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Pre/ace 

There was a time when mathematics was regarded as an intri
cate subject that could be mastered only by the elite of the 
scholarly world. Fortunately, this day is long passed. \Ve now 
know that anyone with a taste for figures and an interest in read
ing can find a vast enjoyment in the symmetry and harmony of 
basic mathematics and in the solving of mathematical problems. 

This book is designed to make mathematics interesting. The 
science is not treated formally; abstract conceptions and unin
teresting and abstruse procedures are completely avoided; yet at 
the same time the book is sufficiently complete so as to give a 
broad picture of mathematical fundamentals. Mathematics, in 
order to be appreciated by those who do not have a flare for the 
intangible must be seen in the light of its versatility in the various 
fields of human endeavor. This is very much the central theme 
of this book. 

Although designed for amusement, the book is not restricted 
merely to novel and tricky and entertaining mathematical stunts. 
The prevailing trend in bOOMS on mathematical amusements pub
lished during the last three or four centuries has been in the 
direction of amusement in mathematics for the sake of the mathe
matics itself. It is not possible to enumerate all of the books 
published in this field but the most recent works of Ahrens, Ball, 
Fourray, Kraitchik, Lucas, Perelman and others rarely consider 
(excepting Perelman) the applications of mathematics. 

In this way, this book differs from the classical treatment of 
amusement in mathematics and it is hoped that it gives an answer 
to the reader's quest not only for amusement in mathematics but 
also for an easily read and clearly understandable discussion of 
mathematical processes. The material is simply developed. No 
proofs of any kind are used in the unfolding of the mathematical 
processes and properties. It is the firm belief of the author that 
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• ::': ," 'ft1:athetna~ibs must be understood to be appreciated and that an 
underst:mding of the subject does not require involved theoretical 

. , ::r ;', •. 4isc'u~si~ns, Those who, after reading this book, care to con-
~." ilnu~ their study of elementary mathematics thoroughly and ex

haustibly wiiI find it profitable to refer to the books, "Mathe
matics for Self Study" by J. E. Thompson, D. Van Nostrand 
Co., Inc., New York, and "Integrated Mathematics" by John A. 
Swenson, Edwards Brothers, Ann Arbor, Michigan. 

In the compilation of the book the author referred freely to 
the vast literature on elementary mathematics and on recreations 
in mathematics. If there is any claim of originality, it is to origi
nality of treatment and method. Otherwise, any similarity to 
any book published or unpublished is purely accidental and/or 
coincidental. 

New York City 
May, 1941 

A.B. 
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Numerals & Numeration 

A Notch: Mathematics Is Born 

Somewhere back in the early days of humankind a hairy hand 
hesitatingly notched a tree to record a kill, or the suns of his 
journeying. Later, some Stone Age Einstein may have formu
lated the theory of the notch to keep track of his flock-each 
scratch (or notch) upon a piece of wood corresponding to one 
animal and the total scratches therefore equaling the total flock. 
In some such unprofessorial way man took his first plunge into the 
mathematical world and came up with a revolutionary concept
how to count. F or when man learned how to count, he ac
quired a scientific tool with which he could break up the uni
verse into its component units and thus master the size and shape 
of things. 

Some of us, however, are still stuck in the notch. Peasants 
in many countries have made little improvement upon the 
ancient shepherd's theory. And this is also true of modern city 
dwellers, although few realize it. Suppose you receive a bill and 
wish to compare the items enumerated with those you ordered 
and received. To be certain that each item is accounted for, you 
make a check mark beside it on the bill to indicate that the 
charge is correct. If there are several purchases of the same kind, 
you may place two or more check marks. 

In "modern, scientific" office work, too, especially in book
keeping when individual objects are counted, it is a common 
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practice to rec~rd similar individual items by writing a short 
vertical stroke (the notch again) for each. Thus: 

I denotes 1 object 
I I denotes 2 objects 

/ I I denotes 3 objects 
I I I I denotes 4 objects 

I I I I I denotes 5 objects 

To avoid confusion, when a fifth object is counted, it is often 
recorded (or, in technical terms, tabulated) by a cross stroke, 
thus: ffH. 
This method of crossing out facilitates further counting. 

The method of writing the fifth stroke horizontally, how
ever, is not universally accepted. Recording may be done by 
vertical strokes until nine objects are counted (I I I I I I I I I), and, 
when a tenth is added, by another vertical stroke or by a hori
zontal stroke U/// H-l/-l). 

When all the objects have been checked off it is easy to re
write in numerical form the results of the work-sheet tabulation. 
Thus, if we have 

we can write 

Chairs 
Tables 
Beds 

//// -ffI+ /f/IL If/-/
H-ff //// fI+f II 
ffH Ii-hi IIII 

23 chairs 
17 tables 
14 beds 

III 

Notice that every -HH represents five objects. Thus, the 
procedure of the rewriting is as follows: 

4 times 5 = 20, and 20 plus 3 = 23 
3 times 5 = 15, and 15 plus 2 = 17 
2 times 5 = 10, and 10 plus 4 = 14 

The same objects might have been recorded as follows: 

Chairs i////,{!// i-l/////// I I I 
Tables //////i// IIIIIII 
Beds -fIN //1/ / /I I I 

However, the tabulation by four vertical strokes and one hori
zontal is preferable, because the fewer strokes, the less the chance 
of a mistake. 
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Numeration Arrives, Accompanied by the Tax Collector 
The art of recording numbers, or numeration, was invented 

to meet the needs of a society more complex than our ancient 
herdsman's. The numbers now in use, however, are-if the age 
of civilization is considered-of comparatively recent origin. 
These numerals (0, 1,2, 3,4,5,6, 7, 8, and 9) have been in com
mon use for not more than a thousand years. They are known 
as Hindu-Arabic figures, because they originated in India and 
were introduced to Europe by the Arabs. 

Before their introduction, sums were done in various ways, 
all lengthy. For example, in Russia under the Tatar occupation 
(during the thirteenth and fourteenth centuries) receipts for 
taxes collected by Tatar officials were of this form: 

$$$ 
®®@ ®@@ 

DDDDDDD 
XXXX 

Ijlll/II! 
J /II/Ill 

IIIIII 
This recorded the payments of the iasak ( the Tatar word for 
taxes) of 3,674 rubles and 46 kopecks (1 ruble equals 100 ko
pecks). Thus: 

$ denoted 1,000 RUBLES 

@ denot-ed 100 RU BLES 

o denoted 10 RUBLES 

X denoted I RU BLE 

/II! I! LfI ITT/Tll 

I 
denoted 

denoted 

10 KOPECKS 

I KO PECK. 
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The border drawn around the numerals on the receipt was pre
scribed by law on the optimistic theory that it would tend to 
prevent additions or other finagling. The symbols for the nu
merals enabled the people, who by and large could neither read 
nor write, to keep records of their payments. 

This way of writing numbers was used (in a variety of forms) 
by many ancient peoples. F or example, the Egyptians wrote 
their numbers this way: n denoted 10 

f de-noted I 

7hus((((1iill~~5 Mill 
de-noted 45,62.3 

The Babylonians enumerated as follows (they counted by 60): 

~ denoted 

-< denot"ed 10 

r denoted 60 

k denoted 10'60 = 600 

~ denot"ed 60·60 = 3,600 

1P denoted 60'3600=216,000 

The symbol method is retained today in the system of Roman 
numerals. These were in widespread use in Europe until about 
the fifteenth or sixteenth century. With their equivalents, they 
are: I denotes 1 

V denotes 5 
X denotes 10 
L denotes 50 
C denotes 100 
D denotes 500 
M denotes 1,000 
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Thus 1940 when written in Roman numerals is MCMXL (the C 
before M denotes that CM is 900, and the X before L denotes 
that XL is 40). 

The Chinese, up to the thirteenth century of our era, employed 
bamboo (and sometimes ivory) sticks for numeration and count
ing as well as calculation. To represent the nine digits these 
sticks were arranged in the following manner: 

I II III 
1 2 3 

1111 
4 

11111 
5 

T -II -III 
6 7 8 

Sometimes the sticks were placed horizontally: 

2 3 4 

-1111 
9 

F our was represented also by two crossed sticks, as X, and 6, 7, 
8, and 9 were often represented as follows: 

1 _II _III llli 
Thus 63,459 was represented as 

1 III X lllT 
The representation of numbers by these sticks was similar to the 
present-day method of writing numbers, that is, the digits were 
given positional value as in the decimal system. The zero was 
designated by a symbol which indicated the absence of units 
where it was placed. Thus 800,540 was represented as 

_III 0 0 
-

1111 0 ---
Modifications of the above symbols, as shown below, are used 

extensively nowadays in Chinese business deals: 

" III 1111 I" " 
T 1T TIT mr 

I 2 3 4 5 6 7 8 9 

J.. ...L ..L -L - - -
10 20 30 40 50 60 70 80 go 
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The symbols for 10, 100, 1,000, and 10,000 were discarded, 
and the decimal system, with the positional value as employed 
by us, is used. -

F or printing, the Chinese use the following symbols: 

g -- -- -
2 3 

J\ 
4 

It 
5 

-{-
7 8 9 10 

About 5,000 years ago the Chinese used a different number 
system. This will be discussed in Chapter 2. 

The Price-Tag Mystery 

Often when you make a purchase, particularly in a small shop, 
you may note that the storekeeper looks at a cryptic marking on 
the tag before telling you the price. If you buy, he will make 
certain that the mark is erased so that you can't learn the secret. 

Usually there are letters on the tag. For example, there may 
be nrs, and the storekeeper may fix the price at $5.98. There is 
no mystery, however. As a rule, the merchant selects a ten
letter word in which no letter is repeated, say "manuscript," and 
assigns each letter a number: 

manuscr1,pt 
1234567890 

Then nrs is translated in 375 or $ 3.75. This storekeeper re
corded the cost of the object to him. If he had wanted to record 
the selling price, he would have written spi. In variations of this 
procedure, two numbers may be written as a fraction 

spi nrs 
- or -. 
nrs sp'" 

telling both the cost and the selling price. 
This way of writing numbers also dates back to the ancients. 
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:::::: Numerals & Numeration F.z fife 
The Greeks and the Hebrews used their alphabets in writin~~ ~ Ff 
numbers., ~~~ 

A' B' 1" A' . E' F' Z' H' 0' !J It 
1 234 5 6 7 8 9 ~ 

.. tonl'n'~:lN 
109 8 7 6 543 2 

The Use of Numerals 

Besides counting, numerals denote the ordered arrangement of 
objects, as 1st, 2d, 3d, 10th, 12th, etc. 

In libraries books are catalogued according to the decimal 
system of classification. Under this system a specified book will 
have the same number in any library. 

Every field of knowledge is assigned a number, and the nu
merals in the number of the book disclose its general field and 
its subclassification. Under this internationally accepted prin
ciple the major classes are numbered: 

0-Works of general nature 
I-Philosophy 
2-Religion. 
3-Social sciences, law 
4-Languages, the science of language 
5-Physical and natural sciences, mathematics 
6-Applied sciences (medical, technology, agriculture, etc.) 
7-':"'Arts 
8-Literature 
9-History, geography, biography 

When a book is given a number, its first digit indicates one of 
the ten enumerated fields. Every book on history will have as 
its first digit 9, every book on medical subjects 6, every book on 
mathematics 5. 

Each general class is divided into ten subclasses. The numbers 
assigned to the subclasses are made up of two digits each, the first 
digit denoting the class and the second the subclass. Thus, books 
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on physical anq natural sciences and mathematics are subdivided 
as follows: 

50-Books of-general nature 
51-Mathematics 
52-Astronomy, geodesy 
53-Physics, theoretical mechanics 
54-Chemistry, mineralogy 
55-Geology 
56-Paleontology 
57-Biology, anthropology 
58-Botany 
59-Zoology-

Each subclass is subdivided into smaller subclasses. Thus the 
books on mathematics (51) are denoted by three-digit numbers: 

510-Books of general nature 
511-Arithmetic 
512-Algebra 
513-Geometry, etc. 

Every small subclass may be divided again to avoid confusion 
in the locations of special books. On the library shelves the 
books are arranged according to numbers, those having the first 
three digits the same being placed alphabetically according to 
authors. By this method any owner of a library, however large 
or small it may be, can arrange his books to be found or replaced 
at a moment's notice. In libraries with hundreds of thousands 
of volumes, numb~rs will run up to six or seven digits. Library
goers can find what they want with a minimum of effort once 
they know the secret-in the librarians' language, cataloguing. 



Systems of Numeration 

The Strange Case of Dr. X 

An eccentric mathematician, when he died, left a stack of 
unpublished papers. When his friends were sorting them they 
came across the following statement: 

"I graduated from college when I was 44 years old. A year 
later, I, a 100-year-old young man, married a 34-year-old young 
girl. Since the difference in our ages was only 11 years, we had 
many common interests and hopes. A few years later we had a 
family of 10 children. I had a college job, and my salary was 
$1,300 a month. One-tenth of my salary went for the support 
of my parents. However, the balance of $1,120 was more than 
sufficient for us to live on comfortably." 

Just a screwball? We shall see. 
First, we note there are only numbers with the digits 0, 1, 2, 

3, and 4. Moreover, when 1 is added to 44 we get 100. Then 
Dr. X must have used some system of numeration other than 
ours. In the decimal system when 1 is added to 99 we get 100. 
In the system that Dr. X used, 4 does the work of 9, that is, 
1 + 4 = 10. Just as 10 is not a digit in the decimal system, 5 is 
not a digit in Dr. X's system, 5 being written as 10. 

The decimal system is based on the principle that the digits 
have different values according to position. The farthest po
sition on the right of a whole number (or integer, as it is usually 

9 
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called) is the place of the units. The position to the left of the 
units has a value ten times as large. The next position to the left 
is that of the hund~eds, which has a value ten times as large again. 
On the left of the hundreds is the position of the thousands, then 
the ten-thousands, the hundred-thousands, millions, and so on. 
In other words, in the decimal system the value of each position, 
moving to the left, is ten times that of the preceding position 
Thus, 46,537 is composed of 

four ten-thousands, or 40,000 
six thousands, or 6,000 
five hundreds, or 500 
three tens, or 30 
seven units, or 7 

Total 46,537 

In the five-system of numeration (the one used by Dr. X) 
only the digits 0, 1, 2, 3, and 4 are used, and the consecutive 
values of the positions, from right to left, are multiples of five 
by fives. On the right is the position of the units. Next on the 
left is the position of the fives. Then come the five-fives, or 
twenty-fives; then the one hundred and twenty-fives, then the 
six hundred and twenty-fives, and so on. 

Applying the five-system to the autobiography of Dr. X, 

44 is 4· 5 + 4 = 24 
100 is 1· 25 + o· 5 + 0 = 25 
34 is 3·5 + 4 = 19 
11 is 1· 5 + 1 = 6 
10 is 1· 5 + 0 = 5 

1,300 is 1·125 + 3·25 + 0·5 + 0 = 200 
1. 1 

TO 1S 1. 5 + 0 = t 
1,120 is 1·125 + 1·25 + 2·5 + 0 = 160 

Thus the puzzler may be translated as follows: 

"I graduated from college when I was 24 years old. A year 
later, I, a 25-year-old young man, married a 19-year-old young 
girl. Since the difference in our ages was only 6 years, we had 
many common interests and hopes. A few years later we had a 
family of 5 children. I had a college job, and my salary was $200 
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a month. One-fifth of my salary went for the support of my 
parents. However, the balance of $160 was more than sufficient 
for us to live on comfortably." 

Before examining the various other systems of numeration and 
their properties, it is interesting to note that in any system, the 
number that denotes the system is not used as a digit. For ex
ample, in the ten-system (the decimal system), 10 is not used as 
a digit, nor is 5 in the five-system. In a theoretical twenty-f~ur
system, 24 would not be a Qigit either. 

Which Is the Easiest? 

The simplicity of a system of numeration is conditioned by 
several factors. First, consider the number symbols that must be 
used. A 24-system, for instance, would require twenty-four 
symbols-would you call that simple? The other extreme would 
be a system with only one symbol-the notch or unitary system 
described in Chapter 1. This would be just as bad, but in a dif
ferent way. To write a number, say 47, you would have to jot 
down forty-seven strokes. You can see how cumbersome addi
tion, subtraction, multiplication, and division would become. 
For example, 19· 23 would require nineteen strokes written out 
twenty-three times-and then just try to count them! Bear in 
mind, too, that in a system other than the decimal the names for 
numbers in the decimal system cannot be used. New names 
must be found for all the various numbers and positions. In 
the unitary system a name for 21 i probably would be longer 
than the space occupied by 211 tally-marks. 

This Trick Is Honest 

Many parlor tricks are based on the fact that the observer pays 
too little attention, and that the hand is quicker than the eye. 
But here is one, based on a method of numeration, that involves 
no deception. 

Place nine small envelopes and $ 5 .11 in small change on a table. 
Distribute the money in the envelopes and then announce that 
you can hand over any sum up to $5.11 without counting the 
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money. Some ,one names $3.46, and you hand him certain en
velopes. He counts the money and finds that 

. 1 envelope contains $2.56 
1 envelope contains 0.64 
1 ~nvelope contains 0.16 
1 envelope contains 0.08 
1 envelope contains 0.02 

Total $3.46 

.T 0 vary the trick, add 89 cents in a tenth envelope and say 
that you can now produce, withotit counting, any sum named 
up to $6. $5.69 is named, and you again hand over five en
velopes. This time your friend finds 

1 envelope contains 
1 en vel ope contains 
1 envelope contains 
1 envelope con tail's 
1 envelope contains 

Total 

$2.56 
1. 28 
0.64 
0.32 
0.1'9 

$5. (9 

Asked for your secret, you can say with a superior air that 
the trick is based on the two-system of numeration. 

The Two-System 
In the two-system only two digits are used, 0 and 1. The 

digits in this system, as in all others except the unitary, have 
positional value. The place on the right is that of the units, the 
place next to its left is that of the twos, then the two-twos or the 
fours, then the eights, sixteens, thirty-twos, sixty-fours, etc. 
The first 10 numbers are as follows: 

1 IS 1 
10 IS 2, or 1·2 + 0 
11 IS 3, or 1·2 + 1 

100 IS 4, or 1·4+0·2+0 
101 IS 5, or 1·4+0·2+1 
110 IS 6, or 1·4+1·2+0 
111 IS 7, or 1·4+1·2+1 

1000 IS 8, or 1·8+0·4+0·2+0 
1001 IS 9, or 1·8-0·4+0·2+1 
1010 IS 10, or 1 . 8 + 0.· 4 + 1· 2 + 0 

Thus, 1,111,111 would be 

1·64 + 1·32 + 1·16 + 1·8 + 1·4 + 1·2 + 1, 
or 127. 
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Here is the way to translate a number from the decimal sys
tem to the two-system. Divide the decimal-system number by 
2, and note the remainder. Divide the quotient by 2, and again 
note the remainder. Divide the quotient obtained from the sec
ond division by 2; note the remainder. Continue this process 
until the last quotient is 1. 'Nrite this quotient and all the re
mainders in reverse order, that is, from right to left. Thus, the 
last quotient becomes the digit on the extreme left; next comes 
the last remainder, then the preceding remainder, and so on, so 
that the last digit on the right is the remainder obtained from the 
first division by 2. 

For example, 29 is translated into the two-system as follows: 
29 7 2 = 14·2 + 1 
14 7 2 = 7·2 + 0 
772= 3·2+1 
372= 1·2+1 

.:Then 29 in the two-system is 11,10 1. Checking this result, 

11,101 = 1 + 0.2 + 1·4 + 1·8 + 1·16 = 29. 

The division may be written in a simpler form: 

29 I~ 

1 ~12 
o 7 I 2 

. 1 ~ \_}_ 

In this scheme the remainders and the last quotient are in italics. 
Another number, 672, is· translated into the two-system as 

follows: 

672 I~ 
o ~36 I~ 

o ~12 
o 84 I~ 

o ~\ 2 
o 21 I~. 

1 ~\ 2 
o 5 l± 

1 -2-/_2_ 
o 1 

The result is 1,010,100,000. 
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Among other things, the two-system is important because of 
its ready adaptability to code writing. (See Chapter 6.) 

How to Mystify Your Friends 

In the two-system the respective values of the digit places, 
from right to left, are 1,2,4,8,16,32,64, 128,256, etc. And 

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511 

or exactly the amount of money distributed among the nine 
envelopes in the trick. To pick out the envelopes containirtg 
$3.46 exactly, translate 346 from the decimal system to the two
system. This is 101,01'1,010, or 

1 . 256 + 1 . 64 + 1 . 16 + 1 . 8 + 1 . 2 

This may be done mentally. Note the remainders obtained by 
the division by 2, and remember that these remainders denote 
the digit places in increasing order of magnitude as the division 
by 2 progresses. 

Arrange the envelopes in the following order: 

1st 
$2.56 

2d 
$1.28 

3d 4th 
$0.64 $0.32 

5th 
$0.16 

6th 
$0.08 

7th 8th 
$0.04 $0.02 

9th 
$0.01 

Now, taking $4.35 as the requested sum, translate it into the 
two-system, picking up an envelope for each 1 that appears in 
the two-system figures: 

435 + 2 = 217 + remainder 1· Pick up envelope 9. 
217 + 2 = 108 + remainder 1· Pick up envelope 8. 
108 + 2 = 54 
54 + 2 = 27 
27 + 2 = 13 + remainder 1· Pick up envelope 5. 
13 + 2 = 6 + remainder 1· Pick up envelope 4. 
6+2= 3 
3 + 2 = 1 + remainder 1· Pick up envelopes 2 and 1. 

Perform an abracadabra or two and hand your friend the en
velopes. They contain $0.01, $0.02, $0.16, $0.32, $1.28, and 
$2.56, or a total of $4.35. 
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The variation involving larger sums is easy. When the amount 
is greater than $5.11 but less than $10.23 (because the place value 
to the left of 512 in the two-system is 1,024), subtract $5.11 from 
it (in this case it is $6.00) and place the difference in a tenth en
velope. Then if a number greater than $5.11 is asked for, sub
tract the sum in the tenth envelope (in this case $0.89) from the 
number named and then translate the difference into the two
system. The tenth envelope thus will be one of those picked up. 

The Chinese Knew Their Digits 

About 5,000 years ago the Chinese employed the two-system 
of numeration. Ie-Kim (The Book of Combinations), written 
by the Chinese philosopher and legislator Fo-Hi, contains a table 
of sixty-three line figures, as shown below, which was deciphered 
by the German mathematician Leibnitz as a representation of 
the two-system. 

o 1 2 3 4 5 

6 7 8 9 10 

Broken lines represent the symbol 0 and continuous lines rep
resent the symboll. The number 37 is represented in Ie-Kim as 
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:-;' .'1f1d 63 is represe~ted as 

, , 

which corresponds to writing 37 as 100,10 1 and 63, as 111,111. 

A Hole in 10,101 

Among the papers of the eccentric Dr. X were found records 
of his golf scores. He kept records of all his golf matches, and 
weekly averages too. One weekly record read this way: 

Sunday 
Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 

11,011 
11,101 
11,111 
11,001 
11,120 
11,020 
11,021 

On the same page was the computation of the weekly average: 

1010002 
21 

The division was performed as follows: 

1010002121 
21 11022 
100 

21 
200 
112 
112 

112 

The clue to the system of numeration Dr. X used is found in 
his computations as well as in the denominator of the fraction .. 
He apparently used the three-system. 



:". 
.,. ;R~ Systems of Numeration 

The Three-System '\~-RC 
In the three-system three digits are used, 0, 1, and 2. The ~~ 

place on the right is the place of the units; next on the left come '. #t.1I 
the threes, then the three-threes or the nines, then the twenty- "'"_ 
sevens, the eighty-ones, two hundred and forty-threes, and so on. 

The first ten numbers when written in the three-system are: 

1 IS 1 
2 IS 2 

10 IS 3, or 1·3 + ° 
11 IS 4, or 1·3 + 1 
12 IS 5, or 1·3 + 2 
20 IS 6, or 2·3 + ° 
21 IS 7, or 2·3 + 1 
22 IS 8, or 2·3 + 2 

100 IS 9, or 1·9+0·3+0 
101 IS 10, or 1·9+0·3+1. 

The number 1;212 in the three-system corresponds to 50 in 
the decimal system. This can be checked as follows: 

1 . 27 + 2 . 9 + 1 . 3 + 2 = 27 + 18 + 3 + 2 = 50 

The number 12,120 in the three-system corresponds to 150 in 
the decimal system. 

Numbers can be translated from the decimal system to the 
three-system by dividing by 3 and is continued until the last 
quotient is either 1 or 2. For example 

269 I~ 
2~1~ 

2 ~13 
2 9 l± 

o -3-1-3-o 1 

Thus, 269 in the three-system is 100,222. 

The. Truth about Dr. X's Golf Scores 

Now that we know something about his system of numeration, 
we can decipher the sad story of Dr. X's golf. No wonder he 
preferred to hide it. 
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The daily scores were: 

Sunday 112 
Monday 118 
Tuesday 121 
Wednesday 109 
Thursday 123 
Friday 114 
Saturday 115 

The weekly average, then, was 

812 116 
T 

Other Systems 

The five-system was the one employed in the autobiography 
of Dr. X. Digits used are 0, 1, 2, 3, and 4. On the right are 
the units, then the fives, the twenty-fives, the one hundred and 
twenty-fives, etc. The first ten numbers in the five-system are: 

1 IS 1 
2 IS 2 
3 IS 3 
4 IS 4 

10 IS 5, or 1· 5 + 0 
11 IS 6, or 1· 5 + 1 
12 IS 7, or 1 . 5 + 2 
13 IS 8, or 1· 5 + 3 
14 IS 9, or 1 . 5 + 4 
20 IS 10, or 2 . 5 + 0 

The higher the numerical value of the system, of course, the 
more digits are used. For the eleven-system an eleventh nu
meral must be invented; for the twelve-system, two additional 
numerals. Thus, in the twelve-system the digit for 10 may be 
designated by t and the digit for 11 bye. 

Translation of a number, say 100,644, into the twelve-syst~m 
is done as follows: 

100644 
o 

and the number is 4t2eO. 

12 
8387 
11 
I~ 
~\ 12 

2 58 1_1_2_ 
10 4 
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In the twelve-system, right to left, are the units, the twelves, 
one hundred and forty-fours, and so forth. 

Homework Was Never Like This: 1 + 1 = 10 

School training makes simple arithmetical operations so me
chanical that they must be analyzed closely in order to apply 
them to systems of numeration other than the decimal. 

Take addition, for instance. In totaling a column of figures 
(starting on the right, of course), if a number greater than lOis 
obtained, the units are recorded and the remaining numbers (de
noting the tens) are carried to the next column. To add 639, 
472, and 593, the process is as follows: 

639 
472 
593 

9~+ 2 + 3 = 14. Record 4 and carry 1. 
1 + 3 + 7 + 9 = 20. Record 0 and carry 2. 
2 + 6 + 4 + 5 = 17. Record 17. 

The sum is then 1,704. 
The principle of carrying holds for other systems of numera

tion. But remember that the number that represents the system 
has no numeral for itself-it is always written as 10. 

Here is the way to add two (or more) numbers, say 1,101 and 
111, in the two-system: 

1,101 
111 

1 + 1 = 10. Write 0 and carry 1. 
1 + 0 + 1 = 10. Write 0 and carry 1. 
1 + 1 + 1 = 11. Write 1 and carry 1. 

1 + 1 = 10. Write 10. 

Therefore the sum is 10,100. 
The addition can be checked by the decimal system. The 

number 1,101 corresponds to 13, and 111 corresponds to 7. 
13 + 7 = 20, and 20 in the two-system is therefore 10,100. 
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Numbers in the three-system are added In the same way. 
Thus: ' 

2,122 
212 
121 

1 + 2 + 2 = 12. Write 2 and carry 1. 
1 + 2 + 1 + 2 = 20. Write 0 and carry 2. 
2 + 1 + 2 + 1 = 20. Write 0 and carry 2. 

2 + 2 = 11. Write 11. 

and the sum is 11,002. 
The check shows that 2,122 corresponds to 71 in the deci

mal system, 212 corresponds to 23, and 121 corresponds to 16. 
71 + 23 + 16 = 110, and 110 is 11,002 in the three-system. 

Below are examples of addition in various systems: 

Four-System Five-System Six-System 
3231 4312 45312 

133 432 5423 
312 243 355 

11002 11042 55534 

Seven-System Eight-System Nine-System 
56543 64753 784521 

3635 2567 63677 
216 471 2467 

64030 70233 861776 

Twelve-System 
5e4t2eO 

4ett2t 
ettee 

6548019 

The reader may check the sums by the decimal system. 

Remember This When That Collector Comes Around: 
10 - 1 = 1 -Sometimes! 

In subtraction, the method of borrowing will be used. An 
analysis of the decimal-system technique may be helpful. Sup
pose 17 is to be subtracted from 42. Since 7 cannot be subtracted 
from 2, 1 is borrowed from 4 (actually 10 from 40): 7 from 12, 
then, gives 5; finally, 1 from 3 (not 4) is 2, and the answer is 25. 
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It should be remembered that,. in each system of numera
tion, the number corresponding to the number of the system is 
the one borrowed. In the seven-system, 7 is borrowed; in the 
twelve-system, 12 is borrowed. 

To subtract 1,101 from 101,011 in the two-system, proceed 
as follows: 

101011 
1101 

11110 

Dots are placed over the fourth, fifth, and sixth digits from the 
right in the upper number (the minuend) to indicate that 10 
(which corresponds to 2 in the decimal system) was borrowed 
from each. Since 1 + 1 = 10 in the two system, 1 ° - 1 = 1. 
The result of the subtraction may be checked by addition in 
the two-system. Thus: 

11110 
+1101 
101011 

;Below are examples of subtraction in various systems: 

Three-System 

22110 
1202 

20201 

Six-System 

452050 
43443 

404203 

Nine-System 

73421 
8678 

63632 

Four-System Five-System 

312023 43420 
33231 3442 

212132 34423 

Seven-System Eight-System 

31611012 12472 
4256261 6777 

24321421 3473 

Twelve-System 

9tetZte 
ette to 

8eOe30e 

The results may be checked by addition or by the decimal 
system. 
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How to Muttiply and Like It 

Multiplicati<?n is performed the same way in all systems of 
numeration. In systems other than the decimal the chief diffi
culty is a tendency to think in terms of the decimal system. To 
avoid this, remember that the number denoting the system is 
always written as 10. The multiplication tables given in this 
chapter also will be useful. 

Multiplication in the two-system is so easy that it bears out 
the statement that this is the simplest of all systems. As you 
know, there are only two digits, 0 and 1, and multiplica~ion by 
1 naturally results in the same number. Thus: 

10011 
101 

10011 
10011 
1011111 

The product of two numbers in the three-system is obtained 
as follows: 112 

221 
112 

1001 
1001 
110222 

The multiplication by 1 results in the original number 112. Mul
tiplying 112 by 2 is done this way: 

2·2=11, 
2·1 = 2, and 2 + 1 = 10. 
2· 1 = 2, and 2 + 1 = 10. 

The product, therefore, is 1,00l. 

Write 1 and carry 1. 
Write 0 and carry 1. 
Write 10. 

Below are examples of multiplication: 

Four-System Five-System Six-System 
3312 3414· 45531 

213 344 1054 
23202 30221 315404 
3312 30221 405335 

13230 21302 45531 
2111322 3013131 54344154 
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Seven-System 
64625 

562 
162553 

551322 
453364 
54345503 

Eight-System 
576732 

4567 
5170366 

4371434 
3572502 

2773550 
3424125126 

Twelve-System 
eUe 
tet 

ge112 
te001 

ge112 
ttt0322 

Nine-System 
8867 

487 
68724 

78702 
38801 
4856844 

Multiplication in the twelve-system is performed as follows 
(using the decimal system for illustration): 

t·e = 110 = 9·12 + 2. 
t·t = 100, 100 + 9 = 109 = 9·12 + 1. 
t·t = 100, 100 + 9 = 109 = 9·12 + 1. 
t·e = 110, 110 + 9 = 119 = 9·12 + 11. 

Short Turns in Long Division 

Write 2 and carry 9. 
Write 1 and carry 9. 
Write 1 and carry 9. 
Write ge. 

Division, too, follows the same pattern in all systems of nu
meration. The reader is advised to go back over the sections on 
subtraction and multiplication before proceeding. Below are 
examples of division: 

Two-System 
11011011 [111 
111 11111 
1101 

111 
1100 

111 
1011 

111 
1001 

111 
10 

10 
Thus, 11,011,011 -;- 111 = 11111·111 +ITl' 
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Three-System 
2122 ~ 
~ 112 

22 
12 
102 
101 

1 
Thus, 2,122 + 12 = 112 ·12 + 1. 

Four-System 
33210 I 213 
213 121 
1131 
1032 

330 
213 
ill 

Note that in the last example, when 1,131 was divided by 213, 
2 was chosen as a quotient; 3 was not chosen because from in
spection 3' 2 = 12, and the first two digits of 1,131 are 11. 
Thus, 3 would have been too large. 

Five-System 
43214 I 123 
424 302 

314 
301 
13 

Some Addition and Multiplication Tables You Didn't Find in 
Grade Sc hool 

Operations with numbers in the various systems of numeration 
are simplified by addition and multiplication tables, similar to 
the decimal-system tables taught in one form or another to all 
grade-school pupils. Below are some of the tables. 

Addition 

roJ1J 
~I 

TWO-SYSTEM TABLES 

Multiplication 
1·1 = 1 
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To find the sum or product of two numbers take one num
ber in the first column and one number in the first row. Where 
the column and row intersect is the required number. Thus, 
0+ 1 = 1, 1 + 1 = 10. This principle applies to all the tables. 

0 

1 

2 

3 

4 

0 1 

1 2 

2 3 

3 4 

4 5 

5 10 

0 

1 

2 

3 

1 

2 

3 

4 

10 

THREE-SYSTEM TABLES 

Addition Multiplication 

0 1 

1 2 

2 10 

2 

10 

11 

~ 
l2J3 

FOUR-SYSTEM TABLES 

Addition Multiplication 

1 2 3 1 2 3 

2 3 10 2 10 12 

3 10 11 3 12 21 

10 11 12 

FIVE-SYSTEM TABLES 
Addition Multiplication 

2 3 4 1 2 3 

3 4 10 2 4 11 

4 10 11 3 11 14 

10 11 12 4 13 22 

11 12 13 

SIX-SYSTEM TABLES 

4 

13 

22 

31 

Addition Multiplication 

2 3 4 5 1 2 3 4 

3 4 5 10 2 4 10 12 

4 5 10 11 3 10 13 20 

5 10 11 12 4 12 20 24 

10 11 12 13 5 14 23 32 

11 12 13 14 

5 

14 

23 

32 

41 
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SEVEN - SYSTEM TABLES 

Addition Multiplication 

0 1 2 3 4 5 6 1 2 3 4 5 6 

1 2 3 4 5 6 10 2 4 6 11 13 15 

2 3 4 5 6 10 11 3 6 12 15 21 24 

3 4 5 6 10 11 12 4 11 15 22 26 33 

4 5 6 10 11 12 13 5 13 21 26 34 42 

5 6 10 11 12 13 14 6 15 24 33 42 51 

6 10 11 12 13 14 15 

EIGHT - SYSTEM TABLES 

Addition Multiplication 

0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

1 2 3 4 5 6 7 10 2 4 6 10 12 14 16 

2 3 4 5 6 I 7 10 11 3 6 11 14 17 22 25 

3 4 5 6 7 10 11 12 4 10 14 20 24 30 34 

4 5 6 7 10 11 12 13 5 12 17 24 31 36 43 

5 6 7 10 11 12 13 14 6 14 22 30 36 44 52 

6 7 10 11 12 13 14 15 7 16 25 34 43 52 61 

7 10 11 12 13 14 15 16 

NINE-SYSTEM TABLES 

Addition Multiplication 

0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 10 2 4 6 8 11 13 15 17 

2 3 4 5 6 7 8 10 11 3 6 10 13 16 20 23 26 

3 4 5 6 7 8 10 11 12 4 8 13 17 22 26 31 35 

4 5 6 7 8 10 11 12 13 5 11 16 22 27 33 38 44 

5 6 7 8 10 11 12 13 14 6 13 20 26 33 40 46 53 

6 7 8 10 11 12 13 14 15 7 15 23 31 38 46 54 62 

7 8 10 11 12 13 14 15 16 8 17 26 35 44 53 62 71 
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Odd or Even? 

Is 12 an even number or is it odd? Is 37 an odd number or is 
it even? 

In the decimal system the test for odd and even numbers, that 
is, for divisibility by 2, is simple. If the last digit on the right is 
even (zero is considered even), the number is even. Otherwise 
the number is not divisible by 2, and so is odd. 

But suppose that 12 is written in the four-system. Is it odd or 
even? Suppose that 37 is written in the eight-system. Is it odd 
or even? ~ 

The test for the divisibility by 2 of numbers in systems of nu
meration with even bases, such as the 2, 4, 6, 8, 10, and 12 sys
tems, is the same as that' used in the decimal system. If the last 
digit on the right is even, the number is even; otherwise it is odd. 

Thus 12, in the four-system, is divisible by 2 (12 -7- 2 = 3) 
and is even, and 37, in the eight-system, is not divisible by 2 
(37 -7- 2 = 17 + 1) and is odd. 

The test in systems with odd bases is as follows: if the sum of 
the digits of the number is even, then the number is even; other
wise it is odd. 

Thus 12, in the three-system, is not divisible by 2 (12-7- 2 = 
2 + 1) and is odd, and 37, in the nine-system, is divisible by 2 
(37 -7- 2 = 18) and is even. 

While on the topic of the divisibility of numbers, it may be 
mentioned that the divisibility test of casting out nines used in 
the decimal system has its counterpart in other systems. In the 
decimal system 9 = 10 - 1, that is, the base number diminished 
by 1. The same test by casting out the base diminished by 1 
holds good in other systems. Thus, to determine whether a 
number in the seven-system is divisible by 6, cast out sixes. If 
the sum of the digits is divisible by 6, the number is divisible by 
6; otherwise it is not. For example, 54,324 in the seven-system 
is divisible by 6, because in the seven-system 

5 + 4 + 3 + 2 + 4 = 24 

and 24 is divisible by 6, since 2 + 4 = 6. 
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Don't be fooled by the 5 in systems other than the decimal. Is 
135 divisible by 5? In the decimal and in the five-system it is. 
But is 135 divisible by 5 in the six-system? In the six-system 5 
is the base diminished by 1. The sum of the digits of 135 (in the 
six-system) is 13, and 13 is not divisible by 5. Is 135 divisible by 
5 in the eight-system? To find out, translate 13 5 into the deci
mal system. If the number thus obtained is divisible by 5, then 
135· in the eight-system is divisible by 5; otherwise it is not. 
When translated 135 is 93, which is not divisible by 5; hence 
135 in the eight-system is not divisible by 5. 

Fractions without Denominators 
The principle used in writing decimal fractions in the decimal 

system may be applied to other systems. Thus 1.3 in the six
system is 1 3/6, or 1 1/2, which is 1.5 in the decimal system. 
Two-ninths in the nine-system is written as 0.2. 

In the six-system 1.24 can be translated into an improper frac-
tion (a fraction with a denominator) as follows: -

1.24 = 1 + % + is = 1 + t + t = It = -\1-
PROBLEMS 

1. In what system of numeration has the following addition been 
performed? 

642 
4534 

55023 
63532 

2. In what system of numeration has the following subtraction 
been performed? 

21306 
3427 

16768 

3. In what system of numeration has the following multiplication 
been performed? 

443 
312 

1330 
443 

2213 
231500 
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4. In what systt::m of numeration has the following division been 
performed? 

2340324 
2303 
----n3 

312 
1124 
1124 

~ 
4102 

5. Write 473 in all the systems of numeration from the two-system 
to the twelve-system, inclusive. 

6. Take the nQmber 120,433. 
a) What are its equivalents in the decimal system if this number 

were written in all the other systems from the five-system to the 
twelve-system, inclusive? 

b) State whether this number is odd or even in the six-system 
and when it is written in the seven-system. Do not translate it into 
the decimal system. 

c) If it is written in the eight-system, is it divisible by 8 with
out leaving a remainder? 



Remarkable Properties 
of Numbers 

Those 'Lucky' and 'Unlucky' Numbers 

Since the earliest times particular numbers have had a strange 
fascination. Certain ones have been believed to be endo~ed 
with mysterious qualities, and even nowadays many believe that 
everyone has "lucky" and "unlucky" numbers. An astonish
ingly large group of people are convinced that 13 especially is 
very unlucky; this superstition is so generally rooted that in 
many office buildings the thirteenth floor is numbered 12A. 
And Friday the Thirteenth is almost National Hoodoo Day. 

Actually, of course, there is nothing supernatural in numbers. 
Each does possess certain properties, but they are purely mathe
matical. These properties are intriguing, however, and princi
pally because few ordinarily suspect their existence. Now we 

. shall examine some of the more remarkable examples, many of 
which are employed by persons who perform tricks with rapid 
calculation and with number puzzles. We may consider first 
the numbers 2, 5, and 9. 

We have met 2 before. It is an even number in all systems of 
numeration, and the two-system itself is the simplest of all, being 
especially useful therefore in code writing. 

The number 5 has no unusual mathematical properties but, for 
some unknown reason, many persons have a considerable prefer
ence for it. People generally, when asked to estimate length, 
weight, age, etc., automatically give a number that will end either 

31 
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in a 5 or o. Scientists have made studies of these preferences as 
evidenced in the giving of ages and find that most of us choose 
to give numbers-that end in 0. The next preference is those that 
end in 5. The first ten digits as they appear in the order of their 
general preference as endings are 0,5,8,2,3,7,6,4,9,1. This 
sequence was checked many times in varying experiments, such 
as estimating h.-:ngths, weights, heights, and so on. 

Number 12: The Ancients' Favorite 

The number 12 was for a long time a rival of the number 10 
as the base of the numeration system. There were twelve tribes 
in Israel, named for the twelve sons of Jacob, and there were the 
twelve Apostles. Nowadays we use 12 very often .as a unit of 
measure: There are twelve months in a year, twelve inches in a 
foot, twelve in a dozen, twenty-four (twice 12) hours in a day, 
and in Great Britain there are twelve pence in a shilling. 

In ancient Babylon 12 was at one time the base of the system 
of numeration; later on, it was replaced by 60 (five times 12). 
Subsequently in almost all lands the base 12 was replaced by 10, 
and our system of numeration became decimal (probably be
cause we have ten fingers on our hands, and the first steps in 
counting were performed on the fingers). However, 12 has 
been retained in our everyday counting such as, for further ex
ample, 5 times 12, or 60, minutes in an hour and 60 seconds in a 
minute. We even have a name (gross) for twelve dozen, and in 
the twelve-system, as we already know, 144 is written as 100 .. 

We use the decimal system in our calculations but it is not, 
however, as convenient as the twelve-system. F or example, 10 
is divisible by 2, 5, and 10 only, while 12 is divisible by 2, 3, 4, 
6, and 12. Thus, while 10 has three divisors, 12 has five. A 
number that ends in zero when written in the twelve-system is 
divisible by at least 2, 3, 4, 6, and 12. In the decimal system a 
number that ends in zero is divisible by at least 2 and 5, and nat
urally is inconvenient when 1/2, 1/3, 1/4, 1/6, and 1/12 of a 
number are to be obtained as a whole number. Thus, in the 
decimal system 1/3 of 10 is not a whole number, and 10/3 when 
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represented as a mixed decimal fraction (3.333) is unending. In 
the twelve-system, however, 1/3 of 10 (we should remember 
that lOin the twelve-system corresponds to 12 in the decimal 
system) is 4 and 1/6 is 2, while in the decimal system the latter 
is 1.6666 ... , and its decimal part is unending. 

A number in the decimal system ending in two zeros is divis
ible by at least 2, 4, 5, 10, 25, 50, and 100. A number in the 
twelve-system when it ends in two zeros (it should be remem
bered that 100 in the twelve-system corresponds to 144 in the 
decimal system) is divisible by at least 2, 3,4, 6, 8, 9, 12, 16, 18, 
24, 36, 48, 72, and 144. Thus in the decimal system a number 
that ends in two zeros has at least eight divisors, while in the 
twelve-system it has at least fourteen. 

In the decimal system only fractions whose denominators are 
multiples of 2 and 5 (or both) can be expressed exactly as ending 
decimal fractions. For example, 1/2 = 0.5, 1/4 = 0.25, 1/5 = 
0.2, 1/8 = 0.125, 1/10 = 0.1, 1/20 = 0.05, and so on. In the 
twelve-system all the fractions whose denominators are multiples 
of 3 or 2 (or both) can be represented exactly as ending fractions 
which are written in the same manner as the fractions in the deci
mal system. Thus: 1/2 = 0.6, 1/3 = 0.4, 1/4 = 0.3, 1/6 = 0.2, 
1/8 = 0.16, 1/9 = 0.14, 1/12 = .0.1, 1/16 = 0.09, 1/18 = 0.08, 
1/24 = 0.06, 1/36 = 0.04, 1/48 = 0.03, 1/72 = 0.02, and 1/144 
=0.01. 

The foregoing, however, should not be interpreted as a su
periority of the twelve-system in that a number which is not 
exactly divisible, say by 9, in the decimal system will be exactly 
divisible by 9 in the twelve-system. This would be a wrong in
terpretation. Suppose, for instance, that we have a box with 
pebbles. If we can divide these pebbles into 9 heaps, each con
taining an equal number of pebbles, the number of the pebbles 
will be exactly divisible by 9 regardless of the system of numera
tion used for writing of the number. The advantage of the 
twelve-system is that in it the divisibility by 6 or by 72 may be 
easily detected (the number must end at least by one zero for 6 
and by at least two zeros for 72) and that we obtain more whole 
numbers as quotients than in the decimal system. 
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Versatile 365 

This is the number of days in a year that is not a leap year. 
When 365 is divi-ded by 7 we obtain a remainder 1; so in a year 
there are 52 weeks and one day over. But the remarkable prop
erty of 365 is that 

365 = 10· 10 + 11 . 11 + 12· 12 
Indeed, 

10·10 + 11 . 11 + 12 ·12 = 100 + 121 + 144 = 365 

Moreover, 

365 = 13·13 + 14· 140r169 + 196= 365 

The only five consecutive positive numbers which have this pe
culiar property associated with 365 are 10, 11, 12, 13, and 14. 

Number !J!J, the Rapid Calculator 

Number 99 is interesting in that by its help we may perform 
rapid multiplication of two-place numbers. We will now de
velop a method for doing this. 

Suppose we examine the product of 64 and 99 . We know that 
64· 99 = 6,336. Observe that 63 + 36 = 99. This may be ex
plained as 99 = 100 - 1. 

Then 
64·99 = 64(100 - 1) = 6,400 - 64 = 6,336 

This holds for any two-place numbers. F or example, 

15·99 = 1,485 
36·99 = 3,564 

or 
99· 99 = 9,801 

The rule for this multiplication is then: 
Diminish the number by 1 and write to the right of it the 

difference between 99 and this diminished number. 
Moreover, 99 = 3 . 3·11. If we remember this property we 

can write a four-place number such that it will be divisible by 11 
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without a remainder. In such numbers we may consider two 
parts consisting of two-place numbers, as in 4,653 we have 46 
and 53. The sum of these two-place numbers must be equal to 
99. Thus, if we take some two-place number, 73 for example, 
and subtract it from 99, we obtain 26. Write this difference to 
the right of 73. This number, 1';'326, is divisible by 11 exactly. 

The Game of JJJ 

In the same way we multiply two-place numbers by 99 we 
can perform multiplications of three-place numbers by 999. Sup
pose that we want to obtain the product of 637 and 999. We 
have that 637' 999 = 636,363. Observe that 636 + 363 = 999. 
This may be explained as 999 = 1000 - 1. Then 

637 ·999 = 637 (1,000 - 1) = 637,000 - 637 = 636,363 

This holds for any three-place numbers. For example, 

377 . 999 = 376,623, or 999' 999 = 998,001 

The rule is: 
Diminish the number by 1, subtract the diminished number 

from 999, and write this difference to the right of the diminished 
number. 

Moreover, 999 possesses another unusual property: 

999 = 9 . 111 = 3 . 3 . 3 . 37 

If we remember this property we can write at once a six-place 
number that is exactly divisible by 37. In such a number there 
are two parts, each of three digits. If each part is considered as 
a three-place number, then the sum of these two must always be 
equal to 999. In other words, we take some three-place number, 
537 for example, and subtract it from 999. We write the dif
ference, 462, either to its left or to its right and the resulting 
numbers, 537,462 and 462,537, are both divisible by 37. Thus 

537,462 = 14,526' 37 and 462,537 = 12,501 . 37 

A simple arithmetical game may be played if you know this 
property of 999. You may ask someone to write secretly a three
place number, diminish it by 1 and subtract it from 999. Then 
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you will ask that the difference thus obtained be written to the 
right of the original number (but the difference must be written 
as a three-place- number; that is, if you took 963 the other num
ber must be written as 036). Then you may ask another person 
to divide this six-place number by 27. The quotient is then 
handed to a third person with the request to divide it by 37, 
assurance that the division will be performed without remainder. 
After the division you may take the slip with the quotient and, 
without looking at it, hand it to the person who made the original 
selection and announce that this is the number. Those not fa
miliar with the property of 999 will be completely mystified. 

The Thousand-and-First Parlor Trick 

The number 1,001 is probably best associated with the famous 
Arabian tales of Scheherazade, but it has other claims on our in
terest here. If we want to multiply a three-place number by 
1,001 we need not perform multiplication; just write the number 
twice, and there is the answer. For example, 

643· 1,001 = 643,643 
because 

1,001 = 1,000 + 1 

Interesting, too, is the fact that as 1,001 = 7 . 11 . 13, any three
place number written twice so that it becomes a six-place number 
is divisible by 7, 11, and 13. This property allows us another 
variation on our number trick. 

We ask someone to write a three-place number and repeat 
it, so that it becomes a six-place number-this and subsequent 
operations, of course, being kept concealed from us. The slip 
is handed to a second person with the request to divide it by, 
say, 11. The quotient then is given to a third person with the 
request to divide it by 7, and the new quotient to a fourth person 
to divide by 13. The result is then the original three-place 
number. 
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Triple-Play 10,101 ~ 
~~/; Multiplication of any two-place number by 10,101 reqU1~ 

writing of that number three times. Thus 

because 

and 

56' 10,101 = 565,656 

10,101 = 10,000 + 100 + 1 

56'10,101 = 56 (10,000 + 100 + 1) = 560,000 + 5,600 + 
56 = 565,656 

Likewise, 

48' 10,101 = 484,848 and 92 . 10,101 = 929,292 

However, an interesting property of 10,101 is that it equals 
3' 7 . 13 . 37. This leads us to the conclusion that any six-place 
number consisting of two digits repeated three times as in the 
foregoing is divisible by 3, 7, 13, and 37, and that there will be 
no remainders after these divisions. Thus we have another num
ber trick, performed in the same manner as 1,001, except that, of 
course, a two-place number must be repeated thrice to provide a 
six-place number, and the numbers 3, 7, 13, and 37 must be used 
in the divisions. As a variation the divisions may be performed 
with, consecutively, 21, 13, and 37; 3, 91, and 37; 7, 39, and 37 
and 7, 13, and 111, as these are combinations in product form of 
the four numbers, 3, 7, 13, and 37. 

The Number 10,001 

The peculiar property of 10,001, as far as its multiplication of 
any four-place number is concerned, is now clear: the product 
will be an eight-place number in which the digits of the four
place number are repeated; for example, 

Since 
5,892 . 10,001 = 58,925,892 

10,001 = 73 . 137 

our trick may be done with a repeated four-place number and 
73 and 137 as the dividing numbers. 
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Tricky, 9,999, 99,999, and 999,999 

Multiplications of a four-place number by 9,999, of a five
place number by 99,999, and of a six-place number by 999,999, 
are performed in the same manner as the multiplication of a 
three-place number by 999. 

We note that 

and 

9,999 = 10,000 - 1 
99,999 = 100,000 - t 

999,999 = 1,000,000 - 1 

Thus when a four-place number is multiplied by 9,999, with, for 
example, 6,473 as the four-place number, we actually perform 
the following operation: 

6.473' 9,999 = 6,473 (10,000 - 1) = 64,730,000 - 6,473 = 
64,723,527 

We observe that 6,472 + 3,527 = 9,999. We now have the 
rule for the multiplication of a four-place number by 9,999: We 
diminish the number by ~ and to the right of the remainder 
write the difference between 9,999 and this diminished number. 
A number trick similar to those above may be added to our 
repertory. 

Multiplication of a five-place number by 99,999 is done in 
the same way as a four-place number by 9,999. The resulting 
number trick follows the usual pattern. 

A Puzzler with 111,111 

It will be recalled that r1mltiplication of three-place numbers 
by 1,001 results in the writing of this number twice, and imme
diately note that 111,111 must have 1,001 as a factor. Thus 
111,111 = 111' 1,001, but 111 = 3' 37, and 1,001 = 7' 11' 13. 
Therefore 

111,111 = 3' 7 . 11 . 13 . 37 

This property of 111,111 provides a different trick: Someone 
is asked to write a digit, any from 1 to 9 inclusive, six times in 
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succession as a six-place number. Then others (one at a time) 
are asked to. divide by 3, 7, 11, 13, and 37, and finally the last 
quotient is handed to the first person with the remark that this 
is the digit originally set down. As a variation of division by 3, 
7, 11, 13, and 37, product-combinations of these numbers may 
be offered. For example, 21, 11, 13, and 37; 33,7, 13, and 37; 
39, 7, 11, and 37; 111, 7, 11, and 13; 3, 77, 13, and 37; and 3, 11, 
91, and 37. 

Number Curiosities 
Here are some curious results, but the reader will find little 

difficulty now in explaining t~em as all are based on the multi
plication rules earlier described: 

9·9 = 81 
99·99 = 9801 

999·999 = 998001 
9999·9999 = 99980001 

99999·99999 = 9999800001 
999999·999999 = 999998000001 

9999999·9999999 = 99999980000001 

Is this oddity clear? If not, turn to the pages where the multiJ 
plications by 999, 9,999, and 99,999 are described. 

Here are some more interesting results: 

999999·2 = 1999998 
999999·3 = 2999997 
999999·4 = 3999996 
999999·5 = 4999995 
999999·6 = 5999994 
999999·7 = 6999993 
999999·8 = 7999992 
999999·9 = 8999991 

We now may modify the rules for the multiplications by 99, 
999, 9,999, 99,999, 999,999, etc. Earlier in these rules we lim
ited ourselves to numbers with the same number of places as 
these factors. However, the rules given may be modified so 
that the total of places in the numbers simply does not exceed 
the total number of those in the factors 99, 999, etc. This modi
fication is possible because where a number has two places and 
the other factor is, say, 99,999, by means of writing three zeros 
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to the left of the two-place number we have a five-place number 
for our purposes. Thus, 

38'99,999 = 3,799,962 

This explains the foregoing table of products. We may write 

3' 999,999 = 000,003' 999,999 = 2,999,997 

Some number curiosities display a regularity, easily explained, 
in the order in which the digits appear. Consider these products 
and sums: 

1·9 + 2 = 11 
12·9 + 3 = 111 

123·9 + 4 = 1111 
1234·9 + 5 = 11111 

12345·9 + 6 = 111111 
123456·9 + 7 = 1111111 

1234567·9 + 8 = 11111111 
12345678·9 + 9 = 111111111 

Let us examine in detail one of these, for example, 

12,345' 9 + 6 = 111,111 
This may be rewritten as 

12,345 (10 - 1) + 6 = 123,450 + 6 - 12,345 = 123,456-
12,345 

But 
123,456 - 12,345 = 111,111 

because 

6 - 5 = 1, 5 - 4 = 1, 4 - 3 = 1, 3 - 2 = 1, and 2 - 1 = 1 

Thus when we multiply one of the numbers in the column by 9 
and add a number represented by a digit that follows (in order 
of numeration) the last digit on the extreme right of the number, 
we actually obtain another number in which the digits are all 1 'so 
For example. 

1234' 9 + 5 = 1234 (10 - 1) + 5 = 12340 + 5 - 1234 = 
11111 

Here is another set of number products and sums that displays 
odd regularity: 
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1·8+1=9 
12·8 + 2 = 98 

123·8 + 3 = 987 
1234·8 + 4 = 9876 

12345·8 + 5 = 98765 
123456·8 + 6 = 987654 

1234567·8 + 7 = 9876543 
12345678·8 + 8 = 98765432 

123456789·8 + 9 = 987654321 

This regularity may be explained if we consider that 

123456' 8 + 6 = 987654 

that 8 = 9 - 1, and that 6 = 7 - 1. Then 

123456' 8 + 6 = 123456 (9 - 1) + (7 - 1) = 123456' 9 + 
7 - 123456 - 1 

But 123456' 9 + 7 = 1111111 (this was obtained in the first 
table of products and sums), and 123456 + 1 = 123457. Then 

123456·8 + 6 = 1111111 - 123457 

This subtraction may be represented as: 

1,000,000 - 100,000 = 900000 
100,000 - 20,000 = 80000 
10,000 - 3,000 = 7000 

1,000 - 400 = 600 
100 - 50 = 50 
11- 7= 4 

Thus 1111111 - 123457 = 987654. This explains why the num
bers on the right of the second tabl~ have their digits in the de
scending order of numeration. The reader will find no special 
difficulty in checking any other expression in the first table and 
convincing himself that there is nothing mysterious in the regu
larity displayed in the second. 

Consider this table of products and sums: 

9·9 + 7 = 88 
98·9 + 6 = 888 

987 . 9 + 5 = 8888 
9876·9 + 4 = 88888 

98765·9 + 3 = 888888 
987654·9 + 2 = 8888888 

9876543·9 + 1 = 88888888 
98765432·9 + 0 = 888888888 
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Let us examine one of these expressions, for example, 

-987,654'9 + 2 = 8,888,888 

From the first table we have that 

123456·9 + 7 = 1,111,111 

Multiply both sides of the last expression by 8; we have then 
8,888,888. But from the second table we have that 

123,456' 8 + 6 = 987,654 
Then 

123,456' 8 = 987,654 - 6 = 987,648 
and 

8,888,888 = 987,648' 9 + (7' 8) 
But 

(7 - 8) = 56 = 54 + 2 = 6' 9 + 2 
Then 

8,888,888 = 987,648 . 9 + 6' 9 + 2 = (987,648 + 6)9 + 2 
Finally 

8,888,888 = 987,654' 9 + 2 

If the reader will follow this analysis, he will find no difficulty 
in checking every expression in the foregoing table, and explain-
ing the properties of regularity as displayed in the three tables. 

Let us examine the last line of the first table of products and 
sums, that is, 

12,345,678' 9 + 9 = 111,111,111 

This expression can be rewritten as 

12,345,678' 9 + 9 = (12,345,678 + 1)9 = 12,345,679' 9 = 
111,111,111 

Now if we recall that 2·9 = 18, 3·9 = 27,4'9 = 36, 5·9 = 45, 
6·9 = 54, 7·9 = 63, 8-9 = 72, 9-9 = 81, we obtain the follow

. ing table: 
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12345679· 9 = 111111111 
12345679·18 = 222222222 
12345679·27 = 333333333 
12345679·36 = 444444444 
12345679·45 = 555555555 
12345679·54 = 666666666 
12345679·63 = 777777777 
12345679·72 = 888888888 
12345679·81 = 999999999 

The Oddity 123,456,789 

This number possesses some unusually distinctive properties. 
Let us write it backwards and perform this subtraction: 

987654321 
-123456789 

864197532 

The difference is made up of the same nine nonrepetitive digits. 
Moreover, if we multiply 123,456,789 by a number less than 10 
that is not a multiple of 3 we obtain: 

Also note that 

123456789·2 = 246913578 
123456789·4 = 493827156 
123456789·5 = 617283945 
123456789·7 = 864197523 
123456789·8 = 987654312 

987654321 - (123456789·8) = 987654321 - 987654312 = 9 

The sequence of the digits 123456789 may be obtained by mul
tiplying 111,111,111 by itself: 

111111111 
111111111 
111111111 

111111111 
111111111 

111111111 
111111111 

111111111 
111111111 

111111111 
111111111 
12345678987654321 
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However, this arrangement of digits in the ascending and then 
descending order is present also in the product of numbers com
posed of several repeated digits 1, when these numbers are multi
plied by themselves. Thus 

11·11=121 
111·111 = 12321 

1111·1111 = 1234321 
11111·11111 = 123454321 

111111·111111 = 12345654321 
1111111·1111111 = 1234567654321 

11111111·11111111 = 123456787654321 
111111111·111111111 = 12345678987654321 

Repeated-Digit Bafflers 

Here is an interesting property of numbers written with the 
repeated digits: 

(111·111) - 10(11·11) = 11111 
(1111·1111) - 10(111·111) = 1111111 

(11111·11111) - 10(1111·1111) = 111111111 
(111111·111111) - 10(11111·11111) = 11111111111 

(1111111·1111111) - 10(111111·111111) = 1111111111111 
(11111111·11111111) - 10(1111111·1111111) = 111111111111111 

(111111111·111111111) - 10(11111111·11111111)= 11111111111111111 

Will this property hold for any number composed of the re
peated digits I? The reader should not fail to see that the 
second term (the one that should be subtracted) represents a 
number with one digit less that is multiplied by itself. Here is 
a relationship that is known to be true. The first number contains 
18 digits 1 repeated: 

(111111111111111111 ·111111111111111111) - 10(11111111111111111 ·11111111111111111) = 

= 11111111111111111111111111111111111 

The reader may check this at his leisure. However, as a more 
simple exercise he may check the following: 

(1111111111·1111111111) -10(111111111·111111111) = 1111111111111111111 

This expression, when the products are obtained, is 

1234567900987654321 
- 123456789876543210 

1111111111111111111 
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F or extens~on of the trick with 111,111, here are some· numbers 
written with the repeated digits 1 and their respective factors: 

111 = 3·37 
1111=11·101 

11111 = 41·271 
111111 = 3·7·11·13·37 

1111111 = 239·4649 
11111111 = 11·73·101·137 

111111111 = 9·37·333,667 
1111111111 = 11·41·271·9091 

11111111111 = 21,649·513,239 
111111111111 = 3·7·11·13·37·101·9901 

1111111111111 = 53·79·265,371,653 
11111111111111 = 11·239·4649·909,091 

111111111111111 = 3·31·37·41·271·2,906,161 
1111111111111111 = 11·17·73·101·137·5,882,353 

11111111111111111 = 2,071,723·5,363,222,357 
111111111111111111 = 7·9·11·13·19·37·52,579·333,667 

Orderly 142,857 

The best way to learn the properties and the nature of 142,857 
is to perform some multiplications with it: 

142,857·1 = 142,857 
142,857·2 = 285,714 
142,857·3 = 428,571 
142,857·4 = 571,428 
142,857·5 = 714,285 
142,857·6 = 857,142 
142,857·7 = 999,999 

Inspection of the first six products reveals that the order of 
the digits is always preserved. Thus when we want to obtain 
the product of 142,857 and 4, we note that this product must 
have 8 as its last digit on the extreme right because 7·4 = 28. 
Then the digits 57 are transposed to the extreme left, and the 
remaining digits 1428 are written to the right of 57. 

Now we may consider the nature of this number. Let us 
center our attention on the product 142,857·7 = 999,999. We 
then can write 

142,857 1 
999,999 '7 
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Let us write 1/7 as a decimal fraction. By long division we obtain 
1/7 = 0.142857 142857 142857 .... Thus we have found that 
142,857 represents' the repeating part of an unending decimal 
fraction, known as a "periodic fraction," and 142,857 is known 
as the "period" of this fraction. Thus we can clear up the 
mystery of the regular order of the digits in the products of 
142,857 by 1, 2, 3, 4, 5, and 6. When we multiply 142,857, 
say by 4, we may think of this product as 4/7. Now, if we 
transform 4/7 into a decimal fraction, we note that 4 is one of 
the remainders obtained when we transformed 1/7 into a decimal 
fraction. Naturally the same remainders must be obtained and 
in the same order, but they must begin with some other digit, 
and not 1, as in the case of 1/7. This means that when a fraction 
with a denominator 7, but with a numerator other than 1, is 
transformed into a decimal fraction we obtain the same period, 
except that some of the digits of 142,857 will be transposed to 
the right. When we multiply 142,857 by 7 we should obtain 1, 
but since the fraction 1/7 is represented as an unending repeating 
decimal fraction, we take for 1/7 the fraction 0.142,857 which 
is less than 1/7, and thus we obtain for our product 0.999999 .... 

Let us examine 142,758 more closely. If we break up this 
six-digit number into two parts, we have 142 and 857. But 
note that 

142 + 857 = 999 

In other words, if we recall what was stated in this chapter re
specting 999, we may consider 142,857 as a product. Now. 

143 ·999 = 142,857 

But 143 = 11·13. Moreover, we should recall also that 1,001 = 
7· 11 . 13. Then 

142,857-7 = 143-999-7 = 7-11·13-999 = 1,001-999 = 999,999 

Now, let us consider the product 

142,857-8 = 142,857-7 + 142,857 = 999,999 + 142,857 
But 999,999 = 1,000,000 - 1. Then 

142,857-8 = 1,000,000 + 142,857 - 1 = 1,142,857 - 1 = 
1,142,856 
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This number differs from 142,857 in that it has an extra digit 1 
on its left and the last digit (7) is diminished by 1. Similarly 
we may obtain the product 

142,857'12 = 142,857·7 + 142,857'5 = 999,999 + 714,285 

Finally, we have 

142,857'12 = 1,000,000 + 714,285 - 1 = 1,714,284 

Let us obtain one more product before we arrive at the rule for 
the multiplication of 142,857 by any number; 142,857·25 = 
(142,857,7)3 + 142,857-4 = 999,999·3 + 571,428, and 

142,857·25 = (1,000,000 - 1)3 + 571,428 = 3,000,000 + 
571,428 - 3 = 3,571,425 

We observe that the first digit in this product is the quotient of 
the division of 25 by 7, and this quotient (which in this case is 
3) is subtracted from the product of the remainder of the di
vision of 25 by 7 (4) by 142,857. This product is written to 
the left of the quotient of the division of 25 by 7. 

Then the rule for the multiplication of 142,857 by any number 
is as follows: Divide the second number by 7 and write its quo
tient to the left of the product. To the right of this quotient is 
written the product of 142,857 and of the remainder of the di
vision of the second number by 7. Finally, the quotient of the 
division (which is written on the left) is subtracted from the 
extreme right of the number thus written. For example, the 
product of 142,857 and 543 is obtained thus: 543 = 77·7 + 4; 
therefore 

142,857'543 = 77,571,428 -77 = 77.,571,351 

If the second number is exactly divisible by 7 as, for example, 
91, then the quotient is diminished by 1, and to the left of the 
diminished quotient we write the product of 142,857 and of 7, 
that is 999,999, and from the number thus written we subtract 
the diminished quotient. Thus 

142,857'91 = 12,999,999 - 12 = 12,999,987 
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Cyclic Handy Men 

Our 142,857 is part of a family of numbers possessing prop
erties amenable to rapid multiplication. Another such number 
is 0,588,235,294,117,647. That the zero is necessary is evident 
from this table of products: 

0,588,235,294,117,647· 2 = 1,176,470,588,235,294 
0,588,235,294,117,647. 3 = 1,764,705,882,352,941 
0,588,235,294,117,647· 4 = 2,352,941,176,470,588 
0,588,235,294,117,647· 5 = 2,941,176,470,588,235 
0,588,235,294,117,647· 6 = 3,529,411,764,705,882 
0,588,235,294,117,647· 7 = 4,117,647,058,823,529 
0,588,235,294,117,647· 8 = 4,705,882,352,941,176 
0,588,235,294,117,647· 9 = 5,294,117,647,058,823 
0,588,235,294,117,647 ·10 = 5,882,352,941,176,470 
0,588,235,294,117,647·11 = 6,470,588,235,294,117 
0,588,235,294,117,647·12 = 7,058,823,529,411,764 
0,588,235,294,117,647 ·13 = 7,647,058,823,529,411 
0,588,235,294,117,647 ·14 = 8,235,294,117,647,058 
0,588,235,294,117,647 ·15 = 8,823,529,411,764,705 
0,588,235,294,117,647 ·16 = 9,411,764,705,882,352 
0,588,235,294,117,647 ·17 = 9,999,999,999,999,999 

The reader may now guess (and correctly) that our 0,588,-
235,294,117,647 is the period of the fraction 1/17 when it is 
translated into a repeating decimal fraction. However, not every 
fraction so translated will give a period that is expressed by a 
number possessing the same property as 142,857. Note that 
142,857 contains six digits and originated from the fraction 1/7, 
and that 0,588,235,294,117,647 contains 16 digits and also origi
nated from 1/17. Only those fractions that yield periods con. 
taining one less digit than the number in the denominator of the 
fraction lead to numbers that possess the properties described by 
us above. Such fractions include 1/7, 1/17, 1/19, 1/23, 1/29 
and an infinity of similar combinations. The fraction 1/13 does 
not lead to such a period, however. 

Some Wit Testers 

The following problem is an interesting exercise: Write a 
certain number (you may use the signs +, ., and -;-) by using 
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all the digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) but every digit once 
only. Thus 9 may be written as 

97,524, 95,823, 95,742, 75,249, 58,239, 57,429 
10,836 10,647 10,638 08,361 06,471 06,381 

Are there any other possible ways of writing 9 in the same man
ner? How about writing some other number, say 7, or 8, or 6? 

Writing of 100 may be done by means of the digits 1, 2, 3,4, 
5, 6, 7, 8, and 9, as 

or 

97 + 5 + 3 + ~ +1. 
842 

75 + 24 + Is + i 
975 + 4 + U + t. 

98 + 1 + ~r + i, 91 + 8 + it + i, 
94 + 5 + ~~ + t, 95 + 4 + ~~ + V, 
1 + 95 + 3 + --h + 4, 1 + 93 + 5 + --h + .f, 

91 + 3 + 5 + 2~ + t, 
57 + 42 + 198 + i, 52 + 47 + Is + i, 
36~H-J1., 8P269V, 81¥J-I-, 821l-lN-, 9 PiaV-, 

91.!tiH.1., 91 5lN, 94-WI)~' 962'iaV, 96-VI-I, 96¥i'i-. 

Also 100 may be written as follows: 

1 + 2 + 3 + 4 + 5 + 6 + 7 + (8·9), 

1 + (2·3) + (4·5) - 6 + 7 + (8·9), 

1 + (2·3) + 4 + 5 + 67 + 8 + 9, 

(1·2) + 34 + 56 + 7 - 8 + 9, 

-(1·2) - 3 - 4 - 5 + (6·7) + (8·9), 

12 + 3 - 4 + 5 + 67 + 8 + 9, 

12 - 3 - 4 + 5 - 6 + 7 + 89, 

123 + 4 - 5 + 67 - 89, 

123 + 45 - 67 + 8 - 9, 

123 - 45 - 67 + 89, 

123 - 4 - 5 - 6 - 7 + 8 - 9, 

(1 + 2 - 3 - 4)(5 - 6 - 7 - 8 - 9) 
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Here .are some products in which every digit from 1 to 9 in
clusive appears once only: 

4·1,738 = 6,952 
12· 483 = 5,796 
27· 198 = 5,346 
39· 186 = 7,254 

4·1,963 = 7,852 
18· 297 = 5,346 
28· 157 = 4,396 
42· 138 = 5,796 

A few more curious properties of numbers: 

Take any two-place number, write it backward, and add 
these two numbers. Do the same to the sum thus obtained and 
add the"two numbers again. This process can be rep~ated until 
at some stage the sum reads exactly the same from left to right 
and from right to left. For instance, with 16 we have 

16+61 = 77; 29 +92 = 121; 

69 + 96 = 165; 165 + 561 = 726; 726 + 627 = 1,353; 1,353 + 3,531 = 4,884 

These three-place numbers are divisible by the product of 
their respective digits: 111, 112, 115, 128, 132, 135, 144, 175, 
212,216,224, 312, 315, 384,432,612,624,672,735, and 816. 

And here is an interesting property of fractions: 

47,591 - 47 
99,990 

47,591,591 - 47 
99,999,900 

PROBLEMS 

1. Write 1,000 by using eight 8's. 
2. Write 24 by using three 8's. 

47,591,591 - 47,591 
99,900,000 

3. Write 24 by using any three identical digits. 
4. Write 30 by using three 5's. 
5 . Write 1 by using all the ten digits (each digit to be used once 

only). 
6. Write 10 with five 9's. 
7. Write 100 with five identical digits (five l's, or five 3's, etc.). 
8. Write 100 by using four 9's. 
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Close-up of a Million 

Nowadays there is a great deal of familiar talk about big num
bers such as millions and billions, but we rarely stop to think 
exactly what these terms signify. A million does seem a mere 
trifle when the cost of running our government runs into bil
lions a year, when the cost of a single battleship is thirty millions, 
and when the cost of sending our children to school is about 
2,000 millions a year. As a point of fact, however, "a million" 
is still only a casual acquaintance to us. If you really visualize a 
million, you have a bigger and better imagination than most. 

If the walking step of a man is 1 yard, it would take about a 
million steps to carry him from Washington, D. c., to Portland, 
Maine, or from New York City to Cleveland provided, of course, 
he didn't give up and hop the fast freight. 

If you don't like walking, however, and still want to gain some 
notion of a million, try to write a million strokes with a pencil. 
Suppose )' ou make one stroke a second; it will take you about 
278 hours, or 11 days and 14 hours of nonstop writing. If you 
work only 8 hours a day (Sundays and holidays included), it 
will take you at least 34 days and 4 hours. And this is only a 
million. 

The word million is just a little more than four hundred years 
old. It first appeared in Italy about 1500, eight years after Co
lumbus discovered America. Since then only about 232 million 

.s! 
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minutes have elapsed, there being about 526,000 minutes in a 
year. 

Can we visualize, for example, the yearly crop of com in the 
United States? It is about 2,500 millions of bushels a year. Can 
we imagine the quantity of coal that is mined in this country 
daily, about one and a half million tons a day; or the iron and 
steel output in this country, about a million tons of iron and 'one 
and a half million tons of steel a week? 

PROBLEMS 

1. How many five-ton trucks would it require to cart away the 
yearly production of coal in the United States? 

2. A bushel of corn weighs about 56 pounds. One ton is equal 
to 2,000 pounds. How many five-ton trucks would it require to 
cart away the yearly crop of corn in the United States? 

3. If a man, on the average, walks three miles a day, how long 
would it take him to cover a million feet? (A mile is 5,280 feet.) 

The Long Count 

How long would it take to count a million objects if it takes 
a second to count one object? There are 60 seconds in a min
ute and 60 minutes in an hour, thus 3,600 seconds in an hour. 

Th h I 000 000 h . '11' d Th" en t ere are ' 0 ours m a illl IOn secon s. IS IS 
3,6 0 

approximately equal to 278 hours, or 11 days and 14 hours of 
nonstop counting. 

Suppose that only 8 hours a day are spent on the counting. 
Under these circumstances only (60-60-8) = 28,800 objects 
would be counted. In ten days only 288,000 objects would be 
counted, just a little over one-fourth of the objects. The entire 
million objects would be counted in 34 days and 4 hours, pro
vided you work like a clock and give up both Sundays and 
holidays. 

PROBLEMS 

4. A man smokes, on the average, a pack of cigarettes a day (a 
pack contains 20 cigarettes). How long would it take him to smoke 
a million cig~rettes? 

5. The United States imports about 80 million pounds of tea 
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yearly. If it takes 1 pound of tea to make 100 cups, and there are 
about 50 million persons in this country who drink tea, how many 
cups of tea a year does one person consume in one year? 

6. There are about 25 million milch cows in the United States. 
A cow yields about 4 gallons of milk a day. How many pints of 
milk are produced daily in this country? 

All Is Lost: That Housefly Is Here Again 

When we want to say something is very thin, we say that it 
has the breadth of a hair. The average thickness of a human 
hair, we know, is about three-thousandths of an inch. 

Suppose the breadth of a hair is increased one million times; 
what would be its width? Would it be as wide as a fist, or as 
wide as a door? This answer is startling, as we shall see after 
we have performed the simple computation 

0.003 inch 1,000,000 = 3,000 inches = 250 feet 

A human hair, its breadth increased a million times, would be 
wider than an average city block! 

A common housefly is a nuisance even though only 0.3 inch 
long. If its length were increased a million times it would be 
25,000 feet, almost five miles, long. We would really have a 
problem of national. defense then. . 

A six-foot man, if his height were increased a million times, 
would be about 1,136 miles tall. If he could lie down with his 
feet resting in Chicago, his head would just about reach Gal
veston, Texas. 

We mentioned that the daily production of coal in this coun
try is about one and a half million tons a day. A cubic foot of 
coal weighs about 90 pounds. There are 2,000 pounds in a ton. 
Thus a ton of coal is 

2000 b' f 200 b' f 9() cu lC eet = 9 cu lC eet 

and 1,500,000 tons of coal are 

200,1500000 b' f 200·500000 b' f 
9 cu lC eet = 3 cu lC eet 

= 33,333.333 cubic feet 
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The yearly production of coal is 365 times as large. In a cubic 
mile there are (5,280'5,280'5,280) cubic feet. Then in cubic 
miles the yearly production of coal is 

33333333·365 b' '1 0 083 b' '1 
(5280.5280.5280) Cll IC mI e =. CU IC mI e 

A cube of this size will be about 2,300 feet long, 2,300 feet wide, 
and 2,300 feet high. 

If a million men were placed in one line shoulder to shoulder 
the line would str~tch out about 155 miles. 

A book of about 700 pages of small type contains abotlt one 
million letters. 

A million days is about equal to 2,700 years. Thus since the 
Birth of Christ a million days has not elapsed. 

One million dots of the size of the period on this page, when 
placed in one line close one to another, will occupy a line about 
328 feet long. 

A million nickels (5 cent coins) placed in one line will stretch 
68,800 feet, or about 13 miles. 

PROBLEMS 

7. The diameter of an ordinary pocket watch is about 1.5 inches. 
What would be its diameter if it were increased one million times? 
How large would be the hour number if originally it were 1/8 inch 
long? 

8. A mosquito is about 3/8 inch long. How big would be one a 
million times enlarged? 

9. A thimble of water weighs about a gram. What would be 
the weight of a million thimbles of water? 

10. The diameter of a 50-watt electric bulb is about 2.5 inches. 
What would be the length covered by a million bulbs? 

11. Gone With the Wind sold about 1,500,000 copies. If this 
book is about 2 inches thick, and if all sold were stacked in one 
column, how tall would such a column be? 

Pity the Poor Billionaire: A Fifty-Nine-Mile Pile of Bills 

So a million is a fair-sized number, but huge as it is it does not 
satisfy the requirements of modern life. We need larger num
bers, numbers almost beyond imagination. 
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The next unit larger than a million is a billion, or one thousand 
millions, in figures 1,000,000,000. . 

In science even a billion is not always large enough. Scientists 
use next a number that exceeds a billion a thousand times. The 
name for this unit is a trillion (1,000,000,000,000). However, 
even this number is sometimes not large enough for the physicist 
or astronomer. In fact, these scientists long ago gave up the 
idea of making such units and developed, with the help of mathe
matics, a method of writing large numbers in a very compact 
form. F or the present, however, we shall try to be satisfied with 
a billion. 

In some of the European countries this billion has another 
name, "milliard." This word came into use after the Franco
Prussian war of 1871, when France was compelled to pay to Ger
many 5,000,000,000 francs for reparations. 

To grasp the magnitude of a billion, let us consider a few 
examples: 

A package of 100 one-dollar bills is about 3/8 inch thick. A 
billion bills stacked in one column would be about 59.3 miles 
high. 

At 10:40 o'clock on April 29, 1902, a billion minutes have 
elapsed since the beginning of our era. 

In one cubic meter there are 1,000,000,000 cubic millimeters. 
If these cubic millimeters were stacked up in a column they 
would tower up 1,000 kilometers. 

A billion objects, if one were counted each second, could be 
counted in about 31.7 years provided the teller worked on a non
stop shift day and night, weekday, and holiday. 

That housefly, if its length were increased a billion times, 
would be larger than the moon. 

A six-foot man, given a magic billion-expanding pill could, if 
he were standing on the earth, allow the moon to pass between 
his legs just about his knees. The height of such a man would be 
greater than the diameter of the sun. 
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PROBLEMS 

12. The diameter of an ordinary pocket watch is about 1.5 inches. 
What would be the diameter of a watch a billion times as large? 
What would be the length of an hour number on such a watch if 
on an ordinary watch it is about 1/8 inch long? 

13. If the average weight of a pair of shoes is about 1.5 pounds, 
what would be the weight of a pair worn by a man whose height 
was increased a billion times? 

14. If the length of a human head is about 10 inches, what would 
be its length for a man whose height was expanded a billion 
times? 

You Owe $500 

We have considered a few spectacular and grotesque cases 
where very large numbers were employed, but realize that the 
magnitude of these numbers figures realistically as well in our 
daily routine life. Let us . consider just a few cases: 

The total debt of the United States Government is, at the mo
ment, about sixty-five billion dollars. This means that if this 
debt were equally distributed among every man, woman, and 
child in this country, everyone would have to pay about $500 
to wipe it out. 

The cost of running the United States Government is now 
about nine billion dollars a year; if this cost were equally dis
tributed among the population, everyone would have to pay $70 
a year to keep the government operating. 

The assessed valuation of land and real property of Manhattan 
Island in New York City is eight billion dollars. There are 
14,211 acres of land on Manhattan (one acre is equal to 6,272, 
240 square inches). The length of a one-dollar bill is 6 inches, 
and its width is 2.5 inches. Thus the area of a one-dollar bill is 
(2.5 ·6) square inches = 15 square inches. The total area of 
Manhattan Island is 14,211·6,272,240 square inches. If the en
tire island were covered completely with'dollar bills, the value 
of the money would not be equal to the assessed valuation, eight 
billion dollars. This can be seen from the following: 

The area covered by eight billion one-dollar bills is 
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15 '8,000,000,000 square inches = 120,000,000,000 square inche~ 
and the area of Manhattan Island is ~ .... ~tJ. 

It,,,,~-;-.. 

14,211'6,272,240 = 89,134,602,640 square inches 
Then 

120,000,000,000 - 89,134,602,640 = 30,865,397,360 

Therefore the area covered by the dollar bills exceeds the area of 
Manhattan Island by 30,865,397,360 square inches, or 

120,000,000,000 1 34 . 
14211.6272240 = . . .. tlmes , " 

The yearly production of cigarettes in this country is about 
160 billions. A cigarette usually is 2.75 inches long. If these 
cigarettes were laid out lengthwise in one line, it would stretch 
seven million miles. This distance is about ten times as large as 
the diameter of the sun, The line of the cigarettes could be 
wound around the equator of the earth 280 times. 

PROBLEMS 

15. The average production of apples in the United States is about 
150,000,000 bushels a year. A bushel of apples weighs 50 pounds. 
How many pounds of apples are produced in a year in this 
country? 

16. It was found that 84.1 per cent of an apple is water. How 
much water is there in the yearly crop of apples in this country? 

17. The reported consumption of gasoline in 1940 in the United 
States was 22,685,056,000 gallons. The average tax rate for that year 
was 3.96 cents a gallon. How much was collected by all the states 
in gasoline taxes in 1940? 

Now, Some Really Big Numbers 

But it is the scientists who deal in really large numbers, num
bers such that a billion to them is the same as 1, and even less, is 
to a billion. We note that a billion is written as 1 with nine 
zeros. Since it is inconvenient to write, as well as to read and to 
ev~luate rea'dily when all the zeros are written, scientists make 
use of a mathematical method for a simple and compact writing 
of a large number. We shall now see how this is done. 
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When a number is multiplied by itself it is written as, say, 

10·10. However, we may write this in another way, to indicate 
that a given number was taken as a product twice. For this pur
pose we write the number and, on the right just above it, we 
write a small 2, provided that we agree to interpret this 2 as an 
indicator of this repeated multiplication. Thus 10·10 is written 
as 102• We may continue this method of writing and extend this 
principle to the cases when a number is multiplied by itself more 
than twice. Thus 10·10·10 is written as 103, 10·10·10·10·10 as 
105, and so on. 

Now we observe that when 10 is multiplied by itself we ob
tain 100, or a 1 with two zeros to its right; when multiplied by 
itself three times we get 1,000, with three zeros, and when mul
tiplied by itself five times, we obtain 100,000, or 1 with five zeros 
on its right. Thus we note that the number that is the indicator 
of how many times lOis multiplied by itself and the number of 
zeros written to the left of the 1 are always the same. 

We then can reverse the process, and instead of writing 100,-
000,000 we may write 108 • A billion (1,000,000,000) is then 
written as 109 • N ow if we need a number larger than a billion, 
instead of writing additional zeros on the right we increase the 
indicator, which is known as the "exponent." Thus a trillion is 
1012, a quadrillion is 1015, and so on. It is easily observable that 
actually there is no need to give special names to the various units, 
since there is very little importance in the name. One glance at 
the exponent of the lOis sufficient to gather all the information 
needed. Moreover, numbers that are larger than a billion are 
really inconceivable, except that they convey some information 
as to magnitude. If a number is written with twenty-five zeros, 
the addition of one, two or more zeros on its right will not add 
much to our comprehension of the actual magnitude, unless we 
use some other means for its interpretation. 

Moreover, once we command this method, we may go on 
writing such large numbers indefinitely, obtaining- still larger 
numbers. So, there just isn't any "largest" number, as will be 
now illustrated. 
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PROBLEMS 

18. New York City in 1939 consumed on the average 1,002.106 

gallons of water daily. How much was consumed in a year? 
19. If the population of New York City in 1939 was 7.6.106, what 

was the average daily consumption of water for one man in 1939? 
20. If the population of tht: United States in 1940 was estimated as 

132.106, and the average consumption of water a day is about the 
amount that a New Yorker consumes in a dav, how much water was 
consumed in the United States in a day during 1940? 

Archimedes Counts the Sands 

We read in the Old Testament that the Lord promised to 
Abraham that his descendants would be as numerous as the grains 
of sand on the seashore. This poetical expression was in great 
vogue with the ancient writers, but the job of counting the num
ber of grains, not only on the seashore but in the entire universe 
if it were filled with the finest sand to the firmament of the fixed 
stars, was actually tackled by a Greek mathematician, Archi
medes, who lived in Syracuse on the island of Sicily in the third 
century B.C. In a later chapter we shall repeat his calculations 
but here, we shall be content with stating his result; he arrived 
at a number that does not exceed 

1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 

or in our modern scientific writing, 1063 • 

To state a number with sixty-three zeros to the right of the 1, 
Archimedes was compelled to develop his own system of num
bers. We must bear in mind that the Greeks did not have our 
method of writing numbers; they used their alphabet, every 
letter of which was assigned a numerical value. Moreover, for 
as large a number as 10,000 the Greeks had a special name, 
"myriad." 

Archimedes' first step was to arrange numbers in classes. In 
the first class the unit was 1, and he counted until he reached a 
myriad of myriads, 100,000,000, or 108 as we would write it. 

Within this number he considered the first class completed and 
began to build up the second class, which also consisted of a 
myriad of myriads. The part of 1 in the second class is played 
by 108• Thus he counted a myriad of myriads of 108 (he called 
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the 108 an "octade"). This led to a number with sixteen zeros, 
that is, to 101< This number he called the second octade. The 
third octade was.a number with twenty-four zeros, 1024• We 
observe that for every octade he added 8 to the exponent of 10. 
He cQntinued to build up numbers in this way until he had an 
octade of octades; that is, he had in the exponent of 10 an 8 mul
tiplied by 108• In our method of writing this number would be 

or 10800.000.000, or a number that begins with a 1 and has to its 
right 800 million zeros. All these numbers, according to Archi
medes, constitute the "first period." But he did not stop here. 
He now took 

and considered it as the 1 of the second period. Then 

the first octade of the second period is 108.108+8 

the second octade of the second period is 108.108+16 

the third octade of the second period is 1()8,108+24 

and so on until the octade of the second period is 

and this number closes the second period, as well as becoming 
the 1 of the third period. Archimedes proceeded in the same 
manner until he built up the number 

This is 108.000.000.000, or a 1 with eight billion zeros to the 
right of the 1. Archimedes did not have to stop even there, he 
could continue to build' up the numbers indefinitely. The num
ber 108.000.000.000 has no real meaning to us. It is so large that 
no one will ever have a chance to put it to practical use. And 
that, in these days of numeration-minded science, indicates a 
pretty sizable figure. 
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Let us consider a simple problem that may help us to grasp 
the scope of Archimedes' numbers. Let us write with three 9's 
the largest possible number. Some may think 999 is the number, 
but they are most mistaken. The answer is 

999 

This means that 9 is multiplied by itself 99 or 9·9·9·9·9·9·9·9·9 
times. But 99 is not such a small number. The reader may try 
to multiply 9 by itself 9 times. This product is 387,420,489. 
Then 

is 9387.420.489, and this means that 9 must be multiplied. by itself 
387,420,489 times. This would require almost four hundred mil
lion multiplications. 

How large is this number written with only three 9's? Not 
as large as the number that Archimedes has obtained, but nobody 
has ever calculated it. It is so large that if written on a strip of 
paper, allowing 200 digits to every foot, it would require 350 
miles of paper, and the strip could be stretched between Cleve
land and Chicago. If someone knew this number and would set 
out to write it down at the rate of one digit a second, it would 
take him 11 years and 8 months of steady uninterrupted writing. 
However, we have partial information concerning the number; 
it begins with the digits 428,124,77 3,175,747,048,036,987,118, 
and ends with 89. What is between these digits no one knows. 
This number has 369,693,100 digits. 

PROBLEMS 

21. Which is larger, 10myri~d or myriad10? 
22. Express as 10 with an indicator (exponent) an octademyrlad. 

A Cure for Egotists 

If we find it difficult to visualize large numbers when they 
refer to objects, it is no wonder that most of us fail to grasp 
fully the meaning of large numbers in terms of time. Have we 
ever considered how old our earth is? Can we comprehend the 
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age of our solar system? We think it striking when a man lives 
more than one hundred years. We consider mankind very old 
(our civilization and recorded history is about 6,000 years old) 
but is of course new-born in comparison with other life on this 
globe. 

We knew that human beings roamed certain areas about 
50,000 years ago, but the birth of the earth took place at least 
two billion years ago (and this estimate is very conservative), 
and the birth of the sun at least five billion years ago. Only 
about five hundred million years ago the earth was cooled suffi
ciently to create rock deposits. That time is known as the Cam
brian period, and life in very primitive forms was evident then. 
Compare five hundred million years with seventy years, a ripe 
old age in the life of a man. 

Suppose we imagine a line fifty feet long. This represents 
the age of the sun. The age of the earth then will be occupied 
by a twenty-foot portion, and the five hundred million years 
will be taken up by five feet. The age of humans, even if we 
allow 200,000 years for this period, will take up only about 0.024 
inch. One would need a magnifying glass to see so small a line. 
The last 6,000 years of the history of mankind will need only 
about 0.001 inch. To see this small speck we would have to use 
a fairly good microscope. The average life of man, if we take 
it as seventy years, would require only 0.00001 inch. 

COplpare then the life of man with the life of the sun. 

PROBLEMS 

23. The average heartbeat of a man is about seventy-five times 
a minute. How many heartbeats are there in a life of seventy years? 

24. According to the findings of physicists the sun loses in weight, 
owing to the emission of energy, about 4' 106 tons of its mass every 
minute. How much has the sun lost during the last 5,000 years? 

25. Sound travels at the rate of about 1,100 feet a second. Radio 
waves travel at the rate of about 186,000 miles a second. A radio 
performance is broadcast from a concert hall 250 feet long. One 
person sits at the wall opposite the stage of the hall (which is in 
New York City), and another person sits near his radio set in Los 
Angeles, California. Who of these two will hear the performance 
first? 
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Timetable for a Tour of tbe Stars 

If we take an automobile trip of a thousand miles, we spend a 
lot of time getting ready. A trip across the country is something 
to worry about and, if everything goes 'Well, to brag about; a 
trip around the world, is a real feat. However, let us compare 
these distances with some in space: 

The nearest neighbor of the earth is the moon, about 240,000 
miles away. An airplane at 200 miles an hour would travel 1,200 
hours from the earth to reach the moon; that is, 50 days of non
stop flight. 

Light travels at approximately 186,000 miles a second. This 
means that it takes light just about one and one-third seconds to 
reach the earth from the moon. And what about the sun? 

The sun is about 93,000,000 miles from the earth. Our air
plane would have to travel 465,000 hours, or about 53 years, to 
reach the sun. How much gasoline and oil would such a trip 
require? 

It takes light, however, about 8 1/2 minutes to reach the 
earth from the sun. This means that when we are looking at 
the sun, we do not see it as it is at the moment but as it was 8 1/2 
mInutes ago. 

The nearest star, our next neighbor outside our own solar sys
tem, is so far away that astronomers have invented another yard
stick for measuring distaqces-the light-year, or the distance 
traversed by light (at the rate of 186,000 miles a second) in 365 
days. This distance is 

186,000·60·60·24·365 miles = about 6,000,000,000,000 miles 

or, as we would write, 6: 1012 (6,000 billion) miles. In the case 
of the nearest star this distance is equal to 4.3 years, or about 
3.1013 miles. An airplane trip to the nearest star would take 
about ten million years. 

But we have considered only the nearest star. Astronomers 
recently announced that they had photographed universes of 
stars so distant that it takes light at least two hundred million 
years to reach the earth. This distance is about 1021 miles. 
How long would it take an airplane to reach this universe? 

\ 
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While we a.ce flying around in space we may as well note that 
our sun, and thus ourselves also, belong to a star universe, the 
Milky Way. There are hundreds of millions of stars, some 
bigger, some smaller, -and some about the same size as the sun, 
in this Milky Way. Our island universe is shaped like a watch. 
It measures between 200,000 and 300,000 light-years across and 
is about 50,000 light-years in thickness. We are located a fourth 
of the way from the center of this big disk. Thus the dimen
sions of the Milky Way are 

across 1,000,000,000,000,000,000 miles 
and 

thick 300,000,000,000,000,000 miles 

Compare these distances with the earth's diameter, which is about 
8,000 miles, or with the sun's, about 800,000 miles. Or, you may 
contrast the Milky Way mileage to that supposedly longish trip 
from the earth to the sun, about 93,000,000 miles. 

PROBLEMS 

26. The earth goes around the sun at approximately 19 miles a sec
ond. How great a distance was covered by the earth during the last 
5,000 years? 

27. The sun travels in space at approximately 19 miles a second. 
Suppose that the sun is five billion years old and that the rate of travel 
has not changed during this time. How great a distance was covered 
by the sun during this time? 

28. A rifle bullet leaves the muzzle of a rifle with a speed of about 
600 feet a second. If the distance from the earth to the sun is about 
93,000,000 miles, how long would it take the bullet to reach the sur
face of the sun? 
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Number Pygmies 

How small is "small"? We have noted as one conception the 
familiar "hair's breadth," actually three-thousandths of an inch. 
In the aircraft and automobile industries manufacturers pride 
themselves that some parts are measured to a ten-thousandth of 
an inch; if they achieve a hundred-thousandth it is advertised as 
an almost impossible feat. Though apparently "small," even 
these proportions bulk large in the world of the very small. 

We think of a hair's breadth as tiny because we ordinarily 
judge the magnitude of objects by our unaided senses. Our 
senses, however, are extremely crude: we do not see certain mag
nitudes because we cannot see all the waves that constitute light, 
nor can we hear all the waves that constitute sound. Until the 
microscope was invented we had no suspicion of the existence 
of bacteria, and even the most powerful microscope is sometimes 
inadequate to detect the virus of the common cold, or the living 
creature that causes infantile paralysis. 

Place a hair under a microscope that magnifies a thousand 
times and it will appear as though it were three inches thick. 
Under the same microscope the virus of the common cold is in
-visible. N ow think of comparing the magnitude of this virus 
with the breadth of a hair: We do not know the exact size of 
the virus; we only know that it is vastly smaller than our previous 
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hair's ·breadth extreme. But still it is not the smallest object in 
this world. It is impossible to answer the question: How small 
is small? as it is to define: How large is large? We hive seen 
that even though almost incredibly large magnitudes may be 
created, we still can think of numbers yet larger, although they 
may have no definite meaning. In this chapter we shall repeat 
the procedure of the last, but in reverse; we shall seek out not 
giants but pygmies. Some of these pygmies will be giants among 
themselves, but we shall delve deeply into the land of the small, 
the smaller, and the smallest ... if we ever attain the last. 

\Ve shall have to appeal now to more advanced science ·for 
examples of "very small" objects and shall express the numerical 
values of the pygmies by a method similar to that of evaluating 
the giants. We recall that with large numbers we resorted to a 
special way of writing the products of 10 by themselves; we de
noted by a number-indicator (or exponent) written on the right, 
just above the 10, the number of times 10 was multiplied by it
self. Thus: 

10,000,000 is written as 107 

1,000,000 is wri tten as 106 

100,000 is wri Hen as 105 

10,000 is written as 104 

1,000 is written as 103 

100 is written as 102 

10 is written as 101 

Now we shall resort to a simple analogy. vVhen we write the 
positive numbers in the decreasing order, we finally reach zero 
and, if we continue, must write the negative number. Thus we 
have 

",,8,7,6,5,4,3,2,1,0, -1, -2, -3, -4, -5, -6, -7, '" 

This table of the products of 1 0, if continued in the decreasing 
order, should have as its next member 1, and the exponent of 1 ° 
should be zero. Then the next member should be 1/10, or 0.1, 
and the exponent of 1 ° should be - 1. The next member should 
be 1/100, or 0.01, and the exponent should be -2. We then 
complete the table as follows: 
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1 

1 
10 or 0.1 

is written as 10-2 1 
100 or 0.01 

1 
1000 or 0.001 is written as 10-3 

1 
or 

10,000 
0.0001 is written as 10-4 

1 
or 0.00001 

100,000 
is wri tten as 10-5, etc. 

Multiplication of the numbers written in this manner should 
offer no difficulty. The indicators (exponents) show how many 
zeros there are'in the products of 10, and when two such num
bers (each a product of 10 by itself several times) are multiplied, 
the indicators of the zeros are added. Thus, 104 .103 = 10,000' 
1,000 = 10,000,000 = 107 • When the exponents are negative, 
the same rule holds. Thus 1/10,000·1/1,000 = 1/10,000,000. 
But the same number can be written as 10- 4 .10- 3 = 10-7 • 

PROBLEMS 

1. The radius of the earth's sphere is about 4,000 miles. If this 
radius were diminished one billion times, how would it compare with 
the breadth of a hair? 

2. How many times larger is the distance from the earth to the sun 
than the radius of the earth's sphere? 

3. The radius of the sun is about 400,000 miles. The volumes of 
two spheres are to one another as the cubes of their radii. What part 
of the sun's volume is the volume of the earth's sphere? 

4. The largest known star has a radius of about 690,000,000 miles. 
What part of the volume of this star is the volume of the sun? 

5. The distance from the sun to the outermost planet Pluto is, on 
the average, about 4,500,000,000 miles. What part of this distance is 
the length of the diameter of the earth? 

Cosmic Small Fry 

What is the smallest unit of measure now in science? In the 
world of pygmy numbers scientists employ the metric system 
and we shall do likewise. To clarify the relation between the 
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metric system. and the system used in our everyday activities, 
here are some of the equivalents: 

1 kilometer = 0.621 mile, approximately 
1 meter = 3.281 feet, approximately 
1 centimeter = 0.394 inch, approxima"ely 
1 millimeter = 0.0394 inch, approximately 

In the metric system all the units are obtained by multiplying 
a smaller unit by products of 1 0, or by dividing a larger unit by 
products of 1 o. Thus: 

1 kilometer = 1,000 meters 
1 meter = 100 centimeters = 1,000 millimeters 
1 centimeter = 10 millimeters 
1 millimeter = 1,000 microns 
1 x = 1/10,000,000 of a micron 

Every human being carries within himself a number giant
the blood. It contains red corpuseles, tiny bodies each like a 
circular disk somewhat flattened at the center and about 0.007 
millimeter in diameter and 0.002 millimeter thick. In a drop 
of blood (1 cubic millimeter) there are about 5,000,000 of these 
corpuscles, and an average adult has about 3,500,000 cubic milli
meters of blood. A simple calculation shows that an average 
adult has in his system 

5,000,000·3,500,000 = 5.106 .35.105 = 175.1011 red corpuscles 

If all these corpuscles were strung out in a single chain, its 
length would be 

175.1011.7.10- 3 millimeters = 1,225.108 millimeters 

But there are 103 millimeters in a meter and 103 meters in a kilo
meter. That is, there are 106 millimeters in a kilometer; thus 
our chain is 

1 225.108 
, 106 = 122,500 kilometers 

This chain could be wound around the earth's equator three 
times and over. 
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The population of the world is about 2· 109 people. Thus, if 
all the red corpuscles of the entire population were strung out in 
a single chain, it would be 

1,225' 102 .2. 109 = 25· 1013 kilometers, approximately 

or about 
25.0.6'1013 = 15 .1013 miles 

This distance would extend seven and a half times farther than 
the nearest star, and light would require about twenty-six years 
to traverse it. 

Thus a pygmy blood corpuscle can give rise to a mathematical 
giant, and is itself a giant in comparison with some other objects 
of the universe. Suppose a corpuscle should be increased in di
ameter a million times: its diameter would then be 

7 '10- 3 '106 = 7,000 millimeters = 7 meters 

9r about thirty feet in length. 
But in chemistry and physics there is a unit of substance called 

a molecule. A molecule can be broken up into the component 
substances which form the atom, and atoms can be broken up 
into their components, too. Suppose we take an atom and in
crease its diameter a million times. It still will be not greater 
than the period at the end of this sentence. Compare this with 
thirty feet, and indeed our corpuscle is a giant. 

Let us take a glass of water and learn something more about 
number pygmies. A molecule of water consists of three atoms. 
Two of these are hydrogen atoms and one an oxygen atom. \Ve 
may represent the molecule schematically as in this drawing: 

The large circle may represent the oxygen atom and the two 
small circles the hydrogen atoms of a molecule of water although, 
of course, the drawing does not depict an actual water molecule 
or assume that the atoms are small spheres of different sizes. 
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The diameter of a molecule of water is 

28-10-9 - 28 centimeter 
. - 1,000,000,000 

The volume of a molecule of water is 115 -10- 25 cubic centi
meter, or 

115 cubic centimeter 
10,000,000,000,000,000,000,000,000 

~ 

These numbers are much smaller than those associated with the 
measurement of the blood corpuscle. 

A gram of water (which measures 1 cubic centimeter) con
tains about 34-1021 molecules of water. A glass of water con
tains about 400 grams and thus contains 

400- 34-1021 = 136-1023 molecules 

Now, how many molecules of water are there in all the oceans? 
It is estimated that this water occupies abo~t 15 -108 cubic kilo
meters. First, we shall have to calculate how many cubic centi
meters there are in a cubic kilometer: 1 kilometer = 1,000 meters, 
and 1 meter = 100 centimeters. Then 1 kilometer = 100,000 
centimeters, or 105 centimeters, and 1 cubic kilometer = 105 . 

"105 '105 cubic centimeters = 1015 cubic centimeters. Then 

15 -108 cubic kilometers = 15 -108 - 1015 = 15 -1023 cubic 
centimeters 

Finally we have the answer: In all the oceans there are about 

136.1023 -15-1023 = 204-1047 molecules 

Let us examine how large a giant we have obtained now. To 
comprehend its magnitude we shall examine just one drop of 
water. A drop weighs about a tenth of a gram, and its volume 
is about 0:33 cubic centimeter. Thus in one drop of water there 
are 

34-1021.33-10- 2 = 1,122'1019 

or in round numbers, about 1022 molecules. The diameter of a 
molecule of water is about 28 -10- 9 centimeter. If all the mole-
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cules of a drop were strung out in a single chain, its length 
would be 

28.10- 9 .1,122.1019 = 31,416'1010 

or 3.1014 centimeters, or 3.1012 meters, or 3.109 kilometers. 
How great is this distance? It takes light one second to tra

verse 300,000 kilometers (3.105 kilometers). Thus light would 
traverse the distance in 

3.109 

3.105 
10,000 seconds 

or in about 166 2/3 minutes, just about twenty times the time 
it takes light to travel from the sun to the earth. In other 
words, the molecules of one drop of water, if strung out in a 
single chain, would reach twenty times the distance from the 
earth to the sun. And this is only for one drop; how about 
the molecules of the water in all the oceans? 

They would, if in a single chain, cover about 204.1047 .28. 
10-9 centimeters, or about 571.1039 centimeters, or, in round 
figures, 6.1041 centimeters, or 6.1039 meters, or 6.1036 kilo
meters. Light would cover this distance in 

6.1036 
--. = 2.1031 seconds 
3·10" 

There are 60·60·24·365 = 31,536,000 seconds in a year. Let 
us take the round number 32,000,000, or 32.106• Then 2.1031 

seconds is about 
2.1031 1 
32.106 = 16 1025 years 

or since 1/16 = 0.0625 = 625·10-4, we have 625.10- 4 ,1025 = 
625.1021, or 625,000,000,000,000,000,000,000 years. 

The most distant island universe known is only 200,000,000 
light years away. Our chain of molecules stretches out 

625.1021 

2.108 

or about 3,000,000,000,000,000 times farther. The diameter of 
our universe is probably much smaller than this distance. 
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PROBLEMS 

6. There are about 204.1047 molecules of water in all the oceans. 
Suppose that the radius of our universe is a billion light-years. The 
volume of the sphere with that radius is obtained by translating a 
light-year into miles, and multiplying this by a billion, and finally 
cubing this number. This cubed result is multiplied by 1.3 3·3.14 or 
4.18. If all these molecules were evenly distributed in such a sphere, 
how much space would be allotted to one molecule? 

7. How many molecules (see Problem 6) may be found in a cubic 
mile? 

8. What would be the weight of water in a cubic mile (see Prob
lems 6 and 7)? 

9. The radius of the earth's sphere is about 4,000 miles. If the 
blood of all the human beings was evenly distributed in a sphere of 
the size of the earth, how many red blood corpuscles would be al
lotted to every cubic mile? 

10. How much space would be required to distribute the blood of 
one man under the conditions of Problem 9? 

Tbe Populous Bacterium 

The smallest living thing that can be detected under a micro
scope is a bacterium. Bacteria are of different sizes, but let us 
consider the smallest of all that can be seen. Its diameter is abuut 
2 . 10-5 centimeter, much larger than that of a molecule of water. 
It is 

2.10-5 

28.10-9 = 700 

or about seven hundred times larger than the diameter of a mole
cule of water. But this margin is so large that no present micro
scope can detect a molecule. The volume of the bacterium is 
then 700·700·700 or about 343,000,000 times as large as that of 
a molecule; in other words, a bacterium can contain in itself 343,-
000,000 molecules of water. Thus there can be in a bacterium 
so many molecules of water that their number will be about two 
and a half times the population of the United States. This is .not 
much of a number when we compare it with some of the num
bers we have obtained before. But . . . 

Molecules are made up of smaller things-atoms, which are in 
tum made up of electrons and a few other substances which are 
of little interest to us in this discussion. Physicists compute the 
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weight of an electron to be about 9.10- 27 gram. The number 
of electrons in a gram depends on the substance under considera
tion, because different substances (that is, their atoms) have dif
ferent numbers of electrons. Thus a hydrogen atom has 1 elec
tron, an oxygen atom has 16, and an atom of the heaviest known 
element, uranium, has 238. In other words, the number of elec
trons in an atom is closely related to the weight of a substance. 
We shall recall that Archimedes computed the number of grains 
of sand in the universe. Let us compute the number of electrons 
in the universe, as we now conceive it, if every bit of space were 
filled with atoms of uranium. 

We shall assume first that the universe is a sphere whose radius 
is the distance that is traversed by light in 1,000,000,000 (or 109 ) 

years. This is five times as great as the distance to the farthest 
known island universe. Light traverses 300,000 (or 3.105 ) kilo
meters in a second, and we have calculated that there are about 
32.106 seconds in a year. Then our radius is 

3 .105 .32.106 . 109 = 96.1020 

or, in round numbers, 1022 kilometers. 
The volume of a sphere of this size is about 4.1066 cubic 

kilometers. There are 10,000 centimeters in a kilometer and 
105 ·105 ·105·cubic centimeters in a cubic kilometer. Then our 
sphere will contain 4.1066 .1015 or 4.1081 cubic centimeters. 

There are about 1022 atoms of uranium in a cubic centimeter, 
and since each atom of uranium has 238 electrons, there are about 
238.1022 electrons in a cubic centimeter of uranium. Then the 
total number of electrons in our sphere would be 

238.1022 .4-1081 = 1,472'10103 

or, in round numbers, about 10106 electrons. This is a number 
with 106 zeros to the right of the 1. Actually, it has been com
puted that there are not more than 1083 electrons in the entire 
universe. As you see, there is still plenty of elbow room between 
the stars. 

A Columbia University professor, Dr. Edward Kasner, has 
invented a special name for the number 10100• He calls it "goo-
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gol," and he has a name, too, for a number larger than googol. 
The number 1 ogOOgo\ that is, a 1 with googol zeros to its right, is 
called "googolplex." Thus, a googol is merely 

10,000,000,000,000,000,000,000,000,000,000,000, 
000,000,000,000,000,000,000,000,000,000,000, 
000,000,000,000,000,000,000,000,000,000,000 

A googolplex, however, has that many zeros to the right of 1. A 
number to think about when you are lying awake on a hot nig~t. 

PROBLEMS 

11. If there were 1083 electrons in the universe, and we assume the 
radius of the universe to be a billion light-years (see Problem 6 in 
the preceding section), and if all the electrons were evenly distrib-
uted, how much space would be allotted to one electron? ' 

12. How many electrorts would be found in one cubic mile? 
13. What would be the weight of the electrons found in one cubic 

mile under the conditions of Problem 12? 
14. How many googols are there in lOmyriad? 

15. Which is larger: (1) googolgOOgOI or myriad myriad; 

(2) googolgOOgOI or 9[J9; 
(3) googolplexgOOgOI or googol googolplex? 

16. After you have answered Problem 15, state by how many 
times one number is larger than the other. 

17. Write googolplexgOOgOlpleX in terms of 10 and 100. 

Tbe Other Side of Zero 

In the preceding chapter we posed the problem of writing the 
largest possible number with three 9's and we wrote it as 

\Ve also learned that this number had 369,693,100 digits. Like
wise, in the preceding section, we wrote a number considerably 
larger, the googolplex. . This number has googol + 1 digits and 
is really a macrogiant (or supergiant). Now let us invert our 
procedure. We learned something about very small numbers, 
but is there a limit beyond which we find only zero? Is there a 
smallest number? 
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Small numbers are usually written as fractions. Suppose that 
we write the fraction 

This is equal to 

1 
999 

9387420489 

The same may be done with the googolplex. Then, we have 

1 
lOgoogol 

or, if we employ the scientific method of wntmg, we have 
lO-googOl. This decimal fraction will have googol- 1 zeros 
after the decimal point, and to their right there will be a 1. 

Have we reached the limit? Certainly not. With a flip of 
the brain we can call up a number such as googolgOOgO\ that is, a 
googol multiplied by itself a googol times. And from this we 
may readily obtain" the fraction 

googolgOOgOl 

which may be also written as 

googol-gOOgOl 

How many digits are there in a googolgOOgOl? Even if we could 
say, we could still go farther and write a much larger number: 

googol gOOgOlgOogol 

and also the fraction 

googol- (googolgoogol) 

All these numbers, large or small, are beyond any possible 
application. But still larger and smaller numbers may always be 
obtained, although their writing is just a pastime; neither the 
largest nor the smallest number can ever be set down. 
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Where "Split Seconds" Drag 

It has happene,d to the best of us. You have forgotten your 
toothbrush or neglected to say good-by to Aunt Minna, and since 
then traffic has been just one big red light. You dash through 
the station and catch your train (we hope) in that last "split sec
ond." No doubt the margin of safety seemed painfully small 
when you clambered aboard, but exactly how long was that split 
second? Is it a half, a tenth, or a thousandth of a second? Of 
course, a thousan<;lth of a second is too fleeting a period for our 
physical senses·· to detect, but in these fast -spinning days _ it is 
actually too much of a moment for us to ignore. 

For instance, suppose a train travels at 50 miles an hour; in 
one-thousandth of a second the train will go 

50-5,280-12 . 
1000- 60- 60 = 0.88 mch , 

more than 3/4 of an inch. 
Sounds travel in air about 13 inches in one-thousandth of a 

second. A mosquito flaps its wings once in 1/1,000 of a second. 
The earth travels around the sun at the rate of 19 miles a second; 
in 1/1,000 of a second it moves forward about 100 feet. The 
sun traverses space at the same rate. Radio signals travel at the 
rate of light, about 186,000 miles a second, and in 1/1,000 of a 
second covers about 186 miles-from Chicago to Indianapolis, 
for example. 

Thus we see that 1/1,000 of a second is not such a small inter
val. Suppose therefore we try a smaller one: Let us see how 
brief one-millionth of a second is. Light travels at the rate of 
300,000 kilometers a second, and in one-millionth of a second 
passes through 0.3 kilometer, or 300 meters, approximately' equal 
to 984 feet. This is just a little less than the distance covered by 
sound in a second. Thus we see that something does happen in 
a millionth of a second; physicists, in fact, were dissatisfied for 
some time with such a "long" interval. 

The light waves which produce the red effect in our vision 
vibrate at the rate of about 400,000,000,000,000, or 4-1014, a 
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second. Thus in one-millionth of a second about 400'000'00~~~ 
= 

. 1 ~/Ji 
waves enter our eyes, or one wave enters In 400 000 000 000 000 , , , , 
of a second. The millionth of a second is a long time in com
parison with this interval, but we must remember that the red 
light waves are not the shortest. Certain X-rays are more fre
quent and so~e are sixty times as frequent; that is, one wave 

h f 1 f d enters at t e rate 0 25 000 000 000 000 000 0 a secon . , , , , , 
And these X-rays are not the shortest, either. The recently 

discovered cosmic rays are considerably shorter. Perhaps soon 
will be discovered other rays whose period of vibration will be 
a micro··pigmy in comparison with that of the cosmic rays. Even 
among pygmies we must distinguish between giant-pygmies and . . 
mIcro-pygmIes. 

So, we perceive the magnitude of an object or of a number is 
a relative notion. In comparison with the earth's sphere a pea is 
a pygmy, but in comparison with the molecule of water a pea 
is a giant. As a matter of fact, the relation of a pea to the earth's 
sphere is the same as the relation of a molecule of water to the 
pea. We may have then the proportion: 

the earth's sphere pea 
pea molecule 

For years we were ignorant of the structure of matter. Now
adays we know that atoms, which are the smallest individual 
distinct particles that possess the properties of the respective ele
ments, are not simple in their structure. Atoms are miniature 
solar systems in which the electrons play the part of the planets, 
and the nucleus corresponds to the sun. Moreover, an electron 
is 1,850 times smaller in weight than the molecule of hydrogen. 
To compare a speck of dust with an electron would be almost 
an impossibility. But if we compare a speck of dust with an 
atom, and an atom with an electron, we may have the proportion 

electron arom ---- = ----:-----:-~-
atom a speck of dust 
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According to this proportion, an atom is then about 250,000 
times larger in diameter than an electron. 

We may then construct the following size scheme in which 
the next object is about 250,000 times larger in diameter than 
the preceding one: 

Electron 
Atom 
A speck of dust 
An average home 
The earth's sphere 
The solar system (now, it is twice the size) 
The distance to the Polar Star 
The Milky Way 

PROBLEMS 

18. Light travels at approximately 186,000 miles a second. If the 
red-producing waves of light vibrate 4.1014 times a second, what is 
the length of one wave in inches? 

19. How many waves of the red-producing light are there in one 
fum? . 

20. How many vibrations of the red-producing light will there be 
in the distance covered by light coming from the farthest known 
island universe, some 200,000,000 light-years away? 



Trlx hoex erfa eetb mpel 

~L~ . U . 

There's Secrecy in Numbers 

This is the message that shook Europe for one hundred days. 
Had it been intercepted and read, the course of history might 
have been different. But this message reached its destination, 
and Napoleon Bonaparte was able to land safely in Marseille 
while his enemies were napping. 

Naturally, such an important message had to be so disguised 
that only a few trusted persons could read it. Messages that 
are written in such a concealed manner are said to be "in code," 
and the process of reading coded messages is known as "de
coding." 

In order to decode a message the secret of its arrangement or 
the "key" of the code must be known. This is the same key 
which is used by a person when he translates his message into a 
coded one. 

Generally, the key of a code is a secret which is closely 
guarded by the sender as well as the recipient of the coded 
message. However, sometimes the secret of the code may be 
discovered through observation and reflection. 'Let us tak~ the 
above message, 

Trlx hoex erfa eetb 711pel 

We observe that the entire message was broken up into five 
groups of four letters each. This alone does not give us a clue. 
However, we note that the first letter of each group, if removed 

79 
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from the coded. message and written all together The em, may 
mean something. This may be an important clue. Conse
quently, we try the same thing with the second letters of the 
groups. We obtain r 0 rep. If we examine the combination 
of these five letters closely we may observe that the reversal of 
their order yields per 0 r. Thus the first two trials yielded 
The emperor. The third set of letters gives l eft e, and the 
fourth set of letters, which is again written backwards, is x x a b l. 
Reversing the order of the fourth set of letters yields l b a x x. 
Now, assembling our findings, we have 

The emperor left Elba xx. 

What the x's at the end of the message mean is not clear to us. 
They may denote something very se.cret. On the other hand, 
they might have been added simply to bring the total number of 
letters in the message to twenty (which is a multiple of four, the 
number of letters in each group of the coded message). This is 
a common procedure as will be shown presently. 

There are many reasons why people send messages in con
cealed forms. In some cases tpe reason may be quite legitimate, 
in other cases, sinister. Coded messages may be used by spies to 
transmit reports to their employers or by criminals and plotters 
to communicate with their accomplices. On the other hand, 
governments use secret codes for communication between their 
legal agents so that messages may be read only by those for 
whom they are intended. Armies and navies of all countries 
have secret codes which are guarded day and night and which 
are known only to trusted officials. Telegraph companies use 
special codes for transmitting commercial messages in order to 
save money; their codes are not secrat and may be obtained or 
inspected in any office of these companies. 

There are many methods for writing coded messages. Some 
of them are very simple and may be easily decoded. Others 
have now become extremely complex. The decoding of a secret 
message from some government agent, for instance, may be a 
tremendous task. The entire secret of a coded message lies in 
the manner an intelligible message is rewritten so that it becomes 
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unintelligible. If the correct instructions for coding and decod
ing are available, deciphering may prove comparatively simple. 
But if the code key is not known, even a Dick Tracy may be 
baffled for a clue. Should the key be discovered, however, the 
entire code naturally becomes valueless. Because of this danger 
of discovery, governments are continually revising their codes. 

There are two main methods of code writing. One consists". 
of using the same letters as they appear in the original message, 
but changing their relative positions in a definitely prearranged 
manner. In other words, the letters of the message are carefully 
scrambled. The system used in this scrambling is the secret of 
the code. This method of code writing is known as transposi
tion. The other method of code writing consists of the replace
ment of the letters of the original message by other letters (ac
cording to a certain definite system). This method is known as 
substitution. 

Transposition: How to Scramble a Message 

Suppose we have the following message: 

Queen Mary left 'with a cargo of airplanes today. 

To transmit this message in code a rectangle with as many 
squares in it as there are letters in the message will be selected. 
If the number of letters in the message is such that we cannot 
obtain a rectangle with that many squares, the nearest in size (but 
larger) rectangle is selected. The few extra squares may be filled 
with dummy letters if desired. Now since the number of letters 
in the message is 39, we may select a rectangle with 40 squares in 
it. Into each square we shall fit one and only one letter. Our 
rectangle may have 8 columns and 5 rows or 10 columns and 4 
rows, but we shall illustrate the process of coding by considering 
a rectangle with 8 columns and 5 rows. Generally, the first line 
(row) of letters is written from left to right, the second line 
(row) inreverse, that is, from right to left; the third again from 
left to right, the fourth in reverse, and so on. However, we may 
start writing the first column from right to left and reverse the 
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order for each alternating row, the choice of the order being a 
part of the key. We have then 

Q u e e n M a r 
t i w t f e 1 y 
h a c a r ~ 0 0 

n a 1 p r 1 a f 
e s t 0 x d a y 

The letter x is a dummy letter. 
The coded message is then written by columns as follows: 

Qthne -uiaas eU'clt etapo nfrrx megid aloaa ry ofy .. 

The message T be emperor left Elba is transcribed in code as 
follows. As this message contains 18 letters, we add two dummy 
letters to it to make a rectangle of 20 squares. We choose a 4-
row, 5 -column rectangle and proceed with the rewriting as 
follows: 

The e m 
r 0 rep 
1 eft e 
x x a b 1 

Thus the coded message 

Trlx hoex erfa eetb mpel 

To read off coded messages of this type, put the letters in the 
original order. Then if you know the key of the code you will 
find no difficulty in arranging the coded message in the proper 
columns and rows. If you do not know the key, you had better 
roll up your sleeves and dig in for a long winter night. For 
there is no ready rule for the discovery of the key of the code, 
other than close scrutiny and hard thinking. There are certain 
clues in almost every coded message, however,-as well as an oc
casional false alarm. 

The e m p 
e 1 r 0 r e 
f tel b a 

The first lead that should be analyzed is the way in which the 
letters are grouped. In the last coded message the letters were 
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grouped by three. This suggests the possibility of three hori
zontal rows and six vertical columns. 

Tef hit ere eol mrb pea 

The second lead is usually obtained from close study of the 
coded message, especially with regard to the position of certain 
letters. We may note that the first letters The em p form a 
certain sequence which has some suggestion of making sense. 
Then the second sequence, e r 0 r I e (written backwards), is 
immediately obtained. Combining the first and second se
quences, we have The emperor Ie. Such a result is extremely 
encouraging, because it convinces us that we are on the right 
track. Then for the third sequence we obtain f tel b a, and 
thus the message is decoded. 

However, not all coded messages are decoded so easily. Codes 
would be of little value if they were. The coding of a message 
has as its natural aim the attainment of such a disguise as to make 
decoding almost impossible. 

More Scrambling: How to Make Cryptography More Cryptic 

The coded messages in the preceding section are, from the 
point of view of cryptography (the science of writing messages 
in code and deciphering them), very simple. F or an experienced 
cryptographer the decoding of such messages is child's play. In 
order to conceal the coded messages the system of transposition 
allows further complication by means of several variations in 
the system of coding. We shall examine a few of these variations. 

The hrst variation discards the writing of the message by 
starting with the first left column. Instead of this we start with 
the last column on the right. Let us write in code the message 
The emperor left Elba by using three rows and six columns; this 
will eliminate the necessity of two dummy letters. We then 
have The e m p 

e 1 r 0 r e 
f tel b a 

and the coded message is pea mrb eol ere hit tef. 
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However, the decoding of this message still presents no diffi
culty. If the method that was described in the preceding section 
fails to yield results, it is applied backwards, so to speak. We 
start from the right and take one letter ftom each group. We 
thus obtain the same sequence of letters that was derived in the 
preceding section, that is, the em p, e r 0 r I e, and f tel b a. 

A second variation usually introduces sufficient concealment 
to preclude the discovery of the code, unless the person who de
codes the message (assuming that the key is not known to him) 
is an expert,cryptographer. For this variation, after the message 
has been written in a certain number of rows we begin the tran
scription by starting with the upper right-hand corner. As a 
rule the message is written in groups of letters so that each group 
contains more letters than there are rows. Thus 

The e m p 
e 1 r 0 r e 
f tel b a 

is transcribed as follows: peab rmeo lere hltf et or peabr meole 
reNt fet. 

The message Queen Mary left witb a cargo of airplanes today 
may be rewritten by using six letters in each group: 

Q u e e n M a r 
t 1 W t f e 1 y 
h a c a r !S 0 0 

n a 1 p r 1 a f 
e s t 0 x d a y 

Thus we have ryofya aoladi gemxrr fnopat etlcwe saaiue nhtq. 
Note that in this method of transcribing we start in the upper 
right-hand corner and go down in the first column, but in the 
second column we go up, in the third column we go down again, 
and so on. 

The same procedure applies for seven or more letters. 
In order to prevent any additional chance of the number of 

rows and columns being discovered it is advisable not to use 
dummy letters. Thus the Queen Mary message may be put in 
code as follows (we shall now use 4 rows and 10 columns): 



Que 
a c a 
r .g 0 

y a 

Grouping, we have 

e 
h 
0 

d 

There's Secrecy in Numbers 

n Ma r y 
t w t f e 
f a r p I 
0 t s e n a 

Ielan pfyrt resiw amiat oftne hodao aeucg yraq 

or, if we use six letters 

Ielanp fyrtre siwami atoftn ebodao aeucgy raq 

85 

The advantage of this variation in the method of coding lies 
in the fact that the person who sends the coded messages may 
vary the number of letters in the groups of different messages. 
He thus has the opportunity to vary the number of the columns 
and rows and the number of letters in the groups. The person 
who receives the message and who knows the number of rows 
and columns (this is the key of the code) needs to count the 
total number of letters in the message and divide this number by 
the number of the key; the remainder after this division will give 
the number of letters in the last row. Thus, in the above mes
sage there are 39 letters, the key is 10, and the last row contains 
9 letters. The last column then contains three letters. It should 
be noted that the last column is on the left of the rectangle. This 
process is continued column by column until the message is com
pletely deciphered. 

Befuddling the Foe, or How to Have Fun with the Fifth Column 

The coded messages discussed heretofore can be deciphered, 
although not without a certain amount of ingenuity and experi
ence. But this is not enough. Any code whose key is fairly 
discoverable is not a desirable code. Naturally, a more compli
cated code is demanded. The user of a transposition code then 
resorts to a transposition within the rectangle. Instead of pro
ceeding directly from one column to its neighbor, the code key 
is made more complex by scrambling up the order of the columns. 
Such a procedure makes the discovery of the key almost an im
possibility. We shall examine this method of coding in detail. 
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Let us return to the message The emperor left Elba. For the 
purpose of coding we wrote the letters in a rectangle as follows: 

1 2 3 4 5 6 
The e m p 
e 1 r 0 r e 
f tel b a 

Now, instead of following the regular procedure of writing the 
message in groups of three starting either with the first column 
on the left or the last column on the right, that is, following the 
order of the columns 1-2-3-4-5-6 or 6-5-4-3-:2-1 we select a dif
ferent order, say 4-1-6-2-5-3. The coded message then is 

eol tef pea hIt mrb ere. 

The code thus has an additional element in its key, the order of 
the columns 4-1-6-2-5-3. Decoding such a message, if its key is 
not known, is a very difficult affair. No general plan of attack 
can be devised; discovery of the key is a hit or miss proposition. 
vVhen code messages are sent according to this method of scram
bling the columns, the sender as well as the recipient may be cer
tain that a fifth columnist will have a hard time trying to deliver 
the original message to the enemy. However, an expert cryp
tographer who makes a specialty of deciphering secret messages 
will be able to decode this type of message, as well as messages 
written in even more complicated codes based on the procedure 
described above. 

To decipher a coded message of the scrambled-column type 
the order in which the columns have been taken must be known. 
The order of the columns is, as stated above, a part of the key of 
the code. However, this arrangement need not be permanent 
for all the messages. The order may be changed with each mes
sage, that is, the sender of coded messages is free to choose any 
order of columns he wishes, provided he somehow informs the 
recipient of his selection. Thus, this part of the key may be
come a part of the message. Presently we shall discuss a system 
which will enable the sender of a coded message to transmit this 
part of the key in code form. 
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The decoding of a message of the above type presents no diffi~ 
cUltie.s when the recipient has the key. Suppose the coded mes-~ 
sage IS 

nfrrx uiaas aloaa ewclt megid etapo ryofy qthne 

and the additional key is 

5-2-7-3-6-4-8-1 

First, we rearrange the groups so that their original order is re
stored. Thus we obtain 

qthne uiaas ewclt etapo nfrrx megid aloaa ry ofy 

Then we rewrite the groups of letters in columns: 

q u e e n m a r 
t i w t f e I y 
h a c a r ~ 0 0 

n a I p r 1 a f 
e s t 0 x d a y 

Thus, we have our message, Queen Mary left with a cargo of 
airplanes today. . 

The columns may also be scrambled up when the coded mes
sage is to contain groups of letters with more (or less) letters 
than the number of lett.ers in each column. For example, if we 
decide to code the Queen Mary in six-letter groups without the 
use of a dummy letter (to make deciphering more difficult), and 
if the key for scrambling up the columns is 2-6-1-8-5-7-4-3, we 
have 7 8 123456 

Que e nM a r 
tlwtfely 
hacarl? 
n a I p r 1 

est 0 day 

o 0 
a f 

The coded message is then 

uiaasa igemqt hnefoy rnfrrd yaolae tapotl ewe 

The decoding of this message proceeds in essentially the same 
fashion as described in this section. However, if the complete 
key is not available, only an expert decoder may finally succeed 
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in unraveling the original message. And the chances are that he 
will have more than one headache. 

How to Hide the' Key and Keep Your Code from Talking 

As stated in the preceding section, scrambling up the order of 
the columns of a coded message greatly insures against the pos
sibility of a code being deciphered by anyone who intercepts a 
coded message. Moreover, the sender of a coded message need 
not always use the same order for the rearranged columns. He 
may select any. order at random, provided he has some definite 
means of letting his recipient know what order he has used .. If 
this order were mentioned directly in the message, however, the 
sender would be giving away his secret. Therefore, he must 
resort to more devious means of stating his information. This 
may be accomplished by giving the order of the columns in a 
number system other than the decimal. 

To facilitate the coding of the key arrangement of the col
umns, especially if the number of columns is greater than 5, it is 

. best to break up the rectangle into two parts and work on each 
part in the same manner as it was described above. Let us illus
trate this procedure by again coding the Queen Mary message: 

1 2 3 4 1 2 3 4 
Q u e e n M a r 
t 1 W t f e 1 y 
h a c a r ~ 0 0 

n a 1 p r 1 a f 
e s t 0 d a y 

We may choose the following order: 4-2-1-3, 3-4-1-2. The 
coded message (if it is written in groups of six letters) IS as 
follows 

etapos aaiuqt hnetlc wealoa yfoyrn frrdai gem 

To conceal the numbers 4,213-3,412, we may assume that they 
are in the 5-system and that their equivalents in the decimal sys
tem are 558 and 482, respectively. Thus the key in code may be 
written as 558-5-482, where the middle 5 may indicate the nu
meration system. Others may write this as 558-5-76, provided 
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that there is an understanding between the correspondents that 
the smaller number represents the difference. This key may be 
still further concealed. Instead of the numbers 4,213 and 3,412 
we may write 3,102 and 2,301, then, using the 3-system, we have 
210-3-178, or, if we wish 210-3-32. 

The recipient of the message must translate these numbers 
back into the numeration system indicated by the middle num
ber. Naturally, if there is a definite understanding concerning 
the numeration system which the correspondents will use, this 
middle number may be omitted (and this will make it even more 
difficult for an enemy to find the key to your code). After the 
correct number has been Qbtained-for example, 4,213-3,412-
the recipient of the message writes it out as follows: 

1-2-3-4-5-6-7-8 
4-2-1-3-3--4-1-2 

Therefore the arrangement of the column is 

4-2-1-3-7-8-5-6 

The Civil War's Secret Weapon: The Grille 

The grille, a variation of transposition code writing, was in 
wide use during the Civil War, but for some reason it has been 
discarded for more complicated code systems. Nowadays the 
requirements of code writing are such that the system must be 
complicated in its transcription of the message as well as in its 
concealment of the secret of the code. No doubt, experience 
demonstrated that the use of the grille was not satisfactory from 
one of these viewpoints, and hence it was discarded. However, 
the grille system guards well the secret of the code, as we shall 
see shortly. 

The principle is simple. The grille itself is of square form 
and has little squares ruled on it, an equal number being on each 
side. One-fourth of these squares are perforated according to a 
definite plan, and the message is written through these perfora
tions on a specially ruled squared paper. Since only one-fourth 
of the squares of the grill are perforated, only one-fourth of the 
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message can be written. But, the arrangement of the perfora
tions is such that if the grille is turned one-fourth of the way 
clockwise or counterclockwise (the direction of turning is a 
part of the code) another fourth of the message can be written 
through the perforations, and the part that was previously writ
ten is covered up. Then after the second fourth of the message 
is written, the grille is turned again one-fourth of the way in the 
same direction, and the third fourth of the message is written. 
Finally, the grille is again turned one-fourth of the way in the 
same direction, everything that was previously written is covered 
up, and the fourth and final part of the message is written. Thus, 
while the grille is kept in four different positions the entire mes
sage is written, but the individual letters of the entire message 
are located in different, widely distant places, so that the entire 
message is scrambled up. Only the person who has a copy of 
the grille that was used in the process of the coding of the mes
sage can decode it. 

The size of a grille depends on the number of the letters in a 
given message. But since a grille is always of square form and 
must have an equal number of ruled squares on each side, the 
total number of ruled squares in the grille will not necessarily be 
equal to the number of letters in the message. To determine 
the size of the grille, select a grille with a total number of ruled 
squares either equal to the number of letters in the message, or, 
if this is impossible, select a grille whose total number of ruled 
squares in the grille exceeds the number of letters in the message. 

For example, if the number of letters in the message is thirty
six, then the grille will have six ruled squares on each of its sides. 
If the number of letters in the message is fifty-nine, the grille 
must have sixty-four ruled squares, that is, eight ruled squares 
on each side. In other words, the square grille must contain a 
squared number of ruled squares. Each ruled square of the grille 
is designed for one and only one letter of the message. Later on 
we shall also have examples of grilles which allow the writing of 
more than one letter in each perforation. At present, however, 
we shall confine our discussion to grilles which allow the writing 
of only one letter in each perforation. 
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Let us transcribe the following message: 

Transport leaving with convoy taking northern route now 

The total number of letters in the message is forty-eight. There
fore, the grille should have forty-nine ruled squares, twelve of 
which (that is, one-fourth) are perforated. 

The paper on which the mes
sage is to be inscribed is also ruled 
and is of the same size as the grille. 
Likewise, it should be noted that 
the central square, that is, the 
square in the fourth row and the 
fourth column of the grille, is 
not perforated. If this square 
were perforated, it would always 
be in the same place and would 
thus expose the same square on 
the writing paper four times. 
Such repetition would be disad
vantageous in the transcription of the message, since the prin
ciple of the construction of a grille is that the perforations be 
made in such a manner that every square of the writing paper 
be exposed once and once only. The reader will, no doubt, 
have observed that only in grilles with odd-number squares 
will there be a centrally located square which should not be 
perforated. Thus in a grille with 36, 64, 100, or 144 squares 
there will be no centrally located square. 

With the forty-nine-square grille ready we proceed with the 
transcription of our message. We place the grille on the ruled 
writing paper and write the first fourth of our message as follows: 

t r 
a n s 

p 
o r 

t 

e a 
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Turning the grille one quarter of the way counterclockwise we 
inscribe the next twelve letters: 

t v r 
a i n s 

n p 
0 g r 
w t t h 

c 0 

n e a v 

Turning the grille once more one-quarter of the way in the same 
direction (counterclockwise) we inscribe the next twelve letters: 

t v r 0 y 
a n n s 

n p 0 

0 w g r t 
w t a t h 
k n c 0 

11 e a v g 11 

Finally, the last turn of the grille in the same direction enables 
us to write the last twelve letters, and thus we complete the tran
scription of the entire message. 

t v t 0 0 y r 
t h a i 11 11 S 

e 11 r p 0 n r 
0 w g x 0 r t 
w t a t u h 
k i t n c 0 

11 e a v g e a 

Note that in the central square (the one that was never exposed 
through a perforation) we inserted a dummy letter x (any other 
letter may do). 

Anatomy of a Grille 

As stated above, a grille may contain any number of cells pro
vided this number is a perfect square (that is, a number which 
is obtained by multiplying an integer by itself, as, for example, 
4·4 = 16, 5·5 = 25, etc.). . 

The method of perforating the necessary number of the cells 
is comparatively simple. We shall describe it in detail. 



There's Secrecy in Numbers 93 

When a message has been composed it is necessary to count 
the number of letters. Then for the number of the cells in a 
grille we take the nearest perfect square that exceeds the number 
of letters in the message, unless of course the number of the let
ters is a perfect square. If odd, it is not necessary to delete one 
letter in the message because the central cell of the grille is not 
perforated. When the entire message, with the exception of the 
last letter, is transcribed, this last letter is then written in the va
cant central square. Naturally, the extra unfilled squares on the 
writing paper will have to be filled with dummy letters in order 
that every square of the writing paper is filled. 

In the two drawings above there are eighty-one and sixty-four 
cells, respectively. The rows of cells are drawn so as.to show a 
border effect. Then the cells are numbered as shown in the 
drawings, and only one set of numbers (from 1 up) is crossed 
out in each border. This tends to prevent a perforated cell from 
exposing the same square two or more times. The cells that 
have been crossed out are to be perforated, and after all the per
forations have been made the grille is ready for use. A careful 
inspection of the number of the crossed-out cells forming same 
border will reveal that one-fourth of the cells are crossed out. 
Thus, in an eighty-one-cell grille only twenty cells will be per
forated, and in a sixty-four-cell grille only sixteen cells will be 
perforated. 
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Generally, almost any code secret may be discovered by a spe
cialist; but even in the case of a small grille, say of sixty-four 
cells, the possible combinations of perforation patterns are so 
numerous that even a notorious international spy would have 
little chance of stumbling across the original pattern (unless, of 
course, he used his wiles to spirit ~way a copy of the original). 

To decode a message written by grille, the recipient simply 
places the grille over the message and in four operations (turns 
of the grille) obtains the four different parts of the message. 

However, should you fear the cunning of your fifth column's 
master-mind you may further scramble up the grille-coded mes
sage by means of any of the methods of transposition described 
in the preceding sections. Naturally, this complicates the key 
of the code. But, as already pointed out, nowadays a simple 
code is almost useless. Simple codes belong to the good old days 
when spying was left to a few honest traitors or pleasantly se
ductive Mata Haris and had not yet mushroomed into a foul
fighting underground army. 

Behind the Grille: A Little Math 

For protection, a scheme may be devised so that neither the 
sender nor the recipient of coded messages need keep ready
made grilles on hand. The arrangement of the perforated cells 
of a grille may be so concealed that once a grille has been used 
by the sender or the recipient of a message, the grille may be 
immediately destroyed, and when the need for a grille arises 

. again a new one may be constructed. As will be shown below, 
the secret of the perforation pattern may be written in the form 
of a code, which thus becomes the key to the grille. 

Let us denote every perforated cell of a grille by 1 and every 
other cell by o. Thus the arrangement of the grille on page 91 
may be represented as follows: 

1010000 
0010101 
0001000 
1000010 
0010000 
0100000 
0110000 
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If we discard the zeros to the left of 1 in each number we have 

1010000 
10101 
1000 
1000010 
10000 
100000 
110000 

Let us suppose that these numbers are not numbers written in 
the decimal system of numeration but in some other, say the 
two-system. Then their equivalents in the decimal system are 
80, 21, 8, 66, 16, 32, 48. These numbers may be easily trans
lated back into the two-system of numeration. Thus, the person 
who uses a grille may safely destroy his instrument, provided he 
has the key to it. Moreover, the sender of a coded message may 
vary the arrangement of the perforations of the grille that he 
uses. When he sends a message, he must include in it the key 
of the grille that he used for the transcription of his message. 
He need not be confined to the two-system. He may use the 
three-, four-, five-, or any other system, provided the recipient 
of the message is properly informed of the system used. When 
the recipient begins to decode the message, he first decodes the 
key to the grille, then reconstructs the grille itself so that he can 
proceed with the decoding of the actual message itself. 

For example, suppose that the key is 759, 81, 244, 27, 2,433, 
280, 3, 2,187. Also suppose that by some definite prearrange
ment the recipient of the coded message was informed that the 
sender used the three-system. Then the recipient of the mes
sage will have no difficulty in obtaining the equivalents of these 
in the three-system. They are 

1001010 
10000 
1000001 
1000 
10100010 
1010101 
10 
10000000 
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They represent the sixty-four-cell grille shown on page 93: 

01001010 
00010000 
01000001 
00001000 
10100010 
01010101 
00000010 
10000000 

A Full-Dress Grille: The Shape's the Thing 

A grille 'may be used not only for writing one letter it). each 
square .. We may construct a grille such that in each space that 
is exposed through the perforations of the grille a predetermined 
(but constant for t given message) number of letters may be 
written. Accordingly, 2, 3, 4, etc., letters may be written in 
every space exposed by a perforation. Such a grille will be 
rectangular instead of square but will be constructed according 
to the same principles as the square grille and will contain a per
fect square number of cells, one-fourth of which will be per
forated. A grille of this type is shown below. 

This grille is used in the following manner: After the first 
fourth of the message is transcribed, the grille is reversed so that 
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the lower edge (marked 2) is now uppermost. The second' \;c/ 
fourth of the message is then transcribed. After the second' .~ 

fourth of the message is recorded the grille is turned over face 
downward and is used again twice in the same manner as de
scribed above. In each position after the first the grille covers 
everything that has been already recorded. In other words, 
every rectangle on the writing paper is exposed once and once 
only. 

Rectangular-grille procedure is somewhat different from 
square-grille procedure. The rectangular grille is turned over, 
and the cells are perforated in such a manner that in every row 
or column there are no cells equidistant from the edges of the 
rectangle. Thus if cell 2 in the third row is perforated, then 
cell 7 in this row should not be perforated. Moreover cell 2 in 
the third row is also cell 3 in the second column. Hence cell 6 
in the second column must not be perforated. This restriction 
on perforations thus prevents the possibility that any part of the 
writing paper will be exposed through a perforation more than 
once. 

Let us take the rectangular grille shown on page 96, and, using 
groups of three letters, transcribe the following message: 

Ruins of an ancient buried Indian city, which evidently flour
ished before the Spanish conquest 400 years ago, have been dis
covered by laborers on a ranch near San Augustin. Hundreds 
of stone idols have been found intact. 

In the transcription we shall write out all numerals as words. 
Thus "400" will become "four hundred." 

The position of the grille inscribes one-fourth of the message 
as follows: 

rui nso 
fan anc 

iim 
tbu ne 

din dia 
nci ty, whi 

che vid 
en! lyf 
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The secon4 position allows the inscription of the second fourth 
of the message: 

ru~ nso lou ris 
hed ~ef fan ane 

are Mn the spa 
tbu n~s heo rie 

nq1f din dia est 
neJ, ty, fou whi 

rhu ndr ehe vid 
ent lyf edy ear 

The third pos~tion enables us to transcribe the third fourth of 
the message: 

ru~ sag nso lou 0, h ns 
hed ave ~ef fan bee ane 

are 'len the ndi spa 
sea tbu n'lS heo ver rie 
nqu edb din yla dia est 
nei bar ers ty, fou whi ana 
ran rhu ehn ndr ehe vid 
ent lyf edy ear ear san 

The fourth position of the grille permits the completion of the 
transcription of the message. Thus we have 

aug ruJ, ust sag nso lou 0, h ris 
hed ave ~ef fan bee 'In. ane hun 
dre are 'len the dso ndi fst spa 
sea tbu ms one heo ida ver rie 
nqu Ish edb din yla dia est ave 
nei bar bee ers ty, fou whi ana 
ran rhu ehn nfo ndr ehe und vid 
ent int lyf edy aet ear ear san 

Decoding the message by means of the grille is simply a 
reversal of the above process. The grille is placed over the 
message in the same four positions, each position thus decoding 
one-fourth of the message. 

Substitution, Alphabetical and Otherwise 

The method of substitution is based on replacement of the 
letters of a given message by the letters of any alphabet, or by 
any symbols which may be chosen at will for this purpose. The 
method of substitution, generally in a very complicated form, 
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has a wide use in code writing today. For the sake of simplicity, 
however, we shall only make use here of our alphabet of twenty
six letters: 

The simplest form of substitution, and this form illustrates the 
principle of the method, consists of the direct substitution of a 
certain letter for another letter of the alphabet. Thus the key 
for this kind of code writing consists of two lines. The upper 
line, generally, is the original alphabet, and the lower line is the 
substitution alphabet. The arrangement of the letters in the 
substitution alphabet may vary; the selection of this arrangement 
is entirely arbitrary. 

Here is an example of a substitution code: 

abc de f ghi j kl mno pqr s t uvwxyz 
qxpakocmzuswbrfl j eyi dtnghv 

When a message is written in code, every letter of the message 
is replaced by the letter that corresponds to it in the substitution 
code. Thus the message We are ready to destroy plans is tran
scribed in code as follows: 

nk qek ekqah if akyiefy lwqry. 

However, this process of substitution does not conceal the 
message sufficiently well. In order to conceal the message fur
ther, the message may be transcribed by the method of transpo
sition, so that the original order of the letters is scrambled up. 
We may proceed as follows. There are twently-four letters in 
the message. We may use four rows and six columns, and then 
transcribe by groups of five. Then, we have 

w ear e r 
o t y d a e 
des t r 0 

s n alp y 

Therefore, starting from the upper corner on the right, we have 

reoyp raerd tlasy aeten sdow. 

By means of the above substitution code, the message is 

ekfhl eqkea iwqyh qkikr yafn. 
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Even if a message were written in the manner described 
above, it would be a dead giveaway for any experienced cryp
tographer. Code writers would never think of using such un
complex procedure. 

Since there is no restriction on the possible arrangement of 
letters in the substitution code, the number of substitution codes 
possible is enormous. Consequently, there is almost no chance 
that any two persons, except the sender and the recipient of the 
coded message, will possess the same substitution code, though 
expert cryptographers may, by devious methods, s~cceed in un
earthing the key. 

Double Trouble for Code Kibitzers 

To safeguard the code used in the transcription of a message a 
combination of the transposition and substitution systems is ef
fective. Codes that are based on this principle are favorites of 
governments and their various departments. We shall look at a 
simple type of this combination code and see what is the basis 
of this political favoritism. 

Suppose that a message is transcribed by the method of trans
pOSItlOn. It may contain several groups of letters each con
taining a definite number of these letters. F or every group a 
separate substitution alphabet is designed. Thus, for 

reoyp raerd tlasy aeten sdow, 

the transcription of the message We are ready to destroy plans 
given in the preceding section, we must have five substitution 
codes, as, for example, 

abc de f g hi j k 1 mn 0 p q r stu v wx y z 
1 p j w z 0 t k r v x ega s ye h d 1 a n b f mq i 
Z gmzqsvylpratxfbuecowdhi 1 j k 
3 rho n z p j auf s d t i v g k x e y ml c w p b 
4 v t i k awe s z b v 0 y f md x 1 u q h j r gnp 
5 ouywj 1 dvqszgi xkmbhnf.arepct 

Thus the first line is used for transcription by substitution of the 
first group of five letters, the second line for the second group of 
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five letters, the third line for the third group of five letters, and 
so on. The message is then transcribed as follows: 

doyqe cgscq ydrep vaqaf nwke 

F or messages with a larger number of letter groups there 
should be as many substitution alphabets as there are groups. 

If the recipient of a message is in possession of the code, he 
will find no ditliculty in its decoding. As far as the spy or 
saboteur who intercepts the message is concerned, the sender 
may as well have the key. For unless the interceptor is an X-ray
eyed cryptographer, all his spying has been just so much cheating 
at solitaire. 



The Great Pyramid Mystery 

T he Arithmetic 0/ 
Measurement 

On the sands of Egypt not far from the banks of the Nile 
there is a tall stone structure several thousand years old. King
doms rise and fall, natiqns are born and disappear; generation 
after generation passes by, but it still stands, a monument to the 
skill and industry of a nation (and its slaves), and an enigma 
that to this moment baffles our modern sciences. The secret of 
its design and the nature of the ancient tools capable of con
structing a pile of such stupendous size remain a mystery that 
may never be unraveled. 

The Great Pyramid, or the Pyramid of Cheops as it is called, 
is a magnificent figure rising about 486 feet. From the stand
point of engineering it would be a creditable achievement of 
any architect of the twentieth century. No one knows how the 
architects of ancient Egypt were able to cut huge blocks of sand
stone tens of miles away and move them to the site. It took 
more than twenty years, and more than 200,000 men laboring 
constantly, to erect this tomb for the Pharaoh Cheops. Prior to 
its actual building ten years were spent in the construction of 
roads over which the stones were dragged from the quarries. 

Nowadays before any building is erected plans are drawn by 
engineers. But those who have studied the Great Pyramid have 
been disappointed from the start; the Egyptian engineers left no, 
plans for posterity. 

102 



x The Arithmetic of Measurement 103 

What amazed most of the scientists was the simplicity of the 
Great Pyramid form. Its base was a square; its faces were tri
angles with two equal sides (we call them isosceles triangles). 
As simple a figure as this, they reasoned, to serve as a tOP1b of 
one of the greatest Pharaohs? There must be something hidden 
in the meaning of this pyramid. And they found something. 
The entrance to the pyramid was on the northern side, and it 
was so slanted that from it the Polar star could be seen. Whether 
the priests of Egypt used this pyramid for an astronomical ob
servatory or the facing of this entrance was just a coincidence 
we do not know. However, this was taken as a clue: No doubt, 
thought some of the scientists, construction of the pyramid and 
its measurements had something to do with astronomy and 
mathematics. After all, the priests of Egypt were so skillful as 
astronomers that they computed the year as of 365 1/4 days, 
and we still use this crude figure in our modern life. 

What a Little Juggling with Numbers Will Do 

The scientists had another clue. The Greek historian He
rodotus mentioned that the priests of Egypt told him the pyra
mid was constructed according to a peculiar rule of proportion. 
For example, the area of the .square 
that may be constructed with the alti
tude of the pyramid as a side is equal 
to the area of every face triangle. 
Later calculations confirmed this and 
the supposition that there must be some 
mathematical meaning in the structure 
had its first confirmation. So the scien
tists began to seek other relationships, 
and their conclusions were so astonish
ing that volumes have been written about the Great Pyramid 
of Cheops. 

If we add the lengths of the base sides of the pyramid we ob
tain 3,055.16 feet. Double the size of its height and we obtain 

(2·486.23) = 972.46. feet 
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Divide 3,055.16 by 972.46, and we get 

3055.16 = 3 1416 ... 
972.46 . 

x 

This' number, 3.1416, is one of the most significant in mathe
matics: It represents the ratio of the circumference of a circle to 
its diameter. However, this number, represented by the Greek 
letter pi, Tt, can never be calculated exactly. The value 3.1416 
was determined thousands of years later. The Egyptians never 
calculated Tt so well. The best value of Tt that the Egyptians 
knew was 3.16. But the results just obtained by means of multi
plication and division would seem to compel us to revise our 
notions about Egyptian mathematics. We shall see whether we 
should revise them. 

But this is not all in the mystery of the pyramid. If we trans
late its height in terms of the mile, we obtain 

486.23 0 21 '1 
5280 = O. 9 ml e 

Multiply 0.0921 mile by 1,000,000,000 and we obtain 92,100,000 
miles, which is an approximate distance of the earth from the sun. 
Thus the height of the pyramid had something to do with astron
omy. Moreover, the Egyptian priests knew considerably more 
about astronomy than we generally thought they knew. Ac
cording to our knowledge, the distance from the earth to the 
sun was first correctly computed in the 'eighteenth century, sev
eral thousand years later. Shall we revise our notions about the 
astronomical knowledge, too, of ancient Egypt? 

To conclude this analysis of the Great Pyramid the scientists 
searched for more startling facts, and reported they had found 
them. The average diameter of the earth is about 7,913.333 
miles, or 

7,913.333·5,280 feet = 41,792,398.24 feet 

Divide this by 20,000,000, and we obtain about 2.09 feet. Now 
if we divide one side of the base of the pyramid (763.79 feet) 
by the length of the year, 365.2422 days, we obtain 

763.79 
365.2422 = 2.09 feet 
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which is 1/20,000,000 of the average diameter of the earth. We 
are led to think that the Egyptian priests knew more about as
tronomy, the year, and the diameter of the earth than we ever 
suspected. 

So's the National Debt 
These examples are only a few of the numerical jugglings so 

successfully performed by the Great Pyramid enthusiasts. The 
results are very convincing on their face value, but are the data, 
or the numbers used in the computations, basically reliable? A 
result of any computation is only as authentic (provided every
thing else is correct, especially the reasoning employed in the 
process) as the numbers used. Let us test the scientists' numbers: 

All these represented measurements of the pyramid were made 
some time after the middle of the nine tenth century, more than 
3,000 years after it was built. Much can and does happen to a 
building in thirty centuries. Rain, wind, the sun, and other 
forces of nature constantly erode it; the stones certainly have 
been much worn. Who can guess to what extent the original 
dimensions of the pyramid have been reduced? 

Further, the· dimensions were measured to hundredths and 
thousandths of a foot. Even if such fine measurements could 
be cited to justify the scientists' contentions, coulq anyone ac
cept their basic usefulness, since they could not comprehend the 
original dimensions? The answer is emphatically no; one could 
accept, at most, the measurements to feet, discarding the frac
tions of a foot. Thus the dimensions that should have been 
used in the computations are the earlier-noted whole numbers, 
3,055 and 486 feet. And who would vouch that the Egyptian 
priests had instruments that could measure as minutely as ours 
today? Measurements to a hundredth of a foot, particularly 
those outdoors and concerned with height and distance, require 
the extremely precise instruments used by modern surveyors. 
Any concession that the Egyptians could have even approxi
mated these is making a great allowance. 

Now, in this light, let us repeat the computations, but first we 
must state an important principle related to the nature of num-



106 Mathematics-Its Magic & Mastery x 

bers obtained as the result of measurements: When two such 
numbers are either multiplied or divided, the results cannot con
tain more reliable digits than the numbers with the least number 
of digits. 

If we suppose that the numbers 3,055 and 972 are made up of 
reliable digits, then the quotient 

3055 912= 3.143··· 

has only three reliable digits. But we must remember that 3,055 
and 972 do not represent the measurements of the dimen.sions 
the pyramid as it was at least three thousand years ago; in 
other words, even the result 3.14 would be insufficient as a 
basis for crediting the Egyptian priests with great advances in 
mathematics. 

The reasoning of the scientists that the length of the base of 
the pyramid was related to the length of the year and the, radius 
of the earth is based both on ignorance of the nature of the num
bers they used and on flimsy coincidence. Anyone who just 
tries to play with numbers but ignores what they represent may 
arrive at results even more startling than those obtained by these 
scientists. We might, if we wished, follow their procedure and 
claim that the height of the pyramid represented a certain por
tion of the national debt of the United States on a certain date, 
because 

486 
48600000000 = 0.000000001 , , , 

Only the very credulous would accept this type of reasoning. 
So the error in the Great Pyramid "discoveries" was twofold: 

(1) The investigators accepted certain numbers as representing 
measurements when the numbers were much too good to be 
true; and (2) they were not familiar with the nature of the num
bers they used when computing certain results, and applied to 
them the rules of ordinary arithmetic. The arithmetic of mea
surement differs. In ordinary arithmetic results of the calcu
lations must contain all the digits, while in the arithmetic-of
measurement numbers (or, as they are also known, approximate: 
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numbers) results of the computations must contain only the 
digits that are reliable. Had the scientists known something 
about the arithmetic of approximate numbers they would never 
have created the myth about the Egyptian priests. 

Nothing's Ever Right 

All measurements are subject to certain limitations over which 
no one has control, because measurement is an operation depend
ing upon several factors. These are: 

a) We make use of a certain unit of measure that is commonly 
agreed upon. tIn this country this unit of measure is 

i. for length. . . . . .. a foot 
ii. for weight. . . . . .. a pound 

iii. for time ......... an hour. 

In most of the European countries the unit of measure is based on 
the metric system and is 

i. for length. . . . . .. a meter 
ii. for weight. ...... a gram 

iii. for time ......... a second 

The unit, whether the metric or the English (as we call our system 
of measures), is a man-made unit. Standards of units are usually 
prepared by special agencies, and the instruments of measurement 
represent copies of these standards. A copy is generally not an exact 
representation of the standard, and thus a certain deviation or error 
is present. Even if attempts are made to correct for these errors, 
complete correction is impossible. 

b) Atmospheric conditions, such as temperature and humidity, 
cause some variations in the instruments of measurement. And here, 
also, complete correction is impossible. 

These factors may be important only for measurements in 
scientific and industrial laboratories, but there are other factors: 

c) No person can be certain that his application of an instrument 
of measurement is exact. Slight errors may be caused by carelessJ 

ness, poor eyesight, slips, and so on . 
. d) Gene~ally when a measurement is performed, a situation sud' 

as this arises: Suppose that a certain length is measured with a yard
stick. The measure thus obtained is 25 5/8 inches, but a portion 
less than 1/8 inch of the object is left over. We may write the 
numerical value of the measure as 25 5/8 ? /16 inches as we cannot 
gauge the sixteenths. If we had a more pr~cise instrument we could 
learn this measure, but then there might remain a portion still smaller 
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than 1/16 inch. This process may be continued indefinitely; in other 
words, an object cannot be measured exactly, however precise an 
instrument may be used. 

Thus numbers representing measurements are never exact, un
less we have the result of a count of some objects and we there
fore call them approximate numbers. Moreover, the amount 
that is usually left over and does not enter in the numerical state
ment of the measurement is always less than a half of the last 
unit in terms of which the measurem~nt is stated. 

How the arithmetic operations with approximate, or measure
ment, numbers differ from the ordinary operations with exact 
numbers may be further seen in the following example: 

Suppose a rectangular plot measures 43 by 39 feet and we wish to 
know its area. The area is expressed by the product of the two mea
sures, and if 43 and 39 were exact, the product would be 1,677. But 
the two numbers are only approximate: 43 may represent a length a 
little greater or a little smaller than 43, and the same is true of 39. 
Thus we may write the two numbers as 43x and 39x. Let us perform 
their multiplication: 

43.x 
39.x 
xxx 

387x 
129x 
167xxx 

The product is then 167x.xx. The unit's digit is not reliable (the x 
denoting a digit that is not reliable) because we have x + 7 + x, 
which is a sum of three numbers, two of which are not reliable. But 
the sum x + 7 + x may give a number greater than 10, and thus the 
digit in the ten's place (the third digit of 167x.xx) may become not 
reliable also. Thus the only reliable digits are the first two, and the 
correct way of writing the product is 1,700. The area is thus 1,700 
square feet. How many tens and single square feet there are, we do 
not know. It would have been misleading to write the product as 
1,677 because we were not certain of 77, and it would put faith on 
certain numbers that have no value at all. 

Thus when we employ approximate numbers we must not 
keep all the digits in the final numerical result, but must discard 
those that are not reliable. This process of discarding unre
liable digits is called "rounding digits" and the digits that are 
reliable are called "significant digits." 
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The Turncoat Zero 

In a number obtained from measurement all the digits are sig
nificant except the zero, but the zero may be significant (a) if it 
is located between two significant digits as, for example, in 20.5 
inches; (b) if it is located after the decimal point to indicate that 
it represents a performed measurement, as 14.0 feet; and (c) if 
it is at the end of a number and its significance is stated, as 240 
pounds correct to a pound. 

Zeros are not significant if their position is on thel left in a deci
mal fraction. For example, in 0.0123 mile the zeros are not 
significant. 

Nonsignificant digits should always be discarded by the proc
ess known as "rounding digits," the rules of which are: 

a) If the first digit to be dropped is less than 5 just discard the 
digits. If the discarded digits are to the left of the decimal point, 
write zeros instead of digits, and these zeros will not be significant. 

b) If the first digit to be dropped is 5 or greater than 5 increase by 
1 the last digit that is left and follow the rule for replacing the 
dropped digits by zeros as stated in (a). 

Thus 98,456 is rounded to: 98,460, 98,500, 98,000, and 6.4583 
is rounded to: 6.458, 6.46, 6.5. 

PROBLEMS 

1. Round 3.14159 to four significant digits. 
2. Round 365.22427 to five significant digits. 
3. Round 1567.83 to three significant digits. 

Rounding Sums: Plus and Minus 

When numbers that represent measurement are to be added 
or subtracted, the only rule is that all the numbers should be ex
pressed in the same denominations of the units. This means that 
if one number is expressed correct to tenths and others to hun
dredths, thousandths, and so .on, all the numbers should be ex
pressed in tenths, and this will require that those numbers that 
are not expressed to tenths (the tenth being the highest unit) 
should be rounded. This rule in brief requires the reduction 
of all the numbers to one unit; for example, if we have the ap-
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proximate numbers 34.578, 15.3067, and 5.18, the addition is 
performed thus: 

34.58 
15.31 
5.18 

55.07 

In subtraction we apply the same process; for example, the dif
ference between 87.6453 and 23.94 is obtained: 

87.65 
-23.94 

63.71 

The reason for this rule is obvious. We recall that when a 
number represents a measurement correct to ten-thousandths, it 
contains more information than one correct to hundredths. 
When such two numbers are added or subtracted, the lack of 
the information in one will be carried over into the sum or the 
difference. This lack leads to uncertain, or nonsignificant, digits. 
But, since only significant digits should be employed in the nu
merical statement of a measurement, to eliminate the work with 
nonsignificant digits we round the number that contains more 
information than we require, so that the two (or more) numbers 
have identical information. 

PROBLEMS 

4. How much fencing will it require to enclose a rectangular plot 
100.7 feet long and 43 feet wide? 

5. Add the following approximate numbers: 47.136, 873.65, and 
1.4631. 

6. By how much does the length of the plot in Problem 4 exceed 
the width? 

Products and Quotients 

The rule for multiplication and divisio1,l of approximate num
bers, or those obtained as results of measurements, is as follows: 
The product (or the quotient) of two approximate numbers 
should contain the same number of significant digits as one of 
the numbers involved with the least number of significant digits. 
If one of the numbers involved contains two fir more significant 
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digits than the other, it must be rounded so that it contains only 
one extra significant digit. The reason: this extra digit often 
contributes to a more refined result. For example, 47 ·8.6 = 
404.2, which is rounded to 400 (the last zero is not significant). 

But, suppose that the 47 were obtained from rounding 47.4. 
By keeping the last 4 (the one after the decimal place) we have 
47.4·8.6 = 407.64, which is rounded to 410 (the last zero is not 
significant). Notice that the product is correct to two signifi
cant digits, because 8.6 correct to two significant digits. 

The division is performed in the same manner. Thus 47 -;-
8.6 = 0.546, which is rounded to 0.55, while 47.4 -;- 8.6 = 0.551, 
which is also rounded to 0.55. But in the latter example the re
sult is closer to 0.55 than in the first, which is an assurance that 
0.55 is the best result we can expect. It should be remembered 
that in division- the process should be carried to one more digit 
than is to be kept, so that a final rounding may be possible. 

PROBLEMS 

7. What is the area of the plot in Problem' 4, preceding section? 
8. How many times larger than the width is the length of the 

rectangular plot in Problem 4? 

To Stop Runaway Digits 

The foregoing rules for operations with approximate numbers 
refer to the final results. Very often, however, the result is ob
tained only after several additions, subtractions, multiplications, 
and divisions have been performed. Thus, we may have inter
mediate numerical results. If the above rules are rigidly applied 
to the intermediate numerical results, many significant digits may 
often be lost. To avoid this, the following rule is set forth: 

a) Before the actual numerical work is begun, the approximate 
numbers should be inspected, and the number of significant digits in 
each should be noted. The final result will contain the same number 
of significant digits as the number with 'che fewest significant digits. 

b) All the intermediate numerical results should contain at least 
one more digit than it is expected to keep in the final result. This 
will refine the result and provide for its rounding. 
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Consider this example: 
3.75 ·89.34 
23.9· 0.75 

x 

\Ve note that 0.75 has two significant digits. Thus the final 
result should also have two significant digits. Thus: 

3.75·89.34 = 235.0250 which is rounded to 235 
23.9'0.75 = 17.925 which is rounded to 17.9 
235:17.9 = 13.1 

and this is rounded to two significant digits. The final result is 
therefore 13. 

PROBLEMS 

9. Perform with the approximate numbers the indicated compu
tations: 

56.4·8.905 
37.6 

10. Perform with the approximate numbers the indicated compu
tations: 

11.42·6.73 
1.302·5.64 
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Simple Calculating Devices 

This Little Pig Went to Market 

From the earliest days of the race men have been counting on 
their hands in a fashion called "finger reckoning." The method 
is simple, and we usually employ it instinctively, merely bending 
down a finger as we count off an object. With sufficient skill 
we may count easily up to 25 on our ten fingers by this means. 
As we count off five objects we bend a finger on the hand not 
used for the single counting. After an additional five objects 
have been counted off, another finger is bent, and this is con
tinued up to 25 objects. 

Some Indian tribes in South and Central America have made 
use not only of their fingers but their toes, too, giving rise to the 
system of numeration on the base of 20. No doubt all groups at 
some stage of their civilization counted the same way; a modern 
remnant of toe-counting is still much alive in our nursery tale 
of the two little pigs. In English we even have a special name 
for twenty-"score." 

Few, however, suspect that our fingers may be "handy" not 
only for counting but for multiplications as well. Not all mul
tiplications can be performed by the fingers, but some, such as 
by nine, are easily handled. 

113 
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To illustrate multiplication by 9 we may write the multipli
cation table by 9 in which the tens and the units are separated: 

Factors 
1· 9 
2·9 
3·9 
4·9 
5,9 
6·9 
7,9 
8·9 
9·9 

10·9 

Tens 
o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Units 
9 
8 
7 
6 
5 
4 
3 
2 
1 
o 

The sum of the digits in each product is 9. Thus 0 + 9 = 9, 
1 + 8 = 9, 2 + 7 = 9, etc. Moreover, in each product the num
bers of the tens is less by 1 than the number multiplied by 9. 
Thus when we have 3·9 = 27,2 = 3 - 1,6'9 = 54,5 =6 - 1. 

Now we have a clue as to how to multiply by 9 by means of 
our ten fingers. Place the hands on a table with the fingers flat. 
Suppose that we want the product 4·9. We bend in the fourth 
finger of the left hand; then to the left of the bent finger we 
have 3 fingers, and to its right 6 fingers, and the product is 36. 
The following table will show the respective positions of the 
fingers during the multiplications (for our purposes we shall 
number the fingers starting with the small finger on the left hand, 
as first, to tenth): 
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Factors 
1· 9 
2·9 
3·9 
4·9 
5·9 
6·9 
7,9 
8·9 
9·9 

10·9 

Fingers to Left 
of Bent Finger 

None 
1 
2 
3 
4 
5 
6 
7 
8 
9 
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Finger Bent 
First 
Second 
Third 
Fourth 
Fifth 
Sixth 
Seventh 
Eighth 
Ninth 
Tenth 

Fingers to Right 
of Bent Finger 

9 
8 
7 
6 
5 
4 
3 
2 
1 

None 

The use of the fingers for multiplication by 9 need not be 
limited to the first ten numbers. We cannot in this way obtain 
the product of 11 and 9, but it is found more easily mentally. 

Let us write the products of the numbers from 12 to 20 by 9. 
All these have 1 as their first digit on the left, and this should be 
kept in mind. 

Factors Hundreds Tens Units 
12·9 1 0 8 
13·9 1 1 7 
14·9 1 2 6 
15·9 1 3 5 
16·9 1 4 4 
17·9 1 5 3 
18·9 1 6 2 
19·9 1 7 1 
20·9 1 8 0 

We obsern that the sum of the digits that are in the places of 
the tens and of the units is in each case 8. This gives us a clue as to 
how to multiply by 9 any number between 12 and 20 inclusive; 
first we proceed exactly as in the multiplication by 9 of the first 
ten numbers .. Suppose we wish to obtain the product 16·9. We 
bend the sixth finger (the thumb of the right hand). This 
leaves open five fingers on the left hand and four on the right. 
Since the product 16·9 has as its first digit 1, we allow one 
finger Qn the left for this digit. Thus we are left with four 
fingers on the left and four fingers on the right. The product 
then is 144. 
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The followin~ shows the positions of the fingers during the 
multiplication and how to read the results: 

Factors 

12·9 
13·9 
14·9 
15,9 
16·9 
17 ·9 
18·9 
19·9 
20·9 

2 
ClJ 

Fingers to Left 
of Bent Finger 

for 
Hundreds 

1 
1 
1 
1 
1 
1 
1 
1 
1 

Tens 
None 

1 
2 
3 
4 
5 
6 
7 
8 

Finger 
Bent 

Second 
Third 
Fourth 
Fifth 
Sixth 
Seventh 
Eighth 
Ninth 
Tenth 

Finger to Right 
of Bent Finger 

for 
Units 

8 
7 
6 
5 
4 
3 
2 
1 

None 
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A Homemade Calculating Machine 

Multiplication and division are tedious processes, especially 
when large numbers are involved. Calculating machines, how
ever, are expensive. A substitute apparatus, so simple that any
one can construct it of sturdy paper, is a set of Napier's Rods 
(or "bones") that simplifies multiplication and division of large 
numbers. A set is shown here: 

These rods are actually ten strips on which the products of the 
first ten numbers by one of the numbers from ° to 9 inclusive 
are given. Each rod is thus a multiplication table of the first ten 
numbers by a certain number. Since the rods are glued together, 
and since many copies of the same rod can be made, we may ar
range them in any desired order to obtain the products of any 
given number (large or small) by the first nine numbers, 1, 2, 3, 
4, 5,6, 7, 8, and 9. 

Thus if we have 6,830,112, for example, we select the rods in 
which, in the lower right-hand corner, the numbers 6, 8, 3, 0, 1, 
1, and 2 appear. We then arrange these rods in the order of the 
digits in the given number, so that the numbers in the second 
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line (below the zeros) read 6,830,112. This arrangement of the 
rods is: 

1 

2 

3 

4 

5 

6 

7 ~ 

8 

9 

Thus by means of the rods we may write down the products of 
6,830,112. However,.before we proceed with the recording of 
the product it ~ust be explained that the numbers included be
tween two diagonal lines are to be added, as, for example: 

~ 8 5 4 7 

which reads (the reading should always be from right to left) 
as 30,647. The products then are: 

6,830,112·1 = 6,830,112 
6,830,112·2 = 13,660,224 
6,830,112·3 = 20,490,336 
6,830,112·4 = 27,320,448 
6,830,112·5 = 34,150,560 
6,830,112·6 = 40,980,672 
6,830,112·7 = 47,810,784 
6,830,112·8 = 54,640,896 
6,830,112·9 = 61,471,008 

It should be noted that in certain cases the sums obtained in 
the same diagonals w~re greater than 10. In these the digit in 
the place of the tens was transposed to the next place on the left 
of the number read off, the procedure generally used in addition 
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and known as the "carrying" of a number into the next column 
on the left. 

Thus one setting of Napier's Rods gives us a multiplication 
table of any number by all the one-digit numbers from 1 to 9 
inclusive but here its independent utility ends. If we have to 
multiply one large number by another, we can obtain all the 
partial products by means of the rods, but these must be re
corded on paper and added. However, the rods reduce the pos
sibility of mistakes in multiplication, because the process is 
largely mechanized, and lessens fatigue, especially when very 
large numbers are to be multiplied. 

The rods were introduced by John Napier, a Scottish mathe
matician (1550-1617) in his book Rbabdologia. Since then 
many have attempted to improve the apparatus, which does have 
certain original deficiencies: First, the "carrying" is not mecha
nized (this is attainable in calculating machines only); secondly, 
before proceeding with multiplication it is necessary to select 
strips with the proper rods; and, finally, the rods are separate, 
loose strips of paper or cardboard, which makes handling incon
venient. 

The second and third deficiencies of Napier's Rods, however, 
can be remedied by a handy little multiplication-and-division 
device constructed as follows: Each strip (or rod) is prepared 
in ten copies. Thus we have 100 strips, every ten of which are 
exactly alike, or, actually, ten sets of Napier's Rods. Each set 
is collated in a stack so that the products of 9 are on the bottom 
of the set, the products of 0 on the top, and all the other strips 
arranged to make the order 0, 1, 2, 3,4, 5, 6, 7, 8, and 9. On the 
top of each strip there should be left a small extra piece, on which 
the number of the strip should be written. Moreover, the strips 
should be cut so that those with the products of 0 are the shortest, 
and the others graduated upward in length. Thus, when they 
are placed on top of each other, the number of every strip may 
be seen. 

These strips should then be arranged in ten sets of ten each, 
one alongside another; glued at their lower ends to a permanent 
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cover (a small notebook is preferable), and the apparatus is ready 
for use, as shown below. , 
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On top of the apparatus we have ten strips showing the prod
ucts of O. If we bend these strips over we find beneath them 
ten strips with the products of 1. Underneath these are ten 
strips with the products of 2, and so on down to the ten with 
the products of 9. 

To multiply we simply bend over the strips that cover the 
rods on which appear the products of the digits that make up 
that number. The drawing on page 120 shows the apparatus set 
for the products of 4,629,031. On the border are the numbers 
from 0 to 9 inclusive to facilitate the locating of the proper 
products. 

For division, set the apparatus for the divisor. Thus we ob
tain the products of this divisor by all the numbers from 0 to 9 
inclusive. Then division is reduced to subtraction, which should 
be performed on paper. For example, to divide 68,305,983 by 
3,942, we set the apparatus on 3,942. The consecutive digits of 
the quot~ent will be obtained in the same manner as in the process 
of long division. However, the actual multiplication is not per
formed because the respective products are given by the ar
ranged rods. 

Daughters of Abacus: Suan-pan, Soroban, and Schoty 

There are many other such inexpensive calculating devices. 
The ancient Greeks and Romans counted by means of pebbles, 
placed on a plaque ruled to contain several compartments, each 
having a definite place value. Thus numbers were represented 
on the plaque in the same way as we write them nowadays. This 
instrument was generally known as the abacus. Variations of 
the type of abacus we are about to consider are widely used 
even today in Russia, Japan, and China. The Russians call it 
"Schoty," the Japanese call it "Soroban," and the Chinese "Suan
pan." The construction of all is the same in principle; they con
sist of frames on which are strung several wires, each with a 
definite number of beads. The Schoty has ten beads on each 
wire, with the numbers represented as if written in the decimal 
system. Addition is pe!formed on the Schoty by sliding down 
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the required number of beads, and subtraction by sliding them 
up. Remembering that a number on the Schoty is represented 
by beads, we have 4,538 recorded as follows: 

4,538 + 9 4,547+60 

l j 
j 

: - ~ 

~ 
4 

: l 
j 

4 

j 

FIGURE 1. FIGURE 2. 

4607+- 200 4807+ 7000= 11807 I 

• ji • • I :. 
j • 

• 
• 

: • 
Ii I. 

FIGURE 3. FIGURE 4. 

Addition of two numbers on the Schoty resembles addition in 
the decimal system. Thus 4,538 + 7,269 is performed as illus
trated in the following diagrams: Figure 1 shows the adding of 
8 + 9 = 17. Thus one bead is slid upward on the first wire 
(for the units), and one bead on the second wire (for the tens) 
is brought down. Figure 2 shows the addition of 4 + 6 = 10. 
F our beads are slid upward, and 1 bead is brought down on the 
third wire (for the hundreds). Figure 3 shows the addition of 
2 + 6 = 8. Two beads are slid down ~n the third wire. Fig-
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ure 4 shows the addition of 4 + 7 = 11. Three beads are slid 
upward on the fourth wire (for the thousands), and one bead 
is brought down on the fifth wire (for the ten thousands). 
Thus, the sum is 11,807. 

The Suan-pan also is a frame on which several wires are strung. 
About two-thirds of the way from its lower edge is a bar divid
ing the frame into two compartments. In the lower compart
ment there are five beads on every wire, and in the upper, two 
beads to a wire. On all wires five beads in the lower portion 
are equivalent to one on the same wire in the upper. Thus 
when five beads on the same wire are slid down, they must be 
slid back upward, and one bead in the upper portion on the 
same wire must be slid down, as on the Suan-pan the counting 
is carried out by fives, that is, two fives make ten. In all other 
respects, the calculation on the Suan-pan is similar to that on the 
Schoty, except that in the upper portion the beads are slid down, 
and in the lower portion are slid upward. There is a similarity, 
too, between the principle of the Suan-pan and the Chinese nu
merals illustrated in Chapter 1. These numerals are: 

I 
1 

II 
2 

III 
3 

ilil 
4 

IIIII 
5 

T 11 -III -II-II 
6 7 8 9 

Notice that the numerals for 6, 7, 8, and 9 suggest the method of 
representing numbers on the Suan-pan, the upper bar on the nu
meral corresponding to the bead in its upper portion. This 
drawing of the Suan-pan shows the recording of 1,234,567,890. 

The following self-explanatory diagrams illustrate the steps 
in the addition of 4,358 and 7,269, with both numbers recorded 
on the same Suan-pan to clarify the illustration. The dotted line 
through every diagram denotes the divisions of the device. 
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4,358 7,269 4,358+9 : 7,260 
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Rapid Calculations 

Tbe Astounding Mr. Doe 

Now and then newspapers tell of some "lightning calculator" 
who astounds audiences with complex mental additions, multi
plications, divisions, and other numerical feats. A typical report 
may read: 

"Last night in the Town Hall, Mr. John Richards Doe astonished 
an audience of 2,000 with feats of near-magic. With lightning speed, 
he added columns of large numbers that were read off to him by 
members. of the audience while he stood with his back to a black
board. An assistant steadily recorded these numbers on the board 
while a volunteer from the crowd performed the operations on a 
calculating machine. No sooner was a string of ten eight-place 
numbers dictated to Mr. Doe than he dictated the sum to his as
sistant. The announcement at the calculating machine that the sum 
was correct brought loud applause." 

Lightning calculators have been known to every generation 
for at least the last 150 years, mystifying their audiences no less 
than does Mr. Doe. Mathematicians, psychologists, and scien
tists in other fields have tried to discover whether some have a 
prodigious genius or just "secrets," but if the calculators really 
have exclusive methods they still have not been disclosed. As a 
rule, however, it would seem extremely doubtful that they do 
have any; for mathematics is a science in which no secret can be 
kept~sooner or later someone will discover it. Moreover, if 
there are generally workable methods for lightning calculation, 
mathematicians will develop them. 

125 
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We need not interest ourselves with the careers of particular 
lightning calculators, but if the reader wishes he may learn about 
them in Russell Ball's book, Mathematical Recreations and Es
say s, Macmillan,. (New York, 1940). What really is phenomenal 
about everyone of them is their almost incredible memories, for 
numbers especially. Lightning calculators apparently must be 
born with a peculiar knack for numeration. 

Any calculator, however, may improve his techniques by 
perennial practice, and his memory by studied concentration. 
He may then perform multiplications of six-place numbers as 
easily as most of us multiply 2 and 2. 

Once in a while, however, there appear performers with feats 
that do involve secrets, but these are not "natural" lightning cal
culators. They know a few tricks, but for every trick there is 
a solution. Stage magicians say the hand is quicker than the eye, 
but the inner eye of mathematics, although it may be slower than 
the hand of the magician, is endlessly resourceful, and inevitably 
will sift the tricksters from the real lightning calculators. The 
trick generally is like a mystery story; the master detective
mathematician needs only a few clues to solve it. So l!ttle more 
can be said of the true lightning calculators than that they are 
freaks. Much, however, can be said of the tricksters, and in this 
chapter we will unravel some of their secrets. 

How to Remember That Telephone Number 

The author once asked a friend his telephone number. It was 
4231, and the friend remarked that it was easy to remember, since 
it was made up of the first four digits. Then, he said, 4 - 2 = 2, 
and 3 - 1 = 2. Also, 4 - 3 = 1, and 2 - 1 = 1. Thus, for a 
four-place number the friend gave five clues. However, these 
would lead to a wrong-number epidemic if they were examined 
in this way: 

Take the first four digits. They are arranged so that the dif
ference between the digits in the first and second places is 2, and 
the difference between those in the third and fourth places is 
also 2. The difference between the digits in the first and third 
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places is 1, and that between the digits in the second and fourth 
places is also 1. A person with a very poor memory, especially 
if in a hurry, might call 1324. 

Suppose that the original number were 6857. Thus the first 
clue, that the number is made up of the first four digits, is re
moved. Reconstruction of the number by this method would 
be an almost hopeless task for a person in a·hurry. The reader 
may wish, as a diversion, to write all possible numbers such a 
person might try before the right one would be stumbled upon. 

There are other schemes for remembering numbers, schemes 
supposedly used by lightning calculators, but their worth is very 
doubtful. According to one scheme each digit has a letter, gen
erally a consonant, assigned to it, as, for example: 

. 
bcdfghj kl m 
1 234 5 6 7 8 9 0 
npqrst vwxz 

To remember a number in this way, it is suggested that we form 
words in which the digits are represented by consonants, while 
the vowels are not considered as having any value at all. Thus 
we may have for the first numbers: 

boo cue ad rah gay tea vze we lay 
123456789 

Similarly for two-digit numbers we may have: 

ban cap dad far gas the java week lax 
11 22 33 44 55 66 77 88 99 

A magician may develop considerable skill in memorizing 
numbers according to this method, but it becomes considerably 
involved when ten or more place numbers must be remembered. 

Arithmetical Rabbits 

Whenever a stage magician decides really to amaze his audi
ence, especially if just additions and multiplications become bor
ing,-he will throw out a challenge he can in a flash tell ages, in 
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number of days. This is a variation of lightning calculation and 
anyone, after short practice, can perform it with the speed of the 
best stage magician. 

Suppose you are thirty-two years old. The number of the 
days is 365'32, and the multiplication may be performed as fol
lows: We note that 730 = 365·2. Then, instead of 365·32, we 
perform the multiplication 730·16. The multiplication 73· 16 
may be performed according to the method of cross-multipli
cation. It is: 

7 3 

lX~ 
3·6 = 18. 

7·6 + 1· 3 = 45, 45 + 1 = 46. 
7·1=7, 7+4=11. 

Keep 8 and remember 1 
Keep 6 and remember 4 
The last digits are 11 

Therefore the product is 1,168. Since we omitted the zero we 
now restore it, and the number of days in thirty-two years. is 
11,680. Leap years must be accounted for also: Divide 32 by 4, 
add the 8 to 11,680, and the answer is 11,688 days. Moreover, 
if the magician wishes to crown this performance he may volun
teer to extend his answer to the very day, and ask your birthday. 
The number of days in the fraction of a year is so easily obtain
able that we need not dwell on it. 

If your age is an odd number, this should offer no difficulty, 
either. The magician increases or decreases this number by 1. 
In either case he will thus have an even number, and then, after 
his multiplications have been completed, he either subtracts or 
adds 365. . 

Another favorite stunt is to tell how many seconds there are 
in a person's age. However, this one is limited to even years. 
The procedure follows: 

The magician divides the number of years by 2. Half of 
the original number is multiplied by 63, and the other half by 72. 
The second product is written to the right of the first, but that 
only three digits of the second product are to the right of the 
first product. If the second product has four digits, the first 
digit on the left of this product is added to the last digit on the 
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right of the first product. Thus, if the fir~t product is 1,008, 
and the second is 1,152, then the procedure of joining the two is 

1008 
1152 

1009152 

To this result three zeros are added on the right, and the answer 
is obtained. To the result, however, it is necessary to add the 
seconds of the additional days in the leap years. The given num
ber of years is divided by 4, and the quotient is multiplied by 
the number of seconds in a day, as 24·60·60. But even here a 
short-cut is possible. The number of the years is multiplied by 
216 and two zeros are written to the right of the product. 

Suppose that the age is twenty-six. Then 26 -;- 2= 13, and 
13 is multiplied by 63 and 72. The reason for this divided mul
tiplication is as follows: 

365·24· 60· 60 = 31,536,000 

the number of seconds in a year. Then, disregarding for the 
time being the zeros, 

Then, 

26·31,536 = 26·31,500 + 26·36 = 13'63,000 + 13· 72 

13·63,000 = 819,000 
13· 72 = 936 
13· 63,072 = 819,936 

The correction for the leap years is obtained in this way: 26·216 
= 13·432 = 5,616. Therefore, the required result is 

819936000 
561600 

820497600 

If the age is thirty-two, we have: 

16· 63,000 = 1,008,000 
16·72 = 1,152 

16·63,072 = 1,009,152 

The correction for the leap years is obtained as follows: 

32·216 = 16·432 = 8·864 = 4·1,728 = 2'3,456 = 6,912 
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The final result is Ihus 
1009152000 

691200 
1009843200 

Practice will enable anyone to perform these stunts, and those 
not initiated in their mysteries will be astounded at the prowess 
of the calculator. 

Multiplication Made Painless' 

Suppose that we have two two-place numbers, both very ylose 
to 100; for example, 94 and 88. To find the product 94·88 we 
first obtain the complements of these numbers to 100. They are: 

Number 
Multiplicand. . . . . . . . . .. 94 
Multiplier.............. 88 

Complement 
6 

12 

Obtain the difference between a factor and the complement of 
the other factor. Thus 

94 - 12 = 82, and 88 - 6 = 82 

This difference represents the first two digits of the product. 
Then obtain the product of the complements: 

6·12 = 72 

the last two digits of the 94·88 product. Write the two sets of 
digits consecutively, 8,272, and this is the product of 94 and 88. 

The correctness of this may be checked either by the actual 
multiplication or as follows: 

94·88 = (82 + 12)88 = 82·88 + 12·88 
82·88 = 82(100 - 12) = 8,200 - 12·82 
12·88 = 12(82 + 6) 12·6 + 12·82 
94· 88 = 8,200 + 72 = 8,272 

When the product of the complements is greater than 100, 
the same rule holds. The complement is added to the difference 
of one factor and complement of the other factor, after this 
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difference is multiplied by 100. For example, the product of 73 
and 79 is obtained as follows: 

Number. .... , ............ 73 
Complement. . . . . . . . . . .. 27 

79 
21 

The difference between a factor and the complement of the 
other factor is 52, and the product of 27 and 21 is 567. Then 
the product of 73 and 79 is 

5200 
567 

5767 

The same principle holds when the product of two three-place 
numbers is obtained. F or example, let us obtain the product of 
989 and 993. We have 

Number ............... 989 993 
Complement.. . . . . . . . . . 11 7 

The difference between one factor and complement of the other 
factor is 982, and the product of the complements is 77. Then 
the product of the two three-place numbers, 989 and 993, is 
982,077. 

The correctness of this rule may be checked either by mul
tiplying the two numbers or by performing the following 
operation: 

989·993 = (982 + 7)993 = 982·993 + 7· 993 
982·993 = 982(1,000 - 7) = 982,000 - 7·982 

7,993 = 7(11 + 982) 7·11 + 7,982 
989· 993 = 982,000 + 77 = 982,077 

It should be noted that 77 should be written as a three-place 
number, that is, as 077. 

The product of 983 and 965 is obtained according to this rule 
as follows: 

Number ............... 983 965 
Complement.. . . . . . . . . . 17 35 

The difference between one factor and the complement of the 
other factor is 948, and the product of the two complements is 

17 ·35 = 595 



132 Matbematics-Its Magic & Mastery 

The product is then 948,595. Thus the difference between one 
factor and the complement of the other factor represents the 
first three digi~s of the product, and the product of the two com
plements represents the last three digits. When these two sets 
of digits are written consecutively, the product of the two 
three-place numbers is obtained. 

If the product of the two complements is greater than 1,000, 
the same rule holds; that is, the complement is added to the dif
ference between one factor and the complement of the other 
factor after three zeros are written to the right of this difference. 
Thus, the product of 943 and 927 is obtained: 

Number. " . . . . . . . . . . .. 943 927 
Complement.. . . . . . . . . . 57 73 

The difference between one factor and the complement of the 
other factor is 870. The product of the two complements is 
4,161. The product is then: 

870000 
4161 

874161 

Another method of multiplying two three-place numbers 
(these need not be close to 1,000) follows. The reader will ob
serve that the total product is obtained by means of the con
secutive addition of the partial products. Let us obtain the 
product of 463 and 582. We have 463·582: 

Partial Products 
500·463 = 

80·400 = 32,000 
80· 60 = 4,800 
80· 3 = 240 

2·400 = 800 
2· 60 = 120 
2· 3 = 6 

Consecutive Sums 
231,500 
263,500 
268,300 
268,540 
269,340 
269,460 
269,466 

'Vith practice such multiplications may be performed mentally 
and with comparative rapidity. Certain other multiplications 
may be performed almost at a glance, if the calculator is familiar 
with the properties of numbers. Some of these are: 
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a) Multiplication by 5. Since 5 = 10 -7- 2, it is best to mul
tiply a number by 10 (which means the writing of a zero to the 
right of the number) and to divide it by two. Thus 

43·5= 430+2= 215 
or 786· 5 = 7,860 + 2 = 3,930 

b) Multiplication by 15. Since 15 = to· Ph, we may mul
tiply the number by 10 (that is, write 0 on the right of the 
number) and then multiply it by 1 Yz. Or, the number may be 
first multiplied by 1 Yz and then a zero may be written on its right. 
F or example, 

72·1,'; = 720·1Y2 = 1,080 
or 72·15 = 72·1Y2·1O = 108·10 = 1,080 

c) Multiplication by 25. Since 25 = 100 -7- 4, we may mul
tiply the number by 100 (that is, write two zeros on the right of 
the number) and then divide by 4. Or the number may be di
vided by 4, and then multiplied by 100. F or example, 

112· 25 = 11200 + 4 = 2,800 
or 112·25 = (112 + 4)·100 = 28·100 = 2,800 

d) Multiplication by 125. Since 125 = 1,000 -7- 8, we may 
multiply the number by 1,000 (that is, write three zeros on its 
right) and then divide the number by 8. Or, we first divide the 
number by 8 and then multiply it by 1,000. F or example, 

144·125 = 144,000 + 8 = 18,000 
or 144·125 = (144 + 8) ·1,000 = 18·1,000 = 18,000 

All these multiplications may be performed mentally if the 
methods are reasonably well practiced. 



Problems & Puzzles 

It's a System 

Most newspapers and many magazines regularly offer as a 
pastime problems and puzzles in arithmetic that generally baffle 
those unfamiliar with the peculiar properties of certain numbers. 
To the initiated, the problem or puzzle is as clear as day; here 
is a method for the solution of all of them and anyone can master 
it provided . . . 

a) He reads the problem carefully and understands it. 
b) He sees clearly all the implications, since arithmetic problems 

or puzzles are usually so constructed and worded that they switch at
tention away from the main theme. 

c) Before attempting any solution, he lays out a definite plan of 
procedure. Hit or miss methods and guessing will rarely succeed. 

d) He does not think that there is "a trick" to the problem or 
puzzle. If all the known methods fail and no solution is found, then 
there must be something that just escaped attention. Think of a 
trick only as the last resort. 

e) He analyzes the problem as a whole to determine whether it 
fits into a definite scheme or a definite pattern, a point we shall ex~ 
amine further. 

Let us consider, for example, a problem that recently appeared 
in a newspaper. It has to do with an addition of numbers when 
the digits are replaced by letters. In the sum each letter repre
sents a distinct digit; find the numbers: 

HOC 
poe 

PRE S 
134 

u s 
u s 
T 0 
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In the statement of the problem it was not said whether these 
words represent whole numbers or decimal fractions. There
fore we must assume two possible solutions, one for whole num
bers and one for decimal fractions. 

Let us attempt to solve the problem for whole numbers first. 
Notice that the sum represents a six-digit number, hence P must 
be equal to 1. We then have 

HOC U S 
1 0 C U S 

1 RES T 0 

Since all the letters represent distinct digits, S cannot be equal 
to zero. If it were, S + S would be equal to zero, and this is 
impossible, because Sand 0 would be both equal to zero, and 
this is excluded in the statement of the problem. Nor can S be 
equal to 1, because P is equal to 1. Thus we are left with eight 
more digits to consider, and from this stage on we must test each 
possible digit until we arrive at a solution. 

Suppose we let S = 2. Then S + S = 0 = 4, and 0 + 0 = 
E = 8. Moreover, C + C = S = 2. But this would make C 
equal to'l, and this is impossible (P is equal to 1). Hence C = 6 
and C + C = 6 + 6 = 12. This will make E equal to 1 + 4 + 
4 = 9. But if we now turn to H + 1 = R, we note that in order 
that H + 1 be a two~igit number, when 0 is equal to 4, H must 
be equal to 9. But this is not possible, because E is equal to 9. 
Thas our first effort fails us and we must try again. But now 
we know that H may be equal either to 9 or to 8 (when 0 is 
greater than 5, and a 1 is carried from the column with the O's). 

So we continue this method of trial by assigning values to S 
until we find the solution is S = 6. We proceed as follows: 

9 2 8 6 
HOC U S 
poe U S 
1 2 8 6 

PRE S T 0 
1 0 5 6 2 

Thus far we have used up the digits 0, 1, 2, 5,6, 8, and 9. The 
only digits left unused are 3,4, and 7. If we assign.u the value 
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3,' we have U + U = 3 + 3 = 6, but a 1 i~ carried from the 
column of the· S's, a'nd this makes T equal to 7. Thus the cor
rect solution is 

92836 
12836 

105672 

If we takeP = 0, the correct solutions are 

0.16978 
0.06978 
0.23856 

0.18479 
0.08479 
0.26958 

0.28479 
0.08479 
0.36958 

As an exercise in this type of problem the reader may try his 
head at the following: 

SEN D 
M 0 R E 

M 0 N E Y 

This problem is subject to the same restrictIOns: every letter 
represents a distinct digit and the same letters represent the same 
digits. 

A certain type of problem requires particularly careful anal
ysis because it is a tongue twister. For example, the following 
problem was proposed by Caliban [Hubert Phillips' book Ques
tion Time, Farrar and Rinehart (New York, 1938)]: 

"Which would cost more: half a dozen dozen oysters at a 
dozen shillings the half-dozen, or a dozen dozen oysters at a 
half a dozen shillings the dozen?" 

A step-by-step solution should present no difficulty at all, al
though reading of the problem may flabbergast anyone. Here 
is the "slow-motion" solution: 

A half a dozen dozen is Yz (144) = 72. 
A dozen shillings the half a dozen is 12 for 6, or 24 for a dozen. 
A dozen dozen is 144. 
A half a dozen shillings the dozen is 6 for a dozen. 

Therefore the first cost 24· 6 shillings, or 12·12 shillings, 
and the second cost 6· 12 shillings. 
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PROBLEMS 

Solve the following additions: 

1. abc d 2. abc d 
ebcd ebcd 

fcdba cdba 

Two-Timing Puzzles 

3. abc d e 
f b c d e 
k e b c a 

4. abc d e 
f b c d e 

kedabc 

In Chapter 2 we observed that the two-system of numeration 
is the only one that enables us to express any number as a sum 
of the powers of 2, since in it there are only two digits, 1 and O. 
By means of this system many interesting puzzling problems may 
be constructed. In this section we shall discuss a few of them. 

a) How to Guess the Number of Hidden Objects. This 
stunt may be performed with any number of objects, preferably 
more than 50 small items such as matches and coins. Hand a 
friend a box of matches (some of them should be removed, so 
there need be no suspicion that the number was prearranged). 
Ask the friend to take any number of matches from the box, 
making certain that you do not know the number. Then in
struct him that while you step out of the room or turn your 
back, he should take the remaining matches out of the box and 
divide them into equal halves. One half should be returned to 

the box, and the other half stacked up. If the number of matches 
taken out of the box is odd, there will be one extra match. This 
should be placed to the left of the stack. The matches in the 
stack should again be divided into two equal parts, one of which 
should be returned to the box and the other half placed in a stack 
to the left of the first stack, just below that extra one match ob
tained after the first division. If the first stack is odd, there \vill 
be another match, and this should be placed to the left of the 
second stack, in the same manner as was the first extra match. 
This process should be repeated until one match is returned to 
the box and one match is left on the table, this latter to be placed 
to the left of the last stack in the same manner as were all the 
extra matches. All the places where the stacks of matches were 
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originally put should be covered by sVlall pieces of a paper, a 
piece for each stack. After all the places are covered, the extra 
matches should be located just above, in front of their respective 
papers. After this is done you may look at the pieces of paper 
and the extra matches, and at a glanlle tell how many matches 
there were in the box. What is the secret? 

Let us take, for example, fifty-nine matches. The first di
vision will produce two stacks of twenty-nine matches each and 
one extra match; twenty-nine matches are returned to the box, 
the other twenty-nine are stacked on the table and the extra 
match is placed in front of it. Then the twenty-nine matches 
in the stack are divided intb two equal parts of fourteen matches 
each; fourteen matches are returned to the box and the other 
fourteen are stacked below the extra match that is left over. 
Then the fourteen matches are divided into two equal partS" of 
seven each, and the seven matches are returned to the box while 
the other seven are stacked to the left of the place where the 
fourteen matches were stacked. Then the seven matches are di
vided into two equal parts of three each, one left over match. 
Three ma(ches are returned to the box and three are stacked to 
the left of the place where the seven were stacked, and the extra 
match is put in front and just above the place where the three 
matches are. Finally, the three matches are again divided into 
two parts of one match each and one extra match is left. One 
match is returned to the box and the extra one is placed as before. 
The last match thus left on the table is removed to the left of 
its original position, just as if it were an extra match. Numeri
cally the entire process may be described as follows: 

We take fifty-nine matches. These are· divided into two 
stacks of twenty-nine each. The first stack has twenty-nine 
matches and one extra match in front of it, and these are divided 
into two parts of fourteen each. Thus the first stack is removed 
from its place and the place emptied. The second stack has 
fourteen matches and one extra match in front of it. The four
teen matches are divided into two equal parts of seven each. 
Thus the second stack is removed from its place, and the place 
emptied. The third stack has seven matches, and these are di-
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vided into two equal parts of three each; the third stack is re
moved from its place, and the place emptied. The three matches 
are divided into two equal parts of one match each. Thus the 
fourth stack is removed from its place and the place is emptied, 
but in front of it there is an extra match. Finally the last two 
matches are placed in front of the two places to the left, one 
match in front of each place. If we denote the empty places by 
zeros, the matches in front of the other places by one, we have 
the following set up of the stacks: 

Sixth Fifth Fourth Third Second First 
1 1 1 0 1 1 

Their values are: 

32 16 8 (4) 2 1 

Thus we have 
32 -+ 16 + 8 + 2 + 1 = 59 

the number of the matches that were in the box. So we see that 
the places of the extra matches and the pieces of the paper tell a 
complete story in numbers. 

b) How to Guess a Number between Numbers. On page 
140 is shown a table of six columns of numbers. 

Hand this table to someone and ask him to think of a number 
1 to 63. Then ask him to tell you in which of the columns his 
number is located. Suppose he tells you it is in the 1 st, 5th, and 
6th columns. You tell him his number is 49. 

The table is so arranged that the columns have these values: 

Column 1. . . ..... 1 Column 4....... 8 
Column 2. . . ..... 2 Column 5. . . .... 16 
Column 3. . . . . . .. 4 Column 6. . . .... 32 

Thus, when a number is in the 1st, 5th, and 6th columns it is ob
tained as the sum of the values of these columns. Thus 1 + 16 
+ 32 = 49. To guess the number it is not necessary to con
sult the table after you are told in which columns it is located. 
However it is necessary to remember the values of the respec
tive columns. 
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=1= 

6 5 4 3 2 1 
32 16 8 4 2 1 
33 17 9 5 3 3 

- 34 18 10 6 6 5 
35 19 11 7 7 7 
36 20 12 12 10 9 

37 21 13 13 11 11 
38 22 14 14 14 13 
39 23 15 '15 15 15 
40 24 24 20 18 17 
41 25 25 21 19 19 

42 26 26 22 22 21 
43 27 27 23 23 23 
44 28 28 28 26 25 
45 29 29 29 27 27 
46 30 30 30 30 29 

47 31 31 31 31 31 
48 48 40 36 34 33 
49 49 41 37 35 35 
50 50 42 38 38 37 
51 51 43 39 39 39 

52 52 44 44 42 41 
53 53 45 45 43 43 
54 54 46 46 46 45 
55 55 47 47 . 47 47 
56 56 56 52 50 49 

57 57 57 53 51 51 
58 58 58 54 54 53 
59 59 59 55 55 55 
60 60 60 60 58 57 
61 61 61 61 59 59 

62 62 62 62 62 61 
63 63 63 63 63 63 

The secret of the table lies in the nature of the two-system of 
numeration, that any number may be obtained (or represented) 
as the sum of powers of 2. The columns are arranged accord-
ing to a definite scheme which conforms to the nature of the 
two-system of numeration. In column 1 are all the numbers 
(expressed in the two-system) whose last digit on the extreme 
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right is 1. Column 2 contains all the numbers whose second 
digit from the right is 1 (it is immaterial what the other digits in 
these numbers are). Column 3 contains all the numbers whose 
third digit from the right is 1. Column 4 contains all the digits 
whose fourth digit from the right is 1. If you wish you may 
construct a table with seven columns, enabling you to guess 
numbers up to 127. 

c) How to Guess a Combination Number. By means of the 
foregoing table we may solve another problem, which has a 
more practical nature. Suppose a storekeeper plans to buy some 
weights for his balance scales. vVhat weights and how many 
should he buy so he may weigh up to 63 pounds, and at the same 
time spend the least money in this p1}.rchase? 

The table contains all the numbers from 1 to 63 inclusive, and 
the values of the columns represent the respective weights. To 
determine the combination of weights for a certain use we simply 
consult the table: thus for 24 pounds we use a I6-pound and an 
8-pound weight. For 31 pounds we use 16-, 8-,4-, 2-, and 1-
pound weights. It should be noted that for every requirement 
the weights are combined in only one way. Thus, to weigh 63 
pounds, die storekeeper must buy six weights, 32-, 16-, 8-, 4-, 
2-, and I-pound values. 

Application of the Three-System 

Problems of weight may be presented in many variations. In 
this section we shall not impose the condition, even assumed, of 
the addition of weights; the weights may be placed on either side 
of the scale balance. However, we shall restrict the number of 
weights to 4 and their total value to 40 pounds, in whole pounds. 

This problem is solved by the three-system of numeration. 
Weights that will satisfy the conditions are 1-, 3-, 9-, and 27-
pound values, as it will be noted that 1 + 3 + 9 + 27 = 40. 

Since in the three-system of numeration there are in use three 
digits, 0, 1, and 2, and we are allowed to have only four weights, 
straight addition of the weights cannot lead to a complete solu
tion. If we were allowed to use a pair of weights of each denomi
nation we could not only solve the problem under the restriction 
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of addition, but· could weigh up to 80 pounds. However, since 
there is no restriction as to addition, subtraction enables us to 
solve the problem' completely. The following table shows the 
various combinations of weights for the problem, but it should 
be noted again that only whole pounds can be weighed by this 
method, fractions not being considered. 

l5alance Balance 
Weight Weight 

Right Side Left Side Right Side Left Si,de 

1 1 0 21 27+3 9 
2 3 1 22 27+3+1 9 
3 3 0 23 27 3+1 
4 3+1 0 24 27 3 
5 9 3+1 25 27+1 3 
6 9 3 26 27 1 
7 9+1 3 27 27 0 
8 9 1 28 27+1 0 
9 9 0 29 27+3 1 

10 9+1 0 30 27+3 0 
11 9+3 1 31 27+3+1 0 
12 9+3 0 32 27+9 3+1 
13 9+3+1 0 33 27+9 3 
14 27 9+3+1 34 27+9+1 3 
15 27 9+3 35 27+9 1 
16 27+1 9+3 36 27+9 0 
17 27 9+1 37 27+9+1 0 
18 27 9 38 27+9+3 1 
19 27+1 9 39 27+9+3 0 
20 27+3 9+1 40 27+9+3+1 0 

Those numbers that are in the "left side" column are actually 
negative. Thus this problem suggests a novel method of writing 
numbers in the three-system of numeration by means of only two 
digits, 0 and 1. 

Arithmetic for Sherlock Holmes 

This type of problem appears under several guises. Sometimes 
the problem is associated with the restoration of destroyed or 
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partly destroyed records, and solution requires careful analysis 
of the possible results of the operations. Here are some typical 
problems in each of the fundamental arithmetic operations: 

a) Addition. ~estore the missing digits in these problems: 

(1) (2) (3) 
6 ? 4 9 ? 8 7 ? 6 2 
? 2 4 ? 3 ? 1 3 9 4 ? 

? 59? 9 56? ? 8 ? 7 
? 3 ? 0 ? 331 2 

The solutions are: 
Problem 1. Since 9 + ? = 9, the digit must be o. Then 4 + 

4 = 8, and the digit is therefore 8. Likewise, in ? + 2 = 9 the 
digit must be 7, and in 6 + ? = ? 5 the digit to the left of 5 must 
be 1, and the digit in the second row must be 9. Thus, the re
stored numbers are 

6 749 
9 240 

1 5 989 

Problem 2. As 7 + 1 + ? = 10, the missing digit must be 2. 
In 1 + 8 + ? + 6 = ? note that we thus have 15 + ? =? We 
must consider the next column on the left. In it we have 
? + 3 + 5 = 13 (it cannot be 23). Thus if we assign values for 
the digit in the second row and the second column to be 5 or 
greater (5, 6, 7, 8, 9) we shall have 15 + 5 = 20, 15 + 6 = 21, 
15 + 7 = 22, 15 + 8 = 23, and 15 + 9 = 24. But this will make 
the digit in the first row and the first column equal to 3 because 
2 is carried over. If we make the digit in the second row and 
second column less than 5, the digit in the first row and the first 
column will be 4, because 1 is carried over. 

,Thus, the restored digits are (there are several solutions pos
sible in this case): 

487 487 487 487 487 
301 311 321 331 341 
562 562 562 562 562 

1,350 1,360 1,370 1,380 1,390 

387 387 387 387 387 
351 361 371 381 391 
562 562 562 562 562 

1,300 1,310 1,320 W30 1,340 
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We may conclude that whenever there are two, or more than 
two, digits missing in one column there cannot be a unique (that 
is, one and only one) solution. In this problem there were two 
digits missing in one column and we obtained ten solutions. 

Problem 3. The solution of this problem is 

562 
3,943 
8,807 

13,312 

The detailed solution is left to the reader as an exercise. 
b) Subtraction. Restore the missing digits in these problems: 

(1) 
4 ? 6 ? 
? 0 ? 3 
2,1 6 8 

(2) 
? 3 ? 2 

? 9 ? 
5, 7 4 9 

Both are solved in the same manner. We shall show the step-by
step solution of Problem 1, that of Problem 2 is left to the reader 
as an exerCise. 

Problem 1. Since 3 + 8 = 11, the missing digit is 1. But we 
should remember that a 1 was borrowed from the 6. Then, as 
? + 6 = 15, the missing digit is 9. Here also we should remem
ber that a 1 was borrowed from the missing digit in the column 
on the left. Likewise, in both 0 + 1 = ? - 1 and? + 2 = 4 the 
missing digit is 2. 

The restored digits are put in their respective places, and we 
have 

The solution of Problem 2 is 

4,261 
2,093 
2,168 

6,342 
593 

5,749 
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c) Multiplication. The problem below illustrates the restor
ing of digits in the case of multiplication: 

4 ? 6 
? 4 ? 
? ? 2 

? ? 0 4 
? ? ? ? 

---:--,-----=-
1 4 5, 6 9 2 

The first partial product (?? 2) can be restored at once. \N e 
note that? + 4 = 9. Thus we conclude that the digit in the 
tens' place is 5. We have then? 52. This leads to the conclu
sion that the first factor is 426, and the digit in the units' place 
in the second factor is 2 (because 2·6 = 12, and 7 cannot be in 
that place because 7 times 4? 6 will give a four-place number, 
while we have a three-place number). Thus the first partial 
product is 852. This allows us to restore the digit in the units' 
place of the third partial product; 8 + 0 + ? = 16, and this digit 
is 8. Since we know the first factor (426) the second partial 
product is 1,704. Restoration of the digit in the hundreds' place 
of the second factor as well as of the third partial product is as 
follows: We note that the digit in the thousands' place of the 
third partial product is 1 (the first digit of the total sum is 1). 
Thus the second factor must be 3 (3·6 = 18, and 8·6 = 48, but 
8 is too large, because 8-426 = 3,408). The third partial prod
uct is therefore 1,278. Finally, the restored multiplication prob
lem is 

426 
342 
852 

1704 
1278 
145692 

d) Division. The problems in division are somewhat more 
complicated, but their solution, if done slowly and if the methods 
for solution of addition, multiplication, and subtraction problems 
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are mastered, should offer no special difficulties. Let us consider 
the following problem: 

2 ? 1 ? 7 1 2 ? 
? 0 ? ? 6 ? 
-Ys ? 

? ? 4 
? 7 
? 7 

The first step in the solution is to consider the subtraction 

2 ? 1 
? 0 ? 

1 8 

By means of the method developed for subtraction we obtain 

221 
203 
18 

The fact that 203 is an odd number leads to the conclusion that 
the divisor 2? is odd, and the first digit of the quotient is also odd 
(the product of two odd numbers is odd). Now let us consider 
the last subtraction 

? 7 
? 7 

The numeral 7 in the units' place of a product is obtained if we 
have the factor combinations of factors 1·7 = 7 and 3·9 = 27. 
Thus the quotient must be 29, and the digit in the units' place 
of the quotient must be 3. The quotient cannot be 23, and the 
digit in the units' place 9 because 23·9 = 207. The divisor can
not be 27, because 27·9 = 243, and we have for the :first partial 
product only 203. Thus the division process is now as follows: 

221?7 129 
203 7 ? 3 

1 8 ? 
? ? 4 
--87 

8 7 
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To restore second partial product we observe that 4 + 8 = 12. ~ \ I; 
Then the second subtraction is ,,~~~ 

182 
174 

8 

Thus the second digit of the quotient is 

174 = 6 
29 

and the reconstructed division is' 

22127 L~ 
203 763 

182 
174 

-87 
87 

Construction of problems of this type is simple. An arith
metic operation is performed on a set of numbers, and then cer
tain digits are deleted. Instead of the deleted numbers, question 
marks or some other symbols are written, and the problem is 
ready for a mathematical detective. Care must be exercised, 
however, that deletion of the digits does not introduce the possi
bility of several solutions. It was earlier pointed out that in the 
case of addition several deleted digits in the same column will 
not yield a unique solution. However, in multiplication this 
restriction is not absolutely necessary, because there are other 
conditions associated with the problem and adherence to these 
conditions eliminates generally the chance of several solutions 

Thus if we choose an addition 

739 
563 
847 

2,149 

it may be turned into a problem with missing digits such as 

7 ? 9 . 
56? 
? 4 7 

2, 1 4 9 

~ 4 
;::,.. 
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F or division this 
298291 
258 
402 

387 
159 

129 
301 
301 

I 43 
6937 

may be presented as: 

2?8?9? 14? 
25? ?9?7 
-rei ? 

3 ? 7 
---ys 9 

? ? ? 
3? ? 

3 ? ? 

There ma-y be other variations, and the reader may find it inter
esting to try to formulate more problems based on this division. 

Construction of problems of this type, it is seen, thus presents 
no special difficulty, their solution requires thorough investiga
tion of all the elements (partial products, partial sums, differ
ences, and quotients). Every clue must be thoroughly tested on 
all the separate phases of the problem and followed up; if there 
is a clue that a certain digit may satisfy the requirements of the 
problem, this digit should be tested on all the partial products 
( or sums, or differences) . Only when there is absolute certainty 
that such a digit does not fail in any single case can it be accepted 
as a part of the general solution. 

On the other hand, when a problem is constructed, it may be 
worthwhile to obtain all the possible variations. F or example, 
consider the following problem in division: 

7955 I 37 
74 215 
S5 

37 
185 
185 
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It may be offered in at least the following variations: 

7?5? ?7 ?9?5 
?4 ?1? ?4 
55 5 

? ? 3 ? 
? ? T8 5 
? ? ? ? 8 5 

Thus, with a little practice, the reader will find it a fascinating 
diversion to construct his own puzzlers. 

PROBLEMS 

Restore the missing digits in the following problems: 

5. + 5 ? 2? 6. + 4?? 3 7. 
?4?2. ??14? 

5 ? 4 ? 
? 4 5 ? 8 
6 ? 2 5 9 
94196 

9329 ??3768 

8. ? 4 2 ? 
6 4 ? 8 3 

?724?2 
???6902 

11. ? 6 ? 5 
? 1 ? 
800 

9. ? ? ? 3 
? 2 4 7 6 

?8923? 
?763421 

? ? 747 545 

12. 3 ? 9 
6 ? 

J9) 
2 ? ? ? 
? ? ? ? ? 

14. 2 ? 7 ? 5 ? 5 
? 57? 

? 4 ? 
4 ? 1 ? 

? 0 2 5 
1 ? ? ? 

? 6 ? 
? ? ? 
3 ? 1 5 
3 ? 1 5 

10. ? 3 ? 2 
? 1 ? 

4 9 3 9 

13. ? 6 ? 
? ? 5 

? 8 ? 0 
6 ? ? 6 

3 ? ? ? 
3?9??0 
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~ ~ How the Number Magician 

- Does it 
"/ \ I. \'" 'f,l//~ .,........ ............. ...-.. ..................... ,-.... 

"/ Will Now Predict. " 

The trick next described is a standby with some stage magi
cians in flabbergasting audiences. The performer usually asks a 
spectator to write a large; number, a very large one. Then he 
announces that he will aSK someone else to write another number, 
but first he will write down the sum of the first number, the 
number that is yet to be written, and one that he will write again. 
As a rule, he does not write the predicted sum on the blackboard 
but on a piece of paper and hands it to a member of the audience 
"for safekeeping." 

Suppose that the first spectator wrote on the blackboard 
7,438,412. The magician writes 17,438,411, and this is the sum 
he predicted. The demonstration proceeds like this: 

One of the audience wrote ............. . 
Another wrote ....................... . 
The magician writes .................. . 
The sum is .......................... . 

7,438,412 
3,946,289 
6,053,710 

17,438,411 

The reader will observe that the sum of the numbers written 
by the second member of the audience and by the magician is 
9,999,999. The total is thus the sum of 7,438,412 and 9,999,999, 
or 7,438,412 and 10,000,000 - 1, which can be written before 
any other numbers, that is, the second and third, are written. 
Thus there is nothing wonderful or magical in the entire pro
cedure. 

150 
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Very often the magician varies this stunt by offering to predict 
the sum of many more numbers, but he then reserves the right 
to write an equal number of addends after the first is written 
down, and provides that one number must be written first by 
someone in the audience. F or every addend then written down 
(and he specifies how many will be written) he writes a number 
w.hich completes that addend to 9,999 ... , to as many places as 
there are in the largest addend. For every two addends, one 
from the audience and one his own, he adds to the first number 
1,000 . . . - 1, a very simple matter. This illustrates the pro
cedure: . 

The first one from the audience wrote .. " 7,647,318 
The second wrote. . . . . . . . . . . . . . . . . . . . . 50,896 
The third wrote. . . . . . . . . . . . . . . . . . . . . .. 1,376,982 
The magician wrote. . . . . . . . . . . . . . . . . .. 9,949,103 
The magician wrote. . . . . . . . . . . . . . . . . .. 8,623,017 
The sum predicted by him .............. 27,647,316 

Naturally, he sets another restriction. After the first number is 
written down, no other number must have more places than this. 
A number with more places would wreck his stunt, because he 
cannot predict a sum of such numbers. 

The Guessing Game 

The stunt of guessing numbers is based on the performance of 
certain arithmetic operations, and there are many schemes for its 
performance. For example: 

a) Choose a number. Multiply it by 2. Add 4 to the product 
and divide the sum by 2. Add 7 to the quotient and multiply 
the resultant sum by 8. Subtract 12 from this product. Then di
vide the difference by 4, subtract 11 from the quotient, and an
nounce the result. 

If you will subtract 4 from the announced result and divide 
the difference by 2, you will know the number that was taken. 
For example, suppose that the number is 9. Then 

9·2 = 18, 18 + 4 = 22, 22 -;-. 2 = 11, 7 + 11 = 18 
18·8 = 144,144 - 12 = 132,132 -;-.4= 33, and 33 - 11 = 22 
Then 22 - 4 = 18, and 18 -;-. 2 = 9 
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b) Multiply any number by 2 and add 18. Multiply the sum 
by 2, then subtract 36. Announce your result. 

If you will divide the announced result by 4 you will obtain 
the number that was taken. Suppose the number is 13. Then 

13·2 = 26,26 + 18 = 44,44·2 = 88, and 88 - 36 = 52 

Then 
52 + 4 = 13 

c) Add 2 to a number, multiply the sum by 3, then subtract 
4. Now multiply the difference by 3 and add the original num
ber to the last product. Announce the result. 

If you subtract 6 from the announced result and divide the 
difference by 10, you will obtain the number taken. Suppose 
the number is 15 . We perform the indicated operations: 

and 
15 + 2 = 17, 17·3 = 51, 51 - 4 = 47,47·3 = 141, 

141 + 15 = 156 
Then we :find 

156 - 6 = 150, and 150 + 10 = 15 

d) Take a small number, never greater than 996. Multiply 
it by 37, add 111 to it and multiply the sum by 27. Announce 
the result. 

If you complete the result to the nearest thousand, take the 
number of the thousands and subtract from it 3, you obtain the 
number taken. Suppose the number is 7. Then 

7·37 = 259; 259 + 111 = 370; 370·27 = 9,990 

Then 9,990 is completed to 10,000, and the number of the thou
sands is 10. Therefore we have 

10 - 3 = 7 

e) Multiply a number by one that is greater by 2. Add 5 to 
the product and announce the result. 

If you subtract 4 from the announced result you will obtain a 
number that is a -perfect square (a product of a number by itself). 
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Taking the square root of this difference and diminishing it by 1, 
you will obtain the original number. Suppose the number is 3. 
Then 

3·5=15, and 15+5=20 
Since 

20 - 4 = 16, and 16 = 4·4 
we have 

4-1=3 

How To Make Your Own Tricks 

The method of writing a letter to indicate that it represents 
any number allows generalization and at the same time permits 
the compact expression of an arithmetical rule that is stated in 
words. Thus, for example, if we say: "Take a number, multiply 
it by 3, and divide the sum by 2," we can write it as [(n) 3] -7- 2. 
We use here a tacit agreement concerning the parentheses and 
brackets. Generally the first operation is performed on the ex
pression enclosed in the parentheses ( ). Then the result thus ob
tained, which is enclosed in brackets [ ] is subject to the consecu
tive operation. At times we may need further symbols to indi
cate that additional operations are to be performed. We then 
use figurate brackets { } . 

We shall now introduce a term to be much used hereafter: 
When we operate with numbers alone and perform the opera

tions of addition, subtraction, multiplication, and division, we call 
these operations "arithmetic," but when we make use of letters 
to indicate numbers these same operations are called "algebraic." 

The process of devising schemes for number tricks involves 
the following steps: 

a) After a number is selected (in general it is represented by 
a letter, say n), a series of operations are to be consecutively 
performed with it. 

b) The operations should be so selected that the final result 
is of the nature desired for the particular trick. 

To illustrate these processes in detail let us develop a scheme 
for a number trick that will enable us to predict the result of 
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some operations with an unknown number. Suppose this num
ber is n. We shall perform these operations: 

Add 23 to the number. . . . . . . . .. n + 23 
Multiply the obtained sum by 3. . (n + 23)3 

(Note that up to this moment the unknown number is thus trebled.) 
Subtract 40 from the product. . .. (n + 23)3 - 40 
Multiply the difference by 5 ..... [(n + 23)3 - 40]5 

By this time the unknown number is multiplied by 15. Thus to 
eliminate this unknown number we must subtract 15 times the 
original number from this product. We have then 

[(n + 23)3 - 40]5 - 15n = [3n + 69 - 40]5 - 15n . 
and finally, 

15n + 5·29 - 15n = 145 

Thus, whatever operations may have been performed with ::I. 

number totally unknown to you, the final numerical result is 145. 
Some schemes may not contain total elimination of the un

known number. The unknown number, or some multiple of it, 
may be left in the final numerical result. But when such a scheme 
is used the performer must announce his final result. The fol
lowing example will illustrate this procedure, but it should be 
remembered that selection of the operations and of the auxiliary 
numbers introduced are selected at will by the person who de
vises the scheme. Let the number be n. 

Add 12 to the number ......................... n + 12 
Multiply the sum by 12 .................... (n + 12)12 
Subtract 84 from the product .......... (n + 12)12 - 84 

(Note that 84 is a multiple of 12.) 

Divide the result by 4 .......... . [(n + 12)12 - 84] -;- 4 
Add 6 to quotient .......... . [(n + 12)12 - 84] -;- 4 + 6 
Multiply the sum by 2 .... {[(n + 12)12 -84] -;- 4 + 6}2 
Subtract the original number and 25 from this product .... 

{[(n + 12)12 - 84] -;- 4 + 6}2 - (n + 25) 

By this time the person who performs the operations in ac
cordance with the given instructions has almost lost track of all 
the numerical work that he has done, and is asked to tell his final 
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numerical result. In fact, he will tell that this result, according 
to the algebraic operations, is as follows: 

{[12n + 144 - 84]:4 + 612 - n -25 = 
{3n + 15 + 6/'2 - n - 25 = 6n + 42 - n - 25, or 5n + 17 

Thus, if 17 is subtracted from this final numerical result, and the 
difference is divided by 5, the unknown number is obtained. 
For example, suppose the number is 11. Then obtained in suc
cession are 11, 23, 276, 192,48, 54, 108, 72. If we subtract 17 
from 72 we obtain 55, and 55 when divided by 5 gives 11. 

Below are the schemes, or as they are usually called in algebra 
the "formulas," for the number tricks that were described in the 
preceding section. 

a) [{[(2n + 4) -:- 2] + 718 - 12] + 4 - 11 = 2n + 4 
b) (2n + 18)2 - 36 = 4n 
c) [en + 2)3 - 4]3 + n = IOn + 6 
d) (37n + 111)27 = 999n + 3·999 = 999(n + 3) 
e) n(n + 2) + 5 = n2 + 2n + 1 + 4 = (n + 1)2 + 4 

With knowledge of the basic arithmetic operations, these for
mulas should be self-explanatory. A word, however, about 
formula (d): If n is not greater than 996, n + 3 does not exceed 
999, and the announced result does not exceed 1,000. This 
property explains why/the final result must be completed to the 
nearest thousand, and the number of the thousands gives the un
known number. 

If She's Coy about Her Age 

This, to learn about ages, is a very intriguing stunt similar in 
nature to the guessing of a number earlier described. You merely 
ask a person to follow your instructions and perform certain 
operations. After these have been performed, you are told of a 
final numerical result and from it obtain all the information 
needed. The progressive operations are: 

a) Multiply the number of the month of birth by 100. 
b) To this product add the date of the month. 
c) Multiply this sum by 2. 
d) Add 8 to this product. 
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e) Multiply the sum by 5. 
f) Add 4 to the product. 
g) Multiply the sum by 10. 
k) Add 410 the product. 
i) Add to the sum the age, and announce the result. 

If yoq subtract 444 from the announced final numerical result 
you will have a certain number. Group the digits in this num
ber by two, counting from right to left. The first two digits 
from the right will give the age. \Ve hope she's younger than 
you thought. The second two digits from the right will give 
the date of the month. Finally, the remaining digit (or digits) 
will give the month. 

Let us consider this example: Suppose a woman's actual age is 
34, and her date of birth is November 25. The number of the 
month is then 11. The foregoing operations yield the following 
results: 

a) Multiply the number of the 
month of birth by 100 ...... . 

b) To this product add the date of 
the month ................. . 

c) Multiply this sum by 2 ........ . 
d) Add 8 to the product ......... . 
e) Multiply the sum by 5 ........ . 
f) Add 4 to the product. ........ . 
g) Multiply the sum by 10 ....... . 
k) Add 4 to the product ......... . 
i) Add to the sum the age ....... . 

11·100 = 1,100 

1,100 + 25 = 1,125 
1,125·2 = 2,250 

2,250 + 8 = 2,258 
2,258·5 = 11,290 

11,290 + 4 = 11,294 
11,294·10 = 112,940 

112,940 + 4 = 112,944 
112,944 + 34 = 112,978 

The number 112,978 is given to you. You subtract 441 and 
obtain 112,978 - 444 = 112,534 

By grouping the digits of this number by two from right to left 
you obtain 11, 25, and 34. You may then announce quietly that 
the date of birth is November 25, and that the young woman 
certainly doesn't look her 34 years. 

Age and Date of Birth, Please 

Guessing the age and the date of birth of the person who per
forms the numerical operations according to instruction is just 
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instead of one numbe~, th~ee ~re guessed simultaneously. '~('I~l7 
The formula for this tnck IS ' . ~ 

{[(lOOm+d)2+8j5+411O+4+a= lOOOOm+l00d+a+444 

where 7n is the number of the month, d, the date of the month, 
and a, the age of the person who performs the numerical opera
tions. Note that in this trick the numbers to be guessed are 
taken in the order 7n, d, and a, but this is not absolutely neces
sary. Thus, if we begin with the age, multiply it by 100, and 
add to it the number of the month, and at the final stage the 
number of the month, we actually make use of the following 
formula: 

{[(100a+d)2+8j5+4110+4+m= lOOOOa+100d+m+444 

The possible sequences of these numbers are 7n, d, a; 7n, a, d; d, 
a, 7n; d, 7n, a; a, d, 7n; a, 7n, d. The number 444 in the formula 
is used to conceal the apparently obvious numerical result. 

Other schemes for the same stunt are possible. Their con
struction, however, should always have as its final goal a number 
of the form 10000a + 100d + 7n + some number. A possible 
variation of the sequence of a, d, 7n is 

{[(200a+2d)2+3j5+3}5+5+m= 10000a+ 100d+m+95 

Note that the numbers by which the successive sums are multi
plied are selected so that we obtain 10,000, 100, and 1 as the 
factors. 



A /gebra & Its Numbers 

It's Hotter than You Think 

In simple arithmetic processes, addition, multiplication, sub
traction, and division-we have made use of numbers with only 
one property, that of quantity. One number has been larger or 
smaller than another, or two numbers have been equal, and no 
other properties were either assumed or assigned. Now we shall 
consider an important property that enables us to widen our 
understanding and use of numbers. 

In many situations when we measure a certain object or a 
situation of an object, especially when these are under con
tinuous change (whether we can detect it with our senses or 
have indirect knowledge of the presence of this change) the 
values obtained run through a series of numbers. Take, for ex
ample, the measuring of temperature. On every thermometer 
we have a point known as zero, and at times the temperature is 

, "below zero." Now let us see exactly what the numbers that 
are below the zero and the numbers that are above may repre
sent. Let us use in our discussion not our everyday thermom~ter, 
the Fahrenheit, which indicates the freezing point at 32 degrees 
above zero and the boiling point of water at 212 degrees above 
zero, but the Centigrade thermometer, on which the freezing 
point is indicated by zero and the boiling point of water by 100 
degrees. 

158 
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Now, when it is extremely cold we know that the temperature 
is below zero (on the Fahrenheit thermometer this will be indi
cated by some number below 32 degrees). We have a common 
notion (not totally correct, however) that cold and heat are op
posites. Even if we assume that this notion is correct (and it 
will help us in drawing the an~logy for numbers that we need) 
we may arrive at the conclusion that the numbers below the zero 
on the Centigrade thermometer differ from those above it. We 
have arrived at one conclusion, but we go further. 

If we denote the property of the numbers that are above the 
zero as "positive," then the numbers below it are opposite in na
ture, and we may call their property "negative." We must un
derstand, however, that this is only an agreement traditionally 
accepted without any foundation for the method of choice; the 
numbers might be denoted as black and white, good and bad, or 
as any other combination of opposites. 

This simple endowment of numbers with the property of 
being positive or negative doubles, so to speak, the amount of 
numbers that are in use. And in the use of spoken and written 
language, mathematics thus add two adjectives: "plus" for posi
tive and "minus" for negative. Moreover, since symbols often 
replace words and long expressions, two are used to denote these 
two types of numbers: "+," which denotes also the operation 
of addition, to identify positive numbers, and "-," which also 
indicates the operation of subtraction, for negative numbers. 
Thus, +25 denotes a positive 25, and -25 a negative 25. 

However, very often we do not care whether the number is 
positive or negative; we are interested only in its magnitude or, 
as we say in mathematical language, its numerical or "absolute," 
value. Then the number is enclosed in two vertical bars as 1251. 

As to our reservation concerning the terms "cold" and "heat": 
we are exceedingly vague when we say merely that an object is 
cold or hot. On a freezing day, water from a faucet may seem 
to be very warm, while water of the same temperature may seem 
refreshingly cold on a day in July; in other words, our notions 
of hot and cold are relative. However, it is possible to say pre
cisely which object is colder and which is hotter, but for this 
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purpose we must make use of a measure of temperature known 
as the "absolute." According to physical science there is a tem
perature, that of the -space between stars, which is just a trifle 
higher than the lowest possible temperature. This lowest pos
sible temperature ("possible" should be thought of as the lowest 
that can be obtained in laboratory experiments) is about 274 de-. 
grees below zero Centigrade. Now, since we have made the 
agreement concerning the nature of such numbers, we may write 
it as -274 degrees Centigrade. This is known as the "absolute 
zero." Thus the zero on the Centigrade thermometer is 274 de
grees absolute, and the boiling temperature of water 374 degrees' 
absolute. Thus we may as well cease talking about cold and hot 
objects, but talk of hot only. The least hot object will have a 
temperature that is about 0 degree absolute, or -274 degrees 
Centigrade, and the hottest object may run a temperature of mil
lions in degrees, as the interiors of stars. 

PROBLEMS 

1. The absolute zero temperature is taken as - 274 degrees Centi
grade. What is the absolute temperature of boiling water (+ 100 
degrees Centigrade)? 

2. The temperature scale in common use in this country (except 
in scientific work) is the Fahrenheit. On this scale the freezing point 
is +32° F ("F" for Fahrenheit), and the boiling point of water is 
+212° F. How many Fahrenheit degrees are equivalent to 100° C 
("C" for Centigrade)? 

3. From the result of Problem 2 obtain the relation between a 
Fahrenheit degree and a Centigrade degree. 

4. The formula for translating Fahrenheit readings into Centigrade 
readings is 5/9 (FO - 32 0) = Co. What is the Centigrade reading 
when the Fahrenheit reading is 112 O? 

5. The formula for translating Centigrade readings into Farhen
heit readings is fD = 9/5 Co + 32 ° . What is the Fahrenheit reading 
when the Centigrade reading is nO? 

6. What is the Fahrenheit value for the absolute zero temperature 
(-274° C)? 

Both Ways at Once 
If we borrow the method of representing numbers on a ther

mometer, we may obtain a visual or, as we call it, graphic repre
sentation. We may take a straight line (again, this is only a 
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convenient medium; there are other methods) on which we de
note one point as the zero point. Then, if the line is horizontal 
.to the right of this zero point, at equally spaced intervals we 
mark off points which may be numbered consecutively, and to 
the left of the zero point we similarly mark off points. But to 
the right we reserve the portion of the line for positive numbers, 
and to the left for negative numbers. This is shown as: 

••• -8 -7 -6 -5 -~ -3 -2 -/ 0 +1 +2 +3 +~ +5 +6 +7 +8'" 

If the line were slanted or vertical, the general agreement is to 
reserve the line above the zero point for positive numbers and 
below for negative numbers. 

Thus, whenever we have problems in which two directions 
are involved (these may be up and down, forward and back
ward, right and left, increase and decrease, gain and loss, income 
and expenditure, purchase and sale) we may use positive and 
negative numbers for proper representation. 

A Rule for Signs 

All the work with these two types of numbers is performed 
in the same manner as in arithmetic, but special attention must 
be given to their respective signs. 

The addition and subtractiori of these numbers is performed in 
such a manner that the negative sign (the minus) denotes sub
traction. An illustration: if a man walles a inile north and then 
walks back two miles south, he walked + 1 mile and - 2 miles. 
He will be, from the starting point, [( + 1) + (-2)] miles; that 
is, he will be (+ 1 - 2) or -1 mile, or 1 mile south from the 
starting place. However, he actually walked three miles, and if 
we recall the notion concerning the absolute value of a number, 
we may immediately obtain this result. He actually walked 
1+ 11 + 1-21 = 1 + 2 = 3 miles. Thus addition of the two 
types of numbers is performed with the understanding that a 
negative number is subject to subtraction (from the arithmetic 
point of view). 
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Now, since the addition of a negative number actually means 
subtraction, what is meant by the subtraction of a negative num
ber? Let us recall what was said about the notion of a negative 
number, and we may extend the notion of positive and negative 
to the operations of addition and subtraction. It immediately 
suggests that the negative of addition is subtraction. Then, if 
the addition of a negative number is actually performed by sub
traction, it is'reasonable to expect that the subtraction of a nega
tive numbe~ should be actually performed as an addition. Let 
us consider this e,xample: A man has no money and a debt of $50. 
To liquidate the debt and have $50 in cash on hand he must earn 
a certain amount. Now we may consider the operation of liqui
dation as negative, to be denoted by the minus sign (-). Hav
ing a debt also may be considered as negative. Then the opera
tion of clearing the $50 debt may be denoted as -(-50), while 
the earning of a cash balance of $50 will be denoted by +50. 
Thus the total amount of the money that he will have to earn is 
[( +50) - (-50)]. But we know that in order to wipe out 
the debt and have a cash balance of $50 he must earn $100. In 
other words [(+50) - (-50)] = 50 + 50 = 100 

Thus we have this rule: The subtraction of a negative number 
results in the addition of the same number with its sign changed. 
In other words, the sign of a negative number that is to be sub
tracted is reversed; the number is made positive and is then added. 
The same rule, when applied to the subtraction of expressions en
closed in parentheses, is: When operations on the expressions 
enclosed in parentheses are performed, every sign of the mem
bers of the expressions (numbers and letters) is reversed, and 
then the operations are performed according to the new signs. 
For example 

3a+6b+52 - (2a- 3b+47) = 3a+6b+52 - 2a+3b-47 = a+9b+5 

Multiplication may be interpreted as repeated addition, as 

3·4 = 3 + 3 + 3 + 3 = 12 

then the rule of signs for the product of two positives and for 
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the product of a posltlve and negative number is simple-the 
product of two positive numbers is positive, and the product of 
a positive and a negative number is negative. Thus 

3(-4) = - 4 + (-4) + (-4) = - 4 - 4 - 4 = - 12 

To arrive at a rule for the product of two negative numbers 
let us suppose that a city provides in its budget that every person· 
on relief is to receive three dollars a day. Suppose eight unem
ployed left the city and were stricken off the relief rolls. The 
finances of the city then are affected as a result of this action. 
Let us analyze the situation from the mathematical point of view. 
Every single daily city expenditure of three dollars is actually 
- 3 dollars, because this amount must be subtracted from the 
city's cash. Moving into a city may be thought of as a positive 
( +) operation, and leaving is then a negative operation (-). So 
the eight men who have left may be represented as -8 men. 
But, since eight have left, the city will be saving 3·8 = 24 dollars 
a day, and, since the operation of saving is opposite to spending, 
it may be represented by a positive sign. Then (- 3) ( -8) = 
+24, and we have the rule of signs for the product of two nega
tive numbers: 

The product of two negative numbers is positive. 
The division of negative numbers, either a positive by a 

negative or conversely, or of a negative by a negative may be 
interpreted as the multiplication of two numbers, one of which 
is a fraction with 1 as a numerator. Thus the same rules that 
are applied to the multiplication of numbers are appl\ed to di
VISlOn: +8 -7 (-2) = -4, and (-12) -7 (-3) = +4. 

PROBLEMS 

7. What is the Fahrenheit reading when the Centigrade reading is 
-45°? 

8. What is the Centigrade reading when the Fahrenheit reading is 
~63°? 

9. What is the Centigrade reading when the absolute temperature 
is -278° F? 

10. What is the Fahrenheit reading when the absolute temperature 
is 171°C? . 
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Multiplication Magic for the Million 
-

Some stage magicians, we may recall, amaze audiences with 
feats of rapid multiplication of two- to even six-place numbers. 
Just a simple algebraic manipulation, however, can demonstrate 
that such stunts are within the command of anybody. For ex
ample take the multiplication 985 ·985. It may be performed as 
follows: 

985 -985 = (985+15)(985-15)+152 = 1,000·970+225 =97,225 

Actually this method represents a very common algepraic 
procedure: 

a·a=a2= (a+b)(a-b)+b2=a2~ab+ab-b2+b2= (a2-b2)+b2 

Thus, when a number that is very close to 1,000 (or 100, 10,000, 
etc.) is to be multiplied by itself, the multiplication can be per
formed quickly as follows: Obtain the complement of this num
ber to, say, 1,000. Subtract this complement from the number. 
Then multiply the complement by itself and add the product to 
the difference just obtained after this difference has been multi
plied by 1,000. The following examples illustrate this method: 

83 ·83 = 100· 66+289=6,600+289=6,889 
9,976·9,976 = 10,000·9,952+576 = 99,520,000+576 = 99,520,576 

In algebra we have a simplified way of writing of a product of 
a number by itself. We used this mathematical shorthand above 
when we wrote a·a = a2 , 4·4 = 42 • Use of this property in the 
relationship (a + b) (a - b) = a2 - b2 is very helpful when 
squares of numbers are to be calculated. For example: 

162 = (16 + 4)(16 - 4) + 42 = 20·12 + 16 = 240 + 16 = 256 
392 = (39 + 1)(39 - 1) + 12 = 40·38 + 1 = 1,520 + 1 = 1,521 
722 = (72 + 2)(72 - 2) + 22 = 74· 70 + 4 = 5,180 + 4 = 5,184 
872 = (87 + 3)(87 - .3) + 32 = 90·84 + 9 = 7,560 + 9 = 7,569 

In each case we use the relationship 

a2 = (a + b)(a - b) + b2 

in which we make either (a + b) or (a - b) a multiple of 10. 
If the digit of the units is to be examined, it is either smaller or 
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greater than or equal to 5. If this digit is smaller than 5, we 
make (a - b) a multiple of 10 (see 72 2 in the table). If the 
digit is greater than 5, we make (a + b) a multiple of 10. If 
the digit is equal 'to 5, there is still a more simple procedure, 
which will be developed presently. 

Let us recall an example of the type given in Chapter 9. Sup
pose we have the multiplication 983 ·989; we showed that it may 
be performed thus 

~umber .... , ... , ..... 983 
Complement to 1,000. . 17 

989 
11 

Then 983 - 11 = 972, and 989 - 17 = 972. Also 17·11 = 187, 
and writing 187 to the right of 972 we obtain the product 

983·989 = 972,187. 

This process may be explained as 

983 ·989 = (1,000 - 17)(1,000 - 11) 
But 

(1,000-17)(1,000-11) = 1,000·1,000-1,000·11-1,000·17 + 17·11 

Let us consider the first three products on the right of the 
equality sign. We have 

, 1,000 ·1,000-1,000 ·11-1,000 ·17 = 1,000(1,000-11) -1,000·17 

or these three terms are finally equal to 

1,000·989 - 1,000·17 = 1,000(989 - 17) = 1,000·972 

Thus we have that 

983 ·989 = 1,000'972 + 17·11 = 972,000 + 187 = 972,187 

Now let us consider the method of squaring a number; that is, 
the calculation of n2, when the number ends on 5. Suppose that 
we have' 65 a two-place number although, as it will be seen, the 
rule can be extended for a number with as many places as de
sired. It can be written as 6' 10 + 5. Then 

(6·10 + 5)2 = (6·10 + 5)(6·10 + 5) 
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,Performing the multiplication we have: 

6 ·.6 ·100 + 6·10·5 + 6·10·5 + 25 

If we consider the first three terms of the product we have 

6 . 6 . 100 + 6· 10 . S + 6· 10· 5 = 100· 6 . 6 + 100·6 

an~ this is equal to 
100·6(6 + 1) = 100·6·7 

Finally, 
65 2 = 100·6·7 + 25 = 4,200 + 25 = 4,225 

Note that we took the number of the tens and multiplied by a 
number that is 1 larger, and then wrote 25 to the right of the 
product thus obtained. Let us see whether this is a rule that will 
always hold. Suppose that our number is lOa + 5 (where a is 
either a digit or any number). 

(lOa + 5)2 = (lOa + 5) (lOa + 5) = 
100a2 + 50a + 50a + 25 = 100a2 + 100a + 25 

and we finally obtain 

(lOa + 5)2 = 100a(a + 1) + 25 

This confirms the rule just obtained and illustrates another result 
that is very important in algebra: 

(a + b)2 = (a + b) (a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2 

Later we shall discuss this result in detail. A similar result is 
obtained for (a - b)2. Thus 

(a - b)2 = (a - b)(a - b) = a2 - ab - ab + b2 = a2 - 2ab + b2 

Secrets of Some Curiosities 

Let us recall the relation, obtained in the preceding section, 

a2 - b2 = (a + b) (a - b) 

By means of this we may obtain some very striking number 
curiosities. 

Let us select two numbers such that their sum is 11 and their 
difference is 1. Two such \lumbers are 5 and 6. Then 

62 - 52 = 36 - 25 = 11 
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N ow, it happens that 
562 - 452 = 1111 

5562 - 445 2 = 111111 
55562 - 44452 = 11111111 

"555562 - 444452 = 1111111111 
5555562 - 4444452 = 111111111111 

55555562 - 44444452 = 11111111111111 

and it is possible to prove that 

(555·· ·56)2 - (444·· ·46)2 = 111···11 

so that if (555 . . . 56) and (444 . . . 46) each have a certain 
equal number of digits, (111 . . . 11) will have twice as many 
digits. Let us see whether this is correct. 

We observe that 

56 + 45 = 101 and 
556 + 445 = 1001 and 

5556 + 4445 = 10001 and 
55556 + 44445 = 100001 and 

56 - 45 = 11 
556 - 445 = 111 

5556 - 4445 = 1111 
55556 - 44445 = 11111 

In each case multiplication of the respective sum and difference 
produces a product that consists of a series of 1. The number of 
these digits 1 is always twice the number of the digits in either 
of the other numbers squared. 

Let us take two numbers, 7 and 4, whose sum is 11 and dif
ference is 3. Then 72 - 42 = 49 - 16 = 33. We can also have 
here the following relations: 

572 - 542 = 333 
5572 - 5542 = 3333 

55572 - 55542 = 33333 
555572 - 555542 = 333333 

5555572"- 5555542 = 3333333 
55555572 - 55555542 = 33333333 

and it is possible to prove that 

(555 ... 57)2 '- (555 ... 54)2 = 333 ... 33 

so that if (555 ... 57) and (555 ... 54) each have a certain 
equal number of digits, the number of the digits in (333 ... 33) 
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is greater by jlJ.St one than the number of digits either in 
(555 ... 57) or in (555 ... 54). The correctness of this 
can be observed from the following: 

57 + 54 = 111 
557 + 554 = 1111 

5557 + 5554 = 11111 
55557 + 55554 = 111111 

and 57 - 54 = 3 
and 557 - 554 = 3 
and 5557 - 5554 = 3 
and 55557 - 55554 = 3 

In every case multiplication of the respective sum and difference 
produces a product that consists of a series of 1. The num,ber of 
these 1 's is always greater by one than the number of the digits 
in either of the figures to be squared. 

Let us take two numbers, such that their sum is 11 and their 
difference is 5. Then 

82 - 32 = 64 - 9 = 55 

Here also we can obtain the following relations: 

582 - 532 = 555 
5582 - 5532 = 5555 

55582 - 55532 = 55555 

and it is possible to prove that (555 ... 58) 2 - (555 ... 
53)2 = 555 . . . 55, so that if (555 . . . 58) and (555 . . . 53) 
each contain a certain equal number of digits, the number of the 
digits in (555 ... 55) is greater by just one than the number 
of the digits either in (555 . . . 58) or in (555 . . . 53). This 
may be checked in the same manner as shown in the preceding 
example. 

In a similar manner, if we start with a set of numbers whose 
sum is 11 and whose difference is 7 we can obtain the following 
set of relations: 

92 - 22 = 77 
592 - 522 = 777 

5592 - 5522 = 7777 

and proceed along the usual steps to show that (555 . . . 59) 2 -
(555 ... 52)2 = 777 .. 77. 
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Again, if we take two numbers such that their sum is 11 and 
their difference is 9, we obtain relationships of the same type. 
For instance, such numbers are 10 and 1. Thus we have 102-
12 = 99 and we can obtain: 

602 - 512 = 999 
5602 - 5512 = 9999 

55602 - 5551 2 = 99999 
and so on 

Here are two more cases similar in nature: 

112 - 02 = 121 
612 - 502 = 1221 

561 2 - 5502 = 12221 
5561 2 - 55502 = 122221 

and so on 

122 - (-1)2 = 143 
622 - 492 = 1443 

5622 - 5492 = 14443 
55622 - 55492 = 144443 

and so on 

Note that in the first case of these two examples the sum and 
the difference of the numbers is 11. In the second case the sum 
of the numbers is 11, and the difference is 13. In the consecu
tive pairs of numbers the sum remains constant; that is, for each 
set of pairs it is 11, but for the last set of pairs of numbers we 
obtained a difference 13 (the situation was interchanged because 
we introduced a negative number). Every pair led to a factor 
all made up of the digit 1. We could likewise construct many 
more pairs such that the sum of the two numbers will be 11, 111, 
1,111, etc., while the difference for each set will be 15, 17, 19, 
21, etc. In every such set the difference will be expressed by 
some number whose digits denote some regularity. 

The method of obtaining these numbers is as follows. One of 
the numbers is negative in the first pair of every set. Then each 
number is added to 50. This gives the second pair. The third 
pair is obtained by adding the original numbers to 550, the fourth 
pair by adding the original numbers to 5,550, and so on. Thus 
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we have the following first pairs of numbers, each giving rise to 
a set of pairs: 

12 and 
13 and 
14 and 
15 and 
16 and 

-1 
-2 
-3 
-4 
-5 

and so on 

17 
18 
19 
20 
21 

and 
and 
and 
and 
and 

6 
7 
8 
9 

-10 

Construction of some of these sets is left to the reader as an 
exerCIse. 
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The Algebra 0/ Number 

Giants and Pygmies 

The Fiftb Operation: Making and Mastering Googols 

Thus far we have been concerned with the four arithmetic 
operations, addition, subtraction, multiplication, and division. 
However, we have made some slight acquaintance with the re
peated multiplication and we have learned also how to write in 
symbols numbers that were multiplied by themselves several 
times. Now, recalling some number giants and number pygmies, 
we shall restate in algebraic symbols some of their characteristics 
and, as well, discuss the operation known as "the raising to a 
power." 

Is there any need for this fifth operation? Since the raising 
to a power is nothing but repeated multiplication (for the time 
being we shall accept this description literally), introduction of 
another operation with numbers might seem superfluous; after 
all, we might be content with writing the same number several 
times as a repeated factor. And, too, one might inquire whether 
there is any really urgent need for this fifth operation from the 
practical point of view. In this chapter the reader will find 
ample opportunity to decide the validity of these objections. 

Algebra at times is characterized by the use of letters instead 
of numbers, but to insist that this is its main characteristic would 
be erroneous. The distinction of algebra lies not in the use of 
numbers but in the use of operations in addition to the four 
arithmetic operations. If we have made use of raising to a power 
in connection with number giants and number pygmies in arith-

171 
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metic, it is because we found it convenient to borrow algebra to 
simplify our development. Could the reader write a googol and, 
if he could, be certain that he has written the correct number of 
zeros? Or, if a googolplex were written, could he read it at a 
glance? Algebra enables us to write it at once; it is 10googol. 

Taxi to the Moon 

Between wars, scientists like to speculate on the possibility of 
traveling to the moon and other planets by rocket. Volumes 
have been written on the subject. Governments have been issuT 

ing patents to in ventors of rocket 
ships, and magazines and special jour
nals have devoted columns to the 
idea. 

Suppose you could just step into 
any taxi on the street and tell the 
chauffeur: "To the moon, driver." 
(We may skip his probable reply.) 
What would be the fare? Generally, 
taxi fare is twenty cents for the first 
quarter of a mile and five cents for any 

additional quarter mile. Let us assume the flat rate is twenty 
cents a mile. Since the distance from the earth to the moon is 
240,000 miles, the fare would be 

240,000·20 cents = 4,800,000 cents 

or $48,000. Let us assume, too, that the national debt of the 
United States is $48,000,000,000. This sum could pay for the 
transportation of 

48,000,000,000 
48,000 

1,000,000 men 

to the moon, or 500,000 on round trips. 
These computations are simple, but caution is essential where 

there are such large numbers; it is easy to write one zero more or 
less, and when many are written it is difficult to detect an error. 
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Previously we have used a simplified method for numbers with 
many zeros, writing them as products, thus: 

48,000,000,000 = 48.109 

Observe how simple and fool'proof becomes our computation 
when we write numbers in this simplified form. Let us repeat 
the computations; we have 

24.104 .20 = 48.105 

Since 48· 105 is the number of cents and there are 100 = 102 in a 
dollar, we may translate the cents into dollars as follows: 

48 . 105 = 48. 103 
102 

As the debt is about 48· 109 dollars, we divide this number by 
the cost of a trip to the moon and we have 

48·1O() 
48.103 = 106 

which is 1,000,000, or a million. 

Jujitsu for Number Giants 

These computations are the same in nature as those we per
formed in dealing with number giants and number pygmies, and 
now we shall state and examine the rules for working with num
bers written in compact form. 

Since this compact method of writing number giants and 
pygmies is used in multiplication and division, let us examine in 
a general way what actually takes place, ignoring the numbers 
used as factors, and repeated several times. These factors may 
be 10 or be any other number. Let us denote the general number 
bya. 

Then, if a is repeated as a factor, as a·a, we write a2• If a is 
repeated as a factor three times, we write 

a·a·a = a3 
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If a is repeated as factor any number of times, say n, we write 

a-a-a- ___ ·a = an 

Thus, the figure written on the right of the number, just above 
it, is the indicator, and tells how many times the number is a 
factor of itself. This indicator is called "the exponent of a," and 
the number a with its exponent is called "the power of a." To 
be consistent, when the number a is written without an expo
nent-that is,it is not even a second power of itself-its exponent 
is assumed to be 1. Thus, 

a = a 1 

Let us examine the rules that govern the operations with expo
nents of powers of numbers: 

a) Multiplication. vVe multiply a3 and a5 • This may be 
represented as (a·a·a)(a-a-a-a-a). Removing the parentheses, 
we have 

But 3 + 5 = 8. Thus since the product may be represented as 

(a· a -a· _ .. -a)(a -a· a - ___ . a) 
m factors n factors 

Generalizing, we have am+n• 

Thus we have the rule: 
The product of powers of the same quantity (or number) is 

also a power whose exponent is the sum of the exponents of the 
respective factors. For example 

22 .23 - 25 = 210, smce (2 + 3 + 5 = 10) 

b) Division. Derivation of the rule for division of powers 
of the same number or quantity is performed in the same manner. 
Let us divide a7 by a3 • This may be represented as 

rj-rj-¢-a-a·a-a 
rj_rj_rj = a'a-a-a 

Note that in the above fraction we cancelled an equal number of 
factors in the numerator and denominator. The result, however, 
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is a4 • But 4 = 7 - 3. Now, we may generalize that the quo
tient of am and an, which may be represented as 

m factors 
a·a·a· ... ·a 
a·a·a· .. , ·a 

n factors 

This we may generalize as am-no 
Thus we have the rule: 
The quotient of two powers of the same quantity or number 

is also a power whose exponent is the difference of the exponent 
of the dividend and the exponent of the divisor. F or example 

56 + 52 = 54, (6 - 2 = 4) 

PROBLEMS 

1. The wheat production of the world is about 4.5.109 bushels a 
year. A bushel of wheat weighs 60 pounds. One pound of wheat 
contains about 9,000 grains of wheat. How many grains are there 
in a yearly crop of wheat? 

2. In 1920 railway passengers in the United States traveled about 
47.109 miles. The average journey per passenger was about 37 
miles. About how many passengers were carried by trains in 1920? 

3. The total production of the fisheries in the United States and 
Alaska is about 4.8· 109 pounds yearly, and the value of the products 
is estimated as about 9.3.107 dollars. What is the value per pound 
of fish? 

4. The total crop land in the United States is estimated at approxi
mately 1.2.109 acres. The farm population is estimated as about 
3.2.106 • How much land does this make per capita? 

5. The value of the farm lands is estimated as about 3.3.1010 dol
lars. What is the average price per acre? 

Some Puzzling Results 

The rules for operations with powers of numbers lead to some 
absorbing results. Let us examine them in detail. 

a) How to Write 1. Here is a puzzler that may stump those 
not familiar with the rules: Write 1 with a figure of any number 
of places and a digit, but addition, subtraction, multiplication, 
and division must not be used. 
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. Since we know the rule for the division of powers of the same 
number or quantity, we know that when a number is divided by 
itself the quotient i~ always 1. Then any power of a number 
when divided by itself must also yield 1 as a quotient. But, ac
cording to the rule for the division of powers, the exponents of 
the dividend and divisor of the powers are subtracted from one 
another. And here we arrive at a curious result. We know that 
when a number is subtracted from itself the difference is o. For 
example, 5 - 5 = o. Thus 

a 5 + a 5 = aD = 1 

Thus we know that any number that is raised to the zero power 
(that is, whose exponent is 0) is always equal to 1. Hence 

123,456,7890 = 1, 6,450,348,697,502,357,8130 = 1 

b) Farewell to Fractions. Now we return to the rule for the 
division of two powers of the same quantity or number. Ac
cording to this rule, the exponent of the quotient is obtained as 
the difference of the exponents of the dividend and the divisor. 
In other words, if the dividend is am and the divisor is an, then 
the exponent of the quotient is (m - n) . Now, if m is greater 
than n (in symbolic language this is expressed as m > n), then 
the difference is positive. But, if m is less than n (symbolically 
m < n), then the difference is negative. F or example, if m = 12 
and n = 8, then m - n = 12 - 8 = 4. But, if m = 6, and 
n = 17, then m - n = 6 - 17 = -9. 

What meaning is attached to a quotient whose exponent is 
negative? It may happen that (m - n) will at all times be nega
tive. Let us examine this; suppose we divide 25 by 290. We 
perform this as follows: 

Thus 

Therefore, 

2·2·2·2·2 1 
2·2·2·2·2·2·2·2·2 2·2·2·2 

__ 1_ = 25 + 29 = 25 - 9 = 2-4 
2·2·2·2 
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In other words we now have a new method of writing fractio~~~.& 
We take the number that is in the denominator, change the sign "';;:...:;'/If 
of its exponent (if it is positive, we make it negative, and if nega- '~ 
tive, we make it positive) and write the number with the new 
exponent as a factor of the numerator. F or example, 

a2 m 5 
- = a2b-3 and -- = m 5n4 
b3 n-4 

All these facts will materially simplify the calculations in the 
sections that follow. 

PROBLEMS 

6. Write the smallest integer (whole number) by using the ten 
digits, but each digit should be used once only. 

7. What is the largest number that can be written with four 2's? 
8. What is the largest number that can be written with three 5's? 
9. Write the largest number by using 1, 2, 3, and 4, each digit to 

be used once only. 
10. Write the largest number by using 6, 7, and 9, each digit to be 

used once only. 

1,900,000,000,000,000,000,000,000,000,000,000 

No, this isn't a bookkeeper's nightmare-it is the weight of the 
sun III grams. 

But now we know how to write this number in compact form, 
19.1032 • Numbers of this magnitude cannot be expressed in 
words, and the compact writing conveys some immediate pic
ture of their magnitude. 

Astronomers make constant use of this method of writing 
number giants. But if you think the weight of the sun is ex
pressed by a big-brother number giant, compute the distance to 
the farthest known universe of stars. It takes light not less than 
2.108 years to reach the earth, and light travels at the rate of 
about 3.105 kilometers a second. We have 

2.108 .3.105 .365.24.60.60 = 5.1020 approximately 

and this is only the number of kilometers. Now, there are 1,000 
meters in a kilometer and 1,000 millimeters in a meter. Thus the 
distance to the farthest known universe of stars in millimeters is 
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which is still a small numb~r giant. As a matter of fact, this 
number is about 4.106, or four million times smaller than the 
number of grams in -the weight of the sun. 

PROBLEMS 

11. If the mass of the sun were distributed within a sphere having 
a radius of 2.108 kilometers, how many grams of the sun's mass 
would be allotted to 1 cubic kilometer? (In order to obtain the vol
ume of a sphere, cube the radius and multiply the result by 4.18.) 

12. The radius of the sun's sphere is about 5 -105 kilometers. How 
much does a cubic centimeter of the sun weigh? 

13. What is the weight of the sun in tons? (1 ton = 1,000 kilo
grams, and 1 kilogram = 1,000 grams.) 

14. The weight of an electron is 9.10- 27 gram. How many 
times is the sun heavier than an electron? 

15. If the radius of our universe is taken as one billion light-years, 
and if the number of electrons in the universe is 1083, and if all these 
electrons were uniformly distributed in space, how many electrons 
would there be in 1 cubic centimeter? 

Up for Air: $50,000,000,000 Worth 

vVe often hear of barometric pressure, or the pressure of the 
air. Weather reports mention it regularly. How strong is this 
pressure? 

Every square centimeter of the earth's surface is subject to a 
pressure of about 1 kilogram. This means that a column of air 
reaching out to the outer parts of the atmosphere, perhaps 100 
miles or more, with a base of 1 square centimeter in area, weighs 
about a kilogram, or about 2.2 pounds. The total weight of the 
air is then easily computed. All that we must know is the area 
of the earth's surface in square centimeters. It is known that 
the area of the earth's surface is about 510,000,000 square kilo
meters, or 

51 . 107 square ki'ometers 

Let us translate this into square centimeters; 1 kilometer = 105 

centimeters, and a square kilometer is equal to 105 . 105 square 
centimeters. Then the area of the surface of the earth is equal to 

51.107 .105 .105 = 51.1017 square centimeters 
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Then the weight of the air, since every column with a base with 
an area of a square centimeter weighs about 1 kilogram, is 

51.1017 kilograms 

Every 1,000 (or 103 ) kilograms are equal to 1 ton. Hence, in 
tons, the weight of the earth's atmosphere is 

51.1017 -;- 103 = 51.1014, or about 5.1015 tons 

Let us examine how tremendous this weight is. Let us assume 
that the debt of the United States is roughly fifty billion dollars, 
or 5.1010 dollars, or 5.1012 cents, and that if the earth's atmos
phere were purchased with this amount, for every cent we could 

buy 5 ·101.5 -;- 5.1012 = 103 , or 1000 tons of air 

or 1,000,000 kilograms of air. This air would cover 106 square 
centimeters of ground. One meter is equal to 100 centimeters, 
and a square meter is equal to 10,000 square centimeters. Thus 
the ground would be about 1,000,000 -=- 10,000 = 100 square 
meters, or about 1,008 square feet. 

The total weight of the earth is about 6.1021 tons. Thus the 
earth's atmosphere is a 

5.1015 5 
6. 1021 = 6 10-6 

part of the total weight of the earth, about one-millionth part. 
We have used one multiplication in this section which should 

be given special attention because it can be simplified. When 
we computed the number of the square inches in a square kilo
meter we multiplied 105 by itself. This may be represented 
symbolically as a power also; that is, 105 .105 = (105 )2. But 
105 .105 = 105 +5 = 1010• Moreover, 10 = 2·5. We can then 
write 1010 = 102 . 5 • Thus, when we raise a power to some 
power, we multiply the exponents. For example 

(a3 )4 = a12 

PROBLEMS 

16. If the weight of the earth's atmosphere is 5.1015 tons, and if 
we consider that the air is made up of electrons, how many electrons 
would there be in the earth's atmosphere? (An electron weighs 
9.10- 27 gram.) 
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17. What would be the price of 1 electron, if 1000 tons of air 
could be bought for 1 cent? 

18. If the electrons in the earth's atmosphere were distributed uni
formly throughout the known universe (see Problem 5), how many 
electrons would there be in a cubic centimeter? 

19. A square centimeter = 0.155 square inch, and 1 kilogram = 
2.2 pounds. Assuming that the volume of a column of air 100 miles 
high, and with a square centimeter as a base, weighs 1 kilogram, what 
is the weight of the air in a room that measures 14 by 20 by 10 feet? 

20. If 1,000 tons of air cost 1 cent, what would be the cost of the 
air in a room of the size given in Problem 19? 

Wood Is Alway sBurning 

Wood, almost anyone will tell you, burns at a very high tem
perature. The burning of wood, however, really is a chemical 
process, the combining of oxygen and carbon, and can take place 
at any temperature. Most of us think a high temperature is re
quired because our senses are so crude that we cannot observe a 
slow process. When we think of burning we have in mind a 

conflagration fully equipped with fire 
trucks. 

The speed of a chemical reaction 
diminishes with the lowering of the 
temperature. F or a drop of 10 degrees 
Centigrade the speed is approximately 
halved; in other words, if a substance 
burns completely in 1 second at 100 
degrees Centigrade, then at 90 degrees 
it will burn completely in 2 seconds, at 

80 degrees in 22 =4 seconds, and at 70 degrees in 23 = 8 sec
onds. At 0 0 it will take 210 = 1,024 seconds, or 17 minutes and 
4 seconds. 

Now suppose a quantity of wood burns completely in 1 sec
ond at 600 degrees Centigrade. How long will it take at OO? 
Under the general law, in 600 degrees there are 600 -;- 10 = 60 
intervals of 10 degrees each, and thus it will take 260 seconds. 
How large is this number? To compllte it we shall resort to 
some simplifications (the number is so large that an approximate 
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answer will be just as good). We observe that 210 = 1,024, then 
we may take 

210 = 1,000 = 103 approximately 
Then 

260 = (210)6 

which is approximately equal to 

(103)6 = 1018 

Thus, the burning will be completed in 1018 seconds. To trans
late this into years, we may take 3· 107 as the number of seconds 
In a year. Then the number of years will be 

1018 + (3.107) 

Which is approximately equal to 

3.1010 years, or about 30 billion years 

Wood, then, is constantly burning, no matter what its tem
perature, but we observe this burning only when heat speeds up 
the combustion. 

PROBLEMS 

21. If a quantity of wood burns completely in 1 second at 600 de
grees Centigrade, how long would it take it to burn completely at 
the temperature of absolute zero, - 274 degrees Centigrade? 

22. How long would it take for wood to burn completely at 1,000 
degrees Centigrade? 

23. What temperature would be necessary to make the wood in 
Problem 21 burn completely in 4 minutes and 16 seconds? 

24. What temperature would it take the same wood to burn com
pletely in about 10-3 second? 

25. The temperature of the surface of the sun is about 6,000 de
grees Centigrade. If the wood in Problem 21 were placed on tho 
surface of the sun, how long would it take to burn completely? 

Double Strength 

Suppose you are given a piece of thin paper that weighs 10 
grams and are asked to fold, it so you can cut it into equal halves, 
then take a half and fold it again and cut it into equal halves. 
How many times would you have to continue this process to 
get down to one theoretical electron (9· 10 - 2 7 gram)? 
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Since 103 is approximately equal to 210, we can replace 10- 2 , 

by (103 ) -9 or by (2 10 ) -9 = 2- 90 • Likewise 9 is approximately 
equal to 23. Thus.9·10- 27 can be replaced by 23.2-90 = 2- 87 • 

Thus, we would have to perform this operation of folding and 
cutting into halves only eighty-seven times to get down to 1 elec
tron, and an electron is a very small substance. However, should 
you ask this question you would invariably get the most absurd 
replies, some of them estimating millions of times. 

PROBLEMS 

26. How many times would it take to cut the sun in half, and th'en 
the half into halves, and so on, until we would get one electron? Take 
the radius of the sun's sphere as 5.105 kilometers. 

27. How many times would it take to apply the process described 
in Problem 26 to the earth's sphere? Take the radius of the sphere 
as 6,400 kilometers. The radius of an electron is about 7.5· 10 -] :J 
centimeter. 

28. If the radius of the universe is taken as one billion light-years, 
and if it takes light about eight minutes to reach from the sun to the 
earth, how many times would it take to apply the process described 
in Problem 26 to the radius of the universe in order to obtain the dis
tance from the earth to the sun? 

29. If the radius of the solar system, the distance from the sun to 
the farthest planet, Pluto, is about 5· 109 miles, how many times 
would it take to apply the process described in Problem 28 to obtain 
this distance? 

30. There is a legend that the inventor of chess requested as a 
prize for his invention a certain quantity of wheat. This was to be 
determined as follows. There are sixty-four squares on the chess
board. On the first square one grain was to be placed, on the second 
square two grains, on the third four grains, and so on; on every next 
square the number of grains to be twice the number on the preceding 
square. How many grains would have to be placed on the sixty
fourth square? 

Number Giants with a Few Digits 

By means of the fifth operation, or the raising to a power, it is 
possible to write very large numbers in a very compact form. 
Let us consider a few examples. 

Write the largest possible number with four l's, excluding 
arithmetic operations. The number 1,111 is not the largest num
ber; the correct answer is 1111. The reader, if he has sufficient 
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patience, will obtain, by multiplying 11 eleven times by itself, 
285,311,670,611. 

In Chapter 4 a very large number was obtained by means of 
three 9's, 

Now let us take up this problem from a more general point of 
view; let us examine whether the same principle of writing very 
large numbers holds, if any three (but the same) digits are taken 
and are again excluded. Let us start with three 2's. Will 

be the solution? We can answer this question by performing 
the calculations. We have 24 = 16. Apparently 222 is a larger 
number. But 222 = 4,194,304. Thus our resort to analogy 
failed. 

How about three 3's? \Ve have four choices: 

333, 333 , 333 , and 333 

Let us start with the last. It is equal to 327. Obviously, 327 is 
smaller than 333• 

How about three 4's? \Ve have four choices: 

Again let us start with the last. It is equal to 4256, and this num
ber is considerably larger than 444. In the case of three 4's the 
same arrangement as in the case of three 9's holds. 

Let us write the largest possible number with four 2's. Here 
eight combinations are possible: 

2 222 2222 2222 2222 2222 2222 2222 and 2222 , , , , , , , , 

Obviously, 2,222 is the smallest of all the eight numbers. Let us 
compare 2222 and 2222. We can write 2222 = (222) 11 = 48411. 
Obviously, 48411 is greater than 2222 because 484 is greater than 
222, and 11 is greater than 2. Now, let us compare 2222 with 
2222. If we write 32 22 instead of 22 22, we take a larger number. 
But 32 = 25, then 32 22 = (25)22 = 2110, and this number is 
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smaller than 2222. < Thus, when 2222 is replaced by a larger num
ber we still obtain a number that is smaller than 2222. Thus, we 
eliminated three numbers, and now we must compare 

2222 , 2222, 2222, 222\ and 2222 

We can eliminate the last at once, because it is equal to 216. The 
fifth combination, 22 22, is equal to 224, and is smaller than 324 
which may be written as 220. Thus, this is also eliminated. Now 
we are left with three only: 

We note that 2222 is smaller than the second of these, because 
222 = 484, and hence 2222 is smaller than 2484. But 222 is equal 
to 4,194,304. Thus 

2222 = 24,194,304 

is the largest possible number that can be written with four 2's. 
Let us examine the same problem when four 3's are used. We 

have eight possible combinations, and these must be examined 
along the same lines as the combinations obtained in the case of 
four 2's. We thus have: 

The first, 3,333, is eliminated at once. We may write 3333 as 
(3·3·37)3 = (32)3.373. Now if we replace 37 by 81 we obtain 
a much larger number. But 81 = 34. Then we have 

(3 2)3.(34)3 = 36 .312 = 318 

We may write 33 33 as 

(3.11)33 = 3 33 .11 33 

Now if we replace 11 by 9 we obtain a much smaller number. 
But 9 = P. Then we have 

333 • (32)33 = 333 .366 = 399 

This eliminates 3333, as well as 33 33• Thus, we are left with five 
combinations: 

3333 , 3333, 3 333, 3333, and 33" 
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We already have eliminated the last combination. The second 
one is equal tQ 33 21, and this may be written as 321 .11 21, and if 11 
is replaced by n = 33, we obtain a larger number. Then 33 21 

is smaller than 321 . (33)27 = 321. 381 = 3111• Thus 333' is smaller 
than 3333, and it is also eliminated. We are then left with three 
combinations: 

3333, 3333, and 3333 

We observe that 33 3 is Jess than 333, and 333 is less than 333 • 

Thus, the largest possible number that can be written with four 
3's is 

The reader will find no difficulty in arriving at the conclusion 
that the largest possible number that can be written with four 
4's is 

PROBLEMS 

Write the largest possible number with each of the following 
groups: 

31 with 2, 4, and 6 
32 with 3, 5, and 7· 
33 with 5, 7, and «) 
34 with 5, 6, 7, 8, and 9. 
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John Robertson's estate of $462,000 was left to his family 
under a peculiar will, designed to forestall any disagreement 
among his heirs: 

"I leave my estate to my wife, my four daughters, and my six sons. 
Every son shall receive three times as much as every daughter. To 
my wife 1 leave one-half of what my children receive. 

"Should anyone of my children contest this division on the ground 
that it is unfair, then the share of my wife shall be equal to the dif-'" 
ference between what my sons and my daughters receive. 

"Should my wife contest this will then her share shall be twice 
the shares of one son and one daughter." 

What were the shares of the widow, each son, and each daugh
ter under the various provisions? 

Under the first provision each daughter ~ received one share 
and each son three shares. The four daughters and six sons 
thus received 4 + 18 = 22 shares. The widow's part consisted 
of eleven shares. In other words, the entire estate was to be di
vided into thirty-three equal parts. Thus every daughter was to 
receive $14,000, every son $42,000, and the widow $154,000. 

Under the second provision the children were still entitled to 
twenty-two shares. But the widow's part in the inheritance this 
time was to be equal to 18 - 4 = 14 shares. Thus the entire estate 
would be 'divided into thirty-six equal parts. Each daughter 
would receive $12,833.33, each son $38,500, and the widow 
$179,666.62. 

186 
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Under the third provision the children were still entitled t~'~ ::-
twenty-two shares, but the widow's part this time would be \:--~c,~ 
equal to 2 (1 + 3) = 8 shares. Thus the entire estate would be'" ~~: 
divided into 8 + 22 = 30 equal parts. Each daughter would re-
ceive $15,400, each son $46,200, and the widow $123,200. 

This problem is simply arithmetical in nature, and no special 
techniques are necessary for its solution. The reader will tecall 
that 'in Chapter 10 it was pointed out that every problem must be 
treated according to a certain scheme and that the processes of 
treatment are very clear, the most important process being care
ful analysis of the conditions set forth. 

However, algebra introduces a procedure that simplifies the 
attack upon any problem, whether or not the problem has a 
solution. The quantity sought, or the unknown quantity, is de
noted by some letter (usually one of the last few of the alpha
bet). Then this letter is regarded as though it were a number 
and is subjected to the specified conditions of the particular 
problem. Let us illustrate: 

The previous problem is proper distribution of the inheritance. 
Since the share of a daughter determines that of a son, and the 
inheritance of all the children determines the share of the widow, 
we may denote the inheritance of a daughter by x (dollars). 
Then the share of a son is 3x. Since there were four daughters 
and six sons, their total share was 

(4x + ISx) = 22x 

Under the first stipulation the widow's share was llx and thus 
the entire estate was equal to 33x. 

Under the second stipulation the widow's share was 14x and 
the estate was equal to 36x. 

Under the third stipulation the widow's share was 2 (4x) = 8x 
and the estate was equal to 30x. 

Thus we may set up three equations: 

a) For the first stipulation. . . . . . . . . . . . . . . .. 33x = $462,000 
b) For the second stipulation. . . . . . . . . . . . . .. 36x = 462,000 
c) For the third stipulation. . . . . . . . . . . . . . . .. 30x = 462,000 
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To obtain the value of the respective x's the value of the prob
lem was "solved," the solving of an equation being some process 
by means of which. we obtain the value of the letter. For this 
purpose we must free this letter from numerical factors (they 
are called "coefficients") as in the preceding case, or we must 
perform some other operatio'J.s which will be described pres
ently. In equations of the type given we divide the left and the 
right member of the equations by the CD efficient of the x or, 
general1y, of the unknown quantity which is represented by 
some letter. 

Thus for the first stipulation 

x = $46~3000 = $14,000 

For the second stipulation 

x = $46~6000 = $12,833.33 

F or the third stipulation 

x = $46~OOOO = $15,400 

Then the share of each son is obtained from the expression 3x. 
The coefficient 3 denotes that the share of each daughter, which 
is x, is multiplied by 3. Finally the share of the widow is ob
tained from the expressions 11 x, 14x, and 8x according to the 
value of x for the respective stipulations. It should be under
stood that x has three values that correspond to the conditions of 
the three stipulations of the will. 

PROBLEMS 

1. Elmer Brown, a garage owner, never bothered to keep any 
record of his tire sales but one August 1st he decided to take inven
tory. His stock included both automobile and motorcycle tires. Al
though he remembered that he sold a set of tires each day during the 
last two months and the total number of tires sold was 208, he could 
not determine the number of each type sold. Can you help Elmer 
to straighten out his records? 

2. A postoffice clerk is instructed thus by a girl presenting a five
dollar bill: 
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"Give me some one-cent stamps, 'then give me twice as many two
cent stamps, and for the balance give me five times as many three-cent 
stamps as the one- and the two-cent stamps together." 

"How many stamps would you like to have?" the clerk asked. 
"W-ell, let me see," the girl replied, "you will have to tear some of 

them from whole sheets." 
"Never mind," said the clerk, "here are your stamps." 
How many stamps of each denomination did he give her? 
3. Luigi Caprini and his wife are counting the receipts of their 

day's business. "Look here, Rosa," he said, "one-half of our cus
tomers ordered minestrone, one-third ordered fried chicken, and 
three-fourths of these two ordered macaroni." 

"Yes," Rosa replied, "and we sold seventy orders of these." 
How many orders of each have there been? 

Beware the Math-Minded Mother-in-Law! 

Young Mrs. Martin called her mother on the telephone to ask 
help in learning her husband's income: 

"This morning he told me that since we were married (and 
that was three years ago) we spent four-tenths of his yearly in
come on rent and the upkeep of the house, one-fourth on clothes 
and food, and one-tenth on other incidentals. He never told me 
what his income was. But only a few days ago I found his bank 
book, and he had saved up $1,500. Don't you think that I ought 
to know what my own husband earns?" 

The mother knew some mathematics and promptly told her 
daughter exactly what her son-in-law earned each year. Can 
you find out? 

Suppose the husband earned x dollars a year. Then Q..4x was 
spent on rent, 0.25x on clothes and food, and O.Ix was spent on 
incidentals. The total amount spent each year was 

(O.4x + O.2Sx + O.lx) = O.7Sx 

The amount the husband saved was x - 0.75x = 0.25x. In three 
years he saved $1,500. Thus in one year he saved $500. We 
then can write the equation 0.25x = 500,. and from this we ob
tain that x = 2,000. In other words, his yearly income was 
$2,000. 

Note the catch in the wording of this problem: The amount 
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saved refers to a three-year period, while the statements con
cerning expenditures refer to one year. 

PROBLEMS 

4. Mr. Collins was approached by his club for a contribution and 
was told that ten members had subscribed $10 each. He wrote out 
a check for a sum such that his contribution exceeded the average 
contribution by $20. What was his contribution? 

5. Asked for another contribution, Collins pulled out his wallet in 
which there was' a certain number of five-dollar bills. "I have here 
an odd number of five-dollar bills," he said. "I will put aside one 
bill and give you one-half of the remaining bills. If ten of you will 
contribute $10 each, then my contribution will exceed the average of 
all contributions by $50." How much had Collins in his wallet? 

6. Mr. Collins at another time was accosted by four friends for 
contributions. To the first he gave one-half the money he had in 
his wallet and a dollar more. To the next he gave half of what was 
left in the wallet and a dollar more. To the third he gave half of 
what was left in the wallet and a dollar more. To the fourth he gave 
all that was left in the wallet. When the money was distributed, the 
first and the third received together $10 more than the second and 
the fourth friends. How much did he distribute and how much did 
each of his friends receive? 

One for the Relief Administrator 

A relief administrator was allowed to distribute shoes and was 
asked to submit a requisition stating the number of shoes (not 
pairs) he would require. He checked the relief rolls and dis
covered that one-twentieth of those listed had had one foot am
putated. One-half of the remaining needy refused the free shoes. 
How many shoes did the relief administrator order? 

This is a problem in which no numbers are given, 'but it can 
be solved if we remember that we may use letters as numbers. 
Let us assume that there were x persons on the relief rolls. Then 

~x of these required each one shoe and for them he ordered 
20 
1 ~ 

20x shoes. The rem~ining group consisted of 20 x, and only 

half of them, 

1 (19 ) 
2" 20 x 
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wanted shoes. Every one of ~hese received a pair of shoes. 
Then this group received 

1 (19) 19 
2'"2 20 x = 20 x 

shoes. Thus the relief administrator ordered 

1 19 20 
"2x + 20 x = 20 x = x shoes 

That is, he ordered as many shoes as there were relief recipients. 

PROBLEMS 

7. Mr. Collins never refused to help a worthy cause. When his 
childhood friend, Henry Johnson, was running for sheriff of Elm
ville, Collins undertook to get out the vote for him. The voting 
population was 1,349. He offered a prize of $15 to every woman 
and $7.50 to every man to come to the polls and vote. Every man 
accepted this offer, but half of the women did not vote. How much 
was spent by Collins? 

8. The regular Club of Elmville decided to hold a contest. Mr. 
Collins offered four prizes: 

1st prize-one-third of the total prize money plus $5.00. 
2nd prize-one-fourth of the remaining money plus $5.00. 
3rd prize-one-fifth of what remains after the first two prizes 

are awarded plus $5.00. 
4th prize-the remainder of the money. 

Collins declared that this would allot to the first three prizes twice 
as much as to the fourth prize. How much was offered in prizes 
and how was the money distributed? 

9. The infirmary in Elmville needed a certain sum to build an addi
tional garage for an automobile that Collins had donated. He offered 
to bear the expenses of construction, too, and offered a certain sum. 
When plans were prepared, it was found that Collins' contribution 
was not sufficient to cover the cost. If the garage would have cost 
one-eighth of the cost of the automobile, then $50 would have been 
needed to complete the garage. If the cost of the garage were three
fourths of the cost of the automobile, then the infirmarv would have 
had $575 left (if Collins would have provided these three-fourths of 
the cost of the automobile).. How much has Collins paid for the 
automobile, and what was the cost of the garage? 

A Rolling Pin Is How Heavy? 

Mr. Jones and his wife Mary were testifying in court. The 
judge asked her age, but she refused to tell. Jones then was 
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called and the judge cautioned. him that he must tell the whole 
truth, but when he was asked how old his wife was he hesitated. 
His wife looked warningly at him, but so did the judge. Then 
Jones said: 

"Your Honor, we have a dog, Patsy. Four years ago Mary 
was eleven times as old as Patsy; now she is six times as old." 

Mary beamed until the judge told her she was forty-eight years 
old. How did the judge arrive at her age? 

Let us apply algebra to this problem: supposing the present 
age of Patsy is x, we have the following table: 

Patsy's Age Mary's Age 
At present. . . . . . . . x 6x 
Four years ago.. . . x - 4 6x - 4 

and four years ago Mary was eleven times as old as Patsy. Thus 
if the age of Patsy were multiplied by 11 we would get Mary's 
age Then . l1(x - 4) = 6x - 4 
or llx - 44 = 6x - 4 

Subtract 6x from both sides of the equation and add 44 to both 
sides, then 

llx - 6x - 44 + 44 = 6x - 6x + 44 - 4 
or 5x = 40, and x = 8 

Now, since Patsy is now eight years old and Mary is six times as 
old as Patsy, Mary is forty-eight years old. 

In the transformation of the equation we have subtracted a 
certain quantity from both sides and added a certain quantity to 
both. The quantities added and subtracted were such that in 
the ultimate result the unknown quantity appeared on one side 
of the equation and the known quantity on the opposite side of 
the same equation. This procedure may be simplified. The 
reader will observe that actually the respective quantities were 
transposed to the opposite sides of the equation with their signs 
changed. Thus, in our equation 

l1x - 44 = 6x - 4 
we finally obtained 

l1x - 6x = 44 - 4 

We shall use this method of solution from now on. 
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PROBLEMS 

10. Professor Bigelow was asked by a student, "How old are you?" 
"Well," he replied, "how old are you?" 
When the student gave his age, Bigelow said, "When I was as old 

as you are now, I was nine times as old as you were. However, in 
seven years our combined ages will be 92." 

How old were the professor and his student? 
11. "Daddy, how old are you?" asked Professor Bigelow's son. 
"When I was as old as you are now, I had to wait," he replied, 

"thirteen years mitil you were born. But when you are twice as old 
as you are now, I will be twice as old as you will be." 

How old were Bigelow and his son? 
12. Professor Bigelow was six years older than his wife. One day 

he told her, "You know, we are married twenty-two years. Since 
we were married our combined ages have exactly doubled." 

How old were Bigelow and his wife when they were married? 

Million-Dollar Swap 

Mr. Armstrong and Mr. Holding fell into a discussion of taxes. 
Armstrong complained of his federal income tax as a very heavy 
burden. Holding replied: "Why do you complain so much? If 
you give me a million dollars of your income my tax will be 
twice as large as yours." 

"Well," Armstrong replied, "give me a million dollars of your 
income, and our taxes will be the same." 

How much have these two earned? 
Let the income of Armstrong be x dollars and the income of 

Holding be y dollars, then we can construct the following table 
of relationships: 

Armstrong takes away a million 
dollars .................... . 

Armstrong gives it to Holding .. . 
Holding has twice as much as 

x - 1,000,000 
y + 1,000,000 

Armstrong ................. . y + 1,000,000 = 2(x - 1,000,000) 
or 2x - y = 3,000,000 

Holding takes away a million 
dollars .................... . 

Holding gives it to Armstrong .. . 
Then the two have equal amounts. 

or 
Thus we have two equations: 

y - 1,000,000 
x + 1,000,000 

x + 1,000,000 = y - 1,000,000 
Y - x = 2,000,000 

2x - 'V = 3,000,000 
Y - x = 2,000,000 
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Add the two equations; that is, add the members on the left of 
the equalitysigr:s separately, and add the members on the right 
of the equality signs,_ and then equate the sums 

We have then x = 5,000,000, and from the equation y - x = 
2,000,000 we have • 

y = x + 2,000,000, or y = 5,000,000 + 2,000,000 = 7,000,000 

Armstrong's income thus was five million dollars and Hold
ing's seven million. 

In this problem we had two unknown quantities, and these 
were denoted by x and y respectively. To solve it, obtaining· 
the unknown values, the two equations had to be considered 
simultaneously, and this is why such equations are known as 
"simultaneous." The process consisted of two fundamental steps. 
First, one of the unknown quantities was eliminated from the 
equations by means of the addition, subtraction, and at times mul
tiplication or division of the two equations. Secondly, after one 
of the unknowns is eliminated, the value of the second is learned 
from the equation obtained in the process of eliminating one of 
the unknowns. 

PROBLEMS 

13. Professor Bigelow was asked how old his two sons were. He 
replied, "Their combined ages are four times the difference of their 
ages. Three years ago one was twice as old as the other." How old 
were the sons? 

14. "How many birds and how many animals are there in your 
zoo?" a keeper was asked. 

"We have fifteen more animals than birds; if we had as many birds 
as there are animals and as many animals as there are birds, then there 
would be only two-thirds as many legs as there are now," he replied. 

How many birds and how many animals were there in the zoo? 
15. In a club debate at Elmville neither faction would give in, and 

a number of members left, Collins remarked to his friend Johnson, 
"I am disgusted; I have a strong desire to leave also." 

To this replied Johnson, "Well, if you and I go, two-fifths of the 
members will be absent." 

"This is correct," replied Collins, "but if Jones, Smith, and Brown 
Nould have stayed, we would have had two-thirds of the membership 
present this would have given us a quorum." 

How many members were there at the opening of the meeting, 
and how many have left? 
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Help Wanted: One Stag Line, Slightly Used 

Lucy Phillips attended her first dance after she left school. 
The dance was given by Joan Metcalf. It was a huge success, 
and Lucy decided to give a dance of her own, with a larger at-

. tendance. While at Joan's dance she had counted the number of 
guests, sixty-three, but had forgotten to count the number of 
young men present. But Lucy made up her mind. At her dance, 
the number of those invited and those who attended must exceed 
the number of Joan's guests. 

Lucy telephoned Jane in hope that Jane might supply the in
formation needed, but Jane, too, had failed to count the number 
of men. She told Lucy, however, that she had danced with nine 
different ones. Lucy then called up all the girls who attended 
the dance, but none could help her. However, she did obtain 
this information: 

Gracie'danced with 8 men 
Jane danced with 9 men 
Pat danced with 10 men 

and so on, every other girl dancing with one more man until 
finally Joan, the most popular, danced with all the men. Joan, 
though, was no help when it came to the exact number of stags 
in her party line. Fortunately, Lucy was good at algebra and 
soon had the answer. 

Lucy reasoned this way: suppose that the number of the girls 
was x. Then 

The 1st girl, Gracie, danced with 7 + 1 men 
The 2nd girl, Jane, danced with 7 + 2 men 
The 3rd girl, Pat, danced with 7 + 3 men 

and so on 
The xth girl, Joan, danced with 7 + x men 

Thus we have the equation 

x + 7 + x = 63 and 2x = 63 - 7 or 2x = 56, that is x = 28 

Since among the sixty-three guests there were twenty-eight girls, 
there were 63 - 28 = 35 men. 
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PROBLEMS 

16. To raise fund:; for the orphanage in Elmville the Regular Club 
organized a raffle. The Ladies' Auxiliary of the Club offered to sell 
tickets for this raffle. Mr. Stone, an old bachelor, opposed the idea, 
but women were allowed to sell tickets. As it happened, every 
woman sold twice as many tickets as every man. The price of a 
ticket was 50 cents. When all the tickets were sold, Stone remarked 
to Collins.that the men had done a wonderful job. "True," said Col
lins, "but if every man sold twice as many tickets as every woman 
sold, we would have had $150 more, and we would have sold twice 
as many tickets." 

"How many tickets were sold by the women?" asked Stone. 
"Figure it out for yourself," replied Collins .. Can you? 
17. The Regular Club was negotiating about a long-term lease on 

a building that Collins owned in which the clubhouse was located. 
The members wanted a forty-two-year lease, and this was satisfac
tory to Collins, but he wanted $500 a year rent and members thought 
this too high. "Gentlemen," he said, "I know that in the years to 
come our club will have many more members. Probably my price 
is too high for the club at present. Let us fix the rent at $400 a year 
for a certain number of years; to be exact, tor so many years that one
third of them will be equal to one-fourth of the number of years 
that the lease will be in force afterward. After this number of years 
will elapse the rent will be $600 a year." 

The members voted to accept. Who was the loser and what was 
the difference in the total rent under the two types of terms? 

18. The picnic committee of the Regular Club could not agree on 
a price for the tickets. Finally, Collins suggested that the price for 
men be set at 50 cents and for women at 25 cents. However, if 
there should be more than a certain number of men this price should 
be 40 cents, and those who bought at 50 cents should get a refund 
of 10 cents. Some of the committee objected because free sand
wiches were to be distributed, two sandwiches for every man and 
one for every woman. "You need not worry," replied Collins, "if 
you have a certain number of men and a certain number of women 
you will collect $95, and you will have enough money for the sand
wiches. If you have twice as many men you will collect $45 more." 

On how many tickets for men did he· base his estimate and on 
how many for women has he based his estimate? 

Men at Work: Fractions Ahead-Proceed at Own Risk 

A group of \VP A workers that consisted of Tom, the fore
man, and Jack and Dick were sent to repair a road. An inspector 
figured that 

Jack and Dick could complete the work in 12 days 
Dick and Tom could complete the work in 15 days 
Jack and Tom could complete the work in 18 days 



The Grammar of Algebra 191{ 

In how many days would the work be completed if the foreman 
were put to work also? In how many days could Tom, Jack, 
and Dick complete the work if each worked alone? 

Let the number of days that Jack can complete the work alone 
be X; the number of days that Dick can complete the work alone 
be y; and the number of days that Tom can complete the work 

alone be z. Then in one day Jack can complete lth part of the 
x 

job; Dick, ~th part of the job; and Tom, !th part of the job. 
y Z 

And thus we can construct the following equations: 
If Jack and Dick work together they will complete in one day 

G + ~)th part of the entire job, 

which is equal to 12 part, since they complete the work in 1 2 
days, and 

Similarly we have 
.!+.!=~ 

and 
y z 15 

.!+1=~ 
x z 18 

If we add all the terms on the left sides of the equations sepa
rately and then add the fractions on the right sides separately, and 
finally equate the two sums, we have 

or 

2 (! + 1 + 1) = 1 (1 + 1 + 1) x y z 345 6 

or, dividing the both sides of the equation by 2, we have 

1 + 1 + 1 = 1 (1 + 1 + 1) 
x y z 645 6 

Let us compute i (1 + i + i). This is equal to 

1 (1 + 1 + 1) = 1 (15 + 12 + 10) = ]2 
6 4 5 6 6 60 360 
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Thus when two workers and their foreman work together they 

will complete in one day 362. part of the job, and the entire work 
. 3 ° 

will be completed in 3367° days, or about 9!- days. 

Take the two equations: 

1 1 1 37 1 1 1 - + - + - = - and - + - = -x y z 360 x y 12 

and subtract the second from the first. \Ve have 

1 37 1 37 - 30 7 
~ = 360 - 12 = 360 = 360 

Thus Tom will complete in one day 3~6 part of the entire job, 

and if he were working alone it would take him~60 days or 
7 

about 51 i days to complete the job. 
To obtain the answers concerning Jack and Dick we take the 

nNO pairs of equations 

!+!+!=~~ 
x y z 360 

!+!=l. 
y z 15 

and 
!+!+!=~ 
x y z 360 

!+!=l. 
x z 18 

and follow the same procedure. We then obtain 

1 37 1 37 - 24 13 
-=---= 
x 360 15 360 360 

and 1 37 1 37 - 20 17 
-=---= 
Y 360 18 360 360 

Thus after the last fractions are inverted, we obtain the required 
results. This is left to the reader. Summing up, we find that 
T om, the foreman, can complete the job alone in about 51 i 
days; Jack, in about 2H days; and Dick, in about 2U days. 
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PROBLEMS 

19. An office manager as a test of efficiency handed portions of a 
manuscript to two typists. The two began to type at the same time 
and completed the work simultaneously 1 hour and 12 minutes later. 
Then each typist was told to copy the entire manuscript alone. It 
took one one and a half times as long. How many pages were there 
in the manuscript if the slower typist copied ten pages in an hour? 

20. The Regular Club's house needed repainting. John under
took to do the job in five days; Jim said that he could complete the 
work in six days, and Jack insisted that he would need seven days. 
Each painter quoted the same price. Mr. Collins was consulted and 
promised that he would complete the work in a trifle less than two 
days. 

"You don't mean that you will do the painting yourself?" the 
building committee queried. 

"Certainly not," replied Collins. "You just leave it to me. Ac
cording to my scheme the job will cost $4 more, but I will pay the 
difference myself." 

What was the scheme, to whom was the money paid, and how 
much? The job was estimated to cost $210. 

21. Pierre Renan always grumbled at the air-raid alarm. He was 
not afraid of bombs but disliked dropping his work at night \vhen 
the lights went out. He had some candles saved but was frugal. One 
raid night especially, he wanted to continue his work and reached 
for two candles. Here his troubles began. He lit two of equal 
length, but one was thinner than the other. He remembered that 
the storekeeper told him that the thick candle would last six hours 
and the thin one four hours. After some time the thick candle 
burned down to a length twice as long as that of the thin one. He 
put out the candles and went to sleep. Suddenly it dawned upon 
him that he failed to notice the time when he lit the candles or the 
time when he put them out. He had to find out how long he had 
worked by candlelight. Could you help him? 

The Erring Speed Cop 

Traffic Patrolman O'Hara, always insistent on strict observ
ance of the law, sped on his motorcycle after an autoist. 

"Pull over to the curb," he ordered a man in the car. "1 have 
been trailing you for two miles. The speed limit on this high
way is 45 miles an hour, and you were going 46 miles an hour 
on the average. You'd better have a good story for the judge." 
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In court O'Hara pronounced his usual charge, specifying on a 
slip he handed to the judge: 

1 mile af 41 miles an hour ........ 41 miles 
1 mile at 51 miles an hour. : . . . . .. 51 miles 

'total ........................ 92 miles 

92 = 46 
2 

But the motorist wrote something on the slip and the judge 
promptly dismissed the case, explaining to O'Hara: 

"You charged this man for driving at an average speed tha.t 
exceeded the statutory limit, and your charge was not correct. 
Figure it out for yourself. You claim that the motorist travelled 
the first mile at the rate of 41 miles an hour and the second mile 
at the rate of 51 miles. Now, when he was making 51 miles an 
hour it took him less time to cover the distance of one mile than 
at the rate of 41 miles. If you add the time it took to cover the 
first mile and the time it took to cover the second mile, and then 
divide the total distance of two miles by this total time you 
should get the average speed. Or you may divide the distance of 
two miles by the average speed and you will get the time it took 
to cover these two miles. This is exactly what the motorist has 
done, and although the result he has obtained differs from the 
statutory limit by a very small fraction of a mile, I felt that I 
ought to give him the benefit of the doubt. Now here is what 
the motorist wrote ... " 

He showed O'Hara this calculation: 
Suppose that the average speed is x miles per hour. Then 

2 1 1 x = 41 + 51 

1 41 + 51 92 
x 2·41·51 = 4,182 

x = 4,t~2= 45.4 

"Now," the judge continued, "you charge him with driving at 
an average speed of 46 miles an hour. Had your charge been 
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that he drove at the rate of 51 miles I would have imposed a fine, 
but you failed to charge correctly." 

PROBLEMS 

22. The distance from Elmville to Oak Bluffs is 180 miles. John
son, the sheriff of Elmville, was called to Oak Bluffs in a hurry and 
made the trip in two and one-half hours. On the way back he made' 
the trip in five hours. Later he boasted that he averaged such speed 
that he could make the trip in 3 hours and 20 minutes. 

Said Collins: "If what you say is correct, then your round trip 
would last 6 hours and 40 minutes, but you just told us that it took 
seven and a half hours to do this." 

What was wrong with Johnson's arithmetic? 
23. Professor Bigelow offered his son Eddie the following prob

lem: "We need a new car. Just the other day I took mother to 
Canarsie University for the President's reception. We tr.aveled an 
hour with no mishap. Then we had a flat. It took me ten minutes 
to change the tire, and we proceeded at four-fifths of the original 
speed. But luck was against us, and we arrived a half hour late. 
Now, if we had traveled ten more miles after the first hour, and 
then had' had a flat tire, and spent ten minutes on changing it, and 
proceeded at four-fifths the original rate, we would have been only 
twenty minutes late. All this proves that our car should be replaced. 
By the way, can you tell me how far is Canarsie University from 
here and at what speed we started out from here?" 

Can you help Eddie? 
24. Brown once went from Elmville to Bolton in his automobile. 

He agreed to meet Stone in Penville, which was 32 miles from Bolton. 
He was to take Stone to Bolton and bring him back to his farm, 
which was just as distant from Elmville as Penville was from Bolton. 
Stone agreed to share the gasoline expenses with Brown. How 
much of the gasoline cost of the total should be Stone's share? The 
distance from Elmville to Bolton is 96 miles. 

An Accountant's Headache 

Hastings and Harrison were partners in a wholesale grocery 
business for many years. Hastings' share in the business was 
three-fifths as large as that of Harrison's. As both were aging, 
they agreed to take in as a partner Harrison's son-in-law, Thomp
son. Thompson agreed to pay them $10,000 with the condition 
that after he became a partner everybody should own exactly 
one-third of the business. When distribution of the $10,000 was 
to take place, Hastings insisted that he be paid $3,750. He 
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argued that his share was three-fifths as large as Harrison's share, 
and whatever capital was being distributed as well as profits, 
should be equitably divided; this was the practice for years, and 
he saw no .reason why it should not be continued. Meek Har
rison kept his peace, but Thompson, contrary to the wish of his 
father-in-law, insisted that Hastings was wrong; either the 
money would be distributed according to his plan or he would 
call off the deal. Thompson had studied algebra and put down 
his plan on paper and submitted it. This convinced Hastings 
that Thompson was right. "\iVhat was Thompson's plan? 

Thompson suggested they suppose that one share in the busi
ness, prior to the reorganization, was worth x dollars. Then 
Harrison's share was 5x, and Hastings' was 3x, and the total 
business was worth 

5x + 3x = 8x 

Now, Thompson is paying for one-third of the business $10,000, 
then the business must be worth $30,000. Then 

8x = 30,000, and x = 3,750 

Then Harrison's share is worth 

5·3,750, or $18,750 
and 

Hastings' 3·3,750, or $11,250 

Every original partner, Thompson argued, must be paid the 
difference between what his share was worth and the value of a 
third in the business, that is, $10,000. Then Harrison must re
ceive $8,750, and Hastings $1,250. 

Notice that in the solution of this problem we used a new tech
nique. It was stated that Hastings' share was three-fifths of 
Harrison's. In other words, for every "5-worth" of property in 
the business owned ,by Harrison, Hastings owned "3-worth." 
We might then reason that if there were x such portions the 
value of Hastings' share would be worth 3x dollars, and Harrison 
would own 5x dollars' worth. 
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PROBLEMS 

25. The Regular Club of Elmville for its annual outing appointed 
Brown to buy sandwiches, these to be sold at cost. Brown bought 
300 sandwiches, but before the picnic 60 of these were eaten at a 
meeting of the organization committee. Now the club had only 
240 sandwiches, and Brown insisted that the price remain unchanged. 

"But who will pay for the 60 sandwiches?" he was asked. 
"I don't know, but we must not sell them at any other price; we 

cannot change the rules," replied Brown. Then Collins intervened 
and suggested a scheme by which every member was to buv two 
sandwiches, the price of the second sandwich being half the price of 
the first. Thus one sandwich was sold below cost. Still the club 
had not incurred any loss on the sale. What was the scheme that 
Collins suggested? Incidentally, it was originally proposed that the 
price of a sandwich be raised 3 cents, and that would have covered 
the loss. 

26. Professor Bigelow said to his wife, "Eddie has a keen sense for 
selling. Yesterday he sold his baseball bat and baseball for $1.55. He 
made a 25 per cent profit on the bat and took a 25 per cent loss on 
the ball. I just cannot figure it out how he does things like these." 

"But how could this be?" she asked. "Quite simple," replied 
Bigelow, "the ball cost two-fifths as much as the bat." 

How did the professor arrive at his answer? 
27. Stone and Parker owned the bus company in Elmville. To 

enlarge their business they needed additional capital. Parker's origi
nal investment was $600, and Stone's was $400. They agreed to take 
in Brown as a partner. Brown agreed to pay into the business $2,500 
with the provision that Stone own one-fifth of the business, and that 
Parker's share would be two-sevenths of the business. These con
ditions set off a barrage of claims by Stone. He argued that Parker's 
share was reduced to two-sevenths while his share was reduced to 
one-fifth; that is, in terms of shares Parker lost less than he. There
fore he claimed more because he lost half his share while Parker lost 
less than a third of his share. Could you straighten Stone out? 

Algebra and Common Sense 

The solution of problems such as illustrated in the preceding 
sections does not require special techniques. Generally, if a 
problem is approached with complete understanding of all the 
implications and with knowledge of what the objective is and 
of the respective relationships of the quantities involved~ a solu
tion becomes simple. There is one principal rule of procedure: 
Express the given relationships in the form of equations in whicb 
the known and unknown quantities are involved. The equations 
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represent statements of these relationships-or, in other words, 
the equation is a statement in symbolic form. Thus the rules of 
written language are applicable to the rules of writing algebraic 
statements of the relations between known and unknown quan
tities. There are no other secrets, though common sense may 
often simplify the procedure. The following two problems will 
illustrate. 

a) Three racing automobiles are tested on a proving ground. 
It is known that the speed of one car (car A) is 10 miles more 
per hour than the~peed of car Band 10 miles less per hour than 
that of car c. The three cars cover the entire length of the 
proving ground. Car A arrives 10 minutes after B, and C ar
rives 8 minutes and 45 seconds before car A. What are the 
respective speeds of the cars, what is the length of the proving 
ground, and how long does it take each car to cover this length? 

Apparently there are seven quantities to be found. If we 
start with seven unknown quantities (that is, with seven distinct 
letters), we shall complicate our procedure immensely. A little 
reflection will show that actually we have two unknown quan
tities, namely, a speed of one car (the other two are obtainable 
from it) and the length of the proving ground. Let us denote 
the speed of car A by x, and let the length of the proving ground 
be y. \Ve then can represent the various relations in tabular 
form as follows: 

Speed 

Car A. ...... x 

CarB ........ x-10 

Car C ......... x + 10 

Time Required 
to Cover the 

Proving Ground 

;r 
x 

y 
x - 10 

Y 
x + 10 

Before we proceed with construction of the equations let us 
translate the given intervals of time (10 minutes, and 8 minutes, 
45 seconds) in fractions of an hour, because the respective speeds 
are also given in terms of hours. \Ve then have 10 minutes = 1/6 
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of an hoar, and 8 minutes and 45 seconds = 7/48 of an hour. 
Then, we have the equations 

-y--~=~ 
x-lO x 6 

and 

~--y-=~ 
x x + 10 48 

These may be transformed as follows: 

6(yx - yx + lOy) = x(x - 10), or 60y = x(x - 10) 
48(yx + lOy - yx) = 7x(x + 10), or 480y = 7x(x + 10) 

Dividing one equation by the other, we have 

60y x(x - 10) 
480y 7x(x + 10) 

or 
1 x - 10 
8 7(x + 10) 

Thus we have 7x + 70 = 8x - 80, or x = 150 

Then the respective speeds are: 

Car A, 150 miles per hour 
Car B, 140 miles per hour 
Car C, 160 miles per hour 

"I he length of the proving ground is obtained from the equa
tion 60y = x (x - 10) in which the value of x (150) is substi
tuted. We have 60y = 150·140, or y = 350. Thus, the length 
of the proving ground is 350 miles. The time required on the 
proving ground is then: 

Car A: 350/150 = 7/3 hours, or 2 hours and 20 minutes 
Car B: 350/140 = 5/2 hours, or 2 hours and 30 minutes 
Car C: 350/160 = 35/16 hours, or 2 hours, 11 minutes 

and 15 seconds 

In solution of the foregoing problem we had two unknowns, 
x and y, but one, y, was eliminated by division, and after the 
value of x was determined the value of y was computed from 
one of the equations that were set up. 



2-06 Mathematics-Its Magic & Mastery 

This problem, if paraphrased, may become an interesting 
puzzler. Suppose a proving ground is 350 miles long. On it 
three cars are tested, each car covering the entire length of the 
ground and all starting at the same time. Car A travels at the 
rate of 140 miles an hour, B at 150 miles an hour, and C at 160 
miles an hour. At what intervals will these three cars cross the 
finish line? 

The answer that suggests itself, that they will cross the finish 
line at equal intervals, is not correct. The earlier computations 
demonstrate this .. 

PROBLEMS 

28. A fleet squadron consisted of several battleships, cruisers, and 
destroyers. The entire squadron proceeded at the speed of the bat
tleships, 26 miles per hour. At a certain position one of the de
stroyers that could travel 33 miles per hour was instructed to scout 
the waters ahead for a distance of 40 miles. How long would it take 
the destroyer to complete the task and rejoin the squadron? 

29. At a certain position the destroyer of Problem 28 was in
structed to scout ahead and return in seven hours? When, after its 
departure, will the destroyer turn back, and how far ahead of the 
squadron will it have traveled? 

30. Sheriff Johnson was asked to come to Boltori at 5 o'clock in 
the afternoon. He found that if he traveled at 45 miles per hour he 
would reach Bolton at five-thirty. But if he made 50 miles per hour 
he would arrive 20 minutes too early. At what speed would you 
advise him to travel? And what was the distance he had to travel? 

b) Here is a problem that is patterned along the lines of a 
problem of Isaac Newton, which will be found among the 
exerCises: 

On a certain pasture the grass grows at an even rate. It is 
known that 70 cows can graze on it for 24 days before the grass 
is exhausted, but 30 cows can graze there only 60 days. For 
how many cows will this pasture last for 96 days? 

If we attempt to solve this problem in the usual way, we shall 
obtain very curious results. If it takes 70 cows to consume the 
grass in 24 days, then in 96 days only one-fourth of this number 
of cows will be fed. One-fourth of 70 is 17 1/2. This is the 
first stumbling block. What is meant by half of a cow? But 
this is not all. If it takes 60 days to feed 30 cows, then it will 
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take 30· 60 = 1,800 cows to eat the grass in one day, and in 96'-:t i ,"; 

days 1,800/96 = 18 3/4 cows will be fed. Now this is a con- ' '" 
tradiction; let us reason further. If for 70 cows the pasture suf-
fices for 24 days, then for one cow the pasture will last 24· 70 = 
1,680 days, and for 30 cows only 56 days, and not the 60 days 
as stated in the problem. Finally you may give this problem up 
in disgust, thinking the numbers do not agree. Something is 
wrong, but not with the problem. Have we taken into consid-
eration the growth of the grass? While some part of the grass . . . 
IS eaten, It contmues to grow. 

To solve this problem we must take into account the daily 
growth of the grass, which should be expressed as a fraction of 
the grass on the pasture. Let us denote the amount of the grass 
on the pasture by 1, and the growth in grass as x. Then in 24 
days the amount of the grown grass will be 24x, and in 24 days 
the supply of the grass eaten by the 70 cows is 1 + 24x, and in 
one day the 70 cows will eat 

1 + 24x 
24 

and one cow will eat 
1 + 24x 
24·70 

Following the same line of reasoning, we find that for the 30 
cows there will be 1 + 60x of grass, and one cow will eat 

1 + 60x 
30·60 

of grass. 
The assumption is that every cow eats the same amount. Then 

and 

or 
or 
and 

1 + 24x 1 + 60x 
24·70' 30·60 

30·60(1 + 24x) = 24·70(1 + 60x) 

15(1 + 24x) = 14(1 + 60x) 

15 + 360x = 14 + 840x 

1 
480x = 1, or x = 480 
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Now, since we know the value of x, we can compute the 
amount of grass (in terms of the entire supply) that one cow will 
eat in one day. We have 

1 1 + 24x 1 + 24· Tlo 
24·70- = 24·70 

21 
20 

24·70 = 1,600 

Then we construct the equation for 96 days and an unknown 
number of cows, 

This becomes 

1 + 96. Tlo 1 
y·96 = 1,600 

1 + t _ 1 
96y - 1,600 

or 1,600 + 320 = 96y, or 96y = 1,920 and y = 20. Thus 20 
cows will eat all the grass in 96 days. 

PROBLEMS 

31. This is the problem proposed by Isaac Newton: 
Three pastures are covered with grass of equal density that grows 

at an even rate. The first pasture has an area of 33 acres, the second 
an area of 100 acres, and the third 240 acres. If the first pasture can 
feed twelve oxen for four weeks, and the second pasture can feed 
twenty-one oxen for nine weeks, how many oxen can be fed on the 
third pasture for eighteen weeks? 

32. Said Farmer Jones, "The feed we bought will last our chickens 
for fifteen days. If we had twenty-one more chickens, and if we 
would give each chicken two-thirds of what we are giving daily now, 
the feed would last twelve days." 

How many chickens were there on Jones' farm? 
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H ow the Stage Magician Does It 

We examined, back in Chapters 9 and 12, some of the methods 
of rapid calculation, including one generally used by stage magi
cians; our studies now have advanced us to the point where we 
may attain a far better understanding of this spectacular, and 
useful, department of mathematics. It will be recalled that we 
then performed the multiplication of 94 by 88 as follows: 

or 
94·88 = (82 + 12)88 = 82·88 + 12·88. 

82·88 = 82(100 - 12) = 8,200 - 12·82 
12·88 = 12(82 + 6) = 12· 6 + 12·82 

94· 88 = 8,200 + 72 = 8,272 

Note that we took the larger number 94 and represented it 
as a sum of the complement of the smaller number 88 to 100 
(that is, 100 - 88 = 12) and the difference between the larger 
number and this complement. Thus 94 = 82 + 12. Then the 
product 94· 88 is written as (82 + 12) 88, which occurs in the 
first line above. Then 82· 88 is written 82 (100 - 12), and this 
product is developed in the second line. Note, too, that in this 
development we obtain the expression 12· 82, which is negative. 
Finally 12·88 (see the first line) is written as 12 (82 + 6), a step 
prompted by the necessity of obtaining the expression 12·82 
(this time positive). Thus when the negative 12· 82 is added to 
the positive 12· 82, the sum is O. 

209 
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The product of 94· 88 was obtained as 

8,200 + 72 = 8,272 

and to get it withbut going through all these steps we proceeded 
in this way: 

a) \Ve obtained the complements of 94 and 88 to 100: 
• 

Number 
Multiplicand. . . . . . . . 94 
Multiplier. . . . . . . . . . 88 

Complement 
6 

12 

b) We obtained the difference betwet:Il a factor and the com
plement of the other factor. Thus 

94 - 12 = 82, and 88 - 6 = 82 

This difference represented the first two digits of the product. 
Finally the product of the two complements represented the last 
two digits of the product. 

All this may seem unduly complicated, so let us examine the 
method by means of algebra; instead of any particular numbers 
we shall use letters. Suppose we have two two-place numbers a 
and b; we obtain their complements to 100: 

Number 
Multiplicand. . . . . . . . a 
Multiplier. . . . . . . . . . b 

Complement 
100 - a 
100 - b 

and obtain the differenc'e between a factor and the complement 
of the other factor. Thus 

a - (100 - b) = a + b - 100. 
and 

b - (100 - a) = b -T- a - 100 

\Ve note that we need not take two differences; they are equal 
and, therefore, one will suffice. The product of the comple
ments is 

(100 - a)(100 - b) = 100·100 - 100a - 100b + ab 

The difference between a factor and the complement of the 
other factor represents the first two digits of the product and 
when we have two two-place numbers, represents the number 
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of the 100's in the product. We multiply this difference by 100 
and we have 

100(a + b - 100) = 100a + 100b - 100·100 

To this product we add the product of the complements. We 
have then 

100a + 100b - 100·100 + 100·100 - 100a - 100b + ab = ab 

This result shows that our procedure ~nd our rule are correct. 
Let us consider an example: 

The product of 87 and 76 is obtained as follows: 

Number 
Multiplicand. . . . . . . . 87 
Multiplier. . . . . . . . . . 76 

Complement 
13 
24 

The difference between a factor and the complement of the 
other factor is 87 - 24 = 63. 

The product of the two complements is 13·24 = 312. Finally, 

the product 87·76 = 6,300 + 312 = 6,612 

The reader may check the result by actual multiplication. 

Performing with Three-Place Numbers 

Now suppose we wish to obtain the product of 985 and 973. 
We obtain the complements to 1,000: 

Number Complement 
Multiplicand.... . . . . 985 15 
MUltiplier. . . . . . . . . . 973 27 

The difference between a factor and the complement of the 
other factor is 985 - 27 = 958. The product of the comple
ments is 15·27 =405. The"product of 985 and 973 is then 
written as 958,405. 

Examining this procedure by means of algebra, suppose the 
two numbers are a and b. We have then 

Number Complement 
Multiplicand. . . . . . . . a 1,000 - a 
Multiplier. . . . . . . . . . b 1,000 - b 
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The difference between a factor and the complement of the 
other factor is 

and 
a -.(1,000 - b) = a + b - 1,000 

b - (1,000- a) = b + a - 1,000 

Here again we observe that there is no need to obtain two dif
ferences; they are equal and, therefore, one will suffice. 

When the product of two three-place numbers is obtained, 
the difference between a factor and the complement of the other 
factor represents the number of the 1,000's in the product of the 
two numbers. 1£ we multiply this difference by 1,000, we obtain 
one part of the product, as . 

1,000(a + b - 1,000) = 1,000a + 1,000b - 1,000·1,000 

\Vhen to this we add the product of the complements 

(1,000 - a)(1,000 - b) = 1,000·1,000 - 1,000a - 1,000b + ab 

we obtain the product of the numbers as 

1,000a + 1,000b - 1,000·1,000 + 
1,000·1,000 - 1,000a - 1,000b + ab = abo 

This proves our rule for the multiplication of two three-place 
numbers, as an example will show: 

The product of 951 and 982 is obtained: 

M ul ti plicand ....... . 
Multiplier ......... . 

Number 
951 
982 

Complement 
49 
18 

The difference between a factor and the complement of the 
other factor is 951 - 18 = 933. The product of the two com
plements is 49·18 = 882, which can be obtained as 49 = 50 - 1, 
and 49·18 = (50 - 1) 18 = 50·18 - 18 = 900 - 18 = 882. Fi
nally the product of 951 and 982 is 

951· 982 = 933,882 

Making It Easier 

When we illustrated the method of rapid multiplication of 
two numbers, we introduced one limitation: When they are two
place numbers, that they be close to 100, and when three-place 
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numbers that they be close to 1,000. We shall now, obtaining 
another rule, substitute a short-cut for this. 

Suppose we have two two-place numbers a and b, both less 
than 50. We apply the same method used for the product of 
two-place numbers when they are close to 100 and obtain their 
complements to 50. Then we have 

Number 
Multiplicand... . . . . . a 
Multiplier. . . . . . . . . . b 

Complement 
SO - a 
SO - b 

The difference between a factor and the complement of the 
other factor is 

a ~ (SO - b) = a + b - SO, and b - (SO - a) = b + a-50 

Again we need not obtain both differences; one will suffice . 
. The difference between one factor and the complement of 

the other factor gives the number of 50's in the product of the 
two numbers. Thus if we multiply this difference by 50, as 

50(a + b - SO) = 50a + SOb - SO-SO 

and we add to this the product of the two complements 

(SO - a)(50 - b) = 50·50 - 50a - SOb + ab 
we have 

50a + SOb - 50·50 + 50·50 - 50a - SOb + ab = ab 

This result points to the rule for multiplication of two num
bers that are close to 50. We obtain their respective comple
ments to 50, then obtain the difference between one factor and 
the complement of the other factor. This difference must be 
multiplied by 50 and, since 50 = 100/2, we multiply by 100 and 
divide by 2. This product, when the product of the comple
ments is added to it, gives the required result, the product of the 
two numbers. For example, the product of 48 and 38 is ob
tained as follows: 

Number 
Multiplicand... . . . . . 48 
Multiplier. . . . . . . . . . 38 

Complement 
2 

12 

The difference between one factor and the complement of the 
other is 48 - 12 = 36. The product of 36 and 50 is 36·50 = 
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1,800, and the product of the complement is 2·12 = 24. Finally 
the product of 48 and 38 is 

48·38 = 1,800 + 24 = 1,824 

Another short-cut can be introduced here. Instead of multi
plying the difference between one factor and the complement of 
the other by 50, we may divide this difference by 2 and con
sider the quotient as the number of the 100's in the product. 
Then on its left we write the product of the complements of the 
two factors. Thus 36/2 = 18, and the product is 1,824. 

If the difference ~between one factor and the complement of 
the other factor is odd as, for example, 41, we proceed in the 
same manner. We divide 41 by 2 and obtain 20.5. Then we 
write to the left of 20 the sum of the product of the comple
ments and 50. Let us obtain the product of 47 and 44. We have 

Number 
M ul ti plicand. . . . . . . . 47 
Multiplier. . . . . . . . . . 44 

Complement 
3 
6 

The difference between a factor and the complement of the 
other factor is 47 - 6 = 41. The product of the complements 
is 3·6 = 18. We write 41/2 = 20.5, 50 + 18 = 68, and the 
product of 47 and 44 is 47·44 = 2,068. 

If one number is less than 50 and the other greater than 50, the 
procedure is the same, but in this case the reader must note the 
signs of the complements of the two numbers. One comple
ment (of the number that is greater than 50) will be negative. 
Let us multiply 62 and 48: 

Number 
Multiplicand. . . . . . . . 62 
Multiplier. . . . . . . . . . 48 

Complement 
-12 

2 

The difference between a factor and the complement of the 
other is 62 - 2 = 60 (or 48 - [-12] = 48 + 12 = 60). The 
product of the two complements is -12·2 = - 24. This time 
the product of the complements is negative and, therefore, it 
will have to be subtracted from the product of 50 and the dif-
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ference between a factor and the complement of the other fac
tor. The result of our multiplication is then 

62·48 = 60·50 - 24 = 3,000 - 24 = 2,976 

If we have two three-place numbers, both of which are close 
to 500, their product may be obtained as in the case of two three
place numbers close to 1,000. Let us examine this procedure by 
means of algebra; suppose the two three-place numbers are a 
and h. Then Number 

Multi plicand. . . . . . . . a 
Multiplier.......... b 

Complement 
500 - a 
500 - b 

The· difference between a factor and the complement of the 
other factor is 

and 
a - (500 - b) = a + b - 500 

b - (500 - a) = b + a - 500 

Here again we observe that these differences are equal, and one 
will suffice. 

The difference between a factor and the complement of the 
other factor gives us the number of the 500's in the product of 
the two three-place numbers. Thus if we multiply this differ
ence by 500, as 

500 (a+ b - 500) = SOOa + 500b - 500·500 

and we add to this the product of the two complements 

(500 - a)(500 - b) = 500·500 - SOOa - 500b + ab 

we obtain the product of the two three-place numbers. \Ve 
have then 

500a + SOOb - 500·500 + 500·500 - 500a - 500b + ab = ab 

This result indicates the correctness of our methods, for example: 
For the product of 463 and 497: 

Number 
Multiplicand.... . . . . 463 
Multiplier. . . . . . . . . . 497 

Complement 
37 

3 

The difference between a factor and the complement of the 
other factor is 497 - 37 = 460, and the product of the com-
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'plements is 37·3 = 111. The product of 460 and 500 may be 
obtained by multiplying 460 by 1,000 and dividing it by 2 (be
cause 1,000/2 = 500) .. Then the product of 463 and 497 is 

463·497 = 460·500 + 111 = 230,000 + 111 = 230,111 

We may also proceed in this way. We divide 460 by 2, and 
to the left of it write the product of the two complements of 
the ~wo factors. This may be done so because the quotient of 
460 and 2 gives us the number of the 1,000's in the product of 
the two three-place numbers. Then 460/2 = 230, and the prod
uct is 230,111. 

Should the difference between one factor and the complement 
of the other be odd, the procedure remains unchanged. We may 
multiply the difference between a factor and the complement of 
the other by 1,000 and divide the result by 2, or we may divide 
this difference by 2. But if the difference between a factor and 
the complement of the other is divided by 2 we obtain a decimal, 
0.5. This decimal is detached and 500 is added to the prod
uct of the two complements. Then the sum obtained is written 
to the left of the whole part of the previously obtained quotient. 
For example, for the product of 483 and 458: 

Number Complement 
Multiplicand.... . . . . 483 17 
Multiplier. . . . . . . . . . 458 42 

The difference between one factor and the complement of the 
other is 458 - 17 = 441. The product of the complements is 
17·42 = 714. Also 441/2 = 220.5. We have then 

714 + 500 = 1,214 
and the product is 

221,214 

Short-Order 

By means of simple algebraic properties we may obtain, too, 
squares of large numbers. Suppose, for instance, we have a 
number that is close to 1,000, say 986. We compute 9862 as 

9862 = 986·986 = (986 + 14)(986 - 14) + 
142 = 1,000·972 + 196 = 972,196 
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Let us examine thi~ by means of letters. Suppose our number 
is a; we obtain a number b such that 1,000 - a = b. We write 
then 

or 
(a + b)(a - b) + b2 = a2 + ab - ab - b2 + b2 = a2 , 

a2 = (a + b)(a - b) + b2 

Thus a = 986, and b = 1,000 - 986 = 14. 
The same method may be applied if the number is close to 

500. In this case b = 500 - a. 
F or example, 483 2 is calculated as 

4832 = 483·483 = (483 + 17)(483 - 17) + 172 = 500·466 + 172 

To obtain the product 500-466, we multiply 466 by 1,000 and 
divide the result by 2, or 466,000/2 = 233,000. Then 

4832 = 233,000 + 289 = 233,289 

A simple method for squaring numbers that end in 5 is devel
oped by means of algebra. Let the number of 10's in this number 
be a, and the number of units be b, then this number may be 
represented as lOa + b. For example 

35 = 10·3+5, 175 = 10,17 + 5 

We recall that if we have two numbers c and d, the square of 
their sum is 

(e + d)2 = c2 + 2ed + d2 

Now we may write that 

(lOa + b)2 = (lOa)2 + 2 ·10ab + b2 
or 

(lOa + b)2 = 100a2 + 20ab + b2 

But when the number ends in 5, b = 5. \Ve then have that 

(lOa + 5)2 = 100a2 + 20a,5 + 52 
or 

(lOa + 5)2 = 100a2 + 100a + 25 

The expression 100a2 + 100a may be rewritten as 

100a2 + 100a = 100'a(a + 1) 
We then have 

(lOa + 5)2 = 100·a(a + 1) + 25 
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a result giving us, a hint concerning the squaring of numbers that 
end in 5: every such number has a square ,that ends in 25. The 
digits to the left of the 25 are the result of the multiplication 
of the number of the 10's by a number that is one greater. 
Thus in 352 the number of the lO's is 3. One greater than 3 is 
(3 + 1) = 4. Then 3·4 = 12. Write 25 to the right of the 12, 
and we have 

352 = 1,225 

In a similar manner 1052 is calculated as 

10·11 = 110 

and 1052 = 11,025, or 1452 is calculated as 14·15 = 210, and 
1452 = 21,025. 

Rapid Extraction of Roots 

Square roots of numbers are obtained either from tables (such 
a table is given in the Appendix of this book) or there are spe
cial methods for their extraction (calculation). 

The usual method of extraction as found in algebra text
books is lengthy and requires much numerical work. Now 
we may learn a method which is not cumbersome, yet yields 
satisfa<>tory results. 

This method utilizes one important idea employed in mathe
matics: If we have a fraction (or a number very small in com
parison with some other number), the square of the fraction is 
so small that it may be discarded in computation. For example, 
suppose we have a fraction 0.01 which is a part of a number, say 
4.21. This number may be written as 4.2 + 0.01. Now if we 
square this number, we have 

4.212 = (4.2 + 0.01)2 = 4.22 + 2·4.2·0.01 + 0.012 
or 

4.212 = 17.64 + 0.084 + 0.0001 

The square of 0.01, which is 0.0001, may be disregarded and dis
carded; if 4.21 is correct to three significant digits, its square will 
also be correct to three significant digits and 0.0001 is of no 
value to us. 
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With this in mind we may proceed with the extraction of 
square roots; suppose we wish to calculate V 14. To check on 
our method we obtain its value as given in tables of square roots 

and have thatvi4 = 3.742. \Ve know that V14 is greater than 
3 (32 = 9), and is less than 4 (42 = 16). Let 

V14 = 3 + x 

where x is some fraction. Square both sides of the equation. 
We then have 

14 = 32 + 2·3x +x2 

or 
14 = 9 + 6x + x 2 

Now since x is a fraction, X2 is also a fraction, but much smaller 
than x. We therefore discard x2 and have 

14 = 9 + 6x 

Solving this equation for x we have that 

14 - 9 = 6x, or 6x = 5 
and 

x=t 
From this we have that 

which is only an approximate value. In decimals then 

V14 = 3.83 

Since we have one approximation to the value of V 14, we 
may use this as a basis and apply the same method once more. 

We may say then that V 14 = H + y (y may be either posi
tive or negative). Again squaring both sides of the equation we 
have 

Since y is a fraction we discard its square and have the equation 
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and from this, by solving for y, we have that 

= 1.. (504 - 529) 
Y 23 36 

or 
y = - ffi, or y = - Ny; = - fi 

Then 
Vi4 = 3i - fi = 3.83 - 0.09 = 3.74 

This is a second approximation, and we may proceed with 
another calculation to obtain a third' approximation. We write 

V14 = 3.74 +2 where 2 may be either positive or negative. 
Squaring both sIdes of the equation we have 

14 = 3.742 + 7.58z + Z2 

We again discard 2 and we have 

14 = 13.9876 + 7.58z and 7.58z = 0.0124 

From this we obtain that 2 = 0.0016 or, rounding, ,2 = 0.002. 
Then 

Vi4 = 3.742 

and this checks with the value of the square root as obtained 
from a table. 

Less Work, Same Result 

Often we must perform computations in which small fractions 
are involved, and these may require tedious work. Moreover, to 

be certain that our results are correct, we must perform the same 
work twice, in the process called "checking the computations." 

If, however, we take into consideration the agreement that 
when small fractions are involved we may 'discard their squares 
and larger powers, we may reduce the load of work and 'at the 
same time perform computations that are considerably more 
simple and more easily checked. 

Let us consider, for example, this customary calculation of 
the value of a fraction: 

3 
1 

1 + 10000000 

3 3 
~~-,--:- = -:-:-~:-:-::-,-

10000000 + 1 10000001 
10000000 10000000 

30000000 
10000001 
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Now, after the fraction is simplified in form. comes the job of 
long division: 

30000000 
20000002 
99999980 
90000009 
99999710 
90000009 

9999Wl010 
90000009 
99970010 
90000009 
99700010 
90000009 

97000010 
90000009 

70000010 
70000007 

3 

10000001 
2.9999997 

By this time the reader has no doubt ceased to wonder why it is 
called "long" division. However, a little algebra and as much 
reflection will enable anyone to dispense with so much work if 
we remember what was said concerning fractions that are very 
small. Let us examine the expression 

1 
l+a 

when a is a small fraction. Also let us consider the expression 

(1 + a) (1 - a) = 1 - a2 

Now if a is a very small fraction, a2 is still smaller. Then, as we 
nqw know, a2 may be discarded. We may then write 

(1 + a)(1 - a) = 1, approximately 

Dividing both sides of this equation by (1 + a) we have 

1 . I 1 + a = 1 - a, approxImate y 

If, as we have learned. we substitute subtraction for division 
(and long division, too), we must take care of one fact: In th~ 
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numerator of the expression calculated above there is a number, 
3, different from 1. Let us suppose that we have the expression 

A 
1+a 

The value of A may be any number (in the above expression it 
is 3). Here again we apply algebra before we proceed, and write 

A(1 + a)(1 - a) ., A 

that is, both sides of the equation (1 + a) (1 - a) = 1 are'mul
tiplied by A. Then we have 

A 
1 + a = A(1 - a) 

approximately. Now if A = 3 and a = 0.0000001, we perform 
the calculation of 

3 
1 

1 + 10,000,000 
as 

3 
1 + 0.0000001 = 3(1 - 0.0000001) = 3 - 0.0000003 = 2.9999997. 

We arrive at the same result, but we eliminated a lot of work. 
Moreover, in the place of long division we applied subtraction. 
Division must be checked either by a repeated division or by 
multiplication, and there is no need to point out that checking 
the division of 30,000,000 by 10,000,001 by multiplication of 
2.9999997 by 10,000,001 is tedious and lengthy. On the other 
hand, checking the subtraction of 0.0000003 from 3 by means 
of the addition of 0.0000003 to 2.9999997 is very simple. 

If in the equation 

A (1 + a) (1 - a) = A 

we divide both sides of the equation by (1 - a) we obtain an
other formula that may be used in economizing our work in the 
process of calculation 

A 
1 _ a = A(1 + a) 
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Th h . 2.75 b lid us t e expressIOn ---- may e ca cu ate as 
0.999975 

2.75 
0.999975 

2.75 ( ) 
1 _ 0.000025 = 2.75 1 + 0.000025 

and this is calculated as 

2.75(1 + 0.000025) = 2.75 + 0.000025·275 

Finally we obtain the result 2.75 + 0.00006875 = 2.75006875 
In a similar manner we can obtain the following approximate 

formulas which may simplify computations. 

(1 + a)2 = 1 + 2a + a2 and (1 - a)2 = 1 - 2a + a2 

Since a is very small, a2 is much smaller. We may discard a2, 

and we have 

(1 + a)2 = 1 +2a and (1 - a)2 = 1 - 2a 

Also, let 

~ = 1 + x and V 1 - a = 1 - x 

Squaring both sides of these expressions we have 

1 + a = 1 + 2x + x2 and 1 - a = 1 - 2x + x 2 

Again, if a is very small, x is very small, and x 2 is much smaller. 
We may then discard x 2 • We have then 

1 + a = 1 + 2x and 1 - a = 1 - 2x 

Solving these equations for x we find that in each case 

a x=z 
We then have two more approximate formulas 

and 
~=1+I 

v'l=a=1-~ 
2 

The reader will find an application of the last formula in Chap
ter 31. 



Algebra Looks at Instalment 
Buying 

Debt on the Instalment Plan 

In almost every publication there is at least one advertisement 
addressed to YOU. You are pressed to take some product TO
DAY, and pay the purchase price, "plus a small charge," in 
weekly or monthly instalments. This is known as instalment 
buying and, while generally quite fair as operated by reputable 
houses, often is abused, either by the seller or the buyer. 

Fundamentally it is just as legitimate and reasonable as any 
other business dealing, except that in many cases the purchaser 
fails to understand the full import of the transaction. In instal
ment buying the buyer must consider, besides the usual aspects 
of a simple cash-down purchase, that he also borrows a sum of 
money from the seller. And when money is borrowed, it is 
common to pay for the use of it. 

This price for the use of money is known as "interest." For 
every dollar borrowed, the borrower is expected to pay a certain 
amount (a certain fraction of the dollar) over the period the 
money is in his theoretical posses~ion. It is a common practice 
to compute the interest on the basis of a year, a borrower paying 
four, five, or six cents a year for every dollar borrowed for a year. 

Naturally this money is a form of commodity and the privi
lege of using it must have a price, such as any other product or 
service has. Generally this price, or interest, is fixed by state 
law, but these are not uniform throughout the country, varying 

224 
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from six cents on a dollar per year to three cents on a dollar per 
month. 

An advertisement that appeared recently contained a descrip
tion of a radio with the price, $49.95, in large type. And the 
purchaser was urged to have it delivered at once without paying 
a cent for it; the payment was to follow later. But a three-word 
sentence, revealing that there was a "small" credit charge, was 
almost hidden far below under an illustration of the radio. 

What this "small" charge was, one can only imagine. It 
would have to take care of the interest for a year, of the credit 
investigation, of the insurance on the radio (when you buy on 
instalments you do not own the article purchased until your debt 
is all cleared up) and of many other incidentals. Or it may 
happen that the cash price of the radio is less than $49.95, and 
only on $49.95 will the interest be charged. 

A prospective buyer should consider whether he is wise when 
he borrows money and pays too much for the use of it. \Ve 
generally pay too little attention to the cost of using money, for 
a dollar bill does not bear a tag telling how much it will cost us 
to borrow and keep it for a year. This we must first know how 
to compute. 

How to Learn the Price of Money 

When money is borrowed, the borrower pays to the lender 
an agreed-upon price for the privilege of using it- Thus the 
lender is able to earn on his money, a legitimate procedure pro
vided the charge is within the legal limits. If the interest is 
greater, the procedure is known as usury, and the interest is 
branded as usurious. 

<Interest is computed on the basis of the cost per dollar per 
year, and is a certain fraction of a dollar. Since there are 100 
cents in a dollar, this fraction is stated in terms of a certain num
ber of the hundredth parts of a dollar, and the amount of interest 
is called "per cent," which is derived from the Latin "centum" 
for hundred. Thus "per cent" actually means so much per hun
dred. Thus 1 per cent is synonymous with one per hundred, or 
one-one hundredth; 10 per cent means ten-one hundredths. 
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;.//' The symbol for percent is %. Thus when we say 5% we 
!~ :(,,' may interpret it as 0.05 . To transform a statement of a certain 
" number of per <;ents into a fraction, we simply divide the num-

ber by 100; thus 65 per cent is equivalent to 65/100 = 0.65. On 
the other hand, to transform a fraction into per cents, we mul
tiply it by 100; for example, 0.15 is equivalent to 0.15,100 = 
15 per cent. 

There are many problems besides those involving money that 
lean to the use of percentage and the methods we shall observe 
are applicable to all. 

Suppose we have a quantity and want to find a certain per- cent 
of it. For example, let us find 24 per cent of 500. We know 
that 24 is equivalent to 0.24 and the problem reduces to the 
finding of 24/100 of 500. We multiply 500 by 0.24, and have 
500,0.24 = 120. 

Very often we are confronted with a per cent problem "in 
reverse." There are two distinct cases in this type of a problem. 
Note that in finding a per cent of a number we actually had three 
numbers: 

a) The quantity a certain per cent of which was to be found, to 
be denoted by q. 

b) The statement of the per cent, to be denoted by p. 
c) The result, which is the part of the quantity q that is p per cent 

of it. 

Note that whatever arithmetic operations are performed with 
per cents, the per cents are translated into fractions by multi
plying the numerical statement of the percentage by 100; that is, 
we work with lOOp. We then have the relation 

q,1_ = r 
100 

This equation states the relation between the three quantities 
represented by the letters p, q, and r. Thus, if we know any 
two of these quantities, we may compute the third one. The 
equanon 

q.1_ = r 
100 

represents the relation used when ,ve computed 24/100 of 500. 
If we know q and r, we can compute the value of p; that is, if 
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we have the quantity and another quantity which is a certain~ 
per cent of it, we can compute the numerical value of this per ~ 
cent. We thus have 

p = 100y 
q 

For example; the population of the United States in 1930 was 
about 123,000,000 and in 1940, about 130,000,000. The increase 
of population in the ten-year period was about seven millions. In 
terms of per cent this increase is 

100 700 
7,000,000'123,000,000 = 123 

or about 5.7 per cent. 
If we know p and r-that is, if we know a certain quantity

and we also know that this quantity is a certain percentage of 
some other quantity (the one denoted by q), we can compute 
the value of q by means of the equation 

100y 
q=-

P 
For example, $34 is 8.5 per cent of 

100·34 = 3,400 = $400 
8.5 8.5 

With the process used in these three types of problems, all the 
per cent problems can be solved. 

In computation of interest, the amount of interest is stated in 
terms of per cents which are computed on a yearly basis. Thus 
when we refer to a 6 per cent interest, we imply that this repre
sents the price for the privilege of using borrowed money for 
one year. If, however, the interest is to be paid for a shorter 
period, say four months, then the amount of per cent is prorated; 
that is, the yearly interest is reduced to a four-month period. 
Thus the interest for four months on a 6 per cent yearly basis 
will be 

6%.4 = 201 
12 10 

Very often interest on borrowed money is regularly paid at 
intervals shorter than a year. On many occasions this interest is 



-.228 Mathematics-Its Magic & Mastery 

not actually paid but is added to the debt, and the enlarged debt 
is thus earning greater interest. The method of computation in 
this case is somewhat more complicated than direct computation 
of the earlier n-oted interest, which is known as "simple" interest. 
Addition of the interest to the debt so that it also may draw in
terest results in the accumulation of interest or, as we may say, 
the earnings on the money compounded. This kind of interest 
is known as "compound" interest. 

Advertising Is an Art 

Let us return now to the advertisement offering a radio for 
$49.95, plus the "small" credit charge. This credit charge de
pends on the cash price of the article. If the cash price is $49.95, 
then the instalment price will have to include the interest charges 
as well as other fixed charges to an extent depending on the prac
tices of the particular store. This additional charge may run 
from 15 to 20 per cent and the interest rate on instalments is 
generally 6 per cent per year. \Ve shall now consider the two 
in detail. 

Let us assume that the price of the radio, $49.95, is the cash
down price. Then the additional charge, assuming that it is 
20 per cent of the cash price, is $49.95 -0.20 = $9.99, and the 
total price of the radio is $49.95 + $9.99 = $59.94. To this a 
6 per cent per year interest charge is added. This charge is 
$59.94·0.06 = $3.5964, or $3.60. Thus the total indebtedness 
of the purchaser will be 

$59.94 + $3.60 = $63.54 

This amount is di~ided into twelve equal parts, and each part 
must be paid as a monthly instalment. We have then 

$6~254 = $5.295 

or $5.30. 
Now let us assume that $49.95 is not the sale price and that it 

includes the 20 per cent mark-up of the additional charges. If 
the cash-sale price is $100, then the additional charge is $20, and 
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the price to the purchaser, without the interest charge, is $120. 
If the sale price is taken as 100 per cent, then the additional 
charge is 20 per cent and the price to the purchaser, not includ
ing the interest charge, is 120 per cent of the cash-sale price. 
Thus $49.95 is 120 per cent of the cash price. Then, according 
to the method developed in the preceding section, we can com
pute the cash-sale price in the formula 

100r 
q=-

p 

where r = $49.95, and p = 120 per cent. We have then a cash
sale price of 

100~~~.95 = $41.625 

or $41.63. 
The indebtedness of the purchaser will be $49.95 and the in

terest charge of 6 per cent per year interest on this amount will 
be $49.95 ·0.06 = $2.997, or $3.00. Thus the total indebtedness 
of the radio purchaser will be $49.95 + $3.00 = $52.95. This 
amount is divided into twelve equal parts, and each of these parts, 

$52.95 
~ = $4.4125, or $4.42 

is the amount of the monthly instalment to be paid. 

What Makes the Instalment Wheels Go 'Round and 'Round 

If the purchaser had cash and could buy the radio for the cash
sale price, he could save all the additional charges as well as the 
interest charge. If the radio were selling for $49.95 cash, his 
saving would amount to 

$9.99 + $3.60 = $13.59 

If the radio were selling for $41.63 cash, his savmgs would 
amount to 

$52.95 - $41.63 = $11.32 

When an article is purchased by instalments, the purchaser's 
debt is getting smaller as he makes his regular payments. Let us 
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analyze his debt in detail. When the cash price of the radio is 
$49.95, the pur~haser owes: 

_ $63.54 for 1 month. 
After paying.$5.30 he owes $58.24 for 1 month. 
After paying $5.30 he owes $52.94 for 1 month. 
After paying $5.30 he owes $47.64 for 1 month. 
After paying $5.30 he owes $42.34 for 1 month. 
After paying $5.30 he owes $37.04 for 1 month. 
After paying $5.30 he owes $31.74 for 1 month. 
After paying $5.30 he owes $26.44 for 1 month. 
After paying $5.30 he owes $21.14 for 1 month. 
After paying $5.30 he owes $15.84 for 1 month. 
After paying $5.30 he owes $10.54 for 1 month. 
After paying $5.30 he owes $ 5.24 for 1 month. 
After paying $5.24 more his debt is finally paid. 

These transactions may be interpreted as follows. The in
debtedness of the purchaser is changing each month. In other 
words, since his debt is considered on the one-month basis, if we 
add his monthly indebtedness we may consider that he owed the 
total sum for one month only. Adding these monthly debts, we 
have 

$63.54 
58.24 
52.94 
47.64 
42.34 
37.04 
31.74 
26.44 
21.14 
15.84 
10.54 
5.24 

$412.68 

Thus the purchaser actually might have borrowed $412.68 for 
one month. This transaction cost him the amount that he could 
have saved had he paid cash for the radio; that is, it cost him 
$13.59, the interest that he paid for using $412.68 for one month. 
In terms of per cent, by the formula 

100r p=
q 
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where r = $13.59, q = $412.68, and p is equal to one-twelfth of 
the yearly rate of interest, the yearly rate of interest is 

12·100r 12·100·13.59_16,308_ " .' 
q , or 412.68 - 412.68 - 39.~ fler cent, approximately 

So the purchaser borrowed $49.95 and paid about 39.5 per cent 
yearly interest on this loan. 

If the cash price of the radio were $41.63, the buyer-borrower 
owes: 

$52.95 for 1 month. 
After paying $4.42 he owes $48.53 for 1 month. 
After paying $4.42 he owes $44.11 for 1 month. 
After paying $4.42 he owes $39.69 for 1 month. 
After paying $4.42 he owes $35.27 for 1 month. 
After paying $4.42 he owes $30.85 for 1 month. 
After paying $4.42 he owes $26.43 for 1 month. 
After paying $4.42 he owes $22.01 for 1 month. 
After paying $4.42 he owes $17.59 for 1 month. 
After paying $4.42 he owes $13.17 for 1 month. 
After paying $4.42 he owes $ 8.75 for 1 month. 
After paying $4.42 he owes $ 4.33 for 1 month. 
After paying $4.33 more his debt is finally paid. 

We may likewise interpret this transaction as if the purchaser 
borrowed a certain amount of money for one month only. His 
debt in the preceding transaction is changing every month on 
the monthly basis, and the total sum of the monthly debts is 

$52.95 
48.53 
44.11 
39.69 
35.27 
30.85 
26.43 
22.01 
17.59 
13.17 
8.75 
4.33 

$343.68 

Thus the purchaser actually might have borrowed this sum for a 
month, and the transaction cost him the amount he could have 
saved had he paid cash for the radio, or $11.32, the interest he 
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had to pay for llsing $343.68 for the month. Following the same 
procedure we find that the yearly interest he had to pay is 

12 ·100·11.32 13,584 5 . I 
343.68 = -343.68 = 39. per cent, apprOXImate y 

In other words, the purchaser borrowed $41.63 and paid about 
39.S·per cent yearly interest on this loan, and the "small" credit 
charge mentioned turned out to be about six and one-half times 
as large as the average interest charge, 6 per cent per year, made 
by banks. 

Before we proceed to examine some other types of purchases 
on instalments, such as mortgages and loans from finance com
panies, we shall develop some short-cuts in computation which 
will enable the reader to learn interest costs without much arith
metic work. 

The How-Much Ladder 

The reader may have noticed that in computing the rate of 
interest in the preceding section we added a column of twelve 
numbers. These, however, were not ordinary numbers; they 
were related to one another in that the difference between every 
two consecutive numbers was the same. For example, let us 
consider the following numbers 

5.24 
5.30 

10.54 
5.30 

15.84 
5.30 

21.14 
5.30 

26.44 
5.30 

31.74 
5.30 

37.04 
5.30 

42.34 
5.30 

47.64 
5.30 

52.94 
5.30 

58.24 
5.30 

63.54 
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Note that in the column to the right are shown the differences 
between any two of these consecutive numbers. These differ
ences are all equal and represent the monthly instalments paid to 
reduce and finally eliminate the debt. Th\ls 

10.54 - 5.24 = 5.30 
15.84 - 10.54 = 5.30 
21.14 - 15.84 = 5.30 

and so on 

So, if we know the first member of such a group of numbers 
and also know the magnitude of the difference, we are in a po
sition to construct the group of numbers. F or example, if the 
first member of such a group is 5.24, and the difference is 5.30, 
we have: 

The second term is 5.24 + 5.30 = 10.54. 
The third term is 10.54 + 5.30 = 15.84. 
The fourth term is 15.84 + 5.30 = 21.14. 
The fifth term is 21.14 + 5.30 = 26.44. 

However, let us examine this same property without recourse to 
any specific numbers and study the properties of such a sequence 
from a general point of view. 

Suppose the first member of a sequence of the type illustrated 
above is a, and the difference is d. Then our sequence is as 
follows: 

The first term is a. 
The second term is a + d. 
The third term is a + d + d = a + 2d. 
The fourth term is a + 2d + d = a + 3d. 
The fifth term is a + 3d + d = a + 4d. 

Note that in the terms of the sequence the coefficients (the nu
merical factors) of the d's are as follows: 

In the first term the coefficient is 0 (a + O·d = a). 
In the second term the coefficient is 1 (l·d = d). 
In the third term the coefficient is 2 (2·d = 2d). 
In the fourth term the coefficient is 3 (3· d = 3d). 

Also note that 
o = 1 - 1 
1 = 2 - 1 
2 = 3 - 1 
3 = 4 - 1 
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In other words, the coefficients depend on the number of the 
term, and the value of the coefficient in each case is one less than 
the number of the term. The reader may convince himself by 
writing down a 'sequence of any.number of terms. He will 
obtain the following results: 

The coefficient of the fifth term is 4. 
The coefficient of the sixth 'term is 5. 
The coefficient of the seventh term is 6. 
The coefficient of the tenth term is 9. 

Generally, then, if we have the kth term, its coefficient is 
(k - ]). Thus~he coefficient of the 100th term is 99, the coef
ficient of the 500th term is 499. 

This result enables us to write down, as well as any term of 
such a sequence, the sequence of numbers possessing the prop
erty described in this section. For example, if the first term is 
]5 and the difference is 2, the sequence is 15,17,19,21,23, ... 
The 25th term is 15 + 24· 2 = 15 + 48 = 63; the 70th term is 
15 + 69·2 = 15 + 138 = 153. 

An interesting property of such a sequence is that we can 
obtain the sum of its members without recourse to addition of 
all of them. Let us consider the following example. The se
quence 1, 2, 3, 4, 5, ... possesses the property of a sequence 
described in this chapter. Its first term is 1, and the difference is 
1. Suppose we wish to add the first twenty-five numbers 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 2& 

Below the sequence of the first twenty-five numbers we write 
the same sequence, term by term, in the same sequence but in 
reversed order, then we add the terms vertically. Note that in 
each case the sum is 26. Now there are twenty-five such sums, 
hence the sum of the two sequences is 25·26 = 650. But we 
added two sequences of the first twenty-five numbers. There-

f f h . 650 
ore, the sum 0 one suc sequence IS -2- = 325. 

This procedure may be applied to the addition of any se
quence. Note that the addition of the first twenty-five numbers 
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was reduced to adding the first and the last term, and the sum 
thus obtained was multiplied by the number of terms in the se
quence. Finally the product was divided by 2. 

Let us write two same general sequences, with one in reverse 
order. If the number of the terms is n, and the last term there
fore a + (n - Od, we have then: 

a, a + d, a + 2d, a + 3d, . ", a + (n - l)d 
a + (n - l)d, a + (n - 2)d, ................... a 

2a + (n - l)d, 2a + (n - l)d, ................. , 2a + (n - l)d 

Note that in the case of the general sequence each vertical sum 
is 2a + (n - l)d, and there are altogether n terms in each of the 
two sequences. Thus the sum of the two equal sequences is 

n[2a + (n - l)d] 

and the sum of one sequence is 

n[2a + (n - l)d] 
2 

However, note that 2a + (n - 1) d is the sum of the first and 
the last terms of the sequence. If we denote the last term by I, 
this sum can be written as (a + I), and the sum of the sequence is 

n(a + 1) 
2 

If this expression is applied to the two sequences given in the 
preceding section, we have 

a = 5.24, 1 = 63.54, and n = 12 

The sum of the sequence is then 

12(5.24 i 63.54) = 6 . 68.78 = 412.68 

Also a = 4.33,1 = 52.95, and n = 12. The sum of the sequence 
is then 

12(4.33 i 52.95) = 6·57.28 = 343.68 
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H ow to Buy a House on Instalment 

There are many instalment-payment plans for purchasing a 
house, but w~ shall examine here only two of the most practical 
examples and defer study of mortgage procedure to the next 
section. Frequently a house is bought by paying down a certain 
per cent of the cash price, the rest to be paid in equal instalments 
with the interest on the unpaid balance, or by paying down a 
certain per cent of the cash price with the rest to be paid, after 
the interest is added to it, in equal instalments. 

Suppose a house sells for $6,000. Usually a 10 per cent down 
payment is made, and the balance paid in monthly instalments 
for 10 or 20 years. Let us suppose that the interest is 6 per cent 
per year. Thus the down payment is $600 and the balance 
$5,400. If the ten-year payment plan is adopted, the monthly 

. 1 $5,400 $ 5 Th I . h msta ments are 10.12 = 4 . e payment p an IS t en as 

follows: 
After expiration of the first month, the payment is $45 plus 

interest at 6 per cent per year for one month on $5,400. The 
balance of the debt is $5,400 - $45 = $5,355. 

After expiration of the second month, the payment is $45 plus 
interest at 6 per cent per year for one month on $5,355. The 
balance of the debt is $5,355 - $45 = $5,310. 

After expiration of the third month, the payment is $45 plus 
interest at 6 per cent per year for one month on $5,310. The 
balance of the debt is then $5,310 - $45 = $5,265. 

Thus we note that every month the debt is decreased by $45, 
and the interest is correspondingly becoming smaller. The in-

terest for one month at 6 per cent per year is 61~ = 0.5 per 

cent. Thus the actual instalments, when paid up, will total 
$5,400. The total amount of interest paid can be computed as 
follows: 

The monthly balances of the debt represent a sequence in 
which the first term is $45, and the last term is $5,400. The 
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number of terms in this sequence is 120. Thus the sum of this 
sequence, according to the formula earlier obtained, is 

120(45 + 5,400) = 120· 5,445 = 653,400 = 326700 
2 22' 

On each term of this sequence 0.5 interest is paid, and there
fore the total interest on the total amount is 0.005·326,700 = 
$1,633.50. 

Suppose that the same $6,000 house is bought with a down 
payment of $600, the balance to be paid in monthly instalments 
of $60 each for 10 years. vVhat is the rate of interest on this 
plan? We can reason as follows: 

The first payment, $60, is unpaid for 1 month. 
The second payment, $60, is unpaid for 2 months. 
The third payment, $60, is unpaid for "months. 
The last payment, $60, is unpaid for 120 months. 

Thus we may proceed as if $60 were unpaid (1 + 2 + 3 + 
. 119 + 120) months, or 

120(1 + 120) = 60.121 = 7 260 months 
2 ' 

Suppose the rate of interest is x per cent per year. Then per 

month this rate is :2 per cent. The total amount paid will be 

$60·120 = $7,200. But the unpaid balance is $5,400. Then the 
interest is $7,200 - $5,400 = $1,800. This $1,800 is equal to 

the interest at -l~ per cent per month on $60 for 7,260 months. 

Then 1 x 
7,260· 100' 12. 60 = 1,800 

and after cancelling out and solving for x, find that the rate of 
interest is 

1800 . 100 . 12 600 4 6 . I 
x = 7260.60 = ill = .9 per cent, approxlmate y 

We can solve this problem in general, developing a formula 
by means of which we shall be able to determine the best method 
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of payment, the type of payment, the most convenient (or de
sirable) interest rate. 

Suppose the price of a house is P dollars, and the down pay
ment is D. Then P - D represents the debt incurred. 

We shall denote the rate of interest by r per cent (in compu
tation this will be changed into the fraction r/lOO) per year. 
We shall denote the number of payments in a year (generally 
12.) by k. Then the rate of interest for each portion of a year is 
r/k per cent (in computation this latter will be changed into the 
fraction r/lOOk). 

Let the number of instalments be n, representing the number 
of times payments of the equal instalments are made. 

The first instalment is owed 1 month, or one period if the arrange
ment is bv some other intervals than months. 

The second instalment is owed 2 months, or two periods. 
The last payment is owed n months, or periods. 

We then may consider as if a payment is owed 

(1 + 2 + 3 + 4 + . " + n) = n(n + 1) 
2 

months or periods. The amount paid in each instalment will 
be denoted by A. Then the total amount of interest paid is 

_r_ n(n + 1) A 
lOOk 2 

On the other hand, after n instalments each equal to A dollars
that is, nA dollars-are paid, the debt is paid up completely 
But the amount the purchaser is expected to pay is the balance 
(P - D) and the interest computed above. This sum must be 
equal to nA. We have then the following formula 

A = P - D + ~_ n(n + 1) A 
n lOOk 2 

This formula enables us to compute the amount of each of the 
equal instalments when we know the rate of interest, or, if we 
know the amount of the instalment, to compute the interest. 

For example, suppose that the price of the house P = $6,000; 
the down payment D = $600; the instalments are on a monthly 
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basis, k = 12; the rate of interest is 5 %; and the debt is to be 
paid up in 15 years, n = 12 ·15 = 180. What should be the 
amount of each monthly instalment A? 

Substitute these numbers in the above formula. \Ve have then 

180A = 6000 - 600 + _5_ 180·181 A 
, 100·12 2 

or 
180A = 5 400 + 5· 180· 181 A 

, 100·12·2 

Now, 5,400 = 30·180. Therefore, both sides of the equation 
may be divided by 180. We have then 

and 

or 

5·181 
A = 30 + 100. 12 .2 A 

181 
A = 30 + 20.24 A 

A = 30 + 181 A 
480 

Now we are ready to solve this equation for 'A. We have 

or 

finally 

A - 181 A = 30 
480 

480 - 181 A = 30 
480 

A = 30·480 = 14,400 = $48 16 
299 299 . 

Suppose that on the house, with the down payment still $600, 
the balance is to be paid in equal monthly payments of $45 for 
20 years. At what rate of interest is this debt paid off? We 
make the substitution in the above formula and have 

240.45 = 6000 - 600 + _r_ 240·241 45 
, 100·12 2 

or 

240.45 = 5400 + _2_ 240.241 45 
, 100·12 2 
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Dividing both sides of the equation by 120·45, we have 

Then 

and 

1 = r·241 
1,200 

1,200 4 8 . 1 r = ~ = .9 per cent approxImate y 

The above formula is not exact, because the exact formula must 
consider that interest is compounded during a long period. H~w
ever, this formula is sufficiently reliable for practical purposes. 

The Rich Get Rich, and the Poor Try to Borrow 

Highly useful if you are contemplating a loan from a finance 
company is the formula 

A = P - D + .. ~ dn + 1) A 
n lOOk 2 

where A is the amount of the monthly instalment, 
n is' the total number of the payments made, 
P is the price, 
D is the down payment, 
r is the rate of interest per year, 
k is the number of payments made each year. 
First let us take a look at the table below which is similar to 

those published by many finance companies. Generally, many 
of us accept such figures as correct, but with the above formula 
it is easy to check them, especially as to the statement that the 
interest on payments is calculated at the rate of 2.5 per cent per 
month. This rate is not actually less than the lawful maximum 
on all loans. In the State of New York, for example, that rate 
is 3 per cent per month on loans to $150, and 2.5 per cent per 
month on the remainder. The same rate is legal for Illinois; in 
Alabama the rate is 8 per cent per year, and in Wisconsin, 2.5 per 
cent to $100, 2 per cent to $200, and 1 per cent on the remainder. 
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Tables of maximum legal rates in other states are easily avail
able. Here is a typical finance company chart: 

BORROW $20 TO $300 WITH THESE SMALL MONTHLY PAYMENTS 

Cash 
Amount you repay each month (including all charges) for following periods 

Loan 
You 2 4 6 8 10 12 16 18 20 
Get mos. mos. mos. mos. mos. mos. mos. mos. mos. 
-----------------------------

$20 $10.38 $ 5.32 $ 3.63 $ 2.79 $ 2.29 $ 1.95 
30 15.56 7.97 5.45 4.18 3.43 2.92 
40 20.75 10.63 7.26 5.58 4.57 3.90 
50 25.94 13.29 9.08 6.97 5.71 4.87 

60 31.13 15.95 10.89 8.37 6.86 5.85 $ 4.60 $ 4.18 $ 3.85 
70 36.32 18.61 12.71 9.76 8.00 6.82 5.36 4.88 4.49 
80 41.51 21. 27 14.52 11.16 9.14 7.80 6.13 5.57 5.13 
90 46.69 23.92 16.34 12.55 10.28 8 . .17 6.89 6.27 5.77 

100 51.88 26.58 18.15 13.95 11.43 9.75 7.66 6.97 6.41 
125 64.85 33.23 22.69 17.43 14.28 12.19 9.57 8.71 8.02 
150 77.82 39.87 27.23 20.92 17.14 14.62 11.49 10.45 9.62 
175 90.79 46.52 31.77 24.41 20.00 17.06 13.40 12.19 11.23 

200 103.77 53.16 36.31 27.89 22.85 19.50 15.32 13.93 12.83 
225 116.74 59.81 40.85 31. 38 25.71 21. 93 17.23 15.68 14.43 
250 129.71 66.45 45.39 34.87 28.56 24.37 19.15 17.42 16.04 
275 142.68 73.10 49.93 38.35 31.42 26.81 21. 06 19.16 17.64 

300 155.65 79.75 5446 41.84 34.28 29.25 22.98 20.90 19.24 

These figures are based on prompt repayment. Advance payment reduces the 
cost of your loan proportionately, since you pay only for the actual time you have 
the money. Payments are calculated at the rate of 272% per month, which is 
less than the lawful maximum on all loans. 

For convenience in the above formula we shall replace the 
expression P - D with L, which represents the amount of the 
loan. We have then 

A = L + -'-- n(n + 1) A 
n lOOk 2 

Let us examine the rate of interest on a $200 loan which is to 
be repaid in twenty months in equal instalments of $12.83 a 
month. We have then 

r 20·21 
20 ·12.83 = 200 + 100.12' -2- 12.83 
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or, dividing both sides of the equation by 20, we have 

r 21 
12.83 = 10 + 100 '12'2 ·12.83 

and 
r 21 

2.83 = 100.12'2.12.83 

Finally, we have then 
2.83 ·100·12 ·2 

r = 
21·12.83 

and 

6,792 25 2 . I" r = 269.43 = . per cent, apprOXImate y 

Now this is only 4.8 per cent below the legal limit claimed 
in the table, but when pennies count, every extra cent is im
portant, and other loan offers may not be so advantageous. 

Consider the same $200 loan with the ten monthly instalments 
of $22.85. We then have 

r 10·11 
10·22.85 = 200 + 100.12·-2~·22.85 

Dividing both sides of the equation by lOwe have 

22.85 = 20 + r·11· 22.85 
100 ·12·2 

and 
285 = r·ll·22.85 

. 100 ·12·2 
Finally, \ve have 

2.85·100·12·2 6,840 2 .... 2 . 1 
r = 11.22.85 = 251.35 = ,. per cent, apprOXlmate y 

In this case the rate of interest is 2.8 per cent below the legal 
limit claimed in the table. 

As an exercise, the reader may check some other statements in 
the table to determine the rate of interest charged on the various 
payment plans. 

Some finance companies operate under a different plan. Sup
pose you wish to borrow $100 for a year, to be repaid in equal 
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instal.ents. This loan is chargeable to you at 6 per cent per 
year, but the interest is paid in advance. In other words, before 
you get the loan you pay the company $6. Thus instead of 
$100 you receive only $94. But your instalments are computed 
so that you continue to pay additional 6 per cent on the $100. 
According to the above formula your monthly instalments will 
be computed as follows: 

or 

6 12 ·13 
12A = 100 + 100.12·-2- A 

12A - 78A = 100 
200 

From this we have 

2,400A - 78A = 20,000 
or 

A = $8.62 

The amount of interest that will thus be paid is 

$8.62 ·12 - $94 = $103.44 - $94 = $9.44 

Now, if we use the formula once more we can compute the 
actual interest charged on this loan. We then have 

x 12 ·13 
8.62. 100 . 12 -2- = 9.44 

From this we obtain 

9.44·100·2 1,888 . 
x = 8.62.13 = 112.06 = 16.85 per cent, apprmamately 

Thus, even if you thought that you were charged 12 per cent 
(6 per cent + 6 per cent) interest you would be about 4.85 per 
cent off. Here, as in any other instalment transactions, the rule 
should always be: Stop, look, and compute. 

To conclude our examination of the rates of interest on loans, 
let us consider now the case of a mortgage. Generally, when 
there is a loan by mortgage the borrower gives to the creditor 
(that is, the one from whom he obtains the loan) a bonus, its 
magnitude depending on agreement. Let us consider an average 
case where a 10 per cent bonus is paid. Suppose that $1,000 is 
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obtained on a mortgage. The usual plan is to repay in yearly 
instalments, with the interest on the unpaid balance. Thus, less 
the bonus, the borrower obtains $900, but his debt is $1,000. 
Suppose that' the rate of interest is 5 per cent. His payments 
are then as follows: 

At the end of the first year 
he pays $200 and $50 interest. He still owes $800. 

At the end of the second 
year he pays $200 and $40 interest. He still owes $600. 

At the end of the third 
year he pays $200 and $30 interest. He still owes $400. 

At the end of the fourth 
year he pays $200 and $20 interest. He still owes $200. 

At the end of the fifth year 
he pays $200 and $10 interest. 

His mortgage is thus paid off. He paid as interest. 

$100 + $50 + $40 + $30 + $20 + $10 = $250 

It may seem that each year cost him $50, and this is exactly 5 per 
cent interest on a $1,000 loan. But is this so? Let us examine 
this case in detail. 

He owed $200 once for 5 years, once for 4 years, once for 3 
years, once for 2 years, and once for 1 year. Thus we may con
sider the following equation (denoting the interest rate by x per 
cent per year), 

200'1~0\6=250, or 2x~5.6=250 

Finally, we have 

250 8 . I x = 30 = .33 per cent, approxImate y 

Even if the above formula is not exact, though for practical 
purposes sufficiently serviceable, the result shows that the in
terest rate is greater by 3.33 per cent than the 5 per cent per 
year interest rate. Thus, we see that the old-time mortgage 
melodrama where the villain was always foreclosing on Little 
Nell may not be full-throated farce after all. For, despite twen
tieth-century legislation in many states, borrowing is still the 
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poor man's folly. All too often, only the rich can afford it-and 
generally they know better. 

PROBLEMS 

1. How should a loan of $300 be paid off in 15 monthly instalments 
at the rate of 4% per annum?-

2. A loan of $300 is made. A 6% service charge is made de
ductible in advance. The loan is paid off in 20 monthly instalments 
of $16.50 each. What is the yearly rate of interest charged? 

3. An article selling for cash for $75 is bought on instalment basis. 
$10 is paid down, and 20 monthly payments of $4 are arranged. 
What is the yearly rate of interest charged? What would be the 
yearly interest rate if the $4 were paid weekly? 

4. A loan of $100 may be paid off in monthly instalments of $9 
or weekly instalments of $2.10. A service charge of $5 is deductible 
when the loan is advanced on the monthly plan, and a similar charge 
of $4.50 is made when the loan is advanced on the weekly plan. 
Which of the two plans carries a lower yearly interest rate? 

5. A loan of $300 is made on an automobile. A service charge of 
6% is deductible in advance. Also an insurance charge of 5% is de
ductible in advance. The loan is repaid in 20 monthly instalments 
with an interest of 2 % on the unpaid balance (this is not a yearly 
interest rate, but 2% per month). What is the yearly interest rate 
charged on this loan? 



Chain-Letter Algebra 

The Silk-Stocking-Bargain Bubble 

Several years ago the Government prosecuted some ingenious 
business houses for an odd swindle and, strangely enough, based 
its case on some sleuthing in mathematics that revealed many 
interesting facts. Not the least of these was the fact that who
ever conceived the scheme was well acquainted with a certain 
branch of algebra which we shall examine in this chapter. For 
those who expected something for almost nothing and were vic
timized could have avoided reddened faces had they known the 
simple mathematical guards against such frauds. 

The mail-order business in general is a great and convenient 
institution, with the buyer well protected by rigid postal regu
lations, but in this case a flood of alluring and plausible letters 
descended ul'on thousands all over the country. The gist of 
these letters was that the recipient could get three pairs of pure
silk stockings for only fifty cents and should write to the under
signed company for particulars. Advertisements inserted in the 
newspapers and magazines also broadcast the same bargain, 
"within the reach of everyone." The plan appeared so simple 
and so enticing that it soon swept the country and other busi
nesses began to copy it. The plan was: 

The prospective buyer was to send fifty cents to the company, 
but this alone did not bring her the three pairs of stockings. In 
reply she would receive four coupons, which she was to sell to 
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her friends for.fifty cents each. ~he was to r~mit the two dot\\c 
lars to the company, and then receive the stockmgs. True, these '~~j 
cost her also some selling, but it was worth while. What hap-'';:' 
pened to the four coupons she sold? 

Each purchaser of a coupon (her name and address was sent 
to the company) received five more coupons. When she sold 
these and sent the $2.50 to the company, she received her stock
ings, costing her only the fifty cents she paid for her own coupon. 
Thus the first four persons sold twenty coupons to twenty dif
ferent individuals. These, in turn, sold five each, or one hundred 
coupons. We shall enumerate the sales of the coupons below: 

The first purchaser bought 1 coupon and sold. 
The 4 purchasers sold .............. . 
The 20 purchasers sold .............. . 
The 100 purchasers sold .............. . 
The 500 purchasers sold .............. . 
The 2,500 purchasers sold .............. . 
The 12,500 purchasers sold .............. . 
The 62,500 purchasers sold .............. . 
The 312,500 purchasers sold .............. . 
The 1,562,500 purchasers sold .............. . 
The 7,812,500 purchasers sold .............. . 

4 coupons 
20 coupons 

100 coupons 
500 coupons 

2,500 coupons 
12,500 coupons 
62,500 coupons 

312,500 coupons 
1,562,500 coupons 
7,812,500 coupons 

39,062,500 coupons 

On the surface, this scheme appeared quite innocent, but let 
us suppose that the number pyramids to 1,562,500 purchasers 
and that these sell their 7,812,500 coupons. The 7,812,500 pur
chasers, in turn, sell their 39,062,500 coupons and get their three 
pairs of stockings. But the final 39,062,500 purchasers must sell 
195,312,500 coupons to get theirs, and there aren't any more cus
tomers left. This was why the Government stepped in. 

A scheme such as this (reminiscent of the frequent personal 
"send a dollar" letter fads) is known as the "chain-letter," but it 
serves many legal purposes, particularly in political campaigns. 
A campaigner writes a letter to a number of friends. These, in 
turn, send copies of it to the same number of friends, and so on. 
In a short time even millions of persons could be reached with 
the message, provided the chain were unbroken. 

The reader lJ!ay have observed that the series of numbers used 
above increased with a definite regularity. Beginning with the 



248 Mathematics-Its Magic & Mastery 

number 4, every succeeding number was five times as large as 
the preceding one. 

This relation- between numbers, such that every two neighbor
ing numbers are in a certain ratio (for example, above we had a 
series such that every two numbers succeeding one another were 
in the ratio of one to five) is common in the practical experience 
of man as well as in nature, as we shall see. 

Dream for an Opium Eater 

The dru:g opium is obtained from the opium poppy plant. A 
single ripe poppy yields about 3,000 poppy seeds, and from each 
seed a new plant may be grown. Let us see how many poppy 
plants we could have at the end of ten years if no seeds were lost 
and all were planted and grew into plants. Starting with one 
plant, at the end of a year we have 3,000 seeds. Then: 
At the end of the second year, 

we have 3,000·3,000 = 9,000,000 = 9.106 seeds. 
At the end of the third year, 

we have 3,000.9.106 = 27.109 = 33 .109 seeds. 
At the end of the fourth year, 

wehave 3,000.33 .109 = 34 .1012 seeds. 

There is no need to write out all the numbers of seeds at the 
end of each year, which would represent the number of plants 
during the next year; let us examine the numbers obtained thus 
far. 

Note that the number of seeds at the end of the third year is 
33109, or 33 (103 )3. 

The number at the end of the fourth year is 34 1012, or 
34 (103)4. 

At the end of the fifth year w~ shall have 3,000.3 4 (103)4 = 
35 (103 ) 5 seeds. 

Thus we observe that the exponents of the 3 and of the (103 ) 

are the same as the number of the year at the end of which the 
seeds are obtained. Then at the end of ten years we shall have 
310 (103 ) 10 poppy seeds, which would give th~ same number of 
plants. This is one of our number giants. The reader will find 
that it is 

59,049,000,000,000,000,000,000,000,000,000,000 
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Let us suppose that the entire surface of the earth were suitable 
for the cultivation of poppy plants. The radius of the earth is 
about 4,000 miles, or about 4,000·5,280 = 21,120,000 feet. The 
area of the surface of a sphere is obtained by the formula 
A = 4nr2, where r is the radius of the sphere. Then the area of 
the surface of the earth is 

4·3.14· (21,120,000)2 
or 

560,244,326,400,000,000 
or 

6.1017 square feet 

The number of the poppy seeds at the end of ten years, or the 
number of the plants at the beginning of the eleventh year, is 
6.1034 • Thus for every square foot of ground there will be 

6.1034 
~---,-,-=-c- - 1017 
(6.10 17 ) -

100,000,000,000,000,000 poppy plants 

which would be a problem of squeezing for even the stoutest 
subway guard. 

The Family-Minded Fly 

The common fly is not only annoying but appallingly prolific; 
what harm a single one may cause if it and its progeny are al
lowed to live and breed offers an interesting study. 

Let us suppose that one female fly on April 1 (April Flies' 
Day) lays 200 eggs, all of which hatch, and that a fly reaches 
maturity within three weeks after the eggs have been laid. How 
many flies will there be on October 6, at the end of 189 days? 
Let us suppose, too, that out of these 200 eggs 100 female flies 
will hatch. 

At the end of the first three weeks (April 21) the 100 females 
each will lay 200 eggs, from which 1002 females will hatch at 
the end of the second period of three weeks. 
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At the end ,of the third period of three weeks there will hatch 
100 -1002 = 1003 female flies. Between April 1 and October 6 
there are nine three-week periods; thus at the end of the ninth 
period there will hatch 1009 female flies and as many males, or 
200· 1008 flies. We assumed that none is to die, so if all nine 
generations survived, their population is the sum of all the gen
erations. Calculating the last generation only, with the number 
of flies on October 6 at 2.1018, let us suppose that each fly is 
0.2 inch, or 2 '10- 1 inch long. Then all these flies would form 
a line 2-1018 '2'10- 1 = 4-1017 inches long. Since there are 12 
inches in a foot and 5,280 feet in a mile, the line would stretch 

4.1017 1017 1016 . 

12-5,280 = 15,840 = 1,584 mdes 

Let us round 1,584 to 2,000. \Ve have then 

;~~60 = 5 1012 = 5,000,000,000,000 miles , 

The distance from the earth to the sun is about 92,000,000 miles. 
The line of flies would be about 

5,000,000,000,000 _ 50000 . 
92 000 000 - , tImes , , 

longer than the distance from the earth to the sun. It is indeed 
just as well that nature provides that not all the eggs are hatched, 
and that there are bald men and other natural enemies to see that 
not all the flies survive. 

The Arithmetical Plague of Australia 

One of Australia's early colonists brought with him a few 
rabbits, which soon escaped into the open country. A few years 
later, hordes of rabbits were overrunning the farms and destroy
ing crops. Not until almost the entire population of Australia 
was drafted into a war of extermination were they checked. 

A female rabbit can bear seven litters a year, each litter con
sisting of about eight baby rabbits. These mature very quickly, 
and within a year can have litters of their own. Let us assume 
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that one female has fifty rabbits a year, half of which are fe
males, and that these, in turn, bear fifty rabbits a year, and so on. 
Thus the progeny of one female can be tabulated as follows: 

At the end of 1 year, 
At the end of 2 years, 
At the end of 3 years, 
At the end of 4 years, 

so 
SO + 50·25 
SO + 50· 25 + 50· 25 . 25 
SO + 50·25 + 50·25·25 + 50·25·25·25 

Note that the number of progeny of one female at the end of a 
certain year is a sum of several numbers. 

The first is SO 
The second is SO· 25 
The third is 50·25·25 
The fourth is 50· 25· 25 . 25 

We note that each number is 25 times larger than the preceding 
one. Also, the second term contains 25 as a factor once, the third 
term contains 25 as a factor twice, the fourth term contains 25 
as a factor three times. Thus, every term contains 25 as a fac
tor one less times than the number of the term. The fifth term 
will be 

50·25·25·25·25, or 50.254 

Thus at the end of ten years the progeny of one female rabbit 
will be 

SO + 50·25 + 50.252 + 50.253 + 50.254 + 50.25 5 + 
SO· 25 6 + SO· 25 7 + SO· 25 8 + 50.'259 

We can obtain the sum of these numbers as follows: 

SO SO 
50·25 1,250 
50.252 = 50·625 31,250 
50.253 = 50·15,625 781,250 
50.254 = 50·390,625 19,531,250 
50.25 5 = 50·9,765,625 488,281,250 
50.25 6 = 50·244,140,625 12,207,031,250 
50.257 = 50·6,103,515,625 305,175,781,250 
50.258 = 50·152,587,890,625 7,629,394,531,250 
50.259 = 50·3,814,697,265,625 = 190,734,863,281,250 

Total. . . . . . . . . . . . . . . . . . . 198,682,149,251,300 
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In approximately ten years the progeny of one female rabbit will 
then consist of 

200,OQO,000,000,000 = 2.1014 rabbits 

Above we found that the total area· of the surface of the· earth 
is about 6.1017 square feet. About 0.3 of this, or about 

0.3.6.1017 = 1.8.1017 square feet 

is dry land. Then for every rabbit there will be about 

18.1017 
2.1014 = 900 square feet of dry land 

Such computation of the sum of the number sequence used is 
a very long process; we shall see in the next section whether a 
short-cut is possible. 

The How-Many-Times Ladder 

Let us examine in general a sequence of numbers such that 
each succeeding one is a certain number of times larger (or 
smaller, as we shall see presently) than the one immediately pre
ceding it. Let the first term of such a sequence be a, and the next 
term be r times greater; that is, the second term is ar. The third 
term is then ar·r = ar2. We then have the sequence: 

The first term is a 
The second term is ar 
The third term is ar2 
The fourth term is ar3 
The fifth term is ar4 

Note that there is some relation between the exponent of the 
letter r (known as the "common ratio" of this sequence) and the 
number of the term. Thus, we have the following exponents 
of r: 

In the second term, 1 
In the third term, 2 
In the fourth term, 3 
In the fifth term, 4 

(2 - 1 = 1) 
(3 - 1 = 2) 
(4 - 1 = 3) 
(S - 1 = 4) 

We see that the exponent of r is a number that is 1 less than 
the number of the term. Thus the exponent of r in the tenth 
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term is 9 (10 - 1 = 9), and in the twenty-fifth term, 24 (25 -
1 , 24). Then: 

The tenth term is ar9 

The twenty-fifth term is ar24 
Finally the kth term is ark- 1 

We may point out here that the above method of determining 
the exponent of r holds for the first term of the sequence also. 
The first term is a, and the exponent of r in this term is 1 - 1 = o. 
It is accepted that any number raised to the power zero is 1. Thus 
rO = 1, aro = a-I = a, 50 = 1, 125 0 = 1. 

If we have a sequence in which the first term is a, the com
mon ratio is r, and the number of terms is n, then it can be 
written as 

Thus if a = 2, r = 3, and n = 15, the sequence is 

2,2.3,2.32,2.33,2.34, 2.3 5 , 2.36 , 2.3 7 , 2.38 , 2.39 , 2.3 10 , 2.311 , 

2.312,2_313,2.314 

The writing of the sequence of the terms does not represent 
the important phase of t.he problem that arises in connection 
with such a sequence. Generally it is the sum of such a sequence 
that is of greater interest to us than the individual terms (mem
bers) of the sequence. 

Suppose that we have the sequence 

a, ar, ar2, ar3, ar4, ___ , ar n - 1 

Multiply each term of this sequence by r. We have then another 
sequence 

Let us write these two sequences as follows (as sums of their 
terms): 

S = ar + ar2 + ar3 + ar4 + arD + ___ + ar n 

s = a + ar + ar2 + ar3 + ar4 + _ .. + ar,,-l 

If we obtain the difference S - s, we have (note that the terms 
ar, ar2, ar3 , ••• , arn - 1 will all cancel out) 

S - s = ar" - a 
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But if we recall that the sequence S was obtained by multiply
ing the sequence s by r, that is, S = sr. We have then that 

sr - s == arn - a, or s(r - 1) = arn - a 

From this, -by dividing both sides of the last expression by 
(r - 1), we find that the sum of the sequence is 

ar n - a 
s = r - 1 

This is the formula for the sum of the n terms of the sequence 
and this sequence is known as the "geometric series." . 

Let us apply this formula to our computation of the number 
of progeny of the fly. The sequence is 

200, 200·100, 200.1002 , 200.1003 , 200.1004, 200.1005, 

200.1006,200.1007,200.1008 

and here a = 200, r = 100, and n = 9. The sum of this se
quence is thus 

200.1009 - 200 200(1,000,000,000,000,000,000 - 1) 
100 - 1 100 - 1 

Our computation is then 

200·999,999,999,999,999,999 = 200.10101010101010101 
99 ' , <' , , 

or 2,020,202,020,202,020,200 

A Sequence for the Rabbits 

Now let us apply our ladder formula to the female-rabbit 
problem. To prevent too rapid increase, breeders of rabbits 
usually kill some and sell the meat and fur. Let us suppose that 
80 per cent of each generation of rabbits is slaughtered. What 
will be the number of rabbits left alive after ten years? 

After one year there will be left 50 - 0.8·50 = 50 - 40 = 10 
rabbits (10 = 0.2·50), half of them females; after two years, 

5·10 + (50·0.2)5 = 10 + 10·5 

and after three years, 
10 + 10·5 + 10.52 
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Thus we have a sequence of terms. The first is a = 10, the 
common ratio is r = 5, and the number of terms is n = 10. The 
sum of the terms of this sequence is 

or 

10· 510 - 10 
5 - 1 

10·9,765,625 - 1 
4 

A Clever Rat 

10(5 10 - 1) 
4 

10,9,7465,624 = 24,414,060 rabbits 

Psychologists have a theory that much about human nature 
can be learned by observing the behavior of rats. Every psycho
logical laboratory has a pampered collection of white rats, some 
of which are taught to perform various t,ricks. They learn 
quickly, but whether. the things they do 
correspond to what we humans do is 
a debatable point. However, to avoid 
antagonizing the psychologists, we shall 
grant them their assumption, since it 
won't affect our discussion of this some
what more fantastic problem: 

A psychologist places a white rat in a 
box. On each of the opposite walls of 
the box there is a hole just large enough for the rat to stick 
its head through. The rat is taught to run from one wall to 
the other. As soon as it reaches one wall, it sticks its head 
through the hole, then runs to the opposite wall and sticks its 
head through the second hole. 

At the start, it takes the rat one minute to get from one wall 
to the opposite one. The return trip, however, consumes half 
a minute. The next trip requires only one-fourth of a minute, 
the next one-eighth of a minute, the next one-sixteenth, and so 
on. Every time the rat makes a trip, the following trip requires 
half the time consumed for the previous trip. This goes on in
definitely. How long will it take the rat to have its head sticking 
out of both holes at the same time? 
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Let us write the sequence of the numbers that represent the 
lengths of the trips: 

The first trip takes 
The second trip takes' 
The third trip takes 
The fourth trip takes 
The fifth trip takes 

1 minute. 
Yz minute. 
7i minute. 
Ys minute. 

>16 minute, etc. 

Thus we have a sequence of numbers, the first term of which is 
a. The common ratio of this sequence is 1/2, because each suc
ceeding term is half the preceding one. Let the number of terms 
be n. We do not know how many trips will be required ·to 
accomplish the feat of sticking one head out of the holes in the 
opposite walls at the same time, but we are safe in assuming the 
number will be large. 

The sum of the terms of our sequence is then 

l·(t)n-l 
t - 1 

To be able to compute this expression let us examine what 
happens to a fraction that is less than 1, such as 1/2, 1/3, 1/5, 
when such a fraction is multiplied by itself, or when it is squared, 
as 

But 1/4 is less than 1/2. Thus when we square a fraction less 
than 1 we obtain a smaller fraction. Similar results will be ob
tained if we square any other fraction. For example, 

0)2 = i, (0.001)2 = 0.000001, (t)2 = 499 

If we square 1/4 we obtain 1/16. But 1/16 = (1/2)4. Thus 
we see that when a fraction is raised to a power the result is 
smaller than the original fraction. And when the exponent of 
the power is great the fraction becomes very small. F or example, 

(i)64 = 1 
18,446,744,073,709,551,616 

This fraction is so small that it is almost negligible in magnitude. 
Now, if we have (l/2)n, and n is very large, say 10,000,000,-

000,000, the value of (1/2) n is so small that we may disregard it. 
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Let us take, for example, (1/2) 64 and use it in the expression for ~ 
the sum of our sequence. We have then ~ 1!!',1 

~ 

1· (!)"64 - 1 
! - 1 

1 _ 1 
18,446,744,073,709,551,616 

! - 1 

Multiply both the numerator and the denominator of the frac
tion above by (-1), and this will not change the value of the 
fraction. We have then 

1 _ 1 
18,446,744,073,709,551,616 

1 -! 
18,446,744,073,709,551,615 
18,446,744,073,709,551,616 

1 
"2 

18,446,744,073,709,551,616 - 1 
18,446,744,073,709,551,616 

1 
"2 

2·18,446,744,073,709,551,615 
18,446,744,073,709,551,616 

= 36,893,488,147,419,103,230 = 1.9999999999999999999 
18,446,744,073,709,551,616 

approximately. 
Now, if we disregard in our expression for the sum of the se

quence (after we multiply its numerator and denominator by 
-1) 

1 - ! 

the fraction (1/2)n, provided we know that n is very large, we 
obtain 1 1-

1-!=I=2 

and this result differs only by 0.0000000000000000001 from the 
result obtained by us above. 

Thus, theoretically (and "theoretically" is emphasized) the 
answer to our question is that it will take the rat exactly two 
minutes to stick its head out of both holes at the same time. Of 
course, the rat will never accomplish this feat, but mathemati
cally the answer is entirely correct. Here, however, the reader 
should take note that we made use of a new friend, "infinity." 
\Ve assumed that the number of terms (the number of trips that 
the rat will have to make from one wall to the other) is 12 = 00 •. 
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There are many curious problems based on the assumption 
that a diminishing sequence, similar to the one used above, hav
ing an infinite number of terms, itself is infinite. For example, 
the Greek mathematician Zeno, who lived about 400 B.C., con
tended that Achilles (who was also a famous runner) could not 
win a race with a turtle. Zeno reasoned as follows: 

Suppose that Achilles is 1,000 feet behind the turtle at the 
start of the race and that Achilles can run ten times as fast as the 
turtle. Thus, when Achilles covers 1,000 feet, the turtle will 
have covered 100 feet; when he covers 100 feet the turtle will 
have covered 10 feet, when Achilles covers 10 feet, the turtle 
will have covered 1 foot. Consequently, regardless of the dis
tance covered by Achilles, the turtle will always be one-tenth of 
that distance ahead of him. We may tabulate the race in this 
fashion: 

Stage of Race 

Start 
First lap ..... . 
Second lap ... . 
Third lap ..... . 
Fourth lap ... . 
Fifth lap ..... . 
Sixth lap ..... . 
Seventh lap ... . 

Distance Covered by 

Achilles The Turtle 

1,000 
100 

10 
1 
0.1 
0.01 
0.001 

100 
10 
1 
0.1 
0.01 
0.001 
0.0001 

Distance 
between Them 

in Feet 

1,000 
100 

10 
1 
0.1 
0.01 
0.001 
0.0001 

If we sum these three sequences separately, we shall find that 
Achilles will have covered, if we assume that the number of the 
laps is infinite, 

1,000 _ 10,000 f 
1 - 0.1 - 9 eet 

The turtle then will have covered 

100 1,000 f 
1 - 0.1 = -9- eet 

The difference between these two distances is 

10,000 - 1,000 10,000 - 1,000 = 9,000 = 1 000 f 
-9- - -9- = 9 9' eet 
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Since this is exactly the original distance between Achilles and 
the turtle, Achilles will therefore overtake the turtle under the 
conditions set by Zeno, but it will take him an infinite number 
of laps. 

We will learn in Chapter 31 
that when we join the midpoints 
of the sides of a triangle with a 
straight line this straight line is 

B 

equal to one-half the third side. A L.----~---~a 
Now, suppose that we obtain three 
such lines in a triangle. Each of them will be equal to one-half 
the third side. Thus 

and 

Then 

DE = O.SAC 
EF = 0.5 AB 

DF = O.SBC 

DE + EF + DF = 0.5 (AB + AC + BC) 

that is, the sum of the sides of the inner triangle is equal to one
half the sum of the sides of the outer triangle. 

If we repeat this process and obtain an inner triangle inside 
the inner triangle by joining the midpoints of the sides of the 
first inner triangle, we shall find that the sum of the sides of the 
second inner triangle is 0.5 (DE + EF + DF). 

Thus, if the sum of the sides of the first triangle is s, then the 
sum of the sides of the first inner triangle is 0.5s, the sum of the 
sides of the second inner triangle is O.Ps, the sum of the sides of 
the third inner triangle is O.Ps, and so on. We thus have a se
quence whose first term is s, and whose common ratio is 0.5, and 
whose number of terms may be n. If n is infinitely large, the 
sum of our sequence of the sums of the sides of the triangles is 

s - O.sns 

1 - 0.5 

But, if n is infinitely large, 0.5 n becomes very small (because 
0.5 is a fraction less than 1), and the sum of the sequence may 
be written as 

s 
1 - 0.5 
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and this is equal to 2s. Thus the sum of the sides of all the tri
angles obtained by consecutively joining the midpoints of the 
sides of the inner triangles, if this process is continued indefi
nitely, is equal to the sum of the s.ides of the first triangle. 

The Banker's .Mathematics 

The sequences we have just discussed are not merely mathe
matical curiosities; they find universal application in banking, 
merchandising, and other industry. Let us consider the simplest 
problem. All others follow from it. 

Suppose thafyou have a savings account of $100, and the 
bank pays 2 per cent interest per year. At the end of the year 
the interest is 0.02 ·100 = $2. Thus at the end of the year the 
savings account will be 

1 CO + 0.02 ·100 = 100(1 + 0.02) = $102 

If the $102 is kept in the bank for another year, the interest on 
it will be 0.02·102, and the savings account at the end of the 
second year will be 

102 + 0.02 ·102 = 102(1 + 0.02) 
But, since 

102 = 100(1 + 0.02) 
therefore 

102(1 + 0.02) = 100(1 + 0.02)(1 + 0.02) = 100(1 + 0.02)2 

At the end of the third year the interest on the 100(1 + 0.02)2 
IS 

0.02[100(1 + 0.02)2] 

and the savings account at the end of the third year is 

100(1 + 0.02)2 + 0.02[100(1 + 0.02)2] = 100(1 + 0.02)2(1 + 0.02) 

or 100(1 + 0.02)3 

Thus we see that when the money is left untouched, the origi
nal amount at the end of the first year is multiplied by (1 + 0.02), 
and the product so obtained is the new amount on the savings 
account. The same process is repeated at the end of every year, 
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the amount left on the savings account at the beginning of the . 
year being multiplied by (1 + 0.02), and the product so obtained 
representing the money on the account at the end of the year. 
Thus at the end of the second year the savings account will be 

102·1.02 = $104.04 

and at the end of the third year 

104.04·1.02 = $106.1208. or $106.12 

Now we can develop a general formula for this method of 
computing interest, which is known as "compound interest" 
because the interest is added to the original amount, or com
pounded, and interest is earned on the new amount. 

Suppose that the original amount is A, and the interest rate in 
decimal fractions is r. Then at the end of the first year the new 
amount will be A (I + r). During the second year A (1 + r) 
will earn r·· A (1 + r), and the new amount will be 

AC1 + r) + r·A(l + r) = A(l + r)2 

At the end of the third year the new amount will be A (1 + r)3. 
Generally, if the original amount is left untouched for n years, 
and the interest rate is r, the final amount will be 

A(1+r)n 

Now suppose that A dollars is deposited at the beginning of 
every year, and the interest rate is r. Then at the end of the first 
year the amount will be A (1 + r) 
and at the beginning of the second year, 

A+A(l+r) 

At the end of the second year the amount will be 

[A +A(1 +r)J(1 +r) =A(l +r) +A(l +r)2 

and at the beginning of the third year, 

A + A(l + r) + A(l + r)2 

At the end of the third year the amount will be 

[A + A(l + r) + A(l + r)2](1 + r) 
or 

A (1 + r) + A (1 + r)2 + A (1 + r)3 
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Generally, then, at the end of the nth year the amount will be, 
if yearly deposits of A dollars are made regularly, 

A(I+r)+A(1+r)2+A(1+r)3+A(1+r)4+ ... +A(I+r)n 

This is our sequence: its first term is A (1 + r), and its common 
ratio is (I + r), and the number of terms is n. The sum of this 
sequence IS 

A(1 + r)(1 + r)n - A(1 + r) A(t + r)n+l - A(1 + r) 
(1 + r) - 1 r 

Thus, for example, if someone deposits $100 at the beginning 
of every year for five years, and the interest rate is 2 per cent, 
then at the end of five years he will have 

100(1.02)6 - 100 ·1.02 
0.02 

We compute by multiplication (1.02)6 = 1.1262, approximately. 
Then 100·1.1262 - 100·1.02 = 112.62 - 102 = 10.62. Finally 

10.62 = $531 
0.02 

approximately. A result correct to cents would be obtained if 
we used seven decimals in (1.02)6. 

Before going ahead with. compound interest and its applica
tions to various banking and business transactions, we shall need 
a new tool to facilitate computations with such expressions as 
the sum of a sequence. In the next chapter we shall forge the 
tool and put it into production. 

PROBLEMS 

1. The inventor of chess asked that on the first square of the chess
board one grain of wheat be placed, on the second square two grains, 
and so on until the sixty:"'fourth square was reached, each time the 
number of grains being doubled. 

a) How many grains of wheat was he to receive? 
b) If a cubic meter contains 15,000,000 grains of wheat, how 

manv cubic meters of wheat would be his reward? 
'c) If the grains that he was to receive were counted one each 

second, how long would it take to count them all? 
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2. The progeny of a rat is about 800 a year. Assuming that half 
are females and that all the rats survive, what will be the progeny of 
one female rat at the end of five years? 

3. If someone deposits $500 at the beginning of every year for 
three years, and the rate of interest is 4 per cent, what will be the 
amount at the beginning of the fourth year? 

4. Someone learns a news item at 9 A.M. and tells it to three of his 
friends. Everyone of these, in turn, tells it within half an hour to 
three of his friends. This process continues until 2 P.M. How many 
persons will learn the news by that time? 

5. What is the value of the unending decimal fraction 
0.444444 ... ? 



Napier's Escape fronz Drudgery 

Streamlining Everyday 
Computation 

The golden age of mankind-in science if not in morality
may appear to have been already attained by recent techno
logical progress. We can speed through space at more than 400 
miles an hour. \Ve can tune in any part of our earth world by 
the flip of a dial or take a peek through telescopic eyes at worlds 
millions of light-years away. vVe can choose our own atmos
phere and breathe air fresher than the great outdoors. We have 
learned how to split atoms and to harness unseen rays that can 
pass through ten feet of lead; we have amazing new weapons by 
which we can blitzkrieg disease, capture bodily energy, and pro
long life. And, not to forget our mathematics, we have machines 
that can solve problems beyond the human brain. 

But, strangely enough, in computations we still depend upon 
a very simple device invented some three centuries ago, a device 
that over these years has represented the most striking example 
of simplification in man's work with numbers. 

Even in this book whenever we had to perform computations 
such as (1.02) 6 we had to resort to multiplying 1.02 by itself six 
times. The calculation of 

(!)64 - 1 
(! - 1) 

involved numbers that would have taxed the energy and patience 
of anyone. But problems of this kind, as we shall see presently, 
are not uncommon in the everyday life of the average citizen. 

264 
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Consider a simple multiplication such as 6,378·7,931. So far 
we know of only one method by which the product can be ob
tained; we must multiply in this fashion: 

6378 
7931 

6378 
19134 

57402 
44646 

50583918 

Multiplication of three numbers becomes even more compli
cated; for example the product of 476, 5,834, and 3,897: 

5834 
3897 

40838 
52506 

46672 
17502 

22735098 
476 

136410588 
159145686 
90940392 

10821906648 

We need not dwell on division, the raising to a power. Nor 
need we consider the extraction of square roots, as for square 
roots we may use tables such as those in the Appendix. But 
square roots are not the only roots in common use, as we shall 
discover when we examine the method of computation that took 
the drudgery out of numerical work. This method was invented 
by the Scottish nobleman Lord John Napier, who made it public 
in 1614. Almost immediately it revolutionized every branch of 
mathematics and science pure or applied, and its application sim
plified and speeded up computation to such an extent that not 
one of the modern machine inventions that can solve "unsolv
able" problems can be compared with it. The invention of 
Napier truly marked a great advance in the progress of man. To 
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. be able to grasp fully the import of Napier's invention we shall 
first recall certain facts from our earlier algebra. 

Napier's Clue: Addition Is Easier 

When we multiply a number by itself this can be recorded 
symbolically, supposing the number is a, as a·a. When we mul
tiply the same number three, four, five, or n times, for example, 
we can record these multiplications as, respectively, 

and 

a·a·a 
a·a·a·a 

a·a·a·a·a 

a·a·a·a· ... ·a (the letter a is repeated n times) 

However, instead of writing all the factors which are the same, 
a simplification is introduced by means of which the number of 
factors in each product is recorded by a special number written 
as an exponent on the right of a factor just above it. Thus a· a· a 
is written as a3 , and, generally, a·a·a· . . . ·a (n repeated factors) 
is written as an. Thus 100 can be written as 102 , or 16 as 24, or 
125 as 53. 

\Ve have a special name for numbers that the products of sev
eral repeated, or identical, factors; we call them "the powers" of 
that number. A number when multiplied by itself several times 
is called the power of that number, and the repeated multiplica
tion of a number by itself a certain number of times is called 
"the raising to a power" of that number. 

The product of two or more powers of the same number is 
recorded as follows, assuming that we multiply a3 by a5• Now 

a3 = a·a·a 
and 

a5 = a·a·a·a·a 
Then 

But 
8 = 3 + 5 

Thus the process of multiplication was turned into the addition 
of exponents. 
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Generally the product of am and an is recorded as 

am = a·a·a· ... ·a (m repeated factors) 
and 

Then 
an = a·a·a· ... ·a (n repeated factors) 

am·a n = a·a·a· ... ·a·a·a·a· ... ·a = am +n 

"-(m factors)-"" "-(n factors)JI 

If we have three powers, am, an, and ar, their product is 

am·an·aT = a·a·a· ... ·a·a·a·a· ... ·a·a·a·a· ... a = am+n+r 
"-(m factors)JI "-(n factors)-"" "'-(r factors)JI 

We have then the rule for the multiplication of powers of the 
same number: The product of several powers of the same num
ber is a power of this number, and the exponent of this power is 
obtained as the sum of the individual exponents of the respective 
powers. F or example: 

16.64.256.32 = 24 .26 .28 .25 = 24 +6 +8 +-5 = 223 

The division of a power of some number by another power of 
this number is recorded according to a similar method. Suppose 
we are to divide a6 by a3 • Now 

Then 

But 

a6 = a·a·a·a·a·a, and a3 = a·a·a 

a·a·a·a·a·a = a·a·a = a3 
a·a·a 

3 = 6 - 3 

Therefore the process of division was turned into the subtraction 
of the exponents. 

Generally the quotient of am and an is recorded as 

am = a·a·a· ... ·a (m repeated factors) 
and 

an = a·a·a· ... ·a (n repeated factors) 
Then 
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The correctness of this result can be checked by multiplying the 
quotient by an. We have then 

The rule for the division of powers of the same number is 
then: The quotient of powers of the same number is a power of 
this number, and <the exponent is obtained as the difference be
tween the exponent of the dividend (the numerator of the frac
tion) and the divisor (the denominator of the fraction). For 
example 

243 ...;- 9 = 35 ...;- 32 = 35 - 2 = 33 = 27 

Thus when we multiply or divide powers of the same number 
multiplication is replaced by addition of exponents, and division 
is replaced by subtraction of exponents. 

The division of powers of the same numbers leads to some 
other interesting results. Suppose we divide a power of some 
number by itself. According to the rule for the division of 
powers of numbers, the exponents must be subtracted (the expo
nent of the divisor subtracted from the exponent of the divi
dend). Then 

Since a may be any number, we have that any number raised to 
the zero power is 1, an agreement we make to be consistent, as 
it will be seen presently. 

Suppose the exponent of the dividend is less than the exponent 
of the divisor and, for example, we divide a3 by a5 • We have then 

a3 a·a·a 1 1 
as a·a·a·a·a a'a a2 

But according to the rule for the division of powers of the same 
number, the exponents are subtracted from one another. Then 
a3 -:- a5 = a3 - 5 = a- 2• In other words, 

In general, 

1 a-2 =
a2 

1 a-m =
am 
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Thus we have that a number that is raised to a negative power is 
a fraction whose numerator is 1 and whose denominator is this 
same number raised to the same, but positive power. For ex
ample, 1/25 is 5- 2 • 

These are not the only arithmetic operations where one type 
of process (say multiplication) is replaced by another (addi
tion). We shall examine other operations presently. It was 
this search for an easier way to multiply, however, that enabled 
Napier to formulate the methods of computation embodied in his 
invention. 

Number's Common Denominator: The Lowly Logarithm 

Now we are ready to examine the Napier invention more 
fully. To simplify our discussion, we shall present a description 
of it in modern dress, as Napier's development is somewhat more 
involved. 

Let us write the powers of the number 2, considering, to pre
sent a complete picture, both the positive and negative powers. 
We have then 

Now let us enlarge the description of this sequence of powers. 
We write above it a line consisting of the exponents only and 
below it a line containing the values of these powers after they 
have been calculated. We have then 

-5 -4 -3 -2 -1 0 2 3 4 5 ... 

. .. 2 -5 2 -4 2 -3 2 -2 2 -1 20 21 22 23 24 25 ... 

1 1 
... 32 T6 

1 
"8 t 1 2 4 8 16 32 ... 

Thus we note that for every number in the third line there 
corresponds a number (which is the exponent of 2) in the first 
line. Moreover, note that the first line is a sequence of numbers 
known to us. It is an arithmetic progression-a "how-much" 
ladder. The third line is also a sequence of numbers known to 
us, a geometric progression-a "how-many-times" ladder. In 
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the first line every two neighboring numbers (terms) differ from 
one another by a fixed quantity (it happens to be 1), while in 
the third line every-two neighboring numbers are in definite ratio 
to one another (it is called the "common ratio," and it happens 
to be 2). -

Thus we may call the first line the line of exponents, and the 
third line contains the numbers that correspond to these. We 
may also say that the exponents correspond to the numbers. 
However, these two sets are related to one another under one 
condition, that the link between them be the number 2 that con
stantly appears in ~the second line. The number 2, when raised 
to the power indicated by the exponent in the first line, will give 
rise to a corresponding nUJ;11ber in the third line. We call such 
a link between the two sets the "base." 

By means of the exponents given in the first line we can per
form multiplication and division according to the rules obtained 
in the preceding section, and to simplify the work may well pre
pare a table of numbers and exponents that correspond to them. 
Moreover, since the negative exponents correspond to fractions 
whose numerators are all 1, we shall not record the negative ex
ponents but shall remember that they correspond to fractions of 
the type just mentioned. Here is such a table: 

Number Exponent Nlimber Exponent 
1 ° 1,024 10 
2 1 2,048 11 
4 2 4,096 12 
8 3 8,192 13 

16 4 16,384 14 
32 5 32,768 15 
64 6 65,536 16 

128 7 131,072 17 
256 8 262,144 18 
512 9 524,288 19 

The product of 512 and 1,024 is then obtained as follows: the 
exponent of 512 is 9; the exponent of 1,024 is 10; the exponent 
of the product is 19. From the table we find that the number 
whose corresponding exponent is 19 is 524,288, and the required 
product is then 524,288. 
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T' h d f d 1 (h . 262 144) . e pro uct 0 262,144 an -- or t e quotIent ' IS 
8,192 - 8,192 

obtail)ed as follows: The exponent of 262,144 is 18; the expo-

nent of 8,1192 is -1.3; the exponent of the quotient is 5. From 

the table we find that the number whose corresponding exponent 
is 5 is 32, and the required quotient is then 32. 

The quotient 1~'~~~2 is obtained is follows: The exponent of 

4,096 is 12; the exponent of 131~072 is -17; the exponent of the 

quotient is - 5. The table shows that the number whose corre
sponding exponent is 5 is 32, but our exponent is negative. Then 
the required quotient is l20 

The number 2 need not necessarily be the base for which the 
exponents and the numbers to which they correspond may be 
calculated; we may have any other, but for whatever base we 
construct a table in which the exponents are expressed in whole 
numbers, we shall not have calculated all the numbers to which 
these exponents correspond. The problem before us reduces to 
this: What is the most convenient base, and how can we satisfy 
the requirement that we can perform the multiplications and di
visions of all numbers and not only a few? 

Let us write the powers of 10. We have then 

10° = 1 
101 = 10 
102 = 100 
103 = 1,000 
104 = 10,000 
105 = 100,000 
106 = 1,000,000 

Note that fractions can also be written in terms of powers of 
10, as 

10-1 = 0.1, 10-2 = 0.01, 10-3 = 0.001, 10-4 = 0.0001 

A table of exponents and the numbers to which they corre
spond, if our base were '10, would be of little practical use to us. 
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How, for example, could we multiply 347 by 658 with the help 
of such a table? ' -

The difficulty is ~ot as formidable as it seems at first. Let us 
write the table of exponents and the numbers to which they cor
respond when they are calculated for the base 10: 

Number 
1 

10 
100 

1,000 
10,000 

100,000 

Exponent 
o 
1 
2 
3-
4 
5 

Suppose we consider 37, a number between 10 and 100. It is 
quite reasonable to expect that the exponent corresponding to it 
must be greater than 1 but less than 2. In other words there 
must be some exponent, say x, such that when lOis raised to the 
power x we obtain 37. We may record this as lOX = 37. 

This is an equation which we do not know how to solve at 
this moment. However, we can obtain the value of x. We may 
write our solution as: x = the exponent corresponding to 37 
when lOis the base. This is a long statement. Napier invented 
a special name for the exponent at any base-"logarithm," in 
short "log." The number used for a base (Napier's base was a 
number different from 1 0) is written to the left, just below the 
word "log," thus loglo. Since we shall make use of no base 
other than 10, we shall not repeat the number 10 when we write 
"log." Thus the solution of the equation lOT = 37 is x = log 37. 

Now if we know that the exponents of all the numbers are 
calculated for the base 10, the numbers may be thought of as 
powers of 10. \Ve already know how to multiply and divide 
powers of the same number. Thus, if we have a table of loga
rithms (exponents) of all numbers, the work involved in multi
plication and division (later we shall extend the use of logarithms 
to other operations) may be simplified -and speeded up. This, 
then, was Napier's invention: He reduced every number to a 
common denominator and made the corresponding exponent the 
number's identifying numerator. 
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A Mathematical Rogue's Gallery: Every Number Has Its Fin
gerprint 

When we detennine a base and calculate the logarithms of all 
the numbers, we obtain complete identification of these numbers; 
for every number there is only one logarithm. On the other 

. hand, should we have a logarithm (and know the base for which 
it was calculated) we can identify the number to which it cor-
responds. Thus the logarithm at a given ~ 
base is a ~ompact, .identifying instru
ment which is as effective as finger
prints. 

Naturally for every base we may 
have a complete set of the logarithms 
of all the numbers. Moreov,er, if a 
certain number is taken, its logarithms 
calculated for different bases will all be 
different, except the logarithms of 1. 
We know that any number raised to the power zero is 1 and, 
therefore, the logarithm of 1 at ~ny base is O. But the logarithm 
of 2 at the base 3 is not equal to the logarithm of 2 at the base 4 
or at the base 5 or at any other base, and the same is true for 
any other number. 

One more important fact must be kept in mind, since we de
cided to have logarithms calculated for the base 10; only the 
logarithms of the numbers that are whole powers of 10 (posi
tive or negative) are whole numbers; all other logarithms are 
fractions. The nature of logarithms is such that none of these 
fractions can be calculated exactly. Thus, 

log 0.001 = - 3, log 1 = 0, 
log 0.01 = - 2, log 10 = 1, 
log 0.1 = - 1, log 100 = 2, 

log 1000 = 3 

But the logarithms of all other numbers can be calculated only 
approximately. So far there has been little uncertainty about 
even the biggest numbers we have met. Now, however, we have 
an infinity of numbers that cannot be expressed exactly. These 
are the logarithms of numbers. 
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Tables of logarithms of numbers calculated for the base 10 are 
now available with almost any number of decimal places in the 
fractional values of the exponents of 10. The calculation of 
logarithms when many decimal plac~s are required is a long and 
tedious process; for practical purposes, however, logarithms with 
three places are often sufficient, since the calculation of these 
logarithms is comparatively easy and since no special knowledge 
of intricate procedures is necessary. Thus if you do not have a 
table of logarithms handy when you need one you can, in a very 
short time, construct your own. 

Two facts, however, must be kept in mind when logarithms 
are calculated: Some numbers can be represented as products of 
several factors, but others cannot be split into factors other than 
1 and themselves. For example, 12 = 2·2·3, and 13 = 13·1. 
Those numbers that cannot be ~plit into factors other than 1 
and themselves are called "prime numbers." This fact enables 
us to reduce the work in calculating logarithms. Thus, if we 
know the logarithms of 2 and 3, we can calculate the logarithm 
of, say, 12. Before we proceed with actual calculation of the 
logarithms, however, we must know something more of their 
properties. 

We now know that the product of two (or more) powers of 
the same number is a power of this number whose exponent is 
the sum of the individual exponents. Thus if we have A = lOa, 

B = lOb, and C = 10c, then 
A·B· C = 10a+b+c 

But from the definition of a logarithm we have a = log A, b = 
log B, and c = log C, and from this we also have 

log (A . B .,c) = a + b + c = log A + log B + log C 

This signifies that the logarithms of the product of several 
numbers is equal to the sum of the logarithms of the individual 
numbers. 

Now suppose that A = B = C. Then our product may be 
written as A3, and if the numbers are equal, their logarithms are 
all the same. Therefore 

log A 3 = a + a + a = 3a = 3 log A 
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Generally, 

log A n = a + a + a + ... + a = na = n log A 
(n addends) 

Thus we have another property: The logarithm of a power of a 
number is equal to the product of the exponent of that power by 
the logarithm of the number. 

The reader will now conclude that the logarithm of a quo
tient of two numbers is obtained as the difference between the 
logarithm of the dividend and the logarithm of the divisor. This 
can be verified as follows. 

Suppose that A = lOa and B = lOb, then 

A = lOa = 10a- b 
B lOb 

But 
a = logA, and b = 10gB, 

and 
log (A/B) = a - b = log A - log B 

Thus the logarithm of a quotient is equal to the difference be
tween the logarithms of the dividend and the divisor. The reader 
can then readily see that if we know the logarithms of 2 and 3 
we can calculate the logarithms of 12 = 22 '3, and of 18 = 2'P, 
24=2 3 .3. 

The process of calculation of logarithms then reduces to cal
culation of the logarithms of the prime numbers. The loga
rithms of these numbers enable us afterwards to calculate the 
logarithms of those numbers in which these prime numbers are 
factors. Thus to construct a table of logarithms of numbers 
from 1 to 100 we must calculate the logarithms of the numbers: 

2, 3, 5, 7, 11, 13, 17, 19,23,29,31,37,41,43,47, 
53,59,61,67, 71, 73, 79, 83, 87, 89, 91, and 97 

Calculation of the logarithms of these numbers is based on 
the use of logarithms known to us. At present we know that 
log 10 = 1, log 100 = 2, and log 1000 = 3. \Ve shall obtain 
some power of 2 (this is the first number whose logarithm will 
be calculated) that differs little from some' whole power of 10. 
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. When we dealt with number giants, we found that 210 = 1024. 
Then 10 log 2 = log 1024, and 

I 2 _ log 1024 
og - 10 

Now we do not know log 1024, but we know that log 1000 = 3. 
If we take log 1000 instead of log 1024, we introduce a certain 
amount of error which we shall correct presently. We have then 

log 2 = log 110000 = 1~ = 0.30, approximately 

The error introduced in the above substitution is 24 in 1,000, or 
0.024, and this -inust be divided by 10 (the numerator of' the 
fraction). Thus the error is about 0.0024, which for 0.30 is 
equal to 

0.30· 0.0024 = 0.000720 

or, rounding, to 0.001, approximately. Adding this error to the 
calculated approximate value log 2 = 0.30, we have 

log 2 = 0.30 + 0.001 = 0.301 

This is still an approximate value, correct to three decimal places. 
The calculation of log 3 is performed (the reader should bear 

in mind that now we know the value of log 2 also) as 34 = 81, 
and 80 = 23 .10. Then we have 4 log 3 = log 81, and 

log 3 = log 81 
4 

But we may also write that 

log 3 = log 80 = 3 log 2 + log 10 = 3·0.301 + 1 
444 

1.903 
4 

= 0.476, approximately 

The error that must be corrected here is 1 in 80; that is, 1/80, 
which must be divided by 4, or 1/320, and for 0.476 this cor
rection is 

0.476 0 1 . 1 320 = .00, apprOXImate y 

Then 
log 3 = 0.476 + 0.001 = 0.477, approximately 

cor;ect to three decimal places. 
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The succeeding calculations are self-explanatory: 

log 4 = log 22 = 2 log 2 = 2· 0.301 = 0.602 
log 5 = (10/2) = log 10 - log 2 = 1 - 0.301 = 0.699 
log 6 = log (2·3) = log 2 + log 3 = 0.301 + 0.477 = 0.778 

The calculation of log 7 is performed as follows. We select a 
power of 7 in the same manner as a power of 2 (or a power of 3) 
was selected; 72 = 49 gives a number close to 50, but this number 
is not sufficiently large; 73 = 343, and the nearest number is 340, 
which is of no value to us because 340 = 2· 17· 10, and we do not 
know the logarithm of 17. But 74 = 2,401, which is close to 
2,400, and 2,400 = 23 .3.100. Thus 2,400 can be used for the 
calculation of log 7. We have then 74 = 2,401, and 4 log 7 = 
log 2,401. Then. 

I 7 log 2,400 
og = 4 

3 log 2 + log 3 + log 100 
4 

approximately 

Finally we obtain the approximate value of log 7: 

log 7 = 0.903 + ~.477 + 2 = 3.!80 = 0.845 

The correction is 

1 1 0.845 
2,400 . 4. . 0.845 = 9,600 = 0.00008, approximately 

This correction is so small that it will not affect the third decimal 
place (that of the thousandths) in the value of log 7 = 0.845. 
Thus we find that the approximate value of log 7 is 0.845, correct 
to three decimal places. 

The calculation of log 11 is performed by means of the relation 

992 = 34 .112 = 9,801 

and we take the approximate relation 

34 .112 = 9,800 = 2.72 .100 
Then 

112 = 2.72 .100 
--::3-:-4 -

and 

2 log 11 = log 2 + log 72 + log 100 - log 34 
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and 

log 11 
log 2 + 2 log 7 + log 100 - 4 log 3 

2 
approxima tely 

Finally we have _ 

. log 11 = 0.301 + 1,690 + 2 - 1.908 = 2.083 
2 2 

= 1.041, approximately 

The correction may be discarded because it is too small. 
The calculation of log 13 is performed as follows: 133 = 2,197, 

and this is close to 2,200. \Ve have then the approximate rela
tion 133 = 2,200-= 2 ·11·100, and 3 log 13 = log 2 + log 11- + 
log 100. Then 

log 13 = log 2 + log 11 + log 100 = 0.301 + 1.041 + 2 
3 3 

= ~~,!2 = 1.114 

Here also the correction is too small and may be discarded. 
Below are listed the hints for the calculation of the logarithms 

of other prime numbers up to 100: 

Prime Number 
173 = 4,913 
194 = 130,321 
233 = 12,167 
292 = 841 
312 = 961 
372 = 1,369 
41 2 = 1,681 
432 = 1,849 
472 = 2,209 
532 = 2,809 
592 = 3,481 
61 2 = 3,721 
673 = 300,763 
712 = 5,041 
73 2 = 5,329 
792 = 6,241 
832 = 6,889 
892 = 7,921 
972 = 9,409 

Calculation 
4,900 = 72. 100 

130,000 = 13 . 10,000 
12,000 = 22. 3 ·1,000 

840 = 22 • 3 7 ·10 
960 = 25 • 3 10 

1,360 = 23 • 17 ·10 
1,680 = 23 • 3 . 
1,850 = 5· 37 . 
2,200 = 2· 11 . 
2,800 = 22. 7 
3,480 = 22. 3 . 
3,720 = 22. 3 . 
3,000 = 3 ·100,000 
5,040 = 23 . 32. 

7,10 
10 

100 
100 
29·10 
31·10 

7·10 
5,310= 32. 59·10 
6,240= 24 • 3· 13·1G 
6,880 = 24 • 43· 10 
7,920 = 23 • 32 • 11·10 
9,400 = 2· 47· 100 
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After all the logarithms of the prime numbers have been cal
culated, the remaining logarithms necessary to complete the table 
of logarithms of numbers from 1 to 100 can be calculated by 
means of those already on hand. . 

The use of 10 as the base has one great advantage. We noted 
that the logarithms of whole powers (positive and negative) of 
10 are whole numbers, while all other logarithms are fractions. 
However, this is only one part of the entire story: If we write 
the logarithms of the whole powers of 10 as shown below, we 
may note another property that is very important: 

log 0.0001 
log 0.001 
log 0.01 
log 0.1 
log 1 
log 10 
log 100 
log 1,000 
log 10,000 

=-4 
=-3 
=-2 
=-1 

o 
1 
2 
3 
4 

Since all other numbers have logarithms that are fractional, 
this arrangement of the whole numbers enables us to determine 
the whole part of the fractional number that is the logarithm of 
some number other than a power of 10. Let us take, for ex
ample, the logarithm of 57. Now 57 is greater than 10 but less 
than 100. Its logarithm must be somewhere between 1 and 2. 
It will be greater than 1 but less than 2. Thus the logarithm will 
be a fractional number whose whole part will be 1. The loga
rithm of 672 will have a whole part that is 2. We note that 672 
is greater than 100 but less than 1,000, and the logarithm of 672 
is greater than 2 and less than 3. So we have a clue for determi
nation of the whole part of the logarithm of a number. Note 
that 57 has two digits and the whole part of its logarithm is 1. 
Also 672 has three digits, and the whole part of its logarithm is 2. 
Again, a number of four digits (when there is no decimal part) is 
greater than 1,000 but less than 10,000. Thus its logarithm is 
greater than 3 and less than 4. We conclude that the number of 
the digits in the whole part of a number diminished by 1 will 
give the whole part of the logarithm. Thus the whole part of 
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the logarithm of 45.783 is 1, and the whole part of the loga
rithm of 8.125 IS o. Therefore, if a number has a whole part and 
also has a fractional part, such as 183.24, we pay no attention to 
the fractional part when the'whole. part of the logarithm is de
termined. 

The whole part of a logarithm is known as the "character
istic," and the fractional part as the "mantissa." The charac
teristic relates to the number of places to the left of the decimal 
point (the whole part) of a number, and the mantissa may be 
viewed as the fingerprint of the number for which the logarithm 
is given. Thus the numbers 6.72, 67.2, 672, and 67,200 will all 
have the same mantissa, but their characteristics will be differ
ent-O, 1, 2, and 4, respectively. 

If the number whose logarithm is to be obtained is a decimal 
fraction only, and has no whole part, its logarithm is negative, as 
it can be observed above. However, to simplify the computa
tional work with a loga~ithm it is customary to preserve the 
mantissa as if the number were not a fraction at all; the charac
teristics of decimal fractions are kept negative. F or example, to 
obtain the logarithm of 0.2. 'Ve can write log 0.2 = log(2/10) 
= log 2 -log 10 = 0.301 - 1. To simplify this, we write the 
1 with a bar over it. The logarithm is therefore written as 
log 0.2 = 1.301. Similarly, we find that 

log 0.02 = log (2/100) = log 2 - log 100 = 0.301 - 2 = 2.301 
log 0.002 = log (2/1,000) = log 2 - log 1,000 = 0.301 - 3 = 3.301 

The reader can observe a regularity in determination of the 
characteristic of the logarithm of a decimal fraction. The nega
tive characteristic is greater by 1 than the number of zeros in the 
decimal fraction between the decimal point and the first digit on 
the left of the fraction other than zero. Thus in 0.2 there are no 
zeros and the characteristic is 1; in 0.02 there is one zero and the 
characteristic is 2; in 0.002 there are two zeros and the charac
teristic is 3. 
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What You Pay the Middle-Men 

The consumer is generally far remoyed from the producer of 
the goods that he may require and the modern delivery, or dis
tribution, of these goods is an industry that employs millions of 
people. A service of this kind, however, must be paid for, and 
the cost of distribution is added to the price paid for the goods 
by the consumer. The initial collection of all these goods, their 
sorting, examination and inspection, and their· shipping must all 
be provided for in the retail price. 

Let us assume that a product must pass through four different 
organizations, including the manufacturer, before it reaches the 
ultimate consumer; that the consumer pays two and a half times 
as much as this costs the manufacturer; and the manufacturer 
and the three agencies that serve the consumer mark up the price 
the same per cent. What is the mark-up in per cents? 

Suppose the cost of a product is a and the mark-up is r per 
cent (in the process of computation this is transformed into a 
decimal fraction). Then the price to the first agent is 

a + ar = a(1 + r) 
To the second agent, 

a(l + r) + r·a(1 + r) = a(1 + r)(1 + r) = a(1 + r)2 

To the third agent, 

a(l + r)2 + r· a(1 + r)2 = a(1 + r)2(1 + r) = a(l + r)3 

And finally, to the consumer, 

a(1 + r)3 + r· aC1 + r)3 = aC1 + r)3(1 + r) = a(l + r)4 

This price is equal to 2.5a. We have then the equation a(1 + 
r)4 = 2.5a, or (1 + r)4 = 2.5. To solve this we must extract 
the fourth root from both sides of this equation. We have then 

1 + r = vE, and from this, r = v2.5 - 1. 
Extraction of the fourth root by direct means is not an easy 

process. However, if we make use of logarithms we shall find 
it simple, although we shall need some additional information 
concerning the properties of roots and logarithms when so ap
plied. The root implies an operation that undoes the raising to 
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a power; the number from which a root is to be extracted is con
sidered as the res'ult of the operation of raising to a power. The 
problem then resolyes into finding the number which, if raised to 
the power indicated by the exponent of the root, will give a nu
merical result indicated by the number under the radical sign. 

For example, whe~ we refer to the fourth root of 2.5, or v2~ 
we assume that there must be a number, say a, such that a4 = 2.5. 

Let us approach our problem of the extraction of roots from 
the point of view of the rule for the multiplication o{powers of 
the same number. \Vhen we are considering the fourth root of 
2.5 we think of a number such that if it were multiplied by itself 
four times it would be 2.5. However, this number must be some 
power of 2.5, because the result is a power of 2.5. Thus, if we 
denote the exponent of the factor by x, we have 

2.5 x ·2.5 x ·2.5 x ·2.5 x = 2.5, or 2.54x = 2.51 

Then 4x = 1, and x = 1/4. 
This result introduces a new method for writing roots of 

numbers. The number under the radical sign may be written 
with an exponent, but this exponent is a fraction whose numera
tor is 1 and the denominator is the indicator (the exponent) of 
the root. Thus 

V2.5 = 2Si-

If the number under the radical sign has an exponent of its own, 
then this exponent is written as the numerator of the fractional 
exponent. For example, 

_7/- 3 
va3 = a'f 

This method of writing roots allows us the application of loga
rithms to the extraction of roots. If we have a number from 
which a root is to be extracted, we transform it so that it is 
written with a fractional exponent, and then we treat the prob
lem in the same manner as in the case of any other exponent. 
Then the extraction of the fourth root of 2.5 is performed as 
follows: 

_4/- 1 0.3979 
log v 2.5 = 4 log 2.5 = -4- = 0.0995 
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;Then from a table of logarithms in the Appendix we find the 
number that corresponds to a logarithm that is 0.0995; this is 
1.258 or, when rounded, 1.26, approximately. 

Our equation· 
r = ~/2.5 - 1 

becomes 
r = 1.26 - 1 = 0.26 

and in terms of per cent the mark-up is 26 per cent at everyone 
of the four instances. 

Logarithm Declares a Dividend 

When we examined the method for the computation of in
terest on savings where the original amount as well as the interest 
is left in the bank so that interest can be earned on interest, we 
assumed that the original amount was A and the yearly interest 
rate was r, in decimal fractions. Then at the end of the first 
year the savings and the interest on them would be equal to 

A + r·A = A(1 + r) 

At the end of the second year, 

A(1 + r) + r·A(l + r) = A(1 + r)(1 + r) = A(1 + r)2 

And at the end of the third year, 

A(1 + r)2 + r·A(1 + r)2 = A(1 + r)2(1 + r) = AC1 + r)3 

Generally, if this is allowed to continue for n years and if the 
interest is computed on the yearly basis, the amount at the end 
of the nth year would be equal to A (1 + r)n. 

Some banks, however, compute and pay interest biennially 
(twice a year), other banks quarterly. But when the interest is 
computed twice a year, and the yearly rate is r, then the half
yearly rate is r/2, but the number of periods for which the in
terest is computed, if the savings are kept in the bank n years, is 
doubled, or the number of periods is 2n. Then the formula for 
the amount at the end of,n years is A (1 + r/2)2n. 

When the interest is computed and paid four times a year, and 
the yearly rate of interest is r, then the quarterly rate is r/4. If 
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the. savings are kept in the bank for n years, the number of 
periods for which die interest is computed is then quadrupled, 
the number of periods is 4n. Then the formula for the amount 
at the end of n yea-rs is A (1 + r / 4 )4n. 

Generally if the yearly interest is r and the interest is com
puted and paid m times a year while the savings are kept in the 
bank for n years, the total amount at the end of the n years is 
computed by the formula A (1 + rim) mn. Thus by means of 
logarithms the computation of the growth of capital when inter
est is compounded is simplified and speeded up. Let us consider 
a few typical prohlems. 

At what yearly rate of interest will capital be doubled in 15 
years if the interest is paid semiannually? Let the amount placed 
in the bank be A, the yearly rate of interest, r, and the num
ber of years, n = 15. Then we have 

( r)30 (r)30 A 1 + 2" = 2A, or 1 + 2" = 2 

raking the logarithms of both sides of the equation, we have 

30 log (1 + i) = log 2, and 30 log (1 + i) = 0.3010 

Finally we have 

log ( 1 + 1) = 0.~~10 = 0.0100, approximately 

From the table of logarithms we find that 0.0100 corresponds 
to the logarithm of 1.023. Then 

log (1 + i) = log 1.023 

and 
r 

1 + "2 = 1.023 

From this we find that rl2 = 0.023, and r = 0.046; that is, the 
yearly rate of interest is about 4.6 per cent. 
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What would be the yearly rate of interest in this problem if 
the interest were paid monthly? Our formula for this problem is 

( r ) 180 
A 1 + 12 = 2A 

and 

( r )180 
1+ 12 =2 

Note that here we face the problem of extracting the 180th root 
from 2. Logarithms make this simple. We have then 

180 log (1 + ;2) = log 2 

and 

180 log (1 + ;2) = 0.3010 

Finally 

( r) 0.3010 
log 1 + 12 = 180 = 0.00167 

Rounding the quotient, we find that the number that corresponds 
to the logarithm that is 0.0017 is approximately 1.004. Then 

r 
1 + 12 = 1.004 

and 
r 

12 = 0.004 

This leads to r = 0.048, and therefore the yearly rate of interest 
is about 4.8 per cent. 

Sing a Song of Sixpence 

When you have saved money, you can well afford to whistle 
in the rain, for there is a closer relationship between your bank
book and your tune than a mere feeling of security. 

Let us consider that you have deposited a dollar and that the 
bank pays 6 per cent yearly. How long must you keep this dol
lar in the bank to have two dollars on your account? 
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. (~;i According to the formula for compound interest we have 

(1 + 0.06)" = 2 

r,fhen 
1.06" = 2 

x log 1.06 = log 2 
or 

log 2 x = ::---'7---:::-:-
log 1.06 

0.3010 . I 
0.0253 = 12, approxImate y 

Thus your dollar will be doubled in about twelve years. 
Now let us turrifrom money to the somewhat loftier realm bf 

music. The reader will recall that on the piano scale the key
board is arranged in octaves of seven white and five black keys. 
Sound is transmitted through the air by vibrations produced 
when the keys strike the strings. The number of the vibrations 
of each note is fixed, a note that is an octave higher has twice as 
many vibrations. Thus, if the middle C has 264 vibrations, the 
C an octave higher (to the right on the piano keyboard) will 
have 528 vibrations while the C an octave lower, to the left, 
has 132. 

The twelve notes that correspond to the twelve keys within 
one octave are so arranged that the numbers of their respective 
vibrations form a sequence such that every two neighboring 
numbers are in the same ratio to one another. Such an arrange
ment is known as the tempered scale, and reduces to a simple 
problem. We have a sequence of thirteen terms (remember that 
we must include the middle C and the C one octave higher). 
The thirteenth term is twice as large as the first term, and every 
two neighboring terms are in the same ratio, known as the com
mon ratio. 'Vhat is this ratio? 

We find then that the first term is 264 and, as the common 
ratio is unknown, let it be r. The number of terms is n, and we 
have a how-many-times sequence. The thirteenth term of this 
sequence (the C whose vibration is 528) is 

264· r12 = 528 
or 

r12 = 2 
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'Ve know now how to solve such equations. 
rithms of both sides and we have 

12 log r = log 2 
or 

log r = 0.~~10 = 0.0251, approximately 

and 
r = 1.06, approximately 

The sequence is then 

264, 264·1.06, 264.1.062 , 264.1.063 , ... , 264.1.06 12 

Thus the number of vibrations of the successive notes on the 
keyboard grows at the rate of 6 per cent, the same as the usual 
yearly rate of interest. 

The Roar of a Lion and the Twinkle of a Star 

Noise as well as music can be measured by mathematics. 
Scientists have another name for music, or noise. They call it 
"the loudness of sounds" and the unit of measure is called the 
"bel" in honor of the inventor of the telephone, Alexander Gra
ham Bell. The rustle of the leaves of a tree represents the noise 
of 1 bel. A noise whose measure is 2 bels is 10 times stronger 
than 1 bel; one whose measure is 3 bels is 10 times strong-er than 
2 bels, and 100 times stronger than 1 bel. In practical work, 
however, the bel is considered to be a large unit, and a smaller 
unit, the "decibel," equal to one-tenth ofa bel, is used. 

The strength of noise is its measure in bels, but the magnitude, 
when expressed in whole bels, form a sequence in which neigh
boring members are in the same ratio, the common ratio in this 
sequence being 10. We can represent the relation in the form 
of a table 

Strength of noise (in bels) .... . 
Magnitude of noise .......... . 

123456 ... 
10 102 103 104 105 106 .•• 

Thus the number of bels is the exponent of 10 when the magni
tude of the noises is expressed in powers of ten. The relation 
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between the str,ength of noise and the magnitude of noise is a 
logarithmic one; when we have measured the strengths of two 
different noises in_ bels, we have the logarithms of the numbers 
that measure the respective magnitudes. 

For example, the average conversation is about 6.5 bels strong, 
5.5 bels louder than the rustle of leaves. How many time!>, in a 
simple number, is conversation louder than the rustle of leaves? 
\Ve have then 

106 .1; --- = 10f;',,-1 = 105 .5 
10 

If we apply logarithms, we have 

6.S log 10 - log 10 = 6.5 - 1 = 5.S 

(log 10 at the base 10 is equal to 1) 

The number whose logarithm is 5.5 is therefore 316,000, approxi
mately. Note that the characteristic of the logarithm is 5 and 
therefore the whole part of the number must have six places. 

The roar of a lion is about 8.7 bels strong. The difference 
between the noise produced by an average conversation and that 
produced by a lion is 

8.7 bels - 6.5 bels = 2.2 bels 

The number whose logarithm is 2.2 is approximately 158. Thus 
the roar of a lion is 158 times louder than the average conversa
tion. If you have an audience of about 2,000 people in a theater 
and all of them talk at the same time, the noise of their conversa
tions is about equal to the noise that would be produced by 

2,000 13 I' 158 = IOns 

The noise of Niagara Falls is about 9 bels strong. The dif
ference between this and an average conversation is 

9 bels - 6.5 bels = 2.S bels 

The number whose logarithm is 2.5 is approximately 316. So 
the noise produced by Niagara is about 316 tim~s louder than 
that of an average conversation. If we have 316 men in a room, 



Streamlining Everyday Computation 289 

all of them talking at the same time, their noise is equal to that of 
Niagara. Our theater audience of 2,000 thus is equal to 

2,000 65 N' . I -316 =. Iagaras, approxImate y 

Our modern world, parenthetically, is full of noises from all 
sides-'--a passing train, a fire engine, the horn of an automobile, 
the slam of a door. It has been found that a man can withstand 
a noise about 13 bels strong; any stronger noise is harmful. 

Now let us turn to silence and the brightness of the stars. In 
the country on a moonless night these appear as tiny flickers of 
fire (there are now instruments that can measure their heat). 
Some of these stars are very bright, many others not so bright. 
There are literally billions that are so faint that very powerful 
telescopes are necessary to observe them, and most of them can
not even be observed in telescopes. We learn of their existence 
from photographs that often require several nights for million
dollar instruments to register their light. 

Astronomers have catalogued most of the stars that we can see 
without a telescope and have measured their size, their tempera
tures, their distance from us, their make-up, and their apparent 
brightness, this latter being termed "magnitude." One class is 
known as "stars of the first magnitude," and so on down to the 
dimmest star that can be seen with the naked eye, which is classed 
as a star of the sixth magnitude. 

It was agreed that a star of the first magnitude is about a 
hundred times as bright as one of the sixth magnitude, an arti
ficial but very useful arrangement. Moreover, the scale by 
means of which the brightness of the stars is judged is so arranged 
that the ratio of the brightness of those of two consecutive mag
nitudes as expressed in whole numbers is always the same number. 
In other words, a star of the first magnitude is a certain number 
of times brighter than one of the second magnitude, and so on. 

Suppose that the number of times a star of one magnitude is 
brighter than a star of the next is n. \Vith this assumption and 
the fact that a star of the first magnitude is one hundred times 
brighter than one of the sixth magnitude, we shall attempt to 
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determine the value of n. If we compare the brightness of the 
stars with the brightness of a star of the sixth magnitude we have 
the following table: 

A star of the fifth magnitude is n times brighter. 
A star of the fourth magnitude is n2 times brighter. 
A star of the third magnitude is n3 times brighter. 
A star of the second magnitude is n4 times brighter. 
A star of the first magnitude is n 5 times brighter. 

But we know that a star of the first magnitude is about 100 times 
brighter than a star of the sixth magnitude. Thus we have the 
equation n5 = 100. 

Taking the logarithms of both sides of this equation, we have 

5 log n = log 100, or log n = ! = 0.4 

and, by means of the table of logarithms, we find that n = 2.5, 
approximately. Thus as the number of the magnitude of the 
star increases, the brightness of the star of that magnitude is 2.5 
times dimmer than the brightness of the star of the preceding 
magnitude, or a star of the second magnitude is 2.5 times dimmer 
than one of the first magnitude. 

N ow we can have a table where instead of the brightness of 
the stars we shall take their dimness: 

The magnitude 1 2 3 4 5 6 7 8 9 
The dimness 1 2.5 2.52 2.53 2.54 2.55 2.56 2.5 7 2.5 8 .•. 
(number of times) 

Here 2.5 may be considered as the base of the logarithms, and 
the magnitudes may be considered as the logarithms of the num
ber of times the stars are dimmer than a star of the first magnitude. 

The Algebra of Starlight: 437,000 Full Moons = 1 Bright 
Day 

If all the stars were such that their magnitudes could be ex
pressed in whole numbers, astronomers could get along without 
recourse to algebra, but the magnitudes run the whole gamut of 
numbers. Moreover, there are stars that are brighter than those 
of the first magnitude. Some of these are brighter than the star 
of the zero magnitude, which is 2.5 times brighter than a star of 
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the first magnitude. Thus to keep the system of measuring con
sistent, astronomers had to take refuge in negative numbers, and 
they talk of the -1 and - 2 magnitudes. Thus a star of the -1 
magnitude is 2.52 = 6.25 times brighter than one of the first 
magnitude, and so on. 

It was found also that the brightness of our sun on a cloudless 
day is about -26.8, and the brightness of the full moon on a 
cloudless night about -12.7. The brightest star is Sirius (the 
Dog Star) which is visible on winter nights in the southeastern 
sky, just below the constellation Orion. Its magnitude is about 
-1.6. A candle at a distance of 1 meter, or about 1.1 yards, has 
a brightness of -14.2. 

With th'ese facts stored in our brainpan, we may solve some 
interesting problems of celestial light. For instance, how much 
more light do we receive from the sun than from the full moon? 
Since our table refers to the order of the dimness of the stars, for 
convenience we shall restate oue problem: How much dimmer is 
the full moon than the sun? We have then 

25-12 .7 
X =' = 25 14 .1 

2.5-26 .8 . 

By means of the table of logarithms we find that 

log x = 14.1 log 2.5 = 14.1· 0.4 = 5.64 
and x = 437,000, approximately 

Thus we get about 437,000 times as much light from the sun; it 
would take 437,000 full moons to make a bright day. 

The brightest stat in the sky, Sirius, whose magnitude is -1.6, 
IS 2.5 -1.6 

--=-=cn = 2 526 .8 -1.6 = 2 525 .2 2.5-26 .8 . . 

times dimmer than the sun. By means of logarithms we can 
compute the value of 2.525.2• We have 

25.2 log 2.5 = 25.2·0.4 = 10.08 

and then from the table of logarithms we find that 

2.5?5.2 = 12000000000, approximately 
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that is, Sirius is twelve billion times dimmer than the sun. It 
will take about twelve billion stars, all of them as bright as Sirius, 
to tum the darkest of nights into a bright sunlit day. 

Very often we hear of lamps that. produce light similar to sun
light. How many candles would it be required to place at a 
distance of about 1 yard in order to produce the same illumina
tion as that produced by the sun? If we reword our problem, 
we may state it as follows: How many times is a candle, at a dis
tance of about 1 yard, dimmer than the sun? We have then that 
this is 

2.5 -14.2 ? 
--::;---;;=c; = 2 526.8-14.~ = 25 12 .6 2.5 -26.8· . 

times. By means of logarithms we can compute the value of 
2.512.6 , and we have that 

12.6 log 2.5 = 12.6·0.4 = 5.04 

and then from the table of logarithms we find 

2.512.6 = 110000 approximately 

that is, it would require about 110,000 candles all placed at a 
distance of about' 1 yard from you in order to produce the effect 
of sunlight. 

The Trade-in Value of Your Car: a = A (1 - r)n 

Let us examine the mathematics of a product which was dis
tributed brand new but has outlived its usefulness to you. Sup
pose you have a car costing $800 delivered at your door. Let us 
assume that 25 per cent of this represents the cost of delivery and 
the cost of selling it to you. Thus the actual value of the car is 
$600. Suppose now that you keep the car a few months and de
sire to sell it. 

You will not receive the entire amount you have paid, since as 
soon as it is delivered to you its resale value is always less than 
the original cost. Let us assume that in the case of your $800 
car the loss is about 10 per cent, and its delivered value is $720. 

Let us suppose, too, that after ten years of service the trade-in 
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value is $50, the car losing $670 in value, to be determined by a 
certain per cent of loss equal throughout the ten years. Thus if 
this per cent is r (expressed in decimal fractions), the value of 
the car at the end of the first year will be 

720 - 720r = 720(1 - r) 

At the end of the second year, 

720(1 - r) - 720(1 - r)r = 720(1 - r)(l - r) = 720(1 - r)2 

At the end of the third year, 

720(1 - r)2 - 720(1 - r)2r = 720(1 - r)2(1 - r) = 720(1 - r)3 

Thus we note that the exponent of the expression (1 - r) is 
equal to the number of years the car was in use. Then at the 
end of ten years the value will be 

720(1 - r)10 = 50 

To determine the value of r we must solve the equation ob
tained above. vVe can do this by means of logarithms. We have 
then 

log 720 + 10 log(l - r) = log 50 
or 

10 log (1 - r) = log 50 - log 720 
and, finally, 

I (1 ) _ log 50 - log 720 
og - r - 10 

From the table of logarithms we obtain 

I (1 _ ) = 1.6990 - 2.8573 = -1.1583 
og r 10 10 

= - 0.1158, approximately 

Keeping the mantissa of the logarithm positive, we add and 
subtract 1 from -0.1158. \Ve have then -1 + 1 - 0.1158 = 
-1 + 0.8&42 = 1.8842, and then we have 10g(1 - r) = 1.8842, 
or 1 - r = 0.766. Then r = 0.234, or the yearly loss in value 
is 23.4 per cent. 
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By means of the above expression 

720(1 - r)n 

where n is not greater than 10 and corresponds to the number of 
years that the car was in use, we can determine the trade-in value 
at the end of any year up to ten years under the stated conditions. 
Thus at the end of the fifth year the value of the car is 

720(1 - r)5 

We find th:it the logarithm of the value is 

log 720 + 5 log (1 - r) 

and then, substituting the values of log 720 and 10g(1 - r), we 
have 

2.8573 + 5( -0.1158) = 2.8573 - 0.5790 = 2.2763 

and the value of the car; is $189. 
A general formula fdr the problem of the trade-in value of 

your car then would be: the delivery value is A, the number of 
years that the car is in service is n, the rate of loss in value 
(known as "the rate of depreciation" and stated in per cents) is 
r, and the trade-in value at the end of n years is a. Then 

A(l - r)n = a 



Simple Life 

The Bankers' Number-lack 
0/ All Trades 

Now is a good time to meet a meek little letter that neverthe
less provides a safety valve for the vast world of finance, and 
enters with the effectiveness of a numerical giant in the complex 
computations of submarine building, of long-distance telephon
ing, and similar familiar activities 

First, now ever, we may well learn more about banker's pro
cedure. We know that when he pays simple interest we may 
collect it at the en"d of the year, and there the transaction ends; 
he does not pay interest on the interest as well as the principal 
if we leave it another year. This is also true of a bond when the 
interest is paid by coupons. 

Even if the bank should pay simple interest twice a year, or 
quarterly, or monthly, or n times a year, our total interest would 
not be increased since the bank still pays no interest on simple 
interest, and the rate of payment would be unchanged. For 
semiannual payment, for instance, it would be only 2 per cent 
instead of 4 per cent and so on. 

How to Make Money Breed 

The more advantageous method (from your point of view, 
provided you are not a banker) of computing interest earned 
allows the addition to your capital of the interest already earned, 
and the subsequent computing of interest on the entire amount. 
This is the compound interest that we noted earlier. 

295 
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, Suppose that a certain amount, A dollars, is on deposit and the 
cbmpound interest is paid at the rate of r per cent a year. At 
~he end of the firs_t year the amount on deposit will be 

A+Ar=A(l+r) 

In all the f~rmulas that follow, the value of r is expressed in 
decimal fractions. At the end of the second year the amount 
~ill pe 

A (1 + r) + A (1 + r)r = A (1 + r)(l + r) = A (1 + r)2 

at the end of the third year, 

A(1 -f r)2 + A(! + r)2r = ACl + r)2(1 + r) = ACl + r)3 . 

and, generally, at the end of the nth year, will be 

A(l + r)n 

Suppose the interest is paid twice a year. If the yearly rate is 

r, the interest for both periods will be i' At the end of the first 

six months the amount on deposit is 

A + A . ~ = A ( 1 +~) · 
and at the end of the second period 

A ( 1 + ~) + A ( 1 + ~) . ~ = 

A ( 1 + ~)( 1 + ~) = A ( 1 + ~r 
Let us compare the amount on deposit at the end of the first 

year, when compound interest is paid once a year, and when 
compound interest is paid twice a year. We have then 

A (1 + r) ? A ( 1 + ~r 
The question mark is inserted because we do not at present know 
whether they are equal. If equal we will replace the question 
mark by the equality sign; if unequal, one of the two expres
sions must be greater in magnitude, and we shall then insert the 
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sign < if A(I + r) is less than A( 1+;)'. or the sign> if ~c 
A (I + r) is greater than A( 1 + ~y. "'~ 

We know that 

A (1 + ~r = A ( 1 + 2 ~r + i) = A + Ar + At 

Then 
Ar2 

A + Ar ? A + Ar + 4 

Since A and r are positive, we conclude that 

A + Ar + Ar2 
4 

is greater than A + Ar. Then we have that 
• 

A (1 + r) < A ( 1 + -iY 
SO if interest is compounded semiannually the amount on deposit 
will earn more interest than when interest is paid only once a 
year. This advantage, of course, persists in the years that follow 
if all the money is left in the bank. 

At the end of a year and a half the amount on deposit at semi
annual compound interest will be equal to 

( r)2 ( r)2 r A 1+ 2 +A 1+ 2 '2= 

A ( 1 + ~Y( 1 + 'i) = A ( 1 + iY 
At the end of two years, four periods, the amou1!t will be equal to 

( r)3 ( r)3 r A 1+ 2 +A 1+ 2 '2= 

A (1 + ~)\ 1 +~) = A (1 + ~r 

Thus we see that the exponent of the expression (1 + ~) is al

ways equal to the number of the periods for which the interest 
was computed. Then, generally, if the money is kept n years, 
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the number of intervals is 2n, and the amount of money on de
posit at the end of n years is equal to 

A (1 + ~yn 
Here is another example. Two men depo~ited $100 each in 

two banks, one of which pays 3 per cent compound interest an
nually, and the other bank pays 3 per cent compound yearly 
interest semiannually; the two deposits are kept untouched for 
ten years. HQW will the two deposits compare at the end of 
the ten years? 

The deposits then will be 

100(1 + 0.03)10 and 100(1 + 0.015)20 

respectively, or 
100(1.03) 10 and 100(1()15)20 

By means of logarithms we obtain the following results: 

log 100 + 10 log 1.03 = 2 + 10·0.0128 = 2 + 0.1280 = 2.1280 

and the number whose logarithm is 2.1280 is 134.3; that is, the 
amount will be $134.30. Also 

log 100 + 20 log 1.015 = 2 + 20·0.0065. = 2 + 0.1300 = 2.1300 

and, since the number whose logarithm is 2.1300 is 134.9, the 
amount will be $134.90 by the semiannual payment. 

Suppose the interest is compounded quarterly. If the yearly 
interest rate is r per cent, then the quarterly interest is r/4, and 
at the end of the first year the amount on deposit is equal to 

A(l+:iY 
At the end of the second year it is equal to 

at the end of the third year 

( )
3,4 ( )12 A1+.~ =A1+:i 
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and, generally, if the money is kept on deposit for n years, to 

The formula for the amount compounded for n years at the 
yearly rate of r per cent, if the interest is compounded monthly, 
thus is equal to 

( r )12n 
A 1 + 12 

If the interest is compounded daily (bankers consider the year 
equal to 360 days), the amount on deposit at the end of n years 
is equal to 

( r )360n 
A 1 + 360 

Apparently when interest is added every day, the money on 
deposit may grow at a tremendous rate, but would compounding 
interest at such short periods break a bank? 

The Shortest Insurance Policy Ever Written: 'e' 

Suppose A dollars is deposited in a bank that pays yearly in
terest of r per cent, and· the interest is compounded n times a 
year. At the end of the first year the amount will be equal to 

at the end of the second year, 

A (1 + ~rn 
at the end of the third year, 

A (1 + ~rn 

and, generally, if left in the bank untouched for t years ~ill be 
equal to 
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We may reason that the smaller we make the l/nth part of a 
year, the more periods for which interest will be computed and 
added to the origi~al capital. In such a situation we might ex
pect the original capital would grow so fast that the depositor 
would become tremendously wealthy. But suppose a bank 
should pay interest every hour, or every tenth of a second, or, 
since we allow our imagination full play, every millionth of a 
second; suppose we even allow n to become so large that it will 
be almost infinite in size. 

To simplify this we can advantageously modify our problem. 
Suppose that only 1 dollar is deposited; that is, A = 1. Also let 
us suppose that the bank pays only a yearly interest rate of 1 per 
cent. And, finally, that this dollar is kept in the bank for one 
year only. Thus in the above formula A = 1, r = 1 per cent (or 
0.01), and t = 1. Our formula then becomes 

We shall make one more modification. Suppose the banlcer is 
so goodhearted that he pays 100 per cent yearly interest, or 
r = 100 per cent (or 1.00). If the interest were paid once a 
year, the dollar would be doubled at the end of the year. If the 
interest is paid n times a year, then the amount on deposit is ob-

tained by the formula (1 + ~) n. And n in this formula is al

lowed to become extremely large. Let us compute the values of 
the above expression for some values of n: 

For n = 1 we have (1 + +) 1 = 2 

For n = 2 we have (1 + i-)2 = 2.25 

For n = 3 we have (1 + i-)3 = 2.37, approximately 

F or other values of n we shall make use of logarithms. For 
n = 10, we have (1 + 0.1)10 = (1.1) 10, or 

10 log 1.1 = 10·0.0414 = 0.4140 

and the value is 2.594, approximately. 
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For n = 100 we have (1 + 0.01) 100 = (1.01) 100, or 
100 log 1.01 = 100·0.0043 = 0.4300 

and the value is 2.691, approximately. 
For n = 1,000 we have (1 + 0.001) 1.000 = (1.001) 1.000, or 

1,000 log 1.001 = 1,000·0.00043 = 0.43000 

(for this and other computations we must use tables of loga
rithms with more than four places in their mantissas), and the 
value is 2.70. 

For n = 5,000 we have 

(1 + 5,~00r'000 = (1 + 0.0002)5,000 = (1.0002)5,000 

or 5,000 log 1.0002 = 5,000·0.0000869 = 0.4345000 

and the value is 2.72, approximately. We cannot rely on any 
more places in our answer because all the numbers used in the 
computation are approximate, and more than three digits would 
therefore introduce error. 

More refined computations (not by means of logarithms, but 
by special expressions whose nature is beyond the scope of this 

book) calculate (1 + ~y as 

1 1 1 1 
1 + 1 + 1-2 + 1.2.3 + 1·2·3·4 + 1.2.3.4.5 + ... 

and show that its value is 2.71828, correct to six places. It can 
be computed to any number of places, but at no time is the value 

of (1 + ~r greater than 2.72. The calculation of this value 

may be performed as follows: 

Take 1 .............................. " 1.000000 
Divide 1 by 1. . . . . . . . . . . . . . . . . . . . . . . . .. 1. 000000 
Divide by 2 ............... , ........... 0.500000 
Divide 0.500000 by 3 ................... 0.166667 
Divide 0.166667 bv 4 ................... 0.041667 
Divide 0.041667 by 5 ................... 0.008333 
Divide 0.008333 by 6 ............ , ...... 0.001389 
Divide 0.001389 by 7. . . . . . . . . . . . . . . . . .. 0.000198 
Divide 0.000198 by 8 ................... 0.000025 
Divide 0.000025 by 9. . . . . . . . . . . . . . . . . .. 0.000002 

Total ........................... " 2.718281 
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Thus, if the banker were paying 100 per cent interest, and the 
number of periods during a year were infinite, he would not 
have to payout more than $1.72 interest, and your hopes of be
coming infinitely rich would be blasted. 

The value of (1 + ~) n when n is infinitely large is so impor

tant in mathematics and science that it has a special symbol, e. 
The banker is thus insured against his bank being broken, and 
hi's insurance policy is the simple e; no wonder then that we call 
this "the bankers' number." 

Now let us consider the general formula obtained, 

A (1 + ~yn 
Let r 1 Then n = rx. We can rewrite our formula as 

n x 

A ( 1 + ~yrx, or A (1 + ~rtr 

If n becomes very large, then rx (which is equal to n) also be
comes very large. But r is fixed in value; it is the yearly rate of 
interest. The only possibility is that x must also become very 

large, and then ( 1 + ~y must have the value e. Substitute this 

in the expression 

and we have 

( l)xtr 
A 1 +x 

This formula gives the amount that will be on deposit when A 
dollars is placed in a bank that pays interest continuously (the 
intervals being so small that we may think of them as being almost 
at zero), and the yearly rate of interest is r per cent, while the 
capital is kept in the bank for t years. The bankers' number, we 
see, is a part of this formula. 

If $100 is deposited in a bank paying a yearly r~te of 6 per cent 
interest compounded continuously, then at the end of the first 
year the amount on deposit will be 

100· (2.718)0.06 
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We have then 

log 100+0.06 log 2.718 = 2+0.06·0.4343 = 2+0.0261 = 2.0261 

and the number whose logarithm is 2.0261 is 106.2. Thus the 
amount at the end of the year will be equal to $106.20. If in
terest were paid only once a year, the amount would be $106. 

If $100 is deposited at a yearly rate of interest of 4 per cent 
compounded continuously, at the end of ten years the amount 
will be 

100·(2.718)10.0.04 = 100·(2.718)0.4 

We have then 

log 100 + 0.4 log 2.718 = 2 + 0.4·0.4343 = 2 + 0.1737 = 2.1737 

and the number whose logarithm is 2.1737 is 149.17. Thus the 
amount at the end of ten years will be equal to $149.17. If in
terest were paid only once a year, the amount would be equal to 

100(1 + 0.04)10 = 100(1.04)10 
\Ve have then 

log 100 + 10 log 1.04 = 2 + 10·0.0170 = 2 + 0.1700 = 2.1700 

and the number whose logarithm is 2.1700 is 147.9. Thus the 
sum would be equal to $147.90. The difference in the interest 
earned under the two plans would be equal to 

$149.17 - $147.90 = $1.27 

How Fast Your Money Can Grow 

When we deposit our savings in a bank, most of us do not 
concern ourselves with any question other than the rate of in
terest, but there is another side to the problem. Suppose we 
make one deposit only, and the money is left to earn compound 
interest. We have computed that if the yearly rate of interest 
were 6 per cent compounded yearly it would take about twelve 
years to double the original deposit. But what happens during 
the intervening twelve years? How does our money change in 
size? Does the bank add a twelfth of our deposit every year? 
No, because 12'0.06 = 0.72, or twelve equal increments would 
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not add even three-quarters of the original deposit. Besides, such 
equal additions would represent the payment of simple interest. 

In simple interest the rate at which the money will grow is 
- determined by the interest rate paid. If 

the yearly rate is r per cent, and the in
terest is paid once a year, then if the 
original alIl!>unt deposited is A dollars the 
interest earned is A r (r is expressed in 
decimal frictions) . And this amount will 
be earned year in and year out. \ Vhen 
the interest is compounded the proQlem 
of the rate of the growth of your money 

is not so simple, but it is not too difficult for us to solve. 
We shall call the rate of growth of the money the "increase" 

in a year. When simple interest is paid, we say that the rate of 
growth is "constant," but when simple interest is compounded 
the money on deposit does not increase every year by the same 
sum, as we shall now see. 

Let the amount deposited be A dollars and the yearly interest 
rate be r. At the end of the first year, the interest earned is 

Ar 

and the amount on deposit is 

A (1 + r) 
At the end of the second year, the interest is A (1 + r) r, and the 
amount on deposit is 

A(1 + r)2 

At the end of the third year, the interest is A (1 + r) 2r, and the 
amount on deposit is 

A(1 + r)3 

We note that the interest paid at the end of a certain year is 
computed on the basis of the money on deposit at the beginning 
of that year. Then at the end of the nth year, the interest earned 
will be 
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and, generally, at the end of any year, whose number may be 
denoted by k, the interest earned will be 

A(l + r)k-1 r 

Since the amount at the beginning of any year depends on 
how long this money was kept on deposit (that is, on the number 
of years or, as we may say, on the "time"), and since the amount 
on deposit changes from year to year because it grows, the rate 
of growth of the money when compound interest is paid varies. 

If we denote the amount on deposit at the beginning of any 
year by A", then the interest earned during that year is A"r. 
Thus we see that the amount of compound interest earned during 
any year depends on the amount on deposit at the beginning of 
that year. If the interest is paid at regular intervals several times 
a year, the same result is obtained. In this case, however, the 
amount on deposit will increase several times a year, and the 
speed with which it will grow will depend on the amount on 
deposit at the beginning of each period. 

If the interest is compounded at intervals that during each 
year become infinite in number, the speed with which the amount 
grows also changes continuously, but even in this case the speed 
depends on the amount on deposit and is proportional to the 
amount at the beginning of each interval. 

On the other hand, if there should be a change so that its 
growth is proportional to the amount recorded at the beginning 
of a period, the law of compound interest operates. And, since 
we now know that for very small intervals, or continuous 
growth, the' relationship is based on the bankers' number e, we 
establish that e is most important in the nature of growth and 
the study of its laws. 

However, growth may not be considered only from the point 
of view of increase, since we make use here of the principle that 
allows generalization. If growth by increase is a growth in one 
sense, and let us consider it as positive, we may think also of a 
growth that has an opposite sense, in which decrease is involved. 
This reasoning reminds us of the negative number which enabled 
us to extend the notion of numbers. 
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How Fast Y01{r Money Can Go 

We examined a problem of disappearing money when we 
computed the trade-in value of a car. Basically, we start out 

with a sum of money, and at the end 
of a definite period a certain portion 
of this is lost. In business practice this 
is called "depreciation." The longer 
machines, furniture, buildings, or similar 
properties are in use the more they de
preciate in value. 

Suppose that a certain article costs A 
dollars, and at the end of each year loses 
r per cent of its value. At the end of the 

first year its value will be equal to 

A - Ar = A (1 - r) 

at the end of the second year, 

A(1 - r) - A(1 - r)r = A(1 - r)(1 - r) = A(1 - r)2 

and at the end of the third year, 

A (1 - r)2 - A (1 - r)r = A (1 - r)2(1 - r) = A (1 - r)3 

Thus we note that the method applied in computation of com
pound interest is applicable in the case of depreciation, but in 
computation of the latter the value of r is negative, and we have 
the general formula for the value of the object at the end of n 
years as A (1 - r)n. 

For example, suppose that a new truck costs $l,OQO; upon de
livery its value is reduced to $700, and it depreciates at the rate 
of 15 per cent yearly. The value of the truck at the end of five 
years will be 

700(1 - 0.15)5 = 700(0.85)5 

By logarithms we obtain 

log 700 + 5 log 0.85 = 2.8451 + 5 ·1.9294 = 2.8451 - 5·0.0706 

or 2.8451 - 0.3530 = 2.4921, and the number whose logarithm 
is 2.4921 is 310.5. Thus the value of the truck at the end of five 
years will be $310.50. 
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\~.~'. J 
Depreciation need not be effected only at the end of the year;:\ 

it may be effected at the end of every six months, or every three ~ C 
months, in the same manner as compound interest may be paid ':,'>...! 
at shorter intervals. Thus if the truck is depreciated semian- ' 
nually at the yearly rate of 15 per cent, it will have at 'the end of 
five years the value 

700(1 - 0.075)10 = 700(0.925)10 

If the yearly interest rate is 15 per cent, then the interest rate is 
7.5 per cent, and instead of "interest" we use "depreciation." 
We have then 

log 700 + 10 log 0.925 = 2.8451 + 10·1.9661 = 
2.8451 - 10·0.0339 

or 2.8451 - 0.3390 = 2,5061, and the number whose logarithm 
is 2.5061 is 320.64. Thus the truck at the end of five years will 
be worth $320.64. 

We found that when the depreciation is effected once a year, 
the value will be $310.50, and when twice a year, $320.64. Had 
we proceeded, the value under depreciation effected three times 
a year would be $325.92, and, if every month, would be $328.92. 

In other words, if we make shorter the period at the end of 
which the depreciation is effected, we obtain a larger value. 
Now, if the periods are continuously made shorter, would we 
reach a stage when there will be no loss in value at all? Or if 
this does not take place, what does happen? 

The Math~matics of Slow Death 

Suppose an article that costs A dollars is depreciated at the 
yearly rate of r per cent and the depreciation is effected n times 
a year. At the end of the year its value will be equal to 

at the end of the second year, 
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at the end of the third year, 

( r)3n 
A 1 - n 

and, generally, if the depreciation is continued for t years, the 
value at the end of t years will be equal to 

A (1 _ ;yn 
The value of n in the above formula may be made as large as 

we please. Naturally, the larger this value of n the shorter an 
these periods wiH be. Weare thus c.onfronted with a situation 
similar to the one discussed previously; the reader will recall that 
in compound interest the formula is 

A (1 + ~yn 

We shall simplify our discussion by modifying this to 

( r)tn 
A 1 - n 

and shall assume for the time being that the value of A is 1. We 
shall suppose further that the article becomes entirely valueless 
in one year when the depreciation is effected once, or r = 100. 
Our formula then becomes 

( r)tn 1 -
. n 

and, since we are considering only one year, t = 1, and we have 

Let us compute the values of the above expression for some 
values of n: 

For n = 1 we have (1 - t)l = O. 
For n = 2 we have (1 - i)2 = 0.25. 
For n = 3 we have (1 - t)3 = (%)3 = 287 = 0.296. 
For n = 4 we have (1 - t)4 = (!)4 = -l'fi1r = 0.316. 
For n = 5 we have (1 - t)5 = (t)5 = t~~t = 0.328. 
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F or other values of n we shall make use of logarithms. For 
17 = 1,000 we have 

(1 - 0.001)1.000 = (0.999)1.000 
or 

1,000 log 0.999 = 1,000 . 1.9996 = - 1,000 + 999.6 = 1.6000 

and the value is 0.398, approximately. For n = 100,000 we have 

(1 - 0.00,001)100,000 = (0.99999)100.000 
or 
100,000 log 99,999 = 100,000·1.9999957 = 

-100,000 + 99999.5700000 = 1.5700000 

and the value is 0.3716, approximately, or correct to two places, 
0.37. 

Thus we see that with the increase in the value of n we obtain 
a decimal fraction which is greater than 0.3, and at the same time 
is less than 0.4. Let us examine the expression 

L 1 x 
more closely. et us replace 1 - - by -1--' 

n +x 

and 

1 x 
1--=--

n 1 + x 

!=l __ x_ 
n l+x 

which, when simplified, gives 

1 1 
n l+x 

and 
n=l+x 

We have then 

From this we conclude that when n becomes very large x 
must become very large also. We then have 
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Now recalling the rules concerning exponents, we have 

_x _ __ 1 __ (~)-1 
1,+x-1+x- .x 

x 
Then c ~ xy+z = C ~ x) -(Hz) = C ~ X) -x C ~ X)-l 
Now 

and 

( l)-Z [( l)Z]-l 1+- = L+-x x 

But, since x becomes very large, (1 + ~)" = e. Moreover 

( 1)-1 1 +:;; ,when x becomes very large, becomes equal to 1, 

because ~ is then very small. Then we have the following result: 
x 

The numerical value of ~ is approximately O.36i87. 
e 

If we consider the formula 

( r)tn 1--
n 

let us make 
r 1 
- =-
n y 

Then n = ry. If we substitute these values in the formula above, 
we have 

( l)trv (l)Utr 
A 1 - Y 'or A 1 - Y 
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If ~ = !, and if n becomes very large, while r is fixed in value, 
n y 

then y must become very large also. Then 

and our formula becomes 
Ae-tr 

By means of this we can compute the value of a depreciated 
article when the yearly rate of depreciation, the number of years 
are given, and the depreciation is assumed to be continuous; that 
is, the intervals at which the depreciation takes effect are so small 
that they may be considered imperceptible. 

For example, if $100 is depreciated at the yearly rate of 10 per 
cent at the end of ten years, the amount left will be equal to 

100· (2.718) -10·0.1 

or to 
100.2.718-1 = 36.79 

that is, to $36.79. 

H ow Fast Is Slow Death? 

The case of living beings, who gradually lose their energy and 
die, is similar to the problem of depreciation of a machine, and 
of the same formula, Ae- tr, is applicable. The values of A, t, 
and r may differ, however. 

If the value of A were divided into n equal portions, and at 
the end of a definite period one such portion were simply dis
carded, then the rate with which the value of A would be depre
ciated would be the same for all the periods. This reminds us of 
simple interest, when at the end of every year the same amount 
of money is to be added to the original sum, or of depreciation 
when the value of the article may decrease at the end of each 
period by the same amount. In business this latter may take 
place at times, but in nature it never occurs. 

We shall call the speed with which an object depreciates (or 
deteriorates) the amount it loses during one year. Thus, if the 
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rate of yearly d~preciation is r per cent and the initial value of 
an object is A dollars, then if the depreciation is effected at the 
end of one year the value will be equal to A - Ar. During the 
first year the loss is therefore 

Ar 

At the end of the second year the value is 

A (1 - r) - A (1 - r)r 
and the loss is 

A (1 - r)r 

At the end of the~third year the value is 

A(l - r)2 - A(1 - r)2r 
and the loss, 

A(1 - r)2r 

We note that the amount of the loss during any year is com
puted on the basis of the value of the object at the beginning of 
that year. Then at the end of the nth year the amount lost will 
be equal to 

A(1 - r)n-l r 

Since the amount that represents the value of the object at the 
beginning of any year depends on how long the depreciation was 
taking effect-in brief, on time-the rate of depreciation does not 
remain constant, but changes. If we denote the value of an 
object at the beginning of any year (say, the kth) by Ak, then 
the amount lost during that year is Akr. Thus we see that the 
amount of loss during any year (when the loss is compounded) 
depends on the value of the object at the beginning of that year. 
The rate of the yearly per cent of loss is 'Constant, but the rate 
of the loss is not. Moreover, as the number of years that the 
depreciation is effected progresses, the actual amount of loss be
comes smaller because the value of the object becomes smaller. 
Thus we may say that the speed of the depreciation is propor
tional to the value of the object. Since, with the progress of 
the years, this value becomes smaller, the speed of losing slows 
down, and depreciation may then be compared with the process 
of "slow death." 
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If the depreciation is effected at regular intervals several times 
a year, the same result is obtained. In this case, however, the loss 
will be effected several times a year, and the speed with which it 
will take place will depend on the value of the object at the be
ginning of each period. If the loss is effected at intervals so 
small that their number each year becomes infinite, the speed 
with which the loss will be effected also changes continuously. 
But even in this case the speed depends on the value of the object 
at each moment and is proportional to the value at the beginning 
of each interval. 

Since the formula for the value of an object when the loss is 
effected continuously is Ae- tr, then its value at the beginning of 
a certain interval is (let this interval be the kth) 

where A is the original value and when k = o. Note that 
eO = 1, and Ao =A. 

The Curves of Growth and Death 

The formula for continuous growth, 

and the one for continuous depreciation, 

are closely related to one another. This becomes obvious if we 
glance at their mathematical pictures, or "graphs" (see Chapter 
24 for an explanation of this mathematical phenomenon and the 
mechanics of its "plotting"). To simplify our discussion we 
shall recall that the value of r is constant, and only the value of t 
changes. We shall, therefore, consider the two equations 

y = eX and y = e-X 

The values of these expressions for eX and e-X are so important 
in many branches of science, business, and industry that they 
have been calculated and tabulated for constant use. 
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The "(ralues of x and yare given in the following table: 

x eX e-tc 

0.00 1. 0000 1.0000 
0.10 1.1052 0.9048 
0.20 1. 2214 0.8187 
0.30 1.3499 0.7408 
0.40 1.4918 0.6703 

0.50 1. 6487 0.6065 
0.60 1. 8221 0.5488 
0.70 2.0138 0.4966 
0.80 2.2255 0.4493 
0.90 2.4596 0.4066 

1. 00 2.7183 0.3679 
1.10 3.0042 0.3329 
1. 20 3.3201 0.3012 
1. 30 3.6693 0.2725 
1.40 4.0552 0.2466 

1. 50 4.4817 0.2231 
1. 60 4.9530 0.2019 
1. 70 5.4739 0.1827 
1. 80 6.0496 0.1653 
1.90 6.6859 0.1496 

2.00 7.3891 0.1353 
2.50 12.182 0.0821 
3.00 20.086 0.0498 
3.50 33.115 0.0302 
4.00 54.598 0.Q183 

4.50 90.017 0.0111 
5.00 148.41 0.0067 
5.50 244.69 0.0041 
6.00 403.43 0.0025 
6.50 665.14 i).0015 

7.00 1,096.6 0.0009 
7.50 1,808.0 0.0006 
8.00 2,981. 0 0.0003 
8.50 4,914.8 0.0002 
9.00 8,103.1 0.0001 

10.00 22,026.5 0.00005 

"Pictures" of the two equations are shown below. Note that 
the graph of y = e-X is a mirror image of the graph of the equa-
tion y = eX. If the graph of one curve is turned over (in the 
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same manner as a page is turned over), it will fall on the graph 
of the other curve and will coincide with it. This is only a close 
graphical relationship, but the relationship as obtained directly 
from the equation shows that the values of e-11! are the reciprocals 
of eX. because 

1 e-X =eX 

The values of el1! and e-11! will be useful in the discussions of 
certain properties and facts to which the following sections are 
devoted. 
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The Bankers' Number and Aviation 

Through a modest but important problem in the flight of an 
airplane, we shall now see how mathematics played and always 
will playa vital part in the development of aviation. We know 
that the pilot must be able to determine at what height he flies 
and that special instruments now permit him to determine his 
elevation at a glance, but what is the basic principle of these 
instruments? 

To find the answer we must remember that an airplane or a 
balloon travels through air on the same principle that a ship 
travels through water, as air has weight and density. The fact 
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that air has weight was discovered by the Italian scientist T orri-\. \ 
celli in 164 3, and on the basis of his finding he in vented the ~ It! I!I 
barometer by means of which we measure air pressure, known ~.'
as barometric pressure. 

That air exerts pressure can be easily demonstrated at home 
without special instruments. Fill a glass with water and put a 
card over it, then turn the glass over while holding the card tight 
over the top of the glass. When the glass is overturned, remove 
your hand. The card will stick to the glass, as illustrated, and 
the water will not be spilled. 

It was found that the air pressure becomes lower with the rise 
above ground; at sea level at 0 degree Centigrade, when the air 
is dry, the air pressure on every square 
centimeter of the earth's surface with 
the weight of about 1 kilogram. This 
weight is usually represented by a 
mercury column whose base has an 
area of 1 square centimeter and whose 
height is 76 centimeters, or 760 millimeters. It should be ob-
served that it is not only elevation that causes a reduction in the 
pressure; temperature, wind, humidity, the pressure of dust, and 
many other factors influence its magnitude, but to learn the 
essentials of the law governing changes we must ignore all these 
and consider only the effect of elevation. 

Let us assume that the air pressure at sea level is P. Then at 
some height, say b, it will be p. We know that p is less than P 
because at the height b the column of air with a base of 1 square 
centimeter is shorter than the column with the same base at sea 
level. Thus the difference in P and p is equal to the weight of a 
column of air whose base is 1 square centimeter and whose height 
is b. If we can compute the weight of this column and subtract 
this from f' we shall obtain p. 

Here, however, we are confronted with some difficulty. Air 
is lighter than water, and the ratio of the weight of a volume of 
air to the weight of the same volume of water is known as the 
density of the air. But the air density changes with pressure; 
thus it is not a constant magnitude but is proportional to air pres-
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sure. At great heights the air is very rarefied, and this is why we 
find it difficult to breathe on high mountain tops. To resolve 
this difficulty we shall divide the lengthh into a great number 
(say n) of equal parts. Each of these parts will then be h/n, and, 
since all are very small, we may assume that the density within 
each is constant. But the densities in everyone of them are not 
the same; they change and become smaller. 

Let us assume that the density of the air at sea level is d l . 

Then, since the area of the base is 1 square centimeter and the 

height of the column is ~, the volume is ~ cubic centimeters, and 
n n . 

the weight of the air, which exerts pressure, is d<~). Also, since 

the density is proportional to the pressure, we may write 

d 1 = kP 

where k is known as the coefficient of proportionality whose 

val~e will be stated presently. Then instead of dl(~)we may 
wnte 

kh P 
n 

Then the air pressure at the height ~ above the sea level will be 
n 

equal to 

Let us denote this air pressure by P2. 
Now let us consider the second strip of air, whose thickness 

also is~. Let the density of the air in it be d2 • Then the weight 
n 

of the air in the strip will be dz ~. Also, since the density of 
n 

the air is proportional to the air pressure, we have that d2 = kp2. 
Then the weight of the air in the second strip may be written as 
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and the air pressure at the height of 2h above sea level will be 
n 

equal to 

. P2 - ~ P2 = P2 (1 - ~) 

But P2 = p( 1 -- k:} Then the air pressure 

above the sea level is equal to 

at the height 2h 
n 

p( 1 - ~r 
At the height of 3h the air pressure will be equal to 

n 

This may be obtained if we denote the air pressure at the height 

of 3h by P3 and the corresponding density of the air by d3 and 
n 

go through the same process as above. 

Finally, at the height hn, that is, h, the air pressure will be 
n 

equal to 

P(l - ,:y 
Naturally, the smaller the width of the strip ~, the more re-

n 
fined will be the value of the air pressure. But, to make the 
width of the strip very small, we must make n, the number of 
these strips, very large. Thus here again we are confronted with 
a situation that is similar to the case of depreciation. If we make 

kh = a, we have (1 - ~r, and this, we know, is equal to e-a, 

or (1 - ~r = e- kn • Thus the pressure of the air (barometric 

pressure) p at the height b above the sea level is equal to 

P = Pe-kh 

By means of this formula it is possible to compute the elevation 
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above sea level when the air pressure at the elevation is known. 
We proceed as 'follows: 

log p = log P- - kh log e, or, kh log e = log P - log P 
1 

h = -kl (logP -logp) 
age 

The value of 
1 

k log e 

when the barometric pressure is given in millimeters is approxi
mately 18,400, aria this value enables us to compute the value' of 
h in meters. 

For example, the elevation of a point above sea level where the 
barometric pressure is 700 millimeters, while the barometric pres
sure at sea level is 760 millimeters, is 

h = 18,400 (log 760 - log 700) 
or 

h = 18,400(2.8808 - 2.8451) = ~18,400·0.0357 = 656.88 

or approximately 657 meters, or about 2,160 feet. 
The same formula holds for the difference in the elevation of 

two points when the respective barometric pressures at these two 
points are given. In this case P is the barometric pressure at the 
lower point, and p the barometric pressure at the point above it. 
By means of this formula heights of mountains and the rise of 
balloons and airplanes may be computed. In such computations, 
however, the necessary corrections are introduced for tempera
ture, humidity, wind velocity. 

How Hot Is Your Coffee? 

The homely process of cooling hot objects, when described 
mathematically, is very similar to the process of depreciation. 

Suppose an object whose temperature is T is brought into a 
room in which the temperature is t (T is greater than t). If this 
hot object is left to itself, it will begin to cool off immediately, 
and as the process continues, the difference between the tempera-
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ture of the room and that of the object will become smaller and 
smaller until there will be no difference. It was found that the 
rate of the decrease of this difference is proportional to the dif
ference of the temperatures at that moment; thus when the differ
ence is large the cooling is faster than when the difference is small. 

In the expressions Aert and Ae-rt , which represent the two 
types of change, the first corresponds to growth and the second 
to depreciation, the values of r representing the percentage rate 
of change (or, as it is usually called, the "coefficient of propor
tionality"), and t representing the number of periods (or time). 
Since these types exhaust the various possibilities of change under 
the conditions described in this chapter, we shall avoid the 
lengthy derivation of the expressions in the analysis in this and 
the following sections. 

Let us denote the difference between the two temperatures for 
a certain moment (say the nth) by An, and the original differ
ence between the temperatures by Ao. Then, since the rate with 
which the differences decrease is proportional to the respective 
differences at the beginning of each period, we may write the 
relationship 

where k is the coefficient of proportionality which is deter
mined by experiment. In other words, k represents in per cent 
the loss in the difference between the two temperatures during 
any period. 

We now may introduce some changes in the above relation
ship which will enable us to compute the temperature of the 
object for any moment after it begins to cool off. Since the 
temperature of the room is t, and the temperature of the object 
is T, we have 

Ao = T - t 

Also, if the temperature of the object at the nth moment is Tn, 
and since the temperature of the room may be assumed to be 
constant, we have 

Then, instead of 
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we may write 
Tn - t = (T - t)e- kn 

From this we obtain the expression for the temperature of the 
object at the end oJ the nth moment, 

Tn = t + (T - t)e- kn 

The value of k is not the same for all substances, and it must 
be determined by experiment as follows. The temperature of 
the object is measured for some definite moment, say the wth, 
and it was found to be Tw. Then, according to the relation ob
tained by us aD ave, we have that 

T w - t = (T - t)e-kw 

and from this we obtain 
-kw _ T w - t 

e - T - t 

Then, extracting the wth root from both sides of the equation, 
we find that 

1 

e-k = (in ~/t 
However, this may eliminate the need to compute the coeffi

cient of proportionality k. We may substitute the expression 
for e-k in the expression Tn - t = (T - t)e- kn. We have then 

n 

Tn = t + (T - t) (i"~/Y' 
1 n 

Note that if e-k = Sw, then e- kn = S;;;. 
By means of the last formula we can compute the temperature 

of a cooling object. For example, suppose an object heated to 
200 degrees Fahrenheit is brought into a room in which the tem
perature is 65 degrees Fahrenheit. After twenty-five minutes 
the temperature of the object drops to 130 degrees. What will 
its temperature be after another twenty-five minutes? 

Translating the statement into algebra, we have 

n = 50, W = 25 

t = 65, T = 200, and T w = 130 



Then 

and 
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[ (130 - 65)J2 
Tn = 65 + (200 - 65) (200 _ 65) 

(50 -+- 25 = 2) 

T = 65 + (65)2 
n 135 

(65)2 
By means of logarithms we compute l35. We have 

2log 65 = 2·1.8129 = 3.6258 
and 

log 135 = 2.1303 

2 log 65 - log 135 = 1.4955 

Since the number whose logarithm is 1.4955 is 31. 3, then 

Tn = 65 + 31.3 = 96.3 

Thus the temperature after another twenty-five minutes will be 
96.3 degrees. Suppose you are served, in some wonderful res
taurant, a cup of coffee that is actually boiling hot (that is, its 
temperature is 212 degrees Fahrenheit). The room temperature 
is 75 degrees, and in about five minutes the temperature of the 
coffee drops to 172 degrees. How long will it take until its 
temperature will be 1 32 degrees? 

We have here t = 75°, Tw = 172°, Tn = 132°, and T = 212°, 
and w = 5. Then 

Qr 

5 

132 = 75 + (212 - 75) [(172 - 75)J; 
(212-75) 

5 

[ 97 In 57 = 137 137 

By means of logarithms we have 

n 
log 57 = log 137 + "5 (log 97 - log 137) 

and 
5 (log 57 - log 137) 

n = --;-----'-'--,-;--:-""-:--::_=_'_ 
log 97 - log 137 
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or 
5 (1. 7 559 - 2.1367) 5( - 0.3808) . 

n = 1.9868 _ 2.1367 = -0.1499 = 12.7, approxImately 

Thus it would take about thirteen minutes for your coffee to 
cool to a pleasant sipping temperature. 

The Bankers' Number Gets Around 

These illustrations of the relations in which e plays an impor
tant part represent only a small fraction of its many applications 
in different fields. A few more may be of interest here. 

However, the reader is warned that neither the applications 
already discussed nor those about to be considered represent the 
exact formulation of a relationship, since for practical brevity 
we must often disregard certain facts that produce comparatively 
little effect, or which may be corrected for error by means of 
special formulas. For example, when we considered the problem 
of the cooling coffee we paid no attention to the fact that the 
process of its cooling would slightly raise the temperature of 
the surroundings. 

Nevertheless, we have obtained a formula that closely approxi
mates the need and, in general, gives satisfactory results. The 
formulas and expressions that are given below will convince the 
reader that whenever there is a relationship in which one quan
tity varies (in respect to time, distance, or any other medium) so 
that its value is always proportional to the value of another quan
tity that also changes in a similar fashion, this relationship is of 
the form A = Aoert or A = Aoe-rt, depending on the type of 
relationship. This may be a relationship of continued growth 
or a relationship of gradual death. 

a) Motoring or Boating. 

A motor boat moves at a speed of ten miles an hour. Suddenly 
its motor is stopped and after twenty seconds the speed is re
duced to six miles per hour. Assuming that the resistance of the 
water to the motion of the boat is proportional to the speed of 
the boat, what will be the speed two minutes after the motor 
was stopped? 
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The relationship in this case is 

k 
--t 

V = voe m 

Where v is the speed of the boat at t seconds after the motor 
was stopped, 

Vo, the speed before the motor was stopped, 
t, the number of seconds that elapse after the motor was 

stopped, 
k, a proportionality coefficient that must be determined, 
m, the weight of the motor boat. 
Since k and m are not given, we shall attempt to eliminate 

these two as follows. The conditions state that after twenty 
seconds the speed of the boat was six miles an hour, then (chang
ing seconds and minutes into fractions of an hour) we have two 
equations 

6 = lOe- (~). C~o) 
and 

v = 10e- (~). (~) 

By means of logarithms we have 

log 6 = log 10 - (~). c~o) log e 

log v = log 10 - (:). (3~) log e 

Then 

and 
log 6 - 1 = - (~). C~O) log e 

log v -1=-(~)'(310) loge 

Divide the second equation by the first, and we have 

log v-I = (1130) = 180 = 6 
log 6 - 1 (1/180) 30 
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Then log v-I = 6 (log 6 -1), orIog v = 6 (log 6 -1) + 1. 
Then log v = 6(0.7782 - 1) + 1 = -6·0.2218 + 1 

-1.3308 + 1 = -03308; or 

log v = 1.6692 
and 

v = 0.467 mile per hour 

The same relationship holds for automobile driving provided 
the brakes are not applied and the road is level. 

b) Parachute Jumping. 

A parachutist jumps from an airplane; what will be the speed 
of his descent after t seconds? The formula is 

Where g is the gravitational constant, about 32.2 feet per 
second per second (or 980 centimeters per second per second), 

k is a constant that depends on the weight of the parachutist 
and the size of the parachute, but on the average about 0.0050. 

c) Long-Distance 'Phoning. 

Conversations in long-distance telephoning usually "fade out" 
because of the damping effect on the lines. To counteract this 
damping the telephone company places at definite intervals sta
tions which step up the intensity of the voice. 

The damping effect on the wires can be determined from the 
equation 

I = Ioe- kd 

where 10 is the initial strength of the electric current, 
I, the strength of the current at d, 
d, the distance, 
k, a proportionality coefficient that is determined by experi

ment. When I is not less than 8 per cent of the initial strength 
of the current, the voice is still carried audibly. 
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d) Loss of Light through a Transparent Medium. 

In its passage through a transparent medium, some of the in
tensity of light is lost, and the relationship is 

I = Ioc- kd 

where 10 is the initial intensity, 
I, the intensity of the beam after it has passed through a thick

ness d, 
d, the thickness of the medium, 
k, the "absorption constant" of the medium, to be determined 

by experiment. 

e) Submarine W arf are. 

When a submarine dives, the water outside produces pressure 
on its surface. At a depth of about 200 feet, this pressure is 
about 900 pounds a square inch. There is a depth below which 
the submarine cannot dive because the pressure will crush it. 
The relationship for the pressure and the depth is given by the 
equation 

where Po is a known pressure at some definite depth, 
P, the pressure at the depth d below the surface of the sea, 
d, the depth of the submarine's dive, 
k, the coefficient of proportionality determined by experiment. 
When a torpedo is fired from a submarine at a ship it usually 

travels under its own speed, being propelled by a special mecha
. nism. However, the torpedo can travel only a certain distance 

because its propelling force is being gradually expended. Here 
again we have the relationship 

k 
--t 

V = voc m 

where Vo is the speed of the torpedo after the propelling 
. mechanism stopped working, 

v is the speed of the torpedo t seconds after the propelling 
mechanism stopped working, 
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t is the number of seconds that elapse after the propelling 
mechanism stopped working, 

k is a proportiqnality factor that is to be determined by ex
periment, 

m is the weight of the torpedo. 
In the application of this formula it is necessary to take into 

account the condition of the sea. This il' introduced in the com
putations as a correction. 

f) Suspension Bridges. 

All suspension bridges have their middle spans (those sup
ported by the cables) in the shape of a curve known as the 
catenary. This is a curve that is obtained when a chain is sus
pended from its ends and it attains a shape due to its own weight. 
The equation of this curve is 

eX + e-X 
Y= 2 

Thus from these examples we may see that the bankers' num
ber e is a mathematical jack of all trades who has turned his hand 
at almost every workshop of modern life. 



Fickle as the Flip of a Coin 

How to Have Fun with 
Lady Luck 

When you toss a coin, it lands with either "head" or "tail" up. 
(It could, conceivably, land on edge, but this would be a bad 
bet and we can safely leave this possibility out.) A flip of a coin 
thus illustrates one of the two basic eventualities, that of a situa
tion where you cannot be certain of the outcome-either of two 
events is equally likely to happen. 

On the other hand, there are situations where the outcome 
can be predicted with absolute certainty. If someone jumps 
without a parachute from an airplane 10,000 feet up, you may 
be sure he will land soon. 

Thus all events may be divided into two categories-those 
events of which we are certain, and those that mayor may not 
take place. The latter present some of the most important and 
interesting of all mathematical results. 

When you flip the coin, two events are possible: either it will 
fall head-up or it will fall tail-up (provided the coin is honest). 
Any notion concerning the exact way it will fall is just a 
"hunch," which mayor may not be good and which generally 
is merely an admission of ignorance. A surprisingly large num
ber 9f people make a fetish of "fate" and often base their judg
ment and stake their money, and sometimes their lives, on 
hunches: this is the essence of gambling. 

329 
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If you want to have fun, help yourself; but remember that 
luck is not a lady and, despite your most devoted attention, will 
turn on you if you give lier half a chance. However, this chap
ter is not intended as moralizing; it will simply let mathematics 
measure the actual worth of these hunches. 

How Good Is a Hunch? 

Suppose someone tells you that a flipped coin will surely land 
head-up. There is no point in questioning him on the process of 
his reasoning; there is none-he "just has a hunch." However, 
there is a way we can actually measure the certainty of hunches. 

This is an artificial measure devised on the assumption that in 
the occurrence of a certain event the several possibilities are 
equally possible, that is, no one of them is given any preference. 
When this democratic principle governs, we have the assurance 
that the mathematical investigation has no favorites and that the 
results are equally applicable to one event as well as to any other 
event in the same category. 

When there are two events equally possible, and only one of 
them can take place, the measure of the certainty of the occur
rence of one event is defined as a fraction. The numerator of 
this fraction is the number of the ways in which this event can 
take place. The denominator is the number of all possible events. 

Thus in the case of a coin we have the three following facts: 
(I) A head can appear in one way only; (2) a tail can appear in 
one way only; and (3) the number of possible events is two. 
Then the certainty of the hunch that a tossed coin will fall 
head-up is i, and the certainty that it will fall tail-up is i. In 
other words, you cannot have any advance knowledge as to 
which of the two events is more likely to take place. 

Before we proceed to measure hunches, let us answer the ques
tion: vVhat is the measure of the certainty that some event will 
definitely occur? F or example, we know that the sun rises every 
day; what is the measure of the certainty that it will rise tomor-
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row? We know that only one event can take place, and this 
event is the rising of the sun. Thus our fraction is 

~ = 1 
1 

A similar result may be obtained for any other event that must 
occur. 

We can also answer the question: If we know that an event is 
to take place, what is the measure of the uncertainty that it will 
occur? We know that nonrising of the sun is an impossibility 
(in polar nights the sun also "rises" but does not come over the 
horizon); such an event does not exist, and its absence mav be 
denoted by o. Then our fraction is . . 

2 = 0 
1 

Here we may well introduce the name that is given to all such 
measures; they are known as the "measures of the probability" . 
of the occurrence of an event. 

Thus the probability that a tossed coin will fall head-up is t, 
as is the probability that it will fall tail-up. 

We may also approach the problem of the probability of a 
certain event not from the viewpoint of its successful occurrence 
but from that of its failure to take place. Thus, for example, we 
may talk of the probability of a coin not falling head-up. This 
probability is t. 

Note that the probability of the coin's falling head-up is t, 
that the probability of a coin's not falling head-up is also t, but 
that the sum of the probabilities is 

! +! = 1 

So the probability of the occurrence of an event and the proba
bility of the nonoccurrence of the same event, if added, represent 
the probability that some event will take place under the defined 
conditions (in our case, the toss of acoin), but the nature of the 
event is not specified. The sum of the two probabilities is always 
1; it is the probability of certainty. 
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Generally, if we have a certain number of events of one nature 
that we shall call "successes," and a certain number of events of • 
opposite nature that-we shall call "failures," then the total num-
ber of all the possible events is equal to the number of successes 
plus the number of failures. 

Let us denote the number of the successes by s and the number 
of failures by f. We then find that the probability of a success is 

s 
1+s 

and the probability-of a failure is 

_1_ 
1+s 

We usually denote the probability of a success by p and the 
probability of failure by q. The reader can observe that 
p + q = 1. The sum of the two probabilities is also 

s 1 s +1 
s+1 T s+]= s+1= 1 

For example, if there are seven books on a shelf, of which three 
have red covers and four have blue covers, then the probability 
that, when blindfolded, we shall grasp a red book is t, and the 
probability that we shall take a blue one is t. 

In a deck of 52 cards there are 13 spades and 39 other cards. 
The probability that we shall pull out a spade is 

H = t 
The probability that the card will not be a spade is 

Note that in these two examples 

t + t = 1 and t + ! = 1 

These examples show that we can calculate the probabilities in 
advance. Actual experience, provided we repeat the trials a 
great number of times, may show that in the long run these 



A, How to Have Fun with Lady Luck 333 

probabilities are fairly correct. Thus if a coin is thrown 200 
times, the record may show that head came up 98 times and tail 
came up 102 times. Now 

No = 0.49 
and 

!~ = 0.51 

These results are close enough to the respective probabilities 0.5 
and 0.5. If a coin is thrown 3,000 times, it may come up head 
1,507 times and tail 1,493 times. We then have 

1,507 = 0 50233 
3,000 . 

and 

1,493 = 049767 
3,000 . 

Probabilities obtained after observation and experimentation 
are very important in many branches of business, as we shall see 
presently. The two cases above, however, should serve to em
phasize that probabilities computed in advance are no definite 
insurance that an event will immediately take place according to 
the computed number. Nor are those probabilities computed 
after a great many observations and experiments any better 
lllsurance. 

Mathematicians cannot be prophets where chance plays an 
important part. When a mathematician is able to predict the 
rise or fall of stocks, the hand you may hold in a game of bridge 
or poker, or the number of years you will survive, he will be a 
far more popular teacher. Meanwhile, we may as well be con
tent that in gambling ignor~nce is still bliss. 

The 'What' in 'lVhat a Coincidence!' 

We are often amazed at' the accidental occurrence of two or 
more related events at the same time; we call such a phenomenon 
"coincidence." Now we shall determine the probability of a 
coincidence. 
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Recalling that the probability of the occurrence of an event 
is a fraction who~e numerator represents the number of the pos
sible favorable occl,1rrences, or events, and whose denominator 
is the number of all the possible events, favorable and unfavor
able, where the events are all independent and the possibility of 
their occurrence is equal, let us consider that two men toss two' 
coms. We know the probability of a head-up turn when one 

II 
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coin is tossed, but when we have 
two coins tossed at the same time we 
may obtain several combinations: 

First Coin 
Head 
Head 
Tail 
Tail 

Second Coin 
Head 
Tail 
Head 
Tail 

Thus in the case of two tossed coins 
there are four possible ways in which 
the two coins may fall. The prob

ability of two heads is 1; the probability of one head and one tail 
is i, and the probability of two tails is 1. 

Note that there are two ways in which we may obtain one 
head and one tail. Head may come up on the first coin, and tail 
on the second coin. On the other hand, tail may come up on 
the first coin, and head on the second. However, we may disre
gard the order of the appearance. Should the order of appear
ance be taken into consideration, the probability that the head 
will come up on the first coin and tail on the second is i, and 
the probability that tail will come up on the first coin and head 
on the second is t. 

We observe that the sum of the probabilities obtained is i + 
i + i = 1. Here again we have the fact that the sum of the 
probabilities of the individual events is 1. We shall soon see that 
there isn't anything strange in this. . 

Let us denote the turning up of a head by H and the turning of 
a tail by T. The probability of H is i, and of Tis l Now, in 
the case of two coins, we have the combinations 
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HH, representing two heads 
HT, representing head-up on the first coin and tail-up on the second 
TH, representing tail-up on the first coin and head-up on the second 
TT, representing two tails 

If we disregard the order of the coins, we can represent our 
combinations as HH, 2HT (or 2TH), and TT. 

Let us recall some simple facts from the algebraic method of 
writing products of several and the same factors. When a num
ber is multiplied by itself, this product may be represented by 
writing this number with an exponent. This exponent is written 
to the right just above the factor that is repeated several times. 
Thus, if n is multiplied by itself four times, n·n·n·n, it is written 
as n4. We shall apply this notation to our symbolic representation 
of the combinations of the ways two tossed coins may fall. 

We may consider HH as the product of H's. The HH may 
be written as H2. In a similar manner we may write T2 for TT. 
Thus, our combinations may be written as H2, 2HT (or 2TH), 
and T2. 

Let us denote the probability of H (a head-up) by h, and the 
probability of T (a tail-up) by t. Then in the case of one coin 
we have that h+t=l 

Now in the case of two coins for every H we shall take the prob
ability for every H and for every T. Then with HH, or H2, 
the probability is hb, or b!l; with HT, or TH, the probability is 
ht, and with TT, or T2, the probability is tt, or t2. Then for 
two coins we have 

h2 + 2ht + t2 = 1 

But, if we remember the relation obtained in an earlier chapter, 

(a + b)(a + b) = (a + b)2 = a2 + 2ab + b2 

we obtain the relation 

hZ + 2ht + t2 = (h + t)2 = 1 

Note that this is also true because 

h+t=l 
and the square of 1 is 1. 
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This result may be interpreted as follows. The relation of the 
probabilities of the head-up and tail-up in the case of one coin is 

h +t = 1 

In the case of two coins we obtain the relations of the respective 
probabilities as 

h2 + 2ht + t2 = 1 

The result is interesting also because it enables us to compute 
the probabilities of two coincident events when the probabilities 
of the individual events are known to us. The probability of 
two heads (or two tails) is the product of their respective prob~ 
abilities; that is, 

!.! = t 

Generally, if we have two events whose probabilities are 
known, then the probability of these two events being coinci
dent is equal to the product of these two individual probabilities. 
For example, from the opposite sides of the same railroad plat
form trains depart in the opposite direction at equal intervals 
every ten minutes, but they leave the station at the same time. 
The probability that you and your friend will depart in the op
posite directions within a ten-minute interval is computed as 
follows. The probability that you will catch your train as soon 
as you reach the station is 0.1. The probability that your friend 
will catch his train as soon as he reaches the station is also 0.1. 
The probability that the two of you will leave as soon as you 
reach the station is then 

0.1·0.1 = 0.01 

This means that this may happen once everyone hundred 
times. 

We may also describe a coincidence as the occurrence of one 
event as well as the occurrence of another event. When we con
sider the occurrence of two heads-up and the probability of this 
event, we think of the two coins falling so that one coin turns 
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head-up as well as the other coin turning head-up. Thus the 
probability of the coincidence of two events, also known as the 
"as-well-as probability," is obtained as the product of the two 
individual probabilities of the coincident events. 

How about three or more coincident events? How are their 
probabilities computed? 

Ten in a Row: Algebra Hits the Jackpot 

Let us examine what may happen if three coins are tossed at 
the same time. We shall simplify our discussion by use of the 
symbols introduced in the preceding section; we shall denote a 
head-up of one coin by H (and its probability by h, which is 
i), and a tail-up of one coin by T (and its probability by t, 
which is t). When three coins are tossed at the same time, one 
of the following combinations may take place: 

First Coin 
H 
H 
H 
T 
H 
T 
T 
T 

Second Coin 
H 
H 
T 
H 
T 
H 
T 
T 

Third Coin 
H 
T 
H 
H 
T 
T 
H 
T 

The Probability 
hhh, or h3 

hht, or h2t 
hth, or h 2t 
thh, or h2t 
htt, or ht2 

tht, or ht2 

tth, or ht2 

ttt, or t3 

If we disregard the order in which the coins are considered we 
have only four distinct combinations, namely, three heads, two 
heads and one tail, two tails and one head, and three tails. 

Among these there is one combination of three heads, one 
combination of three tails, and three combinations of two heads 
and one tail, and three combinations of one head and two tails. 
Thus the sum total of all the possible falls may be represented as 
H3, 3H2T, 3HT2, and T3. For the three coins the sum of the 
probabilities is then 

h3 + 3h2t + 3ht2 + t3 = 1 



338 Mathematics-Its Magic & Mastery 

The value of h and also of t is also i. Substituting these values 
in the expression above we have 

The probability that three coins will all fall head-up or tail-up 
is i, and the probability that two heads and one tail, or one head 
and two tails, will fall is ~. 

The reader will have noticed now that the probability is ex
pressed by a number that is a fraction always less than 1. The 
smaller the fraction the less likely is the occurrence of the events 
that corresponds to it. Thus an event whose probability is i is 
less likely to take place than the event whose probability is ~. 

But this is no guarantee that three heads (or three tails) will not 
appear on the first toss of three coins. Presently we shall see 
that there is some usefulness in the value of the magnitude of a 
probability. 

The reader will have observed also that the probabilities when 
several coins are tossed are obtained by means of the expression 

h + 1 = 1 

when the two sides of this expression are raised to the power 
whose exponent is equal to the number of the coins tossed. Thus 
when four coins are tossed we have 

(h + 1)4 = 1 
or 

and the respective probabilities are: 

For four heads ...................... r\-
For three heads and one tail. ......... 146 = t 
For two heads and two tails ........ . 
For one head and three tails ......... T\ = t 
For four tails....................... l6 
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Generally, then, if we have 17 coins, the respective probabilities 
are obtained by means of the expr~ssion 

(h + t) n = 1 

To be able to obtain the individual terms of this expression when 
it is expanded, we shall make use of a table of the coefficients of 
the terms that are arranged in the decreasing order of the mag
nitude of exponents of one letter (say h) and the increasing order 
of the magnitude of the exponents of the other letter (say t). 
Note that in the expansions above the terms were arranged as 
follows: 

Generally, the terms of the expression of (h + t)n should be ar
ranged as 

Note that the sum of the exponents of each term is 17. Thus 

n - 1 + 1 = n, n - 2 + 2 = n 

The table that gives the coefficients of the respective terms 
when they are arranged as shown above is: 

Exponent 
of (h + t) Coefficients 

1 1 1 
2 1 2 1 
3 1 3 3 1 
4 1 4 6 4 1 
5 1 5 10 10 5 1 
6 1 6 15 20 15 6 1 
7 1 7 21 35 35 21 7 1 
8 1 8 28 56 70 56 28 8 1 
9 1 9 36 84 126 126 84 36 9 1 

10 1 10 45 120 210 252 210 120 45 10 1 

This table may be extended as follows: The first number (co
efficient) on the left is always 1. The second (and every suc
ceeding) number is obtained as the sum of the number just above 
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it and the nUIpber on the left of that number. 
ponent 10, we have: 

Thus for the ex-

The first number is 
The second number is 
The third number is 
The fourth number is 
The fifth number is 
The sixth number is 
The seventh number is 
The eighth number is 
The ninth number is 
The tenth number is 
The eleventh number is 

Thus the expansion of (h + t) 10 is 

1 
1 + 9 = 10 
9 + 36 = 45 

36 + 84 = 120 
84 + 126 = 210 

126 + 126 = 252 
126 + 84 = 210 

84 + 36 = 120 
36 + 9 = 45 

9 + 1 = 10 
1 + 0 = 1 

h 10 + 10h9t + 4-5h8t2 + 120h7t3 + 210h6t4 + 252h5t5 + 
2lOh4t6 + 120h3t7 + 45h2t8 + lOht9 + t10 

This enables us to compute, the probabilities of the various com
binations of heads and tails' when ten coins are all tossed at the 
same time. We substitute the values of h = i and t = i and 
perform the indicated computations. 

It should be pointed out, however; that tossing six coins at the ' 
same time is simply equivalent to tossing one coin six times in 
succession. Only once can there be six heads in succession, and 
only once can there be six tails in succession. The reader may 
work out other combinations as an exercise. 

Mugwump Math: Head or Tail? 

When two coins are tossed they may turn up two heads once; 
one head and one tail twice; and two tails, once. Thus a head, 
or a tail, may turn up in three combinations. Computing the 
probability of the occurrence of an event in such situations we 
take into account all possible events, either unfavorable or fa~or
able. In other words, in the case of two coins there are four 
possible events. Of these, however, only three would result with 
at least one head. Then the probability that at least one head 
will turn up is f; the same probability holds for tails. 

We may also obtain the above result if we add the respective 
probabilities of all those events in which at least one head (or 
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one tail) turns up. Thus if asked the probability that at least one 
head will turn up after two c8Jips are tossed, we may answer it 
from these probabilities of the individual events: 

For two heads .......................... ~ ......... t 
For a head on the first coin and a tail on the second .. t 
For a tail on the first coin and a head on the second.. t 

Total ...................................... i· 

The occurrence of an event under such circumstances is not 
specified by any other conditions except that this event is ex
pected to occur in some manner, either in one combination or in 
another. Generally the probability of an event under such con
ditions is larger than the probability of a coincidence, and the 
reason is simple. In the case of a coincidence the probability is 
computed as the product of the respective probabilities. Since a 
probability is measured in terms of a fraction that is less than one 
(1), the product of two or more such fractions will always be 
smaller than any of them. For example, we have three fractions, 
i, i, and 136. The product of the three is Iff 2, and If~ 2 is smaller 
than i, i, or 136. Thus occurrence of a coincidence may be con
sidered rather rare. On the other hand, the sum of the three 
fractions is 196' and it is larger than i, or -g, or 136. In other words, 
the "either-or" event is more common than a single event, and ' 
considerably more common than a coincidence. 

In the case of an either-or event we cease to be choosers. We 
select no special event, because we refuse to make a definite 
choice, and our selection is much broader than in an individual 
occurrence. Thus the probability that at least one tail will ap
pear when three coins are tossed is 

The probability that at least one head will appear when four 
coins are tossed IS 

~ ~ -I- ~ ~ _ 15 
16 + 16 ' 16 + 16 - 16 
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The probability that at least two heads will appear when four 
coins are tossed is 

An Ancient Lullaby: Baby Needs Shoes 

The game of dice, also known as shooting craps, was played in 
ancient times in Egypt and Persia, but the first "loaded," or dis
honest, dice seem to have appeared in early Rome. We shall ex
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amine some of the probabilities in the 
game assuming, of course, that die 
dice are tolerably honest. All dice, 
incidentally, are loaded whether inten
tionally or not; there are no perfect 
dice. A die, cubical in shape, has six 
faces, and on these faces there are dots 
numbering from 1 to 6. 

The probability that one of the six 
numbers will turn up is -/r. However, 

in the game of dice two cubes are used. Thus the probability 
that two identical faces will turn up is 

1 1 1 
6 6 36 

However, it is the sum of the dots that is decisive. Below are 
listed all the possible combinations of the numbers from one to 
six, according to the possible sums. It should be remembered 
that it is immaterial whether a number appears on one die or an
other, and thus the order in which the dice turn up on one throw 
is disregarded. 

2 3 4 5 6 7 8 9 10 11 12 
1 1 1 2 1 3 1 4 1 5 1 6 2 6 3 6 4 6 5 6 6 6 

2 1 2 2 2 3 2 4 2 5 3 5 4 5 5 5 6 5 
3 1 3 2 3 3 3 4 4 4 5 4 6 4 

4 1 4 2 4 3 5 3 6 3 
5 1 5 2 6 2 

6 1 
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Thus, altogether, we have thirty-six possible combinations. The 
numbers appear as follows: 

2-1 time 
3-2 times 
4-3 times 
5-4 times 
6-5 times 
7-6 times 
8-5 times 
9-4 times 

10-3 times 
11-2 times 
12-1 time 

Their respective probabilities are: 
For 2, 1 

36 
For 3, 2 = 1 

36 18 
For 4, 3 = 1 

36 12 
For 5, 3\ 

1 =1) 
For 6, 5 

36 
For 7, 366 = t 
For 8, 5 

36 
For 9, 4 = 1 

36 1) 
For 10, 3'\ = 1 

12 
For 11, 2 = 1 

36 Ts 
For 12, 1 

36 

If we apply the method of computing the probabilities of a 
coincidence we may answer now a question that has long been 
a subject of debate among the poolroom professors. \Vhat is 
the probability that a 7 and an 11 will come up in succession? 
The probability of a 7, we find, is t, and of an 11, Is. Then 
the probability that a 7 and an 11 will come up in succession is 

1 1 1 
() . 18 = 108 

The reader may compute any other probability by the meth
ods developed in the preceding sections. 

TVbat tbe 'Odds' Are 

Very often we are prone to back with money our hunch 
or conviction that a certain event will take place. This may take 



344 Mathematics-Its Magic & Mastery 

the form of a straight bet, purchase of a lottery ticket, or invest
ment in an insurance policy. In some cases we place a bet as 
protection, usually -against some hazard such as death, fire, acci
dent, or burglary. In such situations the bet takes the form of an 
agreement with a business concern which undertakes to recom
pense us in case we suffer a loss in one form or another. This 
type of a bet is legitimate and is generally recognized as a very 
reasonable procedure. Other forms of betting are usually labeled 
gambling. 

We pointed out that a computed probability of some event 
does not necessarily represent a definite guarantee that this event 
will take place in strict accordance with this computed proba
bility. In other words, if the computed probability is i, it does 
not necessarily follow that out of every five events two will be 
represented by the event under consideration. The computed 
probability refers to a considerable number of repeated trials, so 
that in the long run the ratio of the favorable events to the total 
number of events will be i. However, when a bet is placed 
on such an event, the bettor disregards this fact and takes a 
chance, a chance that may operate against him. This is straight 
gambling. There is even some element of gambling in insurance, 
but it is reduced to a minimum. Insurance probabilities are al
ways computed on the basis of long experience and on recorded 
cases that run into hundreds of thousands, so that the general 
trend of the observed events may be discovered. 

The common method of betting is usually based on the com
puted probability of an event. This is known as following the 
"odds." The computation of the odds is performed as follows. 
If we know the probability in favor of some event (let it be de
noted by p), we can compute the probability against its occur
rence. Their sum is 1. Then the probability against the oc
currence of this event (let us denote it by q) is 

q = 1 - P 

The ratio of the probability in favor to the probability against 
an event is the odds in favor of the event. Thus if the proba-
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bility in favor of an event is !, then the probability against this 
event is 

2 3 
1 - - =-

5 5 

Then the odds in favor of this event are 

that is, two to three. 
Betting is based on the odds. Thus, if the odds are two to 

three in favor of an event, then a person who wishes to back 
the possibility of its occurrence and base his backing on the 
computed probability, the computed odds, will bet in the ratio 
of two to three. So the betting arrangement in favor of this 
event should be $2 to the $3 offered by another person. 

If the odds are given it is easy to compute the probability of 
the particular event. For example, if the odds against are 7 to 3, 
then the probability against the occurrence of this event is a 
fraction whose numerator is 7, and whose denominator is the 
sum of the two numbers in terms of which the odds are stated. 
Thus the probability against the occurrence of the event is 

7 7 
7 + .3 10 

From this we find that the probability in favor of the occurrence 
of this event is 1 - /0 = 130' If the odds are stated as even, 
that is, one to one, the probability in favor of the occurrence of 
the event is 

1 1 
1 + 1 ="2 

How Long IVill You Live? 

Insurance companies, to determine the cost of life policies, 
make use of a regularly revised table known as the American 
Experience Mortality Table. In it they have a record of some 
100,000 persons from the ages of 10 to 95, with the number of 
living at the beginning of every year, the number of those who 
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die each year, and the life expectation of those who survive. All 
additional infonnation is computed from the data of this table, 

. an example of which we see on page 347. 
This table does not offer any definite information concerning 

any individual person, but in considering the whole population 
of the country through study of representative elements, gives a 
fairly good description of what happens to the average individual. 
Thus, if 100,000 children, all 1 ° years old, are taken at random, 
it is expected that 749 of them will die within a year, and only 
99,251 will reach their eleventh birthdays. 

The mortality table enables us further to compute the proba
bility of survival. F or example, what is the probability that a 
man thirty years old will survive one year? The number living 
at the age of thirty is 85,441, and the number of living at the age 
of thirty-one is 84,721. Then the probability of survival one 
year IS 

84,721 = 0992 
85,441 . 

and the probability of dying during the year is 

1 - 0.992 = 0.008 

What is the probability that a man twenty-five years old will 
reach the age of sixty? The number of those alive at twenty-five 
'is 89,032. The number of those still alive at sixty is 57,917. The 
probability that a man twenty-five years old will live thirty-five 
years IS 

57,917 = 065 
89,032 . 

and the probability that a man twenty-five years old will not 
reach his sixtieth birthday is 

1 - 0.65 = 0.35 

Let us examine a few more problems. A man of thirty marrie~ 
a woman of twenty-five. What is the probability that he will 
become a widower fifteen years after their wedding? What is 
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I 

Number Number Number Number Number Number 

Age of of of Years Age of of of Years 
Living Dying Expected Living Dying Expected 

to Live to Live 
----------------------- --~----

10 100,000 749 48.72 53 66,797 1,091 18.79 
11 99,251 746 48.08 54 65,706 1,143 18.09 
12 98,505 743 47.45 
13 97,762 740 46.80 55 64,563 1,199 17.40 
14 97,022 737 46.16 56 63,364 1,260 16.72 

57 62,104 1,325 16.05 
15 96,285 735 45.50 58 60,779 1,394 15.39 
16 95,550 732 44.85 59 59,385 1,468 14.74 
17 94,818 729 44.19 
18 94,089 727 43 53 60 57,917 1,546 14 10 
19 93,362 725 42.87 61 56,371 1,628 13.47 

62 54,743 1,713 12.86 
20 92,637 723 42.20 63 53,030 1,800 12.26 
21 91,914 722 41.53 64 51,230 1,889 11.67 
22 91,192 721 40 85 
23 90,471 720 40.17 65 49,341 1,980 11.10 
24 89,751 719 39.49 66 47,361 2,070 10 .54 

I 67 45,291 2,158 1000 
25 89,032 718 38.81 68 43,133 2,243 9.47 
26 88,314 718 38.12 69 40,890 2,321 8.97 
27 87,596 718 37.43 , 

28 86,878 718 36.73 70 38,569 2,391 8.48 
29 86,160 719 36 03 71 36,178 2,448 8.00 

72 33,730 2,487 7.55 
30 85,441 720 35.33 73 31,243 2,505 7.11 
31 84,721 721 34.63 74 28,738 2,501 6.68 
32 84,000 723 33.92 
33 83,277 726 33.21 75 26,237 2,476 6.27 
34 82,551 729 32.50 76 23,761 2,431 5.88 

77 21,330 2,369 5.49 
35 81,822 732 31. 78 78 18,961 2,291 5.11 
36 81,090 737 31.07 79 16,670 2,196 4.74 
37 80,353 742 30.35 
38 79,611 749 29.62 80 14,474 2,091 4.39 
39 78,862 756 28.90 81 12,383 1,964 4.05 

82 10,419 1,816 3.71 
40 78,106 765 28.18 83 8,603 1,648 3.39 
41 77,341 774 27.45 84 6,955 1,470 3.08 
42 76,567 785 26.72 
43 75,782 797 26.00 85 5,485 1,292 2.77 
44 74,985 812 25.27 86 4,193 1,114 2.47 

87 3,079 933 2.18 
45 74,173 828 24.54 88 2,146 744 1. 91 
46 73,345 848 23.81 89 1,402 555 1.66 
47 72,497 870 23.08 
48 71,627 896 22.36 90 847 385 1.42 
49 70,731 927 21.63 91 462 246 1.19 

92 216 137 0.98 
50 69,804 962 20.91 93 79 58 0.80 
51 68,842 1,001 20.20 94 21 18 0.64 
52 67,841 1,044 19.49 95 3 3 0.50 
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the probability that she will become a widow fifteen years after? 
And what is the probability that they will be both alive fifteen 
years after? There is also another possibility, that both will be 
dead fifteen years after their wedding. 

Let the probability that the man will be alive be denoted as 
Ma; the probability that he will be dead, Md; the probability that 
the woman will be alive, Wa; and the probability that she will 
be dead, W d • We have then the following combinations: (1) 
man alive and woman alive; (2) man alive and woman dead; 
0) man dead and woman alive; and (4) man dead and woman 
dead. In symbols we have then, remembering that the proba
bilities of these four situations are the probabilities of coinci
dences, MaWa, MaWd, jl1dW;" and MdWd • We shall now com
pute the various probabilities. 

The probability that a man thirty years old will survive fifteen 
years IS 

Ma = Number alive at 45 = 74,173 = 0868 
Number alive at 30 85,441 . 

The probability that a man thirty years old will not survive 
fifteen years is 

Md = 1 - 0.868 = 0.132 

The probability that a woman twenty-five years old will sur
vive fifteen years is 

Wa = Number alive at 40 = 78,106 = 0881 
Number alive at 25 89,032 . 

The probability that a woman twenty-five years old will not 
survive fifteen years is 

Wd = 1 - 0.881 = 0.119 

Then MaWa, the probability that both husband and wife will 
be alive at the end of fifteen years of married life, is 

0.868·0.881 = 0.765 

MaWd, the probability that the husband will become a wid
ower at the end of fifteen years of married life, is 

0.868·0.119 = 0.103 
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MdWa, the probability that the wife will become a widow at the 
end of fifteen years of married life, is 

0.132·0.881 = 0.116 

Finally, Md W d , the probability that both husband and wife 
will be dead at the end of fifteen years, is 

0.132·0.119 = 0.016 

Note that the four probabilities computed exhaust all possible 
combinations. It should then be expected that their sum should 
be equal to 1. We have 

0.765 + 0.103 + 0.116 + 0.016 = 1 

Also note that there is some chance that the woman will become 
a widow rather than the man a widower. The probability that 
she will become a widow is 0.116, and the probability that he 
will become a widower is 0.103. 

What Price Life? 

When you buy a lottery ticket, say for $2.50 with a chance of 
winning $150,000 as the first prize, you may ask: What is this 
ticket really worth? 

Let us suppose that 500,000 tickets are sold, and that there are 
three principal prizes, each of $150,000, to be won. Thus only 3 
of the 500,000 ticket holders are expected to win the big money. 

The probability of winning $150,000 is then 5003000' The value , 
of the ticket is then 

3 
250 . 500,000 = 0.0015 cent 

Let us suppose that altogether there are 1,000 possible 
prizes ~n this lottery. Then the probability of winning one is 

1 000 1 . . 250 
5 0~,000 = 500' and the worth of the tIcket IS then 500 = 0.5 cent. 

Now let us consider another example. A man is thirty years 
old and according to the mortality table may expect to live about 
thirty-five years. The average income in this country may be 
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taken as about $800 a year. Then the average man of thirty 
years who looks forward to another thirty-five years may be 
expected to earn $890·35 = $28,000. 

The World 'Var cost the belligerents at least 250 billion dol
lars. About 8,500,000 men were killed. It has cost about 

$250,000,000,000 = $29 400 
8,500,000 ' 

to kill one man. So it cost rpore to kill one man in the 'Vorld 
'Var than the average man would have earned if he were left 
alive. 

The product of the numerical value of the probability of some 
event under consideration by the magnitude of the monetary risk 
(or by any other magnitude that is associated with this event) is 
known as the "mathematical expectation" of the event. It should 
be understood that the numerical value of the probability of the 
event gives us a fairly satisfactory means for judging the risk 
that we undertake when we decide to back that event with 
money. If the probability in favor of the event is very' small, 
the risk is considerable, and the value of the money wager is 
correspondingly low. On the other hand, if the probability is 
close to one-that is, the expectation is in favor of the event-we 
may consider the risk is comparatively smaller. However, it 
should be understood that the probability as expressed by some 
fraction is at no time a definite guarantee that the event will take 
place: any gamble is necessarily uncertain if honest. 

Drop a Needle, Pick Up a Probability 

An interesting number much used as a multiplier in com
putation of the circumference of a circle is the number known 
as IT. It is approximately equal to 3.14159. We know that it is 
impossible to determine IT exactly, but we shall see now that it 
is possible to approximate its value during the process of a very 
simple experiment in probability. 

Take a needle and break off its sharp point so that it is of more 
uniform thickness. On a piece of paper draw a series of parallel 
lines so that the distance between them is twice as large as the 
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length of the needle. Place this paper on a blotter and then drop 
the needle on the paper (the blotter will prevent the needle from 
bouncing off the paper). Continue dropping the needle on the 
paper 100 or 1",000 times; the greater the number the closer will 
be the result obtained. Each time you drop the needle note 
whether it crosses some line, considering it a crossing when even 
the end of the needle touches a line. Now, if the total number 
of times the needle was dropped is divided by the number of 
times it crossed a line, the result of the division will be the ap
proximate value of TT. 

Suppose that the number of the crossings is A, and assume 
that any part of the needle has the same chance of falling across 
any of the lines. If the needle is two inches long, then, since 
every part of the needle has the same chance of falling across a 
line, the number of crossings for 1 inch is A12. If the needle is 
divided into n equal parts, the number of crossings for each part 
is Aln. The number of crossings for two such parts is 2Aln, 
and the number of crossings for ten such parts is 10Aln. Thus 
we arrive at the conclusion that the number of the crossings is 
proportional to the length of the needle. 

The needle need not be straight; suppose that it is bent as 
shown below. Suppose that BC contains m parts of the needle 

A BJc f } 
D 

(after it is divided into n equal parts). Then the remaining por
tion of the needle (CD) will contain n - m parts. Their respec
tive number of crossings will be 

mA d (n - m)A 
- an 

n n 

and the total sum of the crossings is still equal to A. However, 
it. should be noted that a bent needle may fall so that it will cross 
the same line several times. If this happens, all the crossings must 
be counted. 
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Suppose we have a needle that is bent into a circle and the 
radius of the circle is equal in length to our original needle. 
When such a circle ·is dropped onto the paper (the distance be
tween the lines is thus equal to the diameter of the circle), it 
will either cross one line twice (a straight line intersects the cir
cumference of a circle twice) or will touch two lines. Let us 
suppose that the number of times that the circular needle was 
dropped is B, then the number of crossings is 2B, because every 
time that this circular needle is dropped it must either come in 
contact with one line twice or touch two lines. The length of 
the circular needle (if its radius is r, which is the length of out 
original needle) is 2rrr. Thus the circular needle is 2rr times as 
large as the original needle. We also have established that the 
number of the crossings is proportional to the length of the 
needle. Thus the number of the possible crossings of the original 
needle, A, is 2rr times smaller than 2B. In other words, 

A·27r = 2B 

and from this we obtain 

that is, 

B 
7r=A 

Number of times the needle was dropped 
7r = Numher of times the needle crossed a line 

Moreover, if we invert the fraction on the right of this equality 
we have 

or 
1 Number of times the needle crossed a line 
7r Number of times the needle was dropped 

This last result is the probability of the needle crossing a line, 
thus 

1 - = 0.31831, approximately 
7r 
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If the reader wishes to check the results obtained in this section 
and has sufficient patience, let him extend the experiment by 
dropping the needle ten thousand times. He may get quite tired, 
but he will undoubtedly be astounded by the results. 



The T hinking Mac hines 

Hollywood Goes Mathematical 

Once upon a time, and not so very long ago, a motion picture 
producer had a bright idea. F or some time, according to the 
legend, his pictures invariably were termed dreary by the critics 
and, worse, had not clicked with the public. He changed the 
writers of his scripts and tried about every other possible remedy, 
but, strangely enough, all his efforts failed. Then, one day, came 
the bright idea; this is how he reasoned: 

All successful motion pictures have some general idea. Let 
us list these ideas. Then every story, whether dramatic, comic, 
or melodramatic, has a central character, played by the leading 
man or woman. Next there ?re the various supporting casts. 
Let us list all these, and the various plots and the different local
ities where the actions take place. Thus he went through all the 
other phases usually considered important in the making of a 
profitable picture and carefully tabulated them. 

Then he ordered the lists put on recording rolls, one roll for 
characters, another for the parts of the supporting casts, another 
for various plots, and so on. Finally, when all this was done, he 
ordered that the rolls be played off, but in a definite order. Each 
item on each roll was numbered from 1 up. Before playing the 
rolls, all were set on No. 1. Then the first roll was played off, 
and the combinations of items of the first roll were recorded 
with the other items that were numbered 1. After this was done, 

354 
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the second roll was set on item No. 2 and the first roll was played 
again. When it had been played once, and all the combinations 
were recorded, the second roll was set on item No.3, and this 
procedure was repeated until all the items of the second roll were 
played off. Then the third roll was set on item No.2, the first 
roll was played again, and' after each complete playing of the 
first roll an item on the second roll was pushed forward. \Vhen 
the second roll was completely played off, item No.3 on the 
third roll was set, and so on, until the third roll was completed, 
and the same procedure was started all over again, as the fourth 
roll came into the picture. At every setting a complete record 
of the combination obtained was recorded. Thus a number of 
combinations was obtained and the producer gave it to the script 
department for analysis and consideration. Whether this idea 
gave the producer a better box office is a matter of surmise. 
However, what should interest us is the question whether this 
story is just the spoofing of some publicity agent or whether such 
an experiment is physically possible. We shall have our answer 
in a moment. 

That Good-Movie Formula 

Let us now cast a mathematical eye upon the bright idea of 
the motion picture producer. The supercolossal is, of course, the 
minimum in the screen industry, but this experiment, if it were 
actually tried, must have set some sort of modest record. 

Let us suppose that, after careful classification, the producer 
obtained ten (and that would be a very small number) classifi
cations. Thus he had ten rolls. Let us suppose each roll con
tained only ten items, and that would be cutting to the bone some 
of the items. The total number of possible combinations is then 
1010 = 10,000,000,000. 

Suppose the recording of each combination took 30 seconds. 
Thus the entire recording would take 3.1011 seconds, or 

3.1011 -;- 60 = 5.109 minutes 

If a clerk worked about 400 minutes a day, the work would take 
about 125.105 days. If ten thousand clerks were employed it 
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would take 1,250 working days, or about 4 years, Sundays and 
holidays excluded. And it must be understood that a great many 
combinations would be workable. So it may safely be assumed 
that by this time the producer, unless his luck had a sudden resur
rection, is marching as a foot soldier in Hollywood's great army 
of has-beens. 

PROBLEMS 

1. SUppOSy that the physique of a human being is determined by 
20 distinct characteristics, and each characteristic may have 10 varia
tions. How many individuals, none of them alike, may there be? 

2. A patent lock usually has five small bars in it. Each bar is gen
erally cut in two parts, and for every lock the combination of the 
cut bars is different. If each bar may be cut in 100 different ways, 
how many possible combinations are there in a patent lock? 

3. On a cosmetics counter there are lipsticks in 5 different shades, 
rouge in 5, nail enamels in 15, and face powders in 10. In how many 
ways can a girl make herself beautiful if she buys one item of each? 

Memo for Burglars 

A would-be burglar often faces the same type of problem as 
the producer (on a somewhat less colossal scale, of course): He 
knows he has all the answers, but he still can't pick the right one. 

There are many types of combination locks; some are of dial 
arrangement, others have cylinder setting, and so on, but the 
principle of all is the same, and this discussion of a dial therefore 
can be applied to any type. 

Suppose a combination lock has two dials with six letters on 
each: 

First dial ......... ABC D E F 
Second dial ........ ABC D E F 

Usually only one setting of the two dials (that is, a definite com
bination) will unlock the lock. To obtain the possible combina
tions the first dial is turned. Thus, the letter A of the second dial 
is combined with the six letters of the first dial. Then the second 
dial is set on B, and the first dial is turned again. Thus we obtain 
all the possible combinations of B of the second dial with the 
letters of the first di:ll. Each time we thus get six combinations 
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of the two letters. Altogether, we have six settings of the second 
dial, and each setting yields six combinations. All the possible 
combinations are 

AA AB 
BA BB 
CA CB 
DA DB 
EA EB 
FA FB 

AC AD AE 
BC BD BE 
CC CD CE 
DC DD DE 
EC ED EE 
FC FD FE 

AF 
BF 
CF 
DF 
EF 
FF 

Thus the total number of combinations of the two letters on the 
two dials is 

6·6 = 36 

If there were eight letters on each dial, and we had two dials, 
the total number of the combinations would be 

8·8 = 64 

Generally, if there were a letters on one dial and h letters on 
the other dial, then the total combinations of two letters (one 
from each dial) would be 

a·b 

Now suppose that there are three dials on a lock. For sim-
plicity we shall assume that there are only four letters .on each 
dial: 

First dial .......... A B C D 
Second dial ........ _ A B C D 
Third dial_ . _________ A B C D 

We then have the following combinations: 

AAA ABA ACA ADA AAB ABB ACB ADB 
AAC ABC ACC ADC AAD ABD ACD ADD 
BAA BBA BCA BDA BAB BBB BCB BDB 
BAC BBC BCC BDC BAD BBD BCD BDD 
CAA CBA CCA CDA CAB CBB CCB CDB 
CAC CBC CCC CDC CAD CBD CCD CDD 
DAA DBA DCA DDA DAB DBB DCB DDB 
DAC DBC DCC DDC DAD DBD DCD DDD 

In this case we have 4+4 = 64 combinations of three letters. 
Generally, if there are three dials and one dial has a letters, 

the second dial b letters, and the third dial c letters, the total 
number of combinations of three letters is a-h·c. 
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Finally, here is the general rule: Tbe number of combinations 

for dials is equal to tbe total product of tbe number of letters of 
eacb dial. 

PROBLEMS' 

4. What is the possible number of combinations of a lock that has 
three dials with 10, 11, and 12 letters, respectively? 

5. Four dials have the ten digits (0, 1, 2, 3,4, 5, 6, 7, 8, 9) on each. 
How many numbers may be obtained by placing these dials in all 
possible combinations of positions? 

6. Three parties are competing so that one number of each is as
sured of election. Each party has a ticket of several candidates. 
These three tickets have 25, 30, and 40 candidates. How many 
possible combinations of three candidates are there? 

7. If you can travel, to Albany by boat, train, automobile, or bi
cycle, and can then return to Manhattan by plane, bus, horseback, 
walking, or motorcycle, how many possible combinations are there? 

8. On a restaurant menu there are listed 10 appetizers, 5 soups, 35 
entrees, 4 salads, 20 desserts, and 7 beverages. How many different 
dinners can be ordered from this menu? (One item of each is 
ordered.) 

Wby Robbers Blow Up Safes 

Bank safes have combination locks that are especially com
plicated. They are mechanical marvels, however, and their un
locking is quite simple, provided you know the combination. 
Usually a bank safe has a lock with five dials, and on each dial 
there are ten digits from ° to 9 (other dials may have letters, and 
the number of letters may vary). On such a safe the total num
ber of combinations is 105 = 100,000, and only one of these will 
open it. 

Suppose you decide to rob a bank's safe but haven't been able 
to meet any of the vice-presidents socially and can't even get the 
guard to talk about the weather. You are in a spot for the com
bination and have to try your luck on the dials. Let us assume 
that it takes about 30 seconds to try one setting. Then all the 
possible settings (and seeing whether the setting works) will 
take 3,000,000 seconds, or 3,000,000 -;- 60 = 50,000 minutes, or 
50,000 -;- 60 = 833 hours and 20 minutes. Since robbing is 
usually done at night and you can spend at most only 8 hours 
an evening on this type of job, it would take about 104 nights 
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of 8 hours each to finish your work. So, as a professional man 
with a reputation at stake, you must take the ultimate in mathe
matical short-cuts-nitroglycerin. 

fVisdom by tbe Turn of a Crank 

In Gulliver's Travels Lemuel Gulliver tells of a visit to the 
Grand Academy in Lagado in the Land of Laputa. Among the 
curious inventions demonstrated to him was a machine by means 
of which its inventor hoped to obtain and record everything that 
was published and could be published in all of science, art, philos
ophy, theology, literature, and so on. Gulliver's description of 
this remarkable machine said in part: 

"The first professor I saw was in a very large room, with forty 
pupils about him. After salutation, observing me to look earnestly 
upon a frame, which took up the greatest part of both the length and 
breadth of the room, he said perhaps I might wonder to see him em
ployed in a prDject for improving speculative knowledge by practi
cal and mechanical operations. But the world would soon be sensible 
of its usefulness, and he flattered himself that a more noble exalted 
thought never sprang in any other man's head. Every one knew 
how laborious the usual method is of attaining to arts and sciences; 
whereas by his contrivance the most ignorant person at a reasonable 
charge, and with a little body labour, may write books in philosophy, 
poetry, politics, law, mathematics, and theology, without the least 
assistance from genius or study. He then led me to the frame, about 
the sides whereof all his pupils stood in ranks. It was twenty foot 
square, placed in the middle of the room. The superficies was com
posed of several bits of wood, about the bigness of a die, but some 
larger than others. They were all linked together by slender wires. 
These bits of wood were covered on every square with paper pasted 
on them, and on these papers were written all the words of their 
language, in their several moods, but without any order. The pro
fessor then desired me to observe, for he was going to set his engine 
at work. The pupils at his command took each of them hold of an 
iron handle, whereof there were forty fixed round the edges of the 
frame, and giving them a sudden tum, the whole disposition of the 
words. was entirely changed. He then commanded six and thirty of 
the lads to read the several lines softly as they appeared upon the 
frame; and where they found three or four words that might make 
part of a sentence, they dictated to the four remaining boys who 
were scribes. This work was repeated three or four times, and at 
every tum the engine was so contrived that the words shifted into 
new places, as the square bits of wood moved upside down. 
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"Six hours a day the young students were employed in this labour, 

and the professor showed me several volumes in large folio already 

collected, of broken sentences, which he intended to piece together, 
and out of those rich materials to give the world a complete body 
of all arts and sciences; which however might be still improved, and 

much expedited, if the public would raise a fund for making and 
employing five hundred such frames in Lagado, and oblige the man
agers to contribute in common their several collections. 
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"He assured me, that this invention had employed all his thoughts 
from his youth, that he had employed the whole vocabulary into his 
frame, and made the strictest computation of the general proportion 
there is in books between the number of particles, nouns, and verbs, 
and other parts of speech." 

Gulliver's account is a satire on the British Royal Society, but 
the machine he described is not wholly fictitious. For centuries 
many men have believed it possible to accomplish what the La
gadan professor thought he had invented. The originator of this 
idea was a Spanish philosopher and alchemist, Raymond Lully, 
who lived in the thirteenth century. After him many attempted 
to revive the project, and at least one practical result has been 
obtained from this "thinking machine": the German mathema
tician Leibnitz, who lived in the end of the seventeenth century, 
developed a calculating machine in which he utilized some of the 
principles that Gulliver described. Thus a preposterous idea 
may at times lead to an important invention. 

An Infinity of Nonsense 

Just as a bit of fancy, let us imagine that we have a machine 
that does the work described by Gulliver, but on an extended 
scale. Instead of ready-made words, this machine will print 
words from single letters. To simplify the description we shall 
use multiples of 10. 

Suppose this machine has 1,000 wheels, and on every wheel 
there are 100 inked letter and punctuation symbols. All the 
wheels are set on one axle. The mechanism is similar in principle 
to the dialing system described by us above. Thus after the first 
wheel makes one revolution the first symbol on the second wheel 
makes an impression on paper. After the second revolution of 
the first wheel, the second letter on the second wheel makes an 
impression. Thus after the first vvheel makes 100 revolutions 
the second wheel will have completed a complete revolution, and 
this will bring in the third wheel with its first symbol. For every 
symbol of the third wheel the first wheel must make 100 revo
lutions. The third wheel will make a complete revolution after 
the first wheel has mafie 1002 revolutions, and this will bring in 
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the fourth wheel with its first letter. We thus may construct 
the following table of the number of revolutions: 

REVOLUTIONS COMPLETED WHEEL COMING IN 

1st 2nd 
100 1 3rd 

1st 2nd 3rd 
1002 100 1 4th 

1st 2nd 3rd 4th 
1003 1002 100 1 5th 

1st 2nd 3rd 4th 5th 
1004 1003 1002 100 1 6th 

By analogy we may infer that when the first wheel will have 
completed 100n- 2 revolutions, the nth wheel will be coming in 
with its first symbol. Thus for the 1,000th wheel to come in, 
the first wheel will have to complete 100998 = (102 )998 = 
IOU)96 revolutions, and the 1,000th wheel will complete one 
revolution after the first wheel will have completed 100999 = 
101998• 

Let us assume that these wheels revolve with a tremendous 
speed, say 25,000 revolutions a minute. In one year a wheel will 
make 

25,000·60·24·365 = 1314.107 revolutions 

or, for simplicity of computation, 1010• 

Then the sixth wheel will come in after the first wheel will 
have completed 1004 = 108 revolutions, or after 

108 
1010 = 0.01 year, or about 4 days 

The seventh wheel will come in after the first wheel will have 
completed 1005 = 1010 revolutions, or after 

1010 
1010 = 1 year 

The eighth wheel will come in after the first wheel will have 
completed 1006 = 1012 revolutions, or after 

1012 
1010 = 100 years 
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The ninth wheel will come in after the first wheel will have 
completed 1007 = 1014 revolutions, or after 

1014 
1010 = 10,000 years 

The tenth wheel will come in after 1,000,000 years, and the 
twelfth wheel after 10,000,000,000 years. 

The 1,000th wheel will come in after 

1 0001996 
, = 101986 years 

1010 

and will complete its revolution after 101988 years. 
This is a number in comparison with which the total number 

of electrons in the whole universe (1083 ) is the tiniest pygmy. 
How much sense and how much nonsense will then have been 
printed by this machine no one can know. The entire printing 
process would be purely mechanical. However, the work that 
would be required for the sorting and discarding of the nones
sential material-the worthless accumulation of symbols-would 
be such a task that in the long run a machine of this type would 
be, to ~ay the very least, wasteful. 

A Tip for Radio Baritones 

For some more fantasy in mathematics let us now turn from 
the Land of Laputa to Tin Pan Alley, and suppose that every 
man, woman, and child on earth should suddenly be endowed 
with the gift of composing music. Some will compose high
brow music, others popular songs, dance music, marches, or just 
simple tunes. 

Let us assume that only four octaves of a piano keyboard are 
used. YVithin this limit there are forty-eight distinct keys, each 
for a particular note. Every melody is written in the pattern of 
eight bars. Also let us assume that for every bar we allow only 
four notes. Thus we have forty-eight notes and thirty-two 
notes. The forty-eight notes are the tunes. 'Ve may arrive at 
the number of the possible combinations if we assign to the 
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forty-eight keys ,the property of the revolving wheels. Then 
we obtain 

4832 

as the number of possible combinations. 
Let us perform some transformations with this number: 48 = 

24 .3. Then 

Now 34 = 81. Then 332 = (3 4 )8 = 818. Instead of 81 we shall 
use 80. Then 808 = 88 .108 • But 8 = 23. Then 88 = (2 3)8 = 
224. Thus 

Now 210 = 1,024. Let us take 1,000, then 210 may be replaced 
by 103 • We have then, finally, that 

There are about 2· 109 inhabitants on earth. Suppose every 
inhabitant composes a combination every second. There are 
(60·60· 24· 365) = 3.107 (approximately) seconds in a year. 
Thus in one year 

or, in round numbers, about 1017 different compositions will be 
made. This activity may then go on for 4.1053 -7- 1017 = 4· 1036 

years. 
Then the supply of original tunes is virtually inexhaustible; 

the sun will be extinguished and the earth crumbled before the 
last original composition may be written. Even radio singers 
could well afford to toss out some of their time-tattered tunes 
and launch into a brave new note now and then without fear of 
melodic exhaustion. 



Post office Mathematics 

How to Keep out of the Dead-Letter Department: An Intro
duction to Relativity 

It may seem strange to associate the writing of a letter with 
mathematics, but we find an amazing number of mathematical 
relations and activities in situations least suspected in our daily 
experiences. Let us examine a common example, the addressing 
of a letter: 

Suppose we address a letter to Mr. James Smith, who lives at 
341 Main Street, Donnersville, Idaho. If we address it "Mr. 
James Smith, Donnersville," the letter probably will find a rest
ing place in the dead-letter department of the postoffice, unless 
there is a return address on the envelope. Even if we write the 
name of the state, Mr. Smith may not be known to the post office 
in Donnersville, and the letter will not be delivered; further
more, the addition of "Main Street" to the address may not be 
enough. Smith lives on Main Street at a definite place identified 
by a number. Thus, we observe that the more completely his 
address is stated the better the chance that the letter will be 
delivered .. 

From a mathematical point of view, the problem of writing 
an address is very important, because it is related to a process of 
locating objects in relation to other objects whose location is 
known in advance; we may call this process the first step in com-

365 
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prehending the notion of relativity. An object in space with no 
other objects around it is not capable of being located, nor can a 
person in such a situation describe his own location and, in a 
sense, experiences. Knowledge is relative, and knowledge of 
the external world can be gained, described, and related to 
others only in terms of other objects-that is, relatively to other 
objects. As we develop understanding of mathematics and its 
application to the external world, we shall be confronted with 
numerous examples that will illustrate this fully, but at present 
we shall concern- ourselves with the immediate processes that 
arise in the location of objects in the world that surrounds us: 

Let us return to the problem of addressing a letter to Mr. James 
Smith at 341 Main Street in Donnersville, Idaho. There are 
many persons whose last name is Smith and who live in the 
United States. However, once we give the state, the number of 
Smiths is narrowed somewhat. The number of those whose full 
name is James Smith among the residents of Idaho is still smaller. 
When we specify Donnersville, we narrow the number further, 
but on Main Street in Donnersville there may be several James 
Smiths. The last step is the number 341 on .Main Street, and 
this important last fact clinches the address and places the ad
dressee in a definite place. The consecutive delimitation in stat
ing of the full name, the state, city, street, and number eliminates 
all other possible persons. 

In mathematics, especially in geometry, this procedure is 
common. The following section will provide us with another 
example, not in mathematics but in a situation that may be viewed 
as mathematical. 

'Somewhere' in Math: A Game of Chess 

We are not concerned here with the techniques of playing 
checkers or chess, but the games are mathematical in nature and 
we shall find the boards exactly alike in both games, highly in
teresting. 

The chessboard consists of sixty-four squares, with eight on 
each side, all so shaded that a square of one color is surrounded 
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by squares of the second color. This is generally known as the 
chessboard arrangement. 

. I 

2. 

J 

4 

5 

6 

7 

8 

ab cde-l~k 

A very simple scheme illustt:ated above enables chess and 
checkers players to record the locations and movements of the 
figures on the board. The horizontal rows are numbered from 
1 to 8, and the vertical columns are lettered a, b, c, d, e, f, g, h. 
The location of a particular square, or of a figure on the board, 
is determined by the intersection of a horizontal row and a ver
tical column. The reader will recall that we made use of this 
scheme in Chapter 2 when the sums or products of numbers 
written in the various systems of numeration were obtained; the 
scheme is in universal use in mathematics whenever values are 
presented in tabular form. Recording of the location of a defi
nite figure in its square is thus done by writing a number and a 
letter, for example 4e. The 4e square is definitely located at the 
intersection of the fourth row and the fifth column. 
. The location of a figure in a definite square is thus determined 
by two (and no more) facts. This process is similar to the state
ment that Mr. James Smith lives at 341 Main Street. A person 
who lives in the same town needs no additional information about 
Mr. Smith's address. 

In mathematics this method of locating objects is primarily 
utilized in geometry, except that here the objects under con-
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sideration. are mere points. And these points have only one 
property, that bf being located "somewhere." They have no 
magnitude, no smell, no color, no shape-that is, they are just 
points. However-it is not only mathematicians who make much 
use of points. In other fields, whenever and wherever the loca
tion of an object is under consideration, a point is usually the 
means of denoting it and the written expression of the location 
of this point is given by certain pertinent facts. Thus on a geo
graphical map the location of a city is given by two numbers, 
signifying latitude and longitude. The postoffice requires more 
detailed information. 

vVhere Einstein Began 

The location of an object anywhere in space can be described' 
only when we refer its position to some other object or objects. 
If we say that a man stopped at "a" corner, we convey no in
formation. We probably refer then to a street corner, but we 
mention no street, and a street generally has more than one cor
ner. When we say that a picture hangs on a wall, the statement 
is meaningless. We need to know on what wall, and where. A 
description of the location of an object is complete only when 
it is given in terms of some other objects whose locations are 
known, not only to the person who describes it but to the person 
to whom it is conveyed: that is, the description itself must be 
relative to facts already known to others. Thus we may say 
that with this simple procedure of describing the location of ob
jects in space (wherever this may be) we are on the threshold 
of Dr. Albert Einstein's famous theory of relativity. In other 
words, any statement of the position of an object must be given 
in terms of other positions, that is, relatively to these. When we. 
say that we walked two miles, unless we specify that we walked 
two miles north, or south, or two miles in the direction of some 
definite place, our statement will of necessity have no locational 
meamng. 

In mathematics the location of points (and these may repre
sent pictures of any object or objects) is done on paper. But 
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whenever we make a picture in the mathematical sense we enter 
the house that geometry built. The procedure of locating points 
is no more difficult than the location of the chess or checkers 
figure on a board; the idea is exactly the same, and involves a 
procedure common not only with the mathematician but with 
men in almost all walks of life. 

In order to use a common language, we agree to introduce a 
commonly accepted object of reference. Mathematicians have 
agreed to use two lines that are at right angles with each other, 
and we call this arrangement of the two lines "axes." These axes 
are not new to us; on the contrary, they are so common that we 
pay no attention to them. Any floor in any room is an example 
of such axes. Suppose that a hole must be drilled through this 
floor. The location of this hole can be described in one and only 
one way. Suppose that it is to be in the southwest corner, three 
feet from each wall. We then measure off three feet from the 
western wall and three feet from the southern walL then the 
place to be drilled is definitely determined. Any other descrip
tion will not enable us to drill the hole in the proper place. Sup
pose that we decide to drill the hole about 4.5 feet from the 
southwest corner. In the accompany-
ing drawing such a situation is illus
trated. Instead of a hole, a portion of 
the floor including the corner would West 

then be cut. In the same drawing the 
correct method for locating the place 
for the hole is shown. 

North 

East 

I-~------l 

South 

The general method for locating points is as follows: The two 
lines XX and YY that intersect in 0 make right angles at O. 
Mathematicians have a special name for lines that make right 
angles with one another: such lines are "perpendicular" to one 
another. When two such lines are used for locating points in 
the manner to be described, they are known as "coordinate axes." 
The position at any point is determined by its distance from the 
line XOX and from the line YOY. One of these distances will 
not give the exact location of a given point. Suppose we say 
that a point is five units away from the axis XOX. The reader 
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will see from the following illustration that there are two lines, 
each five units from the axis XOX, one above and one below the 
axis XOX. To avoid confusion we should recall that we have 
agreed to represent numbers on a straight line by attention to 
the direction, and if we agree that one direction is considered as 
positive then the opposite direction is to be considered negative. 
Thus, if positive values are to be represented above the axis 
XOX, then below the axis XOX we shall have negative values. 
This agreement eliminates the line below the axis XOX, because 
it represents the distance of five negative units. Still we are un-

}~ able to locate our point, but 
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if we specify that the point 
must be six units away from 
the axis YOY we may per
haps be closer to a satisfac
tory solution of our problem. 

Here again, however, we 
hit a snag. Instead of one 
line we again obtain two 
lines, each of them six units 
from the axis YOY. But 
now we know that we must 
impose one more restriction; 

we must consider whether the distance is positive or negative. If 
we agree to consider the direction to the right as positive and the 
direction to the left as negative, then the position of the point A 
is definitely determined. This point is located where the two 
lines, the +5 units away from the axis XOX and the +6 units 
away from the axis YOY, intersect. The illustration shows three 
more points, B, C, and D, obtained in the process of solving our 
problem. 

The correct labeling (that is, the one generally accepted) of 
the points so located is as follows: Every point is denoted by a 
letter, and to the right of this letter two numbers are written in 
parentheses. The first number represents the distance from the 
axis YOY (which is measured along the axis XOX) , and the sec
ond number represents the distance from the axis XOX (which 
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is measured along the axis YOY). Generally the distances along 
the axis YOY (or the axis of the y's) are denoted by the letter y. 
Thus, generally any point is denoted by (x,y). The values of 
x and y for any ddinite point are known as its "coordinates." 

Don't Let Relativity Disturb You: 2 Is Still 2 

Here we shall relate some facts that are obvious but vitally 
important in mathematics and alsQ in "logical thinking." 

We usually agree that a thing is always equal to itself; no one 
but a dialectical diehard would contest that 2 is equal to 2. Fur
thermore, if we have two quantities equal to each other, the addi
tion of a definite quantity will result in equal quantities; for 
example, if two quantities a and b are equal, then 

a + c = b + c and a - c = b - c 

We shall now make use of these facts in relation to determination 
of the location of a point as expressed in terms of its coordinates. 

Suppose we have two points, say A and B, such that their 
coordinates are equal to one another. Will these points be dis
tinct or the same? Suppose a letter carrier has two letters, both 
addressed to 341 Main Street; will anyone contest the conclusion 
that these two letters will be delivered to the same house? The 
reader may at this stage draw his own conclusions concerning 
the points A and B whose coordinates are the same. It is ob
vious that when two points have identical coordinates these two 
points are identical also. On the other hand, whenever two 
points have coordinates that are not identical, the two points 
are distinct, that is, different. 

If All the World Were a Pancake 

By means of the two coordinate axes it is possible to describe 
the positions and locations of all the points that are found in the 
plane, or the world of two coordinates. At present, however, 
the reader should accept the meaning of the word "all" with a 
grain of salt, because later we shall learn of some other numbers 
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that are neither whole numbers nor fractions as these are known 
to us at present. 

The plane, however, is a peculiar pancaked world. Flatface 
Phil, a two-coordinate individual who lives in a plane and whose 

existence may be described in terms of 
two numbers (coordinates) may move 
freely within the plane. On the other 
hand, he will have no idea of height; 
as a matter of -fact, he himself will be 
so flat that he will have no thickness at 
all. Moreover, he will be able to. see 
only in the plane. If anyone looks at 
him from above, Flatface Phil will not 

see him. We might compare such a person with a bug that can 
crawl on the surface of the earth, but only horizontally. 

In this world of two coordinates Flatface Phil will, from ne
cessity, develop uncommon (from our point of view; we must 
not forget that we live in a world that is more varied than the 
world of two coordinates) notions of objects. The nature of 
Flatface Phil's world is such that he will never have any idea of 
the shape of things. Everything in the plane will appear to him 
as a point (when he will be looking at a straight line sidewise) 
or as a straight line. A circle as we know it will appear as a 
straight line. A square will appear to him as a straight line, and 
as he moves around such a square the length of the line will 
change; it will vary from the size of a side to the size of the 
diagonal of the square when he faces one of the corners, although 
he will never be able to point out this corner unless the sides of 
the square are shaded in various colors. A world of two coordi
nates is described in the small but fascinating book Flatland by 
A. Square (E. Abbott), Little, Brown & Co., Boston, 1929. 

This Expanding Universe: Three-Dimensional Worlds 

In this section we are not discussing modern theories in astron
omy but shall demonstrate how by means of a very simple proc
ess the world of the plane may be changed so that our friend 
Flatface will be endowed with powers to learn much about ob-
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jects and their propenies that are unknown to him because of 
his two coordinate character. The world of the plane is not an 
artificial universe, although it may seem unnatural to us because 
we live in a world where we can transport ourselves not only in 
a plane but also in space. \Ve are free to move in three direc
tions: right (or left), forward (or backward), and up (or 
down), a compact but very graphical description of life in our 
world. The world of two coordinates is known also as the 
world of two degrees of freedom, and the world in which we 
live as the world of three degrees of freedom. To describe the 
position of an object in our world we need three coordinates, as 
we shall now see. 

To locate an object-for example, in a room-we must know 
how far it is from one wall, another wall, and the floor, or ceil
ing. Two distances will not suffice because, as we have ob-
served, two distances (or two 
coordinates) will locate an ob
ject or a point only in the plane, 
or the world of two coordinates. 
The accompanying drawing il
lustrates the process of locating 
a point in space in the world of 
three degrees of freedom. Y 

The point A is located by the distances: 

z 
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x, which is measured along the axis OX and gives the distance (rom 
the plane YOZ; 

y, which is measuff'd along the axis 0 Y and gives the distance from 
the plane XOZ; 

z, which is measured along the axis OZ and gives the distance from 
the plane XOY. 

It will be observed that the planes XOY, XOZ, and YOZ 
represent the walls of a room in the example. 

The reader will ask, "Suppose you have only two coordinates, 
say, x and Z; what will these two coordinates represent in the 
world of three coordinates?" At present we shall proceed best 
with the answer, to be amplified later, that two coordinates in 
this world determine a line that -runs parallel to the plane YOZ 
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at the distance x from it, and parallel to the plane XOY at the 
distance z from it. If only one coordinate were given, say y, 
then this coordinate will represent a plane that runs parallel to 
the plane XOZ at the distance y from it. 

We need -not stop with the world of three coor:dinates, or 
three degrees of freedom. We can imagine a world of four de
gress of freedom in which four coordinates are necessary. As a 
matter of fact, we human beings live in such a world, because in 
addition to the three directions of space of which we are con
scious also of time, and a correct description of the location of an 
object requires the statement of time. Just observe: If we say t.hat 
we saw Mr. James Smith at some specified place our statement is 
actually incomplete, but if we add the information about the 
time we are definite. Unfortunately it is impossible to give a 
full picture of a world of four degrees of freedom (or of four 
"dimensions," as it is usually known); our physical world is 
three-dimensional, and we are just limited in respect to picturi
zation of a four-dimensional object as our friend Flatface Phil is 
limited in the picturization of a three-dimensional object. Here 
the mathematician builds a world that is just a product of his 
mind and he must be content with a mind-picture. The mathe
matician, however, need not stop when he reaches a world with 
four degrees of freedom. Just by adding one more coordinate, 
he may jump into the world of five degrees, and go on adding 
coordinates indefinitely. With little strain on his imagination he 
may conceive a world of a million, or of googol, degrees of 
freedom. 

The world of four dimensions is of great importance in physics. 
'Vhether worlds with many more degrees have any value we do 
not know; probably science may find some application for such 
worlds, as very often the mathematician's fancy finds application 
in the most unexpected situations. 

Geometric Comet: Y = 6 

We have mentioned that when the two-coordinate world is 
under consideration and only one coordinate is given, the loca
tion of an object or a point is impossible; the situation is similar 
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to stating only that Mr. James Smith lives on Main Street. In 
other words, giving one coordinate only (or stating that Mr. 
Smith lives on Main Street) leads to the conclusion that the point 
may be anywhere on a line a certain number of units distant from 
a coordinate axis. The letter carrier might locate the addressee 
by walking all the length of Main Street and inquiring at every 
house until Mr. Smith's residence was located, but location of 
the residence would inevitably lead to introduction of the second 
coordinate, the number 341. 

Thus, when one coordinate is given, we may assume that the 
point runs through the entire length of the line (and how long 
that line is no one knows). This leads to the supposition that 
the line may be thought of as traced out by the point. The point 
runs through a given distance from the coordinate axis, and as it 
does this it traces a line. This allows us to think of a line as the 
comet's tail traced by a moving point. Such an assumption is 
convenient, especially when the application of mathematics to 
practical problems is considered. 

In the illustration following we see the trail of a point whose 
. coordinate is y = 6. This means that this point generated a line 

that is 6 units above the X-axis and is parallel to this axis, always 

y 
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at the same distance. But y = 6 is also an equation. Thus a line 
may be represented by an algebraic equation, and conversely, 
once we have an equation, we may obtain the picture or "graph" 
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of that equation. It should be remembered, however, that an 
equation never represents something static, immobile, but always 
is a statement of the trail of a point (generally a curved line), a 
line, a plane, or some other geometric object that is created as 
the result of motion. 

PROBLEMS 

1. Using graph paper, locate the points (0, 0), (0, 3), (0, -4), 
(2, -2), (-7, -7). 

2. Using graph paper, draw the graphs of the equations x = 3, 
x = - 5, Y = 7, y = -10. 



New Worlds for Old 

Totalitarian Utopia: World without Freedom 

We have examined the worlds of two and three degrees of 
freedom (dimensions); we have glimpsed the world of four de
grees, and found there is no reason why we cannot fancy worlds 
of any number of degrees. Now let us examine the world of 
zero degrees of freedom. "Zero" in this case means "no." Can 
.there be a nonpolitical world of no degree of freedom? 

Reflection will convince the reader that such a world, in which 
a person would be so limited that he would always be fixed in 
one definite place, does exist in mathematics. Once in this world, 
there's no moving out of it; for this tight little world has no di
mension-no length, no width, no height. There could be only 
one inhabitant in such a world, and, though he would occupy it 
wholly, he would nevertheless show a strong family resemblance 
to the Little Man Who Wasn't There. In terms of mathematics 
such a world is known as a point. Now the reader should not 
think, for the time being, of this point as located somewhere else; 
there is just one, and a very lonely, point. The point that we 
may make on paper or on a blackboard is actually not such a 
world, because a point made by us has width, breadth, and thick
ness. We must imagine a point as an invisible world of zero de
gree of freedom. 

This world without freedom may be called "the point world." 
It is a prison without bars where the prisoner occupies the entire 
cell and leaves not even breathing space. 

377 
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The Inhibited Insect 

No degree o(freedom means that a being or an object is pow
erless to move; it is like a nail driven into a wall, staying there 
until it is extracted. Now, let us examine a world ,in which the 
beings are allowed only one degree of freedom. Such a world 
will have one dimension only. This may be length, or width, or 
height; but once length, or width, or height is selected, the re
maining two dimensions are barred. 

In such a world the point-world inhabitant is allowed to leave 
his prison but·only on a very strict parole. He may nQt do 
everything he would like to do, for the world of one degree of 
freedom is limited to a line. Like the point, this line has no 
thickness-neither width nor height-but unlike the point, the 
line does have length. We may call such a world "the line 
world." 

We may use as a crude example of the line world the inside 
tube of a thermometer. Let us suppose that a bug is placed in 
this inside tube, but this is a special bug, fitting snugly in the tube; 

Such a bug can move forward and 
backward but in no other manner. In 
the line world, the point will behave 
exactly as does our special bug. If 
two bugs could be placed in the same 
tube they would have serious traffic 
difficulties; they would inevitably col
lide. In the line wor~d two points 
would have the same difficulties, but 
mathematicians, for reasons which will 

be explained, allow two or more points to meet. But when such 
points occupy the same position, they become one point, or two 
"coincidents," that is, two, or more, points that occupy the same 
place. 

In the line world we may measure distances without difficulty. 
We recall how in Chapter 12 we described two kinds (in qual
ity) of numbers, and devised a method of representing these two 
kinds on a straight line. At some place along the line we desig-
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nated a starting point (the zero point), from which (if the line 
were horizontal) positive numbers were marked off to the right, 
and negative numbers to the left. Generally, if in some direction 
from the zero point positive numbers were marked off, then from 
the same zero point the negative numbers were marked off in 
the opposite direction. If we b~ar in mind this method of lo
cating numbers on the line, the finding of a distance between two 
points is simple. Let us consider a few examples. 

The distance between the point marked 8 and the point 
marked 2 shown in the following drawing is 8 - 2 = 6. The 
distance between the point marked 6 and the point marked - 3 
is 6 - (-3) = 6 + 3 = 9. The distance between the point 
marked -1 and the point marked -7 is -1- (-7) = -1 + 
7 =6. 

a 1 234 5 6 7 8 

- 3-2-1 0 1 2 4 5 6 

*"111*1 
-7-6-5-4-3-2-1 0 

Now we shall consider the problem of finding the distance 
between two points on a straight line (or in the line world) in 
general. We shall apply the term "coordinate" to the markings 
on the straight line in the same manner as we applied it in the 
process of locating points in the preceding chapter. Let us de
termine the distance between point A, whose coordinate is Xl, 

and the point B, whose coordinate is X2. We apply to these 
coordinates the same method as in the case of the foregoing num
bers. This method, although mathematical in nature, is just a 
case of common sense. The point A is Xl units away from the 
zero point (it should be noted that in the drawing there are sev-

.} .), 
0 A(",,) B(",,) 

t I t 
B(",,) 0 AC"'l) 

.} .} I 
B(",,) AC",,) 0 
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eral cases showing various locations of the point A), and the 
point B is X2 units away from the zero point. The distance be
tween these two points is the difference between their respective 
coordinates. It should be remembered, however, that we are 
concetned only with distance and have no regard for direction. 
This indicates that the distance between the two points must 
always be positive. For this purpose we may use the notation 
for absolute values of numbers as shown originally in Chapter 12. 
Thus we may write generally that the distance along a straight 
line between any two points, A (whose coordinate is Xl) and B 
(whose coordinate is X2) is 

The Perils of Flatland 

The world of one dimension is a very dull world, as we have 
now learned. It is so 'limited that a linear inhabitant may be com
pared to a prisoner under a very stiff sentence. However, in 
nature we rarely, if ever, find examples of such a world. On the 

other hand, should we allow our pris
oner some freedom of exercise, we 
may think of a world with one more 
degree of freedom, or two degrees. 
And conditions similar to the world 
of two degrees of freedom (two di
mensions) are plentiful in nature. 

Imagine the surface of a table, with 
a wingless bug or a worm placed on it 

and allowed to move freely in any direction. But once placed 
on the table, they cannot leave it ever. Moreover, let us imagine 
that they have no thickness. If such conditions prevail, these 
beings may be considered as of the world of two dimensions. 
Their world is totally flat, and they themselves are as flat as their 
world. It is quite reasonable to call such beings Flatlanders, and 
their imaginary world Flatland. Flatland, too, is a very bleak 
world; it has no trees, no grass, no markings of any sort that 
would rise above the plane of the flat surface. 
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A Flatlander may be endowed with all the senses of a human 
being, but he can see only those things which lie within the sur
face of his world. He may judge the shape of the objects in his 
world, but not as we do. His method may be compared to that 

. of a blind person who, to determine whether an object is round, 
touches it with his hands; for a Flatlander must move around an 

object to determine its shape. And it' is doubtful that a Flat"
lander can really determine whether an object is circular or of 
some other shape unless he is able to measure distances and to 
keep some record of his traveling around a figure. The drawing 
illustrates how a Flatlander, if very intelligent, may determine 
whether an object is circular or egg-shape, for example. In the 
case of a perfectly circular object, a 
Flatlander may see this circular object 
as a straight line of the same length. On 
the other hand, in the case of any other 
round object, these lengths are not the I----"*------f 
same. 

Life in our Flatland is extremely dan
gerous, since any object that has sharp 
corners may inflict injury. Suppose a 
Flatlander encounters some triangular 
object; if this object faces him with one of its corners, he has no 
means of determining whether it is triangular or is a straight 
line. The accompanying illustration shows such a situation. 
Suppose a Flatlander is also triangular in shape. On the left we 
have the situation as we would observe it if we could peek into 
Flatland from above. On the right we see a straight line only; 
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this is all a Fla~lander would be able to observe. If there were 
some illumination, a Flatlander could see some shades on the out
lines of the triangle. Now if a Flatlander would move toward 
the triangle, he would not only collide with it but at the moment 

<J This is what the Fla.t la.nd er 
would see 

<J-Tk. Flatland.er 

ne reached the corner its sharp point would pierce him. But 
suppose that instead of a triangle the Flatlander encounters a 
straight line. If he faces the straight line from the side, he sees 
it full length. But if he faces it straight ahead, he observes a 
point only, if a point could be seen. The meeting with a straight 
line would pierce the Flatlander as with a spear. Since points 
cannot be seen, a Flatlander may be in danger at every turn. 

Life in Flatland would otherwise accord to him the same mea
sure of privacy as that of our own world, except that a Flat
lander's home cannot have a roof. If we human beings wanted 
to look into the home of a Flatlander, we could do it from above, 
and he would never know it. If a Flatlander were lifted from 
his plane, his friends and neighbors would never know what 
happened to him. 

A light that would shine on Flatland from outside would mys
tify a Flatlander; it would appear to him to come from nowhere. 
We humans, living in three dimensions, would experience a 
similar sensation if out of thin air a miraculous light should sud
denly burst upon us. 

To be able to measure distances in the world of two dimen
sions a Flatlander must take into consideration the fact that the 
position of a point in a plane is determined by two numbers 
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( coordinates) . The method of locating points in a plane was 
described in Chapter 22, but, unlike the method of measuring 
distances in the line world, in Flatland the calculation of the dis
tance between two points whose coordinates are given involves 
some additional (to subtraction) arithmetic operations. In the 
following sections this method will be fully described, and in 
such a way that it applies not only to Flatland but to a world of 
any number of dimensions. 

An Arithmetic Oddity in a Geometric Dress 

We have on several occasions met numbers that were results 
of a multiplication of a number by itself. Such numbers are 
called squares: for example, 5·5 = 25, or 52 = 25, 162 = 256, 
and, generally, any number n, when squared, is n2 • 

Some pairs of numbers possess a remarkable property: If we 
take such two numbers, square them, and add them, the sum may 
be a perfect square. The reader should note that we used "may," 
and not "is." Thus for some numbers there may exist the rela
tionship 

but this does not mean that if we take two numbers a and b, 
square them and add them, we shall obtain a c2 • For example, 
32 + 72 = 9 + 49 = 56, and 56 is not a perfect square. On the 
other hand, 52 + 122 = 25 + 144 = 169, and 169 = 13 2• Thus, 

52 + 122 = 132 

This remarkable property of certain numbers was discovered 
about 2,500 years ago by the Greek philosopher and mathema
tician Pythagoras. But, and this is no disparagement of his fame, 

. other ancient peoples knew of this property. The Egyptians 
knew that 32 + 42 = 25 = 52, but since Pythagoras was the first 
to state this property in a general form, the sets of three numbers 
possessing this property are known as the Pythagorean numbers. 
However, the discovery of Pythagoras was not in arithmetic but 
in geometry. Here is how he came across the geometric prop
erty of stich numbers: 
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A square is.a special kind of a geometric figure such that 

(1) It has four sides. 
(2) All the four sides are equal. 
(3) Every two neighboring sides make right angles with one 

another-that is, they are perpendicular to one another. 

A mathematician would say that a square is a four-sided plane 
figure with equal sides and all angles right angles. 

A plane figure (for example, a triangle, a square, a circle) en
closes a portion of the plane. In the case of the square it is easy 
to compute th{! size of the portion of the plane that is encJosed 
by the figure, or the "area" of the square. The rule for com
putation of the area of the square is: Measure the length of the 
side of the square and multiply the number by itself. Thus, if 
the side of a square is three inches long, then the area of the 
square is nine square inches. Generally, if the length of the side 

B of a square is a, then the 
area of the square is a2 • 

Pythagoras observed 
that in every right tri
angle, that is, a triangle 
one of whose angles is a 
right angle, as in the ac-

e A companying illustration, 
where the angle C is a right angle, the sum of the areas of the 
squares on the sides making a right angle is equal to the area of 

~ " II 
52 

3 2 +42."52 

the square on the side that is opposite the right angle, the largest 
side. Above are two examples illustrating Pythagoras' discovery. 



New Worlds for Old 385 

These examples show the relations 

32 + 42 = 25 = 52 and 5? + 122 = 169 = 132 

Some of the many other known sets of three numbers that pos
sess the Pythagorean property include 

82 + 15 2 = 172 , 202 + 212 = 292 , 122 + 352 = 372 , 

92 + 402 = 412, 282 + 45 2 = 532 , 112 + 602 = 612, 
and 482 + 552 = 732 • 

By means of the property of the Pythagorean numbers or, as 
it is generally known, the Theorem of Pythagoras, we may mea
sure distances in the worlds of two or more degrees of freedom, 
provided the coordinates of the respective two positions (or 
points) are given. 

Unsquaring the Square 

We shall turn now to an arithmetic operation that we have 
mentioned in Chapter 18. In mathematics generally all opera
tions are divided into two groups; in one group we have one kind 
of operations, and in the other we have operations that undo what 
was done originally. For example, if we add two numbers, we 
can undo the addition by taking the sum and subtracting one of 
the original numbers. If no mistakes are made, we obtain the 
other number that was originally added to the first. Thus if we 
add 12 and 34, we obtain 46; if we subtract 12 from 46, we ob
tain 34. The operation that undoes addition is known as sub
traction. Also, if we multiply 5 and 7, we obtain the product 
35. Now, if we take the product 35 and divide it by 5, we obtain 
the quotient 7. Thus the operation that undoes multiplication is 
known as division. We may list these arithmetic operations ac
cording to the two categories as follows: 

The Original Operation The Operation That Undoes It 
Addition • Subtraction 
Subtraction Addition 
Multiplication Division 
Division Multiplication 

However, we have learned about one more arithmetic opera
tion, the raising to a power, and in particular we shall now be 
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concerned with the squaring of numbers which is the multiply
ing of a number by 'itself. What is the operation that undoes the 
squaring? We have a_ number, say 225, and are told that it is the 
result of the multiplication of a number by itself. With this and 
no more information on hand, we are presented with the prob
lem of finding that number which, when multiplied by itself, 
will give the product 225. 

Now this is not a difficult operation, and there are methods 
that enable one easily to obtain the result whether the given 
number is a perfect square or not (in the latter case no exact re
sult is possible). However, tables of the results of the operation. 
that undoes the raisi~g of a power, in particular those of squar
ing, have been calculated and simplify the work considerably. 
Such a table is found in the Appendix. 

Now, we may name this operation: It is known as "the extrac
tion of square roots." The mathematical symbol for this op
eration is V-, called "the radical." The squared number is 
written under this sign, as V 2 2 5, 'and to indicate the operation 
of the extraction of the square root was performed we write 
V225 = 15, because 152 = 225. Thus we may write 

vT25 = v15Z = 15 
Surveying in Flatland 

Now we are ready to develop a method for the computation 
of distances in the world of two degrees of freedom, or Flatland. 

~y 

We have found that the distance 
in the line world is obtained for 

~) ;;~i("'2'1I2) two points whose coordinates 
t~~''U I I are Xl and X2 as IXl - x21. 

~ ~, 

, r-;;:'-;-l-C! Yz In Flatland the position of a 
i Yl : point is determined by two coor-
i ! dinates, X and y. In the draw-

_---,:+-_"'.:...,-71-'-''-__ -'-' -"--...,x ing above we have two points A, 
k----iX,,-r--~> whose coordinates are (Xl, Yl), 

and B, whose coordinates are 
(X2, Y2). Now, if we draw through A a line parallel to the 
coordinate axis OX and if we draw at the same time through B 
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a line parallel to the coordinate axis OY (remembering, of course, 
that OX and OY are at right angles to one another), we obtain 
a right triangle ABC. 

Now if we apply the Theorem of Pythagoras we have 

AC2 + BC2 = AB2 

But from the drawing we have that 

AC = X2 - Xl and BC = Y2 - YI 

Then 

or 
AB = V (X2 - XI)2 + (Y2 - YI)2 

For example, if we have two points (5,8) and (8, 12) the dis
tance between these two points is 

or 
V (8 - 5)2 + (12 - 8)2 = V32 + 42 

V25 = 5 

PROBLEMS 

Compute the distance between the two points (1) (11, 14) and 
(-4, -6); (2) (0, -20) and (9, 20); (3) (-5,0) and (0, -12); 
(4) (-7,18) and (5, -17); and (5) (-9,12) and (11, -9). 

"Seeing" Three-Dimensional Pictures 

In the world of three degrees of freedom distances are com
puted in a manner similar to that just described. At the start it 
may seem more complicated, but in reality it is equally simple; 
many of us may fail to see its simplicity because we are limited 
in the method of picturization of the coordinates in the world of 
three degrees of freedom. We must use a plane (which is ac
tually a world of two degrees of freedom) for the purpose of 
presenting a three-dimensional picture. We must be able to vis
ualize the spatial picture; once we "see" the three dimensions the 
rest is simple. 

In the drawing below, we left the coordinates of the world of 
two degrees of freedom, that is, the plane with the coordinate 
axes OX and OY horizontal. Since we agreed that all the coor-
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dinate axes must be perpendicular to one another, the axis 02 
(of the third dimension) is perpendicular to the plane of OX 
and OY. Thus 02 should be considered vertical. To under
stand the picture better, the reader may think of a corner of a 
room. 

Now we have obtained the distance in the world of two de
grees of freedom. When we introduced another dimension, it 
actually lifted this two-dimensional distance out of the horizontal 
plane. In our drawing, this distance is the line AC. Then the 
triangle ABC is a right one, and we thus can apply the Theorem 
of Pythagoras to it. Finally we have 

or 

and 

AC2 + BC2 = AB2 

AB2 = (X2 - X1)2 + (Y2 - Y1)2 + (Z2 - Zl)2 

AB = vi (X2 - X1)2 + (Y2 - Y1)2 + (Z2 - Zl)2 

In other words, when we tacked on another dimension, we have 
introduced into the distance formula of the world of two degrees 
of freedom another addend (22 - 21) 2, and we have immediately 
obtained the distance formula for the world of three degrees. 

Formula for Creating a JV orld: Algebra + Imagination 

Since we live in a world in which there are only three physical 
degrees of freedom (dimensions), it is quite easy for us to visual
ize this world and to form distinct notions of the conditions that 
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govern descriptions of objects located in it. Moreover, since the 
worlds of zero, one, and two degrees of freedom may be thought 
of as parts of the world of three degrees, we have no difficulty in 
understanding the natures of these worlds. When we begin to 

talk of worlds of four, five, or one hundred degrees of freedom, 
we are extremely handicapped in description of even the sim
plest objects in such worlds and must call on our imaginations. 

Let us imagine that we live in a world of four dimensions and 
attempt to find out how distances between two points are mea
sured or computed there. In a world of two dimensions the 
position of a point is determined by two coordinates, and the 
coordinate axes are taken perpendicular to one another. In a 
world of three dimensions the position of a point is determined 
by three coordinates, and the coordinate axes are again perpen
dicular to one another, as the lines in a corner of a room where 
the three walls meet. We also know now that whenever an ad
ditional degree of freedom, or dimension, is added we introduce 
an additional coordinate. Thus to determine the position of a 
point in our world of four dimensions, we shall need four coor
dinates and, naturally, four coordinate axes. And since we must 
follow the same pattern, these four coordinate axes must be per
pendicular to one another. To draw a picture of four coordi
nate axes, all perpendicular to one another-that is, to draw a 
picture of such a four-dimensional object on paper-is impos
sible here. 

Let the reader imagine that he is a Flatlander, living in a two
dimensional world. As we found out when we examined this 
type of world, he will be able to move around only in a plane, 
as in the space between two plates of glass. Moreover, he cannot 
see what is above him or below him and could only imagine a 
world of three dimensions. 

A Flatlander may know everything about flat figures such as 
lines, triangles, squares, and circles, but he will have to use his 
imagination to picture a cube or a sphere. Suppose a sphere has 
suddenly descended upon Flatland. The Flatlander will have no 
idea of this object. All that he will be able to observe is a point 
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appearing on his land when the sphere touches Flatland, and then 
a tiny circle. F or some reason unknown to him this circle will 
continue to expand. until it reaches a certain size, then will begin 
to contract until it turns into a point .and finally vanishes as sud
denly as it appeared. A mathematician will describe this phe
nomenon as the cutting of the sphere through Flatland. The 
reader may take an orange or an apple and cut it into slices. 
The rims of the slices will give a picture of what may happen in 
Flatland. But, the reader should understand, a Flatlander cannot 
see the rims; he can only move around them to gain some idea of 
the shape of the rim or circle. If we ask the Flatlander to make a 
drawing of a three-dimensional object, he will say that he has an 
idea of the three-dimensional object, but he cannot make a draw
ing of it. 

Now let us return to the four-dimensional coordinate axes. 
We know that they must be perpendicular to one another. And 
here, instead of trying to do mathematical figuring, we shall ask 
the reader to do some reasoning. When we obtained the dis
tance expression in the world of two coordinates, we had a 
right triangle, and from it we obtained the required expression, . 

V(X2 - xd 2 + (Y2 - Yl)2. When we worked with the coor
dinates in the world of three degrees, we made use of the flat tri
angle and added to it another coordinate (and it was perpendicu
lar to the distance line in the plane OXY). By this means we 
obtained another right triangle, and the expression 

Now it is quite reasonable to proceed further. We shall take 
the distance line in the world of three degrees, add to it the 
fourth coordinate (which will be perpendicular to it), and this 
coordinate, together with the three-dimensional distance and the 
four-dimensional distance, will form a right triangle. If we have 
a right triangle, however, we know how to obtain the length of 
the longest side (and our four-dimensional distance must be the 
longest side, because it is not perpendicular to the other two 
lines) . Thus, our distance in the world of four degrees of free-



New Worlds for Old 391 

dom (if we denote the fourth coordinates of the two points by 
Wi and W2 respectively) is 

V (Xl - X:?)2 + (Yl' - Y2)2 + (Zl - Z2)2 + (W1 - W2)2 

If we want to obtain the expression for the distance in the 
world of a hundred degrees of freedom, we must think of points 
that are each determined by one hundred coordinates. The coor
dinate axes must be all perpendicular to one another. The dis
tance expression (or, as we usually say, distance formula) is a 
square root. Under the radical there will be a hundred squared 
differences between the respective coordinates of the points. In 
mathematics it is not always necessary to draw a picture; on the 
contrary, where a picture is either useless or impossible, an alge
braic formula, plus the imagination of the reader, is sufficient. 



Passport for Geometric 
Figures 

Moving Day: It's All Done by Math 
If we move, we usually put on record at the postoffice our old 

and new addresses. This is actually a mathematical procedure 
and involves simple arithmetic only. 

An inhabitant of a world of zero degrees of freedom (one of 
no dimensions) is unable to change his address; as we know, he 
occupies his world's entire space and cannot move. 

In the line world of one degree of freedom motion is allowed, 
but only along a straight line. The inhabitant of this world is a 
point, and a traveling point may bump into another point and 
pass it, as there are no traffic accidents in the worlds built by 
mathematicians. The position of a point in the line world is de
termined by its distance from a designated starting point known 
as the "origin." Suppose that the coordinate of a point is + 5 
units as shown below and that at some other instant the position 
of the point is given by the coordinate + 3. Thus the point has 

I I I I I t I 

0123456 

I I J J, , , I 

0123456 

moved two units toward the origin. Mathematicians, however, 
find it more convenient to look at the procedure differently; in
stead of viewing it as the record of a moving point, they endow 
the origin with the ability to change its address. Thus a mathe
matician says that the origin was moved two units toward the 
point, and the coordinate of the point in the second position 
is + (5 - 2) = 3. This approach to a problem may seem 

392 
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topsy-turvy, but mathematicians :find this interpretation more 
convenient in the general attack, as will be shown presently. 
Consequently, in,mathematics when a point changes its address, 
the change is recorded as a change of the reference point, the 
ongm. 

Now we may state the procedure of changing the address in 
general form. If the coordinate of a point is x, and the origin is 
moved k units, then the new address of the point, that is, its new 
coordinate, is (x - k). The k may be either positive or nega
tive, and this does not affect the expression (x - k). For ex
ample, if the coordinate of a point is -8 and the origin is moved 
- 3, that is, three units to the left, then the new coordinate of 
the point is [-8 - (-3)] = -8 + 3 = -5. In other words 
the point was moved three units to the right. If the original 
coordinate of a point is + 1 0, and the origin is moved +7, then 
the new coordinate of the point is + (IO - 7) = + 3. In other 
words the point is moved seven units to the left. 

This principle is applied to coordinates of points located in 
worlds of any number of degrees of freedom, or dimensions. 
F or example, if the coordinates of a point in the plane world 
(Flatland) are (6, -7), and the origin is moved to (I, 3), then 
the coordinates of the point after the change of the origin are 
(6 - 1, -7 - 3) = (5, -10). In other words, the point was 
moved one unit to the left and three units down. 

Note that when the point is moved to the right its X coordi
nate is increased, and when it is moved to the left its X coordinate 
is decreased. If a point is moved upward, its Y coordinate is 
increased, and when it is moved downward its Y coordinate is 
decreased. In the illustration below the point A was moved to 

y y 

A A • • ·B 
·x X 

0 0 • 
B 

the left and upward, and point B was moved to the right and 
downward. 
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Life on a Merry-Go-Round 

In the preceding chapter we learned of the limitations imposed 
on a being confined to a line world, comparing him to a prisoner 
allowed to leave his cell-like point world on a very limited parole. 
But a release to the line-world degree of freedom is not the 
only means of letting a point-world being out on parole; there 
are innumerable ways and we shall examine a few of them, at 
the same time developing a method of describing these limitations 
in the grammar of algebra. The reader then will be able by him
self to write a "passport" for any geometric figure. 

Suppose that a point-world being is allowed to leave his cell 
under the following conditions: He is allowed to move freely 

y 
but always at a certain distance from 
the cell, and both his cell and his new 
quarters are to be in the same plane 
(imagine this to be the plane of this 

X-l---:+--=--'c-+-X paper, or the plane of a table). This 

y 

is somethIng akin to a merry-go-round; 
mathematicians call such a figure a 
circle. Now let us describe a circle in 
mathematical terms. 

The drawing above shows a special kind of circle. We placed 
the cell (the point world) of the paroled point-world being at 
the origin of our coordinates. We have a special name for the 
point around which the point-world being moves; it is called 
"the center of the circle." We shall make use of another special 
name: the distance from the center at which the paroled point
world being is moving (or, as we say, revolving) is known as 
"the radius of the circle." There was no special need to place 
the center of the circle at the origin; it can be anywhere in the 
plane. 

The coordinates of the origin of the axes of coordinates (and 
of the center of the circle) are (0, 0). Let us take any point of 
the circle. Now we know that the distance formula as devel
oped in the preceding chapter enables us to compute the distance 
between any two points (in this case, in the plane). Thus, we 
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have that the distance 0 B between the points 0 (the center of 
the circle, or the origin) and B on the circle is 

OB2 = OA2 + AB2 = (x - C)2 + (y - 0)2 = x 2 + y2 

But the distance OB is, as we now know, the radius of the 
circle. Let us denote it by the letter r. Moreover, we must re
member that the length of the radius r of the circle is the same 
for any point on the circle, the condition of the parole of the 
point-world being. Then we can rewrite our expression as 

This expression is known as the equation of a circle whose radius 
is r and whose center is at the origin, and describes the condition 
of the parole of the point-world being. 

Now, if the center of the circle is placed anywhere in the 
plane, we can view the situation as though we had moved the 
origin. Suppose the center of the circle is at the point (a, b). 
We know from the preceding chapter that this is nothing but 
the procedure of changing the address. Then, according to this 
method, instead of x we shall write (x - a) and instead of y we 
shall write (y - b). The length of the radius of the circle, how
ever, remains the same. Then the equation of the circle becomes 

(x - a)2 + (y - b)2 = r2 

This is the equation of the circle for any location of its center. 
The values of a and b depend on the coordinates of the circle's 
center. 

This general equation enables us to write the equation of any 
circle, but we must always know two facts: 

(1) The length of the radius of the circle, and 
(2) The position of the center of the circle. 

Once we know these, our equation is easily obtained. 
For example, if the radius of the circle is 5 and the center of 

the circle is at the origin, the equation of the circle is 

x2 + y2 = 52, or x2 + yZ = 25 
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If the radius is 6 and the center of the circle is at the point (1, 3), 
the equation of the circle is 

(x - 1)2 + (y -- 3)2 = 62, or (x - 1)2 + (y - 3)2 = 36 

If the radius is 2 and the center of the circle is at the point (-6, 
-8), the equation of the circle is 

(x + 6)2 + (y + 8)2 = 22, or (x + 6)2 + (y + 8)2 = 4 

However, it is not essential that the length of the radius be 
stated definitely. Since this length may be obtained if the posi
tion of the center of the circle and position of some point on the 
circle are both given, it follows that the equation of the circle 
may be obtained if we know: 

(1) The location (coordinates) of the center of the circle, 
and 

(2) The location (coordinates) of some point on the circle. 
F or example if some point is at the origin [that is, its coordi

nates are (0, 0)], and coordinates of the center of the circle are 
(1, 2), then the length of the radius is 

r = V (1 - 0)2 + (2 - 0)2 = V 12 + 22 = V 1 + 4 = VS 

and the equation of the circle is 

(x - 1)2 + (y - 2) = (VS)2, or (x - 1)2 + (y - 2)2 = 5 

Note that the radius of the circle is V5. Now if we take a 
square root and square it, we actually undo the process of ex
traction of the square root. In other words, we thus obtain the 
expression (or the number) under the radical sign. Moreover, 
note that 5 is not a perfect square. Thus the extraction of a 
square root of a number that is not a perfect square cannot be 
performed exactly. This is why we left the expression V5 un
changed. \Ve needed for the equation of the circle not the value 
of the radius but the square of its value, r2. 
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PROBLEMS 

1. Write the equation of the circle whose radius is 1, and whose 
center is at the origin. _ 

2. Write the equation of the circle whose radius is \16, and whose 
center is. the point (0, - 3). 

3. Write the equation of the circle whose radius is 7, and ,"vhose 
center is the point (- 2, 0). 

4. Write the equation of the circle whose center is the origin, and 
one point on the circle has the coordinates (0, 1). 

5. Write the equation of the circle whose center is at the point 
(- 5,0), and one point on the circle has the coordinates (0, - 5). 

6. Write the equation of the circle whose radius is \IS, and whose 
center is the point (- 3, - 5). 

7 . Write the equation of the circle whose center is at the point 
. (2, - 3), and one point on the circle has the coordinates (7, - 8). 

Sonte Points on the Way to Infinity 

A point-world being confined to motion along a circle may 
not be as fortunate as one confined to motion along a straight 
line. The circle is a line (mathematicians call it a "curve") that 
is limited in length. A being that moves along a circle must 
sooner or later come back to the point from which it started. If 
it continues then to move along the circle, it must cover the same 
ground, but this may not be as monotonous as one might suspect. 

Here we shall drop the viewpoint of the Flatlander. We are 
three-dimensional beings, and when we study the properties of 
geometric figures we shall make use of our ability to observe ob
jects in three dimensions; we can look down on a plane, as though 
we were above and outside it. Now we shall see what a three
dimensional being can learn by observing what takes place in 
two dimensions. 

We shall now make use of a geometric figure mentioned only 
casually thus far. We noted the right angle-that is, an angle 
formed by two perpendicular lines, such as the coordinate axes. 
Let us consider a circle whose center, to simplify the study, we 
shall place at the origin of the coordinate axes. Suppose that a 
point A moves along the circle, starting where the circle crosses 
the axis OX and moves in the direction indicated by the arrow 
in the drawing. 
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For every posi~ion of the point on the circle there corresponds 
a pair of numbers which are the coordinates of the point at that 
position. How many such pairs are there? The reader will re

y. 

X_+---:::+---I--' 

call that a point, has no dimensions, and this 
means that it has no magnitude. Moreover, 
the motion ahmg the circumference of the 
circle may be thought of as going around 
from point to point along points packed so 
close that they cannot be counted even in 
an eternity. y 

Every pair of these numbers, or coordi
nates, obeys the relation x2 + y2 = r2 because the points that we 
discuss are on the circumference of the circle. However, we 
may obtain another interesting relation that is very important in 
mathematics and its practical application. Let us suppose that 
the point moving along the circumference is attached to the end 
of a straight line which is pivoted on the center of the circle. As 
the point moves the line sweeps around the circle with this point. 
We shall assume that the initial position of the point is on the axis 
OX where the circle cuts this axis as illustrated. Then, as the 
point departs from this initial position, the line to which it is 
attached (and this line is the radius of the circle) begins to make 
with the axis OX an angle (in the figure y, 

this angle for a certain position is AOB). 
The size of this angle increases with the 
distance traveled by the point. 

As the point reaches the axis 0 Y X -I---=~--+:
above the axis OX (it is customary to 
allow the point to go around the circle 
in the counterclockwise direction as in- y 

dicated by the arrow in the figure), we say that it covered one
quarter of the circumference of the circle. Moreover, we already 
know that the coordinate axes are perpendicular one to another. 
Thus, since perpendicular lines make right angles with one an
other, a quarter of the circle represents, in terms of the angle 
made by the sweeping radius of the circle, a right angle. As the 
point continues to move along the circumference of the circle 
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and reaches the axis OX on the left of the axis OY, the radius 
will have swept through another quarter of the circle-that is, 
another right·angle. All in all, the radius will have swept then 
through two right angles, or as it is generally denoted, through 
a "straight angle." If the point continues to move along the cir
cumference until it reaches the axis OY below the axis OX, the 
radius will have swept through three right angles, as shown in 
the figures below. 

X~----~~--+B~X 

y A 
Y 

As the point continues to move along the circumference, it 
will finally reach the position from which it originally started. 
The radius of the circle then will have y 
swept the fourth and last quarter of the 
circle. Thus, when the radius will have 
completed one complete revolution an 
angle equal to four right angles is ob- x_-t---I~--l_-t;;:
tained, as shown in the next figure. The 
reader will observe that an angle of four 
right angles is equal to two straight angles. 
The point may continue to move around 

y 

the circumference of the circle, for every complete revolution 
y making four right angles. This process may 

be continued indefinitely. 
As the point moves around the circle (and 

for simplicity we shall consider the first 
quarter of the circle only) it occupies vari

--::~-x-...lC--L.B--X ous positions. If we consider some one po-
sition of the point on the circumference in 

the first quarter, and we denote the coordinates of that position 
of the point by (x, y) we may observe that the two numbers if 
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divided by one another give rise to another number, generally a 
fraction or, as we shall learn, a fraction known as "the ratio" of 
the two numbers. - In other words, we now have the number 
y/x. : For another position of the point on the circumference 
whose coordinates may be Xl and YI there will be another ratio, 
ydXI' Generally, for every position of the point along the cir
cumference there is a corresponding ratio. When the point is on 
the circle at the place where the circle cuts the axis OX, the coor
dinate y of that point is 0 (zero), and zero divided by any num
ber is zero. FbJ: example, 0 -=- 5 = 0, 0 -=- 12 = o. Thus the 
value of the ratio of that point is zero. But for any other point 
within the first quarter of the circle (except one; about this more 
presently) the value of that ratio is not zero. For example, if 
we have a circle whose center is at the origin and we find on it a 
point whose coordinates are (2, 3), then the ratio is 3/2. 

Now let us examine the values of these ratios, called the "tan
gents" of the angles that are formed by the radius of the circle in 
its various positions with the axis OX. Generally there is no 
need for a circle; any angle has a tangent, and we made use of a 
circle just because it was helpful in explaining the tangent. In 
the case of a circle whose center is at the origin, the values of 
the coordinates of the points in their various positions are limited. 
If the radius of the circle is r, the coordinates of the points where 

(-1",0) 
x' 

y 
(0, r) 

the circle cuts the axes OX and OY are 
indicated in the figure at left. They 

(5,5) are (r, 0), (0, r), (-r, 0), and (0, -r)_ 
Any other point on the circumference 
has coordinates whose values are (in ab
solute value, that is, without considera
tion of the sign, whether positive or 
-negative) less than the value of the ra.: y 
dius r. The value of the tangent of the 

angle that the radius of the circle makes with the axis OX is, as 
the reader no doubt has observed, obtained by dividing the value 
of the ordinate, another name for the y, by the value of the ab
scissa, another name for the x, that is, by dividing y by x. For 
any point on the circumference of the circle, except two, we 
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have no trouble in obtaining the value of the tangent of the angle 
that the radius of the circle drawn from that point makes with 
the axis OX. But when we consider the points where the circle 
cuts the axis 0 Y we run into a grave difficulty; we get two ratios, 
riO and -riO. The second ratio is of little interest to us at the 
moment, however, because we agreed to examine the angle in 
the first quarter of the circle only. 

Let us attempt to make some sense out of the ratio riO; let us 
take some points on the circumference that are very close to the 
axis 0 Y, to the right of it. Suppose that the values of the ab
scissas of these points are 0.01, 0.0001, 0.0000000000001. YVe 
know that these numbers may be written as 10-2 , 10-4, 10-13• 

The respective values of the ordinates of these points will be so 
close to the value of the radius r of the circle that we may use 
this value for computation of the tangents of the angles. We 
have the three values of the tangents: 

r/1O-2 = r·102 = 100r 
r/l0 -4 = r·l04 = 10,000r 
r/l0-13 = r·l013 = 10,000,000,000,000r 

If the radius of the circle is, say, 10, the values of the tangents 
are 1,000, 100,000, and 100,000,000,000,000. In other words, the 
closer the points on the circumference are to the axis OY (that 
is, the nearer the angle is to a right angle) the greater is the 
value of the tangent of the angle that the radius of the circle 
makes with the axis OX. How great can the value of the tan
gent become? Suppose that the value of the abscissa of a point 
is 1/googol, that is, 1/10100, or 10-100• Then the value of the 
tangent of the angle for that point is r·googol, or a googol times 
the radius. Suppose that the value of the abscissa of a point on 
the circumference of the circle is 1/googolg00g01. Then the value 
of the tangent of the angle for that point is googolgOOgOI times the 
radius arid so on. But whatever the given value of the abscissas 
of the points on the circle, the points are not on the axis OY; 
they are very close to it, but not there. However, we note that 
the value of the tangent becomes so great that we may go on 
inventing names for new and larger numbers but still we cannot 



402 Mathematics-Its Magic & Mastery ® 

reach the valqe of the tangent of the right angle. In order to 
stop somewhere, mathematicians have agreed that a right angle 
has no tangent; that is, when an angle gets near a right angle its 
tangent becomes so large that there is no value, no number, that 
car'I express its magnitude. The reader will recall that something 
of the same type of situation arose when the problem of the num
ber of points on the circumference of the circle was considered; 
now we shall clarify it. Mathematicians have a special name for 
this goal that cannot be reached; they call it "infinity." Infinity 
is not a number because it is greater than any number; no matter 
how great a number we may write, speak, or think of, infinity is 
greater. If infinity were a number, it would cease to be infinity. 

Babylonian Heritage: 360 Pieces of Circle 

So far we have been talking about angles in general, but noth
ing has been said about their measure. We now know that one
quarter of a circle corresponds to a right angle, but this does not 
state the value of the magnitude of the angle-it is just a name 
for some kind of an angle, in fact an angle formed by two per
pendicular lines. Angles have measures of their own, however. 
A unit of the measure of an angle is a certain portion of the revo
lution of the radius of a circle. It is l/360th part of a complete 
revolution and is known as a "degree." Thus, when the radius 
of a circle completes one revolution it sweeps through an angle 
of 360 degrees, a small circle is written on the right, just above, 
the number of the degrees. Thus 360 degrees is written 3600

• 

Division of a circle into 360 parts has no valid reason. We 
inherited this from the Babylonians, whose priests studied the 
stars and the motion of the sun among them. They observed 
that it takes the sun 3641 days to complete one trip around the 
heavens, and established this as the period of the year. For every 
day but four, or five every fourth or "leap" year, they had a par
ticular god or goddess. The four "godless" days became special 
holidays. Possibly this breakdown of the year into 360 "regular" 
days accounts for our present use of the number. 
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Now we may have the measure of a right angle. It is 90 de
grees, and a straight angle is 180 degrees. Every degree is di
vided into 60 parts,' each known as a minute, and a minute is 
divided into 60 parts, known as seconds-our system of measur
ing time. This method of division also was inherited from the 
Babylonians, who used a method of numeration whose base was 
60. The symbol for a minute is " and that for a second is ft. 

Thus an angle 42° 16' 37" designates 42 degrees, 16 minutes, 
and 37 seconds. 

In the preceding section we allowed the point to travel along 
the circumference of the circle in the counterclockwise direc
tion. When an angle is formed by a sweeping radius moving 
in such direction, the angle is considered positive; if the sweep
ing radius rotates in the opposite direction, clockwise, the angle 
formed by this radius and the axis OX is considered negative. 
This agreement, of course, is entirely arbitrary, but has been ele
vated to the status of a rule, just as we agreed to consider as 
positive the numbers to the right or above the origin, and as 
negative numbers to the left or below the origin. 

Now let us return to the first quarter of the circle. We know 
that the ratio of the ordinate to the abscissa, y Ix, gives us the tan
gent of the angle formed by the radius drawn from the point on 
the circumference of the circle (whose coordinates are given) 
and by the axis OX. However, there are two more ratios that 
are very important in mathematics. We may take the ratios xlr 
and y Ir, which have a definite fixed value for every position of 
the point that moves around on the circumference. They are 
known as follows: xlr is the "cosine" of the angle, and y Ir is the 
"sinet ' of the angle. 

Thus we have three ratios, the sine, the cosine, and the tangent 
of the angle. This then raises the question whether these ratios 
are respectively the same for a given angle. Suppose we have 
two circles such that the radius of one is twice the radius of the 
other, but we have the positions of the points such that the angles 
corresponding to them are of equal size; would the respective 
ratio,s be the same? This examination is not a proof, but we 
hope we shall obtain evidence sufficient to convince us. In the 
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following drawing we have two such circles. Their equations 
are 

~2 + y2 = r2 and x2 + y2 ~ 4r2 

y, respectively. 
Let the line OB form the 'angle BOD. 
We then have two points, A (Xl, Yl) 
and B (X2' Y 2) . Since these two points 

x-+--+-,,-t<----;!;:+--;~-x are on their respective circles, they 

y 

must satisfy their respective equations. 
\Ve then have 

xi + yi = r2 and x~ + y~ = 4r2 

Divide the first equation by xi and the second equation by x~. 
\Ve have then 

and 

and 
yr r2 
xr=xi- 1 

y~ 4r2 
x~=x~-l 

In order that the ratios ydXl and Y2/X2 be equal (and this is the 
same as the equality of their squares) we must have 

r2 4r2 
--1=-2- 1 
xi X2 

or 

Dividing both sides of the last equation by r2 we have 

1 4 

or 

From this we have 

xi = x~ 

4xi = x~ 
2Xl = X2 
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In other words, in a situation such as the one specified in our 
problem, when the radius of one circle is twice as large as the 
radius of the other circle, when we have the same angle (and the 
centers of the circle are both at the origin) the x coordinate of 
one point is twice as large as the x coordinate of the other point. 
If this condition is fulfilled, then the ratios that represent the tan
gents of the angles (which are the same) are equal. 

Draw a line AE parallel to the axis OX; we also note that 
OA = AB (remember what was stipulated about the radii of the 
circles, that one was twice as large as the other), and OC = AE. 
If we use the original equations and instead of dividing by x~ and 
x~ respectively we divide by y i and y~, we may obtain, if we 
followed the method above, the condition that Y2 = 2Yl also. 
Then we have that BE = AC. Now, reversing the process and 
if conditions obtained by us really exist, the tangents are equal. 
To obtain valid proof of what we have convinced ourselves by 
,circuitous methods, we would have to use much geometry, and 
we do not think it necessary here to burden the reader. Com
plete proof may be found in any geometry textbook, especially 
in those parts dealing with similar triangles. 

If we denote the angle that corresponds to a certain position 
of a point on the circumference of a circle by A, then we may 
write (abbreviating sine to "sin," cosine to "cos," and tangent to 
"tan") 

and 

~ = sin A, or y = r sin A 
r 

~ = cos A or x = r cos A 
r 

Finally if we divide 
')I 
r sin A 
; = cos A 
r 

we have y/x = sin A/cos A = tan A. 
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Moreover, if we take the equation x2 + y2 = r2 and divide it 
by r 2 we have 

or 
sin 2 A + cos2 A = 1 

which is the Pythagorean relation for the ratios connected with 
an angle. 

The reader has no doubt observed that here we have obtained 
two relations, 

y = r sin A 
and 

x = r cos A 

These connect the coordinates of a point on the circumference 
of a circle of a given radius with the angle that corresponds to 
the position of that point. This is another form of the equation 
of a circle whose radius is r and whose center is at the origin. 
The reader will find no difficulty in "changing the address" of 
this circle if the origin is placed at the point (a, b). In the next 
chaptet we shall make use of the ratios associated with an angle 
and learn of their application to practical problems. 

How to Run Around in Distorted Circles 

Thus far we allowed our prisoner in the point-world cell to 
leave it on parole, provided that he move always at a certain 
distance from his cell. We found that the parolee was to move 
along the circumference of a circle whose radius was equal to the 
stipulated distance. Thus our point-world prisoner would be 
under a constant surveillance. 

Now let us suppose that our prisoner is a dangerous fifth col
umnist who might at any moment either disappear or commit 
another sabotage. In order to keep him under close surveillance, 
one guard (as in the case of the circle) is naturally insufficient. 
When the parole is granted to our prisoner it is decided that he 
should be watched always by two guards so located that the sum 
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of the distances from him to his watchers will always be the same. 
Suppose that the assigned sum of the distances is 2a (an ex

pression selected merely to simplify our work). In the illustra
tion below one of the positions of the paroled prisoner is shown. 

y 
y 

y y 

The two fixed points, or guards, are located at the points G l and 
G 2 at equal distances on the axis OX from the axis OY. The 
coordinates of the guards are then Gl(-c, 0) and G 2 (c, 0). 
Moreover, in two cases our paroled prisoner will be at equal dis
tances from his guards, that is, when he crosses the axis OY. Let 
his coordinates be (0, b) and (0, -b). F or this reason we se
lected 2a as the sum of the distances, because when he crosses the 
axis OY he will be a distance away from each guard. Let us as
sume that coordinates of our paroled prisoner are (x, y) ; we shall 
now proceed to the situation by simple algebra: 

According to the distance formula for two points (Xl, Yl) and 
(X2' Y2), 

d2 = (X2 - XI)2 + (Y2 - YI)2 

we can write the expressions for the following distances: 

AGi = (x + C)2 + y2 and AG~ = (x - c)2 + y2 
or 

AG1 = Vex + C)2 + y2 and AG2 = Vex - C)2 + y2 

But according to the stipulation of the parole, AG1 + AG2 = 2a, 
or 

vex + C)2 + y2 + vex - C)2 + y2 = 2a 

This expression can be rewritten as 

V (x + c)2 + y2 - 2a = - V (x - C)2 + y2 
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Now square both sides of the equation, remembering that 

(a + b)2 = a2 + 2ab + b2 
and we have 

(x + e)2 + y2 - 4av (x + e):! + y2 + 4a2 = (x - e)2 + y2 
or 

® 

\Ve may drop the same terms on either side of the equation, and 
we have 

2ex - 4av(x + e)2 + y2 + 4a2 = - 2ex 

and this may be rewritten as follows (by moving - 2ex to the 

left side and 4aV (x + e)2 + y2 to the right side of the equation 
and not forgetting to change their respective signs). 

4ex + 4a2 = 4av(x + e)2 + y2 

\Ve can divide both sides of the equation by 4, and we have 

ex + a2 = av (x + e)2 + y2 

Again we have a complicated expression, although we got rid 
of one square root. Now if we square both sides of the equa
tion, we shall eliminate the square root on the right of the 
equation. After squaring we have 

(ex + a2)2 = a2[(x + e)2 + y2] 

e2x2 + 2a2cx + a4 = a2x2 + 2a2ex + a2e2 + a2y2 

On either side of the equation we have 2a2ex, and this may be 
dropped. We then have 

We now can rewrite the equation as 

and this may be rewritten as 

(a 2 _ C2)X2 + a2y2 = a2(a2 - e2) 
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Now if we recall what was said about the two positions of the 
paroled prisoner when he crosses the axis OY, when its coordi
nates are (0, b) and (0, - b ), we observe from the drawing that 

and the reader will recall that this is obtained from the Pytha
gorean relationship for right triangles. If we replace in our last 
equation (a 2 - c2 ) by b2, we have 

Now, divide both sides of the equation by a2b2 , and we obtain 

which is the equation of the curve along which our paroled 
prisoner must travel to comply with the conditions of the parole. 
Notice that if a and b were equal we would have 

or 
x2 y2 

(or b2 + b2 = 1, and x2 + y2 = b2) 

In other words, this curve is a distorted circle, not a true circle: 
it is known as an "ellipse." The preceding equation is for a 
particular kind of an ellipse, with the points G 1 and G 2 on the 
axis OX equally distant from the origin of the coordinate axes. 

If the address of the prison (in the foregoing case it is at the 
origin of the coordinate axes) is changed to some other point 
whose coordinates are (h, k), and the guards are located on a 
line parallel to the axis OX at equal distances from the prison on 
that line, then the equation of the curve along which the paroled 
prisoner must travel becomes 

(x - h)2 + (y - k)2 = 1 
a2 b2 
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Nature's Favorite: The Ellipse 

There is a popular notion that the circle is the most common 
and "most perfect" (whatever this may mean) curve in nature 
and that there is abundant evidence that the circle is present in 
numerous natural phenomena and in many forms of life and 
vegetation. Nothing could be further from the truth; it is not 
the circle that is most common in nature, it is the ellipse. 

It is often said, too, that the earth, the sun, the moon, the 
planets, and stars are large spheres, and that their images appear 
as circles (a sphere, as it will become evident in a later section of 
this chapter, is closely related to a circle). Not one of these 
heavenly bodies, however, is spherical in shape. It suffices to 
say that the earth and the sun as well is flattened out at the poles 
and bulges at the equator because of the centrifugal force gen
erated by its revolution on the axis, the shape of the body resem
bling a rotated ellipse. But what is the appearance of an ellipse? 

It is quite simple to draw an ellipse, but we must remember 
the conditions imposed on the paroled point-world prisoner. He 
was allowed to move in such a manner that the sum of his dis
tances from two fixed points was the same for every point on 
the curve. We select two fixed points and a length that is equal 
to the sum of the two distances. "\Ve then measure off this sum 
of the distances on a piece of string. Drive pins into two selected 
points. Attach the string to the pins (this makes it obvious that 
the distance between the two selected points must be always less 
than the sum of the two distances represented on the string) and 

place a pencil point so that the string is 
drawn taut, but not very tight. Then 
let the pencil slide, and it will trace an 
ellipse as shown on the left. 

Thus there is considerable difference 
between an ellipse and a circle. A circle 
has one center; an ellipse has two points, 

which are known as "focuses" or "foci." A circle has a radius 
which is the same for a given circle; the ellipse does not have a 
radius. A circle has a diameter which is twice the length of the 
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radius, and the diameter is the same for a given circle; this is not 
so in the case of an ellipse. An ellipse has a smallest and a largest 
diameter (they are known as the "minor" and "major" axes). 
Only one diameter of an ellipse passes through the foci of the 
ellipse, and the diameters of an ellipse vary in size. 

The foci of an ellipse possess an unusual property. In a room 
with a floor in the shape bf an ellipse, the slightest whisper of a 
person standing where one focus is can easily be heard in the 
place where the other focus is. For any other place in the room 
this is impossible. This is known as the "whispering gallery ef
fect." You may see such a whispering gallery in the Capitol at 
Washington. 

The earth and other planets move around the sun not in circles 
but in ellipses, and the sun is located in the place which is the 
focus of every respective ellipse. This is also 
true of' other stars. The moon moves around the 0 
earth along an ellipse, and in this case, too, the 
earth is in the place which is the focus of this • 
ellipse. 

All circles are of the same shape, but ellipses 
vary. The shape of an ellipse depends on the distance between 
its two foci and on the sum of the distances of a point on the 
ellipse from the two foci. If this sum does not 'differ much from 

the distance between the two foci, the ellipse is elongated, and 
it seems to be flattened out, as in the drawing above. If, how
ever, the sum of the distances of a point on the ellipse from the 
two foci is many times greater than the distance between the 
foci, the ellipse tends to assume the shape of a circle, as in the 
above drawing. Finally, when the distance between the foci 
is zero, and the two foci become one point, the ellipse actually 
becomes a circle. 
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Meet th~ Circle's Fat Friends: Sphere, Hypersphere, and Ellipsoid 

We have learned how easy it is to extend the distance formula 
for two points to any number of dimensions; now we shall apply 
the, same method to figures related to the circle and to the ellipse 
wh~n these figures possess the properties of many dimensional 
objects. We shall first consider the extension of the circle. 

The circle is a figure such that all its points are at exactly the 
same distance from a point in its plane, and this point is known 
as the center of the circle. In three dimensions (we should re
member that the circle is in two dimensions) we have a figure 
such that all its points are at exactly the same distance from one 
point inside that figure. Applying the method of extension used 
in the preceding chapter, we write the equation of this figure: 

x2 + y2 + Z2 = y2 

This figure is known as the "sphere." 
It is quite simple to write the equation of a figure in four di

mensions that will have properties similar to the sphere. This 
equation will be 

x2 + y2 + Z2 + w2 = y2 

Now this figure is not a sphere; mathematicians call it a "hyper
sphere" (supersphere) in four dimensions. The reader is advised 
not to attempt to make a drawing of this figure; it is impossible. 
But we can think of such a figure, and now we are ready to im
agine one that possesses properties similar to a sphere but is a 
figure of any number of dimensions, say ten. The equation of 
such a figure is 

x 2 + y2 + Z2 + w 2 + f2 + S2 + u 2 + v2 + 0 2 + q2 = y2 

To draw a picture of such a figure is impossible, but the equa
tion tells us all its properties. We know that it is in ten dimen
sions and that all its points are exactly equally distant from a 
point within it known as the center. And the center is at the 
ongm. 

How about the ellipse? 
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The equation of an ellipse is 

where, as we now know, 2a is the major axis and 2b is the minor 
axis, and the origin of the coordinate axes is at the point where 
the major and minor axes of the ellipse intersect (they are also 
perpendicular to one another). 

F or three dimensions we obtain by the same method the 
equation 

which represents a figure similar to an ellipse. It has three axes, 
2a, 2b, and 2e. They are all perpendicular to one another, and 
the origin of the coordinates is at the point of their intersection. 
This figure is known as an "ellipsoid." 

F or four dimensions we obtain by means of the same method 
the equation 

which represents a figure similar to an ellipsoid in three dimen
sions. It has four axes, 2a, 2b, 2e, and 2d. They are all perpen
dicular to one another, and the origin of the coordinates is at the 
point of their intersection. The reader may give this figure any 
name he pleases, and now he may write the equation of a figure 
similar (in properties) to an ellipsoid of any number of di
menSIOns. 

This Curve May Kill You: The Parabola 

Let us suppose that in the world of mathematics both capital 
punishment and life imprisonment are abolished and that even 
the meanest prisoner must be let out on parole some day. Let 
us suppose, then, that our prisoner is an extremely dangerous 
killer, and that in his parole he is allowed to move only in such 
a manner that he must always be at the same distance from on<:; 
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guard and from an infinite number of guards all posted along a 
straight line. ' 

Let one guar~ be posted along the axis OX at the distance a 
to the right of the origin, and the infinite number of guards along 
a line parallel to the axis 0 Y at a distance a to the left of the 
origin. Suppose that at some instant the prisoner is at the point 
A whose coordinates are (x, y). This situation is shown in the 
diagram below. Then AG = AB. But AB = a + x; moreover, 
the triangle AFG is a right triangle. According to the Pytha
gorean relationship then 

AF2 + FG2 = AG2 = AB2 

Or, since AF = y, FG = a - x, and A G = AB = a + x, we 
have 

y2 + (a - X)2 = (a + X)2 
or 

y2 + a2 - 2ax + x 2 = a2 + 2ax + x2 

This equation may be simplified by dropping a2 + x2 from both 
sides of the equation, and we have after we transfer - 2ax to the 
right side of the equation (not forgetting to change its sign) 

y2 = 4ax 

This curve, shown in the accompanying diagram, is known as 

l' 

B 1----t~A (x.1/) 

a i~ 
---+--~~~--~x 

OxF G(a.o) 

-t---f-----X 

y~ 

the "parabola" and is important in nature as well as in the arts of 
war and industry. Bombs, bullets, baseballs, automobile head
lights, concert stages, fountains-all these are subject to a certain 
physical law that is expressed in some form of the foregoing 
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equation. We shall examine the parabola's properties in more 
detail later. 

Now we can dispos~ of the question that may have arisen 
earlier: What would happen to the ellipse if the distance between 
the foci became infinite? Although a mathematical answer 
would require much algebraic work, we can arrive at a satisfac
tory conclusion if we just reflect a little. As the distance be
tween the foci of the ellipse becomes larger and larger, the el
lipse becomes more elongated. But as the distance between the 
foci becomes infinite, we lose sight of one end of the ellipse; as 
far as we are concerned, it disappears because we never can reach 
infinity. The other end of the ellipse will thus have moved away 
from us, and the curve becomes a parabola. 

How to Get Your Geometric Passport 

At the start a promise was made to the reader that if he fol
lowed closely the development of the material in this chapter he 
would be able to write a "passport" for any geometric figure. 
To be able to write this passport (that is, the equation which de
scribes the nature as well as the position of the curve) it is neces
sary to have definite information and to know how to translate 
it into mathematical language. The steps are usually as follows: 

a) Select a suitable system of coordinate axes. If the figure 
is in the world of two dimensions then two coordinate axes OX 
and OY are chosen. 

b ) Take note of the description of the behavior of a moving 
point. This is usually described in the conditions of the problem. 

c) Generally, the conditions are stated in terms of certain dis
tances. For example, in the case of a circle the condition was 
that the point was always at the same distance from a given point 
in the same plane. The magnitude of the distance is then also 
given. Express this distance by taking some arbitrary point 
(x, y) and the given point (or points). The fundamental as
sumption in taking an arbitrary point is that this point is on the 
geometric figure whose passport is to be written. The expression 
for the distance thus obtained is the required passport. 
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d) Perform whatever operations are indicated in the expres
sion that was obtained in (c) and try to simplify its appearance. 

To illustrate the procedure outlined above we shall consider 
the following example. A point moves so that its distance from 
the point (2,0) is always twice as large as its distance from the 
point (-1, 0). Along what kind of a curve does this point 
move? 

a) We draw two coordinate axes OX and OY (shown below) 
and mark off the two points (1,0) and (-2,0). 

b) \Ve take some point in the plane and assume that its coor
dinates are (x, y): Let that point be marked A, while the point 
(2,0) is marked B and point (-1,0) is marked C. Join point A 
with points Band C. Then, according to the conditions of our 
problem, AC = 2AB 

c) By means of the distance formula that expresses the dis
tance between two points (Xl, Yl) and (X2, Y2), 

d = V(XI - X2)2 + (Yl - Y2)2 
we write 

AB = V (x - 2)2 + y2 
and 

AC = V (x + 1)2 + y2 

Since AB = 2AC, we write 

V (x - 2)2 + y2 = 2v (x + 1)2 + y2 

d) The expression that was obtained in (c) contains square 
roots. However we may eliminate them by squaring both sides 
of the equation. We then have 

(x - 2)2 + y2 = 4[(x + 1)2 + y2] 

N ow we proceed with simplification of this expression. First 
we perfonn the squaring of the expressions (x - 2) and (x + 1). 
We have 

x2 - 4x + 4 + y2. = 4(x2 + 2x + 1 + y2) 

Then, multiplying the right side of the equation as indicated ,by 
4, we have 

x2 - 4x + 4 + y2 = 4x2 + 8x + 4 + 4y2 
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Now if we collect the similar terms on the same side of the equa
tion, we have 

4xZ - X Z + 8x + 4x + 4y2 - y2 + 4 - 4 = 0 
or 

3x3 + 12x + 3y2 = 0 

Divide the equation by 3 and we have 

x2 + 4x + y2 = 0 

Now observe that if we add 4 to the expression x2 + 4x we 
obtain X2 + 4x + 4, which is of the form x2 + 2·2·x + (2)2, 
and this is the square of (x + 2). But if we add 4 to one side of 
the equation we must balance this with a similar addition to the 
other side of the equation. We then have 

x2 + 4x + 4 + yZ = 4 
or (x + 2)2 + yZ = 4 

By this time we know that this equation is of the form 

(x - a)2 + (y - b)2 = r2 

which is the equation of a circle whose center is at the point 
(a, b) and whose radius is 1'. Thus our curve is a circle whose 
center is at the point (-2, 0) and whose radius is 2. Note that 
y2 is the same as (y - 0)2 and that (y - 0) is generally consid
ered superfluous and is written as y . . The diagram below illus
trates the solution of our problem. 

y 

B 
X--~----~r-~--~-+--~-X 

y 

PROBLEMS 

8. A point moves so that its distance from the point (2, -4) is 
always the same. What is the passport of the geometric figure along 
which tbis point moves? 
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9. A point moves so that the sum of its distances from the points 
(1, 0) and (0, 1) IS always the same. Obtain the expression for the 
passport of the geometric figure along which this point travels. 

10. A point moves- so that the difference of its distances from the 
given points (c, 0) and (- c, 0) is always the same, say 2a. Write 
the passport of the geometric figure along which this point travels. 
(The reader is advised to refer to the equation of the ellipse and fol
low its development closely.) 

11. A point moves so that its distance from a given point (1, 0) is 
half the distance from a line that is parallel to the axis 0 Y and passes 
the axis OX at the point (- 2, 0). Find the expression for the pass
port of the geometric figure along which this point travels. 

12. Obtain the expression for the passport of the geometric figure 
along which a point moves in such a manner that its distance from the 
point (3, 0) is three times as large as its distance from the point (0, 3). 

13. Obtain the expression for the passport of the geometric figure 
along which a point moves in such a manner that its distance from 
the point (1, 1) is equal to its distance from the point (2, 2). 

Every Passport Has Its Picture 

So far we were concerned with writing the passport of a geo
metric figure when definite information was given concerning 
the behavior of a point that was moving along it. Now we shall 

concern ourselves with the problem of 
the passport of a geometric figure in re
verse order. In other words, if we have 
the passport of a geometric figure, what 
does it look like? Two methods lead to 
the solution of this problem: 

First, if the passport is stated in such 
a manner that we can immediately rec
ognize the type of the geometric figure, 
we can derive from the equation (which 

is another name for the passport) information which will enable 
us to make a drawing of the figure with almost no difficulty. 
F or example, suppose that the equation is (x - 4) 2 + (y - 2) 2 

= 25. We immediately know that this equation represents a 
circle, illustrated below, whose radius is 5 (because 52 = 25) 
and whose center is at the point whose coordinates are (4, 2): 

Second, if the passport is stated in such a form that we are 
unable to recognize the type of the geometric figure immediately, 
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we take the long road to solution of the problem. We assign 
values either to the x or to the y, generally to the letters (often 
called the "variable," because it 
may take on different values) 
that is raised to a lower power 
and which does not appear in any 
higher power. After these values 

y 

are assigned to one letter (or vari- X ---~-----:f_--X 

able), we solve the equation for 
the other letter. Thus we obtain 
for x and y pairs of values which 
represent coordinates of points on 

y 

the geometric figure. After a sufficient number of points is thus 
obtained in terms of their coordinates, these points are plotted on 
graph paper. Finally these points are joined by a smooth line. 

This line is the required geometric figure 
25 ,Y 
~3 whose passport is given. 
!~ For example, suppose that the equation of 
20 
19 
18 
17 
15 
15 
14 
13 

the geometric figure is 

y = 2X2 - X + 4 

We begin to assign values to x because y does 
not appear squared, while x appears squared 
(in 2X2). We thus have a table of values 

x -3 -2 -1 0 1 2 3 
Y 25 14 7 4 5 10 19 

We plot these points on graph paper and join 
X-_-31-_-t-2.-+1-!-'-1--X them by a smooth line. This geometric figure 

-3-2-1 iy is a parabola. 

PROBLEMS 

Draw the geometric figures whose equations are: 
14. y = X2 - 3x + 1. 
15. (x + 3)2 + (y - 7)2 = 64. 
16. xy = 4 (Hint: divide both sides of the equation by x). 
17. Y = 3x + 4. 

18. (x -+- 3)2 + ,(y ~ 1)2 = 1. 



Man's Servant-The Triangle 

Measure Magic 

Now we have reached one of the most fascinating phases of 
mathematics, with processes that dispel the mystery of how sur
veyors-from a distance-measure boundaries and heights, and of 
how ships at sea and planes in the air are guided on their courses. 
And, oddly enough, the processes basically are far from compli
cated and require no expensive instruments or great knowledge 
of mathematics. After perusal of this chapter, the reader him
self may easily accomplish apparently impossible feats of mea
surement. 

F or a practical approach to this study, let us suppose we are . 
buying a large piece of land. The deed contains a description 
of boundary markers, but we wish to know the land's precise 
limits and make sure that none of our parcel as described has 
been taken over by a neighbor. The job of measurement, how
ever, appears an appallingly complicated task, and so we call in 
specialists in this work, the surveyors. 

The surveyors come and set their instruments up on tripods 
and then begin to peer through their sight tubes. Every now and 
then they jot down numbers, turn their instruments around, look 
into the tubes again, and jot down some more numbers. Some of 
their assistants stretch out on the ground long ribbons of marked 
steel. These assistants, too, jot down some numbers. Finally 
after some work and more waiting, they give you a map and a 
written description of the property. 

420 
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The entire procedure may seem complex and veiled in a pro
found knowledge of mathematics, but to understand it is not 
difficult. The magic wand that gives all these powers is a simple 
geometric figure formed by three sides: a "triangle." 

The Triangle: Simple, Eternal, and Mysterious 

A triangle is the simplest geometric figure. It has three sides 
and three angles. Thus in the figure below the triangle ABC has 
sides AB, BC, and AC and angles A, B, and C (these may be 
written also as BAC, ABC, and ACB; in this notation the middle 

letter denotes the vertex, the point where the 
two lines forming the angle intersect). Al
though the triangle is so simple, books have been 
written about its peculiar properties, and much 
is still to be discovered. However we shall be 

concerned only with its elementary properties, those known for 
more than two thousand years. 

If we add the three angles of a triangle, the sum is exactly 
equal to a straight angle, or two right angles, or 180 degrees. 
Thus the sum of the angles A, B, and C is 

A + B + C = 1800 

If we have two triangles ABC and AlBlC l such that AB = 
AlBI , BC = BICI, and AC = AICl, then the angles of the tri
angles are correspondingly equal; thus 

A = A l , B = Bl, and C = C1 

However, if we have two triangles ABC and AlBlCl such that 
their angles are equal-A = At, B = B l , and C = Cl-it does not 
follow necessarily that AB = AIBI , AC = AIC], and BC = 
BlCl ; they mayor may not be equal. The two triangles ABC 
and AlBlCl in this case have the same shape, appearing as though 
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one were an ~nlargement of the other. If the angles of one tri
angle are correspondingly equal to the angles of another, but 
the sides of these two triangles are not correspondingly equal (as 
in the two triangles below), tha.t is, when the two triangles have 
the same shape, they are known as "similar" triangles. We shall 

be concerned first with the properties of similar triangles, by 
means of which we shall be able to perform many of the mea
surements earlier described. 

Similar triangles may be obtained when a line is drawn parallel 
to one of the sides of a triangle as shown below. This line may 
be drawn inside the triangle as well as outside, but when the line 
is outside two sides of the triangle must be extended in order to 

meet it. This is shown by the dotted lines in the drawing. Here 
we have the similar triangles ABC and DBE. 

When two triangles are similar the respective magnitudes of 
their sides are related to one another in a manner to be stated as 
soon as we have learned something about the method of com
paring the magnitudes of two objects. 

The Bases of Comparison 

When the magnitudes of two quantities are compared with 
one another, we may raise two questions: (1) How much does 
the magnitude of one object exceed the magnitude of the other, 
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and (2) how many times is the magnitude of on~ object greater, 
or smaller, than the magnitude of the other object? 

When we are concerned with the question of "how much," 
we subtract the smaller quantity from the larger, and the differ
ence represents the answer. For example, if the population of 
one town is 5,347 and that of another 8,593, then the population 
of the second exceeds that of the first by 8,593 - 5,347 = 3,246. 

The question of "how many times" requires the operation of 
division, since we actually ask the question: If one quantity is 
greater than another, then how many times does the greater 
quantity contain the smaller? To answer this, we simply divide 
the number that expresses the magnitude of the greater quantity 
by the number that expresses the magnitude of the smaller quan
tity. F or example, if one book contains 275 pages while another 
contains 550, then the second book has twice as many pages as 
the first book, a conclusion simply obtained by division of 550 
by 275, or 550 -;.- 275 = 2. 

Often the answer to the question "how many times" is given 
in the form of a ratio. Thus the number of pages in the books is 
in the ratio of 2 to 1 or, as it may be written in fraction form, 2/1. 

It should be noted that the same ratio may express the rela
tionship of several pairs of quantities, although these pairs may 
not be correspondingly equal. For example, 15 and 25, 12 and 
20, _and 21 and 35 are three pairs of numbers, but each pair is in 
the ratio of 3 to 5, or 3/5. 

If we know one quantity, and know the ratio between a second 
quantity and the first quantity, we can obtain the second quan
tity by multiplying the first quantity by that ratio. F or example, 
if we have 15, and we know that the ratio of a second quantity 
to 15 is 2/3, then the second quantity is 

2 
15·-=10 

3 

Generally, if we know the quantity a and the ratio 

~ = k then b = ak 
a ' 
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If we tak;e two pairs of quantities such that their ratios are 

equal, we can say that the four quantities are "proportional," or 
that they "form a proportion." Thus, by equating the two frac
tions formed by the two pairs of quantities respectively we ob
tain a proportion 

or 
21 12 
35 20 

Similar Triangles and Their Properties 

Thus far we observed that when two triangles are such that 
their angles are correspondingly equal the triangles may be simi
lar (they may also have the sides correspondingly equal, but not 
necessarily). \Ve also noted that similar triangles may be ob
tained by drawing one line parallel to one side of a triangle and, 
when necessary, by extending the other two sides to meet this 
line. Thus we have another condition for triangles being similar; 
that is, that in a triangle a parallel line may be dra-wn (or if there 
are two triangles such that their sides are correspondingly paral
lel, as in the triangles below). The reader may, if he chooses, 

B B 

refer to a geometry textbook for proofs of these statements, since 
here we are concerned chiefly with application of the results. 

The most important property of similar triangles is this: when 
two triangles are similar, their corresponding sides are propor
tional. This means that if we have two similar triangles, and 
the side of one is twice the corresponding side of the other ("cor
responding side" denotes a side that is opposite an equal angle as 
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shown in the two triangles below), then the other corresponding 
sides are in the same ratio. F or example, the two triangles ABC 

B 

and AlB 1 C\ are similar; that is, angle A = angle A 1, angle B = 
angle B1, and angle C = angle C1 • Then we have the ratios 

and 

and these ratios are equal. In another form, 

AB AG BG' 
AIBI AlGI BIGI 

It will be helpful now to examine some of the properties of 
proportions and apply them to the proportions 

AB AG BG 
AIBI AlGI BIGI 

Suppose we have two equal ratios, 

~ = k and ~ = k 

We then have the proportion 

a c 
b d 

But we also have that a = bk and c = dk. Dividing the first 
equality by the second we ob.tain 

or 

a bk 
C = dk 
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If we apply this result to the proportion of the sides of the similar 
triangles, we have that 

then 
AB AIBI 
AC = AICI 

This result may be interpreted as follows. If we have two simi
lar triangles, then if two sides of one triangle are in some propor
tion, the two corresponding sides of the other triangle (the sides 
that are opposite the correspondingly equal angles) are in the 
same proportion. This is a result of high significance. 

Now we may arrive at one more result. If the ratio of two 
corresponding sides of two similar triangles is lIl-that is, the 
corresponding sides of two similar triangles are equal-the tri
angles are equal. In other words, the equality of two triangles 
(which is known as "congruence") is a special case of similarity 
of two triangles. 

Two Especially Helpful Triangles 

Recalling that among the many properties of a triangle there 
is the property that the sum of the angles of any triangle is always 
exactly equal to two right angles or to 180 degrees, we shall now 
examine, among the many triangles that may be thought of,. or 
are in existence, two that are of particular interest. 

A triangle may have three equal sides as shown in the accom
panying figure. In any triangle with opposite 
equal sides there are equal angles. Since the 
three sides of this triangle are equal (the name 
for such a triangle is "equilateral") the three 
angles of the triangle are equal also. But, since 
the sum of the angles of the triangle is 180 de

grees, each angle is therefore one-third of 180, that is, 60 degrees. 
This triangle in itself offers very little help in enabling us to per
form measurements of the type described above; however, if one 
side of this triangle is divided into two equal parts (an operation 
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called "bisection") and we join the point of bisection with the 
opposite vertex, we obtain two equal triangles, and triangles of 
this type are highly useful for our purpose. 

Let us examine just what happens when we perform the op
eration described in the preceding paragraph. Let ABC be an 
equilateral triangle. The side AC is bisected, and point D is the 
bisection (or the middle) point of the side AC. We join the 
vertex B and the middle point D with a straight 
line BD. We thus obtain two triangles, ABD 
and DBC. These two triangles are equal, for 
reasons we can now demonstrate. We observe 
that the three sides of one triangle are corre
spondingly equal to the three sides of the other 
triangle; AB = BC, BD = BD, and AD = DC. Moreover, we 
now know that if two triangles are equal, opposite equal sides 
there are equal angles. Now angle ADB is opposite side AB (in 
triangle ABD), and angle BDC is opposite side BC (in triangle 
BDC). 

But AB = Be. We therefore conclude that angle ADB = 
angle BDC. 

But these two angles are about a point on one side of a line, 
and their sum is thus 180 degrees. It follows then that each of 
the angles ADB and BDC is equal to 90 degrees, or is a right 
angle. 

Thus, the two triangles ABD and BDC are right triangles. 
Moreover, since angle A = 60 degrees and angle ADB = 90 de
grees, and the sum of the angles of a triangle is 180 degrees, the 
remaining angle ABD is equal to 30 degrees. A triangle of this 
type is known as a 30-, 60-, 90-degree triangle. \Ve notice that 
in such a triangle the smallest side (AD) is equal to one-half of 
the largest side (AB, which is equal to AC). Moreover, since 
we know the Pythagorean relation, we can obtain the expression 
for the side BD. Since the triangle ABD is a right triangle we 
have 

AD2 + BD2 = AB2, or CtAB)2 + BD2 = AB2 
Then 
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Finally, 
BD2 = tAB2, or BD = !ABV3. 

o 

Thus if we know that we have a 30-, 60-, 90-degree triangle, 
and we know -the largest side, we can obtain the values of the 
other two sides. F or example, if in such a triangle the largest 
side is 10 inches, then the other two sides are 5 inches, and 
5\13 = 5 ·1.7 = 8.5 inches. If we know the smallest side, we 
can in a similar manner obtain the values of the other two sides. 
F or example, if the smallest side is 8 inches, then the largest side 
is 16 inches, and the third side 8\13 = 8 ·1.7 = 13.6 inches. If 
we know the side that is opposite the 60-degree angle, we can 
now say that the largest side is equal to 

2· the side opposite the 60° angle 

V3 
Suppose that the side opposite the 60-degree angle is 5.1 inches. 
Then the largest side is 

~~ = !0.2 = 6 inches 
1.7 1.7 

The smallest side is 3 inches. 
Another useful triangle is a right triangle that has two angles 

equal. The angles of such a triangle are then 45, 45, and 90 de
grees. In such a right triangle the sides opposite the 45-degree 
angles are equal. The triangle in the next figure is a 45-, 45-, 
90-degree triangle. If we apply it to the Pythagorean relation 

C 

A~----------__ ~B 
we have AC2 + BC2 = AB2 

But AC = Be. Replacing BC by AC we have 

AC2 + A C2 = AB2 or 2AC2 = ABO! 
Finally, 

AB =, A CV2, AB = 1.4A C 
Thus, if AC = 5 inches, AB = 1.4·5 = 7 inches. 
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The Triangle as a Superyardstick 

By constructing a simple 45-, 45-, 90-degree triangle one can 
easily measure. heights of objects such as trees, buildings, and 
other structures. Remembering that in such a triangle one angle 
is a right angle and the sides that form this angle are equal, the 
reader can cut one out of cardboard; trace one on a flat piece of 
wood, with pins stuck into its vertices, or make one by simply 
folding a piece of paper, as follows: 

a) Fold the paper with the crease AB as illustrated. 

b) Fold the paper again so that one part of the crease AB falls 
on itself as shown; you now have another crease, CD, the two 
creases forming a right angle. 

c) Keeping the paper folded twice, fold it again so that the 
portion of the crease AB falls on the portion of the crease CD. 
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\Vhere the et:ld B falls on the crease CD make an indentation with 
your nail. Now turn this fold back. 

B 

d) Fold the crease CD so that the indentation made by the 
nail becomes an end point, and the lower part of the crease falls 
on the part above the nail mark. Now unfold the entire paper. 
The triangle MNP is a 45-, 45-, 90-degree triangle. 

c 

The practical use of a 45-, 45-, 90-degree triangle is very 
simple. Suppose you want to measure the height of a flagpole. 
H old the triangle so that one of its small sides (the one that forms 
the right angle) is facing the pole. To be certain that this side 
is parallel to the pole you may attach to the vertex that is fur
ther from you, the one of the 45-degree angle, a weighted string. 
When this string runs so that it just touches the side of the tri-
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angle, you have this side parallel to the pole. Now, after your 
triangle is adjusted, look along the longer side and try to sight 
the top of the pole. You may have to walk to or away from 
the pole to see its top. As soon as you can observe the top of the 
pole, put the triangle down and measure your distance from the 
foot of the pole. Add to this distance your own height, and the 
resultant sum is the height of the pole. 

This drawing illustrates the procedure in measuring the height 
of the pole BM. 

AN denotes the person who mea
sures the distance. When this 
person directs the 45-, 45-, 90-de-
gree triangle toward the pole as 
indicated in the drawing, the top B 
of the pole is seen along the line 

B 

A f---':::----i C 
N M 

ABl so that ABlB is a straight line. Moreover, the lines BlC l 

and BC are par:allel. We then have two 45-, 45-, 90-degree 
triangles, ABC (the large triangle) and AB 1 C 1 (the small tri
angle). And since the triangle ABC is a 45-, 45-, 90-degree 
triangle, the side A C is equal to the side Be. Then the height 
of the pole BM is equal to the sum of the lengths BC and CM. 
Now we note that the length CM is equal to the height of the 
eyes of the person who measures the height of the pole, and the 
length BC is equal to AC, which in turn is equal to the length 
NM, or the distance of the person from the foot of the pole. 
Thus we have the following simple rule for measuring the height 
of the pole, or of any other object: 

Stand away from the object whose height you want to measure 
so that the top of the object can be seen along the larger side of 
a 45-, 45-, 90-degree triangle. Measure your distance from the 
foot of the object, being certain that the ground is level, and add 
to this distance your height to your eyes. The resultant sum is 
the height of the object. 

Should you be unable to employ a 45-,45-, 90-degree triangle, 
you may use the following method for measuring heights of 
objects. There are several variations of the method but the 
principle is essentially the same. 
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Take a stick of wood equal in length to the height of your 

eyes, and place it vertically, either held by an assistant or stuck 
into the ground. To check the stick's position, attach to it a 
weight tIed to a'string. When the weight does not deviate from 
the stick and the string runs along the stick, you may be certain 
that the stick is placed vertically. This stick must be placed so 
that when you lie down on the ground with your feet against the 
stick, you see the top of the stick and the top of the object whose 
height you measure at one point. This process may require sev
eral trials until the proper position is found. The next drawing 

B/1B' 
A~C' C 

illustrates this method of measuring.. BC 
is the stick. AC denotes the person who 
measures the height of the object BICI . 
Since the stick is placed vertically, it is 
parallel to the object BICI . Thus we have 
two similar triangles ABC and ABICI . 
Moreover, AC = BC. T.hus the two tri

angles are 45-, 45-, 90-degree triangles. Hence ACI must be 
equal to BICI . In other words the distance ACI is equal to the 
height of the object BICI. 

It is not absolutely necessary to have a large stick, compelling 
you to stretch yourself on the ground flat on your back. Instead 
you may crouch or rest on your knees, but this may require look
ing sidewise and you will still have to keep 
your head on the ground. The drawing be
low illustrates this method of measuring. BC 
is the stick (now it is of any length). A C 
denotes the distance of the observer's eye to 
the lower end of the stick. The stick BC 

/lEI 
ALJCl C 

is placed so that the observer's eye A, the upper end of the 
stick B, and BI , the top of the object whose height is mea
sured, are all on the same line ABB1 • Moreover, the distance AC 
is selected in such a manner that AC = Be. This can be accom
plished by attaching a string at C, which is as long as Be. We 
then have two 45-, 45-, 90-degree triangles, ABC and ABICI . 
vVe therefore are able to me2sure the height of the object BICI . 
This height is equal to the distance AC I to the bottom of the 
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object BICI . Naturally the entire procedure is based on the as
sumption that the ground is level and the object B 1 C 1 is perpen
dicular to it. 

How to Measure Distant Heights 

Often an object is inaccessible to these processes. However, 
there are several methods by means of which such a measurement 
can be performed. Some of these involve comp'utations, but 
the result can be accomplished by an instru-
ment that anyone can construct. Take two ~A 
strips of wood or cardboard and put them 
together, as in the accompanying figure. The D B B C 

strips should be perpendicular to one another 
(forming right angles) and should be attached so that AB is equal 
to BC and DB is equal to one-half of AB (1/2 AB). 

To measure the height of an inaccessible object hold the in
strument so that the short end (DB) is directed downward. The 
upper part of the instrument is then a 45 -, 45 -, 90-degree triangle. 
Sight the top of the object to be measured so that point A, point 
C, and the top of the object A1 are on the one line ACM as shown 
in the next figure. When this is attained place a marker (T) on 

the ground where this takes 
place. Then turn the instru
ment around so that the short 
end (DB) is now directed up
ward. Walking away from the 

N object, sight until the top of 
the object (M), point D, and 

.~_....:::.o.. __ .a..;:.... ___ -,p point A are on the same line. 
When this is attained, put an

other marker (R) on the ground. Be sure, however, that the 
two markers and the bottom of the object are also on the same 
line, as shown in the figure. N ow the distance between the 
two markers, together with the height of the observer's eyes, 
is the height of the object. We may convince. ourselves of 
this from the following considerations. The two right triangles 
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AINM and AIBIDI are similar because BIDl is parallel to MN. 
Therefore, we have the proportion 

MN BIDI 
NA BIAI 

But we know that BIDI is equal to one-half of BIA l • There
fore MN is equal to one-half of N AI. From the first operation 
(when we applied the 45-,45-, 90-degree) we obtained a length 
equal to MN~ Therefore when we walked away from the object 
until we reached the second position, we covered a distance equal 
to the length of MN. To obtain the height of the object we add 
the distance between the two markers Rand T and height 0'£ the 
observer's eyes. Again, here we also assume that the ground is 
horizontal. 

An Instrument for Measuring Any Height 

A universal instrumept for measuring heights can be con
structed by anyone. This does not require any special skill or 
any special knowledge of mathematics; all that one must remem
ber is the property of similar triangles, that in two similar tri
angles any two corresponding sides are in the same ratio. 

On a piece of paper draw a square, for practical purposes 
making the sides 10 inches 
long. On the lower side 
mark the inch points, as 
in the drawing, and paste 

String this square on a piece 
of cardboard, or wood 
if possible. Attach to 
the upper-right corner a 
string with a weight at 
one end. It is advisable 

also to attach two pieces of cardboard to the top of the instru
ment for sighting purposes as shown in the drawing. Now the 
instrument is ready for use. 

To measur~ the height of an object, hold the instrument so 
that the top of the object is observed through the two sighting 
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attachments on top of the instrument. The weight will stretch 
the string to represent a straight line. Moreover, the string will 
cross the lower side of the square where the inch divisions are 
marked (sometimes it is advantageous to have the spaces between 
tp.ese marks divided into tenths). Where the string crosses the 
lower side of the square we can read a number. This number 
(decimal fraction) gives the ratio of a part of the horizontal side 
to the vertical side of the square and gives us all the information 
required to obtain the height of the object. The procedure is 
illustrated in the accompanying figure. The object is MP. The 
height of the corner of the instrument is AD, which is equal to 
NP. The observer directs his instrument so that he can see the 
top of the object through the two small holes on the upper part 
of his device. When this is attained he notes that the string 
crosses the lower edge of the instrument at point C. Thus there 

M 

A 
~~---------------iN 

B 
p 

JJ 

are two right triangles, ANiVl and ABC. These triangles are 
similar because the angles of one are equal to the angles of the 
other (a pair of right angles; one set of angles CAB and lV/AN 
have their sides perpendicular). Since the triangles are similar, 
we can write the proportion 

and from this we obtain 

MN AN 
CB = AB 

MN = AN. CB 
AB 

The ratio CB/ AB represents the ratio of the portion that the 
string cuts off of the lower side of the square to the adjacent side 
of the square. But all such ratios are given on the instrument di-
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reedy. The reader will observe that all the markings are given 
as decimal fractions, and if the distances between these markings 
are also divided into tenths, the ratios can be read to hundreds. 
The value of AN represents the distance of the observer from 
the bot~om of the object whose height is measured. Thus, if 
this distance DP is known, it should be multiplied by the number 
read off the instrument. To this product should be added the 
value of the height of the corner of the instrument. The sum 
thus obtained is the height of the ooject. 

Heights of inaccessible objects also can be easily measured 
with the same instrument as in the following drawing .. In this 
case the top of the object must be sighted twice, and the two 
points at which th~ observations are made must be on the same 
line with the bottom of the object. Too, the operator must 
write down his observations because he will have to perform a 
few computations. The top of the object is M. !he height of 

M 

A~--------~--------~N 

D p 

the corner of the instrument above the ground is AD (which is 
equal to A IDI and NP). Suppose that at the point A I it was 
found that MN = O.6A IN and that at the point A it was found 
that MN = O.3AN. Then 

MN MN 
AIN = (f.6-, and AN = 0.3 

Then the distance DID, which is equal to 

AAI = AN _ AIN = MN _ MN 
0.3 0.6 

If we perform the subtraction we find that 

MN 
AAI = 0.6' and MN = 0.6AAI 
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Measuring Heights with a Mirror' 

It may surprise the reader, perhaps, to learn that the vanity 
mirror that almost every woman carries in her pocketbook is an 
instrument that may be put to work 
in measuring the heights of objects. 
Its working principle is based on light 
reflection, and its physical law is very 
simple. 

Light falling on a flat mirror is so 
reflected that the angle of reflection 
is equal to the angle under which the 
light falls on the mirror. Thisprop
erty enables us to observe certain ob
jects not directly in the line of our vision, as illustrated below. 
Suppose an objects sends out from S a ray of light that falls on 
a flat mirror MM. The ray falls at the point 0, then is reflected 

in the direction OR. Now the 
8 angles MOS and ROM are, accord-

D [/r0 Ring to this property, equal. If we 
M----+--~:...----M happen to be in the direction OR 

we can see the object S in the m}rror 
81 as SI, and the distance SD is equal 

to SID. By means of this property 
we can measure heights of objects. Suppose that we want to 
measure the height of the object MP. We place a mirror on 
the ground and walk away from 
it until we see the top of the ob
ject. We then have two right 
triangles that are similar because 
the angles of one are equal to the 
angles of the other. The follow-
ing drawing illustrates this type of problem. The similar tri
angles AOB and OMP lead to the proportion 

MP OP 
AB OB 

This means that the height of the object is as many times taller 
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than the observer as the distance of the mirror from the object is 
greater than the distance of the mirror from the observer. The 
height of the observer as well as the distances of the mirror from 
the object and die observer can be measured. When the respec
tive values are obtained we find that 

MP =A~~P 

The mirror may be applied to measuring the heights of inac
cessible objects also, as follows. 

M 

Suppose that the object MP is inaccessible. Place the mirror at 
O. For this position we have the proportion 

MP OP 
AB OB 

and from this we obtain that 

OP = OB· MP 
AB 

Now place the mirror at 0 1 , and for this position we have the 
proportion 

AlBl OIBI 

From this proportion we have that 

OIP = OIBI . MP 
. AIBI 

Subtract OP from OIP. We have then (remember that 
AIBI = AB) 

o P - OP = 0 0 = OIB I . MP _ OB . MP 
I I AB AB 



Q 
or 

and finally, 
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MP = AB· 0 10 
OlBl - OB 

In other words, the height of the object is equal to the product 
of the height of the observer's eyes from the ground by the ratio 
of the distance between the mirror positions to the difference be
tween the distances of the mirror from the observer. 

lvleasuring Distances between Inaccessible Objects 

Distances between inaccessible objects may be measured in a 
manner very similar to that used in measuring heights of inacces
sible objects. The basic principle is the reduction of the mea
surement to the determination of some other distance that is 
equal to the required distance. 

The simplest of all methods calls for use of the 45-, 45-, 90-
degree triangle, preferably traced on a flat piece of wood, with 
pins stuck at the vertices of the triangle, shown in the illustration 
below. These pins enable us to sight distant objects. Variations 
in this method of measuring distances are: 

a) Suppose that we have two points A and B, one of which 
is inaccessible. Select a point C such that when you sight A and 

A A 

B 

D .----I-eoL-f--------' C 
E 

B along the shorter side of the 45-, 45-, 90-degree triangle the 
two pins at the vertices of the triangle and points A and Bare 
seen as one point. Place a marker on the ground to indicate this 
point C. Then, while holding your instrument firmly, turn and 
sight some object D along the other short side of the triangle. 
Thus the directions AC and CD will be perpendicular to one 
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another. Walk in the direction of CD so that the point C and 
the two pins on the instrument line up in one point. While 
walking in this manner, backward, sight the point A along the 
larger side of the triangle. When the point A lines up with the 
qvo pins along the larger side of the triangle in one point, you 
have a right triangle ECA whose sides EC and AC are equal be
cause ECA is a 45 -, 45 -, 90-degree triangle similar to the triangle 
on the instrument. Now the distances EC and BC can be mea
sured and the distance between the points A and B is equal to 

the differeQce between the distances EC and Be. 
b) Two variations in application of this triangle to measure

ment of the distances between two 
A 

B 

H _____ E~-D-!--~C 

points, one of which is inaccessible, 
are illustrated below. 

The point C is determined in the 
same manner as in a) above, but from 
here on the procedure is different. At 
C, which is perpendicular to AC, the 
direction CH is determined. Along 
CH measure off equal distances CD 
and DE. CD need not be equal to 
Ae. In other words, the triangle ADC 

is just a right triangle and not necessarily a 45-, 45-, 90-degree 
triangle. At E determine the direction EK, which is perpendicu
lar to CH. Now on EK locate a point F such that the points 
F, D, and A are on the same line. 
This may be obtained when the 
points D and A, when observed 
from F, appear as though they coin
cide. The two triangles ACD and 
FED are not only similar, but they 
are equal (congruent), because they 
have equal angles and equal sides. 

A 

B 

r--:>""----~c 

F, , 
I 

lK 

Then EF = AC, and from EF we subtract Be. The difference 
thus obtained is the required distance AB. 

In the second variation of this method, instead of making the 
distances DC and ED equal we may find it practicable to make 
the distance ED smaller, say one-fifth of DC, as shown in the 
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accompanying drawing. In all other respects the procedure is 
the same as in the first variation. After the distance EF is deter
mined we consider the two triangles EFD and ADC. This time 
the triangles are similar, and we have the following proportion 

But, as we know, 

Therefore, 

EF ED 
AC = DC' 

EF 1 
AC=S 

and from this we Have that 

AC = SEF 

Multiply the value of the distance EF by five, subtract from this 
pI:oduct the value of the distance Be, and the difference obtained 
is the distance between the two points A and B. 

e) We may make similar use, too, of the 30-, 60-, 90-degree 
triangle. The reader will recall that in such a triangle the short
est side is equal to half the longest side, and the longest side is 
opposite the right angle. On a piece of heavy cardboard draw 
an equilateral triangie (one whose three sides are equal), bisect 
one of the sides, and join the midpoint thus obtained with the 
opposite vertex of the triangle. This will result in two 30-, 60-, 
90-degree triangles. We make use of 
only one. After this triangle is traced 
place pins in the vertices and instrument 
is ready for use. The procedure for 
measurement of the distance between 
two points, one of which is inaccessible, 
is illustrated below. Sight the points 
A and B by means of the instrument so 

---t-tt--~+-----1E 
that the pins E and F and the points A D G E 

and B are on the same line, and they 
appear to you as one point. At the same time sight along the 
line EG some point D. This will give a line ED, which will 
form with the line EA a 90-degree angle. Finally, while walk-
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iug along the, line ED, sight through .the instrument the points 
A and F. This will be possible when you reach the point P. 
Thus another 30-, 60-, 90-degree triangle AGE is obtained, 
and the distance EG is equal' to v' 3" = 1.73 the distance 
AE. Thus, to obtain the distance AE, multiply the distance EG 
by 1.73. From this product subtract the distance EB, and the 
difference is the required distance AB. 

Measuring between Two Inaccessible Points 

To measure the distance between two inaccessible points with
out approaching them, for example the length of a small island in 
the middle of the river, is a large order. Le~ us limit it and mea
sure such a distance with a measuring tape and a right angle only. 

Surveyors might use special and very costly instruments, but 
the problem can be solved without them in a few very simple 
steps, the following drawing illustrating the method employing 
only a tape and a right angle. 

C 
B E M 

2 
lK 

A 
j;~ 

D 

Suppose that A and B are both inaccessible. Take any two 
points C and D. On the line CD determine two points E and F 
such that the lines BE and AF are perpendicular to the line CD. 
This can be accomplished by means of the right angle when 
sighting the point C and the point B at the same time while walk
ing along the line CD. Point C will be sighted along one side of 
the right angle while point B is sighted along the other side of 
the right angle. \\Then this occurs, the point E is determined. 
Place a marker at point E, and perform the same operations for 
the purpose of determining the point F. Place a marker at point 
F also. Divide the distance EF into two equal parts, and place a 
marker at K, the midpoint of EF. \\Talk along the line AF 
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(when it is extended) until a point N is reached such that the 
point B and the marker K, when observed from it, seem to merge 

. into one point. Repeat the same process while walking along 
the extended line BE;.. This will give the point M such that the 
point A and the marker K, when observed from it, seem to merge 
into one point. Measure the distance MN; this is equal to the 
distance between points A and B. 

The correctness of this result can be established from the fol
lowing considerations. The right triangles BEK and FKN are 
congruent (equal) because the sides EK and FK are equal to one 
another. Moreover, the angles of the two right triangles are 
correspondingly equal to one another. There is a pair of right 
angles (recall that we make use of a right angle), and the other 
pairs of the angles are also equal as indicated in the drawing. 
Angles 1 and 1 are formed by two intersecting straight lines BN 
and EK, and they are known as vertical angles (all vertical angles 
are equal). Likewise, angles 2 and 2 are equal because the sum 
of the angles of a triangle is 180 degrees. We found that two 
pairs of angles are equal and therefore the same holds true for 
the third pair. A similar reasoning may be applied to the right 
triangles AKF and EKM. These triangles also are congruent. 

Now in congruent triangles the corresponding sides (those 
opposite the equal angles) are equal. Therefore BK (opposite 
a right angle) is equal to KN (opposite a right angle), and AK 
(opposite a right angle) is equal to KM (opposite a right angle). 
The triangles ABK and KMN have two pairs of correspondingly 
equal sides and a pair of equal angles 3. This is sufficient for the 
triangles to be congruent and this conclusiop. leads' directly to 
the fact that MN is equal to AB. 

Another Method for Inaccessible Points 

In this chapter we described an instrument which consists of 
two perpendicular strips of cardboard or wood and with which 
heights of objects can be measured. This same instrument may 
be successfully used for measuring distances between two inac
cessible points, as in the drawing on p. 444. 
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Let A and B be two inaccessible points. Hold the instrument 

horizontally so that the smaller strip CP is directed to the right. 
Sight point B along the strip Cn and walk away from B (or to

A1r""-----.B 
·ward it) until the point A can be sighted 
along the line mn. When this takes place, 
put a marker D on the ground. Now turn 
over the instrument so that the smaller strip 
CP is directed to the left while the larger 
strip Cm is directed to the right. Continue 
to sight the point B while walking away from 

C, m, the point C and at the same time try to sight 
n, D, the point A through the end P 1 of the smaller 

strip CP. When this finally takes place put a 
marker Dl on the ground. The distance D1D (that is, the dis
tance between the markers D and D 1 ) is equal to the distance 
between the two inaccessible points A and B. The reader may 
refer to an earlier section to establish the validity of the result. 

What the Surveyor Does fVhell He Surveys 

The methods for measuring distances or heights that were 
described in this chapter are similar to those employed by sur
veyors, but our instruments are extremely simple and crude in 
comparison with theirs. When great precision is required, in
struments as a rule are complicated and expensive, and their han
dling requires skill which can be attained only after special 
training and considerable practice. 

In almost all our instruments the right angle was used, but the 
instruments employed by surveyors (as well as by navigators 
on ships and airplanes) are so constructed that any angle can be 
measured, enabling them to proceed with measurements in any 
location and at any position. Moreover, while our simple instru
ments allow only crude measurements, those used by the tech
nicians provide extremely fine measurements; with them a navi
gator can at any time locate himself within a fraction of a mile, 
and a surveyor can measure boundaries to within an inch. 

In all other respects the measurements performed by surveyors 



o Man's Servant-The Triangle 445 

reduce (or can be reduced) to determining right triangles in 
which one side is the distance that is required to be measured. A 
surveyor is not content to measure an angle to degrees and as a 
rule obtains minutes, but finer measurements do not involve any 
new or special mathematical procedures. The finer measures 
lead to finer results; the fundamental principles remain the same. 
Some of these fundamentals will be described next. 
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Master 

The Triangle Key to Measurement 

In Chapter 24 we became acquainted with three ratios of the 
coordinates of a point on a circle. These ratios, as here illus
trated, were 

and 

y 

X----l---.."..JL--..l--I-_ X 

y 

~ = sin A 
r 

:: = cos A 
r 

~=tanA 
x 

The reader will observe, however, that the radius of the circle 
and the lines that represent the two coordinates of a point form 
a right triangle. We may then derive similar ratios for any 
right triangle. Let us take any right triangle ABC, where angle 
C is a right angle. The side A C corresponds to the x coordinate 

446 
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in the case of a point of a circle, the side BC to the y coordinate, 
and the side AB to the radius. In a right triangle the side oppo
site th~ right angle is the largest; and mathematicians call it the 
"hypotenuse." 

We then have the following ratios: 

BC . A 
AB = sm , 

AC 
AB = cos A, 

BC 
AC = tanA, 

which is 

which is 

which is 

side opposite the angle A 
hypotenuse 

side adjacent the angle A 
hypotenuse 

side opposite the angle A 
side adjacent the angle A 

Some Values of the Trigonometric Trio, Sin, Cos, and Tan 

We discussed in detail in Chapter 25 the 45-, 45-, 90-, and 
30-, 60-, 90-degree right triangles; we shall now obtain the three 
respective ratios for them. 

The 45-, 45-, 90-degree triangle, besides LJB 
being a right triangle, possesses another inter-
esting property: two sides of this triangle are 
equal-that is, it is an "isosceles" triangle. A C 

Thus in the triangle ABC, the sides AC and 
BC are equal. If we apply the Pythagorean relation to this 
triangle we have 

AC2 + BC2 = AJ!2 

But AC = BC. Therefore we can write 

or 
2AC2 = AB2 
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Extracting the square root on both sides of the equation, we have 

ACV2 = AB 

And since AC = BC, we also have. 

BCv2 = AB 

Let us substitute the expressions for AB in the expressions for 
the ratios in the preceding section. We have 

. BC BC 
smA = AB = BCV2' 

. A 1 
or sm =V2 

If we multiply both the numerator and denominator of the frac-
tion 

1 
v2 by V2 

we have 

V2 = V2 or sin A = sin 45 ° = V2 
(V2)2 2' 2 

In a similar manner we obtain the value of 

V2 cos A =-
2 

or 

45 0 V2 
cos = -2-

The value of tan A is then obtained: 

BC BC 
tan A = A C = B C = 1 (A C = B C) 

Thus, tan 45° = l. 
From the table of the values of square roots in the Appendix 

we find that V2 = 1.414. 

Then 

We have then that 

and 

V2 
-2- = 0.707. 

sin 45° = 0.707 

cos 45° = 0.707: 

tan 45° = 1 
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Let us now examine the 30-, 60-, 90-degree triangle. In the 
preceding chapter we observed that in 
this triangle the shortest side is equal to ~B 
half of the longest side (the hypotenuse, 
which is opposite the right angle), that is, 
BC = tAB. If we apply the Pythagorean A C 

relationship to this triangle, we have 

AC2 + BC2 = AB2 

or, bringing BC2 to the right side of the equation and changing 
its sign, we obtain 

AC2 = AB2 - BC2 

But, since BC = ?tAB, BC2 = iAB2, we have 

AC2 = AB2 - tAB2 = tAB2 

Extracting square roots on both sides of the equation, we have 

AC = hi3AB 

Let us substitute the expressions for AC and BC in the expres
sions for the ratios in the preceding sections. We have 

. B _ A~ _ h/3AB _ V3 
sm - AB - AB - 2 

In a similar manner we obtain the value of cos B: 

cos B 

The value of tan B is 

BC iAB 1 
AB = AB ="2 

B _ A C _ h/3AB _ iV3 _ - r>3 
tan - BC - ! AB - i-v,) 

Now, the angle B is a 60° angle. We then have 

sin 60° = V3 
2 

cos 60° = ! 
and 

tan 60° = V3 
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From the ta~les of values of square roots we find that \1'3 = 
1.732. \Ve then have sin 60° = 0.866, cos 60° = 0.5, and tan 
60° = 1.732. The following values of the ratios of the 30-degree 
angle are obtained in a similar manner, and the reader may cal
culate them -as an exercise: sin 30° = 0.5, cos 30° = 0.866, and 
tan 30° = 0.577. 

The reader will observe that sin 30° = 0.5, and cos 60° = 0.5, 
and 30°+ 60°"= 90°. The values of the sine and cosine are 
equal, and the sum of the respective angles is 90 degrees (a right 
angle). This is true not only for the 30-, 60-, 90-degree triangle 
but for any other right triangle. The reader may convince him
self of this by writing the respective ratios of the two angles of a 
right triangle. Thus if we know the value of the sine of a certain 
angle, we know at once that this is also the value of the cosine of 
the angle which is 90 degrees minus that angle. However, this 
is only one of the many interesting properties of the ratios of 
angles which belong to a branch of mathematics known as trigo
nometry. The values of the ratios (known as trigonometric 
ratios) are given in a self-explanatory table in the Appendix. 

H ow to Measure Angles 

In the preceding chapter we stated that to measure distances 
and heights, to navigate a ship, or to locate one's self either on 
water or land, it is necessary to measure angles. For this pur
pose surveyors as well as navigators use specially constructed 

and very costlyJnstruments. How-
'l';0l-_______ --"-"O ever, anyone can construct a 

simple instrument for measuring 
angles at cost of a few cents. 

In the preceding chapter (page 
434) an instrument for measuring 
the heights of objects was described. 
To turn this instrument into one 

that will measure angles, a simple protractor may be purchased 
for a few cents. Paste this protractor on a rectangular piece 
of cardboard as shown above. At one end of the cardboard 
attach a string with a weight. When the cardboard is held up 
and the weight pulls on the string so that the string runs al'ong 
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the edge of the cardboard, the straight line which forms the 
edge of the protractor will be horizontal. At the midpoint 
of this· straight line (the edge of the protractor), which is 
usually indicated· either by a small hole or a line mark, attach 
another weighted string. In all other respects this instrument is 
used exactly as the one for measuring heights. 

For example, if we wish to sight the top of an object to deter
mine the observed angle that it makes with the horizon, we turn 
the upper edge of the instrument so that the top of the object 
can be observed through the two holes of the sight line. \Vhile 
the instrument is being turned, the string attached to the center 
of the edge of the protractor will cross the semicircle of the pro
tractor at some point, the weight attached to the string serving to 
keep it vertical. The reading at that point will give the angle 
(known as the "angle of elevation") in degrees. The accom
panying drawing illustrates the procedure. 

To measure an angle that is formed by two objects-that is, 
when the two objects as well as the ohserver are all in the same 
plane-the instrument must be placed A B 

as nearly level as possible. For this pur
pose a small table is useful, and the 
instrument is placed on it so that the 
straight-line edge of the protractor 
points to one object. After this the 
string attached to the midpoint of the 
straight-line edge of the protractor is pulled tight, while the 
instrument is held with one hand, until the other object can be 
sighted along this string. \Vhere the string crosses the protractor 
the number will indicate the number of degrees in the required 
angle. The drawing ahove illustrates this procedure. 
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Naturally, however, such an instrument is not very perfect 
and its measurements are crude, but they serve for many prac
tical purposes. 

Angles and Their Ratios 

Every angle has a set of ratios corresponding to it. In the 
Appendix table these ratios are for degrees and minutes but this 
will be found sufficient for simple measurement. The reader 
will recall that the ratios that correspond to the angles were ob
tained when right -triangles were examined. Thus the simplest 
application of these ratios may be found when a right triangle is 
obtained. The right triangle was used in Chapter 25, but for 
simplicity only special cases of right triangles were considered. 
Now we shall make use of any right triangle. From the follow
ing illustrations the reader will note how simple is the principle 
applied to measuring distances and heights by means of the right 
triangle. 

Suppose that the height of a pole is measured. At, say, 30 feet, 
an observer finds that the top of the pole and the horizon make 

B 
an angle of 35 degrees. We then have 
between the sides of a right triangle 
the relation BC / A C = tan 35 0 • But 
AC is the distance from the pole, and 

A 30 C AC = 35 feet. From the table of 
DL..----------'E trigonometric ratios in the Appendix 

we find that tan 35° = 0.57. Substi
tuting these values in the expression we have the equation 
BC/35 = 0.57. vVe know how to solve this equation, and we 
find that BC = 0.57·35 = 19.95 or about 20 feet. If the ob
server is 6 feet tall, the height of the pole is 20 + 6 = 26 feet. 

Suppose we want to find the distance between points A and 
B, which are so located that it is impossible to measure this dis
tance directly. We locate another point C such that the angle 
ACB is a right angle. The distance AC is measured and then 
from A the angle BAC is measured with the instrument described 
in the preceding section, the instrument to be held horizontally 
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in this case. The triangle below illustrates the procedure. In 
the right triangle ABC the distance A C is measured. Suppose 
that it is 45 feet, and that angle BAC is 38 degrees. We then 
have the relationship AC/ AB = cos A 
(angle A is the angle BA C) . Substituting 
th~ values of AC and A in the above ex
pression we have 45/AB = cos 38°. From 
the table of trigonometric ratios we find 
that cos 38° = 0.79. We then have the 
equation 45/AB = 0.79, which we know how to solve. We then 
have that AB = 45/0.79 = 56.9 or about 57 feet. Instead of mea
suring the distance AC we might measure the distance BC. We 
then would have to work with the expression BCI AB = sin A. 

The Ratio That Does Everything 
We shall now try a few problems in measuring distances that, 

to one unfamiliar with our preceding studies, would seem more 
complicated, because their solution presupposes very meager in
formation. 

Suppose we wish to measure the distances from two accessible 
points to an inaccessible point, for example a point on an island 

and two accessible points on shore. 
Let us denote the two points on the 
shore by A and B, and assume that the 
distance between these two is 100 

A B feet. But we are interested in the 
two distances AC and BC, the point C being on the island, and 
have to measure these two distances without rowing out. 

At point A we measure the angle CAB (let it be 48 degrees) 
and at point B we measure the angle CBA (let it be 64 degrees). 
We may then construct a diagram of the three points which in 
the diagram will be the vertices of a triangle ABC, and recall 
that the sum of the angles of a triangle is 180 degrees. Since we 
know the magnitudes of the angles A and B, we have 

A + B + C = C + 48° + 64° = 180° 

and from this we obtain that 
C = 180° - 48° - 64° = 180° - 112° = 68° 
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Draw a line ,AD which would.form a right angle (that is, will 
be perpendicular to) with the side BC of the triangle ABC, as 
illustrated. We .thus obtain two right angles, ACD and ADB, 

~. a D ~~ w;~: ::;t:: e::S:O:ASDin B 
AD . C AC 

A B A C = Sill ,or = sin C 

In this latter expression we may substitute the expression for AD, 
and we have AC = A~sinB 

sm C 

We obtain from the table of trigonometric ratios in the Appendix 
that sin 64° = 0.90 and sin 68° = 0.93. We then have (since 
AB = 100 feet) that 

AC = 100·0.90 
0.93 

Performing the computations we find that 

A C = 96.8 or about 97 feet 

To obtain the value of the distance BC we must draw a line 
from B to the side AC perpendicular to it. We shall thus obtain 
two other right triangles, and proceed in the same manner as 
above. This is left to the reader as an exercise. 

The distance between two points so located that it cannot be 
measured directly is obtained in a similar manner. Suppose we 
wish to measure the width of a lake between two given points on 
the shore. We locate some other point on the shore and thus 
obtain a triangle as shown in the illustration below. Let the two 

JI\ C B 

points on the shore be A and B. We select any other point C. 
At A we measure angle BAC and at C we measure angle ACE. 
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We also measure the distance A C. Suppose it is 150 feet. Let 
angle A (or BAC) be 82 degrees and angle C (or ACB) be 77 
degrees. Since the sum of the angles of a triangle is 180 degrees 
we have 

A + B + C = 180°, or 82° + B + 21 ° = 180° 

and from this we compute the value of the angle B, 

B = 180° - 82° - 77° = 180° - 159° = 21 ° 

Let us make a diagram of this problem. In the triangle ABC 
we draw a line AD perpendicular to the BC of the triangle. We 
then have two right triangles, ABD and ADC. From the right 
triangle ADC we have the ratio 

~~ = sin C, or AD = ACsin C 

From the right triangle ABD we have the ratio 

AD . B 
AB = sm , or AB = ~D 

smB 

Substitute the expression for AD (obtained from the right tri
angle ADC) in the expression for AB. We have then 

AB = A~sin C 
smB 

Finally, substituting the values of AC and of the angles C and B, 
we have 

AB = 150 sin 77° 
sin 21 ° 

From the table of trigonometric ratios in the Appendix we find 
the values of sin 21 ° and of sin 77 0 • We finally obtain 

AB = 150·0.97 or AB = 441.6 or about 442 feet 
0.36 ' 

All the problems of the type described may be solved so that 
the results may be represented by more precise measures, but for 
this purpose finer instruments and greatly amplified ratios would 
be required. 



Circles, Angles, and an 
Age-Old Problem 

The Circle: Sphinx to the Mathematicians, Old Saw to the 
Carpenter 

There are in mathematics three classic problems that laymen 
for countless years have tackled in spite of the fact that (or be
cause) the mathematicians declare they cannot be solved by 
simple methods. Periodically-and this may be expected to con
tinue indefinitely-there pops up another "solution" which may 
puzzle the trained mathematician because it is so ingenious, how
ever faulty it may be. But the goal is so hopeless that more than 
a hundred years ago the French Academy of Sciences publicly 
announced that neither its members nor its officers would waste 
their time trying to discover the mistakes in these supposed 
solutions. 

Let us examine the famous problem of the circle: How to 
construct a square that is equal in area to the area of a given 
circle, the construction to be performed with only a straight 
edge and compasses, two instruments used by draughtsmen. In 
many cases this problem may be modified to the construction, 
with the same instruments, of a straight line equal in length to 
the length of the circumference of a given circle. The reader is 
forewarned: what is proposed in these two problems (which are 
identical in nature) cannot be accomplished. Mathematicians 
have proved this fact, but the proof is far beyond the scope of 
even college mathematics; it is a pity that there is no proof so 
simple that it could be understood by everyone. 

456 
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Another form of the same problem associated with the circle 
is arithmetical. First, however, let us explain the meaning of the 
expression "a given circle." \Vhen we mention a given circle 
we imply that its position (although this is not always necessary) 
and its radius are known to us. Now, let us assume that we have 
a circle and, instead of constructing a straight line whose length 
will be equal to the length of the circumference of the circle, it 
is proposed to obtain the length of the circumference in terms of 
some unit of measure-say, inches, centimeters, feet. In other 
words, it is proposed to measure the length of the circumference 
of the circle. An easy problem it may seem, but it is not so 
simple. 

Let us dispense with the condition that a straight line, whose 
length should be equal to the length of the circumference of a 
given circle, be constructed with a straight edge and compasses; 
let us try to measure it with a tape. Suppose the radius of our 
circle is 5 inches long. We make a mark on the circumference 
of the circle, then wind the tape around the circle once. If we 
are careful enough in measuring, we may find that the length of 
the circumference is not quite 31 liz inches long. If our tape is 
graduated to tenths of an inch, we may note that the cir~umfer
ence is more than 31.4 inches long but less than 31.5 inches long. 

In other words, the circumference is just a little longer than 
three times the diameter of the circle (the diameter is twice as 
long as the radius of the circle). This is a fact known to every 
carpenter, but mathematicians are not content with the state
ment of this fact in the form just given. Moreover, a mathema
tician will not accept the validity of a measurement performed as 
an experiment; a mathematician demands that a problem be 
solved on paper, in mathematical terms. 

The fact that the circumference of a circle is a little more than 
three times as long as the diameter has been known for thousands 
of years. In the Bible's Kings and Chronicles we find a state
ment that when King Solomon built his temple the circumfer
ence of the great cistern in the court was three times as long as 
its diameter. The Egyptians knew that the circumference of 
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the circle was 3.16 times as long as its diameter. Asked to mea
sure the circumference of a circle with a radius 5 inches long, 
they would measure the diameter, find that it is 10 inches long, 
and then stop measuring, concluding that the circumference is 
31.6 inches long. In Ancient Rome the circumference was con
sidered 3.12 times as long as the diameter of the circle, and a 
Roman would say the circumference of our circle is 31.2 inches 
long. 

Why all these discrepancies? The reason lies in the fact that 
the problems concerning the circle cannot be solved exactly by 
any means (not speaking of elementary processes, as we shall 
learn later). 

Tbe Elusive Pi 

The arithmetical solution of the problem of the length of the 
circumference of a circle reduces to the finding of a number to 
be used as a multiplier. If we know of such a number, we can 
multiply the value of the diameter of a circle by it and thus ob
tain the length of the circumference. But what is this number? 

An Arab mathematician, Mohammed Ibn Musa, who lived 
about a thousand years ago, wrote in his book on algebra: "The 
best method to obtain the circumference of a circle is to multiply 
the diameter by 3%. This is the quickest and easiest method. 
God knows of a better one." This number 31h was first com
puted by the ancient Greek mathematician Archimedes, whom 
we mentioned in discussing number giants. 

In mathematics, this number associated with the circle is truly 
outstanding in its value; apart from mathematics it is closely asso
ciated with gambling, banking, saving money, and many other 
activities of men both useful and destructive. Its symbol is the 
Greek letter IT (pi). 

Its exact value is not known. It is impossible to write in 
numerical form the value of IT: an industrious computer once 
labored to establish the ultimate value until he obtained over 
seven hundred decimals-an extravagant waste of time and en
ergy. Here is the approximate value to thirty-six decimal places 
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(just a curiosity; so many decimal places have no practical use
fulness) : 

3.141592653589793238462643383279950288 ... 

For our purposes 3.14 will suffice. For many advanced engi
neering and technical problems 3.14159 is good enough. 

If you have difficulty in remembering this nUI~ber, there is a 
simple sentence which may aid your memory. This sentence is 
made up of words the number of letters in each of which cor
responds in the same order to some digit of the value of n given 
as correct to four decimal places: 

3. 
Yes, 

1 
I 

4 
have 

Taking the Girth of a Circle 

1 6 
a number. 

Now we can write the formula for the length of the circum
ference of a circle. We know the diameter of the circle must be 
multiplied by the number n. Thus if the symbol for the diameter 
of a circle is d, and the symbol for the length of the circumfer
ence is C, we have the formula C = nd. But we also know that 
the diameter of a circle is twice as long as the radius. Thus if 
the radius is denoted by r, we know that d = 2r. Then we have 
another way for finding the girth of a circle, C = 2nr. For ex
ample, if the radius of a circle is 35 inches, then the circumfer
ence of the circle is C = 2·3.14·35 = 219.8 or about 220 inches. 
The reader will observe that as a rule there is no sense in using 
many decimal places in the value of n. Let us consider some 
problems: 

It is known that the distance of the earth from the sun is about 
93,000,000 miles, correct to a million miles. Suppose that the 
earth moves around the sun in a circular path (this may be as
sumed because the ellipse, which is the actual path of the earth, 
is very close to being circular). What is the distance that the 
earth covers in a year, or 365 days? 

Before we plunge headlong into computation of the circum
ference of this circle we shall examine the information we have 
on hand. The distance of the earth from the sun is given as 
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93,000,000 miles, but this information is correct only to a million 
miles, so we' cannot rely on more than two figures in this num
ber. Now we _know (as shown in Chapter 7) that at best we can 
obtain two significant figures in any product of this number by 
ahy other one. Thus our value of 1T may contain two or three 
figures-that is, two decimal places. We have then the distance 
covered by the earth in one year, 

2·3.14·93,000,000 = 58,304,000,000 or about 58,000,000,000 miles. 

PROBLEMS 

1. Assuming that the moon moves around the earth in a circular 
path, compute the distance covered by the moon in 28 days (the 
distance of the moon from the earth is about 240,000 miles, correct 
to a thousand miles). 

2. What is the speed per minute of the earth in its motion around 
the sun? 

3. What is the speed per second of the moon in its motion around 
the earth? 

4. If the radius of the earth is 4,000 miles (correct to ten miles) 
wha\" is the length of the circumference of the earth around the 
equator? 

5. The earth, rotating on its axis, completes one revolution in about 
24 hours. What is the speed per second of a point on the equator? 

6. Suppose that a man six feet tall walks around the earth on the 
equator and around the equ~tor of the sun (the radius of the sun is 
about 400,000 miles, correct to a thousand miles). During either of 
the trips the top of his head will describe a circle whose circumfer
ence will be longer than the circle described by his feet. Will the 
difference between the lengths of the circumferences of these two 
circles be greater on the sun than on the earth, and by how much? 

7. Suppose a string is wound around the equator of the earth and 
then 50 feet of string is added to make a longer circle. If this circle 
is stretched around the equator there will be some space between 
the equator and the string. Will a six-foot-tall man be able to crawl 
under the string? 

8. A pocket watch has a seconds dial Y4 inch in diameter. What 
is the distance covered by the seconds hand in one day, in a week, in 
a month, in a year? 

Trig without Tables 

Tables of trigonometric ratios are very handy when we per
form measurements with the aid of angles, but lacking them, we 
can now compute them easily and quickly through a method for 
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the calculation of sine ratios for all angles. Calculation of the 
cosine and the tangent ratios, as it will be shown, depends on the 
calculation of the sine ratios; moreover, most of the problems in 
the measurement of heights and distances may, as the reader has 
observed, be performed by means of the sine ratios. 

First, to be able to calculate the values of the sine ratios we 
must have on hand some sine ratios whose values are known to 
us. We have worked with the 30-, 60-,90- and the 45-, 45-, 90-
degree triangles, and we also know that the sine ratio represents 
the ratio of the side opposite the angle to the hypotenuse of a 
right triangle. Let us recall some of the properties of these 
triangles: 

In a 30-, 60-, 90-degree triangle the side opposite the 30-degree 
angle is equal to Y2 the hypotenuse while the side opposite the 
60-degree angle is equal to lv'3 times the hypotenuse. Thus 
we know that 

sine 30° = ! = 0.5 
and 

sine 60° = ~ = 0.866 

In a 45 -, 45 -, 90-degree triangle the side opposite the 45 -degree 
angle is equal to lv'2 times the hypotenuse. Thus, we know that 

sine 45° = ~2 = 0.707 

Moreover, if we recall that we examined the trigonometric 
ratios in connection with the coordinates of a point moving along 
the circumference of a circle, and that the sine ratio was obtained 
as the ratio 

y coordinate of the point 
radius 

we can obtain more ratios. If the angle is 0 degree (that is, 
when the point is at the intersection of the circle with X -axis) 
the y coordinate is zero (0). Then the sine ratio is also 0 be
cause zero divided by any number is always zero. If the angle 
is 90 degrees (that is, the point is at the intersection of the circle 



462 Mathematics-Its Magic & Mastery L 

with Y-axis), the y coordinate is equal to the radius. Then the 
sine ratio is 1.· Thus we know the following sine ratios: 

sin 0° = 0, sin 30° = 0.5, sin 45 ° = 0.707, sin 60° = 0866, and sin 90° = 1 

This is the information with which we may begin our work 
in calculating the sine ratios of other angles measured in degrees. 

To proceed with the calculation we shall make use of a simple 
principle which will enable us to calculate the ratios of angles 
that are very small. This principle is: When we have a small 
angle (that iI;, the point that is moving along the circle is so lo
cated that its y coordinate is very small in comparison with. the 
radius of the circle), we may replace the y coordinate in the sine 

o-========:JA 
c B 

ratio with the arc of the circle that corresponds to that small 
angle as shown in the figure above. However, we may con
vince ourselves of this fact by calculating, for instance, the sine 
ratio of the I-degree angle. 

A circle contains 360 degrees and the circumference of a circle, 
whose radius is r, is 2nr. Then for the angle of 1 degree we have 
an arc 

27rr 7rr 
360 = 180 

The sine ratio of the angle of 1 degree is then 

. 10 trr 3.14 00175 
sm = 180r = 180 = . 

This value, if verified with a table of sine ratios, may be found 
to be correct. 

In a similar manner we may calculate 
sin 2° = 0.0349 
sin 3° = 0.0524 
sin 4° = 0.0698 
sin 5° = 0.0873 

Can this process be continued for all the angles up to 90 degrees? 
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Let us check by calculating sin 30°, whose value is known to us. 
We have then, remembering that the arc that corresponds to the 
30-degree angle -is 

Then 

27rr . 30 = 7rr 
360 6 

sin 30° = ~; = 3.~4 = 0.523 

This result exceeds the correct value of sin 30° by 0.023. In 
other words, it is not applicable to a 30-degree angle. 

Let us calculate sin 15°. In the draw- BI 

ing below the triangle ABC is a right tri-~ 
angle with angle BAC = 15°. Extend line A C 

BC to D so that BC = CD. Join A and D. 
Then angle BAD = 30 degrees. Draw E D 
line BE perpendicular to AD. Then the right triangle ABE is 
a 30-, 60-, 90-degree triangle, and AE, as we know, is equal to 

tv'3 = 0.866 times AB, that is, 

AE = 0.866AB 

Moreover, AB = AD (because the triangles ABC and ACD are 
congruent; they have two sides and a pair of right angles equal. 
AC = AC, BC = CD, and angle ACB = angle ACD). Then 

ED = AD - AE = AB - 0.866AB = 0.134AB 

Now, apply the Pythagorean relation to the right triangle 
BED. We have then 

BD2 = BE2 + ED2 

Moreover, BE is a side of a 30-, 60-, 90-degree triangle, and it is 
opposite the 30-degree angle. Hence, BE = O.SAB. We may 
now WrIte 

BD2 = (0.5AB)2+(0.134AB)2 =O.25AB2+0.018AB2 =O.268AB2 

From this we obtain that 

BD = VO.268AB2 = 0.518AB 

Moreover, BC = iBD. Therefore, 

Be = O.259AB 
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Now we have that 
. 150 Be 

sm = AB 
or 

sin 15° = 0.2!~B = 0.259 

L 

This value checks with the value of sin 15 ° to three decimal 
places. 

If we calculate sin 15 ° by means of the arc of the circle we 
have . 

sin 15° = ;;;r . 15 = 0.262 

The two values of sin 15 ° differ. But if we round them to two 
decimal places we obtain 0.26 and 0.26. Thus, up to the 15-
degree angle we may calculate the sine ratios by means of the 
arc of the circle, and the results obtained will be correct to two 
decimal places, or to hundredths. 

For the interval between 15 and 30 degrees we proceed as 
follows. The difference between sin 30° and sin 15° is 0.50-
0.26 = 0.24. We divide this difference into 15 equal parts, and 
each part will represent the step-up in the value of the sine ratio 
as another degree is added to 15 degrees. Then the value of the 
step-up is 0.24/15 = 0.016. From a strict mathematical point of 
view, such a procedure is not entirely correct, but since we are 
interested in the values of the sine ratios correct to two decimal 
places only, our results obtained by this method are fairly cor
rect. Thus we obtain 

sin 16° = 0.26 + 0.016 = 0.276 = 0.28 
sin 17° = 0.26 + 0.032 = 0.292 = 0.29 
sin 18° = 0.26 + 0.048 = 0.308 = 0.31 
sin 19° = 0.26 + 0.064 = 0.324 = 0.32 

Calculation of the values of the sine ratios of the angles 
for the interval between 30 and 45 degrees is performed in the 
same manner. The difference between sin 45° and sin 30° is 
0.71 - 0.50 = 0.21. The step-up in the value of the sine ratio 
is for this interval 0.21/15 = 0.014. We then have 
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sin 31 ° = 0.50 + 0.014 = 0.514 = 0.51 
sin 32° = 0.50 + 0.028 = 0.528 = 0.53 
sin 33° = 0.50 + 0.042 = 0.542 = 0.54 
sin 34° = 0.50 + 0.056 = 0.556 = 0.56 

To calculate the sine ratios of the angles in the interval be
tween 45 and 90 degrees we shall recall two important facts 
concerning the sine and cosine ratios of the angles of a right 
triangle. The first fact is that for any angle 

sin2 A +cos2 A = 1, or sin2 A = 1-cos2 A, and cos2 A = 1-sin2 A 

The second fact is that the sine ratio of an angle is equal to the 
cosine ratio of an angle with which the first angle makes 90 de
grees, that is, 

sin A = cos (90° - A) 

Thus, if we wish to calculate the sin 56 0 we calculate cos (90 0 -

56 0
), or cos 44 0

, and we use the expression 

cos A = V 1 - sin2 A 

Thus, we have that 

or 

sin 56° = V1 - (0.70)2 = V1 - 0.49 = VO.51 = 0.714 = 0.71 

The calculation of the cosine ratios of angles is performed by 
means of the relation 

cos A = V 1 - sin 2 A 

and the calculation of the tangent ratios is performed by means 
of the relation 

t A sin A 
an =-

cos A 

This Lopsided World: Even Your Best Friend Is Two-Faced 

Here we may look into a common and highly interesting 
phenomenon; with its explanation the reader may perform an 
amusing experiment for his friends. 

There are countless reports of people who have rowed an 
hour or more in darkness trying to reach the opposite shore of 
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a river or lake, only to return to the place from which they 
started, and bf others who wandered in darkness, or fog, or 
snowstorm only to retrace their steps unwittingly. Animals 
sometimes behave similarly: Blindfold a dog and it will swim in 
circles. Hunters say that a wounded animal in attempting to 

escape will run along a curve that resembles a circle. Finally, 
blindfold a man and ask him to cross a street; his path will re
semble a portion (an arc) of a circle. Why is this? 

The solution of the riddle lies in the- fact that there is no living 
being whose body is so perfectly constructed that it is symmet
rical; that is, its left side is an exact mirror reflection of the right 
side or, as we may say, it is perfectly balanced. There is no 
human face whose right side is exactly the same as its left side, as 
a mirror, or a close look at your friends, will prove. But out
ward appearance is only half the story: the body of a human, as 
well as that of an animal, is not equally developed on the right 
and the left side. A left hand, foot, or eye may be stronger than 
the right one, or vice versa. 

So, in walking in the dark we gen
erally go around in circles because no 
human being takes (whether blind
folded or not) equal steps with the 
right and left foot. The difference in 
the strides may be very minute, but 
these differences accumulate. An ex
perienced horseman when he wishes 
to turn does not pull on one side of 
the reins, but leans slightly to the side 

of the saddle, and this causes the horse to turn to that side. If 
the rider were leaning continuously, the horse would go around 
in circles. vVatch a circus rider closely; this is exactly what he 
does. 

Thus if a man walks so that the step taken by his left foot is 
7i6 inch longer than that taken by his right foot, and if he makes 
4,000 steps, half of them will be with the left foot and the differ
ence will be 2,000·~16 = 125 inches. The eyes guide in the light, 
but let him walk in total darkness or be blindfolded and he will 
describe a circle because his left foot will have to cover more 
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distance. In other words, his right foot will describe a circle 
inside the circle described with his left foot, and the man will 
always turn to the right. The diagram below shows the situation 
when a man walks with a left stride longer than the right one. 

The distance between a man's heels is about 4 inches. Thus if 
with his right foot he describes a circle of radius r, the radius of 
the outer circle (described with the left foot) is (r + 4). The 

. lengths of the respective circumferences are 2nr and 2n(r + 4), 
and the difference between these two lengths is 2 n (r + 4) -
2nr = 2n4. 

It is easy to compute the radius of the circle that a man may 
walk around if we know the difference between the strides taken 
by his right and left foot. Let us assume that his stride is 3 feet, 
and the radius of the circle that he walks around is r, then the 

length of his path is 2nr, and the number of steps he takes is 231~ 
(we translate everything into inches). Since half of his steps 
are taken by the left foot, and the other half by his right foot, 
the number of the longer steps (say, by the left foot) 1S 

27rr 7rr 
2·36 36 

Multiply this number by the difference between the lengths of 
the strides (suppose that it is 1;16 inch) and we have 

36·16 

This result must be equal to the difference between the lengths 
of the two concentric circles (suppose that it is 125 inches). We 
then have 7rr 

36.16 = 125 

and from this we obtain the value of r, as 
16 

r = 125·36· 3.14' or about 8,600 inches 

. which is about 720 feet. 
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If the radius of the circle is r and the difference between the 
lengths of the strides is d we have the formula 

7rrd = 2 4 
36 7r 

or'rd = 28"8 inches, which enables us to compute the radius if d 
is known, or the difference between the strides when the radius 
of the circle along which a man may wander is known. 

Squaring the Circle 

We have observed that the length of the circumference' of a 
circle as well as the area of a circle (mue correctly, construction 
of a square whose area is equal to the area of a circle) cannot be 
determined by simple means with the use of rulers and compasses 
only. Such stipulation indicates that only two kinds of opera
tions are allowed: (1) the drawing of a circle with a given radius 
at a given point as a center, and (2) the drawing of a straight 
line through two given points. These operations do not lead to 
solution of this problem, and whoever attempts the feat is trying 
to do the impossible. 

The length of the circumference of a circle of radius r is 
C = 2nr. Solution of the problem of obtaining the length of 
the circumference is determined by the nature of the number n, 
which, as we have noted, cannot be expressed numerically since 
its value has an infinite number of decimals. 

There are many simple expressions which enable us to calcu
late the value of n. None of these expressions ever ends-they 
are known as "expressions with an infinite number of terms." 
Some were discovered several hundreds of years ago. Here is a 
very simple one (if the reader wishes, he may curl up for a long 
spell of calculation, but he is forewarned that seven hundred 
decimals already have been obtained without definitive result): 

7r 11+1 1+1 1 d 'dfi" 1 4: = -:3 5 - '1 "9 - 11 + an so on, III e mte y. 
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Can You Trust Your Eyes? 

The next time conversation lags, ask your friends a question: 
"Do you think you could cover 'cigarettes' with a dime if the 
word were set in average size book type?" Now, before anyone 
digs up a dime, make your friends guess the size of the word. 
Generally, most people will say that it is impossible to cover the 
word with a dime. 

Let us examine the reason why few people can judge the size 
of an object. Naturally, we shall consider this inability from a 
purely mathematical point of view and pass over physical rea
sons such as faulty eyesight. Suppose you see an automobile 
coming toward you. You observe the car about half a mile 
away. Can you judge the dimensions of the car? Suppose you 
observe the car one-quarter of a mile away. Do the dimensions 
of the car appear twice as large? Would you say that the car 
appears to be only about a foot long? Look at the full moon. 
How big is it? Is it as big as a half-dollar, a quarter, or a nickel? 
You may have heard as a child that the moon is as large as a 
platter. Such descriptions may be nice and mother-goosey but 
do they have any meaning? Now and then you may see a news
paper report of someone who has seen a comet and who de
scribed it as having a tail two yards long plainly visible to the 
naked eye. Such reports should be taken with a carload of salt. 

In order to judge the magnitude and size of an object we must 
fully comprehend the correct procedure-what takes place and 
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what we are meant to do. This will be the topic of the present 
chapter. 

Actual and Apparent Sizes 

There is a distinction between the apparent size of an object 
and its actual size. Suppose you observe an airplane passing in 
the distance. If the airplane is far away, it may appear as a 
speck not much larger than a fly. On the other hand, if you 
observe the same airplane at close hand-or even a fly if it's on 
your own nose-you may be amazed at its size. Thus, the ap
parent size of an object depends primarily on the distance of this 
object from you. The actual size of an object is something that 
cannot be observed at all, because in order for our eyes to focus 
upon that object it must be at some distance from the observer. 

The act of seeing consists in observing the outlines of an ob
ject. This necessitates qbservat}on of the extremities of the fig
ure. Now, it is quite obvious, and the reader may convince 
himself by examining the drawing below that any two extrem-

.r<{-===========:=IT(]) 
ities of an object and the eye of an observer form a triangle. 
The eye of the observer is located at the vertex of this triangle. 
The two extremities of the object and the eye of the observer 
in the drawing are joined with two straight lines which are the 
sides of the angle. The farther we remove the object from the 
observer the smaller is the angle thus formed. In other words, 
there is a definite angle that is associated with the act of seeing. 
This is an important angle because it determines the apparent 
magnitude of the object. It is known as "the angle of observa
tion" or "the angular magnitude of an object at a distance." 
The actual magnitude of an object, when this object is removed 
some distance from the observer, remains unchanged. But the 
angular magnitude of this object changes (and becomes smaller) 
when the object is moved away from the observer. On the 
other hand, should the object be moved toward the observer the 
angular magnitude of this object would increase. 
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The reader must have noticed that during the processes of 
measuring heights and distances of objects with the instruments 
described in Chapter 26 the angles that were· measured were 
actually the angular magnitudes of the objects (or the angular 
magnitudes of the distances between objects). However, those 
angles were comparatively large. But, whatever the magnitudes 
of those angles were, they had to be appreciably large for the 
observer to be aware of them. In many situations the angular 
magnitudes of objects are so small that we fail to take notice of 
them. Let us consider several common examples of very small 
angular magnitudes. 

The Circle Family: Meet Cousin Chord 

We have already seen that the circumference of a circle is 
divided into 360 parts and that every part is a degree. More
over, we also know that when we have very small angles we 
may use a procedure whereby the y coordinate of a point may 
be replaced by the arc of a circle, or vice versa. We shall now 
introduce another member of the circle family. 

If we take any two points on the circumference of a circle and 
join these two points with a straight line, we obtain a special line 
segment. This line segment is known as "the chord" of the 
circle and is the diameter's first cousin. In any 
circle there is an infinite number of chords. 
They may be of any size, provided they do not 
exceed the magnitude of the diameter of the 
circle. There is also an infinite number of 
diameters in any circle, because the diameter 
passes through the center like the spoke of' a 
wheel, and through any point an infinite number of straight 
lines may be passed. 

Now, if an angle is very small, say 1, 2, 3, or perhaps 4 degrees, 
but never greater than 5 degrees, it is permissible at times to make 
use of the arc of the circle (the smaller one) that joins the end 
points of the chord. The difference between the lengths of the 
chord and its arc in such cases is so small that it may be consid
ered as imperceptible. If we make this agreement, we may then 
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consider that the distance between the two extremities of an ob
ject, when its angular magnitude is very small, is an arc of a circle. 

This agreement ~nables us to determine the angular magnitude 
of an object whose actual size is known to us. For example, 
suppose a siX"-foot man is about 350 feet away. The angular 
magnitude of this man is determined as follows: The radius of 
the circle in this case is 350 feet. The length of the circumfer
ence of this circle is 2'3.14·350 = 2,198 feet. What part of this 
circle is an arc 6 feet long? To answer this question we divide 
2,198 by 6. We then have 2,198/6 = 366.3, and this indicates 
that a six-foot arc-in a circle whose radius is about 350 feet cor
responds to about 1 degree. If the man were some 175 feet 
away, his angular magnitude would be about 2 degrees; 700 feet 
away, it would be about Y2 degree. 

Don't Eclipse the M.oon with a Match 
The farther an object is removed from an observer the smaller 

is its angular magnitude. This fact is actually an explanation of 
the phenomenon that objects at a distance seem to be smaller 
than when they are nearer to an observer. 

Let us reverse the question proposed in the preceding section. 
At what distance from an observer must a six-footer stand so 
that he can be observed at an angle of 1 degree? \Ve proceed 
as follows: The circle is divided into 360 degrees and 1 degree 
is therefore 1!s6oth part of a circle. Now, if 6 feet is the magni
tude that is observed as 10 it must be an arc that is a ~·f6oth part 
of a circle, and thus the circumference of the circle in this case 
is 6· 360 = 2,160 feet. In other words, we know the length of 
the circumference pf a circle, and we must determine the radius 
of the circle (which is the distance of the man from the ob
server) . The formula for the length of the circumference of a 
circle with a radius r is 

C = 27rr = 2·3.14r = 6.28r 
C 

Then r = 6.28' and, since C = 2,160 feet, we have 

= ~60 = 3439 r 6.28 . 
or about 344 feet. 
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How far must a six-foot man be from an observer in order 
for his angular magnitude to be Y2 degree? In this case the arc 
of the circle is also 6 feet, but it corresponds to Y2 degree or 
'l7'2oth part of a circle. The circumference of this circle is then 

6·720 = 4,320 feet long, and the radius 46~2280 = 687.9 or about 
688 feet. 

The above computation can be simplified. Let us consider 
the following problem. At what distance will an object 1 foot 
long be observed at an angle of 1 degree? In this case the circle 
will have a circumference 360 feet long, and the radius is then 

;.~~ = 57.3 or about 57 feet. In other words, the object is re

moved from the observer a distance that is about 57 times as 
great as its own length. 

At what distance from an observer would a dime have the same 
angular magnitude as the moon (Y2 degree)? In other words, 
how far from our eyes must we keep a dime in order that it 
should not appear any larger than the moon? We compute this 
distance as follows (the diameter of a dime is about 1'l16 or 0.6875 
inch): 0.6875·2·57 = 78.375 or about 78 inches (or 6.5 feet). 

The reader may check the following results: In order that a 
quarter appear not larger than the moon it must be about 9 feet 
away from the observer. A ten-inch phonograph record must 
be about 47.5 feet away from the observer in order that it appear 
not larger than the moon. The head of a match is about VB inch 
(0.125 inch) in diameter and must be held at least 14 inches away 
from the eyes, or it may appear to eclipse the moon. This may 
seem surprising, but the results of the reader's computations 
should convince him. 

PROBLEMS 

1. A man 5 feet, 8 inches tall is observed at an angle of 20 minutes. 
How far is the man from the observer? 

2. At what height must an airplane, whose wing span is 120 feet, 
be observed at an angle of 20 minutes? 

3. At what angle is the earth observed from the moon? (The 
radius of the earth is about 4,000 miles, and the distance of the earth 
from the moon is about 240,000 miles.) 

4. Three miles away a building is observed at an angle of 24 min
utes. What is the height of the building? 
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5. How far off would you have to be to observe a six-foot man 
at an angle of 1 minute? 

How Good Is Your Eyesight? 

At one time or another most of us begin to wonder whether 
our eyesight is weakening. \Ve then decide to visit an eye spe
cialist, and the chances are that most will need treatment, for it 
is generally agreed that few men ever have perfect eyes. 

When we refer to perfect eyesight we have in mind normal 
eyesight, that is, a type of vision that need not be corrected by 
glasses and that is not impaired in any way or manner. There 
are people that have unusually good vision. They can see and 
discern objects that even a person with a normal vision cannot 
see. However, a normal eyesight is now fairly well determined, 
and anyone can test his own eyes (satisfactorily enough, but, 
naturally, not as well as an optometrist, who has special instru-. 
ments for this purpose) in his own home. F or this purpose we 
shall need only a very simple instrument. 

On a piece of paper draw a square whose sides are 1 Y2 inches 
long. In this square d,raw 20 lines, each of which should have 

the thickness of a paper match. The drawing on 
the left illustrates the construction of this instru
ment. The thickness of a paper match is about 
0.04 inch (1 millimeter). 

Pin thIS paper at the height of your eyes to a 
well-illuminated wall and, while looking at it, walk away from it 
until the entire square appears to you as a solid gray piece of paper. 
Then step forward until you can distinguish the black lines once 
more. Measure your distance from the wall. If it is about 11.5 
feet, then your eyesight is normal, or if it is more than 11.5 feet, 
better than normal. If, however, your distance from the wall is 
less than 11.5 feet, then your eyesight is below normal. 

The reason for all this is directly tied up with the fact that we 
may use the arc of the circle whenever the angle corresponding 
to that arc is very small. According to standards set by optome
trists a person has normal eyesight if he can distinguish an object 
whose angular magnitude is 1 minute. We know how to com-
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HOLD THIs PAGE 12 INCHES AWAY FROM YOUR EYES 

A battleship 500 feet long will appear to an aviator flying A-IO,OOO ft.; 
B-7,000 ft.; C-5,000 ft.; D-2,500 ft.; £-2,000 ft.; F-I,500 ft.; G-I,OOO ft. above 
the surface of the sea. 

lf you hold this page 2 feet away from your eyes, the above distances will 
be doubled. 
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pute the radiqs of the circle in which an arc 0.04 inch corre
sponds to an angle of 1 minute. Recalling that there are 60 min
utes in a degree,.we find that the radius of this circle is 0.04· 57· 
60 = 136.8 inches, or about 11.5 feet long. This result signifies 
that any object, if its distance from an observer whose eyesight 
is normal is 57 ·60 = 3,420 greater than its own length, will be 
observed at an angle of 1 minute. 

Suppose a person can distinguish the lines on the instrument 
described 'above at a distance not greater than 4 feet. What is 
the strength of his eyesight? In order to answer this question 
we must compute the angle at which a black line on the instru
ment is observed. The radius of our circle is 4 feet or 48 inches. 
The length of the arc is 0.04 inch. We know that at a distance 
of 57 inches a line 1 inch long will be observed at an angle of 
1 degree (or 60 minutes), and at a distance of 0.04·57 = 2.28 
inches a line 0.04 inch long will also be observed at an angle 
of 1 degree (or 60 minutes). Then at a distance of 48 inches 
the same line (0.04 inch long) will be observed at an angle of x 
minutes. The value of x may be computed from the following 
proportion x 2.28 

60 48 

60·2.28 2 85 b 3 . x = 48 =. or a out mlllutes 
and 

The strength of the person's vision is then 1/2.85, or about one
third of the normal vision. 

PROBLEMS 

6. What is the strength of a man's vision if he can distinguish the 
lines on the instrument described in this section at a distance not ex
ceeding 6 feet? 

7. What is the strength of a person's vision if she can distinguish 
the same lines at a distance that does not exceed 9 feet? 

8. At what distance from his eyes can a person with normal vision 
distinguish as dots letters that are 0.075 inch high? 

9. The letters on an electric sign are all 1 foot high. At what dis
tance can a person with 0.1 normal vision read the sign? (Note: 
This means that no letter must appear as a dot.) 

10. At a distance of 3,000 feet from an electric sign a person can 
distinguish the letters (each 3 feet high) as dots only. What is the 
strength of his vision? 
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The Glass Eye: Sees All, Knows All 

One of man's greatest inventions is the magnifying glass. 
Through it, man first glimpsed the elements of modern science 
and became familiar with "invisible" (to the glassless eye) 
worlds. By means of the magnifying glass we are thus able to 
observe and study objects that are too small to be seen with the 
naked eye. A common variation of the magnifying glass is the 
eyeglass. 

There are many different instruments in which magnifying 
glasses (or, as they are generally called, lenses) are used, such 
as the microscope, the telescope, eyeglasses, the photographic 
camera, binoculars, and many others. The magnification power 
of these instruments differs with the purpose set before them. 
Some microscopes magnify 100 times, others 200 times or more. 
The magnifying power of telescopes varies with their size. 
Average binoculars have a magnification of about 8 times. Let 
us examine what happens when we observe an object through 
binoculars that magnify 8 times. 

Suppose a person, observing with his naked eye, sees an object 
at an angle of 30 minutes and at a distance of 1 mile. When he 
observes this object through binoculars that magnify 8 times he 
sees this object at an angle of 240 minutes or 4 degrees. We 
mentioned above that the size of the object remains unchanged. 
An object that is observed at a distance of 1 mile at angle of 

3 . • 5,280 fiN h b· o mmutes IS 114 = 46.3 eet ong. ow, t e same 0 Ject 

will be observed at angle of 4 degrees at the distance 5i;!0. 51 
= 660 feet. But 660 feet is equal to one-eighth of a mile. In 
other words, the observation of an object through binoculars 
that magnify 8 times enables the observer to see the object as 
though the distance between him and the object is reduced 8 
times. Thus, the magnification of the angle at which an object 
is observed results in the apparent reduction in the same ratio of 
the distance between the observer and the object. 

The largest telescopes in the world are in the astronomical ob
servatories in the United States. Their magnifying power is 
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very great. Let us assume, however, that we observe a celestial 
object through' a telescope that magnifies 1,000 times. Suppose 
that this object is the moon, whose distance from the earth is 
about 240,000 miles. By means of this telescope the distance is 
reduced to 240 miles. The diameter of the moon is about 2,160 
miles, and the full moon is observed at angle of 30 minutes. A 
person with normal vision will thus see any object on the moon 
whose diameter is 2,169/30 = 72 miles only as a dot. With a 
telescope that magnifies 1,000 times any object whose diameter 
is greater than 72/1,000 = 380 feet may be clearly seen by our 
observer. If there were factories of the average size on the 
moon, they could be observed through a 1,000 magnification 
telescope. 

The Historical Eye: Don't Look Now, Boys 
During the Battle of Bunker Hill General Prescott is said to 

have issued to his soldiers the following order: "Don't fire until 
you see the whites of their (the British) eyes." The minutemen 
then supposedly unclenched their trigger fingers until they could 
literally look the enemy in the eye. Let's see where all the shoot
ing began. 

The average distance between the eyes of a man is about 1.2 
inches. Thus, for a soldier with normal eyesight to distinguish 
the eyes of his foe, the soldier must be less than 1.2·3,420 = 4,140 
inches, 342 feet, or 114 yards distant. A soldier with about 0.7 
of normal vision will be able to distinguish the whites of the 
enemy's eyes less than 342,0.7 = 239.4 feet, or about 80 yards 
away. 

If we observe a man through binoculars that magnify 8 times, 
the whites of a man's eyes could be observed as far as 342·8 = 
2,736 feet, or 912 yards, provided our vision is normal. How
ever, if our vision is about 0.7 of normal, then this man must be 
less than 2,736·0.7 = 1,915 feet, or about 638 yards distant. 

If anyone tells you that he can recognize the face of a man at 
a distance of two city blocks (a city block is about 300 feet), he 
must have an unusually strong vision or an embarrassingly fertile 
imagination. 
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If the Earth Were Flat 

Have you ever walked along a railroad track? If you have, 
you must have noticed that the rails seem to meet far away in a 
point. 

After you have read the preceding chapter you have a better 
understanding why the rails seem to converge on a straight 
stretch of railroad track. If the track curves, you may observe 
that the distance between the rails also diminishes as the rails 
recede from you. As the rails recede from you, the angle at 
which you see the distance between the rails becomes smaller 
and smaller. This angle diminishes until it is equal to 1 minute. 
At this point you no longer observe the distance between the 
rails, and they seem to meet in one point. 

Let us suppose that the earth is flat. Also let us suppose that 
in this flat surface of the earth there is a railroad track that runs 
in a perfectly straight line. 

If we stand on this railroad track and watch the rails converge 
in the distance we may observe (or we may think that we do) 
the point where these rails seem to meet in a point. \Ve know 
now how to compute the distance from the observer to such a 
point. For the time being we shall assume that the vision of the 
observer is normal. In order to compute this distance we must 
multiply the distance between the rails by 3,420 (an object ob
served at an angle of 1 degree is at a distance 57 times as great 
as its diameter, and at angle of 1 minute is at a distance 57 ·60 = 
3,420 times as great as its diameter). 

479 
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The distance between the rails of a railroad track (also known 
as the standard gauge of railways) is 4 feet 8112 inches (or 56.5 
inches) . The place where the rails seem to converge (under the 
conditions stated above, the earth being flat, the track a perfectly 
straight line, and the vision of the observer normal) IS 

56.5 . 3,420 = 193,230 inches 

or about 3.0 miles. 
Do we actually see this point? 
In order to answer this question we must remove the first con

dition imposed, thatjs, that the earth is flat. When we assumed 
the flatness of the earth, we introduced an artificial situation. 
This was done in order to simplify the discussion. \Vhen we 
consider the actual situation, however, we must dispense with 
any artificial condition that might have been imposed by us. In 
the following section we shall see how the fact that the earth is 
spherical in shape influences our seeing of objects at a distance. 

PROBLEMS 

At what distances will men, whose vision is, respectively, (1) 0.5, 
(2) 0.7, (3) 0.3, (4) 0.1, and (5) 1.2 normal, see the rails meet in a 
point? 

How Far Is Faraway? 

If the earth were flat and there were no obstructions to the 
vision, anyone could see as far as "the ends of the earth." But 
the earth is not flat. It is a huge globe (approximately a sphere) 
with a radius about 4,000 miles long. The surface of the earth 
"bends," that is, it follows the curved outline of the sphere, or as 
we say, it follows the curvature of the earth. On the other hand, 
we see in straight lines and not in curves. We do not readily 
secure the impression that the earth is spherical in shape because 
the earth's radius is very large in comparison with ourselves. 
The fact that there are very tall mountains on the earth's surface 
does not necessarily require any modification in our statement 
concerning the sphericity of the earth. Even the tallest moun
tain range is an insignificant wrinkle on the earth's surface when 
the earth is viewed as a whole. 
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In order to understand what happens to the line of vision on 
the surface of the earth, we shall need some additional informa
tion concerning the properties of a circle and some lines that are 
drawn in connection with it. We can learn all that we need to 
know about seeing on the surface of the earth by making a draw
ing of a sphere (see below), assuming that this is the drawing of 
the earth's globe 

In this drawing AB denotes an observer, whose height is h. 
OB is the radius of the earth's sphere. AR is the line of vision 
of the observer. We note that the line AR touches (or, in 
mathematical language, is tangent 
to the sphere) the sphere. This 
line touches the sphere in one point 
only. It cannot touch the sphere Horizon 

in two points because it would 
then cut the sphere, and this would V 

happen at a point that is nearer 
to the observer than the point D 

A 

(where it is tangent); the other point, the one farther than D, is 
of no interest to us. Moreover, the observer can turn around, 
and his line of vision at every position of the turning of the 
observer will touch the sphere in one and only one point. Thus 
the observer may consider himself as standing in the center of 
a circle, and the points of that circle are the points where his lines 
of vision touch the earth's sphere. This circle is called "the 
horizon." 

If the observer were standing in a trench so that his eyes were 
exactly on the surface of the sphere (that is, at B), his line of 
vision would touch the sphere in point B, and he would be unable 
to observe anything. However, since the surface of the earth in 
the vicinity of an observer is irregular in shape, this rarely hap
pens. On the other hand, this can take place on a large expanse 
of water, provided the surface is calm. 

In order to compute the visible horizon distance from an ob
server, we must know how to compute the distance BD, or, since 
there is very little difference between the length of the line AD 
and the arc BD (which is an arc of a circle), we may compute 
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the length of the line AD. For this purpose we must know one 
very important property concerning the circle and a line that is 
drawn tangent to it. _ This property can be established by proof, 
but we shall state it without going through all the steps necessary 
to prove it. Ita line is drawn tangent to a circle, and a radius of 
the circle is drawn to the point of tangency, then the tangent line 
and the radius are perpendicular to one another. In other words, 
these two lines form a right angle. We may convince ourselves 
of the correctness of this fact if we consider the following:·The 
radius makes some angle with the tangent line on either side of 
the radius. These two angles should be equal because at point D 
the radius points toward the center of the earth and the line DR 
is the line of vision of a person whose eyes are on the surface of 
the earth. As the observer so located at D would turn around, 
the relation of the position of the line DR in regards to the radius 
OD would remain unchanged. Thus the angles ADO and ODR 
must be equal. Their sum is a straight angle (or two right 
angles) . Then each of these two angles is a right angle. 

We now have a right triangle ADO with a right angle at D 
and the hypotenuse AO. Let us denote the radius of the circle 
(which is also the radius of the earth) by r. Moreover, we de
noted the height of the observer (to be more correct, the height 
of his eyes, but the difference is so insignificant that we may talk 
of the height of the observer) by h, which is AB. Then 

AO = AB + BO ;= h + r 

Let us now apply the Pythagorean relation to this right triangle. 
We have then 

A02 = AD2 + OD2 
or . 

AD2 = A02 - OD2 
or 

AD2 = (h + r)2 - r2 = h2 + 2rh + r2 - r2 = h2 + 2rh 

The expression 

AD2 = h2 + 2rh 
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may be modified if we consider the following. The radius of 
the earth's sphere is measured in miles, and, as we now know, is 
about 4,000 miles. The height of the observer, although it is 
measured in feet, in order to be consistent, must also be expressed 
in terms of miles. Thus the height of the observer will be a very 
small fraction of a mile. If, for example, the observer is 6 feet 
tall, he will be shth of a mile in height. Now, if we square this 
fraction we obtain a still smaller fraction, 

(8~OY = 774\00 

We may as well disregard h2 altogether, because this term will 
not contribute anything numerically important in our result. 
Then, we have the distance of the horizon computed from the 
expreSSIOn 

AD2 = 2rh 
or 

AD = V2rh 

Since r = 4,000 miles, we have 

AD = V 8,000h = 89.4430 

where h is always expressed in terms of a mile. 
Thus, if the observer is 6 feet tall, the distance of his horizon is 

89.443 _ 89.443 _ 3 14 '1 v880 - 29.67 - . m! es 

If the observer is 5 feet 8 inches tall, the distance of his horizon 
is computed as follows: 

5 feet 8 inches = 5% feet = ~7 feet 

and his corresponding h is 

Ji- 1 '1 
5280 = 932 m! e 

Then the distance of this horizon is 

89.443 _ 89.443 _ 2 93 '1 
v932 - 30.53 - . ml es 
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Seeing Is Not So Simple 

The air we breathe is important for us to keep alive, but it 
does not help us much in order to see straight. The air consists 
of tiny particles, invisible to us, but which affect the line of 
vision, or, it would be correct to say, the paths of rays of light. 
One important phenomenon that results in light traveling along 
a curved path is the bending of light owing to the thickness of 
air. For although air seems imperceptible it has thickness .. In 
,order to understand what takes place in the air, let us perform a 
little experiment. 

Place a spoon in a glass of water. If you look down into the 
glass, you may notice that the part of the spoon in the water is 
somewhat raised toward you. If you look at the side of the glass, 
the spoon will seem as though it is bent at the surface of the 
water. This is illustrated in the drawing below. The same thing 

happens when light travels through air. If we look 
straight ahead of us, light goes through layers of air, 
and these act on light in the same manner as the 
surface of the water acts on the spoon. The light 
is therefore bent somewhat. 

This effect enables us to see somewhat farther 
under certain conditions than under others. On the 

average, the greatest lengthening of the horizon distance is about 
0.06 of the distance computed according to the methods de-
scribed in the preceding section. , 

The horizon distance is lengthened under the following con-
ditions: 

1. On the sea. 
2. When it is cold. 
3. In the morning and in the evening. 
4. When the air is dry. 
S. When the air pressure is above normal. 

The horizon distance is shortened under the following con-
ditions: 

1. On land. 
2. When it is warm. 
3. During the day. 
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4. When it is humid. 
5. When the air pressure is below normal. 
6. As the observer rises above the ground. 

Thus, the horizon distance of a man 6 feet tall may be, under 
very favorable conditions, equal to 

3.14(1 + 0.06) = 3.14·1.06 = 3.33 miles 

The horizon distance of a man 5 feet 8 inches tall may be, under 
very favorable conditions, equal to 

2.93(1 + 0.06) = 2.93·1.06 = 3.11 miles 

With the above information in our heads let us have another 
look at the railroad: If the vision of a man is normal will he be 
able to see the point where the rails of a railroad track seem to 
meet? 

The reader will recall that in the first part of this chapter we 
computed the distan5.f from the observer to the point where the 
rails seem to meet. We found that it is about 3.0 miles. But this 
distance is less than the greatest possible horizon distance a six
foot man could see but a man 5 feet 8 inches tall could not. 
Thus, only the taller of these two men is really able to see (if 
their vision is normal) this point. According to the usually ac
cepted form of speech, this point is "below the horizon" for the 
5 feet 8 inches man. 

PROBLEMS 

6. What fraction of normal vision should a man 6 feet tall possess 
in order that he could see the rails converge at a distance of 3.14 
miles? 

7. What fraction of normal vision should a man 5 feet 8 inches 
tall possess in order that he could see the rails converge at a distance 
of 2.93 miles? 

8. What fraction of normal vision should a man 5 feet 10 inches 
tall possess in order that he could see the rails converge at a distance 
of 2.75 miles? 

9. What fraction of normal vision should a man 5 feet 7 inches 
tall possess in order that he could see the rails converge at a distance 
of 2.85 miles? 

10. What fraction of normal vision should a man 5 feet 11 inches 
tall possess in order that he could see the rails converge at a distance 
of 3 miles? 
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How Far Can You See? 

As the observer rises above the ground the distance of his 
horizon increases.' This can be seen from the formula AD = 
.,j2rh. As h increases, so does the product 2rh. This statement 
should not be construed as contradictory to the list of conditions 
that lead to the shortening of the horizon distances given above. 
The shortening of the horizon distances owing to those con
ditions is a small fraction of the computed distance and is con
sidered as a correction only. 

Thus, a pilot of an airplane that flies 10,000 feet above the 
/10,000 --

ground can see 89.443 '\j 5,280 = 89.443 V 1.89 = 89.443,1.37 

= 123 miles; and a pilot of an airplane that flies 3 miles above 
the ground can see 89.443 V3 = 89.443· 1. 73 = 155 miles. A 
person who stands on the observation platform of the Empire 
State Building in New York City, which is about 1,240 feet 
above the ground, can see 

89·443 ~~:~:~ = 89·443 ~4.;6 = 8~:~!3 = 43.43 miles 

In the above computations we may introduce the correction 
for the shortening of the horizon distances under the most favor
able conditions. Then we have: 

a) For the pilot flying 10,000 feet above the ground 

125·0.94 = 117.5 miles 

b) For the pilot flying 3 miles above the ground 

155·0.94 = 145.7 miles 

c) For the observer standing on the platform of the Empire 
State Building 

43.43·0.94 = 41 miles approximately 

PROBLEMS 

11. What is the horizon distance of a man who stands on a tower 
200 feet high? 

12. What would be the horizon distance of a six-foot man on the 
moon? The radius of the moon is 1,080 miles. 
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13. What would be the horizon distance of a six-foot man on the 
sun? The radius of the sun is 400,000 miles. . 

14. What is the horizon distance of a man who rows a canoe? Let 
his elevation above the water level be 3 feet. 

15. What is the horizon distance of a pilot flying 5 miles above 
the ground? 

Distance Observations in Sea Warfare 

The periscope of a submarine is 1 foot above the water. vVhat 
is the horizon distance of the submarine (assuming that the sea 
is calm)? 

We then have a horizon distance of 

43 I 1 89.443 '1 
89.4 "J 5,280 = 'i2:l = 1.2 ml es 

Correcting for the most favorable conditions, we have 

1.2 ·1.06 = 1.3 miles 

If the periscope of the submarine is 2 feet above the water, the 
horizon distance of the submarine (assuming that the water is 
calm) is 

89.443~5,;80 = 8:i~~3 = 1.75 miles 

and with the correction for the most favorable conditions we 
have 

1. 75 ·1.06 = 1.86 miles 

Suppose that a ship whose funnel rises 100 feet above the water 
is observed by the submarine whose periscope rises 1 foot above 

. the water. How far from the ship can the submarine observe 
this ship? 

In order to solve this problem we must compute the horizon 
distances of the submarine as weIl as the horizon distance of the 
top of the ship's funnel. The reason for this double computa
tion is in the fact that the ship (as it can be seen from the drawing 
below) is below the horizon for the submarine if it is farther 
from it than 1.3 miles. The ship's funnel (that is, its top) has a 
horizon distance of its own, and a point located on the horizon 
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of the ship's funnel must at the same time be located on the hori
zon of the subr'narine's periscope. In other words, the top of 
the ship's funnel, ~ point on its horizon (which is also a point on 
the periscope's horizon), and the periscope must all be on the 
same straight line. The sum of the two horizon distances is the 

Ship ~~ ~ . 
answer to our problem. We know the periscope's horizon dis-
tance is 1.3 miles. The horizon distance of the top of the ship's 
funnel is 

{TOO ( 10) . 89.443 '\jS,286 = 89.443 72.7 = 12 mIles 

and with the correction for the most favorable conditions it is 
13 miles. Then our required distance is 

1.3 + 13 = 14.3 miles 

When the distance between the submarine and the ship is less 
than 14.3 miles, the submarine commander can clearly see the 
ship. 

A lookout on the crow's nest of a battleship is 110 feet above 
the water line. He observes an enemy battleship the top of 
whose funnel is 130 feet. What is the distance between the two 
warships? 

The distance between the two warships is the sum of the hori
zon distances of the lookout and top of the funnel of the second 
warship. We then have 

/110 I 130 (10.49 11.40) 
89.443 '\j 5,280 + 89.443 '\j 5,280 = 89.443 72.7 + 72.7 = 

89.443 e712~:) = 26.27 miles 

Correcting for the best favorable conditions, we have 

26.27·1.06 = 27.8 miles 
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Reaching Out for the Horizon 

Thus far we were concerned with the horizon distance of an 
observer whose elevation above the ground was known. This 
horizon distance was computed by means of the formula 

AD = V2rh 

where r was the radius of the earth's sphere (4,000 miles), and 
the elevation h of the observer was always given in miles. 

This problem may be reversed. If the horizon distance is 
given, we can determine the elevation of the observer which will 
enable him to see that far. In other words, we compute the value 
of h from the above expression. To perform this computation, 
we square the two sides of the above expression, and we obtain 

AD2 = 2rh 
and from this we obtain 

h = AD2 
2r 

or, since r = 4,000, we have 
AD2 

h = 8,000 

It may happen the given horizon distance has been corrected 
for the best favorable conditions .. In other words, the value of 
AD was given as corrected, that is, if the uncorrected distance is 

d, then AD = 1.06d. From this we have d = ~~. Should this 

be the case, we must compute the value of d from the given value 
of AD. For example, if the given horizon distance is 23.5 miles, 
and it is known that it was corrected, then 

d = ~~o~ = 22.17 miles 

At what height must an airplane pilot fly his craft in order to 

see Washington, D. c., and New York City at the same time? 
The distance between these two cities is about 230 miles. 

We may assume that the horizon distance in this case is given 
as uncorrected for the best favorable conditions. In order to be 
able to see both cities at the same time, the airplane at the mid-
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point between the two, that is, his horizon distance must be 
about 115 mile's. We have then 

k = 1152 = 13,225 1.65 miles 
8,000 8,000 . 

PROBLEMS 

16. To what height must one rise in order to be able to see an 
object 25 miles away? 

17. How high above the water should the crow's nest of a battle
ship be in ord<::r for the lookout to be able to observe at a distance of 
20 miles the top of a funnel of a warship 60 feet high above the 
water? Account ror corrections. . 

18. To what height should one rise on the moon in order to be 
able to see 50 miles away? 

Celestial Illusion: Sunrise and Sunset 

Anyone who has observed sunrise or sunset or the rising or 
setting moon must have noticed that these two celestial objects 
seem to be considerably larger than when they are observed 
higher in the sky. Could it be that these objects change their 
size, or that they approach the earth when rising or setting? 

'Ve know, of course, that neither the sun nor the moon moves 
toward and away from the earth each day. :Moreover, measure 
of the angular magnitude of the sun and the angular magnitude 
of the moon shows that, whether the sun or moon is at the hori
zon or high in the sky, the angular magnitude remains about the 
same, Y2 degree. Then what is the cause of this phenomenon? 

The answer to this riddle cannot be completely given. How
ever, some explanation which is sufficiently satisfactory may be 
offered. The visible, but not true, change in the angular mag
nitude of these two celestial objects is caused by the appearance 
of the sky. 

The sky does not appear to us as a half sphere. It appears to 
us as though the part of the sky above us is somewhat flattened 
out and is nearer to us than the portion at the horizon. The 
drawing below illustrates the appearance of the sky as we see it. 
As the sun and the moon move along the sky, their respective 
angular magnitudes remain unchanged. But, since they seem to 
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be located as shown in the drawing, they appear to us larger 
when they are at the horizon than when they are high in the sky. 

This is how the 
sky appears to us 

This drawing is self-explanatory. The reader will observe that 
for every position of the sun (or the moon) the angular magni
tude remains the same. Actual measurements confirm this fact. 

Tbe Soaring Horizon: Another Illusion 
Whoever has watched the horizon as he climbed a tall building 

or tower has noted that the horizon seemed to rise with him at 
the same time and was always at the same level with his eyes. 
This impression is completely incorrect. This can be detected 
by fine instruments that measure angles. However, the angle 
that the line of vision of a person rising above the ground makes 
with the horizon is very small, and homemade instruments are 
not powerful enough to measure it. The fact that such an incor
rect impression actually takes place was well described by Edgar 
Allan Poe in his "The Amazing Adventure of One Hans Pfaall," 
from which this passage is quoted below: 

"What mainly astonished me in the appearance of things below, 
was the seeming concavity of the surface of the globe. I had 
thoughtlessly enough, expected to see its real convexity become evi
dent as I ascended; but a very little reflec60n sufficed to explain the 
discrepancy. A line dropped from my position perpendicularly to 
the earth would have formed the perpendicular and a right angled 
triangle, of which the base would have extended from the right angle 
to the horizon, and the hypotenuse from the horizon to my position." 

The drawing below illustrates what Poe's hero expected to 
see. His hero went up in a balloon, the position of which is 

A 

~ 
C B 
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indicated by the letter A. The line of vision was to be the hy
potenuse of the' right triangle ABC with the right angle at e. 
But, let us allow P_oe to complete the story. 

"But my height was little or nothing'in comparison with my pros
pect. In other words, the base and the hypotenuse of the supposed 
triangle would, in my case, have been so long, when compared with 
the perpendicular, that the two former might have been regarded as 
nearly parallel. In this manner the horizon of the aeronaut appears 
always to be upon a level with the car. But as the point immediately 
beneath him seems, and is at a great distance below him, it seems, of 
course, also at a great distance below the horizon. Hence the impres
sion of concavity; and this impression must remain, until the eleva
tion shall bear so great a proportion to the prospect, that the apparent 
parallelism of the base and the hypotenuse disappears." 

The following drawing illustrates what his hero saw. The 
point A indicates the position of the balloon. The line of vision 
is AB, and the base line is Be. Note that the horizon line AB is 

Atl================~==~ ___ B 
C 

on the same level as the observer, although the observer is high 
above the ground. This results in a false impression that the 
surface below the balloon is concave. 

However, when the balloon ascends to a greater height above 
the ground this optical illusion disappears, as may be seen from 
the drawing below. In order to obtain the correct impression the 
balloon must rise to a very great height so that the pilot may ob
serve the curvature of the earth's surface. 
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Foundation for a Figure 

The reader is equipped now to proceed more searchingly into 
the mathematical origins and laws of the heretofore-puzzling 
geometric figures of our two-dimensional world, to learn more 
of the ageless problems of "infinity," and to be initiated into 
some of the "trade secrets" of the professional mathematician
all growing out of the carpentry of lines and angles. 

First in Chapter 25 we examined "similar" triangles and their 
properties. We found that when two triangles have correspond
ing equal angles they are similar, and their respective sides (those 
that are opposite equal angles) are proportional, but that if these 
sides are equal, the triangles are congruent, that is, identical in 
size and shape. 

In geometry we are concerned with the properties of figures 
composed of points, lines (straight and curved), and angles. 
The study of these is usually reduced to the properties of their 
lines and angles, and the conclusions are generally stated in terms 
of these properties. 

Two of the fundamental properties of geometric figures that 
occupy the interest of mathematicians are those associated with 
the "shape and size of figures. We shall now examine the plane 
geometric figures of the space of two dimensions, such as those 
made up of lines and angles. Any figure made up of lines and 
angles may contain any number of these, but we shall see now 
that there is a definite relation between the number of lines and 
angles in any geometric figure. 

493 
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Essentially the shapes of geometric objects are determined by 
their elements, the lines and angles that go into their making. 
Thus a figure made up of three lines is a triangle, but there are 
many different triangles; some are smaller than others, although 
they have the same shape. vVe know now that such triangles 
are classed as similar because they have the same shape, a situa
tion such as that in the enlargement of a snapshot. In addition 
there are geometric figures made up of more than three lines, 
and those of curved lines, such as the circle, the ellipse, and the 
parabola. In. the main, then, the shapes of geometric figures are 
based upon the number of lines and angles that make them up, 
the size of these lines and angles, and, finally, the kind of lines, 
straight or curved. 

Tailoring with Straight Lines and Angles 

A geometric figure is made up of only a few elements, and 
thus far we have mentioned two of them, lines and angles. These 
elements, in themselves, also are geometric figures, and a line may 
be thought of as originated by yet another geometric figure, the 
point. The line, we know, has length but has neither width nor 
thickness. 

To form an angle, we take two straight lines and make them 
intersect; two intersecting straight lines then form four angles. 
Sometimes all these four angles are equal, and we now know that 
in such a situation each is a right angle (an angle of 90 degrees), 
and the two straight lines are perpendicular to one another. 
Whether these two straight lines are perpendicular to one an
other because the angles formed are right angles, or the four 
angles are right angles because the two straight lines that form 
them are perpendicular to one another, depends on how we look 
at the situation; one statement depends on the other. However, 
we need not be deeply concerned here with the nature of these 
statements; this is more the province of a textbook of geometry. 

When the four angles formed by two intersecting straight 
lines are not right angles they are not all equal to one another, 
but they are equal in pairs. This can be easily established by the 
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following considerations: In the accompanying figure the two 
straight lines AB and CD intersect in 
O. We then have four angles, L 1, L 2, 
L 3, and L 4 (L is the symbol for an 
angle) . 

Note, however, that on any of the 
two straight lines, on either side of A D 

them at the point 0 we have a straight angle which is equal to 
180 degrees. Thus 

L 1 + L 2 = 180°, and L 2 + L 3 = 180° 

From these two equations we obtain 

L1 = 180° -L 2, and L3 = 180° -L 2 

We then conclude that 
L1 = L 3 

and this is not an accident; we make use of a very simple truth 
that if we have two things (in this case L 1 and L 3) and each 
of them is equal to the same thing (in this case 180° - L 2) then 
these two things (L 1 and L 3) are equal to one another. 

Angles L 1 and L 3 are called "vertical angles," and their 
equality is true for any of their kind and for any two inter
secting straight lines. The reader may establish, as an exercise, 
that the angles L 2 and L 4 are equal. 

We may also have two straight lines so drawn that they never 
intersect, however far they are extended. These are known as 
"parallel straight lines." The upper and lower edges of this page 
may be considered as an illustration of two parallel lines. 

We have in earlier chapters come across some situations in 
which parallel lines were involved. In one we mentioned that 
the rails of a railroad track "seem" to meet at a point in the dis
tance; now, we must impress the importance of the word "seem." 
The rails, of course, do not intersect, but they only appear to do 
so owing to peculiarities of our vision which diminish the angular 
magnitude of objects as they become more distant. So in the 
geometry that concerns us, parallel lines neither intersect nor 
meet, however far they are extended. We may imagine another 
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geometry in which parallel lines would intersect (mathematicians 
have developed such a geometry), but this latter would serve 
only to confuse. us here. We can best progress now by com
bining straight lines to see what geometric figures result. 

Three Straight Lines and Three Angles 

The only geometric figure that can be made up with three 
straight lines and three angles is the triangle ("tri" means three). 

We have examined some special types and 
. know that a triangle with three equal side~ has 

also three equal angles. This one is called the 
"equilateral (equal-sided) triangle." Since the 
sum of the angles of a triangle is' two straight 
angles, or 180 degrees, every angle of an equi-

lateral triangle is equal to 60 degrees. 
If two sides of a triangle are equal, the angles opposite the 

equal sides are also equal. Such a triangle is called 

"isosceles." D 
We have examined some right triangles and 

know also that in a right triangle there is a relation 
between the numerical values of the sides known 
as the Pythagorean theorem. This relation states 
that the sum of the squares of the numerical values of the two 
sides forming the right angle of a right triangle is equal to 
the square of the numerical value of the side opposite the right 
angle, the hypotenuse. Thus in the right triangle ABC (C is the 
right angle) 

On this relation are based most of the greatest discoveries in 
mathematics and related fields. 

However, this Pythagorean relation may be generalized to 
apply to any triangle, not necessarily a right triangle. Let us 
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examine any triangle ABC. From the vertex B draw a perpen
dicular BD. Thus within the triangle ABC we have another 
triangle (a right one) BDC. Note B 

that all the angles of the triangle 
ABC are all less than 90 degrees. 
Now we may apply the Pythagorean 
relation to the right triangle BDC. 
We have then A·L---------~D~--~C 

BC2 = BD2 + DC'2 

We note also that the triangle ABD is a right triangle, because 
BD is perpendicular to AC. We have a Pythagorean relation 
also for this triangle, 

AB2 = BD2 + AD2 

From this last relation we obtain that 

BD2 = AB2 - AD2 
Also note that 

AD + DC = AC, or DC = AC - AD 
Then 

DC2 = (AC - AD)2 = AC2 - 2AC·AD + AD2 

Now we have the expressions for BD2 and DC2. Substitute 
these expressions in the relation 

BC2 = BD2 + DC2 
We then have 

BC2 = AB2 - AD2 + AC2 - 2AC·AD + AD2 

And from this we have 

BC2 = AB2 + AC2 - 2AC·AD 

Similar expressions may be obtained for the sides AB and AC. 
We may derive AB2 by taking AD = A C - DC and using the 
expression AB2 = BD2 + AD2. To derive the expression for 
AC2 we must draw a perpendicular line to the side AB (or BC) 
and follow the same method as above. This is left to the reader 
as an exerCise. 
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Suppose that one of the angles of the triangle is greater than 
90 degrees (such an angle.is called "obtuse"). We have then 
the triangle ABC (and the angle C is obtuse) . We draw B D per
pendicular to AC (when AC i~ extended through C). We then 
have two right triangles ABD and BDC. We may write two 
Pythagorean relations for the two respective right triangles, 

AB2 = AD2 + BD2, and BC2 = CD2 + BD2 

From the last relation we have that 

BD2 = BC2 - CD2 

From AC + CD = AD we have that 

B 

A'---------~C-----D-

AD2 = CAC + CD)2 = AC2 + 2AC- CD + CD2 

Substitute the expressions for BD2 and AD2 in the expression 
AB2 = AD2 + BD2. We have then 

AB2 = AC2 + 2AC·CD + CD2 + BC2 - CD2 
or 

AB2 = AC2 + BC2 + 2AC. CD 

Observe that when the angle opposite the side AB is less than 
90 degrees, the term 2AC·CD is negative, but when the angle 
opposite AB is greater than 90 degrees (obtuse) the 2AC·CD is 
positive. Moreover, if the angle C is a right angle we obtain the 
relation AB2 = AC2 + BC2, and this relation is only a particular 
case of the general Pythagorean relation derived above. vVhen 
the triangle is a right triangle, CD vanishes; that is, it has the 
value zero, and the product 2·AC·CD is also equal to zero. 

There are countless other interesting properties of triangles 
and much is still to be discovered, but before we leave them we 
must recall one more important property: The sum of the angles 
of a triangle is always 180 degrees (or two right angles). More-



v' The Shape of Things 499 

over, we must clarify the notion concerning the three straight 
lines and the three angles that go into the making of triangles. 
If we have any three straight lines and any three angles (whose 
sum is 180 degrees) it does not follow that we can construct this 
figure. The three lines that go into a triangle are subject to a 
definite limitation: The length of anyone of them must be less 
than the sum of the lengths of the other two. F or example, if 
we have three straight lines 3, 5, and 9 inches long, we cannot 
construct a triangle, as 3 + 5 is less than 9. 

On the other hand we can make one, if we have three straight 
lines of 3, 5, and 7 inches. 

The triangle and its angles are determined when its three sides 
(which represent the given three straight lines) are stated, but if 
only the angles are given we may 
have an infinite number of triangles ~ 
and all will be similar. To avoid 
confusion, we shall not associate the 
problem of determining a triangle 
with six elements, three straight lines and three angles. In brief, a 
triangle is determined when three sides are given, or when two 
sides and an angle are given, or when one side and two angles 
are gIven. 

Note that when one side and two angles are given we may as 
well consider that the three angles are given, and when we know 
two angles, we can easily compute the third. For example, if 
the two given angles are 47 and 71 degrees, the third angle is 
180° - (47° + 71°) = 180° - 118° = 62°. But the three angles 
would not determine the triangle although they determine its 
shape, because with three angles we may have an infinite number 
of triangles, all similar. But once we have a side given, in addi
tion to the three angles, the triangle is definitely determined. 

Adding Another Line and Angle 

F our straight lines go into the making of a four-sided figure, 
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but the problem of what determines them requires considerable 
knowledge 'of geometry. \Ve may mention, however, one defi
nite requirement: The sum of any three sides of a four-sided fig
ure is always greater than the fourth side. This means that when 
~our straight lines are given, and the sum of any three of them is 
greater than the fourth straight line, then a four-sided figure may 
be constructed with these four straight lines. This fact may be 
observed from the figure below; if the sum of the sides AB, BC, 

B and CD were equal to or less than the U side AD, we could not have a four-sided 
. figure. 

There are many types of these figures. 
A D Mathematicians call them "quadrilater
als" (the Latin "quadratus," for square, and "lateris," for side). 
Any four-sided figure has four angles. We may therefore use 
an easier name, "quadrangle" (four-angled). In its most general 
form a quadrangle is such that no two of its sides are equal. It 
is just a four-sided figure. 

To identify the various types of quadrangles we shall start 
with the most specific and familiar, the "square." This is a four
sided figure; its sides are equal, its four angles are equal, and each 
of them is a right angle. In other words, in a square every two 
adjacent sides are perpendicular to one another. Moreover, the 
opposite sides are parallel to one another. It is established that 
two lines perpendicular to a third are 
parallel to one another; in the drawing 
the lines CD and EF are both perpen
dicular to the line AB and, therefore, 
CD and EF are parallel to one another. 

B 

The figure below is that of a square ABCD. The four sides 
AB, BC, CD, and AD are equal; that is, 

AB = BC = CD = AD 
Moreover, 

LA = L B = L C = L D = 90° 

A square has two diagonals, straight lines drawn from one vertex 
to an opposite vertex. Thus in the square ABCD the straight 
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lines AC and BD are diagonals and equal, as well as perpendicular 
to one another. 

If the side of a square is, say, a and we consider the geometric 
figure that is formed by two sides and a diagonal, we have a spe
cial right triangle, a 45-, 45-, 90-degree triangle. This needs no 
special proof. The reader may observe that in 
this right triangle two sides are equal: there- B~a 
fore, two angles are equal. The sum of the 0 

angles of a triangle is 180 degrees; subtract from 
this the 90-degree angle and we have 90 degrees. A 
Dividing this difference by two we have 45 D 

degrees. Now if we apply to the triangle ABD the Pythagorean 
relation, we have 

AB2 + ADZ = BD2 

But AB = a. We then may write 

a2 + a2 = BD2 
or 

Extracting square roots on both sides of the equation we have 

BD = a y2. The square root of 2 (Y2) cannot be obtained 
exactly; there is no number whose square is exactly equal to 2. 

Now we shall leave the square and consider a type of a quad
rangle in which some of the limitations that are imposed on a 
square (the equality of the sides, the parallelism of the opposite 
sides, the equality of the angles, the equality of the diagonals, or 
the perpendicularity of the diagonals) are removed. We shall 
prune these limitations one at a time. 

Suppose that first we remove the equality of the sides, making 
those of our new quadrangle equal in the pairs of the opposite 
sides. But they must be perpendicular to the adjacent side, and 
the two diagonals must be equal. The new quadrangle is called 
the "rectangle." Are the diagonals of the rectangle perpendicu
lar to one another? 

The reader, if he will examine a square, will be able to con
vince himself that the two diagonals of a square bisect (divide 
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into two equal halves) one another, and will observe that the 
diagonals form four right 45-, 45-, 90-degree triangles. This is 
enough of a hint. In the case of a rectangle, however, the two 
B - C diagonals, although they bisect one [Z<J another, do not form right triangles. 

o This can be established by examining 
first the two congruent right triangles 

A D ABD and ACD and showing that 
some angles are equal; then the two triangles AOD and BOC 
can be shown to be both isosceles and congruent; this will lead 
to the" equality of BO and OB and AO and OC. 

Should we retain the equality of the four sides of a quadrangle 
but remove the perpendicularity of the adjacent sides, we have 
another type of a four-sided figure. This is called the "rhom
bus." In such a figure the diagonals still bisect one another, and 
are also perpendicular to one another. Also the parallelism of 
the opposite sides is preserved. We may imagine the sides of a 
square hinged at the vertices; we then take the square and hold 
it at the opposite vertices and pull slightly. The square will thus 
be deformed and the result will be a rhombus, as illustrated. 

Note that if we define a rhom
bus as a quadrangle all of whose 
sides are equal and whose oppo
site sides are parallel, then a square 
falls under this classification and 

·~-----7I1C 

all squares' are "rhombi" (the A=----__ ...>/ 

plural of rhombus). On the other 
hand, not all rhombi are squares; only those rhombi whose angles 
are all right angles are squares. 

We may also define a rhombus as a quadrangle all of whose 
sides are equal and whose diagonals are perpendicular to and bi
sect one another. Nothing is said here about the equality of 
these diagonals. If we have a quadrangle of this type and it hap
pens that the diagonals are equal, then this rhombus is a square. 

Instead of retaining the limitation that all the four sides of a 
quadrangle be equal, we may retain the limitation that all the four 
angles of a quadrangle be equal, which means that the angles of 
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the quadrangle be all right angles. Someone may suggest that the 
limitation that all the angles be all right angles should be modi
fied so that they all be equal but not necessarily right angles. In 
other words, let all the angles be 60-degree angles, for example. 
To determine whether this is possible we must find the sum of 
the angles of a quadrangle; is this B 

sum the same for any quadrangle? p\C 
Let us take any quadrangle ABCD. 
In it we draw a diagonal, say AC. 
We then have two triangles ABC 
and ACD. Since we have two tri- A D 

angles, the sum of their angles is 360 degrees, and this is the sum 
of the angles of the quadrangle. N ow if any quadrangle has four 
angles, and if all these four angles are to be equal, everyone of 

them must be 3~OO = 90 0 ; that is, a right angle. Thus we cannot 

have any but right angles under the above condition. 
Since imposition of this limitation does not make any specific 

statement concerning the sides of the quadrangle, we may as
sume that there is no limitation on these. However, since the 
angles of a quadrangle under the imposed condition are all right 
angles the sides enclosing them are perpendicular to one another. 
Since we know that two straight lines perpendicular to a third 
are parallel to one another, the sides are parallel to one another. 
In other words in the new quadrangle the opposite sides are 
parallel to one another. 

Here we shall mention another property of straight lines: 
Parallel straight lines enclosed between parallel straight lines are 

:-AZ~BZ~D : 
equal. Thus the two parallel straight lines AB and CD enclosed 
between the two parallel straight lines PQ and NR are equal. 

Since there is no limitation concerning the magnitude of the 
sides of our new quadrangle, except that we know that the oppo· 
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site sides ar~ parallel and equal, the figure contains two unequal 
pairs of sides, as illustrated. Note that if we draw the diagonals 
we have two .right triangles ABD and ACD. These are con
gruent because two sides and the included angle (a right angle) 
i - C of one are equal to two sides and the 
B~ included angle (a right angle) of the 

other. Thls congruency of the tnangles 
leads to the conclusion that the third 

A D sides (the hypotenuses) are equal. But 
these third sides are the diagonals of the quadrangle; thus we 
arrive at another property of this new type of quadrangle: the 
diagonals are equal. This is our "rectangle," or quadrangle, all 
of whose angles are right angles. 

This emphasizes that the rectangle is a more general figure 
than the square. The only difference is that in a rectangle the 
two perpendicular sides may not be equal, while in a square they 
must be equal. Thus a square is a rectangle also, but a special 
one whose sides are equal. 

The reader may also convince himself that the diagonals of a 
rectangle bisect one another. For this purpose he will note that 
the two diagonals of a rectangle (as in the earlier figure) form 
four triangles, AOB, BOC, COD, and AOD. From the two 
congruent right triangles ABD and ACD we have that the angles 
ADB and CAD are equal. Then the triangle AOD is an isosceles 
triangle from which it follows that the lines AO and OD are 
equal. In a similar manner it may be established that the triangles 
AOB, BOC, and COD are also isosceles triangles. We then 
may show that 

AO = OD = CO = OB 

or that the diagonals AC and BD of the rectangle ABCD are bi
sected at the point O. 

However, note that the diagonals of the rectangle ABCD are 
not perpendicular to one another. If they were, the triangles 
AOB, BOC, COD, and AOD would all be 45-, 45-, 90-degree 
triangles, and all would be congruent to one another. If they 
were congruent to one another, then their respective sides AB, 
BC, CD, and AD would be equal. But we know that this can 
happen only when the rectangle is a square. In the case of a 



The Shape of Things 505 

rectangle that is not a square, only the opposite sides are equal. 
Thus AB and BC are not equal. This means that the condition 
for the 45-, 45-, 90-degree triangle is not fulfilled, and the diag
onals of a general rectangle are not perpendicular to one another. 

Squashing the Rectangle 

Let us imagine that the four vertices of a rectangle are hinged, 
that we hold the figure at the opposite vertices and pull slightly 
to deform our rectangle. 

We shall still have a quadrangle (a four-sided figure), but 
none of its angles will be right angles. In some respects this 
figure reminds us of the rhombus, and in other respects of the 
rectangle. But it is neither a rhombus (all its sides are not equal) 
nor a rectangle (all its angles are not right angles). 

In the case of this quadrangle the condition of right angles is 
removed. However, the limitation that the opposite sides be 
parallel to one another is still retained, but this is the only limi
tation imposed. The accompanying figure illustrates this new 
type of a quadrangle, known as the 
"parallelogram." Its two diagonals B C 

are not equal (this is related to the /~I 
property of the rhombus) but bisect A ~ 
one another (this is related to the D 

rhombus and the rectangle). That its diagonals bisect one an
other may be established by the procedure followed when those 
of a rectangle were examined. In the next figure we may see that 
the triangles ABD and BDC are congruent. This leads to the 
equality of the angles denoted by numbers 1 and 3. Then we 
can show similarly that the triangles ABC and ACD are con
gruent. This leads us to the equality of the angles denoted by 

B C 2 and 4. That the triangles are 

kS?:l~ congruent in pairs is established if 
o we remember that two triangles 

are congruent when the three sides 
A 2 " D of one are equal to the three sides 
of another. Then, recalling that two triangles are congruent 
when one side and two angles of one are equal to a side and two 
angles of another, we can show that the triangles AOD and BOC 
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are congruent, as is also the case with the two triangles AOB and 
COD. From ,this we finally obtain AO = OC and BO = OD, 
which signip.es that the diagonals of a parallelogram bisect one 
another. 

Now we may note that a rectangle and a rhombus as well as 
a square possess all the properties of a parallelogram. Thus a 
parallelogram is a generalization of a rectangle, of a rhombus, 
and of a square. In other words, all rectangles, all rhombi, and 
all squares are parallelograms, but not all parallelograms are 
rectangles, or rhombi, or squares. Impose on a parallelogram 
certain liinitations (all the angles must be right angles)' and you 
obtain a rectangle. Require that the four sides of a parallelogram 
be equal, and you have a rhombus. Now if we impose the con
ditions that the sides of a parallelogram be equal, and all the 
angles of the parallelogram be equal (that is, right angles), we 
have a square. 

The limitation that a quadrangle's opposite sides be parallel 
leads to a parallelogram, but this requirement still may be de
limited. Suppose we decide that only one pair of the opposite 
sides of a quadrangle be parallel, and no specific condition is im-

B C posed on the second pair of opposite L ~ sides. Naturally, we avoid making the 
_ ~ second pair of sides parallel. We then 

A D obtain a geometric figure whose draw-
ing is shown above. Now this figure is still a quadrangle, but it 
is no longer a parallelogram. Its name is "trape- 6 
zoid." Its parallel sides are not and cannot be 
equal, but its nonparallel sides mayor may not 
be equal. If the nonparallel sides are equal, we 
are reminded of an isosceles triangle whose upper part is sliced 

off by a line parallel to the base. 
Thus we may call this type of 
trapezoid "isosceles." The base 
angles of an isosceles trapezoid are 
equal, and so are the other two 

angles. The reader may see that the diagonals are also equal by 
examining the two triangles ABD and ACD. He may note that 
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these are congruent because AB = CD, AD = AD, and the 
angles BAD and CDA are equal. Then BD = AC. The diag
onals of a trapezoid never bisect one another, however. 

The trapezoid is a generalization of a parallelogram. If the 
trapezoid is delimited-that is, if the opposite sides are made 
parallel-we obtain a parallelogram, so a parallelogram is a special 
case of a trapezoid, and all parallelograms are also trapezoids. 
From this it follows that, since the parallelograms include 
rhombi, rectangles, and squares, these are all special trapezoids. 

Finally, if we remove the last limitation on a quadrangle, that 
one pair of opposite sides be parallel, we then obtain a quad
rangle whose description contains no specific information con
cerning its sides or (and) its angles. L\ 
Its sides may all be unequal, and so 
may its angles. The accompanying 
figure illustrates such a quadrangle. 

The general four-sided figure, the 
quadrangle, represents a complete class of four-sided figures. It 
contains trapezoids, parallelograms, rhombi, rectangles, and 
squares. Not every quadrangle is a trapezoid, a parallelogram, 
a rhombus, a rectangle, or a square, but everyone is a quad
rangle. Further, a quadrangle is so general that no specific 
limitation is imposed on it since any specification may lead to a 
trapezoid, a parallelogram, a rhombus, a rectangle, or a square. 
However, we may devise some other limitations that will lead to 
forms of a quadrangle other than these. F or example, the kite 
is patterned after a quadrangle whose adjacent sides are equal in 
pairs, as in the following figure. The reader may convince him-

c self that one diagonal of this quad
rangle bisects the other, but it in turn 

B~--I--:::-----7D is not bisected. Moreover, the diag
onals are perpendicular to one another. 
He will observe that the triangles ABD 

A and BDC are congruent (the three 
sides of one are equal to the three sides of the other). Then, since 
AB = BC, the triangle ABC is isosceles. The results show that 
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AOB and BOC are not only congruent but are right tri
angles. 

There are many other forms of general quadrangles. Some 
of them are shown here. 

A 
There's Method in Their Math 

The reader bas now been introduced to one of the tJ10st 
important and fundamental procedures used by professional 
mathematicians in their work. To many this work seems a dark 
mystery, perhaps because mathematicians employ unfamiliar 
symbols-they often go so far that many are unable to fathom 
the work of their own brethren in trade. Others find difficulty 
in comprehending their work because a great number of mathe
maticians' studies have little or no practical application at pres
ent. \Ve use the expression "at present," because many times 
through the ages mathematics has offered discoveries which then 
had no practical or scientific application, but which, years later, 
industry and the sciences found of vital importance. 

When mathematicians study certain objects or situations, they 
follow the course (which, as we shall observe presently, is a 
method not confined to their use alone) that enables them to 
obtain as soon as possible most of the information pertinent to 
their study. This method was illustrated when we set out to 
study the types of quadrangles and their properties. We started 
out with a specific quadrangle and" its properties were so pre
cisely stated that the reader could even draw one from the 
worded description. 

After our square type of quadrangle was fixed we began to 
remove, one by one, the various restrictions and thus progres
sively obtained the rhombus, the rectangle, the parallelogram, 
the trapezoid, and finally the general quadrangle. Every time a 
restriction was removed we obtained a type that included the 
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previously studied type of a quadrangle-when the rhombus was 
obtained, we found that the square could be thought of as a 
rhombus; when the parallelogram was obtained, we found that 
the square, the rhombus, and the rectangle could be thought of 
as parallelograms. Our complete investigation may be repre
sented schematically as follows: 

Square 

~~ 
Rhombus Rectangle 
~ ~ 
paralletOgram 

Trapfoid 

Quadrangle 

This procedure may be completely inverted. We may start 
with the general quadrangle and impose restrictions, one by one, 
on the properties of the quadrangle, each time arriving at a more 
specific geometric figure until finally we reach a dead end that 
is marked by a square. Schematically this development may be 
represented as follows: 

Quadrangle 

~ 
Trapezoid 

~ 
Parallelogram 

~~ 
Rhombus Rectangle 

~~ 
Square 

We may illustrate the properties of four-sided figures by 
means of a drawing. In this drawing (see below) the general 
quadrangle, being the most inclusive figure, contains within it 
the trapezoid. The trapezoid, being more general than the paral
lelogram, includes within it the parallelogram. Further, the 
parallelogram, being a quadrangle more general than either the 
rectangle or the rhombus, includes these two figures within itself. 
Finally, either the rectangle or the rhombus is more general than 
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the squ~re. Therefore the rectangle includes within itself the 
square, and so does the rhombus. 

Parallelogram 

This method of study is known as classification. By this 
method every property is definitely assigned, and all the known 
types of geometric figures (in this case, quadrangles) are placed 
in their proper locations. This same method is applied to all 
other advanced studies in the field of mathematics. A mathe
matician examines particular cases, studies all the possible ele
ments that may identify the type of the situation that confronts 
him, and also watches for whatever leads may occur in his study. 
Then he allows his imagination to generalize. Finally, when he 
reaches (in his own opinion) the most general situation, he con
siders his study completed. Other mathematicians may not ac
cept his opinion that he has reached the limit of generality and 
may continue the study. Thus research and study of mathe
matics goes on. 

Math's Trade Secret Applied to Other Fields 

Classification is the fundamental process, the first step, in sys
tematic study in mathematics. Before anything definite about 
the general properties of the object or situation may be exam
ined, every possible related object or situation must be classified 
and placed in its proper relation to the study. This same method 
of classification is used in almost all human activity, but some of 
us may not realize it. 

For example, someone has a headache. It might have been 
caused by business worries, or it might have been caused by 
overeating. Should it persist, a doctor is called. He seeks vari-
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ous symptoms that enable him to locate the disease. Actuallv 
when a doctor diagnoses an illness he classifies it according t'a 
the symptoms he observes. 

Another illustration: The population of the United States 
consists of citizens and noncitizens. Citizens who have reached 
the age of twenty-one are eligible to vote. Those who have 
reached the age of twenty-five and have been citizens seven 
years may be elected to the House of Representatives. Those 
who have reached the age of thirty and have been citizens nine 
years may be elected to the United States Senate. But only those 
who are natural born citizens, who have reached the age of 
thirty-five, and who have resided in the United States fourteen 
years may be elected President. 

In other sciences classification is widely used. All living beings 
may be divided into groups according to the kind of blood they 
have, the kind of food they eat, the way they move around, and 
so on, as the scientists may require. Another example of classi
fication was given in Chapter 1, where the numbering of books 
in libraries is discussed. The reader may, as an exercise, find 
other examples of classification, whether on a broad scale or of 
limited scope. 

How to Wrap a Circle 

If we have five straight lines joined so that they form five 
angles, we obtain a five-sided figure. A six-sided figure is formed 
with six lines and contains six angles. We may now assume that 
if a figure has a certain number of sides, it has the same number 
of angles. The names for these figures are coined by adding to 
the Greek word "gon" (side) the Greek words denoting the 
specific number of the figure's sides. Thus, a five-sided figure 
is called "pentagon"; a six-sided figure "hexagon"; a seven-sided 
figure "heptagon"; an eight-sided figure "octagon," and a ten
sided figure "dekagon." For figures with a greater number of 
sides we write the number of sides and add "gon" on the right. 
Thus, a twelve-sided figure is called a "12-gon." To indicate 
that a figure has many sides we use the Greek word "poly," and 
thus we have "polygon." 
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Of all the polygons, those that may be of most interest to us 
are those whose sides are all equal, and whose interior angles are 
all equal. Thus far we became acquainted with two such poly
gons, the equilateral triangle and the square. There is a reason 
for this special interest; by means of these polygons it was pos
sible to calculate the value of the number 1T that is used as a 
multiplier when the length of the circumference of a circle 
whose radius is known is computed. Such polygons are known 
as "regular" polygons. 

If a polygon is regular-that is, has all its sides equal-all its 
interior angles are also equal. This fact may be established from 
consideration of a circle. We recall that in any circle equal arcs 
are joined by equal chords. A straight line that joins the end 
points of an arc of a circle is called the chord that corresponds 
to that arc. Now we may divide the circumference of a circle 
into any desired number of equal parts and obtain that number 
of equal arcs. If we draw the chords of these arcs, we obtain a 
polygon, and it is a regular polygon because all the chords (which 
also form the sides of the polygon) are equal. The drawing 
below shows such a polygon. The reader should note that we 

c used the expression we "may" divide the 
~:::::::::::::~ circumference of a circle into any desired 

number of parts and avoided the use of 
A D "can." The circumference of a circle may 

be divided, but in some cases we cannot 
divide it into a certain number of parts if 
only a ruler and compasses are used. 

Let us draw a few radii from the center of the circle to the 
end points of the arcs, the vertices of the regular polygon. \Ve 
then obtain isosceles triangles (the radii of the same circle are 
all equal because the circle is a figure all of whose points are 
equally distant from its center). Now all these triangles are 
congruent because all the sides of one are equal to the sides of 
the other. Thus the two triangles AOR and ROC in the figure 
above are congruent, and so are the triangles ROC and COD. 
From the fact that the triangles are congruent we conclude that 
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the base angles of all these three triangles are all equal. Then 
by adding two equal angles we have 

L 1 + L 2 = L 3 + L4 
or 

LABC = L BCD 

This fact can be established for all the angles of a regular 
polygon. 

Note that the greater the number of equal parts into which 
the circumference of a circle is divided, the smaller is each equal 
arc of the circle, and likewise each chord. Moreover, the greater 
the number of chords the closer does the regular polygon hug 
the circumference of the circle. Now we shall have to call up 
our imagination. If we continue to increase the number of the 
equal parts into which the circle is divided, the closer will the 
sum of the lengths of the sides of the regular polygon approach 
the length of the circumference of the circle. This gives us a 
clue as to how to compute the length of the circumference. All 
that we have to do is to continue to compute the sum of the 
lengths of the sides of the regular polygon when the number of 
these sides increases, and finally we may obtain the length of the 
circumference of the circle as closely as we may please. 

This was the reasoning employed by the Greek mathematician 
and scientist Archimedes. He computed the sum of the lengths 
of the sides of a regular 96-gon, and reasoned that a regular 
poly~on may be "wrapped" (or, as mathematicians say, "cir
cumscribed") around a circle. And when a regular polygon is 
wrapped around a circle, and the number of the sides of such a 
polygon increases indefinitely, this polygon seems to hug the cir
cumference of the circle also. In other words, whether we work 
with the polygon inside or outside the circle, we shall come as 
closely as possible to the circumference of the circle. This was 
the second part of the reasoning of Archimedes. 

Finally, he reasoned (we translate it into modern language), 
the formula for the circumference of the circle is 

C = 7rd 
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where C is the length of the circumference of the circle and d 
is the diameter. Then 

C 
7r=-

d 

Archimedes assumed that it is sufficient to consider the sum of 
the lengths of the sides of the 96-gon both inside and outside the 
circle. He then calculated IT to be greater than 31g,1t and at the 
same time less than 3V7. Nowadays some take the value of IT as 
311, which in decimals is 3.142857 (we know that a better ap
proximiltion is 3.14159). 

Before we leave the polygons, let us consider one ques~ion: If 
we have a polygon of a certain number of sides (this polygon 
need not necessarily be regular), can we determine the sum of its 
interior angles? We shall recall that in the case of a quadrangle 
we found that the sum of the interior angles of a quadrangle is 
always 360 degrees, and of a triangle, 180 degrees. Let us ex~ 
amine this question and, if possible, obtain an answer. The 
polygon illustrated is a representation of any polygon. We take 

a point within it and draw straight lines 
to the vertices. W e th~n obtain the same 

~-"t"'----~ number of triangles as there are sides in 
the polygon. Suppose that the polygon 
has n sides. Then we have n triangles, 

we then have n·180 degrees as the total sum of the interior angles 
of all the triangles. But we must not overlook that the angle 
around the point within the polygon (where all the veuices 
of the triangles come together) is 360 degrees, or 2 ·180 degrees. 
If we subtract this angle from the sum of the interior angles of 
all the triangles, we obtain the sum of the interior angles of the 
polygon of n sides. This sum is 

n·180 0 - 2·180° 
or (n - 2) 1800 

This formula .gives the general expression for the sum of the 
angles of any polygon. Thus in the case of a triangle we have 
three sides (n = 3), and the formula gives 

(3 - 2)180 0 = 1800 
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In the case of a quadrangle, we have n = 4, and the formula 
gIVes 

(4 - 2)180° = 2 ·180° = 360° 

In the case of a pentagon, we have n = 5, and the formula 
gIves 

(5 - 2)180° = 3 ·180° = 540° 

In the case of a dekagon, we have n = 10, and the formula 
gIVes 

(10 - 2)180° = 8·180° = 1,440° 

Jumping Off into Infinity 

In Chapter 25 we became acquainted with the circle, the el
lipse, the parabola, and the hyperbola. These figures were de· 

Y 

X--li----:=¥:.....=:.-L.-+-x 

Y 

Y 

-+--f-_--X 

Y' 
y 

fined in terms of a point-world being moving in the same plane 
according to definite rules: (1) 'Vhen the point-world being 
moves so that it is always at the same distance from one point, it 
describes a circle. (2) When it moves so that the sum of its dis
tances from two points is always the same, it describes an ellipse. 
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(3) When it moves so that its distances from one point and a 
straight line are equal, it describes a parabola. ( 4) When it 
moves so that the difference of its distances from two points is 
always the -same, it describes a hyperbola. The drawings of 
these four curved figures appear on page 515. 

We shall now examine these figures to discover whether there 
is any relationship between them, and if so, what it is that causes 
the difference in their respective shapes. 

To be able to analyze their nature we shall need an important 
idea-th~ notion of "infinity" -that we came across when we dis
cussed trigQnometric ratios of angles. We found that. the tan
gent ratio of a 90..:degree angle is greater than any known num
ber, that it is not a number, and we named it infinity. We also 
made use of this notion when we considered the number of 
points on the circumference of a circle and on a straight line. 
We agreed that the number of these points is infinity. Now we 
shall try to place infinity, to locate it. 

We know that if we make marks on a straight line at equal 
distances, starting with a zero point, so that to the right of the 
zero we can mark off all the positive numbers and to the left all 
the negative numbers, we obtain a number scale, such as the one 
illustrated below. We can go on marking off these points and 

, I I I 
Negative ~-5 -4 - 3 -2 -1 0 
Infinity 

2 3 4 
Positive 

5 -Infinity 

numbers in either direction without end. At any time we make 
a mark we have a corresponding number-to the right, a positive 
number, and to the left, a negative number. Somewhere beyond 
all reaches there must be infinity. To the right the infinity will 
be positive, and to the left it will be negative. This gives us the 
impression that no one can ever see infinity, but let us see whether 
infinity is just an idea that has no meaning. 

For our purpose we shall consider numbers obtained from the 
division of 1 by any other number, for example t, 115' 1!6' Such 
numbers are called the reciprocals of the original numbers. Thus 
-?t is the reciprocal of 3, T\- is the reciprocal of 15, Th is the re
ciprocal of 146. Now let us construct a directed number scale 
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in which, instead of the original numbers, the points will be 
marked by their reciprocals. We shall remember also that the 
reciprocal of a fraction, say lo, is 

the reciprocal of 

1 C10) = 20 

1,;00 ;, (_~_) = 1,500 

1,500 

In other words, the reciprocal of a very small fraction is a 
very large number, and, conversely, the reciprocal of a very 
large number is a very small fraction, for example, the reciprocal 
of 1,000,000 is 

1 
1,000,000 

To simplify our method we shall have the original number 
scale above the new scale as shown below. Note that in the 

-6 -5 -4 -3 -2 -1 2 3 4 5 6 7 
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! 

! 1 ! ! 
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! ! ! ! 
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i 0 
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, ! ! : : ! I : : : A : i i I I , I 
, I I I I r I 

-7'6 -y .. -1(4 -1/3 -l/z - 1 l/Z 1/3 1/4 'f. 1/6 1/7 

number scale of the reciprocals the marks have decreasing values 
as the points move to the right (and to the left) of the point 
that corresponds to the zero point of the upper scale. We have 
assigned no number to this point on the number scale of the re
ciprocals. Now we shall assign a value to it. As the points to 
the right of the upper scale (the number scale) approach the zero 
point, their corresponding values become smaller and smaller. 
But their reciprocals then become larger and larger, and the 
original numbers and their reciprocals both remain positive. To 
the left of the zero point on the number scale the same holds, 
except that the numbers and their corresponding reciprocals are 
negative. The point on the reciprocal scale that corresponds to 
the zero point on the number scale must have some value, but 
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this value must necessarily be larger than any number. So this 
point on the reciprocal scale must be marked infinity. For in
finity we have a symbol 00, as illustrated in the drawing below. 

-1 -'12 -1/4-'/. 0 118 1/4 '/2 
I I I I ! I I I 

I 
I 
I 

I I I 
I 

I I I I I 

-1 -2 -4 -8 00 8 4 2 -1 

Now, approaching this point from the right, the infinity's sign 
is positive, and from the left, negative. But there is only one 
point that corresponds to infinity, and there is only one infinity. 
The sign therefore refers to the direction of approach to' that 
single infinity. 

Now suppose we have two intersecting straight lines AB and 
MN, and MN is pivoted at the point P so that it can be rotated. 
Then as we rotate it the point C, where the two straight lines 

M 

intersect, moves off to the right. We can continue to rotate the 
line MN and watch the consecutive positions of C. But when 
MN is parallel to AB the two straight lines do not intersect. 
YVhat happens to the point C? We say that it jumps off to in
finity and, to be consistent, add that the two parallel straight lines 
intersect at infinity. 

Let us continue to rotate the straight line MN in the same 
direction. We note that it will intersect AB on the left. So 

Ik:N N 

~C~B - 00 +-

A 

our description will be complete and consistent, we say that C 
jumped off to infinity, "passed through" it, and now is coming 
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back from the negative side. The positive and the negative in
finities are located in the same place. 

Now let us return to our curved geometric figures. In the 
case of the circle we have one point, the center. Suppose this 
point splits into two. No sooner than this takes place, the curved 
figure ceases to be circular and it becomes elliptic. This con
tinues as long as the distance between these two points can be 
expressed by any number, however large. We may also think 
of one point as staying fixed and the other point as moving off, 
whether to the left or to the right, is immaterial. As long as the 
moving point does not reach infinity the curved geometric figure 
remains an ellipse, but as soon as this point jumps off to infinity, 
the ellipse splits open, and the curve becomes a parabola. We 
may think of the parabola as being a closed curve whose closing 
is done at infinity. 

After a point has moved off to infinity and passed through it, 
that point has to come back from the left (if it has moved to the 
right); thus its path ceases to be a parabola and becomes an hy
perbola. We have two curved parts of an hyperbola before us, 
but both ends move off and we have the impression that we have 
two curves. Nothing can be further from the true situation; we 
really have only one curve, split open indeed, but closing up at 
infinity. 

Thus we do not have four different curves. We have one 
curve, the circle that is being variously "tortured." We simply 
change the shape of the circle by imposing certain conditions 
on it. 



The Size.oj Things 

Birth of a World 

When we examined the behavior of the point-world or line
world being or the properties of Flatland, or the method of 
measuring distances between two points in a world of five di
mensions (five degrees of freedom), we did not question the 
existence of such worlds. Now we shall see whether they really 
exist. However, regardless of our findings, we should remember 
that physical nonexistence is not necessarily a handicap to the 
mathematician. Mathematics often deals with imaginary ele
ments, but, if mathematical rules are applied, the results are not 
only consistent and correct but real. 

We live in a world of three dimensions (degrees of freedom). 
If we are given three coordinate axes (think of a corner in a room 
where two walls and the floor meet), we know that we need 
three measures in order to locate a point. Most of us (except 
perhaps the Thin Man or your favorite neighborhood ghost) 
accept the notion of a three-dimensional world as a matter of 
fact. Likewise, we are familiar with the properties of a two
dimensional world (think of a table top or a motion-picture 
screen). For the one-dimensional world, we must finally resort 
to imagination because this world has only one property, length 
-no thickness, no width, no height to catch our physical eye. In 
the same way, we can think of a world that has been deprived of 

520 
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even this one property, a point-world-a world of no dimensions 
and no degrees of freedom. 

\Ve also have learned that we may start out with the point
world and develop worlds of any number of dimensions by intro
ducing one dimension at a time. However, once we master this 
method, we may skip all the intermediate worlds and deal with 
the world of the particular number of dimensions that interests 
us. \Vhen we derived the formula for measuring distances be
tween two points, we hit upon the method that should be used 
in our world-leaping. \Ve found that the square of the value 
of the desired distance was equal to the sum of the squares of 
the differences between the respective coordinates and that the 
number of coordinates was exactly the same as the number of 
the degrees of freedom (dimensions) of the world under con
sideration. Thus, for example, the distance between two points 
in a six-dimensional world whose coordinates are A (Xl, y L, 21, 

Wi, tl, Ul) and B(X2' Y2, 22, W2, t2, U2) is given by the formula 

We knew that all these coordinates were measured along 
straight lines, but how these straight lines-that is, coordinate 
axes-were arranged could be described but could not be dravvn. 
We learned that all six of these coordinate axes had to be per
pendicular to one another and that everyone of them had to be 
perpendicular to the remaining five. With little difficulty we 
can draw a picture of three coordinate axes that comply with 
such a description (they are perpendicular to one another and 
anyone of them is perpendicular to the remaining two). We 
can see such an arrangement if we go stand in a corner. When 
it comes to 4, 5, 6, 15, 45, 100, or any other number of coordi
nate axes greater than three, pictures fail us and we have to 
retreat to thought. 

Thus far our discussion was confined to coordinate axes and 
we have avoided the problem of worlds of many dimensions. 
How can we grasp such worlds in our imaginations? 

Let us start with a world of no degrees of freedom. We can 
draw a picture, althcugh a very crude one, of such a world. It 
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is a point-world. It has no other property but that of position. 
A point made· by a piece of chalk or by a pen or pencil gives 
us only an exaggerated picture of such a world. Nevertheless, 
this point-world -will be very useful to us in our development, 
as 're shall see presently. 

Let us move a point and imagine that it leaves a trace, which 
will be a straight line. As we have seen, a straight line has length 
only. Now a straight line generated by a point has no ends on 
either side and can be extended indefinitely. That portion of 
the straight line measured-that is, whose magnitude is expressed 
in some definite :manner (usually in terms of a number of known 
units)-is known as "the line segment." 

Now let us move the straight line that was generated by the 
moving point. Here we had better int~rpose a word :- 3 to the 
manner in which all these motions are performed. Whenever 
we move a straight line, we assume that every point of it is sub
ject to the same motion. Thus every point moves i1'- the same 
manner as the point that generated the straight line. F or the 
sake of convenience we shall use such a motion that the path of 
every point will be perpendicular to the straight line. We may 
have moved all the points of the straight line along parallel 
slanted lines, but we generally agree to follow the perpendicular 
lines because they happen to be more convenient. 

When the straight line moves as described above, it generates 
a world of two dimensions which we call "a plane." Since the 
straight line has no ends, and since the distance through which 
it can be moved also has no ends, the plane generated by a straight 
line is limitless. Likewise, it can be observed that in any part of 
a plane a straight line will thus necessarily lie with all its points. 
If any part of the straight line sticks out (bulges), then the 
straight line does not lie with all its points on that surface, and 
the surface is therefore not a plane. The generation of the plane 
may be roughly approximated by a wide paint brush. When 
such a brush is moved along a flat surface, it leaves a wide trace, 
seemingly flat and uniform. 

The drawing below illustrates the motion of a straight line. 
Only a few points are picked, for it is impossible to use all the 
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points of the straight line since there is no gap between any two 
neighboring points. Before leaving the plane, we should note 
that the motion of a straight line perpendicular to itself adds to 
length another dimension-width. We should also bear in mind 
that a plane has no thickness. The generating line, of course, 
had no thickness, and the motion just 
performed was so limited that it could 
not add thickness to the plane. 

If, in turn, this plane is moved per
pendicularly to itself by being lifted 
up and moved always parallel to its 
original position, we introduce thick
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ness-or, as we usually say, we add height. This motion there
fore results in a world of three dimensions. By means of this 
motion a Flatlander is hoisted out of his thin world into our fat 
one. Its dimensions are length, width, and height (or thick
ness) . A homemade example of the birth of this three-dimen
sional world may be had by building up a stack of thin playing 
cards one at a time. Soon you will become aware of definite 
thickness. The entire pile occupies three-dimensional space. 
Again, since this world of three dimensions is generated by a 
plane that is boundless by virtue of a straight line that is endless, 
it is itself boundless and endless. This is a mathematician's 
world; we have no way of illustrating it in its entirety. 

We need not stop with a world of three degrees of freedom. 
We now know a simple method for creating a world of one, two, 
and three dimensions: Take the world you have and move it 
perpendicularly to itself so tbat it always remains parallel to 
itself. In this way, we may go on creating worlds of four, five, 
or any other number of dimensions we may choose. So you see, 
Colonel Stoopnagle is not always right in his radio assumption: 
Mathematicians (not "people") have more fun than anybody. 
If they don't like this world, they build another. 

Measurements in Flatland 
We know that the line-world allows only one type of mea

surement, that of the length of a portion of a straight line. Gen-
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eration of tlW world of two dimensions (Flatland) expands the 
nature of measurement. First, more freedom in measuring line 
segments is allowed here than in the line-world, where we have 
only one straigl1t line. In Flatland we can have an infinite num
ber of straight lines which may be placed in any manner we wish. 
Moreover, in Flatland we have learned that we can have figures 
made up of several straight lines. A figure formed by three or 
more straight lines, a closed curved figure, a portion of a closed 
curved figure that is cut off by a straight line, or a portion of a 
closed curved figure-that is, its arc and two or more straight 
lines-all these are enclosing a portion of Flatland. Can we have 
a measure of this portion of Flatland, the plane enclosed by such 
a figure? 

To arrive at some definite method of measuring a portion of a 
plane we shall attempt to discover whether there is a unifying 
method in measuring the magnitude of objects. We shall start 
with the simplest magnitude, the length of straight-line segments. 
We shall agree that a straight line is generated by a moving point 
and that the distance through which a point moves is the length 
of the line segment. 

We also know that the world of two dimensions is generated 
by a straight line moving perpendicularly to itself so that it 
always remains parallel to itself. Now suppose that we have 
decided upon a unit distance, that is, a unit length of a line seg
ment such as one inch. Suppose this unit is marked off on the 
straight line. Then we move this line and generate the two
dimensional world. Let us measure off a unit length along the 
direction through which the line was moved. The line segment 
then will have moved through a unit distance perpendicularly to D itself. It will have covered a portion of the plane 

(of the two-dimensional world) whose shape is a 
. square, as illustrated. This portion of the plane 

we agree to use as a unit measure of the plane. 
Let us examine what actually happens as the 

straight line moves to generate a plane, and assume that the line 
sweeps along so that it occupies every position as it moves. We 
know that a straight line has neither width nor thickness, but 
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that as it moves it generates width. The portion of the plane so 
generated by a line segment of unit length after this segment has 
moved through a distance of one unit may be thought of as the 
result of placing segments one near the other. 
There will be an infinity of such segments because ~ 
a straight line has the thickness of a point and 
there is an infinity of points in any line segment. 
We may represent this crudely in a drawing such 
as shown at right. Now, to obtain a numerical value for that 
portion of the plane, we multiply the value of the unit of length 
by the value of the unit of width. Thus we have 

unit· unit = (unit)2 

according to the method of algebra. 
Thus the unit measure of the portion of the plane accepted 

by us is that portion which is enclosed within a square whose 
side is a unit of length. The unit of measure is a square unit, 
and is known as the unit of measure of "areas." 

This explanation does not represent the historical development 
of the method of measuring areas, since men introduced this 
method for some reason unknown to us perhaps because most 
areas are either squares or rectangles. It would be quite reason
able to use triangular, pentagonal, or circular units, or units of 
any other shape, but their practical applications would be ex
tremely inconvenient. 

Since we have agreed upon a unit of measure for areas, we 
may apply the method we used in computation of the area of 
any rectangular figure. We may use a segment that is several 
units long, and move it through a distance of a certain number 

of units. The portion of the plane so gener
t---~> I ated by the moving line segment has the shape 

of a rectangle, as illustrated. The area of the 
rectangle may be computed as follows. If our line segment is a 
units long and is moved through 

the distance of one unit, it would I I Il I I I I 
generate a rectangle whose area· . - -
would be a square units, as shown in the accompanying drawing. 
If we move this line segment through the distance of another 
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unit, we obtain another rectangle whose area is again a square 
units. Thus' we conclude that every time we move a line seg
ment a units long through a distance of one unit we obtain a 
rectangle whose area contains a square units. Now, if we move 
the same line segment through the distance of two units, we ob
tain a rectangle whose area contains 2a square units. If we move 
this line segment through the distance of three units we obtain a 
rectangle whose area contains 3a square units. Generally, if we 
move this same line segment through the distance of b units, we 
obtain a rectangle whose area contains ab square units. 

This result gives us the rule for the computation of areas of 
rectangles, quadrangles all of whose angles are right angles: Mul
tiply tbe number of units of length in tbe widtb of tbe rectangle 
by tbe number of units of lengtb in beigbt (or length, if we care 
to call it so) of tbe rectangle. The product represents the num
ber of square units, or units of area, in the area of the rectangle. 

For example if we have a rectangle that is three inches wide 
and five inches long, then the area of the rectangle is 3·5, or 
fifteen square inches. In general practice, the square inch is 
written as inch2 • We may then write the area of our rectangle 
as 15 inches2 • Once the rule for the computation of areas of 
rectangles is established, the rules for the computation of areas 
of other geometric figures follow from it. 

Algebra to tbe Rescue of Geometry 

Now we can obtain rules for the computation of areas of geo
metric figures that are quadrangular in shape. The derivation 
of these rules, which is a part of geometry, may be considerably 
simplified if we use algebra freely to avoid complicated discus
sions and lengthy examination of geometric figures. 

When we examined the various types of quadrangles, we were 
not concerned with the magnitude of their figures. We were 
concerned, however, with the relations of one type of figure to 
those of another. The reader will recall that a parallelogram 
could be ~btained if we assumed that the vertices of a rectangle 
were pivoted on hinges, and we were to pull on two opposite 
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vertices so the rectangle would be distorted. Let us examine 
the area of a parallelogram to discover whether there is any re
lation between the rule for the computation of the area of a 
parallelogram and the area of a rectangle. To avoid much dis
cussion let us recall, too, that congruent triangles were found 
equal in shape and could be considered identical. If two figures 
are identical, they must be equal in areas, and we may therefore 
agree that congruent triangles as well as other congruent geo
metric figures have equal areas. 

With this last result in mind we can thus obtain the rule for 
the computation of areas of parallelograms. In a parallelogram 
ABCD draw a line BE perpendicular to AD, and another line 
CF also perpendicular to AD (we extend AD beyond the point 
D. We then have two triangles ABE and CDF that are con-
gruent. And AB = CD because B C 

they are the opposite sides of a /1 /1 
parallelogram, and the opposite h 

sides of a parallelogram are equal. A 
BE = CF because they are both E b D F 

perpendicular to AD, and therefore they are parallel (two lines 
perpendicular to a third are parallel), and parallel lines between 
parallel lines (BC and AD) are equal. Obviously the quadri
lateral BCFE is a rectangle. To compute the area of a rectangle 
we multiply the number of the units in the length and height, 
respecti vel y. 

Since the triangles ABE and CDF are congruent and equal in 
area, we may transport the triangle ABE so that it occupies the 
place where the triangle CDF would be. This will not change 
the magnitude of the area of the parallelogram, as the areas of 
the parallelogram ABCD and the rectangle BCFE are equal. 
This means that we may compute the area of the rectangle 
BCFE, and the result is the value of the area of the parallelogram. 

Thus we have the rule for computing the area of a parallelo
gram: Multiply the number of the units of length in the base AD 
of the parallelogram by the number of the units of length in the 
height BE of the parallelogram, and the product thus obtained 
is the numerical,value of the area. Thus, if the base has b units 
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of length, and the height contains h units of length, the area of 
the parallelogram is A = bh 

For example, if the base of a parallelogram is 10 inches long and 
the height of the parallelogram is' 5 inches, then the area is 10· 5, 
or 50 inches2 • 

Since all rectangles are also parallelograms, we may consider 
that one side of a rectangle is its base and the other side is its 
height. Then the formula A = bh is also valid for re~tangles. 
Whatever was said concerning the rectangle can be equally ap
plied to squares. In this case the base and the height are equal 
in length. Thus, if the side of a square is a then the area is' 

A = a2 

The area of a rhombus in square units is obtained in the same 
manner as is the area of a parallelogram by multiplying the nu
merical value of the length of its side by the numerical value of 

B C the height. 

~ 
That a diagonal of a paral

lelogram divides it into two 
congruent tnangles may be re-

_ stated in terms of the area of 
A D the parallelogram. If in the 
parallelogram ABCD we draw the diagonal AC, we obtain two 
triangles, ABC and ACD. The sides of these are correspond
ingly equal, 

AB = CD, BC = AD, and AC = AC 

and the two triangles are congruent, thus equal in areas. This 
leads to the conclusion that the area of the parallelogram ABCD 
is divided into two equal halves by the diagonal AC. The same 
would happen if the diagonal BD were drawn, but more about 
this later. Now the area of the parallelogram is given by the 
formula A = bh, where A is the area, b is the base, and h is the 
height (also called altitude) of the parallelogram. Since the 
area of one of the triangles ABC or ACD is equal to half the 
area of the parallelogram, we have the formula for the area of 
the triangle 

A = !bh 
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where A is the area, b is the base (or a side of a triangle), and h 
is the height of the triangle drawn as a perpendicular from the 
vertex opposite the base b, as illustrated. 

If a triangle is a right triangle, its 
area is obtained as half of the product 
of the numerical values of the two 
sides that include the right angle. The 
reader may convince himself of this in 
two ways: (1) He may take a rectan
gle and draw one diagonal, then having two right triangles by the 
method used in the case of a parallelogram; or (2) he may con
sider one of the sides that includes the right angle as the altitude 
of the triangle when the other side that includes the right angle 
is the base. 

Let us consider the parallelogram ABCD further. \Ve shall 
draw the two diagonals AC and BD. When we draw the diag
onal AC we obtain two equal-in-area (and congruent) triangles 
ABC and ACD. Also when we draw the diagonal BD we ob-

E C tain two triangles ABD and BCD !>V which are also e~ual in areas (and 
congruent), and these two triangles 
have areas each equal to half the area 

A D of the parallelogram. Now, if we 
examine the triangles ABD and ACD, we observe that they have 
the same base and the same altitude. However, these two tri
angles are not congruent because AC is not equal to BD. The 
diagonals of a parallelogram are not equal unless the parallelo
gram is a rectangle or a square. However, since the altitudes 
are equal, this equality signifies that the vertices are at the same 
distance from the base, located on a line that is parallel to the 
base. This i~ so because they are on the line BC, which is paral
lel to the base AD. Thus we have an important property of 
triangles: If two or more triangles have the same base, and all 
the vertices opposite the base are located on a straight line that 
is parallel to this base, then all these triangles have the same area. 
For example, in the drawing below the triangles ABC, ADC, 
AEC, AFC, ARC, AKC have the same areas, since the vertices 
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B, D, E, F, H, and K are on the straight line BK, which is paral
lel to the base A C. 

-B DE F H K 

h~ 
A C 

Computation of the area of a trapezoid is performed also by 
means of a formula. We shall make use of the method employed 
above, since whenever we cannot obtain a formula directly we 
may attempt to cut up the figure into other figures for whose are~s 
we have formulas. Since any quadrangle can be cut up into two 
triangles by a diagonal, let us draw the diagonal AC of the trape
zoid ABCD. We have then two triangles ABC and ACD. These 
two triangles are not congruent because their sides are not cor-

B a C respondingly equal to one another. Thus 
~ E we shall have to compute the areas of the 

h h triangles separately, and then we shall 
A D have to add the two areas obtallled. The!r 

b sum will be the area of the trapezoid. 
The trapezoid is a quadran'gle with only two parallel sides. 

The other two sides are not parallel; they may be equal (the 
trapezoid is then isosceles), but they need not be equal. Since 
two sides of a trapezoid are parallel, a line drawn perpendicular 
to one parallel side will be perpendicular to the other side, as 
two straight lines that are perpendicular to a third straight line 
are parallel. Thus, if we draw such a perpendicular line, we 
can use it as the altitude of the triangles ABC and ACD. Since 
we have the altitudes we may, using the two parallel sides of the 
trapezoid as the respective bases, compute the areas of the tri
angles. The sum of these two is the area of the trapezoid. Let 
BC = a, AD = b, and ED (the altitude of the trapezoid, which 
is also the altitude of the triangles) = h. We know the formula 
for the area of a triangle, then the area of triangle ABC = iah, 
and the area of triangle ACD = ibh. The area of the trapezoid 
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is equal to the area of triangle ABC + the area of triangle ACD 
which equals 

!ah + !bh 

The expression .on the right has the factor h in every term (ah 
and bh). We have then the formula for the area of the trapezoid, 

A = !(a + b)h 

This is a universal formula; by assigning various numerical 
values to the values of the sides a and b we can obtain the for
mulas we have derived in this section. 

If a = b, that is, when we have a parallelogram or a rhombus, 
we have 

A = !(b + b)h or A = bh 

When the quadrangle is a rectangle, a = b, and h, the altitude 
can be taken as the width w of the rectangle, that is, h = w. We 
then have 

A = !(b + b)h or A = bh 

Also, the base b may be taken as the length I of the rectangle. 
Thus finally we have the formula written with other letters, 
A = lw; that is, the area of the rectangle = length-width. 

Finally, if we have a triangle, the upper side a of the trapezoid 
may be considered as if it had shrunk to a point, or a = o. Then 
we have 

A = !(O + b)h or A = !bh 

This is the formula for the area of the triangle we obtained 
earlier. 

This derivation of formulas for the areas of the parallelogram, 
rectangle, rhombus, triangle (and also the square, which is a 
special case of a rectangle with all sides equal) shows that all 
these geometric figures are special cases of a trapezoid. The 
application of algebra, it may be noted, in the process of our ex
amination of the trapezoid enabled us to arrive at this conclusion. 

The Area of a Circle 

To obtain the formula for the area of a circle we shall keep 
in mind two facts of which we made use previously. The first 
is the formula for the area of a triangle. A = fbh, where b is the 
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base of the triangle and b is the perpendicular drawn from the 
vertex opposite the base to the base. The second fact is that 
when we have an arc of a circle that is very small in comparison 
with the entire length of the circumference of the circle, we 
may, inst~ad of this arc, use the chord that joins the ends of this 
arc. This same statement may be worded also as follows. If in 
a circle two radii form a very small angle (we found by compu
tation that such an angle may not exceed 5 degrees), then the 
arc of the circle that corresponds to this angle may be replaced 
by the chord that joins the end points of the chord. The ac
companying drawing illustrates this fact. 

o 

To obtain the formula we may attempt to slice the circle into 
triangles. If this can be done, our problem can be solved. Sup
pose we divide the circumference of the circle into a great num
ber of equal parts, assuming that this division is performed. Let 
the drawing below illustrate such a division. Now, if the arcs 

of the circle are very small (and we can mah 
them as small as we please, provided we have 
the proper instruments and plenty of pa
tience), every two radii and the chord that 
joins the ends of an arc form an isosceles tri
angle (since the radii are equal, two sides of 
the triangle are thus equal). Now we need 

to have the altitude of the triangle, and we shall draw it from the 
center of the circle to the chord that joins the ends of the arc. 
Here again we shall make one assumption: If the arc of the circle 

is very small, the altitude of the triangle differs very little from 
the radius of the circle, and we may replace the altitude by the 
radius of the circle. 
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For example, suppose that the radius of the circle is 1 inch and 
that the angle that the two radii form is 1 minute; that is, the arc 

of the circle is C6~.60) = 21,1600th part of the circle, or (since 

the length of the circumference of the circle is given by the 
formula C = 2Tlr) 

2·3.14·1 3.14. h 
21 600 = 10800 me , , 

or about 0.0003 inch. Thus, if we use this length for the length 
of the chord that joins the ends of the arc, we have an isosceles 
triangle whose sides are 1 inch, 1 inch, and 0.0003 inch. When 
we draw the perpendicular from the vertex opposite the 0.0003 
inch side, we obtain a right triangle in which we know that the 
hypotenuse is equal to 1 inch and that one side is equal to 

0.~003 = 0.00015 inch. If we denote the other side by x, we 

have the Pythagorean relation 

x 2 + (0.00015)2 = 12 
or 

x 2 = 1 - 0.0000000225 
and 

x = V 1 - 0.0000000225 

In Chapter 15 we obtained an approximate formula for the 
extraction of square roots, 

V1-a=1-f!. 
2 

By means of this we compute that (since we may take a = 
0.00000002 2 5) 

x = 1 - 0.00~0000225 = 1 - 0.00000001125 

or 
x = 0.99999998875 inch 

which differs by less than one ten-millionth of an inch. \Ve may 
as well take x = 1 inch. In other words, the altitude of such a 
triangle may be taken equal to the radius of the circle. With 
this fact at our command we obtain the area of this small tri-



534 Mathematics-Its Magic & Mastery ft 

angle as: area = 1/2 . radius of the circle . small part of the cir
cumference 'of the circle. 

Now suppose that we divide the circumference of the circle 
into a great number of equal parts. Let this number be n. Then 
each arc .is equal to 

length of the circumference of the circle divided by n 

or, in symbols, 
2Jrr 

n 

We shall take this length as the length of the base of our small 
triangle. Then the area of this triangle is 

1 2Jrr Jrr2 
-·-·r=-
2 n n 

vVe multiply the area of this triangle by n, we obtain the area of 
the circle 

F or example, if the radius of the circle is 5 inches long, then the 
area of the circle is 

A = 3.14·25 = 78.5 inches2 

The Area of Any Figure 

To compute the areas of any figure, as, for example, the one 
shown here, we may use a formula that 
gives very close results when the figure 
enclosing the area is irregular in shape. 

This is obtained from a simpler formula A = iCa + 4c + b)h 

E o which is applied to the computation of 
the area of a figure as shown at right. In B 

this figure AB = a, CD = b, EF = c, and 
AD = h, AB and CD are both perpendicu-
lar to AD, and so is EF. Moreover, F is A F DI 

the midpoint of AD. This is only an approximate formula when 
it is applied to figures as shown above, but it is not when applied 
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to quadrangles and triangles. Of this last fact we can convince 
ourselves by the following considerations. 

Let us apply this formula to a trapezoid ABCD. In it AD = b, 
BC = a, EF = c (where E is the mid- B MeT 

point of AB, and F is the midpoint of p~ I ~ 
CD), and MN = h (h is perpendicu- E F 

lar to AD and BC, it is the altitude of A / ~·D 
the trapezoid). Here we shall have to R N S 

establish some relationship between a, b, and c. With this in 
mind let us draw a line PR perpendicularly to AD and BC and 
passing through E and a similar line TS passing through F. We 
then have a rectangle RPTS, and from it we can obtain the re
lation 

c = Ha + b) 

That this is so can be established from the fact that the tri
angles PBE and AER are congruent (because AE = EB, and the 
two angles at E are vertical angles and, therefore, they arc equal). 
Besides, the two triangles are right triangles; therefore, since we 
know one of the acute angles of a right triangle, we know the 
remaining two (one is a right angle, and the other is obtained 
from the fact that the sum of the angles of a triangle is 180 de
grees) . The same reasoning applies to the two right triangles 
CTF and FDS. Then EF = PT = RS (the reader can observe 
several rectangles in the drawing). But PT + RS = AD + 
BC = a + b. From this we have that 

c = Ha + b) 

Now if we substitute this expression for c in the formula 

A = Ha + 4c + b)h. 
we have 

A = Ha + 4·Ha + b) + b]h 

Performing all the work with the letters in this formula, we have 

A = Ha + 2a + 2b + b)h 
or 

A = H3a + 3b)h = Ha + b)h 

which is the formula for the area of the trapezoid known to us. 
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One important result just obtained is the fact that a line that 

joins the midpoints of the nonparallel sides of a trapezoid is 

c = !(a + b) . 

that is, it is equal to half the sum of the parallel sides. The same 
fact may be applied to a triangle. In the case of a triangle we 

. set a = ° (because the upper parallel side of BB the trapezoid has shrunk to a point). We 
D E then have a line that joins the midpoints of 

C the sides of a triangle is 
A C . 

b - c = ib 

that is, it is equal to half the third side. We shall make use of 
this result presently when we obtain formulas for volumes. 

Applying the above result to the formula 

A = i(a + 4c + b)h 

we have 
A = i(a + 4·!b + b)h 

Finally, since a = 0, we have 

A = i·3bh = !bh 

and this is the formula for the area of a triangle. 

Thus we see that the formula 

A = i(a + 4c + b)h 

gives exact results for quadrangles. For all other figures it gives 
approximate results. If we wish to compute the area of a figure 
as shown next, we cut it up into several figures which resemble 
in shape (they need not be necessarily 
similar) the figure to which such a for-~ 
mula is applied. The areas of the vari- /-t. '-r-~~-I-t-t-+-I-+--t-H--J 
ous portions are computed and then 
added. 
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PROBLEMS 

1. Compute the area of a right triangle whose sides (which in
clude the right angle) are 10 inches and 15 inches. 

2. Compute the area of an equilateral triangle whose side is 10 
inches. 

3. Compute the area of an isosceles triangle whose sides are 10, 10, 
and 6 inches. 

4. Compute the area of a parallelogram whose base is 25 inches 
and whose altitude is 10 inches. 

5. Compute the area of a trapezoid whose parallel sides are 15 and 
25 inches, and whose altitude is 10 inches. 



Escape from Flatland 

Measuring in Three Dimensions 

When we flee from Flatland, we soon find ourselves in a 
fascinating new environment in which, with the help of some 
imaginary rubber bands, we shall meet an important unit of 
measure, strike up an acquaintance with cubes, cones, pvramids, 
prisms, and parallelopipeds, and be able at last to measure the 
inside of the earth. 

We know now how to generate a limitless world of three di
mensions, or degrees of freedom, but to be able to measure the 
size of objects that possess the properties of this world (now 
they have, in addition to length and width, another dimension
that of height), we need a special unit of measure. The unit 
that served in the world of two dimensions is inadequate, unless 
we are interested in measuring areas only. Note, too, that in 
the world of two dimensions, or Flatland, we could measure 
distances (lengths) as well as areas; a straight line could be placed 
in any manner we pleased, but a plane is fixed because the plane 
is the world of two dimensions. In the world of three dimen
sions a straight line is allowed more freedom; it can be allowed 
to stay in the plane, but it may also be placed so that it pierces, 
or passes through, the plane. Also there may be an infinite 
number of planes, placed in any manner we choose. But in'this 
world of three degrees of freedom (it should be remembered 

538 
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that "freedom" refers to the freedom of movement of a point) 
there can be only one space of three dimensions. 

The units of measure for distances and areas are the same as 
those we used in the line-world and in Flatland, but the unit we 
are now looking for must conform to the three properties of 
three-dimensional space-it must measure length, width, and 
height as if these three are united into one measure. In other 
words, just as in the case of the unit of measure for area, the 
length and width are united, the single unit eliminating the ne
cessity of stating the dimensions of a figure; besides, to give the 
length and width of a figure is sometimes impossible. If we 
have a rectangle we can give its dimensions, as, for example, 9 
feet wide and 12 feet long, and the area is then 108 square feet, 
or 108 feet2 • But suppose we have a triangle: what is its width, 
and what is its length? There is no answer to this. On the other 
hand, if we have the area of the triangle, say 48 feet2 , we can 
form some idea of its magnitude; it is equal to the area of a 
rectangle 12 feet long and 4 feet wide (or 6 feet long and 8 feet 
wide, or any other combination of two numbers whose product 
is 48). 

The unit of measure for objects that occupy the space of three 
dimensions-objects that are neither points, nor lines, nor planes 
-must possess the same property as the unit for areas. It must 
be so common that it can be used for all objects that are three
dimensional in nature, and it must allow us to judge their mag
nitude in comparison with other objects of the same type, re
gardless of their shape. This unit we seek is known as the unit 
of measure for "volumes," that is, the quantity of three-dimen
sional space that these objects enclose. 

To obtain this unit let us consider the generation of a space of 
three dimensions. This is accomplished by the motion of a two
dimensional world along a straight line perpendicular to itself so 
that the plane remains always parallel to itself. We have pointed 
out that a crude illustration of this may be the stacking of cards 
in a single pile. Now suppose that we take a unit-portion of 
the two-dimensional world, the portion enclosed within a square 
Jlll of whose sides are a unit long. We know that this square 
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encloses one (unit) 2 area of the two-dimensional world. If we 
move this unit-portion of the two-dimensional world through 
the distance of one unit-length in the manner used in the genera
tion of a three-dimensional space, this square will be at a distance 
of one unit from the place it originally occupied, and it will be 
parallel to its original position. 

Now let us imagine that the unit-portion of the two-dimen
sional world is attached at its vertices in its original position with 
rubber strings, and that the entire plane remains fixed. Only 
the unit-portion of the plane (the two-dimensional world) is 
subject to the motion through the distance of one unit of length. 
As the square that encloses his unit-portion is lifted out of the 
plane as described, the rubber strings begin to stretch, and this 
continues until the square reaches its destination, a distance of 
one unit of length from its original position. Also we shall as
sume that there is a trace of the square left on the plane from 
which it was lifted. We thus obtain a figure that is not a plane 
figure any longer; this figure has one square on the plane, and 
another square above it at a distance of one unit of length. More
over, there are four more squares on the sides of the new figure. 

The reader can observe that these figures are squares because 
the rubber strings are perpendicular to the plane from which the 
original square was lifted, since the unit-portion of the area was 
moved along a line perpendicular to the plane and remained al
ways parallel to the plane from which it was lifted. Thus each 
string is perpendicular to (makes a right angle with) the sides 
of the square traced out on the plane to which the string is at
tached. Moreover, the sides of the figures that are framed by 
the strings and the sides of the square and its trace are all equal. 

A figure that consists of four sides that are parallel in pairs is 
a parallelogram, but, if the angles of a parallelogram are right 
angles and all the sides are equal, the quadrangle is a square. 
Thus our new figure has six squares as its sides and is three
dimensional. Its name is the "cube" (the reader's attention is 
called to the fact that the cube illustration below utilizes a two
dimensional plane to represent a drawing of a three-dimensional 
object; thus the parts of the object that are farthest from us 
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cannot actually be seen, and their outlines are drawn in broken 
lines) . 

The magnitude of the unit of measure for volumes is not diffi
cult to obtain. vVe know that the plane has no 
thickness, but that after we move the plane or a@, 
unit-portion of it we obtain thickness. vVe may ! 
again recall an infinite number of portions of a ,/}.-- --
plane, each of the form of a square with a unit area, 
stacked one upon the other; thus, to obtain our new unit, we 
multiply the old unit (the unit of measure for areas) by the unit 
distance-that is, we have 

(unit)2 . unit = (unit)3 
Thus the unit-measure of the portion of the three-dimensional 
space, or the unit-measure of volume accepted by us, is that por
tion which is enclosed within a cube whose edge is a "cubic 
measure," and is known as "the unit of measure of volume." 

This explanation, of course, does not represent a historical 
development of the method of measuring volumes. Originally 
volumes were measured in terms of content of the substances 
put into the various hollow three-dimensional objects which 
serve as containers. Later the foregoing method was introduced. 
How and why this was done is a secret lost in the ages, but 
perhaps it was stumbled upon and then found to be the more 
t;:onvenient. 

Now that we have agreed upon a unit of measure we shall 
develop the main principle applied to the measurement of vol
umes of those three-dimensional objects, also known as "solids," 
or "solid objects," that are akin in many respects to rectangles. 
We may use for this purpose a square portion of a plane with a 
unit area. If we move this unit-area through the distance of a 
units of length in the manner described above we obtain a vol
ume containing a cubic units. Now we may also take, instead of 
a square with a unit-area, a rectangle that contains, say, a units 
of area and move it through the distance of one unit of length. 
Each of the a square units of area of the rectangle generates in 
this case one unit of volume, and the a units of area will then 
generate a units of volume. If we move this rectangle through 
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another unit-distance of length we obtain another a unit of vol
ume. Thus, after the two trips, the rectangle will have gen
erated 2a units of volume. Now if the rectangle moves through 
b units of distance it will generate ab units of volume. In other 
words, the volume is obtained in this case as the product of the 
numeric~l value of the area of the rectangle (which is here equal 
to a square units), and the numerical value of the distance 
through which the rectangle was moved (in this case equal to 
b units of length). The numerical result is then ab cubic units. 

The geometric figure generated by the rectangle in this illus
tration is kno.:vn as the "prism" or the "rectangular prism," be
cause all its faces are rectangles. It is also called "rectangular 
parallelopiped." 

Since the area of a rectangle is obtained as the product of the 
numerical values of its length and width, and the volume of the 
rectangular prism is obtained as the product of the numerical 

value of the area of the rectangle and the 
\'-'~'------'\:;.:~~J _________ / distance through which it was moved, we 

'" ! may write the rule for the computation of 
; I volumes of rectangular prisms (we shall 
r--------~-, 

call the last distance "height of prism": 
15 ft. 

volume = length . width . height. Thus a 
room 15 feet long, 10 feet wide, and 9 feet high contains 15 ·10· 
9 = 1,350 feet3 (cubic feet). 

What's in a Figure? 

In the preceding chapter we employed a formula convenient 
in computing the areas of various figures. This formula was 

A = iCa + 4c + b)h 
where A was the area, 
a and b were two parallel sides, 
h the line perpendicula~ to a and h, CD 
c a line drawn through the midpoint of h a I> b 

parallel to a and b (see the accompanying 
drawing). II, 

We shall apply this formula, with a change in the notation, 
to computation of volumes of various solid figures commonly 
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known to us, and will find that it is almost universal in appli
cation. F or certain solid figures it will give exact rules and re
sults, and for other solid figures whose shape is rather irregular 
it will give approximate, but sufficiently satisfactory results. Our 
formula will read: 

v = i(A + 4C + B)H 

where V is the volume, 
H the height of the solid fig~re, 
A the area of the upper base of the solid figure, 
B the area of the lower base of the 

solid figure, 
C the area of the section of the solid 

figure passed through the midpoint of 
H parallel to the bases A and B. H 

Let us obtain the formula for the 
volume of a rectangular prism. We B 

now know that such a prism is obtained 
after a rectangle is moved through a certain distance in a direc
tion perpendicular to its plane. Now the distance, as we also 
know, may be considered as the height of the solid figure. The 
area of the rectangle does not change throughout the entire 

process. Thus we have, if the area of the rectan
gle is A, A = B.= C, and the volume of the 
rectangular prism is 

V = i(A + 4A + A)H 
V = t 6AH = AH 

This is the formula we obtained in the preceding section. 
Should the rectangular prism be a cube whose edge is a, then 

the area of the face of the cube is a2 , and the height, or altitude, 
is a. Finally, the volume of the cube is 

Suppose that instead of a rectangle, a parallelogram, a rhom
bus, or a trapezoid is moved in the directioh perpendicular to its 
respective plane. We then obtain prisms that are not rectan
gular any longer. We may also move in the same manner a 
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circle, an ellipse, or any other closed curved figure. In this case 
we obtain solid figures known as "cylinders" ("right cylinders," 
when their altitudes are perpendicular to their bases). While all 
these figures are moved in the direction perpendicular to their 
respective- bases, the figures, as well as their areas, remain un
changed. Thus, in each case, if A is the area of the figure moved, 
then 

A=B=C 

and H is the distance through which the original plane figure is 
moved to generate the respective solid figure. We then have 
that the formula for the volume of the solid figure is . 

V = t(A + 4A + A)H, or V = AH 

If the plane figure moved is a parallelogram (or a rhombus) 
whose base is b and altitude is b, then the volume of the prism is 

V = bhH 

where H is the altitude of the prism. 
If the plane figure moved is a trapezoid whose parallel bases 

are a and b, and altitude is b, then the volume of the prism is 

V = Ha + b)hH 

a 

b 

where H is the altitude of the prism. 
If the plane figure moved is a triangle whose base is b and alti

tude is b, then the volume of the prism is 

V = !bhH 

where H is the altitude of the prism. 
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A 
b 

If the plane figure moved is just any quadrangle whose area is 
A, then the volume of the prism is 

V = AII 

where H is the altitude ~f the prism. 

If the moved plane figure is a circle whose radius is r, then the 
volume of the right circular cylinder is 

,..---c-....... 

--, B ' 

V = 7rr2II 

H 

where H is the altitude of the cylinder. 

G 
The formula for the area of an ellipse is similar to that for the 

area of the circle. In a circle we have only a radius, while in an 
ellipse the value of the radius changes. The reader will recall 
that the equation of the ellipse is 

x2 y2 
a2 + b2 = 1 
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where 2a is th~ smallest (or the largest) and 2 b is the largest (or 
the smallest) diameter. The formula for the area of the ellipse is 

A = 7rab 

Note that if a is equal to b the ellipse turns out to be a circle, 
and We have A = l1a2, and this is the area of a circle whose radius 
is a. With this information we can obtain the formula for the 
volume of a right elliptical cylinder, which is 

v = 7rabH ffiA ----

~=~. IH 
B __ r_ 

where H is the altitude of the cylinder. Many tank cars are 
elliptical cylinders. 

The formula for the volume of a solid figure, 

v = teA + 4C + B)H 

may be applied to derivation of the formula for the volume of a 
sphere. We will recall that a sphere is a surface such that all its 
points are at the same distance from a point inside it, known as 

p the center, and this distance is called the 
radius of the sphere. 

Now we may take some point on the 
H= 2r sphere and through it draw a straight 

line that passes through the center of 
the sphere, this line being the sphere's 

T diameter. We then cut the sphere with 
a plane that is perpendicular to this diameter (see the drawing 
above) . This plane will trace out a circle on the surface of 
the sphere, and the radius of this circle is the same as the radius 
of the sphere. Let the radius of the sphere be r. We have then 
the three areas that are required in the foregoing formula. A is 
the area of the point P (where the diameter PT cuts the surface 
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of the sphere), C is the area of the circle that is perpendicular 
to the diameter PT, and B is the area of the point T (where the 
diameter PT cuts the surface of the sphere). 

Now we know that a point has no dimension and therefore 
its area is zero. Thus we have that A = B = 0, and C = nr2. 
Finally, if we substitute these values in the formula for the vol
ume of a solid figure, we have that 

v = teo + 47rr2 + 0)2r 

where H = 2r (the length of H is the length of the diameter PT 
of the sphere), and thus the formula for the volume of the sphere 
of radius r is 

For example, if we have a ball an inch in diameter, its volume is 
(the radius is 0.5 inch) 

v = !·3.14· (0.5)3 
or V = 1.33·3.14·0.125 

or, the volume is 0.52 inch3 (cubic inch). 

The Refugee Returns to His Land of Flight: Flatland Again 

To complete the derivation of formulas for the various solid 
geometric figures, we must return to Flatland and recover a very 
important property of two-dimensional figures. The reader will 
find that the general procedure in mathematics is to fall back on 
simple relations and facts before making new advances. \Ve 
could continue along our present path and complete the deri
vation of the necessary formulas, but such a procedure would 
result in a circuitous discussion involving much unnecessary (and 
difficult) mathematical development. Moreover, the facts we 
are about to obtain will prove useful in some additional discus
sions in which the applications of geometry are important. 

In the preceding chapter we found that a straight-line segment 
drawn through the midpoints of two sides of a triangle is equal 
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to one-half the third side of the triangle. Now suppose we at
tempt to discover whether this fact may be generalized. Sup
pose we divide the two sides of a triangle into three equal parts, 
and let us join the points that mark off the thirds of these sides 
by a straight-line segment. What would be the relation of this 
line-segment to the third side of the triangle? We have the tri
angle ABC, and BD = iAB, and BE = iBC. Thus, we have 
the proportion 

B 

D/----=:+-\E 

BD BE 
AB Be 

Now the two triangles ABC arid DBE 
are similar. This is so because, as we now 
know, two sides of one are proportional 
to the two sides of the other (they form 
two equal ratios) and the angles that 

AL..------:F!::----lC these two pairs of sides are including 
are equal (L B = L B). Moreover, if we 

draw from the vertex B the perpendicular BF (which cuts the 
line DE in the point K) we can show that BK = lBF. This can 
be established from the fact that the two triangles ABF and 
ABK are similar. Since the triangles ABC and DBE are simi
lar, LA = L D. Thus the angles of the triangle ABF are re
spectively equal to the angles of triangle DBK. Therefore the 
relation BK = :gBF is correct. 

At this point we may generalize. Instead of dividing the 
sides of the triangle into three equal parts we shall use, say, n 
equal parts. We may use the above drawing, assuming that 

BD = ! AB and BE = 1 Be. The procedure in examining the 
n n 

property of the line-segment DE is exactly the same as before. 
Thus we find that the two triangles ABC and DBE are again 
similar, and from this we can establish that their respective alti-

tudes are also in the same ratio,!. 
n 

Thus we have a general fact: Whenever two triangles are 
similar, their alw:udes are in the same ratio as the respective sides. 
This fact may be stated in another way. 
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If two triangles ABC and AIBICI are similar, then their sides 
a, h, and c (of the triangle ABC) are aI, hI, and CI (of the tri
angle AIBIC I ) and the respective altitudes of J:y and hI (drawn 
to the sides b and hI, respectively) form the proportions 

Now the respective areas of the two triangles are: 

Then 

Area of triangle AB C = A = !bh 

Area of triangle A1B1C1 = Al = !bIhI 

h b h b 
But hI = bI · Replace then Ji~ by b1 · \Ve have then 

A b2 

71--;- = bi 

So, when two triangles are similar, their areas are in the ratio of 
the squares of their corresponding sides. 

F or example, if the sides of one triangle are twice as large as 
the respective sides of another triangle, then the area of the first 
is four times as large as that of the second triangle. Suppose the 
side of one triangle is 2a and the side of the other is a, then the 
areas of the two triangles are in the ratio 

(2a)2 4a2 4 
a 2 a 2 1 

Moreover, the same fact that the areas of two similar triangles 
are in the ratio of the squares of their corresponding sides may 
be extended to the areas of any two similar figures. The reader 
may establish this by considering any two similar figures and 
then breaking these figures up into similar triangles. He should 
remember that similar plane figures all have equal angles, ar
ranged in the same order, and that their corresponding sides are 
proportional. 
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The same thing holds for circles. Suppose we have two circles 
whose radii are Rand r, respectively. The areas of these circles 
are 

We then have the proportion 

C R2 
C1 r2 

This signifies that the areas of two circles are to one another as 
the squares of their respective radii. For example, if the radius 
of one circle is 15 inches, and the radius of another circle is 5 
inches, then the areas of the circles are in the ratio 

that is, the area of the first circle is nine times as large as that of 
the second. Note that the radius of one circle is three times as 
large as the radius of the second circle. Squaring 3, we obtain 9. 
Thus we have a simpler procedure for establishing the same fact. 

Comes the Revolution: Cones and Pyramids 

The solid figures examined thus far, with the exception of the 
sphere, were generated by a plane geometric figure of some defi
nite area that was moved parallel to itself along a line perpen
dicular to the plane of this figure; thus this line was actually the 
altitude of the solid figure so generated. However, the restric
tion that the line of motion be perpendicular to this plane may 
not be enforced, provided the parallelism of the consecutive 
positions of the moving plane is preserved. Then the volume 
of the solid figure so generated is obtained as the product of the 
numerical value of the area of the plane figure that was moved, 
and the numerical value of the altitude of the solid figure. The 
situation here is similar to computation of the area of a paral-
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lelogram. The parallelogram may be thought of as having been 
generated by a line that was moved parallel to itself along a 
slanted line. 

However, there are some solid figures in the formation of 
which the size of the area diminishes, although throughout the 
entire process their shape remains the same. This may remind 
us of a triangle: If we take a triangle and draw any number of 
lines parallel to its base, we may think of it as having been gen
erated by a straight line that was moving parallel to itself and 
always decreasing in size until it finally 
vanished into a point at the vertex of the 
triangle, as shown in the accompanying 
figure. 

A counterpart of such a situation is 
found in the case of solid figures. Such 
solid figures are known as "pyramids" if 
the moving plane figures are polygons, and "cones" if the mov
ing plane figures are closed curved ones, such as circles or el
lipses. If we apply the formula V = i(A + 4C + B)H to the 
pyramid (let us take a pyramid with a triangular base), then the 
midsection of the pyramid as shown in the drawing below is 

A 
also a triangle. Moreover, this tri
angle is similar to the base triangle, 
since its sides are respectively equal 
to half of the sides of the base tri-

H angle. This can be established by 
observing that the pyramid has 
three triangular faces, and in each 
of these the midpoints of two sides 

are joined by a straight-line segment. This line-segment, as we 
now know, is equal to one-half the third side of the triangle. 
Now since these two triangles are similar and their sides are in 
the ratio of 2 to 1, their areas are in the ratio of 4 to 1. In other 
words, if the area of the base is B, then the area of the midsection 
C = iB. Moreover, the area at the vertex of the pyramid is 
zero, because the vertex is a point. Thus A = O. If we substi-
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tute these values in our formula, we obtain the formula for the 
volume of the pyramid: 

V = teo + 4·iB + B)H 
or 

V = t 2BH 
or 

V = tBH 

If the area of the base of the pyramid is any polygon it may 
be broken up into triangles, and by joining the vertices of these 
triangles with the vertex of the pyramid we obtain several tri
angular .pyramids. All these have the same altitude H, and, 
therefore, we may use the above formula which gives us the 
area of a triangular pyramid. The sum of the volumes of all 
these triangular pyramids gives us the volume of our general 
pyramid. The reader can see that the formula holds for any 
pyramid and, moreover, that there is no need to restrict the mov
ing plane so that it moves along a line perpendicular to it; the 
only restriction is that the plane be always parallel to itself. 

If the base of the solid figure is a circle whose radius is r, and 
the vertex of this figure is a point, we have a cone. To compute 
the figure's volume we start out with the expression 

V = t (A + 4C + B)H 

where A is the area at the vertex (that is, A = 0), B is the area 
at the base (B = nr2), C is the area of the midsection, and H is 
the altitude of the cone. Now we can readily see that the mid
section of the cone is also a circle, but its radius is equal to i of 
the radius of the base. Thus 

C = iB 

Substitute these values in the earlier expres
sion and we have 

V=HO+4·iB+B)H or V=tBH 

Since B = nr2, we have for the volume of a 
cone 
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If the altitude of the cone whose base is a circle ("circular 
cone") when it is drawn from the vertex, passes through the 
center of the base circle, such a cone is known as "the cone of 
revolution." One may be obtained as the result of the revolu
tion of a right triangle about one of the sides 
including the right angle. If the right tri
angle is revolved around its hypotenuse, we 
obtain two cones of revolution with a com
mon base whose radius is the perpendicular 
drawn from the vertex of the right angle 
to the hypotenuse, as shown in the accom
panying figure. 

As an exercise the reader may compute 
the volume of the Great Pyramid whose dimension we men
tioned earlier: a square base 763.79 feet on each side and an 
altitude of 486.23 feet. 

Just How Big Is the Earth? 

If we assume that the earth is a sphere whose radius is about 
4,000 miles, we can now easily compute its volume. It is 

t·3.14· (4,000)3 cubic miles 
or 

1.33.3.14.64.109 cubic miles 
or, finally, about 

2.67.10 11 miles3 (cubic miles) 

Now, what is the area of the surface of the earth? To answer 
this we must have the formula for the area of the surface of a 
sphere, and to develop it shall recall one important fact con
cerning the relationship between a small angle formed by two 
radii of a circle, the arc that corresponds to it, and the chord 
that joins the end points of this arc: If this angle is very small 
so that its corresponding arc is very small in comparison with 
the length of the circumference of the circle, we may use the 
length of this arc and the chord that joins its ends inter
changingly. 
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Let us take a sphere whose radius is r. Its volume is given by 
the formula 

Now suppose that the volume of the sphere is 
divided into a - great number of pyramids, all 
equal in volume, whose vertices are all the center 
of the sphere. Suppose that there are n such 
pyramids. Now if the number of these pyra
mids is very great, we may consider the indi

vidual- area of their respective bases very small in comparison 
with the surface of the sphere and as flat as a plane. For ex
ample, a small portion of the surface of the earth may be so 
considered, although the earth is approximately spherical in 
shape. Suppose that one base has an area equal to B. We take 
the altitude of the pyramid as equal to the radius of the sphere; 
it is r. Then the volume of the pyramid is 

V = ~Br 

~ 
Now, since the volume of the sphere was divided into n equal 
parts, each part has a volume equal to 

1 4 
- . - 7rr3 
n 3 

and this is equal to the volume of the pyramid obtained. We 
equate these two expressions and have 

1. . i 7rr:' = 1. . Br 
n 3 3 

Cancelling out the i and r on either side of this equation we 
obtain 

4 
-- . 7rr2 = B 
n 

which is the surface of lInth part of the surface of the sphere. 
F rom this we obtain that the area of the surface is 
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Thus, the area of the earth's surface is 

4·3.14· (4,000)2 square miles, or, about 2.01.108 miles2 

Speaking of Volumes: It's a Small World 

We found that the areas of similar figures are to one another 
as the squares of their corresponding sides or elements, as, for 
example, the squares of their altitudes, because the altitudes of 
similar plane figures are in the same ratio as the corresponding 
sides. If we have two similar figures whose areas are A and AI, 
respectively, and their corresponding sides are band bI, or their 
altitudes are h and hI, we may have the proportions 

A b2 

Al b~ 
or ./ h2 

._- = -
Al J2 II 

The property of similarity is not restricted to plane figures; 
two cubes are similar, and two spheres are similar, and it is easy 
to detect their similarity. As a matter of fact, all cubes are 
always similar to one another and so are all spheres, because all 
the edges of a cube are always equal, and all the radii of a sphere 
are also always equal. If we have two cubes, we can obtain the 
ratio of the edge of one to the edge of the other. The same type 
of relation may be established between the radii of two spheres. 

Similar Polygons 

The similarity of other solid figures depends on several con
ditions. \Ve recall that the similarity of plane figures depends on 
the equa:lity of angles and for polygons with more than three 
sides (triangles) -quadrangles, pentagons, and others with many 
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more sides-the equal angles must be in the same order in the 
two figures and the corresponding sides must be proportional. 
This is illustrated on page 555 in the drawing of sim:lar poly
gons. When-two solid figures are similar, their edges as well as 
their faces must be proportional. Now the faces are plane poly
gons, and we know now under what conditions they are pro
portional. A simple case of similar solid figures is attained when 
one is cut by a plane parallel to its base. The reader will observe 
that this was done when the formulas for the volumes of the 

various solid figures were derived. 
The midsection [whose area was de
noted by the letter C in the formula 
V = HA + 4C + B)H for the vol
ume of a solid figure] was such a 
plane; that is, it was drawn parallel 
to the base. A drawing of a prism 
with such a plane is illustrated here. 

The formula for the volume of a cube is 

v = a3 

where a is the edge. N ow suppose that we have two cubes, the 
edge of one being aI, and the edge of the other a2. Then the 
volumes of these two cubes are 

VI = ar and V2 = al 
From this we have the proportion 

VI ar 
V2 a~ 

The volumes of the two cubes thus are to one another as the 
cubes of their respective edges. 

The formula for the volume of a sphere is 

V = !7rr3 

where r is the radius of the sphere. Now suppose tha-t we have 
two spheres, the radius of one being rl, and the radius of the 
other r2. Then their volumes are 
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From this we have the proportion (the reader will observe that 
the two expressions contain t as a factor, and this is canceled out) 

This signifies that the volumes of two spheres are to one an
other as the cubes of their radii. Moreover, since the radius of 
a circle (or of a sphere) is equal to one-half the diameter, that 
is, r = 0.5 d, we have 

or 

that is, the volumes of two spheres are to one another as the 
cubes of their diameters. 

For example, the radius of the earth is about 4,000 miles, and 
the radius of the sun about 400,000 miles. Then the volumes of 
the sun and the earth are in the ratio 

(400,000)3 43.1015 

(4,000)3 43.109 

or 1015 106 

109 1 

The sun, then, is about one million times as large as the earth. 
We found that the volume of a prism, pyramid, or cone IS 

given by the formulas: for the prism, 

V=BH 

for the pyramid and the cone, 

V = tBH 

where B is the area of the base, and H is the altitude of the solid 
figure. 

We know that the areas of similar figures are to one another 
as the squares of their corresponding sides. In other words, if 
these corresponding sides are hi and h2, respectively, 

Bl bi 
B2 = ~ 
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Moreover, the altitudes of similar figures (solid or plane) are to 
one another as the corresponding sides of these figures, 

HI bl 
H2 . b2 

Multiply these two proponions, which are also two equalities. 
We then have 

BlHl bi 
B2H2 = b~ 

and this proportion represents the relationship of the two vol
umes of similar solids VIand V 2. Thus the volumes of two 
similar solids are to one another as the cubes of their correspond
ing sides or edges. 

We may well recapitulate now the relationship of various 
geometric figures as follows: 

a) Lengths are to one another as their measures. 
b) Areas of similar plane geometric figures are to one another as ' 

the squares of the lengths of their corresponding sides. 
c) Volumes of similar solid geometric figures are to one another 

as the cubes of the lengths of their corresponding sides. 

Amplifying these rules, the ratios are raised to the power indi
cated by the number of the dimensions of the geometric figures 
in question. For lengths we have the first power; for areas we 
have the second power (the square); for volumes we have the 
third power (the cube). It is quite reasonable to expect that 
for similar solid geometric figures in the fourth dimension we 
shall have the ratio of the fourth powers of the corresponding 
sides, and so on. 

The diameter of the red star Betelgeuse in the constellation 
Orion is four times as large as the average distance from the earth 
to the sun, about 93,000,000 miles. The diameter of the sun is 
about 800,000 miles, and that of the earth about 8,000 miles. So 
we have the ratios 

Volume of Betelgeuse 
Volume of the sun 

Volume of Betelgeuse 
Volume of the earth 

(4.93.106)3 

(8.105)3 

(4.93.106)3 

(8.103)3 
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The reader in performing these computations will find that 
Betelgeuse is about 100,000,000 times as large as the sun and 
that it would take about 

100,000,000,000,000 earth spheres 

to make up a volume to equal it. 
In Chapter 4 it was mentioned that Archimedes computed the 

number of grains of sand in the universe as 1063 • He arrived at 
this number as follows. He assumed that there were 104 (a 
myriad) grains of sand in a sphere the size of a poppy seed. 
Then he assumed that the diameter of a poppy seed was about 
0.025 of a Greek inch long. Then in a sphere whose diameter 
was a Greek inch long there were 

403 .104 = 64.107 

grains of sand. 
The Greek unit of length was the stadium = 9600 Greek 

inches. Then in a sphere whose diameter was a stadium long 

there were 96003.64.107" = 57.1020 

grains of sand. To play safe, Archimedes decided that it would 
be reasonable to expect that there were not less than 1021 grains 
of sand in such a sphere. 

The diameter of the universe, he assumed, was not greater 
than 1014 stadia long. Then in a sphere with such a diameter 

there would be (1014)3.1021 = 1063 

grains of sand. 
PROBLEMS 

The following problems are based on the "Travels into Several 
Remote Nations of the World by Lemuel Gulliver," by Jonathan 
Swift. 

The reader will recall that in the Land of the Lilliputs everything 
was one-twelfth of the normal size, while in the Land of the Brob
dingnags everything was twelve times the normal size. 

1. Gulliver's daily ration in the Land of the Lilliputs was equal to 
1,728 average Lilliputian rations. Why was this number selected? 

2. Gulliver relates that the content of a Lilliputian barrel did not 
exceed our half-pint. An American barrel contains 32 gallons, an 
English barrel contains 42 gallons. Were Gulliver's calculations 
correct? 
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3. The ma.ttress that Gulliver was provided by the Lilliputians to 
sleep on was made up of 600 Lilliputian mattresses. One hundred and 
fifty of them were sewn into one layer, and then four layers were 
sewn one on th_e top of the other. Was this mattress comfortable in 
comparison with an average mattress? Explain. 

4. In the Land of the Brobdingnags Gulliver was once hit by a 
falling apple. He related that this apple flattened him out. Was 
this description correct? 

5. The Queen of the Brobdingnags gave Gulliver her ring. Gul
liver wore this ring as a necklace. Was this possible? What were 
the dimensions of this ring? 

Name Your Figure 

We have d~scribed the method for the generation of spaces of 
various dimensions. We started with a point, which represented 
the space of zero dimensions, and moved it so that it generated 
a straight line and resulted in a space of one dimension. Then 
the straight line was moved, creating the space of two dimen
sions, and this plane, moved, produced the space of three di
mensions. This process, as we have already indicated, can be 
carried on indefinitely. Each time one space is moved along a 
straight line perpendicular to it, but remaining always parallel 
to itself, a space of a higher dimension by one is generated. Let 
us now examine in detail what happens when these motions are 
performed so that the objects moved, as well as the distances 
through which they are moved, are of definite size, say of one 
unit of measure. 

When a point is moved through a unit of length it generates 
a straight-line segment whose length is represented by that unit. 
This segment consists of two end points and a length, but for 
reasons that will become obvious presently, we shall say that 
this segment has two vertices and a length. Thus, the straight
line segment AB has two vertices, A and B, and a length, the 
distance between A and B. 

A~------------~B 

When the straight-line segment AB is moved, perpendicularly 
to itself, a distance equal to its own length, it generates the square 
ABeD and the motion may be described in detail. Note that 
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the vertex A when it is moved traces out a straight-line segment 
AD and so does the vertex B. It produces the straight-line seg
ment BC. But each point, when moved, produces two vertices 
and a length, therefore the two vertices produce twice as many 
of them. Now the straight-line segment AB A B 
produces the area of the square and also the ,.-----...., 
straight line CD, the final position of AB. 

1 Introducting algebra in the description of 
the number of the various parts of the square 
generated by the moving straight line, we 
shall denote a vertex by v, a straight-line seg- D'------...... C 

ment (the side) by s, and the area by A. Then a straight-line 
segment may be represented as 2v + s. Now, when a square is 
generated, a vertex v produces 2v + s, and a line produces s + A. 
Hence the square may be described as follows: 

Two vertices produce. . . . . . . . .. 2(2v + s) = 4v + 2s 
The line in the original position. s 
The line produces. . . . . . . . . . . . . s + A 

Adding these, we have. . . . . . . 4v + 4s + A 

In other words, a square has four vertices, four sides and one 
area; the reader may check this with the drawing of the square 

above. 
TVhen the square is moved through the 

A:.-___ -,; 

D f--!--t--{ distance of one unit in the direction per-
I pendicular to itself, but so that it remains 
L- ___ always parallel to itself, it generates a cube. 

/ \Ve know that v produces 2v + s, s pro-
/ 

/ duces 2s + A (the original position of s 
stated above should be included), and A (the area) produces 
2A + V (the original and final positions of the area and the vol
ume of the cube). 

The cube may be then described as follows: 

Four vertices produce ... 4(2v + s) = 8v + 4s 
Four sides produce ..... 4(2s + A) 8s +4A 
One area produces ..... . 2A + V 

Adding all these, we have 8v + 12s + 6A + V 
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In other words, a cube (in three dimensions) has eight vertices, 
twelve sides (or edges), six areas (or faces), and one volume. 

Now we shall proceed with higher dimensions with the 
method of algebra. 

If a cUDe is moved along a straight line perpendicular to it 
through the distance of one unit of length, and in such a manner 
that the cube remains always parallel to itself, it generates a solid 
figure of four dimensions. This figure may be described as 
follows: 

Eight vertices generate. 
Twelve edges generate. 
Six faces generate ..... 
One volume generates .. 

8(2v + s) = 16v+ 8s 
12(2s +A) = 24s+12A . 
6(2A+V)= 12A+6V 

2V+H 

Adding these, we have 16v+32s+24A+8 V+H 

When the volume of a cube is moved it generates a four-dimen
sional volume (we denote it by H) and two volumes (one in 
the initial position and the other in the final position). 

Thus a four-dimensional cube has sixteen vertices, thirty-two 
edges, twenty-four faces, eight (three-dimensional) volumes and 
one four-dimensional volume. The four-dimensional cube is 
usually called a "cuboid," or "tesseract." 

Now if a cuboid is moved along a straight line perpendicular 
to itself through the distance of one unit of length, and in such a 
manner that the cuboid remains always parallel to itself, it gen
erates a five-dimensional cube. This solid figure may be de
scribed as: 
Sixteen vertices gen-

erate ............. 16(2v + s) =32v+16s 
Thirty-two edges gen-

erate ............. 32(2s +A) = 64s+32A 
Twenty-four faces. 

generate .......... 24(2A + V) = 48A + 24 V 
Eight (three-dimen-

sional) vol urnes 
generate .......... 8(2V+H)= 16V+8H 

One (£ our-dime n-
sional volume) gen-
erates.. . . . . . . . . . . 2H+G 

Adding these, we 
have .......... . 32v+80s+80A +40 V + 10H +G 
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\Vhen the volume of a four-dimensional cube is moved it gen
erates a five-dimensional cube (we denote it by G) and two 
four-dimensional cubes (one in the initial position and one in 
the final position); Thus a five-dimensional cube has thirty-two 
vertices, eighty edges, eighty faces, forty (three-dimensional) 
cubes, ten cuboids (four-dimensional cubes), and one fi ve
dimensional cube. There is no special name for a five-dimen
sional cube; the reader may give it any name he wishes. 

With the same procedure as above it is possible to obtain the 
various parts that will describe a cube in any number of dimen
sions. Here again the reader may name his own figure. 



200 Men and an Egg 

How Algebra Serves 
Geometry 

Now that we have escaped from Flatland, let us swing around 
Africa to Madagascar. Here we may stir up, from a single egg, 
an omelet we can properly measure for 200 persons-and this 
feat, actually not so fantastic as it may seem, will serve both as 
a graphic review for our latest learning and as an introduction 
to our next adventures. 

There actually have been such eggs, but even mathematicians 
have failed to figure out which came first, the egg or the bird 
that laid it-the aepyorni,s. This nightmarish creature, far larger 
than the ostrich and now happily extinct, is known to have laid 
eggs about a foot and a half long, as against the common chicken 
egg, which is only about t-:vo and a half inches long. Now to 
our omelet and the mathematical nourishment, if not the flavor, 
that it promises. 

We have learned that the volumes of similar objects (objects 
whose angles are equal and are in the same order, and whose 
sides are proportional) are to one another as the cubes of their 
corresponding sides, or elements. Thus the volumes of the eggs 
of an aepyomis and a chicken are in some ratio, and this is 

the egg of an aepyornis 183 

the egg of a chicken 2.53 

We translated the length of the aepyomis egg, originally given 
in feet, into inches because the length of the chicken egg is given 

564 
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in inches, and when a ratio or proportion is obtained all the mea
sures involved must be stated in the same unit. 

We then find that the above ratio is 

5,832 373 
15.625 = -1-

approximately, and that the aepyornis egg is about 373 times 
larger. So two hundred strong-stomached men, accustomed to 
two-egg American omelets, could have breakfasted well on the 
one egg of an aepyornis. 

The Lesson of the Shrinking Dime 

When we compare two numbers and say that one is twice as 
large as the other, we can form a definite picture of the relations 
of the measures they represent. For example, if we say that one 
foot is twice as long as six inches, we have some notion of the 
length of a foot and from this we can easily infer the other length. 

In geometry, however, the comparison of two magnitudes 
goes beyond the comparison of linear, or length, measurements; 
here we often have the problem of comparing areas and vol
umes, and the mere statement that one object is twice as "large" 
as another is inadequate. We must specifically state whether 
we refer to lengths, areas, or volumes. 

We often hear that a microscope "magnifies 1,000 times." 
We have found how a magnifying glass simply magnifies the 
angle under which the object is observed, and how, when an 
object is moved away from us, it appears smaller because the 
angle depends on the distance of the object from the observer. 
To illustrate, hold up a dime. When it is very close to your 
eyes, it may obscure a building, but as you move it farther from 
you the dime soon appears much smaller than the building. The 
microscope, too, only brings the object closer to your eyes in a 
process impossible with unaided vision. 

But suppose that an object is really magnified 1,000 times. 
First its linear measures may be magnified 1,000 times. We 
know that the volumes of two objects are to one another as the 
cubes of their corresponding linear measures. Thus, when the 
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length of an object is magnified 1,000 times, the volumes of such 
objects are magnified 1,0003 times. This means that the volumes 
are 1,0003 = 1,000,000,000, or one billion times larger. 

In this case '"one billion times larger" refers to volumes. More
over, since equal volumes of the same substance have the same 
weight, magnification of the volume a certain number of times 
will result in magnification the same number of times of the 
weight of the object. 

A dime is about t ~th of an inch in diameter. Suppose we 
have a silver coin of the same composition as a dime, all of whose 
measurements_have been magnified 1,000 times. The volume of 
such a coin will be 1,000,000,000 times as large as the volume of 
the dime. It will contain as much silver as there is in one billion 
dimes, and be worth a hundred million dollars. The diameter 
of this coin will be 1,000' (H) = 687.5 inches or 57 feet 3.5 
inches long. A dime is about 2\th of an inch thick. The new 
coin will be 1,000· (2\) = 41.7 inches (approximitely) thicle 

Tin-Can Economy 

Canned foods are generally packed in cans that are right cylin
ders and that show the content in weight. The formula for the 
volume of a right cylinder is 

----... ,,1' ...... 

V = 7rr2h 

,,,,.--------~ ... , 

d 
r = 2' 

where r is the radius of the circle 
that forms the base of the can, 
and h is the height of the can. 
Now we know that the diameter 
of the circle is twice the radius-
that is, d = 2r, or 

d2 
and r2 =--

4 

Then the formula for the volume of the can is 
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The sizes of food cans are so varied nowadays that one has 
difficulty determining whether the same product is purchased 
advantageously in one or another size. To determine which 
contains more cif the product it is necessary to compare the vol
umes of the cans, and this can be accomplished by means of the 
preceding formula for volume. Suppose we have two cans 
whose dimensions are as follows: 

Diameter of Base 
First can ... , ... D 
Second can. . . . . d 

Height 
H 
h 

The sizes of cans usually vary both in the diameters of the bases 
and the heights. It is necessary, therefore, to consider the two 
measurements. We have then the two volumes 

7rD2H 
VI = -4-' and 

The ratio of the two volumes is 

VI D2H 
V2 d2h 

For example, suppose we have the measurements D = 3! 
inches and H = 4 inches, and d = n inches and h = 3! inches. 
We then have the ratio 

({-)2·4 
(ll-)2. (t) ~~~ = 1.85 approximately 

In other words, the first can is a little less than twice the size of 
the second can. 

Square vs. Rectangle 

Which of the two quadrangles, a square or a rectangle, con
tains a larger area? Or, modifying the question, suppose you 
have a certain quantity of wire fencing, to be placed around a 
piece of ground that is to be quadrangular; what should be the 
form of this quadrangle? 

Suppose this fencing is k units of length. If the quadrangle 
is to be a square, then according to the properties of the square, 
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all of whose ,four sides are equal, each side will be ~ units long, 
and the area of the square will be 

(~r = ~~ square units 

If the quadrangle is to be a rectangle, then according to the 
properties of the rectangle the opposite sides of this quadrangle 
are equal in pairs. Since the sum of the sides of our quadrangle 

is definite, k units of length, and the side of a square is~, we may 

shorten one side of the square, say by a units, and lengthen an
other side by the same number of units. We then will have two 

sides, each (~ - a) units long, and two sides (~ + a) units long. 

The area of this rectangle is then 

(~ - a )(~ + a) = ~~ - a2 square units 

L . h' h f h "k2 d (k2 2) et US examme w IC 0 t e quantltles 16 an 16 - ~ 1S 

greater. 
To simplify our work we shall introduce a symbol widely 

used in mathematics. When two quantities are compared as to 
their magnitudes, they may be equal to one another or one may 
be greater than the other. To designate equality of two quan
tities we use the symbol =, as for example, A = B. If A is 
greater than B, we write it symbolically as A > B. If A is less 
than B, we write it symbolically as A < B. 

The operations with the symbols> and <, which are known 
as the symbols for inequality, and with expressions connected 
by them are subject to the same rule as operations with ex-' 

pressions connected by the symbol for equality, In the case 
of expressions connected with the symbol for equality, which is 
known as the "equation," we may add, or subtract, from each 
side of the equation the same quantity, without producing any 
change in the values of the terms in the expressions involved. 
F or example, if we have the equation . 

3x + 5 = 14 
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we can subtract 5 from both sides of the equation and have 

3x:+~5 - 5 = 14 - 5 
or 

3x = 9 
and 

x = 3 

We note that if we substitute the value of x in the equation 
3x + 5 = 14, we obtain 

3·3+5 = 14 
or 

14 = 14 
which is an identity. 

The same rule may be applied to inequality relations. For 
example, if we have the relation 

3x + 2 < 14 

we may subtract 2 from both sides of the inequality. We then 
have 

3x + 2 - 2 < 14 - 2, or 3x < 12 

We may also divide both sides of the inequality in the same 
manner as in the case of the equation, provided, however, that 
we do not divide by zero or by a negative number; the latter is 
a special restriction for inequalities. We have then x < 4. If 
we substitute a value for x less than 4, say 3.5, in the foregoing 
inequality, we have 

3·3.5 + 2 < 14, or 10.5 + 2 = 12.5 
and 

12.5 < 14 

which is an inequality in the same sense as before. However, 
should we substitute the value x = 4, we obtain an equality 
(identity) 

14 = 14 

In other words, our inequality is thus destroyed. 
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Now let us determine the sign by which the two expressions 
k2/16 and (k 2/16 - a2 ) should be connected. Let us write 

k2 k2 
-?- - a2 
16 . 16 . 

with the question mark to be replaced by the proper sign when 
this will be decided upon. 

Any positive number is considered as greater than zero, for 
example 5 > O. A negative number is then considered less than 
zero; it cannot be greater than zero (this is reserved for positive 
numbers), and it cannot be equal to zero. The expression . 

k2 k2 
- ?- - a2 
16 . 16 

is either an equality or an inequality. We therefore can sub
tract k 2 /16 from both sides. We then have 

O? -a2 

Now a2 is positi--e, and (-a2 ) is negative. Therefore we can 
write 0> -a2• 

Thus we have established the sign that must connect the two 
expressions, and we have 

k2 k2 - > - - a2 
16 16 

In other words, this expression tells us that the area of the square 
is greater than the area of the rectangle when the sums of the 
sides of the two quadrangles are the same (k units of length). 

The reader should note that in the above discussion no special 
values were considered; all the work was done with letters. This 
procedure implied that the conditions set and the results obtained 
would hold for any given value. This is the method of algebra, 
and such a generalized approach enables us to examine properties 
under consideration without regard to any special case. 

Suppose that the length of the fencing is 100 yards. If we 
enclose a square with it, the side of the square is l~ n = 25 yards, 
and the area is 252 = 625 square yards. Suppose we take a 
rectangle 24 yards by 26 yards. Its area is then 24· 26 = 624 
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square yards. The reader may examine a rectangle 24.5 yards 
by 25.5 yards; its area will be less than 625 square yards. 

Squares, Circles, and Suds 

We have found, then, that of all the rectangles (the same may 
be said of quadrangles) the sum of whose sides is the same, the 
square will enclose the largest area. Now suppose we have 
fencing of a given length; what will be the shape of the geo
metric figure such that the fencing around it will enclose the 
largest possible area? 

Suppose we take the area as circular. Then the length of the 
circumference of the circle is k units of length. If the radius of 
this circle is r, we have then that 

k r =-
271" 

The area of the circle is given by the formula 

Substituting in this formula the expression for the radius 

k 
r =-

271" 
we have 

A 

and finally 

Now we shall compare the value of the area of a square, the 
sum of whose sides is k, with the area of a circle the length of 
whose circumference is also k. The area of the square is 

k2 

16 
and the area of the circle is 
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We then form the relationship 

k2 k2 
-?-
16 . 47r 

Multiply both sides of the relationship by (16·4TT). We then 
have -

Finally, we have 
47r· k2 ? 16k2 

Now, the value of TT, given as correct to six places, is 3.14~59. 
Obviously TT is less than 4, that is, 

7r<4 
and 

Therefore, 

Now, since we have established the type of the relationship, 
we shall divide both sides of the inequality by 16-4TT. We then 
have 

or 
k2 k2 
16 < 47r 

So the area of the circle is greater than the area of the square. 
To illustrate, suppose we have 100 yards of wire fencing. For 

a square, each side of this figure will require 11 0 = 25 yards, and 
the area of the square will be 625 square yards. The area of the 
circle whose circumference is 100 yards is computed as follows. 
The circumference is hr, then 

100 
27rr = 100, and r = 2; , 

The area of the circle is then 

50 
or r =-

7r 

A = 7r50~ = 2,500 
7r2 3.14 

or A = 796 square yards, approximately. 
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The same problem of the circle and the square may be ap
proached from a different point of view. Suppose we have a 
circle and a square whose areas are equal; which of the two will 
be smaller, the circumference of the circle or the sum of the sides 
of the square? 

Let the radius of the circle be r and the side of the square be a. 
Then, since the area of the circle is equal to the area of the 
square, we have 

The sum of the lengths of the sides of the square is then 

4a = 4rV; 

The length of the circumference of the circle is 2nr. We must 
then compare the quantities 4rv~ and 2nr. We have 

4rV; = 4rV3.14 = 4·1.77r = 7.08r 
and 

27rr = 2·3.14r = 6.28r 

Thus the length of the circumference of the circle is smaller 
than the sum of the lengths of the sides of the square when the 
areas of these two figures are equal. Many natural phenomena 
illustrate that for some reason this economy (the largest area 
with the smallest length of circu-nference) is practiced by na
ture. The reader may perform the following experiment at 
home. Form a square by bending a wire as shown below. Dip 

this wire in suds so that a film of soap is left on the wire. Tie 
together the ends of a small piece of silk string and place it 
gently on the film of soap. This string, when the film inside it 
is pierced, will immediately take the shape of a circle. 
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Sawing Out the Biggest Log 

The question as to whether the rectangle or the square, the 
sum of whose .sides is the same, contains the larger area, indi
rectly uncovers another important property of numbers. Sup
pose we have a number, say 24, and it is required to obtain two 
numbers whose sum is 24, but whose product will be the greatest. 
Now instead of taking the sum of all four sides of the rectangular 
quadrangle we may take the sum of the two sides whose product 
will give the area; that is, we may consider only half of the sum 
of the sides of the quadrangle. We may immediately draw the 
conclusion that the number 24 should be split into two 'equal 
addends-that is, into 12 and 12. The product of 12 and 12, 
which is equal to 144, is the greatest possible product. For 
example, 

11·13 = 143 

11.5·12.5 = 143.75 

This result may be applied to a problem that often arises in 
the work of a sawmill. Given a circular log of definite length, 
it is required to cut out of it a beam with a rectangular cross sec
tion so that the least quantity of wood is wasted; in other words, 
the largest (in volume) beam is sought. 

Since the length of the log will be preserved, and it is assumed 
that its thickness is uniform throughout (if it is not, we consider 
the smaller circular cross section), we shall be concerned with 
the circular cross section. The reader will recall that the volume 
of a prism is obtained as the product of the area of its base and 
its altitude. Since altitude is not changed, everything depends 
on the area of the base. Our problem may then be restate'd as 

follows. Given a circular disk of a definite 
radius, it is required to cut out of this circular 
disk a rectangle of the greatest possible area. 

The accompanying drawing illustrates the 
restated problem. In the circle is inscribed a 
rectangle. The diagonal of the rectangle is 

also the diameter of the circle. It is well known in geometry 
that when a right triangle is inscribed in a circle, its hypotenuse 
is the diameter of the circle. 
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In a circle with center 0, the diameter AB is drawn (see the 
following figure). Take any point C on the circumference and 
join this point with the end points A and B of the diameter AB. 
We thus obtain a triangle ABC. Now if we 
join C to the center 0 by a straight line, we 
obtain two triangles, ACO and OCB. These 
two triangles are isosceles triangles, because 
they have two sides (AO and CO in the tri
angle ACO, and CO and OB in triangle OCB) 
that are equal to one another. We also know 
that the base angles (lying opposite the equal sides) of an isosce
les triangle are equal. We then have 

L 1 = L 2, and L 3 = L 4 

but we also know that the sum of the angles of any triangle is 
180 degrees. Thus 

L 1 + L 2 + L 3 + L 4 = 1800 

But this is the sum of the angle of the triangle ABC. Moreover, 
smce 

L 1 = L 2 and L 3 = L 4 
we can write 

2(L 2) + 2(L 3) = 180 0 

and (dividing both sides of the above expression by 2) 

L 2 + L 3 = 90° 

This result signifies that angle C is a right angle and the triangle 
ABC is a right triangle, and its hypotenuse is AB. But AB is also 
the diameter of the circle. 

Now, in the right triangle ABC AB = 2r (AB is the diameter) 
and AC = x. Then from the Pythagorean relation 

AC2 + BC2 = AB2 
we have that 

BC2 = AB2 - AC2 
or 

and 
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The area of the rectangle ABCD is 

AC·BC 
or 

A = xV4r2 - x2 

Squaring' both sides of the last equation we have 

A 2 = x2(4r2 - x 2) 

The sum of the two factors x2 and (4r2 - X2) is 

Thus for any"circle of the radius r, the sum of these two factors 
is constant, that is, 4r2. Therefore, in accordance with the arith
metic property established at the start of this section, the product 
of these two factors, A2, will be the greatest possible when these 
two factors are equal-that is, when 

x 2 = 4r2 - x 2 
From this we obtain that 

and 
AB = x = rv2 

and 
BC = V4r2 - x 2 = V4r2 - 2r2 = V2r2 = rVI 

that is, 
AB = BC 

In other words, the rectangle is a square, and this square is in
scribed in the given circle. Under these conditions the volume 
of the beam will be the largest and the least wood will be wasted. 

Cutting Corners from a Triangle, or How to Get the Most Out 
of a Garret 

Suppose you have a triangular piece of cardboard or wood, 
and you wish to cut out from it the largest-in-area rectangle so 
that one of the sides of the rectangle lies on one of the sides of 
the triangle. Will you choose the smallest side of the triangle 
or the largest? Will you decide to take the side that is the far-
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thest from a vertex or the nearest? What would be your pro
cedure in selecting the proper side? 

Let us attack this problem from the general point of view. 
\Ve shall examine any triangle ABC. The rectangle that will 
be cut out is DEFH. Since the fig
ure DEFH is a rectangle, the side 
DE is parallel to the side HF and 
therefore parallel to the side AC of 
the triangle ABC. Now we know 
that if in any triangle we draw a 

B 

line parallel to a side, we obtain AL--_-::~--~~:;_>C 
two similar triangles. Therefore the H 

triangles ABC and DBE are similar, and their corresponding sides 
are proportional, as are their corresponding altitudes. \tVe have 
then the proportion 

BM AC 
BN DE 

and from this we obtain that 
DE = BN·AC 

BM 

Let us denote the side DE of the triangle DBE by x, and the 
altitude BN of the same triangle by y. Also let us denote the 
side A C of the triangle ABC by b, and the altitude BM of the 
same triangle by h. We have then (after making the substitu
tions in the expression for DE) that 

by 
x =h 

The area of the rectangle DEFH is given by the expreSSIOn 
DE· EF. But EF = NM = BM - BN. Therefore 

EF = h - Y 

Then the area of the rectangle DEFN (A = DE·EF), after the 
. expressions for DE and EF are substituted in it, is 

A = by (h _ y) 
h 
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Now for any triangle the side b and the altitude h are definite 
in size. Therefore they cannot influence the magnitude of the 
area A when the dimensions of the rectangle are determined. 
We may therefore rewrite t;he last expression as 

~h = y(h _ y) 

The area of the rectangle DEFH will be the largest (and so will 
be the value of Ah/b) when the product 

y(h - y) 

will be the greatest. Now the sum of the factors of this prod-
uct is 

y+h-y=h 

that is, it is constant. Therefore, as we now know, this product 
will be the greatest when the factors are equal, that is, when 
y = h - y. From this we have that 2y = h, or 

y =!h 

The last result indicates that the side DE of the rectangle 
DEFH must cut the altitude BM into two equal parts; that is, 
the altitude BM is bisected at the point N. Moreover, we now 
also know that this leads to the conclusion that the side DE must 
be equal to one-half the side AC to which it is parallel. In other 
words, 

x = DE = !b 

Thus, since we may apply the same procedure to any side of 
the triangle ABC and obtain similar results, we may ask whether 
the area of the rectangle will vary with the selection of the side 
of the triangle. Now, the area of the triangle ABC is 

!bh 

The area of the rectangle DEFH is 

!b·!h = tbh 

and this indicates that the area of the rectangle is equal to one
half the area of the triangle. In other words, it is immaterial 
which side of the triangle we select. The result will always be 
the same. 
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How to Make Money in the Box Business 

Suppose that you have a square piece of cardboard whose side 
is 48 inches long, and want to make an open box (without a top) 
of the largest possible volume. The corners of the cardboard 
will have to be cut opt and then the outside strips must be bent 
as shown in the drawings. Now this presents a double problem: 

~ ~' 

~ ~ x 
x 

the volume of the box must be the largest possible, the area of 
cardboard wasted must be the least possible. 

Suppose the corners that are cut out are squares whose sides 
are x inches long. Then the dimensions of the box will be: 
length, (48 - 2x) inches; width, (48 - 2x) inches; and height, 
x inches. The volume of the box is then 

V= (48 - 2x)(48 - 2x)x 

The volume is thus a product of three factors. We know under 
which conditions the product of two factors will be the greatest 
(the factors must be equal when their sum is given), but we do 
not at this moment know under which conditions the product 
of three factors will be the greatest when the sum of these factors 
IS gIVen. 

Suppose we have three numbers a, b, and c, whose sum is given 
as a + b + c = K. Let us assume that a, b, and c are unequal to 
one another. Now if we consider two numbers, say a and b, 
take their sum, and divide it by 2, we have two numbers 

a + band a + b 
2 2 

whose product will be the greatest. 
Thus we have the product 

a+b a+b 
-2-'-2-- c 
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and this product, since 

, a+b.a+b>ab 
2 2 

will be greater than abc. However, the sum of the three factors 
of the above product is 

a+b+a+b+c=a+b+c=K 
2 2 

Thus when we have three factors that are unequal, we select 
two of thc1Jl, take one-half their sum and obtain the pr~duct of 
three new numbers. By trial and error we may finally obtain 
the greatest product possible. On the other hand, if the three. 
factors are all equal, such a .change is unnecessary. It follows 
then that if the three factors are equal their product will be the 
greatest, when their sum is given. In other words, if three num
bers are given, their sum is divided by 3, and the cube of this 
quotient will be greater than abc, and the greatest possible prod
uct will thus be obtained. 

Now let us return to the expression for the volume of the box 

V = (48 + 2x)(48 - 2x)x 

The sum of these three factors is 

48 - 2x + 48 - 2x + x = 96 - 3x 

Now, this sum is not definite because it changes with the change 
in the value of the X; in other words, the sum of the three factors 
must be free from the x. Note that we have the following ex
pressions containing x: -2x, -2x, and +x. To eliminate X the 
sum of the positive and negative terms must be equal to zero. 
This could be possible if we had a term such as +4x. Now we 
may multiply both sides of the expression for the volume of the 
box by 4. We have then 

4 V = (48 - 2x)(48 - 2x)4x 

The sum of the factors of the product in this case is 

48 - 2x + 48 - 2x + 4x = 96 
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The product of these three factors will be the greatest when 

48 - 2x = 4x 
or 

6x = 48 and x = 8 

Thus when x = 8 inches the volume of the box will be the 
largest. This is so even if under these conditions 4 V will be 
the largest. But if 4 V is the largest, then V, itself, also will 
be the largest. We have then the dimensions of the box in inches 
as length, 32; width, 32; and height, 8. The volume will thus be 

32·32·8 = 8,192 inches3 

Any other dimensions will not give a volume as large. For 
example, if we cut out squares whose sides are 7 inches, remem
bering that we must not waste cardboard, we have then the di
mensions: length, 34; width, 34; height, 7. The volume will 
thus be 34· 34·7 = 8,092 inches3 • 

Nature Study: Why Is a Sphere? 

We have noted that nature often likes to assume a spherical 
. form, as evidenced in the earth (if we disregard the flattening at 
the poles), the sun, the moon, and the stars. If we mix alcohol 
and water and drop in a small quantity of olive oil, the oil drop 
will float as though suspended in the liquid and its shape, too, 
will be spherical. 

There must be some definite reason for this. A clue may be 
obtained from the following considerations. Suppose we have 
a cube whose edge is a units long. Then the area of the surface 
of this cube (it will have six squares) will be 6a2 • Which of 
the two figures, a cube having the surface 6a2 or a sphere having 
the same surface, will contain the larger volume? 

The formula for the surface of a sphere whose radius is r is 
4nr2. Then we have 

471"r2 = 6a2 and 

From this we obtain 
av'6 

r = 2.y; 
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The formula: for the volume of a sphere is V = tnr3 • Substi
tute in this expression the expression for r as obtained. We 
have then 

v = ~ 7r .a36V6 
3 87r-V; 

which, when simplified, becomes 

V 3V6 
= a y; 

Now v'6. 2.45 (approximately), and \In = y'3.14 = 1..77 
(approximately). Then 

v'6 2.45 1 4 ( . I ) -v; = 1.77 = . approxImate y 

Then V = 1.4a3 • The volume of a cube whose edge is a is a3 • 

Then 

Thus we see that a sphere having the same surface area will 
contain a larger volume than the cube. Or, from another point 
of view, if a cube and a sphere have the same volume, the sphere , 
will have a smaller surface than the cube. 

As natq.re tends to be thrifty with her substance, we can now 
see why she likes the sphere. This spherical economy is very 
important in industry and science when smaller surface and 

A 

larger volume are necessary. 

Fashion Your Own Funnel 

A funnel can be made of a cir
cular piece of paper or tin by cut
ting out a portion of the material 
as illustrated and folding the re
maining portion into a cone. 

The problem that arises in the process of construction is to 
waste as little material as possible and yet obtain a funnel that 
will contain the largest possible volume. 

To solve it, we denote the radius of the circular piece of ma
terial by R and the radius of the base of the conical funnel by rj 
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then the circumference of the base of the funnel is 2nr. The 
length of this circumference will be the length of that portion 
of the circumference of the circular piece of material that will 
be left after a part was cut off. Let this part be x. Then 

x 
27rr = x, and r = 27r 

The altitude of the cone (if we apply the Pythagorean relation 
to the right triangle ABC in the drawing) is 

AB2 = H2 = R2 - r2 = R2 - (2x7r y 
from which we have that 

H = ~R2 - (2x7rY 
The fonnula for the volume of a cone is 

v = t7rr2H 
'Ve substitute the expression for H in this formula, and we have 

\Ve shall have the largest possible volume when the expression 

will be the largest in value. To be able to examine the condi
tions under which this expression will be the largest in value we 
must get rid of the square root by squaring. We then have 

This expression contains three factors whose sum is 

This sum is not free from x and to free it we shall multiply the 
expresslOn 

R2 -(2:Y by 2 
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We have then 

'(2:Y + (2:Y + 2R2 - 2C:Y = 2R2 
Now, so that this product (and, therefore, the volume of the 

c'onical funnel) be the largest possible, the three factors must be 
equal to one another. We then have 

From this we obtain that 

3 CX11"Y = 2R2, 
Finally, we have that 

and - = _R2 ( X)2 2 
211" 3 

x V2 
211" = V3 R , 

211"V2 
and x = . r R = 5.13R 

v3 

To determine the number of degrees that must be in the arc 
of the circumference of the circular piece of material, let the 
number of the degrees in the arc whose length is 5.13R be y. 
The circumference of a circle is 2rrR = 6.28R, and the number 
of degrees in the circumference of ~ circle is 360. We have then 

L 5.13 
360 6.28 

From this we obtain 

360°·5.13 2940 . 1 
Y = 6.28 = , approxlmate y 

This means that about (360° - 294°) = 66° must be cut out of 
the circle. When this is done, the remaining portion of the cir
cular piece of material will fold into the largest possible conical 
funnel that can be made from the original material. 

The reader may check the result by computing the volume of 
the cone, assuming that the radius of the circular piece of ma
terial is 10 inches when 66 degrees of the circular piece is cut 
out, then compute for a smaller number of degrees, say 60, 50, 
and 40 degrees. 
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But, the Earth Isn't Flat ... 

With the help of a somewhat odd assortment of tools-an 
ocean liner, an airplane, a scheming spider, a fly, our rubber 
bands, and the North and South Poles-we are equipped now 
to approach the mathematics of navigation, to climb the screw's 
"spiral" stairway, to calculate the measurement of distances on 
nonflat surfaces, and, incidentally, to learn the rudiments of 
efficient fly-catching. 

For many practical purposes we assume that the earth is flat. 
H we wish to learn the area of a piece of ground, say of rectan
gular shape and of dimensions known to us, we multiply the 
numerical values of its width and length. The fundamental as
sumption is that this plot of ground includes a portion of a plane. 
Actually the surface of the earth is not a plane but is approxi
mately spherical in shape, and the rectangular piece of ground is 
a portion of the surface of the sphere. So computation of the 
area of this plot of ground as if it were a rectangular portion of 
a plane introduces an error, but one so small in comparison with 
the magnitude of the area that it may be disregarded in ordinary 
problems. 

Furthermore, the familiar expression "The shortest distance 
between two points is a straight line" is incorrect. What is 
actually meant is that the shortest distance between two points, 
when these points are unattached to any geometric figure, is 
measured along a straight line. 

585 



586 Mathematics-Its Magic & Mastery 

Any side of a triangle is, as we have learned, less than the sum 
of its other t~o sides; thus in the triangle ABC (nothing is speci
fied in this tria~gle) AB < BC + AC. We may have the vertex 
C of this triangle far distant from the side AB, or we may have 
it as close to it as we please, but as long as we have a triangle ABC, 

AB<BC+AC 

We chose the side AB, although this was entirely arbitrary; the 
same relation holds for the side BC and the side AC. The draw
ing below illustrates that it is immaterial how far from the side 

c AB the vertex C may be removed. 
So, if we have two points A and 'B (in 

this case they are in the plane of this 
page but might as well be in a space of 
any number of dimensions, provided 

A B that they may be thought of as located 
in some plane at the same time) and we wish to travel from 
A to B (or from B to A), our one shortest route is along the 
straight line that joins these points. 
But is this property of a straight 
line reserved for the plane only? 
And what are the means for mea
suring the shortest distances be
tween two points on surfaces other 

}~B 
y/ 

than the plane? Let us see if we can answer these questions in 
the following sections. 

Shortest Distances in Three Dimensions 

The shortest distance between two points when they are not 
on a plane, but in the space of three dimensions-that is, when 
they are not attached to any geometric figure-also is measured 
along a straight line because we can pass through these two 
points a plane, and the distance between two points in a. plane 
is measured along the straight line that joins the points. 

The plane is not the only surface possible. There are many 
others: some of them are combinations of two or more planes 
(we encountered them when we examined such solid geometric 
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figures as the cube, the prism, and the pyramid); others are 
curved (for example, the surface of a sphere), and still others 
are c{)mbinations of curved and plane surfaces (such as the cylin
der and the cone). 

Now if two points are on some surface other than a plane 
(this surface may be a combination of two or more planes; it. 
may be a curved surface, or it may be some combination of 
these), how shall we determine the shortest distance between 
them? Or, similarly, since the earth is approximately a sphere, 
if we propose to travel, say by airplane, from one point on the 
earth's surface to another, how shall we determine the shortest 
route? First, let us suppose we have two adjoining planes (such 
as two walls of a room, or two faces of a prism) and there are 
two points, one on each plane; what is the method for proceed
ing from one point to the other by the shortest route? 

In the geometry of two dimensions, two intersecting straight 
lines form an angle. By analogy we may think of two inter
secting planes in the world of three dimensions as forming some 
kind of an angle. To visualize such an angle, begin to open a 
closed book. At the start the opening will be small, but it be
comes larger. Such a three-dimensional angle is known as a 
"dihedral" angle ("di"-two, "hedron"-face). The dihedral 

. angle may be measured by the angle that is traced on another 
plane when at some point on the edge of the angle (this edge 
corresponds to the vertex of the plane angle) this plane is passed 
perpendicularly to this edge. If we stand an opened book on a 
table, the plane of the table will be perpen
dicular to the edge of the book; the drawing 
illustrating a dihedral angle as well as the 
method of measuring such an angle is shown 
at right. 

Suppose we have a point A on the face P 
of a dihedral angle, and we also have a point 
B on the face Q of the same dihedral angle. The edge of this 
dihedral angle is CD (CD is a straight line). We may travel 
from point A to point B along the faces of the dihedral angle in 
many different ways; the problem is to find the shortest route. 
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Will it be a curved path, a straight line, or a combination of 
straight lines? ' 

If the plane P and the plane Q are continuations of one an
other, that is, when the dihedral angle is measured by an angle of 
180; degrees, the two planes are actually one plane. We know 

. the shortest route from one point to another when W· · Q the two lie in the same plane will be a straight line 
• that joins the points A and B. 

A On the other hand, if the plane P is not a con-
. tinuation of the plane Q, when the dihedral angle 

is measured by an angle that is less than 180 degrees, the points A 
and B can be joined by a straight line, but this straight line AB 
will not lie in either of the two planes P or Q. If you have a 
dihedral angle made of a folded cardboard, you may join the 
two points A and B by a rubber string tightly drawn. 

F or a simple experiment, flatten out the dihedral angle so that 
the planes P and Q form one continuous plane. Then the line 
AB (which is represented by the tightly drawn rubber string) 
will stretch out along the new plane. It will represent a straight 
line in that plane, and represent also the shortest route from A 
to B when these points lie in the same plane. 

While the planes P and Q are flattened and the shortest dis
tance between the points A and B is measured along the straight 

p Q p 

A 

Q 

B 

line AB, we observe that the straight line AB now intersects the 
line CD in point E. We know that when two straight lines in
tersect they form two pairs of vertical angles, and that vertical 
angles are equal; thus L 1 = L 2. If the rubber string leaves a 
trace on the planes P and Q when they are flattened out, this 
trace is the straight line AB. 

Now let us fold back the planes P and Q to their original po
sitions. The trace of the rubber string, the straight line AB, will 
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be folded also and will be broken up into two parts which will 
be joined in the point E. The part AE will lie in the plane P 
and the part EB will lie in the plane Q. Since the straight line 
AB was the shortest route from A to B when the planes P and Q 
were flattened out, the sum of the parts of the straight line AB, 
AE, and EB will still be the shortest route from A to B along the 
planes P and Q. Moreover, the angles L 1 and L 2 remain the 
same and equal when P and Q are brought back into their origi
nal position. Thus we have the method for the determination 
of the shortest route from A to B along the planes P and Q, and 
it should be remembered that, in summary, the shortest route 
between two points A and B, each lying on one of the faces of a 
dihedral angle, is a broken straight line, AEB, such that its point 
E lies on the edge CD of the dihedral angle. Moreover, the twp 
angles AED (L 1) and CEB (L 2) are equal. 

,With this method for determination of the shortest route be
tween two points on two connected planes established, we shall 
be able to find the methods for surfaces of other types. 

A Tip for the Spider 

In a room on one wall sits a fly, and 
'on the opposite wall sits an ill-inten
tioned spider: What is the shortest 
route the spider can take to reach the 
fly? 

The accompanying drawing shows 
the locations of the fly and of the 
spider, assuming that both are nearer 
the ceiling than the floor. Let us draw 
a plan of the room in which we shall 
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disregard th~ floor, and keep the planes of the walls and ceiling 
in one continuous plane. Then the 

S fly and the spider will be in the same 
pider-~\ , -

\ 

\ 

I 
, , 

\ 
\ 
\ 

\ 
\ 

~ !-Fly 

plane. The shortest distance from 
the spider to the fly will be along a 
straight line that joins their respective 
positions, as indicated in the drawing 
of the plan. 

Now, suppose the spider is 2 feet below the ceiling and 3 feet 
away from the wall, and the fly is 3 feet ( l )§A 
below the ceiling and 1 foot away from ~~ ~~~ " 
the wall. The width of the room is 15 ~ . t.! 4.~ . 
feet, and the length is 18 feet. We then ~ _ )Jr-
.b.ave a right triangle whose hypotenuse ~''''''-'' 
is the shortest route from the spider to v) 
the fly. By means of the Pythagore::n ~~- , 
relation we find that the spider, if he ~ -~ 
employed the same process, traveled 

v202 + 15 2 = V625 = 25 feet 
for his dinner. 

How to Know Your Way around a Prism 

To determine the shortest route along the faces of a prism 
we shall need to employ a property of parallel lines, one that we 
came across briefly when we examined parallelograms. We 
know that in any parallelogram the opposite angles are equal. 
Moreover, since the sum of the angles on the same side of a 
parallelogram is 180°, or, as in the accompanying parallelogram, 
LA + L ADC = 180°. But the sum of the angles about the 
point D is also 180 degrees, because the angle about D on one 
side of the straight line is AK. Now, we have 

LADC + Ll = 180° 
and 

LADC + L C = 180° 
Therefore, 

Ll = LC 
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The straight lines BC and AD are cut by the line CD (this line is 
called the "transversal"). Moreover the straight lines BC and 
AD are parallel. Thus we see that when two parallel lines are 
cut by a transversal so that a figure 
similar to the letter Z is formed, the /B Ie 
angles (known as the "alternate in-
terior" angles) in the corners of the A ~ K 
letter Z are equal. D 

Now, to proceed with determination of the shortest route 
along the faces of a prism, suppose that we have a right prism, 
one such that its edges are perpendicular to the bases (any other 
prism will lead to the same results). The faces of the prism are 
marked by numbers in the following drawing, and we shall let 
point A be on face 1 and point B on face 5. 

If we slit the prism along the edge EF and flatten the faces so 
that their planes form a continuous plane, the shortest distance 

E 

!!.=----a; ~ ~ 
~B 

a. 
Ae-a, a2 a. 

F 

between A and B is determined along the straight line that joins 
them. This straight line cuts the edges of the prism in the points 
H, K, and 111. Moreover, the entire surface of the flattened out 
faces is a rectangle the length of whose base is equal to the sum 
of the lengths of the sides of the faces, and whose altitude is the 
edge of the prism. Note also that the angles that the line AB 
makes at the points H, K, and ,iVl with the edges of the prism 
are equal as indic~ted on the drawing, 

On the other hand, the edges of the prism are parallel to one 
another and all are perpendicular to the same line, the base of 
the rectangle obtained after the faces are flattened into one plane. 
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All these parall~l lines are cut by a transversal AB. Therefore 
we have the following equalities of angles: 

L bI = L -a2, L b2 = L a3, and L b3 = L a4 

If we compare these equalities with those obtained previously, 
we can observe that 

Thus we see that the broken line along which is the shortest 
route between. two points on the faces of a prism makes equal 
angles with the prism's edges. Should the two points lie on -the 
same face of a prism, then the shortest route between these is 
the same as that between two points in a plane-a straight line. 

Journey across a Pyramid 

To determine the shortest route' between two points on differ
ent faces of a pyramid we shall need to make use of a property 
of a triangle that we noted only in passing when we considered 

B the sum of the angles of a triangle. 

A Recalling that this sum is equal to 180 
degrees, or a straight angle, suppose we 

A D take a triangle ABC and extend the line 
C AC beyond the point C. Now, about 

this point C on each side of the line ACD, there is a straight 
angle, which is also a 180-degree angle. We therefore have 
the equalities 

LA +L B +L C = 180°, and L C+L BCD = 1800 

We then have that 

L A + L B = 180° - L C, and L BCD = 180° - L C 

This leads to the conclusion that 

LA + L B = L BCD 

which signifies that in any triangle an exterior angle is equal to 

the sum of the interior angles nonadjacent to it. 
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Suppose we have a pyramid, and on two of its faces, which 

B 

are triangles, are two points A and B. The shortest route be
tween them is one of the infinite number of broken lines that 
join these points. Let us examine the angles that the shortest 
route makes with the edges of the pyramid. 

In the accompanying drawing we denote the angles of the 
various triangles whose vertices all are coinciding with the ver
tex S of the pyramid and whose bases are the parts of the broken 
line that is the shortest route between A and B. We have then 

L al = L b1 

L a2 = L b2 

L a3 = L b3 

Let us examine one of the triangles formed by the edges of 
the pyramid and a part of the broken line, say the triangle on 
the face SDE. According to the property of the exterior angle 
of a triangle derived by us above, we have 

L a2 = L b1 + L Cl 

From this we have 

But we found that 

then we have 
L a2 - L al = L Cl 

We can prove in a similar manner (this is left to the reader as 
an exercise) that 

which shows the relation between the angles made by the broken 
line of the shortest route with the respective edges of the pyramid 
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and the angle between those edges. The difference between 
two succeeding angles is equal to the angle between the two 
corresponding edges. 

Note how this fact is actually a generalization. When we 
have a prism, its edges do not intersect, and thus the angle be
tween them is zero. Then the difference between two succeed
ing angles is zero and, therefore, these two succeeding angles 
are equal. Should the two points A and B lie on the same face 
of the pyramid, the shortest route between these two points 
(since they lie in the same plane) is a straight line. 

Points about a Glass 
• 

In order to simplify our examination of the shortest route 
along the cylinder we shall consider a right circular cylinder 
(one whose base is a circle) such as a glass. 

A cylinder has no edges, which puts us to some disadvantage 
unless we can find means to rectify this lack. The side surface 
of a cylinder is a smooth, round surface. In the case of a right 
circular cylinder this surface is perpendicular to the upper and 
lower circular bases. Now we may draw any number of straight 
lines on the side surface of a right circular cylinder so that each 
line will lie with all of its points in that surface. But these lines 
will follow one direction only; they will all be parallel to one 
another, and all will be perpendicular to the upper and lower 
circular bases of the cylinder. Some of these lines are shown in [d I the drawing. Mathematicians call 

these lines "generators," and with 
good reason. F or the right cir

/_____ cular cylinder may be thought of 
as having been generated by one 

of such lines when this line was moved along the circumference 
of the base circle. As this line moves, it traces out (generates) 
the side surface of the cylinder, hence the name. 

We may as well dispose here of one special case, when two 
points are both on the same generator, as shown below. The 
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shortest route is then measured along the straight line joining 
them, and this straight line is the generator. No other straight 
line but a generator can be drawn on the side surface of a cylin
der, since any other straight line in any other position will t~uch 
the side surface of the cylinder in one point or will be tangent 
to it. Any other line drawn on the surface of a cylinder (that 
is not a generator) is not straight, it is a curved line, curved not 
in the sense of a circle, or of an ~ 
ellipse, or of any other curve we ~ 
~r~e been confronted with so ~1--__ __-~-__ 

Suppose we have two points 
on the side surface of a cylinder, and these points, A and B, do 
not lie on a generator. Then, to reach from one point to the 
other by the shortest route possible, we must traverse a curved 
line, and this line must lie with all its points on the side surface 
of the cylinder. Let these points be joined by such a line of the 
shortest route, and draw a few generators on the side surface of 

~ 
Q 

p~ 

Q~ 
the cylinder so that they intersect the line. Then slit the cylin
der open along some other generator which does not intersect 
the line AB of the shortest route. Finally flatten this slit-opened 
side surface. We thereby obtain a rectangle whose altitude is 

~ 
the generator of the solid and whose base is the cir

E cumference of the circular base of the figure. Since A/ the points A and B lie in the plane of the side surface 
_----_ that was flattened, and since the line AB is the line of 

the shortest route and this line is now in the plane, it 
must be a straight line. From this point on we are confronted 
with a situation exactly the same as in the case of a right prism. 
It becomes evident to us that, since the generators are all per-
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pendicular to the base of the rectangle and therefore are parallel, 
the shortest route makes equal angles with the generators. 

There is one more special case that must be mentioned. Sup
pose A and B are at equal distance.s from the base of the cylin
deri Then. the line of the shortest route will lie along a circle 
parallel to the circular base of the cylinder. When the side 
surface is slit open and flattened out, this line will be a straight
line segment parallel to the base of the rectangle as shown below. 

A B 
~ 

-------- ...... 

A B • 

It All Depends on Your Direction 

When we have two points in a plane and are interested in the 
shortest route from one to the other, we are not concerned with 
the direction in which we travel. In a plane, whether we go 

from A to B, or from B. to A, we 
__ ------eB shall be traveling along the same 

line of the shortest route. This is -A 
because the plane is an open sur

face. You may start out along a straight line at some point in 
the plane and never return to the point. 

This is not the case, however, on the surface of the earth. 
You may start from New York and travel eastward until you 
return to New York, or you may start from New York and 
travel westward until you return to New York. Moreover, if 
you travel from New York to India, you may take the western 
or the eastern route; one of these two may be longer than the 
other, and it may happen that they may be equal in distance. 

The same case occurs on the side surface of a cylinder, a 
prism, a pyramid, or any other figure of a similar type. Suppose 
we have two points A and B on the side surface of a cylinder. 
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We may proceed from A to B in the direction indicated by an 
arrow in the accompanying drawing. On the other hand, we 
may go from A to B in the opposite direction. The straight line 
which joins the centers of the 
two circular bases of the cylin
der is known as the "axis" of the 
cylinder. Thus, when we move 
in the direction indicated by the 
arrow we may say that we move 

~B 
A"/f 
, .... -------' .... 

around the axis in one direction (from left to right), and, if we 
go from right to left, it is in the opposite direction. Which of 
the two directions shall we choose for the shortest route between 
A and B on the side surface of the cylinder? 

Suppose we have 'two points and wish to join these points, A 
and B, with two lines. One must be the line of the shortest 
route from A to B ( or from B to A). Then slit the cylinder 
open along a generator that passes through the point A and 

(J C1 flatten out the surface of the cylin-
B der. The flattened-out surface be-

A 

comes a plane rectangle as shown 
A at left. The point A is represented 

1 twice on this rectangle because it 
D Dl lies on the generator CD, and the 

side surface of the cylinder was cut along this generator; also 
this line or section is represented twice, once as the side CD and 
also as the side C1D1 of the rectangle. Now either the straight 
line AB is shorter than the straight line BA l , or AB is longer 
than BA 1, or the two straight lines are equal in length. 

If the straight line AB is equal to the straight line BA 1 in 
length, the generator that can be passed through the point B will 

B 

A A~ 

D L-__ -1-__ ---lD 1 
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cut the rectangle CC lDlD in half. In other words, a plane 
passed through A and B will cut the cylinder in half also, as 
illustrated. We may think of the plane as a dihedral angle whose 
edge is the axis 001 of the cylinder and whose opening is mea
sured by an,angle of 180 degrees. 

If, however, the line AB is shorter than the line BAI (as shown 
in the drawing of the rectangle) the 180-de
gree dihedral angle becomes folded; that is, 
the points A and B lie on the faces of a di
hedral angle that is less than 180 degrees, as 

. shown in the drawing at left. 
The above illustrations thus show the 

method for determination of the shortest 
route on the cylinder surface. 

The Screw: Industry Spirals Up Its Stairway 

, Let us perform a simple experiment. Around a cylinder wind 
a sheet of paper several times, puncture it at two points, and de
note these points by A and B. Then unravel this paper, letting 
its width be equal to the generator of the cylinder. After the 
paper has been unraveled, the traces of the punctures will appear 
at equal intervals in the plane of the rectangle, which represents 
the paper that was wound around the cylinder. Denote these 

B 1- B 2• B: B: 

-A1 -A 2 -A g eA4 

traces by AI, A 2 , A 3 , and A 4 , and also by Bl , B2 , B3 , and B4 • 

The points given an A notation will all lie on a straight line 
parallel to the base of the rectangle, and the points given a B 
notation will lie similarly. 

Pass through the A points straight lines perpendicular to the 
base of the rectangle. The distance between two consecutive 
lines will designate the extent of the side surface of the cylinder 
each time the paper is wound once around. If the unfol~ed 
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paper were wound once more around, the perpendicular lines 
would all fall on the other. 

Join the point Al and all the B points with straight lines, these 
representing the lines of the shortest route between A land B 1, 

B'"l, B3 , and B4 respectively. This statement may seem strange, 
since, after all, the points Bl, B2 , B3 , and B4 are all traces of the 
same point B, and were obtained when the paper on which the 
point was marked was punctured. How can there be four lines 
of the shortest route? We shall now remove this inconsistency. 

vVhen the paper is wound back on the cylinder the straight 
line AlBl between the straight lines P 1S1 and P2S2 will become 
the line A1Bl-a curved line. The area of the rectangle P1P'lS2S1 
is the area of the side surface of the cylinder; that is, it repre
sents the amount of paper that was used to wind it around the 
cylinder once only. 

Pl P2 

/' 
Let us continue winding the paper around the cylinder. After 

this is done twice, the straight line AIB2 becomes the curved line 
A 1B2 , which goes around the cylinder in a complete revolution 
but does not complete the second revolution, as is shown by the 
drawing below. 

1-'--------_ 
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With winding of the paper three times around the cylinder, 
the straight line AIB3 becomes the curved line of the shortest 
route between the points Al and B3 which goes around the 

,,------

cylinder in two complete revolutions, but it does not complete 
the third. 

The reader will now realize that the straight line AIB4 changes 
into a curved line A lB4 which goes around the cylinder in three 
complete revolutions but does not complete the fourth. The 

lIft] 
straight line AIB5 changes into the curved line AIB5 which goes 
around in four complete revolutions but does not complete the 
fifth. 

In the above illustration, the movement from the points A to 
the points B were from left to right. In other words, the respec
tive lines of the shortest route represent the paths of points re
volving around the axis of the cylinder while moving along the 
side surface of the cylinder from left to right. However, this 
does not exclude the revolution of a point along the side surface 
from right to left. The drawing of these illustrations is left to 
the reader as an exercise. 

The curved lines described in this section represent a type of 
line extremely important in industry, engineering, and many 
other fields. They are known as the "screws." In architecture, 
these lines represent what is commonly called "spiral staircases," 
but the correct word is "winding." 
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Coming around the Cone: Helix, the Spiral Screw 

To examine the lines of the shortest route along the side sur
face of a cone, we may recall the results obtained when we ex
amined the shortest route around a pyramid. The cone IS a 
solid geometric figure closely related to the 
pyramid; in a pyramid the base is a poly
gon, while in a cone it is either a circle or 
an ellipse or, generally, some other closed, 
curved-plane geometric figure. We shall 
confine our discussion to a cone whose 
base is a circle, and our cone will be also 
a right circular cone-a cone such that a line 
from its vertex, when drawn perpendicularly to the base, will 
pass through the center of the base circle. 

We found that in the case of the shortest route on the side 
surface of a pyramid, the difference between the angles made by 
this line with the two neighboring edges of the pyramid is equal 
to the angle between these edges. In the following drawing, the 
side surface of the pyramid is flattened out. The straight line 
AB is the line of the shortest route, and the two neighboring 
edges are SD and SE. We then have L a2 - L al = L CI. 

S 

D 

We can imagine the cone as being generated by a line SR that 
is hinged at a point S above a circle (the line from S to the cen
ter 0 of the circle is perpendicular to the plane of the circle) 
while this line SR slides along the circumference of the circle. 
We then may call the line SR the "generator" of the cone equiva
lent to the cylinder generator. 
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Suppose w« have on the side surface of the cone two points 
A and B. These may be joined with any number of lines, and 
among them will be only one which will be the line of the short

s est route froll). A to B. Let us slit open the 
side surface of the cone, but along a gener
ator that does not intersect the line of the 
shortest route from A to B. Then let us 
flatten out the side surface of the cone; we 

R have a portion of a circle whose center is 
the point S (formerly the vertex of the 
cone) and whose radius is the generatelr of 

the cone. The line of the shortest route from A to B, which is 
a curved line on the side surface of the cone, now becomes the 
straight line AB on the flattened side surface. Let us draw two 

S 

R 

generators SF and SH which cut the straight line AB in the 
points D and E. \Ve then have the triangle SDE. Since in any 
triangle an exterior angle is equal to the sum of the two interior 
angles that are nonadjacent to it, we have 

L a1 + L C1 = L a2" 

and from it that 
L a2 - L a1 = L C1 

The result signifies that for a line of the shortest route on a 
cone the difference between the angle that this line makes with 
two consecutive generators of the cone is equal to the angle be
tween these generators. This resuJt is similar to the one obtained 
in the operation with the pyramid. 
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In the same way we may learn the line of the shortest route 
traversed by a point around the side surface of a cone. In the 
case of the cylinder this motion is described as "double motion," 
the rotation about the axis and the upward 
motion along the generator. In the case 
of the cone it may be described as a com
bination of the rotation about the axis and 
of the upward motion along the direction 
of the generator. The result is a spiral 
screw which mathematicians call "helix." 
The reader will now see why winding staircases should not be 
described as "spiral." 

The Shortest Route on Earth 

We can now consider a trip on the surface of the earth, which, 
we may assume, is approximately the surface of a sphere. \Vhat 
is the shortest route from one point to the other? This problem 
is closely associated with navigation and would determine, for 
example, the shortest route of a ship or an airplane from the 
American continent to Europe or Asia. 

In the case of a right circular cylinder or a right circular cone, 
a straight line may be placed so that it will lie with all its points 
on their side surfaces, when this line is the generator of the cylin
der or cone. This, however, is impossible in the case of a sphere; 
a straight line can touch its surface in only one point. \Vhen a 
straight line touches the surface of a sphere, the line is said to be 
tangent to the sphere. If a straight line is in contact in more 
than one point, it cuts through the surface. However, no straight 
line can have more than two points of contact with the surface 
of a sphere. We can illustrate the relation between a straight 

N 

• 
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line and a sphere with that between a straight line and a circle. 
Any straight'line cuts the circle in two points. Suppose the 
straight line MN cuts the circle in the points A and B. Let us 
assume that this-line is pivoted on. the point A and rotated in the 
counterclockwise direction (to left) . Then the straight line MN 
will occupy many positions, during which B will be approaching 
A. Finally, when B coincides with A, the straight line touches, 
or is tangent to, the circle. A radius of a circle drawn to the 
point of tangency is perpendicular to the tangent line. The 
same is true of a sphere. When a line is tangent to a sphere, we 
may think of the line as the edge of a knife; if we follow the 
direction of the radius drawn from the center of the sphere to 
the point of tangency of the line, we shall cut the sphere into 
halves, and the section will be circular in shape. The circle ob-

tained after the sphere is cut into halves is known as the "great 
circle." Its radius is equal to the radius of the sphere, and its 
circumference is the greatest of all the circumferences of the 
circles that may be obtained by cutting the sphere. The line 
that is tangent to a sphere is tangent to the great circle at that 
point also. Naturally there are many great circles possible on 
any sphere. 

A sphere differs from a right circular cylinder and a right 
circular cone in many respects, but we shall note particularly 
this important difference: We easily flattened the side surfaces 
of the right circular cylinder and the right circular cone, but 
with the surface of a sphere this is impossible. To illustrate, 
puncture a rubber ball so that the air escapes and then try to cut 
it (in any number of parts) so that the surface of the ball is 
spread out flat. In can't be done. 

Through any point on the surface of a sphere any number of 
great circles may b.e passed, as through any point on a plane any 
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number of straight lines may be passed. On a globe represent
ing the earth's sphere the meridians that pass through the poles 
are great circles. A radius of a sphere that is drawn to a point 
where several great circles pass is thus per
pendicular to the tangents to all these circles 
(which all lie in one plane that is tangent to 
the sphere) . We may then think of the great 
circle as performing the functions of the 
straight line in a plane, but would it then be rea
sonable to expect that the line of the shortest 
route between two points on the surface of a sphere should be a 
part, or arc, of a great circle that passes through these two points? 

Yes. The line of the shortest route between any two points 
on a sphere is an arc of the great circle that passes through the 
two points. This is the reason a navigator, when he charts his 
course on a flat map, indicates the shortest course not as a straight 
line but as a curved line which is a part of a great circle. How
ever, we must remember that the earth is not perfectly spherical 
in shape; it is flattened out at the poles and bulges somewhat at 
the equator. Thus on the surface of a sphere we actually have 
only one shortest route between two points, while on the surface 
of the earth we also have only one, but it will differ somewhat 
from the actual great circle of a sphere. However, this is a very 

fine point which need not be dwelt 
upon here. 

To convince ourselves of the correct
ness of our observation concerning the 
shortest route along the sphere, suppose 
that we have two points, A and B, on 
the surface of a sphere located 60 de
grees above, or north of, the equator. 
The arc AB of the small circle (which 

is parallel to the great circle of the equator) corresponds to an 
angle of 90 degrees. vVe chose 60- and 90-degree angles to sim
plify our computations but the reader may use any other angles. 
The facts concerning the points A and B correspond to the state
ment of their latitude (north of the equator) and the difference 
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of their longitudes, our example thus corresponding somewhat 
to an actual situation on the surface of the earth. Note that in 
the drawing we also have the great circle that passes through A 
and B; it is our problem to determine which of the two arcs, that 
of the smaller circle or that of the great circle, is the shorter. 

The radius ST of the small circle (the one parallel to the equa
tor of the sphere) is determined as follows. The point S is 60 
degrees above the equator. Then the right triangle OST (0 is 
the center of the sphere) is a 30-, 60-, 90-degree triangle. The 
angle SOT is equal to 30 degrees. vVe know that in a 30-, 60-, 
90-degree triangle the side opposite the 30-degree angle is equal 
to half the hypotenuse. The hypotenuse of this right triangle is 
the radius of the sphere. If we let this radius be R, then the 
radius ST of the small circle is 0.5R. 

To have a clear picture of the next step in our computations, 
we shall take the two circles that contain the points A and Band 
flatten them out on a plane. They then appear as shown in the 
figure below. The triangle ATB (in the small circle) is a 45-, 
45-, 90-degree triangle. The sides AT and BT are each the 
radius of the small circle, which is equal to O.5R (where R is the 

o 

radius of the great circle. Thus, by means of the Pythagorean 
relation, we have 

AB = yAP +BP 
or 

AB Y (0.SR)2 + (0.SR)2 = Y 2· O.2SR2 
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and, finally, 
AB = 0.5RV2 = 0.5·1.414R = 0.707R 

To determine the length of the arc AB of the great circle, we 
must know the angle AOB formed by the radii AO and OB of 
the great circle. Consider then the right triangle ACO: in it 
we know that AO = R, and AC = 0.5AB. But AB = 0.707R; 
therefore 

AC = 0.5·0.707R 
or 

AC = 0.3535R 

\Ve then have the ratio 

~g = sin AOC, or 0.3535~ = sin AOC 

By means of the table of trigonometric ratios we find that the 
angle AOC is about 21 degrees. Then the angle AOB is about 
42 degrees. 

The circumference of a circle is given by the formula C = 2TTr, 
where r is the radius of the circle, and there are 360 degrees in a 
circle. 

Then the length of an arc of 1 degree is 

2-rrr 
360 

and the length of an arc of k degrees is 

2-rrr· k 
360 

Then the length of the 90-degree arc of the small circle is 

2-rr(0.5R)90 
360 

or 3.~4B = 0.785R, approximately 

The length of the 42-degree arc of the great circle is 

2-rrR·42 
360 ' or 

2-rr3.14R-42 
360 = 0.7 33R, approximately 
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Thus we see that the arc of the great circle is shorter than the 
arc of the circ'le parallel to the equator of the sphere. By fol
lowing the meth9d used above, the reader may take any other 
values for the positions of the points A and B, and check this 
statement. He is cautioned, however, that the foregoing illus
tration is not a technical proof. The actual proof requires the 
use of involved tedious mathematical processes which are of 
minor importance in our study of essentials. The reader will 
have noticed that we computed the value of the sine ratio of the 
angle AOe, and from this ratio computed the value of the angle. 
This is a procedure that may be considered as "reverse" work 
with trigonometric ratios of angles; that is, we have the sine ratio, 
for example, and find the angle that corresponds to it. Compu
tational work of this type is no more difficult than direct work 
(having the angle find its particular ratio), but a mathematical 
manipulation with the reverse process in a proof is far more com
plicated and, in our work, unnecessary. This is one of the curi
osities of mathematics; proof of the almost obvious is often very 
difficult, and sometimes impossible. 



Railroading among the Stars 

Mathematics, Interpreter 
0/ the Universe 

It is a long jaunt from our infantile crawling along the line of 
the plane world, but now we are equipped to take a brief journey 
among the planets as we advance to examination of two funda
mental measures-distance and time-and the mathematical laws 
that concern them in their relation to familiar but little under
stood natural phenomena. 

And we may well note here, as we approach the vastnesses of 
these fields, that the word "law" for our mathematical expres
sions must be considered only as the best available term for an 
actual approximation; exact formulation of such expressions is 
impossible. Also, to establish our program, we must realize that, 
although every object can be definitely fixed in our world by 
means of these fundamental measures, distance and time, even 
the philosophers and master mathematicians have failed to pro
vide a simple definition of them. We have already noted that it 
is more difficult to define an apparently simple familiar term than 
one that is strange and seemingly complex, so we shall profitably 
continue here to view these terms in their generally accepted 
meamngs. 

The fixing of an object in the world around us, the determi
nation of its location in terms of distance and time, reminds us 
of our use of the method of coordinates to determine the position 
of a point in space. Thus the fixing of an object in the world 

609 
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around us actually consists of the selection of proper coordinates 
to give a complete description of this object, not only in space 
but in time as well. When we say that someone was seen stand
ing at the intersection of two certain streets, such a statement 
<,loes not represent a complete description of the incident; to 

make the description complete it is necessary to include a state
ment concerning the time when this occurred. 

Thus it becomes obvious that the world we live in is not only 
a world of spatial dimensions, it includes time as well. Our 
world is a. space-time combination, and any statement concern
ing the location of an object in such a world must contairr infor
mation giving the position of this object in space as well as in 
time. In brief, the coordinates (or a point, as we usually state 
them) must be augmented by one more coordinate, that of time. 

So a point-world being that has no spatial coordinates will 
how have the coordinate which will give information concerning 
its place in time, the line-world being to whom is generally as
signed one coordinate, which denotes his distance from some 
agreed-upon origin, will now have two coordinates, (x,t); the 
plane-world being, the Flatlander whose spatial coordinates are 
(x,y), will now have three coordinates, (x,y,t), and finally, a 
being of the three-dimensional world whose coordinates are 
stated as (x,y,z) will now have the four coordinates (x,y,z,t). 

When we talk about a point (whether it is in a world of one, 
two, three, or of any other number of dimensions) and we refer 
to its spatial coordinates, we refer to something tangible. vVe 
can measure the required distances and can represent them by 
straight-line segments. When we introduce a coordinate that 
refers to time we introduce something that is intangible, since 
time cannot be measured with a yardstick. We measure time 
with specially devised instrument~, but our measurements are 
not direct; we look at the dial of a watch and note some number, 
but we cannot think of it as a distance. This number refer~ to 
some interval of duration. We have the same point as before, 
but when we state its time coordinate we complete the informa
tion concerning it. 
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To distinguish between a point whose spatial coordinates are 
given and one whose spatial coordinates are augmented by a 
time coordinate, we shall introduce a special name for the point 
located in the space-time world-we shall call it the "event." 

The representation of events by means of coordinates does 
not differ in any respect from the representation of points when 
their spatial coordinates are given. Thus a point-world being 
will have one coordinate axis, the axis of time, since a point
world .being cannot move. F or example the event A whose 
coordinate is t is represented as 

-I 
o 

A 
--------1-

t 

and the event A whose coordinate is -t is represented as 

A 
-1-------

t 
1-
o 

The event in a line world has two coordinates assigned to it; 
thus an event A whose coordinates are (x,t) is represented as 
shown below: 

This arrangement of the coordinate 
axes, of the axis OT (of time) hori
zontally and of the axis OX vertically, 
may appear arbitrary, but we shall 
note presently that it offers advantages 
for examination of the problems to 
follow. 

x 

A (:r.t) 
X ------------0 I 

I 
I 

--O~------~~----T 

When we have three points on a straight line (no regard is 
paid to the time element; these are points, not events), one of 
them is located between the other two, and on the right of one 
there is a point, as well as on the left of another, as shown here: 

-1---1 1-
ABC 

Thus the point B is between the points A and C; to the right of 
the point A is the point B, and to the right of the point is the 
point C; to the left of the point C is the point B, and to the left 
of the point B is the point A. 
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When we: have a straight line made up of events we are con
fronted with a similar situation. To avoid confusion we shall call 
the straight lin~ that is made up of events the "time line" (some 
mathematicians call it the "world line"). We shall denote the 
time of the event "now" by o. Thus t = 0 denotes that the 
time of the event is now, and in a similar manner that the event 
takes place "here" by o. Thus the location "here" is denoted 
by the coordinate x = o. If this takes place in Flatland, then 
the coordinates of "here" are 

x=o and y=O 

in the three-dimensional space "here" is denoted by the coor
dinates 

x = 0, y = 0, and z = ° 
Thus in the line world the event "here now" is denoted by 

the coordinates (a,O), and it will always be represented as the 
origin of the coordinate axes. All the times of the events that 
have already passed are thought of as "before now," and all the 
times of the events that are still to take place are thought of as 
"after now." All the values of the "befores" will be negative 
(they correspond to the values of the t's that are to the left of 
the origin), and the values of the "afters" will be positive (they 
correspond to the values of the t's that are to the right of the 
origin). In other words, the past has negative time coordinates, 
the present has a zero time coordinate, and the future has posi-
tive time coordinates. . 

Thus, if we have three events and they are not sirriultaneous 
(their time coordinates are not the same), then one of them must 
have taken place before the third one, and after the first one. 
This fact is represented on the time-coordinate axis as 

A B 

A took place before Band C 
B took place after A but before C 
C took place after A and B 

c 
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There are no situations other than these three. The sequence 
of all the events accounted on the time-coordinate axis thus is 

The Past 

Portrait of a Timetable 

o 
+ 
t 

The present 

+ 
The Future 

The casually accepted railroad timetable is really a very com
plicated work containing information of the time and place of 
the arrival and departure of trains and, often, information of the 
distances between towns and cities as well as other pertinent aids 
for the traveler. 

But there is more to a railroad timetable than the convenient 
and compact collection of information for the traveler: it sym
bolizes the backbone of the organization that solves traffic prob
lems, provides safety in travel, and is generally a mirror of ef
ficiency in operation. Of what use is a timetable if the trains 
depart and arrive in contradiction to it? So the numbers that 
appear in the timetable represent only the final stage of its pur
pose and preparation. 

Primarily such a tab~ presents information concerning certain 
positions of a train as it moves from one place to another, and 
for practical purposes we may consider that the train moves 
along a straight line, that the universe of the train is a line world. 
Since information concerning the positions of the train involves 
also the time, for each position of the train there must be two 
coordinates, its distance from the point of departure and the 
time. Thus for the construction of a railroad timetable we may 
utilize the coordinate axes OX, which will give the distances 
from the point of departure, and aT, which will give the time. 
For practical purposes (and this is customary with railroads) 
the zero for the time is midnight, and the hours of the day are 
counted from 0 to 24 (24 is again midnight). 

Before we proceed with the technique of making up a railroad 
timetable we shall examine the application of space-time coordi
nates to illustration of the motion along a straight line. and here 
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we shall con$ider the simplest kind of motion, that of equal dis
tances traversed in equal periods of time. Moreover, one impor
tant restriction must be imposed here: The direction in which 
this motion takes place does not change; if in our illustration we 
cbnsider the motion of a point along a straight line, this point 
can move either forward or backward. If we choose the for
ward motion, we shall pay no attention to backward motion (as 
a matter of fact, for the present such motion will not be allowed). 

We shall assume that the point under consideration covers one 
unit of distance in a unit of time, and for the moment shall defer 
selection of tlie units. Let us suppose that the point starts out 
from the place on the straight line whose coordinate is x = 0, and 
the time when this takes place registers also 0, or t = 0. Then, 
since the point traverses one unit of distance in one unit of time, 
we may have the following: 

~I 
o 1 2 

o 1 2 

345 6 

3 4 5 6 

7 

7 

8 

8 

In this table the time t denotes in terms of time intervals equal in 
duration the positions occupied by the moving point. We may 
show this information on the line that represents the path along 
which this point moves. Thus we have !line straight lines, each 
giving the successive position of the point: 

x 

t=o 1 2 3 4 5 6 7 8 

However, in drawing individual straight lines we may make 
use of the method of coordinate axes and locate the various 
points whose coordinates are given in the above table as the pairs 
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of the numbers (x,t). Then the various positions of the point 
moving along a straight line will be represented as events in the 
time plane: 

·X 

012345678 

When the point moves along a straight line, its various po
sitions pass through every point of this line. In other words, 
the events shown in the coordinate diagram above are just a 
very few of the infinite number of events that can actually be 
shown. If we decrease the length of the interval of time for 
which the recording was made, 
we can obtain many more pairs X 

8 
of (x,t) , each of these pairs rep-

1 2 345678 

resenting an event. In the final 6 

stage of making the time interval 5 

smaller (we can only think of it; 4 

it cannot be accomplished physi- 3 

cally) we obtain a continuous se- 2 

quence of events, and all of them 
make up the time line of the mov
ing point. Its graph is a straight 
line. That it is a straight line can be seen from the follow
ing; for every event the ratio of its coordinate is x/to From 
the table above we note that this ratio is always the same. If 
we object to the use of this, we may have any other table of 
pairs of numbers giving the coordinates of the successive events 
that correspond to the positions of a point that moves along 
a straight line so that in equal periods of time the same dis-
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tances are covered. Such a table may be represented gener~ 
ally as 

2 3,4 5 6 78 

Here again the ratio for every pair of values of x and t is the 
same; it is a. 

But the reader will recall that when we discussed right tri
angles we found that the ratio y Ix may be considered as the ratio 

y 
of the two sides of a right triangle that 
include the right angle, and this ratio is 
known as the tangent of the angle oppo-

A(x,y) site the side y. Moreover, we found that 
... 1 all angles having the same tangent ratio 

/ I (this holds true for other trigonometric / ly 
... I ratios) are equal; we limit our discussion 

I 
-:O::+--'-x-~B:------X to angles less than 90 degrees. Thus the 

time line of the moving point makes the 
same angle with the coordinate axis OT as well as with any line 
parallel to this axis. Such a line must then be a straight line. 

Construction of a railroad timetable when done graphically 
follows the same principle of drawing the time-line graph of 
a. moving point. The train is assumed to be moving along a 
straight line, and the departure, stopover, and arrival at its des
tination are considered as events. We proceed then as follows. 
Suppose two towns are fifty miles apart, and that every hour a 
train departs from the town A to the town B, also every hour a 
train departs from B to A. It takes one hour and a half to com
plete the trip. Then to construct the graph we draw two parallel 
lines, the distance between them representing the distance be
tween the two towns. _ Since the distances are represented by the 
coordinate axis OX which is vertical, the two parallel lines are 
drawn horizontally. On these two lines at equal intervals the 
hours are denoted. Thus a train that leaves A at midnight (the 
hour is denoted by 0) will arrive at B at 1: 30 A.M. If a train 
leaves B at 12: 30 A.M., it will arrive at A at 2 A.M. However it 
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may be noted from the graph that the second train will meet the 
first train at 1 A.M. about seventeen miles from B. If a train 
makes a stopover, this is denoted on the graph by a break in the 
time line of the train, and the interval of time spent on the stop-

B 0 1 2 3 4 5 6 7 B 9 10 11 1213 14 15 16 17 Ie 19 20 21 22 23 24 
50 

\A 
I 

40 

80 
I 

10 

I 
I r 

II 

20 

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 

over is shown by a line parallel to the horizontal lines. Thus 
the 6 A.M. train from A is shown on the graph to make a thirty
minute stopover fourteen miles from A. 

The drawing above is only an abbreviated sample of what is 
done when a railroad timetable is constructed: this is why only 
a few time lines are drawn in the graph. 

The reader will note that the 10 A.M. train covers the distance 
between A and B in one hour and that its time line is steeper than 
the time line of a train that covers the same distance in one and 
one-half hours. The reason for this will be discussed in the next 
section. 

Timing Straight-Line Motion 

The time line of a point that moves along a straight line can 
tell us a complete story of this motion. We recall that under the 
conditions that govern the motion of the point the point moves 
along a straight line, traverses equal distances in equal periods 
of time, and moves in the same direction. A straight-line motion 
under these three conditions is known as a "uniform straight
line motion." In other words, uniform straight-line motion 
rules out a change in direction, and at the same time imposes 
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the restriction that in equal periods of time equal distances should 
be traversed: Presently we shall obtain a simple term for this 
kind of motion. 

Let us conslder a time line of a moving point, as in the 
drawing. - We found in the preceding section that this time 
line is inclined to the coordinate axis OT, and that the tangent 

x of the angle this time line makes 
with the coordinate axis OT is x/t, 
where x and t are the coordinates of 
any point of the time line. We 
know that the time line may- be so 
inclined to the coordinate axis OT 
that this angle may be small, and it 

--::::-r--:---'----'T may be large, as the magnitude of 
the tangent of such an angle is cor

respondingly small or large. The tangent of a small angle is 
small, and if the angle is larger its tangent also will be larger. 
The values of t (of the intervals of time) do not change, but the 
values of the corresponding x's may change. If the value of x, 
the distance that the point traverses in equal periods of tim.e, is 
small, the value of x/t is also small. But the distances traversed in 
equal periods of time are large, the value of x/t will be very large. 
Thus in the drawing below the time lines OA, OB, OC, and OD 

X D 

B 

A 

--~~---------------------T o 

correspondingly represent points whose x/t are arranged in the 
order of increasing magnitude. 
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If a point is stationary, then its time line is parallel to the coor
dinate axis OT unless this point is "here" at the origin; in this 
case the coordinate axis OT would be its time line. 

x 

AI------~B 

--+---------T 
() 

If a point is stationary for a while, then suddenly begins to 
move, its time line is a combination of two lines, the first portion 
parallel to the coordinate axis OT and the second inclined to 
this axis. 

x 
c 

Af----"B' 
--+--------T o 

If a point moves so that for a certain period of time it traverses 
during equal periods certain distances, all equal, and then sud
denly these equal distances either increase or decrease, the time 
line of such a point is also a broken line as shown below. 

x 

A 

o 

c c 

A 

--'o~----- T 

A point may move first forward and then backward to break 
the direction of its motion. This may also be coupled with a 
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change in the length of the distances traversed in equal periods 
of time. The time lines representing such a motion are shown 
below. 

x x c 
B 

B 

~O+-------------T ~-------------T o 

If we consider the expression x/t where x is the coordinate of 
the moving point and t is its corresponding value of time, we 
also note that for every value of t the value of x that corresponds 
to it represents the distance of the moving point from the origin, 
its point of departure. Then x/t in general represents the ratio 
of the distance covered to the time that ii took to cover that 
distance. Also, since the distance covered during some known 
time interval is the same for any other equal time interval, di
vision of the numerical value of the distance covered by the 
numerical value of total time gives us the magnitude of the 
distance covered during one unit of time. This new value is 
known as the "speed" of the moving point per unit length of 
time. If we consider also the direction of the motion, we have 
the "velocity" of that point. In other words, speed and ve
locity are represented by the same number, but velocity is 
speed + direction. 

We then have the formula 

x t = v 

and this is the equation of the time line of a moving point when 
its speed and direction are both constant. Generally, the dis
tance is denoted by the letter d; we have then 

d t = v, and d = vt 
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By 'this formula we may compute the distance covered if we 
know the velocity per unit of time and the time that it took 
to cover that distance. For example, if an automobile travels 
at the rate of thirty miles an hour, in two hours it will cover 
30·2 = 60 miles. 

The equation 
d = vt 

corresponds to the time line of a point whose starting place is 
the origin. If the starting place of the point is not the origin, 
but a point whose distance from the origin is a units of length, 
the equation is 

and its graph is 
d - a = vt 

x 
B 

A 
a 

~+--------------T o 

If the moving point starts from the oflgm, but b units of 
time after the recording of time was begun, the equation is 

d = v(t - b) 

and the graph of the time line is 

X 

B 

~O~b~AL---------T 

There is only one line in the plane of the coordinate axes OX 
and OT that is meaningless. As the velocity of the moving point 
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increases, :the time line becomes more steep, but it never can 'be-
X B come perpendicular to the coordinate 

axis ~T. A time line that is perpen
dicular to the axis OT represents an 
infinitely large velocity. However, it 
is known that no velocity can be 
greater than the velocity (or speed) of 

--::O+--A..I------T light, wHich is about 186,000 miles a 
second. Thus the line AB that is per

pendicular to the coordinate axis OT does not represent any-
thing that is physically possible. . 

The Algebra of Speed 

Suppose a point moves along a straight line so that its speed 
changes frequently. We shall not consider for the moment the 
law under which such changes take place, but rather let us ex
amine the shape of the time line of a 

X point moving under such conditions. 
In the accompanying graph we have f -----_________ F 

a broken line. Each of the straight 
lines composing it represents a time 
line of the moving point for which d ------c--- D 
the speed is the same, or constant. C -------

The reader may observe the various l---B 
changes in the speed of the moving -o.,,+--------T 
point as he examines this graph. 

If the velocity of the moving point changes from time to time 
-that is, the direction as well as the speed changes-the time line 
of the moving point is also a broken line. But in contrast to the 
time line of a moving point whose speed changes, this time line 
does not show a persistent climb. \Vhen the point changes the 
direction of its motion, moving in the opposite direction along 
the straight line, the direction of the time line changes also. This 
is shown in the drawing below. The direction of the time line 
CD indicates that from c the point moves backward. The di-
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rection of the time line DE indicates that from d the point re
sumes its forward motion. 

If the velocity of the moving point X 
changes continuously, the broken time G 

line is represented by an infinite num- g 

ber of very short straight lines which 
finally smooth out into a curve, as il
lustrated below. 

Originally we imposed a restriction 
on the motion of a point along a --::+---_____ T 

straight line; we insisted that its speed 0 

be constant. Then we introduced the notion of velocity, but 
still, even if the direction of the motion of the point were al
lowed to change, we did not remove the restriction concerning 

X the magnitude of the speed. Now 
let us assume that the speed is al
lowed to change but only so that 
for every equal interval of time 
(in duration) the change is the 
same. Thus, if the speed of the 
point during the first second is 

--:::t----------T one inch per second, then we may 
o allow this speed increase at the be-

ginning of each succeeding second, say by two inches. Thus 
we have the following speeds at the beginning of each succeed
ing second: 

-: -[ ~ ~ : ~ : 1: 1: 1: 1~ 
The increase in speed is known as "acceleration." If the mag

nitude of the acceleration is the same for intervals of time of 
equal duration, the speed is said to be "uniformly" accelerated. 

The increase in speed (or velocity) as illustrated above is 
generally artificial. The table of values implies that the increase 
takes place suddenly at the beginning of each interval of time; 
actually the acceleration takes place continuously. To derive 
an expression that would state the relationship between the dis-
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tance traversed by a point moving along a straight line with uni
formly accelerated speed and the time. it would take to cover 
this distance, it is necessary to examine what happens to this point 
when the time intervals become very small. 

Let us suppose that a point begins to move (it is first at rest), 
and moves for t seconds; at the end of t = 1/n seconds the ac
celeration is c units of distance. Also let us suppose that each 
second is divided into n intervals and that the acceleration for 
each interval (which is lin seconds in length) then is c. The total 
acceleration is t 

c = a·
n 

for t intervals when the acceleration for each interval is a. Thus 
each change in speed is c for each period, and since the point 
starts at rest we have the following values of the speeds at the 
end of each small period, each equal to tin seconds in duration: 
the speed is: 

After the first period of time. . . . . . c 

After the second. . . . . . . . . . . . . . . . c + c = 2c 

After the third. . . . . . . . . . . . . . . . .. 2c + c = 3c 

until we reach the last period of time. 
The distance traversed by the moving point is: 

After the first period of time (which is ~ 
n 

seconds long) ......................... . 

After the second period .................. . 

After the third period .................... . 

Finally, after the nth period of time ....... . 

Then the total distance traversed by the moving point is 

d = c (~) + 2c (;) + 3c (~) + . .. + nc (~) 
= (1 + 2 + 3 + ... + nJ c (~) 
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The sum in the brackets can be obtained by means of the formula 

n(n + 1) 
2 

because 1, 2, 3,. ., n is a sequence known to us as the "how
much" ladder. 

Then 

But we have 

d = n(n + 1) . ~ c 
2 n 

t 
c = a

n 
Then we have finally that 

d = nen + 1) . ~ . a . ~ 
2 n n 

or 
d = at2 . en + 1) 

2 n 
But 

en + 1) = 1 +_! 
n n 

Now, if n is allowed to become infinitely large, Un becomes 
very small, and it may be discarded. Then we have finally that 
the distance traversed by a point moving with a uniformly ac
celerated speed is given by the expression 

d = !at2 

The value of a is then obtained from this formula as 

2d 
a = t2 

This signifies that the acceleration is measured as per the square 
of the time, and we usually state that the acceleration is so many 
units of length per second square, or per second per second. 

If we know the magnitude of the acceleration, we may com
pute the velocity at any given time, as well as the distance tra
versed during a given interval of time. Thus if the acceleration 
is a = 4 feet per second square, then in the first second the dis
tance covered is 2 feet, and during the second second, 8 feet. 
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The graph of the time line of a point moving with a uni
formly acc'elerated speed is a parabola. The reader will recall 
that we obtained the equation of the parabola as y2 = 4ax (see 
Chapter 24). -

D 

--~O~-------------T 

Speed on the Curves 

Now we shall remove the restriction that a point can move 
along a straight line only. 

Suppose a point moves freely within a plane in Flatland. It 
may move along a straight line and its path may be some curved 
line-a circle, an ellipse, or any other curve. To account for 
the time we must have three coordinates for every point on the 
time line; thus we have a counterpart of the three-dimensional 
coordinates. Two of these coordinates are x and y, and the 
third is t. \Ve need not dwell on examination of the new kinds 
of time lines; since everything that was said concerning the time 

T y 
lines and their properties thus far is 
equally applicable to time lines for mo
tions in Flatland. 

If a point moves along a straight line 
in Flatland its actual path is a straight 
line in the plane of the coordinate axes 
OX and OY. But the time line of this o "---------x 
moving point is a straight line (if the 

motion is with a uniform speed or velocity) that is inclined to 
this plane, as shown in the drawing at left. 

Thus the straight line AB is the path of the moving point, 
usually called the "orbit," and the straight line AC is its time line. 
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If the orbit of a moving point is a curved line, however, then 
its time line is also a curved line as shown in the accompanying 
drawing. 

Uniform speed implies a motion with constant speed along a 
straight line. If a point moves along a curved line, even if its 
speed is always the same, the direc- T y 

tion of the motion changes, and 
such a motion also is known as ac
celerated. The reason for this clas
sification is that the motion along a 
curved path is usually considered as 
a combination of two separate mo
tions along two straight lines paral- X 
leI to the coordinate axes OX and OY. When a point moves 
along a curve it seems to have a tendency to continue along a 
straight line and fly off the curved path, but there always is 
something that pulls it back onto the curved path. The break
ing up of this straight-line tendency into two motions along 
the two parallel lines shows that the magnitude of this straight
line fly-off speed changes from place to place on the curve. This 
is seen from the drawing below. The velocity at the point A is 
shown by the line tangent to (touching) the curve. Then there 
are two velocities, one parallel to the coordinate axis OX (it is 
denoted by vJ) and the other parallel to the coordinate axis OY 

y (denoted by Vy). These two ve-
locities are known as the "compo
nents" of the velocity along the 
curve, which is assumed to be the 
velocity of the tendency to fly off. 
Since the two component velocities 
are represented by two perpendicu

-o-+--------K lar lines (we should remember that 
the coordinate axes are perpendicu

lar to one another), we have by means of the Pythagorean re
lation that 



628 Mathematics-Its Magic & Mastery 

Why Don't:W e Fly Off into Space? 

Of the many possible motions along curved orbits in a plane, 
we shall consider the motion along a circle with a constant ve
locity. The reader should note that we do not use the word 
"speed" here because the direction of the motion constantly 

changes. Study of this motion 
along a circle reveals a hint to one 

T of the most important theories of 
natural phenomena, Newton's 
theory of gravitation. 

u~------------------~x 

First we shall note that the time 
line of a point moving along a 
circle with a constant velocity is 
a winding screw-curve, such as 
we examined in Chapter 34. 

When a point moves along the circumference of a circle, it 
has a tendency to leave its path and continue to move along a 
straight line that is tangent to the circumference of this circle. 
Since the point continues to 
move along the circumference 
of the circle, there must be some
thing that causes it to "stay put" 
on its orbit. This situation is 
very similar to the motion of the 
earth around the sun, that of the 
moon around the earth, and even 
that of ourselves as the earth 
rotates on its axis. 

F' 

As a point moves along the circumference of the circle whose 
center is 0, at some point A it tends to fly off in the direction 
shown by the arrow. We shall assume that the magnitude of 
this intended velocity is v (which is actually the velocity along 
the circumference of the circle, as it soon will be shown). At 
another point B the same tendency is observed. Now let us sup
pose that the arc AB corresponds to an angle 1. We may as
sume that we can draw the velocity at the point A from the 
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point B (we retain the same direction; that is, BC is parallel to 
AF). Then we may explain the fact that at the point B the 
direction of the tendency to fly off is BD because BC is pulled 
by CD = a. As we make the angle 1 smaller this may and does 
happen; the moving point is pulled. Moreover, as the angle 1 
becomes very small the direction of the pull is toward the center 
o of the circle. We also know that as the angle 1 becomes very 
small we may replace the arc AB by the straight line AB = d. 

We also note that the two triangles ABO and BCD are both 
isosceles and are similar because AF is perpendicular to AO, and 
BD is perpendicular to AO, and BD is perpendicular to OB, and 
therefore the angles marked 1 are equal. Then we have that 

CD AB 
}3C AO 

Recalling that CD = a, BC = 'V, AB = d, and AO = r, we have 

a d 
v r 

Now the distance d may be supposed to be covered in t sec
onds; then d = 'Vt, a = ht, the total acceleration (this is the name 
for the pull), and we have 

bt vt v2 
or b = -

v r' r 

where 'V is the velocity along the circumference of the circle and 
r is the radius of the circle along the cir
cumference of which the point moves. 
This expression gives us the "centripetal 
acceleration," the pull toward the center 
of the circle which prevents the point 
from flying off along a tangent. 

If this centripetal acceleration were 
suddenly eliminated, or if the earth were 
suddenly to stop revolving on its axis, we 
would fly off into space along with every
thing else on the earth's surface. If the sun should stop pulling 
the earth toward it, the earth also would fly off into space alo;}g a 
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tangent to its own orbit. On the other hand, if the sun were still 
pulling the earth but the earth stopped moving around the sun on 
its orbit, we would immediately hurtle headlong into the sun and 
perish. How all this operates, what is the magnitude of the pulls, 
and how they are measured will be discussed now. 

What Makes the Universe Hang Together? 

The universe, to which are related the sun and its planets (in
cluding the earth), the stars, meteors, comets, and all other ob
jects filling it,is quite empty. It has no up, no down, no right 
side, and no lett side. Still this universe as a whole represents a 
very orderly collection. The objects that fill it seem to hang in 
space, although they have no visible supports that would help 
them to keep their places. These objects do not fall suddenly 
into the bottomless abyss that is the universe. There is some
thing, however, that prevents such disasters; what is this mys
terious power that keeps all these objects where they are? 

Moreover, if each star and each planet were considered 
separately, we might ask the same question justifiably. We 
know that the earth has a solid core (what is inside underneath 
this core is anybody's guess), but the sun and the stars are all 
made up of gases. A gas is a very flimsy substance, although in 
the case of some stars one cubic inch of it may weigh several 
tons. We may also refer to the earth's atmosphere, but this, too, 
is a gas. vVhy doesn't the gas that makes up the sun, the stars, 
and the earth's atmosphere fly off into space? vVhat keeps the 
sun or the stars together? We know that a whiff of smoke 
rising from a chimney or from a smoker's pipe quickly disap
pears; if it is impossible for us here on earth to have a ball of 
smoke, would it be possible somewhere in space outside the 
earth? 

To answer these questions, we must go back several centuries. 
In 1543 a Polish monk, Copernicus, announced his theory that 
the earth and all the other planets revolve around the sun in 
circles. Early in the next century in Bohemia the astronomer 
Kepler formulated three laws which not only laid the founda-
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tion of theoretical astronomy but are so general that (as far as 
the statements of relationship connected with them are con
cerned) they have influenced other branches of pure science. 
These laws are, in a simpler formulation, that the planets move 
in circles, and the sun is at the center of the circle; that the radius 
drawn from the sun to a planet sweeps equal areas in equal 
periods of time, and that the cubes of the diameters (or radii) 
of the circles are proportional to the squares of the periods of 
revolution (of the planets). These laws are applicable not only 
to the stars, the sun, and the planets, but, for one example, to the 
motions of electrons in atoms, though with some modifications. 

According to this second law the planets are assumed to move 
around the sun in circular paths (orbits) with a constant speed. 
We have obtained a very important relationship concerning the 
motion along the circumference of a circle, namely 

v2 
g = -

r 

which is the centripetal acceleration that holds the point on the 
circular path. In this formula the v represents the speed of the 
point, and r, the radius of the circle. 

If it takes t units of time for the point to complete one revo
lution, then the speed is 

27fr 
v =--

t 

where 2rTr is the circumference of the circle. Substitute this 
value of v in the formula for the centripetal acceleration and we 
have 

According to the third law of Kepler, by which the ratio of 
the cube of the radius of the circle to the square of the time of 
revolution, r3 /t2 , is the same for all the planets; that is 

r3 
? = k 

or r k 
f2 r2 
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The reader may check this relationship by the table below, giv
ing the values 'in terms of the average distances from the earth to 
the sl1:n and of a _period of one year. 

Planet 

Mercury ............ . 
Venus .............. . 
Earth ............... . 
Mars ............... . 
Jupiter. ............. . 
Saturn .............. . 
Uranus .. -............ . 
Neptune ............ . 
Pluto ............... . 

Distance 
jrom the Sun 

0.387 
0.723 
1.000 
1.524 
5.203 
9.539 

19.191 
30.071 
39.000 

Period oj 
Revolutions 

about the Sun 

0.24 
0.62 
1.00 
1. 88 

11.86 
29.46 
84.02 

164.8 
249.2 

The reader is warned, however, that the formula r3/t2 = k is not 
an exact statement of the law, nor is the law as stated above 
exactly expressed. At best it is an approximation, and at no 
time will the reader obtain the value of k = 1 (which should 
be expected since for the earth 13/1 2 = 1). However a value of k 
sufficiently close to 1 is a fairly good check on the correctness 
of the third law of Kepler. 

Substitute k/r2 for the value of r/t2 in the expression 

47[2r 
g=T 

and we have 

This result shows that the centripetal acceleration, the pull 
toward the sun, does not depend on the speed or size of the 
planet. It does depend, however, on the nature of the sun; the 
value of k may be somehow related to it. It depends on the 
distance of the planet from the sun, and it decreases with the 
square of this distance: This decrease with the square of the 
distance is an interesting phenomenon; for example, a similar 
decrease is in effect when we examine the strength of illumina
tion. Illumination decreases with the square of the distance of 
an object from the source of light. 
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The last result gives us a hint concerning what holds the 
planets in their orbits. Two separate factors contribute to this: 
(1) the fact that the planets move around the sun and (2) the 
fact that the sun pulls the planets toward it. But this is only a 
hint. In the next section we shall delve into this more deeply. 

The Democracy of a Tumble 

It would take us too far afield if we attempted to examine all 
the laws and relationships that express the natural phenomena of 
weight, but we can progress far by accepting some of the funda
mental facts. It is about three hundred years since the Italian 
scientist Galileo discovered that a body dropped from a height 
does not fall all the way the same speed. Its speed increases as it 
falls; the motion of a falling body is thus a uniformly accelerated 
motion in a straight line. Galileo discovered that all objects 
dropped from the same height, regardless of their size, shape, or 
any other characteristic, reach the ground simultaneously (there 
may be some discrepancy due to air resistance but, if the resis
tance of the air is eliminated, Galileo's observation is correct). 
In other words, falling bodies are affected only by the pull 
toward the earth. 

However, when we raise an object from the ground, we ex
perience something called the lifting of a definite weight. More
over, not all objects are equally heavy; what makes one object 
heavier than another? 

If we have some substance and then take twice as much of it, 
we say that the second amount weighs twice '1S much. Thus 
we may come to the conclusion that weight depends on the 
amount of substance. This amount of substance we call mass, 
and it is denoted by the letter m or M. When we lift this mass 
we must overcome the gravitational pull of the earth, which tugs 
with equal force each unit of the mass. This pull is denoted by 
the letter g. Now, if there are m units of mass, the pull toward 
the earth is the product of m and g. This product is known as 
the measure of weight, 

weight = mg 
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and, when an object of mass m rests, its downward pressure, or 
weight, is therefore m· g = mg. In other words, the heaviness 
of an object depends upon the value of the product of its mass 
and the gravitational pull exerted .on it. 

Another important measure we shall use is very similar to 
weight. Suppose an object is at rest; to disturb or set it in mo
tion we must apply some external or outside force to it. H a 
body is moving and we apply a force to it, it may either change 
its direction or move faster ( or slower, depending upon how this 
force is applied), or both. This application of force causes a 
change in the velocity of the object (when the object is at rest 
its velocity is zero). Thus force may have something to do 
with acceleration. Moreover, if this force is applied by means 
of some other object, the weight of the object controls the mag
nitude of the force. An object that weighs twice as much as 
another (that is, an object whose mass is twice the mass of an
other) will produce a force twice as great, and the change in 
the velocity of the object to which this force is applied (which 
is denoted by a) is thus proportional to the amount of mass. \Ve 
have then the relation 

force = j = ma 
where f is the force. 

H force is applied for some length of time, say t, we have the 
total amount of force used up equal to ft. This total force may 
be applied instantaneously, and the same effect is attained. Note, 
however, that 

but 

then 

jt = mat 

at = v (vis the velocity) 

jt = mv 

which means that the total force used up during the time t is 
equal to the product of the mass of an object (which is used for 
the application of the force) and the velocity of that object. 

A Multiplicatim; Table for Physical Relations 

To save time and labor, a multiplication table which gives us 
all the necessary formulas for the various physical relations is 
given below. This table is constructed on the same plan as that 
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of any other mathematical table. The formula for any relation
ship or physical property whose name appears in a certain cell 
is obtained as the product of the letters that head the vertical 
column and horizontal row to which this cell belongs. The 
reader may have noticed that all the formulas obtained in the 
preceding sections were finally stated as products of some fun
damental quantities. For example, the formula for the distance 
traversed by a point moving with uniform constant speed along 
a straight line is 

d = vt 

where d is the distance traversed, v is the speed (also it may be 
considered as the velocity), and t is the time during which the 
distance d was covered. 

ML'LTIPLICATION TABLE OF PHYSICAL RELATIONS 

Distance Velocity Acceleration Time Mass Force 
d v a t m f 

----- --------- --------
Distance v' K= 

mv' 

d 
-- -- T -- -- 2 

(Work) 
--------------

Velocity -- 2ad -- d ft P = !5. 
(Impulse) t v (Power) 

AcceleratioL l,12 v f 
:2 -- --

( Velocity) (Force) 
--

a 
----------- ---------

Time d 2d mv 
v (Amount -- (Distance) ( Velocity) - --

t a of motion) 
---------- ~--- -----

Mass -- ft f -- -- --
m (Impulse) (Force) 

------ --.~---

mv' p= !f mv 
Force K=- -- (Amount -- --

f 2 t 
of motion) (Work) (Power) 

Those cells that contain no formulas or expressions indicate 
that the product of the headings of their corresponding columns 
and rows have no meaning, but generally QY means of this table 
it is possible to solve those problems in which the various physi
cal and mechanical relationships stated in it are involved. 
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Since all.mechanical and physical problems (when considered 
from the practical point of view) involve measures, it is impor
tant to have a clear idea of what measures are involved and to 
select the proper unit of measure. Generally, two systems of 
measures are used. In one, the units are the foot and the pound; 
in the other, the gram and the centimeter. Any multiple of 
these is permissible; instead of the gram we may use 1,000 grams 
or the kilogram, and instead of the centimeter we may use 100 
centimeters or the meter. Thus "work," K = fd, is the product 
of a distance and force. Force may be expressed in pounds and 
distance in feet. Thus work is measured in terms of a "foot
pound." However the reader is warned that if the fundamental 
unit is used in one part we do not use a multiple of the other 
unit. Thus force would never be expressed in terms of a foot
ton, or in terms of a mile-pound. 

Some of the expressions in the above table need further ex
planation. If a force is applied constantly to a moving object, 
or throughout a certain distance, the product of the force and 
distance represents the work performed. Thus 

But 

then 

fd =K 

f = ma, and 
v2 

ad =--
2 

mv2 
fd = mad = ~ = K 

2 

Since the work performed through the distance d requires 
the time t for this, the amount of work in one unit of time is 
Kit. and this may be considered as applied instantaneously. 
Thus P = Kit is the measure of the rate at which work is done. 

The reader will recall also that the expression for the cen
tripetal acceleration, the pull exerted on a point moving at a 
velocity v along the circumference of a circle whose radius is 
r and is v2/r. Since 'the expression for force is f = ma; the ex
pression for force that keeps an object with a mass m along the 
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circumference of a circle, when this object moves with the ve
locity v, is 

mv2 
j=-

r 

. We shall now apply these facts to the final examination of 
"what makes the universe hang together?" 

What Came First, the Chicken or the Egg? 

The ancient question about the chicken and the egg has caused 
controversies since it was first proposed. A chicken certainly 
hatches from an egg, but to have a 
chicken we must first have an egg. 
On the other hand, to have an egg 
we must have a chicken to lay it. 
Thus we are in the vicious circle as 
to what came first. The answer to 
this puzzle may be: It all depends 
how you look at it. However, we 
are about to force another problem 
no less puzzling. 

When a point moves along the circumference of a circle with 
the velocity v it stays on the circumference because it is pre
vented from flying off its path by centripetal acceleration, ex
pressed as g = v 2/r, where r is the radius of the circle. 

In the case of the planets which move around the sun, we 
found that the acceleration is 

where 

which represents the statement of the third law of Kepler. 
The value of k is the same for all the planets and it depends 

on the nature of the central object around which they move, 
that is, the sun. If the radius of the moon's orbit is R, and the 
period of the revolution of the moon about the earth is T. we 
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have k = R31T2, and in this case k depends on the nature of the 
earth. Let us substitute this value of k in the above expression 
for g. We have then 

Now for the moon T = 27 days, 7 hours, 43 minutes, and 12 
seconds, or T = 2,360,592 seconds. 

We may take this value as correct to three significant places, 
T = 2.36.106 seconds. Also R = 60.1r, approximately, or the 
distance of·the moon from the center of the earth is about 60.1 
radii of the earth. The radius of the earth is about 4,000 miles, 
or 4,000· 5,280 feet. Then the radius of the earth is approxi
mately 

r = 4,000·5,280 = 21,120,000 feet 

or, rounded, r = 2.11.107 feet. 
Substitute the above values in the expression for g. We have 

then, after all the necessary cancellations, that 

_ 4· (3.14)2. (60.1)32.11 _ 32 f d2 ' 
g - (2.36)2.105 - eet per secon , approxlmately. 

In centimeters this is g = 981 centimeters per second2• 

The moon is kept on its orbit because the earth pulls it; that 
is, the moon is forced to fall toward the earth, but the moon 
does not fall toward the earth; it stays in its orbit because it has 
a motion of its own. Which of these two phenomena takes 
place first? If the reader can find a satisfactory answer to the 
question concerning the chicken and the egg, he will find no 
difficulty in answering this question also. Perhaps a satisfac
tory answer will be that the two act at the same time. However, 
the moon is approaching the earth and there will be a time when 
it will approach it so dangerously close, thousands of years hence, 
that the earth's forces will tear the moon apart. 

Flatfoot to tbe Universe: Gravitation 

We still have not fully disclosed "what makes the universe 
hang together." There is another side to this problem: If the earth 
pulls the moon, the moon pulls the earth also; in other words, 
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the earth has a tendency to fall toward the moon. Witness the 
tides; they are caused by the moon. 

We found that the earth (whose mass is M) exerts a pull on 
the moon with a force 

(R is the radius of the moon's orbit, and k depends on the nature 
of the earth.) If the mass of the moon is m, then the moon pulls 
the earth with a force 

(here K depends on the nature of the moon, and R is the same 
as above.) Since neither the moon nor the earth fall on one 
another, we may assume that these two forces f and F are equal, 

or 

From this we have 

41l"2k 41l"2K 
M·---=m·---R2 R2 

Mk =mK 

K k 
.LVI m 

which signifies that these ratios are the same for the sun and 
other bodies as well as for all the planets. 

Let us denote the ratio 

We have then 

and 

K 
M 

K( k) C - or- by-
M m 41l"2 

k C 

m = 41l"2' 

Then the expression 
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after 4rr2 k is replaced by em, becomes 

f = c(~Af) 
This. expression is the mathematical statement of Newtori's law 
of general gravitation.' According to this law two bodies (they 
need not necessarily be planets) attract each other (pull toward 
the other) with a force that is proportional to the product of 
their respective masses, and this force decreases with (or, as we 
usually say, is inversely proportional to) the square of the dis
tance between th~m. If the earth and the sun were twice as far 
away from one another, the pull they exert on one another 
would be four times less than it is now. 

Thus objects are kept together because gravitation operates 
between them. Planets move around the sun for the same rea
son. The sun is kept in its course because it has a motion of its 
own. Gravitation operates throughout the entire universe and, 
as a result, some orderliness exists in the almost infinitely vast 
collection of stars. Gravitation also operates inside that pigmy 
universe, the atom. Even here gravitation is such a stout cham
pion of the established order that it takes a scientific blitzkrieg 
to smash the atom and release its imprisoned energy. 
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What Happens When You Pull the Trigger? 

In ancient times men fought with weapons that required the 
use of man power to make them effective. The sling, the bow 
and arrow, the catapult, and many other weapons that threw 
projectiles at a target required the application of force. The 
man who could throw a stone the farthest was just as valuable 
then as a long-range gun is now. 

Since the invention of gunpowder (and this occurred not in 
Europe but in China where the Chinese used it more for fire
works and fun than for laying low their enemies), man power 
has been replaced by chemicals, and the forward march of deadly 
weapons has been marked by greater fire-power, longer range, 
and increased destructiveness. Even now, the limit to man's 
inventiveness is not yet in sight. 

Gunpowder is an unstable chemical. Some substances are 
stable, that is, they resist any outside force and considerable ef
fort is needed in order to break them up. This effort may be 
in the form of fire, electricity, and other means. Some chemi
cals or mixtures of chemicals such as gunpowder need only a 
slight jar or a little heat to set them off. Then they burn almost 
instantaneously, or "explode," and the gases that are formed ex
pand in a terrific blast of energy. It is this bursting power of 
the suddenly released gases that hurls the projectile through the 
gun barrel. 

641 
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The making of gunpowder (which is now generally classified 
, as an "explosive") is nowadays an important branch of modern 

industry in peace as well as war. Explosives are useful in build
ing, mining, and excavating. vVe shall concern ourselves mainly 
with the application of explosives to war machines. In passing, 
however, we may note that explosives actually do more con
structive than destructive work even during wartime, as becomes 
obvious when we realize that nearly all transportation and much 
industry runs on the exploding power of gasoline or other fuels. 

When powder explodes in a gun, 
the sudden expansion of a great quan
tity of extremely hot and active gases 
exert a force that gives the projectile 
a velocity that sometimes reaches 
3,000 feet per second and a pressure 
that may be over 20 tons per square 
inch, as is the case with the six-inch 
gun. 

Gunpowder may be converted into 
gas by simple explosion or by detonation. In a simple explosion 
the rate at which the explosive is decomposed is comparatively 
slow. A grain of black gunpowder, ignited in open air, will burn 
at the rate of about a half-inch per second. When some gun
powder is sprinkled into a thin line, it will burn in open air at the 
rate of about 14 inches per second. On the other hand, detona
tion is almost instantaneous, its speed sometimes being at a rate of 
3.75 miles per second. Actual observations revealed some inter
esting facts concerning the power that is generated by detonation. 
When a rifle is fired, the powder is actually detonated. The 
speed that is imparted to the bullet by this detonation is consid
erably greater than any speed attained by the fastest airplane. 
The velocity with which a bullet leaves the muzzle of a rifle 
(known as the "muzzle velocity") is not the same for all guns. 
It depends on many things, such as the amount of the powder 
detonated, known as the "charge," the size and the weight of the 
projectile, and finally the length of the barrel of the gun. 
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Below is a table of values for the pressure, the corresponding 
velocities, and distances passed by a bullet in the barrel of a gun. 
The reader should understand that the values given here would 
not apply for any other gun. They are recorded numbers. 
However, the information that is obtained from this and other 
tables is very important, especially for those whose interest is 
gunnery and its industry. 

Distance Passed in 
Barrel of Gun 
in Centimeters 

2 
4 
6 
8 

12 
26 
34 
42 
50 
58 
67 

Pressure in 
Atmospheres 

(1 kilogram per cm. 2 ) 

1,934 
2,450 
2,850 
2,804 
2,487 
1,413 
1,056 

812 
640 
520 
416 

Velocity of Bullet in 
Meters per Second 

139 
245 
361 
414 
518 
694 
751 
792 
823 
847 
865 

Note that up to a certain time the pressure increases, then it 
begins to fall. The highest pressure is reached about 6 centi
meters from the chamber. On the other hand, the velocity of 
the bullet increases constantly. First the increase is markedly 
great, but about halfway in the barrel the rate of the increase 
begins to diminish. However, the muzzle velocity of the bullet, 
which is some 865 meters per second, is equivalent to about 1,935 
miles an hour. And this is not the greatest muzzle velocity of a 
rifle bullet, for with modern guns velocities up to 1,700 meters 
per second (or about 3,850 miles per hour) have been observed. 

The information given in the above table is shown below in 
graphical form. There are two curves in this graph. From this 
drawing the reader will observe how the pressure and the ve
locity of the bullet change. 

It should be understood also that the value of the initial ve
locity, that is, the muzzle velocity of the bullet as given in the 
above table, as well as all the other values for muzzle velocities 
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given above, are for velocities in vacuum. In air, the initial vee. 
locity of the bullet is considerably less, owing to air resistance 
which may reduce this velocity by as much as 20 per cent. 
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Atmospheric pressure of 1 kilogram per square cm. is equivalent to a pressure of 
14.32 pounds per square inch. 1 cm.·= 0.394 in., 1 meter = 3.28 ft. = 1.094 yards 

How Strong Is a Bullet? 

In this as well as in the following sections we shall make use 
of the results obtained in Chapter 35. The reader may consult 
the multiplication table of physical relations given in that chapter. 

A flying bullet that leaves the rifle with a certain velocity (we 
should remember that a bullet has a weight of its own) carries a 
certain amount of force. The extent of this force can be judged 
from what a bullet can do. We know that a bullet has penetra
tion power and can shatter some very solid materials, but just 
how much damage can it do? 

When a bullet strikes some obstruction in its path, it uses up 
some, if not all, of its velocity. Thus, in order to overcome the 
obstruction the bullet must perform some work. Now we al
ready know that the formula for work is 

mv2 
K=-

2 
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By means of this formula we can compute the capacity of the 
bullet to perform work, that is, the amount of energy the bullet 
carries as it leaves the muzzle. 

Suppose that the bullet weighs 10 grams. We have obtained 
the formula for weight in terms of the mass of an object and the 
value of acceleration due to gravitation (g = 981 centimeters 
per second2 ): weight = 71lg (see Chapter 35). We have then, 
if the weight is denoted by w, 

w w 
m = g' or m = 981 

or, in terms of meters (1 meter = 1,000 centimeters), 711 = 
w/9.81. In order to simplify our computations we shall use 10 
instead of 9.81, the discrepancy being too slight to affect the 
final result. 

Then for a bullet weighing 10 grams, and whose initial muzzle 
velocity is, say, 1,000 meters per second, we have (keeping in 
mind that 10 grams = 0.01 kilogram) 

K 0.01· (1,000)2 5 k'! = 10 . 2 = 00 1 ogram-meters 

In terms of foot-pounds this is equal to (since 1 kilogram = 
2.205 pounds, and 1 meter = 3.281 feet) 

500·2.205·3.281 = 3,617 foot-pounds, approximately 

This amount of energy will move 3,617 pounds a distance of 
1 foot. 

A hundred-pound shell fired from a six-inch gun has the initial 
muzzle velocity of about 3,000 feet per second. The energy of 
this shell is 

100' (3000)2 
K = 32'2 = 14,000,000 foot-pounds 

This is equivalent to 7,000 foot-ton, or enough power to drive 
a 7,000-ton ship 1 foot. 

In practical applications there is a unit of work (and energy) 
known as the "horsepower." One horsepower is equal to 550 
foot-pounds, approximately. 
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The amoupt of energy of a hundred-pound six-inch shell is 
then equal to 

14,000,000 . 1 
550 = 25,450 horsepowers, approximate y 

The average automobile motor generates about 100 horsepower. 
Thus, to set this six-inch shell in motion with' a velocity of 
about 3,000 feet per second, it would require about 255 auto
mobiles. 

You May Not-Hit the Target, but You'll Get a Kick out of This 

When the charge in the chamber of a gun is detonated, the 
expanding gases immediately press with equal force in every di
rection, forward, with the bullet as well as backward along the 
butt of the gun in the direction of the person who :fires the shot. 
This pressing backward delivers a kick known as the "recoil." 
When a cannon is :fired, the recoil may be observed as the barrel 
of the gun moves (or rather slides) backward. When a revolver 
is :fired, the recoil is felt in the hand of the person who holds 
the gun. 

The recoil is thus a motion of the gun in the direction opposite 
to the direction of the motion of the projectile (the bullet or the 
shell). A gunner should be aware of the nature of the recoil 
because ignorance may mean injury. 

To account for the energy of the recoil it is necessary to know 
its velocity. If this velocity is known, and the mass of the gun 
is also known, then the energy of the recoil can be computed by 
means of the formula 

mv2 
K=-

2 

N ow, if we consult the multiplication table of physical relations 
of Chapter 35, we :find that 

it = mz' 

or, in other words, that the impulse equals the amount of motion. 
Since the forces that are released by the detonation of the pow
der in the chamber take effect simultaneously and work in all 
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directions, they are equal. Thus, since ft, that is, the impulse 
is the same for the gun and the bullet, the amount of motion of 
the gun must be equal to that of the bullet. 

Let us denote the mass of the bullet by m, the velocity of the 
bullet by v, the mass of the gun by M, and the velocity of the 
gun (recoil) by V. Then, 

mv = MV 
and from this we have 

v = mv 
M 

Since the mass is computed by means of the expression 

w W 
m = -, and M =-

g g 
we have 

V = wv 
W 

where w is the weight of the bullet, and W is the weight of the 
gun. 

Thus, if a bullet weighs about 10 grams, and a rifle about 
4.5 kilograms, and if the muzzle velocity of a bullet is about 
1,000 meters per second, the velocity of the recoil is 

10·1,000 
V = 4,500 = 2.2 meters per second 

The energy of the recoil is then 

K 4.5· (2.2)2 k·j 
= 10 = 1.09 logram-meters 

This energy is about 446 times less than the energy of the bullet, 
or about 9.5 foot-pounds. However, it is great enough to cause 
injury to an inexperienced person. 

Let us consider the expression 

V = wv 
W 

If w, that is, the weight of the bullet, is made smaller, then V, 
the velocity of the recoil, will become smaller. Also, if lV, the 
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weight of the gun, is made larger, then V, the velocity of the 
recoil, will become smaller. Thus, in order to reduce the ve
locity of the recoil it is advisable (1) to make the bullet lighter 
and (2) to m;ke the gun heavier. Some hunters therefore add 
extra weight (in the form of a metal plate) to the end of the 
butt of a rifle. 

Nowadays, however, the recoil is not considered detrimental 
to the operation of a gun. With the introduction of the auto
matic loading, the energy of the recoil is utilized and is directed 
into a useful operation, that of feeding ammunition into the 
chamber. 

Another effect of the recoil is the lifting of the muzzle of a 
gun when it is fired. This fact is very important when one 
takes aim. There is some lift at the moment of detonation, but 
most occurs after the projectile has left the muzzle of the gun. 
Moreover, while the bullet tr'avels inside the barrel of the gun, 
it causes the barrel (and therefore the entire gun) to vibrate, and 
this also contributes to the lifting of the muzzle. This vibration 
is usually the greatest contributing factor to lifting. 

In some cases this lifting may be "negative," that is, the muzzle 
of the gun may point downward. The direction of the lifting 
depends on the manner in which the gun is held. Thus every 
individual must study his own method of firing and then make 
the necessary correction. The angle between the original po
sition of the gun before it was fired and the position after the 
bullet left the gun may vary from + 2 minutes (upward lifting) 
to -8 minutes (downward depression). Suppose a shot is fired 
at a target 200 yards away. The drawing below illustrates the 
situation in the case of lifting (or depression). AB is the dis
tance from the gun to the target. Angle CAB is the angle of 
lifting. Now, since the triangle ABC is a right triangle, 

CB = AB tan CAB 

If the angle of lifting is 2', then 

CB = AB tan 2' = 200·0.00058 = 0.116 yard = 

4.2 inches, approximately 
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If the angle of depression is 8', then 

CB = AB tan 8' = 200·0.00233 = 0.466 yard = 

16.8 inches, approximately 

A -============:J: 
• 

The results above show that the direct aiming at a target is 
not advisable. If you aim at a target directly, you will never 
hit it. However, this is not the only reason why a target will 
surely be missed if you aim straight at it. We shall find the 
other reasons in the sections that follow. 

The Path of a Bullet 

The most ideal conditions for hitting a target are those that 
do not exist. A person who fires a gun must remember several 
important facts. He must take into consideration that the bullet 
must travel through air. Air, however thin you slice it, offers 
considerable resistance to any object that speeds through it. 
Nowadays, engineers are fully aware of this fact, and modern 
designing reduces the effect of air resistance by "streamlining." 
We have streamlined automobiles, airplanes, ships, railroad en
gines-even furniture and newspaper type! -and recently stream
lining overtook the design of bullets and shells. 

The fact that air resistance operates in the case of projectiles 
thrown through the atmosphere of the earth was long known to 
scientists. Isaac Newton pointed out that air resistance cannot 
be disregarded and suggested that the resistance increases with 
the square of the velocity. This may be true up to certain veloc
ities (240 meters, or about 790 feet per second), but for greater 
velocities this resistance seems to increase with the cube (or even 
with a higher power) of the velocity of the bullet (or shell). 
So far an exact formula for high-velocity resistance has not been 
found. 
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It would be ideal for gunnery experts if air and gravitation 
were eliminated and projectiles were hurled through empty 
space (vacuum). However, the effect of gravitational attraction 
(the g which is equal to 981 centimeters per second2 or about 
32 feet per second2 ) can be well taken into consideration and 
can be corrected while aim is taken prior to the firing of the gun. 
The study of gravitation's effect on a projectile hurled at a tar
get considers the projectile's path. This path is usually called 
"the trajectory." 

When this trajectory is studied, it is examined in its relation 
to an imaginary plane that passes horizontally through the muzzle 
of a gun. Thus this plane is called "the horizon of the gun." 
The trajectory may be above or below this horizon. The draw
ings below illustrate the various positions of the muzzle of the 
gun and the corresponding horizons. 

-~I------
Horizon 

Horizon 

When the gun is pointed downward, the trajectory of the 
bullet is below the horizon of the gun. \Vhen the gun is pointed 
upward, the trajectory of the bullet is above the horizon. 

Let us suppose that after the bullet leaves the gun no external 
force (we shall disregard air resistance altogether in our discus
sion) acts on it. Then the bullet will continue to travel along 
its trajectory, and this trajectory will be a straight line. The 
bullet will fly through the air an infinite distance. The trajec
tory will be a continuation of the axis of the barrel of the gun. 
The velocity of the bullet throughout its flight will be equal to 
the muzzle velocity. The flight of the bullet will be unimpeded, 
and it will travel with a uniform velocity. The drawing below 
illustrates this situation. During every second the bullet covers 
a distance equal to the distance passed during the first second 
after it has left the gun. 



The Firing Squad & Mathematics 651 

Such an ideal situation does not exist except in our imagination. 
Let us examine what happens to the bullet when the gravita

tional attraction (acceleration due to gravitational attraction) of 

the earth acts on it as it travels through space. Let us assume for 
the time being that no other force, except this gravitational at
traction, acts on the bullet. In other words, we shall assume that 
the bullet, as soon as it leaves the muzzle of the gun, loses all its 
initial velocity, and it begins to drop toward the earth (in the 
direction of the center of the earth). \Ve thus assume that the 
bullet falls freely, and thus it is subject to the law of falling bodies. 

\Ve must now recall the fact that the gravitational attraction 
(acceleration) is a constant quantity. It is constant for every 
point on the surface of the earth, although it varies in magni
tude for various points on the surface of the earth because the 
earth is not a perfect sphere. 

\Ve found in Chapter 35 that the equation for the time line of 
a point that moves with uniformly accelerated velocity (that is, 
the value of the acceleration is constant) is 

at2 

d =2 

where d is the distance traversed in t units of time, and a is the 
acceleration (the increase, or decrease in velocity). Since the 
value of g (the acceleration due to the gravitational attraction 
of the earth) is constant the equation for the distance through 
which a freely falling body passes must be of the same form. If 
we denote this distance by h, we have 

h = gt2 

2 
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From this equation we may compute the distances through 
which a freely falling body will pass every succeeding second 
after it was allowed to fall. We shall take the value of g (981 
centimeters per second2 ) as 9.8 meters per second2 • We have 
then' the following values of h for the corresponding values of t. 

When t = 0 (the body is at rest), 
h = o. 

When t = 1 (the body traveled the first second), 

h = 9;}_ = 4.9 meters. 

When t =:2 (the body traveled the second second), 

h = 9.8· (2r = 9.8·2 = 19.6 meters. 

When t = 3 (the body traveled the third second), 
(3)3 

h = 9.8'-2- = 44.1 meters. 

When t = 4 (the body traveled the fourth second), 
(4)2 

h = 9.8 '-2- = 78.4 meters. 

When t = 5 (the body traveled the fifth second), 
(5)2 

h = 9.8'2- = 122.5 meters. 

The drawing below illustrates the respective distances passed by 
the falling bullet during every ·succeeding second after it was 
allowed to fall freely. 

Af.~17' 4.9 m Horizon 

19.6 m 

44.1 m 

78.4 m 

122.5 m 

Now, if we combine these two ideal situations, we shall obtain 
(within the imposed limitation that the air resistance be com-
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pletely disregarded) a fairly correct picture of the trajectory of 
the bullet. Graphically this is obtained as follows. We shall 
superimpose the two drawings for the ideal conditions examined 
by us. Then from the points on the vertical line (pointing 
downward) we shall draw lines parallel to the straight-line tra
jectory of the bullet (assuming that the gravitational attraction 
did not act on the bullet). Also, from the points on this straight 
line that mark the equal distances supposedly traversed by the 
bullet we shall draw lines parallel to the vertical line (pointing 
downward) . We thus obtain a sequence of intersections of two 
straight lines. These points of intersections will then be joined 
by a smooth curve. This curve is the trajectory of the bullet. 

Note that whenever we draw a vertical parallel line we indi
cated the direction in which the moving bullet will have to fall 
from its imaginary path along a straight line. The distance 
through which it has to fall is equal to the distance indicated on 
the original vertical straight line because we obtained parallelo
grams, and the opposite sides of a parallelogram are equal. 

Thus, we added a series of graphs, each representing an imag
inary situation, and in the final result we obtained a graph of the 
trajectory of the bullet. vVithin certain limitations, this graph 
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gives a fairly ~atisfactory account of the motion of the bullet. 
This is a graph of a parabola. The highest point on the trajec
tory is known as the vertex. This vertex separates the trajectory 
into two branches. On the left of the vertex is "the ascending 
branch" of-the trajectory and on the right, to the point of its 
intersection with the horizon line of the gun, is "the descending 
branch." 

If there were no air resistance (that is, in a vacuum), these two 
branches would be equal. As it is, the descending branch is al
ways shorter than the ascending one, because air resistance causes 
the projectile gradually to lose its velocity. 

The parabolic shape of the trajectory is not artificial. The 
reader may observe the frequent occurrence of this shape in na
ture. When water is played from a hose, the stream of water 
assumes a parabolic shape. This is probably the best everyday 
illustration of the parabola. 

Big Bertha's Secret 

In 1918 the Germans, hoping to shatter French morale, began 
to shell Paris from a distance of 120 kilometers (about 75 miles). 
This feat in artillery was considered not only revolutionary but 
unbelievable. The greatest distance a shell could be hurled at 
that time was about 30 kilometers (about 19 miles), and that 
was only with extremely big siege guns. 

The secret of this type of shelling, the gun that was used for 
this purpose (it was nic1mamed Big Bertha in honor of Frau Ber
tha Krupp, the owner of the Krupp Works where the gun was 
manufactured), as well as all information pertinent to its opera
tion was closely guarded by the German military authorities. 
However, its construction is now known; it had a barrel 37 meters 
long (about 120 feet). The shells fired from it were aimed so 
that most of their way they traveled high enough for air re
sistance to be reduced to a minimum, in order to maintain maxi
mum velocity. Its initial velocity was about 2,000 meters per 
second (1.24 miles). The shells weighed 120 kilograms each 
(about 222 pounds). 
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If we refer to the drawing of the parabolic trajectory in the 
preceding section, we may note that one important fact in its 
construction was the inclination of the imaginary straight-line 
path of the bullet (that is, the path the bullet would travel on 
if there were no effect on the acceleration due to the gravita:'" 
tional attraction of the earth on it). This inclination of the 
imaginary straight line is known as the angle at which the gun 
is fired. If this angle is very steep, the parabolic trajectory is 
also very steep. If the angle is small, the trajectory will be 
elongated. The various types of trajectories will be examined 
in a subsequent section. \Vhat should be noted here is the fact 
that the angle of elevation of the gun controls the type and the 
shape of the trajectory of the projectile. 

When we examined the applications of the banker's number 
(Chapter 19) we found that air pressure decreases with the rise 
above the ground and we obtained the relationship between the 
elevation h above the ground and the observed pressures p and 
P at different levels, namely, 

p = Pe-kh 

where e is the bankers' number (2,71828 ... ), and k is the 
coefficient of proportionality. 

As we rise above the surface of the earth the air becomes very 
rare, that is, its density diminishes. Up to a height of about six 
mile~ the density of the air is comparatively high. The portion 
of the earth's atmosphere within six miles above the ground is 
known as the troposphere. But as the elevation above the sur
face of the earth increases beyond the six-mile limit, the density 
of the air decreases rapidly. The portion of the air above the 
six..:rhile limit is known as the stratosphere. The fact that the 
air in the stratosphere is extremely rare (at the height of about 
twelve or thirteen miles it offers almost no resistance, even if 
objects move through it at high velocities) was utilized by the 
Germans when Big Bertha was fired. Their objective was to 
send the shell into the stratosphere so that it would reach it as 
quickly as possible and thus would lose the least amount of its 
initial muzzle velocity. After it had reached the stratosphere, it 
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was supposed to travel almost unimpeded. Thus, it was not pri
marily the gun that enabled the Germans to hurl a shell at a 
target some seventy-five miles away, but use of the properties 
of the earth's atmosphere. Big Bertha was aimed at an angle of 
55 degrees. According to their calculations, when the shell 
reached the stratosphere, it should begin to travel at an angle of 
45 degrees, and, as we shall see presently, a projectile travels the 
farthest when it is hurled at this angle. Thus, the greatest part 
of the shell's path was in an almost vacuum. Under such con
ditions, when its velocity was almost the same throughout its 
rise into the ~iI: and only the gravitational pull acted on it, e:very
thing was almost ideal. No wonder that it traveled seventy-five 
miles. 

The drawing below shows the trajectory of the shell fired 
from Big Bertha in comparison with the trajectory of an ordi
nary shell. Big Bertha's vertex was about twenty-five miles 
above the ground. 
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Aerial Artillery: Bigger than Bertha 

The present counterpart of Big Bertha is the thousand-pound 
aerial bomb. Unfortunately the aerial bomb is bigger and 
bogey-ier than Bertha and is a living nightmare to every warring 
nation. Let us examine the mathematics of this nightmare's 
flight to earth. The trajectory of the bomb in this case repre
sents a combination of the motion of the airplane and the gravi
tational pull of the earth. _ After the bomb has been released, it 
tends to continue to move along the path of the airplane. But, 
as soon as it is freed from contact, the pull of gravitation begins 
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to act, and the bomb's path is afterward neither horizontal nor 
vertical, it curves below the horizon of the airplane. 

This trajectory may be constructed in the same manner as the 
trajectory of the bullet. 

Let us assume for the time being that the pull of the gravita
tional attraction of the earth does not operate on the released 
bomb. In other words we shall assume an ideal situation. The 
path of the released bomb will then coincide with the path of 
the airplane to which it was originally attached. This path will 
then be a horizontal straight line. Since (it is so assumed) the 
airplane travels with a constant uniform velocity, the released 
bomb will continue to travel with a velocity of the same kind 
and magnitude (say v). Then the trajectory of the bomb trav
eling under such condition is similar to the drawing below. 

1 seC'. + 1 sec. + 1 sec. + 1 seC'. + 1 seC'. 
v I v I v I v I v 

Now let us assume that when the bomb is released it instan
taneously loses the velocity imparted to it by the moving air
plane and that no other force has any influence on the bomb. 
Thus, under the conditions just described the bomb becomes a 
freely falling body. The distance through which this bomb will 
fall is given by the equation h = gt2/2, where g is the magnitude 
of the gravitational attraction and 'equals 9.8 meters per second2, 

and where t is the time. 
On page 652 of this chapter we computed the values of h for 

the various corresponding values of t. These were 

t (in seconds) ......... . o 1 2 3 4 5 
h (in m./sec.) ......... . o 4.9 19.6 44.1 78.4 122.5 

The drawing below illustrates the respective distances passed by 
the falling bomb during every succeeding second after it was 
allowed to fall freely. 

Now, if we combine these two ideal situations, we shall obtain 
(if the air resistance is to be completely ignored) a compara
tively correct picture of the trajectory of the bomb that was 
dropped from an airplane. The graph of this trajectory is ob-
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tained as follows. \Ve shall superimpose the two drawings for 
the ideal condi'tions examined by us. Then, from the points on 
the horizontal line that mark the equal distances supposedly tra-

0 
1 Sec. 4.9 m. Horizon 
2 Sec. 19.6 m. 

3 Sec. 44.1 m. 

4 Sec. 78.4 m. 

5 Sec. 122.0 m. 

versed by the bomb, we shall draw vertical lines, each of them 
equal in length, denoting the total distance through which the 
bomb fell up to the moment corresponding to that point. Then 
join the lower ends of these vertical lines by a smooth curve. 
This curve is the trajectory of the falling bomb. 

o 3 Sec V 4 Sec V 5 Sec 

The Horizon 
44.1 m 

78.4 m 
122.5 m 

Thus, we again added two graphs, each of them a graph of an 
imaginary situation, and in the final result we obtained a graph 
of the trajectory of the falling bomb. Within certain limitJ
tions, such as the elimination of the air-resistance factor, wind 
velocity, this graph gives a fairly satisfactory representation of 
the motion of the falling bomb. This is a graph of a parabola, 
not an entire parabola, but one branch of it, the descendinJ 
branch. Its vertex coincides with the point of the release of the 
bomb. 
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The aiming of an aerial bomb is a very complicated process. 
Not only the velocity of the airplane must be taken into account, 
but the height at which the airplane flies, the resistance of the 
air, the wind velocity, and many other factors must be carefully 
considered. However, much of this is no~ automatically calcu
lated by a mechanical bombsight, and all these factors may be 
accounted for in a very short time, as a glance at any newsstand 
will remind you. 

The Algebra of a Fired Shell 

The trajectory of a fired shell whose graph was obtained by 
us represents the path through which this shell travels until it 
reaches its target. This trajectory is a combination of two tra
jectories of imaginary ideal motions, the motion along a straight 
line, and the motion of a freely falling body (in vacuum). Each 
of these two motions may be described in terms of a relationship 
between the path traversed and the velocity and time. 

When a body moves along a straight line with a uniform ve
.locity, the equation for this motion is 

d = vt 

where d is the distance, v, the velocity, and t, the time. 
When a body falls freely, the distance through which it falls 

is given by the equation 
gt2 

h = --
2 

where h is the distance, g, the acceleration due to gravity, and t, 
the time, 

It was pointed out previously in Chapter 35 that motion of a 
point in Flatland is represented by y 
a time line that needs three coordi
nates, namely, x, y, and t. More
over, if the path of the point is con
sidered alone, we may think of the -:::ct--------- X 
point's motion as a combination of 0 

the motion parallel to the axis of x's and the motion parallel to 
the axis of the y's as shown at right. 
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Let us examin~ the trajectory of a fired shell. This trajectory 
has its initial point at the origin of the coordinate axes XOY. 
For any point on tbis trajectory the motion along the curve may 
be considered as the combination of two motions, one along a 
line parallel to the 0 Y axis, and the other along a line parallel 

y to the OX axis. The motion 

(.!,Y)~--+ 

along the OX axis is parallel to 
the horizon, and thus it may be 
considered as a motion with a 
uniform velocity, say u. Thus 

--::::o-f------"'"---->---x the value of the x coordinate' is 
x = ut. The value of the y co

ordinate is obtained as follows: If the motion parallel the OX 
axis is considered horizontal, then the motion parallel the 0 Y 
axis is considered vertical. But in the vertical, that is, upward 
motion, the pull due to the gravity operates. Thus, if the 
velocity along a line parallel the OY axis is v, the position of a 
point on this line at the time t is vt diminished by the distance 
that a freely falling body will traverse during t, that is, gt2 /2. 
Then the value of the y coordinate is 

gP 
y = vt --

2 

Thus, we have the two equations x = ut, and 

f!,t 2 
'v = vt --- 2 

From the first equation we have 

x t = ~ 
u 

Substitute this value of t in the equation 

gt2 
y = vt - 2" 

We have then 

Y =~X_~X2 
U 2u2 

This is the equation of the trajectory of the fired shell as it is 
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traced in the XOY plane. In it the time coordinate is eliminated. 
In other words this equation is not an equation of a time line. 

As we remember, the distance a fired shell can travel depends 
on the angle of elevation of the gun. Let us examine how this 
angle of elevation is incorporated in the equation of the motion 
of the shell. In the drawing below this angle of elevation is 
formed by the tangent to the graph of the path of the shell at 
the point where the gun is located, at the origin of the coordinate 
axes and the axis OX. 

y 

v 

~o~~~~--------------~----x 

Let the initial muzzle velocity of the shell be V. This is the 
velocity of the shell as it leaves the muzzle of the gun, and the 
shell at first follows the direction in which the barrel of the gun 
points. Let the angle at which the gun is turned, that is, the 
elevation of the gun, be a. We may then think of the velocity 
along the path of the shell, V, as being composed of the two 
velocities along lines parallel to the two coordinate axes. The 
velocity along the line parallel the OX axis is u, and the velocity 
along the line parallel to the OY axis is v. We have then the 
right triangle AOB composed of the three velocities, that is, v, 
u, and V . . But from the right triangle AOB we have 

OB = u = Vcosa 
and AB = v = Vsin a 

Let us substitute these expressions for u and v in the equation 

v g., y = -x - ~ x-
U 2u2 
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We have then 

or, SInce 

and 

V sin a g 2 

Y = V cos a x - 2 V2 cos2 a x 

SIll a 
-- = tan a 
cos a 

sin2 a + cos2 a = 1 

from which we have, by dividing both sides of the equation by 
cos2a, 

or 

sin2 a + cos2 a _ 1 
cos2 a cos2 a - cos2 a 

1 
tan 2 a + 1 =-

cos2 a 

Making the replacements in the equation for the motion ob
tained above, we have 

y = x tan a - ;/V2(tan2 a + 1)x2 

By means of this equation it is possible to determine the angle 
of elevation of a gun when a certain desired distance (the dis-· 
tance from the gun to the target) is to be attained. However, 
it must be understood that this equation does not take care of 
the air resistance and, therefore, is only correct for a vacuum. 
If air resistance is to be taken into consideration it must be intro
duced as a correction. However, this will make the equation 
extremely complicated and will take us too far afield. 

In order to show how much of a discrepancy even this equa
tion may introduce, let us consider the flight of the shell fired 
from the Big Bertha. We know that the angle of elevation of 
this gun was 55 degrees. Let us substitute the value of tan 55 0 

in the above equation and compute the value of V. The dis
tance that the shell fired from this gun traveled -was 120 kilo
meters, that is, x = 120 kilometers. The value of y (the height 
of the point above the horizon where the shell hit the target) is 
O. Let us take the value of x in meters, because the value of g 
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will also be taken in meters, as g = 9.81 meters, and x = 120,000 
meters, or x = 12.104 • We have then 

or, 

1.428 - ~.~~ . 3.040.12.104 = 0 

Then 
1.428V2 = 9.81.3.040.6.104 

or 
9.81· 3.040.6.104 

V2 = 1.428 

By means of logarithms, we may compute the value V and obtain 

V = 1,120 meters per second. 

Thus, the velocity that would be required to hurl the shell 120 
kilometers is a little more than one-half of that employed by the 
Germans. The air resistance and other factors required the use 
of a velocity equal to 2,000 meters per second. 

Let us suppose that the shell from Big Bertha was fired into a 
vacuum with a velocity of 2,000 meters per second and that the 
elevation of the gun was 55 degrees. The distance the shell will 
travel is computed as follows. In this case y = O. We have then 

x tall :::::0 _ 9.81 (t 25" + 1) 2 - 0 
00 2(2,000)2 an::J x-

or, dividing the equation by x, 

9.81 
1.428 - 2(2,000)2 . 3.040x = 0 

Solving this equation for x, we have 

1.428·2(2,000)2 x = -----,-.,---''--'--~'-
9.81· 3.040 

By means of logarithms we find that x = 383 kilometers, ap
proximately. 

Thus, if the velocity in vacuum is a little less than doubled (in
stead of 1,120 meters per second it is 2,000 meters per second), 
the distance is 3.2 times as great. 
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Bertha's Shel{ and Johnny's Top 
An object rotated very fast on its axis becomes very' stable. 

F or example, you can make the thinnest coin stand on its edge 
by spinning it. Another example of this stability is a boy's spin
ning top. -The reason the earth is not turning over while it is in 
motion around the sun is that the earth itself resembles a top 
spinning about its axis. 

Many applications of the principle of the spinning top may 
be cited. Very large spinning tops, known as gyroscopes, are 
sometimes installed on oceangoing ships and battleships. The 
rotation of these gyroscopes reduces rolling and heaving in 
choppy weather. The wheels of a bicycle function as spinning 
tops and keep it erect. On the other hand, the principle of the 
spinning top can be dangerous. For instance, a fast-moving 
automobile will "turn turtle" if it deviates from a straight line 
and tries to round a corner, as the sudden turn disrupts the sta
bility imparted by the revolving wheels. Likewise, a train will 
jump the track, if the engineer fails to slow down on a curve. 

The stability imparted an object when it is spun on its axis 
can be judged from the following considerations. \Ve shall 
recall that when a point moves along the circumference of a 
circle with a constant velocity v (the radius of the circle is r), 
the centripetal acceleration, that is, the pull toward the center 
of the circle, is a = v 2/r. 

The velocity of a spinning top is usually expressed in terms of 
the number of revolutions per some unit of time. N ow, let us 
consider a simple illustration. Suppose a top whose radius is 
2 inches spins at the rate of 480 revolutions a minute. Thus a 
point on the circumference of the circle makes ¥rf- = 8 revolu
tions a second. Since the circumference of a circle whose radius 
is r = 2 inches is 2n:r = 4n:, the point covers 

8·471" = 3271" in. 

in a second. This is the velocity per second of a point moving 
on the circumference of the spinning top. Then the centrip
etal acceleration of the spinning top is 

(3271" )2 
a =-2-
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or 

a = 1,024~3.14)~ = 512.9.87 

= 5,053 inches per second2 , approximately 

This centripetal acceleration is approximately equal to 438 feet 
per second2 which is more than thirteen times as great as the 
acceleration due to the gravitational pull. 

To prevent a bullet or shell from toppling over the barrel of 
the gun has elongated spiral grooves, or "rifling," bored inside. 
As the bullet (or shell) moves along the barrel, these grooves 
(which are winding inside the barrel in the same manner as the 
grooves of a screw) make contact with the projectile and give 
it a circular motion. Since the projectile moves at high velocity 
through the barrel, the grooves impart a high velocity of revo
lution (which, it should be remembered, is measured in terms of 
revolutions per second). 

The drawing below shows the rifling in the barrel of the gun. 

~51: 
Groove 

The length of the groove is expressed in terms of the length of 
one revolution of a groove. 

If we breech a gun and look up through its barrel, we may 
note that the turn of the groove runs either clockwise or coun-

Clockwise Counter Clockwise 

terclockwise. Note should be taken of this because the clock
wise will impart a rotary movement to the projectile which is to 
the right. The counterclockwise groove will impart to the pro-
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jectile a rotary movement which is to the left. These two types 
of rotation ate extremely important in the process of aiming the 
gun at a target as it will beco!lle apparent presently. 

The number' of revolutions per second imparted to the pro
je~tile is computed by the expression v/k, where v is the muzzle 
velocity of the projectile and k, the length of the groove (that 
is, the length of one revolution of a groove). Thus, if the 
muzzle velocity of a rifle bullet is 3,000 feet per second, and 
the length of a groove is 10 inches, the number of revolutions 
per second imparted to the bullet is 

3,000·+% = 3,600 

Note that since the length of the groove is expressed in' inches, 
the velocity of the bullet must be also expressed in inches. 

Suppose the radius of the bullet is 0.25 inch. Then the cen
tripetal acceleration of a point on the rim of the lower end of 
the bullet is obtained according to the formula 

v2 
a =-

r 

where v is the velocity of the revolution of the rim and r, the 
radius of the rim (0.25 inch). The circumference of the rim is 

27rr = 27r·O.25 = 0.5·3.14 = 1.57 inches 

If the bullet makes 3,600 revolutions per second, then the ve
locity of a point on the rim is 

v = 1.57·3,600 inches per second 

Then the centripetal acceleration of this point is 

(1.57 ·3,600)2 1278 . h d2 a = 0.25 = , 00,000 mc es per secon 

= 11,150,000 feet per second2 = 2,112 miles per ;:;econd2 

(all numbers here are approximate) 

This acceleration is about 350,000 times as great as the centripetal 
acceleration due to the gravitational pull of the earth. 

The forward motion of the bullet and its rotary movement 
carry enough force for the bullet to overcome all the resistance 
of the air on its side surface. Moreover, this rotary motion pro
duces a very important effect on the projectile. As the projec-
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tile moves through the air and revolves on its axis, the combina
tion of these two motions causes the shell to change the direction 
of its axis so that this axis is always tangent to the trajectory of 
its path, as is illustrated in the drawing below. 

Out of the Firing Pan into the Fire 

It would seem that the spinning of the bullet (or shell) should 
eliminate all the dtawbacks caused by the resistance of the air. 
However, the spinning effect introduces another important ele
ment which must be taken into consideration when the aim is 
taken. 

The spinning projectile is still being acted upon by the air 
through which it travels. The rotary motion of the projectile 
counteracts completely the force of the air pressure that tends 
to topple the projectile over (and backward). It should be re
membered that two forces continue to act upon the spinning 
projectile: (1) the pressure of the air resistance which pushes 
upward, and (2) the downward pull of gravity. These two 
forces in combination with the spinning of the projectile cause 
the projectile to veer off sidewise. This veering is always in the 
direction of that side toward which the projectile turns. If the 

Direction of Veering Off 

Direction of Veering Off 

turning is clockwise, that is, to the right, the projectile veers off 
to the right as shown in the accompanying diagram. If the 
turning is counterclockwise, that is, to the left, the projectile 
veers off to the left also, as illustrated above. 
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The veering .effect may be described as follows. Until this 
fact was mentioned, the path of the projectile, if it were viewed 
from above, woul_d appear as a straight line. If there were no 

~~~C>~----~> __ --~-----------4. 

resistance, this straight line would remain unchanged. But, the 
moving projectile does encounter air resistance, and one side of 
the surface of the projectile receives considerably more pressure 

Air Pressure ~ 

D?t~ 
than the other side. The combination of this pressure and the 
rotation of the projectile on its axis causes the projectile to veer 
off its course. The combination of the rotation of the projec
tile on its axis and the gravitational pull causes the projectile 
to turn so that its axis is always tangent to the trajectory. In 
the drawing above we see how the air pressure and the rotation 
of the projectile result in the veering off. Thus, the toppling 
over of the projectile is replaced by a veering-off effect. 

The magnitude of the veering away from the course along 
the trajectory depends on the magnitude of the air pressure on 
the side surface of the -flying projectile and the speed of revo
lution of the projectile on its axis. The greater either one of 
them is (or the two in combination), the greater is the resultant 
veering off. 

Since the process of the veering off is continuous, the line 
which represents the path of the veered-off projectile is not a 
straight line when viewed from above but a curve as shown 
in the accompanying drawing. In the case of every gun the 

The Trajectory Viewed from above 

The Curve f 
o Veering Off ~~ 

amount of veering can be determined. The equation that would 
give the relationship between the distance traveled by a projec-
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tile, the velocity of the projectile, the speed of the revolution of 
the projectile, and the air resistance is very complicated, and, for 
practical purposes, its use is not as advisable as a table of data 
computed in advance. 

Thus, we see that when we dig through one problem we often 
come up with another one draped around our shoulders. 

The Gun's Angle of Elevation 

We have mentioJ;led several times in this chapter that, when a 
definite initial velocity of a projectile is attained, the distance 
from the gun to the target-that is, the distance along a hori
zontalline passing through the muzzle of the gun-is determined 
by the angle of elevation of the gun. Naturally, this statement 
is based on the assumption that the projectile is hurled into a 
vacuum, and that there is no air resistance. It may be added 
here that there are other factors involved in the determination 
of the distance, such as the projectile's shape, weight, and initial 
velocity. However, we shall disregard the shape and the weight 
of the projectile and assume that the initial velocity V is de
termined. 

The equation of the trajectory of the projectile is 

y = x tan a - 2 t2 (tan2 a + 1)x2 

In this equation x and yare the coordinates of some point on 
the trajectory, a is the angle of the elevation of the gun, g, the 
acceleration due to the gravitational attraction of the earth, and 
V, the initial (muzzle) velocity of the projectile. 

Let us examine the relationship between the value of x of the 
.target, that is, the x coordinate of the target and the value of a, 
the angle of elevation of the gun. 

Since the target is located on the OX coordinate axis on the 
graph of the trajectory of the projectile, the value of the y coor
dinate of this point is 0 (zero). \Ve have then 

x tan a - J_ (tan2 a + 1)x2 = 0 
2V2 
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or, dividing both sides of the equation by ~' 

2~ (tan2 a + 1)x = tan a 

Then, solving this equation for x, we have 

2 V2 tan a x = -- . -o-----;c:---,---,.,-
g (tan2 a+n 

The value of 2 V 2 / g does not change, but the value of 

tan a 
(tan2 a + 1) 

00 

changes in value as the value of a, and hence the value of tan a, 
changes. Thus, this fraction controls the value of x. 

The value of the tangent of an angle varies from 0 (when the 
angle is 0 degree) to infinity (when the angle is 90 degrees). 
From the table of values for the tangent ratios of angles, we find 
that up to, but not including, the angle of 45 degrees the value 
of the tangent ratio is a fraction less than 1. The value of 
tan 45° is 1, and the values of all the tangent ratios of angles 
greater than 45 degrees is each greater than 1. Thus, if we ex
amine the tangent ratio of an angle less than 45 degrees, exactly 
45 degrees, and greater than 45 degrees we may secure some 
hint as to how the angle of elevation of the gun influences the 
distance that a shell will travel (considering the horizontal dis
tance only). 

If the angle of elevation of a gun is less than 45 degrees, then 
its tangent is a fraction less than 1. Suppose that this fraction is 
1/ b, that is, tan a = 1/ b. If the fraction is less than 1, then 1/ b is 
less than 1, and b is greater than 1. For example, if the fraction is . 
!, then it may be written as 

1 
3 
2 

In this case b = 3/2. We have then the fraction 
1 
b 

1 
1 + b2 
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This may be transformed into 

1 

Since b is greater than 1, the fraction 

1 

b+! 
b 

has a denominator which is greater than 2, and hence this frac
tion is less than f. Thus for all the angles of elevation of the 
gun a less than 45 degrees the fraction tan a/(1 + tan2a) is 
less than -!, and its product with 2 V2 I g will give a value of x that 
is less than V2 I g. 

If the angle of elevation of the gun a is 45 degrees, the tan
gent ratio of this angle is 1, and the fraction 

tan a. 1 1 
(1 + tan2 a) is equal to (1 + 1) 2 

and 
2V2 1 V2 

X =-.~ =-
g 2 g 

If the angle of elevation of the gun a is greater than 45 degrees, 
then its ~angent ratio is greater than I. Let the value of tan a be 
I I b, where b is less than 1. F or example, if tan a is equal to 5/2, 
then it may be written as 

1 
2 
5 

Here b = l Then the fraction 

may be written as 

tan a 

(1 + tan2 a) 

1 
b 

1 
1 + b2 
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and this may be transformed into 
, 

1 

( 1) or 
b 1 + b2 . 

Since b is less than 1, and the fraction 1/ b is greater than 1, the 
fraction 

has a denominator which is greater than 2, and hence this frac
tion is less than~. Thus for all the angles of elevation of the 
gun a greater than 45 degrees the fraction tan a/ (1 + tan2 a) is 
less than ~, and its product with 2 V 2 / g will give a value of x that 
is less than V2 / g. 

In other words, if a shell were fired into a vacuum, it would 
travel the farthest if the angle of the elevation of the gun is 45 
degrees. As we remember, the Germans fired Big Bertha at a 
55-degree angle of elevation so that when the shell reached the 
stratosphere it would travel along a trajectory whose direction 
would make a 45-degree angle with the horizon. This change 
in the angle of elevation was caused, of course, by the gravita
tional pull of the earth. 

The results obtained above may be checked with actual com
putations. Suppose a shell was fired with a muzzle velocity of 
3,000 feet per second, and the angle of elevation of the' gun was 
25 degrees. Then, we have 

2(3,000)2 tan 25° 
x = 32 . 1 + tan2 25° 

2(3,000)20.4877 
x = 32(1 + 0.2375) 

or 

By means of logarithms we find that x = 222,000 feet, or x = 42 
miles, approximately. 

If the muzzle velocity. of the shell is 3,000 feet per second, 
and the angle of elevation of the gun is 45 degrees, 

2 V2 2(3000)2 
x = g = 32 = 562,500 feet, approximately 

or about 106.5 miles. 
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If the muzzle velocity of the shell is 3,000 feet per second, 
and the angle of elevation of the gun is 65 degrees, 

2(3,000)2 tan 65° 2(3,000)22.1445 
x = 32(1 + tan2 65°) = 32.5.599 

= 215,400 feet approximately 

or about 41 miles. 

How to Determine the Firing Angle 
The result that was obtained in the preceding section, that is, 

that .the angle of elevation of a gun (when t~e velocity of the 
shell as it leaves the gun is given) determines how far the shell 
will travel holds true for all conditions. But the other part of 
the result, that is, that the 45-degree elevation will produce the 
farthest distance, is only true for a point in a vacuum. When 
the weight and shape of the shell as well as the air resistance are 
taken into consideration, the greatest distance attainable requires 
a different angle of elevation, and its determination involves a 
considerable amount of complex computation and much ad
vanced mathematics. It may be pointed out, however, that for 
rifles, in general, the angle of elevation about 35 degrees will 
give the greatest distance, if all the conditions are taken into 
consideration. For other guns, the angle of elevation varies 
from 28 to 55 degrees. 

We shall now consider the problem of determining the angle 
of elevation of the gun if the shell's initial (muzzle) velocity 
and the distance of the target from the gun are known. How
ever, we shall have to' confine ourselves to the ideal situation in 
which the shape and weight of the shell is not taken into con
sideration, and the air resistance is assumed to be absent. In 
other words, our shell is supposed to be fired into a vacuum. 

The equation of the trajectory of the proj.ectile is 

y = x tan a - 2 t2 . (tan2 a + l)x2 

It is our problem to solve this equation and determine the value 
of a. We cannot obtain the value of the angle a immediately. 
However, if we could solve this equation for tan a, then by 
means of the table of the tangent ratios of angles we can deter
mine the value of the angle a. 
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Let us change this equation by making some substitutions. 
Since x, y, g, 'and V are all known, we may write our equation 
as follows: 

Y = x tan a - (---L) x 2 tan2 a - (---L) x2 
2V2 2V2 

or 
(2~2) x2tan2 a - x tan a + [Y + (2t2) X2] = 0 

Now, if we write A for (g12 V2)X2, B for -x, C for 
(g/2 V2)X2], and z for tan a, we have 

AZ2 + Bz + C = 0 

[y + 

If we solve this equation for z, we obtain the value z = tan a, 
and this will enable us to determine the value of the angle a. 

Now, in order to solve this equation, let us rewrite it as follows 

AZ2 + Bz = - C 

and, dividing both sides of the equation by A we have 

Z2 + B . z = _ C 
A A 

On the left side of the equation we have 
B 

Z2 + A . z 

which could be made a perfect square of the sum of two terms 
if some value were added to it. In other words, if we could have 

(z + d)2 = Z2 + 2dz + d2 

we would have a perfect square. Now, if we let 
B 

2dz = A . z 

we have, by dividing both sides by z, 
B B 

2d = A' and d = 2A' or 

Thus we have determined that value 
B2 

d2 = ---
4A2 

which would make 
B Z2 + - . z 
A 

B2 
d2 -- 4A2 
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a perfect square when d2 is added to it. But if we add d2 to one 
side of the equation, in order to keep th~ balance unchanged, we 
must add the same value to the other side of the equation. Thus 
we have 

B B2 B2 C 
Z2 + A . Z + 4A 2 = 4A 2 - A 

and the left side of the equation is a perfect square of (z + B/2A). 
We have then 

( _B~)2 _ B2 ~ 4AC 
Z + 2A - 4A2 

Let us extract the square root from both sides of the equation. 
Moreover, we must take in~o consideration the fact that the 
square of a positive number is positive, and the square of a 
negative number is also positive; for example, (2)2 = 4, and 
( - 3)2 = +9. Thus, when we obtain a square root of a num
ber, we do not know whether this square root is positive or it 
is negative. To confess our ignorance, therefore, write the root 
with two signs -+- which indicates that the root is either positive 
or negative. We have then 

B IB:! ~ 4AC 
Z + 2A = ± '\J 4A 2 

Z = 
-B± VB2 - 4AC 

2A 

This gives us the value of z, though actually there are two values, 
one taken with a positive root, the other taken with a negative 
root. Occasionally it may happen that the expression under the 
radical, that is, B2 - 4AC, is negative. Although square roots 
of negative numbers have meaning, we do not consider a case of 
this sort here, since it does not arise in connection with the type 
of problem discussed here and such discussion would be beyond 
the scope of this book. 

By means of the above expression for z (which is known as' 
the formula for the roots of a quadratic equation, or the equa
tion of the second degree in z, AZ2 + Bz + C = 0) we may 
solve the problem concerning the angle of elevation of the gun. 
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Suppose :;t target is 10 miles away from the gun, and a shell is 
fired with a muzzle velocity of 2,000 feet per second at a target 
100 feet above the ground. We have x = 52,800 = 528.102, 

Y = 100 = 102, and V = 2,000 = 2.103 • 

We then have the equation 

10.2 = 528.10.2 tan a - 32 . (tan2 a + 1)5282 .104 
(23 .10.6) 

Dividing both sides of the equation by 102 , we have 

4 
1 = 528 tan a - 10.6 . (tan2 a + 1) 5282 .10.2 

or, 10.4 = 528.10.4 tan a - 4·5282 tan2 a - 4.5282 

and, finally, 

4·5282 tan2 a - 528.10.4 tan a + (4.5282 + 10.4) = 0. 

This is a quadratic equation of the form AZ2 + Bz + C = 0, 
and A = 4.5282 , B = -528·104, and C = 4.5282 + 104 • 

By means of the expression for the roots of the quadraticequa
tion we have 

528.10.4 + V5282 .108 - 4.42 .5284 - 4.4.5282.10.4 

tan a = 2.4.5282 

The expression under the root sign may be simplified. The 
square root may be rewritten as 

528V108 - 64·278,784 - 16.10.4 

or 
528V81,997,824 = 528·9,0.55 

Then 
10.4 .528 - 528·9,0.55 10.,0.0.0. - 9,0.55 945 = 0.2237 

tan a = 8.5282 = 4,224 = 4,224 
Then 

a = 12° 30-', approximately 

The other value of tan a is 
19,0.55 

tan a = 4224- = 4.511 , 
and 

a = 77° 30.', approximately 

This value may be discarded because the angle is too steep. 
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If You Want to Hit Your Target, Don't Aim at It! 

To aim at a target directly is the safest way to miss it. We 
have examined several reasons why this is true. Now we shall 
put them all together and see just how we should aim if we are 
'to knock out the bull's eye. 

First, the recoil of a gun causes the barrel either to rise or to 
depress, dependent entirely on the person who fires the gun. He 
must study the action of a gun in his hands. Then, if the gun 
lifts a certain angle, he should aim lower. On the other hand, if 
the gun depresses a certain angle, his aim should be higher. 

Second, when the target is a long distance away, the gun 
should be elevated to a certain angle. The long flight of a pro
jectile does not follow a straight line trajectory. Under ideal 
conditions (that is, when the air resistance is eliminated) the 
trajectory resembles a parabola, but its two branches are not 
equal. The ascending branch is longer than the descending. 

Finally, the boring of the barrel of 
the gun causes the shell (or bullet) to 
spin. This is necessary because the 
spinning projectile overcomes the air 
resistance and the force of the air that 
tends to topple the projectile back
ward. But, because of this spinning, 
the projectile veers off either to the 
right or to the left, according to the 
way the boring is done. If the pro
jectile spins clockwise (that is, to the 
right) it will veer off to the right. In this case the aim should 
be to the left of the target. On the other hand, if the bullet 
spins counterclockwise (that is, to the left), it will veer off to 

the left, and the aim should be to the right of the target. 
Thus, we see that if you aim at a target directly you will 

never hit it. 
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Computing Is Believing 

We too often fail to examine common experiences that, de
spite their apparent simplicity, would offer fascinating studies 
in mathematics; on the other hand, because of this inattention 
we often attribute to simple happenings an aura of the miracu
lous. For instance: 

\Vhat happens when a train "takes water" from a tank as it 
speeds by? 

Do we gain or lose weight while riding on a merry-go-round? 
Is it cheaper to operate a ship eastward or westward? 
How does the circus "human cannon ball" survive his stunt? 
Is there any difference between an Olympic record made in 

Los Angeles and one made in Berlin? 
These examples and others of like interest will be the meat of 

our final chapter. 

How a Locomotive Takes a Drink 

When railroads were in their infancy, there was a water tower 
at every station. When a train stopped the locomotive usually 
was uncoupled and driven to the tower, where the tender was 
refilled with water. Nowadays the tender may be refilled while 
the train is moving. 

At regular intervals between the rails flat, open water tanks 
are provided now. As the train passes over them a pipe, its 

678 
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opening facing the direction of the motion of the train, is low
ered from the tender. The water is stationary, but the motion 
of the train forces it up the pipe and into the tender's tank 

The drawing at right shows a cross sec
tion of the tank, with the pipe from the 
tender lowered in it. As the train moves 
forward, the water rises into the pipe; 
there would be the same effect, of course, 
if the train' were standing still and the 
water were rushing toward the train. However, the height h to 
which the water rises depends on the speed of the train or, in the 
second case, on the speed of the flow of water. 

We find in the multiplication table of physical relations in 
Chapter 35 the relation 

2ad = v2 

in which we shall replace the acceleration a by g and the dis
tance d by the height h. We have then 

2gh = v2 

and from this 
v2 

h =~. 
2g 

Suppose the train travels at a speed of 36 miles an hour, and 
th~ value of g is 32 feet per second2 • Then the train travels with 
the speed of 

36· 5,280 
v = (60.60) = 52.8 feet per second 

The height h to which the water will rise in the pipe is 

h = (5~:)2 = 44 feet approximately 

This is a height sufficient to fill the tender's tank by utilizing the 
motion of the train. 

Gaining Weight on a Merry-Go-Round 

It needn't worry stout people, but another oddity of motion 
is that we may gain weight by taking a ride on a merry-go
round. Suppose the merry-go-round has a radius of 15 feet and 
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makes 10 .t:evolutions a minute, and that a young man weighing 
150 pounds and his girl friend, weighing 120 pounds, take a ride. 

Since the rperry-go-round makes use of circular motion, every 
object on its rim experiences the effect of centripetal accelera
tion, which is counteracted by (or counteracts, it all depends on 
how we look at these two effects) a centrifugal force equal to 
it. Thus the merry-go-rounders are affected by a centrifugal 
force; moreover, the weight of each rider (which is numerically 
equal to the product of the mass and the acceleration caused by 
the gravitational pull of the earth) acts as a force pulling down
ward. These two forces are perpendicular to one another, as 
shown in the drawing below. 

We may construct a rectangle, the sides of which are the 
graphs of these two forces. The 
diagonal of this rectangle represents 

A the combined effect of these two 
forces. Thus AB represents the cen
tripetal acceleration; AD represents 
the force pulling toward the earth due 
to the weight of the rider, and AC 
represents the combined effect of AB 

and AD. The centripetal acceleration caused by the motion of 
the merry-go-round is obtained by means of the fonnula . 

v2 
a=

r 

Since the merry-go-round makes 10 revolutions a minute, its 
velocity per second is 

10 
60.15.2.3.14 = 15.7 feet 

Then 
(15.7)2 

a = 15 = 16.43 feet per second2 

Thus AB represents 16.43 feet per second2 • 

AD represents the acceleration due to the gravitational pull of 
the earth, or AD = 32.2 feet per second2 • (Actually AB and 
AD represent the product of the accelerations stated above and 
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the mass of the rider, but since the same mass is employed we 
may disregard this factor.) 

Since triangle ACD is a right triangle, we have (AB = CD) 

CD 16.43 
AD = tan L CAD = 32-:2 = 0.5103 

and from the table of the tangent ratios we find that the angle 
whose tangent is 0.5103 is approximately 27 degrees. 

To obtain the value of AC, that of the combined two forces, 
we note that from the right triangle ACD we have 

1~ = cos LCAD 

The value of cos 27° is 0.891. Then 

AD 
AC = 0.891 = 1.112AD 

The weight of the rider, 150 pounds, is represented by AD. 
Then his weight AC on the merry-go-round would register, if 
a scale could be placed outside the machine, 

1.112 ·150 = 166.8 pounds 

And the weight of his girl friend would be recorded as 

1.112·120 = 133.44 pounds 

Thus we note that a gain in weight does not necessarily show 
an increase in mass. Weight depends on the amount of mas!> in 
an object and the gravitational acceleration due to the pull of 
the earth. The reader will recall that the formula for weight is 
w = mg, where m is the mass, and g is the acceleration due to 
the gravitational pull. If we keep the same mass but increase 
the gravitational pull (or the centripetal acceleration) the same 
mass may increase in weight. 

The Cheapest Way Around the World: Go East, Old Man 

When a 'round-the-world tour is organized by a travelers' 
agency, the cost of the trip is the same whether one chooses the 
eastward or the westward itinerary, but there really should be 
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a difference, in the rate despite the fact that the distance may be 
the same. ' 

Let us sUPP9se that the trip follows the forty-fifth degree of 
latitude and that the average rate of travel, whether by boat, 
t'rain, or -automobile, is 36 miles an hour. Every point on the 

earth's surface moves about the axis of the 
earth with a speed that depends on the lati
tude of that point, as may be seen in the 
drawing at left. The circle with the center 
o shows a section of the earth's sphere. 
The point A is on the forty-fifth -degree 
of latitude, and as the earth rotates this 

point describes a circle whose radius is AT. The triangle 
AOT IS an isosceles right triangle. We have then (since 
AT=OT) 

ATZ + OT2 = 2AT2 = OA2 

Assuming that the radius of the earth's sphere is about 4,000 
miles, or OA = 4,000 miles, we have 

2A T2 = 4,0002 and AT = ~~O 
or 

AT = 2,000V2 = 2,820 miles approximately 

Thus the point A describes every twenty-four hours a circle 
whose radius is 2,820 miles. The velocity of A is then 

2·3.14·2,820·5,280 
24.60.60 = 1,080 feet per second 

The speed of 36 miles per hour is equivalent to 

36·5,280 
60.60 = 52.8 feet per second 

or, approximately, to 50 feet per second. 
As the earth rotates from west to east, a person who travels 

in the eastern direction adds to the velocity of the rotation of 
his point of location the velocity of his own motion. On the 
other hand, a person who travels in the western direction moves 
against the rotation of his point of location, and the velocity of 
his motion must be subtracted. 
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Thus the velocity of rotation of a person traveling in the 
eastern direction is 1,130 feet per second, and the velocity of 
rotation of a person traveling in the western direction is 1,030 
feet per second. The centripetal acceleration of these two are: 
for the person going east, 

1,1302 f d 2 
2,820.5,280 eet per secon 

a person going west, 

1,0302 f d2 
2 820.5 280 eet per secon , , 

The difference between the two is 

1,1302 - 1,0302 - 00145 f d 2 ' 1 2 820.5 280 -. oot per secon ,approXImate y , , 

Since the centripetal acceleration of the point A is in the di
rection AT, and the line AT makes an angle of 45" degrees with 
the line AO, which is the direction of the gravitational pull of 
the earth, we take into consideration that the effect on the mov
ing object at point A is the combination of 

'these two forces. If these two accelerations 
are represented graphically, we may com
plete a parallelogram (since the angle be
tween them is 45 degrees the quadrangle 
cannot be a rectangle), and the combined effect is represented 
by the diagonal of the parallelogram. 

To compute the value of this diagonal we shall consider the 
triangle ABC in the above parallelogram. In it we know AS = 
0.0145, and AC = 32.2, and L CAB = 180° - 45° = 135°. tet 

B~ 
~ E A C 

us draw this triangle separately. Then 
from B we shall draw a line BE perpen
dicular to the line A C. We then obtain 
the right triangles BEC and BEA (which 
is an isosceles right triangle) . 

By means of the Pythagorean relation we have, from the right 
triangle BEA, 

BE = EA = AB cos 45 0 
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from the right triangle BEC, 

BC2 = BE2+EC2=BE2+(EA+AC)2=BE2+(BE+EA)2 

or, since BE - AB cos 45° = 0 . .0145 '0.7071 = 0.01025, approxi
mately, and AC = 32.2, we have 

BC2 = (0.01025)2 + (0.01025 +32.2)2 = (0.01025)2+ (32.21025)2 

and 

BC = V (0.01025)2 + (32.21025)2 = v1037.50032 = 32.21 
(approximately) 

. Thus the acceleration of the object moving at 36 miles an hour 
along the forty-fifth degree of latitude is 32.21 feet per second2 • 

The ratio of this acceleration to the acceleration due to the gravi
tational pull of the earth is 

32.21 0 03 . I 32.2 = 1. 0 approxImate y 

This indicates that an object traveling east is lighter by about 
0.0003 of its weight than when it moves to the west. This is so 
because on the eastern trip the centrifugal force is greater than 
on a western trip; on a western trip the pull towards the center· 
of the earth is greater than on an eastern trip. 

For example, for a ship displacing 30,000 tons when it moves 
west, the difference in displacement when it travels east may be 
about 9 tons. Thus on an eastern itinerary the amount of fuel 
or energy that is used to propel a boat, a train, or any other way 
of travel is less than that spent on a western trip because all 
these means of conveyance are lighter. 

It may be mentioned also that a man weighing 150 pounds 
and walking at the rate of 3 miles an hour at a forty-five degree 
latitude will weigh about 0.07 of an ounce less when he walks 
east. The reader may work this out if he will follow the fore
going procedure. 

The 'Human Cannon Ball' 

Many fairs have now added to their fire- and sword-eating 
performers the "human cannon ball," a performer "shot" from 
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a huge cannon into a net. The explosion, the smoke, and the 
flame that the watchers see, however, are for showmanship only; 
the human cannon ball really is thrown out of the cannon by a 
spring released simultaneously with the setting of a powder 
charge. 

Before we consider the mathematics of his flight we may re
call some facts concerning the mathematics of a projectile. In 
the drawing below the trajectory of the projectile is shown. 
The initial (muzzle) velocity is v, and we know that this may 

C 

v,VL·~ 
A ~ B 

be considered the result of the combined effect of two velocities, 
one in the horizontal direction (Vl) and the other in the vertical 
direction (V2). These velocities VI and V2 are perpendicular to 
one another. Moreover, we must also take into consideration 
the angle A at which the gun is elevated, the angle made by the 
initial velocity V with the horizontal line AB. Let us also denote 
the horizontal distance between the gun and the place where 
the projectile hits the ground (that is, AB) by s, and denote the 
acceleration due to the gravitational pull of the earth by g and 
the time by t. 

We note from the drawing that 

VI = V cos A, and V2 = V sin A 

Since the vertical velocity will have spent itself completely when 
the projectile will have reached the vertex of the trajectory (the 
point 0), and this, let us suppose, will occur t seconds after the 
projectile has started on its journey, we have V2 = gt, and from 
this it follows that t = V2/ g, or 

V sin A 
t=---

g 
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After the projectile reaches the vertex of the trajectory, it con
tinues on its path and will take the same time to descend. Thus 
the entire trip of the projectile will last 

2t = 2v sin A 
g 

The horizontal velocity Vl will act on the projectile all the 
time, carrying it forward until it hits the ground. The distance 
in terms of the horizontal velocity will be 

But 

and 

s = 2Vlt 

Vl = V cos A 

t = v sin A 
g 

therefore, substituting the expressions for Vl and t in the ex
pression for s, we have 

2 A v sin A 2v2 sin A cos A 
S = v cos --- = ------

g g 

We shall make one substitution here to simplify the last expres
sion, using substitutes for 2 sin A cos A the expression sin 2A. 
We have 

v2 sin 2A 
S = 

g 

Now we can apply the results to the problem of the human 
cannon ball. Suppose the length of the gun's barrel is 15 feet, 
the height of the vertex of the trajectory is 75 feet above the 
ground, and the angle of elevation of the gun is 70 degrees. The 
trajectory of the human cannon ball is shown below. 

c 
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We must next compute the height CD. The horizontal line 
of the trajectory must pass through the muzzle of the gun. Thus 
we must subtract from CE, which is 75 feet, the length of DE. 
This may be computed from the right triangle FDE, where FD 
represents the length of the barrel and the angle DFE 
is 70 degrees. We have then 

or DE = FD sin 70° 

or DE = 15·0.9397 = 14.0955 

DE = 14 feet, approximately. Then 

CD = 75 - 14 = 61 feet 

The height that the human cannon ball will reach is 

But 

Then 

CD = H = ~~ 
2 

t = v sin A 
g 

H = CD = Ii . (v sin A)2 
2 g2 

Solving the above expression for v we have 

2 2gH 
v = sin2 A 

and V2iH 
v = sin .,,f 

v2 sin 2 A 
2g 

Substitute in the last expression the values g = 32.2, H = 61, 
and A = 70° and we have (sin 70° = 0.9397) 

V2·322·61 
v = 0.9397 = 66,8 feet per second, approximately 

From the multiplication table of physical relations in Chap
ter 35 we have 

v2 = 2ad 

where a is the acceleration and d is the distance traveled by the 
object. Let us compute the acceleration of the human cannon 
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ball when he leaves the gun: The muzzle velocity, we have 
learned, is 66'.8 feet per second, and the distance he travels 
through the bar~el is 15 feet. Then 

and 
(668)2 

a = 30 = 148.8 feet per second2 

This acceleration is about 4.6 times as great as the acceleration 
due to the gravitational pull of the earth. In other words, the 
human cannon ball will experience an added weight of 4.6 times 
his original weight. Thus if he weighs 150 pounds he will ex
perience the weight of 150·5.6 = 840 pounds. 

How long will he have this weight? We have the formula 

at2 
d=T 

also the formula v = at. Then 

slllce 

d=~ 
2 

at2 = at·t = vt 
And from this we have 

2d 
t =

v 

Substitute in this expression the values d = 15 and v = 66.8. 
We then have 

t = 6~~8 = 0.45 second, ap~roximateIY 
While he is flying through the air he does not experience any 

weight at all, and this lasts 

2v sin A 
t=---

g 
We have then 

2.66.8.0.9397 39 . I 
t = 32.2 =. ,approxImate Y 

Thus his flight will take about four seconds. 
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When the human cannon ball hits the net, his velocity is about 
equal to the initial muzzle velocity (actually this velocity will 
be somewhat greater than the muzzle velocity because the net is 
not on the same horizontal line with the muzzle of the gun, but 
the difference is almost imperceptible). As he hits the net he 
sinks into it about six feet because of the impact of his body. 
Then, applying the formula v 2 = 2ad, where v = 66.8 feet per 
second, and d = 6 feet, we find that 

a = (6~'28)2 = 371.9 feet per second2 approximately 

This acceleration is 371.9/32.2 = 11.55, approximately, times as 
great as the acceleration caused by the gravitation pull of the 
earth. Because of this acceleration, when the human cannon ball 
hits the net he will be about 12.55 times as heavy as his original 
weight. If he weighs 150 pounds he will experience a weight 
of 150·12.55 = 1,882.5 pounds, which is almost a ton. 

or 

He will experience this weight 

2d 
t = - seconds 

v 

. 12 
t = 66.8 = 0.18 second, approximately 

Only the short duration of such an experience saves the human 
cannbn ball from disastrous consequences. 

Want to Break a Record? Don't Go to Berlin! 

There is a common notion that the only requirement for the 
beating of any record in an athletic competition is simply a 
better athlete, but the mathematics of latitude enter into this, 
too, with surprising results. 

We have obtained the formula for the distance between the 
point of departure of a projectile and the point where it will 
hit the ground as 

v2 sin 2A 
s=---

g 
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vVhere s is the distance, v the initial velocity of the projectile, A 
the angle with'the horizontal line that this projectile makes when 
it starts on its journey, and g the acceleration caused by the 
gravitational pull of the earth. 

The formula shows that if the value of g, the value of the 
acceleration caused by gravitational pull, were the same all over 
the earth's surface, the distance that a projectile would travel 
would depend on two factors, (1) the angle at which it was 
thrown, and (2) initial velocity. In all our discussions we dis
regard the resistance offered by the air. 

It can be s.een, that the greatest distance that can be attained 
when the velocity remains unchanged is when the angle at 
which the projectile is hurled is 45 degrees, because sin 2A is 
then sin 90°, and sin 90° = 1, which is the greatest value that 
can be attained by the sine ratio of an angle. Any other sine 
ratio of any angle (other than 90 degrees) is a fraction less than 1. 

Let us assume now that in several events the same effort is 
applied to the hurling of a projectile and that its initial velocity 
remains the same in all, but that these' events take place in dif
ferent parts of the world. 

If the earth were a perfect sphere the values of g, the accelera
tion caused by gravitational pull, would be the same for all points 
on the surface of the earth. However, the earth is not a perfect 
sphere, it is flattened out at the poles; as we travel from the equa
tor to either of the poles we approach the center of the earth, 
and the value of g increases as its point on the surface of the 
earth is nearer its center. It was found that the value of the 
acceleration caused by gravitational pull may be determined by 
the formula 

g = 32.173 - 0.082 cos 2A 

where A is the latitude of the point on the surface. For example, 
if the latitude of a point is 45 degrees, then 

cos 2A = cos 90 0 = 0 

and the value of g for this point is 

32.173 - 0 = 32.173 feet per second2 
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Below is a table of the values of g for various latitudes but it 
should be remembered that all are only approximate, although 
sufficient for practical purposes. 

Latitude g Latitude g 

0° 32.09 50° 32.19 
5° 32.09 55° 32.20 

10° 32.10 60° 32.21 
15° 32.10 65° 32.23 
20° 32.11 70° 32.24 
25° 32.12 75° 32.24 
30° 32.13 80° 32.25 
35° 32.15 85° 32.25 
40° 32.16 90° 32.26 
45° 32.17 

All the values of g given above are for points at sea level where 
the barometric pressure is 760 millimeters (30 inches) at 0 de
gree Centigrade. 

Since the weight of an object is obtained as the product of 
its mass and the acceleration due to gravitational pull, w = mg, 
an object whose mass is the same will weigh more at the poles 
than at the equator, and this weight increases as the object is 
moved northward or southward from the equator to a pole. 

The heavier an object, the more the effort necessary to hurl 
it the same distance as a lighter object; if the same effort is 
applied, the heavier one will go a shorter distance. This can 
be checked by means of the formula 

v2 sin 2A 
s = 

g 

If the effort is the same, then v 2 sin 2A remains unchanged. Let 
us denote v 2 sin 2A bye. Then 

e 
s =-

g 

Let us consider, for example, the record for the javelin throw 
established in 1932 by Matti Jarvinen in Los Angeles. His dis
tance was 238 feet 7 inches (2,863 inches). The 1936 Olympic 
Games were held in Berlin, Germany. What should be the dis
tance for a javelin throw at Berlin that would beat the Los An-
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geles record? It is necessary first to translate the Los Angeles 
record into Be'rlin terms. We have for Los Angeles: s = 2,863 
inches and g (Longitude 35°) 32.15 feet per second2 • For Ber
lin the value of g (Latitude 52 degrees; we shall use 50 degrees) 
is 32.19 feet per second2• We have then, for Los Angeles 

e 
2,863 = 32.15' or 2,863·32.15 = e 

and for Berlin 
e 

x = 32.19' or 32.19x = e 

Then 32.19x= 2,863·32.15, or 

2,863·32.15 2859442· h . I x = 32.19 =, . me es approXImate y 

Thus the Los Angeles record as translated for Berlin is 

2,863 - 2,859.449 = 3.558 inches, approxim~tely 

shorter. To equalize the conditions and make competition fair, 
it is necessary then to make the javelin for the Berlin Olympic 
Games lighter, and it should be 

32.15 9876 . I 32.19 = 0.99 , approxImate y 

of the weight of the javelin used in Los Angeles. 

The 'Devil's Ride' or Looping the Loop 

Often a circus boasts a performer who "defies the law of gravi
tation," and rides a bicycle head downward. The trick does 

A B 
seem to be in contradiction to 
natural laws, but let us do 
some mathematical sleuthing. 

On the circus arena is 
erected a runway such that 
in the middle it twists into a 
loop, as shown in the accom
panying drawing. The per

former starts out on a bicycle from A following the darkened 
track. When he reaches the top of the loop (B) he is actually 
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riding with head down, and there is visible no support that would 
hold him up. But he does not fall headlong; he continues his 
ride with the familiar "greatest of ease." 

Some may advance the explanation that the performer, as he 
descends from A, develops a velocity of such magnitude that he 
is just "shot" through the loop so swiftly that the gravitational 
pull is completely counteracted by -his velocity. Let us see 
whether we should accept this explanation. 

The drawing below shows in profile the plan of the looped 
path. The rider's starting point is A. AD is the height from 

which ride starts, the elevation of the platform above the ground. 
Let BC be the diameter of the circular loop, that is, BC = 2r, 
where r is the radius of the loop. Then ED = BC = 2r. 

The velocity with which the rider passes through the point B 
is equal to that with which he passes through the point F. As 
he continues from F along the track, his velocity increases, but 
as he begins to climb along the arc of the loop from C to B, as 
indicated by the arrow, all the gain in velocity is consumed for 
the purpose of the rise. 

Now, if his velocity at B is v, which is the same as at F, and 
the acceleration due to the gravitational pull of the earth is g, 
we have the formula 

v2 = 2AEog 

(the reader will find in the multiplication table of physical 
relations in Chapter 35 the relation v 2 = 2ad, and a = g and 
d = AE) . While the rider passes through the loop, he follows 
a circular path, and then develops a centripetal acceleration v2/r. 

So that he may remain on his path and not fall, this centripetal 
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acceleration must be greater than the acceleration due to gravi
tational pull; that is, we must have 

From this we have 

v2 
->g 
r 

v2 > gr 
But we obtained that 

V2 = 2AE·g 

Substitute this expression for v2 in the inequality above. We 
have 2AE·g > gr 

or, dividing both sides of the inequality by g, we finally have· 

r 
2AE > r, or AE > 2" 

This last relation shows that the velocity with which the rider 
passes the top of the loop (the point B) is unimportant. As a 
matter of fact, the rider does not pedal the bicycle; he uses free 

wheeling, and the velocity he attains 
depends entirely on the acceleration g. 
The most important factor in the en
tire performance is the elevation AE. 
This must be greater than half the ra
dius of the loop. If it is equal to or less 
than half the radius, the trick will fail 
and the rider may be hurt. But if the 
apparatus is correctly planned, the trick 
is not dangerous at all; if the performer 

does not lose control of himself and retains a grip on the bicycle, 
his ride is as simple as one on a flat park path. 

Stepping on Your Brakes 

Suppose a child appears as you are driving a car at thirty-five 
miles an hour and you suddenly step on your brakes. How far 
will the car go before it comes to a complete stop, assuming that 
the road is ordinarily smooth? 

To answer this let us recall that the formula for the distance 
traveled by a point moving with a uniformly accelerated ve-
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locity (that is, a velocity that increases or decreases in equal 
periods of time by equal amounts) is 

d = vt + at2 

2 

where d is the distance, t is the time elapsed, a is the acceleration, 
and v is the initial velocity. 

If the initial velocity is v and the acceleration is a, then the 
velocity after t periods of time is 

V = v + at 
From this we have 

t=(V-v) 
a 

Substitute this expression for t in the equation d = vt + 
at2/2 and we have 

d = v( V - v) + a( V - V)2 = Vv - v2 V2 - 2 Vv + v2 
a 2a2 a + 2a 

2 Vv - 2v2 + V2 - 2 Vv + v2 

2a 
Finally, we have 2ad = V2 - v2 

and that expression will enable us to solve the problem. 
With a car going 35 miles an hour as the brakes are applied, 

we may suppose that the loss of speed, due to friction between 
the road and the tires, is 30 feet per second2 • Then 

a = - 30 (the negative sign indicates that the acceleration decreases 
the velocity) 

35·5,280 
v = 3,600 = 51.3 feet per second 

and 
V = 0 (the car is at a complete stop) 

Then 
2( -30)d = 0 - (51.3)2 

and 

d = (5~g)2 = 43.8 feet, approximately 

Thus the car will travel about 44 feet before it comes to a stop. 
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However, we must take into consideration the reaction time 
of a driver. It has been found that when a driver decides to 
stop his car suddenly when going at 35 miles an hour it will go 
about 40 feet during the average time of 1.1 seconds it actually 
takes to apply the brakes after the decision. 

The Hammer and Anvil Circus Act 

Deceptive circus showmanship is found again when a heavy 
iron anvil is placed on the Strong Man's chest, and an assistant 
pounds on it with a huge hammer. The audience fears his chest 
will surely cave in. It doesn't, but is it sheer strength that en
ables him to withstand the blows? 

In examining the general case when two bodies strike each 
other, the backbone of the analysis is the expression for force, 
f = mv, meaning that the numerical value of the force may be 
obtained as the product of the mass and the velocity with which 
the object (whose mass is m) moves. Suppose that two objects 
whose masses and velocities are ml and Vt, and m2 and V2, re
spectively, strike one another. Then the forces that these two 
objects carry are fl = mlVl and f2 = m2V2, respectively. 

If these objects move in the same direction, the signs of the 
forces (as well as of the velocities) are the same; if they move 
toward one another, then the signs are opposite. This, how
ever, is provided for in the process of computation and need not 
have special consideration in our development. 

When the two objects strike, the combined force is then the 
sum of the two forces, ft + f2 = mlVl + m2V2. Finally the 
velocity of each object after the collision, then obtained from 
the formula f = mv, is v = f 1m. Then the velocity of each ob
ject is 

v = mtVl +m2V2 

ml+m2 

This is the fundamental formula for the resultant velocity of 
the two objects. 

F or example, if one object whose mass is 2 pounds moves 
with a velocity of 3 feet per second and another object whose 



Of Math & Magic 697 

mass is 3 pounds moves in the same direction with velocity of 
4 feet per second after the second object overtakes the first and 
collides with it the velocity of each object is 

. 2·3+3·4 18 
V = 2 + 3 = 5 = 3.6 feet per second 

If the second object moves in the opposite direction, then the 
velocity of the two objects after the collision is 

2·3-3·4 6 
V = 2 + 3 = - 5 = - 1.2 feet per second 

The objects move in the direction of the second object with the 
velocity of 1.2 feet per second. 

In this discussion we paid no attention to the fact that in some 
cases a collision may produce another important effect on the 
objects: it may deform them but if they are elastic, they return 
to their original shape. 

\Vhen the objects are not elastic, the faster object (let its ve
locity be vd will lose some of its velocity after the collision. 
The amount of this loss is equal to 

VI - V 

The slower object will gain a certain velocity equal to 
V - V2 

When the objects are elastic the situation is somewhat compli
cated. As the objects collide they compress for a while, and 
then resume their shapes. As the collision takes place, the faster 
object loses a part of its original velocity (Vl - V), but when 
its shape is restored it loses once more the same amount. Thus 
the total loss in the velocity of the first object is 2 (Vl - V). 
The slower object gains a certain amount of velocity at the col
lision and then gains the same amount once more when its shape 
is restored. Thus the second object gains 2 (V - V2) in velocity. 

Then the resultant velocity of the first (faster) object is 

Vj - 2(VI - V) = VI - 2VI + 2 V = 2 V - VI 

or, substituting the expression for V, 
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The resultant velocity of the second (slower) object is 
V2 4- 2( V - V2) = V2 + 2 V - 2V2 = 2 V - V2 

or, substituting ~he expression for V, 

2(r.nIVI + r.n2V2) 
- V2 

r.nl + r.n2 

Let us now apply this result respecting elastic objects to the 
problem of the anvil and the hammer in the circus act. If the 
mass of the anvil is mi and its velocity is VI, and the mass of the 
hammer is m2 and velocity V2, and taking into consideration that 
the velocity of the anvil is V1 = 0, we have (we shall ke~p in 
mind that the anvil receives the blow) 

2r.n2V2 

r.nl + r.n2 

This is the expression for the velocity of the anvil after it re
ceives the blow. 

Let us divide the numerator and denominator of the expression 
for the velocity of the anvil by mI. We have 

If the mass of the anvil is great in comparison with that of the 
hammer, the value of the fraction m2/ml is small, and we may 
disregard it in the denominator of the fraction of the expression 
for the velocity of the anvil (after the hammer struck it) . Then 
the velocity of the anvil is approximately equal to 

r.n2 
2V2· -

r.nl 

This result indicates that the velocity of the anvil depends on 
the velocity of the hammer and the ratio of the mass of the ham
mer to the mass of the anvil. Moreover, the lighter the hammer 
in comparison with the weight of the anvil, the smaller will be 
the effect of the blow on the anvil. F or example, if the anvil is 
100 times as heavy as the hammer, the velocity of the anvil is 
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If the velocity of the hammer is 10 feet per second, the ve
locity of the anvil is 0.2 foot per second. Moreover, if the 
anvil weighs 200 pounds, then the force experienced by the 
strong man is 0.2·200 = 40 foot-pounds, and he experiences it 
only for an instant. 

In circuses the audience usually is not misled as to the weight 
of the anvil, but the hammer is generally hollow and weighs 
very little in comparison with the anvil. Thus the act reduces 
to the ability of the strong man to support a heavy anvil, but 
not to his ability to withstand a heavy blow. Furthermore, the 
anvil is so constructed that it fits the chest and its weight 1S 

spread uniformly. In addition to this a soft padding under it 
protects the performer so that the blow is cushioned. 

The Engineer's Dilemma 

In the common collision of a train and an automobile at a 
crossing there are surprising arithmetical factors. 

The train and the automobile are not elastic objects; there
fore, we shall make use of the expression for the resultant velocity 
of two collided objects 

mlVj + m2V2 

ml + m2 

Let the mass of the train be ml, and its velocity be VI, and let 
the mass of the automobile be m2, and its velocity V2. More
over, since we assumed that the automobile was stalled on the 
tracks, V2 = o. 

Divide the numerator and the denominator of the expression 
for the velocity by ml and we have 

1 + m? 
ml 

Since the mass of the automobile is very small in comparison 
with that of the train, its ratio is very small and the magnitude 
of the fraction m2/ml is so slight that it may be discarded. The 
velocity of the train then is VI. 



700 Mathematics-Its Magic & Mastery 

This indicates that the train, after it hits the automobile, will 
proceed with the same velocity, will suffer no effects of the col
lision, and its passengers will not be upset in any manner. But 
what will happen to the automobile? 

It should be understood that the automobile is not a wholly 
elastic object, the blow deforms it and in the second stage it 
does not resume its original shape. Thus, recalling the preced
ing section, the automobile will gain a certain amount in velocity 

but in the second stage will not gain the same amount but'some
w hat less, a fraction of (V - V2), 

Thus the total gain in the velocity will be 

where k is a positive fraction less than 1. We found above that 
V = VI as the resultant velocity of the train, also V2 = O. Thus 
the final resultant velocity of the automobile is 

(1 + k)Vl 

so it will be thrown far from the train. 
Now suppose that the engineer reduces the velocity of the 

train so that the automboile will not receive a very strong blow. 
But in this case the mass of the automobile must be taken into 
consideration. It weighs 11l2, and may derail the train. If VI is 
very small, the force of the train 11lIVl may not overcome 11l2, 

and the train may be thrown off its tracks. 
Thus by keeping the train going at full speed the engineer 

throws the automobile far from the track and a more serious 
train wreck is prevented. 

Gravitation and Flirtation 

We have learned that two bodies whose masses are M and 11l 

and whose distance from one another is d are attracted to one 
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another by a force F = k Mm/d2 , where k is a constant, known 
as the constant of gravitation. It was found that 

1 
k = 30.2. lOU pounds 

It is a common notion that this law of universal gravitation is 
applicable only to astronomical objects; this is not correct. 

Suppose two oceangoing steamships are passing each other at 
a distance of a mile, that one displaces (weighs) 30,000 tons, and 
the other 25,000 tons. Then these two ships attract each other 
with a force equal to 

1 30,000·2,000·25,000·2,000 
30.2.109 (5,280)2 

3.22 .2.5.1014 

= 30.2. (528)2 .1011 pound 

(Note that the weights were translated into pounds and the dis
tance into feet.) This force is approximately equal to 0.0036 
foot-pound or about 0.06 foot-ounce. If these two ships were 
passing at a distance of 200 feet, then the force attracting them 
would be about 2.5 foot-pounds. The reader may check this 
result by performing the computations. 

Two men, each weighing 150 pounds and standing at a dis
tance of 10 feet, attract one another with a force equal to 

150 ·150 _ 7 5 1 -9 d . I 30.2 .lOf) .102 -- .. 0 poun, approXImate y 

If a young man weighing 150 pounds passes a young lady 
weighing 120 pounds at a distance of 1 foot, they are attracted 
to one another with a force equal to 

150·120 _ -7 d . I 
30.2.109 - 6·10 poun, approXImatey 

So a flirtation may be only universal gravitation, if chaperons 
can be convinced. 

Getting the Moon Rocket Started 

The much-discussed problem of travel through interplanetary 
space continues to baffle enthusiasts. The distances to be cov-
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ered are staggering; the temperature in interplanetary space is 
about - 2 7 4 degrees Centigrade, and the means of propelling 
an interplanetary ship must yet be solved. 

The most important question, however, is how to get started, 
to overcome the gravitational attrac-

~ tion of the earth. We know its 
magnitude, the value of g which 
varies with the change of position 
on the surface of the earth. Gen
erally this value is accepted as 32.2 
feet per second.2 

When we throw an object into 
the air, it rises to a certain height 

and then begins to fall back. If we apply a greater force, it will 
rise higher, but sooner or later it will come down. In artillery 
we achieve velocities as great as a mile per second, but still the 
shell comes down. 

However, this gives us a hint: suppose we could attain such 
a velocity that the projectile would continue to go upward, 
what then? We know that the gravitational pull diminishes 
with the elevation above sea level; we could attain a velocity 
that would carry a projectile so far away from the earth that. 
the gravitational pull would have no effect on it. Then the pro
jectile could continue on into the skies unhindered. 

Our nearest neighbor in interplanetary space is the moon, a 
mere 240,000 miles away, and proponents of interplanetary 
travel have even designed rocket ships for a trip to the moon 
and claim to have solved the problems of navigation. 

Still, the most important problem-how to get away from the 
earth-needs complete solution, but mathematics can come to 
their help: it is possible by showing how to compute the velocity 
with which a projectile must be hurled in order that it leave the 
earth completely. 

Suppose the mass of the projectile is m, and the velocity to be 
imparted is v. Then the energy of this rocket (projectile) as 
soon as it starts on its journey is mv2/r. Let us denote the mass 
of the earth by M and the radius of the earth by r. Then, ac-
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cording to the universal law of gravitation, the force with which 
the projectile (whose mass is m) and the earth attract one an
other is 

If this rocket were at the center of the earth, the work would 
be required to lift it to the surface (that is, the work necessary 
to overcome the force F, when the radius r = 0) would be in
finite as any quantity divided by zero is infinity. The formula 
for work is 

K =fd 

where f is the force and d is the distance through which the 
force is applied. Now, if we wish to raise the rocket from the 
surface of the earth and send it into the interplanetary space, we 
must overcome the force of attraction 

Assuming that this force is at tl}e center of the earth we must 
apply it for the distance r. We have then that the work to be 
performed is 

Fr = kMmr = kMm 
r2 r 

But this must be equal to the energy of the rocket to mv2/2. Thus 

mv2 = kMm, or v2 = 2kM 
2 r r 

But, as it was stated above, two objects are attracted to one 
another according to the law of universal gravitation, and the 
force of attraction is on the surface of the earth, 

also (consult the multiplication table of physical relations ill 

Chapter 35) 
f = ma 
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Since on the surface of the earth 

we have 

which gives 

Now we have 

f = F, and a = g 

kMm 
mg=~ 

kM 
rg=, 

Substitute in it the expression for kM/r, or rg. We have then 

v2 = 2rg 
and from this 

v =V21i 
This formula gives the relation between the radius of the earth, 
the gravitational attraction of the earth, and the velocity that 
will send the rocket beyond its downward pull. 

If we consider r = 4,000 miles, g = 32.2 feet per second2 , then 

v = V 2·4,000·5,280·32.2 feet per second 

and, in miles, 

V2.4,OOO·5,280.32.2 6985 '1 d . 1 v = 5 280 =. mI es per secon ,approXImate y , 

the velocity necessary. 
Thus far such a velocity per second has not been attained on 

the earth. Until this has been attained, and all other related 
problems fully solved, we need not worry about what to pack 
for a week-end trip to the moon, Venus, or Mars. 



APPENDIX 

1. SIGNS AND SYMBOLS USED IN THIS BOOK 

+ Plus, the sign of addition. For example 2 + 3. 
This sign also denotes a positive quantity. For example +4, 

positive four. 
Minus, the sign of subtraction. For example 5 - 3. 
This sign also denotes a negative quantity. For exam pIe - 7, 

negative seven. 
The sign of multiplication. The dot is placed a little above 

the line. For example 3·4. 
The decimal point. This dot is placed on the line. For 

example 3.5. 
. The sign of division. For example 15 -;- 3. 

The sign of equality. It reads is equal to. For example 
2 + 3 = 5. 

> The inequality sign which reads is greater than. For example 
7 > 4. 

< The inequality sign which reads is less than. For example 
6 < 11. 

.y- The radical. Also the square root. For example .y16 = 4. 
~ The cube root. For example <127 = 3. 
V'- The n-th root. 
a2 The square, or the second power of a. a2 = a·a. 
a3 The cube, or the third power of a. a3 = a·a·a. 
an The n-th power of a. 
II Two vertical bars denote the absolute value of a number. 

For example 1-5 I = 5. 
5 

00 Infinity. For example () = 00. 

() 
[ ] 
{ I 
f::::.. 
L 

o 

11 

Parentheses. 
Brackets. 
Figured brackets. 
Triangle. For example 6ABC. 
Angle. For example LA. 
Degree, for denoting the measure of an angle. For example 

45°. 
Also used for the purpose of denoting temperatures. For 

example 30°. 
Minute, for denoting the measure of an angle. For example 

45° 12'. 
Second, for denoting the measure of an angle. For example 

45° 12' 30". 
705 
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7r Pi, the multiplier used for the computation of circumferences 
and areas of circles and of areas and volumes of spheres as 
well as in many other instances. 7r = 3.1416, approximately. 

sm The sine ratio of an angle. 
cos The cosine ratio of an angle .. 
ta.n The tangent ratio of an angle. 
ldg The logarithm of a number. 

I. Algebra 

2. ADDITION OF SIGNED NUMBERS 

Example,: + (+7) + (-6) - (+10) - (-8) 

Remove the-parentheses. The same signs before and within 
the parentheses result in a + sign. Opposite signs before and 
within the parentheses result in a - sign. 

+7 - 6 - 10 + 8 

After the parentheses are removed add the absolute values of the 
positive numbers and place a + sign before the sum: 

+7+8=+15 

Add the absolute values of the negative numbers and place a - sign 
before the sum: 

-6 - 10 = - 16 

Find the difference between the two sums and place before this 
difference the sign of the sum whose absolute value is the greatest: 

-16 + 15 = - 1 

3. MULTIPLICATION AND DIVISION OF SIGNED NUMBERS 

When two signed numbers are multiplied (or divided) by each 
other, the sign of the final result is + if the signs of the two 
numbers are the same (either both are + or both are -), and the 
sign of the result is - if the signs of the two numbers are opposite 
(one is + and the other is -; the order in which these signs appear 
is immaterial). 

For example 
(+ 9) . (+7) = + 63, 
(+ 9) . (-7) = - 63, 

(+54)-+(+9)=+ 6, 
(+54) -+ (-9) = - 6, 

(- 9) . (-:-7) = + 63 

(- 9)· (+7) =-63 
(-54) -+ (-9) = + 6 

(-54)-+(+9)=- 6 

If more than two signed numbers are to be multiplied or (and) 
divided, the operations are performed on their absolute values. 
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The sign of the final result is + if there is an even number of 
negative numbers involved. The sign of the final result is - if 
there is an odd number of negative numbers involved. 

For example 
(+24)·(-6)·(+15)·(-7) =+ 24 

(-14)·(+9)·(-5) 

(- 24) . ( - 6)· ( -15)· (+ 7) = _ 24 
(-14)·(+9)·(-5) 

4. MULTIPLICATION OF POLYNOMIALS 

When polynomials are multiplied every member of one poly
nomial is multiplied by every member of the other polynomial. 
The products thus obtained are then added. 

For example 
a(b + c) = ab + ae 

(a + b)(e - d) = ac - ad + be - bd 

(a + b - c - d)(e - f + g) = 
M-~+~+~-~+~-u+if-~-~+#-~ 

If the product contains similar terms (that is, terms that differ 
only in their coefficients), then these terms are added. For example 

2x3 + 4x2y - Sxy2 - 2y 3 

2x2 - 3xy + y2 

2X3y 2 + 4X2y 3 - Sxy4 - 2y 5 

- 6x4y - 12x3y 2 + lSx2y 3 + 6xy4 

4x5 + 8x4y - 10x3y 2 - 4X2y 3 

S. DIVISION OF POLYNOMIALS BY A MONOMIAL 

A monomial is divided by a monomial by writing the dividend 
over the divisor as a fraction, and the common factors are cancelled 
out. For example 

24allcrJ' 
24abcd 7 6bd = q#y( = 4ae 

When a polynomial is divided by a monomial every term of the 
polynomial is divided by the monomial. For example 

(2a2b3 - 3ab2 + 4b) 7 ab = 2a2b3 
_ 3ab2 + 4b = 2ab2 _ 3b + i 

ab ab ab a 

The division of each individual term of the polynomial is performed 
in the same manner as the division of a monomial by a monomial. 
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6. SOME FO~MULAS FOR THE MULTIPLICATION OF POLYNOMIALS 

The square of a sum of two numbers: 

(a + b)2 = a2 + 2ab + b2 

The square of a difference of two numbers: 

(a - b)2 = a2 - 2ab + b2 

The cube of a sum of two numbers: 

(a + b)3 = a3 + 3a2b + 3ab2 + b3 

The cube of a difference of two numbers: 

(a - b)3 = a3 - 3a2b + 3ab2 - b3 

The product of a sum and a difference of two numbers: 

(a + b)(a - b) = a2 - b2 

The sum of two cubes of numbers: 

a3 + b3 = (a + b)(a2 - ab + b2) 

The difference of two cubes of numbers: 

a3 - b3 = (a - b)(a2 + ab + b2) 

7. THE FUNDAMENTAL PROPERTY OF FRACTIONS 

The magnitude of a fraction remains unchanged if the numerator 
and denominator of the fraction are multiplied (or are divided) by 
the same number. For example 

A Ae 
B Be 

A 
A e 
B =B 

e 

The cancellation of factors in the numerator and denominator 
of a fraction as well as the bringing of several fractions to a common 
denominator are based on this fundamental property of fractions. 

8. ADDITION AND SUBTRACTION OF FRACTIONS 

When two (or more) fractions are to be added, they must be 
brought to a common denominator. Then the numerators of the 
transformed fractions are added. This sum is the numerator of the 
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sum of the several fractions, and the common denominator is the 
denominator of the sum of the several fractions. For example 

~ + ~ = ad + be 
b d bd 

~ + ~ + ~ = adf + ebf + ebd 
b d f bdf 

When the difference of two fractions is to be obtained, the two 
fractions must be brought to a common denominator. The differ
ence of the two denominators of the transformed fractions is 
obtained. The difference thus obtained is the numerator of the 
difference of two fractions, and the common denominator is the 
denominator of the difference of the two fractions. For example 

ad - be 
bd 

9. MULTIPLICATION OF FRACTIONS 

When two (or more) fractions are to be multiplied, the numer
ators of the fractions are multiplied separately, and the denomi
nators of the fractions are mUltiplied separately. The product of 
the numerators is the numerator of the product of the fractions, 
and the product of the denominators is the denominator of the 
product of the fractions. For example 

abe abe 
(l'c'J=def 

10. DIVISION OF FRACTIONS 

When two fractions are to be divided by one another, the numer
ator of the dividend is multiplied by the denominator of the divisor, 
and the product is the numerator of the quotient, and the denomi
nator of the dividend is mUltiplied by the numerator of the divisor, 
and the product is the denominator of the quotient. For example 

a e ad 
b +- (l - be 

Another simple rule for the division of two fractions is: Invert 
the divisor and multiply this inverted divisor by the dividend. 
Thus 

a.e ad ad 
b .- (l - b . ~ - be 
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11. PROPORTION 

If there are four magnitudes such that the ratio of two of them 
is equal to the ratio of the remaining two, then the equality of these" 
two ratios is known as a proportion, and the four magnitudes are 
known as proportional. Thus " 

a e 
b d 

is a proportion. 
The fundamental property of a proportion is that, for a propor

tion 

the product of the extreme terms of the proportion (ad) is equal to 
the product of the mean terms of the proportion (be), that is, 

ad = be 

12. SOME RESULTS OF A PROPORTION 

If we have" a proportion 
a e 
b d 

then the following proportions may be derived from it: 

a+b e+d 
and 

a - b e-d 
b d b d 

a+b e+d a - b e-d 
=-- and --=--

a e a e 

a+b e+d 
and 

a - b e-d 
a-b e-d a+b e+d 

13. THE ARITHMETIC MEAN 

The arithmetic mean of two quantities is equal to one half the 
sum of these quantities, that is, 

a+b 
2 

is the arithmetic mean of these two quantities. 
The arithmetic mean of several quantities is equal to the sum of 

these quantities divided by the number of these quantities, that is, 

a+b+e+d+e 
5 

is the arithmetic mean of a, b, c, d, and e. 
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14. RAISING TO A POWER 

A number multiplied by itself several times is known as the 
power of this number. If the number is repeated as a factor n times, 
then the product is known as the n-th power of this number. If 
the number is a, then the product of n a's is denoted by the symbol 
an. The finding of the n-th power of a number is called raising to a 
power. 

For example 
34 = 3·3·3·3 = 81 

The number a which repeated several times as a factor is called 
the base of the power. The number n which indicates the number 
of times a is repeated as a factor is called the exponent of the power. 
Thus, in the above example (34 = 81) the number 3 is the base, 
and the number 4 is the exponent. 

The second power is known as the square of a number. Thus a2 

is the square of a, and it is read a squared. The third power of a 
is known as the cube of rr, and it is read a cubed. 

15. EXTRACTION OF ROOTS 

The extraction of roots is an operation inverse to the raising to 
a power. When a power of some number (the base) and the 
exponent of this power are given, the finding of the base (that is, 
the finding of the number that was raised to the power indicated by 
the exponent) is known as the extraction of roots. If 34 = 1)1, 
then the extraction of the 4-th root of 81 will result in the base 3. 
In other words, the power (81) and the exponent (4) are given. and 
the base (3) is obtained. 

The operation of the extraction of a root is indicated by the 
symbol Vwhich is known as the radical or the root sign. and the 
operation of the extraction of a particular root is indicated by 
writing under the radical the number from which the root is to be 
extracted and above the radical, on the left, the exponent of the 
base. This exponent of the base is known in the case of the extrac
tion of roots as the exponent of the root. Thus, the extraction of the 
4-th root of 81 is written as V81. 

The root of the second power of a (~) is known as the square 
root of a. Instead of ~ we write Va. The root of the third 
power of a (V'~) is known as the cube root of a. 

16. THE SIGN OF THE ROOT 

When the exponent of the root is odd, the sign of the root 
(after the extraction is completed) is the same as the sign of thE' 
number under the radical sign (that is, the number from which it is 
to be extracted). For example 

.5~ .5/--
·V 243 = 3, and V - 243 = - 3 
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That this is correct may be checked by reversing the process of the 
extraction of rbots, that is, by raising to a power. We then have 

35 = 243, and (-3)5 = - 243 

When the exponent of the root is even, and the number under the 
radical sign_ is positive (we shall not be concerned with negative 
numbers under such radicals) there are two roots whose absolute 
values are equal but the signs are opposite. For example 

V25 =+ 5, and V25 =- 5 

because 52 = 25, and (- 5)2 = 25. 

17. SPECIAL PROPERTIES OF POWERS AND ROOTS 

A number raised to the first power is equal to itself, that is, 

a1 =a (4 1 =4) 

A number raised to the zero power is equal to 1, that is, 
aO = 1 (50 = 1) 

A number raised to a negative power is equal to a fraction 
whose numerator is 1, and whose denominator is the same number 
raised to the same, but positive, power, that is, 

A root of a number may be expressed as the number whose 
exponent is a fraction; the numerator of this fraction is 1, and the 
denominator of this fraction is the exponent of the root, that is, 

V;;: = a~ (~ = 5~) 
As a consequence of the above we have the following properties: 

a~=rvam 
m 1 

a-Ii =--

W 
18. OPERATIONS WITH POWERS AND ROOTS 

When a product is raised to a power, each factor is raised to this 
power, that is, 

When a fraction is raised to a power, the numerator and denomi
nator of this fraction are raised to this power, that is, 
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The converse of the above two also holds, that is, 

anbncn 
000 k n = (aoboc o 0 0 0 ok)n 

and 

When two powers with equal bases are multiplied, then the 
exponents of the powers are added, that is, 

When two powers with equal bases are divided by one another, 
the exponent of the divisor is subtracted from the exponent of the 
dividend, that is, 

When a power is raised to a power, the exponents are multiplied 
by one another, that is, 

(am)n = a mn 

When a root is extracted from a product, the root may be 
extracted from each factor, and the product of the extracted roots 
is the root of the product, that is, 

vaoboc o 000 ok = Va· V'bo Vco 0 o. oV'k 

When a root is extracted from a fraction, it may be extracted 
from the numerator and denominator separately, that is, 

The converses of the above two also hold, that is, 

VaoVboV~o 0 0 0 00 = Vaobocoo 0 0 ok 
and 

When a root is raised to a power, then the number under the 
radical is raised to this power, that is, 

(v~)m= ~ 

When a root is to be extracted from a root, the exponents of the 
roots must be multiplied by one another, that is, 

VV:a = va 
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19. E;XTRACTION OF SQUARE ROOTS OF NUMBERS 

The extraction of square roots of numbers is performed as 
follows: _ 

Extract the square root of 544644. 
FiIPt step: . Group the digits of the numbers by pairs from right 

to left 
54 46 44 

Second step: Obtain the nearest whole square root of 54 (whose 
square does not exceed 54) and write it to the right 
of 54 46 44. This square root is 7 

54 46 44 7 

Third step: Sqilare 7 and write it under 54 and subtract 49 from 54 

54 46 44 7 
49 

5 

Fourth step: Bring down the next pair of digits and write them to 
the right of 5. Double the 7 and write it to the left 
of 546 but leave a free space to the right of 14. Then 
divide 54 by 14, and write (3) the whole quotient in 
three places: 

a. To the right of the 14, 
b. To the right of the 7, 
c. Just below itself, where it was written to the 

right of 14. 

Multiply 143 by 3 and write the product below 546. 
We then have: 

54 46 44 73 
49 

1431 546 
3 429 

Fifth step: Subtract 429 from 546. Bring down the next pair 
of digits and write them to the right of the difference. 
Then follow the same procedure as above 

V54 46 44 = 738 
49 

143 546 
3 429 

1468 11744 
8 11744 

0 
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Thus 738 is the square root of 544644. Generally, not ;ill numbers 
are perfect squares. vVhen a number is not a perfect square, the 
extraction of the square root may be continued after the extraction 
from the whole (integral) part of the number is completed by bring
ing down two zeros at a time, and the extraction is continued into 
the decimals. For example 

v4673 = 68.35 
36 

128 1073 
8 1024 

1363 4900 
3 4089 

13666 81100 
6 L-.----=8=1---=99~6 

If the number from which a square root is to be extracted has an 
integral as well as a decimal part, only the digits in the integral part 
are grouped by pairs. For example 

vi 3 -4-7.-6-73-9 = 18.646 
1 

28 247 
8 22~ 

3662367 
6 2196 

3724 17139 
4 14896 

37286 224300 
6 223716 

20. ARITHMETIC PROGRESSIONS 

A sequence of numbers such that the difference between any two 
successive pairs of them is the same, is known as an arithmetic 
progression. This difference is obtained by subtracting the pre
ceding term from the one that follows it. For example 

4, 7, 10, 13, ... 

is an arithmetic progression. Also 

29, 22, 15, 8, 1, -6, -13, ... 

is an arithmetic progression. 
If the first term of an arithmetic progression is a, the difference 

between two successive terms is d, and the number of terms is n, 
then the n-th term of the arithmetic progression is 

a + (n - l)d 
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or 

The sum of ,the n terms of an arithmetic progression is 

S = [2a + (n - 1)dJn 
- 2 

s = (first term + last term) . number of terms 
2 

21. GEOMETRIC PROGRESSION 

A sequence of numbers such that the ratio of every two successive 
pairs of them (one term is always divided by that preceding it) is 
always the same,is known as a geometric progression. For example 

2, 6, 18, 54, 162, ... 
is a geometric progression. Also 

24, 6, 3 3 -.JI_ 
2' 8' 32' 

is a geometric progression. 

If the first term of a geometric progression is a, and the ratio is r, 
and the number of terms is n, then the n-th term is 

The sum of n terms of a geometric progression is 

s = arn - a = _a-,--_a_r_n 
r-1 1-r 

If the absolute value of r is less than 1, that is, if r is either a 
positive or negative fraction, the sum of n terms of a geometric 
progression, when n is infinite, is 

S=_a_ 
1 - r 

For example, the sum 
1+!+t+i+ 

when the number of the terms becomes infinite, is 

1 
1 _! = 2 

The sum 
l-!+t-i+T~-

when the number of the terms becomes infinite, is 

_1_=~ 
1 + ! 3 
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22. LOGARITHMS 

By means of logarithms we can obtain the exponent of the power 
to which a given base is raised when the power is also given. 

For example, if the power is 243, and the base is 3, then the log
arithm of 243 to the base 3 is 5. The number 3 is known as the base 
of the logarithms in this case, and 5 is the logarithm of 243 to this 
base. 

Thus, if ab = N 

we have two other relationships, that is, 

VN = a, and log aN = b 

For practical computations we use logarithms to the base 10. 
For methods and their illustrations of computations with logarithms 
see Tables. 

The logarithm of a product is equal to the sum of the logarithms 
of the factors: 

log (ab) = log a + log b 

The logarithm of a quotient is equal to the difference between 
the logarithm of the dividend and the divisor: 

log (a -;- b) = log a -10gb 

The logarithm of a power: log an = n log a 

The logarithm of a root: 
nr:. 1 

log V a = - log a 
n 

Note: All the logarithms indicated in the above relationships 
are to be taken to the same base. 

23. RAISING OF A BINOMIAL TO A POWER 

The raising of a binomial to a power may be performed by means 
of a formula. This formula is known as Newton's Binomial Expan-
sion. 

n(n - 1) 
(a + b)n = an + nan-1b + a n - 2b2 

1·2 

+ n(n - l)(n - 2) n-3b3 + 
1.2.3 a ... 

+ n(n - l)(n - 2) ... (n - k + l)a n - kbk + 
1·2 ·3· ... ·k 

The Binomial Expansion is a polynomial so arranged that the 
exponents of the powers of one term (a) decrease in magnitude, 
while exponents of the powers of the second term (b) increase in 
magnitude. 
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If the exponent of the binomial is n, then: 

a. The polynomial contains (n + 1) terms. 
b. The exponents of a decrease from n to zero. 
c. The exponents of b increase from zero to n. 
d. The coefficients of the terms of the expansion increase in 

magnitude until the middle term (or middle two terms) 
is reached, and then they decrease in magnitude. If n 
is even there is one middle term. If n js odd there are 
two middle terms with equal coefficients. 

e. The coefficients of terms equidistant from the middle term 
(or middle two terms) are equal. 

When the binomial is a difference of two terms, the even num
bered terms of the expansion are negative, that is, 

n(n - 1) 
(a - b)n = an - nan-1b + a n- 2b2 -

1·2 

24. EQUATIONS OF THE FIRST DEGREE IN ONE UNKNOWN 

Equations of the first degree in one unknown are solved as illus
trated below. 

Equation 

16x + 4 + 3x - 7 = 4x + 2 
4 5 

(16x + 4)5 + (3x - 7)4 = (4x + 2)20 

80x + 20 + 12x - 28 = SOx + 40 

80x + 12x - 80x = - 20 + 28 + 40 

12x = 48 

x = H = 4 

Solution 

Bring both sides of the 
equation to a common de
nominator thus freeing the 
equation of fractions. 

Remove the parentheses. 

Collect the terms with 
the unknown on the left 
side of the equation and 
the remaining terms on the 
right side of the equation. 

Perform the indicated 
operations. 

Divide both sides of the 
equation by the coefficient 
of the unknown. 
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The value of the unknown x is known as the solution of the equa
tion or its root. When this value is substituted in the original 
equation, the equation becomes an identity. Thus 

16·4 + 4 + 3·4 - 7 = 4.4 + 2 
4 5 

68 + ~ = 18 
4 5 

17 + 1 = 18 

All the equations of the first degree III one unknown can be 
reduced to the form 

ax = b 

In order to reduce an equation to this form certain operations 
(leading to transformations) must be performed. Whenever a 
certain operation is performed on one side of the equation it must 
also be performed on the other side of the equation. The following 
transformations are usually performed: 

Also 

a. The same quantity may be added to each side of the equa
tion, or the same quantity may be subtracted from each 
side of the equation. This transformation is equivalent 
to the transposition of a term from one side of the equa
tion to the other with its sign changed. For example, 

3x + 2 7x - 3 

-7x-2 =-7x-2 

-4x 

3x + 2 

-5 

7x - 3 

3x - 7x = - 3 - 2 

b. Both sides of the equation may be multiplied or divided by 
the same quantity (except the division by zero). For 
example 

2x - 9 
3 = 3x + 2 

3(2x - 9) = 3(3x + 2) 
3 

2x - 9 = 3(3x + 2) 

5x + 15 = 20x - 75 

5x + 15 
5 

20x - 75 
----

5 

x + 3 = 4x - 15 



720 Mathematics-Its, Magic & Mastery 

c. Both sides of the equation may be raised to the same power 

Also 

or the same root may be extracted from both sides of the 
equation. For example 

_4/--
V 2x - 5 = 3 

(~2x - 5)4= 34 

2x - 5 = 81 

2x = 86 

x = 43 

x3 = 64 

#=~64 
x=4 

d. A logarithm of both sides of the equation may be taken. 
For example 

3'" = 243 

x log 3 = log 243 

log 243 
x=---

log 3 

_ 2.3856 _ 5 
x - 0.4771 -

25. RULES FOR THE SOLUTION OF EQUATIONS OF THE FIRST 

DEGREE IN ONE UNKNOWN 

The above transformations that can be performed on equations 
of the first degree in one unknown lead to the following rules for the 
solution of these equations: 

Rule 1. If the equation contains several terms which have the 
unknown (generally denoted by one of the letters, 
x, y, or z), then it is necessary to transpose the terms 
with the unknowns to one side of the equation (appro
priately changing their signs when necessary), and at 
the same time terms free from the unknown should be 
transposed to the opposite side of the equation. Then 
the indicated operations should be performed. For 
example 

5x - 3(10 + 2x) - 3x = 15 - 13x + 4(5 - x) 

5x - 30 - 6x - 3x = 15 - 13x + 20 - 4x 

5x - 6x - 3x + 13x + 4x = 15 + 20 + 30 
13x = 65 

x=5 
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Rule 2. If the unknown is in the denominator, it is necessary to 
free the equation from this denominator. Thus both 
sides of the equation should be multiplied by this 
denominator. If the equation contains fractions whose 
denominators do not contain the unknown, it is not 
absolutely necessary to multiply both sides of the equa
tion by the least common denominator. However, the 
multiplication of both sides of the equation by the least 
common denominator will simplify the work. For 
example 

4 5 1 9 
x + 2 - 2(x + 2) = :2 + 2(x + 2) 

2·4-5=x+2+9 

x=8-5-9-2 

x=-8 

Rule 3. If the unknown of the equation is a part of an expression 
from which a root is extracted, this expression should be 
isolated, and then both sides of the equation' should be 
raised to the power indicated by the exponent of the 
root. For example 

_3/--
V 5x - 3 + 6 = 9 
.3/--
V 5x - 3 = 3 

Sx - 3 = 27 

5x = 30 

x=6 

Rule 4. If the unknown of the equation is a part of an expression 
that is raised to some power, this expression should be 
isolated, and a root indicated by the exponent of the 
power should be extracted from both sides of the equa
tion. For example 

(x - 5)3 + 5 = 69 

(x - 5)3 = 64 

x-5=4 

x=9 

Rule 5. If the unknown of the equation is a part of the exponent 
of some power, then this power must be isolated and 
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the logarithm of both sides of the equation should be 
taken. For example 

4 + 3,,+5 = 31 

3,,+5 = 27 

(x + 5) log 3 = log 27 

x+S 
log 27 
log 3 

+ 5 = 1.4314 
x 0.4771 

x=-2 

3 

Note: Only when the bases of the powers are equal can the 
equation of the first degree in one unknown be solved according to 
the above rule. If the bases are not equal, as for example 

2" + 3" = 7 

the solutiQn of such equations at times becomes very difficult. 
Such equations are known as exponential equations. 

26. SYSTEMS OF EQUATIONS OF THE FIRST DEGREE 

IN TWO UNKNOWNS 

Every equation of the first degree in two unknowns can be 
reduced to the form 

For example 
ax + by = c 

x+3+ 2 =S 
y 

x + 3 + 2y = Sy 

x - 3y = - 3 

One equation with two unknowns does not have determinate 
solutions. Two equations with two unknowns generally have 
solutions, and the solution of such equations consists of finding 
such values of x and y (known as the roots of these equations) 
which, if substituted in the two equations, will transform the equa
tions into identities. 

Systems of two equations with two unknowns in the first degree 
are solved by two methods: 

a. The method of equalization of coefficients, 
and b. The method of substitution. 
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The same methods are applied to the solution of systems of equations 
with several unknowns in the first degree. 

a. The Method of Equalization of Coefficients 

15x - 4y = 37 

9x + 6y = 39 

Multiply the first equation 
by 3 and the second equation by 
2. We thus equalize the coeffi
cients of y. 

15x - 4y = 3713 

9x + 6y = 39 2 

45x - 12y = 111 

18x + 12y = 78 

45x - 12y = 111 

18x + 12y = 78 

63x 189 

x = 189 = 3 
63 

Substitute x = 3 in the first 
equation and solve for y. 

15·3 - 4y = 37 

4y = 45 - 37 = 8 

y = 2 

Solution 

We equalize the coefficients 
of some unknown. In order to 
do this we obtain the least com
mon multiple of the coefficients 
of that unknown. This least 
common multiple is the smallest 
number such that contains these 
coefficients as factors. Thus, if 
we wish to equalize the coeffi
cients of y the least common 
multiple is 12. 

We add the two equations 
term by term (or, when the 
signs of the equalized coeffi
cients are the same we subtract 
one equation from the other) 
and thus one unknown is elimi
nated. 

We solve the resultant equa
tion with one unknown. 

\N"e substitute the value of 
unknown obtained in the previ
ous step in one of the equations 
and we solve the equation for 
the second unknown. 

Thus the solution of the system of equations is 

x = 3 and y = 2 

b. The ivIethod of Substitution 

15x - 4y = 37 

9x + 6y = 39 

Solve the first equation for x 
in terms of y. 

37 + 4y 
x = 15 

Solution 

We solve one of the equation;; 
for one of the unknowns in terms 
of the other unknown, assuming 
for the time being that this un
known is known to us. 
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Substitute the expression for 
x in the second equation. 

The expression for the un
known just obtained, we substi
tute in the other equation, and 
thus we eliminate from it the un
known for which the first equa
tion was solved. 

y. 

9(37 + 4y.) + 6 = 39 
15 Y 

Solve the above equation for 

3(37 + 4y) + 6y = 39 
5 

111 + 12y + 30y = 195 
42y = 84 

y = 2 

Substitute y = 2 in the ex-

We solve the equation ob
tained after the substitution, 
was made for the remaining un
known. 

pressIOn 
Substitute the value of the 

unknown obtained in the expres
sion for the other unknown ob
tained in terms of the first un
known (see the first step). 

x= 

x= 

37 + 4y 
15 

37 + 4·2 
15 

45 
x = - = 3 

15 

Thus the solution of the system is 

x = 3 and y = 2 

27. QUADRATIC EQUATIONS 

Quadratic equations in one unknown may be reduced to the form 

ax2 + bx + c = 0 
or to the form 

x2 + px + q = 0 

If the coefficient b or the coefficient c (also known as the.free term) 
is equal t9 zero, the quadratic equation is known as incomplete. 
Thus we may have two forms of incomplete quadratic equations, 
that is, 

ax2 +c =0 
or 

ax2 + bx = 0 

The values of x that would, when substituted into the equation, 
make the equation an identity, are known as the solutions or the roots 
of the equation. A quadratic equation has two solutions or roots. 
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28. FORMULAS FOR THE ROOTS OF QUADRATIC EQUATIONS 

a. The complete quadratic equation ax2 + bx + c = 0 

-b ± Vb2 - 4ac 
2a 

or (when b is even) 

- G) ± ~(~r- ac 

a 

b. The complete quadratic equation X2 + px + q = 0 

c. The incomplete quadratic equation ax2 + bx = 0 

Xl = 0, X2 = - (D 
d. The incomplete quadratic equation ax2 + c = 0 

X1.2 =± ~-:- G) 
29. THE TEST FOR THE ROOTS OF A QUADRATIC EQUATION 

a. For a complete quadratic equation ax2 + bx + c = 0 

If b2 - 4ac > 0 the quadratic equation has two real and unequal 
roots (that is, the roots do not contain negative numbers 
under the radicals). 

Example, x2 + 5x + 6 = 0 

-5 ± V25 - 24 
2 

Xl = - 2, X2 = - 3 

-5 ± 1 
2 

If b2 - 4ac = 0 the quadratic equation has two equal roots. 

Example, x 2 - 8x + 16 = 0 

8±V64-64 8 
XI,2 = 2 = 

If b2 - 4ac < 0, that is, b2 - 4ac is negative the quadratic 
equation has two roots known as imaginary. They are 
associated with the square root of a negative number. 
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Example, SX2 + 4x + 1 == 0 

-4'± V16 - 20 
10 

-4 ± v-=4 
10 

-2± vi-=! 
5 

-4±2V-=! 
10 

h. For the incomplete quadratic equation ax2 + c = 0 
If the signs of a and c are different, the roots are real. 

Example, 9X2 - 16 = 0 

Xl,2 = ± ~196, Xlt2 = ± (~) 
If the signs of a and c are the same, the roots are not real 
(they are called imaginary). 

Example, 9X2 + 16 = 0 

Xl,2 = ± ~ - C96) , XI,2 = ± (~) V-1 

c. The incomplete quadratic equation ax2 + bx = 0 always has 
two real solutions. One of them is zero, and the other is 

- (~). 
Example, 3X2 - 7x = 0 

Xl = 0, and X2 = t 

30. THE PROPERTIES OF THE ROOTS OF A QUADRATIC EQUATION 

If the roots of a quadratic equation· ax2 + bx + c = 0 are 
Xl and X2, then 

and 

For the equation X2 + px + q = 0 we have that 

Xl + X2 = - P 
and 

XlX2 = q 

These properties are useful for the purpose of checking the 
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solution of a quadratic equation as well as for the construction of 
the quadratic equation when the roots are given. For example, 

XZ - (Xl + xz)x + XIXZ = 0, or, XZ - XIX - XZX + XIXZ = 0 

and 
(x - XI)(X - XZ) = 0 

II. Geometry 
31. LINES AND ANGLES 

A trace ora moving point represents a generated line. 
There are two kinds of lines, straight and curved. 
The definition of a straight line is impossible. It may be stated, 

however, that the distance between two points is measured along a 
straight line. A straight line has no width (or breadth). 

A straight line may be extended in either direction indefinitely. 
A straight line, limited in length is known as a straight line 

segment. A straight line segment has two end points. 
A line composed of several straight line segments is known as a 

broken straight line. 
A curved line cannot be defined in general. Specifically it may 

be defined in terms of its specific properties, such as a circle, ellipse, 
parabola, etc. 

Straight line 
Broken straight line ~ 

Curved line 

Two intersecting straight lines form an angle. 
An angle is measured in degrees and parts of a degree, minutes 

and seconds (one degree, 1°, is one 360th part of an angle around a 
point, also one 360th part of a circle; there are 60 minutes in a 
degree, and 60 seconds in a minute). 

Two straight lines forming an angle of 90° (also known as a 
right angle) are perpendicular to one another (and conversely, 
perpendicular straight lines form a right angle). 

Two right angles are equal to a straight angle, that is, an angle 
about a point to one side of a straight line. 

When two straight lines intersect they form four angles which 
are equal in pairs (except when the straight lines are perpendicular 
to one another, and they are all equal). The equal angles are 
known as vertical. Thus, vertical angles are equal. 

. The kinds of angles that can be made by two intersecting straight 
lines are shown below. 

Acute angle 
less than 90° 

L 
Right angle 

90° 
Obtuse angle 

greater than 90° 

a 
Straight angle 

180° 

Ii-' 

~-
~:'\ 
~ 
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32. TRIANGLES 
, 

The vertices of a triangle are denoted by the letters, A, B, and C. 
The angles of a triangle are denoted by L A (or L BA C), 

L B (or L ABC), and L C (or L ACB). 
The sides of a triangle are AB (or c, which is opposite L C), 

AC (or b, which is opposite L B), and BC (or a, which is opposite 
LA). 

The sum of the sides of a triangle, that is, a + b + c = 2p. 
This is also known as the perimeter of the triangle. . 

The sum of the angles of any triangle is equal to 180°, that is, 

L A + L B + L C = 180°. 

Kinds of triangles 

Acute 

(all the angles are less than 90 ° 
each) 

Obtuse 

(one of the angles, LA, is greater 
than 90°) 

Right 

(One of the angles, L C, is 90°, and 
the angles L A and L B are acute) 
The side c (or AB) is known as the 
hypotenuse 

Isosceles 

(two sides are equal) 

AB = BC 

and L A = L C 

Equilateral 

(three sides are equal) 

AB = BC = AC 

and t. A = L B = L C = 60° 

B 

"--------=::: ... c 

A ......... ---.J 

B 

A/.....----~C 
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33. PARALLEL LINES 

Two straight lines that are equidistant from one another (that 
is, the distance between them is always the same) are parallel to 
one another. Parallel straight lines do not intersect, however far 
they may be extended. 

The shortest distance from a 
point outside a straight line to the 
straight line is measured along a 
perpendicular drawn from the 
point to the straight line. 

Parallel straight lines 

When two or more parallel 
straight lines are cut by a third 
straight line, the transversal, equal 
angles are formed as indicated by 
the numbers in the diagram. 

A 

B_-=-I-c 
D 

34. QUADRANGLES 

A quadrangle is a closed geometric figure consisting of four sides. 
I t has four angles. 

The sum of the angles of any quadrangle is 360°. 
If two sides of a quadrangle are parallel, the quadrangle is a 

trapezoid. If the opposite sides of a quadrangle are parallel, then 
the quadrangle is a parallelogram. If in a parallelogram all the 
sides are equal it is either a rhombus or a square (in the square all 
the sides are perpendicular to one another). If the sides of a paral
lelogram are perpendicular to one another, then the quadrangle is a 
rectangle. Thus, a square is rectangle all of whose sides are equal. 

Kind of quadrangles 

The general quadrangle 

No special properties, except 
that L A + L B + L C + L D 

=360°. 

Parallelogram 

AB is parallel to CD, AB = CD 
BC is parallel to AD, BC = AD 

The point 0 is the midpoint of the 
diagonals A C and BD 

Examples 

A~D 
B C 

AC<! 
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Rhombus 
, B C 

AB~BC~CD~AD A/ 
AB is parallel to CD 
BC is parallel to AD 

The point O_is the midpoint of the ~ 
diagonals AC and BD, and AC A D 
is perpendicular to BD. 

Rectangle 

AB is parallel to CD, AB = CD 
BC is parallel to AD, BC = AD 
L A = L B = L C = L D = 90 0 

-
The diagonals A C and BD are 
equal. The point 0 is the midpoint 
of the diagonals A C and BD. 

Square 

AB = B C = CD = AD 
L A = LB = L C = LD = 90 0 

B~ ____________ ~C 

o 

A""--------~D 

The diagonals A C and BD equal 
and perpendicular to one another. 
The point 0 is the midpoint of the 
diagonals AC and BD. A"'-----~ 

Trapezoid 
BC is parallel to AD 
LA + LB = L C + LD = 180 0 B C 

The di,gonal,AC and BD.,ce u~ 
equal. The lme EF Jommg the F 
midpoints of AB and CD is 
equal to HBC + AD). A 'D 

B C is parallel to AD 
AB = CD 

Isosceles trapezoid 

L A = L D and L B = L C 

The diagonals A C and BD are 
equal. The line EF joining the 
midpoints of AB and CD is equal to 
HBC + AD). 
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35. THE ALTITUDE, THE ANGLE BISECTOR AND THE MEDIAN OF A 
TRIANGLE 

The straight line drawn from a vertex of a triangle perpendicular 
to the opposite base is the altitude of the triangle. A triangle has 
three altitudes. If the triangle is acute the altitudes fall within 

the triangle. If the triangle is obtuse, two of the altitudes will fall 
outside the triangle and will intersect the extensions of the sides to 
which they are drawn. 

The straight line bisecting an angle of a triangle is the angle 
bisector of the triangle. A triangle has three angle bisectors. The 
angle bisectors of a triangle all fall within B 
the triangle. An angle bisector of a tri
angle cuts the side it meets into two 
segments proportional to the other two 
sides. Thus, 

AD :DC = AB :BC A~----'~----"C 

B 

A line drawn from one vertex of a triangle 6 
to the midpoint of the opposite side in the 
median of th.e triangle. 

A C 
D 

36. FOUR REMARKABLE POINTS IN A TRIANGLE 

The three altitudes of a triangle intersect in one point. This 
point is known as the orthocenter of the triangle. When the triangle 

B 

B 

C 

A~~-----~~C 
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is acute the orthQcenter lies within the triangle. When the triangle 
is obtuse the orthocenter lies outside 
the triangle. B 

The three angle bisectors of a 
triangle intersect in a point. This 
point is the center of the circle in
scribed in the triangle, and it is 
known as the incenter of the triangle. 

The three medians of a triangle 
intersect in one point. This point A C 
divides each median in the ratio of 
1 : 2. Thus DO : OB = 1 : 2. The point of intersection of the 
three medians is also known as the center oj B 
gravity oj the triangle. If a triangle is placed 
on a needle so that point 0 is resting on the 
point of the needle, the triangle will be in 
balance. 

The three perpendiculars drawn through 
the midpoints of the sides of a triangle in- A C 
tersect in one point. This point is the 
center of a circle circumscribed around the triangle. It is also 
known as the excenter of the triangle. If the triangle is acute 

B 

the excenter lies within the triangle; if the triangle IS obtuse, the 
excel}.ter lies outside the triangle. 

37. FORMULAS ASSOCIATED WITH TRIANGLES 

In the following formulas A, B, and C denote angles, and a, b, 
and c denote sides of a triangle. 

The sum of the angles of a triangle 

L A + L B + L C = 1800 

The relation between the sides of a triangle 

a + b > c, a ....- b < c 

a + c > b, a - c < b 
b + c > a, b - c < a 
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B The Pythagorean relation for a right trio 

A angle a2 + b2 = c2 

~ The generalized Pythagorean relation for 
A Dean acute triangle. 

a2 = b2 + c2 - 2b·AD 

The Pythagorean relation for the side 
opposite the obtuse angle of a triangle. 

a2 = b2 + c2 + 2b'·AD 

38. FORMULAS FOR THE AREAS OF POLYGONS 

yJh 7 
A a 

B 

The area of a square. 

A = a2 

d2 
A=-

2 

The area of a rectangle. 

A = ab 

The area of a parallelogram. 

A = ah 

A = ab sin A 

The area of a rhombus. 
B C 

A = ah , 

A = a2 sin A 

A = AC·BD 
2 

The area of a triangle. 

A = bh 
2 

A = ab sin A 
2 

A'----:---L.--l C A = VP(P - a)(p - b)(p - c), 

a+b+c p = ---=--
2 
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a 

The area of an isosceles tri
angle. 

A = ~ v' 4b2 - a2 
4 

A = b2 sin A 
2 

The area of an equilateral tri
angle. 

The area of a trapezoid. 

39. THE CIRCLE 

A = ~ (a + b) 
2 

A closed plane curved line such that all of its points are equally 
distant from a point within the same plane (and within the closed 
curve) is a circle, and the straight line segment representing this' 
distance is the radius of this circle. All the radii of the same circle 
are equal. 

A straight line cuts the circle in two points. The straight line 
cutting the circle is called the secant. The portion of a secant cut 
off by the circle and lying wholly within the circle is called the chord. 
When a secant touches the circle at only one point, it is a tangent 
to the circle. The chords of a circle vary in size. The longest 
chord in a circle is that which passes though the center of the circle, 
and it is known as the diameter. The farther away a chord is from 
the center of a circle the shorter it is in length. 

B 

A 

A circle and a secant. 

CL-_~~-...,D A chord and the diameter. 



~----~~~------~B 

The ® measure of C. 
LABC '0 
is B 

ArcAC 6j 
2 A A C 

The measure of 
LBAC is 

Arc DE + Arc BC 
2 

o 

E 

B 

The measure of 
L.BAC is 

Arc BC - Arc DE 
2 
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A tangent to the circle. 

A portion of the circumference 
of a circle cut off by a secant is 
called the arc of the circle. The 
smaller arc (AaB) is called the 
minor arc. The larger arc (AbB) 
is called the major arc. 

An angle formed by two radii 
of the circle is called the central 
angle. I t is measured by the 
number of degrees in this arc, 
and, if it contains some portion of 
a degree, the portion of the degree 
is measured in minutes and sec
onds. 

An angle formed by two chords 
whose intersection in on the cir
cumference of the circle is called 
the inscribed angle. It is mea
sured by one half of the arc it sub
tends, that is, by one half the arc 
A C. A right angle subtends one 
half the circumference of one 
circle. 

An angle formed by two inter
secting chords is measured by one 
half the sum of the two arcs the 
angle subtends (when the point of 
intersection of the two chords lies 
within the circle), and it is mea
sured by one half the difference of 
the two arcs the angle subtends 
(when the point of intersection of 
the two chords lies outside the 
circle). 
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40. TWO CIRCLES 

The relative positions of two circles are shown in the drawing 
below. When the centers of two circles coincide, the circles are 
known as concentric EFigure a). Two circles may be tangent to one 
another internally (Figure c), and they may be tangent externally 
(Figure f). 

When two circles are tangent to one another (either internally or 
externally), their common tangent is perpendicular to the straight 
line joining their centers. 

vVhen two circles intersect they have two common tangents 
(Figures d and e). vVhen they do not intersect (and one circle does 
not lie within the other), they have four common tangents 

(Figure g). When two circles are tangent externally, they have 
three common tangents, and one of them is perpendicular to the 
straight line joining the centers of the circle (Figure f). 

41. THE CIRCUMFERENCE AND AREA OF A CIRCLE 

The circumference of a circle is obtained as the product of the 
numerical value of the diameter of the circle and the number Jr. 

The approximate value of Jr is 3.14159 .... 
Below are the formulas stating the expression for the circum

ference and the area of a circle, as well as certain parts of the circle. 



The radius of the circle is denoted by r, 
circle is denoted by d = 2r. 

Appendix 731~ 
and the diameter of th~ 

\" 

The circumference of a circle. 

The length of an arc sub tended 
by an angle of A o. 

The area of a circle. 

The portion of a circle en
closed by two radii and an arc is 
called the sector. 

The area of a sector with a cen
tral angle A 0: 

The portion of a circle en
closed by a chord and the arc 
this chord subtends is called the 
segment. 

The central angle between 
the radii is A o. 

B~---J-L--?-' 

Formula 

C = 7rd = 27rr 

7rd·A 7rr·A 
L = 360 = 180 

The area of the segment is 
obtained as the difference be
tween the area of the sector and 
the area of the isosceles triangle 
formed by the two radii and the 
chord. 

The length of chord B C. 

Chord BC = 2r sin : 

The length of the arc B C. 
7rrA 

Arc BC = 180 

The heigh t of the segmen t 
is h. 
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42. -REGULAR POLYGONS 

A polygon (a many sided closed plane geometric figure, all of 
whose sides are straight lines) all of whose sides are equal, and all of 
whose angles are equal is called a regular polygon. 

A regular polygon may be inscribed in a circfe, and a circle may 
be inscribed in a regular polygon. 

In the following formulas it is assumed that a regular polygon 
is inscribed in a circle whose radius is r. This is equivalent to the 
statement that a circle is circumscribed around a regular polygon. 

Regular polygon 

Equilateral tn'angle 

Square 

Regular six-sided 
polygon (called a hexa
gon). 

Length of side Area 

a = rV3 

a = rV2 A = a2 = 2r2 

Diagonal 

d = aVz = 2r 

a=r A = 3a2V3 = 3r20 
2 2 



Regular polygon 

Regular n-sided 
polygon 

o 
The sum of the 

angles of an n-sided 
regular polygon is 
(n - 2) 180°. 

The angle between 
two sides of such a 
polygon is 

A = (n - 2) 180 0 

n 

Length of side 

A 
a = 2rcos-

2 

43. POLYHEDRA 

Appendix 739 

Area 

A = nr2 sin A 
2 

A polyhedron is a solid (three dimensional) geometric figure 
whose faces are polygons. 

Prism 

A prism is a solid geo
metric figure whose bases 
are equal polygons of any 
number of sides, and whose 
faces are parallelograms. 

The bases of a prism are 
parallel to one another. 

All the edges of a prism 
(they are also the sides of 
the parallelograms) are par
allel to one another. 

Right prism 

The faces of a right prism are 
rectangles. The edges of a right 
prism are all equal and perpen
dicular to the bases. The alti
tude of a right prism is equal to 
the edge of the prism. 

B C 
M . AM1' I D , I I I I, , I 

, I I,E i' 
I 
I MN=h= the altitude 
I h I of the prism 
I 
I 
I 
I 

B!J. ___ .J.q, 
, 

A, ' D, 

E, 

B 
A C 

I 
I 
I 
I 
I 
I , 

,J..B, 
A, ,.....- --- Cf 
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Regu!ar prism 

A regular prism is a right· 
prism whose bases are regular 
polygons. 

Para1lelopiped 

A parallelopiped is a prism all 
of whose bases and faces are 
parallelograms. 

Rectangular parallelopiped 

A rectangular parallelopiped 
is a prism all of whose bases and 
faces are rectangles. 

Cube 

A cube is a prism all of whose 
faces (sides) are squares. 

Pyramid 

The base of a pyramid is a 
polygon, and its faces are tri
angles. 

s 
SM=h= 
= altitude 0.1 
the pyramid 



Regular pyramid 

A regular pyramid is a solid 
geometric figure whose base is a 
regular polygon and whose sides 
(faces) are isosceles triangles. 
The altitude of a regular pyramid 
is the line joining the vertex S of 
the pyramid with the 
center 0 of the circle 
circumscribed around 
the regular polygon. 

Right circular cylinder 

A righ t circular cylinder is a 
solid geometric figure whose bases 
are equal circles and whose alti
tude is the line joining the centers 
of the circles. 

Right circular cone 

A right circular cone is a solid 
geometric figure whose base is a 
circle and whose vertex is a point. 
The altitude of the right circular 
cone joins the vertex of the cone 
and the center of the circle. 

Sphere 

A sphere is a solid geometric 
figure all of whose points (located 
on its surface) are equally distant 
from a point located within this 
figure, known as the center of the 
sphere. 

The distance from a point on 
the surface of the sphere to the 
center is the radius of the sphere. 

The diameter of the sphere is 
twice the radius. 

The intersection of the sphere 
and a plane is a circle. 
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S 80= h =the altitude 

.0 
I 

I 
I 

lh 
I 
I 
I 
I 

of the regular pyramid 

OO,=h=the altitude 
of the right circular 

cylinder 

.... ---1---, 
'0, 

s 
so = h = the altitude 
of the right circular 

cone 

B C 

OA=T.=radius of the sphere 
Be =d=Zr=diameter of the sphere 
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44. FORM:ULAS FOR THE AREAS OF THE SURFACES AND THE 
VOLUMES OF POLYHEDRA 

Solid figure 

Prism 

Right prism 

I 
I 

k=e 
I 
I 
I 
I 
I 
~ 

\ 
\ 
\ 

Right 
Section 

Rectangular parallelopiped 

b 
c 

Cube 

a 

The area of the surface 

A = p·e + areas of 
the bases. 

(p is the perimeter 
of the perpendicular 
section, and e is the 
edge). 

A = P·h + areas of 
the bases. 
(P is the perim
eter of the base). 
h=edge. 

A= 2(ab + bc + ca) 

A =- 6a2 

Volume 

v = B·h 
(B is the area 
of the base, 
and h is the 
altitude of 
the pri~m). 

V=B·h 
(B is the area 
of the base). 

v = abc 



Solid figure 

Pyramid 
-----,-.-

I 
I 
I 
t 
Ik 
I 
I 
I 
I ----1-_. 

Regular pyramid 

Right circular cylinder 

01 

Right circular cone 

Sphere 

The area of the surface 

A = area of base + 
areas of the tri
angles forming 
the faces. 

P·H 
A = -2- + area of 

base. 
(P is the perim
eter of the base, 
and H is the alti
tude of one of the 
triangles drawn 
from the vertex 
of the pyramid). 
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Volume 

1- = B· h 
3 

(B is the area 
of the base, 
and h the alti
tude of the 
pyramid). 

V=~ 
3 

(B is the area 
of the base, 
and h altitude 
of the pyra
mid). 

A = 27rrh + 27rr2 V = 7rr2h 
(r is the radius of 
the base, and h is 
the altitude of 
the cylinder). 

A = 7rre + 7rr2 
(r is the radius of 
the base, and e is 
the edge, or the 
generating line as 
it is called). 

A = 7rd2 = 47rr2 
(r is the radius of 
the sphere, and 
d= 2r). 

F = ,,!!2h 
3 

(h is the alti
tude of the 
cone). 
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III. Trigonometry 

45. TRIGONOMETRIC RATIOS OF AN ACUTE ANGLE 

From the right triangle ABC (L C = 90°) we have the following 
ratios. ' 

a side opposite L A = sin A 
c hypotenuse 

B b side adjacent L A 
hypotenuse 

= cos A 
c 

a side opposite LA = tan A 
b side adjacent L A 

b side opposite LB 
B 

hypotenuse 
= SIn 

c 

a side adjacent L B = cos B A 
b c hypotenuse 

~ = side opposite L B = tan B 
a side adjacent L B 

But L A + L B = 90°, then L B = 90° - L A. 

Then we have that 

and 

sin A = cos B = cos (90° - A) 

cos A = sin B = sin (90° - A) 

tan A 
1 1 

tanB tan (90° - A) 

46. SOME SPECIAL VALUES OF TRIGONOMETRIC RATIOS 

Angle Sine Cosine Tangent 

0° 0 1 0 

30° 1 V3 V3 
2 2 3 

45° V2 V2 1 
2 2 

60° V3 1 V3 
3 

2 

90° 1 0 00 
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47. FORMULAS FOR THE SOLUTION OF RIGHT TRIANGLES 

The fundamental formulas for the solution of right triangle are: 

LA + L B = 90° 

a2 + b2 = c2 

a = c sin A, b = c cos A, and a = b tan A 

b = c sin B, a = c cos B, and b = a tan B 

The solutions of right triangles may be performed according to 
the following scheme: 

Given 

c, A 

a, A 

c, a 

a, b 

Solution 

B = 90° - A, a = c sin A, b = c cos A 

also a = c cos B, b = c sin B 

B = 90° - A, b = a tan B, 

also b=_a_ 
tan A ' 

. A a 
SIn = -, 

c 
B = 90° - A, 

also b = a tan B. 

a 
c=--

sin A 

b = ccosA 

tan A =.~, B = 90° - A, c = vi a2 + b2 

a 
also c = -;--A' sm 

48. FUNDAMENTAL FORMULAS OF TRIGONOMETRY 

If the angle is greater than 90°, but less than 360°, its sine, 
cosine, and tangent ratios are determined according to the following 
rules: 

a. Find the difference between this angle and 180° or 360° 
(whichever happens to be the nearest to this angle). Pay 
no attention to the sign, and find the value of the respec
tive ratio in the table of values of trigonometric ratios. 

b. The sign of the ratio obtained from the table should be in 
accordance with the following table of signs, considering 
the original value of the angle. 
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Ratio First 
quadrant 

0° to 90° 

Second 
quadrant 

Third 
quadrant 

180° to 270° 

Fourth 
quadrant 

270° to 360° 
Sine.. ...... + 

90° to 180° 
+ 

Cosine...... + 
Tangent .... -. + + 

+ 

Examples. 

cos 300° = + cos 60° = + 0.5000, 

sin 240° = - sin 60° = - 0.8660, 

tan 210° = + tan 30° = + 0.5774, 

(360° - 300° = 60°) 

(240° - 180° = 60°) 

(210° - 180° = 30°) 

If the angle is greater than 360°, it is necessary to subtract from 
it an integral multiple of 360°, and only an angle less than,360° is 
considered. For example 

sin 780° = sin (780° - 720°) = sin 60° = 0.8660 

The fundamental relations in trigonometry are: 

sin2 A + cos2 A = 1, and A sin A tan =--
cos A 

sin (90° - A) = cos A, and cos (90° - A) = sin A 

sin (A + B) = sin A· cos 13 + cos A . sin B 

sin (A - B) = sin A· cos B - cos A . sin B 

cos (A + B) = cos A . cos B - sin A . sin B 

cos (A - B) = cos A . cos B + sin A . sin B 

tan (A + B) 

tan (A - B) 

tan A + tan B 
1 - tan A . tan B 

tan A - tan B 
1 + tanA·tanB 

sin 2A = 2 sin A . cos A 

cos 2A = cos2 A - sin2 A 

cos 2A 

tan 2A 

1 - 2 sin 2 A = 2 cos2 A - 1 

2 tan A 
1 -tan2 A 
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49. SOLUTION OF TRIANGLES 

The fundamental relations used in the solution of triangles are: 
a. The sine law 

abc 
sin A - sin B - sin C 

b. The cosine law 

c. The tangent law 

tan 
A+B tan A+C 

tan 
B+C 

a+b 2 a+c 2 b+c= 2 
--= --= 

a-b A -B' a-c 
tan 

A - C' b - c B-C 
tan 

2 2 
tan---

2 

The solution of triangles may be performed according to the 
following scheme: 

Given 

a, b, and c cos A 

Solution 

b2 + c2 - a2 

2bc 
. B b sin A 

Sln = ---
a ' 

C = 1800 - (A + B) 

a, b, and C A+B = 90 0 - f 
2 2 ' 

A-B a-b A+B tan -- = -- tan --
2 a+b 2 

A+B A~B n 

If 2 and 2 are known, the values of A 

and B are obtained as the solution of the equations 

A + B = 2k 
and 

a sin C 
c= sinA' 

A - B = 2m 

G, B, and C A = 1800 - (B + C) 

a, b, and A 

a sin C b = a sin B 
sin A ' 

c=---
sin A 

C = 1800 - (A + B) 

. B b sin A 
Sln = ---

a ' 
a sin C 

c=---
sin A 
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IV. Tables 
All the tables given below contain values stated generally to 

four significant pla~es. On the other hand, the numbers, for which 
the corresponding tabular values of .the various relationships are 
listed, are stated to three places only. The tables are so arranged, 
however, that it is possible to calculate a tabular value correspond
ing to a four-place number. The method for the calculation of such 
values will be described presently. 

All the tables given in this book may be used for computations 
with numbers containing one, two, three, and four places. If a 
number is given to more than four places, it is necessary to round 
it to four places before any computations by means of the tables 
are performed. 

The rules for rounding numbers are as follows: 
a. If the first digit that is to be dropped is less than 5 (that 

is, it is one of the following: 0, 1, 2, 3, or 4), then the last 
digit (counting from the left) on the extreme right of the 
number, that is to be retained, should be left unchanged. 
For example, 124.6345 is rounded to 124.6. Here the 
first digit that is dropped is 3. 

b. If the first digit that is to be dropped is 5 or greater than 5 
(that is, it is one of the following: 5, 6, 7,8, or 9), then the 
last digit (counting from the left) on the extreme right of 
the number, that is to be retained, should be increased by 1. 
For example, 78.4689 is rounded to 78.47. Here the first 
digit that is dropped is 8. 

c. If the digits that are dropped are in the decimal part of the 
number, nothing is written in their places, after the unde
sirable digits are dropped. If the digits that are dropped 
are in the integral (whole) part of the number, zeros are 
written in their places, after the undesirable digits are 
dropped. 

For example, 49.98634 is rounded to 49.99, 
5273498 is rounded to 5273000. 

If a number is given to four places the calculation of a tabular 
value that corresponds to it is computed as follows. 

Each table is arranged so that the first two digits of a number 
are given in the first column (printed in heavy type). To the right 
of this first column there are several columns (for squares, square 
roots, and logarithms ten columns, and for trigonometric ratios 
ten columns also) each of these columns is headed by a number 
printed in heavy type. This number is the third digit of the 
number for which a corresponding tabular value is to be found. 
Thus, a number 473 will be located as follows: 43 is found in the 
first column, and 7 is found in the column denoted 7. 

\Vhen a number has four digits, the tabular value that cor
responds to this number is calculated as follows. 
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The required tabular value cannot be found directly in the 
table, because the table lists the tabular values that correspond to 
three-place numbers. But when a number is given to four places 
its value may be considered ~ocated between two values. For 
example, suppose that we wisH to calculate Y 17 .35. We note 
that 17.35 is located between 17.3 and 17.4. The square roots of 
1.7.3 and of 17.4 can be located in the table. They are found at 
the intersection of the row denoted 17 and the columns denoted 3 
and 4 respectively. We have then 

Y17.3 = 4.159 and Y17.4 = 4.171 

On the right of the table there are nine columns 'of numbers known 
as Corrections. We locate in the place where the row denoted 17 
intersects with the column denoted 5 the number 6. This cor
rection 6 is added to the last place on the right of the value of 
Y17.3 = 4.159, and the sum thus obtained is the required square 
root 

VT7Ts = 4.159 + 0.006 = 4.165 

We may check this result. We have that 
(4.165)2 = 17.347225, 

which, when rounded to four places is 17.35. 
In the case of tables of trigonometric ratios, the procedure IS 

exactly the same. See Section D. 

A. TABLE OF LOGARITHMS OF NfJMBERS 

This table gives' the values of the manti~sas of the logarithms of 
numbers, that is, of the decimal portions of the logarithms. 

The integral (whole) portion of a logarithm of a number, which 
is known as the characteristic, is found according to the following 
rules. 

a. If the number has an integral (whole) part, then count the 
number of the digits there are in this whole part, that is, the 
number of digits ,0 the left.of the decimal point. Subtract 1 
(one) from this number of digits. The difference thus 
obtained is the characteristic of the logarithm. 

b. If the number is a pure decimal, then count the number of 
zeros there are in the decimal part, that is, to the right of 
the decimal point. Add 1 (one) to this number of zeros. 
The sum thus obtained is the characteristic of the logarithm 
of the number. It should be remembered that the log
arithm of a positive fraction less than 1 is negative. The 
representation of any fraction may be as follows. It may 
be represented as the product of a number with a negative 
power of 10. For example, 0.5 = 5.10-1 . This property 
is used for the purpose of writing of logarithms of decimal 
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fraction. We write the' mantissa as obtained from the 
table, 'and we write the characteristic as a negative 
number. This last is written with a bar over it, in order to 

'indicate that it is negative. Thus, the characteristic of 
the logarithm of 45.67 is 2 - 1 = 1. The characteristic 
of 0.3269 is obtained as 0 + 1 = 1; since it is -1, it is 
written as T. The characteristic of 0.0006489 is written 
as4. 

The table of logarithms (that is, of the mantissas of the log
arithms) is arranged so that the first two digits of a number are 
found in the first column (whose heading is N), and the third digit 
of a number is found in one of the ten columns immediately to the 
right of N. ThlJs this table contains the mantissas of all three-
place numbers. These mantissas are found as follows: . 

Locate the line in the first column that corresponds to the 
first two digits of the number. Then locate the intersection of 
the column whose heading is the third digit with the row that 
corresponds to the first two digits. At the intersection the 
mantissa of the logarithm of the three place number is found. 

For example, the logarithm of 723 is found at the intersec
tion of the row numbered 72 and the column numbered 3. 
Then log 723 = 2.8591. 

The logarithm of a four-place number is found by locating the 
characteristic that corresponds to the first three digits (counting 
from the left) of the number and adding to this the mantissa of the 
correction that corresponds to the fourth digit. This correction is 
found in the columns on the right of the table with such computed 
Corrections. The values of the corrections given in the table are 
in terms of the last place on the right of the mantissa. Thus, if 
the correction is stated as 7, its value is 0.0007, if the correction is 
stated as 13, its value is 0.0013. 

For example, the logarithm of 54.38 is calcq.lated as follows: 

log 54.3 = 1.7348 

the correction for 0.08 = 0.0006 

log 54.38 = 1. 7 354 

The logarithm of 0.02846 is calculated as follows: 

log 0.0284 = 2.4533 

the correction for 0.00006 = 0.0006 

log 0.02846 = 2.4539 

By means of the table of logarithms it is possible to calculate 
the number when its logarithm is given. The process of calculation 
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of the number by means of its logarithm is the reverse of the process 
of calculating the logarithm. 

Suppose that 2.7087 is the logarithm of some number. We find 
in the table that there is no listing for the mantissa 7087. But 
there is a listing for the mantissa 7084. Thus the number whose 
logarithm is 2.7087 is greater than the number whose logarithm is 
2.7084. Moreover, the number whose logarithm is 2.7087 is less 
than the number whose logarithm is 2.7093 (the listing next to the 
mantissa 7087). In other words, the number whose logarithm is 
2.7087 is greater than 511, but it is less than 512. The difference 
between 0.7087 and 0.7084 is 0.0003. In the columns for the cor
rections we find that 3 corresponds to the headings 3 and 4. Thus 
the required number is either 511.3 or 511.4. But, on the other 
hand the difference between 0.7093 and 0.7087 is 0.0006, and the 
correction for 6 is given by the heading 7. Thus, the required 
number is 512.0 - 0.7 = 511.3. The actual calculation is per
formed as follows: 

2.7087 

2.7084 = log 511 

Difference 3 0.3 correction 

2.7087 = log 511.3 

It should be understood that the results of the computations 
with logarithms generally can be stated only approximately. Only 
in exceptional cases may the results be obtained exactly. 

The logarithm of a product is equal to the sum of the logarithms 
of the individual factors. For example, the product (3.789·6.115· 
78.09) is computed as follows: 

log 3.789 = 0.5785 
log 6.115 = 0.7864 
log 78.09 = 1.8926 

logarithm of product = 3.2575 
and the product is 180.9 (approximately). 

The logarithm of a quotient is equal to the difference between 
the logarithm of the dividend and the logarithm of the divisor. 
For example, the logarithm of (17.82 -;- 0.4638) is obtained as 
follows: 

log 17.82 = 1.2509 
log 0.4638 = 1.6663 

logarithm of the quotient = 1.5846 

(the subtraction is performed with due regard to the characteristic 
of the logarithm of the divisor; when 1 is subtracted it becomes + 1). 

The quotient is then 38.83. 
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When a larger logarithm is subtracted from a smaller logarithm, 
the subtraction' of the characteristic should be so performed that 
it is recorded with the proper sign. For example, 

1.0009 
-1.1119 

1.8890 

In this subtraction 0.1119 is subtracted from 1.0009, and this leads 
to a positive mantissa. Then, the characteristic is 1. 

The logarithm of a power is equal to the product of the logarithm 
of the base and the exponent of the power. For example, the 
logarithm of (2:41'3)8 is obtained as follows: 

log 2.473 = 0.3932. 

8 log 2.473 = 8·0.3932 = 3.1456 

and (2.473)8 = 1398 (approximately). 

If the base is a fraction, the products of the mantissa and the 
characteristic (which is negative) are obtained separately. For 
example, (0.05863)1 is computed as follows: 

log 0.05863 = 2.7681 

7 log 0.05863 = 7·"2 + 7·07861 = 14 + 5.5027 = 9.5027 

and (0.05863)1 = 0.000000003182 (approximately). 

The logarithm of a root is equal to the logarithm of the number 
under the radical divided by the exponent of the root. For 

IS--
example, Y18.65 is computed as follows: 

log 18.65 = 1.2707 

log 18.65 = 1.2707 = 00847 
15 15 . 

and V'18.65 = 1.215 (approximately). 
If the number under the radical sign is a fraction, that is, if the 

logarithm of the number has a negative characteristic, the division 
is performed as follows: Suppose that the ~0.05474 is to be com
puted. We have then 

log 0.05474 = 2.7383 

log 0.05474 = 2.7383 
12 12 
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Since the logarithm of the fraction consists of two parts, one nega
tive and the other positive it becomes necessary to perform the 
division separately. But, in order to divide the negative part, that 
is, 2, we shall subtract 10 from it, and thus make it divisible by 12, 
and in order to compensate for this, we shall add 10 to the positive 
part. Then the division is performed as follows: 

2.7383 
-1-2- = 

12 + 10.7383 
12 

and VO.05474 = 0.785 (approximately). 

1.8949 

B. TABLE OF SQUARES OF NUMBERS 

In order to S'quare a number given to three places it is necessary 
to locate the first two digits of the number in the first column on 
the left, and the third digit among the ten columns located to the 
left of the first column. Where the row, indicated by the first two 
digits, and the column, indicated by the third digit, intersect, there 
is a listing of the required square of the number. However, two 
facts must be kept in mind. 

a. Only the squares listed under the heading 0 are exact. 
All other listings are approximate. 

b. The reader should note that the numbers in the column N 
are given with one digit to the left of the decimal place. 
In order to facilitate computation it is then necessary to 
reduce to this form a number whose square is to be 
obtained. That is, if we have a number 643, it should be 
written as 6.43.102, and the square of 643 is then 
41.22 .104 = 412200 (approximately). If we have, a num
ber 0.00563, then it must be written as 5.63.10-3 , and its 
square is 31.58·10 -6 = 0.00003158 (approximately). 

If a number is given to four places, the first three places enable 
us to locate a value of a square to which a correction for the fourth 
place must be added, and this correction is obtained in the columns 
on the right of the table containing the Corrections. 

For example, 

(56.93)2 = (5.693 ·10)2 = 102(32.38 + 0.10) = 102.32.48 3248 
(approximately) . 

(0.009834)2 = (10-3 .9.834)2 = 10-6 .96.71 = 0.00009671 
(approximately). 



754 Matbematics-Its Magic & Mastery 

LOGARITHMS OF NUMBERS 

o 1 

1011000( P<>43 0086 0128 0170 0212 0253 P294 0334 037~ 

TI 04140453049205310569060706450682 07190'7s5 4"8i'i" ~ 26 30 34 

12 07920828 0864 089~ 09340969 1004 1038 1072 uot 37 10 14 17 21 24 '28 31 

13/ tI3~ I173 1206 123~ 1271 1303 :'33513671399 J43C 361013 16 19 2 3 2629 

14 1401 1492 1523 1553 1584 1614 1644 16731:703 1732 3 6 91 12 IS 18 ;U-;;4'271 
15,1761 790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 14 17 20 22 25 
16' 2041 20611 2095 21222148 2175 22012227 2253 227~ 3 5 8 II 13 16.8 21 24 

17 2304 2330i2~5 238c 2405 2430 2455 2480 2504 2529257 10 12 15 17 20 22 

18 2553257726012625264826722695271827422765 2 5 7 9 12 1416'19 21 

19 27882810 28332851: 2878 2900 2923 2945 2967298<; 2 4 7 9 Xl 1316 18 20 

~o 30lc 3032 3054 3075 3096 3u8 ~ 3r:6o 3181 3201 ,. 4 6 8 II 13 ~ 
21 32223243 3263 328433043324 3345 3365 3385 3404 2 4 6 8 10 12 14 16.18 

22 34243444 3464 3483 3502 3522 354135603579 359E 2 4 6 8 10 12 14 15 17 

23, 3617 3636 3655 36743692 37II 372<; 3747 3766 3784 2 4 6 7 9 II 13 IS 17.' 

241 ~ 38203838 385t 3874 3892 390,> 3927 3945 3962 2 4 5 7 9 11 12 14 16 
25 3979 3997 4014 4031 4048 4065 40824099 4u6 4133 2 3 5 7 9 1012 14 IS 
26 415C ±.I66 4183 420C .J.216 4232 4249 4265 4281 4298 2 3 5 7 8 1011 13 15 

27 ~ 4330 434643624378 4393 4409 4425 444044s6 2 3 5689 II 13 14 

28 44724487450245184533 4548 4564 4579 4594 460<; 2 3 5 6 8 9 II 12 14 
291462446394654466946834698471347284742 4757 ~ ~ 10 12 13 

30 477147864800 4814 4829 4843485 48714886 490C I 3 4 6 7 910 II 13 

311491449284942 'f955 4969 49834997 son 5024 5038 I 3 4 6 7 810 Jl 1,2 

32 50515065 507950925105 5II9 5132 514551595172 :t 3 4 5 7 8 9 11 12 

33151855198 52II 52245237 5250 ~ 5276 5289 5302 :t 3 4 5 6 8 9 10 12 

3~r5315 5328 5340 535'1 5366 5378 5391 5403 5416 5428 I 3 4 5 6 8 9 10 II 

3~15441 5453 5465 5478 5490 5502 5514 5527 55395551 1 2 4 5 6 7 9 10 n 

~36 55635575 55875599 56I1 5623563556475658 567C I 2 4 5 6 7 8 10 II 

37 568256945705 571757295740575 57635775 5786 I 2 3 5 6 7 8 9 10' 

3B 57985809 5821 58325843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10 

39 5911 5922 5933 ~ 5955 5966 597" 5988 5999 60IC 1 ,. 3 ~ ~ 
40602160316042 605360646075608560<)6 6107 6117 I ,. 3 4 5 6 8 9 10 

- 1-::--:: --'-'- . --
41 61286138 6149 616c 617061806191 6201 62126222 1 2 3 .. 5 6 7 8 9 
42 62326243 6253 626~ 6274 6284 6294 630463146325 I 2 3 .. 5 6 7 8 9 
43 63356345 6355 63656375 6385 6395 6405 6415~ I 2 3 ~ ~' 
44 6435644464546464 6474 6484 649365036513 6522 1 2 3 .. 5 6 7 8 9 
45 653265426551 65616571 6580 6~~ 6599 6609 6618 I 2 3 4 5 6 7 8 9 
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8 
47 67216730673967496758 6767 6776 6785 67946803 1 2 3 .. '5 5678 
48 68126821 6830 683( 6848 6857 686t 6875 68846893 I 2 3 4 4 5 6 7 8 
49 69026911 6920 692~ 6937 6946695569646972 6981 1 2 3 4 4 5 ~ 
-::c:11-::-'~~71-::""':'1-"-:;f~':"1-"'-'-1-=';:' -- --1-"-;- 6 8 
50 699C 6998 7007 70le 7024 7033 7042 7050 7059 7067 I ,. 3 3 4 5 7 
61 707l 708470937101 7IIO 7u8 7126 7135 7143 7152 1 2 3 3 .. 5678 
52 71ix 71687177 71857193 7202 721C 7218 7226 7235 I 2 2 3 4 5 6 7 7 
53 724 7251 7259 7267 7275 7284 72927300 7308 731(; I 2 2 3 .. 5 ~ 

64 73247332 7540 7348 7356 7364 7372 7380 7388 7396 I II ,. 3 .. 5 6 6 7 
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LOGARITHMS OF NUMBERS 

0 1 2 3 4 6 6 7 8 9 123 466 789 

--
65 7404 7412 7419 7427 7435 744y451 7459 7466 7474 I:: ,;, 3 4 5 5 6 7 

56 7482 7490 7497 7505 7513 7520 7528 7536 7543 755l • :: :I 3 4 5 ""S"67 
6'1 755~ 7566 7574 7582 75897597 7604 7612 76197627 I :: :I 3 4 5 5 6 7 
68 7634 7642 7649 7657 76647672 7679 7686 7694,7701 • I 2 3 4 4 5 6 7 
59 n oe 7716 7723 7731 77387745 7752 7760 7767 77~~ x x 2 344 """S"67 
60 7782 7789 7796 7803 78107818 7825 7832 7839784 x I 2 344 5 66 
61 7853 ~ 7868 7875 78827889 789f 7903 7910 7917 x I :3 344 5 6 6 

62 7938 796t 7980 7987 
f- 566 7924 7931 7945 7952 7959 7973 I 1 :3 334 

63 799" 8000 8007 8014 80218028 8035 8041 80488055 x I ,;, 334 5 S 6 
64 8062 8069 8075 8082 8089 8og6 8102 810g 8u68122 x x ,;, 334 55 6 

65 ~12~ 8136 8142 814<; 81568162 816e; 
~ 

8182818e ~ 81 76 I x 2 334 

66 8195 8202 820g 8215 82228228 8235 8241 8248 8254 
f- """.SS6 I X :3 334 

6'1 8261 8267 8274 828c 8287 8293 829<; 8306 83128319 I I ,;, 334 556 
68 8325 8331 8338 8344 83518357 836~ 8370 83768382 I I ,;, 334 456 

69 83& 8395 8401 8407 8414 8420 842f 8432 8439 8445 1 I 2 :: 3 4 TS"6 
70 8451 8457 8463 847c 84768482 8488 8494 8500 850t I I 2 :: 3 4 45 6 
'71 851 

1
8519 8525 8531 85378543 [~ 8555 8561 856.l I I ,;, :: 3 4 455 

'12 857 8615 
I- -8579 8585 8591 8597 8603 86218627 x I 2 '" 3 4 4 5 5 

'13 863 8,639 8645 8651 865718663 ~66e; 8675 8681 868f I x ,;, '" 3 4 4 5 5 
74 8692 

1
8698 8704 871c 87168722 8727 18733 8739 8745 I I :: '" 3 4 4 5 5 

'15 8751 8756 8762 876t 8774 8779 8785 8791 8797 8802 I,z 2 233 455 
'16 8808 8814 8820 8825 88318837 8842 8848 8854 885<; x I 2 233 455 
77 8865 8871 8876 8882 8887 8893 889<; 8904 8910 8915 I I :2 :2 3 3 4 4 5 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 ,~ 

I I ,;, ,;, 3 3 445 
'19 8971 8982 8987 8993 89<)8 9004 ~~5 9020 9025 x I :I 233 445 
80 0031 9036 9042 9047 19053 9058 906< ,9 9074 907<; I I 2 233 445 
81 9085 Qoqo 9096 91<>1 9106 9II2 9Il7 19122 9128 9133 I I ,;, 2 3 3 4 4 5 
82 9138 ~143 9149 915~ 9165 917c 19175 9180 918f --

9159 x x 2 :I 3 3 4 4 5 
83 19191 ~196 9201 920f 19212 9217 922~ 19227 9232 9238 I I 2 '" 3 3 4 4 5 
84 924' 9248 9253 9258 &263 9269 9274 19279 9284 928~ x I ,;, 2 3 3 4 4 5 

kl299 9304 93~ k>330 934e --85 9294 9315 9320 9325 9335 x x :I :3 3 3 445 
86 9345 ~350 9355 936c 9365 9370 9375 9380 9385 939c x x 2 :I 3 3 445 
8'1 9395 ~4009405 941( 9415 9420 9425 ~430 9435 944c o I I :: :I 3 344 
88 944' JQ450 9455 946c 19465 9469 947~ k>479 9484 9489 o I I :3 :3 3 34 .. 
89 949< ~499 9504 950C 9513 9518 9523 9528 9533 9538 " x x :3 :3 3 344 
90 9542 5479552 9557 9562 9566 9571 9576 9581 95 8l o x x :: :: 3 34 .. 
91 959c 195959600 9605 19609 9614 961( jq624 9628 9633 o I x :3 :I 3 344 --92 963.8 96439647 9652 9657 9661 966l 9671 9675 968c o I x :3 2 3 344 
93 9685 ~689 9694 969~ 9703 9708 971~ 9717 9722 9727 0% x :: 2 3 !I 4 4 
94 9731 9736 9741 9745 9750 9754 975( 9763 9768 .2m o I x :: :: 3 344 
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 o x I 223 344 ,-=----~ 
96 9823 98279832 983t 9841 9845 985C 9854 9859 9863 o x I :3 :I 3 344 
9'1 9868 ~872 9877 9881 9886 9890 9894 9899 9903 9908 o I x :: '" 3 3 .. 4 
98 9912 99179921 9921: 9930 9934 993c 9943 9948 9952 o I I :: :: 3 344 

99 9956 ~96119965 gg6~ 9974 9978 998~ 9987 9991 9996 o I I :z :3 3 334 
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SQUARES OF NUMBERS 

N 0 1 2 3 4 I 5 6 f 7 1 8 9 11 213 415 61 7181' 
1.0 I.()()g 1.010 1.040 1.061 1.08211.103 1.1241".14511.166 !.I88 2J 41 6 8110 ,,11\ 17it9 
1.1 1'21011.2)2\I.l~4\1.17711.3ooll'323\1.34T·369r392\1'416 21517[ l1114116118\2J li2 1.440 i4>4 1.4 8 1.513 1.\38 1.\6, 1.5881.613 1.6381.664 2 5710111\1712022 
.1.;i IJ>9O 1.7161.742 1.769 1.796 1.823 1.8\01.877 1.904 1.932 '3 5 8121,16192224 
U I.¢ol 1.988\2.l>lbl 2.04.5\ 2.0741 2."10312.IFr·16T·19°12.220 

31 61 lT411TOr3r6 1.5. :u50 2.280 2.3'0 2.341 2'l72 2.403 2 . .434 2.465 2.496 2.)28 3 6 9 12 15 19222\ 28 
1.6 1.\60 2.\92 2.624 1.657 1. 90 1.723 2.7562.7892.8222.856 3 7 10 '3 162023 26 30 
TI 2.8')O\2'9l4\2'9S8\ 2'993\ 3.028\ 3.063\3.09T·"T··16813.204 

31 TT4\ITT
4nI31 1.8 3.240 l.l16 303 12 30349 )-386 3.423 3-460 3-4r 3.534 3-572 4 7 II 1)18 22 26 30 H 

1.9 3.610 ,.648 3.686 3.725 3.764 3.80, ,.842,.8 I 3.9203.060 481216192327,13\ 
2.0 4.00014.0401 4.08014.1211 4.16214.20,1 4.244Ip8sI4.p614.31'i8 41 8112116[2°12\12Qlnlli. 
2.1 44 1O\4.45Z\4M.4\ 4.\3714'580\ 4./'13\4.6b614.70'r·752\4.796 

4\l 'l'Tln3°1'~139 '2.2 4.840 4.884 4-928 4.973 \.018 5.063 s.t08 5.153 5·1q8 5-244 4913182227313640 
2.3 P90 \.3;6 5.;82 5.42Cj H76 5.513 5.570 \.617 \.664 \.7 12 S 9 141C) 23 28 B ;841. 
2.4 5'7~ ~.!!08\ ~.8561 \.9OS\S'9S4\ 6.003\ 6.05216•1 0T'I S016.2oo \ \101'\n241291;4n44 2.5 6.2\0 .~oo '~bo 6401 6452 6.\0; 6.\\46.60\ 6.6\66.708 \ 101\ 2025 ;1364146 
2.6 6.7 6. 12 6. 4 6.917 6.c)70 7.023 7.0767.1297.181 p;6 \ II 1621 26 P 17 42 48 
TI 7'2~ 7t~417'39817-45317'50817'S6317.6IT·1'i7317.728 7.784 

\ nI6rT~IHn44149 U 7.84 7. 7-9\1 8.00q 8.066 8.Il3 8.1808.1;7 8.2c)4 8.352 61117232 34404651 
2.9 8.41 8.4rs 8.516 8.58S 8.644 8.70; 8.7628.8218.8808.940 6 12 182429 3S 41 4753 
3.0 9.~ 9.06<>1 9.1201 9.18119.24119.;0319.;6419.42519.48619.\48 611211812413013714,14915 \ 
3.1 ,. Tb7'1'''r19r~ ""1''''1 I 61'lTlrl

44 \T6 3.1 . . 10.05 10.11 10.18 112 334\5 6 
3.2 10.24 10.;0 10.;7 10.43 10.50 10.56 10.63 10.69 10.76 10.82 112;345\6 
3.3 1O.8C) 10.C)6 11.02 11.09 11.16, 1l.22 11.2911.3611.4211.49 112 334\\6 
3.4 11.\6111.63111'701 11.761 11•831 1I·~11I·9T2.041'2.1 T2.18 

1\112\313141 \1 6
1

6 3.5 \2.25 12.)2 12.39 12.46 12.53 12. 12.6712.7412.8212.89 112344566 
3.6 12.96 13.03 1).10 1).18 13.2\ ".32 13.401;.471).\4 ".62 I 1'2 1 4 4 \ > 6 7 
T.f 13.69113.76113.84113·61/13'99114.06/14.ll4.21/14.Z9114.36 

11212131415151617 3.8 14·44 14.52 14.59 14. 7 14.75 14.82 14·90 14.98 1\.0\ 15·1) 122 3455 6 7 
3.9 15.21 IP9 15.37 1544 15·)2 15.60 IS.68 IS.76 15.84 15.92 122345667 
4.0 16.00116.08110.16116.24116.)2116.40116.48116.56116.65116.73 I I 21 21 31 41 \1 61 61 7 
4.1 16.81116.891 16.Q7117.obl 17.1411j.22117.31117.39117.47117. 56 

1\2\2\,\ 51 5\61 717. 4.2 17.64 17.72 17.81 17.89 17. 8 18.06 18.15 18.23 18.32 18.40 12 334\67 8 
4.3 18.49 18.\8 18.66 18.75 18.~4 18.<\2 19.01 19.10 19.1819.27 i23345778 
4.4 19.;6119.4\119.54119.62119.71119.801 19.89119.98120.07 20.16 

1\21 3\41 \1 \1
6
1

7
1

8 4.5 20.25 20.34 20.43 20..)2 20.61 20.70 20.7920.8820.9821.07 I 2 3 -4 5 \ 6 7 8 
4.6 21.16 21.25 21.34 21.44 21.53 21.62 21.7221.8121.9022.00 12;4\677 8 
4.7 12·OQI22.18122.28\22.37122.47\22.'i6122.66r2'75r2.85121·94 

1\21314\516171819 4.8 23.04 23.14 13.23 23.H 23·43 23.)2 2;.6223.7223.81 23.91 12 345 6 7 8 9 
4.9 24.01 14.11 14.21 24.3°24.4024.5024.6024.7024.8024.90 12 345 6 7 8 9 
5.0 25.001 25.IOj 2\.201 25.3°12\.4012\.\0125.60125.70125.81125 .91 I I 21 31 4\ 51 61 71 81 9 
5.1 26.01126.111 lb.21126'32126-421 26.\21 26.63126.73126.8'r6 ·94 

1.1
2
\ 3\4\51

6
\71

8
1 9 5.2 27.04 27.14 27.25 27.35 27.46 27.\6 27.6727.77 27.8827.98 12 345 6 7 8 9 

5.3 28,09 28.20 28.;0 28.41 28.)2 28.62 28.72 28.8428.9429.05 12 345 6 7910 
5.4 29.16\29.27129.38/29.48129'\9129'~0\ 29.8T9'92I,O.OTO.14 I I 2131416\71819110 5.5 30.25 ;0.36 30-47 30.\8 30.69 30. 0 30.91 F.02; 1.1431.25 I I 2 1 4 6 7 8 9 10 
5.6 31.,631.4731.5831.70 ;1.81 )1.92 )2.04 )2.1\ )2.26 )2.;8 I 2 3 \ 6 7 8 9 10 

5.7 }2.49132.bol )2,72\ ;2.8'1 32.9\\ H.06I13·IT3.291;).4II13·52 
1\21'1 5\6\7\81 91

10 
5.8 33.64 33.76 H.87 33.99 34. 11 34.22 34.3434.46 34.57 ;4.60 1 24 \ 678'911 
5.9 34.81 34.93 H.O\ H.16 3p8 35.40 3\.)2 3\·64 35-76 35.88 I 2 4 \ 6 7 8 10 II 

6.0 36.00 36.12136.24136.;6 36.481 ;6.6°136.721;6,84\36.97\37.09 I 1 21 4 \ \ 6 7 9\10 II 
6.1 iJ7.21 l7.nl ;7-4\1 J7·S8 37.70 ;7.82 ,7.95138•071,8.191 8.' 2 I 2 4 51 6 7 910 [[ 

N 0 1 I 2 \ 3 4\5\6\7\81 9 111213 415 6 7189 
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SQUARES OF NUMBERS 

NI 0 11 I 2 1 3 1 4 I 5 1 6 1 7 1 8 I 9 111213141516171819 
When the decimal point in N is moved 1,2, 3,4 •... places the decimal point 

in N2 is moved in the same direction 2, 4, 6, 8 ... places. For example, 
24.32 = 590 .5. 



758 Mathematics-Its Magic & Mastery 

C. TABLE OF SQUARE ROOTS OF NUMBERS 

In order to' obtain a square root of a number given to three 
places it is necessary to locate the first two digits of the number in 
the first column -on the left, and the third digit among the ten 
columns located to the left of the first column. Where the row, 
indicated by the first two digits, and the column, indicated by the 

. third digit, intersect, there is a listing of the required square root. 
However, two facts must be kept in mind. 

a. Only a few square roots (of those numbers that are perfect 
squares, such as 4, 16,49, etc.) are exact. All other listings 
are approximate. ' 

b. The reader should note that the numbers in the column N 
are first given with one digit to the left of the decimal place, 
and then with two digits to the left of the decimal place. 
In order to facilitate the computation of the square roots, 
it is necessary to reduce the number under the radical sign 
either to the form with one digit to the left of the decimal 
place or with two digits to the left of the decimal place. 
The selection of one of these two forms is not arbitrary, 
but it depends on the exponent of 10 when the number is 
reduced to one of these forms. The exponent of 10 must 
always be even, because when the square root of some 
power of 10 is computed, the exponent of 10 must be 
divided by 2. 
For example, 89300 is transformed into 8.93·104, and 
643000 is transformed into 64.3.104 , 0.145 is transformed 
into 14.5·10 -2, and 0.000647 is transformed into 6.47·10-4, 
and 0.0000856 is transformed into 85.b ·10 .... 6. 

The rule for these transformations is as follows: 

If the number has no decimal part, or if it has an odd 
number of digits, one digit should be to the left of the deci
mal place. If the number of digits is even, two digits 
should be to left of the decimal place. 
If the number has no integral (whole) part, that is, it is a 
pure decimal, and if it has an odd number of zeros immed
iately to the right of the decimal point, the transformed 
number should have one digit to the left of the decimal 
point. 

If a number is given to four places, the first three places enable 
us to locate a value of a square root to which a correction for the 
fourth place must be added, and this correction is obtained in the 
column with the Corrections. These corrections are given in terms 
of the last unit of the listed value of the square root. 
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# 1.O60! 1.00511,01011.01511.0201,.02517.03011'.0341,.0391 L044 0/ " I ~ 212/ , 131414 
1.1 

1:04911.0541,.058/1.06311.06811.0721 [.0771,.08211.0861 1.091 01'11 /2/21 1 1;14[ 4 1.2. 1·095 1.100 ,.105 1.109 1.114 1.118 1.122 1.127 1.'31 1.1;60 1 I 2 2 3 ; 44 
~ :::::, ::::;, :~:::I ~: ~I :::~, ::~:, :::~, :~~:, ::::;, ::::: :, : ,: ,;, ;, ;)1, f 'l.4 

1.5 1.225 1.229 1.233 1.237 1.24J 1.245 1.249 1.253 1.257 "1.26, 0 , I 2 2 2 1 3 4 
1.6 

:~::I :::~, :::~;, ::::;1 ::::;, :::::, :::::, :::, :::::, :::~ :, :, : , :, ';1 : , :, :,: 1.1 
1.8 1.342 I·H5 1·349 1·'S3 1.356 1.360 1.364 1.367 1.37 1 1·375 0 I : I 2 2 3 )3' 
1.9 1.378 1.382 1.386 1.,89 1.39, 1.396 1·400 '-1.404 1.407 I.411 0 I I I 2 2 1 1 3 
2.0 1.'41411.41811.42-111.42511.42811.43211.43511.43911.44211.446 0\111 1112\ 2 1 21 31, 
2.1 1.44911.4531,.45611.4591 I.46'11'466I'1.47lI.47311'47611'48O TI'I'lrITI' 2.'2 1.483 1.487 1.490 1·493 1·497 I.~OO 1.)03 1.507 1.5 10 1.5" 01112223, 
2.3 1·,P7 1·520 1.523 I.S26 1.)30 1·533 1.536 1.539 1.5H 1.546 0111222;3 
2.4 1'54911'55211'55611'559\ 1'56211'56511'56811'57211'5i511'~'78 TITITlfl' 2.5 1.581 1.584 1.587 1.591 1.594 1.597 1.600 1.60, 1.606 1.609 01,1122233 2.6 . 1.612 1.616 1.619 1.622 1.625 1.628 1.6,1 1.6,4 1.637 1.640 01112222, 
2.1 1.64311.64611.64911.6\211.65511.6581 1.66111.6641 11.66711.670 TITlrlll' 2.8 1.673 1.676 1.679 1.682 1.685 1.688 1.691 1.694 1.697 1.]00 01111222, 
2.9 1.703 1.706 1.709 1.712 l.il5 1.718 1.720 1.]2 3 J.726 1.729 0111 1222 3 
3.0 1.732\1·7351 1.73811.741\1.74411.74611.74911.752\1.7551 1.7\8 Of III 11111z I 21 21 3 
3.1 1'76111'76411'7661"76911'77211'77511'7781 1'78011'711'1 I.786 TITlrlrl' 3.2 1.789 1.792 1.794 1.7'l7 1.809 1.803 1.806 1.808 1.811 1.814 011112222 
3.3 1.81 7 1.819 1.822 1.825 1.828 1.830 1.833 1.836 1.8,8 1.841 011112222 
3.4 1.84411.84711.84911.852\1.8S5\1.1l5711.860\I.1l63\1.86511.868 TITlrlTI2 
3.5 1.871 1.873 1.876 .1.879 1.88, 1.884 1.887 1.889 1.892 1.895 011112222 
3.6 1.8'l7 I.qoo 1.\103 1.<)O'j 1.908 1.910 1.913 r'.916 1.918 1.921 o I I' 1 I 2 2 212 
3.1 1'92411'926\1'92911'93111'93411'936\1'939\1'94211'9441 [·947 

TITlrrlT 
3.8 1·949 1·952 1.954 1·957 1.960 1.962 1.965 1.967 1.970 1.972 011112222 
3.9 1·975 1.977 1.980 l.q82 1.985 1.987 1.990 1.992 1·99S 1.997 011112222 
4.0 2,00012.00212.00512.00712.010\2.01212.01512,01712.02012.022 01011 I q III \ 21 ~I 2 
4.1 '2.025r·02712.030j2.0PI 2.035\2,03712,04012.0421 2.04512.047 

TITIIITIT 
4.2 2.049 2.0)2 2.054 2.057 2.059 2.062 2.064 2.066 2.069 2.071 001111222 
4.3 2.074 2.076 2.078 2.081 2.083 2.086 2.088 2.090 2.093 2.095 001111222 
4.4 2.09812.10012.10212.1051 2,1071 2.110/2,11212.114\2.117[2.119 O\T 1 TII121T 4.5 2.121 2.124 2.126 2.128 2.131 2.133 2.'35 2.1382.1402.142 001111222 
4.6 2.I4S 2.147 2.149 2.152 2.154 2.156 2.159 2.161 2.163 2.166 o 0 I I III 2 2 2' 

4.1 2.16812.17°12.1731 2.17512.177\2.17912.18212.18412.18612.189 
°ITrT\IITI2 4.8 2'.191 2.193 2.195 2.198 2.200 2.202 2.205 2.207 2.20,) 2.211 001111222 

4.9 2.214 2.216 2.2-18 2.220 2.223 2.225 2.227 2,229 2.2p 2.2H 0011,11222 
5.0 2.2,612.23812.24112.24312.245\2:24712.24912.25212.25412.256 010\ I 11111 I 1 21 2\2 
5.1 2.25812.261\2.263\,2.26512.267\2.26912.27212.27412.2761 2.278 

TITlrrlT 
5.2 2.280 2.283 2,285 2.287 2,289 2.291 2.293 2.296 2.298 2.300 001111222 
5.3 2.302 2.304 2.307 2.3092,';11 2.3'3 2.3 15 2·3'7 2.3''l 2.322 00111'22Z 

5.4 2.,24\2.326\2.32812.,,°12.332\2'''512'33712.339\2')4112/343 
°ITITITIT 

5.5 2.34S 2·347 2·349 2·352 2·,54 2.35 6 2.35 8 2.360 2.,62 2.364 00 I I 1 I I 2 2 
5.6 2.366 2,369 2.371 2.373 2.,75 2·377 2·379 2.,81 2.,83 2.385 o 0 I I I I 1 2 2 

5.7 2.;8712.39012'392\2'39412.39612'39812.40012.40212.40412·406 

TITIIITIT 
5.8 1.4°82.410 2.412 2.4 15 2.417 2.419 2,421 2.423 2.4 2 5 2.427 00 I I I I I 2 2 

5.9 2..P9 2.4,1 2.433 24;5 2.4'\7 2.439 2.44 1 2,443 2.445 2,447 00 1 I I I 1 2 2 

6.0 
6.1 

2.44912.452\2.45412.45612.45812.46012.46212.46412,46612.468 
2.470 2,472 2.474 2.476 2,478 2,480 2,482 2,484 2.486 2.488 °lolllllllllrl 2 

00 1 I 1 1 I 2 2 
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26. ~.oqql ~.109 5."1191).12815.13 81 5-14815.1581 5-16715.17715.187 1121314/s/6j,18IQ 
27. 

5.196IS.2<XT·2.ISI5.2251 PHI P441 5.2. i41 P631 50273\ 5.282 
In31415rn81Q 28. 5.2~2 5.3015.3105.320 5.32'1 5.339 5.348 H57 5.367 ).376 12 3456,,8 29. So; 5 5.3945.4045-413 5.422. 5.43 1 5.441 5.450 5.459 5.468 I 2 , 4 5 5 6 , 8 

30. 5·4771 S.48615-4'15Is.50SI 5.5 141 S·5:!.,1 5·5PI s.wl 5.5501 5·559 11 2 1,1414151 6 1718 
Sl. 

5t81 5'5'T·58615'5Q51 5.6041 5.61215.62115.03015.0391 ).648 
In'I3141S161718 32. 5· 5' ,5.666 5·6,~ 5.683 5.692 5.701 5.710 5.7 18 5.727 S.730 12 3 345 67 8 

lS. 5·'45 5·753 5.,62 5.77 1 5.77'1 5.788 5.'97 5.805 5.814 5.822 [ 2 3 345 0 , 8 
34. 5.8311 5.84T·848j>"85'15.86~ 5.8741 5.88215.8'1115'~91 5·908 

1121'131415101718 35. 5.'116 5':A 5·'133 5.941 5·95 5.958 5.967 5.CJ7~ 5·9 , 5.992 122 3 4 5 678 
36. 6.000 6. 6.0176.025 6.0B 6.042 6.050 6.05 6.066 6.075 122 3 4 5 677 
57. 6.08316·O9l~9\6'[071 6.1 [6\6.1241 6. IPI 6.[401 0.[4810.156 

In2\3\415161717 S8. 6.164 6.173 6.1 16.189 6.197 6.2.05 6.213 6.22.1 6.22'1 6.2.37 I 223 4 5 667 ,39. 6.245 6.253 6.2.61 6.26'1 6.277 6.285 6.2'13 6.301 6.309 6.; 17 122 ; 4 5 667 
40. 6.325Io.33216.~4016.34816.3S616.36416.37210.;8016.;8716.3'IS 112121;1415'101617 
41. 6.40316-4IT-4~16.42716.43416-44216.45°16.45816'46516'473 

11
2 rl 3

\'15lS1
6

1
7 42. 6-481 6-48a 6.4 6,504 6.512 6.519 6.527 6. 35 6. 42 0.5)0 122 34 5 5 6 7 o. 6·SS7 6.5656.$73 6.580 6.588 6.5'15 6.603 du 618 6.626 [ 223 4 5 567 

44. 6.~16.64T"64l65616.66AI 6.67116.67816:68616·~6AI6'7O[ 
Irn

3
1
4

1
5

1
5rl' 45. 6. 6.7166.7236.731 6m 6.'45 6.,S; 6.760 6., 6-775 I 123 4 4 5 6 7 

46. 6.,82 6.790 6.7Q7 6.804 6.812 6.819 6.826 6.834 6.841 6.848 I I 2 3 4 4 5 6 7 
47. 16.856 6.863 '~.87°1~·877\6.88516.86216.89916·90716'91416''121 

Irn31'14151617 48. 6.928 6·935 6:943 6.950 6·957 6·9 4 6.97 1 6.979 6.986 6,993 I I 2 3 4 4 566 
49. 7.000 ,.007 ,.0147.021 7.02'1 7.°36 7.043 ,.050 ,.057 7.064 112.3445 6 6 
SO. 7.071 7.078 7.08517.09217.09'11,.10617.11317.12.°17.12717.134 1II121314141sIbl6 
51. 7.14117.14817.15il!·,6217.1691 7.176/7. 1831 7.19°1 7,1'171 7.2°4 

1111213131415n6. ,52. 7.211 7.2187.2257.232 7-211 ,.246 7-253 P5'1 7.266 7.273 [ 12 3 3 4 5 6 6 
55. ,.280 ,.2877.2Q4'.JO[ 7.J 7.;14 ,.31.1 7.;28 7.H5 7.342. 112 33455 6 
54. 7.34817.ml"36~,.3~17'376\7'38~ 7.3891 7-3tI7.403I'·409 

I II r r 1314f I 5 16 55. ,-416 7-423 7-43 7-43 '-443 7-45 7·457 '.4 3 7.470 7-477 I 123 345 5 6 
56. 7.483 '.490 7-4'17 '.503 '.5 10 7.5 17 '·52; 7.53017.537 7·543 I 'I 2 3 ; 4 5 5 6 
57. 7.~5 7.SS6I"i6~7f~ 7'576\7'58317'58~ 7.59617.603 7.609 

IIIrl31314151516 58. 7. 16 7.6227.6297. 35 7.642 ,.649 ,.655 ,.662 7.668 7.675 I 123 345 5 6 
59. 7.681 Z.688 7.694 '.701 7.707 '.714 7·,2 7·,27 '·733 7·740 I 12; 3 445 6 
60. 7.74617.75217.75917.76517.77217.77817.78517.79[17.7'1717.804 1111 2 131314141516 
61. 7.81~ 7.8IT.8231"82'117.83617.84217.84'117.855\7.86117.868 

11112131314141516 62. 7.8'4 7.880 ,.8877.8q~ ,.~ ,.r:,06 '.912 '.918 '·92.5 '.'13 1 I I ~ 3 3 4 4 5 6 
63. 1·931 7·Q44 7.950 7.95 7· 2 7·96Q 7-975 7.'181 7.987 7·Q'I4 .1 12 33445 6 
61. 8'ffij 8·00618.012r·0191 8.0251 8.0311 8.0371 8.04418.05°1 8·C!56 

II'rl21314141S16 65. 8.062 8.0688.07 8.081 8.087 8.093 8.099 8.106 8.1"12 8.118 I I 2 2 3 4,4 5, 6 
~. 8.124 8.130 8.13~ 8.142 8.142 8.155 8.161 8.167 8.17~ 8.179 'I I 2 2 ; 4 '4 5 ) 
67. 8'18~18'19r·lC)8r20418.21°18'2[618.22218'22818'23418.24( 

II'fl
l

1314141515 68. 8.24 8.2528.2588.264 8.270 8.276 8.283 8.289 8.295 8.301 I 122 3 4 4 S 5 
69. 8.J07 8.313 8.;IQ8.;25 8.HI 8.H7 8.)4; 8.34'18.;55 8.;61 I [ 2 2 '3 4 4 S 5 
,70. 8'36718.37318.37918.38518.39018.3'1618.40218-40818.41418.42° 11112121,1414151s 
D. 8"2618.43~8.4;818.44418-4SiI8;45618.46218-46818'47318'47~ Tr12131414151~ 72. 8.485 8-4QI 8-4CJ7 8.503 8.509 8.p~ 8.)21 8.526 8.532 8,53 i I 2 1 3 '3 4 5 S, 
73. 8.544 8.)5 8.SS68.562 8.567 8·m 8·57'! 8.585 8.591 8·5Q7 ,I I 2 2 3 3 4 5 S 
74. 8.~ 8.608 8.61418.62() 8.62618.6~~8.63718.64318.649 8.65,4 T l·212131314151 S 75. 8. 8.6668.6728.6,8 8.683 8.6 8.695 8.701 8.7o? 8.7 12 I ,I 2 2 3 3 4 S 5 
76. 8.718 8.724 8.72'1 8.7~5 8.74[ 8.74~ 8·7)2 8.758 8.764 8.769 I I 2 ,: 2 3 ,3 4 5 5 
n. 8071518.78118.78618.7'12 8.7q818.80lI8.8oQ18.815 8.820 8.826 I 1 1 ',2 1 2 I ! 13 14 1 41 ~ 

N 012\34\516178' 9 11213141516171~19 
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N 0 11.1 2 1314151 6 17181 9 1121314151617 819 
78. 8.8~218.8'~W.84'18.84918.8)418.86018.86618.87118.87718.88, tI 212 /,/31 4 4/5 79. 8.8 8 8.8948.8998.905 8.911 8.916 8.922 8.927 8.9H 8.9;9 1122 334 4 5 
80. K94418·95018·95518·9611 8.9671 8·9711 8.9781 8.98,1 8.9891 8.9 94 II ~121z1313141415 
81. 9.oooj 9·006rOII19.01719.02~ 9.Ql81 9.03319.0391 9.0441 9.050 

Tn2131314/415 82. 9.05) 9.061 9.066 9.072 9.07 9.08 ; 9.088 9·094 9·Q99 9· 105 1122 33445 
83. 9· ll0 9.,169.121 9· n 7 9.132 9.138 9.143 9-149 q.i54 9.160 I 122 , 3 445 
84. 9.165/9.17T·176rI821 9.1871 9.I<PI 9.1981 9.20319.20919.214 

IIIrl
2
1'I'I

4
1

4
1

5 85. 9·no 9.22 5 1Pt 9.236 9.241 9.247 9.2)2 9.257 9.263 9·26M I 122 3 344 5 
86. 9.274 9.279 9.2 ~ q.290 9.295 9·301 9.306 9·3" 9.,17 9·)22 I 122 3 344 5 
87. 9'P719'3~319.33·!!19.H319.34919.35419.35919'36519'370/9.375 

TI2r/3131414/5 88. 9.3 81 9·3 69.391 9.397 9·402 9·407 9·413 9.418 9.423 9.429 1 122 3,445 
89. 9.434 9·439 9·44S 9.450 9.455 9.460 9.466 9.47 1 9.476 9.482 1122 33445 
90- 9.48719.49219.49719.5°319.508/9.5' 319.518/9.52419.5 2919.534 1'llzI213/;141415 
91. 9.53919.54>19'55°19.55519.56°19'56619.57119'576/9'58119-586 

I/I/Zn313/414IS 92. 9.592 9.5979.6029.607 9.612 9.618 9.623 <).628 9.6H 0.638 11 22 33445 
93. 9.644 9.6499.654 9·6S9 '}.664 9.670 9.675 9.680 9.685 9.620 11 22 33445 
94. 9.69SI9'7°r70619'71119.71619'72119'72619'7~ 119.73719.742 11112121313141415 95. 9·747 9·752 9·757 9.762 9.767 9.772 9.778 9·7 3 9·7S8 9·793 1122 33445 
96. 9.728 9.8039.8089.813 9.818 9.823 9.829 9.834 9.839 9.844 1122 33445 
97. 9.849/9.85419.8S9r86419.86919.874!9.87919.88419.88919·1I94 

IITI2I'1314/4/5 98. 9.899 9.9°59.9 10 9.91 S 9.920 9.925 9.930 9·935 9.<)40 9·945 o 1 I 2 2 3 3 4 4 
99. 9.950 9·9S5 9.960 9.965 9.970 9·975 9.980 9·9~5 9.990 9·995 0 1122 3344 

100. 10.001 / 1 I I I I I I " /I I I I I 

\Vhen the decimal point in N is moved 2, 4, 6, 8, ... places the decimal point 
in VN is moved in the same direction I, 2, 3, 4, ... places. For example, 
Vo.262 = 0.5II9, V812 = 28.50. 

For example, 

V3894000 = V3.894·106 = 103 (1.972 + 0.001) 

= 1973 (approximately). 

V6S7800 = V65.78·1Q4 = 102 (8.106 + 0.005) 

=811.1 (approximately). 

VO.0005478 = VS.478·1O-4 = 10-2 (2.339 + 0.002) 

=10-2 .2.341 = 0.02341. 

VO.00004892 = V48.92·1O-6 = 10-3 (6.993 + 0.001) 
= 10 -3 . 6.994 = 0.006994. 

102 .8.111 
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D. TABLES OF TRIGONOMETRIC RATIOS 

The tables of trigonometric ratios (sine, cosine, and tangent) 
are so arranged that they contain the values of the ratios listed for 
every six minutes. For intermediate values corrections are pro
vided in the three columns on the extreme right with the Corrections. 

Since the step from one listing to the next one is only six minutes, 
the corrections are provided for one, two, three, four and five min
utes. 

For example, sin 34° 27' is computed as follows 

sin 34 ° 24' = 0.5050 
correction for 3' 0.0007 

sin 34° 27' = 0.5057 

The values of the cosine ratios are obtained by reading the table 
of cosines. Moreover, since the cosine ratio of 0° is 1, and the 
cosine ratio of 90° is 0, the cosine ratio decreases. Therefore, all 
the corrections for one, two, three, four, and five minutes are sub
tracted from the listed value. 

For example, cos 24° 20' is computed as follows 

cos 24 ° 18' 
subtract correction for 2' 

cos 24° 20' 

cos 56° 40' is computed as follows: 

cos 56° 42' 
add correction for 2' 

cos 56° 40' 

= 0.9114 
0.0002 
0.9112 

0.5490 
0.0005 
0.5495 

The table of the tangent .. atios has the same properties as the 
table of the sine ratios, and the computation of the tangent ratios 
is performed in the same manner as the computation of the sine 
ratios. 

The reverse process of computation with these tables (that is, 
when the value of the ratio is given and the angle is to be computed) 
is performed in the same manner as the reverse process of computa
tion with logarithms. For example, if the sine ratio is 0.6631, then 

0.6626 = sin 41 ° 30', 
add the correction which is 0.0005 and add 2' 

0.6631 = sin 41 ° 32' 

If 0.7853 is the cosine ratio then 0.7859 = cos 38 ° 6' 
subtract the correction which is 0.0006 and add 3' 

0.7853 = cos 38° 9' 
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0' 6' 12' lS' 24' 30' 36' 42' 4S' 54' 1 2 3 4 5 
-- -------- - --!--.......... -!--\.--I----\.---

0°' 0000 001700350052007000870105 P122 01400157 3 6 9 12 15 

-- --------1--------1---1--:--1---
1 017501920209102270244026202790297031403323 6 9 12 IS 
2 034903660384'0401 04191043604540471 04880506 3 6 9 12 15 
~ 052~ 054105581057605930610 0628 ~ 066310680 3 ,6 9 12 IS 

4 06980715 0732e750r>767 0785 08020819683710854 3 6 9 12 IS 
5 087208890906 0924P941 0958 097609931IOII/I028 3 6 9 12 14 
6 1045 1063 1080 1097 1II5 II32II491167 II841201 36 9 12 14 

-7- 1219 1236 125? 1271 ~ 1305 1323 1340113571374 3 6 9 -12"4. 
8 13921409 1426 1444 146114781495151315301547 3 6 9 12 14 
g' 1564158215991616163316501668 I685 1702 I7I9 3 6 9.!.~ 

"""TO I736 I754 1771 1788~ 1822 1840 ~iI874 1891 3 6 9_~ 
11 1908 1925 1942 1959 1977 1994 20p ~12045 2062 3 6 9 II I4 
12 20792096 2II3 21302147216421812198 22I5 2232 3 6 9 II 14 
13 225c 22672284 2300?317 :?~I~ 2368 2385 2402 3 6 8 II 14 
14 241924362453 2470248725042521 253825542571 3 6 8 I I 14 
15 25882605 2622 263926562672 268927062723 274c 3 '6 8 II 14 
~ 27562773 2790 2807 ~ 2840 2857 ~ 2890 2907 3 6 8 11 14 

17 292429402957 297429903007 30243040'>057 3074 3 6 8 1 I 14 
18 30903107312331403156317331903206 J223 3239 3 6 8 II 14 
~ I~ 3272 3289 3305~ 3338 335513371 3387 3404 3 5 8 II 14 
20 . 3420 3437 3453 346934863502 35 18 3535 3551 3567 3 5 8 II 14 

21 3584360036163633 j64g13665 3681'369737143730 3 5 8 II 14 
22 3746376237783795 38II 38273843385938753891 3 5 8 II 14 
23 3907 3923 3939 3955 ~ 3987 4003~ 4035405' 3 5 8 II 14 
24 406740834099 4II 5 ·P31 4147416341794195 421C 3 5 8 II 13 
25 4226424242584274 4289 43054321433743524368 3 5 8 II 13 
~ 4384 43994415 4431 ~ 4462 4478 ~ 4509 ~524 3 5 8 10 13 
27 4540455545714586460246174633464846644679 3 5 8 10 13 
2S 4695471047264741475647724787 ¥02 4818 4833 3 5 8 10 13 
29 484848634879.4894490949244939495549704985 3 5 8 10 13 
--~ --
30 500C~50305045~50755090510551205[353 5 81013 
31 5[5051655180519552[052255240525552705284 2 5. 7 10 12 
32 52995314 5329 5344 5358 5373 5388 5402 5417 5432 2 5 7 ro 12 
33 5446 546r 547654905505 5519553455485563 5577 2 5 7 10 12 
34 55925606 5621 56355650566456785693 5707 5721 2 5. 7 10 12 
35 5736575057645779579358075821583558505864 2 '5 7 10 12 
36 5878 5892 5906 5920 ri21! 5948 ~962 ~ 59906004 2 5 7 9 12 
37 60186032 6046 606o~074 60886101 6II5 6129 6[43 2 5 7 9 12 
38 6157617061846198621 I 6225 6239625262666280 2 5 7 9 II 

39 629363076320 6334 ~ 6361 637463886401 6414 2 4 ·7 9.22.. 
40 64286441 6455 6468 64816494650865216534 6547 2 4 7 
41 656165746587 660c 6613 6626 6639665266656678 2 4 7 
42 6691 6704671767306743 6756 6769~782 6794 6807 2 4 6 
43 682C ,6833684568586871 68846896169096921 6934 2 4 6 

9 II 
9 II 
9 II 
S II 

44 69476959697269846997700917022703470467059 2 4 6 S 10 



Appendix 765 

SINE RATIO 

0' 6' 12' lS' 24' 30' 36' 42 48 54' 1 2',3 4 5 
-- - - ~ -- - --------
46° 7071 7083 7096 7108 7120 7133 7145 7157 7169 71&1 ~ 4 6 8 10 

--
720617218/7230 

---;::--46 7193 7242 72547266 72787290:7302 2 '4 6, 8 lei 
47 7314 7325 J337 7349 7361 7373 7385 7'3.967408i7420 2 4 6 8 10 
48 7431 ~1745517466 7478 7490 7501 7~13iLS!.4,7536 2 4- 6 .8, ,10 
49 

.:..:;...:.-
7604f7PI5 7547 7558'7570i7581 7593 7627!763817649 2 4 6' 8 9 

60 7660 7672 7683,7694 7705 77167727 773817749:7760 2 4- 6 7 9 
61 7771 7782 779317804 781.5 7826 7837 78481785917869 2 4 '5 7 9 ~I--

7955 7965:7976 62 7880 7891 7902i7912 7923 79347944 ? 4 5 7 9 
63 7986 7997 8007 8018, 8,028 8039 8049 80591807018080 2 3 5 7 9 
64 8090 ~ 8III,8I21 8131 8141 SI51 816r 8171 8181 2 3 5 7 8 

65 S192 S20282II18221 ~ 82418251 8261 8271 828J 2 3 5 7 8 
66 8290 

1;;------~ 
8339 8348 8358 ~368 8377 6 8 830083108320 83 2 9 2 3 5 

67 8387 ')396 8·W6 8415 8425 84.34 8443 84538462 8471 2 3 5 6 8 
68 8480 84908499 8508 8517 85268536 85,45 8554 8563 2 3 5 6 8 

69 18572 SS8I 85908599 
----

8634~ 8652 6 8607 86168625 I 3 4 7 
60 8660 8669 8678 8686 8695 8704 8712 8721,8729 8738 I 3 4 6 7 
61 8746 8755 8'763 8771 8780 8788 ~796 8805 88138821 I 3 4 6 7 
62 8829 8-8388846 8854 ~ 8870 887S 88s6 88941890~ I 3 4 5 7 
63 8910 89188926 8934 8942 8949 8957 8965 89738980 I 3 4 5 6 
64 8988 8996 9003 9011 9018 9026 9033 9041 9048 905,6 1 3 4 5 6 

65 9063 
I-'-'-

9078 908 5 
[-<-- -'--- -.-'-

9070 (E5E 9100 9107 9II.1 9121 9128 I 2 4 5 6 
66 9135 9143 9150 9157 9164 9171 9178 9184 9I91 9198 I 2 3 5 6 

67 9205 9212 921 99225 9232 9239 9245 9252 9259 9265 I 2 3 4 6 • 
68 9272 9278 "''1'''' 9298 9304 93 11 931'79323 9330 I ,2. 3 4 5, 

69 9336 9361 
-=-..:.. --

9342 9348 9354 9'367 9373 93799385 9391 I, 2 3 4 5 
70 9397 9403 9409 <)415 9421 9426 9432 9438 9444 9449 1 2 3 4 5 
71 9455 946 l 9466 9472 9478 9483 9489 94949500 9505 I 2 3 ·4 5 
72 I-'--'--:' ~ ~--

95 11 95 16 9521 9527 9532 9537 9542 9548 9553 9558 I 2 3 4 4 
73 9563 9568 95739578 9583 9588 9593 9598 9603 9608 I 2 2 3 ~ 74 961 3 9617 9622 9627 9&32 9636 9641 9646'9650 9655 I 2 2 3 4 
75 9664 

~ 
9681 9686 9690 9694 9659 966~ 967.1 9677 9699 I I ,2 3 4 

-'---'- -'--'-'- ~--76 9728 9703 9707 97 11 9715 9720 9724 9732 9736 9740 I I 2 3 3 
77 9744 9748 975 1 9755 9759 9763 9767 9770 9774 9778 i I 2 3 3 
78 9781 9785 9789 9792 9796 9799 9803 98069810 9813 I I 2 2 3 

?9 9816 98209823\9826 9829 9833 9836 9839 9842 9845 I I 2 2 3 
80 9848 9851 98549857 9860 '9863 9866 98699871 9874 o I I 2 2 
81' 9877 ~i9S8T885 988898909893 9895 <jS98 9900 o I I 2 2 

82 ~-- I-'-'-"- ---- 0' I 9903 9905199079910 9912 9914 9917 99199921 9923 I 2 2 
83 9925 9928 993099'3 2 9934 9936 9938 9940 9942 9943 o I I I 2 
84 9945 9947994919951 ~99549956 222Z 995919960 o I I I I 

85 9962 ')963996519966 9968 99699971 ~ 9973,9974 0 0 I I I 

86 -'-'-:::-----
9976 9977 9978i9979 9980 9981 9982 9983998419985 0 0 I I I 

87 9986 9987 9988~9989 9990 9990 9991 9992 9993 9993 0 0 0 I I 
88 9994 9995999519996 19996 9997 9997 ~999819998 0 0 0 0 0 

89 9998 9999 9999 9999 9999\ 1.000, I ,000 1~~~1!~~1!~~ 0 0 0 0 0 
nearly nearly 
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COSINE RATIO 

0' 6' 12' 18' 24' 30' 36' 42' 

--I-------c-

OO 1.000 1.000 1.000 1.~ 1.000 9999 9999 9999 nearly 

~~;~I~~~; 
nearly 

--y- 9998 9998 
-

9996 
~ 

9997 9997 ~996 
2 9994 9993 99939992 9991 9990 9990 9989 
3 9986 9985 99849983 9982 9981 9980 ~ ~ 9976 

-'-"--

9974 99739972 9971 9969 9968 9966 
5 9962 99DO 9959 9957 9956 9954 995 2 995 1 
6 9945 9943 9942 994C 9938 9936 9934 ~ --or 9925 9923 9921 9919 9917 9914 9912 9910 
8 9903 9900 9898 9895 9893 98ga 9888 9885 
9 9877 9874 9871 9869 9866 9863 9860 9857 

1"0" 9848 9845 98421~ 
~ 

9833 98:2 
~ 

9836 9826 
119816 9813 ~803 9796 

r--
98109806 9799 9792 

12 9781 9778 97749770 9767 9763 9759 9755 
13 9744 9740 9736 9732 9728 9724 9720 W2 
14 9703 9699 96949690 9686 9681 9677 9673 
16' 9659 9655 9650 9646 9641 9636 9632 9627 
16 9613 9608 96039598 ~ 9588 9583 9578 
l'7 9563 9558 95539548 9542 9537 9532 ~ 
18 95Il 9505 9500 9494 9489 9483 9478 9472 
19 9455 9449 9444 9438 ~ 9426 9421 2£2 
20 9397 9391 9385 9379 ~ 9367 9361 ~ 
21 9336 9330 9323 9317 93 11 9304 9298 9291 
22 9272 9265 9259 9252 9245 9239 9232 9225 
23 9205 9198 9191 9184 9178 9171 9164 9157 
24 9135 9128 9121 9II4 9107 9100 9092 9085 
26 9063 9056 9048 9041 9033 9026 9018 9011 
26 8988 8980 8973 8965 8957 8949 8942 ~ 27 IS9W 8902 8894 8886 8878 8870 8862 8854 
28 8829 8821 8813 8805 8796 8788 878c 8771 
29 8746 8738 8729 8721 8712 8704 8695 8686 
30 18660 8652 8643 8634 S625 8616 8607 

:0--
8599 

31 8s72 8563 8554 8545 8536 8526 85 17 8508 
32 8480 8471 8462 8453 8443 8434 8425 8415 
33 8387 8377 8368 8358 8348 8339 8329 8320 
34 8290 8281 8271 8261 ~ 8241 8231 8221 
36 81 92 8181 81 71 8161 81 51 8141 8131 8121 
36 8090 8080 8070 8059 8049 8039 8028 8018 
3? 7986 7976 7965 

;--

7955 7944 7934 7923 7912 
38 788e 7869 7859 7848 7837 7826 7815 7804 
39 7771 7760 7749 7738 7727 7716 7705 7694 
40 17"660 7649 7638 7627 7615 7604 7593 7581 .:..-...:. 

7478 
~ 41 7547 753P 7524 75 13 7501 7490 7466 

42 7431 7420 7408 739~ 7385 7373 7361 7349 
43 7314 7302 72ga 7278 7266 7254 7242 7230 r---
44 7193 7181 7169 7157 7145 7133 712C 7108 

48' 54' 123 4 5 

9999 9999 0 0 0 0 0 

9995 9995 0 0 0 0 0 

9988 9987 0 0 0 I I 

9978 9977 0 0 I I I 

9965 9963 0 0 1 I I 

9949 9947 0 1 1 I 2 

9930 9928 0 I I I 2 

9907 9905 o I I 2 2 

9882 988e 0 I I 2 2' 

9854 9851 0 I I 2 2 

9823 9820 I I 2 2 :3 
9789 9785 I 1 2 2 :3 
9751 9748 I I 2 :3 :3 
97II 9707 I I 2 .3 :3 
9668 9664 1 I 2 3 4 
9622 961 7 I 2 2 3 4 
9573 9568 I 2 2 3 4 
95 21 95 16 I 2 3 4 4 
9466 9461 I 2 3 4 5 
9409 9403 I 2 3 4 5 
9348 9342 I 2 3 4 5 
928 5 9278 l 2 3 4 5 
9219 9212 I 2 3 4 6 
9150 9143 I 2 3 5 6 

9078 9070 I 2 4 5 6 
9003 8996 I 3 4 5 6 
8926 8918 I 3 4 5 6 
8846 8838 I 3 4 5 7 
8763 8755 I 3 4 6 7 
8678 8669 I 3 4 6 7 
8590 8581 I 3 4 6 7 
8499 8490 2 3 5 6 8 
8406 8396 2 3 5 6 8 
8310 8300 2 3 5 6 8 
82II 8202 2 3 5 7 8 
81II 8100 2 3 5 7 8 
8007 7997 2 3 5 7 9 
7902 7891 2 4 5 7 9 
7793 7782 2 4 5 7 9 
7683 7672 2 4 6 7 9 
7570 7559 2 4 6 8 9 
7455 7443 2 4 6 8 10 

7337 7325 2 4 6 8 10 

7218 7206 2 4 6 8 10 

7096 7083 2 4 6 8 10 
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COSINE RATIO 

N 0' 6' la' 18' 24' 30' 36' 42' 48' 54' 123 4 5 

- -- - -- - --
45° 7071 7059 7046 7034 7022 7009 6997 6984 6972 6959 2 4 6 8 IO 

46 6947 6934 6921 6909 6s96 6884 6871 ~ 6845 6833 2 4 6 8 II 
4'1 6820 6807 6794 6782 6769 6756 6743 6730 6717 6704 2 4 6 9 II 
48 6691 6678 6665 6652 6639 6626 6613 6600 6587 6574 2 4 7 9 II 

49 6561 6547 6534 65 21 ~ 6494 6481 fi46s 6455 6441 2 4 7 9 II 
50 6428 6414 6401 6388 6374 6361 6347 ~334 6320 6307 2 4 7 9 II 
61 6293 628016266 6252 6239 6225 62II 61 98 6184 6170 2 5 7 9 II 

62 61 57 61436129 6U5 ~ 6088 6074 fu;6o 6046 6032 2 5 7 9 12 
63 6018 6004 5990 5976 5962 5948 5934 5920 5906 5892 2 5. 7 9 12 
64 5878 5864 5850 5835 5821 5807 5793 W2 5764 5750 2 5 7 9 12 

66 5736 ~ 5707 5693 567S 5664 5650 5635 5621 5606 2 5 7 10 12 
66 5563 5548 

f---='-
5476 5461 2 5 7 10 12 5592 5577 5534 5519 5505 5490 

5'1 5446 5432 5417 5402 5388 5373 5358 5344 5329 5314 2 5 7 10 12 
68 5299 5284 5270 5255 ~ 5225 5210 ~ 5180 5165 2 5 7 10 12 
69 -'-'----' 

5060 5150 5135 5120 5105 50go 5075 5045 5030 5015 3 5 8 10 13 
60 500C 4985 4970 4955 ~939 4924 4909 ~894 4879 4863 3 5 8 10 13 
61 4848 4833 4818 4802 4787 4772 4756 ~ 4726 4710 3 5 8 10 13 I 

62 4695 4679 4664 4648 ~633 4617 4602 ~586 4571 4555 3 5 8 10 13 
63 454c 4524 4509 4493 ~478 4462 4446 4431 4415 4399 3 5 8 10 13 
64 4384 4368 4352 4337 ~ 4305 4289 4274 4258 4242 3 5 8 II 13 

66 4226 4210 4195 4179 l1.163 4147 4131 tiI 15 4099 4083 3 5 8 II 13 
66 4067 ~ 3987 

~ 
4051 4035 4019 3971 3955 3939 3923 3 5 8 II 14 

6'1 3907 3891 3875 3859 3843 3827 38Il 3795 3778 3762 3 5 8 II 14 
68 3746 3730 3714 3697 3681 3665 364<; 3633 3616 3600 3 5 8 II 14 
69 3567 

F--: :::......::=-
3584 355 1 3535 3518 3502 3486 3469 3453 3437 3 5 8 II 14 

70 3420 3404 3387 3371 3355 3.338 3322 3305 3289 3272 3 5 8 II 14 
'71 3256 3239 3223 3206 3190 3173 3156 ~ 3123 3107 3 6 8 II 14 
72 3090 13074 3057 3040 3024 3007 299c 2974 2957 2940 3 6 8 JI 14 

'13 2924 2907 2890 2874 2857 2840 2823 2807 2790 2773 3 6 8 II 14 
74 2756 

12740 2723 2706 2689 2672 2656 2639 2622 2605 3 6 8 II 14 
76 f---'- ---"-" 

2588 2571 2554 2538 ~ 2504 2487 ~ 2453 2436 3 6 8 II 14 
76 2419 2402 2385 2368 2351 2334 2317 2300 2284 2267 3 6 8 II 14 

7'1 2250 2233 2215 2198 2181 2164 2147 2130 2H3 2096 3 6 9 II 14 
78 2079 2062 2045 2028 20II 1994 1977 1959 1942 1925 3 6 9 II 14 

--,-g 1891 1874 1857 
f-

1908 1840 1822 1805 1788 1771 1754 3 6 9 12 14 
80 1736 1719 1702 1685 1668 1650 1633 1616 1599 1582 3 6 9 12 14 
81 1564 1547 1530 1513 1495 1478 1461 1444 1426 1409 3 6 9 12 14 

82 1392 1374 1357 134C 1323 1305 1288 1271 1253 1236 3 6 9 12 14 
83 1219 1201 U 84 Il67 II49 Il32 IllS r097 1080 1063 3 6 9 12 14 
84 1045 1028 10Il 0993 0976 0958 0941 10924 0906 0889 3 6 9 12 14 

85 0872 0854 0837 081 9 o&n 0785 0767 1<>750 0732 07 15 3 6 9 12 IS 
86 0698 0680 0663 0645 b628 0610 0593 10576 0558 054 1 3 6 9 12 IS 
8'1 0523 0506 0488 047 1 10454 0436 0419 0401 0384 0366 3 6 9 12 IS 
88 0349 0332 0314 0297 p279 0262 0244 0227 0209 0192 3 6 9 12 IS 

~ ----'-

89 01 75 01 57 0140 0122 PI05 0087 0070 0052 0035 001 7 3 6 9 12 IS 
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TANGENT RATIO 

0' 6' 12' 18' 24' 30' 36' 42' 48' 54' 1 2 3 4 5 

0° .OOOC bo17 0035 0052 0070 0087 0105 0122 0140 0157 3 6 9 12 14 

1 .0175 bl92 020<) 0227 0244 0262 02?9 P297 0314 0332 3 6 9 12 IS 
2 .0349 P367 0384 0402 P419 0437 0454 P472 0489 0507 3 6 9 12 IS 

3 .0524 0542 0559 0577 bS94 0612 0629 b647 0664 0682 3 6 9 12 15 

~ :0699 o7i7 0734 0752 0769 0787 0805 ~ 0840 0857 3 6 9 12 IS 

5 .0875 0892 °9IO 0<)28 P945 0963 098r p998 IOI6 1033 3 6 9 12 IS 

6 .1051 1069 ~086 1104 II22 II39 1151 II75 II92 12IO 3 6 9 I2 IS 

7 .1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 3 6 9 12 IS 

8 .1405 1423 1441 14~§ 1477 1495 1512 1530 1548 1566 3 6 9 I2 IS 

9 .1584 1602 1620 163 1655 1673 169Y 170<) 1727 1745 3 6 9 I2 ts· 
10 .1763 1781 1799 181 7 1835 1853 1871 r890 1908 1926 3 e; 9 '2 '5 

11 .1944 1962 1980 1998 2016 2035 2053 2071 2089 2I07 3 6 9 12 IS 
12 .2126 2144 2162 21& 2199 2217 2235 2254 2272 2290 3 6 9 12 IS 
13 .2309 2327 2345 2364 2382 2401 :?4!2 2438 2456 2475 3 6 9 12 15 

14 .2493 2512 2530 254~ 2568 2586 2605 2623 2642 2661 3 6 9 12 16 

16 .26?2 26g8 2717 273(: 2754 2773 2792 2811 2830 2849 3 6 9 13 16 

16 .2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3 6 9 13 16 

1'1 ·3057 3076 30<)6 3II5 3134 3153 3172 3191 3211 3230 3 6 10 13 16 

18 .3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3 6 10 13 16 

19 ·3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 3 6 10 13 17 

20 .3640 3659 3679 3699 3719 3739 .Iill 3779 3799 3819 3 1 10 13 17 

21 .3839 3859 3879 !~ 3919 3939 395<; 3978 4000 4020 3 1 10 '3 11 
22 .4040 4061 4081 ~122 4142 4163 4183 4204 4224 3 1 10 14 17 
23 .4245 4265 4286 ~ 4327 4348 4369 4390 44 II 4431 3 7 10 14 17 

24 -4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 4 1 10 14 18 

25 .4663 4684 4706 4727 ft748 4770 4791 4813 4834 4856 4' 1 II 14 18 

26 .4877 4899 4921 4942 4964 4986 500S 5029 5051 5073 4 7 II IS 18 

27 .5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 4 7 II IS .8 

28 .5317 5340 5362 5384 5407 5430 545~ 5~75 5498 5520 " 8 II IS 19 
29 ·5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 4 8 12 15 19 

30 ~ 5797 5820 5844 5867 5890 59 i 4 5938 5961 5985 4 8 12 16 20 

31 .600<) 6032 6056 608e ~I04 6128 6152 61 76 6200 6224 4 }3 12 16 20 

32 .6249 6273 6297 6322 ~346 6371 6395 6420 6445 6469 4 8 12 16 20 

33 .6494 65 19 6544 656<) 6594 6619 6644 6669 6694 6720 4 8 13 17 21 

34 .6745 6771 6796 6822 16847 6873 689<; 
-;---'-

6950 6976 21 6924 4 9 13 IT 
36 .7002 7028 7054 708c 7107 7133 715<; 7186 7212 7239 4 9 13 18 22 

36 .7265 7292 7319 ~ 7373 7400 .~ 7454 7481 7508 5 9 14 18 23 

3'1 .7536 7563 7~<JO 761E 7646 7673 7701 7729 7757 7785 5 9 14 18 23 

38 .7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 5 10 14 19 24 

39 .80<)8 8127 8156 8185 8214 8243 8273 8302 8332 8361 5 10 IS 20 24 

40 .8391 8421 84,51 8481 8SII 8541 8571 B601 8632 8662 S 10 IS 20 25 

41 .8693 8847 18s7s 8910 8941 
1-::-

16 26 8724 8754 8785 8816 8972 s 10 21 

42 ·9004 90 36 C)067 909~ 913 1 9163 9195 9228 9260 9293 5 II 16 21 27 

43 .9325 9358 9391 '942~ 9457 9490 9523 9556 9590 9623 6 II 11 22 28 

4.4 .9657 9691 9725 975~ 9793 9827 9861 9896 9~30 9965 6 II 17 23 ~ 
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TANGENT RATIO 

0' 6' 12' lS' 24' 30' 36' 42' 4S' 54' 1 2 3 4 5 
-11----1---1--..,.-1---1---1----1------1----1-
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V. Appro*imate Formulas for Simplified Computation 

If a is either positive or negative, and it is less than one in abso
lute value, then the following approximate relations may be satis
factorily used for computation purposes. However, it should be 
understood that an error of about a2 or less is thereby introduced. 

(1 + a)2 = 1 + 2a 

(1 - a)2 = 1 - 2a 

_1_=1_a 
1 + a 

1 
1_a=1+a 

(1 + a)n = 1 + na 

(1 - a)n = 1 - na 

1 
(1 + a)n = 1 - na 

1 
(1 _ a)" = 1 + na 

~=1+~ 
2 

~=1-~ 
2 

1 = 1 _ ~ 
V1 +a 2 

1 = 1 + ~ 
V1 - a 2 

_"/-- a 
v1+a=1+-

n 

_"/-- a 
v1-a=1-

n 

Approximate value 

1.001 2 = 1.002 

0.9982 = 0.996 

1 
1.0003 = 0.9997. 

1 
0.9998 = 1.0002 

V 1.0004 = 1.0002 

VO.9998 = 0.9999 

1 
_ / = 0.99999 
'V 1.00002 

1 
V = 0.99998 

0.99996 

1 =1-E: 
V1 +a n 

1 =1+E: 
V1 - a n. 

Error 

0.000001 

0.000004 

0.00000009 . 

0.00000002 

0.00000002 

0.000000005 

0.0000000001 

0.0000000004 



ANSWERS TO PROBLEMS 

CHAPTER 2 

1. The seven-system. 2. The nine-system. 3. The six-system. 
4. The five-system. 5. In the two-system 111,011,001; the three
system 122,112; the four-system 13,121; the five-system 3,343; the 
six-system 2,105; the seven -system 1,244; the eight-system 731; the 
nine-system 575; the eleven-system 3tO; the twelve-system 335. 
6. (a) In the five-system 4,493; the six-system 10,533; the seven
system 21,829; the eight-system 41,243; the nine-system 72,525; the 
eleven-system 190,853; the twelve-system 290,919. (b) In the six
system this number is odd; in the seven-system this number is odd. 
(c) No. 

CHAPTER 3 

1. 888 + 88 + 8 + 8 + 8 = 1,000. 2. 8 + 8 + 8 = 24. 
3. 33 - 3 = 24. 4. 5·5 + 5 = 30. 5. 1·9 + 8·2 - 7· 
3 + 6 - 5 - 4 = 1; ~t~ + -H = 1. 6. H + 9 = 10; Y - t = 10. 
7. 111 - 11 = 100; 33·3 + t = 100; 5·5·5 - 5·5 = 100; 
(5 + 5 + 5 + 5)5 = 100. 8. 99 + t = 100. 

CHAPTER 4 

1. 109,500,000 trucks. 2. 14,000,000 trucks. 3. 63.13, or about 
64 days. 4. 50,000 days, or about 137 years. 5. 160 cups. 
6. About 800,000,000 pints. 7. About 23.7 miles. Tile hour num
ber will be about 10,417 feet long. 8. The mosquito will be about 
5.92 (almost 6) miles long. 9. 1,000 kilograms, or 1 metric ton = 
2,204.6 pounds. 10. About 39.5 miles. 11. About 47.4 miles. 
12. About 23,674 miles. The hour number will be about 197 miles 
long. 13. Weight varies as the cube of the linear dimensions. A 
pair of shoes will weigh about 750,000,000,000,000,000,000,000 tons. 
14. About 158,000 miles long. 15. 7,500,000,000 pounds. 
16. 6,300,000,000 pounds of water. 17. About $898,000,000. 
18. About 366.109 gallons.' 19. About 49,000 gallons. 20. About 
65.10 11 gallons. 21. lOmyriad is greater than myriadlO • 22. 1080000. 
23. About 2,759,400,000 heartbeats. 24. About 1016 tons. 25. It 
will take sound about l15000 = 1\50 second to reach the opposite wall 
of the concert hall. It will take a radio wave about TH%%o = -h 
second to reach Los Angeles. Thus the man in Los Angeles will 
hear the performance first. 26. About 3.1012 miles. 27. About 
3.1018 miles. 28. About 818,400,000 seconds, or 25 years 357 days 
5 hours and 2 minutes. 

CHAPTER 5 

1. The diminished radius of the earth :would be about 83.3 times 
larger than the breadth of a hair. 2. About 23,000 times larger. 

771 



772 Matbematics-Its Magic & Mastery 

1 
3. About one millionth part. 4. About 5.109 part. 5. About one 

millionth part. 6. One molecule for every 4.4 .1016 cubic miles. 
7. About 227.108 molecules. 8. The water in a cubic mile will 
weigh approximately 6.7.10-13 gram. 9. The number of red cor
puscles will be about 13 ·1010. 10. About 5.1052 cubic miles for one 
red bl'ood corpuscle. 11. The space allotted to one electron will be 
approximately 9 ·10 -18 cubic mile, or approximately 0.0023 cubic 

. inch. 12. About 111.1015 electrons. 13. Approximately one 
billionth of a gram. 14. 109900 googols. 15. (1) A googol googol is 
larger thah a myriad myriad ; (2) A googoll!oogol is larger than 999 ; 
(3) Googolgoogolplex is larger than googolplexgOogol. 16. (1) 1010102_4.104 

googol googol 100 
times; (2) <)9'1 ~ times: (3) 10102+ 10 -10200 times. 

googol· 100 2 ·.1 102 17. (10googol)1O = 10g00gol.googolplex = 1010100.1010 = 1010!0 . 0 • 

18. The length of one wave is approximately 2.95.10-5 inch. 
19. 4.07 '10-\ or 407,000 waves. 20. Approximately 26.1029 waves. 

CHAPTER 7 
1. 3.142. 2.365.22. 3.1570. 4.288 feet. 5. 922.25. 6.58 feet. 

7. 41,000 square feet. 8. 2.3 times. 9. 13.4. 10. 10.5. 

CH;APTER 10 

1. 4632 
8632 

or .2051 or .4367 
.3051 

13264 .5102 

3. 41052 4. 93467 5. 5927 
31052 83467 3402 
72104 176934 9329 

8. 9427 
64983 

972492 
lOLt6y02 

9. 2413 
92476 

889235 
9763421 

10747545 

.2367 
0.6734 

6. 4623 

10. 

99145 
103768 

5352 
413 

4§f9 

2. 2051 
3051 
5102 

or 4367 
2367 
6734 

7. 5349 alld other 
24588 solutions 
64259 
94196 

11. 1615 12. 349 
815 62 
800 698 

2094 
21638 

13. 762 14. 2774545 I 643 
485 2572 4315 

3810 2025 
6096 1929 

3048 964 
369570 643 

3215 
3215 
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CHAPTER 12 

1. +374° c. 2. 180° F. 3. 1 ° F. = -&0 c. 4.44.40 C. 5. 161.6° F. 
6. -461.2°F. 7. -49°F. 8. -52.78°C. 9. -172.2°C. 
10. -153.4° F. 

CHAPTER 13 

1. 243.1013 grains. 2. 127.107 = 1,270,000,000 passengers. 
3. About 2 cents. 4. About 375 acres. 5. About $27. 
6. 123456789° = 1. 7. 2222. 8. 555 . 9. 2341 • 10. 679 . 
11. 5.68.107 grams, or about 56.8 metric tons. 12. Approximately 
3.64 grams. 13. 19.1026 tons. 14. About 2.1059 times. 15. 1 
mile = 16.104 centimeters. The radius of the universe is then 
6.1012 .16.104.109 centimeters. About 28 electrons. 16. About 
5.1047 electrons. 17. About 0.0000000000000000001 cent. 
18. About 7.4.1033 cubic centimeters for one electron. 19. About 
0.034 pound. 20. About 0.00000542 cent. 21. In about 287.4 

seconds. This number has 27 digits. 22. In about (!)40 of a 
second. 23. At 520° C. 24. At 630° C. 25. In about (t)540 of 
a second. 26. The radius of an electron is about 7.5·10 -12 cm. 
The radius of the sun is about 5.1010 cm. The volume of an 
electron is 4.18 (7.5.10-12)3 cubic cm. The volume of the sun is 
4.18(5.10 10)3 cubic cm. Then the volume of the sun is 

(5.1010)3 
(7.5.10 -12)3 

times larger than the volume of an electron. Performing the com
putations we have this number approximately equal to 3.1065. We 
agreed that 103 = 210 approximately. We have then 3.1065 = 
300.1063 = 300(2 10)21 = 300.2210. Replace 300 by 256 = 28. We 
have then 2210 .28 = 2218. This gives the answer: 218 times. 
27. Approximately 199 times. 28. Approximately 40 times. 
29. Approximately 6 times. 30. 263 = 9,223,372,036,854,775,808 

grains. 31. 246 • 32. 357. 33. 579 • 34. 56789. 

CHAPTER 14 

1. He sold 208 tires during June and July, that is, in 61 days. 
Suppose that during x days he sold motorcycle tire sets (two to a 
set). Then during (61 - x) days he sold automobile tires, that is, 
4 tires to a set. Then, he sold [2x + 4(61 - x)] = 208 tires. Solv
ing this equation, we find that he sold 36 motorcycle tires and 172 
automobile tires. 

2. Suppose that she ordered x one cent stamps, then she ordered 
2x two cent stamps, and 15x three cent stamps. Then 

x + 4x + 45x = 500. 

Solving the equation, we find that she bought 10 one cent stamps, 
20 two cent stamps, and 150 three cent stamps. 



774 Mathematics-Its Magic & Mastery 

3. Suppose that there were x customers. Then 

~ ordered minestrone, ~ ordered fried chicken, ~ (~ + ~) 
ordered macaroni. 

The sum of these -orders is equal to 70. Solving the equation, we 
find ;that there were 48 customers in Caprini's restaurant, and from 
this we obtain that there were 24 orders of minestrone, 16 orders of 
fried chicken, and 30 orders of macaroni. 

4. Suppose that Mr. Collins contributed x dollars. Then the 
total collection was (x + 100) dollars. The average contribution 
was then 

x + 100 
11 

and from this we have that 
x _ x + 100 = 20 

1 • 
~1 

Solving this equation we find that Mr. Collins contributed $32. 
5. Suppose that Mr. Collins had (2n + 1) five-dollar bills. Then 

he offered to contribute 5n dollars. The solution of this problem 
follows the method of the solution of Problem 4. Mr. Cashbox 
had $135 in his wallet. 

6. Suppose that Mr. Collins had x dollars in his wallet. Then 

the first received 
x 
"2 + 1 dollars 

the second received ~ (~ - 1 ) + 1 dollars 

the third received ~ (~ -D + 1 dollars 

x 7 - - -- dollars 
8 4 

and the fourth received 

and from this \ve set up the proper equation as indicated in the 
problem. Solving this equation we find that Mr. Collins distrib
uted $30 as follows: 

and 

the first received $16 

the second received $8 

the third received $4 

the fourth received $2 

7. Suppose that there were x men in Elmville. Then there were 
1349 - x 

(1349 - x) women, and only 2 women voted. Then Me 
Collins paid out 
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7.5x + 15(134: - x) = 7.5x+ 15.1349 -7.5x = 15·1349 = 20235 

dollars. 

8. Let the total prize money be x dollars. Then 

the first prize is 
x 3" + 5 dollars 

the second prize is ~ + ~ dollars 

the third prizE. is 
x 13 

10 + "4 dollars 

and the fourth prize is 2; - 12 dollars 

Since the sum of the first three prizes is twice as large as the fourth 
prize, the fourth prize is equal to one third of the total prize money. 
We have then the equation 

2x _ 12 = ~ 
5 3 

Solving this equation we find that the total prize money was $180 
which was distributed as follows: the first prize $65, the second 
prize $33.75, the third prize $21.25, and the fourth prize $60. 

9. Suppose that the amount paid for the automobile was x dol-
x 3x 

lars. Then the cost of the garage was "8 + 50 dollars, or "4 - 575 

dollars. Equating these two expressions, and solving the equation 
we find that Mr. Collins paid $680 for the automobile, and the 
garage cost $175 to construct. 

10. We have the following table of values 

Ages of 

Student. ..... . 

Professor ..... . 

Then 

x 
9 

x 

From this we obtain the equation 

Now 

x 

78 - x 

x - ~ = 78 - x - x 
9 

7 years later 

x+7 

85 - x 

and solving it we find that the student is 27 years old, and the Pro
fessor is 51 years old. 
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11. We hav«:) the following table of values 

Ages Then Now 

Eddie ... -. . . .. . 0 x 
Professor. . . . .. x + 13 3x. 

i . 
From this we obtain the equation 

x - 0 = 3x - x - 13 

Later 
2x 
4x 

and solving it we find that Eddie is 13 years old, and Professor is 39 
years old., 

12. The professor is 47 years old, and his wife is 41 years old. 
13. One soh is 9 years old, and the other is 15 years old. 
14. Suppose' that there were x animals and x - 15 birds. Then 

the number of legs is 

animals: 4x, birds: 2(x - 15), and the total: 6x - 30. 

If the number of animals and birds were reversed, the number of 
legs would be 

animals: 4(x - 15), birds: 2x, and the total: 6x - 60. 

We have then the equation 

2 
"j.(6x - 30) = 6x - 60 

Solving this equation we find that there were 20 animals and that 
there were 5 birds. 

15. Suppose -that x members left the meeting. Then 

~. (x + 2) = 3 (x - 3) 

Thus 28 members left the meeting, and there were 75 members in 
the club. 

16. Suppose that x tickets were sold: Then the women sold 2; 

tickets, and the men sold 1 tickets. If the men sold twice as many 

tickets as the women sold, they would have sold 4; tickets, and the 

extra $150 would constitute the price of 300 tickets. Thus x == 300, 
and the women sold 200 tickets. 

17. The $400 rent was to run for 18 years, and the $600 rent was 
10 run for 24 years. The total rent would then be $21,600. Thus 
the club would pay $600 more under the terms proposed by Mr. 
Collins. 

18. 150 men and 80 women. 
19. The slower typist can copy one page in 6 minutes, and the 

faster typist can copy one page in 4 minutes. Thus, in 72 minutes 



Answers to Problems 777 

each typist copied 12 and 18 pages respectively, or 30 pages together, 
and this was the number of the pages in the manuscript. 

20. Mr. Collins engaged the three painters. John could com
plete t of the job in a day, Jim could complete 1r of the job in a day, 
and Jack could complete t of the job in one day. Then in one day 

1 1 1 107 
"5 + (; + 7 = 210 th 

part of the job could be completed, and in a trifle less than two days 
the work could be done. The $214 were divided as follows: John 
received $84, Jim received $ 70, and Jack received $60. 

21. In one hour the larger candle will burn i of its length, and the 
smaller candle will burn t of its length. Suppose that the two can
dles burned x hours. Then 

1 - ~ = 2 (1 - ~) 
Solving this equation we find that the two candles burned 3 hours. 
22. Johnson figured that his average speed was 

18~ + 180 
2.5 5 = 72 + 36 = S4 

2 2 

miles per hour, and at this speed it would take him 3 hours and 20 
minutes to reach Squirrel Bluffs. However, this computation was 
wrong. His average speed was to be computed as follows: 

2 1 1 36 + 72 1 x = 72 + 36 = 72·36 = 24 

and x = 48 miles per hour. At this speed it should take him seven 
and a half hours for the round trip. 

23. The clue to the solution of this problem is the statement 
concerning the ten additional miles which would have saved ten 
minutes. Thus, the original speed was 60 miles per hour. Suppose 
that the distance from the Professor's home to Canarsie University 
was x miles. Then, had he gone at the original rate from the time 

he fixed the flat tire, it would have taken him x ~O 60 hours to com

plete the trip. But he proceeded at 48 miles an h~ur, and this trip 

took him x ~8 60 hours to complete. He spent 10 minutes fixing 

the flat tire and he was 30 minutes late, that is, he travelled 20 more 
minutes, or t of an hour. We then have the equation 

x - 60 
48 
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Solving this equa~ion, we find that the required distance was 140 
miles. 

24. Stone's share in the gasoline expense was one half of the total 
cost of the trip. 

25. If the originaf cost of a sandwich was x cents, then the 300 
sandwiches cost 300x cents, and the 3 cents rise in price would have 
offset the loss, that is, 

300x = 240(x + 3) 

and from this we obtain x = 12 cents. 
Suppose that the first sandwich was to be sold for y cents, and the 

second san.dwich was to be sold for ~ cents. Then 

120y 
120y + 2~ = 3600 

From this we obtain y = 20 cents, and ~ = 10 cents. 

2x 
26. Suppose that the bat cost x cents and the baseball cost "5' A 

25 percent profit on the bat would have brought its selling price to 

5: ' and a 25 percent loss on the baseball ,,:ould have made its sell

ing price ~.~x. We then have the equation 

5x + 3x = 155 
4 10 

From this equation we find that x = 100, and this is the cost of the 
bat to Eddie. The cost of the baseball to him was 40 cents. Thus 
he made a profit of 15 cents. 

27. The total investment in the bus company including Brown's 
share was $3500. In the new set-up Stone's share was $700, a gain 
of $300, and Parker's share was $1000, a gain of $400. Thus, Stone 
gained $300 on a $400 share, while Parker gained $400 on a $600 
share. 

28. Let the required time be x. Then the squadron will cover 
26x miles in this time, and the destroyer will cover 35x miles. The 
total trip of the destroyer will be 80 miles. Then 

35x + 26x = 80 

or x = 1 hour and 20 minutes (approximately). 
29. Suppose that the destroyer will turn back after x hours. In 

this time it will move ahead of the squadron 

35x - 26x = 9x miles 
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On the return trip the destroyer and the squadron will travel 
(7 - x) hours un til they meet, and they will both cover 

35(7 - x) + 26(7 - x) = 9x miles 

From this we find that x = 6 hours 6 minutes. After this time has 
elapsed the destroyer must turn back. . 

30. Suppose that the distance to be covered is x miles. Then at 

Then 

45 miles an hour the trip will take 4~ hours, and he would be 
30 minutes late, . 

at 50 miles an hour the trip will take 5~ hours, and he would 
be 20 minutes early. 

- - - = - 30 + 20 = 50 mmutes = - hour x x 5( . 5) 
45 50 6 6 

From this we find that x = 375 miles. 

At 45 miles an hour the trip will take 3:: = 8 hours 20 minutes, 

and since this would be 30 minutes too late, the trip should take 

7 hours 50 minutes, or ~7 hours. Then the correct speed should be 

about 48 miles an hour. (375 -;- 4; = 47.87.) 

31. The method for the solution of this problem is r similar to the 
one illustrated in this chapter. The third pasture will suffice 18 
weeks for 36 bulls. 

32. Suppose that farmer Jones had x chickens. Also suppose 
that the feed he bought is F. Then one chicken will be given 

and i of this is 

F 
15x 

2F 
45x 

If there were 21 more chickens, then the total number of chickens 
would be (21 + x), and since the food would last only 12 days, each 
chicken would receive 

F 
12(21 + x) 

Equating these two values we have, after cancelling out the F's, 

24(21 + x) = 45x 

Solving the equation, we find that x = 24 chickens. 
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CHAPTER 16 

1. $20.10. 2. About 17%. 3. About 21.3%. On the weekly 
plan the yearly rate .of interest is about 95.28%. 4. About 22.5% on 
the monthly plan, and about 26.5% on the weekly plan. 5. About 
30.25%. 

CHAPTER 17 

1. a. 18,446,744,073,709,551,615; b. 1,229,782 cubic kilometers. 
or about 295,060 cubic miles; c. About 576,460,752,304 years. 
2. About 2.1013 rats. 3. About $2,115. 4. 88,572. 5. t. 

CHAPTER 21 

1. 1020. The population of the earth is about 2,000,000,000. 
Thus, an exact double is impossible. 2. 1005 = 10,000,000,000 
combinations. 3. 3,750. 4. 1,320. 5. 10,000. 6. 30,000. 7. 20. 
8. 48,000 dinners. 

CHAPTER 23 

1. 25. 2. 41. 3, 13. 4. 37. 5. 29. 

CHAPTER 24 

1. x2 + y2 = 1. 2. x2 + (y + 3)2 = 6. 3. (x + 2)2 + y2 = 49. 
4. x2 + y2 = 1. 5. (x + 5)2 + y2 = SO. 6. (x + 3)2 + (y + 5)2 = 8. 
7. (x - 2)2 + (y + 3)2 = SO. 8. (x - 2)2 + (y + 4)2 = ,2. This 
is a circle. 9. Suppose that the sum of the distances is 2a. Then 

'3 2 
the equation is x2 + ~ = 1. 

a a2 - "2 

x2 y2 
10. a2 - b2 = 1. This curve is known as the hyperbola. 

(x + 2)2 2 
11. 4y2 = - 3x2 - 12x, or 4 + ~ J = 1. 

12. (x + })2 + (y - 2-/)2 = H. 13. x + y = 3. This is a 
straight line. 

CHAPTER 27 

1. 151,000,000 miles. 2. 1,110 miles per minute. 3. 0.623 mile 
per second, or 3,2~0 feet per second. 4. 25,000 miles. 5. 0.291 
mile per second, or about 1,540 feet per second. 6. No, the differ
ence wiII be the same. 7. Yes, yes. 8. 5,654 feet in a day, 7.49 
miles in a week, about 225 miles in a month, about 2.735 miles in a 
year. 
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CHAPTER 28 

1. 974.5 feet. 2. About 20,600 feet. 3. About 10 55'. 4. About 
110 feet. 5. About 20,600 feet. 6. About 0.6 of normal. 7. About 
0.8 of normal. 8. About 22 feet. 9. At a distance slightly less than 
2,160 feet. 10. About 0.29 of normal. 

CHAPTER 29 

1. About 1.5 miles. 2. About 2.0 miles. 3. About 0.9 mile. 
4. About 0.3 mile. 5. About 3.7 miles (the correction of 1.06 was 
introduced in this result). 6. 1.03 of normal. 7. Normal vision. 
8. 0.92 of normal. 9. 0.98 of normal. 10. Almost normal (about 
1.02 of normal). In the following problems the correction of 1.06 
was introduced. 11. About 17.4 miles. 12. About 1.6 miles. 
13. About 30 miles. 14. About 2.13 miles. 15. About 212 miles. 
16. About 413 feet. 17. About 72.2 feet. 18. About 1.16 miles. 

CHAPTER 31 

1. 75 in.2 2. 25 V3 = 43.25 in.2 3. 28.6 in.2 4. 250 in.2 

5. 200 in.2 

CHAPTER 32 

1. The volumes of similar solids are to one another as the cubes 
of the linear measures. If the linear measure of a Lilliputian was 1, 
then the linear measure of Gulliver was 12, and 123 = 1728. 

2. The calculations of Gulliver were wrong. An English barrel 
contains 672 half-pints, and an American barrel contains 512 half
pints. Thus, the Lilliputian barrel as described by Gulliver was 
too large. 

3. No. This mattress was one third as thick as a usual mattress. 
In order to make up a usual mattress, 12 layers would be required. 

4. An average apple weighs about t of a pound. In the land of 
the Brobdingnags such an apple would weigh 1728 times as much, 
that is, 432 pounds. Since all the objects (and this included trees) 
were 12 times larger in their linear dimensions, the apple (which 
would have fallen from the height of about 10 feet under normal 
conditions) must have fallen from the height of 120 feet in the land 
of the Brobdingnags. An object weighing 432 pounds and falling 
from the height of 120 feet would kill a man if it struck him. 

S. The diameter of an average ring is about i in. Then the 
diameter of the ring that the Queen of the Brobdingnags gave to 
Gulliver was about 7.5 in. If an average ring weighs about! of 
an ounce then the ring of the Queen of the Brobdingnags weighed 
about 36 lbs. 
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Absolute temperature, 159-160 
Absolute value of a number, 159, 

161 
Acceleration, 623, 629, 633, 635, 637 

centripetal, 629, 637, 680, 683, 694 
negative, 695 

Addition 
in various systems of numeration, 

19-20, 25-27, 29 
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restoration of missing numerals, 143-
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After, coordinate of, 612 
Aiming at a target, 646-649, 667-669, 

677 . 
American Experience Mortality Table, 

347 
Amount of motion, 634-635, 646 
Angle, 

central, 735 
dihedral, 587 
exterior of a triangle, 592, 602 
inscribed in a circle, 735 
measure of, 402-403 
of elevation of gun, 669-676 
of vision, 470 
right, 398 
straight, 398 

Angles, 727 
vertical, 495 

Angular magnitude, 470, 472 
Applications of mathematics to 

Astronomy, 289-292, 630-640 
Athletics, 689-692 
Automobile accidents, 699-700 
Aviation, 316-320 
Ballistics, 641-677 
Banking and Savings, 260-263, 283-

285, 295-305 
Business, 201-202, 281-283, 292-294, 

306-313 
Circus stunts, 685-689, 692-694, 696-

699 

Applications of mathematics to-Cant. 
Code writing, 79-101 
Instalment buying, 224-246 
Life insurance, 345-349 
Mechanics, 609-640, 678-704 
Mortgages, 243-245 
Motoring, 694-696 
Music, 285-287 
Physics, 285-292, 316, 324, 609-640, 

678-704 
Small loans, 240-243 
Surveying, 420-455 
Warfare, 475, 487-488, 641-677 

Approximate formulas, 220-223, 771 
for division, 221, 771 
for extraction of roots, 223, 533, 771 
for raising to a power, 771 

Approximate numbers, 103-104, 106, 
108-112 

nature of, 107 
rounding, 109, 111 
rules for operations with 

addition, 109-110 
division, 110 
multiplication, 108, 110-111 
subtraction, 110-111 

significant digits, 108-11 0 
Archimedes, 59-60, 513, 559 

calculation of pi (n), 513 
number of sands in the universe, 59, 

559 
Area, concept of, 524-525 
Area, unit of measure, 525 
Area of 

circle, 531-534 
parallelogram, rule for computation, 

527 
polygons, 733-734 

783 

rectangle, computation of, 108 
rule for computation, 526 

rhombus, 733 
square, 384 
surface of the earth, 249 
trapezoid, 530 
triangle, 531 
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Areas of similar figures, 549-550, 558 
Arithmetic mean, 579-5'80, 710 
Arithmetic progression, 224-245, 715 

any term, 234, 715 
sum of, 235, 716 

Astronomy, 289-292, 630-640 
Axioms, 371 -
Axis of cylinder, 598 

Ballistics, 641-677 
Banking and Savings, 260-263, 283-285, 

295-305 
Before, coordinate of, 612 
Big numbers, 57-58, 60-65, 73-75, 172-

185 
comparison of, 61-65 
problems with, 172, 173, 175, 177-179 

Billion, 54-56, 58 
Billion times, 56 
Binomial expansion, 337-339, 717-718 

coefficients of, 339 
Blood corpuscle, red, dimensions of, 

68 
Boring of gun barrel, 665 

Calculating machines, 117-124 
Napier's rods, 117-121 
Schoty,121-122 
Soroban, 121 
Suan-pan, 123-124 

Centigrade, 138 
Centrifugal force, 629, 684 
Centripetal acceleration, 629, 637, 680, 

683,694 
Certainty, 330-332 
Chord of a circle, 471 
Circle, 394-396, 406, 409, 416-419, 457, 

459, 471, 628, 734-737 
are, 737 
area, 531-534, 737 
chord, 471 
circumference, 457, 459, 737 
diameter, 471 
equation of, 395-396, 406, 409, 416-

419 ' 
motion along, 628 
radius, 394 
sector, 737 
segment, 737 
tangent to, 736 

Circles, walking in, 465-468 
Classification, method of, 7-8, 508-511 

in libraries, 7-8 
in mathematics, 508-510 
in other fields, 510-511 

Code writing, 79-101 
grille, 89-98 
substitution, 98-10 1 
systems of numeration, 88-89 
transposition, 78-85 
transposition of columns, 85-89 
two-system of numeration, 94-96 

Coincidence, probability of, 333, 337, ' 
342-343, 348-349 

Collision of objects, 696-700 
Combinations, 354-364 

locks, 356-359 
Component velocity, 685 
Compound interest, 260-262, 295-299 

accumulation of capital, 261-262, 
283-285 ' 

savings with regular deposits, 261-
262 

Compound interest computed, 295-299 
annually, 295, 296 
daily, 299 
monthly, 299 
quarterly, 298-299 
semiannually, 296-298 

Cone, 552, 582-584, 601 
generato'r of, 601 
volume, 552 

Congruence of triangles, 421, 426 
Coordinate geometry, plane, 365-376, 

378-380,386-387,392-411,413-419 
Coordinate of after, 612 
Coordinate of before, 612 
Coordinate of here, 612 
Coordinate of time, 612 
Coordinates, 368-374, 379, 392-393, 521, 

612 
in four dimensions, 374 
in six dimensions. 521 
in three dimensions, 373 
in two dimensions, 368-371 
origin, 379 
moving of origin, 392-393 

Copernicus, 630 
Cosine law, 747 
Cosine ratio, 403, 744 
Cosine ratios, table, 766-767 
Counting, 1-2 
Cube, five-dimensional, 562 

volume of, 543 
Cubes, number of in volume of, 561-

562 
three-dimensional cube, 561 
four-dimensional cube (cuboid), 561 
five-dimensional cube, 562 



Cubed unit, 541 
Cuboid, four-dimensional cube, 562 

number in a five-dimensional cube, 
562 

Curve of death, 313-316 
Curve of growth, 313~316 
Cylinder, 545-546, 566, 594, 598 

axis of, 598 
generator of, 594 
volume, 545-546, 566 

Decimal system of numeration, 9-10, 
32 

Depreciation, 292-294, 306-313 
rate of continuous, 311-313 

Diameter of a circle, 471 
Diameter of the earth, 104 
Difference as a method of comparison, 

423 
Dihedral angle, 587 
Directed numbers, 158-163, 706 
Distance formula for 

four dimensions, 388-391 
line-world, 380 
six dimensions, 521 
three dimensions, 387-388, 390 
two dimensions, 386-387, 390 

Distance from earth to moon, 638, 702 
Distance from earth to sun, 71, 104,250 
Distance of target, 663 
Distance of vision, 476, 479, 4Ro-490 
Distance, result of motion, 621, 625, 635 

shortest, 583-608 
Distance to island universe, 71 
Division 

in various systems of numeration, 
23-24, 30 

of approximate numbers, 110 
of fractions, 709 
of polynomials, 707 
of signed numbers, 706 
restoration of missing numerals, 146 

e, 295-328 
applications of, 303-311, 316-328 
barometric pressure and elevation, 

316-320 
calculation of, 299, 301 
cooling, 320-324 
long distance telephoning, 327 
parachute jumping, 326 
slowing down of speeds, 324, 327 
suspension bridges, 328 
value of, 301 

Index 785 

Earth, diameter, 104 
Electron, weight, 179, 181 
Electrons, number in the universe, 

73 
Elevation above ground, 489-490 
Elevation of gun, angle, 669-676 
Ellipse, 406-411, 515, 518 

drawing of, 410 
equation of, 406-409 
foci, 411 
relation to circle, 411, 515, 518 

Ellipsoid, equation of four-dimen
sional, 413 

equation of three-dimensional, 413 
English system of measures, lengths, 

68 
Equation of a curve, method of writ

ing, 394-396,407-409,414-417 
Equations, 186-220, 718-727 

fractional, 196-198 
in one unknown, 186-193, 195, 201-

208, 218-220, 718-722 
in two unknowns, 193-194,722-724 
quadratic, 674-675, 724-727 

Event, coordinates of, 612 
Exponents, laws, 173-177, 266-269, 712-

713 
method of writing numbers, 66-67 

Extraction of roots, 218-221, 282, 385-
386, 711, 714-715 

approximate method, 218-221 
concept of square roots, 385-386 
method of logarithms, 282 
numerical extraction, 714-715 

Eyesight, measure of, 475 

Faces, number of, in 
five-dimensional cube, 562 
four-dimensional cube (cuboid), 

562 
square, 561 
three-dimensional cube, 561 

Fahrenheit, 138, 158-160, 320-324 
Finger counting, 113 
Finger multiplication, 114-116 
Five-system of numeration, 9-10, 18, 

25 
Flatland, description of, 371-372, 380-

383 
properties of, 380-383, 389-390 

Force, 629, 634-635, 684, 696-697 
centrifugal, 629, 684 
of collision, 696-697 



786 Index 

Formula 
circumference bf circle, 459 
elevation above ground, 489 
guessing ages and numbers, 155, 157 
horizon distance, 483 
instalments and interest, 238, 240 
stirn of arithmetic progression, 235, 

716 
sum of geometric progression, 254, 

716 
sum of interior angles of a polygon, 

514,515 
Formulas for areas 

circle, 534 
parallelogram, 52~ 
rectangle, 528 
rhombus, 733 
square, 528 
trapezoid, 531 
trapezoidal rule, 53 5 
triangle, 528 

Formulas for volumes 
circular cone, 552 
cube, 543 
prism, 544, 545 
pyramid, 552 
rectangular prism, 542-543 
right circular cylinder, 545 
right elliptical cylinder, 546 
sphere, 547 
trapezoidal rule, 543 

Four dimensions, 389 
Fractions 

addition, 708 
division, 709 
fundamental property, 708 
in various systems of numeration, 29 
in the twelve-system, 33 
multiplication, 709 
subtraction, 708 

Future, representation of, 613 

Galileo, 633 
law of falling bodies, 633, 651, 659 

Generation of one-dimensional world, 
522 

Generation of three-dimensional 
world, 523, 538 

Generation of two-dimensional world, 
522 

Generator of a cone, 601 
Generator of a cylinder, 594 
Geodesics, 585-608 

Geometric progression, 246-263, 716 
any term, 253, 716 
sum of, 254, 716 
sum of decreasing terms, 255-260, 716 

Geometry, coordinate, plane, 365-376, 
. 378-380,386-387,392-411,413-419 

plane, 420-430, 456-460, 468, 493-537 
solid, 538-563, 585-608 

Googol, 73-75, 401 
Googolplex, 74, 112 
Gravitation, 638, 640, 679, 684-685, 690-

691, 701 
force of, 679, 684-685, 690-691, 701 
force of, for various latitudes, 690-

691 
law, of universal, 640 

Great circle, 605-608 
Great Pyramid, 102-103 
Grille, 89-98 
Gyroscope, 664 

Helix, 603 
Here, coordinate of, 612 
Horizon, 481-483 
Horizon distance, formula for, 483 
Horsepower, 645 
Hyperbola, equation of, 418-419 

relation to circle, 515, 519 

Impulse, 634-635, 646 
Inequalities, method of, 568-570, 572 
Infinity, 402, 515, 517 

graphical representation of, 515, 517 
Instalment buying, 224-240 

formula for instalments and interest, 
238, 240 

of a house, 236-240 
periodical payments, 230-232 

Instruments for surveying, 429-445, 450 
Interest, compound, 260-262, 283-285, 

295-299 
simple, 228-229, 240-245 
on mortgages, 243-245 
on small loans, 240-243 

Inverse operation, 385 

Kasner, E., see googol and googol
plex, 73 

Kepler, 630 
Kepler's laws, 631 

Law of cosines, 747 
Law of falling bodies, 633, 651, 659 



Law of sines, 747 
Law of tangents, 747 
Law of universal gravitation, 640 
Laws of exponep.ts, 173-177, 266-269, 

712-713 
Laws of Kepler, 631 
Length of year, 103-104 
Length, units of measure, 68 
Life expectancy, 345-349 
Light, speed of, 71, 76, 78 
Linear equations, 186-220, 718-724 

in one unknown, 186-193, 195, 201-
20S, 218-220, 718-722 

rules for solution, 720-722 
systems in two unknowns, 722-724 

Line-world, 378 
Locks, see combinations, 356-359 
Logarithms, 264-294, 717, 749-755 

at the base, 2, 269-271 
at the base 10, common, 271-280 
calculation of, 275-278 
characteristic, 280 
mantissa, 281 
of fractions, negative, 273, 280 
rules for operations with, 274-275, 

282, 749-753 
tables, 749-755 

Logarithms, applications of, to, 281-
294 

Compound interest, 283-285 
Depreciation. 292-294 
Marrnitude of starlight, 289-292 
Measurement of noise, 287-289 
Music, tempered scale, 285-287 
Price mark-up, 281-283 

Magnification of angle of vision, 477 
Mass, 633, 635 
Mathematical expectation, 349-350 
Maximum, 574, 577, 579, 581, 582 
Mean, arithmetic, 579-580, 710 
Measure of 

angle, 402-403 
area, unit of, 525 
eyesight, 475 
volume, unit of, 541 

Mechanics, 609-640, 678-704 
Metric system, lengths, 68 
Million, 51-52 
Million times, 53, 69 
Minimum, 573, 579, 581-582 
Missing numerals, problems with, 142-

149 
Molecule, dimensions of, 69-70 

Index 787 

Mortgages, 243-245 
Motion, accelerated, 622 
Motion along a c!ircle, 628 
Motion, amount of, 634-635, 646 
Motion uniform, 615, 621 

equation of, 621 
Motion, uniformly accelerated, 622-626 

equation of, 625 
Multiplication, 22-23, 25-27, 29, 108, 

110-111, 127-l33, 145, 163-166, 
209-223, 707-709 

by complements, l30-132, 165, 209-
223 

III various systems of numeration, 
22-23, 25-27 

of approximate numbers, 108, 110-
111 

of fractions, 709 
of polynomials, 707-708 
of signed numbers, 163, 706 
rapid, 127-133, 164-166, 209-223 
restoration of missing numerals, 145 

Music, 285-287 
Myriad, see Archimedes, 59-60, 74 

Napier, John, 119,265-266,269,272 
Napier's rods, 117-121 

calculating machine, 120 
multiplication with, 118 

Negative exponents, 67, 176 
Neg-ative numbers, 158-163 
Newton, 628, 640 
Newton's law of universal gravitation, 

640 
Normal vision, 475, 485 
Notch, 1, 2, 11 
Now. coordinate of, 612 
Number 

absolute value, 159, 161 
ne'4ative, 158-163 
of electrons in the universe, 73 
positive, 158-163 

Number curiosities, 39-45, 48-50, 166-
170 

analyzed, 40-42, 166-170 
Number, property of, 31-47 

2, 31 
5, 31 
9, 31 
12, 32-33 
99, 34 
365, 34 
999, 35 
1,001, 36 



788 Index 

Number, 9,999, 38 
10,001, 37 
10,101, 37 
99,999, 38 
111,111, 38 
142,857, .45-47 
999,999, 38 

Number scale, directed, 161, 516-517 
Number system of Archimedes, 59-60 
Number tricks, 150-157 
Numbers, approximate, 103-104, 106, 

108-112 
Numbers, directed, 158-163, 706 

operations with, 706' 
Numbers, memorization' of, 126-127 
Numbers with repeated digits, 43-45 
Numerals, 3-7 

Babylonian, 4 
Chinese, 5-6 
Egyptian, 4 
Greek, 7 
Hebrew, 7 
letter, 6-7, 127, 134-137 
missing and restoration of, 142-149 
Roman .. 4-5 
Tatar, 3 

Numeration, systems of, 9-33, 94-96, 
137-142 

decimal, 9-10, 32 
five, 9-10, 18, 25 
three, 16-17, 25 

weight problems, 141-142 
twelve, 18, 27, 32-33 
two, 12-14, 25 

Chinese, Je-Kim, 15 
code writing, application to, 94-96 
puzzles and tricks, 137-141 

unitary, 11 

Octade, see Archimedes, 60-61 
Odds, 343-345 
One dimension, 378 
Orbit, 626-628 
Origin of coordinates, 379, 392-393 

moving of, 393 

Paper folding, 429-430 
Parabola, 413-415, 419, 515, 519,625-626 

equation of, 414 
graph of, 419 
relation to circle, 515, 519 
time line, 625-626 

Parallel lines, 495, 500, 503, 518, 591, 729 
and infinity, 518 
transversal to, 591 

Parallelogram, 505, 527 
area, 527 

Past, representation of, 613 
Path of projectile, 650, 653, 656, 660, 

685 
Percent, 225-228 
Percentage, three cases of, 226-227 
Perpendicular lines, 398, 500 
Physical relations, table, 635 
Physics, 609-640, 678-704 
Pi (rt), 352, 458-459, 468, 513-514-

calculation of, 513 
in probability, 352 

Plane, properties of, 522 
Point-world, 377 
Polygons, regular, 738-739 
Polyh'edra, 739-743 

areas of surfaces, 742-743 
descriptions of, 739-741 
volumes, 742-743 

Power, 635 
Powers, see exponents, 712-713 

operations with, 712-713 
Present, representation of, 613 
Prism, volume of, 542, 544-545 
Probability, 329-353 

addition, 340-342 
coincidence, 333, 337, 342-343, 348-

349 
dice, 342-343 
measure of, 330-333 
multiplication of, 335-336 
odds, 343-345 
Needle problem of Count Buffon, 

see pi (rt), 350-353 
Problems with missing numerals, 134-

137 
Proportion, 424-426, 549-550, 555-558, 

710 
Protractor, 430 
Pyramid, volume, 552 
Pythagoras, theorem of, 383-385, 496-

498,733 
generalization, 497-498 

Quadrangle, 500, 729-730, 733 
Quadratics equations, 674-675, 724-727 

roots, 724-727 
Quadrilateral, see quadrangle, 500 

Radius of circle, 394 
Railroad timetable, graph of, 613 
Raising to a power, see exponents, 173-

177,266-269,711 



Rate of compounded growth, 303-305 
Rate of continuous depreciation, 311-

313 
Rate, problems in, 199-201, 203-207 
Ratio, 423, 425 
Recoil of gun, 646-648 
Rectangle, 108, 501-502, 526 

area, 108, 526 
diagonals, 502 

Reflection of light, property of, 437 
Restoration of missing numerals, 142-

149 
addition, 143, 144 
construction of problems, 147-149 
division, 146 
multiplication, 145 
subtraction, 144 

Rhombus, 502, 733 
area, 733 
diagonals, 502 

Rifling of the gun barrel, 665 
Roots, 218-221, 282, 385-386, 711-715 

extraction of (see extraction of 
roots) 

operations with, 712-713 
signs of, 711-712 

Rule for creating worlds of any num
ber of dimensions, 523 

Rules for signs in operations with di
rected numbers, 161-163 

Screw curve on a cylinder, 598, 600 
Secant of circle, 603 
Shortest distances, 585-608 
Sides, number of, in 

five-dimensional cube, 562 
four-dimensional cube (cuboid), 562 
square, 561 
straight line, 560 
three-dimensional cube, 561 

Signed numbers, 158-163, 706 
operations with, 706 

Significant digits, 108-110 
Signs, 705 
Similarity of triangles, 422, 424-425, 

548-549 
Sine law, 747 
Sine ratio, 403, 744 
Sine ratios, table, 764-765 
Small loans, interest on, 240-243 
Small numbers, 65-67 
Solid geometry, 538-563, 585-608 
Solution of triangles, 453-455, 745, 747 
Speed,620 

Index 789 

Speed of light, 71, 73 
Sphere, 412, 546-547, 554, 605-608, 743 

area of surface, 554 
equation of four-dimensional, 412 
equation of ten-dimensiomil, 412 
equation of three-dimensional, 412 
great circle, 605 
shortest route on, 606-608 
vulume, 546-547 

Spinning top, see gyroscope, 664 
Spiral screw, 603 
Square, 384, 501 

area, 384 
diagonals, 501 
properties of, 384 

Square root, 218-221, 385-386, 714-715 
concept of, 385-386 
extraction of, approximate methods, 

218-221 
numerical extraction, '14-715 

Square roots of numbers, table, 758-762 
Square unit of measure, 525 
Squares of numbers, table, 753, 756-757 
Straight line 

equation of, 374-376 
graph of, 375 
properties of, 378 
shortest distance, along a, 586 

Subtraction 
in various systems of numeration, 

20-21, 29 
of approximate numbers, 110-111 
of fractions, 709 
of signed numbers, 161, 706 
restoration of missing numerals, 144 

Sum of interior angles of a 
polygon, 514-515 
quadrangle, 503 
triangle, 421, 514 

Symbols, 705 

Tables of 
Addition for various systems of nu-

meration, 24-27 
American Experience Mortality, 347 
Logarithms of numbers, 749-755 
Multiplication for various systems 

of numeration, 24-27 
Physical rclations, 635 
Squares of numbers, 753, 756-757 
Square roots of numbers, 758-762 
Trigonometric ratios (sine, cosin~, 

and tangent), 763-769 
Tabulation, 1-2 



790 Index 

llangent lavv, 747 
llangent ratio, 399A05, 744 
llangent ratios, table, 768-769 
llangent to circle, 481, 603, 736 
llangent to sphere, 481, 604 
llarget distance, 663 
llemperature . 

absolute, 159-160, 702 
Centigrade, 158-160, 180-181 
Fahrenheit, 138, 158-160, 320-324 

llest for odd and even numbers, 28-30 
llhree dimensions, 387-388 
llhree-system, of numeration, 16-17,25 
llime, 609, 635 
llime coordinate, 610 
llime line, motion along a straight line 

accelerated motion, 623 
uniform motion, 618 
uniformly accelerated motion, 626 

Time line, motion in plane, 625-628 
Trajectory, see path of projectile, 650,' 

653, 656, 660, 685 
equation of, 660, 662, 669, 674 

rrapezoid, properties of, 506 
area, 530 

Trapezoidal rule for 
areas, 534-536 
volumes, 543 

llriangle 
area, 531 
equilateral, 426 
exterior anffle, 592, 602 
isosceles, 427, 496 
properties of, 421 
right, 384, 496 
sum of interior angles, 421, 514 

llriangles, 728, 731-734 
con~ruent, 421, 426 
similar, 422, 424-425, 493, 548-549 

llrigonometric ratios, 446-450, 452-455, 
460-465 

calculation of, 460-465 
tables, 763-769 

llrigonometry, fundamental relations, 
744-747 

fundamental formulas, 745-746 
solution of right triangles, 745 
solution of triangles, 747 

llvvelve-system of numeration, 18, 27, 
32-33 

llvvo dimensions, 380-383, 389-390 
llvvo-system of numeration, 12-14, 25 

Unit of area, 525 
Unit of volume, 541 

Veering effect of Ii projectile, 668 
Velocity, 620, 634 

component, 627, 659, 661 
Velocity of escape from earth, 701-704 
Vertices, number of, in 

five-dimensional cube, 562 
four-dimensional cube (cuboid), 562 
square, 561 
straight line, 560 
three-dimensional cube, 561 

Vision, normal, 474, 485 
Volume 

concept of, 539 
of rectangular prism, rule for com

putation, 542 
of sphere, 546-547 
unit of measure, 541 

Volumes of 
polyhedra, 742-743 
similar solids, 556, 558, 564, 567 

Walking in circle, 465-468 
Wave length, 77 
Weight, 633, 645 
Work, -635, 644 
Work problems, 196-198 

Zero dimensions, 377 
Zero point of coordinates, see origin 

of coordinates, 379 


