

АКАДЕМИЯ НАУК УКРАИНСКОЙ ССР

ИНСТИТУТ МЕТАЛЛОФИЗИКИ

Структура И свойства МЕТАЛЛОВ И СПЛАВОВ

CIIPABOUHNK

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

- Л. Н. ЛАРИКОВ (главный редактор),
- В. Н. ГРИДНЕВ, В. В. НЕМОШКАЛЕНКО,
- н. в. новиков, и. я. дехтяр,
- Л. В. ТИХОНОВ (зам. главного редактора),
- С. П. ОШКАДЕРОВ,
- О. А. ШМАТКО (ответственный секретарь)

УДК 536 + 539.2

В справочнике приведены сведения о тепловых свойствах металлов и сплавов в твердом состоянии: температурные зависимости энтальпии, теплоемкости, плотности, коэффициентов теплового расширения и теплопроводности, а также данные об изменении энтальпии и плотности в металлах при фазовых превращениях и плавлении. Рассмотрено влияние структурных несовершенств на эти свойства. Впервые в справочной литературе систематизированы данные об изменении внутренней энергии и плотности металлов и сплавов при различных внешних воздействиях. Изложены методы исследования тепловых свойств: калориметрический анализ, измерения плотности, теплового расширения, теплопроводности.

Для научных работников, инженеров и конструкторов, работающих в области физики твердого тела, физической металлургии, механики, физикохимии, технологии неорганических материалов, а также для преподавателей и студентов старших курсов технических факультетов.

Ответственный редактор В. В. Скороход

Реценвенты О. А. Геращенко, М. В. Белоус

Редакция справочной литературы

ОГЛАВЛЕНИЕ

Предисловие	7					
Основные обозначения	8					
ЧАСТЬ І. ОСНОВНЫЕ ТЕПЛОФИЗИЧЕСКИЕ ЗАВИСИМОСТИ						
Глава 1. Термодинамические соотношения						
1.1. Основные определения термодинамики	9					
1.2. ФУНКЦИИ СОСТОЯНИЯ СИСТЕМЫ	14					
1.4. Некоторые соотношения термодинамики необратимых про-	••					
цессов	16					
Глава 2. Тепловые свойства металлов в твердом состоянии						
2.1. Теплоемкость	19					
2.2. Тепловое расширение	23					
	$\frac{20}{32}$					
свойства металлов и сплавов						
3.1. Изменение тепловых свойств при образовании дефектов	35					
3.2. Влияние отжига на тепловые свойства металлов	49					
3.3. Изменение отношения плотности и энтальпии	50					
Глава 4. Прикладное значение тепловых характеристик ме-						
аллов и сплавов 41 Оптимизация терминеской и механико-терминеской обра-						
ботки металлов и сплавов	61					
4.2. Использование теплофизических характеристик для опреде-						
ления предела пластичности металлов при обработке давлением	71					
	14					
ЧАСТЬ П. МЕТОДЫ ИССЛЕДОВАНИЯ ТЕПЛОВЫХ СВОИСТВ						
¹ / Л а В а 5. Теплоемкость и энтальпия металлов 5.1. Останования в странати и стран	~~					
5.2. Определение теплоемкости	90					
Глава6. Плотность и тепловое расширение металлов и сплавов						
6.1. Определение плотности	11					
0.2. псследование теплового расширения	13					
Глава 7. Теплопроводность (температуропроводность) металлов						

и сплавов

i

7.1. Стационарные методы определения коэффициента теплопро-
7.2. Нестационарные методы определения коэффициента теп-
лопроводности металлов
ЧАСТЬ III. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ О ТЕПЛОВЫХ Свойствах металлов и сплавов в твердом состоянии
Глава 8. Энтальпия и теплоемкость металлов и сплавов
8.1. Энтальпия металлов 128 8.2. Теплоемкость металлов и сплавов 153
Г лава 9. Плотность и тепловое расширение металлов и сплавов
9.1. Плотность металлов и сплавов
Глава 10. Теплопроводность металлов и сплавов
Глава 11. Изменение внутренней энергии и плотности металлов
11 СПЛАВОВ
11.1. Изменение внутренней энергии пластически деформирован- ных металлов и сплавов
11.2. Изменение плотности (удельного объема) пластически де-
формированных металлов и сплавов
подвергнутых термической и термомеханической обработкам
термомеханической обработкам
Приложение 1. Единицы измерения и размерности физических величин, применяемых в теплофизике
Приложение 2. Свойства якобианов
Приложение 3. Термодинамические неравенства 404
Приложение 4. Принцип Ле-Шателье
Приложение 5. Соотношения между производными термодина-
мических величин
Приложение 6. Соотношение Грюнайзена
Приложение 7. Дифференциальное уравнение теплопроводности 411
Приложение 8. Гемпературная зависимость плотности воды и четыреххлористого углерода
Приложение 9. Температурная зависимость плотности сухого возлиха
Придожение 10. Приведение массы вешества к массе в вакууме 413
Список литературы
Предметный указатель

В справочнике приведены сведения о фундаментальных тепловых свойствах металлов и сплавов, определяющих их промышленное использование. В сжатой форме изложен материал об основных термодинамических законах и зависимостях, а также современные представления о тепловых свойствах твердых тел.

Справочник состоит из трех частей. В первой части дана характеристика основных теплофизических зависимостей. Во второй — рассмотрены методы изучения тепловых свойств металлов и сплавов, оценены существующие экспериментальные возможности, а также точность определения тепловых свойств и их изменений при внешнем воздействии. Третья часть содержит экспериментальные данные о тепловых свойствах металлов и сплавов.

При отборе данных предпочтение отдавалось источникам, в которых были проведены всесторонний анализ и оценка экспериментальных результатов. По возможности указана причина различия результатов для одних и тех же металлов или сплавов (например, вследствие разной предварительной обработки, разной химической чистоты).

В справочник включены экспериментальные данные об изменении внутренней энерг:: и и плотности металлов и сплавов при внешнем воздействии: пластической деформации, термической и термомеханической обработках, о влиянии различных структурных несовершенств на тепловые свойства реальных металлов и сплавов, а также о прикладном использовании тепловых свойств металлов и сплавов, в частности для оптимизации управления упрочняющей обработкой, определения предела пластичности. Поскольку такие сведения приводятся в справочной литературе впервые, авторы с благодарностью примут все замечания, советы и пожелания читателей.

Гл. 1 написана Ю. Ф. Юрченко (§ 1-3) и совместно Л. Н. Лариковым и Ю. Ф. Юрченко (§ 4), гл. 2 – Ю. Ф. Юрченко (§ 2, 3) и совместно Л. Н. Лариковым и Ю. Ф. Юрченко (§ 1, 4), гл. 3-5-Л. Н. Лариковым, гл. 6-11 – Ю. Ф. Юрченко.

Авторы глубоко признательны ответственному редактору д-ру техн. наук, проф. В. В. Скороходу, рецензентам чл.-кор. АН УССР О. А. Геращенко и д-ру техн. наук, проф. М. В. Белоусу за ценные замечания, которые способствовали улучшению содержания справочника. Авторы благодарны также инженерам Т. Д. Внуковой, П. В. Мудрук, И. В. Стеценко за большую помощь при подготовке рукописи к печати.

Л. Н. Лариков, Ю. Ф. Юрченко

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

- А работа
- а коэффициент температуропроводности
- b вектор Бюргерса
- с теплоемкость
- *с*_{*P*}, *с*_{*V*} теплоемкость соответственно при постоянных давлении и объеме
 - D плотность
 - Е энергия
 - F изохорно-изотермный потенциал (энергия Гельмгольца)
 - Н энтальпия
 - h постоянная Планка
 - **ћ** квантовая постоянная
 - k постоянная Больцмана
 - L длина
 - М масса
 - N число частиц
 - Р давление
 - *р* сила
 - Q количество теплоты
 - S энтропия
 - s площадь
 - T время
 - U внутренняя энергия
 - V объем
 - Ф изобарно-изотермный потенциал (энергия Гиббса)
 - α линейный коэффициент теплового расширения
 - β объемный коэффициент теплового расширения
 - у параметр Грюнайзена
 - е степень деформации
 - **Ө** температура
 - λ коэффициент теплопроводности

 - χ изотермическая сжимаемость

ЧАСТЬ І

ОСНОВНЫЕ ТЕПЛОФИЗИЧЕСКИЕ ЗАВИСИМОСТИ

ГЛАВА І

ТЕРМОДИНАМИЧЕСКИЕ СООТНОШЕНИЯ

1.1. Основные определения термодинамики [13, 71, 110, 130, 134, 163, 175]

Энергия есть общая количественная мера движения и взаимодействия всех видов материи. Согласно теории относительности энергия неразрывно связана с массой. Различают механическую, электромагнитную, химическую, ядерную и другие виды энергии. Разделение энергии на виды в значительной мере носит условный характер.

Работа в термодинамике обобщает понятие работы в механике. Обобщенными координатами являются внешние параметры термодинамической системы, а обобщенными силами — величины, зависящие от координат и внутренних параметров системы. Работа термодинамической системы есть энергия, передаваемая при взаимодействии тел, которая не зависит от температуры этих тел и не связана с переносом вещества от одного тела к другому.

Термодинамическая система — это совокупность тел, могущих энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом. Термодинамическая система на-зывается изолированной (замкнутой), если обмен энергией с внешней средой отсутствует, гомогенной, если между любыми частями ее нет границы раздела. При наличии границы раздела система является гетерогенной. Часть гетерогенной системы, ограниченная поверхностью раздела и характеризующаяся, в отсутствие внешнего поля сил, Одинаковыми физическими свойствами во всех своих точках, называется фазой вещества. Компоненты термодинамической системы — это вещества, наименьшее число которых необходимо и достаточно для образования всех возможных фаз данной системы, находящейся в равновесном состоянии. Система находится в стационарном состоянии, если в результате постоянных внешних воздействий распределение параметров во всех ее частях остается неизменным во времени; в равновесном состоянии, если при постоянных внешних условиях распределение параметров во всех ее частях остается неизменным во времени и отсутствуют потоки вещества и теплоты. Термодинамическое равновесие — состояние системы, при котором во всех ее частях температура неизменна.

Основные параметры состояния системы — температура, давление, удельный объем. Внешние параметры состояния зависят от обобщенных координат внешних тел, которые взаимодействуют с системой; внутренние параметры — и от усредненных значений координат и скоростей частиц, образующих систему.

Температура — это физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Имеет размерность энергии; зависит от средней кинетической энергии поступательного движения частиц, составляющих тело. При соприкосновении двух тел, например газообразных, переход тепла от одного тела к другому будет происходить до тех пор, пока значения средней кинетической энергии поступательного движения частиц, из которых состоят тела, не будут равны (первый постулат, или нулевое начало термодинамики). При данной температуре кинетическая энергия каждой отдельной частицы тела может значительно отличаться от средней кинетической энергии частиц тела. Поэтому понятие температуры является статистическим и применимо только к телу, состоящему из достаточно большого числа частиц. К пространству со значительно разреженной материей статистические законы неприменимы. Температура в этом случае определяется мощностью потоков лучистой энергии, пронизывающей тело, и равна температуре абсолютно черного тела с такой же мощностью излучения.

Единая температурная шкала, независимая от свойств термодимамического вещества — термодинамическая температурная шкала, основана на втором законе термодинамики. Принятые в СССР практические температурные шкалы обеспечивают единство измерений температуры в диапазоне от 0,01 до 100 000 К (ГОСТ 8.157—75). Измеряемые температуры близки к термодинамическим температурам. Единица температуры — кельвин (K) — 1/273,16 часть термодинамической температуры тройной точки воды. В табл. 1.1 и 1.2 приведены основные и вторичные реперные (постоянные) точки МПШТ-68.

Состояние фазового равновесия	θ, Κ
Тройная точка равновесного водорода	13,81
Равновесие между жидкой и парообразной фазами равновесного водорода при давлении 33,330 кПа	17,042
Точка кипения равновесного водорода	20,28
неона	27,102
Тройная точка кислорода	54,361
Точка кипения кислорода	90,188
Тройная точка воды	273.16
Точка кипения воды	373.16
затвердевания олова	505,1181
цинка	692.73
серебра	1235.08
золота	1337,58

Таблица 1.1. Основные реперные точки МПТШ-68 [29, 110, 130]

Давление — параметр состояния, равный силе, действующей на единицу площади поверхности тела по нормали к ней: $P = \lim \Delta p/\Delta s = dp/ds$. Плотность — масса единицы объема вещества:

Состояние фазового равновесия	θ, Κ	Состояние фазового равновесия	θ, Κ
Точка затвердевания ртути индия висмута кадмия свинца медно-алюминиевой эвтектики сурьмы алюминия меди	234,314 429,784 544,592 594,258 600,652 821,41 903,905 933,61 1358,03	Точка затвердевания никеля кобальта палладия платины родия иридия ниобия молибдена вольфрама	1728 1768 1827 2042 2236 2720 2750 2896 3695

Таблица 1.2. Вторичные реперные точки МПТШ-68 [29, 110, 130]

 $D = \lim \Delta M / \Delta V = dM / dV$. Удельный объем — объем единицы массы вещества: $V_v = 1/D$.

Термодинамическим процессом называется любое изменение состояния термодинамической системы, характеризующееся изменением ее термодинамических параметров. Равновесным (квазистатическим) процессом — термодинамический процесс, при котором система проходит непрерывный ряд равновесных состояний. Обратимым процессом — равновесный процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в начальное положение. Необратимым процессом - процесс, после которого система и взаимодействующие с ней системы (окружающая среда) не могут возвратиться в начальное положение. Изопроцессами — термодинамические процессы, протекающие при неизменном любом параметре состояния системы, причем масса системы предполагается постоянной. Различают изохорный (изохорический) процесс, протекающий при постоянном объеме системы, изобарный (изобарический) процесс - при постоянном давлении в системе, изотермический (изотермный) процесс — при постоянной температуре, а также адиабатический (адиабатный) процесс, при котором система не получает теплоту извне и не отдает ее.

1.2. Функции состояния системы [13, 26, 71, 72, 133]

Функция состояния системы есть физическая характеристика системы, изменение которой при переходе из одного термодинамического состояния в другое не зависит от вида соответствующего процесса, а целиком определяется значениями параметров начального и конечного состояния.

Внутренняя энергия — функция состояния системы, характеризующаяся тем, что ее приращение в любом процессе равно сумме теплоты, сообщенной системе, и работы (— 5 PdV), совершенной над ней.

Энтропия — функция состояния системы, характеризующаяся тем, что ее дифференциал при элементарном равновесном процессе равен отношению бесконечно малого количества теплоты, сообщенной системе, к термодинамической температуре системы: $dS = dQ/\Theta$. Эн-

тальпия — функция состояния системы, равная сумме внутренней энергии и произведения давления на объем:

$$H = U + PV. \tag{1.1}$$

Энергия Гельмгольца (изохорно-изотермический потенциал) функция состояния системы, равная разности между внутренней энергией и произведением термодинамической температуры на энтропию:

$$F = U - \Theta S. \tag{1.2}$$

Энергия Гиббса (изобарно-изотермный потенциал) — функция состояния системы, равная разности между энтальпией и произведением термодинамической температуры на энтропию:

$$\Phi = H - \Theta S.$$

Согласно первому закону термодинамики количество теплоты, сообщенное системе, расходуется на изменение ее внутренней энергии и совершение системой работы против внешних сил: $Q = \Delta U + A$. Из первого закона термодинамики следует, что нельзя построить периодически действующий двигатель, который бы совершал работу большую, чем подводимая к нему энергия (невозможность создания вечного двигателя первого рода). Для элементарного изменения состояния системы первый закон термодинамики имеет вид $\delta Q = dU + \delta A$, или $cd\Theta = \omega = dU + \delta A$.

Тепловым эффектом процесса называется сумма количества теплоты, отданного системой в этом процессе, и теплового эквивалента A^* работы, равной разности между полной работой системы в этом процессе и работой ее расширения: $E = Q^* + A^*$. Так как $Q^* = -Q$, из первого закона термодинамики следует, что в равновесном процессе

$$E = U_1 - U_2 - \int_1^2 P dV = H_1 - H_2 + \int_1^2 V dP.$$

Из первого закона термодинамики также следует основной закон термохимии, или закон Гесса. Согласно этому закону тепловой эффект реакции, протекающей в системе при постоянном объеме или постоянном давлении, не зависит от промежуточных состояний, через которые проходит система, а определяется лишь начальным и конечным состояниями системы. На законе Гесса основан калориметрический анализ. Ряд следствий из этого закона упрощает расчет химических реакций, протекающих в системе при указанных условиях.

Если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы (второй закон термодинамики, или закон возрастания энтропии). Из второго закона термодинамики следует, что для произвольного элементарного процесса $dS > \delta Q/\Theta$. Знак равенства относится к обратимым процессам, а знак неравенства — к необратимым. Для адиабатической системы $\delta Q = 0$ второй закон термодинамики имеет вид dS > 0.

Из уравнений первого и второго закона термодинамики получаем основное соотношение термодинамики — $\Theta dS \ge dU + \delta A$, для обратимых процессов — $\Theta dS = dU + \delta A$, или

$$dU = \theta dS - P dV. \tag{1.3}$$

Согласно третьему закону термодинамики (принципу Нернста) в любом изотермическом процессе, проведенном при абсолютном нуле температур, изменение энтропии системы равно нулю, $\Delta S_0 = 0$; $S = S_0 = \text{const}$, независимо от изменения любых других параметров состояния системы. Из него вытекает принцип недостижимости абсолютного нуля температуры. Принцип Нернста развит Планком, который предположил, что при абсолютном нуле температуры энтропия системы равна нулю.

Из основного соотношения термодинамики математическим путем можно получить термодинамические соотношения. Проднфференцировав уравнение (1.1) с учетом уравнения (1.3), находим полный дифференциал энтальпии: $dH = \Theta dS + VdP$. Следовательно, $\Theta = (\partial H/\partial S)_P$; $V = (\partial H/\partial P)_S$.

Работа, выполненная над телом при бесконечно малом изотермическом обратимом изменении его состояния, записывается в виде дифференциала некоторой величины:

$$dA = dU - dQ = dU - \Theta dS = d (U - \Theta S),$$

или, с учетом (1.2), dA = dF. Из формул (1.2) и (1.3) определяется дифференциал свободной энергии: $dF = -Sd\Theta - PdV$. Отсюда

$$S = -\left(\frac{\partial F}{\partial \Theta}\right)_{\mathbf{v}}; P = -\left(\frac{\partial F}{\partial V}\right)_{\mathbf{\Theta}}.$$
 (1.4)

Внутреннюю энергию можно выразить через свободную энергию Гельмгольца с учетом соотношения (1.2):

$$U = F - \Theta \left(\frac{\partial F}{\partial \Theta} \right)_{V} = - \Theta^{2} \left(\frac{\partial}{\partial \Theta} \frac{F}{\Theta} \right)_{V}.$$

Аналогично

$$S = -\left(\frac{\partial \Phi}{\partial \overline{\Theta}}\right)_{P}; \ V = \left(\frac{\partial \Phi}{\partial \overline{P}}\right)_{\Theta},$$
$$H = \Phi - \Theta \left(\frac{\partial \Phi}{\partial \overline{\Theta}}\right)_{P} = -\Theta^{2} \left(\frac{\partial}{\partial \overline{\Theta}}\frac{\Phi}{\overline{\Theta}}\right)_{P}.$$

Если любая из величин U, H, F или Φ известна как функция соответствующих двух переменных, то, составляя ее частные производные, можно определить остальные термодинамические величины. Функция внутренней энергии является характеристической функцией по переменным S, V; энтальпия — по переменным S, P; свободная энергия Гельмгольца — по переменным V, Θ ; свободная энергия Гиббса — по переменным P, Θ .

Необратимые процессы, происходящие при постоянных температуре и объеме, сопровождаются уменьшением свободной энергии тела. Необратимые процессы, происходящие при постоянных температуре и давлении, сопровождаются уменьшением термодинамического потенциала. В состоянии теплового равновесия свободная энергия и термодинамический потенциал тела минимальны: первая — по отношению к к изменениям состояния при постоянных температуре и объеме; второй — по отношению к изменениям состояния при постоянных темпер ратуре и давлении.

Теплоемкость — количество теплоты, при получении которого температура тела повышается на единицу температуры. Теплоемкость тела зависит от условий его нагревания. Различают теплоемкость при постоянном объеме c_V и теплоемкость при постоянном давлении c_P . С учетом (1.1) и (1.3) имеем

$$C_{V} = \Theta \left(\frac{\partial S}{\partial \Theta} \right)_{V} = \left(\frac{\partial U}{\partial \Theta} \right)_{V},$$

$$C_{P} = \Theta \left(\frac{\partial S}{\partial \Theta} \right)_{P} \leftarrow \left(\frac{\partial H}{\partial \Theta} \right)_{P}.$$
(1.5)

Объемный коэффициент теплового расширения определяется как скорость увеличения объема с изменением температуры при постоянном давлении: $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial \Theta} \right)_P$; изотермическая сжимаемость — как $- \frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{\Theta}$. Из термодинамических соотношений следует, что

$$c_P - c_V = \beta^2 \frac{V\Theta}{\chi}.$$
 (1.6)

С помощью экспериментально определяемых c_P , β и χ при данных параметрах состояния вычисляются функции состояния тел. В табл. 1.3 приведены соответствующие термодинамические соотношения.

Таблица	1.3.	Термодинамические	соотношения	[71]
	_			

x	y	z	(dy/dx) ₂	x	y	2	(dy/dx) ₂
θ	v	P	βV	e	P	V	β/χ
θ	S	P	c_P / Θ	θ	S	V	$c_P / \Theta - \beta^2 V / \chi$
θ	U	P	$c_P - \beta P V$	0	U	V	$c_P - f^2 V \Theta / \chi$
θ	H	P	C _D	0	H	V	$c_{P} - \beta^{2} V \Theta / \chi + \beta V / \chi$
θ	F	P	$-\beta PV - S$	θ	F	V	S
θ	Φ	P	S	Θ	Φ	V	$\beta V/\chi - S$
Р	V	Θ	$-\chi V$	θ	P	S	$c_P/\beta V\Theta$
P	S	θ	$-\beta V$	Θ	V	S	$-\chi c_P/\beta\Theta + \beta V$
P	U	Θ	$\chi PV - \beta V\Theta$	θ	U	S	$\chi P c_P / \beta \Theta - \beta P V$
P	H	θ	$V - \beta V \Theta$	0	H	S	$c_{P}/\beta\Theta$
P	F	θ	χPV	0	F	S	$\chi P c_P / \beta \Theta - \beta P V - S$
P	Φ	θ	v	θ	Φ	S	$c_P/\beta\Theta - S$
							•

1.3. Зависимость термодинамических параметров от числа частиц [13, 71, 72, 175]

Наряду с внутренней энергией и энтропией свойетвом аддитивности обладают энергия Гельмгольца, энергия Гиббса и энтальпия, что следует из их определения, при условии постоянства давления и температуры вдоль находящегося в равновесии тела. Аддитивность величины означает, что при изменении количества вещества (а значит, и числа частиц) в некоторое число раз эта величина изменяется во столько же раз, или аддитивная термодинамическая величина должна быть однородной функцией первого порядка относительно аддитивных переменных.

Выразим внутреннюю энергию тела в виде функции энтропии, объема и числа частиц: $U = N_{\xi}(S/N, V/N)$. Аналогично

$$F = Nf\left(\frac{V}{N}, \Theta\right), H = Nf\left(\frac{S}{N}, P\right), \Phi = Nf(P, \Theta).$$
(1.7)

Формально рассматриваем N как независимую переменную. Тогда в выражения дифференциалов термодинамических потенциалов следует добавить члены, пропорциональные dN:

$$dU = \Theta dS - P dV + \mu dN;$$

$$dH = \Theta dS + V dP + \mu dN;$$

$$dF = -S d\Theta - P dV + \mu dN;$$

$$d\Phi = -S d\Theta + V dP + \mu dN,$$

(1.8)

где μ — химический потенциал тела, $\mu = (\partial U/\partial N)_{S,V}$.

Из приведенных формул следует:

$$\mu = \left(\frac{\partial H}{\partial N}\right)_{S, P} = \left(\frac{\partial F}{\partial N}\right)_{\Theta, V} = \left(\frac{\partial \Phi}{\partial N}\right)_{P, \Theta}.$$

Дифференцируя Ф в виде (1.7), находим, что $\mu = \partial \Phi / \partial N = f(P, \Theta)$ или $\Phi = N\mu$. Поэтому химический потенциал тела, состоящего из одинаковых частиц, есть его термодинамический потенциал, отнесенный к одной частице. Выраженный как функция от P и Θ , химический потенциал не зависит от N. Поэтому $d\mu = -Sd\Theta + VdP$. Здесь Sи V — энтропия и объем в расчете на одну частицу.

Выделим внутри тела некоторый определенный объем и рассмотрим вещество, заключенное в этом объеме. При этом N — переменная величина, V — постоянная. Тогда $dF = -Sd\Theta + \mu dN$. В равенстве (1.8) независимыми переменными являются Θ и N. Введем такой термодинамический потенциал, для которого второй независимой переменной будет μ . Тогда

$$d\left(F-\mu N\right)=-Sd\Theta-Nd\mu.$$

Поэтому

$$\Omega = F - \mu N = F - \Phi = PV,$$

$$N = -\left(\frac{\partial\Omega}{\partial\mu}\right)_{\Theta, V} = V\left(\frac{\partial P}{\partial\mu}\right)_{\Theta, V}.$$

Известно [72], что

Работа при обратимом процессе, происходящем при постоянных Θ , Vи μ , равна изменению потенциала Ω . В состоянии теплового равновесия потенциал Ω имеет минимальное значение относительно изменения состояния при постоянных Θ , V, μ .

1.4. Некоторые соотношения термодинамики необратимых процессов [28, 39, 131]

Классическая термодинамика основана на понятиях обратимых процессов и истинных равновесных состояний систем. Во многих важных областях техники состояние истинного термодинамического равновесия достигается только при исключительных условиях. Практически все процессы, протекающие в природе, являются необратимыми.

Термодинамика обратимых процессов ограничивается рассмотрением случая равенства нулю приращения энтропии. При этом процесс может протекать с бесконечно малой скоростью как в прямом, так и в обратном направлении при бесконечно малом изменении параметров. Элементарная работа записывается в виде

$$dA = \sum_{i=1}^{n} p_i \delta q_i,$$

где p_i , q_i — соответственно обобщенные силы и координаты. Термодинамика обратимых процессов позволяет найти внутренние параметры систем для данной совокупноети внешних параметров, а также определить функции состояния системы в зависимости от обобщенных сил и координат.

В случае необратимых процессов при приближении к равновесию имеем систему условий:

$$\begin{cases} \frac{\partial q_i}{\partial \Theta} \to 0 \quad (i = 1, 2, \dots, n), \\ \frac{\partial \Phi}{\partial q_i} \to 0, \quad \frac{\partial S}{\partial q_i} \to 0. \end{cases}$$

При нарушении равновесия $\partial q_i/\partial \Theta \neq 0$ производные функционально вависят от $\partial \Phi/\partial q_i$. Вблизи равновесия, если ограничиться первыми степенями производных, получаем линейные соотношения $\partial q_i/\partial \Theta =$ $= k_{ij} (\partial \Phi/\partial q_i)$. Скорости необратимых процессов, или обобщенные потоки, и силы взаимосвязаны: $J_i = k_{ij} p_j$. Обобщенные силы обычно определяются из разложения скорости нарастачия энтропии вблизи состояния равновесия:

$$\frac{dS}{d\Theta} = K_{ij} p_i p_j > 0.$$

Дополнительно вводятся соотношения Онзагера, выражающие следующее свойство: если на поток J_i , соответствующий необратимому процессу *i*, влияет сила p_i необратимого процесса *j*, то на поток J_j сила p_i влияет посредством того же интерференционного коэффициента k_{ij} . Поэтому $k_{ij} = k_{ji}$. Например, для случая теплопроводности соотношения взаимности Онзагера означают, что тензор теплопроводности является симметричным. Это соответствует эксперименту.

Дальнейшее развитие линейной неравновесной термодинамики связано с более широким кругом явлений, в которых следует учитывать нелинейные эффекты и неустойчивость, т. е. выразить локальную энтропию через те же независимые переменные, что и в случае системы, находящейся в положении равновесия. Создана теория, которая описывает упорядочение состояния вдали от равновесных условий, например за границей устойчивости термодинамической ветви. В этом случае чисто причинное описание даже для системы с большим числом степеней свободы непригодно. Основой созданной теории является теория флуктуаций.

В обычных условиях флуктуация вызывает реакцию системы, которая возвращает ее в невозмущенное состояние. В этом случае выполняется принцип Ле-Шателье — Брауна (принцип демпфирования), согласно которому в любой системе, находящейся в химическом равновесии, при изменении одного из факторов, управляющих этим равновесием, возникают компенсирующие процессы, стремящиеся ослабить влияние этого изменения. Принцип демпфирования выполняется также и в линейной неравновесной термодинамике, основой которой является уравнение баланса энтропии:

$$dS = d_e S + d_i S; \ d_i S \ge 0, \tag{1.9}$$

где $d_e S$ — поток энтропии (вклад окружающей среды): $d_i S$ — производство энтропии, вызванное неравновесными процессами внутри системы. В этом случае справедлива теорема о минимуме производства энтропии: если стационарное состояние характеризуется минимумом производства энтропии, то флуктуации убывают точно так же, как и при термодинамическом равновесии. Принцип демпфирования не выполняется для состояний, далеких от равновесия.

Термодинамическая теория, которая включает макроскопическую теорию флуктуаций, следует из теории флуктуаций Эйнштейна. Обобщение теории Эйнштейна, которое применимо как к равновесному, так и к неравновесному макроскопическому изменению, показывает, что определяющей величиной является «кривизна» энтропии $\delta^2 S$. Именно временное изменение $\delta^2 S$ определяет условия, при которых затукают флуктуации или устанавливается справедливость принципа демпфирования. Очевидно, для решения этой задачи следует установить уравнение баланса для $\delta^2 S$. При положительном знаке производства избыточной энтропии система всегда устойчива. Вблизи равновесия это условие выполняется тождественно, справедлив принцип Ле-Шателье — Брауна, флуктуации затухают. Вдали от равновесия в предельном состоянии, соответствующем переходу между устойчивостью и неустойчивостью, производство избыточной энтропии исчезает, физический смысл неустойчивости можез быть изучен с большей общностью.

Согласно уравнению (1.9) производство энтропии всегда положительно. Знак равенства соответствует равновесию (обратимым процессам). Так как производство энтропии представляет только часть прироста энтропии, связанную с изменением внутреннего состояния системы, то критерий имеет вид неполного дифференциала. Однако, если существует термодинамический потенциал, указанное неравенство можно преобразовать в полный диференциал. Например, для системы при постоянных температуре и объеме производство энтропии становится полным дифференциалом:

$$d_i S = -\frac{(dF)_{\Theta, V}}{\Theta} \ge 0. \tag{1.10}$$

Эта величина непосредственно связана с изменением свободной энергии Гельмгольца. Все процессы протекают в направлении уменьшения F до тех пор, пока свободная энергия не достигнет минимума в устойчивом равновесном состоянии. Обобщение неравенства (1.10) на неравновесные случаи возможно, если существует потенциал типа F (называемый кинетической функцией), знак которого определяет направление изменений в системе.

Скорость производства энтропии можио записать как сумму произведений обобщенных сил и потоков:

$$\frac{d_i S}{dT} = p_n J_n, \tag{1.11}$$

где $p_n = \frac{1}{\Theta} \left(\frac{\partial \Phi}{\partial \xi} \right)_{P, \Theta}$ — движущая сила *n*-го процесса; $J_n = \frac{d\xi_n}{dT}$ — его скорость; ξ_n — параметр *n*-го процесса, характеризующий степень его

скорость; ξ_n — параметр *n*-го процесса, характеризующий степень его протекания. В линейном приближении для состояний, недалеких от равновесия, справедлива система уравнений

$$J_j = L_{jn} p_n, \tag{1.12}$$

где L_{jn} — так называемые феноменологические коэффициенты. Записывая решение для (1.12) в виде $||p|| = ||L||^{-1} ||J||$ и обозначая члены обратной матрицы $||L||^{-1}$ через L_{jn}^{oo} , получаем

$$p_n = L_{j_n}^{\rm o6} J_j. \tag{1.13}$$

Комбинируя (1.11), (1.12) и (1.13), имеем

$$\frac{d_i S}{dT} = L_{jn}^{o6} J_j J_n. \tag{1.14}$$

Уравнение (1.14) связывает скорость производства энтропии в системе со скоростями протекающих в ней процессов. При n = 1

$$\frac{d_t S}{dT} = L^{\circ 6} \left(\frac{d\xi}{dT}\right)^2;$$

при n = 2

$$\frac{d_i S}{dT} = L_{11}^{o6} \left(\frac{d\xi_1}{dT}\right)^2 + \left(L_{12}^{o6} + L_{21}^{o6}\right) \frac{d\xi_1}{dT} \frac{d\xi_2}{dT} + L_{22}^{o6} \left(\frac{d\xi_2}{dT}\right)^2.$$

Стационарные состояния вблизи равновесия характеризуются минимумом производства энтропии. Следовательно, в этом случае всегда существует термодинамический потенциал, который изменяется так, что уменьшается производство энтропии. В некоторых частных случаях для систем вдали от равновесия также можно ввести различные кинетические потенциалы. В общем, такой кинетический потенциал отсутствует, что обусловлено многообразием макроскопического поведения систем, находящихся вдали от равновесия.

Можно ввести общее неравенство, справедливое для любого изменения состояния макроскопической системы при фиксированных граничных условиях (универсальный критерий воолюции). Поскольку обычно этот критерий возникает в форме неполного дифференциала, не существует термодинамического потенциала, связанного в классическом смысле с этим критерием. Но он может быть использован для обобщения понятия «термодинамический потенциал». Главная особенность этого метода (метода локального потенциала) состоит в том, что каждая неизвестная функция появляется дважды: один раз как среднее значение и второй как флуктуирующая величина. Локальный потенциал достигает максимума (в функциональном смысле), если среднее значение совпадает с наиболее вероятным, что позволяет судить о проблеме устойчивости неравновесных состояний. ГЛАВА 2

ТЕПЛОВЫЕ СВОЙСТВА МЕТАЛЛОВ В ТВЕРДОМ СОСТОЯНИИ

2.1. Теплоемкость [54, 55, 72, 76, 104, 119, 247]

Металлы в твердом состоянии обладают, как правило, кристаллической структурой, и в условиях термического равновесия тепловое движение атомов можно рассматривать как совокупность малых колебаний атомов около некоторых положений равновесия -«узлов» кристаллической решетки. В аморфных металлических сплавах атомы колеблются вокруг хаотически расположенных точек. С термодинамической точки зрения такие сплавы метастабильны и с течением времени должны были бы закристаллизоваться. Однако вследствие значительных времен релаксации промышленные аморфные металлические ленты могут сохранять некристаллическую структуру при температурах, не очень превышающих нормальную, в течение длительного времени. Зависимости, характеризующие тепловые свойства, относятся как к кристаллическим металлам, так и к аморфным сплавам. Однако к последним неприменима теорема Нернста, поскольку при $\Theta \to 0$ K их энтропия стремится к отличному от нуля значению. «Остаточная» энтропия, не исчезающая при $\Theta \rightarrow 0$ К, может наблюдаться в кристаллических сплавах при наличии фазового перехода типа «порядок 🛫 беспорядок».

С механической точки зрения твердое тело, состоящее из атомов и обладающее 3N колебательными степенями свободы, рассматривается как совокупность 3N независимых осцилляторов, каждый из которых соответствует отдельному нормальному колебанию. Выражение для свободной энергии такой системы имеет вид

$$F = NE_a + \Theta \sum_{i} \ln \left(1 - e^{-\frac{\hbar\omega_i}{\Theta}}\right), \qquad (2.1)$$

гле ω_i — частота колебаний атомов. Суммирование проводится по всем 3N нормальным колебаниям, которые нумеруются индексом *i*. Первый член в формуле выражает энергию взаимодействия всех атомов тела в положении равновесия (в состоянии «нулевых» колебаний), значит, E_a — энергия, отнессяная к одному атому. E_a является функцией плотности, поскольку при изменении объема изменяются межатомные расстояния, а следовательно, и энергия взаимодействия атомов (см. § 2 настоящей главы). При ваданном объеме E_a от Θ не зависит.

Случай низких температур. В выражении (2.1) во втором члене при малых Θ играют роль лишь величины с малыми частотами, $f_{\omega_i} \sim \Theta$. Колебания малых частот представляют собой обычные звуковые волны. Длина звуковой волны L связана с частотой ω : $L \sim v/\omega$, где v — скорость звука. В звуковых волнах длина волны велика по сравнению с постоянной решетки a_n , поэтому $\omega \ll v/a_n$. Следовательно, колебания можно рассматривать как звуковые волны при условни $\Theta \ll \sqrt[4]{n}$. Число собственных колебаний в спектре звуковых волн в интервале частот $d\omega$ записывается в виде

$$V\frac{3\omega^2 d\omega}{2\pi \overline{\upsilon^3}},\qquad(2.2)$$

где \overline{v} — некоторая средняя скорость звука, $\overline{v} = v$ (V/N). Определение закона усреднения v требует решения задачи теории упругости о распространении звука в кристалле данной симметрии.

С помощью формулы (2.2) в выражении (2.1) переходим от суммирования к интегрированию:

$$F = NE_a + \Theta \frac{3V}{2\pi \overline{v}^3} \int_0^\infty \ln\left(1 - e^{-\frac{n_\omega}{\Theta}}\right) \omega^2 d\omega.$$

После соответствующих вычислений имеем

$$F = NE_a - V \frac{\pi^2 \Theta^4}{30 \ (\hbar \overline{v})^3} \,.$$

Используя термодинамические зависимости, получаем

$$S = V \frac{2\pi\Theta^{3}}{15 (\hbar \bar{v})^{3}}, \quad U = NE_{a} + V \frac{\pi^{2}\Theta^{4}}{10 (\hbar \bar{v})^{3}},$$
$$c = \frac{2\pi^{3}}{5 (\hbar \bar{v})^{3}} \Theta^{3}V. \quad (2.3)$$

Из равенств (2.3) следует, что теплоемкость твердого тела при низких температурах пропорциональна кубу температуры. Различие между

Рис. 2.1. Температурная зависимость c_p никеля [76].

 c_P и c_V несущественно, поскольку $(c_P - c_V)$ — велничина более низкого порядка малости, чем теплоемкость. Действительно, согласно (1.6) $(c_P - c_V) \sim \Theta$. Значит, ее разложение в ряд по степеням Θ/E_a начинается с члена первого порядка, тогда как разложение самой теплоемкости начинается с нулевого (постоянного) члена. Для металлов и интер-

металлических соединений с простой кристаллической решеткой закон Дебая $c \sim \Theta^3$ выполняется до температур порядка десятков кельвинов. Для тел со сложной решеткой можно ожидать удовлетворительного соблюдения этого закона только при более низких температурах.

В металлах и сплавах необходимо учитывать и «электронную часть» теплоемкости, которая вносит заметный вклад в общую теплоемкость при температурах в несколько кельвинов. Это объясняется тем, что электронная теплоемкость, в отличие от решеточной, при низких температурах уменьшается пропорционально первой степени температуры: $c_9 \sim \Theta/E_9$, где \dot{E}_9 — максимальная энергия электронов при 0 К. В ферромагнитных металлах и сплавах необходимо также учитывать и магнитный вклад в теплоемкость, который растет, достигая максимального значения в точке Кюри (рис. 2.1).

Случай высоких температур. При этом $\Theta \gg \frac{\hbar v}{a_n}$, следовательно, можно предположить, что

$$1-e^{-\frac{\hbar\omega}{\Theta}}\simeq\frac{\hbar\omega_i}{\Theta}.$$

Тогда выражение (2.1) имеет вид

$$F = NE_{a} + \Theta \sum_{i} \ln \frac{\hbar \omega_{i}}{\Theta}.$$

Введем «среднюю геометрическую» частоту ш:

$$\ln \omega = \frac{1}{3N} \sum_{i} \ln \omega_{i},$$

тогда

$$F = NE_{a} - 3N\Theta \ln \Theta + 3N\Theta \ln \hbar \overline{\omega},$$

$$U = NE_{a} + 3N\Theta, S = N \ln \Theta - N \ln \hbar \omega, c = 3N.$$
 (2.4)

«Средняя» частота $\overline{\omega}$, как и \overline{v} , является функцией плотности. В выражении (2.4) различие между c_p и c_V также несущественно.

Из (2.4) следует, что при достаточно высоких температурах теплоемкость постоянна и зависит только от числа атомов в твердом теле. Согласно правилу Дюлонга — Пти атомная теплоемкость металлов равна 3kN. При обычных температурах этот закон удовлетворительно выполняется для многих элементов. Электронная теплоемкость существенна только при очень высоких температурах (например, для металлов — при температурах порядка десятков тысяч кельвинов) и, следовательно, для металлов в твердом состоянии может не учитываться.

В обоих предельных случаях — низких и высоких температур можно достаточно корректно вычислить термодинамические характеристики твердых тел. В промежуточной области температур такое вычисление невозможно, поскольку сумма по частотам в выражении (2.1) существенно зависит от конкретного распределения частот по всему спектру колебаний данного тела. Однако, как показал Дебай, разумным образом построенная интерполяционная формула может, по крайней мере качественно, правильно описывать поведение твердого тела.

Вид термодинамических функций твердого тела при низких температурах определяется распределением (2.2) частот в спектре колебаний атомов. При высоких температурах возбуждены все 3N колебаний атомов. Поэтому для построения указанной интерполяционной формулы естествению исходить из модели, в которой на всем протяжении спектра колебаний частоты распределены по закону (2.2), причем спектр, начинаясь от $\omega = 0$, обрывается при некоторой конечной частоте $\omega = \omega_m$, определяемой условием равенства полного числа колебаний правильному значению 3N:

$$\frac{3V}{2\pi^{2}\overline{v^{3}}}\int_{0}^{\omega_{m}}\omega^{2}d\omega=\frac{V\omega_{m}^{3}}{2\pi^{2}\overline{v^{3}}}=3N,$$

откуда

$$\omega_m = \bar{v} \left(\frac{6\pi^2 N}{V}\right)^{1/s}.$$

Если выразить υ через ω_m, то распределение частот в рассматриваемой модели задается формулой

$$9N \; \frac{\omega^2 d\omega}{\omega_m^3} \; \; (\omega \leqslant \omega_m).$$

Переходя в выражении (2.1) от суммы к интегралу, получаем

$$F = NE_{\mathbf{a}} + \Theta \frac{9N}{\omega_m^3} \int_0^{\omega_m} \omega^2 \ln\left(1 - e^{-\frac{\hbar\omega}{\Theta}}\right) d\omega.$$

Введем характеристическую (дебаевскую) температуру тела $\Theta_{\rm d}^{*} = = \hbar\omega_m - \phi$ ункцию плотности тела. Тогда

$$F = NE_{a} + 9N\Theta \left(\frac{\Theta}{\Theta_{\pi}}\right)^{3} \int_{0}^{\Theta_{\pi}/\Theta} y^{2} \ln \left(1 - e^{-y}\right) dy.$$

Интегрируя по частям и вводя функцию Дебая

$$B(x) = \frac{3}{x^3} \int_0^x \frac{y^3 dy}{e^y - 1},$$

получаем

$$F = NE_{a} + N\Theta \left[3 \ln \left(1 - e^{-\Theta_{\underline{\Pi}}/\Theta} \right) - B \left(\frac{\Theta_{\underline{\Pi}}}{\Theta} \right) \right].$$
 (2.5)

С учетом термодинамических зависимостей

$$U = NE_{a} + 3N\Theta B\left(\frac{\Theta_{\Pi}}{\Theta}\right), \qquad (2.6)$$

$$\boldsymbol{c} = 3N \left[B \left(\frac{\boldsymbol{\Theta}_{\boldsymbol{\mu}}}{\boldsymbol{\Theta}} \right) - \frac{\boldsymbol{\Theta}_{\boldsymbol{\mu}}}{\boldsymbol{\Theta}} B' \left(\frac{\boldsymbol{\Theta}_{\boldsymbol{\mu}}}{\boldsymbol{\Theta}} \right) \right]. \tag{2.7}$$

Формулы (2.5) — (2.7) представляют собой интерполяционные формулы для термодинамических функций твердого тела по Дебаю. Критерием применимости предельных законов для теплоемкости являются относительные величины Θ и $\Theta_{Д}$: теплоемкость следует считать постоянной при $\Theta \gg \Theta_{Д}$ /4 и пропорциональной Θ^3 при $\Theta \ll \Theta_{Д}/4$. Первое утверждение, однако, не подтверждается опытом: достигнув вели-

^{*} В модели Эйнштейна частоты колебаний атомов принимаются одинаковыми. Это равносильно предположению существования одинаковых и независимых осцилляторов решетки. Очевидно, характеристическая температура Эйнштейна Θ_3 представляет собой некоторое среднее значение всех Θ_{Λ} для различных колебаний. Обычно $\Theta_3 \simeq \simeq 0.7\Theta_{\Lambda}$.

чины, соответствующей правилу Дюлонга — Пти, теплоемкость продолжает расти пропорционально температуре (см. рис. 2.1). В некоторых работах рост теплоемкости в переходных металлах приписывался «избыточной электронной теплоемкости». В действительности увеличение теплоемкости вызвано ангармонизмом колебания атомов, который не учитывается в приближении Дебая. Теоретические расчеты с учетом ангармонизма приводят к линейному закону роста теплоемкости при высоких температурах.

Отклонения от приближения Дебая наблюдаются и в области низких температур^{*}. Закон Дебая, $c \sim \Theta^3$, соблюдается в металлах лишь при температурах ниже $\Theta_{I}/50$. Причина заключается в отличиях действительного спектра колебания атомов в решетке от дебаевского спектра. Особенно сильные отклонения от закона Дебая наблюдаются в интерметаллических соединениях с анизотропной структурой, например слоистой.

2.2. Тепловое расширение [43, 54, 55, 72, 103, 119, 148, 153]

Для построения элементарной теории теплового расширения была использована двухатомная модель. В молекуле, обравованной двумя атомами, при увеличении ее длины L на dL сила p со-

вершает внешнюю работу pdL за счет уменьшения потенциальной энергии E_n модели. Получаем $p = -dE_n/dL$. При очень больших значениях L оба атома практически не взаимодействуют друг с другом, их энергия постоянна. При уменьшении расстояния L между атомами возникает сила притяжения, чему соответствует уменьшение E_n .

При некотором расстоянии $L = L_0$ энергия $E_{\rm п}$ достигает минимального значения, которое соответствует p = 0; дальнейшее уменьшение L должно сопровождаться возрастанием $E_{\rm п}$ и соответствовать положительным значениям силы. При $L \to 0$ $p \to \infty$ и $E_{\rm n} \to \infty$ (рис. 2.2). Указанная смена притяжения отталкиванием при изменении расстояния между атомами может быть описана представлением потенциаль-

Рис. 2.2. Зависимость потенциальной энергии (—) и силы взаимодействия между атомами (п — —) от расстояния [119].

ной энергии E_n (L) в виде двух членов, один из которых (отрицательный) изображает энергию сил притяжения, а другой (положительный) — энергию сил отталкивания. Наиболее просто представить каждый из этих членов степенной функцией L. Для потенциальной энергии E_n получаем выражение

$$E_{\rm II} = -\frac{B_1}{L^{n_1}} + \frac{B_2}{L^{m_2}}, \qquad (2.8)$$

^{*} Чтобы объяснить эти отклонения в рамках модели Дебая, условно считают Θ_{Π} зависящей и от температуры.

где B_1 , B_2 — положительные константы, $n_1 < m_2$. Выражение типа (2.8) называется потенциалом Леннарда — Джонса. Разложение энергии E_n на сумму из двух членов в общем не имеет физического смысла. Однако для металлов физический смысл, по крайней мере приближенно, приобретается, поскольку при $n_1 = 1$ первый член в формуле (2.8) представляет собой потенциальную энергию сил кулоновского притяжения между положительными ионами и коллективизированными электронами, а второй член при $m_2 = 2$ — энергию сил отталкивания, обусловленную движением этих электронов.

Пока амплитуда колебания атомов вблизи положения равновесия мала, действующая на атомы сила пропорциональна смещению (гармоническое приближение). С ростом амплитуды колебаний сила отталкивания между атомами при их сближении возрастает быстрее, чем сила притяжения при удалении одного атома от другого. Поэтому сила, действующая на атом, не является линейной функцией смещения.

Рис. 2.3. Зависимость полной энергии двух атомов от расстояния между атомами [119, 153]:

а — обычная зависимость; б — возможная зависимость; мость, допускающая отрицательный коэффициентя теплового расширения; — — — гармоническое приближение, — — смещение положения равновесия при изменения полной энергии системы.

Представим заданную полную энергию колебания одного атома относительно другого горизонтальными линиями E₁, E₂, E₃, E₄... (рис. 2.3, a). В положении равновесия системы двух атомов при L = = L₀ их потенциальная энергия равна нулю, а кинетическая энергия максимальна. Удаляясь от положения равновесия, атомы приобретают потенциальную энергию, которая достигает максимума при наибольшем взаимном смещении атомов из положения равновесия. Это соответствует точкам пересечения кривой потенциальной энергии с горизонтальной прямой E. C увеличением полной энергии атома E₁, E₂, Ез, Е4... растет амплитуда его колебаний. При этом смещение атома вправо больше, чем влево. Среднее положение между атомами отклоняется от L₀ вправо тем больше, чем больше полная энергия колеблющихся атомов. Поэтому возрастание полной энергии атомов приводит к увеличению среднего расстояния между атомами. Применительно к металлическому кристаллу это означало бы, что с возрастанием энергии будет наблюдаться его расширение. На рис. 2.3, б представлено изменение полной энергии системы двух атомов, которое допускает отрицательный коэффициент теплового расширения.

На основании двухатомной модели Ферми и Френкель вывели элементарную формулу для коэффициента теплового расширения:

$$\alpha = \frac{k}{L_0} \frac{l}{t^2}.$$
 (2.9)

Коэффициент теплового расширения а прямо пропорционален коэффициенту ангармоничности *l* и имеет одинаковый с ним знак. Численнов вначение α определяется коэффициентом ангармоничности и коэффициентом квазиупругой связи *t*. Выражение (2.9) дает правильный порядок α , несмотря на элементарность модели и ряд допущений, сделанных при выводе.

Сома и Ожи рассмотрели тепловое расширение с использованием обычной двухатомной модели, приняв для потенциала взаимодействия параболическую функцию:

$$\alpha = \frac{1}{a_n} \frac{k}{4R^2 E_{\mu\nu\rho}} y, \qquad (2.10)$$

где a_n — межатомное расстояние; R — постоянная, зависящая от формы кривой, характеризующей потенциальную энергию вблизи точки равновесия; $E_{\text{пно}}$ — энергия диссоциации; y — величина, связанная с темпера-

турой плавления Θ_{nn} соотношением $y^2 = \frac{4R^2 E_{\mu\nu\sigma}}{k\Theta_{nn}}$. Обобщение выбран-

ного потенциала на случай кристаллической решетки с 3N степенямсвободы приводит к такому же выражению для α , что и в случае простейшей модели линейного осциллятора. Результаты расчета α с испольвованием уравнения (2.10) хорошо согласуются с экспериментальными данными для металлов, обладающих ГЦК решеткой, и несколько хуже для металлов с ОЦК решеткой.

Макдональд и Рой методами статистической термодинамики исследовали тепловое расширение цепочки атомов, взаимодействующих только с ближайшими соседями. Энергия взаимодействия описывалась с помощью потенциала Леннарда — Джонса. Выражение для α имело вид

$$\alpha = \frac{k}{2} \left(\frac{n_1 + m_2 + 3}{n_1 m_2 E_{\text{дHC}}} \right). \tag{2.11}$$

С помощью несложных преобразований можно показать, что эта фориула аналогична (2.10), т. е. элементарный расчет, основанный на двухатомной модели, дает такие же правильные результаты, что и расчет, требующий громоздких вычислений с учетом указанных допущений. Экспериментальные данные по α хорошо согласуются с результатами расчета по формуле (2.11). При этом во всех рассмотренных случаях α остается практически постоянной, $\alpha = 1/E_{ди0}$: чем больше энергия диссоциации металла (выше его температура плавления), тем меньше коэффициент теплового расширения.

Температурная зависимость а рассчитана для системы двух атомов и линейной цепочки атомов в квантовомеханическом приближении: а изменяется с температурой, как и теплоемкость, т. е. результат совпал с выводом, полученным в рамках термодинамической теории теплового расширения. Микроскопическая теория теплового расширения развита только для очень простых моделей. Обобщение теории на трехмерный случай реального кристалла представляет большие трудности, однако такие попытки делаются.

Тепловое расширение твердых тел в рамках феноменологической теории. Из соотношения, связывающего термодинамические величины, находим

$$\left(\frac{\partial P}{\partial \Theta}\right)_V = \left(\frac{\partial S}{\partial V}\right)_{\Theta}^{-1}$$

Преобразовывая это выражение с помощью якобианов и вводя изотермическую сжимаемость, с учетом уравнения (1.5) получаем

$$\beta = \frac{c_V \chi}{\Theta} \left(\frac{\partial \Theta}{\partial V} \right)_S,$$

где $(\partial \Theta / \partial V)_S$ характеризует изменение температуры тела при адиабатическом изменении его объема. Вводя параметр Грюнайзена *, характеризующий изменение Θ_{Π} с изменением объема, $\gamma = -\frac{\partial \ln \Theta_{\Pi}}{\partial \ln V}$, окончательно получаем

$$\beta = \gamma \frac{c_V}{V} \chi. \tag{2.12}$$

Параметр Грюнайзена — постоянная величина для данного вещества, в приближении Грюнайзена γ не зависит от температуры. Поскольку χ и V являются слабыми функциями температуры, температурная зависимость β будет определяться зависимостью c_V от температуры. Поэтому при низких температурах $\beta \sim \Theta^3$, а при высоких температурах β = const. Параметр Грюнайзена можно представить в виде

$$\gamma(\Theta, V) = \frac{V}{c_V} \left(\frac{\partial S}{\partial V} \right)_{\Theta} = \frac{V}{c_V} \left(\frac{\partial P}{\partial \Theta} \right)_V = \frac{V}{\Theta} \left(\frac{\partial P}{\partial S} \right)_V.$$

Параметр Грюнайзена является важной характеристикой твердого тела, мерой ангармоничности сил, действующих в кристалле. Обычно он вычисляется с использованием выражения (2.12) в приближении отсутствия температурной зависимости. Однако такое приближение справедливо только в температурном интервале $\Theta_{\Pi} - 2\Theta_{\Pi}$. В более общем виде связь β с другими термодинамическими параметрами твердых тел получена Гилвари, который учитывал зависимость $\gamma = \gamma$ (Θ). Предложены приближенные формулы для вычисления параметра Грюнайзена, основаннные на различных предположениях о конкретных моделях твердого тела.

Объемный коэффициент теплового расширения связан со свободной энергией системы F соотношением

$$\beta = \frac{1}{V} \frac{\partial^2 F}{\partial P \partial \Theta}.$$
 (2.13)

Свободная энергия является аддитивной функцией. Для металла ее можно представить как сумму свободных энергий кристаллической решетки (фононов), электронного газа, магнонов и других составляющих. Поэтому, в соответствии с (2.13), β будет также аддитивной функцией**

$$\beta = \beta_{d} + \beta_{3} + \beta_{M} + \dots$$

• При установлении закона, связывающего коэффициент теплового расширения с другими термодинамическими параметрами, Грюнайзен основывался на выражениях для функций состояния в приближении Дебая.

** Параметр Грюнайзена является не аддитивной функцией, а средневзвешенной функцией отдельных γ_i , $\gamma = (\sum_i \gamma_i c_i) / \sum_i c_i$, где c_i — теплоемкость *i* вкладов (решеточной, электронной и других теплоемкостей). При различных температурах для разных веществ решеточный электронный и магнитный вклады в тепловое расширение будут различны. При $\Theta > 0,1 \, \Theta_{\Pi}$ основную роль в тепловом расширении играет решеточный вклад. При $\Theta < 0,1 \, \Theta_{\Pi}$ в металлах электронный вклад становится сравнимым с решеточным, при $\Theta_{\Pi} \rightarrow 0$ К электронный вклад преобладает. Для ферромагнитных веществ магнитный вклад может быть сравним как с решеточным, так и с электронным при соответствующих температурах.

Решеточный вклад в тепловое расширение проявляется в результате ангармонизма действующих в кристалле сил или в результате взаимодействия колебаний кристаллической решетки (взаимодействия фононов). Электронный вклад в тепловое расширение связан с теплоемкостью электронного газа. Поскольку термодинамика электронного газа при низких температурах для веществ в нормальном и сверхпроводящем состояниях различна, электронный вклад в тепловое расширение в обоих случаях рассматривается отдельно. В ферромагнитных материалах, для которых молекулярное поле Вейса велико, магнитная энергия вносит ощутимый вклад в термодинамические величины. Поэтому тепловое расширение будет зависеть от обменной энергии.

Кристаллическая структура ряда металлов и сплавов не относится к кубической сингонии. Это приводит к анизотропии их физических свойств, в том числе и теплового расширения. При равномерном нагревании кристалл испытывает однородную деформацию, которая описывается тензором деформации г,. Если при нагреве температура кристалла изменяется на $\Delta \Theta$, то все компоненты тензора ε_{ii} пропорциональны $\Delta \Theta$: $\varepsilon_{ii} = \alpha_{ii} \Delta \Theta$, где α_{ii} — линейные коэффициенты теплового расширения. Поскольку е₁₁ — симметричный тензор второго ранга, а Δ0 — скаляр, α_{ii} — также симметричный тензор второго ранга. Это соотношение можно упростить, если а, привести к главным осям кристалла. Получаем $\varepsilon_1 = \alpha_{11} \Delta \Theta$; $\varepsilon_2 = \alpha_{22}^{*} \Delta \Theta$; $\varepsilon_3 = \alpha_{33} \Delta \Theta$, где α_{11} , а22, а33 — главные коэффициенты расширения, соответствующие компонентам диагонального тензора а и. Отсюда следует, что шар, выделенный в кристалле, при нагревании преобразуется в эллипсоид с осями, пропорциональными следующим величинам: $(1 + \alpha_{11} \Delta \Theta)$, $(1 + \alpha_{11} \Delta \Theta)$ $+ \alpha_{22} \Delta \Theta$), $(1 + \alpha_{33} \Delta \Theta)$. Тогда объемный коэффициент теплового расширения записывается в виде $\beta = \alpha_{11} + \alpha_{22} + \alpha_{33}$. Для определения полного тензора теплового расширения необхо-

димо знать линейные коэффициенты теплового расширения вдоль главных направлений в кристалле. Для кристаллов кубической сингонии α измеряется в любом направлении, поскольку тензор второго ранга в этом случае вырождается в скаляр: $\alpha_{11} = \alpha_{22} = \alpha_{33} = \alpha$. Для кристаллов гексагональной и тригональной сингоний α измеряется в двух направлениях — параллельном и перпендикулярном оси шестого (третьего) порядка. При этом $\alpha_{11} = \alpha_{22} = \alpha_{\perp}; \alpha_{33} = \alpha_{\parallel}$. Для кристаллов ромбической сингонии а измеряется в трех взаимно перпендикулярных направлениях, параллельных осям второго порядка: $\alpha_{11} =$ $= \alpha_1; \alpha_{22} = \alpha_2; \alpha_{33} = \alpha_3$. Нахождение тензора расширения для кристаллов моноклинной и триклинной сингоний осложняется тем, что положение главных осей не определяется однозначно кристаллографической системой координат. Главные коэффициенты теплового расширения обычно имеют различную температурную зависимость и могут быть как положительными, так и отрицательными. Знак перед коэффициентами зависит от анизотропии сил, действующих между атомами в кристалле.

2.3. Теплопроводность [5, 46, 52, 57, 58, 107, 112, 114, 117]

Основной закон теплопроводности

Аналитическое исследование теплопроводности сводится к изучению пространственно-временного распределения температуры:

$$\Theta = f(x, y, z, T), \qquad (2.14)$$

где x, y, z — пространственные координаты в декартовой системе. Совокупность мгновенных значений температур во всех точках изучаемого пространства называется температурным полем. Различают стационарное и нестационарное температурные поля. Стационарное температурное поле — это поле, температура которого в любой точке не изменяется со временем, а является только функцией координат: $\Theta = f(x, y, z), \ \partial\Theta/\partial T = 0$. Нестационарное температурное поле это поле, температура которого изменяется не только в пространстве, но и во времени (см. уравнение (2.14)). Если точки поля, имеющие одинаковую температуру, соединить, получим изотермическую поверхность. Возрастание температуры в направлении нормали к изотермической поверхности характеризуется градиентом температуры. Напряженность температур:гого поля записывается в виде W = grad Θ , где W — вектор напряженности температурного поля.

Количество тепла, проходящее в единицу времени через единицу площади изотермической поверхности, называется плотностью теплового потока. Вектор плотности теплового потока определяется по фор-

муле
$$\mathbf{q} = \frac{d\Theta}{dT} \frac{1}{s}$$
, где $d\Theta/dT$ — скорость теплового потока. Фурье пред-

положил, что пропорциональность между плотностью теплового потока и градиентом температуры сохраняется во всех случаях теплообмена теплопроводностью как для стационарных, так и для нестационарных полей*: $\mathbf{q} = \lambda \mathbf{W} = -\lambda$ grad Θ . Эту гипотезу, являющуюся обобщением экспериментальных данных, принято называть основным законом теплопроводности или законом Фурье [107]. На нем основана современная теория теплопроводности, тепловые расчеты и устройство всевозможных приборов.

Для определения количества тепла, прошедшего через какуюлибо поверхность твердого тела, необходимо знать температурное поле внутри тела. Нахождение этого поля является главной задачей аналитической теории теплопроводности. Дифференциальное уравнение теплопроводности выражает зависимость между температурой, временем и координатами элементарного объема тела, т. е. математически описывает перенос тепла внутри тела:

$$\frac{\partial \Theta}{\partial T} = a \left(\frac{\partial^2 \Theta}{\partial x^2} + \frac{\partial^2 \Theta}{\partial y^2} + \frac{\partial^2 \Theta}{\partial z_2} \right) = a \nabla^2 \Theta$$

[•] Отклонение от закона Фурье появляется при очень больших вначениях grad Θ , например в сильных ударных волнах, при очень низких (для жидкого гелия) и высоких (порядка десятков и сотен тысяч кельвинов) температурах.

где $a = \frac{\lambda}{c_V D}$ – коэффициент температуропроводности, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} +$

 $+\frac{\partial^3}{\partial z^2}$ — оператор Лапласа [107]. Дифференциальное уравнение теплопроводности с источниками тепла имеет вид

$$\frac{\partial \Theta}{\partial T} = d\nabla^2 \Theta - \frac{w}{cD},$$

где w — удельная мощность источников тепла.

Чтобы найти температурное поле внутри тела в любой момент времени или решить дифференциальное уравнение теплопроводности, необходимо внать распределение температуры внутри тела в начальный момент времени (начальное условие), геометрическую форму тела и закон взаимодействия между окружающей средой и телом (граничное условие). Совокупность начального и граничного условий называется краевым условием, начальное условие — временным краевым условием, граничное условие — пространственным краевым условием.

Во многих задачах принимается равномерное распределение температуры в начальный момент времени: $\Theta(x, y, z, 0) = \text{const.}$ Граничное условие может быть задано различными способами.

Граничное условие первого рода состоит в задании распределений температуры по поверхности тела в любой момент времени: $\Theta_{\Pi}(T) =$ = f(T), где Θ_{Π} — температура поверхности тела. В частном случае $\Theta_{\Pi}(T) =$ const, что выполняется при искусственном поддержании постоянной температуры или особых условиях теплообмена между окружающей средой и поверхностью тела.

Граничное условие второго рода состоит в задании плотности теплового потока для каждой точки поверхности тела как функции времени: $q_{\rm II}$ (T) = f(T). Простейшим случаем является $q_{\rm II}(T)$ = const, когда тело нагревается в высокотемпературных печах, где передача тепла осуществляется излучением по закону Стефана — Больцмана, а температура тела значительно меньше температуры окружающих поверхности.

Обычно граничное условие третьего рода характеризует закон конвективного теплообмена между поверхностью тела и окружающей средой при постоянном потоке тепла (стационарное температурное поле). В этом случае $q_{\Pi} = v_{\theta} (\Theta_{\Pi} - \Theta_{c})$, где $q_{\Pi} -$ количество тепла,

передаваемого в единицу времени с единицы площади поверхности тела с температурой Θ_n в окружающую среду с температурой Θ_c ; v_{Θ} — коэффициент теплообмена.

Граничное условие четвертого рода соответствует теплообмену поверхности тела с окружающей средой и соприкасающихся тел, когда температура соприкасающихся поверхностей одинакова.

Элементы теории подобия

В связи с широким развитием машинной вычислительной техники многие задачи математической физики решаются численно. Для получения более точных результатов вводится значительное количество переменных. Привести результаты расчетов в определенную систему, найти скрытые связи между переменными трудно, и поэтому в этом ценную помощь оказывает использование методов теории подобия (теории обобщенных переменных). В этой теории на основа-

нии общих физических соображений доказывается, что множество связей не является собственным свойством исследуемых задач, обусловленных их физической природой. В действительности влияние отдельных dакторов, представленных различными величинами, проявляется не порознь, а совместно. Поэтому надо рассматривать не отдельные величины, а их совокупность (комплексы), имеющую определенный физический смысл. Методы теории подобия позволяют на основе анализа дифференциальных уравнений и граничных условий находить эти комплексы, которые называют обобщенными переменными. Теория подобия наиболее плодотворно может быть использована, когда невозможно проинтегрировать дифференциальное уравнение и найти зависимость между переменными в явном виде. Теория подобия дает общий метод непосредственного преобразования выражений, содержащих дифференциальные операторы, к простейшим алгебраическим выражениям. Суть метода заключается в том, что реальный процесс заменяется простейшей условной схемой, в которой все дифференциальные операторы сохраняют постоянное значение в пространстве и времени.

Примером обобщенных переменных (критериев подобия) является критерий Био: Ві $=\frac{v_{\Theta}}{\lambda}L$, где L — толщина пластины. Различают критерии подобия и числа подобия. Критериями подобия являются такие комплексы, которые целиком состоят из параметров, заданных по условию. Комплекс Fo $= aT/L^2$ является обобщенной переменной, или числом Фурье, поскольку зависит от времени.

Основные методы решения дифференциального уравнения теплопроводности

Метод разделения переменных является классическим методом решения дифференциального уравнения теплопроводности. Он состоит в том, что находится совокупность частных решений Θ , удовлетворяющих уравнению теплопроводности и граничному условию, а затем по принципу наложения составляется ряд частных решений, причем коэффициенты при Θ_i определяются из начального условия. Частное решение Θ находится в виде произведения двух функций, одна из которых зависит только от времени, другая — только от координат.

Метод источников с физической точки зрения состоит в том, что процесс распространения тепла в теле представляется как совокупность процессов выравнивания температуры от множества элементарных источников тепла, распределенных в пространстве и во времени. Находят некоторую функцию источника на бесконечной прямой, удовлетворяющую уравнению теплопроводности и являющуюся его фундаментальным решением. Она выражает температуру в некоторой точке тела, если в начальный момент времени в определенной точке выделяется заданное количество теплоты.

При решении задач теплопроводности используются также операционные методы. Метод преобразования Лапласа состоит в том, что изучается не сама функция (оригинал), а ее видоизменение (изображение). Это интегральное преобразование осуществляется при помощи умюжения на экспоненциальную функцию и интегрирования ее в определенных пределах. Различные виды интегральных преобразований используются для решения различных задач, например, комплексное преобразование Фурье удобно применять для тел неограниченной протяженности; синус-преобразование Фурье — в случае, когда на поверхности тела задано значение функции (граничное условие первого рода); косинус-преобразование Фурье — в случае, когда решаются дифференциальные уравнения переноса при граничных условиях второго рода; преобразование Ханкеля — для тел с осевой симметрией. Создан метод конечных интегральных преобразований для решения задач с конечной областью изменения переменных. В методах приближенных интегральных преобразований прямое преобразование и обратный переход осуществляются по приближенным формулам.

Метод конечных разностей (метод сеток) основан на замене производных их приближенным значением, выраженным через разности значений функции в отдельных дискретных точках — узлах сетки. Дифференциальное уравнение в результате таких преобразований заменяется эквивалентным соотношением в конечных разностях, решение которого сводится к выполнению алгебраических операций. Окончательный результат решения задается выражением, по которому значение «будущего» потенциала (температуры) в данной точке являетсяфункцией времени, ее «настоящего» потенциала и «настоящего» потенциала смежных узловых точек.

Теплопроводность твердых тел

В диэлектриках перенос тепла осуществляется в основном только фононами — квантами упругих колебаний атомов кристалла. Для твердых диэлектриков $\lambda = \lambda_{d} \approx c_{d} \overline{vL}$, где c_{d} -теплоемкость фононного газа; v - средняя скорость движения фононов, близкая к скорости звука; L — длина свободного пробега фононов. Существование определенного конечного значения L обусловлено рассеянием фононов на фононах, на дефектах кристаллической решетки, границах зерен и так далее. Температурная зависимость теплопроводности в диэлектриках определяется температурными зависимостями теплоемкости и длины свободного пробега фононов. В соответствии с (2.4) при $\Theta \gg \Theta_{\pi}$ теплоемкость не зависит от температуры, а $\overline{L} \sim 1/\Theta$. Последнее обусловлено фонон-фононным взаимодействием вследствие ангармонизма колебаний атомов и процессами переброса, при которых тормозится поток фононов и которые происходят с большей вероятностью при увеличении Θ . При $\Theta \ll \Theta_{\Pi} \, \overline{L} \sim e^{\Theta_{\Pi}/\Theta}$ резко возрастает и, как правило, ограничивается размерами образца. Поскольку согласно (2.3) $c \sim \Theta^3$, λ проходит через минимум, температура которого определяется размерами образца. Для металлов $\lambda = \lambda_{\phi} + \lambda_{g}$, где λ_{ϕ} и $\lambda_{g} - \lambda_{\phi}$ коэффициенты теплопроводности фононов и электронного газа соответственно. В рамках квантовой статистики справедливо уравнение

$$\lambda_{g} = \frac{\pi^{2}}{3} \left(\frac{k}{e}\right)^{2} \rho_{g} \Theta, \qquad (2.15)$$

где е — заряд электрона, ρ_9 — электропроводность. Из формулы (2.15) следует закон Видемана — Франца — Лоренца: $\frac{\lambda}{\rho_9 \Theta} = \frac{\pi^2}{3} \left(\frac{k}{e}\right)^2 = \text{const},$ который справедлив для металлов в широком диапазоне температур при $\lambda_9 \gg \lambda_{\Phi}$.

В ферромагнитных металлах и сплавах на кривой, описывающей температурную зависимость теплопроводности, наблюдается излом при переходе через точку Кюри, так же как для электропроводности. Обычно величина теплопроводности пропорциональна давлению, и у многих металлов с ростом давления коэффициент теплопроводности растет.

2.4. Фазовые переходы [72]

При равновесии двух фаз должно соблюдаться равенство температур, давлений и химических потенциалов обеих фаз. Если потенциалы фаз выражены как функции давления и темпе; атуры, то получаем условие равновесия фаз:

$$\mu_1(P, \Theta) = \mu_2(P, \Theta). \tag{2.16}$$

Следовательно, *P* и *O* для находящихся в равновесном состоянии фаз могут быть выражены как функции друг друга. Две фазы находятся в равновесии друг с другом не при любых давлении и температуре: задание одной из этих величин вполне определяет вторую. Аналогично равновесие трех фаз одного и того же вещества определяется равен-

ствами:

$$P_1 = P_2 = P_3; \ \Theta_1 = \Theta_2 = \Theta_3; \mu_1 = \mu_2 = \mu_3.$$

Если потенциалы фаз выражены как функции давления и температуры, то получаем условия равновесия фаз:

$$\mu_1 (P, \Theta) = \mu_2 (P, \Theta) = \mu_3 (P, \Theta).$$

Условия равновесия представляют собой два уравнения с двумя неизвестными, Pи Θ , решениями которых являются определенные пары значений P и Θ . Состояния, в которых одновременно существуют три фазы (тройные точки), на диаграмме $P - \Theta$ изображаются изолированными точками, являющимися точками пересечения кривых равновесия каждых двух из трех фаз. Очевидно, что равновесие более чем

трех фаз одного и того же вещества невозможно.

Переход из одной фазы в другую сопровождается выделением (поглощением) некоторого количества теплоты (скрытая теплота перехода). В условиях постоянства температуры для обратимого перехода выполняется равенство

$$\Delta H = \int \Theta dS_{\rm M} = \Theta(S_{\rm M_1} - S_{\rm M_2}), \qquad (2.17)$$

где S_{M1} , S_{M_2} — молекулярная энтропия фаз. На рис. 2.4 представлена температурная зависимость химических потенциалов двух фаз при заданном давлении. Точка пересечения кривых Θ_0 определяет температуру, при которой обе фазы могут находиться в равновесии друг с другом. При остальных температурах существует либо одна, либо другая фаза. При $\Theta < \Theta_0$ устойчива первая фаза, при $\Theta > \Theta_0$ — вторая; устойчиво то состояние, в котором μ меньше, так как термодинамический потенциал стремится при заданных P и Θ к минимуму.

Продифференцируем по температуре обе стороны условия равновесия фаз в уравнении (2.16) с учетом того, что $P = P(\Theta)$. Получаем

$$\frac{\partial \mu_1}{\partial \Theta} + \frac{\partial \mu_1}{\partial P} \frac{dP}{d\Theta} = \frac{\partial \mu_2}{\partial \Theta} + \frac{\partial \mu^2}{\partial P} \frac{dP}{d\Theta}.$$

Поскольку

$$\begin{pmatrix} \frac{\partial \mu}{\partial \Theta} \end{pmatrix}_{P} = -S_{M}; \ \begin{pmatrix} \frac{\partial \mu}{\partial P} \end{pmatrix}_{\Theta} = V_{M},$$

Рис. 2.4. Температурная

химических

фаз

двух

зависимость

потенциалов

[72].

$$\frac{dP}{d\Theta} = \frac{S_{\mathrm{M}_1} - S_{\mathrm{M}_2}}{V_{\mathrm{M}_1} - V_{\mathrm{M}_2}},$$

где V_{м1} и V_{м2} — молекулярные объемы обеих фаз. С учетом выражения (2.17) получаем формулу Клаузиуса — Клапейрона:

$$\frac{dP}{d\Theta} = \frac{\Delta H}{\Theta \left(V_{M_2} - V_{M_1} \right)} \,. \tag{2.18}$$

Выражение (2.18) определяет изменение давления находящихся в равновесии фаз при изменении температуры. Формула (2.18), записанная в виде

$$\frac{d\Theta}{\partial P} = \frac{\Theta(V_{M_2} - V_{M_1})}{\Delta H} ,$$

определяет изменение температуры перехода между двумя фазами при изменении давления.

Переход между фазами различной симметрии (полиморфные превращения, распад пересыщенных твердых растворов, упорядочение сплавов, кристаллизация аморфных сплавов и др.) не может совершаться непрерывным образом. В каждом состоянии тело обладает либо одной, либо другой симметрией. Если при фазовом переходе происходит перестройка кристаллической решетки, первые производные термодинамического потенциала испытывают скачок, а в точке превращения между двумя существующими в равновесии фазами можно провести границу раздела, то такие превращения называются фазовыми превращения между орда. Отличительной особенностью этого типа превращения является обращение в бесконечность в точке превращения вторых производных термодинамических величин, например c_p и β , поскольку энтальпия и объем тела изменяются в точке перехода

Наряду со скачкообразными переходами возможен и другой тип переходов, связанный с изменением симметрии. При этом расположение атомов в кристалле изменяется непрерывным образом. Достаточно сколь угодно малого смещения атомов из их первоначального симметричного расположения для того, чтобы симметрия решетки сразу изменилась. Осуществляемый таким способом переход одной кристаллической модификации в другую называется фазовым превращением второго рода, так как при этом скачкообразно изменяются вторые производные термодинамического потенциала. Симметрия в точке перехода также изменяется скачкообразно, и в каждый момент времени можно указать, к какой из двух фаз относится тело. Изменение симметрии при фазовом превращении второго рода может быть в некоторых случаях обусловлено измененнем дальнего порядка атомов в сплаве.

Фазовые превращения второго рода не всегда связаны с изменением симметрии именно расположения атомов в решетке. Превращением второго рода может осуществляться и взаимное превращение двух фаз, различающихся каким-либо иным свойством симметрии. Например, точки Кюри ферромагнитных веществ, при которых изменяется симметрия расположения элементарных магнитных моментов в теле. Фазовым превращением второго рода является переход металла в сверхпроводящее состояние в отсутствие магнитного поля, переход жидкого гелия в сверхтекучее состояние. В обоих случаях состояние тела изменяется непрерывно, но в точке перехода тело приобретает качественно новое свойство. Симметрия одной из фаз при фазовом превращении второго рода всегда является более высокой, а другой — более низкой по отношению друг к другу. При фазовом превращении первого рода изменение симметрии тела не подчинено никаким ограничениям, симметрии обеих фаз могут не иметь ничего общего друг с другом.

Отсутствие скачка функций состояния в точке фазового превращения второго рода приводит к тому, что термодинамические функции состояния тела остаются непрерывными при прохождении через точку превращения. Поэтому фазовое превращение второго рода, в отличие от фазового превращения первого рода, не сопровождается выделением (поглощением) теплоты. Однако вторые производные от термодинамических величин (такие, как теплоемкость, коэфициент теплового расширения, сжимаемость) испытывают скачок в точке фазового превращения второго рода. При превращениях второго рода невозможны явления перегрева (переохлаждения). ГЛАВА З

ВЛИЯНИЕ СТРУКТУРНЫХ НЕСОВЕРШЕНСТВ НА ТЕПЛОВЫЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

3.1. Изменение тепловых свойств при образовании дефектов [3, 6, 8, 11, 12, 14, 15, 17, 19, 37, 38, 41, 56, 61—63, 65—67, 73—75, 105, 106, 109, 117, 121, 154, 155, 164—170, 196, 252]

Дефекты металлов — это различного рода нарушения их регулярной кристаллической структуры. Они возникают при изготовлении и эксплуатации металлических изделий и заметно влияют на тепловые свойства. В зависимости от масштаба дефектов их подразделяют на субмикродефекты, микродефекты и макродефекты (табл. 3.1). Субмикродефекты — нарушения регулярной кристаллической структуры в атомном масштабе. Различают точечные, линейные, поверхностные и объемные дефекты.

Точечные дефекты малы в трех измерениях. Они могут возникать при вычитании материала (вакансии и твердые растворы вычитания), внедрении собственных (атомы в междоузлиях) или инородных атомов (твердый раствор внедрения), а также замещении собственных атомов инородными (твердый раствор замещения). Точечные дефекты, возникающие при изменении состава, называют еще примесными точечными дефектами, в отличие от структурных.

Основной особенностью точечных дефектов является возможность их существования в равновесных условиях. Так, концентрация *n* структурных точечных дефектов термического происхождения определяется соотношением

$$n = \exp\left(\frac{S_f}{k}\right) \exp\left(-\frac{E_f}{k\Theta}\right) \exp\left(-\frac{PV_f}{k\Theta}\right), \qquad (3.1)$$

где E_i и S_i — соответственно энергия и энтропия образования точечного дефекта; V_i — изменение объема металла вследствие образования точечного дефекта. При атмосферном давлении последним множителем можно пренебречь, так как по порядку величины V_i близко к объему атома (табл. 3.2). При нагревании металла происходит его расширение и соответственно изменяется энергия образования дефектов. Это учитывается вторым предэкспоненциальным множителем, который зависит в общем случае от температуры. Если вычислять изменение колебательной энтропии кристалла строго в рамках теории Борна — Кармана, то влияние расширения решетки и температурная зависить энергии образования дефектов.

Энергия образования вакансий и междоузельных атомов теоретически рассчитана для меди. Методика расчета довольно сложная, трудно применимая для других металлов и недостаточно надежная.

Экспериментальное изучение равновесных точечных дефектов производится при одновременном изучении макроскопического линейного расширения и рентгенографическом исследовании изменений параметра кристаллической решетки а_n. Если во время нагрева в металле само-
Вид дефекта	Минимальный размер, м	Дефекты внедрения				
Субмикро- дефекты	(1-5) 10-10	Междоузельные атомы, пары меж- доузельных атомов				
-	(550) 10-10	Кластеры, зоны Гинье — Престона, газовые субзародыши, петли дис- локаций				
	(5—200) 10 ⁻⁹	Субмикропузырьки газов, дисперс- ные выделения (карбидов в отпу- щенных сталях, интерметаллидов в состаренных сплавах)				
Микроде- фекты	(0,2—1000) 10 ⁻⁶	Дисперсные включения (неметал- лические, карбидов в отожженных сталях, интерметаллидов в пере- старенных сплавах), микропузыри газов				
Макроде- фекты	10-8	Неметаллические включения, газо- вые пузыри, рыхлота				

Таблица 3.1 Дефекты металлов [74]

Таблица 3.2. Параметры точечных дефектов в металлах [74]

Металл	Е ⁰ f * 9В	Е ^v эВ	^Е диф, эВ	S ^U /k	S ^U _m /k	v_f^U/Λ	v_m^v/Λ	$\begin{bmatrix} E_f^{2\upsilon}, \\ \mathbf{9B} \end{bmatrix}$
Медь Серебро Золото Платина Алюминий Никель а-Железо Молибден Вольфрам Магний Олово	1,27 1,08 0,98 1,51 0,73 1,54 1,54 1,4 2,5 3,3 0,79 0,51	0,88 0,66 0,83 1,45 0,63 1,43 1,24 1,7 1,9 0,52 0,68	2,11 1,91 1,81 2,9 1,43 2,7 2,65 4,2 5,2 1,39 1,04	1,47 1,5 1 2,4	0,4	0,6 0,7 0,7	0,147	2,16 1,8 1,86 2,5 1,37 2,9

Примечание. Индексы v, 2v, i и 2i относятся соответственно к вакансиям,

произвольно возникают вакансии, то $\Delta L/L$ будет увеличиваться сильнее, чем $\Delta a_n/a_n$, поскольку вакансии увеличивают общий регистрируемый макрообъем (длину L) образца и практически не влияют на измеряемый параметр решетки. На рис. 3.1 приведены зависимости относительного удлинения и относительного увеличеныя параметра решетки золота от температуры. Для металлов с кубической решеткой относительная концентрация равновесных вакансионных дефектов при данной температуре имеет вид n = 3 ($\Delta L/L - \Delta a_n/a_n)_{\Theta}$.

Дефекты вычитания	Протяженные дефекты
Вакансии, дивакансии	_
Скопления вакансий, петли дислокаций Субмикропоры	Поверхность металла, дисклинации, дислокации, дефекты упаковки, границы зерен, границы двойников, антифазные границы, межфазные границы, субграницы, сверхдислокации, субмик- ротрещины
Микропоры	Остаточные микронапряжения, дендриты микро- ликвации, микротрещины, плены, расслоения, непровары, разнозернистость, перегрев, пере- жог
Поры	Остаточные макронапряжения, трещины, закаты, заковы, риски, царапины, флокены, волосовина, усадка, раковины
Субмикропоры Микропоры Поры	границы, субграницы, сверхдислокации, субми ротрещины Остаточные микронапряжения, дендриты микр ликвации, микротрещины, плены, расслоени непровары, разнозернистость, перегрев, пер жог Остаточные макронапряжения, трещины, закат заковы, риски, царапины, флокены, волосовия усадка, раковины

Е ²⁰ , эВ	v_f^{2v}/Λ	Е <mark>і</mark> , эВ	Е ^{<i>і</i>} эВ	v_f^l/Λ	v_m^i/Λ	<i>Е²і</i> , эВ	Е ²¹ т эВ	v_f^{2i}/Λ
0,68 0,57 0,66 0,48	1,3	3,28 3,05 2,73 3,5 3,2 4,08 4,6	0,117 0,08 0,19 0,063 0,08 0,15 0,3 0,18 0,21	1,7	0,05	2,68	0,26	2,7

дивакансиям, междоузельным атомам и сдвоенным междоузельным атомам-димерам.

В табл. 3.2 приведены энергия, энтропия и удельный объем основных структурных дефектов. Подстановка их значений в выражение (3.1) приводит к выводу, что в заметных количествах спонтанно могут возникать в металлах лишь вакансии.

Слабое взаимодействие структурных точечных дефектов между собой позволяет, при малой их концентрации, оценить изменение энтальпии и объема металла при образовании указанных дефектов как сумму соответствующих величин для отдельных дефектов. При больших концентрациях приходится учитывать взаимодействие точечных дефектов. Близко расположенные вакансия и междоузельный атом (пара Френкеля) аннигилируют атермически, восстанавливая при этом совершенство кристаллической решетки, а также равновесные вначения энтальпии и удельного объема.

Взаимодействие соседних точечных дефектов одного типа приводит к возникновению пар вакансий (дивакансии) или междоузельных атомов (димеры). Энергия связи пар вакансий или междоузельных атомов для некоторых металлов приведена в табл. 3.2. Спонтанно, при высоких температурах, могут возникать в заметных количествах лишь дивакансии. Образование пар междоузельных атомов возможно при создании неравновесной концентрации междоузельных атомов, на-

Рис. 3.1. Температурная зависимость относительного удлинения (Ï) и изменения постоянной решетки () при нагреве И охлаждении золота [37].

пример при облучении металлов. Избыточные структурные точечные дефекты взаимодействуют и с примесными точечными дефектами. В табл. 3.3 указаны энергии взаимодействия вакансий с примесными атомами для некоторых металлов.

Линейные дефекты малы в двух измерениях и протяженны в третьем. Основные разновидности — дислокации и дисклинации. К протяженным дефектам следовало бы отнести и цепочки точечных дефектов, образующихся, например, в каскадах столкновений при облучении металлов частицами высоких энергий. Однако в связи с малой устойчивостью таких ансамблей дефектов определить их влияние на тепловые свойства металлов затруднительно.

Наиболее инвариантной характеристикой дислокации является вектор Бюргерса; его значение одинаково для всех участков линии дислокации и сохраняется при ее движении. Дислокации в зависимости от направления вектора Бюргерса делят на краевые с вектором, перпендикулярным линии дислокации, и винтовые с вектором, параллельным линии дислокации. Кроме того, дислокации каждого типа могут обладать противоположными знаками. Например, винтовая дислокация может быть либо правого, либо левого вращения. Если вектор Бюргерса равен параметру кристаллической решетки, то дислокация является полной, а если некоторой доле параметра решетки, то дислокация является частичной.

Первоначально в теории линейных дефектов рассматривалась модель упругого сплошного тела с изолированными дислокациями. В рам-

Вид дефекта	Металл		Ec	_в , эВ				
Вакансия	Золото	Серебро (0,001) 0,22						
	Алюми-	Магний	Ол	ово				
	ний	(0,2) 0,2	0,	4				
Дисло-	Медь	Цинк	Кремний		Германий	Олово		
кация		0.12	(0,0)1) -0.02	(0,01)			
		0,12	0,10-	-0,02	0,22-0,00	0,10-0,10		
	Алюми- ний	Медь 0,3	Магний 0,2—0,27		Цинк 0,08—0,11	Германий 0,17		
	Никель	Водород 0,08						
	Ниобий	Кислород 0,34	Аз 0,	от 52				
	Тантал	Кислород 0,58	Азот 0,69					
	Железо	Углерод (0,007)	Вольфрам (0,1) (0,85)		Вольфрам (0,1) (0,85)		Ванадий (0,14) (0,35)	Молибден (0,25) (0,50)
	α	0,80	0,78 1,45		0,71 0,60	1,2 1,85		
•		Тита (0,16) ((0,85 (ан),40)),24	(1,0	Марганец 0) (3,9) (5,9) (8,0) ,85 1,76 0,9 0,12	Хром (1,0) 1,8		

Таблица 3.3. Энергия связи примесных атомов с дефектами [3, 214 37, 154]

Примечание. В скобках указана концентрация легирующего элемента, при которой определялась энергия связи.

ках этой теории было рассчитано изменение энергии кристалла при образовании соответственно краевой и винтовой дислокаций:

$$E_{\perp} = \frac{Gb^2}{4\pi (1-\nu)} \ln \frac{r_1}{r_0}, \ E_{\perp} = \frac{Gb^2}{4\pi} \ln \frac{r_1}{r_0},$$

где G — модуль сдвига; v — коэффициент Пуассона; r₀ — радиус ядра дислокации; r₁ — радиус кристалла, содержащего дислокацию. Энергия кристалла, содержащего много дислокаций, зависит существенно не только от числа дислокаций, но и от их распределения.

Основной вклад в энергию дислокаций дают дальнодействующие упругие поля. Вклад ядер дислокаций в энергию не превышает 10— 15%. Вклад ядер дислокаций в изменение объема кристалла также не превышает 10—15% полного изменения объема, обусловленного наличием дислокаций. Поэтому далее ядра дислокаций не учитываются, а рассматриваются их упругие поля. Изменение объема кристалла, содержащего дислокации, может быть описано только в рамках нелинейной теории упругости. В общем случае, когда кубический кристалл находится в условиях произвольного высокого гидростатического давления, изменение объема кристалла, обусловленное наличием дислокаций, задается формулой

$$\Delta V = -(g_{11} + 2g_{12} + P)^{-1} \left[\left(g_{112} + \frac{1}{2} g_{123} - \frac{1}{2} g_{11} g_{12} + P \right) \times \right]$$

$$\times \int_{(V)} \varepsilon_{ll}^{2} d\tau + (2g_{166} + g_{144} + g_{11} + 2g_{12} + 4g_{44} - 2P) \int_{(V)} \varepsilon_{lk}^{2} d\tau + \left(\frac{1}{2} g_{111} - \frac{1}{2} g_{123} - 2g_{166} - g_{144} + 2g_{11} - 2g_{12} - 4g_{44} \right) \times \\ \times \int_{(V)} (\varepsilon_{11}^{2} + \varepsilon_{22}^{2} + \varepsilon_{33}^{2}) d\tau =$$

$$\equiv a \int_{(V)} \varepsilon_{lk}^{2} d\tau + b \int_{(V)} \varepsilon_{ll}^{2} d\tau + g \int_{(V)} (\varepsilon_{11}^{2} + \varepsilon_{22}^{2} + \varepsilon_{33}^{2}) d\tau. \qquad (3.2)$$

Здесь V — объем кристалла; g_{ik} , g_{ikl} — модули упругости кристалла второго и третьего порядка соответственно; e_{ik} — тензор линейных деформаций, обусловленных наличием дислокаций в гидростатически сжатом кристалле. Этот тензор получается из линейного тензора деформаций для дислокаций в кристалле в отсутствие давления заменой **b** на **b** (*P*) и модулей упругости второго порядка на приведенные модули:

$$g_{iklm} \rightarrow \tau_{iklm} = g_{iklm} (P) + P (P \delta_{ik} \delta_{lm} - \delta_{il} \delta_{km} - \delta_{im} \delta_{kl}).$$
(3.3)

Вклад дислокаций в энтальпию кристалла определяется формулой

$$Q = \frac{1}{2} \tau_{iklm} \int_{(V)} \varepsilon_{ik} \varepsilon_{lm} d\varepsilon.$$

Эта формула в случае кубического кристалла имеет вид

$$Q = \tau_{44} \int_{(V)} \varepsilon_{lk}^2 d\tau + \frac{1}{2} \tau_{12} \int_{(V)} \varepsilon_{ll}^2 d\tau + \frac{\tau_{11} - \tau_{12} - 2\tau_{44}}{2} \int_{(V)} (\varepsilon_{11}^2 + \varepsilon_{22}^2 + \varepsilon_{33}^2) d\tau.$$
(3.4)

Когда дислокации с вектором Бюргерса \mathbf{b}_3 расщепляются на две неполные дислокации Шокли с векторами Бюргерса \mathbf{b}_1 и \mathbf{b}_2 , то наряду с вкладом каждой из расщепленных дислокаций в объемный эффект появляется вклад от перекрытия полей расщепления дислокаций. Полный объемный эффект рассчитывается по формуле

$$\Delta V = (\Delta V_1 + \Delta V_2) \left(1 + \frac{1}{4} \frac{\ln L/r_s}{\ln Lg_m/2\pi} \right)$$

Здесь ΔV_1 и ΔV_2 — объемный эффект, обусловленный каждой из прямолинейных расщепленных дислокаций; r_s — расстояние между расщепленными дислокациями; L — размер кристалла (зерна); g_m — предельный волновой вектор фононов в дебаевской теории теплоемко-

сти. Выражение для полной энергии расщепленной дислокации, включая энергию дефекта упаковки, записывается в виде

$$E_{\text{дисл}} = (E_{\text{дисл}_1} + E_{\text{дисл}_2}) \left(1 + \frac{1}{4} \frac{1 + \ln L/r_s}{\ln Lg_m/2\pi}\right).$$

Здесь Е_{дисл1} и Е_{дисл2} — энергия каждой из расщепленных дислокаций.

Точечные несовершенства в поле упругих напряжений принимают равновесное неоднородное распределение, которое определяется энергией взаимодействия точечного несовершенства с деформацией. Расчеты в рамках линейной теории упругости, представляющие точечное несовершенство в виде сингулярности либо континуального включения, не равного полости в матрице объема и отличающегося от матрицы упругими свойствами, дают следующую формулу для взаимодействия точечного несовершенства с деформацией:

$$\Delta \Phi = \tilde{K} V_{j} u_{el}. \tag{3.5}$$

Здесь $\Delta \Phi$ — изменение термодинамического потенциала Гиббса, обусловленное взаимодействием точечного дефекта с деформацией; \tilde{K} — приведенный модуль всестороннего сжатия кубического кристалла; V_f — изменение объема кристалла в результате помещения в него кубически симметричного точечного несовершенства; u_{el} — дилатация, обусловленная внешней по отношению к точечному несовершенству деформацией.

Попадание единичного точечного дефекта на ось дислокации вызывает смещение существующего перегиба на дислокационной линии на одну атомную единицу; пара точечных дефектов может вызвать возникновение новых перегибов, а следовательно, изменение термодинамического потенциала и объема кристалла. Попадание примеси в ядро дислокации приводит к тепловым и объемным эффектам. Причем для ряда случаев при дислокационном старении ядра дислокаций оказывают на них решающее влияние. В табл. 3.3 указаны энергии связи примесных атомов с дислокациями.

Поверхностные дефекты протяженны в двух измерениях и малы в третьем (двухмерные). К ним относятся дефекты упаковки, субграницы, границы зерен, межфазные границы, границы двойников, антифазные границы и поверхность металла.

Дефекты упаковки возникают в результате расщепления полных дислокаций на частичные. Вероятность этого процесса возрастает по мере понижения энергии дефектов упаковки, которая существенно зависит от электронного строения металла. На стыке двух дефектов упаковки возникают сидячие дислокации.

Субграницы образуются в результате термически активируемого выстраивания дислокаций в стенки или сетки под действием результирующих полей упругих напряжений. Наиболее проста структура субграниц наклона. Она представляет собой, в простейшем случае, стенку из параллельных дислокаций одного знака. Для возникновения субграницы кручения необходимо наличие не менее двух систем дислокаций. В общем случае смешанная субграница может обладать довольно сложным строением. С помощью дислокационной модели пытались описать и строение высокоугловых границ зерен. В частности, получено следующее выражение для энергии границы: $E_{\rm rp} = -2E_0\psi$ ($A-\psi$), где E_0 и A — константы материала; ψ — угол взаимного поворота зерен. Особый тип незамкнутой высокоугловой границы возникает в металлах при больших степенях пластической деформации. Он может быть описан с помощью дисклинаций.

Границы зерен, однако, обладают некоторыми свойствами, не вытекающими непосредственно из дислокационной или дисклинационной модели. Наибольший интерес представляют диффузионный характер миграции границ и способность высокоугловой границы функционировать в качестве источника и стока дефектов кристаллической решетки. Для объяснения этих особенностей предлагались различные модели: аморфного слоя Розенгайна, переходной решетки Харгривса, островная Мотта, решетки мест совпадения Кронберга - Вильсона и многочисленные варианты на их основе. Наиболее сложным вопросом для всех этих моделей является механизм поглощения и эмиссии дефектов границей, особенно в ходе ее перемещения. Чтобы учесть вклад границ зерен в тепловые и объемные эффекты, оценим сначала энергию недислокационных границ, когда они не являются источником напряжений в материале. Пусть каждый тысячный атом кристалла принадлежит границе. В этом случае общая площадь границ составляет примерно 10⁻³ м⁻¹ (в расчете на 10⁻⁶ м³). При плотности поверхностной энергии границ равной 1 Дж · м² полная энергия границ порядка 107 Дж · м-3. Эта энергия соответствует энергии дислокаций плотности примерно 10¹⁵ м⁻². Следовательно, в мелкозернистой структуре вклад энергии недислокационных границ в полную энергию криссталла может быть существенным и в каждом частном случае должен учитываться. В крупнозернистом материале с достаточно высокой плотностью дислокаций вклад границ в полную энергию незначителен.

Межфазные границы бывают двух типов. Полностью некогерентные границы между двумя фазами в значительной степени аналогичны произвольно ориентированным высокоугловым границам зерен. Строение малоразориентированных границ эпитаксально выращенных слоев или когерентных выделений с решеткой, близкой к решетке матрицы, может быть описано с помощью дислокационной модели Ван дер Мерве.

Существует еще один механизм увеличения энергии границ зерен поликристаллического тела, связанный с напряжениями, которые обусловлены взаимодействием соседних зерен. Пусть σ — характерное значение такого напряжения, G — модуль сдвига. Энергия этих напряжений, $E \approx G^{-1}\sigma^2$, при $\sigma = 3 \cdot 10^{-3}G$, $G = 10^{11}$ Дж · м⁻³ равна 10^6 Дж · м⁻³, что на порядок ниже энергии границ в мелкозернистом материале. Напряжение σ в металле с симметрией ниже кубической, в частности в цинке или титане, может быть термического происхождения и в случае быстрого охлаждения металла дает значительный вклад в энергию искажений.

Когда в кристалле плотность дислокаций высока — порядка 10¹⁵ · м⁻² и более, число дислокаций, составляющих субграницы, по крайней мере в несколько раз меньше полного числа дислокаций. Причем вклад в энергию дислокаций субграницы меньше вклада в энергию дислокаций металла в несколько раз, так как поля напряжений субграницы быстро убывают при удалении от нее. Поэтому в металлах с большой плотностью дислокаций вклад дислокационных субграниц в общую энергию искажений металла невелик по сравнению с вкладом хаотически распределенных дислокаций. В случае невысокой плотности дислокаций вклад эквидистантных дислокационных субграниц в энергию может оказаться значительным и должен учитываться в каждом частном случае. Субграниць, состоящие из хаотически распределенных дислокаций, обладают энергией, которая на порядок или более превосходит энергию субграниц, состоящей из того же числа эквидистантных дислокаций.

Вклад границ зерен поликристаллического тела в объем кристалла. Пусть в случае недислокационных границ, когда границы не явля-

ются источником напряжений в металле, каждый тысячный атом кристалла принадлежит границе. Если предположить, что плотность вешества в границе не меньше, чем в расплавленном металле, то для меди получаем, что относительный объемный эффект, обусловленный гра-ницами, не превышает 5 · 10⁻⁵. Эта величина на порядок меньше объемного эффекта, обусловленного хаотически распределенными дислокациями при их плотности, равной 10¹⁵ м⁻². Объемный эффект, обуслов-ленный воздействием соседних зерен друг на друга, $\Delta V/V \approx 5$ (σ/G)², составляет 5 · 10⁻⁵ при $\sigma = 3 \cdot 10^{-3} G$. При быстром охлаждении от температуры Θ_1 до $\dot{\Theta}_0$ поликристалла, состоящего из кристалликов симметрии ниже кубической, вследствие зависимости коэффициента термического расширения от направления $\sigma \approx (\alpha_{max} - \alpha_{min}) (\Theta_1 - \Theta_{max} - \alpha_{min})$ $-\Theta_2$) $\approx 10^{-2}$ К при $\alpha_{max} - \alpha_{min} = 10^{-6}$ град $\Theta_1 - \Theta_2 \approx 10^3$ град. В этом случае $\Delta V/V \sim 5 \cdot 10^{-4}$. Если границы зерен являются источниками внутренних напряжений, то, поскольку формулы для энтальпии деформированного кристалла имеют такую же структуру, как и формулы для изменения объема, относительный вклад дислокационных границ в объемные эффекты будет таким же, как и в тепловые эффекты.

Границы двойников отжига, часто встречающиеся в металлах с низкой энергией дефектов упаковки, являются примером границ с высокой степенью совпадения. В пределе наблюдается атомное соответствие на границе, которая представляет собой единый дефект упаковки, разделяющий две области кристалла с противоположно повторяющейся последовательностью расположения атомных плоскостей. Энергия такой когерентной двойниковой границы составляет менея, 10 % энергии произвольных границ зерен в металле. Плоскость реальных границ обычно несколько отклоняется от идеальной плоскости двойникования, и вследствие этого отклонения на границах образуются выступы, являющиеся частичными дислокациями (двойниковые дислокации).

Антифазные границы образуются в сплавах с дальним порядком. Они разделяют антифазные домены с различными схемами порядка и обладают большой внутренней энергией, обусловленной высоким уровнем сил связей одноименных атомов.

Экспериментальное исследование поверхности металла стало возможным лишь после разработки современных методов получения высокого вакуума и исследования тончайших поверхностных слоев. Поверхность реальных металлов оказалась не атомно гладкой, а состоящей из ступенек с огранкой, соответствующей плоскостям с низкой поверхностной энергией. В табл. 3.4 приведены некоторые данные по энергии поверхности металлов.

Объемные дефекты имеют размеры одного порядка в трех измерениях. К наименьшим по масштабу относятся субмикропоры, возникающие вследствие изотропного роста скоплений вакансий, субмикропузыри, сегрегации и субмикротрещины. Субмикропузыри образуются при наличии растворенного газа в металлах, который приводит к стабилизации исходной субмикропоры в связи со значительным внутренним давлением. Сегрегация инородных атомов (иногда в форме зон Гинье — Престона) является начальной стадией распада пересыщенных твердых растворов. Следующая стадия — образование зародышей второй фазы.

Субмикротрещины возникают под действием сдвигового напряжения в результате слияния дислокаций в голове дислокационного скопления. Длина равновесной субмикротрещины $L = n^2 b$ зависит от количества дислокаций *n*, вошедших в полость. Энергия единицы

Таблица 3.4. Энергия поверхностных дефектов в металлах [109, 184,

Вид поверхности	Ледь	Серебро	Золото	Алюминий
Поверхность кристалла, Дж · м ⁻²	1,275	1,140	1,485	0,625
Границы зерен, Дж · м ⁻²	0,646	0,790	0,364	
Границы двойников, Дж · м ^{−1}	0,044	0,0018	0,010	0,120
Дефекты упаковки, Дж · м ^{−2}	0,085	0,021	0,052	0,135

длины клиновидной трещины с вектором Бюргерса nb задается выражением

$$\frac{E}{L} = \frac{Gn^{2}\mathbf{b}^{2}}{4\pi (1-\nu)} \ln \frac{L}{2h_{n}} + E_{\text{пов}} (n\mathbf{b} + \sqrt{n^{2}\mathbf{b}^{2} + 4h_{n}^{2}}).$$
(3.6)

Здесь h_n — высота основания трещины. Первое слагаемое в (3.6) описывает вклад деформаций вокруг клиновидной трещины в упругую энергию кристалла, второе — поверхностную энергию полости трещины.

Изменение объема кристалла, обусловленное наличием клиновидной трещины, на единицу длины записывается в виде

$$\frac{\Delta V}{L} = \xi n^2 \mathbf{b}^2 \ln \frac{L}{2h_n} + \frac{1}{2} n \mathbf{b} h_n, \qquad (3.7)$$

где § — фактор, зависящий от модулей упругости второго и третьего порядков. Как правило, § имеет порядок, равный 10. Первое слагаемое в формуле (3.7) описывает вклад упругих деформаций вокруг трещины в изменение объема кристалла, второе слагаемое представляет собой объем полости трещины. Ввиду малости энтропийного слагаемого термодинамический потенциал Гиббса для трещины в расчете на единицу длины совпадает с энтальпией и записывается в виде

$$\frac{\Delta H}{L} \simeq \frac{\Phi}{L} = \frac{Gn^2\mathbf{b}^2}{4\pi(1-\nu)}\ln\frac{V}{2h_n} + E_{\Pi \cap \mathbf{B}} (n\mathbf{b} + \sqrt{n^2\mathbf{b}^2 + 4h_n^2} + \frac{P}{2}n\mathbf{b}h_n),$$

где G и v — приведенные модуль сдвига и отношение Пуассона соответственно.

Если в образце достаточно много избыточных вакансий, то они объединяются в комплексы, которые могут перерастать в субмикропоры. Причиной роста поры является наличие в металле примеси газа, который нерастворим или плохо растворим в металле. При этом атомы газа будут выделяться в поры или их зародыши. В результате роста субмикродефектов образуются нарушения, обнаруживаемые с помощью оптического микроскопа: микротрещины, микропоры, микропузыри газов и дисперсные включения. Особым типом микродефектов являются остаточные микронапряжения, локализованные в пределах зерен поликристалла и обусловленные избытком дислокаций одного знака. К микродефектам относят также дендриты, возникающие в результате микроскопической ликвации.

221, 226, 242, 257, 261, 294]

Никель	(Ілатин а	Железо	Вольфрам	Молибден	Ниоби й	Ол ово
1,725 0,690	3,000 1,000	1,9506 0,470 0,780	2,900	1,960	2,100 0,760	0,685 0,160
0,026 0,240	0,196	0,190 0,939		1,450	0,537	

Макродефекты в ряде случаев представляют собой дальнейшее развитие микродефектов. Это относится, в частности, к включениям (обычно неметаллическим), трещинам, порам и газовым пузырям. Последние способствуют возникновению рыхлоты при усадке в процессе

Рис. 3.2. Температурная зависимость общей и фононной теплопроводности образца сплава Си — 0,4 Zn [74]:

I — в исходном (е=20 %) состоянии; *II* — после аннигиляции вакансий с частичной релаксацией напряжений в плоских дислокационных скоплениях; *III* — после аннигиляции дислокаций при рекристаллизации; — исходное состояние; — после нагрева до 250° С; О — после нагрева до 500° С; λ_{Φ} — фононная, λ_{Φ} . общ — общая, λ_{Φ} . реш — обусловленная решеткой теплопроводности.

Рис. 3.3. Температурная зависимость общей и фононной теплопроводности образца сплава Си — 0,21 % Ga [74]:

І — в исходном (ε = 20 %) состоянии; // — после аннигиляции вакансий; /// — после аннигиляции дислокаций при рекристаллизации с предварительной релаксацией напряжений в плоских дислокационных скоплениях (обозначения те же, что и на рис. 3.2).

Рис. 3.6. Температурная зависимость фононной теплопроводности различных сплавов после отжига при температурах до 500° С [74]: I - Cu = 0.4 % Zn; 2 - Cu = 0.21 % Ga; 3 - Cu = 0.22 % Ge; 4 - Cu = 0.21 % As.

затвердевания жидких металлов. При этом обычно возникает и усадочная раковина — воронкообразная полость в верхней части слитка. При наличии водорода в стали могут образовываться флокены — внутренние трещины, заполненные водородом в молекулярной форме под значительным давлением. Макродефекты не существенно влияют на внтальпию. Более сильное влияние они оказывают на удельный объем и теплопроводность металлов. Последняя вависит также от микрои субмикродефектов, особенно при низких температурах. Результаты измерений теплопроводности меди с малыми добавками представлены на рис. 3.2—3.6. Для сплава Си — Аз теплопроводность измерялась также после дислокационного старения (кривая 11' на рис. 3.5). На этих же рисунках представлены соответствующие значения фононной теплопроводности. Как видно из приведенных результатов, максимум теплопроводности отсутствует в деформированных образцах и появляется после аннигиляции дислокаций. Все процессы предрекристаллизационного характера не приводят к появлению максимума. В полностью отожженных образцах (см. рис. 3.6) с увеличением остаточного электросопротивления, обусловленного примесями, тепловой пик смещается в сторону более высоких температур, а высота его несколько уменьшается.

Фононная теплопроводность имеет пик как в отожженном, так и в деформированных образцах. До максимума теплопроводность растет примерно как Θ^2 , но в сплавах Си—Ge и Си — As наблюдается наибольшее отклонение в сторону увеличения степенного закона. Так как только рассеяние фононов в отдельных дислокациях приводит к зависимости теплопроводности как Θ^2 и с введением или аннигиляцией дислокаций сечение рассеяния фононов на электронах проводимости при данных значениях R_0 не изменяется, то по сдвигу кривой теплопроводности можно оценить изменение плотности дислокаций. За максимумом теплопроводность падает примерно как k/Θ , и эта часть кривой теплопроводности позволяет оценить вклад точечных дефектов.

Для анализа данных по низкотемпературной фононной теплопроводности широко используется метод Каллавая, согласно которому теплопроводность можно представить в виде

$$\lambda_{\rm th} = A_1 + A_2, \tag{3.8}$$

где

$$A_1 = \hat{q} \Theta^3 \int_0^{Q/\Theta} \frac{x^4 e^x}{(e^x - 1)^2} \frac{dx}{\tau^{-1}},$$

причем

$$q = \frac{k}{2v^{-2}} \left(\frac{k}{\hbar}\right)^3 - \frac{1}{v},$$

$$A_2 = q \Theta^3 \frac{\left[\int_{0}^{Q/\Theta} \frac{\tau_N^{-1}}{\tau^{-1}} \frac{e^x}{(e^x - 1)^2} x^4 dx\right]^2}{\int_{0}^{Q/\Theta} \tau_N^{-1} \tau (\tau^{-1} - \tau_N^{-1}) \frac{x^4 e^x}{(e^x - 1)^2} dx}.$$

Здесь v — скорость звука; $\tau^{-1} = \tau_N^{-1} + \tau_U^{-1}$ — обратное время жизни фонона, обусловленное нормальными процессами — τ_N^{-1} (фонон-фононное рассеяние) и τ_U^{-1} (резистивные процессы):

$$\tau_N^{-1} = B(\Theta) \; \Theta^4 x^2, \; \tau_U^{-1} = \tau_{el}^{-1} + \tau_d^{-1} + \tau_p^{-1} + \tau_b^{-1},$$

где τ_{el}^{-1} , τ_d^{-1} , τ_p^{-1} , τ_s^{-1} — обратные времена жизни фонона, обусловленные соответственно рассеяниями на электронах проводимости, дислока-

циях, точечных дефектах и на границах кристалла (либо границах зерен). В τ_U^{-1} пренебрегаем процессами переброса, связанными с фонон-фонон ным рассеянием:

$$\tau_{el}^{-1} = \delta_{el} \Theta x, \qquad x = \hbar \omega \left(k \Theta \right)^{-1}, \\ \tau_{d}^{-1} = \delta_{d} \Theta x, \qquad \delta_{d} = \frac{k}{\hbar} b^{2} \gamma^{2} \rho, \\ \tau_{p}^{-1} = A_{p} \Theta^{4} x^{4}, \qquad A_{p} = c_{\Pi} \left(\frac{k}{\hbar} \right)^{4} \frac{\Omega}{4\pi v^{3}} Z.$$

$$(3.9)$$

Здесь L — размер зерна (либо кристалла в случае монокристалла); B_b — «сила» рассеяния поверхностью зерен; **b** — вектор Бюргерса; γ — параметр Грюнайзена; ρ — плотность дислокаций; Z — «сила» точечных дефектов (для изотопического дефекта она равна ($\Delta M/M$)³ (ΔM — изменение массы изотопа)). В формуле (3.8) можно пренебречь поправочным членом A_2 , за исключением случая, когда это условие в рассматриваемой области температур не выполняется.

В низкотемпературной области фононная теплопроводность изменяется примерно как Θ^2 . В этой области температур основной вклад в обратное время жизни фононов вносит рассеяние на электронах проводимости, дислокациях и, возможно, на границах зерен. Различие характера кривых I - II и I - III в этой области может быть объяснено только влиянием дислокаций (см. рис. 3.5). Для оценки числа дислокаций предположим, что $\tau_U^{-1} = \delta_{el}\Theta x + \delta_d\Theta x$. Тогда кривая I - II описывается формулой

$$\lambda_{\parallel} = g \Theta^2 \int_0^\infty \frac{e^x}{(e^x - 1)^2} \frac{x^3 dx}{\delta_{el} + \delta_d}, \qquad (3.10)$$

а кривая I — III формулой

$$\lambda_{\mathbb{I}} = g\Theta^2 \int_0^\infty \frac{e^x}{(e^x - 1)^2} \frac{x^3 dx}{\delta_{el}}.$$
 (3.11)

Определяя δ_{el} для полностью отожженных образцов, можно по формулам (3.10) и (3.11) оценить плотность дислокаций. Для сплавов Сu—Ge и Cu—As такая оценка плотности дислокаций хорошо согласуется с данными по тепловым и объемным эффектам, для сплавов Cu—Ga и Cu—Zn значения завышены. Последнее можно объяснить тем, что использованные формулы являются оценочными, а кроме того, в этих сплавах процесс рекристаллизации сопровождается релаксацией напряжений в плоских дислокационных скоплениях. (В случае, когда дислокации собраны в группы по *n* дислокаций одного знака, δ_d также увеличивается в *n* раз).

В области температур выше максимума изменение теплопроводности можно объяснить влиянием точечных дефектов. Согласно [251], изменение теплового сопротивления описывается формулой

$$\Delta\Lambda = \frac{6\pi}{5\hbar} \frac{\Omega}{v^2} c_{\mathcal{A}} \Theta Z_{\phi}.$$

Наибольший интерес представляет сравнение в этой области кривых I-I и I-II. По числу проаннигилировавших вакансий определяется Z_{ϕ} — сила рассеяния фононов на вакансиях. Для изученных сплавов она составляет примерно 0,8.

После дислокационного старения теплопроводность уменьшается (см. рис. 3.5, кривые I - III), следовательно, обратное время жизни фононов при этом увеличилось. Такое аномальное поведение, очевидно, обусловлено тем, что примеси мышьяка, осевшие на дислокациях, рассеивают фононы сильнее, чем при хаотическом распределении

3.2. Влияние отжига на тепловые свойства металлов [8, 14, 56, 74, 88, 154, 165, 168, 170, 188]

При нагреве металлов, предварительно упрочненных пластической деформацией, облучением нуклонами или фазовыми превращениями, происходит залечивание дефектов. Под этим термином подразумевают совокупность физических процессов миграции, перераспределения, частичной или полной аннигиляции различного рода несовершенства в кристаллах. Указанные процессы происходят спонтанно, поскольку сопровождаются уменьшением свободной энергии системы. Для протекания большинства процессов необходима термическая активация, и скорость таких процессов оказывается либо непосредственно связанной с термической подвижностью отдельных атомов, либо с консервативным последовательным смещением ансамблей атомов на малые, по сравнению с межатомным, расстояния.

Термическая подвижность точечных дефектов рассматривается в рамках теории абсолютных скоростей реакций. Применительно к твердому телу она сводится к допущению о возможности выделения в кристалле активированных комплексов, находящихся конечное время в «равновесных» состояниях. Остальная часть системы рассматривается как термостат. Допускается также, что средняя продолжительность τ_A существования активированных комплексов не зависит от механизма процесса и природы отдельных конкретных активированных комплексов. В общем виде скорость перемещения данного точечного дефекта определяется выражением

$$v = \frac{1}{\tau_A} = v_k \exp\left(\frac{S_m}{k}\right) \exp\left(-\frac{E_m}{k\Theta}\right) \exp\left(\frac{PV_m}{k\Theta}\right),$$

где v_k — эффективная частота колебаний дефекта в направлении седловой точки; S_m и E_m — энтропия и энергия активации перемещения дефекта (см. табл. 3.2); V_m — активационный объем процесса. Определение этих параметров связано с еще большими трудностями, чем определение параметров образования дефектов.

Перемещение точечных дефектов в однородном кристалле не сопровождается выделением тепла и изменением объема тела. Перераспределение точечных дефектов в кристалле, содержащим источники внутренних напряжений (например, дислокации), аннигиляция точечных дефектов при отжиге приводят к изменению энтальпии и удельного объема.

Консервативное движение дислокации осуществляется быстрым скольжением параллельно ее вектору Бюргерса под действием небольших напряжений. Зависимость скорости консервативного движения краевой дислокации от напряжения и температуры описывается формулой $v = \sigma^n \exp(-E/k\Theta)$. Скорость поперечного скольжения винтовой дислокации сильнее зависит от приложенного напряжения: $v = A \exp(-(E - B\sigma)/k\Theta)$.

Неконсервативное движение краевых дислокаций осуществляется их переползанием. Скорость этого процесса определяется классической

формулой Эйнштейна, которая в данном случае связывает диффузионную скорость ступенек на дислокации с малой приложенной силой p при ничтожном пересыщении вакансиями: $v = \frac{D}{k\Theta} n_j p B$, где D— коэффициент самодиффузии; n_j — концентрация ступенек. Последняя зависит также от температуры: $n_j = \exp(S_j/k) \exp(-E_j/k\Theta)$. Здесь S_j и E_j — соответственно энтропия и энергия образования одного порога на дислокации.

Фононная теплопроводность в сплавах в отожженном состоянии, согласно данным, приведенным на (рис. 3.6), падает от цинка к мышьяку, а максимум сдвигается в сторону высоких температур. Выше температуры максимума различный ход кривых теплопроводности можно объяснить влиянием точечных дефектов. Сила рассеяния фононов на примесях галлия и германия равна 1,2, а на примесях мышьяка — 3,6. Сила рассеяния цинка растет с увеличением валентности примеси. Ниже максимума фононная теплопроводность отчетливо падает от цинка к мышьяку. Такое различие можно объяснить с учетом влияния рассеяния фононов на границах зерен. От галлия к мышьяку увеличивается число осевших на границах примесей, поэтому уменьшается прозрачность границы.

3.3. Изменение отношения плотности и энтальпии [42, 62, 63, 75, 77, 79—82, 88—91, 95—97, 99, 168—172, 245]

Традиционным способом изучения термодинамически необратимых процессов, происходящих в металлах, является исследование тепловых либо объемных эффектов при отжиге. Отжиг обычно производят при атмосферном давлении или в вакууме. Переменным термодинамическим параметром является температура. Более полную информацию об исследуемом объекте можно получить, измеряя при отжиге тепловые и объемные эффекты одновременно*. Этот способ исследования основан на экспериментально обнаруженной закономерности о том, что каждому из элементарных термодинамических процессов соответствует узкий диапазон отношений тепловых Q и объемных ΔV эффектов. Ширина этого диапазона определяется условиями прохождения процесса и часто не превышает погрешности измерений. Для большинства типов процессов диапазоны не перекрываются.

Необратимые процессы разделяются на два типа: 1) процессы, для которых отношение скоростей изменения энтальпии и объема тела зависит только от условий протекания процессов. Если процессы происходят при фиксированных давлениях и температуре, то это отношение остается постоянным в ходе процессов и равным отношению $Q/\Delta V$. К процессам данного типа относятся, например, аннигиляция точечных дефектов, дислокаций, а также ряд фазовых превращений; 2) процессы, при которых отношение \dot{Q}/\dot{V} зависит от степени протекания процесса, например, образование и залечивание несплошностей (пор и трещин).

Зная Q, ΔV , \dot{Q} , \dot{V} , $Q/\Delta V$ и \dot{Q}/\dot{V} для различных процессов, можно идентифицировать происходящие процессы. При этом отличительными признаками служат абсолютные значения полных тепловых и объем-

^{*} Совместное изучение тепловых и объемных эффектов в одном объекте успешно применяется в Институте металлофизики АН УССР.

ных эффектов, знак каждого из них, совпадение или несовпадение знака $Q(\Theta, P)$ и $\Delta V(\Theta, P)$, значения отношений $Q/\Delta V$ и \dot{Q}/\dot{V} , совпадение или несовпадение этих отношений, возможность прямого и обратного превращения, наличие или отсутствие гистерезиса и, наконец, динамика выделения тепла или изменения объема тела, т. е. форма двух семейств кривых $\dot{Q}(\Theta, P)$ и $\dot{V}(\Theta, P)$. Скорость процесса Φ определяется \dot{Q} и \dot{V} . Если известна одна из этих величин, то можно определить, например, сколько дефектов принимает участие в процессе в единицу времени. Степень протекания процесса $\Delta \Phi$, т. е. число дефектов, принявших в нем участие, определяется Q и ΔV . Одновременное измерение скоростей изменения энтальпии и объема тела (а также давления и температуры) служит простым, эффективным и надежным способом исследования фазовых превращений.

При фазовом превращении первого рода выделяется (или поглощается) скрытая теплота фазового превращения и изменяется объем. При фазовом превращении второго рода (первого рода) изменяется скачком сжимаемость, теплоемкость и коэффициент термического расширения при переходе из одной фазы в другую. Фазовое превращение первого рода можно просто и надежно идентифицировать по отношению скоростей изменения энтальпии и объема тела Q/V, а также по отношению тепловых и объемных эффектов $Q/\Delta V$. Фазовое превращение второго рода также может быть идентифицировано только по отношению скоростей изменения энтальпии и объема тела, так как скорости изменения энтальпии и объема тела, так как скорости изменения энтальпии и объема тела при известных скоростях изменения давления и температуры зависят от сжимаемости, теплоемкости и коэффициента термического расширения, которые имеют различные значения в разных фазах.

Для обратимого фазового превращения первого рода отношение скоростей изменения энтальпии и объема тела рассчитывается по формуле, $Q/V = \Theta dP_0/d\Theta$, отношение тепловых и объемных эффектов — по формуле $Q/\Delta V = \Theta dP_0/d\Theta$. Последняя формула представляет собой соотношение Клапейрона — Клаузиуса.

Согласно приведенным выше формулам обратимое фазовое превращение первого рода в приближении, когда не учитываются эффекты, связанные с существованием границы раздела фаз, является процессом типа 1). Отклонение отношения скоростей изменения энтальпии и объема тела от соотношения Клапейрона — Клаузиуса обусловлено не только конечной скоростью фазового превращения. В случае твердого тела, когда фазовые превращения сопровождаются незначительным выделением тепла и изменением объема тела, на начальных этапах превращения большой вклад в изменение энтальпии и объема тела дают эффекты, связанные с существованием границы раздела двух фаз. По мере протекания превращения относительный вклад границы раздела фаз в рассматриваемые эффекты уменьшается и отношение скоростей изменения энтальпии и объема тела при малых скоростях приближается к соотношению Клапейрона — Клаузиуса.

Реально фазовые превращения первого рода не протекают равновесным, обратимым способом. Рассмотрим следующие предельные случаи.

1. Время установления температуры в образце значительно превосходит времена образования зародыша и фазового превращения. Темп фазового превращения лимитируется процессами теплопроводности скоростью подвода или отвода тепла. Этот случай соответствует медленным скоростям превращений. «Старая» фаза находится при температуре фазового превращения Θ_0 . Если при этом прямое превращение происходит, например, эндотермически, то температура внешних поверхностей тела $\Theta > \Theta_0$, а отношение наблюдаемых тепловых и объемных эффектов имеет вид

$$\left(\frac{Q}{\Delta V}\right)_{\Theta} = \left(\frac{Q}{\Delta V}\right)_{\Theta_0} \frac{1 + Q_0^{-1} \int\limits_{\Theta_0}^{\Theta} c_P^{(2)} d\Theta}{1 + \Delta V_0^{-1} \int\limits_{\Theta_0}^{\Theta} \alpha_2 V_{0_2} d\Theta}.$$

Здесь Q_0 , ΔV_0 и $\left(\frac{Q}{\Delta V}\right)_{\Theta_0}$ — тепловые, объемные эффекты и их соотно-

шение при предельно медленной скорости превращения; $c_P^{(l)}$, $\alpha_l = V_{0l} \times \frac{\partial V}{\partial \Theta}$, V_{0l} — теплоемкость при постоянном давлении, коэффициент термического расширения и объем вещества, находящегося в *i*-й фазе при температуре Θ_0 . При обратном превращении $\Theta < \Theta_0$, а отношение наблюдаемых тепловых и объемных эффектов имеет вид

$$\left(\frac{Q}{\Delta V}\right)_{\Theta} = \left(\frac{Q}{\Delta V}\right)_{\Theta_0} \frac{1 + Q_0^{-1} \int\limits_{\Theta}^{\Theta_0} c_P^{(1)} d\Theta}{1 + \Delta V_0^{-1} \int\limits_{\Theta}^{\Theta_0} \alpha_1 V_{01} d\Theta}$$

Таким образом, в данном случае тепловые и объемные эффекты и их отношения различны для прямого и обратного превращений.

2. Время установления температуры во всем образце значительно меньше времени образования зародыша и времени фазового превращения. Темп фазового превращения лимитируется кинетическими процессами — образованием зародышей и их ростом. Этот случай соответствует быстрым скоростям превращений. Температура вдоль всего образца примерно постоянна, что в некотором смысле приближает процесс к равновесному. Температура, при которой происходит превращение, зависит от скорости перехода. Причем при постоянном давлении, но разных температурах фазового превращения Θ₁ и Θ₂ отношения тепловых и объемных эффектов связаны формулой

$$\left(\frac{Q}{\Delta V}\right)_{\Theta_2} = \left(\frac{Q}{\Delta V}\right)_{\Theta_1} \frac{1 + Q^{-1}\left(\Theta\right) \int\limits_{\Theta_1}^{\Theta_2} (c_P^{(2)} - c_P^{(1)}) d\Theta}{\frac{\Theta_2}{\Theta_1} + \Delta V^{-1}(\Theta) \int\limits_{\Theta_1}^{\Theta_2} [\alpha_2 V_2(\Theta_1) - \alpha_1 V_1(\Theta_1)] d\Theta}$$

Здесь V_i — объем вещества, находящегося в *i*-й фазе. Если прямое превращение является эндотермическим и $\Theta_2 > \Theta_0$, то при обратном превращении $\Theta_i < \Theta_0$. Таким образом, в этом случае тепловые, объемные эффекты и их отношения различны для прямого и обратного превращений. Реально начальный этап превращения обычно происходит как первый предельный случай, а конечный—как второй предельный случай.

При изменении некоторых параметров (например, давления) фазовые превращения второго рода могут стать превращениями первого

рода. Точка, в которой переходят друг в друга кривые, соответствующие превращениям разных типов на РӨ-диаграмме, называется критической точкой Кюри.

Фазовые превращения в твердом теле часто считаются фазовыми превращениями второго рода, так как сопровождающие их тепловые и объемные эффекты либо столь малы, что их невозможно измерить, либо равны нулю при нулевом или близком к нулевому давлении, т. е. являются фазовыми превращениями второго рода только в отдельной точке РӨ-диаграммы. Если разность теплоемкостей, коэффициента термического расширения и сжимаемости в фазах вблизи точки превращения не удовлетворяет соотношениям Эренфеста, то скрытая теплота перехода и объемный эффект превращения зависят от температуры и давления, т. е. изменяются вдоль кривой фазового' равновесия. При этом с ростом давлений малые, не поддающиеся измерению при атмосферном давлении, тепловые и объемные эффекты возрастают и достигают значений, которые могут быть измерены. При высоких давлениях прирост тепловых и объемных эффектов при переходе, обусловленный наличием давления, пропорционален отклонениям соотношений разностей теплоемкости, сжимаемости и коэффициента термического расширения в фазах вблизи точки перехода от соотношений Эренфеста.

Таким образом, исследование тепловых и объемных эффектов при фазовых превращениях в условиях высоких давлений помогает идентифицировать истинный род превращения. Сравнение отношений тепловых и объемных эффектов с соотношением Клапейрона — Клаузиуса может служить методом исследования степени необратимости фазового превращения первого рода первого класса.

При мартенситных превращениях часто появляются значительные внутренние напряжения, вследствие чего они даже при очень малых скоростях заметно термодинамически необратимые. Это проявляется в том, что при сколь угодно малых скоростях нагрева и охлаждения разница температур начала прямого и обратного превращений остается конечной. При мартенситных превращениях упругая энергия вносит существенный вклад в энергетический баланс. В результате отношение \dot{Q}/\dot{V} отличается от отношения $Q/\Delta V$. Значит, обычно мартенситные превращения являются процессами типа 2).

При пластической деформации могут возникать и перемещаться, а затем и аннигилировать избыточные неравновесные точечные дефекты. Тогда для вакансий справедливо соотношение

$$V_A \frac{Q_B}{\Delta V_B} = \frac{E_B}{\alpha_B^2}.$$
 (3.12)

Здесь V_A — объем одного грамм-атома материала образца; $E_{\rm B}$ — работа образования одного грамм-атома вакансий; $\alpha'_{\rm B}$ — доля атомного объема, занимаемого вакансией. Для внедренных в междоузлия атомов выполняется соотношение

$$V_A \frac{Q_{\rm M}}{\Delta V_{\rm M}} = \frac{E_{\rm M}}{1 - \alpha_{\rm M}'},\tag{3.13}$$

где E_м — работа образования одного грамм-атома внедренных в междоузлия атомов; α_м — доля атомного объема, занимаемого одним атомом, который находится в междоузлии.

При малых концентрациях точечных дефектов, когда можно пренебречь взаимодействием между ними, приведенная выше аннигиляция избыточных точечных дефектов является процессом типа 1). Однако отношения (3.12) и (3.13) незначительно различаются при разных температурах. Температура, при которой происходит аннигиляция основной массы избыточных дефектов, зависит от кинетики процесса (например, от скорости изменения температуры при отжиге металла). Поэтому, изменяя условия прохождения процесса (скорость изменения температуры при отжиге), получаем небольшое изменение отношений тепловых и объемных эффектов. Все возможные значения этих отношений образуют неширокую зону.

Для дислокаций отношение тепловых и объемных эффектов записывается в виде

$$\frac{Q}{\Delta V} = \frac{2a + 2b\beta' + 2c\delta}{2\tau_{44} + 2\tau_{12}\beta' + (\tau_{11} - \tau_{12} - 2\tau_{44})\,\delta.} \,. \tag{3.14}$$

Здесь

$$\beta' = \frac{\int\limits_{(V)} u_{ll}^2 d\tau}{u_{lk} u_{lk} d\tau}, \quad \delta = \frac{\int\limits_{(V)} (u_{11}^2 + u_{22}^2 + u_{33}^2) d\tau}{\int\limits_{(V)} u_{lk} u_{lk} d\tau}, \quad (3.15)$$

причем для дислокаций $0 \ll \beta', \delta \ll 1$. Согласно формулам (3.14) и (3.15) каждому типу дислокаций или способу их распределения в кристалле соответствует свое значение отношения тепловых и объемных эффектов. При обычных модулях упругости эти значения различаются в пределах 30 %. Некоторые из них точно совпадают (например, в случае хаотически распределенных дислокаций и таких же дислокаций, собранных в полигональные стенки). При неоднородном распределении дислокаций тепловые и объемные эффекты могут сильно отличаться от таковых при однородно распределенных дислокациях. Однако их отношение при перераспределении дислокаций изменяется незначительно.

Следовательно, такие процессы, как полигонизация, аннигиляция дислокаций, релаксация плоских скоплений дислокаций, можно рассматривать с хорошей точностью как процессы типа 1). Если главный вклад в изменение энтальпии и объема кристалла при рекристаллизации обусловлен аннигиляцией дислокаций, рекристаллизацию также можно рассматривать с хорошей точностью как процесс типа 1). Изменение скорости отжига приводит к смещению температурных диапазонов дислокационных процессов, а значит, к незначительному изменению отношений тепловых и объемных эффектов. В общем случае дислокационное старение является процессом типа 2). Однако при малых концентрациях примесей, когда главный вклад в тепловые и объемные эффекты дают члены, пропорциональные первой степени концентрации примесей, Q и ΔV пропорциональны количеству примесей, и приближение, рассматривающее процесс дислокационного старения как процесс типа 1), является не очень плохим. Изменение скорости отжига смещает температурный диапазон дислокационного старения, что влияет на отношения тепловых и объемных эффектов.

Отношение скоростей изменения энтальпии и объема тела в процессах изменения состояния трещин (образования, роста или залечивания), очевидно, зависит от степени протекания их, и, следовательно, процессы относятся к типу 2). Кроме того, это отношение зависит от температуры и давления, значит, оно изменяется при изменении скорости процесса вследствие смещения диапазона по температуре и давлению.

Рис. 3.7. Температурные зависимости скорости выделения теплоты и изменения объема при отжиге со скоростью 2 град/мин образца высокочистого никеля, деформированного кручением $\left(\frac{nd}{L}=0,6\right)$ [96]:

n — число оборотов; d — диаметр; L — длина.

Рис. 3.8. Отношение скоростей выделения теплоты и изменения объема (\bullet), а также тепловых и объемных эффектов (—) при аннигиляции вакансий (1) и рекристаллизации (2), рассчитанных по данным работы [96].

Пора является динамически неравновесным дефектом, следовательно, она может залечиваться. При этом так же, как и при залечивании вакансий и их комплексов, объем тела уменьшается и выделяется теплота. Отношение тепловых и объемных эффектов записывается в виде $Q/\Delta V = 3\gamma/r + P$.

Все процессы, сопровождающиеся изменением состояния пор, относятся к типу 2). Отношения Q/V и $Q/\Delta V$ для этих процессов незначительно различаются для разных скоростей процессов. На рис. 3.7 показаны скорости выделения теплоты и изменения объема образца высокочистого деформированного никеля. Первый пик соответствует аннигиляции вакансий, второй — рекристаллизации. На рис. 3.8 сравниваются отношения тепловых и объемных эффектов для обоих процессов. В пределах погрешности измерений оба процесса относятся к типу 1). На рис. 3.9 приведена типичная схема отношений тепловых и объемных эффектов для различных элементарных процессов, происходящих при упрочнении и разупрочнении твердых тел.

Если в твердом теле одновременно происходят несколько процессов, например два процесса типа 1), то по известным для каждого из них отношениям $\dot{Q}/\dot{V}_1 = A_1 (P, \Theta)$ и $\dot{Q}/\dot{V}_2 = A_2 (P, \Theta)$ можно определить вклады процессов в измеряемые тепловые и объемные эффекты. Для изучения протекания одного процесса типа 1) достаточно одновременного измерения \dot{Q} и V. При этом отношение Q/V характеризует степень протекания процесса; каждая из величин Q (T) и $\Delta V (T)$ также карактеризует степень его протекания, а скорость процесса описывается Q и V. Если одновременно в процессом типа 2) происходят другие процессы, то нужно производить дополнительное одновременное измерение других физических величин.

При нагреве упрочненных механической и термической обработкой металлов для анализа процессов удобно использовать отношения тепловых и объемных эффектов *. Такой подход позволяет надежно отделить аннигиляцию точечных дефектов от аннигиляции линейных дефектов, а оба процесса — от преврашений карбидной фазы в стали; проанализировать физическую природу высокопрочного состояния, возникающего в сталях при низкотемпературной термомеханической обработке и патентировании; развить метод определения допустимого предела пластической деформации, при которой образующиеся микрополости еще не дают заметного вклада в термодинамические и прочностные характеристики.

Проведено разделение термически подвижных и неподвижных дислокаций, определена плотность термически подвижных дислокаций и их доля в полной дислокационной плотности в условиях отжига упрочненных кристаллов со значительной плотностью дислокаций, когда невозможно определение этих величин другими способами [63].

Рис. 3.9. Схема отношений тепловых и объемных эффектов для различных элементарных процессов [245].

^{*} Исследования проведены в 1963 г. в Институте металлофизики АН УССР.

Рис. 3.11. Температурная зависимость концентрации проаннигилировавших вакансий и плотности термически подвижных дислокаций в железе [63].

Рис. 3.12. Температурная зависимость скорости выделения теплоты, изменения объема и относительного изменения электросопротивления при отжиге со скоростью 4 град/мин образца сплава Си - 0,74 % Zn, деформированного кручением (nd/L = 0.6) [75]:

n — число оборотов; d — диаметр; L — длина.

Для этого использовались измерения тепловых и объемных эффектов в условиях отжига деформированного высокочистого железа в пределах фазы с ОЦК решегкой (рис. 3.10). При обработке экспериментальных данных установлено, что плотность неподвижных дислокаций составляла примерно 2 · 10¹¹ см⁻² (соответствующий тепловой эффект-0,42 кал/г), плотность термически подвижных дислокаций — примерно 10¹¹ см⁻² (соответствующий тепловой эффект — 0,22 кал/г). Тепловой эффект, приходящийся на долю залечивания вакансий, равен 0,03 кал/г. Доля подвижных дислокаций определялась как отношение теплового эффекта, обусловленного термически активированной перестройкой и аннигиляцией подвижных дислокаций, к полному тепловому эффекту дислокационной природы. Оказалось, что подвижные дислокации в высокочистом упрочненном железе составляют 1/3 всех дислокаций, существовавших до отжига.

Независимо по рентгеновским и электронно-микроскопическим исследованиям установлено, что перемещение термически подвижных дислокаций происходит путем поперечного скольжения. Α именно подвижность винтовых компонент дислокаций определяет пластичность металлов с ОЦК решеткой. По экспериментальным данным по-

Рис. 3.13. Температурная зависимость концентрации проаннигилировавших вакансий, изменения плотности релаксировавших дислокационных скоплений и плотности проаннигилировавших дислокаций при нагреве сплава Си — 0,74 % Zn [75].

Рис. 3.14. Температурная зависимость скорости выделения теплоты, изменения объема и относительного изменения электросопротивления при отжиге со скоростью 4 град/мин образца сплава Си — 0,3 % Ga, деформированного ковкой (е = 20 %)[81].

Рис. 3.15. Температурная зависимость концентрации проаннигилировавших вакансий, изменения плотности релаксировавших дислокационных скоплений и плотности проаннигилировавших дислокаций при нагреве сплава Си — 0,3 % Ga [80].

Рис. 3.16. Температурная зависимость скорости выделения теплоты, изменения объема и относительного изменения электросопротивления при отжите со скоростью 4 град/мин образца сплава Cu — 0,3 % Ge, деформированного ковкой ($\varepsilon = 20$ %) [81].

Рис. 3.17. Температурная зависимость концентрации проаннигилировавших вакансий атомов германия, осаждавшихся на дислокациях, плотности проаннигилировавших вакансий, осаждавшихся на дислокациях, а также плотности проаннигилировавших дислокаций при нагреве сплава Cu — 0,3 % Ge [80].

Рис. 3.18. Температурная зависимость скорости выделения теплоты, изменения объема и относительного изменения электросопротивления при отжиге со скоростью 4 град/мин образца сплава Cu — 0,21 % As, деформированного ковкой (в = 20 %) [82].

строены зависимости плотности термически подвижных дислокаций, принявших участие в перестройке структуры, аннигиляции и концентрации аннигилировавших избыточных вакансий, как функции температуры (рис. 3.11).

По тепловым и объемным эффектам и электросопротивлению при отжиге деформированных разбавленных твердых растворов на основе меди (рис. 3.12—3.18) проведен количественный анализ кинетики термодинамически необратимых процессов и определен вклад каждого из

них в тепловые и объемные эффекты и электросопротивление. Построены зависимости концентрации проаннигилировавших вакансий, изменения плотности релаксировавших плоских дислокационных скоплений, плотности проаннигилировавших дислокаций, концентрации примесных атомов, осаж-

Рис. 3.19. Температурная зависимость концентрации проаннигилировавших вакансий и атомов мышьяка, осаждавшихся на дислокациях, а также плотности проаннигилировавших дислокаций при нагреве сплава Cu — 0.21 % As [80].

денных на дислокациях, и плотности перестроившихся или аннигилировавших термически подвижных дислокаций. При одновременном протекании двух или трех процессов разделены вклады каждого из них в измеряемые эффекты. Результаты приведены на рис. 3.16—3.19.

В Институте металлофизики АН УССР разработаны автоматические установки, которые выполняют заданный во времени температурный режим, автоматически ваписывают скорости изменения энтальпии и объема одного образца одновременно, а также автоматически обрабатывают эти данные. ГЛАВА 4

ПРИКЛАДНОЕ ЗНАЧЕНИЕ ТЕПЛОВЫХ ХАРАКТЕРИСТИК МЕТАЛЛОВ И СПЛАВОВ

4.1. Оптимизация термической и механико-термической обработки металлов и сплавов [3, 34, 62, 65, 86, 115, 245]

Качество и надежность термической обработки являются в настоящее время одними из наиболее важных критериев при разработке технологических процессов получения полуфабрикатов и готовых изделий из металлов и сплавов. Это объясняется тем, что физико-механические свойства являются структурно-чувствительными, а формирование структуры изделий существенным образом зависит от режима термической обработки. Простая термическая обработка заключается в нагреве изделия до заданной температуры, выдержке при этой температуре и последующем охлаждении (рис. 4.1).

В реальных промышленных условиях выбирается необходимый температурный диапазон обработки на основании справочных данных или рекомендаций ЦЗЛ. Время нагрева до заданной температуры рассчитывается по табличным данным о теплоемкости и теплопроводности сплава при различных температурах с учетом размеров деталей. Время выдержки при отпуске, отжиге оценивается по результатам изохронно-изотермических обработок лабораторных образцов, а окончательная длительность процессов, фиксируемая в технологической карте, для каждого конкретного типа изделий определяется длительным подбором на основании результатов измерения одного или нескольких контролируемых свойств. Достижение этого свойства (свойств) является критерием оптимальности. Такой подход имеет ряд принципиальных недостатков. Во-первых, возможность экспрессной оценки состояния материала по одному или нескольким свойствам крайне затруднительна, тем более непосредственно в ходе обработки, а иногда просто несостоятельна. Во-вторых, разработанная эмпирическая температурно-временная программа обработки, к строгому выполнению которой сводится, как правило, управление ходом процесса, пригодна для материала конкретного химического состава (одной плавки).

Для большинства марок конструкционных сталей ГОСТ ограничивает вариации концентрации углерода в пределах 0,08 %, а легирующих элементов — 0,2—0,3 % (для серы и фосфора верхняя граница концентрации составляет 0,02—0,03 %). Согласно статистическим исследованиям при наличии у предприятия 3—4 поставщиков коэффициенты вариации для разных элементов значительно различаются, но в целом распределение их концентрации подчиняется нормальному закону.

В производственных условиях важнейшим фактором является прокаливаемость стали. Прокаливаемость сложным образом зависит от состава и при его колебании в пределах марки для конструкционной низколегированной стали может изменяться более чем в 2—2,5 раза. Вариации состава в пределах марки являются одной из основных причин разброса свойств термически упрочненных сталей. Соотношения между различными составляющими сопротивления углеродистых и низколегированных сталей пластической деформации после закалки и отпуска могут изменяться как в результате прямого влияния углерода и легирующих элементов на свойства фаз, так и вследствие их воздействия на кинетику процессов отпуска.

Основной упрочняющий элемент стали — углерод. Изменение его содержания в α_m -фазе вследствие колебаний состава либо различий в кинетике отпуска является основной причиной вариации свойств закаленной низкоотпущенной стали. Увеличение, например, концентрации углерода в пределах марки стали 40 на 0,05 % вызывает в случае низкого отпуска (200 °C, 1 ч) прирост пределов текучести $\sigma_{\rm T}$ и прочности $\sigma_{\rm L}$ в среднем на 36 %; характеристики пластичности δ и ψ понижаются соот-

Рис. 4.2. Корреляционная связь предела прочности и ударной вязкости стали 40 при изменении концентрации углерода в пределах марки [34].

ветственно на 37 и 25 %, а ударная вязкость $a_{\rm H}$ — на 30 %. Вариации состава материала (в пределах марки) и исходной структуры при любой точности регулирования обусловливают разброс физико-механических свойств, снижают его конструкционную прочность. Последнее усугубляется тем, что конструкционная прочность представляет комплекс взаимосвязанных характеристик, зависимость между которыми в большинстве случаев теряет однозначность при вариациях состава и структуры. На рис. 4.2 показано изменение связи предела прочности и ударной вязкости стали 40 в зависимости от концентрации углерода. Даже при сравнительно «нежестких» требованиях к допустимым пределам вариации свойств (выделены прямоугольниками) изменение концентрации углерода в пределах марки на 0,025 % может привести к браку изделия.

Основная причина низкой надежности традиционных способов термической обработки состоит в том, что контролируемые в ходе обработки внешние параметры (температура и время) не отражают адекватно реальную картину протекания физических процессов, формирующих заданную структуру и требуемый комплекс свойств обрабатываемого материала. Это существенно влияет на эффективность и возможности совершенствования известных методов упрочнения металлов и сплавов. Необходимо введение таких параметров управления, которые достаточно полно характеризовали бы как исходное, так и текуцее состояние материала в ходе обработки и были бы строго связаны с кинетическими характеристиками протекающих в нем процессов.

Наиболее общий подход к решению поставленной задачи формулируется, исходя из основного положения термодинамики необратимых процессов: любое изменение состояния неравновесной системы можно характеризовать скоростью производства в ней энтропии:

$$\frac{d_i S}{dT} = -\frac{1}{\Theta} \left[\left(\frac{\partial H}{\partial \xi} \right)_{P,\Theta} - \Theta \left(\frac{\partial S}{\partial \xi} \right)_{P,\Theta} \right] \frac{d\xi}{dT} , \qquad (4.1)$$

где ξ — параметр процесса, характеризующий степень его протекания. Обозначим тепловой эффект процесса, отнесенный к бесконечно малому приращению степени его протекания, через $\left(\frac{\partial H}{\partial \xi}\right)_{P, \Theta} = -q_{P, \Theta}$. Если вклад энтропийного члена в выражение (4.1) невелик, т. е.

$$|q_{P,\Theta}| \gg T \left(\frac{\partial S}{\partial \xi}\right)_{\Theta,P},$$

то справедливо следующее условие:

$$\frac{d_i S}{dT} \simeq -\frac{1}{\Theta} \left(\frac{\partial H}{\partial T} \right)_{\Theta, P}.$$
(4.2)

Таким образом, в изобарно-изотермических условиях при выполнении условия (4.2) скорость изменения состояния термодинамической системы однозначно характеризуется скоростью выделения (поглощения) тепла, сопровождающего процесс. Неравенство (4.2) справедливо для процессов залечивания дефектов кристаллического строения: хаотически распределенных дислокаций, скоплений дислокаций, микротрещин.

Скорость изменения удельного объема как характеристика скорости процесса аналогична скорости изменения энтальпии. Каждому элементарному термодинамическому процессу соответствует узкий диапавон значений отношений (dH/dT)/(dV/dT) и $\Delta H/\Delta V$, определяемых природой процесса. Это позволяет использовать указанные характеристики для распознавания типов процессов, протекающих в твердых изменении термодинамических телах при условий. Параметры $d (\Delta H)/dT$ и $d (\Delta V)/dT$ являются производными потенциальных функций (первый — непосредственно, второй — косвенно, через термодинамические соотношения) и значения соответствующих временных интегралов $\langle (\Delta H)' dT u \rangle (\Delta V)' dT$ не зависят от хода протекания процессов. Это предопределяет однозначность связи изменений энтальпии и удельного объема с комплексом свойств, характерным для заданного структурного состояния, значит, указанные величины можно рекомендовать в качестве параметров оптимизации термической обработки.

Дилатометрия и волюмометрия — первые методы, использовавшиеся при исследовании закономерностей отпуска закаленных сталей. При нагреве с небольшими скоростями обычно наблюдаются три температурные области (80—150 °C, 190—260 °C и 260—380 °C) резкого изменения удельного объема, получившие названия соответственно I, II и III превращений при отпуске. В приведенных диапазонах с помощью калориметрических измерений фиксируется интенсивное тепловыделение, что позволяет классифицировать протекающие процессы как фазовые превращения первого рода. При этом к I и II превращениям относят соответственно первую стадию распада (мартенсит) и распад остаточного аустенита, а к III превращению следующие процессы: переход низкотемпературных карбидов («дефектного» цементита и εкарбида) в равновесный цементит, выделение углерода из пересыщенного α-твердого раствора, изменение дислокационной структуры в связи с накоплением трансляционного несоответствия по границам раздела с карбидными частицами, начальные стадии процессов возврата, а иногда и рекристаллизации. В легированных сталях в III превращение, кроме того, включают процессы образования специальных карбидов.

Рис. 4.3. Зависимость тепловых эффектов *I* и *III* превращений при отпуске от концентрации углерода [34].

Рис. 4.4. Зависимость объемных эффектов *I* и *III* превращений при отпуске от концентрации углерода в стали [34, 172].

В нелегированных сталях скорость выделения энергии и значения тепловых эффектов на всех стадиях отпуска в основном определяются составом стали по углероду. При равных условиях закалки ΔH и $\Delta V/V_0$, соответствующие II и III превращениям, монотонно зависят от концентрации углерода во всем диапазоне исследованных концентраций (рис. 4.3). Аналогичная зависимость справедлива и для тепловыделения на первой стадии отпуска, начиная сконцентраций 0,5—0,6 % С. Экстраполяция линейного участка соответствующих кривых на нулевые эффекты в пределах погрешности измерений, выполненных разными исследователями, приводит к концентрация 0,1—0,4 % С.

Результаты калориметрического анализа процессов отпуска хорошо согласуются с данными дилатометрических исследований. На рис. 4.4 приведены зависимости объемных эффектов I и III превращений. В линейном приближении в пределах наблюдаемых отклонений концентрационная зависимость относительного изменения объема при I превращении, $\Delta V/V_0 = f$ (% C), для концентраций углерода свыше (0,5—0,6) % описывается уравнением

$$(\Delta V/V_0)_I = k_I (n - n_0), \qquad (4.3)$$

где $k_{\rm I} = 35,5;$ $n_0 = 0,18$ %; n — текущая концентрация углерода в стали. Концентрационная зависимость объемных эффектов III превращения при аналогичных условиях закалки близка к таковой для тепловых эффектов: $(\Delta V/V_0)_{\rm III} = k_{\rm III}n$, где $k_{\rm III} = 71,6$.

Нелинейность зависимостей $(\Delta H)_{I} = f(n, \%)$ и $(\Delta V/V) = f(n, \%)$ в области низких концентраций удается объяснить, полагая, что от 0,1 до 0,3 % углерода (в зависимости от условий закалки) в период закалочного охлаждения или последующей выдержки при температурах не ниже ($-100 \div -120$) °С переходит на дефекты кристаллического строения либо образует области предвыделений карбидных частиц. В сталях, содержащих менее 0,5—0,6 % С, при температурах 150— 200 °С процессы «самоотпуска» захватывают, по-видимому, и стадию

Рис. 4.5. Тепловые и объемные эффекты при отпуске сталей 30 (1) и ЗОХГСА (2) [34].

Рис. 4.6. Изменение твердости ΔHV как функции относительного изменения удельного объема $\Delta V/V$ при отпуске сталей 45 (1) и У8 (2) [34].

карбидообразования, в связи с чем n_0 в уравнении (4.3) достигает своего верхнего значения: 0,3—0,4 %. Старение и карбидообразование при вакалке удается подавить, снижая легированием точку начала мартенситного превращения до $\Theta = -20 \div 40$ °C.

Изменение термокинетики процессов отпуска, вызванное легированием стали, непосредственно отражается на температурно-временных вакономерностях выделения энергии и изменения удельного объема. В качестве примера влияния легирующих элементов на температурные спектры изменения термодинамических параметров стали при отпуске на рис. 4.5 представлены калориметрические и дилатометрические кривые отпуска закаленных сталей 30 и 30ХГСА, отличающихся в основном степенью легирования. До температур отпуска, не превышающих 200 °С, тепловые и объемные эффекты при одинаковых концентрациях углерода близки по значению и распределению. Это подтверждает предположение о слабом влиянии легирующих элементов на термокинетику первой стадии распада мартенсита. Более существенные различия в ходе зависимостей $d(\Delta H)/dT = f(\Theta)$ и $d(\Delta V)/dT = f(\Theta)$ возникают в области II и III превращений. Максимум тепловыделения, соответствующий распаду остаточного аустенита в стали ЗОХГСА, смещается в сторону высоких температур в среднем на 150 °C по сравнению со сталью 30. Заметно увеличиваются тепловые и объемные эффекты III превращения. Их температурный диапазон растягивается до 600—700 °С. Соотношения V₀∆H/∆V для разных стадий отпуска (табл. 4.1) различаются на порядок величины и в пределах погрешно-

Таблица 4.1. Отношение тепловых и объемных эффектов при отпуске сталей [34]

M	$\Delta H \cdot V_0/\Delta V$, 10 ³ кал $\cdot r^{-1}$, для превращений			
Марка стали	I	111		
Ст 30 Ст 45 У8 30ХГСА	$(-1,1)^{-1} \pm 0,2 (-1,4)^{-1} \pm 0,2 (-1,3)^{-1} \pm 0,2 (-1,0)^{-1} \pm 0,2 $	$\begin{array}{c} -0.3 \pm 0.05 \\ -0.33 \pm 0.05 \\ -0.28 \pm 0.05 \\ -0.39 \pm 0.06 \end{array}$		

сти измерений существенно не изменяются при введении до 1 % легирующих элементов.

Неоднозначность зависимости «свойство — температура (время) отпуска» является одним из основных препятствий в совершенствовании традиционных методов термической обработки. Этот недостаток можно в значительной мере устранить, если изменение свойств представить в виде функции степени протекания процесса (определяемой по ΔH или ΔV). Вследствие высокой чувствительности ΔH и ΔV к концентрации углерода многократное вырождение (по числу плавок) зависимости «свойство - температура отпуска» снимается* при переходе к рассмотрению изменения свойств (рис. 4.6) как функции изменения объема. Это позволило разработать новый способ контроля термической обработки; ее осуществляют с заданной скоростью изменения энтальпии — $d(\Delta H)/dT$ или удельного объема — $d(\Delta V)/dT$, непрерывно или периодически контролируют эту скорость, а момент окончания обработки определяют по достижению заданной интегральной величины (ΔH или ΔV). При экспериментальном апробировании нового способа были изучены возможности активного контроля процессов отпуска по данным о скорости выделения энергии и изменения удельного объема. В первом случае реализовывалась аналоговая схема измерения на основе адиабатной калориметрии, во втором — специально сконструированный дифференциальный дилатометрический датчик. позволяющий наряду с изменениями объема определять скорости протекающих процессов. При обработке небольших по размеру лабораторных образцов более продуктивным является дилатометрический метод контроля.

Отпуск образцов для испытаний на растяжение и ударный изгиб производили при температурах 250 и 350 °С для стали 45 и 250 и 380 °С для стали У8. Контролируемые величины (ΔV и $\Delta V/V$) регистрировались как функции температуры и времени. Переход от регистрации в координатах $\Delta V/V = f(\Theta)$ к регистрации $\Delta V/V = f(T)$ осуществлялся после достижения постоянной температуры. Программа отпуска предусматривала проведение обработки до заданного относительного изменения объема, который для каждого образца выбирался на основанни калибровочного графика зависимости твердости от объемного эффекта отпуска для разных концентраций углерода в стали (рис. 4.7). При этом исходили из того, что объемные эффекты отпуска нелегированных сталей полностью определяются концентрацией углерода в мар-

^{*} Зависимость свойств от объемного эффекта может терять однозначность после отпуска в области распада остаточного аустенита. Это учитывается заменой знака $d(\Delta V)/dT$ на противоположный.

тенсите и не зависят от вариаций состава по легирующим элементам. О концентрации углерода судили по данным химического анализа и для каждого образца уточняли по установленной ранее концентрационной зависимости изменения кажущегося термического коэффициента объемного расширения $\beta^k = (V_0 W)^{-1} (d (\Delta V)/d\Theta)$ на первой стадии распада мартенсита. Одновременно по температурному положению максимума скорости первой стадии распада мартенсита оценивалось количество закалки, поскольку при отпуске ($\Theta = 350$; 380 °C) скорость начального участка нагрева близка к постоянной, включая температурную область II превращения. Количество α_{μ} -фазы и ее со-

Рис. 4.7. Зависимость твердости сталей 45 (1) и V8 (2) от объемного эффекта отпуска при разных концентрациях углерода (расчет с учетом изменения знака $d(\Delta V)/d\Theta$ в период II превращения) [34].

чество закалки считалось удовлетворительным при отклонении контролируемых параметров от критических значений (табл. 4.2) не болев чем на 20 %. У обработанных образцов были измерены те же свойства, что и у образцов, отпущенных по заранее заданным температурновременным режимам. Кривые распределения уширения рентгеновских линий, удельного электросопротивления, твердости и изменения эффективной магнитной проницаемости для обоих случаев приведены на рис. 4.8. Сопоставление полученных результатов по отношениям стандартных отклонений S_{II}/S₁ показывает, что при управлении отпуском по скорости и степени изменения удельного объема разброс изученных физико-механических свойств образцов уменьшается в 1,5—3 раза (параметры распределения представлены в табл. 4.3). Аналогичные значения получены для предела прочности и энергии развития трещины при ударном изгибе стали.

Преимущество по вязкости разрушения, которое имеют высокоотпущенные стали перед низкоотпущенными, обусловливает их широкое применение как конструкционного материала. Однако из-за низкого сопротивления пластической деформации использование высокоотпущенных сталей в тех случаях, когда требуется обеспечить высокую несущую способность конструкции при минимальном весе, ограничено.

Таблица 4.2. Среднее относительное изменение объема образца после обработки [34]

Марка стали	Поставка	Температура максимума скорости	β ^k в период распада оста- точного аусте-	$\frac{\Delta V}{V}$ 10 ⁴ , при температуре отпуска, °С		
		1 превращения	нита, 106°1/°С	250	350; 380	
Ст 45	1 2 3 4 5 6	< 100 °C	≪7—8	15,5 19,0 21,0 23,5 27,0 29,0	24,0 37,7 31,5 34,0 36,0 38,5	
y 8	1 2 3 4 5 6	≼ 100 °C	≪15—16	42,0 53,0 64,5 66,0 77,5 80,0	75,5 86,0 90,0 94,8 97,0 98,5	

Рис. 4.8. Распределение физического уширения рентгеновской линии (110) $\Delta \Theta$, удельного электросопротивления ρ , изменения эффективной магнитной проницаемости и твердости сталей 45 и У8 при управлении отпуском (*I*) и обработке по температурновременным режимам (350; 380° C; 45 мин) (*II*) [34].

				Парам	етры расп	ределения	4
Марка стали	Температура отпуска, °С	Свойство	Среднее значение	Стандартное отклонение	Доверитель- ный интервал	Коэффициент вариации, %	Отношение стандартных отклонений
Ст 45	250	р <i>k</i> Δμ _{эф} Твердость	23,9 4,46 573,0	1,6 1,54 74,0	0,4 0,49 9,1	6,8 34,6 13,0	2,6 1,7 1,8
	350	Уширение	5,0 21,5 3,17 421,0	0,7 2,2 1,61 38,0	0,3 0,6 0,54 5,3	13,9 10,0 50,5 9,0	1,4 1,6 1,4 1,4
у8	250	ρ <i>k</i> ∆μ _{эф} Твердость	25,4 5,34 689,0	2,9 1,37 26,0	0,9 0,36 4,7	11,4 25,7 3,7	2,2 1,4 2,4
	380	Уширение 0 <i>k</i> ∆µ _{эф} Твердость	5,3 20,9 4,79 489,0	1,0 2,0 0,82 21,0	0,4 0,8 0,28 3,4	18,8 9,5 17,1 4,2	1,1 2,0 1,9 2,9

Таблица 4.3. Вероятностное распределение свойств стали [34]

С учетом преимущества в вязкости высокоотпущенных сталей предлагалось отступить от принятого метода расчета рабочих напряжений $\sigma_{\rm p}$, как некоторой доли предела текучести $\sigma_{\rm p} = \sigma_{\rm T}/K_{3.\pi}$, и использовать высокоотпущенные стали при минимальном коэффициенте запаса прочности. Основным препятствием при реализации такого подхода является существенно случайный, не поддающийся точному расчету характер распределения эксплуатационных напряжений и статистический разброс свойств материала конструкции. Вследствие этого по принятым нормам в зависимости от требований к изделию Кал выбирается в пределах 1,5—2,5. Уменьшение K_{а.п} за счет использования менее прочных, но имеющих повышенную вязкость разрушения высокоотпущенных сталей будет осуществляться гораздо легче, если удастся обеспечить существенное снижение разброса их прочностных характеристик. Последнее возможно при реализации контроля и управления термической обработки по термодинамическим параметрам протекающих процессов.

Новый способ термической обработки в промышленных условиях был испытан при отпуске зубчатых шестерен из стали 45. Контролировалась средняя скорость выделения тепла в садке из 50—60 деталей. Эталоном служил набор шестерен, предварительно отпущенных при $\Theta = 650$ °C. Ставилась задача повысить выход годных изделий за счет уменьшения влияния различий в степени закалки, возникающих вследствие нагрева закалочной среды из-за несовершенства системы охлаждения. Для этого закаленные шестерни были условно разделены на три группы соответственно градациям повышения температуры закалочной среды. Опытным путем устанавливалось соотвётствие между требуемым уровнем и заданной твердостью, по достижению которой обработка заканчивалась. Полученные результаты представлены на рис. 4.9. Отношение стандартных отклонений $s_{II}/s_I = 1,6$, что соответствует увеличению суточной производительности в среднем на 6%.

Таким образом, возможна оптимизация режимов отпуска закаленных сталей на основе анализа термодинамических характеристик процессов непосредственно в ходе термической обработки в промышленных условиях. Необходимые операции контроля могут производиться имеющимися методами измерений и соответствующей аппаратурой. Применение новых способов управления термической обработкой существенно не усложняет технологический процесс. Сформированная на основе новых параметров оптимизации модель термической об-

Рис 4.9. Распределение твердости шестерен при новом (1) и традиционном (2) способах управления термической обработкой (рядом автоматическая запись $k = d (\Delta H)/dT$ при отпуске шестерен из стали 45 в промышленной печи) [34].

работки оказывается удобной для использования в адаптивных системах управления.

Начальные стадии отпуска при термической обработке приводят к повышению динамической прочности изделий за счет частичной релаксации внутренних напряжений в наиболее опасных микроочагах потенциального разрушения, практически не снижая среднюю статическую прочность изделий. В результате сужается кривая, описывающая вероятностное распределение прочности (см. рис. 4.9) и соответственно уменьшается вероятность разрушения.

Дальнейшее залечивание микроочагов потенциального разрушения возможно в результате высокого отпуска, так как с уменьшением локального уровня внутренних микронапряжений падает и скорость их релаксации, приближаясь к среднему значению этой скорости для изделия в целом. Высокий отпуск, хотя и повышает надежность изделия, не всегда желателен, поскольку снижает уровень прочности материала изделия. Можно добиться более полной релаксации внутренних микронапряжений в опасных микроучастках изделия, не снижая его общей прочности*. Для этого необходимо дополнительно воздействовать на изделие в ходе самого отпуска (механико-термическая обработка), соразмеряя это воздействие со степенью протекания локальных релаксационных процессов.

[•] Исследования проведены в Институте металлофизики АН УССР.

4.2. Использование теплофизических характеристик для определения предела пластичности металлов при обработке давлением [97—100, 143, 165, 166, 168—172]

Обработка металлов давлением основана на использовании пластических свойств металла. Возможность увеличения степеней пластической деформации при производстве изделий определяется ресурсом пластичности металла. Превышение этого ресурса приводит к браку изделия, а недостаточное использование — к малоэффективной работе оборудования. Пластичность металла зависит от многих факторов: природы металла, его состава, структуры, условий деформации. На пластические свойства металла определяющее влияние оказывает накопление дефектов кристаллического строения, которые изменяют его внутреннюю энергию и удельный объем. При определенных критических степенях деформации металл теряет пластичность, в нем появляются поры и трещины.

Данные по пластичности металлов всегда учитываются при составлении технологических режимов их обработки давлением. Однако до настоящего времени отсутствовал обобщающий показатель пластичности, пригодный для различных методов деформирования и схем напряженного состояния. При практических операциях обработки металлов давлением оценка предельной деформируемости с помощью известных показателей пластичности, даже с учетом комплексных экспериментальных данных измерения различных механических свойств металла в процессе деформации, дает лишь качественное представление по этому вопросу. Последнее обусловлено невозможностью корректно пересчитать деформацию при переходе от одного напряженного состояния к другому и относительностью закона подобия. Кроме того, оценка пластических свойств металла с помощью этих показателей производится только на модельных образцах, ее невозможно получить непосредственно на обрабатываемых изделиях.

Попытки получить оценку предельной деформируемости с помощью визуального контроля образования трещин в деформированном металле также не дают корректных результатов. Регистрируемые раскрывшиеся трещины не характеризуют начальных этапов потери пластичности металла и поэтому не являются критерием предельной деформируемости. Электронно-микроскопические методы не позволяют контролировать начальные этапы трещинообразования (на стадии нераскрывшихся трещин). При проведении трансмиссионных электронномикроскопических исследований значительная потеря информации происходит на стадии приготовления фольг.

С учетом связи процессов разупрочнения пластически деформированных металлов и изменения их теплофизических свойств был сформирован физический подход к решению задачи определения ресурса пластичности деформируемого металла и выявления ранних стадий трещинообразования при деформации. Он основан на существовании взаимосвязи дефектного состояния деформированного металла и отношения изменения его плотности и энтальпии, вызванных этим состоянием. Практически эта взаимосвязь проявляется в том, что при перераспределении или уничтожении дефектов кристаллического строения для данного металла существует строго определенное значение отношения обтемных и тепловых эффектов этих процессов. Это отношение начинает отличаться от стандартного при возникновении несплошностей вследствие влияния пластической деформации. При возникновении несплошностей изменение запасенной энергии за счет образования по-
верхности раздела происходит медленнее, чем изменение удельного объема при образовании пустот в металле, что и влияет на регистрируемое указанное отношение. Поэтому предел пластичности как граница сохранения способности металла к деформации без образования несплошностей определяется по отклонению отношения изменения удельного объема и энтальпии от подобного отношения, вычисленного или измеренного для случая перераспределения и уничтожения дефектов кристаллического строения.

О полноте залечивания дефектов структуры при термическом воздействии судят по температурной зависимости изменения удельного

Рис. 4.10. Зависимость отношения объемных и тепловых эффектов о степени деформации стали X18H10T:

О - при прокатке труб; • - при волочении проволоки [99].

Рис. 4.11. Зависимость отношения объемных и тепловых эффектов от степени деформации труб из стали X18H10T, полученных при различных условиях:

 Δ — из неотожженной заготовки; — из мелкозернистой заготовки; •, — малые, Δ , — большие линейные смещения при прокатке; пунктир — прокатка с подогревом; A — микротрещин нет; B — незалечивающиеся трещины [98].

объема металла. После рекристаллизации в металле отсутствуют объемные изменения, вызванные вакансионными и дислокационными дефектами, а также нераскрывшимися после деформации либо способными захлопнуться трещинами. Объемные изменения (по сравнению с удельным объемом металла до деформации), которые сохраняются при нагреве изделия выше температур завершения рекристаллизации, свидетельствуют о том, что в изделии сохранились несплошности, и, в конечном итоге, о его дефектности.

Было проанализировано отношение объемных и тепловых эффектов в проволоке из стали X18H10T, пластически деформированной с разными степенями обкатки (рис. 4.10). Это отношение при деформациях, превышающих 40 %, отличается от стандартного отношения, т. е. в металле образуются микротрещины, количество которых растет со степенью пластической деформации, достигая заметных значений при высокой (60 % и более) степени деформации. Теплая прокатка труб из этой же стали (на выходе рабочего конуса трубы температура составляла 300 °C) создает более мягкие условия деформации, при которых в металле запасается относительно меньшее количество микротрещин для одинаковых с проволокой степеней деформации. При прокатке труб со степенью деформации, достигающей 53 %, микротрещины практически не образуются, существенное их количество возникает только для степени деформации, превышающей (80 % (см. рис. 4.10).

Прокатка труб из стали X18H10T при больших линейных смещениях ведет к образованию большего количества микротрещин по сравнению с прокаткой в тех же условиях, но с меньшими линейными

Рис. 4.12. Зависимость отношения объемных и тепловых эффектов для титана и его сплавов от степени деформации:

О — чистый титан; △ — трубы из сплава 1М; □ — трубы из сплава 7М; пунктир — прокатка труб с использованием четырехвалковой клети; А — микротрещин нет; Б — залечивающиеся микротрещины; В — незалечивающиеся трецины [102].

смещениями. Более дробная деформация способствует сохранению ресурса пластичности стали. При прокатке труб с подогревом со степенью деформации 86 % из заготовки с мелкозернистой структурой (балл зерна примерно 9) образуется большее количество микронесплошностей по сравнению с прокаткой труб из крупнозернистой заготовки (балл зерна около 4) при других равных технологических условиях. Повышение температуры деформации до 450—510 °C при прокатке труб с постоянной степенью деформации значительно увеличивает ресурс пластичности стали (рис. 4.11).

Наибольшее отношение $\Delta V/\Delta H$ наблюдается для труб из стали X18H10T, изготовленных из неотожженной и мелкозернистой заготовок, которые подвергались деформации со степенью порядка 80 % при большом линейном смещении. В этом случае не происходит восстановление исходной плотности при нагреве труб до температур завершения процессов рекристаллизации и в металле остаются микротрещины. Эти микротрещины залечиваются в процессе последующей термической обработки, если напряжение не будет превышать 2,38 × $\times 10^{-7}$ кг/Дж. На рис 4.11 показано три участка отношения $\Delta V/\Delta H : A, B, B$.

Для титана и его сплавов также регистрируются три аналогичных участка отношения $\Delta V/\Delta H$ (рис. 4.12). Пластическая деформация одноосным сжатием чистого титана до 45 % не приводит к образованию микротрещин. Деформация со степенью 70 % при комнатной температуре вызывает появление в нем незалечивающихся при последующем нагреве до температур рекристаллизации значительных трещин, фиксируемых в растровом электронном микроскопе. Волочение труб из титановых сплавов, вероятно, происходит при более «мягких» схемах напряженного состояния по сравнению с одноосным сжатием чистого титана, поскольку даже при деформации сплава 1М на 80 % в нем образуются только залечивающиеся микротрещины. Сплав 7М обладает меньшим ресурсом пластичности по сравнению со сплавом 1М. При указанной степени деформации в нем могут образовываться незалечивающиеся несплошности.

Предельно допустимая степень обжатия при прокатке труб из сплава 7М на станах холодной прокатки существенно повышается за счет удлинения очага деформации при использовании четырехвалковых клетей вместо двухвалковых (см. рис. 4.12). Как и в случае нержавеющей стали, для титана и его сплавов большое значение имеет не только степень, но и вид пластической деформации, который может определять наличие или отсутствие микротрещин в металле.

4.3. Создание сплавов с особыми тепловыми свойствами

Тепловое расширение сплавов переходных металлов характеризуется рядом особенностей. Своеобразный характер изменения коэффициента теплового расширения ферромагнитных сплавов на основе железа предопределил их широкое использование в технике.

Первыми нашли применение железо-никелевые сплавы с особо низким или заданным коэффициентом теплового расширения (рис. 4.13). Сплав, содержащий 35,6 % Ni,— инвар ($\alpha = 1,2 \cdot 10^{-6}$) широко распространен в приборостроении. Лучшие показатели достигаются в тройных или более сложных сплавах. Так, сплав железа с 31— 33 % Ni и 4—6 % Со — суперинвар имеет коэффициент теплового расширения в пределах 0—0,5 · 10⁻⁶. Среди сплавов с заданным α первым разработан сплав железа с 43 % Ni, покрытый слоем меди, палтинит. Он заменил платину при изготовлении герметичных спаев со стеклом. Для этой цели используют также ковар — сплав железа с 28,5—29,5 % Ni и 17,0—18,0 % Со. В лабораториях применяется пирос — сплав с постоянным коэффициентом теплового расширения в довольно широком температурном диапазоне.

На основе хрома созданы неферромагнитные сплавы типа инвар. В чистом хроме объемный эффект невелик и температурный диапазон превращения мал, однако легирующие добавки расширяют его и изменяют температуру превращения. Это позволяет снижать эффективный коэффициент теплового расширения в диапазоне превращения. Так созданы антиферромагнитные сплавы типа инвар систем Cr—Fe — X и Cr — Co — X, где X являются рений, рубидий, осмий. Существенный недостаток перечисленных сплавов — хрупкость.

Для разработки сплавов на основе хрома с низким коэффициентом теплового расширения при комнатной температуре проанализированы экспериментальные данные по теплофизическим свойствам двойных сплавов хрома: Cr—Re, Cr—Ru, Cr—Os, Cr—Ta, Cr—V, Cr—Nb. Установлена зависимость (рис. 4.14) температурного диапазона $\Delta \Theta$ от температуры превращения в двойных сплавах хрома. В качестве

Рис. 4.13. Изотермы (Θ , C) истинного коэффициента линейного расширения железоникелевых сплавов [104].

отправной величины для выявления этой зависимости принята температура конца превращения Θ_{κ} , так как она определяется наиболее четко.

Легирующие добавки по-разному влияют на температуру перехода, увеличивая или уменьшая ее по сравнению с чистым хромом. Однако диапазон превращения в сплавах всегда был продолжительней, чем в чистом хроме, независимо от того, в какую сторону примеси смещают температуру превращения. Согласно данным, приведенным на рис. 4.14, $\Delta \Theta$ зависит от Θ_{κ} при коэффициенте корреляции, равном 0,89. Зависимость $\Delta \Theta$ от Θ_{κ} при $\Theta_{\kappa} > 310$ К (общепринятой температуры превращения в хроме) выражается корреляционным уравнением первого порядка вида

$$\Delta \Theta (ji) = \Delta \overline{\Theta} + r \frac{\sigma_1}{\sigma_2} \left[\Theta_{\kappa} (ji) - \Theta_{\kappa} \right] =$$

= -103,8 + 0,46 \Theta_{\kappa} (ji),

где $\Delta \Theta$ (*ji*) — вероятностное значение $\Delta \Theta$; σ_1 и σ_2 — средние квадратические отклонения:

$$\sigma_{1} = \sqrt{\frac{\sum \Theta_{\kappa}(ji) - \Theta_{\kappa}}{n}}; \quad \sigma_{2} = \sqrt{\frac{\sum \Delta \Theta(ji) - \Delta \Theta}{n}};$$

 Θ_{κ} и $\Delta \Theta$ — средние значения ряда распределений. При $\Theta_{\kappa} < 310$ К уравнение имеет другой вид. Однако если за начало отсчета принять 310 К, то общая зависимость $\Delta \Theta$ от Θ_{κ} для двойных сплавов хрома записывается так:

$$\Delta \Theta (ji) = a + k \left| \Delta \Theta_{\kappa} (ji) \right|, \qquad (4.4)$$

где a = 34; k = 0,46 при $\Theta_{\rm K} > 310$ K; k = 0,13 при $\Theta_{\rm K} < 310$ K. Сочетая компоненты, повышающие температуру перехода и увеличивающие диапазон превращения, например металлы VII и VIII групп, с компонентами, понижающими температуру перехода, например металлы V. группы, удается получить сплавы хрома с низким коэффициентом теплового расширения в области комнатной температуры (рис. 4.15), имеющие достаточную технологическую пластичность.

ЧАСТЬ ІІ

МЕТОДЫ ИССЛЕДОВАНИЯ ТЕПЛОВЫХ СВОЙСТВ МЕТАЛЛОВ И СПЛАВОВ

ГЛАВА 5

ТЕПЛОЕМКОСТЬ И ЭНТАЛЬПИЯ МЕТАЛЛОВ

Определение теплоемкости и тепловых эффектов изменений энтальпии в результате протекания различных физико-химических процессов осуществляют с помощью калориметрических методов. Измерения проводятся в калориметрах, устройство которых зависит от диапазона измеряемых температур, характера и продолжительности изучаемого процесса, холичества измеряемой теплоты и требуемой точности. Современная калориметрия освоила диапазон температур от 0,1 до 4000 К; продолжительность процессов — от долей секунды до нескольких недель; количество измеряемой теплоты — от 4 · 10⁻⁵ до тысяч джоулей. Калориметрия нашла широкое применение в самых различных областях науки и техники.

5.1. Определение теплоемкости [35, 36, 76, 86, 90, 104, 108, 111, 163, 284, 296]

Калориметрические методы определения теплоемкости разделяются на три группы: 1) стационарные методы, позволяющие определить теплоемкость в некотором определенном состоянии образца; 2) нестационарные, основанные на определеннии теплоемкости при непрерывном изменении состояния образца; 3) методы, при которых состояние образца изменяется, но измерения производятся дискретно (например, импульсные методы) при определенных состояниях образца.

Определение теплоемкости при низких температурах. Нернст разработал вакуумный калориметр, который с незначительными модификациями применяется и в настоящее время. Наиболее простая модификация представлена на рис. 5.1. На исследуемый металлический образец намотана изолированная платиновая проволока. Образец подвешен на проводящих проводах внутри вакуумного сосуда, который погружен в ванну с криогенной жидкостью и может быть заполнен газом (обычно гелий) или откачан. После охлаждения образца с помощью обменного газа до температуры ванны Θ_1 сосуд 4 откачивают. В условиях вакуума теплообмен между образцом и сосудом при низких температурах незначителен, и теплоемкость рассчитывается по формуле

$$\bar{c}_P = Q/(\Theta_2 - \Theta_1), \tag{5.1}$$

где Q— количество теплоты, введенное в образец пропусканием тока через платиновую проволоку 2; Θ_2 — температура образца после на-

Рис. 5.1. Вакуумный калориметр Нернста [111]:

1 — образец; 2 — проволока; 3 — проводящие провода; 4 — вакуумный сосуд; 5 — трубка.

Рис. 5.2. Схема установки для определения теплоемкости по методу Сайкса [104]:

1 — дифференциальная термопара; 2 — микронагреватель; 3 — образец; 4 — квар цевая опора; 5 — металлический стакан; 6 — держатель; 7 → термопара; 8, 15 — на-греватели; 9 — источник постоянного тока; 10 — измерительные приборы; 11 — вольтеметр; 12 — аккумулятор; 13 — сопротивление для регулировки тока в цепи спирали; 14 — амперметр; 16 — милливольтметр; 17 — пробирка с маслом для концов термопа-ры; 18 — термос; 19 — зеркальный гальванометр.

грева, определяемая по изменению электросопротивления проволоки. Последняя является одновременно и нагревателем и термометром сопротивления. В современных калориметрах применяются раздельные нагреватель и термометр, причем в качестве термометра обычно используется полупроводниковый датчик. Это особенно существенно при температурах ниже 20 К, когда температурный коэффициент сопротивления платины становится слишком малым.

Для определения теплоемкости металлов ниже 1 К образец приводится в тепловой контакт с парамагнитной солью, которая служит охлаждающим агентом и термометром. После размагничивания соли к образцу подводят известное количество теплоты с помощью электрического нагревателя и определяют изменение температуры по изменению магнитной восприимчивости соли. Теплоемкость образца находят как разность теплоемкости соли и измеренной теплоемкости. Для этой цели используются калориметры, в которых между образцом и парамагнитной солью имеется сверхпроводящий тепловой ключ. На стадии охлаждения через ключ осуществляется теплообмен образца с солью, на стадии измерения теплоемкости ключ разомкнут и нагревают лишь образец.

При температурах, превышающих точку кипения жидкого азота, тепловые потери образца за счет лучистой энергии становятся существенными и образец окружают «адиабатическим» экраном, имеющим отдельный нагреватель для поддержания температуры экрана возможно близкой к температуре образца. После установления теплового равновесия между экраном и образцом в последний вводят известное количество теплоты и измеряют соответствующее изменение температуры. При высокой чувствительности термометра эти величины могут быть малыми, методика измерения приближается к стационарной, а определяемая по формуле (5.1) теплоемкость приближается к истинной.

Другой путь определения температурной зависимости истинной теплоемкости с_Р заключается в следующем. Температурную зависимость средней теплоемкости описывают с помощью эмпирически найденного полинома

$$\overline{c}_P = A + B\Theta + C\Theta + \dots, \tag{5.2}$$

а затем определяют температурную вависимость истинной теплоемкости:

$$c_P = A + 2B\Theta + 3C\Theta + \dots \tag{5.3}$$

Определение теплоемкости при средних температурах. Типичным калориметрическим методом является метод Сайкса. Система (рис. 5.2), обогреваемая калориметрической печью, нагревается непрерывно. Температура образца незначительно осциллирует вокруг температуры внешнего массивного обогреваемого стакана за счет малых импульсов энергии, вводимой с помощью внутреннего нагревателя. Измерение производится через определенные промежутки времени, когда создаются адиабатические условия, т. е. температура образца становитоя равной температуре стакана ($\Theta = \Theta_{cT}$). В этої промежуток времени теплоемкость пропорциональна отношению мощности обогрева образца W к скорости изменения его температуры dQ/dT и рассчитывается по уравнению

$$c_P = \frac{qW}{Md\Theta/dT} , \qquad (5.4)$$

где M — масса образца; q — тепловой эквивалент работы. Это уравнение справедливо лишь при условии $\Theta_0 = \Theta_{\rm cr}$. Так как в действительности $\Theta_0 - \Theta_{\rm cr} \neq 0$, теплоемкость лучше рассчитывать по уравнению

$$c_P = \frac{qW}{M \left[\frac{d\Theta_{\rm cr}}{dT} \frac{d\Delta e}{dT} \frac{d\Theta_{\rm cr}}{de_{\rm cr}} \right]},\tag{5.5}$$

где Δe — показания дифференциальной термопары; $e_{\rm cr}$ — показания термопары стакана. Метод Сайкса позволяет достаточно точно опреде-

лять истинную теплоемкость, если количество теплоты, сообщенное телу, и повышение его температуры малые величины.

Метод Сайкса успешно применяется в основном для исследования истинной теплоемкости и теплот превращения обратимых фазовых превращений второго рода (рис. 5.3). Он менее пригоден для обратимых фазовых превращений первого рода (полиморфные превращения), так как в точке фазового превращения $c_p \rightarrow \infty$. В случае необратимых фазовых превращений первого рода, протекающих сравнительно медленно, можно определить «кажущуюся» теплоемкость:

$$c_{\rm K} = c_P - dQ/d\Theta. \tag{5.6}$$

При повторном нагреве $c_{\rm K} = c_P$ и в результате получаем $\int_{\Theta_1} c_{\rm K}(\Theta) - c_{Ps}$

т. е. тепловой эффект. Методом Сайкса достаточно надежно определяются только большие тепловые эффекты. Недостатком метода является то, что адиабатические условия создавались только через определенные промежутки времени, теплоемкость реально можно было определить через 20—40 °С, что очень неудобно, особенно при исследовании процессов, протекающих в узком температурном диапазоне, например, при полиморфных превращениях в металлах. Кроме того, всевозможные паразитые

Рис. 5.3. Температурная зависимость сплава Cu Zn [104], измеренная методами Смита (О) и Сайкса (Х).

термоЭДС в дифференциальной термопаре могут приводить к тому, что измеренное равенство $\Theta_0 = \Theta_{cr}$ не будет соответствовать истинному, т. е. в момент измерения не будут выполняться строго адиабатические условия.

Теплоемкость можно рассчитать, измеряя изменение температуры самого образца:

$$c_P = \left[\frac{(W-a') T_P}{\Theta_2 - \Theta_1} - b'\right] \frac{1}{M}, \quad (5.7)$$

где a' — поправка на несовершенство адиабатических условий (измерение проводится, когда $\Theta_0 = \Theta_{cr}$); T_P — время, в течение которого температура образца повышается от Θ_1 до Θ_2 ; b' — поправка, выражаю-

щая тепловое значение термопары, внутреннего нагревателя, подставок и т.п. Этим способом удается измерять теплоемкость практически через несколько градусов, однако хотя измеренная теплоемкость и приближается к истинной, но ею не является, так как измерение производится в температурном диапазоне порядка 0,5°.

Указанные методы измерения теплоемкости весьма трудоемки. Точность определения теплоемкости зависит от правильности поддержания заданных рабочих режимов прибора: определенной скорости нагрева, минимальной разности температур при установлении адиабатических условий нагрева образец — стакан и т. д. Таким образом, точность измерения теплоемкости определяется и субъективными качествами экспериментатора, который, естественно, не всегда может воспроизводить тождественные условия проведения эксперимента. Следовательно, необходима автоматизация измерений теплоемкости. В установке Елингхауса температура внешнего обогреваемого стакана автоматически увеличивалась с постоянной скоростью. Обравец нагревался изнутри микронагревателем, причем условия нагрева за счет изменения подводимой к микронагревателю энергии выбирались так, что температура образца, ранее равная температуре внешнего стакана, несколько увеличивалась (-0,1°). После выравнивания температуры ($\Theta_0 = \Theta_{cT}$) к микронагревателю снова подавался импульс постоянного тока для аналогичного увеличения Θ_0 и т. д. Поскольку $\Delta \Theta$ для всех температур эксперимента одинаково, энтальпия была пропорциональна работе электрического тока, которая измерялась и фиксировалась на фотобумаге при помощи специально созданного устройства. В устройстве для измерения активной мощности использован обычный ваттметровый счетчик электрической энергии, ко-

Рис. 5.4. Блок-схема калориметра фирмы «Шимадзу» SH-2B для определения удельной теплоемкости [86]:

1 — схема стабилизации напряжения; 2, 7 — терморегуляторы; 3 — источник питания; 4 — схема генерации перепада; 5 — детектор нулевой точки; 6 — схема отсчета времени; 8 — усилитель постоянного тока; 9 — самописец отсчета времени и температуры.

Рис. 5.5. Теплоемкость никеля, записанная на установке фирмы «Шимадзу» SH-2B [86].

торый поворачивал зеркальце оптического устройства. В установке Елингх чуса теплоемкость определяется согласно формуле (5.7), однако попр вка на теплообмен между несколько перегретым образцом и внешним подогреваемым стаканом (поправка a') фактически не вносится, что существенно отражается на результатах измерения.

На рис. 5.4 представлена блок-схема устройства для измерения удельной теплоемкости (модель SH-2B фирмы «Шимадзу»). В отличие от установки Елингхауса в этой модели вместо внешнего стакана использовано специальное нагревательное устройство для создания более строгих адиабатических условий при работе калориметра. Однако принцип измерения теплоемкости связан с некоторым перегревом образца, тепловые потери при котором не учитываются, что вносит ошибку в определение c_p . В этой установке регистрируется время, необходимое для определенного повышения температуры образца. Теплоемкость определяется по формуле, аналогичной (5.7), однако поправкой а' пренебрегают. На рис. 5.5 показана запись изменения удельн ой теплоемкости никеля с помощью установки SH-2B.

В установке В. Люстерника применено автоматическое поддержание квазиадиабатических режимов работы прибора с помощью специальных устройств. В отличие от установок «Шимадзу» SH-2B и Елингхауса учитывается поправка на несовершенство условий нагрева, которая периодически определяется. Автоматическая запись теплоемкости или величины, ей пропорциональной, по методу В. Люстерника не предусмотрена. В Институте металлофизики АН УССР разработана и создана калориметрическая аппаратура КТ-2, автоматически регистрирующая изменение теплоемкости в зависимости от температуры и точно ее определяющая с учетом необходимых поправок. Вакуумный калориметр КТ-2 измеряет и регистрирует теплоемкость металлических образцов в квазиадиабатическом режиме при непрерывном нагреве в диапазоне температур от 300 до 1300 К. Скорость изменения температуры можно варьировать в пределах 1—10 град/мин. В рабочем объеме калориметра создается разряжение 133,3 · 10⁻⁶ Па. Блок-схема установки представлена на рис. 5.6. Нагрев образца с постоянной скоростью обеспечивается программным задающим и регулирующим устройством. Квазиаднабатические условия устанавливаются и поддерживаются

специальным устройством, автоматически выравнивающим и поддерживающим температуру внутренней стенки большой печи калориметра, равной температуре исследуемого образца. Из-

Рис. 5.6. Функциональная схема калориметра КТ-2:

І — образец; 2 → термостат; 3 — электронный потенциометр; 4 — программное задающее устройство; 5, 12 → усилители; 6 — блок аднабатических режимов; 7 — блок питания; 8 — функциональный преобразователь; 9, 11 → реверсивные двигатели; 10 → двухкоординатный электронный потенциометр [86].

менение энтальпии определяется способом регистрации мощности постоянного тока по времени при нагреве с постоянной скоростью. Для непосредственного измерения мощности применялись квадратичные функциональные преобразователи на основе термокреста или полупроводникового датчика Холла.

Недостатком сканирующих калориметров являются существенные затруднения при определении температурной зависимости теплоемкости, поскольку необходимо учитывать поправки, обусловленные недостаточно строгим соблюдением программы нагрева (охлаждения), неполной адиабатичностью условий, так называемым фоном калориметра и т. д. Эти недостатки легко устраняются электрическим моделированием температурной зависимости погрешностей, Последние в ходе эксперимента автоматически суммируются с величиной, моделирующей изменение теплоемкости.

Пусть в полом цилиндрическом образце с внутренним нагревателем, окруженным охранной оболочкой, для создания квазиадиабатических условий температура поддерживается равной температуре поверхности образца: $\Theta_{\rm n} = \Theta_{\rm H} + b_{\rm n} T (b_{\rm n} = d\Theta_{\rm n}/dT)$. Тогда тепловая мощность $W_{\rm n}(T)$, вводимая в образец, расходуется на его обогрев. При строгом соблюдении регулярного режима, без учета термической инерции, температурная зависимость теплоемкости моделируется выражением

$$c_P(\Theta) = \mathcal{W}_{\Pi}(T)/b_{\Pi}. \tag{5.8}$$

В действительности для передачи тепла от нагревателя к образцу требуется конечное время, определяемое термической инерцией образца $r = c_P / \eta (\eta - коэффициент теплопередачи). Это приводит к отстава$ нию температурной зависимости теплоемкости на b_nt, которая учитывается в регистрирующем устройстве.

При резких изменениях теплоемкости в области фазовых превращений температура и скорость нагрева образца отклоняются от программы ввиду инерции регулирующих устройств. Коррекцию этих искажений можно проводить двумя способами. При первом способе программную скорость (вводимую при измерении как константу прибора) корректируют поправкой $d\Delta\Theta/dT$ ($\Delta\Theta = \Theta - \Theta_n -$ отклонение измеряемой температуры от программной) и для получения теплоемкости производят операционное деление текущего значения $W\left(T
ight)$ на

истинную скорость нагрева $b - b_{\rm n} + \frac{d\Delta\Theta}{dT}$. В результате имеем

$$c_P \left(\Theta + b_{\Pi} \tau\right) = W \left(T\right) / \left(b_{\Pi} + \frac{d\Delta\Theta}{dT}\right).$$
(5.9)

При втором способе проводят частичную коррекцию добавочным сдвигом температурной зависимости Ср на $\Delta \Theta$:

$$c_P \left(\Theta + \Delta\Theta + b_{\Pi}\tau\right) = W(T)/b_{\Pi}.$$
(5.10)

Пусть текущее значение мощности, вводимой в образец, W (T) отличается от программной W_п (T). Для определенности положим, что ₩ (T) > ₩_п (T) и, значит, b > b_п. Сдвиг во времени, необходимый для того, чтобы регистрируемая мощность совпала с программной, обозначим через ΔT , так что $W(T) = W_n(T + \Delta T)$. Отсюда очевидно, что регулируемая W (T)/bo моделирует теплоемкость образца, отнесенную к температуре, отличающейся от программной на $\Delta \Theta$.

Таким образом,

$$W(T)/b_{\Pi} = W_{\Pi}(T + \Delta T)/b_{\Pi} = c (\Theta_{\Pi} + \delta \Theta).$$
(5.11)

Однако
 W (T)/b моделирует теплоемкость, отнесенную к текущей измеряемой температуре
 Θ образца: c_p (Θ)
 = W (T)/b. Следовательно,

$$W(T)/b_{\Pi} = W(T) b/bb_{\Pi} = c(\Theta) b/b_{\Pi}.$$
(5.12)

Из выражений (5.11) и (5.12) следует уравнение

$$c\left(\Theta_{\Pi}+\delta\Theta\right)=c\left(\Theta\right)b/b_{\Pi}.$$
(5.13)

Для определения $\delta \Theta$ введем систему координат $\Theta' - T'$ с началом от-счета в точке $\Theta_0 - T'_0$, где программная температура совпадает с измеряемой. Полагая на малом участке изменение температуры линейным, запишем в этой системе координат:

$$\begin{array}{l} \Theta_{n}^{\prime} = \Theta_{n} - \Theta_{0} = b_{n}T^{\prime}, \\ \Theta = \Theta^{\prime} - \Theta_{0} = bT^{\prime}. \end{array}$$

$$(5.14)$$

При небольшом изменении температуры теплоемкость также линейно изменяется с температурой:

$$c = c_P (1 + gT),$$
 (5.15)

где температурный коэффициент приближенно определяется из текущего значения мощности:

$$g = \frac{1}{c} \frac{dc}{d\Theta} \approx \frac{1}{b_{\rm n} W} \frac{dW}{dT}.$$
 (5.16)

Из формул (5.13) — (5.16) находим в первом приближении по $\Delta \Theta = (b - b_n)/T^t$

$$\delta \Theta = 2\Delta \Theta + \frac{1}{gb_n} \frac{d\Delta \Theta}{dT} \cdot$$
 (5.17)

При точности поддержания скорости нагрева $\frac{\Delta b}{b} = b^{-1} \frac{d\Delta \Theta}{dT} \simeq 0,1 \%$

второй член в уравнении (5.17) меньше первого. Таким образом, учитывая лишь первое слагаемое, находим, что частичная коррекция температурной зависимости производится на $\delta \Theta = 2\Delta \Theta$ по отношению к программной температуре или на $\Delta \Theta$ по отношению к измеренной, как и записано в (5.10). Коррекция, обусловленная неравномерностью скорости нагрева по размеру образца, не проводилась, поскольку при высокой теплопроводности металлических образцов вносимая погрешность значительно меньше, чем вызываемая неточностью поддержания режима и тепловой инерцией образца.

В связи с тем что в вакууме теплопередача осуществляется в основном излучением, для учета температурной зависимости применялась формула

$$\tau = \tau_0 \left(1 + \frac{\Theta - \Theta_{\pi}}{b_{\pi} W} \frac{dW}{dT} \right) \left(\frac{\Theta_{\pi}}{\Theta} \right)^3.$$
 (5.18)

Поскольку разряжение в калориметре составляет 150 · 10⁻⁵ Па и теплопередача от нагревателя к образцу осуществляется преимущественно излучением, то можно приближенно предположить, что с повышением температуры ошибка в определении температурной зависимости, вызванная термической инертностью, согласно (5.18), уменьшается и становится сравнима с ошибкой, обусловленной неточностью поддержания температуры. Так, при $\Theta = 1500$ К $b\tau \sim 1^{\circ}$, а $\Delta \Theta = 1,5^{\circ}$. При отсутствии аномалий основной вклад в суммарную погрешность в опре-

делении теплоемкости $\frac{\Delta c_P}{c_P} = \frac{\Delta b}{b} + \frac{\Delta \Theta + b\tau}{c_P} \frac{dc_P}{\partial \Theta}$ вносит отклонение ско-

рости нагрева от программы ввиду малости $\frac{1}{c_P} \frac{dc_P}{d\Theta}$ (10-4 для никеля и

10⁻³ для железа). Однако в области аномалий с возрастанием dc_P/c_P эти ошибки становятся соизмеримыми. Так, при фазовом превращении второго рода (магнитное превращение) для никеля $\frac{1}{c_P} \frac{dc_P}{d\Theta} b\tau$ равно 9 %, а для железа — 6 %. В то же время в области этих превращений $b\tau^4$ равно 12° для никеля и 6° для железа.

Моделирование погрешностей в калориметре АКТ-3 производится при помощи функционального потенциометра. На рис. 5.7 показана температурная зависимость истинной теплоемкости никеля электроннолучевой плавки, измеренная на установке АКТ-3. На рис. 5.8 функциональная схема измерения теплоемкости на автоматическом калориметре АИТ-4. Тепловые режимы калориметрического устройства управляются тремя независимыми регуляторами 1-3, из которых 1, 2 управляются тепловыми экранами, а 3 — внутренним нагревателем образца. Программный регулятор 3 обеспечивает постоянную скорость нагрева образца. Измеритель мощности обогрева представляет собой ваттметр на основе полупроводникового преобразователя Холла. В качестве регистрирующего устрой-

р качено регистрирующею устрои ства используется двухкоординатный электронный потенциометр. Привод температурной координаты регистрирующего потенциометра кинематически жестко связан с токосъемным устройством функционального потенциометра, что обеспечивает синхронное с температурой введение поправок. Сигнал поправки через масштабный усилитель поступает совместно с сигналом от ваттметра в суммирующую схему. Особое значение в проведении измерений имеет нагрев образца с постоянной скоростью, так как при применении стандартных

Рис. 5.7. Температурная зависимость теплоемкости никеля, записанная на установке АКТ-3 [86].

программных регуляторов возникают трудности в его реализации, в частности на начальных участках программы. Это связано с тем, что большинство выпускаемых устройств обеспечивает выполне-

Рис. 5.8. Функциональная схема измерения теплоемкости на калориметре АИТ-4 [76]:

1, 2 — регуляторы; 3 — измеритель температуры; 4 — блокиратор; δ — задающее устройство; 6 — схема сравнения; 7 — схема выбора режима регулирования; 8 собственно регулятор; 9 — сумматор; 10 — блок выработки команд управляющего воздействия; 11 — блок коммутации; 12 — схема отсчета времени; 13 — исполнительный орган; 14 — измеритель мощности обогрева; 15 — регистрирующий потенциометр; 16 — суммирующая схема; 17 — масштабный усилитель; 18 — функциональный потенциометр.

ние температурного режима с отклонениями типа осцилляций. При этом амплитуда осцилляций максимальна в начале эксперимента и постепенно уменьшается с повышением температуры, что соответствует выходу регулятора в установившийся режим. Изменения температуры образца описываются функцией

$$\dot{\Theta}_{obp} = AT - Bexp(-aT) \sin \omega T$$
,

где $B = 1/\omega = \dot{\Theta} \tau / \pi$ (2т — период функции); $\dot{\Theta}$ — скорость нагрева образца по программе.

Относительная погрешность поддержания температуры образца за счет несоблюдения программы,

$$\frac{\Theta_{3a,\mu} - \Theta_{obp}}{\Theta_{3a,\mu}} = \frac{\Delta \Theta_{np}}{\Delta \Theta_{3a,\mu}} = \frac{Bexp(-aT)\sin \omega T}{AT} = \frac{exp(-aT)\sin \omega T}{\omega T},$$

быстро уменьшается вследствие затухания колебаний температуры и ее общего превышения. Поэтому максимальная погрешность за счет невыполнения программы наблюдается на начальном ее участке. Она оценивается по формуле

$$\Delta \Pi_{\text{npor}} = \frac{\partial}{\partial \Theta} \left(\frac{\partial \Pi'}{\partial \Theta} \right) \frac{\Delta \Theta_{0 \text{ max}}}{A}.$$

Приведенная схема позволяет перед началом нагрева определить эффективную теплоемкость системы для установления необходимого при заданной скорости нагрева управляющего воздействия, запаздывания, а также оценить тепловую инерционность системы для выбора закона регулирования. Это достигается вондированием системы калиброванным импульсом энергии малой мощности, не изменяющим в пределах допустимой ошибки ее теплового равновесия.

Сканирующие калориметры широко применяются в практике исследований. Точность измерений лучших приборов не хуже 1 %. Метод хорошо применим для измерения теплоемкости при средних температурах.

Определение теплоемкости при высоких температурах. Выше 1800 К создание адиабатических условий сопряжено со значительными трудностями, теплоемкость определяется косвенным способом с помощью массивного калориметра. Сначала определяется температурная зависимость энтальпии, а затем результаты аппроксимируются полиномом, который дифференцируют по температуре. Полученный полином более низкой степени описывает температурную зависимость c_p в исследуемом температурном диапазоне.

Импульсные методы определения теплоемкости. Использование лазеров в режиме модулированной добротности позволяет нагреть металлический образец за столь короткое время, что тепловые потери оказываются несущественными, и все трудности сводятся к измерению температуры количества введенной теплоты. Поэтому преимущественно применяется нагрев образцов протекающим по ним электрическим током. Измерения проводятся при больших скородтях нагрева, следовательно, создаются условия, близкие к адиабатическим. Поправки на теплопроводность и радиационные потери составляют не более 5 %. При измерении регидтрируются сила тока, падение напряжения на образце, температура образца и ее производная по времени $d\Theta/dT$. Теплоемкость образца рассчитывается по формуле

$$c_P = \frac{W/T}{Md\Theta/dT},$$

где W/T — мощность обогрева образца.

Модуляционные методы определения теплоемкости. Они основаны на использовании зависимости повышения температуры образца, обогреваемого переменным током, от его теплоемкости и частоты переменного тока. Модуляционные методы позволяют проводить измерение в широком температурном диапазоне и непрерывно регистрировать измеряемые параметры при изменениях температуры. Методы основаны на автоматической компенсации колебаний температуры образца во время опыта (температура образца периодически колеблется около среднего значения). При непосредственном обогреве тонкого образца протекающим по нему электрическим током $I = I_0 + I_1 \sin \omega T$ ($I_1 \ll \langle I_0 \rangle$) температура образца и его сопротивление испытывают периодические колебания с частотой $\omega: \Theta = \Theta_0 + \psi$, $\Delta R = R_0 \alpha \psi$. Условия баланса мощностей приводят к уравнению

$$Mc_P = \frac{d\Psi}{dT} + J (\Theta_0) + \left(\frac{dJ}{d\Theta}\right)_{\Theta_0} \Psi =$$
$$= J_0^2 R + 2J_0 J_1 R \sin \omega T + J_0^2 R_0 d' \Psi,$$

где M — масса образца; $J(\Theta_0)$ — теплоотдача образца при температуре Θ_0 ; $R_0 \alpha'$ — производная зависимости сопротивления от температуры при температуре Θ_0 .

Изменения теплоотдачи образца при изменении его температуры учитытвались с помощью разложения в ряд; при расчетах ограничиваются первым членом разложения, учитывая малые изменения температуры. Поскольку $J(\Theta_0) = J_0^2 R$, обозначая $B = \left(\frac{dJ}{d\Theta}\right)_{\Theta_0} - J_0^2 \alpha'$, полу-

чаем

$$\frac{d\psi}{dT} + \frac{B}{Mc_P} \psi = \frac{2J_0 JR}{Mc_P} \sin \omega T.$$

Решение уравнения имеет вид

$$\begin{split} \mathbf{F} &= \Psi_0 \sin \left(wT - \varphi \right), \\ \Psi_0 &= \frac{2J_0 JR \sin \varphi}{M c_P w}, \\ tg \; \varphi &= M c_P w/B. \end{split}$$

Отсюда

$$Mc_P = \frac{2J_0 JR \sin \varphi}{\omega \psi_0}.$$

Таким образом, для определения теплоемкости необходимо измерить амплитуду колебаний температуры образца при определенной амплитуде переменной составляющей тока, нагревающего образец. Теплоемкость принимается зависящей только от соотношения этих амплитуд, что позволило создать компенсационную схему, условия уравновешивания которой не зависят от амплитуды колебаний температуры образца. На рис. 5.9 приведена схема установки, а на рис. 5.10 — компенсационная схема с использованием переменной емкости.

Полуколичественные методы. В исследовательской практике часто возникают задачи, связанные с изучением аномалий теплоемкости в области предполагаемого фазового перехода. В таких случаях существенно не определение абсолютных величин удельной теплоемкости, а возможность наблюдения и регистрации относительных изменений теплоемкости в интересующем исследователя интервале температур. При этом измерения могут быть проведены с помощью простых устройств.

Метод Смита предполагает поддержание постоянной $\Delta \Theta$ в стенке стакана (рис. 5.11), окруженного калориметрической печью, т. е. по-

Рис. 5.9. Схема измерения теплоемкости модуляционным методом [86]. Рис. 5.10. Компенсационная схема измерения теплоемкости с использованием переменной емкости: 1— избирательный усилитель; 2, 4— синхронные детекторы; 3, 5— усилители; 6— генератор низкой частоты [86].

стоянство теплового потока через стенку стакана. При помещении в стакан исследуемого образца или эталона для поддержания той же

Рис. 5.11. Основная часть установки Смита [104].

разности температур ΔΘ, что при нагреве пустого стакана, необходимо изменить скорость нагрева. Теплоемкость образца или эталона принимается приблизительно пропорциональной величине, обратной скорости нагрева dT/dΘ. Если известна теплоемкость эталона, то в результате трех серий измерений (нагрев пустого стакана, нагрев стакана с эталоном, нагрев стакана с образцом) теплоемкость образца рассчитывается по формуле

$$\frac{M_{\mathfrak{s}}c_{\mathfrak{s}}}{M_{\mathfrak{0}}c_{\mathfrak{0}}} = \frac{\frac{\Delta T_{\mathfrak{s}}}{\Delta \Theta_{\mathfrak{s}}} - \frac{\Delta T_{\mathfrak{c}}}{\Delta \Theta_{\mathfrak{s}}}}{\frac{\Delta T_{\mathfrak{0}}}{\Delta \Theta_{\mathfrak{0}}} - \frac{\Delta T_{\mathfrak{c}}}{\Delta \Theta_{\mathfrak{0}}}}$$
(5.19)

где $M_{9}c_{9}$, $M_{0}c_{0}$ — соответственно масса и теплоемкость эталона и образца; $\Delta T/\Delta\Theta$ — величина обратная скорости нагрева (стакана, эталона и образца). Зная тепловой поток при температуре превращения, можно определить и тепловой эффект: $Q = J\Delta T/M$ (J — тепловой поток

ΔT — продолжительность превращения при постоянной температуре; M — масса образца). Для изучения превращения в сплаве Cu — Zn определяли температурную зависимость теплоемкости исследуемого образца (см. рис. 5.3) по формуле (5.19). Метод Смита дает приблизительное значение теплоемкости. Однако описание ее температурной зависимости вполне удовлетворительно; если можно прокалибровать хотя бы одну точку, то результаты достаточно хорошо совпадают с данными, полученными по методу Сайкса.

Приближенная оценка теплового эффекта, наблюдаемого в сравнительно узком температурном или временном интервале, проводится простым способом. Расчеты основываются на допущении, что теплоемкость исследуемого материала не изменяется в процессе отжига. Исходя из предположения, что энергия, освобождаемая при нагревании от температуры Θ до $\Theta + d\Theta$, является функцией, не зависящей от скорости нагрева, возрастание температуры в течение времени dT определяется уравнением баланса энергии: $_{CP}d\Theta = RdT + Q(T) d\Theta$ или $d\Theta/dT = (W/RT)/(c_p - Q(\Theta))$, где W/T — скорость поступления энергии к образцу. Полный тепловой эффект в интервале температур рассчитывается по формуле

$$Q = \int_{\Theta_1}^{\Theta_2} Q(\Theta) d\Theta = \int_{\Theta_1}^{\Theta_2} c_P d\Theta - \int_{T_1}^{T_2} W/T dT.$$
 (5.20)

Если температура повышается достаточно быстро, то количество теплоты, передаваемое образцу от внешнего источника обогрева за время этого повышения, мало. Для определения теплового эффекта можно воспользоваться приближением (5.20). При этом следует учесть, что если температура образца не повышается достаточно быстро, то появляется дополнительная погрешность за счет тепловых потерь. Поэтому измеряемое экспериментально изменение температуры $\Delta \Theta := \Theta_2 - \Theta_1$ оказывается несколько заниженным.

Способ улучшается за счет подстановки в формулу (5.20) не измеренной разности температур, а экстраполированной на основе ньютоновского закона охлаждения (по кривой охлаждения образца), которая соответствует гипотетической максимальной разности температур между образцами в отсутствие потерь за счет теплообмена.

Проверка пригодности оценок, выполненных этими двумя способами, показала, что точность в определении тепловых эффектов невелика и понижается с повышением температуры эксперимента, т. е. с увеличением тепловых потерь. Например, расчет, проведенный по формуле (5.20) на термограмме, полученной при непрерывном нагреве двух одинаковых эталонных образцов стали и дополнительным подогревом одного из них за счет трех одинаковых импульсов тока (энергия, израсходованная при каждом импульсе, составляла 7,64 кДж/кг), дал для первого теплового эффекта 5,18 кДж/кг, для второго — 4,18 кДж/кг, а для третьего — 3,17 кДж/кг; при расчете по второму способу — соответственно 7,10, 7,94 и 6,68 кДж/кг. Точность оценки растет по мере сужения температурного или временного диапазона. Так, при нагреве тех же эталонных образцов импульсами одинаковой энергии (1,92 кДж/кг), но разной продолжительности ($T_1 = 20$ мин, $T_2 = 5$ мин), расчет по формуле (5.20) дает тепловой эффект 1,25 кДж/кг, а по второму способу — 1,37 и 2,04 кДж/кг. Для процессов, носящих импульсный характер, различия между результатами уменьшаются

5.2. Определение энтальпии и ее изменений [7, 23, 51, 77, 81, 86, 92, 93, 104, 108, 111, 128, 146, 151, 180, 190, 191, 193, 205, 207, 221, 277, 286, 297, 300]

Если определена температурная зависимость истинной $c_P(\Theta)$ или средней $\bar{c}_P(\Theta)$ теплоемкости, то соответствующее изменение энтальпии металла определяется по формуле

$$\Delta H = \int_{\Theta_1}^{\Theta_2} c_P d\Theta = c_P (\Theta_2 - \Theta_1).$$
 (5.21)

Эта формула достаточно точна, если в исследуемом металле или сплаве не происходит какой-либо процесс, например фазовые превращения. Некоторые методы определения теплоемкости позволяют оценить и тепловой эффект процесса, однако точность этих оценок не всегда удовлетворительна. В таком случае необходимо непосредственное определение теплового эффекта процесса. Калориметры для непосредственного определения энтальпии и ее изменений в основном сводятся к двум типам: калориметры с переменной температурой, в которых количество теплоты определяется по изменению температуры калориметра; калориметры с постоянной температурой, в которых количество теплоты определяется по количеству вещества, изменившего свое агрегатное состояние (плавящееся твердое тело или испаряющаяся жидкость).

Калориметры первого типа основаны на использовании метода смещения. Этот метод применяется в двух вариантах. Первый из них заключается в определении изменения температуры калориметра при помещении в него образца, предварительно нагретого до более высокой температуры (прямая калориметрия). Обратная калориметрия заключается в помещении образца в калориметр с более высокой температурой. Количество выделенной (поглощенной) при этом теплоты вычисляется по формуле

$$\Delta U = \int_{\Theta_1}^{\Theta_2} c_P d\Theta = c_P (\Theta_2 - \Theta_1), \qquad (5.22)$$

где c_P теплоемкость калориметрической среды; Θ_1 и Θ_2 начальная и конечная температуры этой среды. При этом предполагается, что отсутствует теплообмен с окружающей средой. Для этой цели помещают калориметрическое вещество, например воду, в оболочку с большим термическим сопротивлением. Полной адиабатичности добиться не удается, и поправки на теплообмен обычно производятся графически (рис. 5.12). Водяной калориметр применим в узком диапазоне температур нагрева исследуемых образцов. Для расширения этого диапазона в массивных калориметрах применяют твердую калориметрическую среду, например медь, тепловые свойства которой хорошо изучены. Образец нагревают предварительно в печи, помещенной над калориметром, и сбрасывают в конусообразное углубление массивного блока. В массивном калориметре энтальпия может быть определена до 3100 К.

Своеобразным обратным калориметром смещения (калориметром второго типа) является прибор Бивера, в котором деформированный образец растворяется в расплавленном олове. При этом теплота растворения компенсирует теплоту, необходимую для разогрева образца до температуры жидкого олова. Менее достоверен способ, основанный на растворении деформированного и отожженного металла в водных растворах бромистого натрия и брома, так как малую скрытую энергию деформации приходится определять как разность двух больших теплот растворения. Погрешность в определении последних превышает искомую величину.

Примером калориметра второго типа служит ледяной калориметр, в котором определяется масса льда, растаявшего в начале опыта под влиянием теплового эффекта изучаемого процесса. Изотермический калориметр не аккумулирует тепло, а обеспечивает очень быстрый теплообмен. Для такого калориметра характерна некоторая термиче-

ская инертность, что затрудняет изучение процессов, происходящих в узком временном диапазоне.

Таким образом, метод смешения применим для определения суммарного количества теплоты при обратимых и необратимых процессах и является классическим для определения энтальпии металлов многократным измерением при различных температурах. После математической обработки результатов измерений температурная зависимость энтальпии представляется иногда в виде полинома. Основное преимущество метода заключается в том, что температура собственно калориметра остается близкой к комнатной, так как нагреву до высоких температур подвергается лишь образец, который затем быстро сбрасывается в калориметр. Для измерения малых тепловых эффектов метод смешения не применяется, так как теплоемкость кало-

Рис. 5.12. Изменение температуры калориметрического вещества при определении изменения внутренней энергии (стрелкой указан момент введения обгазца, а пунктирной линией — температура окружающей среды) [90].

риметра значительно превосходит теплоемкость образца и температура калориметра изменяется недостаточно для обеспечения точности измерений.

Микрокалориметр Тиана — Кальве основан на измерении теплового потока. Теплота, выделившаяся в образце, быстро рассеивается в калориметре. Рассеивание теплоты производится большим количеством термопар, расположенных в пространстве вокруг образца так, что теплообмен между образцом и массой вещества калориметра осуществляется в основном лишь через термопары (рис. 5.13). Это позволяет измерять небольшие тепловые потоки. Регистрируемая при этом величина представляет не общее количество теплоты, а тепловую мощность.

Таким образом, микрокалориметры Тиана — Кальве позволяют в определенной степени изучать тепловые эффекты и их временное распределение; кроме того, измерять дифференциально, что значительно повышает их чувствительность. Разработан автоматизированный вариант микрокалориметра с полной компенсацией теплового эффекта с помощью эффекта Пельтье (рис. 5.14). Он применяется для исследования экзотермических и эндотермических процессов, протекающих во времени (рис. 5.15).

Широко применяется в металлофизике микрокалориметр Борелиуса. Теплообмен между образцом и термостатом с постоянной тем-

Рис. 5.13. Схема микрокалориметра Тиана — Кальве [51]:

1→ термостатированный блок; 2 — гальванометр; 3 → теплоизолирующий кожух; 4 → система радиационных экранов; 5 — теплопроводящий блок; 6 — теплопроводящий корпус; 7, 8 → тепловые линзы; 9 — калориметрическая ячейка; 10 — спан термопар; 11 — ампула с образцами; 12 → опора; 13 — теплопроводящий цилиндр; 14 → теплоизолятор; 15 → термобатарея.

Рис. 5.14. Электрическая схема микрокалориметра Канбура и Джонсона [86]:

1 — таймеры; 2 — потенциометр; 3, 10 — кулонометрические источники тока; 4 — эталонное сопротивление; 5 — нагреватель; 6 — термистор; 7 — охладитель; 8 — нульдетектор; 9 — цифровой вольтметр.

пературой осуществляется через термобатарею, играющую роль термического сопротивления. Регистрируется разность температур между образцом и термостатом. Скорость выделения теплоты определяется по формуле

$$\frac{1}{M}\frac{dQ}{dT} = \frac{r}{W}f(T) = \left[1 + Wc_P \frac{d\ln f(T)}{dT}\right],$$

где r — чувствительность прибора, регистрирующего термоЭДС батареи; W — термическое сопротивление. Высокая чувствительность микрокалориметра позволила использовать его для изучения кинетики возврата и рекристаллизации меди и алюминия при отжиге после пластической деформации. Основная трудность при этом заключается в необходимости строгого постоянства температуры термостата. В калориметре Борелиуса применяется термостат, использующий постоянство температуры кипения жидкостей при постоянном давлении. Малейшие колебания температуры термостата будут зарегистрированы как изменения f(T). Поэтому для упрощения методики Вефером разработан **дифференциальный вариант**, с помощью которого проведено исследование теплового эффекта при длительном изотермическом отпуске стали.

Микрокалориметры позволяют точно определить временной спектр тепловых эффектов процессов, медленно протекающих при температурах, близких к комнатной. Общим недостатком квазиизотермических калориметров является необходимость строгого постоянства температуры. Поэтому установка для кондиционирования должна быть надежной. Большие трудности возникают при изучении начальных стадий процессов, протекающих по логарифмическому экспоненциальному или гиперболическому закону, когда скорость процесса вначале максимальна. Ограничен и температурный предел указанных приборов.

Точность и чувствительность калориметров повышается сведением до минимума влияния калориметрической среды. Для этого образец помещают в вакуум, окружив его так называемой калориметрической печью, температура которой поддерживается равной температуре образца. При одинаковой скорости нагрева калориметрической печи и образца, например, за счет внутреннего нагревателя, теплота, выделенная в результате протекания процесса, почти полностью расходуется на нагрев образца и лишь небольшая ее часть-на разогревдеталей крепления образца. Небольшая часть энергии идет на нагревание самого нагревателя и его подложки, но эта часть невелика и составляет не более 2 % общей подведенной энергии. Для изучения теплового эффекта необратимого процесса производится двукратный нагрев образца и регистрируется зависимость $\Theta = f(T)$. Тепловой эффект оценивается по разности температур, измеренных при первом и втором нагреве. Для расчета количества выделившейся теплоты необходимо знать массу образца и его среднюю теплоемкость, т. е. расчет производится по формуле (5.21), но точность определения возрастает вследствие значительного уменьшения небольших тепловых потерь и паразитных теплосмкостей. Для изучения малых тепловых эффектов такой способ также мало пригоден, так как искомая величина остается значительно меньше измеряемых. Кроме того, появляются дополнительные погрешности, связанные с искажением кривых $\Theta = f(T)$ за счет изменения скорости нагрева образца.

Среди нестационарных методов калориметрии особое место занимают методы, осуществляемые с помощью сканирующих калориметров. Интенсивное развитие сканирующей калориметрии вызвано ее чрезвычайной экспрессностью и информативностью. К этому следует добавить и очень широкий диапазон вариантов аппаратуры: от простейших приборов, позволяющих определить температурные диапазоны и знак изменения энтальпии, до совершенных установок, обеспечивающих высокую точность измерения малых тепловых эффектов при отжиге кристаллических дефектов в металлах.

Полуколичественные методы. Наибольшее распространение при исследовании распределения тепловых эффектов получили термографические методы. Характерной особенностью этих методов является регистрация температурных изменений исследуемого образца при непрерывном изменении температуры. Термографические методы положены в основу большинства современных видов термического анализа (TA) и заключаются в исследовании характера изменений температуры тела вследствие внутренних превращений. Термический анализ позволяет обнаруживать незначительные тепловые эффекты и помогает расширить представления о природе многих процессов.

Дифференциальный термический анализ (ДТА) регистрирует зависимость $\Delta \Theta = f(T)$. ДТА хорошо описывает спектр распределения тепловых эффектов, но обладает неполной информативностью в определении характера процесса. ДТА позволяет оценить тепловой эффект. Он обладает высокой чувствительностью к изменениям температуры и применим для обнаружения малых тепловых эффектов, а также для изучения распределения тепловых эффектов по температурам $\Delta \Theta = f(\Theta)$. В последнем случае образцы нагреваются по заранее заданной программе (в основном нагрев с постоянной скоростью).

Метод Осмонда регистрирует зависимость $\Theta = f(T/\Theta)$, где T/Θ величина, обратная скорости нагрева. Этот метод позволяет детально изучать распределение тепловых эффектов, определять их знак, вариантность и скорость протекания процесса, проводить полуколичественное определение теплоемкостей материалов.

Термический анализ по производной температуры $d\Theta A$ регистрирует зависимость $d\Theta = f(T)$ и, сохраняя все преимущества прямой записи, позволяет усилить изменения наклона кривых, т. е. повысить чувствительность метода и более строго определить диапазон тепловых эффектов.

Термический анализ, регистрирующий зависимость $\Theta = f(d\Theta)$. Он отличается высокой чувствительностью и позволяет исследовать температурное распределение тепловых эффектов.

Информативность термического анализа повышается при задании определенного закона изменения температуры, например при нагреве с постоянной скоростью. Современные установки для термического анализа имеют программное управление и изменение температуры регистрируется автоматически, что делает термический анализ оперативным средством изучения важных физических свойств материалов. На рис. 5.16 приведена схема автоматического прибора Руперта.

Важную роль в повышении чувствительности термического анализа играют современные способы измерения температуры: термопары, термометры сопротивления, фотоэлектрические датчики и др. Измерение температуры при ДТА на обоих образцах попеременно при помощи одного фотоэлектрического датчика значительно расширяет возможности термического анализа, особенно в диапазоне высоких температур.

Грубая оценка тепловых эффектов при фазовом превращении проводится на основе формулы (5.21) по максимальной разности температур, зафиксированной на термограмме, если известна средняя теплоемкость C_p образца. Такая оценка дает заниженное значение ΔH , так как совершенно не учитывает тепловые потери. Оценка несколько улучшается, если экстраполировать запись $\Delta \Theta$ на термограмме к началу тепловыделения, принимая за основу закон охлаждения Ньютона. Тепловые эффекты оцениваются и по площадям термограмм. Например, если при дифференциальной записи пренебречь различной теплоемкостью образца и эталона и теплообменом между ними, то все отклонения дифференциальной кривой от прямолинейного направления можно отнести к тепловому эффекту за счет протекания процесса. Полученное отклонение с установленной степенью точности может быть при-*Т*₂

Рис. 5.16. Блок-схема автоматического прибора Руперта [86]: *I* — оптическая система; *2* — фотодиоды; *3* — блок термического анализа; *4* — двухлучевой запоминающий осциллограф; *5* — регулятор мощности; *6* — индукционный нагреватель; *7* — печь; *8* — пирометр; *9* — ирисовая диафрагма.

Рис. 5.17. Схема установки Люке [86].

промежуток времени протекания процесса; $k_{\rm np}$ — коэффициент пропорциональности, установленный измерением на объекте с известным тепловым эффектом: $k_{\rm np} ds = dQ/ds$; ds — элементарная площадка, образованная отклонением дифференциальной записи за время dT. Абсолютное отклонение дифференциальной кривой очень сильно зависит от внешних факторов и результаты значительно лучше при сравнении двух различных эффектов (известного и неизвестного) на одной и той же термограмме. Однако величины, которыми приходится пренебрегать, достаточно больщие, и такого рода оценки носят лишь полуколичественный характер.

Объективные данные о количестве теплоты, поглощенной или выделенной вследствие протекания некоторого процесса, дают только калориметрические методы исследования. Для сближения ДТА с калориметрией образцы меди, деформированные волочением, и эталонные проволоки навивали вокруг микронагревателей. К образцу и эталону прикрепляли спаи дифференциальной термопары (рис. 5.17) и определяли мощность дополнительного обогрева эталона для поддержания его температуры, равной температуре исследуемого образца. Однако в данном случае не выполнялась адиабатичность условий нагрева. Этот недостаток частично устранен в схеме (рис. 5.18), основанной на измерении энергии, которая затрачивается на дополнительный обогрев эталонного образца при условии поддержания нулевой разности температур между эталонным и исследуемым образцами, помещенными в адиабатические условия (теплообмен между образцами сведен до минимума). Тепловой эффект принимается равным интегралу мощности дополнительного обогрева. Достаточно точно определяется суммарный тепловой эффект. По изменению положения первого пика теплового эффекта для никеля была определена энергия активации процесса аннигиляции вакансий. Этот способ менее достоверен при изучении

Рис. 5.18. Схема дифференциального сканирующего калориметра Клэрбро [86].

Рис. 5.19. Температурная зависимость изменения температуры для образцов:

а — из меди и никеля; б — из кварца.

спектра процессов, так как безусловными являются искажения распределения тепловых эффектов за счет неодинакового обогрева образцов: исследуемый образец нагревается равномерно и одновременно по всему объему за счет энергии, выделенной в результате протекающего процесса, а дополнительный обогрев эталонного образца производится постепенно с перепадом температуры. Поэтому необходимо форсировать дополнительный нагрев для соблюдения нулевой разности температур на поверхности образца и эталона.

Если образец обогревается при помощи внутреннего нагревателя джоулевым теплом, то тепловым потоком через верхние и нижние основания нагревателя можно пренебречь. Эквипотенциальные поверхности, для которых температура однообразна, преставляют собой цилиндры, осью которых служит ось образца. Пусть тепловой поток от нагревателя проходит через два цилиндра с радиусами r и r + dr и длиной L (направление потока перпендикулярно оси цилиндров). Согласно закону Фурье $J = \lambda_s d (\Delta \Theta)/dr$, где s — поверхность бесконечно близких цилиндров; $d(\Delta \Theta)$ — разность температур между цилиндрами. $S = 2\pi x L$, тогда $Y = 2\lambda \pi x L d (\Delta \Theta)/dr$. Следовательно,

$$\frac{2\lambda\pi L}{J}d\Theta = \frac{dr}{r},$$
$$\frac{2\lambda\pi L}{J}\Delta\Theta = \int_{r_1}^{r_2} \frac{dr}{r} = \ln\frac{r_2}{r_1}.$$

Здесь $\Delta \Theta$ — разность температур между внутренней и наружной стенками образца; r_1 и r_2 — соответственно внутренний и внешний радиусы образца,

$$\Delta \Theta = \frac{J}{2\lambda \pi L} \ln \frac{r_2}{r_1} \, .$$

На рис. 5.19, а дана температурная зависимость $\Delta\Theta$. Для образцов из меди и никеля при $r_1 = 0,2$ см, $r_2 = 1$ см, L = 5 см и тепловой мощности, производимой нагревателем, Q/T = 12 кал/с. Для образцов из кварца следует учитывать погрешности, связанные с теплопроводностью кварцевого чехла, в который помещен нагреватель. Эта погрешность (рис. 5.19, 6) для кварцевого чехла с толщиной стенки 0,5 мм весьма существенна. При измерениях не учитывались погрешности, обусловленные несимметричным расположением образцов. Они определяются при повторном нагреве.

Таким образом, термографические методы довольно объективны при изучении распределения тепловых эффектов, но недостаточно надежны в их оценке. Калориметрия позволяет достаточно точно опрелять тепловые эффекты, но температурные или временные спектры при этом искажены. Естественным выходом для количественного изучения спектра тепловых эффектов является сочетание калориметрических и термографических методов. Однако измерение тепловых эффектов раздельно на калориметрической и термографической аппаратуре не дает хорошо сопоставимых результатов, поскольку эксперименты проводятся в различных условиях. Для устранения этого недостатка калориметрическое исследование проводят в два этапа*. Первый этап количественный дифференциальный термический анализ (регистрируется зависимость $\Delta \Theta = f(T)$ при квазиадиабатических условиях. что позволяет получить объективную картину распределения тепловых эффектов по температурам). Второй этап — определяются тепловые эффекты воспроизведением при повторном нагреве зависимости $\Delta \Theta = f(T)$ за счет дополнительного обогрева эталонного образца. Тепловой эффект равен энергии, затраченной на дополнительный обогрев. Повторный нагрев производится с той же скоростью, что и при получении термограммы. Если воспроизвести только наиболее характерный пик, то общий тепловой эффект оценивается сравнением площадей термограмм. Точность определения 0 в таком случае ± 30 %.

Таким образом, в результате двух этапов измерений информация о тепловых эффектах получается в виде двух зависимостей: $\Delta \Theta =$ = f(T) и $\Delta (W/T) = f(T)$, изображающих соответственно их истинное распределение и значение. Окончательный результат получается при совместной оценке этих кривых, т. е. приведением к количественному соответствию тепловых эффектов, описываемых термограммой.

На рис. 5.20 показана термограмма, воспроизведенная при повторном нагреве исследуемого и эталонного образцов из Ст. 60, и график,

^{*} Способ разработан в Институте металлофизики АН УССР.

Рис. 5.21. Схема дифференциального вакуумного калориметра для измерения малых тепловых эффектов [92]:

/→ нагреватель; 2-5- отражательные экраны; 6-8- термопары; 9, 10микронагреватели; 11- водяное охлаждение.

Рис. 5.20. Тепловые эффекты при нагреве закаленной Ст 60 [90]: а — первый вагрев; б – дополнительный нагрев; в – калориметрическая кривая.

изображающий израсходованную при этом энергию постоянного тока. Для построения объективной калориметрической кривой не обкодимо привести масштаб каждого участка термограммы в соответствие с графиком Δ (W/T) = f(T). При огпуске Ст 20 и Ст 45 ниже 220 °С выявлены небольшие тепловые эффекты; еще меньшие эффекты определены при исследовании возврата и рекристаллизации армкожелеза. Создана высокочувствительная калориметрическая аппаратура, позволившая в значительной мере автоматизировать трудоемкий процесс получения информации о гепловых эффектах (рис. 5.21).

Недостатками способа являются необходимость проведения исследования в два этапа, значительные затраты времени исследователя на сопоставление зависимостей и получение функции $dQ/d\Theta = f(\Theta)$, описывающей тепловые эффекты и их правильное распределение в температурном диапазоне. Термограмма может искажаться при недостаточно симметричном расположении образцов. В этом случае для оценки тепловых эффектов необходимо произвести третий нагрев, определить экспериментальный нуль и внести расчетным путем соответствующие коррекции в функцию $Q(\Theta)$.

Автоматическая обработка экспериментальных данных. Для определения тепловых эффектов и их распределения непосредственно в ходе одного эксперимента измерения выполняются одновременно на трех образцах (одном исследуемом и двух эталонных), которые помещаются в термостат, подлерживающий квазиадиабатические условия*. Между исследуемым и одним из эталонных образцов поддерживается постоянно нулевая разность температур и измеряется мощность дополнитель-

^{*} Способ разработан в Институте металлофизики АН УССР.

ного обогрева эталонного образца, т. е. разность мощностей сбогрева исследуемого и данного эталонного образца. Между исследуемым и вторым эталонным образцами поддерживается равенство мощностей обогрева и измеряется разность температур. Схема измерений представлена на рис. 5.22. Так как измерение обоих параметров, моделирующих значение и распределение тепловых эффектов, происходит одновременно, то регистрируются две зависимости: $\Delta \Theta = f(T)$ и $\Delta (W/T) = f(T)$, несущие полную информацию о тепловых эффек- $\Delta \Theta = f(T)$ тах. Способ сохраняет дифференциальный принцип измерения, поэтому он применим для изучения малых тепловых эффектов и по чувствительности не уступает другим дифференциальным способам. Кроме того, этот способ позволяет построить полностью автоматическую аппаратуру для исследования теплофизических свойств металлов и сплавов. Для измерения разности мощностей обогрева использовался дифреренциальный ваттметр. Но автоматическая регистрация истинных значений dQ/dO при этом затруднительна.

Таким образом, автоматическая регистрация зависимостей $\Delta \Theta = f(T)$ и $\Delta (W/T) = f(T)$ позволяет исследовать одновременно две разные величины, моделирующие искомую величину (изменение энтальпии).

Для достаточно строгого непрерывного сравнения рассматриваемых величин необходимо ввести переменное запаздывание одной из них, т. е. синхронизацию измеряемых величин. Переменное запаздывание может быть моделировано и корректировать непрерывно в ходе эксперимента вывод одной из величин. Но запаздывание во многих случаях можно принять постоянным. Погрешности, связанные с таким допущением, невелики — погрешности второго порядка. Таким образом, автоматической аппаратурой регистрируется одна результирующая кривая $dQ/d\Theta$, полученная при автоматическом сопоставлении зависимостей $\Delta \Theta = f(T)$ и $\Delta (W/T) = f(T)$. Форма этой кривой соответствует истинному распределению тепловых эффектов, а масштаб пропорционален их значению.

При исследовании малых тепловых эффектов существенными становятся погрешности, обусловленные, например, не вполне симметричным расположением образцов в термостате, т. е. не вполне одинаковыми условиями обогрева. Эти погрешности, а также «нуль» прибора и аппаратурный нуль определяются при проведении экспериментов с тремя эталонными образцами из одного и того же материала. Выполняется несколько экспериментов при различном расположении образцов в термостате. Временная или температурная зависимость погрешностей моделируется при помощи функционального устройства и непрерывно алгебраически суммируется с результатом измерений. Пронесс определения погрешностей аналогичен измерению тепловых эффектов в том смысле, что измеряется одновременно и разность температур между одной парой образцов и разность мощностей между другой парой образцов. Таким образом, данный способ позволяет полностью автоматизировать исследование и получать информацию о тепловых эффектах с высокой точностью, т. е. результаты измерений правильно отражают не только значение, но и распределение тепловых эффектов. На основе способа создана автоматическая аппаратура для определения одновременно и других теплофизических свойств, например теплоемкости или теплопроводности. Такая аппаратура позволяет получить также термограмму высокого качества по любому из описанных выше вариантов.

В дифференциальных калориметрах образцы представляют собой цилиндры; их нагревают одновременно с помощью введенных во внутренние полости идентичных микропечей. Вся система помещена в устройство для поддержания адиабатических условий нагрева. В процессе нагрева между образцом и эталоном возникает некоторая разность температур, характеризующая количественно температурную зависимость скорости происходящих при этом процессов. Таким образом, существует связь между разностью температур образцов и разностью их внутренних энергий:

$$\Psi (T) = A \left[\Delta \Theta (T) + \alpha \frac{d \Delta \Theta (T)}{dT} \right].$$
(5.23)

Уравнение (5.23) есть уравнение типа Тиана.

Следовательно, измеряя разность температур образцов в каждый момент времени, по формуле (5.23) находят распределение мощности теплового эффекта по времени (температуре). Интегрируя формулу (5.23), получаем значение теплового эффекта в некотором временном

(температурном) диапазоне: $Q \int_{T_1} W(T) dT$. На рис. 5.23 показано изме-

нение скорости тепловыделения никеля (99,6 %) в зависимости от температуры нагрева со скоростью 6 К/мин и действительное распределение скорости выделения скрытой энергии деформации по температуре. Стрелкой указано перепад температур на внешней и внутренней поверхности эталона.

Обработка экспериментальных кривых представляет собой довольно трудоемкую задачу. Поэтому на практике очень удобны микро-

Рис. 5.24. Схема низкотемпературного калориметра [93]: 1 — вакуумный колпак; 2, 3 — защитные экраны; 4 — печь сопротивления; 5 — теплоизоляционная подставка; 6 — образец; 7 — эталон; 8, 9 — микронагреватели; 10 крисстат.

калориметры, в управляющие и регистрирующие системы которых введены устройства, обеспечивающие автоматическую коррекцию результатов в течение эксперимента. Так, низкотемпературный сканирующий микрокалориметр содержит калориметр, а также системы автоматического управления и регистрации тепловых эффектов. Собственно калориметр (рис. 5.24) состоит из массивного медного сосуда, окруженного термостатирующими экранами и помещенного под вакуумный колпак, где создается разрежение до 133, 3 · 10-6 Па. Внутри калориметрического сосуда на теплоизоляционных подставках помещаются цилиндрические эталонный и исследуемый образцы с внутренними микронагревателями. Как одно целое с калориметрическим сосудом выполнен массивный медный стержень, свободный конец которого через сильфонное уплотнение выводится из-под вакуумного колпака и погружается в сосуд с жидким азотом. Этот сосуд с помощью исполнительного механизма может перемещаться вдоль стержня и таким образом изменять глубину его погружения в азот, чем обеспечивается регулировка заданного температурного режима эксперимента. Для этого же служит печь сопротивления, устанавливаемая непосредственно на поверхности калориметрического сосуда, в котором помещаются датчики температуры, разности температур эталонного и исследуемого образцов и разности температур адиабатической оболочки и эталонного образца, служащие источниками сигналов для соответствующих систем управления и регистрации процессов.

Пульт управления сканирующего калориметра выполнен в виде отдельных блоков, включающих следующие основные системы: программный регулятор температуры; адиабатический регулятор; систему автоматической записи результатов эксперимента; систему электронного контролера; функциональный потенциометр. Блок-схема

Рис. 5.25. Блок-схема систем управления и регистрации сканирующего низкотемпературного калориметра [93]:

1-5- термопары; 6- печь сопротивления; 7 термостат; 8, 9 образцы; 10 - криостат; 11, 12 - микронатреватели; 1- система автоматической записи результатов эксперимента: 13 - усилитель; 14 - согласующее устройство; 15 - автоматический потенциометр со встроенным реохордом; 16 - усилитель постоянного тока; 17 эмитерный повторитель; 18 - измеритель мощности; 19 - стабилизированный источник питания; 20 - двухкоординатный самописец; 21 - сумирующая схема; 11 программный регулятор температуры: 22 - программно-задающее устройство; 23 автоматический потенциометр; 24 - коммутатор; 25 - высокоточный регулятор температуры с блоком управления тиристоров; 26 - разделительный транс(орм пор; 27 регулирующее устройство; 28 - исполнительный механизи; 111- система электронного коррелятора: 29 - усилитель, 30 - согласующее устройство; 31 - автоматический потенциометр; 32 - устройство разделения целей постоянного и переменного тока; 33 - электронный преобразователь; 34 - исполнительное устройство; 1V адиабатический регулятор; 35 - мощный усилитель низкой частоту; 36 - генералор; V; 37 - функциональный потенциометр; 38 - автоматический потенциометр со встроенным реохордом; 39 - согласующее устройство разделения целей постоянного и с и переменного тока; 40 - усилитель.

систем управления и регистрации сканирующего низкотемпературного калориметра представлена на рис. 5.25. Программный регулятор температуры обеспечивает необходимый температурно-временной режим эксперимента при температурах от—196 до 20 °C. В нем применен принцип двухканальной системы регулирования температурного режима. В качестве программно-задающего устройства используется прибор РУ6-01М. Канал «грубой» регулировки выполнен так же, как в предыдущем калориметре, а канал «тонкой» регулировки выполнен на базе высокоточного регулятора температуры ВРТ-3 с блоком управления тиристоров, в нагрузку которых включена печь сопротивления. Точность регулирования температуры составляет 0,25—0,5 °C.

Создание в калориметре адиабатических режимов работы в процессе всего эксперимента обеспечивается адиабатическим регулятором. Однако для увеличения динамического диапазона и улучшения качества регулирования в схему этого регулятора дополнительно введен автоматический потенциометр, а выходное устройство — тиратрон заменен мощным низкочастотным усилителем. Принцип действия адиабатического регулятора состоит в следующем. При отклонении от адиабатических условий на входе адиабатического регулятора появляется сигнал рассогласования, который предварительно усиливается и через согласующее устройство подается на вход автоматического самопишущего потенциометра. В автоматический потенциометр встроен дополнительный реохорд, жестко связанный с основным. Дополнительный реохорд включается в мостовую схему, питание которой осуществляется от низкочастотного генератора с частотой 2 кГц. Напряжение, снимаемое с диагонали моста, усиливается мощным низкочастотным усилителем и через устройство разделения цепей постоянного и переменного тока подается на микронагреватели образцов. Таким образом подводимый к микронагревателям низкочастотный ток уравнивает температуры эталонного образца и термостата, компенсируя тем самым сигнал рассогласования на входе регулятора.

Принцип действия системы автоматической записи результатов состоит в том, что сигнал от дифференциальной термопары, измеряющей разность температур на внешней поверхности эталонного и исследуемого образцов, предварительно усиливается и через согласующее устройство подается на вход автоматического потенциометра, в который встроен дополнительный реохорд, жестко связанный с основным. Дополнительный реохорд включается в мостовую схему, питание которой осуществляется от стабилизированного источника постоянного тока. Напряжение, снимаемое с диагонали моста, зависит от угла поворота основного реохорда, который определяется величиной сигнала на входе потенциометра.

Общий коэффициент усиления системы 10⁷—10⁸ при неизменном динамическом диапазоне сигнала на входе зависит от напряжения источника питания. Постоянное напряжение, снимаемое с диагонали моста, усиливается и подается на составной эмиттерный повторитель, в нагрузку которого включен микронагреватель образца. Мощность, подводимая к микронагревателю, измеряется преобразователем Холла и через суммирующую схему подается на один из входов регистрирующего прибора. Ко второму входу регистрирующего прибора через выходное устройство коррелятора подключается датчик, измеряющий температуру исследуемого образца. Разрешающая способность данной системы, для случая применения одной дифференциальной термопары, позволяет регистрировать минимальные тепловые эффекты порядка 0,41 кДж/кг.

Система электронного коррелятора — новый элемент, включенный в состав управляющих и регистрирующих систем калориметра. Она предназначена для коррекции мощности дополнительного подогрева эталонного образца. Регистрирующее устройство записывает мощность дополнительного подогрева эталонного образца, которая компенсирует теплоту, выделяющуюся в единицу времени в исследуемом образце.

Так как вследствие внутренних превращений исследуемый образец одновременно изменяет температуру по всему объему, а эталонный подогревается дополнительно микронагревателем неравномерно, то кривая мощности дополнительного подогрева будет несколько смещена по температурному интервалу относительно реального выделения теплоты в образце. Сигнал, пропорциональный разности температур в двух точках вталонного образца, например на внешней поверхности и у микронагревателя, усиливается и подается на вход электронного преобразователя, который вырабатывает сигнал задержки, управляющий работой координаты температуры (времени) выходного регистрирующего прибора. Система электронного коррелятора работает дискретно. По окончании времени задержки, независимо от наличия на входе коррелятора управляющего сигнала, она периодически отключается на определенные промежутки времени, а затем возвращается в исходное состояние.

Функциональный потенциометр также является новым элементом, впервые включенным в состав управляющих и регистрирующих систем калориметра. Он предназначен для введения сигнала поправки. Сигнал поправки учитывает погрешности измерения, связанные с аппаратурным нулем калориметра, неполной тождественностью образцов, отсутствием полной тепловой симметрии и т. д. Эти погрешности предварительно снимаются на калориметре, затем аппроксимируются методом линейно-кусочной аппроксимации и модулируются функциональным потенциометром в зависимости от температуры исследуемых образцов.

Автоматический калориметр АКДС-1300 для определения малых тепловых эффектов содержит термостат, программное задающее и регистрирующее устройства, устройство дополнительного обогрева образцов, блок суммирующей схемы, блок измерителя температуры и мощности дополнительного обогрева, регистрирующее устройство. Отличительной оссобенностью калориметра является то, что в него с целью повышения точности измерения введен дополнительный датчик разности температур, подключенный к входу блока измерения температур, и коррелятор, к входам которого подключены блоки измерителя разности температур и блоки измерителя мощности, кочен выход коррелятора параллельно с выходом потенциометра поджжючен ко входу блока суммирующей схемы. Это позволяет автоматически вводить в результаты измерений поправку $\Delta \Theta$ (T), т. е. автоматически получать действительное распределение скорости выделения энергии по температуре в образце, не прибегая к достаточно трудоемким вычислениям.

Автоматический калориметр АКДС-1300 позволяет одновременно с регистрацией тепловых эффектов проводить регистрацию температурной зависимости теплоемкости эталонного образца. Функциональная схема калориметра представлена на рис. 5.26. Алгебраически суммированный сигнал задатчика (программно-задающее устройство) и термопары V2 подается через усилитель 11 на регулятор 10 программного нагрева образца. С помощью регулятора 10 и блока автоматического поиска и выхода на режим (плата адаптации к программе) обравец нагревается нагревателем от стабилизированного источника (усилитель с тиристорным приводом и печной трансформатор) через датчик контроля мощности. Терморегуляторы 1—3, на вход которых подаются сигналы датчиков разности температур V1, V3, V8, V10, управляют работой первой и второй теплоизолирующих оболочек 6 и автоматически поддерживают адиабатические условия нагрева образца (эталона).

Программно-задающее устройство задает определенные параметры нагрева образца (эталона). Датчик 31 формирует сигнал, пропорциональный при соблюдении адиабатических условий нагрева теплоемкости материала. Синхронно с измерением температуры образца блок 13 формирует сигнал поправки на теплоемкость деталей калориметра. Блок VI регистрирует теплоемкость металла. Блок коррелятора с помощью датчика разности температур V4, V5 между внешней и внутренней стенками образца формирует сигнал поправки $\Delta \Theta'(T)$. Одновременно сигнал с датчика разности температуры V6, V7 системы образец —

1 → 3 → терморегуляторы; 4 → печной трансформатор; 5 → нагреватель; 6 → теплоизолирующая оболочка; 7 → эталон; 8 → образец; 9 – дополнительный внутеренний нагреватель; 10, 15 – регуляторы программного нагрева; 11, 14, 18 → усилитель; 12 → стабилизированный источник; 13 – программного нагрева; 11, 14, 18 → ройство; 16, 17 – преобразователи; 19 – датчик мощности; 20 – 24 — нормирующие усилители; 25 – коммутатор; 26 – таймер; 27 – аналого-цифровой преобразователь; 32 → транскрыптор; 29 – пефоратор; 30 → ЭВМ; 31 → датчик контроля мощности; 32 → блок коррелятора.

эталон поступает на усилитель 14, соединенный с регулятором 15, и далее на усилитель 18, соединенный через датчики мощности с дополнительным внутренним микронагревателем эталона. При ожидаемом тепловыделении в образце последний устанавливают в контур программного регулятора (2, 10, 11, 12, 13, 31), а эталон — в контур пумерительного регулятора (6, 7, 14, 15, 18, 19, 16, 17). Если следует ожидать в образце поглощения теплоты при протекании какого-либо процесса, то образец и эталон меняют местами. В обоих случаях сигнал, соответствующий тепловому эффекту, выделяется на дополнительном внутреннем нагревателе и измеряется датчиком мощности. Сигнал датчика, пропорциональный при соблюдении адиабатических условий нагрева тепловому эффекту в образце (эталоне), регистрируется самописцем 1 по температуре с учетом сигнала блока 32 и одновременно поступает на панели связи с электронно-вычислительной машиной через преобразователи 16 и 17.

Регистрация результатов измерения осуществляется синхронно, в аналоговой и цифровой форме. Цифровой регистрирующий комплекс состоит из датчиков температуры образца (эталона), разности температур между ними или напряжения тока, мощности и коэффициента неадиабатичности. Далее сигналы этих датчиков поступают на нормирующие усилители, где преобразуются в стандартный выходной сигнал и вводятся в коммутатор, через который по команде таймера циклически вводятся в аналого-цифровой преобразователь. Синхронно транскриптор преобразует параллельный цифровой код измеряемой величины с аналого-цифрового преобразователя, код номера канала коммутатора, код текущего времени таймера в последовательный импульсный сигнал, который регистрируется перфоратором в стандартном восьмидорожечном коде на телеграфной ленте. Калориметр АКДС-1300 позволяет производить эксперимент в ва-

Калориметр АКДС-1300 позволяет производить эксперимент в вакууме либо атмосфере инертного газа. Предусмотрен программный нагрев эталонного и исследуемого образцов со скоростями 0,0167; 0,021; 0,042; 0,083; 0,167 К/с, в диапазоне рабочих температур от комнатной до 1300 К либо осуществление изотермической выдержки. Разрешающая способность калориметра АКДС-1300 позволяет измерять минимальные тепловые эффекты порядка 40 Дж/кг.

Автоматический термоанализатор, разработанный в Институте металлофизики АН УССР, позволяет одновременно определять изменения энтальпии, объема и их производных: теплоемкости, $c_P = dH/d\Theta$,

и коэффициента термического расширения, $\beta_T = \frac{1}{V} \frac{dV}{d\Theta}$, коэффициента

сжимаемости χ_m и проводить их автоматический анализ. Функциональная схема прибора приведена на рис. 5.27. В термостат, выполненный в виде вакуумно-плотной калориметрической камеры, содержащей две управляемые теплоизоляционные оболочки, помещается исследуемый и эталонные образцы, обогреваемые внутренними микронагревателями, и датчики температуры и изменений объема. Конструкция рабочей камеры позволяет проводить измерения в вакууме или защитной атмосфере в квазиизотермическом режиме или при вариациях температуры. Температурный режим эксперимента (нагрев или охлаждение с заданной скоростью и квазиадиабатические условия) обеспечиваются программным задающим и регулирующим устройством, связанным с блоком измерения температуры. Через блок измерения энтальпии программное задающее и регулирующее устройство связано также с исследуемым объектом, например с внутренними нагревателями образцов. Блок измерения энтальпии соединен с блоком измерения температуры и функциональным потенциометром, что обеспечивает непрерывное определение значения и распределения изменений энтальпим и теплоемкости, а также автоматическое введение поправок.

Изменение объема определяется по абсолютной или дифференциальной схеме одним датчиком малых перемещений. В простейшем случае изменение размера образца измеряется высокочувствительным дилатометром ($\Delta L/L \ll 10^{-6}$) с электронно-механическим датчиком. В случае изотропности объемных изменений в блоке 4 изменения линейных размеров преобразуются в изменения объема. При анизотропии необходимо изменения линейных размеров измерять одновременно в нескольких направлениях или измерять изменения атомного объема. В определении температурной зависимости изменений объема или

Рис. 5.27. Функциональная схема автоматического термоанализатора [77]; 1 — образцы; 2 — термостат; 3 — блок измерения температур; 4 → блок измерения размеров; 5, 8 — функциональные потенциометры; 6 — программное задающее и регулирующее устройство; 7 — блок измерения энтальпии; 9, 16 — канал связи; 10 — анализатор; 11 — регистрирующее устройство; 12 — накопитель; 13 — кодирующее устройство; 14 — контрольно-регистрирующий блок; 16 — дешифратор; 17 → ЭВМ.

коэффициента термического расширения участвует также блок измерения температур. Кроме того, в блоке 4 измеряемая величина, моделируемая изменением напряжения, непрерывно суммируется с напряжением, моделирующим погрешности, обусловленные термическим расширением деталей устройства, неполной тождественностью образцов и условий обогрева и т. д. Сигнал поправки вырабатывается синхронно с изменепием температуры функциональным потенциометром 5.

Три измерительных канала прибора: измерения температуры, измерения энтальпии, измерения сбъема подключены ко входу анализатора, имеющего жесткую программу обработки результатов, например определение типов протекающих процессов. Для определения типов процессов включаются одновременно три канала измерений с выдачей в анализатор всей исходной и переработанной информации. В запоминающем устройстве анализатора заложены отношения тепловых и объемных эффектов для возможных типов процессов. По команде схемы управления анализатора, в которую закладываются необходимые программы вычислений, решающее устройство анализатора

Рис. 5.28. Последовательность операций по определению термодинамических параметров и распознаванию типов протекающих процессов [77].

приводит измеряемые величины к одинаковым масштабам и выполняет их непрерывное сравнение (определение соотношения). Получаемое соотношение с накоплением за температурный диапазон или без него сравнивается со всеми заложенными в запоминающем устройстве величинами, характерными для процессов возможных типов. В случае соответствия такого соотношения с установленной точностью одному из заложенных выдается сигнал на регистрирующее устройство о принадлежности процесса к данному типу.

На рис. 5.28 представлена последовательность операций по определению термодинамических параметров и распознаванию типов процессов. Показанная часть алгоритма обеспечивает надежное распознавание типов неодновременных процессов. При одновременном протекании нескольких процессов и необходимости определения их относиРис. 5.29. Температурная зависимость отношения теплоемкости к коэффициенту объемного расширения для железа, никеля и железоникелевых сплавов [83]:

+ — температура Кюри; у кривых указана концентрация Ni или Fe в атомных долях.

тельного вклада в суммарный эффект число логических операций в анализаторе возрастает незначительно, и введение такого звена в алгоритм обработки информации существенно не усложняет конструкцию.

В основном термодинамические величины и типы процессов в материалах определяются с помощью несложных преобразователей и логических схем, широко применяемых в автоматических устройствах для исследования материалов. Например, соотношения, характерные для процессов данных типов, закладываются в анализаторе в виде порогов дискриминации. Установленная точность соответствия сравниваемых величин, фиксируемых схемой совпадений, определя-

ется шириной дискриминационного канала. В приборе предусмотрен унифицированный выход для передачи данных на ЭВМ. Применение цифровой вычислительной машины для обработки информации значительно расширяет возможности включения блоков предварительной обработки информации. Кроме того, ЭВМ может выполнять функции программного управления режимами эксперимента. Однако эти преимущества реализуемы лишь при наличии возможности согласования ЭВМ непосредственно с датчиками измеряемых величин и достаточном объеме памяти в ЭВМ. Таким образом, во многих случаях более эффективно использование автономных функциональных аналоговых и аналогодискретных преобразователей.

На рис. 5.29 приведены результаты исследования типа фазовых превращений в железе, никеле и железоникелевых сплавах по изменению отношения $c_P/3\alpha = f(\Theta)$. При $d\Theta/dT = \text{const}, c_P/3\alpha = k\frac{\dot{H}}{\dot{V}}$ предель-

ная неучтенная систематическая погрешность $\frac{\delta(c_P/\beta)}{c_P/\beta} \le 6$ %. При фазовом превращении первого рода, например при $\alpha \rightarrow \gamma$ -превращении, в чистом

железе на кривой $c_{P}/3\alpha$ наблюдается разрыв непрерывности. При фазовом превращении второго рода на кривых $c_{P}/3\alpha = f(\Theta)$ наблюдается особенность типа λ -пика, вершину которого приблизительно можно идентифицировать с температурой Кюри. В железе $c_{P}/3\alpha$ на порядок больше, чем в никеле. Это объясняется тем, что в железе скорость изменения энтальпии и скорость изменения объема имеют разпые знаки.

В интервале температур, где фазовых превращений нет, отношение с_Р/Зα остается в установленных пределах постоянным. В сплавах с 49,8; 47,1 % Ni при $\Theta = \Theta_c$ так же, как и в никеле и железе, наблюдаются особенности типа λ-пиков. В сплавах с 44,2; 40,0; 39,3 % Ni отношение с_Р/Зα с увеличением температуры растет и достигает максимума при $\Theta \sim 473$ K, после чего резко уменьшается и при $\Theta \sim 900$ K остается приблизительно постоянным. Особенности типа λ -пиков при $\Theta = \Theta_{c}$ отсутствуют. В сплавах с 37,4; 35,6; 34,2 % Ni характер изменения отношения с_р/3 α качественно иной: резко уменьшается в интервале 300-700 К, выше 700 К остается приблизительно постоянным; при Θ = Θ особенности типа λ-пиков отсутствуют. Непрерывность кривых $c_p/3\alpha = f(\Theta)$ в железоникелевых сплавах свидетельствует об отсутствии в них фазовых превращений первого рода. В этих сплавах с содержанием никеля менее 44 % поведение кривых $c_p/3\alpha = f(\Theta)$ при $\Theta = \Theta_c$ не соответствует фазовым превращениям второго рода. Из характера изменения отношения в этих сплавах видно, что магнитные превращения в них осуществляются постепенно в широком диапазоне температур. Такое растягивание температурного диапазона, в котором реализуется магнитное превращение, становится возможным, если с увеличением температуры переход спиновый порядок - беспорядок или же спиновый порядок — частичный беспорядок происходит не одновременно во всем объеме образца, а постоянно в некоторых дискретных областях объема, наиболее предрасположенных по тем или иным причинам (например, в результате статистических флуктуаций и антиферромагнитного взаимодействия атомов железа) к подобного рода переходам. Существование парамагнитных областей в ферромагнитной матрице железоникелевых сплавов ниже Θ_{c} подтверждает возможность существования в них подобного механизма магнитного превращения.

ГЛАВА 6

ПЛОТНОСТЬ И ТЕПЛОВОЕ РАСШИРЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

6.1. Определение плотности [33, 44, 86, 91, 104, 113, 149, 163]

Методы определения плотности условно разделяются на два класса. Макроскопические методы позволяют определять плотность всего образца в целом, микроскопические — плотность в относительно небольшом участке образца и по этим данным судить о плотности всего образца. Сравнение результатов макро- и микрометодов дает ценную информацию о дефектном состоянии изучаемого металла: наличии точечных дефектов, пор, трещин и прочих несовершенств кристаллического строения.

Макроскопические методы регистрируют массу и объем образца исследуемого металла. Масса тела определяется взвешиванием. Весы различаются по абсолютной чувствительности (минимальное изменение веса, которое можно зарегистрировать) и предельно допустимой нагрузке. Важной характеристикой весов является относительная чувствительность, определяемая отношением абсолютной чувствительности к предельной нагрузке. При проведении физических исследований следует использовать весы с высокой относительной чувствительностью. Объем тела определяется либо непосредственно по объему вытесненной образцом жидкости, либо с использованием закона Архимеда по изменению веса образца в жидкости относительно веса на воздухе.

Для определения объема вытесненной жидкости при погружении исследуемого образца используется пикнометрический метод. Шкала пикнометра — стеклянного сосуда специальной формы и определенной вместимости — позволяет с достаточно высокой точностью находить изменение уровня жидкости. Основное требование к жидкости пикнометра — хорошая смачивающая способность, обычно в качестве жидкости применяется бензол, спирт и другие. Преимущества метода: экспрессность, возможность работы с образцами различной формы, в том числе и порошками. Недостаток: не всегда обеспечивается необходимая для физических исследований точность. Разновидностью пикнометрического метода является метод трехкратного взвешивания, несколько повышающий точность эксперимента.

При определении плотности методом гидростатического взвешивания исследуемый образец дважды взвешивается на аналитических весах: на воздухе и в рабочей жидкости. Плотность образца рассчитывается по формуле

$$D_0 = \frac{M_{\text{o.B}}}{M_{\text{o.B}} - M_{\text{o.K}}} D_{\text{K}},$$

где $M_{\text{о.в}}$, $M_{\text{о.ж}}$ — масса образца на воздухе и в жидкости соответственно; $D_{\text{ж}}$ — плотность жидкости. Для повышения точности эксперимента необходимо учитывать выталкивающую силу воздуха,

действующую на образец и разновесы. Масса части подвески для крепления образца, которая погружается в жидкость, также выверяется и учитывается при вычислении плотности. Экспрессность метода увеличивается при использовании весов Мора, в которых на одном из коромыслов расположены две корзинки: одна при взвешивании всегда находится в жидкости, а другая — на воздухе. Образец при взвешивании кладут последовательно на каждую из корзинок, при этом вес корзинки и подвески учитывается автоматически. Требования к рабочей жидкости: хорошая смачивающая способность, большая плотность. Корректные результаты получаются при точном определении плотности рабочей жидкости, для чего следует строго учитывать ее температуру и определять химический состав (применяется жид-

Рис. 6.1. Схема установки для дифференциального гидростатического взвешивания по Беллу [91]:

1, 2 → образец, эталон; 3 → термостат; 4, 8 → платиновые подвески, закрепленные на коромыслах весов; 5 → термометр; 6 → колба с рабочей жидкостью; 7 → вход пульсирующего насова для перемешинаяния рабочей жидкости; 9 → вход и выход термостатирующей жидкости из ультратермостата. кость, с плотностью, слабо

изменяющейся с температурой). Метод дифференциального гидростатического взвешивания впервые предложен Беллом и применен Клербро с сотрудниками для изучения малых объемных изменений в пластически деформированном никеле. Установка для дифференциального гидростатического взвешивания по Беллу (рис. 6.1) состоит из помещенного в термостат сосуда, в котором возможно перемешивание рабочей жидкости. Эталонный и исследуемый образцы подвешиваются с помощью платиновых подвесок к коромыслам микровесов. Установка позволяет проводить одновременное взвешивание образца и эталона в жидкости или на воздухе, а также раздельное взвешивание эталона

(образца) в этих средах с использованием способа Мора. Изменение объема образца по сравнению с объемом эталона $\Delta V/V_9$ в приближении, что поддерживающая сила воздуха одинакова для исследовавшихся образцов и применяющихся разновесов, рассчитывается по формуле

$$\frac{\Delta V}{V_{9}} = \frac{(M_{0,B} - M_{9,B}) - (M_{0,K} - M_{9,K})}{D_{K} - D_{B}} \frac{D_{K}}{M_{9,B} - M_{9,K}}$$

где $M_{o.B} - M_{9.B}$ и $M_{o.ж} - M_{9.ж}$ — разности масс образца и эталона на воздухе и в жидкости соответственно; D_{w} , D_{b} — плотность жидкости и воздуха соответственно; $M_{9.B} - M_{9.ж}$ — разность масс эталона на воздухе и в жидкости. Требования к рабочей жидкости аналогичны требованиям в методе простого гидростатического взвешивания.

Известны модификации метода Белла, использующие сосуды различной формы, которые изготовлены из материалов с высокой теплопроводностью, для лучшего уравнивания температуры жидкости по высоте сосуда.

При определении плотности флотационным методом изменяют плотность рабочей жидкости, регулируя ее температуру либо состав.

и добиваются всплывания помещенного в жидкость образца. Плотность (удельный объем) рассчитывают с использованием закона Архимеда по температуре (плотности) рабочей жидкости или по высоте, на которую всплывает образец. Точность метода достаточно высока, однако он не пригоден для исследования металлов с плотностью, которая больше плотности используемой рабочей жидкости (обычно до 4000 кг • м⁻⁸).

Основным микроскопическим методом определения плотности является рентгенографический метод. Он основан на зависимости плотности кристаллического образца от числа содержащихся в элементарной ячейке атомов, массы атома и объема элементарной ячейки. Плотность рассчитывается по формуле $D = NM_a/V_g$. В общем случае объем элементарной ячейки вычисляется по ее измеренным константам — размерам ребер, осевым углам. При этом исходной является формула Вульфа — Брегга: $2d \sin \varphi = L$, где d — межплоскостное расстоя ине; φ — угол дифракции; L — длина волны рентгеновского излучения. Число ионов в элементарной ячейке определяется по анализу интенсивности рентгеновских интерференционных линий.

6.2. Исследование теплового расширения [31, 33, 86, 104, 119, 151, 152, 158, 163]

Экспериментальные методы изучения теплового расширения металлов условно разделяются на макроскопические и микроскопические. Различают абсолютные и относительные макроскопические методы исследования. При использовании первых получают непосредственные сведения об изменении линейных размеров (объема) образца с температурой; при использовании относительных методов данные об изменении линейных размеров (объема) образца и дилатометрической ячейки. Как правило, микроскопические методы являются абсолютными.

Результаты исследования обычно представляются в виде температурной зависимости относительного удлинения или рассчитанных коэффициентов линейного (объемного) расширения. Коэффициенты теплового расширения измеряются не в точке, а в температурном интервале $\Delta \Theta$, в котором при изменении температуры от Θ_1 до Θ_2 происходит изменение объема (длины) от V_1 до V_2 (от L_1 до L_2):

$$\bar{\beta} = \frac{1}{V_1} \frac{V_1 - V_2}{\Theta_1 - \Theta_2} = \frac{1}{V_1} \frac{\Delta V}{\Delta \Theta}, \ \bar{\alpha} = \frac{1}{L_1} \frac{\Delta L}{\Delta \Theta}.$$

При рентгенографическом исследовании линейный коэффициент теплового расширения для металлов с кубической структурой определяется как $\alpha = \frac{1}{a_n} \frac{da_n}{d\Theta}$, а рассчитывается как $\alpha = \frac{1}{a_n} \frac{\Delta a_n}{\Delta \Theta}$, где a_n — параметр кристаллической решетки. Среднее значение коэффициента теплового расширения совпадает с истинным (если коэффициент — величина постоянная) либо линейно зависит от температуры. Для более сложных зависимостей β , α — лишь некоторое приближение к β , α , которое определяется при разложении функции $V = f(\Theta)$ в ряд по малому параметру $\Delta \Theta : \overline{\beta} - \beta = \frac{1}{2} \Delta \Theta (d\beta/d\Theta) + \beta^2$. Поэтому большое значение приобретает диапазон $\Delta \Theta$, в котором изучают $\overline{\beta}$ и рассчитывают β . Проведена оценка опти-

Таблица 6.1. Оптимальные температурные интервалы изменения объема для измерения β [119]

θ, Κ	∆0, K
$ \begin{array}{c} 10 \\ (0,1-1,0) \Theta_{\Pi} \\ (1,0-2,0) \Theta_{\Pi} \\ \Theta > 2\Theta_{\Pi} \end{array} $	1 10 50 <50

мальных температурных диапазонов изменения объема, в которых следует измерять β (либо α) для различных температур (табл. 6.1).

При исследовании монокристаллов низкой симметрии для получения полной характеристики теплового расширения необходимо учесть все компоненты тензора теплового расширения (число независимых тензоров зависит от кристаллографической симметрии кристалла) и провести-соответствующие измерения. При исследовании поликристаллов получаем усредненный по кристаллографическим направлениям линейный коэффициент теплового расширения, который связан с компонентами тензора: для кубической сингонии $\alpha_{cp} = \alpha$, для гексагональной, тригональной

Примечание. Ө_Д температура Дебая.

и тетрагональной сингоний $\alpha_{cp} = \frac{1}{3} (\alpha_{\parallel} +$

 $+2\alpha_{\perp}$), где α_{\parallel} , α_{\perp} — коэффициенты теплового расширения, измеренные параллельно и перпендикулярно главной оси кристалла; для ромбической сингонии $\alpha_{\rm cp} = \frac{1}{3} (\alpha_1 + \alpha_2 + \alpha_3)$, где α_1 , α_2 , α_3 — коэффициенты расширения, измеренные параллельно осям второго порядка. Объемный коэффициент теплового расширения для всех сингоний связан со средним коэффициентом линейного расширения: $\beta = 3\alpha_{\rm cp}$.

Способы автоматизации определения коэффициентов теплового расширения заключаются в автоматическом дифференцировании регистрируемой зависимости $L = f(\Theta)$ и поддержании автоматических режимов работы приборов. Последнее включает создание условий нагрева (охлаждения) образцов с постоянной скоростью, поддержание постоянной температуры во всей массе образца, учете и коррекции возможного изменения температуры по сравнению с регистрируемой за счет протекания в образце экзо- или эндотермических процессов. Увеличение точности результатов и снижение трудоемкости достигается при использовании машинной обработки результатов эксперимента.

Методы исследования теплового расширения металлов и сплавов

Существующая классификация методов изучения теплового расширения условна и основана либо на способе и применяющихся датчиках регистрации объемных изменений, либо на устройстве (материале) дилатометрической ячейки, либо на температурных интервалах использования метода, либо на других принципах.

Объемные (пикнометрические) методы. Пикнометр с образцом и рабочей жидкостью помещают в специальное устройство, позволяющее проводить его нагрев (охлаждение). По изменению уровня жидкости в пикнометре рассчитывается объем образца при различных температурах. Требование к рабочей жидкости (обычно ртуть, этиловый спирт) — тщательное обезгаживание. Температурный диапазон применения метода — (220—370) К. На этом принципе основана работа объемного жидкостного дилатометра. Изменение объема образца рас-

Рис. 6.3. Схема относительного дилатометра по методу оптического рычага [119]: 1 — образец: 2 — стакан: 3, 4 — призмы.

Рис. 6.2. Схема интерференционного дилатометра [119]: 1- источник света; 2- полупрозрачное зеркало; 3, 4- верхняя и нижняя пластины; 5- исследуемый образец; 6- устройство для наблюдения интерференционной картины.

считывается по разности теплового расширения жидкости в измерительном объеме с помещенным внутрь образцом и компенсационном объеме. Основное требование к дилатометру — учет и компенсация систематических погрешностей вследствие расширения рабочей жидкости и корпуса прибора. Температурный диапазон лимитируется возможными температурными пределами существования рабочей жидкос сти. Объемная дилатометрия является практически единственным методом исследования теплового расширения жидких металлов и сплавов.

Интерференционный метод. Интерференционный дилатометр основан на принципе Физо. Образец помещается между двумя оптическими пластинками (рис. 6.2), освещение монохроматическое. Специальным расположением оптических пластин добиваются получения интерференционной картины только от пучков света, отраженных от нижней плоскости верхней пластины и верхней плоскости нижней пластины. Поэтому сдвиг интерференционных полос происходит только при изменении геометрических размеров образца. По сдвигу полос и длине световой волны рассчитывается изменение длины образца. Чувствительность интерференционного дилатометра определяется чувствительность интерференционного дилатометра определяется добная часть сдвига ширины интерференционной полосы. Ранее удавалось регистрировать удлинение образца до 10⁻⁹ м, применение лазерной техники повысило чувствительность дилатометра примерно до 10⁻¹⁰ м.

Основная трудность при использовании интерференционного метода заключается в необходимости точной (не хуже, чем половина длины волны используемого света) обработки опорных поверхностей образцов. Чтобы получить при измерениях с использованием интерференционного дилатометра хорошую точность, необходимы специальные устройства, предохраняющие интерферометр от воздействия теплового излучения. Процесс измерения на интерференционном дилатометре достаточно трудоемок, поскольку приходится все время визуально следить за перемещением интерференционной картины, а автоматизация уменьшает точность метода. Однако интерференционный метод является наиболее надежным абсолютным методом исследования теплового расширения металлов в температурном диапазоне 10—1000 К.

В дилатометре по Андерсу измерительная ячейка состоит из неподвижной регулярной решетки и подвижной решетки, имеющей нерегулярность в центре. Свет, проходящий через верхнюю и нижнюю решетки, попадает на два фотоэлемента. При перемещении подвижной

Рис. 6.4. Схема дилатометрических ячеек по Хеннигу [119]: *а* — способ закрепления образца; *б* — видоизмененное крепление образца; *1* — образец; *2* — кварцевый толкатель; *3* — кварцевая трубка.

Рис. 6.5. Схема регистрирующего устройства по Стрелкову [119]:

инварцевый толкатель; 2 → ярмо из инвара; 3 — пластинка постоянного магнита;
 4 — стальная игла; 5 — плоское зеркало.

Рис. 6.6. Схема дилатометрической ячейки емкостного дилатометра [119]: 1, 2 — неподвижная и подвижная пластины конденсатора; 3 — передающий шток 4 — образец.

решетки выходное напряжение, снимаемое с фотоэлементов, изменяется. Если интенсивность освещения небольшая, изменение напряжения является линейной функцией перемещения решетки и зависит только от изменения длины образца, закрепленного в криостате. Чувствительность дилатометра к изменению длины образца порядка 10^{-11} м, температурный диапазон применения 1,5—10 К.

Метод оптического рычага. Дилатометры, основанные на этом методе, разделяются на относительные и абсолютные. Измерительная ячейка дилатометра имеет одно (несколько) зеркал (призм), непосредственно связанных с измеряемым образцом передаточным механизмом. При изменении размеров образца нарушается равновесие оптического рычага, которое фиксируется регистрирующим устройством. Чувствительность дилатометра зависит от чувствительности регистрирующего устройства и конструкции передаточного механизма и может достигать примерно $3 \cdot 10^{-12}$ м. На рис. 6.3 представлена простая конструкция относительного дилатометра. Исследуемый образец помещается в стакан из иенского стекла. Две одинаковые призмы устанавливаются одним концом грани на образец, другим — на стенку стакана. При изменении температуры ячейки вследствие разного расширения образи и стенки стакана призмы поворачиваются на одинаковый угол в противоположные стороны, поэтому угол смещения отражен-

ного луча, по которому фиксируют изменение длины образца, в четыре раза больше угла поворота призмы.

Кварцевые дилатометры — относительные дилатометры, в которых изменение размеров образцов определяется относительно изменения размеров плавленого кварца. Дилатометрическая ячейка изготавливается из плавленого кварца потому, что его коэффициент теплового расширения в температурном диапазоне 20-1200 К на порядок меньше коэффициента теплового расширения большинства веществ (табл. 6.2). Способ закрепления образца в дилатометрической ячейке, предложенный Хеннигом, в различных вариантах применяется до настоящего времени (рис. 6.4, а). Дилатометрическая ячейка состоит из кварцевой трубки и кварцевого толкателя. Исследуемый образец зажимается между выступом на нижнем конце трубки и толкателем. Дилатометрическая ячейка помещается в нагреваемый объем. При изменении температуры удлинение образца (минус удлинение кварцевой трубки, равной по длине образцу) передается толкателем регистрирующему устройству. Видоизмененное крепление образца (рис. 6.4, б) позволяет устранить регистрацию удлинения кварцевой трубки непосредственно регистрирующим устройством, однако может существенно увеличить собственный ход прибора. Чувствительность кварцевых дилатометров определяется чувствительностью регистрирующих устройств и может быть очень высокой. В этом случае особое значение приобретает корректный учет собственного хода прибора и теплового расширения кварца.

Таблица 6.2. Линейный коэффициент теплового расширения плавленого кварца [119]

ө, к	α • 107	ө, к	α • 10'	ө, к	α • 10'	θ, Κ	α•107
4 6 8 10 15 20 30 40 50 60 70 80	$\begin{array}{c} -0,20\\ -0,68\\ -1,43\\ -2,35\\ -4,5\\ -5,9\\ -8,54\\ -8,54\\ -8,46\\ -8,25\\ -7,80\\ -7,30\end{array}$	90 100 110 120 130 140 150 160 170 180 190 200	$\begin{array}{r} -6,75\\ -6,10\\ -5,40\\ -4,75\\ -4,05\\ -3,35\\ -2,70\\ -2,05\\ -1,40\\ -0,75\\ -0,15\\ 0,45\end{array}$	220 240 260 280 300 350 400 450 550 600 650	$\begin{array}{c} 1,55\\ 2,50\\ 3,30\\ 3,95\\ 4,50\\ 5,40\\ 6,10\\ 6,10\\ 6,50\\ 6,45\\ 6,25\\ 5,95\end{array}$	700 750 800 850 900 950 1000 1050 1100 1150 1200 1250	5,555,154,804,454,203,953,803,703,754,004,404,90

В дилатометре по Стрелкову (рис. 6.5) в верхнем конце толкателя закрепляется ярмо из инвара. Между ярмом и пластинкой постоянного магнита помещается стальная игла, на которой закреплено плоское зеркальце. Боковые поверхности ярма отполированы. Ярмо втягивается в поле магнита и прижимает иглу к полированной поверхности наконечника магнита. Толкатель перемещает ярмо, что обеспечивает поворот иглы вместе с зеркальцем при изменении длины образца. При этом перемещается изображение светового указателя, которое измеряется окулярным микрометром либо отсчитывается на специальной шкале. Чувствительность дилатометра может достигать 10⁻⁸ м. Основные требования к дилатометру: отсутствие эллиптичности иглы, хорошая полировка поверхностей измерительного устройства.

Электронные методы регистрации изменений длины. Принципиальная схема емкостного дилатометра представлена на рис. 6.6. Чувствительным элементом дилатометра является конденсатор, одна из пластин которого закреплена неподвижно. Подвижная пластина соприкасается с образцом непосредственно либо через шток. При изменении размеров образца изменяется положение подвижной пластины конденсатора, что фиксируется регистрирующим устройством. Емкость конденсатора регистрируется с использованием либо мостовой схемы, либо схемы колебательного генератора. В первом случае измеряемой величиной является емкость, во втором — изменение частоты колебательного контура. Температурный диапазон применения- низкие температуры (до 5 К), чувствительность около 10-12 м. Недостатки: наличие паразитных сигналов вследствие изменения емкости подводящих проводов и других элементов измерительной схемы. Точность повышается за счет применения специальных измерительных схем и конструкций дилатометрических ячеек, например трехсекционного конденсатора, при котором образец является одной из пластин конденсатора. Из-за необходимости изготовления массивных образцов специальной формы емкостные дилатометры не применяются для изучения труднообрабатываемых материалов и кристаллов недостаточных размеров.

В индукционном дилатометре чувствительным элементом является воздушный переменный трансформатор с внешней неподвижной обмоткой. Внутренняя вторичная обмотка может перемещаться относительно первичной. Изменение индукции трансформатора при перемещении вторичной обмотки регистрируется с помощью моста взаимоиндукции. Чувствительность приборов достигает 10⁻¹¹ м.

В ряде дилатометров чувствительным элементом является механотрон, например, выпускаемый промышленностью сдвоенный механотрон с общим катодом и двумя подвижными анодами 6МХ1С. Положение подвижной сетки механотрона изменяется в зависимости от геометрических размеров образца. Сигнал механотрона усиливается и подается на записывающее устройство. Чувствительность прибора около 10⁻⁸ м.

При использовании резонансных методов регистрации в дилатометре чувствительным элементом является полукоаксиальный резонатор. Изменение длины образца через толкатель передается на специальную мембрану и изменяет зазор между ней и центральным проводником, от чего изменяется собственная частота резонатора. Последняя измеряется гетеродинным методом с использованием частотной модуляции. Чувствительность прибора порядка 10⁻¹⁴ м.

При использовании тензометрических методов регистрации чувствительным элементом в дилатометре являются проволочные датчики сопротивления, наклеенные на эталонный и исследуемый образцы и соединенные в мостовую схему. Сигнал разбаланса мостовой схемы при разном расширении образца и эталона и, следовательно, различной деформации датчиков пропорционален разности удлинения образца и эталона. Чувствительность прибора примерно 10⁻⁸ м. Точность существенно зависит от технологии наклеивания датчиков; возможностями наклеивания определяется температурный диапазон использования.

В акустическом дилатометре для получения информации о тепловом расширении используется ультразвук. Исследуется распространение ультразвуковой волны либо непосредственно в исследуемом образце, либо в газообразной среде, заполняющей резонансную ячейку, которой собственно и является образец. Цувствительность прибора около 10^{-7} м. При использовании акустического дилатометра образцы должны быть обработаны с высокой степенью точности (такой же, как и при использовании интерференционного дилатометра). Акустический дилатометр целесообразно использовать для параллельного изучения теплового расширения и упругих свойств металла.

Исследование теплового расширения при температурах, превышающих возможности использования кварца, достаточно сложно в связи с необходимостью использования специальных тугоплавких дилатометрических ячеек, сложностью создания равномерных условий нагрева и точного определения изменения размеров образцов.

Высокотемпературные дилатометры. В индикаторном дилатометре образец закрепляется так же, как и в кварцевом. Для изготовления дилатометрической ячейки используется сапфир, корунд и другие термостойкие материалы. Чувствительность дилатометра определяется чувствительностью индикатора (регистрирующего устройства) и может быть достаточно высока. Но возможности таких приборов определяются не чувствительностью, а реальной точностью. Тепловое расширение образца измеряется относительно расширения материала, из которого изготовлена дилатометрическая ячейка (как правило, материал обладает значительным собственным коэффициентом теплового расширения). Из-за значительного теплоизлучения в дилатометрической ячейке сложно создать равномерные условия нагрева по всему объему и точно учесть температуру. Поэтому точность измерений не сравнима с точностью измерений в диапазоне средних температур. Наибольшая температура, при которой проводились измерения с использованием индикаторного дилатометра, составляет 3500 К. В компараторном дилатометре образец — длинный стержень — помещается в печь. Оптическим измерительным устройством измеряется изменение с температурой положения концов образца (меток, нанесенных на образец). Чувствительность метода ограничена чувствительностью измерительного (порядка 10⁻⁶ м). Точность метода существенно зависит **ус**тройства от длины образца, определяемой возможностями создания равномерного температурного поля. Температурный диапазон ограничен термостойкими свойствами материалов, из которых изготовлены крепления для образца и смотровых стекол, используемой печью и составляет 3000-4000 К. При использовании компараторного дилатометра образец можно нагревать непосредственно, например, пропусканием тока либо электронной бомбардировкой. Разновидностью компараторного дилатометра является контактный дилатометр, в котором положение меток фиксируется при последовательном замыкании специальных контактов.

Дилатометры для измерений малых изменений длины используются при исследовании таких физических процессов в металлах, как перераспределение и уничтожение точечных и линейных дефектов, старение и др. Основное требование: минимальное собственное расширение дилатометрической ячейки. Поэтому дилатометры обычно являются дифференциальными. На рис. 6.7 представлена схема дифференциального кварцевого дилатометра для измерения малых объемных изменений. Кварцевая ячейка представляет собой несколько видоизмененную ячейку Хеннига, в нее дополнительно введены кварцевая трубка и эталонный стакан, имеющий такой же химический состав, как и материал образца. Конструкция позволяет регистрировать непосредственно изменения длины в образце за счет протекания различных процессов, поскольку тепловое расширение образца компенсируется тепловым расширением стакана. Основные условия, обеспечивающие надежность работы дилатометра: отсутствие прогиба дна стакана, строгая линейность и небольшая скорость нагрева для сведения к минимуму и поддержания постоянным перепада температур между стаканом и образцом.

Для изучения малых объемных изменений используется дилатометр по Стрелкову в дифференциальном варианте (рис. 6.8). Изменение линейных размеров образца и эталона передается кварцевыми толкателями на отшлифованные инварные бруски, между которыми расположены две стальные иглы с зеркальцами. Игла с зеркальцем 6 с помощью оптического устройства регистрирует абсолютное удлинение образца (эталона) с изменением температуры, игла с зеркальцем 5 изменение длины образца относительно эталона. Основные требования:

Рис. 6.7. Схема дилатометрической ячейки дифференциального кварцевого дилатометра [91]:

1 — кварцевый толкатель; 2 — кварцевая оболочка; 3 → кварцевая трубка; 4 — эталонный стакан; 5 — образец.

Рис. 6.8. Схема регистрирующего устройства дифференциального дилатометра по Стрелкову [91]:

1, 2 — кварцевый толкатель эталона и образца; 3, 4 → инварные бруски; 5, 6 — стальные иглы о плоскими зеркальцами.

Рис. 6.9. Схема высокочувствительного оптического проволочного дилатометра:

а — по С. Д. Герцрикену, И. Я. Дехтяру и Н. Н. Новикову; б — по Бауэрле и Келеру [91].

строгое поддержание в ячейках образца и эталона одинаковой температуры в течение эксперимента.

Простой высокочувствительный дифференциальный проволочный дилатометр для исследования малых изменений линейных размеров образца при нагреве предложен С. Д. Герцрикеным, И. Я. Дехтярем и Н. Н. Новиковым. Отличительная его особенность — абсолютность метода. Исследуемый образец длиной 80—150 мм и диаметром 0,5— 2,0 мм закрепляется точечной электросваркой на грани эталонного брусочка. Измерение прогиба образца в ходе нагрева производится через отверстие в печи с помощью длиннофокусного микроскопа с окуляр-микрометром (рис. 6.9, *a*). Расчет выполняют с использованием квадратичной зависимости прогиба цепной линии *l* от ее длины *L*:

$$\frac{\Delta L}{L} = \frac{8}{3} \frac{l_2^2 - l_1^2}{L^2} = \frac{16}{3} \frac{l\Delta l}{L^2}.$$

Аналогичный метод позднее применен Бауэрле и Келером для определения объемных изменений при отдыхе закаленных образцов золота.

Образец крепился к эталону через изоляторы, что позволяло одновременно измерять электросопротивление (рис. 6.9, б).

Недостатком этих высокочувствительных дилатометров является некоторая произвольность в оценке формы закрепленного образца и, соответственно, в выборе формулы, связывающей изменение длины образца с изменением его стрелы прогиба. При использовании дилатометров необходимо создавать равномерное температурное поле внутри печи по всей длине образца, нагрев вести строго линейно с небольшой скоростью либо проводить эксперименты при постоянной температуре.

Рентгенографический метод. Исследуют температурную зависимость параметров кристаллической решетки и возможные изменения ее типа. Это обусловливает рентгеновскую съемку при нагреве (охлаждении) образцов до различных температур, возникает задача создания конкретных температурных условий рентгеновской съемки. Существующие рентгеновские камеры и приспособления разделяются на низкотемпературные и высокотемпературные.

Изучать температурную зависимость параметров кристаллической решетки металлов при низких температурах сложно из-за малых коэффициентов теплового расширения. Поэтому необходимо повысить точность измерения положения дифракционных максимумов. Это касается, главным образом, относительных измерений, так как для решения большинства задач низкотемпературной рентгенографии металлов не следует проводить прецизионные абсолютные измерения параметров решетки. Наряду с традиционными методами изучения параметров кристаллической решетки получили распространение специальные методы, отличающиеся экспрессностью и повышенной точностью определения изменений параметров кристаллической решетки.

Большинство камер для высокотемпературной рентгенографии поликристаллических материалов работают по принципу порошковой камеры Дебая — Шеррера. В некоторых камерах используется принцип фокусировки от плоского или изогнутого шлифа. Получили распространение камеры обратной съемки для прецизионного измерения параметров кристаллической решетки при высоких температурах. Камеры для высокотемпературной съемки монокристаллов являются обычно слегка модернизированными высокотемпературными камерами Дебая — Шеррера. Они используются для съемки рентгенограмм вращения или качания или обратной съемки для получения лауэграмм. С этой целью применяются также специальные высокотемпературные дифрактометры. Для изучения теплового диффузного рассеяния при высоких температурах созданы специальные приставки к дифрактометрам, позволяющие регистрировать рентгеновское излучение, рассеянное большой поверхностью монокристалла.

ГЛАВА 7

ТЕПЛОПРОВОДНОСТЬ, (ТЕМПЕРАТУРО-ПРОВОДНОСТЬ) МЕТАЛЛОВ И СПЛАВОВ

Уравнение Фурье имеет бесчисленное множество решений, поэтому и методов для определения коэффициентов температуропроводности (теплопроводности) может быть также много [159]. Любой прибор для измерения теплопроводности металлов состоит из двух основных частей: «кондуктора» и комплекса контрольно-измерительных приборов. «Кондуктор» — это устройство, позволяющее создать в образце температурное поле, характер которого определяется идеей и теорией применяемого метода [58]. «Кондуктор» с входящим в него в качестве необходимого элемента образцом соединен линиями связи с контрольно-измерительной аппаратурой.

7.1. Стационарные методы определения коэффициента теплопроводности металлов [5, 112, 159, 161]

При использовании стационарных методов условия эксперимента должны обеспечивать постоянство теплового потока по всему исследуемому образцу. Это позволяет непосредственно измерять коэффициент теплопроводности. Стационарные методы разделяются на методы, в которых теплота к исследуемому образцу подводится от постороннего нагревателя, и методы, в которых используется теплота, выделяющаяся в самом образце во время прохождения электрического тока.

При использовании первой группы стационарных методов измерение λ производится при установившемся тепловом режиме, когда расход мощности нагревателя соответствует отводу тепла через холодильник. При отсчетах фиксируется тепловой поток и разность температур по толщине исследуемого образца. Средний коэффициент теплопроводности $\lambda_{\rm ср}$ определяется как $qL/(\Theta_1-\Theta_2)$ и относится к температуре

 $\Theta_{\rm cp} = \frac{1}{2} (\Theta_1 + \Theta_2),$ где Θ_1 — температура со стороны нагревателя;

 Θ_2 — температура со стороны холодильника.

Конструктивно образец выполняется в виде стержня либо пластины. Существенно создать такие условия эксперимента, чтобы весь тепловой поток был направлен вдоль оси стержня (пластины). При низких температурах пренебрегают небольшими тепловыми потерями с боковых поверхностей или вносят поправки на эти потери. При более высоких температурах исследуемый образец обычно окружают специальным цилиндром, в котором искусственно поддерживают такую же температуру, что и в образце. При изготовлении образца в виде пластины в установку дополнительно вводят кольцо из испытываемого материала и нагреватели для компенсации тепловых потерь. Часто нагреватель вводят внутрь исследуемого образца. Контакт между двумя различными материалами может обладать значительным тепловым сопротивлением, так что на концах образца может происходить скачок температуры.

Стационарные методы второй группы сводятся к нагреванию электрическим током тонкого однородного стержня, на концах которого поддерживается постоянная температура. Например, метод Кольрауша предусматривает использование закона о постоянстве отношения электропроводности к теплопроводности. Устанавливается постоянная температура в середине и на концах образца (проволока, стержень), измеряются перепады температур и разности потенциалов на образце, отношение которых и определяет коэффициент теплопроводности. При наступлении стационарного теплового режима баланс тепла для элемента стержня dx выражается уравнением

$$\frac{d}{dx}\left(\lambda\frac{d\Theta}{dx}\right)+\rho_{\mathfrak{s}}\left(\frac{dB}{dx}\right)^{2}+\frac{\nu_{\Theta}\pi d\left(\Theta_{0}-\Theta\right)}{s}=0,$$

где dB — падение потенциала по длине dx; ρ_9 — коэффициент электропроводности; v_9 — коэффициент теплоотдачи от исследуемого образца к окружающей среде; s — сечение стержня. Е сли тепловые потери с поверхности стержня отсутствуют, а λ и ρ_9 не зависят от температуры, то уравнение теплового баланса имеет вид

$$\lambda \frac{d^2 \Theta}{dx^2} + \rho_{\mathfrak{s}} \left(\frac{dB}{dx} \right)^2 = 0.$$

Интегрируя это выражение и учитывая, что температуры концов стержня одинаковы, имеем

$$\frac{\lambda}{\rho_{\mathfrak{s}}} (\Theta_2 - \Theta_1) = \frac{1}{2} \Delta B^2,$$

где ($\Theta_2 - \Theta_1$) — разность температур между центром и концом исследуемого стержня; ΔB — падение потенциала по длине исследуемого стержня. Ток, пропускаемый через образец, регулируется так, чтобы распределение температур в образце оставалось стационарным.

В методе Кольрауша утечка тепла с боковой поверхности не учитывалась. В других стационарных методах при использовании коротких проволочных образцов и высокого вакуума добиваются того, что отношение бокового теплового потока к продольному становится малым. Разработана система поправок, учитывающих тепловые потери с боковой поверхности стержня.

7.2. Нестационарные методы определения коэффициента теплопроводности металлов [57, 58, 112, 159]

Нестационарный или не установившийся во времени тепловой поток внутри тела определяет изменение температуры в каждой точке тела с течением времени. Нагревание (охлаждение) металлов сводится к выравниванию температуры в образце и в среде, куда помещен образец. Время, в течение которого повышается температура на заданном участке тела, определяет его теплопроводность. Нагрев можно вести непрерывно или с периодической подачей тепла. Повышение (понижение) температуры тела при его нагреве (охлаждении) рассчитывается с помощью дифференциального уравнения теплопроводности Фурье. Решение этого уравнения при постоянной температуре окружающей среды ($\Theta_0 = \text{const}$) имеет вид

$$\Theta_n - \Theta_0 = \sum_{i=1}^{\infty} R_i \chi_i e^{-m_i T},$$

где R_i — постоянные, зависящие от формы тела и начального распределения температур; χ_i — функции координат, характеризующие пространственное распределение температуры и содержащие в качестве. Параметров физические постоянные; m_i — постоянные, зависящие от геометрических размеров и формы тела, его физических свойств, теплообмена с окружающей средой; Θ_n — температура поверхности тела.

При больших значениях T ряд, дающий решение уравнения теплопроводности, быстро сходится, и при T, превышающем некоторое определенное значение T_1 , сумма ряда мало отличается от первого члена. Поэтому для $T > T_1$ имеем

$$\Theta_n - \Theta_0 = R_1 \chi_1 e^{-m_1 T},$$

или $\ln (\Theta_n - \Theta_0) = -m_1T + \ln R_1\chi_1 = -mT + Z$, где Z – посто-янная.

Стадия охлаждения (нагревания) тела, которая характеризуется тем, что с началом ее наступления температурное поле изменяется по экспоненциальному закону, называется регулярным режимом. При этом режиме *m* — постоянная величина, одинаковая для всех точек тела. Она называется темпом нагревания (охлаждения). При регулярном режиме относительное изменение температуры в любой точке тела в единицу времени не зависит от координат точки и времени. Из аналитической теории теплопроводности следует

$$mT = f\left(\operatorname{Bi}, \frac{L_1}{L_3}, \frac{L_2}{L_3}, \ldots\right)$$
Fo,

где Ві — критерий Био; Го — число Фурье; L_1 , L_2 , L_3 — линейные размеры тела. Вид приведенной функции определяется формой тела и критерием Био. Решая уравнение, когда Ві $\rightarrow \infty$ (или $v_{\theta} \rightarrow \infty$) относительно коэффициента теплопроводности, получаем соотношение, на котором основан первый метод регулярного режима: $a = k_{\phi}m$, где k_{ϕ} — коэффициент формы, зависящий только от формы и размеров тела.

Если критерий Био имеет конечное значение, уравнение теплопроводности можно решить относительно λ для тел простейших форм, зная вид функции *f*. Для теплоизоляционного материала в форме шара, помещенного в металлическую оболочку, это решение имеет вид

$$\lambda = \frac{v_{\Theta}}{\sqrt{\frac{mL_1^2}{a}}} \frac{L_2}{L_1} \left(1 - \frac{m}{v_{\Theta}} \frac{c_{of} M_{of}}{s_{of}}\right),$$

где c_{o6} , M_{o6} — теплоемкость и масса оболочки; L_1 , L_2 — ее внутренний и внешний радиусы; s_{o6} — внешняя поверхность оболочки. На приведенном соотношении основан второй метод регулярного режима.

В третьем методе регулярного режима использовано свойство регулярного режима, согласно которому поле температур в исследуемом теле все время остается подобным самому себе или отношение температур в двух произвольно взятых точках не зависит от времени охлаждения (нагрева). Поэтому

$$\frac{(\Theta_n - \Theta_0)_1}{(\Theta_n - \Theta_0)_2} = f\left(\frac{m}{a}, x_1, y_1, z_1, x_2, y_2, z_2\right).$$

Здесь x₁, y₁, z₁, x₂, y₂, z₂ — координаты двух произвольно выбранных точек тела. При использовании этого метода регулярного режима отпадает необходимость в определении коэффициента теплоотдачи.

Экспериментальные устройства для определения коэффициента теплопроводности. При экспериментальном использовании первого коэффициента метода регулярного режима образец исследуемого материала в форме цилиндра (призмы, шара) помещается в металлическую оболочку (медь, латунь) и снабжается измерителем температуры. Система называется акалориметром. Охлаждение нагретого акалоримегра ведется в среде с постоянной температурой при Ві → ∞ (практически Ві > 1000-1500). При этом условии температура поверхности акалориметра и температура среды будут одинаковы. Перед проведением опыта необходимо определить коэффициент формы: либо по размерам акалориметра, либо сравнением данного акалориметра с эталонным. Нагретый акалориметр помещают в термостат и через определенные промежутки времени фиксируют разность температур между охлаждаемым телом и средой. По полученным данным строят график $\ln (\Theta_n - \Theta_0) = f(T)$, по которому рассчитывают температуру охлаждения (нагревания) и далее коэффициент температуропроводности, а с учетом плотности и теплоемкости исследуемого вещества, - коэффициент теплопроводности.

Для определения коэффициента теплопроводности по второму методу регулярного режима необходимо экспериментально определить температуру нагрева (охлаждения) и коэффициент теплоотдачи. С этой целью внутри воздушного термостата помещают устройство, называемое ламбда-калориметром. Оно состоит из двух сферических медных (латунных) оболочек, одна из которых заполнена исследуемым, вторая — эталонным материалом. В центре шаров помещены горячие спаи термопар, холодные спаи находятся в охлаждающей среде (воздухе). По данным измерений строят графики охлаждения эталонного и исследуемого шаров и рассчитывают темпы охлаждения эталона и образца. Из опыта с эталонным шаром определяют значения коэффициента теплоотдачи. Далее по приведенной формуле второго метода регулярного режима находят коэффициент теплопроводности.

Бикалориметр представляет собой сферическую оболочку, внутри которой находится металлический шар. Между оболочкой и шаром помещается исследуемый материал. В центре шара расположен горячий спай термопары. Используется регулярный режим охлаждения шарового бикалориметра в среде постоянной температуры. Череэ определенные промежутки времени измеряются температуры в центре шара и в термостате. По полученным данным строится график охлаждения бикалориметра, из которого определяется темп охлаждения. Коэффициент теплопроводности вычисляется по формуле

$$\lambda = \frac{mc_1}{2\pi B} \left(\frac{1}{L_1} - \frac{1}{L_2} \right).$$

На основании теории подобия установлено, что регулярный режим бикалориметра описывается уравнением $\mathbf{b} = f(L_1, L_2, c_1, c_2)$, где L_1 ,

L₂ — диаметры шара и наружной оболочки бикалориметра; c₁, c₂ — полные теплоемкости шара и исследуемого материала.

При использовании методов мгновенного источника тепла для определения коэффициента температуропроводности нагреватель, вмонтированный в исследуемый материал, включают на небольшой период времени. Выделившаяся в нем теплота повышает температуру в исследуемом образце, которая затем снижается при рассеивании теплоты. Измерение времени между включением нагревателя и наибольшим повышением температуры в точке, расположенной на некотором расстоянии от нагревателя, позволяет вычислить температуропроводность исследуемого материала по формуле $a = x^2/2T$, где x — расстояние горячего спая термопары от нагревателя. Объемная теплоемкость находится из соотношения

$$\ln cD = \frac{Q}{2s_{\rm H} \sqrt{a\pi T_{\rm H} \Delta \Theta_{\rm max}}},$$

где Q — количество теплоты, выделенное нагревателем; $s_{\rm H}$ — поверхность нагревателя; $\Delta \Theta_{\rm max}$ — наибольшее повышение температуры в измеряемой точке; $T_{\rm H}$ — время работы нагревателя.

В сравнительных методах мгновенного источника тепла применяется эталон с известными теплофизическими характеристиками. Эти характеристики входят в расчетные формулы для вычисления теплопроводности исследуемого материала.

При использовании метода температурных волн температура источника теплоты изменяется с некоторым периодом, поэтому температура в любой точке исследуемого, обычно металлического, стержня будет изменяться с тем же периодом, и в нем возникнут температурные волны. Сечение стержня выбирается таким, чтобы его температура по всей площади сечения могла бы быть принятой и равной температуре в центре стержня, а длина стержня должна быть так велика, что распространяющиеся температурные волны полностью затухают в стержне, не достигнув второго конца. Измеряют скорости распространения первых гармоник температурных волн или декремент затухания первых гармоник для двух температурных волн с разными периодами в этом полубесконечном стержне. Если одновременно измерять эти величины, то выражение для определения коэффициента температуропроводности имеет вид $a = Lv/(2\ln \chi_n)$, где L — расстояние, между которым измеряется температура; v — скорость распространения температурной волны; X_n — декремент затухания амплитуды n-й гармоники температурной волны. Конструктивной разновидностью метода является изучение распространения радиальных волн в цилиндре.

Метод, основанный на квазистациозарном тепловом режиме, особенно удобен для изучения теплофизических характеристик теплоизоляционных материалов. Конструктивно метод решается с использованием четырех квадратных плит, уложенных одна на другую, между первой и второй, третьей и четвертой плитами помещаются одинаковые по мощности плоские электронагреватели. Вся система теплоизолируется. Электронагреватели во время эксперимента] подключаются к источнику тока с постоянным напряжением. После установленля квазистационарного теплового режима, т. е. когда подводимое к нагреваемому телу тепло обеспечивает линейный во времени подъем температуры тела, измеряется температура в центре и на поверхности пластин. Коэффициенты теплопроводности и температуропроводности и теплоемкость материала рассчитываются с учетом геометрических размеров пластин, силы тока, электросопротивления, теплоемкости и геплоеккость материале нагревателей. При измерении зависимости коэффициента температуропроводности от температуры образец помещается в нагревательное устройство, например индуктор высокочастотного генератора, снабженный приспособлением для выравнивания температур. Измеряется температура в центре и на поверхности образца, фиксируется время, которое необходимо для выравнивания температуры в центре и на поверхности образца при выбранной температуре, после чего вычисляется коэффициент температуропроводности для этой температуры. Если температурное поле является симметричным относительно оси цилиндрического образца и не изменяется по высоте, оно описывается уравнением

$$cD \frac{\partial \Theta}{\partial T} = \lambda \left(\frac{\partial^2 \Theta}{\partial L^2} + \frac{1}{L} \frac{\partial \Theta}{\partial L} \right) + \frac{\partial \lambda}{\partial L} \frac{\partial \Theta}{\partial L},$$

где L — радиус образца. Температурное поле записывается в виде степенного ряда; определив его коэффициенты, получим

$$a = \frac{L^2}{4\Delta T} \left(1 + \epsilon_{\Theta} + \delta_{\Theta}\right).$$

Здесь $\varepsilon_{\Theta} = -\frac{1}{4\Delta T} \frac{a\Delta\Theta}{aT} \Delta T$ — поправка на переменность скорости нагрева; $\delta_{\Theta} = \frac{1}{4a} \frac{da}{d\Theta} \Delta\Theta$ — поправка, учитывающая зависимость физических параметров от температуры. Для измерения температуропроводности этим методом при температурах, больших 1300 К, можно использовать пирометры. Источником тепловой энергии при нагреве образца с его торца обычно служит электронный пучок.

При исследовании теплопроводности металлических стержней пользуются как нестационарным, так и стационарным методами. Температура вдоль металлического стержня в случае, когда поток тепла распространяется от одного конца стержня к другому, измеряется при стационарном процессе, а потери тепла с боковой поверхности образца — при нестационарном процессе. Для измерения коэффициентов теплопроводности (температуропроводности) применяются и другие методы, основанные на нестационарном тепловом режиме. ЧАСТЬ III

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ О ТЕПЛОВЫХ СВОЙСТВАХ МЕТАЛЛОВ И СПЛАВОВ В ТВЕРДОМ СОСТОЯНИИ

ГЛАВА 8

ЭНТАЛЬПИЯ И ТЕПЛОЕМКОСТЬ МЕТАЛЛОВ И СПЛАВОВ

При наличии в металле нескольких полиморфных превращений приведены данные о каждом превращении. Температурная зависимость энтальпии металлов указана относительно H_0 при 0 К и H_{298} при комнатной температуре. H_{298} можно оценить, используя приведенные в справочнике термодинамические зависимости и сведения о температурной зависимости теплоемкости металлов. Концентрация легирующих элементов дана в массовых долях (%).

8.1. Энтальпия металлов

І группа периодической системы элементов

Литий

Изменение энтальпии при плавлении

ө, қ	Δ <i>Н</i> _{ПЛ} , кДж • кг-1	Источник	ө, қ	(<i>H</i> _Ө — <i>H</i> ₀), кДж · кг ⁻¹
453,7	436	[145]	200	336,9
$\textbf{455} \pm \textbf{2,5}$	431 ±10	[160]	298,15	667,5
451	416	[138]	400	1049,1
453,69	432,3	[142]	453,69	1270,9

Натрий

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{ПЛ};</i> кДж • к г −1	Источ- ник
371,01	113,0	[142]
371	115	[145]
371±0,2	112±1	[160]
358,8	115	[138]

Температурная	зависимость
энтальпии [142	?]

ө, қ	(Н _Ө — Н₀), кДж•кг-1
200	165,4
298,15	281,0
371.01	374.7

Калий

Изменение энтальпии при плавлении

Θ,Κ	∆Н _{пл} , кДж • кг−1	Источ- ник
336,86	59,36	[142]
3 36,8±0,2	60±0,2	[160]
336,2	59,8	[138]

Рубидий

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{ПЛ};</i> кДж • кг ^{−1}	Источ- ник
312,47	25,65	[142]
$312\pm0,5$	25,5	[160]
311,2	25,72	[138]

Цезий

Изменение энтальпии при плавлении

ө , қ	∆Н _{пл} , кДж • кг−1	Источ• ник
301,59	15,77	[142]
301,5±0,4	15,9±0,8	[160]
301,5	15,7	[138]

Температурная зависимость энтальпии [142]

θ, Κ	(<i>H</i> ⊖ <i>H</i> ₀), кДж • к р−1
200	110,6
298,15	181,3
336,86	211,7

Температур	ная	зависимость
энтальпии	[142]

0 , K	(<i>H</i> ⊕ <i>H</i> ₀), кДж • кг-1
200	54,52
298,15	87,62
312,47	92,93

Температу	рная	зависимость
энтальпии	[142]	ļ

θ, Κ	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг ⁻¹
200	36,33
298,15	58,02
301,59	58,85

.

Медь

θ, Κ	∆ <i>Н_{пл},</i> кДж • кг−¹	Источник
1356,4	204,9	[138]
1357	205	[145]
1356±3	213±4	[160]

Температурная зависимость энтальпии [145]

ө, қ	(H _O — H ₃₉₈); кДж · кг-1	ө, қ	(Н _Ө — Н ₂₉₈), кДж • кг ^{−1}	ө, қ	(H _Ө → H ₂₉₈), кДж • кг ⁻¹
400 500 600 700	39,5 79,9 121 163	800 900 1000 1100	206 250 295 341	1200 1300 1357	388 435 463

Серебро

Изменение	энтальпии	при	плавлении

θ, Κ	ΔΗ _{ΠЛ} , кДж • кг−1	Источник
1233,8	106,0	[138]
1234	111	[145]

Температурная зависимость энтальпии [145]

θ, Κ	(<i>H</i> _Ө <i>H</i> _{\$98}); кДж · кг-1	0, K	(Нө ⊷ Н ₂₉₈); кДж • кг-1	θ, Κ	(<i>H</i> _Ө → <i>H</i> _{\$98}), кДж · кг ⁻¹
400 500 600 700	23,8 48,1 73,1 98,2	800 900 1000 1100	124 150 178 206	1200 1234	235 245

Золото

θ, Κ	Δ <i>Н_{пл},</i> кДж · кг ⁻¹	Источник
1 3 36	65,03	[138]
1336	62,7	[145]

0, K	(Н _О — Н ₃₉₈), кДж • кг ⁻¹	0, K	(<i>H_Ө ⊷ H₂₀₈),</i> кДж • кг ⁻¹	ө, қ	(H _O — H ₂₉₈), кДж • кг ⁻¹
400 500 600 700	13,3 26,4 39,9 53,7	800 900 1000 1100	67,5 81,7 96,1 111	1200 1300 1336	126 141 147

Температурная зависимость энтальпии [145]

II группа периодической системы элементов

Бериллий

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н_{пл}і</i> кДж • кр−1	Источник
$1560 \\ 1560 \\ 1560 \pm 10$	1398,1 1626 1090±20	[142] [138] [160]

Температурная зависимость энтальпии [142]

0, K	(<i>H</i> _Ө → <i>H</i> ₀), кДж · кг ⁻¹	θ, Κ	(H ₀ — H ₀); кДж • кр-1	θ, Κ	(Н _Ө — Н₀), кДж • кг ⁻¹
200	68,68	700	1162,4	1200	2661,9
298,15	216,4	800	1438,7	1300	2995,6
400	422,1	900	1727,3	1400	3339,9
500	651,5	1000	2027,3	1500	3695,0
600	899,4	1100	2339,3	1560	4142,8

Магний

θ, Κ	∆ <i>Н_{пл},</i> кДж • кр−1	Источник
923	349,6	[142]
923±0,5	372±4	[160]
922	342	[138]

ө, қ	(<i>H</i> ₀ = <i>H</i> ₀), кДж • кг ⁻¹	θ, Κ	(H _O — H _o), кДж · кр-1	ө, к	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг ⁻¹
200	109	500	422,1	800	778,2
298,15	205,6	600	536,2	900	906,1
400	312,5	700	654,9	923	936,1

Температурная зависимость энтальпии [142]

Кальций

Изменение энтальпии при полиморфном превращении

Изменение энтальпии при плавлении

0, K	∆ <i>Н</i> , кДж • кг-1	Иоточ- ник	θ, K	∆ <i>Н_{пл},</i> кДж • кг−³	Источник
723	25,0	[18]	1115	213,1	[142]
733 713	25,0 28,2	[138]	1124	233 230	[145]
716	23,2	[142]	1112	216	[138]

Температурная зависимость энтальпии [142]

ө, қ	(<i>H</i> _Ө → <i>H</i> ₀), кДж • кг-1	θ, Κ	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг-1	θ, K	(<i>H</i> _θ → <i>H</i> ₀), кДж • кг ⁻¹
200 298,15 400 500	81,34 143,0 209,8 278,8	600 700 800 900	352,2 430,5 535,1 623,1	1000 1100 1115	718,4 821,3 837,3

Стронций

Δ*H*=9,54 кДж · кг⁻¹ при 862 К [145]; 8,56 кДж · кг⁻¹ при 828 К [142]

θ, Κ	Δ <i>Н_{пл},</i> кДж • к _Р −1	Источник
1043	105	[145]
1043	96	[138]
1041	448,4	[142]

ө, к	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг ⁻¹	ө, қ	(<i>H</i> ⊖ → <i>H</i> ₀), кДж • кг ⁻¹	ө, қ	(<i>H</i> _Ө → <i>H</i> ₀), кДж • кг-з
200 298,15 400 500	45,51 74,98 106,4 138,5	600 700 800 900	171,9 207,1 243,9 293,3	1000 1041	336,6 354,8

Температурная зависимость энтальпии [142]

Барий

Изменение энтальпии при плавлении

0 , K	Δ <i>Н</i> _{ПЛ} , кДж • кр−1	Источник
983	55,7	[145]
1002	55,8	[138]
1000	51,8	[142]

Температурная зависимость энтальпии [142]

ө, қ	(<i>H</i> _⊖ — <i>H</i> ₀), кДж • кг ⁻¹	θ, Κ	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг ⁻¹	9, K	(<i>H</i> _Ө — <i>H</i> ₀); кДж • кг − ₿
200	30,89	500	101,6	800	192,8
298,15	50,31	600	130,9	900	224,8
400	74,29	700	161,4	1000	257,4

Радий

Δ*H*_{пл} = 42,61 кДж · кг⁻¹ при 1233 К [18]

Цинк

θ, Κ	Δ <i>Н_{пл},</i> кДж • кг−1	Источ- ник
692,7	113	[145]
692,5	110	[138]

Температурная зависимость эн тальпии [145]

ө, к	(<i>H</i> _Ө — <i>H</i> ₂₉₈), кДж • кг− <u>э</u>
400	40,0
500	81,2
600	124
692	165

Кадмий

Изменение энтальпии			Температурная зависимость		
при плавлении			энтальпии [145]		
0, K	Δ <i>Н_{пл},</i> кДж • кг-з	Источ- ник	θ, Κ	(<i>H</i> Ө — <i>H</i> ₅₅₅); кДж · кг−1	
594	53,9	[145]	400	24,0	
594,4±0,3	53,59±1,67	[160]	500	48,7	
594	57,0	[138]	594	74,0	

Π

Ртуть

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н_{ПЛ},</i> кДж • кг− ³	Источник
234,29±0,03	11,93±0,12	[160]
234,23	11,58	[138]

III группа периодической системы элементов

Алюминий

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} , кДж • кг− ³	Источник
933±1	393 ± 4	[160]
931,7	398	[145]
933,1	388	[138]
933,61	396,6	[142]

θ, K	$(H_{\Theta} - H_{o})_{i}$ KДж · KF-1	θ, Κ	(<i>H</i> _θ — <i>H</i> ₀) кДж · кр∹
400	263,8	800	680,7
500	360,9	900	799,7
600	462,3	933,61	841,4
700	568.5	,	

Галлий Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{пл}, к</i> Дж • кг ⁻¹	Источник
$302,7302,0 \pm 0,1302,92$	80,24 80±4 79,82	[138] [160] [142]

Индий

Изменение энтальпии при плавлении

ө, қ	∆ <i>Н_{пл},</i> кДж • кр−1	Источник
429,4 429	28,5 28	[138]
429,78	28,59	[142]

Таллий

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} , кДж • кг−1	Источник
577	21	[138]
576±4	21±2	[160]
576	10,79	[142]

Скандий

 $\Delta H = 89,42 \ \kappa \square ж \cdot \kappa r^{-1}$ при 1609 К; $\Delta H_{nn} = 313,6 \ \kappa \square ж \cdot \kappa r^{-1}$ при 1814 К [142]

Температурная зависимость энтальпии [142]

ө, қ	$(H_{\Theta} \rightarrow H_{0}),$ $\kappa \mathcal{J}_{\mathcal{W}} \cdot \kappa \mathcal{F}^{-1}$	θ, Κ	$(H_{\Theta} - H_{\bullet}), \\ \kappa Дж \cdot \kappa F^{-1}$
400	174,6	1200	698.2
600	294,3	1400	854.9
800	419,9	1600	1024.5
1000	553,8	1814	1323,4

Иттрий

 $\Lambda H = 55,9 \ \kappa \square ж \cdot \kappa r^{-1}$ при 1755 К [142] Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} ; кДж • кг− <u>а</u>	Источник
1801	127,3	[142]
1793	128,6	[138]
1773	193	[145]

Температурная зависимость энтальпии [142]

θ, Κ	$(H_{\Theta} - H_{0}),$ кДж • кг ⁻¹	θ, Κ	$(H_{\Theta} - H_{0}),$ кДж · кг ⁻¹
400 600	97,81 160,4 226,3	1200 1400 1600	368,3 444,4 523,0
1000	220,5 295,6	1801	661,8

Лантаноиды. Лантан

 $\Delta H = 2,59 \, \mathrm{KДж} \cdot \mathrm{Kr}^{-1}$ при 550 К; 22,46 кДж · Кг⁻¹ при 1134 К [142] Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} , кДж • кг−1	Источник	
993	60,3	[138]	
1141	84,0	[145]	
1193	44,63	1421	

0, K	(<i>H_Ө — H₀</i>), кДж • кг ⁻¹	ө, к	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг-1	0, K	(<i>H_Ө — H₀</i>); кДж · кг ⁻¹
400	67,89	700	130,5	1000	197 ,4
500	87,66	800	151,9	1100	221,7
600	110,1	900	174,1	1193	269,5

Церий

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{пл},</i> кДж • кг−1	Источник
1071	37,3	[138]
1077	63,2	[145]

θ, Κ	$(H_{\Theta} \rightarrow H_{298}),$ $\kappa \Box \varkappa \cdot \kappa r^{-\lambda}$	θ, Κ	(<i>H</i> _⊖ — <i>H</i> ₂₉₈); кДж • кг ⁻¹
400	20,0	800	115
500	41,2	900	143
600	63,8	1000	174
700	88,6		

Празеодим

Δ*H*_{пл} = 9,5 кДж · кг⁻¹ при 1071 К [145]

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{пл};</i> кДж • кр−1	Источник
1208	71,2	[145]
1205	80,0	[138]

Температурная зависимость энтальпии [145]

θ, Κ	(H ₀ — H ₂₉₈), кДж • кр ⁻¹	0, K	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кг ^{−1}	θ, Κ	(Н _Ө — Н ₂₉₈), кДж • кр-3
400	19,9	700	84,5	1000	158
500	40,6	800	108	1100	193
600	62,0	900	132	1200	217

Неодим

Δ*H*_{пл} = 75,3 кДж · кг⁻¹ при 1297 К [145]

Температурная зависимость энтальпии [145]

θ, K	(<i>H</i> ₀ — <i>H</i> ₂₉₈); кДж · кг ⁻¹	ө, қ	(<i>H</i> ₀ — <i>H</i> ₂₉₈); кДж • кг ^{−1}	θ, Κ	(<i>H_O — H₂₉₈</i>), кДж • кг ⁻¹
400 500 600 700	21,9 45,2 70,1 96,5	800 900 1000 1100	124 154 185 217	1200 1297	251 280

Прометий

Δ*H*_{пл} = 86,5 кДж · кг⁻¹ при 1573 К [145]

0, K	$(H_{\Theta} - H_{298}); \ \kappa Дж \cdot \kappa r^{-1}$	θ, Κ	(H ₀ - H ₂₉₈), КДж · КГ-В
400	19,3	1000	149
600	59,7	1200	198
800	103	1400	245

Самарий

Изменение энтальпии при полиморфном превращении

ө, қ	∆ <i>Н</i> , кДж•кг-1	Источник	θ, Κ	Δ <i>Н</i> _{пл} , кДж · кг-і	Источник
1190 1190	20,6 10,0	[138] [145]	1345 1325	59,3 73,7	[138] [145]

Изменение энтальпии

при плавлении

Температурная зависимость энтальпии [145]

9, K	(<i>H</i> _Ө — <i>H</i> ₂₉₈), кДж • кг ^{−1}	ө, к	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кг ^{−1}	ө, қ	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кг ^{−1}
400 500	18,8 28,1	800 900	100 123	1200 1300	204 227
600 700	58,1 78,8	1000 1100	146 170	1325	232

Европий

ΔH_{пл} = 68,8 кДж · кг⁻¹ при 1173 К [145]

Температурная зависимость энтальпии [145]

θ, K	$(H_{\Theta} - H_{208}),$ кДж · кг ⁻¹	θ, Κ	(<i>H</i> _θ → <i>H</i> ₂₉₈), кДж • кг ⁻¹
400	18,2	800	95,2
500	36,6	900	116
600	55,6	1000	·137
700	75,1		

Гадолиний

ΔH_{пл} = 98,4 кДж · кг⁻¹ при 1523 К [145]

9, K	(<i>H</i> ₀ — <i>H</i> ₂₉₈), кДж • кг ⁻¹	0, K	(<i>H</i> ₀ — <i>H</i> ₂₀₈), кДж • кг ⁻¹	ө, қ	(<i>H</i> _θ — <i>H</i> ₂₉₈), кДж • кг ^{−1}
400 500 600 700 800	20,7 39,4 58,5 78,2 98,4	900 1000 1100 1200 1300	119 140 162 183 206	1400 1500 1523	229 252 257

Тербий

 $\Delta H_{nn} = 103 \ \kappa \square \varkappa \cdot \kappa r^{-1}$ при 1638 К [145] Температурная зависимость энтальпии [145]

θ, Κ	(<i>H</i> _θ → <i>H</i> ₂₉₈); кДж • кр-1	θ , K	(H ₀ — H ₂₉₈), кДж • кр ⁻¹
400	17,8	1200	174
600	54,1	1400	218
800	92,3	1600	264
1000	132		

Диспрозий

ΔH_{пл} = 105 кДж · кг⁻¹ при 1673 К [145]

Температурная зависимость энтальпии [145]

θ, Κ	$(H_{\Theta} - H_{298}),$ кДж · кг ⁻¹	θ, Κ	(<i>H</i> ₀ — <i>H</i> ₂₉₈), кДж · кр¬ <u>1</u>
400 600 800 1000	17,2 52,5 89,5 128	1200 1400 1600	169 211 255

Гольмий

ΔH_{пл} = 104 кДж · кг⁻¹ при 1773 К [145]

T	емпературная	зависимость	энтальпии	[145	5]
---	--------------	-------------	-----------	------	----

θ , Κ	$(H_{\Theta} - H_{298});$ кДж · кг ⁻¹	θ, Κ	(<i>H</i> ₀ — <i>H</i> ₂₉₉), кДж • кр-1
400 600	17,0 51,7	1200 1400	166 208
800 1000	88,2 126	1600	251

Эрбий

 $\Delta H_{nn} = 102 \ \kappa \square_{ \mathcal{K}} \cdot \kappa r^{-1}$ при 1800 К [145] Температурная зависимость энтальпии [145]

0, K	(<i>H</i> ₀ — <i>H</i> ₂₉₈); кДж • кр ⁻¹	ө, к	(<i>H</i> ₀ - <i>H</i> ₂₉₈), кДж • кр ⁻¹	θ , K	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кр−±
400 600 800	17,2 52,4 89,0	1000 1200 1400	127 167 208	1600 1800	250 294

Тулий

 $\Delta H_{n\pi} = 109 \ \kappa \ {\rm Kr}^{-1}$ при 1900 К [145]

Температурная	зависимость	энтальпии	[145]
---------------	-------------	-----------	-------

0, K	(<i>H</i> _⊖ — <i>H</i> ₂₉₈), кДж • кг ⁻¹	ө, к	(H _⊖ — H ₂₉₈), кДж · кг ⁻¹	ө, қ	(<i>H</i> ₀ — <i>H</i> ₂₉₈), кДж · кг ⁻¹
400 600 800	16,3 32,9 49,7	1000 1200 1400	121 159 198	1600 1800	239 281

Иттербий

 $\Delta H_{nn} = 53,1 \ \kappa \square \varkappa \cdot \kappa r^{-1}$ при 1097 К [145] Температурная зависимость энтальпии [145]

0, K	(<i>H</i> ₀ — <i>H</i> ₂₉₈), кДж · кг ^{−1}	0, K	(<i>H</i> _⊖ — <i>H</i> ₂₉₈), кДж • кг ⁻¹	0, K	(<i>H</i> _θ — <i>H</i> ₂₉₈), кДж • кг ^{−1}
400	15,0	700	62,1	1000	114
500	30,2	800	78,7	1097	138
600	45,9	900	95,9		

Лютеций

ΔH_{пл} = 110 кДж · кг⁻¹ при 2000 К [145]

Температурная зависимость энтальпии [145]

0, K	(<i>H</i> _θ — <i>H</i> ₂₉₈), кДж • кг ^{−1}	ө, қ	(H ₀ — H ₂₉₈), кДж · кг ⁻¹	ө, қ	(H ₀ — H ₂₉₈), кДж • кг ⁻¹
400	15,9	1000	117	1600	231
600	48,1	1200	153	1800	272
800	81,8	1400	191	2000	319

Актиноиды. Актиний

 $\Delta H_{n\pi} = 46 \ \kappa \square \# \cdot \kappa r^{-1}$ при $1323 \pm 50 \ K$ [233]

Торий

Δ*H* = 12,1 кДж · кг⁻¹ при 1673 К [145]; 15,08 кДж · кг⁻¹ при 1650 К [142]

θ, Κ	Δ <i>Н</i> _{пл} , кДж • кг−1	Источник		
$1968 \\ 2000 \pm 25 \\ 2023$	67,4 84—103 59,48	[145] [160] [142]		

0 , K	(<i>H</i> ₀ — <i>H</i> ₀), кДж · кг ⁻¹	ө, к	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг ⁻¹	ө, к	(<i>H</i> _Ө → <i>H</i> ₀), кДж • кг ⁻¹
400	39,07	900	102,2	1400	174,8
500	50,92	1000	115,9	1500	190,5
600	63,16	1100	130,1	1600	206,6
700	75,78	1200	144,6	1800	253,4
800	88,78	1300	159,5	2023	290,4

Температурная зависимость энтальпии [142]

Протактиний

ΔH_{пл} = 72,29 кДж · кг⁻¹ при 1825 К [18]

Уран

Изменение энтальпии при полиморфном превращении

θ, Κ	<i>∆Н,</i> кДж•кг-1	Источник	ө, к	∆<i>Н</i>, кДж•кг-1	Источник
935 942 938	12,0 11,70 11,7	[138] [142] [18]	1049 1043 1045 1049	20,5 20,49 20,1 19,87	[18] [138] [145] [142]

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{ПЛ},</i> кДж • кг ^{−1}	Источник
1405 1405 1405 1405 1408	52,9 56,2 44,1 36,63	[18] [145] [138] [142]

0 , K	(<i>H</i> _Ө — <i>H</i> ₀); кДж · кг ⁻¹	ө, қ	(<i>H</i> _Ө — <i>H</i> ₀), кДж•кг-1	0, K	(<i>H_Ө — H₀),</i> кДж • кг ⁻¹
400	39.00	800	97,81	1200	199.4
500	51,94	900	116,2	1300	215,4
600	65,92	1000	146,5	1400	231,6
700	81,13	_ 1100	183,3	1408	232,8

Нептуний

Δ*H*_{пл} = 40,63 кДж · кг⁻¹ при 913 К [18]

Плутоний

Δ*H*_{пл} = 12,0 кДж · кг⁻¹ при 913 К [138]; 11,40 кДж · кг⁻¹ при 913 К [142]

Изменение энтальпии при полиморфном превращении [138]

0 , K	Δ <i>Н</i> , кДж • кг ^{−1}	θ, Κ	<i>ΔН</i> , кДж • кг ^{−1}
395 478 591	14,0 2,43 2,23	725 749	0,33 7,60

Америций

Δ*H*_{пл} = 41,56 кДж · кг⁻¹ при 1200 К [18]

IV группа периодической системы элементов

Титан

Изменение энтальпии при полиморфном превращении

Изменение энтальпии при плавлении

ө, к	∆Н, кДж • кг-1	Источ- ник	ө, қ	Δ <i>Н</i> _{Пл} , кДж · кг−1	Источ- ник
1155	83,0 82 9	[18]	1998 1940	393 392	[145]
1155 1156	72,7 79,33	[138] [142]	2000 1944	403 304,8	[18] [142]

0, K	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг ⁻¹	0, K	(<i>H</i> _θ → <i>H</i> ₀), кДж • кг ⁻¹	θ, Κ	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг ⁻¹
400 500 600 700 800 900	155,6 211,4 269,7 330,7 393,2 456,5	1000 1100 1200 1300 1400 1500	522,2 596,4 751,2 812,3 876,3 943,5	1600 1700 1800 1900 1944	1013,8 1087,5 1164,7 1245,6 1282,3

Цирконий

Изменение энтальнии при полиморфном превращении

Из	менен	ие э	нтальпии
пря	и пла	влен	ИИ

ө, к	Δ <i>Н</i> , кДж • кг−1	Источник
1140	47,81	[142]
1135	42,2	[18, 145]
1125	42,2	[138]

ө, қ	∆ <i>Н</i> _{пл} кДж • кг−1	Источ- нык
2133 2125 2125 2125 2125	169,2 220 225 252	[142] [138] [18] [145]

Температурная зависимость энтальпии [142]

ө, қ	(<i>H</i> • − <i>H</i> ₀), кДж • кг ⁻¹	ө, қ	(<i>H_O — H_o</i>); кДж • кг ⁻¹	ө, қ	(<i>H</i> _θ — <i>H</i> ₀); кДж • кг−1
200	38,1	900	285,3	1600	600,9
298,15	68,2	1000	326,0	1700	639,9
400	101,2	1100	368,0	1800	679,9
500	135,3	1200	454,7	1900	721,0
600	170,8	1300	489,7	2000	763,3
700	207,6	1400	526,0	2100	806,8
800	245,8	1500	563,0	2133	821,5

Гафний

Δ*H* = 38,7 кДж · кг⁻¹ при 2023 К [138]; 30,25 кДж · кг⁻¹ при 2016 К [142]

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} ; кДж • кг−1	Источник
2500	134,9	[138]
2488	141	[145]
2506	145,7	[142]

ө, к	(<i>H</i> _Ө — <i>H</i> _е); кДж • кг ⁻¹	θrΚ	(<i>H</i> ₀ — <i>H</i> ₀); кДж • кг ⁻¹	9, K	(<i>H</i> _Ө — <i>H</i> _•), кДж • кг−1
400	47.57	1000	143.8	1600	256,5
500	62.51	1100	161.4	1700	276.9
600	77.88	1200	179.5	1800	297.7
700	93.67	1300	198.1	2000	319.1
800	109.9	1400	217.1	2300	428.6
900	126.6	1500	236,5	2506	470.3
Олово

Изменение эн гальпии при плавлении

ө, к	∆ <i>Н_{пл},</i> кДж • кг−)	Источ• ник
504,9	59 ,7	[138]
505	60,6	[145]
505,118	60,6	[142]

Температурная зависимость энтальпии [142]

θ, Κ	(<i>H_θ — H₀</i>); кДж • кг ⁻¹
300	43.3
400	50,0
500	55,7

Свинец

Изменение энтальпии при плавлении

Температурная зависимость энтальпии [142]

ө , қ	Δ <i>Н</i> _{пл} , кДж • кг ⁻¹	Источ- ник	Θ, Κ	(<i>H</i> _Ө — <i>H</i> ₀), кДж∙кг ⁻¹	ө, к	$(H_{\Theta} \rightarrow H_{0});$ $\kappa \square \mathfrak{K} \cdot \kappa \Gamma^{-1}$
600,68 600,4 600,5	5 23,2 24,0 24,7	[142] [138] [145]	293,15 298,15 400	32,5 33,2 46,4	500 600 600,65	60,2 73,8 74,3

V группа периодической системы элементов

Ванадий

Δ*H*_{пл} = 345 кДж · кг⁻¹ при 2190 К [145]; 451,5 кДж · кг⁻¹ при 2200 К [142]

Температурная зависимость энтальпии [142]

0, K	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг ⁻¹	θ, K	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кр=1	ө, к	(<i>H</i> ₀ — <i>H</i> ₀); кДж • кр ⁻¹
400	140,1	1000	466,5	1600	848,9
500	191,2	1100	525,8	1700	919,7
60 0	243,7	1200	586,6	1800	9 92,9
7 00	297,4	1300	649,3	1900	1068 ,5
800	352,4	1400	713,8	2000	1146,8
900	408,8	1500	780,3	2220	1328,8

Ниобий

$\Delta H_{nn} = 333.7 \text{ k} \square \text{ k} \cdot \text{ k} \Gamma^{-1}$	при	2750 K	[142]
---	-----	--------	-------

θ, Κ	(<i>H</i> _θ - <i>H</i> ₀), кДж • кг ⁻¹	ө, к	(<i>H</i> _⊖ — <i>H</i> _●); кДж • кг ⁻¹	ө, қ	(<i>H</i> ₀ — <i>H</i> ₀), кДж • кг ⁻¹
40 0 500	83,61	1000	256,8 287 1	1600 1700	446,9 480 1
600 700	139,6	1200	317,9	2000	586,9
800	208,2	1400	349,3	2300	866,9
900	226,9	1500	413,7	2750	888,9

Температурная зависимость энтальпии [142]

Тантал

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н</i> _{пл} , кДж • кг ⁻¹	Источник
3253	137	[138]
3269	173	[145]
3295	199,0	[142]

Температурная зависимость энтальпии [142]

0, K	(<i>H</i> _Ө — <i>H</i> ₉), кДж • кг ⁻¹	ө, к	(<i>H</i> _⊖ — <i>H</i> ₀), кДж • кг ⁻¹	ө, к	(<i>H</i> _Ө ⊶ <i>H</i> ₀), кДж • кг ⁻¹
400	45,82	1000	136,9	2300	347,7
500	60,36	1100	152,6	2500	401,5
600	75,21	1300	184,3	2800	440,2
700	90,34	1500	216,2	3000	482,0
800	105,7	1800	264,5	3200	528,5
900	121,2	2000	297,2	3295	551,5

Сурьма

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл,} кДж • кр−1	Источник		
903,5	164	[163]		
903,5	163,4	[138]		

Висмут

изменение энтальпии при плавлении			Температурная зависимость энтальпии [145]		
ө, қ	Δ <i>Н_{пл},</i> кДж • кг−1	Источник	v , K	(<i>H</i> ₀ — <i>H</i> ₀), кДж · кг ⁻¹	
544 544,5 544,2±0,3	52,11 52,0 50 ± 2	[138] [145] [160]	400 500 600	13,0 26,8 31,4	

- -

VI группа периодической системы элементов

Хром

 $\Delta H = 0.27 \pm 0.03 \text{ kJm} \cdot \text{kr}^{-1}$ при 311,4 K [127]; 0,019 kJm · Kr⁻¹ при 311,5 К 1142]

Изменение энтальпии при плавлении

θ, Κ	Δ <i>Н</i> _{пл} , кДж • кг−1	Источник
2173 2133 2180	281 402 409,6	[145] [138] [142]

Температурная зависимость энтальпии [142]

0, K	(<i>H</i> _Ө — <i>H</i> _●), кДж · кг ⁻¹	ө, к	(<i>H</i> _Ө — <i>H</i> ₀), кДж • кг-х	ө, к	(<i>H</i> ⊖ — <i>H</i> ₀), кДж · кг ⁻¹
400	125.6	1000	449.6	1600	885,0
500	174.7	1100	512,7	1700	972,1
600	225,6	1200	579,2	1800	1063,5
700	278.1	1300	649.5	1900	1159,3
800	332.7	1400	723.8	2000	1259.2
900	389,8	1500	802,3	2180	1449,1

Молибден

 $\Delta H_{n,n} = 210 \ \kappa \square ж \cdot кr^{-1}$ при 2860 ± 30 К [160]; 416,9 к $\square ж \cdot кr^{-1}$ при 2896 К [142]

Температурная зависимость энтальпии [142]

ө, к	(<i>H_⊖ → H</i> •); кДж • кг ⁻¹	0, K	(<i>H</i> ₀ → <i>H</i> ₀), кДж • кр-1	0, K	(Н⊖ → Н₀), кДж • кг-1
400	73,98	1000	242,0	1600	429,8
500	10 0 ,8	1100	271,6	1700	463,9
600	128,1	1200	301,9	1800	498,9

				Продолжа	ение таблицы
9 , K	(<i>H</i> ⊖ → <i>H</i> ₀); кДж • кг-1	θ, Κ	(<i>H</i> ₀ — <i>H</i> ₀); кДж • кг ⁻¹	ө, к	$(H_{\Theta} \rightarrow H_{0}),$ кДж • кг ⁻¹
700 800 900	155,9 184,2 212,8	1300 1400 1500	332,7 364,3 396,6	2000 2500 2896	572,2 777,4 966,6

Вольфрам

Изменение энтальпии при плавлении

9	, к	ΔΗ _{пл} , кДж · кг-1	Источник
3	650 672	191	[145]
3	695	250,2	[142]

Температурная зависимость энтальпии [142]

ө, қ	(<i>H</i> _Ө ⊷ <i>H</i> ₀), кДж • кг ⁻¹	ө, к	(<i>H</i> _Ө → <i>H</i> ₀), кДж • кг ⁻¹	ө, қ	(<i>H_⊕ → H_o</i>), кДж • кг ⁻¹
400	40,71	1000	125,9	2500	377,9
500	54,43	1100	140,7	2800	437,9
600	68,35	1300	171,2	3000	480,3
700	82,46	1500	202,6	3300	548,5
800	96,74	2000	286,1	3500	597,4
900	111,2	2300	340,1	3695	648,5

Полоний

Δ*H*_{пл} = 47,62 кДж · кг⁻¹ при 525 К [18]

VII группа периодической системы элементов

Марганец

Изменение энтальпии при полиморфном превращении

θ, K	ΔH , кДж · кг ⁻¹	Источник	ө, қ	ΔΗ, КДж · КГ ⁻¹	Источник
991	35,1	[138]	1374	41,5	[18, 145]
1000	40,7	[145]	1410	32,7	[145]
1000	40,8	[18]	1410	32,8	[18]
1373	41,9	[138]	1411	32,8	[138]

θ, Κ	(<i>H</i> _Ө → <i>H</i> ₂₉₈); кДж • кг ⁻¹	θ, Κ	$(H_{\Theta} \rightarrow H_{298}),$ $\kappa \square \varkappa \cdot \kappa \Gamma^{-1}$	ө, қ	(<i>H_⊖ — H₂₉₈</i>), кДж · кг ⁻¹
400	52,5	800	283	1200	593
500	105	900	348	1300	663
600	168	1000	415	1400	778
700	220	1100	524	1500	896

Температурная зависимость энтальпии [145]

Технеций

Δ*H*_{пл} = 232,32 кДж · кг⁻¹ при 2400 К [18]

Рений

ΔH_{пл} = 177,76 кДж · кг⁻¹ при 3440 К [18]

VIII группа периодической системы элементов

Железо

Тепловые эффекты при альфа-гамма-превращении в углеродистых сталях [291]

Концентрация углерода, %	<i>ΔН</i> , кДж · кг-1	Концентрация углерода, %	Δ <i>H</i> , кДж · кг-1
0,04 0,135 0,27	2,80 10,0 19,7	0,35 0,77	25,1 54,4

Δ*H* = 19,9 кДж · кг⁻¹ при 1665 К [291]

Изменение энтальпии при плавлении

0 , K	Δ <i>Н</i> _{пл} , кДж · кг−1	Источник
1809 1803	272 279	[138] [145]
1809	247	[291]

	- H _o), . Kr ⁻¹		- H ₀),		- Н ₀), . кг—1		- H ₀), . KF-1
9, K	- ӨН) кДж	θ, Κ	нө- но- но- но-	θ, Κ	- ӨН) кДж	θ, K	жДж кДж
20	0,03	480	169	960	480	1400	830
40	0,29	500	1/9	980	498	1420	844 950
6U 00	1,41	520 540	201	1000	538	1440	873
100	3,01 7 52	560	201	1020	562	1480	887
120	12.4	580	227	1042.15	566	1500	901
140	18.1	600	234	1060	584	1520	916
160	24.6	620	245	1080	601	1540	930
180	31,6	640	257	1100	617	1560	945
200	39,1	660	269	1120	633	1580	959
220	47,0	680	281	1140	648	1600	974
240	55,1	700	293	1160	662	1620	989
260	63,6	720	305	1180	677	1640	1003
280	72,2	740	318	1184,15	679	1660	1018
290,10	00,2 91.1	700	331	1200	704	1690	1022
320	90.1	800	358	1220	718	1700	1035
340	99.4	820	371	1260	732	1720	1063
360	109	840	386	1280	746	1740	1077
380	118	860	400	1300	760	1760	1092
400	128	880	415	1320	774	1780	1107
420	138	900	430	1340	788	1800	1123
440	148	920	446	1360	802	1809,15	1129
460	158	940	462	1380	816		
Темпер	атурная за	висимос	ть энтал	ьпии гами	ма-железа	[115]	
I	1	1		1	1	1	

Температурная зависимость энтальпии альфа-железа [115]

		_					
ө, Қ	(Ид — И ₀), кДж • кг ⁻¹	θ, Κ	(<i>Н</i> ө — <i>Н₀</i>), кДж • кг ^{−1}	ө, К	(<i>Н</i> ө — <i>Н</i> ₀), кДж • кг ⁻¹	ө, К	(<i>Н</i> ө <i>— Н</i> ₀), кДж • кг ⁻¹
0 20 40 60 80 100 120 140 160 180 200 220	106 106 107 108 111 116 122 129 137 146 155 164	240 260 280 300 320 340 360 380 400 420 440	173 183 203 213 223 233 243 254 264 275	460 480 500 520 540 560 580 600 620 640 660 680	285 296 306 317 327 338 345 360 371 382 393 404	700 720 760 780 800 820 840 860 880 900 920	415 427 437 448 459 470 482 493 505 516 516 528 539

-							
θ , Κ	(<i>Н</i> ө <i>⊢ Н</i> ₀). кДж • кг ⁻¹	θ , K	(<i>H</i> θ — <i>H</i> ₀), кДж • кг ^{−1}	ө, К	(<i>Н</i> Ө— <i>Н</i> ₀), кДж • кг-¹	ө, К	(<i>Н</i> ө — <i>Н</i> ₀), кДж - қг-¹
940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160	551 562 574 586 597 609 621 633 645 657 669 682	1180 1184,15 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380	693 696 706 718 730 742 755 767 778 792 805 817	1400 1420 1440 1460 1500 1520 1520 1540 1560 1580 1600 1620	830 843 855 868 881 894 907 920 933 946 959 972	1640 1660 1665,15 1680 1700 1720 1740 1760 1780 1800 1800 1809,15	985 999 1002 1012 1025 1039 1052 1065 1079 1093 1099

Продолжение таблицы

Температурная зависимость энтальпии стали 12Х18Н10Т [29]

⊎, К	(<i>H</i> _⊖ → <i>H</i> _{298,15}), кДж · кг ⁻¹	0 , K	(<i>H_Ө → H</i> 298,15), кДж · кг-3	ө, қ	(H ₀ - H _{298,15}), кДж · кг-э
400 420 440 460 500 520 540 560 560 560 600 620 640 660 680 700	51,6 61,48 71,47 81,57 91,78 102,10 112,50 123,0 133,6 144,3 155,1 166,0 177,0 188,1 199,3 210,5 221,8	740 760 780 800 820 840 860 880 900 920 920 940 960 980 1000 1020 1040	233,3 244,8 256,3 268,0 279,7 291,5 303,3 315,3 327,2 339,3 351,4 363,6 375,8 388,1 400,4 412,8 425,3	1080 1100 1120 1140 1160 1220 1220 1240 1260 1280 1380 1380 1380	437,8 450,3 462,8 475,5 488,1 500,8 513,6 526,3 539,1 551,9 564,8 577,6 590,5 603,5 616,4 629,4

Изменение энтальпии сплавов на основе железа при переходе из аморфного состояния [236]

Сплав	θ, Κ	∆ <i>Н</i> ; кДж•к р— ₫
2605 (80 % железа, 20 % бора)	69 7	131,63±2 ,68

	Продолжение таблицы	
Сплав	ө, к	<i>∆Н</i> , кДж • кг-1
2826 (40 % железа, 40 % никеля, 14 % фосфора, 6 % бора) 2826 ^a (32 % железа, 36 % никеля.	677	83,99
14 % хрома, 12 % фосфора, 6 % бора)	680	73,84

Кобальт

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{пл},</i> кДж • кг ^{−1}	Источник
1763	258	[145]
1765	263	[138]

Температурная зависимость энтальпии [145]

9, K	(<i>H</i> _Ө → <i>H</i> ₂₉₈), кДж • кг ⁻¹	θ, Κ	(<i>H</i> ₀ — <i>H</i> ₂₉₈); кДж • кг ⁻¹	θ, Κ	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кг−1
400	45,4	900	311	1400	667
500	92,3	1000	373	1500	744
600	143	1100	439	1600	812
700	196	1200	510	1700	880
800	252	1300	586	1763	920

Никель

Изменение энтальпии при плавлении

θ, Κ	∆ <i>Н_{пл},</i> кДж • кг−1	Источник
1725	300	[145]
1765	301,7	[138]

θ, Κ	Δ (<i>H_θ → H</i> 298), кДж • кг ⁻¹	ө, к	(H _O — H ₂₉₀), кДж • кг ⁻¹	ө, к	(<i>H</i> _Ө — <i>H</i> веа), кДж • кг ^{с−1}
400	47,4	900	317	1400	602
500	98,3	1000	371	1500	664
600	155	1100	427	1600	728
700	212	1200	483	1700	792
800	263	1300	542	1725	808

Температурная вависимость энтальпии [145]

Рутений

Изменение энтальпии при полиморфном превращении

θ, Κ	∆ <i>Н</i> , кДж · кг ⁻¹	Источник
1308	1,41	[18]
1473	~0	[18]
1773	9,53	[18]

Δ*H*_{пл} = 252,3 кДж · кг⁻¹ при 2700 К [18]

Родий

ΔH_{пл} = 211,8 кДж · кг⁻¹ при 2240 К [18]

Палладий

Δ*H*_{пл} = 161,9 кДж · кг⁻¹ при 1828 К [18]

Осмий

ΔH_{пл} = 140,9 кДж · кг^{−1} при 2970 К [18]

Иридий

Изменение энтальпии при плавлении [145]

θ, Κ	Δ <i>Н_{пл}</i> , кДж • кг ⁻¹	Источник
2727	251,2	[160]
2727	143,6	[18]

Платина

Изменение энтальпии при плавлении

θ, Κ	Δ <i>H</i> _{пл} , кДж • кг ⁻¹	Источвик
2042,5	112	[160, 18]
2046,1	101	[138]

0, K	(<i>H</i> ₀ — <i>H</i> ₂₉₈), кДж · кг ⁻¹	ө, к	(H ₀ — H ₂₉₈), кДж • кг ⁻¹	ө, к	(<i>H</i> _Ө — <i>H</i> ₂₉₈); кДж • кг ^{−1}
400 500 600 700 800 900	13,8 27,5 41,2 55,3 69,9 84,7	1000 1100 1200 1300 1400 1500	99,9 115 131 147 163 180	1600 1700 1800 1900 2000	196 213 230 248 265

Температурная зависимость энтальпии [145]

8.2. Теплоемкость металлов и сплавов

I группа периодической системы элементов

Литий

Температурная вависимость теплоемкости

	99'8 %	[142, 160]	
86 293,15	2,269 3,545	400 453,7	3,919 4,148
	98,5	% [120]	
20 25 30 40 50 60 70 80 90 100 110 120 130 140	0,0820 0,0837 0,104 0,312 0,146 0,333 0,480 0,501 0,522 0,565 0,565 0,575 0,585	160 170 180 200 210 220 230 240 250 260 273 280 293	0,601 0,607 0,610 0,612 0,615 0,621 0,628 0,631 0,634 0,636 0,637 0,640 0,641 0,643

Натрий

Температурная зависимость теплоемкости [142, 160]

θ, Κ	<i>ср</i> , кДж · кг ⁻¹ · К ⁻¹	θ, Κ	ср, кДж • кг ⁻¹ • К ⁻¹
220 240 260 280 293,15	1,180 1,190 1,200 1,210 1,221	298,15 300 340 370,97	1,227 1,230 1,290 1,358

Сплав натрия с 44 % калия

с_Р = 1,17 кДж · кг⁻¹ · К⁻¹ при 292 К [160]

Калий

Температурная зависимость теплоемкости [120, 142, 160]

θ , K	<i>ср;</i> кДж•кг ^{_1} •Қ− ¹	θ, Κ	ср, кДж • кг ⁻¹ • К ⁻¹	ө, к	^с р, кДж · кг ⁻¹ · К ⁻¹
22 0 230 240 250	0,690 0,695 0,700 0,710	260 273 280 293,15	0,720 0,730 0,735 0,760	298,15 336,4	0,766 0,846

Сплав калия с 22 % натрия

с_Р = 0,997 кДж · кг⁻¹ · К⁻¹ при 260 К [160]

Рубидий

Цезий

Температурная вависимость теплоемкости [142]

Температурная зависимость теплоемкости [142]

θ, Κ	^с р, кДж · кг ⁻¹ · К ⁻¹	Θ, Κ	^с р ^я кДж • кг− ¹ • К− ¹
200	0,321	200	0,2 0 9
298,15	0,363	298,15	0,242
312,47	0,379	301,59	0,245

Франций

с_р = 0,141 кДж · кг⁻¹ · К⁻¹ при 273 К [163]

Медь

Температурная зависимость теплоемкости

θ, Κ	с _р , кДж · кг ⁻¹ · К ⁻¹	ө, к	^с р' ∡Дж • кг−¹ • К-	-1 0, K	^с _р , кДж • кг -' • К-'
		99,99 %	6 [120, 160, 2	233]	
1	0,000014	40	0,068	200	0.356
2	0,000030	50	0,099	250	0.376
3	0,000131	60	0,130	300	0,386
5	0,000161	70	0,161	373	0,399
8	0,00047	80	0,193	573	0,422
10	0,00086	90	0,226	873	0,456
20	0,007	100	0,254	1173	0,482
30	0,037	150	0,323	1300	0,502

				Продол	жение таблицы
9. K	^с р, кДж • кг-1 • К-1	0, K	^с р' кДж · кг ⁻¹ · К	_1 0, K	^с _Р , кДж • кг- ¹ • К- ¹
			99,9 % [120]		
1 2 3 5 10	0,0000201 0,0000297 0,0000568 0,00016 0,00122	20 30 40 50 100	0,00669 0,037 0,068 0,099 0,260	150 200 250 293	0,310 0,357 0,372 0,385
			99,7 % [120]		
4 20 30 40 50 60	0,0000418 0,0075 0,0375 0,0690 0,0995 0,135	70 80 90 100 150 200	0,167 0,178 0,188 0,197 0,243 0,297	250 273 293 300	0,345 0,363 0,384 0,385

Сплавы меди

Температурная зависимость теплоемкости сплава меди с 1,8 % бериллия [233]

0 , K	^с р кДж • кг 1	2	θ, Κ	с _и кДж • кі 1	2	0 ₹ K	с кДж · н 1	P' Kr-1 • K-1 2
300 350 400 450	0,460 0,464 0,490 0,452	0,460 0,464 0,469 0,485	500 550 600 650	0,247 0,268 0,444 0,477	0,502 0,531 0,573 0,586	700 750	0,477 0,599	0,569 0,669

Примечание. 1 — закаленное состояние, 2 — состаренное при 1290 К состояние.

Температурная зависимость теплоемкости сплава меди с цинком [233]

	с,	р, кДж.	кг-1 • Н	<		с _Р , кДж · кг ⁻¹ · К ⁻¹ Концентрация цинка, %			
Θ, Κ	KO	нцентрац	ия цинка	1, %	0, K	r,	онцентра	ация ци	нка, %
	10	20	25	30 35		10	20	25	30—3 5
350 450 550 650	0,414 0,431 0,442 0,446	0,422 0,448 0,464 0,469	0,431 0,464 0,481 0,490	0,439 0,477 0,500 0,515	750 850 950	0,448 0,452 0,460	0,473 	0,494 	0,525

Температурная зависимость теплоемкости сплава меди с алюминием [233]

θ, Κ	с _р , кДж	• кг-1 • К-1		с _р ; кДж • кг ^{−1} • К ^{−1}		
	Концентрация	алюминия, %	ө, қ	Концентрация алюминия, %		
	3	8		3	8	
350 450 550 650	0,418 0,423 0,429 0,435	0,448 0,448 0,523 0,527	750 850 950	0,439 0,446 0,452	0,536 0,544 0,552	

Температурная зависимость теплоемкости сплава меди с марганцем [233]

		с _Р , кДж	• Kr ⁻¹ • Þ	(-1		с _р ; кДж • кг−¹ • К−³			
ө, қ	Кон	центрация	марган	ца, %	ө, қ	Конце	нтрация	марган	ца, %
	10	12	28	43		10	12	28	43
400 500 600	0,431 0,452 0,464	0,444 0,468 0,536	0,476 0,540 0,556	0,477 0,510 0,615	700 800 900	0,477	0,477 0,473 —	0,565 0,473 —	0,523 0,473 0,444

Температурная зависимость теплоемкости сплавов меди с никелем (25-50 %) [233]

ө, қ	^с р' кДж • кг ⁻¹ • К ⁻¹	ө, к	с _₽ , кДж • кг ^{−1} • К ^{−1}	θ, Κ	^с р ³ кДж • кг ⁻¹ • К ⁻¹
273	0,410	400	0,427	600	0 ,456
300	0,414	500	0,444	700	0,469

Температурная зависимость теплоемкости сплава меди с 39 — 41 % никеля, 0,1 — 1 % марганца, до 1 % кобальта (константан) [120]

ө, қ	^с _Р , кДж • кг ⁻¹ • К ⁻¹	ө, к	с _р , кДж • кг ^{−1} • К ^{−1}	θ, Κ	^с _Р , кДж ∙ кг ⁻¹ • К- ¹
70 80 90 100	0,153 0,184 0,213 0,238	110 120 130 140	0,258 0,279 0,294 0,310	150 160 170	0,333 0,341 0,349

Температурная зависимость теплоемкости сплава меди с 2,5 — 3,5 % никеля, 11 — 13 % марганца, до 1 % кобальта (манганин) [120]

0 , K	с _р , кДж • кг−¹ • К−¹	θ, Κ	с _Р , кДж • кг− ¹ • К− ¹
2	0,00015	4	0,00038
3	0,00026	5	0,00050

Температурная зависимость теплоемкости сплава меди с 48,17 % цинка и 0,03 % свинца [233]

0, K	^с _Р ; кДж • кг ^{−1} • К ^{−1}	θ, Κ	с _р , кДж • кг− ¹ • К− ¹	0, K	^с _Р • кДж • кг ⁻¹ • К ⁻¹
300	0,389	600	0,515	750	0,561
400	0,397	700	0,699	800	0,490
500	0,431	730	1,025	900	0,494
-					

Температурная зависимость теплоемкости сплава меди с 40,15 % цинка и 0,15 % железа (латунь Л62) [120]

0 , K	с _Р ; кДж • кг− ¹ • К− ¹	ө, қ	^с _Р ; кДж • кг ⁻¹ • К ⁻¹	ө, қ	^с р' кДж • кг ^{−1} • К ^{−1}
60 70 80 90	0,180 0,218 0,246 0,269	100 150 200 250	0,289 0,353 0,381 0,391	273 300	0,391 0,391

Температурная зависимость теплоемкости сплава меди с 0,4 — 1,0 % хрома и 0,01 % цинка (бронза БрХ0,8) [120]

θ, Κ	^с р' кДж • кг- <u>1</u> • К- ¹	θ, Κ	^с р [;] кДж • кг ⁻¹ • К ⁻¹	θ, Κ	^с р [•] кДж • кг ⁻¹ • К ⁻¹
80	0,196	160	0,292	273	0,427
90	0,207	180	0,315	280	0,436
100	0,220	200	0,339	293	0,451
110	0,231	220	0,364	300	0,460
120	0,243	240	0,388		•
140	0,268	260	0,412		

Температурная зависимость теплоемкости сплава меди с 40 % цинка, 1,23 % железа и 0,76 % марганца (латунь ЛЖМц 59-1-1) [120]

ө, қ	^с р [•] кДж • кг-1 • К-1	0, K	с _р , кДж • кг−1 • К−1	ө, қ	^с р; кДж • кг−1 • К−1
10	0,0040	70	0,205	250	0,385
20	0,0201	80	0,234	273	0,385
30	0,0418	90	0,259	293	0,385
40	0,0795	100	0,280	300	0,385
50	0,125	150	0,343		·
60	0,167	200	0,372		

Температурная зависимость теплоемкости сплава меди с 10,5 % кремния, 0,5 % железа и магния, 0,05 % марганца [120]

0, K	с _р , кДж • кр-1 • К-1	0 , K	с _р , кДж ∙ кг-1 • К-1
3 5 7 10	0,000053 0,000148 0,000334 0,000874	15 20 30	0,0029 0,0073 0,0266

Серебро

Температурная зависимость теплоемкости серебра (99,99 %) [160, 233]

0, K	^с _Р , кДж • кг−1 • К−1	ө, қ	^с р, кДж • кг-1 • К-1	ө, қ	^с _Р , кДж ∙ кг ⁻¹ ∙ К ⁻¹
1	0,0000072	20	0,0155	250	0,232
2	0,0000239	30	0,0442	300	0,236
3	0,0000595	40	0,078	400	0,238
4	0,000124	00 60	0,108	600	0,244
6	0,000225	70	0,155	700	0,249
7	0,000550	80	0,166	800	0,259
8	0.000910	90	0,100	900	0.264
ğ	0.00135	100	0.187	950	0.267
10	0,00180	150	0,212		•
15	0,00640	2 0 0	0,225		

Температурная зависимость теплоемкости серебра (98%) [160]

θ, Κ	с _р , кДж · кг-1 · К-1	θ, Κ	с _р , кДж • кг−1 • К−1
3 5 7 10	0,0000616 0,000230 0,000597 0,00175	15 20 30	0,00640 0,0158 0,0456

Сплав серебра

Температурная зависимость теплоемкости сплава серебра с 49,5 % цинка [233]

θ, Κ	с _Р і кДж • кр− <u>1</u> • К−1
530	0,360
870	0,434

Золото

Температурная зависимость теплоемкости золота (99,99 %) [104, 120]

0 , K	^с р [;] кДж • кг-1 • К-1	9, K	^с _Р , кДж · кг ⁻¹ · К ⁻¹	ө, к	^с _Р , кДж • кг−1 • К−1	
1 2 3 4 5 6 7	0,000006 0,000025 0,000070 0,000160 0,000290 0,000500 0,000740	8 9 10 20 30 40 50	0,00120 0,00170 0,00220 0,0159 0,0371 0,0572 0,0726	100 150 200 250 293 300 773	0,108 0,119 0,123 0,127 0,129 0,129 0,129 0,142	
Температурная зависимость теплоемкости золота (97,8%) [120]						
0; K	с _р , кДж • кг−1 • К−1	ө, қ	^с _Р ^і кДж • кг−1 • К−1	ө, қ	^с _Р , кДж • кр-1 • К-1	

0,000712

20

30

0,0153 0,0352

5 0,000272 10 0,00206

0,000068

Сплав золота

3

Температурная зависимость теплоемкости сплава золота с 21,76 % никеля [233]

7

ө, қ	с _Р , кДж • кг ⁻¹ • К ⁻¹	0, K	с _р , кДж • кг−1 • К−1
25 50	0,021 0,071	200 300	0,192 0,201
100	0,188		

II группа периодической системы элементов

Бериллий

Температурная зависимость теплоемкости бериллия

ө, қ	с _р ; кДж • кг−1 • К−1	0, K	с _Р ; кДж • кг−1 • К−1	ө, қ	^с _р , кДж ∙ кг ⁻¹ ∙ Қ-1
		99	,9 % [120, 142]		
100	1,50	220	1,72	70 0	2,72
110	1,52	230	1,73	800	2,82
120	1,54	240	1,74	900	2,93
130	1,56	250	1,75	1000	3,04
140	1,58	260	1,77	1100	3,17
150	1,60	273	1,78	1200	3,28
160	1,62	280	1,80	1300	3,39
170	1,64	293	1,86	1400	3,50
180	1,66	300	1,90	1500	3,60
190	1,68	400	2,21	1560	3,63
200	1,70	500	2,45		
210	1,71	600	2,60		

				Продол	жение таблицы
ө, қ	^с р; кДж • кр-1 • К-1	0 , K	с _р , кДж • кр-1 • К-1	0, K	^с _р , кДж • кг-1 • К-1
			99,5 % [120]		
1 2 3 4 5 10 20	0,000025 0,000051 0,000079 0,000109 0,000144 0,000389 0,00161	30 40 50 60 70 80 90	0,00450 0,00996 0,0192 0,0341 0,0562 0,0906 0,139	100 150 200 250 293 300	0,199 0,624 1,11 1,56 1,91 1,97
			98,5 % [120]		
20 30 40 50 60	0,0820 0,104 0,312 0,146 0,333	70 80 90 100 150	0,480 0,501 0,522 0,544 0,594	200 250 293 300	0,615 0,636 0,643 0,644

Сплавы бериллия

Сплав бериллия с 24 % алюминия: $c_P = 1,69$ кДж · кг⁻¹ · K⁻¹ при 300 К [120]; с 33 % алюминия: $c_P = 1,67$ кДж · кг⁻¹ · K⁻¹ при 300 К [120].

Магний

Температурная зависимость теплоемкости магния

ө, к	^с рі кДж • кг-1 • К-1	ө, қ	с _р , кДж • кг−1 • К−1	ө, к	^с _Р ; кДж • кг-1 • К-1
		99,	97 % [120, 142]		
50 60 70 80 90 100	0,418 0,464 0,509 0,565 0,601 0,649	150 200 250 300 400 500	0,837 0,932 0,982 1,02 1,08 1,12	600 700 800 900 923	1,16 1,21 1,25 1,29 1,30
			99,9 % [120]		
1 2 3 4 5 7	0,000055 0,000117 0,000190 0,000290 0,000440 0,000850	10 20 30 40 50 70	0,00190 0,0150 0,0590 0,138 0,235 0,430	100 150 200 250 293 300	0,646 0,837 0,932 0,982 0,01 1,02

5
х
¥
5
22
2
З
1
g
5
퉁
\mathbf{c}

Теплоемкость литейных магниевых сплавов при 298 К [120]

₹-:	кДж • кг-1 • К с р.	1,05	1,05	1,05	1,05	1,05	1,05	1,05	1,05	1,05	1,05	1,05
	Цирконий П	I	ł	I	ł	I	1	0,40,8	0,6—1,1	0,5—1,0	0,71,0	0,5—1
	лниД	0,05	0,5—1,5	23	0,20,8	0,6—1,2	0,30,7	0,20,7	45	I	45	I
	йнqоТ	I	I	١	I	I	ł	1	I	2,6—3,8	I	2,54
нÅ	Кремний Кремний	≪0,1	≪0,25	≪0,25	≪0,25	≪0,25	≪0,25	≪0,03	≪0,03	≪0,02	≪0,03	≪0,02
ьное — магн	Никель	≪0,01	≪0,01	≪0,01	≪0,01	≪0,01	≪0,01	≪0,01	≪0,01	≪0,005	≪0,01	≪0,005
з, %, остал	Марганец	1—2	0,15—0,5	0,150,5	0,15—0,5	0,10,5	0,30,6	ł	ł	I	I	1
еский соста	нетнеК	I	I	ł	l	1	I	I	1	I	0,6—1,2	. 1
Химич	осэпэЖ	≪0,08	≪0,08	≪0,08	≪0,08	≪0,08	≪0,08	≪0,03	≪0,01	≪0,01	≪0,01	≪0,01
	адэМ	≪0,1	≪0,1	≪0,1	≪0,1	≪0,1	≪0,1	≪0,03	≪0,03	≪0,03	≪0,03	≪0,03
	Қальций	I	١	I	1	I	0,20,5	۱	1	1	1	I
	й инимоя с.А	≪0,1	2,5—3,5	57	7,5—9	9—10,2	56,5	≪0,03	≪0,03	1,7—2,3	≪0,03	I
	Сплав	Мл2	M.J.3	Mл4	M.n5	Мл6	M.J7-1	Mл11	Mл12	M.14	Mл15	ВМл1

6 5-**250**

Температурная зависимость теплоемкости сплава магния с 5,78 % цинка, 0,74 % циркония, 0,05 % марганца, 0,03 % алюминия [233]

ө, қ	с _р , кДж • кг-1 • К-1	ө, к	с _р , кДж • кг−1 • К−1
430 500 600	1,063 1,117 1,205	700 790	1,305 1,397

Температурная зависимость теплоемкости сплава магния с 2,98 % редкоземельных элементов, 1,4 % марганца, 0,05 % циркония, 0,03 % алюминия [233]

0, K	с _р , кДж • кг - 1 • К-1	ө, к	с _р , кДж • кг-1 • К-1	ө, қ	с _р , кДж • кг−1 • К−1
470	1,075	600	1,200	800	1,410
500	1,105	700	1,301	870	1,498

Температурная зависимость теплоемкости сплава магния с 3 % алюминия, 1 % циркония, 0,4 % марганца [233]

0, K	^с р, кДж . кг-1 . К-1	9 , K	^с р [;] кДж • кг-1 • К-1	ө, қ	с _р . кДж • кг ^{−1} • К−1
70 100 200 300	0,682 0,728 0,879 0,983	400 500 600 700	1,067 1,138 1,203 1,261	800 850	1,314 1,339

Температурная зависимость теплоемкости сплава магния с 2 % тория и 0,5 % марганца [233]

ө, к	с _Р , кДж • кг ^{−1} • К ^{−1}	9 , K	^с р, кДж • кг=1 • К=1	ө, қ	^с _Р , кДж • кг−1 • К−1
470	1,100	600	1,201	800	1,372
500	1,117	700	1,289	880	1,456

Температурная зависимость теплоемкости деформируемого сплава магния МА2-1 (3,8—5,0% алюминия, 0,4—0,8% марганца, 0,8—1,5% цинка) [120]

ө, қ	с _р , кДж • кг− <u>і</u> • К−і
80	0,561
293	1,25

Кальций

Температурная зависимость теплоемкости [142]

θ, Κ	с _р , кДж • кг−1 • К−1	θ, Κ	с _Р , кДж · кг-1 · К-1
200	0,613	600	0,758
298,15	0,647	700	0,809
400	0,670	800	0,844
500	0,711	1000	0,991

Температурная зависимость теплоемкости при низких температурах [120]

ө, қ	^с _Р , кДж • кг-1 • Қ-1	ө, қ	^с _Р , кДж · кг-1 · К-1	ө, к	^с _Р , кДж • кг−1 • К−1
1	0,000081	10	0,0238	100	0,980
2	0,000289	20	0,155	150	1,08
3	0,000760	30	0,364	200	1,14
4	0,00160	40	0,544	250	1,19
5	0,00298	50	0,695	293	1,23
7	0,00860	70	0,860	300	1,24

Стронций

Температурная зависимость теплоемкости [142]

0 , K	^с _Р , кДж • кг−1 • К−1	ө, қ	с _р , кДж • кг-1 • К-1	ө, қ	с _р , кДж • кг−1 • К−1
200	0,268	500	0,327	900	0,425
298,15	0,306	600	0,343	1000	0,441
400	0,314	700	0,360	1041	0,448

Барий

ө, қ	с _Р , кДж • кг−1 • К−1	ө, қ	с _P , кДж • кг−1 • К−1	ө, қ	^с _Р , кДж • кг-1 • К-1
200	0,192	400	0,259	800	0,318
298,15	0,205	600	0,300	1000	0,329

Температурная зависимость теплоемкости [142]

Цинк

Температурная зависимость теплоемкости цинка (99,995 %) [120]

0, K	^с рі кДж · кг-з · К-1	ө, к	^с р' кДж • кг=1 • К=1	₩, K	^с р ' кДж • кг-г • К-1
1	0,000011	20	0,026	140	0,337
2	0,000028	30	0,076	160	0,350
3	0,000058	40	0,125	180	0,360
4	0,00011	50	0,171	200	0,367
5	0,00020	60	0,208	220	0,373
6	0,00029	70	0,236	240	0,378
8	0,00060	80 90	0,258 0,277 0,203	260 280 203	0,382 0,386
10	0,0025	120	0,319	300	0,390

Цинк Ц1 (99,94 %), горячекатанный: $c_P = 0,377 \text{ кДж} \cdot \text{кг}^{-1} \cdot \text{K}^{-1}$ при 300 К [120]

Кадмий

Температурная зависимость теплоемкости [120, 160]

ө , К	^с р ^і кДж • кг ⁻¹ • К ⁻¹	0, K	^с р ^я кДж • кр-1 • К-л	ө, к	^с _Р , кДж • к г−1 • К−1
1 2 3 4 5 6 7 8 9 10 20	$\begin{array}{c} 0,000008\\ 0,000033\\ 0,000090\\ 0,000210\\ 0,000750\\ 0,00130\\ 0,00280\\ 0,00430\\ 0,00590\\ 0,00800\\ 0,0460 \end{array}$	30 40 50 60 70 80 90 100 120 140 160	0,0860 0,117 0,141 0,159 0,172 0,182 0,190 0,196 0,205 0,211 0,215	180 200 220 240 260 280 293 300 373 473	0,219 0,222 0,224 0,226 0,228 0,229 0,229 0,229 0,230 0,239 0,243

Ртуть

Температурная зависимость теплоемкости [160]

0 , K	с _Р , кДж • кг−1 • К−1
100	0,141
200	0,139

III группа периодической системы элементов

Алюминий

Температурная зависимость теплоемкости алюминия

θ , Κ	^с _Р , кДж • кг=1 • К=1	0, K	^с р [;] кДж · кг-1 · К-1	θ, K	^с _Р , кДж • кг−2 • К−1				
	99,994 % [120, 142]								
2 4 6 8 10 15 20 25 30 40 50 60 70 80	0,00011 0,00030 0,00050 0,00090 0,0014 0,0046 0,0089 0,038 0,067 0,130 0,142 0,256 0,318 0,376	90 100 110 120 130 140 150 160 170 180 190 200 210 220	0,431 0,481 0,523 0,565 0,603 0,640 0,675 0,713 0,750 0,762 0,779 0,797 0,810 0,824	240 250 260 273 280 293,15 298,15 400 500 600 700 800 900 933,61	0,848 0,858 0,869 0,881 0,887 0,901 0,904 0,951 0,992 1,037 1,090 1,154 1,228 1,256				
		АД	1 (99,5 %) [120]						
20 30 40 50 60 70 80 90 100	0,00502 0,0301 0,0800 0,138 0,205 0,280 0,348 0,418 0,473	110 120 130 140 150 160 170 180 190	0,520 0,560 0,608 0,632 0,670 0,700 0,720 0,740 0,762	200 210 220 230 240 250 260 280 293	0,775 0,790 0,812 0,819 0,828 0,844 0,868 0,885 0,895				

ө, қ	^с р, ^{кДж.кг-1.К-1}	ө, к	^с р' ^{кДж.кг-1.К-1}	ө , к	^с ₽, кДж∙кг-¹∙К-ӟ
370	0,649	460	0,711	530	0,523
410	0,627	470	0,753	560	0,732
420	0,657	500	0,510	620	0,795
450	0,941	520	0,209	670	0,837

Температурная зависимость теплоемкости сплава алюминия с 40 % серебра [233]

Температурная зависимость теплоемкости сплава алюминия с 4,5 % меди, 1,5 % магния и 0,6 % марганца [233]

ө, к	с _Р , кДж.кг-1. К-1	ө, к	с _р , кДж.кг-1.К-1	θ, Κ	^с р [,] кДж·кг- ³ ·К-3
70	0,481	300	0,866	600	1,038
100	0,536	400	0,946	700	1,163
200	0,732	500	0,979	780	1,289

Температурная зависимость теплоемкости сплава алюминия с 5,5 % цинка, 2,5 % магния, 1,5 % меди, 0,3 % хрома, 0,2 % марганца [233]

ө, к	с _Р ; кДж.кг-1.К-1	ө, к	с _Р , кДж.кг-з.К-1	ө, к	^с р, кДж·кг ⁻¹ ·К-1
70 170 270	0,661 0,787 0,816	370 470 570	0,782 0,761 0,724	670 740	0,711 0,736

Температурная зависимость теплоемкости сплава алюминия АМц (1,67% цинка, 1,38% марганца, 0,34% железа, 0,20% магния) [120]

0 , K	с _Р , кДж•кг-³•К-з	0, K	с _Р , кДж.кг- <u>1</u> .К-1	9 , K	с _р , кДж•кг-1•К-1
10 20 30 40 50 60 70	0,005 0,019 0,042 0,079 0,140 0,211 0,295	80 90 100 120 140 160 180	0,371 0,436 0,490 0,580 0,644 0,703 0,752	200 220 240 260 280 300	0,788 0,818 0,840 0,856 0,870 0,879

θ, Κ	^с _Р , кДж∙кг-¹∙К-1	ө, к	с _р , кДж•к <i>г</i> -1•К-1	ө, қ	с _р , кДж.кг-1. К-1
10 20 30 40 50 60 70	0,00498 0,0190 0,040 0,086 0,149 0,221 0,301	80 90 100 120 140 160 180	0,375 0,442 0,501 0,595 0,674 0,732 0,780	200 220 240 260 280 293	0,820 0,852 0,882 0,907 0,932 0,950

Температурная зависимость теплоемкости сплава алюминия АМг5 (5,7 % магния, 0,58 % марганца, 0,49 % кремния, 0,34 % железа) [120]

Температурная зависимость теплоемкости сплава алюминия АМг6 (6,2 % магния, 0,6 % марганца, 0,29 % железа, 0,22 % кремния) [120]

θ, K	с _Р , кДж∙кг-¹•К-≯	ө, қ	с _Р , кДж.кг-1.К-1	ө, к	с _Р , кДж∙кг-1•К-1
20	0,00695	80	0,368	180	0,750
30	0,0314	90	0,435	200	0,790
40	0,0840	100	0,505	220	0,815
50	0,139	120	0,590	240	0,838
60	0,210	140	0,660	260	0,868
70	0,293	160	0,718		·

Температурная зависимость теплоемкости сплава алюминия AMr3 (3 % магния, 0,2 % хрома, 0,1 % марганца) [120]

0, K	с _р , кДж.кг-1.К-1	ө, к	с _Р , кДж⋅кг-1⋅К-1	ө, қ	с _Р , кДж·кг ^{−1} ·К ^{−1}
20	0,0089	100	0,486	180	0,753
30	0,033	110	0,531	190	0,775
40	0,083	120	0,576	200	0,795
50	0,134	130	0,623	210	0,815
60	0,210	140	0,649	220	0,837
70	0,290	150	0,675	230	0,849
80	0,360	160	0,702	240	0,863
90	0,417	170	0,727	260	0,890

Температурная зависимость теплоемкости сплава алюминия Д16 (4,5 % меди, 1,5 % магния, по 0,1 % железа, марганца, кремния и ванадия) [120]

θ, K	Р, кДж∙кг-1•К-	$\left\ \Theta, K \right\ _{I}^{2}$	₀ , кДж•кр=1• Қ	и ө, к	^с р, ^{кДж.кг-1.K-1}
20	0,00555	100	0,450	180	0,740
30	0,0314	110	0,500	190	0,767

ө, қ	с _Р , кДж.кг-1.К-1	ө, қ	^с Р ^{, КДж·КГ⁻¹·К⁻¹}	ө, қ	^с р, кДж.кг-1.К-1
40	0,0800	120	0,550	200	0,785
50	0,140	130	0,600	210	0,806
60	0,210	140	0,630	220	0,826
70	0,280	150	0,660	230	0,840
80	0,347	160	0,702	240	0,850
90	0,409	170	0,720	260	0,862

Галлий

Температурная зависимость теплоемкости [120, 160]

ө, қ	с _р , кДж • кг-1 • К-1	0, к	с _Р , кДж.кг-1.К-1	ө, қ	с _Р , кДж.кг ⁻¹ .К ⁻¹
220	0,330	250	0,338	280	0,344
230	0,333	260	0,340	293	0,345
240	0,336	273	0,342	300	0,346

Индий

Температурная зависимость теплоемкости [120]

0, K	^с _Р , кДж.кг ⁻¹ .К ⁻¹	ө, қ	^с Р ^{, кДж.кг-1.K-1}	ө, к	^с Р ^{, кДж·кг-1} ·К-1
1 2 3 4 5 6 7 8 9 10 15 20 25 30	0,000029 0,000138 0,000410 0,000950 0,00227 0,00359 0,00602 0,00855 0,0120 0,0155 0,0155 0,0155 0,0608 0,0857 0,108	40 50 60 70 80 90 100 120 130 140 150 160 170	0,141 0,162 0,176 0,186 0,193 0,198 0,203 0,207 0,211 0,214 0,217 0,218 0,220 0,222	180 190 200 220 230 240 250 260 273 293 3.0	0,223 0,224 0,225 0,226 0,227 0,228 0,229 0,229 0,229 0,229 0,229 0,230 0,232 0,233

Таллий

Температурная зависимость теплоемкости [120, 160]

0, K	с _р , кДж•кг−¹•К−¹	ө, қ	с _Р , кДж.кг-1.К-1	ө, қ	с _Р ^і кДж∙кг-1. К-1
100	0,124	180	0,126	260	0,129
110	0,124	190	0,126	273	0,130

0 , K	с _р , кДж∙кг-¹∙К-¹	ө, қ	с _Р , кДж•кг=¹•К	-1 0, K	^с _Р , кДж.кг ⁻¹ .К ⁻¹
120	0,124	200	0,127	280	0,130
130	0,125	210	0,127	293	0,130
140	0,125	220	0,127	300	0,130
150	0,125	230	0,128	500 альфа	a 0,130
160	0,125	240	0,128	500 бета	0.142
170	0,126	250	0,129	550	0,145

Скандий

Температурная зависимость теплоемкости [120]

ө, к	^с р, ^{кДж.кр-1.K-1}	ө, қ	с _Р , кДж.кр -1 .К-1	ө, қ	¢ _Р , кДж∙кг-¹•К-1
1 2 3 4 5 6 7 8 9 10 15 20 25 30	0,000267 0,000505 0,000747 0,00100 0,00130 0,00170 0,00210 0,00250 0,00290 0,00331 0,00700 0,0139 0,0259 0,0477	40 50 60 70 80 90 100 110 120 130 140 150 160	$\begin{array}{c} 0,0954\\ 0,147\\ 0,198\\ 0,226\\ 0,289\\ 0,353\\ 0,364\\ 0,400\\ 0,417\\ 0,436\\ 0,455\\ 0,469\\ 0,482\\ 0,402\end{array}$	180 190 200 210 220 230 240 250 260 273 293 300	$\begin{array}{c} 0,504\\ 0,512\\ 0,520\\ 0,527\\ 0,533\\ 0,538\\ 0,544\\ 0,549\\ 0,553\\ 0,560\\ 0,568\\ 0,573\end{array}$

Иттрий

Температурная зависимость теплоемкости [120, 160]

θ, Κ	^с р, кДж.кг-1.К-1
280	0,222
293	0,283

Лантаноиды. Лантан

Температурная зависимость теплоемкости [160, 233]

ө, қ	с _р , кДж.кг-1.К-1	ө, қ	с _р , кДж∙кр ⁻¹ •К ⁻¹	ө, қ	^с р, кДж•кг ⁻¹ •К -1
10	0,0033	100	0,169	200	0,189
50	0,159	150	0,180	293	0,200

Церий

ө, қ	^с р, кДж·кг- ¹ ·К-	-1 ө, қ	Р ^{, кДж∙кг−¹} •К-	- 🛛 ө, к	с _Р , кДж∙кг-¹∙К-¹
20 30 40 50 100 150 180 200 250	0,047 0,088 0,124 0,146 0,194 0,213 0,216 0,209 0,192	300 350 400 450 500 550 600 650 700	0,192 0,195 0,201 0,206 0,211 0,216 0,221 0,227 0,234	750 800 850 900 950 1000 1050 1070	0,240 0,247 0,254 0,259 0,265 0,270 0,270 0,270
200	-,		-,		

Температурная зависимость	теплоемкости	[120,	233]
---------------------------	--------------	-------	------

Празеодим

Температурная зависимость теплоемкости [233]

0, K	с _Р , кДж∙кг-¹∙К-1	ө, к	с _Р , кДж·кг- ¹ ·К-1	ө, қ	с _Р , кДж⋅кг ⁻¹ ⋅К ⁻¹
10	0,019	250	0,197	700	0,234
15	0.060	300	0,198	750	0,243
20	0.094	350	0,201	800	0,251
30	0.151	400	0,203	850	0,259
40	0.174	450	0,206	900	0,271
50	0.179	500	0.210	9 50	0,280
100	0.188	550	0.215	1000	0.292
150	0.192	600	0.220	1050	0.303
200	0,194	650	0,226	1100	0,314

Неодим

Температурная зависимость теплоемкости [233]

ө, қ	с _Р , кДж.кг-1.К-	1 ө, к	^с р, ^{кДж.кг-1.К}	-1 θ, K	с _Р , кДж⋅кг-1⋅К-1
5	0.004	300	0.206	750	0.245
10	0.038	350	0.208	800	0.254
20	0,073	400	0,210	850	0,263
40	0,127	450	0,213	900	0.272
60	0,163	500	0,216	950	0,282
100	0,186	550	0,220	1000	0,292
150	0,197	600	0,224	1050	0,303
20 0	0,201	650	0,230	1100	0,313
250	0,204	700	0,238	1150	0,324

Самарий

0 , K	с _Р , кДж.кг-1.К-1	ө, к	с _р , кДж.кг-1.К-1	ө, к	^с р, кДж.кг-1.К- <u>1</u>
270 370 470 570 670	0,175 0,218 0,244 0,262 0,276	770 870 970 1070 1130	0,287 0,295 0,303 0,310 0,314	1190 1200 1370	0,318 0,312 0,312

Температурная зависимость теплоемкости [233]

Европий

Изменение теплоемкости при температурах, близких к комнатной

θ, Κ	с _Р , кДж•кг-1•К-1	Источник
273	0,170	[163]
280 293	0,178 0,165	[120]

Гадолиний

Температурная зависимость теплоемкости [233]

0, K	с _Р , кДж.кг-1.К-1	ө, қ	^с р ^{, кДж•кр-1•К-1}	0, K	с _Р , кДж∙кг-1•К-1
15 30 50 100	0,013 0,046 0,121 0,184	150 200 250 280	0,209 0,230 0,268 0,372	300 350 400	0,251 0,199 0,192

Тербий

Температурная зависимость теплоемкости [233]

ө, к	^с р, ^{кДж.кр-1.K-1}	ө, қ	^с р, ^{кДж.кб-1.К-1}	θ , K	^с р, кДж.кр -2.К-3
15	0,018	50	0,138	230	0,477
20	0,028	100	0,201	250	0,201
30	0,067	150	0,234	300	0,182
40	0,108	200	0,296	350	0,180

Диспрозий

θ, Κ	с _р , кДж•кг-1•К-1	ө, қ	^с р, кДж.кг-1.К-1	0, K	^с р, кДж·кг ⁻¹ ·К -1
15 20 30 40 50	0,015 0,036 0,075 0,115 0,142	80 95 100 150 180	0,218 0,205 0,215 0,272 0,354	200 250 300	0,180 0,174 0,175

Температурная зависимость теплоемкости [233]

Гольмий

Температурная зависимость теплоемкости [233]

θ, Κ	^с Р ^{, к} Дж•кг∸1•К−3	0, K	^с р, ^{кДж•кг-1} •К-1	θ, Κ	^с Р' кДж.кг -1.К- 1
15 30 50 100	0,042 0,092 0,130 0,230	135 140 150 200	0,301 0,180 0,163 0,201	250 300	0,204 0,207

Эрбий

Температурная зависимость теплоемкости [120]

0; K	^с р ^{, кДж.кг-1.К-1}	ө, қ	с _Р , кДж.кг-1.К-	-1 0, K	^с р ^{, кДж•кг-1•К-<u>1</u>}
25 30 40 50 60 70 80 90 100 120	0,0922 0,117 0,142 0,167 0,176 0,185 0,187 0,187 0,190 0,192 0,146	130 140 150 160 170 180 190 200 210 220	0,148 0,149 0,151 0,153 0,155 0,155 0,157 0,158 0,159 0,159 0,159 0,160	230 240 250 260 273 280 293 300	0,160 0,161 0,161 0,162 0,163 0,165 0,167 0,168

Тулий

с_P = 0,160 кДж · кг⁻¹ · К⁻¹ в диапазоне 280-293 К [120, 160]

Иттербий

с_Р = 0,145 кДж · кг⁻¹ · К⁻¹ при 293 К [160]

Лютеций

с_Р = 0,154 кДж · кг⁻¹ · К⁻¹ при 293 К [120, 160]

Актиноиды. Торий

0, K	с _Р , кДж.кг-1.К-1	ө, қ	^с Р ^{, кДж.кг-1.К-1}	ө, қ	^с р ^{, кДж.кр-1.K-1}
15	0,017	250	0,116	700	0,238
30	0,043	300	0,118	900	0,300
40	0,061	350	0,130	1100	0,361
50	0,078	400	0,150	1300	0,424
100	0,100	450	0,162	1500	0,484
150	0,109	500	0,176	1700	0,545
200	0,112	600	0,207	1900	0,608

Температурная зависимость теплоемкости [160, 233]

Уран

Температурная зависимость теплоемкости урана (99,7%) [120, 160]

θ, Κ	^с р ^{, кДж.кг-1.K-1}	ө, қ	с _р , кДж.кг-1. К-1	0, K	^с р, кДж.кг-1.К-1
20 100 200 220 250 273 293 300	0,125 0,126 0,130 0,131 0,132 0,133 0,133 0,133 0,134	350 400 450 500 600 700 800 900	0,137 0,140 0,142 0,145 0,153 0,162 0,173 0,185	940 1030 1050 1100 1200 1300	0,190 0,202 0,205 0,213 0,232 0,250

Сплавы урана

Теплоемкость сплавов урана с алюминием при 300 К [120, 160]

Концентрация алюминия, %	с _Р , кДж•кг-1•К-1	Концентрация алюминия, %	с _Р , кДж•кг-1•К-1
5	0,171	50	0,565
10	0,218	70	0,735
20	0,305	80	0,825
30	0,385	90	0,912

Теплоемкость сплавов урана с цирконием при 300 К [120, 160]

Концентрация циркония, %	^с _Р . кДж∙кг−¹•К−1	Концентрация циркония, %	^с р, кДж.кг-1.К-1
5	0,113	30	0,159
10	0,121	50	0,193
20	0,142	70	0,226

Теплоемкость сплавов урана с хромом при 300 К [120, 160]

Концентрация хрома, %	с _р , кДж∙кг−1•К−1	Концентрация крома, %	^с р [;] кДж.кг-1.К-1
5	0,126	30	0,209
10	0,142	50	0,276
20	0,176	70	0,343

Температурная зависимость теплоемкости сплава урана с 5,6 % хрома [233]

0, K	с _р , кДж.кр-1.К-1	θ, Κ	с _р , кДж•кг-1•К-1
270	0,128	670	0,181
370	0,140	770	0,194
470	0,154	870	0,207
570	0,167	900	0,209

Теплоемкость сплавов урана с молибденом при 300 К [120, 160]

Концентрация молибдена, %	с _Р , кДж•кг-1•К-1	Концентрация молибдена, %	с _р , кДж.кг-1.К-1
5	0,118	50	0,120
10	0,118	60	0,120
20	0,119	70	0,121
30	0,119	80	0,121
40	0,119	90	0,121

Температурная зависимость теплоемкости сплавов урана с 7—22 % молибдена [233]

0, K	^с р ^{, кДж.кр-<u>1</u>.К-1}	ө, қ	с _р , кДж.кр-1.К-1	0, K	^с р' кДж.кг-1.К-1
500 600 700 800	0,167 0,167 0,167 0,184	850 880 900 950	0,301 0,732 0,577 0,198	1000 1100	0,176 0,197

Теплоемкость сплавов урана с железом при 300 К [120, 160]

Концентрация железа, %	^с р, кДж.кг-1.К-1	Концентрация железа, %	^с р ^{; кДж•кг-1•К-1}	
5	0,127	30	0,210	
10	0,147	50	0,280	
20	0,179	70	0,348	

Плутоний

ө, қ	с _Р , кДж.кг-1. К-1	ө, қ	с _Р , кДж.кг-1. К-1	θ, Κ	с _Р , кДж•кг−1•К−2
300	0,134	450	0,815	700	1,970
350 400	0,350 0,586	500 600	1,050 1,500	800 900	2,430 2,900

Температурная зависимость теплоемкости [160]

IV группа периодической системы элементов

Титан

Температурная зависимость теплоемкости титана

ө, қ	¢ _Р , кДж∙кг-1•К-1	θ, K C	Р ^{, кДж∙кг−¹} •К	-1 0, K	^с _Р , кДж∙кг−1•К−1					
		9	9,9 % [120]							
1 2 3 4 5 6 7 8 9 10 15 20 30 40	0,0000710 0,000146 0,000226 0,000317 0,000420 0,000540 0,000840 0,000980 0,00126 0,00330 0,00700 0,0245 0,0571	50 60 70 80 90 100 110 120 130 140 150 160 170 180	0,0992 0,147 0,189 0,230 0,267 0,300 0,326 0,352 0,370 0,391 0,406 0,422 0,434 0,446	190 200 210 220 230 240 250 260 273 280 293 300	0,455 0,465 0,472 0,480 0,486 0,493 0,498 0,504 0,509 0,514 0,518 0,522					
	Монокристаллический титан (99,85 %) [120]									
10 20 30 40 50 60	0,00122 0,00708 0,0266 0,0568 0,0998 0,146	70 80 100 120 150 200	0,191 0,232 0,304 0,358 0,413 0,465	250 273 293 300	0,501 0,515 0,525 0,529					

ө, қ	^с р' кДж.кр-1.К-1	θ, K	с _р , кДж.кр-1.К-1	θ, K	^с _Р , кДж∙кг- ≀ ∙К-1
100	0,543	260	0,559	923	0,612
110	0,545	273	0,560	973	0,615
120	0,547	280	0,561	1023	0.617
130	0,548	293	0.562	1073	0,620
140	0,548	300	0,563	1123	0,622
150	0,549	373	0,569	1173	0,624
160	0,550	423	0,573	1223	0,627
170	0,550	473	0,578	1273	0,628
180	0,551	523	0,582	1323	0,631
190	0,552	573	0,586	1373	0,632
200	0,553	623	0,590	1423	0,634
210	0,554	673	0,594	1473	0,636
220	0,555	723	0,598	1600	0,702
230	0,557	773	0,602	1700	0,753
240	0,557	823	0,606	1800	0,820
250	0,558	873	0,609	1900	0,912

Температурная зависимость теплоемиости титана технической чистоты [120, 160, 233]

Сплавы титана

Температурная зависимость теплоемкости сплава титана с 2,71 % хрома и 1,4 % железа [233]

ө , к	с _р , кДж.кр- <u>1</u> .К-1	0, K	с _р , кДж.кр-1.К-1	ө, қ	^с р ^{, к} Дж.кр ⁻¹ .К ⁻¹
300	0,543	580	0,598	920	0,803
420	0,554	730	0,682	1040	0,900

Температурная зависимость теплоемкости сплавов титана с кислородом [233]

θ, K	^с р, кДж Концен кислор	к г−¹•К−1 нтрация рода, %	ө, қ	^с р, кДж. Концен кислор	кр-1.Қ-1 ітрация ода, %	ө , қ	^с р, кДж Конце кисло	•кг-1•К-1 нтрация рода, %
	2	10		2	10		2	10
50 100 200 300 400 500	0,063 0,222 0,460 0,544 0,565 0,619	0,117 0,293 0,472 0,523 0,556 0,586	600 700 800 850 900 1000	0,649 0,711 1,151 0,766 0,774 0,787	0,611 0,636 0,669 0,678 0,688 0,703	1 100 1 200 1 300 1 350 1 400 1 450	0,808 0,837 0,862 0,874 0,891 0,941	0,731 0,753 0,838 1,163 1,046 0,933

θ, K	<i>р</i> , кДж•кг-1•К-	•• н е, к с	_р , кДж•кг ⁻¹ •К	1 ө, қ	Р' КДж·кг-1·К-1
15	0.0342	120	0,352	240	0,499
20	0,0712	130	0,374	250	0,504
25	0,0130	140	0,393	260	0,508
30	0,0246	150	0,410	273	0,512
40	0,0540	160	0,425	280	0,514
50	0,0930	170	0,438	293	0,518
60	0,146	180	0,450	300	0,520
70	0,193	190	0,461	473	0,548
80	0,233	200	0,470	573	0,565
90	0,265	210	0,479	673	0,586
100	0,295	220	0,483	773	0,632
110	0,326	230	0,493	873	0,669
	-				

Температурная зависимость теплоемкости технического титана ВТ1 (нелегированного) [27, 120]

Температурная зависимость теплоемкости титанового сплава BT5 (5 % алюминия) [27]

ө, қ	с _р , кДж.кр-1.К-1	0, K	с _Р , кДж.кг-1.К-1	θ, Κ	^с _Р , кДж.кг-1.К-1
373	0,548	573	0,632	773	0,711
473	0,586	673	0,669	873	0,757

Температурная зависимость теплоемкости титанового сплава ВТ5-1 (5% алюминия, 2,5% олова) [27, 120]

θ, K	Р ^{, КДж•КГ-1} •К-1	ө, к	^с Р ^{, кДж•кг-1•К-1}	ө, қ	с _Р , кДж•кг−1•К−1
10	0,003	120	0,370	250	0,548
15	0,006	130	0,394	260	0.556
20	0,010	140	0,416	273	0,562
25	0,015	150	0,435	280	0,566
30	0,030	160	0,453	293	0,573
40	0,061	170	0,466	300	0,576
50	0,104	180	0,481	67 3	0,586
60	0,150	190	0,493	773	0,631
70	0,200	200	0,504	873	0.669
80	0,244	210	0,516	973	0.711
90	0,282	220	0.525	1073	0,795
100	0,315	230	0.534		•• • •
110	0,344	240	0,542		

Температурная зависимость теплоемкости титанового сплава ОТ4-0 (0,8% алюминия, 0,8% марганца)

0, K	^с р, ^к Дж.кр ⁻¹ .К ⁻¹	ө, қ	с _Р , кДж.кг ⁻¹ .К ⁻¹	9, K	с _Р , кДж∙кг-1•К-1
373	0,544	673	0,669	973	0,841
473	0,586	773	0,711	1073	0,879
573	0,632	873	0,757	1173	0,920

Температурная зависимость теплоемкости титанового сплава ОТ4-1 (1,5% алюминия, 1,0% марганца) [27]

ө, қ	с _Р , кДж.кг-1.К-1	Η,	с _Р . кДж.кг-1.К-1	ө, к	с _Р . кДж∙к г−¹ •К−1
373	0,502	573	0,632	773	0,757
473	0,565	6 73	0,669	873	0,841

Температурная зависимость теплоемкости титанового сплава ОТ4 (3,5 % алюминия и 1,5 % марганца) [27]

0 , К	^с р, кДж.кг-1.К-1	ө, қ	с _р , кДж•кг−1•К−1
373 473 573	0,502 0,565 0,632	673 773	0,669 0,757

Температурная зависимость теплоемкости титанового сплава ВТ4 (5% алюминия и 1,5% марганца) [27]

θ, Κ	с _Р , кДж∙кг- <u>1</u> •К-1	0, K	^с р, кДж.кг ⁻¹ .К ⁻¹
373	0,502	573	0,611
473	0,565	673	0,669

θ, Κ	ср, кДж•к р-1 •К-1	ө, қ	ср, кДж.кг-1.К-1	θ, Κ	ср, кДж·кг-1·К-2
373	0,418	673	0,632	973	0,837
473	0,481	773	0,711	1073	0,879
573	0,548	873	0,757	1173	0,962

Температурная зависимость теплоемкости титанового сплава ОТ4-2 (6 % алюминия, 1,5 % марганца) [27]

Температурная зависимость теплоемкости титанового сплава AT2 (2 % циркония, 1 % молибдена) [120]

θ, Κ	ср, кДж.кр-1.K-1	θ, Κ	ср; кДж.кг-1.К-	-л ө, қ	ср, кДж.кг-1.К-1
10 15 20 25 30 40 50 70 80 90 100	0,0020 0,0031 0,0085 0,0126 0,0280 0,060 0,100 0,140 0,215 0,252 0,290	110 120 130 140 150 160 170 180 190 200 210	0,325 0,350 0,370 0,390 0,408 0,422 0,434 0,446 0,456 0,464 0,472	220 230 240 250 260 273 280 293 300	0,478 0,484 0,488 0,492 0,498 0,502 0,504 0,504 0,511 0,523

Температурная зависимость теплоемкости титанового сплава ВТ20 (6 % алюминия, 2 % циркония, 1 % молибдена, 1 % ванадия) [27].

θ, Κ	ср, кДж·кг-1.К-1	ө, қ	ср, кДж.кг-1.К-1	θ, K·	ср; кДж.кг-1.К-1
373	0,548	673	0.669	973	0.841
473	0,586	773	0,711	1073	0,883
573	0,632	87 3	0,757	1173	0,925

Температурная зависимость теплоемкости титанового сплава ВТ6С (5 % алюминия, 4 % ванадия) [27]

ө, к	ср, кДж•кр-1•К-1	0, K	<i>ср</i> , кДж•кг-1•К-1	0, K	ср, кДж.кг-1.К-1
373	0,548	673	0,669	973	0,795
473	0,586	773	0,711	1073	0,883
573	0,632	873	0,757	1173	0,925
θ, Κ	<i>ср</i> , кДж.кг- <u>1</u> .К-1	0 , K	ср, кДж.кг-1.К-1	0, K	ср, кДж.кг-1.K-1
------	-----------------------------------	------------------	------------------	------	------------------
20	0,0082	130	0,378	250	0,514
25	0,0163	140	0,399	260	0,520
30	0,0287	150	0,416	273	0,526
40	0,0584	160	0,433	280	0,530
50	0,0986	170	0,446	293	0,536
60	0,144	180	0,458	300	0,539
70	0,188	190	0,469	373	0,548
80	0,229	200	0,478	473	0,586
90	0,267	210	0,488	573	0,669
100	0,301	220	0,495	673	0,711
110	0,330	230	0,503	773	0,795
120	0,357	240	0,508	873	0,883

Температурная зависимость теплоемкости титанового сплава ВТ6 (6 % алюминия, 4 % ванадия) [27, 120]

Температурная зависимость теплоемкости титанового сплава ВТЗ-1 (6 % алюминия, 2,5 % молибдена, 2 % хрома, 0,3 % кремния, 0,5 % железа) [27]

0 ∎ K	<i>ср</i> ; кДж·кг-1·К-1	θ, K	<i>ср</i> , кДж•кг-1•К-1	0, K	с _Р , кДж•кг-1•К-
373	0,460	573	0,548	773	0,669
473	0,502	673	0,619	873	0,711

Температурная зависимость теплоемкости титанового сплава BT14 (4,5 % алюминия, 3 % молибдена, 1 % ванадия) [27, 120]

	, ,,		/ //	/ (/			
ө, қ	<i>ср</i> , кДж·кг-1·К-	ө, қ	<i>ср</i> , кДж.кг-1.К-	ө, к	ср, кДж•кг -1 •К-1		
20	0,00787	130	0,372	250	0,504		
25	0,0152	140	0,392	260	0,510		
30	0,0260	150	0,408	273	0,518		
40	0,0573	160	0,425	280	0,521		
50	0,0984	170	0,437	293	0,526		
60	0,143	180	0,449	300	0,529		
70	0,186	190	0,459	473	0,548		
80	0,226	200	0,469	573	0,586		
90	0,264	210	0,476	673	0,632		
100	0,297	220	0,484	773	0,669		
110	0,324	230	0,491	873	0,711		
120	0,352	240	0,498	973	0,837		

Температурная зависимость теплоемкости титанового сплава ВТ16 (2,5 % алюминия, 5 % молибдена, 5 % ванадия) [27]

0, K	ср, кДж·кг-1·К-1	ө, қ	ср, кДж•кг-1•К-1	ө, қ	ср, кДж.кр-1. К-1
373	0,481	673	0,586	973	0,795
473	0,502	773	0,669	1073	0,841
573	0,548	873	0,711	1173	0,883

Температурная зависимость теплоемкости титанового сплава ВТ22 (5 % алюминия, 5% молибдена, 5 % ванадия, 1 % железа, 1 % хрома) [27]

ө, қ	<i>ср</i> , кДж•кр-1•К-1	θ, Κ	<i>ср</i> , кДж•кг-1•К-1	ө, қ	<i>ср</i> , кДж•кг-1•К-1
373	0,544	673	0,669	973	0,837
473	0,586	773	0,711	1073	0,874
573	0,632	873	0,753	1173	0,920

Температурная зависимость теплоемкости титанового сплава ВТ23 (4,5 % алюминия, 2 % молибдена, 4,5 % ванадия, 0,6 % железа, 1 % хрома) [27]

θ, Κ	<i>ср</i> , кДж.кг-1.К-1	θ, Κ	<i>ср</i> , кДж•кг-1•К-1	ө, қ	<i>ср</i> , кДж·кр-1·К-1
373	0,548	673	0,669	973	0,925
473	0,586	773	0,757	1073	0,971
573	0,632	873	0,816	1173	0,992

Температурная зависимость теплоемкости титанового сплава ВТ15 3 % алюминия, 7 % молибдена, 11 % хрома) [27]

θ, Κ	<i>ср</i> , кДж.кг-1.К-1	0, K	с _Р , кДж•кг- <u>1</u> •К-1	ө, қ	<i>ср</i> , кДж·кг-1·К-1
373	0,502	673	0,632	973	0,757
473	0,548	773	0,669	1073	0,795
573	0,586	873	0,711	1173	0,841

Температурная зависимость теплоемкости титанового сплава (6 % алюминия и 4 % ванадия) * [120]

θ, Κ	с _Р , кДж•кг-1•К-1	ө, қ	с _Р , кДж•кг-1•К-1	θ , K	<i>ср</i> , кДж•кг-1•К-1
20 25 30 40 50 60 70 80 90	0,00841 0,0182 0,0271 0,0584 0,0995 0,147 0,187 0,229 0,266	110 120 130 140 150 160 170 180 190	0,330 0,361 0,380 0,401 0,416 0,434 0,446 0,446 0,458 0,469	210 220 230 246 250 260 273 280 293	0,487 0,494 0,500 0,516 0,522 0,526 0,529 0,534

• Сплав производится за рубежом.

θ, Κ	ср; кДж•кр-1•К-1	θ, Κ	срі кДж-кг-1.К-1	θ, Κ	ср, кДж.к г-3.К-3
20 25 30 40 50 60 70 80	0,00777 0,0173 0,0259 0,0575 0,0987 0,142 0,185 0,226 0,264	110 120 140 150 160 170 180 190	0,324 0,351 0,370 0,392 0,408 0,425 0,437 0,450	220 230 240 250 260 273 280 293 200	0,477 0,491 0,498 0,503 0,509 0,517 0,521 0,527
100	0,204	200	0,469	300	0,000

Температурная зависимость теплоемкости титанового сплава (4 % алюминия, 3 % молибдена и 1 % ванадия) * [120]

Температурная зависимость теплоемкости титанового сплава (2,5 % алюминия, 16 % ванадия) * [120]

θ, Κ	ср, кДж·кр-1·К-1	ө, к	сра кДж•кр-1•К	-1 0, K	ср; кДж.кр-1.К-1
20	0,0135	110	0,333	210	0,483
25	0,0255	120	0,365	220	0,491
30	0,0372	130	0,384	230	0 ,497
40	0,0723	140	0,404	240	0,5 03
50	0,115	150	0,419	250	0,508
60	0,160	160	0,435	260	0,51 3
70	0,204	170	0,451	273	0,5 18
80	0,244	180	0,458	280	0,522
90	0,280	190	0,467	293	0,52 7
100	0,312	200	0,476	300	0,531

Температурная зависимость теплоемкости титанового сплава (3 % алюминия, 11 % хрома и 13 % ванадия) * [120]

ө, к	<i>ср</i> , кДж·кр-1·К-1	θ, Κ	ср, кДж•кг-1•К-2	ө, қ	ср, кДж•кг-3•К-3
20	0.0122	110	0.334	210	0.480
25	0.0231	120	0.362	220	0.487
30	0.0351	130	0.376	230	0.494
40	0.0698	140	0.400	240	0.501
50	0,112	150	0,416	250	0,506
60	0,157	160	0,432	260	0,511
70	0,200	170	0,443	273	0,515
80	0,241	180	0,455	280	0,519
90	0.277	190	0.465	293	0.524
100	0,309	200	0,476	300	0,528

• Сплав производится за рубежом.

Цирконий

θ, K	с р, кДж∙кг ⁻¹ •К-1	θ, Κ	<i>ср</i> , кДж•кг- 1 •К-1	θ, Κ	ср, кДж•кг-1•К-1
15 25 50 100 123 223	0,012 0,029 0,125 0,205 0,229 0,267	293,15 298,15 400 500 600 700	0,274 0,276 0,295 0,308 0,321 0,333	800 900 1000 1100 1140	0,344 0,356 0,367 0,378 0,383

Температурная зависимость теплоемкости [142, 160, 233]

Сплавы циркония

Температурная зависимость теплоемкости сплавов циркония с серебром [233]

ө . К	ср, кДж	•кг-1•К-1		ср, кДж	кг-1·K-1		ср,кДж	•кг-1•К-3
	Концентрация серебра, %		ө, к	Концентрация серебра, %		ө, қ	Концентрация серебра, %	
	0,9	5,4		0,9	5,4		0,9	5,4
300 400 500 600	0,280 0,287 0,293 0,297	0,294 0,302 0,310	700 800 900 1000	0,305 0,318 0,334 0,351	0,318 0,328 0,340 0,360	1090 1100 1200	0,381 0,417 0,301	0,418 0,301 0,301

Температурная зависимость теплоемкости сплава циркония с 7,8 % индия [233]

9. K	ср, кДж.кг-1. К-1	0, K	ср, кДж·кг-1•К-1	θ, K	ср, кДж·кг-1•К-1
300 400 500 600	0,291 0,292 0,293 0,300	700 800 900 1000	0,307 0,314 0,322 0,331	1100 1140 1160	0,341 0,345 0,404

Температурная зависимость теплоемкости сплава циркония с 34,4 % титана [233]

0, K	<i>ср</i> , кДж·кг- ¹ •К-1	0, K	ср, кДж·кг-1·К-1	ө, қ	ср, кДж·кг-1·К-1
470	0,385	800	0,669	980	0,460
570	0,410	840	0,502	1070	0,392
670	0,460	905	0,502	1170	0,383

Температурная зависимость теплоемкости сплава циркония с 17,5 % ниобия [233]

θ, K	ср; кДж•кг-1•К-1	0, K	ср, кДж.кг-1. К-1	0, K	ср; кДж•кг-*•К-Э
370	0,293	700	0,297	1000	0,293
600	0,294	900	0.310	1100	0,293

Гафний

Температурная зависимость теплоемкости [160]

ө, к	ср; кДж•кр-1•К-1	θ, Κ	<i>ср</i> • кДж•кр−¹•К−1	ө, қ	ср, кДж.кр-1.К-1
13	0,0008	50	0,091	110	0,129
20	0,0031	70	0,123	200	0,140
30	0,014	90	0,127	210	0,140
40	0,038	100	0,127	300	0,147

Олово белое

Температурная зависимость теплоемкости [120, 160]

Θ, Κ	<i>ср</i> ; кДж•кр-1•К-1	ө, қ	<i>ср</i> , кДж•кр-1•К-1	0, K	ср, кДж.кг-1. К-1
1 2 3 4 5 6 7 8 9 10 15 20	0,000017 0,000047 0,000109 0,000245 0,000540 0,00127 0,00270 0,00420 0,00600 0,00810 0,0226 0,0400	50 60 70 80 90 100 110 120 130 140 150 160	0,130 0,148 0,162 0,173 0,182 0,189 0,194 0,198 0,201 0,204 0,206 0,208	190 200 210 220 230 240 250 260 273 280 293 373	0,213 0,214 0,215 0,216 0,217 0,218 0,219 0,220 0,220 0,221 0,221 0,221 0,243
30 40	0,0760 0,106	170 180	0,210 0,212	0.0	0,210

Сплавы олова

Температурная зависимость теплоемкости сплава олова с 50 % свища [120]

9 , K	<i>с</i> р, кДж•кг-1•К-1	ө, к	с _Р , кДж•кг-1•К-	1 0, K	ср, кДж.кг-1.К-1
20	0,0459	110	0,155	210	0,171
25	0,0613	120	0,158	220	0,172
30	0,0763	130	0,160	230	0,173
40	0,0995	140	0,162	240	0,174
50	0,116	150	0,163	250	0,174
60	0,128	160	0,165	260	0,175
70	0,137	170	0,166	273	0,176
80	0.143	180	0,168	280	0,177
90	0,148	190	0,169	293	0,178
100	0,152	200	0,170	300	0,179

Свинец

0 , K	<i>ср</i> ; кДж.кг-1.К-1	ө, қ	<i>ср</i> , кДж•к г−1•К− 1	Θ, Κ	Ср, кДж.кг-1.К-1
1	0,000026	50	0,103	200	0,125
2	0,00012	60	0,108	210	0,125
3	0,00033	70	0,112	220	0.126
4	0.00070	80	0,114	230	0.126
5	0.00150	90	0,116	240	0,127
6	0.00290	100	0,118	250	0,127
7	0,00480	110	0,119	260	0,128
8	0,00730	120	0,120	273	0,129
9	0,0105	130	0,120	280	0,129
10	0.0137	140	0,121	293	0,130
15	0,0335	150	0,122	300	0,130
20	0,0531	160	0,123	400	0,132
25	0,0681	170	0,123	500	0.137
30	0,0796	180	0,124	600	0.142
40	0,0944	190	0,124		,

Температурная зависимость теплоемкости [120, 142]

Сплав свинца

Температурная зависимость теплоемкости сплава свинца с 25 % олова и 1,7 % сурьмы [120]

0, K	с _Р , кДж∙кг-1•К-1	0, K	<i>ср</i> , кДж∙кг - ¹•К-1	θ, Κ	ср; кДж•кр-1•К-1
2 3 4 5	0,00006 0,00020 0,00055 0,00117	6 7 8 9	0,00270 0,00440 0,00670 0,0095	10 20	0,0117 0,0475

V группа периодической системы элементов

Ванадий

Температурная зависимость теплоемкости [120, 160]

0 , K	ср, кДж.кг-1. К-1	ө, қ	ср, кДж.кг-1.К-1	ө, к	ср, кДж.кг-1.К-1
100	0,480	2 20	0,501	673	0,563
110	0,482	230	0,501	773	0,590
120	0,484	240	0,502	873	0,607
130	0,486	250	0,502	973	0,620
140	0,488	260	0,502	1073	0,630
150	0,489	273	0,502	1173	0,650
160	0,491	280	0,502	1273	0,670
170	0,493	293	0,502	1373	0,700
180	0,495	300	0,502	1473	0,720
19 0	0,497	37 3	0,523	1573	0.755
200	0,499	473	0.540	1673	0.780
210	0,500	573	0,560	1773	0,816

Ниобий

ө, к	ср, кДж∙кг-¹•К-¹	ө, к	ср, кДж.кг-1.K-1	ө, қ	ср, кДж•кг- ³•К-3
1	0,00009	70	0,152	240	0,261
2	0,00018	80	0,173	250	0,262
3	0,00028	90	0,189	260	0,264
4	0,00040	100	0,202	273	0,265
5	0,00056	110	0,212	280	0,266
6	0,00057	120	0,221	293	0,267
7	0,00102	130	0,227	300	0,268
8	0,0014	140	0,234	400	0,270
9	0,0017	150	0,239	600	0,281
10	0,0022	160	0,243	800	0,293
15	0,0055	170	0,246	1000	0,304
20	0,0113	180	0,249	1200	0,316
25	0,0210	190	0,251	1500	0,333
30	0,0350	200	0,254	1800	0,350
40	0,0680	210	0,256	2100	0,368
50	0,0990	220	0,258	2400	0,385
60	0,127	230	0,259	2700	0,425

Температурная зависимость теплоемкости [120, 160]

Тантал

Температурная зависимость теплоемкости [120, 160, 233]

0, K	сракДж•кг−1•К−1	ө, к	с _{Рі} кДж.кг-1.К-1	0; K	ср, кДж·кг-э•К-3
1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 60 70	0,000032 0,00068 0,000112 0,000171 0,000260 0,000333 0,000450 0,000450 0,000930 0,00117 0,00360 0,00117 0,00360 0,00823 0,0153 0,0240 0,0430 0,0604 0,0754 0,0879	80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250	0,0976 0,105 0,111 0,115 0,122 0,125 0,126 0,128 0,128 0,129 0,131 0,132 0,134 0,135 0,136 0,136 0,137 0,137	260 273 280 293 300 400 600 800 1000 1200 1500 1500 1800 2100 2400 2700 3000	0,138 0,138 0,139 0,139 0,140 0,141 0,145 0,145 0,148 0,152 0,156 0,163 0,163 0,163 0,163 0,163 0,163 0,169 0,178 0,188 0,200 0,217

Сурьма

с_р = 0,189 кДж · кг⁻¹ · К⁻¹ в диапазоне 273—903,5 К [163]

Висмут

 $c_P = 0,127$ кДж · кг⁻¹ · К⁻¹ при 293 К [160]

Сплав висмута

θ, K	ср, кДж·кг-¹•К-1	0, K	ср, кДж.кр-1.K-1	0 , K	ср, кДж•кг-1•К-1
1	0,00002	5	0,00139	9	0,0105
2	0,00006	6	0,00290	10	0,0134
3	0,00024	7	0,00470	15	0,0297
4	0,00062	8	0,00760	20	0,0460

Температурная зависимость теплоемкости сплава Вуда (50 % висмута, 25 % свинца, 12,5 % кадмия, 12,5 % олова) [120]

VI группа периодической системы элементов

Хром

Температурная зависимость теплоемкости [120, 160, 233]

9, K	<i>ср</i> , кДж∙кг ⁻¹ •К ⁻¹	0, K	с _Р , кДж.кг-1.К-1	θ, Κ	срі кДж.кг-1. К-1
1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50	0,0000285 0,0000580 0,000124 0,000165 0,000259 0,000312 0,000383 0,000451 0,000451 0,00102 0,00210 0,00210 0,00392 0,00683 0,0171 0,0358	80 90 100 110 120 130 140 150 160 170 180 200 210 220 230 240	0,127 0,161 0,193 0,221 0,249 0,273 0,296 0,314 0,332 0,347 0,361 0,385 0,395 0,395 0,404 0,411 0,419	270 280 293 300 400 500 600 700 800 900 1000 1200 1400 1600 1800	1 0,436 0,441 0,446 0,450 0,462 0,478 0,500 0,524 0,550 0,584 0,608 0,668 0,728 0,879 1,025 1 121
60 70	0,0621 0,0930	250 260	0,425 0,431		-,

Сплав хрома

Температурная зависимость теплоемкости сплава хрома с 43—45 % железа, 1 % кремния, 0,1 % алюминия, 0,33—0,04 % углерода [233]

0 , K	<i>ср</i> , кДж∙кг ⁻¹ •К ⁻¹	0, K	ср; кДж·кг-1·К-1	θ, Κ	ср, кДж•кг-1•К-1
350	0,485	650	0,594	900	0,636
400	0,485	700	0,602	950	0,619
450	0,481	750	0,611	1000	0,636
500	0,519	800	0,678	1050	0,652
550	0,552	820	0,711	1100	0,720
600	0,577	850	0,694	1150	0,753

Молибден

Температурная зави	симость теплоемкости	[120,	160,	233	I
--------------------	----------------------	-------	------	-----	---

θ, Κ	с _Р , кДж•кг-1•К-1	θ , K	ср, кДж·кг-1·К-1	0, K	ср, кДж•кг-з•К -з
1	0,0000229	80	0,104	260	0,240
3	0,0000472 0,0000745	90 100	0,123	273 280	0,241 0,243
4 5	0,000106 0,000148	110 120	0,153 0,168	293 300	0,244 0.246
6	0,000191	130	0,178	400	0,257
8	0,000234	140	0,193	800	0,203
10	0,000399 0,000498	160 170	0,202 0,207	1000 1200	0,274 0,280
15 20	0,00131 0.00287	180 190	0,213 0,217	1500 1800	0,286 0.320
25 30	0,00577	200	0,222	2100	0,396
40	0,00980	210 220	0,229	2400 2700	0,460
50 60	0,0410 0,0619	230 240	0,233 0,236	2800 2860	0,508 0,523
70	0,0838	250	0,238		

Вольфрам

Температурная зависимость теплоемкости вольфрама (99,92 %) [120, 160]

θ, Κ	<i>ср</i> ; кДж•кг−¹•К−¹	Θ, Κ	ср, кДж.кг-1. К-1	θ, Κ	ср, кДж·кг-1·К-1
100	0.131	210	0 132	600	0.140
110	0 131	220	0,133	800	0.144
120	0.131	230	0.133	1000	0.148
130	0,131	240	0,133	1200	0,152
140	0,131	250	0,133	1500	0,158
150	0,131	260	0,133	1800	0,164
160	0,132	273	0,134	2100	0,169
170	0,132	280	0,134	2400	0,175
180	0,132	293	0,134	2700	0,186
190	0,132	300	0,134		
200	0,132	40 0	0,136		

Температурная зависимость теплоемкости вольфрама В4 [120]

θ, Κ	<i>ср</i> в кДж•кр=1•К=1	ө, к	с _Р , кДж•кр-3•К-1	0, K	<i>ср</i> , кДж.кг-1.К-1
1	0,0000074	6	0,0000783	15	0,000725
2	0,0000158	7	0,000110	20	0,00189
3	0,0000262	8	0,000141	25	0,00421
4	0,0000393	9	0,000186	30	0,00783
5	0,0000592	10	0,000234	40	0,0184

				-	
ө, қ	ср, кДж.кг-1.К-1	ө, к	ср, кДж•кг-1•К-1	0, K	Ср, кДж.кг-1.К-1
50 60 70 80 90 100 110 120 130	0,0332 0,0483 0,0605 0,0715 0,0810 0,0888 0,0950 0,101 0,104	140 150 160 170 180 190 200 210 220	0,110 0,113 0,117 0,119 0,122 0,123 0,125 0,126 0,128	230 240 250 260 273 280 293 300	0,129 0,130 0,131 0,132 0,133 0,134 0,135 0,136

Продолжение таблицы

VII группа периодической системы элементов

Марганец

Температурная зависимость теплоемкости [233]

ө, қ	сра кДж•кг-1•К-1	0, K	<i>ср</i> ; кДж.кг-1.К-1	0, K	ср, кДж•кг-1•К-1
50	0,109	400	0,510	1000	0,686
100	0,268	500	0,544	1100	0,699
150	0,393	600	0,577	1200	0,703
200	0,444	700	0,602	1300	0,703
250	0,460	800	0,628	1400	0,820
300	0,485	900	0,661	1500	0,862

Сплав марганца

Температурная зависимость теплоемкости сплава марганца с 36,9 % меди [233]

0, K	<i>ср</i> , кДж.кг-1.К-1	Θ, Κ	<i>ср</i> , кДж.кг-1.К-1
300 350 400 450	0,962 0,992 1,021 1,050	500 550 600	1,071 1,100 1,130

Рений

Температурная зависимость теплоемкости [233]

ө, қ	ср; кДж·кр-1·К-1	θ, Κ	ср, кДж.кг-1.К-1	ө, к	ср, кДж.кг-1.К-1
20 50 100 170	0,004 0,046 0,084 0,129	230 270 1500 1800	0,136 0,138 0,305 - 0,328	2100 2400 2700	0,347 0,364 0,381

VIII группа периодической системы элементов

Железо

Температурная зависимость теплоемкозти альфа-железа [115]

ө, қ	с _Р , кДж•кр-1•К-1	ө, к	с _Р , кДж.кг-1.К-1	0, K	ср, кДж.кг-1.К-1
0	0	620	0.575	1220	0.688
20	0.004	640	0.584	1240	0.690
40	0.028	660	0.593	1260	0,692
60	0,086	680	0,604	1280	0,694
80	0,154	700	0,615	1300	0,697
100	0,216	720	0,626	1320	0,699
120	0,267	740	0,640	1340	0,701
140	0,308	760	0,653	1360	0,704
160	0,339	780	0,667	1380	0, 706
180	0,364	800	0,682	1400	0,709
200	0,384	820	0,697	1420	0,711
220	0,401	840	0,715	1440	0,713
240	0,415	860	0,734	1460	0,715
260	0,428	880	0,755	1480	0,718
280	0,438	900	0,779	1500	0,720
298,15	0,447	920	0,807	1520	0,722
300	0,448	940	0,839	1540	0,724
320	0,457	960	0,879	1560	0,727
340	0,465	980	0,927	1580	0,729
360	0,474	1000	0,994	1600	0,731
380	0,482	1020	1,102	1620	0,733
400	0,491	1040	1,493	1640	0,736
420	0,499	1042,1	5 1,611	1660	0,738
440	0,507	1060	0,900	1665,	15 0,739
460	0,515	1080	0,838	1680	0,740
480	0,522	1100	0,797	1700	0,742
500	0,530	1120	0,765	1/20	0,745
520	0,037	1140	0,739	1760	0,747
540	0,044	1100	0,710	1700	0,749
500	0,001	1100	5 0,609	1000	0,751
000	0,009	1104,1	0,090	1000	0,/04
000	0,007	1200	0,090	1009,	10 0,700

Температурная зависимость теплоемкости гамма-железа [115]

θ, Κ	ср. кДж·кг-1·К-1	0, K	ср, кДж.кг-1.К-1	0, K	ср, кДж.кг-1.К-1
0	0	160	0,414	320	0,504
20	0,007	180	0,435	340	0,508
40	0,040	200	0,452	360	0,512
60	0,112	220	0,465	380	0,515
80	0,199	240	0,476	400	0,518
100	0,286	260	0,485	420	0,521
120	0.348	280	0,492	440	0,524
140	0,385	300	0,499	460	0,526

Продолжение таблицы

ө, к	ср, кДж•кг-1•К-1	ө, қ	<i>с_Р</i> ; кДж∙кг−¹•К−1	θ, K	ср, кДж.кг-з.кг-з
480	0,528	960	0,583	1400	0,633
500	0,530	980	0,585	1420	0,635
520	0,000	1000	0,057	1440	0,638
560	0,000	1020	0,090	1400	0,040
580	0,539	1040	0,595	1500	0,042
600	0,542	1080	0,597	1520	0,044
620	0,544	1100	0,599	1540	0,650
640	0.547	1120	0.602	1560	0.652
660	0.549	1140	0.604	1580	0.654
680	0.551	1160	0,606	1600	0.656
700	0,554	1180	0,608	1620	0,659
720	0,556	1184,15	0,608	1640	0,661
740	0,558	1200	0,611	1660	0,663
760	0,560	1220	0,613	1665,15	0,664
780	0,563	1240	0,615	1680	0,665
800	0,565	1260	0,617	1700	0,668
820	0,567	1280	0,620	1720	0,670
840	0,569	1300	0,622	1740	0,672
860	0,571	1320	0,624	1760	0,674
880	0,574	1340	0,626	1780	0,677
900	0,576	1360	0,629	1800	0,679
920 940	0,578 0,581	1380	0,631	1809,15	0,680

Температурная зависимость теплоемкости железа

θ, Κ	ср, кДж•кг-1•К-1	0, K	с _Р , кДж•кг=1•К=1	0, K	ср, кДж•кг-1•К-3
			[120, 160]		-
1	0,000090	80	0,154	250	0,422
2	0,000183	90	0,186	260	0,428
3	0,000279	100	0,216	273	0,434
4	0,000382	110	0,241	280	0,439
5	0,000498	120	0,267	293	0,443
6	0,000615	130	0,287	300	0,447
7	0,000760	140	0,307	350	0,468
8	0,000900	150	0,323	400	0,491
10	0,00124	160	0,339	50 0	0,535
15	0, 00249	170	0,351	600	0,580
20	0, 00 450	180	0,364	700	0,625
25	0,00750	190	0,374	800	0,670
30	0,0124	200	0,384	900	0,715
40	0,0290	210	0,392	100 0	0,758
50	0,0550	220	0,401	1200	0,557
60	0,0870	230	0,408	1300	0,592
70	0,121	240	0,415	1400	0,626

θ, Κ	ср, кДж•кг-1•К-1	ө, қ	ср, кДж.кг ⁻¹ . К-1	θ, Κ	с _р , кДж.кг-1. К-1
		99	9,99 % [120]		
200 210 220 230	0,418 0,421 0,424 0,427	240 250 260 273	0,430 0,432 0,434 0,436	280 293 300	0,437 0,438 0,439

Температурная зависимость теплоемкости карбонильного железа (0,07 % серы, 0,02 % марганца, 0,02 % кремния, 0,01 % углерода, 0,01 % фосфора) [120]

θ, Κ	с _Р , кДж.кг-1. К-1	0, K	с _Р , кДж·кг-1·К- <u>1</u>	θ, Κ	с _Р ; кДж•кр-1•К-1
100	0,358	170	0,385	240	0,420
110	0,361	180	0,390	250	0,425
120	0,365	190	0,397	260	0,433
130	0,368	200	0,403	273	0,437
140	0,372	210	0,407		
150	0,375	2 20	0,413	293	0,445
160	0,380	230	0,418	3 00	0,446

Оценочные значения теплоемкости железа для различных диапазонов температур [160]

θ, Κ	Тип решетки	<i>ср</i> , кДж∙кг-1•К-1
273—1033	Альфа	0,31335 + 0,4438 10 ⁻³ ⊖
1033—1181	Бета	0,6747
1181—1674	Гамма	0,1397 + 0,3493 10 ⁻³ ⊖
1674—1810	Дельта	0,7870

Сплавы железа

Температурная зависимость теплоемкости нелегированных сталей перлитного класса [160]

e K		р, кДж·кг-1·К-	-1, для стали мар	жи
	Ст20	Ст35	Ст45	У8
300 400 600 800 1000 1200	0,461 0,504 0,586 0,691 0,512 0,673	0,462 0,504 0,562 0,670 0,644 0,564	0,469 0,506 0,521 0,660 0,616 0,577	0,462 0,500 0,562 0,606 0,636 0,662

Температурная зависимость теплоемкости углеродистых сталей для отливок 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л, 55Л [120, 160]

θ, Κ	<i>ср</i> , кДж-кг-1-К-1
300	0,457
800	0,485

Теплоемкость чугуна при 293 К [120]

	Концентрация легирующих элементов, %					
Марка чугуна	Углерод	Хром	Медь	Марганец		
СЧ 00 АЧВ-1 АЧК-1 ЖЧНДХ-15-7-2	3,0—3,5 2,8—3,5 2,6—3,0 2,5—3,0	<0,15 <0,06 1,5—2,5	 < 0,7 6-8,5 	0,6—1,0 0,5—1,2 0,3—0,6 0,5—1,2		

Продолжение таблицы

	Концентрация легирующих элементов, %			
Марка чугуна	Никель	Cepa	Кремний	ХКГ-1.К-1
СЧ 00 АЧВ-1 АЧК-1 ЖЧНДХ-15-7-2	< 0,5 14—17	<0,15 <0,03 <0,12 1,5-3,0	$1,8-2,4 \\ 1,8-2,5 \\ 0,8-1,3 \\ \leqslant 0,08$	0,502 0,555 0,502 0,505

Температурная зависимость теплоемкости низко- и среднелегированных сталей перлитного класса [160]

	ср. кДж.кг-1. К-1, для стали марки						
θ, Κ	Ст 65Г	13H2XA, 15XA, 15X, 20X	30ХГС, 30ХГСА	15XM, 15XMA	30XM, 30XMA		
30 0	0,454	0,452	0,461	0,460	0,461		
400	0,468	0,466	—				
600	0,506	0,504					
800	0,556	0,552	0,489		0,496		
1000	0,614	0,612					
1200	0,674	0,672	-		_		

Продолжение таблицы

	ср, кДж.кг-1.К-1, для стали марки						
ө, к	35XM	1X11МФ, 1X12ВИМФ	12X1MΦ	25Χ2ΜΦΑ			
300	0,463	0,483	0,475	0,481			
400	—	-					
600							
800		0,955		0,506			
1000			_				
1200	-						

Температурная зависимость теплоемкости низкоуглеродистой электротехнической стали (3 % кремния, 0,1 % марганца, 0,005 % углерода) [120]

θ, Κ	ср, кДж.кг-1.К-1	θ, Κ	<i>ср</i> , кДж•кг-1•К-1
73	0,356	223	0,418
123 177	0,377 0,397	273	0,427

Температурная зависимость теплоемкости нержавеющих жаростойких и жаропрочных сталей мартенситного, мартенситно-ферритного и ферритного классов [160]

	ср, кДж∙кг-1•К-1, для стали марки								
ө, қ	X5M	1X13 (ЭЖ1, Ж1)	2X1213МБФР (ЭИ993)	4X13 (ЭЖ4, Ж4)	1Х12В2МФ (ЭИ756)				
200	0,476	0,475	0,480	0,480	0,480				
300	0,482	0,480	-	0,485	0,485				
400		0,485	-	0,490	_				
500	0,500	0,502	_	0,495	0,495				
600		0,533	-	0,505					
700	0,540	0,550	_	0,520	0,520				
800		0,570	_	0,546	—				
900	0,580	0,580	_	0,583	0,583				
1000		0,600	-	0,598					
1200	0,640	0,640	0,620	0,620	0,620				
1400	0,660	0,670	0,645	0,645	0,645				

Теплоемкость хромомолибденовых и хромовольфрамовых сталей при 300 К [120]

Марка стали	<i>ср</i> , кДж•кг- <u>1</u> •К-1	Марка стали	<i>ср</i> , кДж•кг-1•К-1
15XM	0,460	30XMA	0,463
30XM	0,461	35XM	0,463

Температурная зависимость теплоемкости нержавеющих и жаропрочных сталей аустенитного класса [160]

		ср. кДж.кг-1.К-1, для стали марки								
0, K	1Х18Н9Т (ЭЯІТ)	0 X18Н12Б (ЭИ402)	0Х23H18 (ЭИ417)	Х17Н 3М2Т (ЭИ448)						
200 300	0,500 0,505	0,500 0,505	0,480 0,495	0,476 0 ,510						
400 500	0,520 0,535 0,550	0,535	0,500	0,530 0,550						
700 800	0,575 0,600	0,575	0,550	0,590 0,610						
900 1000	0,615 0,630	0,610	0,580	0,630 0,650						
1200	0,690	0,000	0,675	_						

Продолжение таблицы

	ср,	кДж∙кг−1•К−1	, для стали марки	
0, K	1Х16Н13М2Б (ЭИ680), 3Х19Н9МВБТ (ЭИ572)	X16H25M6 (ЭИЗ95)	ХН35ВТ (ЭИ612), ХН35ВТР (ЭИ725), ХН35ВМТ (ЭИ692)	Х22Н26, ВЖ100
200	0,500	0,480	0,490	0,475
300	0,504	0,490	0,495	0,485
400		0,500	0,505	0,495
500	0,545	—		
600		0,525	0,530	0,510
700	0,575		_	
800		0,560	0,555	0,525
900	0,602			—
1000		0,600	0,570	0,535
1200	0,674	0,640	0,580	0,545
1400	0,705	0,660	0,585	0,550

Температурная зависимость теплоемкости стали 12Х18Н10Т [29]

θ, K	<i>ср</i> , кДж•кг-1•К-1	ө, қ	<i>ср</i> , кДж•кг-1•Қ-1	ө, қ	ср, кДж·кг-1·К-1
400 420 440 460 500 520 540 560 580 600 620 640 660 680 700	0,4911 0,4967 0,5022 0,5076 0,5129 0,5181 0,5232 0,5282 0,5282 0,5331 0,5379 0,5426 0,5472 0,5516 0,5561 0,5604 0,5604 0,5664 0,5664	740 760 780 800 840 840 860 920 920 920 940 960 980 1000 1020 1040	$\begin{array}{c} 0,5726\\ 0,5765\\ 0,5803\\ 0,5841\\ 0,5877\\ 0,5912\\ 0,5946\\ 0,5979\\ 0,6011\\ 0,6042\\ 0,6072\\ 0,6101\\ 0,6129\\ 0,6156\\ 0,6182\\ 0,6207\\ 0,6201\end{array}$	1080 1100 1120 1140 1160 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380	$\begin{array}{c} 0,6254\\ 0,6276\\ 0,6298\\ 0,6318\\ 0,6337\\ 0,6355\\ 0,6372\\ 0,6388\\ 0,6403\\ 0,6443\\ 0,64431\\ 0,64431\\ 0,6454\\ 0,6454\\ 0,6454\\ 0,6473\\ 0,6482\\ \end{array}$

Температурная зависимость теплоемкости высоколегированных коррозионно-стойких, жаростойких и жаропрочных сталей при низких температурах [120]

ө, қ	ср, кДж•кг-1•К-1, для стали марки								
	12X18H9T	12X18H10T	20X23H18	10X17H13M2T	12X13				
200	0,500	0,417	0,480	0,476	0,475				
210	0,500	0,424	0,482	0,480	0,475				
220	0,501	0,432	0,484	0,485	0,476				
230	0,501	0,440	0,486	0,488	0,476				
240	0,502	0,448	0,488	0,493	0,477				
250	0,502	0,456	0,489	0,497	0,477				

Продолжение таблицы

A V	<i>ср</i> , кДж∙кг-1•К-1, для стали марки									
0, K	12X18H9T	12X18H10T	20X23H18	10X17H13M2T	12X13					
260 273 280 293 300	0,503 0,503 0,504 0,504 0,505	0,465 	0,490 0,492 0,493 0,494 0,495	0,501 0,506 0,507 0,509 0,510	0,479 0,479 0,479 0,480 0,480					

Температурная зависимость теплоемкости углеродистых сталей (0,2—0,6 % углерода, до 1 % марганца, до 0,1 % кремния, до 0,1 % фосфора и 0,05 % серы) * [233]

ө, К ср, кДж.кг-1.К-1		θ, K	<i>ср</i> ; кДж·кг-1·К-1	θ, Κ	<i>ср</i> , кДж•кг-1•К-1
80	0,234	700	0,627	1300	0,660
200	0,356	800	0,750	1400	0,662
300	0,420	900	0,920	1500	0,662
400	0,473	1000	0,088	1600	0,665
500	0,510	1100	0,711	1700	0,670
600	0,565	1200	0,661	1780	0,673

Температурная зависимость теплоемкости углеродистых сталей (0,1—1,5 % углерода, до 0,3 % марганца, до 0,4 % кремния, до 0,02 % фосфора и до 0,03 % серы) * [233]

θ, K	ср, кДж·кг-1•К-1	0, K	ср, кДж.кг-1.К-1	0, K	<i>с</i> р, кДж∙кг-¹∙К-1
300	0.460	600	0,586	900	0,812
400	0,502	700	0,628	1000	1,004
500	0,544	800	0,682	1130	1,059

Температурная зависимость теплоемкости малолегированной стали (0,79 % углерода, 0,51 % молибдена, 0,19 % кремния, 0,12 % марганца) * [233]

ө, қ	с _р , кДж•кг-1•К-1			ср, кДж•кг-1•К-1			с _Р , кДж	кг-1·K-
	1	2	ө, қ	1	2	ө, қ	1	2
680 800	0,602 0,711	0,640	900 1000	0,808 1,088	0,661 0,686	1030 1130	1,276	0,690 0,711

Примечание. 1 — в перлитном, 2 — в аустенитном состоянии.

• Сталь производится за рубежом.

Температурная зависимость теплоемкости малолегированной стали (0,79 % углерода, 1,91 % кобальта, 0,22 % кремния, 0,12 % марганца, 0,014 % серы, 0,005 % фосфора) * [233]

0 V	ср, кДж•кг-1•К-1		A K	^с р. кДж·кг-1·К-1		A. K	ср, кДж	Kr-1.K-1
0, K	1	2	0, K	1	2	0; K	1	2
700 800 900	0,628 0,711 0,808	0,640 0,661	1000 1030 1100	1,130 1,276 —	0,681 0,690 0,799	1130	-	0,720

Примечание. 1 — в перлитном, 2 — в аустенитном состоянан.

Температурная зависимость теплоемкости высоколегированной стали A1S1446 (27,61 % хрома, 0,066 % углерода, 0,01 % молибдена) * [233]

ө, қ	ср, кДж·кг-1·К-1	ө, к	<i>с_Р</i> , кДж•кг−¹•К−¹	0, K	ср, кДж.кг-1.К-1
300 400 500 600 700	0,456 0,502 0,548 0,598 0,649	800 900 1000 1100 1200	0,711 0,920 0,983 0,698 0,705	1300 1400 1500	0,711 0,722 0,741

Температурная зависимость теплоемкости высоколегированных сталей A1S1316 (16—18 % хрома, 10—14 % никеля, 2—3 % молибдена, до 2 % марганца, до 0,1 % углерода) и A1S1347 (17—19 % хрома, 9—12 % никеля, 0,08 % углерода, 0,8 % ниобия) * [233]

0 , K	ср, кДж.кг-1.K-1	ө, к	<i>ср</i> ; кДж·кг-1·К-1	ө, к	ср, кДж·кг-1·К-1
600 700 800 900	0,522 0,562 0,573 0,590	1000 1100 1200 1300	0,613 0,628 0,653 0,671	1400 1500 1600	0,690 0,711 0,732

Температурная зависимость теплоемкости высоколегированной стали 17-7 РН (17,3 % хрома, 7,06 % никеля, 1,18 % алюминия, 0,6 % марганца, 0,74 % углерода) * [233]

θ, Κ	<i>с</i> _Р , кДж∙кг−1•К−1	0, K	с _Р , кДж.кг-з. Қ-з	θ, K	ср, кДж•кг-1•К-1
70 100 200 300 400 500	0,293 0,314 0,397 0,456 0,490 0,510	600 700 800 900 1000 1100	0,531 0,548 0,569 0,577 0,598 0,607	1200 1300 1400 1500	0,619 0,628 0,642 0,659

• Сталь производится за рубежом.

Стальная оцинкованная проволока для проводов и кабелей

*с*_Р = 0,502 кДж · кг⁻¹ · К⁻¹ при 293 К [120]

Температурная зависимость теплоемкости сплавов железа с кремнием [233]

	ср, кДж.	<i>ср</i> , кДж·кг-1·К-1		ср, кДж.кг-1.К-1 Концентрация кремния, %			Ср, кДж.кг-1.К-1 Концентрация кремния, %	
ө, қ	Концентрация кремния, %		ө, қ			ө, қ		
	1	4,4		1	4,4		1	4,4
370 470 570	0,510 0,536 0,561	0,502 0,526 0,552	670 770 870	0,628 0,703 0,828	0,594 0,657 0,753	970 1020 1050	0,979 1,063 —	0,866 0,992

Температурная зависимость теплоемкости сплавов со вначительным количеством кремния [233]

	<i>с</i> р, кДж•	кг-1. К-1		і с _Р , кДж	•кг-1•К-1	
θ, Κ	Концентрация	а кремния, %	ө, қ	Концентрация кремния, %		
	36,4	44,4		36,4	44,4	
1070 1130 1170	0,736 0,737 0,738	0,770 0,771 0,774	1230 1270	0,775 0,776	0,872 0,873	

Температурная зависимость теплоемкости сплавов железа с хромом [233]

		ср, кДж•к	r-1•K- <u>1</u>							
ө, қ	Концентрация хрома, %									
-	29-35	37	43	48						
300 400 500 600 700 800 850 900 950 1000 1100	0,490 0,552 0,623 0,711 0,794 1,172 1,841 0,996 	0,565 0,617 0,669 0,753 1,088 1,569 0,837 0,803 0,803 0,806	0,602 0,634 0,646 0,636 0,628 0,711 0,669 0,720 0,816	0,556 0,636 0,669 0,728 0,983 1,109 0,795 0,728 0,728 0,782 0,782 0,941						

	ср, кДж.кг-1.К-1									
ө, к	Концентрация кобальта, %									
	20	31	42	47						
600	0,686	0,607	0,636	0,649						
700	0,724	0,628	0,669	0,690						
780	0,816	0,586	0,669	0,690						
850	0,791	0,816	0,941	0,836						
880	0,794	0,879	0,962	1,088						
970	0.858	0,753	1,674	1,778						
980	0,879	0,750	1,464	1,966						
1000	0,980	0,774	0.920	1.004						
1050	1,004	0,837	0,920	0,933						

Температурная зависимость теплоемкости сплавов железа с кобальтом [233]

Температурная зависимость теплоемкости сплава железа с 9,1 % никеля [233]

ө, қ	с _Р , кДж•кг-1•К-1	ө, к	ср, кДж•кг-1•К-1	ө, к	<i>ср</i> ; кДж•кг-1•К-1
450 500 550 600	0,515 0,527 0,546 0,569	650 700 1350 1400	0,590 0,620 0,619 0,636	1500 1600 1650	0,661 0,703 0,761

Температурная зависимость теплоемкости инварных железоникелевых сплавов [84]

		с _Р , кДж.кг-1.К-1, при концентрации никеля, %									
θ, Κ	49,8	44,1	41,2	40,0	39,3	37,4	35,6	34,2			
300 350	0,457 0,483	0,446	0,450 —.	0 , 457	0,442	0,453	0 , 452	0,476			
400 450	0,506 0,528	0,491	0,506	0,506	0,491	0,509	0,502	0 , 524			
500 550	0,547	0,532	0,547	0,551	0,539	0,547 0.562	0,547 0,543	0,554 0,53 7			
600 650	0,592	0,577	0,584	0,588	0,577 0 584	0,562	0,528	0,509			
700 750	0,644	0,629	0,587	0,573	0,554	0,529	0,536	0,518			
800 850	0,745	0,612	0,547	0,545	0,536	0,539	0,543	0,528			
900 1000 1100 1200 1300	0,530 0,588 0,622 0,652 0,682	0,575 0,592 0,608 0,629 0,644	0,566 0,584 0,603 0,622 0,644	0,566 0,584 0,599 0,618 0,637	0,569 0,554 0,588 0,607 0,626	0,551 0,558 0,573 0,581 0,592	0,554 0,562 0,571 0,581 0,592	0,536 0,543 0,554 0,562 0,575			

Температурная зависимость теплоемкости сплава железа с 16—18 % хрома и 6—8 % никеля [233]

0 , K	^с р, ^к Дж·кг ⁻¹ ·К ⁻¹	ө, қ	с _Р , кДж⋅кг-1⋅К-1	ө, қ	^с _Р , кДж∙кг ⁻¹ ∙К ⁻¹
70	0,303	470	0,533	870	0,598
170	0,385	570	0,556	970	0,610
270	0,450	670	0,575	1070	0,628
370	0,498	770	0,586	1120	0,640

Температурная зависимость теплоемкости сплава железа с 27 % никеля и 12 % алюминия [233]

.	с _р ; кДж.кг-1.К-1	θ, Κ	с _р , ќДж∙кг−¹•К−¹
570	0,498	830	0,582
630	0,519	870	0,615
670	0,529	930	0,653
770	0,573		

Теплоемкость сплавов железа для термобиметаллов при 293 К [120]

	Конц					
Марка	Хром	Никель	Марганец	Титан	Алюминий	с _Р , кдж.кг- қ
40XH	5,0—6, 5	44—46		_	_	0,502
20НГ		1921	5,5—6,5	-	_	0,501
24HX	2—3	23—55	_	_	-	0,501
19HX	10—12	18—20	_		<u> </u>	0,501
28НХТЮ	8—9	28—30	_	2,2—2,6	0,4—0,8	0,502
4 5HTЮ	-	44,5 <u>—</u> 46,5	-	2,2—2,6	0,4—0,8	0,501

Кобальт

ө, қ	с _Р , кДж.кг-1.К-	¹ Ө, К	^с р, ^{кДж.кг-1.К}	- ө, к	^с р, кДж•кг-1•К-1
100	0,410	250	0,427	820	0,560
110	0,411	260	0,429	870	0,578
120	0,412	273	0,431	920 970	0,595
140	0,414	293	0,435	1020	0,633
150	0,415	340	0,440	1070	0,654
160	0,416	370	0,450	1120	0,678
170	0,417	420	0,460	1170	0,700
180	0,418	470	0,468	1220	0,730
190	0,419	520	0,480	1270	0,762
200	0,420	570	0,494	1370	0,830
210	0,421	620	0,500	1470	0,870
220	0,423	670	0,515	1570	0,897
230	0,424	720	0,530	1670	0,940
240	0,425	770	0,543		-,

Температурная зависимость теплоемкости [120, 160]

Сплавы кобальта

Температурная зависимость теплоемкости сплавов кобальта с железом [233]

0 V	с _Р , кДж∙кг-1•К-1, при концентрации железа, %							
e , k -	22	33	39	49				
570	0.586		0.586	0.607				
630	0.672	0.586	0.672	0.672				
670	0,669	0,678	0,628	0,628				
730	0,711	0,690	0,711	0,669				
780	0,690	0,690	0,690	0,753				
830	0,657	0,732	0,745	1,088				
870	0,636	0,837	0,774	0,983				
930	0,632	0,632	1,040	1,067				
950	0,642	0,623	1,172	1,297				
980	0,669	0,628	0,682	1,674				
1000	0,682	0,628	0,675	2,134				
1030	—		0,669					

Температурная зависимость теплоемкости сплава кобальта с 26,69 % хрома, 5,42 % молибдена, 2,38 % никеля, 1,54 % железа, 0,26 % углерода [233]

ө, К	с _р , кДж∙кг-з•К-з	θ, Κ	с _р , кДж.кр-1.Қ- <u>1</u>
800	0,576	1300	0,703
980	0,619	1480	0,753
1150	0,663		•

Никель

ө, қ	с _Р , кДж∙кг ⁻¹ •К ⁻¹	ө, қ	с _Р , кДж∙кг-1•К-1	θ, Κ	^с _Р , кДж∙кг ⁻¹ ∙К ⁻¹				
99,99 % [160]									
100 123 223	0,423 0,430 0,442	623 673 723	0,510 0,518 0,524	1123 1173 1223	0,570 0,575 0,578				
293 343 373 423	0,457 0,464 0,470 0,480	823 873 923	0,530 0,535 0,540 0,548	1323 1373 1423	0,580 0,581 0,582 0,583				
473 523 573	0,488 0,498 0,502	973 1023 1073	0,551 0,560 0,565	1473 1523 1573	0,584 0,585 0,586				
		ę	99,85 % [120]						
1 2 3 4 5 6 7 8 9 10 15 20 30 40	0,000120 0,000242 0,000503 0,000670 0,000820 0,000885 0,00119 0,00140 0,00162 0,00310 0,00580 0,0167 0,0381	50 60 70 80 90 100 110 120 130 140 150 160 170 180	$\begin{array}{c} 0,0682\\ 0,103\\ 0,139\\ 0,173\\ 0,204\\ 0,232\\ 0,255\\ 0,278\\ 0,296\\ 0,314\\ 0,328\\ 0,342\\ 0,354\\ 0,365\\ \end{array}$	190 200 210 220 230 240 250 260 273 280 293 300	0,374 0,383 0,390 0,397 0,404 0,410 0,416 0,422 0,427 0,423 0,433 0,439 0,445				
		ç	99.97 % [247]						
453 463 473 483 503 513 533 543 553 563 573 563 573 583 603 603 613	0,501 0,510 0,515 0,520 0,526 0,533 0,540 0,553 0,559 0,556 0,572 0,579 0,586 0,572 0,579 0,586 0,594 0,605	618 623 625 627 629 630,2 631 633 635 638 643 643 648 653 663 673 673 713	0,613 0,625 0,632 0,641 0,655 0,668 0,651 0,594 0,576 0,563 0,551 0,545 0,545 0,545 0,540 0,533 0,530 0,528 0,528 0,526	733 753 773 823 923 973 1023 1123 1123 1123 1223 1273 1323 1373 1423	0,525 0,528 0,530 0,541 0,548 0,551 0,563 0,577 0,584 0,592 0,600 0,610 0,623 0,638				

Температурная зависимость теплоемкости никеля

Никель (99,3 %) с_P = 0,469 кДж · кг⁻¹ · К⁻¹ при 293 К [120]

Сплавы микеля

Температурная зависимость теплоемкости сплава никеля с 50 % меди [233]

θ, Κ	с _р , кДж∙кг-1•К-1	ө, қ	с _Р , кДж∙кг-1•К-1
300	0,406	600	0,458
400	0,430	650	0,460
500	0.448		

Температурная зависимость теплоемкости сплава монель (30 % меди, 1,8 % железа, 1 % марганца) [120, 233]

ө, қ	Р, кДж·кг-1·К-	¹ ө, қ с	_р , кДж∙кг−¹•К	-1 0 , K	с _Р , кДж∙кг-1•К-3
1 2 3 4 5 6 7 8 9 10 15 20 30 40 50 60	0,00011 0,00022 0,00034 0,00047 0,00053 0,00078 0,00078 0,0012 0,0012 0,0015 0,0017 0,0037 0,0071 0,021 0,045 0,078 0,110	70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220	0,150 0,180 0,210 0,240 0,261 0,280 0,292 0,310 0,320 0,341 0,350 0,361 0,362 0,370 0,380 0,390	230 240 250 260 273 280 293 300 350 400 450 550 600	0,391 0,401 0,402 0,410 0,411 0,422 0,423 0,423 0,430 0,435 0,448 0,456 0,464 0,473 0,481

Температурная зависимость теплоемкости сплава К-монель (29 % меди, 2,8 % алюминия, 0,9 % железа) [233]

0 , K	^с р, кДж·кг-1·К-1	ө, қ	^с р, кДж • кг ⁻¹ • К ⁻¹	0 , K	с _Р , кДж∙кг -1∙К-1
70	0,264	470	0,473	870	0,536
170	0,343	570	0,490	970	0,565
270	0,406	670	0,502	1070	0,611
370	0,448	770	0,515	1130	0,640

Теплоемкость жаростойких и жаропрочных сплавов на хромоникелевой основе [120, 160]

	Концентрация легирующих элементов, %							
Сплав	Алюминий	Углерод	Хром	Железо	Марга- нец			
ХН78Т ХН77ТЮР ХН80ТБЮ ХН70ВМЮТ ХН60Ю ХН60Ю ХН60В	<0,15 0,55-0,95 0,5-1,0 1,7-2,2 2,6-3,5 <0,5	<0,12 <0,06 <0,08 0,1−0,16 <0,1 <0,1	$ \begin{array}{r} 19-22\\19-22\\15-18\\14-16\\15-18\\23-26\end{array} $	$\begin{array}{c} - \\ < 4,0 \\ < 3,0 \\ < 3,0 \\ 21 - 27 \\ < 4,0 \end{array}$	<0,7 <0,4 <1,0 <0,5 <0,3 <0,5			

Продолжение таблицы

	Концентрация	с _р , кДж∙кг ⁻¹ •К ⁻¹ ,				
Сплав		Молиб-		Вольф-	при Ө, Қ	
	Титан	ден	Ниобий	рам	200	300
ХН78Т ХН77ТЮР ХН80ТБЮ ХН70 <u>В</u> МЮТ ХН60Ю ХН60Ю ХН60В	$0,15-0,35 \\ 2,3-2,7 \\ 1,8-2,3 \\ 1,0-1,4 \\ - \\ 0,3-0,7$	 35 	 1—1,5 4—6 	 13—16	0,439 — — 0,452	0,454 0,454 0,453 0,455 0,455 0,455

Теплоемкость горячекатанных жаростойких никелевых сплавов при 293 К [120]

Марка	Қонцен э.	трация леги лементов, 9	с _р , кДж∙кг-1•К-1	
-	Хром	Железо	Марганец	
Фе рронихром Нихром	15—20 20—23	14—18	1-2	0,460 0,460

Температурная зависимость теплоемкости сплавов никеля с хромом [233]

ө , қ	^с рікДж. приконц хром	кг-1.К-1, ентрации 1а, %	ө, қ	с _Р , кДж•кг ⁻¹ •К ⁻¹ , при концентрации хрома, %		ө, қ	с _р , кДж при кон хром	•кг-1•К-1, центрации а, %
	3,4	10-50		3,4	10-50		3,4	10-50
370 470 570	0,431 0,452 0,452	0,460 0,473 0,498	670 770 840	0,469 0,481 0,494	0,523 0,556 0,628	900 1000 1100	0,515 0,544 0,565	0,598 0,628

Температурная зависимость теплоемкости никелевого сплава хастеллой С (15,8 % крома, 14,6 % молибдена, 4,9 % железа, 4,4 % вольфрама, 0,07% углерода) [233]

ө. к	с _р , қДж-кг-1-Қ-1	ө, қ	с _Р , кДж.кг-1.К-1	0, K	с _Р . кДж∙кг ⁻¹ ∙К ⁻¹
800 900 1000	0,513 0,537 0,564	1100 1200 1300	0,598 0,619 0,649	1400 1500	0,682 0,711

Температурная зависимость теплоемкости никелевого сплава хастеллой В (23,8 % молибдена, 5 % железа, 0,02 % углерода) [233]

0 , K	с _Р , кДж∙кг ⁻¹ •К ⁻¹	ө, к	с _Р , кДж.кг-1.К-1	0, K	с _Р , кДж∙кг-1•К-1
800 900 1000	0,513 0,524 0,548	1100 1200 1300	0,569 0,594 0,615	1400 1500	0,634 0,657

Температурная зависимость теплоемкости никелевого сплава нихром V (19,5 % хрома, 1,4 % кремния, 0,6 % марганца, 0,5 % железа, 0,04 % углерода) [233]

ө, к	с _Р , кДж∙кг-1•К-3	ө, қ	с _р , кДж.кг-1. К-1	θ, Κ	с _Р , кДж∙кг-¹∙К-1
3 00 4 00	0,439	700	0,541	1100	0,636
500 600	0,492 0,505	900 1000	0,588 0,611	1200	0,001

Температурная зависимость теплоемкости сплавов никеля инконель (15 % хрома, 7 % железа) и инконель X (15 % хрома, 7 % железа, 2,5 % титана) [233]

ө, қ	с _Р ; кДж·кг ⁻¹ ·К ⁻¹	ө, қ	с _р , кДж·кг-1·К-1	ө, қ	с _Р , кДж∙кг ⁻¹ ∙К ⁻¹
70 100 200 300 400	0,264 0,292 0,376 0,431 0,464	500 600 700 800 900	0,490 0,515 0,531 0,556 0,577	1000 1100 1200	0,607 0,636 0,669

Температурная зависимость теплоемкости никелевого сплава хастеллой P-235 (14—17 % хрома, 9—11 % железа, 4,5—6,5 % молибдена, 2,25—2,75 % титана, до 2,5 % кобальта, 1,75—2,25 % алюминия, до 0,16 % углерода) [233]

0, K	с _Р , кДж•кг-1•К-1	θ, Κ	с _Р , кДж.кг-1.К-1	ө , қ	с _Р , кДж∙кг-1∙К-1
530 700 810	0,427 0,502 0,544	920 1030 1150	0,598 0,644 0,690	1250 1360	0,741 0,791

Температурная зависимость теплоемкости сплава никеля с 23,9 % железа, 15,7 % хрома, 1,1 % кремния, 0,05 % углерода [233]

ө, қ	с _Р , кДж.кг-1.К-1	ө, қ	с _Р , кДж.кг-1.К-1	ө, қ	^с р ^{, кДж.кг-1.К-1}
800 900 1000	0,559 0,598 0,640	1100 1200 1300	0,690 0,732 0,782	1400 1500	0,816 0,866

Рутений

с_р = 0,238 кДж · кг⁻¹ · К⁻¹ при 298 К [163]

Родий

Температурная зависимость теплоемкости родия (99,5 %) [120]

θ, Κ	с _Р , кДж.кг-1.К-1	ө, к	с _Р , кДж∙кг-1•К-1	ө, к	^с _Р , кДж·кг ⁻¹ ·К ⁻¹
1	0,000048	50	0,0489	190	0,216
2	0,000097	60	0,0724	200	0,220
3	0,000147	70	0,0940	210	0,223
4	0,000201	80	0,114	220	0,226
5	0,000260	90	0,132	230	0,229
6	0,000320	100	0,147	240	0,232
7	0,000395	110	0,159	250	0,234
8	0,000470	120	0,171	260	0,236
9	0,000560	130	0,180	273	0,239
10	0,000650	140	0,189	280	0,240
15	0,00135	150	0,196	293	0,242
20	0,00271	160	0,202	300	0,243
30	0,0106	170	0,207		•
40	0,0266	180	0,212		

Палладий

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 27 29 32 34 36 37 39 00 11 12 13

Температурная зависимость теплоемкости палладия (99,95 %) [120]

Осмий

с_Р = 0,130 кДж · кг⁻¹ · К⁻¹ при 298 К [163]

Иридий

Температурная зависимость теплоемкости иридия

ө, қ	с _р , кДж•кг-1•К-1	ө, қ с	р, кДж∙кг−¹•К−	и ө, к	^с Р [•] кДж∙кг−1•К−1
		9	9,6 % [120]		
25 30 40 50 60 70 80 90 100 110	0,00418 0,0166 0,0290 0,0377 0,0540 0,0710 0,0780 0,0850 0,0920 0,0970	120 130 140 150 160 170 180 190 200 210	0,102 0,105 0,109 0,113 0,115 0,117 0,118 0,119 0,121 0,123	220 230 240 250 260 273 280 293 300	0,125 0,126 0,127 0,127 0,128 0,131 0,132 0,133 0,134
		99	,95 % [53]		
400 600 800 1000 1200	0,138 0,141 0,145 0,150 0,157	1400 1600 1800 2000 2200	0,165 0,174 0,184 0,195 0,208	2400 2500 2600 2700 2707	0,222 0,229 0,236 0,244 0,245

Платина

Температурная зависимость теплоемкости платины (99,999 %) [16/120]

0 , K	^с р, кДж.кг-1.К-1	ө, к	с _Р , кДж.кг-1.К-1	ө, қ	^с Р ^{; КДж КГ-1. К-1}
1 2 3 4 5 6 7 8 9 10 15 20 30	0,000035 0,00074 0,000122 0,000186 0,000278 0,000370 0,000520 0,000670 0,000890 0,00112 0,00830 0,00740 0,00740	90 100 110 120 130 140 150 160 170 180 190 200 210	0,094 0,100 0,104 0,109 0,112 0,116 0,118 0,121 0,123 0,125 0,126 0,126 0,127 0,128	273 280 293 300 373 473 573 673 773 873 973 1073	0,132 0,132 0,133 0,133 0,135 0,135 0,138 0,140 0,143 0,140 0,143 0,146 0,148 0,151 0,153 0,156
30 40 50 60 70 80	0,0212 0,038 0,055 0,068 0,079 0,088	210 220 230 240 250 260	0,129 0,130 0,130 0,130 0,131 0,131	1273 1273 1373 1473 1573 1673	0,158 0,158 0,161 0,163 0,166 0,168

ГЛАВА 9

ПЛОТНОСТЬ И ТЕПЛОВОЕ РАСШИРЕНИЕ МЕТАЛЛОВ И СПЛАВОВ

Плотность металлов и сплавов приведена при 293 К для модификации, стабильной при этой температуре (исключения оговорены). Относительное изменение объема при полиморфном превращении и плавлении указаны для температур превращений при нормальном давлении. Кроме линейного коэффициента теплового расширения для большинства металлов и сплавов приведено относительное изменение длины с температурой. Концентрация легирующих элементов дана в массовых долях (%).

9.1. Плотность металлов и сплавов

І группа периодической системы элементов

Литий

 $D = 539 \text{ кг} \cdot \text{м}^{-3}$ [163]; 534 кг · м}^{-3} [138, 160]; 562 кг · м}^{-3} при 0 К [150]; кубическая объемно-центрированная решетка. Полиморфное превращение: при 78 К кубическая объемно-центрированная модификация переходит в гексагональную плотноупакованную; $\Delta V/V = -42 \cdot 10^{-4}$ [85]; при 454 К $\Delta V_{nn}/V = 165 \cdot 10^{-4}$ [138].

Натрий

D = 972,7 кг · м⁻³ [163]; 970 кг · м⁻³ [138]; 971 кг · м⁻³ при 280 К [160]; кубическая объемно-центрированная решетка. Полиморфное превращение: при 5 К кубическая объемно-центрированная модификация переходит в гексагональную плотноупакованную; $\Delta V/V = 34 \cdot 10^{-4}$ [85]; $\Delta V_{nn}/V =$ $= 271 \cdot 10^{-4}$ при 371.0 + 0.2 К [160]; 250 · 10⁻⁴ при 370.8 К [138].

Калий

D = 862,9 кг · м⁻³ при 273 К [163]; 860 кг · м⁻³ [138]; 869 кг · м⁻³ при 280 К [160]; кубическая объемно-центрированная решетка; $\Delta V_{nn}/V = 255 \cdot 10^{-4}$ при 336,2 К [138]; 250 · 10⁻⁴ [104].

Рубидий

D = 1534,8 кг · м⁻³ при 273 К [163]; 1530 кг · м⁻³ [138]; кубическая. объемно-центрированная решетка; $\Delta V_{n,n}/V = 250 \cdot 10^{-4}$ при 312 ± 0,5 К [104, 160]; 250 · 10⁻⁴ при 311,8 К [138].

Цезий

D = 1903,9 кг · м⁻³ при 273 K [163]; 1880 кг · м⁻³ при 300 K [160]; 1870 кг · м⁻³ [138]; кубическая объемно-центрированная решетка; $\Delta V_{nn}/V = 260 \cdot 10^{-4}$ при 301,5 ± 0,4 K [138, 160]; 250 · 10⁻⁴ [104].

Франций

 $D = 2440 \text{ Kr} \cdot \text{m}^{-3}$ [163].

Медь

D = 8940 кг · м⁻³ [233]; 8960 кг · м⁻³ [138]; 8900—8952,8 кг / м⁻³ для меди чистотой от 99,96 до 99,999 % [233]; кубическая гранецентрированная решетка; $\Delta V_{nn}/V = 420 \cdot 10^{-4}$ при 1356,4 К [138]; 425 · 40^{-4} [104].

Сплавы меди

Плотность сплавов меди с цинком [104, 233]

Концентрация цинка, %	<i>D</i> , кг • м—з	Концентрация цинка, %	D, кг • м— ⁸
10	8800	36	8460
20	8660	37	8410
30	8530		

Сплав меди с 12 % алюминия: $D = 7300 \text{ кг} \cdot \text{м}^{-3}$ [233]; с 42,8 % урана: $D = 10\,600 \text{ кг} \cdot \text{м}^{-3}$ [233]; с 0,8 % циркония: $D = 8800 \text{ кг} \cdot \text{м}^{-3}$ [233]; с 11 % олова: $D = 6400 \text{ кг} \cdot \text{м}^{-3}$ [233].

Плотность сплавов меди со свинцом [233]

Концентрация свинца, %	<i>D</i> , кг • м ⁸	Концентрация свинца, %	<i>D</i> , кг • м ^{— з}
10	9130	40	9740
20	9370	50	10000
30	9500	80	10750

Плотность сплавов меди с титаном [233]

Концентрация титана, %	<i>D</i> , кг • м ⁻³	Концентрация титана, %	D, кг · м—з
10 20 30	8730 8610 8450	40 50	8270 8140

Плотность технических сплавов меди [160]

	Конце					
Марка	Никель	Железо	Марганец	Цинк	Кобаль	D, кг∙м— ^з
ТП (МНО, 6)	0,57—0,63				< 1,0	8060
TE (MHI6)	15,7-16,3	06 10	0 0 1 2	_	< 1.0	9020
Константан	29—33 39—41	0,0 -1,0	1-2	_	< 1.0	8900
Копель	43-44	_	0,1-1,0		$\gtrsim 1,0$	8900
Монель	6570	23	1,2—1,8		< 1,0	8800
Нейзильбер	13,5—16,5			1820	< 1,0	8700
Манганин	2,5—3,5	—	11—13		< 1,0	8400

Серебро

D = 10500 кг · м⁻³ [138, 163]; 10499,4 кг · м⁻³ [233]; кубическая гранецентрированная решетка; $\Delta V_{п,n}/V = 380 \cdot 10^{-4}$ при 1233,8 К [138]; 340 · 10⁻⁴ [104].

Сплавы серебра

Плотность сплавов серебра с цинком [233]

Концентрация цинка, %	<i>D</i> , кг • м ^{— 3}	Концентрация цинка, %	D, кг · м—з
5	10300	25	9490
10	10050	30	9330
15	9850	34	9200
20	9670		

Плотность сплавов серебра с алюминием [233]

Концентрация алюминия, %	D, Kr · M ^{−3}	Концентрация алюминия, %	<i>D</i> , кг • м—з
3	9750	25	6160
5	9270	30	5680
6	9030	35	5280
8	8870	40	4800
9	8560	45	4560
10	8310	50	4270
15	7280	60	3810
20	6700	7 5	3200

Золото

D = 19320 кг · м⁻³ [163]; 19300 кг · м⁻³ [138, 233]; кубическая гранецентрированная решетка; $\Delta V_{\pi\pi}/V = 510 \cdot 10^{-4}$ при 1336 K [138]; 503 · 10⁻⁴ [104].

Сплавы золота

Сплавы золота с 34,5 % кадмия: D = 13911 кг · м⁻³ [233]; с 36,5 % кадмия: D = 13960 кг · м⁻³, кубическая решетка; 14 490 кг · м⁻³, тетрагональная решетка [233]; с 9,3 % урана: D = 18600 кг · м⁻³ [233]; с 8,6 % марганца: D = 15860 кг · м⁻³ [233]; с 9,9 % железа: D = 16290 кг · м⁻³ [233].

Плотность сплава золота с никелем [233]

Концентрация никеля, %	<i>D,</i> кг • м ^{— з}
5,1	18 070
10,3	17 060

Бериллий

D = 1845,6 кг · м⁻³ [163]; 1848 кг · м⁻³ [138, 160]; 1730—1865 кг · м⁻³ для бериллия чистотой от 96,5 до 98,5 % [233]; гексагональная/плотноупакованная решетка. Полиморфное превращение: при 1527 К/ гексагональная плотноупакованная модификация переходит в объемно/центрированную кубическую, $\Delta V/V = -358 \cdot 10^{-4}$ [85].

Температурная зависимость плотности порошкового спеченного бериллия (99,9 %) [160]

0 V	<i>D</i> , кг ·	M-3		D , кг	• M ³		<i>D</i> , кг	м—з
0, K	1	2	9, K	1	2	0, K	1	2
100	1802	1846	500	1792	1835	900	1782	1823
200	1800	1843	600	1790	1831	1000	1780	1821
300	1797	1840	700	1787	1829	1200	1775	1815
400	1795	1838	800	1785	1827	1500	1770	1807

Примечание. 1 — холодная, 2 — горячая прессовки.

Магний

D = 1740 кг · м⁻³ [138, 163, 233]; 1738 кг · м⁻³ [160]; гексагональная плотноупакованная решетка; $\Delta V_{n,n}/V = 412 \cdot 10^{-4}$ при 922 К [138]; (397—420) · 10⁻⁴ при 923 ± 0,5 К [160].

Сплавы магния

Сплав магния с 3 % алюминия, 1 % циркония, 0,5 % марганца: D = =1780 кг · м⁻³ [233]; с 3 % тория, 0,7 % циркония: D=1860 кг · м⁻³ [233].

Плотность сплавов магния с торием [233]

Концентрация тория, %	<i>D</i> , кг · м ⁻³	Концентрация тория, %	<i>D</i> , кг · м— ⁸
9	1880	38	2590
16	2060	45,5	2870
23	2160	48.5	3000
28.5	2310	•	

Кальций

D = 1540 кг · м⁻³ [138, 160]; 1500 кг · м⁻³ [233]; кубическая гранецентрированная решетка. Полиморфное превращение: при 737 К кубическая гранецентрированная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -27 \cdot 10^{-4}$ [85].

Стронций

D = 2630 кг · м⁻³ [163]; 2600 кг · м⁻³ [138, 233]; кубическая гранецентрированная решетка. Полиморфные превращения: при 488 К кубическая гранецентрированная модификация переходит в гексагональную; $\Delta V/V = 8 \cdot 10^{-4}$; при 878 К гексагональная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -16 \cdot 10^{-4}$ [85].

Барий

D = 3760 кг · м⁻³ [163]; 3500 кг · м⁻³ [138, 233]; кубическая объемноцентрированная решетка.

Радий

 $D = 5000 \text{ kg} \cdot \text{m}^{-3}$ [138, 163, 233].

Цинк

D = 7132 кг · м⁻³ [163]; 7140 кг · м⁻³ [138, 160]; гексагональная плотноупакованная решетка; $\Delta V_{n,n}/V = 470 \cdot 10^{-4}$ при 692,5 К [104, 138].

Кадмий

D = 8650 кг · м⁻³ [160, 163]; 8640 кг · м⁻³ [138]; гексагональная решет. ка; $\Delta V_{nn}/V = 400 \cdot 10^{-4}$ при 593,9 К [138]; 472 · 10⁻⁴ [104].

Ртуть

 $D = 14\ 600\ {\rm kr} \cdot {\rm m}^{-3}$ при 100 K; 13 980 кг · {\rm m}^{-3} при 200 K [160]; жидкое состояние: $D = 13\ 545,9\ {\rm kr} \cdot {\rm m}^{-3}$ [163]; 13 546 кг · {\rm m}^{-3} [138]; $\Delta V_{\rm n,n}/V =$ = 370 · 10⁻⁴ при 234,13 K [138].

III группа периодической системы элементов

Алюминий

 $D = 2700 \text{ кг} \cdot \text{м}^{-3}$ [160, 163]; 2710 кг · м⁻³ [233]; кубическая гранецентрированная решетка; $\Delta V_{\pi\pi}/V = 650 \cdot 10^{-4}$ при 933,1 K [138]; 626 · 10⁻⁴ [104].

ө, қ	D, кг · м—3	ө, қ	<i>D</i> , кг • м—з	ө, қ	<i>D</i> , кг • м— ⁸
100	2713	400	2678	700	2616
200	2702	500	2665	800	2565
300	2684	600	2645	900	2515

Температурная зависимость плотности [160]

Сплавы алюминия

Сплавы алюминия с 4—10 % меди, до 1,8 % магния, до 1,5 % никеля и железа, до 1 % кремния: $D = 2780 \div 2940$ кг · м⁻³ [233].

Плотность сплавов алюминия с серебром [233]

Концентрация серебра, %	<i>D</i> , кг • м— ³	Концентрация серебра, %	<i>D</i> , кг • м— ⁸
10	2880	50	4310
30	3440	70	5700

Сплав алюминия с 10 % магния, 0,4 % марганца: D = 2690 кг · м⁻³ [233]; с 5 % цинка, 2,5 % магния, 1,6 % меди: D = 2800 кг · м⁻³ [233].

Галлий

D = 5903,7 кг · м⁻³ при 300 К [163]; 5910 кг · м⁻³ [138]; орторомбическая решетка; $\Delta V_{\Pi,\Pi}/V = -320 \cdot 10^{-4}$ при 302,7 К [138]; $-324 \cdot 10^{-4}$ [104].

Температурная зависимость плотности [160]

θ, K	<i>D</i> , кг • м [—] ³	ө, к	D, кг •/mз
263	5960	283	5920
273	5940	300	5900

Индий

D = 7310 кг · м⁻³ [139, 160, 163]; 7300 кг · м⁻³ [138]; тетрагональная гранецентрированная решетка; $\Delta V_{n,n}/V = 200 \cdot 10^{-4}$ при 429,4 К [138].

Таллий

D = 11850 кг · м⁻³ [138, 139, 160, 163]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 505 К гексагональная плотноупакованная модификация переходит в объемно-центрированную кубическую; $\Delta V/V = -350 \cdot 10^{-4}$ [85]; $\Delta V/V_{nn} = 220 \cdot 10^{-4}$ при 577 К [138].

Температурная зависимость плотности [160]

ө, қ	<i>D</i> , кг • м ^{— з}	θ, K	<i>D</i> , кг · м [—] *
100	12 280	300	11 850
200	12 120	400	11 620

Скандий

 $D = 2985 \ {
m kr} \cdot {
m m}^{-3}$ [133, 160]; 3020 кг · ${
m m}^{-3}$ при 298 К [163, 233]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1607 К гексагональная плотноупакованная модификация переходит в объемно-центрированную кубическую [163].

Иттрий

D = 4472 кг м⁻³ [163]; 4478 кг м⁻³ [133, 160]; 4550 кг м⁻³ [233]; 4250 кг м⁻³ в диапазоне 1763—1783 К (оценена по данным о параметрах решетки [163]); гексагональная плотноупакованная решетка. Полиморфное превращение: при 1755 \pm 25 К гексагональная плотноупакованная модификация переходит в кубическую объемно-центрированную [85, 139].

Лантаноиды. Лантан

 $D = 6174 \text{ кг} \cdot \text{м}^{-3}$ [133, 160]; 6162 кг · м⁻³ [163]; 6160 кг · м⁻³ [233]; 6190 кг · м⁻³ при 583 ± 5 К, 5970 кг · м⁻³ при 1173 К [85, 163]; гексагональная плотноупакованная решетка. Полиморфные превращения: при 583 ± 5 К гексагональная плотноупакованная модификация переходит в кубическую гранецентрированную; $\Delta V/V = -50 \cdot 10^{-4}$; при 1173 К кубическая гранецентрированная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = (130 \pm 40) \cdot 10^{-4}$ [85, 163].

Церий

 $D = 6771 \text{ kr} \cdot \text{m}^{-3}$ [133, 150, 160]; 6768 kr $\cdot \text{m}^{-3}$ [233]; 6750 kr $\cdot \text{m}^{-3}$ [138]; 6678 kr $\cdot \text{m}^{-3}$ [163].

М оди фикация	Тип кристаллической решетки	ө, к	<i>D</i> , кг·м— ⁸
Альфа-церий	Кубическая гранецентрированная	77	8230
Бета-церий	Гексагональная плотноупакованная	273	6660
Гамма-церий	Кубическая гранецентрированная	293	6771
Дельта-церий	Кубическая объемно-центрированная	1003	6670

Кубическая гранецентрированная решетка. Полиморфные превращения: при охлаждении от комнатной температуры, начиная с 263 ± 5 К, гаммацерий частично переходит по мартенситному механизму в бета-церий, $\Delta V/V = 1650 \cdot 10^{-4}$; при 95 ± 5 К неперешедшая часть гамма-церия превращается в альфа-церий. При температуре ниже 77 К бета-церий также переходит в альфа-церий, однако этот переход не завершается даже при 4,2 К; полный переход достигается пластчческим деформированием при 77 К. При 373 ± 5 К бета-церий переходит в гамма-церий; $\Delta V/V =$ = 180 · 10⁻⁴; при 998 К гамма-церий переходит в дельта-церий; $\Delta V/V =$ (10 ± 70) · 10⁻⁴ [85, 163]. Прямые и обратные превращения в церии характеризуются большим гистерезисом по температуре и давлению.

Празеодим

D = 6772 кг · м⁻³ [163]; 6670 кг · м⁻³ [233]; 6782 кг · м⁻³ [160] 6640 кг · м⁻³ при 1073 К [150]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1065 К гексагональная плотноупакованная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = (50 \pm 70) \cdot 10^{-4}$ [85].

Неодим

D = 7007 кг м⁻³ [163]; 7004 кг м⁻³ [160]; 7000 кг м⁻³ [233]; 6800 кг м⁻³ при 1135 К [150]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1135 К гексагональная плотноупакованная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = (10 \pm 60) \cdot 10^{-4}$ [85].

Прометий

 $D = 7260 \text{ кг} \cdot \text{м}^{-3}$ [163]; гексагональная плотноупакованная решетка.

Самарий

 $D = 7536 \ {
m kr} \cdot {
m m}^{-3}$ [160]; 7540 кг · {
m m}^{-3} [233]; \approx 7400 кг · {
m m}^{-3} при 1190 К (оценена по данным о параметре решетки [150]); ромбоэдрическая решетка. Полиморфное превращение: при 1190 К ромбоэдрическая модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -40 \cdot 10^{-4}$ [85].

Европий

D = 5259 кг · м⁻³ [133, 160]; 5260 кг · м⁻³ [163]; 5170 кг · м⁻³ [233]; кубическая объемно-центрированная решетка.

Гадолиний

 $D = 7895 \ {
m kr} \cdot {
m M}^{-3}$ [133, 160]; 7898 кг · {
m M}^{-3} [163]; 7870 кг · {
m M}^{-3} [233]; 7800 кг · {
m M}^{-3} при $\Theta > 1539 \ {
m K}$ [150]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1539 К гексагональная плотноупакованная модификация переходит в объемно-центрированную кубическую [163].
Тербий

 $D = 8234 \,\mathrm{kr} \cdot \mathrm{m}^{-3}$ при 298 К [163]; 8250 кг · м⁻³ [233]; 8272 кг · м⁻³ [160]; $\simeq 8120 \,\mathrm{kr} \cdot \mathrm{m}^{-3}$ при $\Theta > 1560 \,\mathrm{K}$ (оценена по данным о параметре решетки [150]); гексагональная плотноупакованная решетка. Полиморфное превращение: при 1560 К гексагональная плотноупакованная модификация переходит в объемно-центрированную кубическую.

Диспрозий

D = 8540 кг · м⁻³ [163]; 8536 кг · м⁻³ [160]; 8556 кг · м⁻³ при 300 К [233]; гексагональная плотноупакованная решетка.

Гольмий

D = 8781 кг · м⁻³ [163]; 8799 кг · м⁻³ [233]; 8803 кг · м⁻³ [160]; гексагональная плотноупакованная решетка.

Эрбий

D = 9045 кг · м⁻³ [163]; 9051 кг · м⁻³ [160]; 9060 кг · м⁻³ [233]; гексагональная плотноупакованная решетка.

Тулий

D = 9332 кг · м⁻³ [133, 150, 160]; 9318 кг · м⁻³ [233]; 9314 кг · м⁻³ при 298 К [163]; гексагональная плотноупакованная решетка.

Иттербий

D = 6972 кг · м⁻³ [163]; 6977 кг · м⁻³ [160]; 6520 кг · м⁻³ при $\Theta >$ > 1071 К [150]; кубическая гранецентрированная решетка. Полиморфное превращение; при 1071 К кубическая гранецентрированная модификация переходит в кубическую объемно-центрированную.

Лютеций

 $D = 9840 \ \mathrm{kr} \cdot \mathrm{m}^{-3}$ [163]; 9842 $\mathrm{kr} \cdot \mathrm{m}^{-3}$ [133, 160]; 9850 $\mathrm{kr} \cdot \mathrm{m}^{-3}$ [233]; гексагональная плотноупакованная решетка. Полиморфное превращение происходит при $\Theta \simeq 1643 \ \mathrm{K}$ [163].

Актиноиды. Актиний

D = 10100 кг · м⁻³ [163]; 10070 кг · м⁻³ [233]; кубическая гренецентрированная решетка.

Торий

D = 11720 кг м⁻³ при 298 K [163]; D = 11700 кг м⁻³ [233]; кубическая гранецентрированная решетка. Полиморфное превращение: при 1673 К кубическая гранецентрированная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -12 \cdot 10^{-4}$ [85].

θ, Κ	D, KP • M-	θ, Κ	D, KP · M-3	θ, Κ	D, кг · м—з
100	11617	500	11584	1300	11520
200	11608	700	11568	1500	11504
300	11604	900	11552	1700	11488
400	11592	1100	11536	1900	11473

Температурная зависимость плотности [160]

Протактиний

D = 15 370 кг · м⁻³ [163, 233]; тетрагональная решетка. Полиморфное превращение: при 1443 К тетрагональная модификация переходит в кубическую объемно-центрированную [163].

Уран

 $D = 19\,050$ кг · м⁻³ [163]; 19 100 кг · м⁻³ [233]; ромбическая решетка. Полиморфные превращения: при 941 К ромбическая модификация переходит в тетрагональную; $\Delta V/V = 115 \cdot 10^{-4}$; при 1048 К тетрагональная модификация переходит в объемно-центрированную кубическую; $\Delta V/V = -71 \cdot 10^{-4}$ [85].

н, К	D, кг · м-з	θ, Κ	D, кг · м—з	ө, қ	<i>D</i> , кг · м ^{-з}
20	18840	450	18610	1030	18080
100	18800	500	18600	1050	17940
200	18750	600	18550	1100	17910
250	18700	700	18500	1200	17750
300	18680	800	18440	1300	17620
350	18650	90 0	18400	1400	16630
400	18620	940	18170		

Температурная зависимость плотности [160]

Сплавы урана

Плотность сплавов урана с молибденом [233]

Концентрация молибдена, %	<i>D</i> , кг · м ⁻³	Концентрация молибдена, %	Д, кг · м —з
5	18 000	20	15 900
10	17 130	25	15 250
15	16 570		

Сплав урана с 47 % свинца: D = 13700 кг · м⁻³ [233]; с 47 % висмута: D = 13600 кг · м⁻³ [233].

Плотность сплавов урана с марганцем [233]

Концентрация марганца, %	<i>D</i> , кг • м—з
4	17 800
31,6	12 570

Плотность сплавов урана с цирконием [233]

Концентрация циркония, %	D, кг · м-з	Концентрация циркония, %	D, кг · м— ^в
5	17 350	40	10 770
10	16 400	45	10 270
15	14 710	50	9 690
20	13 530	55	9 300
25	12 620	60	8 780
30	12 000	70	8 000
35	11 380	80	7 350

Сплав урана с 10,7 % железа: D = 15 800 кг · м⁻³ [233].

Плотность сплавов урана с кобальтом [233]

Концентрация кобальта, %	<i>D</i> , кг · м ⁻³
4	17 700
20	15 370

Сплав урана с 3,9 % никеля: D = 17 600 кг м⁻³ [233].

Нептуний

 $D = 20\ 450\ {\rm kr}\cdot {\rm m}^{-3}$ [163]; 20 500 kr · m⁻³ [233]; 19 460 kr · m⁻³ при 586 K; 18 000 kr · m⁻³ при 873 K [85, 163]; ромбическая решетка. Полиморфные превращения: при 553 K ромбическая модификация переходит в тетрагональную; $\Delta V/V = 160 \cdot 10^{-4}$; при 850 K тетрагональная модификация переходит в объемно-центрированную кубическую; $\Delta V/V = 280 \cdot 10^{-4}$ [85, 163].

Плутоний

 $D = 19\ 800\ {\rm kr}\cdot{\rm m}^{-3}$ [163]; моноклинная решетка. Полиморфные превращения: при 395 К моноклинная модификация переходит в моноклинную объемноцентрированную; $\Delta V/V = 1000 \cdot 10^{-4}$; при 479 К моноклинная объемно-центрированная модификация переходит в ромбическую гранецентрированную; $\Delta V/V = 250 \cdot 10^{-4}$; при 592 К ромбическая гранецентрированняя модификация переходит в кубическую гранецентрированную; $\Delta V/V = 700 \cdot 10^{-4}$; при 724 К кубическая гранецентрированную; $\Delta V/V = 700 \cdot 10^{-4}$; в тетрагональную объемно-центрированная модификация переходит в 749 К тетрагональная объемно-центрированная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -20 \cdot 10^{-4}$ [85].

ө, к	D, кг • м—:	⇔, K	D, кг · м	Θ, Κ	<i>D</i> ; кг • м— ³
0 100 200 250 200	22800 21700 20800 20300	350 400 450 500	19300 18800 18400 17900	700 800 900 1000	16000 15100 14000 13200

Температурная зависимость плотности [160]

Плотность модификаций плутония [160]

Тип кристаллической решетки	Ө, К	<i>D</i> , кг • м ^{—а}	
Моноклинная	294	19 860	
Моноклинная объемно-центрированная	366	17 650	
Ромбическая гранецентрированная	408	17 190	
Кубическая гранецентрированная	593	15 920	
Тетрагональная объемно-центрированная	738	16 000	
Кубическая объемно-центрированная	763	16 480	

Сплавы плутония

Температурная	зависимость	плотности	сплава	плутония	С	2,25 %	желе-
за [160]				-			

0, K	Д, кг · м —з	Θ, Κ	D, кг . м-3	ө, қ	D, кг · м ^{— в}
273 383 410	16 770 16 610 16 490	470 495 569	16 400 16 320 16 230	602 673	15 960 15 800

Температурная зависимость плотности сплава плутония с 2,36 % железа [160]

9, K	<i>D</i> , кг · м ⁻³	ө, қ	D, кг · м—з	ө, қ	D, кг · м—з
298	16 857	466	16 380	601	15 900
411	16 500	498	16 260	685	15 810
423	16 470	581	16 080		

Америций

 $\mathcal{D} = 13\ 671\ \mathrm{kr}\cdot\mathrm{m}^{-3}\ [163]; \simeq 13\ 760\ \mathrm{kr}\cdot\mathrm{m}^{-3}$ при $\Theta > 873\ \mathrm{K}$ (оценена по данным о параметре решетки [163]); гексагональная плотноупакованная решетка. Полиморфное превращение: при 873 K гексагональная плотноупакованная модификация переходит в гранецентрированную кубическую.

Кюрий

 $D = 19200 \, {
m kr} \cdot {
m M}^{-3}$ [163]; гексагональная плотноупакованная решетка. Полиморфное превращение: при высоких температурах гексагональная плотноунакованная модификация переходит в гранецентрированную кубическую.

IV группа периодической системы элементов

Титан

 $D = 4500 \text{ кr} \cdot \text{м}^{-3}$ [133, 138, 160]; 4510 кг · м} при 298 K [163]; 4600 кг · м} [233]; 4320 кг · м^{-3} при 1173 K [150]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1156 К гексагональная плотноупакованная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -55 \cdot 10^{-4}$ [85].

Сплавы титана

Плотность сплавов титана с ванадием [233]

Концентрация ванадия, %	D, кг · м ⁻³	Концентрация ванадия, %	Д, кг•м— ³
10	4630	50	5200
20	4760	60	5370
30	4890	70	5540
40	5050	80	5630

Концентрация марганца, %	D, кг · м—з	Концентрация марганца, %	<i>D</i> , кг · м—з	
10 20 31 41	4690 5000 5435 5660	52 65 80	5930 6310 6730	
Плотность сплавов	титана с водород	ом [233]		
Концентрация водорода, %	<i>D</i> , кг · м ³	Концентр ация водорода, %	<i>D</i> , кг · м ^{—з}	
0,5 1,1	4570 4470	1,95 2,7	4340 4270	
Плотность сплавое	в титана с тантало	ом [233]		
Концентрация тантала, %	<i>D</i> ; кг • м ^{— 3}	Концентрация тантала, % D, кг · м-		
5 10 20 30	4680 4950 5500 5850	40 50 60	6480 7030 7920	
Плотность сплавон	з титана с вольфр	амом [233]		
Концентрация вольфрама, %	D, кг · м—з	Концентрация вольфрама, %	<i>D</i> , кг • м ^{— а}	
1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6600 7280	
Плотность промыш	пленных титановы	х сплавов [27]		
Марка Концентрация легирующих элементов, %			<i>D</i> , кг · м ⁻	
ВТ1-0 Нелеги ВТ5 5 алюм ВТ5-1 5 алюм ОТ4-0 0,8 али ОТ4-1 1,5 алю ОТ4-1 1,5 алю ОТ4-3,5 алю ОТ4-2 6 алюю АТ-2 2 цири АТ-2 2 цири АТ-3 3 алю АТ-4 4 алю ВТ20 6 алюб	ированный титан иния иния, 2,5 олова юминия, 0,8 марга юминия, 1,0 марга юминия, 1,5 марган иния, 1,6 марган кония, 1 молибдена; миния, 1,5 железа миния, 1,5 железа миния, 2 циркония	нца нца ца ца , хрома, кремния, б , хрома, кремния, б л, 1 молибдена, 1 ва	4520 4400 4510 4550 4550 4550 4550 4550 455	

Плотность сплавов титана с марганцем [233]

Марка	Концентрация легирующих элементов, %	D, кг · м—з
CT5	5 алюминия, 2 циркония, 3 олова, 2 ванадия	4470
BT6C	5 алюминия, 4 ванадия	4450
BT6	6 алюминия, 4 ванадия	4430
BT3-1	6 алюминия, 2,5 молибдена, 2,0 хрома, 0,3 крем-	
	ния, 0,5 железа	4500
BT14	4.5 алюминия. З молибдена. 1 ванадия	4520
BT16	2,5 алюминия, 5 молиблена, 5 ваналия	4650
BT22	5 алюминия. 5 молиблена. 5 ваналия. 1 железа.	
	1 xDOMA	4650
BT23	4.5 алюминия. 2 молиблена. 4.5 ваналия. 0.6 же-	
	леза. 1 хрома	4570
BT15	З алюминия. 5 молиблена. 6 ванадия. 11 хрома	4890
TC6	З алюминия, 5 молиблена, 6 ваналия, 11 хрома	4800
4201	33 молибдена	5690
	•	

Цирконий

Температурная зависимость плотности [60] $D = 6510 \text{ кг} \cdot \text{м}^{-3}$ [163]; 6500 кг · м $^{-3}$ [133, 233]; 6490 кг · м $^{-3}$ [138]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 1135 \pm 5 K гексагональная плотноупакованная модификация переходит в кубическую объемно-центрированную; $\Delta V/V = -66 \cdot 10^{-4}$ [85]. Температурная зависимость плотности [160]

ө, қ	<i>D</i> , кг • м ⁻³	ө, қ	<i>D</i> , кг • м ⁻³	0 , K	<i>D</i> , кг • м-3	ө, қ	<i>D</i> , кг • м− ³
100	6550	573	6450	973	6370	1373	6300
123	6540	623	6440	1023	6370	1423	6290
223	6520	673	6430	1073	6360	1473	6280
293	6510	723	6420	1123	6350	1573	6260
373	6490	773	6420	1173	6340	1673	6240
423	6480	823	6410	1223	6330	1773	6220
473	6470	873	6400	1273	6320	1873	6200
523	6460	923	6380	1323	6310		

Сплавы циркония

Плотность сплавов циркония с оловом [233]

Концентрация олова, %	<i>D</i> , кг • м- ³	Концентрация олова, %	Д, кг • м− ³
1,36	6478,9	1,54	6516,4
1,40	6539,9	1,58	6478,9
1,46	6488,0		•

Плотность сплавов циркония с бором [233]

Концентрация бора, %	<i>D</i> , кг · м- ³	Концентрация бора, %	<i>D</i> , кг • м ⁻³
0,44	6505 ,5	1,21	6479 ; 6
0,78	6494,0	1,71	6448,9

Гафний

 $D = 13\ 310\ {
m kr}\cdot {
m m}^{-3}$ [138, 163]; 13 290 кг · {
m m}^{-3} [160]; 13 090 кг · {
m m}^{-3} [133]; $\simeq 12\ 700\ {
m kr}\cdot {
m m}^{-3}$ при $\Theta > 2033\ {
m K}$ (оценена по данным о параметре решетки [163]); гексагональная плотноупакованная решетка. Полиморфное превращение: при 2033 \pm 25 К гексагональная плотноупакованная модификация переходит в объемно-центрированную кубическую, $\Delta V/V =$ $= -105 \cdot 10^{-4}$ [85].

Олово

 $D = 7300 \text{ кг} \cdot \text{м}^{-3}$ при 273 K [138, 163]; 7310 кг · м⁻³ [160]; тетрагональная решетка. Полиморфное превращение: при 274,5 К тетрагональная модификация может переходить в кубическую со структурой типа алмаза; $\Delta V/V = -2640 \cdot 10^{-4}$ [85]; $\Delta V_{\Pi \pi}/V = 230 \cdot 10^{-4}$ при 504,9 К [138]; 260 · 10⁻⁴ [104].

Свинец

D = 11340 кг · м⁻³ [163]; 11 680 кг · м⁻³ [138]; кубическая гранецентрированная решетка; $\Delta V_{n,n}/V = 350 \cdot 10^{-4}$ при 600,4 К [138]; 338 · 10⁻⁴ [104].

Сплавы свинца

Π	лотность	сплавов	свинца	с	сурьмой	[104]
---	----------	---------	--------	---	---------	-------

Концентрация сурьмы, %	D, кг • м−з	Концентрация сурьмы, %	<i>D</i> , кг • м−з
10	10700	60	7900
20	10000	70	7500
30	9300	80	7200
40	8800	90	6900
50	8300		

V группа периодической системы элементов

Ванадий

D = 6110 кг · м⁻³ [160, 163]; 6100 кг · м⁻³ [133, 138]; кубическая объемно-центрированная решетка.

Температурная зависимость плотности [160]

0, K	D, кг • м− ³	ө, қ	<i>D</i> , кг • м ⁻³
293 773	6110 6100	1273 1773	6090 6070

Ниобий

D = 8570 кг · м⁻³ [133, 233]; 8600 кг · м⁻³ [138]; кубическая объемно-центрированная решетка.

Температурная зависимость плотности [160]

0, K	D, кг • м− ⁸	ө, қ	D, кг · м-»
300 800 1200	8570 8550 8540	1800 2700	8520 8490

Сплавы ниобия

Плотность сплавов ниобия с молибденом и титаном [233]

Концентрация элемент	легирующих ов, %		Концентрация легирующих элементов, %		Концентрация легирующих элементов, %	
Молибден	Титан	— D, кг · м− ³	Молибден	Титан	D, кг • м-э	
10 20 10 30 20 10 40	10 10 20 10 20 30 10	7250 7370 6740 7550 6850 6120 7350	30 20 10 40 30 20	20 30 40 20 30 40	6900 6300 5120 6800 6500 6150	

Тантал

 $D = 16\,650$ кг · м⁻³ [163]; 16 600 кг · м⁻³ [133, 138, 233]; кубическая объемно-центрированная решетка.

Температурная зависимость плотности [160]

ө, қ	D, кг • м ⁻³	θ, Κ	<i>D</i> , кг • м− ³
300 800 1200	16 600 16 570 16 540	1800 2700	16 510 16 440

Сурьма

D = 6690 кг · м⁻³ [163]; 6680 кг · м⁻³ [138]; тригональная решетка; $\Delta V/V_{\text{пл}} = 140 \cdot 10^{-4}$ [163]; 80 · 10⁻⁴ при 903,5 К [138].

Висм ут

D = 9800 кг · м⁻³ [138, 163]; ромбоэдрическая решетка; $\Delta V_{nn}/V = -335 \cdot 10^{-4}$ при 544 К [138]; -330 · 10⁻⁴ [104].

VI группа периодической системы элементов

Хром

D = 7190 кг м⁻³ [133, 163]; 7160 кг м⁻³ [233]; 7100 кг м⁻³ [138]; кубическая объемно-центрированная решетка. Полиморфное превращение: при 311,4 К $\Delta V/V = 8 \cdot 10^{-4}$ [76, 127].

Температурная зависимость плотности [160]

θ, Κ	<i>D</i> , кг•м− ³	0, K	D, Kr · M→³
300	7190	700	7180
600	7183	1000	7172

Сплавы хрома

Плотность сплавов хрома [233]

Концентрация легирующих элементов, %				
Вольфрам	Железо	Молибден	Углерод	<i>D</i> , Kr • M-•
29	23	3	0,05	8925,1
29	23	3	0.029	8925,2
27	23	3	0.026	8783,1
24	$\overline{22}$	2	0.018	8624,4
22	22	2	0.021	8429,0
22	20	2	0.018	8416.4
22	21		0.021	8454.1
	23	20	0.018	7747.6
20	20	2	0.018	8268.8
20	19	2	0.016	8310.0
	25	15		7630.0
	15	25	_	7870.0
30		_	0,026	8680,0

Молибден

D = 10220 кг · м⁻³ [163]; 10240 кг · м⁻³ [233]; 10200 кг · м⁻³ [138]; кубическая объемно-центрированная решетка.

Температурная зависимость плотности [160]

0 , K	D, кг • м−з	θ, Κ	D;кг • м− ⁸
300	10200	1800	10 150
8 0 0	10 190	2700	10 100
1200	10 180		

Сплавы молибдена

Плотность сплавов молибдена с ниобием и титаном [233]

Концентрация элемен	онцентрация легирующих элементов, %		Концентрация легирующих элементов, %		
Ниобий	Титан	D, кг · м-3	Ниобий	Титан	<i>D</i> , кг • м-•
10	10	8450	40	10	7350
10 30	20 10	7550 7620	30 20	20 30	7100 6800
20 10	20 30	7000 6680	10	40	6320

Сплав молибдена с 31 % никеля и 15 % меди: D = 9100 кг · м⁻³ [233].

Вольфрам

D = 19350 кг · м⁻³ [163]; 19300 кг · м⁻³ [138, 233]; кубическая объемноцентрированная решетка.

ө, К	<i>D</i> , кг • м ^{−3}	ө, қ	D, кг • м−³
300 800 1200	19 250 19 310 19 290	1800 2700	19 250 19 180

Температурная зависимость плотности [160]

Сплавы вольфрама

Сплав вольфрама с 7,5 % никеля и 2,5 % меди: $D = 17\,000$ кг · м⁻³ [233] Плотность сплавов вольфрама с никелем и железом [233]

Концентрация легирующих элементов, %			
Никель	Железо	<i>D</i> , кг • м ⁻³	
7	3	17150	
4,9 3,5	2,1 1,5	18180	

Полоний

 $D = 9196 \ {
m kr} \cdot {
m m}^{-3}$; простая кубическая решетка. Полиморфное превращение: при 309 К простая кубическая модификация переходит в простую ромбоздрическую [163].

VII группа периодической системы элементов

Марганец

 $D = 7470 \ \mathrm{kr} \cdot \mathrm{m}^{-3}$ при 293 К [163]; сложная объемно-центрированная кубическая решетка. Полиморфные превращения: при 990 ± 10 К сложная кубическая объемно-центрированная решетка (альфа-марганец) переходит в сложную кубическую решетку (бета-марганец); $\Delta V/V = 340 \cdot 10^{-4}$; при 1360 ± 10 К сложная кубическая решетка (бета-марганец) переходит в гранецентрированную кубическую решетку (гамма-марганец); $\Delta V/V = 30 \cdot 10^{-4}$; при 1410 ± 5 К гранецентрированная кубическая решетка (гамма-марганец) переходит в объемно-центрированную кубическую решетку (гамма-марганец) переходит в объемно-центрированную кубическую решетка (гамма-марганец) переходит в объемно-центрированную кубическую решетку (дельта-марганец); $\Delta V/V = 80 \cdot 10^{-4}$ [85]; $\Delta V/V_{пл} = 170 \cdot 10^{-4}$ при 1517 К [138].

Плотность модификаций марганца [163]

Модификация	ө, қ	<i>D</i> , кг • м- ³
Альфа-марганец	293	7470
Бета-марганец	293	7260
Гамма-марганец	293	7210
•	1373	6370
Дельта-марганец	1416	6280

Технеций

D = 11500 кг · м⁻³ [163]; гексагональная плотноупакованная решетка.

Рений

D = 21010 кг · м⁻³ [163]; 21020 кг · м⁻³ [133]; 21000 кг · м⁻³ [138]; 21100 кг · м⁻³ [233]; гексагональная плотноупакованная решетка.

VIII группа периодической системы элементов

Железо

 $D=7870~{\rm кr}\cdot{\rm m}^{-3}$ [138]; 7874 кг $\cdot{\rm m}^{-3}$ [233]; кубическая объемно-центрированная решетка. Полиморфные превращения: при 1183 К кубическая объемно-центрированная модификация переходит в кубическую гранецентрированную; $\Delta V/V=-77\cdot10^{-4};$ при 1665 К кубическая гранецентрированная модификация переходит в кубическую объемно-центрированную; $\Delta V/V=48\cdot10^{-4}$ [85]: $\Delta V_{\rm nn}/V=350\cdot10^{-4}$ при 1809 К [138].

θ, Κ	D , кг • м ⁻³	θ, Κ	<i>D</i> , кг • м- ³
100	7868	500	7852
200	7864	1000	7835
300 400	7860 7856	1400	7820

Температурная зависимость плотности [160]

Плотность модификаций железа [163]

Модификация	θ, Κ	<i>D</i> , кг • м- ³
Альфа-железо	293	7909
Дельта (бета-железо)	1173	7642
Гамма-железо	1183	7709
Дельта-же лез о	1673	7409

Сплавы железа

Плотность углеродистых сталей [104]

Концентрация углерода, %	Д, кг •м ⁻³	Концентрация углерода, %	D, кг · м−³
0 0,2 0,4 0,6	7867,8 7837,0 7806,4 7773,0	0,8 1,0 1,2	7739,9 7707,1 7677,5

Температурная зависимость плотности углеродистых сталей [160]

	<i>D</i> , кг • м ⁻³ , при 0 , К		
Марка	300	1200	
Ст 20 Ст 35 Ст 45 У 8	7845 7796 7788 7768	7814 7766 7754 7736	

Плотность фаз, присутствующих в углеродистых сталях в различных состояниях (приведенная к 293 К) [174]

Фаза	<i>D</i> , кг • м- ⁸	Фаза	<i>D</i> , кг · м-8
Феррит (альфа-железо) Аустенит (гамма-твердый раствор) с 0,0 % углерода с 0,2 % углерода с 0,4 % углерода с 0,6 % углерода с 0,8 % углерода с 1,0 % углерода с 1,4 % углерода	7869,1 8178,6 8150,0 8121,5 8093,2 8065,2 8037,3 7985,3	Мартенсит (альфа-твер- дый раствор) с 0,0 % углерода с 0,2 % углерода с 0,4 % углерода с 0,6 % углерода с 0,8 % углерода с 1,0 % углерода с 1,4 % углерода Цементит (карбид Fe ₃ C)	7869,1 7836,4 7805,2 7774,2 7742,9 7713,1 7656,4 7678,7

Плотность чугуна [160]

Вид чугуна	D, кг · м-3
Высокоуглеродистый серый наименее плотный	6600—6950
Обычный серый средней прочности	7000—7300
Малоуглеродистый высококачественный	7400—7500
Высоколегированный аустенитного класса	7500—7700

Температурная зависимость плотности низко- и среднелегированных сталей перлитного класса [160]

	D, кг•м−³, при Θ, К		
Марка	300	1200	
13H2XA, 15XA, 15X, 20X 65Г 30XГС, 30XГСА 15XM, 15XMA 30XM, 30XMA 1X11MФ, 1X12ВИМФ 12X1MФ 25Y2MФА	7850 7850 7850 7820 7820 7820 7800 7800 7800	7822 7825 7819 7786 7788 7770 7768 2769	

	<i>D</i> , кг • м-	<i>D</i> , кг • м−³, при ↔, К		
Марка стали	300	1400		
Х5М 1Х13 (ЭЖ1, Ж1) 2Х1213МБФР 4Х13 (ЭЖ4, Ж4) 1Х12В2МФ (ЭИ756)	7810 7750 7840 7680 7850	7770 7715 7815 7655 7823		

Температурная зависимость плотности сталей мартенситного, мартенситноферритного и ферритного классов [160]

Температурная зависимость плотности нержавеющих сталей аустенитного класса [160]

	D, кг · м−³, при Θ, К		
Марка стали	300	1000	
Х18Н9Т (1Х18Н9Т, ЭЯ1Т)*	7900 7900	7860	
ОХ1812Б (Х18Н11Б, ЭИ402) Х23Н18 (ЭИ417)	7900 7900 7900	7855 7810 7795	
Х17H13M2T (ОХ18H12M2T, ЭИ448) Х16H25M6 (ЭИ395)	7900 8100	7800 8020	
1Х16Н13М2Ъ̀ (ЭИ6́80) 3Х19Н9МВБТ (ЭИ572) ХН35ВТ (ЭИ612, ЭИ612К), ХН35ВТР (ЭИ725,	7900	7800	
ЭИ725А), ХН35ВМТ (ЭИ692) Х22Н26, ВЖ100	8200 8100	8180 7995	

• Сталь имеет метастабильную кубическую гранецентрированную решетку

Плотность быстрорежущих сталей (в отожженном состоянии) [32]

Марка стали	D; кг · м-»	Марка стали	<i>D</i> , кг · м-з
P6M3	8000	P9K10	8300
P9Ф5	8100	P10K5Φ5	8130
P14Ф4	8420	P18K5Φ2	8700

Плотность сплавов железа с алюминием [233]

Концентрация алюминия, %	<i>D</i> , кр • м ^{−3}	Концен трация алкминия, %	<i>D</i> ; кг • м- ³
2	7650	10	6810
4	7450	13	6670
6	7220	15	6550
8	7020	17	6450

Сплав железа с 21% хрома, 9% никеля: D=7750 кг м⁻³ [233]; с 28,7 — 30,1% никеля, 25,4 — 27,4% хрома, 1,9 — 2,0% титана: D = 7700 кг м⁻³ [233].

Кобальт

 $D=8900~{
m kr\cdot M^{-3}}$ [138, 163, 233]; гексагональная плотноупакованная решетка. Полиморфное превращение: при 723 К гексагональная плотноупакованная модификация переходит в кубическую гранецентрированную; $\Delta V/V=36\cdot 10^{-4}$ [211]; $\Delta V_{\rm INI}/V=350\cdot 10^{-4}$ при 1765 К [138].

Сплавы кобальта

Плотность сплавов кобальта с хромом и другими элементами [233]

aBa	Концентрация легирующих элементов, %						
Номер спл	модХ	Молибден	Никель	Железо	Волъф рам	Марганец	
1 2 3 4 5 6 7 8 9 10	$\begin{array}{c} 25 - 30 \\ 23 - 29 \\ 19 - 21 \\ 23 - 29 \\ 23 - 28 \\ 17,5 - 19,5 \\ 30 \\ 23 - 28 \\ 19,1 \\ 26,7 \end{array}$	4,5-6,5 	1,5-3,5 < <1,5 9-11 13-17 9-12 9-11 - 9-12 10,5 2,4	$<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$ $<^{2}$	$\begin{array}{c} - \\ 4 - 7 \\ 14 - 16 \\ - 9 \\ 14 - 15 \\ 6 \\ - 9 \\ - \end{array}$	 1-2 1-1,5 0,77	

Продолжение таблицы

383	Концент	Концентрация легирующих элементов, %					
Номер спла	Кремний	Ниобий	Ванадий	У глерод	D; кг • м-*		
1 2 3 4 5 6 7 8 9 10	 <1 0,350,65 0,52 	 1,4	 3,0	$\begin{array}{c} 0.20.35\\ 0.350.5\\ 0.15\\ 0.350.50\\ 0.450.60\\ 0.350.45\\ -\\ 0.450.60\\ 0.27\\ 0.26\end{array}$	8300 8540 9150 8310 8610 9040 8440 8080 8260 8190		

Плотность сплавов кобальта с никелем .[233]

Концентрация никеля, %	D, кг · м- ⁸	Концентрация никеля, %	<i>D</i> ,кг • м ⁻⁸
10	8850	32	8840
22	8860	55	8870
27,5	8720	80	8900
31	8630		

Никель

D = 8900 кг · м⁻³ [138, 163, 233]; кубическая гранецентрированная решетка; $\Delta V_{\pi\pi}/V = 450 \cdot 10^{-4}$ при 1728 К [138].

Температурная зависимость плотности [160]

ө, қ	D, кг · м-3	0 , K	D, KT · M-*
293	8900	1073	8860
473	8890	1273	8850
673	8870	1573	8830
773	8870		

Сплавы никеля

Сплав никеля с 30 % меди, 3 % алюминия: D = 8456 кг · м⁻³ [233]; с 15,8 % хрома, 14,6 % молибдена, 4,9 % железа, 4,4 % вольфрама: D = 8921 кг · м⁻³ [233]; с 17 % молибдена, 16,5 хрома, 6 % железа, 4 % вольфрама: D = 8940 кг · м⁻³ [233]; с 28 % молибдена, 6 % железа, за: D = 9240 кг · м⁻³ [233]; с 24 % железа, 16 % хрома, 1,1 % кремния: D = 8150 кг · м⁻³ [233].

Плотность сплавов никеля с кобальтом, хромом, молибденом и другими элементами [233]

	Концентрация легирующих элементов, %						
Номер сплава	Кобальт	Хром	Молибден	Вольфрам	Тантал	Алюминий	
1	18-22	10-12	4,55,5		_	46	
2	25.4	14,6	5,0	4,75	1,3		
3	25,5	14,8	5,2	4,5			
4	25,1	14,9	4,9	4,54	4,88		
5	24,5	14,6	4,46	4,7	_		
6	30,0	23-29	5-7	—	—	_	

Продолжение таблицы

	K					
Номер сплава	Железо	Титан	Марганец	Кремний	Углерод	D, кг•м- ³
1 2 3 4	<2 13,8 13,7	1—2 1,08	0,54 0,62 0,53	<0,5 0,45 0,40 0,49	<0,3 0,04 0,04 0,04	8040 8734 8629 8875
5 6	15,4 2	_	0,71	0,44	0,03 0,35—0,50	8590 8210

Плотность сплавов никеля с кобальтом [233]

Концентрация кобальта, %	<i>D</i> , кг • м ⁻³	Концентрация, кобальта, %	<i>D</i> , кг • м− ³
0 20 40	8900 8880 8875	69 72,5 78	8650 8750 8870
68	8870	80	8870

Плотность сплавов никеля с хромом, железом и другими элементами [233]

	Концентрация легирующих элементов, %									
Номер сплава	Хром	Железо	Титан	Кобальт	Ниобий	Вольфрам				
1 2 3 4 5 6 7	$14 - 17 \\ 14 - 16 \\ 14,65 \\ 14,62 \\ 15,15 \\ 14,04 \\ 19,79 \\ 19,79 \\ 19,79 \\ 19,79 \\ 10,79 \\ $	6—10 5—9 6,97 5,8 8,24 7,93 17 95	2,2-2,7 2,44 0,35 2,73 0,19	 0,09 	0,7 <u>1</u> ,2 1,01 <u>-</u> 0,57	 				

Продолжение таблицы

Номер сплава	K	онцентрация	легирующих	элементов,	%			
	Молибден	Алюминий	Марганец	Кремний	Углерод	Д, кг•м- ≉		
1	_	_			_	8470		
2		0,4-1,0	0,3-1,0	_		8254		
3		0,93	0,54	0,46	0,03	8250		
4	_	<u> </u>	0,23	0,19	0,09	8470		
5		—	0,30	0,23	0,08	8400		
6		0,56	0,67	0,41	0,06	8200		
7	7,43	<u> </u>	0,81	0,86	0,11	8150		

Плотность сплавов никеля с хромом и другими элементами [233]

	Концентрация легирующих элементов, %									
Хром	Алю- миний	Медь	Молиб- ден	Желе- 30	Вольф- рам	Крем- ний	Угле- род	D, кг • м-•		
20 19,33 15,83	2,5 	2,5 	 14,57	0,17 4,94		0,64	0,31 0,07	8100 8350 8921		

Плотность специальных сплавов никеля [160]

	K	онцентрация	легирующ	их элемент	юв, %			
Сплав	Алюминий	Кремний	Марганец	Хром	Железо	Кобальт	D, Kr · M-	
Алюмель Хромель Нихром	1,8—2,5 	0,85—1,15 —	1,8—2,2 —	9—10 19—21	-	<1 <1 <1	8480 8710 8340	
Ферро- нихром	_		1-2	14—16	14—18	<1	8370	

Рутений

D = 12450 кг · м⁻³ [163]; 12200 кг · м⁻³ [138]; гексагональная плотноупакованная решетка.

Родий

D = 12410 кг · м⁻³ [163]; 12400 кг · м⁻³ [138]; 12450 кг · м⁻³ [233]; 12500 кг · м⁻³ [133]; кубическая гранецентрированная решетка.

Палладий

D = 12020 кг · м⁻³ [163]; 12000 кг · м⁻³ [138]; 11400 кг · м⁻³ [233]; кубическая гранецентрированная решетка.

Осмий

D = 22610 кг · м⁻³ [163]; 22500 кг · м⁻³ [133, 138]; 22480 кг · м⁻³ [233]; гексагональная плотноупакованная решетка.

Иридий

D = 22500 кг · м⁻³ [163, 233]; 22400 кг · м⁻³ [133, 138]; кубическая гранецентрированная решетка.

Платина

D = 22450 кг · м⁻³ [16, 138, 163]; 21500 кг · м⁻³ [133, 138]; кубическая гранецентрированная решетка.

9.2. Тепловое расширение металлов и сплавов

І группа периодической системы элементов

Литий

Линейный коэффициент теплового расширения [119, 120]

θ, Κ	$\frac{1}{\alpha \cdot 10^{6}}$	$\frac{2}{\alpha \cdot 10^6}$	α _⊥ •10 ⁶	3 α _∥ • 10°	θ, Κ	1 α • 10 ⁶	2 α • 10 ⁶	α _⊥ • 106	3 ∝∥•10°
80 90 100	34,9 36,4	16,9 22,5	4,5 5,0 5,3	2,3 2,4 2,5	110 120 130	37,8	27,2	5,8 6,2 6,7	2,6 2,7 2,8

						Прод	олжен	ие таб.	лицы
- <i>"</i>	1	2		3		1	2	:	3
⊎; K	α · 106	α·100	α _⊥ ·10 ⁶	α · 10°	⊌, K	α·10 ⁶	α • 10•	α ₁ .10 ⁶	∝∥•10•
140	30.9	31.0	79	20	220	11 2	41.0	11.9	13
150	<u> </u>	<u> </u>	77	2,9	220	44,5	41,0	11,2	4,5
160	40.5	34.1	8.2	3.2	240	45.4	42.8	12.2	4.8
170			8,7	3,3	250			12,7	5.1
180	41,8	36,7	9,2	3,5	260	46,3	44,4	13,2	5,3
190		_	9,7	3,7	280	46,9	45,8	14,0	6,0
200	43,1	39,0	10,2	3,9	293				6,5
210		_	10,7	4,1	300	47,1	47,1		6,8

Примечание. 1,2 — образцы, испытавшие до различных степеней полиморфное превращение; 3 — выплавленный зонной плавкой монокристалл гексагональной плотноупакованной модификации.

Натрий

Линейный коэффициент теплового расширения [119]

θ, Κ	α·10 ⁶	ө, қ	α • 106	ө, к	α · 106
80 100 120 140 160	38,5 45,7 51,7 56,1 59,7	180 200 220 240 260	62,5 64,7 66,4 67,8 69,1	280 300 320 340	70,3 71,5 72,7 74,0

Калий

Линейный коэффициент теплового расширения [119]

θ, Κ	α · 10°	ө, к	⊖•10ª
100	63	260	72
200	66	300	83,3

Рубидий

α = 90 · 10⁻⁶ K⁻¹ при 300 К [119]; (60,7 — 63,2) · 10⁻⁶ K⁻¹ в диапазоне 183 — 233 К [163].

Цезий

Линейный коэффициент теплового расширения [119]

θ, Κ	α • 10°	θ, Κ	α • 10•
280	97	320	97
300	97	370	97

Франций

α = 102 · 10-6 К-1 при 300 К (расчетное значение) [119].

Медь

Относительное изменение	длины о	С	температурой	[233]	L
-------------------------	---------	---	--------------	-------	---

0, K	Δ <i>L/L</i> , %	ө, қ	Δ <i>L/L</i> , %	ө, қ	Δ <i>L/L</i> ,%	ө, қ	Δ <i>L/L</i> ,%
10	0,3	300	0,02	650	0,60	1000	1,35
50	0,3	350	0,07	700	0,73	1050	1,45
100	0,25	400	0,15	750	0,82	1100	1,57
150	0,21	450	0,25	800	0,97	1150	1,68
200	0,17	500	0,32	850	1,05	1200	1,83
250	0,10	550	0,45	900	1,15	1250	1,96
273	0	600	0,50	950	1,25	1300	2,10

Линейный коэффициент теплового расширения [119, 120]

0, K	α · 10 ⁶	ө, қ	α • 10°	ө, қ	α · 108	0 , K	α • 10 ⁶
6 7 8 9 10 15 20 25 30 40 50 60 70 80	$\begin{array}{c} 0,008\\ 0,011\\ 0,016\\ 0,022\\ 0,03\\ 0,10\\ 0,32\\ 0,62\\ 0,93\\ 2,15\\ 3,65\\ 5,66\\ 6,87\\ 8,28 \end{array}$	90 100 110 120 130 140 150 160 170 180 190 200 210 220	9.47 10,45 11,35 12,0 12,6 13,2 13,6 14,1 14,4 14,7 15,0 15,2 15,4 15,6	230 240 250 260 273 280 300 350 400 450 550 600 650	15,7 15,9 16,1 16,2 16,4 16,5 16,7 17,0 17,3 17,6 17,9 18,3 18,6 19,0	700 750 800 900 950 1000 1050 1100 1150 1200 1250	19,4 19,7 20,1 20,5 20,9 21,4 21,8 22,3 22,8 23,3 23,8 24,4

Сплавы меди

Относительное изменение длины с температурой сплава меди с 7 % серебра [233]

ө, қ	$\Delta L/L, \%$	ө, қ	$\Delta L/L, \%$	0, K	$\Delta L/L$, %	θ, Κ	Δ <i>L/L</i> , %
273	0	450	0,29	650	0,61	800	0,91
300	0,02	500	0,37	670	0,61	850	1,02
350	0,11	550	0,45	700	0,65	900	1,13
400	0,20	600	0,54	750	0,77	970	1,30

Относительное изменение длины с температурой сплава меди с 34 % волота [287]

θ, Κ	$\Delta L/L$, %	ө, қ	ΔL/L, %	0, K	ΔL/L, %
293 398 448	0 0,18 0,25	548 623 723	0,44 0,56 0,74	823 873	0,92 1,00

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава меди с 35 % цинка [287]

ө, қ	Δ <i>L/L</i> , %	α · 10 ⁶	Θ, K	Δ <i>L/L</i> ,%	α·10°
293 400 500 600	0 0,194 0,380 0,595	17,5 18,9 20,0 20,9	700 800 900	0,808 1,028 1,258	21,7 22,5 23,5

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава меди с 10 % олова [287]

0, K	ΔL/L, %	α·10°	ө, қ	ΔL/L, %	α • 10 ⁶
293	0	17,0	600	0,589	20,5
400	0,192	18,8	700	0,796	20,8
500	0,387	20,0	750	0,901	21,3

Относительное изменение длины с температурой сплава меди с 0,65 % теллура [233]

0, K	$\Delta L/L$, %	ө, қ	Δ <i>L/L</i> , %	θ, Κ	Δ <i>L/L</i> , %	θ, Κ	$\Delta L/L_i$ %
273	0	350	0,11	450	0,28	550	0,47
300	0,01	400	0,20	500	0,37	570	0,51

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава меди с 20 % марганца [287]

0, K	Δ <i>L/L</i> , %	α·10*	0, K	Δ <i>L/L</i> , %	α • 10 ⁶
293 400 500	0 0,220 0,435	20,3 20,8 22,0	600 700	0,660 0,892	23,1 23,4

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава меди с 35 % никеля [287]

0, K	ΔL/L; %	$\alpha \cdot 10^{6}$	ө, қ	Δ <i>L/L</i> ;%	α·10°	0, K	ΔL/L, %	α·10 ⁶
100 200 293	0,256 0,132 0	11,2 13,4 16,0	400 500 600	0,169 0,338 0,517	16,4 17,4 18,2	700 800	0,702 0,802	18,8 19,2

Сплав меди с 2,15 % бериллия, 0,35 % никеля: $\Delta L/L = 0,14$ % в диапазоне 180 — 273 К [233].

Относительное изменение длины с температурой сплава меди с 15 % цинка, 10 % свинца [233]

ө, қ	ΔL/L; %	ө, қ	ΔL/L; %	ө, қ	ΔL/L, %	ө, қ	ΔL/L; %
273 300 350 400	0 0,01 0,11 0,20	450 500 550 600	0,29 0,38 0,48 0,58	650 700 750 800	0,68 0,78 0,88 0,99	850 890	1,13 1,19

Относительное изменение длины с температурой сплава меди с 22 % цинка и 11 % никеля [233]

ө, қ	ΔL/L; %	ө, қ	ΔL/L; %	ө, қ	ΔL/L, %	ө, қ	Δ <i>L/L</i> , %
273 300 350	0 0,04	500 550	0,36 0,44 0,52	750 800 850	0,82 0,92	1000 1050	1,37 1,50
400 450	0,18 0,27	650 700	0,62 0,72	900 950	1,02 1,14 1,26	1150 1200	1,02 1,76 1,88

Относительное изменение длины с температурой сплавов меди с 5 — 12 % алюминия и добавками никеля, железа, кремния [233]

0, K	ΔL/L, %	ө, к	$\Delta L/L, \%$	ө, қ	Δ <i>L/L</i> ,%	ө, қ	$\Delta L/L$, %
200	0,15	400	0,17	650	0,65	900	1,15
250	0,07	450	0,25	700	0,75	950	1,25
273	0	500	0,35	750	0,85	1000	1,35
300	0,02	550	0,45	800	0,95	1050	1,45
359	0,10	600	0,55	850	1,05	1100	1,50

Относительное изменение длины с температурой сплавов меди с 3-4,5 % кремния и добавками цинка, марганца, железа [233]

ө, қ	Δ <i>L/L</i> , %	ө, к	ΔL/L;%	ө, қ	Δ <i>L/L</i> , %	ө, қ	Δ <i>L/L</i> , %
273	0	550	0,43	850	1,06	1150	1,76
300	0,01	600	0,53	900	1,17	1200	1,96
350	0,08	650	0,63	950	1,29	1250	2.26
400	0,17	700	0,73	1000	1,40	1270	2.44
450	0.26	750	0,83	1050	1,52		,
500	0,34	800	0,94	1100	1,63		

Относительное изменение длины с температурой сплавов меди с 7 — 10 % одова, 2 — 4 % цинка [233]

0 , K	ΔL/L, %	ө, к	ΔL/L, %	ө, к	ΔL/L, %	ө, к	Δ <i>L/L</i> , %
273	0	400	0,20	500	0,40	600	0,59
300	0,01	450	0,30	550	0,48	650	0,68

Относительное изменение длины с температурой сплавов меди с 10 — 20 % свинца, до 10 % олова [233]

0, K	$\Delta L/L$; %	ө, к	$\Delta L/L$; %	ө, қ	Δ <i>L/L</i> , %
273 300	0 0,01	500 600	0,40 0,60	700 800	0,79 0,91
400	0,21		.,-		

Относительное изменение длины с температурой сплавов меди с 1 — 30 % никеля, 1 — 18 % цинка [233]

0 , K	$\Delta L/L$, %	ө, қ	ΔL/L, %	ө, қ	ΔL/L; %	ө, қ	ΔL/L, %
200	-0,14	400	0,18	650	0,62	900	1,12
250	0,06	450	0,27	700	0,72	950	1,24
273	0	500	0,36	750	0,82	1000	1,36
300	0,02	550	0,44	800	0,92	1050	1,44
350	0,10	600	0,53	850	1,02	1100	1,56

Линейный коэффициент теплового расширения технических сплавов меди при 300 К [160]

	Концен	трация лег	ирующих эл	ементов, 9	6	
Марка	Никель	Железо	Марганец	Цинк	Қо- бальт	α • 106
ТП (МНО, 6)	0,57-0,63		<u> </u>	_	<1,0	12,0
ТБ (МН16)	15,3—16,3	_			<1,0	15,3
Мельхиор	29 - 33	0,6-1,0	0,8—1,3		<1,0	16,0
Константан	39—41	· — ·	1-2	_	<1,0	14,4
Копель	43—44		0,1-1,0		<1,0	14,0
Монель	65—70	23	1,2-1,8		<1,0	14,0
Нейзильбер	13,5—16,5		· _ ·	1820	<1,0	18,4
Манганин	2,5—3,5	—	11—13	-	<1,0	16,0

Серебро

0 , K	ΔL/L, %	θ, Κ	ΔL/L, %	ө, қ	ΔL/L, %	0, K	$\Delta L/L$; %
70 100 150 200 250 273 300	0,35 0,34 0,25 0,15 0,07 0 0,02	350 400 450 500 550 600 650	0,13 0,21 0,32 0,41 0,51 0,60 0,71	700 750 800 850 900 950 1000	0,81 0,92 1,04 1,15 1,26 1,37 1,52	1050 1100 1150 1200	1,64 1,77 1,90 2,03

Относительное изменение длины с температурой [233]

Линейный коэффициент теплового расширения [119, 120]

Сплавы серебра

Относительное изменение длины с температурой сплавов серебра с 7—40 % меди [233]

ө, қ	ΔL/L; %	θ, Κ	Δ <i>L</i> / <i>L</i> , %	ө, к	Δ <i>L/L</i> ; %	ө, к	ΔL/L; %
273	0	450	0,34	570	0,50	700	0,76
300	0,01	500	0,44	580	0,52	800	0,96
350	0,13	550	0,50	600	0,56	900	1,16
400	0,23	560	0,50	650	0,63	930	1,20

ΔL/L, %, при концентра-ции золота, % ΔL/L, %, при концентра-ции золота, % 0, K 0. K 10 40 10 40 273 0 0 800 1.01 0.91 0.21 0.19 1000 1.46 1,32 400 1060 1.62 600 0,59 0.52 1.46

Относительное изменение длины с температурой сплавов серебра с золотом [233]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава серебра с 30 % кадмия [287]

θ, Κ	ΔL/L; %	α • 10•	θ, K	ΔL/L, %	α • 10•
293 350 400 500	0 0,134 0,250 0,485	23,2 23,3 23,4 23,8	600 700 800	0,724 0,971 1,275	24,4 24,9 25,6

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов серебра с индием [287]

θ, K	<u>ΔL/L</u> , %	α • 10 (ентрац 0	<u> </u> Δ <i>L/L</i> , %	α · 10 ⁶ π, %	θ, Κ	<u>А</u> L, L, %	α • 109 центрац	∆ <i>L</i> ; <i>L</i> ; %	α·104 H, %
293	0	19,5	0	21,5	700	0,882	23,4	0,971	25,6
400	0,216	20,8	0,240	22,8	800	1,120	24,1	1,231	26,2
500	0,429	21,9	0,474	24,0	900	1,366	25,1	1,495	26,7
600	0,652	22,7	0,719	24,9	1000	1,623	26,3	1,765	27,0

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов серебра с 5—10 % олова [287]

0, K	ΔL/L; %	α• 10 [€]	0, K	Δ <i>L/L</i> ,%	α·10•
293	0	20,0	600	0,641	22,3
400	2,17	20,3	700	0,868	2 2,9
500	0,424	21,2			-

Относительное изменение длины с температурой сплава серебра с 5 % свинца [233]

0, K	ΔL/L; %	θ, Κ	Δ <i>L</i> / <i>L</i> , %	θ, Κ	ΔL/L; %
250	0,08	400	0,20	550	0,54
273	0	500	0,40	570	0,64
300	0,01	530	0,48	650	0,80

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава серебра с 4 % сурьмы [287]

θ, Κ	ΔL/L, %	α • 10 ⁶	ө, к	$\Delta L/L$; %	α·106
293 400 500	0 0,217 0,425	20,2 20,5 21,1	600 650	0,641 0,752	21,7 22,4

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава серебра с 5 % марганца [287]

θ, Κ	Δ <i>L</i> /L;%	α•10 ⁸	ө , қ	ΔL/L; %	∝ • 10°
293	0	18,6	600	0,640	23,0
400	0,209	20,5	700	0,880	23,7
500	0,420	22,0	750	0,999	24.0

Золото

Относительное изменение длины с температурой [233]

ө, қ	ΔL/L; %	ө, к	ΔL/L, %	ө, қ	ΔL/L; %	ө, к	ΔL/L, %
50 100 150 200 250 273 300	$\begin{array}{c} -0,30\\ -0,25\\ -0,20\\ -0,12\\ -0,06\\ 0\\ 0,01 \end{array}$	350 400 450 500 550 600 650	0,07 0,14 0,23 0,30 0,36 0,45 0,52	700 750 800 850 900 950 1000	0,61 0,69 0,78 0,86 0,95 1,04 1,12	1050 1100 1150 1200 1250	1,23 1,32 1,41 1,50 1,60

θ, K	α·10°	θ, Κ	a · 10°	ө, к	α·10°	ө, қ	α·10ª
5	0.026	70	10,05	210	13.4	600	15,5
6	0,046	80	10,7	220	13,5	650	15,7
7	0,075	90	11,2	230	13,6	700	16,0
8	0,116	100	11,5	240	13,7	750	16,2
9	0,168	110	11,8	250	13,8	800	16,5
10	0,228	120	12,0	260	13,9	850	16,8
15	0,77	130	12,2	273	14,0	900	17,1
20	2,25	140	12,5	280	14,0	950	17,4
25	3,44	150	12,6	300	14,1	1000	17,7
30	4,52	160	12,8	350	14,2	1050	18,1
35	5,14	170	12,9	400	14,5	1100	18,4
40	6,37	180	13,0	450	14,7	1150	18,8
50	7,95	190	13,2	500	15,0	1200	19,1
60	9,15	200	13,3	550	15,2	1250	19,5

Линейный коэффициент теплового расширения [119, 120]

Сплавы золота

Относительное изменение длины с температурой сплавов золота с медью [287]

	Δ <i>L/L</i> ,%, при ции ме	и концентра- еди, %		Δ <i>L/L</i> , %, при концентра- ции меди, %		
ө, к	5	44	Θ, Κ	5	44	
293 393 493 573	0 0,15 0,31 0,45	0 0,20 0,38 0,52	673 773 873	0,62 0,80 0,94	0,70 0,95 1,12	

Относительное изменение длины с температурой сплавов золота с серебром [233]

- K	Δ <i>L/L</i> , концен серебј	%, при трации ра, %	o v	Δ <i>L/L</i> , концен сереб	%, при трации ра, %		Δ <i>L/L</i> , %, при концентрации серебра, %	
θ, Κ	20	40	9, K	20	40	9, K	20	40
273 400 500	0 0,16 0,32	0 0,18 0,34	600 700 800	0,47 0,64 0,80	0,50 0,68 0,85	900 1000 1100	0,95 1,06 1,34	1,02 1,22 1,43

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава золота с 50 % палладия [287]

0, K	Δ <i>L</i> / <i>L</i> , %	α•10•	0 , K	Δ <i>L1L</i> ;%	α • 10*
293 400 500 600	0 0,129 0,249 0,369	12 12 12 12	700 800 900	0,490 0,610 0,730	12 12 12

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава золота с 10 % платины [287]

0 , K	ΔL/L, %	α • 10 ⁶	0, K	$\Delta L/L, \%$	α · 10•	θ, K	Δ <i>L/L</i> ; %	α • 10•
293	0	11,8	600	0,398	14,0	900	0,818	14,1
400	0,130	12,7	700	0,538	14,1	1000	0,939	14,1
500	0,261	13,4	800	0,678	14,1	1050	1,029	14,1

II группа периодической системы элементов

Бериллий

Относительное изменение длины с температурой [233]

ө, қ	Δ <i>L/L</i> ,%	θ, Κ	Δ <i>L/L</i> ,%	ө, қ	ΔL/L; %	ө, қ	ΔL/L, %
273	0	500	0,30	800	0,90	1100	1,56
300	0,02	600	0,42	900	1,10	1200	1,84
400	0,16	700	0,68	1000	1,34	1300	2,26

Линейный коэффициент теплового расширения [119]

θ, Κ	α _⊥ • 10°	α∥ · 10⁴	θ, Κ	α _⊥ . 10°	α · 10°	θ, Κ	$\alpha_{\perp} \cdot 10^{6}$	α · 10°	ө, К	α _⊥ • 10•	α <mark>Ι</mark> ·10 ⁶
80	0,7	0,17	170	5,96	3,84	350	13,8	10,5	800	20,2	15,9
90	1,03	0,36	180	6,61	4,31	400	14,9	11,5	850	20,6	16,3
100	1,48	0,66	190	7,26	4,78	450	16,0	12,2	900	20,9	16,8
110	2,01	1,02	200	7,89	5,25	500	16,9	12,9	950	21,1	17,2
120	2,60	1,44	220	9,08	6,18	550	17,6	13,4	1000	21,4	17,6
130	3,23	1,92	240	10,1	7,06	600	18,3	14,0	1050	21,8	18,1
140	3,91	2,40	260	11,0	7,86	650	18,9	14,5	1100	22,2	18,5
150	4,63	2,88	280	11,8	8,58	700	19,4	15,0	1150	22,9	19,0
160	5,31	3,36	300	12,4	9,20	750	19,9	15,4	1200	23,4	19,5

Сплавы бериллия

Относительное изменение длины с температурой сплава бериллия с 2 % меди [287]

θ, Κ	Δ <i>L/L</i> ;%	ө, қ	Δ <i>L/L</i> ; %	Θ, Κ	ΔL/L, %	θ, Κ	ΔL/L,%
273	0,037	403	0,185	501	0,250	611	0,413
351	0,115	451	0,213	578	0,363	664	0,473

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава бериллия с 40 % алюминия [287]

ө, қ	Δ <i>L/L</i> ,%	$\alpha \cdot 10^{6}$	θ, Κ	ΔL/L; %	α · 10 ⁶	ө, қ	Δ <i>L</i> / <i>L</i> , %	α · 10*
293 400 500	0 0,170 0,347	11,9 16,8 18,4	600 700 750	0,538 0,734 0,834	19,4 19,9 20,2	800 900	0,935 1,139	20,2 20,3

Магний

Относительное изменение длины с температурой [233]

ө, к	Δ <i>L</i> / <i>L</i> , %	ө, к	$\Delta L/L$, %	θ, Κ	ΔL/L, %
273 350 400 450	0 0,15 0,29 0,40	500 550 600	0,51 0,73 0,86	650 700 770	1,03 1,28 1,45

Линейный коэффициент теплового расширения [119]

θ. Κ	α _⊥ , 10°	α - 10•	θ, K	œ⊥ • 10°	α μ · 10•	e, K	α _⊥ • 10 ⁶	α • 10°	θ, K	α _{cp} • 10°
5	0,011	0,007	24	0,65	0,60	110	16,1	17,4	300	25,8
6	0,016	0,010	26	0,85	0,81	120	17,2	18,4	350	26,5
7	0,021	0,013	28	1,09	1,05	130	18,1	19,4	400	27,3
8	0,028	0,018	30	1,35	1,35	140	18,9	20,2	450	28,1
10	0,05	0,03	40	3,0	3,20	150	19,6	20,9	500	29,0
12	0,08	0,05	50	5,34	5,91	160	20,3	21,6	550	30,0
14	0,13	0,08	60	7,99	8,56	180	21,4	22,8	600	31,0
16	0,18	0,13	70	10,3	10,9	200	22,3	23,8	650	32,0
18	0,26	0,20	80	12,2	12,9	240	23,4	25,5	700	33,0
20	0,36	0,31	90	13,8	14,6	260	24,3	26,3	750	34,0
22	0,49	0,44	100	15,0	16,1	280	24,7	26,8	800	35,0

Сплавы магния

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава магния с 5 % серебра [287]

θ, Κ	ΔL/L; %	α • 10 ⁶	ө, қ	ΔL/L, %	a • 10°
293	0	23,4	500	0,560	29,6
400	0,273	27,7	550	0,710	30,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава магния с 5 % цинка [287]

ө, к	ΔL/L, %	a • 10°	θ, Κ	ΔL/L, %	α · 108
275 293 400	-0,042 0 0,286	23,0 24,1 29,5	500 550	0,608 0,783	34,2 36,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава магния с 10 % алюминия [287]

θ, Κ	ΔL/L, %	α • 10*	0, K	ΔL/L; %	α·10°	ө, қ	Δ <i>L/L</i> ,%	α • 106
293	0	23,6	475	0,490	29,5	600	0,873	31,1
400	0,276	27,7	500	0,566	30,1	650	1,028	31,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов магния с оловом [287]

	ΔL/L; %	α · 106	$\Delta L/L$, %	α • 10°	ΔL/L; %	$\alpha \cdot 10^{\circ}$	Δ <i>L/L</i> ,%	$\alpha \cdot 10^{s}$
ө, қ	Кон	центрац	ия олова, 9	<u> </u>	Кон	центраци	ія олова, 🤅	6
	5		20		35		45	i
293 400 500 600 650	0 0,285 0,539 0,841 0,988	26 27 28 29 30	0 0,270 0,522 0,774 0,901	25 25 25 25 25 25	0 0,237 0,459 0,680 —	22 22 22 22 22 22 22	0 0,227 0,438 0,649 0,755	21,1 21,1 21,1 21,1 21,1 21,1

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава магния с 5 % никеля [287]

θ, Κ	ΔL/L; %	α·10°	θ, Κ	ΔL/L; %	α · 10"
293	0	23,3	500	0,555	29,3
400	0,272	27,1	550	0,700	29,5

Относительное изменение длины с температурой сплавов магния с 4,8-6,2 % цинка, 0,45-0,74 % циркония [233]

0 , K	Δ <i>L/L</i> ;%	θ, Κ	ΔL/L; %	Θ, Κ	ΔL/L; %
273	0	350	0,15	450	0,42
300	0,03	400	0,27	500	0,53

Относительное изменение длины с температурой сплавов магния с 3—9 % алюминия и 0,4—3,1 % цинка [233]

0 , K	ΔL/L; %	ө, қ	ΔL/L, %	ө, қ	ΔL/L; %	0, K	ΔL/L; %
20	0,50	200	$-0,23 \\ -0,11 \\ 0 \\ 0,02$	350	0,12	550	0,70
50	0,47	250		400	0,27	600	0,86
100	0,42	273		450	0,40	650	1,02
150	0,35	300		500	0,55	670	1,07

Относительное изменение длины с температурой сплавов магния с 3—4 % тория и 0,5—2,1 % цинка [233]

0, K	ΔL/L, %	θ, Κ	Δ <i>L/L</i> ;%	0 , K	Δ <i>L</i> / <i>L</i> ;%
273	0	350	0,15	450	0,43
300	0,03	400	0,28	500	0,65

Кальций

Относительное изменение длины с температурой [233]

0, K	∆ L/L, %	ө, к	ΔL/L; %	ө, қ	ΔL/L, %	ө, қ	ΔL/L, %
50	0,46	150	0,30	250	0,10	300	0,01
100	0,38	200	0,20	273	0	340	0,08

ө, к	α·10 ⁶	ө, к	α·10°	ө, к	α•10 ⁶	Ө, Қ	α·10 ⁶
<u> </u>		<u></u>				1)	
70	13,2	140	18,6	22 0	20,9	500	25,8
80	14,6	150	18,9	24 0	21,3	600	27 ,6
90	15,9	160	19,3	260	21,7	70 0	29 ,3
100	16,8	170	19,6	280	22,0	800	33 ,6
110	17,4	180	19,9	300	22,4		
120	17,8	190	20,2	350	23,2		
130	18,2	200	20,4	400	24,1		

Линейный коэффициент теплового расширения [119]

Стронций

Относительное изменение длины с температурой [233]

ө, қ	Δ <i>L/L</i> ;%	0, K	Δ <i>L</i> / <i>L</i> , %	ө, қ	Δ <i>L</i> / <i>L</i> ; %	θ,Κ	ΔL/L, %
270	0,04	400	0,21	600	0,62	800	1,14
293	0	450	0,32	650	0,72	820	1,02
300	0,01	500	0,42	700	0,84	850	1,10
350	0,11	550	0,52	750	1,00	900	1,24

 $\alpha = 23,0 \cdot 10^{-6} \text{ K}^{-1}$ при 200 К [119].

Барий

Линейный коэффициент теплового расширения [119]

ө, к	α · 10 ⁶	Ө, К	α · 10*
300	16,4	400	20,5
350	18,4	500	24,6

Радий

 $\alpha \simeq 20,2 \cdot 10^{-6} \text{ K}^{-1}$ при 300 К (оценочное значение) [119].

Цинк

0 , K	α ₁ .10°	α ₁ · 10°	θ, Κ	α _⊥ • 10°	α • 10°	0, K	α ₁ .10*	α • 10°	9. K	α ₁ • 10°	αμ.10
4 5 6 7 8 10 12 14 16 18 20	$\begin{array}{r} -0,003\\ -0,001\\ +0,003\\ -0,002\\ -0,063\\ -0,23\\ -0,52\\ -0,97\\ -1,5\\ -2,0\end{array}$	0,03 0,05 0,07 0,12 0,23 0,76 1,9 3,8 6,35 9,4 12,9	22 24 26 28 30 35 40 45 50 55 60	$\begin{array}{r} -2,6\\ -3,2\\ -3,7\\ -4,1\\ -4,3\\ -4,5\\ -4,2\\ -3,6\\ -3,0\\ -2,3\\ -1,5\end{array}$	16,5 20,0 24,0 28,0 33,4 40,1 45,4 50,1 54,1 57,3 59,6	70 80 90 120 140 160 180 220 220 240	0 1,6 2,9 4,1 6,0 7,5 8,7 9,6 10,4 11,0 11,6	62,6 64,1 65,4 65,9 65,9 65,9 65,8 65,8 65,8 65,3 64,9	260 280 350 400 450 550 600 650	12,2 12,8 13,2 14,5 15,7 16,7 17,7 19,7 23,3 27,9	64,5 64,0 63,5 62,1 61,0 60,2 58,9 57,6 54,8 50,3

Линейный коэффициент теплового расширения [119]

Сплав цинка

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава цинка с 25 % алюминия [287]

θ, Κ	ΔL/L, %	α • 10 ⁶	θ, Κ	ΔL/L; %	α · 10°
29 3	0	24,0	500	0,602	36,9
400	0,279	28,7	525	0,699	39,5

Кадмий

Линейный коэффициент теплового расширения [119]

9 , K	α · 10°	α · 10°	θ, Κ	$\alpha_{\perp} \cdot 10^{\bullet}$	α ·10 ⁶	θ, Κ	α⊥ • 10°	α μ ·10°	ө, қ	$\alpha_{\perp}\cdot 10^{6}$	α .10°
3 4 5 6 7 8 10 12 14 16	$\begin{array}{r} +0,004 \\ +0,003 \\ -0,01 \\ -0,07 \\ -0,2 \\ -0,4 \\ -1,05 \\ -1,8 \\ -2,6 \\ -3,2 \end{array}$	0,02 0,28 0,75 1,65 3,05 7,2 12,0 18,0 23,7	18 20 22 24 26 28 30 35 40 45	$\begin{array}{r} -3,6 \\ -3,8 \\ -3,9 \\ -3,8 \\ -3,6 \\ -3,3 \\ -2,9 \\ -2,0 \\ -1,2 \\ 1,2 \end{array}$	29,2 34,0 38,0 42,0 45,0 47,5 50,0 54,2 56,2 57,7	50 60 70 80 90 100 120 140 160 180	2,6 5,0 6,9 8,4 9,6 10,6 12,3 13,7 14,9 15,9	58,9 60,4 60,6 60,5 60,2 59,7 58,8 58,0 57,5 57,0	200 220 240 260 280 300 350 400 450 500	16,7 17,4 18,1 19,2 19,6 22,0 25,8 30,5 37,0	56,5 56,0 55,5 55,0 54,5 54,0 52,6 50,5 47,3 43,4

Ртуть

ө, К	α⊥ · 10 ⁶	α∥•10°	ө, к	$\alpha_{cp} \cdot 10^{\circ}$
100	34,0	42.9	180	44.5
120	35,5	45.6	200	47,6
140	36,8	47.8	220	51,5
160	37,9	50,0		

Линейный коэффициент теплового расширения [119]

III группа периодической системы элементов

Алюминий

Относительное изменение длины с температурой [233]

0, K	ΔL/L; %	ө, к	ΔL/L;%	θ, Κ	ΔL/L; %	Θ, Κ	Δ <i>L</i> / <i>L</i> , %
20 50 100 150 200	-0,42 -0,41 -0,36 -0,28 -0,20	250 273 300 350 400	0,10 0,02 0,14 0,26	450 500 550 600 650	0,38 0,50 0,64 0,80 0,96	700 750 800 850 890	1,08 1,23 1,39 1,56 1,68

Линейный коэффициент теплового расширения [119]

ө, к	α• 10°	0 , K	α • 10°	ө, к	α · 10°	Θ, Κ	α·10*
10	0,05	70	7,40	170	18,6	400	24,5
15	0,14	80	9,15	180	19,2	450	25,3
20	0,25	90	10,5	190	19,7	500	26,2
25	0,56	100	12,05	200	20,2	550	27,1
30	0,97	110	13,25	220	20,8	600	28,1
35	1,56	120	14,4	240	21,7	650	29,1
40	2,15	130	15,3	260	22,3	700	30,2
45	2,86	140	16,3	280	22,8	750	31,3
50	3,81	150	17,2	300	23,8	800	32,6
60	5,43	160	17,9	350	23,8	850	34,0

Сплавы алюминия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 4 % меди [287]

0. K	ΔL/L; %	$\alpha \cdot 10^{6}$	ө, қ	ΔL/L, %	$\alpha \cdot 10^6$	ө, к	ΔL/L; %	α · 10*
250	0,005	22,0	400	0, 254	24,6	600	0,760	25,9
293	0	22,8	500	0, 503	25,4	625	0,827	26,2

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 12 % меди [287]

0, K	∆ L/L,%	α·10 ⁶	ө, қ	ΔL/L, %	α · 10 ⁶
333 373 423 473	0,095 0,191 0,312 0,434	23,6 24,2 24,3 24,4	521 573 621	0,563 0,687 0,813	25,4 26,2 26,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов алюминия с бериллием [287]

ө, қ	∆ <i>L/L;</i> % Конце	∝ • 10 ⁸ нтрация 4	Δ <i>L/L</i> , % берилл	α • 10° ия, % 10	ө, қ	Δ <i>L/L</i> , % α · 10° Концентрация 4		ΔL/L, % α · 10 бериллия, %	
293	0	23,3	0	20,6	600	0,774	27,2	0,739	26,4
400	0,236	24,6	0,236	23,4	700	1,034	28,6	1,008	27,3
500	0,509	26,0	0,480	25,3	870	1,129	29,4	1,146	27,7

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 5 % магния [287]

0, K	ΔL/L, %	α·10 [€]	0, K	ΔL/L, %	α · 10 ⁸
225 250 293	0,156 0,098 0	22,2 22,4 22,4	400 475	0,252 0,446	24,1 26,9

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов алюминия с ураном [287]

θ, Κ	<u>ΔL/L</u> , % Конт	∝•10• центрац	∆ <i>L /L</i> , % ия урана	α • 10°	e, K	<u>ΔL/L,</u> % Конц	α • 10 [€] ентрац	Δ <i>L/L</i> , %	α · 10• 8, %
5	1	5	31	0		1	5	5	30
293 400 500	0 0,220 0,444	19,5 21,6 23,2	0 0,208 0,420	18,0 20,5 22,2	600 700 750	0,683 0,936 1,065	24,7 25,7 25,9	0,6 49 0,887 1,007	23,3 24,0 24,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 10 % кремния [287]

ө, қ	ΔL/L; %	α • 10 ⁶	θ, Κ	ΔL/L, %	α · 10 ^a
293	0	20,1	500	0,443	22 ,7
400	0,222	21,4	600	0,675	23 ,7

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 1,5 % циркония [287]

θ, K	Δ <i>L/L</i> ,%	α • 10 ⁶	Ө; Қ	ΔL/L; %	α · 10 [€]
293 400 500	0 0,229 0,452	21,5 21,8 22,6	600 700	0,685 0,941	23,9 27,4

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава алюминия с 2 % молибдена [287]

θ, Κ	Δ <i>L/L</i> ,%	∝ • 10 ⁶	θ, Κ	Δ <i>L/L</i> ,%	α • 10 ^s
293 400 500	0 0,206 0,413	18,8 20,0 20,7	600 700	0,620 0,838	21,3 22,5

0, K	ΔL/L; %	ө, к	ΔL/L; %	ө, к	ΔL/L, %	ө, қ	$\Delta L/L, \%$
70	0,38	250	0,10	450	0,36	650	0,90
100	0,36	293	0	500	0,48	700	1,06
150	0,28	350	0,14	550	0,62	750	1,23
200	0,18	400	0,24	600	0,76	780	1,35

Относительное изменение длины с температурой сплавов алюминия с 3-5 % меди, 1-2 % магния [233]

Относительное изменение длины с температурой сплавов алюминия с 3—5 % меди, 1 % кремния [233]

ө, қ	ΔL/L; %	ө, к	Δ <i>L</i> /L; %	ө, қ	ΔL/L; %	θ, Κ	Δ <i>L/L</i> , %
250	0,09	400	0,26	550	0,70	700	1,15
300	0	450	0,40	600	0,87	750	1,30
350	0,12	500	0,55	650	1,00	800	1,46

Относительное изменение длины с температурой сплавов алюминия с 10-14 % меди, 8-10 % кремния [233]

θ, Κ	∆ L/L,%	ө, қ	ΔL/L; %	θ, Κ	ΔL/L, %	ө, қ	ΔL/L, %
200	0,18	300	0	400	0,21	500	0,42
250	0,08	350	0,12	450	0,30	550	0,54

Относительное изменение длины с температурой сплавов алюминия с 3— 12% меди, до 1,5 % железа [233]

θ, Κ	Δ <i>L[L</i> , %	θ, Κ	Δ <i>L/L</i> ,%	ө, қ	ΔL/L, %	θ, Κ	ΔL/L, %
50	0,54	250	0,08	450	0,40	650	0,96
100	0,40	293	0	500	0,54	700	1,10
150	-0,26	350	0,14	550	0,68	750	1,36
20 0	-0,19	400	0,27	600	0,82		
20 0	-0,19	400	0,27	600	0,82		

,
Относительное изменение длины с температурой сплавов алюминия с 3— 10 % меди, 1—7 % никеля [233]

ө, қ	ΔL/L; %	ө, қ	ΔL/L, %	ө, к	ΔL/L, %	θ, Κ	Δ <i>L</i> / <i>L</i> , %
200	0,12	300	0,04	450	0,40	600	0,78
250	0,06	350	0,14	500	0,52	650	0,91
273	0	400	0,26	550	0,66	700	1,04

Относительное изменение длины с температурой сплавов алюминия с 1,5—10 % магния, до 0,4 % марганца [233]

0 , K	Δ <i>L/L</i> , %	ө, к	ΔL/L, %	θ, K	Δ <i>L/L</i> ,%	ө, к	ΔL/E, %
200	0,20	293	0	400	0,26	500	0,50
250	0,08	350	0 ,1 6	450	0,38	550	0,62

Относительное изменение длины с температурой сплавов алюминия с 1-6 % кремния, 1-3 % меди [233]

0, K	ΔL/L; %	ө, к	ΔL/L, %	ө , к	$\Delta L/L$; %	Θ, Κ	ΔL/L, %
300 350 400	0 0,12 0,25	450 500 550	0,37 0,51 0,65	600 650 700	0,80 0,95 1,07	750 800	1,22 1,35

Относительное изменение длины с температурой сплавов алюминия с 10-20 % кремния, 1-10 % меди [233]

ө, К	ΔL/L, %	ө, к	ΔL/L, %	Θ, Κ	ΔL/L, %	θ, Κ	ΔL/L, %
200	0,13	273	0	350	0,10	450	0,30
250	0,08	300	0,01	400	0,20	550	0,50

Относительное изменение длины с температурой сплавов алюминия с 7—12 % кремния, 0,3—1,2 % магния [233]

ө, к	ΔL/L, %	0 , K	$\Delta L/L$, %	Θ, Κ	ΔL/L, %	θ, Κ	Δ <i>L/L</i> ; %
200	-0,20	300	0,02	450	0,33	600	0,68
250	-0,08	350	0,19	500	0,45	650	0,80
293	0	400	0,22	550	0,56	670	0,87

Относительное изменение длины с температурой сплава алюминия с 17 % кремния, 1 % железа [233]

ө, қ	ΔL/L, %	0, K	Δ <i>L/L</i> ,%	ө, қ	ΔL/L, %	θ, Κ	ΔL/L, %
250	0,08	350	0,10	450	0,30	550	0,51
300		400	0,20	500	0,40	600	0,6 2

Относительное изменение длины с температурой сплава алюминия с 13 % кремния, 4 % никеля [233]

ө, к	ΔL/L, %	ө, к	ΔL/L,%	ө, к	ΔL/L; %	θ, Κ	ΔL/L; %
200	0,15	293	0	400	0 ,2 0	500	0,40
250	0,07	350	0,10	450	0,30	550	0,50

Относительное изменение длины с температурой сплава алюминия с 1,8 % меди, 1,3 % олова, 1,1 % цинка [233]

θ, Κ	ΔL/L; %	ө, к	Δ <i>L</i> / <i>L</i> , %	0, K	ΔL/L, %	θ, Κ	$\Delta L/L_{s}$ %
200	0,20	273	0	400	0,26	500	0,50
250	0,09	350	0,14	450	0,38	570	0,74

Относительное изменение длины с температурсй сплавов алюминия с 35—40 % бериллия, 0,5—1,0 % кремния и магния [233]

θ, Κ	Δ <i>L/L</i> ; %	ө, к	ΔL/L %	0 , K	ΔL/L; %
293 350 400	0 0,09 0,16	450 500	0,27 0,38	550 600	0,47 0,56

Относительное изменение длины с температурой сплавов алюминия с 5-6 % цинка, 1-3 % магния, 1-2 % меди [233]

θ , Κ	ΔL/L, %	ө, к	Δ <i>L/L</i> , %	ө, к	$\Delta L/L; \%$	θ, Κ	Δ <i>L/L</i> ; %
70	0,40	250	0,09	450	0,38	650	0,96
100	0,34	293	0	500	0,52	700	1,10
150	0,27	350	0,12	550	0,66	750	1,30
200	0,18	400	0,25	600	0,80	780	1,40

Относительное изменение длины с температурой сплавов алюминия с 3— 5 % никеля, 2—3 % марганца, 1—2 % меди, 0,5% магния [233]

0 , K	Δ <i>L/L</i> ,%	ө, к	ΔL/L, %	0, K	Δ <i>L/L</i> ,%	θ, Κ	ΔL/L, %
293	0	400	0,25	500	0,47	600	0,70
350	0,13	450	0,37	550	0,58	650	0,80

Относительное изменение длины с температурой сплава алюминия с 19 % кремния, 4 % никеля, 3 % меди, 1 % марганца, 0,8 % железа [233]

θ, Κ	ΔL/L, %	ө, к	ΔL/L, %	ө, к	Δ <i>L/L</i> ; %	θ, Κ	Δ <i>L</i> / <i>L</i> , %
200	0,15	293	0	400	0,15	500	0,35
250	0,07	350	0,08	450	0,26	550	0,45

Галлий

 $\beta=55\cdot10^{-6}$ К⁻¹ в диапазоне 273,1—302,65 К [119]; 59,5 \cdot 10⁻⁶ К⁻¹ при 293 К [,163]; $\alpha_1=16,2\cdot10^{-6}$ К⁻¹, $\alpha_2=11,1\cdot10^{-6}$ К⁻¹, $\alpha_3=30,2\cdot10^{-6}$ К⁻¹ при 300 К [119].

Индий

Линейный коэффициент теплового расширения [119]

					-		-				
θ, K	$\alpha_{\perp} \cdot 10^{\circ}$	α [] · 10°	θ, Κ	$\alpha_{\perp} \cdot 10^{\circ}$	α · 10*	θ, Κ	α _⊥ • 10 ⁶	α •10°	θ, Κ	α⊥ • 10°	α · 10°
2	0,13	0,20	15	0,92	12,0	90	26,8	19,0	190	36,6	7,5
3	0,38	0,60	20	2,36	18,1	100	28,1	18,0	200	37,9	5,9
4	0,70	1,05	25	4,82	21,4	110	29,2	17,0	220	40,7	2,0
5	0,99	-1,26	30	7,2	23,0	120	30,1	16,0	240	43,7	-2,1
6	1,15	0,99	35	9,8	24,0	130	30,9	15,0	260	46,9	6,2
7	1,18	0,32	40	12,4	24,0	140	31,6	14,0	280	50,3	—11,2
8	1,12	0,77	50	17,0	23,0	150	32,4	12,9	300	53,9	
10	0,94	4,01	60	20,7	22,0	160	33,3	11,7	350	65,9	29,0
12	0,77	7,30	70	23,3	21,0	170	34,3	10,4	400	79,5	-42,0
14	0,81	10,5	80	25,2	20,0	180	35,4	9,0			

Сплавы индия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава индия с 50 % таллия [287]

ө, қ	Δ <i>L/L</i> ;%	α · 10 ⁶	ө, К	ΔL/L; %	α · 10°	θ, Κ	Δ <i>L L</i> , %	α • 10 [€]
25	0,621	18,4	100	0,469	21,7	200	0,237	24,5
50	0,573	19,7	150	0,356	23,3	293	0	26,6

Таллий

Линейный коэффициент теплового расширения [119]

θ, Κ	α⊥ • 10°	α · 10•	θ, K	α _⊥ • 10•	α · 10•	θ, Κ	α _⊥ • 10•	α • 10°	θ, Κ	$\alpha_{\rm cp}\cdot 10^6$
2 7 12 20 25 30 40	0,3 1,3 2,5 5,1 8,4 14,2 20,3	1,4 5,3 11,7 17,0 19,0 20,6 22,9	50 60 70 80 100 120 140	21,5 22,1 22,5 22,8 23,2 23,6 24,0	24,6 25,9 26,9 27,7 29,3 30,4 31,4	160 180 200 220 240 260 280	24,4 24,7 25,0 25,3 25,6 25,9 26,2	32,3 33,1 33,9 34,6 35,3 36,0 36,6	300 350 400 450 485	29,6 29,9 30,3 31,0 31,6

Скандий

Линейный коэффициент теплового расширения [119].

θ, Κ	α⊥ • 10°	α • 10°	θ, K	α _⊥ • 10•	α [] • 10°	θ, Κ	α ₁ .10°	α ₁ .10°	θ. K	α ₁ .10°	α · 10°
300	7,61	15,1	550	8,76	15,1	800	9,93	15,4	1050	11,2	16,3
350	7,86	15,1	600	8,99	15,1	850	10,2	15,5	1100	11,4	16,6
400	8,07	15,1	650	9,22	15,1	900	10,4	15,7	1150	11,6	16,9
450	8,30	15,1	700	9,45	15,2	950	10,9	15,9	1200	11,9	17,3
500	8,53	15,1	750	9,69	15,3	1000	10,9	16,1	1250	12,1	17,7

vinnei												
θ. K	α _⊥ .10"	α · 10°	θ , K	α _⊥ • 10°	α • 10°	θ, Κ	α ₁ · 10 ⁶	α · 10 ⁶	θ, Κ	α _⊥ • 10"	α • 10°	
10 15 20 30 40 50 60 70 80 90		0,1 0,2 0,5 2,1 4,2 6,2 8,1 9,8 11,3 12,6	100 110 120 130 140 150 160 170 180 190	2,9 3,2 3,4 3,6 3,8 3,9 4,0 4,1 4,1 4,2	13,7 14,6 15,3 15,9 16,4 16,8 17,2 17,6 17,9 18,2	200 220 240 260 300 350 400 450 500 550	4,3 4,4 4,5 4,6 4,8 5,0 5,2 5,4 5,6	18,4 18,7 19,0 19,2 19,2 19,3 19,4 19,5 19,6 19,7	600 650 700 750 800 850 900 950 1000 1050	5,8 6,0 6,2 6,4 6,7 7,2 7,8 8,5 9,3 10,1	19,7 19,8 19,9 20,0 20,1 20,3 20,7 21,2 21,7 22,3	

Иттрий Линейный коэффициент теплового расширения [119]

Лантаноиды. Лантан

Относительное изменение длины с температурой [233]

0, K	ΔL/L, %	ө, к	Δ <i>L/L</i> ,%	ө, қ	ΔL/L, %	θ, Κ	ΔL/L, %
100	0,08	350	0,03	600	0,10	850	0,33
150	0,06	400	0,06	650	0,16	900	0,39
200	0,04	450	0,09	700	0,18	950	0,45
250	0,02	500	0,13	750	0,23	1000	0,51
293	0	550	0,16	800	0,28	1100	0,63

Линейный коэффициент теплового расширения [119]

θ, Κ	$\alpha_{\rm cp} \cdot 10^{6}$	ө, қ	α _{cp} • 10 ⁶	ө, к	$\alpha_{\rm cp} \cdot 10^6$	θ, Κ	$\alpha_{cp} \cdot 10^{s}$
80 90 100 110 120 130 140	2,2 2,8 3,3 3,6 3,9 4,0 4,1	160 180 200 220 240 260 280	4,2 4,3 4,4 4,5 4,6 4,7 4,8	300 350 400 450 500 650 700	5,0 5,3 5,7 6,2 6,8 8,2 8,9	750 800 850 900 950 1050	9,6 10,3 10.9 11,4 11,8 12,3

Церий

Относительное изменение длины с температурой [233]

0, K	ΔL/L, %	ө, к	ΔL/L, %	θ, Κ	ΔL/L, %	θ, Κ	ΔL/L, %
250	0,02	450	0,11	650	0,25	850	0,40
293	0	500	0,14	700	0,29	900	0,44
350	0,04	550	0,18	750	0,32	950	0,48
400	0,08	600	0,22	800	0,36	1000	0,53

Линейный коэффициент теплового расширения [119]

θ, Κ	α _{cp} · 10 ^s	ө, к	α _{cp} · 10 ⁶	θ, Κ	$\alpha_{\rm cp} \cdot 10^{6}$	θ, Κ	α _{cp} · 10 ⁸
5 10 15 400	4,0 8,6 5,0 6,2	450 500 600 650	6,2 6,2 6,2 6,4	700 750 800 850	6,7 7,1 7,6 8,1	900 950	8,6 9,1

Празеодим

Относительное изменение длины с температурой [233]

θ , K	ΔL/L, %	θ, Κ	ΔL/L, %	θ, Κ	ΔL/L; %	ө, қ	ΔL/L; %
100	$-0,10 \\ -0,08 \\ -0,05 \\ -0,02 \\ 0$	350	0,03	600	0,17	850	0,34
150		400	0,06	650	0,20	900	0,38
200		450	0,08	700	0,23	950	0,42
250		500	0,11	750	0,26	1000	0,46
300		550	0,14	800	0,30	1050	0,52

Линейный коэффициент теплового расширения [119]

θ, Κ	α _{cp} · 10 °	ө, к	$\alpha_{cp} \cdot 10^{6}$	ө, қ	$\alpha_{cp} \cdot 10^{6}$	ө, қ	α _{cp} · 10°
100	6,5	180	5,7	300	5,0	600	5,7
110	6,4	200	5,6	350	5,0	650	6,1
120	6,3	220	5,5	400	5,0	700	6,5
130	6,1	240	5,4	450	5,1	750	6,9
140	6,0	260	5,3	500	5,2	800	7,3
160	5,8	280	5,2	550	5,4	850	7,8

Неодим

Относительное изменение длины с температурой [233]

0, K	ΔL/L, %	ө, к	Δ <i>L/L</i> , %	ө, қ	Δ <i>L/L</i> ; %	Θ, Κ	ΔL/L, %
100 150 200 250 300	0,12 0,10 0,06 0,04 0	350 400 450 500 550	0,03 0,07 0,11 0,14 0,18	600 650 700 750 800	0,22 0,26 0,30 0,34 0,38	850 950 1050 1150	0,43 0,53 0,64 0,76

ө, қ	$\alpha_{\rm cp} \cdot 10^{\rm s}$	ө, к	α _{cp} · 10 °	ө, к	α _{cp} • 10 ⁶	Θ,Κ	$\alpha_{cp} \cdot 10^6$
10 15 100 120 130 140 160 180	2,9 2,9 7,8 7,7 7,6 7,3 7,1	200 220 240 260 280 300 350 400	7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0	450 500 550 600 650 700 750 800	7,1 7,2 7,4 7,6 7,9 8,2 8,5 8,9	850 900 950 1000 1050 1100	9,3 9,8 10,5 11,3 12,4 13,4

Линейный коэффициент теплового расширения [119]

Прометий

 $\alpha \simeq 9,0 \cdot 10^{-6} \, \text{K}^{-1}$ при 300 К (оценочное значение) [119]

Самарий

 $\alpha_{cp} = 10,4 \cdot 10^{-6} \text{ K}^{-1}$ при 300 К [119]

Европий

Линейный коэффициент теплового расширения [119]

Θ, Κ	α·10 ⁶	Θ, Κ	α · 10 ⁶	ө, к	α · 10 ⁶
300 350 400	34,2 29,6 25,7	450 500	22,6 20 , 5	550 600	19,4 19,4

Гадолиний

ө, қ	ΔL/L; %	ө, к	ΔL/L;%	Θ, Κ	ΔL/L; %	Θ, Κ	ΔL/L, %
50	0,04	350	0,01	650	0,27	950	0,56
100	0	400	0,05	700	0,32	1000	0,62
150	0,02	450	0,10	750	0,38	1050	0,68
200	0,025	500	0,14	800	0,41	1100	0,74
250	0,02	550	0,19	850	0,46	1150	0,81
300	0	600	0,21	900	0,50	1200	0,88

0 , K	$\alpha_{cp} \cdot 10^{6}$	θ, Κ	$\alpha_{\perp} \cdot 10^{6}$	α _∥ •10°	ө, к	α _{cp} · 10 ⁶
100 200 400 450 500 550	5 6,6 7,3 7,8 8,2	600 650 700 750 800 850	6,3 6,3 6,4 6,7 7,3 8,0	12,5 12,7 13,0 13,1 13,1 13,0	900 950 1000 1050 1100 1150	10,3 11,0 11,9 13,2 14,6 16,1

Линейный коэффициент теплового расширения [119]

Тербий

Относительное изменение длины с температурой [233]

ө, к	ΔL/L; %	Θ, Κ	ΔL/L, %	ө, к	ΔL/L, %	θ, Κ	Δ <i>L/L</i> , %
100 150 200 250	0,03 0 0,02 0,06	300 400 500 600	0 0,08 0,16 0,25	700 800 900 1000	0,35 0,47 0,65 0,74	1100 1200	0,90 1,05

Линейный коэффициент теплового расширения [119]

ө, қ	$\alpha_{\rm cp} \cdot 10^6$	ө, қ	α _{cp} · 10 ^e	ө, қ	α _{cp} 10 ⁶	ө, қ	$\alpha_{cp} \cdot 10^{6}$
300	7,0	450	9,1	600	10,0	750	10,8
350	8,0	500	9,5	650	10,2	800	11,1
400	8,6	550	9,8	700	10,5	850	11,5

Диспрозий

0 , K	ΔL/L, %	ө, к	$\Delta L/L$, %	ө, қ	Δ <i>L/L</i> ,%	ө, қ	Δ <i>L/L</i> ,%
100	-0,10	400	0,09	700	0,40	1000	0,80
200	0,07	500	0,18	800	0,53	1100	0,95
300	0	600	0,30	900	0,65	1200	1,10

0 , K	αcp • 10*	θ, Κ	α _{cp} · 10 ⁶	ө, к	α _{cp} • 10 ⁸	ө, к	$\alpha_{cp} \cdot 10^{\circ}$
200 220 240 260	7,3 7,4 7,5 7,6	280 300 450 500	7,7 7,9 10,0 10,5	550 600 650 700	10,8 11,1 11,3 11,6	750 800	11,9 12,2

Линейный коэффициент теплового расширения [119]

Сплав диспрозия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава диспрозия с 1 % тантала [287]

θ, Κ	Δ <i>L/L</i> , %	α • 10 ⁶	ө, К	Δ <i>L/L,</i> %	α • 10 ⁶	θ, Κ	ΔL/L, %	α • 10°	θ, K	ΔL/L, %	α • 10°
293 400 500	0 0,098 0,199	8,7 9,6 10,4	600 700 800	0,307 0,424 0,548	11,3 12,0 12,7	900 1000 1100	0,679 0,816 0,959	13 ,4 14,1 14,7	1200 1250	1,108 1,183	15,2 15,4

Гольмий

Линейный коэффициент теплового расширения [119]

ө, К	∞⊥ • 10°	α ₁ .10	θ, Κ	α • 10°	α • 10°	θ, K	∝⊥ • 10°	α∥•10 [€]	θ, K	α _⊥ • 10°	α • 10°
60 90 100 110 120	42 32 25 20	100 70 	140 160 200 300 400	8 6 5	6 9 13 15,8	500 550 600 650 700	5,0 5,0 5,1	16,8 17,3 17,8 18,3 18,8	750 800 850 900 950	5,2 5,4 5,8 6,3 7,0	19,3 19,9 20,5 21,2 22,2

Эрбий

ө, қ	ΔL/L, %	θ, Κ	ΔL/L; %	θ, Κ	ΔL/L, %	0 , K	ΔL/L, %
100	-0,17	400	0,10	700	0,43	1000	0,80
200	-0,08	500	0,21	800	0,54	1100	0,97
300	0	600	0,32	900	0,65	1200	1,15

ө, қ	α _{cp} • 10 ^e	ө, к	α _{cp} • 10°	θ, Κ	$\alpha_{cp} \cdot 10^{6}$	ө, қ	$\alpha_{cp} \cdot 10^{a}$
100	7,1	220	9,1	500	10,3	900	13,0
110	7,6	240	9,2	550	10,5	950	14,0
120	8,0	260	9,3	600	10,7	1000	15,2
130	8,2	280	9,4	650	10,9	1050	16,5
140	8,4	300	9,5	700	11,1	1100	17,8
160	8,6	350	9,7	750	11,4		
180	8,8	400	9,9	800	11,8		
200	9,0	450	10,1	850	12,3		

Линейный коэффициент теплового расширения [119]

Тулий

.

Линейный коэффициент теплового расширения [119]

θ, Κ	α _⊥ • 10 ⁸	α _∥ • 10°	θ, Κ	α ₁ · 10°	α ·10 ^e
400	12	20	1000	13	21
600	12	20	1050	14	22
900	12	20			

Иттербий

Линейный коэффициент теплового расширения [119]

ө, қ	α · 106	ө, қ	α•10°	ө, қ	α•10 ⁸	ө, қ	α · 10 ⁶
5	1,7	450	26,3	600	29,1	750	32,4
10	12,3	500	27,0	650	30,5	800	33,1
400	25,7	550	27,9	700	31,6	850	33,7

Лютеций

9 , K	$\alpha_{\perp} \cdot 10^{\circ}$	αµ.10°	ө, К	$\alpha_{\perp} \cdot 10^{6}$	α · 10°	θ, Κ	α _⊥ • 10°	α · 10 ⁶	ө, К	$\alpha_{\perp} \cdot 10^{6}$	α ·10°
5 10 15 20 30 40 50 60 70	0,3 0,6 0,9 1,3 2,0 2,7 3,5 4,5 5,3	1,3 2,5 3,8 5,0 7,4 9,6 11,5 13,3 14,7	80 90 100 110 120 140 160 180 200	6,1 6,7 7,3 7,6 7,9 8,0 7,3 6,6 6,2	16,0 17,0 17,5 17,8 17,9 18,0 18,0 18,0 18,1	220 240 260 280 300 350 400 450 500	6,1 6,0 5,9 5,8 5,3 5,0 6,0 7,0	18,4 18,9 19,4 19,9 20,0 19,8 19,1 18,1 17,0	550 600 650 700 750 800 850 900 1000	8,0 9,0 10,0 11,0 12,0 12,0 12,0 12,0 12,0	 17,0 17, 0 18, 0

Линейный коэффициент теплового расширения [119]

Актиноиды. Актиний

 $\alpha \simeq 14,9 \cdot 10^{-6} \text{ K}^{-1}$ при 300 К (оценочное значение) [119]

Торий

Относительное изменение длины с температурой [233]

ө, қ	Δ <i>L/L</i> ,%	ө, к	$\Delta L/L$, %	ө, қ	ΔL/L, %	ө, қ	ΔL/L, %
50 100 200 300	-0,23 -0,20 -0,10 0	400 500 600 700	0,12 0,24 0,36 0,48	800 900 1000 1100	0,60 0,72 0,85 0,98	1200 1300	1,11 1,25

Линейный коэффициент теплового расширения [119]

ө, қ	α·10 ⁶	ө, к	α · 10 ⁶	ө, қ	α • 10°	ө, қ	α • 10°
70	7,7	150	9,9	300	11,2	600	13,7
80	8,2	160	10,0	350	11,8	650	14,0
90	8,7	180	10,2	400	12,3	700	14,3
100	9,0	200	10,3	450	12,7	750	14,6
120	9,4	220	10,5	500	13,1	800	14,8
140	9,8	260	10,8	550	13,4	850	15,0

Протактиний

 $\overline{\alpha}_{\perp} = 21,4 \cdot 10^{-6} \text{ K}^{-1}, \ \overline{\alpha}_{\parallel} = 4,4 \cdot 10^{-6} \text{ K}^{-1}$ в диапазоне 291—810 К; $\overline{\alpha}_{\perp} = 85,0 \cdot 10^{-6} \text{ K}^{-1}, \ \overline{\alpha}_{\parallel} = -21,7 \cdot 10^{-6} \text{ K}^{-1}$ в диапазоне 810—1338 К [119].

Уран

Относительное изменение длины с температурой [233]

ө, қ	Δ <i>L/L</i> ;%	ө, қ	ΔL/L, %	ө, к	$\Delta L/L, \%$	θ, Κ	Δ <i>L/L</i> , %
50	0,25	400	0,16	800	0,90	1100	2,08
100	0,20	500	0,33	900	1,10	1200	2,30
200	0,12	600	0,52	930	1,14	1300	2,50
300	0	700	0,70	980	1,64	1400	2,70

Линейный коэффициент теплового расширения [119]

Θ, Κ	$\alpha_1 \cdot 10^{\mathfrak{s}}$	$\alpha_2 \cdot 10^{6}$	α₃ • 10°	ө, к	$\alpha_1 \cdot 10^{s}$	$\alpha_2 \cdot 10^6$	α ₃ · 10 ⁶
36 90 150 200 300 350 400 450		28,2 2,9 2,2 1,6 0,4 0,2 0,8 1,6	52,1 10,9 13,0 15,0 18,0 19,8 21,6 23,6	500 550 600 650 700 750 800 900	30,2 32,6 35,1 37,6 40,2 43,2 46,6 54,7	$\begin{array}{r}2,5 \\3,8 \\5,6 \\7,8 \\ -10,5 \\ -13,7 \\ -17,2 \\25,0 \end{array}$	25,8 28,2 30,7 33,3 35,9 38,7 41,6 47,2

 $\overline{\alpha}_{\perp} = 22,6 \cdot 10^{-6} \text{ K}^{-1}, \ \overline{\alpha}_{\parallel} = 5,46 \cdot 10^{-6} \text{ K}^{-1}$ в температурном диапазоне существования бета-урана; $\overline{\alpha} = 21,49 \cdot 10^{-6} \text{ K}^{-1}$ в температурном диапазоне существования альфа-урана [119].

Сплавы урана

Относительное изменение длины с температурой сплава урана с 5,2 % хрома [233]

θ, Κ	ΔL/L; %	θ, Κ	ΔL/L, %	ө, к	ΔL/L, %	ө, қ	ΔL/L, %
300	0	600	0,47	940	1,15	1040	1,65
400	0,19	700	0,66	950	1,150	1050	1,85
500	0,31	800	0,83	1000	1,60	1100	1,92

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов урана с молибденом [287]

ө, к	<u>Δ<i>L</i></u> / <i>L</i> , % Содер	α • 10 ^в эжание	Δ <i>L/L</i> , %	α·10 ⁶ 1a, %	ө, қ	Δ <i>L/L</i> , % Содер	α · 10 ^в жание п	Δ <i>L/L</i> , % молибден	α·10 ⁶ Ha, %
	E	5	1	2			5	1	2
293	0	13,2	0	12,4	900			0,882	16,7
400	0,145	14,2	0,137	13,1	950	1,312	20,2	0,968	17,1
500	0,292	15,1	0,272	13,8	1000	1,414	20,5	1,055	17,5
600	0,446	16,0	0,414	14,6	1100	1,623	20,8	1,233	18,3
700	0,611	17,0	0,562	15,3	1200	1,832	20,9	1,420	19,1
800		_	0,718	16,0					

Сплав урана с 29 % марганца: $\Delta L/L = 0,41$ % в диапазоне 293 — 470 K [233]; с 20 % плутония, 4 % рутения: $\Delta L/L = 0,73$ % в диапазоне 293 — 770 K [233]; с 20 % плутония, 5 % молибдена: $\Delta L/L = 0,96$ % в диапазоне 293 — 770 K [287].

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов урана с цирконием [287]

θ, Κ	Δ <i>L/L</i> , %	α • 10 ³ центрац	Δ <i>L/L</i> , %	α · 10 ^s ония, %	ө, қ	Δ <i>L/L</i> , % при кон	α • 10 ⁶ центрац	Δ <i>L/L</i> , %	α•10 ⁸ ония, %
	1	0	2	0		1	0	2	20
293	0	13,2	0	9,8	800	0,799	21,2	0,681	19,9
400	0,142	13,5	0,107	10,5	900	1,027	24,7	0,899	24,1
500	0,281	14,7	0,219	11,9	1000	1,725	22,5	1,300	18,7
600	0,433	16,0	0,349	13,9	1100	1,950	22,5	1,487	18,7
700	0,603	18,2	0,500	16,6	1200	2,175	22,5	1,674	18,7

Нептуний

 $α_1 = 24,0 \cdot 10^{-6} \text{ K}^{-1}, α_2 = 25,0 \cdot 10^{-6} \text{ K}^{-1}, α_3 = 34,0 \cdot 10^{-6} \text{ K}^{-1}$ при 400 K $α_1 = 64,0 \cdot 10^{-6} \text{ K}^{-1}, α_2 = 64,0 \cdot 10^{-6} \text{ K}^{-1}, α_3 = 0$ при 650 K [119].

Плутоний

Линейный коэффициент теплового расширения модификаций [160]

Тип кристаллической решетки	ө, қ	$\overline{\alpha} \cdot 10^6$
Моноклинная Моноклинная объемно-центрированная Ромбическая гранецентрированная* Кубическая гранецентрированная Тетрагональная объемно-центрированная** Кубическая объемно-центрированная	87—373 406—470 483—583 593—713 735—758 772—823	$\begin{array}{r} 46,8\\ 33,86\\ 34,7\\ 8,6\\ (-16\pm28)\\ 36,5\end{array}$

* Вдоль осей α = -19,7 · 10⁶; 39,5 · 10⁻⁶; 84,3 · 10⁻⁶ K⁻¹.

** Вдоль осей α = 305 · 10-6; -659 · 10-6 К-1.

Сплав плутония

Объемный коэффициент теплового расширения сплава плутония с 2,25 % железа [160]

ө, қ	β·10•	ө, қ	<u>β</u> • 10 [€]
273—383	112	495—569	76
410—470	89	602—673	138

Объемный коэффициент теплового расширения сплава плутония с 2,36 % железа [160]

θ, Κ	β·10⁰	ө, қ	β • 10 ^e
411 498	133 137	601	. 65

Америций

 $\alpha_{\perp} = 7,5 \cdot 10^{-6}$ K⁻¹, $\alpha_{\parallel} = 6,2 \cdot 10^{-6}$ K⁻¹ при 300 K [119, 163]; $\overline{\alpha} = 9,0 \cdot 10^{-6}$ K⁻¹ в диапазоне существования высокотемпературной модификации [119].

IV группа периодической системы элементов

Титан

ө, қ	$\left \begin{array}{c} \frac{\Delta L}{L} \cdot \% \end{array} \right $	ө, қ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %	0 , K	$\frac{\Delta L}{L}$, %
5	0,16	293	0	700	0,36	1100	0,75
50	0,15	400	0,10	800	0,46	1150	0,90
100	0,13	500	0,19	900	0,55	1200	0,97
200	0,07	600	0,28	1000	0,65	1250	8,03

ө, к	α _{cp} ·10 ⁶	ө, қ	α _{cp} · 10 ⁶	Ө, К	α _{cp} ·10 ⁶	ө, к	α _{cp} .10 ⁶
1 2 3 4 5 10 15 20 30 40 50 60	0,0048 0,0098 0,0153 0,0212 0,0280 0,058 0,076 0,105 0,40 0,85 1,48 2,25	70 80 90 100 110 120 130 140 150 160 170 180	2,93 3,58 4,09 4,54 4,93 5,30 5,63 5,95 6,21 6,46 6,66 6,88	190 200 220 240 260 280 300 350 400 450 550	7,07 7,27 7,58 7,81 8,01 8,19 8,40 8,56 8,82 9,08 9,34 9,60	600 650 700 750 800 850 900 950 1000 1150 1200 1250	9,86 10,12 10,39 10,67 10,96 11,25 11,54 11,84 12,08 11,91 11,95 12,0

Линейный коэффициент теплового расширения [119, 120]

Сплавы титана

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава титана с 10 % алюминия [287]

0, K	$\Delta L/L$, %	α·10 ⁶	ө, к	ΔL/L, %	α·10 ⁶
293	0	11,6	500	0,278	14,4
400	0,137	13,7	550	0,350	14,7

Относительное изменение длины с температурой сплава титана с 6 % германия [233]

θ, Κ	ΔL/L, %	ө, қ	$\Delta L/L$, %	ө, к	ΔL/L, %
293	0	600	0,25	900	0,53
400	0,07	700	0,35	1000	0,65
500	0,16	800	0,43	1100	0,77

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов титана с цирконием [287]

- v	$\Delta L/L, \%$	α.10 ⁶	$\Delta L/L, \%$	α·10 ⁶		$\Delta L/L, \%$		$\Delta L/L, \%$	α.10
θ, Κ	2Ò	центрац	50		0, K	20		50	
293 400 500 600	0 0,091 0,180 0,272	8,3 8,8 9,0 9,2	0 0,081 0,166 0,254	7,1 8,1 8,6 8,9	700 800 900 1000	0,368 0,466 0,568 0,670	9,7 10,1 10,3 10,4	0,343 0,434 0,525 0,620	9,0 9,2 9,3 9,4

Относительное изменение длины с температурой сплавов титана с 10—50 % ванадия [233]

ө, к	ΔL/L, %	ө, қ	$\Delta L/L$, %	ө, к	Δ <i>L/L</i> , %	ө, қ	ΔL/L; %
293	0	500	0,18	700	0,38	900	0,60
400	0,08	600	0,28	800	0,49	1000	0,70

Относительное изменение длины с температурой сплава титана с 28 % хрома [287]

ө, қ	$\Delta L/L$, %	ө, к	ΔL/L, %	ө, к	Δ <i>L/L</i> , %
309	0,011	704	0,427	1035	0,974
421	0,109	812	0,543	1143	1,122
589	0,285	923	0,734	1255	1,224

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава титана с 2 % молибдена [287]

ө, қ	ΔL/L, %	α·10 ⁶	ө, қ	$\Delta L/L$, %	α·10 ⁶	ө, қ	Δ <i>L/L</i> , %	α·10 ⁸
293 400 500 600	0 0,089 0,180 0,278	7,8 8,7 9,5 10,1	700 800 900 1000	0,382 0,491 0,604 0,721	10,7 11,1 11,5 11,8	1200 1300	0,960 1,080	12,1 12,1

Относительное изменение длины с температурой сплава титана с 3,8 % алюминия, 3,8 % марганца [233]

ө, к	ΔL/L, %	ө, к	ΔL/L, %	ө, к	Δ <i>L/L</i> ,%
70	-0,16	150	0,12	250	-0,05
100	-0,15	200	0,08	293	0

Относительное изменение длины с температурой сплава титана с 2,7 % хрома, 1,3 % железа [233]

0 , K	ΔL/L, %	ө, к	ΔL/L, %	ө, қ	$\Delta L/L_i$ %
60 120 160	-0,22 -0,18 -0,15	190 240	0,12 0,08	270 293	-0,03 0

Линейный коэффициент теплового расширения промышленных титановых сплавов при 293 К [27, 160]

BT1, BT1-1 <0,1 углерода, <0,3 железа, <0,15 крем- ния, <0,15 кислорода 8,0 BT3 16 алюминия, 2-3 хрома 8,4 BT3-1 4,56,2 алюминия, 1,02,5 хрома 8,9 BT4 3,55 алюминия, 0,82,0 марганца 8,5 BT5-1 5 алюминия, 2,5 олова 8,0 BT6 4,56,5 алюминия, 3,54,5 ванадия 8,4 BT8 5,86,8 алюминия, 2,83,8 молибдена 8,4 BT14 4 алюминия, 3 молибдена, 1 ванадия 8,6 BT15 3 алюминия, 7,5 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 1 ванадия 8,0 BT15 3 алюминия, 8 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 1 ванадия 9,1 BT16 2,5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 9,2 BT22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа BT23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома OT3 13 алюминия, 0.82 марганца 8,3	Марка	Концентрация легирующих элементов, %	α·10 ^e
BT3 1—6 алюминия, 2—3 хрома 8,4 BT3-1 4,5—6,2 алюминия, 1,0—2,5 хрома 8,9 BT4 3,5—5 алюминия, 1,0—2,5 хрома 8,9 BT4 3,5—5 алюминия, 0,8—2,0 марганца 8,5 BT5-1 5 алюминия, 2,5 олова 8,0 BT6 4,5—6,5 алюминия, 3,5—4,5 ванадия 8,4 BT8 5,8—6,8 алюминия, 2,8—3,8 молибдена 8,4 BT14 4 алюминия, 3 молибдена, 1 ванадия 8,0 BT15 3 алюминия, 8 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 1 ванадия 8,0 BT15 3 алюминия, 7,5 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 1 крома 9,1 BT16 2,5 алюминия, 7,5 молибдена, 4,5 ванадия, 9,2 9,2 BT22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа BT23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома OT3 1—3 алюминия, 0.8—2 марганца 8,3	BT1, BT1-1	<0,1 углерода, <0,3 железа, <0,15 крем-	8,0
BT3-1 4,5—6,2 алюминия, 1,0—2,5 хрома 8,9 BT4 3,5—5 алюминия, 0,8—2,0 марганца 8,5 BT5-1 5 алюминия, 2,5 олова 8,0 BT6 4,5—6,5 алюминия, 3,5—4,5 ванадия 8,4 BT8 5,8—6,8 алюминия, 2,8—3,8 молибдена 8,4 BT15 3 алюминия, 3 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 3 молибдена, 1 ванадия 8,0 BT15 3 алюминия, 3 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 1 хрома 9,1 BT16 2,5 алюминия, 4,5 молибдена, 1,1 хрома 9,2 BT22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа BT23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома OT3 1—3 алюминия, 0.8—2 марганца 8,3	BT3	1-6 алюминия $2-3$ хрона	9.4
BT4 3,5—5 алюминия, 0,8—2,0 марганца 8,5 BT5-1 5 алюминия, 0,8—2,0 марганца 8,6 BT5<1	BT3-1	4.5-6.2 алюминия $1.0-2.5$ хрома	8 Q
BT5-1 5 алюминия, 2,5 олова 8,0 BT6 4,5—6,5 алюминия, 3,5—4,5 ванадия 8,4 BT8 5,8—6,8 алюминия, 2,8—3,8 молибдена 8,4 BT14 4 алюминия, 3 молибдена, 1 ванадия 8,0 BT15 3 алюминия, 8 молибдена, 1 ванадия 8,0 BT16 2,5 алюминия, 7,5 молибдена, 11 хрома 9,1 BT16 2,5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа BT23 4,5 алюминия, 2,5 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома OT3 1—3 алюминия, 0.8—2 марганца 8,3	BT4	35-5 алюминия $08-20$ марганиа	85
ВТ6 4,5—6,5 алюминия, 3,5—4,5 ванадия 8,4 ВТ8 5,8—6,8 алюминия, 2,8—3,8 молибдена 8,4 ВТ14 4 алюминия, 3 молибдена, 1 ванадия 8,0 ВТ15 3 алюминия, 8 молибдена, 11 хрома 9,1 ВТ16 2,5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 9,2 ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома ОТ3 1—3 алюминия, 0.8—2 марганца 8,3	BT5-1	5 алюминия. 2.5 одова	8.0
ВТ8 5,8—6,8 алюминия, 2,8—3,8 молибдена 8,4 ВТ14 4 алюминия, 3 молибдена, 1 ванадия 8,0 ВТ15 3 алюминия, 8 молибдена, 1 ванадия 8,0 ВТ15 3 алюминия, 7,5 молибдена, 11 хрома 9,1 ВТ16 2,5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа 8,8 0,6 железа ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа 1—3 алюминия, 0.8—2 марганца 8,3	BT6	4.5-6.5 алюминия. 3.5-4.5 ваналия	8.4
ВТ14 4 алюминия, 3 молибдена, 1 ванадия 8,0 ВТ15 3 алюминия, 8 молибдена, 11 хрома 9,1 ВТ16 2,5 алюминия, 7,5 молибдена 9,2 ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 9,2 ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома ОТ3 1—3 алюминия, 0.8—2 марганца 8,3	BT8	5.8—6.8 алюминия, 2.8—3.8 молиблена	8.4
ВТ15 Залюминия, 8 молибдена, 11 хрома 9,1 ВТ16 2,5 алюминия, 7,5 молибдена 9,2 ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома ОТ3 1—3 алюминия, 0.8—2 марганца 8,3	BT14	4 алюминия. З молибдена. 1 ваналия	8.0
ВТ16 2,5 алюминия, 7,5 молибдена 9,2 ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 6,6 железа, 1 хрома ОТ3 1—3 алюминия, 0.8—2 марганца 8,3	BT15	З алюминия, 8 молибдена, 11 хрома	9.1
ВТ22 5 алюминия, 4,5 молибдена, 4,5 ванадия, 9,2 1 хрома, 1 железа 1 хрома, 1 железа ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома 0,6 железа, 1 хрома ОТЗ 1—3 алюминия, 0.8—2 марганца 8,3	BT16	2,5 алюминия, 7,5 молибдена	9.2
1 хрома, 1 железа BT23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома 0,6 железа, 1 хрома ОТЗ 1—3 алюминия, 0.8—2 марганца 8,3	BT22	5 алюминия, 4,5 молибдена, 4,5 ванадия,	9,2
ВТ23 4,5 алюминия, 2 молибдена, 4,5 ванадия, 8,8 0,6 железа, 1 хрома ОТ3 1—3 алюминия, 0.8—2 марганца 8,3		1 хрома, 1 железа	
0,6 железа, 1 хрома ОТЗ 1—3 алюминия, 0.8—2 марганца 8.3	BT23	4,5 алюминия, 2 молибдена, 4,5 ванадия,	8,8
ОТЗ 1—3 алюминия, 0.8—2 марганца 8.3		0,6 железа, 1 хрома	
	OT3	1—3 алюминия, 0,8—2 марганца	8,3
ОТ4 3 алюминия, 1,5 марганца 8,1	OT4	З алюминия, 1,5 марганца	8,1

⁵Цирконий

Линейный коэффициент теплового расширения [119]

$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0, K	α _{cp} ·10 ⁶	ө, к	α _{cp} • 10 ⁶	ө, қ	α _⊥ •10 ⁸	α ∙10°	ө, қ	$\alpha_{\perp} \cdot 10^{\circ}$	α _! ∙10 ^e
50 1,90 140 5,90 300 4,99 7,36 900 5,14 11,82 60 2,45 150 6,17 350 5,05 7,78 1000 5,05 13,83 70 2,95 160 6,42 400 5,09 8,20 1100 5,05 14,87	10 12 16 20 30 40 50 60 70	0,018 0,037 0,11 0,25 0,75 1,30 1,90 2,45 2,95	80 90 100 110 120 130 140 150 160	3,39 3,77 4,09 4,36 4,58 4,61 5,90 6,17 6,42	180 200 220 240 260 280 300 350 400	4,85 4,97 4,93 4,95 4,97 4,99 5,05 5,09	5,40 6,55 6,70 6,86 7,02 7,19 7,36 7,78 8,20	450 500 550 600 700 800 900 1000 1100	5,13 5,16 5,18 5,20 5,21 5,19 5,14 5,05 5,05	8,63 9,07 9,52 9,97 10,89 11,84 11,82 13,83 14,87

Сплавы циркония

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов циркония с титаном [287]

ө, к	$\Delta L/L, \% \alpha \cdot 10^{\circ} \Delta L/L, \% \alpha \cdot 10^{\circ}$ при концентрации титана, %				ө, к	ΔL/L, % α.10° ΔL/L, % α.10° при концентрации титана, %			
	6-	6-12 25			6—12		25		
293 400 500 600	0 0,062 0,127 0,197	5,5 6,1 6,7 7,2	0 0,073 0,143 0,216	6,8 6,9 7,1 7,4	700 800 900 1000	0,271 0,347 0,424 0,500	7,6 7,7 7,8 7,8	0,290 0,367 0,446 0,524	7,6 7,7 7,9 7,9

Относительное изменение длины с температурой сплавов циркония с оловом [233]

0 , K	$\Delta L/L$,	%,	0, K	ΔL/L, %, при концентрации олова, %		
	при концентрац	ции олова, %				
	1	7		1	7	
293 300 400 500	0 0,01 0,07 0,14	0 0,01 0,08 0,16	600 700 800	0,20 0,27 0,36	0,23 0,30 0,40	

Гафний

Относительное изменение длины с температурой [233]

ө, к	Δ <i>L/L</i> , %	ө, к	$\Delta L/L$, %	ө, к	$\Delta L/L$, %	ө, к	ΔL/L, %
100	$-0,12 \\ -0,05 \\ 0$	400	0,07	700	0,24	1000	0,42
200		500	0,12	800	0,30	1100	0,48
300		600	0,18	900	0,36	1200	0,54

 $\tilde{\alpha} = 6,0 \cdot 10^{-6} \text{ K}^{-1}$ в диапазоне 273—373 К; $\tilde{\alpha_{\perp}} = 9,8 \cdot 10^{-6} \text{ K}^{-1}$, $\tilde{\alpha_{\parallel}} = 11,6 \cdot 10^{-6} \text{ K}^{-1}$ в диапазоне 1673—2220 К [119].

Сплав гафния

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава гафния с 2 % циркония [287]

ө, к	$\Delta L/L$, %	α•10 ⁶	ө, қ	Δ <i>L/L</i> ,%	α•10 ⁶	ө, қ	ΔL/L, %	α•10 ⁶
293 400 500 600 700	0 0,086 0,171 0,260 0,352	7,9 8,3 8,6 9,1 9,4	800 900 1000 1200 1400	0,448 0,548 0,650 0,801 1,081	9,7 10,0 10,3 10,8 11,3	1600 1800 2000	1,308 1,538 1,767	11,4 11,5 11,5

Олово

Линейный коэффициент теплового расширения альфа-олова [119]

θ, Κ	α·10°	ө, к	α·10 ^e	ө, к	α·10 ⁶	ө, к	α·10 ⁶
30	0,82	70	1,92	120	4,22	170	5,06
35	0,63	80	2,50	130	4,50	180	5,11
40	0,37	90	3,02	140	4,72	190	5,15
50	0,38	100	3,48	150	4,88	200	5,18
60	1,25	110	3,88	160	4,99	220	5,21

Линейный коэффициент теплового расширения бета-олова [119]

θ, K	$\alpha_{\perp} \cdot 10^{6}$	α .10°	θ,Κ	$\alpha_{\perp} \cdot 10^{6}$	$\alpha_{ } \cdot 10^{\circ}$	ө, к	$\alpha_{\perp} \cdot 10^6$	α .10 ⁶	ө, к	α⊥.10°	α .10°
4 6 8 10 15 20 25 30 40	$\begin{array}{r} -0,01 \\ -0,04 \\ -0,07 \\ -0,10 \\ -0,15 \\ -0,04 \\ 0,43 \\ 1,2 \\ 3,0 \end{array}$	0,08 0,28 0,84 1,65 4,75 8,4 11,5 13,7 16,5	50 60 70 80 90 100 110 120 130	4,9 6,9 8,6 10,1 11,1 11,8 12,3 12,7 13,1	18,5 20,0 21,1 21,9 22,6 23,2 23,7 24,1 24,4	140 150 160 170 180 190 200 220 240	13,4 13,7 14,0 14,2 14,4 14,6 14,8 15,2 15,4	24,7 25,0 25,3 25,6 25,9 26,2 26,5 27,2 28,0	260 280 300 350 400 450 500	15,7 15,9 16,0 17,4 18,6 19,6 20,3	29,0 30,2 31,4 34,3 39,7 39,7 41,4

Сплавы олова

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава олова с 45 % магния [287]

Θ, Κ	$\Delta L/L$;%	α·10*	ө, к	$\Delta L/L$; %	α·10 ⁶
293 400 500	0 0,213 0,413	20 20 20	600 650	0,612 0,712	20 20

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава олова с 20 % свинца [287]

θ, Κ	ΔL/L; %	a.108
293	0	24
350	0,137	24
400	0,257	24

Свинец

Линейный коэффициент теплового расширения [119]

ө, қ	α•10 ⁶	ө, к	α•10 ⁶	ө, к	α•10 ⁸	ө, к	α·10 ⁶
4 6 8 10 12 14 15 20 25 30	0,11 0,48 1,44 3,02 4,20 5,72 6,63 11,0 14,7 17,0	35 40 50 60 70 80 90 100 110 120	18,7 19,9 21,8 23,2 24,1 24,7 25,1 25,4 25,7 25,9	130 140 150 160 170 180 190 200 220 240	26,2 26,4 26,6 26,7 26,9 27,1 27,2 27,3 27,6 27,8	260 280 300 350 400 450 500 550	28,1 28,3 28,5 28,99 29,63 30,48 31,73 33,30

Сплавы свинца

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава свинца с 50 % кадмия [287]

θ, Κ	ΔL/L, %	α•10 ⁸
293	0	29,2
350	0,172	31,0
400	0,330	32,6

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов свинца с оловом [287]

	$\Delta L/L$, %	α·10 ⁸	$\Delta L/L$, %	α·10 ⁸				
θ, Κ	при концентрации олова, %							
	30		50					
293 350 400	0 0,155 0,290	27 27 27	0 0,147 0,278	26 26 26				

Линейный коэффициент теплового расширения сплавов свинца с сурьмой при 293 К [160]

Концентра- ция сурьмы, %	α•10 ⁶	Концентра- ция сурьмы, %	α•10°	Концентра- ция сурьмы, %	α·10 ⁸
1	28,8	6	27,2	11	25,8
2	28,4	7	27,0	12	25,6
3	28,1	8	26,7	13	25,3
4	27,8	9	26,4	14	25,1
5	27,5	10	26,1	15	24,8

V группа периодической системы элементов

Ванадий

ө, қ	ΔL/L; %	ө, к	ΔL/L, %	ө, қ	ΔL/L, %
50 100	0,14 0,13	150 200	0,10 0,08	250 300	0, 0 5 0

ө, к	α·10*	ө, к	α·10 ⁶	ө, к	α•10 ⁶	0, K	α•10 ⁶
6	0,025	40	0,68	160	6,62	600	9,8
7	0,028	50	1,13	170	6,92	700	10,2
8	0,034	60	1,63	180	7,17	800	10,7
9	0,039	70	2,18	190	7,36	900	11.2
10	0,045	80	2,79	200	7,49	1000	11.7
12	0.057	90	3,39	220	7.65	1100	12.2
14	0,072	100	3,95	240	7,71	1200	12,7
16	0,089	110	4,48	260	7,76	1300	13,2
18	0.11	120	4,98	280	7.80	1400	13,7
20	0.13	130	5,45	300	7.84	1500	14.2
25	0.21	140	5,88	400	8.5		, –
30	0,35	150	6,27	500	9,3		

Линейный коэффициент теплового расширения [119]

Сплавы ванадия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава ванадия с 20 % титана [287]

θ, Κ	Δ <i>L/L</i> ;%	æ•10°	ө, к	ΔL/L, %	a•10°	ө, к	$\Delta L/L; \%$	α·10°
293	0	10,2	700	0,432	11,0	1200	1,017	12,5
400	0,111	10,4	800	0,543	11,3	1400	1,276	13,4
500	0,216	10,6	900	0,667	11,5	1600	1,563	14,4
600	0,323	10,8	1000	0,774	11,8	1800	1,854	15,7

Линейный коэффициент теплового расширения и относительное изменение длины с тем пературой сплава ванадия с 40 % молибдена [287]

0 , K	ΔL/L;%	α•10 ^e	θ, Κ	Δ <i>L/L</i> ;%	α•10•	0 , K	Δ <i>L/L</i> ,%	α·10 ⁶
293	0	8,2	600	0,275	9,3	900	0,554	9,3
400	0,091	8,9	700	0,369	9,3	1000	0,646	9,3
500	0,183	9,2	800	0,462	9,3	1100	0,739	9,3

Ниобий

0 , K	ΔL/L, %	ө, к	ΔL/L; %	ө, қ	ΔL/L; %	ө, к	ΔL/L; %
70 100 200 300 400 500 600	$\begin{array}{c} -0,16\\ -0,15\\ -0,06\\ 0\\ 0,08\\ 0,16\\ 0,24 \end{array}$	700 800 900 1000 1100 1200 1300	0,32 0,40 0,50 0,57 0,66 0,75 0,84	1400 1500 1600 1700 1800 1900 2000	0,93 1,02 1,12 1,21 1,33 1,41 1,52	2100 2200 2300 2400 2500	1,60 1,72 1,80 1,92 2,02

Junichin	innennun nooppnanent tennobero paemipennis [110, 120]									
ө, қ	α•10 ⁶	ө, к	α•10 ⁶	ө, к	α•10 ⁶	ө, к	α·10 ⁶			
6	0,003	60	2,95	200	6,39	750	8,00			
7	0,009	70	3,54	220	6,57	800	8,09			
8 10	0,016	80 90 100	4,01 4,44 4,77	240 260 280	6,70 6,82 6,96	850 900 950	8,17 8,25 8,33			
12	0,06	110	5,05	300	7,07	1000	8,41			
14	0,09	120	5,29	350	7,20	1100	8,56			
16 18	0,12 0,17	130 140	5,48 5,66	400 450	7,30 7,40 7,50	1200 1400	8,71 8,99			
20	0,24	160	5,83	500	7,50	1800	9,27			
25	0,49	160	5,96	550	7,60	1800	9,55			
30	0.77	170	6,10	600	7,70	2000	9.83			
40	1,53	180	6,22	650	7,80	2200	10,11			
50	2,27	190	6,31	700	7,90	2400	10,39			

Линейный коэффициент теплового расширения [119, 120]

Сплавы ниобия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава ниобия с 20 % урана [287]

θ, Κ	ΔL/L; %	æ•10°	ө, к	Δ <i>L/L</i> ;%	α·10 ⁸
293 400 500 600 700	0 0,086 0,169 0,254 0,344	7,8 8,3 8,5 8,8 9,0	800 900 1000 1200	0,436 0,527 0,621 0,810	9,1 9,2 9,4 9,7

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава ниобия с 1 % циркония [287]

θ, Κ	ΔL/L, %	α•10 ⁶	θ, Κ	ΔL/L, %	α•10 ⁶
293	0	7,0	800	0,390	8,2
400 500	0,152	7,3 7,6	1000	0,472	8,3 8,4
600	0,229	7,8	1200	0,725	8,6
700	0,308	8,0	1400	0,899	8,7

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава ниобия с 20 % молибдена [287]

· · · · · · · · · · · · · · · · · · ·					
0 , K	ΔL/L, %	α•10 ⁶	θ, Κ	Δ <i>L/L</i> , %	α·10 ⁶
293 400 500 600 700	0 0,076 0,149 0,223 0,298	7,1 7,2 7,3 7,5 7,6	800 900 1000 1100	0,375 0,453 0,531 0,608	7,7 7,8 7,8 7,8 7,8

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава ниобия с 3 % рения [287]

ө, қ	ΔL/L; %	α•10 ⁸	θ, Κ	ΔL/L, %	α·10 ⁶
293	0	7,2	800	0,392	8,1
400	0,079	7,6	900	0,474	8,2
500	0,155	7,7	1000	0,557	8,3
600	0,232	7,8	1200	0,722	8,4
700	0,311	8,0	1400	0,892	8,4

Тантал

0 , K	Δ <i>L</i> / <i>L</i> , %	ө, к	ΔL/L; %	ө, к	Δ <i>L/L</i> , %	ө, к	ΔL/L, %
100 200 300 400 500	-0,12 -0,06 0 0,08 0,14	600 800 1000 1200 1400	0,21 0,35 0,50 0,66 0,81	1600 1800 2000 2200 2400	0,96 1,14 1,32 1,52 1,70	2600 2800 3000 3200	1,94 2 14 2,41 2,6 8

Линейный коэффициент теплового расширения [119, 120]

θ, Κ	α•10 ⁶	ө, к	α•10 ⁶	Θ, K	α.106	0, K	α·10¢
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 25 \\ \end{array} $	$\begin{array}{c} 0,0084\\ 0,0170\\ 0,0209\\ 0,0213\\ 0,0224\\ 0,0250\\ 0,032\\ 0,039\\ 0,039\\ 0,049\\ 0,075\\ 0,12\\ 0,17\\ 0,23\\ 0,36\\ 0,65 \end{array}$	30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180	$\begin{array}{c} 0,97\\ 1,81\\ 2,60\\ 3,36\\ 4,00\\ 4,44\\ 4,81\\ 5,11\\ 5,30\\ 5,48\\ 5,64\\ 5,79\\ 5,87\\ 5,95\\ 6,01\\ 6,07\\ \end{array}$	190 200 220 240 260 280 300 350 400 450 500 550 600 650 700 750	6,12 6,17 6,28 6,36 6,49 6,57 6,60 6,66 6,72 6,78 6,84 6,95 7,00 7,04 7,08	800 850 900 950 1000 1100 1200 1400 1800 2000 2200 2500	7,12 7,16 7,20 7,32 7,32 7,42 7,53 7,74 7,94 8,15 8,36 8,57 8,87

Сплавы тантала

Θ, K ·	ΔL/L, %	∝ • 10 ⁶	Θ, Κ	ΔL/L, %	α·10 ⁶
293 400 500 600 700 800 900 1000	0 0,070 0,137 0,205 0,274 0,344 0,415 0,488	6,5 6,6 6,7 6,8 6,9 7,1 7,2 7,3	1200 1400 1600 1800 2000 2200 2400	0,636 0,788 0,945 1,106 1,271 1,441 1,615	7,5 7,7 7,9 8,2 8,4 8,6 8,8

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава тантала с 1 % ниобия [287]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава тантала с 10 % вольфрама [287]

					-
θ, Κ	$\Delta L/L$; %	α•10 ⁶	ө, к	$\Delta L/L$, %	α·10 ⁶
293 400 500 600 700 800 900	0 0,064 0,125 0,188 0,254 0,321 0,390	5,9 6,0 6,2 6,4 6,6 6,8 7,0	1000 1200 1400 1600 1800 2000 2200	0,461 0,610 0,760 0,930 1,101 1,279 1,464	7,2 7,6 8,0 8,4 8,7 9,1 9,4

Сурьма

α = 10,8 · 10⁻⁶ К⁻¹ в диапазоне 273—373 К [163].

Висмут

Линейный коэффициент теплового расширения [119]

0 , K	α _⊥ .10 ⁶	α ·10 ⁶	ө, к	α _⊥ .10°	α •10°	ө, к	α _⊥ •10 ⁶	α ∙10°
3 4 6 8 10 15 20 25 30 40 50	0,010 0,017 0,038 0,098 0,20 0,71 1,26 2,25 3,20 5,08 6,84	0,054 0,118 0,400 1,028 2,07 5,80 9,33 11,65 13,1 15,0 16,0	60 70 80 90 100 110 120 130 140 160 180	7,95 8,61 9,16 9,61 9,96 10,21 10,4 10,6 10,8 10,9 11,1	16,4 16,6 16,7 16,8 16,8 16,9 17,0 17,0 17,1 17,1	200 220 240 260 280 300 350 400 450 500	11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,8 11,8 11,9 11,9	17,1 17,1 17,2 17,2 17,2 17,2 17,3 17,4 17,4 17,5

Сплав висмута

ө, қ	Δ <i>L/L</i> , %	α•10 ⁶	ө, к	Δ <i>L</i> / <i>L</i> , %	α • 10 ⁶
293	0	11,7	500	0,240	11,9
400	0,127	11,7	525	0,270	12,1

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава висмута с 10 % сурьмы [287]

VI группа периодической системы элементов

Хром

ө, қ	ΔL/L, %	ө, қ	ΔL/L, %	θ, Κ	ΔL/L, %	θ, Κ	ΔL/L; %
70	0,10	500	0,13	1000	0,68	1500	1,45
100	0,08	600	0,25	1100	0,81	1600	1,65
200	0,06	700	0,35	1200	0,95	1700	1,85
293	0	800	0,45	1300	1,11	1800	2,12
400	0,08	900	0,55	1400	1,26	1900	2,28

Линейный коэффициент теплового расширения [119, 120]

ө, қ	α·10 ⁶	ө, қ	α•10 ⁶	0, K	α•10 ⁶	ө, қ	α•10 ⁶
2 4 6 8 10 12 14 16 18 20 22 24 25	$\begin{array}{c} -0,05 \\ -0,11 \\ -0,17 \\ -0,23 \\ -0,29 \\ -0,34 \\ -0,37 \\ -0,39 \\ -0,41 \\ -0,42 \\ -0,42 \\ -0,41 \\ -0,40 \end{array}$	30 40 50 60 70 80 90 100 110 120 130 140 150	0,38 0,20 0,15 0,52 0,92 1,35 1,90 2,42 2,79 3,17 3,52 3,82 4,12	160 170 180 200 220 240 260 280 300 400 500 600	4,39 4,61 4,86 4,98 5,14 5,38 5,46 5,46 5,27 5,00 8,3 8,7 9,1	700 800 900 1000 1200 1300 1400 1500 1600 1700 1800 1900	9,5 9,9 10,3 10,7 11,2 11,8 12,5 13,3 17,2 15,2 16,2 17,2 18,2

Сплавы хрома

д лины с т	инны с температурой сплава хрома с 2 % кремния [287]										
ө, К	ΔL/L; %	∝•10ª	ө, к	ΔL/L; %	a.10°						
293 400 500 600	0 0,077 0,164 0,264	6,5 8,0 9,4 10,4	700 800 900 1000	0,371 0,483 0,600 0,719	11,0 11,5 11,8 12,1						

Линейный коэффициент теплового расширения и относительное изменение

Относительное изменение длины с температурой сплава хрома с 23 % титана [287]

ө, қ	ΔL/L, %	Ө, К	$\Delta L/L$; %	Θ, Κ	ΔL/L, %	θ, Κ	ΔL/L; %
300	0,007	533	0,173	862	0,552	1087	0,859
420	0,059	706	0,350	984	0,711	1215	1,020

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов хрома с молибденом [287]

ө, к	ΔL/L, % α · 10° ΔL/L, % α · 10° при концентрации молибдена, %				ө, к	ΔL/L, % α.10° ΔL/L, % α.10° при концентрации молибдена, %			
	30		50			30		50	
293 400 500 600	0 0,073 0,155 0,246	6,2 7,6 8,7 9,6	0 0,067 0,140 0,222	5,7 6,9 7,8 8,6	700 800 900 1000	0,344 0,447 0,554 0,664	10,1 10,6 10,9 11,2	0,310 0,403 0,500 0,601	9,1 9,6 9,9 10,2

Сплав хрома с 35 % вольфрама: $\Delta L/L = 0,82$ % в диапазоне 293—1170 К [233].

Относительное изменение длины с температурой сплава хрома с 1 % кобальта [287]

0, K	ΔL/L, %	ө, қ	Δ <i>L/L</i> , %	θ, Κ	Δ <i>L/L</i> ,%
248 271 280	0,027 0,011 0,007	293 303	0 0,006	317 322	0,017 0,020

Относительное изменение длины с температурой сплава хрома с 10 % никеля [233]

θ,Κ	$\Delta L/L, \%$	ө, к	ΔL/L;%	Θ, Κ	ΔL/L,%	ө, к	ΔL/L, %
273	0	500	0,30	800	0,80	1100	1,35
300	0,02	600	0,45	900	0,95	1200	1,55
400	0,15	700	0,60	1000	1,15	1300	1,78

Относительное изменение длины с температурой сплава хрома с 25 % молибдена, 15 % железа [233]

ө, қ	ΔL/L, %	ө, к	$\Delta L/L$, %	ө, к	ΔL/L, %	θ, Κ	ΔL/L, %
293 400 500	0 0,06 0,14	600 700 800	0,22 0,30 0,38	900 1000 1100	0,44 0,58 0,70	1200 1300	0,81 0,94

Относительное изменение длины с температурой сплавов хрома с железом и молибденом [233]

ө, к	$\Delta L/L$., %		ΔL/L, %		
	1	2	Θ, Κ	1	2	
293 400 500 600 700	0 0,08 0,15 0,23 0,32	0 0,08 0,16 0,24 0,36	800 900 1000 1100 1200	0,44 0,55 0,66 0,78 0,93	0,48 0,58 0,72 0,84 1,03	

Примечание. 1—25 % железа, 15 % молибдена; 2—35 % железа, 5 % молибдена.

Линейный коэффициент теплового расширения сплава хрома с 1,58 % осмия, 0,3 % тантала, 0,035 % лантана [2]

ө, қ	α•10 ⁶	θ, Κ	α • 10 ⁶	θ, Κ	α•10 ⁶
220	9,0	320	2,5	420	1,6
270	4,0	370	2,0	470	1,0

Молибден

ө, к	Δ <i>L/L</i> ; %	ө, к	ΔL/L; %	θ, Κ	Δ <i>L/L</i> ,%	ө,к	ΔL/L, %
100	0,08	600	0,16	1400	0,66	2200	1,34
200	0,05	800	0,26	1600	0,80	2400	1,55
300	0	1000	0,38	1800	0,96	2600	1,79
400	0,06	1200	0,52	2000	1,14	2800	2,04

Относительное изменение длины с температурой [233]

Линейный коэффициент теплового расширения [119, 120]

ө, к	α·10 ⁶	Θ, Κ	α•10 ⁶	ө, к	α·10 ⁶	ө, қ	α·10 ⁶
1	0,0043	40	0,43	220	4,76	1100	6,77
2	0,0050	50	0,77	240	4,90	1200	6,96
3	0,0057	60	1,16	260	5,03	1300	7,15
4	0,0064	70	1,67	280	5,11	1400	7,54
5	0,0071	80	2,04	300	5,23	1500	7,54
6	0,0078	90	2,41	400	5,45	1600	7,75
8	0,0088	100	2,72	500	5,63	1700	7,96
10	0,010	120	3,32	600	5,82	1800	8,17
15	0,030	140	3,73	700	6,01	1900	8,38
20	0,060	160	4,09	800	6,20	2000	8,59
25	0,13	180	4,38	900	6,39	2200	9,01
30	0,19	200	4,60	1000	6,58	2400	9,43

Сплавы молибдена

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов молибдена с ванадием [287]

ө , қ	$\frac{\Delta L/L, \%}{$ при ко	α•10ª онцеңтра	∆ <i>L/L</i> ,% ции ванади	а.106 ія, %		<u>Δ<i>L</i>/<i>L</i>, %</u> при кон	α∙10 ^в нцентра	∆ <i>L/L</i> , % ции ванади	α·10 ^в ія, %
	1	0	20			10		20	
293 400 500 600 700	0 0,060 0,118 0,176 0,237	5,6 5,7 5,8 6,0 6 , 2	0 0,072 0,143 0,216 0,290	6,5 6,9 7,2 7,4 7,4	800 900 1000 1100	0,300 0,364 0,430 0,497	6,4 6,5 6,6 6,7	0,363 0,437 0,511 0,585	7,4 7,4 7,4 7,4

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов молибдена с ниобием [287]

~ <i>"</i>	$\Delta L/L, \%$	$\frac{\Delta L/L, \% \alpha \cdot 10^6 \Delta L/L, \% \alpha \cdot 10^6}{1000}$				$\frac{\Delta L/L, \% \alpha \cdot 10^{6} \Delta L/L, \% \alpha \cdot 10^{6}}{\pi D \mu KOMBERT SUBJECT RECOVER 100$			
Ө, Қ	20			50		, K		50	
293 400 500 600 700	0 0,062 0,120 0,176 0,234	5,7 5,7 5,7 5,7 5,7 5,7	0 0,060 0,124 0,189 0,255	7,2 7,2 7,3 7,5 7,7	800 900 1000 1100	0,292 0,352 0,413 0,475	5,9 6,2 6,2 6,2	0,323 0,391 0,459 0,525	7,7 7,7 7,7 7,8

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава молибдена с 0,5 % тантала [287]

θ, Κ	Δ <i>L/L</i> , %	æ• 10°	θ, Κ	ΔL/L; %	α•10 ⁶
293 400 500 600 700 800 900	0 0,056 0,109 0,164 0,222 0,281 0,343	5,1 5,2 5,4 5,7 5,9 6,1 6,3	1000 1200 1400 1600 1800 2000	0,406 0,538 0,681 0,835 1,000 1,181	6,5 6,9 7,2 7,9 8,7 9,3

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава молибдена с 30 % вольфрама [287]

θ, Κ	ΔL/L, %	α•10 ⁶	θ, Κ	ΔL/L, %	α·10 ⁶
293	0	4,9	900	0,315	5,7
400	0,052	5,0	1000	0,373	5,8
500	0,101	5,1	1200	0,492	6,2
600	0,153	5,2	1400	0,622	6,7
700	0,205	5,4	1600	0,763	7,4
800	0,259	5,5	1800	0,917	8,2

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава молибдена с 50 % рения [287]

Θ, Κ	Δ <i>L/L</i> , %	α·10 ⁶	ө, қ	ΔL/L, %	α·10 ⁶
293 400 500 600 700 800 900	0 0,059 0,118 0,179 0,242 0,307 0,375	5,5 5,8 6,0 6,2 6,4 6,6 6,8	1000 1200 1400 1600 1800 2000	0,444 0,591 0,747 0,910 1,078 1,250	7,1 7,6 8,0 8,3 8,5 8,6

Линейный коэффициент теплового расширения сплава молибдена ЦМВЗО [116]

ө, к	ā.10"	ө, к	<i>α</i> .∙10°
20—400	4,39	20—800	5,33
20—600	5,11	20—1000	5,53

Вольфрам

Относительное изменение длины с температурой [233]

θ, Κ	ΔL/L, %	ө, қ	ΔL/L, %	ө, к	ΔL/L, %	ө, к	ΔL/L, %
100 200 300 400	0,09 0,05 0 0,04	600 800 1000 1200	0,12 0,22 0,32 0,42	1400 1600 1800 2000	0,52 0,63 0,75 0,87	2200 2400 2600	1,00 1,13 1,30

Линейный коэффициент теплового расширения [119, 120]

ө, қ	α·10 ⁸	ө, к	α·10 ⁶	ө, к	α·10 ⁶	ө, қ	α•10°
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 15\\ 20\\ 25\\ 30\\ 40\\ 50\\ \end{array} $	0,0000035 0,000280 0,000945 0,000224 0,000438 0,000756 0,00120 0,00179 0,003 0,007 0,031 0,006 0,13 0,20 0,50	60 70 80 90 100 110 120 130 140 150 160 170 180 190 200	1,30 1,65 2,00 2,25 2,50 2,70 2,93 3,11 3,29 3,46 3,58 3,68 3,68 3,85 3,99 4,09	240 260 280 300 400 500 600 700 800 900 1000 1100 1200 1300 1400	4,30 4,40 4,48 4,58 4,60 4,60 4,70 4,70 4,70 4,70 4,8 4,9 5,0 5,1 5,2 5,3 5,3	1600 1700 1800 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000	5,7 5,9 6,1 6,5 6,7 6,9 7,4 7,6 8,1 7,4 8,1 8,3 8,4

Сплавы вольфрама

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава вольфрама с 30 % меди [287]

ө, қ	ΔL/L, %	α·10 ⁶	ө, қ	ΔL/L, %	α·10 ⁸
293 400 500 600	0 0,073 0,160 0,257	5,9 7,9 9,1 10,1	700 800 850	0,360 0,460 0,525	10,6 10,9 11,2

θ, Κ	Δ <i>L/L</i> ,%	∝•10 ⁶	θ, Κ	Δ <i>L</i> / <i>L</i> , %	α•10 ⁶
293 400 500 600 700 800 900 1000 1200	0 0,053 0,102 0,153 0,205 0,258 0,312 0,368 0,485	4,9 5,0 5,1 5,2 5,3 5,5 5,7 6,1	1400 1600 2000 2200 2400 2600 2700	0,609 0,742 0,883 1,034 1,196 1,309 1,555 1,654	6,4 6,9 7,2 7,8 8,4 9,0 9,5 10,5

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава вольфрама с 25 % рения [287]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава вольфрама с 10 % кобальта [287]

θ, Κ	Δ <i>L/L</i> , %	α•10 ⁶	θ, Κ	$\Delta L/L$, %	α·10 ⁶
293	0	4,8	900	0,363	6,5
500	0,119	5,3	1100	0,488	7,0
700	0,228	6,1	1200	0,561	7,3

Сплав вольфрама с 7,5 % никеля, 2,5 % меди: $\Delta L/L=0,22$ % в диапазоне 300—700 К [233].

Полоний

α = 2,3 · 10⁻⁶ К⁻¹ в диапазоне 179—297 К [119, 163]

VII группа периодической системы элементов

Марганец

ө, қ	ΔL/L; %	ө, к	Δ <i>L/L</i> , %	ө, к	Δ <i>L/L</i> , %	0, K	ΔL/L; %
100 200 300	-0,41 -0,21 0	400 500 600	0,24 0,56 0,86	700 800 900	1,16 1,49 1,88	1000 1100	0,32 2,82

		• ••		r			1
ө, к	α·10 ⁶	ө, к	α • 10 ⁶	θ, Κ	α•10 ⁶	ө, к	α•10 ⁶
4 5 6 8 10 12 14 16	$\begin{array}{r} -0,11\\ -0,14\\ -0,17\\ -0,23\\ -0,28\\ -0,34\\ -0,34\\ -0,40\\ -0,46\end{array}$	18 20 24 30 65 75 140 150	0,52 0,58 0,70 0,9 0,5 1,0 14,5 15,7	160 170 180 190 200 220 240 260	16,7 17,5 18,1 18,6 19,0 20,0 20,8 21,5	280 300 350 400 500 600 700 800	22,2 22,8 24,4 25,8 28,4 30,9 33,4 35,9

Линейный коэффициент теплового расширения альфа-марганца [119]

Линейный коэффициент теплового расширения бета-марганца [119]

ө, қ	α•10 ⁶	ө, қ	α·10 ⁶	ө, к	α•10 ⁶	ө, к	α·10 ⁶
100 110 120 130 140	14,8 15,8 16,8 17,7 18,5	150 160 170 180 190	19,2 19,8 20,3 20,8 21,2	200 220 240 260 280	21,6 22,4 23,2 24,0 24,8	300 1000 1200	25,6 43,2 48,2

Линейный коэффициент теплового расширения гамма-марганца [119]

Θ, Κ	α•10 ⁶	ө, қ	α•10 [€]	ө, қ	α·10³
200 220 240	12,3 13,0 13,6	260 280 300	14,2 14,7 15,1	1400	45,2

α = 41,6 · 10⁻⁶ К⁻¹ при 1600 К (дельта-марганец) [119].

Сплавы марганца

Относительное изменение длины с температурой сплавов марганца с медью [233]

	$\Delta L/L$. %		$\Delta L/$	'L, %
ө, к	при концентрации меди, %		ө, қ	при концентрации меди, %	
	6	48		6	48
300 500 600 700	0 0,63 0,93 1,22	0 0,53 0,74 0,92	800 900 1000 1100	1,50 1,76 2,07 2,43	1,23 1,68 2,03 2,28

Относительное изменение длины с температурой сплавов марганца с никелем [233]

	ΔL/L, %		ө, к	$\Delta L/L$, %		
θ, Κ				при концентрации никеля, у		
	10	35		10	35	
300 470 570 700 800	0 0,50 0,80 1,20 1,60	0 0,35 0,64 0,94 1,24	900 1000 1100 1200	1,98 2,40 2,82	1,48 1,75 2,00 2,28	

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава марганца с 20 % никеля [287]

ө, қ	ΔL/L; %	α•10°	θ, Κ	Δ <i>L</i> / <i>L</i> , %	α•10 ⁶
150 200 293 400	0,354 0,244 0 0,341	20,7 23,6 29,8 34,8	500 600 650	0,716 1,144 1,379	40,2 45,5 48,1

Относительное изменение длины с температурой сплавов марганца с никелем и медью [233]

θ, Κ	$\Delta L/L$, %			$\Delta L/L$, %	
	1	2	θ, K	1	2
300 400 500 600 700	0 0,25 0,60 0,90 1,25	0 0,25 0,55 0,86 1,20	800 900 1000 1100	1,65 2,05 2,45 2,53	1,55 1,92 2,30 2,37

Примечание. 1-6% никеля, 6% меди; 2-10% никеля, 5% меди.

Линейный коэффициент теплового расширения некоторых сплавовмарганца в диапазоне 273—313 К [263]

	Концентрация легирующих элементов, %								
Никель	Хром	Кобальт	Молибден	Германий	Вольфрам	Железо	α.10°		
16 13 16 9 	25 	20 		 20 	 	 	21,6 22,4 21,1 20,3 12,3 23,0 23,7		

Технеций

 $\alpha \simeq 8,06 \cdot 10^{-6}$ К⁻¹ при 300 К (оценочное значение) [119].

Рений

Относительное изменение длины с температурой [233]

θ, Κ	ΔL/L; %	θ, Κ	Δ <i>L/L</i> , %	Θ, Κ	ΔL/L, %
300 400 600	0 0,07 0,20	800 1000	0,33 0,47	1200 1300	0,63 0,70

Линейный коэффициент теплового расширения [119]

ө, к	α _⊥ .10°	∝ ·10ª	θ, K	α _⊥ .10°	α ∙10 ^{e.}
100 150 200	5,3 6,5 7,2	4,8 4,4 3,8	250 300	7,6 7,7	3,0 2,0

VIII группа периодической системы элементов

Относит	ельное изм	иенение 🕽	цлины с т	емператур	оой [233]	
ө, қ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %
100 200 300 400	0,18 0,11 0 0,12	500 600 700 800	0,26 0,43 0,57 0,72	900 1000 1100 1180	0,88 1,03 1,18 1,30	1200 1290	0,94 1,30
Линейнь	ий коэффи	циент те	плового р	асширени	я [119,	120]	
ө, қ	α•10 ⁶	ө, қ	α.106	ө, к	α • 10 ⁶	ө, қ	α·10 ⁶
3 4 5 6 8 10 12 14 16 18 20 25 30 25	0,011 0,014 0,017 0,021 0,030 0,040 0,051 0,063 0,078 0,095 0,12 0,20 0,27	40 50 60 70 80 90 100 110 120 130 140 150 160	0,60 1,15 2,07 2,77 3,79 4,00 4,85 5,25 5,63 6,30 6,92 7,45 8,01	180 190 200 220 240 260 280 300 350 400 450 550 550	8,87 9,21 9,98 10,54 11,0 11,1 11,7 11,9 12,6 13,2 13,8 14,4 15,0	650 700 750 800 900 950 1000 1050 1100 1150 1200	15,9 16,2 16,4 16,5 16,0 15,5 14,7 15,5 15,5 15,5 22,5 22,4

Сплавы железа

Железо

Относительное изменение длины с температурой сталей с 0,02—0,2 % углерода [233]

ө, қ	$\frac{\Delta L}{L}$, %						
100	-0,18	400	0,12	700	0,53	1000	1,03
200	-0,10	500	0,26	800	0,72	1100	0,83
300	0	600	0,41	900	0,90	1200	1,08

Относительное изменение длины с температурой сталей с 0,2—0,6 % углерода [233]

ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %	ө, қ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %
293 400 500	0 0,10 0,25	600 700 800	0,40 0,54 0,72	900 1000 1100	0,90 0,95 0,91	1200 1300	1,11 1,32

Относительное изменение длины с температурой стали с 1,12 % углерода [233]

ө, қ	$\frac{\Delta L}{L}$; %	ө, к	$\frac{\Delta L}{L}$, %	θ, Κ	$\frac{\Delta L}{L}$; %	ө, қ	$\frac{\Delta L}{L}$, %
293	0	600	0,39	900	0,85	1200	1,40
400	0,11	700	0,51	1000	1,00	1300	1,61
500	0,25	800	0,68	1100	1,17	1380	1,75

Относительное изменение длины с температурой сталей с 1,2—1,5 % углерода [233]

θ, Κ	$\frac{\Delta L}{L}$, %	Ө, К	$\frac{\Delta L}{L}$; %	0 , K	$\frac{\Delta L}{L}$, %	Θ, Κ	$\frac{\Delta L}{L}$, %
293	0	500	0,25	700	0,52	900	0,85
400	0,12	600	0,38	800	0,68	1000	1,06

Линейный коэффициент теплового расширения углеродистых сталей [160]

		α • 10°		
ө, к	Ст 20	Ст 35	Ст 45	У8
300	10,5	10,9	11,7	11,9
400	11,4	11,8	12,1	12,3
600	12,9	13,3	13,0	13,2
800	14,1	14.5	13,8	14,1
1000	15,0	15,4	14,6	14.8
1200	15,6	15,5	15.5	15,8

Линейный коэффициент теплового расширения углеродистых сталей для отливок (15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л, 55Л) [160]

ө, к	α • 10 ⁶	ө, к	a • 10°	Ө, К	α • 106
300	10,8	600	13,0	1000	14,0
400	11,8	800	13,6	1200	14,3

Линейный коэффициент теплового расширения углеродистых сталей при низких температурах [119]

Θ, Κ	α·10 ⁶ , при концентрации углерода, %		ации	ө, к	α•10 ⁶ ,	, при концентра углерода, %	ции
	0,18	0,47-0,55	1,1		0,18	0,47-0,55	1,1
30 40 50	0,3 0,8 1,4		_	60 70 80	2,3 3,1 4,0		 6,7
Продолжение таблицы

ө, к	α•10 ⁶	, при концентр углерода, %	ации	ө, к	α•10 ^e	, при концентр углерода, %	ации
	0,18	0,47—0,55	1,1		0,18	0,47-0,55	1,1
90	4.8	4.15	6.9	170		8 64	_
100	5,5	4,9	7,2	180	9,4	8,87	9.8
110		5,6		190		9,09	_
120	6,8	6.3	7,8	200	9,9	9,30	10.4
130		6,97	<u> </u>	220	10.4	9.69	11.3
140	7.8	7.56	8,3	240	10.8	10.0	12.0
150		8.03	Ĺ.	260	11.1	10.3	12.6
160	8,7	8,37	8,9	280	11,5	10,6	12,9

Линейный коэффициент теплового расширения чугуна, содержащего 3,1 % углерода, 1,7 % кремния [119]

θ, Κ	ā•10 ⁶	θ, Κ	ā•10 [€]
302	8,4	573—673	15,6
373-473	11,7	673—773	14,3
473—573	14,2		

Относительное изменение длины чугуна, содержащего 3,55 % углерода, 2,0 % кремния [233]

ө, к	$\frac{\Delta L}{L}$ · %	ө, к	$\frac{\Delta L}{L}$, %	θ, κ	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %
293	0	500	0,23	700	0,54	900	0,92
400	0,10	600	0,38	800	0,72	1100	1,43

Линейный коэффициент теплового расширения сталей, содержащих медь [119]

	ā.	106		ā	106
Θ, Κ	1	2	θ, Κ	1	2
302 — 373 373—473 473—573 573 —673	11.6 12,6 14,2 16,0	11,2 12,6 13,8 15,6	673—773 773—873 873—973	15,9 16,4 16,9	15,6 16,0 16,7

Примечание. 1 — 0,34 % углерода, 2,7 % меди; 2 — 0,14 % углерода, 1,85 % меди.

Линейный коэффициент теплового расширения стали, содержащей 0,4 % углерода, 1,1 % алюминия [119]

ө, к	a • 10•	ө. к	x · 10 *	ө, к	a · 106	ө, к	a•10*
20 30 40 50	0,04 0,21 0,61 1,15	60 80 100 120	1,86 3,50 5,02 6,27	140 160 180 200	7,26 8,10 8,78 9,35	220 240 260	9,80 10,20 10,54

Линейный коэффициент теплового расширения стали, содержащей 0,12 % углерода, 2,8 % молибдена [119]

	α.	10*		α.	10•		α.	10¢
θ, Κ	1	2	ө, к 	1	2	ө, к	1	2
20	0,18		80	5,79	3,81	180	13,13	8,95
30	0,58		90	6,97	4,60	200	13,74	9,44
40	1,26	0,84	100	8,06	5,33	220	14,22	9,84
50	2,20	1,46	120	9,90	6,58	240	14,61	10,18
60	3,33	2,20	140	11,29	7,57	260	14,93	10,47
70	4,55	3,00	160	12,34	8,34	280	15,21	10,72

Примечание. 1 — исходное отожженное, 2 — исходное закаленное состояние.

Линейный коэффициент теплового расширения стали, содержащей вольфрам, кремний [119]

	ā.	106		ā.	10*
	1	2	θ, κ	1	2
302—373 373—473 473—573 573—673	10,4 12,1 13,7 15,9	11,1 12,0 14,0 15,1	673—773 773—873 873—973	15,7 16,1 	15,7 16,4 16,5

Примечание. 1 — 0,5 % углерода, 1,45 % кремния, 1,6 % вольфрама; 2 — 0,4 % углерода, 4 % вольфрама.

Линейный коэффициент теплового расширения стали с 0,39 % углерода 1,2 % марганца, 1,0 % кремния [119]

θ, Κ	ā.108	θ, Κ	ā.10°	0, K	ā. 10°
302—373	11,6	473—573	13,2	673—773	15,2
373—473	12 , 0	573—673	14 ,2	773—873	15,6

Линейный коэффициент теплового расширения стали, содержащей 0,4—0,5 % углерода и марганец [119]

θ, Κ	α.•10 ^е при рации мар	концент- ганца, %	0, K	α.10° при рации ма	а.10* при концентрации марганца, % 0.7 1.2		
	0,7	1,2		0,7	1,9		
302—373 373—473 473—573 573—673	9,4 12,0 14,3 15,3	11,3 12,2 14,2 16,3	673—773 773—873 873—973	16,4 17,1 16,8	17,7 15,4 16,7		

Линейный коэффициент теплового расширения промышленных низкои среднелегированных сталей перлитного класся [160]

				α•10 ⁶ д	ля ст али	марки		
ө, к	65 Г	13H2XA, 15XA, 15X, 20X	30ХГС, 30ХГСА	15XM, 15XMA	30XM. 30XMA	1Х11МФ, 1Х12ВИМФ	12X1MΦ	25Х2МФА
300	11,0	10,0	10,4	11,3	11,7	10,1	10,6	11,7
400	11,9	11,0	11,0	11,9	12,3	10,9	11,2	12,4
600	13,3	13,0	12,3	13,2	12,8	12,2	12,6	13,6
800	14,3	14,0	13,1	14,0	14,4	13,2	13,5	14,2
1000	15,2	15,0	13,5	14,5	14,7	14,1	14,0	14,7
120 0	15,8	15,0	13,7	14,7	15,0	14,6	14,7	15,0

Линейный коэффициент теплового расширения нержавеющих, жаростойких и жаропрочных сталей мартенситного, мартенситно-ферритного и ферритного классов [160]

			α•10° для стали	марки	
θ, Κ	Х5М	1 X 13	2Х1213МБФР	4X13	1X12B2MΦ
200	9,3	9,0	10,6	9,2	8,6
300	10,2	9,6	11,0	9,6	9,2
400	10,8	10,2	11,3	10,3	9,8
500	11,4	10,5	11,5	10,8	10,3
600	11,8	11.0	11,7	11,2	10,7
700	12,3	11.4	11,9	11,6	11,0
800	12,6	11,8	12,1	11,8	11,3
900	12,9	12,2	12,0	12,2	11,5
1000	13.1	12,6	12,0	12,6	11,8
1200	13.6	13.3	11,9	13.2	12,0
1400	13,7	13,6	11,7	13,6	12,2

1		a٠	106 для стали ма	арки	
0 , K	X18H107	1X18H9T3	0X18H125	X23H18	X17H13M2T
200	15.9	13.3	15.8	15.6	15.0
300	16,2	14,2	16,1	15,7	15,3
400	16,6	15,2	16,5	15,8	15,7
500	17,0	16,0	17,1	15,9	16,2
600	17,3	16,6	17,4	16,0	16,8
7 00	17,6	17,3	17,8	16,2	17,3
800	17,9	17,8	18,1	16,5	17,7
900	18,2	18,2	18,3	16,8	18,0
1000	18,5	18,6	18,6	17,2	18,3
120 0	18,8	19,2	18,9	18,4	18,6
1400	18,6	19,8	19,1	19,8	19,0

Линейный коэффициент теплового расширения нержавеющих, жаростойких и жаропрочных сталей аустенитного класса [160]

Продолжение таблицы α.10⁶ для стали марки θ, Κ 1X16H13M2E X16H25M6 XH35BT X22H26 14,9 15,3 15,3 15,3 13,0 200 14,5 300 14,7 13,6 14,1 400 15,8 16,2 15,1 15,4 14,6 500 15,6 15,4 600 15,2 16,8 16,0 15,5 700 17,2 15,6 15,8 16,4 800 17,6 16,6 16,3 15.9 900 16,8 18,0 16,9 16,4 1000 18,4 17,1 17,2 17,4 18,7 17,5 17,7 19,5 1200 18,4 1400 19,0 19,5

Линейный коэффициент теплового расширения сталей аустенитного класса при низких температурах [120]

	α.10° для с	тали марки		α.10° для стали марки	
0; K	12X18H9T	12X18H10T	θ, Κ	12X18H9T	12X18H10T
20		0,80	170	13,4	13,6
30		1,75	180	13,8	13,9
40	_	2,50	190	14,0	14,2
50		3,30	200	14,3	14,5
60	-	4,40	210	14,3	14,7
70	_	5,50	220	14,7	14,9
80	6,50	6,60	230	15,1	15,1
90	7,50	7,80	240	15,4	15,3
100	8,40	9,20	250	15,7	15,6
110	9,30	9,70	260	15,9	15,7
120	10,3	10,2	273	16,1	15,9
130	11,2	10,7	280	16,2	16,0
140	12,0	11,8	293	16,5	16,1
150	12,6	12,8	300	16,7	16,2
160	13,1	13,3			

	α⋅10 [®] для стали марки						
θ, K	P18	Р9Ф5	P9K10	Р12Ф2Қ8М3			
100	10,2	10,5	9,8	_			
200	11,1	10,6	10,1				
300	11,8	10,6	10,8	-			
400	12,3	11,2	11,4				
500	13,0	11,6	12,0	_			
600	13.7	12,0	13,2				
700	14,8	11,4	14,0	13,8			
800		-	_	10,6			

Линейный коэффициент теплового расширения быстрорежуших сталей [32, 122]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплавов железа с алюминием [287]

	$\Delta L/L$, %	a.10°	ΔL/L, %	a • 10°	ΔL/L. %	α·10 ⁶
θ, Κ		при	концентраци	и алюмини	я, %	
<u></u>		5		10	<u> </u>	15
293 500 700 900 1100 1300	0 0,224 0,473 0,749 1,054 1,389	10,1 11,6 13,1 14,5 16,0 17,6	0 0,249 0,516 0,812 1,149 1,535	11,5 12,6 14,0 15,8 18,0 20,7	0 0,271 0,587 0,957 1,380 1,856	11,6 14,5 17,3 19,8 22,4 25,0

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава железа с 4 % кремния [287]

ө, к	ΔL/L, %	a •10*	ө, к	ΔL/L, %	a • 10*
293 400 500 600 700	0 0,121 0,246 0,381 0,523	10,8 11,9 13,0 13,9 14,7	800 900 1000 1100	0,674 0,833 0,997 1,102	15,5 16,1 16,5 16,6

Относительное изменение длины с температурой сплавов железа с повышенной концентрацией кремния [233]

ө, к	Δ <i>L/L</i> , %. при концентрации кремния, %		Θ, K	Δ <i>L/L</i> , 9	%, при кон кремния, %	центрации %	
	12	41	50		12	41	50
300 500 700	0 0,31 0,63	0 0,27 0,58	0 0,20 0,35	900 1100	1,00 1,35	0,85 —	0,67

Относительное изменение длины с температурой сплавов железа с 12-18 % хрома [233]

ө, к	ΔL/L, %	θ, k	ΔL/L, %	ө, к	Δ <i>L/L</i> ,%	0, K	ΔL/L, %
10	0,17	400	0,12	800	0,63	1200	1,33
100	0,15	500	0,25	900	0,77	1300	1,58
200	0,08	600	0,37	1000	0,94	1400	1,83
293	0	700	0,48	1100	1,12	1500	2,13

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава железа с 10 % кобальта [287]

θ, Κ	ΔL/L, %	æ•10 [€]	ө, к	ΔL/L, %	α•10 ^e
293	0	10,2	900	0,781	14,6
500	0,234	12,4	1100	1,077	15,0
700	0.497	13,8	1150	1,152	15,1

Относительное изменение длины с температурой сплава железа с 40 % кобальта [233]

θ, Κ	ΔL/L, %	ө, к	Δ <i>L/L</i> , %
300 500 700	0 0,21 0,44	900 1100	0,69 0,96

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава железа с 36 % никеля [287]

θ,Κ	Δ <i>L/L</i> , %	α•10 ⁶	ө, к	ΔL/L, %	α•10 ⁶
10	0,0116	0,94	225	0,0002	0,18
20	0,0131	1,69	250	0	0
30	0,0147	1,63	275	0,0001	0,01
40 50 60 70	-0,0161 -0,0169 -0,0171 -0,0168		293 350 400 450	0,002 0,006 0,018	0,13 0,6 1,7 2,6
80	-0,0160	0,94	500	0,033	5,1
90	-0,0150	1,18	550	0,070	9,2
100	-0,0137	1,41	600	0,125	13,5
125	-0,0098	1,60	700	0,272	15,6
150	0,0060	1,40	800	0,437	17,1
175	0,0030	0,59	900	0,615	18,1
200	0,0011	0,53	1000	0,800	18,5

		α.1	06 при конце	ентрации ни	келя, %		
ө, қ	34,2	35,6	37,4	39,3	41 2	44,1	49,8
270	1,0	0	3,0	5,0	6,0	7,0	_
300			-		_	_	6,0
370	2,5	0,5	3,8	4,5	6,0	7,4	-
400	10.0	80	54	-	<u> </u>	75	6,5
470	10,0	10.0		4,0	0,3	7,5	70
520	13.2	11.5	6.5			_	
550			7,4				-
570	15,0	13,5	8,0	5,5	7,0	7,3	
600	_		—			_	7,6
630	-		11,2	7,5	7,8	-	7,8
650	105	15.5	14				7,9
670	16,5	15,5	14,4	12,0	9,5	6,8	
700					-	63	0,3
720		_		_	_	85	_
770	17.5	16.5	16.0	15.0	14.5	12.0	-
800	_	_	_			_	9,0
870	18,5	17,5	17,0	17,5	16,0	15,8	
900					_	—	10,6
970	19,5	18,5	18,0	18,0	17,3	17,0	
1000		10.5	10.0	10.0	10.0	10 5	14,2
1070	20,5	19,5	19,0	19,0	19,0	19,5	01
1170	21.5	20.5	20.0	20.2	20.3	19.5	9,1
1270	22,5	21,5	21,0	21,5	21,5	20,5	7,5

Линейный коэффициент теплового расширения сплавов железа с никелем (инварная область) [84]

Линейный коэффициент теплового расширения и относительное изменение длины сплава железа с 50 % никеля [287]

ө, к	ΔL/L, %	α·10 ⁶	. 0, K	Δ <i>L</i> / <i>L</i> , %	a•10°
2 93	0	9,4	700	0,402	10,9
400 500 600	0,108 0,203 0,299	9,4 9,6 9,8	900	0,654	12,6

Относительное изменение длины с температурой сплава железа с 45 % платины [233]

0 , K	Δ <i>L</i> / <i>L</i> , %	θ, Κ	Δ <i>L/L</i> , %
300 400 500	0 0,10 0,23	600 700	0,38 0,52

Относительное изменение длины с температурой сплавов железа с хромом и алюминием [233]

0, K	$\Delta L/L$	%		Δ <i>L</i> / <i>L</i> , %		
	1	2	θ, κ	1	2	
293 400 600 800	0 0,12 0,52 1,08	0 0,08 0,32 0,54	1000 1200 1400	1,70 2,26 2,62	0,83 1,18 1,57	

Примечание. 1 — 15 — 17 % хрома, 15 % алюминия, 2 — 20 % крома, 1,5 % алюминия.

Относительное изменение длины с температурой сплава железа с 25,2 % никеля, 16,3 % хрома, 6,25 % молибдена, 1,68 % марганца [233]

0, K	$\frac{\Delta L}{L}$, %	0, K	$\frac{\Delta L}{L}$,%	θ, Κ	$\frac{\Delta L}{L}$,%	ө, к	$\frac{\Delta L}{L}$, %
293	0	600	0,50	900	1,13	1200	1,90
400	0,18	700	0,70	1000	1,37	1300	2,18
500	0,32	800	0,90	1100	1,62	1400	2,46

Кобальт

Относительное изменение длины с температурой [233]

θ, Κ	$\frac{\Delta L}{L}$,%	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$;%
293	0	600	0,35	700	0,65	1000	1,17
400	0,15	670	0,50	800	0,83	1100	1,36
500	0,27	680	0,60	900	1,00	1200	1,48

Линейный коэффициент теплового расширения [119, 120]

0 , K	α _{cp} ·10°	ө, к	α _{cp} .10 ⁶	ө, к	∝cp•10 [€]	ө, қ	α _{ερ} . 10°
4 5 6 8 10 12 14 16 18 20 25	0,011 0,014 0,017 0,025 0,035 0,045 0,058 0,074 0,092 0,118 0,22	50 60 70 80 90 100 110 120 130 140 150	1,93 2,98 4,04 5,05 6,83 8,55 9,00 9,45 9,80 10,15 10,45	180 190 200 220 260 300 350 400 450 550	11,15 11,3 11,9 11,65 12,1 12,18 12,8 13,3 13,8 14,3 14,3 14,3	800 850 900 950 1000 1050 1100 1150 1500 1600	14,2 14,4 14,6 14,8 15,0 15,2 15,4 15,6 16,5 16,7
30 40	0,45 1,09	160 170	10,75 10,95	600 650	15,1 15,5		

Сплавы кобальта

θ, Κ	$\frac{\Delta L}{L}$, %	æ•10°	0 , κ	$\frac{\Delta L}{L}$, %	α·10°
293	0	8,8	600	0,326	12,0
400	0,102	10,2	700	0,448	12,4
500	0,209	11,3	750	0,509	12,5

.Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава кобальта с 5 % молибдена [287]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава кобальта с 10 % вольфрама [287]

ө, к	$\frac{\Delta L}{L} \cdot \%$	α·10°	ө, к	$\frac{\Delta L}{L}$. %	α·10 ⁸
293	0	11,7	600	0,374	12,6
400	0,130	12,1	700	0,500	12,6
500	0,249	12,4	750	0,562	12,6

Относительное изменение длины с температурой сплавов кобальта с железом [233]

ө , к	ΔL/L, %	Δ <i>L/L</i> , %, при концентрации железа, %			ΔL/L, %, при концентрации железа, %		
	10	30	50		10	30	50
300 500 700	0 0,25 0,51	0 0,22 0,45	0 0,20 0,40	900 1100	0,80 1,19	0,74 1,00	0,62 0,90

Относительное изменение длины с температурой сплава кобальта с 10 % платины [287]

θ, K	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %
273	0,02	473	0,24	973	0,92
293	0	573	0,38	1173	1,21
373	0,11	773	0,65	1273	1,34

Относительное изменение длины с температурой сплава кобальта с 30 % хрома, 6 % вольфрама [233]

θ, Κ	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$, %	ө , к	$\frac{\Delta L}{L}$, %
300	0	800	0,74	1100	1,32
600	0,42	900	0,92	1200	1,56
700	0,58	1000	1,12	1300	1,82

Относительное изменение длины с температурой сплавов кобальта с 25— 30 % хрома, 4,5—5,5 % молибдена, 1,5—3,5 % никеля, 0,7—2,0 % железа, 0,2—0,35 % углерода [233]

θ, Κ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %
300	0	600	0,48	900	0,96	1200	1,54
400	0,15	700	0,62	1000	1,14	1300	1,76
500	0,30	800	0,79	1100	1,34	1400	2,00

Никель

Относительное изменение длины с температурой [233]

θ, Κ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %
10	0,23	400	0,15	800	0,74	1200	1,45
100	0,18	500	0,30	900	0,90	1300	1,65
200	0,10	600	0,44	1000	1,07	1400	1,85
293	0	700	0,60	1100	1,25	1500	2,08

Линейный коэффициент теплового расширения [119]

ө, к	æ•10*	ө, к	α•10 °	ө, к	a. 10°	ө, к	a • 10°
20	0.06	120	8.08	280	12.9	900	174
25	0.11	130	8.67	300	13.0	950	17.8
30	0.26	140	9,18	350	13.3	1000	18.2
35	0,50	150	9,63	400	13,7	1050	18,6
40	0,82	160	10,03	450	14,2	1100	19,1
50	1,64	170	10,4	500	14,9	1150	19,7
60	2,69	180	10,7	550	15,8	1200	20,3
70	3,79	190	11,1	600	16,9	1300	21,5
80	4,81	200	11,4	700	16,3	1400	22,8
90	5,75	220	11,9	750	16,5	1500	24,3
100	6,61	240	12,3	800	16,7		
110	7,39	260	12,7	850	17,0		

Сплавы никеля

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 35 % меди [287]

0 , K	$\frac{\Delta L}{L}$. %	α•10 ⁶	ө, к	$\frac{\Delta L}{L}$, %	æ•10°
100	0,232	10,1	500	0,314	17,4
200	0,121	13,4	600	0,482	18,2
293	0	15,0	700	0,656	18,8
400	0,156	16,4	800	0,832	19,2

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 10 % цинка [287]

ө, к	$\frac{\Delta L}{L}$, %	a • 10'
275	0,031	17,0
293	0	17,2
315	0,037	17,6

Линейный	коэффициент	теплового	расширения	и относите	ельное измен	ie-
ние длины	с температуро	й сплава н	никеля с 4 %	кремния	[287]	

θ, Κ	$\frac{\Delta L}{L}$; %	α•10 ⁴
270	0,030	13,0
293	0	12,9
315	0,028	12,7

Лин	ейный	ко	эффициент	те	плового	расшир)ен	เหяิห	относительное	измене-
ние	длины	с	температур	юй	сплава	никеля	с	15 %	олова [287]	

θ, Κ	$\frac{\Delta L}{L}$, %	∝ • 10 ⁶		
270	0,033	14,3		
293	0	14,2		
315	0,031	14,0		
	•			

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 5 % титана [287]

θ, Κ	$\frac{\Delta L}{L}$, %	æ•10 ⁸
270	0,054	14,7
293	0	14,4
315	0,031	14,1

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 5 % ванадия [287]

θ, Κ	$\frac{\Delta L}{L}$. %	a • 10°
275	0,021	11,5
293	0	11,5
315	0,024	11,5

Относительное изменение длины с температурой сплава никеля с 49,4 % марганца [233]

0 , Κ	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %
300	0	600	0,58	800	1,12	1000	1,94
500	0,36	700	0,82	900	1,50	1100	2,20

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 10 % железа [287]

0 , K	$rac{\Delta L}{L}$, %	∝•10 ⁸	Θ, Κ	$rac{\Delta L}{L}$, %	α ∙10*
293 400 500 600	0 0,121 0,251 0,393	10,4 12,2 13,6 14,6	700 800 900	0,541 0,694 0,848	15,2 15,4 15,4

Линейный коэффициент теплового расширения сплава никеля с 21,4 % железа [119]

θ, K	æ•10°	θ, Κ	a • 10°	ө, к	α·10 ⁶	ө, қ	æ•10°
10	0,03	60	3,22	120	8,05	220	11,15
20	0,21	70	4,23	140	8,99	240	11,48
30	0,64	80	5,18	160	9,72	260	11,77
40	1,34	90	6,04	180	10,29	280	12,02
50	2,23	100	6,80	200	10,76	300	12,24

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава никеля с 50 % палладия [287]

0, K	$\frac{\Delta L}{L}$, %	α•10°	0, K	$\frac{\Delta L}{L}$, %	æ•10¢
293	0	13,2	600	0,406	16,8
400	0,150	14,6	700	0,636	17,3
500	0,202	15,8	750	0,723	17,4

Относительное изменение длины с температурой сплавов никеля с 24—30 % молибдена, 4—7 % железа, 0,12 % углерода [233]

0, K	$\frac{\Delta L}{L}$,%	θ, Κ	$\frac{\Delta L}{L}$, %	θ, Κ	$rac{\Delta L}{L}$, %	θ, Κ	$\frac{\Delta L}{L}$, %
300	0	600	0,32	900	0,78	1200	1,36
400	0,10	700	0,47	1000	0,95	1300	1,58
500	0,20	800	0,62	1100	1,15	1400	1,87

Относительное изменение длины с температурой сплавов никеля с 22-33 % палладия, 21-22 % хрома, 0.02-0.04 % кремния [233]

ө, қ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta E}{L} \cdot \%$	ө, к	$rac{\Delta L}{L}$, %
300	0	600	0,05	800	0,08	1000	0,12
500	0,03	700	0,07	900	0,10	1100	0,14

Относительное изменение длины с температурой сплавов никеля с 16— 18 % молибдена, 16—18 % хрома, 4,5—7,0 % железа, 4—5 % вольфрама, 0,15 % углерода [233]

ө , қ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	е, к	$\frac{\Delta L}{L}$, %
300	0	600	0,37	900	0,85	1200	1,43
400	0,11	700	0,53	1000	1,03	1300	1,68
500	0,24	800	0,68	1100	1,21	1400	1,92

Относительное изменение длины с температурой сплава никеля с 17 % молибдена, 6,9 % меди, 4,2 % железа, 0,4 % марганца, 0,14 % углерода [233]

ө, қ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %
293 400 500	0 0,14 0,28	600 700 800	0,42 0,54 0,70	900 1000 1100	0,84 1,02 1,20	1200 1300	1,38 1,57

Относительное изменение длины с температурой сплава никеля с 39 % железа, 17 % хрома, 1,5 % кремния, 0,7 % марганца, 0,66 % углерода [233]

ө, қ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$. %
10	0,24	400	0,13	800	0,78	1200	1,67
100	0,20	500	0,28	900	0,98	1300	1,94
200	0,10	600	0,43	1000	1,19	1400	2,21
293	0	700	0,60	1100	1,42	1500	2,50

Относительное изменение длины с температурой сплава никеля с 29 % медч. 3 % алюминия. 0,9 % железа. 0,6 % кремния. 0,4 % марганца, 0,15 % углерода [233]

θ, Κ	$\frac{\Delta L}{L}$, %	ө, к	$rac{\Delta L}{L}$, %	0 , K	$\frac{\Delta L}{L}$, %	ө, қ	$rac{\Delta L}{L}$, %
100	0,22	400	0,14	700	0,61	1000	1,17
200	0,10	500	0,28	800	0,78	1100	1,36
293	0	600	0,45	900	0,97	1200	1,60

Относительное изменение длины с температурой сплавов никеля с 14— 16 % хрома, 5—9 % железа, 2,2—2,7 % титана, 0,7—1,2 % ниобия, 1 % алюминия, 0,3—1,0 % марганца [233]

θ, K	$\left \frac{\Delta L}{L} \cdot \% \right $	ө, к	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$, %	ө, қ	$\frac{\Delta L}{L}$, %
10	-0,22	400	0,14	800	0,74	1200	1,60
100	-0,20	500	0,28	900	0,94	1300	1,84
200	-0,12	600	0,44	1000	1,16	1400	2,06
300	0	700	0,58	1100	1,38	1500	2,34

Относительное изменение длины с температурой сплавов никеля с 19— 24 % хрома, 0—7 % меди, 0—7 % молибдена, 0—2,5 % титана, 0—11 % кобальта, 0—1 % алюминия, 0—0,45 % углерода [233]

ө , к	$\frac{\Delta L}{L}$, %	ө, к	$rac{\Delta L}{L}$, %	ө, к	$\frac{\Delta L}{L}$ · %	ө, к	$\frac{\Delta L}{L}$, %
293	0	700	0,60	1100	1,35	1500	2,20
500	0,30	900	0,97	1300	1,77	1700	2,67

Линейный коэффициент теплового расширения специальных сплавов никеля при 293 К [160]

	I	Концентраци	ия легирующ	цих элемен	тов, %		
Сплав	Алюминий	Кремний	Марганец	Хром	Желе- 30	Ко- бальт	α.10*
Алюмель Хромель Нихром	1,8—2,5 	0,85—1,15 — —	1,8—2,2 —	9—10 19—21		<1 <1 <1	13,7 12,8 13,0
Феррони- хром	-	-	1-2	14—16	14—18	<1	13,0

Линейный коэффициент теплового расширения жаростойких и жаропрочных сплавов на хромоникелевой основе [119]

	Концентрация легирующих элементов, %								
Марка сплава	Алюминий	Бор	Барий	Углерод	Церий	Хром			
ХН78Т ХН77ТЮР ХН70ВМЮТ ХН60Ю	≪0,15 0,55—0,95 1,7—2,2 2,6—3,5	≪0,01 ≪0,01 —	 ≼0,1	≪0,12 ≪0,06 0,1—0,16 ≪0,1	<0,01 ≤0,03	19—22 19—22 14—16 15—18			

Продолжение таблицы

	Конц	α.10 ^в при Ө, К					
Марка сплава	Желе- 30	Мар- ганец	Молиб- ден	Ннобий	Титан	200	300
ХН78Т ХН77ТЮР ХН70ВМЮТ ХН70ВМЮТ ХН60Ю		<0,7 <0,4 <0,5 <0,3		6 6	0,15—0,35 2,3—2,7 1,0—1,4 —	11,3 11,2 11,5	12,0 11,8 11,7 11,9

Рутений

Линейный коэффициент теплового расширения [119]

0, K	α _⊥ .10°	α _[] • 10 °	ө, к	α _⊥ •10 [¢]	α _∥ •10°
140	4,60	5,50	1000	7,95	11,81
200 300	4, 80 5,80	7,00 8,70	1100 1200	8,37 8,80	12,33 12,87
350 400	5,86 5,94	8,89 9,09	1300 1400	9,25 9,72	13,43 14,01
450 500	6,04 6,16	9,29 9,49	1500 1600	10,21 10,73	14,61 15,24
550 600	6,30 6,45	9,70 9,92	1700	11,27 11,83	15,90 16.60
650 700	6,61 6,78	10,14	1900	12,42	17,35
750	6,96 7.15	10,60	2100	13,64	19,01
850	7,35	11,07	2300	14,98	20,99
900 950	7,00 7,75	11,56	2400	10,72	

Родий

Относительное изменение длины с температурой [233]

θ, Κ	$\frac{\Delta L}{L}$, %	θ, Κ	<u>Δι</u> . %
10 100 200	0,15 0,12 0,07	293 300	0 0,01

			•		· · · · ·		
ө, к	α•10 ⁶	9, K	a•10*	ө, қ	α•10°	ө, к	α·10°
70 80 90 100 110 120 130 140 150	3,20 3,85 4,45 4,99 5,46 5,86 6,19 6,46 6,69	160 170 180 190 200 220 240 260 280	6,90 7,09 7,26 7,42 7,57 7,81 8,02 8,20 8,36	300 350 400 450 550 600 650 700	8,50 8,71 8,93 9,15 9,38 9,61 9,84 10,07 10,31	750 800 850 900 950 1000 1100	10,55 10,80 11,05 11,31 11,58 11,85 12,40

Линейный коэффициент теплового расширения [119]

Сплав родия

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава родия с 30 % железа [287]

θ, Κ	$\frac{\Delta L}{L}$, %	α•10°	0, K	$rac{\Delta L}{L}$, %	∝•10 ⁶
100	0,140	4,6	200	0,077	7,8
150	0,113	6,3	293	0	9,0

Палладий

Относительное изменение длины с температурой [233]

θ, Κ	$rac{\Delta L}{L}$, %	0, K	$\frac{\Delta L}{L} \neq \%$
80	0,42	200	0,10
100	0,40	300	0,02

Линейный коэффициент теплового расширения [119]

ө, к	α•10•	ө, к	α•10 °	ө, к	α•10°	0, K	α•10°
30 35 40 45 50 60 70 80 90 100	1,12 1,66 2,26 2,90 3,57 4,75 5,77 6,63 7,35 7,95	110 120 130 140 150 160 170 180 190 200	8,45 8,87 9,23 9,54 9,85 10,12 10,26 10,48 10,68 10,84	220 240 260 280 300 350 400 450 500 550	11,08 11,28 11,46 11,62 11,75 12,12 12,12 12,48 12,84 13,20 13,55	600 650 700 750 800 850 900 950 1000 1100	13,90 14,25 14,60 14,95 15,30 15,65 16,00 16,35 16,70 17,40

Сплавы палладия

θ, K	$\frac{\Delta L}{L}$. %	α·10°	0, K	$\frac{\Delta L}{L}$, %	α ∙10*
50 100 200 293 400 500	0,305 0,247 0,124 0 0,148 0,294	11,6 11,9 13,0 13,4 14,2 15,0	600 700 800 900 950	0,447 0,609 0,781 0,961 1,053	15,7 16,5 17,5 18,8 19,6

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава палладия с 50 % серебра [287]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава палладия с 30 % никеля [287]

ө, к	$\frac{\Delta L}{L}$. %	α•10°	ө. к	$\frac{\Delta L}{L} \cdot \%$	α • 10 ⁶
293	0	14,7	500	0,336	17,4
400	0,167	16,3	600	0,510	17,9

Осмий

Линейный коэффициент теплового расширения [119]

ө, к	α ₁ .10°	α _¶ .10°	θ, K	α _⊥ .10•	α∥ ·10•
300	3,97	5,84	600	4,76	7,01
350	4,06	6,00	650	4,96	7,27
400	4,16	6,17	700	5,18	7,55
450	4,28	6,35	750	5,42	7,85
5 0 0	4,42	6,55	800	5,68	8,18

Иридий

Линейный коэффициент теплового расширения [119]

ө, к	α·10°	ө, к	a•10°	ө, к	æ•10 ⁶	ө. к	a •10°
25	0,60	110	4,46	240	6,27	700	7,34
30	0,93	120	4,78	260	6,33	750	7,50
35	1,22	130	5,07	280	6,37	800	7,66
40	1,49	140	5,33	300	6,40	850	7,83
45	1,75	150	5,56	350	6,44	900	8,00
50	2,00	160	5,75	400	6,51	950	8,17
60	2,47	170	5,89	450	6,61	1000	8.35
70	2,91	180	5,98	500	6,73	1050	8,53
80	3,33	190	6,04	550	6,87	1100	8,72
90	3,73	200	6,09	600	7,02		,
100	4,11	220	6,19	650	7,18		

Платина

ө, қ	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$. %	ө, қ	$\frac{\Delta L}{L}$. %	ө, к	$\frac{\Delta L}{L}$. %
100	0,15	600	0,30	1100	0,82	1600	1,43
200	0,08	700	0,40	1200	0,93	1700	1,57
293	0	800	0,50	1300	1,06	1800	1,70
400	0,10	900	0,60	1400	1,17	1900	1,85
500	0,20	1000	0,71	1500	1,30	2000	2,00

Относительное изменение длины с температурой [233]

Линейный коэффициент теплового расширения [119]

ө, к	a•10°	ө. к	æ•10°	ө, к	æ•10*	0 , K	æ•10"
90	6,34	200	8,55	600	9,70	1200	11,4
100	6,77	220	8,69	650	9,82	1300	11,8
110	7,14	240	8,80	700	9,94	1400	12,3
120	7,45	260	8,88	750	10,07	1500	12,8
130	7,70	280	8,94	800	10,20	1600	13,3
140	7,87	300	8,99	850	10,33	1700	13,7
150	8,04	350	9,12	900	10,47	1800	14,2
160	8,17	400	9,24	950	10,61	1900	14,7
170	8,28	450	9,35	1000	10,76	2000	15,1
180	8,38	500	9,46	1050	10,91	2100	15,6

Сплавы платины

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава платины с 40 % эолота [287]

θ, Κ	$\frac{\Delta L}{L}$,%	a-10°	θ, Κ	$\frac{\Delta L}{L}$, %	α·10*
293 400 500 600 700	0 0,102 0,206 0,317 0,432	9,3 10,0 10,8 11,3 11,7	800 900 1000 1050	0,550 0,671 0,794 0,857	11,9 12,2 12,5 12,6

ө, к	Δ <i>L/L,</i> %, при концентрации железа, %			ө, к	Δ <i>L/L</i> , %, при концентрации железа, %		
	8	22,5	43		8	22,5	43
50 100 200 300 400	 0 0,06		0,04 0,02 0,07 0 0,14	500 600 700 800 900	0,18 0,28 0,38 0,48 0,57	0,20 0,31 0,41 0,52 0,65	0,03 0,10 0,26 0,40

Относительное изменение длины с температурой сплавов платины с железом [233]

Линейный коэффициент теплового расширения и относительное изменение длины с температурой сплава платины с 5 % рутения [287]

ө, к	$\frac{\Delta L}{L}$; %	æ•10*	Θ, Κ	$\frac{\Delta L}{L}$, %	a•10°
293	0	8,6	800	0,453	9,3
400	0,093	8,7	900	0,546	9,4
500	0,182	8,9	1000	0,642	9,8
600	0,271	9,0	1200	0,842	10,3
700	0,361	9,2	1300	0,949	10,9

ГЛАВА 10

ТЕПЛОПРОВОДНОСТЬ МЕТАЛЛОВ И СПЛАВОВ

і группа периодической системы элементов

Литий

Коэффициент теплопроводности [287]

0, K	λ, Βτ·м-1·K-1	Θ, Κ	λ, Βτ·м-1·Κ-1	0, K	λ, Β σ· μ-1· K-1
3 5 10 20 50 100	197 329 613 720 235 114	150 200 250 300 350 400	97,7 88,1 81,7 76,8 73,8 72,1	99 [16 273 295 373	9,9 % 0, 163] 71,2 71,0 70,0

Натрий

Коэффициент теплопроводности

0 , K	λ, Вт.м-3.К-3	0, K	λ, Βτ. μ-1. Κ-1					
По данным [160]								
220	143	300	133					
240	141	340	127					
260	138	370	123					
280	135							
	По данны	ім [287]						
2	3180	200	138					
5	4820	250	137					
10	2200	273	135					
50	158	300	132					
100	132	350	123					
150	133	371	120					

θ, Κ	λ, Βτ.Μ-1.Κ-1	θ, Κ	λ. Βτ·м-1·Κ-1
	По данн	ым [160]	
220	110	280	100
240	106	300	98
260	103	336,5	90
	По данн	ым [287]	
3	1960	200	104
5	1400	250	104
10	458	273	104
50	112	300	102
100	107	336,8	98,5

Калий Коэффициент теплопроводности

Рубидий

Коэффициент теплопроводности

Θ, Κ	λ, Βτ·Μ-1·Κ-1	θ, Κ	λ, Βτ.Μ-1.Κ-1				
	По даннь	ім [287]					
2	127	150	59.4				
5	188	200	58,9				
10	109	250	58,6				
20	68,5	273	58,3				
50	62,7	300	58,2				
100	60,3	312	58,1				
По данным [160]							
293	35,5	312	29,3				

Цезий

 $\lambda = 20,93 \div 26,75$ Вт·м⁻¹·К⁻¹ при 293 К [160]

Медь

Коэффициент теплопроводности [112, 120, 159, 233]

ө, қ	λ, Βτ· м ⁻¹ · K ⁻¹	ө, к	λ, Βτ·м-1·K-1	θ, Κ	λ. Βτ· м ⁻¹ · K ⁻¹
1	500	6	3100	15	5000
2	1000	7	3500	20	4900
3	1600	8	4000	30	3100
4	2000	9	4100	40	2000
5	2400	10	4500	50	1500

Продолжение таблицы

0 , K	λ, Βτ·м-1·Κ-1	0, K	β_{T} , β_{M-1} , -1	ө, к	λ, Βτ- м ⁻¹ - К ⁻¹
60 70 80 90	1000 700 650 600	200 220 240 260	417 415 412 408	600 700 800 900	391 388 359 354
100 120 140 160 180	500 450 430 420 419	280 350 400 450 500	404 404 403 402 395	1000 1100 1200 1300	339 334 327 320

Сплавы меди

Коэффициент теплопроводности сплавов меди с бериллием

ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ·м-1·K-1	θ,	λ, Βτ·м ⁻¹ ·K ⁻¹				
	0,6 % бериллия [112]								
322 370 418 492 561	167 173 184 194 202	610 667 714 741 827	208 215 217 224 212	874 937 1001	218 220 222				
		0,9% бер	иллия [112]						
329 374 427 491	148 153 164 172	558 613 668 743	182 194 207 194	810 883 918 999	194 186 200 194				
		1,2 % бер	оиллия [112]						
377 375 421 467 517	106 112 121 127 138	568 607 630 662 710	164 179 189 201 199	756 816 875 916 969	191 177 172 173 174				
	1	,5 % берн	иллия [120]						
20 25 30 40 50 60 70 80 90	17,7 21,0 25,1 33,3 41,6 49,5 57,2 65,3 72,2	110 120 130 140 150 160 170 180 190	85,8 92,1 97,9 104 109 115 120 124 129	210 220 230 240 250 260 273 280 293	138 142 146 149 154 158 163 165 170				
100	79,1	200	129	293 300	170				

ө, к	λ, Βτ·м- ¹ ·K-1	ө, к	λ, Βτ·м-1·K-1	ө, к	λ, Βτ· м ⁻¹ · Κ-3
		2% бери	иллия [112]		
326 377 412 506	87 94 97 108	553 604 643 672	124 152 179 194	735 807 886 958	182 155 140 139
		2,8% бер	оиллия [120]		
1 2 3 4 5 6 7	0,920 1,38 1,88 2,30 2,60 2,89 3,29	8 9 10 15 20 25 30	3,89 4,45 5,02 7,95 10,9 13,4 16,3	40 50 60 70 80	21,3 26,4 30,5 33,5 37,2

Продолжение таблицы

Коэффициент теплопроводности сплавов меди с цинком [233]

Концен- трация цинка, %	λ, Βτ· Μ- ¹ ·Κ	—1, при Ө, К	Концен- трация цинка, %	λ, Вт·м-1·К-1, при Θ, К	
	80	273		80	273
5 20	130 71,2	220 147	36 49	54,5 147	113 161

Коэффициент теплопроводности латуни Л68 (30 % цинка) [120, 160]

ө, К	λ, Βτ· Ν ⁻¹ · Κ ⁻¹	ө, к	λ; Βτ·Μ ⁻¹ ·Κ-1	ө, к	λ, Βτ· Μ ⁻¹ · Κ ⁻¹
70 80 90 100 150	70,0 71,0 72,1 73,2 83,7	200 250 300 400 500	94,1 102 110 110 110	600 700 800 900	114 116 120 121

Коэффициент теплопроводности латуни Л62 (40 % цинка) [160]

θ, Κ	λ, Βτ.Μ-1.Κ-1	ө, к	λ, Βτ.Μ-1.Κ-1
300 400 500 600	106 120 137 152	700 800 900	169 186 200

Коэффициент теплопроводности сплавов меди с алюминием при 293 К [233]

Концентрация алюминия, %	λ, Βτ·м- ¹ ·K-1	Концентрация алюминия, %	λ, Βτ.Μ-1.Κ-1
10 15 20 22 25	60,8 44,0 29,3 25,1 44,0	30 35 40 50	57,4 65,8 70,0

Коэффициент теплопроводности сплава меди с 0,02 % германия [233]

Ө, К	λ, Β _{T•M} -1•K-1	ө, к	λ, Βτ·Μ ⁻¹ ·Κ ⁻¹	Θ, Κ	λ, Βτ·Μ ⁻¹ ·Κ ⁻¹
5 15 25 40	712 1194 1278 1152	50 60 70 80	913 691 595 545	100 130 150	440 427 425

Коэффициент теплопроводности сплава меди с 1,04 % свинца [233]

0, K	λ, Βτ·м- ¹ ·K- ¹	θ, K	λ, Βτ·м-1·Κ-1
20	838	60	545
30	1006	80	420
40	850		

Коэффициент теплопроводности сплава меди с 0,027 % фосфора [233]

ө, к	λ, Β τ· Μ ⁻¹ ·K ⁻¹	9, K	λ, Βτ· Μ ⁻¹ · Κ ⁻¹	ө, к	λ, Βτ·Μ ⁻¹ ·Κ ⁻¹
5	10,5	30	79,6	80	113
10	18,9	60	79,6	100	142

Коэффициент теплопроводности сплава меди с 0,56 % теллура [233]

0 , K	λ, Βτ·Μ-1·Κ-1	ө, К	λ, Βτ·м-1·Κ-1
5 10 20 30	210 339 637 775	40 60 80	765 532 427

Коэффициент теплопроводности сплавов меди с железом [233]

Концентрация	λ, Вт.м-1.К-1, при Θ, К			Концентрация	λ, Вт•м-1•К-1, при Θ, К		
железа, %	3a, % 340 430 530 ж	железа, %	340	430	530		
0,06 0,09 0,42	301 285 199	306 295 209	310 303 222	1,25 4,16	189 180	201 192	218 209

Коэффициент теплопроводности сплавов меди с никелем и марганцем [160]

Концо легиј элеме	ентрация рующих нтов, %	λ, Вт.м-1.К-1, при Θ. К					
Никел	Марганец	300	400	50 0	600	700	800
10		59	66	7 5	81	88	102
20		34	41	48	54		
30		13	16	21	—		
40		23	26	34	40		
60	—	22	26	33	40	_	-
4	12	22	26	31	36		

Коэффициент теплопроводности константана (40 % никеля) [120]

ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹	0, K	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹
5	1,2	50	14,5	200	19,7
10	3,5	100	18,0	250	21,3
20	8,8	150	18,0	300	23,0

Коэффициент теплопроводности сплавов меди с бериллием и марганцем

Ө, К	λ, Βτ·м ⁻¹ ·K ⁻¹	0, K	$\lambda,$ BT·M ⁻¹ ·K ⁻¹	ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹
	0,9% 6	ериллия,	3,65 % марганца	[112]	
326	60.8	578	87.2	764	109
365	66.6	610	90.1	838	107
418	72,5	615	92,6	856	106
473	77,1	661	101	945	106
507	80,4	728	109	1014	109
	0,9 % (бериллия,	5,47 % марганца	[112]	
348	55,7	555	78,4	831	97.6
363	57.8	617	85,9	852	96.8
412	61,6	677	92,6	946	96,4
454	68,7	717	95,5		-
499	72,9	752	96,8		

				· · · · · · · · · · · · · · · · · · ·	
0 , k	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	λ, Βτ· м ⁻¹ · K ⁻¹	θ, К	λ, Βτ·м-1·K-1
	0.9 %	бериллия.	7.3 % мартан	ua [112]	
260	46.0	577	607	010	07.0
302	40,9	5//	00,7	810	87,0
401	49,9	611	72,9	901	88,8
426	52,8	661	77,5	963	88,8
487	59.5	708	81.3		•
542	64,9	749	85,1		
	0,9% б	ериллия, 9	,12 % маргани	(a [112]	
353	37.3	564	54.9	828	79.6
200	20.9	600	570	020	02.4
309	39,0	000	57,0	920	00,4
401	40,5	0/2	69,1	981	84,0
478	47,3	725	74,2		
516	50,7	778	78,8		
	1,2%6	ериллия, 1	,82 % марганц	(a [112]	
337	90.5	629	135	871	134
416	105	697	149	926	134
502	119	754	141	077	125
505	110	704	141	911	100
577	129	829	135		
	1,2% 6	ериллия, З	,67 % маргани	ta [112]	
337	81,3	642	124	851	119
422	94.3	698	127	885	116
513	106	750	131	951	115
570	114	798	123	1006	118
	1,2 % бе	риллия, 5,	 74 % марганца	a [112]	
341	64.1	576	05.1	806	109
011	04,1	070	50,1	000	102
300	00,0	052	103	842	101
425	75,8	713	105	935	92,6
483	83,4	7 63	103	1013	66,6
	1,2% бе	риллия, 7	,27 % маргани	(a [112]	
314	49.9	557	72 9	829	88.4
971	53.6	614	70,0	000	88.0
071	50,0	014	19,2	900	00,0
423	29,9	649	83,4	947	85,9
467	62,9	709	85,5	1020	84,6
513	68,7	792	88,0		
Коэффицие	нт теплопровод	ности спл	авов меди с б	ериллием и	кобальтом
-					1
ө, қ	λ, Вт∙м ⁻¹ •К ⁻¹	θ, Κ	[∧] , Вт. м ⁻¹ . К ⁻¹	ө, к	љ, Вт∙м-1•К-1
	0,1% б	ериллия. О	,3% кобальта	a [112]	
327	9 <u>0</u> 0	551	947	- <u>-</u>	905
007	203	001	241	020	290
387	219	033	256	881	292
424	228	701	274		
497	237	777	295		

			П	родолжени	е таблицы					
0, K	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	λ, Βτ·м ⁻¹ ·K-1	0 , K	λ. Βτ·м- ¹ ·K-1					
	0,1 % бериллия, 0,65 % кобальта [112]									
342	271	645	297	830	265					
388	278	688	296	913	248					
518	291	732	294	952	238					
570	29 5	766	284							
	0,1 %	бериллия,	1,2 % кобальт	ra [112]						
345	193	538	22 2	768	260					
384	199	601	234	813	252					
421	206	658	240	883	2 24					
468	212	746	259	982	197					
	0,2 % б	ериллия, 1	,31 % кобальт	a [112]						
338	217	630	262	858	245					
382	219	718	263	945	225					
428	235	774	252	961	225					
568	243	809	251							
	0,4 % беј	риллия, 2,	62 % кобальта	[112]						
346	220	523	243	723	253					
387	229	595	253	790	240					
464	241	655	264							
	0,5%6	ериллия, Э	,27% кобальт	a [112]						
345	218	502	243	809	255					
374	225	561	249	888	235					
413	233	627	257	1002	197					
464	240	715	264							
	0,7%6	ериллия, 4	,58% кобальт	ra [112]						
343	224	611	255	867	225					
398	238	67 7	253	955	190					
471	241	737	248							
549	247	772	230							
	0,9%6	ериллия, 5	,89 % кобальт	a [112]						
339	171	562	204	833	221					
399	181	635	211	870	212					
4 99	197	730	220	946	178					
	0,14 %	бериллия,	0,62% никеля	a [112]						
343	231	567	261	829	296					
418	257	637	270	835	296					
474	259	765	298							

0 , Κ	λ, Βτ· м ⁻¹ · K ⁻¹	θ, Κ	λ_i BT·M ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ· м- ¹ · K-1
	0,18 %	бериллия,	0,90 % никеля	[112]	
311	187	503	228	763	[,] 290
344	199	604	238	831	297
396	208	715	277		
	0,21 %	бериллия,	0,98 % никеля	ı [112]	
302	175	501	216	750	292
333	182	563	222	784	300
390	195	611	227		
442	204	673	256		

Коэффициент теплопроводности сплавов меди с бериллием и никелем

Коэффициент теплопроводности сплава меди с 36 % цинка, 3 % свинца [233]

θ, Κ	λ, Βτ·Μ-1·Κ-1	θ, Κ	λ, Βτ·м-1·Κ-3
25 50 100	25,1 31,4 49,5	400 500 600	117 134 147
350	111		

Коэффициент теплопроводности сплава меди с 0,3 % алюминия, 0,27 % циркония [233]

0 , K	λ, Βτ· м ⁻¹ · K ⁻¹	0, K	λ, Βτ·м-1·K-1	θ, K	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$
293 350	222 226	500 600	259 274	800 850	298 303
400	237	700	285		

Коэффициент теплопроводности латуни ЛАН 59-3-2 (2,5-3,5 % алюминия, 2-3 % никеля) [160]

ө, к	λ, B _{T·M} -1·K-1	ө, к	λ, Βτ.Μ-1.Κ-1
300	84	700	135
400	96	800	143
500	109	900	152
600	122		

				-	-
0 , K	λ, Βτ· м ⁻¹ · K ⁻¹	ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	λ, Βτ· м ⁻¹ · Κ ⁻⁸
	0,2 %	хрома, 0,2	7 % циркония	[112]	
340	216	657	304	838	343
449	244	713	326	910	335
550	262	779	341	1014	324
	0,37 %	хрома, 0,	28 % циркония	[112]	
343	169	524	220	701	308
391	181	596	241	751	319
461	185	F 6 9	287		
	0,9 %	хрома, 0,2	8 % циркония	[112]	
316	237	452	258	715	335
361	245	506	266	786	339
414	257	601	285	88 0	539

Коэффициент теплопроводности сплавов меди с хромом и цирконием

Коэффициент теплопроводности нейзильбера (12,5 % никеля, 40,4 % цинка) [120]

0, K	λ, Βτ·м- ¹ ·K-1	ө, к	λ, Βτ.Μ-1.Κ-1
20	5,00	200	57,7
50	11,1	250	74,6
100	23,3	293	89,5
150	40,5		

Коэффициент теплопроводности мельхиора (20,5 % никеля, 2 % питиса) [100]

z	%	цинка)	1120
			• •

θ, Κ	λ, Βτ·м-1·Κ-1	0 , K	λ, Βτ·м-1·Κ-1
20 50 100 150	9,87 18,5 38,1 67,1	200 250 300	96,1 12 4 153

Коэффициент теплопроводности сплава ЛТ-96 (томпак волоченый, 95—97 % меди) [160]

θ, Κ	λ, Βτ·м-1·K-1	θ, Κ	λ. Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ·м ⁻¹ ·K-1
300	244	500	246	700	255
400	245	600	250	800	260

Коэффициент теплопроводности сплава РТ90 (томпак прокатанный, 88—91 % меди) [160]

θ, Κ	λ, Βτ.Μ-1.Κ-1	θ, Κ	λ. Βτ·Μ-1·Κ-1
300	114	700	174
400	126	800	288
500	142	900	204
600	157		

Коэффициент теплопроводности сплава Л-80 (полутомпак, 79—81 % меди) [160]

ө, к	λ, BT·M ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ·м-1·Κ-)
300	111	700	128
400	115	800	135
500	117	900	144
600	122		

Коэффициент теплопроводности бронз [160]

Концентрация легирующих	λ, Вт.м-1.К-1, при Θ,К						
элементов, %	300	400	5 00	60 0	700	800	
25 олова	25	32	37	42	_	_	
10 олова, 27 цинка	56	63	70				
5 олова, 2 цинка, 0,15 фосфора	80	92	—	115	121	131	
8 олова, 0,3 фосфора	45						
12,4 олова, 0,4 фосфора	37	48	54	-	_		

Коэффициент теплопроводности промышленных бронз [160]

			λ, Вт.м.	-1•K-1,	при Ө, К		
Марка	300	400	500	600	700	800	900
Бр010	48	52	56	_			_
Бр0Ц10-2	55	56	63	68	72	75	77
Броц8-4	68	77	83	88	93	96	100
Бр0Ц6-6-3	64	71	77	82	87	91	93
Бр0Ц4-3	84	93	101	108	114	120	124
Бр0Ф10-1	34	38	43	46	49	51	52
Bp0C5-25	58	64	71	77	80	83	85
Бр0С10-10	45	51		61	_	67	_
BpA-5	105	114	124	133	141	148	153
БрА7	97	105	114	122	129	135	141
БрАМЦ9-2	71	83	93	101			_
БрАЖМЦ10-3-1-5	59	64	71	77	80	84	—
БрАЖН10-4-4	75	87	97				
БрАНЖ11-6-6	64	71	77	82	87	94	
БрКМЦЗ-1	42	50	55	54	54		
BDMII-5	94	103	112	122	127		
БрМЦС8-20	32	37	43	46	49	51	53

Коэффициент теплопроводности латуни оловянистой ЛО70-1 (69—72 % меди) [160]

θ, Κ	λ, Βτ.Μ-1.Κ-1	θ, Κ	λ, Βτ·м-1·K-1
300	92	500	125
400	110	600	136

Коэффициент теплопроводности томпака оловянистого ЛТО90-1 (88—91 % меди, 0,25—0,75 % олова) [160]

Ө, К	λ, Βτ.μ-1.Κ-1	θ, Κ	λ, Βτ·Μ-1·Κ-1
300	124	700	194
400	141	800	209
500	157	900	222
600	174		

Коэффициент теплопроводности сплава меди с 3,15 % кремния, 1,13 % марганца, 1 % цинка [233]

ө, к	λ, Βτ·м-1·Κ-1	Θ, Κ	λ, Βτ·м-1·K-1
10 25 50	2,1 4,3 8,4	70 80	11,7 13,2

Серебро

Коэффициент теплопроводности [112, 120, 233]

ө, к	λ, Βτ· м ⁻¹ · K ⁻¹	ө, к	λ_{i} Bt·M ⁻¹ ·K ⁻¹	ө, к	λ, Βτ· Μ ⁻¹ · Κ-1
3	4800	20	3800	200	427
4	6600	2 5	2750	300	423
5	7900	30	1700	503	419
6	9200	40	1000	58 7	412
7	10300	50	770	667	406
8	10600	60	620	753	396
9	10300	70	540	863	385
10	10100	80	500	917	381
15	6900	100	431		

Сплавы серебра

Коэффициент теплопроводности сплавов серебра с медью при 293 К [120]

Концентрация меди, %	λ, Βτ·Μ-1·Κ-1	Концентрация меди, %	λ, Βτ·м-1·Κ-1	
7,5	351	20	340	
10	347	50	314	

Сплав серебра с 10 % золота: $\lambda = 197 \text{ Вт} \cdot \text{м}^{-1} \cdot \text{K}^{-1}$ при 293 К [120]; с 20 % кадмия: $\lambda = 100 \text{ Вт} \cdot \text{м}^{-1} \cdot \text{K}^{-1}$ при 293 К [120].

1		λ, Вт.м-1.К-1	при концентра	ции кадмия, %	_
ө, к	2	5	10	20	30
10 50 80 100 200 300 400 500 600	100 163 208 	38,1 86,6 128 138 209 235 249 261 270	27,7 62,3 93,5 100 145 175 192 206 218 218	17,3 45,0 69,2 76,2 114 138 154 166 177 187	13,8 38,1 57,1 64,0 98,7 123 137 149 159
700	-	280	228	10/	109

Коэффициент теплопроводности сплавов серебра с кадмием [233]

Коэффициент теплопроводности сплава* серебра с окисью кадмия при 293 К [120]

Концентрация окиси кадмия, %	λ, Βτ·м-1·K-1
8	368
12 15	351 322

• Порошковый сплав, полученный прессовкой и спеканием.

Коэффициент теплопроводности сплавов * серебра с молибденом при 293 К [120]

Концентрация молибдена, %	λ, BT·M-1·K-1
30	247
65	238

Сплавы получены пропиткой молибдена расплавленным серебром.

Коэффициент теплопроводности сплавов * серебра с вольфрамом при 293 К [120]

Концентрация вольфрама, %	1я % λ, Вт·м ⁻¹ ·K ⁻¹ Концентрация вольфрама, %		λ, Βτ·Μ-1·Κ-1	
30 50 60	339 310 268	65 75	247 230	

• Сплавы получены пропиткой вольфрама расплавленным серебром в водороде.

Коэффициент теплопроводности сплавов * серебра с никелем при 293 К [120]

Концентрация никеля, %	Концентрация никеля, % λ, Вт.м-1.К-1		λ, Βτ·Μ-1·Κ-3	
15	397	40	322	
30	364	50	280	

• Порошковые сплавы, полученные прессовкой и спеканием.

		λ, Вт.м.	-1.K-1, при	и к онцен тра	ции паллад	ия, %	
Θ, Κ	2	5	10	20	30	40	50
7	45,0	24,2	17,3	15,6	13,8	12,1	8,7
15	65,8	36,4	22,5	19,0	15,6	13,8	12,1
50	121	67,5	39,8	26,0	22,5	19,0	16,4
100	177	107	62,3	38,1	31,1	26,0	19,0
150	-	142	84,8	46,7	38,9	32,0	22.5
180	_	-	-	52,8	43,3	34,6	24,2

Коэффициент теплопроводности сплавов серебра с палладием [233]

Золото

Коэффициент теплопроводности [112, 120, 233]

ө, к	λ, Βτ· м ⁻¹ · K ⁻¹	ө, к	λ, Βτ· м ⁻¹ · K ⁻¹	θ, Κ	λ, Βτ· м ⁻¹ · K ⁻¹
2 3 4 5 6 7 8 9 10 15 20 30	200 270 340 430 500 570 640 720 790 795 800 691	40 50 60 70 80 90 100 110 120 130 140 150	502 439 423 420 380 359 343 343 343 342 342 341 340	200 250 300 331 396 471 569 636 716 798 889 964	335 324 314 303 288 282 278 272 271 262 259 247

Сплавы золота

Сплав золота с 30 % серебра: $\lambda = 293$ Вт·м⁻¹·K⁻¹ при 293 К [120]; с 7 % платины: $\lambda = 197$ Вт·м⁻¹·K⁻¹ при 293 К [120].

II группа периодической системы элементов

Бериллий

Коэффициент теплопроводности «очень чистого» бериллия [160]

0. K	λ, Ε	вт.м-1.К-1
θ, Κ	1	2
473 673 873	163 159 155	138 130 121

Примечание. 1 — спеченный порошок, 2 — выдавлен из чешуйчатого бериллия.

Коэффициент теплопроводности бериллия [120, 10	50]	
--	-----	--

		λ, Вт.м	4-1.K-1	_		λ, Βτ-Μ-1-Κ-1			
ө, қ	К 1 2 3	· 3	4	θ, Κ	1	2	3	4	
100 120 140 160 200 220 240 260 280 300 350	112 111 109 107 105 104 103 101 99 97 94	206 204 202 200 196 194 192 190 188 186 182 176	168 167 164 160 156 152 151 149 146 142 138 132	180 178 176 173 171 168 167 165 163 161 156 150	450 550 600 700 800 900 1000 1100 1200 1300 1500	87 84 81 78 74 68 64 61 57 55 51 46	164 156 151 145 134 120 109 96 86 84 82 76	121 116 111 104 97 91 85 81 78 75 73 67	138 132 126 119 110 100 86 80 78 75 73 67

Примечание. 1 — холоднопрессованный спеченный, 2 — горячепрессованный спеченный, 3 — холоднопрессованный спеченный, выдержан при 1300 К в течение 1000 ч, 4 — горячепрессованный спеченный, выдержан при 1300 К в течение 1000 ч.

Сплавы бериллия

Коэффициент теплопроводности сплавов бериллия с алюминием при 300 К [120]

Концентрация алюминия, %	λ, BT·M-1·K-1
33	19,2
36	21,4
43	19,3

Магний

θ, Κ	λ, Βτ·м ⁻¹ ·K ⁻¹	θ, K	λ, Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	^λ , Вт•м ⁻¹ •К-1
10 20 40 173 223 273 323 373 423	866 1212 727 179 170 165 158 152 146	473 523 573 623 673 723 773 823 873	140 135 130 124 120 115 112 108 131	922 924 973 1023 1073 1123 1173	130 100 99 98 98 98 98 98

Коэффициент теплопроводности [160, 233]

Сплавы магния

Коэффициент теплопроводности сплавов магния с цинком при 300 К [160]

Концентрация цинка, %	λ, Β <u>τ·</u> Μ- ¹ ·K- ¹	Гонцентрация цинка, %	λ, Βτ· м-1·K-1
1	146	4	115
2	129	5	113
3	119	6	108

Коэффициент теплопроводности сплавов магния с алюминием [160]

ө, к	λ, Вт · м ⁻¹ · К ⁻¹ , при концентрации алюминия, %		ө, к	λ. Вт · м-1 · К-1, при концентрации алюминия, %		
	8	10		8	10	
300 400 500	66 73 79	101 106 111	600 700 800	84 89 93	115 118 120	

Коэффициент теплопроводности сплавов магния с алюминием при 300 К [160]

Концентрация алюминия, %	λ, Вт • м ⁻¹ • К ⁻¹	Концентрация алюминия, %	λ, Br · m ⁻¹ · K ⁻¹
1	142	5	92
2	121	6	83
3	108	7	77
4	98	8	73

Коэффициент теплопроводности сплавов магния с оловом при 300 К [160]

Концентрация олова, %	λ, Β 7 · м ⁻¹ · K ⁻¹	Концентрация олова, %	λ, Bt · м ⁻¹ · K ⁻¹
1 2 3	138 96 75	5 6 7	66 58
5 4	71	8	50

Коэффициент теплопроводности сплавов магния с марганцем при 300 К [160]

Концентрация марганца, %	λ, Β 7 · м ⁻¹ · K ⁻¹	Концентрация марганца, %	λ, Br · m ⁻¹ · K ⁻¹
1	161	3	108
2	119	4	102

Коэффициент теплопроводности сплава магния с 2,64 % марганца [160]

θ, Κ	λ , $B_{F} \cdot M^{-1} \cdot K^{-1}$	θ, Κ	λ, Br · м ⁻¹ · K ⁻¹
300	141	600	148
400	143	700	151
500	145	800	154

Коэффициент теплопроводности сплава магния с 0,8—1,5 % алюминия и 0,01—0,8 % бериллия (магнокс А12) [160]

ө, К	λ , B ₇ · M ⁻¹ · K ⁻¹	θ, Κ	λ, B 7 · M ⁻¹ · K ⁻¹
173	118.7	52 3	124.8
223	119,7	573	125,6
273	120,4	623	126,6
323	121,4	673	128,4
373	122,1	773	129,0
423	123,1	873	130,8
473	123,9		

Примечание. Сплавы магния с 0,05 % бериллия и 1 % алюминия (магноко С) и сплав магния с 0,05 % бериллия, 1 % алюминия, 0,01 % кальция (магноко Е) в пределав погрешности измерений имеют такие же коэффициенты теплопроводности.
	Концентрация легирующих элементов, %							
Сплав	Алюминий	Кальций	Медь	Железо	Лантан	Марганец	Неодим	
Мл2	≪0.1	_	≤ 0.1	< 0.08	-	1-2	_	
МлЗ	2,5-3,5	—	≤ 0,1	< 0.08	-	0,15-0,5		
Мл4	5-7	_	≤ 0,1	≤ 0,08	_	0,15-0,5	_	
Мл5	7,5—9		≪ 0,1	< 0,08	—	0,15-0,5	_	
Мл6	9-10,2	-	≪ 0,1	≤ 0,08	_	0,1-0,5	_	
Мл7—1	5—6,5	0,20,5	≪ 0,1	≤ 0,08		0,3-0,6		
Мл10	≪0,03		< 0,03	≤ 0,03		_	0,2—2,8	
Мл11	≪0,03	-	≪ 0,03	< 0,03			—	
Мл12	≪0,03	-	≤ 0,03	≤ 0,01				
Мл14	1,7—2,3	—	< 0,03	≤ 0,01		-	—	
Мл15	≪0,03	—	≪ 0,03	≤ 0,01	0,6-1,2	? —	_	
ВМл1	_	—	≪ 0,03	≪ 0,01			-	

Коэффициент теплопроводности литейных магниевых сплавов при 293 К [120]

Продолжение таблицы

	Концентрация легирующих элементов, %						λ.
Сплав	Никель	Кремний	[орий	Цинк	Цирконий	P3M*	$\begin{vmatrix} B_{T} \cdot M^{-1} \times \\ \times K^{-1} \end{vmatrix}$
Мл2	≪ 0,01	≪ 0,1	-	≪ 0,05	_	_	134
М лЗ	≪ 0,01	≪0,25		0,5—1,5	-	-	105
Мл4	≪ 0,01	≪ 0,25		23			79,5
Мл5	≪0,01	≼ 0 , 25	-	0,2—0,8	-	-	77,4
Мл6	≪ 0,01	≪ 0,25	_	0,6—1,2		-	77,4
Мл7—1	≪ 0,01	≪ 0,25		0,30,7			75,3
Мл10	≪ 0,0!	≪ 0,03	-	0,1-0,7	0,4—1,0	2,5—4	113
Мл11	≤ 0,01	≤ 0,03		0,2-0,7	0,40,8		117
Мл12	≪ 0,01	≪ 0,03	-	45	0,6-1,1	-	134
Мл14	≪ 0,005	≪0,02	2,63,8		0,5—1,0	-	109
Мл15	≪ 0,01	≪ 0,03	-	45	0,7—1,0	_	138
ВМл1	≪ 0,005	≪ 0,02	-	-	0,5-1,0	-	109

Примечание. РЗМ — сумма редкоземельных элементов.

Коэффициент теплопроводности деформируемых магниевых сплавов при 293 К [120]

Марка сплава	Концентрация основных легирующих элементов, %	$\begin{vmatrix} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$
MA2-1	3,8-5,0 алюминия, 0,4-0,8 марганца,	96,2
MA1 MA2	0,0—1,5 цинка 1,3—2,5 марганца 3—4 алюминия, 0,15—0,5 марганца, 0,2—0,8 циркония	126 96 , 2

.

Марка сплава	· онцентраци» основных легирующих элементов, %	λ, Βτ · м ⁻¹ · K ⁻¹
MA3	5,5—7,0 алюминия, 0,15—0,5 марганца, 0.2—0.8 пиркония	71,1
MA5	7,8—9,2 алюминия, 0,15—0,5 марганца, 0,2—0,8 ширкония	58,6
MA8	1,5—2,5 марганца, 0,15—0,35 редкоземельных	134
MA9	0,3—0,7 алюминия, 0,1—0,3 кальция,	146
MA11	1.5—2.5 марганца, 2.5—3.5 неолима	109
MA13	0.4-0.8 марганца, 1.7-2.5 тория	121
BM65-1	5-6 цинка. 0.3-0.9 циркония	117
ВМД-1	1,2-2,0 марганца, 2,5-3,5 тория	126

Сплав магния электрон (2,5 % алюминия, 0,5 % меди, 4 % тория) $\lambda = 126 \text{ Br} \cdot \text{м}^{-1} \cdot \text{K}^{-1}$ при 273 К [120].

Коэффициент	теплопроводности	некоторых	магниевых	сплавов	[160]
-------------	------------------	-----------	-----------	---------	-------

Марка	Концентрация дегирующих	λ, Вт · м-1 · К-1, при Θ, К					
сплава	элементов, %		400	500	600	700	800
ZW1	0,7 иридия, 1,5 цинка	133	137	140	143	147	150
AZ61	6,5 алюминия, 1,1 иридия, 0,5 марганца	83	91	97	102	105	108
M15Z	0,5 циркония, 0,1 марганца, 0,53 цинка	120	127	132	136	140	143
M25	0.37 циркония, 0.24 марганца	114	122	126	131	135	137
M15C	0,57 циркония, 0,1 марганца, 1,36 церия	109	116	121	125	128	131

Кальций

 $\lambda = 126 \text{ Вт} \cdot \text{м}^{-1} \cdot \text{K}^{-1}$ при 273 K [163]

Цинк

Коэффициент теплопроводности [120]

ө, к	λ, Βτ · м-1 • исто	• К-1, при те, %	0 , K	λ, Β τ · м ⁻¹ чисто	• К-1 при re, %
<u></u>	99 ,9 995	99, 9 97		99 ,9 995	99,997
2 5 10 20	550 1300 1530 760	250 700 1120 650	25 30 300	540 350 113	485 320 113

:

0 , K	$\left \begin{array}{c} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{array} \right $	θ, Κ	$B_{T} \cdot M^{-1} \cdot K^{-1}$	ө, к	$B_{T} \cdot M^{-1} \cdot K^{-1}$
100	145	170	140	240	133
110	145	180	139	250	132
120	144	190	138	260	132
130	144	200	137	273	131
140	143	210	136	280	130
150	142	220	134	293	129
160	142	230	133	300	128

Коэффициент теплопроводности цинка (99,96 %) [120]

Сплавы цинка

Коэффициент теплопроводности промышленных цинковых сплавов при 293 К [120]

	Концентрация			
Сплав	Алюминий	Медь	Магний	λ, Βτ • м-1 • Κ-1
ЦАМ0,2-4	0,2	4,0	_	
LIAM4-1	4,0	1,0		
11AM10-2	10,0	2,0	0,03	
ЦАМ-1		1,0	_	

Кадмий

Коэффициент теплопроводности [160]

θ, Κ	$\lambda, BT \cdot M^{-1} \cdot K^{-1}$	0 , K	λ , BT · M ⁻¹ · K ⁻¹
86	104.67	473	90.71
293	93,04	594,66	89,78
373	91,88		

Коэффициент теплопроводности монокристалла кадмия (99,99 %) [112]

θ, Κ	$\lambda, BT \cdot M^{-1} \cdot K^{-1}$	θ, Κ	$\lambda, BT \cdot M^{-1} \cdot K^{-1}$
413,6	111	475,0	109
419,6	111	501,6	108
435,4	110	525,4	108

Коэффициент теплопроводности поликристалла кадмия (99,99 %) [112]

θ, Κ	λ, Βτ · м ⁻¹ · K ⁻¹	θ, Κ	$\lambda_i BT \cdot M^{-1} \cdot K^{-1}$
392,6	96,0	469,9	93,4
425,8	95,1	501,2	92,2
450,2	94,3	521,8	91,3

Ртуть

Коэффициент теплопроводности [160]

θ, K	λ, Br · M ⁻¹ · K ⁻¹
100	48,0
200	29,6
300	8,0

Коэффициент теплопроводности монокристалла ртути вдоль кристалло-графических осей [287]

ө, қ	λ, Вт · м-1 ·	К -1, вдоль оси	0. K	λ, Вт · м-1 · К-1, вдоль оси		
	1	2		1	2	
2 5 10 20 50	21500 166 57,6 50,4	14900 115 40,0 35,4	100 150 200 234,28	39,0 36,0 34,0 32,9	28,5 27,1 26,4 26,0	

III группа периодической системы элементов

Алюминий

Коэффициент теплопроводности алюминия

θ, K	λ, Βτ·Μ ⁻¹ ·Κ ⁻¹	θ, Κ	λ, Βτ·м ⁻¹ · Κ ⁻¹	θ, Κ	λ, Βτ· м ⁻¹ · K-1
		99,995	% [120]	-	
4	1400	80	450	200	240
6	2200	90	350	210	235
8	3000	100	300	220	236
10	5200	110	280	230	230
15	4000	120	270	240	230
20	4000	130	260	250	230
25	3500	140	250	260	230
30	2600	150	250	273	230
40	1750	160	250	280	2 30
50	1000	170	250	293	230
60	680	180	245	30 0	230
70	500	190	245		

Продолжение табли							
θ, Κ	λ. Βτ·м ⁻¹ · K ⁻¹	0, K	λ, Βτ·м-1·Κ-1	ө, к	λ, Βτ∙ м ^{−1} • K ^{−1}		
		99,99 %	6 [112]				
338 401 457	256 241 238	553 631 730	227 219 216	796	211		
		98,5 %	6 [160]				
173 273 293	210 201 202	373 473 573	205 229 230	673 773	318 374		
		Плавлены	й алюминий				
100 200 250 300 350	197 201 204 207 210	400 450 500 550 600	213 217 222 227 238	650 700 800 900	242 251 271 282		

Алюминий (99,5 % и 99,0 %), отожженный: $\lambda = 206$ Вт · м⁻¹ · K⁻¹ при 293 К [160].

Сплавы алюминия

Коэффициент теплопроводности сплавов алюминия с литием при 293 К [120]

Концентрация лития, %	λ. Вт · м-1 · К-1	Концентрация лития, %	λ, Вт · м-1 · К-1
1	125	7	69
2	96	8	66
3	91	9	58
4	85	10	54
5	75	11	50
6	71		

Коэффициент теплопроводности сплавов алюминия с медью и другими легирующими элементами [160]

Концентрация легирующих эле-	λ, Вт · м-1 · К-1, при Θ, К							
ментов, % (вид обработки)	173	273	373	473	573	673		
4 меди (литой)	_	125	125	139	159	173		
8—10 меди	-		125	136	153			
4 меди, 1,5 магния	—		142					
З меди, 10 цинка			138		—	—		
3-5 меди, 0,5 магыня	158	159	165	181	194	211		
2,2 меди, 1,6 серебра, 0,85 крем- ния, 1,25 никеля, 1,35 железа (отожженный)	-		179		-			
1,95 меди, 2,3 магния, 6,0 цин- ка (закаленный)	116	117	119	132	150	190		
4,3 меди (закаленный)	_	-	118		-	—		

Коэффициент теплопроводности сплавов алюминия с магнием и другими легирующими элементами [160]

Концентрация легирующих	λ, Вт. м-1 · К-1, при Θ, К								
элементов, % (вид обработки)	173	273	293	373	473	573	673	773	
8 магния 10 магния 0,7 магния, 0,25 марганца,	85	102 84	106 84 171	123 87	148 92	102	113 —	123	
0,6 магния, 0,6 марганца (отожженный)	167	169	171	176	186	196	205	-	

Коэффициент	теплопроводности	сплавов	алюминия	с	цинком	[120]	

Концентрация цинка, %	λ, Вт • м- при €	-1 • K-1, 9, K	Концентрация	λ , B _T · M ⁻¹ · K ⁻¹ , при Θ, K		
	83	273	цинка, %	83	273	
5 10 20 30 40 50	230 210 175 105 155 150	200 188 165 152 147 140	60 70 80 90 95	145 140 138 133 130	138 132 130 125 120	

Коэффициент теплопроводности сплавов алюминия с кремнием и другими легирующими элементами [160]

Концентрация легирующих элементов.	λ, B _T · M ⁻¹ · K ⁻¹ , πри Θ, K							
% (вид обработки)	173	273	293	373	473	573	673	
5 кремния (литой)		_	142	_		_	_	
12 кремния (литой)	170	174	176	196	210	245	290	
20 кремния	144	158	160	169	179	189	200	
5,5 кремния, 4,5 меди (литой)			142		—	—	—	
7 кремния, 0,3 магния (литой)	_		150	—		_	_	
4 кремния, 3 меди, 0,3 магния (ли- той)	114	121	121	131	148	165	-	
3 кремния, 4 меди	114	121	121	131	148	164		
1 кремния, 5 магния			126					

Коэффициент теплопроводности сплавов алюминия с никелем и другими легирующими элементами [233]

Концентрация легирующих элементов.	λ, Βτ	λ , BT · M ⁻¹ · K ⁻¹ , при Θ, K					
% (вид обработки)	273	350	450	550			
4 никеля, 3 марганца, 0,5 железа, 0,2 крем- ния, 0,2 титана (закаленный)	81,4	90,5	100	107			
5 никеля, 3 марганца, 2 меди, 0,5 магния, 0,5 хрома, 0,5 железа, 0,4 бериллия, 0,3 коемния (литой)	91,7	98,7	107	113			
2,85 никеля, 2,02 марганца, 1,67 меди, 0,52 магния, 0,49 хрома, 0,41 железа, 0,17 кремния, 0,07 титана (закаленный)	115	125	136	143			

Коэффициент теплопроводности сплавов алюминия А, АМп. АМг. АМг5, АВ, Д18, Д1, Д16, АК8, 32S, В95 при 293 К [160]

	Кон	нцентра	λ, Вт. м-1. К-1, при обработке				
Марка сплава	Маг- Мар- ний ганец Другие элементы		Нагар- товка	Закал- ка	Отжиг		
Δ	0.05	_	0.1	Кранций жалооо	917		225
AMu	0,00	0.03	1.3	Кремний шини	159	_	188
AMr	0.1	0.03	1.3	Железо, кремний	125	_	125
AMr5	0.2	5.0	0.35	Железо, кремний	83		116
AB	< 0.6	0.7	0.25	Железо, цинк		170	209
Д18	2.6	0.35	0,2	Железо, цинк	111	122	173
Ді	4,3	0,6	0,6	Железо, кремний, ни-	-	117	170
Д16	4,4	1,5	0,6	кель, цинк Железо, кремний,		116	169
AK8	4.4	0.5	0.8	ципк О 8 кремния	_	154	188
32S	0.9	1.0				133	154
B95	1,7	2,3	0,6	6 цинка	111	117	143

Коэффициент теплопроводности сплавов алюминия АМг5, АК8, Д1, Д16 [160]

	λ, Вт · м-1 · К-1, для сплава марки					
0, K	AMr5	AK8	Д1	Д16		
10		8,0		8,32		
20		_	30,2	17,0		
50	44,0	36,0	64,0	39,0		
100	65,0	103	108	64,5		
150	79,0	136	125	78,9		
200	92,0	168	139	89,9		
250	102	196	153	97,3		
293			171	106		
300	_	219	-	-		

Примечание. Сплав АМг5 наклепанный, сплав АК8 отожженный, сплав Ді отожженный, сплав Д16 закаленный.

Коэффициент теплопроводности сплавов алюминия АК4, АК4-1 [160]

Марка сплава (концентрация	λ, Вт · м-1 · К-1, при Θ, К					
легирующих элементов), %	3 00	400	500	600	700	
АК4 (1,9—2,5 меди, 1,4—1,8 магния, 1,0—1,5 никеля, 1,1—1,6 железа, 0,5—1,2 кремния, <0,2 марганца, <0.3 цинка)	146,5	150,7	159,1	167,5	171,7	
АҚ4-1 (1,9—2,5 меди, 1,4—1,8 маг- ния, 1,0—1,5 никеля, 1,1—1,5 же- леза, ≤0,35 кремния, ≤0,2 мар- ганца, 0,02—0,1 титана)	142,5	146,5	150,7	159,1	163,3	

Коэффициент теплопроводности сплавов алюминия АЛ8, АЛ13, АЛ22, АЛ17, АЛ19 при 300 К [160]

Марка сплава (концентрация легирующих элементов, %)	λ, Βτ·м-1·K-1,
АЛ8 (<0,3 меди, <0,3 железа, 9,5—11,5 магния, <0,1 марганца, <0,1 цинка)	92,0
AJ13 ($< 0,1$ меди, $< 0,5$ железа, 4,5—5,5 магния, 0,1—0,4 марганца, 0,8—1,3 кремния, $< 0,2$ цинка)	125
АЛ22 (0,03—0,07 бериллия, < 0,5 железа, 10,5—13,0 маг- ния, 0,8—1,2 кремния, 0,05—0,15 титана, < 0,1 цинка)	83,7
АЛ17 (4,5—5,0 меди, \ll 1,0 железа, \ll 0,03 магния, \ll 0,1 марганца, \ll 0,01 свинца, \ll 0,1 кремния, \ll 0,2 титана, \ll 0,2 цинка \ll 0,01 одова)	155
АЛ19 (4,5—5,3 меди, < 0,2 железа, < 0,05 магния, 0,6— 1,0 марганца, < 0,1 никеля, < 0,3 кремния, 0,15—0,35 титана, < 0,2 цинка)	105

Коэффициент теплопроводности сплавов алюминия АЛЗ, АЛЗ-В, АЛ6 [120, 160]

Марка сплава (концентрация детарующих элементов, %)	λ, Вт · м ⁻¹ · К ⁻¹ , при Θ, К	
	300	700
АЛЗ (0,2—0,8 магния, 4—6 кремния, 0,2—0,8 марган- ца, 1,5—3,5 меди, 1,0—1,5 железа, < 0,3 цинка,	163	159
АЛЗ-В (0,2—0,8 магния, 4—6 кремния, 0,2—0,8 мар- ганца, 1,5—3,5 меди, 1,0—1,5 железа, < 0,5 цинка,	163	159
≼ 0,1 никсля) АЛб (< 0,1 магния, 4,5—6,0 кремния, < 0,3 марган- ца, 2,0—3,0 меди, < 1,1 железа, 0,3 цинка)	151	-

Коэффициент теплопроводности сплавов алюминия АЛ1, АЛ24, АЛ25 АЛ26 при 300 К [120]

Марка сплава (концентрация легирующих элементов, %)	λ, Β _Τ . _M -1. K-1
АЛІ (3,75—4,5 меди, ≪0,8 железа, 1,25—1,75 магния, 1,75—2,25 никеля, ≪0,3 кремния ≪0,3 цинка)	129
АЛ24 (<0,2 меди, <0,5 железа, 1,5-2,0 магния, 0,2-0,5	157
АЛ25 (1,5—3,0 меди, <0,7 железа, 0,8—1,3 магния, 0,3— 0,6 марганца, 0,8—1,3 никеля, 11,0—13,0 кремния, 0,5 ти-	167
АЛ26 (0,1—0,4 хрома, 1,5—2,5 меди, 0,4—0,7 магния, 0,4— 0,8 марганца, 1,0—2,0 никеля, 20—22 кремния)	168

Коэффициент теплопроводности сплава алюминия Д20 (5,91 % меди, 0,28 % марганца, 0,01 % хрома, 0,21 % железа, 0,01 % магния, 0,13 % кремния, 0,02 % титана, 0,10 % ванадия, 0,05 % цинка, 0,16 % циркония) [120]

θ, Κ	λ, BT · M ⁻¹ · K ⁻¹	θ, Κ	λ, Br · м ⁻¹ · K ⁻¹
20	27,0	200	100
50	44,0	250	113
100 150	71,0 85.0	300	138

өк	λ, Вт · м-1 · К-1,		и-1 · К-1,		λ, Вт · м-1 · К-1,	
	для сплава марки		ава марки		для сплава марки	
0, K	АД1	АМц2	0, K	АДІ	Амц2	
5 19 20 40	1 12 270 322	13,1 28,2 57,2 106	100 150 200 250	226 209 208 204	144 153 160 164	
60	262	128	29.3	202	169	
80	248		300	202	169	

Коэффициент теплопроводности сплавов * алюминия АДЗІ (0,1 % железа, 0,65 % магния, 0,1 % марганца, 0,38 % кремния) и АКб (1,8—2,6 % хрома, < 0,7 % железа, 0,4—0,8 % магния, 0,4—0,8 % марганца, < 0,1 % никеля, 0,7—1,2 % кремния, < 0,1 % титана, < 0,3 % цинка) [120]

өк	λ, Вт · м ⁻¹ · К - 1. для сплава марки		ө. к	λ, Вт·м ⁻¹ ·К-1, для сплава марки		
	АД31	AK6	0,1	АД31	АКб	
10 50 100 150	86,8 276 213 204	69,0 109 142	200 250 300	198 —	178 210 230	

* Закаленные сплавы.

Коэффициент теплопроводности сплава * алюминия АМг6 [120]

θ , Κ	λ, Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	λ, Вт · м-1 · К-1
10 50 100 150	5,5 32,4 51,0 68,0	200 250 300	84,2 91,8 92,6

• Отожженный сплав.

Коэффициент теплопроводности сплава алюминия АЛ4 (8,0—10,5 % кремния, 0,2—0,5 % марганца, 0,6—1,0% железа, 0,17—0,30 % магния, $\leq 0,3$ % меди, < 0,01% олова, < 0,3 % цинка) [120]

ө, к	λ, Βτ·м-ι·Κ-1	θ, Κ	$\begin{vmatrix} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	0, K	λ. Βτ·м ⁻¹ ·K ⁻¹
10	38,5	110	137	210	153
20	67.2	120	139	220	155
30	88,2	130	140	230	156
40	106	140	142	240	158
50	119	150	143	250	160
60	128	160	145	260	162
70	130	170	146	273	163
80	132	180	149	280	165
90	134	190	150	293	168
100	135	200	152	300	168

Сплав алюминия АД2 (<0,5 % железа, <0,55 % кремния, <0,1 % меди, <0,1 % марганца, <0,1 % цинка, <0,1 % магния, <0,1 % других примесей): $\lambda = 206 \text{ Bt} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ при 293 К для отожженного сплава [160]. Сплав алюминия САП1 (6—9 % окиси алюминия, 0,2 % железа): $\lambda = 176 \text{ Bt} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$ при 293 К [120].

Галлий

λ = (40,06; 100,14; 20,03) Вт · м⁻¹ · К⁻¹ вдоль кристаллографических осей при 293 К [163]

Коэффициент теплопроводности [120, 160]

θ, Κ	λ , BT · M ⁻¹ · K ⁻¹	θ, Κ	λ , BT · M ⁻¹ · K ⁻¹
273 280	41 38	293 300	34
283	37	500	55

Коэффициент теплопроводности монокристалла вдоль кристаллографических осей [287]

	λ, Вт · м-1 · К-1, вдоль оси			λ , Вт · м ⁻¹ · K ⁻¹ , вдоль оси			
ө, к	1	2	3	θ, Κ	1	2	3
1 2 5 10 20 50 100	22600 29800 5920 1190 265 63,4 47,4	65700 83200 16300 3250 713 142 95,1	5410 7600 1820 349 83,5 26,9 18,1	150 200 250 273 300 302,93	44,3 42,4 41,4 41,0 40,6 40,6	91,8 89,6 88,5 88,4 88,3 88,3	16,7 16,3 16,0 16,0 15,9 15,9

θ, Κ	λ. Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ·м-1·K-1	θ, Κ	λ, Βτ·м- វ· Κ-1
2	520	15	340	160	98.0
3	680	20	180	180	91.2
4	780	30	120	200	83,0
5	800	40	110	220	72,5
6	710	60	110	240	61,5
7	630	80	109	260	48,2
8	540	100	108	280	34,6
9	460	120	106	293	25,1
10	410	140	103	300	21,0

Индий Коэффициент теплопроводности [120]

Таллий

Коэффициент теплопроводности [120, 160]

ө, к	λ, Βτ· Μ ⁻¹ · Κ ⁻¹	0, K	λ, Βτ·Μ ⁻¹ ·Κ-1	θ, Κ	λ, Βτ· м ⁻¹ · K ⁻¹
100	63,0	180	57,0	260	50,3
110	62,2	190	56,0	273	49,6
120	61,6	200	55,0	280	49,0
130	61,0	210	54,5	293	47,3
140	60.0	220	53.7	300	47.0
150	59.0	230	53.0	400	40,0
160	58.2	240	52.0	500	36.0
170	57,6	250	51,0		

Коэффициент теплопроводности при низких температурах [287]

θ, Κ	λ, Βτ · м-1 · Κ-1	ө, қ	λ, Β. Μ-1 · Κ-1
1	8270	6	619
1,2	8600	8	295
1,5	8190	10	187
1,8	7120	20	81,1
2,0	6340	50	62,6
4,0	1760	100	55,6

Скандий

Коэффициент теплопроводности [287]

ө, қ	λ_{i} BT · M ⁻¹ · K ⁻¹	ө, қ	λ, Βτ. M ⁻¹ . K ⁻¹
2	1.40	150	14.9
5	3.44	200	15.3
10	6,78	250	15.6
50	13,5	273	15.7
100	14,3	300	15,8

Йттрий

λ = 14,7 Вт · м-1 К-1 при 300 К [120]

ө, к	λ. Βτ·Μ ⁻¹ ·Κ ⁻¹	θ, Κ	λ, Вт·м ⁻¹ ·К ⁻¹	θ, Κ	λ, Βτ·м ⁻¹ · Κ ⁻¹
-		По дал	ным [287]		
2 5 10 50 100 150	1,08 2,61 5,10 16,6 15,7 15,6	200 273 300 350 400 500	15,8 16,0 16,2 16,5 16,9 18,0	600 700 800 900 1000 1100	19,2 20,3 21,5 22,6 23,5 23,8
	·	По да	нным [118]		·
1200 1300	4,83 4,90	1400 1500	4,91 4,92	1600 1700	4,94 4,96

Коэффициент теплопроводности

Лантаноиды. Лантан

 $\lambda = 10,9$ Вт · м⁻³ · К⁻¹ при 300 К [160]

Коэффициент теплопроводности [287]

0 , K	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	θ, Κ	λ, Βτ·м-1·K-1	θ, K	λ, Βτ·м ⁻¹ ·K ⁻¹
2	4,68	150	10,9	600	17,8
5	10,7	200	11,8	700	19,6
10	17,6	300	13,5	800	21,1
20	16,8	350	14,2	900	22,2
50	9,43	400	14,9	1000	22,9
100	9,80	500	16,2	1100	23,2

Церий

 $\lambda = 10,9$ Вт · м⁻¹ · К⁻¹ при 300 К [160]

Коэффициент	теплопроводности	[287	
-------------	------------------	------	--

ө, қ	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	ө, қ	λ_{i} BT·M ⁻¹ ·K ⁻¹	θ, Κ	λ. Βτ·м ⁻¹ ·K ⁻¹
2 5 10 20 50	0,373 0,584 1,05 1,86 3,79	100 200 273 300 400	6,00 5,00 10,8 11,4 13,3	500 600 800 1000	13,0 16,6 19,3 21,8

Празео дим

 $\lambda = 11,7$ Вт · м⁻¹ · К⁻¹ при 300 К [160]

ө, к	$\lambda,$ BT·M ⁻¹ ·K ⁻¹	θ, Κ	$\lambda,$ BT·M ⁻¹ ·K ⁻¹	ө, к	λ, Βτ·м-1· Κ-1
90	7,32	273	12,0	600	15,7
100	7,69	300	12,5	700	16,9
150	9,26	350	13,2	800	18,4
200	10,6	400	13,6	900	20,0
250	11,6	500	14,7	1000	21,6

Коэффициент теплопроводности [287]

Неодим

 $\lambda = 12,9$ Вт · м⁻¹ · К⁻¹ при 300 К [160]

Коэффициент теплопроводности [287]

θ, Κ	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹	θ, Κ	λ, Βτ· м ⁻¹ · K ⁻¹
200 250 300 400 500	16,6 16,4 16,5 16,8 17,3	600 700 800 900 1000	18,0 18,7 19,5 20,3 21,5	1 100 1 120 1 140 1200	22,4 22,5 21,7 22,4

Прометий

Коэффициент теплопроводности [287]

0 , K	λ, Βτ·м ⁻¹ ·K ⁻¹	ө, к	$\begin{vmatrix} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	ө, к	λ, Βτ·м ⁻¹ ·K ⁻¹
300 400 500 600	17,9 18,4 18,5 18,7	700 800 900	19,1 19,5 20,1	1000 1100 1185	20,7 21,5 22,2

Самарий

Коэффициент теплопроводности [287]

ө, к	λ; Βτ·м-1·K-1	ө, к	$\begin{vmatrix} \lambda, \\ BT \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	ө, к	λ, Βτ·м ⁻¹ ·Κ-1
6 9 14 20 50 70	5,55 6,18 5,51 6,92 7,32 7,08	100 150 200 250 273 300	7,35 9,24 12,3 13,2 13,3 13,3	350 400 500 600	13,3 13,3 13,5 14,1

Европий

λ = 14,0 Вт · м⁻¹ · K⁻¹ при 300 К [287]

Гадолиний

 $\lambda = 8,7$ Вт · м⁻¹ · К⁻¹ при 300 К [160]; 9,2 Вт · м⁻¹ · К⁻¹ при 293 К [120] Коэффициент теплопроводности [287]

0 , K	$\lambda,$ BT·M ⁻¹ ·K ⁻¹	θ, Κ	$\left\ \begin{array}{c} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{array} \right\ $	0, K	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$
2	2,39	50	19,0	250	10,1
5	16,1	100	11,5	273	10,1
10	29,0	150	10,1	300	9,28
20	32,5	200	9.98	400	10,1

Диспрозий

 $\lambda = 10,0$ Вт · м⁻¹ · К⁻¹ при 300 К [160]

Коэффициент теплопроводности [287]

ө, қ	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	0 , K	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	ө, К	λ, Βτ·м-1·K-1
1 2 5 10 50 100	0,834 1,25 5,18 10,5 13,5 10,5	150 200 250 300 400 500	9,38 9,59 10,2 10,7 10,9 11,4	600 800 1000 1200 1400	12,2 13,7 15,2 16,7 18,1

Гольмий

Коэффициент теплопроводности

θ, K	λ, Βτ·Κ-1·Κ-1	θ, Κ	λ, Βτ·м- ¹ ·K- ¹
	По дан	ным [118]	
1200 1300 1400	7,67 7,75 7,84	1500 1600	7,93 8,01
	По данн	ным [287]	
2 5 10 20 50 100	3,50 6,69 13,7 19,1 7,77 7,62	150 200 273 300 400 500	13,7 13,0 13,0 13,2 13,4 14,1

Эрбий

 $\lambda = 9.6$ Вт · м⁻¹ · К⁻¹ при 300 К [160]

θ, Κ	λ, Βτ· м ⁻¹ · Κ ⁻¹	θ, Κ	λ. Β _Τ ·м ⁻¹ ·K ⁻¹	9 , K	λ, Βτ·м ⁻¹ ·K-1
2 5 10 20 50 100 150	2,27 6,25 11,2 12,0 9,28 11,9 13,4	200 250 300 400 500 600 700	14,3 14,5 14,3 13,9 14,0 14,3 14,6	800 900 1000 1200 1400 1500	15,0 15,4 15,8 17,0 18,3 19,9

Коэффициент теплопроводности [287]

Тулий

Коэффициент теплопроводности монокристалла вдоль кристаллографических осей [287]

	Вт•м-1•К-	, вдоль оси		λ, Вт.м-1.К-	⁻¹ , вдоль осн
θ, K	1	2	θ, Κ	1	2
6 10 40 80	14,7 20,6 10,5 18,5	15,9 23,6 11,0 10,5	100 150 200 300	20,0 22,4 23,5 24,2	11,1 12,6 13,4 14,1

Иттербий

Коэффициент теплопроводности [287]

θ, Κ	λ, Βτ·м- ¹ ·K-1	ө, к	λ, Βτ·м-1·K-1
150 250 273 300	38,4 36,1 35,4 34,9	350 400 500	34,5 34,1 33,7

Лютеций

A ==	16,0	Bτ・	м−ι	•	K-1	при	300	K	[160
------	------	-----	-----	---	-----	-----	-----	---	------

	λ, Βτ · ·	M−¹ • K−¹, E	вдоль оси		λ, Βτ ·	м-1 · К-1,	вдоль оси
θ, Κ	1	2	3	Θ, Κ	1	2	3
2 5 10 20 50 100	5,0 21,8 36,0 40,5 30,3 27,6	1,67 7,48 14,6 18,8 17,3 15,9	2,40 10,7 19,8 24,1 20,9 18,9	150 200 250 273 300	26,1 25,9 24,0 23,6 23,2	15,2 14,7 14,2 14,0 13,8	17,9 17,2 16,6 16,6 16,2

Коэффициент теплопроводности вдоль кристаллографических осей [287]

Актиноиды • Торий

Коэффициент теплопроводности иодидного тория [160]

	-		-		
ө, қ	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	0, K	$\begin{vmatrix} \lambda_i \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	θ, Κ	$\begin{vmatrix} \lambda_{i} \\ B_{7} \cdot \mathbf{M}^{-1} \cdot \mathbf{K}^{-1} \end{vmatrix}$
100 200	40,4 38,0	400 450	33,3 32,1	900 1100	21,7 16,8
250	36,8	500 600	31,0	1300	12,0
350	34,4	700	26,2	1700	2,8
Коэффи	циент теплопров	одно ст и т	гория вдоль нак.	лепа (без	отжига) [160]
θ, Κ	$B_T \cdot M^{-1} \cdot K^{-1}$	θ, K	$\begin{vmatrix} \lambda, \\ B_{\overline{r}} \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	θ , K	$\begin{vmatrix} \lambda, \\ B_{T} \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$
373	37	673	42	973	45
473	39	773	43	1073	45
573	40	873	44		

Торий, состаренный при $\Theta > 700$ К: $\lambda = 20 \div 25$ Вт · м⁻¹ · К⁻¹ при 300 К [160].

Сплавы тория

Коэффициент теплопроводности сплавов с ураном [160]

θ, Κ	λ, Вт.м- ¹ . К-1, при концентрации урана, %		0, K	λ, Вт • м- концентрал	1 . К-1, при ции урана, %
-	10 20	10	20		
323 673	36 41	35 39	873 1073	42 44	41 43

ө, К	$\begin{vmatrix} \lambda, \\ B_T \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$	θ, Κ	$\begin{bmatrix} \lambda \\ BT \cdot M^{-1} \cdot K^{-1} \end{bmatrix}$	ө, к	β τ · м⁻¹ · K -'
200	17,8	500	30,0	1030	28,5
250	20,0	600	31,8	1050	27,5
300	22,5	700	32,8	1100	25,7
350	25,0	800	32,9	1200	22,4
400	26,5	900	32,4	1300	19,6
450	28,8	940	31,3	1400	18,0

Уран Коэффициент теплопроводности литого урана (99,7 %) [160]

Коэффициент теплопроводности урана, полученного различными способами [160]

	λ, Βτ .	λ , Вт · м ⁻¹ · K ⁻¹ , при способе получения						
ө, к	восстановление кальцием, литой	восстановление магнием, закаленный в бета-фазе и отожженный в альфа-фазе	литой, «очень чистый»					
273	25,5	23,9	26,4					
3 73	27,2	25,5	28,1					
473	28,9	27,2	29,3					
573	30,6	28,9	30,6					
673	31,8	30,6	-					
773	33,5	32,2	-					
873	35,2	33,5						
953	36,0		-					
973	36,4		—					
1013	36,8	_						
1033	37,3		_					

Коэффициент теплопроводности урана вдоль направления прокатки, обработанного в бета-фазе [160]

ө, к	$BT \cdot M^{-1} \cdot K^{-1}$	θ, Κ	$B_T \cdot M^{-1} \cdot K^{-1}$	ө, қ	$\begin{vmatrix} \lambda, \\ BT \cdot M^{-1} \cdot K^{-1} \end{vmatrix}$
100	20	500	29	900	41
200	25	600	31	1000	45
300	27	700	34	1100	49
400	28	800	38	1200	53

Сплавы урана

Коэффициент теплопроводности сплавов урана с небольшим количеством бериллия [160]

ө, к	$B_{T} \cdot M^{-1} \cdot K^{-1}$	ө, к	$BT \cdot M^{\lambda} \cdot K^{-1}$	θ, Κ	$BT \cdot M^{-1} \cdot K^{-1}$
350	105	700	75	1100	53
500	93	900	62	1300	45

θ , K		λ, Βτ.	м-' • К-'	, при конце	ентрации алк	оминия, %	
	1	5	10	20	25	30	50
200 300 400 500 600 700 800 900	14,1 14,0 13,9 13,9 13,9 13,8 13,7 13,6	10,4 10,3 10,2 10,1 10,0 9,9 9,8 9,7	10,1 10,1 10,0 9,9 9,9 9,8 9,8 9,8 9,8	21,3 21,1 21,0 20,8 20,6 20,4 20,2 20,2	29,1 28,9 28,5 28,0 27,7 27,3 26,9 26,4	30,6 30,1 29,7 29,3 28,8 28,4 27,9	68,2 66,4 63,1 54,2 42,1 34,4

Коэффициент теплопроводности сплавов урана с алюминием [160]

Коэффициент теплопроводности сплавов урана с цирконием при 300 К [160]

Концентрация циркония, %	λ. Вт • м-1 • К-1	Концентрация циркония, %	λ, Br · м ⁻¹ · K ⁻¹
5	19,0	30	15,0
10 20	14,0 16,2	50 70	12,6

Коэффициент теплопроводности прокатанных сплавов при 343 К [160]

Концентрация циркония. %	λ, Βτ·м-1·Κ-1
2,8	25,1
5,3	23,9

Коэффициент теплопроводности сплава урана с 2 % ванадия [160]

ө, к	λ, Bτ · м- ¹ · K- ¹	
	373 473 573	- 26,4 27,6 28,9

Коэффициент теплопроводности сплавов урана с висмутом при 300 К [160]

Сплав	λ, Β τ ·м ⁻¹ ·K ⁻¹
UBi	21
U ₃ Bi ₄	19
UBi ₂	17

Коэффициент теплопроводности сплавов урана с хромом при 300 К [160]

λ, BT · M ⁻¹ · K ⁻¹	Концентрация хрома, %	λ, B t · м ⁻¹ · K ⁻¹
21,0	30	10,0
17,0 14.0	50 70	8,5 16.0
	λ, B _T · M ⁻¹ · K ⁻¹ 21,0 17,0 14,0	

Коэффициент теплопроводности сплавов урана с 0,5 % хрома [160]

θ, Κ	λ, Вт · м-1 · К-1
373	27,2
473	28,9
573	31,0

Коэффициент теплопроводности сплавов урана с молибденом при 300 К [160]

Концентрация молибдена, %	λ, Br · M ⁻¹ · K ⁻¹	Концентрация молибдена, %	λ, Βτ · м- ¹ · K- ¹
5	25,08	50	39,54
10	23,26	60	52,34
20	24,42	70	67,45
30	26,75	80	73,23
40	30,24	90	108,16

Коэффициент теплопроводности сплавов урана с молибденом при средния температурах [160]

	λ, Вт · м−1 · К−1, прв концентрации молибдена, %			
θ, Κ	0,5	4,0	28,0	
373 473 573	25,1 27,2 28,9	23,4 25,5 27,2	15,1 17,6	

Коэффициент теплопроводности сплавов урана с железом при 300 К [160]

Концентрация железа, %	λ, Вт • м ⁻¹ • К ⁻¹	Концентрация железа, %	λ, Β τ • м ⁻¹ • K ⁻¹
5	24	30	17
10	22	50	20
20	18	70	33

Коэффициент теплопроводности сплава урана с 20 % плутония и 10 % продуктов деления [160]

θ, Κ	$\lambda_s \operatorname{Bt} \cdot \operatorname{M}^{-1} \cdot \operatorname{K}^{-1}$	ө, к	λ, Вт • м ⁻¹ • К ⁻¹	ө, к	λ, Β τ · м ⁻¹ · K ⁻¹
323 373 423 473	9,63 10,89 12,56 13,82	523 573 623 673	15,07 15,91 18,00 19,26	723 773 823	20,10 22,19 23,03

Коэффициент теплопроводности сплава урана с 20 % плутония, 5 % молибдена, 10 % продуктов деления [160]

0 , K	λ, Вт • м ⁻¹ • К ⁻¹	ө, к	λ, BT · M ⁻¹ · K ⁻¹	ө, к	λ, BT · M ⁻¹ · K ⁻¹
479	14,5	706	20,4	826	23,8
586	16,2	808	22,5	868	22,2

Нептуний

λ = 4,18 Вт · м⁻¹ · К⁻¹ при 300 К [287]

Плутоний

Коэффициент теплопроводности [160]

ө, к	$\lambda_i \text{ BT} \cdot M^{-1} \cdot K^{-1}$	ө, қ	λ, Β τ • м ⁻¹ • K ⁻¹	ө, к	λ, Βτ · м ⁻¹ · K ⁻¹
100 200 250 300 350	4,10 4,65 4,95 5,23 5,50	400 450 500 600 700	5,80 6,10 6,40 6,98 7,60	800 900 1000	8,20 8,75 9,30

IV группа периодической системы элементов

Титан

Коэффициент теплопроводности отожженного титана (99,99 %) [120]

ө, к	λ , BT · M ⁻¹ · K ⁻¹	ө, қ	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	λ, Βτ·м- ¹ · K- ¹
3	1,80	50	14,0	250	20,0
5	2,90	100	18,0	273	20,0
10	5,50	150	19,0	293	20,0
20	11,0	20 0	20,0	300	20,0

λ. Br · M⁻¹ · K⁻¹ ө, к 0, K λ, Βτ · м-1 · K-1 312 24,76 632 21.70 389 719 24,76 21.49 469 22,17 799 20,99 537 21.54

Коэффициент теплопроводности иодидного титана (99,9 %), отожженного в вакууме при 973 К в течение 5 ч [112]

Коэффициент теплопроводности кованого титана (99,6 %), отожженного в вакууме при 973 К в течение 5 ч [112]

ө, қ	λ , BT · M ⁻¹ · K ⁻¹	ө, қ	λ, Βτ · м ⁻¹ · K ⁻¹	ө, к	λ, BT · M ⁻¹ · K ⁻¹
315	16,38	475	22,71	650	23,80
389	22,71	551	22,96	732	24,51

Коэффициент теплопроводности титана ВТ1-0 (нелегированный титан) [27, 120]

ө, К	λ, B t · m ⁻¹ · K ⁻¹	ө, к	λ, Βτ·м-1·K-1	θ	λ, Βτ·м ⁻¹ ·K ⁻¹
10 20 30 40 50	5,50 10,0 12,0 13,7 15,0	100 150 200 293 373	19,0 20,0 19,5 19,3 18,9	473 573 673 773 873	18,4 18,0 18,0 18,0 18,0 18,0

Сплавы титана

Коэффициент теплопроводности сплава титана ОТ4-0 (0,8 % алюминия, 0,8 % марганца) [27]

ө, К	λ, Вт · м-1 · К-1	ө, к	λ, Вт · м-1 · К-1	ө, к	λ, BT · M ⁻¹ · K ⁻¹
293 373 473 573	12,6 13,0 13,8 14,2	673 773 873 973	15,1 16,3 17,6 18,0	1073 1173	18,9 20,1

Коэффициент теплопроводности сплава титана ОТ4-1 (1,5 % алюминия, 1,0 % марганца) [27]

ө, К	λ, Вт · м-1 · К-1	θ, Κ	λ, Вт · м-1 • К-1
293	9,6	673	13,4
373	10,5	773	14,7
473	11,3	873	16,3
573	12,2		

θ , Κ	λ, Bt · m ⁻¹ · K ⁻¹	θ, Κ	λ, Βτ · м ⁻¹ · K ⁻¹
293	9,6	673	13,4
373	10,5	773	14,7
473	11,3	873	16,3
573	12,2		·

Коэффициент теплопроводности сплава титана ОТ4 (3,5 % алюминия, 1,5 % марганца) [27]

Коэффициент теплопроводности сплава титана (4 % алюминия, 4,7 % марганца, 0,14 % углерода) [120]

θ, Κ	λ, BT · M ⁻¹ · K ⁻¹	θ, Κ	λ, Βτ·м ⁻¹ ·K ⁻¹
20	2,70	200	6,40
50	4,30	250	8,0
100	5,20	300	9,0
150	5,70		

Коэффициент теплопроводность сплава титана ВТ5 (5 % алюминия) [27]

ө, к	λ, Вт · м-1 · К-1	ө, к	λ, Β τ · м ⁻¹ · K ⁻¹	θ, κ	λ, BT · M ⁻¹ · K ⁻¹
293 373 473	8,8 9,6 10,5	573 673 773	11,3 12,6 14,2	873 973	15,5 16,8

Коэффициент теплопроводности сплава титана ВТ5-1 (5 % алюминия, 2,5 % олова) [27, 120]

θ, Κ	λ, Βτ · м ⁻¹ · K ⁻¹	ө, к	λ , BT · M ⁻¹ · K ⁻¹	ө, к	λ. Вт • м-1 • К-1
10	0,90	250	7,50	673	13,4
50	3,30	293	8,8	773	14,7
100	5,00	373	9,6	873	15,9
150	5,50	473	10,9	973	17,2
200	6,50	573	12,2	1073	18,4

Коэффициент теплопроводности сплава титана ВТ6С (5 % алюминия 4 % ванадия) [27]

ө, к	λ, Вт · м ⁻¹ · К ⁻¹	ө, к	λ, Вт · м-1 · К-1	ө, к	λ, Bt · M ⁻¹ · K ⁻¹
293 373 473 573	8,4 9,2 10,5 11,7	673 773 873 973	13,0 14,7 15,9 17,2	1073 1173	18,9 20,1

Коэффициент теплопроводности сплава титана ВТ6 (6 % алюминия, 4,5% ванадия) [27, 120]

ө, к	λ, Βτ · м- ¹ · K- ¹	ө, к	λ, Вт · м ⁻¹ · К ⁻¹	ө, к	λ, Вт · м-1 · К-1
30 50 100 150 200	1,70 2,40 4,00 5,01 5,85	250 300 373 473 573	6,80 7,60 9,2 10,7 11,3	673 773 873 973	12,2 13,8 15,5 16,8

Коэффициент теплопроводности сплава титана ВТ4 (5 % алюминия, 1,5 % марганца) [27]

θ, Κ	λ, Br · M ⁻¹ · K ⁻¹	ө, к	λ, Вт. м-1. К-1
293 373 473	8,4 9,2 10,5	573 673	11,7 13,0

Коэффициент теплопроводности сплава титана ОТ4-2 (6 % алюминия, 1,5 % марганца) [27]

ө, к	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	λ, Βτ · м-1 · Κ-1	ө, к	λ, Вт · м-1 · К-1
293 373 473 573	7,1 8,4 9,6 11,7	673 773 873 973	13,4 15,1 16,8 18,0	1073 1173	19,3 20,1

Коэффициент теплопроводности сплава титана В Т20 (6 % алюминия, 2 % циркония, 1 % молибдена, 1 % ванадия) [27]

ө, қ	λ, B _T · м ⁻¹ · K ⁻¹	ө, к	λ, Вт · м-1 · К-1	ө, к	λ, Вт · м-1 · К-1
373	8,8	673	12,2	973	16,8
473	10,1	773	13,8	1073	18,0
573	10,9	873	15,1	1173	19,7

Коэффициент теплопроводности сплава титана ВТ14 (4,5 % алюминия, 3 % молибдена, 1 % ванадия) [27, 120]

ө, к	λ, BT · M ⁻¹ · K ⁻¹	🛛 ө, к	λ. Βτ • м-1 • K-1	ө, к	λ, Βτ · м-1 · Κ-3
30 50 100 150 200 250	1,63 2,60 4,50 5,75 6,70 7,60	300 373 473 573 673 773	8,42 9,2 10,5 11,7 13,0 13,8	873 973 1073 1173	15,5 16,8 18,1 20,1

Коэффициент теплопроводности сплава титана ВТЗ-1 (6 % алюминия 2,5 % молибдена, 2 % хрома, 0,3 % кремния, 0,5 % железа) [27]

θ, Κ	λ, Вт · м-ι · К-ι	ө, қ	λ, Вт · м-1 · К-1	θ, Κ	λ, Вт · м-1 · К-1
293 373 473	8,0 8,8 10,1	573 673 773	11,3 12,2 14,2	873 973	15,5 16,8

Коэффициент теплопроводности сплава титана ВТ16 (2,5 % алюминия, 5 % молибдена, 5 % ванадия) [27, 120]

θ, Κ	λ, Вт · м-1 · К-1	ө, к	λ, Βτ · м-1 · Κ-1	0 , K	λ, Br · м- ¹ · K- ¹
50	4,01	200	8,21	573	13,4
60	4,49	250	8.37	673	14,7
70	4,90	273	8,38	773	15,9
80	5,24	293	8,41	873	16,8
90	5,54	300	8,42	973	18,0
100	5,82	373	10,9	1073	19,7
150	7,08	473	12,2	1173	21,4

Коэффициент теплопроводности сплава титана В Т23 (4,5 % алюминия, 2 % молибдена, 4,5 % ванадия, 0,6 % железа, 1 % хрома) [27]

ө, к	λ, BT · M ⁻¹ · K ⁻¹	ө, к	λ, Вт · м-1 · К-1	ө, к	λ, Βτ· м-1 · Κ-1
293 373 473 573	8,4 9,6 11,3 12,2	673 773 873 973	13,4 14,2 15,5 16,8	1073 1173	18,9 20,1

Коэффициент теплопроводности в упрочненном состоянии сплава титана ВТ15 (3 % алюминия, 7 % молибдена, 11 % хрома) [27]

ө, к	λ, Βτ· м-1 · Κ-1	ө, к	λ, Вт · м-1 · К-1	θ, Κ	λ, Βτ· м-1· Κ-1
293	6,7	473	9,6	673	13,0
373	8,0	573	11,3	773	14,7

Коэффициент теплопроводности сплава титана ВТ22 (5 % алюминия, 5 % молибдена, 5 % ванадия, 1 % железа, 1 % хрома) [27]

θ, Κ	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	λ, Вт · м-1 · К-1	0, K	λ, Βτ · м-1 · Κ-1
293 373 473 573	8,4 9,2 10,5	673 773 873 973	13,4 14,7 15,9 17,2	1073 1173	18,4 19,7

λ, Βτ · м-1 · Κ-1 Θ, Κ λ, Βτ. м-1 . Κ-1 ө, к 30 1,81 2,53 200 6,10 250 50 7,31 8,20 3,79 300 100 150 5,13

Коэффициент теплопроводности сплава титана (2,5 % алюминия, 16 % ванадия) [120]

Коэффициент теплопроводности сплава титана (3 % алюминия, 11 % хрома, 13 % ванадия) [120]

Θ, Κ	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	λ, Вт · м-1 · К-1
30 50 100 150	1,97 2,91 4,20 5,47	200 250 300	6,76 8,03 8,80

Коэффициент теплопроводности сплава титана (2,8 % хрома, 1 % железа) [120]

θ, Κ	λ, Β τ · м ⁻ ³ · K ⁻¹	ө, к	λ, BT · M ⁻¹ · K ⁻¹	ө, к	λ. Br · M-1 · K-1
60	6 ,01	150	9,41	250	13,0
100	7,6	200	11,2	300	13,9

Цирконий

Коэффициент теплопроводности циркония

θ, Κ	λ, B _T · м ⁻¹ · K ⁻¹	ө, к	λ, Βτ. Μ-1 . Κ-1	ө, к	λ, Br · м ⁻¹ · K ⁻¹
		99	,99 % [160]		
100 123 223 293 373	22,3 22,2 21,7 21,4 21,2	423 473 523 573 623	21,0 20,9 20,7 20,6 20,5	673 723 773	20,4 20,3 20,2
		99,9	% [112, 233]		
3 15 30 50 100	8,4 33,5 48,2 41,9 33,5	200 331 397 513 594	31,8 31,2 26,6 24,6 24,6	689 764 832 917	24,6 24,7 25,3 25,7

Сплавы циркония

Сплав циркония с 3 % алюминия: $\lambda = 8,3$ Вт · м⁻¹ · K⁻¹ при 400 К [160]; с 4 % алюминия: $\lambda = 8,5$ Вт · м⁻¹ · K⁻¹ при 320 К [233]; с 7 % титана: $\lambda = 12,8$ Вт · м⁻¹ · K⁻¹ при 315 К [233].

θ, Κ	λ, Βτ · м ⁻¹ · K ⁻¹	ө, к	λ, B _T · M ⁻¹ · K ⁻¹
	4% ура	ана [233]	
300 400 500	14,7 13,8 13,6	600 700	13,8 14,2
	8% ур	ана [160]	
373 423 473 523	14,45 14,86 15,28 15,65	573 623 673 723	16,00 16,35 16,70 17,0
	14 % yı	рана [233]	
300 400	11,1 11,3	500 600	12,2 12,6
	2030 %	урана [233]	
600 700	11,3 13,0	800 900	15,1 16,3

поэффицистт теплопроводности сплавов циркопил с урано	Коэффициент	теплопроводности	сплавов	циркония	с	ураном
---	-------------	------------------	---------	----------	---	--------

Коэффициент теплопроводности сплавов циркония с оловом [233]

ө, к	λ, Вт · м-1 · К-1, при концентрации олова, %		θ, Κ	λ, Вт · м-1 · К-1, при концентрации олова, %		
	2,5	7		2,5	7	
300 400 500	12,2 12,6 13,0	8,4 9,4 10,5	600 700	13,2 13,5	11,9 13,4	

Сплав циркония с 10 % олова

 $\lambda = 7,8$ Вт · м⁻¹ · К⁻¹ при 400 К [233]

Коэффициент теплопроводности сплава циркония с 8 % урана, 1 % водорода [160]

θ, Κ	$\lambda_s BT \cdot M^{-1} \cdot K^{-1}$	θ, Κ	λ, Βτ·м-1 · Κ-1
373 423 473 523	19,50 18,50 17,95 17,60	573 623 673	17,40 17,25 17,15

Коэффициент теплопроводности сплава циркония с 0,14 % гафния, 0,08 % углерода [112]

ө, к	λ, Βτ · м-1 · Κ-1	ө, к	$\lambda_s BT \cdot M^{-1} \cdot K^{-1}$	ө, к	λ, Вт · м-1 · К-1
332	21,5	573	20,6	729	21,9
390	21,4	591	21,1	821	22,5
475	20,5	675	21,6	879	23,3

Коэффициент теплопроводности сплава циркония с 0,97 % гафния, 0,3 % углерода [112]

ө, к	λ, Βτ · м-1 · Κ-1	ө, к	λ, Βτ· м-1 · Κ-1	ө, к	λ, Вт · м-1 · К-3
339 384 438 510	19,4 19,6 18,9 18,5	566 609 676 731	18,5 18,9 19,0 19,6	819 863	19,9 20,0

Коэффициент теплопроводности сплава циркония с 0,97 % гафния, 0,3 % углерода, 0,89 % тантала [112]

θ, Κ	λ, Βτ · м-1 · Κ-1	ө, к	λ_i BT · M ⁻¹ · K ⁻¹	ө, к	λ , BT · M ⁻¹ · K ⁻³
344	19,3	633	21,9	908	24,7
465 568	19,7 19,7 21,0	753 809	23,0 23,6	970	20,0

Коэффициент теплопроводности сплава циркония с 1,52 % ниобия, 0,14 % гафния, 0,08 % углерода [112]

0 , K	λ, BT · M ⁻¹ · K ⁻¹	ө, к	λ , BT · M ⁻¹ · K ⁻¹	ө, к	λ, Вт · м-1 · К-3
342 391 479 515	21,4 21,4 21,0 21,0	562 632 681 754	21,4 21,7 22,0 22,7	834 899	23,5 24,3

Гафний

Коэффициент теплопроводности

θ, Κ	λ, B _T . M ⁻¹ . K ⁻¹	ө, к	λ, Β τ · м ⁻¹ · K ⁻¹	θ, Κ	λ, Br · M ⁻¹ · K-3
2 5 10 20	2,0 6,0 13,3 23,5	По да 30 293 400 500	нным [120, 233] 27,6 22,2 22,0 21,4	600 700 800 850	21,0 20,5 20,3 20 , 2

0, k	λ, Вт · м-1 · К-1	ө, к	λ, BT · M ⁻¹ · K ⁻¹	ө, к	λ, Βτ · м-1 · K-1
		По	данным [287]		
1000 1100 1200 1300	20,7 20,8 20,9 21,0	1400 1500 1600 1700	21,1 21,3 21,5 21,8	1800 1900 2000	22,0 22,3 22,6

Олово

Коэффициент	теплопроводности	[160]

θ, Κ	λ, Βτ · м-1 · Κ-1
293	65,0
373	60,0

Коэффициент теплопроводности монокристалла олова вдоль кристаллографических осей [287]

	λ, Вт • м вдол	-1 • К-1, ь оси		λ, Вт · м ⁻¹ · К ⁻¹ , вдоль оси		
0, K	1	2	θ, Κ	1	· 2	
1 2 5 10 50 100	20 400 36 000 13 000 2 150 128 95	14 200 25 000 9 000 1 490 89 66	150 200 250 300 400 505	86,7 81,6 77,5 74,2 69,3 66,2	34,8 56,7 53,8 51,5 48,1 46,0	

Сплавы олова

Коэффициент теплопроводности сплава олова с 34,0 % свинца [120]

ө, к	λ, Β τ · м-1 · K-1	ө, к	$\lambda_i BT \cdot M^{-1} \cdot K^{-1}$	ө, к	λ, Βτ · м-1 · Κ-1
3 5 10	10,0 20,0 40,0	20 30 50	54, 0 53,0 50,0	70 100	49,0 49,0

Припой ПОС90 (0,8 % меди, 0,8 % никеля, 0,15 % сурьмы, 10 % свинца): $\lambda = 62,8$ В $r \cdot m^{-1} \cdot K^{-1}$ при 293 К [120].

Свинец

ө, к	λ, Br · м ⁻¹ · K ⁻¹	ө, к	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	$\lambda, B_{T} \cdot M^{-1} \cdot K^{-1}$
		99	,99 % [120]		
2 4 5	1350 1800 1320	10 15 20	180 90 70	25 30 40	65 60 50
		99,99	0 % [120, 160]		
130 140 150 160 170 180	37,0 36,6 36,3 35,5 35,3 35,2	190 200 210 220 230 240	35,1 35,0 35,0 35,0 35,0 35,0 34,9	260 273 293 300 373 573	34,9 34,9 34,9 34,9 34,9 34,4 28,1

Коэффициент теплопроводности

Сплавы свинца

Коэффициент теплопроводности припоя (25 % олова, 1,7 % сурьмы) [120]

θ, Κ	λ, B _T · м-1 · K-1	ө, к	$\lambda, BT \cdot M^{-1} \cdot K^{-1}$	ө, к	λ, Βτ · м ⁻¹ · K ⁻¹
2 5 10 20	5,02 21,3 42,5 56,0	50 100 150 200	42,5 51,5 50,2 50,0	250 300	50,0 50,0

Коэффициент теплопроводности припоев при 293 К [120]

Припой	Концентрация легирующих элементов, %	λ, B _T · M ⁻¹ · K ⁻³
ПОС18	≪0,15 меди, ≪0,15 никеля, 2,0—2,5 сурьмы,	389
ПОС30	17—16 олова ≪0,15 меди, ≪0,15 никеля, 1,5—2,0 сурьмы,	393
ПОС40	29—30 олова ≪0,1 меди, ≪0,1 никеля, 1,5—2,0 сурьмы, 30—40 олова	397

V группа периодической системы элементов

Ванадий

				· · ·	
θ, Κ	λ , Br · M ⁻¹ · K ⁻¹	Θ, Κ	$\lambda_{i} B_{T} \cdot M^{-1} \cdot K^{-1}$	θ, Κ	λ, Βτ· м-1· Κ-1
20	6,7	373	33,7	1173	39,5
123	32,1 32,2	473 573	34,4 34,9	1373	40,4
150 200	32,3 32,6	773	36,4 36,2	1473	42,3 43,3
223 250	32,8 32,9	973	37,2 37,9	1673	44,4 45,6
293	33,2	1073	38,7		

Коэффициент теплопроводности [120, 160, 233]

Сплавы ванадия

Коэффициент теплопроводности двойных и тройных сплавов ванадия при 293 К [233]

Концентрация легирующих элементов, %	$B_{T} \cdot M^{-1} \cdot K^{-1}$	Концентрация легирующих элементов, %	λ, Β _Τ · M ⁻¹ · K-
5 титана	29,3	40 титана, 5 алюми-	9,8
10 титана 20 титана 10 титана, 5 алюми- ния	16,8 12,4	ния 1 кремния 3 кремния, 2,5 цирко- ния	27,0 21,0

Ниобий

Коэффициент теплопроводности [120, 160]

0 , K	λ, Βτ·м- ¹ ·K- ¹	ө, к	λ, Βτ· м-3 · K-1	ө, к	λ, BT · M ⁻¹ · K ⁻¹
2 5 10 20 50 100 150	1,50 9,37 16,3 31,3 44,5 49,0 49,5	200 250 300 400 600 800 1000	50,0 52,5 53,0 55 59 64 67	1200 1500 1800 2100 2400 2700	70 76 83 91 98 102

Тантал

ө, к	λ. Br · M ⁻¹ · K ⁻¹	ө, к	$\lambda, BT \cdot M^{-1} \cdot K^{-1}$	ө, к	λ, Вт. м-1. К-1
4	22,9	400	63,0	1500	80
100	63,0	600	65,0	1800	86
150	63,0	800	68	2100	92
200	63,0	1000	71	2400	97
300	63,0	1200	74	2700	100

Коэффициент теплопроводности [120, 160]

Сурьма

коэффициент теплопроводности [100]	Коэффициент	теплопроводности	[163]
------------------------------------	-------------	------------------	-------

λ, Βτ·м-1·Κ-1
22,6
18,9
23,0

Висмут

Коэффициент теплопроводности висмута (99,9 %) [112, 160]

ө, К	λ, Βτ • м-1 • Κ-1	ө, к	λ, Βτ · м-1 · K-1	ө. к	λ, Br · M ⁻¹ · K ⁻¹
73 320 342 379	12 9,1 9,1 8,9	408 422 425 442	8,8 8,6 8,5 8,4	462 471 500	8,3 8,3 8,5

Сплавы висмута

Коэффициент теплопроводности сплавов висмута с кадмием

θ, Κ	λ , B _T · M ⁻¹ · K ⁻¹	0, K	λ, Βτ· м-1· Κ-1
	0,4 % кад	мия [112]	
300	22,0	359	18,5
325	20,7	373	18,4
342	19,3	397	19,7
	0,9 % кад	мия [112]	
324	11.1	465	8.5
349	10.6	502	9.7
387	9,9	506	10,1
428	8,7		•

.		Про	должение таблицы
θ , Κ	λ, Βτ · м-1 · Κ-1	ө, к	$\lambda_s BT \cdot M^{-1} \cdot K^{-1}$
	4,6 % ка	дмия [112]	
321	10,6	436	7,5
349	10,2	472	8,5
372 408	9,8 9,4	475	8,6
	10 % ка	дмия [112]	
309	15.5	379	12.4
322	14,2	394	12,5
363	12,8		
	14,7 % ка	адмия [112]	
310	19,2	367	15,0
3 33	16,8	387	14,2
	19,3 % ка	адмия [112]	
300	22,0	359	18,5
325	20,7	373	18,4
342	19,3	397	19,7
	36,8 % к	адмия [112]	
309	34,6	378	29,2
331	32,0	397	32,0
301	30,1		
	50,6 % к	адмия [112]	
302	48,6	381	44,8
330	41,5	394	50,3
303	41,4		
	67,7 % к	адмия [112]	
304	63,3	376	47,8
329	56,6	396	52,0
351	51,5		
	89,8 % к	адмия [112]	
307	77,9	358	67,9
331	72, 5	367	64,9
345	70,0	383	63,9

ө, к	λ, Βτ · м-1 · K-1	0 , K	λ, Bτ · м ⁻¹ · K ⁻¹
2 5 10 20	0,9 5,4 11,0 18,0	50 70 100	20,5 21,5 24,0

Коэффициент теплопроводности сплава Вуда (25 % свинца, 12,5 % кадмия, 12,5 % олова) [120]

Коэффициент теплопроводности сплава Розе (28,0 % свинца, 15,9 олова) [120]

0, K	$\begin{vmatrix} \lambda, & B_{T} \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	θ, Κ	$\begin{array}{c c} \lambda_i & \mathrm{BT} \cdot \mathrm{M}^{-1} \times \\ & \times \mathrm{K}^{-1} \end{array}$	ө, к	$\begin{array}{c} \lambda, & B_{T} \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$
6	2,00	50	7,20	200	12,6
10	3,40	100	9,10	250	14,5
20	5,00	150	10,8	273	15,6

VI группа периодической системы элементов

Хром

Коэффициент теплопроводности [120, 233]

0, K	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \\ \times & K^{-1} \end{vmatrix}$	θ, Κ	$\begin{vmatrix} \lambda_i & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \\ \times & K^{-1} \end{vmatrix}$
5	134	200	102	800	70
9	335	250	93	900	66
25	553	300	90	1000	63
50	335	400	87	1100	62
90	148	500	84	1200	60
120	129	600	78	1300	60
150	118	700	73		

Молибден

Коэффициент теплопроводности [120, 160, 233]

θ, Κ	$\begin{array}{c} \lambda, BT \cdot M^{-1} \times \\ \times K^{-1} \end{array}$	ө, к	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$	0, K	$\begin{array}{c} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$
2	30,0	100	205	1200	159
5	75.0	200	169	1500	114
10	145	300	162	1800	111
20	285	400	159	2100	113
40	360	600	158	2400	100
60	260	800	158	2700	82
70	232	1000	158	2800	68

Сплавы молибдена

Коэффици ВМ2 [160	ент теплопро]	проводно ЦМ	сти сплава ВЗО [160]		
θ, κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{vmatrix}$	ө, к	$\lambda, BT \cdot M^{-1} \times K^{-1}$	ө, к	$\begin{vmatrix} \lambda, & B_T \cdot M^{-1} \times \\ & \times & K^{-1} \end{vmatrix}$
100 500 1200 1500	129,58 117,04 112,86 96,14	1700 1800 1900	91,96 91,96 87,78	400 500 600 700	117,876 118,712 114,532 96,976

Коэффициент тепло-

Вольфрам

Коэффициент теплопроводности вольфрама (99,92 %) [120, 160]

0, K	$\left \begin{array}{c} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}\right $	ө, к	$ \begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array} $	ө, к	$\begin{array}{c c} \lambda, & B_{T} \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$
2 5 10 20 30 40 50 100	38,0 86,0 170 313 366 340 290 132	150 200 250 300 400 600 800 1000	132 131 130 130 128 126 122 118	1200 1500 1800 2100 2400 2700	115 110 106 101 97 92

VII группа периодической системы элементов

Марганец

Коэффициент теплопроводности [120, 233]

ө, к	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{vmatrix}$	ө, к	$\begin{vmatrix} \lambda, & B_T \cdot M^{-1} \\ \times & K^{-1} \end{vmatrix}$	ө, к	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$
2	0,20	8	0,70	30	2,75
3	0,25	9	0,80	40	3,70
4	0,32	10	0,90	50	4,2
5	0,40	15	1,35	100	6,0
6	0,50	20	1,80	200	7,2
7	0,60	25	2,30	300	7,8

Технеций

Коэффициент теплопроводности [287]

ө, к	$\left \begin{array}{c} \lambda, BT \cdot M^{-1} \times \\ \times K^{-1} \end{array}\right $	θ, Κ	$\begin{vmatrix} \lambda, & B_T \cdot M^{-1} \\ \times & K^{-1} \end{vmatrix}$	ө, к	$\begin{vmatrix} \lambda, B_T \cdot M^{-1} \times \\ \times K^{-1} \end{vmatrix}$
298	51,5	531	49,8	751	52,3
348	51,0	628	50,5	781	51,5
401	50,6	683	50,2	823	53,1
471	49,8	733	51,9	838	52,3

ө, қ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	ө, к	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$				
По данным [120, 233]									
4 12 25 50 70 100	700 1146 475 90 62,7 58,6	120 140 160 180 200 220	56,6 54,8 53,7 53,1 51,5 50,8	240 260 280 300	49,9 49,2 48,6 48,1				
По данным [287]									
350 400 600 800 1000	47,0 46,1 44,2 44,1 44,6	1200 1400 1600 1800	45,7 47,1 48,6 50,0	2000 2200 2400 2600	51,9 53,9 56,9 59,2				

Рений

Коэффициент	теплопроводности
-------------	------------------

VIII группа периодической системы элементов

Железо

Коэффициент теплопроводности [160, 233]

ө, к	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ \times & K^{-1} \end{vmatrix}$	θ, Κ	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{array}$	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times & K^{-1} \end{vmatrix}$
5	293	250	82	700	50
10	595	300	77	800	45
20	873	350	72	900	42
35	590	400	68	1000	41
50	385	450	64	1200	40
100	98	500	60	1300	39
200	87	600	55	1400	39
			.:		

Коэфициент теплопроводности армкожелеза (0,02 % углерода, 0,083 % меди, 0,030 % марганца, 0,006 % фосфора, 0,023 % серы, 0,004 % кремния) [120]

ө, қ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \\ \times & K^{-1} \end{vmatrix}$	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	0 , K	$\begin{vmatrix} \lambda, BT \cdot M^{-1} \times \\ \times K^{-1} \end{vmatrix}$
6	19,6	50	109	130	86,9
8	26,3	60	109	150	84,5
10	32,9	70	96,5	200	79,6
20	65,1	80	94,7	250	76,1
30	90,5	90	93,0	293	73,7
40	105	100	91,3	300	73,2

Коэффициент теплопроводности железа с небольшим количеством примесей при 273 К [160]

^к онцентрация примеси, %	λ, Βτ. Μ-1. Κ-1	
Электролитическое «очень чистое» (размер зерна 10 ⁻³ м) 0,023 углерода, 0,007 кремния, 0,025 марганца, 0,007 фос-	94,3 78,3	
фора, 0,020 серы Следы углерода, 0,09 кремния, 0,2 марганца, 0,007 фос-	78,0	
фора, 0,014 серы 0,02 углерода, 0,03 марганца, 0,042 фосфора, 0,005 серы 0,06 углерода	75 ,7 64,0	

Коэффициент теплопроводности железа с разным размером зерна [104]

Среднее число зерен на 10-з м	λ, Βτ • Μ-1 • Κ-1		
10	93		
170	89		
634	84		

Сплавы железа

Коэффициент теплопроводности нелегированных, низкои среднелегированных сталей перлитного класса [160]

	λ, Вт · м-1 · К-1, при θ, К					
Марка	300	400	60 0	800	1000	1200
Ст 20	58	53	48	42	34	27
Ст 35	48	46	43	40	34	30
Ст 45	48	47	41	37	32	23
У8	50	47	40	34	30	26
15Л; 20Л; 25Л; 30Л; 35Л; 40Л; 45Л; 50Л; 55Л	45,5	44,0	41,1	38,1	35,2	32 ,8
65Г	45	38	28	26	24	
13H2XA; 15XA; 15X; 20X	39	37	35	33	31	30
30ХГС, 30ХГСА	38,7	38,0	37,9	37,1	36,3	35,1
15XM; 15XMA	41,8	41,4	39,4	37,0	34,4	31,4
30XM; 30XMA	39,8	39,1	38,2	37,0	35,6	34,0
1Х11МФ; 1Х12ВИМФ	41,8	41,3	39,2	36,7	34,0	30,9
12X1MΦ	42,0	40,0	37,0	35,0	33,0	30,0
Коэффициент теплопроводности нержавеющих, жаростойких и жаропрочных сталей мартенситного, мартенситно-ферритного и ферритного классов [160]

		λ, Вт · м-1 · К-1, при Θ, К						
Марка стали	200	300	400	500	600	700		
Х5М 1Х13(ЭЖ1, Ж1) 2Х1213МБФР(ЭИ993) 4Х13(ЭЖ4, Ж4) 1Х12В2МФ(ЭИ756)	44,2 30,8 33,0 32,6 30,4	43,9 31,2 33,2 33,0 31,2	43,0 31,9 33,3 33,1 31,5	42,0 32,3 33,4 33,3 32,1	41,0 33,0 33,5 33,6 32,5	40,0 33,4 33,6 33,6 32,8		

Продолжение таблицы

λ, Вт · м-1 · К-1, при θ, к						
800	900	1000	1200	1400		
39,0	38,0	37,0	35,0	34,0		
33,8 33.2	34,0 32,1	34,0 31.6	33,8 30.8	33,0 30,0		
33,5	32,2	33,0	32,0	31,5		
	39,0 33,8 33,2 33,5 33,0	λ, BT · M 800 900 39,0 38,0 33,8 34,0 33,2 32,1 33,5 32,2 32,0 33,1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	λ, Bτ · м ⁻¹ · K ⁻¹ , при θ, K 800 900 1000 1200 39,0 38,0 37,0 35,0 33,8 34,0 34,0 33,8 33,2 32,1 31,6 30,8 33,5 32,2 33,0 32,0 32,0 32,1 32,4 32,0		

Коэффициент теплопроводности нержавеющих, жаростойких и жаропрочных сталей аустенитного класса [160]

	λ , BT · M ⁻¹ · K ⁻¹ , при Θ, K					
Марка стали	200	300	400	500	600	700
X18H9T(1X18H9T, 991T)	13.5	14.5	16.5	175	18.5	20.0
1Х18Н9ТЛ	13.3	14.3	16.3	17.3	18.3	201
0Х18Н12Б(Х18Н11Б, ЭИ402)	13,6	14,6	16,6	17,6	18,6	20,2
X23H18(ƏЙ417)	13,5	14,0	14,3	14.7	15,0	15,4
Х17Н13М2Т(ОХ18Н12М2Т, ЭИ448)	13,8	14,7	15,2	15,6	15,9	16,2
1ХІ6Н13М2Б(ЭИ680), 3Х19Н9МВБТ	13,7	14,6	15,1	15,5	15,9	16,1
(ЭИ572)						
Х16H25M6(ЭИ395)	12,7	12,9	13,2	13,6	14,2	14,9
ХН35ВТ (ЭЙ612, ЭЙ612К),	13,2	13,6	14,0	14,4	14,8	15,2
ХН35ВТР(ЭИ725, ЭИ725А),						
XH35BMT(ЭИ692)						
Х22Н26, ВЖ100	10,8	12,3	13,9	15,4	17,0	18,5

Продолжение таблицы

	λ, Вт · м-1 · К-1, при θ, К					
Марка стали	800	900	1000	1200	1400	
Х18Н9Т(1Х18Н9Т, ЭЯ1Т) 1Х18Н9ТЛ	21,5 21,6	23,0 23,3	25,0 25,0	25,8 26,0	28,0 28,0	
0Х18Н12Б(Х18Н11Б, ЭИ402) Х23Н18(ЭИ417) Х17Н13М2Т(0Х18Н12М2Т, ЭИ448)	21,7 15,9 16,5	23,3 16,2 16,7	23,3 16,7 16,9	26,0 17,4 17,3	18,1	
1Х16Н13М2Б(ЭИ680), 3Х19Н9МВБТ (ЭИ572)	16,4	16,6	16,8	17,1	17,5	
Х16H25M0(ЭИЗ95) ХН35BT(ЭИ612, ЭИ612К), ХН35BTP(ЭИ725, ЭИ725А), ХН35BMT(ЭИ692)	16,0 16,6	16,9 17,0	17,8 17,4	18,7 18,2	19,3 19,0 [,]	
Х22Н26, ВЖ100	20,2	21,6	23,4	-	—	

Коэффициент теплопроводности стали* Р12 [32, 50]

θ, κ	λ, B _T · M ⁻¹ · K ⁻¹	ө, к	λ, Br · M-1 · K-1
100 200 300	22,13 23,38 24,22	400 500	25,89 28,39

• Сталь отожженная.

Коэффициент теплопроводности стали Р18 [32, 50]

	λ, Вт · м-1 · К-1, для стали в состоянии					
ө, к	отжига	закалки	отпуска			
100	28,65	16,93	19,48			
200	29,46	19,02	20,88			
300	30,04	21,22	22,85			
400	29,34	23,43	23,31			
500	28,83	27,72	24,36			
600	28,07	29,34	25,04			

Коэффициент теплопроводности стали Р9Ф5 [32, 50]

	λ, Вт · м-1 · К-1, для стали в состоянии					
9, K	отжига	закалки	отпуска			
100	29,00	16.24	19.83			
200	29,69	18.32	21.80			
300	30,27	20,53	23.66			
400	29,92	22.27	24.82			
500	28.88	24.24	25.40			
600	27,95	24,59	26.52			

Коэффициент теплопроводности стали Р14Ф4 [32, 50]

	λ , Вт · м ⁻¹ · h ⁻¹ , для стали в состоянии				
ө, к	отжига	закалки	отпуска		
100	26,68	14,15	19,25		
200	26,91	16,55	20,88		
300	27,37	19,25	22,38		
400	27,60	21,46	24,12		
500	27,49	23,20	25,28		
600	27.37	24.47	25,28		

Коэффициент теплопроводности стали Р18Ф2 [32, 50]

	λ , Вт • м ⁻¹ • К ⁻¹ , для стали в состоянии					
ө, к	отжига	закалки	отпуска			
100	25,28	14,73	18,87			
200	25,05	16,24	20,76			
300	25,05	18,32	22,85			
40 0	25,98	20,53	23,54			
500	26,56	21,80	25,17			
600	27,26	23,43	25,40			

Коэффициент теплопроводности стали Р9К10 [32, 50]

	λ , Вт · м ⁻¹ · K ⁻¹ , для стали в состоянии					
ө, к	отжига	закалки	отпуска			
100	28,18	15,42	19,95			
200	30,27	17,28	22,15			
300	31,20	19,48	24,36			
400	32,24	21,46	25,63			
500	33,40	23,89	27,14			
600	33,87	24,47	28,18			

Коэффициент теплопроводности стали Р10К5Ф5 [32, 50]

	λ, Вт · м-1 · К-1, для стали в состоянии				
θ, κ	отжига	закалки	отпуска		
100	24,12	13,57	20,30		
200	25,52	15,42	22,85		
300	27,72	17,16	24,12		
400	29,46	19,60	25,17		
500	30,50	22,04	26,10		
600	29,81	24,47	26,79		

Коэффициент теплопроводности сталей, производимых за рубежом [120]

Марка стали	λ, Вт · м-1 · К-1, при θ, К						
	20	50	100	150	200	250	300
AISI 301	2,03	5,80	9,40	10,8	12,3	13,6	15,0
AISI 304	2,04	4,60	8,80	10,6	12,0	13,4	15,0
AISI 316	2,04	4,60	8,80	10,6	12,0	13,4	15,0
AISI 347	2.04	5,80	9,40	10,8	12,3	13,6	15,0
AISI 410	<u> </u>	13.5	22,0				
SAE 1020	-	48,0	62,0	62,7	63,5	64,3	65, 0
SAE 1095		23,0	35,0				
SAE 4130	-	17,0	28,0	31,4	33,1	34,3	35,0

Химический состав сталей [120]

		Концентрация легирующих элементов, %								
Марка стали	Углерод	Хром	Медь	Марганец	М олиб ден	Ниобий				
A ISI 301	0,13	16,9		0,8		_				
AISI 304	0,02	18,4		1,4						
AISI 316	0.06	17,9	0,3	1,4	0,2					
AISI 347	0.06	18,0	0,2	1,5	0,2	0,9				
AISI 410	0.09	12,6	0,06	0,32		0,12				
SAE 1020	0.18		<u> </u>	0,33	_					
SAE 1095	0.93			0,34	0,05					
SAE 4130	0,33	0,99		0,52		_				

Продолжение таблицы

Марка стали	Концентрация легирующих элементов, %							
	Никель	Фосфор	Cepa	Кремний	Титан			
AISI 301	7,25	0,045	0,03	0,54	_			
AISI 304	9.7	0.02	0.01	0.6				
AISI 316	9.8	0.02	0.02	0.6	0.4			
AISI 347	10.3	0.02	0.02	0.6				
AISI 410		0.01	0.01	0.36				
SAE 1020	-	0.02	0.02	0.014				
SAE 1095	0.1	0.03	0.02	0.26	_			
SAE 4130			<u> </u>	0,20				

Коэффициент теплопроводности чугуна при 293 К [120]

Марка чугуна	Концентрация легирующих элементов, %							
(вид обработки)	Углерод	Хром	Медь	Магний	Марганец			
СЧОО (литой) АЧВ-1 (каленый) АЧК-1 (каленый) ЖЧНДХ-15-7-2 (каленый)	3,0—3,5 2,8—3,5 2,6—3,0 2,5—3,0	≪0,15 ≪0,06 1,5—2,5	<0,7 6—8,5	<0,03 	0,6—1,0 0,5—1,2 0,3—0,6 0,5—1,2			

Продолжение таблицы

Марка чугуна	Концентр	λ. Bt ×			
(вид обработки)	Никель	Фосфор	Cepa	Крем:ний	×M-1.K-1
СЧОО (литой) АЧВ-1 (каленый) АЧК-1 (каленый) ЖЧНДХ-15-7-2 (каленый)	≪0,5 0 14—17	<0,6 <0,2 <0,15 <0,3	<0,15 <0,03 <0,12 1,5—3,0	1,8—2,4 1,8—2,5 0,8—1,3 ≪0,08	41,8 41,8 54,4 25,1

Коэффициент теплопроводности инвара (35 % никеля) [120, 160]

θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	0 , K	$\left \begin{array}{c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array}\right $	ө,к	$\lambda, BT \cdot M^{-1} \times K^{-1}$
20	1,80	60	5,03	273	11,0
30	2,60	70	5,51	373	11,4
40	3,22	80	6,10	473	12,0
50	4,11	90	7,01	573	12,7

Коэффициент теплопроводности железоникелевых сплавов для спаев с неорганическими диэлектриками при 293 К [120]

Марка сплава	Концентрация элементов, %	λ , BT·M ⁻¹ × ×K ⁻¹
30НКД	13,0—14,2 кобальта, 29,6—30,6 никеля, 1.5 меди	20,5
- 42 H	41—43 никеля, <0,05 углерода, 0,3—0,6 мар- ганца, <0,02 фосфора, <0,02 серы, 0,15—0,30 кремния	16,7
:29HK	17-18 кобальта, 28,5-29,5 никеля	19,2
46H	46,3 никеля, 0,024 углерода, 0,32 марганца, 0,018 фосфора, 0,017 серы, 0,12 кремния	18,0
33HK	16,5—17,5 кобальта, 32,5 никеля	17.6
48HX	48,0-49,4 никеля, 0,7-1,0 хрома	20,1
47HXP	46—48 никеля, 4,5—6,0 хрома	18,0
·47НД	46—48 никеля, 3—4 меди	16,7
47H	47 никеля	17,2
H30K25X8	25 кобальта, 30 никеля, 8 хрома	12,6
Ковар	17 кобальта, 29 никеля, 0,2 углерода, 0,2 марганца	19,2

Коэффициент теплопроводности железоникелевых прецизионных сплавов с особо упругими свойствами при 293 К [120]

Марка сплава	Концентрация легирующих элементов, %	$\lambda, BT \cdot M^{-1} \times K^{-1}$
4 2H X T Ю	41,57—43,5 никеля, 5,1—5,9 хрома,	14,6
44НХТЮ	43,5—45,5 никеля, 5,2—5,8 хрома, 0.4_0 8 адхомиция, 2,2—2,7 лигана	15,5
41HXTA	41,5—43,5 никеля, 4,9—5,7 хрома, 0,5—1,0 алюминия, 2,2—3,0 титана	15,5

Коэффициент теплопроводности сплавов для термобиметаллов при 293 К [120]

Марка сплава	Концентрация легирующих элементов, %	λ . BT·M ⁻¹ × ×K ⁻¹
45HX	44—46 никеля, 5,0—6,5 хрома, 5,0—6,5 меди, <0,05 углерода, 0,3—0,6 марганца, <0,02 фос-	15,1
20НГ	фора, <0,02 серы, 0,15—0,30 кремния 19—21 никеля, 5,5—6,5 марганца, <0,05 угле- рода, <0,02 фосфора, <0,02 серы, 0,15—0,30	15,9
24HX	кремния 23—25 никеля, 2—3 хрома, 0,25—0,35 углеро- да, 0,3—0,6 мэрганца, ≪0,02 фосфора, ≪0,02	14,6
19HX	18—20 никеля, 10—12 хрома, ≪0,08 углерода, 0,3—0,6 марганца, ≪0,02 фосфора, ≪0,02 се-	15,5
28НХТЮ	ры, 0,2—0,4 кремния 28—30 никеля, 8—9 хрома, 2,2—2,6 титана, 0,4—0,8 алюминия, ≪0,05 углерода, 0,3—0,6 марганца, ≪0,02 фосфора, 0,02 серы, 0,3—0,8	13,8
4 5НТЮ	44,5—46,5 никеля, 2,2—2,6 титана, 0,4—0,8 алюминия, <0,05 углерода, 0,3—0,6 марганца, <0,02 фосфора, <0,02 серы, <0,5 кремния	15,9

Кобальт

Коэффициент теплопроводности кобальта

ө, к	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$	θ, Κ	$\lambda, BT \cdot M^{-1} \times K^{-1}$	ө, к	$\lambda, \begin{array}{c} BT \cdot M^{-1} \times \\ \times K^{-1} \end{array}$
		99,99	9% [160]		
100 120 220 340 370 420 470 520 570	37,5 44,0 66,0 70,9 74,5 94,0 101,0 107,0 113,0 117,0	620 670 720 770 820 870 920 970 1020 1070	121,0 124,0 126,0 126,8 125,5 123,5 120,5 116,5 112,0 107,0	1120 1170 1220 1270 1370 1470 1570 1670	101,5 96,0 89,0 82,0 66,0 49,0 30,0 11,0
		99,9	9 % [120]		
10 20 30	130 230 257	50 100 150	280 160 130	200 250 300	115 105 95,0

Сплавы кобальта

Коэффицие	нт тепло	проводности	сплавов	кобальта	C	хромом,	никелем,
железом и	другими	легирующи	ми элеме	ентами [10	60]		

_			Конце	нтрация л	егируюц	цих эле	ментов, %	6	
Номер сплаве	модХ	Н и- кель	Железо	Углерод	Мо- либден	Воль- фрам	Крем- ний	Марга- нец	Нио- бий
1	25	2	1	0,4	-	6	0,6	0,3	-
2	25	32	1	0,4	6		0,6	0,6	-
3	25	10	1	0.4		8	0.6	0.6	
4	15	20	31.85	0.15	3	2	0.5	1.5	1
5	20	20	25.4	0.4	4	4	0.7	1.5	4
6	20	20	3	0,4	4	4	0,7	1,5	4

Продолжение таблицы

	λ, Вт · м-1 · К-1, при θ, К									
Номер сплава	300	600	700	800	900					
1 2 3 4 5 6	83,7 76,8 80,3 79,1 80,3 87,2	95,4 83,7 86,1 87,2 93,0	97,7 89,6 95,4 94,2 —	102,3 98,9 104,7 101,2 103,5 110,5	115,1 107,0 111,6					

Коэффициент теплопроводности кобальтовых сплавов, производимых ва рубежом [233]

	Конц	ентрация ле	гирующия	элементов,	%
Марка сплава	Никель	Хром	Же ле зо	Вольфрам	Ванадий
S 816 Jessop G 32 Steel X-40 Stelline 31	20 10,5 10,5 9—12	20 19,1 25,5 23—28	15 2,0 2,0	 7,5 6—9	3
Stelline 21	1,5—3,5	2530	2,0	—	

Продолжение таблицы

	Концентрация легирующих элементов, %						
Марка сплава	Молибден	Ниобий	Марганец	Кремний	У ғл ерод		
S 816		_		_	_		
Jessop G 32 Steel	2,2	1,4	0,77	0,52	0,27		
X-40		-		-	0,53		
Stelline 31		—	-	_	0,45-0,60		
Stelline 21	4,5—6,5	-	-		0,2-0,35		

Продолжение таблицы

	λ, Вт · м-1 · К-1, при θ, К						
Марка сплава	400	500	600	700	800	900	1100
S 816	17,2	19,7	22,2	24,8	26,0	27,7	—
Jessop G 32 Steel	15,1	16,8	18,4	20,1	22,2	23,5	26,4
X-40	13,8	16,1	18,0	19,7	21,8	23,0	_
Stelline 31	13,4	15,1	17,2	18,4	20,5	22,6	
Stelline 21	13,2	14,9	16,6	17,6	19,3	20,8	—

Никель

Коэффициент теплопроводности никеля (99,99 %) [160, 233]

θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	θ, Κ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	θ, Κ	$\begin{array}{c c} \lambda, & B_{T \cdot M^{-1} \times} \\ & \times K^{-1} \end{array}$
5	59	473	74	1023	58
10	101	523	71	1073	57
35	251	573	68	1123	57
50	193	623	66	1173	56
100	127	673	64	1223	56
123	122	723	63	12 73	56
223	114	7 73	62	1323	55
293	92	823	60	1373	55
343	86	873	60	1473	55
373	83	923	59	1573	55
423	78	973	58		

Сплавы никеля

Специальные сплавы никеля [203]

Марка сплава	Концентрация легирующих	λ, Вт•м ⁻¹ × ×К ⁻¹ , при θ, К		
	элементов, %	273	373	
Никель (99,2 %)	_	67,3	62.7	
Нихром	10. хрома	17,1	18,9	
Нихром (Х20Н80Т)	20 хрома	12,2	13,8	
Ферронихром (Х15Н60)	15 хрома, 17 железа, 1,5 мар- ганца, 1 кремния	11,8	13,3	
Ферронихром	15 хрома, 20 железа, 4 марганца	11,6	11,9	
Монель НМЖМц 28-2, 5-1,5	28 меди, 2,5 железа, 1,5 мар- ганца	22,1	24,4	
Монель К	27 меди, ≪2 железа, ≪1 мар- ганца, ≪1 кремния, 3 алюминия	25,1	-	
Алюмель НМцАК2-2-1	2 алюминия, 2 марганца, 1 кремния	32,7		
Хромель ХН9	9 хрома	16,0	17,8	

Продолжение таблицы

		λ, Вт • м-	-1 • К-1, пр	юн θ, К	
Марка сплава	47 3	573	673	773	873
Никель (99.2 %)	58.0		52.2		56.8
Нихром	20,9	22.8	24.7		
Нихром (Х20Н80Т)	15.6	17.2	19.0	_	22.6
Ферронихром (Х15Н60)	14.6	16.1	17.5	_	
Ферронихром	12,2	12,4	12,7	12,9	13,1
Монель НМЖМц 28-2, 5-1,5	27,6	30,2	33,7	_	_
Монель К			_	_	—
Алюмель НМцАК2-2-1				-	
Хромель ХН9	19,8	21,6	23,5		-

Коэффициена теплопроводности конструкционных никелевых сплавов при 293 К [120]

Марка сплава	Концентрация легирующих элементов, %	$\begin{vmatrix} \lambda, & B_T \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$
НК 02	0,15—0,22 кремния, ≪1 кобальта	58,6
НМц 2,5	2,3—3,3 марганца	53,1
НМц 5	4,6—5,4 марганца	48,1

Коэффициент теплопроводности сплава никеля контрацид (15 % хрома, 16 % железа, 7 % молибдена) [120]

0, K	$\left \begin{array}{c} \lambda, B_{T} \cdot M^{-1} \times \\ \times K^{-1} \end{array}\right $	θ, K	$\left \begin{array}{c} \lambda, & B_{T} \cdot \mathbf{M}^{-1} \times \\ & \times \mathbf{K}^{-1} \end{array}\right $	ө, к	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$
25	1,80	50	6,10	80	7,30
30	3,65	60	6,70	90	7,50
40	5,50	70	7,00	100	7,70

Коэффициент теплопроводности сплава никеля инконель (14 % хрома, 6 % железа) [120]

θ, Κ	λ, Вт.м-1.К-1	θ, Κ	λ, Βτ·м-1·Κ-1
25 30 40 50	2,30 3,70 5,02 6,20	60 70 80	7,40 8,30 9,20

Сплав никеля для термобиметаллов НПЗ (<0,15 углерода, <0,15 меди, <0,15 железа, <0,002 фосфора, <0,015 серы, <0,15 кремния): $\lambda = 59,4$ Вт · м⁻¹ · K⁻¹ при 293 К [120].

ŀ	Соэффициент	теплопроводности	технических	сплавов	никеля	[160	L

Марка сплава	Концентрация легирующих	λ,	Вт•м-1•К-1, при Ө, К	
•	Siementos, 70	20 0	300	400
ХН78Т (ЭИ435, нимоник ⁸ 0)	19—22 хрома, ≤ 0,15 алюминия, < 0,12 углерода, < 0,70 марган- ца, < 0,80 кремния, 0,15—0,35 ти-	-	12,5	14,2
ХН77ТЮР** (ЭИ437Б)	тана 19—22 хрома, 0,55—0,95 алюминия, «0,06 углерода, «0,01 бора, «0,01 церия, «4,0 железа, «0,4 марганца, «0,60 кремния, 2,3— 2 7 титана	11	12	14
ХН80ТБЮ (ЭИ607, ЭИ607А)	2,7 ингана 15—18 хрома, 0,5—1,0 алюми- ния, ≪0,08 углерода, ≪3,0 желе- за, ≪1,0 марганца, 1,0—1,5 нио- бия, ≪0,80 кремния, 2,3—2,7 ти-	11	12	14
ХН70ВМЮТ** (ЭИ765)	14—16 хрома, 1,7—2,2 алюминия, 0,01 бора, 0,1—0,16 углерода, \ll 3,0 железа, \ll 0,50 марганца, 3—5 молибдена, 4—6 ниобия, \ll 0.60 кремния, 1.0—1.4 титана	7	8	10
ХН60Ю (ЭИ559, ЭИ559А)	 15—18 хрома, 2,6—3,5 алюминия, ≪0,1 бария, ≪0,1 углерода, ≪0,03 церия, ≪0,3 марганца, <0.8 креминя 	8,0	9,6	11,5
ХН60В (ЭИ868, ВЖ98)	23,5—26,5 хрома, <0,5 алюминия, <0,1 углерода, <4,0 железа, <0,5 марганца, <0,8 кремния, 0,3—0,7 титана, 13—16 вольфрама	9,0	9,8	10,6

II DOODAMERICE III GOAGGO	Π	р одолжение	таблицы
---------------------------	---	--------------------	---------

			λ, Βτ	• M-1 • H	(-1, при	θ, Κ		
Марка сплава	500	600	700	800	900	·1000	1200	1400
ХН78Т, ЭИ435, нимоник 80	15,8	19,3	22,7	-	_		-	-
XH77TЮP*	15	16	18	20	22	24	—	-
(ЭИ437Б) ХН80ТБЮ (ЭИ607, ЭИ607А)	16	18	19	21	23	25	26	27
XH70BMЮT**	12	14	16	18	20	22	23	24
(91765) XH6010 (917559, 917559A)	13,3	15,1	17,0	18,8	20,5	22,4	26,0	29,3
ХН60В (ЭИ868, ВЖ98)	12,0	13,5	16,3	14,2	22,0	22,6	-	-

• Сплав ХН77ТЮ (ЭИ437А) имеет аналогичные коэффициенты. теплопроводности. •• Сплав ХН70ВМТЮ (ЭИ617) имеет аналогичные коэффициенты теплопроводности.

Рутений

 $\lambda = 105$ Вт м⁻¹ · К⁻¹ при 293 К [163]

θ, κ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	ө, к	$\begin{array}{c c} \lambda. & B_{T} \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$
2	284	50	495	300	117
5	709	100	154	400	115
10	1400	150	128	500	113
20	2270	200	118	600	111

Коэффициент теплопроводности [287]

Родий

Коэффициент теплопроводности родия

ө, қ	$\lambda_{i} \xrightarrow{BT \cdot M^{-1} \times K^{-1}}_{\times K^{-1}}$	θ, K	$\begin{array}{c c} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$	ө, қ	$\lambda, \begin{array}{c} BT \cdot M^{-1} \times \\ \times K^{-1} \end{array}$
		99,9	% [120]		
2	160	80	262	250	151
5	370	100	174	300	150
10	690	150	157		
20	1100	200	153		
		99,0 %	[163, 23 3]		
7	380	105	185	200	152
85	230	110	163	273	151
90	210	145	153	300	150
		По да	нным [287]		
300	150	700	131	1100	118
350	148	800	127	1200	115
400	146	900	124	1300	113
500	140	1000	121	1400	111
600	136				

Палладий

Коэффициент теплопроводности палладия

ө, к	$\left \begin{array}{c}\lambda, B_{T} \cdot M^{-1} \times \\ \times K^{-1}\end{array}\right $	θ, Κ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	ө, қ	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$
		99,995 9	% [163, 233]		
3 10 15	730 1120 875	30 50 100	270 81,0 78,6	150 293	77,5 71,2
		99,9	9 % [120]		
2 5 10	20,0 40,0 85,0	20 25	135,0 133,0	30 300	130 75,7

Продолжение таблицы

θ, Κ	$\begin{vmatrix} \lambda_i & B_{T} \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	ө, к	$\left \begin{array}{c}\lambda, & B_{T^*M^{-1}\times} \\ & \times K^{-1}\end{array}\right $	ө, к	$\begin{vmatrix} \lambda, B_T \cdot M^{-1} \times \\ \times K^{-1} \end{vmatrix}$
300 350 400	75,5 75,5 75,5	По дал 500 600 700	нным [287] 75,5 75,5 75,5 75,5	800 900 1000	75,5 75,5 75,5

Сплав палладия

Коэффициент теплопроводности сплавов палладия с серебром [233]

		λ, Βτ·м-1·Κ-1		
ө, қ	4	онцентрация серебра,	еребра, %	
	5	30	50	
10	14,0	3,5	9,1	
50	20,6	9,6	18,0	
100	31,0	15,5	21,0	
150	41,4	20,1	24,3	
200			26,0	

Осмий

 $\lambda=87,9$ Вт \cdot м⁻¹ \cdot К⁻¹ при 300 К [120]; 87,2 Вт \cdot м⁻¹ \cdot К⁻¹ в диапазоне 273—373 К [163]

Коэффициент	теплопроводности	[287]
-------------	------------------	-------

ө, к	$\begin{vmatrix} \lambda, & BT \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	0, K	$\begin{vmatrix} \lambda, & B_T \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	0, K	$\begin{array}{c c} \lambda, & B_T \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$
2 5 10 25 50	60,8 152 301 544 245	100 200 300 400	113 90,8 87,6 86,9	500 600 1000 1673	86,9 86,9 86,9 86,9 86,9

Иридий

Коэффициент теплопроводности [120, 233]

0, K	$\begin{array}{c c} \lambda, & B_{T} \cdot M^{-1} \times \\ & \times K^{-1} \end{array}$	θ, Κ	$\begin{vmatrix} \lambda, B_{T} \cdot M^{-1} \times \\ \times K^{-1} \end{vmatrix}$	0, K	$\begin{array}{c c} \lambda, & B_{\overline{2} \cdot M} - \frac{1}{2} \times \\ & \times K^{-2} \end{array}$
2 5 10 20	270 64 0 1200 1800	30 50 100 150	1400 650 173 153	200 250 300	150 148 148

Платина

0, K	$\left \begin{array}{c}\lambda, BT \cdot M^{-1} \times \\ \times K^{-1}\end{array}\right $	⊎, К	$\begin{vmatrix} \lambda, & B_{T} \cdot M^{-1} \times \\ & \times K^{-1} \end{vmatrix}$	₩, K	$\begin{vmatrix} \lambda, B_{\mathbf{T} \cdot \mathbf{M}^{-1}} \\ K^{-1} \end{vmatrix}$
2 5 6 10 20	350 1080 1300 1230 500	25 30 100 200 300	380 260 74,0 71,9 71,2	1200 1400 1600 1800	67,0 66,6 65,8 64,5

Коэффициент теплопроводности [120, 233]

Сплавы платины

Сплав платины с 8 % никеля: $\lambda = 36,0$ Вт · м⁻¹ · К⁻¹ при 293 К [120]

Коэффициенты теплопроводности сплавов платины с иридием при 293 К [120]

Концентрация иридия, %	λ, B t·m-1· K-1	Концентрация иридия, %	λ, Вт.м-ј.К-ј
10 15 20	29,7 23,0 17,6	25 30	16,3 15,5

ГЛАВА 11

ИЗМЕНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ И ПЛОТНОСТИ МЕТАЛЛОВ И СПЛАВОВ

Внешнее воздействие осуществляется при 293 К (исключения указаны). Приведена истинная степень пластической деформации. Результаты различных авторов для каждого металла и сплава даны в хронологическом порядке.

11.1. Изменение внутренней энергии пластически деформированных металлов и сплавов

Вид и степень деформации, %	Δ <i>U</i> , кДж • кг ^{−1}	ΔU/A;%	Чистота, %	Размер зерна, мм	Источ- ник
Сжатие	3,76	13			[199]
Растяжение, 0,07-	0,090,31	10,5—8,0			[218]
Волочение прово-	43,93				[277]
Кручение, 0,62—	0,75—1,34	9,6—8,2			[271]
Волочение прово-	0,96	3,1			[270]
Кручение, 0,059—	0,08—4,81	9,6—8,2			[286]
Волочение прово-	0,96	9			[256]
Сжатие, 0,08—0,50 Кручение	0,17—1,21 1,34—2,09	15,0—8,3 7.0—9.0			[249] [265]
Сжатие, 0,07-	0,14—1,20	15-6			[147]
Сжатие, 0,20—0,51 Сжатие, 0,053— 0,859	0,54—2,01 0,12—3,34	18—8	99,96		[144 [282
Сжатие, 0,025— 0.48	00,48	0—15			[140]
Сжатие, 0,09—1,02 Сжатие, 0,77; 1,05 Сжатие, 0,1—0,7	0—2,8 1,42; 1,97 0,025—0,343	0—13,8 5,4;5,1	99,8	Моно- крис- талл	[40] [233 [233

Медь

Размер Вид и степень Чистота, Источ-**Δ***U*, кДж · кг−1 $\Delta U/A$, % зерна, % деформации, % ник . мм Волочение прово-10.46: 11.30 [193] локи, 5,6; 8,1 Кручение 0.96 - 1.722,8-3,4 [297] 0,47-Кручение, 0,42 - 1,392.6 - 1.099,967 [207] 3.03 0,47-3.4 - 1.1Кручение, 0.46 - 1.1599,988 [207] 2,57 0,04 Сжатие <1 17—3 [216] 3,22 Сжатие [157] Испытания на ус-0,17; 0,21 [201] талость 0,38-1,34 2,3-0,9 Кручение, до 1,87 99.96 [210] Сжатие, 0,43-1,70 0.29 - 0.712.2 - 1.299.98 [210] 3,8 - 1.4Кручение. 0.47-0.54 - 1.8099,55 [210] 2,53 5.5 99.55 Кручение, 0,34 0.46 [210] 0,015 Растяжение, 0,1-0.17 - 0.4012.6 - 5.399,999 [228] 0,33 ~1.25 2.5 - 0.499,96 Волочение проволо-[191] ки, 0,98-5,13 6,27 Волочение прово-1,6 99,88 [191] локи, 6,3 0,02-0,30 6,9 99,99 0,2 Растяжение. [266] 0.05 0,02-0,42 7,5 99,99 Растяжение при [266] 0.05 78 K, 0,20 0,35 4,5 99,99 0.02-Кручение, 0,26 [266] 0,05 0,67 6,1 99,99 Кручение при 78 К, 0,02-[266] 0,26 0.05 Сжатие при 90 К. 0.54 - 0.7899,999 0,1 [234] 0.81 - 1.24Сжатие, 0,16-0,36 Сжатие, 0,36; 0,81; 99,9 0.92 - 2.4316 - 12[124] 99,98 0.397; 0.536; ľ 2091 1.20 0.619 Сжатие, 0, 105—1,21 Сжатие, 0, 105—1,21 10,7-1,8 99.98 0,16-0,80 0.03 [205] 6,5-1,8 0,08-0,80 99,98 0,15 [205] 56-19 Растяжение, 0.02-0.08 - 1.46[69] 0.32 Растяжение, 0,27, 0.39 - 0.4299,999 [241] последующим с сжатием. 0.03-0.22[276] 5,85 Электро-Волочение проволоки, 2,2 литическая медь 0,42 - 1,1710-4 [306] Сжатие ударом, 0,2-0.67 Кручение, 0,6; 1,3 1,67; 4,18 10; 8 99.98 [25] 0,36 99,999 0,7 [254] Сжатие, 0,36

Продолжение таблицы

Продолжение таблицы

Вид и степень деформации, %	Δ<i>U</i> , кДж · кг−¹	∆U/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Сжатие при 77 К, 04—108	0,46—1,17		99,999		[292]
Сжатие ударом, 0.19-0.67	0,38—0,96	9,6—4, 0	99,999	0,2	[309]
Сжатие ударом, 0.3	0,68—0,57	10,7—8,7	99,998	0,01— 0.40	[309]
Кручение, 2,2 Напиловка Растяжение, 0,28 Сжатие при 273 К,	5,44 7,53 0,41 0,50; 0,31	5,4	99,999 99,999	0,035;	[136] [136] [227] [303]
0,4 Сжатие при 77 К,	0,46—1,17	2,82,0	99,999	0,40	[293]
Прокатка, 0,18—2,2 Прокатка, 0,18—2,2 Волочение прово-	0,69—1,39 0,30—1,44 0,61	2,0—0,2 1,3—0,2	99,999 99,98 99,99	0,017 0,01	[298] [298] [253]
локи, 0,44 Волочение прово- локи при 77 К,	2,30		99,99		[253]
Растяжение, 0,03— 0,35	0,08-4,03	27—4	«Высо- кой чис-		[306]
Сжатие, 0,248 Сжатие, 0,352 Сжатие, 0,392 Растяжение с по- следующим сжа- тием. 0: 0.05	0,32 0,46 0,28 0,59; 0,39; 0,61	5,6 4,7 3,4	тоты» 99,999 99,999 99,999 99,999 99,99	0,01 0,02 0,03	[304] [304] [304] [235]
0,17 Растяжение, 0,05— 0,59	0,0004—0,1924		99,999	Моно- крис-	[306]
Растяжение,	0,002—0,025	2053	98 , 3	0,07	[70]
Растяжение, 0,01—	0,008-0,879		99,999	0,06	[306]
Растяжение, 0,06-	- 0,0960,669	18—6	99,999	0,76	[306]
Циклическое кру	• 0,017	20			[214]
Циклическое кру- чение, 0,006-	00,17	15—2,5		5	[231]
0,08 Растяжение, 0,14-	. 0,54—1,13	8—17			[125]
0,20 Изгиб, 0,14 Растяжение, 0,005—0,5	0—0,27	19 12—27	99,99 99,999	Моно- крис-	[232] [311]
Кручение, 0,6; 1,0) 1,0; 1,67			талл	[246]

Вид и степень деформации, %	Δ <i>U</i> , кДж · кг ^{— ,}	ΔU/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Ударное нагруже- ние 0.22: 0.26	0,88; 1,0		99,9	0,013	[294]
Растяжение при 78 К, 0,1— 0.375	0,21—2,09	100—20	99,97	Моно- крис- талл	[316]
Кручение при 77 К, 203 К, 293 К, 0.25-0.75	(6,69-11,72); (1,67-5,65); (0,42-2,93)	0—25			[9]
Растяжение, 0.025-0.25	0,02-0,67		99,999	0,18	[313]
Растяжение, 0,11- 0,34	0,13—0,35		99,999	0,06— 0,5	[219]

Сплавы меди с серебром

Концентрация серебра, %	Вид и степень деформации	∆ <i>U</i> , кДж • кг-1	∆U/A, %	Размер зерна, мм	Источ- ник
0,012 0,08 1,0 0,1	Сжатие ударом, 0,3 То же, 0,3 » », 0,3 Сжатие при 77 К,	0,68 0,70 0,76 0,59—1,0		0,1 0,08 0,05	[309] [309] [309] [293]
1,0	0,66—0,95 То же, 0,59—0,89	0,67—0,96	10—15	-	[293]

Сплавы меди с золотом

Концентрация золота, %, исходное состоя- ние	Вид и степень де- формации	∆ <i>U</i> , КДж•кг-1	∆U/A, %	Размер зерна, мм	Источ- ник
Си _з Аи, неупорядо- ченное	Прокатка, 0,3—0,95	1,30—6,90		0,012	[212]
Си _з Аи, упорядочен- ное	Прокатка, 0.1—0.95	3,02—16,4	-	0,012	
Си ₃ Аи, упорядочен- ное	Волочение про- волоки, 0,11— 2,28	0,63—9,70	60,7	0,012	[212]
Си _з Аи, неупорядо- ченное	Волочение про- волоки, 0,11— 2.28	0,63—27,61	4—1,5	0,012	[212]
Си ₃ Аи, неупорядо- ченное	Волочение про- волоки, 0,18-2,4	2,93— 21,2		0,036	[268]

Концентрац %, исходно ни	ня золота, е состоя- е	Вид и степень де- формации	∆ <i>U</i> , кДж•кг-1	∆U/A, %	Размер зерна, мм	Источ- ник
Си _з Аи, ченное	упорядо-	Волочение про- волоки, 0.37—2.4	6,28—41,0		0,036	[268]
0,1		Сжатие при 77К, 0.75—1.19	0,75—1,51	11-23		[293]
1,0		Сжатие при 77К, 0,72-0,99	1,0—1,67	16—26		[293]
Си _з Аи, не ченное	еупорядо-	Деформация ударом, 0,11—0,22	5,02—7,53			[185]
Си ₈ Аи, ченное	упорядо-	Деформация ударом, 0,11—0,25	5,86—16,74			[185]
Cu₃Au		Растяжение, 0,4—0,35	C—0,42	0-25		[314]

Сплавы меди с цинком

Концентра- ция цинка, %	Вид и степень деформации	∆ <i>U</i> , кДж•кг—	ΔU/A, %	Размер зерна, мм	Источ- ник
37,6 30 30 4,5 38,61 31 0,74 0,92 30 10 39 0,4	Волочение, >3 Кручение, 0,749 Кручение Сжатие при 90 К Сжатие, 0,16—0,36 Кручение, 0,47—1,87 Кручение, 0,6 Кручение, 1,3 Сжатие ударом, 0,09—0,39 Кручение, 0,14—0,34 Кручение, 0,14—0,34 Ковка, 0,2	$\begin{array}{c} 28,03\\ 4,52\\ 1,34;\ 2,03\\ 1,38\\ 1,424,18\\ 3,5210,84\\ 6,28\\ 8,37\\ 1,175,15\\ 1,052,51\\ 1,976,53\\ 5,40\\ \end{array}$	29 14 27—10	0,04	[277] [271] [265] [234] [124] [203] [25] [25] [216] [125] [125] [125] [79]

Сплавы меди с алюминием

Концентрация алюминия. %	Вид и степень деформации	Δ<i>U</i> , кДж • кг ^{−1}	∆U/A, %	Источ- ник
14,5	Сжатие ударом, 0.09—0.23	1,51-4,10	19—52	[216]
2 4,5 7,5	Кручение, 0,14—0,26 Кручение, 0,14—0,26 Кручение, 0,14—0,26	0,96—2,0 1,18—4,39 1,80—5,44		[125] [125] [125]

Сплав меди с 0,3 % окиси алюминия: экструзия при 1033 К, $\varepsilon = 3,3$, $\Delta U = 1,76 \text{ кДж} \cdot \text{кг}^{-1}$ [200]; с 0,3 % галлия: ковка, $\varepsilon = 0,3$, $\Delta U = 11,72 \text{ кДж} \cdot \text{кг}^{-1}$ [81]; с 0,2 % германия: ковка, $\varepsilon = 0,2$, $\Delta U = 10,50 \text{ кДж} \cdot \text{кг}^{-1}$ [81]; с 3,8 % олова: изгиб, $\varepsilon = 0,14$, $\Delta U/A = 24$ % [232].

Сплавы меди с мышьяком

Концентра- ция мышьяка, %	Вид и степень деформации	∆ <i>U</i> , кДж•кр—1	ΔU /A, %	Размер зерна, мм	Источ- ник
0,3 0,2	Прокатка, 0,19—1,09 Ковка, 0,2	0 ,25—1,0 9 10,50	3,8—16,5	0,007	[298] [81]

Сплавы меди с никелем

Концентра- ция никеля, %	Види степень деформации	∆ <i>U</i> ; кДж•кр—1	ΔU/A,%	Источ- ник
>70 >50 >40	Сжатие, 0,1—0,69 Сжатие, 0,16—0,36 Растяжение при 4,2 К,	0,54—2,01 1,88—3,60	32 <u></u> 9 3422 4060	[229] [124] [217]
9 36	Кручение, 0,14—0,26 Кручение, 0,14—0,26	0,67—1,80 2,05—4,48		[125] [125]

Jlатуни

Кручение, $\varepsilon = 0,21-1,84$, $\Delta U = 1,13 \div 9,04$ кДж · кг⁻¹; $\Delta U/A = 24 \div 3\%$ [271].

Бронзы

Кручение, $\varepsilon = 0,23$; 0,68; $\Delta U = 2,18$; 7,28 кДж · кг⁻¹; $\Delta U/A = 22$; 15 % [271]

Нейзильбер (20 % цинка, 15 % никеля)

Кручение, $\varepsilon = 0,68$; 1,31; $\Delta U = 11,21$; 15,23 кДж · кг⁻¹; $\Delta U/A = 22$; 15 % [271]

Серебро

Вид и степень деформации	<i>∆U</i> , кДж · кг ⁻¹	ΔU/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Кручение, 1,23—2,19 Сжатие, 0,52; 0,79 Растяжение, 0,02—	0,96—1,30 0,25; 0,38 0,04—0,75	3,9—2,6 3,3; 2,3 71—21	99,9		[40] [243] [69]
Растяжение, 0,02 —	0,04-0,75				[68]
до разрыва Волочение проволоки, 2.05	0,376		99,9		[273]
Растяжение, 0,11-	0,104-0,280	10,9—4,1	99,99	0,012	[182]
Сжатие, ≪0,7 Сжатие при 77 К,	≤1,88 ≤2,93	15—5 40—8	99,99 99,99		[126] [126]
Сжатие, 1,39 Растяжение, 0,23 Сжатие ударом,	0,607 0,209 0,351—0,96	6,4 8—2	99,98 99,99 99,99	0,5 0,5 0,01	[202] [183] [307]
0,18—0,69 Сжатие при 77 К,	0,25—0,71		99,999		[293]
0,58—0,99 Сжатие, 0,06—0,36	0,0059—0,079	40—20		Моно- крис-	[262]
Кручение Кручение, 0,05—0,37	2,01 0—0,075	2,3—13,6		Моно- крис- талл	[246] [315]

Сплавы серебра с магнием

Концентра- ция магния, %	Вид и степень деформации	<u>Δ</u> U, кдж·кг—1	Δ <i>U</i> /A,%	Размер зерна, мм	Источ- ник
Серебро-	Кручение, 0,01—0,10	0,45-29,5	9,7—3,3	0,017	[188]
магнии З	Волочение проволоки, 0.35—1.0	1,57—3,43			[223]
5,4	Волочение проволоки, 0.35-1.0	2,97—6,44			[223]
7	Волочение проволоки,	3,60—8,87			[223]
7*	Волочение проволоки 0,35—1,0	7,70—18,54			[223]

• Исходное состояние - упорядоченное.

Сплавы серебра с кадмием

Волочение проволоки, $\varepsilon = 0.35 \div 1.0$, $\Delta U = 1.75 \div 7.70$ кДж · кг⁻¹ [188]

Золото

Вид и степень деформации	∆ <i>U,</i> кДж•кг—'	ΔU]A, %	Чистота, %	Размер зерна, мм	Источ- ник
Сжатие, 1,39	0,155		9 9, 9	0,5	[202]
Сжатие при 77 К, 0.69-1.19	0,33—0,54		99,999		[293]
Волочение проволоки при 78 К. 1,05	2,1		\$ 9, 999		[198]
Волочение проволоки, 0.5-3.2	0,33—0,40		99 , 99		[278]
Волочение проволоки при 78 К, 0,5—3,2	1,3—3,6		99,99		[278]

Сплавы золота с серебром

Концентра- ция серебра, %	Види степень деформации	Δ <i>U</i> , кДж•кг—1	ΔU / A; %	Размер зерна, мм	Исто ч- ник
25 25 25	Прокатка, < 1,9 Прокатка, 0,17—2,53 Ортогональный срез, 1,12—3,78	0,79—1,42 0,08—0,67 1,0—1,42	5,6—0,73		[190] [188] [189]
25 25 17,4 17,4 25	Сверление Сверление при 78 К Сверление при 78 К Сверление при 78 К Напиловка	2,09 6,19 2,18 4,98 1,97	0,9 1,4 ~1 ~1		[251] [251] [230] [230] [181]
волото -	Сверление	0,462,85			[229]
серебро 17,4	Волочение проволоки, 0,36-4,81	0,29—0,71	4,10—0,29	0,018, 0,75	[288]
17,4	Волочение проволоки с разной скоростью,	0,46—0,67		0,018	[288]
17,4	Волочение проволоки с разной скоростью, 3 46	0,67—0,75		0,018	[288]
25	Волочение проволоки, 0 58-3.65	0,67—1,05	3,24—0,54		[288]
17,4	Волочение проволоки при 78 К, 0,36— 2.05	1,38—3,89		0,018	[288]
17,4	Волочение проволоки при 78 К с разной скоростью, 0,58	1,88; 1,51		0, 018	[288]

Продолжение таблицы

Концентра- ция серебра, %	Вид и степень деформации	∆ <i>U</i> , кДж•кг—1	ΔU/A;%	Размер зерна, мм	Исто ч- ник
17,4	Волочение проволоки при 78 К, 0,62; осу- ществляется после волочения при 293К,	1,26			[289]
17,4	Деформация ударом, 0.13-0.75				[177]
17.4	Кручение. 0.25-1.05	0.25-0.50	12-5		[176]
17,4	Кручение при 78 К, 0.25-0.50	0,63—3,39	16—8		[176]
17,4	Ударное нагружение при 7 и 27 ГПа	0,08; 0,59			[272]
17,4	Растяжение, 0,008- 0,09	0—0,067		0,003, 0,045	[310]

Цинк

Сверление, ε ≤ 3,0; ΔU = 28,0 кДж · кг⁻¹ [277]

Кадмий

Вид и степень деформации	Δ <i>U</i> , кДж • кг ¹	ΔU/A, %	Чистота, %	Источ- ник
Сжатие при 78 К	4,73	90—17	99,95	[157]
Растяжение, 0,02—0,20	0,04—0,33	62—24		[69]
Сжатие при 77 К, 0,2—0,9	0,8—5,0	90—15		[156]

Сплавы кадмия со свинцом

Концентрация свинца, %	Вид и степень деформации	<i>ΔU</i> , кДж • кг ⁻¹	Источник
20	Сжатие при 77 К, 0,2—0,9	0,67—3,3	[156]
40	Сжатие при 77 К, 0,2—0,9	0,46—2,5	[156]

Алюминий

Вид и степень деформации	∆<i>U</i> , кДж • кг ^{−1}	ΔU/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Растяжение, 0,10-	0,13—0,35	8—7		· · · · · ·	[218]
0,21 Растяжение, 0,14— 0,44	0 ,10—0,5 5	5		Моно- крис-	[218]
Кручение, 0,81— 2.31	7,49—15,06	3417		талл	[271]
Волочение прово-	0,46	1,2			[270]
Кручение Сжатие, 0,18—	4,52 0,33—1,72	9,8 7—2			[265] [147]
0,75 Сверление Сжатие, 0,92; 1,2 Сжатие, 0,09—0,60 Сжатие, 0,29—1,51 Сжатие ударом,	3,51; 3,97 0,50—1,13 3,93—7,41 2,64—6,07	3 11,0; 9,1	99,9 99,99 99,5 99,5		[45] [243] [180] [260] [260]
0,15—1,10 Сжатие, 1,39 Кручение, 0,4; 0,8;	0,50 2,51; 4,18; 5,02;	21,0; 13,0;	99,991	1,0	[204] [136]
1,5; 2,2 Сжатие ударом,	0,37—1,26	3-2	99,9	0,15	[307]
Сжатие ударом, 0.3—1.3	0,39—1,46	3—2	99,9 9	0,1	[309]
Циклическое кру- чение, 0,001—	0,04 — среднее значение для				[215]
0,006 Сжатие, 0,03—0,65	0,029-0,079	40—24		Моно- крис-	[262]
Сжатие, 0,01—0,18 Крупение 0.65	0,069-0,79	40—19		талл 0,2	[262]
Растяжение при	0,18-0,83*	8,2—4,8	99,99	0,06	[255]
Растяжение при 78 К, 0,1—0,45	0,46—5,86	~100—20	99,99	Моно- крис-	[316]
Растяжение при	1,3—2,9	40—23	99,99	0,1	[316]
78 К, 0,1—0,5 Растяжение, 0,028—0,117	0,0017—0,109		99,96	Моно- крис- талл	[312]

* Выделение энергии измерялось до 293 К.

Концентрация меди, %	Вид и степень деформации	∆ <i>U</i> , кДж•кг—1	Размер зерна, мм	Ист оч- ник
5	Сжатие ударом, 0,36	5,4 ± 2,8	0,5	[129]
0,016	Прокатка при 273 К, 0,51	0,041 *		[15]

• Измерялось дорекристаллизационное выделение теплоты.

Титан

Вид и степень д	ц е формации	Δ<i>U</i> , кДж • кг ^{—1}	Чистота, %	Источник
Кручение, 0,23 Сжатие, 0,05; 1,20	0,22; 0,60	6,7 ; 0,544; 2,176; 4,058; 4,853	99,98 99,99	[25] [169, 170]

Деформация на стане холодной прокатки труб сплава титана с 1 % алюминия [102]

£	Δ <i>U</i> , кДж • кр ^{—1}	ε	∆ <i>U</i> , кДж • кг—¹
0,51 0,75 0,86	1,88 3,05 3,51	1,17 2,0	4, 55 5,47

Сплав ТіВі2

Кручение, е = 0,06 ÷ 0,44; ΔU = 0,100 ÷ 0,543 кДж · кг⁻², размер зерна 0,05 мм [267]

Деформация на стане холодной прокатки труб сплава титана с 1,8— 2,5 % алюминия, 2—3 % циркония [102]

£	∆ <i>U</i> , кДж • кг ^{—1}	ε	Δ<i>U</i> , кДж · кг ⁻¹
0,48 0,75 0,86	2,34 3,42 3,92	1,21 2,0	4, 59 7,27

Цирконий

Вид и степень деформации	∆ <i>U</i> , кДж · кр—1	ΔU/A, %	Чисто- та, %	Размер зерна, мм	Источ- ник
Сжатие ударом, 0,13—0,35 Прокатка, 0,17—0,36	1,0—3,43 5,03—5,42	16—10	99,9 99,98	0,5	[307] [137]

Олово

Сжатие, $\varepsilon = 0,27 \div 0,67$; $\Delta U = 0 \div 0.025$ кДж · кг⁻¹, $\Delta U/A < 1$ % [147]

Сви нец

Вид и степень деформации	Δ <i>U</i> , кДж · кг ^{—1}	ΔU/A, %	Чистота. %	Источ- ник
Сжатие, 0,27—0,67 Сжатие при 78 К Сжатие ударом, 0,4—1,7 Сжатие при 77 К, 0,2—0,9	0—0,017 2,13 0,029—0,067 0,13—1,07	2—1 45—23 2—1 80—15	99,99 9 9 9, 95	[147] [157] [307] [156]

Сплавы свинца с кадмием

Концентрация кадмия, %	Вид и степень деформации	<i>∆U</i> , кДж · кг ^{— 1}	Источник
20	Сжатие при 77 К, 0,2—0,9	0,13—1,05	[156]
40	Сжатие при 77 К, 0,2—0,9	0,38—1,93	[156]

Молибден

Молибден (99,98 %), сжатие, $\varepsilon = 0,11 \div 0,51$; $\Delta U = 0,11$ кДж · кг⁻¹, энергия выделялась после нейтронного облучения [179]

Железо

Вид и степень деформации	∆ <i>U</i> , кДж · кг ^{—1}	ΔU/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Растяжение, 0,034—0,109	0,171—0,380	15—12	«Техниче- ской		[238]
Кручение, 0,83—	0,38—0,50	0,9—0,7	чистоты»		[271]
Прокатка Волочение прово- локи	8,8—20,1 30,5				[221] [221]
Кручение Кручение	5,0 0,63-4,60	0	A		[265] [296]
Кручение, 0,8	5,4 0 39 1 13	8	Армко- железо 00.06%	01	[24]
0,11-0,34	0,56-1,15	0 1	00.05%	0,1	[207]
0,08-0,42	0,04—2,20	0	99,9570	0,02	[307]
Кручение, 0,8 Кручение, 0,05; 0,20; 0,40; 1,00	2,68 0,238; 2,259; 3,807; 6,653		99,99% 99,99%		[42] [169, 170]
Напиловка, размер частиц ~150 мкм	25,1		99,9 9%		[167]
Напиловка, размер частиц ~150 мкм	28,5		Армко- железо		[167]

Сплавы железа с кремнием

Концентрация кремния, %	Вид и степень деформации	∆ <i>U</i> , кДж•кг—י	Размер зерна, мм	Источ- ник
1,68	Сжатие	>0	Моно-	[248]
2,74	Прокатка при различных	16,3; 30,5	Моно-	[285]
2,98	ориентациях, 1,2 Прокатка, 1,9	18,8	кристалл	[285]

Углеродистые стали

Сплав, концент- рация углерода, %, предваритель- ная обработка	Вид и степень деформации	∆ <i>U</i> , кДж • кг—1	ΔU/A, %	Размер зерна, мм	Источ- ник
Сталь	Растяжение	0,226-0,653	13		[269]
Сталь	Растяжение, 0.05—0.12	0,092—0,305	10,5—8		[218]
Сталь с различ- ным содержа-	Сжатие, 0,9	>0			[248]
сталь	Волочение про- волоки, 0,05— 0.51	4—38			[225]
Сталь	Кручение, 0.046—0.366	0,173,18	13—9		[265]
Обезуглерожен-	Кручение, 0.081—0.508	0,21—2,69	13—7		[265]
Сталь Сталь Сталь	Сжатие ударом Сжатие, 0,02— 0.30	0,046 0,105—2,217	<1 27—6	0,05	[277] [162]
0,6, патентирова-	Волочение про- волоки, 2,81	48,5			[87]
0.004	Прокатка, 1,9	7,5			[285]
0.003	Прокатка, 1.9	6,3			12851
1,0, патентиро- вание	Прокатка, 2,66	52,7			[95]
0,7, структура пластинчатого перлита	Волочение про- волоки, 1,38	36,0			[168]
0,7, структура зернистого	Волочение про- волоки, 0,69	18,24			[168]
0,6, патентиро- вание	Волочение про- волоки, 0,05; 0,20; 0,56; 1.27: 2.99	8,79; 15,48; 22,59; 35,56; 39,75			[166]
0,6, патентиро- вание	Напиловка, раз- мер частиц около 150 мкм	90,79			[167]
0,7	Волочение про- волоки 0,05; 0,17; 0,36; 0,69; 1,38	16.7; 22,6; 25,9; 31,4; 36,0			[166]

Легированные стали

Сталь	Вид и степень деформации	∆ <i>U</i> , кДж•кг—'	Размер зерна	Источ- ник
45XH30	Ковка, 0,9	20,5		[88]
45XH30	Ковка при 798 К. 0,9	10,5		1881
X18H10T	Волочение проволоки. 0.11:	11.7: 22.2:		1661
	0.36: 0.52: 0.69: 0.93: 1.20:	23.0: 25.5:		[100]
	2.30	26.8 28.9		
	2,00	30 1		
X18H10T	Леформация на стане холол.	22 8. 24 23.		1001
X1011101	ной прокатки труб, 0,51; 0 78. 1 13. 1 93	25,22; 25,82		[99]
VIGHIOT		93.6	«Мелкоо	1001
AIGHIUI	ной прокатки труб, 1,9	20,0	зерно»	[99]
X18H10T	Деформация на стане холод- ной прокатки труб, 1,9	22,5	«Крупное зерно»	[99]

Никель

Вид и степень деформации	Δ <i>U</i> , кДж · кг ⁻¹	ΔU/A, %	Чистота, %	Размер зерна, мм	Источ- ник
Кручение Кручение, 0,94—	3,26 1,59—2,93	5,6 2,3—1,5	99,6		[265] [210]
2,34 Размол до порош-	15,1				12581
ка Сжатие, 0,16—0,36 Сжатие в 3-х вза- имно перпенлику- лярных направ-	1,05—2,34 1,17	19—13	98,7 99,85	0,03—0,04	[124] [259]
лениях, 0,29 Сжатие, 1,21 Сжатие дри 77 К, 0,60-0,87	1,26 0,29—0,50*		99,85 99,99		[206] [292]
Сжатие при 213 К,	0,92; 1,51	6,4; 4,2	99 ,9	1,4	[186]
0,32—0,64 Сжатие ударом,	0,50—1,63	9—2	99,38	0,05	[307]
0,11—0,43 Сжатие ударом,	0,50—1,09	7—1	99,9	0,05	[307]
0,17—0,63 Кручение, 0,6 Напиловка	1,89 11,7		99,99		[96] [135]
Кручение, 0,05; 0.20: 0.40: 1.0	0,218; 1,841; 3,431: 6,276		99,99		[166]
Волочение прово- локи, 0,05; 0,11; 0,36; 0,69; 1,20; 2,30	1,573; 1,757; 2,552; 3,134; 3,837; 4,937		99,99		[169, 170]

• При тепловыделении в диапазоне 90-220 К.

Сплав никеля с 35 % меди

Растяжение при 4,2 К, $\varepsilon = 0.09 \div 0.20$; $\Delta U = 0.23 \div 2.09$ кДж · кг⁻¹; $\Delta H/A = 49 \div 38$ % [217].

11.2. Изменение плотности (удельного объема) пластически деформированных металлов и сплавов

Медь

Вид и степень деформации	Чистота, %	$\Delta D/D \cdot 10^4$	Источ- ник
Сжатие, 0,36; 0,81; 1,20 Сжатие, 1,20	99,98	-0,91; -1,38; -1,93	[209]
Кручение, 0,6; 2,2 Волочение проволоки, 2,37	99,9	-1,8; $-3,0-8,9$	[136] [30]
Деформация ударом, 0,06; 0,17; 0,22; 0,26		-0,5; -1,3; -2,0; -2,0	[194]

Сплавы меди с цинком

Концентрация цинка, %	Вид и степень деформации	$\Delta V/V \cdot 10^4$	Источник
0,74	Кручение, 0,6	7,0	[91]
0,4	Ковка, 0,2	12,0	[79]

Сплав меди с 0,3 % галлия: ковка, $\varepsilon = 0,2$; $\Delta V/V = 13,0 \cdot 10^{-4}$ [81]; с 0,3 % германия: ковка, $\varepsilon = 0,2$ $\Delta V/V = 12,0 \cdot 10^{-4}$ [81]; с 0,21 % мышьяка: ковка, $\varepsilon = 0,2$; $\Delta V/V = 16,0 \cdot 10^{-4}$ [82]; с 30,8—31,2 % олова, 0,01 % железа, 0,03 % свинца: кручение, $\varepsilon = 0,47$; 1,87; $\Delta V/V = (2,2; 10,7) \cdot 10^{-4}$ [203].

Серебро

Сжатие, $\varepsilon = 1,38$; $\Delta D/D = -2,46 \cdot 10^{-4}$ [202].

Золото

Сжатие, $\varepsilon = 1,38$; $\Delta D/D = -1,17 \cdot 10^{-4}$ [202].

Алюминий (99,99%)

Вид и степень деформации	Δ <i>D</i> / <i>D</i> • 104	Источник
Кручение 2,2	2,5	[136]
Волочение проволоки, 2,4	0,2	[30]

Плотность алюминия деформированного прокаткой [20]

ę	<i>D</i> ; кр · м—з	8	<i>D</i> , кр • м ^{— 3}	8	D. KF · M-3
0 0,015 0,022	2696,4 2697,0 2699,0	0,030 0,040 0,050	2699,0 2698,8 2698,3	0,060 0,063	2696,4 2695,0

Титан

Вид и степень деформации	Чисто т а, %	Δ <i>V</i> / <i>V</i> • 104	Источ- ник
Кручение, 0,23 Сжатие, 0,05; 0,22; 0,60; 0,74; 0,97; 1,20	99,9 99,99	4,0 $0,34 \pm 0,06; 1,25 \pm 0,06;$ $2,59 \pm 0,06; 3,30 \pm 0,06;$ $5,50 \pm 0,06; 7,10 \pm 0,06$	[25] [165]

Сплавы титана

Деформация на стане холодной прокатки из труб сплава титана с 1 % алюминия [102]

e	ΔV/V • 10 ⁴	E	$\Delta V/V \cdot 10^4$
0,51 0,75 0,86	1,29 2,09 2,45	1,17 2,0	3,69 5,22

Деформация на стане холодной прокатки труб из сплава титана с 1,8— 2,5 % алюминия, 2—3 % циркония [102]

£	$\Delta V/V \cdot 10^4$	٤	$\Delta V/V \cdot 10^4$
0,48 0,75 0.86	1,63 2,37 2,72	1,21 2,0	4,02 6,87

Цирконий

Цирконий (99,98 %), деформация прокаткой, $\varepsilon = 0,17$; 0,36; $\Delta V/V = (3,3; 4,5) \cdot 10^{-4}$ [137].

Ванадий

Ванадий (99,9%), монокристалл; деформация прокаткой в плоскости (110), $\varepsilon = 0.68$; $\Delta V/V = (26,0 \pm 0.08) \cdot 10^{-4}$ [165]

Молибден

Монокристалл, прокатанный вдоль направления <110> [78]

E	Δ <i>V</i> / <i>V</i> • 10*	ê	ΔV/V · 10*
0,03 0,05	4,8 3,9	0,36 0,52	4,4 4,3
0,11 0,22	1,7 3,8	0,69	3,0

Железо

Вид и степень де‡ормации		ид и степень де‡ормации Чистот. %		$\Delta V/V \cdot 10^4$	Источ- ник	
Кручение, С),8		Армко-	5,0	[24]	
Кручение, (Волочение,),8 0,51;	0,94;	железо 99,99	2,3 11; 18; 33; 45	[42] [31]	
Кручение, 0,40; 1,0	0,05;	0,20;	99,99	$0.43 \pm 0.10; 3.85 \pm 0.10; 5.97 \pm 0.10; 12.64 \pm 0.10$	[165]	

Сплавы железа

Сплав железа с 0,07 % углерода [104]

ε	Δ <i>D</i> / <i>D</i> • 10 ⁴	ē	Δ <i>D</i> / <i>D</i> • 10*
0,53 1,20 1,61	5,1 15,3 20,4	2,3 2,99	

Углеродистые стали

Сталь, содержащая 0,6 % углерода, предварительное патентирование. Волочение проволоки, $\varepsilon = 2,81$; $\Delta V/V = 30,0 \cdot 10^{-4}$ [87]. Сталь, содержащая 1,0 % углерода, предварительное патентирование. Прокатка ленты, $\varepsilon = 2,66$; $\Delta V/V = 49,0 \cdot 10^{-4}$ [95]. Сталь, содержащая 0,8 % углерода, предварительная электронормализация, волочение проволоки [30]

ŝ	$\Delta V/V \cdot 10^4$	£	$\Delta V/V \cdot 10^4$
0,44	10	1,85	30
0,65 1,15	15 20	2,20 2,90	33 35
1,61	28	,	

Сталь, содержащая 0,8 % углерода, волочение проволоки [30]

		$\Delta V/V$	• 104		1		$\Delta V/$	V • 104	
E	1	2	3	4	8	1	2	3	4
0,11 0,36 0,72 1,6	30 54 64 75	5 15 25 41	5 18 27 41	5 14 21	2,25 2,66 2,99	75 78 89	53 62 78	48 53 —	28 38 41

Примечание. Предварительная структура: 1— грубопластинчатый цементит, 2— сорбит отпуска, 3— мелкопластинчатый цементит после патентирования, 4— мелкопластинчатый цементит после электроотпуска.

Сталь, содержащая 0,7 % углерода, со структурой мелкопластинчатого цементита, волочение проволоки [98]

ε	ΔV/V · 104	£	$\Delta V/V \cdot 10^4$
0.05	14.1	0,69	33.0
0,17	21,8	1,41	46,6
0,36	24,1		

Легированные стали

Сталь 45ХН30, ковка, $\varepsilon = 0.69$; $\Delta V/V = 15.0 \cdot 10^{-4}$ [88]. Сталь 45ХН30, ковка при 798 К, $\varepsilon = 0.69$; $\Delta V/V = 10.0 \cdot 10^{-4}$ [88]. Сталь Х18Н10Т, деформация волочением [100]

Ê	Δ <i>V</i> / <i>V</i> • 10*	£	$\Delta V/V \cdot 10^4$
0.11	17	0.93	53
0.36	32	1,20	67
0,52	35	2,30	105
0,69	44	•	

Сталь Х18Н10Т, деформация на стане холодной прокатки труб [99]

Ę	Δ <i>V</i> / <i>V</i> • 104	E	$\Delta V/V \cdot 10^4$
0,51 0,78	32,0 36,9	1,13 1,93	45,2 62,1

Вид и степень деформации	Δ <i>V</i> /V • 104	Чистота, %	Источ- ник
Сжатие, 1,65	3,7	99,6	[208]
Кручение, 0,47; 1,41; 2,34	1,9; 3,8; 5,7	99,6	[208]
Сжатие, 1,2	2,08		[206]
Кручение, 0,6	4,5	99,99	[96]
Кручение, 0,05; 0,20; 0,40; 1.0	$0,30 \pm 0,11; 3,85 \pm 0,11;$ $5,97 \pm 0,11; 11,0 \pm 0,11;$	99,99	[165]
Волочение проволоки, 0,05; 0,11; 0,36; 0,69; 1,20; 2,30	$2,29 \pm 0,11; 2,53 \pm 0,11;$ $3,79 \pm 0,11; 4,71 \pm 0,11;$ $6,14 \pm 0,11; 7,96 \pm 0,11$	99,99	[165]

11.3. Изменение внутренней энергии сплавов на основе железа, подвергнутых термической и термомеханической обработкам

Углеродистые стали

Изменение внутренней энергии при отпуске закаленных от 1173 К в воду сталей [10, 89, 172]

Концентрация углерода, %	∆ <i>U</i> , кДж · кг ^{—1}	Концентрация углерода, %	Δ <i>U</i> , кДж · кг ⁻¹
0,19 0,46 0,62	6,3 16,7 22,6	0,80 1,18	32,6 47,7

Изменение внутренней энергии при отпуске закаленных от 1173 К в воду и переохлажденных в жидком азоте сталей [89]

Концентрация углерода, %	Δ <i>U</i> , кДж · кг ^{−1}	Концентрация углерода, %	Δ <i>U</i> , кДж · кг ^{—1}
0,19	6,7	0,62	18,0
0,46	14,2	1,18	38,9

Изменение внутренней энергии на первом этапе отпуска (353—453 К) закаленных сталей [10, 89, 172, 178, 299]

Концентрация углерода, %	Δ <i>U</i> , кДж · кг ⁻¹	Концентрация углерода, %	Δ<i>U</i> , кДж • кг ^{−1}
0,015	0,23	0,62	4,44
0,05	1,51	0,80	5,15
0,25 0,42	1,69 3,16	1,18	6,69 8,45
0,46	2,95	1,25	8,37

Изменение	внутренней	энергии	при	распаде	остаточного	аустенита	при
отпуске за	каленных ста	алей [4,	10, 8	9, 172]			

Концентрация углерода, %	Количество остаточного аустенита в стали, %	Δ <i>U</i> , кДж · кг ^{−1}
0,19	0,8	0,33
0,46	2,2	1,76
0,62	3,2	3,22
0,8	4,8	6,02
1,18	11,0	19,3

Изменение внутренней энергии при отпуске закаленных от 1173 К в воду и отпущенных при 433 К в течение 5 ч сталей [89]

Концентрация углерода, %	∆<i>U</i>, кДж · кг[—]'	Концентрация углерода, %	Δ<i>U</i> , кДж • кг ^{—1}
0,19	2,09	0,62	5,02
0,46	4,18	1,18	8,79

Изменение внутренней энергии при отпуске стали с 0,8 % углерода' подвергнутой закалке в воду после пластической деформации в аустенитном состоянии при 573 К [10, 125]

	Δ	U, кДж · кг−1, при 6	Э, К
8	29 3—4 53	453—553	553—823
0,22 0,51	5,4	18,4	20,9 18,4

Легирование стали

Изменение внутренней энергии при отпуске закаленных сталей [172]

Марка стали	Δ <i>U</i> , кДж • кг ¹	Марка стали	Δ <i>U</i> , κДж · кг ⁻¹
65Г 6062 70С2Х 30ХГС	40,6 41,8 33,5 27,6	37ХНЗ 45ХН5С 38Х5МФСГ	27,3 47,7 71,5

Изменение внутренней энергии на первом этапе отпуска закаленных сталей [172]

Марка стали	Δ<i>U</i> , кДж • кг ^{−1}	Марка стали	ΔU , кДж · кг ⁻¹
65Г 60С2 70С2Х	9,1 5,4 8,4	45ХН5С 38Х5МФСГ	5,4 6,3

Изменение внутренней энергии на третьем этапе отпуска закаленных сталей [172]

Марка стали	<i>ΔU</i> , кДж · кг ⁻¹	Марка стали	Δ <i>U</i> , кДж · кг ¹
65 Г	15,0	70C2X	15,0
60C2	21,0	45XH5C	32,0

Изменение внутренней энергии при старении при 255 К стали, содержащей 14,4 % никеля, 0,94 % углерода [115]

ө, К (закалка)	Количество мартенситной фазы, %	∆ <i>U</i> ; кДж•кг—1	Ө, Қ (закалка)	Количество мартенситной фазы, %	∆ <i>U</i> ; кДж • кг ^{—1}
900 1000 1100 1200	61,6 52,2 45 48	6,4 6,6 6,7 6,4	1200 1200 1250	49,4 47,4 48,2	6,8 6,7 6,6

Изменение внутренней энергии при деформационном старении сталей при 293 К [115]

	ΔU, кДж · кг-1, для стали		
Время выдержки, ч	хромистой	никел евой	
1	2,29	2,11	
10	2,38	2,15	
240	2,39	2,42	

Изменение внутренней энергии при мартенситных превращениях в марганцовистых сталях [59, 60]

Сталь	Δ <i>U</i> , кДж • кг ^{—1}
Г20	46,9
35Г18	34,4
45Г15	32,6

Изменение внутренней энергии при отпуске легированных сталей, подвергнутых деформации перед закалкой в аустенитном состоянии при 573 К [88, 172]

	ΔU , кДж · кр -1 , для стали					
8	65Г	60C2	70C2X	45 X 5C	38X5MФCP	
0,11 0,22 0,36 0,51 0,69 1,20	 45,4 	48,5 33,7 45,2 47,3	25,7 28,0 	 62,8 		

Примечание. Сталь 45 ХН5С деформировалась при 823 К.

Изменение внутренней энергии на третьем этапе отпуска (623—873 K) легированных сталей, подвергнутых деформации перед закалкой в аустенитном состоянии при 573 К [172]

	Δ <i>H</i> , кДж · кг ^{−1} , для стали			ΔH, кДж · кр−1, для стали	
8	60C2	70C2X	8	60C2	70C2X
0,11 0,22	23,0 20,5	15,5	0,36 0,51	26 ,2 33,1	16,6

Железоникелевые сплавы

Изменение внутренней энергии при старении сплавов в мартенситном состоянии [115]

Концентрация легирующия элементов, %	Гемпер ∵тег	атура ма плоемкос	иксимумов ти, К	<u>ΔU</u> ; кДж•кр—1
7,75 никеля, 1,5 алюминия 7,7 никеля, 1 титана 7,8 никеля, 13 хрома, 0,9 алю-	678 643 513	768 783 723	848 -	0,27 0,56 0,42
миния 19,8 никеля, 1,43 титана, 0,38 алюминия	503	723	803	0,90
16 никеля, 3 молибдена 16 никеля, 4,95 молибдена 16,35 никеля, 10 кобальта, 5,25	743 723 743	823 813		0,07 0,24 0,38
молиодена 16,05 никеля, 14,85 кобальта, 5,03 молибдена	743	803	-	0,67

Изменение внутренней энергии при нагреве закаленных от 1273 К через воду в жидкий азот железоникелевых сплавов [166]

Марка стали	і емператур- ный диапазон изменения внутренией энергии, К	∆ <i>U</i> , кДж•кг—1	Марка стали	Температур- ный диапазон изменения внутренней энергии, К	; кДж•кр→1
H30 H27Г H27Ю	673—873 773—973 503—823	-27,4 -26,4 18,5	H27T2M	293—423 473—948 948—1093	6,7 12,1 6,3
H27T2	853—1053 473—773 843—1023	-18,4 18,5 -5,6	Н27Т2Г	323—523 523—923 923—1133	6,7 15,1 10,0

11.4. Изменение объема сталей, подвергнутых термической и термомеханической обработкам

Углеродистые стали

Относительное изменение объема при отпуске закаленных от 1173 К в воду сталей [10, 89, 172]

Концентрация углерода, %	<u>ΔV/V - 104 при Ө, К</u>			
	353—453	503—553	5 53— 753	
0,19	1,2	-	8,8	
0,46	8,5 19,0	-	22,0 40,0	
0,80	28,0	3,0	56,0	
1,18	34,0	11,0	69,0	

Относительное изменение объема при отпуске закаленных от 1173 К в воду и переохлажденных в жидком азоте сталей [89]

Концентрация углерода, %	ΔV/V · 104 при θ, К			
	353—453	503—553	553 763	
0,19	1,3	_	9,4	
0.46	8.5		26 9	
0,62	20,0		45,0	
1,18	36,0		69,0	
Относительное изменение объема при отпуске закаленных от 1173 К в воду и отпущенных при 433 К в течение 5 ч сталей [89]

Концентрация углерода, %	$\Delta V/V \cdot 10^4$	Концентрация углерода, %	$\Delta V/V \cdot 10^4$
0,19	8,8	0,62	40,0
0,46	22,0	1,18	69,0

Относительное изменение объема при отпуске закаленных сталей [4]

	$\Delta V/V$	· 104		$\Delta V/V$	· 104
Концентра ция углеро да, %	Первый эффект отпуска	Третий эффект отпуска	Концентра ция углер да.%	Первый эффект отпуска	Третий эффект отпуска
0,59 0,79 1,0 1,09	22,2 25,6 30,0	54,8 42,4 68,0	1,15 1,19 1,23	33,1 33,8	66,6 75,8

Относительное изменение объема при отпуске стали с 0,8 % углерода, вакаленной в воду после пластической деформации в аустенитном состоянии при 573 К [10, 172]

	ΔV/V · 104 при θ, К			<i>∆V / V</i> • 104 при 0 , К	
8	353—453	503—823	ε 353—453	503-823	
0,11 0,22	8,0 ~0	56,0 49,5	0,36 0,51	~0 6,0	60,0 14,5

Легированные стали

Относительное изменение объема при отпуске закаленной от 1223 К в воду стали 65Г [172]

Относительное изменение объема при отпуске закаленной от 1223 К в воду стали 60С2 [172]

θ, Κ	$\Delta V/V \cdot 10^4$	θ, Κ	$\Delta V/V \cdot 10^4$
373—453	28,8	373—453	25,8
523—563	3,1	598—633	2,0
563—713	41,3	633—793	55,6

Относительное изменение объема при отпуске закаленной от 1223 К в воду стали 70С2Х [172]

Относительное изменение объема при отпуске закаленной от 1223 К в воду стали 45ХН5С [88]

0 , K	$\Delta V/V \cdot 10^{*}$	θ, Κ	ΔV/V · 104
373—583 673—778	33,9 76,6	383—623 643—723 723—923	15,0 28,0 8,0

Относительное изменение объема при отпуске закаленной от 1223 K в воду стали 38X5МФСГ [172]

θ, Κ	$\Delta V/V \cdot 10^4$	θ, Κ	Δ <i>V</i> / <i>V</i> • 104
373—513	14,0	713—863	10,3
593—703	6,7	913—1113	45,0

Относительное изменение объема при отпуске стали 65Г, закаленной в воду после пластической деформации в аустенитном состоянии при 573 К, $\varepsilon = 0.36$ [172]

0, K	$\Delta V/V \cdot 10^4$
373 - 453	7,0
523 - 563	2,8
563 - 823	45,0

Относительное изменение объема при отпуске стали 60C2, закаленной в воду после пластической деформации в аустенитном состоянии при 573 К [172]

e	$\Delta V/V \cdot 10^4$ при Θ К			$\Delta V/V$ · 10 ⁴ при Θ , Қ	
	373-453	633—793	E	373—453	633 —793
0,11 0,22	14,2 14,3	58,6 62,4	0,36 · 0,51	7,9 8,2	58,3 50,1

Относительное изменение объема при отпуске стали 70С2Х, закаленной в воду после пластической деформации в аустенитном состоянии [172]

	ΔV/V • 104 π	три Ө, К
e	373-583	673-778
0,22 0,51	17,0 5,5	68,0 40,7

Относительное изменение объема при отпуске стали 45XH5C, закаленной в воду после пластической деформации в аустенитном состоянии при 823 К, $\varepsilon = 0.69$ [88]

θ, Κ	$\Delta V/V \cdot 10^4$
383—623	8,0
643—723	19,0
723—973	23,0

Относительное изменение объема при отпуске стали 38Х5МФСГ, закаленной в воду после пластической деформации в аустенитном состоянии при 573 К [172]

		$\Delta V/V \cdot 10$	О⁴при Ө, К	
Ê	373—513	593—703	713—863	91 3—1113
0,36 1,20	10,3 11,5	5,5 5,5	13,4 16,0	39,4 88,3

ПРИЛОЖЕНИЯ

Приложение 1

Единицы измерения и размерности физических величин, применяемых в теплофизике

До 1963 года были приняты три метрические системы единиц: абсолютная физическая система СГС (CGS), в которой основными единицами измерения механических величин являются сантиметр, грамм, секунда;

абсолютная практическая система МКС (МКЅ), в которой основными единицами измерения механических величин являются метр, килограмм, секунда;

техническая система МКГСС (MKGS), в которой основными единицами измерения механических величин являются метр, килограмм — сила, секунда.

В 1960 г. X1 Генеральной конференцией по мерам и весам (ГКМВ) принята Международная система единиц (SI), которая уточнена на последующия ГКМВ. Система СИ для механических единиц совпадает с системой МКС, а для электромагнитных — с системой МКСА.

В качестве единицы плоского угла во всех системах единиц принят радиан, а в качестве единицы телесного угла стерадиан.

В народном хозяйстве СССР система СИ в соответствии со СТ СЭВ 1052—78 применяется с декабря 1979 года.

Основные физические величины системы СИ (табл. П1.1): метр равен 1650 763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями $2p_{10}$ и $5d_5$ атома криптона-86. Переход к новому определению метра (расстояние между двумя штрихами на платиноиридиевом эталоне длины) связан с повышением точности его воспроизведения;

Величина		Единица		
			Обозначение	
Наименование	Обо з наче- ние	Наименова- ние	междуна- родное	русское
Длина Масса Время Сила электрического тока Термодинамическая темпера- тура Количество вещества Сила света	L M T I O N J	метр килограмм секунда ампер кельвин моль кандела	m kg S A K Mol cd	м кг с А К моль кд

T	аблица	П1.1.	Основные	елиницы	СИ
---	--------	-------	----------	---------	----

	Единица			
		Обозначение		
Величина	Наименование	международ- ное	русск ое	
Плоский угол Телесный угол	радиан стерадиан	rad sr	рад ср	

Таблица П1.3. Производные единицы СИ, наименования которых образованы из наименований основных единиц

Величина		Единица			
		· · ·	Обозн	Обозначение	
Наименование	Раз- мер- Наименование ность		междуна- родное	русское	
Площадь	L^2	квадратный метр	m²	M ²	
Объем, вместимость Скорость Ускорение	L3 LT-1 LT-2	куоическии метр метр в секунду метр на секунду	m³ m/s m/s²	м ³ м/С м/С ²	
Плотность	L-3M	в квадрате килограмм на куби-	kg/m³	кг/м ³	
Удельный объем	L ³ M -1	ческий метр кубический метр на	m³/kg	М ³ /КГ	
Молярная концентра- ция	L-3N	килограмм моль на кубический метр	mol/m³	моль/м ³	

Таблица ПІ.4. Производные единицы СИ, имеющие специальные наименования

Величина		E	диница		
			Обозначение		Выражение че-
Наименование	Размерность	Наимено- вание	между- народ- ное	рус- ское	дополнитель- ные единицы СИ
				•	
Сила, вес Давление, механиче•	LMT ⁻²	ныотон	Ν	Н	m∙kg •• s [−] ²
ское напряжение, модуль упругости Энергия работа коли-	$L^{-1}MT^{-2}$	паскаль	Pa	Па	$m^{-1} \cdot kg \cdot s^{-2}$
чество теплоты	L^2MT^{-2}	джоуль	J	Дж	m² · kg · s⁻²
мощность, поток энер- гии	L ² MT ⁻³	ватт	W	Βт	m² · kg • s⁻

килограмм равен массе международного прототипа килограмма;

секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 · 10⁻⁷ H;

кельвин равен 1/273,16 части термодинамической температуры тройной точки воды;

моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При использовании моля структурные элементы должны быть специфицированы (ими могут быть атомы, молекулы, ионы, электроны и другие частицы или специализированные группы частиц);

кандела равна силе света, испускаемого с поверхности плошадью 1/600000 м² полного излучателя в перпендикулярном направлении, при температуре излучателя, равной температуре затвердевания платины при давлении 101325 Па.

Дополнительные единицы (табл. П1.2):

радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу;

стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы СИ следует образовывать из основных и дополнительных единиц СИ по правилам образования когерентных производных единиц. Когерентные производные единицы Международной системы, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты

Таблица П 1. 5. Производные единицы СИ, наименования которых

Величина		
Наименование	Размерность	
Момент силы	12MT-2	-
Поверхностное натяжение	MT^{-2}	
Динамическая вязкость	$L^{-1}MT^{-1}$	
Удельная энергия	L^2T^{-2}	
Теплоемкость системы, энтропия системы	$L^2MT^{-2}\Theta^{-1}$	
Удельная теплоемкость, удельная энтропия	$L^{2}T^{-2}\Theta^{-1}$	
Поверхностная плотность потока энергии	$\overline{M}\overline{T}^{-3}$	
Теплопроводность	LMT-30-1	
Молярная внутренняя энергия	$L^2MT^{-2}N^{-1}$	
Молярная энтропия, молярная теплоемкость	$L^2MT^{-2}\Theta^{-1}N^{-1}$	

равны 1. Для образования производных единиц величины в уравнениях связи принимаются равными единицам СИ.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют величины со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное числу 1 (табл. П1.3).

Производные единицы СИ, имеющие специальные наименования (табл. П1.4); также могут быть использованы для образования других производных единиц СИ. Примеры некоторых производных единиц СИ, наименования которых образованы с использованием специальных наименований, приведены в табл. П1.5. Наравне с единицами СИ допускаются к применению без ограничений следующие единицы: тонна, минута, час, сутки (а также неделя, месяц, гоз, век, тысячелетие и т. п.), градус (минута, секунда), литр (кроме точных измерений). В теплофизике можно применять электрон-вольт (1,60219 · 10⁻¹⁹ Дж).

Приложение 2

Свойства якобианов [72]

Якобианом $\frac{\partial}{\partial}$	$\frac{\partial}{\partial} (u, v)$	называют детермия	нант	
		$\frac{\partial (u, v)}{\partial (x, y)} =$	$\frac{\partial u}{\partial x}$ $\frac{\partial v}{\partial x}$	$\frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial u}.$

образованы с использованием специальных наименований

		Единица	
	Οбυ	значение	
Н аимен ование	международ- ное	русское	выражение через основ- ные и дополнительные единицы СИ
ньютон — метр ньютон на метр	N ∙ m N/m	Н · м <u>Н</u> /м	$m^2 \cdot kg \cdot s^{-2}$ $kg \cdot s^{-2}$
паскаль-секунда джоуль на килограм джоуль на кельвин	Ранс м J/kg J/K	Па・с Дж/кг Дж/К	$m^{-1} \cdot kg \cdot s^{-1}$ $m^2 \cdot s^{-2}$ $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$
джоуль на кило- грамм-кельвин ватт на квадратный метр	/(kg・ ・k) W/m²	Дж/(кг · К) Вт/м²	m² · s ^{−2} · K ^{−1} kg · s ^{−3}
метр ватт на метр-кель- вин джоуль на моль	W (m ⋅ K) J/mol	Вт (м · К) Дж/моль	$\begin{array}{c} m \cdot kg \cdot s^{-3} \cdot K^{-1} \\ m^2 \cdot kg \cdot s^{-2} \cdot mol^{-1} \end{array}$
джоуль на моль- кельвин	J/ (mol · K)	Дж/ (моль · К)	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}$

Он обладает следующими очевидными свойствами:

$$\frac{\partial}{\partial} \frac{(v, u)}{(x, y)} = -\frac{\partial}{\partial} \frac{(u, v)}{(x, y)},$$
$$\frac{\partial}{\partial} \frac{(u, y)}{(x, y)} = \left(\frac{\partial u}{\partial x}\right)_y.$$

Справедливы соотношения:

$$\frac{\partial}{\partial}\frac{(u, v)}{(x, y)} = \frac{\partial}{\partial}\frac{(u, v)}{(t, s)} \quad \frac{\partial}{\partial}\frac{(t, s)}{(x, y)},$$
$$\frac{d}{dt}\frac{\partial}{\partial}\frac{(u, v)}{(x, y)} = \frac{\partial}{\partial}\frac{du}{(t, v)} - \frac{\partial}{\partial}\frac{u}{(x, y)} - \frac{\partial}{\partial}\frac{u}{(x, y)}.$$

С помощью якобианов удобно осуществлять преобразования частных производных к другим переменным, что широко используется в термодинамике.

Приложение 3

Термодинамические неравенства [72]

Выделим в рассматриваемом теле некоторую малую (но макроскопическую) область. По отношению к ней остальные области тела можно рассматривать как внешнюю среду. В равновесии имеет минимум величина $U - \Theta S + PV$, где U, S, V — энергия, энтропия и объем данной части тела; Θ, P — температура и давление среды, которые в то же время являются температурой и давлением рассматриваемой области в состоянии равновесия.

При малом отклонении от равновесия изменение указанной величины должно быть положительным: $\delta U - \Theta \delta S + P \delta V > 0$, т. е. минимальная работа, которую надо затратить для того, чтобы перевести данную часть тела из состояния равновесия в любое другое близкое состояние, должна быть положительна.

Разлагая δU в ряд (рассматривая U как функцию S и V) получаем с точностью до членов второго порядка:

$$\delta U = \frac{\partial U}{\partial S} \delta S + \frac{\partial U}{\partial V} \delta V + \frac{1}{2} \left(\frac{\partial^2 U}{\partial S^2} \delta S^2 + 2 \frac{\partial^2 U}{\partial S \partial V} \delta S \delta U + \frac{\partial^2 U}{\partial V^2} \delta V^2 \right).$$

Поскольку $\frac{\partial U}{\partial S} = \Theta$; $\frac{\partial U}{\partial V} = -P$, определяем условие

$$\frac{\partial^2 U}{\partial S^2} \delta S^2 + 2 \frac{\partial^2 U}{\partial S \partial V} \delta S \delta V + \frac{\partial^2 U}{\partial V^2} \delta V^2 > 0.$$

Приведенное неравенство выполняется, если

$$\frac{\partial^2 U}{\partial S^2} > 0, \ \frac{\partial^2 U}{\partial S^2} - \left(\frac{\partial^2 U}{\partial S \partial V}\right)^2 > 0.$$

Для первого неравенства имеем

$$\frac{\partial^2 l}{\partial S^2} = \left(\frac{\partial \Theta}{\partial S}\right)_V = \frac{\Theta}{c_V}.$$

Поэтому предыдущее условие приобретает вид: $\Theta/c_V > 0$, и так как $\Theta > 0$, то $c_V > 0$. Это означает, что теплоемкость при постоянном объеме всегда положительна.

Следующее условие можно представить в виде якобиана:

$$\frac{\partial \left[\left(\frac{\partial U}{\partial S} \right)_{V}, \left(\frac{\partial U}{\partial V} \right)_{S} \right]}{\partial (S, V)} > 0 \quad , \text{ или } \frac{\partial (\Theta, P)}{\partial (S, V)} < 0.$$

Переходя к переменным Θ и V, имеем

$$\frac{\partial}{\partial} \frac{(\Theta, P)}{\partial(S, V)} = \frac{\frac{\partial}{\partial} \frac{(\Theta, P)}{\partial(\Theta, V)}}{\frac{\partial}{\partial(\Theta, V)}} = \frac{\left(\frac{\partial P}{\partial V}\right)_{\Theta}}{\left(\frac{\partial S}{\partial \Theta}\right)_{V}} = \frac{\Theta}{c_{V}} \left(\frac{\partial P}{\partial V}\right)_{\Theta} < 0.$$

Так как $c_V > 0$, это равносильно условию $(\partial P / \partial V)_{\Theta} < 0$, т. е. увеличение объема при постоянной температуре всегда сопровождается уменьшением давления.

Рассмотренные условия называются термодинамическими неравенствами. Состояния, в которых эти условия не выполнены, неустойчивы и в природе существовать не могут.

Поскольку $c_P > c_V$, следовательно, $c_P > 0$. Положительность теплоемкостей означает, что энергия есть монотонно возрастающая функция температуры при постоянном объеме, а энтальпия — такая же функция температуры при постоянном давлении. Энтропия монотонно возрастает с температурой как при V = const, так и при P = const.

Приведенные условия для любой малой части тела справедливы и для всего тела, так как в равновесии температуры и давления всех частей равны друг другу. При этом тело считается однородным. Можно, например, рассмотреть тело, частицы которого удерживаются гравитациснными силами. Такое тело будет неоднородным: оно уплотнено по направлению к центру. Его теплоемкость может быть и меньше нуля, т. е. тело может нагреваться по мере уменьшения энергии. Это не противоречит тому, что теплоемкость положительна для каждой малой части тела, поскольку энергия всего тела в этих условиях не равна сумме его частей — существует еще дополнительная энергия гравитационного взаимодействия между этими частями.

Приведенные неравенства являются условиями равновесия. Их выполнение необходимо, но недостаточно для того, чтобы равновесие было полностью устойчивым. Могут существовать такие состояния, при бесконечно малом отклонении от которых энтропия уменьшается, так что тело возвращается в исходное состояние. Однако при некотором конечном отклонении энтропия может оказаться большей, чем в исходном состоянии. В этом случае тело не вернется в исходное состояние, а наоборот, будет стремиться перейти в некоторое другое состояние равновесия, соответствующее максимуму энтропии, большему, чем максимум энтропии в первоначальном состоянии. Поэтому необходимо различать метастабильные и стабильные состояния тела. Если тело находится в метастабильном состоянии, то при достаточном отклонении от него тело может не вернуться в исходное состояние. Хотя метастабильное состояние в известных пределах устойчиво, но тело обязательно перейдет из него в другое, стабильное состояние. Последнее соответствует наибольшему из всех возможных максимумов энтропии; выведенное из такого состояния тело обязательно вернется в него обратно.

Принцип Ле-Шателье [72]

Рассмотрим замкнутую систему, состоящую из среды и погруженного в него тела. Пусть S полная энтропия системы, y — некоторая величина, относящаяся к телу, причем условие максимума S по отношению к ней, т. е. $\partial S/\partial y = 0$, означает, что тело находится в равновесии, не находясь при этом обязательно в равновесии со средой. Пусть x другая термодинамическая величина, относящаяся к тому же телу, причем такая, что если кроме $\partial S/\partial y = 0$ справедливо $\partial S/\partial x = 0$, то тело находится не только в своем внутреннем равновесии, но и в равновесии со средой. Обозначим $X = -\frac{\partial S}{\partial x}$, $Y = -\frac{\partial S}{\partial y}$. При полном термодинамическом равновесии энтропия S должна быть максимальна, для чего кроме условий

$$X = 0; Y = 0$$

должны также выполняться неравенства

$$\left(\frac{\partial X}{\partial x}\right)_y > 0; \quad \left(\frac{\partial Y}{\partial y}\right)_x > 0,$$

причем

$$\left(\frac{\partial X}{\partial x}\right)_{y}\left(\frac{\partial Y}{\partial y}\right)_{x}-\left(\frac{\partial X}{\partial y}\right)_{x}^{2}>0.$$

Предположим, что под незначительным внешним воздействием нарушается равновесие тела со средой, причем несколько изменяется x и нарушается условие X = 0; о y предполагаем, что она данным воздействием непосредственно не затрагивается. Пусть Δx — изменение x, тогда изменение X в момент воздействия определяется следующим образом:

$$(\Delta X)_y = \left(\frac{\partial X}{\partial x}\right)_y \Delta x.$$

Изменение x при постоянном y приводит к нарушению также условия Y = 0, т. е. внутреннего равновесия тела. После восстановления равновесия $X \equiv \Delta X$ имеет значение

$$(\Delta X)_{Y=0} = \left(\frac{\partial X}{\partial x}\right)_{Y=0} \Delta x,$$

где производная берется при постоянном, равном нулю, значении Y. Сравним оба значения ΔX :

$$\left(\frac{\partial X}{\partial x}\right)_{Y=0} = \frac{\partial \left(X, Y\right)}{\partial \left(x, Y\right)} = \frac{\frac{\partial \left(X, Y\right)}{\partial \left(x, y\right)}}{\frac{\partial \left(x, Y\right)}{\partial \left(x, y\right)}} = \left(\frac{\partial X}{\partial x}\right)_{y} - \frac{\left(\frac{\partial X}{\partial y}\right)_{x}^{2}}{\left(\frac{\partial Y}{\partial y}\right)_{x}}.$$

Учитывая приведенные неравенства, находим

$$\left(\frac{\partial X}{\partial x}\right)_y > \left(\frac{\partial X}{\partial x}\right)_{Y=0} > 0,$$

или

$$|(\Delta X)_{y}| > |(\Delta X)_{Y=0}|.$$

406

Эти неравенства составляют содержание принципа Ле-Шателье.

Изменение Δx рассматривают как меру внешнего воздействия на тело, а ΔX — как меру изменения свойств тела под влиянием этого воздействия. Последнее неравенство показывает, что при восстановлении внутреннего равновесия тела после внешнего воздействия, выводящего его из этого равновесия, ΔX уменьшается. Поэтому внешнее воздействие, выводящее тело из равновесия, стимулирует процессы, стремящиеся ослабить результаты этого воздействия. В частности, нагревание (охлаждение) тела стимулирует в нем процессы, стремящиеся понизить (повысить) его температуру. Если тело выводится из равновесия путем изменения его объема (при Θ = const), то изменяется его давление; восстановление равновесия в теле приводит к уменьшению абсолютного значения давления. Поскольку уменьшение объема тела увеличивает его давление (и наоборот), уменьшение (увеличение) объема тела стимулирует в нем процессы, стремящиеся уменьшить (увеличнать) его давление.

Приложение 5

Соотношения между производными термодинамических величин [72]

Наиболее употребительными и удобными в практике являются пары термодинамических переменных Θ , V и Θ , P. Поэтому возникает необходимость в преобразовании различных производных термодинамических величин друг_по другу к другим переменным, как зависимым, так и независимым.

Если в качестве независимых переменных используется V и Θ , то результаты преобразования удобно выражать через P и c_V (как функции V и Θ). Уравнение, связывающее P, V и Θ — уравнение состояния данного тела. Поэтому формулы должны позволять вычислять различные производные термодинамических величин по уравнению состояния и теплоемкости c_V .

Аналогично, при выборе P и Θ в качестве основных переменных результаты преобразования следует выражать через V и c_P как функции P и Θ .

Зависимость с_V от V и с_P от P определяется по уравнению состоя-

ния. Поскольку $S = -\left(\frac{\partial F}{\partial \Theta}\right)_V$, $\left(\frac{\partial F}{\partial V}\right)_{\Theta} = -P$, то

$$\left(\frac{\partial c_V}{\partial V}\right)_{\Theta} = \Theta \frac{\partial^2 S}{\partial V \partial \Theta} = -\Theta \frac{\partial^3 F}{\partial V \partial \Theta^2} = -\Theta \frac{\partial^2}{\partial \Theta^2} \left(\frac{\partial F}{\partial V}\right)_{\Theta} = \Theta \left(\frac{\partial^2 P}{\partial \Theta^2}\right)_V.$$

Аналогично

$$\left(\frac{\partial c_P}{\partial P}\right)_{\Theta} = -\Theta \left(\frac{\partial^2 V}{\partial \Theta^2}\right)_P.$$

Производные от энтропии по объему или давлению могут быть вычислены по уравнению состояния:

$$\left(\frac{\partial S}{\partial V}\right)_{\Theta} = -\frac{\partial}{\partial V} \left(\frac{\partial F}{\partial \Theta}\right)_{V} = -\frac{\partial}{\partial \Theta} \left(\frac{\partial F}{\partial V}\right)_{\Theta} = \left(\frac{\partial P}{\partial \Theta}\right)_{V}.$$

Аналогично

$$\left(\frac{\partial S}{\partial P}\right)_{\Theta} = -\frac{\partial}{\partial P} \left(\frac{\partial \Phi}{\partial \Theta}\right)_{P} = -\frac{\partial}{\partial \Theta} \left(\frac{\partial \Phi}{\partial P}\right)_{\Theta} = -\left(\frac{\partial V}{\partial \Theta}\right)_{P}$$

Производная $\left(\frac{\partial U}{\partial V}\right)_{\Theta}$ вычисляется на основании тождества $dU = \Theta dS$ — - PdV:

$$\left(\frac{\partial U}{\partial V}\right)_{\Theta} = \Theta \left(\frac{\partial S}{\partial V}\right)_{\Theta} - P = \Theta \left(\frac{\partial P}{\partial \Theta}\right)_{V} - P.$$

Аналогично

$$\begin{split} & \left(\frac{\partial U}{\partial P}\right)_{\Theta} = -\Theta \left(\frac{\partial V}{\partial \Theta}\right)_{P} - P \left(\frac{\partial V}{\partial P}\right)_{\Theta}; \\ & \left(\frac{\partial H}{\partial V}\right)_{\Theta} = \Theta \left(\frac{\partial P}{\partial \Theta}\right)_{V} + V \left(\frac{\partial P}{\partial V}\right)_{\Theta}; \\ & \left(\frac{\partial U}{\partial \Theta}\right)_{P} = c_{P} - P \left(\frac{\partial V}{\partial \Theta}\right)_{P}; \\ & \left(\frac{\partial H}{\partial P}\right)_{\Theta} = V - \Theta \left(\frac{\partial V}{\partial \Theta}\right)_{P}; \\ & \left(\frac{\partial H}{\partial \Theta}\right)_{V} = c_{V} + V \left(\frac{\partial P}{\partial \Theta}\right)_{V}. \end{split}$$

Рассмотрим связь между c_V и c_P . Поскольку $c_V = \Theta \left(\frac{\partial S}{\partial \Theta}\right)_V$, необхо-

димо преобразовать производную $\left(\frac{\partial S}{\partial \Theta}\right)_V$ к другим независимым переменным:

$$c_{V} = \Theta \left(\frac{\partial S}{\partial \Theta}\right)_{V} = \Theta \frac{\partial (S, V)}{\partial (\Theta, V)} = \Theta \frac{\frac{\partial (S, V)}{\partial (\Theta, P)}}{\frac{\partial (\Theta, V)}{\partial (\Theta, P)}} = \Theta \frac{\left(\frac{\partial S}{\partial \Theta}\right)_{P} \left(\frac{\partial V}{\partial P}\right)_{\Theta} - \left(\frac{\partial S}{\partial P}\right)_{\Theta} \left(\frac{\partial V}{\partial \Theta}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{\Theta}} = C_{P} - \Theta \frac{\left(\frac{\partial S}{\partial P}\right)_{\Theta} \left(\frac{\partial V}{\partial \Theta}\right)_{P}}{\left(\frac{\partial V}{\partial P}\right)_{\Theta}},$$

или

$$c_{P} - c_{V} = -\Theta \frac{\left(\frac{\partial V}{\partial \Theta}\right)_{P}^{2}}{\left(\frac{\partial V}{\partial P}\right)_{\Theta}}.$$

Преобразуя $c_P = \Theta \left(\frac{\partial S}{\partial \Theta} \right)_P$ к переменным Θ , V, получаем

$$c_{P} - c_{V} = -\Theta \frac{\left(\frac{\partial P}{\partial \Theta}\right)^{2}_{V}}{\left(\frac{\partial P}{\partial V}\right)_{\Theta}}.$$

Поскольку всегда $\left(\frac{\partial P}{\partial V}\right)_{\Theta} < 0$ — при изотермическом расширении тела его давление всегда падает — из предыдущей формулы следует $c_D > c_V$.

При адиабатическом расширении (сжатии) энтропия тела не изменяется. Поэтому связь между Θ , V, P при адиабатическом процессе определяется различными производными, взятыми при S = const. Приведем формулы, позволяющие вычислять эти производные по уравнению состояния тела и его теплоемкости:

$$\left(\frac{\partial \Theta}{\partial V}\right)_{S} = \frac{\partial (\Theta, S)}{\partial (V, S)} = \frac{\frac{\partial (\Theta, S)}{\partial (V, \Theta)}}{\frac{\partial (V, S)}{\partial (V, \Theta)}} = -\frac{\left(\frac{\partial S}{\partial V}\right)_{\Theta}}{\left(\frac{\partial S}{\partial \Theta}\right)_{V}} = -\frac{\Theta}{c_{V}} \left(\frac{\partial S}{\partial V}\right)_{\Theta} = \frac{\Theta}{c_{V}} \left(\frac{\partial P}{\partial \Theta}\right)_{V},$$

Аналогично

$$\left(\frac{\partial \Theta}{\partial P}\right)_{S} = \frac{\Theta}{c_{P}} \left(\frac{\partial V}{\partial \Theta}\right)_{P}.$$

Из приведенных формул видно, что если коэффициент теплового $\left(\frac{\partial V}{\partial \Theta}\right)_P$ положителен (отрицателен), то при адиабатическом расширения расширении температура гела падает (возрастает). Для адиабатической сжимаемости имеем

$$\left(\frac{\partial V}{\partial P}\right)_{S} = \frac{\partial (V, S)}{\partial (P, S)} = \frac{\frac{\partial (V, S)}{\partial (V, \Theta)}}{\frac{\partial (P, S)}{\partial (P, \Theta)}} \frac{\partial (V, \Theta)}{\partial (P, \Theta)} = \frac{\frac{\partial (V, \Theta)}{\partial \Theta}}{\left(\frac{\partial S}{\partial \Theta}\right)_{P}} \left(\frac{\partial V}{\partial P}\right)_{\Theta} = \frac{c_{V}}{c_{P}} \left(\frac{\partial V}{\partial P}\right)_{\Theta}.$$

Поскольку $c_P > c_V$, адиабатическая сжимаемость по абсолютной величине всегда меньше изотермической сжимаемости. Из приведенного равенства можно получить уравнения

15. 5-250

Приложение в

Соотношение Грюнайзена

В общем виде это соотношение находят из выражения для изохорно-изотермного потенциала:

$$dF = -PdV - Sd\Theta.$$

Поскольку

$$\begin{pmatrix} \frac{\partial S}{\partial V} \\ \frac{\partial P}{\partial V} \\ \frac{\partial P}{\partial \Theta} \\ \frac{\partial P}{\partial \Theta}$$

имеем

$$-\left(\frac{\partial\Theta}{\partial V}\right)_{\mathcal{S}}\left(\frac{\partial U}{\partial\Theta}\right)_{V}\frac{1}{\Theta}=-\left(\frac{\partial V}{\partial\Theta}\right)_{P}\left(\frac{\partial P}{\partial V}\right)_{\Theta}.$$

Обозначим

$$-\frac{V}{\Theta}\left(\frac{\partial\Theta}{\partial V}\right)_{S} = -\left(\frac{\partial\ln\Theta}{\partial\ln V}\right)_{S} = \gamma_{\Theta}.$$

Тогда

$$\gamma_{\Theta} = -\frac{\left(\frac{\partial V}{\partial \Theta}\right)_{P} V}{\left(\frac{\partial V}{\partial P}\right)_{\Theta} \left(\frac{\partial U}{\partial \Theta}\right)_{V}} = \frac{\beta V}{c_{V} \chi_{\Theta}}.$$

Таким образом, параметр Грюнайзена γ_{Θ} может быть вычислен с использованием экспериментально определяемых величин: коэффициента объемного расширения β , объема тела V, теплоемкости c_V и изотермической сжимаемости χ_{Θ} . В общем случае $\gamma_{\Theta} = -1/\Theta\beta_S$, где $\beta_S = 1/\partial V$

$$=\frac{1}{V}\left(\frac{\partial V}{\partial \Theta}\right)_{S}$$

В приближении Грюнайзена (принимается спектр частот в твердом теле по Дебаю) постоянная Грюнайзена γ_{Γ} определяется по формуле $\gamma_{\Gamma} = -d \ln \Theta_{\Pi}/d \ln V$, где $\Theta_{\Pi} = \frac{h v_m}{k}$ — температура Дебая; v_m — максимальная частота колебания нона в кристалле. Для действительных колебаний ионов в простом линейном случае, когда все γ_i равны между собой,

$$\gamma = \gamma_i = -\frac{d\ln v_i}{d\ln V} \,.$$

Здесь v_i — частота колебаний *i*-го иона в кристалле. Очевидно, это уравнение справедливо в более широкой области, чем предыдущее уравнение, исходящее из дебаевского распределения частот.

Дифференциальное уравнение теплопроводности [107]

Выделим в некоторой среде объем V, ограниченный поверхностью s. Количество теплоты, прошедшее через поверхность s в единицу времени, в соответствии с основным законом теплопроводности Фурье, равно:

$$\int_{(s)} \lambda \operatorname{grad} \Theta \, ds = \int_{(s)} \lambda \operatorname{I}_n \operatorname{grad} \Theta \, ds,$$

где l_n — единичный вектор, направленный по нормали в сторону возрастания температуры. Интеграл берется по всей поверхности s. При отсутствии источников тепла этот тепловой поток вызовет изменение внутренней энергии среды в данном объеме в единицу времени на величину

$$\frac{\partial}{\partial T} \int\limits_{(V)} cD\Theta \, dV = \int\limits_{(V)} cD \, \frac{\partial\Theta}{\partial T} \, dV,$$

где интеграл берется по всему объему V.

По закону сохранения энергии изменение внутренней энергии среды в объеме V равно потере тепла через поверхность s, ограниченную данным объемом:

$$\int_{(V)} cD \frac{\partial \Theta}{\partial T} dV = \int_{(s)} \ln \lambda \operatorname{grad} \Theta ds.$$

Используем преобразование Остроградского-Гаусса:

$$\int_{(s)} \mathbf{1}_n \lambda \operatorname{grad} \Theta \, ds = \int_{(V)} \operatorname{div} \left(\lambda \operatorname{grad} \Theta \right) dV.$$

Тогда

$$\int_{(V)} cD \, \frac{\partial \Theta}{\partial T} \, dV = \int_{(V)} \operatorname{div} \, (\lambda \operatorname{grad} \Theta) \, dV.$$

Ввиду произвольности объема получаем

$$cD \ \frac{\partial \Theta}{\partial T} = \operatorname{div} (\lambda \operatorname{grad} \Theta).$$

Если коэффициент теплопроводности λ не зависит от температуры, из предыдущего уравнения находим дифференциальное уравнение теплопроводности:

$$\frac{\partial \Theta}{\partial T} = a \nabla^2 \Theta \equiv a \operatorname{div} (\operatorname{grad} \Theta),$$

где *а* — коэффициент температуропроводности; *∇*² — оператор Лапласа; в декартовой системе координат

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2},$$

в сферических координатах (r, ф, ψ)

$$\nabla^2 \Theta = \frac{\partial^2 \Theta}{\partial r^2} + \frac{2}{r} \frac{\partial \Theta}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial \Theta}{\partial \mu} \right] + \frac{1}{r^2 (1-\mu^2)} \frac{\partial^2 \Theta}{\partial \psi^2}.$$

В этом случае $x = r \sin \varphi \cos \psi$; $y = r \sin \varphi \sin \psi$; $z = r \cos \varphi$; $\mu = \cos \varphi$. В цилиндрических координатах (r, φ)

$$\nabla^2 \Theta = \frac{\partial^2 \Theta}{\partial r^2} + \frac{1}{r} \frac{\partial \Theta}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Theta}{\partial \varphi^2} + \frac{\partial^2 \Theta}{\partial z^2}.$$

При этом $x = r \cos \varphi$; $y = r \sin \varphi$.

Если подставить два последних уравнения в приведенное выше уравнение теплопроводности, то получим уравнение теплопроводности соответственно в сферических и цилиндрических координатах.

Приложение 8

Температурная зависимость плотности воды и четыреххлористого углерода (в интервале рабочих температур при гидростатическом взвешивании)

ө, к	D, кг • м	θ, Κ	<i>D</i> , кг • м- ³	Ө, Қ	D, кг • м− ³
			Вода		
273	999,841	277	999,973	283	999,700
274	999,908	278	999,965	293	998,203
275	999,941	279	999,941	303	995,646
276	999,965	280	999,902	313	992,210
	Ч	етыреххло	ристый углерс	д	
096	1609 7		1601.9	906	1502.2
280	1607 3	202	1500 7	290	1501.6
207	1605 7	293	1598.2	208	1589.8
289	1604 2	294	1596.6	290	1588 1
290	1602.7	295	1595.0	300	1586.4
200	,	200		230	

Приложение 9

θ, κ	D, кг · м-3	ө, қ	<i>D</i> , кг • м ⁻³	ө, қ	D, кг • м ⁻³
		P = 1	013,25 гПа		
273 278	1,290 1,270	283 288	1,245 1,225	293 298	1,205 1,185
		P =	986,59 гПа		
273 278	1,255 1,235	283 288	1,215 1,195	293 298	1,170 1,150
$P = 959,92 \ r \Pi a$					
273 278	1,225 1,205	283 288	1,180 1,160	293 298	1,140 1,120

Температурная зависимость плотности сухого воздуха

Приложение 10

Приведение массы вещества к массе в вакууме

Кажущаяся масса вещества $M_{\rm K}$ при взвешивании на воздухе связана с его действительной массой $M_{\rm g}$ соотношением

$$M_{\kappa} = M_{\pi} \left[1 + D_{B} \left(\frac{1}{D_{g}} - \frac{1}{D_{r}} \right) \right],$$

где D_в, D_э и D_г — плотность воздуха, взвешиваемого вещества и гирь соответственно.

D _S , кг · м-*	Поправка на 1 г взвешиваемого ве- щества, мг	D ₉ , кг • м-з	Поправка на 1 г взвешиваемого ве- щества, мг
	Алюминиевые гири	(D _г = 2700 кг ·	м ⁻³)
1	+1.23	5	-0.23
2	+0.15	10	-0,38
3	-0,05	15	0,40
4	-0,18	20	0,43
	Латунные гири (<i>I</i>	D _г = 8400 кг·м ⁻	^{- 3})
1	+1.08	5	+0,10
2	+0,48	10	-0,02
3		15	0,07
4	+0,15	20	0,10

	ПРИНЯТЫЕ СОКРАЩЕНИЯ
внии	— Всесоюзный научно-исследовательский инстру-
ВФММ ГСССД	ментальный институт — Вопросы физики металлов и металловедение — Государственная служба стандартных справоч-
ДАН СССР ЖТФ ЖЭТФ	- доклады Академии наук СССР - Журнал технической физики - Журнал экспериментальной и теоретической фи-
ИФЖ ПТЭ ССС УФЖ ФММ ФТИНТ АН УССР ФТТ ФХОМ ЦНИИЧМ	 Инженерно-физический журнал Приборы и техника эксперимента Специальные стали и сплавы Український фізичний журнал Физика металлов и металловедение Физико-технический институт низких температур АН УССР Физика твердого тела Физика и химия обработки материалов Центральный научно-исследовательский институт иорной металлоги и М. Д. Бардица
Acta met. Ark. fys. Austral. J. Phys. J. Austral. Inst. Metals J. Appl. Phys. J. Mater. Sci. J. Math. Phys. J. Metals J. Phys. Soc. Jap. Mitt. K-W. Inst.	 Acta metallurgica Arkiv fök fysik Australian Journal of Physics Journal of Australian Institute of Metals Journal of Applied Physics Journal of Materials Science Journal of Mathematical Physics Journal of Metals Journal of the Physical Society of Japan
für Physica Phys. stat. sol. Proc. Roy. Soc. Sci Repts. Tohoku Univ. Scripta met. Phil. Mag. Phys. Rey.	 Mitteilungen der Kaiser-Wilhelm Institut für Eisenforschung Physica Nederland, Amsterdam Physica status solldi Proceedings of the Royal Society The Science Reports of the Tôhoku University Scripta metallurgica The Philosophical Magazine Physical Review

Rew. Sci. Instrum.— The Review of Scientific Instruments Trans. ASM — Transactions of the American Society of Metals Trans. Met. Soc. AIME — Transactions of the Metallurgical Society of AIME Z. angew. Phys. — Zeitschrift für angewandte Physik

- Z. Metallk. Zeitschrift für Metallkunde
- Z. Phys. Zeitschrift für Physik

1. Анатычук Л. И. Термоэлементы и термоэлектрические устройства : Справочник. — Киев : Наук/. думка, 1979. — 766 с.

2. Бакланова Л. М., Гриднев В. Н., Лариков Л. Н., Рудой А. П. Инварные сплавы на основе хрома.— Изв. АН СССР. Металлы, 1976 № 6, с. 161—163.

3. Баллуфи Р. В., Келер Дж. С., Симмонс Р. О. Современное состояние знаний о точечных дефектах с ГЦК решеткой. В кн. : Возврат и рекристаллизация металлов. М.: Металлургия, 1966, с. 9—68.

4. Белоус М. В., Черепин В. Т., Васильев М. А. Превращения при отпуске стали. — М.: Металлургия, 1973. — 232 с.

5. Берман Р. Теплопроводность твердых тел. — М.: Мир, 1979, — 286 с.

6. Бернер Р., Кронмюллер Г. Пластическая деформация монокристаллов. — М. : Мир, 1969. — 272 с.

7. Блудилин Е. Н., Лариков Л. Н., Юрченко Ю. Ф. Решение задачи теории теплопроводности для дифференциальных сканирующих калориметров. В кн.: Теплофизические свойства твердых веществ. М.: Наука, 1976, с. 17—20.

8. Боас В. Дефекты решетки в пластически деформированных металлах. В кн.: Дислокации и механические свойства кристаллов. М. 3 Изд-во иностр. лит., 1960, с. 272—286.

9. Богачев И. Н., Денисова И. К. О влиянии температуры деформации на величину запасенной энергии и рекристаллизацию меди. ФММ, 1969, 28, № 6, с. 1118—1120.

10. Браун М. П., Юрченко Ю. Ф., Опальчук А. С. и др. Процессы отпуска стали У8А, подвергнутой низкотемпературной термомеханической обработке.— Изв. вузов. Чер. металлургия, 1974, № 12, с. 102—104.

11. Брум Т., Хам Р. К. Влияние точечных дефектов решетки на некоторые физические свойства металлов. — В кн.: Вакансий и другие точечные дефекты в металлах и сплавах. М. : Металлургиздат, 1961, в. 54—98.

12. Брэдли К. Применение техники высоких давлений при исследованиях твердого тела. М. : Мир, 1972. — 232 с.

13. Вагнер К. Термодинамика сплавов. — М.: Металлургиздат, 1957. — 180 с.

14. Ван Бюрен. Дефекты в кристаллах.— М.: Изд-во иностр. лит., 1962.— 584 с.

15. Вандермеер Р. А., Гордон П. Влияние возврата на рекристаллизацию алюминия. — В кн.: Возврат и рекристаллизация металлов. М. : Металлургия, 1966, с. 196—220.

16. Васильева Е. В., Волкова Р. М., Захарова М. И. и др. Платина, ее сплавы и композиционные материалы.—М. : Металлургия, 1980.— 296 с.

17. Венелинская С. В., Корнюшин Ю. В. Теория тепловых и объемных эффектов при дислокационном старении.— ФММ, 1973, 35, № 2, с. 435—438.

18. Верятин У. Д., Маширев В. П., Рябцев Н. Г. и др. Термодинамические свойства неорганических веществ. — М. : Атомиздат. 1965 .— 460 c.

19. Владимиров В. И., Орлов А. Н. Энергия активации зарождения микротрещин в голове скопления дислокаций. — ФТТ, 1969, 11. № 2, c. 370—378.

20. Владимиров В. И., Садовников Б. В., Смирнов В. С. Исследование разрушения алюминия при поперечной прокатке методом измерения плотности. — ФХОМ, 1972, № 1, с. 76-82.

21. Гаврилюк В. Г., Кушнарева Н. П., Прокопенко В. Г. Влияние легирования на подвижность дислокаций в альфа-железе. — ФММ, **1**978, **42**, № 6, c. 1288–1293.

22. Геращенко О. А, Дехтяренко П. И., Карпенко В. П. Анализ схем автоматического регулирования дифференциального калориметра. — Тр. ин-тов Ком. стандартов СССР, 1962, вып. 64, с. 197-207.

23. Геращенко О. А., Федоров В. Г. Тепловые и температурные измерения. Справочное руководство. — Киев : Наук. думка, 1965. — 304 c.

24. Герцрікен С. Д., Ларіков Л. Н., Слюсар Б. П. Визначення прихованої енергії деформації в міді, сплавах міді з цинком та армкозалізі калориметричним методом. — УФЖ, 1960, 5, № 5, с. 672—675. 25. Герцрикен С. Д., Слюсарь Б. Ф. Исследование дефектов кри-

сталлического строения, возникающих при деформировании в титане и других металлах. — ВФММ, 1961, № 12, с. 93—97. 26. Гесс Г. И. Термохимические исследования. — М. : Изд-во

AH CCCP, 1958, - 204 c.

27. Глазунов С. Г., Моисеев В. Н. Конструкционные титановые сплавы. — М. : Металлургия, 1974. — 368 с.

28. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. — М. : Мир, 1973. — 280 с.

29. Государственный реестр средств измерения (раздел «Стандартные образцы»), — М. : ГССД, 1976. — 26 с.

30. Гриднев В. Н., Гаврилюк В. Г., Мешков Ю. Я. Исследование плотности деформированных металлов и сплавов. - В кн.: Физическая природа пластической деформации. Киев : Наук. думка, 1966, c. 89-98.

31. Гриднев В. Н., Гаврилюк В. Г., Мешков Ю. Я. Прочность и пластичность холоднодеформированной стали. -- Киев : Наук. думка, 1974. — 232 c.

32. Гуляев А. П., Малинина К. А., Саверина С. М. Инструментальные стали. — М. : Машиностроение, 1975. — 272 с. 33. Гуревич М. Е., Лариков Л. Н., Носарь А. И., Усов Ю. В. Теп-

лофизические свойства железа, никеля и сплавов на их основе в интервале фазовых превращений. — ИФЖ, 1980, 39, № 6, с. 1024—1029.

34. Гуревич М. Е., Лариков Л. Н., Синицкий Н. Е. Применение термодинамических параметров для формирования модели термической обработки и оптимизации режимов отгуска закаленных сталей.-Киев, 1976. — 60 с. — (Препринт / АН УССР. Ин-т металлофизики; 76.12).

35. Гуревич М. Е., Лариков Л. Н., Шматко О. А. Величина и спектры изменения объема в металлических системах. - Металлофизика, 1970, вып. 32, с. 5-25.

36. Гуревич М. Е., Лариков Л. Н., Юрченко Ю. Ф. Методы измерения истинной теплоемкости металлов. — Металлофизика, 1968, вып. 22, c. 160—168.

37. Дамаск Д., Динс Дж. Точечные дефекты в металлах. — М. : Мир, 1966.— 292 с.

38. Де Вит Р. Континуальная теория дисклинаций. — М. : Мир, 1977. — 208 c.

39. Де Гроот С., Мазур П. Неравновесная термодинамика.-М. : Мир, 1964. — 456 с.

40. Дегтярев М. М. Поглощение энергии при деформациях противоположного знака в меди.— ЖТФ, 1950, 20, № 2, с. 440-446.

41. Джонсон Р. А. Вычисление характеристик точечных дефектов в альфа-железе. - В кн.: Диффузия в металлах с объемноцентриро-Ванной решеткой. М.: Металлургия, 1969, с. 354—407. 42. Дубовицкая Н. В., Лариков Л. Н., Юрченко Ю. Ф. Тепловые

эффекты при нагреве пластически деформированного высокочистого железа. — ФММ, 1968, 25, № 3, с. 513—517. 43. Ежкова З. И., Жданов Г. С., Уманский М. М. Методика рент-

генографического определения тензора термического расширения в низкосимметричных кристаллах. - Кристаллография, 1959, т. 4, вып. 5, с. 723-726.

44. Епачинцев О. Г., Чистяков Ю. Д. Исследование степени совершенства кристаллической структуры методом гидростатического взвешивания. — Завод. лаб., 1967, 33, № 5, с. 569 — 574. 45. Епифанов Г. И., Ребиндер П. А. Об энергетическом баллансе

процесса резания металлов. — ДАН СССР, 1949, 66, № 2, с. 583 — 656.

46. Займан Дж. Электроны и фононы. — М. : Изд-во иностр. лит., 1962. - 488 c.

47. Зиновьев В. Е., Кренцис Р. П., Гельд П. В. Температуропроводность и теплопроводность железа при высоких температурах.-ΦMM, 1968, 26, № 4a, c. 743-745.

48. Зиновьев В. Е., Кренцис Р. П., Гельд П. В. Температуропроводность и теплопроводность никеля при высоких температурах.-Там же, 25, № 6, с. 1137—1139.

49. Зиновьев В. Е., Кренцис Р. П., Петрова Л. Н., Гельд П. В. Температуропроводность и теплопроводность кобальта при высоких температурах. — ФММ, 1968, 26, № 1, с. 60-65.

50. Иванов А. Г., Новикова Е. К. Определение коэффициентов теплопроводности быстрорежущих сталей. — ССС / ЦНИИЧМ, 1965. № 39. c. 53-58.

51. Кальее Э., Прат А. Микрокалориметрия. М. : Изд-во иностр. лит., 1963. 478 с. 52. Карслоу Г., Егер Д. Теплопроводность твердых тел. М. :

Наука, 1964.— 487 с. 53. Кац С. А., Чеховской В. Я., Кореновский Н. Л. и др. Некоторые теплофизические свойства иридия в окрестности точки плавления. — В кн.: Редкие металлы и сплавы с монокристаллической структурой. М.: Наука, 1981, с. 203-210.

54. Киттель Ч. Введение в физику твердого тела. - М. : Физматгиз, 1963. — 696 с.

55. Киттель Ч. Элементарная физика твердого тела. -- М. : Наука, 1965. — 336 с.

56. Клербро Л. М., Харгривс М. Е., Лоретто М. Х. Изменение внутренней энергии при возврате и рекристаллизации. - В кн.: Возврат и рекристаллизация металлов. М. : Металлургия, 1966, с. 69-122.

57. Кондратьев Г. М. Регулярный тепловой режим. - М. : Гостехиздат, 1954. — 408 с.

58. Кондратьев Г. М. Тепловые измерения. - М. : Л. : Машгиз. 1957.— 244 c.

59. Кононенко В. Л., Лариков Л. Н., Лысак Л. И. и др. К вопросу о тепловых эффектах е'→ γ превращения.— Металлофизика, 1973, вып. 45, с. 58—60.

60. Кононенко В. Л., Лариков Л. Н., Лысак Л. И. и др. Тепловые эффекты при е → у и е' → у мартенситных превращениях в марганцевых сплавах и сталях. — ФММ, 1969, 28, № 5, с. 889—893.

61. Корнюшин Ю. В. Изменение объема кристалла, обусловленное неравномерно распределенными дислокациями.— ФММ, 1967, 24, № 4, с. 606—610

62. Корнюшин Ю. В. Объемные эффекты и упругая энергия в кристалле, содержащем дислокации. — Металлофизика, 1972, вып. 39, с. 4—16.

63. Корнюшин Ю. В., Лариков Л. Н. Разделение термически подвижных и неподвижных дислокаций в условиях отжига упрочненных кристаллов. — Там же, 1978, вып. 73, с. 66—69.

64. Корнюшин Ю. В., Мешков Ю. Я. Дефектность сильнодеформированной стали. — Там же, 1972, вып. 39, с. 37—42.

65. Котрелл А. Х. Дислокации и пластическое течение в кристаллах. — М. : Металлургиздат, 1958. — 267 с.

66. Крёнер Е. Общая теория дислокаций и собственных напряжений. — М. : Мир, 1965. — 103 с.

67. Кривоглаз М. А., Масюкевич А. М., Рябошапка К. П. Энергия хаотически распределенных дислокаций. — В кн.: Несовершенства кристаллического строения. Киев : Наук. думка, 1968, с. 27—33.

68. Кунин В. Н. Изменение внутренней энергии, термоэлектродвижущей силы и удельного электрического сопротивления при пластической деформации металла. ФММ, 1959, 8, № 1, с. 17—20.

69. Кунин В. Н. Поглощение энергии металлом при пластическом растяжении. — ФММ, 1959, 7, № 5, с. 790—793.

70. Кунин Н. Ф., Кунин В. Н., Гришкевич А. Е., Коренченко Е. С. Поглощение энергии при малых деформациях. — ФММ, 1964, 17, № 5, с. 789—792.

71. Ламсден Дж. Термодинамика сплавов. М. : Металлургиздат, 1959. 440 с.

72. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. — М. : Наука, 1964. — 567 с.

73. Ландау Л. Д., Лифшиц Е. М. Теория упругости. — М. : Наука, 1965. — 204 с.

74. Лариков Л. Н. Залечивание дефектов в металлах. – Киев: Наук, думка, 1980. – 280 с. 75. Лариков Л. Н. О природе тепловых и объемных эффектов

75. Лариков Л. Н. О природе тепловых и объемных эффектов при нагреве деформированных металлов. — ВФММ, 1964, № 18, с. 35-39.

76. Лариков Л. Н., Бакланова Л. М., Гуревич М. Е. Исследование теплоемкости железа и никеля в ферромагнитной области. В кн. Теплофизические свойства твердых веществ. М. : Наука, 1976, с. 103—108.

77. Лариков Л. Н., Гуревич М. Е. Автоматический термоанализатор — прибор нового типа для определения термодинамических характеристик металлов. — В кн.: Приборы для исследования физических свойств материалов. Киев : Наук. думка, 1974, с. 82—84.

78. Лариков Л. Н., Исайчев В. И., Максименко Е. А. Исследование изменения плотности монокристаллического молибдена при пластической деформации. — Металлофизика, 1978, вып. 74, с. 44—46. 79. Ларіков Л. Н., Кононенко В. Л., Нікітін Б. Г. Про механізм

79. Ларіков Л. Н., Кононенко В. Л., Нікітін Б. Г. Про механізм процесів знеміцнення при відпалі сплаву мідь — цинк. — Доп. АН УРСР. Сер. А, 1973, № 8, с. 758—760.

80. Лариков Л. Н., Корнюшин Ю. В., Никитин Б. Г. Разделение различных необратимых процессов, протекающих при отжиге деформированных медных сплавов. — Металлофизика, 1975, вып. 57, с. 42—46.

81. Лариков Л. Н., Корнюшин Ю. В., Никитин Б. Г., Кононенко В. Л. О механизме процессов разупрочнения при отжиге деформированной меди с добавками галлия и германия.— ФММ, 1974, 37, № 2, с. 415—425.

82. Лариков Л. Н., Красильников В. С., Никитин Б. Г. Механизм процессов возврата при нагреве деформированного сплава мышьяк — медь. — ФММ, 1973, 35, № 5, с. 1091—1094.

83. Лариков Л. Н., Усов Ю. В. О температурной зависимости молярной теплоемкости железоникелевых сплавов в инварной области. УФЖ, 1978, 23, № 4, с. 628—634.

84. Лариков Л. Н., Усов Ю. В. Тепловое расширение железоникелевых (ГЦК) сплавов в области высоких температур.— Металлофивика, 1979, вып. 75, с. 49—53.

85. Лариков Л. Н., Фальченко В. М. Термодинамика и кинетика полиморфных превращений в металлах. — В кн.: Фазовые превращения. Киев : Наук. думка, 1967, с. 5—34.

86. Лариков Л. Н., Черепин В. Т., Гуревич М. Е. Автоматизация контроля и исследования металлов. – Киев : Техніка, 1971. – 212 с. 87. Лариков Л. Н., Юрченко Ю. Ф. Исследование тепловых

87. Лариков Л. Н., Юрченко Ю. Ф. Исследование тепловых и объемных эффектов при отжиге холоднодеформированной патентированной стали.— ВФММ, 1964, № 20, с. 64—69.

88. Лариков Л. Н., Юрченко Ю. Ф. К вопросу о физической природе высокопрочного состояния сталей. — В кн.: Физическая природа пластической деформации. Киев: Наук. думка, 1966, с. 17—29.

89. Лариков Л. Н., Юрченко Ю. Ф. Калориметрическое исследование тепловых эффектов при отпуске закаленных сталей.— ВФММ, 1964, № 19, с. 87—93.

90. Лариков Л. Н., Юрченко Ю. Ф. О методике измерения малых тепловых эффектов при разупрочнении и фазовых превращениях в металлах и сплавах.— Там же, 1962, № 16, с. 213—218.

91. Лариков Л. Н., Юрченко Ю. Ф. Ометодике исследования малых объемных изменений. — Там же, 1964, № 20, с. 191—197.

92. Лариков Л. Н., Юрченко Ю. Ф., Барановский В. М. Дифференциальный калориметр для измерения малых тепловых эффектов при нагреве пластически деформированных металлов. В кн.: Физическая природа пластической деформации. Киев : Наук. думка, 1966, е. 136—141.

93. Лариков Л. Н., Юрченко Ю. Ф., Барановский В. М., Стеценко И. В. Автоматический сканирующий калориметр для определения малых тепловых эффектов в интервале температур от —196 до +20 °C. — В кн.: Приборы для исследования физических свойств материалов. Киев : Наук. думка, 1974, с. 112—121.

94. Лариков Л. Н., Юрченко Ю. Ф., Блудилин Е. Н., Мудрук П. В. Калориметрический анализ пластически деформированных металлов. – Киев, 1981. – Ч.2. 55 с. – (Препринт / АН УССР. Ин-т металлофивики; 4.81).

95. Лариков Л. Н., Юрченко Ю. Ф., Дубовицкая Н. В. Исследование процессов возврата при нагреве сплавов в высокопрочном состоянии. — ФММ, 1965, 20, № 4, с. 570—575.

96. Лариков Л. Н., Юрченко Ю. Ф., Дубовицкая Н. В. Исследование физических процессов при нагреве деформированного никеля высокой степени чистоты. — В кн.: Изучение дефектов кристаллического строения металлов и сплавов. Киев : Наук. думка, 1966, с. 63—69.

97. Лариков Л. Н., Юрченко Ю. Ф., Коблова Э. А. К вопросу о соотношении между тепловыми и объемными эффектами при нагреве металлов и сплавов. - В кн.: Фазовые превращения. Киев : Наук. думка, 1967. с. 58-62.

98. Лариков Л. Н., Юрченко Ю. Ф., Кононенко В. Л. Изменение теплосодержания и объема как способ прогнозирования разрушения пластически деформированных металлов. — В кн.: Тр. III Всесоюз. науч.-техн. совещ. по термодинамике метал. сплавов (Минск, 6-8 окт. 1976 г). Минск : Изд-во БГУ, 1976, с. 177-179.

99. Лариков Л. Н., Юрченко Ю. Ф., Кононенко В. Л. и др. Исследование ресурса пластичности стали X18Н10Т при производстве холоднокатаных труб. Киев, 1976. 27 с. (Препринт / АН УССР. Ин-т металлофизики ; 76.8).

100. Лариков Л. Н., Юрченко Ю. Ф., Корнюшин Ю. В. и др. О распознавании ранних стадий трещинообразования и возможности залечивания микротрещин в пластически деформированных металлах (на примере пластически деформированной стали X18H10T).— Киев, 1975. — 30 с. — (Препринт / АН УССР. Ин-т металлофизики; 75. 2). 101. Лариков Л. Н., Юрченко Ю. Ф., Мудрук П. В. Калориметри-

ческий анализ пластически деформированных металлов. — Киев, 1980. — Ч. 1. 32 с. — (Препринт / АН УССР. Ин-т металлофизики; 15.80).

102. Лариков Л. Н., Юрченко Ю. Ф., Стеценко И. В. и др. Исследование ресурса пластичности титановых сплавов при производстве холоднокатаных труб. — Киев, 1980. — 28 с. — (Препринт / АН УССР. Ин-т металлофизики ; 80.5).

103. Лейбфилд Г. Микроскопическая теория механических тепловых свойств кристаллов. — М. ; Л. : Физматгиз, 1963. — 312 с.

104. Лившии Б. Г. Физические свойства металлов и сплавов.-М. : Машгиз, 1959.— 368 с. 105. Лихачев В. А., Хайров Р. Ю. Введение в теорию дисклина-

ций. — Л. : Изд-во Ленингр. ун-та, 1975. — 183 с.

106. Лирье А. И. Пространственные задачи теории упругости. — М. : Гостехиздат, 1955. — 490 с.

107. Лыков А. В. Теория теплопроводности. — М. : Высш. школа, 1967.— 600 c.

108. Люстерник В. Е. Автоматический калориметр для количественного термического анализа жаропрочных сталей. — ПТЭ, 1959, № 4, c. 127–129.

109. Маклин Д. Границы зерен в металлах. - М. : Металлургиздат, 1960.—322 с.

110. Междинародная практическая температурная шкала 1968 года (МПТШ-68); Редакция 1975 г.— М. : Изд-во стандартов, 1976.— 27 с.

111. Мендельсон К. Физика низких температур. М. : Изд-во иностр. лит. 1963. - 228 с.

112. Микрюков В. Е. Теплопроводность и электропроводность металлов и сплавов. — М. : Металлургиздат, 1959. — 260 с. 113. Миркин Л. И. Справочник по рентгеноструктурному ана-

лизу поликристаллов. — М. : Физматгиз, 1961. — 864 с.

114. Миснар А. Теплопроводность твердых тел, жидкостей, газов и их композиций. — М. : Мир, 1968. — 464 с.

115. Могутнов Б. М., Томилин И. А., Шварцман Л. А. Термоди-

намика железо-углеродистых сплавов.—М.: Металлургия, 1972.—328 с. 116. Моргунова Н. Н., Кельшин Б. А., Бояршинов В. А. и др. Сплавы молибдена. — М. : Металлургия, 1975. — 391 с.

117. Морс Ф., Фешбах Г. Методы теоретической физики. — М. : Изд-во иностр. лит., 1958. — 930 с.

118. Новиков И. И., Мардыкин И. П. Тепловые свойства иттрия и гольмия при высоких температурах. — Изв. АН СССР. Металлы, 1976, № 1, c. 27-30.

119. Новикова С. И. Тепловое расширение твердых тел. – М. : Наука, 1974. — 292 с.

120. Новицкий Л. А., Кожевников И. Г. Теплофизические свойства материалов при низких температурах. - М. : Машиностроение, 1975.— 216 c.

121. Оскотский В. С., Смирнов И. А. Дефекты в кристаллах и теплопроводность. — Л. : Наука, 1972. — 160 с. 122. Павлова В. И., Купалова И. К., Шур Д. Д. Линейное расши-

рение инструментальных сталей при эксплуатационных температурах. - Сб. тр. ВНИИ, 1969, 2, с. 65-73.

123. Панин В. Е., Дударев Е. Ф., Бушуев Л. С. Структура и механические свойства твердых растворов замещения. — М. : Металлургия, 1978.— 280 с.

124. Панин В. Е., Милевская В. Г. К вопросу о скрытой энергии деформации сплавов твердых растворов. — ФММ, 1957, 5, № 1, с. 120 — 126.

125. Панин В. Е., Суховаров В. Ф., Дударев Е. Ф. О скрытой энергии деформации в сплавах твердых растворов. - Изв. вузов. Физика, 1967, № 8, с. 152—154.

126. Перваков В. А., Хоткевич В. И., Шепелев А. Г. Скрытая энергия пластической деформации серебра при -196 и +20 °С. - ФММ. 1960, 10, № 1, c. 117–121.

127. Половов В. М. Теплоемкость монокристалла хрома при тем-пературах 80—345 К.— ЖЭТФ, 1974, 66, вып. 6, с. 2164—2177. 128. Попов М. М. Термометрия и калориметрия.— М.: Изд-во

Моск. ун-та, 1954.— 942 с. 129. Попов М. М., Тихомина Е. Н., Скуратов С. М., Калини-

на Е. Н. Скрытая энергия пластической деформации сплавов алюминия с медью. — ФММ, 1959, 8, № 1, с. 103—113. 130. Преображенский В. П. Теплотехнические измерения и при-

боры. — М. : Энергия, 1978. — 704 с.

131. Пригожин И. Введение в термодинамику необратимых процессов. — М. : Изд-во иностр. лит., 1960. — 127 с.

132. Просвирин В. И. Влияние внешнего давления на фазовые превращения в стали и чугуне. — М. : Машгиз, 1948. — 120 с. 133. Савицкий Е. М., Бурханов Г. С. Редкие металлы и сплавы :

Физико-химический анализ и металловедение. — М. : Наука, 1980. — 256 c.

134. Свелин Р. А. Термодинамика твердого состояния. - М.: Металлургия, 1968. — 314 с.

135. Скороход В. В., Юрченко Ю. Ф. Калориметрическое исследование процессов, происходящих в порошках никеля при нагреве.— Порошковая металлургия, 1971, № 4, с. 27—31.

136. Слюсарь Б. Ф. О скрытой энергии деформации в меди и алюминии. — ВФММ, 1962, № 16, с. 72—76. 137. Слюсарь Б. Ф. Тепловые и дилатометрические эффекты

при отжиге деформированного циркония.— Там же, 1963, № 17, c. 71-76.

138. Смитлз К. Дж. Металлы. — М. : Металлургия, 1980. — 446 с. 139. Справочник по редким металлам./ Пер. с англ. под ред. В. Е. Плюшеева. — М. : Мир, 1965. — 946 с.

140. Студенок Ю. А. Влияние скорости предварительной деформации на поглощение энергии при сжатии меди. - ЖТФ, 1950, 20, № 2. c. 431-439.

141. Сухаревский Б. Я., Андерс Э. Е., Казанская Т. Г. Установка для измерения теплопроводности и электропроводности кристаллических образцов в интервале температур 2-300 К. - Тр. ФТИНТ АН УССР, 1969, вып. 4, с. 135—143.

142. Термодинамические свойства индивидуальных веществ. Справочник : В 4-х т. - М.: Изд-во АН СССР, 1979, т. 2, кн. 2. - с. 340; 1981, т. 3, кн. 2.—396 с.; 1982, т. 4, кн. 2.—560 с.

143. Третьяков А. В., Трофимов Г. К., Гурьянова М. К. Механические свойства сталей и сплавов при пластическом деформировании.-М. : Машиностроение, 1971. - 63 с.

144. Тыжнова Н. В. Поглощение энергии сплавами при пластическом сжатии.— ЖТФ, 1946, 16, № 7, с. 1389—1396. 145. Уикс К. Е., Блок Ф. Е. Термодинамические свойства 65 эле-

ментов, их окислов, галогенидов, карбидов, нитридов. - М. : Металлургия, 1965. — 240 с.

146. Уэндландт У. Термические методы анализа. - М. : Мир, 1978.— 526 c.

147. Федоров А. А. Поглощение энергии металлами при пластическом сжатии в зависимости от температуры плавления. — ЖТФ, 1941, 11, № 6, с. 999—1007. 148. Ферми Э. Молекулы и кристаллы.— М.: Изд-во иностр. лит.,

1947.— 266 c.

149. Физические методы исследования металлов : Справ. пособие / Под общ. ред. А. Т. Туманова. - М. : Машиностроение, 1971. - 552 с.

150. Филянд М. С., Семенова Е. М. Свойства редких элементов. -М. : Металлургия, 1964. — 912 с. 151. Финкель В. А. Высокотемпературная рентгенография

металлов. — М. : Металлургия, 1968. — 204 с.

152. Финкель В. А. Низкотемпературная рентгенография металлов. — М. : Металлургия, 1971. — 256 с. 153. Френкель Я. И. Введение в теорию металлов. — М. : Физ-

матгиз, 1958. - 368 с.

154. Фридель Ж. Дислокации. — М. : Мир, 1967. — 643 с.

155. Хирт Дж., Лоте И. Теория дислокаций. — М. : Атомиздат, 1972. — 599 c.

156. Хоткевич В. И., Сиренко Г. А. Скрытая энергия деформации сплавов свинец-кадмий. — УФЖ, 1969, № 9, 14, с. 1558-1563.

157. Хоткевич В. И., Чайковский Е. Ф., Зашквара В. В. Скрытая энергия деформации металлов при низкой температуре. - ДАН СССР, 1954, 96, № 3, c. 483-486.

158. Черепин В. Т. Экспериментальная техника в физическом металловедении. - Киев : Техніка, 1968. - 280 с.

159. Чиркин В. С. Теплопроводность промышленных материа-лов. — М. 1 Машгиз, 1962. — 248 с.

160. Чиркин В. С. Теплофизические свойства материалов ядерной техники. — М. : Атомиздат, 1968. — 484 с. 161. Шашков А. Г., Волохов Г. М., Абраменко Т. Н., Козлов В. П.

Методы определения теплопроводности и температуропроводности.-М. : Энергия, 1973. — 336 с.

162. Шермегор Т. Д. Поглощение энергии сталью при пластическом сжатии. — ФММ, 1959, 7, № 1, с. 146-150.

163. Энциклопедия неорганических материалов : В 2-х т., 1977.-**T**. 1. – 2.

· 164. Эшелби Дж. Континуальная теория дислокаций.— М. : Издво иностр. лит., 1963. - 247 с.

165. Юрченко Ю. Ф. Изменение объема пластически деформированных чистых металлов. — УФЖ, 1980, 25, № 5, с. 725-730.

166. Юрченко Ю. Ф. Изменение теплосодержания и структуры при нагреве пластически деформированных металлов и сплавов.— В кн.: Тр. III Всесоюз. науч.-техн. совещ. по термодинамике метал. сплавов (Минск, 6—8 окт. 1976 г.). Минск: Изд-во БГУ, 1976, с. 180— 181.

167. Юрченко Ю. Ф. Изменение теплосодержания напыленных порошков железа и его сплавов при нагреве. — Порошковая металлургия, 1979, № 10, с. 15—19.

168. Юрченко Ю. Ф. Изменение теплосодержания при залечивании дефектов в пластически деформированных металлах.— Металлофизика, 1975, вып. 64, с. 35—42.

169. Юрченко Ю. Ф., Кононенко В. Л. О точечных дефектах в пластически деформированных металлах. — Там же, 1979, вып. 75, с. 68—74.

170. Юрченко Ю. Ф., Кононенко В. Л. Энергия дислокационных ансамблей в пластически деформированных никеле, железе и титане.— Там же, 1980, 2, № 4, с. 42—48.

171. Юрченко Ю. Ф., Кононенко В. Л., Фишман К. К. Исследование тепловых эффектов отпуска стали У8А, подвергнутой низкотемпературной термомеханической обработке.— Киев, 1973.— 8 с.— (Препринт / АН УССР. Ин-т металлофизики; 73.8).

172. Юрченко Ю. Ф., Стеценко И. В. Изменение теплосодержания при отпуске закаленных и подвергнутых деформации перед закалкой сталей. — Киев, 1977. — 37 с. — (Препринт / АН УССР. Ин-т металлофизики; 77.5).

173. Юрченко Ю. Ф., Стеценко И. В., Золотухин А. В. Автоматический калориметр для определения малых тепловых эффектов АКДС-1300. В кн.: Физические методы исследования металлов. Киев : Наук. думка, 1981, с. 57—62.

174. Юрьев С. Ф. О роли термического расширения фаз при мартенситном превращении стали.— ЖТФ, 1950, 20, № 5, с. 546—563.

175. Яворский Б. М., Детлаф А. А. Справочник по физике.— М. : Наука, 1977.— 942 с.

176. Appleton A. S., Bever M. B. The energy relations in the deformation by torsilon of a gold-silver alloy. — Trans. Met. Soc. AIME, 1963, 227, N 2, p. 365—371.

177. Appleton A. S., Dieter G. E., Bever M. B. The annealing kinetics of an explosively loaded gold-silver alloy.— Ibid., 1961, 221, N 6, p. 1468—1472.

178. Arndt A. R., Damask A. C. Kinetics of carbon precipitation in irradiated iron.— III calorimetry.— Acta met., 1964, 12, N 4, p. 341—347.

179. Astrôm H. U. Isotermal measurements on the release of energy stored in cold-worked aluminium.— Ark. fys., 1956, 10, N 2, p. 197—210.

180. Aström H. U. Isotermal measurements on the release of stored energy from reastor-irradiated and cold-worked molybdenum.— Ibid., 1964, 26, N 1, p. 83—91.

181. Averbach B. L., Bever M. B., Comerford M. E., Leach J. S. X-ray and calorimetric investigations of cold working and annealing of gold-silver alloys.— Acta met., 1956, 4, N 5, p. 477—484. 182. Bailey J. E., Hirsch P. B. The dislocation distribution, flow

182. Bailey J. E., Hirsch P. B. The dislocation distribution, flow stress and stored energy in cold-worked polycrystalline silver.— Phil, Mag., 1960, 5, N 53, p. 485—492.

183. Bailey J. F., Hirsch P. B. The recrystallization process in

same polycrystalline metals.— Proc. Roy. Soc. London A, 1962, 267, N 1328, p. 11-30.

184. Barbour J. P., Charbonnier F. M., Dollan W. W. at al. Determination of surface tension and surface migration constrants of tungsten. — Phys. Rew., 1960, 117, N 6, p. 1452—1459.

185. Beardmore P., Holtzmann A. H., Bever M. B. The effect of shock waves on the alloys Cu₃Au. — Trans. Met. Soc. AIME, 1964, 230, N 4, p. 725—730.

N 4, p. 725-730. 186. Bell F., Krisement O. Die Erholung und Rekristallisation von Nickel nach Kaltverformung. – Acta met., 1962, 10, N 1, S. 80-83. 187. Berman R., MacDonald D. K. C. The termal and electrical

187. Berman R., MacDonald D. K. C. The termal and electrical conductivity of copper at low temperatures.— Proc. Roy. Soc. London A, 1952, 211, N 1104, p. 122—128.

188. Bever M. B., Holt D. L. Titchener A. L. The stored energy of cold work.—Oxford etc.: Pergamon, 1973.— 192 p.

189. Bever M. B., Marshall R. E., Ticknor L. B. The energy in metals chips during orthogonal cutting.— J. Appl. Phys., 1953, 24, N 5, p. 1176—1183.

190. Bever M. B., Ticknor L. B. A method for determining the energy stored during colld-working of metals.— Ibid., 1954, 22, N 6, p. 1297—1305.

191. Bohnenkamp K., Lücke K., Masing G. Z. Messung der Latenten Verformungsenergie an gezogenen Kupferdränten.— Z. Metallk., 1955, 46, N 7, S. 765—773.

192. Bosio L. Surfusion et polimorphisme du gallium a la pression.— Métaux, 1965, N 484, p. 451-466.

193. Boskstiegel G., Lüske K. Messung der Rekristallisationswärme an dünnen Kupferdrähten. – Z. Metallk., 1951, 42, N 9, S. 225–230. 194. Brillhart D. C., De Angelis R. J., Preban A. G. et al. Quanti-

194. Brillhart D. C., De Angelis R. J., Preban A. G. et al. Quantitative study of the substructure and properties of shock-loaded copper.— Trans.— Met. Soc. AIME, 1967, 239, N 6, p. 836—841.

195. Callaway J. Low Temperature Lattice Termal Conductivity.— Phys. Rev., 1961, 122. N 3, p. 787—790. 196. Callaway J. Model for Lattice Termal Conductivity at Low

196. Callaway J. Model for Lattice Termal Conductivity at Low Temperatures. — Ibid., 1959, 113, N 3, p. 1049—1051. 197. Callaway J., von Baeyer H. C. Effect of Point Imperfections

197. Callaway J., von Baeyer H. C. Effect of Point Imperfections on Lattice Termal Conductivity.— Ibid., 1960, 120. N 4, p. 1149— 1154.

198. Chang K. C., Bever M. B. Unpublised work.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.— Oxford etc.: Pergamon, 1973, p. 40.

199. Charbonnier P., Galy-Aché. Memorial de l'Artillerie de la Marine. 28 (1900) 391.- Ibid., p. 24.

200 Chin L. L. J., Grant N. J. Release of energy in oxidedispersionstrang thened copper. — Powder Met., 1967, N 10, p. 344—357.

201. Clarebrough L. M., Hargreaves M. E., Head A. K., West G. W. Energy stored during fatigue of copper. J. Metals, 1955, 203, N 1, p. 99-116.

202. Clarebrough L. M., Hargreaves M. E., Loretto M. H. Electrical resistivity of dislocations in face-centetered cubic metals.— Phil. Mag., 1962, 7, N 73, p. 115—120.

203. Clarebrough L. M., Hargreaves M. E., Loretto M. H. Orderdisorder phenomena in α-brass.— Proc. Roy. Soc. London A, 1960, 257, N 1290, p. 363—385.

204. Clarebrough L. M., Hargreaves M. E., Loretto M. H. Stored energy and electrical resistivity in deformed metals.— Phil. Mag., 1961, N 66, p. 807—810. 205. Clarebrough L. M., Hargreaves M. E., Loretto M. H. The influence of grain size on the stored energy and mechanical properties of copper.— Acta met., 1958, 6, N 12, p. 725—735.

206. Glarebrough L. M., Hargreaves M. E., Loretto M. H., West G. W. The influence of impurities on the annealing of nickel after cold work.— Ibid., 1960, 8, N 11, p. 797—803.

207. Clarebrough L. M., Hargreaves M. E., Michell D., West G. W. The determination of energy stored in metal during plastic deformation.— Proc. Roy. Soc. London A., 1952, 215, N 1123, p. 507—529.

Proc. Roy. Soc. London A., 1952, 215, N 1123, p. 507-529.
208. Clarebrough L. M., Hargreaves M. E., West G. W. Density changes during the annealing of deformed nickel. — Phill. Mag., 1956, 1, N 6, p. 528-536.

209. Clarebrough L. M., Hargreaves M. F., West G. W. The density of dislocation compressed copper. Acta met., 1957, 5, N 12, p. 738-740.

210. Clarebrough L. M., Hargreaves M. E., West G. W. The release of energy during annealing of deformed metals.— Proc. Roy. Soc. London A, 1955, 232, N 1189, p. 252—270.

211. Cobalt monograph.— Brussell : Brussell Centre Inform. Cobalt, 1960.— 515 p.

212. Cohen J. B., Bever M. B. The effects of cold work on the alloys Cu₃Au. — Trans. Met. Soc. AIME, 1960, 218, N 1, p. 155—165.

213. Cotterill R. M. J., Doyama M. Energy and Atomic Configuration of Complete and Dissociated Dislocation. I. Edge Dislocation in an f c Metal. — Phys. Rev., 1966, 145. N 2, p. 465—478.

an f c Metal. — Phys. Rev., 1966, 145, N 2, p. 465—478. 214. Dillon O. W., Jr. Jnt. J. Solids Structures 2 (1966) 181. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. — Oxford etc.: Pergamon, 1973, p. 40.

215. Dillon O. W., Jr. Temperature generated in aluminium rods undergoing torsional oscillation.— J. Appl. Phys., 1962, 33, N 11, p. 3100—3105.

216. Eugene F. Sur la variation de l'énergie interne des métaux de terminee par l'ecrouissage. — C. r. Acad, sci. 1953, 236, N 12, p. 2071. 2077.

217. Erdmann J. C., Jahoda J. A. In: Progress Review, Solid State Physics Laboratory. Boeing Scientific Research Laboratories (Feb. 1963) 121.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.— Oxford etc. : Pergamon, 1973, p. 36.

218. Farren W. S., Taylor G. I. Proc. Roy. Soc. A, 1925, 107, № 422.- Ibid., p. 24.

219. Filatovs G., Schwanke A. E. An amplifier controlled adiabatic calorimeter. — Rew. Sci. Instrum., 1971, 4, N 4, p. 447—450.
220. Fiore N. E., Bauer C. L. Binding of solute atome to disloca-

220. Fiore N. E., Bauer C. L. Binding of solute atome to dislocation.— In: Progress of Material Science. Oxford etc. : Pergamon, 1967, vol. 2, p. 13—20.

221. France R. W. Trans. Faraday Soc., 1934, 30, 450.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.— Oxford etc. : Pergamon, 1973, p. 24.

222. Fullman R. L. Interfacial free energy of coherent twin boundaries in copper. – J. Appl. Phys., 1951, 22, N 4, p. 448–455.

223. Gangulee A., Bever M. B. Effect of cold work on silver-rich silver-magnesium solid solution alloys. — Phill. Mag., 1969, 20, N 165, p. 519-530.

224. Garber M., Scott P. W., Blatt F. I. Thermal conductivity of Dilute Copper Alloys. — Phys. Rev., 1963, 130, N 6, p. 2188—2192.

225. Giraud R.- Rev. Metall., 1928, 25, p. 347. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. — Oxford etc. : Pergamon, 1973, p. 24.

226. Gjostein N. A., Rhines F. N. Absolute interfacial energies of 001 tilt and twist grain boundaries in copper. - Acta met., 1959, 7, N 5, p. 319-330.

227. Gordon P. In Recovery and Recrystallization of Metals, ed by Himmel, Jnterscience (1963) 121.- Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work .- Oxford etc. : Pergamon, 1973, p. 36.

228. Gordon P. Microcalorimetric investigation of recrystallization of copper. J. Metals, 1955, 204, N 5, p. 1043-1052.

229. Greenfield P., Bever M. The effect of composition on the stored energy of cold work and the deformation behavior of gold-silver alloys .--Acta met., 1957, 5, N 2, p. 125-132.

230. Greenfield P., Bever M. The evolution of the energy stored by a gold silver alloy cold-worked at 195 °C and ot room temperature.-Ibid., 1954, 2, N 4, p. 433-444.

231. Halford G. R. Stored energy of cold work changers induced by cyclic_deformation, Ph. D. thesis, University of Illinois, Urbana (1966). - Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.— Oxford etc. : Pergamon, 1973, p. 42.

232. Ham R. K. Transient stored energy in copper and copper 3.2at. % tin.— Phil. Mag., 1967, 5, N 134, p. 257—259.

233. Handbook of thermophysical properties of Solid materials In 5 vol. — New York etc. : Macmillan, 1961. — Vol. 2, — 1270 p.

234. Hargreaves M. E., Loretto M. H., Clarebrough L. M., Se-gall R. L.— In N. P. L. Symp. No15, Teddington 1963, H. M. S. O. (1963), 209.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work .- Oxford etc. : Perfamon, 1973, p. 40.

235. Hausoh G., Török E. Elastic, Magnetoelastic and Thermal Pro-

perties of Some Ferromagnetic Metallic Glasses. - Phys. status solidi, 1978, 50, N 1, p. 159-164.

236. Henderson J. W., Koehler J. S. Low temperature release of stored energy in cold working copper.- Phys. Rev., 1956, **104**, N 6, p. 626-633.

237. Holden J., Granato A. V. Termodynamic Properties of Solids

Containing Defects. — Phys. Rev., 1969, 182, N 3, p. 729-741. 238. Hort H. Z. Ver. Dtsch. Ing. 50, (1906) 1831. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. —

Oxford etc. : Pergamon, 1973, p. 24. 239. Huntington H. B. Elastic strains around an interstitial atom.— Acta met., 1954, 2, N 5, p. 554-561.

240. Huntington H. B., Dickey J. E., Tomson R. Dislocation Energies in NaCl. – Phys. Rev., 1955, 100, N 4, p. 1117–1128.

241. Inman M. D., Tipler H. R.- Met. Rev., 1963, v. 8, 105.-Приводится по: Хирт Дж., Лоте И. Теория дислокаций. — М. : Атомиздат, 1972, с. 563.

242. Iyer A. S., Gordon P. Trans. Met. Soc. AIME, 215, (1959) 729. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored

energy of cold work. — Oxford etc.: Pergamon, 1973, p. 32.
243. Kanzaki H. J. Phys. Soc. Japan, 1951, 6, 90. — Ibid., p. 26.
244. Klemens P. G., White G. K., Taihsh R. J. Scattering of lattice

waves by point defects.— Phil. Mag., 1962, 7, N80 p. 1323—1335. 245. Kornyushin Ju. V., Larikov L. N. Principles of identification on the physical processes caused by variation of thermodynamic parameters in solids. - J. Mater. Sci., 1978, 17, N 1, p. 1-20.

246. Kovacs I. In Ber. Internal. Symposium Reinstoffe in Wissen-chaft u. Technik, Dresden, 1965, Teil 3: Real-struktur u. Eigenschaften von Reinstoffen (1967) 719 .- Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. - Oxford etc. : Pergamon, 1973, p. 42.

247. Kraub F., Warneke H. Die spezifische Warme von Nickel zwis-

chen 180 und 1160°. — Z. Metallk., 1955, 46, N 2, S. 61–69. 248. Krivobok V. N. Trans. Amer. Soc. Steel Treat, 1925, 8, 703. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. - Oxford etc. : Pergamon 1973, p. 24.

249. Kunin N. F., Senilov G. V. Trud. Sib. Fiz. Tekn. Inst. 1936, 4, 132. — Ibid., p. 24.

250. Larikov L. N., Ivanov M. A., Nikitin B. G. The effect of impurities and crystal structure defects on copper heat conduction at low temperatures. - Phys. status solidi, 1973, 19, N 1, p. 135-145.

251. Leach J. S., Loewen E. G., Bever M. B. Energy relations in cold working in alloy at 78 K and at room temperature. - J. Appl. Phys., 1955, 26, N 3, p. 728-739.

252. Lindenfeld P., Pennebaker W. B. Lattice conductivity of copper alloys. — Phys. Rev., 1962, 127, N 6, p. 1881—1889. 253. Loretto M. H., Hargreaves M. E., Clarebrough L. M. The annea-

ling stages in copper deformed at - 196 °C.- J. Austral. Inst. Metals, 1963, 8, N 2, p. 127-133.

254. Loretto M. H., White A. J. The influence of grain size of the energy stored in deformed copper. - Acta met., 1961, 9, N 5, p. 512-513.

255. Lugacheider W., Wildhack H. Speicherenergiemessunden an plastisch verformten Aluminium im Temperaturbereich zwischen 80 und 300 K.- Z. Metallk., 1968, 59, N 1, S. 124-126.

256. Maier C. G., Anderson C. T. J. Chem. Phys. 2 (1934) 513.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.- Oxford etc. : Pergamon 1973, p. 24.

257. Mclean M., Mykra H. The temperature dependence of the surface energy anisotropy of platinum.— Surface Sci., 1966, 5, N 4 p. 466-481.

258. Michell D., Haig F. D. Investigation of the annealing of deformed nickel powder by X-ray and stored energy measurement. — Phil. Mag., 1957, 2, N 13, p. 15-32.

259. Michell D., Lovegrove E. Investigation of the annealing of nickel deformed by compression by X-ray and stored energy measure-ments. — Ibid., 1960, N 53, p. 499—518. 260. Mima G., Tokizawva M. Trans. Amer. Inst. Min. (Metall.) Engrs., 1953, 197, 1558. — Taken from: Bever M. B., Holt D. L.,

Titchener A. L. The stored energy of cold work. - Oxford etc. : Pergamon, 1973, p. 32.

261. Mitchell T. E. Prog. Appl. Mat. Revs., 1964, v. 6, 117.- Приводится по: Хирт Дж., Лоте И. Теория дислокаций. — М. : Атомиздат, 1972, c. 563.

262. Nakada Y. Orientation dependence of energy dissipation during plastic deformation of F. C. C. crystials. - Phil. Mag., 1965, 11, N 110, p. 251-261.

263. *Physics* and application of invar alloys. — Tokyo: Maruzey, 1978.— 646 p.

264. Peierls R. E. Quantum theory of solids .- Oxford : Oxford Univ. press, 1955. — 420 p.

265. Quinney H., Taylor G. I.— Proc. Roy. Soc. A, 1937, 163, 157.— Taken from: Bever M. B., Holt D. L., Titchener A. D. The stored

energy of cold work. - Oxford etc. : Pergamon, 1973, p. 26.

266. Riggs F. B. Jr. Calorimetry of Deformed Copper, Doct. Phil. Harv. (1956).- Ibid., p. 28.

267. Robinson P. R., Bever H. B. The deformation of the intermetallic compound TiBi₂. — Acta met., 1966, 14, N 6, p. 693-702. 268. Roessler B., Bever M. B. Trans. Met. Soc. AIME, 221 (1961)

1049. - Taken from: Bever M. B., Holt D. L., Titchener A. L. The sto-

red energy of cold work. — Oxford etc. : Pergamon press, 1973, p. 34. 269. Rosenhain W. In Dictionary of Applied Physics, Macmillan., vol. 5 (1923) 398.— Ibid., p. 24.

270. Rosenhain W., Stott V. H. Proc. Roy. Soc. A140, (1933) 9.-Ibid., p. 24.

271. Sato S. Sci. Rep. Tôhoku Univ. 20 (1931) 140.- Ibid., p. 24. 272. Scattergood R. O., Bearmore P., Bevor M. B. The annealing kinetics of an explosively loaded gold—silver alloy.—Trans. Met. Soc. AIME, 1963, 227, N 6, p. 1468-1470.

273. Schottky W. F., Bever M. B. On the excess energy of electrolytically deposited silver. - Acta met., 1959, 7, N 3, p. 199-202.

274. Seeger A., Haasen P. Density of Crystals containing Dislocations. — Phil. Mag., 1958, 3, N 29, p. 470-475. 275. Simmons R. O., Baluffi R. W. Measurement of Equilibrium

Concentrations of Vacansies in Copper. - Phys. Rev., 1963, 129, N 4, p. 1533-1544.

276. Sizmann R., Wenzl H. Die kalorimetrische Bestimmung der gespeicherten Energie in kaltbearbeiteten Kupferdrähben. — Z. Angew. Phys., 1959, 11, N 9, S. 362-365.

277. Smith C. J. Proc. Roy. Soc. A125, (1929) 619.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. - Oxford etc. : Pergamon, 1973, p. 24.

278. Smith J. H., Bever M. B. The stored energy, electrical resistivity and tensile properties of cold-worked gold.- Trans. Met. Soc. AIME, 1968, 242, N 5, p. 880-884.

279. Stehle H., Seeger A. Elektronentheoretische Untersuchungen über Fehlstellen in Metallen. 3. Der Einfluss von Versetgungen anf die Kristalldichte und verwandte Probleme. - Z. Phys., 1956, 146, N 2, **S.** 217–241.

280. Stroh A. N. A theoretical calculation of the stored energy in a work-hardened material. - Proc. Roy. Soc. London A, 1953, 218, N 1134, p. 391-400.

281. Stroh A. N. The formation of cracks as a result of plastic flow. — Ibid., 1954, 223, N 1154, p. 404—414. 282. Suzuki F. The release of energy associated with crystal resto-

ration in cold-worked polycrystalline copper.— Sci. Rep. Tohoku. Univ., 1949, N 2, p. 193-200. 283. Suzuki T. Magnetic Properties of the Primary Solid Solutions

of Chromium. - J. Phys. Soc. Jap., 1966, 21, N 3, p. 442-450.

284. Sykes C. Methods for investigating thermal changes occuring during transformations in solid solutions .- Proc. Roy. Soc. London A,

1935, 148, N 864, p. 422-446. 285. Taoka T., Suzuki K., Yoshikawa A., Ocamoto M. Changes in internal energy associated with recovery and recrystallization in iron-silicon alloys and pure iron.— Acta met., 1965, 13, N 12, p. 1311— 1319.

286. Taylor G. J., Quinney H. The latent energy remaining in the metal after cold working. - Proc. Roy. Soc. London A, 1934, 143, N 808, p. 307-314.

287. Thermophysical properties of matter: In 12 vol.- New York Washington : Plenum, 1970-1975. Vol. 1. Termal conductivity me-tallic elements and alloys. 1970. 1469 p.; Yol. 12. Termal espansion metallic elements and alloys. 1975.- 1380 p.

288. Titchener A. L., Bever M. B. Trans. Met. Soc. AIME 215 (1959) 326. — Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored

energy of cold work.— Oxford etc.: Pergamon, 1973, p. 30. 289. Titchener A. L., Bever M. B. The stored energy of cold work and its relation to work softening.— Acta met., 1960, 8, N 3, p. 338— 342.

290. Toupin R. A., Rivlin R. S. Dimensional change in crystals caused by dislocations.— J. Math. Phys., 1960, 1, N 1, p. 8—15.

291. Umino. Science Report of the Tohoku University, 15, 597, 1926; 18, 19, 1929. - Приводится по: Лифшиц Б. Г. Физические свойства металлов и сплавов. — М. : Машгиз, 1959, с. 52.

292. Van den Beukel A. Release of stored energy during low temperature annealing of some cold-worked metals. - Acta met., 1963, 11, N 1, p. 97-105.

293. Van den Beukel A. Stored energy measurements on copper and nickel cold worked at liquid nitrogen temperature.— Physica, 1961, 27, N 6, p. 603-605.

294. Varenzuela C. G. Stacking-faultenergy and the interfacial energy of coherent twin boundaries in copper and brass.- Trans. Met. Soc. AIME, 1965, 233, N 10, p. 1911-1915.

295. Waldman J., Bever M. B. Unpublised work.- Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work. - Oxford etc. : Pergamon, 1973, p. 42.

296. Wang T. P., Brown N. The energy stored in ingot iron deformed by torsion. - Trans. ASM, 1958, 50, p. 541-561.

297. Welber B. Measurement of the internal energy in copper introduced by cold-work. - J. Appl. Phys., 1952, 23, N 9, p. 876-884. 298. Wensl H. Z. Messungen der gespeisherten Energie in Plastisch

verformten Kupfer. - Z. Angew. Phys., 1963, 15, N 3, S. 286-291.

299. Wever F., Krisement O., Schadler H. Forschungsberichte des Wirtschafts und Verkehrsministerium Nordbein. - Westfalen, 1955, 5, N 423, S. 315-327.

300. Wever F., Naeser G. Kalorimetrische Untersuchungen der Anlasvorgange in geharteten Kohlenstoffstahlen.- Mitt. K.-W. Inst. für Eisenforsch., 1933, 15, N 1, S. 37-47. 301. White G. K. Thermal conductivity of copper at low tempera-

ture. — Austral. J. Phys., 1953, 6, N 2, p. 397-408.

302. White G. K., Woods S. B. Lattice termal conductivity of di-lute copper alloys.— Phil. Mag., 1954, 45, N 370, p. 1343—1357.

303. White J. L. In Recovery and Recrystallization of Metals, ed. by L. Himmel, Interscience, 1963, 122.— Taken from: Bever M. B., Holt D. L., Titchener A. L. The stored energy of cold work.— Oxford etc. : Pergamon, 1973, p. 34.

304. White J. L., Koyama K. Application of differential thermal calorimetry to measurements of stored-energy release in metals.- Rev. Sci. Instrum., 1963, 34, N 10, p. 1104-1110.

305. Wilkens M. The mean square stress $\langle \sigma^2 \rangle$ for restrictedly random distributions of dislocation in a cylindrical hody.- Acta met., 1959, **17,** N 9, p. 1155—1159.

306. Williams R. O. A Deformation Calorimeter.- Rev. Sci.

Instrum., 1960, 31, N 12, p. 1336-1341. 307. Williams R. O. Stored energy and release kinetics in lead, aluminium, silver, nickel, iron and zirconium after deformation.-Trans. Met. Soc. AIME, 1962, 224, N 4, p. 719-726.

308. Williams R. O. The changes in internalenergy a copper aluminium alloy and copper-Zinc alloy from deformation and recovery near 25 °C. — Ibid., 1963, 227, N 6, p. 1290—1301.

309. Williams R. O. The stored energy in deformed copper: the effect of grain size and silver content. - Acta met., 1961, 9, N 10, p. 949—957.

310. Wolfenden A. The energy stored in a gold-silver alloy .-

Scripta met., 1969, 3, N 7, p. 429-434. 311. Wolfenden A. The energy stored in copper singl crystals.— Acta met., 1967, 15, N 6, p. 971-978.

312. Wolfenden A. The energy relations in the room-temperature deformation of aluminium single crystals.— Scripta met., 1969, 3, N 5, p. 709-714.

313. Wolfenden A. The energy stored in polycrystalline copper deformed at room temperature. - Acta met., 1971, 19, N 12, p. 1373-1377.

314. Wolfenden A. The energy stored in polycrystalline Cu₃Au effects of logn-range order. — Scripta met., 1971, 19, N 3, p. 371—375. 315. Wolfenden A. The energy stored in silver single crystals.— Acta met., 1969, 17, N 5, p. 585—593. 316. Wolfenden A., Appleton A. S. The energy stored during the

low-temperature deformation of copper and aluminium single crystals.-Ibid., 1968, 16, N 7, p. 915–925. 317. Zener C. Theory of lattice expansion introduced by cold-

work.- Trans. met. Soc. AIME, 1942, 147, N 2, p. 361-368.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Актиний плотность 216 тепловое расширение 262 энтальпия 140 Алюминий плотность 213, 387 тепловое расширение 248 теплоемкость 165 теплопроводность 327 изменение внутренней энергии 382энтальпия 134 Алюминия сплавы плотность 213 тепловое расширение 249 теплоемкость 166 теплопроводность 328 изменение внутренней энергии 383 Америций плотность 219 тепловое расширение 265 энтальпия 142, 150 Аморфное состояние 19 Ангармоничности коэффициент 24 Аустенит остаточный 291, 294 плотность 227 энтальпия 148 Варий плотность 213 тепловое расширение 246 теплоемкость 164 энтальпия 133 Бериллий плотность 212 тепловое расширение 242 теплоемкость 159 теплопроводность 321 энтальпия 131 Бериллия сплавы тепловое расширение 243

теплоемкость 159 теплопроводность 321 Био критерий 30, 124 Бюргерса вектор 38 Ванадий плотность 222, 388 тепловое расширение 271 теплоемкость 185 теплопроводность 353 энтальпия 144 Ванадия сплавы тепловое расширение 272 теплопроводность 353 Взвешивание гидростатическое 111 Видемана — Франца — Лоренца закон 31 Висмут плотность 223 тепловое расширение 275 теплоемкость 186 теплопроводность 354 энтальпия 146 Висмута сплавы тепловое расширение 276 теплоемкость 187 теплопроводность 354 Внутренняя энергия, 11 Вольфрам плотность 225 тепловое расширение 281 теплоемкость 188 теплопроводность 357 энтальпия 147 Вольфрама сплавы плотность 225 тепловое расширение 281 Гадолиний плотность 215 тепловое расширение 258 теплоемкость 171

теплопроводность 337
энтальпия 138 Галлий плотность 213 тепловое расширение 254 теплоемкость 168 теплопроводность 333 энтальпия 135 Гафний плотность 222 тепловое расширение 269 теплоемкость 184 теплопроводность 350 энтальпия 143 Гафния сплав тепловое расширение 269 Гесса закон 12 Гольмий плотность 216 тепловое расширение 260 теплоемкость 172 теплопроводность 337 энтальпия 139 Границы двойников 43 Границы зерен 42 Грюнайзена параметр 26 Давление 10 Дебая температура 22 Деформационное старение сталей 392 Дилатометр Андерса 116 высокотемпературный 119 индикаторный 119 интерференционный 115 кварцевый 117 кварцевый дифференциальный 119 компораторный 119 контактный 119 оптического рычага 116 проволочный дифференциальный 120 Стрелкова 117, 120 Дилатометрические методы регистрации 118 Демпфирования принцип 17 Дислокации 38 Диспрозий плотность 216 тепловое расширение 259 теплоемкость 172 теплопроводность 337 энтальпия 139 Диспрозия сплав тепловое расширение 260 Дифференциальное уравнение теплопроводности 28

Дюлонга-Пти правило 21 Европий плотность 215 тепловое расширение 258 теплоемкость 171 теплопроводность 337 энтальпия 138 Железо плотность 226, 389 тепловое расширение 286 теплоемкость 190 теплопроводность 358 изменение внутренней энергии 384 энтальпия 148 Железа сплавы плотность 226 плотности изменение 389 тепловое расширение 286 теплоемкость 192 теплопроводность 359 изменение внутренней энергив 385 энтальпия 150 Золото плотность 211, 387 тепловое расширение 240 теплоемкость 159 теплопроводность 320 изменение внутренней энергии 380 энтальпия 130 Золота сплавы плотность 211 тепловое расширение 241 теплоемкость 159 теплопроводность 320 изменение внутренней энергии 380 Изобарно-изотермный потенциал (свободная энергия Гиббса) 12 Изохорно-изотермный потенциал (свободная энергия Гельмгольца) 12 Иридий плотность 232 тепловое расширение 304 теплоемкость 207 теплопроводность 371 энтальпия 152 Индий плотность 213 тепловое расширение 254 теплоемкость 334

энтальпия 135 Индия сплавы тепловое расширение 255 Иттербий плотность 216 тепловое расширение 261 теплоемкость 172 теплопроводность 338 энтальпия 140 Иттрий плотность 214 тепловое расширение 256 теплоемкость 169 теплопроводность 335 энтальпия 135 Кадмий плотность 213 тепловое расширение 247 теплоемкость 164 теплопроводность 326 изменение внутренней энергии 381 энтальпия 134 Кадмия сплавы изменение внутренней энергии 381 Калий плотность 209 тепловое расширение 233 теплоемкость 154 теплопроводность 308 энтальпия 129 Калия сплавы теплоемкость 154 Калориметр акалориметр 125 КДС-1300 104 бикалориметр 125 Борелиуса 91 Вефера 93 Елинхауса 81 изотермический 91 KT-2 85 лямбда-калориметр 125 Люстерника 81 Сайкса 79 сканирующий 93 Шимадзу 81 Кальций плотность 212 тепловое расширение 245 теплоемкость 163 теплопроводность 325 энтальпия 132 Квазиупругой связи коэффициент 25

Кварц коэффициент теплового расширения 117 Клазиуса — Клайперона уравнение 33 Кобальт плотность 227 тепловое расширение 295 теплоемкость 201 теплопроводность 365 энтальпия 151 рации 118 Кобальта сплавы плотность 227 тепловое расширение 296 теплоемкость 201 теплопроводность 366 термодинамической Компоненты системы 9 Кюрий плотность 219 Лантан плотность 214 тепловое расширение 256 теплоемкость 169 теплопроводность 335 энтальпия 136 Леннарда — Джонса потенциал 23 Литий плотность 209 тепловое расширение 232 теплоемкость 153 теплопроводность 307 энтальпия 128 Локального потенциала метод 18 Лютеций плотность 216 тепловое расширение 262 теплоемкость 172 теплопроводность 339 энтальпия 140 Магний плотность 212 тепловое расширение 243 теплоемкость 160 теплопроводность 322 энтальпия 131 Магния сплавы плотность 212 тепловое расширение 244 теплоемкость 160 теплопроводность 322 Марганец плотность 225 тепловое расширение 282

теплоемкость 189 теплопроводность 357 энтальпия 147 Марганца сплавы тепловое расширение 283 теплоемкость 189 Мартеясит изменение внутренней энергии при превращении 393 плотность 227 Медь плотность 210, 387 тепловое расширение 234 теплоемкость 154 теплопроводность 309 изменение вчутренней энергии 373 энтальпия 130 Меди сплавы плотность 210, 386 тепловое расширение 234 теплоемкость 155 теплопроводность 310 изменение внутренней энергии 376 Молибден плотность 224, 389 тепловое расширение 279 теплоемкость 188 теплопроводность 356 изменение внутренней энергии 384 энтальпия 146 Молибдена сплавы плотность 224 тепловое расширение 279 теплопроводность 357 Натрий плотность 209 тепловое расширение 233 теплоемкость 153 теплопроводность 307 энтальпия 129 Натрия сплавы теплоемкость 154 Неодим плотность 215 тепловое расширение 257 теплоемкость 170 теплопроводность 336 энтальпия 137 Нептуний плотность 218 тепловое расширение 265 теплопроводность 343 энтальпия 142

Никель плотность 230, 391 тепловое расширение 298 теплоемкость 202 теплопроводность 367 изменение внутренней энергии 386 энтальпия 151 Никеля сплавы плотность 230 тепловое расширение 297 теплоемкость 203 теплопроводность 367 изменение внутренней энергии 387 Ниобий плотность 222 тепловое расширение 272 теплоемкость 186 теплопроводность 353 энтальпия 145 Ниобия сплавы плотность 223 тепловое расширение 273 Объем удельный 11 Олово плотность 222 тепловое расширение 269 теплоемкость 184 теплопроводность 351 изменение внутренней энергии 384 энтальпия 144 Олова сплавы тепловое расширение 270 теплоемкость 184 теплопроводность 351 Онзагера соотношения 16 Осмий плотность 232 тепловое расширение 304 теплоемкость 207 теплопроводность 370 энтальпия 152 Отпуск закаленных сталей легированных 393, 396 углеродистых 391, 395 Отпуск сталей после термомеханической обработки легированных 394, 397 углеродистых 392, 396 Палладий

плотность 232 тепловое расширение 303 теплоемкость 207

теплопроводность 370 энтальпия 152 Палладия сплавы тепловое расширение 304 теплопроводность 371 Параметры состояния системы 10 Пикнометрические методы 111, 114 Платина плотность 232 тепловое расширение 305 теплоемкость 208 теплопроводность 372 энтальпия 152 Платины сплавы тепловое расширение 305 теплопроводность 372 Плотность 10 Плутоний плотность 218 тепловое расширение 265 теплоемкость 175 теплопроводность 343 энтальпия 142 Плутония сплавы плотность 219 тепловое расширение 265 Полоний плотность 225 тепловое расширение 283 энтальпия 147 Поры 44 Празеодим плотность 215 тепловое расширение 257 теплоемкость 170 теплопроводность 336 энтальпия 137 Прометий плодность 215 тепловое расширение 258 теплопроводность 336 энтальпия 137 Протактиний плотность 217 тепловое расширение 263 энтальпия 141 Работа 9, 12 Радий плотность 213 тепловое расширение 246 энтальпия 133 Рений плотность 226 тепловое расширение 285 теплоемкость 189 теплопроводность 358

энтальпия 148 Рентгенографический анализ 113. 121 Родий плотность 232 тепловое расширение 302 теплоемкость 206 теплопроводность 370 энтальпия 152 Родия сплав тепловое расширение 303 Ртуть плотность 213 тепловое расширение 248 теплоемкость 165 теплопроводность 327 энтальпия 134 Рубидий плотность 209 тепловое расширение 233 теплоемкость 154 теплопроводность 308 энтальпия 129 Рутений плотность 232 тепловое расширение 302 теплоемкость 206 теплопроводность 370 энтальпия 152 Самарий плотность 215 тепловое расширение 258 теплоемкость 171 теплопроводность 336 энтальпия 138 Свинец плотность 222 тепловое расширение 270 теплоемкость 185 теплопроводность 352 изменение внутренней энергии 384 энтальпия 144 Свинца сплавы плотность 222 тепловое расширение 271 теплоемкость 185 теплопроводность 352 изменение внутренней энергии 384 Серебро плотность 211, 387 тепловое расширение 238 теплоемкость 158 теплопроводность 318

изменение внутренней энергии 379 энтальпия 130 Серебра сплавы плотность 211 тепловое расширение 238 теплоемкость 158 теплопроводность 318 изменение внутренней энергии 379 Сжимаемость изотермическая 14 Скандий плотность 214 тепловое расширение 255 теплоемкость 169 теплопроводность 334 энтальпия 135 Соотношения термодинамики 13 Стронций плотность 212 тепловое расширение 246 теплоемкость 163 энтальпия 132 Сурьма плотность 223 тепловое расширение 275 теплоемкость 186 теплопроводность 354 энтальпия 145 Таллий плотность 214 тепловое расширение 255 теплоемкость 168 теплопроводность 334 энтальпия 135 Тантал плотность 223 тепловое расширение 274 теплоемкость 186 теплопроводность 354 энтальпия 145 Тантала сплавы тепловое расширение 275 Тербий плотность 216 тепловое расширение 259 теплоемкость 171 энтальпия 139 Термодинамики законы 12 Температура 10 Температурное поле 28 Температуропроводность 29 Тепловое расширение анизотропия 24 взаимосвязь с другими свойствами 26

коэффициенты 27 магнитный вклад 26 решетчатый вклад 26 тензор 27 феноменологическая теория 25 электронный вклад 26 элементарная теория 23 Теплоемкость ангармонизма вклад 20 Дебая интерполяционная формула 22 — закон 21 магнитный вклад 20 при высоких температурах 21 при низких температурах 19 при постоянном давлении 14 при постоянном объеме 14 электронная 20 Теплопроводность диэлектриков 31 коэффициент 28 металлов 31 нестационарные методы определения 122 стационарные методы определения 123 Термодинамическая система 9 Термодинамический процесс 11 Термодинамическое равновесие 9 Технеций плотность 226 тепловое расширение 285 теплопроводность 357 энтальпия 148 Титан плотность 219 плотности изменение 388 тепловое расширение 265 теплоемкость 175 теплопроводность 343 изменение внутренней энергии 383 энтальпия 142 Титана сплавы плотность 219, 388 тепловое расширение 265 теплоемкость 176 теплопроводность 344 изменение внутренней энергии 383 Торий плотность 216 тепловое расширение 262 теплоемкость 173 теплопроводность 339 энтальпия 140 Тория сплавы

теплопроводность 339 Точечные дефекты 35 вакансии 36 взаимодействие 38 междоузельные атомы 38 перемещения энергии 36 образования энергии 36 отжиг 49 Трещины 43 Тулий плотность 216 тепловое расширение 261 теплоемкость 172 теплопроводность 338 энтальпия 140 Универсальный критерий эволюции 18 Уран плотность 217 тепловое расширение 254 теплоемкость 173 теплопроводность 340 энтальпия 141 Урана сплавы плотность 217 тепловое расширение 263 теплоемкость 173 теплопроводность 340 Фаза 9 Фазовые переходы второго рода 33 первого рода 33 Франций плотность 210 тепловое расширение 234 теплоемкость 154 Фурье закон теплопроводности 28 Химический потенциал 15 Хром плотность 223 тепловое расширение 276 теплоемкость 187 теплопроводность 356 энтальпия 146 Хрома сплавы плотность 224

тепловое расширение 277 теплоемкость 187 теплопроводность 356 Цезий плотность 209 тепловое расширение 233 теплоемкость 154 теплопроводность 308 энтальпия 129 Церий плотность 214 тепловое расширение 257 теплоемкость 170 теплопроводность 335 энтальпия 136 Цинк плотность 213 тепловое расширение 247 теплоемкость 164 теплопроводность 325 изменение внутренней энергив 381 энтальпия 133 Цинка сплавы тепловое расширение 247 теплопроводность 326 Цирконий плотность 221, 388 тепловое расширение 268 теплоемкость 183 теплопроводность 348 изменение внутренней энергин 383 энтальпия 143 Циркония сплавы плотность 221 тепловое расширение 268 теплоемкость 183 теплопроводность 349 Энергия 9 Энтальпия 12 Энтропия 11 — «кривизна» 17 производство 17 Эрбий плотность 216 тепловое расширение 260 теплоемкость 172 теплопроводность 338 энтальпия 139

СТРУКТУРА И СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

СПРАВОЧНИК

ЛЕОНИД НИКАНДРОВИЧ ЛАРИКОВ ЮРИЙ ФИЛИППОВИЧ ЮРЧЕНКО

ТЕПЛОВЫЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Печатается по постановлению ученого совета Института металлофизики АН УССР и решению редакционной коллегии справочной литературы АН УССР

Редакторы А. Я. Бельдий, Н. М. Гладких Оформление художника Ю. В. Бойченко Художественный редактор А. В. Косяк Технический редактор И. А. Ратнер Корректоры Л. Н. Росич, Л. М. Тищенко, Е. А. Дубаро, Р. С. Коган

Информ. бланк № 6671.

Сдано в набор 20.08.84. Подп. в печ. 26.03.85. ВФ 01555. Формат 84×108/32. Бум. тип. №2. Лит. гарн. Выс. печ. Усл. печ. л. 23,1. Усл. кр. отт. 23,1. Уч.-изд. л. 28,04. Тираж 4000 экз. Заказ 5-250. Цена 1 р.'70 к.

Издательство «Наукова думка». 252601, Киев-4, ул. Репина, 3.

Книжная фабрика «Коммунист», 310012, Харьков-12, Энгельса, 11. Дубровский И. М., Егоров Б. В., Рябошапка К. П.: Справочник по физике.— 1986.—40 л.—2 р. 30 к.

Даны определения основных физических понятий и явлений, приведены физические законы и принципы, а также результаты важнейших физических экспериментов. Кроме полного объема материала, изучаемого в курсе физики средней школы, указаны сведения по основным разделам, входящим в вузовскую программу по общей физике.

Для научных работников, инженеров, преподавателей и студентов высших и средних специальных учебных заведений, а также всех желающих пополнить свои знания по физике.

Панасюк А. Д., Фоменко В. С., Глебова Г. Г. Стойкость неметаллических материалов в расплавах : Справочник.— 1986.—25 л.—1 р. 70 к.

Впервые собраны и систематизированы данные об адгезионных (краевые углы и энергетические параметры смачивания), поверхностных свойствах и химической активности тугоплавких соединений (карбидов, боридов, нитридов, силицидов и оксидов), а также материалов на их основе в расплавах. Большое внимание уделено новым высокотемпературным материалам, используемым в качестве огнеупорных. Для научных и инженерно-технических работников различных отраслей промышленности.

Радиоспектроскопические свойства неорганических материалов: Справочник/М. В. Власова, Н. Г. Каказей, А. М. Калиниченко, А. С. Литовченко.—1986.—32 л.—2 р.

Приведены сведения о параметрах спектров ЭПР большинства парамагнитных центров, локализованных в простых и двойных соединениях, а также о параметрах спектров ЯМР и ЯКР в простых веществах и сложных соединениях (800 материалов).

Для научных работников и инженеров, работающих в области физики твердого тела, химической технологии неорганических материалов, металловедения.