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P R E F A C E 

This book is devoted to the behavioral theory (or the abstract theory) 
of automata, in which the behavior of the automaton is divorced, as far 
as possible, from its constructional features. In this context the term 
"synthesis of an automaton" means the construction of a program (rather 
than a circuit diagram, as is the case in the structural theory of automata). 

A large part of the book (Chapter 0—Introduction, Chapters I , I I and 
V ) is devoted to various aspects of the behavior of automata: the representa
tion of languages and ω-languages, the realization of operators, the descrip
tion and estimation of various behavioral parameters and spectra ( = se
quences of parameters). Synthesis proper is discussed only in Chapters I I I and 
IV. Since all the requisite auxiliary facts, even certain components of the basic 
algorithms, will have been presented in sufficient detail beforehand, the 
exposition in these chapters is relatively concise. An alternative classifica
tion of the material might assign the first three chapters to the traditional 
approach in automata theory. Chapters I V and V to the statistical approach. 
The first, rather arbitrarily named, traditional approach deals with rules, 
algorithms and constructions relating to all automata, while the statistical 
(frequency) approach discusses principles which, though not valid for all 
automata, are nevertheless frequently encountered. 

Recent years have seen the publication of several monographs and re
view articles containing a wealth of material on the theory of automata 
in general and the behavioral theory in particular. It should be clear from 
the table of contents that this book is quite different from its predecessors. 
A more detailed survey of the contents may be found in Section 0.5. 

The senior author (B. A . Trakhtenbrot), whose systematic work in auto
mata theory began over ten years ago, investigated the synthesis problem 
for automata whose initial specification is formulated in the language of 
predicate logic. Concurrently (and independently), similar work was being 
done in the U.S. by Church and (somewhat later) by B٧chi. Despite con
siderable accomplishments, the problem in its most general and natural 
formulation (cf. the logical metalanguage in Chapter I I I ) remained open. 



PREFACE 

Only quite recently Biichi and Landweber, using a game-theoretic interpreta
tion suggested by McNaughton, estabhshed results that lead, in a certain 
sense, to a definitive theory of behavior and synthesis for finite automata. 
These results also provide a unified treatment of many previously known 
facts, presenting them in a compact and, thanks to the game-theoretic 
interpretation, lucid manner. This is done in Chapters I to I I I of the pres
ent book, which come under the heading of the "traditional" approach. 
W e present existence proofs and descriptions of algorithms for the 
construction of finite automata. Some of these algorithms (even the 
most important of them) are prohibitively complex and, in this form, quite 
impracticable. Though this might seem rather disappointing, one must 
remember that the very existence of these algorithms is far from trivial. This 
will be borne out by examples showing that, under seemingly minor and 
harmless modifications of the problem, there exists no solving algorithm at 
all. In other words, the situations studied in this book lie at the border of the 
no man's land in regard to the existence of an algorithm. Yet the algorithms 
described may be used as a starting point for more practical procedures. 

In spirit, the "statistical" portion of the book approaches the theory 
of experiments whose foundations were laid as early as 1956 by Moore . 
Moore proved, in particular, that the behavior of an automaton with 
k states can be reconstructed by a multiple experiment of length 2k — 1. 
Trakhtenbrot, who established the same result independently, also pointed 
out that "in the majority of cases" the so-called degree of reconstructibility 
is much smaller than 2k — 1; he conjectured that it was of the same order 
as log k. It became important to verify this conjecture for complexity esti
mates of the synthesis process in machine identification, when the designer 
augments his information about the projected automaton by appropriate 
interrogations of the customer (in so doing, the designer, so to speak, ex
periments with a "black box" and tries to guess at its behavior). Only in 
recent papers of Barzdin' and Korshunov was this conjecture proved. 
Barzdin' also proposed the idea of a frequency algorithm for synthesis and 
identification: the only requirement from the algorithm is that it produce 
correct results with a certain prescribed frequency. In particular, it proves 
possible to construct frequency algorithms which identify "most" automata, 
using only such information as can be gained by applying input words and 
observing the corresponding output words (with no upper bound on the 
number of states). A description of frequency algorithms and an estimate of 
their complexity, using the most probable values for the behavioral param
eters of the automaton, is the topic of Chapters I V and V. 



PREFACE 

On the whole, one might say that Chapters I to I I I summarize the "o ld" 
parts of the theory, while Chapters I V and V represent the first encouraging 
steps of a new trend, which we have called "statistical." 

Though the book deals with finite automata, wherever finiteness is 
inessential the exposition also includes the case of infinite automata. 

The most frequently treated case in the literature is that of the finite 
behavior of automata, corresponding to the reception of finite (though 
arbitrarily long!) sequences of input signals. W e shall also devote much 
attention to infinite behavior, corresponding to an idealized situation in 
which the automaton operates for an infinitely long time, receiving in
finite sequences of input symbols. McNaughton has shown that abstract 
infinite behavor enables one to make use of certain highly efficient "limit" 
criteria and proves to be extremely fruitful. 

Our book does not claim to present all achievements to date in the 
behavioral theory of automata. It omits many facts and procedures, re
lating both to theory and, especially, to engineering practice, which have 
received excellent and detailed coverage in the available monograph 
literature (thus, for example, minimization of automata is touched upon 
only in passing). W e have endeavored to compensate the reader for this in 
the supplementary material and problems at the end of each chapter. 

The main text contains no bibliographic references. These are given in 
the Notes at the end of each chapter; the Notes also provide other historical 
and bibliographic data. 

The Introduction and Chapters I through I I I , written by Trakhtenbrot, 
constitute a revised version of his lectures at Novosibirsk University during 
the spring semester of 1966. Chapters I V and V , written by Barzdin', 
contain both his own results and results obtained with A . D . Korshunov and 
M . P. Vasilevskii. The material has been discussed in seminars on automata 
theory at Novosibirsk and the Latvian State University. 

During our work on the book we were assisted by many individuals. 
Z. K . Litvintseva placed her lecture notes at our disposal and, together with 
N . G. Shcherbakova, helped to put them in order. W e received very helpful 
remarks and advice from Yu. I. Lyubich, G. S. Plesnevich, A . D . Korshunov, 
V. A. Nepomnyaschii and M . P. Vasilevskii. The considerable task of 
editing the authors' manuscript was undertaken by B. Y u . Pil'chak and 
N . A . Karpova. W e are deeply indepted to all these colleagues. 

B. Trakhtenbrot 
Ya. Barzdin' 



C H A P T E R O 

I N T R O D U C T I O N 

0.1. The concept of an automaton 

The automata studied in this book are in effect mechanisms consisting of 
a control block capable of assuming various states (the so-called internal 
states of the automaton), an input channel and an output channel. The 
input channel receives (reads) input signals from the environment, while 
the output channel sends output signals to the environment. The nature 
of the states and the signals is immaterial; they may be regarded as certain 
symbols (letters), which make up a state alphabet (or internal alphabet) 
0, an input alphabet X and an output alphabet X respectively. The alphabets 
X and Y are always assumed finite, Q at most denumerable. The automaton 
functions at discrete instants of time í = 1,2, 3 , . . . , called sampling times, 
according to a definite program or, what is the same, system of instructions. 
Each instruction may be written in the form 

where are internal states, an input symbol and an output symbol. 
It is assumed that the program does not contain different instructions 
i i^r 7̂̂ 5» ^i^r with identical left-hand sides and different right-
hand sides (uniqueness condition); however, the program need not contain 
an instruction with left-hand side q^x^. for every such pair. 

Assume that at some sampling time Í Q the control block is in state 
and the input channel receives a symbol x^. If the program contains an in
struction with left-hand side q^x^, say qiX^ -> q^y^, the output channel emits 
the symbol at the same time and, at the following sampling time 
Í0 + 1, the control block passes into state q^. But if the program contains 
no such instruction (the pair q^x^ is forbidden), the automaton is blocked, 
it makes no response to the symbol received at the instant ÍQ» also 
stops receiving symbols at following instants. Without substantial loss 
of generality, we may confine ourselves to automata whose programs 
contain no forbidden pairs (condition of complete specification), and make 
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no further mention of incompletely specified automata, which admit for
bidden pairs. 

Thus, suppose that the control block of the automaton is set to its initial 
state q(to), and symbols x{to),x(to + l ) , x ( i o + 2 ) , . . . are applied to its 
input channel. Then, in accordance with its program, the automaton gen
erates a sequence of output signals y{toXy{tQ + l ) , y ( i o 4- 2 ) , . . . and the 
control block goes through a sequence of internal states q{to + 1), 
q{tQ + 2 ) , . . . This completely describes the functioning of the automaton. 
It is clear that the output signal generated by the automaton at some sampling 
time t depends not only on the input symbol received then but also on 
previous input symbols; the latter are recorded in the automaton by changes 
in its internal state. In this sense, the set of internal states of an automaton 
constitutes its (internal) memory. The external medium from which the 
automaton draws the input information is conveniently represented as 
a finite or infinite one-dimensional tape, divided into squares, each con
taining an input symbol. At the beginning of the operation, the control 
block is set to some initial state, while the input channel (reading head) 
scans the square chosen as the initial square and reads the symbol recorded 
there. The tape then moves from square to square in one direction (say from 
right to left), and so the automaton can read the input symbols recorded 
in the successively scanned squares of the tape. If the tape is bounded on 
its right, the reading head falls off the tape after a finite number of sampling 
times, and the automaton then stops functioning. If the tape is not bounded 
on its right, the process continues indefinitely. W e can also assume that the 
automaton has another (output) tape, moving to the left in synchronism 
with the input tape; all squares of the output tape are empty at the 
beginning of the operation and the output channel (writing head) records 
the successive output symbols in them. 

One can (and sometimes must) specify additional details in this descrip
tion of the structure and components of the automaton. However, since 
in this book we are interested not so much in how automata are constructed 
as in how they function and what they can do, we do not need this specifi
cation; we shall concentrate our attention on situations directly related 
to the program (instruction system) of the automaton. This justifies the 
following definitions. 

An automaton* is a quintuple {Q, X, Y, Ψ, Φ > , where β, X, Yare alpha-

* Translator's note: In the Western literature it is now customary to reserve the term "autom

aton" for mathematical machines with no output; when there is an output the term "machine" 

is employed. 
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bets (internal, input and output alphabets, respectively), Ψ (the next-state 
function) is a mapping ofQ χ X into Q, Φ (the output function) is a mapping 
of Q X X into Y. The symbols of Q are called the (internal) states of the 
automaton. The quadruples x, Ψ(^ ,χ ) , Φ(^ , χ )> are called instructions 
of the automaton; an alternative notation for the instructions is 
^ χ - ^ Ψ ( ^ , χ ) Φ ( ^ , χ ) . 

Let qo be some fixed state of an automaton 9W = < Ö, X , Y, Ψ, Φ > . Then 
the recurrence relations 

^ ( Í 4 - 1) = Ψ [ ^ ( ί ) , χ ( 0 ] , 
(1) 

y{t) = Φ[q{t),x{t)l 

where q(t\ q{t + 1)G Q, x ( i ) e X , y{t)E X with the initial condition 

^(1) = ^ 0 , 

define an operator (which we denote by 7(931, ^o))» which transforms every 
finite sequence of input symbols 

x = x ( l ) x ( 2 ) x ( 3 ) . . . x ( r ) 

into a sequence, of the same length, of output symbols: 

y=Tx = y{l)y{2)...yir). 

The pair <50i, ^fo> is called an initialized automaton, and we shall say that 
the initialized automaton <äR,go) realizes the operator T(SDl,^oX ô "» 
equivalentV, that the operator T(9Jl,^o) is the behavior of the initialized 
automaton <9Jl, ^ο>· An automaton 9K is said to realize an operator I 
if, for some suitably chosen initial state qo, 

T = T ( 9 M , ^ o ) . 

Any finite nonempty sequence of symbols from some alphabet A is 
called a word over the alphabet A,* and any set of words in >1 is a language 
over A** Words over Q, X, Fare called internal, input and output words, 
respectively. 

Analogously, the term ω-word over the alphabet A, input ω'Word, output 
ω-word, internal ω-word, ω-language will be used instead of the word 
combinations infinite sequence of symbols in A, set of infinite sequences of 

* Other, synonymous terms appear in the literature: string over A, tape over A. 

** Synonymous terms are: event over A, set of tapes over A. 
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symbols (i.e., ω-words) in A, and so on. Thus, the operator r(S[R, ^o) trans
forms (input) words χ = x ( l ) x ( 2 ) . . . x ( r ) into (output) words y = 
= y(l)y{2)...y{r); operators of this type may be called word operators. 
It is clear, however, that one can also describe the behavior of an initialized 
automaton in terms of an ω-word operator—an operator which transforms 
(input) ω-words into (output) ω-words. Indeed, for any χ = x ( l ) x ( 2 ) x ( 3 ) . . . 
the recurrence relations (1), together with the initial condition ^ (1) = qQ, 
define a unique ω-word Tx = y = y{i)y{2)y{3)... The word behavior 
of an initialized automaton <SR, ^ o ) its ω-word behavior are obviously 
closely related, and each determines the other uniquely. Consequently, 
in our subsequent, more detailed discussion of operators it will not be 
too important whether T(9Jl, ^o) stands for a word operator or an ω-word 
operator. 

An automaton is said to be finite if its internal alphabet is finite. 
It is obvious that a finite automaton is a constructive entity, since the 

finiteness of the alphabets means that one can define the mappings Ψ and 
Φ by means of finite tables, that is to say, one can list all the instructions. 
It is also clear that the operators induced thereby are effective, in the sense 
that the recurrence relations (1) may be used to compute successively 
^ ( 1 ) ^ ( 2 ) . . . and yil)y{2)..., provided that the initial states and x ( l ) x ( 2 ) . . . 
are known. 

If Q is infinite our definition imposes no formal restrictions on the mappings 
Ψ and Φ, which may therefore turn out to be noneffective. As a matter of 
fact, in all interesting problems only effective next-state and output func
tions are considered, and their effectiveness is moreover of a rather special 
type. These questions are clarified and formulated in the structural theory of 
automata (see, e.g., [ 6 , 7 ] ) , and we shall mostly ignore them. 

Every finite automaton < Q , X , Ψ , Φ > = SR may be defined by two 
finite tables with binary input, corresponding to the functions Ψ and Φ. 
In these tables, known as the transition matrix and the output matrix, re-

T A B L E la T A B L E l b 

2 3 1 2 3 

a 3 3 1 a b a b 

b 2 3 3 b c c c 



0 .2] TYPES OF A U T O M A T A 5 

spectively, the rows are labeled by the input letters and the columns by the 
states (see, for example. Tables la and lb, where (2 = { 1 , 2 , 3 } ; X = 
= {a,b}; Y={a,b,c}). 

Given fixed alphabets Ö = <?2'· · · > ^fc}» AT = ( x ^ , . . . , , Y = 
= {yi^"-^yn}^ the transition matrix may be filled out in k^^ ways, the 
output matrix in rT'' ways. Thus the total number of automata with fixed 
alphabets consisting of fc, m, η symbols, respectively, is exactly {knf^. 

R E M A R K . The two tables corresponding to the functions Ψ and Φ may 
be replaced by one, whose rows are labeled by the input letters and columns 
by the states, while the entries specify the values of the functions Ψ and 
Φ in pairs. 

E X A M P L E . Consider the finite automaton 9M = < Q , 7, Ψ , Φ > , where 
ρ = { 1 , 2 , 3 } , X = { a , fe}, y = { a , b, c } , and Ψ and Φ are given by Tables 
la and lb. The instructions of this automaton are: 

1) la ^ 3b, 3) 2a ^ 3a, 5) 3a ^ lb, 

2) lb -> 2c, 4) 2b 3c, 6) 3b ^ 3c. 

Suppose that at some time t the automaton is in state 1, and the sequence 
abb is applied at its input at times i, ί H- 1, ί + 2; the automaton then gen
erates the output sequence bcc and will be in state 3 at time t + 3. 

0.2. Types of automata 

The above concept of an automaton is fairly general. In the literature one 
can find various particular cases (often differently named), obtained by 
imposing various restrictions on the components Q, X,Y, Ψ, Φ of the 
automaton. Most important are restrictions on the cardinalities of the 
alphabets. In particular, the requirement that the internal alphabet be 
finite defines the class of finite automata; this is the mathematical explicatum 
of the condition that the internal memory of the automaton be finite. 

Special mention should be made of "degenerate" cases, in which one of 
the alphabets Q, X, 7 is a singleton ( = one-element set). In such cases it 
is convenient to modify the definition of the automaton by dropping the 
degenerate component(s) from the quintuple < β , X, Y, Ψ, Φ> and modify
ing the other components accordingly. W e proceed to these definitions. 

a) A memoryless automaton* is a triple {X,Y, Φ > , where Φ is a mapping 

* Translator's note: This resembles the "feedback-free" automaton of Hartmanis and 
Stearns. 
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of the input alphabet X into the output alphabet Y In other words, the 
instructions of a memoryless automaton have the form 

where x^e X^y^e Y The recurrence relations (1) become 

y(t) = ΦΙχ(ί)1 ( l a ) 

that is to say, the output symbol at a given time depends only on the input 
symbol at that time and is absolutely independent of previously received 
symbols. Thus every memoryless automaton realizes a unique operator 
which performs "literal translation" of the input symbols into the output 
symbols; operators of this type are known as truth-table operators or 
memoryless operators. 

The number of all memoryless automata with given alphabets X = 

= { x i , X 2 , . . . , x , „ } and Y= {>^i,>'2» · · · . ^n} is n'". 
b) An autonomous automaton* is a quadruple {Q,Y, Ψ, Φ > , where Ψ 

and Φ map Q into Q and Y, respectively. The instructions are of the form 
Qi ^jys^ äi^d the recurrence relations (1) are 

q{t+l) = ^[q{t)l 
( l b ) 

y{t) = Φ[qit)l 

Given an initial state ^ (1 ) = qo of an autonomous automaton, these rela
tions ( l b ) uniquely define an output ω-word y{l)y{2)... and an internal 
ω-word ^(1)^(2) Obviously, if an autonomous automaton is finite, 
with k states, the sequence ^ ( 1 ) ^ ( 2 ) . . . ^(fc + 1) must contain repeated 
elements; thus, the ω-words y{l)y{2)y{3)... and ^ ( l ) ^ ( 2 ) ^ f ( 3 ) . . . are 
both periodic (not necessarily purely periodic, i.e., there may be some 
phase), with period no greater than the number of states of the automaton. 
The number of all autonomous automata with given alphabets Q = 
= {QuQi^'-'^qk} and Y= { ) ^ ι , . . . , ^ η } is obviously (nfc)*. 

c) An outputless automaton** is a triple < β, X , Ψ > , where Ψ maps Q χ X 
into Q. The instructions of an outputless automaton have the form ^¿x^ qp 
and only the first recurrence relation of (1) is retained: 

^ ( i + 1) = Ψ [ ^ ( ί ) , χ ( ί ) ] . ( I c ) 

The total number of outputless automata with alphabets β = { ^ ι , . . . , ^ λ } 

* Translator's note: Called a "clock" by some Western authors. 

** Translator's note: Hartmanis and Stearns call this a state machine. 
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and X = { χ ι , . , . , χ ^ } is fc'"^ The behavior of an outputless automaton 
cannot be described in terms of word (or ω-word) operators mapping 
input words (ω-words) into output words (ω-words). Of course, one could 
consider operators mapping sequences of input symbols into sequences 
of internal states, as defined by the recurrence relation ( Ic ) for some fixed 
initial state q(l). However, it is more convenient to define the behavior 
of outputless automata in terms of the languages (ω-languages) that they 
represent. The necessary definitions and notation follow. 

Given an automaton 9W = < β . A', Ψ > , fix a state and an input word 
X = x ( l ) x ( 2 ) . . . x ( r ) . Then the recurrence relations 

qW = qo, ^ ( i + 1) = Ψ [ ^ ( ί ) , χ ( 0 ] 

uniquely define an internal word q(l).. .q(r)q{r + 1). If q(r-\- 1) = 
= q'eQ, we shall say that the word χ takes state qo into state q'. 

An anchored (outputless) automaton* is a triple <9Dl, ^ο»ο '>» where 501 
is an outputless automaton, qo some distinguished state (the initial state) 
and Q a subset of the state set Q {Q is the set of final states). The (possibly 
empty) set of input words which take ii^to some final state qeQ is called 
the language represented** by the anchored automaton <9W, » 6 ' > » or its 
behavior, and is denoted by ω(3R,qo,Q)-

In this treatment, an outputless automaton is regarded as a device which 
receives questions (after suitable "anchoring," i.e., selection of its initial 
and final states) and answers "yes" or "no." The application of an input 
word X = x ( l ) , . . x ( r ) is interpreted as the question: does this word belong 
to our language? If the automaton ends up in a final state, the answer is 
affirmative; otherwise it is negative.t 

E X A M P L E . Consider the automaton 5ϋΙ defined by Table 2, anchored 
in the following way: the initial state is 1, which is also the only final state. 
This automaton represents the language consisting of all words with an 
even number of ones. 

* Translator's note: This is the usual definition of "automaton" (or Rabin-Scott automaton) 
in the West. The term "anchored" is apparently due to Rabin (private communication from 
E. Shamir). 
** Translator's note: The more common term in the Western literature is accepted. 

t In the linguistic interpretation, each symbol is interpreted as a word-token (not a letter!) 
and what we have called a word is a sequence of word-tokens—a sentence. Thus mathematical 
linguistics employs the terms "symbol," "vocabulary," "string" rather than "letter," "alphabet," 
"word." The questions that the automaton is asked have the following meaning: is this string 
of symbols a grammatically regular sentence in the language under consideration? 
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1 2 

0 1 2 

1 2 1 

Another definition of behavior for an outputless automaton is based 
on consideration of the input ω-words that the automaton receives. 

Consider an ω-word a = α ( 1 ) α ( 2 ) . . . over the alphabet A. It is natural 
to call a symbol a limit symbol of a if it appears in a infinitely many times. 
Denote the set of all limit symbols of the ω-word χ by lim χ. Fix a state 
and an input ω-word χ = x ( l ) x ( 2 ) . . . in the automaton SR = <ß , Χ, Ψ>. 
Then, as mentioned above, the recurrence relations ( Ic) define an internal 
ω-word q = q(l)q{2)... Let Q' = limq. Then we shall say that the input 
ω-word χ takes the state qo of the automaton 90Ϊ into the limit set of states 
Q' ^ 0· Now, by analogy with "anchoring" of SR, we consider "macro-
anchoring" of the automaton, i.e., selection of an initial state and a system 
of limit sets of states. This motivates the following definitions. 

A macrostate of an automaton is any subset of its state set. 
A macroanchored automaton is a triple <9W,^o»^>» where 9K is an out

putless automaton, qo a distinguished (initial) state, (£ a set of macrostates 
(the limit macrostates). The set of all ω-words which take qo into some 
macrostate Q'e G is called the ωΊanguage represented by the macroanchored 
automaton < 9 Κ , q o , ^ } and denoted by Ω(9Jl ,qo,G). 

E X A M P L E . Consider the automaton 9K defined by Table 2. Macroanchor 
9W as follows: the initial state is 1, and (£ contains the macrostates { 1 , 2 } 
and { 2 } . This macroanchored automaton represents the ω-language con
sisting of all ω-words containing infinitely many ones and all ω-words 
containing a finite, but odd number of ones. 

W e have thus considered the behavior of three special types of "degenerate" 
automata, in which one of the alphabets β . Ζ , 7 is a singleton. The be
havior of a memoryless automaton is an extremely simple and clear-cut 
object—a truth-table operator. The behavior of an autonomous automaton 
is characterized by one output ω-word and one internal ω-word; if the auton
omous automaton is finite (and this is the case of interest), each of these 
ω-words is periodic and we are again dealing with very simple objects. 

T A B L E 2 
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0.3. Automata and graphs 

In automata theory it is convenient to employ the language of graph theory, 
whose visual clarity makes it easy to apply many of its concepts and methods 

This is no longer true for outputless automata, even finite ones. The classes 
of languages and ω-languages representable by finite outputless automata 
are quite extensive. As we shall see later, each of these classes is, in a certain 
sense, as rich as the class of all operators definable by finite automata. 
In other words, the restriction that led us to the concept of outputless autom
ata is in fact inessential, in contrast to the restrictions leading to memory
less and autonomous automata. T o some extent, this might have been 
expected; of the two relations (1), only the first is a real recurrence relation 
and thus it is the more "informative" of the two. For this reason, we shall 
not devote special attention to memoryless or autonomous automata, 
whereas outputless automata will be studied in considerable detail. 

T o conclude this section, we shall briefly dwell on two types of auto
maton which arise when restrictions are imposed on the output function. 

d) Automaton with delay. The output function Φ is a function X(q) in
dependent of X. The output symbol of an automaton with delay at a sampling 
time t is independent of the current input symbol; it depends only on pre
viously received symbols. 

e) In a Moore automaton the functions Φ and Ψ must satisfy the condi
tion Φ[<7,χ] = >1[Ψ(<?,χ)], where λ, the so-called shifted output function, 
is a mapping of Q into Y. Thus, the only difference between automata with 
delay and Moore automata lies in the form of the second recurrence rela
tion of (1), the relation q(t + 1) = Ψ [ ^ ( ί ) , χ ( ί ) ] being common to both 
types. For the former, 

y{t) = λ[q(t)l 

while for the latter 

y(t) = l[q(t + 1)1 

Automata with delay are especially useful in the structural theory of 
automata; in this book there is no justification for a special discussion. 
Moore automata, on the other hand, are often convenient in the behavioral 
theory (see Sections II.3 and II.5). 

Given the alphabets Q = {q^,..., qj^}, X = { x ^ , . . . , x„} and Y = 
= { y i i · · » t h e number of automata of either of the above types is 
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Let us use the term diagram over the alphabets Q, A for any graph whose 
vertices are labeled in one-to-one fashion by the letters of Q (i.e., every 
symbol in Q is used exactly once as the label of a vertex), while the edges 
are labeled arbitrarily by symbols of A (here not every symbol need be used 
as a label, and different edges may be identically labeled). W e shall apply 
standard graph-theoretic terminology to diagrams, speaking of connected 
diagrams, subdiagrams, etc. 

Thus, any automaton {Q, X, 1̂  Ψ, Φ> is defined by a diagram over the 
alphabets Q,X χ Y, but not every diagram over Q,X χ Y defines an autom
aton. The conditions for a diagram to represent an automaton, which 
we call the automaton conditions, are obvious: 

1. N o two edges with identical input labels issue from the same vertex 
(uniqueness condition). 

2. For any vertex q and any input symbol x, there is an edge labeled 
X issuing from q (complete-specification condition). 

It should already be clear how one can define the special types of automata 
considered in Section 0.2 via diagrams, and what properties their diagrams 
possess. Thus, for example, an outputless automaton is defined by a diagram 
whose edges are labeled by letters of the input alphabet, provided the above 
conditions are satisfied. Such a diagram will be called an automaton graph. 

to automata. By a graph we mean a directed multigraph—a graph in which 
vertices α and β may be connected by more than one directed edge. An autom
aton 9M = <(2, A', X Ψ, Φ > may be represented by a graph whose vertices 
are labeled by the symbols of Q (the states of the automaton); each instruc
tion qiX^ qjx^ corresponds to an edge going from the vertex <j¿ to the vertex 
qp labeled by the pair x^y^ (x^ is the input label, y^ the output label of the 
edge). Figure 1 illustrates the graph of the automaton defined above by 
Table 1. Here the input and output alphabets have common letters; the 
output labels are distinguished from the input labels by enclosing the 
former in parentheses. 
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The diagram of Figure 2 does not define an automaton, since the automaton 
conditions are not satisfied. But if we add an edge going from the vertex 1 
to some vertex, labehng it b, and remove one of the edges issuing from 2 
and labeled b, the result is an automaton graph. The diagram of an auton
omous automaton contains exactly one edge issuing from each vertex, 
and this edge is labeled by an output letter. Figure 3 is a diagram of the 
automaton defined by Table 3; it consists of two connected components, 
one a simple loop, the other a cyclic tree. 

The diagram of an automaton with delay has the characteristic property 
that all edges issuing from a vertex have the same output label. 

The characteristic property of the diagram of a Moore automaton is 
that all edges converging on a vertex have the same output label. 

Figure 2 Figure 3 

T A B L E 3a 

1 2 3 4 5 6 7 8 9 10 

2 1 2 3 1 5 5 9 10 8 

T A B L E 3b 

q 1 2 3 4 5 6 7 8 9 10 

Φ(^) a b b c b a c b c b 

W e shall sometimes use the correspondence between automata and 
diagrams rather freely, referring to the vertices of a diagram as its states 
and to sets of vertices as macrostates. Finite automata of course define 
finite graphs (diagrams), infinite automata—infinite graphs. An example 
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of an infinite diagram is a tree with m edges (branches) issuing from 
each vertex, the edges labeled in turn by the letters of the input alphabet 
X = { , . . . , } (see Figure 4 for the two-letter alphabet X = {a,b}). 
This tree defines an infinite outputless automaton, whose states may be 
denoted 1,2, 3, If the edges are also labeled with letters from an output 
alphabet Y, we get the tree-diagram of an automaton with output. Diagrams 
of this type will frequently be considered in the sequel, and, wherever the 
meaning is clear from the context, we shall use the unmodified terms 
infinite tree or tree. 

• ψ 

Figure 4 Figure 4' 

W e now recall some additional graph-theoretic terminology and nota
tion which we shall often use. As usual, a path in a graph G (in particular, 
in a diagram) from a vertex α to a vertex jS is a finite sequence α = a j , 
^ 1 , a2, /I2, « 3 , ^ 3 , . . . , >4„, a„+1 = j8, where Ai {i ^ n) is an edge going from 
a¿ to α,.+ ι. If (x = β the path is a loop; if the vertices α ι , α2 ,α3 , . . . , a „ 
(but not necessarily α,,+ι) are pairwise distinct, the path (or loop) is said 
to be simple. Similarly, an ω-path in a graph G, beginning at a vertex a, 
is an infinite sequence α = αϊ, A^, 0L2, A2, α 3 , . . . , Ap 1 , . . . , where, as 
before, Ai is an edge from to a^+i (i = 1 , 2 , . . . ) . A flow (w-flow) in a 
graph is any set of paths (ω-paths). Every path (ω-path) <̂  in a diagram 
uniquely defines a word (ω-word) ω{ξ) over the alphabet X, obtained by 
writing the labels of the edges in ξ in order. W e shall say that ξ carries the 
word (ω-word) ω (ξ). Accordingly, every flow (ω-flow) Π in a diagram may 
be associated with a language ω ( Π ) (ω-language Ω ( Π ) ) , consisting of all 
words (ω-words) carried by paths (ω-paths) in Π . W e shall say that Π carries 
the language ω ( Π ) (ω-language Ω ( Π ) ) . 

In these terms, the language ω (SR, Qq, Q') is precisely the language carried 
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in the corresponding diagram by the flow consisting of all paths from QQ 
to Q'. Similarly, the ω-language Ω (9W, qo, (£) is the ω-language carried by 
the ω-flow consisting of all ω-paths beginning at with limit sets in d. 
The operator Τ realized by an initialized automaton <9Jl, <Jo> with output 
may be characterized as follows: for any input word x ( l ) . . . x ( r ) , consider 
the (unique) path beginning at QQ and carrying input labels x ( l ) , . . . , x ( r ) , 
respectively; the corresponding output word then consists of the output 
labels read along this path. 

Throughout this book we shall make constant use of all graph-theoretic 
tools induced in a natural manner by the above automaton-diagram 
correspondence. For example, an automaton SR will be called a subautom-
aton of W if its diagram is a subdiagram of SR'. T w o diagrams are said 
to be isomorphic if each can be converted into the other by a suitable re-
labehng (renumbering) of its vertices; two automata are said to be iso
morphic if their diagrams are isomorphic. This definition is applicable not 
only to the general automaton (Q,X,Y, Ψ , Φ > but also to the special 
types in Section 0.2. A detailed definition runs as foflows. T w o automata 
m, = (α,,Χ,χΨ,,Φ,} and SR2 = <e2,^, ΐ ; ψ 2 , Φ 2 > are isomorphic 
if there exists a one-to-one mapping λ oí onto Q2 such that {q, x ) = 
= ; ΐ - ' [ Ψ 2 [ > 1 ( ^ ) , χ ] ] and = Φ2(λ(q),x). Henceforth we shall not 
formulate the definitions in detail, but simply refer to the corresponding 
graph-theoretic concepts. 

E X A M P L E . The diagrams of Figures 1 and 4' are isomorphic; therefore, 
the same is true of the automata that they define. The isomorphism is ob
tained by the following relabeling of the states: 1 7,2 ^ jS, 3 a. 

It is a trivial task to compute the number of all automata with given 
alphabets 

which, as we have seen, is {nkf^. N o w it should be clear that in most autom
ata problems (especially in the behavioral theory) there is no need to 
differentiate between isomorphic automata, and this raises the question 
as to the number A (m, n, k) of all pairwise nonisomorphic automata with 
fixed alphabets 

β = {qv'^qk}^ X = { x i , . . . , x , „ } , Y= 

There are k\ possible permutations of the set Q, and all automata (with the 
above alphabets) which are isomorphic to an automaton SR may be ob-
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tained from SR by suitable permutations of Q. Thus, 

A(m,n,fe)-fe! ^ (n fc ) ' ^ . 

This is a strict inequality since in some cases different permutations of Q 
transform SR into the same automaton. However, A{m, n, k) is much smaller 
than {nky^ (the number of all automata with these alphabets), since there 
certainly exist different automata which are isomorphic. Thus, 

(nkY^ 
^ - ^ ^ A ( m , n , f c ) ^ ( n f c ) ' « * . 

k\ 

There is an exact formula for A(m, n, k) but it is very unwieldy [95] . It is 
therefore most interesting to try to establish fairly simple asymptotic for
mulas [35,36]. 

0.4. Terminological clarifications 

This section contains a few remarks and clarifications about our use of 
the concepts symbol alphabet, word, ω'Word, language, ω-language. W e 
first note that some or all of the alphabets of an automaton may be (carte
sian) products of other alphabets. For example, let X = χ X2 x ... x 
X X^. This means that the symbols of X are in effect all m-tuples 

<XiX2 - ^ m ) with XiEXiii ^ m). If X is a letter from the alphabet X, 
its projection on the alphabet X^^ χ X^^ χ ... χ X^^is^ < S2 < < s^^m) 
is defined as the symbol (χ^^χ^^... x^^) ; the projection of a word {ω-word) 
is defined as the word (ω-word) formed by the corresponding projections 
of its letters. Products of alphabets arise frequently in the structural theory 
of automata. For example, an input alphabet X = X^ χ ... χ X^ may 
be interpreted as m input channels, each of which receives the corresponding 
projection of the input information. As an illustration, we confine ourselves 
to two simple operations on automata, which we shall use later. Given two 
automata 

SR' = < Q\ X', Υ', Ψ, Φ' > and W = < Q", X", Y", Φ" > , 

we define their (direct) product 

sR = < ö , ^ , y , ψ , φ > 

by ö = Ö' χ ö" . ^ = A : ' χ Χ", y = r χ Υ" (Figure 5α); for every pair 
of instructions (?;x; o[J^ and ^Jx^ (ί'Χ of SR' and SR", respectively. 
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SR contains an instruction <qWj><x'rXp> -* <^^€> <y'sy'σy^ If ®ϊ ' and 
W have a common input alphabet {X' = X"), one can define a related 
operation—product with identified inputs. T o simplify matters, we consider 
the case in which 931' and 901" (and therefore also the resultant automaton 
9 « ) are outputless (Figure 5b): 9K = < ρ , Ζ , Ψ > , where X = X' = X", 
Q = Q' X Q" and for every pair of instructions q'fX^ - » q'^, q'jxx q^ of 
951' and 9Jl" respectively, 9W has an instruction {<ίίφχχ ->• iqWI,}-

Λ; 

• y ; 

Figure 5 

Using products of alphabets, we can regard the operator defined by an 
automaton as having several arguments, i.e., it transforms an ordered 
sequence of input words (ω-words) of the same length into an ordered se
quence of words (ω-words), again of the same length. In exactly the same 
way, the language (ω-language) represented by an automaton can be re
garded as a set of ordered sequences of words (ω-words). 

T A B L E 4 

90 9i 

00 Οίο l<?o 
01 l9o 0 « . 
10 l9o 0 « , 
11 Oil l9i 

For example, consider the automaton defined by Table 4, which is known 
as a serial binary adder. Its input symbols are the pairs 00,01,10,11. If the 
initial state is q^, the operator of the automaton transforms any pair of 
words Xi ( 1 ) . . . Xj ( r ) , X2 ( 1 ) . . . X2 W into a word y{l)... y ( r ) , where x^ ( i ) , 
^li^Xyii) = r) are the i-th digits from the right in the binary expansions 
of the first term, second term and sum, respectively. 
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* W e use the term finite-state instead of the word combinations "representable in a finite 

automaton," "realizable by a finite automaton." 

Very commonly used alphabets in the theory of automata are cartesian 
powers of the binary alphabet { 0 , 1 } . Words (ω-words) in the alphabet 
{ 0 , 1 } may then be regarded as predicates defined over initial sections of 
the natural number sequence (over the entire natural number sequence), 
by identifying the symbols 1 and 0 with the truth values "true" and "false." 
With this in mind, one can use the operations of logic to set up formulas 
describing the next-state function Ψ and the output function Φ. For a serial 
binary adder, 

Ψ ((?,Xi ,X2) = Xi · X2 V Xi · ^ V X2 · ^ , 

Φ((?,Χΐ,Χ2) = Xi Θ X2 θ ^3. 

where · , v , @ denote conjunction, disjunction and addition mod2, 
respectively, and q assumes the values 0 and 1. 

The set of all words (the universal language) over a given alphabet A 
is in effect the free semigroup with respect to concatenation, the binary 
operation mapping an ordered pair of words a, ft onto the word ab obtained 
by juxtaposition of b to the right of a. It is clear that this operation is as
sociative: {ab)c = a{bc), and so one can omit the parentheses in concatena
tions of more than two words. 

Analogous to the concatenation of two words is the concatenation of 
a word a and an ω-word b, defined as the ω-word ab obtained by juxtaposing 
the ω-word b to the right of a. One can also define the concatenation of 
an infinite sequence of words. For example, given the words p, r, ppp . . . 
is a periodic ω-word, rppp... an ultimately periodic ω-word with phase r 
and period p. W e shall be rather liberal with our terminology and notation, 
not distinguishing between a word containing a single letter and the letter 
itself, or between a language containing a single word and the word itself 
(wherever the meaning is self-evident). 

Formal considerations sometimes make it convenient to introduce the 
empty word (to be denoted by Λ ) , stipulating that Λ ρ = ρ Λ = ρ for any 
word ρ and Λ ρ = ρ for any ω-word p. The universal language then becomes 
a semigroup with identity [also called a monoid in Western literature] 
(the role of the identity being played by the empty word) ; this is sometimes 
convenient in formulating algebraic characterizations of languages, espe
cially finite-state languages.* For this reason, the term "language" (in par-
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* Had we utilized the empty word in describing the behavior of automata, we should also 

have had to define the empty ω-word, which (apart from a certain dissonance in the term it

self) in no way simplifies the exposition. Moreover, recourse to "empty words" requires great 

care; an instructive example is described briefly in Problem X V of Chapter III. 

** From here to the end of this section we shall use representations admitting the empty 

word. 

ticular, language representable by an automaton) is often used in the 
literature for a set of words including (possibly) the empty word. T o be 
precise, the empty word is said to belong to the language ω(5)ϊ, ^o»6') 
if one of the final states coincides with the initial state QQ. In terms of diagrams, 
the ordinary paths from to Q are supplemented by an "empty path" 
carrying the empty word. The reader should take care to distinguish sharply 
between the empty language 0 and the language { Λ } which contains the 
empty word alone. It should be clear from the definitions of the preceding 
sections that we are considering only nonempty words, and so our languages 
(such as languages representable by automata) do not contain the empty 
word.* 

Since our approach is by no means generally accepted, we shall make 
two almost obvious observations which should convince the reader, as 
he reads further into the book, that all our theorems and proofs carry over 
trivially to systems admitting the empty word. 

Let <9W, <?0'6'> be a finite anchored automaton. Then: 
a) There is an effective procedure for deciding whether the empty 

word belongs to the language** that it represents (i.e., Ε Q'). 
b) There is an effective construction of a finite anchored automaton 

<9Κ' ,πο,Π'> such that the only difference between ω(501',πο,ΙΤ) and 
ω(9Κ, qo, Q') is that one of these languages contains the empty word while 
the other does not (they contain exactly the same nonempty words). This 
construction, which we call adjunction of an initial state, proceeds as fol
lows. Enlarge the state set of SR by one additional state UQ ; for every instruc
tion of SR of the form qox q\ add an instruction UQX q'. (In other words, 
add a new vertex to the diagram of SR and draw edges from this vertex to all 
vertices which are ends of edges from qo, retaining the same labels) The 
state UQ replaces qQ as the initial state of the automaton. The new final 
states are all states of Q\ together with πο if and only if qQ φ Q. Thus, the 
empty word belongs to ω (SR, πο, Π ' ) if and only if it does not belong to 
ω (SR, qQ, Q). It is easy to see that ώ (SR, q^, Q) and ω (SR', π^, I T ) contain 
exactly the same nonempty words. 
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0.5. Survey of the contents of Chapters I to V 

Chapter I is devoted to the behavior of finite outputless automata, or, 
in the terminology of Section 0.2, finite-state languages and ω-languages. 
The main problem here is to delineate the class of finite-state languages 
(ω-languages). This is done in two ways. First, we introduce several con
cepts which are useful in formulating criteria for a language to be finite-state 
(Sections 1.2, 1.3, I . l l , 1.12). W e then describe various operations under 
which the class of finite-state languages is closed (Sections I . l , I.5-I.10), 
and study each in some detail. The concepts of distinguishability (Section 
1.3) and interchangeability (Section 1.2) enable us to characterize the memory 
capacity required to represent a given language (ω-language). The concepts 
of probabiHstic automaton (Section I . l l ) and grammar (Section 1.12) are 
discussed with an eye to the concepts of language representation that they 
define. It is instructive to compare each of these concepts with the usual 
finite-automaton concept. One result is that grammars with finitely many 
states give nothing new in comparison with finite automata, but probabiUstic 
automata lead to a considerable extension of the class of representable 
languages (ω-languages). 

The main content of this chapter involves operations under which the 
class of finite-state languages is closed. This class is closed under many 
operations (though one can easily cite simple examples of languages or 
ω-languages which are not representable in finite automata). Roughly 
speaking, the operations we shall study fall into two groups: a) set-theoretic 
and logical; b) operations defined in terms of word concatenation (see Sec
tion 1.4). In all cases our proofs of closure properties yield effective closure, 
i.e., they prove the existence of an algorithm which, given anchored (macro-
anchored) finite automata, construct the resultant anchored (macro-
anchored) automaton. 

Languages and ω-languages will be discussed in parallel. The principal 
difficulty relates to the operation of projection, whose logical counterpart 
is the existential quantifier. T o overcome this difficulty we introduce a 
more general concept than the anchored (macroanchored) automaton— 
the source (macrosource) or nondeterministic automaton [which is the 
accepted term in the Western literature] (dropping the uniqueness condi
tion; see Section 0.1). Of basic importance here are the determinization 
theorems, which show that this generalization of automata does not ex
tend the class of representable languages (ω-languages). The determinization 
theorem for sources has been known for some time and is quite simple. 
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McNaughton's determinization theorem for macrosources, which gives 
similar information about ω-languages, is based on more subtle construc
tions; with its aid the analogy between representable languages and ω -
languages may be carried to its logical completion. 

Much of the material in Section 1.4, though of independent interest, is 
used in the proofs of subsequent theorems. W e refer to existence theorems 
for algorithms which can be used to check whether a language (ω-language) 
representable by a given finite automaton has various properties. While 
fairly easy to prove, these theorems are of essential importance. Later (in 
Chapter I I ) we shall cite examples of properties for which no algorithms 
exist. 

Chapter I I is devoted to the behavior of automata with output, i.e., 
finite-state operators. W e begin with a classification of word (ω-word) 
operators according to the criteria of anticipation (Section I I . 1) and memory 
(Section II.2); finite-state operators turn out to be nonanticipatory [or 
causal] operators with finite memory. W e then distinguish clearly between 
the properties of these operators due to their lack of anticipation and the 
properties due to the finiteness of their memory (weight). This enables us 
to phrase the arguments in such a way as to reveal, in passing, certain laws 
applying to operators definable by infinite automata and sometimes even 
to operators not definable by any (even infinite) automaton. In a certain 
sense, the material of Sections II.3 and II.4 is analogous to that of Sections 
1.2 and 1.3; here we determine the memory capacity needed for the defini
tion of any given finite-state operator. Though an outputless automaton 
is only a particular case of a general automaton (with output), many essential 
propositions concerning the behavior of automata with output are actually 
established in Chapter I. Section II.5 indicates the relation between the 
two concepts of automaton behavior, so that we are able to single out 
those facts specific to automata with output whose verification requires 
a special study. These facts relate to the concept of uniformization of a 
finite-state ω-language 21 over the product of alphabets Z , Y. i.e., the ex
istence of a finite-state operator y = Tx whose graph lies in 91. The problems 
considered here resemble those usually arising when one is interested in 
explicitly defining a function given by an implicit definition. Using Mc-
Naughton's suggested game-theoretic interpretation, we shall present 
Biichi and Landweber's solution of the uniformization problem in Sections 
II.9 and 11.10. It is of paramount importance for solution of the synthesis 
problem. 

Sections 11.11 through 11.13 constitute a digression; they introduce 
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various parameters (degree of distinguishability, accessibility, reproducibil
ity) and spectra ( = sequences of numerical parameters) which serve for a 
finer classification of operators and automata. Various types of lower and 
upper bounds for spectra and parameters are established. Though of 
independent value, these facts are here mainly in the nature of preparatory 
material for Chapters IV and V. (Chapter V deals with statistical bounds 
for these parameters and spectra.) Absolute and statistical bounds for be
havioral parameters are particularly important in the so-called theory 
of experiments on automata, a basic component of which is the theory 
of synthesis of automata in identification problems (this theory is set forth 
in Chapter I V ) . 

Chapters I I I and I V deal directly with the synthesis problem, though 
the problem is formulated differently in each chapter. 

In the most general terms, the synthesis problem is to construct an 
automaton whose behavior satisfies certain explicitly specified or implicit 
properties. The problem is central in both behavioral and structural autom
ata theory. Of course, here we must restrict ourselves to those aspects 
of the problem which concern the behavioral theory, and in this sense the 
term "functional synthesis" is used in contradistinction to structural 
synthesis. Moreover, we restrict ourselves to the functional synthesis of 
finite automata. In this formulation, an automaton is deemed constructed 
once we have finite tables defining its next-state and output functions, or 
once we have drawn its (finite) diagram. Within the bounds of the general 
synthesis problem, functional synthesis constitutes only the first step of 
the construction of an automaton, serving as raw material for the next step, 
in which the actual structure (circuit) of the automaton is designed. 

Our formulation and investigation of the synthesis problem distinguish 
between the following two situations which reflect the dialog between 
the prospective user of the automaton and the designer. 

1. Metalanguage. The user presents the designer with the conditions 
to be satisfied by the behavior of the projected automaton (i.e., language 
or ω-language, operator). These conditions are assumed to be stated in 
a sufficiently unambiguous and formalized language (the so-called metalan
guage), understood by the designer. This situation is examined in detail 
in Chapter I I I , with extensive use of the basic theorems on the behavior 
of automata (Chapters I and I I ) , as well as predicate logic. 

2. Identification. The user has fully planned the required behavior (lan
guage, ω-language, operator), but is not in a position (or is unwilling) to 
formulate the conditions in a language accessible to the designer. It is also 
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assumed that the user can (and must) provide the designer with answers 
to questions of the type "What does the operator do with the word 
x{l)...x{t)T or "Does the word x{l)...x{t) belong to the language?" 
Thus, by dint of suitable inquiries, the designer tries to "guess" the operator 
(language, ω-language) and (if possible) to construct a suitable automaton. 
It is known that this identification procedure is not always feasible, i.e., 
there is no algorithm for "guessing" all projected operators. This being 
so, can one guess some of these operators (more precisely, a sufficiently large 
proportion of them), and what algorithms can be used to that end? These 
questions are studied in Chapter IV. 

W e now examine the detailed contents of each of the last-mentioned 
chapters. 

Chapter I I I discusses various particular problems relating to the general 
synthesis problem in the metalanguage situation. These include the existence, 
uniqueness and construction of an automaton conforming to conditions 
expressed in the metalanguage. The situation is similar to that obtaining, 
for example, in the theory of functional equations, when analogous questions 
arise for formulas of a certain metalanguage (such as differential equations). 
The investigation proceeds in regard to several metalanguages (sources, 
finite trees, regular formulas, ω-regular formulas) and, finally, a special 
metalanguage (the language I) based on monadic second-order predicate 
logic. The aim of our argument is to show that this metalanguage is con
siderably more expressive than those listed above, and we prove that there 
exist algorithms solving the general synthesis problem for I. These algorithms 
are far more complicated than the synthesis algorithms for the other lan
guages—understandably so, since they solve the synthesis problem for 
them too. The comparatively brief exposition of the synthesis problem in 
this chapter is possible thanks to the extensive preparation of all auxiliary 
material in the preceding chapters. In effect, the algorithms described in 
the proofs that the class of finite-state languages (ω-languages, operators) 
is closed under various types of operations are constituent parts of the syn
thesis procedure. In Chapter I I I these algorithms are merely assembled and 
combined into a single synthesis algorithm. 

The metalanguage I reveals a remarkable connection between the prob
lems of automata theory and certain traditional problems of mathematical 
logic. In particular, one can prove the algorithmic solvability of the decision 
problem of I. It is also demonstrated that further attempts (sometimes 
harmless at first sight) to extend the logical metalanguage, with a view to 
enlarging the metalanguage itself, lead to a situation in which there is no 
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synthesis algorithm. This is, in a sense, another argument for the statement 
that the metalanguage I is so to speak the "most expressive" language 
suitable for the synthesis theory. 

W e reiterate that McNaughton's determinization theorem and the Büchi-
Landweber uniformization theorem (Chapters I, I I ) are essential com
ponents in the solution of the synthesis problem for the metalanguage I. 

The beginning of Chapter IV is concerned with various formulations of 
the identification problem for automata. W e then proceed (Section IV.2 
and, in part. Section IV.3) to the identification problem in its traditional 
formulation, in which one assumes a given (i.e., usable) upper bound on 
the number of states. There exists an algorithm which identifies all automata 
under these conditions. However, the main part of the chapter (Sections 
IV.4 through I V . l l ) is devoted to the identification problem when there 
is no known bound on the number of states. The main result we prove is 
that, as before, there exist algorithms which, with any preassigned frequency, 
reconstruct the projected operators ("black box" identification). At the same 
time we establish bounds for the complexity of these algorithms (for both 
simple and multiple experiments). The precise formulation and solution 
of these problems involves the idea of frequency algorithms (i.e., algorithms 
that produce the correct answer not for all initial data but only for some 
—presumably a sizable proportion). W e shall not consider the general 
concept of a frequency algorithm in this book, confining ourselves to a few 
illustrations. An exact definition of this concept presupposes that some 
frequency concept has been adopted. In our case, this might be, say, the 
ratio of the number of automata with k states (where fc is a fixed number) 
for which the algorithm gives a correct answer to the number of all automata 
with k states. W e describe special classes of frequency algorithms—the 
so-called iterative algorithms. In a certain sense, these algorithms involve 
incomplete induction. W e shall show that for any ε > 0 there exists an 
iterative algirithm that performs correct identification with frequency 
1 - ε, and the choice of this algorithm is in a certain sense uniform. 

It should be clear from this survey that the principal subject matter of 
the book is, in one way or another, connected with the construction of 
algorithms. In the problems in question, the very existence of an algorithm 
is far from trivial. Of course, we do not want an algorithm merely to exist 
— w e would like it to be a "good" algorithm. There are various criteria 
for the quality of an algorithm; they may be formulated and investigated 
in the theory of complexity of algorithms. W e shall not discuss bounds on 
the complexity of synthesis algorithms in the metalanguage situation. For 
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Notes 

The concept of a finite automaton is already implicit in Turing [126], 
in his description of the computing machines now known as Turing ma
chines. The Turing machine is a more general object than the finite autom-

,aton, because the reading and writing heads moving along the tape can 
both change direction and erase the symbol recorded in a square of the 
tape. 

Though finite automata are much simpler than Turing machines, they 
were not systematically studied until the fifties (not counting the early 
paper of McCuUoch and Pitts [101] ) . A considerable part of the collection 
Automata Studies [ 1 ] , translated into Russian in 1956, is already devoted 
to finite automata (the Russian translation includes the paper [101] and 
an appendix by Medvedev [ 4 8 ] ) . The papers present several similar mod
ifications of the concept "finite automaton," but there is no unified term
inology. 

Later monographs and survey articles, in both Russian and other lan
guages, maintain and even intensify the lack of a coordinated terminology 

Identification algorithms we do present bounds, even quite precise ones. 
W e estimate the amount of information that the designer receives from 
the user; more precisely, we estimate the maximal length of the input words 
according to which questions are answered, and give fairly precise bounds 
for almost all automata. In so doing we make essential use of the statistical 
bounds for parameters and spectra for the behavior of automata estab
lished in Chapter V. It is worth mentioning here that the material of Chapter 
V should logically precede that of Chapter I V ; together with Sections 11.11 
to 11.13 it forms, in effect, an independent part of the book, dealing with 
parameters and spectra for behavior. However, we believe this more logical 
order unsuitable, inasmuch as the proofs collected in Chapter V involve 
long and sometimes complicated combinatorial computations. The order 
adopted is more convenient for the reader and, in effect. Chapter V is in 
the nature of an appendix which presents the proofs of various bounds 
and inequalities already used in Chapter IV . 

In actual fact, these proofs yield more information than that directly 
derived from the statements of the theorems. Thus, for example, in deriving 
a statistical bound for the degree of accessibility, we in fact establish certain 
statistical regularities in stochastic graphs, which have appHcations outside 
the theory of automata (e.g., in the theory of epidemics). 
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(unfortunately, this applies to the present book as well). The following 
terminological clarifications are thus in order. 

Several papers consider objects which, apart from the properties we have 
included in the concept "finite automaton," possess more specific structure 
(with indications of their construction as combinations of elementary com
ponents); various terms are employed—nerve net [101], finite automaton 
[100], logical net [79]. In particular, the book [ 7 ] defines a "finite autom
aton" as a combination of two objects, one of which defines the functioning 
of the automaton and is identical to the concept studied in this book, 
while the other (logical net) specifies the structure of the automaton. 

As authors gradually came to realize the fruitfulness of studying the 
behavior of automata without regard for their structure, they adopted 
concepts of the type presented above in Sections 0.1 a^d 0.2. A frequently 
used synonym for "finite automaton" is "sequential machine" (e.g., in [ 2 ] ) . 
However, Moore himself, who originated this term, uses it [108] in the 
sense of our "automaton with delay." On the other hand, in [48] and [ 2 ] 
"finite automaton" is used for our "finite outputless automaton." 

Our definitions are slightly different from those by Glushkov in his mono
graph [ 6 ] . Glushkov measures time for states from zero, and for input and 
output symbols from unity, so that the recurrence relations for an operator 
become 

^(0) = 

q(t) =Ψlq{t-l),x{t)l (1) 

y{t) = Φ [ ^ ( ί - l ) , x ( i ) ] , i = 1,2,... 

In particular, the recurrence relations for a Moore automaton (without^ 
delay) become 

^(0) = qo 

qit) = Ψ [ ^ ( ί - l ) , x ( i ) ] , (2) 

y{t) =Xlq(t)], ί = 1,2,... 

After publication of Glushkov's monograph [ 6 ] , the terms "Mealy autom
aton" and "Moore automaton" came into extensive use for cases (1) and 
(2), respectively. 

The earliest meaning of the expression "behavior of an automaton" was 
what we have called "finite behavior," manifested in the transformation 
the automaton applies to words or in the set of words that it represents. 
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Burks and Wright [79] were apparently the first to study the infinite be
havior of an automaton with output, i.e., operators transforming infinite 
input sequences (which we call ω-words) into infinite output sequences. 

This motivated further development of the approach by Trakhtenbrot 
[56,57]. This infinite behavior of outputless automata was apparently 
first considered in a systematic manner by Muller [109] ; our definition 
(Section 0.2) of the representability of an ω-language is due to McNaughton 
[102]. 
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B E H A V I O R O F O U T P U T L E S S A U T O M A T A 

I. l . Representation of languages and ω-languages in automata 

If no restrictions are imposed on the automaton and the anchoring proce
dure, it is easily seen that any language may be represented in a suitable 
anchored automaton. Indeed, let 91 be a language over an alphabet X 
containing m letters. W e construct a representing automaton <9W, ^o>6'> 
as follows. The diagram of the automaton is an infinite tree, with exactly 
m edges, labeled by the input letters, issuing from each vertex. The root of 
the tree represents the initial state q^. The set Q is assumed to contain all 
states q (and only such states) such that 91 contains a word ρ taking the 
state q^ into q. The class of ω-languages representable in automata is also 
too large (again we mean arbitrary automata and arbitrary macroanchoring). 

There are various types of restriction on the automata and the anchoring 
procedure which yield less trivial classes of languages and ω-languages. 
Examples of such classes are the class ω of all languages representable in 
finite automata {finite-state languages) and the class Ω of all ω-languages 
representable in finite automata {finite-state ω-languages). Examples of 
finite-state languages and ω-languages were given in Chapter 0. A better 
idea of the classes ω and Ω may be derived from the examples and theorems 
considered below. 

E X A M P L E 1. Any language consisting of a single word χ = x ( l ) x ( 2 ) . . . 
x ( r ) is finite-state. A representing automaton may be constructed with r -h 2 
states ( 7 i , ^ 2 ' - ' ^ r ' ^ r + i » ^ r + 2 » where q^ is the initial state and i the 
only final state. The instructions are ^fix( l) qi, ^2^(2) ^ 3 , . . . , qr^{r) 

^^+1, and, for any other pair q^Xß not in the left-hand side of any of these 
instructions, an additional instruction q^Xß qr+i-

R E M A R K . The state q^+2 has the property that any input letter (and so 
any input word) takes it back to ^^+2 0·^·» to the same state). W e shall call 
states possessing this property absorbing states. They will be used again 
in various constructions. 

26 



I . l ] R E P R E S E N T A T O N OF L A N G U A G E S A N D ω - L A N G U A G E S I N A U T O M A T A 27 

Figure 6 

E X A M P L E 2. Any ω-language consisting of a single periodic ω-word 

X = x ( l ) x ( 2 ) . , . x ( r ) x ( r + l )x ( r + 2 ) . . . x ( r + s ) . . . with phase x ( l ) . . . x ( r ) 

and period x ( r -f 1 ) . . . x ( r + s) is finite-state. A representing automaton 

may be constructed with r + s + 1 states ^ i , . . . , ^ r » ^ r + · · · » q r + s ^ q r + s + 1 » 

where is the initial state. There is one Hmit macrostate—the set 

{ ^ r + i i ^ r + 2 » - - » ^ r + s } » thc instructious are 

qiXii) < 5 4- r), <?,+,x(r + s) 

supplemented by instructions qa^ß^ <ir+s+i for all pairs q^Xß which are 
not left-hand sides of the above instructions (i.e., ,̂.+5+1 is an absorbing 
state). 

E X A M P L E 3. Every finite language is finite-state. The representing auto
maton is more conveniently described in terms of its diagram; we illustrate 
the procedure for the language 91 = {00 ,01 ,1 , 111}. Construct a finite 
tree for this set of words, as illustrated in Figure 6a, where each filled circle 
(vertex) corresponds to a word in 91. Complete this tree to a diagram by 
adding a new vertex, to which all missing edges are directed (see Figure 6b, 
where pairs of "parallel" edges have been replaced by a single edge). The 
root of the tree represents the initial state, the filled circles the final states. 

Analogously, one can show that any finite ω-language consisting of 
periodic ω-words alone may be represented by a macroanchored finite 
automaton. That a suitable diagram can be constructed follows from 
Theorem 1.1 below. 

T o obtain more precise information on the size of the classes ω and Ω, 
we shall try to find operations over languages (ω-languages) under which 
these classes are closed. W e first consider the set-theoretic operations: 
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union u , intersection n , complementation Π , projection and cylindrifica-
tion. The first three operations are defined as usual; their relation to the 
logical operations (disjunction, conjunction and negation) is clear from the 
definitions: 

xG5ln95 = X 6 2 1 & X G 9 3 , 
df 

X 6 9 I U » = X G 9 I V X G 9 5 , 
DF 

X G Ί 9 1 = n ( x G 9 I ) . 

W e recall the definitions of the last two operations. For each word over the 
alphabet X χ Y 

< x ( l ) ) ; ( l ) > < x ( 2 ) > ; ( 2 ) > . . . < x ( í ) y ( í ) > 

its projections onto X and 7 are defined as the words 

x ( l ) . . . x ( i ) , y ( l ) . . . y ( i ) , 

respectively. The projections of an ω-word are defined similarly. Given a 
language (ω-language) 91 over an alphabet X χ Y, the projection of 9Ϊ 
onto X is the language (ω-language) consisting of the projections of all 
words (ω-words) of 91 onto X. Given an alphabet Y and a language ( ω -
language) 91 over an alphabet X , the Y-cylinder of the language (ω-lan
guage) 91 is defined as the language (ω-language) consisting of all words 
(ω-words) over X χ Y whose ^-projections are in 91. The relation be
tween projection and existential quantification should be quite clear. 
T o make the description more precise we introduce the concept of the 
convolution of words (ω-words). The convolution of two words of the same 
length, X = x ( l ) x ( 2 ) ...x(t),y = y{l)y{2)... y ( i ) , is the word < x ( l ) y ( l ) > · 
• <x(2)y(2)> . . . < x ( O y ( 0 > over the direct product of the corresponding 
alphabets. The convolution is denoted by x*y. It is now clear that a word 
(ω-word) belongs to the projection 93 of a language (ω-language) 91 if and 
only if 

XG93 = 3y{x * } ; G 9 I } . 

It is useful to note the relation between cylindrification operation and the 
operation, frequently used in logic, of introducing dummy variables. 

For the above operations we have the following theorem, whose state
ment and proof apply equally well to languages and ω-languages. 

THEOREM 1.1. There exist algorithms which solve the following problems: 
( I ) Given a finite automaton <9W, ^ o » ö > ^ o » ^ > X construct a finite 
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automaton representing the language ~1 ω($)ϊ, (jo, β ) {ω-language 

-lQ{m,qo^n 
( I I ) Given {W, qO, ß '> and <SR", q'¿, β " ) qO, and <9Κ", q^ (£"» 

over the same alphabet X, construct a finite automaton' <5öi, qo, ß> «SCR, q^, (£>) 
representing the language ω (SR', q^, Q') u ω ( ϊ ) ϊ " , ^o, β " ) {ω-language 
n{W,q^o.^l^^m'\q'¿^")y 

( I I I ) Gilten α ̂ m íe automaton <ßl,qo,Q'} (<SR, <?o»*^>) aiphabet 
Χ construct a finite automaton {% qo, Q'} {(% ^οΛ}) representing the 
Y-cylinder of the language ω{^,qo,Q') {ω-language Sl{yjl,qQ,(i)). 

Proof W e carry out the proof for ω-languages. Part (I) is obvious, for it 
suffices to replace (E in the given automaton by the set of all nonempty 
macrostates not in d. The automaton <30i, qQ, ε > of part ( I I ) is constructed 
as follows. 9W is the direct product of the automata W, W with identified 
inputs (see Section 0.4 of the preceding chapter). The initial state qQ is <<?Ό^ο>· 
N o w let β be any macrostate of the automaton SR. The set of all states oiW 
which are first elements of pairs in β is the projection of β onto the state 
set of W; denote this set by β'. Similarly, Q" is the projection of β onto 
the state set of the automaton W. Stipulate that the macrostate β belongs 
to (£ if and only if the disjunction Q' ed' ν e is true. This gives a 
macroanchored automaton <SR, qQ, (£>, and it can be readily seen that 
Ω (SR, qQ, e) is precisely 

Q{W,q'Q,(i')uQ{W\ql(£^. 

( I l l ) The automaton (^l,qQ,(i} representing an ω-language 21 over an 
alphabet X can be converted into an automaton <9l, qo, d} representing the 
corresponding y-cylinder by the following procedure—introduction of 
multiple edges. The vertices in the diagram of 91 are the same as those of the 
diagram of SR. If there is an edge from ¿̂ to qj in SR, labeled by the letter x^, 
then, for every letter y¿ G Κ put an edge in SI from qi to qj and label it by the 
pair < Xj,yi >. The limit macrostates are as before. This proves the theorem. 

R E M A R K S . I. The proof implies the following bounds on the number of 
states of the resultant automaton (in terms of the number of states of the 
original automata)*: complementation and cylindrification do not increase 
the number of states; union requires at most the product of the numbers of 
states in the given automata. 

I I . Since the intersection 9Ii η may be expressed in terms of union 
and complement, SI^ η = Π ( " Ί Sl^ u Π 2I2), the class of finite-state 

* W e are referring to finite automata. 
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1.2. Interchangeability 

Finite-state languages may be characterized in terms of interchange-
ability of words. W e first introduce the required concepts. Assume given an 
arbitrary language 21 over an alphabet X and two (possibly empty) words 
p, r over the same alphabet. 

The words ρ and r are said to be interchangeable in the language 21 
(notation: ρ ^ r(2I)) if, for any (possibly empty) words χ ancj^, xpy G 21 = 
= xry e 21. The words ρ and r are said to be left-interchangeable (right-
interchangeable) in 21 (notation: ρ ^^^r, ρ ^^^^r) ii, for any word x, 

P X G 2 I = r x G 2 l ( x p G 2 I = x r G 2 i ) . 

Interchangeability is an important concept in mathematical hnguistics, 
where it is interpreted as syntactic equivalence of words (or word combin
ations). 

The following propositions follow directly from the definition. 
I. Interchangeability {left interchangeability, right interchangeability) is 

an equivalence relation. Consequaitly, it partitions the universal language 
over X* into interchangeability classes (left, right interchangeability classes). 
Its index** may be infinite, as evidenced by the following example. Let the 
language 93 consist of all words whose lengths are perfect squares. It is 
then easily seen that only words of the same length are interchangeable. 
Since interchangeability implies right (left) interchangeability, the partition 
into interchangeabihty classes is finer than the partition into right (left) 
interchangeability classes. In other words, every right (left) interchange-
ability class is either an interchangeability class or the union of several such 
classes. 

II. Let ρ ^^r; then px ^^rx for any x. In particular, if the same letter 
is added to left-interchangeable words on the right, the resulting words are 
again left-interchangeable. W e can therefore define multiplication of a left 

* That is, the set of all words over X. 

** The index of an equivalence relation is the number of its equivalence classes. 

languages (ω-languages) is also closed under intersection, and the bound 
on the number of states is the same as for union. 

I I I . Our theorem does not mention closure under projection, which 
is much more difficult to treat and requires special consideration; we shall 
return to it later. 
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interchangeability class 21̂  by any letter a: the product %a is the left inter
changeability class that contains all words of the form pa for ρ e %. 

I I I . The language 91 is either the union of several interchangeability {right 
interchangeability, left interchangeability) classes, which generate it, or a 
single such class. 

The following theorem reveals the relation between the ndex of left 
interchangeability in a language and the number of states in an automaton 
representing it. 

THEOREM 1.2. ( I ) / /SR is an automaton representing a language 91 with 
left interchangeability of index μ, the number of states in SR is at least μ. 

( I I ) Any language 91 with left interchangeability of index μ is representable 
by an automaton with μ states. 

Proof ( I ) Let 9Í = ω(9Κ, (jo» 0')· Fix some qiEQ', and note that if 
peω{yJl,qQ,qi),reω{9R,qo,qi), then ρ ^i^r{^), since for any word χ 
the words px and rx take qQ to the same state. Thus, the partition of the 
universal language into languages ω(9ΪΙ, is finer than the partition 
into left interchangeability classes. It follows that the number of these 
classes is at most the number of states ^, in Q'. 

( I I ) Let 9Í generate a finite system of left interchangeability classes 
9 l o , . . . , 91^-1, where 9ίο denotes the class of all words interchangeable 
with the empty word. 

N o w define an automaton SR as follows: The states qQ, qi,...q^¡-i 
correspond to the classes 9ío, 9 I i , . . . , 9I^_i . Define ¿̂a -> qj if 9I,a = 91̂  
(see Proposition II before the theorem). It is easily seen that the language 
ω(SR, ^o»<?i) coincides with the class 9I¿. Let 9Í be the union of classes 
9l / j , . . . ,9lf , (see Proposition I I I ) . Denoting { ^ » v . . . , ^ i j by Q\ we finally 
get9I = ö;(SR,(?o,e').Q.E.D. 

C O R O L L A R Y . 91 is a finite-state language if and only if it generates a finite 
system of left interchangeability classes. 

R E M A R K . The reflection 91 ~^ of a language 91 is the language consisting 
of all words obtained by writing the words of 91 in the reverse order. For 
example, if α ( 1 ) α ( 2 ) . . . α(η) e 91, then a{n)... α(2)α(1)G 91" ^ Let the index 
of the right interchangeability generated by 9Í be μ; then this is also the 
index of the left interchangeability of the reflection 9 I ~ ^ If μ is finite, then 

* The simplified notation ω(9Κ,^ο>ίλ Ω ( ϊ « , ^ ο . Γ ) , etc., is used for ω(2^,ςίο,{ίί}), 
Q(SDl,qfo,{r}), etc., where {^J and { Γ } are singletons. 
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91 " M s a finite-state language. The proof of Theorem 1.2 does not carry 
over directly to right interchangeability. Later (see Theorem 1.9) we shall 
see from other arguments that if μ is finite then not only 91"^ but also 91 
is a finite-state language, though the representing automaton generally 
has more than μ states. 

The set of all languages over a finite alphabet X is nondenumerable. 
The set of recursive languages over ΛΓ, however, is denumerable, and so a 
fortiori is the set of finite-state languages. Thus, the "overwhelming majority" 
of languages are not representable by finite automata. Moreover, the 
class of finite-state languages is a very small subclass of the class of all 
recursive languages. 

Theorem 1.2 and its corollary provide simple examples of recursive 
languages which are not finite-state. One such language is that (93) des
cribed in Proposition I before Theorem 1.2. Another example is the language 
91 consisting of all words 0"10^ where 0" denotes the word consisting of η 
zeros (n = 1,2, . . .) . For suppose that 9Í is a finite-state language. Then the 
sequence of words 0,00,000,.. . must contain a pair of left-interchangeable 
words (since by the corollary to Theorem 1.2 the number of left-interchange-
ability classes must be finite). Let O'' 0^(91). Then, since 91 contains the 
word 0^10^, it must also contain O^IO'', which contradicts the definition of 
the language 91. Thus 91 is not representable in a finite automaton. This 
reasoning in fact establishes the following general proposition, which 
can be formulated in terms of separability of languages. W e say that a 
language 93 separates a language 9ίι from a language 9I2 (disjoint from 91 j ) 
if S ^ 9li and 93 η 9I2 = 0 . A language 9Ii is finite-state separable from 
a language 9Í2 if there exists a finite-state language S separating 9Ii from 
9Í2 (and then, as is easily seen, 9l2 is also finite-state separable from 911 
by the language ~|93, and therefore finite-state separability of languages 
is a symmetric relation). In our example, the language {0"10"} is not finite-
state separable from the language {Ο'ΊΟ*} (k ^ s). 

1.3. Distinguishability of words and co-words 

W e adopt the following notation. If Q is the internal alphabet of an autom
aton, β is the set of all mappings of Q into itself. The state to which an 
input word a takes a state q will be denoted by qa. For example, consider 
the finite automaton 9JÍ defined by Table 5; Figure 7 is its diagram (to avoid 
unnecessary complications the three edges going from 1 to 2 and labeled 
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X \ 
2 3 4 

a 2 3 4 1 

b 2 1 3 4 

c 2 2 3 4 

a,b,c, respectively, are represented by a single edge labeled by all three 
letters; we shall use this device in the sequel). 

Each input word a may be associated in a natural way with an element of 
Q—the mapping of Q into itself defined by the product qa, with a fixed and 
q running through Q. In particular, each row of the transition matrix, 
corresponding to some input letter x, defines the mapping induced by the 
one-letter word x. For example. Table 5 shows that a and b induce a one-to-
one mapping of the set {1 ,2 , 3,4} onto itself (a induces a cyclic permutation, 
b the transposition of (1 ,2 ) ) ; the mapping induced by c merges the states 1,2, 
i.e., maps them onto the same state. 

If x,y are words that induce the same mapping, we shall call them in
distinguishable (by the given automaton 9ΪΪ), denoting this relation by 
X ^ y(9Jl); 9K will be omitted when there is no danger of confusion. It is 
clear that is an equivalence relation, and so it partitions the set of all 
input words (i.e., the universal language) over the alphabet X into equi
valence classes (called indistinguishability classes). If 501 is a finite automaton 
with η states, the index of this partition if finite. For since the number of all 
possible mappings of an w-element set Q into itself is n", there cannot be 
more than n" indistinguishability classes. For an infinite automaton the 
number of indistinguishability classes may be either finite or infinite. 

Figure 7 Figure 8 

T A B L E 5 
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If a is an input ω-word, we retain the notation qa for the macrostate into 
which a takes the state q. Each input ω-word induces a mapping of the state 
set Q into the set of all macrostates. If two ω-words χ and y induce the same 
mapping, they are said to be indistinguishable, and the relation is again 
denoted hy χ ^ yi^)- Clearly, % is again an equivalence relation; if SR is 
a finite automaton with k states, the number of equivalence classes (classes 
of indistinguishable ω-words) is at most (2*̂  — l)*". 

E X A M P L E . Consider the finite automaton whose diagram is illustrated 

in Figure 8. There are two classes of indistinguishable words: 1) the lan

guage 911 consisting of all words with an odd number of ones, and 2) the 

language consisting of all words with an even number of ones. The cor

responding mappings of Q into itself are |j 2 1 ' ^ ^ ^ ^ ^^^^^ 

classes of indistinguishable ω-words: the ω-language 95̂ 0 of all ω-words with 
infinitely many ones, the ω-language of ω-words with a finite and odd 
number of ones, and the ω-language of ω-words with a finite and even 
number of ones. For 

ae^^, l a = 2a = { 1 , 2 } , 
a G 9 5 i , l a - 2 ; 2a = 1, 

a G » 2 » l a = 1; 2a = 2. 

It follows directly from the definition that generally ω(30 ϊ ,^ο»δ ' ) is the 
union of certain indistinguishability classes of SR (in particular, it may be 
a single class). Similarly, it is clear that the ω-language represented by a 
macroanchored automaton is the union of certain indistinguishability 
classes of ω-words. The relation between the input words and the mappings 
of Q into itself that they induce may be characterized more precisely in 
algebraic terms. 

Recall that the set of all input words is a finitely generated semigroup A 
with respect to concatenation. N o w the set Q of all mappings of Q into 
itself is also a semigroup with identity, under the binary operation defined 
by composition of mappings; the identity element is the identity mapping 
of β into itself. Since {qa)b = q(abX it is quite clear that the above cor
respondence between input words and mappings of β into itself is a 
homomorphism of the semigroup A into the semigroup β. The image 
Q' ^ Q of A under this homomorphism is a subsemigroup of Q. If ^ is a 
finite alphabet, the semigroup Q' is of course finitely generated: it is generated 
by all mappings by symbols of A. Hence the study of an outputless automaton 
amounts to the study of a subsemigroup of β defined by finitely many 
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^ " ' 2 1 3 . . . n - In 

in the set of all permutations of η elements J,, = { 1 , 2 , . . . , n}. Then every 
permutation may be represented as a product of permutations αια2 . . . â , 
where «¿(i ^ s) is either a or b. 

2. Let c be a fixed function mapping J„ onto a subset of itself containing 
η — I elements (i.e., c "merges" exactly two elements). Then any mapping 
of J„ onto a subset of itself containing m elements (n > m) is a product 
ßißi'"ßx^ where ßi{i ^ ν) is either a permutation or the mapping c (this 
product contains exactly η — m factors equal to c, carrying out the η — m 
necessary "mergings"). 

Thus any mapping of J„ onto itself or onto a proper subset of itself may 
be expressed as a product of mappings y · · · 7μ» where each is the cycHc 
permutation a, the transposition or a mapping of type c. 

N o w consider the automaton SR,, with transition matrix given by Table 
6a. It is clear that the input letters a, b, c, induce precisely those mappings 
of the set of η states that we have just denoted by the same letters. Con-

* See, e.g., A. G . Kurosh, Theory of Groups (in Russian), p. 42, "Nauka", 1968. 

generators of Q. These remarks provide the basis for a novel approach to 
automata theory in which algebraic concepts and methods assume a major 
role. The algebraic theory of automata is particularly useful in formulating 
and solving problems in the structural theory, and it lies beyond the scope 
of this book. Here we confine ourselves to the following observation, which 
is directly applicable to the type of problem considered here and will be 
used later (Section 1.7). W e have already mentioned that the number of in-
distinguishabihty classes of a finite automaton with η states is finite, at most 
rf. The following theorem shows that this bound is the best possible. 

THEOREM 1.3. For any n, there exists an automaton SR,, with η internal 
states and three input letters a, b, c for which the number of indistinguishability 
classes is exactly n". 

Proof The proof is based on the following well-known (and easily verified) 
assertions.* 

1. Consider the cyclic permutation 

^ / 1 2 3 . . . ^ - In 
[234... η 1 

and any transposition, e.g., 

a23...n - In 
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sequently, each of the n" possible mappings of the state set into itself is 
induced by some input word, and so the number of indistinguishability 
classes of the automaton 9Jl„ is n". Q.E.D. 

The concepts of indistinguishability (with respect to an automaton SR) 
and interchangeability are related. Let p, r be words indistinguishable by 
the automaton SR; then they are interchangeable with respect to any in
distinguishability class. In other words, if X is any indistinguishabihty class, 
then ^xy(xpye Κ = xryeK), i.e., the words xpy and xry induce the same 
mapping of Q into itself. Therefore ρ and r are interchangeable with respect 
to every language represented by some anchoring of the automaton SR. 

The converse is also true: if ρ and r are interchangeable with respect to 
every language representable by SR, then they are indistinguishable by SR. 

T A B L E 6a 

1 2 3 η - 1 η 

a 2 3 4 . . η 1 

b 2 1 3 η - 1 η 

c 2 2 3 η - ι η 

T A B L E 6b 

1 2 3 η - \ η 
X ^ \ 

a 2 3 4 . . η 1 

b 2 1 3 η - i η 

c — { 1 , 2 } 3 η - 1 η 

For let qp = q\ i.e., peω(yJl,q,q'). Then, by assumption, reω{9}l,q,q') 
and this means that qr = q'. 

Thus, the indistinguishability of two words with respect to an automaton 
SR is equivalent to their interchangeability with respect to every language 
representable by SR. 

1.4. Decidability of properties of finite automata 

W e shall have to deal with various properties of finite automata (anchored 
finite automata) or finite systems of finite automata. W e shall say that a prop-
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erty Φ is effectively decidable* (or simply decidable) if there exists an algorithm 
which, given any automaton 901 (finite system of automata 91), determines 
whether ϊ)ϊ(9ΐ) possesses property Φ or not. The automaton may be defined 
by its diagram (transition matrix), an anchored automaton by a diagram 
with designated initial and final states. W e shall be able to prove the decid
ability of many properties. In so doing we shall base the decision algorithms 
on an essentially simple (though cumbersome) procedure—the so-called 
procedure of word enumeration—which will now be described. 

Assume given any finite diagram Γ over an alphabet X and two designated 
sets of vertices (states) Q' and β". W e shall consider problems of the following 
type: 

( I ) T o determine whether there exist paths from Q to Q" (in other words, 
is any vertex in accessible from some vertex in Q). 

( I I ) If such paths exist, to find at least one of them and the word it carries. 
Obviously, if there exists a path from Q' to Q'\ there exists also a simple 

path, whose length does not exceed the number of vertices in the diagram. 
It is clear that by checking all simple paths in the diagram (for their number 
is finite!) one can determine which of them go from Q' to β"; whenever a 
path is found with the required property, one can record the word that it 
carries. Of course, this procedure is extremely cumbersome for large dia
grams, though quite feasible in principle. W e shall not deal here with devices 
for simplifying the procedure. The only fact of immediate interest is the 
very existence of an algorithm solving problems of this type. This procedure 
(word enumeration) is often used in the theory of algorithms as a constituent 
part of other algorithms. 

The idea will be illustrated by the theorems proved below, which are also 
of independent interest. 

THEOREM 1.4. The following properties of anchored finite automata are 
decidable: 

( I ) The language represented by the automaton is nonempty. 
( I I ) The language represented by the automaton is infinite. 

Proof Given an automaton <50ϊ, QQ, Q' >. It will obviously suffice to prove 
the decidabihty of properties (I) , ( I I ) for every <9K, ^ o » ^ j > » where qjSQ', 
Property (I ) holds if and only if the flow from to qj is nonempty. This is 
effectively decidable, and if the answer is positive a word from ω(9Μ, qo, qj) is 
effectively constructible. 

* Translator's note: Russian original "recognition," "recognizable." 
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Property ( I I ) holds if and only if there exist a word ρ and a state q„eQ such 
that ρ = P1P2P3, where Pi takes qQ into q„, P2 takes q„ into q„, and p^ takes 
q„ into If these ρ and exist, the language ω (501, iy) always contains 
the infinite sequence of words 

PiPiPiPd^ PiPiPiPiPs^"- (1) 

The above argument implies the following decision algorithm for pro
perty (II) . Let qQ,quq2, . b e all the states of Q. As in the decision procedure 
for property (I ) , check whether there exist a) a word taking qQ into q^, 
b) a word taking q^ into ^ i , c) a word taking q^ into qj. These words, 
if they exist (and then they are effectively identifiable!), are the required 
Pi>P2iP3> and so the automaton possesses property ( I I ) . If one of these 
words does not exist, proceed to an analogous check for q2, and so on. 
The procedure continues until the required q„ has been found or until its 
nonexistence has been ascertained. Q.E.D. 

R E M A R K . The above algorithms do not merely decide the properties 
in question—if the language is not empty they also construct a word in 
ω(5σΐ,^ο»ο') or an infinite sequence of words (if the language is infinite). 
W e have also proved that if an infinite language is finite-state it must 
contain a subset of words of type (1). This gives another proof of the fact 
that the language {CTIO'"} is not representable by a finite automaton. 

As an illustration of Theorem 1.4, consider the automaton 9K whose 
diagram is given in Figure 7, and anchor it as follows: initial state, 1; final 
state, 3. Then the language represented by this automaton is not empty, 
since the vertex 1 is joined to 3 by the path ba. Moreover, the language is 
infinite: for the words Pi ,P2»P3 of the theorem take a, c, a, respectively. 

THEOREM 1.5. The following properties of macroanchored finite automata 
are decidable: 

( I ) The ω-language represented by the automaton is nonempty. 
( I I ) The ω-language represented by the automaton is infinite. 

Proof. As in Theorem 1.4, it will suffice to prove the theorem for a set Κ 
containing only one element (i.e., one macrostate Q'). Without loss of 
generality, assume that Ö = {<?i»<?2. · · ·. 6' = { ^ 1 » · · · » } á fe). 
W e confine ourselves to an algorithm for property (I ) . Assume that there 
exists an ω-word a taking the initial state into the macrostate Q'. Then the 
following conditions are necessarily satisfied. 1) There exists a word PQ 
taking the initial state into q^. 2) For any qi e Q\ qj e Q', there exists a word 
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Pij = fl(l)... a{t) taking QÍ into QJ such that all intermediate states in the 
corresponding internal word q{l)q{2),, .q{t)q(t -h 1) are also in Q'. On 
the other hand, if these two conditions hold, then, as is easily seen, the 
ω-language represented by the automaton always contains the following 
ω-word: 

b = PoPiPiPi · · - (2) 

where Pi = P12P23 · "Pk-ikPkv 
It is clear that verification of conditions 1), 2) and (if these conditions 

hold) identification of the corresponding words are effective (word enumera
tion!). This proves the first part of the theorem. 

E X A M P L E . W e again consider the automaton 9Jl (Figure 7), with the 
following macroanchoring: initial state, 1; limit macrostate, = { 1 , 2 } . 
Then the ω-language Ω(9ΪΙ, 1, { 1 , 2 } ) is nonempty, since the word Po = 
= aaaab takes state 1 into state 2 (which is in Q), and there is a path, carrying 
the word Pi = be, from 2 to 2 via 1. Thus Q(SR, 1, { 1 , 2 } ) contains the 
ω-word 

aaaab be ... be ... 
Po Pi Pl 

R E M A R K S . I. The above proof also shows that every nonempty finite-
state ω-language must contain a periodic ω-word. Thus a one-element 
ω-language consists of a single periodic ω-word, and no ω-language con
sisting of a single nonperiodic ω-word (such as 1010010001...) can be 
finite-state. 

I I . If Theorems 1.4 and 1.5 are combined with the previously proved 
closure of the class of finite-state languages (ω-languages) under the set-
theoretic operations, one can prove the decidability of various properties 
of systems of finite automata. For example, given a pair 9Jli,9M2 of finite 
automata, one can effectively determine whether the intersection of the 
languages (ω-languages) represented by SCRi and SDI2 is empty, finite or 
infinite. 

I I I . Up to now all properties of automata (systems of automata) that 
we have considered have turned out to be decidable. However, it would 
be easy to formulate properties (moreover, in terms similar to those used 
above) which are not effectively decidable. For the moment we postpone 
the discussion of these examples for the sole reason that it is easier to 
formulate them for automata with output, as we shall indeed do in Chapter I I . 
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* Translator's note: This is known in the Western literature as a transition graph or a non-
deterministic automaton. Burks and Wright [80] consider a similar object which they call a 
sequence generator with goals; as far as we can ascertain, this term has not received general 
acceptance. An alternative term for "source" might be an anchored diagram. 

1.5. Projections, sources, macrosources 

W e now take up the projection operation. Let 91 be a language over an 
alphabet X χ Y, defined by an automaton <9Jl, ^ o » ß ' > - Every edge in 
the diagram of this automaton is labeled by a letter pair {xyyeX χ Y. 
Replace each of these labels by its projection onto X (i.e., in simpler terms, 
erase the "superfluous" component y ) , retaining unchanged the diagram 
and the initial and final vertices. N o w the resulting object is not the diagram 
of a finite automaton with input alphabet Z , since the first automaton 
condition (uniqueness) is violated: each vertex of the graph is joined to 
other vertices by several edges bearing the same letter from X, However, 
we can still consider paths going from the initial vertex to final vertices 
and the words that they carry. Moreover, note that the language carried 
by the flow from to Q is precisely the projection of the original language 
91. Similarly, whenever the diagram of an automaton representing an ω-
language 91 over Ζ χ Y is given, erasure of the superfluous labels (from Y) 
yields a diagram (not an automaton diagram!) describing the projection 
of 91 in the above sense. 

This observation points to the advantage in studying languages ( ω -
languages) described by objects which are more general than anchored 
automata. Objects of this type, to whose definition we now proceed, are 
sources and macrosources. 

Let β be an arbitrary diagram over an input alphabet X; call its vertices 
states and sets of vertices macrostates. A source* <ß , 6'»6''> is defined 
as a diagram Β with two designated macrostates: initial macrostate Q' 
and final macrostate β". The language carried by the flow from Q to 
Q" is said to be represented by the source (B,Q\Q''y, and denoted by 
ω(β,0',6Ί. 

A macrosource < j B , Q o , e > is defined as a diagram Β with a designated 
(initial) macrostate QQ and a designated family d of limit macrostates. 
Ω (Β, Qo, (£) denotes the ω-language consisting of all ω-words χ (and only 
those) satisfying the condition: there exists an ω-path carrying χ whose 
first vertex is in Qo and whose limit set is a macrostate in C W e shall say 
that the macrosource iB,Qo,(í} represents the ω-language il{B,Qo,d). 
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In these terms, we can state that the projection of a finite-state language 
(ω-language) is a language (ω-language) representable by a source (macro-
source). As already mentioned, erasure of the "superfluous" labels leads 
to a violation of the uniqueness condition. Our definition of sources and 
macrosources also relaxes other automaton conditions for diagrams, for 
the following situations are now admissible: 

1) Several edges with the same input label (letter from X) issue from 
a vertex α (nonuniqueness). 

2) There are vertices from which issue no edges labeled by a given letter 
X E X (incomplete specification). 

3) There are several initial vertices. 
An example of a source is the diagram of Figure 9a, with initial macro-

state { 1 , 4 } and final macrostate { 2 , 3 , 4 } . There are two edges labeled c 
issuing from the vertex 2, no edges labeled c from 1. Thus both automaton 
conditions are violated. The same diagram (Figure 9a) is a macrosource 
with the following anchoring: initial macrostate, { 1 , 4 } ; family of limit 
macrostates, { 1 , 2 } , { 3 } , { 3 , 4 } . 

Together with the concepts of source and macrosource just defined, 
it is sometimes convenient to employ slightly more general concepts. These 
are obtained by allowing certain edges in the diagram to have no input 
labels whatsoever (empty edges); these edges may be labeled by the "empty" 
letter Λ . Given a finite path of length ν in such a diagram, one "computes" 
the word that it carries as follows: write all nonempty labels of the edges 
in the path in sequence, omitting all empty labels. If all edges in the path 
are empty, it does not carry any word. N o w consider any fixed ω-path. 
The corresponding ω-word is obtained by writing all nonempty labels in 
sequence, provided that there are infinitely many nonempty labels. But 
if all edges of the ω-path are empty from some position on, the ω-path does 
not carry any ω-word. Otherwise, the concept of the language (ω-language) 
represented by a source (macrosource) with empty edges is defined as usual 
as the language (ω-language) carried by a suitable flow with the given 
anchoring. 

An example of a source with empty edges is given by Figure 9fc, with 
the anchoring: initial macrostate, { 1 , 4 } ; final macrostate, { 3 , 4 } . 

R E M A R K S . I . Any diagram over an alphabet X, containing no empty 
edges, can be associated with a system of instructions: If there is an edge 
labeled χ going from a vertex ^ to a vertex q\ this edge corresponds to an 
instruction qx q\ One can thus interpret any diagram as a certain object 
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Figure 9 

(known as a nondeterministic automaton) of more general properties than 
the automata considered hitherto. Recall that an automaton functions in 
a strictly deterministic manner: at each sampling time the next state is 
uniquely determined by the present state and the symbol received. By 
contrast, a nondeterministic automaton generally admits some freedom 
in the choice of the next state (nonuniqueness). Suppose the word ρ is 
recorded on the tape, and the reading head of a nondeterministic automaton, 
starting in one of the initial states, begins to read the word. It may happen 
that some sequence of choices "blocks" the automaton (when the letter a 
is observed in some state π, but there is no instruction with left-hand side 
πα). Another possibihty is that the word is read in its entirety, but the autom
aton ultimately reaches a nonfinal state. The word ρ may nevertheless 
belong to the language represented by the (suitably anchored) nondeter
ministic automaton, if there is at least one sequence of admissible choices 
of states for which the reading ends in a final state. 

One can formulate an analogous "automaton" interpretation for the 
representation of ω-languages in macrosources. Nondeterministic automata 
should not be confused with probabiUstic automata (see Section 1.11). 

I I . As in the case of automata, the definition of languages representable 
in a source may be modified to include languages with the empty word: 
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the empty word is considered to belong to the language if at least one of 
the following conditions holds: 

( A ) There is a vertex which is both initial and final. 
(B) There exists a (nonzero) path from some initial vertex to a final 

vertex, all of whose edges are empty (condition (B) is meaningful only for 
sources which admit empty edges). 

With this definition, consider the source illustrated in Figure 9c with 
the anchoring: initial macrostate, { 1 , 4 } ; final macrostate, { 1 , 2 } . This 
source represents a language containing the empty word. 

I I I . Obviously, the word-enumeration procedure described in Section 
1.4 and employed there to decide properties of finite automata is also 
appHcable to finite sources (macrosources), for it is based only on the fact 
that the relevant graphs are finite. Thus Theorems 1.4 and 1.5 remain valid 
for finite sources (macrosources). A sUght modification of the proofs is 
necessary only for sources (macrosources) with empty words. 

Sources (including anchored automata) are said to be equivalent if they 
represent the same language. Similarly, macrosources (including macro-
anchored automata) are equivalent if they represent the same ω-language. 

Our next problem is to establish certain simple rules for converting given 
sources (macrosources) into equivalent sources (macrosources). These trans
formations will often prove useful. W e begin with a few definitions. 

W e define an input (output) terminal of a diagram to be any vertex which 
is not the endpoint (starting point) of any edge. Call a source a two-terminal 
source (or simply two-terminal) if it has a single initial vertex and a single 
final vertex, and these vertices are input and output terminals, respectively. 

Assume given an arbitrary source (macrosource) with several initial 
states <?i,i?2» - » ^ s - An equivalent source (macrosource) with a single 
initial state, which is an input terminal, may be obtained by contracting 
initial vertices to one input terminal; this procedure slightly generalizes 
the adjunction of an initial state in an automaton (see Section 0.4). Add 
a new vertex to the diagram, drawing edges from it to all vertices which 
are endpoints of edges issuing from the initial vertices of the diagram, with 
the same respective labels. Define y ^ to be the sole initial vertex of the new 
diagram; the final vertices (limit macrostates) are as before. The resulting 
source (macrosource) is clearly equivalent to the original one (see, e.g., 
the diagram of Figure 9c, which is obtained from that of Figure 9a by con
tracting the initial vertices 1,4 to a terminal 5). Analogously, several final 
vertices in a source may be contracted to an output terminal. Applying 
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both contraction procedures to a source in turn, one can convert it into 
an equivalent two-terminal. W e thus have the following simple theorem, 
which will be used in the following sections. 

THEOREM 1.6. There exists an algorithm which, given any finite source 
{macrosource), will construct an equivalent two-terminal {macrosource with 
single initial state—input terminal). 

This algorithm for construction of an equivalent two-terminal complicates 
the source by the addition of new vertices and edges. In practice it is often 
useful to carry out what is, in a certain sense, the inverse procedure: "simpli
fication" of the source (macrosource). By deleting certain vertices, together 
with all edges issuing from them, the source (macrosource) is converted 
into an equivalent source (macrosource). Let us consider a few cases in 
which this is admissible (i.e., the procedure yields an equivalent source). 
In each case we shall specify where to connect edges previously connected 
to the deleted vertex. It is left to the reader to verify that these transforma
tions are admissible. 

I. Deletion of inaccessible vertices. Call a vertex q' inaccessible from q 
if there are no paths from q to q'. If a vertex q is inaccessible from all initial 
vertices, it may be deleted. The edges previously reaching it may be connected 
arbitrarily. For example, the vertex 7 in the source <9ΪΙ, 1, 3,> of Figure lib 
is inaccessible from the initial vertex 1, and may therefore be deleted to
gether with the edges a and b that issue from it. 

I I . Merging of equivalent vertices. Call two vertices q and q' of a diagram 
equivalent* if there exists a one-to-one correspondence between the edges 
issuing from q and those issuing from q', under which every two correspond
ing edges have the same label and lead to the same vertex. 

If equivalent vertices q and q' of a source are either both final or both 
nonfinal, one of them may be deleted. Edges reaching the deleted vertex 
are connected to the remaining vertex of the pair. This procedure is known 
as "merging of equivalent vertices" q and q'. For example, the vertices 
q^ and q^ in the automaton < C, ^ i , ^ 4 ) of Figure lOd are equivalent. Merg
ing of ^3 and ^5 gives the automaton < C , ^ i , ^ 4 > of Figure lOe. 

I I I . Merging of absorbing vertices. Let q and q' be absorbing vertices of 
a source, satisfying the following conditions: there exists a one-to-one 
correspondence between the edges issuing from q and q' such that corre
sponding edges have the same labels. If these vertices are either both final 

* Translator's note: in Russian, "twins." 
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¿ 6 

Figure 10 

or both nonfinal, any one of them may be deleted. Edges previously reach
ing the deleted vertex are connected to the remaining absorbing vertex. 
Example: Merging of the absorbing vertices and in the source 
<S ' , t̂ i, ¿;4> of Figure 12 b yields the equivalent source < S " , ν^,ν4} of Figure 
12 c. 

The analogous transformations for macrosources are easily shown to 
be admissible: 

Γ. Deletion of inaccessible vertices—exactly as before. 
ΙΓ. Merging of equivalent vertices is admissible when neither of them 

is an element of a limit macrostate. 
n r . Merging of absorbing vertices q and q' is admissible if {q} and 

{q'} are either both limit macrostates or both nonlimit macrostates. 
There is yet another simplification procedure for macrosources: 
IV. Elimination of fictitious macrostates. Given a macrosource < ß, Q', e > , 

it may turn out that the ω-language Ω ( β , β' . Γ ) is empty for some F G G. 
In a finite macrosource such fictitious limit macrostates may obviously be 
effectively found (see Remark I I I , p. 43) and eliminated from K. For example, 
in the macrosource <ß\vi,{{vi,V2}, {ν^,ν^}}} of Figure 12fc the limit 
macrostate { ^ 1 , 1 ^ 2 } is fictitious, and so 

Ω(93', v,,{{v,,V2}Av4,VS}}) = Ω(93', ν,,{ν^,ν^}). 
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1.6. Operations on sources (macrosources) and on the languages 
(ω-languages) represented by them 

The general nature of the concepts "source" and "macrosource" often makes 
it very easy to prove that the class of languages (ω-languages) representable 
in finite sources (macrosources) is closed under various operations. For 
example, consider the sources 

or macrosources 

<β ι ,β ΊΛι> , <52 ,ß i ,e2>. 

T o obtain a source (macrosource) representing the union of the corre
sponding languages (ω-languages), we need only combine the diagrams 

and Β2 into one diagram, the sets of initial states into a single set of initial 
states Ö1 ̂  6 2 » the sets of final states (limit macrostates) into a single 
set. This construction is clearly simpler than the multipHcation of autom
ata in Theorem 1.1.* Another typical example is the reflection of a lan
guage 91, i.e., construction of the language 91"^ consisting of all words of 
91 written in the reverse order. All we need do is exchange the roles of the 
initial and final states in a source representing 91, and change the sense 
of all edges. The result is obviously a source representing 91 However, 
the complement of a language (ω-language) represented by a given source 
(macrosource) cannot be obtained from the latter by simply using the comple
ment of the set of final states (limit macrostates), as in the case of automata. 
Here complementation involves far more complicated constructions, which 
will be considered later. In this section we shall concentrate on operations 
for which there are simple and obvious constructions, as for union and re
flection. All these operations will be defined in terms of concatenation 
(multiplication) of words or concatenation of a word and an ω-word. 

a) The concatenation product** of two languages 91^ and 9I2 (denoted 
by 9Ii 912) is the language consisting of all concatenations a = a^a2 of 
two words ai G 9 l i , a 2 G 9 l 2 . 

Since concatenation of words is associative, so is concatenation of lan
guages, and we may therefore omit the parentheses in products of several 
languages. The products 919Í, 919I9I,... will be denoted by 9 I^ 9 Í^ . . . 

* I.e., the direct product of automata with identified inputs. 
** Translator's note: Often called complex product. 
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Before proceeding to the next operations, we introduce some notation. 
Given a word χ = x ( l ) x ( 2 ) . . . x ( f e ) . . . x { / ) . . . x(n) or an ω-word χ = 

= x ( l ) . . . x{k)... x ( / ) . . . x ( w ) . . . , we shall denote the word x{k + 1 ) . . . x{l) 
by x¿and the ω-word x{k + l ) . . . x ( n ) . . . by x^ . 

b) The concatenation product of a language 21 and an ωΊanguage 93 
(denoted by 91 · 93) is the ω-language consisting of all ω-words ρ = ΡοΡΓ, 
where p{) e 91, pf̂  G 95. 

c) The iteration closure^ of a language 91 (denoted by 91*) is the language 
consisting of all words a expressible as 

4 a í í . . . A T . ( f c = 1 ,2 ,3 , . . . ) , 

where all factors are words in 91. In other words, 91* is the set-theoretic 
union of the languages 91, 9 I^ 9 I ^ . . . ^ ^ 

d) The strong iteration closure of a language (denoted by 91°^) is the 
ω-language consisting of all words ρ expressible as an infinite product. 

where all factors are words in 91. 

THEOREM 1.7. The class of languages representable by finite sources is 
closed under the operations of union, reflection, projection, cylindrification, 
concatenation, iteration closure. The class of ω-languages representable 
in finite macrosources is closed under the operations of union, projection, 
cylindrification. If the language 91 ̂  and the ω-language 9I2 are both repre
sentable in finite sources, then so is their concatenation product. In all these 
cases, there is an algorithm which, given the original sources and macrosources, 
constructs the required source (macrosource). 

Proof W e have already dealt with union and reflection. For cylindrifi
cation and projection we apply the procedure of multiple edges and erasing 
of superfluous labels, respectively, as described above for automata. Note 
that each of these procedures applied to a source (macrosource) again yields 
a source (macrosource), whereas erasure of labels in the diagram of an 
automaton need not give the diagram of an automaton. 

For the remaining operations we shall assume that the original sources 
are two-terminals and the original macrosources have a single input term
inal, since this can always be effectively achieved (Theorem 1.6). 

^ Translator's note: Often called star closure. 

^ In the literature, the iteration closure of a language SU is often defined as the language 

5 Í * u { a } . 
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Concatenation product of languages 9Ii,2Í2. A representing two-terminal 
95 may be obtained by connecting a two-terminal S2 representing 9I2 
in series with a two-terminal 951 representing 911. This is done as follows. 
Identify the input terminal of 952 the output terminal of 95^, forming 
a single vertex (junction point); the input and output terminals of © are 
defined to be the input terminal of 95^ and the output terminal of ©2» 
respectively. That this construction meets our needs follows from the fact 
that there are no "false paths": every path from the input terminal of 95 
to its output terminal must pass through the "junction" point, and it does 
so only once. The same holds for the constructions described below. 

Concatenation product of a language 91^ and an ω-language 9I2. A rep
resenting macrosource 95 is obtained by connecting a macrosource ©2 
having one input terminal and representing 9I2 in series with a two-terminal 
©1 representing 91^, by the same identification procedure as in the previous 
case. The input terminal of S is that of 95i, the limit macrostates are pre
cisely those of ©2· 

Iteration closure of a language 91 j . If ©^ is a source representing 9 í i , 
a representing source © for the closure of 91 ̂  may be obtained by identify
ing the input and output terminals of ©1 and defining the "junction" to 
be the only initial vertex and the only final vertex. This procedure of con
verting ©1 into © may be called cycling the source © j . If desired, © may 
then be converted into a two-terminal. 

Strong iteration closure 9 í f . A representing macrosource is again obtained 
by identifying the input and output terminals of the original source © j . 
The junction is the only initial vertex, and any set of vertices containing 
the junction is a limit set. Again, if required, one can adjoin an input term
inal. This completes the proof. 

R E M A R K . Consider the languages represented by sources © i , © 2 . As 
mentioned at the beginning of this section, we obtain a source © representing 
the union of these languages by combining ©^ and ©2 into a single source. 
Another useful construction for two-terminals ©^ and ©2 is to define a two-
terminal © from ©1 and ©2 by the following procedure, which might be 
termed parallel connection: The input (output) terminals of ©^ and ©2 
are identified, forming the input (output) terminal of the source © . Thus, 
serial connection of two-terminals corresponds to concatenation of lan
guages, parallel connection to union. 

A few examples will illustrate Theorem 1.7. Denote the source of Figure 
lOa by A. The iteration closure of the language ω(Α, π^,π^) is represented 
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by the source <B, π3, π 3 > (Figure 10b), whose diagram is derived from that 
of A by identifying the initial vertex and the final vertex n^. If we make 
π3 the initial vertex in the diagram of Figure 10b and {π2 , π^} the limit 
macrostate, we get a macrosource < B, { π 2 , π 3 } > representing the strong 
iteration closure of ω(Α,πι,π^). Figure 10c illustrates the diagram of a 
source Β obtained from Shy introducing an input terminal π^. The sources 
< β , π3, { π 2 , π 3 } > and <ß , π3, { π 2 , π 3 } > are clearly equivalent. Figure lOd 
gives the diagram of a macrosource <C, g^, { ^ 4 , ^ 5 } ) representing the 
concatenation product of the language ω ( Μ , qi^q^) (the diagram of Figure 
11a) and the ω-language Ω ( Β , π ι , { π 2 , π 3 } ) (the diagram of Figure 10c). 
Identification of the vertices q^ and q^ (merging of equivalent vertices) 
in the macrosource < C, ^ 1 , { ^ 4 , ^ 5 } > (Figure lOd) converts it into an equiv
alent macrosource <C, ijfj, { ^ 3 , ^ 4 } ) (Figure 10c). 

Μ ( 9 -

3JI 

Figure 11 

1.7. Determinization of sources. Operations preserving representability of 
languages in finite automata 

Since finite automata are special cases of finite sources, any language rep
resentable in a finite automaton is representable in some finite source. 
The following theorem shows that the converse is also true. 

THEOREM 1.8 ( D E T E R M I N I Z A T I O N ) . There exists an algorithm which, given 
any source (possibly with empty edges) S = < ß, Q\ Q" > with η states, con
structs an equivalent finite automaton with at most Τ states. 
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Proof. Call a set π of vertices of a diagram Β closed if it has the following 
property: if Επ and there exists an empty edge from QÍ to then qjEu. 
Of course, for ordinary sources (in which all edges are labeled) any set of 
vertices is closed. The closure of a set π of vertices is the smallest closed set 
including π. It follows from this definition that the language ω{Β, Q\ Q!') 
remains unchanged if Q and Q' are replaced by their closures; we may 
therefore assume once and for all that Q and Q' are closed. Fix some word 
/ = / ( l ) i ( 2 ) . . . i ( i ) and a set π of vertices; consider the set of all paths in 
Β which begin in π and carry the word i. The ends of these paths form a 
closed set of vertices π'. W e shall say that the flow from π in the direction 
of the word i leads to π\ or, briefly, that i takes π to π'; in symbols, 

ni = π'. 

Obviously, if i = 1^12, then 

πι = (πΐι)ί2. 

It therefore suffices to consider the products of sets of vertices (macrostates) 
by one-letter words—elements of the alphabet X. In this fashion, we as
sociate with the diagram Β an automaton 2^ defined as follows: 

(I) the states of 2^ are closed macrostates (sets of vertices) of the diagram 
B; 

( I I ) the next-state function Ψ is defined by 

Ψ (π, χ) = πχ. 

Thus, if Β contains η vertices, the automaton 2* contains at most 2" states. 
W e now claim that the language ω (B, Q\ Q'O is representable in the autom

aton 2^, anchored as follows: initial state, Q'; the set G of final states consists 
of all macrostates of Β which are not disjoint from Q". Denote this anchored 
automaton by <2^, Q\ (£>. 

( I ) Let ieω(B,Q\Q"); then the flow from Q' in the direction of i con
tains a path ending at some vertex q^ e Q". Thus i takes Q' to a macrostate 
whose intersection with Q' contains an element q^ (and possibly other 
elements as well). Consequently, ί 6 ω ( 2 ^ β ' , (£) . 

( I I ) Suppose that Qi = π and qs^Q" η π for suitable π and q^; then 
one of the paths from Q to q^ carries the word i. Thus ί 6 ω ( Β , ß' ,^J ^ 
^ ω ( β , ρ ' , β ) . Q.E.D. 

E X A M P L E 1. Let us apply the theorem to the source < M , ^ i , ^ 3 > whose 
diagram is illustrated in Figure 11a. The states of the automaton 501 equiv
alent to this source are all eight subsets of {^1,^25^3} · { ^ 1 } » { ^ 2 } » { ^ 3 } » 
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{^2} {^3} {QI^QI} {QI^QS} {QI^QZ} {^1,^2,^3} 0 

0 0 {Q^QI} {QUQI} 0 {^1,^2} 0 
B 0 {^3} 0 {Q^} 0 {^3} {^3} 0 

TVble 7b 

X Μ 0 

0 0 
B 0 0 

Table 7c 

" 4 

a V2 "5 
B V2 " 4 «3 >̂6 Vi «6 Vf, 

0 » { ^ 1 , ^ 3 } , { ^ 2 . ^ 3 } » { ^ 1 , ^ 2 , ^ 3 } · The initial state of W i s {q^}, 
the final states { ^ 3 } , {qi,q^}, {^2»<?3}» {^ι»<?2»<?3}· Table 7a is the transi
tion matrix of SR. For example, the table shows that { ^ 1 , ^ 2 } ^ = { ^ i » ^ 2 } » 

since any path from the macrostate { ^ 1 , ^ 2 } the source M , along edges 
labeled a, must end in { ^ 1 , ^ 2 } » { ^ 3 } ^ = 0 » since there are no edges is
suing from ^3. Figure l i b illustrates the diagram of the automaton SR, 
in which we use the abbreviated notation { ^ 1 } = 1; { ^ 2 } = 5; {q^} = 3; 
{q^qi} = 2; {q^q^} = 6; { ^ 2 . ^ 3 } = 8; {quq2,q3} = 7, 0 = 4. It is 

not hard to see that in this automaton <9Jl, 1, { 3 , 6 , 7 , 8 } > the states 
5,6, 7,8 are inaccessible from state 1. Thus, by eliminating these states we 
get an equivalent automaton <5)l, 1,3> (Figure 11c), ω( ϊ ) ΐ , 1,3) = 
= ω(®1,1, { 3 , 6 , 7, 8 } ) . It follows that the automaton <ϊ)ϊ , 1, 3> is equiv
alent to the source < M , 1,3>. 

Table 7a 
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R E M A R K . In constructing the automaton we need not have written out 
all its states, since many of them prove to be inaccessible from the initial 
state and may therefore be eliminated (see Section 1.5). A more convenient 
procedure is to start from the initial state, filling in the transition table 
[column by column] with new accessible states as they arise, until the pro
cedure breaks off naturally. The idea will be clear from the next example. 

E X A M P L E 2. Consider the source π3,π3> of Figure lOb. The initial 
state of an automaton 93 equivalent to < S, π3 > will be { π 3 } . The transi
tion matrix will be: 

M ' a = {π2}, { π 2 } · α = 0 , 0 ' a = 0 , 

{n,}'b = 0 , {n2}'b = {n,}, 0^b = 0 . 

Thus, in filling the column for { π 3 } we find the new states { π 2 } and 
0 . The columns for { π 2 } and 0 reveal no new states. The procedure thus 
breaks off and we get Table 7b. 

The resulting automaton 93 has only three states, the final state being 
{ π 3 } . Figure 12a illustrates the diagram of the automaton 93, with the states 

{7^2}» 0 denoted respectively by Pi.Pz^Ps- Thus, ω ( Β , π 3 , π 3 ) = 
= ω ( © , ρ ι , Ρ ι ) . The source {Β,η^,π^}, and so also the automaton 
< S , P i , P i > , represent the iteration closure of the language consisting of 
the single word ab. 

The determinization theorem and procedure are of immense significance. 
Recall that the original motivation for the concept of a source was the projec
tion operation. W e now see that the class of finite-state languages is indeed 
closed under projection. In addition, we are now in a position to prove 
that this class is closed under all language operations considered hitherto, 
and also under many other operations. One of these is the operation of 
a-annihilation of a language 91, where a is an element of the alphabet X: 
this operation eliminates all words of 91 in which the letter a appears. 

THEOREM 1.9. The class of finite-state languages is closed under the fol
lowing operations: 

a) union, intersection, subtraction, cylindrification, projection; 
b) concatenation, iteration closure', 
c) reflection, a-annihilation. 
There is an algorithm which, given automata representing the original 

language(s), constructs an automaton representing the resultant language. 

Proof Union, intersection, subtraction and cylindrification were treated 



D E T E R M I N I Z A T I O N OF SOURCES 53 

in Theorem 1.1. Projection, concatenation, iteration closure and reflection 
have been dealt with for sources; the required automaton is constructed 
by determinization of the corresponding source. As to α-annihilation, the 
assertion follows from the fact that, removing all labels a appearing in the 
diagram of the original automaton, we get a source (with empty edges!) 
representing the required language. Determinization of this source com
pletes the proof. 

If the language 9Í is representable in an automaton with η states, reflec
tion, projection and iteration closure all yield languages representable in 
sources with η states, therefore in automata with at most 2" states. Can this 
upper bound be improved? The answer is in the negative: for each of these 
operations one can construct languages whose representing automaton 
has exactly 2" states. This is because the upper bound for the number of 
states of the automaton SR indicated in the determinization theorem can
not be improved. 

THEOREM 1.10. For a fixed alphabet X = {a, h, c) and any η there exists 
a source (over the alphabet X) with η states such that the language 91 
represented by S,, has left-interchangeability index 2" (so that 91 cannot be 
represented in any automaton with less than 2" states). 

Figure 12 
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Proof. The diagram B„ of the source 93„ is defined by Table 6b; the par
ticular case η = 4 is illustrated in Figure 9a. The only difference between 
B„ and the diagram of the automaton 9W„ (Theorem 1.3 and Table 6a) 
is that no edges labeled c issue from the vertex 1, while two edges labeled 
c issue from the vertex 2 (one of them to 1, the other to 2). Thus the source 
S „ , like the automaton 9Jl„, satisfies the following condition: 

( I ) For any two macrostates Q\ Q' containing the same number of ele
ments there exists a word χ over the subalphabet {a,b] such that Q'x = Q". 

Let Q' be any nonempty macrostate containing 2. Then Q'c = Q" u { 1 } . 
But if β" contains 1 and not 2, then β;' = β " \ { 1 } . Together with ( I ) , these ob
servations imply the proposition: 

( I I ) Any nonempty macrostate of the diagram ß„ is taken to any other 
macrostate by some word over the alphabet { a , f t , c } . 

N o w consider the language 91 = ω ( β , „ { 1 } , { 1 } ) ; we claim that its left-
interchangeability index is at least (therefore, exactly) T. With each of the 
2" macrostates β ' we associate a word taking { 1 } to β ' ; this is possible by 
( I I ) . W e shall now prove that no two of these 2" words are interchangeable. 
Let ρ and r take { 1 } to β ' and β", respectively. Assume that β" contains 
some vertex (say the vertex ; ) not contained in β'. Let χ denote the word 
α α . . . α. It is easy to see that the word rx takes 1 to 1, and is therefore in 
η + 1 - j 

91; but the word px takes 1 to a state different from 1, and so is not in 9Í. 
This proves the theorem. 

Given any source with η states, one can use the determinization procedure 
described in the proof of Theorem 1.8 to construct an equivalent automaton 
with 2" states; Theorem 1.10 shows that in certain cases this automaton can
not be simplified. However, in many cases (as in our examples above) the 
resultant automaton may be considerably simplified by the simple ex
pedients of elimination of inaccessible states, and merging of equivalent 
and absorbing states. Our next remark concerns the number of final states 
required for representing languages in finite automata and finite sources. 
W e have shown that the analysis may be restricted to sources with one 
final state, without thereby reducing the class of representable languages. 
However, the following simple example shows that, for any natural number 
k, there exists a language which is representable in a finite automaton with 
k final states but is not representable in any (even infinite!) automaton with 
less than k final states. Consider the language consisting of k words 
{a,aa,aaa,...,aa...a] and any finite automaton representing it. All 
states on the path from the initial state carrying the word αα.,.α, except 
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1.8. Determinization of macrosources. Operations preserving representability 
of ω-languages in finite automata 

Like sources, macrosources were introduced in order to deal with the opera
tion of projection (of an ω-language representable in a finite automaton). 
W e shall use the term determinization of 95 for construction of a finite 
automaton equivalent to a given macrosource 95. If we could prove that 
any finite macrosource can be determinized, this would imply that the class 
of finite-state co-languages is closed under projection. Moreover, with 
effective determinization procedures at our disposal, as in the case of finite 
automata, we would have algorithms for the construction of automata 
representing the required projections, concatenation products and strong 
iteration closures. In other words, the analogue of Theorem 1.8 (together 
with Theorem 1.1) would imply the analogue of Theorem 1.9, as in the pre
ceding section. Though these assertions are in point of fact all true, both 
the sequence and method of proof are quite different from those obtaining 
in the case of sources. W e shall first prove closure under concatenation 
and strong iteration closure (and this is by no means trivial), and only then 
shall we be able to prove the analogue of the determinization theorem and 
its corollary on projections. W e thus have the following theorems. 

THEOREM 1.11 ( C O N C A T E N A T I O N ) . For any finite-state language 91 and 
finite-state ω-language 95 over the same alphabet X, the concatenation product 
9195 is a finite-state ω-language. There is an algorithm which given automata 
representing 91 and ©, constructs an automaton representing 9IS. 

THEOREM 1.12 ( S T R O N G ITERATION CLOSURE). For any finite-state lan

guage 91, the strong iteration closure 9l°° is a finite-state ω-language. There is 

the initial state, are final. Thus, were the number of final states less than fc, 
the path would necessarily pass twice through some state, forming a loop. 
But then the language would contain words of arbitrary length over the 
alphabet {a} (by repetition of the loop) . Thus the number of final states is 
at least k. Construction of a finite automaton with k final states represent
ing this language is trivial. 

Thus, while the number of final states (like the number of initial states) 
is immaterial for the representation of languages in sources, it is signifi
cant, and not a priori bounded, for representation of the same languages 
in finite automata. 
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an algorithm which, given a finite automaton representing % constructs a 
finite automaton representing 91 

The proofs of these theorems will be postponed to the following sections. 
W e shall use them immediately to prove the following 

THEOREM 1.13 ( D E T E R M I N I Z A T I O N OF MACROSOURCES). r/icrc is an algo

rithm which, given any finite macrosource, constructs an equivalent finite 
automaton. 

Proof. Consider the macrosource < ß , ß o » ^ > - Since Cl(B,Qo,(í) is the 
union of all possible Ω(Β, qo, Γ ) , where qo and Γ range over QQ and G, 
respectively, it will suffice to prove the theorem for singletons Qo and d. 
Let 91 = ü(B,qQ,r); to fix ideas, suppose that Γ = { ^ ι , ^ 2 ' · · » ^ s } - Let 
B' denote the subdiagram of Β containing all vertices of Γ and all edges 
incident on these vertices. If 9Í' = Ω{Β', q^, Γ ) is empty (and this is effectively 
decidable), the original ω-language 9Í is also empty. Otherwise, we shall 
use the easily verified identity. 

y{' = a{B', ^ 1 , Γ ) = { ω ( β ' , ^ ι , ^ 2 ) · ω ( Β ' , ^a) · · · 

··^ω[B',q,.„q,)'ω{B',q,,q,)}^, 

which shows how an automaton representing the ω-language 9Ϊ' may be 
obtained from automata representing the factor-languages. Finally, note 
that y{ = ω{B,qQ,q^)y{ if the first factor is nonempty, and 9Í = 91' if 
the first factor is empty but qo = Qi- Thus, an automaton representing 91 
is effectively constructible from automata representing the language 
w(B,qQ,qi) and the ω-language 91'. This proves the theorem. 

C O R O L L A R Y . There is an algorithm which, given any macroanchored 
automaton <9K, 6o,C^>, constructs a finite automaton representing the 
projection of the ω-language Q(9Sl,Qo,(i). 

1.9. Proof of the Concatenation Theorem (Theorem 1.11) 

Let 91 = ω(m,qo,Q'), » = Ω(91, πι, (£); then 91 · 93 is the union of all 
possible concatenation products of the form 

ω(9Κ,^ο ,^ ' ) ·Ω(91 ,π ι ,Π ' ) , 

where q' is an arbitrary state in Q' and Π ' an arbitrary macrostate in (£. 
Since the class of finite-state ω-languages is closed under union, it suf-
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fices to prove the theorem for the case ^ = ω{3R,qQ,q') and 93 = 
= Ω(91, π ι , Π ' ) . W e first describe the basic idea underlying the construc
tion. Suppose that we have one copy of the automaton SR and an unlimited 
stock { 9 1 ι , 9 ΐ 2 » ^ 3 ' · } of copies of 9Í. Consider the following imaginary 
experiment, aimed at determining whether an ω-word x = x ( l ) x ( 2 ) . . . 
x(t)... belongs to the ω-language 91 · S : 

1) Start SR, i.e., apply x ( l ) x ( 2 ) . . . to the initialized automaton (SR, ^ο>· 
2) If the automaton SR first passes into state q' at some time τ^ , start 

the first copy Sij from the reserve { % } at this instant, i.e., apply the "tail" 
X ( T I ) X ( T I -I- 1 ) . . . to the initialized automaton <91 ι ,π ι> . 

3) If SR passes into state q' for the second time at time τ2, start 9I2 at 
this instant. 

Similarly, a new copy of 91 is started whenever SR goes into state q\ 
Let VO(t) denote the state of SR at time i, t;^(i) the state of the μ-th copy of 
SI at time t if 91 ̂  has already been started, v^(t) = Λ (empty symbol) other
wise. It is obvious that χ e 9193 if and only if at least one of the copies in the 
stock has been started and at least one of the functioning copies produces 
the limit macrostate Π'. Thus X G 9 í 9 5 = 3μ[l imι;^( í ) = I T ] . N o w note 
that if v^{x) = ν^{τ) φ Λ for some τ, then ί;^(σ) = ν^{σ) φ Λ for all σ > τ . 
Consequently, examination of the copy 91^ and its state v^{t) yields the 
same information concerning the question "x e 9193?" as the examination 
of Si^. In other words, once the above equality has been detected at some 
instant, we may return the copy Sl^ to the stock. Hence, since the automaton 
Si has only finitely many states, say πι, π 2 , . . . , π,., we may modify the 
original experiment and confine ourselves to a finite stock containing 
r + 1 copies Stj, SI2 , . . · , Si^+i. It is assumed that any copy returned to the 
stock may be used again provided certain precautionary measures are 
taken. The final product of a rigorous implementation of this idea is an 
automaton 9) representing the ω-language 9193. 

Description of the automaton §. Interpretation. The states of § are vectors 
V = <i ;o , 1^1 , . . . , i^r+i where VQ is a state of SR, Γχ, 1̂ 2, · · · , i^r+i are either 
states of 91 or Λ such that the components î ,̂ í;2, . . . , different from 
Λ (we call these the n-components) are pairwise distinct. The vector 

y(t) = <(i;o(Oi ^i(0? · · · 5 i^r+i (0> "describes" the situation at time i: it indi
cates the state of SR, the copies of 9Í still in the stock (components Λ in 
v ( i ) and the states of those copies active at this time (i.e., those receiving 
symbols). W e repeat that the active copies are all in different states; thus 
there cannot be more than r of them and the stock always contains at least 
one copy. 
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* Recall that jcj' denotes the ω-word χ{μ + 1)χ{μ + 2)..., and the' r̂d x ( l )x (2 ) . . . χ{μ). 

The initial state of the automaton § is < ^ 0 ' A Λ > = i;o. It 
remains to define the product <t;o, t ; i , . . . , i ; ^ , . . . , t;̂  +1> · α for any letter 
aeX.To this end, multiply each of the nonempty components by a and, 
if VQU = q\ replace one of the empty components (say the leftmost) by 
πι. The resulting vector <ι;Ό, i^i, · · . , i^r+1> is not always a state of § , since 
it may contain equal nonempty components. The meaning of this vector 
is that each of the active copies has functioned and, if necessary, another 
copy from the stock has been started. The actual state { V Q , ... ,ν^,+ ι} ' a 
is obtained by "clearing" the vector < ΓΌ, · · · , i^r+1 > * replace any component 
on whose left there is an equal component by the empty symbol (interpreta
tion : return all "superfluous" copies to the stock). This completes the defi
nition of § . 

N o w assume that the automaton < § , V Q ) , receiving the input ω-word 
X = x ( l ) x ( 2 ) . . . , passes through states 

vo = v ( l ) , v ( 2 ) , . . . , v ( i ) , 

where 

v( i ) = {vo{t),v,it),...,v^{t),,..,v,+ ,(t)}. 

W e shall show (see A and Β below) that, as before, χ e 9Í · 95 = 3μ [lim (ί) = 
= Π ' ] . This will show that § represents the ω-language 91 · 93 when limit 
macrostates { T J are defined by the following condition: for some μ, 1 ^ 
^ μ ^ r -h 1, the set of μ-components in the vectors of Γ, coincides with 
the set Π' . This will complete the proof of the theorem. 

A . / / l i m i ; ^ ( i ) = Π' , then χ e 91-93. 
Let lim v^{t) = Π' . Then from some time on, i;^(i) Φ Λ . If τ is the very 

last instant at which νμ(τ) = Λ , then the component ι;^(τ -(- 1) of ν ( τ -f 1) 
is πι; this in turn could happen only if VO{T+l) = q\ It follows, 
first, that χ ( 1 ) . . . χ ( τ ) takes the automaton 501 from qo to q', i.e., XQG91. 
N o w note that V^{T 4- 1), V^(T -F- 2), V^{T + 3 ) , . . . are precisely the states 
through which the copy 91^ passes (from time r + 1 on, the copy 91^ is 
never returned to the stock). Hence, since 

limt;^(T + λ) = limi;^(í) = Π ' , 

the "tail" applied to % satisfies the condition x,* G 95. Thus xj, e 9Í & 
x f G S , that is, XG9195.* 
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B. / / XG9I95, then limv^(t) = W for some μ. 
Let X e 9195, i.e., χΌ e 9Í, x f e S for some τ. It follows from x^ G 91 that 

the vector ν (τ + 1) and a suitable index 5 satisfy the equalities VQ{T + 1) = 
= q' and ν,{τ + 1) = π^. Application of the "tail" χ ( τ -h 1)χ(τ + 2 ) . . . to 
the automaton <9i, > takes it through a certain sequence of states: 

π(1) = π ι , π ( 2 ) , π ( 3 ) , . . . , π μ ) , . . . 

It follows from x,^e95 that lim π (λ) = Π' . It will therefore suffice to 

find a μ such that some "tail" of the sequence 

t ; , ( l ) , i ; ^ ( 2 ) , . . . , t ; ^ ( i ) , . . . 

coincides with a suitable tail of the sequence π(1), π(2), π ( 3 ) , . . . By assump
tion, π{1) = ν^{τ -\- I); therefore π(2) is some ν^'{τ + 2), where either s' = s 
(if the s-th component of the vector ν ( τ -f 2) was not cleared) or s' < s 
(if the 5-th component was cleared). Similarly, π(3) is some ν^"{τ + 3), 
where 5" ̂  s'. The numbers s, 5', 5", . . . cannot decrease indefinitely, and 
hence they "level off" at some instant ρ and assume a constant value which 
we denote by μ. This means that the "tail" 

ί̂ μ(τ + P ) , νμ{τ + ρ + 1 ) , . . . 

coincides with the "tail" 

π{ρ),π(ρ + 1 ) , . . . 

This completes the proof. 

E X A M P L E . Given automata <TO, 1, 3> (Figure 11c) and < S , P i , { p i , P2} > 
(Figure 12a), we shall construct an automaton (£ representing the con
catenation product of the language ω(9ΪΙ, 1,3) and the ω-language 
Ω ( 9 5 , ρ ι , { ρ ι , ρ 2 } ) . 

According to the algorithm described in the proof of the Concatenation 
Theorem, the initial state is the vector Vi = < l , Λ , Λ , Λ , Λ ) . W e shall 
not write down all states of the automaton d (as prescribed by the algorithm), 
since many of them will turn out to be inaccessible from the initial state 
Vj. Following the remark in Section 1.7, we shall introduce new states, 
accessible from v^, as they are entered in the transition matrix for (£. T o 
define the product v ^ a , we must multiply the vector <1, Λ , Λ , Λ , Λ > 
componentwise by α. But l a = 2 (see the diagram of SR, Figure 11c), 
and so Vi · α = <2, Λ , Λ , Λ , Λ >. Denote this new vector by V2 , i.e., V2 = 
= <2, Λ , Λ , Λ , Λ > . 
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Thus, 
V i - a = V2. 

Similarly: 
Vj · b = <4, Λ , Λ , Λ , Λ > , V3 = <4, Λ , Λ , Λ , Λ >, i.e., b = V3, 

V 2 - a = <2, Λ , Λ , Λ , Λ > , V 2 - a = V2, 

V2 - ft = <3, P l , Λ , Λ , Λ > 

(since 3 is the final state of StFl, the first symbol Λ is replaced by p j ; 

V4 = <3,Pi , Λ , Λ , Λ > , V2 -ft = V4; 
V3 -fl = <4, Λ , Λ , Λ , Λ > , V 3 - a = V 3 ; 

V3 · b = <4, Λ , Λ , Λ , Λ > , V3 · = V3 ; 

¥ 4 · ^ = <4, P2, Λ , Λ , Λ > , since Pi'a = P2 (see Figure 12a); 
V5 = <4,P2, Λ , Λ , Λ > , y^-a = V5; 

V 4 - b = <4 ,P3, Λ , Λ , Λ > , V6 = <4 ,P3, Λ , Λ , Λ > , V4 ' b = V^; 

V5 ·α = <4 ,P3, Λ , Λ , Λ > = V 6 , y^-a=\^; 
V5 - b = <4 ,P i , Λ , Λ , Λ > , V7 = <4, Pl , Λ , Λ , Λ , > , \^-b = \^·, 
ν^ -α = < 4 , ρ 3 . Λ , Λ , Λ > = V 6 , ν^,-α = ν^; 

V e ' b = < 4 , ρ 3 . Λ , Λ , Λ > = V 6 , v^-b = ν^; 

•ν^-α = < 4 , ρ 2 . Λ , Λ , Λ > = Vs, ν^ -α = V5; 

V7 -b = <4 ,Ρ3, Λ , Λ , Λ > = V6. V^ ' b = Vg. 

Thus, only seven states—those indicated in the transition matrix (Table 
7c)—are accessible from V j . It remains to define the terminal macrostates. 
T o this end, note that the states PiP2 entering the limit macrostate 
of the original automaton 93 (Figure Í2a) appear only as second components, 
and only in the vectors V 4 , V 5 , V 7 . Consequently, the limit macrostates of 
the resultant automaton must be { v 4 , V 5 } , { v 5 , V 7 } , { v 4 , V 5 , V 7 } . Figure 

12b illustrates the diagram 93' of this automaton. The macrostates { V 4 , V 5 } 
and {v4 ,V5,V7} are fictitious and may therefore be eliminated. Merging 
of the absorbing states Ύ^,Υ^ converts the automaton <95', V j , { V 5 , V 7 } > 
into an equivalent automaton < S ' ' , Vi , { V 5 , V 7 } > (Figure 12c). 

I.IO. Proof of the Strong Iteration Theorem (Theorem 1.12) 

W e first introduce some notation and prove a lemma, before proceeding 
with the actual proof of the theorem. 

Consider an ω-word χ = x ( l ) x ( 2 ) . . . and an initialized automaton 
<SR,^o)- Suppose that a "tail" of this ω-word is applied to a copy of 
the automaton, and somewhat later, at time τ", another copy of the same 
initialized automaton begins to receive the tail x^n. It may happen that 
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after some time interval ν both copies reach the same state (and therefore 
remain henceforth in this state). W e shall then say that the tails and 
x'p. of the ω-word χ are merged by the automaton <90l,^o)- It is clear that 
"mergeability" is an equivalence relation which partitions the set of all 
tails (including the ω-word X Q as a "tail" of itself) into mergeability classes. 
Actually, mergeability classes were already encountered in the proof of 
the Concatenation Theorem, though the term was not used explicitly 
there. The essential fact is that the number of mergeability classes is finite: 
it can never exceed the number r of states of the automaton <9W, <?ο>· 
This idea will be used below to prove the useful Stability Lemma. W e first 
introduce some terminology and notation. Given an anchored finite autom
aton <5ffl, ^o»6'>? we shall call an ω-word χ stable with respect to this 
automaton if there exists an infinite set of tails x^^, x^^, · · · such that 

(I) all the words xg' belong to ω(90ϊ, q^, Q); 
( I I ) the automaton <9W, ^ o ) merges each of the "tails" x ^ with the orig

inal ω-word x. 
The stability of an ω-word can be determined by the following imaginary 

experiment. Suppose that an unlimited stock of copies of the automaton 
<3Ji, 6'> is available. Given an ω-word ξ, start the first copy and, the 
instant it reaches one of the states in Q', start the second copy. Then, when 
the first copy again reaches a state in start yet another (third) copy, and 
so on. The ω-word is stable if and only if there is an infinite set of activated 
copies which, at suitable times, reach a state coinciding with that of the 
first, "basic" copy. By suitable interpretation of this experiment, analogous 
to the construction in the Concatenation Theorem, we can prove the fol-
owing proposition: 

S T A B I L I T Y L E M M A . There is an algorithm which, given any finite autom
aton < 9 J i , í o í Q ' ) ' constructs a macroanchoredfinite automaton <9 i ,π ι , ί ί ) 
representing the set of all ω-words which are stable with respect to 
<m^o>. 

Proof Let 9Jl have r states ^i^ · ·»<?r - 1 - The states of 9i are defined 
to be (r + 2)-vectors ν = <z;i, i ; 2 , . . . , ,̂. + 2 where v^ is a state of 9M, 

+2 is Λ (empty state) or * (star), and the remaining components 1̂ 2 > · · » + 1 
may be either states of 90Ϊ or empty states, provided the components 
1^1, /;2, · · . t;,.+1 that are states of SW (we call these ^-coordinates) are pairwise 
distinct. Thus ν always contains at least one empty component. The initial 
state is the vector {q^, Λ , . . . , Λ , *>. T o define the product of a vector ν 
and an input letter a, multiply each component of ν by the letter a, setting 
A · a = A and * · α = Λ ; ií v^- aeQ\ one of the empty components (say 
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the leftmost) is replaced by the letter ^0·^ The resulting vector 
<ι;Ί, i ;2 , . . . , f^+2> is then cleared in the following way: 

(I) If at least one of the components t ; 2 , . . . , ü ^ + i coincides with v\, 
then V · α is defined to be the vector (v\, Λ , Λ , . . . , Λ , * > . 

( I I ) Otherwise, Λ replaces every ^-component on whose left an equal 
component appears. 

Assume that the automaton < ? i , V i > , having received an ω-word x , 
passes through the states 

vi = v ( l ) , v ( 2 ) , . . . , v ( i ) , . . . 

Call the states of 91 one of whose components is * (these all have the form 
< , Λ , Λ , . . . , Λ , * > ) star states. W e now prove the following proposition: 

An ω-word χ is stable with respect to <9Jl, QQ, Q' > if and only if the sequence 
v ( l ) , v(2), v ( 3 ) , . . . contains infinitely many star states. 

This proposition directly implies that the automaton <9l, > represents 
the set of stable ω-words when the limit macrostates { Γ } are defined by 
the condition: each Γ contains at least one star state. Therefore, to complete 
the proof of the theorem it remains to verify the truth of this proposition. 
This is most simply done by means of an imaginary experiment with an 
unlimited stock of copies 931ι,9Μ2»··· started at times μ ι , μ 2 » · · » where 
χ δ ' 6 ω ( ϊ » , ^ ο , β ' ) . 

Let v ( T I ) be the first star state (if these exist). This means that is the 
earliest time at which one of the previously started copies reaches the same 
state as 9Jl. Since ν (τ J contains no ^f-components other than Γ ι ( τ ι ) , the 
next passage through a star state may occur only at the first instant T2 
when one of the copies started later than but no later than τ2 reaches the 
same state as SRi. Similarly, the third passage through a star state occurs 
at the first instant when the state of a copy started later than T2 but no 
later than coincides with the state of 9W2» and so on. It is now clear that 
the existence of an infinite set of star states implies that χ is stable. But 
it is also clear that if χ is stable one can always recursively define an increas
ing sequence T I < 12 < . . . with the above property. This proves the lemma. 

Proof of the Strong Iteration Theorem. Let 91 = ω{9Λ,qo,Q'). Without 
loss of generality we may assume that 91 = 91*, since otherwise we can re
place 91 by its (ordinary) iteration closure 91* (since (91*)°° = 9ί°° and, 
moreover, an automaton representing 91* may be effectively constructed 
from an automaton representing 91). W e shall show (see A and Β below) 

t Meaning that the next copy is started. 
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that under these assumptions the ω-language © = 91°̂  may be expressed 
as 9I9lst, where 91 st denotes the set of all ω-words stable with respect to the 
automaton <50l ,^o»ö '>- Consequently, the ω-language S is representable 
in an automaton whose construction is guaranteed by the Concatenation 
Theorem and the Stability Lemma. It remains to prove the propositions 
A and Β stated below. 

A . / / xG9l9Ist, then xe9 l°^ . 
It will suffice to show that 9lst ^ 9Í*, i.e., that every ω-word ξ = 

= ξ{l)ξ{2),.,ξ{t),.. stable with respect to <9Κ,^ο .Ο '> splits into seg
ments ξΙ\ ξΐ],... belonging to the language 91 = ω( ϊ ) ϊ , qo, Q). Since ξ is 
stable, there exists an increasing sequence < μ2 < < ... such that 

( I ) qoξΌ'e& (i = l , 2 , . . . ) , 
( I I ) each of the tails (^^. merges with the original ω-word ξ. 
Set Vj = μ ι ; then, by definition, ξΐ^ e 91. N o w set ν2 equal to the smallest 

μι greater than such that and ξ merge no later than μ,·. It follows that 
%' ζ'ο ^0» ί·β·» ζΙΙ^^· Set V3 equal to the smallest μ̂  greater than V2 
such that ξ^^ and ξ merge no later than μ̂ , and so the corresponding seg
ment ξΙΙ belongs to 9Í. Continuing this process ad infinitum, we see that 
ξ can be split into the required segments belonging to 91. Note that here 
we have not used the assumption that 91 = 91*; this will be used to prove 
the following proposition. 

B. / / x e 9 l ° ° , then xsS&^su 
Assume given some division of χ 

Γ = Υ ^ ^ · Υ ^ ^ · Υ ^ ^ 
Λ Λ-ο -^γι -^^2 ' ' ' 

into segments belonging to 91. Since 91 = 9Í*, segments of the form XQ* and x;;̂  
also belong to 91; in other words, any of these words takes qQ to Q\ The 
infinite set of tails x * , x ^ , x ^ , . . . contains an infinite set χ^^,χ^^,... 
(μι < μ2 < . . . ) of tails, each two of which are merged by the automaton 
< S « , ^ o > . 

N o w consider the representation χ = xg^x^ .̂ On the one hand, xg' G 91, 
since μι is one of the v,. On the other hand, the ω-word x̂ ^ is stable with 
respect to <9K, ^ o » ß ' ) - f^^t, by the choice of { μ ^ } all x^ merge with 
x̂ ,̂ but moreover all x¡;;, belong to ω(9ΪΙ,^ο>6')» since the μ̂  are v^. Thus 
X G 9I9ist. This proves B, and hence the entire theorem. 

E X A M P L E . T O illustrate the algorithm described in the proof of the Strong 
Iteration Theorem, we deliberately choose a simple example: the strong 
iteration closure of the language consisting of the single word ab. 
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The algorithm starts with an automaton representing the iteration 
closure of the language {ab} (the automaton <95,Pi,Pi> of Figure 12a; 
see Example 2 of Section 1.7), and constructs an automaton 91 representing 
the set of all ω-words stable with respect to <95,Pi,Pi>. 

Figure 13 

Following the algorithm described in the Stability Lemma, we define 
the initial state of the automaton 91 to be the vector = < p i , Λ , Λ , Λ , * > . 
As in the example for concatenation, we introduce new states as they arise 
in the transition table. 

πι ·α = <P2» A , Λ , Λ , Λ > = 

π^ ·6 = < ρ 3 , Λ , Λ , Λ , Λ > = π 3 , 

π2'α = <Ρ3» Α , Λ , Λ , Λ > = π 3 , 

n2'b = < Ρ ι , Ρ ι , Λ , Λ , Λ > , 
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Wi • a = <P2. A , A , A , A > = ^ 4 • α = A , A , A > = W5> 

Wi 'b = <P3» A , A , A , A > = W3, W4 b = < P 3 . ^ 3 ' A , A , A > = W6> 

W2 ' a = < P 3 . A , A , A , A > = W3, W5 ' a = < P 3 , ^ 3 . A , A , A > - « 6 . 

W2 •b = A , A , A > = W4, W5 'b = < P i . ^ n A , A , A > W 4 , 

W3 • a — < P 3 . A , A , A , A > = W3, ^ 6 ' a = < P 3 » ^ 3 ' A , A , A > - W 6 , 

W3 'b = < P 3 . A , A , A , A > = W3, ^6 •b = < P 3 » ^ 3 ' A , A , A > = « 6 · 

The diagram of R is given in Figure 13b. The limit macrostate is { W4, W 5 } . 
Thus the strong iteration closure of the language [ab] (consisting of the 
single ω-word ababab...) is represented by the automaton </^, Wi , 
{ ^ 4 , W 5 } > . 

since Pl is the initial state of 95. By clearing the vector ( ρ ι , Ρ ι , Λ , Λ , Λ > 
in which the second component is the same as the first, we get the vector 
<Pi , Λ , Λ , Λ , * > , i.e., 

π2 · b = πι. 
Continuing, we get 

^3 = <P3» Λ , Λ , Λ , Λ > = π3, 

= < P 3 , Λ , Λ , Λ , Λ > = π3, 

and here the entries in the table break off naturally. Figure 13a illustrates 
the diagram of 91 (apart from the renaming of states it is the same as Figure 
12a). The limit macrostates are all sets of vertices in 91 containing the "star" 
state π ι ; these are { π ι } , { π ι , π 2 } , { π ι , π 3 } , { π ι , π2, π 3 } . However, Figure 
13α shows only one loop containing the vertex πι—the loop passing 
through πι and π2. Thus the macrostates { π ι } , { π ι , π 3 } , { π ι , π 2 , π 3 } are 
fictitious and may be omitted. 

Thus the automaton <9l, πι, { π ι , π 2 } > represents the set of all ω-words 
stable with respect to the automaton < © , p i , p i > . 

Finally, in order to construct an automaton representing the strong 
iteration closure of { a f e } , we must construct an automaton R representing 
ω(95 ,Ρ ι , ρ ι ) ·Ω(91 , πι, { π ι , π 2 } ) . Since we have already demonstrated the 
concatenation-product construction in Section 1.2, we carry out the con
struction of R without going into details. 

The initial state of Κ is Wi = < p i , Λ , Λ , Λ , Λ > . The transition table 
for R is 
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This macroanchored automaton can be simpHfied. Merging the absorb
ing states W3 and converts the automaton into the equivalent autom
aton {R\ w ,̂ { W 4 , W g } ) of Figure 13c. N o w merge the equivalent states 
W2 and w^, and then the equivalent states and W4. The result is the autom
aton {R\ W4, { W 4 , W j } ) of Figure 13 d. 

The diagram R" (Figure 13d) is isomorphic to the diagram © of Figure 
12a, under the mapping -> p^, Wg p 3 , and so the automaton 

< S , P i , { p i , P 2 } > also represents {ab}"^. 

I . l l . Probabilistic automata 

Probabilistic automata are a generalization of ordinary (nonprobabilistic 
or deterministic) automata. W e shall confine ourselves to finite probabilistic 
automata, but it should be clear from the context how to extend the dis
cussion to infinite automata (automata with denumerably many states). 
In a deterministic automaton, an input letter aeX takes each state qiSQ = 
= {Qu<l2^-"^Qk} to a completely determined state Ψ ( ^ ί , α ) 6 β . In a 
probabilistic automaton, however, the input letter α may take qi into any 
state qjEQ with a certain probability n{a,qi,q¡). These transition proba
bilities are assumed constant and independent of time and the preceding 
inputs; for any fixed aeX and q^eQ: 

W e may thus formulate the following definition: 
A probabilistic automaton 9Jl is a triple < Ö, X , π > , where Q and X are 

finite alphabets (internal and input, respectively), and π (the transition 
probability function) is a mapping oí X χ Q χ Q into the interval [ 0 , 1 ] 
such that 

Σ π(α, qi, qj) = 1 {aeX, qie Q). 
qj^Q 

In a certain sense, a deterministic automaton may be regarded as a special 
(degenerate) case of a probabilistic automaton, in which, for any fixed 
a, there is a single state Ψ(^ΐ ,α) such that π(α, ̂ f̂ , Ψ(^ί, a ) ) = 1; for 
all q^ other than Ψ(^ί, a) we have n(a,qi,q^) = 0. The other extreme, in 
a certain sense, is represented by the so-called actual probabilistic automata, 
in which n(a,qi,qj) Φ 0 for every a,qi,qj (and so also n{a,qi,q¡) Φ 1). 
The transition probability function π may be specified by a system of square 
matrices corresponding to the input letters: each input letter α is associated 
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. ( 0 ) = ( ; ; ) . . ( . ) - ( * ! ) . 

In this automaton, state q^ is maintained with probability 1 when zero 
is received, state q2 when 1 is received. In the other cases transitions to either 
of the states ^ 1 , ^ 2 are equiprobable. The transition probability matrix 
for the input word 10 is: 

I i 

In particular, we see that the probability of going from q^ to ^2 response 
to the input word 10 (the probability we have denoted by π[10,(3^,^2]) 
is ¿, or, in binary notation, 0.01. Comparing the digits after the point with 
the input word 10, we notice that they form the reflection of the word 10. 
This is no accident, and we shall prove the following assertion (which will 
also be used later): For any input word x ( l ) x ( 2 ) . . . χ(μ) of the automaton 

π [ χ ( 1 ) χ ( 2 ) . . . χ ( μ ) , ^ ι , ^ 2 ] = 0.χ(μ)χ(μ - 1 ) . . . x ( l ) , 

where the right-hand side represents a number in binary expansion. 
The proof proceeds by induction on the length of words. For a one-letter 

word the assertion is clear from the matrices π(0) and π(1) : for π(0, q^^qi) 
and π(1 ,^ ι ,^2) are the elements at the upper right-hand corners of these 

with a matrix n(ä) whose rows and columns correspond to the internal 
states of the automaton; the entry at the intersection of the i-th column 
and the7-th row is π(α, <jj, qj). Given the function π, one can determine and 
compute the probabilities of various events arising in the automaton SR, 
in a natural manner. The definition of the function π may be extended to 
include arbitrary input words instead of letters. Thus, given an input word 
X = x ( l ) x ( 2 ) . . . χ(μ) we define π[χ , to be the probability that the 
automaton SOÍ will go from state ^, to state qj when the input word χ is 
received. W e can then associate with every input word χ a transition prob
ability matrix π [ χ ] . It is easily seen that π [ χ ] is the product of the matrices 
corresponding to the input letters: 

π [ χ ] = π [ χ ( 1 ) ] π [ χ ( 2 ) ] . . . π [ χ ( μ ) ] . 

For example, consider the probabilistic automaton 501 ̂  with two states 
<5fi,(?2, input alphabet { 0 , 1 } and the following transition probability ma
trices : 
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matrices, and in binary notation they are 0.0 and 0.1, respectively. Assum
ing the assertion true for words of length μ — h let us compute 
π[x{l)...x(μ),q^,q2^·. 

π[χ (1 ) . . . χ (μ ) , ^ ι , ^2 ] = π [ χ ( 1 ) . . . χ ( μ - 1),^ι,^2]α + 

+ π [ χ ( 1 ) . . . χ ( μ ~ l ) , í i , ^ i ] i ? = 

= π [ χ ( 1 ) . . . χ ( μ - l ) , ( j „ ^ 2 ] [ a - ^ ] + 

where α = π[χ(μ),^2.^2].)8 = π [ χ ( μ ) , ^ 2 ] · 
N o w , by the induction hypothesis, 

π [ χ ( 1 ) . . . χ (μ) , g „ ^2] = (0. χ(μ - 1 ) . . . x ( l ) ) [α - i?] 4- β. 

If χ (μ) = O, then a - β = \ and j? = 0, and so the rough probability is 
Ο.Οχ(μ - 1 ) . . . x ( l ) . But if χ(μ) = 1, then (x - β = β = ^ and we get 
0.1χ(μ - l ) . . . x ( l ) . 

In general, any fixed input word χ = x ( l ) . . . χ(μ) and initial state ^, 
of a probabilistic automaton induce a measure (probabiHty) over the set 
(space) of all words of length μ + 1 over the alphabet Q that begin with 
the letter . T o be precise, given any set 91 of such words, one can consider 
the probability that, when the word x ( l ) . . . χ(μ) is applied to the autom
aton in state ^^, it will go through a sequence of states q^^, q^^, "^qs^ such 
that the word qiq^^ · belongs to 9Í. In view of the analogy with deter
ministic automata, we shall speak of the probabiUty that apphcation of 
the word χ ( 1 ) . . . χ ( μ ) generates a path in 9Í. This probability is clearly 
the sum of probabilities of the separate paths in 91, and the probability of 
each path is the product of the corresponding transition probabilities. 
Similarly, one can consider the probability induced over the space of all 
ω-words over the alphabet Q for a fixed input ω-word χ = x ( l ) x ( 2 ) . . . 
and initial state qi and, in particular, the probability that this ω-word will 
generate an ω-path with some prescribed property. 

For example, consider the probability that application of the ω-word 
X = 1111. . . 1 (all ones) to the automaton 9Mi will generate an ω-path whose 
hmit macrostate is the singleton {^[2}. If SRi is started in state 2̂» this prob
ability is 1; moreover, the probability that the ω-path 2̂̂ 2̂ 2 · · · will be 
generated is 1. If SRi is started in state ^1, the probability of the limit macro-
state {q2) is again 1, but the probability of the ω-path ^2^2^2·· is 0. 
Given any probabilistic automaton 90Ϊ, input word x, state qi and macro-
state Γ, the probability that application of χ in state qi generates an ω-path 
with Hmit macrostate Γ will be denoted by p(x, ςι̂ , Γ ) . 
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The analogy between probabilistic and deterministic automata extends 
to the representation of languages and ω-languages. However, here the 
language (ω-language) represented by the automaton will depend not only 
on the initial and final states (limit macrostates), but also on a real param
eter A, 0 ^ /I < 1, which may be interpreted as the "confidence level" of 
the representation in question. W e shall employ the following definitions. 

An anchored probabilistic automaton is a quadruple (9Jl,qQ,Q\λ}, 
where is a probabilistic automaton, qQ a designated initial state, Q' 
a designated set of final states and λ a real number in the half-interval 
[ 0 , 1 ] . The language represented by this anchored automaton (denoted by 
ω(W,qo,Q\λ)) is defined as the set of all words which, with probability 
greater than λ, take the state qQ to a state in Q\ A similar definition applies 
to a macroanchored probabilistic automaton <9Jl, ^ ο » ^ ^ ^ ) and the ω-
language Q(9Jl,qQ,^,X) that it represents. 

W e have already explained in what sense any deterministic automaton 
may be considered as a special (degenerate) case of a probabilistic autom
aton. A word (ω-word) belongs to the language (ω-language) represented 
by a finite deterministic automaton if and only if it generates an appropriate 
path (ω-path) with probability 1 when the automaton is regarded as prob
abilistic. Thus any language representable in a finite deterministic automaton 
is trivially representable in a finite probabilistic automaton. Moreover, 
the transition from deterministic to probabilistic automata does not increase 
the number of internal states. However, the converse proposition is false, 
as the following theorem will show. 

THEOREM 1.14, Consider the family of all languages over the alphabet 
{ 0 , 1 } (ω-languages over the alphabet { 0 , 1 , 2 } ) representable in probabilistic 
automata with two states. Then: a) This family contains languages ( ω -
languages) which are not representable in any finite automaton, b) For any 
n, there are languages (ω-languages) in this family which are representable 
only in finite automata with at least η states. 

Proof, a) Consider the automaton 9Wi described on page 67. There 
are rational numbers between any two real numbers λ^,λ2,^<λ^ < 
< ^2 < 1; let the binary expansion of one of these rationals be Ο.ζιξι'. · . ζ μ 
((^i = O or 1). Then the word <^^<^^_i... belongs to the language 
ω ( 9 Κ ι , ^ ι , ^ 2 » ' ^ ι ) but not to ω ( ϊ ) ϊ ι , ^ i , ^ 2 » ^ 2 ) · other words, different λ 
give rise to different languages ω^^^,qγ,q2,λ). Since the set of possible 
λ is nondenumerable, while there are only denumerably many languages 
over { 0 , 1 } representable in finite automata, a standard set-theoretic argu-
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ment implies the existence of languages ω(yΛι,qι,q2,λ) which are not 
representable in finite automata. T o prove this for ω-languages, consider 
the following probabilistic automaton SDI2 with input alphabet { 0 , 1 , 2 } 
and states { ^ i , ^ 2 } · the transition probability matrices for the input letters 
0,1 are the same as for SRi; the letter 2 maintains the state with probability 
1 (and therefore takes each state into the other with probability 0) . 

N o w consider any ω-word x ( l ) . . . χ{μ)χ(μ + 1 ) . . . , where x ( l ) , . . . , χ(μ) 
are 0 or 1 and χ(μ -f 1), χ(μ -f 2 ) , . . . are all 2's. It is easily verified that if 
this word is applied to 9JI2 in the initial state q^, the limit macrostate will 
be {^2} with probability 0.χ(μ)χ{μ - 1 ) . . . x ( l ) . Thus, as in the previous 
case, it follows that different λ correspond to different ω-languages 
Ω (9^2, qi^iqi}^^)^ and so some of these ω-languages are not representable 
in deterministic finite automata. 

b) It suffices to prove that the set of languages ω(9)^^,q^,q2, λ) con
tains an infinite subset of languages representable in finite deterministic 
automata, and so the number of states in the corresponding representing 
automata cannot be bounded. 

Let λη be the number whose binary expansion is 0.11. . .1 (n ones). 
The language ω ( ϊ ) ϊ ι , ^ 1 , ^2? Κ) consists of all words x ( l ) . , . χ(μ) such that 

0 . χ ( μ ) χ ( μ - l ) . . . x ( l ) > 

In other words, co{9Άι,qι,q2,λ„) consists of precisely those words which 
contain at least η + 1 ones and whose last η letters are ones. Thus the lan
guages ω{9Rι,qι,q2,λ„) (n = 1,2, 3 , . . . ) are representable in finite deter
ministic automata; moreover, they are pairwise distinct. 

A similar argument shows that each of the ω-languages Q(5R2, <?i, { ^ 2 } ̂  '̂ η) 
is representable in a deterministic finite automaton, and since these ω -
languages are different for different λ„, the number of states in the corre
sponding deterministic automata cannot be bounded. In fact, the ω-language 
Q(50l2, (lu {QI}^^) is the union of ω-languages Ω; and Ω;', where 

1) Ω;, consists of all ω-words containing only finitely many occurrences 
of the letter 0 and infinitely many occurrences of the letter 1; the number 
of occurrences of the letter 2 is unrestricted; all these ω-words generate 
the limit set {^2} with probability 1; 

2) Ω^; consists of all ω-words of type x ( l ) . . . χ(μ)χ(μ 4- 1 ) . . . , where 
a) χ(μ + 1) = χ(μ -f 2) = . . . = 2; b) the word derived from x ( l ) . . . χ(μ) 
by deleting all occurrences of 2 contains at least η + 1 ones, and the last 
η letters are ones. 
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1.12. Grammars and automata 

The concepts of production grammars and the languages that they generate 
are of central importance in mathematical linguistics; at the same time, they 
are related to the concept of automata and the languages they represent. 
Therefore, in principle, various important propositions of the theory of 
grammars may be related to the general theory of automata. There are 
many different conceptions of grammar, differing in their degree of generality. 
Any production grammar G is specified by giving its vocabulary V and its 
system of (grammatical) rules π [generally called productions']. The vo
cabulary Κ is a finite set of symbols. Here the terms "symbol" and "vocab
ulary" are preferred to our previous terms "letter" and "alphabet," since 
in the linguistic interpretation each individual symbol in F is a word (or, 
more precisely, a word-form), and a string of symbols from V (which we 
have been calling a word over V) represents a sentence. The vocabulary 
V consists of symbols of two types: basic symbols,* forming a subvocab-
ulary Vj, and auxiliary symbols—subvocabulary Vj^. One of the auxiliary 
symbols (denoted by S) is designated as an initial symbol. 

The productions single out a subset of well-formed strings (in the sense 
of the given grammar) from the set of all possible strings over V. This subset 
is called the language generated by the grammar G. In other words, in the 
linguistic interpretation the language generated by a grammar is the set 
of all grammatically well-formed sentences. Each production of the grammar 
has the form φ φ, where φ, φ are strings over V and does not belong 
to V. The production φ -^φ is applicable to a string Ρ if Ρ contains at least 
one occurrence of 0 as a sub word; application of the production to Ρ re
places one occurrence of φ by the word φ. A sequence of strings D — 
= (Φι,... ,φ„) is said to be an ω-derivation of the string ρ if the following 
conditions hold: ω = φι, ρ = φ„, and for every i < η, φι+ ̂  is derived from 
0f by (a single) application of a production. 

A string is said to be well-formed if 
( I ) it consists of only basic letters; 
( I I ) it has an S-derivation (i.e., it may be derived from the initial auxihary 

symbol S); 
( I I I ) no production of the grammar is applicable to it (i.e., the derivation 

of this string cannot be continued). 
As mentioned above, the set of all strings which are well-formed with 

* Translator's note: Usually called terminal symbols in Western literature. 
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respect to a given grammar is called the language generated by the grammar. 
Narrower classes of grammars may be defined by imposing various re

strictions on the productions. A grammar whose productions are of the 
form τ\ιΑη2-^ rii^rii-» where AeV^^ and ^ 1 , ^ 2 are strings over Κ while 
ξ is a nonempty string over Κ is known as an immediate constituent gram
mar* (IC-grammar). In turn, the class of IC-grammars contains smaller 
classes. 

For example, consider the class of right-linear grammars. These have 
productions of type q c(x (nonterminal production) or q-^ χ (terminal 
production), where q and cf are auxiliary symbols and χ a basic symbol. 
It is clear that all S-derivable strings over the basic vocabulary, and only 
these, belong to the language generated by this grammar. One can associate 
a source with every right-linear grammar, in the following way. The states 
(vertices) of the source are all auxiliary symbols of the grammar, plus one 
special symbol (say Λ ) which is the single final state of the source. The sole 
initial vertex of the source is S (the initial auxiliary symbol). N o w , for each 
nonterminal production q q'x, draw an edge from q to q' and label it 
X . For each terminal production q-^ x, draw an edge from ^ to Λ labeled 
X . The result is a source whose input alphabet is precisely the basic vocab
ulary of the grammar, and it is easy to see that a string is regular with respect 
to the grammar if and only if it is carried by some path from S to Λ . Thus 
the language generated by a right-linear grammar is precisely the language 
represented by a special type of source: a source with a single initial vertex 
and a single final vertex, the latter being an output terminal. Since, as we 
know, every source is equivalent to a two-terminal, the class of languages 
generated by right-linear grammars is precisely the class of languages rep
resentable in finite automata. 

By considering productions of the form q xq' instead of ^ q'x, 
we arrive in a natural way at the concept of a left-linear grammar. Here 
again one can associate a source with every left-linear grammar and prove 
that the class of languages generated by such grammars is identical with 
the class of finite-state languages. 

Left-linear and right-linear grammars are special cases of linear gram
mars. 

A grammar is said to be linear if it contains productions of the form 
q-^ X, right-linear productions q q'x, left-linear productions q xq\ 
and also two-sided-linear productions q xq'y. 

* Translator's note: Sic. The definition is that of a context-sensitive grammar. 
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As an example, we describe a linear grammar generating 

The language = { ( Γ Ι Ο " } (η = 0 ,1 ,2 , . . . ) · Since this language is not 
representable in a finite automaton, this will show that the class of languages 
generated by linear grammars (or, as they are called, linear languages) is 
larger than the class of finite-state languages. The vocabulary Κ of Gi 
consists of basic symbols 0,1 and one auxihary symbol S. There is one non
terminal production S -> OSO, and one terminal production S -> 1. 

Similarly, we can construct a linear grammar G2 generating 
The language L2 . This language consists of 1̂1 strings over the alphabet 

{0, 1, * } having the form * W 2 , where W2 = w^^ (i.e., W2 is the reflection 
of W i ) and moreover W2 (therefore also does not contain the symbol *. 

The following examples of Unear grammars and languages will not only 
illustrate the mechanics of language-generation by grammars, but we shall 
also use them later in proving a theorem in Section III.3. In all these ex
amples the basic vocabulary is { 0 , 1 , c, * } ; w^, W 2 , . . . will always denote 
strings over the subvocabulary { 0 , 1 } . ^ 

The language L3 consists of all strings of the form * W 2 , where W2 φ 
^ w f ^ Each of these strings has (at least) one of the following forms: 

l ) w i 0 w * w " M w 2 or w i l w * w " ^ 0 w 2 , 
2) vw * w " " \ 

3) w * w~^v, 
where i; is a nonempty word. 

The grammar G3 contains three auxiliary symbols S\ S'\ S"\ from which 
words of these three types are derived, respectively. 

The productions of the grammar are as follows: 
0) S ^ S -> S'\ S ^ 5'", 
1) S' ^ 5Ό, S' -> S'l S' 0S\ S' 1S\ S' ^ 0^1, S' ^ 1^0. 
Productions 0) and 1) generate all words of the form w'i0^1w2 and 

2) S"-^OS\ S"-^IS\ S''-^Oq, S''^ Iq, 
3) 5'" S"O, 5"" 5"1, 5" - ^0, 5" ql. 
These productions generate all words of the form vq and qv. Finally, 

the grammar is completed by the productions 
4) ^ - ^0^0 , q^lqlq-^*. 
The language L4 consists of all strings 

CW1CW2C . . . CW„C * C W „ + iCW„ + 2C . . . CW„ + fcC 

t Here and below W i , W 2 , . . . may also be empty strings. 
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such that the string W j W j . . . w„ (the concatenation of the strings W j , W 2 , . . . , 

w„) is not the reflection of the string w„+iW„+2 - "^n+k- A suitable linear 
grammar G4 may be constructed by a natural modification of the grammar 
G3; the details are left to the reader. 

The language L5 depends on a fixed system of pairs of strings over the 
subvocabulary { 0 , 1 } : 

(ξΐ,ηΐ)Λξ2.η2).'"Λξη.ηη)' (*) 

The language consists of all strings of type cw^c * CW2C in which the pair 
W j , W2 is not one of the pairs ( # ) . It is easily seen that L5 is a finite-state 
language. A suitable right-linear grammar G5 may be constructed by first 
constructing a two-terminal source representing L5, and then using the 
above-described correspondence between right-linear grammars and sources. 

The language also depends on the system ( # ) ; it consists of the 
strings 

CW1CW2C . . . cw„c * cw„+ iCW„ + 2C · · · cw„ + kC 

satisfying the condition: for at least one i, the pair of strings w„_, + i , w„+, 
(situated "symmetrically" with respect to the symbol * ) is not one of the 
pairs ( # ) . 

The corresponding grammar contains the following productions: 
1) S ^ cS'c; S' S O ; S' S'l; S' ^ OS; 

S' I S ' ; S' cS'\ S' S'c; S' cSV; 
S -> ccS"cc. 

The strings derived from S by productions of this group and containing 
the symbol S" are precisely the strings coccS^cßc, where (χ,β are arbitrary 
(possibly empty) strings over the vocabulary { 0 , l , c } . 

2) The productions of the second group are slight modifications of the 
productions of the grammar G5. Together with the productions of group 1), 
they generate all strings 

caLcWcS"'cW'cßc, (1) 

where a, jS are arbitrary strings over { 0 , 1 , c } , the pair w', W is not one of 
the pairs ( # ) and S'" is an auxiliary symbol, replacing the basic symbol 
* of G5. 

3) The third and last group of productions is used to extend the strings 
(1) by inserting the same number of words w braced by separating symbols 
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c on both sides of S'\ and finally replacing the auxiliary symbol 5"' by * : 

S'" r O ; S'" S"'l; S'" -> OS'"; S'" ^ IS ' " ; 

S'" -^cS"'c; S'" -^c*c. 

It is easy to see that this Hnear grammar generates L^. 
A wider class than linear grammars is that of context-free grammars 

(CF-grammars). Their productions have the form 

a, 

where q is an auxiliary symbol and α an arbitrary string over the initial 
vocabulary. If α contains no occurrence of auxiliary symbols, application 
of the production reduces the number of such occurrences; as in the special 
case of linear grammars, we call productions of this type terminal. If the 
production is not terminal and contains more than one occurrence of 
auxiliary symbols, its appHcation to a string increases the number of occur
rences of auxiliary symbols. Thus, for derivations in CF-grammars there is no 
general upper bound for the number of occurrences of auxiliary letters; 
by contrast, at every step of a derivation in a linear grammar, up to applica
tion of a terminal production, there is exactly one occurrence of an auxiliary 
symbol. 

All our examples hitherto have of course been CF-grammars and CF-
languages. W e now give a simple example of a language which is not con
text-free. 

The language Lη consists of all strings cTVcl^. Suppose that Lη is generated 
by a CF-grammar G, i.e., all words of the form d'lfd!', and only such words 
(an infinite set), are derivable from the initial symbol of G. Without loss of 
generality we may assume that if any other auxiliary symbol q is considered 
as initial symbol, it also generates an infinite set of strings over the basic 
vocabulary { a , b } . In fact, if only finitely many strings Ζ ι , Ζ 2 , . . . , ζ ^ can 
be derived from q, replace all occurrences of q in the right-hand sides of 
the productions of G by the strings , Z 2 , . . . , z^; the result is an equivalent 
CF-grammar which does not contain the auxiliary symbol q (and no new 
auxiliary symbols are added). N o w assume that the maximum number of 
symbols in the right-hand sides of the productions of G is r, and consider 
some derivation of the string CÜ^'^V^'^CÍ''^. The last step of this derivation 
must be the application of a terminal production ^ a, converting a string 
W i ^ W 2 , where and W2 are strings over { a , b } , into the string d^^^V^^d^^\ 
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a . . . ab ., ,b a . . . a (the length of α is at most r). 

r + 1 

N o w let β be some other string over { α , b } , different from α but derivable 
from Then the string Wij3>V2 is also derivable from S and so belongs 
to Lη. But it is clear that ii β φ(χ the string Wij5w2 cannot have the form 
aVa" for any η = 1 ,2 , . . . This contradiction shows that the language L7 
is not generated by any CF-grammar. 

T o conclude this section, we present a theorem concerning the closure 
properties of the class of CF-languages under set-theoretic operations. 

THEOREM 1.15. The class of CF-languages is closed under set-theoretic 
union, but not under intersection and complementation. 

Proof Let L and Π be languages generated by CF-grammars G' and 
G'\ respectively. Rename the auxiliary symbols of G and G" in such a way 
that G' and G" contain no common auxiliary symbols other than the initial 
symbol S. Combining the productions of both grammars, we get a CF-
grammar G = G'u G". 

W e now present an example of two CF-languages £ and Ε whose inter
section is not a CF-language. L consists of the strings aVa"^, Ε of the strings 
a'^b'O" (w = 1 , 2 , . . . ; m = 1 , 2 , . . . ) . £ is generated by the grammar whose 
productions are 

S^S'S"\ S" -^aS"; S" a\ 

S' aS'b; S' -> ab. 

The construction of a CF-grammar for Π is analogous. N o w the intersec
tion of £ and £' is precisely the set of all strings a"b"cf and, as we have just 
shown, this language is not context-free. It follows immediately that the 
class of CF-languages is not closed under complementation (since inter
section may be expressed in terms of union and complementation). Q.E.D. 

R E M A R K . It is clear from the proof that a CF-grammar generating 
£ u £ may be effectively constructed from the grammars generating £ 
and £'. 

* By assumption, there are infinitely many such strings. 
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Supplementary material, problems, examples 

I. Definition. Let U be the universal language over an alphabet A. An 
equivalence relation R over U is said to be right (left) invariant if xRy 
implies xzRyz (zxRzy) for any word ζ (χ, y, ζ may be empty). Κ is a congru
ence relation if it is both right and left invariant. 

A language 91 is representable in a finite automaton if and only if there 
exists an equivalence relation R which is right invariant (left invariant, 
a congruence relation) and partitions U into a finite number of equivalence 
classes such that 9Í is the union of some of these classes (Nerode [111] , 
Myhill [110] ) . 

Π. Following Chomsky and Miller [ 8 2 ] , one can associate a function 
Vj^(n) with any language R over a finite alphabet, setting Vj^{n) equal to the 
number of words in R of length n. 

If the language R is finite-state, the function ν^{η) may be expressed 
in the form 

Vi?(n) = Xaí(n)nV?. 

The summation extends over a certain finite set of indices (depending on 
the language R), ai{n) is a periodic function, fc, a positive integer, p¿ a pos
itive number, and moreover ai(n) and Pf are algebraic (Chomsky-Miller 
[82] , Plesnevich [50] ) . Chomsky and Miller assert that the general form 
of the function v^in) is ^a^A? where and λi are complex; the following 
counterexample shows that this is false. Let R be the finite-state language 
consisting of all binary words containing exactly one occurrence of 1. 
Then v^in) = n; but this function cannot be expressed in the above form.) 

I I I . Show that there exists an algorithm which, for any two anchored 
(macroanchored) automata, determines whether the intersection of the 
languages (ω-languages) that they represent is empty or infinite. 

IV. Let 9M be an automaton with r states. The language represented by 
9R is infinite if and only if it contains at least one word of length n, where 
r ^ n ^ l r (Rabin-Scott [114] ) . 

V. Given any language 91, define a function 91 (i) for i = 0 ,1 ,2 , . . . 
whose values are (possibly empty) languages, as follows: 91 (i) consists of 
all words that can be obtained from words in 91 of length greater than t 
by deleting initial segments of length t. 

Show that if 91 is representable in a finite automaton, then the sequence 
of languages 

91(0), 91(1), 91(2) , . . . 



78 BEHAVIOR OF OUTPUTLESS A U T O M A T A [I 

is ultimately periodic (i.e., there exist ^ 0—the phase—and Τ > 0— 
the period—such that 9I(i + T ) = ? l ( i ) for t ^ i ^ ) . 

Let ?l and its complement Π 91 be languages such that the functions 
91(0 and "191(0 are purely periodic (t^ = 0). Then 9Í is representable in 
a finite automaton (Lyubich [ 4 6 ] ) . 

V L Let p(9i ,S) be an arbitrary meaningful expression formed from 
the symbols 91,95, designating languages, and the operation symbols 
u, ·, * (an expression of this type is called a term in the signature 91, S , u, ·, * ) . 
Show that for any languages 91, S 

p(9i, 95) c (91 u 95)* 

(McNaughton [103] ) . 
Show that for any three languages 91,95, d the equality 91 = 91 · 95 u (£ 

holds if and only if 91 = (£95* u e. 
V I L Call /(9I,95) a binary substitution operation on languages over 

an alphabet X if there exists a language σ over the alphabet X u {a,b} 
(a, bφX) such that for any languages 91, © over X the language / (91, S ) 
consists of all words obtained from words of σ by replacing each occurrence 
of α by a word of 91 and each occurrence of b by a word of © . Different 
occurrences of a (or b) may be replaced by different words of 91 (or 95). 
The definition of unary, ternary, etc., substitution operations is analogous 
(McNaughton [103] ) . 

Which of the operations on languages considered in Chapter I are sub
stitution operations and which are not? State a natural definition of unary, 
binary, etc., substitution operations transforming languages into ω-lan
guages (or ω-languages into ω-languages)? 

V I I I . The class of all languages (over a fixed alphabet) forms an algebra 
(the so-called algebra of events) under the operations u, ·, *. 

Which of the identities listed below are valid in this algebra? 
1) 91(9391)* = (9I95)*9I, 
2) (91 u 95)* = (91*95*)*, 
3) 91(95 u (£) = 9195 u 91(£, 
4) (91*95)* = (9Í u 95)*95 
5) 91* = 91 u 91^ u . . . u 91*-^ u 91̂ ^ · 9r*. 
IX. The class of languages over an alphabet X which are representable 

in finite automata is closed under the following operations, each of which 
transforms a language 9Í into a language 91': 

1) 91' consists of all words with an initial segment belonging to 9Í. 
2) 9Í' consists of all words all of whose initial segments belong to 91. 
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Operations Γ and 2' are derived from operations 1 and 2 by replacing 
the word "initial" by "final." 

3) Let üi^üj be letters from the alphabet X = {ai,a2,...,a^}. W is 
obtained from 91 by replacing all occurrences of in the words of 91 by 
occurrences of ÜJ, 

X. Following Medvedev, let us call the following languages over a fixed 
alphabet Z = ( O Í I , ^̂ 2» · · ·» ^m} elementary languages: 

911 = the language consisting of all one-letter words, 9Í2 = the language 
consisting of all two-letter words, 95¿ = the language consisting of all words 
ending in the letter ai(i ^ m); 

ε , = the language consisting of all words of length at least 2 in which 
the penultimate letter is ai(i ^ m). 

The class of languages (over X) representable in finite automata is the 
smallest class of languages that a) contains all elementary languages, 
b) is closed under the Boolean operations u, ~|, & , and also under opera
tions 1) and 3) of the preceding problem (Medvedev [ 4 8 ] ) . 

XL Consider the following four modifications of the concept of a finite 
macrosource, which we shall call 3-sources, 3°^-sources, V°^-sources, V-
sources. In all cases, the set QQ of initial states is fixed, as is the set C of 
final states, and a certain "admissible" type of ω-paths is indicated. This 
will also define corresponding varieties of ω-languages representable in 
3(3°°, V°°, V)-sources: these consist of all ω-words carried by the admissible 
ω-paths. It remains to define these admissible ω-paths: 

1) 3-source: all ω-paths passing at least once through a vertex of C; 
2) 3°°-source: all ω-paths passing infinitely often through vertices of C; 
3) V°°-source: all ω-paths which, from some vertex on, pass through 

vertices of C alone; 
4) V-source: all ω-paths passing through vertices of C alone. 
Let X3, X3°°, KV°°, KV denote the classes of ω-languages representable 

in 3-, 3°°, V^- , V-sources, respectively. Show that 

X V c ä:3 = XV°° C I X 3 ^ . 

Show that X3°° coincides with the class of ω-languages representable in 
finite automata. 

X I I . There exists a source with η states (n = 1,2, 3 , . . . ) over a two-
letter alphabet (say { 0 , 1 } ) such that the minimal equivalent automaton 
has exactly 2" states (Lupanov [42 ] , Ershov [ 2 9 ] ) . Compare with Theorem 
1.10 of Section 1.7, which considers sources over a three-letter alphabet. 

For a one-letter alphabet and a source with η states, there is always an 
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equivalent finite automaton with at most 2''̂ "̂  states, where μ{η) is a function 
asymptotic to y/n In n, and this estimate cannot be improved (Lyubich 
[ 4 4 ] ) . Thus, in determinization of sources over this alphabet the upper 
bound for the number of states of the equivalent automaton is much lower 
than in the many-letter case. 

X I I L For every n, there is a language over { 0 , 1 } , representable in an 
automaton with η states, whose reflection is not representable in any 
automaton with less than 2" states. 

X I V . Assume an arbitrary partition of the universal language U over 
a fixed alphabet (say over { 0 , 1 } ) into a finite system of pairwise disjoint 
languages 9Ii , 9 I 2 , . . . , 91 .̂ Then any ω-word over this alphabet belongs to 
at least one of the ω-languages 9I¿ · (i ^ sj ^ s) (corollary of Ramsey's 
Theorem [116]) . 

X V . Assume given a probabilistic automaton with fixed initial state 
and set QQ of final states. For each input word x, let p{x) denote the prob

ability that X takes qQ to some state of QQ. W e shall say that a real number 
>1(0 < A < 1) is a á-isolated cut-point for 50ϊ, qQ and Qo ii \p{x) — λ\ ^ δ 
for any input word x. If is a á-isolated cut-point for SR, qQ,Qo, then the 
language ω(9R,qQ,QQ,λ) is representable in a finite deterministic autom
aton. If 9Jl has η states and QQ consists of r states, then a deterministic 
automaton representing ω(9R,qQ,QQ,λ) may be constructed with / states, 
where / ^ (1 + r/S)"'^ (Rabin [113] ) . 

X V I . Show that if 9M is an actual automaton (none of the transit
ion probabilities vanish) then, for any λ (0 < A < 1), the ω-language 
Ω(9Κ, qQ, e, λ) is either empty or coincides with the set of all ω-words over 
the input alphabet (Rabin [113] ) . 

X V I I . Let 9Ji be an actual automaton and λ an isolated cut-point for 
fixed qQ and QQ. In contrast to the preceding problem, in which the proof 
is quite simple, the following assertions require more subtle arguments. 

1. Call a language R definite, if there exists a natural number k such that 
any word of length greater than k is in R if and only if the word formed from 
its last k letters is in R. Prove that the language ω(501, qQ,Qo, λ) is definite. 

2. Stability Theorem. There exists ε > 0 such that for any probabilistic 
automaton W with the same alphabets (input and internal) as SDÍ, and with 
transition probabilities different from those of 501 by less than ε, λ is an 
isolated cut-point for fixed qo, Q and 

ω(W,qQ,Q,λ) = ω(9n,qQ,Q,λ) ν 

(Rabin [113]) . 
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X V I I I . The following generalization of the notion of representability in 
a finite automaton is due to Rabin and Scott [114] . Define a two-way autom
aton to be an automaton 3R = < β, ΛΓ, Ψ > with the following designated 
sets: 1) initial state qoi 2) set of final states Q'; 3) three pairwise disjoint 
sets of states ö-i»6o»6i (states of left, zero and right shift, respectively) 
whose union is Q. When presented with an input word χ ( 1 ) . . . χ ( μ ) , the 
automaton is set to its initial state QQ and scans the letter x ( l ) . At each step 
of its operation, with the automaton in an internal state q and scanning a 
letter ae X,it passes as usual, to the state Ψ(^ , a\ but at the same time either 
moves one letter to the left, remains in position, or moves one letter to the 
right, depending on whether Ψ (^, a) e β _ ^, Ψ (^, a) G Q o » ^ ( < 2 . ^ Ö i · 

A word X = χ ( 1 ) . . . χ ( μ ) is said to belong to the language 
ω(ϊ) ϊ ,^o»6''6- i»6o»öi) if the automaton 9Jl, "reading" χ in the above 
way, finally "falls oflT' χ on the right and is then in one of the states of Q'. 
W e say that the two-way automaton <9W,^ο» 6» 6 - i » ßo» 6i> represents 
the language ω( ϊ« , ̂ fo, β'. ö - i . öo. Οι)· 

The following theorem holds: For any finite two-way automaton, one 
can effectively construct an (ordinary) anchored finite automaton which 
represents the same language (Rabin-Scott [114] , Shepherdson [122] ) . 

X I X . (Stearns and Hartmanis [124] ) . Let R be a finite-state language 
and Q an arbitrary language. Consider the languages P^,P2,P^ defined 
as follows: 

xeP,=^y{yeQ&xyeR), 
df 

xeP2 = 3y(yeQ&yxeR), 

XEP^ = 3y, z, w (x = yz&uEQ&yuz e R). 

Show that Pi, Ρ2, P3 are finite-state languages. 

Assume that the language R contains no words of odd length. Show that 
the left (right) halves of the words in R form a finite-state language. 

Assume that R contains only words whose lengths are multiples of three. 
Show that the language consisting of the "middle thirds" of the words in 
R is finite-state, but the language obtained by deleting the "middle thirds" 
from the words of R need not be finite-state. T o verify the latter assertion, 
consider the finite-state language R consisting of all binary words whose 
lengths are multiples of three, which do not contain two consecutive ones. 
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Notes 

The closure of the class of finite-state languages under set-theoretic opera
tions was already noticed by Kleene [100]. Myhill [110] and Nerode 
[111] characterized finite-state languages in terms of interchangeability. 
The problem of the decidability of properties of finite automata is formu
lated in the paper of Rabin and Scott [114] , which also considers analogous 
problems for various generalizations of finite automata (see Problem 
X V I I I , etc.). The same paper introduces sources, calling them "nonde
terministic automata," and proves a theorem on the determinization of 
sources which implies various corollaries on the closure of the class of finite-
state languages under many operations. Essentially, though not explicitly, 
this theorem was established previously by Medvedev [ 4 8 ] . Theorem 1.10 
is due to Lupanov [ 4 2 ] , but an analogous result was proved independently 
by Ershov [29] (see also Korpelevich [ 3 4 ] ) . Related problems concerning 
the determinization of automaton sources (one-letter input alphabet) were 
studied in detail by Lyubich [43, 44] (see Problem X I I ) . The class of finite-
state ω-languages has been investigated by Muller [109] and mainly by 
McNaughton [102] . T o the latter are due Theorems 1.11 (Concatenation 
Theorem) and 1.12 (Strong Iteration Theorem), which are fundamental 
for the theory of finite-state ω-languages. The proofs presented in Sections 
1.9 and 1.10 are almost identical with those given by McNaughton in [102] 
(though they were reconstructed by the present authors on the basis of 
his announcement). 

The idea of the probabilistic automaton is already clear in numerous 
papers; the analogy between automata and Markov chains has been pointed 
out by many authors. However, the first systematic investigation of prob
abilistic automata is by Rabin [113] , from whose paper we have taken the 
substance of Section I . l l (see also Problems X V to X V I I ) . Probabilistic 
automata are also studied in [23, 81] . 

Grammars and their relation to automata are studied in the papers 
of Bar-Hillel, Perles, Shamir [70] and Chomsky [83] (see also [ 5 ] ) . 

Operations on languages, involving concatenation, were defined and 
studied by Kleene [100] . Further investigations were carried out by Mc
Naughton [102] , Yanov [65-67] , Red'ko [ 5 1 ] , Bondarchuk [20, 21] , 
Salomaa [119, 120], Brzozowski [72] and others. Yanov and Red'ko have 
investigated the existence of a complete system of identities for the opera
tions u , ·, * . * 
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B E H A V I O R O F A U T O M A T A W I T H O U T P U T 

I L L Anticipation 

The theory of automata studies how certain "input" information arriving 
at discrete times ί = 1,2, 3 , . . . is processed to yield "output" information, 
also related to times ί = 1,2, 3 , . . . The idea of this process is made rig
orous by the concept of an operator transforming input words (ω-words) 
over a certain alphabet, the input alphabet, into output words (ω-words) 
over an output alphabet. 

Consider fixed input and output alphabets X and Y. The operators we 
are studying may be classified according to two criteria: 

1) Are the argument and the value of the operator words (word operator) 
or ω-words (ω-word operator)? 

2) Is the operator defined over the entire set of input words or ω-words 
(everywhere defined operator) or only over a certain subset (partial operator)? 

Wherever the context makes it clear to which class the operator belongs, 
or whenever this is immaterial, we shall use the unmodified term "opera
tors." 

In the sequel we shall deal mainly with everywhere defined operators; 
as a rule, partial operators will not be discussed, except for operators 
whose domain of definition (therefore also range) consists of finitely many 
words. 

Let the operator Τ transform the word 

χ = χ ( 1 ) χ ( 2 ) . . . χ ( ί ) . . . χ ( μ ) 

(ω-word x ( l ) x ( 2 ) . . . χ ( ί ) . . . ) into the word 

Tx = y = y(l)y{2)...y{t)..,y{ß) 

(ω-word y = y{l)y{2)... y(t)..The argument t usually represents the 
time at which the letter x ( i ) is applied at the input or the letter y(t) appears 
at the output. It is thus important to ascertain to what degree y(t) depends on 
the "future," i.e., on x ( i + 1), x ( i + 2 ) , . . . and on the "past," x ( l ) , . . . , x ( i ) . 

83 
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W e intend to make this dependence rigorous in terms of anticipation, and, 
in the next section, via the concept of weight (memory). 

Τ is said to be a nonanticipatory [or causal] ω'Word operator if, for any 
ω-words 

x' = x ' ( l ) x ' ( 2 ) . . . x ' ( i ) . . . , 

x" = x ' ' ( l ) x " ( 2 ) . . . x " ( i ) . . . 

in the domain of T, and the corresponding outputs 

T x ' = y = y ( i ) / ( 2 ) . . . / ( i ) . . . , 

T x " = / = / ( l ) / ( 2 ) . . . / ( i ) . . . , 

whenever x ' ( l ) = x " ( l ) , . . . , χ ' ( τ ) = χ"(τ) for some natural number τ, then 
also / ( I ) = / ' ( ! ) , . . . , y (τ) = / ( τ ) . In other words, for any i, the output 
letter >'(i) is uniquely determined by the input word x ( l ) . . . x ( i ) and is 
independent of the "future" x ( i + l ) x ( i + 2 ) . . . Otherwise, Τ is said 
to be an anticipatory operator. Τ is said to be a nonanticipatory word operator 
if the following conditions are satisfied: 

1) If T x = then χ and y are words of the same length. 
2) If x' and x" are input words with identical initial segments of length τ, 

i.e., x ' ( l ) = x " ( l ) , . . . , χ'(τ) = χ " ( τ ) , then the corresponding output words 
y' and y" also have identical initial segments of length τ. 

3) (Completeness condition) If Τ is defined on a word x, it is defined 
on all its initial segments. 

R E M A R K S . I. The second condition is analogous to that defining non
anticipatory ω-word operators. Any partial operator τ satisfying only 
conditions 1) and 2), but not condition 3), can always be extended to a (unique) 
nonanticipatory operator, by defining it as follows for all initial segments 
of words in its domain. If T x = and x' is an initial segment of χ of length 
τ, define Tx' as the corresponding initial segment of the word y. Hence
forth, when considering partial word operators satisfying conditions 1) 
and 2), we shall call them nonanticipatory operators (whenever no mis
understandings can arise), having the above extension in mind. 

I I . It is clear from the definitions that any (everywhere defined) non
anticipatory ω-word operator Τ induces a unique (everywhere defined) 
nonanticipatory word operator T\ which maps the initial segments of the 
input ω-words onto the corresponding initial segments of the correspond
ing output ω-words. Conversely, given an everywhere defined nonantici
patory word operator T\ one can always construct a unique nonanticipatory 
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ω-word Τ which induces Τ in the above sense. Because of this one-to-one 
correspondence, in our subsequent discussions of everywhere defined non-
anticipatory operators we shall not specify whether these are word or 
ω-word operators. 

We now present some examples of operators. With the exception of 
Tg and T9, they will all be everywhere defined. Nevertheless, Τ^,.,.,Τ^ 
may all be associated with partial operators by imposing suitable restric
tions on their domains. Τ ι , . , . , Τ ; will be defined as ω-word operators; 
those that prove to be nonanticipatory may be regarded as word operators 
as well. 

EXAMPLES. Let X = {0,1}, 7 = {0,1}. First consider the operators 
Ti , T2, T3, T4, T5 defined as follows: 

1) η : y{t) = x(2t). 
2) T2: 

y{t) = 

1, if the word x{l)x{2)... x(t) contains more ones than 
zeros; 
0 otherwise. 

3 ) Γ3: 

4) T, 

5) 7 ; : 

^ ^ ^ ^ _ | 1, if 3 τ ( τ > ί & χ ( τ 

I 0 otherwise. 
1); 

i l, if the word x ( l ) x ( 2 ) . . . x(t)... x ( i + 5) contains more 
ones than zeros; 
0 otherwise. 

i l , if the number of ones in the word x ( l ) x ( 2 ) — x ( i ) 
is a multiple of three; 
0 otherwise 

(similarly, one can define for any k: y{t) = 1 if and only if the number of 
ones in the word x ( l ) x ( 2 ) . . . x ( i ) is a multiple of k). 

In the following operators 7¿ and T7, the output alphabet will be 7 = 
= {0, 1 } , as before, but the input alphabet will be the cartesian product 
of { 0 , 1 } with itself; thus X consists of four letters, which may be written 

in column notation: X = 
0 0 1 
0 ' Γ 0 ' 
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Oil 000 
1001 0011 

9) T9 is defined over all eight words of length 3 over the alphabet { 0 , 1 } 
by the table 

X 000 001 010 Oi l 100 101 110 111 

T9X 000 000 010 o i l 000 001 000 001 

Any input ω-word χ = x ( l ) x ( 2 ) . . . x ( i ) . · · defines a pair of ω-words 
x' = x ' ( l ) x ' ( 2 ) . . . x ' ( 0 . . . and x' -= x " ( l ) x " ( 2 ) . . . x"(0 . · . , the projections 
of X onto the alphabet { 0 , 1 } . For any μ (μ = 1, 2, 3 , . . . ) , the initial seg
ments of these co-word of length μ, when written "from right to left," 

χ ' ( μ ) . . . χ ' ( 2 ) χ ' ( 1 ) , 

χ " (μ ) . . . χ " (2 )χ" (1 ) , 

represent two nonnegative integers in binary expansion; we denote these 

integers by x'^ and x'^, respectively. 
6) (serial addition): T^x is defined as the ω-word y = > ' ( 1 ) . . . y (μ)..., 

where y (μ) is the μ-th digit in the binary expansion of the sum Χμ + Χμ. 
7) (serial multiplication): TjX is defined as the ω-word y = 

= y{l),..y(μ)..., where y (μ) is the μ-th digit in the binary expansion of 
the product χ'μ-Χμ. 

R E M A R K . The motive for the above designation of 7¿ and T-j is as follows. 
Suppose that a natural number ξ with the binary expansion ... ¿ 2 ^ 1 

(i.e., ξ = Y^i=i ξί2'~^) is encoded as an ω-word ξιζι--- <^vOO...0... (ξ^ is 
followed by zeros). A pair of natural numbers ξ, η is encoded as an ω-word 
X over the cartesian product of the alphabet { 0 , 1 } with itself. Thus, for ex
ample, the decimal numbers 7, 12 are encoded as 

1 1 1 0 0 0 0 . . . 

0 0 1 1 0 0 0 . . . 

over the four-letter alphabet | ^ ; Q ' | j · Then the operators and Τη 

applied to the ω-word representing the pair of numbers ξ,η transform 
it into the ω-word codes of their sum and product, respectively. 

8 ) Tg is defined for two words by the table 

X Tox 
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It is easy to see that T2, Γ5, T^, T7, Tg, T9 (Tg, Tg may be extended in a 
natural manner to the initial segments of the input words appearing in 
the tables) are nonanticipatory operators. T^, T3, 7^ are anticipatory opera
tors; they clearly depend on the "future." and 7^ have the following 
property: 

(1) There exists a function φ{ή such that y{t) is uniquely determined 
by the word x ( l ) x ( 2 ) . . . χ ( φ ( ί ) ) . 

Operators possessing property (1) will be called finitely anticipatory 
operators (in contradistinction to infinitely anticipatory operators). In 
particular, if φ{ί) = t + c, where c is a constant, we shall say that Τ has 
bounded anticipation. Clearly, if c = 0 the operator Τ is nonanticipatory. 

Special cases of nonanticipatory operators are constant and truth-table 
operators. 

An operator Τ is said to be constant if it maps every input ω-word χ 
onto a fixed output ω-word y. 

We recall the definition of a truth-table operator ("literal translation" 
operator). 

Τ is said to be a truth-table operator if there exists a mapping λ of X into 
y such that y{t) = Á(x{t)) (ί = 1, 2, 3 , . . . ) . 

Recall that, given any initialized automaton <9Jl, (jo>. where 501 = 
= < β , X , y, Ψ, Φ > , we have identified its behavior with the operator 
Τ (SR, (Jo) that it realizes, i.e., the operator defined by the recurrence rela
tions 

q{t+\) = ^[q{t),x{t)], 

y{t) = Φ[q{t),x{t)^]. 

N o w the behavior of any initialized automaton is obviously a nonantic
ipatory operator; this follows directly from the recursive definition of 
y{t) (t = 1 ,2 ,3 , . . . ) . Conversely, every nonanticipatory operator Τ with 
input alphabet X = { x ^ , · · » ^ m } and output alphabet Y is the behavior 
of a suitable initialized automaton <50 ,̂ ^ο>· <9W»<7o> "lay always be 
constructed as the initialized automaton whose diagram is an infinite 
m-branching tree with a root; the root is labeled by the initial state qo, 
and the m edges issuing from each vertex by the input letters x^, X 2 , . . . , x,,,. 
The output labels of the tree obey the following rule. Suppose that an edge 
7 on the level t terminates a path from the root which carries the input 
word x ( l ) x ( 2 ) . . . x ( i ) ; if Τ transforms this word into y{l)y(2)... y(t), 
label the edge y with the output letter y(t). 
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Figure 14a illustrates the finite tree ν consisting of the three lowest levels 
of the tree for the operator T2. 

N o w if Τ is a partial nonanticipatory operator, analogous reasoning 
will show how to represent it as a "partial tree"; in a partial tree, certain 
paths may break off at certain vertices—the number of edges issuing from 
a vertex may now be less than m (the number of input letters), even zero. 
Figures 14b and 14c illustrate partial trees for the operators Tg and Tg 
or, more precisely, for their natural extensions to the initial subwords. Any 
partial tree may be extended to a complete infinite tree, indeed in many 
ways. Thus any nonanticipatory partial operator may be extended (generally 
in many ways) to a nonanticipatory operator defined everywhere. For ex
ample, one might introduce the missing edges and label them with the same 
input letter (see the dotted edges in Figure 14b, all labeled 0) . W e shall say 
that an initialized automaton <9Μ,^ο> realizes a partial operator TQ if 
Τ(501, ^o ) is an extension of TQ. The preceding remarks may be summarized 
in the following theorem. 

THEOREM 2.1. The behavior of any initialized automaton is an everywhere 
defined nonanticipatory operator. Any nonanticipatory operator (everywhere 
defined or partial) is realizable by a suitable initialized automaton. 

Figure 14 
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We might mention that some authors call nonanticipatory operators 
automaton operators or deterministic operators. 

11.2. Memory (weight) 

It is clear from Theorem 2.1 that investigation of nonanticipatory operators 
("automaton operators") has significance for automata theory. Nevertheless, 
many concepts and facts revealed by an investigation of this kind carry 
over (or have at least partial analogues) to anticipatory operators. For 
this reason, wherever this does not affect the simplicity of the exposition, 
we shall so phrase the discussion as to make it applicable to the general 
case. 

Our next task is to introduce concepts which describe how operators 
"store" or "remember" information. 

Let us call two word (ω-word) operators T^^^ and T^^^ distinguishable 
if there exists an input word (ω-word) which they transform into different 
output words (ω-words); otherwise we call them indistinguishable. If T^^^ 
and T^^^ are indistinguishable everywhere defined operators, they must 
coincide; in the case of partial operators, indistinguishable operators may 
differ in their domains of definition. W e shall denote the indistinguishabiUty 
relation by T^^^ ̂  T^^^ (read: T^^^ is indistinguishable from is 
indistinguishable from P^^\ and the distinguishabihty relation by φ 

Assume given a family of operators τ = {P^\P^\...}, where the 
are either all word operators or all ω-word operators. 

W e define the weight of the system τ (denoted by μ ( τ ) ) to be the maximal 
number (possibly oo) of pairwise distinguishable operators in τ. A basis 
of τ is any subset of pairwise distinguishable operators such that any other 
operator in τ is indistinguishable from some member of this subset. If τ 
contains only everywhere defined operators, indistinguishability is an equiv
alence relation partitioning τ into indistinguishability classes. It is obvious 
that then μ (τ) is precisely the index of this partition, and each indistin
guishability class is a set of copies of the same operator. Any set of representa
tives, one from each indistinguishability class, will be a basis. However, 
in general indistinguishability is not an equivalence relation, since it may 
not be transitive. For example, let and be distinguishable every
where defined operators and an operator defined only for words χ 
such that P^^x = P^^x, in which case P^^x = P^^x = P^^x; then 
7 (̂1) ^ ji2) ^ ji3)^ pi) ^ 7^(2) j ^ ^ ^ ^ ĵ̂ g ggj^gj.^j ^^gg ̂ ĵ g concepts 
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of weight and basis are not related to a partition into indistinguishability 
classes. 

Before going on to the next definitions, we stipulate that henceforth 
all word operators will be assumed to satisfy condition 1) in the definition 
of nonanticipatory operators: the words χ and Τ χ are equal in length. 
This restriction is in principle unnecessary, and is adopted only for con
venience. 

N o w , let Τ be an arbitrary word operator satisfying this condition, or an 
arbitrary ω-word operator. Let ρ be an arbitrary word over the input alpha
bet such that the domain of Τ contains at least one word (ω-word) of the 
form px (i.e., having an initial segment p). W e now associate an operator Tp 
with each such word ρ (whose length we denote by v ) . T o define the word y 
into which Tp transforms a word (ω-word) x, form the concatenation px 
and apply T; now drop the first ν letters from the resulting word (ω-word). 
Thus, if X is a word of length λ or an ω-word, 

TpX = Tipx)^' or TpX = ( Γ ( ρ χ ) ) - . 

Any operator Tp defined in this way will be called the residual operator 
of Τ relative to the input word p. The operator Τ itself is a residual operator 
relative to the empty word. For formal reasons it is convenient to consider 
the "nowhere defined" operator, which is indistinguishable from any opera
tor, by definition. If Τ is applicable to a word p, but to no longer word with 
initial segment p, we shall consider ρ to correspond to the nowhere defined 
operator. Call two words p^ and P2 residually indistinguishable by Τ (nota
tion: Pi ^ P2ÍT)) if the corresponding residual operators are indistin
guishable. The weight and basis of an operator Τ are defined to be the weight 
and basis, respectively, of the system τ of all its residual operators. W e 
shall also say that a set of input words forms a basis if the corresponding 
family of residual operators is a basis. 

W e now illustrate these concepts for the operators T j , . . . , Γ9 of Section 
I L L 

For the operator T3, all input words (including the empty word!) are 
residually indistinguishable; the associated residual operators are indistin
guishable from the operator T3. This mathematically represents the fact 
that the value of y{t) is not affected by the "past" input x ( l ) x ( 2 ) . . . x ( i ) . 
In this sense, the operator T3 "remembers" nothing. Its weight is 1 and 
the empty word alone is a basis. 

At first sight, one might think (wrongly!) that the same holds for the 
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operator T j , since y(t) depends on a "later" input letter x{2t). But this is 
not so; two input words and p2 are residually indistinguishable by Ti 
if and only if they are equal in length. Thus, "stores" the length of the 
input word. Its weight is oo; for a basis one can take the set { Λ , 0,00, 
0 0 0 , . . . } . 

Let HQÍP) denote the number of zeros in the word p, n^ip) the number of 
ones in p. The nonanticipatory operator T2 and the operator 7^ with bounded 
anticipation display the same behavior as regards residual indistinguishabil
ity; each has weight 00. For p^ and p2 are residually indistinguishable if 
and only if 

ηΛΡι) - rioiPi) = ^1(^2) - «0(^2)· 

Thus each of the operators T2, 7]̂  "stores" the excess of the number of ones 
over the number of zeros in the input word. 

A basis for T2 or Γ4 is the set 

{ Λ , 0,1,00,11,000, 111, 0000, n i l , . . . } . 

The operator Γ5 "remembers" which of the following three relations 
holds for the input word p: 

n^ip) = 0 (mod3) , n^ip) = l ( m o d 3 ) , n^ip) = 2 (mod3) . 

Its weight is 3, and a possible basis is { Λ , 1,11}. 
The operator "remembers" whether, in adding the numbers x^, 

corresponding to the input word χ(1)...χ{μ), there is a carry operation 
in the highest-order {(μ + l)-th) digit or not. Its weight is 2 and a basis is 

1 
^ ' 1 
As for the operator Γ7, it can be shown that all input words are pair-

wise indistinguishable—we leave the proof to the reader. Thus, the weight 
of T7 is 00; the only basis is the set of all input words. 

The operators Tg and Tg have weights 2 and 3, respectively. Possible 
bases are { Λ , 1} and { Λ , 0 , 1 } , respectively. 

It is clear from these examples that the weight of an operator is, in a certain 
sense, a quantitative measure of its "internal" memory. For example, the 
value of this parameter figures in the following simple theorem. 

THEOREM 2.2. An ω-word operator Τ of weight k transforms any periodic 
ω-word χ {in its domain) with period η into an (ultimately) periodic ω-word y 
with period η' k-η. 
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Proof. Let χ = ppp..., where ρ is a word of length η. Let p^ denote the 
empty word, f the word pp...p (s times). The sequence p^, p\ p ^ , . . . , p*̂  
must contain two residually indistinguishable words, say p^ and p^ ν > μ. 
The ω-word )^ = Γχ has the form S 1 S 2 5 3 . . . , where each 5; is of length η. 
Since p^ and p" are indistinguishable, the ω-words ŝ  + i S ^ + 2 - - and 
•̂ v + i ^ v + i · · equal. Let r denote the word 5 ^ + i S ^ + 2 · · ·-^vi then the 
ω-word y has the form S1S2 ... s^rrr..., and the length of the word r, 
which is (v — μ)η, is at most kη. Q.E.D. 
The ω-word y = Tx has the form S 1 S 2 S 3 . . . , where each Sf is of length η. 

Let Γ be a constant operator generating the ω-word sppp...; it is easy 
to see that the weight of the operator Tis at most the sum of the lengths of 
s (the phase) and ρ (the period). Combined with Theorem 2.2, this directly 
implies 

C O R O L L A R Y . A constant operator has finite weight if and only if its output 
ω'Word is periodic. 

In the previous section we saw how a nonanticipatory operator Τ is 
defined by a (possibly partial) tree. Each input word in the domain of Τ 
is associated with a well-defined path from the root of this tree ν and a well-
defined vertex at which this path ends. N o w the branch of the tree ν issuing 
from this vertex is itself a tree; it defines the corresponding residual operator. 
This interpretation enables us to carry over all terms and notation intro
duced above for operators, input words and residual operators (weight, 
distinguishability, basis) to the tree v, its vertices and branches. For example, 
the vertices q2 and in the finite tree for the operator T¿ (Figure 14b) 
are indistinguishable, while the vertices ^o»<?4 f o ™ a basis; the tree has 
weight 2. In the finite tree of Figure 14c, which has weight 3, the vertices 
Qo^^i^Qi form a basis; the vertex q^ is indistinguishable from both qQ 
and q2, and the latter are distinguishable. 

The final vertices are indistinguishable from any other vertices, since 
they are roots of empty branches, describing nowhere defined operators. 

11.3. Equivalent automata 

W e shall call two initialized automata <5öi', ^0) and <SR", ^0 ) equivalent 
if they realize the same operator: TiW,qQ) = T(W\qQ). T w o (nonini-
tialized) automata W and W are said to be equivalent if any operator 
realizable in one of them (by a suitable initialization) is realizable in the 
other (suitably initialized). Obviously, isomorphic initialized (noninitialized) 
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automata are equivalent; it is easily seen that the converse is in general 
false. In studying the behavior of automata it is sometimes necessary to 
replace an automaton by an equivalent automaton which is more manage
able in the situation in question. This section presents a few simple relevant 
concepts and facts. 

Call two states qi, qj of an automaton SR indistinguishable (notation: 
qi ^ qj(W)) if the operators r(aR,^¿) and T{W,qj) are indistinguishable; 
otherwise ¿̂ and qj are distinguishable. Indistinguishability is an equivalence 
relation which partitions the state set β of the automaton into indistin
guishability classes; the number of these classes (possibly oo) is termed 
the reduced weight of the automaton SR. The unqualified term weight of an 
automaton will be used as a synonym for the number of its states. 

A (noninitialized) automaton SR is said to be reduced if all its states are 
pairwise distinguishable. For a finite automaton SR, this is clearly true if 
and only if the weight of the automaton is equal to its reduced weight. 
An initialized automaton (SR, ̂ fo> is said to be reduced if: 

a) the (noninitiahzed) automaton SR is reduced; 
b) all states of SR are accessible from q^ (i.e., for every state q there is 

an input word taking q^ to q). 
Note that a tree always satisfies the second condition, but not, in general, 

the first. 
Let SR, SR' be two reduced equivalent automata. It is easy to see that 

the mapping φ which takes each state ^ of SR to the state of SR' such that 
T(SR',<7') = r(SR, ^ ) is an isomorphism. The situation is analogous for 
r(SR',^') = T(SR,^) is an isomorphism. The situation is analogous for 
initialized automata. Consequently, reduced initialized {noninitialized) 
automata are isomorphic if and only if they are equivalent. 

The following proposition also holds: 
For any automaton SR = < β, X , 7, Ψ, Φ > , there exists an equivalent 

reduced automaton SR' = <Π, Χ, Y, Ψ', Φ'>. 
T o convert SR into SR', indistinguishable states must be merged. In other 

words, to each class Ki of indistinguishable states in S)i corresponds one 
state of SR', which we denote by π,. Let ¿̂ and qj be arbitrary representatives 
of the classes Kj such that ^{qi, a) = qj, Φ{qi, a) = b. Then we define 
Ψ{πi,a) = πj,Φ'{πi,a) = b. 

It is easy to see that 
1) the definition is independent of the choice of representatives; 
2) the automaton SR' obtained by this "factorization" procedure is 

equivalent to SR and is reduced. 
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N o w let <9W, ^o> be a given initialized automaton. If 9Ji has states in
accessible from qo, consider the subautomaton W = iQ\X, Y, Ψ, Φ > , 
where Q is the subset of Q consisting of q^ and all states in Q accessible 
from qQ. It is clear that <9M', ^ o ) and <9Jl, ^ o ) are equivalent. By carrying 
out any required merging of indistinguishable states in W, we finally get 
a reduced initialized automaton equivalent to <50ϊ, ^ο>· 

It is easily seen that this procedure is effective whenever the automaton 
9W is finite. For let k denote the number of its states. First, inaccessible states 
may be found by inspection of all simple paths of length at most k issuing 
from the initial vertex of the diagram of Second, for any pair of states 
q and q' one can effectively determine whether they are distinguishable. 
This ensues from the following easily verified proposition: 

A . Let q and q' be two distinguishable states of an automaton SOI. Then 
there exists an input word of length at most k^ for which the initialized autom
ata <9Jl, qy and <SDl, generate different output words. 

Thus, in order to determine whether q and are distinguishable it suf
fices to check the outputs of the automata <SW, ^ > and <9W, for input 
words of length at most k^. 

Let us prove Proposition A . 
Suppose that a word χ — x ( l ) x ( 2 ) . . . χ( ί ) is transformed by the automata 

<aR,g> and <ϊ«,^'> into different words 

y = y{\)...y(f) and y = / ( I ) . . . / ( i ) ; 

in the process, the automata <9Ji, and <9Jl, <7'> go through sequences 
of states q{\) = q, ^ ( 2 ) , . . . , ^ ( i - f 1) and ^ ' (1) = ^', ^ ' ( 2 ) , . . . , + 1), 
respectively. W e may assume that the last letters y{i) and y'(t) are distinct; 
otherwise, for some τ, τ < t, we would have y (τ ) Φ y'(τ), but then there 
would be a shorter word x ( l ) . . . χ ( τ ) for which the last output letters are 
distinct. Assume that, for some T I and T 2 (τ^ < T 2 ̂  ί) we have ^ ( T I ) = 
= q{T2) and q'{Ti) = q'iTj); then, by dropping the subword X ( T I ) . . . 

X ( T 2 - 1) from the word x ( l ) . . . X ( T I ) . . . X ( T 2 ) . . . x(t) we obtain a shorter 
word X ( 1 ) . . . X ( T I — 1 ) X ( T 2 ) . . . x ( 0 which is transformed into different 
words 

y{l)...y(T, - l)yÍT2)...y{t) 

and 

/ ( I ) . . . y (τ ι - i ) y ( T 2 ) . . . y ( í ) -

Thus, we may assume that for any Τ ι , T 2 ( T I < T 2 ^ i) the pair < ^ ( T I ) , ^ ( T I ) > 
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is distinct from the pair < ^ ( T 2 ) , ^ ' ( T 2 ) > . Since the number of all different pairs 
of states is ^ 2 , the length of the word χ cannot exceed k^. 

THEOREM 2.3. For any initialized {noninitialized) automaton, there exists 
a unique (up to isomorphism) equivalent {reduced'] automaton. There is an 
algorithm which, given any finite automaton (initialized or noninitialized), 
constructs the equivalent reduced automaton. 

If the reduced automaton is finite, the number of its states is strictly 
smaller than the number of states in any other equivalent (nonisomorphic) 
automaton. N o analogous comparison of cardinalities is valid for infinite 
reduced automata; nevertheless, it is clear that the reduced automaton 
is more "economical" than other equivalent (nonisomorphic) automata 
in a natural sense. For this reason, the procedure whereby an equivalent 
reduced automaton is derived from a given automaton is known as min
imization. The above minimization algorithm is quite cumbersome, mainly 
because one must inspect all words of length k^ to determine whether states 
are distinguishable. W e shall see later (Section 11.13) that in effect the number 
of words inspected can be substantially reduced. Moreover, there are much 
simpler algorithms for smaller classes of automata. Special minimization 
procedures lie beyond the scope of this book; some examples will be given 
in Sections II.5 and 11.13. 

Though in practice one is always interested in minimizing automata, 
in the theoretical context it is sometimes convenient to use equivalent 
automata having perhaps more states than the original automata but 
possessing certain other useful properties. In such cases, the merging opera
tion is replaced by what is, in a certain sense, its inverse: splitting of states. 
This is the case when one replaces an arbitrary automaton by an equivalent 
Moore automaton (for the definition see Section 0.2). 

THEOREM 2.4. For any automaton SR, there is an equivalent Moore autom
aton ysi. 

Proof. Let SR have states q^.qi^ - - - ,qk and output letters J i , > ' 2 » · · » 

For each pair {q^, y^y, define q^j to be a state of W. The functions Ψ' and 
Φ' of SR' are defined in terms of Ψ and Φ as follows. 

Let 

Ψ(9ρΧ) = ^5, Φ (^ί ,Χ) = Λ . 

Then, for any j , 

'y'{qip^) = qsr^ Φ'(^ί,.,χ) = y,. 
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All edges in the diagram of W which are incident on a vertex q^^ are 
assigned the output label y^, irrespective of the other index of the state. It 
is easily seen that, for any i, 

Γ(9Η, q,) = T ( S R ' , qn) = Τ ( ϊ « ' , q,^) = . . . = T{W, qJ, 

and so 95Ϊ and W are equivalent. 

R E M A R K . If 30? is a finite automaton with k states and η output letters, 
the above procedure effectively constructs an automaton W with nk 
states. 

Apart from the usual concepts of equivalence, indistinguishability, etc., 
certain analogues of these concepts are convenient for Moore automata. 
The definitions follow. 

T w o initialized Moore automata <9Ji,^o> and {^Jl^qO} are said to be 
Moore-equivalent if they are equivalent in the usual sense and, in addition, 
'^(^o) = ^'Wo) (where λ, λ are the shifted output functions). States qi,qj 
of a Moore automaton SR are Moore-indistinguishable if the initialized 
automata <9W, and <SR, are Moore-equivalent. Finally, a Moore 
automaton 9M is Moore-reduced if all its states are pairwise Moore-distin
guishable (for an initialized automaton, add the usual requirement that all 
states be accessible from the initial state). Following the arguments which 
have lead to Theorem 2.3, we easily verify that they carry over in a natural 
manner to Moore automata, provided we prefix the qualification "Moore" 
to the terms "equivalent," "indistinguishable," "reduced." W e thus have 
the following analogue of Theorem 2.3. 

THEOREM 2.3'. For any initialized (noninitialized) Moore automaton, there 
exists a unique (up to isomorphism) Moore-equivalent reduced automaton. 
There is an algorithm (minimization algorithm) which, given any finite Moore 
automaton, constructs an equivalent reduced Moore automaton. 

II.4. Comparison of the weight of an operator with the weight of an automaton 
realizing it 

Let Γ be a nonanticipatory (everywhere defined or partial) operator, and 
<SR, ^ o ) an initialized automaton realizing T. W e wish to examine in 
greater detail the connection between the weight of Τ and the number of 
states of SR. If the words Pi,P2 are residually distinguishable by the operator 
T, then, as is easily seen, they take the initial state q^ to different (even 
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distinguishable) states. Consequently, the weight of the automaton 9W 
(even its reduced weight) cannot exceed the weight of T. Is any operator Τ 
of weight μ realizable in a suitable automaton of the same weight? That the 
answer to this question is positive for everywhere defined operators follows 
directly from the fact that the minimization procedure described above is 
applicable to the tree of the operator T. Since all vertices (states) of a tree 
are accessible from its root (initial state), it follows that the reduced autom
aton may be constructed by simply merging indistinguishable states (vertices) 
of the tree. Recall that the vertices (states) of a tree are indistinguishable 
if and only if the corresponding words are residually indistinguishable with 
respect to T. Thus, in the reduced automaton reahzing Τ there will be ex
actly as many states as there are residual indistinguishability classes for T. 

Thus, we have two ways of associating an initialized automaton with 
an everywhere defined operator: trees and reduced automata. In a certain 
sense, these represent two extremes. While in trees new states are introduced 
"generously," wherever possible, the new states in a reduced initialized 
automaton are introduced "economically," only when absolutely necessary. 
The above procedure for converting a tree into an equivalent reduced autom
aton is called contraction of an infinite tree. If Τ is an operator with in
finite weight, its tree may already be a reduced automaton, and so contrac
tion yields no economy. This is the case for the tree of the operator Tj 
(serial multiplication), since any two input words are residually distin
guishable by Tj and so any two states in its tree are distinguishable. In the 
general case, however (in particular, when Τ has finite weight), there are 
many situations intermediate between trees and reduced automata, involv
ing incomplete merging of indistinguishable states. 

EXAMPLES. Consider the operators T2, T5, ; we defined bases for these 
operators in Section II.2. This makes it possible to associate the states of 
the corresponding reduced automata with the elements of the bases (since 
these words are representatives of the indistinguishability classes). In all 
three cases the initial state is the empty word Λ . Let us define the next-
state function Ψ and output function Φ for these operators. 

1) Γ2. Let qo be associated with the empty word Λ ; ^fj, ^2» · · · with the 
words 1, 1 1 , . . . ; ^ _ 2 , . . . with the words 0 ,00, . . . Then ψ{q^,0) = 
= qs-u ^ ( ^ s , 1) = ^s+i- Let Ψ ( ^ „ a) = qj{a = 0,1); then, for α = 0,1, 
Φ(qs,a) depends only on qp so that the reduced automaton is a Moore 
automaton. In fact, if j > 0, then Φ(^^, α) = 1; otherwise Φ{q,, a) = 0. 

2) T5. Let qo.qi.qi correspond to the words Λ , 1,11. Then Ψ(<?5,0) = 
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* Translator's note: This term is used in a different sense in Western literature (see Chapter 

I V ) . 

= q^; 1) = <?s+i(mod3)- Again we obtain a Moore automaton, with 
Φ(qs,a) = 1 if and only if Ψ ( ^ „ α ) = i/o· 

3) 7^. If qo and q^ denote the states corresponding to the words Λ and 

^, the required automaton is defined by Table 4 (p. 15). 

Hitherto all operators have been everywhere defined. W e now proceed 
to partial operators. It is immediate that if a partial operator Τ has weight 
μ, this no longer guarantees realizability in an automaton having μ states. 
An example is the operator Tg, whose weight is 2. If we extend this operator 
to an everywhere defined operator f (i.e., extend the finite tree of Figure 14 b 
to an infinite tree by suitably labeling the dashed edges), the operator Τ 
has weight at least 3. In fact, if the dashed edge issuing from the vertex ^2 
is labeled zero, the vertices qo^q^-^qe become pairwise distinguishable; 
if it is labeled 1 the vertices qo, ^2» ^4 are pairwise distinguishable. 

In the sequel we shall be interested in partial operators satisfying the 
following condition: There exists a natural number h such that the domain 
of Τ is the set of all words of length at most h. These operators are sometimes 
called multiple experiments of length h* They are defined by finite trees 
of height h which we shall call complete trees of height h. (The operator Tg 
was first defined only for words of length 3, but it may be regarded as a 
multiple experiment if we extend the definition to all possible initial seg
ments of the words in its domain. The resulting complete tree of height 
3 is illustrated in Figure 14c.) 

W e shall now describe a procedure whereby, given any multiple experi
ment (or finite complete tree) of weight μ, one can construct a finite autom
aton with μ states that defines it. This automaton must obviously be 
reduced. In general, there may be several reduced (nonisomorphic) autom
ata with μ states defining the same multiple experiment of weight μ; 
when this is so, our procedure will yield all of them. The procedure itself 
is quite simple, and we shall confine ourselves to a description, omitting 
the formal justification, which—for all its transparency—is extremely 
lengthy. 

Given a finite complete tree v. Our procedure will convert the tree ν 
into the diagram D of the required automaton (in general, several such dia
grams!). Number the vertices ao, a^, a 2 , . . . of the tree ν in order of increasing 
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rank; to fix ideas, suppose the vertices within each rank to be ordered in 
the same way as in the corresponding level (from left to right). This means 
that the input words represented by these vertices are ordered lexicograph
ically. 

Step 1 {Selection of the vertices of D). Going through the sequence of 
vertices ao, a^, . . . in order, delete every vertex which is indistinguishable 
from a vertex occurring earlier in the sequence. It is clear that the remaining 
vertices (one of which must be the root of the tree v) are pairwise distinguish
able in v; these are precisely the vertices of D. 

Step 2 {Connection of edges). N o w consider the edges of ν (together with 
their labels) issuing from the vertices selected for D, and the set S of all 
vertices on which these edges are incident. Consider an edge going from 
a vertex a e D to a vertex ße'ß.li β also belongs to D, the edge is directed 
to β. But if jß φ D, the set of vertices selected for D must contain a vertex y 
(possibly more than one!) which is indistinguishable from β. Direct the 
edge to one of these vertices y. 

This completes the description of the procedure, which we shall call 
contraction of a finite tree. The procedure is unambiguous if the following 
condition holds: 

Contraction-uniqueness condition: For every vertex α in 93 there is a 
unique vertex in D which is indistinguishable from a. 

If this condition does not hold, then by varying the connection of edges 
one obtains a finite family of automata. 

It is obvious that the weight of any contraction of a tree cannot exceed 
the weight of the tree itself, i.e., the weight of the given operator T. On 
the other hand, it is not hard to show that any automaton obtained in 
this way indeed realizes the operator T, whence it follows that the weight 
of the automaton is at least equal to that of T. Consequently, the weight 
of the automaton is exactly that of T. In other words, selection of the vertices 
of D in effect constructs a basis of the tree v. Now, once a basis of ν has 
been selected in Step 1, the most natural admissible connections of edges 
which give the automaton weight μ are precisely those indicated in Step 2. 
We can now summarize the relation between the weight of a nonanticipatory 
operator and the weight of an automaton realizing it: 

THEOREM 2.5.(7) The weight of any automaton realizing an operator of 
weight μ is at least μ. 

(77) Any everywhere defined operator Τ of weight μ is realized by a {unique) 
reduced automaton of weight μ. 
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(///) Any multiple experiment of weight μ is realized by at least one re
duced automaton of weight μ. 

{IV) There is an algorithm which, given any multiple experiment of 
weight μ, constructs all {nonisomorphic) reduced automata of weight μ that 
realize it. 

T o conclude this section we illustrate the contraction procedure for the 
tree of Figure 15a. The weight is 5; the basis contains the vertices 
<?ι»'32»<?3»<?4»^5· The other vertices of the tree are labeled with the states 
of the basis from which they are indistinguishable. Figure 15b illustrates 
the corresponding contraction. 

II.5. Representation of languages (ω-languages) and realization of operators. 
The uniformization problem 

The behavior of an outputless automaton has been defined in terms of 
the languages (ω-languages) that it represents, the behavior of an autom-
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Figure 15 
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aton with output in terms of the operator that it realizes. There is a natural 
connection between these concepts of behavior which we shall briefly 
consider in this section. The connection is based on the routine correspon
dence between sets and functions: any set (regarded as a subset of some 
universal set U) is uniquely determined by its characteristic function, while 
any function / is uniquely determined by a set of "points"—its graph. 
In our case, the role of sets is played by languages (ω-languages), that of 
functions by operators. 

First note that, in analogy to the situation for anchored outputless 
automata, one can define representation of languages and ω-languages 
by nonanticipatory operators (and thereby also by automata with output). 

With each subalphabet F of the output alphabet 7 of a nonanticipatory 
operator Τ one can associate a language TY': x{l),.. x{t)E TY' if and only 
if Τ transforms this word into an output word y {!)... y (t) such that y(t) e Y\ 

W e shall then say that Τ represents the language TY' by the set of outputs 
Y' (the output letters of Γ are "used" by Τ to accept words of TY\ the 
output letters of ~ | Y' to reject words of "Ί Γ 7 ' ) . For example, the operator 
T2 accepts by output 1 those words over the alphabet { 0 , 1 } which contain 
more occurrences of 1 than of 0. 

Now, with any system ¿ = { 7 ' } of subalphabets of the output alphabet 
7 the operator Τ associates an ω-language Tb, consisting of all ω-words 
X = x ( l ) x ( 2 ) . . . x ( i ) . . . which Τ maps onto ω-words y = y ( l ) y ( 2 ) . . ,y{t)... 
such that \\mysb. W e shall say that Τ represents the ω-language Tb 
(accepts the words of Tb and rejects the words of HTfo) . 

These terms, which apply to nonanticipatory operators, may also be 
defined for initialized automata, via the operators that the latter realize. 
Thus, we shall say that an automaton <SDÍ, ̂ 0 ) represents a language 91 
by outputs 7' if the operator Τ(ϊ)1, ^0) represents the language by out
puts Γ . 

There is a natural and obvious connection between representation of 
a language (ω-language) by an anchored outputless automaton and its 
representation by outputs (sets of outputs) of a Moore automaton. With 
any outputless automaton 9M = < β , X , Ψ > one can associate a Moore 
automaton W = iQ,X,X Ψ , Φ > by adjoining an output alphabet 7and 
an output function Φ, as follows: a) If 6 = {^o» · · · ^ ^ k } » then 7 = 
= {yo^yi^'"^yk}' Thus each state (set of states) has a corresponding 
output letter (subset of output letters), b) If Ψ(^ί, χ) = qp then Φ(^,., χ) = y ρ 
N o w suppose that 91 = ω(9Κ, (jo, 6') and Γ corresponds to Q\ Then the 
initialized Moore automaton <9Dl', ^o> represents the same language 91 

file:////mysb
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by outputs Υ'. In the same way, given an ω-language 91 = Ω(ϊ ) ϊ , ^ο» ^ o ) ^ 
if Κ is the system of subalphabets of Y corresponding to the macrostates 
of ε , the initialized Moore automaton <30ί', ̂ o> represents the same 
ω-language 91 by the system 

N o w consider a Moore automaton 91 = (Q,X,Y, Ψ, Φ > . By disregard
ing the output alphabet Y and the output function Φ we get an outputless 
automaton = < 6 , X , Ψ > . Recall that, since 91 is a Moore automaton, 
Φ(ς, χ) = λ[Ψ(q, χ ) ] , where A is a mapping of Q into Y. W e can thus as
sociate with each output letter ye Y a subalphabet X~'^y, the complete 
preimage of y in β ; this also defines a macrostate for each subalphabet 
of Y 

Suppose that <9l, ^o> represents a language 91 by outputs Υ'. Let Q' 
denote the macrostate corresponding to Υ'. It is then obvious that this 
language is represented by the anchored automaton <?ί, qo, Q'}. Similarly, 
if the automaton < 91, > represents an ω-language 95 by a system of sub-
alphabets (£, then = n{%qo,d')^ where d' corresponds to (£. W e have 
shown (Theorem 2.4) that any automaton with output 9W is equivalent to 
some Moore automaton 9i; moreover, if 9K is finite so is 91, and it is effective
ly constructible from 9JÍ. W e summarize these arguments in the following 
proposition. 

THEOREM 2.6. The class of languages (co-languages) representable in finite 
automata with output coincides with the class of languages (ω-languages) 
representable in finite autputless automata. There is an algorithm which, 
given any language (ω-language) in one of these representations, constructs 
the other representation. 

This theorem reveals that the theory of outputless automata presented 
in Chapter I is in effect the theory of Moore automata. W e can therefore 
return to certain questions touched upon in that chapter, whose solution 
is treated with greater facility in terms of automata with output. For ex
ample, consider the minimization of an anchored finite automaton: Given 
a finite anchored automaton <9W,<?o»6'>. to construct an equivalent 
anchored automaton with the minimal number of states. This problem re
duces in an obvious manner to the minimization problem for the associated 
Moore automaton. Thus the minimization algorithm for anchored autom
ata is a simple combination of the algorithms from Theorems 2.6 and 
2.3'. 

The procedure described in Theorem 2.3' for identification of indistin
guishable states is rather unwieldy. This is precisely the reason why, in 
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certain cases, indistinguishable states are conveniently envisaged in terms 
of properties of the diagram. W e used this device in formulating our rules 
for simplification of sources (Section 1.5). Theorem 2.3' implies that the 
rules for merging of absorbing states or equivalent states are valid. 

E X A M P L E . Minimization of the anchored automaton <R, W i , W 4 > (Figure 
13b). The Moore automaton associated with <R, W i , W 4 > is <S, w ^ ) 

(Figure 13c), in which the edges ending at the vertex W4 are assigned the 
output label 1 and all other edges the output label 0. The following pairs 
of indistinguishable states are merged in <S, W j ) : 

1) W3 and (corresponding to the merging of the absorbing vertices 
W 3 , W 6 in the anchored automaton <i?, W i , W 4 > ) ; 

2) W2 and W5 (w2 and W5 are equivalent); 
3) W j and W4 (it is easily seen from the diagram of Figure 13c that the 

operators 7 (5 , w j and Γ ( 5 , W 4 ) coincide). 
The result of these merging operations is a Moore automaton < S', W4 > 

(Figure 1 3 / ) capable of three states, any two of which are distinguishable. 
By erasing the output labels and making W4 the final state, we get the an
chored automaton <R", W 4 , W 4 > Figure 13 d). 

Thus the automaton <R, w^, W 4 > of Figure 13b has been converted into 
an equivalent minimal automaton <R", W 4 , W4} (Figure 13 d). 

If no restrictions are imposed on the nonanticipatory operator T, any 
language 91 is representable by a suitable operator Τ with a two-letter 
output alphabet, such as 7 = { 0 , 1 } . In fact, we need only define the opera
tor Τ by setting y{t) = ί if and only if x ( l ) x ( 2 ) . . . x ( i ) e 9Í. Hence the 
class of all nonanticipatory operators with given alphabets X and X where 
Y contains at least two letters, has the cardinality of the continuum; it 
follows that the "overwhelming majority" of these operators are ineffective. 

Nonetheless, it is clear that any language 91 which is representable in 
a finite automaton is also representable in a finite automaton SR with 
output alphabet consisting of only two letters. W e may assume that SR 
accepts words of 9Í by output 1 and rejects words of ~Ί 91 by output 0. 
That this is possible follows from the fact that, in constructing the Moore 
automaton <SÍR', ς[ο> for an anchored automaton <30ϊ, ^ o ^ ö ' ) » we could 
have defined the output function 0{q, x) by setting Φ{q, x ) = 1 if Ψ((?, χ) e Q 
and Φ{q, x ) = 0 otherwise. 

Let Τ be a nonanticipatory operator with output alphabet { 0 , 1 } which 
represents a language 91 by output 1. It is easy to see that residual indistin
guishability of two words Pl , P2 by Τ means that, for any nonempty word r. 
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P i r e S l if and only if p2re^. N o w this recalls the definition (Chapter I ) 
of the left interchangeability of two words and ρ2 with respect to a lan
guage 9Í, except for one point: in Chapter I the word r may be empty, 
so that the words p^ and P2 themselves must both either belong or not 
belong to 9Í. Thus, left interchangeability with respect to 3Í implies residual 
indistinguishability by the operator Τ The following simple example will 
show that the converse is not necessarily true. Consider the language 2Í 
over the alphabet {a,b} consisting of all words ending with the letter b, 
and a nonanticipatory operator Τ (which is even a truth-table operator) 
accepting these words. It is obvious that any two words are residually in
distinguishable with respect to T, but the one-letter words a,b are not 
left interchangeable. 

W e have thus worked out a complete characterization of representability 
in terms of operators. W e shall now attempt the converse: to characterize 
operators in terms of representability. Define the graph* of the operator 
Τ to be the set of all pairs <x, y > such that y = Tx. If x, y are ω-words or 
words of the same length, we can consider the coupling <χ(1)} ; (1 )> · 
• <x(2)y(2)> . . . The set of all these ω-words (words) forms an ω-language 
(language), which we shall also call the graph of the operator. The follow
ing assertion is evident: 

// the operator Τ is realizable by a finite automaton, its graph is represent
able in a finite automaton. 

T o fix ideas, we shall consider only ω-word operators. Let T = T(9W, ^0)· 
If we regard the diagram of SR as a source over the alphabet Ζ χ X the 
graph of Τ will coincide with the ω-language carried by the flow consisting 
of all possible ω-paths through q^. Thus the graph of Τ is representable 
in the source < SR, ^ >»where £ consists of all subsets of the set of vertices 
of SR. It is natural to ask whether the converse is true: 

A . / / the graph of an operator Τ is representable in a finite automaton, 
is the operator Τ realizable by a suitable finite automaton! 

The following simple example shows that, if no additional restrictions 
are imposed, the answer is negative. Consider the ω-language SR over the 
alphabet { 0 , 1 } χ { 0 , 1 } represented by the source of Figure 15c, where 
qo,qi are the initial vertices and {^0} and {^2} the limit macrostates. 
For every ω-word χ over the alphabet { 0 , 1 } , there exists a unique ω-word 
y over the alphabet { 0 , 1 } such that <xy > G SR: for 0 0 . . . 0 . . . (all zeros) 

* Translator's note: Not to be confused with the term from Graph Theory. The ambiguity 

is unavoidable in English; Russian has two different words. 
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IL6. More about decision problems of finite automata 

In Section 1.4 we touched upon this question with regard to outputless 
automata. Now, after our discussion of the connection between the behavior 
of outputless automata and automata with output, it should already be 
clear how one formulates the related concepts and results for the properties 
of finite automata with output. As an example, consider the following 

the corresponding ω-word y is 0 0 . . . 0 . . . ; for every other χ the corre
sponding y is (all ones). However, it is easy to see that the 
operator induced by this correspondence is an anticipatory operator 
(even with unbounded anticipation!), and so it cannot be realized by any 
(even infinite) automaton. 

A natural modification of question A runs as follows: 
A ' . / / the graph of a nonanticipatory operator is representable in a finite 

automaton, is the operator realizable by a finite automaton! 
The answer to this question is positive, and a proof could be given here. 

However, we find it more convenient to treat the question in a more general 
framework: the problem of the uniformization of representable ω-languages. 

Given an ω-language § over an alphabet Ζ χ y An operator Τ is 
said to uniformize § if its graph is contained in § . The preceding example 
shows that, in general, existence of an operator (there may be several) 
which uniformizes a finite-state ω-language § does not guarantee the ex
istence of a finite-state operator (or even a nonanticipatory operator 
realizable by an infinite automaton) which uniformizes § . 

The uniformization problem is as follows. 
Given a macroanchored finite automaton <S[R,qo,^} , 
( I ) determine whether there exists a finite-state operator Τ uniformizing 

the ω-language Ü(9W,^o»6^). 
and, if so, 
( I I ) construct a finite automaton realizing this operator. 
A solution of this problem would yield an algorithm which, given any 

automaton (9R,qQ,(iy, provides an answer to the question ( I ) and, in case 
of a positive answer, constructs a suitable automaton. Construction of 
a finite-state uniformizing operator (when this is possible) is of fundamental 
importance in the synthesis theory of automata. The various questions 
arising in this connection will be treated using a proof of Biichi and Land-
weber which employs McNaughton's suggested game-theoretic interpreta
tion. 
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* W e use the abbreviated notation % ω(9^1), omitting the initial state, output subalphabet, 
etc. 

problem. Given a finite automaton <9Κ, <?o>> to determine whether it can 
generate (for suitable input) an output ω-word containing infinitely many 
occurrences of a letter ZQ. Consider the ω-language L which SR represents, 
with initial state qQ, by the system G of all output subalphabets containing 
the letter Z Q . It is clear that our original question may be reformulated as 
follows: Is the ω-language L nonempty? T o find the answer, we need only 
construct (effectively!) an outputless automaton representing the ω-lan
guage L(see Theorem 2.6, Section II.5) and apply the algorithm of Theorem 
1.5 (Section 1.4). 

W e consider another example, which involves decidability of the proper
ties of a family of automata. Given automata <SRi ,^o> and <9ΡΪ2,πο> 
with common input alphabet, it is required to determine whether there 
exists an input word ξ for which both automata produce the same output 
word. That this property is effectively decidable for pairs of automata is 
quite obvious, even trivial, for if there exists such a word ξ = x ( l ) x ( 2 ) . . . x(5) 
then the one-letter word x ( l ) alone generates the same (one-letter!) output 
word at the output of both automata. 

N o w consider the following, more complicated property for an ordered 
triple of finite automata <9l ,SRi ,SR2>: The language* ω(91) represented 
by 91 contains a word which both automata 9Ri and SR2 transform into 
the same output word (assume, say, that 9t is an anchored outputless autom
aton). The proof that this property is effectively decidable is also quite simple, 
though not as trivial as in the previous example. It suffices to verify that, 
given the pair of automata SRj and 9JI2, one can effectively construct an 
automaton 9R such that the language ω(9ΪΙ) consists of precisely those words 
for which 9Ri and 9R2 produce the same output. One then constructs an 
automaton representing the intersection of the languages ω (SR) and ω (91) 
and determines whether it is empty. The algorithm constructing SR from 
the pair SRi,SR2 involves no difficulties, but nevertheless we shall describe 
it in sufficient detail to emphasize its simplicity. First construct an autom
aton S5i with the same input alphabet X as the automata SRi,SR2 and 
output alphabet { 0 , 1 } , which functions as follows: let TjX, Γ2Χ, f x be the 
words into which the automata SRi,SR2,50Í, respectively, transform the 
input word x; then f x ends with 1 if and only if T^x and T2X end with the 
same letter. The states of TO are the pairs iq,n}, where ^ is a state of SRi 
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Φ [ < ^ , π > , α ] = for yφ^. 

Now, starting from the initiahzed automaton <50l,<(?o,7ΓΟ>>, construct 
an automaton <9Jl, po> which functions as follows: If 501 transforms an 
input ω-word x{i)x(2)... x{t)... into an output ω-word y(l)y{2)... 

. . . , and >'(io) is the first occurrence of the letter 0, then 9W transforms 
the same input ω-word into the ω-word y{l)y{2)... y{tQ — 1 )00 . . . (zeros 
ad infinitum). It is clear that the finite automaton 9JÍ represents the required 
language by the output 1. 

Thus, the above property of triples of automata is effectively decidable, 
and the algorithm is fairly simple. This property is nevertheless instructive, 
in that a slight (at first sight) modification thereof leads to a property of 
triples of automata which is no longer effectively decidable. Fix some letter 
from the output alphabet of the automata 9Wi,9JÍ2 ; denote this letter by e. 
Suppose that 93? j and 93l2 transform an input word χ into words y^ and 
y2, respectively. It may happen that deletion of all occurrences of e from 
y I and y 2 yields identical nonempty words / ι , / 2 · W e shall then say that 
9Jli and 9^2 transform the word χ into the same word "up to c." N o w con
sider the following property of triples of automata % 93ii, 9JÍ2: There exists 
a word χ in the language ω (91) which 9Mi, 9JÍ2 transform into the same word 
up to e. Thus, the only modification made in the original property is that 
identity of output words has been replaced by identity up to e. Nevertheless: 

THEOREM 2.7. There is no algorithm which, given a triple of finite autom
ata 91,9^1,9^2, determines whether the language ω (91) contains a word 
which the automata 9K 1,90^2 transform into the same word up to e. 

Our proof will be based on an important theorem of Post, which we re
call. Let X be some alphabet, and 

{a,,b,l(a2,b2),...,{as,K) (#) 

a sequence of word pairs over this alphabet. Fixing some finite sequence 
of indices ii,Í2,...,ik, where I ^ ij ^ s, we can form the word pair 
a¿^a¿2... α̂ ^ and bi^bi^... fe^^; we shall say that this pair corresponds to the 

and π a state of 9Κ2· Suppose that (q, a) = q\ Φχ (q, a) = y in the autom
aton and Ψ2(π, a) = π', Φ2(π, α) = ζ in the automaton 9512; then the 
next-state and output functions of 9W are defined by 

Ψ [ < ^ , π > , α ] = < ^ ' , π ' > , 

1 for y = ζ. 
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index sequence ii , ¿2, · · · , ik- The Post correspondence problem for the system 
of pairs ( # ) is to determine whether there exists a sequence of indices for 
which the corresponding words are identical. Post's Theorem (on the un-
decidability of the correspondence problem) states that there is no algorithm 
which, given the system ( # ) over an alphabet consisting of at least two letters, 
solves the correspondence problem. 

The Post correspondence problem for a system ( # ) of pairs has a natural 
interpretation in terms of coding theory. Let the indices 1, 2, 3 , . . . , 5 be 
letters of an alphabet Σ, which are encoded in one system as words a^, 
«2 , . . . over X, in another as words b^, ^2, · · · , over X . As usual, the 
code of a word ρ over Σ is the concatenation of the codes of its letters. Then 
the system ( # ) has a solvable correspondence problem if and only if there 
exists a word over X which has the same codes in both systems. 

Proof of Theorem 2.7. Given any system ( # ) , one can effectively con
struct a triple of finite automata 91, 9Ri, 9^2 such that the system ( # ) 
has a solvable correspondence problem if and only if the triple has the 
property mentioned in the theorem. The existence of an algorithm recog
nizing this property would imply the decidabihty of the Post correspondence 
problem, contradicting Post's Theorem. Thus, let us see how to construct 
91, 9Ri, 9^2 for a given system ( # ) . The input alphabet for 91, 9»^ 9«2 will 
be the set Σ ' consisting of the indices 1, 2 , . . , , 5 and the letter e. Without loss 
of generality we may assume that the alphabet X in which the words a^,..., 
tífj, b j , . . . , i>5 are written does not contain e. The output alphabet of 9)1 ̂  and 

will be X u {e}. Let r be the maximum length of the words a^,..., α ,̂ 
. . . , fc^; let 5i (or B) be the word obtained by adding as many ^'s to the 

right of the word (or fc^) as are needed to get a word of length r (of course, 
there may be a¿, bf such that = a,, fc, = ß,). W e now define 91, 9Ri, 9R2 as 
follows. 

1) The finite automaton 91 represents the language consisting of all words 

i^e... eÍ2e... e... i^e... e, 

r - l r - 1 r - 1 

where 1 ^ ^ s. 
2) The finite automaton 9R 1(9^2) transforms any word of the above form 

into the word äi^äi^...äi^ (β^^β^^... 5i J and is defined arbitrarily for all 
other words; for example, it might produce the output letter e when it 
finds that the input word is not of the required form. Since construction of 
automata satisfying conditions 1), 2) involves no difficulties, we shall omit a 
detailed description. It is also easy to see that the resulting finite automata 
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% $Ri, ΪΓΙ2 are the required automata for the system ( # ) . This completes 
the proof. 

In Chapter I we established several algorithms which, given finite autom
ata, either solve some decision problem or construct other finite automata. 
In some cases, the actual description and justification of these algorithms 
was quite complicated. In other cases, though the basic idea underlying the 
algorithm is simple and obvious, actual application is extremely cumbersome 
and practically unfeasible, owing to the wealth of alternatives to choose 
from. Nevertheless, the very existence of these algorithms has immense 
theoretical value, since, as evinced by Theorem 2.7, there may be no decision 
algorithm for very simple properties of finite automata. This remark applies 
equally well to the algorithmic problems of finite automata theory which 
we shall consider both here and in later chapters. 

II.7. Games, strategies and nonanticipatory operators 

W e shall consider a special class of games with perfect information, which 
we shall call simply games. These games have the following properties. 

1. Each game involves two players, called black and white. 
2. At each move, the player must choose (according to the rules of the 

game) one alternative from a set of ahematives A" = { x ^ , . . . , x ^ } for black 
and Y= { > ^ i , . . . , y , , } for white. The choice depends on the player alone, 
no random choice mechanism being involved. 

3. The first move is always made by black. Subsequent moves alternate 
between white and black; we shall call an entire sequence of moves a 
game history. There are two possibilities: 

1) Finite game history: The game stops after a finite number of moves 
(in accordance with the rules). Without loss of generality, we shall hence
forth assume that the last move in any finite game history is made by white. 
Thus any finite game history may be regarded as a word over the alphabet 
X X Y 

<x( l )>; ( l )> <x(2)> ; (2 )> . . .<x( í )}^( í )> , 
or a pair of words 

x ( l ) x ( 2 ) . . . x ( i ) , y{l)y{2)...y(t\ 

describing the moves of black and white, respectively. 
2) Infinite game history: The moves alternate indefinitely. Thus an in

finite game history may be regarded as an co-word over X χ Y 

<x( l )>; ( l )> < x ( 2 ) > ; ( 2 ) > . . . < x ( í ) y ( í ) > . . . 
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or a pair of ω-words 

x ( l ) x ( 2 ) . . . x ( i ) . . . , y(l)y{2)...y{t)... 

4. At each move, the player knows all the preceding moves in the game 
history (briefly, he has perfect information on the opening of the game). 

5. There are only two possible, mutually exclusive outcomes for any 
game history (according to the rules of the game): black wins or white wins. 

A game is said to be finite if there exists a constant μ such that no game 
history exceeds μ in length. 

Every finite game may be described by a tree whose edges are labeled 
with letters from X χ X such that edges issuing from the same vertex are 
differently labeled. The final vertices fall into two classes: those labeled 
© (white wins) and those labeled θ (black wins). At the beginning of the 
game, a counter is placed at the root of the tree. Black chooses a letter 
Xj G X, which is the X-label of certain edges on the first level—suppose 
these edges are labeled 

Then white chooses a letter which is the second component of one of these 
pairs, say y^. Once these two moves have been made, the counter is moved 
to the vertex γ at the end of the edge labeled <x¿ys>. N o w black chooses an 
X-label on an edge issuing from y, white chooses a suitable F-label, and the 
counter is moved again. The game ends when the counter first reaches a 
final vertex, whose label identifies the winner. Figure 16a illustrates the 

tree of a game with X = {a,b}, Y= {a, jS}. The game history ^ ^ is a 

winning history for black. It is clear that white could have won by choosing 
α instead of β on the last move. 

Games in which each history is infinite are naturally called infinite 
games. W e shall confine ourselves to infinite games in which, at each step, 
the player whose move it is may choose any alternative from one of the sets 

X = { x i , X 2 , . . . , x ^ } or y = { ^ ι , > ' 2 . · · · . ^ π } · 

A game of this type may be represented by an infinite tree in which there 
are mn edges issuing from each vertex, labeled with all possible pairs {xiyj}. 
Thus, when X and Y are fixed, infinite games may differ only in the set of 
winning game histories for white;* this set is an ω-language over the alphabet 

* Or, equivalently, the complementary set—black's winning game histories. 
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Figure 16 

X X Y. Conversely, any ω-language 9) over X χ 7 defines an infinite game 
(denoted by § ) —the game for which § is the set of winning histories for 
white. In this sense one can speak of the game-theoretic interpretation of 
ω-languages. 

The most important concept in the theory of games is the strategy. 
In our case, white's strategy indicates, for every possible opening, the choice 
of an admissible alternative. Since black makes the first move, his strategy, 
apart from indicating the choice made on his next move (and this choice 
depends on the opening extending up to the time in question), also indicates 
his first move. W e first consider infinite games. White's strategy is then 
precisely a nonanticipatory operator, transforming "input" ω-words 
X = x{\)x{2)... (black's possible sequences of moves) into "output" words 
y = y{\)y{2)... (white's "answering" moves). Black's strategy is a non
anticipatory operator, transforming "input" words y = y{l)y{2)... into 
"output" ω-words χ = x ( l ) x ( 2 ) . . . with the additional condition: for any 
t > 1, x ( i ) depends only on y{\)y{2).. .y{t — 1), and x ( l ) is a constant, 
independent of the input. Such an operator is known as an operator with 
delay. The converse assertions are also valid: any nonanticipatory operator 
y = Τ "χ is a strategy for white, and any operator χ = Ty with delay is 
a strategy for black. 

In particular, the operator T" (or T) may turn out to be finite-state. 
In this case we shall also call the strategy finite-state. Note that a finite 
(initialized) automaton realizing a strategy for black is an automaton with 
delay (see Section 0.2). 

For finite games, strategies are again nonanticipatory operators, but they 
are defined only over a finite set of words. Any such operator may be 
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extended to a finite-state operator defined on the entire set of input words 
(therefore also on all input ω-words). For this reason, finite-state strategies 
for finite games are of little interest. 

Once black and white have chosen their strategies Τ and T'\ respectively, 
the game history is uniquely determined; let us denote it by <T ' , T " > . It 
is easy to see that if Τ and T" are finite-state strategies of an infinite game, 
then <T ' , T"> is a periodic ω-word over the alphabet X χ X whose period 
is at most the product of the weights of the operators Τ and Γ". Given autom
ata defining Τ and Γ" , this periodic ω-word (more precisely, an initial 
segment of it containing both phase and period) is effectively constructible. 
If white (black) wins in the game history <T ' , T"> (of a finite or infinite 
game), we shall say that T" beats Τ {Τ beats Τ " ) . It is easily seen that if a 
strategy T " beats any strategy for black ( Γ ' beats any strategy for white), 
it will always lead to a win for white (black), however the opposite side 
plays. A strategy of this type is said to be a winning strategy for white 
(black). It is quite evident that in no game can both sides have a winning 
strategy. One can ask, does at least one of the players have a winning 
strategy? It is well known that for finite games the answer is positive. There 
is an essentially simple procedure (see the end of this section for an example) 
which, given the tree of a finite game, determines which side has a winning 
strategy and constructs one (there are generally several). According to 
foregoing remarks, we may assume that this strategy is finite-state. On the 
other hand, using set-theoretical arguments based on the Axiom of Choice, 
one can prove that there exist infinite games in which neither player has a 
winning strategy (even with infinite weight). 

E X A M P L E . Let us find a winning strategy for the finite game of Figure 
16a. Each nonfinal vertex of the tree is the root of a subtree, which defines 
a subgame. "Descending" from the upper vertices to the root, we shall 
determine winning strategies for all subgames step by step, finally finding a 
winning strategy for the entire game. With the vertex 6 we associate -f, 
indicating that in the subgame with root 6 white has a winning strategy: 
white wins if he makes the move α for black's only possible move a. The 
vertex 7 has the sign — : black wins by choosing b. W e can now consider 
the shorter game, in which the vertices 6 and 7 are regarded as final, with 
signs -f, —, respectively. Thus we can continue our dehberations for the 
vertices 2, 3, 4, 5 and, finally, for 1. 

It turns out that in this game black has a winning strategy T\ which is 
a nonanticipatory operator with delay. 
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The operator (strategy) Τ is defined by the subtree indicated in Figure 
16a by bold arrows, on the assumption that the labels a, β are inputs, a, b 
outputs. This subtree is defined as follows: among the edges issuing from 
the root, retain only those labeled b; the letter b is black's first move, and 

all the edges chosen lead to "minus" vertices. Among the edges issuing 
from these vertices, retain those corresponding to black's next move; 
these also lead to "minus" vertices, etc. Figure 166 illustrates the diagram of 
a finite automaton (one of many possible) realizing this strategy. T o fix 
ideas, the x-label of the dashed edges is b. 

II.8. Game-theoretic interpretation of the uniformization problem 

Consider an arbitrary ω-language § over the alphabet X χ Y and the 
corresponding infinite game Our discussion of strategies in the preceding 
section shows that a strategy T" for white is precisely a nonanticipatory 
operator y = Τ"χ which uniformizes the ω-language § ; a strategy Τ 
for black is a nonanticipatory operator χ = Ty with delay, which uni
formizes the complementary ω-language The uniformization problem 
may thus be interpreted as the problem of existence and construction of 
a winning finite-state strategy for white in the game induced by the ω -
language Ω(9Μ,^ι,(£). W e shall consider games of this type, which we shall 
call finite-state games, in greater detail. They may be described in the fol
lowing way. At the beginning of the game, the counter is placed at the 
vertex of the diagram of SR. Black announces his first move x ( l ) , white 
answers with y{l), and the counter is moved to the next vertex along the 
edge labeled < x ( l ) y ( l ) > . N o w black chooses x(2) , and after white's answer 
y(2) the counter is moved as required. The alternating moves continue 
ad infinitum: 

x ( l ) x ( 2 ) . . . x ( i ) . . . , 

y{l)y{2)...y(t)..., 

and the counter runs through a sequence of vertices 

q, = q{l),qi2),...,q{t),q{t+l),... 

White wins if lim q(t)e(í and loses otherwise. White's strategy T " is winning 
if, whatever black's choice of moves, the counter "homes" into a limit 
macrostate from d. The macrostates of (£ will be cMod favorable for white, 
all others favorable for black. 

E X A M P L E . Consider the diagram SR of Figure 17, where X = {a,b}. 
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Y= (c, d} . The initial state is q^, the favorable macrostates for black are 
{QI}^ {QI}^ {quQi^q^}^ the other nonempty macrostates { ^ 3 } , { ^ 1 , ^ 2 } » 

{^15 ^ 3 } » {^2» ^ 3 } are favorable for white. In this game, black has a winning 

Figure 17 

St ra tegy . The first move is arbitrary (say a). Suppose that when black must 
choose his next move, the counter is at the vertex q2. If the immediately 
preceding position of the counter was q^, black plays a; this ensures that the 
next vertex will be q^. If the preceding position of the counter was q^, black 
plays b, thereby ensuring that the counter will move to In all other cases 
black's moves are immaterial; say he always plays a. It is easily seen that 
this strategy is finite-state. The operator χ = Τ y is described by the relations 

x ( i ) = Φ{ρ{ί)1 

p{t+l) = ^{p{tlym 

where p{t) = (q{t% q{t - 1 ) > , i.e., the states of a finite automaton realizing 
this strategy are pairs of states of the automaton describing the game. Here 
Φ [<<?2<?3>] = ^ and Φ [<<?ί<?;>] = α in all other cases; for p{l) one can 

take <(?ι<?2>· The next-state function Ψ is easily defined on the basis of the 
game; it is given in Table 8 below. 

T A B L E 8 

y \ 
<^1^1> < ^ l 9 2 > <^3Í2> <<?2̂ 1> 

c < í l í l> <^lil> <^1Í2> < 9 3 ^ 3 > <<?3Í3> < ^ 3 9 2 > 

d <<?2<?1> <Í2^1> <^1^2> <Í2^3> <Í2Í3> <Í3Í2> 

It was mentioned in Section II.7 that there exist infinite games in which 
neither side has a winning strategy. However, if we restrict ourselves to 
finite-state games, the situation is completely different: 
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II.9. Proof of the Fundamental Theorem on finite-state games—intuitive 
outline * 

Let <9Ji, qQ,(i} he a finite-state game with state set β = {^o^ · · . Rn}^ ii^i-
tial state qo, next-state function Ψ:Χ χ Y χ Q, and limit macrostates 
^ = {Qi^ · · 5 6 m } - For any game history 

x ( l ) x ( 2 ) . . . , >;(1)>^(2).. . , 

let the corresponding sequence of states (vertices) be 

^ ( 1 ) ^ ( 2 ) . . . 

Recall that a winning white strategy must for any sequence of black 
moves x ( l ) x ( 2 ) . . . produce a sequence >^(1)3;(2)... such that the limit 

* Translatofs note: Sections II.9 and 11.10 were written by L. Landweber for the English 
edition of this book, replacing the original version of the authors. 

THEOREM 2.8. ( F U N D A M E N T A L THEOREM O N FINITE-STATE GAMES). In 

any finite-state game, one of the sides has a winning finite-state strategy. There 
is an algorithm which, given a finite-state game, (I) determines which side 
has a winning strategy, and {II) constructs a winning finite-state strategy. 

C O R O L L A R Y . / / one of the sides in a finite-state game has a winning strategy, 
it also has a finite-state winning strategy. 

In view of the significance of this theorem, we shall rephrase it, together 
with its corollary, in terms of the uniformization of finite-state ω-languages. 

THEOREM 2.8' (rephrased). Given an arbitrary ω-language § over an 
alphabet X χ Y, representable in a finite automaton. Then either § is uni-
formizable by a finite-state operator y = Tx, or Π § is uniformizable by a 
finite-state operator χ = Ty with delay. There is an algorithm which, given 
an automaton representing determines which of these situations actually 
holds and constructs an automaton realizing the appropriate operator. 

C O R O L L A R Y (rephrased). If there exists a nonanticipatory operator uni
formizing a finite-state ω-language §, there also exists a finite-state 
operator uniformizing §. In particular, if the graph of a nonanticipatory 
operator is representable in a finite automaton, the operator itself is also 
definable in a finite automaton. 

The proof of the Fundamental Theorem 2.8 and the requisite preHminary 
concepts and propositions will be presented in Sections II.9 and 11.10. 
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macrostate of the associated state sequence ^ ( 1 ) ^ ( 2 ) . . . is a member of 
a. A winning black strategy must prevent the limit macrostate from being 
in (£, regardless of white's moves. White's strategy at time t chooses y{t) 
based on knowledge of x ( l ) ) ; ( l ) . . . x ( i — l)3;(i — l ) x ( i ) , while black's 
strategy may only use x( l )>^( l ) . . . x ( i — l)y{t — 1) in selecting x ( i ) . The 
main result of this section is that for any such game, either black or white 
has a winning strategy, and in fact a finite-state winning strategy. 

T o motivate the definitions and proofs which follow, we first consider 
the simple case C = { ß i } . If white has a winning strategy, then it will 
have a winning strategy T" which operates as follows (this will be proved 
in Section 11.10). First T" forces the game to some qeQ^ (i.e., for any moves 
by black, T " produces moves which lead to the game entering a qeQ^). 
After selecting a state goal q'eQ^, T" attempts to force the game to q^ 
with all intermediate states being members of Q^. The strategies to be 
considered will choose successive state goals by referring to a cyclic permuta
tion of the members of Q ^ . Hence, if the above is possible, Q i will be the 
limit macrostate. Otherwise black can either prevent the game from entering 
some state of or infinitely often force the game out of β In either case 
Q i will not be the limit macrostate, so that black instead of white will have 
a winning strategy. 

= [Qi,^ 6n}» 6/ ö i + 1 . i = 1. · · · . « - 1 (=> will always mean 
proper inclusion), the situation will be somewhat more complicated. If 
white has a winning strategy, then it will be shown that white has a winning 
strategy T" which operates as follows: T" first forces the game to some q in 
some Qi, say Qi. k state goal for is then selected and T" attempts to 
force the game to q^ (while remaining in states of ß i ) . However, black may be 
able to prevent this, although in the process the game will reach a ^' G 
(having stayed in states of ß i , Q i = ) Q2) from which T" can force the game 
either to g^, to a newly chosen Q2 state goal qi^Qi^ or to some ^ " G Q J , 

which results in a Q 3 state goal q-^ e being chosen. If η = 3 and three state 
goals ^ 1 , q2, ^ 3 have been chosen, the winning strategy T" will then be able to 
force the game to one of q^, q2, or q^ while remaining in states of ß i , Q2, or 
ß 3 , respectively. If q^, then ^ 3 are forgotten and a new state goal for ß i 
is chosen. If ^ 2 » then q^ is forgotten and a new ß 2 state goal is selected. If 
q^, then a new ß 3 state goal is selected. The state goals are determined by 
fixing a cyclic permutation of each β , and then, whenever a new state goal 
is required, choosing the next element in the permutation. If T' is able to 
operate in the above manner, then the limit macrostate will be one of 
the β , . 
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The most compUcated case occurs when (£ is a collection of macrostate 
chains and the overlapping of macrostates in different chains is permitted 
(see Figure 17a for an example). If white has a winning strategy, then it 
will have a winning strategy T" with the following properties. At each time 
Í, T" will be considering a chain of macrostates in (Í (possibly an empty 
chain), 61 = > . . . 3 Q^, r ^ 0, and associated states ̂ 1,..., ^ , . » where qi e β , , 
/ = 1 , . . . , r. Call β,· and qi the i-th level set and state goals, respectively. At 
time Í, Γ " will be attempting to force one of β ^ , . . . , β^ to be the Hmit macro-
state. T' will either: 

(1) force the game to one of the qi (without leaving states of β,), in which 
case ßf+i, î-f 1 , . . . , ß^, q^ are forgotten and a new i-th level state goal is 
selected; 

(2) select an additional set and state goal ß,.+ ^ c: β,., 1 6 ß^ +1 G ε ; or 
(3) forget all set and state goals after some level / (this includes the 

possibility of forgetting all state and set goals), while getting "closer" to 
one of the remaining state goals (or if all are forgotten, "closer" to a time 
after which all state and set goals will not be forgotten). 

Figure Πα 

Alternative (1) is omitted if at time t the chain is empty. Intuitively, this 
means that T " is in the process of forcing the game to a state in some member 
of ε after which a state goal will be chosen. It is crucial in (1) that qi be reached 
without leaving states of ßf, since otherwise T" will not be working towards 
its goal of forcing one of ß i , . . . , Qi to be the limit macrostate. 

Alternative (2) results in the selection of an additional state and set goal. 
Note that because (£ is finite, (2) can recur only a finite number of times in a 
row without (1) or (3) occurring. The strategy T " will be designed so as to 
prevent alternative (3) from recurring indefinitely without (1) being applied 
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(i.e., "closer" will be well defined). The forgetting of all levels will only be 
allowed to occur finitely often in the course of the game. 

It will be shown that the above considerations resuU in ß i , , . . . , öit. 
for some fc > 0, being eventually fixed (though at various times different 
Qk+i^Qk+i^"- may be added and removed), ß / t e (£ will then be the limit 
macroset. 

The informal characteristics discussed above are incorporated into the 
definition of a white winning strategy. Such a strategy will make use of 
sets of predicates {9Í¿}, ( Q J and {^-PJ on β , the set of states of the game. 
If ^0 ^ ^ / [ ] as defined below), then white will have a winning strategy 
as above. If qoΦ%[_ ] , then black will have a winning strategy. 

In Section II.lO.l the predicates {91^}, {QA:}» {^9k} are defined. The case 
<3fo e 5R/[ ] is treated in Section I I . 10.2, where a finite-state winning strategy 
for white is presented. Section II.10.3 deals with the definition of a finite-
state winning strategy for black in case qoΦ%[ ]· 

Π.10. Proof of the Fundamental Theorem on finite-state games 

II . lO.l . D E F I N I T I O N O F % [ ] 
For each β, GCL, fix a cychc permutation of its members. For simplicity of 
notation, denote the value of this permutation at ^ G β, by Qtiq). The crucial 
construction is that of the subsets of β , 

^k [ ß l , . . . , qrl ^k ÍQu ^1 , · . . Qr. Qrl 
and 

'^k [ ß l , ^ l , . - , ß . . ^ r ] , 

where /c,r ^ 0, ß ^ ZD . . . I D β,, qiSQiEd for i = l , . . . , r . Note that the 
statement Β will always mean is a proper subset of These sets 
are defined simultaneously by the following induction on /c = 0 ,1 ,2 , . . . : 
qe^io [ ß i , ^ i , . . . , ß r , 9 r ] = false 

qem^^i [ ß i , ^ 1 , . . . , ß „ ^ r ] = A V Ψ [x,y,q] e {q^,..., u 

xeX yeY 

U [ ß i , ^1 , . . . , Q r , q r ] ^ ^kíQu ^1 , . . . , ^ r ] 

^ e Q , [ ß i , ^ „ . . . , ß „ ^ J ^yBed&qeB&Bc^ Q,& (1) 

Λ M G 9 i , [ ß i , ^ l , . . . , ß „ ^ „ ß , ß ( M ) ] 

q e φ , [ ß i , ^ 1 , . . . , QrQr] ^ q ^ ^ k í ]^"q^(ßi π « , [ ß i , ^ i ] ) v 

ν . . . ν ^ G ( a η 9 1 ^ [ β ι , ^ ι , . . . , β „ ^ , ] ) . 
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Note that r is bounded by the length of maximal subset chains in (£. If 
r = 0, the notation ] , ] , and ] is used and the recursions 
reduce to: 

qe^ioU = false 

^ G 9 i , , i [ ] ^ A V T [ x , y , ^ ] 6 ^ , [ ] u Q , [ ] 

Ξ \l Beií&qeB& Λ we 9ifc[ß,ß(w)] (2) 
Β ueB 

qe%U^qe3i,[l 
It can easily be shown that the above definition (1) is well founded. 

Furthermore, for all fc ^ 0 and α = 6i»^i>· · > ß r > ^ r » r^O, 9ífc[a] ^ 
^ 5ifc+i[a], QfcM ^ C f c + i M , ^fc[a] ^ φ ^ + ι [ α ] . Since all of these are 
subsets of the finite set Q, and there are but a finite number of a's, there is a 
smallest number / such that for all a, i > 0, %[OL] = 91^+,.[a], Q | [ a ] = 
= Q/+i[a], Φί[α] = φί+ί[α]. Hence a finite-state strategy can store (1) in 
its internal memory. 

II.10.2. T H E CASE qoe%[] 
Definition (1) is used to define a winning white strategy T" in case 
qo^%[. ] . If at time t the game is in state q{tX the strategy T" will be using 
some 9lk[a], α = Q ^ , . . . , (j^, where 91^[α] (at time 1, is used). 
Moreover, for each 1 ^ 7 ^ r, there will be hj such that for all u e Qj 

ue9i,^lQ,,...,qj.,,Qj,Qj(u)l (3) 

{Qi} are the set goals, i.e., the members of £ which T" is attempting to force 
to be the limit macroset. qi e Qi is the current i-th level or Qi state goal. 
g(i)G 9ifc[a] means that for any black move x ( i ) , Γ " has a move y{t) such 
that the next state 

q{t-hl) = ^lx(tly(t\q(t)] 

is in one of { g ^ , . . . , q,}, Q ^ . j [ a ] or j [ a ] . 
In the first case (corresponding to (1) in the above discussion of white's 

winning strategy for the general case in Section II.9), if q(i -h 1) = 
Τ " selects a new i-th level state goal 6/(^1) and uses 

«/..[6ι, . . . ,^ί-ι ,βήΟί(^ί)] 

at time ί + 1. The relation (3) ensures that q{t + 1) is in this set. 
If q{t + l )GCfc_i [a] , then an (r -h l)-th level set goal Q,+ i satisfying (3) 

is chosen, where h^+i=k-l. The process is then repeated using 
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9ifc-i[a .6r+i. 6 r + i ( í { í + 1))X ie.. (2) in Section II.9. It should be em
phasized that the process described is defined when a future state goal is 
reached only because all added set goals must satisfy (3). 

li q{t -\- l ) G ^ i t - i M » then all levels after some i-th level are forgotten 
and the process is repeated with index fc — 1 and 

This corresponds to (3) in Section II.9, where the index k — 1 means that 
within k — I moves some state goal must be reached (since each time this 
does not occur the index is lowered and 9lo [ a ] is empty for all a). An im
portant feature of this case is that if level jj ^ i, is retained, then q{t + 1 ) 6 
6 Qj. Finally, α can be empty (all levels forgotten) only a finite number of 
times, since each such time a lower index is used, 9 l o [ ] is empty and 
% [ ] is the first predicate considered. When α is empty, the strategy will 
within k moves (if 9?;̂  [ ] is the predicate) select a 1-st level set and state goal. 

If white uses the above strategy and ^ o ^ ^ / [ ] » eventually some d , 
ί 1» · ·»6jk> qk^ ^ 1» will be fixed, with 0* ^ ^ becoming the limit macrostate. 
Hence T" will be a winning strategy for white. 

Choose a fixed linear order of the members of Y and K. The expression 
ijiy)E{y) denotes the first member of Χ in the chosen order, which satisfies 
E{y\ if such a y exists. 

In the following, x ( l ) x ( 2 ) . . . , 3;(1)3;(2).. . , ^ ( 1 ) ^ ( 2 ) . . . and fc(l)fc(2)... 
will be sequences over X, Y, β, and { 0 , . . . , / } , respectively. i ; ( l ) t ; ( 2 ) . . . 
will be a sequence of elements of the form 

where r ^ 0, ß i ID . . . ID ρ „ ^¿e ß , G Κ for i = 1 , . . . , r and / > /ii > . . . > 
> Κ ^ 1. (The notation [ ] will be used in case r = 0.) 

A strategy T " for white is defined as follows: 

At time 1, the memory of T" contains 

^(1) = qo, fe(l) = /, v{l) = [ ] . (4) 

Assume that at time t the memory of T " contains 

qit% k{tl v{t) = iQ,,q,,h,,...,Q,,qM,r^Q. (5) 

Given x{t\ black's move at time i, white's move by T" at time ί is 

y{t) = {μyπix{t\^(0] e {q,, - •., u 
U Q , ( r ) - 1 [ ß l , . · . , ^ r ] ^ ^ . ( 0 - 1 [ ß l . · · · , (6) 
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The State of the game at ί + 1 is 

q{t + l) = '¥[xit)MtUm (7) 

Finally, v{t 1) and /c(i 4- 1) are given by: 
I. liq{t + 1) G { ^ 1 , . . . , q,}, let i be the first such that q{t -\- 1) = qi. Then 

v{t+i) = lQ,,qi,h,,...,Qi,Qi{qi),hil + 1) = / ι · . (8) 

II . If q{t + l)eQfc(,)_i[ßi,... ,^,] but not I, let Β be the first macro-
state in the chosen order of G such that qit -h 1 ) G B c and 

i [ei , . . . ,^„ Β , B ( U ) ] . (*) 

Then 

v(t+ 1) = [ ρ ι , ^ ι , / ΐ ι , . . . , ρ „ ^ „ / ι „ β , β ( ^ ( ί + i ) ) , f c ( i ) - 1 ] , (9) 

k{t + 1) = k{t) - 1. 

I I I . Uq(t+ 1) G 1 [ ö l · · · , <?r] but neither I nor II , let j be the first 
such that g(i + 1) G QJ η [ β ^ , . . . , ^J. Then 

ι^(ί + 1) = [ Ö l , qi. Κ ···. Qp qp hj] , k(t + 1) = k(t) - 1. (10) 

If r = 0, all occurrences of ^i,..., q,, Qi,.., Qr, Λ ι , . . . , /i^ in the above 
definitions are omitted. If α = ö i , · · , then level (a) = r and (öi , q^ ^i) is 
the i-th level of a. Similarly, 9lfc[öi, · · , has level r, i-th level ( O P ^ Í ) and 
index k. 

Though an explicit proof is not given, it should be clear that the strategy 
T" can be realized by a finite automaton. 

That (6) - (10) are well founded in case ^ o ^ ^ / [ ] follows directly from 
(1), (4) and the following lemma. 

L E M M A 1. / / white uses T\ qoe%l\ and v{t) = [_Qx,... ,Κ], then 
[a) ^ ( i ) G ( ö . n 9 i , ( , ) [ ö i , . . . , ^ , ] ) ( 9 í , ( o [ ] i f r = 0), 
φ) forain ^ i S r , UGQÍ, 

ue9{,XQ,,...,qi.,, Qi, Ö . (w) ] . 

Proof. For t = 1, i ; ( l ) = [ ] , /c(l) = / and q^ = q(l)e%l]. Assume the 
lemma is true at time t. Let x ( i ) be black's move at t. Since ^ ( i ) G 9lfc(,)[öi, · ·» 
^ ^ ] , it follows from (1) that there is a y{t) such that 

q{t + 1) = Ψ [xitly{tU(t)l e {q,,..., u , [ Ö i , · · · , u 

U * f c ( 0 - l [ Ö l , - - , ^ r ] , 

so that y{t) is well defined at ί 4- 1. 
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If t;(i -f 1) is defined by (8) (Case I ; ^(i -h 1) = then (b) is true at 
ί + 1 since it is true at t. (a) is true at ί -f 1 since q(t + 1) = q^e Qi, /c(i -f 1) = 
= hi and (b) is true at t. 

The proofs for (9) and (10) (Case II or I I I ) are straightforward and are 
left to the reader. Q. E. D . 

THEOREM 2.9. / / white uses Γ' and qo^%[ ] , then lim (<?( 1 ) ^ ( 2 ) . . . ) e G. 

Proof, First note that if > ί and v(t) = [ ] , then k{t') < k{t). This 
implies that there is a ti such that v{t) Φ [ ] for ί > t^ (since for all t it is 
true that v{t) = [ ß i , . . . , / i r ] implies ^ ( i ) e 9 i f c ( , ) [ ß i , . . . , and 5Ro [ß i» 

. . . , is empty for all β i , . . . , q,). 
As level {v(t)) is bounded by the length of the maximal macrostate chain 

of G, there is a smallest j ^ 1 such that level {v{t)) = j infinitely often. Let 
Í 2 > il be such that level (v{t)) ^ ; for ί > But then by (8), (9) (10), 
v{t) for ί > Í 2 is of the form 

v ( t ) = ÍQi,quhi,...,Qj,-,hj,...] 
for fixed ß i , q^, Λ χ , . . . , β^·_ι , qj-χ, hj.^, Qp hp By Lemma 1, this implies 
that qit)6Qj for ί > Í 2 so that lim{q(l)q{2)...) ^ Qp 

v(t) has level j infinitely often. For t > Í 2 this can only occur as a result 
of (8) or (10) for l e v e l / But (10) can only be applied to give ay-th level v{t) 
a finite number of times without (8) being applied, because each time the 
former occurs (without the latter having occurred) k(t) is lower and by 
Lemma 1(a) k{t) can never be 0. Hence (8) must be used infinitely often to 
obtain a 7-th level v{t). Each time this occurs the state goal of Qj is entered 
and a new state goal is selected. The method of choosing state goals ensures 
that each q e Qj is entered infinitely often, so lim ( ^ ( 1 ) ^ ( 2 ) . . . ) ^ Qp Q. E. D. 

C O R O L L A R Y . / / qoe%l ] , T" is a winning strategy for white. 

IL10.3. T H E CASE ^ o ^ ^ ^ / [ ] 
The following recursions follow directly from (1) and the definition of / : 

qφ%ÍQuqu^··,Qr.qrl^y^^^'i'íx^y^q']Φ{qu-'^qr}u 

q ^ Q i [ ß i , ^ n - . . , ß r , ^ r ] = /\lBe(í&qeB&BczQ^=> (11) 

^ V uφ%lQι,...,qr,B,Biu)] 
q Φ %ÍQuqu · . . , Qr.qr] ^qφ%ü&q HQ, η % [ ß i , ^ J ) & 

&...&qφ{Q,n%\_Q,,...,q,-\), 
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Choose a fixed Hnear order for the members of X. The expression {μχ)¥{χ) 
denotes the first member x, in the chosen order of X, which satisfies F. 

In the foHowing W (1)M (2) . . , wiH be a sequence of elements of the form 

where r ^ 0, ß i 3 . . . 3 ß^, (j. G G (£ for 1 ^ / ^ r. w ( l ) w ( 2 ) . . . wiU be a 
sequence of macrostate chains: each w ( i ) is of the form { E i , . . . , ^ ^ } , 
£1 3 . . . 3 s ^ 1. x ( l ) x ( 2 ) . . . , y{\)y{2)..., and ^ ( 1 ) ^ ( 2 ) . . . are as in 
Section I I . 10.2. 

If qQÍ%[^ \ then (11) can be used to obtain a winning strategy Τ for 
black. At time t the internal memory of Τ wiH contain ^ ( i ) , u{t) = [ ß i , . . . , 
^J, and w ( i ) = { £ 1 , . . . , This means that, at time i, T ' will be trying 
to prevent the game from reaching {^1 , . · . , thereby preventing any of 
ß i , . . . , ß ^ from being the limit macrostate. If at some future time i the 
game leaves ß^, it will be removed from u{t\ Ei e w ( i ) if and only if there is 
some t' < t such that all and only states of £¿ were entered between t' and t. 
Sets in w( i ) η (£ are candidates for inclusion in some future u{i). Because 
qo^%, it will always be possible to eventuaUy add to some u{t) any £ / G 
G ( £ n w ( i ) which threatens to be the limit macrostate. 

A strategy Τ for black is defined as follows: 
At time 1, the internal memory of Τ contains 

qil) = qo, w( l ) = [ ] , and w ( l ) = { { ^ ( 1 ) } } . (12) 

Assume that at time t the internal memory of Τ contains 

qit), uit)= [ ß i , . . . , ^ , ] , r ^ 0 , w ( í ) = { £ i , . . . , £ , } , s ^ 1. 

Then 

x ( i ) = (μχ) Λ Ψ [χ, ^ ( ί ) ] φ {q,,..., ^,} U [ β „ . . . , u 

u % [ ß „ . . . , ^ J . (13) 

Assume that >>({) is white's move at time t. Then 

q{t+l) = Ψlx{t\y{t\qit)-\ (14) 

and 

w(t+l) = {Bu {q(t + l)}:Bewit) or ß = 0 } . (15) 

Finally, M ( Í + 1) is defined as follows: 

Let e , a+ i = 0 · 
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I. If there exist B, B e G n w(i + 1) and i, 0 ^ i ^ r, such that 
(a) Qi^Bz>Qi^, and (b) q( i + 1 ) ^ «.[ßi,..., + 1 ) ) ] , then 
let Β be the largest of these (ß is in w(i + 1) which is a macrostate chain) and 

u{t+\) = [Qi,.,.,q,B,B(q{t+l))l (16) 

II . If not I, let / be such that q(t + 1)6 β,· - β ,+ ι , O ̂  / ^ r, and 

" ( ί + 1 ) = [ β ι , . . . , α (17) 

Note that if r = 0, Case I reduces to : There exist ß 6 G η w(i + l),q{t + 1)φ 
φ%lB,B{qit + 1))] , and w(i 4- 1) = [B,B{q{t + 1 ) ) ] . Case II reduces to: 
If not I, then M ( Í + 1) = [ ] . If r > 0 and i = 0, then u{t + 1) is [B, B{q{t -h 
-h 1))] in Case I and [ ] in Case I I . 

As in Section II . 10.2, it should be clear that the above strategy can be 
realized by a finite automaton. 

That (13) to (17) are well founded in case <2o^^i [ ] follows directly 
from (11), (12) and the following lemma. 

L E M M A 2 . / / black uses T\ qoΦ9^ιl ] , and M ( Í ) = [ßi,..., q^l r ^ 0, 
then: 

(a) q(t)φ%lQι,...,qrl 
(b) / / r > 0 , q{t)GQ,. 
( c ) / / r > 0 , QjGdnwit) for l ^ j ^ r . 

Proof u(l) = [ ] and ^ (1 ) = qoΦ^ιíl so the lemma is true for t = 1. 
Assume M ( Í ) = [ßi,..., gj> r^O, and (a) through (c) are true at time t. 

Since q{t) φ % [ßi,..., ^ , . ] , relation (11) implies that an x{t) as in (13) exists. 
Therefore, for any y{t), 

q(t + 1) = Ψ [ χ ( ί ) , y ( í ) , g ( í ) ] φ {qi,..., u [ β ^ , . . . , u 

u % [ ß i , . . . , a 
If M ( Í + 1) is chosen using (16) (Case I ) , then (a) is true for q{t + 1) because 

of 1(b); (b) is true because Bew(t + 1). Finally (c) follows from (c) of the 
induction hypothesis, the fact that q{t + l)e Β cz Q. for j = 1 , . . . , i, and 
the definition of ß in I. 

If u{t -f 1) = [ßi,..., qi] is chosen using (17) (Case I I ) , then q{t + 1)φ 
Φ%ίαι.'", Qrl and ^ ( i + 1) 6 β,· implies by (11) that ^ ( i + 1) í ¿ [ β ^ , . . . , 
qi]; (b) is inmiediate from I I . q(t + 1) 6 β,· implies q{t 1)6 Qj for 1 ^ y ^ /. 
This together with the assumption that ß j 6 w ( i ) implies QjEw(t+l) 
for 1 ^ 7 g I , so that (c) holds for ί -f 1. Q. E. D . 
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THEOREM 2.10. If black uses Γ and qoΦ%[ ] , then l i m ( ^ ( l ) ^ ( 2 ) . . . ) ^ (£. 

Proof Assume that black uses Τ and ^ 9l¿ [ ] . T o prove that Τ is a 
winning black strategy, we assume that iim{q{l)q{2)...) = Q ' a n d 
derive a contradiction. 

Since l i m ( ^ ( l ) ^ ( 2 ) . . . ) = 6̂  there is a ίχ such that 

t^t,^q{t)eQ\ (18) 

u e Q ' = > ( V a ) ( 3 í ) [ ( í ^ a)&q(t) = u] . 

The relations (15), (18) and Qed imply that there is a Í2 ^ such that 

ί ^ Í2=>0 ' e (C£n w ( i ) ) . (19) 

Define the quasi-order < on chains =3 . . . =) ß̂ , ^ .,, :D 
(ρ, s ^ 0) of members of (£ by 

[ßi,...,ßJ<[^,...,^J Ξ [ p < s & ^Λ^ (̂ ,. = ß,.)]v 

The principal part of [ ß i , . . . , denoted by P P [ β ^ , . . . , (jJ, is [ ß i , . . . , 
where O ̂  φ ^r is the largest index such that β ' ^ β^. (Assume 

Qo ^ 6'· If 0 = 0, the principle part is [ ] . ) 

LEMMA 3. If t' > t > t^, then P P ( M ( Í ) ) ^ Ρ Ρ ( « ( 0 ) · 

Proof Let t > Í2 and P P ( M ( Í ) ) = [ ß i , . . . , q^]. If ρ = O or r = O, then 
P P ( M ( Í + 1)) ^ P P ( M ( Í ) ) = [ ] . Assume that r,p > 0. u{t + 1) can be 
obtained from u{t) by use of either (16) or (17). Since t > t2,q{t -\- \)e Q', so 
that q{t + l)eQj for 1 ^ j ^ ρ (because Qj ^ β ' ) . Hence if (17) is used, 
P P ( u ( i + 1)) = P P ( M ( Í ) ) . If (16) is used, then the principal part of u{t + 1) 
differs from that of u{t) only if there exist i, 0 ^ i ^ p, and B, β', satis
fying (a) and (b) of Case L In this case w(i -h 1) = [ ß i , . . . , ^^, Β, B(q{t + 1 ) ) ] , 
and so PP (u ( i + 1)) > P P ( u ( i ) ) ( ß i + i <^ Β a β . ) . Q.E.D. 

Let Í3 > Í2 be such that, for t > Í3, P P ( M ( Í ) ) is fixed, say [ β ^ , . . . , < 7 p ] . 

There are two cases: 
1. If Qp = β', then by equality (13) for t > Í3 , q{t) φ qpeQ\ so that 

H m ( i j ( l ) ^ ( 2 ) . . . ) β', which is a contradiction. 
2. If Qp =5 β', first note that for ί > Í3, if w(i) = [ ß i , . . . , q^, ß p + 1 , . . . ] , 

then β ßp+i- This is true because ß^+i is not in P P ( M ( Í ) ) and both 
β ' and Qp+i are in w( i ) ( β ' by definition of Í3 and Qp+i by Lemma 2(c)) , 
which is a macrostate chain. Let u(t) = [ ß i , . . > , q p , Q p + 1 , . . . ] , t > t^. 
Because Qp+ ^ ci β ' = lim ( ^ ( 1 ) ^ ( 2 ) . . . ) , some q(t') φ Qp^ ^ is entered eventu-
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Since Q = l i m ( ^ ( l ) ^ ( 2 ) . . . ) , there is Í5 > Í3 such that qit^) = ueQ'. But 
then (16) for i = ρ will be applied, resulting in 

P P ( u ( Í 5 + l ) )> [ß i , . . . ,^p ] , 
which is a contradiction. 

From Cases 1 and 2 it follows that l i m ( ^ ( l ) ^ ( 2 ) . . . ) cannot be in tt. 
Q.E.D. 

COROLLARY. Ifqo^%H T' is a winning strategy for black. 

Theorem 2.8, the Fundamental Theorem on finite-state games, now 
follows immediately from the corollaries to Theorems 2.9 and 2.10. 

Π.11. Spectra of accessibUity and distinguishabOity 

The weight is the most important numerical parameter characterizing 
the memory of an operator; it is therefore natural to classify operators 
by weight (e.g., singling out operators with infinite weight). The analogous 
parameter in classification of automata is the number of states (which 
again may be infinite). However, in certain problems one needs a finer 
classification of operators (automata), which splits the set of operators 
(automata) of weight (number of states) μ into different levels of complexity 
(for every μ= 1,2,3,... or 00). This may be achieved by basing the classifica
tion not on a single numerical parameter, as before, but on a sequence of 
parameters; we shall call such sequences spectra. W e shall define the 
"accessibility spectrum" and "distinguishabihty spectrum" first for operators, 
later for automata. They will then be used to prove a useful analogue of 
Theorem 2.5. 

All operators and automata will be considered for fixed alphabets 
X = { x i , . . . , x , „ } and 7 = { y i , . . . , y „ } ; m and η will always denote the 
cardinalities of these alphabets. W e shall confine ourselves to nonanticipa
tory operators, though suitable modifications adapt this approach to the 
general case, admitting operators with anticipation. The basic definitions 
will be given for nonanticipatory word operators; they are easily adapted 

ally. Then « ( ί ' + 1) = [ ß i , . . . , o r [ßi,...,^p,ß;+i,^;+i], where 
ß' =̂  ßp+i =̂  βρ+ι· The second alternative can only occur finitely often 
without the first occurring, so that there is Í 4 > Í 3 such that u{u) = 
= [ßi,. By Lemma 2(a), ^(iJ^WzCfii,...,^^], and so by (13) 
^ ( í 4 + l ) f E Q , [ ß / , . . . , ^ J . But QczQp and ß'eG; therefore 
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to (nonanticipatory) ω-word operators, since any nonanticipatory ω-word 
operator induces a nonanticipatory word operator (see Remark I I in Section 
II.1). 

Let Τ and T" be two distinguishable nonanticipatory operators (the 
adjective "nonanticipatory" will be omitted from now on). In other words, 
there exists an input word x ( l ) x ( 2 ) . . . x ( i ) which these operators transform 
into different output words. W e shall say that this word distinguishes 
r and T". Call operators Γ and T " k-distinguishable (fe = 1,2,3,. . .) 
if they can be distinguished by a word of length at most fc, k-indistinguishable 
otherwise. It is convenient to define fc-distinguishability for fe = 0 as well: 
any two operators Tj , are 0-indistinguishable (indistinguishable by the 
empty word). Obviously, if Τ and T" are fe-distinguishable they are fc'-
distinguishable for any fe' > fe. fe-indistinguishability will be denoted by 
Τ T", Let £(fe) denote the maximal number (remember: for fixed 
alphabets X, Y!) of pairwise fc-distinguishable operators. This number may 
be computed in the following trivial fashion. The transformation induced 
by Τ on the set of input words of length at most fe into a set of output words 
(of the same length) is completely described by a finite tree ν of height at 
most fe, which is a truncation of the tree for T, Thus £(fe) cannot exceed 
the maximal number of pairwise fe-distinguishable finite trees of height at 
most fe. If two trees Vi,V2 of this type are fe-distinguishable, their extensions 
to complete trees ν2 of height fe are also fe-distinguishable. Thus £(fe) 
cannot exceed the number of complete trees of height fe. N o w a finite 
complete tree ν contains exactly m -h -h . . . -h m* edges, which can be 
labeled by output letters in exactly ways. Thus the maximal 
number of pairwise fe-distinguishable operators is exactly + 

The distinguishability spectrum of an operator Τ is the function £7 '(fe) 
defined, for each fe, as the maximal number of pairwise fe-distinguishable 
residual operators of Τ 

The distinguishability spectrum is clearly a nondecreasing function 
such that 

£ r (0 ) = 1, 

^r(fc) ^ for fe>0. (* ) 

In particular, if the operator Τ has finite weight μ, the function £ T ( f e ) is 

bounded by the constant μ. 

REMARKS. I. Recall that there is a one-to-one correspondence between the 
set of residual operators of Τ and the set of all input words (each word ρ 
corresponds to a unique operator Tp). One can thus define a (residual) 
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Figure 18 

fc-indistinguishability relation for input words: 

Here again it is instructive to compare these concepts with the previous 
concepts of indistinguishability and interchangeability (see pp. 36 and 104). 

I I . Let Τ be an everywhere defined operator with a two-letter output 
alphabet {0 ,1} and let 91 denote the language which Τ represents by one 
of its outputs, say 1. Then two words and ρ2 are fe-distinguishable if and 
only if there exists a word r of length k such that exactly one of the words 
p^r, P2r belongs to 9Í. 

I I I . If T i s an everywhere defined operator, fc-indistinguishability is an 
equivalence relation over the set of all its residual operators, which induces 
a partition into fc-indistinguishability classes, and Erik) is precisely the 
index of this partition. But if Γ is a partial operator, then, in general, neither 
/c-indistinguishability nor distinguishabihty is a transitive relation. 

W e now proceed to define the accessibility spectrum of an operator T. 
Fix some constant fe (fe = 0 , 1 , 2 , . . . ) and consider all input words of length 
at most k and the corresponding residual operators. There are at most 
1 + m + + . . . + m* < 2m* such words (operators). The accessibility 
spectrum of an operator Τ is the function Drik) defined as the maximal 
number of words of length at most k which are pairwise residually dis
tinguishable (i.e., the corresponding residual operators are pairwise dis
tinguishable). It is immediate that D^ik) is a nondecreasing function, and 

DAk) ^ / . (**) m — 1 

In particular, if Τ has finite weight μ, the function DAk) is bounded by the 
constant μ. 
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is as follows. Let Vi,V2,v^,... be the sequence of all possible finite complete 
(m-branching) trees, labeled with the letters of the output alphabet. Con
struct the tree of the operator Tas illustrated in Figure 18. Its root is the 
root of the tree t^i; at the final vertices of one grafts as many copies of 
V2 as required; copies of 1̂ 3 are then grafted at the final vertices of the copies 
of i?2, and so on. 

Note that the accessibility spectrum of this operator by no means assumes 
its maximal value (m*"^^ — l ) / ( m — 1) (because, for any fixed s, all residual 
operators corresponding to final vertices of the copies of are indistinguish
able). Similarly, it is not hard to see that the distinguishability spectrum 
of the operator Tj (which has the maximal accessibility spectrum) 
is much smaller than the upper bound rT'^'"^'^ one can show that 
the rate of growth of Ej^ik) is only exponential. 

2. Truth-table operator. Since E{0) = £)(0) = 1 and the functions Ε and 
D are nondecreasing, the constant function 1 is the greatest lower bound 
for both functions. It is easy to see that this lower bound is attained (simul
taneously, for both Ε and D) if and only if T i s a truth-table operator. 

3. Operator with finite weight. If the weight of the operator Τ is μ, then 

v f e [ E ^ ( f c ) á ^ ] , niDAk)^pi 
For example, consider the constant operator producing the periodic 

ω-word 
0 0 . . . 0 1 0 0 . . . 0 1 0 0 . . . 0 1 . . . 

μ - 1 μ- 1 μ-1 

with output alphabet { 0 , 1 } (since the operator is constant, the choice of 
input alphabet is immaterial in this situation). It is easily seen that this 
operator has weight μ, and 

£(0) = 1, E{1) = 2, E{2) = 3 , . . . , £ (μ - 1) = £ (μ) = . . . = μ, 

D(0) = 1, Dil) = 2, D(2) = 3 , . . . , Ζ)(μ - 1) = ^ ( μ ) = . . . = μ. 

Let us consider the rate of growth of the functions Ε and D more closely. 
L The upper bounds (*) and ( * * ) cannot be lowered. As already remarked, 

for the serial multiphcation operator (T7 of Section Π.1) all input words 
are pairwise residually distinguishable. Therefore, 

i'̂ ) = rn-1 ^ T~ = 

The simplest construction of an effective nonanticipatory operator Τ such 

that £^(fc) = n-^-^^ 
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4. Operator with infinite weight. As already remarked, the operator 
T2 of Section I I . l has infinite weight. Recall (Section II.2, p. 91) that two 
input words p, and P2 are residually indistinguishable by T2 (so that the 
residual operators T^ ,̂ Tp^ are fe-indistinguishable for any k) when n^ipi) -
- ^ο(Ρι) = Wi(P2) - noiPl)' Suppose that n^ip) - no(p) > fc; then, for any 
word r of length at most fc, the word pr contains more ones than zeros, i.e., 
the residual operator Tp transforms all such words into a word consisting 
solely of ones. Thus all residual operators Tp such that n^ip) - noip) > k 
are pairwise fc-indistinguishable. Similarly, one shows that all operators 
Tp such that n^ip) - no{p) < - fc are pairwise indistinguishable. Hence 
it is clear that there are at most 2fc H- 2 pairwise fc-distinguishable residual 
operators, corresponding to the possible positions of n^ip) — n^ip) in the 
interval [ - fc, fc -h 1]. N o w consider arbitrary numbers i < j in this interval, 
and some word r such that « ^ ( r ) — no(r) = — i. If n i (P i ) — « o Í P i ) = ^ and 
^liPi) - ^oiPi) = J\ then p^r contains zeros and ones in equal numbers, 
while there are more ones than zeros in p2r; therefore Tp^ and Tp^ are dis
tinguishable by the word r. Thus 

Er,{k) = 2fc + 2. 

On the other hand, for words of length at most fc the difference n^ip) - no(p) 
can take exactly 2fc -h 1 values, viz., -fc, -fc -h 1 , . . . , 0 , . . . , fc; it follows 
that Dr^(fc) = 2fc -h 1. 

11.12. Spectra of operators and of automata defining them 

The definitions of distinguishabihty and accessibility spectra for automata 
are entirely analogous to their definitions for operators. 

The accessibility spectrum of an initialized automaton <9Jl,^o) is the 
function D^<¡jiq^y{k) defined as the number of states accessible from qo by 
words of length at most fc (including the state qo itself, which is accessible 
via the empty word!). It is clear that the accessibility spectrum of an autom
aton 951 is independent of the output function Φ, and it can be regarded 
as a characteristic of the corresponding outputless automaton < β , Χ , Ψ > . 
More precisely, /)<<m,qo> (fc) is a characteristic of the directed graph which 
remains when all labels (both input and output) are removed from the 
diagram of 9Jl (retaining only the specification of the initial vertex). The 
vertices of this graph accessible from the initial vertex niay be assigned 
ranks: rank 0—initial vertex; rank 1—all vertices different from the 
initial vertex accessible by a single edge from the initial vertex; in general. 
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Vfc[£5R(fc) = £r(fc)]. 

rank η -h 1 is assigned to all vertices, not of rank ^ n, which are endpoints 
of edges issuing from vertices of rank n. The set of all vertices of rank J 
constitutes the y-th level. 

Let T h e the operator realized by an initialized automaton <501,^ο)· 
W e wish to determine the connection between the functions DT and I><aw,̂ o>-
If Ογ{Ιή = V, there are ν residually distinguishable words p i , . . . ,ρ^ · N o w 
these words take qo to ν pairwise distinguishable states of S R ; thus Οτ(Ιή ^ 
= ^<aK,io> N o w suppose that <9W,^o> is the reduced automaton realizing 
T. If D<aR^^^>(fe) = V, there exist ν states accessible from qo by words Pi , 
P 2 , . . . , p \ respectively, of length at most k. These words are clearly pairwise 
residually distinguishable, and so Dj{k) ^ v. But since always Dj{k) ^ 
^ ^<aH,̂ o> it follows that in fact Djik) = D^^^q^y(k). W e have proved 

THEOREM 2 . Π . / / the automaton ( S R , ^ o > realizes T, then D^^,j^y(k)^ 
^ Dj(k). For every operator T, there is an automaton realizing it (viz., the 
reduced initialized automaton) such that D^^^^^y (k) = Djik). 

By contrast, we shall define the distinguishability spectrum E^{k) for 
noninitialized automata, since choice of an initial state has no effect on 
E<iji(k). Call states qi, qj of an automaton k-indistinguishable (qi ^kQji^)) if 
the operators T{3R,qi) and T{3Jl,qj) are fc-indistinguishable; otherwise the 
states qi, qj are said to be k-distinguishable. The distinguishability spectrum 
of a noninitialized automaton SR is the function Eyji(k) defined for any natural 
k as the maximal number of pairwise fc-distinguishable states of SR. Clearly, 
the function £aR(fc) (hke Erik)) is nondecreasing, and 

£ 3 „ ( f c ) ^ n'" 

Let <SR,go> be an automaton, realizing an operator T; let us compare 
E^(k) with ^^(fc). If ^^(fc) = V, there are ν pairwise residually fc-distinguish
able words P l , . . . ,Ρν But these words take qo to ν different pairwise fc-
distinguishable states. Consequently, E^(k) ^ Erik). N o w suppose that 

^ o > is the reduced automaton realizing the operator T, and Eyi{k) = v. 
This automaton has ν pairwise fc-distinguishable states. But then the ν 
words P i , . . . ,Py that take qo to qi,...,q^, respectively, are pairwise fc-
distinguishable relative to T. Therefore Erik)^ E^{k), and so in fact 
^^.(fc) = £91 (fc). W e have thus proved 

THEOREM 2 .12 . / / the automaton SR realizes T, then Vfc [£a,i(fc) ^ Erik)]. 
Every operator Tis realizable by an automaton SR such that 



132 BEHAVIOR OF A U T O M A T A W I T H O U T P U T [II. 12 

REMARK. Equivalent automata have the same distinguishabihty spectra 
but, in general, different accessibility spectra. 

Theorems 2.11 and 2.12 are often used when one wishes to prove that 
some operator T i s not realizable in automata of a certain type (usually 
described in structural terms). In so doing, one finds an upper bound for the 
distinguishabihty (accessibility) spectrum of automata of the required class 
if, and shows that this bound is definitely smaller than the corresponding 
spectrum of the operator T. W e shall illustrate this approach for the class 
Η of so-called one-dimensional von Neumann automata, which are infinite 
automata. This concept belongs to the structural theory and we shall 
describe it intuitively, without going into unnecessary formal detail. 

An automaton of class Η consists of an infinite set of cells, indexed by 
the natural numbers and arranged as illustrated in Figure 19. Each cell 
can be in one of the states of a set Π = { π ^ , . . . , π^, one of which is 
designated as the passive state (say π^). The first (left-most) cell has an 
input channel which receives letters from an input alphabet X, and an 
output channel, emitting letters of an output alphabet Y. Let π(1, t) denote 
the state of cell i at time t. The first cell functions as follows : 

π ( 1 , ί + 1) = Ψ , [ π ( 1 , ί ) , π ( 2 , ί ) , χ ( ί ) ] , 
(*) 

) ; ( ί ) = Φι [π(1 , 0 , π (2 , 0 , χ (0 ] , 

where Ψι , Φι are suitable mappings of Π χ Π χ into Π and Κ respectively. 
The remaining cells have no input or output channels, and function as 
follows: 

n(i, ί + 1) = Ψ2 [π(ι - 1, ί ) , π(ι, ί ) , π(ί + 1, ί ) ] , ( * * ) 

where Ψ2 maps Π χ Π χ Π into Π and satisfies the condition 

Ψ 2 [ π ν , π „ π , ] = π,. ( * * * ) 

A sequence π(1)π(2)π(3) . . . π ( ί ) . . . of elements of Π is called an admissible 
sequence if, beginning from some i, all π ( ί ) coincide with π ,̂ the passive 
state of the cell. The states of the automaton are defined to be all possible 
admissible sequences; the set of states is clearly denumerably infinite. 
Suppose that, at time i, the automaton is in state n(i, i ) (/ = 1 ,2 ,3 , . . . ) , 
and x{t) is applied at the input. Then the next state n(i, ί + 1) and the output 
y(t) are determined by conditions (*) and ( * * ) . This definition is legitimate 
since, by condition ( * * * ) , an admissible sequence π(ί, ί ) goes into an admis
sible sequence π(ί, ί + 1) (i = 1 ,2 ,3 , . . . ) . 
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X 

π(3) χμ; .... 

y 
Figure 19 

W e shall now find an upper bound for the distinguishability spectrum of 
this automaton. Let two states π = π ( 1 ) π ( 2 ) . . . and π' = π ' (1 )π ' (2 ) . . . be 
such that π(1) = π'(1),π(2) = π ' ( 2 ) , . . . , π ( λ ) = π'(/ς). Then, as is easily 
seen, these states are fc-indistinguishable. Indeed, while the automaton is 
receiving the input word x ( l ) x ( 2 ) . . . x(fc), the cells to the right of the fc-th 
cell have no effect; therefore, the output word will be the same, irrespective 
of whether the initial state was π or π'. Thus, the states π and π' are fc-dis
tinguishable only if the words π ( 1 ) π ( 2 ) . . . π(fc) and π ' (1 )π ' (2 ) . . . π'(fc) are 
different. Since the number of different words of length fc over the alphabet 
Π is V * , our automaton 501 satisfies the condition 

that is to say, the distinguishability spectrum is dominated by an exponential 
function. Hence automata of this type cannot realize any operator whose 
distinguishability spectrum increases more rapidly than any exponential 
function, such as an operator whose spectrum is of order ^ '« -»• '«^ 
The operator 7^ has a Unear increasing distinguishability function Εγ^ = 
= 2fc Η- 2 (see Section 11.11), and so it may be realizable by an automaton 
of class H, though of course this argument does not guarantee this. It 
can indeed be shown that T2 is realizable by an automaton of this type. 

As mentioned above, the distinguishability and accessibility spectra 
are nondecreasing functions, i.e., the functions AE(k) = £(fc H- 1) - £(fc) 
and AD(fc) = D{k + 1) — D{k) are nonnegative. Our next goal is in some 
way to specify the rate of growth of the functions Ε and D for everywhere 
defined operators and automata. Since the spectra of an everywhere defined 
operator coincide with the spectra of the reduced automata realizing it, 
we may confine the discussion to automata. Call states qi and qj of an 
automaton 9M strictly k-distinguishable (fc = 1,2,3,...) if they are fc-distin
guishable but (fc — l)-indistinguishable (and therefore fc'-indistinguishable 
for any fc' < fc). A state q is said to be strictly k-accessible (fc = 1,2,3,...) if it is 
fc-accessible but fc'-inaccessible for all fc' < fc. These definitions imply: 
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A . / / q is strictly {k + l)-accessible, then 9Jl also has strictly k-accessible 
q'i, q'j which are strictly k-distinguishable. 

In fact, suppose that the word x ( l ) x ( 2 ) . . . x{k + 1) distinguishes and 
qj. Then q[ and q'j may be defined as the states to which the input letter 
x ( l ) takes qi and qj, respectively. It is clear that the word x ( 2 ) . . . x(/c + 1) 
distinguishes the states q^, q'j. Were there a shorter word distinguishing 
them, we could add x ( l ) in order to get a word of length less than fc + 1 
distinguishing ¿̂ and qj, which contradicts their strict (fc + l)-distinguish-
ability. 

B. / /q is strictly (fc -h lyaccessible, then SR also has a strictly k-accessible 
state; in other words, if an automaton graph contains a vertex of rank fc -h 1, 
it also contains a vertex of rank fc. 

y>(k) 

Figure 20 

In fact, if x ( l ) x ( 2 ) . . . x(fc + 1) is a word of minimal length taking qo 
to q, and x ( l ) . . . x(fc) takes qo to q', then q' is strictly fc-accessible. 

These assertions will be used to prove Theorem 2.13 below. Before stating 
the latter, let us consider those nondecreasing functions φ satisfying the 
condition ^ ^ ^ ^ ^ ^ ^ 

Any function of this type is either strictly increasing, a constant, or strictly 
increasing up to a maximum for some fco, where it remains for all fc > fco 
(Figure 20). In all cases considered hitherto the distinguishabihty and 
accessibility spectra have been nondecreasing functions of one of these 
three types. This is no accident, as evinced by the following 

THEOREM 2.13. For any automaton SR (everywhere defined operator T), 
the spectra satisfy the conditions 

Vfc[A£(fc) = 0 ^ AE{k + 1) = 0 ] , 

Vfc[AZ)(fc) = 0 -^ AD(fc + 1) = 0 ] . 
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Proof. It is obvious that if AE{k) φ 0 there exist strictly (fc -f l)-distinguish-
able states. Similarly, if AD(fc) ^ 0 there exists a strictly (fc -h l)-accessible 
state. The converse is also true. That the existence of a strictly (fc -f inacces
sible state imphes that AD(fc) ^ 0 is obvious; it is however important to stress 
the reason why the existence of a pair of strictly (fc Η- l)-distinguishable 
states implies that A£(fc) Φ 0. The point is that for automata (and 
everywhere defined operators) fc-indistinguishability is an equivalence of in
dex £(fc), for each fc. Thus the fact that q^ and q-j are strictly (fc -h l)-distinguish-
able implies that the fc-indistinguishability class to which they belong splits 
into at least two (fc -h l)-indistinguishability classes, so that 

E(fc -f 1) ^ £(fc) + 1. 

Thus, for any fc, A£(fc) = 0 if and only if there are no strictly (fc -f 1)-
distinguishable states, while AD(fc) = 0 if and only if there are no strictly 
(fc -f l)-accessible states. But then propositions A and Β formulated above 
show that 

A£(fc) = 0 -^ A£(fc + 1) = 0 and AD(fc) = 0 -^ AD(fc + 1) = 0. 

Q.E.D. 

COROLLARY. For any reduced automaton (everywhere defined operator) 
with infinite weight, the distinguishabihty and accessibility spectra are 
strictly increasing functions, and so their rate of growth is at least linear: 

E(k) ^ fc + 1, D(k) ^ fc + 1. 

REMARK. In general, Theorem 2.13 is not valid for partial operators. For 
example, consider the distinguishabihty spectrum. The analogue of Proposi
tion A (rephrased for input words) is valid for all operators, since its proof 
only uses the definition of fc-indistinguishability. The trouble is that 
fc-indistinguishability is no longer an equivalence relation, while this 
fact was essential for the proof of the theorem. However, it can be 
shown that the theorem remains valid for finite complete trees (multiple 
experiments). The proof is left to the reader. 

11.13. Parameters of a finite automaton and its behavior 

In this section we define several parameters which, together with the 
number of states of the automaton (weight of the operator), characterize the 
automaton and its behavior; we shall also establish upper and lower bounds 
for these parameters. These bounds will be found useful in solving the 
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synthesis and minimization problems and in other problems in the behavioral 
theory of automata. 

Thus, let 501 be a finite automaton (T an operator with finite weight). 
There certainly exists a number v, depending on the automaton 9Jl (operator 
T ) , such that any two distinguishable states (residual operators) must be 
v-distinguishable. 

The degree of distinguishability of an automaton 9M (operator T) is the 
minimal number ν such that any two distinguishable states (residual 
operators) are v-distinguishable. W e denote the degree of distinguishability 
by p m or P i n 

The degree of accessibility of an initialized automaton <9M,^o> is the 
minimal ν such that any state accessible from is v-accessible. In other 
words, the degree of accessibility ¿(951, ^o) of an automaton <9W,^o) is the 
highest rank of vertices in the corresponding graph, for fixed initial vertex qQ. 

The degree of accessibility of an operator r(denoted by á ( T ) ) is the maximal 
V such that there exists an input word of length ν which is residually dis
tinguishable from any shorter input word. Obviously, δ{Τ) coincides with 
the degree of accessibility of the reduced automaton realizing T. 

These definitions and the proof of Theorem 2 .13 directly imply that 
each of these parameters is precisely the value of the argument at which 
the corresponding spectrum levels off, i.e., the minimal k such that AE{k) 
or AD(fe) vanishes. In view of this and the particular rate of growth of the 
spectra Ε and D, one can estimate the parameters comparing them with 
the weight of the operator or the number of states of the automaton. 

THEOREM 2 .14. ( / ) Let 9Rbean automaton with reduced weight μ (Tan oper
ator with weight μ). Then its degree of distinguishability ρ satisfies the inequality 

^og„\og„μ - Ι ^ ρ ^ μ - 1 . 

(II) Let <3Dl, go> be an initialized automaton, with μ states accessible from qQ 
(T an operator of weight μ). Then its degree of accessibility δ satisfies the 
inequality , ^ ^ ^ ^ - 1 < ¿ g , - 1. 

Proof. It follows directly from the definitions that E(p) = μ, and more
over £(fc) = μioτk> p . Similarly, the spectrum of accessibility levels off at ó : 
D(<5) = Z)(¿ + 1) = . . . = μ. 

Since the spectrum is a nondecreasing function, we have 

1 = £ (0) < £ (1 ) < . . . < £ ( p ) = £ ( p + 1) = . . . = / I , 

1 = D(0) < < . . . < Β{δ) = 0{δ + \) = = μ. 
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Now, even for the slowest possible growth of E{k% when £ (1 ) = 2, £(2) = 
= 3, . . . , £ (μ — 1) = μ, the value of ρ can never exceed μ — 1. The same holds 
for the spectrum D{k) and the degree δ. On the other hand, by previously 
established bounds on the spectra (see Section 11.11), for the fastest possible 
growth we have 

μ = E{p) ^n'^ + rn^^.-. + m" ^ ^2m^ 

μ = 0{δ) ^ l - h m + m 2 - h . . . - h m ' < 2m\ (**) 

The lower bounds for ρ and δ now follow from (*) and ( * * ) by taking loga
rithms. This completes the proof. 

REMARK I . Clearly, the upper bounds in Theorem 2.14 are valid a fortiori 
when μ denotes the number of states of the automaton, instead of the reduced 
weight (see ( I ) ) or number of accessible states (see ( I I ) ) . However, it is 
evident that no meaningful lower bound can be based on the number of states 
of an automaton, since many states may turn out to be indistinguishable 
or inaccessible from the initial state. 

W e shall now show by means of examples that the bounds in Theorem 
2,14 cannot be improved. 

First, for any k there exists an operator of type Γ5 (see Section I I . l ) with 
weight fc, and then both the degree of distinguishabihty and the degree of 
accessibility are exactly k - 1.* An analogous statement holds for the 
reduced automata which realize these operators. 

W e shall now show how to construct reduced automata 501, SM with arbi
trarily large number of states μ, such that 

ρ ( ϊ ί ΐ ) ^ l o g , log„ (μ + 1); 

δm^\og^μ, 

This will show that the lower bounds are the best possible. For simplicity, 
take m = η = 2 (Figure 21). Fix an arbitrary natural number s and let 
V = 2^ Construct a 2-branching tree ν of height s H- ν - 1, labeling the 
edges with (output) letters 0 and 1 as follows. There are exactly 2''words of 
length V over the alphabet { 0 , 1 } ; let these be πο, π ^ , . . . , _ χ. They may 
be regarded as the binary expansions of the numbers from 0 to 2" — 1. The 
edges of the s lowest levels are labeled with zeros. Thus the level of rank s 
records the word Uq. The level of rank 5 - f 1 has length 2v; label its edges 
so that they generate the concatenation π, - π2 from left to right. The ver
tices qo,qi,q2 will then be pairwise 5-distinguishable. N o w generate the 

* The same may be said of the constant operator of Section 11.11, 
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concatenation of π^, π^, π^, in a similar way, along the level of rank s -f 2 ; 
all seven vertices of rank at most 2 are then pairwise s-distinguishable. 
Continuing in this way, we fill up all the levels, forming 2^ words, then 
2 \ . . . , a n d finally 2"'^ words. Thus we exhaust 1-f 2-h 2^ + . . . - f 
+ 2^"^ = 2^ - 1 words from the total number of 2\ The result is a finite 
comple tree ν in which all vertices of rank at most ν - 1 are pairwise 
s-distinguishable. 

W e shall estimate the weight μ and the degree of distinguishability ρ of the 
automaton 501 obtained by contracting this tree i;, and show that they satisfy 
the lower inequahty. 

Since the basis of the tree ν contains all 2" - 1 vertices of rank ^ ν - 1, 
it follows that μ ^ 2" - 1, i.e., ν g log2(̂  + 1). The basis may contain 
vertices of higher rank, but then each such vertex α is surely (s - l)-dis-
tinguishable from any other vertex of the basis, since α is the root of a 
subtree of ν of height at most s — I. That the vertices of rank at most ν — 1 
are s-distinguishable from other vertices in the basis follows, as shown 
above, from the way in which the edges were labeled. Thus ρ = s. Recalling 
that s = log2V, V ^ log2(/i -I- 1), we see that 

ρ ^ log2log2(M -h 1). 

If an initial state (vertex) qo is specified in this reduced automaton, then, 
obviously, ¿ ^ s -i- ν — 2, i.e., δ ^ log2(/i + 1) + log2 log2(^ + 1), so that 
asymptotically (as μ —• oo) ¿ does not exceed logj/^. However, this estimate 
may be improved (without using asymptotic arguments) by constructing 
another automaton 501 on the basis of the same tree v. Let two edges issue 
from each vertex α of rank s -h ν — 1; assign them arbitrary output labels 
(say zeros throughout) and direct them to vertices of rank at most ν - 1, 
Φο{οι) and φι{οίΧ where the former is the endpoint of the edge with input 
label 0 and the latter that of the edge with input label 1. In so doing the 
following precautionary measure should be taken: if α and β are two 
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vertices of rank ν + s - 1, the pair {ψο{'^\Φι{^)} is different from the 
pair (Φο{β),Ψι{β)}' This can be done (and in more than one way), since 
the number 2^"^*"^ of vertices of rank ν 4- 5 — 1 is much smaller than the 
number (2" — 1)^ of pairs of vertices of rank at most ν — 1 (recall that 
s = log2v). For any diagram of an automaton 351 constructed in this way, 
the vertices of the tree previously of rank ν -f s — 1 become pairwise dis
tinguishable (to be precise, pairwise (5 4- l)-distinguishable). W e have thus 
constructed an automaton S5Í which has at least 2""^*"^ distinguishable 
states, and its degree of accessibility (from the initial vertex ^0) is at most 
V -f s — 1; even the equivalent reduced automaton has weight μ ^ 2""^*"^ 
while á ^ V + 5 — 1, i.e., δ ^ log2p. 

REMARK I I . In describing the minimization algorithm in Section 
II.3, we in fact based our considerations on the upper bound for the degree 
of distinguishabihty ρ of an automaton with μ states. It should be clear from 
Remark I of this section that one can indeed employ the better estimate 
ρ ^ μ — I. This somewhat simplifies the minimization algorithm. 

For example, consider the initialized automaton with four states (so 
that ρ ^ 3, ¿ ^ 3) defined by the diagram of Figure 22a. The states ^2 
and ^3 are obviously 3-indistinguishable, but qo and ^2 are 3-distinguishable. 
After removing the state q^, which is inaccessible from qg, and merging indis
tinguishable states, we get the automaton of Figure 22b. 

0.0 
0.1 

Í.0 

Figure 22 

In cases where additional information gives an even better upper bound 
for p, the minimization procedure may be substantially simplified (and also 
since, as the preceding examples show, the degrees of accessibility and dis
tinguishabihty may actually be far smaller than the number of states, 
being of the order of the logarithm and repeated logarithm, respectively, 
of this number).* When a good upper bound for the degree of distinguish-

in Chapter V we shall show that this is indeed so in "almost all" cases. 
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ability is lacking, the following procedure for determining the indistinguish
able states of the automaton is sometimes convenient. Using multiple 
experiments of length 1, divide all the states into 1-indistinguishability 
classes. Assume that the set of states has already been divided into /c-
indistinguishability classes. Then states qi,qj are (fc 4- l)-indistinguishable 
if and only if 

1 ) qi,qj are fc-indistinguishable; 
2) for every x, the states Ψ(^ί,χ) and Ψ(^^,χ) are fc-indistinguishable. 
The procedure ends when the i-indistinguishabiUty classes first coincide 

with the (i + l)-indistinguishabiUty classes. When this happens, the degree 
of indistinguishability is i and every /-indistinguishabihty class is an in
distinguishability class. 

Given an operator Τ and a multiple experiment ν of length h* W e shall 
say that the operator Τ and the experiment ν are compatible if Τ is an exten
sion of the partial operator ν to an everywhere defined operator. It is clear 
that every operator has an infinite set of compatible experiments (with in
creasing lengths), while every experiment has an infinite set of pairwise dis
tinguishable operators of finite weight which are compatible with it. W e shall 
say that an experiment ν reconstructs an operator Τ if t; is compatible with Τ 
and no operator Τ distinguishable from Τ and of weight at most that of Τ is 
compatible with v. These definitions immediately imply that if there exists an 
experiment of length h reconstructing the operator T, then 

(I) this experiment is unique; 

( I I ) it reconstructs the operator Talone; 
( I I I ) for any h' > h, there exist experiments of length h' that reconstruct T. 
Moreover, we have the following assertion: For any operator Τ offinite 

weight μ there exists at least one experiment reconstructing it. In fact, there 
is an infinite number of such experiments (of increasing lengths!). Indeed, 
the set τ = {7]} of pairwise distinguishable operators of weight at most μ 
is finite. Let Vf be the length of the shortest word distinguishing Τ from 7] 6 τ ; 
then Ti surely has a reconstructing experiment of length ν = max v,. More
over, this V is the minimal h such that Τ can be reconstructed by an experi
ment of length h. On the other hand, our definitions do not ensure that any 
experiment reconstructs some operator. 

For brevity, we shall call an operator h-reconstructible if it has a recon
structing experiment of length h. 

W e now introduce an important parameter: the degree of reconstructibility 

* For the definition, see p. 98. 
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of an operator Τ (notation: B(T)) is the minimal number h such that T i s 
Λ-reconstructible. 

Our terminology, phrased for operators, carries over* in a natural way 
to automata. An experiment ν is compatible with an automaton <9W,^o> if it is 
compatible with the operator Τ(9Μ,^ο)· It reconstructs the behavior of the 
automaton <SR,^fo> if it reconstructs the operator Γ(951,^ο)· Correspondingly, 
the degree of reconstructibility of the automaton <9W,^o> (notation: β(9Μ,^ο)) 
is the degree of reconstructibility of the operator Γ(9Ρϊ,^ο)· 

These definitions have the following consequences. 
A . Any experiment reconstructing an operator Τ of weight μ has weight 

μ and admits a unique extension of the same weight (this extension is precisely 
the operator Γ ) . 

B. / / a complete finite tree of weight μ has a unique extension Τ of weight μ, 
it is a reconstructing experiment for Τ 

W e shall prove A . Assume that Τ has weight μ and is reconstructed by an 
experiment Vf^ of weight μ'. It is then obvious that μ' ^ μ. However it is 
easy to prove that the strict inequality μ' < μ leads to a contradiction. In 
fact, if μ' < μ, then Vy^ may be extended to an operator Τ of the same weight 
μ' (see Section II.4). This operator has weight smaller than that of T(and so 
Τ and Tare distinguishable), and is also compatible with the experiment Vy,, 
But this means that Vy^ is not a reconstructing experiment for Τ Thus μ' 
must be equal to μ, so that the weight of Vy^ is μ. The fact that Vy^ has no 
extension other than Τ of the same weight also follows directly from the 
definition of a reconstructing experiment. For the definition requires that 
no operator Τ distinguishable from Τ and having weight at most that of 
Τ can be compatible with Vy^. 

Assertions A and Β enable us to rephrase Theorem 2.5 (Section II.4) as 
follows: 

THEOREM 2.15. There is an algorithm which, given any finite tree v, 
(a) determines whether ν reconstructs some operator; if so, (b) it constructs the 
reduced automaton realizing this operator. 

W e now wish to estimate the degree of reconstructibility of an operator 
Τ in terms of its other parameters (weight, degree of distinguishabihty, 
degree of accessibility). W e have the following 

THEOREM 2.16. The degree of reconstructibility B{T) of an operator Τ 
satisfies the inequalities 

Β{Τ)^ρ{Τ)-^δ{Τ)+1; 

B{T) ^ 2μ{Τ) - 1. 
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Proof. The second inequahty is a direct consequence of the first (see 
Theorem 2.14). It will therefore suffice to prove that an experiment ν of 
length p ( T ) + ¿ ( T ) + 1 admits a unique extension of the same weight 
(this extension coincides with the operator T). Consider the infinite tree 
defined by T, with weight μ; consider the initial finite tree v, of height 
p{T) -h δ{Τ) + 1. The definition of á ( T ) implies that the vertices on levels 
0 , 1 , . . . , á already include μ pairwise distinguishable vertices. It follows from 
the definition of p{T) that the distinguishabihty of these μ vertices is already 
determined by the finite tree v. 

N o w apply the contraction procedure of Theorem 2.5 (Section II.4), with 
D consisting of μ vertices (in the tree defining the operator T) on levels not 
exceeding the á-th. Then any vertex of 93 has rank at most δ + I. Thus, 
every vertex of 95 is the root of a branch in ν whose height is at least p ( T ) , 
and is therefore indistinguishable only from a single vertex of D. As already 
indicated in Theorem 2.5, this shows that there is exactly one extension of 
the same weight, proving the theorem. 

COROLLARY (EXTRAPOLATION). / / two operators whose weights are at 
most μ are {2μ — lyindistinguishable, they are indistinguishable. 

The definition of degree of reconstructibility for an initialized automaton 
is analogous: The degree of reconstructibility of an initialized automaton 
(SR.^o ) (notation: Β(501,^ο)) is the degree of reconstructibility of the opera
tor Γ( ΪΚ,^ο) · It follows that Theorem 2.16 may be rephrased as follows: 

THEOREM 2.16'. The degree of reconstructibility of an automaton <9Ji, qo} 
satisfies the inequalities 

Bm, qo) Ú p m + ¿(9W, ^o) + 1; ^ W ^o) ^ 2μ - 1, 

where μ is the weight {number of states) of the automaton <S)l,g >. 

Supplementary material, problems 

I. Let Τ be an operator of weight k applied to an input ω-word 
x ( l ) x ( 2 ) x ( 3 ) . . . with period of length v, and let V Q , v ^ , . . . , v,, be all the 
divisors of V . Then the corresponding output sequence has a period whose 
length may only be one of the numbers V Q , 2VO , . . . , fevo, v^, 2 v i , . . . , fevj,..., 
v„, 2 v „ , . . . , fcv„ (Trakhtenbrot [ 7 ] ) . 

I I . In studying ω-languages and ω-word operators it is sometimes 
convenient to employ a geometrical approach: each ω-word is interpreted as 
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* Translator's note: This problem was first solved in a stronger form (Boolean algebra over 
Gs) by Büchi and Landweber [129] . 

a point in Baire space, each operator as a mapping defined in this space. 
Fix an alphabet X; regard the ω-words over X as points of a metric space, 
defining the distance between two ω-words x ' = x ' ( l ) x ' ( 2 ) . . . , = 
= x ' ' ( l ) x ' ' ( 2 ) . . . b y 

p ( x ' , x " ) = — , 
r 

where r is the smallest t such that x'{t) Φ x"(t). 
It is easy to see that the space thus defined is homeomorphic to the Cantor 

set (perfect and nowhere dense) and is therefore compact. In this sense an 
ω-word operator is simply a mapping of the Cantor set into itself. 

Using this interpretation, one can speak of continuous operators, closed 
ω-languages, and so on. W e shall employ the usual terminology and notation 
for the standard classes of sets: open sets (G), closed sets (F), denumerable 
intersections of open sets (G¿), denumerable unions of closed sets (F^) , 
denumerable unions of G¿-sets—G¿^-sets, denumerable intersections of 
F^-sets—F^¿-sets, and so on. 

Show that any ω-language representable in a finite automaton is both a 
G¿^-set and a F^¿-set. Give an example of an ω-language, representable in a 
finite automaton, which is neither an F^-set nor a G¿-set. Show that an 
operator has a finite anticipation if and only if it is continuous. 

Show that any continuous operator with finite weight also has bounded 
anticipation (Trakhtenbrot [60] ) .* 

I I I . In investigations relating to coding theory (especially with regard to 
devices for nonuniform coding [41 ] ) , it is often desirable to extend the con
cept of an automaton, relaxing the condition that input and output words 
have the same length. One then assumes that for any pair qeQ^aeX the 
value Φ(^ ,α) of the output function Φ is a certain (possibly empty) word over 
the output alphabet. If we specify an initial state qo in a generalized autom
aton SR = <Q, X, Χ Φ, Ψ> of this kind, the initialized automaton <SR, qo} will 
define a word operator, as usual; however, the length of the output word 
need not be equal to that of the input word (it may even be empty). If no 
value of the function Φ is the empty word, the length of the output word 
is at least that of the input word; one can then associate, in a natural way, 
a nonanticipatory ω-word operator with the initialized automaton <Sül,^o>» 
though the weight of this operator may be infinite even if the automaton 
9M is finite. Give examples of this situation. 
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2 

1) As Ii ^ 00, 
(m - 1) 

k{m,n,h)^ ^ 7' ' [1 + 0 ( 1 ) ] . 
η 

On the other hand, there exists a sequence /ij < /ij < /13 < . . . such that 

k{m,n,h,)^ [ 1 - 0 ( 1 ) ] . 

2) As /i ^ 00, 

k{m,n,h)^ ; [ 1 - 0 ( 1 ) ] . 
η 

On the other hand, there exists a sequence < h2 < < ... such that 

k{m,n,hi)^^ [ 1 + 0 ( 1 ) ] . 

(Trakhtenbrot [62] ) . 
Inequalities 1) and 2) give upper and lower bounds, respectively, for 

k{m,n,hX and describe their accuracy. More precise results have been 
obtained by Korshunov and Grinberg [25] , who establish the asymptotic 
behavior of fe(m, n, h) for any h. 

V. Let us say that a word operator T(automaton 9Μ) generates a language 
91 at its output (or, briefly, enumerates 91), if 91 is the set of words over the 
output alphabet into which the operator Γ (automaton 9W) transforms the 
set of all input words (Trakhtenbrot [58] , Korpelevich [34] ) . 

Any language which is enumerable by a finite automaton is also represent
able in a suitable finite automaton. Under what conditions is a language 
represented by a finite automaton also enumerable by a finite automaton? 

If the enumerating automaton has η states, the corresponding accepting 
[representing] automaton has at most 2" states, and this bound cannot 
be improved (Lupanov [42] , Ershov [29] ) . 

IV. Let v{m,n,h) denote the set of all finite trees of height h over a fixed 
input alphabet of m ^ 2 letters and a fixed output alphabet of η ^ 2 letters. 
Any tree of this type defines a partial nonanticipatory operator, defined 
over all input words of length at most h. Let fe(m,n,/i) be the maximal weight 
of the trees in v{m,n,h) (see Section II.4). The asymptotic behavior of the 
function k(m,n,h) for fixed (though arbitrary)m, n, as ft-^ oo, may be de
scribed in terms of the parameter 

l o g . η 
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If a language 91 is enumerated by a Moore automaton with η states, it 
is representable in a suitable automaton with 2'*̂ "̂  states, where μ{η) ^ n/2 
(this bound is best possible—Grinberfe [26 ] ) . 

V I . Consider the following alternative definition for the acceptance of 
an ω-language 91 over an alphabet X by a nonanticipatory operator Τ 
with input alphabet X χ {0,1} and output alphabet Y. Τ accepts 91 if a 
suitable subalphabet Y' a y satisfies the following condition: x{l)x{2)...e 
€9i if and only if there exists an ω-word σ ( 1 ) σ ( 2 ) . . . over the alphabet 
{ 0 , 1 } such that Τ transforms <χ(1)σ(1)> <χ(2)σ(2)> <χ (3 ) ( τ (3 )> . . . into 
an ω-word containing infinitely many occurrences of letters from Y\ 
Show that an ω-language is representable in a finite automaton if and only if 
it is acceptable in this new sense by a nonanticipatory operator with finite 
weight. 

V I I . Show that if the graph of an operator T i s representable in a finite 
automaton (see Section II.5), the operator Thas finite memory (Tmay also be 
an anticipatory operator; see Section II.5) (Trakhtenbrot [60] ) . 

V I I I . Given an ω-language 91 over the alphabet X χ Fand a finite-state 
operator TQ transforming ω-words over an alphabet X χ U into ω-words 
over y(i.e., TQ is an operator y = To(x,ü) mapping pairs of ω-words x, u into 
an ω-word y). Call TQ a general A-solution of the ω-language 91 if: 

( I ) for any finite-state operator y = T{x) which uniformizes the ω -
language 91, there exists a finite-state operator u = f(x) such that T(x) = 
= T o ( x , t ( x ) ) ; 

( I I ) for any finite-state operator u = f ( x ) , the operator T o ( x , f ( x ) ) 
(which is obviously finite-state) uniformizes 91. 

The following assertion is true (Trakhtenbrot [ 6 0 ] ) : 
Let 91 be a closed (in the sense of Problem I I ) ω-language which is rep

resentable in a finite automaton. Then one of the following alternatives 
must hold: a) 9Í is not uniformizable by a nonanticipatory operator, 
b) 91 has a general A-solution. 

Given an automaton representing 9Í, one can effectively determine whether 
9Í is closed, and, if so, whether it has a general >l-solution; if it has, a general 
i4-solution is effectively constructible.* 

IX. The concept of a language enumerated (generated) by a generalized 
automaton (in the sense of Problem I I I ) is analogous to the usual automaton 
concept: this language consists of all nonempty words into which the 

* Translator's note: In fact, it is shown in Landweber [130] that it can be decided whether 
21 is closed, G¿ or Gs„ η F„¿. 
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generalized automaton transforms all possible input words. Show that any 
language enumerated by a finite generalized automaton is also enumerable 
by an ordinary finite automaton, which can be effectively constructed on 
the basis of the given automaton. Estimate the number of states of this 
ordinary automaton in terms of the number of states of the generalized 
automaton. 

X. Following Biichi [73] , let us introduce the concepts of a special 
ω-word, special automaton, and its behavior. W e consider only the so-
called special alphabets, which contain (possibly together with other letters) 
special designated symbols 0 and 1. An ω-word is said to be special if it 
contains at most finitely many occurrences of letters different from 0. An 
initialized Moor automaton with input alphabet {0,1} is said to be special 
if, for any state q, k{q) = λ[Ψ{q, 0 ) ] (i.e., output letters may change only on 
application of an input symbol other than 0). Thus, a special automaton 
transforms a special input ω-word ξ either into a special ω-word, or into an 
ω-word containing at most finitely many occurrences of letters other than 1. 
In the first case we say that the automaton accepts ζ, in the second — that 
it rejects ξ. The behavior of a special automaton is the ω-language consisting 
of all ω-words accepted by the automaton. Every word x(l)x(2),..x{t) 
may be encoded as a special ω-word x ( l ) x ( 2 ) . . . x ( i ) 1 0 0 0 . . . Show that, 
for any finite-state language A, there exists a finite special automaton 

whose behavior coincides with the set of codes of the words of A, 
Describe an algorithm which, given an outputless automaton {%qo, β'>, 
representing the language A, constructs a suitable special automaton 9W .̂ 

X I . The cartesian product of m special alphabets becomes a 
special alphabet if one allots the roles of 0 and 1 to the m-tuple 
of zeros and the m-tuple of ones, respectively. If the special ω-words ξ^, 
¿2, · · . , are codes (in the sense of the preceding paragraph) of words 
αι,α2,·..,α„, then the coupling of these ω-words (which is obviously a 
special ω-word) is regarded as the code of the m-tuple a^, a2,..., Fol
lowing Biichi, let us call a set 91 of m-tuples of words ai, «2» · ·»^ι,η a finite-
state set if there exists a finite special automaton whose behavior is precisely 
the set of couplings of the codes of the m-tuples of 91 (note that the lengths of 
the words αι,α2» · · » « m niay be different). Since any set of m-tuples of words 
over an alphabet induces an m-ary predicate over the alphabet, we can also 
define finite-state predicates whose arguments are words. Show that, for any 
finite outputless automaton 9M = <β , X, Ψ>, the binary relation (binary 
predicate) of indistinguishability relative to all is a finite-state predicate. 

Show that the ternary predicate P ( x , } ; , z ) , defined to hold if and only if ζ 
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is the binary expansion of the sum of the numbers with binary expansions 
X, y, is finite-state. 

Give other examples of finite-state m-ary predicates. 

Notes 

A rudimentary classification of operators in terms of anticipation and 
weight (Sections I I . l , II.2) is already imphcit in the paper of Burks and 
Wright [79] . A more thorough examination of the problem, based on a 
clear differentiation between properties related to anticipation and pro
perties related to weight, was given in [56] , and later in [60] . T o this end, 
wide use was made in [ 7 ] of description of nonanticipatory operators by 
trees. The concepts and theorems relating to minimization of operators and 
comparison between the weight of an operator and the weight of an autom
aton realizing it (Sections II.3, II.4) have been introduced independently by 
many authors. A rigorous and detailed exposition, including the case of 
partial operators and automata, may be found in Glushkov's monograph [ 6 ] . 

The problem of the conditions under which a set of words is the graph of a 
finite-state operator was first formulated and solved in [58] , and later in 
[54] . A more general formulation of the uniformization problem (Section 
II.5) first appeared, apparently, in Church [84] , who also solved the problem 
for various special cases. 

Numerous examples of properties of finite automata for which there 
exist no decision algorithms may be found in Rabin-Scott [114] and Burks 
[78] . The game-theoretic interpretation of the uniformization problem is 
due to McNaughton [105]. In Landweber [127] and Büchi and Land-
weber [128] this suggested interpretation is used to prove the fundamental 
theorem on strategies for these games. [McNaughton's original proof in 
[105] was erroneous—Trans.'] In essence, special cases of the uniformization 
problem had been attacked in the earlier papers of Church [84] and 
Trakhtenbrot [59] , but, in the absence of a convenient interpretation like 
McNaughton's, the formulation and proofs of their results were considerably 
less lucid. 

Parameters for the behavior of automata and operators, as considered 
in Sections I I . l 1 to 11.13, were introduced independently by Moore [108] and 
Trakhtenbrot [56] , who established bounds for these parameters. Moore's 
proof of the theorem was published first. Then Trakhtenbrot advanced the 
conjecture that, in some suitable sense, the degree of reconstructibility of 
"almost all" automata is far smaller than the maximum (2k — 1) and is of 
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the same order as log fe. A rigorous proof of this conjecture was given by 
Barzdin' and Korshunov [17, 37]. 

The concepts of the distinguishability and accessibility spectra were in 
fact clear and even used (implicitly) in the latter papers, but the present book 
contains their first explicit definition. Even earlier, in the theory of growing 
automata, Barzdin' [16] defined a related spectrum concept, which he called 
capacity. Barzdin' was the first to prove, by comparison of the spectra of 
operators and automata, that operators of certain classes cannot be realized 
by automata of a given class (see Section 11.12). Later, the same approach 
was utilized (independently) by Cole [86] . 



C H A P T E R I I I 

M E T A L A N G U A G E S 

ΠΙ.1. Preliminary examples and problems 

The preceding chapters have rigorously defined the intuitive concept of 
the behavior of automata: for outputless automata, in terms of representa
tion of languages and ω-languages, for automata with output—in terms of 
reahzation of operators. Throughout the sequel we shall use the term 
"synthesis of automata" to mean the functional synthesis of finite automata. 
The unqualified term "automaton" will be used for automaton with output, 
anchored or macroanchored outputless automaton, etc., whenever there 
is no danger of confusion. 

The situation to be studied in this chapter resembles the dialogue between 
a "client," who presents his requirements of the behavior of the automaton, 
and a "designer," whose task it is to construct a suitable automaton. W e 
shall illustrate this by a few examples. W e first consider several "require
ments" phrased in terms of "input/output," assuming throughout that 
the output alphabet is 7 = {0,1} and the input alphabet X = χ X2, 
where = = {0,1}· 

1. Client. The output ω-word y = y{l)y{2)... y{t)... is the sum of the 
input ω-words = Χχ{1)... Xi{t)... and X2 = X 2 ( l ) · · . XaiO · · · (ί·^·» the 
projections of the input ω-word χ onto X^ and X2, respectively), in the 
following sense. For any i, the output symbol y(t) is the i-th binary digit 
from the right in the sum of the i-digit natural numbers with binary expan
sions X i ( í ) x i ( í - l ) . . . X i ( l ) and X 2 ( í ) x 2 ( í - 1 ) . . . X 2 ( 1 ) . 

Designer. The client has described a nonanticipatory operator with 
finite weight (the operator in Section I I . l ) . The appropriate reduced 
initialized automaton (serial binary adder) has two states, which store 
the carry of zeros and ones, respectively. The automaton is described 
in Table 4 and Figure 23. 

2. Client. For odd i, the i-th symbol of the output ω-word is y{t) = 
= X i ( i 4- 1) 0 X 2 ( i + 1) (where θ denotes addition mod 2) ; for even i, 
y(t) is arbitrary. 

Designer. There are infinitely many operators satisfying the client's 
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Specifications, but they are all anticipatory; such operators are generally 
not realizable by (even infinite!) automata. 

3. Client. The output ω-word y = y{l)y{2)... y{t)... is the product of 
the input ω-words = Xi(l)xi{2)... Xi(t)... and X2 = X 2 ( l ) ^ 2 ( 2 ) . · · 
X 2 ( i ) · · · in the following sense: y{t) is the i-th binary digit from the right 
in the product of the i-digit natural numbers with binary expansion x^ ( i ) . . . 

x i ( l ) and X 2 ( 0 . . . ^ 2 ( l ) . 

Designer. As in Case 1, the client has described a nonanticipatory opera
tor, but here with infinite weight (the operator Γ7 in Section I I . l ) . Con
sequently, it is not realizable by a finite automaton.* 

4. Client. The output ω-word y is to contain infinitely many ones if and 
only if each of the input words x^ and X2 contains infinitely many ones. 

Designer. Here there are infinitely many nonanticipatory operators of fi
nite weight satisfying the client's requirements. Figure 24 a and Table 9 define 
an automaton with two states (binary-input flip-flop) which realizes one of 
these operators. The main feature of this automaton is that state ^1 can change 
to state qo only when X2(t) = 1, and qo to q, only when X i ( i ) = 1 (these 
conditions are also sufficient). Since ones are generated at the output 
precisely when these changes of state occur, the automaton meets the 
client's requirements. Another suitable automaton is illustrated in Figure 
24b and Table 10. It does not reduce to the preceding operator by minimiza
tion but realizes an essentially different operator. 

In the following examples the "requiremefats" are formulated solely in 
terms of input. The client specifies a certain language (ω-language) and 
requires an anchored (macroanchored) finite automaton representing it. 

5. Client. The language consists of all words over the alphabet {0,1} 
with an even number of ones. 

* If necessary, the designer could have provided additional information: the required 

operator Τ is realizable by a one-dimensional von Neumann automaton (see Section 11.12), 

which may be called a serial binary multiplier. 

mo 
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<11>1 

<10>i 

f<oo>6\ (worn 
\<io>ol Vom ψ>0] 

<ii>0 

Figure 24 

<10>1 
<11>1 
<0PL 

<0D>0 
<iO>1 

T A B L E 9 T A B L E 10 

X 1 X 2 \ 
qi qo qi qi 

00 Oqo Oqi 00 Oqo Oqo Oqi 
01 Oqo Uo 01 Oqo Ul Oq, 
10 Iqi Oil 10 0q2 Uo 
11 1^1 1^0 11 0q2 1^1 1^1 

Designer. The chent has described a language with finite interchangeability 
index; a representing automaton is illustrated in Figure 8. 

6. Client. The language consists of all words over {0,1} containing more 
ones than zeros. 

Designer. This language is not representable in a finite automaton (see 
the operator T2 in Section I I . l ) . 

0 
Figure 25 

7. Client. The ω-language consists of all ω-words over the alphabet 
{0,1} such that 0 . x ( l ) x ( 2 ) . . . is the (infinite) binary expansion of an ir
rational number. 

Designer. This language cannot be represented in a finite automaton, 
since it contains no periodic ω-word (see Remark to Theorem 1.5, Section 
1.4). 

8. Client. The ω-language consists of all ω-words over the alphabet 
{0 ,1} containing infinitely many ones. 
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III.2. Discussion of the examples. Statement of the problem 

It will be useful to accompany our detailed formulation of the various 
components of the synthesis problem with a renewed discussion of the 
above examples. Note first that the "requirement" is not always met (Exam
ples 2, 3, 6, 7). Thus, in solving the general synthesis problem, the first 
question to be settled is: 

A . (EXISTENCE PROBLEM). Does there exist a finite-state operator [lan
guage, ω-language) which satisfies the customer's conditions? 

N o w , Examples 1, 3, 5, 6, 7, 8 differ from Examples 2 and 4 in that the 
former involve a description of a specific operator (language, ω-language); 
thus Problem A becomes: 

A'. Is the operator (language, ω-language) realizable (representable) 
by a finite automaton? 

If the answer to Problem A is negative, one has a (negative!) solution to 
the synthesis problem itself. Otherwise, investigation of the problem pro
ceeds. For example, the following problem arises naturally: 

B. (UNIQUENESS PROBLEM). Is the operator (language, ω-language) satis
fying the given conditions unique! 

Clearly, if Problem A ' is relevant this question does not arise. Whatever 
the case, the central problem when the answer to Problem A is positive is 
as follows: 

C. Construct an automaton realizing (representing) an operator (language, 
ω-language) which satisfies the given conditions. 

That the solution to this problem need not be unique is reflected in our 
use of the indefinite article "an" for both operator (language, ω-language) 
and automaton. The non-uniqueness of the automaton may usually be 
avoided by requiring, in addition, that the number of its states be minimal. 
Using a minimization algorithm (Sections II.3 to 11.13), one can always 
devise a unique (up to isomorphism!) reduced automaton equivalent to 
the original automaton. Essentially, then, the non-uniqueness in Problem C 
applies only to cases in which the answer to Problem Β is negative. In 
any case, this does not affect the case of A ' , in which the uniqueness problem 
is irrelevant (Examples 1, 3, 5, 6, 7, 8) and Problem C may be rephrased as 
follows: 

Designer. This language is represented in the automaton 501 of Figure 
25, with initial state QQ and limit macrostates {qo,qi} and {q,}. 
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* Translator"s note: The author uses this term (Russian: metayazyk) in a sense rather dif

ferent from that customary in mathematical logic. However, in this context it is quite natural 

and unambiguous. 

C\ Construct an automaton realizing (representing) the operator (lan
guage, ω-language) defined by the given conditions. 

The situation is analogous when Problem Β has a positive solution. 
However, when the solution to Β is negative, one usually demands of the 
selected operator (language, ω-language) that it be realizable in an autom
aton with nunimal number of states (that the operator have minimal 
weight). This is the case in Example 4 , since it is clear that no truth-table 
operator satisfies the client's demands; the automaton constructed 
by the designer has only two states. Nevertheless, one must remember 
that there may be several operators with the same minimal weight. 

In the sequel, we shall concentrate on Problems A and C for operators, 
and Problems A ' and C for languages (ω-languages). A solution to these 
problems will consist, first, of an algorithm which, given the client's condi
tions, will always provide an answer to Problem A (or A ' ) , and in case of a 
positive answer, carry out the construction C (or C). Clearly, our statement 
of the problem of automaton construction assumes prior knowledge of two 
classes of objects: the class of initial data, to which the algorithm is applied, 
and the class of resultant data, which the algorithm generates. W e call 
these classes metalanguages,* and the structural objects of which they 
consist formulas. In the case at hand, we have already discussed the second 
class (the designer's metalanguage)—this is the class of finite-automaton 
diagrams or the class of transition-output tables. However, as yet nothing 
has been said of the second class—the client's metalanguage; in other 
words, we have not explained what is meant by the phrase "the client's 
requirements." In Examples 1 to 8 we disregarded this question and the 
conditions were formulated in natural language, employing whatever 
terminology and tools seemed suitable. An exact statement, a fortiori 
solution, of the synthesis problem is impossible without a preliminary 
definition of the client's metalanguage, and it depends essentially on the 
specific choice of a metalanguage. 

In this chapter we shall examine the synthesis problem for several special 
metalanguages; this will lead to a better understanding of the conditions 
to be imposed on the metalanguage. 

T o conclude this section, we direct our attention to the problem of 
automaton analysis, which is a natural inverse of the synthesis problem: 
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given a finite automaton, we wish to characterize its behavior in terms of a 
given metalanguage. A solution to the problem is an algorithm which, 
given any automaton, produces a suitable "formula" of the metalanguage. 

As we shall see later, for most interesting metalanguages the construction 
of an analysis algorithm is incomparably simpler than that of a synthesis 
algorithm. Our principal attention will therefore be directed toward the 
synthesis problem, and only occasionally, in passing, shall we mention the 
analysis of automata. 

ΙΠ.3. The metalanguages of sources (macrosources), trees and grammars 

A description of certain useful metalanguages is in effect implicit in the 
previous chapters. One of these is the set of all sources (macrosources). 
Here the structural objects, in terms of which the client describes the pro
jected language, are the sources (macrosources) themselves. As we already 
know, the designer's answer to question A is positive, while the construction 
C is effected by means of determinization; this is a complete solution to the 
synthesis problem. The analysis problem is trivial: any automaton may be 
regarded as a source (macrosource). 

In engineering practice, the functioning of the automaton is often specified 
by stipulating the output word j ; = </>(x) to be generated for each word χ 
in a certain finite set 91 of input words. Since the correspondence φ is 
(at least, potentially) given by a table, one can speak of a metalanguage 
whose formulas are finite tables. Consider Problems A , B, C as applied 
to this language. There exists a finite automaton <9Jl,^o> whose behavior 
coincides with φ on the set 91 only if φ is nonanticipatory: ( I ) the words 
X and φ(χ) are equal in length; ( I I ) if χ and x' have identical initial segments 
of length μ, then so have φ(χ) and φ(χ'). This property is obviously effec
tively decidable. If it holds, the mapping φ is a, partial nonanticipatory 
operator, and, consequently, can be represented by a finite tree v. It is also 
clear that conditions (I) and ( I I ) are not only necessary, but also sufficient, 
since any finite tree possesses infinitely many different extensions which are 
infinite trees of finite-state operators. One variant of the automaton diagram 
may be constructed by using the contraction procedure of Section II.4. 
Moreover, this procedure yields an automaton of minimal weight whose 
behavior is an extension of the finite tree (partial operator). The analysis 
problem is again trivial: finite trees of arbitrary height can be constructed 
given a finite automaton. 

W e thus have examples of metalanguages for the description of languages 
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and ω-languages (sources and macrosources), and also operators (finite 
trees). In all cases there are synthesis and analysis algorithms which in fact 
have already been presented in previous chapters. However, as we shall 
soon see, the situation is quite different when we wish to use context-free (CF) 
grammars as our metalanguage, although this approach is quite natural: 
the client presents the designer with a certain CF-grammar, and asks the 
following question: 

A ' . Can the language L generated by the grammar G be represented in 
some finite automaton! (In other words, are the grammatically well-formed 
strings accepted by a suitable finite automaton?) 

If the answer is positive, the client advances an additional demand: 
C . Construct a finite automaton representing the language L. 
In this case, however, the designer has no recourse to an algorithm 

enabhng him to meet the customer's specifications: 

THEOREM 3.1. There is no algorithm which, given an arbitrary CF-
grammar G, decides whether the language L generated by G is finite-state or not. 

Proof. Consider a fixed alphabet X = { 0 , 1 , c, * } and an arbitrary 
system of pairs of words over the subalphabet { 0 , 1 } : 

{a„b,\{aM...AcisAl (*) 

W e are going to show that any system ( # ) can be associated with a lan
guage over the alphabet X with the following properties: 

I. L φ is a CF-language (even linear!) and a CF-grammar generating it 
is effectively constructible from the system ( # ) . 

I I . L # is a finite-state language if and only if the system ( # ) has a solvable 
Post correspondence problem.* 

It is clear that properties I and II directly imply the theorem, since they 
show that solution of the correspondence problem for ( # ) is effectively 
reducible to deciding whether is finite-state or not. By Post's Theorem 
there is no algorithm solving the correspondence problem for arbitrary ( # ) , 
and so there is no algorithm which decides whether the languages L # 
are finite-state, given CF-grammars generating them. W e now construct 
a language with properties I and I I . 

I. Description ofLj¡^; its linearity. Given a system ( # ) . In order to define 
the languate L # , we need three other languages L, and L^, the first two 
of which are independent of ( # ) , while the third is not. W e shall use the 

* See Section II.6 (p. 107). 
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letters W i , W 2 , . . . for words (possibly empty) over the subalphabet { 0 , 1 } . 
The language L consists of all words of the form 

CW1CW2 . . . cw„c*cw„+1 . . . cw„+fcC (n, fc = 0 , 1 , . . . ) . (1) 

L is obviously a finite-state language. and Lp are sublanguages of L. 
L , consists of all words (1) which are c-symmetric, that is, the word 

W n + i W „ + 2 · w,i+it is the reflection of W1W2 . . . w,,. In other words, deletion 
of all occurrences of the letter c yields a word which is symmetric in the 
usual sense. 

Lp consists of all #-symmetric words, defined as follows: 1) η = k; 
2) each of the words w^, W 2 , . . . , w„ is a "left-hand" word of the system 
( # ) , i.e., one of the words λ^, a2,..., ; 3) each of the words w„+ j , w„+2» · · » 

w„+fc is the reflection of a right-hand word of ( # ) : ¿2» · · · » 4 ) and 
the reflection of w^^.^ form a single pair of the system ( # ) , the same holds 
for W2 and w„+]^_i, and so on. 

W e now define to be the language (L— L J u ( L — Lp). The first 
term L— is precisely the language L4 in Section 1.12; it was shown there 
that this language is linear. The second term L— is the language 
described in that section, for the case in which the system of pairs is (a^, b^), 
. . . , ( « 5 , ^ 5 ) , where hi is the reflection of fc;. It was proved there that L^ is 
also linear. Thus is the union of two hnear languages, and so a hnear 
grammar for it is effectively constructible from linear grammars for its 
two "component" languages. 

II . The connection between representability of L^ in a finite automaton 
and solution of the correspondence problem for ( # ) . Let L^p denote the 
intersection of and Lp. Since L^ = L - L^p and L i s a finite-state lan
guage, it follows easily that and L^^ are either both finite-state or both 
not finite-state. It will therefore suffice to prove that L^p is a finite-state lan
guage if and only if the system ( # ) has an unsolvable correspondence 
problem. T o verify this, note first that solvability of the correspondence 
problem for ( # ) is equivalent to the existence of a word 

CWi CW2 . . . cw„c # C W „ + iC . . . + iCW„ + „C, 

which is both c-symmetric and #-symmetric. N o w , by definition, the set 
of all these words is precisely the language L^p. Let ( # ) have an unsolvable 
correspondence problem; then no such words exist, the language L^^ is 
empty and so is certainly finite-state (in this case simply coincides 
with the finite-state language L ) . 

N o w assume that ( # ) has a solvable correspondence problem, and so 
Lsp is nonempty and contains a word cQ^ * Q2C, where = W i C W 2 C . . . w„c. 
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ΙΠ.4. The metalanguage of regular expressions 

A regular expression over the alphabet ΛΓ = {a, fc, c , . . . } is defined 
inductively as follows. Every letter in X is a regular expression; if 91 ̂  and 
2I2 are regular expressions, so are (STi) ν ( g i j , (2Ii)(9l2), (3ίι)*. Every 
regular expression over X defines a unique language over X, via the fol
lowing inteφretation: 

(I) a (or Í?, or c , . . . ) is the language consisting of the single one-letter 
word a; 

( I I ) V , · , * denote union, concatenation and iteration closure of languages. 
The synthesis problem for the metalanguage of regular expressions 

involves solution of Problems A ' and C ; the complete solution is in fact 
already imphcit in the theorems of Sections 1.6,1.7. The procedures under
lying these theorems construct a source (more precisely, a two-terminal) 
representing the language defined by a regular expression. T o see this it 
suffices to make the following observations: 

1) The language consisting of a single one-letter word a is represented 
in a two-terminal with a single edge, labeled a. 

2) The operations on languages specified in the definition of a regular 
expression are effectively definable by suitable constructions on two-
terminals representing these languages: parallel connection realizes union, 
serial connection—concatenation product, and cycling—iteration closure. 

Thus, using induction on the number of operations involved in a regular 
expression, one can construct the corresponding two-terminal source, and 
determinization then yields the required automaton. W e have thus proved 

* For the definition of separability, see Section 1.2. 

Ω2 = ^^η+ι^^η+2(^"·^^2η' Then the language L^p must also contain all 
words of the form cQ^Q,* Ω2^2^, οΩ^Ω,^Ω, * Ω2Ω2Ω2θ, . . , , cQ7 * Ωζα, 
. . . (m = 1,2,...), and no words of the form cQ^ * Ω^ο for m Φ n. Thus, the 
language L^p separates* the languages { c Q 7 * ß 2 c } (m = l ,2 , . . . ) and 
{cQ7 * Ü5c} (η # m). N o w an argument as at the end of Section 1.2 shows 
that L^p cannot be finite-state. This completes the proof. 

REMARK. The class of CF-languages is not closed under complementa
tion and intersection; therefore, we cannot state that the language L^p is 
context-free. This is the reason why, despite the fact that the proof of the 
theorem essentially involves the language L^^, we worked with the language 
L # , which is surely context-free. 
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THEOREM 3.2. Every regular expression defines a language representable 
in a finite automaton; there exists an algorithm which, given a regular ex
pression, constructs the corresponding automation. 

REMARK. The same theorems of Sections 1.6,1.7 imply that Theorem 3.2 
remains valid for a more comprehensive metalanguage, which, besides 
the operations v , · , *, also admits the operation symbols &, ~ ] . 

EXAMPLE 1. Given the regular expression {a ν b)* ba ν b* ν (ab)* (to 
simplify notation we have omitted some parentheses and all concatena
tion symbols; we adopt the convention that · dominates v , and use the 
associativity of the operations · and ν ) . In Figure 26 we construct a two-
terminal representing the language in question, proceeding step by step 
according to the inductive definition of the regular expression. The deter
minization step is omitted. 

REMARK I . In synthesizing an automaton on the basis of a given 
regular expression 91, it is natural, wherever possible, first to simplify 
this expression using various identities (for example, every subexpression 
(91*)* may be replaced by 91*, and so on). 

II . It is easy to indicate an upper bound for the number of states of an 
automaton obtained by synthesis for a regular expression, in terms of the 
number of occurrences of various symbols in the expression. Suppose that 
a regular expression 91 contains n{X) occurrences of letters from the alphabet 
X, n ( v ) occurrences of v , n ( ) occurrences of ·, n{*) occurrences of *. 
Then the above method constructs a source 93 in which the number of 
vertices is 

n(95) = 2n(X) - 2M( ν ) - η( · ) + n ( . ) . 

Since n( V ) + n ( ) ^ n(X) - 1, we have n ( » ) ^ η{Χ) + n(*) - 1. If we 
first delete all "superfluous" occurrences of the symbol * from 91 (see the 
previous Remark), the number of occurrences of • is at most 2n{X) — 1; 
thus η(95) ̂  3n(X) - 2. Therefore, the number of states in an automaton 
obtained by synthesis is at most 2^"^^^"^. 

Consideration of the analysis problem in the metalanguage of regular 
expressions necessitates the following observation. Our definition of 
regular expressions always yields a nonempty language, while there do 
exist algorithms producing the empty language. Therefore, in all future 
quests for a regular expression for a language 91, we shall assume that we 
have already ascertained whether 9Ϊ is empty or not (another alternative 
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C O N S T R U C T I O N O F A T W O - T E R M I N A L S O U R C E 

F O R T H E R E G U L A R E X P R E S S I O N {a ν b)* ba ν b* ν (ab)* 

(i) a 

(3) ab Q^<yi® 
From (1) and (2) by serial connection 

From (1) and (2) by parallel connection 

(2) b 

From (2) and (1) by serial connection 

b 

From (2) by cycling 

o 
From (3) by cycling From (5) by cycling 

{9)(avbfba 

From (8) and (4) by serial connection 

(W)(avbfbavb^(ab) 

From (9), (6), (7) by parallel connection 

Figure 26 
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t Recall that one can effectively decide whether w(B,qQ,q¡) is empty or not. 

would be to introduce a special symbol, 0 , as the regular expression de
scribing the empty language). In all cases of interest, Theorem 1.4 and Remark 
I I I in Section 1.5 guarantee that one can effectively decide whether the 
language is empty. 

THEOREM 3.3. (ANALYSIS IN THE METALANGUAGE OF REGULAR EX

PRESSIONS). Every finite-state language can be defined by a regular expres
sion (briefly, the language is regular). There exists an algorithm which, given 
a source (in particular, an automaton), constructs a regular expression de
fining the language. 

Proof. Given a source (B,qo,Q'y. Since ω(B,qo,Q') = ^q. ω(B,qQ,q,), 
it will suffice to prove the theorem for a source {B,qQ,qiy. Letcü(ß,^o»^i) 
denote the sublanguage of ω(B,qQ,qi) generated by all paths beginning at 
qQ and containing no intermediate passage through It is obvious that 
ω(Β, qQ,qi) is nonempty if and only if ώ(Β, qQ, q^) is nonempty.^ N o w 

I ώ(B,qQ,qi) (ώ (β ,^ , , ^ , . ) )* , if ώ(Β, qQ,q^ is nonempty; 
ω(B,qQ,qi) = \ ^.^^ . . 

[ω(B,qQ,q^) otherwise. 

Hence it will suffice to prove the theorem for all languages of type ώ(Β ,^ο»^ ι )» 
this we proceed to do by induction on the number k of states of the source. 
The regular expression which is the disjunction of all letters labeling the 
edges going from to qj will be denoted by [qi,qj] (if there are no such 
edges we write [^ , , qj] = 0). The notation [^ , , q¡\ will also be used for the 
language defined by this regular formula; it should always be clear from 
the context in what sense the notation is being used. 

Base. When k = 1 the language ώ (Β ,^ο ,^ο) is defined by the formula 

Induction step. First assume that q^ ψ qQ. If there are no edges going to 
q^, then (h(B,qQ,q^ is empty. Otherwise, let Q' be the set of all edges other 
than q^ from which edges go to q^. Denote by B' the diagram obtained 
from Β by deleting the vertex q^ and all edges incident upon it. By the in
duction hypothesis, one can determine, for all q[ G β'» whether the language 
(o(B\qQ,q'), hence also ω(B',qQ,q'), is empty or not, and if it is nonempty 
we can effectively find a regular expression for it. If ω(B\qo,q') is not empty, 
then ω(B\qQ,q')'[q',q^'] c (b(B,qQ,q¡)', if ω(B',qQ,cí) is empty and qQ = 
then [^ ' ,^ ί ] ^ m(B,qQ,q^. Obviously, the union of all these sublanguages 
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is precisely ώ(β,^0'<?ί)· W e thus obtain a regular expression for ώ{B,qQ,qi), 
as the sum (disjunction) over q' of the regular expressions for the languages 
ωiB\qo,q')Ίq\q,^ and 

N o w let qi = qQ. Then, by deleting qQ and all edges incident upon it, we 
get a subdiagram B'; let Q' be the set of all vertices in B' to which edges go 
from (Jo, Q' the set of vertices from which edges go to qQ. As before, the 
language ώ(β,^ο>^ο) is the union of languages of three types: 

(I ) [ ^ o . ^ o ] ; 

( I I ) for each pair q'eQ', q'eQ" such that ω{B\q\q") is nonempty, a 

language [^ο,^Ί * oj{B\q\q") · [ ^ " , ^ 0 ] ; 

( I I I ) a language [(ΙοΑ']'\λΆο\ for each q^eQ such that q'eQ". 
Thus, analysis of the original source reduces to that of sources with 

fewer vertices, and the theorem is proved. 

EXAMPLE 2. Consider the behavior of the automaton Β defined by the 
diagram of Figure 27«. The initial vertex is qQ, the final vertex q^. Then 

^ißAoA^) = ώ(β,^ο .<?3) ( ω ( Β , ^ 3 , ^ 3 ) ) * , 

o^i^AoA^) = ω(B\qQ,q,) · [ ^ 1 , ^ 3 ] ^ ω ( β ' , ^ ο » ^ 2 ) * ί^ι^^^Ι 

ώ{B,q^,q^)= [ (?3 , ^o] ' ω ( Β ' , ^ ο , ^ ι ) * [ ^ 1 , ^ 3 ] ^ 

ν [^3 , ^o ] . ω(B\qQ,q2)' [ ^ 2 , ^ 3 ] ^ [ ^ 3 . ^ 2 ] ' [ ^ 2 , ^ 3 ] . 

where the diagram B' is that illustrated in Figure lib. Since ß' is very simple, 
regular expressions for 0){B\qQ,q,) and 0}{B',qQ,q2) are easily derived: 
co(B\qQ,q,) = 0, ω (Β ' , ^ο ,^2 ) = 0 0 ν 1. 

Consequently, 

ω ( β , ^ ο , ^ 3 ) = { 0 ( 1 ν 00 ν Ol) ν (00 ν 1) . (O ν 1 ) } · 
• { 1 · 0 · ( 1 ν 00 ν 01) ν 1 ( 0 0 ν 1 ) · (0 ν 1) ν 0 ( 0 ν 1 ) } * = 

= (01 νΟΟΟ νΟΟΙ v i o ν 11)·(101 νΙΟΟΟ ν 1001 ν 110 ν 111 ν 00 ν 01)*. 

REMARK. If the languages under consideration may contain the empty 
word, it is convenient to generahze the concept of a regular expression over 
the alphabet X = {a,b,c,...} by adding a special symbol λ (not an ele
ment of X) for empty words. When this is done, the star operation is usually 
interpreted as closure with addition of the empty word: 

31* = Λ V 91 vsnsa V snsasn ν ... 
The synthesis and analysis algorithms described above carry over almost 
unchanged to this case; we need only take the following precautionary 
measures: 
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( I ) Analysis. The following changes should be made in the expression 91 
obtained from the above algorithm: 1) if the initial state of the automaton 
is also a final state, replace 91 by Λ ν 91; 2) replace every subexpression 
of the form 95* by 93 · 95*. 

( I I ) Synthesis. 1) First replace every subexpression S* by Λ ν 95*; 
2) a two-terminal for the expression Λ consists of one empty edge. 

ft/ 
^ 

Figure 27 

ΙΠ.5. The metalanguage of ω-regular expressions 

ω-regular expressions over an alphabet X are defined inductively as follows. 
1) If 91 is a regular expression, then (91)°° is an ω-regular expression; the 

ω-language defined by this expression is the strong iteration closure of 
the language defined by 91. 

2) If 9Ϊ is a regular expression and S an ω-regular expression, then 
91 · S is an ω-regular expression; it defines the concatenation product of 
the language defined by 91 and the ω-language defined by © . 

3) If 95i and 952 are ω-regular expressions, so is ν ©2» it defines the 
union of the corresponding ω-languages. 

For example, consider the ω-regular expression (1 ν 0*1)°°. It defines 
the ω-language consisting of all ω-words with infinitely many ones. In 
Example 8 of Section I I I . l we gave a verbal description of this ω-language, 
and also solved Problems A ' , C. 

W e are now in a position to describe a synthesis algorithm (i.e., to solve 
Problems A ' , C for arbitrary ω-regular expressions. 

Given an arbitrary ω-regular expression 95, let Ω ( © ) denote the ω-lan
guage that it defines. According to Theorem 3.2, there exists an algorithm 
which, given any regular subexpression 91 of 95, will construct a suitable finite 
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automaton. Now, with the aid of Theorems 1.11 and 1.12, this algorithm 
can be extended to an algorithm which, given the ω-regular expression 95, 
constructs an automaton representing the ω-language Ω (93). On the other 
hand, examination of the proof of Theorem 1.13 shows that for any finite 
macrosource {B,qQ,(iy one can effectively construct an ω-regular expression 
defining the ω-language Q{B,qQ,(i). At this point, as in the case of regular 
expressions, one should introduce certain stipulations as to the notation 
(a special symbol 0 ) and acceptance of empty languages. The construction 
of an ω-regular expression from a finite macrosource proceeds as follows. 
With each limit macrostate Γ,· = {q,,..., 6 and initial state qo e β , 
associate two finite-state languages 31,̂ , Sí,^; in the notation of Theorem 1.13, 
these are ω(5,<^ο»^ι) and the concatenation product ω(B\qι,q2) · ω ( β ' , ^ 2 » < ? 3 ) · 

..ω(B\q,,q,). Regular expressions for these languages are effectively 
constructible. Since the ω-language Q ( J B , ^ O » ^ ) is the union of ω-languages of 
type 91;̂  · Sil^, a suitable ω-regular expression can be obtained in a natural 
way from the regular expressions for 9I¿,, = 1,2, . . . ) . W e have thus 
proved 

THEOREM 3.4. ( / ) Every ω-regular expression defines an ω-language 
representable in a finite automaton; there exists a (synthesis!) algorithm 
which, given an ω-regular expression, constructs a finite automaton rep
resenting the corresponding ω-language. 

(II) Every ω-language representable in a finite automaton is definable by an 
ω-regular expression; there exists an (analysis!) algorithm which, given a 
finite macrosource, constructs an ω-regular expression defining the cor
responding ω-language. 

EXAMPLE 1. (ANALYSIS). Find an ω-regular expression for the ω-language 
Q(B,qo, { ^ 2 , ^ s } ) (see Figure 27a). W e have 

Ω ( 5 , ^ ο . { ^ 2 » ^ 3 } ) = co(B,qo,q^)-n(B",q^,{q2,q^}), 

where B" is the diagram of Figure 27c. W e have already found a regular 
expression for the language ω(B,qo,q2) (Example 2, Section I I I .4 ) : 

(01 V 000 V 001 V 10 V 11)(101 ν 1000 ν 1001 ν HO ν H l ν 00 ν Ol)*. 

An ω-regular expression for 0,(B",q^,{q2,q^}) may be based on the rep
resentation 

Ω ( β " , ^ 3 , { ^ 2 , ^ 3 } ) = (co(B",q„q2)'ω(B",q2,q,))^. 

^ W e have simplified the notation for states by ignoring the dependence on i. 
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g (see Fig. 11c) h (see Fig. 12 a) i (see Fig. 12 c) 

Figure 28 

However, direct examination of the simple diagram B" yields the expression 
( 0 ( 0 V 1))°°. The final co-regular expression for our ω-language is 

(01 V 000 V 001 V 10 V 11)· 
(101 V 1000 v lOOl V 110 ν 111 ν 00 ν Ol)* (O (O ν l)f^. 

EXAMPLE 2. (SYNTHESIS). Construct a macroanchored automaton rep
resenting the ω-language defined by the ω-regular expression a^biab)"^. 

Figure 28 illustrates the steps in the construction of the automaton 2Í. 
W e first construct an automaton SR representing the language defined by 
the regular expression a*b (Figure 28, a-g), and then an automaton 95 
representing the ω-language defined by the strong closure (ab)"^ (Figure 
2Sh). Finally, applying the algorithm from the Concatenation Theorem, 
we get the required automaton 91 (Figure 280-

Construction of the automaton SDl for the subexpression a*b proceeds 
in steps: 

a) a source < Α π ι , π 2 > (Figure 28a) for the subexpression a; 
b) a source < £ , π 2 , π 2 > (Figure 2Sb) for the subexpression a*; 
c) a two-terminal ζΕ',π^,π^} (Figure 28c), obtained from < £ , π 2 , π 2 > by 

introducing an input terminal and output terminal ; 
d) a source <F ,^2'^3> (Figure 28d) for the subexpression b; 
e) a source <Κ,π ι ,^3> (Figure 28e), obtained by identifying the output 
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terminal of the two-terminal <£',πι,π3> with the input terminal ^2 of 
the two terminal (^,^25^3)^ this source corresponds to the subexpression 
a*b; 

f) a source < M , ^ i , ^ 3 > (Figure 28/), obtained from <X, n^^q^} by merging 
the equivalent states π^,π2 (call the resulting vertex ^J, representing the 
language defined by the expression a*b (comparing Figure 28/ with Figure 
11a, we see that they illustrate the same diagram); 

g) an automaton <S)l, 1,3> (Figures 28öf and 1 Ic) obtained by determiniza
tion of the source iM,q^,q^y (see Section 1.7, Example 1). 

Construction of an automaton < S , P i , { P i , P 2 } > (Figure 2Sh) representing 
(ab)'^ was given in the example of Section 1.10. 

Construction of an automaton <91,Í ;I , {Í ;4 ,Í ;5} > (Figures 28i and 12c) 
representing the concatenation product of the language ω (SR, 1,3) and the 
ω-language Ω ( ® , ρ ι , { ρ ι , ρ 2 } ) was described in the example following the 
Concatenation Theorem (Section 1.9). 

Thus the automaton i^,v^,{v4,,v^}y (Figure 28/) represents the ω -
language defined by the ω-regular expression a*b(afe)°°. 

ΙΠ.6. The logical metalanguage I 

The statement of the synthesis problem appeals to various metalanguages, 
some of which have been considered in the preceding sections. Various 
arguments can be given in favor of choosing one metalanguage or another, 
or developing a new metalanguage. Nevertheless, one can indicate two 
requirements which it is quite natural to impose on any existing or pro
jected metalanguage. 

The first requirement represents the interests of the client, so to speak, 
and relates to the expressive power of the metalanguage. Intuitively, a 
metalanguage Χ ^ is at least as expressive as a metalanguage Κ2 if any 
statement expressible in K2 admits a clear reformulation in K^, It is clear 
that the more expressive a metalanguage, the more appropriate it is for 
preliminary formulation of problems. 

The second requirement reflects the viewpoint of the designer; there must 
be a fairly simple algorithm for solution of the synthesis problem in the 
metalanguage. 

In a certain sense these two requirements are contradictory. The more 
comprehensive and expressive the metalanguage, the more universal and 
so less simple the algorithm. Moreover, it is not difficult to see that if the 
metalanguage is too comprehensive the required algorithm may not exist 
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at all. W e shall "take sides" in this conflict, supporting the client in his 
demand for a metalanguage as expressive as possible, provided a synthesis 
algorithm still exists. In our quest, we shall appeal to the apparatus of 
mathematical logic, which, thanks to the suitable formalization of logical 
connectives and operations (conjunction, negation, quantifiers), achieves a 
close resemblance to natural language and usual modes of thought. For 
instance, the verbal conditions imposed by the client in Example 4 (Section 
I I I . l ) on the ω-words 

y = y{l)y{2)...y{t)..., 

X, = Χ ι ( 1 ) ^ ι ( 2 ) . . . Χ ι ( ί ) . · . , 

X2 = X 2 ( 1 ) X 2 ( 2 ) . . . X 2 ( 0 . 

may be expressed as follows: 

3^tly{t)= 1 ] ^ 3 ^ ί [ χ ι ( ί ) = 1 ] & 3 « ^ ί [ χ 2 ( 0 = 1], 

where 3°°ί is the quantifier "there exist infinitely many i." The corresponding 
formula for Example 2 is 

V í [ > ; ( 2 í - 1 ) = 1 ] ^ Π ( Χ ι ( 2 ί ) = 1 - ^ X 2 ( 2 0 = 1). 

It is more difficult to set up an analogous formal notation for Examples 1 
and 3. A natural suggestion here would be to employ symbols for addition 
and multiplication. However, it is well known that there is no algorithm 
that decides the truth of formulas built up from equalities of the type 
ί + τ = w, ί · τ = w (i, M, τ are variables ranging over the natural numbers) 
using the operations of the predicate calculus (&, v ,~1 , V, 3). This 
circumstance, as well as other similar ones (there exists no algorithm de
ciding whether formulas of the predicate calculus with one binary predicate 
are tautologies), obliges us to exercise more caution in our choice of tools. 
W e are going to describe a logical metalanguage I which, as far as we know 
at present, involves no "embarrassing" situations. W e shall endeavor to 
present convincing arguments for the thesis that the metalanguage I is in 
fact considerably more expressive than those considered hitherto. It is 
far more difficult to prove that the synthesis problem in this language is 
algorithmically solvable—this will be done in the following sections. 
The metalanguage I is intended to provide formulation of statements about 
ω-words over different finite alphabets. The letters, which may occur in 
various alphabets, form a denumerable hst of constants: 

a,fc,c,... (possibly indexed). 
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Consider the set of all ω-words over an alphabet {a^, α^,. . . , a j . Variables 
ranging over this set will be denoted by symbols χ!""-""^ etc., 
where the superscripts indicate the selected alphabet { ß p ß j , . . . , a^. Apart 
from these variables, which we shall call predicate variables* the 
language also contains individual variables, t, τ, p, σ , . . . ranging over the 
natural numbers. There is a constant 1 and a function symbol φ, denoting 
the successor function on natural numbers (i.e., φ{t) = t 1). Finally, the 
metalanguage I contains symbols for the logical connectives (&, v , ~1 , — 
quantifiers (V, 3), and also parentheses and the equality sign : ( , = , ) . 

W e now define the terms, atomic formulas and formulas of I (I-formulas) 
and explain their semantics. As is customary, we shall frequently employ 
metanotation. 

Expressions of the form i, φ{t), φφ{t\ φφφ(1), etc., are terms; we shall 
replace them by the more familiar notation 

Í, ί -h 1, ί -h 2,4, etc. 

Let ^ be a predicate variable, a a letter from the corresponding alphabet,** 
ξ a term. A formula of the form q{ξ) = a is called an atomic formula of I ; 
it expresses the statement: the ξ-ύί entry in the ω-word q is the letter a. 
In accordance with this interpretation, the formula q{ξ) = a assumes a 
well-defined truth value (i.e., true or false) as soon as the values of the 
variables occurring therein (the predicate variable q and any individual 
variable appearing in ξ) are prescribed. All other formulas of I (and their 
semantics) are derived from atomic formulas by the usual application of 
logical connectives and quantifiers, over both predicate variables (predicate 
quantifiers) and individual variables (individual quantifiers). W e shall 
employ notation such as 9I(x^'^ q""'^'', i, τ ) , 93(x'''^ τ ) , etc., to indicate the 
variables which have free occurrences in a formula; for example, 95(x'*''', τ ) 
denotes a formula in which there is only one free predicate variable x**'̂  and 
one free individual variable τ. 

A formula which contains no free variables is called a sentence. A sentence 
has a well-defined truth value, induced by the interpretation of the symbols 
indicated above. However, if the formula contains free occurrences of 
certain variables (predicate or individual) its truth or falsity in any situation 

* Translator's note: This is Biichi's terminology [ 7 3 ] ; the motivation follows from the remark 

at the end of this section. 

** Henceforth, whenever no confusion can arise, we shall omit the superscripts indicating 

the alphabet associated with a predicate variable. In this case, therefore, q is an abbreviation 

for ^ ··"···. 
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depends on the actual objects (ω-words or natural numbers) substituted for 
the variables. 

EXAMPLE. The sentence 

V í V x « ' ^ [ x « ' ^ ( í ) = a-^ x« '^ ( i + 1) = a ] 

states that, in every ω-word (over the alphabet { a , b } ) , each occurrence of 
the letter a is followed by another occurrence of a; it is clearly false. The 
formula V í [ x " ' ^ ( í ) = χ"'''(ί + 1) = α ] contains the free variable x^ '^ 
it is true if and only if the ω-word aaaa... (infinite block of a's) or an ω-word 
of the form bb... baaa... (block of fc's followed by infinite block of a's) 
is substituted for x^'^ The formula 

?r(T,i) = Vx«' ' ' [Vp(x« '^(p) = 
= a -> x«'^(p + 1) = α ) & χ « ' ^ ( τ ) = a-^ x^ '^ ( i ) = a ] ( # ) 

contains the free (individual) variables τ, t. It is easily verified that it is 
true if and only if τ, t are natural numbers such that τ ^ i. 

Let 91(τ, Í , . . . , p) be a formula containing m free individual variables and 
no predicate variables; it can be associated with the set of all m-tuples of 
natural numbers for which it is true. W e denote this set by τ ί , . . . ρ 9 Ι ( τ , ί , . . . , ρ) , 
and say that it is defined by the formula 2 ί ( τ , ί , . . . , ρ) . Since there is one-
to-one correspondence between sets of m-tuples of natural numbers and 
m-ary relations over the natural numbers (m-ary predicates), we 
speak of relations (predicates) defined by I-formulas. For example, formula 
( # ) defines the relation ^ over the natural numbers. W e shall now explain 
in what sense I can be employed as a metalanguage in the theory of automata. 

A formula 9ί(χ^·'' ^ ) with a single free variable (the predicate variable 
x"'^ ^) is said to define the set of all ω-words over the alphabet { a , f c , . . . , d} 
for which it is true. W e denote this set by jj«.*. · .^9Ι(χ«.ί>.··..^). For example, 
the formula V í [ x " ' ' ' ( í ) = α χ''·^(ί -f 1) = α ] considered above defines 
the set of ω-words (i.e., ω-language) consisting of aaaa... and all ω-words 
of the type bb... baaa... Similarly, a formula 9 I ( X i , . . . , x,„) with m free 
predicate variables defines a set of m-tuples of ω-words, which is denoted by 

: í ^ 9 í ( x i , . . . , x j . 
For example, consider the formula Π ( x ^ ' ^ / ' ^ z ^ ' ' " ^ ' ' ' ' ' ^ ^ ) , in which the 

alphabet of the predicate variable ζ is the product of the alphabets of the 
variables x,y: 

Π ( x « ' ^ / ' ^ z ^ ^ ' « ^ · ^ ^ ' * ^ ) = V í [ ( z ( í ) = ac^ 
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^x(t) = a&y{t) = c)8c(z(t) = ad<-^x{t) = a&y(t) = d)& 

8¿{z(t) = bc^x{t) = b&y{t) = c)&(z(t) = bd<^x{t) = b&y{t) = á ) ] . 

It obviously defines the set of triples <x,y ,z>, where the ω-word ζ is the 
coupling of the ω-words χ and y (equivalently, χ and y are the projections 
of ζ onto the corresponding alphabets). Therefore, if a formula ^{x,y) 
defines a set of pairs of ω-words xySd{x,yX then the formula ©(2) = 
3 x y [ 9 I ( x , } ' ) & Π(χ , y, z ) ] defines the related set of ω-word couplings. 
Similarly, given a formula 91 (z) one constructs a formula 3z [93 (z) & Π (χ, y, ζ ) ] 
which defines the set of pairs of projections of the ω-words in z93(z). In 
view of this very simple relation between a formula defining a set of pairs 
of ω-words and the formula defining the corresponding set of couplings we 
shall henceforth associate with the formula SU{x^^7^7^^) not only the set 
Xi . . . x „ 9 I ( x i , . . . , x j but also the ω-language consisting of the cor
responding couplings; the latter will be denoted by χ7ΤΓ7χ,„9ί(χι , . . . , χ J , 
and we shall say, speaking rather loosely, that it too is defined by the for
mula 9 I ( x i , . . . , x ^ ) . Similarly, for any partition of the set of variables into 
μ disjoint subsets, we shall say that the formula 9 l ( X i , . . . , χ J defines the 
set of /i-tuples of ω-words over the corresponding alphabets. W e shall be 
especially concerned with partitions into two groups; for example, in the 
formula 9 ί ( χ ι , . . . , χ^,^ι , . . . , y^) we might call X i , . . . , x^ "input" variables, 
and yi,...,yk "output" variables, and consider the set of pairs of ω-words 
that it defines-; this set will be denoted by 

x ^ T ^ s ^ T ^ ^ k ^ í ^ i » · · ·»^s^yi^ · · · » Λ ) · 

W e shall now explain in what sense the language I (or certain fragments 
thereof) can be employed as a metalanguage for synthesis theory. 

I. Since any formula 9Í ( x ^ , . . . , x^) defines an ω-language, in the above 
described sense, the class of all these formulas (m = 1,2, . . . ) may be regarded 
as a metalanguage for the description of ω-languages; one can thus formu
late Problems A ' , C of the general synthesis problem. 

I I . Consider an operator Τ that transforms ω-words over an input alpha
bet { α , ί ? , . . . , d} into ω-words over an output alphabet { e , / , . . . , Λ} , and also a 
formula 91 (χ^·^ ^ / · / ' · · • ' ' ) . W e shall say that Τ satisfies this formula if 
the latter is true whenever y = T x ; in other words, the graph of the operator 
Tis contained in the set xy9í (x, y). The restriction on the number of variables 
is clearly not essential, since for more than two variables the free variables 
may always be appropriately divided into "input" and "output" variables. 
Consequently, the class of formulas containing at least two free (predicate!) 



170 M E T A L A N G U A G E S [IIL6 

variables may serve as a metalanguage for the description of operators; 
Problems A , B, C of the general synthesis problem may be formulated in 
this metalanguage. 

I I I . It remains to see how I-formulas can describe languages. T o this 
end, we first need a few new concepts. 

Given a formula 3ί(χ) whose only free variable is a predicate variable x, 
and natural numbers Tq^íq^Xq ^ íq. The formula 21 (x) is said to be fictitious 
outside [ το , ίο] if it has the following property: for any two ω-words 

X' = x ' ( l ) x ' ( 2 ) . . . x ' ( T o ) . . . x '( io - l ) x ' ( i o ) . . . , 

X" = x " ( l ) x " ( 2 ) . . . X " ( T O ) . . . x"{to - l)x"(to)..., 

with identical segments 

< ° - 1 = ^ ' ( τ ο ) . . . x'ito) and x;; '« , = X ' ' ( T O ) . . . x"{to) 

of length to - '̂ o + ^ the formula 91 (x) is either true for both or false for 
both. In other words, whether an ω-word χ belongs to the ω-language 
Jí9I(x) depends only on the word X ( T O ) . . . χ(ίο)· In this sense, a formula 
which is fictitious outside [ το , ίο ] defines a certain set of words of length 
h - '^o + 1· N o w let 9 ί (χ , ί ) be a formula, containing both a predicate 
variable χ and an individual variable i, having the property: for any fixed 
Í0, the formula 9I(x,io) is fictitious outside [ Ι , ί ο ] · W e shall then say that the 
formula 9I(x, i ) is fictitious outside and defines the language 91 which 
is the union of the languages corresponding to the formulas 91 (x, 1), 91 (x, 2), 
91 (x ,3) , . . . ( the formula 9 ϊ (χ , ί ) expresses the statement that the word 
x ( l ) . . . x ( i ) belongs to the language 9Í). 

By analogy with the definition of ω-languages by formulas containing 
several predicate variables, one can also consider definition of languages 
by formulas 91 ( x , > ' , . . . , ζ , ί ) with several predicate variables and one indi
vidual variable. 

E X A M P L E . The formula 

V T { V X « ' ' ' [ V P ( X ' ' ' ' ' ( P ) = a-^ x« ' ' ' (p -f 1 ) = α)&χ« ·^ (τ ) = α - > x'''(t) = α ] - > 

- > (χ«· ' ' (τ) = α<&/ ' ' ' ( τ ) = b) ν (χ' ' ·^(τ) = ί ? & / ' ' ' ( τ ) = α )} 

is fictitious outside [ Ι , ί ] and defines the language (over the alphabet 
{a,b} X consisting of all words which contain only the letters <afc> 
and <ba>. That this is true follows easily from the observation that the 
underlined subformula defines the inequahty τ ^ i. Thus the condition 
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expressed by the above formula is 

ν τ [ τ ^ t-> χ ( τ ) = α&γ{τ) = b ν χ ( τ ) = b&y{T) = α ] . 

REMARK. Particularly noteworthy is the case of a formula in which 
all predicate variables (both free and bound) have the same alphabet 
{a,b}. Identifying the symbol a with "true" and b with "false," one can 
regard every ω-word x^'^ over the alphabet {a,b} as a monadic predicate 
whose argument ranges over the natural numbers. W e can then replace 
the notation x'^'^it) = a, x " ' ' ' ( i ) = b for atomic formulas by the usual 
predicate notation x ( i ) (the predicate χ is true for the argument t) and 
Π x ( i ) (x is false for the argument t). More complicated formulas also 
assume their more familiar predicate calculus form. For example, the 
formula ( # ) becomes 

V x [ V p ( x ( p ) ^ x ( p + 1 ) ) & χ ( τ ) - > χ ( ί ) ] . 

Since alphabets of arbitrary cardinahty can be represented by binary 
codes, it follows that there is no loss of generality in confining the discussion 
of the metalanguage I to this narrower version (which might be called the 
monadic predicate calculus over the natural numbers). W e nevertheless 
prefer to treat the general case, admitting ω-words over arbitrary alphabets 
(which may be regarded as predicates with several, not necessarily two, truth 
values). 

ΠΙ.7. Expressive power of the logical metalanguage I 

In this section we shall present various illustrations of the expressive 
power of I. Suppose that the conditions imposed on the operator (language, 
ω-language) are specified by a formula 91 in one of the metalanguages 
considered previously. Then, as we shall soon see, it is very easy to go from 
91 to an I-formula expressing the same condition. In essence, this procedure is 
a natural embedding of the original metalanguage in our logical language. 
However, this process is irreversible: even when a description is expressible 
in logical terms, its formulation in other languages (such as regular expres
sions) may be quite difficult. This is precisely the motivation for 
our claim that the logical language I is more comprehensive and expressive 
than the previous metalanguages. W e shall first show that I may be used 
to define many useful relations and operations which are not primitive 
concepts of I. This makes it possible to extend I by introducing various 
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aelimq^^'--'=3^t[q{t) = al 

lim ·̂ = {α , fe} = α e lim ^' ·̂ ̂  & fe e lim ^' '̂ & 
(4) 

& Π (c e lim (^«'^'*^'^) & Π (d 6 lim q''^^''-^). 

5. Equality of the á-th letter in an ω-word χ and the i-th letter in an 
ω-word y is defined as follows: 

= α V χ« '^ ' -^(á) = fe&y«'^'••'''(í) = fe ν . . . (5) 

. . . ν χ-·*» ' ' (á) = d Ä / ' * ^ ' ' ( í ) = á ] . 

* In the sense of Section 0.2 (page 8). 

secondary concepts, which may be effectively eliminated, if so desired, by 
replacing them with the appropriate (defining) expressions of I. 

1. The relation of equality of terms ξ and η is defined by the formula 
'^χ'''^\_χ^'^{ξ) = α^χ'''^{η) = α ] , which asserts that every ω-word has the 
same letter at its ξ-th and η-th positions. W e express this as follows: 

ξ = ηψ^χ'-Ίχ^'^Ηξ) = α^χ^^\η) = α ] . (1) 

Similar notation will be employed subsequently to define secondary concepts. 
2. As we have already seen, the relation ^ between terms is defined as 

follows: 

^ ^ , ; = V x « ' ' ' [ { V i ( x « ' ^ ( 0 = a - > 

^ x « ' ' ' ( i + 1) = a)&x^'^((^) = a} x-'''(fy) = a]. (2) 

Since ξ <η is equivalent to g ^ & Π (<ί = ^ ) , it is clear that the rela
tion < is also definable in I. 

3. Individual quantifiers 3°°i (there exist infinitely many i)» V°°i (for all 
t except possibly a finite set), 3i]J (there exists t in the interval [ a , f ) ] ) , 
Vi]J (for all t in the interval a, b) may all be defined in I : 

3 - ί 9 Ι ( ί , . . . ) = ν τ 3 ί [ ί > τ & 9 1 ( ί , . . . ) ] , 

V - Í 9 I ( Í , . . . ) = 3 T V Í [ Í > T - > 9 I ( Í , . . . ) ] , 

3 ί ] α 5 Ι ( ί , . . . ) = 3 ί [α ^ ί ^ f c & 9 Ι ( ί , . . . ) ] , 

Ví]S9I(í,...) = V í [ a ^ í ^ f > - ^ 9 I ( í , . . . ) ] . 

4. Limits* are defined in I as follows : 
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Henceforth we shall make use of these secondary concepts and their 
symbols without reservations; additional concepts will be introduced as 
the need arises. 

W e shall now indicate how to "embed" the metalanguages of finite 
trees (tables), sources (macrosources), regular and ω-regular expressions 
in the metalanguage I. An I-formula defining (in the appropriate sense) the 
same operators (language, ω-language) as a given formula 91 of a meta
language under consideration will be called equivalent to 91. 

I. Finite trees. As an example, consider the finite tree representing the 
transformation of the word aab into the word abb: 

x ( l ) = a&x(2) = a&x{3) = b-^y(l) = a&y{2) = b&y{3) = b. 

Clearly, the conjunction of implications of this type over all rows of the 
table (or paths of the tree) is a formula 9 l (x ,y) which is satisfied by the 
very operator that satisfies the conditions described by the table. In simpler 
terms, one might say that this formula is a natural code for the table. 

I I . Sources. W e first describe the procedure for "encoding" diagrams 
by I-formulas, which is analogous to that just presented for finite trees. 
Let β be a diagram labeled by letters { a , b , a n d having vertices 
(states) {<? i ,<?2» · ·»^fc}- The encoding formula will involve predicate variables 
^ a , b , . . . , d q q u q 2 . . - . , q k (¿enotcd below by χ and q) and an individual vari
able t. If Β contains an edge going from qi to qj and labeled a (i.e., there 
is an instruction ^¿a —• qj), this is encoded by the formula 

q{t) = q^&xit) = a&q(t + 1) = qj. 

Denote the disjunction of all formulas of this type over all edges (instruc
tions) by 95(g,x, i ) ; this is the code of the diagram. N o w consider a source 
<^,6^ö">- Denote the disjunction q{T) = q^ ^ q{x) = q^_ ν . . . over all q^, 
q^,... in Q' by q{x)eQ'\ similarly for ^ ( τ ) € Q " . It is now easy to see that 
the formula 

9 ί ( χ , 0 ^ 3 ^ { ^ ( 1 ) 6 β ' & ν σ ] ί » ( ^ , χ , σ ) & ^ ( ί + l ) 6 ß " } 

is fictitious outside [ Ι , ί ] ; it expresses the statement: there is a path in the 
diagram Β leading from Q to Q" and carrying the word x ( l ) x ( 2 ) . . . x { t ) . 
Consequently, this formula is equivalent to the source <5,Q',6">, i.e., 
defines the language w{B,Q\Q'\ in the sense indicated in the preceding 
section. 

I I I . Macrosources. After what has been said of sources, it should be 
quite clear that the ω-language Ω(Β,βο,([ ;) , where CC = { Γ ι , . . . , Γ ^ , is 
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b) If 91 = 9Ii · 9Ϊ2, then 

9 ί ' ( χ , τ , ί ) = 3 ρ [ τ 

The induction step for iteration closure is more complicated, though the 

9 ί ' ( χ , τ , ί ) = 3 ρ [ τ ^p< Í & 9 Í Í ( χ , τ , ρ )&9 ί^ (χ ,ρ + Ι , ί ) ] . 

defined by the I-formula 

& ( h m q = r ^ v \\mq = . . . ν hm ^ = T J } 

(in this sense, we shall say that the I-formula 91 (x) is equivalent to the 
macrosource <ß,Qo,e>). 

IV. Regular expressions. A formula 91' equivalent to a regular expression 
91 is constructed inductively, simulating the construction of regular expres
sions. In order to carry through the induction, we shall have to prove an 
even stronger assertion, whose formulation entails some preliminary 
clarifications. 

Consider a formula 9Ι(χ,τ, ίΧ containing a free predicate variable χ and 
two free individual variables τ, t; assume that it satisfies the following two 
conditions : 

(I ) For any fixed T Q and ÍQ such that XQ ^ ÍQ» the formula 91(χ,το,ίο) 
is fictitious outside [το, ίο] · 

( I I ) For any two pairs Το,ίο and τ^,ί^ such that ÍQ - XQ = - τ^, the 
formulas 9 I ( X , T O , Í O ) and 9 Í ( X , T I , Í I ) define the same set of words of length 
Í Q — T o H - l = ii — Ti + l (therefore, the same set of words as the formula 
9I(x , l , io - ^o)). Obviously, for any fixed XQ, the formula 9 I ( x , l , i - XQ) 
with a single individual variable t defines the same language 91, while the 
formula 9 Ι (χ , τ , ί ) itself, with two individual variables τ, ί , expresses the 
statement: the word χ ( τ ) χ ( τ + 1 ) . . . χ ( ί ) belongs to the language 91. 

W e shall now use induction on the number of operations in the given 
regular expression 91 to construct the corresponding formula 91'(χ,τ , ί ) ; a 
formula representing the required language is obtained by substituting the 
constant 1 for τ. 

Basis. Let 91 = a; then 

9 1 ' ( χ , τ , ί ) ^ ( χ ( τ ) = α ) & ( τ = ί ) . 

Induction step. Let 9li (x, τ , i ) and 9I2 (x, τ, ί ) be the formulas corresponding 
to 9Ii and 9I2. 

a) If 91 = 9Ii V 9l2, then 

su' = 2i; V 9ί^. 
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main idea is quite simple; this is natural, since one must use the apparatus 
of I to define the operation *. Let {q, p, σ) be an abbreviation for the formula 

q{p) = a&q{a) = a&V v [ p < ν < ~1 (q{v) = a ) ] , 

which states that the letter a occurs at positions ρ and σ of the ω-word q 
but does not occur between these positions. Then: 

c) I f9 í = 9lí , then 
äf 

9 Ι ' ( χ , τ , 0 = 3 ^ ^ · ' { ^ ' ' ' ' ( τ ) = a&q^''{t + 1) = α & 

& ν ρ σ [ τ < σ ^ ί + 1&(ς[ ,ρ ,σ) -> 9 Ι ί ( χ ,ρ , ( 7 - 1 ) ] } . 

Explanation. The ω-word q contains occurrences of the letter a at those 
positions of the interval [ τ , ί -h 1] which split the word χ ( τ ) χ ( τ + 1 ) . . . χ ( ί ) 
into segments belonging to the language being iterated. 

V. ω-τερηίαγ expressions. The construction of equivalent I-formulas 
in this case is merely an extension of the procedure for regular expressions. 
W e shall describe a procedure which yields somewhat more: for every 
ω-regular expression 95 we shall inductively construct an I-formula 95'(x, τ ) 
stating that the "tail" χ ( τ ) χ (τ + 1 ) . . . belongs to the ω-language repre
sented by 95. In particular, substituting 1 for τ we get the required I-formula 
without free individual variables. 

Let 9Í be a regular expression and 95 an ω-regular expression, and let 
91'(x,τ,ί), 95'(χ,τ) denote the corresponding I-formulas. Then: 

a) I fö : = 9 l^ then 

ε ' ( χ , τ ) = 3 ^ « ' ^ { ^ ( τ ) = α & 3 - ί ( ^ ( ί ) = α ) & 

& ν ρ ( 7 [ τ ^ ρ < σ & ( ^ , ρ , σ ) - ^ 9Ι '(χ,ρ,σ - 1 ) ] } 

(compare with the formula for 91*). 
b) I f e = 91-95, then 

ο:'(χ,τ) = 3 ρ [ τ ^ p & 9 ί ' ( χ , τ , ρ )& 95'(x,p + 1 ) ] . 

The main contents of this section may be summarized in the following 
theorem. 

THEOREM 3.5. There is an algorithm which, given any source [macro-
source, regular expression, ω-regular expression), constructs an equivalent 
l-formula. 

The essential factor, as far as we are concerned, does not figure in this 
formulation, though it is clear from the proof: the procedure involves an 
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For example, Vi [x̂ -̂ W = a] is equivalent to ~1 BíClíx̂ '̂ W = a)). 

extremely simple and natural encoding algorithm. This is convincing 
evidence for our claim that the metalanguage I is comprehensive and 
expressive. 

ΙΠ.8. Normal form 

T w o formulas with the same free variables are said to be equivalent if, 
for any substitution of appropriate objects (ω-words, natural numbers) 
for the free variables, they are either both true or both false. This definition 
extends in an obvious way to formulas whose free variables are not the 
same, by requiring that suitable formulas obtained from the former by 
adding the missing variables as "dunmiies" be equivalent in the narrow 
sense. For example, the formulas 95 (x"***) and 9ί()^'*') are equivalent if 
the formulas 

9 5 ( x « ' ' ' ) & V í [ / ' ^ ( í ) = α V Π ( / ' ^ ( í ) = α ) ] 

and 
9 I ( / ' 0 & V í [ x ' ' ' * ( í ) = α ν Π (χ« ' ' ' ( ί ) = α ) ] , 

which are conjunctions of these formulas with suitable true formulas, are 
equivalent in the narrow sense. 

For I-formulas one can define, besides the standard logical equivalences,* 
specific equivalences which follow from the interpretation adopted for the 
symbols of the language. For example, the formula V í [ x ' ' ' ^ ( í ) = a] is 
equivalent (induction over the natural numbers!) to 

χ«·' '(1) = a & V í [ x " ' ^ ( 0 = χ«· ' '(ί + 1) = α ] . 

W e cite one more specific equivalence in I , which will be used later. Let 
S l ( . . . ί . . . ) be a formula with a free individual variable t (and perhaps 
other free variables). Assume, moreover, that 5R ( . . . ί . . . ) does not contain 
the predicate variable p'''^ or the individual variable λ. Then it is not hard 
to see that 3 í 9 l ( . . . ί . . . ) is equivalent to 

3 / ' ' { V í [ p ( í ) = α-^ 9 l ( . . . ί . . . )]&3λ{ρ(λ) = a)}. (1) 

Let 91 and 95 be equivalent I-formulas. It is evident that if 9Í defines a certain 
language (ω-language, operator), then 95 defines the same language ( ω -
language, operator), and any operator satisfying 91 also satisfies 95. Conse-
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quently, in solving the synthesis problem it is legitimate to replace formulas 
by equivalent formulas where necessary. 

Our inmiediate goal is to give an algorithm for conversion of any I -
formula into an equivalent I-formula of a special type (the so-called normal 
form), which is more convenient for further investigation of the synthesis 
problem. 

Formulas of the following two types will be called elementary: 
1) Elementary formulas of the first type: atomic formulas, such as 

x(s) = a, χ{τ Η- 1) = b, etc. 
2) Elementary formulas of the second type: formulas of the form 3 í9 l ( í ) , 

where 91 ( i ) is a formula built up from atomic formulas, each containing the 
free individual variable i, by means of the logical connectives. Examples: 

3t[x(t) = a&-]{yit) = b)l 

3tixit) = a2&y(t) = b,&y{t + 3) = b^l 

Let F l , Γ 2 , . . . , Γ , be elementary formulas, and Φ ( Γ ι , Γ 2 , . . . , F J a formula 
built up from F j , Γ 2 , . . . , F^ by means of logical connectives alone. W e 
shall call 0 ( F i , F 2 , . . . , F , ) a simple formula with components F^, F 2 , . . . , F,. 
For example, 

x{3) = a,-^3tlx{t) = a2&yit) = 

= b,&y{t 4- 3) = ¿2] V 3 ί [ χ ( ί + 5) = a j (2) 

is a simple formula with three components: 

x(3) = a i ; 

3 ί [ χ ( ί ) = «2 &y{t) = b,&y{t + 3) = ^ 2 ] ; 

3 í [ x ( í + 5) = a J 

It is clear from the definition that, in any simple formula (in particular, 
in an elementary formula), all occurrences of predicate variables are free. 

Finally, a formula is said to be in normal form if it is either simple or is 
derived from a simple formula by quantification over some of its predicate 
variables. Thus, the general appearance of a normal form is 

{ x , > ; , . . . } 0 ( F i , F 2 , . . . , F J , (3) 

where { x , y , . . . } denotes the quantifier prefix before the simple formula 
0 ( r i ,F2 , . . . , FJ. For example, quantifying over y in (2), we get the normal 
form 
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3ylx(3) = a,-^ 3tixit) = a2&y{t) = 

= b,& y{t + 3) = 02) V 3t{x{t + 5) = a,)l (4) 

which is no longer a simple formula. 

THEOREM 3.6 (REDUCTION TO NORMAL FORM). There is an algorithm which, 
given any I-formula 91, constructs an equivalent normal form 9Í'. 

Proof The reduction algorithm falls into the following steps: 
A . Reduction to prenex form, i.e., the process bringing the quantifiers 

forward to the head of the formula, for both predicate and individual 
variables (this is a standard procedure). 

The result of step A is a formula [ w ] S , where 
(I ) the prefix [ w ] generally contains quantifiers over variables of both 

types; 
( I I ) the quantifier-free part (matrix) is a simple formula all of whose 

components are atomic formulas. 
B. Suppose that to the right of some individual quantifier (say 3t) in 

the prefix [ w ] there are m predicate quantifiers. W e shall call this individual 
quantifier a trespasser generating m inversions. In this step of the algorithm 
we wish to arrange the quantifiers in such a way that there are no trespassers, 
while the matrix, as before, has property ( I I ) . It will suffice to prove that the 
number of trespassers can be reduced by one. Consider the right-most 
trespasser; to fix ideas, let us assume that it is the individual existential 
quantifier 3t (the procedure for universal quantifiers is analogous). 

Suppose that the prefix [ w ] contains in all μ trespassers, and the trespasser 
3t generates m inversions. W e shall convert this formula into an equivalent 
prenex formula whose prefix contains at most the same number of tres
passers but the right-most one generates only m — 1 inversions, m-fold 
repetition of this procedure reduces the number of trespassers by one. 
Thus, step by step, one can reduce the number of trespassers and finally 
eliminate them altogether. 

The right-most trespasser 3t is immediately followed by a predicate 
quantifier over some variable q. If this is 3q, then 3q and 3t may be inter
changed since they are quantifiers of the same type, and this reduces the 
number of inversions by one. N o w suppose that the quantifier following 
3t is the universal quantifier V^, i.e., the prefix has the form [ ^ ] 3 i V ^ [ y / ] . 
Let p""'^ be a predicate variable not occurring in our formula. W e now use 
the equivalence (1), with the subformula 3iV^[[fy]93 taking the role of 
3t9l{...t...). This means that we can replace [ξ'\3t\/q[η']^ by the equi-
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valent formula 

K ] 3 p ( V i [ p ( 0 = a - - V ^ M » ] & 3 A ( P W = a)\ (5) 

which can be put in prenex form: 

[ξ]3ρνίν^Μ3Α{ρ(ί) = a-^ ^&(ρ{λ) = a)}. (6) 

The prefix in (6) contains two more quantifiers than that of the original 
formula, but the number of trespassers is exactly the same. However, now the 
last inversion is generated by the universal quantifier Vi, which is also fol
lowed by a universal quantifier. Interchanging these quantifiers, we get the 
prefix [ξ']3p^qit [η]3λ, where Vi generates one less inversion than before. 

C. The last step is the so-called Behmann procedure, which is applied to 
a formula without inversions [ξ] [ α ] 95 and reduces it to normal form. 
[ξ] denotes the "predicate" part of the prefix, [ a ] the "individual" part, 
and 95 a simple formula. Without loss of generality, let the last quantifier 
in [ a ] be an existential quantifier, i.e., [ a ] has the form [ α ' ] 3 τ ; we shall 
convert [ {^ ] [α ' ] 3 τ95 into an equivalent formula [ ί ] [ α ' ] © ' , where 95' is 
again a simple formula (if the last quantifier in [ a ] is a universal quantifier 
V T , we need only replace VT95 by Π 3 τ Repeating this process as many 
times as there are quantifiers in [ a ] , we reduce \_^ ] [ a ] 95 to a normal form 

Thus, consider the formula 3τ95. Express © as a disjunction 95 ^ ν 952 ν 
. . . ν 95fc, where each 95̂  is a conjunction of atomic formulas or their nega
tions and elementary formulas of the second type, i.e., is & & 
. . . & » ; ' & . . . 95f. Then 3τ® is equivalent to 3τ95ι ν 3τ952 ν . . . . ν 3195^. 

N o w let S / , . . . , 95·' be the conjunctive terms which contain the variable τ 
(the variable in the quantifier 3τ), and 95-''^S..., S f all other terms. It is 
clear that S / , . . . , 95)' must be atomic formulas, while 95i ^ \ . . . , 95? may 
be arbitrary elementary formulas or their negations. Then 3τ®ί is equiva
lent to 3τ [95? &... & ©Π & ® r ' &. ·. & 93?. where 3τ [95/ & . . . 95?] is a 
new elementary formula. As a result, we have converted 3τ95 into the 
required equivalent formula 95'. Consequently, the formula [<^] [ α ' ] 3τ95 is 
equivalent to the formula [ξ] [α']95'. This completes the proof. 

III .9. Synthesis of an automaton representing the ω-language defined by 
an I-formula 

Given an arbitrary I-formula 
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with m free predicate variables and no free individual variables. T o simplify 
the exposition, we shall omit the superscripts indicating the alphabets 
A^,A2,...,Am associated with the predicate variables, and henceforth 
write 9 l ( x i , . . . , x ^ ) . As usual, x ^ . . . x ^ 9 l ( x i , . . . , x , „ ) will denote the ω -
language over the cartesian product A^ χ A2 x . ̂ . x A^ defined by the 
formula 9 ί ( χ ι , . . . , x,„). In accordance with the general formulation of the 
synthesis problem, our aims are as follows: 

A' . To determine whether the w-language 

x^^7^^SU(xi,..., x j 
is finite-state. 

C If so, to construct a finite macroanchored automaton representing the 
ω-language. 

Using the known properties of the metalanguage I presented in the 
preceding sections, together with Theorems 1.1, 1.11, 1.12 on the closure 
properties of the class of finite-state ω-languages (Sections I.l and 1.8), we 
are now in a position to state the following important theorem, which con
tains a full solution to Problems A ' and C 

THEOREM 3.7. For any l-formula 91 ( x ^ , . . . , X ; „ ) the ω-language ΧΤΓΓΓΧ^ 
9Ι(χ77ΓΓΓ7^ )̂ IS representable in a finite automaton. There is an algorithm 
(synthesis algorithm) which, given any such formula, constructs a suitable 
automaton. 

Proof W e shall describe the algorithm, which falls into two parts. In 
the first part, the I-formula is reduced to normal form (Theorem 3.6). 
Suppose that 9 ί ( χ ι , . . . , x ^ ) is actually a formula m the extended meta
language, in which the basic symbols and atomic formulas are supple
mented by secondary (auxiliary) expressions, such as equality between 
terms, the quantifiers 3"°, V°°, etc. One first ehminates these secondary 
expressions, replacing them by their defining expressions, and then carries 
out the reduction to normal form. 

The second part of the algorithm is the construction of an automaton 
<9Jl,^o»^> corresponding to a given normal form 91. The construction 
proceeds in steps. One first constructs automata for the elementary sub-
formulas of the normal form; then, by induction on the structure of the 
normal form 91, more involved automata are constructed for larger sub-
formulas until the required automaton for the entire formula is obtained. 

W e first consider an elementary subformula of 91. There are two cases, 
depending on whether the elementary subformula is of the first or the 
second type (Cases I and I I , respectively). 
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Case L The elementary subformula is an atomic formula. Since 
2 l ( x i , . . . , x J contains no free occurrences of individual variables, this 
subformula is necessarily x{y) =^ a for some natural number y. The ω -
language defined by this subformula is clearly the set of all words χ = 
= x ( l ) x ( 2 ) . . . x(y)x{y + 1 ) . . . in which the letter a appears at the y-th posi
tion. A representing automaton may be constructed as follows. Construct a 
tree of height y with root over the input alphabet X (Figure 29a illustrates 
the construction for 7 = 3, X = {a,b}). All vertices of the highest rank y 
which are endpoints of edges labeled a are merged into a single absorbing 
vertex q^f all other vertices of rank y are merged into another absorbing 
vertex q'. The resulting automaton diagram (Figure 29b) is "macroanchored" 
by making qQ the initial state and the singleton {q^ the only limit macro-
state. This completes the construction for Case I. 

Figure 29 

Case II. The elementary subformula is 3 τ ® , where © is a quantifier-free 
formula in which every component contains the individual variable τ. T o 
simplify the exposition we shall assume that S contains only two predicate 
variables χ and y, associated with two-letter alphabets { 0 1 , 0 2 } and {ί?ι,ί?2}' 

respectively; the detailed notation © ( χ , ^ , τ ) indicates all free variables of 
93. Let y be the maximal constant y i such that 3τ95 contains the term τ -h y .̂ 
It is immediate that, for any fixed natural number T Q , the quantifier-free 
formula © ( X , } ^ , T O ) contains atomic subformulas of only two types: 
^(^0 + yd = ^i. ^ ( τ ο + yd = y ( T o + 7i) = b^ or y ( T o + y¡) = b^, where 

* Recall that a state q in an automaton (vertex in a diagram) is an absorbing state if any 

input letter takes qio q (all edges issuing from the vertex lead back to it). 
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O á 7i ^ 7· It follows directly that 95(x,y,To) is fictitious outside \_TQ,TQ + y ] ; 
thus, the question as to whether a word 

ξ = < x ( l ) y ( l ) > <x(2)y(2)> . . .<χ (το)^ (το )> . . . < X ( T O + y)y{To + y)> · · . 

belongs to the language x})95(x,y ,To) depends entirely on the segment 
of length y -f 1 from position TQ to position TQ + y. 

Clearly, the set of all words ρ of length y + 1 such that ξΙΐ1:\ = ρ implies 
^ G x y S ( x , y , T o ) is independent of the choice of T Q ; denote this set by K. 
It is also clear that, for any word ρ of length y + 1, one can effectively de
termine whether it belongs to X : it suffices to compute the truth value of the 
formula 93(x,y,l) on the assumption that any atomic subformula 
x ( l -\- ji) = aj or y{l + Ji) = bj is true if and only if the (1 + y¿)-th symbol 
in ρ has first component Uj or second component bj, respectively. For 
example, the set Κ for the formula 

3 τ [ χ ( τ ) = a,&{y{x) = b,<^x{T + 1) = a^) ] 

consists of four words: <αι^ι> <¿Í2^IX < ^ I ^ I > ^^ΦΙ)-» < ^ I ' ^ 2 > ( ^ i ' ^ i ) » 
<αιί?2> ^^1^7^' Finally, note that the ω-language ^ίρ3τ93(χ,^,τ) is the union 
of the ω-languages xy95(x,y,l) , x y S ( x , y , 2 ) , . . . Having made these pre
liminary remarks, it is easily seen that an automaton representing the ω-
language Ji^3T©(x,y,T) may be effectively constructed as follows (the 
construction is illustrated in Figure 30a, f? for the formula 

3 τ [ χ ( τ ) = a i & ( y ( T ) = b,^x{x + 1) = a ^ ) ] ) . 

Construct a tree of height y + 1 over the input alphabet X χ X and 
divide the vertices of rank y + 1 into two groups: ( I ) vertices at the end of 
paths of length y + 1 which carry words from Κ (indicated by crosses in 
Figure 30a); ( I I ) all others. Merge all vertices of the first group into an 
absorbing vertex a. N o w consider some vertex σ' of type ( I I ) , and the word 

< x ( l ) y ( l ) > <x(2)y(2)> . . . <x(y)y(y)> <x(y + l )y (y + 1)>, 

carried by the path leading to it (Figure 30b). Draw an edge from a\ labeled 
with the pair x(y + 2)y(y -h 2) , to a vertex which depends on the word 

< x ( 2 ) y ( 2 ) > < x ( 3 ) y ( 3 ) > . . . < x ( y + l )y (y + l ) > < x ( y + 2)y(y + 2)> 

of length y -I- 1 in the following way. If this word belongs to X , the edge 
leads to the absorbing vertex σ. Otherwise it leads to the vertex σ" of rank 
y 4- 1 at the end of the path (from the root) carrying the above word. The 
sum result of this construction is an automaton which, for initial state 
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qo and final state σ, represents the language consisting of all words which 
have subwords in K. Hence it is clear that an automaton representing the 
ω-language ^Ρ3τ'β{χ,γ,τ) is obtained by the following macroanchoring: 
the root of the original tree is the initial state, and the only hmit macrostate 
consists of the absorbing vertex σ. 

W e have thus effectively constructed an automaton for each elementary 
subformula of the normal form 9Í. Since the latter is built up from its 
elementary subformulas via logical connectives and quantification over 
predicate variables, all that remains is to carry through induction for these 
logical operations. 

Let 91' and 91" be formulas for which automata <äR',go»G '̂> and 
{W,q'¿,(í"y have already been constructed. W e shall now show how to 
construct an automaton for the required three types of formula. 

Negation. The formula Π 9 I ' ( x , y , . . . ) defines the ω-language "ΊΩ(9Μ', 
^O,(C'); the construction of an automaton representing it is described in 
Theorem 1.1. 

Disjunction. If the formulas 91' and 91" contain the same free predicate 
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variables x , y , z , . . . , the disjunction SA'{x,y,z,...) ν 9I" (x ,>^ ,z , . . . ) defines 
the ω-language ü{W,qO,(í') ν Q{W\q'¿,(í"% and a representing automaton 
may be constructed as in Theorem 1.1. But if the formulas contain different 
free variables (e.g., 2 l ' (x ,y) and 9 í " (x ,z ) ) one must first add dummy vari
ables in order to convert them into formulas 91', equivalent to 91' and 
91", respectively, and containing the same free variables (i.e., 91' = 9I'(x,>^,z), 
91" = 9Í"(x,}^,z)) . N o w the formula 91' ν 9Í" clearly defines the same 
ω-language as 91' ν 91", and this brings us back to the preceding situation. 
In actual fact, there is no need to construct the formulas 91' and 91", since 
the ω-languages that they define are cylindrifications of the ω-languages de
fined by 91' and 91". Therefore one can use Theorem 1.1 to construct automata 
W\ 9K" for these cylindrifications, based on <9Κ', Ό̂, (£'>, <9Κ", qo,^"}; one 
can then construct the required automaton for disjunction. 

Quantification. The formula 3x91 ' (x ,y , . . . ) defines the projection of the 
ω-language Ω(501',^ό>^')· ^ representing automaton is constructed from 
(3R\qO,(i'} by deleting all x-labels (this was indicated in detail at the 
beginning of Section 1.5), and then determinizing the resulting macrosource. 

This completes the proof of the theorem. 
It is clear from the preceding description that our algorithm is extremely 

complicated. Even taken separately, its component parts are quite unwieldy 
(e.g., reduction to normal form). Special attention should be paid to the 
last induction step—elimination of the existential quantifier. Every 
quantifier elimination comprises a series of complex algorithms—those 
involved in determinization of a macrosource (e.g., the algorithms used in 
the Concatenation and Strong Iteration Theorems in Sections 1.9, 1.10). 
Nevertheless, the algorithm is quite powerful; some idea of its power may 
be derived from the following fact. As previously indicated (Section III.7), 
it is very easy to construct an I-formula defining the ω-language repre
sented by a given macrosource or ω-regular expression; the above syn
thesis algorithm must therefore be regarded as more general than those 
for the metalanguages of macrosources and ω-regular expressions. 

The significance of the theorem is fundamental; it immediately implies 
important corollaries concerning decision problems of mathematical 
logic. Mathematical logic attaches great importance to decision problems 
for various formal languages. The decision problem for a formal language 
L i s as follows: to construct an algorithm which, given any sentence of the 
language, will establish whether it is true or not. It is well known that in 
many cases no such algorithm exists. The following theorem is a simple 
corollary of Theorem 3.7. 
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THEOREM 3.8. There is an algorithm {decision procedure) which, for any 
hsentence, determines whether it is true or not. 

Proof. Reduce the sentence 91 to normal form. The latter must contain 
predicate quantifiers; to fix ideas, suppose that 91 has the form 3x93(x), 
and let 931 be an automaton representing the language :í93(x). Then it is 
obvious that the formula 3 x © ( x ) is true if and only if the ω-language rep
resented by the automaton 9W is not empty. T o verify the latter assertion 
one need only construct the automaton 9Jl according to Theorem 3.7, and 
(effectively) determine whether the ω-language that it represents is empty or 
not (see Theorem 1.5). Q.E.D. 

Thus, consideration of automata is seen to be decisive in establishing 
a very important, purely "logical" proposition. 

III. 10. Synthesis of an automaton according to conditions imposed on an 
operator or a language 

I. W e first consider the problem of synthesizing a finite automaton when 
the conditions imposed on the operator that it is to realize are expressed 
by I-formulas: 

It is required to construct an algorithm which, given any formula 9l(x,y) , 
( I ) determines whether there is a finite-state operator Tx = y satisfying 

the formula 9l(x,y) (i.e., uniformizing the ω-language ^p^{x,y)), and, if so, 
( I I ) constructs a finite automaton realizing the operator. 

REMARK. For simplicity's sake we shall restrict ourselves to I-formulas 
in two free variables. The statement and solution of the problem carry 
over in an obvious way to formulas 91 ( x j , . . . , χ,„,^ι, . · . , y„) and operators 
Γ transforming an m-tuple of input ω-words x ^ . . . x,„ into an n-tuple of out
put ω-words . . . y„ (or, equivalently, an input ω-word over the cartesian 
product of the corresponding alphabets into an output ω-word over the 
product of the output alphabets). 

W e already know that the ω-language j^j)9I(x,y) is representable in a 
finite automaton <5ül,^o»^>» which can be effectively constructed from the 
given formula 9í(x,y) (Theorem 3.7). But once this automaton has been 
constructed, the problem formulated above reduces to the uniformization 
problem for the ω-language Ω(9Κ,^ο»ί^) (Section II.5). Theorem 2.8 provides 
a complete solution to the uniformization problem. Thus, the latter theorem 
and the preceding remarks (based on Theorem 3.7) directly imply 
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THEOREM 3.9. Let 9 t (x ,y) be an arbitrary l-formula, / / 9 I ( x , y ) is satisfied 
by some nonanticipatory operator y = Tx, it is also satisfied by a finite-state 
operator. There is an algorithm which, given the formula ^{x,y), 

(I) determines whether there exists a finite-state operator y = Τ "χ satis
fying it; if so, 

(II) constructs an automaton realizing it; if not, 
(III) constructs a finite automaton with delay realizing an operator Ty 

that satisfies ~]'&(x,y). 

Note that if the answer to part (I) is negative, part ( I I I ) yields additional 
information: for any finite automaton, one can effectively construct a 
counterexample which shows that the corresponding operator indeed does 
not satisfy the formula ^{x,y). 

Let us clarify this in detail in the game-theoretic interpretation (Section 
II.8), in which the operators T' and Τ are regarded as strategies for white 
and black, respectively. Assume that there is no finite-state operator satis
fying the formula 9I(x,y). Then, for any finite-state operator y = Τ" χ, there 
exists an ω-word χ such that the formula 91 (x, T " x ) is false. Assertion ( I I I ) 
indicates that, once an automaton realizing the operator T" is available, 
the pair <x, T " x > is effectively constructible. Indeed, having constructed in 
accordance with ( I I I ) a finite automaton realizing the operator χ = Ty, 
we can effectively construct a game history <Γ ' , T"> in which white loses. 
This history is a periodic ω-word (x,yy satisfying the formula "Ί9ί(χ,>;), 
and so not satisfying 9I(x,>^). 

I I . Before formulating the next problem, we recall that our definition 
of languages employed only formulas 9 l ( x , i ) which are fictitious outside a 
finite interval: for any fixed tQ, the truth of the formula 9I(x,io) depends 
only on the word x ( l ) . . . x( io) . In this situation, the language defined by 
the formula is precisely the set of words x ( l ) x ( 2 ) . . . x( io) (ίο = 1>2,3, . . . ) 
for which the formula is true. The problem of synthesizing an automaton 
from the language that it is to represent is as follows. 

It is required to construct an algorithm which, given any I-formula 91 (x, i ) . 
( I ) determines whether it is fictitious outside a finite interval; if so, 
( I I ) determines whether the language that it defines is representable in 

a finite automaton; if so, 
( I I I ) constructs an appropriate finite automaton. 
A complete solution is implicit in the following theorem. 
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THEOREM 3.10. Any l-formula "^{χ,ή fictitious outside a finite interval 
defines a language which is representable in a finite automaton. There is 
an algorithm which, given a formula ^(x,t), 

(/) determines whether it is fictitious outside a finite interval; if so, 
{II) constructs a finite automaton representing the corresponding language. 

Proof Note that the fictitiousness condition is satisfied if and only if the 
following I-sentence is true: 

Vx 'x" i [V (T(a S t-^ χ'{σ) = χ " ( σ ) ) ( 9 Ι ( χ ' , ί ) ^ 9 1 ( χ " , ί ) ) ] . 

The truth of this formula may be determined according to Theorem 3.8. 
Consequently, the fictitiousness condition is effectively decidable. 

Assume that the fictitiousness condition holds, and so the formula 9 I (x , i ) 
defines a certain language 2B; we wish to construct a finite automaton 
(M^o^Q'y representing this language. Let / ' ^ be a variable not occurring 
in 2 l (x , i ) . Then, based on the formula 9 l (x , i ) , construct an I-formula 

95(x,y) = V i [ / ' ^ ( 0 = a^Sä{x,t)l (#) 

Obviously, this formula is satisfied by a unique nonanticipatory operator 
T—the operator which represents the language 2B by output a. By Theorem 
3.9 this nonanticipatory operator is finite-state, and an appropriate ini
tialized automaton <91,πο> may be effectively constructed. Finally, one 
can effectively replace the automaton <91,πο> by an outputless automaton 
<9M,(?o»ö'> representing the same language 2B(Section II.5). This completes 
the proof. 

ΙΠ.11. Cases without a synthesis algorithm 

W e were led to our study of the metalanguage I by the need for a more com
prehensive metalanguage, convenient for formulation of the conditions 
imposed on the synthesized automaton. In Section III.7 we presented 
arguments in favor of the thesis that the metalanguage I is in fact more 
expressive than the frequently used metalanguages of trees, regular expres
sions and ω-regular expressions. It would be interesting to try to extend 
the metalanguage, with a view to enhancing its expressive power. However, 
in so doing one must remember that, in general, the synthesis algorithm 
becomes more complex and, moreover, may not even exist. In this section 
we intend to analyze a few situations in which metalanguages have no syn-
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thesis algorithm. Comparison of these languages with I indicates that one 
can hardly hope for any significant extension of the latter without forfeiting 
the synthesis algorithm. 

As in other, similar cases (see, e.g.. Section II.6 and Section III.3), our 
proofs of algorithmic unsolvability will employ a reduction method. 
Namely, we show that some problem which is known to be algorithmically 
unsolvable may be reduced to the synthesis problem for the relevant meta
language. Any metalanguage for which this is possible has no synthesis 
algorithm. 

Returning to the metalanguage I, we recall that its terms may have the 
form t (variable), c (constant, e.g., 5) or ί + c, but terms t -h τ (sum of two 
variables) are inadmissible. This is because I has a unary function symbol 
φ( ) which is interpreted as addition of one, but there is no addition opera
tion for arbitrary natural numbers. One might be tempted to consider an 
extension 1+ of the metalanguage I, differing from the latter only in that it 
provides for addition of arbitrary natural numbers. Thus, 1+ also admits 
all terms of type ί + τ, ί H- τ + Μ + 7,2i H- Μ (where ί, τ, u are variables), and 
so on. It is easy to see that the class of formulas of I + is larger than that of I, 
and the formulas of 1+ can describe ω-languages which are undefinable by 
formulas of I. For example, let L be the ω-language over the alphabet 
{a,b} which consists of the single ω-word χ = x ( l ) x ( 2 ) . . . such that 
x ( i ) = α if and only if t is an exact square. Any ω-word which is the only 
element of a finite-state ω-language must be periodic (see Section 1.4), and 
so Lcannot be represented in a finite automaton. Nevertheless, Lis definable 
by a formula 91 (x'*''') of I+ . First note that if i , < Í2 < 3̂ are consequtive exact 
squares, then Í3 + = 2í2 + 2. A suitable formula 91 (x^'^) is thus 

Sa = x-^\i) = α&χ«·^(2) = Í 7 & x « ' ^ ( 3 ) = b& x^'^(4) = 

= a&^t,t2{t, < Í 2 & x " ' ' ( í i ) = a&x« '^( Í2) = 

= α & ν τ [ ί ι < τ < Í2 -> Χ"''(τ) = b ] - ^ 3í3[x"' '(Í3) = 

= a&Vp( Í2 < ρ < Í 3 - ^ X^'^(/9) = Í 7 ) & Í 3 + í i = 2Í2 + 2 ] } . 

The formula 91 (x'''*') may also be used to show that many important monadic 
and polyadic predicates, whose arguments range over the natural numbers, 
are definable in I+ . 

The monadic predicate "i is an exact square" is defined by the formula 

95i(í) = 3x« ' ' ' [9 l (x« '^)&x" ' '^ ( í ) = ά]. 
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The binary predicate "i = p^" is easily defined, seeing that p^ + 2p + 1 
is the exact square following p^: 

9 3 2 ( ί , Ρ ) ^ 9 3 ι ( 0 & 3 σ [ 9 3 ι ( σ ) & ί < σ& 

8LÍx{t <τ <σ-^ Π » ι ( τ ) ) & ί + ρ + ρ + 1 = σ ] . 

Since the ternary predicate w = w · ζ; is expressible as (w + vf = + -\-
+ 2w, it may be defined by the I+-formula 

9 3 3 ( w , U , t ; ) = 3 T i T 2 T 3 T 4 [ w + V = T I & 9 3 2 ( T 2 , T I ) & 

& 9 5 2 ( T 3 , M ) & » 2 ( ^ 4 . t ^ ) & ^ 2 = + T4 + 2w]. 

One can thus define the predicates w = u + t; and w = Μ · f in I+ . N o w it 
is well known that any recursive predicate can be defined by a formula 
built up from the formulas w = U'V, w = u-\-v (regarded as atomic for
mulas) using the logical connectives (&, v , Π , ^ ) and quantifiers over the 
variables W,M,I^, . . . (ranging over the natural numbers). Gödel's Theorem 
states that there is no decision procedure for sentences buih up in this way 
from atomic formulas of type w = uv, w = u + v. Since the predicates 
w = u -l· V and w = Μ · t; are definable in the metalanguage I + , it is clear 
that the latter is extremely rich, but, in contradistinction to I, we have the 
following 

THEOREM 3 .11 . There is no algorithm which, given any sentence d m l + , 
determines whether it is true or not. 

COROLLARY. There is no algorithm which, given any formula 91 (x"*'^) 
in I + , determines whether the ω-language J '̂''''93 (χ**·**) is representable in a 

finite automaton or not. 

In order to verify this, fix two formulas ?l i(x^ ' ' ' ) and 9l2(^'''^) such that 
the first defines a finite-state ω-language, while the second defines an ω -
language which is not representable in a finite automaton (say the language 
L considered at the beginning of this section). N o w , if 91 is an arbitrary 
formula I + , consider the formula 

{91 & 91, (x - ' " ) ) V {-]9l& « 2 ( ^ ' · ' ) Χ (*) 

which is equivalent to 91,(x"''') if 91 is true and to 9l2{x'''^) if 91 is false. Thus 
the decision problem for the formula 91 is effectively reducible to the prob
lem: is the ω-language defined by (*) representable in a finite automaton? 



190 METALANGUAGES [III . l 1 

REMARK I . W e could have restricted the class of formulas of I + to a 
subclass T+ containing only formulas which are known to define finite-
state ω-languages. Problem A ' of the general synthesis problem has a 
trivial solution for this subclass . Nevertheless, this subclass can be so 
constructed that there is no algorithm for Problem C (i.e., an algorithm 
constructing a finite automaton). This follows immediately from a slight 
modification of formula ( * ) : we let 91ι(χ^·'^) and Ϊΐ2(χ ' ' '*) be formulas 
which define two different finite-state ω-languages. 

T o conclude this section, we consider the situation that arises when 
one tries to use the set of recursion schemata as a metalanguage. It is well 
known that any effective function or operator may be defined (in more than 
one way) by a suitable recursion schema; conversely, any recursion schema 
defines an effective operator or function. 
For example, consider the schema 

^ o ( l ) = 0, ^ i ( 0 ) = 0. 
qo{t+ l ) = ^ o ( 0 + sgnx( i ) , 

z{t) = sgn[q,(t) ^ qo(t)l 

where 

_ ί α - 6, if a^b, 

~ \ 0 , if a<b; 

sgn a = 
0, 

1, 

if 

if 

a = 0, 

a > 0; 

sgn a = 1 — a. 

If the input function χ assumes the values {0 ,1} only, then, as is easily seen, 
this is also true of the output function z. In other words, this schema defines 
an operator transforming ω-words over the alphabet {0 ,1} into ω-words 
over the same alphabet. It is easy to see that the operator in question is 
precisely 7^ of Section I I . l , which identifies the property: "the word x ( l ) . . . 
x ( i ) contains more occurrences of the letter 1 than of the letter 0." N o w 7^ 
is indeed a nonanticipatory operator, but it has infinite weight and so is 
not a finite-state operator. Note, moreover (this also applies to the 
previous examples), that by adding recursions defining the functions 
a b, a — b, sgn a, s ^ a one converts the above schema into a primi
tive-recursive schema defining the operator 7^ in the sense just explained. 



III. 11] CASES WITHOUT A SYNTHESIS ALGORITHM 191 

It is also clear that, if one identifies finite alphabets with initial segments 
of the natural number series, any finite-state operator is defined by a primi
tive-recursive schema, in the sense of the very definition of the concept 
"finite automaton"; this schema is obtained by adding recursions defining 
the functions Φ and Ψ to the relations 

^(1) = Qo^ 
^ ( i - f ΐ ) = ψ [^(0 ,χ (0] , 
z{t) = Φlq{tlx{t)], 

Given a primitive-recursive schema Κ with input function symbol χ and 
output function symbol ζ (to fix ideas, suppose that χ represents a function 
assuming two possible values { 0 , 1 } ) . The family of all such schemata may 
be regarded as a metalanguage, for which the usual problems of the general 
synthesis problem arise naturally: 

A ' . Given Κ, determine whether it defines a finite-state operator or not. 
C. Construct a finite automaton realizing the finite-state operator 

defined by K. 
However (and we shall presently prove this), for neither A ' nor C is there 

a decision algorithm, since certain algorithmically unsolvable problems 
are reducible to them. 

1. Any primitive-recursive schema Κ in which χ does not actually appear 
(or has only a fictitious occurrence there) defines a primitive-recursive 
function z. In other words, it defines a constant operator T(i.e., an operator 
independent of x) . N o w Τ is finite-state if and only if ζ is a periodic func
tion (Section II.2). However, it is known [ 9 ] that there is no algorithm 
which, given an arbitrary primitive-recursive schema, determines whether 
it defines a periodic function or not. 

2. Let Κ be a primitive-recursive schema defining a function ζ (as before, 
X has only a fictitious occurrence in K ) . Let q and h be function symbols 
which do not appear in K ; add the following recursions to K : 

^(0) = z(0), 
q{t+l) = q{t)'z{t+l\ 
h{t) = sgnq(t). 

The extended schema Κ defines a function h which is identically 1 if ζ never 
assumes the value 0. But if ζ first assumes the value 0 for an argument ÍQ» 
then 

for t ^ ίο 
for t < to. 
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Supplementary material, problems 

I. With any regular expression 91 one can associate a nonnegative number 
* (91), called the star-height of 9Í, defined inductively: 

1) if 91 contains no occurrence of the symbol * (the iteration symbol), 
then* (91) = 0; 

2) * (91, V 9I2) = * (91, · 9I2) = max{*(91, ) , *(9l2)}; 
3) * (9Í*) = . (91) + 1. 
In other words, the star-height of an expression is the maximal length 

of a sequence of stars in the expression such that each star in the sequence 
is in the "scope" of one of the following stars. 

For example, the star-heights of the expressions ((0*1 ν 110)*10*)* 
and (0*1 ν 110)*(0*111)* are 3 and 2, respectively. 

Define the star-height of a finite-state language 9Í as the minimal star-
height of any regular expression defining the language. 

Show that for any η the source with 2" vertices illustrated in Figure 31 
defines a language whose star-height is exactly η (Dejean and Schiitzenberger 
[88] ) . The vertex 1 is the sole initial vertex and the sole final vertex. 

Is there an algorithm which, given a finite automaton, determines the 
star-height of the language that it represents? (McNaughton's problem 
[106]) . 

REMARK. A language has star-height 0 if and only if it is finite. 

I I . Define the weight of a regular expression to be the number of states 

Thus, for any schema K, the new schema Κ defines a periodic function h; 
in this sense, Κ defines a finite-state constant operator. Now, were effective 
construction of an appropriate finite automaton possible, this would 
enable us to determine effectively, given the schema K, whether the function 
ζ that it defines vanishes at least once. However, it is well known that there 
is no algorithm, which, given an arbitrary primitive-recursive schema, 
determines whether the function that it defines vanishes or not. 

REMARK I I . Though there is no single effective method for constructing 
finite automata corresponding to schemata Κ of the above type, any initial 
segment of the function defined by a schema 91 (of the ω-word generated 
by an automaton) ¿5 effectively constructible. This is also the situation in 
any specific case when it is known that a given primitive-recursive schema 
defines a finite-state operator Γ; any finite tree of this operator is effectively 
constructible. 
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* The length of a regular expression is the number of occurrences of letters of the alphabet 
(not counting occurrences of operation symbols). 

** Translator's note: To the best of my knowledge. Problem I has been solved; i.e., with the 
additional operations, any expression has an equivalent expression with star-height ^ 1. 

0 _ 0 ^ 0 ... 0 0 0 
/ / / i 1 1 

Figure 31 

in the minimal automaton representing the language that it defines. The 
method presented in Chapter I I I for the synthesis of regular expressions 
yields the following bound for the weight of an expression: if the length* of 
the expression is n, its weight is at most 2^**"^. Actually, one can prove a 
better estimate (Grinberg [ 2 6 ] ) : if an expression has length n, its weight 
is at most 2^^"\ where μ{η) ^ n/2 {n oo). This estimate cannot be essentially 
improved, since for any ρ = 1,2,3,... one can construct a regular expression 
over the alphabet {0 ,1} of length 2p and weight 2 ^ " ^ 

I I I . Length and weight can be defined analogously for ω-regular expres
sions. Find a bound for the weight of an expression in terms of its length. 

IV. The concepts of star-height, weight and length may be extended 
naturally to expressions which involve the intersection ( n ) and comple
mentation ( " Ί ) symbols besides the symbols ν , · , *, Problems I, I I , I I I 
may be rephrased accordingly.** 

V. Throughout this problem we allow languages to contain the empty 
word. 

Let Sij (7 = 1,..., Π, i = 1,2,..., η) and Κ, {i = 1,2,..., η) be languages 
over the same alphabet X. Consider the following system of equations in 
η unknown languages A,,A2,... M n ' -

A,=S,rA, vS,2'A2 V . . . V S,„'A„ ν R,, 

(*) 
^ „ = · ^ 1 V . ^ 2 V . . . V 5„„ · A„ V 

where · and ν denote, as usual, concatenation product and union of lan
guages. The problem of existence and uniqueness of a solution of the system 
(*) may be solved by considering an ordered graph with η vertices q,, 
^2^"yQn (the so-called characteristic graph of the system), in which an edge 
goes from q^ to qj if and only if Sji contains the empty word. The following 
assertions hold (Bondarchuk [ 2 1 ] ) : 
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If all Sji and Ri in (*) are finite-state languages and the characteristic 
graph of the system contains no loops, then the system (*) has a unique 
solution consisting of η finite-state languages. 

There is an algorithm which, given finite automata representing the 
initial languages, constructs finite automata representing the solution-
languages 

VI . A finite-state ω-language is closed* if and only if it is definable by 
an I-formula whose prefix consists of quantifiers over predicate variables 
followed by Vi. 

V I I . Church's decision problem [ 8 4 ] : Given an I-formula 9l(x ,y) and a 
finite automaton <3[ΓΙ,^ο>» to determine whether the operator Γ ( Ϊ Κ , ^ ο ) 
satisfies the formula ^{x,y). 

Show that there exists an algorithm which, given any I-formula and any 
finite automaton, solves Church's decision problem. Which of the problems 
of Section 1.4 are decision problems in this sense? 

V I I I . Define a language Γ, which differs from I only in that the predicate 
variables are interpreted not as arbitrary ω-words but as special ω-words.** 
As usual, 91 (x) , 9I(x, > ' ) , . . . will denote formulas (Γ-formulas) with the free 
variables indicated in the parentheses; x9I (x) , x ) 9i(x, > ; ) , . . . will denote the 
ω-languages that they define (which obviously consist of special ω-words). 
The following theorem is true (Btichi [ 7 3 ] ) : 

1. There is an algorithm (synthesis algorithm) which, given any 
formula 9 I ( X i , . . . , x ^ ) , constructs a special finite automaton whose behavior 
is the ω-language ^.7rx^sa{x^,..., xj, 

2. There is an algorithm (analysis algorithm) which, given any special finite 
automaton with input alphabet { 0 , 1 } , constructs a formula 9ί(χ^'^' , . . . ) 
such that x 9 I ( x , . . . ) is the behavior of the automaton. 

3. There is an algorithm which, for any sentence of Γ, decides whether 
it is true or false. 

Prove these assertions as corollaries of the corresponding assertions for I. 
IX. Any I-formula 91 ( i ) with one free individual variable defines an 

ultimately periodic predicate of a natural argument; i.e., there exist constants 
/ (the phase) and ρ (the period) such that the I-formula V i [ 9 I ( / + ί + p ) ^ 
^ 9 i ( / + i ) ] is true. Conversely, any ultimately periodic predicate y4(i) is 
definable in I by a suitable formula 91 ( i ) . 

* In the sense of Problem I in Chapter II. 
** See Problem X in Chapter II. 

Translator's note: This is Biichi's "Sequential Calculus" or "Weak Second-order Arith
metic" [73]. 
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Find a characterization of the class of binary predicates of natural 
arguments which are definable in I . 

X. Show that a monadic (binary) predicate is definable in I if and only 
if it is definable in Γ. 

X I . Is the statement of Problem X true for m-ary predicates? 
X I I . Consider the following variation Ip^ of I : predicate variables are 

interpreted not as arbitrary ω-words but as ultimately periodic ω-words. 
The following proposition is true (Biichi [ 7 4 ] ) : A sentence is true in I if and 
only if it is true in Ip^. 

The analogue of this assertion, in which Ip^ is replaced by I ' , is false; 
find a suitable counterexample. 

X I I I . Consider the extension of the language I which includes, besides 
the successor function φ(φ{ί) = t + 1), the function φ such that φ(ί) = 2t. 
It is obvious that the extension obtained by admitting the sum function (see 
Section I I I . 11) is stronger than this extension, since 2x is expressible as χ + x. 
Nevertheless, even this seemingly slight extension has no decision algorithm 
for sentences (R. M. Robinson [118]) . 

X I V . Let R i ( x i , . . . , x„), ί = 1,2, be regular expressions over the alphabet 
{ x j , . . . , x„} u { Λ } ( Λ is the empty word). 

Consider the following properties of the pair of regular expressions 

Ri(xi,...,xj, R2ÍXU · · 5 ^ n ) ' 
1) K i ( x i , . . . , x „ ) , ^ 2 ( ^ 1 ' · · » Χ η ) define the same language over the 

alphabet { x i , . . . , x „ } . 
2) For any languages S i , S 2 , . . . , S „ (over an arbitrary alphabet), 

R , ( S „ . . . , S „ ) = R 2 ( S i , . . . , S J . 
3) For any finite-state languages S S „ (over an arbitrary alphabet), 

R , ( S „ . . . , 5 J = K 2 ( S i , . . . , S J . 
4) For any languages S^ , . . . , S„ over a fe-letter alphabet (fc = 1,2,3,. . .) , 
(Si, . . . , S„) = 1^2 ( ^ 1 9 · · 9 ^n)' 

5) For any finite-state languages S i , . . . , S „ over a fe-letter alphabet 
( f e= 1,2,3,... ) , R i ( S i , . . . , S „ ) = K 2 ( S i , . . . , S „ ) . 

Show that 
a) for fe ^ 2, the assertions 1) through 5) are equivalent, i.e., the i-th 

assertion implies the y-th {ij= 1,2,3,4,5); 
b) for fe = 1, assertions 4) and 5) are equivalent, but they do not imply 

1), 2), 3). 
X V . A pair of regular expressions R, ( x ^ , . . . , x„), ^ 2 ( ^ 1 ' · · , x„) is said 

to be an identity in the algebra of languages over a fe-letter alphabet (notation: 
Riixi,..., x„) = R2{xu · · » X n ) ) if it satisfies assertion 4). 
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A system Σ of identities in the algebra of languages over a fc-letter 
alphabet is said to be complete if any identity in the algebra of languages 
over a fc-letter alphabet is deducible from Σ (as an axiom system) by means 
of the following rules of inference: 

a) Substitution rule: for any regular expression P, the identity 
K i ( x i , . . . , P , . . . , x J = R2ÍXi,...,P,...,x„) is deducible from ^ ^ ( x i , . . . , 

· · > ^n) — ^ 2 (-̂ 1» · · · 5 ^ i i · · · > ^n)' 

β) Replacement rule: from the identities R i ( S i ) = R2 and 5, = S2, 
the identity Ri{S2) = R2 is deducible. 

Show that, when iteration is defined by 5* = Λ Ν S Ν SS Ν . . . , 
a) the algebra of languages over a fc-letter alphabet has no finite complete 

system of identities (fc = 1,2, . . . ) (Red'ko [ 5 1 ] ) ; 
b) for any fc, there is a complete system of identities in the algebra of 

languages over a fc-letter alphabet which contain the empty word (Yanov 
[67] ) . 

Similarly, one defines an identity in the algebra of languages not con
taining the empty word as a pair of regular expressions over the alphabet 
{ x i , . . . , x„} with the usual definition of iteration :S* = S ν SS ν SSS ν .... 

Show that there is no finite complete system of identities in the algebra of 
languages over a fc-letter alphabet which do not contain the empty word 
( f c = l , 2 , . . . ) [ 5 1 ] . 

Notes 

The metalanguage of regular expressions was first described by Kleene [100], 
who also established appropriate analysis and synthesis algorithms. How
ever, since Kleene considered McCuUoch nerve nets (or other, similar 
objects) rather than finite automata, his algorithm constructs a nerve net, 
but not transition and output matrices. In other words, Kleene's work does 
not yet clearly differentiate between the stages of functional and structural 
synthesis. Analogous remarks apply to the analysis of nerve nets. 

Subsequently, many authors, working independently, dealt with improve
ment of analysis and synthesis algorithms for regular expressions (Glushkov 
[ 6 ] , Copi, Elgot and Wright [87] , McNaughton, Yamada and others). In 
the process, certain cumbersome details, inherent in Kleene's formulation 
of the metalanguage of regular expressions because of his utilization of 
nerve nets, were eliminated. 

The synthesis procedure employed in this book is based on operations 
over sources; it is a slight modification of the Rabin-Scott procedure [114]. 
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Translator's note: McNaughton uses the unmodified term "regular expressions." 

ω-regular expressions were defined by McNaughton in [102] ;* the syn
thesis algorithm makes essential use of his theorems on concatenation and 
strong iteration for ω-languages. 

Some hints as to the advisability and possibihty of using the predicate 
calculus as a metalanguage in synthesis theory may already be found in 
the above-mentioned paper of Kleene [100]. Independently, Trakhtenbrot 
[57] and Church [84] developed suitable metalanguages based on the cal
culus of monadic predicates of a natural argument, and constructed appro
priate synthesis algorithms. These metalanguages may be regarded as 
fragments of the metalanguage I , obtained by imposing special restrictions 
on the individual quantifiers [57] or by excluding predicate quantifiers 
[84] . Subsequently, Büchi [73] investigated the language Γ with the same 
purpose in mind, and constructed a synthesis algorithm for special automata 
(see Problem V I I I ) . The languages I and I ' have also been investigated, 
independently of automata theory, on the initiative of Tarski, who has 
posed the following problems: 

A ) Is there an algorithm deciding the truth of formulas in I (or Γ)? In 
other words, is the language I (or Γ ) decidable? 

B) Is the predicate τ -l· t = σ definable in I (Γ)? 
Büchi was the first to direct attention to the possibility of using automata 

to solve problems of logic. In [73] he gave a positive solution to problem A ) , 
and so a negative solution to B), for the language I ' . A negative answer to 
problem B) for the language I was given by Trakhtenbrot in [58] . However, 
Büchi [74] substantially strengthened the latter result, proving that I is 
decidable; he also described the ω-languages definable in I. Büchi's ingenious 
proof utilized Ramsey's Theorem (see Problem X I V , Chapter I ) . These 
achievements notwithstanding, the synthesis of an automaton whose opera
tor satisfies an I-formula 9I(x,y) remained open, not counting a few special 
cases solved by Church and Trakhtenbrot. The latter authors, imposing 
various restrictions on the prefixes of the formulas, proved the existence of a 
general solution (see p. 145) and gave an algorithm for its construction. 
In particular, Trakhtenbrot proved in [59] that any ω-word operator 
definable in I is an operator with finite memory. 

A definitive solution to this problem became possible only after Büchi and 
Landweber had proved the Uniformization Theorem (Chapter I I ) . It is 
interesting to note that the Büchi-Landweber theorem on ω-languages 
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yields a proof of the decidability of I without using Ramsey's Theorem (see 
Theorem 3.10). 

Later [75] , Biichi generalized the concept of the behavior of an automaton, 
considering transfinite input and output sequences. This enabled him to 
prove the decidability of languages I ξ for certain transfinite ξ, where I ξ is 
like I except that the predicate variables are interpreted as transfinite 
sequences of ordinal ξ. 

Theorem 3.7 is due to Bar-Hillel, Perles and Shamir [70] (see also Chom
sky [83] ) . 

Dejean and Schützenberger [88] , McNaughton [106] and Eggan [89] 
have studied the star-height of regular expressions and finite-state lan
guages, proving the existence of finite-state languages with arbitrarHy 
large star-height. 



CHAPTER IV 

A U T O M A T O N I D E N T I F I C A T I O N 

I V . l . Introduction 

In the preceding chapter we studied the synthesis problem for some 
specific metalanguages used to phrase the requirements from the functioning 
of the projected automaton. In this chapter we shall be concerned with the 
synthesis problem in the following situation: no general description (in a 
metalanguage) of the behavior of the automaton is available; nevertheless, 
for any input word the output of the projected automaton can be determined. 
Here the situation may be described as follows. W e are given an initialized 
automaton SR—called a "'black box''—about whose internal structure 
(diagram) nothing (or almost nothing) is known. Input words can be 
applied to the input of the automaton and the corresponding output words 
observed. The problem is to identify* the automaton, i.e., to construct the 
diagram of an automaton which functions in the same way as SDl. 

W e consider two typical examples involving the identification of black 
boxes. 

EXAMPLE 1. Suppose that the chent has planned a certain operator 
T, and the designer's task is to construct an automaton realizing Τ Suppose, 
moreover, that the chent, though not in a position to describe his 
operator in a language accessible to the designer, is nevertheless capable of 
answering any question of the type "Into what does the operator Τ transform 
the word χ ( 1 ) . . . χ ( ί ) ? " . The designer then has, as it were, an imaginary 
black box which he must identify. In so doing, he can determine for any 
input word χ the output generated by the black box, provided the latter 
is in its initial state before application of the input x. 

EXAMPLE 2. Let äR be an actual unknown automaton whose only 
accessible elements are the input and output terminals. For example, this 
might be a secret lock with unknown combination. It is required to identify 

* Translators note: The Russian word used here means "decode," "decipher." 
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the automaton. W e may apply different input words to the autom
aton SR and observe the resulting output words. However, in contra
distinction to the preceding example, we do not assume that the automaton 
can be returned to its initial state after each application of an input word: 
when the next input word is applied the automaton is in the state to which 
it was brought by the previous input words. 

The precise formulation of the identification problem is closely bound 
up with the rigorous definition of an algorithm over black boxes (identifica
tion algorithm).* This will be given presently, and at the same time we shall 
present a classification of these algorithms. 

W e begin with an informal discussion. An identification algorithm should 
comprise effective instructions as to what questions of the type "What is 
the output of the black box for input x?" should be asked, and how the 
answers to these questions should be used to construct an automaton which, 
presumably, reproduces the functioning of the black box. 

Identification algorithms may be classified according to the following 
three criteria. 

I. Resettability. There are two possibilities: 
1) Each question is addressed to the black box in the initial state (it is 

assumed that the black box is equipped with a "reset button" by means of 
which the initial state is restored before each question; this corresponds to 
Example 1). In this case we shall call the algorithm multiple. 

2) Each question is addressed to the black box in the state to which 
previous operations have brought it (the black box has no "reset button"; 
this corresponds to Example 2). In this case we shall call the algorithm 
simple. 

I I . Dependence on the previous history of the process. There are two 
possibilities: 

1) Each question depends on the previous questions and answers. W e 
shall then call the algorithm conditional. 

2) Each question is independent of previous questions and answers. 
In other words, all the questions addressed to the black box are predeter
mined. In this case we shall call the algorithm unconditional. 

I I I . Dependence on a priori information. W e shall assume that the input 
and output alphabets of the black boxes are fixed and may be used for 
identification. Apart from this, there are two possibihties: 

* Translator's note: The equivalent concept in Western literature is "experiment," a term 

which Trakhtenbrot and Barzdin* use in a different, though related sense (see Section II.4). 
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1) The algorithm utilizes an upper bound on the number of states of 
the black box. In this case we assume that for every black box 9Jl there is 
a preassigned upper bound on the number of states (which we shall denote 
by K^y W e shall call such black boxes relative black boxes, and the al
gorithm itself will be termed an algorithm over relative black boxes. 

2) The algorithm utilizes neither an upper bound on the number of 
states of the black box nor other information (except for the information 
concerning the input and output alphabets) not obtainable by applying 
input words and observing the corresponding response. Thus no a priori 
information about the black boxes is required. We shall call the latter 
absolute black boxes and the algorithm will be termed an algorithm over 
absolute black boxes.* 

In all, these criteria give rise to eight natural types of algorithms (see 
figure on the following page). 

These informal explanations should more or less clarify our terminology 
for algorithms over black boxes. Nevertheless, to avoid possible misunder
standings we shall present more rigorous definitions of these algorithms. 

First, abbreviate the phrase "apply a word χ to the input of an automaton 
SD?, m its initial state qo (in state q^), and observe the corresponding output 
word" by the phrase ''test an automaton 501 (an automaton SDl in state q^j 
with the word x." By the result of a test on an automaton SDl with input 
words χ , χ ' , χ " , . . . we shall mean the tree of a partial operator defined only 
on the words χ , χ ' , χ " , . . . and their initial segments, realized by the autom
aton <SR, ^ο>· For example, for the automaton of Figure 32a the resuh of a 
test with the input words 

X = X1X1X2 and x' = X1X2X1X2 

is the tree of Figure 32b. The tree of a partial operator realized by an autom

aton <ϊ)1,^ο> is said to be compatible with the automaton <9ΡΙ,^ο)· There

fore, the result of a test on an automaton <SOl,̂ fo> with (all) input words 

of length / will sometimes be called a total tree of height / compatible 

with <SR,^o>. 
Unless otherwise stated, qo will always denote the initial state of an 

automaton or black box. 
1. A multiple unconditional algorithm over relative black boxes is a set 

of instructions which, for every natural K, specifies: 

* Apart from these two cases, describing the "minimality" of the a priori information, 

a fairly natural and widely studied case is that in which the diagram of each black box is known 

but not its initial state (see, e.g., [108, 4, 98] and Problem IV at the end of this chapter). 
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Figure 32 

a) a finite set of input words with which to test black boxes whose num
ber of states is bounded by Κ; 

b) a procedure for construction of a suitable automaton, given the test 
result and the upper bound Κ (both here and below construction of an 
automaton will mean construction of its diagram). 

2. The characteristic feature of a multiple unconditional algorithm over 
absolute black boxes is that all black boxes are tested with the same finite 
set of input words. Algorithms of this type for black box identification are 
considerably restricted in ability, and we shall not consider them in the 
sequel. 

3. A multiple conditional algorithm over relative black boxes operates in 
steps. At each step, the black box 501 is tested with a certain finite set of 
input words. According to the result of this test, the results of tests performed 
at previous steps, and the upper bound Κ on the number of states of 50?, 
the algorithm produces either 

a) an automaton; or 
b) a new set of input words (with which to test the black box at the next 

step). 
An algorithm of this type may be described, for example, by a recursive 

function 0(w,/c), where w is either the empty word Λ or a finite tree (test 
result), fc is a natural number (upper bound on the number of states), and 
the value of the function 0(w,fc) is either an automaton (diagram) or a set 
of input words. Applied to a black box 9Jl with upper bound Κ on the 
number of states, the algorithm functions as follows: 

Step 0 (this step is degenerate and independent of 5DI). Compute Φ{Α,Κ). 
There are two cases: 
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a) If φ ( Λ , K ) is an automaton, the algorithm stops and the result is the 
the automaton Φ ( Λ , Χ ) . 

b) If Φ ( Λ , X ) is a set VQ of input words, proceed to the next step. 
Step ί (ί = 1,2, . . . ) . Test the black box 9Κ with the input words of the 

set V i ^ i , and construct a tree w ¿ _ i , which is the result of this and the pre
vious tests (so that w^.^ is the result of testing with the words of the set 
FO U U . . . U U F - i ) . Then compute Φ ( W i _ l , K ) . There are two cases: 

a) If 0{Wi_i,K) is an automaton, the algorithm stops and the result is 
the automaton Φ{^ι.,,Κ). 

b) If Φ ( \ ν , _ ι , Χ ) is a set i;¿ of input words, proceed to the next step. 
4. The only difference between a multiple conditional algorithm over 

absolute black boxes and the preceding variant is that it makes no use of 
the upper bound Κ for the number of states. In other words, the function 
Φ which describes the algorithm depends on a single argument w. 

5. A simple unconditional algorithm over relative black boxes differs from 
its multiple counterpart only in that, for each K , it specifies a single test 
word, rather than a finite set of words, for black boxes with upper bound Κ 
on the number of states. 

6. Like its multiple counterpart, we shall not consider the simple uncon
ditional algorithm over absolute black boxes. 

7. A simple conditional algorithm over relative black boxes, hke its multiple 
analogue, functions in steps. At each step, the black box SR is in the state to 
which the previous steps have brought it; it is tested with a single input word. 
According to the result of this test, that of tests at previous steps, and the 
upper bound Κ on the number of states, the algorithm produces either 

a) an automaton; or 
b) a new input word (which is used to test the black box at the next step). 
As before, the algorithm can be described by a recursive function F(w,/c), 

where w is either the empty word or a finite tree consisting of a single 
branch (the result of testing with a single input word), fe is a natural number 
(upper bound on the number of states), and the value of the function F(w,fe) 
is either an automaton or an input word. The application of this algorithm 
to a black box 3Jl differs from that of its multiple counterpart only in that 
the result of the i-th step (if the algorithm has not stopped) is not a set of 
input words but a single input word ν i = F{Wi_,,KX and this word is 
applied at the (i + l)-th step to the black box SR in the state to which the 
i-th step has brought StR. In this case, w, will denote a tree consisting of a 
single branch: the result of the last and the preceding tests (i.e., the result of 
testing with the word VQV, . . . t;,). 
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* Note that the muhiple conditional algorithm over absolute black boxes coincides, in 
effect, with the concept of computable functional (see, e.g., [39] ) , with the (inessential!) re
striction that the argument ranges over word operators and the values of the functional over 
descriptions of finite automata. The simple algorithm may be regarded as a special case of a 
functional of this type. It is also worth mentioning that a frequently employed alternative 
term in the literature for the process described by a simple (conditional, unconditional) algo
rithm is a simple (preset or inhomogeneous, adaptive or homogeneous) experiment on black 
boxes, and similarly for the multiple variant. The word "experiment" was used in a somewhat 
different sense in Chapter II of this book. 

** The point is that the requirement of initial identification by simple algorithms is so strong 
that one cannot expect positive results in interesting situations. On the other hand, if this 
requirement is replaced by the weaker modification which we have called residual identification 
and only this variant studied, the situation changes significantly. W e shall see later that the 
theorems valid for residual identification by simple algorithms are approximately the same 
as those valid for initial identification by multiple algorithms. 

8. The only difference between a simple conditional algorithm over 
absolute black boxes and the preceding variant is that it makes no use of an 
upper bound Κ for the number of states. In other words, the function F 
depends on a single argument w. 

This completes our classification of algorithms.* 
Denote the outcome of an algorithm Ω applied to a black box 501 by Ω (501). 
Note that a simple algorithm Ω tests a black box 501 with a sequence of 

input words χ,χ',χ",... and, in the final analysis, observes the response of 
the black box 50Í to a single input word—the concatenation x x ' x " . . . 
W e denote this concatenation by χ(Ω,501), and the state into which 50Ϊ 
goes after application of the simple algorithm Ω by ^ο^(Ω,501). The residual 
operator with respect to the word χ(Ω,50{), i.e., the operator Τ(501,^ο^(Ω,501)), 
will be called the operator realized by the black box 501 after application of 
the simple algorithm Ω. 

W e shall now rigorously define one of the central concepts of this chap
ter—identification. There will be two definitions: initial identification 
and residual identification. An algorithm Ω is said to initially identify a 
black box 501 if the automaton Ω (501) reahzes the same operator as the black 
box 501, i.e., Τ (Ω (501), (Jo) = T{3n,qQ). Henceforth all our discussions of 
identification by multiple algorithms will refer to initial identification. 

For simple algorithms, we introduce a weaker concept.** A simple 
algorithm Ω is said to residually identify a black box 50i if the automaton 
Ω (501) reahzes the same operator as the black box 50i after apphcation of 
the algorithm Ω, i.e., Τ(Ω(501), ^o) = Τ{^, ^ο^(Ω,501)). Henceforth, identifi
cation by simple algorithms will always refer to residual identification. 
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t The term "signaling function" is often used in the theory of algorithms; it means a function 

describing the complexity of an algorithmic process (see, e.g., [11 ] ) . 

tt In the sequel we shall often have to deal with quantities depending only on m and n. 

Naturally, we shall call such quantities constants, generally denoting them by the letter C 

(with or without subscripts). 

Residual identification is indeed weaker than initial identification, but 
it nevertheless provides full information on the subsequent behavior of 
the black box (after the identification algorithm has been applied). In many 
cases it provides full information, up to state equivalence, on the original 
black box. This is the case for strongly connected automata. Recall that an 
automaton is strongly connected if, for any ordered pair of states (qi^qj), 
there is an input word which takes the automaton from state qi to state qj. 
It is easily seen that if the black box 9Jl is strongly connected, initial identifica
tion is precisely the same as construction of an automaton equivalent to 
the black box (equivalence without regard for initial states). 

In the sequel we shall study not only the theoretical possibility of identi
fying black boxes, but also the complexity of identification. The parameter 
characterizing complexity of identification is the signaling function.^ The 
signaling function Q*(SOl) of an algorithm Ω over black boxes is defined 
as the length of the longest input word with which the algorithm Ω tests 
9M from the initial state ^o- Thus, for a multiple algorithm Ω*(ϊ)1) is the 
maximal length of the input words with which Ω tests SDl; for a simple 
algorithm it is the length of the word χ (Ω, ϊ ) Ι ) . It is obvious that if a black 
box W is indistinguishable from a black box SR by words of length 
thenΩ(aR') = Ω(aR) . 

Above we introduced eight types of algorithms over black boxes. Each 
of these types obviously has a specific identification problem: can the 
corresponding type of black box be identified by algorithms of this type, 
and, if so, what are their signaling functions? In cases where not all black 
boxes are identifiable, one may ask what proportion of black boxes are 
nevertheless identifiable. The present chapter deals with these questions. 
W e conclude this section with a few conventions. 

First, as already indicated, we shall consider automata (black boxes) 
with the same input alphabet X = {x,,..., x^}, where m = const ^ 2, and 
output alphabet Y= {y,,..., y„}, where η = const ^ 2P Thus, for example, 
"the class of all automata" will mean "the class of all automata with fixed 
alphabets X and K" 

Second (a much less essential restriction), we shall regard the states 
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of our automata as indexed, qoAiAi^-"^ and, unless otherwise stated, 
qQ will always be the initial state. These automata will be denoted simply 
by Gothic letters 50i, 31 , . . . (instead of the previously used notation <901,ίο>» 
< 9 I , ^ o > , . . . ) . Notation of the type <S)l,^i> will be used when the automaton 
has an initial state q^ which may differ from qQ. 

Similarly, all discussions of automaton graphs will refer to automaton 
graphs over a fixed alphabet X = { x ^ , . . . , x ^ } and with indexed states 

Third, all our automata (automaton graphs) will have only finitely many 
states. The number of states of an automaton (automaton graph) SR will 
be denoted by | SR |. Similar notation will be used for cardinalities of sets, 
i.e., if (7 is a set then 11/1 is its cardinality. 

IV.2. Identification of relative black boxes 

In this section we shall prove that it is theoretically possible to identify 
all relative black boxes, even by means of unconditional algorithms; we 
shall also determine signaling functions for the algorithms (both multiple 
and simple) that perform the identification (Theorems 4.1 and 4.2). 

W e first consider identification by multiple algorithms. 
It follows from Section 11.13 that any relative black box SR with upper 

bound Km on the number of states can be initially identified by the following 
multiple unconditional algorithm QQ: 

1) Test SR with input words of length IK^si — 1, and construct a total 
tree of height IK^ - 1 compatible with SR. 

2) Construct the required automaton 91 by applying the contraction 
procedure of Section II.4 to the above tree (in this case the contraction 
procedure has a unique outcome). 

It is clear that 

ng(SR) = 2 X a « - 1, 

where Q5(SR) is the signaling function of the algorithm Ωο. 
W e have thus proved 

THEOREM 4.1. There is a multiple unconditional algorithm Ω with signaling 
function 

Ω*(SR) = 2 ^ : ϊ R - 1, 

which initially identifies any relative black box SR. 
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It is not hard to verify that the upper bound given by Theorem 4.1 for the 
signahng function, as a function of K^, cannot be lowered (even by recourse 
to conditional algorithms), i.e., there is no (conditional or unconditional) 
algorithm Ω such that Q*{Wj < 2K^ — 1, which identifies all relative 
black boxes 9K. T o see this, for each Κ define an automaton 9)1^ by Table 
11 and an automaton ϊίΐ)^ by Table 12 (here we assume that 

X = {x„x,} = {0 ,1} and 7 = {y„y,} = { 0 , 1 } ) . 

The diagrams of 9Jl|̂  and Wfr are illustrated in Figures 33a and 33b, 
respectively, for X = 3. It is easily seen that the shortest word by means of 
which the state qo of 9M|̂  can be distinguished from the state q^ of is 
of length 2K — 1. Set Xaw^ = ^aw^ = ^ · Then the above observation 
implies that there is no algorithm Ω with Q*{9Jl) < 2XaR — 1 which iden
tifies and Wfc^ 

W e now consider identification of relative black boxes by simple al
gorithms, which is more difficult than in the multiple case. 

In dealing with identification by simple algorithms the degree of re
constructibility B(9Jl,^o) will be replaced by maxß(9K,^i) , where the 
maximum is taken over all states qi of the automaton SR. W e denote this 
maximum by B*(SR) and call it the absolute degree of reconstructibility 
of 301. By Theorem 2.16' the degree of reconstructibility ß(9Jl,^o) is at 
most S{9Jl,qo) + + 1, where á(SR,go) and p(9Jl) are the degrees of 

TABLE 11 

X \ 

qi qi qK-2 qK-1 

0 

1 
qi.o 
qoA 

qi.O . . . qi^uO . . 
. . . 9.-1,0 . . 

9x~i ,0 9k-i,0 
9*:-2,0 

TABLE 12 

Ψ ( χ , ^ ) , Φ ( χ , ^ ) 

X \ 

qo qi qi qK-2 q K - i 

0 

1 

quO 

qoA 
qi.O 

qoA 
qi+i,0 

• . . 9.-1,0 . . 
• 9k-i,0 qK-2^0 

9k-i,0 
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Figure 33 

* ] r [ denotes the smallest natural number ^ r 

accessibility and distinguishabihty, respectively, of SR. T o derive an analo
gous estimate for the absolute degree of reconstructibility, consider 
max á(SR,^j), where the maximum is taken over all states g¿ of SR. Denote this 
maximum by á*(SR) and call it the absolute degree of accessibility of SR. 
It follows from Theorem 2.16' that the absolute degree of reconstructibility 
satisfies the inequalities 

ß*(SR)^A*(SR)-F P (SR)+ 1, 

ß * ( S R ) ^ 2 | S R | - 1. 

W e shall denote the state to which a word χ takes a state ¿̂ by q^x; the 
operator realized by SR after application of the word χ is the residual operator 
T(SR,^o^). 

W e shall now prove two lemmas. 
Let 1/ be a set of automata, and χ an input word such that, for any two 

automata SR^ and SR2 in U, either SR^ and SR2 generate different output 
words on application of x, or they realize the same operator after application 
of X , i.e., T(SRi ,^o^) = T(SR2,<?o^)- Then we shall say that the input word 
X residually distinguishes the set U (or automata of the set U). 

LEMMA 1. For any set U of automata whose absolute degree of recon
structibility is at most some natural number s, there exists an input word of 
length 5 ] 2 m M n | ( 7 | [ * which residually distinguishes the set U. 

Proof Let SR^ and SR2 be arbitrary automata whose absolute degree 
of reconstructibility is at most s. Let us find an upper bound for the number 
of input words of length Is (where / is any natural number) which do not 
residually distinguish these two automata. T o this end, consider any input 

1.1 1,0 f,o 

a 

1,1 1,0 0,0 
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"It/I - V - 2 

Now, if IQ is a natural number such that the number of input words of 
length IQS not residually distinguishing the set U is less than the total number 
of words of length IQS (i.e., less than m'°*), then there must be an input word 
of length IQS which residually distinguishes U. NQ must therefore find IQ 
such that 

i " i ' i ^ i - " K - i y < . - . 

Solving for IQ, we get 

ln\U\ + \n{\U\- l ) - l n 2 

| l n ( l - l/m^) 

word X which does not residually distinguish 3Jli and 5012» find an 
upper bound for the number of different input words ζ of length 5 that can 
be "tacked onto" χ such that xz still does not residually distinguish StRj 
and 50Ι2· The states q^^^ = qoX and q^^^ = of the automata SRi and 50I2, 
respectively, are clearly distinguishable, since otherwise we would have 
T{yjl,,qQx)= T(50l2,^o^) aiid the word χ would residually distinguish 
50li and 5012- Since the absolute degree of reconstructibility of 501̂  and 50I2 
is at most s, there must be at least one input word ζ of length s that distin
guishes states q^^^ and q^^\ Obviously, for this ζ the automata ^Jl, and 50I2 
transform the word xz into different output words, and so xz residually 
distinguishes the automata and 50I2. W e have thus verified that the 
number of input words of length s that can be "tacked onto" the word χ 
in such a way that the resulting word does not residually distinguish 
and 5012 is at most - 1, where nf is the number of input words of length 
s. It follows by induction on / that the number of different input words 
of length Is which do not residually distinguish 50ϊι and 50Í2 is at most 
(m^ - ly. 

N o w let U be any set of automata with absolute degree of reconstructibility 
at most s. If some input word does not residually distinguish the set (7, it 
must have this property for at least two automata in the set. The number of 
possible pairs of automata from the set U is C^y^, Hence, using the above 
bound on the number of input words which do not residually distinguish 
two automata, we see that the number of input words of length Is which 
do not residually distinguish the set U is at most 
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Since I l n ( l - l/m') \ > l/m\ it follows that 

In I t/ I + In (I [/ I - 1) - 1) - In 2 

Set 

l n ( l - ( 1 / m ^ ) 

/o = ] | 2 m M n | C / | [ . 

<2m'ln\U\. 

Then IQ clearly satisfies the required inequality, and so there exists an input 
word of length 

/o5 = 5 ] 2 m M n | l / | [ 

which residually distinguishes the set U. This proves the lemma. 

LEMMA 2. For any natural numbers k and s, there exists an input word 
d{k,s) of length s']2mk{\nnk)m^\_ which residually distinguishes automata 
with at most k states and absolute degree of reconstructibility at most s. 
Moreover, the word d{k,s) is effectively constructible for any k and s.* 

Proof W e may confine the reasoning to automata with exactly k states. 
The first assertion of the lemma follows directly from Lemma 1, since the 

number of different automata with k states is at most {nkf^ (Section 0.3). 
W e proceed to the second assertion. The required input word d{k,s) of 

length s]2m/c(lnn/c)m*[ can obviously be constructed as follows. Order all 
input words of length 5]2m/c(ln n/c)m*[ and, beginning with the first, check 
whether they residually distinguish automata with k states and absolute 
degree of reconstructibility at most 5. Continue until an input word is 
encountered which residually distinguishes the automata in question; 
this word will be d(k,s). The procedure is clearly effective. 

Since the absolute degree of reconstructibility of automata with k states 
is at most 2fe — 1, Lemma 2 directly implies the following 

COROLLARY. For any natural number k, one can effectively construct an 
input word d(k) of length ']4k^{In nk)m^^\_ which residually distinguishes 
all automata with at most k states. 

It is now no longer difficult to devise a simple algorithm which residually 
distinguishes relative black boxes. 

Consider the following simple unconditional algorithm over relative 
black boxes. Let SR be a black box with at most states. 

* This means that there is an algorithm (e.g., Turing machine) which constructs the word 
d{s,k) for any natural k and s. 
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1) Construct an input word ά{Κ^) of length 

which, by the corollary of Lemma 2, residually distinguishes all automata 
with at most Kyji states. Then test the black box 90ϊ with the input word 
d{K<¡ssi) to find the corresponding output word yo-

2) Look for an automaton 91' with minimal number of states (for instance, 
by checking through all automata with at most X ^ R states) which, like the 
black box 501, responds to input d{K<oi) with output ^o- If ^h^re are several 
such automata, choose one of them. The outcome of the algorithm is 
the automaton 91 obtained from 9Í' by defining the initial state to be the 
state into which the word d{Km) takes 91'. 

It follows from the corollary to Lemma 2 that the automaton 91 realizes 
the same operator as the black box 501 after application of the word d{K<^X i.e., 

T(9I ) = T{^\qod{K,ji)) = Tm,qod{Km)) 

(otherwise the input word d{Kyn) would not residually distinguish the 
automata 501 and 91', which both have at most K<m states). This proves 
that the algorithm residually identifies the black box 501, and moreover 

Ω*(501) = ]4Κί,(1ηηΚϊ«)^π^'^^^ί[. 

W e have thus proved 

THEOREM 4.2. There is a simple unconditional algorithm Ω with signaling 
function 

Ω*(501) = ]4K^{lnnK^)m^''^^i 

which residually identifies any relative black box 501. 
It seems probable that the upper bound given by Theorem 4.2 for the 

signaling function, as a function of K^, can be considerably improved. But 
it is easy to see that this bound can never be lower than m^^, i.e., there 
is no simple algorithm Ω over relative black boxes, with Ω*(501) < m^^, 
which identifies all relative black boxes. 

T o see this, consider the abstract model of a combination lock with Κ 
states illustrated in Figure 34 {X = { x i , . . . , x ^ } , Y= {y^,y2} = { 0 , 1 } , qo 
the initial state). The characteristic feature of this automaton is that the 
only way to generate the output letter 1 ("unlock") is to apply an input word 
ending in x^^x^^... x^^; call this word the combination. Combination 
locks differ from each other in their combinations, and so the number of 
different combination locks with Κ states is m^. 
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Let Ω be an arbitrary simple algorithm which residually identifies any 
relative black box. It will clearly identify ("unlock") any combination lock 501 
with Κ states and upper bound Ky^ = X on its number of states [sic] . Let 

and äRj be two such locks. When applied to these locks, the algorithm 
Ω will test each of them with a specific input word. Denote these input 
words by x^'^ = x^^^(l)... x^^^(a) and x̂ ^̂  = x^^^l)... x^^\b\ respectively. 
Let = y^^(l)... y^^\á) and = /^\\)... y^^\b) be the corresponding 
output words. Let us say that the algorithm Ω opens the lock i^^) 
the >th step if /^\\) = y^'\2) = . . . = y^^^(j - 1) = 0, but /'^(J) = 1 
(y 'H l ) = y^^(2) = . . . . = - υ = O, y^^O) = l)). we shan say that 
the algorithm Ω opens the lock 9Jl, (Ϊ)Ϊ2) if it opens it at some step 
j a(j b\ Obviously, the algorithm Ω must open any of these combina
tion locks (since otherwise it could not residually identify them). N o w let j 
be the smallest number such that the algorithm Ω first opens one of the 
locks and 9JI2 at the y-th step. Then, clearly, the output words 

y^>(l)... y^'^U - 1) and . . . /^^(j - 1) 

are equal (to be precise, are both blocks of zeros), and consequently the 
input words x^^^(l)... x^^^(/) and x^^^(l)... x^^^(/) are also equal. It follows 
that if the locks SOî  and are different, i.e., have different combinations, 
the algorithm Ω cannot open both of them at the same step. Since the number 
of different combinations for locks with Κ states is and the algorithm Ω 
must open all of them, there must be a lock 50ϊ with Κ states which is not 
opened by the algorithm Ω before the m^-th step. For this lock, therefore, 
Ω*(9Μ) ^ m*̂ . Since X j « = X , it follows that Ω * ( ϊ « ) ^ m^«^^ 

IV.3. Frequency criteria. Complexity of identification of almost all relative 
black boxes 

In the preceding section we considered algorithms which identify all relative 
black boxes. The upper bounds for the signaling functions of these algorithms 
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W e shall say that the property Ε occurs with frequency I — ε in a given 
partition {S^j] if F ^ 1 - ε for any λ. It is easy to see that the "frequency" 
pattern may vary considerably for the same property, depending on the 
partition { I F Consequently, in formulating and solving actual problems 
the partition must be chosen on the basis of pertinent arguments. Thus, 
for example, since we are dealing with automata (automaton graphs) and 
with those of their properties related to the number of states, it is natural 
to consider partitions according to the number of states, i.e., a partition 

turned out to be very high (2K — 1 for multiple algorithms, C{K^ In K)m^^ 
for simple algorithms). It is natural to ask whether we can substantially 
lower these bounds by considering only almost all automata, rather than 
all automata. In this section we shall show that this is indeed so (Theorems 
4.3 and 4.4). However, this and similar questions have no rigorous meaning 
unless we first clarify the meaning of the phrase "almost all automata 
possess property Ε with a preassigned frequency." This will also yield a 
rigorous definition of frequency algorithms, which produce the correct 
outcome not always but (at least) with a preassigned frequency. 

W e first clarify when two automata (automaton graphs) are to be con
sidered identical. T w o automata (automaton graphs) SCRi and are said to 
be identical if and only if any two identically numbered vertices in the dia
grams of Sfli and are connected by edges with the same direction and 
identical labels. Note that nonidentical automata (graphs) may be iso
morphic. W e recall (see e.g.. Section 0.3) that the number of pairwise non-
identical automata with k states is {nkf^ and the number of pairwise non-
identical automaton graphs with k vertices is k"*"^. W e are dealing with autom
ata (automaton graphs) with fixed alphabets X = { x i , . . . , x ^ } and Y = 
= [y^-" ^yt^ (m,n = const ^ 2), and all references to the class of all 
automata (automaton graphs) in fact refer to the class of all automata 
(automaton graphs) with these alphabets. 

N o w let I F be the class of all pairwise nonidentical finite automata 
(automaton graphs) and Ε some property which any specific automaton 
(automaton graph) may or may not have. Assume that we have some 
partition {^e^} of the class into finite subclasses: I F = U ^ I F ; ^ . Let I F ^ 

denote the set of all elements of I F which possess property E. One can 
consider the frequency with which this property occurs in I F ;i, i.e., the 
quotient 
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into subclasses i f ^ each of which contains all automata (automaton graphs) 
with λ states (A = 1 , 2 , . . . ) . Henceforth any statement that automata 
{automaton graphs) possess a property with frequency I — ε will refer specifi
cally to this partition (unless explicitly stated otherwise). 

Consider two partitions, of which the second is a refinement of the first 
(i.e., every subclass of the second partition is included in a subclass of the 
first). Then, obviously, if property Ε occurs with frequency 1 — ε in the 
second, finer partition, this surely holds for the first, coarser partition. One 
might say that the finer the partition, the more "uniform" the total frequency 
pattern. For example, consider the following refinement of our standard 
partition of the class of automata (by number of states). Let two automata 
belong to the same subclass if they can differ only in their output functions. 
In other words, any of these classes may be obtained from some automaton 
graph G with input alphabet X and indexed vertices qQ,q,,...hy assigning 
output labels to the edges in all possible ways; denote the subclass of pair-
wise nonidentical automata associated in this way with the graph G by G. 
Henceforth, any statement that a property Ε occurs uniformly with frequency 
1 — ε will refer to this partition (we call this a partion by graph G ) ; it is 
finer than the partion by number of states. 

Especially worthy of mention are cases in which the frequencies in the 
subclasses of these partitions tend to unity as the number of states k tends 
to infinity. When the partition is by number of states, we shall say that 
almost all automata {automaton graphs) with k states, or simply almost all 
automata {automaton graphs) possess property E; when the partition is 
by graphs, we shall say that almost all automata with k states, or simply 
almost all automata, uniformly possess property E. 

W e illustrate these concepts by a few examples. W e know (Theorem 2.16') 
that all automata SR have the property Β (SR) ^ 2 15011 - 1 (i.e., the degree 
of reconstructibility is less than twice the number of states). Is there a 
stronger property, namely, a much smaller upper bound, valid for almost 
all automata? Alternatively, can we perhaps prove that a stronger inequality 
holds with frequency 1 — ε, for sufficiently small ε? In Chapter V we shall 
study the frequencies with which various parameters and spectra occur, 
and establish several results of this type. In particular, we shall prove 
(Theorem 5.10) that almost all automata with k states have absolute degree of 
reconstructibility at most CQ log,„ k {and so at most* [ C Q ) , where CQ is 
a constant independent of k. W e shall be able to use this theorem (and various 

* [ r ] denotes the greatest natural number G r. 
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Other results of Chapter V ) to investigate bounds for the complexity of 
automaton identification. 

Employing the terms introduced above, one can give a frequency charac
terization of algorithms which do not always produce the correct outcome. 
For example, the statement that an algorithm Ω identifies almost all relative 
black boxes means that almost all automata 9M have the following property: 
if the automaton 501 is associated with some upper bound on the number of 
states and the algorithm Ω is applied to it as to a relative black box, then 
Ω will identify 501. Similarly, when we say that an algorithm Ω identifies 
absolute black boxes with firequency 1 — ε {uniformly with frequency 1 — ε), 
we mean that automata have the following property with frequency 1 - ε 
(uniformly with frequency 1 - ε ) : the algorithm Ω, applied to the automaton 
as to an absolute black box, will identify it. 

In this connection, consider the following multiple unconditional al
gorithm Ωο, which is a modification of the algorithm Ωο of the preceding 
section. Let 501 be a relative black box with the upper bound = Κ on 
the number of states. 

1) Test 501 with input words of length [ C o l o g ^ X ] , and construct a 
total tree of height [Co log^K] compatible with 50Í. 

2) Apply the contraction procedure (which may not be unique here) to 
this tree and construct an automaton 91. 

Clearly, the signahng function of the algorithm Ωο is given by 

üS(50l) = [ C o l o g A ] . 
It follows from Theorem 5.10 (stated above) on the upper bound for 

the degree of reconstructibility of almost all automata that the algorithm 
Ωο initially identifies almost all relative black boxes. Thus, we have 

T H E O R E M 4.3. There is a multiple unconditiona algorithm Ω with signaling 
function 

Ü * ( 5 0 l ) = [ C o l o g , K a R ] 

which initially identifies almost all relative black boxes (Co is the constant 
of Theorem 5.10). 

W e now consider the identification of relative black boxes by simple 
algorithms. The following proposition follows directly from Lemma 2: 

A . For any natural fe, one can effectively construct an input word d'{k) of 
length [CoXogJi] •]2mk{\nnk)k^^\which residually distinguishes all autom
ata with at most k states and absolute degree of reconstructibility at most 
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Consider the following algorithm Ω^, which is a modification of the 
algorithm Ω^ of the preceding section. Let SR be a relative "black box" 
with upper bound K<^ = Κ on the number of states. 

1) Construct an input word d' (K) of length [Co l o g ^ K ] · ] 2mK (In ηΚ) X ^ « [ 
as in Proposition A which residually distinguishes automata with at most 
Κ states and absolute degree of reconstructibility at most [CQ l o g ^ X ] . 
Then, testing SR with the input word d'(K), find the corresponding output 
word y'. 

2) Look for an automaton 91' with at most Κ states and absolute degree 
of reconstructibility at most [CQ l o g ^ X ] which, like SR, transforms the input 
word d' {K) into the output word y'. If there are several such automata, choose 
one; if there are none, the outcome of the algorithm Ω^ is either left unde
fined on the black box SR or is defined arbitrarily. The outcome of the 
algorithm is the automaton 91 obtained from 91' by defining the initial 
state as the state to which the word d'{K) takes 9Í'. 

What is the outcome of the algorithm Ω^, applied to a black box SR 
with at most Κ states and absolute degree of reconstructibility at most 
[Co log,„X]? Obviously, one can find an automaton 9Í' satisfying the above-
mentioned conditions (since the black box SR itself already satisfies these 
conditions). N o w consider the automaton 91 produced by the algorithm Ω^ 
applied to SR. W e claim that the automaton 91 reahzes the same operator 
as the black box SR after application of the input word d'{K). Reasoning 
by reductio ad absurdum, assume that this is not so, i.e., 

T{^\qQd'{K)) φ Tm,qod'{K)). 

Then the word d'{K) does not residually distinguish the automata 91' and 
SR (recall that 91' and SR subject the word d'{K) to the same transformation). 
But both these automata have at most Κ states and their absolute degree 
of reconstructibility is at most [CQ l o g ^ X ] , and by Proposition A the word 
d'{K) must residually distinguish them. This contradiction proves that the 
algorithm Ω^ residually identifies the black box SR. 

It is obvious that the signaling function of the algorithm Ω^ is given by 

Ω*(SR) = [ C O logM ' ] 2 m X ^ ( l n ηΚ^)Κ^^Ι 

It is easily seen that for sufficiently large Ksjji this quantity is bounded above 

Hence, and from Theorem 5.10 on the upper bound for the absolute 
degree of reconstructibility of almost all automata, we get 
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IV.4. General remarks on identification of absolute black boxes 

After examining the identification of relative black boxes, we now consider 
identification of absolute black boxes. As we known (Section IV. 1), identifica
tion may utilize only such information as can be acquired by applying input 
words and observing the corresponding output words (besides informa
tion on the input and output alphabets, which are fixed and assumed to be 
known). 

The first question appearing in this connection is, does there exist an 
algorithm that identifies all absolute black boxes? It is easily seen that the 
answer is negative. For any algorithm for identification of an arbitrary 
black box 9M yields its outcome on the basis of a finite test of 501, i.e., a 
finite tree compatible with 501. But for any given tree there is an infinite 
set of compatible automata (black boxes), and the algorithm will clearly 
produce the same answer for all these automata irrespective of the operators 
that they realize. 

Thus there can be no algorithm which identifies all absolute black boxes. 
What can one say about an algorithm identifying almost all absolute 
black boxes? Again the answer is negative: 

THEOREM 4.5. There is no algorithm which identifies almost all absolute 
black boxes. 

Proof Let Ω be an arbitrary algorithm over absolute black boxes. 
T o prove the theorem, we must show that 

l i m - -φΟ, 

where i f (fc) is the set of all pairwise nonidentical automata with k states, 
and i ^ (/c) the set of all pairwise nonidentical automata with k states which 
are not identified by Ω. Since simple and multiple algorithms are associated 
with different identification concepts (that for simple algorithms being the 
weaker), we must consider these two types of algorithm separately. 

THEOREM 4.4. There is a simple unconditional algorithm Ω with signaling 
function 

Ω * ( 9 Μ ) ^ Κ § ? + 2 

which residually identifies almost all relative black boxes {CQ is the constant 
of Theorem 5.10). 
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Let Ω be a multiple algorithm. Let 9Jlo be some automaton which always 
generates the same letter, say y^. Let G be an arbitrary automaton graph, 
and, as before, G the set of pairwise nonidentical automata obtained from 
G by assigning output labels to its edges in all possible ways. Let G^ denote 
the set of all pairwise nonidentical automata in G which are indistinguishable 
from SERo by input words of length IQ = Ω*(9Μο)» but realize operators 
different from C1{9JIQ). Obviously, the algorithm Ω will not identify any of 
these automata. Let G' denote the graph obtained from G by deleting all 
vertices inaccessible from QQ. 

Obviously 
- \G'\) 

\ G \ l o ' l - n - D G I - I G I , 

N o w in any automaton graph there are at most m'" * ' - 1 vertices which 
are accessible from f̂o by input words of length at most IQ. Thus the number 
of automata in G' which realize different operators and are indistinguishable 
from aWo by input words of length /Q is at least „ " ( I G L - I M O - ' - I ) ) 

Hence, 

and i f | G ' | > m ' - '+i , 

| G ^ | ^ „ M ( | G ' | - M O - ) 

It follows t h a t i f | G ' | > m'"^'. 

η 
, M ( | G ' | - M ' o + i ) 

= η 

and so 

> n-

N o w it is not difficuh to show (see, e.g.. Chapter V, Theorem 5.4) that the 
ratio of the number of all automaton graphs G with k vertices such that 
I G'l > to the number of all automaton graphs with k vertices tends to 
unity as fc-> cx). Together with the preceding arguments, this implies that 

hm 
|^»(fc)| 

> η - M O + 2 ^ 0 . 
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IV.5. Iterative algorithms 

In Section 1 of this chapter we introduced general algorithms, multiple and 
simple, over absolute black boxes. W e shall now consider a particular 
case—the so-called iterative algorithms, which will play a significant 
role in the sequel. Our aim is to show that, using these algorithms, one can 
identify absolute black boxes with any preassigned frequency. 

W e first define a multiple iterative algorithm over absolute black boxes. 
A multiple iterative algorithm is defined by a computable nondecreasing 

arithmetical function 0(s).** W e call this function the control function of 
the algorithm and denote the algorithm itself by Σ^. Applied to a black box 
SR, the algorithm operates as follows. 

Step 1. Choose a fixed automaton 9lo (say, the automaton illustrated 
in Figure 35), and call it the initial hypothesis. Then, testing the black box 
SR with input words of length </>( 19ίο |)? determine whether the hypothesis 
9Io is distinguishable from SR by input words of length </>( | SIQ | ) . If not, the 
algorithm halts and its outcome is defined to be SUQ. If it is, construct the 
total tree of height φ ( | 9Io | ) produced by testing SR with input words of 
length (/>(|9lo | ) , and apply the contraction procedure (Section II.4). The 
resulting automaton 21 ̂  is defined to be the hypothesis generated at Step 
l.t N o w proceed to Step 2. 

Step i (ί = 2 , 3 , . . . ) is analogous to Step 1, except that the initial hypoth
esis SUQ is replaced by the hypothesis generated by the preceding step. 
If this hypothesis is indistinguishable from SR by input words of length 
Φ{\^ί-ι\\ the algorithm halts and its outcome is by definition ^i-,. If 
it is distinguishable from SR, construct a new hypothesis Sl̂  by contracting 

* Of course, one is interested only in the case ε < 1; this will be assumed throughout the 

sequel without special mention. 

** A function is arithmetical if it maps natural numbers onto natural numbers. 

t If the contraction procedure does not yield a unique result, choose one of the possible 

results (it is immaterial which is chosen). 

The case of a simple algorithm Ω is treated analogously. This proves the 
theorem. 

The negative result implied by this theorem motivates the following 
question: Given arbitrary ε > 0, is there an algorithm which identifies 
absolute black boxes with frequency 1 - ε?* A positive answer to this 
question will be given in the following sections. 
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Figure 35 

the tree produced by testing SR with input words of length </>(|2ϊί-ι | ) , 
and proceed to Step i -h 1. 

It is quite clear from the definition of an iterative algorithm that it utihzes 
no information on the number of states of the black box. 

EXAMPLE. Consider the multiple iterative algorithm Σ^+, with control 
function 0(s) = s -h 1. Imagine a black box SR^ with alphabets 
X = { x i , X 2 } = { O ' l } ^i^d Y= { ^ 1 , ^ 2 } = {0,1} which checks for divisi
bility by 3: for input χ ( 1 ) . . . χ ( i ) , the automaton generates a word y{l).. .y{t) 
such that, for every 1 ^ f ^ i. 

y(0 = 

1, if the word x ( l ) . . . x ( i ) is the binary expansion of 
a number divisible by 3 

0 otherwise. 

Let us apply the algorithm Σ^^^ to the black box SR^. As initial hypothesis 
take the automaton illustrated in Figure 36 (which is the automaton of 
Figure 35 for AT = {0,1} and Y= {0 ,1} ) . The outcome of Step 1 (contraction 
of the tree of Figure 37a) is the automaton 91 ̂ illustrated in Figure 37b.* 
The outcome of Step 2 (contraction of the tree of Figure 38a) is the automaton 
2I2 of Figure 38b. The outcome of Step 3 (contraction of the tree of Figure 
39a) is the automaton 2I3 illustrated in Figure 39b. Finally, the algorithm 
halts at Step 4 and the outcome is the automaton 9I3. It can be shown (we 
leave this to the reader) that the automaton 9I3 indeed checks for divisibility 
by 3, and so is a suitable model of the black box SR^. This means that the 
algorithm Σ,+ ι initially identifies SR^ (and does so without utilizing any 

* Generally speaking, other automata may resuh at this step, since the contraction procedure 

is not unique here. 
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information on the number of states!). Note moreover that Σ*+ι(50ίι) = 4 
(since the maximal length of input words with which the algorithm Σ^+ι 
tests ARIL is 4). 

This positive result notwithstanding, it is not hard to devise black boxes 
which are not identified by Σ^+ι. For example, Σ^+ι cannot identify an 
automaton which accepts input words of length greater than two, i.e., 
responds to input words x ( l ) . . . x ( i ) with output word y{l)... y{t\ where 

y(0 = 
1 if ί > 2, 

0 if ί < 2 . 

The reader will easily convince himself that the algorithm Σ^+ι applied to 
9JI2 halts at the initial hypothesis, illustrated in Figure 36. 

W e now prove the following important property of multiple iterative 
algorithms: 

A multiple iterative algorithm Σφ applied to an arbitrary black box 9Jl 
must halt at some step. 

Let SR be a black box to which an iterative algorithm Σφ is applied. It 
follows from the definition of the contraction procedure (Section II.4) 
that, if and V2 are two total trees compatible with 501, such that the height 
of V2 is at least that of V^, then the automaton obtained by contracting 
V2 has at least as many states as that obtained from V^. In view of this 
property and the fact that the control function is nondecreasing, it is easy 
to prove by induction on i that the hypothesis generated at Step i has at 
least as many states as that generated at the preceding step (for ί = 1, 
at least as many states as the initial hypothesis. Figure 35). It follows that 
the hypotheses generated at Steps i and i', where i' ^ i -f 1, must be 
different (otherwise the algorithm Σ^ would have halted at Step i + 1). On 

1.0 
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Figure 38 

Figure 39 

the other hand, none of the hypotheses can have more states than the black 
box SBi, since contraction of a tree compatible with 93i cannot yield an 
automaton with more states than SR. All this imphes that the algorithm 
Σφ, applied to 9M, must halt at some step. 

Let Σφ be an arbitrary multiple iterative algorithm with control function 
φ{8). What can we say of its signaling function? As already mentioned, 
none of the hypotheses generated during application of Σ^ to a black box 9M 
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can have more states than 9M. Moreover, the control function φ{8) is non-
decreasing by definition. 

It follows that the signaling function Σ | (9Ϊ Ι ) of an iterative algorithm 
Σφ satisfies the inequality 

Σ*{^)^φ(\^\). 

W e now define simple iterative algorithms over absolute black boxes. 
A simple iterative algorithm is defined by a computable function g{s) 

defined on natural numbers, whose values are words over the input alphabet 
X such that, for any natural s, g{s) is an initial segment of ^(5 + 1) (so that 
g{s + 1) is not shorter than g{s)). W e call this function the control function 
of the simple algorithm and denote the algorithm itself by Π^. Applied to a 
black box 9M, the algorithm operates as follows. 

Step 1. Choose some fixed automaton 9Io (say the automaton illustrated 
in Figure 35) and call it the initial hypothesis. Then test the black box 9W 
with the input word öf( | 9Io | ) (so that SOI goes to the state qog{ | 9ίο | ) ) » and, 
according to the result of this test, check whether the hypothesis 9Io is 
distinguishable from SR by the input word ö'( | ̂ 0 I )· If i^^t, the algorithm 
halts and its outcome is by definition the automaton <9Io,̂ oö'( | ^ 0 I )>' 
i.e., the automaton obtained from SIQ by stipulating that its initial state is 
that to which the input word 6^( 19ϊο | ) takes SIQ. If it is distinguishable, use 
the result of the test to construct a minimal automaton which is indistin
guishable from SR by the input word ö^( |9Io | ) - This automaton 91 ^ is 
defined to be the hypothesis generated at Step 1. N o w proceed to Step 2. 

Step i (ί = 2 , 3 , . . . ) is analogous to Step 1, except that the initial hypoth
esis 9Io is replaced by the hypothesis ^ generated at the preceding step. 
First determine the output word which is the response of the black box SR 
to the input word ö'( | 1 | ) (since the previous steps have already estab
lished the response of the black box SR to the input word ö'( | 9Ii-2 | ) » all 
that remains at this step is to determine the response of SR, in the state to 
which it is taken by the word Ö̂ ( | 9Í¿_ 2 | ) , to the "tail" of the word ö̂ ( | 9Ii_ ̂  | ) 
following ö'(|^i-2 I))· N o w check whether the hypothesis 9If_i is distin
guishable from the black box SR by the input word Ö'( | 91¿_i | ) . If not, the 
algorithm halts and its outcome is the automaton <9l¿_i,^oo^( I ̂ i - i | )>· 
If it is, construct a new hypothesis %—a minimal automaton which is in
distinguishable from SR by the input word g(\%_-^^ \)—and proceed to 
Step i + 1. 

It is clear that, like its multiple counterpart, a simple iterative algorithm 
utilizes no information on the number of states of the black box. 
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EXAMPLE. Consider the simple iterative algorithm Π^^ with the control 
function QQÍS) defined as the word 01010101... of length 3s (for example, 
g{2) = 010101). Let 9)1^ be a black box with alphabets 

X = { χ ^ , χ ^ } = {0 ,1} and Y= {y.^y^} = { 0 , 1 } , 

which checks whether the input word contains an even number of ones, i.e., 
its response to the input word x ( l ) . . . x ( i ) is the word y(l)...y{tX where 
for any I ^ i ^ t 

1 if x ( l ) . . . x ( i ) contains an even number of ones, 

y (0=1 
0 otherwise. 

Apply the algorithm Π^^ to 9JÍ3. For the initial hypothesis 5Io, take the 
automaton of Figure 36. The outcome of Step 1 is the automaton SH, illus
trated in Figure 40,* while that of Step 2 is the automaton illustrated 
in Figure 41. At Step 3 the algorithm halts and its outcome is the automaton 

<^2Aog{\^2\)> = <^2Αοΰ{2)> = <2l2,^o010101> = <9Í2 ,^ i> . 
It is not difficult to see that the automaton <2l2, ^ 1 > reahzes the same operator 
as the black box SR3, when the latter starts from the state to which applica
tion of the algorithm Π^^ has taken it (i.e., after application of the word 
(̂ 19I2 I) = 010101). It follows that the algorithm Π^^ residually identifies 

ϊ « 3 , and also Π*^{9Ά^) = 6. 
Again, it is not hard to find examples of black boxes which cannot be 

identified by the algorithm Π^^. 

Just as in the multiple case, one can prove the following important 
property of simple iterative algorithms: 

A simple iterative algorithm Tig, applied to any black box 951, must halt at 
some step. 

T o see this, note the following direct consequence of the definition of the 
control function g{s): If s' ^ s, then the minimal automaton which is 
indistinguishable from 9M by the word g(s') has at least as many states as 
the minimal automaton indistinguishable from 9W by g(s). The rest of the 
argument is exactly the same as in the multiple case. Let be an arbitrary 
simple iterative algorithm with control function g{s). Let / ( x ) denote the 
length of the word x. It is easy to see that the signaling function Π*(9Κ) of 
the algorithm satisfies the inequality 

* Generally speaking, this step is not unambiguous, since there are other minimal automata 

which are indistinguishable from by the input word ^ ( | ^0 I) = ö'(l) = 010. 
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Figure 40 Figure 41 

REMARK. In a certain sense, the iterative algorithms are a formal 
version of incomplete induction. For at each step the algorithm constructs a 
hypothesis which is tested only finitely many times (in a multiple algorithm— 
by several input words, in a simple algorithm—by a single input word). If 
this finite test does not refute the hypothesis, the latter is accepted as true 
(the outcome is produced). If it is refuted, a new hypothesis is constructed 
(as simply as possibly, i.e., with the minimal number of states). W e may 
thus interpret identification of black boxes by an iterative algorithm as 
identification by incomplete induction. In the next sections it will be shown 
that iterative algorithms (both multiple and simple) are capable of identifying 
the majority of absolute black boxes. This result may be interpreted as a 
justification of the use of incomplete induction in black-box identification. 
One may therefore hope for a justification of incomplete induction in 
more extensive classes of problems. 

iy.6. Identification of absolute black boxes by multiple algorithms, 
with arbitrary preassigned frequency 

In this section we shall show that by means of multiple algorithms one can 
identify absolute black boxes with any preassigned frequency. W e shall 
prove an even stronger result (Theorem 4.6), implying that this can be done 
within the class of multiple iterative algorithms, and moreover uniformly. 

W e recall the definition of uniform identification. An algorithm is said 
to identify absolute black boxes uniformly with frequency 1 - ε if, for 
any automaton graph G, 

^ 1 - ε, 

where G^ is the set of all automata in G which the algorithm Σ identifies 
(as absolute black boxes). 

1.0 
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{where m and η are the cardinalities of the input alphabet X and the output 
alphabet Y, respectively). 

TtiEOREM 4.6. For any ε > 0, there is a multiple iterative algorithm 
Σφ^ which initially identifies absolute black boxes uniformly with frequency 
1 - ε. 

The proof of this theorem will require several auxiliary concepts and 
propositions. 

In Section 11.12 we defined the accessibility spectrum of an automaton SO? 
as the function of /)<an,^o>(') number of states accessible from 
qo by words of length at most /. Similarly, the accessibility spectrum of an 
automaton graph G is the function / > < G , e o > ( 0 defined as the number of vertices 
accessible from qQ by words of length at most /. Besides the accessibility 
spectrum we shall need another spectrum—the saturation spectrum 
which we now define. For any natural number /, consider a total tree V^^^ 
of height / compatible with the automaton SR. The saturation spectrum of 
the automaton SR is the function F<aR,^Q>(/) defined as the weight of the 
tree V^^\ or, equivalently, the number of states of the automaton obtained 
by contracting the tree V^^ ^ jg obvious that the saturation spectrum is 
a nondecreasing function, and if the automaton has finite weight μ its 
spectrum is bounded by the constant μ. In a certain sense, the saturation 
spectrum of an automaton resembles the accessibility spectrum of the 
operator that it reahzes, with the difference that in assigning vertices to 
the basis only a finite truncation of the infinite tree is considered, rather 
than the entire tree. Clearly, 

F<í«, ,„>(/)áO<an,,„>(0. 

W e shall now establish a certain relation between the accessibility and 
saturation spectra. Let G be an automaton graph, and denote by öp^i) ^ s 
the subset of G consisting of all automata SR such that F<9K,^O>(/) S S. 

Consider the quotient | Gp^i^ ̂  51 /1 δ | (which depends on / and 5). W e shall 
prove a lemma which gives an upper bound for this quotient in terms of 
the accessibility spectrum D^Qq^yil) of G. 

LEMMA 3. Given an automaton graph G with accessibility spectrum D{1). 
Then, for any natural numbers I and s. 
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U\ = n^<^>-^ * 
Hence (since the classes U are disjoint) the statement of our lemma. 
W e can now proceed to a more direct investigation of the actual identi

fication procedure. Let G be an arbitrary automaton graph, and denote by 
G' the graph obtained from G by deleting all vertices not accessible from 
qQ. Obviously, 

IG^I IG'^I 
| G ' | · 

This proves 

LEMMA 4. Let Σ be an algorithm such that for any automaton graph G 
all of whose vertices are accessible from qQ 

^ 1 - ε. 

Proof. Let d and d' be edges in the diagrams of automata SR G G and 
SR' G G, respectively, which correspond to the same edge of the graph G; 
call them corresponding edges. For fixed /, partition the set of automata G 
into disjoint classes as follows: two automata belong to the same class if 
and only if any two corresponding edges of their diagrams which are inac
cessible from qQ by words of length at most / have identical output labels. 
In other words, automata in the same class may differ only in the output 
labels of edges accessible from qQ by input words of length at most /. Let U 
be one of these classes. W e extend the notation Gp^^^ introduced above 
for G, to the set L/, so that Up^i) ^ s will denote the subset of U consisting of 
all automata SR such that F(<m,q^y{l) ^ s. Obviously, automata in the class U 
are distinguishable, moreover by input words of length / (since otherwise 
(7, and a fortiori 0, would contain identical automata). Therefore, if an 
automaton SR G 1/ is indistinguishable from some automaton 31 by input 
words of length /, this is no longer true for any other SR' e U. It follows 
that I t/fd) ̂  s I cannot exceed the number of pairwise nonidentical automata 
with s states, i.e., it is at most (nsf^. On the other hand, at least ! > ( / ) - 1 
edges of the graph G are accessible from qQ by words of length at most / 
(since every vertex accessible by an input word x, except possibly qQ itself, 
is the endpoint of at least one edge accessible by the same input word). 
Thus the number of automata in the class U is at least n^^^^~ ^ 

It follows that 

| ^ F ( o ^ s | ^ insr 
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0 ( G , ( / > ( s ) , s ) ^ G ^ ( ^ ( , ) ) 

L E M M A 6. Let <^(s) be a control function such that for any automaton 
graph G all of whose vertices are accessible from qQ and for any natural 
number s 

O ( G , 0 ( s ) , s | ε 

I G I - {s+lf 

Then the algorithm Σφ identifies absolute black boxes uniformly with fre

quency 1 — ε. 

Proof By Lemma 5, if the algorithm Σ^ does not identify some automaton 

(absolute black box), the latter must belong to the union IJ 0{G,φ{s),s). 
s= 1 

Therefore, if the function (/)(s) satisfies the inequality 

Ü 0(G , ( />(5),s) 

< ε . 

Then the algorithm Σ identifies absolute black boxes uniformly with fre
quency 1 — ε. 

W e shall say that an algorithm with control functioÄ φ, applied to a 
black box SR, admits an s-error (s = 1,2, 3 , . . . ) if the automata obtained 
by contracting the total tree of height </>(s) compatible with 9W have at 
most s states (i.e., F^'^^q^y{φ(s)) ^ 5) and at least one of these automata 
realizes an operator different from Τ{9Ά). The meaning of this definition 
is clarified by the following simple 

L E M M A 5. / / the algorithm Σφ, applied to an automaton 501, admits no 
s-error for any natural number s, the algorithm Σφ identifies 501. 

Proof Suppose that Σ^ does not identify 501. This means that Σ^ applied 
to 501 halts at some hypothesis % which realizes an operator different from 
Γ(501). By the definition of the algorithm Σ^, it can halt at a hypothesis % 
only if the total tree of height </>( 15?!; | ) compatible with 50Ϊ is also compatible 
with 91,.. But then, when this tree is contracted, the resulting automaton 
cannot have more than | 91,· | states. This means that Σ^ necessarily admits 
an 5-error, with s = | 9Í¿ |. This implies the lemma. 

Let O(G ,0(5),s) denote the set of all automata in G for which the al
gorithm Σφ admits an s-error. Obviously, 
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^ 1 - ε. 

N o w assume that <^(s) satisfies the assumptions of the lemma. Let G be 
an arbitrary automaton graph all of whose vertices are accessible from go-
Then 

0 0{δ,φ{3),3) « | 0 ( G , ( / . ( s ) , s ) | » ε 

^ Σ - — — Σ - — ^ < ε · s = 1 

Consequently, 

IGI = 
> 1 - ε. 

This inequality and Lemma 4 complete the proof. 
It is now not difficult to prove Theorem 4.6. Let ε > 0 be arbitrary but 

fixed. Let G be any automaton graph and φ^{8) an arbitrary control function. 
Assume, moreover, that for some SQ 

ΦΛso)^2\G\. 

Consider an arbitrary automaton SDi from the set G and the total tree of 
height φ^(8ο) compatible with SR. Since 0e ( so) ^ 2 |SR| , it follows from 
Theorem 2.16' that the automaton obtained by contracting this tree must 
realize the same operator as SR. This means that the algorithm Σ^^ applied 
to SR admits no s-error for s = SQ. W e have thus estabhshed that, for s such 
that φ^(s)^2\G |, the set 0 ( G , 0 , ( s ) , s) is empty, and so 

\0{G,φMs)\ 
101 

= 0 < 

By Lemma 6, this implies that the algorithm Σ^^ with control function 
</>g(s) identifies absolute black boxes uniformly with frequency 1 — ε, 
provided the function </)g(s) has the following property: for any automaton 
graph G all of whose vertices are accessible from and for any s such that 

\0{G,φMs)\ ^ β 

Thus, to complete the proof of our theorem it will suffice to construct a 
computable arithmetical function φ^{8) possessing this property. 
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By Lemma 3, 

where D (/) is the accessibility spectrum of the graph G. Let G be an automaton 
graph all of whose vertices are accessible from QQ, and φ^{8) < 2\G |. Then, 
obviously, 0(φ,{8)) > ^φ,{8) (since D(l)^\G\ for any / and D{l)^l 
for / ^ I G I). Consequently, 

( n s r ( n s r 

Hence a computable nondecreasing arithmetical function </)^(s) will satisfy 
the requirements of Theorem 4.6 if, for all natural numbers s, 

( n s r ε 
„ ( l / 2 ) 0 . ( s ) - l = ^ 1)2 · 

Solving this inequality for φ^(8), we get 

φ,(8) ^ 2mslogins + 41og,.(s + 1) + 2 + l o g j l / ε ) . 

Thus, the algorithm with control function 

φ,{8) = ]2ms logins + 4 log„(s + 1) + 2 [ + ] 2 log„(l/ß) [ 

(it is easily seen that this is indeed a computable function of s) will identify 
absolute black boxes uniformly with frequency 1 - ε. This completes the 
proof. 

As for the signaling function of the algorithm, it follows from the reasoning 
in Section IV . l that Σ*^(9Κ) ^ φ , ( | 9 « | ) , and so 

ΣΙ^) ^ ]2m I aw I log„n 12R | + 4 log„( | SR | - f 1) - f 2 [ + ] 2 log„(lA)[. 

One can now ask whether this bound can be lowered, i.e., whether an 
iterative algorithm can be constructed with a smaller signaling function 
(as a function of the number of states of the black box) which will also 
identify absolute black boxes uniformly with frequency 1 — ε. The answer 
to this question will be given in the next section. 

Since 0(0,φ,{8),8)^ G 
W e ( s ) ) ^ s ' follows that 

0 ( δ , φ , ( 5 ) , 5 ) | \GFiφAs))ás 
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Figure 42 

For each natural k construct the automaton graph G^^ illustrated in Figure 
42. Let C be some fixed number, and consider the graph G^^cy Clearly, the 
outcome of the algorithm Σ apphed to the automata derived from the 
graph G^^c) is independent of the output labels assigned to the edges issuing 
from the last C vertices. There are mC such edges in all; they can be as
signed output labels from the alphabet Y in n'"^ different ways, and the 
operators realized by the resulting automata depend essentially on these 
output labels. Therefore, 

\5l (C)l 

Obviously, for any ε < 1 one can select a constant such that the right-
hand side of this inequality is smaller than 1 - ε for C = C^. It follows 
that if the algorithm Σ possesses property A for C = C^, it cannot identify 
absolute black boxes uniformly with frequency 1 — ε. This contradiction 
proves our assertion concerning the bound on the signaling function. 

The next theorem gives an upper bound for the signaling function which 
is asymptotical i> equal to the above bound (and is therefore best possible 
asymptotically). 

IV.7. Bound on the complexity of uniform identification 

W e shall first show that,/or any multiple algorithm Σ {not necessarily itera
tive) which identifies absolute black boxes uniformly with frequency 1 — ε 
{where ε < 1), the best possible asymptotic upper bound for the signaling 
function, as a function o/1 SR |, is \ SR |. 

Assume that this is not so. Then, for some ε < 1, there is an algorithm 
Σ which identifies absolute black boxes uniformly with frequency 1 - ε 
and, for any C, possesses the following property: 

A . There is a natural number k{Q such that, for all black boxes SR 
with |SR| = fc(C), Σ * ( S R ) á ISRl - C. 



IV.7] B O U N D O N COMPLEXITY OF UNIFORM IDENTIFICAΉON 233 

G M -
| G | ' ' \ n , 

As before, let ( ^ ^ ^ ^ ^ the set of all automata SR in G such that F^^^^^y ( / ) g s. 

THEOREM 5.3. For any automaton graph G of height* hß and any natural 
numbers s and φ such that s + φ hß, 

| δ | = - ^ Τ ~ ~ W ' 

Throughout the sequel, G will be a fixed automaton graph of height ho 
all of whose vertices are accessible from qQ. It is obvious that, for any 
/ ^ he, the accessibility spectrum of the graph G is given hyD^G^^y (0 = | G |. 
Our goal is to determine the smallest possible function (/)G(s),independent 
of G, that satisfies the requirements of Lemma 6. 

LEMMA 7. Let φ{5) be an arbitrary control function and φ an arbitrary 
natural number. Then, for any natural number s such that φ(8) s -\- φ and 
s + φ úho, 

| Q ( G , 0 ( 5 ) , 5 ) | 5(5 + 1) (\γ 

\G\ = 2 \n) ' 

Proof. Let 5 satisfy the inequahty φ(8) ^ s + φ. 

* See p. 277. 

THEOREM 4.7. For any ε > 0 there is a multiple iterative algorithm 
Σφ^ which initially identifies absolute black boxes uniformly with frequency 
1 — ε and has a signaling function such that 

Σ | , ( 9 Μ ) ^ | S B | - f 5 1 o g „ | a R | + l l l o g „ ( | S « | + 1) + 

+ 4 log„m + 9 + 7 l o g „ ( l ^ ) < | 9Κ |. 

Essentially, the proof of this theorem resembles that of Theorem 4.6. 
The difference is that more precise estimates are used at various stages of 
the proof. T o prove Theorem 4.7, therefore, we shall need, apart from 
Lemmas 3 and 6 proved in the preceding section, another two theorems, 
whose proofs will be postponed to Chapter V. 

Let Gp^.bc the set of all automata in ö with degree of distinguishabihty 
greater than r. 

THEOREM 5.1 For any automaton graph G and any natural number r. 
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Applying Theorem 5.3 to | ορ^^+ψ) ^ s I /1 G |, we get the required inequality. 

LEMMA 8. Let φ(8) be an arbitrary control function. Then, for any natural 
number s such that φ(3) > hQ, 

\0{0,φ{8),8)\ ^ jnsr 

Proof. Let s satisfy the inequahty φ{8) > hQ. Then Οζρ^^^{φ{8)) = \G\ 
and by Lemma 3 

| Ö F ( 0 ( S ) ) ^ S | ^ {nsr 
< 

Since 0{G, φ(8), s) ^ Gp(^(s)) ^ this proves the lemma. 

LEMMA 9. Let φ(8) be an arbitrary control function and r an arbitrary 
natural number. Then, for any natural number s 8uch that <^(s) ^ /IG + r + 1, 

\0{0,φ(8),8)\ ^.^,, 

Proof Let SR be an automaton with degree of accessibility á(9Jl,^o) 
and degree of distinguishabihty ρ (501). Consider the total tree of height 
¿(aW,^o) + P(äW) + 1 compatible with SR. It follows from Theorem 2.16' 
that the automaton derived from this tree by contraction realizes the same 
operator as SR. This means that the algorithm Σ^, applied to SR, cannot 
admit an s-error if φ{8) ^ á(aR,^o) + P(9EW) + 1-

N o w assume that s satisfies the inequality 0(s) ^ /IG + r -h 1. The degree 
of accessibility of the automata obtained from the graph G is hQ. By the 
foregoing arguments, therefore, the algorithm Σ^ cannot admit an s-error 
for any automaton of δ whose degree of distinguishabihty is at most r. 
In other words, if SR^Öp>, , then SiR^O(Ö ,0(s),s). Consequently, 
O(e ,0(s) ,s)^e,>, . Thus, 

\0{0,φ{8),8)\ ^ | g , > , | 

i G i = lei · 

Since 0(δ,φ{5),3)^ 0{Ö,l{s),s) for </)(s) ^ / ( s ) and 0(Ö,l(s),s)Q 
— Ö F ( I ( S ) ) á s' follows that 

\θ(ο,φ($),$)\ ^ \0(ο,8 + ψ,3) \ ^ | 5 f ( , ^ » ) g , | 

I Ä I = i - Ä i ^ i « i 
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< G \2 

(Theorem 5.1). 
N o w suppose that the natural number s also satisfies the inequality 

n '^ ' -^ ( 5 + 1 ) ^ * 

Then I G | obviously satisfies the inequality 

I G I < ms\og„ns + 21og„(5 + 1) + 1 + log„( l /e) . 

Since s is a natural number (and so s ^ 1), m ^ 2, and η ^ 2, we see that 
IGI satisfies the inequality 

| G | < mnsis + 1) + log,,(l/e). 

Thus, Lemma 9 implies 

CoRROLARY. Let (/)(s) be an arbitrary control function and r an arbitrary 
natural number. Then, for any natural number s such that 

φ{8) ^ /IG + r + 1 
and 

(nsr 
> 

n '^l-^ ( 5 + 1)^ ' 

we have 

\0(Ö,o(s),s)\ 
' | g j ' < {mnsis + 1) + log(l/e)f{l/NR/\ 

LEMMA 10. Let φ^{8) and r^{s) be computable nondecreasing arithmetical 
functions such that for any natural number s 

s(s+ 1) / i y ' < ^ ' ε 

b) (mns(s + 1) + l o g „ ( l / e ) ) M - Ú 
(s + 

Then the algorithm with control function φ^{3) = s + xl/^is) + r^(s) + 1 
identifies absolute black boxes uniformly with frequency 1 — ε. 

Lemma 9 now follows from this inequality and the inequality 
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Proof. Let and r^ satisfy the assumptions of the lemma and φ^{8) = 
= s + ij/^is) + r^{s) + 1. Consider an arbitrary automaton graph G all of 
whose vertices are accessible from qQ. By Lemma 6, our lemma will be 
proved if we can show that, for any natural number s, 

\OiG,φMs)\ ^ s 

Thus, let s be an arbitrary fixed natural number. W e shall distinguish 
three cases (it is easily seen that they exhaust all possible situations). 

1) s + φ^(3) g HQ-, then Lemma 7 applies, and we get 

\0{δ,ΦΜ^)\ < 5(5 + 1) /_r 

2) s + i/',(s) > ha and (nsfVfjl ° ' " ' g φ + 1)^; then Lemma 8 appHes, 
and we get 

0(G,<^, (s ) , s ) | ^ β 

(5 + 

3) s + ^Ss) > ha and {ns)'^/n^°^- ' > £/(s + 1 ) ^ then 

ΦΛ5) = s + ψΜ + r,is) + 1 > /JG + r,(s) + 1 

and so the Corollary to Lemma 9 applies; the result is 

\OiG,φMs)\ ( , ^ i \ V i \ - < ^ ' / ^ J ^ L < / ,„„s(s + 1) + log„—J 
(s + 1)^ 

W e have thus verified that in all cases 

\0{ο,φΜ^)\ ^ 

The lemma is proved. 
It is now easy to prove Theorem 4.7. T o this end, isolate and r^ from 

inequalities a) and b) of Lemma 10. W e obtain 

x¡jM ^ \og„s + 3 log„(s + 1) + log,,(l/e) - log„2, 

r,{s) ^ 4 1 o g „ | m n 5 ( 5 + 1) + log,.(l/e)J + 41og„(s + 1) + 21og„(l/e). 

Since ε ^ 1, m ^ 2 and η ^ 2, 

mns{s + 1) + l o g „ ( l ^ ) ^ mns{s + 1)(1/ε). 
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where ^(k) is the set of all pairwise nonidentical automata with k states 
and J^^(/c) the subset of all those which are identified (as absolute black 
boxes) by the algorithm Σ. 

The question arises as to whether the bound on the signahng function 
established in Theorem 4.7 can be essentially improved if one drops the 
uniformity requirement, i.e., if one simply considers identification rather 

Therefore, 

41og„ I {mns{s + 1) + l o g „ ( l / e ) | + 41og„(s + 1) + 21og„(l/e) ^ 

^ 41og„(mns(s + 1)(1 /ε)) + 41og„(s + 1) + 21og„(l/e) = 

= 4 log,,5 + 8 log„(s + 1) + 4 log„m + 4 + 6 log„(l/£). 

As functions and satisfying inequahties a) and b) of Lemma 10, take 

il^As) = ]log„s + 3 log„(s + 1) [ + ] l o g „ ( l / e ) [, 

r,(s) = ]41og„s + 81og„(5 + 1) + 41og„m + 4 [ + ] 6 l og„ ( l / e ) [ . 

N o w define 

φ,{8) = s + (A,(5) + r,(s) + 1 = 

= 5 + ] log„s + 3 log„(s + 1) [ + ] l o g „ ( l / e ) [ + 

+ ] 4 1 o g „ s + 8 1 o g „ ( s + l ) + 41og„m + 4 [ + ] 6 1 o g „ ( l / £ ) [ + 1. 

By Lemma 10, the algorithm Σ^^will identify absolute black boxes uniformly 
with frequency 1 - ε. The signaling function of this algorithm satisfies 
the inequalities 

i j j a R ) ^ ( / ) , ( | 9 κ | ) < + 5 iog„ |aR| + 

+ 11 log„ ( |9W| + 1) + 41og„m + 9 + 7 1 o g „ ( l ^ ) < |9Ji|. 

This completes the proof of the theorem. 

IV.8. Bound on the complexity of (nonuniform) identification. Statement 
of the fundamental results 

Recall that an algorithm Σ is said to identify absolute black boxes (non-
uniformly) with frequency 1 - ε if, for any natural fc, 

I ^^(k) I 
' ^ 1 - ε. 
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than uniform identification The following fundamental theorem shows 
that this is indeed the case. 

THEOREM 4.8. For any ε > 0 there exists a multiple iterative algorithm 
Σφ^ which initially identifies absolute black boxes with frequency 1 — ε and 
whose signaling function satisfies the inequalities 

ΣΙ (SW) S C log„ I a» I + C, ^ log I TO |, 

where C is a constant independent of^R and ε, and is a constant independent 
of SR but dependent on ε. 

The proof of this theorem reduces to that of three other theorems, which 
we now state without proof. 

THEOREM 5.7. There exist positive constants and C2 such that almost 
all automata SR with k states possess the following property: if qi is any state 
of the automaton and I S log^/c, the accessibility spectrum D(^^q¡y{l) 
satisfies the inequality 

ö<aH,„> (0 ^ rrf''-

THEOREM 5.10. There exists a constant CQ such that almost all automata 

SR with k states have absolute degree of reconstructibility ß*(SR) at most 

Co log,»'^-

These theorems will be proved in Chapter V. 
Let us call an automaton graph G a {C^,C2)'9^^ph if its accessibility 

spectrum satisfies the inequality 

for / ^ Cj log^ I G |. An automaton SR will be called a {Ci,C2, C^yautomaton 

if it is derived from a (Ci,C2)-graph and its degree of reconstructibility 

satisfies the inequality 

Bm,qo)^C, l o g , I SR |. 

Obviously, Theorems 5.7 and 5.10 imply the following corollary as a 
particular case: 

COROLLARY. There exist positive constants C^,C2,C3 such that almost 
all automata are {Ci,C2,C2)-ciutomata. 

W e shall say that an algorithm Σ identifies {C^,C2,Cz)'automata uni-
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< ε, 

where öcj,c2,C3.z is the set of all (Ci,C2,C3)-automata in Ö which the al
gorithm Σ does not initially identify as absolute black boxes (clearly, if G 
is not a (Ci,C2)-graph the set Gci,c2,C3.z is empty, since then none of the 
automata in the set ö is a (Ci,C2,C3)-automaton). 

THEOREM 4.8.' Let C,,C2,C^ be arbitrary fixed positive constants. 
Then there exist constants C,B,A such that for any ε > 0 the multiple itera
tive algorithm Σ^^ with control function φ^{8) = ] C l o g „ 5 [ + ] ß l o g „ ( l ^ ) + 
-\- A\_ identifies {C,,C2,C^)-automata uniformly with frequency \ — ε. 

The proof of this theorem is postponed to Section IV.9. Here we shall 
show that Theorems 5.7 and 5.10, as cited above, and Theorem 4.8' imply 
Theorem 4.8. 

W e first observe that if the algorithm Σ identifies (Ci,C2,C3)-automata 
uniformly with frequency 1 — ε, so that (by definition) for any automaton 
graph G, 

| G | 

then we also have the stronger assertion: for any natural number /c, 

I ̂ Ci,C2,C3,zW I 
| ^ ( fc ) | 

< ε, 

where, as usual, ^{k) is the set of all pairwise nonidentical automata with k 
states and ^CuC2X,Ak) the set of all (Ci,C2,C3)-automata in J5f(fe) which 
are not identified by the algorithm Σ. 

Let C?, C2, C3 be constants (whose existence is ensured by the Corollary 
to Theorems 5.7 and 5.10) such that almost all automata are (C?,C2,C3)-
automata. Then, obviously there exists such that for all k^K^ 

\^cuuM_^^_^^ 
\^{k)\ 

where ifcf.rf.c?^^) is the set of all pairwise nonidentical (C?,C2,C3)-
automata with k states. 

The last two inequalities imply that if Σ is an algorithm with control 

formly with frequency 1 — ε if, for any automaton graph G, 
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N o w consider the iterative algorithm Σ ' with control function 

0;(s) = φ,{8) + 2K, = ] C l o g „ s [ + ]Blog„(lA) + A[+2K,. 

This algorithm will obviously identify any automaton with at most 
states (since as early as Step 1 it examines a tree of height at least 2Χ^, 
from which an operator realized by an automaton with states can be 
unambiguously constructed). This means that the algorithm Σ ' satisfies 
the inequality 

\^^'{k) 
> 1 - 2ε 

\^{k)\ 

for all natural numbers k. It follows that the iterative algorithm Σ" with 
control function 

= ] C l o g „ 5 [ + ] ß l o g „ ( 2 ^ ) + AI + 2K„2 = ] C l o g „ 5 + Q [ 

will identify absolute black boxes with frequency 1 — ε. The signahng 
function of this algorithm satisfies the inequahty 

r ' * ( S R ) ^ c i o g „ | a w | + c „ 

where C is a constant independent of 9Κ and ε, and Q a constant which 
depends on ε but not on SR. 

Thus Theorem 4.8 follows from Theorems 5.7, 5.10 and 4.8'. 
Is the bound on the signaling function given by Theorem 4.8 the best 

possible? W e shall show that it is, up to order of magnitude. In other words 
the upper bound on the signaling function Σ*(9ΪΙ) of any {not necessarily 
iterative) algorithm Σ which identifies absolute black boxes with frequency 
1 — ε (where ε < 1) has order of magnitude at least log | SR | ; more precisely 
it is asymptotically bounded below by l o g , |SR|. 

function 

ΦΛs) = }Clog„sl + ^]Blog„m + Al 

which identifies (C?, C^, C5)-automata with frequency 1 - ε, then it also 
identifies arbitrary automata (not only ( C ? , C 5 , C3)-automata) with at least 

states, with frequency 1 - 2ε; in other words, when k ^ K^, 
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; I = „ m ( C - 2 ) 

Hence and from Theorem 5.6 it follows that there exists ÍQ such that for all 

i ^ io 

Now, given any ε < 1 one can clearly choose a constant Cg such that when 
C = the right-hand side of this inequality is smaller than 1 - ε. This 
means that if the algorithm Σ has property Β for C = C^, it cannot identify 
absolute black boxes with frequency 1 — ε. This contradiction proves 
our assertion concerning the bound on the signaling function. 

1V.9. Proof of Theorem 4.8 

Let O c , , c 2 . C 3 ( ö , 0(s), s) denote the set of all (Ci,C2,C3)-automata in G 

on which the algorithm Σ^ admits an 5-error. It is obvious that 
ö c i , C 2 , C 3 ( ö » Φ{^), s) ^ 0(0,0(s), 5). It is also easily seen that when φ(8ο) ^ 

^ ¿3 log^ I G I the set O c „ c 2 . C 3 ( ö , </>(so), SQ) is empty. 

Suppose that this is not true. Then for some ε < 1 there exists an algo
rithm Σ which identifies absolute black boxes with frequency 1 — ε and 
for any C possesses the following property: 

B. There exists an infinite increasing sequence fei,/c2,..., fc,... of natural 
numbers such that for any black box 501 with 150Í | = fc¿ the signaling function 
satisfies the inequality Σ*(501) ^ log ,„ |9K | - C. 

Theorem 5.6, which will be proved in Chapter V, states that almost all 
automaton graphs with fc vertices have height greater than log^fc — 2. 
Let Gfc. be any such graph with fc^ vertices. Consider the set Μ of edges of the 
graph Gjt. which are accessible from only by input words of length at most 
log^fc, — C. The cardinality of Μ is at least 

m((log,fc, - 2) - (log^fc, - O) = m(C - 2) 

(since the height of G^. is greater than log^fc, — 2). Therefore, the edges may 
be assigned output labels in ιΓ^^~^^ different ways, all of which essentially 
affect the operators reahzed by the resulting automata. On the other hand, 
since the algorithm Σ has property B, the outcome when it is applied to 
an automaton obtained from the graph G^^ is independent of the output 
labels assigned to the edges in Μ . Therefore, 

10̂ ,1 . 1 
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I Ö I (s + 1)^ * 

Then the algorithm Σφ identifies {Cy,C2,C3)-automata uniformly with 
frequency 1 — ε. 

W e omit the proof, since it is analogous to that of Lemma 6. 

LEMMA 12. Let φ{8) be an arbitrary control function, G an arbitrary 
(C^,C2)-graph and φ a natural number such that φ ^ l o g , | G |. Then for 
any natural number s such that (/)(s) ^ φ, 

|0c,.c„C3(e,</>(45)| ^ (nsr 

\Ö\ ^ η^'-'-' ' 

Proof Let G be an arbitrary (Ci , C2)-graph, φ ^C^ l o g , | G |, and assume 
that s is such that 0 ( s ) ^ φ. Then 

Dφ,,,y{φ(s))^D^o^^^y{φ)^m^^^ 

and it follows from Lemma 3 that 

\GFiΦis))^s\ ^ (nsr 
\Ö\ ^ · 

Since Oc,,c2.C3(G, </>(s), s) c 0(0, (/>(s), s), this implies the lemma. 

LEMMA 13. Let φ(8) be a computable nondecreasing arithmetical function 
such that for any natural number s 

insr' ^ ε 
„ m ^ - > - l =̂  ( 5 + 1 ) ^ · 

Then the algorithm Σφ^ with test function 

(/),(s) = ] m a x ( l , C 3 / C J [ I A ( 5 ) 

identifies {C^,C2,C3)'automata uniformly with frequency 1 — ε. 

Proof Let I/^(s) be a function satisfying the assumptions of the lemma and 
let 0 , ( 5 ) = ] m a x ( l , C3/Ci)[i /f(s) . Consider an arbitrary (Ci,C2)-graph G. 
Let 5 be an arbitrary fixed natural number. W e shall distinguish two cases: 

1) IA(s) á C i l o g , I G I; then, by Lemma 12, 

LEMMA I L Let the control function φ{8) be such that for any {€^,€2)-

graph G and any natural number s 

| O c . c . . C 3 ( G , 0 ( s ) , s ) | ^ ε 
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\OcuC,,cA^,Φ{s),s)\ ^ n^- ^ ε 

2) ^ ( s ) > C i l o g „ | G | ; t h e n 

ΦΛs) = ] m a x ( l , C3/C,) [ ^ ( s ) > C, log„ | G | 

and so Occ^ .Cj íG, 0e(s) , s) is empty; therefore, 

| 0c„c . .C3 (ö ,< /> . ( s ) , s ) | ε 

Thus, for any natural number s, 

\0c,,C2,cMΦeisls)\ ^ ε 

- {s+ If 

Together with Lemma 11, this implies Lemma 13. 
T o prove Theorem 4.8', we shall now try to find a computable nonde

creasing arithmetical function {¡/(s) satisfying the assumptions of Lemma 13. 
One possible choice for this function is* 

φ{8) = ]1/C2 log„m[- ( ] log„(ms logins) + 

-f 2 1 o g „ ( s + 1 ) + l [ + ] l o g „ ( l / e ) [ ) . 

By Lemma 13, the algorithm Σ with control function 

φ',(8) = ] m a x ( l , C 3 / C i ) [ ] l / C 2 l o g „ m [ ( ] l o g „ ( m 5 l o g „ n 5 ) + 

+ 2 1 o g „ ( 5 + 1 ) + l [ - f ] l o g „ ( l / e ) [ ) 

will identify (Ci,C2,C3)-automata uniformly with frequency 1 - ε. Since 
m and η are constants greater than 1, it is clear that one can choose constants 
C, Β and A independent of ε such that for all natural numbers s the control 
function 0g(s) satisfies the inequality 

( /> ; ( s )áClog , .5 + B l o g „ ( l A ) + A 

Hence it follows that the algorithm Σ^ with control function 

</>,(5) = ] C l o g „ 5 [ + ] ß l o g „ ( l ^ ) + ^ [ 

will identify (Ci,C2,C3)-automata uniformly with frequency 1 — ε. This 
completes the proof. 

* As a function of s, this function is computable even if the constant is not a constructive 

number (in view of the special position of the symbols ] and [ in the expression for the function). 
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— „ 0 ( Λ : ) - 1 

IV.IO. Identification of absolute black boxes by simple algorithms 
with arbitrary preassigned frequency 

In this section we shall show that simple algorithms, like multiple algorithms, 
are also capable of identifying absolute black boxes with any preassigned 
frequency (though here we are dealing with residual identification). W e 
shall prove an even stronger proposition (Theorem 4 .9 ) , showing that this 
identification (which is moreover uniform!) may be performed with simple 
iterative algorithms. 

THEOREM 4 .9 . For any β > 0, there exists a simple iterative algorithm 
Tlg^ which residually identifies absolute black boxes uniformly with frequency 
1 — ε and whose signaling function satisfies the inequality 

n * ( 9 K ) < C X I ^ I ^ « « l ^ l 

(C is a constant independent of SR and ε, is a constant independent of SR 
but not of ε). 

T o prove this theorem, we shall need the spectra of accessibility and 
saturation, viewed as functions not of a natural argument but rather of 
input words x. W e now define these spectra. 

The word spectrum of accessibility of an automaton (automaton graph) 
SR is the function 5<aR,^^>(x) defined as the number of states of the automaton 
(graph) SR accessible from qo by initial segments of the word χ (counting 
the state qo itself, which is accessible by the empty segment, and the state 
qox, which is accessible by the word x) . 

N o w , for every input word x, consider the tree V^^^^ compatible with the 
automaton SR, which is determined by the word χ (this tree clearly consists 
of a single branch). The word spectrum of saturation of the automaton SR 
is the function F^yj^q^y (x) defined as the weight of the tree V^^^, or, equiva
lently, the number of states of a minimal automaton which generates the 
same output as SR for the input word x. As before, ö^(^) ^ ^ will denote the 
subset of G consisting of all automata SR for which F<an,̂ >̂ (x) á s. 

It is not difficult to see that Lemma 3 (Section IV.6) remains valid if the 
spectra /)<G.4O> (0 and F<s,ji,̂ ^> (/) are replaced by the word spectra D <G,qo> W 

and F<s,ji,q^> (x). W e state this as an independent lemma. 

LEMMA 14. Let G be an arbitrary automaton graph with word spectrum 
of accessibility D(x). Then for any input word χ and any natural number s. 
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W e shall say that an input word χ identifies an automaton SR if any minimal 
automaton 21 which is indistinguishable from S[R by the word χ realizes 
the same operator after application of χ as does the automaton SR after 
application of x, i.e., T{%qox) = Τ(9Κ,^ο·^)· 

In Section IV.2 we introduced the concept of residual distinguishability. 
There we proved (Corollary to Lemma 2) that for any natural number k 
one can effectively construct a word d{k) of length ]4fe^(ln nk)m^^[ which 
residually distinguishes the set of automata with at most k states. It is 
easy to see that the word d{k) identifies any such automaton. 

W e wish to find a control function g^{s) such that 

ge{s)=f{ΦÁs)\ 

where 

f{k) = d{l)d{2),..d{k) 

and φ^(8) is a computable nondecreasing arithmetical function. 
It is easily seen that any function g^is) with this property is the control 

function of a simple iterative algorithm. In fact, it is computable, its values 
are words over the input alphabet, and g^{s) is an initial segment of g^{s -\- 1) 
(since f{k) is an initial segment of f{k -h 1) and φ^{8) is a nondecreasing 
function). 

W e now claim that the word f{k) = d{l)d{2)... d{k) identifies all autom
ata having at most k states. T o prove this it suffices to show that this word 
residually distinguishes any two automata SRj and SR2 which have at most 
k states. Consider the automata 

<SRi,^oá(l) . . .á(/c- 1)> and (SR^, ^ο^(Ι) · · · (̂/c - 1)>. 

These automata also have at most k states, and so the word d(k) residually 
distinguishes them. This means that if 

Τ(9Κι, qod{l) ,..d(k- l)d{k)) φ Τ(9Κ2, qod{l) ...d{k- \)d{k)\ 

then the automata 

< a R i , M ( l ) . . . d(/c - 1) > and («R^, qod{l)... d(/c - 1) > 

will generate different output words in response to the input word d(fc). 
But if this is so, the automata SR^ and SR2 will also generate different output 
words in response to the input word d ( l ) . . . d{k). Hence the input word 
d{\)... d{k) residually distinguishes the automata SRi and 

Let G be an arbitrary automaton graph. Let AQ{X) {A<^{X)) denote the 
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Figure 43 

L E M M A 15. / / the word χ identiñes all automata with at most k states 
and I AQ{X) \ ^ fc, then the word χ identifies all automata in ö. 

Proof, Let 9K be an arbitrary automaton in G . Consider the automaton 
W obtained from 9K by deleting all vertices outside AQ{X) and joining all 
edges issuing from Α^{χ) and incident on deleted vertices to some fixed 
vertex of AG{X). Obviously, SR and SR' are indistinguishable by the word x, 
and Τ (SR, ^ 0 ^ ) = T{W, qQx). Thus, if the word χ identifies SR' it will also 
identify SR. N o w , if χ satisfies the assumptions of the lemma, then | SR' | = 
= I y4(J(x) I ^ fc, and so the word χ identifies SR'. This proves the lemma. 

Since the word /(fc) = d ( l ) . . . d(fc) identifies all automata with at most fc 
states. Lemma 15 implies the following 

C O R O L L A R Y . If\ Acif (fc)) | Á fc, the word f (fc) identifies all automata in G . 

L E M M A 16. //the word χ identifies all automata having at most fc states and 
I ^ G ( ^ ) I i'^^ spectrum of accessibility of the graph G satisfies the 
inequality D<G,,O> ( ^ ) ^ k. 

Proof Let BQ{X) denote the set of all vertices of the graph G accessible 
from qQ by initial segments of the word x. Assume that the statement of 

set of all vertices of the graph G (the automaton W) which are accessible 
from the vertex qQ by initial segments of the word χ or from the vertex qQX 
by arbitrary words. For example, if G is the graph illustrated in Figure 43 
and X = X1X2, then AG(X) = [qoAiAsAAr^eAi)- It is easy to see that in 
order to decide whether a word χ identifies an automaton it is sufficient to 
consider only that part of 9W corresponding to (x). This statement is 
formulated rigorously in the following lemma. 
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the lemma is false, i.e., 5 < G , q o > ( ^ ) ^ k- ^^^er words, | B^ix) \ < fc, and so 
AG(X)\ > \BG(X)\. Consider the automaton graph G' obtained from G 

by deleting all vertices outside Bc,(x) and joining edges issuing from BQ(X) 
and incident on deleted vertices to the initial vertex qo (where ^ O ^ ^ G W ) -
In view of the inequality | v4(j(x) | > | BG{X) |, it is easily seen that the graph 
G' is strongly connected. Since by assumption the word χ identifies all 
automata with at most fc states, it will also identify all automata in G'. 
But if this is so, then clearly all edges of G', including those issuing from BQ (X) 
in the original graph G and previously incident upon vertices outside ^ ^ ( x ) , 
must be accessible from qo by initial segments of x. Therefore, again in 
view of the inequality | .4G(X) | > | BQ(X) |, the graph G must contain ver
tices, accessible from qo by initial segments of x, which are not included 
in BQ{X). This contradiction proves the lemma. 

Lemma 16 directly implies the following: 

COROLLARY. If\ ÁQ(f(x)) \ ^ fc, then 

Ö<G..o>(/W) ^ fc-

The rest of the proof of Theorem 4.9 proceeds in analogy to that of 
Theorem 4.6. Let be a simple iterative algorithm with control function 
g{s). W e shall say that Π^, applied to an automaton 9JÍ, admits an s-error 
(s = 1,2,3,. . .) if there exists an automaton ?I with s states which is in
distinguishable from 9Jl by the word g{s) (i.e., F<sjji^^> (öf(s)) ^ s), and 

T{%qog{s))^ T(m,qog{sn 

LEMMA 17. / / an algorithm Hg applied to an automaton TO admits no 
s-error for any natural number s, then Ilg identifies SR. 

The proof, which is analogous to that of Lemma 5, is omitted. 
Let Q{G,g{s),s) denote the set of all automata in G for which the algorithm 

admits an s-error. Obviously, 

Q ( G , Ö F ( S ) , S ) ^ Gp^gis))^S' 

LEMMA 18. Let control function g{s) be such that for any automaton 
graph G and any natural number s 

| g ( G , ^ ( S ) , 5 ) | ^ Ε 

| Ö | = ( 5 + 1 ) ^ · 
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{s + 1)^ 

Together with Lemma 18, this imphes that the algorithm with control 
function g^{s) = fiφe{s)) will identify absolute black boxes uniformly with 
frequency 1 — ε, provided that 

\Q{GJ(φΛs)ls)\ ^ ε 

\G\ - (s + ir 
for any automaton graph G and any natural number 5 such that φ,{8) ^ 
= I ^GifiΦε(^))) I- Thus, to prove the theorem we must find a computable 
nondecreasing arithmetical function (^^(s) with the indicated property. 

Since β ( G , ^ ( s ) , s ) ^ 
GF(g(s))^s^ we have 

Q{GJ{Φe{s)\s)\ I G^( / (0^(5 ) ) )^ . | 

By Lemma 14, 

GFifíóAs)))^s\ ^ i^^T 
~ n^<o.,.yif(ΦΛs)))-

Let (/),(s) ^ |/4ο(/(Φε(5)))|· Then, by the Corrollary to Lemma 16 
D^G,,oy(MΛs)))^Φs{sl and so 

It follows that the computable nondecreasing arithmetical function (/),(s) 
will possess the required property if the right-hand side of the last inequality 
does not exceed ε/(5 Η- 1)^. Therefore, one possible choice for </)g(s) is 

0,(s) = ] m s l og„MS 4- 2 log„(s + 1) + 1 [ + ] l o g „ ( l ^ ) [. 

Then the algorithm identifies absolute black boxes uniformly with fre
quency 1 — ε. 

W e omit the proof; it is analogous to that of Lemma 6, except insofar 
as Lemma 17 is used instead of Lemma 5. 

It is now easy to prove Theorem 4.9. Let ε > 0 be an arbitrary fixed 
number. It follows from the Corollary to Lemma 15 (replacing fc by ^^(s)) 
that for all s such that φ,{8) > \ΛG{f{φ^{s)))\ the word f(φe{s)) identifies 
all automata in G and so, for these values of 5, 

\Q{GJ{ΦΛs)ls)\ ε 
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Thus, the simple iterative algorithm n^^with control function 

Qsis) =f{φM) = fGrns\og„ns + 21og„(5 + 1) + 1 [ + ] l o g „ ( l / e ) [ ) 

will identify absolute black boxes uniformly with frequency 1 — ε. 
W e shall now estimate the signaling function of the algorithm . 

By Section IV.5, 

Π * ( 9 Κ ) ^ % , ( | 9 Κ | ) ) . 

Therefore, in the present case, 

Π * ( ϊ « ) ^/(/((/>,(19WI))). 

It remains to estimate l{f(k)). 
Since 

f{k) = d{l)... d{k) and l{di) = ] 4/^(ln m)m^^[, 

it follows that 

/(/(/c)) S CkH\nnk)m^\ 

where C is a constant independent of k. 
Substitute 

φ,{8) = ]mslogins + 21og„(s + 1) + 1 [ + ] l o g „ ( l / e ) [ 

for k. The result is 

where C is a constant independent of s and ε, and C, a constant independent 
of s but not of ε. Thus 

This completes the proof of Theorem 4.9 

I V . l l . Bounds on the complexity of (nonuniform) identification by simple 
algorithms 

It was proved in the preceding section that there exists a simple algorithm 
which identifies absolute black boxes uniformly with frequency 1 — ε, and 
an upper bound for the signaling function was given. This bound turns 
out to be quite exaggerated, and one may well ask whether it can be sig
nificantly improved. In this section we intend to show that if uniform identi-
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fication is replaced by identification (nonuniform), this question can be 
answered in the affirmative. 

W e first state our fundamental theorem on the identification of absolute 
black boxes by simple algorithms. 

THEOREM 4.10. For any ε > 0, there is a simple algorithm Ω which resi
dually identifies absolute black boxes with fi-equency 1 — ε and whose signaling 
fiinction satisfies the inequality 

Ω*(9Κ) ^ C , | 9 K | ^ 

(C is a constant independent of^R and ε, a constant independent of^ but 
not of ε). 

T o prove this theorem, we shall consider modifications of simple iterative 
algorithms—we call them (Ci,C2,C3)-algorithms—and show that attention 
may be confined to algorithms of this type. 

Before proceeding to a definition of these algorithms, a few auxiliary con
cepts must be defined. Call an automaton graph G an absolute [C^^CjYgraph 
if, for any of its vertices q^ and any natural number / ^ Ci l o g , | G |, the acces-
sibihty spectrum satisfies the inequahty Í^<G,^Í>(0 ^ ^^^^· An automaton 
9Jl will be called an absolute {Ci,C2,C2)'automaton if it is derived from a 
(Ci,C2)-graph and its absolute degree of reconstructibility satisfies the 
inequahty ß*(9W) ^ C a l o g , |3Ρϊ|. Call a constant C strongly effective if 
its decimal expansion is finite (the number of digits after the decimal point 
is finite). 

Theorems 5.7 and 5.10 imply tht following 

COROLLARY. There exist strongly effective positive constants Ci,C2,C3 
such that almost all automata are absolute {C^,C2,C2)-automata. 

The requirement that the constants Ci,C2,C3 be strongly effective 
reflects the fact that in the sequel we shall define an algorithm using these 
constants (an algorithm may employ only constructive objects!). 

Let C i , C 2 , C3 be strongly effective constants. A (C^ , C2 , C^yalgorithm 
is defined by two functions g{s) and x(s); the function g{s), which we call 
the word control function, satisfies the same conditions as the control func
tion of a simple iterative algorithm; x[s\ which we call the boundary 
function, is a computable nondecreasing arithmetical function. A (Ci , C2, C3)-
algorithm Ω ^ ^ with word control function g{s) and boundary function 
X(s) works in exactly the same way as a simple iterative algorithm Π^, 
except for the following point, hi an iterative algorithm Π^, if the hypoth-



I V . l l ] BOUNDS ON COMPLEXITY OF I D E N T I N C A T O N BY SIMPLE ALGORITHMS 251 

|Öc . , C 2 . C 3 , 0 
< ε, 

where Gc^^Cj.C:^,^ is the set of all absolute (C^ , C 2 , C3)-automata in G which 
are not residually identified by the algorithm Ω as absolute black boxes. 

THEOREM 4.10. Let C i , C 2 , C 3 be arbitrary fixed strongly effective 
positive constants. Then for any ε > 0 there exist a word control function 
g^(s) and a boundary function x^{s) such that 

1) for any input word d {possibly empty), the (C^, C 2 , C;¡)-algorithm Ω^^^ .̂ ^ 
with word control function dg^{s) and boundary function x^(s) identifies absolute 
{Ci,C2,C2-automata uniformly with frequency 1 — ε; 

2) for any natural number s 

liQsis)) ^ QsS 

where C is a constant independent of s and ε, a constant independent of s 
but not of ε. 

W e shall first show how Theorem 4.10 follows from the above Corollary 
to Theorems 5.7 and 5.10 and from Theorem 4.10'. Determine constants 

esis 2If_i is indistinguishable from 9W by the word the al

gorithm halts and its outcome is the automaton { ^ Ι , - ι , ^ ο ο ' ί | ^ i - i I )>· 
the algorithm Ω^^ if the hypothesis Sl^.i is indistinguishable from SR 
by the word O ^ ( | 9 Í Í _ I | ) , the algorithm also halts, but its outcome 
is defined differently: among all automata with at most χ( | SIj- i | ) states, 
look for an absolute (Ci,C2,C3)-automaton which is indistinguishable from 
SR by the word ö'i | 21,-11) and has minimal number of states; if such an 
automaton exists (denote it by © ) , the outcome of the algorithm is the 
automaton < S , Ĵoö' (I - 1 1 ) >»if there is no such automaton, then, as before, 
the outcome is the automaton <9Ii_i, ^oö'i | ^ i - i I )>· 

It is clear that the signaling function of a (Ci,C2,C3)-algorithm Qg^ 
coincides with that of the simple iterative algorithm Π^. 

Consequently 

Ω*,(9Κ) ^ i(g(s)). 

As in the case of Theorem 4.8, the proof of Theorem 4.10 reduces to 
that of another theorem which deals exclusively wiih (Ci,C2,C3)-automata. 

W e shall say that an algorithm Ω identifies absolute {C^,C2,C^)-automata 
uniformly with frequency 1 — ε if, for any automaton graph G, 



252 A U T O M A T O N IDENTIFICATION [IV. 11 

\^(k)\ 
> 1 - 2ε. 

Let be a word which residually identifies all automata with at most 
max{K,,x^{K,)) states. Obviously, the (C?, C^, C?)-algorithm Ω(^^) with 
word control function d^g^is) and boundary function / ^ ( s ) will residually 
identify any automata having at most states. Therefore, the algorithm 
Ω(^^) satisfies the inequality 

^̂ "̂̂ ^ (fc) I 

|if(fc)| 
> 1 - 2ε 

for all natural numbers fc. This means that the algorithm Ω(^^ residually 
identifies absolute black boxes with frequency 1 — 2ε. W e now estimate 
the signaling function of this algorithm. N o w , by Theorem 4.10' , 

l{g'As))^C,s'. 

Therefore, 

^ i{ds'A I SR I)) = m + i{g'A I SR I)) ̂  

^ / (dj + c , | a R | ^ ^ c ' , | a R | S 

where C is a constant independent of SR and ε, a constant independent 
of SR but not of ε. 

Theorem 4 . 1 0 now follows if we replace ε by ε/2 and denote €'^¡2 by Cg. 
In order to prove Theorem 4.10' , we need several more lemmas. 

L E M M A 19. Let s and fc be arbitrary natural numbers. Then one can 
effectively construct an input word b^ik) of length s]mfcmMn2fc[ with the 
following property: for any automaton graph G , if D^Q^.yis) ^ fc for any 
vertex of G , then Ö<G. , , ,> {bsih)) ^ ^ for any vertex qi of G. 

Proof It will clearly suffice to show that one can effectively determine 
an input word ^^(fc) of length s]2mfcmMn 2fc[ with the following property: 
for any automaton graph G such that ^<G,(,,> (0 (i = 0 , 1 , 2 , . . . ) and 

C?, C 2 , C3 according to the above-mentioned Corollary such that almost 
all automata are absolute (C?, C j , Cj^automata. Let g^{s) and x^{s) be 
functions that satisfy the assertion of Theorem 4.10 ' for = C2 = C2, 
C 3 = C 5 . Denote the (C?, C^, C5)-algorithm Ω^̂ ο,̂ ο by Ω(^). Reasoning 
just as in Section IV.8, it is not hard to verify that there exists such that, 
for all k ^ K,, 

1^"·- (k)\ 
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any k - 1 designated vertices (including qo) of G, one of the nondesignated 
vertices is always accessible from qQ by the word b^ik) (by vertices acces
sible by a word b we mean all vertices lying on the path defined by b). 
Associate the graph G including — 1 designated vertices with an auxiliary 
graph G\ obtained from G by deleting all nondesignated vertices and 
joining all edges issuing from designated vertices and incident on non-
designated vertices (call these forbidden edges) to an arbitrary designated 
vertex. It is obvious that a nondesignated vertex is accessible from qQ by 
a word χ in the graph G' only if some forbidden edge is accessible from 
^0 in G by the same word. Since D^Q^.y (s) ^ fc for any vertex ¿̂ of G, it 
follows that, for any vertex qi of G\ there exists an input word of length at 
most s by which at least one forbidden edge is accessible from in G'. 
Reasoning in exactly the same way as for Lemma 1, it is easily seen that 
the number of input words of length Is by which no forbidden edges are 
accessible from qQ in the graph G' is at most (nf — If. On the other hand, 
since I G'l < fc, the number of different graphs of type G' (different as re
gards the choice of forbidden edges and disregarding the indexing of vertices 
other than ^o) is less than fc'"*2'"*, where k'"^ is the number of nonidentical 
automaton graphs with fc vertices and T"^ the number of ways in which one 
can choose forbidden edges in a graph G' with fc vertices. It follows that 
the number of different input words of length Is by which no forbidden 
edge is accessible from qQ in at least one graph of type G' (or, equivalently, 
by which no nondesignated vertex is accessible from qQ in at least one graph 
G of the above type with fc — 1 fixed designated vertices) is at most 
k^^7^^{nf — l ) ^ Reasoning again as in Lemma 1, we see that if 
Is = 5]mfcm* In 2fc[ there must be at least one input word not possessing 
the above property. This word is clearly effectively constructible, and it is 
the required word ^^(fc). This proves the lemma. 

Let Ci ,C2,C3 be arbitrary fixed strongly effective positive constants. 

LEMMA 20. For any natural number fc, one can effectively construct an 
input word b(k) of length at most 

](l/C2)log^fc[-Vfc^^^^^Mn2fc[ 
which has the following property: for any absolute (Ci,C2)-graph G, if 

fc ^ ( l / m ^ ^ ) | G | ^ ^ ^ ^ 
then 

5<a„ .> (ö ( f c ) ) ^ f c 

(qi is an arbitrary vertex of the graph G). 
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Proof, Let G be an absolute (C^, C2)-graph and k ^il/m^^)\G\^'^\ 
Then ] (1 /C2) l o g , f c [ < l o g , | G |. Since G is an absolute (C^, C2)-graph, 
whenever / ^ l o g , | G | we have D^Q^^.^il) ^ rrf^K It follows that 

^ < G , , . . > ( ] ( l / C 2 ) l o g , f c [ ) ^ ^ fc. 

N o w apply Lemma 19 with s = ] ( l /C2) log , / c [—the result is the required 
word b{k). This proves the lemma. 

LEMMA 21. For any natural number fc, one can effectively construct an 
input word d'{k) of length at most (C3 log,fe)]2m/c^ "̂ ^̂  In nk\_ which residually 
identifies all absolute {C^,C2,C3)-automata having at most k states. 

This lemma follows directly from Lemma 2 and the fact that absolute 
( C i , C2 , C3)-automata with at most k states have absolute degree of recon
structibility B*{W) not exceeding C3 log,/c. 

Set 

f{k) = bm{l)b(2)d'i2)...b{k)d'ik). 

It is obvious that the function f(k) satisfies the conditions imposed on 
word control functions, i.e., it is computable, defined on natural numbers, 
its values are input words, and /(fc) is an initial segment of /(fc + 1). 

LEMMA 22. Let d be an arbitrary input word. Then 

1) for any absolute {C^,C2)-graph G and any natural number 

fc ^ ( l /m^^) |G|^^^^ 

we have the inequality 

D^o^^^^(df{k))^k; 

2) the input word df(k) residually identifies all absolute ( C i , C 2 , C3)-
automata with at most fc states. 

The truth of the first assertion of this lemma is a direct consequence of 
Lemma 20 and the definition of /(fc). The second assertion follows from 
Lemma 21, the definition of /(fc), and the fact that by varying the initial 
state of an absolute (C^, C2, C3)-automaton one obtains another (C^, C2, C3)-
automaton. 

Let Clg^^ be a ( C j , C2, C3)-algorithm which, when apphed to an automaton 
S[R, gives rise to the following situation: there exists an automaton 21 with 5 
states, which, if taken as the hypothesis generated at Step / — 1, makes the 
algorithm Ω^̂ ^ halt at Step i and produce an incorrect outcome, i.e., an 
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automaton which reahzes an operator different from TC^^qQgis)). W e shall 
then say that applied to 9Jl admits an s-error. 

Let 6c , .C2 .C3 (G ,^ (5 ) , s) denote the set of all absolute (Ci,C2,C3)-automata 
in G on which the (Ci,C2,C3)-algorithm Ω^ admits an 5-error. Obviously, 

It is also easy to prove the following analogue of Lemma 18: 

LEMMA 23. Let the control function g(s) and boundary function x(s) be 
such that for any absolute {Ci,C2ygraph G and any natural number s 

\Qh,c,,cAG.gisls)\ ^ ε 
2 ' ( s + 1 ) 

Then the ( C j , C2, C^-algorithm identifies absolute (C^, C2, C^)-automata 
uniformly with frequency I — ε. 

LEMMA 24. Let d be an arbitrary input word, ^(5) a computable nonde
creasing arithmetical function, G an absolute {C^,C2ygraph and k a natural 
number such that 

k ^ ( l /m^^ ) |G^^^^ 

Then for any natural number s such that </)(s) ^ k, 

\Qh,C2,cÁG.df(φ(s)),s)\ ^ ^sr^ 

Proof. Under the assumptions of the lemma, it follows from the definition 
ofthefunction/(fc) thatif0(s) ^ fc, then 5<c,,̂ ^ (d/(( / ) (s))) ^ D^G,,iyidf{k)). 
Hence, by Lemma 22, 

D^o,,,y(df(φ(s)))^k, 

and so, by Lemma 14, 

\^ρ(ά/{φ{8))^$\ ^ (nsr 
\G\ n'-' 

Since 

QíuC2,cÁG,df{φ{s)),s) ^ 0^( ,^(φ( , ) ) )^ , , 

this implies the statement of our lemma. 
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| G | =̂  η^Μ-' =^ 1)2 ' 

2) i A , ( s ) > ( l K ^ ) | G | ^ ' ^ - t h e n 

X,{s) = max{iA,(5),] > | G | , 

and the second assertion of Lemma 22 implies that the word dg^{s) = df {x^{s)) 
residually distinguishes all absolute (Ci,C2,C3)-automata with at most 
I G I states. Thus any (Ci,C2,C3)-automaton 5R derived from the graph G 
has the following property: first, among the automata indistinguishable 
from 9K by the word dg^{s) there exists an absolute (Ci,C2,C3)-automaton ^ 
with at most | G | states, therefore at most x^{s) states; second, the automaton 
{'S,qodg^{s)y realizes the same operator as <SDi,^o^ö'e(s)> (since the word 
dg^{s) = df{x^{s)) residually identifies all absolute (Ci,C2,C3)-automata 
having at most | G | states). But this means precisely that the algorithm 
^dg^,x^ applied to SO? does not admit s-errors. Hence, in this case the set 
QcuC^xÁG. dg,{s\s) is tmpiy. 

W e have thus shown that for any natural number s 

\Qh\,c,,cAGdgÁs\s)\ ^ ε 

I G I = {s+lf 
Together with Lemma 23, this imphes the statement of our lemma. 

T o prove Theorem 4.10', we now need a computable nondecreasing 

LEMMA 25. Let il/^is) be a computable nondecreasing arithmetical func
tion such that for any natural number s 

{nsr' ε 

η^^^'^-' = {s + If 

Let 

and 

gs{s)=f{Xs{sn 
Then for any input word d the (C ^,C2,C2)-algorithm ^dg„x^ identifies absolute 
{Ci,C2,C2)-automata uniformly with frequency 1 — ε. 

Proof Let lAg(s), / ^ ( s ) , and g^{s) satisfy the assumptions of the lemma. 
Consider an arbitrary absolute ( C j , C2)-graph G, and let 5 be an arbitrary 
fixed number. W e shall distinguish two cases: 

1) φ,{s)S(l/m^η\G\^'^'; then, by Lemma 24, 

QhU.xÁG. dgAs\ s) I ^ {nsr ^ ε 
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arithmetical function φ^{8) which satisfies the assumptions of Lemma 25. 
One possible choice for φ^{8) is the function 

φ,{8) = ]ms\og„ns + 21og„(5 + ! ) + ! [ + ] l o g „ ( l / £ ) [ . 

Then, according to Lemma 25, the (Ci,C2,C3)-algorithm Ω^^^^^, with d 
an arbitrary input word, 

QÁs) =f{Xs{s)) and x,{s) = max{1^.(5),] {ηι'^φΛ8)Ϋ"'''ί}. 
will identify absolute (Ci,C2,C3)-automata uniformly with frequency 
1 — ε. This proves the first assertion of Theorem 4.10'. 

W e now turn to the second assertion of Theorem 4.10'. Let us estimate 
l{gs(s)) for natural numbers s. Since 

f{k) = b{l)d'{!)... b{k)d'(k), 

l{b(i)) S ] ( l / C 2 ) l o g ^ / [ ] m ^ / ^ ^ ^ / ^ M n 2 / [ , 

l{d'ii))^{C, \ogJ)]2mi'^'^^\nnil 

it is obvious that there exist constants C and C such that for all natural 
numbers k 

l(f{k)) ^ Ck"^". 

N o w replace k by the function 

= max{iA.(5),]K̂ iA.(5))̂ /̂ ^̂ [̂}, 

where 

φ,{8) = ] m 5 l o g i n s + 21og„(s + 1) + 1 [ + ] l o g „ ( l ^ ) [ . 

The result is 

lifixAs))) S C^s"^, 

where C is a constant independent of s and ε, Q a constant independent 
of s but not of ε. Since g^s) = f{Xe{s)X this implies the second assertion of 
our theorem, completing the proof of Theorem 4.10'. 

Supplementary material, problems 

I. The signahng function Ω*(93ϊ) of an algorithm was defined above as the 
maximal length of the input words with which the algorithm Ω tests the 
automaton SR. However, for multiple algorithms a more precise indicator 
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of the complexity of identification would be the total length of the input 
words with which the algorithm Ω tests SR (if Ω tests SR with words χ and 
xz, the total length of these words is defined to be the length of xz alone). 
W e denote this total length by Ω** (SR) and call it the exact signaling function 
of Ω. Obviously, 

Ω * * ( S R ) ^ Ω*(SR) •m"*^^ '̂̂  

Thus Theorems 4.3 and 4.8 imply the following bounds for the exact signaling 
function: 

1. There is a multiple unconditional algorithm Ω which initially identifies 
almost all relative black boxes and whose exact signaling function satisfies 
the inequality 

Ω**(SR) S 

where C is a constant. 
2. There is a multiple algorithm Σ which initially identifies absolute black 

boxes with frequency 1 — ε and whose exact signaling function satisfies the 
inequality 

Σ**(SR) ^ I SR IS 

where C is a constant independent of SR. 
It is easy to see that, up to the constant C, this estimate for the exact 

signaling function is the best possible. 
Similarly, Theorem 4.7 implies the following assertion: 
There is a multiple algorithm Σ which initially identifies absolute black 

boxes uniformly with frequency 1 — ε and whose exact signaling function 
satisfies the inequality 

Σ**(SR) ^ C ' ^ ' , 

where C is a constant independent of SR. 
It seems likely that this estimate can be substantially improved. It has 

been conjectured that there exists a multiple algorithm Ω which initially 
identifies absolute black boxes uniformly with frequency 1 — ε and whose 
exact signaling function satisfies the inequahty Ω**(SR) ^ | SR | S where 
C is a constant independent of SR.̂  

T Added in proof: This conjecture has recently been proved by M . P. Vasilevskii. Moreover, 
Barzdin' has been able to prove that for any ε > 0 there exists a simple algorithm Ω which 
residually identifies absolute black boxes uniformly with frequency 1 — ε, and such that 
Ω*(3ΪΙ) ^C,\mf (thereby sharpening Theorem 4.9). 
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\mk)\ 

* Two initialized automata are said to be isomorphic if they are isomorphic in the usual 
sense (i.e., as noninitialized automata) and their initial states correspond to each other under 
this isomorphism. 

II . Hitherto we have considered only automata with indexed states. 
Our frequency computations involve the number of nonidentical automata, 
and this concept was defined with regard to automaton with indexed 
states. Basing our arguments on this type of computation, we defined such 
statements as "property Ε holds for almost all automata," "property Ε holds 
with frequency 1 — ε," and so on. The set of pairwise nonidentical automata 
was denoted by if. Henceforth, when referring to these concepts of "almost 
all," "with frequency 1 — ε" and so on, we shall specify "almost all automata 
of class if," "automata with frequency 1 — ε in class if," and so on. 

Obviously, two automata previously considered to be nonidentical may 
in fact be isomorphic, say equivalent. However, in frequency considerations 
of properties of automata it may prove advantageous to identify all pairwise 
isomorphic automata or all pairwise equivalent automata (i.e., to count 
such automata only once in frequency computations). W e then replace i f by 
the following sets (both input and output alphabets are assumed fixed): 

1) á?: the set of all pairwise nonisomorphic initialized automata;* 
2) ^ : the set of all pairwise nonisomorphic initialized automata all of 

whose states are pairwise distinguishable; 
3) ^ : the set of all pairwise nonequivalent initialized automata, or, which 

is the same (see Section II .3) , the set of all pairwise nonisomorphic reduced 
initialized automata. 

Similarly, the set G is replaced by the following sets: 
1) : the set of all pairwise nonisomorphic initialized automata in 

G (recall that G consists of initiahzed automata, with initial state ^ o ) ^ 
2) Gy : the set of all pairwise nonisomorphic initialized automata in 

G, all of whose states are pairwise distinguishable; 
3) G.¿¿ : the set of all pairwise nonequivalent initiahzed automata in G. 
As usual, the notation ^ ( k ) , 5^(k), etc., will be used for the appropriate 

subsets of automata having k states. The notation ^ ^ ( k ) , δ | , etc., will be 
used for the appropriate subsets of automata possessing property E. 

The frequency characteristics considered previously are also applicable 
to the classes ^ , 5̂ , ^ . For example, we shall say that the automata of class 
^ possess property Ε with frequency 1 — ε if, for any natural k, 

> 1 - ε. 
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> 1 - ε. 

W e shall now check the validity of the theorems proved above 
when the class ^ is replaced by any of the classes 9", ^ . W e shall show 
that in certain cases they indeed remain valid (in the remaining cases the 
question is open). 

First consider the class ^ . 
Let 9JÍ be an automaton with k states. It is easy to see that the number of 

pairwise nonidentical initialized automata with indexed states which can 
be derived from initialized automaton SR (without altering the initial 
state) by renumbering the states is at most (fe - 1)! 

Thus, for each initialized automaton 9K G á?(fe) there are at most (fe - 1)! 
automata in ^ ( f e ) isomorphic to SR (as initialized automata). Therefore 

| ^ ( f e ) | 

(fe - 1)! 

One easily checks that this inequality can be generalized in the following 
sense: Let Ε be some property depending only on the operator realized by 
the automaton; then 

Let ^ be the set of all pairwise nonisomorphic noninitialized automata. 

It was proved in [36] that, for m ^ 3 and η ^ 2,* 

, {nk^ | ^ ( f e ) | 

Since any noninitialized automaton with fe states corresponds to at most fe 
pairwise nonisomorphic initialized automata, it follows that 

\m{k) \ ^ fe|^(fc)|, 

and so the above asymptotic equality implies the asymptotic inequality 

* As before, m and η denote the cardinahties of the input and output alphabets, respectively. 

Similarly, we shall say that the automata of class 01 possess property £ 
uniformly with frequency 1 — ε if, for any automaton graph G, 
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Comparison of these lower and upper bounds on | ^(/c) | shows that 

asymptotically. Hence, using the inequality 

{k - 1)! 
we immediately derive the following important property: 

A. Let 3 and η ^ 2. If 

then 

\^{k)\ 

I ^ ^ ( k ) 

^(k)\ 

> 1 - ε, 

> 1 - ε. 

Consider the case m ^ 3 and η ^ 2. Using property A , it is not hard to 
show that the vahdity of Theorems 4.3, 4.4, 4.8, 4.10 for class implies 
their validity for class ^ as well. 

T o illustrate, consider Theorem 4.8. It states that there exists a multiple 
iterative algorithm Σ which initially identifies automata with frequency 
1 — ε, i.e., for any natural number k. 

\^^ik)\ 
\^{k)\ > 1 - ε. 

Moreover, as can be seen from the proof of Theorem 4.8, the control function 
</)j(s) of this algorithm satisfies the inequality 

</ ) , ( s )^ Clog„s + C,. 

Using property A , we see that the class 0i satisfies the asymptotic inequality 

mk) 
> 1 - ε. 

This means, in particular, that there exists a number such that for all 
/c ^ we have the (exact, not asymptotic) inequahty 

\ä(^(k)\ 
\^{k)\ > 1 - 2ε. 
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> 1 - ε 

for all natural numbers k. Hence follows Theorem 4.8 for class ^ . 
An analogous proof shows that Theorem 4.10 remains vahd when the 

class is replaced by ^ (except that here one must use the following 
additional property of the control function g^s) of Theorem 4.10': Absolute 
(Ci,C2,C3)-automata are identified uniformly with frequency 1 — ε not 
only by the algorithm Ω^̂  but also by Ω^^^ .̂ ,̂ where d is an arbitrary input 
word). 

The problem of whether Theorems 4.3,4.4,4.8 and 4.10 hold for the class 
Ω when m = 2 is unsolved.* 

N o w consider uniform identification. Let Ε be some property which 
depends only on the operator realized by the automaton question. It is not 
difficult to see that 

This equality and the fact that Theorems 4.7 and 4.9 are valid for i£ directly 
imply that these theorems are also valid for class 0Í. 

N o w consider the class 9". Let 9C¿^ (Ρ) denote the set of all pairwise 
nonidentical initialized automata (pairwise nonisomorphic noninitialized 
automata) all of whose states are pairwise distinguishable. It is not difficult 
to verify that for every initialized automaton SR G y (fc) there are exactly 
(fc - 1)! automata in (fc) isomorphic to SR (as initialized automata). 
Similarly, for every noninitialized automaton SR G 5^(fc) there are exactly 
fc! automata in (fc) isomorphic to SR (as noninitialized automata). 
Therefore, in particular. 

\9'{k)\ \Íf.j{k)\ 
and (fc)| = k\\£/'{k)\. 

* Added in proof. A positive solution has recently been given by Korshunov, who has shown 
that Property A also holds when m = 2. 

Consider the algorithm Σ with control function 

Φ'^IS) = (/>E/2(s) + 2K,^2 Á C log^S + + 2X,/2 = C l o g „ S + 

N o w it is obvious that for the algorithm Σ ' 

L ^ ^ ' ( F C ) 
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Korshunov [35] has proved that 
a) if m ^ 3 and η ^ 2, then 

\^ik) 

b) if m = 2 and η ^ 2, then 

inky mk ä'{k)\ 

k\ k\ 

fe! 2 fc! " 
Together with the preceding remarks, this imphes that for any m ^ 2, π ^ 2, 

(fe) | ^ i | I ^ ( F E ) | 

and so 

Thus, if 

then 

\y'ik)\ M (FC)I 

IŜ ^ (fe) 
I F ^ ( F E ) 

< 2 
\^'{k)\ 

\^ik)\ 

| I F ( F E ) 

\y(k)\ 

< ε. 

< 2 ε . 

Hence, replacing property Ε by the complementary property E' (which 
holds if and only if Ε does not), we get the following proposition: 

B. If 

\^^'{k)\ 

then 
\^{k)\ 

\^{k)\ 

> 1 - ε. 

^ 1 - 2β. 

Using Proposition Β and arguments analogous to those employed for 
the class ^ , it is easily seen that the validity of Theorems 4.3, 4.4, 4.8, 4.10 
for class I F implies their validity for class 6^ as well. 

The question of whether Theorems 4.6, 4.7 and 4.9 are valid for class 
y is still open. 

Also open is the question as to whether Theorems 4.3, 4.4, 4.6, 4.7, 4.8, 
4.9 and 4.10 are valid for the class ^ . 
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^ A I " ^ ( | ^ A I + 1) ^ 

fl and i f" are the sets of automata which the algorithm Ω identifies 
as absolute black boxes). This means that for the above partition there 
is an algorithm which identifies absolute black boxes with frequency 1 - ε 
for ε < 1. 

IV. The so-called terminal-state identification problem has been in
vestigated in the literature in fairly great detail. Given a reduced automaton 
whose diagram is known, but not its initial state (one might call this autom
aton a partial black box), it is required to construct a simple experiment by 
which one can determine the state of the automaton at the end of the experi
ment (though the initial state may remain unknown). In our terminology, 
we can reformulate this problem as follows: to construct a simple algorithm 
over partial black boxes which residually identifies any of the latter. The 
basic problem here is to construct an experiment of minimal length. It has 
been studied in [108], [92] , [32] , [98] and other papers. The strongest 
estimate in this respect is due to Hibbard [98] . He has shown that for any 
noninitialized reduced automaton with fc states there exists a uniform experi
ment of length fc(fc — l)/2 by which one can determine the state of the 
automaton at the end of the experiment (for any choice of initial state). In 
our terminology: There exists a simple unconditional algorithm Ω which 
residually identifies any partial black box SFl and has a signaling function 
such that Ω* (SR) g i I SR I (I SR I - 1). Hibbard has also shown that, as a 

I I I . Another question arising in this context is the following: Can one 
construct a partition {J^^} of the class ^ into finite subclasses such that 
the analogue of Theorem 4.6 for the concept of frequency based on this 
partition is no longer true (i.e., one cannot identify absolute black boxes 
with arbitrary preassigned frequency)? It is not hard to show that this is 
possible; an appropriate partition is the following: 

OT: i f , = ^ , u ^ „ 

where sé χ is the set of all automata with λ states which do not belong to 
i f 1 u . . . u i f 1 ; is the set consisting of A( | | + 1) nonequivalent 
automata not belonging to u . . . u i f ^ _ i which are not distinguish
able by input words of length λ from the initial hypothesis SIQ of Figure 35. 

It is obvious that for any algorithm Ω there is a number such that for 
all A ̂  /IQ we have | J?" | ^ 1, and, consequently. 
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function of the number of states k, this estimate cannot be improved (even 
by considering nonuniform experiments). 

Can Hibbard's estimate be substantially improved if one considers not 
all reduced automata but almost all reduced automata? Korshunov [38] 
has shown that here one need consider only uniform experiments of length 
at most 5 log„k. 

Notes 

The contents of this chapter are closely linked up with the theory of experi
ments, whose foundations were laid by Moore [108]. Some results in this 
field were obtained indepently of IMoore by Trakhtenbrot [56] . Further 
improvements of the estimates may be found in Ginsburg [92] , Karatsuba 
[32] , Hibbard [98] , Borodyanskii [22] , IVIuchnik [49] , and others. 

The problem of identification is considered here within the framework 
of the general theory of synthesis. This approach may already be found in 
[ 7 ] and [55] . 

In essence, Theorem 4.1 may be found in [108] and [56] . The paper [108] 
also contains a weak version of Theorem 4.2. It differs from our version in 
that it contains a coarser estimate for the length of the appropriate experi
ment (in our terminology: a coarser estimate for the signaling function of 
the simple algorithm which identifies relative black boxes). In the form given 
in Theorem 4.2, the estimate was first established by Muchnik [49] (though 
by a different method). Theorem 4.3 is in effect implicit in Korshunov [37] . 
Theorem 4.4 apparently makes its first appearance in this book. 

The above-mentioned papers and theorems deal with relative black 
boxes. A systematic investigation of the identification problem for absolute 
black boxes apparently appears in this book for the first time. Theorems 4.5. 
4.6, 4.7 and 4.8 are due to Barzdin', Theorems 4.9 and 4.10 to Barzdin' 
and Vasilevskii 
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S T A T I S T I C A L E S T I M A T E S F O R P A R A M E T E R S A N D 
S P E C T R A O F A U T O M A T A 

In this chapter we shall estabhsh the statistical estimates of parameters 
and spectra used in Chapter IV. Our theorems will indicate the fre
quency of occurrence of automata properties, the latter being expressed in 
terms of inequalities for various parameters and spectra. In accordance 
with the layout of Section IV.3, this will be done separately for uniform 
frequency computations (fixed automaton graph) and for the more general 
case (fixed number of states). In Sections V . l and V.2 we apply the first 
approach to the study of the distinguishability and saturation spectra. In 
the remaining sections the second approach is applied to the accessibility 
spectrum, the degree of accessibility and to the degree of reconstruct-
ibihty. 

Again, as in Chapter IV , the automata considered in this chapter will be 
automata (or automaton graphs) with numbered states, for fixed input and 
output alphabets X = { x i , . . . , x , „} , Y= {y^,..,, y„}, where m = const ^ 
> 2 and η = const > 2. 

V . l . Uniform statistical estimate of degree of distinguishability 

Direct estimation of the frequencies involves certain difficulties, and we 
therefore proceed as follows. 

The construction of automata from an automaton graph G will be en
visaged as a stochastic procedure: each edge of the graph G is assigned an 
output label, i.e., a letter in the output alphabet Y= {y^,..., y„}, in random 
fashion (giving all letters of the output alphabet 7 equal probabilities \/n). 

W e shall find a connection between the frequencies and the probabilities 
with which our procedure yields automata of any desired type. This will 
enable us to replace frequencies by probabilities. Let Ε be some property 
(e.g., "the automaton has degree of distinguishabihty 10"). Let denote 
the set of all automata in Ö that possess property £, and p(Ö^) the 
probability that the stochastic procedure described above derives from G 
an automaton with property Ε (i.e., an automaton in S^). 

266 
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Proof. It is readily seen that all automata in δ are equiprobable outcomes 
of the above stochastic procedure. This implies the lemma. 

W e now prove a few lemmas about distinguishabihty of states in autom
ata derived from the automaton graph G. 

Consider an input word χ = x{l)... x{t) and the paths issuing from 
vertices and ^2 of G that this word determines (Figure 44): 

(qi = q'{l))d'm{2)d'i2)... q'{i)d'{i)... d'{t)q^{t + 1), 

{qi = q"{l))d"m'{2)dA2)... q"{i)d"{i)... d " ( í ) ^ " ( í + 1) 

iq' and q" are vertices, d' and d" edges). If d'ij) = d"{j) for some 7, then 
q'U + 1) = q"U + 1) (ie. , these states are merged), and so, from that point on 
(for i > j \ d'{i) = d"ii). N o w let d'{ή φ d'\i) for some i (so that d'ij) φ d"(fj 
for all j < Ϊ). If one of the edges d'(0, d"{i) has not appeared before, i.e., is 
different from d' (j), d" (j) for j < i, we shall say that the letter χ (f) has a primary 
occurrence in x. The number of primary occurrences of letters is an important 
parameter of the input word x. 

Let P ( G , x ) denote the probability that states q^ and q2 of the automaton 
generated by our stochastio procedure from the graph G are indistinguishable 
by the input word x. 

ψ) 
ryEilLh^i^). ^ííLa 

Figure 44 

LEMMA 2. Assume that at least ω letters have primary occurrences in 
input word x. Then 

P{G,x) ^ {l/nr, 
where η is the cardinality of the output alphabet Y. 

Proo/ Given the word χ = x ( l ) . . . x ( i ) . The stochastic procedure 
generating an automaton from the graph G splits into the following t -h 1 
steps: 

LEMMA 1. 
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Step SI. Assign random output labels from 7 to the edges and 
d"{l). 

StepSi{i ^ t). If the edge d'(i) (or d"{i)) has not yet been assigned an 
output label, assign it a random output label from Y. 

StepSf+i. Assign random output labels from 7 to all edges not yet 
labeled. 

Let the letter χ {ή have a primary occurrence in x. Then at least one of 
the edges d'{i), d"(0, say d'(0, is different from d'(jX d"(j) for j < i, and so 
the edge d'{i) has not yet been assigned an output label at any step Sj{j < i). 
Hence the step at which the edge d'(i) is assigned a random output label from 
y is precisely Ŝ . Note, moreover, that d'{i) ψ d"(i). It follows that the proba
bility that the step S¿ (and consequently the entire stochastic procedure) 
will assign the edges d'{i) and d"(0 identical output labels is independent 
of the outcomes of previous steps and therefore equal to 1/n (where η is 
the cardinality of the alphabet Y). This proves the lemma. 

W e have defined a primary occurrence of a letter in a word with respect 
to vertices and Later we shall need the general case, replacing the 
vertices q^ and ^2 by arbitrary vertices q^ and qp. Instead of saying that the 
letter has a "primary occurrence," we shall then say that it has a {q^^qß)-
primary occurrence. It is clear that Lemma 2 remains valid when "primary" 
is replaced by "((j^,^^)-primary" and P ( G , x ) by P{G,x,q^,qp), where 
P{G,x,q^,qp) is the probability that the stochastic procedure will generate 
an automaton in which q^ and qß are indistinguishable by the word x. In 
other words : 

LEMMA Τ. Assume that at least ω letters have {qa^Qßypfimary occur
rences in the input word x. Then 

PiG,x,q.,qß) ^ (l/nr 

W e need a few more definitions. Consider the input word χ = x ( l ) . . . χ ( ί ) 
and the paths that it defines issuing from the vertices q^ and ^2 of the graph 
G. There obviously exists I'o ̂  ί (Figure 45) such that d'{í) Φ d"{í) for all 
i ^ I'O and d'(0 = d"{i) for all i > ÍQ ψ t. W e call the initial segment 
x ( l ) . . . x(io) of the word χ the essential segment of the word χ and denote 
it by X. Let W= { X ( i ) , . . . , X ( , ) , . . . , X ( „ ) } be a sequence of input words, 
where X(s) = X ( 5 ) ( l ) . . . X(5)(0 · · ^ ( s ) ( i s ) is the s-th word in the sequence. 
X(^) defines two paths: 

(^1 = ^ Í S ) ( I ) K S ) ( I ) ... ̂ ωθΚ)(ο... á ; . ) (g^; . ) ( í + 1 ) , 

(^2 = q i s m w ' · · C(Oá;;)(o... d;;)(g^;;)(ís + D-
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N o w assume that ά[^){ΐ) Φ djs)( í ) . If one of the edges d[^){i),d'(^^{i) does not 
appear in any of the paths defined by the essential segments . · · , D 
of the preceding words of the sequence H^and, moreover, is different from 
d\s)(j)^ d(s)ij) for j < U we shall say that the letter X(s)(0 has a primary occur
rence in the sequence W. As an example, consider the graph of Figure 46 and 
the sequence of input words W= { X ( i ) , X ( 2 ) } , where 

X ( i ) = X ( i ) ( l ) X ( i ) ( 2 ) X ( i ) ( 3 ) = X2X2X2, 

^(2) = X(2)(1)X(2)(2) = XiXl' 

It is not hard to see that the letters X ( i ) ( l ) , X( i ) (2) , X ( 2 ) ( l ) have primary 
occurrences in this sequence. 

The number of primary occurrences of letters is an important parameter 
of a sequence of input words. 

Figure 46 

Let P(G,W) denote the probability that states ^1,^2 of the automaton 
generated by our stochastic procedure from the graph G are indistinguishable 
by input words from the sequence W. 

Later we shall need the following generalization of Lemma 2: 
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LEMMA 3. Assume that the sequence W of input words contains at least 
ω words with primary occurrences. Then 

P{G,W)S(l/nr. 

Proof Let W= {X(i) ,X(2) , · · · , ^ ( n ) } be a sequence of input words and 
= . . . X ( i ) ( i i ) , X(2) = X (2 ) ( l ) . · . Xi2)ihl' · · their essential segments. 

Consider the letters belonging to these segments, and split the stochastic 
procedure into steps S i i , S i 2 , · . . , S j ^ ^ , 5 2 1 , ^ 2 2 , . . · , . . . , where step 
S^ß is as follows: if the edge d[^)(ß) (or d['^){ß)) corresponding to the letter 
x^ß) has not been assigned an output label at previous steps, it is assigned 
a random output label from Y. It is not difficult to see that with this sub
division of the stochastic procedure we can repeat the reasoning used to 
prove Lemma 2; this completes the proof of Lemma 3. 

W e need one more auxiliary concept. Let χ = χ ( 1 ) . . . χ ( ί ) be a word 
and I1J2 the paths that it defines issuing from the vertices ^1 ,^2 of the 
graph G (or the automaton 9Κ derived from G) (Figure 45). 

As already stated, there exists 1*0 Ú t such that d'{i) φ d"{í) for all i S h 
and d'{i) = d"(i) for all i > IQ φ t. 

The paths 

(^1 = ^ ' ( l ) ) á ' ( l ) . . . d ' ( f o ) ^ ' ( ¿ o + 1), 

( ^ 2 = ^ " ( l ) K ' ( l ) . . . d " ( / o ) ^ " ( / o + 1), 

(that is to say, the unmerged parts of the paths and I2) are called the 
essential paths of the word χ in the graph G (the automaton 9Ji). 

W e shall now establish some properties of essential paths. Obviously, 
in order to determine whether states q^ and q2 of the automaton derived 
from the graph G are distinguishable by a word χ we need only consider 
essential paths. In the sequel we shall need a stronger assertion: Let 9Jl be an 
automaton derived from G. Delete from this automaton arbitrary vertices (i.e., 
states) other than q'{l),..., '̂(1*0)» ^"(1)» · · » ^ ' ( ^ o ) (the terminal vertices q'{ÍQ + 
+ 1) and q"{ÍQ + 1) of the essential paths of χ may also be deleted). Delete the 
edges issuing from the deleted vertices. Join those of the remaining edges 
leading to deleted vertices to the vertex q^. The (input and output) labels 
of the remaining edges are not altered. The result is an automaton W. 
W e shall refer to this construction of an automaton SR' from SR as a con
struction preserving the essential paths of x. The justification for this designa
tion is that X generates the same essential paths in SR' and SR, except that the 
states ^'(I'o + 1) and ^ " ( I Q -I- 1) may be replaced by q^ (since deletion of 
q'{ÍQ + 1) and q"{ÍQ -h 1) is permitted in the construction of SR'; in this 
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case the edges d'(io) and (¡"{ÍQ) are necessarily joined to ^ i ) . It follows that 
the automaton SJI' has the important property that states and 2̂ 
distinguishable by a word χ in SR if and only if they are distinguishable 
by X in W. 

W e now consider the connection between the number of edges in the 
essential paths of the word χ and the number of primary occurrences of 
letters in x. Suppose that for some i one of the edges d'(0, d"(0 of the essential 
paths of X is different from all preceding edges of these paths; then, clearly, 
the letter x(0 has a primary occurrence in x. Therefore, if a is the number 
of different edges in the essential paths of the word χ and b the number of 
primary occurrences of letters in x, then, obviously, 

b ^ ia. (1) 

N o w consider all input words of length r (where r is any natural number) 
and the corresponding essential paths in the graph G. Denote the set of 
edges of which these paths consist by C/GW- It is clear that UQ{1) ̂  UQ(2) C 
^ . . . ^ í /G(^ ) — The sequence must therefore level off at some r 
(which we denote by RQ): 

Obviously, 

\Uo(r)\^\Uo{RG)\ 

for any natural number r. In the sequel, the number | C/GW| will play an 
essential role, as an mtermediate parameter in estimating the degree of 
distinguishabihty of the automata derived from G. Our immediate problem 
is to estimate | [ / ^ ( r ) . 

Arrange all the input words of length r arbitrarily in a sequence, fixed 
from now on. Let ωβ{τ) denote the number of primary occurrences of 
letters in this sequence. By the same arguments as before, one can show 
that inequality (1) remains valid if the single word χ is replaced by all words 
of length r. In other words, 

cOo{r)^i\UG{r)\. (2) 

Let υ^{Γ) denote the set of vertices in G from which issue the edges in 
the set ÜGir). Since each edge can lead to one vertex only and at least one 
edge of the set Ucir) issues from each vertex qe ϋβ{ν\ we have 

\Üo{r)\ú\UG{r)[ (3) 
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In the general case, the set ϋ^{τ) may contain vertices qi other than q^ 
and q2. Obviously, each such vertex qi is the endpoint of at least one edge 
from the set UQ{r — 1). Since each edge can lead to one vertex only, 

\Üo{r)\^\Uo{r-l)\ + 2. ( 4 ) 

L E M M A 4 . / / states q^ and ^2 of an automaton SR derived from the graph 
G are distinguishable by input words of length r, they are also distinguishable 
by input words of length | Ϊ7^(Γ) | — 1. 

Proof Starting from the automaton SR, construct another automaton 
SR', with state set OQ[r\ as follows. Delete from the automaton SR all 
vertices not belonging to E/cir), together with the edges issuing from them. 
Join any of the remaining edges which have previously led to a deleted vertex 
to the vertex ς̂ ι e Ε 7 ^ ( ^ ) » the (input and output) labels of the remaining edges 
are not altered. 

It is obvious that this construction of SR' preserves the essential paths 
of any word χ of length r. Therefore, states q^ and q2 of the automaton SR' 
are distinguishable by input words of length r if and only if states q^ and ^2 
of SR are distinguishable by input words of this length. But the automaton SR' 
has I Όα(τ) \ states, and by Theorem 2 . 1 4 its degree of distinguishabihty is 
at most I Ε7^(Γ) I — 1. Thus, if states q^ and ^2 of the automaton SR' are 
distinguishable by input words of length r, they are also distinguishable by 
input words of length | [ / ^ ( r ) | — 1. This proves the lemma. 

C O R O L L A R Y . If states q^ and ^2 of an automaton SR derived from a graph 
G are distinguishable, they are distinguishable by input words of length 

I Í / G Í ^ G ) 1 -1 . 

T o prove this corollary it suffices to note that 

a) |C7G(r)|^|C/G(r)|by(3); 

b) \ lJQ{r)\^\VG{RQ)[ 

L E M M A 5. For any natural number r < RQ, 

\UQ{r)\^r. 

Proof Assume that this is false, so that | ÜQ{r') \ < r' for some r' < RQ. 
Since r' < RQ, there exists ^ r' such that ÍIQÍ/) = UQ{/ -l· 1) = ... = 
= ÜQiro) while ÜQiro) φ l/^Cro + 1). Then | l/^Cro) | = | Ι / ^ ί ^ ' ) \ < r'^ r^. 
Since Í / G Í ' O ) i= UQ(rQ + 1) , there exists an edge (say do) which is 
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(I G I is the number of vertices in the graph G and η the cardinality of the 
output alphabet Y), 

in UßirQ -f 1) but not in I / G Í ' O ) - The edge do obviously has the following 
properties: 

1. For any input word χ = x ( l ) . . . x ( i ) of length less than ΓΟ -h 1, the 
edge do either does not belong to the paths from q^^ and q2 defined by x, 
or belongs only to the merged part of these paths (i.e., if d'{i) ψ d"{i), then 

d'{i) + do a n d d " ( 0 ^ d o ) . 
2. There exists an input word χ = x ( l ) . . . x(ro + 1) of length ΓΟ + 1 

such that if 
{q,=q'{\))d'{\)...d'{ro+\)q'(ro + 2). 

{q2 = q''(\))d''(\)..J"{ro + M"{ro + 2) 

are the paths that it defines then, first, d'(ro + 1) 7^ d"{ro + 1) and, second, 
do is either J'(ro + 1) or d"(ro -f 1). 

W e now construct an automaton as follows: assign to all edges of the 
graph G except do the same output label, say ; to the edge do assign a 
different output label, say y2- This automaton, call it 9Wo» has the property 
that states q^ and 2̂ are indistinguishable by input words of length ΓΟ but 
distinguishable by input words of length ΓΟ + 1. Apply Lemma 4 to the 
automaton 9Mo. It follows that | C/GÍ'O + 1) I - ^ > 0̂ (since otherwise 
states q^ and 2̂ would be distinguishable by input words of length ΓΟ). 
By inequality (4), 

|E7^ ( ro+ 1 ) | ^ | ΐ / α ( Γ ο ) | + 2. 

Consequently, 

| ΐ / ^ ( Γ ο ) | + 2 - 1 = | ΐ / ^ ( Γ ο ) | + 1 > Γ ο . 

Since II/GÍ'O)! and ΓΟ are natural numbers, this inequality means that 
I ^G(TO) \ ^ 0̂· But this contradicts the inequality | C / G Í ' O ) ! < 0̂» proving 
the lemma. 

As in Section IV.7, let > ^ denote the set of all automata m ö with 
degree ofdistinguishability greater than r. Obviously if ^ r2thenöp>^^ ^ 

THEOREM 5.1. For any automaton graph G and any natural number r. 
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Proof, Let ρ ( δ ^ > ^ ) be the probabihty that the stochastic procedure for 
construction of automata from G generates an automaton with degree of 
distinguishabihty greater than r. By Lemma 1 (reduction to probabihties), 

G p > J / | G | = / ) (Gp>^) . The theorem will therefore be proved if we can 
show that for all natural numbers r 

/ 1 \ r/2 
p(Ö^,,)<\G\' - . 

Let ρ {Op > r^qi^Qj) be the probability that our stochastic procedure gener
ates an automaton whose states ¿̂ and qj are indistinguishable by input 
words of length r but distinguishable by longer input words. Obviously, 

Ρ ( δ , > , ) ^ Σ Pi^p>rAi.qj)-
ifUi<\G\4<\G\ 

W e shall prove that ί 

Ρ ( δ , > . , ^ ι , ^ 2 ) ^ i - j · (5) 
There are two cases: 

1) r < RQ, 

2 ) r ^ RQ. 

Consider Case 1. Applying Lemma 5, we see that | UG(r) \ ^ r. Arrange 
the input words of length r in some arbitrary fixed sequence (call it W^). 
Let ωβ{ή be the number of primary occurrences of letters in this sequence. 
By inequality (2), 

cOo{r)^^\UcÁr)l 

and so ωQ{r) ^ r/2. Apply Lemma 3 to the sequence W^, Then 
/ l y a i r ) / i y / 2 

where P ( G , W^) is the probability that our stochastic procedure generates 
an automaton in which q^ and ^2 indistinguishable by input words of 
the sequence M^, i.e., by input words of length r. It is readily seen that 
p{Gp^,,q„q2)ÚP{G,W,). Therefore p ( G ^ > , , ^ 1 , ^ 2 ) á (l^r^^ and this 
proves inequality (5) for Case L 

N o w consider Case 2. Here Udr) = Ug(RgX and we distinguish two 
subcases: 

a) \ Uo{r)\ = \Uo{RG)\^r; 

b) \ Uo{r)\ = \ U M \ < r . 
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Setr = ]51og„/c[;then 

| ö p > ] 5 i o g „ f c [ I / 1 
< — 

1/2 

Subcase a) is treated in analogy to Case 1, except that there is no need 
to use Lemma 5, since the inequality \UG(r)\^r is given. 

Consider subcase b). It follows from the Corollary to Lemma 4 that, in 
any automaton derived from the graph G , if states and ^2 are distinguish
able, then they are distinguishable by input words of length | UQ{RG) | - 1 < 
< r — L This means that ρ ( δ ρ > ,.»^ii^2) = 0, which proves inequality (5). 

Thus, in all cases p{öp > rj^i^^i) satisfies the estimate given by inequality 

(5). 
It is clear that the same estimate holds for p{Gp>rAiAj) when ¿̂ and 

q^ are arbitrary states (since this merely involves renumbering the states 
of the graph G ) . N o w the number of pairs (1,7) with Í =/= i g | G | ,7 ^ | G |, 
is less than | G |^. This implies that 

p ( G , > . ) á Σ P{G,>rAiA¡)<\G\'{^Y. 
ίΦ},ι^\0\,}^\0\ 

This completes the proof of the theorem. 
Theorem 5.1 has a corollary (Theorem 5.2) which is of independent 

interest. 
Following Section IV.3, let us say that uniformly almost all automata 

with k states possess a property Ε if 

I G ^ I 
min ' ^ ' — > 1 as k ^ 00, 

¡G¡ =k \G\ 

where | G |, as usual, is the number of vertices in the graph G and G ^ the 
set of automata in G that possess property E. 

T H E O R E M 5.2 ( O N T H E U N I F O R M D E G R E E O F D I S T I N G U I S H A B I L I T Y ) . 

Uniformly almost all automata SR with k states have degree of distinguish
ability ρ (SR) at most C log„/c, where C is a constant. 

Proof Let G be an arbitrary automaton graph with k vertices. By Theorem 
5.1, 
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mm 
\G\=k 1^1 

This means that uniformly almost all automata with k states have degree 
of distinguishabihty ρ (501) at most ]51og„/c[. 

It is not difficult to see that the order of magnitude of this estimate for 
the degree of distinguishabihty cannot be improved. In other words, there 
exists a positive constant C such that the statement "uniformly almost 
all automata 9Jl with k states have degree of distinguishabihty ρ (501) < 
< C log„/c" is false. T o see this it suffices to consider, for example, the graph 

illustrated in Figure 42. For sufifiqiently large CQ , its vertices ^ o » ^ C o i o g , k ' 

^ 2 C o i o g „ i k ' - . . ^ i C o i o g „ f c . - . have the following property: if p(k) denotes the 
probability that the stochastic procedure generating automata from 
yields an automaton in which the states ^Coiognfc» · · ' ^iCoiog„k» · · are 
distinguishable, then p(/c)-> 1 as fe-^ oo. Since the number of these states 
is at least k/Co log„/c, it follows (in view of the peculiar properties of G^) 
that the minimal length of input words by which they are all distin
guishable must be at least ( l / log„ mn) log,, (/C/CQ log,,/c), and so at least 
Clog„k. 

However, if we drop the word "uniformly" from the statement of Theorem 
5.2, the estimate for the degree of distinguishabihty may be considerably 
improved. Korshunov [37] has proved the following theorem: 

Almost all automata with k states have degree of distinguishability asympto
tically equal to log,,, log,, fe. 

Recall that by Theorem 2.14 any automaton with reduced weight μ has 
degree of distinguishability at least log,,, log,, μ - 1. 

V.2. Uniform statistical estimate of the saturation spectrum 

In this section we shall estimate the relative frequency of automata 501 in G 
whose saturation spectrum satisfies the inequality F<s)ji,qo> (0 ^ As in 
Section IV.6, let Gp^i^^^^ denote the set of all automata 501 in G such that 

W e define the height of an automaton graph G as the minimal number 
hQ such that any vertex qj accessible from qQ is accessible by an input word 
of length at most h^. 

THEOREM 5.3. For any automaton graph G of height hQ and any natural 
numbers s and φ such that s + φ ^ hQ, we have 

Hence, 
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where η is the cardinality of the output alphabet Y. 

Proof Let p{Gp^i^^^) be the probabihty that the stochastic procedure 
for construction of an automaton from G generates an automaton SR such 
that F^jido) ( ' ) = s- By Lemma 1, 

Gpn) ^ s = Ρ{^ρ(1)<3)· 

It will thus suffice to prove that if s and φ satisfy the assumptions of the 
theorem then 

PiGp^,^^^^,)^ --y—j 

By assumption, s -\- φ ^ h Q . Therefore, there exists a word x^ = 
= x ^ ( l ) x ^ ( 2 ) . . . x^(5 -h Φ) such that the vertices 

qo^ qox'W, qox'Wx'i^l · · · , ^ o ^ ' i D · · · ̂ ' ( s + Φ) 

lie at heights 0 ,1 ,2 , . . . , 5 + j/^, respectively (Figure 47). T o abbreviate the 
notation we shall denote these vertices by <?o^^i»<?2'· · ·'^^+ι|,· W e are 
mainly interested in the vertices q^. Let i and j be fixed numbers, 
0 ^ i <j ^ s. Consider the pair of vertices q^, q^ and the word* x^{j + 
+ 1 ) . . . x^(s). This word takes the vertex q^ to q^. Let qij be the vertex to 
which this word takes qf. Since qf lies lower than q^ (i.e., / < j), it is not hard 
to see that qij lies lower than q^. Consider the paths leading from the vertices 
qij and q^ defined by the word x^{s I)... x^{s -\- φ). It is obvious that 
for any 1 ^ r ^ i/r the vertex qijX^{s -f 1 ) . . . x^(s + r) lies lower than the 
vertex q^x^is+ 1 ) . . . x^(s + r) = Therefore, the edge incident on 
the vertex q^+^ is distinct from all preceding edges in these paths. Hence 
the letter x°(s + r) has a (^ij,^^)-primary occurrence in this word. W e 
have thus verified that all the letters of the word x^(s + 1 ) . . . x^(s + φ) 
have (^¿j,^^)-primary occurrences there. As before, let P{G,x,q^,,qp) denote 
the probability that the stochastic process for construction of an automaton 

* If / = s, the word x^{J + 1 ) · . . x° (s ) is empty. 
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P(qt,qJ) á P ( G , x ° ( 5 + 1 ) . . . χθ(5 + ψ),q^.,qO^ g [1' 

and so V"^ 
s ( s + 1) / A V ' 

0 < i < ; g s 

Height -^-^¿;-^??.^-?„^V;. . . / í^ .5^; 

Height S — Q-fs-loX'W- ^"W 

Height 2 ---0-?2 = ?»3;VM'' (2 ; 

Height F O-IRFFLIV; 

Height ¿7 Gfo'lo 

Figure 47 

from G yields an automaton in which the states and qß are indistinguish
able by the word x. Using Lemma 2', we see that 

P(G,x^(5 + 1 ) . . . x ^ s + φUiJ.q's) ^ (7 ) ^ · 

Let SR be an automaton derived from the graph G and V^i the complete 
tree, of height s φ and root q^, compatible with SR. With each state 

= %x^W... x^(a) (a = 0 , 1 , . . . , s) of the automaton SR, associate the 
vertex q* = ( ? * x ^ ( l ) . . . x^(a) of the tree V^. It is easy to verify that if states 
qij and q^ of the automaton 'SR are distinguishable by the word 
x^(s -f 1 ) . . . x^(s + Φ), then the vertices qf and qf of the tree V^i are dis
tinguishable. Indeed, if qij and q^ are distinguishable by the word x^(s -h 
4- 1 ) . . .x^(5 H- φ% then states qf and q^ are distinguishable by the word 
x̂ O* + 1) · . · ̂ ^(5 + 1) · . + Φ), and so the vertices qf and qf of the 
tree K ĵ are also distinguishable. Let p(qf,q*) denote the probability that 
our stochastic procedure generates an automaton SR in whose tree of 
height s + φ tiiQ vertices qf,qj are indistinguishable, and p* the probability 
of generating an automaton for which at least two vertices qf,qf{0 g i ̂  

á 7 ̂  5) are indistinguishable. It follows from the foregoing arguments that 
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Note that the number of vertices q j , ^ * . . . , is s + 1, which is of course 
greater than s. Therefore, if any two vertices qtqf{0 ^ i <j ^ s) of the 
tree V<^i are distinguishable, the tree contains more than s distinguishable 
vertices, and therefore F^^^^^^y [s -\- φ) > s. Therefore, 

s(s + 1 ) f i y 

This completes the proof. 

V.3. Stochastic procedure generating automaton graphs 

From this section through Section V.8 we shall be dealing with statistical 
properties of automaton graphs. Specifically, we wish to study the fre
quencies with which automaton graphs possess certain properties related 
to accessibility spectra. It is very difficult to estimate these frequencies 
directly. W e shall therefore envisage the construction of automaton graphs 
as a stochastic procedure. The next step will be to establish the relation 
between the frequencies and the probabilities with which the procedure 
generates the required automaton graphs. W e shall then be able to replace 
frequencies by probabilities. 

The present section will describe a stochastic model for the generation 
of automaton graphs, and will also determine the relation between fre
quencies and probabilities. 

Note that, as before, we are dealing exclusively with automaton graphs 
with numbered vertices qo.qu. · · and fixed input alphabet X = { x ^ , . . . , x ,„} , 
where m = const ^ 2. 

Our "raw material" will be k vertices ^fo,<?i, · · · , ^fc-1, from each of which 
issue m edges with free endpoints, one labeled x^, the second X 2 , . . . , the 
last labeled x^ (Figure 48). 

Consider one of these edges; suppose that we choose a vertex at random 
and connect to it the free end of this edge (assuming that the vertices are 
equiprobable, so that each is chosen with probability l/k). W e shall refer 
to this procedure as the random connection of the edge to the vertices 
qoAu' " ^^k-v Now, if all the edges issuing from the vertices <?o> · · · » ^ k - 1 
are connected at random to these vertices, the result is a certain (random) 
automaton graph with k vertices. The random connection of all edges may 
be imagined in various ways; for example, one might stipulate that all 
connections be made simultaneously. Alternatively, the stochastic procedure 
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Figure 48 

for generation of an automaton graph might be as follows (and this ap
proach will be adopted from now on). 

Step 1. Choose a vertex qo (henceforth termed the vertex of level 0), 
and connect the edges issuing from it (the edges of level 0) at random to 
the vertices qoAi^- ^^κ-ν Call all the vertices other than qo (with the 
edges issuing from them), to which edges of level 0 are connected, vertices 
of level 1 (or the level constructed at step 1). The object consisting of the 
first two levels is called the l-base, and the edges issuing from the vertices 
of level 1 are called the edges of level 1. If it turns out that all edges of level 0 
have been connected to qo, then all the edges issuing from the vertices 
<?i , . . . , 1 are connected at random to the vertices ^o^^i» · · ·»^k - a n d 
the procedure halts. 

Step /i (/i = 2 , 3 , . . . ) . Assume that an (h - l)-base has been constructed. 
This means that all edges of the first h — 2 levels have already been connected 
to suitable vertices, while the edges of level h — \ (and also the edges issuing 
from vertices not included in the [h — l)-base) have free ends. Connect 
all edges of level /i - 1 at random to the vertices <?o» · · ·»<?k - 1 - Call the ver
tices (together with the edges issuing from them) to which the edges of 
level /i - 1 are connected, and which do not appear in the first h - I levels, 
vertices of level h (or the level constructed at step h). The vertices of levels 
0,1, . . . , / i , together with the edges issuing from them, form the h-base, 
and the edges issuing from vertices of level h are the edges of level h. If it 
turns out that all edges of level ft — 1 have been connected to vertices of 
the first h - 1 levels (i.e., level h is empty), then all edges issuing from ver
tices outside the (h — l)-base are connected at random to the vertices 
^ο>· - í ^ k - i » and the procedure halts. 

This completes the description of the process for generation of an autom
aton graph with k vertices. Henceforth we shall refer to it as the stochastic 
procedure for generating automaton graphs. W e now present a simple, but 
important lemma, analogous to Lemma 1, which establishes the connection 
between frequencies and probabilities. 

Let Ε be some property of automaton graphs. Let ^ ( f e ) denote the set 
of all pairwise nonidentical automaton graphs with k vertices, and ^^(k) 
the set of all pairwise nonidentical automaton graphs in ^(k) which possess 
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= PEiky 
\^{k) 

Proof. The lemma follows from the easily verified fact that in our stochas
tic procedure all automaton graphs with k vertices are generated with 
equal probabilities; in other words, all graphs of the set ^(k) are equiprob
able. Note that here we are making essential use of the fact that ^(k) is 
the set of all pairwise nonidentical automaton graphs. Were ^(k) the set 
of, say, nonisomorphic graphs. Lemma 6 would be false, as is easily seen 
(see also Supplementary Material to Chapter I V ) . 

V.4. Statistical estimate of the accessibility spectrum for automaton 
graphs 

The aim of this section is to prove the following theorem: 

T H E O R E M 5.4. There exist positive constants and C2 such that al
most all automaton graphs G with k vertices have the following property: 
For any vertex ^¿ of the graph G and I ^ log^k, the accessibility spectrum 
^<G,IF>(0 satisfies the inequality 

The theorem will be proved by an examination of the stochastic procedure 
generating automaton graphs with k vertices. 

Let p(k,C^,C2) be the probability that the stochastic procedure generates 
an automaton graph not satisfying the statement of the theorem, i.e., there 
exists a vertex ¿̂ G G such that 

is false for some I S log,„k. By Lemma 6, Theorem 5.4 will be proved 

if we can show that there exist > 0 and C2 > 0 such that 

p ( / c , C i , C 2 ) ^ 0 as k ^ GO. 

Let pQ{k,Ci,C2) be the probability that our stochastic procedure generates 
an automaton graph whose accessibility spectrum has the property: 
D^Q^g^y ( / ) ^ m^^^ is false for some / ^ log^k. 

property E. Let p^k) be the probabihty that the above stochastic procedure 
generates an automaton graph with property E. 

L E M M A 6 ( R E D U C T I O N T O P R O B A B I L I T I E S ) . 
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Po( fc ,C i ,C2)á 

If the /i-base of an automaton graph G can be converted into a tree by 
deleting exactly / edges (naturally, edges issuing from the first h — \ levels), 
we shall say that the h-base of G differs from a tree at i points. 

Assume that the /i-base of a graph G differs from a tree at most at one 
point, i.e., it is either a tree or can be converted into one by deleting 
a single edge. It is then easily seen that for any / ^ h 

/ ) < G . . o > (0 ^ 1 + (m - 1) + (m - l ) m + . . . + (m - l ) m ^ - \ 

and so 

Together with the preceding arguments, this implies that Theorem 5.4 will 
follow from 

LEMMA 7. Let p(k) be the probability that the stochastic procedure 
generates an automaton graph whose l^log^k^-base differs from a tree at 
most at one point. Then, for sufficiently large fc, 

/7 ( fc)áfc-« /^ 

Proof Let us assume that throughout the stochastic procedure the 
edges (including those within the same level) are connected one by one 
rather than simultaneously. This implies, of course, that edges of level 
0 come first, then those of level 1, and so on. Suppose that in the course of 
this procedure an edge d is connected to a vertex to which another edge 
was connected at an earlier stage of the procedure (Figure 49). W e shall 
then say that the edge d distorts the tree. It is clear that p{k) is precisely the 
probability that more than one edge of the first ] ^ log,„ fc [ - 1 levels distort 
the tree during the procedure. 

* Here and below, the phrase ''A(k) is valid for sufficiently large /c" means that there exists 
ko such that A(k) is valid for all k ^ /CQ. Similarly, "A^ß(k) is true for sufficiently large k de
pending on α but not on jS" means that for any α there exists k^ such that A^ß(k) is true for 
any β and all k ^ k^. 

Obviously 

p{KC,,C2)úkpo{KC,,C2y 

Therefore, the theorem will be proved if we show that there exist > 0, 
C2 > 0 and ε > 0 such that, for sufficiently large fc,* 

1 
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Figure 49 

Consider an arbitrary edge d of level h ^ ] ¿ l o g ^ f c [ — 1. Obviously, 
when our stochastic procedure dictates that this edge be connected at 
random to the vertices ^ Ο > ^ Ι > · · · » ^ Λ - Ι » the number of "used" vertices 
(vertices to which an edge is already connected) must be less than the maximal 
possible number of vertices of the first ft -H 1 levels, i.e., less than 1 + m + 
+ - F . . . + m^^KBuil + m + + . . . -H m"""^ < m^^^ ^ m^/^/^Thus 
the probability that the edge d can distort the tree is less than m^k^'^/k = 
= m^k~^'^. This means that the probability that more than one edge in 
the first ] ¿ l o g ^ / C [ - 1 levels will distort the tree, i.e., p(fe), is less than 
η 

Σ b{r,n,p), where η is the maximal possible number of edges in the first 
r = 2 

] ^ l o g ^ / C [ - l levels, ρ = m^k~^'^ and b{r,n,p) is the probability of r 
successful outcomes and η — r failures in η Bernoulli trials with proba-

n 
bility ρ for success and ^ = 1 - ρ for failure. Let us estimate Σ b{r,n,p). 

r = 2 

Obviously, η < rrv'k^'^. Therefore the expectation pn is less than m^k~^'^ χ 
X m^k^'^, and so, for sufficiently large fe, it is less than 2. 

N o w the quantity 

b{r,n,p) = σ„ργ-^ 

satisfies the inequality b(r,n,p) > b{r -l· Ι,η,ρ) for any r ^ pn. Therefore, 
in our case, fc(2,n,p) > fc(3,M,p) > h(4,n,p) > . . . , and so 
η 

X b(r,n,p) < nb{Xn,p) <m^k'l^C\^i,m (m^k-'i^f{\ - m^k'l^r"^""-^ < 

<m'k''^C\.,,.ie ( m ^ f e - ^ / ^ < m'^k-"^ 

For sufficiently large fe, the last expression is bounded above by fe"^/^. 
This completes the proof of the lemma. 

V.5. Statistical estimate of the diameter. Statement of the fundamental 
result 

The diameter of an automaton graph G is the smallest number such that 
if one of any two vertices ¿̂ and qj in G is accessible from the other, it is 
so accessible by an input word of length at most d^-
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P { / / ( / c ) > C l o g , , , k } < 

where ε is a positive constant. 

W e shall prove the fundamental lemma in Section V.7. 

It is easy to see that there are automaton graphs with k vertices whose 
diameters are k - 1. Conversely, it is also easily seen that there are autom
aton graphs with k vertices which have far smaller diameters. Our goal is 
now to determine the diameter of almost all automaton graphs. W e reiterate 
that we are dealing with automaton graphs over a fixed input alphabet 
X = { x i , . . . , x ,„} , where m = const ^ 2. 

Our fundamental result is 

T H E O R E M 5.5. Almost all automaton graphs with k vertices have diameter 
at most C log,,, /c, where C is a constant which depends on m and approaches 
unity with increasing m. 

W e immediately reduce the proof of this theorem to that of a lemma 
concerning the height of automaton graphs. 

Consider the stochastic procedure generating automaton graphs with 
k vertices. Let D{k) denote the random variable whose values are the 
diameters of the automaton graphs generated by the procedure. 

It follows from Lemma 6 that Theorem 5.5 will be proved if we show that 

P{D{k) > C l o g , , , k } - > 0 as k-> oo, 

where C is a constant depending on m which approaches unity with in
creasing m. 

The height of the automaton graph generated by our procedure is 
a random variable which we denote by H{k). Recall that the height of an 
automaton graph G is the smallest number /i^ such that any vertex qj 
accessible from q^ is accessible by an input word of length at most h^. 
Thus the variable H{k) is precisely the number of levels constructed in 
the course of the stochastic procedure (not counting level 0). 

It is easily seen that 

P{D{k)> 1} <kP{H(k)> I}. 

Thus, the proof of Theorem 5.5 reduces to verification of the following 
lemma: 

F U N D A M E N T A L L E M M A . There exists a constant C which depends on m 
and approaches unity with increasing m, such that for sufficiently large k 

1 
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P{X{n,p) ^λ} < e^n 1 -
2pn 

Proof. W e first prove the following proposition. 
A. For any ρ > 0 and any natural numbers η and a, such that ct g pn, 

[ η \ 

P{X{n,p) Spn-(x} <en[l -
2pn J 

Let b(r,n,p) be the probability of r successful outcomes and η — r failures 
in η Bernoulh trials with probability ρ for success and q = 1 - pior failure. 
Then 

Ρ{Χ{η,ρ)^λ}= Σ b{r.n,p). 
r = 0 

W e know that for fixed η and ρ the quantity 

fe(r,n,p) = σ„ργ-^ 
satisfies the inequality b(r - Ι ,η,ρ) < b{r,n,p) for any natural number 
r ^ pn. Hence, since α is a natural number, 

P{X{n,p) á pn - a} = P{X{n,p) ^ [pn - a ] } = P { X ( n , p ) ^ [pn] - a} < 

< n/?([pn] - α,η,ρ) = n C M - « p W - γ - W = nb{lpnln,p) χ 

( [ ρ η ] - α + 1 ) ( [ ρ η ] - α + 2 ) . . . [ ρ η ] fq^ ^ 

(η - [pn + α)(η - [pn] + α - l ) . . . ( n - [pn] + 1) \p 

n{pn - α + l )(pn - α + 2 ) . . . p n / q y 

(n - pn + a) (n - pn + α - 1 ) . . . (n - pn + 1) 

V.6. Auxiliary propositions from probability theory 

In this section we prove certain estimates concerning Bernoulh trials and 
random allocations of numbered balls to numbered boxes. These estimates 
(see Lemmas 8, 9, 12) will be needed to prove the fundamental lemma. 

Consider a sequence of η Bernoulli trials with probability ρ for success 
and ^ = 1 — ρ for failure. Let X{n,p) denote the random variable defined 
as the number of successful outcomes in this sequence. 

LEMMA 8. For any ρ > 0, any natural number η and any A, 0 g >l ̂  pn, 

ρ η - λ γ " - ' - ' 
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(n-pnf \p 

nipn — α + 1) (pn — α + 2 ) . . . pn 

It follows from the inequalities 

(X - < (X - ^ + 1)(X - 1 ) < . . . < ( x - y V x - I 
that 

(pn - α + \)(pn - α + 2 ) . . . p n < {pn - i ( a - l))"". 

Therefore, 

n(pn - i ( a - 1)" 

{prif 

= η 1 -
α - 1 

2ρπ 
= n 1 -

α Λ 

2ρη 
1 + 

1 

2ρη — α 

Since α ^ ρπ, we have 

1 + 
1 

2ρη — α 
1 + 

V Ρη 
1 Λ " " 

< e. 

and so 

Ρ { Α : ( η , ρ ) ^ ηρ - α} < en 1 -
2ρη 

This proves Proposition Α . 
Proposition A was proved under the assumption that α is a natural 

number. W e now consider the case of an arbitrary positive number α ^ 1. 
Then 

P{X(n,p)^ pn - OÍ} ^ Ρ{X(n,p) ^ pn - [ a ] } 

and, by Proposition A , 

Ρ { Χ ( η , ρ ) á pn - [ α ] } < en - J^j • 

N o w the inequalities 

1 - Μ 
2pn 

< 1 -
α - 1 

2pn 

^ n{pn — cc + i){pn — (X + 2).. .pn ( 
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2pn J \ 2pn 

P{X{n,p) ^ρη-α}< e'n {\ - . 

Thus, for any λ,Ο ^ λ ^ pn - 1, 

P{X{n,p) ^λ} = P{X{n,p) ^ pn - (pn - λ)} < e^n (l -
2pn 

It is easily seen that this inequality also holds for — 1 < /I ^ pn. 
This proves the lemma. 

LEMMA 9. For any ρ > 0, any natural number η and any λ, pn < λ ^ η , 

χ ^ ^ (Λ -pn-3 ) / 2 

Ρ{Χ{η,ρ)^λ\ <n¡ 

Proof. As in the proof of Lemma 8, we first prove a weaker assertion: 
B. For any ρ > 0 and any natural numbers η and OL such that cc ^ η — pn, 

P{X{n,p) ^ pn - f a} < n ĵ̂ l + . 

The proof of this proposition is analogous to that of Proposition A, 
except that here we use the fact that b[r,n,p) > b(r + Ι,η,ρ) for any r ^ pn. 
W e have 

Ρ{Χ{η,ρ) ^ pn + α} = P { X ( n , p ) ^ ]pn + a [ } = P { X ( n , p ) ^ ] p n [ + a} < 

< nfc(]pn[ + α,η,ρ) = „cr [ + yp«[ + «^''-i/'''[-« = nbQpn[,n,p) χ 

^ ( n - ] p n [ ) ( n - ] p n [ - l ) . . . ( n - ] p n [ - a + 1) /pY ^ 

( ] P « [ + l ) ( ] P « [ + 2 ) . . . ( ] p n [ + a) [qJ ^ 

η{η-ρηΥ / pY nipnf 

( p n + l ) ( p n - f 2 ) . . . ( pn + a) \q J (pn + 1) (pn + 2 ) . . . (pn + a) * 

Since 

(pn 4- 1) (pn + 2 ) . . . (pn + a) ^ ((pn + 1) (pn + a))^/^ > {ρηγί^ρη + aifi^ 

and 

give 
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= η 

= η 

pn J ' \ pn J 

pn + α 1 Y^-i)/2 
pn pn 

p n + a 1 y«-i)/2 ^ 

\ pn + oc ~" \ pn / 

pn J \ 2 pn + (X 

ρη + α γ - - ^ > ^ ^ pn j f pn + '^^' 

pn J pn + OL I \ pn 

It follows that for any /Ι,ρη + 3 ^ /I ^ n, 

F { X ( n , p ) ^ ^ } = P { X ( n , p ) ^ pn + μ - pn)} < η ^ ( ^ - ^ ^ 

(A -p«-3) /2 

It is easily seen that this inequality also holds for any λ,ρη < λ < pn + 3. 
This proves the lemma. 

W e now consider the random allocation of η numbered balls to k num
bered boxes; ω of the boxes are marked. One can imagine this done by 
throwing η unnumbered balls into k numbered boxes, ω of which are marked. 
It is assumed that any ball falls into any box with the same probability. 
Let Y kin) denote the random variable defined as the number of unmarked 
boxes which receive a ball. 

This process is sometimes conveniently represented by a sequence of η 
trials ξι,ξ2, "">ζ„, where is the throw of the i-th ball. Let ξι denote the 
successful outcome of the i-th trial, where success means that the i-th ball 

it follows that 
η{ρηΥ η 

P{Xin,p) ^ pn + « } < ( ^ „ ^ . . ^ ^ ^ ^ = ( J ^ " ^ · 

This proves Proposition B. 
Proposition Β was proved under the assumption that α is a natural 

number. W e now let α be an arbitrary positive number not less than 3. 
Then 

P{X{n,p) ^ pn + a} ^ P{X(n.p) ^ pn + [ a ] } < 

< n / ( l + i ^ l < n / ( l + 
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falls into an empty unmarked box (i.e., an unmarked box into which no 
ball has fallen in the preceding trials ( ^ ^ , . . . , i ) . It is clear that the proba
bility Ρ (ξι) of success in the i-th trial depends on the number of successful 
outcomes in the preceding trials. On the other hand, it is easy to see that 
for any / 

' ^ ^ ^ < Ρ { 1 } ^ ' ί ^ . (6) 

The random variable Y^{n) may also be represented as the number of 
successful outcomes in the sequence of trials (^1,^2» · · ·»<^π· 

Later we shall deal primarily with the case in which the number ω of 
marked boxes is 0. The random variable 7^ (n) will then be denoted by 

YM 
Before stating the next lemma, we indicate a certain relation between 

the random variable Υ^{η) and the Bernoulli random variable X{n,p): 

P<X h , <λ\< 
k — ω 

k 

^ P{Y^in) ^ A} < P{X 

k-0)\ 
>λ\> 

^ P{Yi;(n) ^λ}> p \ x 

( k — ω — η 
η, ;— 

/ k — ω — η 

< λ 

> λ 

(7) 

( 8 ) 

These inequalities follow from inequality (6). 

LEMMA 10. For any natural number k, any natural number ω or ω = 0, 
and c.y V ^ 0, δ ^ I such that k — ω — δ > 0, 

P<Yt 
(1 + v)¿ I 

k — ω — δ 
<ö\<e 

(1 + v)¿ ^ 
k — ω — δ 

1 -
\ v á - 2 

2(1 + V) 

Proof. W e first show that 

Ρ{Υ^(η)^δ} ^ pi^x(n, k — ω — δ 
<δ (9) 

T o this end, consider the sequence of trials ξι,...,ξ„ appearing in the 
definition of Υ^{η), with a different definition of successful outcome: 

a) if the number of successful outcomes in the preceding trials is at 
most δ, the successful outcome ξί is the same as before, i.e., the i-th ball 
falls into an empty unmarked box; 



290 STATISTICAL ESTIMATES FOR PARAMETERS A N D SPECTRA OF A U T O M A T A [V.6 

b) if the number of successful outcomes in the preceding trials is greater 
than (5, the event ξι is defined to be any certain event. 

We now define a new random variable Yk'^{n) as the number of successful 
outcomes, by the new definition, in the sequence of trials ξι,...,ξ„. It 
is obvious that for any λ ^ δ 

and consequently 

Ρ{Υ^{η) = λ} = Ρ{Υΐ^'{η) = λ} 

ρ{Υΐ(ή) = p{yr'(n) Ú δ}. 
On the other hand, it is easy to establish the required relation between 

the random variable Y^'^{ri) and the Bernoulli variable X{n,p). In fact, 
although the probability P ( | ¿ ) of successful outcome does depend on the 
outcomes of the preceding trials, 

P{1} ^ 
k — ω — δ 

Therefore, 

Ρ{Υ^''{η)^δ}^ρί^χ(η, 
k — ω — δ 

<δ 

so that inequahty (9) holds. 
Let s be an arbitrary real number (not necessarily natural), at least 1, 

and let 0 ^ ó ^ p [ s ] . By Lemma 8, 

P{X([_slp)^8]<e'is-] 1 -
2p[s] 

Let ps - ¿ > 2. Then 

and so 

1 -

1 -

ps - ¿ y » - * - 2 

2ps 

ps-d\ 

1 + 
1 

ps + δ 

ps-ö-2 

ps-a-2 

2ps 
1 -

ps _ ¿ \ p s - » - 2 

2ps 

Ρ{Χ{ΐ8ΐρ)^δ}<ε^{3] 1 -
p s - δ γ - ' - ^ 

2ps 
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It is easily seen that this inequality is also valid when 0 ^ ps - δ ^ 2. 
W e have thus proved that this inequality holds for any real s ^ 1 and 

δ,Ο^δ^ ps. 
Let fe, ω , δ and ν satisfy the assumptions of the lemma. Set 

k — ω — δ 
Ρ = and s = 

(1 + ν)δ 

k — ω — δ 
fe. 

It is not difficult to see that s ^ 1 and δ ^ ps. Therefore, using the above 
estimate for P{X{ls~\,p) ^ á } , we get 

(1 + ν)δ 

k — ω — δ 

fe_-ω^^ 

fe J 
(1 + ν)δ 

k ~ ω — δ 
1 -

2(1 + ν) 

νδ-2 

This inequality and (9) imply the statement of the lemma. 

LEMMA 11. For any natural numbers fe and μ, nonnegative number ν 
and X such that 0 < χ < feμ/(μ + 1) — μ, 

- ( l + v)fc ln( l - AJ_i(x + )̂ < X > < 

- ( 1 - v)icln (1 - i i ± l ( x + ^ ) 
ßk 

1 -
\ ν χ / μ - 2 

2(1 + ν) 

Proof. W e first prove the following proposition: 
C. For any natural numbers fe, μ, δ such that (μ + l )á < fe, and any 

nonnegative number v. 

- (1 + v)/tln (1 - -^'-^δ <μδ}< 

- (1 + v)fcln (1 - ^^"4^^ 1 -
V \ 

2(1 + V ) 

vá -2 

Let fe, μ, (5, ν satisfy the assumptions of Proposition C. Consider arbitrary 
natural numbers η^, · · ·» and denote their sum by n^. W e first prove 
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an inequality: 

Ρ{ΥΛηο)<μδ}<Ρ{Υ>,)<δ} + 

+ P{Yi(n2) < á} + . . . + Ρ { 7 Γ ' ^ ' ( « ί ) < á} + . . . 

+ Ρ{Υί'-'^'{η^)<δ}. (10) 

Suppose that HQ balls are thrown at random into k boxes. This may be 
done as follows: first throw Πι balls, then « 2 , then n^, and so on. Let Ai 
denote the event: After the first + « 2 + · · · + " i - i balls have been 
thrown, the number of occupied boxes is at least {i — 1)6, and after another 
Hi balls are thrown, the number of occupied boxes is less than i¿. Clearly, 
if UQ balls have been thrown and the number of occupied boxes turns out 
to be less than μδ, i.e., Υ^{ηο) < μδ, this means that at least one of the 
events Aj^, A2,..., Αμ has occurred. Therefore, 

P{Y,(no) < μδ} < P{A,} + P{A2} + . . . + P{A^}. 

Now, the occurrence of the event A i implies that if balls are thrown into 
the boxes, of which x̂  = (i — 1) á + ε are already occupied (where ε is 
some natural number), there will be less than δ — ε occupied boxes. 

Thus, the probability of Ai cannot exceed that of the event 7^'" ^^^^'(rii) < 
< δ - ε. But, as is easily seen, the probability of Y^k'^^^^^i^d < δ - ε 
cannot exceed that of the event Y^i'^^^rii) < δ. Hence -
p | y a - i ) ¿ ( „ . ) ^ and this proves inequality (10). 

N o w set 

Then 

(1 + ν)δ 

k - δ 
• ,ni = 

(1 + ν)δ 

k - ιδ 

(1 + ν)δ 

k - μδ 

no= Σ Σ 
i= 1 

Rl + ν)δ Ί < 
Ii-id A: - id 

Since {μ + ί)δ < k, we have k — ΐδ > 0 for any I < i ^ μ + I. Therefore 

f"*' (1 + ν)δ 

i = l k - Ϊδ k - ίδ 
-kdi = 

= - (1 + v)kln(k - ϊδ)]"^" < - (1 + v)fcln ^1 -
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Since P { y ^ ( n ) < x } ^ Ρ { Υ ^ ( η ο ) < x} for η ^ no, it follows from inequality 
(10) that 

- (1 + v)fcln 1 -
μ+Ι 

^ <μδ^^Ρ{Υ,{ηο)<μδ} < 

< t Ρ{Υ'ί-'^'(η^<δ}= f P\Y<¿-'^' 
i = l i = l 

(1 + ν)δ 

k - ίδ 

Since k — ίδ > 0, the probabilities 

ρ ) y ( í - l ) í "(1 + ν)δ 

k - ίδ 
< δ 

may be estimated by an application of Lemma 10. The result is 

(1 + ν)δ 

i= 1 k - ίδ 
<δ\< 

(1 + ν)δ 

k - ίδ 
1 -

v i - 2 

- (1 + v)fcln (1 - ^ V ¿ 

2(1 + V ) , 

1 -
2(1 + V ) , 

νδ-2 

This completes the proof of Proposition C. 
W e are now ready to prove Lemma 11. Let fc, μ, χ and ν satisfy the assump

tions of Lemma 11. Consider the smallest x' such that x' > χ and χ'/μ is 
a natural number; obviously, x' < χ -I- μ. It is easy to see that when δ = χ'/μ 
the numbers fc, μ, δ, ν satisfy the assumptions of Proposition C. Therefore, 

Ρ iYk - (1 + v)fcln \ i 

- (1 + v)fcln (l 

- (1 + v)fcln 1 

J / 
< X > < 

1 -
2(1 + v) 

νχΊμ-2 
< 

μk 
( X + μ) 1 -

2(1 + ν) 

ν ϊ / μ - 2 
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P\Yk - (1 + v)fcln (1 - ^ ^ x'^ 
μk 

< x' > > 

- ( l + v ) / c l n ( l - - i ^ - i ( x + / i ) 
μk 

<x>. 

This proves Lemma II. 

LEMMA 12. Le{ d and ν be positive numbers and μ a natural number, all 
arbitrary but fixed. Then, for any sufficiently large natural numbers k and ζ 
such that ζ ^ dk. 

ρ { η ( ζ ) < ( ι - - ί ) -
V 
1 - e - ^ « » + ' ' M U e ^ z 1 -

V \ 

2(1 + V) 

where ^ ¿ is a positive constant depending on v, μ and d. 

Proof Set 

μ+Ι 

Then 

ζ = 

ζ < 

- (1 + v)fcln 1 -
μk 

-(.X + μ) 

- ( 1 + v ) f c l n ( l - - ί ^ ^ ( χ + μ) 

Isolating χ, we get 

Denote 

X > 
μ + 1 

/c(l - e _ _ - ζ / (1+ν)*1 _ 

x(z ) = — ^ k { l - β-^Λ'^"»*) - /ί. 
μ + 1 

It is not hard to see that for sufficiently large fc and ζ the quantity x ( z ) 
satisfies the assumptions of Lemma 11. Substituting ζ for 

- (1 + v)fc In 1 - μ + 1 
μk 

(χ + μ) 

On the other hand, since x' < χ + μ. 
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and x ( z ) for χ in the statement of Lenmia 11, we see that, for sufficiently 
large k and z. 

k{\ - e _ -2 / ( l+v) l t^ 

1 -
2(1 + v)̂  

(v|μ){{kμ|{μ + 1))(1 - exp( - z/(l + v)k)) - μ] - 1 

1 - e-' 
N o w let ζ ^ dk. Then, using the fact that lim = 1, it is not difficult 

to see that for sufficiently large ζ the right-hand side of the above inequality 
is smaller than 

e^z 1 -
2(1 + V ) 

where C^^ ¿ is a positive constant depending on v, μ and d. 
T o complete the proof, note that for sufficiently large k and ζ 

Therefore, 

p{ y , ( z ) < ( 1 - 1 -e -2/(1 +ν)* 

2(1 + V ) 

This proves the lemma. 
In conclusion, we indicate the intuitive meaning of Lemma 12. It is not 

difficult to see that for any fixed positive ν the upper bound provided by 
Lemma 12 for the probabihty 

p { n ( z ) < ( i - i ) * 
that is. 

e^z 1 -

1 _ g - 2 / ( l + v ) 

2(1 + V ) 
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with probability 1. 

V.7. Proof of the Fundamental Lemma 

The stochastic procedure described in Section V . 3 for generation of autom
aton graphs with k vertices will be split into six stages and each of these 
considered separately. 

Before going on to consider these stages, we adopt some conventions. 
Throughout the sequel, the term stochastic procedure will always refer 
to the stochastic procedure generating automaton graphs with exactly k 
vertices. The number of vertices of level h and the number of vertices in 
the Λ-base, as given by the stochastic procedure, will be denoted by and 
Df,, respectively. W e shall also say that the h-th level has growth factor a 
(at most a, at least a) if = αί,,-ι (ί/, ^ α ί^ . ι , ^ A Í A - I ) -

Stage 1 begins at the beginning of the stochastic process and ends (provided 
the stochastic procedure has not yet ended) at a step such that D;,̂  _ ̂  < 
< k'f^ but D, , ^ fc^/^ 

Obviously, the probability that the first stage yields an Λ-base which differs 
from a tree at more than one point is not greater than the probability p{k) 
that the first ] i l o g ^ f c [ steps yield an /i-base with a similar property. By 
Lemma 7, for sufficiently large k the probability p(k) satisfies the inequality 
p(k) ¿ k~^'\ This implies 

LEMMA 13. Let Pi{k) be the probability of the following composite event: 
1) for all h ^ h^, 

2) the number i,,̂  of vertices of the last level constructed at the first stage 
satisfies the inequality 

t. ^ - ' L I - i f c ^ / ö ^ l f c ^ / ^ 
m 

Then Pi(k)> 1 - fe ^^'^ for sufficiently large fe. 

approaches 0 as ζ approaches infinity. This means that when k and z, 
ζ ^ dk, approach infinity, and ζ balls are thrown at random into k boxes, 
the number of occupied boxes is at least 
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Let us estimate the right-hand side of this equality. T o this end, we use 
inequality (8), plus the fact that I>/,_i < k/m"^ and so < D;,_i < k/m^. 
It follows that 

' > m (1 — ^ 1 y = 
m 

>P<X{mt,_i,l ^ 
m 

Stage 2 begins immediately after Stage 1 and ends (provided the stochastic 
procedure has not yet ended) at a step such that Z) / , ^ - ! < k/m*' but 
DH, ^ k/m\ 

Let ifc-i ^ \k^'^, D^-i < k/m^ and let C be a constant, say C = 3. W e 
claim that under these assumptions the h-th level satisfies the inequality 

for sufficiently large k depending on m and C but not on h. 
The stochastic procedure generating automaton graphs may be repre

sented by an experiment in which mk balls are thrown into k boxes. More 
precisely, the free ends of the edges may be regarded as balls, the vertices 

ζίι» · ·»^fc - 1 as boxes; a ball falling into an unoccupied box means that 
the corresponding free end of an edge has been connected to a vertex to 
which no other edge has yet been connected. Similarly, construction of 
the h-th level may be represented by an experiment in which mi,,_i balls 
are thrown into k boxes, of which Df^.^ are marked (the marked boxes 
correspond to the vertices to which free ends of edges have already been 
connected). In this interpretation, t^ will correspond to the number of 
occupied unmarked boxes. Therefore, for fixed D^-i and 

P{t, = X}=P{Y^^-^{mt,^,) = X} 
and so 

I / m + 2 \ , 
PUn^mli ^ ) ί , _ Λ = 
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< e^mt,_, 

m J \ m 

( l/m"^ Y l /m>i ,_i - l 

\ 2(1 - ( m + l)/m^), 

J \ ( l / m ^ ) i h - i - l 

= e^mt,., 1 -
2(m^ - m - 1) 

Since ^ jk^^^, it follows that for any fixed C and for sufficiently large 
k depending on m and C, the last expression is smaller than 1/fĉ . This 
proves inequahty (11). 

Let /ii + 1,/ji + 2 , . . . , / i 2 be the levels constructed at Stage 2. The 
number of these levels is clearly smaller than k. 

N o w let k be sufficiently large, say, so large that inequality (11) holds 
for the C in question. 

Suppose that the second assumption of Lemma 13 is valid for Stage 1. 
Then level satisfies the assumptions under which inequality (11) holds, 
and so the {hi + l)-th level has growth factor at least m(l — (m + 2)/rn^) 
with probability greater than 1 — 1/fe .̂ It is also easy to see, on the basis of 
the above assumption on Stage 1 and using inequality (11), that if the levels 
/ii + 1, /ii + 2 , . . . , /ii + ί — 1 (with h^ + i — 1 < /12) have growth factor 
at least m(l - (m + 2)/m% then the (h^ + 0-th level will also have growth 
factor at least m(l - (m + 2)/m% with probability greater than 1 - l//c^. 
Therefore, if Stage 1 satisfies the second assumption of Lemma 13, then all 
levels constructed at Stage 2 have growth factor at least m(l — (m + 2)/rn^) 
with probability 

ΐ γ . - / . . / 1\' 1 
P2{k)> 1 -

k'y 

Together with Lemma 13, this implies the following 

LEMMA 14. Let ρ i^2Ík) denote the probability of the following composite 
event: 

1) for any h ^ ^2, 

D . > m 1 -

Using Lemma 8, we get 
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1 \ . . _ 1 \ 
1 - — I f e , but ^ (1 -

2m 
fe. 

Throughout our study of this stage, we shall assume that at each step 
/i(/i = 1,2, 3 , . . . ) the edges of the {h — l)-th level are connected as follows: 
one first connects (at random) the free ends of the edges issuing from one 
vertex, then those of the edges issuing from a second vertex, a third vertex, 
and so on. In other words, each step h is divided into substeps, in each of 
which only the edges (more precisely, free ends of edges) issuing from a 
single vertex are connected (there are exactly m such edges). W e shall so 
arrange the substeps that the substep of step 1 comes first, followed by the 
substeps of step 2, then of step 3, and so on. Let S(r) denote the number of 
occupied vertices (i.e., vertices to which the free ends of some edges have 
been connected) after the first r substeps. Obviously, 

P{S{r) = X\ = P{YMr) = X}. 

W e shall now study the quantity S'{r) = S{r) — r. Intuitively, if step h 
in some concrete realization of the stochastic procedure ends at the r-th 
substep, the number of vertices of level h constructed at this step is precisely 
S'{r), 

It follows from the definition of Stage 3 that the substeps to which it 
corresponds have r-values such that 

5 < ' · < ( 1 - ^ΓΙ^^· (12) m 

Therefore, if we prove that the probability of the event S'{r) ^ A is greater 
than ρ for all r satisfying (12), it will follow that all levels constructed at 
Stage 3 have at least λ vertices, with probability greater than p. 

2) the number H^2 of levels constructed at Stages 1 and 2 satisfies the 
inequality 

Then, for sufficiently large fe, 

^ Pi{k)pAk) > ( l - (l - ^ 1 - k-'i\ 

Stage 3 begins immediately after Stage 2 and ends (provided the stochas
tic procedure has not yet ended) at a step such that 
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Let us estimate the probabihty P{S'{r) ^ / I } : we shall show that there is 
a positive constant C„ (which generally depends on m) such that, for suf
ficiently large k and any fixed r satisfying (12), 

P{S'(r) ^ C^k} >l-e^m(l - fc · 0.9996^'^/'"', (13) 

where C is a positive constant. 
Accordingly, we have 

P { S ' ( r ) ^ C^fc} = P{S{r) ^ r + CJi] = 

= Ρ {n(mr) ^ r + C^fc} = 1 - P{n (mr ) < r + C^fc}. 

N o w set μ = 100· 2'", V = 0.001 and d = m(l - 1/2^") in Lemma 12. Let 
fc and ζ be sufficiently large and ζ ^ m(l — 1/2'")fc. Then 

Ρ I y , ( z ) < ( l - fc (1 - e-'^''^^'")^< e^z·0.9996^^ 

where C is a positive constant. 
N o w assume that we have found a positive constant such that, for 

any r satisfying (12), 

^ + C„k^(l- - ^ " j k (i - e - o - ^ ' ^ - / * ) . (14) 

Then, obviously, if r satisfies inequality (12), 

P{Y,{mr)<r + C^k}^ 

<P \Ykimr) < 1 Ϊ Ί fc (1 - e -o -999mr/fc) I < ^ 3 ^ r · 0.9996^'"'· < 
- 1 ' ' ' , 100-2'"; j 

< ^^m A - — ^ fc · 0.9996 '̂̂ /'"' 

and, consequently, inequality (13) holds. 
Thus, in order to prove inequality (13) it will suffice to prove the fol

lowing proposition: 
A . There exists a positive constant which satisfies inequality (14), 

whenever r satisfies inequality (12). 

file:///Ykimr
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1 - fc 1 _ β - 0 . 9 9 9 . Γ Α 

100 ^ '^z 

viewed as a function of r over the interval fc/m^ ^ r ^ (1 — 1/2'") fe, has a 
minimum at either r = fe/m^ or r = (1 - 1/2'") fe. Therefore, Proposition A 
will be proved if we can show that there exists a positive constant such 
that 

" ( ' - Ί « ^ - ) ' ( > - ' " ° " ' - " ' - ) - ^ ϊ ^ - * · 
that is, 

2) (1 -

that is, 

1 ^- ) f 1 - e - ' » - -V ^ Cm; 
lOO^""/ V -

1 ' · Ί _ g - 0 . 9 9 9 ( - , / « ( l - l / 2 " ) * \ _ Η _ C„fe, 
100· 2" 

- 1 -
1 \ 

100· 2"· 
. - 0 . 9 9 9 m ( l - l / 2 " ' ) ^ > r 

100-2'" 

It is not difficult to show (using, e.g., the power-series expansion of the 
function e'"") that for any fixed m ^ 2 the left-hand sides of these inequalities 
are positive. Hence, for any fixed m (in our case we always have m ^ 2), 
there exists a positive constant satisfying these inequalities. 

This proves Proposition A . and hence inequality (13) 
Let r be a number satisfying (12). It follows from (13) that, for any C, 

for sufficiently large fc depending on m and C but not on r, 

P { 5 ' ( r ) ^ C ^ f c } > l - ^ . (130 

N o w consider the probability that all r-values corresponding to Stage 
3 satisfy the inequality S'{r) ^ C^fc; this is the probability 

R (1 - i / 2 - ) f c ^ 

\ Π {S'{r)^C„k)\. 
I r = k/m^ J 

Using the standard methods of the calculus, one readily shows that the 
expression 

1 ^ 
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Using inequality (13'), we see that for sufficiently large k, 

ni - l/2'")k 1 1 1 

W e have thus proved 

LEMMA 15. Let (fc) be the probability of the follomng composite event: 
1) all levels constructed at Stage 3 contain at least CJi vertices, where 

2) the number of levels constructed at Stage 3 satisfies the inequality 

CJ< c. 
Then, for any C, p^ik) > 1 — 1/k^ for sufficiently large fc. 

Stage 4 begins immediately after Stage 3 and ends (provided the stochastic 
procedure has not yet ended) at a step such that > (log2 fc)^ but 
í , , ^ ( l o g 2 kf. 

Let h be any step of Stage 4, so that 

í . - i > ( l o g 2 f c ) ' and Z ) , . , ^ " Í ^ ) ^ ' 

W e shall show that for any C and for all sufficiently large fc depending on 
m and C but not on h, 

P W ^ - — t , - , \ > l - - c ^ . (15) 1.5m I , 1 

Reasoning exactly as for Stage 2, one easily sees that for fixed D,,_ i and 

P { f , = A } = P{Y^''-^{mt,_,) = X} 
and so 

1.5m ] f „ 1.5m 
^ t , _ , j = p | y , « ' - ( m t , _ , ) á — 

W e now estimate the right-hand side of this equality. Using inequality (7) 
and also the fact that D^-i ^ (1 - l/2'")fc, we get 

Ρ - (mi, _,) ^ ^ , | ^ Ρ 1̂  {mt,. „ ^ ' ^ ' ' " ^ ^ 
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_ 1.5m ] ^ „ L / 1 λ 1.5m ] 

~ 2-" 

= 1 - Ρ -;z 

Now, using Lemma 9, we get 

1.5m 

Pix 
/ 1 \ 1.5m . 1 mt,_ 

y τ) ^ Τ '""^J " 5j(0.5m/2-2")t;_,-3/2 · 

Consider the right-hand side of this inequahty. Since ( ^ - i > ( logj fc)^, it 
follows that for any C , for sufficiently large k depending only on m and 
C , the right-hand side of this inequality is smaller than l/íc* '̂. This proves 
inequality (15). 

Let k be so large that inequality (15) holds. It then follows from (15) 
that the /i-th level, constructed at Stage 4, has growth factor at most 1.5m/2'", 
with probability 1 — \l\f'. Together with the fact that the number of 
levels is at most k, this implies that all levels constructed at Stage 4 have 
growth factor at most 1.5m/2"', with probability 

V'Ák) > 1 -
1 \ * 1 1 

.c > i - i ; ^ = i -

Now, if all the levels have a growth factor with this property, the number 
of levels constructed at Stage 4 is less than 

1 / ' ^ ^ 2 ^ 1 / 
1 0 g 2 m / i . 5 m f c = . r^^Og^k. 

m — l o g 2 1.5m 

W e have thus proved 

LEMMA 16. For any C and sufficiently large fc, the number of levels 
constructed at Stage 4 satisfies the inequality 

υ ^^^^^ 1 7 ^ 4 < \ — - l o g ^ f c 

m — l o g 2 1.5m 

with probability p^(k) > 1 - 1/fĉ . 
Stage 5 begins immediately after Stage 4 and ends (provided the stochas

tic procedure has not yet ended) at a step h^ such that t^^^i > 1201og2 fc 
but tf,^ S 1201og2fc. 

Let h be any step of Stage 5. W e shall show that for sufficiently large fc. 
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Reasoning exactly as for Stage 4, we get 

p L ^ h H - i \ > i - p \ x ( m t , _ „ 
1 \ 

> f i * - i 2" 
V y \. \ 

N o w , using Lemma 9 and the fact that m ^ 2 and i > 120 logj k, we get 

1 \ 
I 

/ 

2" 
^ 2 , Κ » ' ^ ' • - 1 

(2 · 2^3 · 2)*^ '^~^ '^ '^"" ' ' " '~^ '^ 2'ΐ '^' ' · ' ' '- '~^ 2<i '^°>i^°'°«2*-i 

24 log2 fc - 1 

Consequently, for sufficiently large k depending on m but not on h. 

This proves inequality (16). 
Inequality (16) implies that all levels constructed at Stage 5 have growth 

factor at most 2/3 with probabihty p^ik) > (1 - 1/fc^)* > 1 - l/fc^. Since 
Stage 5 begins with a level h for which ^ ( l o g 2 kf, we see that 

LEMMA 17. For sufficiently large fe, the number Η5 of levels constructed 
at Stage 5 satisfies the inequality 

Η5 < l o g 3 / 2 ( l o g 2 kY < (4 l o g 2 m) \og„ l o g 2 fc 

with probability p^{k) > 1 - 1/fĉ . 

Stage 6 begins immediately after Stage 5 and ends with the construction 
of an automaton graph. 

Recall that as long as no level has appeared in which all edges are con
nected to vertices of previously constructed levels, the stochastic procedure 
proceeds level by level, i.e., level 1 is constructed first, then level 2, and so 
on. W e call this part of the stochastic procedure its "levelwise" part; the 
levelwise part of Stage 6 is defined similarly. (Note that the levelwise part 
of the stochastic procedure includes the random connection of 

depending on m but not on h, 

p L ^ i t , . X > l - ^ . (16) 
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edges of the last level.) The levelwise part of the procedure after step h is 
that part of the levelwise part corresponding to steps Λ + 1, /i -h 2 , . . . 

Suppose that the first ho steps of the stochastic procedure have already 
been executed, and let D^^ = D, i,,̂ , = t. Then the number of vertices of 
the levelwise part after step ho is a random variable, say L ( D , i ) . N o w con
tinue the stochastic procedure to completion. Assume that this gives 
L ( D , t) = Lo > λ, where >1 is a fixed number. This means that the part in 
question of the stochastic procedure has involved random connection of 
free edges issuing from ί + L Q vertices (i.e. from the vertices of level ho 
and the following levels) to the vertices ί i » · · ·»^fc - 1 - Moreover, the fact 
that the levelwise part of the stochastic procedure has broken off when 
L ( D , t) = Lo means that during the random connection of the free ends 
of the edges issuing from the above ί + L Q vertices exactly L Q edges were 
connected to vertices to which no free ends had been connected before. 
Let us assume that in this part of the stochastic procedure, just as in Stage 
3, the random connection of edges proceeds by vertices; i.e., first all edges 
issuing from one vertex are connected, then all those issuing from a second 
vertex, a third, and so on. Moreover, this is done in such a way that the 
first vertices are those of level ho, then the vertices of level /IQ -f 1, and so 
on. Consider the first t -h λ vertices (in the order adopted for random con
nection of edges). The first t of these are obviously vertices of level ho, 
while the remaining λ belong to the following levels (though not all levels, 
since λ < Lo = L{D,t)), N o w L{D,t) = L Q > A by assumption, and so, 
once the edges issuing from the first t + λ vertices are connected, there are 
more than λ vertices to which no free ends of other edges have ever been 
connected (otherwise L(D, t) would be equal to λ). N o w there are mt + rnX 
such edges; their random connection may be represented by an experiment 
in which mt + mX balls are thrown at random into k boxes, D of which are 
marked (the marked boxes correspond to vertices to which free ends of 
edges have already been connected). Thus, the event L{D, t) > λ has prob
ability at most that of the event (mi -f mX) > λ: 

P{L{D,t) > λ} ^ P{Ykimt + mÁ) > λ}. (17) 

Let hs be the step at which Stage 5 ended, so that + 1 is the step at 
which Stage 6 began. Then 

Dh, ^f l-4rV and i , , ^ 1201og,fe. 
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p | L ( D , „ t , , ) > - ^ l o g , f c | < ^ . (18) 

By inequahty (17), 

p|l(D.„ i „ ) > - | l o g , / c | g p j y ' " ' (mi,, + Clog^/c) > - ^ l o g . f c j . 

Let us estimate the right-hand side of this inequality. Using inequality (8), 
Lemma 9 and the above estimates for and tf,^, we get 

P|y^> (mi,, + C log , fc) > ^ l o g , fc I ̂  
mi,, + C log , fc, ^ — log , fc| á 

^ Ρ JA-jm · 120 log , k + C log , fc, ^ ^ log , fc| < 

(120m + C ) log , fc 
'^(C-2'"/m(120m +C))<i /^»<^/"'-<*2°'"+'^>/2 '")iogjt-3/2 = 

(120m + C) l og , fc 
~ 2(l/2)(>"-log2( m(120m + C ) / C ) ( C / m - ( 1 2 0 m + C)/2 '")log2»-(3/2)(in-log2 (m(120m + C)/C)) ' 

Consider the expression 

m(120m + C ) \ / C 120m + 
m - log , -

• • m 

120m + C , m(120m + C ) 120m + C 
= C + log , m 

C , m(120m + C ) 

- m ' ° ^ ^ C · 

All its terms except the first approach zero as m increases. It follows quite 
easily that there exists CQ such that when C = CQ and m ^ 2 this expres
sion does not exceed 5. 

It follows that for C = CQ, when k is sufficiently large, 

Ρ j y f ^ ' (mi,, + C log2 k)>^ log2 fcj < ¿ -

and this proves inequality (18). 

W e now prove that there exists a positive constant CQ such that for 
sufficiently large k 
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Set 

\ ^ logzm ^ Colog^m ^ 1 

1 -h log,„(l - (m + 2)/m'^) m - l o g 2 1.5m m m ' 

It follows from the foregoing that, for sufficiently large fe, 

P{H{k)< C \og^ fe} > 1 - fe-'^/^ 

and so 
P { i / ( f e ) > C l o g , f e } < f e - ^ ° / ^ 

It is not difficult to see that for any m ^ 2 the constant C is well defined 
and approaches unity as m increases. 

This completes the proof of the fundamental lemma. 

N o w , note that the number of levels constructed at Stage 6 cannot be 
greater than L{Dh^, t^^) (since each level contains at least one vertex). In
equality (18) thus implies the following 

LEMMA 18. For sufficiently large k the number of levels constructed 
at Stage 6 satisfies the inequality 

C o C o l o g , m 
H , ^ - ^ l o g , / c = ° log^fc 

m m 

with probability p^(k) > 1 - l/fc^. 

This concludes our levelwise investigation of the stochastic procedure. 
Its results are summarized in Lemmas 14,15,16,17 and 18. Since the height 
H(k) of the automaton graph generated by this procedure is + ^ 3 + 
+ H 4 -h ifs + i f6 , these lemmas directly imply that, for sufficiently 
large fe, the inequality 

1 ^ 1 0 8 . ( 1 - ' ( ^ - ^ 2 ) ^ » ' ° ^ " ^ ^ ^ 

+ I o 8 . t - K 4 l o g . m ) l o g . . o g , l c + ^ ^ ^ l o ^ k 
m - l o g 2 1.5m m 

holds with probability 

P(k) > Pu2{k)'P3{k)-p^k)'Ps{k)Pe{k) > 1 - k-'^''. 

Note that, for sufficiently large fe, 

^ + (41og2m)log„log2fe < — log„fe. 
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1 + m + + . . . + m"^^^ = — - > ( l -
m - 1 - V 2'" 

with probability p - ^ 1 as fc-^ oo, i.e., 

i f ( f c ) > l o g , f c - 2 . 

Q.E.D. 

V.9. Statistical estimate for accessibility spectrum, degree of accessibility 
and degree of reconstructibility of automata 

As we have noted before, automaton graphs with equal numbers of vertices 
give rise to equal numbers of pairwise nonidentical automata (derived from 
the former by assigning output labels to the edges). Our statistical estimates 
for accessibility spectrum and height, which were derived for automaton 
graphs, therefore carry over directly to automata. 

Thus, Theorem 5.4 implies 

THEOREM 5.7. There exist positive constants and C2 such that almost 
all automata 501 with fc states possess the following property: For any state 
qi ofym, if I -^Ci log^fc the accessibility spectrum /><aR,̂ .> (/) satisfies the 

V.8. Statistical estimate from below for the height of automaton graphs 

In this section we shall derive a statistical estimate from below for 
the height; for large values of m, this estimate approaches the upper bound 
for the diameter given by Theorem 5.5. Since any lower bound for the 
height is also a lower bound for the diameter, this will imply that our 
upper statistical estimate for the diameter is almost best possible for large m. 

THEOREM 5.6. Almost all automaton graphs with k vertices have height 
greater than log„ k — 2, 

Proof. It will suffice to prove that the stochastic procedure generating 
automaton graphs with k vertices yields automaton graphs with H{k) > 
> log^k — 2, with probability p - ^ 1 as fe^ oo. 

The first assertions of Lemmas 14 and 15 imply that, with probability 
ρ 1 as fe-^ 00, the stochastic procedure will not break off during the 
first three stages. But Stage 3 ends with the construction of an /i-base con
taining at least (1 — 1/2'") vertices. Therefore, the number of levels H{k) 
satisfies the inequality 
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inequality 

OcjJi,,y (0 ^ rn"^''-

Since the degree of accessibihty and the absolute degree of accessibility 
of an automaton derived from a graph G coincide with the latter's height 
and diameter, respectively, Theorems 5.5 and 5.6 imply 

THEOREM 5.8. Almost all automata 501 with k states have absolute degree 
of accessibility á*(50í) at most Clog^fe, where C is a constant that depends 
on m and approaches unity as m approaches infinity. 

THEOREM 5.9. Almost all automata 501 with k states have degree of 
accessibility ¿(501, go) greater than log^fc —2. 

Recall that by Theorem 2.14 any automaton in which k states are ac
cessible from ^ 0 has degree of accessibility at least log^ k — 1. 

N o w consider the absolute degree of reconstructibility. As mentioned 
in Section IV.2, this parameter satisfies the inequality 

ß*(50l)̂a*(50l) + p(50l)+ 1. 
Theorems 5.2 and 5.8 thus imply 

THEOREM 5.10. There exists a constant CQ such that almost all automata 
with k states have absolute degree of reconstructibility ß*(50l) at most 
Co log,,, k. 

The estimates of Theorems 5.8 and 5.10 obviously remain valid if the 
absolute parameters <5*(50l) and β*(50ϊ) are replaced by the ordinary degree 
of accessibility δ (501, ^o) and degree of reconstructibility Β(501,̂ ο)· 

Notes 

Theorems 5.1, 5.2, 5.3 and 5.4 are apparently presented here for the first 
time (the proofs are due to Barzdin'). 

Statistical estimates for the diameter (Theorems 5.5, 5.6, 5.8 and 5.9) 
may already be found in the joint paper of Barzdin' and Korshunov [17] . 
A statistical estimate for the degree of distinguishability (in the nonuniform 
case) is given in Korshunov [37] . These estimates directly imply 
Theorem 5.10, on the absolute degree of reconstructibihty for almost all 
automata. 
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