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Various writers"2'3 have noted that the displacements of energy levels
involved in the Raman effect should be those obtainable by superposition
of two "allowed" spectral transitions. In other words, v(ac) is a possible
Raman shift if we can write v(ac) = v(ab) + v(bc), where v(ab), v(bc) are
possible emission or absorption frequencies. The reason for this is that
the theoretical expression for a Raman line of frequency, vo + v(ac), excited
by incident light of frequency Po is proportional to

(VY + v(ac))4{ | X)(ac) 12 + | Y(R)(ac) 2 + Z(R)(ac) 1 (1)
where

p(R)()=EE FP(ab)Z(bc) _Z(ab)P(bc) 1e2iri[vo + v(ac) ]t (2)
(c) 2k Lvo + v(bc) o+ v(ab)J

Eqs. (1, 2) are the same as those recently given by Hill and Kemble,3 and
embody the results of the Kramers dispersion theory. Here X(ab)..
denote the matrix elements of the Cartesian components of the electrical
moment of the molecule in the unperturbed state, while X(R) (ab) .... denote
the perturbed or "Raman" values of these elements under excitation by
plane polarized incident radiation having its electric vector E cos 27rvo t
along the z direction. Eq. (2) involves the amplitudes connected with
transitions to what we shall term the "intermediate" states b rather than
the amplitudes P(ac) of direct transition from a to c, thus substantiating
the remarks made at the beginning of the paragraph.

Notation, etc.-Before even stating the particular problem connected
with Eqs. (1, 2) which we aim to discuss, it is perhaps well to introduce
some nomenclature and qualifying remarks. We shall suppose except
in the final paragraphs that the molecule is diatomic, and shall ignore
the rotational fine structure. The letters v and n will denote, respectively,
the vibrational quantum number and the totality of electronic quantum
numbers. To separate the vibrational and electronic effects, it is often
convenient to use a double index n, v for the matrix arguments instead of
a single index such as a, b, c in Eq. (2). The term "level" is to be under-
stood to comprise all the vibrational states having a given set of electronic
quantum numbers, and we shall use the term "state" for the individual
vibrational members of a level. The normal level will be denoted by no.
Two levels a, b will be said to "combine" if the unperturbed amplitude
P(ab) does not vanish; i.e., if v(ab) is a possible absorption (or emission)
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frequency, but not necessarily a possible Raman shift. We shall use the
term "changes" in discussing the alterations of quantum numbers in
ordinary absorption or emission transitions, and shall reserve the word
"displacements" for the total alterations in quantum numbers between
the initial and final Raman states. It is to be clearly understood that the
term "intermediate" relates merely to the position of a state such as b
in the products in Eq. (2), and does not at all imply that its energy is
intermediate between those of the initial and final Raman states, as this
is usually not the case.
Problem of the Small Raman Displacements in the Vibrational Quantum

Number.-The most commonly studied Raman lines represent displace-
ments in the vibrational, but not in the electronic quantum numbers.
However, the important intermediate states involved therein probably
belong to excited electronic levels, as the absolute intensities of pure vibra-
tion spectra are low and hence the amplitudes connected with transitions
to intermediate vibrational states belonging to the normal level are small.4
Thus Raman displacements corresponding to infra-red vibrational fre-
quencies are due in a certain sense to excitation of electronic absorption
lines usually in the ultra-violet. The incident light is ordinarily in the
visible region, and so could not excite these lines with close resonance,
but nevertheless does react somewhat with the amplitudes of ultra-violet
absorption, affording an illustration of what has sometimes been termed
"weak quantization," especially in the old quantum theory. Now when
there are electron jumps, the selection principles for the vibrational
quantum number are quite different from what they are in pure vibration
spectra. Whereas we can only have Av = L 1 in simple harmonic,
pure vibration motions, there can be enormous changes in v if there are
simultaneous changes in n. In the latter event cases are known in which
v changes by 20 units or so.5 Now if a Raman displacement is expressible
as the result of two consecutive jumps, one might at first thought expect
Raman displacements of say 20 + 20 or 40 in the vibrational quantum
number (taking this rather extreme example for concreteness).

More precisely, the allowed changes in v are determined by the requirement that the
initial and final states are to have the same inter-nuclear distances during appreciable
time fractions of their respective motions. This is the rule advanced semi-empirically
by Franck6 and justified quantum-mechanically by Condon. Now the nuclei move
slowest and spend relatively the greatest time at the extremes rmin' rmax of their vibra-
tional paths for a given state. Hence two states combine intensely if they have a
common extremum of the inter-nuclear distance r. This extremum can, however, be
a maximum for one state and a minimum for the other. In particular, if we start
with a given vibrational state v of a given electronic level n, changes are particularly
favored to two vibrational states of another electronic level n' (viz. the pair rmin = rmin
r/x = rmax if rmin < r < r the pair r = r r' = rmar if r' < rmin the pairrmax =r min mmaximno max

r =, ?'i, max', if r' > rm,,.; here r' denotes the equilibrium value of r in the
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state n'). This, as Condon shows, is in good agreement with experiment. If one
plots initial and final vibrational quantum numbers as abscissa and ordinates, the
intense changes form a "Condon" parabola, and the ordinate or abscissa representing
a given state intersects this parabola twice, giving the two favored transitions from this
state. To apply these ideas to the Raman effect let us start in Eq. (2) with a given
initial level a = no, vo belonging to the normal electronic level. Let us further consider
the effect of all the intermediate vibrational states belonging to a given electronic level
n. In view of the foregoing there will be two of these states, say n, vl and n, V2 which
combine particularly with no, vo. If the Raman displacement is purely vibrational,
the final state c belongs to the normal level no. But the intermediate state n, vi can
combine with another vibrational state, say no, v3, of the normal level besides no, vo,
as there are two favored transitions. Similarly no, V2 can combine with another state
no, V4 besides no, vo. As a Raman displacement is compounded from two ordinary
changes, one might expect intense Raman lines corresponding to displacements vo -V3
and vo -V4 in the vibrational quantum number, besides of course the Rayleigh scattering
Av = 0. Such displacements represent passage from one side to the other of the Condon
parabola for the intermediate level. When finally one includes all the different inter-
mediate electronic levels in (2) one would obtain an enormous range of possible dis-
placements in v, of large amounts if the important intermediate levels have widely
different moments of inertia from the level no.

These hasty conclusions are not in agreement with experiment. Actually
the intense Raman lines, at least in gases, involve shifts in frequency equal
to the fundamental line of a pure vibration spectrum, or perhaps in some
cases the first harmonic. This means that the common Raman displace-
ments in the vibrational quantum number are only one unit, or possibly
sometimes two units. The flaw in the foregoing argument predicting large
displacements is the following. One must remember that according to the
Condon-Franck principle, a given state combines, though with greatly
varying intensity, with all the vibrational states belonging to another
electronic level. In particular, we assumed in the preceding fine print
that a given state combined practically entirely with only a pair of states
of another level, instead of with all other vibrational states of this other
level, though with reduced intensity. The reduction in intensity is, as
a matter of fact, not large for states which are immediate neighbors of
either of the states (the favored pair) that combine most strongly with
the given initial state; this is especially true if the vibrational quantum
numbers are large. In forming the sum in (2), one must therefore include
the contribution of every vibrational state belonging to a given inter-
mediate level. Furthermore, in adding these contributions, one must
be very careful to consider the phases of the matrix elements involved
therein. One finds that the phase effects give reinforcement when the
initial and final levels a and c are the same, the case of Rayleigh scattering.
(At least this is true for the z component, as X(ab)/(ba) = Z7(ab) 12 > Q
and so all the terms to be added have the same sign, as with a given inter-
mediate level the variation in the denominator from term to term in the
summation in (2) is negligible.) On the other hand, because of the di-
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versity of phase factors for the different intermediate states belonging to
a given electronic level, one suspects that the various terms in the sum-
mation will largely annul each other if the initial and final states a and c
differ widely in their value of v. If, however, the states a and c are ad-
jacent, i.e., if the Raman displacement in v is only one unit, the annul-
ment might be very incomplete, as this case is very close to that of re-
inforcement. By a somewhat similar qualitative reasoning, Hill and
Kemble3 briefly stated that the phase relations explain why there are
only small Raman displacements in the vibrational quantum number.
The purpose of the present paper is to give a more quantitative and
rigorous proof of this proposition of the usual absence of all displacements
except the fundamental Av = 4 1. The writer is informed that C.
Manneback is also publishing a proof, but by a method somewhat different
from ours, so that the present note is perhaps not superfluous.7

Mathematical Preliminaries.-We shall first develop a multiplication
scheme for what we shall call "hybrid matrix elements," whose use is the
essence of the proof. Let *I and 4',, (v = 0, 1, . .) be two dit'erent sets
of orthogonal normalized functions of a variable r, so that

fw*I,, dr = Sv, f(D*. I, dr = K, (3)

with the asterisk denoting the complex conjugate. For example, and more
especially for our purposes, I, and (Dv might be the vibrational wave
functions for two different electronic levels. Let f(r) be any function
of r, and also if desired of the operator 6/br. Expand f(r)I, as a series
in the ck, thus

f(r)*V= Ev'fi (v'; v)',,¢. (4)
The coefficients in this expansion we shall term the hybrid matrix elements
of f, as they differ from ordinary matrix elements in that the wave function
on the left belongs to a different set of orthogonal functions from those on
the right. The ordinary elements correspond to the special case ' = (D.
On multiplication of (4) by (D,, and integration throughout the domain
of r, we see, using (3), that

f4,4.(v"; v) = f4'i-f~vdr. (5)

Let Ov(r) be still a third set of normalized orthogonal functions. The
important property of the hybrid elements is that they obey the following
law of multiplication

(fg)e*(v`; v) = evjfe (v"; v')gt*,(V'; v). (6)
To prove (6), note that fgIv'(r) can be expressed equally well as

(7)
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or as
fEVgt 4(v'; v) = E,,wvf0e(v";' v')gt*(v'; v)Ov9(r). (8)

The result (6) follows immediately on comparing coefficients in (7) and
(8). Besides the above multiplication law, the hybrid matrix elements
obviously obey the ordinary elementary addition law. Incidentally, these
elements for f = 1 are not the ordinary Christoffel symbols 8' since I
and D are not orthogonal, but do have the property that

EV,'o, (v"; v 1)1,o(v'; v) =v

As we have agreed to disregard the rotational factor, the total wave
function of the molecule is approximately the product of an electronic
wave function U(xi, . . . zy, r) and a vibrational one R(r). Here R is a
function only of the inter-nuclear distance r, while U is a function of the
Cartesian coordinates of the electrons, measured in a system of reference
fixed relative to the nuclei, and also involves r as a parameter. As the
electronic and nuclear variables are not rigorously separable in the Schroed-
inger equation, this resolution of the wave function into electronic and
vibrational factors is not exact, but is a good approximation if the vibra-
tional distortion is not too large. It permits us to resolve the total energy
Wv into electronic and vibrational parts, so that

WXV = W(n) + W. (v), (9)

where W(n) is the energy for a system in which the nuclei arxe at rest
at the equilibrium distance appropriate to the state ns, and W.(v) is the
vibrational energy measured relative to an origin at this equilibrium
position. By the Schroedinger-Eckart rule, the elements of any function
f are given by8

f(n'v'; iv) = f .*..ffU R* vf U. Rnv dxl... dzf dr. (10)

If we omit the vibrational wave factors and integrate over the electronic
coordinates, we thereby define a function of r

f-nln(r) = Jf . . . Jf Un*,f Un dxl . .. dzf'(11
which of course involves the initial and final electronic quantum numbers
i', n as parameters. We shall write in the electronic quantum numbers
as subscripts whenever they appear as parameters in the vibrational
problem. Eqs. (5, 10, 11) show that a complete matrix element is a
hybrid matrix element in which fntn(r), Rntv, Rnv now play the same roles
as f(r),Av, 'v in the notation used in connection with Eqs. (3-5). The
rule (6) shows that

(fn#. g. n)(v"; v) = Ev feni (v"; v')gnin(v'; v),
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which is not to be confused with the ordinary law of complete matrix
multiplication in which the summation over the intermediate states is
with respect to both n and v, and so includes all possible electronic levels,
whereas in (12) it includes only the vibrational states of one particular
electronic level. It is to be understood that for this reason an element
(v", v) of fn at ga'n is not the same as the corresponding element of (fg)nw.n
Proof That Only Small Raman Displacements in the Vibrational Quantum

Number Are Possible.-After the mathematical preliminaries, this proof is
quite simple. In view of (9) and the significance of the states a, b, c in
the more explicit notation, the Bohr frequency condition may be written
as follows:

hv(ab) = W(no) + Wn,(vo)- W(n) -Wn(v)
hu(bc) = W(n) + W.(v') - W(no) - W,(v'"). (13)

Let us substitute (13) in (2), and for simplicity sum until further notice
over only the intermediate states belonging to one particular electronic
level. As the vibrational energy is small compared to the denominators
in (2), we may expand (2) as a power series in Wn(v'), thereby bringing
W~n(v') in the numerator rather than denominator. Similar expansions
in W..(v) and W,,(v") prove unnecessary, as they are constant with
respect to the summation. We thus find for the part of (2) resulting
from the intermediate level n

aEv, { [A -1 A -2 W,(v') + A3 W.(v')2 + . .] [P(nov; nv')Z(nv'; nov")]
- [B'1 + B-2 W"(V) + B-3 Wn(v)2 + . . ]Z [(nOv; nv')P(nv; nov") J

where (14)

a = 2 Ee2Ti[Po+v(ac)], A = hpo + W(n) - W(no) -Wno(v")
B = hpo + W(no) + Wn,(v) - W(n).

We have included only terms of the first and second orders in W.(v'), but
incorporation of higher orders would occasion no difficulty and would not
affect our conclusions. Now the W. (v') are the diagonal matrix elements
of the Hamiltonian function Hnn for the vibrational problem of the state
n, while the non-diagonal elements are zero as the energy is a diagonal
matrix. Hence the first part of (14) can be written

a~v/ vin{I P,,.,(v; v') (A 1 - A 2 Hnn + A MOWn)(v; v"')Zn(v"'; v").
(15)

Here we have used the notation Pno(v; v') rather than P(nov; nv'), etc., in
order to conform to the usage in Eq. (12). We henceforth do not bother
to write out the terms arising from the second part of (14), as the manipula-
tion of these terms is similar to that of those from the first part, and can
be supplied by the reader. The hybrid multiplication law (6) or (12)
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when extended to a triple rather than double product, and use of formula
(5) shows that (15) is the same as

afR*,v { Pnon(A - A -2 Hnn + A -3 Hn)7,nno } Rnov, dr. (16)

Here the Pons etc., are constructed in the fashion (11) by integrating only
over the electronic coordinates, and Hnn is the operator

1 h 2 6Hn = I - + V.(r)',

corresponding to the vibrational problem of the state n. The important
thing is that in (16) the summations over v', v"' have been entirely elimi-
nated. To evaluate (16) exactly it would be necessary to know the
vibrational potential energy function V,(r) for the excited or intermediate
level n, but the vibrational wave functions Rnv for this level are no longer
required. Only those Rnov, Rnov,, of the normal level are needed. The
dependence of the factors Pons, inno on r is also required, and is in general
not known in detail. We may, however, expand these expressions as
power series in (r - ro) if the vibrational excitation in either of the states
nov or nov" is small. For then either Rnov or Rnov,, is vanishingly small
except in the vicinity of the equilibrium value ro of the inter-nuclear
distance for the state no. This condition is presumably met in the initial
state nov, as the concentration of molecules in excited vibrational states
is usually negligible under ordinary conditions of temperature, etc. The
expansion of (16) takes the form

afxRO, { [a + b(r - ro) + c(r - ro)2 +. . .][A-1 - A-2H nn + AH-3H2]
[g + h(r - ro) + i(r - ro)2]} R,,Vdr. (17)

Since the equilibrium distance r,, for the state n is not the same as that
ro for the state no, the expansion of the potential energy for the state n
will contain constant and linear terms in r - ro, whereas the expansion
of that for the state no will commence with quadratic terms. Hence the
expansions of the vibrational Hamiltonian functions for these two states
are, respectively, of the form

1/h \2 62Hn = 2M\2i)! 2 + d + e(r - ro) + f(r -ro)2

Hnono - h(2) a2 + fo(r - ro)2.

Subtraction of these two expressions yields us a formula

Hn = H,,ono + d + e(r - ro) + (f -fo)(r - ro)2 + . . . (18)
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for HIIn which can be substituted in (17) and which is especially convenient
because it does not involve the differential operator (h/27ri)2a2. ../or2.
Unless some of the coefficients a, b, etc., happen fortuitously to be par-
ticularly small, we can suppose that the terms in (17) having factors
(r - ro)0, (r - ro), (r - ro)2 are of rapidly decreasing orders of magnitude,
as we supposed at least one of the wave functions Rnv, RMov, very small
except in the vicinity of ro. To a sufficient approximation, the vibrational
problem of the normal level may be supposed simple harmonic, making
R0nov Rnovo Hermitian orthogonal functions. Then by the familiar
selection rule for the harmonic oscillator, the matrix elements of r- ro
are entirely of the form Av = ='- 1, while those of H.nn are, of course,
entirely of the type Av = 0. (The elements of Hn would not be of this
type, as they are diagonal with respect to the R&, rather than Rnov; for
this reason the substitution of (18) in (17) is necessary.) By the Schroed-
inger-Eckart rule, the integral (17) is merely a matrix element of the
part of the integrand inclosed in parentheses. Hence by the rules for
matrix multiplication, the parts of (17) which are of orders (r - rO,
(r - ro), (r - ro)2 vanish unless, respectively, Av = 0, Av= I 1, Av = 0,

2. Thus the most intense scattered lines are of the form Av = 0,
i.e., represent simple Rayleigh scattering, while the most intense Raman
lines are those Av = =,= 1 whose displacement equals the fundamental
of the vibrational frequency. Less intense still are the Raman lines
Av = 2, whose displacement equals the harmonic of the vibrational
frequency, and which are ordinarily far too weak to detect experimentally.
This is the desired result. There can be no question of large vibrational
transitions, corresponding to passage from one side of the Condon para-
bola to the other for the intermediate level, as this idea has been dropped
out of consideration by using the hybrid multiplication law. Our proof
has hitherto involved the restriction of the summation in (2) to one par-
ticular intermediate electronic level, but the inclusion of all levels9" 0
merely yields a linear combination of expressions of the type form (17),
and so cannot cause large Raman displacements in v.

Polyatomic Molecules.-Essentially the same considerations as in the
rest of the paper can be applied to molecules composed of more than two
atoms. The main difference is that instead of one vibrational coordinate,
r, we must utilize several rl, r2, . . . which are identical with "normal co-
ordinates" if the vibrations are simple harmonic, and which are associated
with different kinds of vibrational quantum numbers v,, v2, . . . The
same general method as before is applicable. We find that the scattered
lines should rank as follows in intensity: first, Rayleigh scattering; second,
Raman lines whose displacements equal one of the fundamental vibration
frequencies; third, Raman lines whose displacements are either harmonics
of a fundamental vibration frequency, or else are "combination fre-
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quencies" equal to the sum of two different fundamentals. However,
Raman lines which are usually considered to be of the combination type
have been reported experimentally without any trace of Raman shifts
equal to the fundamental absorption frequencies. In other words, lines
which we have ranked third in intensity are apparently found without
those we ranked second. Instances in solids or liquids will not be cited,
as our theory is primarily for gases. In CO2 Rasetti2 finds only Raman
shifts of 1284 and 1392 (i 10) cm.-' which are not equal to absorption
lines, but which are expressible as difference combinations of the two
components (3616 and 3720 cm.-') of the doublet absorption band at
2.7kA with that at 4.28,u (2336 cm.-'). To account for this anomalous
situation two different suppositions (I) or (It) might be made.

(I) One possibility is that the intense Raman lines in CO2 are funda-
mentals, and have been misinterpreted as combinations. Eucken's" col-
linear model of the CO2 molecule does indeed have a fundamental at
1174 cm.-', which Rasetti12 notes is in the vicinity of his Raman lines,
but it is doubtful whether all the details of Eucken's model are tenable.
It is perfectly possible for a fundamental to be inactive as an absorption
line, but to appear as a Raman line. This will be the case for symmetrical
vibrations, which do not create an electrical moment in the molecule in
the ordinary (dielectric constant) sense, but which will in general change the
magnitude of the moment matrix elements associated with transitions to
excited electron levels, and so cause non-vanishing coefficients b, h in
Eq. (17). In Eucken's model, for instance, the 1174 cm.- vibration is
inactive in absorption and corresponds to symmetrical displacements
of the two 0 nuclei relative to the C nucleus at the center, thus merely
stretching the molecule without altering its symmetry. The sole Raman
displacement which Wood'3 finds in NH3 vapor corresponds to an observed
absorption band at 31A. The very careful recent analysis of the NH3
vibration spectrum by Stinchcomb and Barker'4 shows that the 3M vibra-
tion is due to oscillations in the altitude of the molecular pyramid, which
has the N nucleus at its vertex and the H nuclei at the corners of its base.
Their measurements do not reveal whether the 31i vibration is a funda-
mental, but Wood's observation of a 3/ Raman displacement is strong
evidence that this vibration is really a fundamental, and it is indeed so
classed in Dennison's'5 model of the NH3 molecule. The non-appearance
of the other fundamentals as Raman lines suggests that stretching the
altitude of the molecular pyramid distorts the moment matrix elements
more than do the other normal modes of vibration.

(II) In the particular'6 case of CO2 another possibility, for which the
writer is indebted entirely to Professor Dennison, is that the Raman
displacements observed by Rasetti are not pure vibration lines, but rather
a combination of rotation and vibration. In a collinear model the energy
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of small oscillations of the C nucleus in the median plane (the perpendicular
bisector of the line segment joining the two 0 nuclei) is proportional to
2n, + n'.'7 Here nr and n, are respectively the radial and azimuthal
quantum numbers for motions of the C nucleus in the median plane.
Hence the apparent vibrational quantum number is 2n, + n,. Now
Kemble and Hill,3 for instance, have shown that only Raman displace-
ments of only 0 and 2 units are possible in rotational quantum numbers
such as n9,. Hence in the Raman effect 2nr + n. can be displaced only
by an even number of units. In investigations not yet published, Denni-
son interprets the absorption band of CO2 at 673 cm.-' as due to a unit
change in 2n, + n,. The Raman displacements found by Rasetti are
approximately double this, and hence might be interpreted as displace-
ments of 2 units in 2n, + n9. This does not contradict the preceding
theory in our paper because n,, is a rotational rather than vibrational
quantum number. It is, however, quite different from the usual rotational
quantum number in that its effect on the energy is as large as that of vibra-
tions. This is because of the anomalous collinear character of the CO2
molecule, in virtue of which the moment of inertia about the axis of figure
is very small, in fact, zero when the C nucleus is exactly at its equilibrium
position.
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