоцхєímoเs，є $\omega s, \dot{\eta}$ ，elemen－ tary exposition，elements； Euclid＇s Elements of geo－ metry， 156 （Procl．）；ai ката̀ μ оибıкク̀v $\sigma .$, the ele－ ments of music， 156 （Procl．）；б．т $\hat{\nu} \nu \kappa \omega \nu \kappa \kappa ิ ิ$, elements of conics，ii． 276 （Eutoc．）
aтоьхєเштท＇s，ои，$\dot{\delta}$, teacher of elements，writer of ele－ ments，esp．Euclid，ii． 596 （Papp．）
oт（攺údos，η ，ov，round， 392 （Plat．）
аvукєí大日al，to lie together；as pass．of avvit解al，to be composed of，ii． 284 （Apollon．）
áv $\gamma \kappa \rho \iota \iota s, \epsilon \omega s, \dot{\eta}$ ，comparison； T $\hat{\omega} \nu \pi \epsilon \in \tau \epsilon \quad \sigma \chi \eta \mu a ́ \tau \omega \nu \quad \sigma .$, Comparison of the Five Figures，title of work by Aristaeus，ii． 348 （Hyp－ sicl．）
ovЦ̧uyท＇s，és，yoked together， conjugate；σ ．סıápєтpot，σ ． a̋kovєs，ii． 288 （Apolion．）
oú $\mu \mu \tau \rho \circ \mathrm{s}$ ，ov，commensurate with，commensurable with； 380 （Plat．）， 452 （Eucl．），il． 208 （Archim．）
бvцтаратєivєьv，to stretch out alongside of， 188 （Procl．）

INDEX OF GREEK TERMS

$\sigma v \dot{\mu} \mu \pi \alpha$, бú $\mu \pi \alpha \sigma \alpha, \sigma u ́ \mu \pi \alpha \nu$, all together，the sum of，ii． 514 （Dioph．）
 clusion，ii． 228 （Archim．）
ov $\mu \pi i \pi \tau \epsilon \iota \nu$ ，to meet， 190 （Eucl．）；тウ̀v $\mu \epsilon \grave{\nu} \epsilon^{\prime} \nu$ aưT $\hat{\eta}$ σ. ，of curves which meet themselves，ii． 360 （Procl．）
$\sigma \nu \mu \pi \lambda \eta \rho \frac{\hat{v}}{}$ ，to fill，complete ； б．$\pi \alpha \rho a \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu \circ \nu, 268$ （Eutoc．）
$\sigma v_{\mu} \mu \tau \omega \mu a$ ，aros，ró，property of a curve， 336 （Papp．）
$\sigma \dot{v} \mu \pi \tau \omega \sigma \iota, \epsilon \omega s, \dot{\eta}$ ，falling to－ gether，meeting，ii．64 （Archim．），ii． 270 （Cleom．）， 286 （Eutoc．）
$\sigma v v a \gamma \omega \gamma \eta \dot{\eta}, \dot{\eta}$ ，collection；title of work by Pappus，ii． 568 （Papp．）
ovvaцфórepos，ov，the sum of， 328 （Archim．）
ovvámтєเv，to collect，gather； वvvəuце́vos $\lambda o ́ \gamma o s, ~ c o m-~$ pound ratio，ii． 602 Papp．）
$\sigma v \nu \epsilon \gamma \gamma i \zeta \epsilon \iota$ ，to approximate， ii． 414 （Ptol．），ii． 470 （Heron）
のข́vє $\ell \gamma v \mathrm{~s}$ ，adv．，near，approxi－ mately，ii． 488 （Heron）
$\sigma v \nu \in \chi \eta$ ท＇s，є́s，continuous， 442 （Eucl．）；σ. àvadoyía，con－ tinued proportion，ii． 566 （Papp．）；o．d̀váخozov， 302 （Papp．）；$\sigma \pi \epsilon \hat{\rho} \rho a ~ \sigma ., ~ i i . ~ 364$ （Procl．）
avv日évtı，v．avvtlQéval
$\sigma v_{\nu} \theta \epsilon \sigma \iota s, \epsilon \omega \mathcal{S}, \dot{\eta}$, putting to－ gether，composition； $\boldsymbol{\sigma}$ ．

入óyou，transformation of a ratio known as com－ ponendo， 448 （Eucl．）； method of reasoning from assumptions to conclu－ sions，in contrast with analysis，synthesis，ii． 596 （Papp．）
 ápıө $\boldsymbol{\mu}$ ós， 68 （Eucl．）；$\quad \sigma$. $\gamma \rho a \mu \mu$ и，ii． 360 （Procl．）
ovvıotával，to set up，con－ struct， 190 （Eucl．）， 312 （Them．）
बưvтa乡เs，$\epsilon \omega \varsigma, \dot{\eta}$, putting to－ gether in order，systematic treatise，composite volume， collection ；title of work by Ptolemy，ii． 408 （Sui－ das）
ovvтı日éval，to place or put to－ gether，add together，used of the synthesis of a pro－ blem，ii． 160 （Archim．）； ovvévitl，lit．to one having compounded，the trans－ formation of a ratio known as componendo，ii． 130 （Archim．）
 （of theorems）， 150 （Procl．） $\sigma \phi a i p a, \dot{\eta}, s p h e r e, 466$（Eucl．）， ii． 40 （Archim．），ii． 572 （Papp．）
офацрєко́s，${ }^{\text {й }}$ ，óv，spherical，ii． 584 （Рарр．）；Σ фаı $\iota к \alpha ́$, title of works by Menelaus and Theodosius
oфацюотонía，$\dot{\eta}, \quad$ artificial sphere，making of the heavenly spheres，ii． 618 （Papp．）

INDEX OF GREEK TERMS

ox η мa，aтos，тó，shape，figure， 438 （Eucl．），ii． 42 （Ar－ chim．）
बхךнатотоєєîv，to bring into a certain form or shape；
 curve forming a figure， ii． 360 （Procl．）
＇Tádavrov，τ ó，weight known as the talent，ii． 490 （Heron）
$\tau \alpha ́ \xi \iota s, \epsilon \omega s, \dot{\eta}$ ，order，arrange－ ment，scheme， 112 （Iambl．）
тарá⿱㇒⿻二乚㇒兀 раүнє́vๆ ảva入oүía，disturbed proportion， 450 （Eucl．）
тáбoєь，to draw up in order， ii． 598 （Papp．）；о́ $\boldsymbol{\prime} \boldsymbol{i}^{\prime} \omega s$ $\tau \epsilon \tau a \gamma \mu \epsilon ́ v a$ ，ii． 166 （Ar－ chim．）；perf．part．pass． used as adv．，тєтay $\mu \in ́ v \omega$ v， ordinate－wise，ii． 286 （Apollon．）；גi катаүó $\mu \in \nu а є$ $\tau \epsilon \tau а \gamma \mu \epsilon ́ \nu \omega s$（sc．єù $\theta \epsilon \hat{\imath} a \iota$ ），the straight lines drawn or－ dinate－wise，i．e．，the ordin－ ates，of a conic section， ii． 308 （Apollon．）；тєта－ $\gamma \mu \epsilon ́ v \omega s \quad \dot{\eta}$ ГА，ii． 224 （Archim．）
т $\in \lambda \epsilon \cos , a, ~ o v$, perfect，com－ plete，ii． 604 （Papp．）；τ ． ápı$\theta \mu o ́ s, 76$（Speusippus ap． Theol．Arith．）， 70 （Eucl．）， 398 （Plat．）
$\tau \epsilon \dot{\epsilon} \nu \epsilon \iota \nu$ ，to cut ；of straight lines by a straight line，ii． 288 （Apollon．）：of a curve by a straight line， 278 （Eutoc．）；of a solid
by a plane，ii． 288 （A pollon．）
тєббарєбкаи $\delta \epsilon к а ́ є \delta \rho о \nu, \quad \tau o ́$, solid with fourteen faces， ii． 196 （Archim．）
$\tau \epsilon \tau \alpha \gamma \mu \epsilon ́ v \omega \underset{\nu}{ }, v . \tau a ́ \sigma \sigma \epsilon \iota \nu$
тєтарауне́vos，ov，v．тарáo－ $\sigma \epsilon \iota$
тєтарт $\eta \mu$ ópıov，тó，fourth part， quadrant of a circle，ii． 582 （Papp．）
тєт $а \mathbf{\gamma \omega \nu i \zeta \epsilon \iota \nu , ~ t o ~ m a k e ~ s q u a r e , ~}$ ii． 494 （Heron）；to square， 10 （Plat．）；$\dot{\boldsymbol{j}} \boldsymbol{\tau \epsilon \tau \rho a \gamma \omega \nu i - ~}$ そovoa（sc．रра $\mu \mu \eta$ ），quad－ ratrix， 334 （Simpl．）， 336 （Papp．）
$\tau \epsilon \tau \rho a \gamma \omega \nu \iota \kappa$ о́s，${ }^{\eta}$ ，óv，square； of numbers，ii． 526 （Dioph．）；$\tau . \pi \lambda \epsilon v \rho a ́$, squars root， 60 （Theon Alex．）
$\tau \epsilon \tau \rho a \gamma \omega \nu \iota \neq \frac{\prime}{s}, \delta$, squaring， 310 （Aristot．）；то仑̂ ки́клои т．， 308 （Plut．）；то仑̂ $\mu \eta$ í＇$^{-}$ окои $\tau ., 150$（Procl．）
тєт $a^{\gamma} \gamma \omega \nu o s$, ov，square， 308 （Aristoplianes），ii． 504 （Heron）；àpı $\theta \mu$ òs τ ．，square number，ii． 514 （Dioph．）； т．крі́коь，square rings，ii． 470 （Heron）；as subst．， $\tau \epsilon \tau \rho \alpha ́ \gamma \omega \nu o v, \tau o ́, ~ s q u a r e, 440$ （Eucl．）：square number， ii． 518 （Dioph．）
$\tau \epsilon \tau \rho a ́ \kappa \iota s$, adv．，four times， 326 （Archim．）
тєт $\frac{1}{} \pi \lambda^{\prime}$ ávos，a, ov，four－fold， four times as much， 332 （Archim．）
$\tau \epsilon \tau \rho a \pi \lambda a \sigma^{\prime} \omega \nu, o v$ ，later form of $\tau \epsilon \tau \rho a \pi \lambda$ á $\sigma \iota o s$
$\tau \epsilon \tau \rho \alpha ́ \pi \lambda \epsilon \cup \rho o s, ~ o v$, four－sided，

INDEX OF GREEK TERMS

quadrilateral ; $\sigma \chi \dot{\eta} \mu a \tau a \tau$., 440 (Eucl.)
төt́́val, to set, put, place, ii. 224 (Archim.); $\theta \epsilon \tau \epsilon \in \circ$, must be posited, 392 (Plat.) ; $\tau \dot{o} \mathrm{O} \mathrm{AB} \tau \epsilon \theta \dot{\epsilon} \nu \dot{\epsilon} \pi \dot{\imath}$ $\tau \hat{\omega} \mathrm{Z}, \mathrm{A}+\mathrm{B}$ placed at Z , ii. 214 (Archim.)
$\tau \mu \hat{\eta} \mu a$, Dor. $\tau \mu \mathrm{â} \mu a, \alpha \tau o s, \tau o ́$, segment ; of a circle, ii. 584 (Papp.) ; of a sphere, ii. 40 (Archim.) ; in astron., Tht $\frac{1}{2}$ th part of diameter of a circle, ii. 412 (Ptol.)
тоцєús, ϵ ' ωs, í, sector of a circle, ii. 582 (Papp.) ; τ. orєpeós, sector of a sphere (intercepted by cone with vertex at centre), ii. 44, (Archim.)
тоцท', $\dot{\eta}$, end left after cutting, section ; section of a straight line, 268 (Eutoc.) ; section of a cone, conic section, ii. 278 (Apollon.); r. àvтıкєí $\epsilon \in \nu a \ell$, opposite branches of a hyperbola, ii. 322 (Apollon.); $\sigma \pi \epsilon t-$ рєкаі т., ii. 364 (Procl.) ; кoıท̀ т., common section, 286 (Eutoc.) ; $\Delta \iota \omega \rho \iota \sigma \mu \epsilon ́ v \eta$ т., Determinate Section, title of work by Apollonius, ii. 598 (Papp.); $\tau \dot{a} \pi \epsilon \rho \dot{i} \tau \dot{\eta} \nu \quad \tau$., theorems about the section (? of a line cut in extreme and mean ratio), 152 (Procl.)
тотько́s, η^{\prime}, óv, of or pertaining to place or space ; pertaining to a locus, 490

in space, ii. 396 (Hypsicl.)
то́тоя, ó, place, region, space, ii. 590 (Papp.) ; locus, 31.9 (Рарр.) ; T. є́ $\pi i \pi \epsilon \delta o \iota$, Plane Loci, title of work by Apollonius, ii. 598 (Papp.) ; T. $\sigma \tau \epsilon \rho \epsilon \circ$ i, Solid Loci, title of work by Aristaeus, ii. 600 (Papp.)
трaтє́ऽ८ov, тó, trapezium, 440 (Eucl.), ii. 488 (Heron)
тpıás, áסos, $\dot{\eta}$, the number three, triad, 90 (Nicom.); Мєvacхиєial т., the three conic sections of Menaechmus, 296 (Erat. ap. Eutoc.)
$\tau \rho i \gamma \omega \nu o s, ~ o v$, three-cornered, triangular; ápe $\theta \mu \mathrm{ol}$ т $\boldsymbol{c i}^{-}$ $\gamma \omega \nu o \iota$, triangular numbers; as subst., $\tau \rho i \gamma \omega \nu=\nu$, tó, triangle, 440 (Eucl.), 316 (Archim.) ; $\tau \dot{o}$ रıà $\tau 0 \hat{v}$ ágovos r., axial triangle, ii. 288 (Apollon.)
$\tau \rho \iota \pi \lambda a ́ \sigma \iota o s, ~ a, ~ o v$, thrice as many, thrice as great as, 326 (Archim.), ii. 580 (Рарр.)
$\tau р \iota \pi \lambda a \sigma i \omega \nu, \quad o \nu=\tau \rho \iota \pi \lambda \alpha ́ \sigma \iota o s$, 320 (Archim.) ; т. גójos, 448 (Eucl.)
трít $\lambda \in u p o s, ~ o \nu$, three-sided, trilateral ; бхŋ́ната т., 440 (Eucl.)
тоiха, thrice, in three parts, т. $\tau \in \mu \epsilon \hat{i} \nu \quad \tau \grave{\eta} \nu \gamma \omega \nu i \alpha \nu$, to trisect the angle, 300 (Papp.)
$\tau v \gamma \chi^{2} \nu \epsilon \iota$, to happen to be; aor. part., тuх ω, $\tau v \chi o \hat{v} \sigma a$, тuxóv, any, taken at ran-

INDEX OF GREEK TERMS

dom, єن̉Өєє̂a т., ii. 486 (Heron) ; as adv., тu才óv, perchance, 264 (Eutoc.)
 pl., 'r$\delta \rho \in i ̂ \alpha$, title of work on water clocks by Heron, ii. 616 (Papp.)
v̈ $\pi \alpha \rho \xi \iota, \epsilon \omega \varsigma, \dot{\eta}$, existence, ii. 518 (Dioph.); positive term, ii. 524 (Dioph.)
$\dot{v} \pi \epsilon \nu a v t i o s, a, o \nu$, subcontrary; v. μ є́ra, 112 (Archytas ap. Porph.) ; v. $\tau \boldsymbol{\tau} \boldsymbol{\eta}$, ii. 304 (Apollon.)
ข่тєчаขтíws, subcontrary-wise, ii. 301-302 (Apollon.)
$\dot{v} \pi \epsilon \rho \beta \dot{\alpha} \lambda \lambda \epsilon \iota$, to exceed, 188 (Procl.)
$\dot{v} \pi \epsilon \rho \beta$ од $\dot{\eta}, \dot{\eta}$, exceeding, 186 (Procl.) ; the conic section hyperbola, so called because the square on the ordinate is equal to a rectangle with height equal to the abscissa applied to the parameter as base, but exceeding (vinє $\rho \beta a ́ \lambda \lambda o \nu$), i.e., overlapping, that base, ii. 310 (Apollon.), 186 (Procl.)
и́тєрє́ $\chi \epsilon \iota \nu$, to exceed, 112 (Archytas ap. Porph.), 444 (Eucl.), ii. 608 (Papp.); $\tau \hat{\omega}$ аưт $\hat{\omega}{ }^{\mu} \boldsymbol{\mu} \rho \in \epsilon \tau \tau \hat{\omega} \nu$ äк $\rho \omega \nu$
 $\dot{v} \pi \epsilon \rho \in \chi \dot{\rho} \mu \in \nu 0 \nu, 402$ (Plat.)
$\dot{v} \pi \epsilon \rho \circ \chi \dot{\eta}$, Dor. vi $\pi \epsilon \rho \circ \chi \alpha ́, \dot{\eta}$, excess, 112 (Archytas ap. Porph.), 318 (Archim.), ii. 530 (Dioph.), ii. 608 (Papp.)
$\dot{v} \pi \epsilon \rho \pi i \pi \tau \epsilon \iota \nu$, to fall beyond, exceed, ii. 436 (Ptol.)
$\dot{v} \pi o ́, b y ; \dot{\eta} \dot{v} \pi \dot{o} \mathrm{HBE} \gamma \omega \nu i a$, the angle HBE, 190 (Eucl.) ; тò v́ $\pi \grave{o} \Delta \mathrm{E} \Gamma$ (sc. $\epsilon \dot{\theta} \dot{v} \gamma \rho a \mu \mu \circ \nu$), the rectangle contained by $\Delta \mathrm{E}, \mathrm{E}, 268$ (Eutoc.)
$\dot{v} \pi \dot{\prime} \theta \epsilon \sigma \iota \mathrm{~s}, \epsilon \omega \mathrm{~A}, \dot{\eta}$, hypothesis, 420 (Aristot.), ii. 2 (Archim.)
 multiple of another; as
 submultiple, 78 (Theol. Arith.)
 ii. 534 (Dioph.)
v̇потєiveiv, to stretch under, subtend, be subtended by;

 the straight line subtend$i n g$, or subtended by, two sides of the polygon, ii. 96 (Archim.) ; $\pi \lambda \in \cup \rho \dot{\Sigma} \dot{v} \pi o^{-}$ teívoval μ oípas \bar{y}, side subtending sixty parts, ii. 418 (Ptol.); $\dot{\eta} \boldsymbol{\tau} \dot{\eta} \boldsymbol{\nu}$
 $\pi \lambda \epsilon u \rho a$, the side subtending the right angle, 178 (Eucl.); hence $\dot{\eta}$ $\dot{\text { vitotévovga (sc. } \pi \lambda \text { деvpá or }}$ रра $\mu \mu \mu^{\prime}$), hypotenuse of a right-angled triangle, 176 (Plut.)
 to suppose, assume, make a hypothesis, ii. 2 (Archim.), ii. 304 (Apollon.)
vintios, a, ov, laid on one's

INDEX OF GREEK TERMS

back，supine；ப゙ $\pi \tau \tau 0 \nu$ ，тó， a quadrilateral with no parallel sides， 482 （Papp．）
íøьтával，to place or set under，ii． 362 （Procl．）
ǐ $\psi o s$, ous，Ion．єos，tó，height ； of a triangle，ii． 222 （Ar－ chim．）；of a cylinder，ii． 42 （Archim．）；of a cone，ii． 118 （Archim．）

Фavepós，á，óv，clear，mani－ fest，ii．64．（Archim．），ii． 570 （Papp．）
фé $\rho \epsilon \iota v$, to bear，carry ；pass．， to be borne，carried，move， revolve； $\boldsymbol{\text { च } \mu є i ̃ o \nu ~ ф є \rho o ́ \mu є \nu о \nu , ~}$ ii． 582 （Papp．）；т̀̀ $\phi \in \rho \dot{o}^{-}$ $\mu \in \nu o v$, moving object， 366 （Aristot．）
фopá，$\dot{\eta}$, motion， 12 （Plat．）
$\mathrm{X} \in i \rho, \chi \in \iota \rho o ́ s, \dot{\eta}$, band or num－ ber of men， 30 n．a
$\chi є \iota \rho о$ руєко́s，$\dot{\eta}$, óv，manual， ii． 614 （Рарр．）

хроико́s，$\dot{\eta}$ ，óv，of or pertain－ ing to time；μ ồpa χ ．， degree in time，ii． 396 （Hypsicl．）
$\chi \omega \rho$ iov，тó，space，area，394 （Plat．），ii． 532 （Dioph．）
$\Psi a v \in \epsilon v$, to touch， 264 （Eutoc．） $\psi \in v \delta \alpha ́ \rho \iota o v, ~ t o ́, ~ f a l l a c y ; ~ \Psi \epsilon v-$ Sápıa，$\tau a ́$, title of work by Euclid， 160 （Procl．）
＇Ω рo入óytov，тó，instrument for telling the time，clock，ii． 268 （Cleom．）；tò $\delta \iota^{\prime}$ ü $\delta a \tau o s$ $\dot{\omega} .$, water－clock，ii． 616 （Papp．）
шs，as；$\dot{\omega} \dot{\eta} \mathrm{ZE} \pi \rho o \dot{\prime} \mathrm{E} \mathrm{\Gamma}$ ， $\dot{\eta}$ ZH $\pi \rho o ̀ s ~ H \Gamma, ~ i . e ., ~$ ZE ：E＝$=\mathrm{ZH}: \mathrm{H}, \quad 329$ （Archim．）
あ̈бтє，such that，ii． 52 （ $\mathrm{Ar}-$ chim．）；and so，therefore， used for the stages in a proof，ii． 54 （Archim．）

[^137]
THE LOEB CLASSICAL LIBRARY

VOLUMES ALREADY PUBLISHED

Latin Authors

Ammands Marcelinnus. Translated by J. C. Rolfo. 3 Vols. (2nd Imp. revised.)
Apuleius: The Golden ass (Mbtamorphoses). W. Adllngton (1566). Revised by ${ }^{\prime}$ S. Gaselee. (7th Imp.)

St. Augubtrise: City of God. 7 vols. Vol. I, G. H. McCracken.
St. Augustine, Confessions of. W. Watts (1631). 2 Vols. (Vol. I. 7th Imp., Vol. II. 6th Imp.)
St. Augustine, Select Letters. J. H. Baxter. (2nd Imp.)
Ausonius. H. G. Evelyn White. 2 Vols. (2nd Imp.)
Bede. J. E. King. 2 Vols. ($2 n d$ Imp.)
Borthius: Traots and De Consolatione Philosophiar. Rev. H. F. Stewart and E. K. Rand. (6 th Imp.)

Carsar: Alexandrian, african and Spanish Wars. A. G. Way.
Camsar: Civil Wars. A. G. Peskett. (5 th Imp.)
Carsar: Gallio War. H. J. Edwards. (10th Imp.)
Cato: De Re rustica; Varro: de Re rustica. H. B. Ash and W. D. Hooper. ($3 r d$ I $m p$.)

Catulues. F. W. Cornish; Tibullus. J. B. Postgate; Perviailium Veneris. J. W. Mackail. (12th Imp.)
Celsus: De Medicina. W. G. Spencer. 3 Vols. (Vol. I. 3rd Imp. revised, Vols. II. and III. $2 n d$ Imp.)
Cicero: Brdtus, and Orator. G. L. Hendrickson and H. M. Hubbell. (3 rd Imp.)
[Cicero]: ad Herrnntum. H. Caplan.
Cigero: De fato; Paradoxa Stoicorum; De Partitione Oratoria. H. Rackham (With De Oratore, Vol. II.) (2nd Imp.)
Cicero : De Finibus. H. Rackham. (4th Imp. revised.)
Cicero: De Inventione, etc. H. M. Hubbell.
Cicero: de Natura Deobum and adademica. H. Rackham. (2nd Imp.)
Cigero : De Officis. Walter Miller. (6th Imp.)
Cioero: De Oratore. 2 Vols. E. W. Sutton and H. Rackham. (2nd Imp.)
Cicero: Di Republica and De Legibus. Clinton W. Keyes. (4th Imp.)
Cigroo: De senectute, De Amicitia, De Divinatione. W. A. Falconer. (6th Imp.)
Cicero: in Catalinam, Pro flacco, Pro Murena, Pro Sulla. Louis E. Lord. (3 rd Imp. revised.)
Clozro : Letters to Atticus. E. O. Winstedt. 3 Vols. (Vol. I. 6th Imp., Vols. II and III. 4th Imp.)

Ctorero: Letters to His Friends. W. Glynn Whliams. 3 Vola (Vols. I. and II. 3 rd Imp., Vol. III. 2nd Imp. revised.)
Cicero: Philippics. W. C. A. Ker. (3rd Imp. revised.)
Cicero: Pro arciila, post reditum, De domo, de Hardspioum Responsis, Pro Plancio. N. H. Watts. (4th Imp.)
Ctgero: Pro Caecina, Pro Lege Mantlla, Pro Cluentio, Pao Rabirio. H. Grose Hodge. ($3 r d$ Imp.)
Cigero: Pro Milone, In Pisonem, Pro Scauro, Pro Fonthio, Pro Rabirio postumo, Pro Marcello, Pro ligario, Pro rege Deiotaro. N. H. Watts. (2nd Imp.)
Cloero: l'ro Quinctio, pro Roscio amerino, Pro Roscio Comofdo, Contra Rullum. J. H. Freese. (3rd Imp.)
Cicero: Tusculan Disputations. J. E. King. (4th Imp.)
Cicero: Verrine Orations. L. H. G. Grbenwood. 2 Vols. (Vol. I. 3rd Imp., Vol. II. 2nd Imp.)
Cladilan. M. Platnauer. 2 Vols. ($2 n d$ Imp.)
Columella: De Re Rustica, De Arboribus. H. B. Ash, R. S. Forster and E. Heffner. 3 Vols. (Vol. I. 2nd Imp.)
Curtius, Q.: History of Alexander. J. C. Rolfe. 2 Vols. (2nd Imp.)
Flords. E. S. Forster and Cornelius Nepos. J. C. Rolfe. (2nd Imp.)
Frontinds: Stratagems and Aqueddcts. C. E. Bennett and M. B. McElwain. (Vol. I. $3 r d$ Imp., Vol. II. 2nd Imp.)

Fronto : Correspondence. C. R. Haines. 2 Vols. (Vol. I. 8rd Imp., Vol. II. 2nd Imp.)
Gellius. J. C. Rolfe. 3 Vols. (Vol. I. 3rd Imp., Vols. II. and III. $2 n d$ Imp.)

Horace: Odes and Epodes. C. E. Bennett. (14th Imp. revised.)
Horace: Satires, Epistles, ars poetica. H. R. Fairclough. (9th Imp. revised.)
Jerome: Selected Letters. F. A. Wright. (2nd Imp.)
Juvenal and Persids. G. G. Ramsay. (7th Imp.)
Livy. B. O. Foster, F. G. Moore, Evan T. Sage, and A. C. Schlesinger. 14 Vols. Vols. I.-XIII. (Vol. I. 4th Imp., Vols. II., III., V., and IX. 3rd Imp.; Vols. IV., VI.- VIII., X.--XII. 2nd Imp. revised.)

Lucan. J. D. Duff. (3rd Imp.)
Ludretius. W. H. D. Rouse. (7th Imp. revised.)
Martial. W. C. A. Ker. 2 Vols. (Vol. I. 5th Imp., Vol. II. 4th Imp. revised.)
Minor Latin Poets: from Publilius Syrus to Rutimus Namatlanus, including Grattids, Calpernius Sioulds, Nemesiands, avlanus, and others with "Aetna" and the "Phoenix." J. Wight Duff and Arnold M. Duff. (3rd Imp.)

Ovid: The Art of Love and Other poems. J. H. Mozley. (3rd Imp.)
Ovid : Fasti. Sir James G. Frazer. (2nd Imp.)
Ovid : Heroides and Amores. Grant Showerman. (5th Imp.)
Ovid: Metamorphoses. F. J. Miller. 2 Vols. (Vol. I. 10th Imp., Vol. II. 8th Imp.)
Ovid: Tristia and Ex Ponto. A. L. Wheeler. (3rd Imp.)

Persits. Cf. Jutenal.
Petronids. M. Heseltine ; Seneca Apocolocymtosis. W. H. D. Rouse. (8th Imp. revised.)
Pladtes. Paul Nixon. 5 Vols. (Vols. I. and II. 5th Imp., Vol. ITI. 3rd Imp., Vols. IV and V. 2nd Imp.)
Phiv : Lettiers. Melmoth's Translation revised by W. M. L. Hutchinson. 2 Vols. (6 th Imp.)
Piny: Natural History. H. Rackham and w. h. S. Jones. 10 Vols. Vols. I.-V. and IX. H. Rackham. Vols. VI. and VII. W. H. S. Jones. (Vols. I.-III. 3rd Imp., Vol. IV. $2 n d$ Imp.)

Propertios. H. E. Butler, (6th Imp.)
Prudentids. H. J. Thomson. 2 Vols.
Quintilian. H. E. Butler. 4 Vols. (3rd Imp.)
Remains of Oid Latin. E. H. Warmington. 4 Vols. Vol. I. (Ennius and Carcilids.) Vol. II. (Livive, Naevide, Pacuvide, accies.) Vol. III. (Lucilids and Laws of XII Tables.) Vol. IV. (2nd Imp.) (Archaic Inscriptions.)

Saluust. J. C. Rolfe. (4th Imp. revised.)
Scriptores Historlae augustae. D. Magie. 3 Vols. (Vol. I. 3rd Imp. revised, Vols. II. and III. 2nd Imp.)
Seneca : Apocolocyntosis. Cf. Petronius.
Sekeca: Epibtulae Morales. R. M. Gummerc. 3 Vols. (Vol. I. 4th Imp., Vols. II. and III. 2nd Imp.)
Seneca: Moral Essays. J. W. Basore. 3 Vols. (Vol. II. 3rd Imp., Vols. I. and III. 2nd Imp. revised.)
Seneca: Tragedies. F. J. Miler. 2 Vols. (Vol. I. 4th Imp., Vol. II. 3rd Imp. revised.)
Sidonius: Poems and Letters. W. B. Anderson. 2 Vols. (Vol. I. 2nd Imp.)
Silius Italious. J. D. Duff. 2 Vols. (Vol. I. 2nd Imp., Vol. II. 3rd Imp.)
Staties. J. H. Mozley. 2 Vols. (2 nd Imp.)
Suetonids. J. C. Rolfe. 2 Vols. (Vol. I. 7th Imp., Vol. II. 6th Imp. revised.)
Tacitus: Dhlogus. Sir Wm. Peterson. Agricola and Germania. Maurice Hutton. (6th Imp.)
Tacitus: Histories and annals. C. H. Moore and J. Jackson. 4 Vols. (Vols. I. and II. $3 r d$ Imp., Vols. III. and IV. $2 n d$ Imp.)
Terence. John Sargeaunt. 2 Vols. (7th Imp.)
Tertullian: Apologia and De Spectaculis. T. R. Glover. Minuorus Felix. G. H. Rendall. (2nd Imp.)
Valerids Flaccus. J. H. Mozley. (2nd Imp. revised.)
Varro: De Lingua Latina. R. G. Kent. 2 Vols. (2nd Imp. revised.)
Velleifs Paterculus and Res Gestae Divi augusti. F. W. Shipley. (2nd Imp.)
Virail. H. R. Fairclough. 2 Vols. (Vol. I. 18th Imp., Vol. II. 14th Imp. revised.)
Vitruvivs: De Architeotura. F. Granger. 2 Vols. (Vol. I. 3rd Imp., Vol. II. 2nd Imp.)

Greek Authors

Achilles Tatius. S. Gaselce. ($2 n d \operatorname{Imp}$.)

aeneas Tacticus, asclepiodotus and Onasander. The minois Greck Club. ($2 n d$ Imp.)
Aeschines. C. D. Adams. (2nd Imp.)
Aeschylus. H. Weir Smyth. 2 Vols. (Vol. I. 6th Imp., Vol. II. $5 t h$ Imp.)
Alciphron, Aellan, Philostratus Letters. A. R. Benner and F. H. Fobes.
andocides, Antiphon. Cf. Minor attic Orators.
Apollodorus. Sir James G. Frazer. 2 Vols. (Vol. I. 3rd Imp., Vol. II. 2nd Imp.)
Apollonits Rhodius. R. C. Seaton. (5th Imp.)
The Apostolic Fathers. Kirsopp Lake. 2 Vols. (Vol. I. 8th Imp., Vol. II. 6th Imp.)
applan : Roman History. Horace White. 4 Vols. (Vol. I. 4 th Imp., Vols. II. and IV. 3rd Imp., Vol. III. 2nd Imp.)
aratus. Cf. Callimachus.
Aristophanes. Benjamin Blckley Rogers. 3 Vols. Verse trans. (5th Imp.)
Aristotle : Art of Rhetoric. J. H. Frecse. (3rd Imp.)
Aristotle: athenlan Constitution, Eudemian Ethics, Vices and Virtues. H. Rackham. (3rd Imp.)
Aristotle : Generation of Animals. A. I. Peck. (2nd Imp.)
Aristotle : Metaphysics. H. Tredennick. 2 Vols. (3rd Imp.)
Aristotle: Meteorologica. H. D. P. Lee.
Aristotle: Minor Works. W. S. Hett. On Colours, On Things Heard, On Physiognomies, On Plants, On Marvellous Things Heard, Mechanical Problems, On Indivisible Lines, On Situations and Names of Winds, On Melissus, Xenophanes, and Gorgias. (2nd Imp.)
Aristotle: Nicomachean Ethics. H. Raekham. (6th Imp. revised.)
aristotle: ofconomioa and Magna Moraila. G. C. Armstrong; (with Metaphysics, VoL II.). ($3 r d$ Imp.)
Aritsotle : On the Heavens. W. K. C. Guthrie. (3rd Imp. revised.)
Aristotle: On Sophistical Refutations, On Coming to be and Passing Away, On the Cosmos. E. S. Forster and D. J. Furley.
aristotle: On the Soul, Parva Naturalia, on breath. W. S. Hett. (2nd Imp. revised.)
Aristotle: Orannon, Categories: On Interpretation, Prior Analytics. H. P. Cooke and H. Tredennick. (3rd Imp.)
aristotle: Parts of animals. A. L. Peck; motion and Progression of animals. E. S. Forster. (3rd Imp. revised.)
Abistotle: Physics. Rev. P. Wicksteed and F. M. Cornford. 2 Vols. (Vol. I. 2nd Imp., Vol. II. 3rd Imp.)
Aristotle: Poetics and Longinus. W. Hamilton Fyfe; Demetrius on Style. W. Rhys Roberts. (5th Imp. revised.)
Aristotle: Politics. H. Rackham. (4th Imp. revised.)
Aristotle : Problems. W. S. Hett. 2 Vols. (2nd Imp. revised.)
Aristotle: lhetorica ad alexandrum (with Problems, Vol. II.). H. Rackham.

Arrinf: History of Alexander and Indica. Rev. F. Hiffe Robson. 2 Vols. (Vol. I. $3 r d$ Imp., Vol. II. $2 n d$ Imp.)
Athenaeds: Deipnosophistare. C. B. Gulick. 7 Vols. (Vols. I., IV.-VII. 2nd Imp.)

St. BASIL : Letters. R. J. Deferrari. 4 Vols. (2nd Imp.)
Callimachos, Hymns and Epigrams, and Lycophron. A. W. Mair; Aratus. G. R. Mair. (2nd Imp.)
Clement of Alexandila. Rev. G. W. Butterworth. (3rd Imp.)
Colluthus. Cf. Opplan.
Daphnis and Chloz. Thornley's Translation revised by J. M Edmonds : and Parthenius. S. Gaselee. (4th Imp.)
demosthenrs I: Olynthics, Philippics and Minor Orations. I.-XVII. and XX. J. H. Vince. (2nd Imp.)

Demosthenks II: De Corona and De Falsa Leqatione. C. A. Vince and J. H. Vince. (3rd Imp. revised.)
Demosthenes III: Meidias, Androtion, Aristocrates, Timocrates and aristooeiton, I. and II. J. H. Vince. ($2 n d$ Imp.)
Drmosthenes IV-VI: Private Orations and In Nraeram. A. T. Murray. (Vol. IV. 2nd Imp.)
drmosthenrs VII: Funeral Speech, Erotio Essay, Exordia and Letters. N. W. and N. J. DeWitt.
Dro Cassios: Roman History. E. Cary. 2 Vols. (Vols. I. and II. 3rd Imp., Vols. III.-IX. 2nd Imp.)
Dio Cheysostom. J. W. Cohoon and H. Lamar Crosby. 5 Vols. Vols. I.-IV. 2nd Imp.)
Diodorus Sioulus. 12 Vols. Vols. I.-VI. C. H. Oldfather. Vol. VII. C. L. Sherman. Vols. IX and X. R. M. Geer. (Vols. I.-IV. 2nd Imp.)
Diooenes Laertios. R. D. Hicks. 2 Vols. (Vol. I. 4 th Imp., Vol. II. 3rd Imp.)

Dionysius of Halicarnassus: Roman Antiquities. Spelman's translation revised by E. Cary. 7 Vols. (Vols. I.-V. $2 n d$ Imp.)
Epiotetus. W. A. Oldfather. 2 Vols. ($2 n d$ Imp.)
Euripiders. A. S. Way. 4 Vols. (Vols. I. and II. 7 th Imp., Vols. III. and IV. 6th Imp.) Verse trans.

Eusebius: Ecclesiastical History. Kirsopp Lake and J. E. L. Oulton. 2 Vols. (Vol. I. 3rd Imp., Vol. II. 4th Imp.)
Galen: On the Natural Faculites. A. J. Brock. (4th Imp.)
The Greik Anthology. W. R. Paton. 5 Vols. (Vols. I. and II. 5th Imp., Vol. III. 4th Imp., Vols. IV and V. 3rd Imp.)
Greke Eleof and lambus with the Anacreontea. J. M. Edmonds. 2 Vols. (Vol. I. $3 r d$ Imp., Vol. II. $2 n d$ Imp.)
Trif Greek Bucolio Poets (Theocritus, Bion, Mosohus). J. M. Edmonds. (7th Imp. revised.)
Greke Mathematioal Works. Ivor Thomas. 2 Vols. (2nd Imp.)
Herodrs. Cf. Theophrastus: Charaoters.
Herodotus. A. D. Godley. 4 Vols. (Vols. I.-III. 4th Imp., Vol. IV. 3rd Imp.)

Hesiod and The Homerio Hymns. H. G. Evelyn White. (7th Imp. revised and enlarged.)

Hippocrates and the Fragments of Heracleitus. W. H. S. Jones and E. T. Withington. 4 Vols. ($3 r d$ Imp.)
Homer: Illad. A. T. Murray. 2 Vols. (Vol. I. 7 th Imp., Vol. II. 6th Imp.)
Homer: Odyssey. A. T. Murray. 2 Vols. (sth Imp.)
Isaeus. E. W. Forster. (3rd Imp.)
Isocrates. George Norlin and LaRue Van Hook. 3 Vols. (2nd Imp.)
St. John Damascene: Barlaamand Ioasaph. Rev. G. R. Woodward and Harold Mattingly. (3rd Imp. revised.)
Josephus. H. St. J. Thackeray and Ralph Mareus. 9 Vols. Vols. I.-VII. (Vol. V. $3 r d \operatorname{Imp}$., Vols. I.--IV., VI. and VII. 2nd Imp.)

Jullan. Wilmer Cave Wright. 3 Vols. (Vols. I. and II. 3rd Imp., Vol. III. 2nd Imp.)
Luclan. A. M. Harmon. 8 Vols. Vols. I.-V. (Vols. I. and II. 4th Imp., Vol. III. $3 r d$ Imp., Vols. IV and V. $2 n d$ Imp.)
Lycophron. Cf. Callimaches.
Lyra Graeca. J. M. Edmonds. 3 Vols. (Vol. I. 4 th Imp., Vol. II. revised and enlarged, and III. 3 rd Imp.)
Lysias. W. R. M. Lamb. (2nd Imp.)
Manetho. W. G. Waddell: Ptolemy: Tetrabiblos. F. E. Robbins. (2nd Imp.)
Marcus Aurelius. C. R. Haines. (4th Imp. revised.)
Menander. F. G. Allinson. (3rd Imp. tevised.)
Minor attic Orators (Antipion, Andocides, Lycurges, Demades, Dinarchus, Hypereides). K. J. Maidment and J. O. Burrt. 2 Vols. (Vol. I. 2nd Imp.)
Nonnos: Dionyslaca. W. I. D. Rouse. 3 Vols. (2nd Imp.)
Oppian, Colluthus, Tryphiodorus. A. W. Malr. (2nd Imp.)
Papyri. Non-literary Selections. A. S. Hunt and C. C. Edgar. 2 Vols (Vol. I. $2 n d$ Imp.) Literary Selections. Vol. I. (Poetry). I. L. Page. ($3 r d \operatorname{lm} p$.)

Parthenids. Cf. Dapinis and Chioe.
Pausanias: Description of Greece. W. H. S. Jones. 5 Vols. and Companion Vol. arranged by R. E. Wycherley. (Vols. I. and III. $3 r d$ Imp., Vols. II., IV. and V. $2 n d$ Imp.)
Philo. 10 Vols. Vols. I.-V.; F. H. Colson and Rev. G. H. Whitaker. Vols. VI.-IX. ; F. H. Colson. (Vols. II.-III., V.-IX. 2nd Imp., Vols. I. and IV., 3 rd Imp.)
Philo: two supplementary Vols. (Translation only.) Ralph Marcus.
Philostratus: The life of appollonius of Tyana. F. C. Conybeare. 2 Vols. (Vol. I. 4 th Imp., Vol. II. $3 r d$ Imp.)
Philostratus: imaines; Callistratus: Descriptions. A. Fairbanks.
Philostratus and Eunapius: Lives of the Sophists. Wilmer Cave Wright. (2nd Imp.)
Pindar. Sir J. E. Sandys. (7 th Imp. revised.)
Plato : Charmides, alcibiades, Hipparchus, The Lovers, Taeages, Minos and Epinomis. W. R. M. Lamb. (2nd Imp.)
Plato: Cratylus, Parmenides, Greatlir Hipplas, Lesser Hipplas. H. N. Fowlar. (4th Imp.)

Plato : Euthyphro, apology, Crito, Phaedo, Phaedrus. H. N. Fowler. (11th Imp.)
Plato: laches, protagoras, meno, edthydemus. W. R. M. Lamb. (3rd Imp. revised.)
Plato: Laws. Rev. R. G. Bury. 2 Vols. (3rd Imp.)
Plato: Lysis, Symposidm, Gorgias. W. R. M. Lamb. (5th Imp. revised.)
Plato: Repoblio. Paul Shorey. 2 Vols. (Vol. I. bth Imp., Vol. II. 4th Imp.)

Plato: Statesman, Philebus. H. N. Fowler; Ion. W. R. M. Lamb. (4th Imp.)
Plato: Theaetetus and Sophist. H. N. Fowler. (4th Imp.)
Plato: Timaeus, Critlas, Clitopho, Menexenus, Epistulae. Rev. R. G. Bury. (3 rd Imp.)
Plutarch: Moralia. 14 Vols. Vols. I.-V. F. C. Babbitt; Vol. VI. W. C. Helmbold; Vol. X. H. N. Fowler. (Vols. I.-VI. and X. $2 n d$ Imp.) Vol. XII. H. Cherniss and W. C. Helmbold.

Plutarch: The Parallel lives. B. Perrin. 11 Vols. (Vols. I., II., VI., VII., and XI., 3rd Imp. Vols. III.-V, and VIII.-X., $2 n d$ Imp.)
Polybios. W. R. Paton. 6 Vols. (2nd Imp.)
Procopios: History of the Wars. H. B. Dewing. 7 Vols. (Vol. I. 3rd Imp., Vols. II.-VII. 2nd Imp.)
Ptolemy: Tetrabiblos. Cf. Manetho.
Quintus Smyrnaeds. A. S. Way. Verse trans. (3rd Imp.)
Sextus Empiricus. Rev. R. G. Bury. 4 Vols. (Vol. I. $3 r d$ Imp., Vols. II. and III. 2nd Imp.)
Sophocles. F. Storr. 2 Vols. (Vol. I. 10th Imp., Vol. II. 6th Imp.) Verse trans.
Strabo: Geography. Horace L. Jones. 8 Vols. (Vols. I., V., and VIII. 3rd Imp., Vols. II., III., IV., VI., and VII. 2nd Imp.)

Theophrastus: Characters. J. M. Edmonds. Herodes, etc. A. D. Knox. (3rd Imp.)

Theophrastus: Enquiry into Plants. Sir Arthur Mort, Bart. 2 Vols. (2nd Imp.)
Thucydides. C. F. Smith. 4 Vols. (Vol. I. 4 th Imp., Vols. II., III., and IV. $3 r d$ Imp. revised.)
Tryphiodorus. Cf. Oppins.
Xenophon: Cyropardia. Walter Miller. 2 Vols. (Vol. I. 4 th Imp., Vol. II. 3rd Imp.)
Xenophon: Hellenioa, anabasis, apology, and Symposium. C. L. Brownson and O. J. Todd. 3 Vols. (Vols. I. and III. $3 r d$ Imp., Vol. IL 4th Imp.)
Xenophon: Memorablila and Oeoonomicus. E. C. Marchant. ($3 r d \operatorname{Imp}$.)
Xenophon : Scripta Minora. E. C. Marchant. (2nd Imp.)

IN PREPARATION

Greek Authors

Aristotle: History of Animals. A. L. Peck. Callimachus: Fragments. C. A. Trypanis. Plotinus: A. H. Armstrong.

Latin Authors

Str. Augustine : City of God.
Cicero: Pro Sestio, In Vatinium.
Cicero: Pro Caklio, De Provincis Consularibus, Pro Balbo.
J. H. Freese and R. Gardner.

Phakdrus: Ben E. Perry.
DESCRIPTIVE PROSPECTUS ON APPLICATION

London
Cambridge, Mass.

WILLIAM HEINEMANN LTD HARVARD UNIVERSITY PRESS

BULWER-THCMAS, IVOR
Greek mathematical works Aristarchus to Pappus

[^0]: a Strato of Lampsacus was head of the Lyceum from $288 / 287$ to $270 / 269$ b.c. The next extract shows that Aistarchus formulated his heliocentric hypothesis before Archimedes wrote the Sand-Reckoner, which can be shown to have been written before 216 b.c. From Ptolemy, Syntaxis iii. 2, Aristarchus is known to have made an observation of the summer solstice in 281/280 bic. He is ranked by Vitruvius, De Architectura i. 1. 17 among those rare men, such as Philolaus, Archytas, Apollonius, Eratosthenes,

[^1]: ${ }^{\circ}$ i.e., is less than 90° by 3°, and so is 87°. The true value is $89^{\circ} 50^{\prime}$.
 c i.e., the breadth of the earth's shadow where the moon traverses it during an eclipse. The figure is presumably based on records of eclipses. Hipparchus made the figure $2 \frac{1}{2}$ for the time when the moon is at its mean distance, and Ptolemy a little less than $2 \frac{3}{8}$ for the time when the moon is at its greatest distance.
 ${ }^{d}$ i.e., the angular diameter of the moon is one-fifteenth of 30°, or 2°. The true value is about $\frac{1^{\circ}}{}{ }^{\circ}$, and in the SandReckoner (Archim. ed. Heiberg ii. 222. 6-8) Archimedes says that Aristarchus "discovered that the sun appeared to be about ${ }_{7 \frac{1}{2} 0}$ th part of the circle of the Zodiac"; as he believed

[^2]: ${ }^{1}{ }^{\circ} \mathrm{o} v$ add．Wallis．
 ${ }^{2}$ qà add．Wallis．

[^3]: a Unfortunately, the earliest authority for this story is
 $\tau \rho ı \eta \rho \epsilon \iota s \kappa a \tau a \phi \lambda \epsilon \prime \xi a \nu \tau \alpha \tau \hat{\eta} \tau \epsilon \in \chi \nu \eta$. It is also found in Galen, Ilє \boldsymbol{i} краб. iii. 2, and Zonaras xiv. 3 relates it on the authority of Dion Cassius, but makes Proclus the hero of it.

 - Further evidence is given by Tzetzes, Chil. xii. 995 and Eutocius (Archim. ed. Heiberg iii. 132. 5-6) that Archimedes wrote in the Doric dialect, but the extant text of his bestknown works, On the Sphere and Cylinder and the Measurement of a Circle, retains only one genuine trace of its original
 books, the Sand-Reckoner having suffered least. The subject is fully treated by Heiberg, Quaestiones Archimedeab, pp. 69-94, and in a preface to the second volume of his edition of Archimedes he indicates the words which he has restored to their Doric form despite the manuscripts; his text is adopted in this selection.

 The loss of the original Doric is not the only defect in the 20

[^4]: a Diod. Sic. Frag. Book xxvi.

 - The account of Dion Cassius has not survived.
 ${ }^{c}$ Zonaras ix. 5 adds that when he heard the enemy were 22

[^5]: same word. Tzetzes (los. cit.) speaks of a triple-pulley device ($\tau \hat{\eta} \tau \rho \iota \sigma \pi \alpha \sigma \tau \omega \mu \eta \chi \alpha v \hat{\eta}$) in the same connexion, and Oribasius, Coll. med. xix. 22 mentions the tpíoractos as an invention of Archimedes; he says that it was so called because it had three ropes, but Vitruvius says it was thus named because it had three wheels. Athenaeus $\nabla .207$ abb says that a helix was used. Heath, The Works of Archimedes, 24

[^6]: - a The $\sigma \alpha \mu \beta$ v́к η was a triangular musical instrument with four strings. Polybius (viii. 6) states that Marcellus had eight quinqueremes in pairs locked together, and on each pair a "sambuca" had been erected; it served as a penthouse for raising soldiers on to the battlements.

[^7]: a Cicero, when quaestor in Sicily, found this tomb over-

[^8]: ${ }^{a}$ Diodorus is writing of the island in the delta of the Nile.

 - It may be inferred that he studied with the successors of Euclid at Alexandria, and it was there perhaps that he made the acquaintance of Conon of Samos, to whom, as 34

[^9]: b In the omitted passage which follows, Archimedes compares his discoveries with those of Eudoxus; it has already been given, vol. i. pp. 408-411.
 ${ }^{c}$ These so-called axioms are more in the nature of definitions.

[^10]: a This famous " Axiom of Archimedes " is, in fact, generally used by him in the alternative form in which it is proved 46

[^11]: ' àpa om. Heiberg.

[^12]: Heiberg.

[^13]: ${ }^{\circ}$ For $\mathrm{HE}: \mathrm{HT}=\mathrm{HO}: \mathrm{N} \mathrm{\Gamma}$, since $\mathrm{HE}: \mathrm{HT}=\mathrm{OE}: \Gamma \mathrm{T}=$ 2OE: $2 \Gamma \mathrm{~T}=\Pi \mathrm{O}: \mathrm{IN}$.
 ${ }^{c}$ For by hypothesis $\Theta: K \Lambda<A: B$, and $\Theta=M K$.

[^14]: "The " side of the cone" is a generator. The proof is obvious.

[^15]: ${ }^{1} \kappa \alpha \theta \dot{\omega} s \dot{\epsilon}^{\epsilon} \mu \dot{\partial} \theta о \mu \epsilon \nu$ om. Heiberg.
 ${ }^{2}$ ö μ оьa qá $^{\rho}$ om. Heiberg.

[^16]: ${ }^{1} \dot{\eta} \gamma \dot{\text { à }} \rho$. . ; ó $\mu o i ́ \omega s$ àva $\gamma \epsilon \gamma \rho a \mu \mu$ évov om. Heiberg. ${ }^{2}$ є่ $\pi \epsilon \iota \delta \dot{j} \pi \epsilon \rho$. . . K $\Delta, \Lambda Z$ om. Heiberg.

[^17]: ${ }^{3} \dot{\eta} \mu \hat{\varepsilon} \nu$. . . rồ B кข́к $\lambda_{o v}$ om. Heiberg ex Eutocio.

[^18]: ${ }^{a}$ a For the base $K \Delta$ is equal to the perimeter of the polygon and the altitude ΔT, which is equal to the radius of the

[^19]: ${ }^{a}$ For since the figure circumscribed about the circle B has to the inscribed figure a ratio less than that which the circle B has to the surface of the cylinder [ex hypothesi], and the circle B is less than the circumscribed figure, therefore the 76

[^20]: ${ }^{\text {a }}$ For the circumscribed polygon is equal to a triangle, whose base is equal to the perimeter of the polygon and whose height is equal to Γ, while the surface of the pyramid is equal to a triangle having the same base and height Δ [Prop. 8]. There is an explanation to this effect in the Greek, but so obscurely worded that Heiberg attributes it to an interpolator.
 ${ }^{b}$ For the surface of the pyramid is greater than the surface of the cone [Prop. 12], while the inscribed polygon is less than the circle B.

[^21]:

[^22]: - For the circumscribed polygon is greater than the circle B, but the surface of the inscribed pyramid is less than the surface of the cone [Prop. 12]; the explanation to this effect in the text is attributed by Heiberg to an interpolator.

[^23]: ${ }^{1}$ тò μ èv . . . тồ кúvov om. Heiberg.

[^24]: a Archimedes would not have omitted to make the deduc94

[^25]: a i.e., the surface formed by the revolution of the circular segment KAD and the surface formed by the revolution of the portion K . . . E . . . Δ of the polygon.
 ${ }^{\text {b }}$ In the text $\boldsymbol{\epsilon} \pi \iota \pi \epsilon \dot{\delta} \omega \nu$ should obviously be $\boldsymbol{\epsilon} \pi \iota \phi a v \epsilon \iota \hat{\omega} \nu$.

[^26]: ${ }^{a}$ If the radius of the inner sphere is a and that of the outer sphere a^{\prime}, and the regular polygon has $4 n$ sides, then

 $$
 a^{\prime}=a \operatorname{scc} \frac{\pi}{4 n}
 $$

 This proposition shows that
 Area of figure circumscribed $=$ Area of figure inscribed in to circle of radius $a=$ circle of radius a^{\prime}

[^27]: - Because $Z \Theta>\Theta K$ [Eucl. iii. 15].

[^28]: - A marginal note in one ms. gives these words, which Archimedes would not have omitted.

[^29]: ${ }^{1}$ тои̂тo . . . $\lambda \eta \mu \mu \alpha ́ \tau \omega \nu$ om. Heiberg.
 ${ }^{2}$ ธıótь . . . тєт $\rho a \pi \lambda$ áatov om. Heiberg.

[^30]: ${ }^{1}$ nóporaca. The title is not found in some ass.

[^31]: a These words, which Archimedes would not have omitted, are given in a marginal note to one ms.

[^32]: * In the technical language of Greek mathematics, the 134

[^33]: - In our algebraical notation, $x^{2}(a-x)$ is a maximum when $x=\frac{2}{3} a$. We can easily prove this by the calculus. For, by differentiating and equating to zero, we see that $x^{2}(a-x)$ has 142

[^34]: ${ }^{a}$ Figure on p. 151.

 - Lit. " diameter," in accordance with Archimedes' usage.
 c Apoll. i. 26 in our texts.

[^35]: a In the same notation as before, the condition BE^{2}. $\mathrm{EA}=$ (ГН. НM). AГ is $\frac{4}{27} a^{3}=b c^{2}$; and Archimedes has proved that, when this condition holds, the parabola $x^{2}=\frac{c^{2}}{a} y$ touches the hyperbola $(a-x) y=a b$ at the point $\left(\frac{2}{3} a, 3 b\right)$ because they both touch at this point the same straight line, that is the 152

[^36]: ${ }^{\text {a }}$ Figure on p. 156.

[^37]: a Archimedes' figure is re-drawn (v. page 162) so that B, Z come on the left of the figure and Δ on the right, instead of B, Z on the right and Δ on the left.
 ${ }^{\circ}$ v. supra, p. 133.
 160

[^38]: c For $\Delta \mathrm{B}=\frac{2}{3} \Delta \mathrm{Z}$ [ex hyp.], and so $\Delta \mathrm{B}$ in the figure on p. 162 corresponds with BE in the figure on p . 146 , while BZ in the figure on p. 162 corresponds with EA in the figure on p. 146.

[^39]: ${ }^{\text {a }}$ In the books On the Sphere and Cylinder, On Spirals and on the Quadrature of a Parabola.
 ${ }^{b}$ ie., the paraboloid of revolution.
 c ie., the hyperboloid of revolution.
 d An oblong spheroid is formed by the revolution of an 164

[^40]: a If h is the common difference, the first series is $h, 2 h$, $3 h$. . . $n h$, and the second series is $n h, n h$. . . to n terms, its sum obviously being $n^{2} h$. The lemma asserts that
 $2(h+2 h+3 h+\ldots \overline{n-1} h)<n^{2} h<2(h+2 h+3 h+\ldots n h)$. It is proved in the book On Spirals, Prop. 11. The proof is geometrical, lines being placed side by side to represent the 166

[^41]: * For the cylinder is three times, and the cone Ψ one-and-a172

[^42]: a Because the circumscribed figure is greater than the segment.

 By the property of the parabola; v. Quadr. parab. 3.

[^43]: a i.e., with radius equal to the sum of the radii of the first and second circles.

[^44]: - AP is a chord in a circle of centre K , and BN is the diameter drawn parallel to $A \Gamma$ and produced. From K, $K \Theta$ is drawn perpendicular to $A \Gamma$, and $\Gamma \Lambda$ is drawn perpendicular to KI so as to meet the diameter in Λ. Archimedes asserts that it is possible to draw KE to meet the circle in I and $A \Gamma$ produced in E so that EI: $I \Gamma=Z: H$, an assigned ratio, provided that $Z: H>\Gamma \Theta: \Theta K$. The straight line Γ meets $\mathrm{B} \Lambda$ in N. In Prop. 5 Archimedes has proved a similar proposition when $A \Gamma$ is a tangent, and in Prop. 6 he has proved the proposition for the case where the positions of I, Γ are reversed.
 - For triangle ГIE is similar to triangle KIN, and therefore $\mathrm{KI}: \mathrm{IN}=\mathrm{EI}: \mathrm{I} \Gamma$ [Eucl. vi. 4]; and $\mathrm{KI}=\mathrm{KI}$.
 - The type of problem known as $\nu \epsilon$ v́aєıs, vergings, has already been encountered (vol. i. p. $244 \mathrm{n} . a$). In this proposition, as in Props. 5 and 6, Archimedes gives no hint how 188

[^45]: a For in Prop. 16 the angle $A \Delta Z$ was shown to be acute.
 ${ }^{6}$ For $\Delta \mathrm{N}$ touches the spiral and so can have no part within the spiral, and therefore cannot pass through A; therefore it is a chord of the circle and less than the diameter.
 ${ }^{\text {c }}$ For, if a perpendicular be drawn from A to ΔN, it bisects 192

[^46]: 4 Expressed in full, the last number would be 1 followed by 80,000 million millions of ciphers. Archimedes uses this system to show that it is more than sufficient to express the number of grains of sand which it would take to fill the universe, basing his argument on estimates by astronomers of the sizes and distances of the sun and moon and their relation to the size of the universe and allowing a wide margin for safety. Assuming that a poppy-head (for so $\mu \eta^{\prime} \kappa \omega \nu$ is here to be understood, not " poppy-seed," v. D'Arcy W. Thompson, The Classical Review, lvi. (1942), p. 75) would contain not more than 10,000 grains of sand, and that its diameter is not less than a finger's breadth, and having proved that the 200

[^47]: a ie. a fifth and a sixth both of the males and of the females.
 ${ }^{b}$ At a first glance this would appear to mean that the sum of the number of white and black bulls is a square, but this makes the solution of the problem intolerably difficult. There is, however, an easier interpretation. If the bulls are packed together so as to form a square figure, their number need not be a square, since each bull is longer than it is broad. The simplified condition is that the sum of the number of white and black bulls shall be a rectangle.

[^48]: a The proof is incomplete and obscure ; it may be thus completed.
 Since

 $$
 A: \Gamma<\Delta E: E Z
 $$

 Δ will be depressed, which is impossible, since there has been taken away from $(\mathrm{A}+\mathrm{B})$ a magnitude less than the deduo216

[^49]: interpolator's reference to a marginal lemma.

[^50]: ${ }^{1}$ тоитто . . . $\pi \rho о$ о́тєроv. In the ms. the whole paragraph from toùto to $\pi \rho \circ \dot{\tau} \epsilon \rho о \nu$ comes at the beginning of Prop. 2; it is more appropriate at the end of Prop. 1.
 228

[^51]: "A " section of the whole cone" is probably a section cutting right through it, i.e., an ellipse, but the expression is odd.
 ${ }^{\text {b }}$ For this lemma, v. supra, p. 46 n. a.

[^52]: a This was proved geometrically in Prop. 23, and is proved generally in Eucl. ix. 35. It is cquivalent to the summation

 $$
 \begin{aligned}
 1+\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}+\cdots\left(\frac{1}{4}\right)^{n-1} & =\frac{4}{3}-\frac{1}{3}\left(\frac{1}{4}\right)^{n-1} \\
 & =\frac{1-\left(\frac{4}{4}\right)^{n}}{1-\frac{1}{2}} .
 \end{aligned}
 $$

[^53]: ${ }^{a}$ The Greek text of the book On Floating Bodies, the earliest extant treatise on hydrostatics, first became available in 1906 when Heiberg discovered at Constantinople the ms. which he terms C. Unfortunately many of the readings are doubtful, and those who are interested in the text should consult the Teubner edition. Still more unfortunately, it is incomplete ; but, as the whole treatise was translated into Latin in 1269 by William of Moerbeke from a Greek us. 242

[^54]: ${ }^{1} \hat{\eta}$ om. Heiberg.

[^55]: a Or, as we should say, " lighter by the weight of fluid displaced."

[^56]: a This proposition suggests a method, alternative to that given by Vitruvius (v. supra, pp. 36-39, especially p. 38 n. a), whereby Archimedes may have discovered the proportions of gold and silver in King Hiero's crown.

 Let w be the weight of the crown, and let w_{1} and w_{2} be the weights of gold and silver in it respectively, so that $w=$ $u_{1}+w_{2}$.

 Take a weight w of gold and weigh it in a fluid, and let the loss of weight be P_{1}. Then the loss of weight when a weight w_{1} of gold is weighed in the fluid, and consequently the weight of fluid displaced, will be $\frac{w_{1}}{w} \cdot P_{1}$.

[^57]: a Writing of the treatise On Floating Bodies, Heath (H.G.M. ii. 94-95) justly says: "Book ii., which investigates fully the conditions of stability of a right segment of a paraboloid of revolution floating in a fluid for different values of the specific gravity and different ratios between the axis or height of the segment and the principal parameter of the generating parabola, is a veritable tour de force which must be read in full to be appreciated."
 " In this technical term the "axis" is the axis of the 252

[^58]: a If the normal at Π meets the axis in M, then OM is greater than "the line drawn as far as the axis" except in the case where Π coincides with the vertex, which case is excluded by the conditions of this proposition. Hence OM is always greater than OP; and because the angle $\Omega \Pi M$ is right, the angle $\Omega \Pi$ must be acute.

[^59]: a Several of Eratosthenes' achievements have already been described-his solution of the Delian problem (vol. i. pp. 290-297), and his sieve for finding successive odd numbers (vol. i. pp. 100-103). Archimedes, as we have seen, dedicated the Method to him, and the Cattle Problem, as we have also seen, is said to have been sent through him to the Alexandrian mathematicians. It is generally supposed that Ptolemy credits him with having calculated the distance between the tropics (or twice the obliquity of the ecliptic) at $11 / 83$ rds. of a complete circle or $47^{\circ} 29^{\prime} 39^{\prime \prime}$, but Ptolemy's meaning is not clear. Eratosthenes also calculated the distances of the sun and moon from the earth and the size of the sun. Fragments of an astronomical poem which he wrote under the title 260

[^60]: ${ }^{\text {a }}$ Scarcely anything more is known of the life of one of the greatest geometers of all time than is stated in this brief reference. From Pappus, Coll. vii., ed. Hultsch 67 (quoted in vol. i. p. 488), it is known that he spent much time at Alexandria with Euclid's successors. Ptolemy Euergetes reigned 246-221 b.c., and as Ptolemaeus Chennus (aped Dhoti Bibl., cod. exc., ed. Bekker 151 b 18) mentions an astro276

[^61]: - This comes from the preface to Book i., v. infra, p. 283.

[^62]: a Menaechmus, as shown in vol. i. pp. 278-283, and more particularly p. 283 n. a, solved the problem of the doubling of the cube by means of the intersection of a parabola with a hyperbola, and also by means of the intersection of two parabolas. This is the earliest mention of the conic sections in Greek literature, and therefore Menaechmus (f. 360-350 в.c.) is generally credited with their discovery; and as Eratosthenes' epigram (vol. i. p. 296) speaks of "cutting the cone in the triads of Menaechmus," he is given credit for discovering the ellipse as well. He may have obtained them all by the method suggested by Geminus, but Heath (H.G.M. ii. 111-116) gives cogent reasons for thinking that he may have obtained his rectangular hyperbola by a section of a right-angled cone parallel to the axis.

 A passage already quoted (vol. i. pp. 486-489) from Pappus (ed. Hultsch 672. 18-678. 24) informs us that treatises on the conic sections were written by Aristaens and Euclid. Aristaeus' work, in five books, was entitled Solid Loci; Euclid's 280

[^63]: b For this locus, and Pappus's comments on Apollonius's claims, v. vol. i. pp. 486-489.

[^64]: a This proposition defines a conic section in the most general way with reference to any diameter. It is only much 288

[^65]: - This applies only to the first two of the figures given in the mss.

[^66]: ${ }^{\text {a }}$ A parabola ($\pi a \rho a \beta \circ \lambda \eta$) because the square on the ordinate $\mathrm{K} \Lambda$ is applied ($\pi \alpha \rho a \beta a \lambda \epsilon i \nu$) to the parameter ΘZ in the form 308

[^67]: a The erect and transverse side, that is to say, of the figure ($\epsilon \delta 0 \mathrm{O}$) applied to the diameter. In the case of the parabola, the transverse side is infinite.

[^68]: a Let p be the parameter of a conic section and d the corresponding diameter, and let the diameter of the section and the tangent at its extremity be taken as axes of co-ordinates (in general oblique). Then Props. 11-13 are equivalent to the Cartesian equations.
 322

[^69]: ${ }^{\text {a }}$ Apollonius is the first person known to have recognized the opposite branches of a hyperbola as portions of the same 328

[^70]: ${ }^{a}$ To save space, the figure is here given for the hyperbola only; in the mss. there are figures for the ellipse and circle as well.

 The general enunciation is not easy to follow, but the particular enunciation will make it easier to understand. The 330

[^71]: a Unhappily the only work by Apollonius which has survived, in addition to the Conics, is On the Cutting-off of a 336

[^72]: ${ }^{a}$ As the Greeks never grasped the conception of one point being two coincident points, it was not possible to enunciate this problem so concisely as we can do: Given four points A, B, C, D on a straight line, of which A may coincide with C and B with D, to find another point P on the same straight line such that $A P . C P: B P . D P$ has a given value. If $\mathrm{AP} . \mathrm{CP}=\lambda . B \mathrm{P} . \mathrm{DP}$, where $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \lambda$ are given, the determination of P is equivalent to the solution of a quadratic equation, which the Greeks could achieve by means of the 340

[^73]: a These words follow the passage (quoted supra, pp. 262265) wherein Pappus divides loci into є̇фєктькоi, $\delta \iota \epsilon \xi \circ \delta \iota к о i$ and ג̀уаотрофєкоí.

 - It is not clear what straight line is meant-probably the most obvious straight line in each figure.
 344

[^74]: - The so-called fourteenth book of Euclid's Elements is really the work of Hypsicles, for whom v. infra, pp. 39.4-397.
 ${ }^{b}$ For the regular solids v. vol. i. pp. 216-225. The face of the dodecahedron is a pentagon and the face of the icosahedron a triangle.
 ${ }^{c}$ A proof is given by Hypsicles as Prop. 2 of his book. Whether the Aristaeus is the same person as the author of the Solid Loci is not known.

[^75]: a Heath (II.G.M. ii. 192-193) conjectures that this work must have dealt with the fundamental principles of mathematics, and to it he assigns various remarks on such subjects attributed to Apollonius by Proclus, and in particular his attempts to prove the axioms. The different ways in which entities are said to be given are stated in the definitions quoted from Euclid's Data in vol. i. pp. 478-479.
 350

[^76]: a Pappus's commentary on Eucl. Elem. x. was discovered in an Arabic translation by Woepcke (Mémoires présentées par divers savans à l'Academie des sciences, 1856, xiv.). It contains several references to Apollonius's work, of which one is thus translated by Woepcke (p. 693): "Enfin, Apollonius distingua les espèces des irrationnelles ordonnées, et 352

[^77]: a Apollonius，it is clear from Pappus，had a system of tetrads for calculations involving big numbers，the unit being the myriad or fourth power of 10 ．The tetrads are called
 myriads，double myriads，triple myriads and so on，by which are meant $10000,10000,{ }^{2} 10000^{3}$ and so on．In the text of 354

[^78]: a No great new developments in geometry were made by the Greeks after the death of Apollonius, probably through 360

[^79]: a Obviously the work of Perseus was on a substantial scale to be associated with these names, but nothing is known of him beyond these two references. He presumably flourished after Euclid (since the conic sections were probably well developed before the spiric sections were tackled) and before Geminus (since Proclus relies on Geminus for his knowledge of the spiric curves). He may therefore be placed between 300 and 75 в.c.

 Nicomedes appears to have flourished between Eratosthenes and Apollonius. He is known only as the inventor of the conchoid, which has already been fully described (vol. i. pp. 298-309).

 It is convenient to recall here that about a century later flourished Diocles, whose discovery of the cissoid has already been sufficiently noted (vol. i. pp. 270-279). He has also been referred to as the author of a brilliant solution of the problem of dividing a cone in a given ratio, which is equivalent to the solution of a cubic equation (supra, p. 162 n. a). The Dionysodorus who solved the same problem (ibid.) may have been the Dionysodorus of Caunus mentioned in the Herculaneum Roll, No. 1044 (so W. Schmidt in Bibliotheca mathematica, iv. pp. 321-325), a younger contemporary of Apollonius: he is presumably the same person as the 364

[^80]: ${ }^{a}$ For Geminus, v. infra, p. 370 n. c.

[^81]: ${ }^{6}$ Eth. Nic. i. 3. 4, 1094 b 25-27.

 - Phaedo 92 D.

[^82]: a i.e., Eucl. i. 28.

[^83]: - For the few details known about Ptolemy, v. infra, p. 408 and $n . b$.
 - This work is not otherwise known.
 vol. II
 \mathbf{N}
 373

[^84]: - There is a Common Notion to this effect interpolated in the text of Euclid ; v. vol. i. pp. 444 and 445 n. a.
 - The argument would have been clearer if it had been proved that the two interior angles on one side of ZH were severally equal to the two interior angles on the other side, that is $\mathrm{BZH}=\Gamma \mathrm{HZ}$ and $\triangle \mathrm{HZ}=\mathrm{AZH}$; whence, if $\mathrm{ZA}, \mathrm{H} \Gamma$ meet at Λ, the triangle $Z H \Lambda$ can be rotated about the mid374

[^85]: a This is equivalent to Eucl. i. 28.

 - This is equivalent to Eucl. i. 29.
 - By Eucl. i. 13, for the angles AZH, BZH are together equal to two right angles and so are the angles $\Gamma \mathrm{HZ}, \Delta \mathrm{HZ}$.

[^86]: ${ }^{1}$ oúv is clearly out of place.

[^87]: a The method is ingenious, but Clavius detected the flaw, which lies in the initial assumption, taken from Aristotle, that two divergent straight lines will eventually be so far apart that a perpendicular drawn from a point on one to the other will be greater than any assigned distance; Clavius draws attention to the conchoid of Nicomedes (v. vol. i. pp. 298301), which continually approaches its asymptote, and therefore continually gets farther away from the tangent at the vertex; but the perpendicular from any point on the curve to that tangent will always be less than the distance between the tangent and the asymptote.

[^88]: - Ptolemy, Math. Syn. i. 3, ed. Heiberg i. pars i. 13. 16-19.
 - Zenodorus, as will shortly be seen, cites a proposition by Archimedes, and therefore must be later in date than Archimedes; as he follows the style of Archimedes closely, he is generally put not much later. Zenodorus's work is not 886

[^89]: a ΘZ is not, in fact, joined in the ms. figures.

 - This is proved in a lemma inmediately following the proposition by drawing an arc of a circle with Θ as centre 388

[^90]: - Dim. Circ. Prop. 1, v. vol. i. pp. 316-321.
 - The proofs of these two last propositions are worked out by similar methods.
 394

[^91]: - Des Hypsikles Schrift Anaphorikos nach Überlieferung und Inhalt kritisch behandelt, in Programm des Gymnasiums zum Heiligen Kreuz in Dresden (Dresden, 1888), 1° Abt.

[^92]: a i.e., the horizon would form the base of a cone whose vertex would be at the eye of the observer. He could thus look down on both the sun and moon as along the generators of a cone, even though they were diametrically opposite each other.
 398

[^93]: a i.e., in A.D. 132. Ptolemy mentions other observations made by Theon in the years a.d. 127, 129, and 130. In three places Theon of Alexandria refers to his namesake as " the old Theon," ó Є'́ $\omega \nu$ maגaıós (ed. Basil. pp. 390, 395, 396).

[^94]: ${ }^{\text {a }}$ A similar passage (i. 24, ed. H. Schöne 62. 11-20) asserts that the ratio of the side of a regular hendecagon to the diameter of the circumscribing circle is approximately $\frac{7}{25}$;
 $\tau \hat{\omega} \nu \epsilon^{\epsilon} \nu \kappa \dot{\nu} \kappa \lambda \omega \epsilon \dot{v} \theta \epsilon \iota \omega \hat{\nu}$. These are presumably the works of Hipparchus and Menelaus, though this opinion is controverted by A. Rome, "Premiers essais de trigonométrie rectiligne chez les Grecs" in L'Antiquité classique, t. 2 (1933), pp. 177-192. The assertions are equivalent to saying that $\sin 20^{\circ}$ is approximately $0.333 \ldots$ and $\sin 16^{\circ} 21^{\prime} 49^{\prime \prime}$ is approximately 0.28 .

 Nothing else is certainly known of the life of Ptolemy except, as can be gleaned from his own works, that he made observations between A.D. 125 and 141 (or perhaps 151). Arabian traditions add details on which too much reliance should not be placed. Suidas's statement that he was born 408

[^95]: meant more than a graphical method; the phrase indicates a rigorous proof by means of geometrical considerations, as will be seen when the argument proceeds; cf. the use of $\delta i \alpha \alpha^{\alpha} \tau \hat{\nu} \nu \rho а \mu \mu \hat{\nu} \nu$ infra, p. 434. It may be inferred, therefore, that when Hipparchus proved "by means of lines" ($\delta \iota \dot{\alpha} \tau \hat{\omega} \nu ~ \gamma \rho a \mu \mu \hat{\omega} \nu$, On the Phaenomena of Eudoxus and Aratus, ed. Manitius 148-150) certain facts about the risings of stars, he used rigorous, and not merely graphical calculations; in other words, he was familiar with the main formulae of spherical trigonometry.

 - i.e., $\mathrm{Z} \Delta$ is equal to the side of a regular decagon, and BZ to the side of a regular pentagon, inscribed in the circle ABC. 414

[^96]: a Following the usual practice, I shall denote segments ($\tau \mu \eta^{\prime} \mu a \tau a$) of the diameter by ${ }^{p}$, sixtieth parts of a $\tau \mu \hat{\eta} \mu a$ by 416

[^97]: * Theon's proof that $\sqrt{4500}$ is approximately $67^{p} 4^{\prime} 55^{\prime \prime}$ has already been given (vol. i. pp. 56-61).
 - This is, of course, the square itself; the Greek phrase is not so difficult. We could translate, "the second power of the side of the square," but the notion of powers was outside the ken of the Greek mathematician.

[^98]: ${ }^{a}$ Let $\Lambda \mathrm{B}$ be a chord of a circle subtending an angle a at the centre O, and let $A K A^{\prime}$ be drawn perpendicular to $O B$ so as to meet $O B$ in K and the circle
 again in A^{\prime}. Then

 $$
 \sin \alpha(=\sin \mathrm{AB})=\frac{\mathrm{AK}}{\mathrm{AO}}=\frac{\frac{1}{2} \mathrm{AA}^{\prime}}{\mathrm{AO}} .
 $$

 And AA^{\prime} is the chord subtended by double of the arc AB, while Ptolemy expresses the lengths of chords as so many 120th parts of the diameter ; therefore $\sin a$ is half the chord subtended by an angle $2 a$ at the centre. which is conveniently abbreviated by
 Heath to $\frac{1}{2}$ (rd. aa), or, as we may alternatively express the relationship, $\sin A B$ is "half the chord subtended by 420

[^99]: a i.e., crd. $144^{\circ}\left(=2 \sin 72^{\circ}\right)=114^{\circ} 7^{\prime} 37^{\prime \prime}$. If the given chord subtends an angle 2θ at the centre, the chord subtended by the remaining arc in the semicircle subtends an angle ($180-2 \theta$), and the theorem asserts that

 $$
 (\text { crd. } 2 \theta)^{2}+(\operatorname{crd} . \overline{180-2 \theta})^{2}=(\text { diameter })^{2},
 $$

 or

 $$
 422
 $$

[^100]: - If Br subtends an angle 2θ at the centre the proposition asserts that 430

[^101]: ${ }^{a}$ If AB subtends an angle 2θ and $\mathrm{B} \mathrm{\Gamma}$ an angle 2ϕ at the centre, the theorem asserts that
 $\left(\operatorname{crd} .180^{\circ}\right) \cdot\left(\operatorname{crd} . \overline{180^{\circ}-2 \theta-2 \phi}\right)=\left(\operatorname{crd} . \overline{180^{\circ}-2 \theta}\right) .(\operatorname{crd}$.

 $$
 \left.\overline{180^{\circ}-2 \phi}\right)-(\operatorname{crd} .2 \theta) \cdot(\operatorname{crd} .2 \phi)
 $$

 i.e.,
 $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$.

[^102]: " Lit. " the ratio of ΓA to $A E$ is compounded of the ratio of $\Gamma \Delta$ to ΔZ and $Z B$ to $B E . "$

[^103]: a From the Arabic version, it is known that " Menelaus's Theorem" was the first proposition in Book iii. of his Sphaerica, and several interesting deductions follow.

[^104]: other obvious corrections not specified in this edition, were rightly added to the text by a fifteenth-century scribe.

[^105]: a The dvaypaфєús or $\epsilon \mu \beta$ одєús is the pattern or templet for applying to an architectural feature, in this case an Attic-Ionic column-base. The Attic-Ionic base consists essentially of two convex mouldings, separated by a concave one. In practice, there are always narrow vertical ribbons between the convex mouldings and the concave one, but Heron ignores them. In the templet, there are naturally two concave surfaces separated by a convex, and the kind of figure Heron had in
 mind appears to be that here illustrated. I am indebted to Mr. D. S. Robertson, Regius Professor of Greek in the University of Cambridge, for help in elucidating this passage. "Lit. "from."

[^106]: ${ }^{1} \mu$ éfos om. H. Schöne.
 ${ }^{2}$ érє́par add. H. Schöne.

[^107]: ${ }^{1}$ каi tav́tท add. H. Schöne.
 ${ }^{2}$ qàs $̇ \pi i$ í om. H. Schöne.
 ${ }^{3}$ énıらєขүvvนévas om. H. Schöne.

[^108]: - After $\dot{\alpha} \lambda \lambda^{\prime}$ is a special sign and a lacuna of 22 letters.
 ${ }^{7}$ тара́ $\lambda \lambda \eta$ خ os add. H. Schöne.

 Schöne's text.
 lacuna.

[^109]: ${ }^{1} \gamma \lambda \omega \sigma \sigma o ́ к о \mu о \nu$ add. H. Schöne.

 * After $\delta v v a ́ \mu \epsilon \iota$ is a lacuna of seven letters.
 ${ }^{8}$ In Schöne's text $\delta \dot{c}$ is printed after $\tau o v ́ \tau \varphi$.
 4 тоîхоу тòv таракєі́ ϵ vov add. H. Schöne.

[^110]: ${ }^{1}$ кai . . . кai. These words are out of place here and superfluous.
 ${ }^{2}$ ai add. Schmidt. But possibly каi . . . ímoтєivouatv, being superfluous, should be omitted.
 ${ }^{3}$ каі . . . каi. These words are out of place here and superfluous.

[^111]: a The proof here given appears to have been taken by Olympiodorus from Heron's Catoptrica, and it is substantially identical with the proof in De Speculis 4. This work was formerly attributed to Ptolemy, but the discovery of Ptolemy's Optics in Arabic has encouraged the belief, now 502

[^112]: " The term " feet," módes, is used by Heron indiscriminately of lineal feet, square feet and the sum of numbers of lineal and square feet.

[^113]: ancient us.

[^114]: ${ }^{a}$ It is not here stated in so many words, but becomes obvious as the argument proceeds that $\delta \dot{v} v a \mu s$ and its abbreviation are restricted to the square of the unknown quantity; the square of a determinate number is $\tau \epsilon \tau \rho \dot{\gamma} \gamma \omega \nu=5$. There is only one term, $\kappa v ́ \beta o s$, for the cube both of a determinate and of the unknown quantity. The higher terms, when written in full as $\delta v v a \mu о \delta \dot{v} \alpha \mu \iota$, $\delta v v a \mu o ́ к v \beta o s ~ a n d ~ к ข \beta o ́-~$ $\kappa \cup \beta o s$, are used respectively for the fourth, fifth and sixth powers both of determinate quantities and of the unknown, but their abbreviations, and that for кúpos, are used to denote powers of the unknown only.

[^115]: " Lit. " a deficiency multiplied by a deficiency makes a forthcoming."
 ${ }^{b}$ The sign has nothing to do with Ψ, but I see no reason why Diophantus should not have described it by means of Ψ. 524

[^116]: a As a literal translation of the Greek at this point would be intolerably prolix, I have made free use of modern notation.

[^117]: a In general terms, Diophantus's problem is to solve the simultancous equations

 $$
 \begin{aligned}
 \xi+\eta & =2 a \\
 \xi^{2}+\eta^{2} & =\mathrm{A} .
 \end{aligned}
 $$

 He says, in effect, let $\quad \xi-\eta=2 x$;
 then

 $$
 \xi=a+x, \eta=a-x
 $$

[^118]: - It was on this proposition that Fermat wrote a famous note: "On the other hand, it is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or generally any power except a square into two powers with the same exponent. I have discovered a truly marvellous proof of this, which, however, the margin is not large enough 550

[^119]: a Lit. "I take the square from any number of ${ }^{\prime} \rho \iota \theta_{\mu}{ }^{\prime}$ " minus as many units as there are in the side of 16. ."
 b i.e., a number of the form $3(8 n+2)+1$ or $24 n+7$ cannot be the sum of three squares. In fact, a number of the form $8 n+7$ cannot be the sum of three squares, but there are other 552

[^120]: ${ }^{\text {a }}$ A fragment of the tract On Polygonal Numbers is the only work by Diophantus to have survived with the Frithmetica. The main fact established in it is that stated in Hypsicles' definition, that the a-gonal number of side n is

[^121]: a Theodosius I reigned from a.d. 379 to 395, but Suidas may have made a mistake over the date. A marginal note opposite the entry Diocletian in a Leyden ms. of chronological tables by Theon of Alexandria says, "In his time Pappus wrote"; Diocletian reigned from a.d. 284 to 305. In Rome's edition of l'appus's commentary on Ptolemy's Syntaxis (Studi e Testi, liv. pp. x-xiii), a cogent argument is given for believing that Pappus actually wrote his Collection about a.d. 320.

 Suidas obviously had a most imperfect knowledge of Pappus, as he does not mention his greatest work, the Synagoge or Collection. It is a handbook to the whole of Greek geometry, and is now our sole source for much of the history of that science. The first book and half of the second are missing. The remainder of the second book gives an account of Apollonius's method of working with large numbers (v. supra, pp. 352-357). The nature of the remaining books to the eighth will be indicated by the passages here cited. There is some evidence (v. infra, p. 607 n. a) that the work was originally in twelve books.

 The edition of the Collection with ancillary material published in three volumes by Friedrich Hultsch (Berlin, 1876564

[^122]: $\tau \epsilon \tau \rho a ́ \beta \iota \beta \lambda o s$ ov́vza乡ıs (Tetrabiblos or Quadripartitum) which was in four books but on which Pappus did not comment,
 was the subject of a commentary by Pappus but extended to 566

[^123]: a The method, as described by Pappus, but not reproduced here, does not actually solve the problem, but it does furnish a series of successive approximations to the solution, and deserves more kindly treatment than it receives from him. 568

[^124]: ${ }^{6}$ Eucl. i. 47, v. vol. i. pp. 178-185. In the case taken by Pappus, the first two parallelograms are drawn outwards and the third, equal to their sum, is drawn inwards. If the areas of parallelograms drawn outwards be regarded as of opposite sign to the areas of those drawn inwards, the theorem may be still further generalized, for the algebraic sum of the three parallelograms is equal to zero.

[^125]: a Three propositions (Nos. 4, 5 and 6) about the figure known as the $\alpha_{\rho} \beta \eta$ dos from its resemblance to a leatherworker's knife are contained in Archimedes' Liber Assumptorum, which has survived in Arabic. They are included as particular cases in Pappus's exposition, which is unfortunately too long for reproduction here. Professor D'Arcy W. Thompson (The Classical Review, lvi. (1942), pp. 75-76) gives reasons for thinking that the ${ }^{\alpha} \rho \beta \eta \lambda o s$ was a saddler's knife rather than a shoemaker's knife, as usually translated.

[^126]: ${ }^{b}$ After leaving the áp $\beta \eta \lambda$ os, Pappus devotes the remainder of Book iv. to solutions of the problems of doubling the sube, squaring the circle and trisecting an angle. This part has been frequently cited already (v. vol. i. pp. 298-309, 336-363). His treatment of the spiral is noteworthy because his method of proof is often markedly different from that of Archimedes; and in the course of it he makes this interesting digression.

 - Some such addition is necessary, as Commandinus, Chasles and Hultsch realized.

[^127]: ${ }^{6}$ For arc ZA : arc ZE = angle ZFA : angle ZГE. But angle $\mathrm{Z} \Gamma=\frac{1}{2}$. angle $\mathrm{A} \Delta \Gamma$, and angle $\mathrm{Z} \Gamma \mathrm{E}=\frac{1}{2}$. angle $\mathrm{B} \Delta \Gamma$ [Eucl. iii. 32, 20]. $\quad \therefore \operatorname{arc} \mathrm{ZA}: \operatorname{arc} \mathrm{ZE}=\operatorname{arc} \mathrm{AB} \mathrm{\Gamma}$: arc BГ.

 - Because the arc ΛK is the same part of the circumference $\mathrm{K} \Lambda \mathrm{M}$ as the $\operatorname{arc} \mathrm{ON}$ is of its circumference.
 d The square on $\Theta \Lambda$ is double the square on the radius of the hemisphere, and therefore half the surface of the hemisphere is equal to a circle of radius $\Theta \Lambda$ [Archim. Do sph. ot cyl. i. 33] ; and the surface of the segment is equal to a circle of radius ΘO [ibid. i. 42]; and as circles are to one another as the squares on their radii [Eucl. xii. 2], the surface of the hemisphere bears to the surface of the segment the ratio $\Theta \Lambda^{2}$: Θ^{2} 。

[^128]: a Most of Book vi. is astronomical, covering the treatises in the Little Astronomy (v. supra, p. $408 \mathrm{n} . b$). The proposition here cited comes from a section on Euclid's Optics.

[^129]: a Or, perhaps, " to give a complete theoretical solution of problems set to them"; v. supra, p. 414 n. a.

 VOL. II

[^130]: - These propositions follow a passage on the locus with respect to three or four lines which has already been quoted (v. vol. i. pp. 486-489). The passages come from Pappus's 600

[^131]: - Paul Guldin (1577-1643), or Guldinus, is generally credited with the discovery of the celebrated theorem here enunciated by Pappus. It may be stated: If any plane figure revolve about an external axis in its plane, the volume of the solid figure so generated is equal to the product of the area of the figure and the distance travelled by the centre of gravity of the figure. There is a corresponding theorem for the area.
 - The whole passage is ascribed to an interpolator by Hultsch, but without justice ; and, as Heath observes (H.G.M. ii. 403), it is difficult to think of any Greek mathematician after Pappus's time who could have discovered such an advanced proposition.

 Though the meaning is clear enough, an exact translation 604

[^132]: a For, because BZ: $\Gamma \mathrm{H}=\mathrm{BE}$: $\mathrm{E} \mathrm{\Gamma}$, the triangles ZEB, HEГ are similar, and angle $\mathrm{ZEB}=$ angle $Н E \Gamma ; \therefore \Gamma$ is in the sane straight line with B, E [Eucl. i. 13, Conv.].

[^133]: because, on account of the similarity of the triangles $\mathrm{H} \Gamma \mathrm{E}, \mathrm{ZBE}$, we have $\mathrm{HE}: \mathrm{E} \Gamma=\mathrm{E} Z$: EB.

[^134]: ${ }^{\text {a }}$ It is not perhaps obvious, but is easily proved, and is in fact proved by Pappus in the course of iv. 21, ed. Hultsch 212. 4-13, by drawing an auxiliary parallelogram.
 ${ }^{\circ}$ Conversely, if $\mathrm{H} \Theta \mathrm{K} \Lambda$ be any quadrilateral, and any 612

[^135]: - After the historical preface here quoted, much of Book viii. is devoted to arrangements of toothed wheels, already encountered in the section on Heron (supra, pp. 488-497). A 614

[^136]: －μ áy $\gamma \alpha \nu \nu$ is properly the block of a pulley，as in Heron＇s 616

[^137]: FRINTED IN GREAT BRITAIN BY ROBERT MACLEHOSE AND CO．LTD
 THE UNIVERSITY PRESS，GLASGOW

