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PREFACE 

THIs book is intended to give an introductory account of the 
fascinating subject of the complex variable and conformal 
transformation, with some indication of applications to 
problems of mathematical physics, aeronautics, and electrical 
engineering. It demands from the reader little more in the 
way of preliminary equipment than SO:pie knowledge of the 
calculus (including partial differentiation) and analytical plane 
geometry. . 

The needs of those reading Pure Mathematics for the General 
and Special Honours degrees in Arts and Science of the Uni
versity of London are practically covered by Chapters I-III, 
while those presenting Advanced Subjects should be helped 
by Chapters I-VII. Candidates in Mathematics at the B.Sc. 
(Eng.) will need Chapters I-III and at least part of Chapters 
IV and V. 

. The electrical engineer may read Chapter VIII, on the use of 
the complex variable in alternating current problems, im
mediately after Chapters I and II. 

Thanks are due to the University of LOJ;l.don for permitting 
the inclusion among the exercises of questions set at examina
tions for Pass, General and Special Honours degrees in Arts, 
Science and Engineering. 

To Prof. W. J. John, B.Sc., M.I.E.E., Head of the Elec
trical Engineering Department at Queen Mary College, I am 
indebted for valuable help in connection with Chapter VIII. 
To my friend and colleague Mr. R. W. Piper, M.Sc., who has 
read the manuscript and proofs and made many helpful 
suggestions and criticisms, I offer hearty thanks. 

QIJEEN MARY COLLEGE 

(University of London) 
February, 1939 

S.L.G. 
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THE THEORY AND USE 
OF THE 

COMPLEX VARIABLE 

CHAPTER I 

COMPLEX NUDERS AND THEIR REPRESENTATION 

Graphical Representation of Real Numbers. One way of 
representing the real numbers graphically is to make use of 
points on a straight line X'OX, produced indefinitely far in 
both directions (Fig. I). Taking any fixed point 0 on the line 
to represent zero and choosing a suitable unit of length, we 
may represent a positive number ~ by a point Pl , on the line 
and to the right of 0, such that OPl is Xl units long, and a 

X2 t:cl 
.- >-

X2 
I 

a=/ 
X' I A Pz 0 X 

X,-X2 

X,:X2 
.. 

I C I , 
A B D 

FIG. 1 

negative number X 2 by a point P2 to the left of 0 such that 
OP2 is - x2 units long. For example, the number (- 3) is 
represented by a point on the left of 0 and 3 units distant 
from it. Then, to every real number, positive or negative, 
there corresponds one and only one point on the line and, 
conversely, to every point on the line there corresponds one 
and only one real number. 

Another method is to represent the number by a displacement 
along the line, the positive number Xl being represented by a 
displacement of Xl units from left to right, and the negative 
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number X 2 being represented by a displacement of - X 2 units 
from right to left. Thus the number (- 3) is represented by 
a displacement of 3 units from right to left. 

The second method leads us to the idea of representing any 
real number x by a vector, either parallel to or lying in the line, 
the sense of the vector being from left to right for a positive 
number and from right to left for a negative number. The. 
number of units of length of the vector is ± x according as 
x is positive or negative. We shall denote by [x] the vector 
which represents x in this way. The modulus of x is defined 
to be the number of units of length of the vector and is denoted 
by Ix I: this number is essentially positive. 

Clearly, the vectors [:1::] and [- x] differ in sense but not 
in length, and so Ixl = 1- xl· 

To represent the sum and difference of two real numbers 
:l:i. (positive) and :1::2 (negative), draw the vector AB = [:l:i.] and 
thevectorsBO = [xg] andBD = [- :1::2], ThenAO = [Xl + Xg] 

and AD = [Xl - x2] (Fig. 1). Here AB denotes the vector 
joining A, B in the sense from A to B. 

The product Xl X2 and the number Xl have the same or opposite 
signs according as X2 is positive or negative. Hence the vectors 
[:l:i.X2] and [Xl] have the same sense if x2 is positive, but are 
opposite in sense if X2 is negative. The modulus of X1X2 is 
obviously equal to the product of the moduli of :1::1 and X 2' that is 

I:l:i.X21 = 1:l:i.1 X Ix2 1· 
In particular, the effect of multiplying a number X by - 1 is 

to reverse the direction of the vector [x] without altering its 
length. We may therefore think of multiplication by - 1 as 
an operation which rotates a vector through two right angles. 

Purely Imaginary Numbers. Consider the quadratic equation 
Z2 + 1 = 0. No real value of z can satisfy the equation, for the 
square of a real number cannot be negative. If, then, the 
equation is satisfied when z = i, the number i cannot be real. 
We define i as the imaginary unit. 

We shall assume that i obeys the laws of ordinary algebra; 
so that the equation may be written in the form 

Z2 - i2 = 0 or (z - i) (z + i) = 0, 

whence it is seen that the equation is also satisfied when 
z = - i. It follows that, if n is real, the equation Z2 + n 2 = 0 
is satisfied by z = ± ni. 
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A number of the form ni, where n is real, is called a purely 
imaginary number. 

In introducing a new kind of number in this way we are 
following the precedent of the introduction of negative and 
fractional numbers in arithmetic, which were found to be 
necessary when the processes of subtraction and division were 
applied to the so-called natural numbers (positive integers). 

For the graphical representation of the purely imaginary 
numbers we shall adopt methods which are exactly analogous 

y 
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Q (ni) yz, 
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, 
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a' (-ni) 
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y' 

to those already used for the real numbers. On an axis Y'OY, 
perpendicular to X'OX, represent y1i (where Yl is positive) by 
a point Ql' above 0 such that OQl is Yl units long, and represent 
Y2i (where Y2 is negative) by Q2 below 0 such that OQ2 is - Y2 
units in length (Fig. 2). 

The vector idea may also be used, and then the number yi 
is represented by a vector [yiJ, either in or parallel to the line 
Y'O Y, oflength ± y units according as y is positive or negative, 
the sense being upwards if Y is positive and downwards if y 
is negative. The length of the vector is called the modul?U3 of yi 
and is denoted by Iyil. It follows that Iyil = Iyl. 
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The imaginary unit i will then be represented by a unit 
vector in the positive sense. 

If P is the point on X'OX which represents the real number 
n, and if Q, on Y'OY, represents ni, the veotors OP = [11.] 
and OQ = [ni] are equal in length and perpendioular in direo
tion. The vector [ni] could be obtained by rotating the vector 
[11.] through a right angle in the counter-clockwise sense, and 
this suggests that multiplioation by i may be represented by 
the operation of turning a vector through a right angle. This 
is readily verified, for, if P' and Q' represent - 11. and - ni, 
respectively, 

liP = [-11.] = [ni X i] and OQ' = [-ni] = [-n xi]. 

In Fig. 2 it has been assumed that 11. is positive; the reader 
can easily verify that the result holds good when 11. is negative. 

Similarly, it may be shown that multiplication by - i . is 
equivalent to rotation of the vector through a right angle in 
the clockwise sense. 

It follows that multiplication by i2 or (- i)2 is equivalent 
to rotation through two right angles in either sense, which, as 
we have already seen, is the effect of multiplication by - 1. 

Vectorial representation is thus consistent with the definition 
of i, viz. i2 = - 1; for multiplication twice by i is equivalent 
to multiplioation by - L . 

CoDlplex Numbers. The roots of the general quadratic 
equation 

az2 + bz + 0 = 0, 

where a, b, 0, are real numbers, are t - b ± v(b2 - 4ae) }/2a. 
If the discriminant b2 - 4ae is positive or zero, these are real 
numbers and are of no particular interest, but, if the dis
criminant is negative, the roots are not real numbers. In this 
case, we can find a real number 11. such that b2 - 4ae = - 4a2n2, 

and, if we write - b/2a = m, the roots are m ± in. Such 
numbers are said to be complex. 

We shall take x + iy to be the general complex number, 
x and y being real: x is defined as the real part and y as the 
imaginary part of the number. 

It should be noted that the imaginary part of the number 
is itself real and is the coefficient of the imaginary unit i in 
the expression x + iy. 

Purely real and purely imaginary numbers may be regarded 
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as special classes of the more general complex numbers, the 
former having zero for the imaginary part and the latter having 
zero for the real part. For zero, both real and imaginary parts 
vanish. 

If x + iy = 0, then x = y = 0; otherwise the imagin
ary unit would be equal to - x/y, which is a real number, and 
this is impossible. It follows that two complex numbers 
which are equal are identical; for, if x + iy = x' + iy', then 

y 

p(z) 

!J 
x 

X' N M X 

~ 

P (-z) 
FIG. 3 

y' 
(x - x') + i(y - y') = 0, and from the above, we have x = x' 
andy=y'. 

The complex numbers x + iy, x - iy, which have the same 
real parts and equal and opposite imaginary parts, are said to 
be conjugate. Their sum (2x) is real, their difference (2iy) 
is purely imaginary, and their product 

(x + iy) (x- iy) = x2- (iy)2 = x2 + y2 
cannot be negative. The product would be zero only when 
x = y = O. The conjugate of z is written z. 

It will be observed that the roots of the above quadratic are 
conjugate complex numbers when the discriminant is negative. 

The Argand Diagram. In the plane of the perpendicular 
axes X'OX, Y'OY (Fig. 3), plot the point P whose Cartesian 
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co-ordinates referred to these axes are (x, y). Then we can take 
this point to represent the complex number x + iy. There is 
thus one and only one point in the plane which corresponds to 
the number. If we are given any point in the plane, we can 
find its co-ordinates (x, y) and hence construct the corresponding 
number x + iy. This number is called the affix of the point. 

The diagram in which this representation is carried out is 
called the Argand diagram. 

It is usual to write z for the number x + iy and to refer to 
the plane as the z-plane. As before, the real numbers are then 
represented by points on the axis X'OX, called the real axis, 
and the purely imaginary numbers by points on the axis Y'OY, 
called the imaginary axis. The origin 0 represents zero. 

With 0 as origin and OX as initial line, let (r, 6) be the polar 
co-ordinates of P: then 

r = OP = v'(x2 + y2), 
cos 6 = x/r, sin 6 = y/r 

and z = x + iy = r(cos 6 + i sin 6). 
The modulus of z (written Izi) is defined to be the length r, 

which is essentially positive and unique. 
The argument or amplitude of z (arg z or amp z) is defined to 

be the angle 6 and is infinitely many-valued since, if 6 is any 
one determination of the angle XOP, any other determination 
is 6 + 2k'TT, where k is any integer, positive or negative. 

As the argument of z is not unique, we define the principal 
value as that determination of the angle XOP which lies 
between the limits - 'TT and + 'TT. The principal value is thus 
unique except when z is real and negative, in which case its 
principal argument is either - 'TT or + 7T, or when z is zero, 
in which case arg z is obviously indeterminate. Unless the 
contrary is stated, we shall, in future, take " arg z" to mean the 
principal value. 

Vectorial Representation of a Complex Number. If rand 6 
are given, the point P is uniquely determined and we may 
represent the number z by a vector of length r in a direction 
which makes an angle f) with the positive direction of the 
real axis. In accordance with the notation used in connection 
with real numbers we shall denote such a vector by [zJ. The 
vector need not be drawn from the origin but may be situated 
anywhere in the plane provided that it has the proper length 
and direction. 
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In practice it is convenient to employ both the point and the 
vector methods of representing a complex number, and not to 
use exclusively the one or the other. 

In Fig. 3, the point P with co-ordinates (x, y) represents the 
number z = x + iy, and the vector OP also represents the same 
number. The number - z is represented by the point P' with 
co-ordinates (- x, - y), and the corresponding vector is OP' 
which is equal in length but opposite in sense to OP. 

The number iz = i(x + iy) = - y + ix is represented by 
P". If PM, PIIN are drawn perpendicular to the real axis, 
we have OM = NP" and MP = ON; so that the right-angled 
triangles OMP, P"NO are congruent. It follows that the 
angle POP" is a right angle. . 

Hence the multiplier - 1 may be regarded as before as an 
operator which reverses the direction of a vector, and the 
multiplier i as an operator which turns a vector through a 
right angle in the positive sense. In neither case is there any 
change in the length of the vector. 

EXAMl'LE 1. In the Argand diagram, the numbers 1, i, 
- 1, - i are represented by the points A, B, 0, D, and 
the corresponding vectors are OA, OB, 00, OD, all of unit 
length, and their principal arguments are 0, In, ± n, - tn, 
respectively. Hence we may write 

1 = l(cos 0 + i sin 0), i = l(cos in + i sin -in), 
-1 = l(oos n + i sinn), - i = l(cos- tn + i sin- b) 

The number (1 + i) is represented by the point E with 
co-ordinates (1, 1). Hence, OE = y'2 and the angle XOE is 
i7T: so we have (1 + i) = y'2(cos in + i sin in). 

EXAMPLE 2 .. Consider the locus of a point which represents 
a number z which varies so that Izl = c, where c is a real 
positive constant. The geometrical interpretation of this 
condition is that the distance of the point z from the origin is 
always equal to c. The locus is therefore a circle with its centre 
at the origin and radius c. 

EXAMPLE 3. If z varies in such a way that arg z is constant, 
the locus of the point z is a straight line drawn from the origin. 

EXAMPLE 4. If a point P represents the number x + iy, 
the point Q which represents the conjugate number x - iy 
has co-ordinates (x, - y) and is the image of P in the real 
axis. 
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Addition and Subtraction. Let P and Q represent z = x + iy 
and z' = x' + iy', respectively (Fig. 4). Complete the parallel
ogram OPRQ. Since PR and OQ are equal and parallel, their 
projections on the axes of co-ordinates are equal, and so the 
co-ordinates ofR are (x + x', y + y'). Therefore R represents 
the sum of the numbers represented by P and Q. 

VectoriaJIy, we have OR = OP + OQ, which is the statement 
of the parallelogram law for the addition of two vectors. 

In order to represent the difference of the two numbers, we 
may apply the above construction to the addition of the 

R 

o 

8 
FIG. 4 

numbers x + iy and - (x' + iy'). Thus, if RP is produced to 
E so that PE = PR in length, the vector PE, which is equal 
and opposite to OQ, represents - (x' + iy'). Then 

OE=OP+PS 

and therefore OS represents (x + iy) - (x' + iy'). 
It is not necessary to make use of the origin in the con-

struction; for, if the vectors A.B and BO have the same 

lengths and directions as OP and OQ, respectively, the triangles 
ABO, OP R are congruent and similarly placed, and therefore the 
vectors OR and A.O are equivalent, and either may be taken 
to represent the sum. 
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Since the length of one side of a triangle cannot exceed the 
sum of the lengths of the other two sides, it follows that 

OP + PR;;;;. OR and so Izl + Iz'l ;;;;. Iz + z'l. 
This result may be stated: the sum of the moduli oj two complex 
numbers is greater than or equal to the modulus oj their sum. 

Equality occurs only when the points 0, P, R are collinear 
and P lies between 0 and R, i.e. when arg z = arg z'. 

The construction may now be extended to give the sum of 
any number of complex terms. If vectors AB, BO, aD repre
sent ~, ~, Za, respectively (Fig. 5), then AO represents ~ + Z2 

~ ____ I C 

B 
FIG. 5 

and so AD represents ~ + ~ + Za. Since the length AD 
cannot exceed the sum of the lengths AB, BO, aD, we have 

1z..1 + IZal + IZaI ;;;;. I~ + ~ + Zal· 
Similarly, we may deal with the sum of n numbers and deduce 

that the sum of their moduli is greater than or equal to the 
modulus of their sum. 

EXAMPLE 5. The vector which connects the points c and Z 

in the Argand diagram, in the sense from c to z, represents the 
number Z - c and its length is Iz - c I. If c is constant and z 
varies in such a way that Iz - 0 I is constant, the locus of the 
point z is a circle with its centre at the point o. 

If 0' is another constant and z varies so that 

Iz- 01 + Iz- e'l = constant, 

the locus of the point z is an- ellipse whose foci are the 
points c, c'. 

EXAMPLE 6. Let ABO be any triangle; then the vectors 
BO, OA, AB represent three complex numbers whose sum is 
zero. A similar result is true for the numbers represented by 
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vectors given by the sides of any closed polygon taken in order. 
Multiplication and Division. The product and quotient of 

any two complex numbers are also complex numbers; for 

(x + iy) (x' + iy') = xx' - yy' + i(xy' + x'y) 
x + iy _ (x + iy) (x' - iy') 
x' + iy' - (x' + iy') (x' - iy') and 

xx' + yy' + i(x'y- xy') 
X'2 + y'2 

Notice how, in effecting the division, use is made of the con
jugate of the denominator in order to obtain a new denominator 
which is purely real. 

Now consider the same operations from the geometrical 
point of view. 

Any two complex numbers z, z' may be written in the form 

z = r(cos e + i sin 8), z' = r'(cos e' + i sin !J'), 
where r = lzl, r' = lz'l, 8 = arg z, 8' = arg z'. 

Hence z X z' = rr' (cos 8 + i sin 8) (cos 8' + i sin e') 
= rr'{(cos 8 cos 8' - sin 8 sin 8') 

+ i(sin 8 cos 8' + cos 8 sin O')} 
= rr'{cos (8 + 8') + i sin (0 + O')} 

Therefore lzz'l = rr' = lzl X Iz'l 
and one determination of arg zz' is arg z + arg z'. 

(It will be remembered that arg z is indeterminate to the 
extent of an added or subtracted multiple of 217".) 

Again 

r(cos 0 + i sin 0) (cos 0' - i sin 8') 
z' r'(cos 8' + isin (j')(cos-8'=- i sin-8') 

_ r{(cos 8 cos 8' + sin e sin e') + i(sin e cos e' - sin 0' cos e)} 
- r'(cos2 8' + sin2 8') 

= (rJr') {cos (8- 8') + i sin (8- 8')}. 

Therefore IzJz'l = rJr' = lz I/lz'l and one determination of 
arg (zJz') is arg z - arg z'. 

If the vectors which represent z and z' are parallel, 
arg z- arg z' 

is zero (when the vectors are in the same sense) or ± 11: (when 
the vectors are opposite in sense): in either event the value of 
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the quotient zlz' is purely real. Conversely, if zlz' is real, the 
vectors [z] and [z'J are parallel. 

If the vectors [z] and [z'] are perpendicular, the arguments of 
z and z' differ by an odd multiple of 1 n and the quotient is 
purely imaginary. The converse of the result is also true. 

r ,. 
R(zz) 

X' x 

y' 
FIG. 6 

In particular. the reciprocal of z is 
lIz = (l/r) f cos ( - 0) + i sin ( - O)} 

and so the principal arguments of a number and its reciprocal 
are equal in magnitude and opposite in sign. 

Geometrical Constructions for the Product and the Quotient 
of Two Numbers. In Fig. 6, let the points A, P, Q respect
ively represent the numbers I, z, z'. Construct a triangle OPR 
which is directly similar to the triangle OAQ, the correspon
dence of vertices being in the order of mention. 

Then, since ORIOP = OQIOA, OR = OP . OQ, as OA is 
of unit length. Also LAOE = LAOP + LPOR 

= LAOP+LAOQ 
= arg z + arg z'. 

The point R therefore represents the number zz,'. 
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Now make the triangle OAS direotly similar to the triangle 
OQP. Then OS/OA = OP/OQ. 

and LAOS = LQOP = arg z- arg z'. 

The point S therefore represents the quotient z/z'. 
EXAMPLE 7. Consider the oonstructions for Z2 and l/z. 

Taking z' in the above equal to z, the points P, Q ooinoide and 
the point R whioh represents Z2 is found by making the triangle 
OP R similar to the triangle OAP. The point S whioh represents 
l/z is found by making the triangle OAS direotly similar to 
the triangle OPA. 

EXAMPLE 8. Let P and Q represent z and z' respeotively 
and let any point R oli the straight line PQ represent z". 
Sinoe the veotors PR, RQ, which represent z" - z, z' - z", 
are in the same line (their senses being the same or opposite 
aooording as R divides QP internally or externally) the quotient 
(z" - z)/(z' - z") is real and positive or negative according as 
R divides PQ internally or externally. 

Henoe z" - z = k(z' - z") and so z" = (z + kz')/(l + k) 
where the real oonstant Ie is positive for internal and negative 
for external division. Numerioally, k = PR/RQ. 

In particular. the middle point of PQ represents t(z + Z'). 
EXAMPLE 9. Suppose that the vertioes of a triangle ABO 

represent a. b, c respeotively. Then the middle point D of BO 
represents t(b + 0). The oentroid G of the triangle divides 
AD in the ratio 2 : 1 and so represents the numberi(a + b + 0). 

EXAMPLE 10. Two opposite vertioes of a square represent 
2 + i, 4 + 3i. Find the numbers represented by the other 
vertices. 

If, in Fig. 7, A, a are the points 2 + i, 4 + 3i, the middle 
point E of AO is 3 + 2i (using Example 8 above) and the vector· 
EO represents (4 + 3i) - (3 + 2i) = 1 + i. Since DE = EO 
and OED is a right angle, ED represents i(l + i) = - 1 + i. 
Therefore D represents (3 + 2i) + (- 1 + i) = 2 + 3i. 

Similarly, EB represents - i(l + i) = 1 -.i and B represents 
(3 + 2i) + (1 - i) = 4 + i. 

EXAMPLE 11. If z, z' are such that Iz + z'l = Iz- z'l, 
prove that iz/z' is real and that the straight line joining the 
points z and z' subtends a right angle at the origin. (U.L.) 

If, in Fig. 8, P and Q represent z, z' respectively, the point 
Q' representing - z' is found by produoing QO to Q' so that 
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OQ, OQ' are equal in length. Then, as Q'P and QP represent 
the numbers z + z' and z- z', which have equal moduli, 
PQ = PQ' and OP is the perpendicular bisector of QQ'. Hence 

D(2+3i) C(4+8i) 

Q. 

z+z' 

A (2+i) 
a' 

FIG. 7 FIG. 8 

arg iz/z' = trr - LQOP = 0 and therefore iz/z' is real. Also 
the angle POQ, subtended by P ~nd Q at the origin, is a right 
angle. . 

FIG. 9 

EXAMPLE 12. In Fig. 9, A, B are two fixed points on a 
circle, P, P' are variable points on the two arcs AB. If the 
angle APB is 0(, then the angle AP'B is 7T - 0(. Let A, B, P, P' 
represent the numbers a, b, z, z', respectively. 
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Then arg (z - a)/(z - b) = arg (z - a) - arg (z - b) 

= or. ± a multiple of 27T 

and arg (z' - a}/(z' - b) = arg (Zl - a) - arg (z' - b) 

= or.- 7T ± a multiple of 27T. 

It follows that, if z varies so that arg (z - a)/ (z - b) is 
constant, the locus of the point z is an arc of a circle which 
passes through the points a, b. 

EXAMPLE 13. Suppose that z varies so that 

I(z- a)/(z- b)1 = le, 

where k is constant. Then the point Q which represents z 
moves so that AQ : BQ = k and its locus is a circ~e (unless 
k = 1 when the locus is the perpendicular bisector of AB). 
For different values of the constant k the circles form a family 
of coaxal cir.cles having A and B as limiting points. They are 
orthogonal to the family of coaxal circles which pass through 
the points A and B (considered in Example 12 above). 

EXAMPLE 14. If a, b, c, p, g, r, are complex numbers repre
sented by A, B, 0, P, Q, E, respectively, prove that the neces
sary and sufficient condition for the triangles ABG, PQE to 
be directly similar is 

a(q- r) + b(r- p} + c(p - q) = O. 

Show further that, if L, M, N are taken on AP, BQ, OR, 
so that 

AL/LP = BM/MQ = ON/lYR, . 

then the triangle LMN is directly similar to the other two. 

If the triangles are directly similar, the angles BAG, QPR 
are equal and in the same sense, and also AOJAB = PR/PQ. 
These conditions are necessary and sufficient. 

Consider the numbers (c - a)/(b - a) and (r - p)/(q - p). 
Their moduli are AO/AB and PR/PQ, respectively, and their 
arguments are the angles BAG, QPR measured in the same 
sense. 

If, then, the triangles are directly similar, the above numbers 
have equal moduli and arguments and so are identical: con
versely, if the numbers are equal, the oonditions for direct 
similarity are satisfied. 
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Hence the necessary and sufficient conditions for the triangles 
to be directly similar may be written 

or 
(c - a)/(b - a) = (r - p)/(q - p) 

a(q - r) + b(r - p) + c(p - q) = 0 (i) 

In the second part of the question, if we write k for the 
value of the equal ratios, then, from Example 8, L, M, N 
represent (a + kp)/(1 + k), (b + kq)/(1 + k), (c + kr)/(1 + k), 
respectively. It is easily seen that, if these numbers are sub
stituted for p, q, and r, the equation (i) is still satisfied. Conse
quently the triangle LMN is directly similar to the other two. 
EXAMPL~ 15. Two points P, Q, represent the roots ofthe equa

tion az2 + 2bz + e = 0 and two other points P', Q' represent 
the roots of 

a'z2 + 2b'z + c' = o. 
If R is the middle point of Q 
PQ, show that 

LP'RP = LPRQ' 
and LRPP' = LRQ'P 
if ac' + ca' = 2bb'. (U.L.) 

pI 

FIG. 10 

We have to show that the triangles PRP', Q'RP are directly 
similar if the condition is satisfied. 

Let P, Q, P', Q' represent p, q, p', q', respectively (Fig. 10). 
Then R represents ~(p + q) = - b/a. From Example 14, it 
follows that the triangles P RP', Q'RP are directly similar if 

p[(- b/a) - p] - (b/a) (p - q') + p'[q' + (b/a)] = o. 

On multiplying by - a this becomes 

ap2 + 2bp + b(p' + q') + ap' q' = o. 
Since ap2 + 2bp + c = 0, p' + q' = - 2b'/a', and p'q' = e'/a', 
the condition reduces to 

e + 2b(- b'/a') + (ae'/a') = ° or ae' + ca' = 2bb'. 

EXAMPLE 16. P represents z in the Argand diagram and Q 
represents Z2. If P lies on the circle of unit radius with its centre 
at the point + 1, show geometrically thatlz2 - zl = Izl and 
that arg (z - 1) = arg Z2 = i arg (Z2 - z). Find the polar 
equation of the locus of Q. (U .L.) 
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In Fig. II let A represent + I and let arg z = to. Make 
the triangle OPQ directly similar to OAP. Then Q is the 
point Z2 since 

y 

x 

y' 
FIG. 11 

LXOQ = LAOP + LPOQ = 0 and OQ : OP = OP : OA, 
whence OQ = IZ21. . 

If P lies on the given circle, AP is of unit length and 
the tW9 triangles are isosceles. The vectors OP (= z) and 
PQ (= Z2- z) are equal in length, i.e. IZ2- zl = Izl. 
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Also arg (Z2 - Z) = LXRP 
. = LXAP + LAPR 

= 38/ 2, 
whence 8 = arg Z2 = (2/3) arg (Z2 - z) = arg (z'- 1). 

If OQ = r, we have 

r = Izl2 = (2 cos 18)2 = 2(1 + cos 6); 

so the locus of Q is the cardioid given by the polar equation 

r = 2( 1 + cos 8). 

EXAMPLE 17. If the vertices of an equilateral triangle 
represent a, b, c, prove that 

a2 + bl! + c2 - be - ca - ab = O. 

The vectors which represent the numbers b - c, c - a, a - b 
are the sides of the triangle taken in order. These are equal in 
length and their arguments may be expressed in the form. 
8, 6 + 2'rr/3, 6 + 47r/3, or 6, 6 - 27T/3, () - 4m/3, according to 
the sense of description of the triangle. 

In either case, (b - c)/(c - a) = (c - a)j(a - b), since the 
numbers on the left and right of this equation both have unit 
modulus and the same argument (± 2Tr/3). 

On cross-multiplying, the equation becomes 

(b - c) (a - b) = (c - a)2, 

which reduces to the required condition. 
The converse of this proposition is also true and is left as 

an exercise for the reader. 

EXERCISES 
1. Mark on a diagram the points which represent the numbers 

2 + 3i, 1/(2 + Si), (1 + i)/(1 - i), (1 + i)2/(1- i)2, 
(1 + 2i) (5 + 7i) (3 + 4i)-1 (6 + i)-l. 

2. Prove that the points a + ib·, 0, 1/(- a + ib) lie on a straight line 
and that the points a + ib, 1/(- a + ib), - 1, + 1 lie on a circle. 

3. A, B, C are the vertices of an equilateral triangle. If A represents 
5 + 7i and the centroid of the triangle represents 1 + 4i, find the 
numbers represented by Band C. 

4. If Zl' Z2' Zs are complex numbers such that their representative 
points are collinear, prove that they satisfy a relation of the form 
az1 + bZ2 + cZa = 0, where a, b, c are real. 

5. Six points are the vertices of a regular hexagon ABCDEF, the 
inside of the hexagon being on the left when the perimeter is described 
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in the order given. If A is the origin and G represents 3 + 4i, find the 
numbers represented by B, D, E, F. (U.L.) 

6. Two complex numbers are represented by points marked in an 
Argand ·diagram. Construct the point that represents their product. 
Carry out the construction for the numbers (5/4) + 3i, - 3 + (5i/4). 

(U.L.) 
7. Three complex numbers u,v, w,such thatv2 = wu, are represented 

by the points P, Q, R, respectively. If R is joined to the origin 0 and RO 
is produced to P' so that OP' = OP in length, prove that the circle 
which passes through the points R, Q, P' passes also through the point 
representing - v. Prove also that P' represents - w I ulw I. (U .L.) . 

8. Show that the straight lines joining the points representing the 
numbers a, b and c, d are parallel if (a - b )/(e - d) is purely real, and 
perpendicular if this fraction is purely imaginary. 

Two adjacent vertices of a square are the origin and the point 2 + 3i, 
and the figure lies entirely above the real axis. Find the numbers 
represented by the remaining vertices. 

9. P and Q are two points which represent complex numbers p, g, 
respectively. If k is a real constant, show how to find the point which 
represents p + k{q - pl. 

The internal and external bisectors of the angle subtended by PQ at 
the origin meet PQ at the points I, E, respectively, and M is the 
mid-point of IE. If 

p = cos ("lT16) + i sin ('1T16) 
and g = 2 [cos ('IT/S) +isin ("IS)], 

show that I represents (I + vS) {I + i)/3 and find the number 
represented by M. (U.L.) 

10. The numbers p, q, r are represented by the vertices P, Q, R of 
an isosceles triangle, the angles at Q and R being each (" - ct.)/2. Prove 
that {T - q)2 = 4 sin2 icc. (r - p) (p - q). 

11. Show that the points - 1, + 1, iv3,. are the vertices of an 
equilateral triangle. By using the result of Example 14, worked on 
p. 14, deduce the condition that the triangle, whose vertices are the 
points a, b, c, should be equilateral. 

12. In the plane of the complex variable 13, regular hexagons are 
described to have for one side the line joining the points - 1, + 1. 
Find the values of z represented by the remaining eight vertices. 

The whDle plane is partitioned into equal cells, each cell being a regular 
hexagon, and 131 , za are the numbers represented by two adjacent 
vertices of one cell. Prove that, if 13, z' are the numbers represented by 
the points in which two opposite sides of one of the cells are met by a 
line perpendicular· to them, then 
either 13' = 13 ± i(S + iv'3) (za - 131 ), 

or 13' = 13 ± i(S - iv'S) (za - 131 ), 

or else z'=z±iv'S(ZS-Zl)' (U.L.) 

13. Show that, if (131 - z2)/(Zl - Za) = (za - za)/(Z2 - Za), the points 
131' lila' lila and Zl' Z2' Zs are the vertices of two similar triangles. 

Three similar triangles BOA', CAB', ABO' are drawn on the sides of 
a triangle ABO, the correspondence of vertices being indicated by the 
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order of mention, with A', B', C' lying on the sides of BO, CA, AB 
remote from A, B, C. Show that the triangles ABO, A'B'O' have the 
same centroid. (U.L.) 

14. If A, B, 0 are the vertices of any triangle and BO, OA, AB are 
produced to A.', B', C', where AB' = CA, BO' = AB, OA' = BC, show 
that the triangles A'B'C', ABC cannot be similar (correspondence of 
points being in the order here given) unless ABO is equilateral. ( U .L.) 

15. If a, b are complex constants and z varies so that arg (z - a) (z - b) 
is constant, prove that the point z moves on a branch of a rectangular 
hyperbola which passes through the points a and b. 

16. 0 is the origin and U represents + 1. If P represents a variable 
number z, prove that PO is perpendicular to PU if the real part of 
(z - 1)/z is zero. Deduce that, if z = 11(1 + it) where t is a variable 
real number, then the point representing z describes a. circle of nnit 
diameter. (U.L.) 

17. If w = Z2, show in an Argand diagram the path traced out by the 
point w as the point z describes the rectangle whose vertices are the 
points ± a, ± a + ia, where a is real. (U.L.) 

18. Interpret geometrically the following loci-

(i) I z + 1 pI - [ Z - 1 [2 = 2; 
(ii) arg{(z - 1)/(z + I)} = 1-",. (U.L.) 

19. Two complex numbers z, w are related by the equation 
w(z + 1) = 2(13 - 4). Express in the form a + ib the values of w when 
z = i and - 2 + Si. Indicate the positions of the corresponding points 
in a diagram. 

20. In an Argand diagram the points P, Q represent wand z, where 
w(z + 1) = z - 1. Find the locus of Q if P describes a line through the 
origin inclined at an angle 0: to the x-axis and show that if Q describes 
a circle of a coaxal system whose limiting points are (1, 0), (- 1, 0), then 
P describes a circle whose centre is the origin. (U.L.) 

21. Prove that the necessary and sufficient condition that the points 
Zl' Z2' Z30 Z4 may be concyclic is that (Zs - Zl) (Z4 - 1112)/(Z3 - 132 ) (Z4 - zl) 

should be real. 
22. Show that the affix of the centroid of particles mu mg, m3 , 

placed at the points 1111 , Z2' Z8' ••• is 

(m1z1 + mglll2 + mglllS + .. . )/(ml + m2 + mg + ... ). 
2S. If P = (d - a)/(b - e), Q = (d - b)/(e - al, R = (d - c)/(a - b), 

prove that 
QR + RP + PQ + 1 = O. 

Taking a, b, c, d to be the complex numbers represented by A, B, 0, D 
in the Argand diagram, show that, if DA, DB be respectively perpen
dicular to BO, OA, then DC is perpendicular to AB; and derive from 
the above identity the relation 

BC.BD.OD + CA .CD.AD + AB.AD .BD =BO .OA .AB, 

the triangle A.BC being acute angled. (U.L.) 
24. ABOD is a rhombus and AC = 2BD. If B, D represent 1 + Si 

and - S + i, :find the numbers represented by A and C. (U.L.) 



CHAPTER II 

DE MOIVRE'S THEOREM 

Theory of Equations. If 

J(z} == ariZ" + a:..zn-l + ail-'11-2 + ... + a'll' 

where n is a positive integer and the coefficients ao, a:.., a2, 

••• at! are real or complex numbers independent of z, J(z) is 
a polynomial and the equationJ(z) = 0 is defined as an algebraic 
equation of the nth degree. Any value of z whlch satisfies this 
equation is said to be a root of the equation or a zero of the 
polynomial J(z}. According to the fundamental theorem of 
algebra (whlch will not be proved here), every such equation 
has at least one root, which is either real or complex:. If we 
assume the truth of this theorem, it is easy to show that an 
equation of the nth degree has n and only n roots. 

Suppose that J(z) vanishes when z = (Xl where cxt is either 
real or complex. From the factor theorem of elementary 
algebra, it follows that (z - cxt) is a factor of J(z) and we may 
write 

J(z) = (z - (Xl)F(Z), 

where F(z) is a polynomial of degree n -I, and must itself 
vanish for some value of z, say (Xl!' Therefore F(z) must have 
(z -~) as a factor, the other factor being a polynomial of 
degree n- 2 .. 

Continuing:in. this way, we see that we may write 

J(z) = ao(z - (Xl) (z - (Xli) (z - oea) • • • (z - (X,,). 

Clearly, J(z) vanishes only when z has one of the values 
(Xl' • • • CXn, and the proposition is proved. 

If we write out the product of the factors in the above 
expression of the polynomial, we obtain the identity 

ariZ" + a:..zn-l + ail-'ll-a + ... + a'll 
== ao[zn - Plzn-l + P2Z,,-2 - •.• + (- ItP,z"-" 

+ ... + (- l)"P,,], 

where P, denotes the sum 9f the products r at a time of the 
n roots cxt, ~, ... oc". 

20 
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Identifying coefficients, we have 
P 1 = - aJao, P 2 = a2lao, •.. P,. = (- I)rarlao, 

... , Pfl =.(- I)nanlaa. 

21 

The roots IX]., ~, • • • oc" of the equation need not be distinot : 
if r of them are equal to OCl and all the others are different from 
OCl' we say that IX]. is a multiple root whioh ocours r times, or 
more briefly, IX]. is an r-ple root. When this is the case 

f(z) == ao(z - OCl)r.p(Z), 
where .p(z) is a polynomial of degree n - r whioh does not 
vanish when z = OCl. 

Differentiating with respeot to z and denoting derivatives 
by means of dashes, we have 

j'(z) = ao(z- OCl)r-l[(z- OCt).p'(z) + r.p(z)]. 

The expression in square brackets on the right-hand side 
does not vanish when z = OCl' and so it follows that f'(z) has 
a faotor (z - OCtt-1• Thus if f(z) has OCl as an r-ple root, j'(z) 
has OCt as an (r - I)-pIe root. 

Further, if f(z) = 0 has no repeated root, then its roots are 
not among those of the derived equation j'(z) = O. 

We have thus a means of :finding out whether or not a given 
equation has multiple roots. All we need do is to examine 
j(z) and its derived funotionj'(z) for a oommon faotor: if there 
is no common factor which is a function of z, there are no 
multiple roots, but, if there is a common factor of the form 
(z - oc),-l, then oc is an r-ple root .. 

For example, it can be seen in this way that the binomial 
equation zn - c = 0, where c is not zero, has n distinot roots, 
since the derived equation nzn-1 = 0 is satisfied only by z = 0 
and this value of z does not satisfy the given equation. 

IF THE COEFFlcmNTS ARE REAL, COMPLEX ROOTS OCCUR IN 
CONJUGATE PAIRS. The results obtained above are true, 
whatever may be the values, real or complex, of the coefficients 
ao, a1, . . . a". If, as is usually the case, these coefficients are 
all real, it can be shown that complex roots (if any) occur in 
conjugate pairs. ' 

If we give z a complex value A + ip, the polynomial has the 
value 

j(J.. + ip) == ao(A + ip)" + ~(A + ip) .. -l + ... + an 
== P + iQ, 

where P and Q are real. 
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Since even powers of ip, are real and odd powers are purely 
imaginary, P must contain only even powers of p while Q 
must contain only odd powers, provided, of course, that the 
coefficients a are all real. Now consider j(A. - ip): the real 
part of this expression contains only even powers of (- ip) 
and so is P, while - Q is the imaginary part, which contains 
only odd powers of (- ifl). 

If A + ip is a root of the equation, P and Q both vanish and 
therefore j(A. - ip) = 0, i.e. complex roots occur in conjugate 
pairs. Consequently, the total number of complex roots of 
an equation having real coefficients must be even (or zero). 
If the degree of the equation is odd, the number of real roots 
must be odd also. 

If the polynomial has complex zeros, the factors correspond
ing to these can be combined to give quadratic factors with 
real coefficients, since 

(z-.:1.- ip) (z - A + ifl) = (z- J,.,)Z + pZ. 

Such a polynomial can be expressed therefore as a product of 
linear factors like (z - 0:), in which ex is real, and of quadratic 
factors like Z2 + bz + c, in which band c are real. 

E.g. 
and 

Z8 - 1 = (z - 1) (zZ + z + 1) 

Z6 + 1 = (Z2 + 1) (Z2_ zy'3 + 1) (Z2 + zy'3 + 1). 

De Moivre's Theorem. If ell ()2 be any two angles, we have, 
as on p. 10, 

(cos 61 + i sin ()l) (cos 82 + i sin ()2) 

= cos el cos ()2 - sin ()l sin ()2 

+ i(sin ()l cos ez + cos ()l sin 62) 

= cos «()l + ()2) + i sin «()l + 62), 

Multiplying by a third factor of the same type, we have 

(cos 61 + i sin ()l) (cos 82 + i sin ()2) (cos 8s + i sin ()s) 
= [cos «()l + ()2) + i sin «()l + ()z)] [cos 83 + i sin 6s] 
= cos «()l + ()2 + (3) + i sin (el + ()z + 8s)· 

Continuing in this way, we obtain the result for n factors 

(cos 61 + i sin ell (cos 62 + i sin ( 2 ) ••• (cos en + i sin ()n) 

= cos «()l + ()z + ... + en) + i sin (el + ez+ ... + en). 
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If we put e1 = e2 = . . . = en = e, this result becomes 

(cos e + i sin e)" = cos ne + i sin ne, 
where n is a positive integer. . 

We shall now show that this result is still true when n is 
any rational number, positive or negative. 

Assume that oc: is such that 

(cos e + i sin e)p/q = cos oc: + i sin ex, 

where p and q are positive integers. 

Then (cos e + i sin e)l> = (cos ex + i sin oc:)!l 
i.e. cos pe + i sin pe = cos qoc: + i sin goc: 

(from the result above). On equating the real and imaginary 
parts, we see that our initial assumption is justified if oc: = pe/q. 
This is not the only possible value of oc:; the other values will 
be considered later (p. 25). 

One v8J.ue of (cos e + i sin e)p/q is therefore 

cos (pe/q) + i sin (pe/g). 

Now suppose that m is any negative integer or fraction. 
Since 

(cos () + i sin e) (cos B - i sin e) = cos2 () + sin2 () = 1, 

we have 
(cos e + i sin B)m = (cos e - i sin e)-m 

= [cos (- e) + i sin (- e)]-m 

= cos me + i sin mO, 

by application of the above results, since - m is positive. 
We may now state de Moivre's theorem in its general form 

thus: one value of (cos () + i sin e)n i8 cos ne + i sin ne, where 
n i8 any rational real number. 

Deductions from de Moivre's Theorem. Let n be a positive 
integer and write c, 8, t for cos e, sin e, tan e. Then, by the 
binomial theorem 

cos 2nB + i sin 2nB = (c + i8)2n 

= c2n + 2n01C2n-li8 + 2n02C2n-2(i8)2 

+ ... + (i8)2n. 
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Equating real and imaginary parts, we have 
oos 2nf} = 0 2 .. - 2n0202n-282 + 2"04C2 .. - 484 - ••• + (- 8 2)" 

sin 2nf} = 2"0IC2,,-IS - 2nOac2n-3s3 + 2n0"c2n-585 
_ ... + (_ l)n-12n°2n_lc82n-l. 

Similarly, 
cos (2n + 1)8 + i sin (2n + 1)0 = (0 + is)2n+l 

and hence 

= C2n + 1 + 2n+l01c2nis 
+ 2n+l0202n-l(i8)2 

+ ... + (is)2n+l 

cos (2n + 1)0 = C2n + 1 _ 2n+l0202n-18 2 + 2n+l04C2n- 3s4 
- ... + (- 1)" 2n+lOjlncs2n 

sin (2n + 1)0 = 2n+l01C2n8- 2,,+1°30 2,.-28 3 + 2n+l05C2n-'85 

. + (- 1),.s2n+l. 

By division, we obtain 
tan 2nO 

2n01t- 2nOat3 + 2"O"t5 _ • •• + (- l)n-12"'02n_lt2n - 1 

1 - 2nOat2 + 2nO,t' - ••• + (- 1)"'t2n 

tan (2n + 1)0 
2n+l01t- 2n+lOat3 + 2n+lOst5 _ ••• + (_ l)nt2n+l 

= 1- 2n+l02t2 + 2n+lO,t'_ • •• + (_I)n2n+l02nt2n' 

THE nTH ROOTS OF UNITY. We shall now apply de Moivre's 
theorem to evaluate the nth roots of unity, n being a positive 
integer. In other words, we shall solve the equation zn = 1 
which has been shown (p. 21) to have n distinct roots. 

Suppose that the equation is satisfied when 
z = r(cos ot + i sin ot). 

Then we must have 

r"(oos ot + i sin ot)" = m(cos noc+ i sin not) = 1, 

whence r = 1, cos not = 1 and sin not = O. These oonditions 
are satisfied if not = 2k7T, where k is zero or any integer. Taking 
k = 0, 1, 2, 3, . . . , n - 1 we obtain the n numbers 

1, cos (27T/n) + i sin (27T/n), cos ChIn) + i sin (47Tln), 
... , cos [(2n - 2)rrln] + i sin [(2n - 2)7T/n], 

all of which satisfy the equation. 
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No two of these numbers are equal because the difference 
between any two of the values of the angle ex is less than 2'71". 
The numbers are therefore the n di8tinet values of the nth 
roots of unity. . 

In the Argand diagram, the nth roots of unity are represented 
by the vertices of a regular n-gon inscribed in the circle Izl = 1 
and having one vertex on the positive branch of the real axis. 

If n is even, there are two real nth roots, viz. 1 and - 1, 
which are given by taking k = 0 and in respectively. The 
remaining n - 2 roots are complex. If n is odd, the only real 
root is L 

Putting co = cos (2'71"ln) + i sin (2'7T/n), we can write the 
roots in the form 1, co, w2, ••• CO,,-l, whence it is seen that 
they form a geometric, progression with common ratio 'co. 
-Their sum is given by the usual formula, viz. (1- wn)/(l- w) 
and this vanishes since co" = 1. (The same result follows more 
simply from the fact that the equation zn - 1 = 0 contains no 
term in Z .. -l and so the sum of the roots is zero.) 

THE nTH ROOTS OF ANY OOMPLEX NU:M:BER. H c is any num
ber, in general complex, its nth roots are the n values of z 
which satisfy the equation z .. = c. H Zt is anyone of the roots 
of this equation, then lZt is also a root if A"Z'\ = e, and therefore 
An = 1, Le. A is an nth root of unity. Thus we can give 
A the n values 1, co, co2 , •.• : COn-I. 

In order to :find a suitable value of Zt, we express e in the 
form lei (cos () + i sin 0) and assume that 

Zt = R(cos cp + i sin cp). 
We then make 

Rn(cos n4> + i sin ncp) = lei (cos () + i sin (), 

and this condition is satisfied when R = lel l ' .. and cp = O/n., 
Here lel l '" denotes the real positive nth root of the positive 
number lei, and 0 may be any determination of arg e, but it is 
usually most convenient to take the principal value. The 
nth roots of e are thus 

Zt, wZt, co~, . .. co"-~, 
where Zt = lell/,,[cos (O/n) + i sin (BIn)]. 

It will be observed that these numbers form a geometric 
progression of which the sum is zero. Inserting the value of w 

2-(T.I22) 
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and using the result on p. 10, we obtain the nth roots by giving 
k the values 0, I, 2, 3, ... n - I in the expression 

lel 1/n{cos [(0 + 2kTT)ln] + i sin [(6 + 2hr)ln]}. 

In the Argand diagram these numbers are represented by 
the points Qo, Q1' Q2' ... Q"'-l on the circle Izi = lel 1/n and 
such that the angle XOQk is (0 + 2k7T)ln. The points Q are 
thus the vertices of a regular polygon of n sides inscribed in 
the circle. 

EXAMPLE 1. The cube roots of - 1. We have here 

R3( cos 3q, + i sin 3q,) = - I = cos rr + i sin 7T, 

whence R = I and we can take q, = Tr/3. 
Also ()) = cos (2n/3) + i sin (27Tf3) and the cube roots 

of- 1 are 

cos (-Tr/3) + i sin (7T/3), co[cos (n/3) + i sin (7T/3)], 
• (02[COS (Tr/3) + i sin (Tr/3)] 

i.e. cos (7T/3) + i sin (7T/3}, cos 7T + i sin 7T = - 1, 
cos (57T/3) + i sin (fm/3). 

The numerical values are -l(1 + iV3), - 1, HI - iV3). 

EXAMPLE 2. The cube roots of I + i. On plotting the point 
representing the number 1 + i in the Argand diagram, it is 
seen that II + il = '\1'2 and arg (I + i) = 7T/4. Hence the 
three cube roots are 

Zt = 21/6[COS (7T/I2) + i sin (7T/I2)], 
(OZt = 21/6[COS (7T/12) + i sin (7T/I2)] [cos (27T/3) + i sin (27T/3)] 

= 21/6[COS (3n/4) + i sin (37T/4)]. 
and 
(02Zt = 21/6[COS (rr/12) + i sin (7T/12)J [cos (47T/3) + i sin (47T/3)] 

= 21/6[COS (17Tr/12) + i sin (117rjI2)]. 

EXAMPLE 3. Obtain with the aid of tables the values of 
(3 - 4i)1/3. 

From the Argand diagram (Fig. 12) it is seen that arg 
(3 - 4i) = - e, where 0 is the positive acute angle such that 
sin e = 0·8, i.e. 0 = 53° 8'. Hence 

3 - 4i = 5[C08 (- (/3) + i sin (- 0/3)] 
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and, from four-figure tables, the cube roots are 
51/S[008 (- (}/3) + i sin (- (J/3}J = 51/3(cos }70 43' - i sin 17'" 43') 

= 1·629 - O·5204i, . 
51/3[cos (120° - 17° 43') + i sin (120° - 17° 43')] 

= - 0·3638 + 1·670i 
and 51/3[COS (240° - 17° 43') + i sin (240° - 17° 43')] 

As a check on the numerical 
work, we note that the sum of 
the three roots is zero. 

EXAMPLE 4. Prove that 

cotll ('TT/7) + cot! (2n/7) 
+ cotll (3-rrJ7) = 5. 

The equation tan 7(J = 0 is 
satisfied if 7(J = nn, where n 
is zero or any integer. :From 
the result obtained on p. 24 
we have, 

= - 1·265 - 1·150i. 

y 

o 

4 

FIG. 12 

tan 7f) = (7t - 703t3 + 70r,t5 - t7)J(1 - 'Oila + 70,t4 - 70atS), 

where t = tan 6, and from this it follows that tan 7f) vanishes 
when t = 0 or when t satisfies the equation 

7 - 70st2 + 70st' - t6 = 0, 
i.e. t6 - 21t' + 35tll - 7 = O. 

It will be observed that this equation is a cubic for til and 
that the roots of this cubic are the three different values of 
tan2 (J (other than zero) for which tan 7f) vanishes. Now tan (J 
vanishes only when (J is zero or a multiple of T1': so that the 
roots of the cubic must be of the form tanll ('1ItITJ7), where n is 
neither zero nor a multiple of 7. The roots of the cubic are 
thus tan2 (n/7), tanS (2n/7), and tan2 (3n/7). It is easily verified 
that the insertion of any other possible value of n will give 
one of these values, e.g. tanS (4:1T/7) = tanS (3n/7). 

If we write OCl' 0(2' OC3 for these roots, we have from the pro
perties of equations proved on p. 21, 

ocl~oc3 = 7 and OCsOCs + oeaOCl + OC1<XS = 35, 
whence (i/ocl) + (1/~) + (1/(1..3) = 5, 
Le. cot2 (71/7) + cotS (271/7) + cotS (37/'/7) = 5. 
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EXAMPLE 5. Find all the values of z which satisfy the equa
tion (z + 1)5 + Z5 = 0 and show that their representative 
points lie on a straight line parallel to the imaginary axis. 

(U.L.) 
Writing the equation in the form [-(z + 1)/z]5 = 1 we see 

that - (z + 1)/z is a:fifth root of unity and so the roots of the 
equation are given by 

- (z + 1)/z = 1 or cos k() + i sin kO, 

where () = 2'Tl15 and k takes in turn the values 1, 2, 3, 4. 
The real value gives z = - i and the complex values give 

z = - 1/(1 + cos kO + i sin kO) 
= - 1/(2 cos2 ike + 2i sin lkO cos ikO) 
= - 1/[2 cos -llc6 (cos ike + i sin ike)] 
= - (cos ike - i sin ikO)/(2 cos ik() 

= - i + iitan ike. 

All the roots have the same real part and their representative 
points lie on the line x = - -l, which is parallel to the imaginary 
axis. . 

EXERCISES 

1. Plot on the A.rgand diagram the roots of the equation reB + 1 = O. 
2. Calculate, using tables, all the values of (1 - i)1/8. 
3. Find the fifth roots of - 1 ili tlie form a + ib, giving u and b to 

four decimals. . 
Denoting anyone of the complex roots by z, find all the values of 

(z - z8)/(1 + Z9). (U.L.) 
4. Find all the values of (3 + 4i)* and represent them on an A.rgand 

diagram. Hence solve the simultaneous equations . 
x' - 6ro2y2 + 11' = S, roy(re2 - yS) = 1 

for real values of x and y. ( U .L.) 
5. Prove that the points which represent moo + noo2 , where w is a 

complex cube root of unity and m and n have any zero or positive or 
negative integral values, are the points of a network of equilateral 
triangles. 

6. Prove that every root of the equation 
(I + W)6 + ro6 = 0 

has - ! for its real part. 
7. Prove that (1 + sin <fo + i cos <for' (1 + sin <fo - i cos <fo)-n 

= cos n(!". - <fo) + i sin n (-l'" - <fo). (U.L.) 

8. Solve ro2 - 2aa: cos f) + as = 0 and show that, if x is either root 
of this equation, w2n - 2u"ron cos f) + a sn = 0, where n is a positive 
integer. (U.L.) 
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9. Solve completely (1;6 + 4a;3 + 8 = 0 and (1;6 - reS + 1 = O. 
10. If (l;n + iYn = (1 + i'\l'3)n, show that 

(l;n-1 Yn - g;nYn-l = 4n - 1 '\1'3, 
where n is a positive integer. (U.L.) 

11. If ()) is a complex fifth root of unity, find the equation whose 
roots are the different values of (1 + ro)l. 

12. Expand cos nf) in a series of powers of cos e, when 11, is even. 
Prove that, when 11, is even, 

n12 
:E tan2[(2r - 1)."./211,] = !11,(n - 1) • 

• =1 

IS. Find all the values of e between -.". and +... for which 
sin se = sin 40. Deduce that cos ( ... /7) is a root of the equation 

Sa;8 - 4a;1 - 4a; + 1 = O. 

14. If 0; is a complex root of ZlS = 1, prove that 
oc + 0;6 + 0;8 + ocl ! 

is a root of z8 + ZS - 4z + 1 = O. 
15. If fez) = z8 + 3pz + q, show that the condition that fez) and f'(z) 

should have a common factor is that 4p3 + rf = O. 
Deduce the condition that the equation azB + 3bzi + Scz + d = 0 

should have two equal roots. 
16. Show that [1 + cos (211, + 1)8J/(1 + cos e) is the square of a 

polynomial of degree 11, in cos e, and find this polynomial when 11, = 3. 
(U.L.) 



CHAPTER III 

INFINITE SERIES-THE EXPONENTIAL. LOGARITHMIC, 
CmCULAR AND HYPERBOLIC FlJNCTIONS 

Absolute Convergence of Series of Complex Terms. We shall 
now discuss briefly certain infinite series of complex terms, 
assuming that the reader is already acquainted with the 
elements of the theory of real series. Consider the infinite 
series 

~+Z2+Zs+···+Z7l+'" 
in which the terms are complex; so that z" = x" + iy",. 
This series is said to be convergent if the two real series 

Xl + X 2 + Xs + . . + X .. + . 
and YI + Y2 + Ys +. . . + y .. + . . . 
are convergent. 

Denote by Z .. , X .. , Ym respectively, the sums of the first n 
terms of these thTee series; then Z", = X" + i Y... If the two 
real series converge to the sums X, Y, respectively, then, as 
n tends to infinity, Z .. tends to the limit X + iY, and this is 
called the sum to infinity of the complex series. 

The infinite series of .positive real terms 

I~I + IZ21 + Izsl + ... + Iz,,1 + . 
is defined as the series of moduli. 

It will now be shown that, if the series of moduli is convergent, 
the complex series is convergent also. Since X" and y .. are real, 
Ix,,1 0;;;; (X,,2 + y,,2)1/2 and IY7I1 0;;;; (X,,2 + y",2)1/2. 

00 ~ 

Thus, if the series }:; Iz,,1 converges, the series ~ Ix,,1 and 
71=1 71=1 

CI() 

~ ly,,1 must also converge, for the nth term of either of the 
71=1 
last two series cannot exceed the corresponding term in the 

00 00 

series of moduli. The real series ~ X" and ~ y", are therefore 
",=1 71=1 

'" absolutely convergent and the series ~ z" has a finite sum to 
",=1 

infinity. When the series of moduli converges, the series of 
complex terms is said to be absolutely convergent. 

30 



INFINITE SERIES 

EXAMPLE 1. Consider the series 

z - z2/2 + z3/3 - z4/4 + ... + (- I)n-l(zn/n) + . 
The series of moduli is 

r + r2/2 + r3/3 + r4/4 + ... + (rn/n) + ... , 
where r = JzJ. 
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Apply to this d' Alembert's ratio test for convergence. The 
ratio of the nth to the (n - 1)th term is (I - I/n)r and this 
tends to the limit r when n tends to infinity.· The series con
verges therefore when r < I and so the original series is 
absolutely convergent when JzJ < 1. 

A series of the form 

ao + a1z + a2z2 + a3z3 + . . . + anzn + . . ., 
in which the coefficients a are independent of z, is called a 
power series in z. A particular case is the series in the above 
example. 

The Exponential Series. Consider the series 

I + (zll !) + (z2/2!) + (z3/3!) + ... + (zn/n!) + ... , 
where z = r(cos 8 + i sin 0). 

The series of moduli is 

I + (rIll) + (r2/2!) + (r3/31) + ... + (rn/n!) + ... , 
which is convergent for all finite values of r, since the ratio 
of the nth to the preceding term is equal to rln and this tends 
to zero as n tends to infinity. The original series converges 
therefore for all finite values of z. 

It is a well-known result that, when z is real, the sum of the 
series is e Z , where e is the base of natural logarithms and is 
defined by the equation 

e = I + (Ill!) + (If2!) + (I/3!) + ... + (Ifn!) + .... 
We define eZ , when z is complex, to be the sum to infinity of 

the above series, viz. 

eZ = 1 + (z/l !) + (z2f2!) + (z3f31) + ... = ~ (zn/n 1). 
n=O 

By multiplying the two series together we may show that 

e" X eZ' = 
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From the definition above it follows that the sum of the series 
on the right-hand side is e('+o'); whence it is seen that the 
index-law for multiplication, used for real indices, still holds 
good when the indices are complex, 

i.e. e" X e" = e('+z') 

for all values of z and z'. In particular, 
e,"+£11 = ea: X etv . 

In order to facilitate printing, exp (z) is often used in place 
of e": this notation is especially useful when z is replaced by a 
more complicated function. 

The Exponential Values of Circular Functions. Taking 
z = if}, where 8 is real, we have 

ei9 = ~ (inO"'/n I) 
,,=0 

= (1 - ()2/2! + f)'/4! - ()6/6! + ... ) 
+ i(f) - f)3/3! + 05/5! - (J7/7! +. .). 

The real and imaginary parts of the series are the well-known 
expansions, by Maclaurin's theorem, of the cosine and sine 
functions of (), and so we have 

ei6 = cos f) + i sin O. 

If the sign of 0 be changed, we have 

e- i6 = cos f) - i sin e, 
and addition and subtraction of these two results give 

cos () = (e£6 + e- i6 )/2, sin 0 = (e£9 - e-i6)/2i. 

It will be noted that the last two equations are merely 
re-statements of the series for cos f) and sin 0; for ei8 and e-ie 
are by definition the sums of certain series. It is often conveni
ent, for the sake of brevity, to make use of the result obtained 
above and write the expression r(cos 0 + i sin 0) in the form 
reie or r exp (iO). 

The nth roots of this number can be compactly expressed 
as r1ln exp [iCe + 2br)/n], where k = 0, 1, 2, 3, ... (n - 1). 

Stated in the exponential form, de Moivre's theorem (p. 23) 
becomes (e'l8)" = ei"e, which is the extension to imaginary 
indices of a well-known index-law. 
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EXAMPLE 2. Show that 

[(I + it)/(1 - it)] + [(1- it)/(I + it)] = 2 cos 8, 

where t = tan t8. 
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Since (1 + it)/(I- it) = (cos t8 + i sin !8)/(cos to- i sin 18) 
= exp (li8)/exp (- li8) 
= exp (i8), 

the expression on the left-hand side reduces to 

exp (i8) + exp (- i8), 
which is 2 cos 8. 

EXAMFLE 3. Show that 

32 00S4 (j sin2 8 = 2 + cos 28 - 2 cos 48 - cos 60. 

Inserting the exponential values of cos 8 and sin 8, and 
writing z for exp (i8), we have 

32 cos4 8 sin2 () = - i(z + ·Z-1)4(Z - Z-1)2 

= - i(Z2 - Z-2)2(Z + z-1)2 
= - i(z4 - 2 + Z-4) (Z2 + 2 + Z-2) 

= - i(Z6 +Z-6 + 2z4 + 2Z-4- Z2_ Z-2_ 4) 

= - oos 60 - 2 cos 48 + cos 28 + 2. 

THE FACTORS OF Z2 .. - I. It was shown on p. 22 that a 
polynomial with real coeffioients can be resolved into linear 
and quadratic factors in which the coefficients are real: we 
shall obtain these factors for the above expression, n being a 
positive integer. 

The roots of the equation Z2 .. = 1 are the values of exp (ik1T/n), 
where k = 0, 1, 2, ... 2n - I (see p. 24). The roots given by 
k = ° and k = n are real, viz. 1 and - I, and the others may 
be arranged in the conjugate pairs: 

exp (is1T/n) and exp [i(2n - s)1T/n] = exp (- iS1T/n), 

where 8 = 1, 2, 3, ... n - 1. 
The conjugate pairs of complex roots give the factors 

[z - exp (is1T/n)] [z - exp (- iS1T/n)] = Z2 - 2z cos (s1Tfn) + 1 

and we may write 
11-1 

z211_1 = (Z2- 1) II [Z2_ 2z cos (s7T/n) + I]. 
1=1 



34 THE COMPLEX V.ARIABLE 

THE FACTORS OF Z2 .. +1 - 1. This function vanishes when 
z = 1 and when z = exp [2ik7T/(2n + 1)], where k = 1, 2, 3, 
... 2n. The 2n complex roots may be arranged in the 
conjugate pairs: 

exp [2is7T/(2n + 1)] and exp [2i(2n + 1- s)7T/(2n + 1)] 

= exp [- 2i87T/(2n + 1)], 

wheres = 1,2,3, ... n. 
Hence 

n 
z2"+1_1 = (z- I)II {z-exp [2i87T/(2n + I)]} 

8= 1 
{z - exp [- 2i87T/(2n + I)]} 

,. 
= (z - 1) II {Z2 - 2z cos [2s7T/(2n + 1)] + I}. 

8=1 

Application to the Summation of Series. Certain trigono
metric series may be summed by making use of the fact that 
exp (i8) = cos (J + i sin O. 

EXAMPLE 4. If 
C = 1 + r cos 8 + r2 cos 2(J +. . . 

+ 1"'-1 cos (n - 1)0 

and S = rsin 0 + r2 sin 20 + ... + 1"'-1 sin (n - 1)0, 

then C + is = 1 + z + Z2 + ... + Z,,-l, 

where z = r exp (iO), 

i.e. C + is = (1- zn)/(I- z) 
= [1 - 1'" exp (in8)]/[I- r exp (i8)] 

= [1- 1'" exp (inO)] [1- rexp (- iO)]/ 
[1- rexp (iO)] [1- rexp (- i8)] 

1- r exp (- iO) - 1'" exp (inO) + 1"'+1 exp [i(n - 1 )8] 
1 - r[exp (iO) + exp (- iOn + r2 . 

The denominator of the ,fraction is real, being in fact 
1 - 2r cos 0 + r2. Expressing the exponentirus in the numer
ator in terms of sines and cosines and equating real and imag
inary parts, we have 

C = [1- r cos 0- rn cos nO + 1"'+1 cos (n- 1)0], 
[1- 2r cos 8 + r 2] 

and S = [r sin (j - 1'" sin nO + r,,+l sin (n - 1)8] 
[1 - 2r cos 0 + r2] • 
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EXAMPLE 5. Consider the sum to infinity of the senes 

1 + r cos fJ + (rl!: cos 20)/2 ! + (rS cos 3()/3! +. . . 
+ (1'" cos nO)/n! + . . 
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Denote the sum of this series by 0 and let S stand for the 
sum of the corresponding infinite series 

r sin 0 + (1'2 sin 20)/2! + (rS sin 30)/3! +. . . 
+ (1'" sin nO)Jn! + . 

Then 0 + is = 1 + z + z2f2 ! + z3/3 ! +. . . 
+ znJn! +. 

= exp (z), 

where z has the same meaning as in Example 1. 

Hence a + is = exp (1' cos 0 + ir sin fJ) 
= exp (rcos 6) . exp (i1' sin 0) 

= exp (rcos 6) . [cos (rsin 0) + i sin (rain 0»), 
and therefore 0 = exp (1' cos 6) . cos (1' sin 6) 

S = exp (1' cos 0) . sin (1' sin 0). 

The series which are denoted by 0 and S in the second 
example are, of course, convergent for all finite values of r 
since they are the real and imaginary parts of the series exp (z) 
whioh oonverges for all finite values of z. 

Logarithms of a Complex Number. If z is any complex num
ber and w satisfies the equation z = exp (w), then w is defined 
as a logarithm of z to the base e. As will be shown below, an 
infinite number of values of w can be found when z is given 
and so every number has an infinite number of logarithms. 

Let z be expressed in the form r(cos 6 + i sin (), where r is 
the modulus and 0 the principal argument of z. Then, if 
w = u + iv, we have 

whence 
where 

r(cos 0 + i sin 6) = exp (u + iv) 
= exp (u). exp (iv) 

= exp (u). (cos v + i sin v), 
exp (u) = r and v = 0 + 2n7T, 

n = 0, ± 1, ± 2, ± 3, .... 

Sinoe u is real it is the ordinary real natural logarithm of the 
positive number r whioh we denote by log. r, and it is unique; 
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but v can take an infinite number of values differing by 
multiples of 27T. The logarithms of z are then given by 

log. z = log. r + i(6 + 2n7T), 

where n is zero or any integer. The value given by taking 
n = 0 is defined as the principal logarithm of z; its imaginary 
part is the principal argument of z. 

When finding the logarithms 
!f of a given oomplex number, it 
L lH is advisable to make use of the 

Argand diagram in order to 
determine the principal argu
ment of the number. For 

o instance, if the values of the 
'"'-""1 -----t<--'----'---.,.."-:-l-X- logarithm of 2 are required, we 

note that r = 2 and 6 = 0 and 
so the general value is 

(log, 2 + 2ni7T) 

FIG. 13 withn=O,± 1,±2,±3, .... 

Again, - 1 has modulus 1 and prinoipal argument ± 7T 

(there is an ambiguity here to which reference was made on 
p. 6). The general value of log" (- 1) is therefore (2n ±. l)i7T. 
Similarly, the general logarithm of (1 + i) is 

[! log. 2 + (2n + i)i1T] 

(Fig. 13) and that of i is (2n + l)i7T. 
Since the logarithm is a many-valued function, it is necessary 

to take great oare in dealing with it, otherwise it is easy to get 
into difficulties. Consider the following argument-

"It is well known that log (1/x) = - log x. Putting x = - 1, 
we have log (- 1) = - log (- 1), whence log (- 1) = ° and 
so - 1 = exp (0) = + 1." 

The fallacy arises from the Pact that, in the above argument, 
the logarithm is treated as a one-valued function. 

Since 

and so 

log [x X (l/x)] = log 1 = 2ni7T, 
log x + log (l/x) = 2ni7T 

log (- 1) + log (- 1) = 2ni7T, 

where n is zero or an integer. 
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The last equation simply tells us that the sum of any two 
values of log (- 1) is zero or an even multiple of in. This is 
true, because the general value of log (- 1) is an odd multiple 
of in (see p. 36). 

In the given argument, the first equation asserts that log 1 
is zero, which is only one of an infinite number of possible 
values: in the deduction from the next equation it is assumed 
that the value of the logarithm of - 1 which is on the left is the 
same as that on the right. All we are justified in concluding 
from the statement log (- 1) = -log (- 1) is that anyone 
value of the logarithm is equal to minus some other value. 
This is true since the values are ± Ur, ± 3in, ± 5in, ... ; 
but it is untrue to say that anyone value is equal to 
minus itself. 

THE FUNCTION a". If a and z are any complex numbers, we 
define aa by the equation 

a" = exp (z lo~ a). 

Since the logarithm has an infinite number of values, this 
function, in general, also has an infinite number of values. 

If la I = R, if the principal argument of a is fJ and if z = x + iy, 
then 

loge a = log R + i(fJ + 2n7T) 

and, from the definition, 

a" = exp {(x + iy)[log R + i(fJ + 2n1T)]} 
= exp {:dog R - y(fJ + 2n1T) + i[y log R + x(fJ + 2n1T)]}, 

where n can take any of the values 0, ± 1, ± 2, ± 3, . 
As a particular case consider the values of it. Since 

log i = (2n + i)i1T, 
ii = exp [- (2n + ,)n], 

where n = 0, ± 1, ± 2, ± 3, .... 
Thus the expression has an infinite number of values all of 

which are real. 
Generalized Circular and Hyperbolic Functions. The circular 

functions of any complex number z are defined by the relations 

sin z = [exp (iz) - exp (- iZ)]f2i, 

cos z = [exp (iz) + exp (- iz)]/2, 

tan z = sin z/cos z = Ifcot z, 
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cosec z = Ilsin z, 
sec z = llcos z, 

where exp (iz) is the sum of the power series I: (iz)nln! 
n=O 

On comparing the above values of sin z and cos z with the 
exponential values of sin e and cos e, where e is real, given 
on p. 32, we see at once that the definitions hold good when 
z is real. We have generalized our trigonometry in such a way 
as to include as special cases the results of real trigonometry. 

From the equations which define the sine and cosine we 
have 

cos z + i sin z = exp (iz) 
and cos z - i sin z = exp (- iz), 
whence (cos z + i sin z) (cos z- i sinz) = exp (iz) . exp (- iz) 

= exp (0), 
i.e. cos2 z + sinl! Z = l. 

If u and 'V are any two complex numbers, 

cos u cos v = Hexp (iu) + exp (- iu)] [exp (iv) + exp (- iv)] 
= !{exp [i(u + v)] + exp [- i(u + v)] 

+ exp [i(u- v)] + exp [- i(u- v)]} 
= -Hcos (u + v) + cos (u- v)], 

and 

sin u sin v = - i[exp (iu) - exp (- iu)} [exp (iv) - exp (- iv)] 

= - !{exp [i(u + v)) + exp [- i(u + v)] 
- exp [i(u - v)} - exp [- i(u - v)]} 

= i[cos (u - v) - cos (u + vn. 
Addition and subtraction of these results give 

cos (u ± v) = cosu cos v =F sinu sin v, 

where both upper or both lower signs are to be taken. 
In an exactly similar way it can be shown that 

sin (u ± v) = sin u cos v ± sin v cos u. 

By division it follows that 

---tan (u ± v) = (tan u ± tan '11)/(1 =F tan u tan v). 
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These formulae are exactly the same as if u a.nd v were real: 
in fact, all the addition formulae of elementary real trigono
metry are valid for complex arguments. 

In a similar manner we define the generalized hyperbolic 
functions by the relations 

sinh z = t[exp (z) - exp (- z)], 
cosh z = t[exp (z) + exp (- z)], 

tanh z = sinh zlcosh z = l/coth z, 
cosech z = I/sinh z, 

sech z = l/cosh z. 

From these definitions it follows that 

and so 

(cosh z + sinh z) (cosh z - sinh z) = [exp z] [exp - z] 
= exp (0) 

cosh2 Z - sinh2 Z = 1. 

The addition formulae may be obtained in the same way as 
for the circular functions and are 

cosh ('ll. ± v) = oosh U oosh v ± sinh 'll. sinh v, 
sinh ('ll. ± v) = sinh u cosh v ± sinh v cosh 'll., 
tanh ('ll. ± v) = (tanh'll. ± tanhv)/(1 ± tanh utanh v), 

both upper or both lower signs being taken in each instance. 
If z is purely imaginary and equal to iy, where y is real, we 

have from the definitions 

sin iy = [exp (- y) - exp (y)]/2i = i sinhy, 
cos iy = [exp (- y) + exp (y(]/2 = cosh y, 

sinh iy = Uexp (iy) - exp (- iy)] = i sin y, 
• cosh iy = i[exp (iy) + exp (- iy)] = cos y .. 

Hence we can express the sine, cosine and tangent of z = x + iy 
in the form A + iB. We have 

sin (x + iy) = sin x oos iy + cos x sin iy 
= sinxcoshy + i cos xsinhy 

cos (x + iy) = cos x cos iy - sin x sin iy 
= cos x cosh y- i sin x sinh y. 
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The corresponding result for the tangent may be obtained by 
division of these results or, more neatly, thus-
tan (x + iy) = 2 sin (x +iy) cos (x-iy)/2 cos (x +iy)cos (x-iy) 

= (sin 2x + sin 2iy)/(cos 2x + oos 2iy) 
= (sin 2x + i sinh 2y)/(cos 2x + cosh 2y). 

It will be noted that all the circular and hyperbolic funotions 
have been defined by means of power series in z having real 
coefficients. It follows that, if f denotes anyone of these 
functions andf(x + iy) = P + iQ, where P arid Q are real, then 
f(x-iy) =P-iQ,whence 

If(x + iy) 12 = pa + Q2 = f(x + iy) . f(x - iy}. 

The application of this principle often gives very neatly the 
modulus of a function of this type. Thus, 

Isin (x + iy) 12 = sin (x + iy) . sin (x - iy) 
= f(cos 2iy- cos 2x) 
= i(cosh 2y- cos 2x} 
= oosh2 Y - cos2 X. 

Also, Icos (x + iy) 12 = cos (x + iy) . oos (x - iy) 
=-= i( cos 2x + cos 2iy) 
= i(oos 2x + cosh 2y) 
= cos2 X + sinh2 y 

and Itan (x + iy) 12 = (cosh 2y- cos 2x)/(cos 2x+cosh 2y). 

The oorresponding results for the hyperbolic functions may 
be obtained in a similar way, and are left as an exercise for 
the reader. 

EXAMPLE 6. If cos (a + ib) . cosh (x + iy) = I, where 
a, b, x, y are all real, prove that, in general, 

tan a tanhb = tanh x tany. (U.L.) 

Expanding each of the factors on the left-hand side of the 
given relation, we have 

(cos a cosh b - i sin a sinh b) (cosh x oos y + i sinh x sin y) = 1. 

The imaginary part of the product vanishes and so 
cos a cosh b cosh x cos y(tanh x tan y - tan a tanh b) = O. 
Hence tanh x tan y = tan a tanh b, 
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unless cos a or cos y vanishes: neither of the factors cosh b, cosh x 
can vanish since the least value that either can have is unity. 

EX.Al\l:PLE 7. If tanh (u + iv) = x + iy, where u, v, x, yare 
real, find x and y in terms of u and v. Find the values of u 
and v when x = y = 1. (U.L.) 

Since 

x + iy= tanh (u + iv), 
x - iy = tanh (u- iv) 

and x = -} tanh (u + iv) + t tanh (u - iv) 
sinh (u+iv) cosh(u- iv) + cosh (u+ 'iv) sinh (u- iv) 

2 cosh (u + iv) cosh (u - iv) 

= sinh (u + iv + u- iv)/(cosh 2u. + cosh 2iv) 

= sinh 2u/(cosh 2u + cos 2v). 

Similarly, 

iy = t tanh (u + iv)- ttanh (u- iv) 
= sinh (u + iv- u + iv)/(cosh 2u + cosh 2iv) 
= sinh 2iv/(cosh 2u + cosh 2iv), 

which gives 

y = sin 2vl(cosh 2u + cos 2v). 

When x = y = 1, we have 

tanh (u + iv) = 1 + i, and tanh (u- iv) = 1- i. 
Therefore tanh 2u = tanh (u + iv + u- iv) 

Also 

i.e. 
whence 

= [(1 + i) + (1 -: i]/[1 + (1 + i) (1 - i)] 

=i· 
tanh 2iv = tanh (u + iv - u + iv) 

= [(1 + i) - (1 - i)]/[1 - (1 + i) (1 - in 
=- 2i, 

tan 2v = - 2, 
v = t(n,.,; - tan -12), 

where n = 0, ± 1, ± 2, ... 

Since tanh 2u = 2/3, u and sinh 2u must be positive. From 
the identity sech2 2u = 1 - tanh2 2u, we deduce that 

cosh 2u = 3/y'5 and sinh 2u = 2/y'5. 
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.As exp (2u) = sinh 2u + cosh 2u = y'5, it follows that 

u = 1 loge 5. 

EXAMPLE 8. If log [cot (x + iy)] = u - iv, prove that 
coth u = cosh 2y sec 2x and cot v = sin 2x cosech 2y. 

Show that, if x lies between - !'IT and !'IT, v lies in the same 
quadrant as arg (x + iy). 

From the data, 
exp (u - iv) = cot (x + iy) and 
exp (u + iv) = cot (x - iy), 

therefore 
exp (2u) = exp (u + iv) exp (u - iv) 

Hence 

= cos (x + iy) cos (x- iy)/sin (x + iy) sin (x -iy) 
= (cos 2x + cosh 2y)/(cosh 2y- cos 2x). 

coth u = [exp (2u) + 1J/[exp (2u) - 1J 
= cosh 2y/ cos 2x 
= cosh 2y sec 2x. 

Again 
exp (2iv) = exp (u + iv)/exp (u - iv) 

= cos (x - iy) sin (x + iy)/sin (x - iy) cos (x +iy) 
= (sin 2x + i sinh 2y)/(sin 2x- i sinh 2y) 

and cot 2'17 = i[exp (2iv) + 1J/[exp (2iv) - 1] 
= 2i sin 2x/(2i sinh 2y) 
= sin 2x cosech 2y. 

We now have to show that, if x is a positive or negative acute 
angle, the angles v and arg (x + iy) are in the same quadrant. 

Nowexp (u - iv) 

= cos (x + iy) sin (x - iy)/sin (x + iy) sin (x - iy), 

whence exp (u) (cos '17- i sin v) 

= (sin 2x - i sinh 2y)/(cosh 2y - cos 2x), 

and, equating real and imaginary parts, we have 

exp (u) cos v = sin 2xj(cosh 2y - cos 2x) 
and exp (u) sin v = sinh 2yj(cosh 2y - cos 2x). 
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Now exp (u) is positive, since u is real, and (cosh 2y - cos 2x) 
is positive, since cosh 2y cannot be less than 1 and cos 2x 
cannot exceed 1. Consequently, cos v has the same sign as 
sin 2x, and sin v has the same sign as sinh 2y. There are four 
cases to be considered. 

Case i. If arg (x + iy) lies in the first quadrant, both x and 
yare positive; sin 2x is positive because 2x lies between 0 
and TT; and sinh 2y is positive. Therefore sin v and cos v are 
both positive, and the angle v is in the first quadrant. 

Case ii. If arg (x + iy) is in the second quadrant, then 2x 
lies between 0 and - TT and sin 2x is negative, while y is positive. 
The angle v then has a negative cosine, a positive sine, and 
therefore lies in the second quadrant. 

Case iii. When arg (x + iy) is in the third quadrant, 2x lies 
between 0 and - 77 and sin 2x is negative, while y and therefore 
sinh 2y are negative. Since sin v and cos v are now both 
negative, v is in the third quadrant. 

Case iv. If arg (x + iy) is in the fourth quadrant then 2x 
lies between 0 and TT, sin 2x being positive, while sinh 2y is 
negative. Therefore cos v is positive and sin v negative; thus 
v is in the fourth quadrant. 

EXAMPLE 9. Prove that the most general value of sin-1 4 is 
(2m + 1)77 ± i log (4 + VI5), where m is an integer or zero. 

(U.L.) 
If sin z = 4, cos z = ± iVI5 and exp (iz) = cos z + i sin z 

= (4 ± VI5)i, from which we have 

iz = log [(4 ± VI5)i] 
= log (4 ± VI5) + log i 
= log (4 ± VI5) + (2m + l)TTi, 

because the general value of log i is the principal value plus an 
even multiple of 77i. 

Since (4 + VI5) (4 - VI5) = I, 
log (4 + VI5) = -log (4- VI5), 

and we may write the result in the form 

z = (2m + t)7T ± i log (4 + '\1'15). 

EXAMPLE 10. Resolve x2n + 2xn cos nO + 1 into real quadratio 
faotors, n being a positive integer. 
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Hence show that 
'>,-1 

cosh n4> + cos n8 = 2,,-1 II {cosh 4> - cos [0 + (2r + 1)7T/nJ} 
r=O (U.L.) 

The given expression may be factorized in the form 

[x" + exp (inO)] [X" + exp (- inO)] 

and therefore the zeros of the expression are the roots of the 
equations 

x" = - exp (in8) = exp i(n8 + 17) 
and xn = - exp (- inO) = exp i(- nO - 17). 

These roots may be obtained by giving r the values 0, 1, 2, 3, 
... in exp ire + (2r + l)7T/n] and exp i[- 8 - (2r + 1)7T/n]. 

The product of the two linear factors which correspond to a 
given r is 

{x- exp i[O + (2r + 1)7T/n]) {x- exp i[ - 0 - (2r + 1)7T/n]} 
, = x 2 .,- 2x cos [6 + (2r + 1)7T/nJ + 1. 

Hence x2n + 2xn cos n8 + 1 

n-l 
= IT {X2 - 2x cos [8 + (2r + 1)7T/n] + I}. 

r=O 

Divide by 2xn, put x = exp (cfo) and it follows that 
,,-1 

cosh n4> + cos n8 = 2,,-1 II {cosh 4> - cos [0 + (2r + 1)7T/n]}. 
r=O 

EXERCISES 
1. Express the following numbers in the form r(cos 0 + i sin 0):

(i) (1 + i v3)/(3 - i3) and 
(E) [exp (a + ib)]/[tan () + i]. 

2. Show that, by a proper choice of A and B, Ae2iB + Be-2i8 can 
be made equal to 5 cos 20 - 7 sin 211. 

3. Prove by de Moivre's theorem or otherwise that 

coss () + sins () = (1/64) (cos 811 + 28 cos 411 + 35). 

4. Express sin" a; cos x in terms of sines of multiples of x. 
5. Find the real quadratic factors of x 8 - 4a;4 + 16. 

(U.L.) 

13. Obtain the thrce real quadratic factors of re6 + 8x3 + 64. 
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,,-1 
7. Show that sin n{J = 2"-1 sin 8 II [cos 8 - cos (rwln)] and that, 

1'=1 
,,-1 

n sin 8 - cosec n8 = '1:.41'/[cos 6 - cos (rwln)], 

where At' = (-lY-l . sin2 ('I'wln). 
8. Show that 

(U.L.) 

sin (2n + 1)6 = (2n + 1) sin {J IT {I - sin2 8 cosec· [rw/(2n + I)]}. 
1'=1 (U.L.) 

9. Show that the roots of the equation (x! - as)" = (2aa:)" are 
a{e1rwij" ± ef'wi/"v[2 cos (2rwln)]}, 

where r = 0, 1,2, ... n - 1. (U.L.) 
10. If a, b, c are real and as + bl > c2, prove that 

.. -1 
II [a cos (28'1r/n) + b sin (2s'lt/n) - oJ = (- !)"-1 '1''' (cos nt/> - cosn6), 

.. =0 

where r = + v(al + bl ), r cos '" = a, r sin '" = b, 'I' cos 6 = o. 

00 
11. Showthat'1:.na:,,-l cos (n-I)6 

.. =1 

when I x I <1-

(1 - x cos 6)2 - a:1 sinl 8 
(1 - 2a: cos 8 + a:1 )! ' 

(U.L.) 

12. Ifa= cos A +i'sinA,b = cosB +isinB,c = cos 0 +isinO, 
express '1:.(cos SA + i sin SA) sin (B - 0) in terms of a, b, c. 

Deduce or otherwise prove that 
'1:. cos SA sin (B - 0) = 4 cos (A + B + 0) II sin (B - 0) 
'1:. sin SA sin (B - 0) = 4 sin (A + B + 0) II sin (B - 0). 

(U.L.) 
IS. If cosh (u + iv) = tan (a + ib) prove that 

cosh 2u + cos 2'11 = 2(cosh 2b - cos 2a)/(cosh 2b + cos 20.). 

14. Prove that the logarithms of the ratio of two conjugate numbers 
are purely imaginary. 

15. Give a definition of a" valid when a and z are any complex 
numbers. 

Are the following statements consistent with your definition P 
(i) (1 + i)v2. (1- i)V2 = 2V2; (ii) i 1 +' .i1-' = - 1. (U.L.) 

16. Find, in terms of the modulus and argument of a, the moduli 
and arguments of 0."'+'11. 

Show that all the points which represent the values of a'v lie on a 
straight line through the origin, and that all the points which represent 
the values of a'" lie on a circle, a being complex and x and y being real. 

17. Prove that log [sin (a: + iy) cosec (a: - iy)] = 2i tan -1 (tanh y cota:). 
18. If p = a + ib and q = 0.- ib, where a and b are real, show that 

(i) peP + qe'l is real; (li) log (cos q sec p) is wholly imaginary and has 
the value i8 such that tan (J = sin 20. sinh 2b/( 1 + cos 20. cosh 2b). 

(U.L.) 
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19. If lV + iy = cos (u + iv), prove that 
(1 + lV)2 + yS = (cosh v + cos U)2 

and (1- lV)2 + yS = (cosh v - cos U)2. 

If a; = cos 8 and y = sin 0 (0 < 8 < ".), find cos u and cosh 17 in terms 
of cos iO and sin i8, justifying the choice of signs when square roots 
are taken. eU.L.) 

20. If lV + iy = c cosh (6 + i¢), prove that 
a;2 sechs (J + y2 cosecha (J = c2, and Xi sec2 <p - yS cosec2 <p = c2• 

(U.L.) 
21. If cos (u + iv) = e£fTj8, u and v are real and v is positive, show 

that u = (2n- t)fT and", = log" {2 cos (fT/12)]. (U.L.) 
22. If sin (1 + i) = r(cos 6 + i sin 0), find the numerical values of 

rand O. 
23. Show that the equation z + a cot z = 0, where a is real and 

positive, has no complex roots and only two purely imaginary roots, 
and that the modulus of each of these is greater than a. 

24. If y sin x = x sinh y, show that lV and y cannot both be real and 
non-zero. 

Show that the equation tan z = lcz, where k is real, can have no 
complex roots and at most two purely imaginary roots, this occurring 
when k lies between 0 and 1. (U.L.) 

25. Prove that the equation cot z = lcz, 'where k is real, (i) has 
no roots of the form a + ib, where a and b are real and different from 
zero, and (ti) that, if k is positive, all its roots are real. (U.L.) 

26. Prove that every va.lue of either side of the equation 
2i cot- 1 x = log,[(a; + i)/(x - i)] 

is equal to a value of the other side. (U.L.) 



CHAPTER IV 

FUNCTIONS OF A COMPLEX VARIABLE-CONJUGATE 
FUNCTIONS-CAUCHY'S THEOREM-CONTOUR INTEGRALS 

The Complex Variable. If x and yare variable real numbers, 
then z (= x + iy) is called a complex variable. 

The point P, which represents z in the Argand diagram, 
varies its position as x and y vary: if both x and y vary con
tinuously from xo' Yo to Xl' Yl' respectively, the point P describes 
a continuous curve in the z-plane from Po(the point Xo + iyo} 
to PI (the point Xl + iYl)' 

If both x and yare finite, z is said to be finite: if X and Y 
are not both finite, z is said to be infinite. Clearly the modulus 
of a finite number is also finite and the number is represented by 
a point which is at a finite dis
tance from the origin. 

Two points Po, PI in thez-plane 
may be connected by an infinite 
number of paths which lie in the 
plane. Consequently, if z varies 
continuously from Zo to ~, it is 
necessary to specify the path of 
variation, i.e. the path along 
which its representative point 
travels. 

P(Z) 

FIG. 14 If PI coincides with Po, the 
path becomes a closed curve or 
contour. A contour is said to be simple if, like a circle or ellipse, 
it has no mUltiple point. An example of a contour which is 
not simple is a :figure of eight. 

Suppose that a point z (Fig. 14) moves once round a simple 
contour 0 which does not surround the origin; then it is clear 
that jz I and arg z, measured by the angle between the real 
axis and the vector z, vary continuously and both return to 
their original values. But if z describes once a simple contour 0' 
which surrounds the origin, Izl varies continuously, and returns 
to its original value, while arg z varies continuously and returns 
to its original value ± 21T according as the point moves round 
the curve in the trigonometrically positive or negative sense. 

47 
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Let P, which represents z, and P', which represents z + oz, 
be two neighbouring points on anyone of the paths which 
COllilect Po and Pl. From the vector equation PP' = OP' - OP, 
it follows that the vector P P' represents oz and the length 
of the chord P P' is equal to 1 oz I, whence the length of the 
infinitesimal element of arc is lozl and the angle between the 
tangent to the path at P and the real axis is arg oz. 

Functions of a Complex Variable. Suppose that z( = x + iy) 
and w( = u + iv) are two complex variables which are so related 
that, to every value of z, there corresponds one and only one 
value of w. Then we might say that w is a uniform function of 
z. It will be seen presently that it is advantageous to restrict 
the definition of a function of a complex variable to a much 
narrower class of relations. 

As particular instances we may take 

(i) w = Z2, or u + iv = x2 _ y2 + 2ixy; 
(ii) w = exp (z), or u + iv = exp (x) (cos y + i siny); 

(iii) w = sin z, or u + iv = sin x cosh y + i cos x sinh y; 

(iv) w = Izl, or u + iv = V(x2 + y2); 
(v) W = the conjugate of z, or u + iv = x - iy. 

It will be observed that, in each case, u and v are themselves 
real functions of the two real variables x and y: when it is 
desired to indicate this fact explicitly, we shall write them in 
the forms u(x, y) and vex, y). 

We shall assume that both·u and v are continuous and 
differentiable with respect to x and y. Consqeuently, if z is 
given a small increment 5z = ox + ioy, the corresponding 
increment in w is ou + iov and is also small. 

It is convenient to represent z and w by points in two Argand 
diagrams which we shall call the z- and w-planes respec
tively. The point P (Fig. 15) represents z and Q represents the 
corresponding value of w. On the assumption that u and v 
are continuous functions of x and y, it follows that, if P describes 
a continuous curve in the z-plane between two points Po, PI' 
then Q describes a continuous curve in the w-plane between 
the corresponding points Qo, QI. 

We shall now consider the relation between a small increment 
in z and the corresponding increment in w. Suppose first that 
only the real part of z i.s varied; so that z (represented by P) 
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becomes x + ~X + iy (represented by PI) and & = CJx. In 
consequence, W becomes WI (represented by Ql) such that 

Wt = u(x + CJx, y) + iv(x + lJx, y). 

The ratio of the increments in wand z is then 

(Wi - w) = u(x + ax, y) - u(x, y) + i[v(x + CJx, y) - v(x, y)] 
lJz lJx ax 

and, when lJx tends to zero, 

Limit (w,. - w)/az = ('Ou/'Ox) + i(t3v/'Ox) • • (1) 

Now suppose that only the imaginary part of z is varied; 
so that z becomes x + iy + ilJy, represented by P2, and w 
becomes wa, represented by Q2' 

f2L oy 

pez) Sx PI 

y 
z-f'lane 

FIG. 15 

v
w-Plane 

Q 

aT 
u 

Then Wg = u(x, y + lJy) + iv(x, y + lJy), lJz = iay and the 
ratio of the increments is 

(W2 - w) = u(x, y + lJy) - u(x, y) + vex, y + lJy) - v(x, y). 
az ilJy lJy 

As lJy tends to zero, 
Limit (W2 - w)llJz = - i«(Ju{Jy) + «(Jvray) . (2) 

In general, the limits (1) and (2) are not equal, the ratio 
lYw/lJz does not approach a unique limit as lJz tends to zero, 
and it is not possible to extend the idea of a differential coeffi
cient to perfectly general functions of a complex variable. 

It is natural to inquire in what circumstances the two limits 
are identical. On equating the real and imaginary parts we 
have as the necessary and sufficient conditions 

(Julox = (Jvloy and 'Ov/'Ox = - (Julay • (3) 
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We shall now show that, when conditions (3) are satisfied, 
the ratio ()w/oz approaches a unique limit as oz approaohes 
zero by any path whatever. 

Suppose that z is given a general inorement and becomes 

z + bz = x + ()x + iy + ioy 

and that, in consequenoe, w becomes 

w + i5w = u(x + i5x, y + by) + iv(x + OX, y + i5y) 
= u(x, y) + iv(x, y) + u",bx + uytJy + iv",i5x + iV y i5y, 

where we have expanded by Taylor's theorem, retaining only 
terms of the first order, and where suffixes denote partial 
derivatives (thus u'" stands for dUraX). 

Hence, as Clx -+ 0 and tJy --)0- 0 independently, the limit of 
Clw/oz is 

[(u", + iv",)Clx + (ulI + iVy)by]/(bx + iby) 

= [(u'" + iv",)bx + (- v'" + iux)by]/(ox + ioy) 

= u'" +iv", 
= Vy - iuy, using conditions (3). 

Thus when conditions (3) are satisfied, bw/i5z tends to a 
unique limit as oz tends to zero in any manner: the value of 
the limit is defined to be the differential coefficient or derivate 
of w with respect to z and is denoted by dw/dz. The function 
w is said to be monogenic. 

In future, we shall apply the term function only to monogenic 
functions: for those which are not monogenic are of no par
ticular interest in connection with the complex variable and 
may be adequately treated as a combination of two functions 
of the real variables x and y. 

Consider the functions enumerated on p. 48. In (i) u = x2- y2 

and v = 2xy, whence u'" = 2x = Vy and U y = - 2y = - v"'. 
The function Z2 is therefore monogenic and its derivate is 2z. 
Similarly it may be verified that cO,nditions (3) are satisfied by 
(ii) and (iii). In (iv) , U = v'(x2 + y2), V = 0, and the conditions 
are not satisfied. Again, in (v) u = x, v = - y, U., = 1, and 
Vy = - 1. It follows that the modulus and the conjugate of 
z are not functions of z in the sense defined above. 

Conjugate Functions. If u + iv = f(x + iy), where fez) is a 
function of the complex variable z, in the sense specified above, 
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then u and v are real functions of the two real variables x and y 
and are called conjugate functions. 

The partial derivates of u and v are connected by the 
relations 

dU dV dU av 
dX = ay and dy = - ax' 

from which we have, by partial differentiation, 

a2v d2U 

dxay· dX2 -:-

It follows that' both u and v satisfy the partial differential 
equation 

a2rp eJ2t/) 
aX2 + dy2=O (4) 

which is Laplace's equation in two dimensions . 
• This equation occurs constantly in mathematical physics: 

for instance, it is satisfied by the potential at a point not 
occupied by matter in a two-dimensional gravitational field 
and also by the velocity potential and stream function of 
two-dimensional irrotational flow of an incompressible inviscid 
fluid. 

By writing down any function of z and separating out its 
real and imaginary parts, we obtain immediately two solutions 
of the differential equation. It is obvious then, that the 
theory of functions of a complex variable must be an invalu
able aid towards the solution of two-dimensional problems in 
mathematical physics. 

Construction of a function which has a given real or 
imaginary part. It is possible to construct a function of z, which, 
for its real or imaginary part, has a given real function of x 
and y, only when that given function is a solution of Laplace's 
equation. Perhaps the neatest way of carrying out the actual 
construction is due to Prof. L. M. :Milne-Thomson (lJ1ath. 
Gazette, XXI, 1937, p. 228). 

Suppose that 

Then, if 
we have 

f(z) = u(x, y) + iv(x, y). 

z= x-iy . 
x = (z + "%)/2 and y = (z - z)/2i, 
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and we can write feZ) in the form 
fez) == u[(z + z)/2, (z - z)/2i] + iv[(z + z)/2, (z- z)/2i]. 

As this is merely an identity, Z may be given any value. Putting·. z = z wehave _......... .. '1-.". ~ :..~. 

" .. ~ .:, ~ fez) = u(z, 0) + iv(z, 0) ~., : - (5)' 
Thus any function of z may be expressed in the form 

fl(z) + if2(z), 

where fl(z) and f2(z) are real when z is real. 
Now suppose that u(x, y) is given, satisfying Laplace's 

equation. Then if 

fez) = u(x, V) + iv(x, V), 
j'(z) = u., + iv." since fez) is monogenic, 

= u., - iuv, using relations (3) on p. 49. 

Writing ch(x, y) for u., and epa (x, V) for uv, we have 

j'(z) = ch(x, V) - kp2(X, V) 
= ch(z, 0) - kp2(Z, 0), 

where we have made use of the form (5) above. 
On integrating we have 

fez) = ! [ch(z, 0) - kp2(Z, O)]dz + 0, 

where 0 is an arbitrary constant. The integration is carried 
out just as if z were real. 

If the imaginary part vex, V) is given, the work is similar 
and . 

f'(z) = Vv + iv", 
= "Pl(X, V) + i"P2(X, V) 
= "Pl(Z, 0) + i1J!2(Z, 0), 

where "Pl(X, y) = VI/ and 1JI2(X, V) . v",.· 

Then fez) = !["Pl(Z, 0) + i"P2(Z, O)]dz + A, 

where A is arbitrary. 
EXAMPLE 1. Takeu = 2xy which..clearly satisfies equation (4). 

Then cpl(X, y) = 2y and cp2(X, V) = 2x, 
giving th(z, 0) = ()o and cp2(Z, 0) = 2z. 
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Hence feZ) = f - 2iz dz = - i(Z2 + 0), where 0 is real. 

EXAMPLE 2. The function 'V = exp (x) cos 11 satisfies La
place's equation and, in the above notation, 

"P1(X,1I) = 'Vv = - exp (x) sin 11 
and "P2(X, 11) = v., = exp (x) cos 11, 
i.e. "P1(Z, 0) = 0 and "P2(Z, 0) . exp (z). 

Therefore fez) = u + iv = f i exp (z) dz = i exp (z) + B, 

where B is a real constant. 

EXAMPLE 3. 

If u - v = [exp (y) - cos x + sin x]/(cosh y - cos x) 
and j(1T/2) = (3 - i)/2, findf(z). 

Now if u + iv = fez), iu- v = if(z), 
and (u - v) + i(u + v) = (1 + i)f(z). 

Hence U = u - v and V = u + v are conjugate functions. 
Simplifying the given. expression for u- '1), we have 

U = 1 + [(sinh 11 + sin x)/(cosh y - cos x)] 

:{rom which we get 

U", = (cos x cosh 11- sin x sinh y- l)/(cosh 11- COSX)2= (Mx, y) 
UII = (l-cosx coshy- sinxsinhy)/(coshy- cos X)2= cMx,y). 

Therefore ch(z, 0) = - 1/(1 - cos z) = - t cosec2 (z/2) 

4>2(Z, 0) = 1/(1 - cos z) = t cosec2 (z/2) 

and . (1 + i)f(z) = - tel + i) cot (z/2) + O. 
Hence fez) = cot (z/2) + B, 

where B is a constant whose value may be found by using the 
given condition, thus 

f(7T/2) = (3 - i)/2 = 1 + B. 

The required function is therefore cot (z/2) + (1- i)/2. 

The Curves u = Constant, v = constant. If 

u + iv =f(x + iy), 

where fez) .is a uniform function of z, the conjugate functions 
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are single-valued functions of x and y and therefore, through 
a given point Zo (=; Xo + iyo) in the z-plane will pass one and 
only one curve of the family u = constant, and one and only 
one curve of the family v = constant, the equations of these 
curves being 

u(x, y) = u(xo' Yo) and v(x, y) = v(xo, Yo)· 

For example, if u + iv = (x + iy)2, the two curves are the 
rectangular hyperbolas x 2 - y2 = X02 - Yo2 and xy = xoYo' 

It is convenient to refer to the two families of curves as the 
u-system and the v-system. 

Suppose that (x, y) and (x + t5x, y + by) are the co-ordinates 
of two neighbouring points on the curve u = constant. Then 

u(x + ox, y + by) - u(x, y) = ° 
and, retaining only terms of the first order we have, on 
expansion, 

u",bx + uyoy = 0, 

whence it follows that the value of dyJdx.at the point (x, y), 
i.e. the gradient of the curve at the point (x, y), is equal to 
- u,,Ju y • 

In the same way, the gradient of the curve of the v-system 
through the point (x, y) is - v",Jvy • 

The product of the gradients of the two curves at their 
point of intersection (x, y) is therefore 

u"v,,/UyVy = - 1, since u'" = v" and u y = - v"" 

and we have the important result that curves of the u- and 
v-systems intersect at right angles. 

In applications to electrostatics and to the theory of gravi
tational potential, the two systems of curves are the lines of 
force and the equipotential lines; in hydrodynamics they are 
the stream lines and the velocity potential lines. 

EXAMPLE 4. If u + iv = lIz = (x - iy)/(x2 + y2), the 
u-system is given by x2 + y2 = 2kx and the v-system by 
x2 + y2 = 2k'y, where k, k' are arbitrary. These are circles 
touching Oy at 0 and Ox at 0, respectively. Each circle of the 
first family intersects orthogonally every member of the 
second family. 

EXAMPLE 5. If u + iv = log z, then u = log r and v = arg z. 



FUNCTIONS OF .A COMPLEX V.ARlil3LE 55 

The curves u = constant are circles with their centres at the 
origin, and v = constant gives the family of straight lines 
radiating from the origin and cutting the circles orthogonally. 

THE CONDITION THAT A GIVEN FAMILY OF CURVES SHOULD 
BE .A U- OR V-SYSTEM. The curves given by the equation 
u = constant have the characteristic property that u satisfies 
Laplace'S equation in two dimensions. But the equation is 
not necessarily the simplest form from which the family may 
be determined: for instance, in Example 5 we have the equation 
of the circles in the form log 'l' = constant instead of in one 
of the simpler and more usual forms r = constant and 
a;2 + y2 = constant, in which the expressions on the left-hand 
sides are not solutions of Laplace's equation. 

Let us consider then in what circumstances a family of curves 
given by 

F(x, y) = constant 

is expressible in the form 

u = constant, 

where u satisfies Laplace's equation. 
H such a reduction is possible, it is clear that u must be some 

function of F(x, y); for, whenF(x, y) is constant, u has to be 
constant. 

Let U = 1>(F). 

Then 
and 

Since 

u'" = 1>'{F).F"" U iIl" = 1>"{F).F.,2 + 1>'{F). F",,,, 
UU = 1>'(F}.Fu, U'1lll = 1>"(F).Fu2 + 1>'(F}. Fn· 

u"''''+ Uuu= 0, 
we have 1>"(F) (F,,2 + Fu2 ) + 1>'(F) (F",,, + F'II'U) = 0, 

Le. (F",,,, + F"y)/(F",2 + Fy2) = -1>"{F)I1>'(F). 

The expressio:Q on the right-hand side is a function of Fonly 
and so the required condition is that (F "''' + F 1IlI)/(F ",2 + F 112) 
shall be a function of F only. When the condition is satisfied, 
1> can be found by integrating twice. 

EXAMPLE 6. Take the concentric circles given by F(x, y) = 
x 2 + y2 = A, where A is a variable parameter. 

Here (F"", + Fyu)/(Fm2 + Fu2) = 4/4{X2 + y2) = IIF 
and 1>"(F)/<P'(F) = - IIF. 



56 

This gives 
or 
and 

We have then 

THE OOMPLEX VARIABLE 

log ~'(F) = 0 -log F 
~'(F) = A/F 

U = ~(F) = A log F + B, 

U = A log (X2 + y2) + B, 
where A, B are arbitrary oonstants. 

Laplace's Equation in Polar Co-ordinates. If r, 0 are the 
polar co-ordinates of a point whose cartesian co-ordinates are 
(x, y), z = x + iy = r exp (ie) and we have· 

U + iv = fez) = fer exp i6), 

where u, v are now expressed in terms of r, f). Differentiating 
partially with respect to rand e, we have 

u,. + iv,. = f'(z) exp (if) 
and U e + ivs· f'(z)ir exp (if) = ir(ur + ivr ). 

Equating real and imaginary parts we find that 

u,. = (vs)/r and Us = ..:.. rv ... 
Since ("d/"de)u,. = (o/"dr)us = U re 

and ("d/iJO)v,. = «(JfiJr)ve = v .. o, 
we have (vos)/r = - v,. - rvm or vr .. + (v1')/r + ('/)00)/r2 = 0 
and - (u80)Jr = U r + 'rUrr, or U r .. + (u .. )/r + (uso)/r2 = O. 

(6) 

Thus u and v satisfy the same partial differential equation 
which is, in fact, Laplace's equation expressed in polar 
co-ordinates . 

.As before, the curves u = constant, v = constant cut 
orthogonally, and we may apply the method used on p. 55 to 
find the condition that the equation F(r, 0) = A, in which A is a 
variable parameter, should give au-system. 

We have to find the condition that u = 1>(F) satisfies La
place's equation. 

Now Ur = ~'(F) • F .. , Ue = 1>'(F) • Fe, 
U"1' = ~"(F) . F .. s + ~'(F) . Frr> 
U so = reF) . Fl' + 1>'(F) . F oo, 

and, on substituting in equation (6), 

~"(F) (F/' + Fs2/r2) + ~'(F) eF .... + Frlr + Fss/r2) = o. 
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The condition may be written 

(Frr + Fr/r + F60Ir2)/(F,2 + Fl-lr2 ) = - c/>"(F)J4>'(F) 
= a function of F only. 
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'Vhen the condition is satisfied, </> may be found, as before, 
by integrating twice. 

EXAMPLE 7. Show that the equiangular spirals 
r = k exp (6 cot~) 

can be a family of stream lines, where ~ is the same for all the 
curves and k is a variable parameter. 

Here, we take F = r exp (- 6 cot IX) so that the equation is 
written in the standard form F = constant. 

Then F". = exp (- 6 cot ex) = FIr 
and Fe = - r cot IXexp (- 6 cot IX) = - F cot IX, 
whence F r,. = 0, 
and Foe = r cot2 ex exp (- 6 cot a) = F cot2 a. 
Thus [Frr + (F .. lr) + (Foelr2)J/[F .. 2 + <Fe/r)2] 

= [F + F cot2 aJ/[F2 + F2 cot2 a] 
= I/F, 

which shows that </>(F) can be found so as to satisfy Laplace's 
equation, i.e. the spirals can be a family of stream lines. 
We have 

whence 
and 

c/>"(F)!4>'(F) = - I/F, 
</>'(F) = .A/F 
c/>(F) = A logF + B, 

where A and B are real arbitrary constants. 
Thus u = </>(F) = .A(log r - () cot ex) + B. 

It is easily seen that u is the real part of the function 
w = .A log z + (i.A cot a) log z + 0, 

where G is a complex constant. The imaginary part of this 
function is given by 

v =.116 + (.A cot ex) logr + D, 
where D is a real constant. The orthogonal set of curves is 
given by v = constant, or, more conveniently, by 

exp (v tan IXIA) = constant. 

These are the equiangular spirals r = k' exp (- 6 tan IX). 
S-(T.I22) 
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Level Curves. The loous of a point z which moves in the 
plane of the complex variable z so that the modulus of a function 
l(z) remains constant is defined as a level curve of fez). The 
equation of suoh a ourve may be written in the form 

!f(z) \ = M, 

where M is the constant modulus. By giving M all values from 
zero to + 00 we obtain an infinite number of ourves. Clearly, 
one and only one of these passes through any given point in 
the plane. 

EXAMPLE 8. When j(z) = z - a, the level curves are oircles 
having the point z = a as their- oommon centre. 

EXAMPLE 9. For the function (z - o,)/(z - b), the level 
curves are coaxal circles having the points z = a, Z = b as 
limiting points. The point-circles of the system are obtained 
by giving M the values zero and infinity. 

EXAMPLE 10. Ifj(z) = exp (z), \1(z) \ = exp (x) and the level 
curves are the straight lines x = loge M. 

EXAMPLE II. Takingf(z) = sin z, we have 

11(z} 12 = sin (x + iy) sin (x - iy) 
= (oosh 2y- cos 2x)/2 

and the level curves are given by 
cosh 2y - cos 2x = 2M2, 

where M ranges from 0 to + 00 • 

Since cosh 2y and cos 2x are both even funotions, the curves 
are symmetrical about both axes of co-ordinates. Also, sinoe 
cos 2x is periodic, it is sufficient to trace the curves which lie 
in the strip bounded by the lines x = ± 7T/2. If M does not 
exceed unity, the curve meets the x-axis where sin x = ± M; 
otherwise the curve does not meet Ox at all. When x vanishes 
we have M = I sin iYI = ± sinh y, according as y is positive 
or negative. Thus for all values of M the curve meets Oy in 
two points equidistant from the origin. 

Consider the curve for which M = 1. Its equation may be 
reduced to the form sinh y = ± cos x. 

The curve passes through the points 

(± 7T/2, O) and (0, ± log (1 + '\12) ). 

At each of the first two points it has a node, the tangents 
at which make angles of 7T/4 with Ox. 
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In Pig. 16 the form of the curves is indicated. ·When Mis 
less than unity we have a selies of ovals "ith their centres at 
the points (n7T, 0), where n = 0, ± 1, ± 2, . . . . ·When M is 
equal to unity we obtain a curve which cuts Ox at the points 
where x is equal to an odd multiple of 7T/2. For values of JJ[ 
greater than unity the curve is in two distinct branches above 
and below the x-axis. 

YI 

FIG. 16 

EXAMPLE 12. If f(z) = tan z, we have, as on p. 40, 
If(z) 12 = (cosh 2y - cos 2x)/( cosh 2y + cos 2x) 

and the level curve If(z) I = M is given by 

cosh 2y = a. cos 2x, 

where a = (1 + M2)/(I- M2). 

As in the previous example, the curves are symmetrical 
about both axes, periodic with respect to x, and need only 
be traced in a strip of width 7T • We shall take the strip between 
the lines x = - 7T/4 and x = 37T/4. 

When M is less than unity, a is positive and cos 2x can take 
only positive values since cosh 2y is positive for alll'eal values 
of y. It follows that x lies between - 7T/4 and + 7T/4. The 
curve meets each of the axes in two points and is easily seen 
to be an oval with its centre at the origin. When JJ[ = 0, 
the oval reduces to a point. 
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If JJf = 1, the equation reduces to cos 2x = 0, which gives 
the straight lines x = ± Tr/4, ± 37T/4, etc. 

When M> 1, cos 2x can take only negative values and so 
x lies between 7T/4 and 37T/4. The equation of the curve can 
be written 

cosh 2y = a' cos 2(x - 7T/2), 

where a' = (1 + M'2)/(1- M'2) and M' = l/M. The curves 
are therefore exactly the same in form as those which have 

y 

M=7 M<1 M=7 M>7 M=! 

FIG. 17 

already been considered. Each has its centre at the point 
(7T/2, 0). When M is infinite, M' is zero and the corresponding 
oval reduces to a point. 

The plane is thus divided by the lines x = (2n + 1)7T/4 
into strips in which I tan Zl is alternately less than and greater 
than unity: on the lines, tan z I is equal to unity (Fig. 17). 



FUNCTIONS OF A COMPLEX VARIABLE 61 

The Surface of Moduli. Suppose that, from the point P, 
which represents z, P N is drawn perpendicular to and above 
the z-plane such that PN = /f(z)/. Then the points N lie on 
a surface which may be called the Burface oj moduli. The level 
curves of the function j(z) are contour lines on this surface, 
i.e. they are the curves of intersection of the surface by planes 
parallel to the z-plane. 

For z itself, the surface is a right circular cone of which the 
vertical angle is a right angle; for zl! the surface is a paraboloid 
of revolution. 

The surface for the function tan z has an infinite series of 
hollows and peaks. The lowest points of the hollows are at 
the points z = n7T on the z-plane, while the peaks, which are 
infinitely high, are above the points z = (n + l)1T, where n is 
an integer or zero. 

These surfaces may be used, as in Jahnke and Emde's Tables, 
to give a pictorial representation of the values of the modulus 
of a function of a complex variable. 

The Condition that a Given Function F(x, y) should be a 
Modulus. F(x, y) being a real function of x and y which is 
not negative for any real values of x and y, suppose that it is 
the modulus of a functionj(z). 

Thenj(z) = F . eirr., where oc is the argument of the function 
and therefore is a real function of x and y. 

On taking logarithms we have 
logj(z) = log F + ioc 

and so log F is the real part of a function of z. From the result 
on p. 51 it follows that log F must satisfy Laplace's equation, 
i.e. "'I ' 

(a'JFJx2 + a2/ay2) log F = O. . \, .. .I,.4 ii .~. tU (" .... !; '. e 

Conversely, if this condition is satisfied, a function rt. can be 
found (by the method given on pp. 51-2) such that log F and oc 
are conjugate functions. Then 

log F + irt. = <fo(z), say, 
whence F . exp (ioc) = exp <fo(z) 
and F is the modulus of the fUIlction on the right-hand side. 

The Condition that a Family of Curves should be Level 
Curves. Suppose that the curves given by the equation 

G(x, y) = constant 
are the level curves for a function j(z). 
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It does not follow that 0 is equal to the modulus of f(z); 
all that "\ve can assume is that If(z) I is some function of 0 so 
that, when If(z) I is constant, 0 is constant. 

Assume that 
If(z) I = 1jJ(0). 

It then follows, by the result of the previous section, that 
(2J2Idx2 + 2J2/dy2) log 7jJ(0) = O. 

Now (d/ax) log 7jJ(0) = O",7jJ'(O)I7jJ(O) 

and (a2/dX2) log '!j1(0) 

= [O",x7jJ'(O)!VJ(O)] + [0",27jJ"(0)/7jJ(0)] - [0.,7jJ'(0)1'!j1(0)J 2 • 

Similarly (J2/'dy2) log 7jJ(0) 

= [O"y7jJ'(O)!VJ(O)] + [Oy27jJ"(G)/7jJ(G)] - [G,,7jJ'(G)!VJ(G)J2 

The condition reduces to 

(Gx ., + G",;)/(G3,2 + 0,,2) = [7jJ'(G)/1jJ(G)] - [7jJ"(G)/'!j1'(G)]. 
= - (dldG) log [7jJ'(G)!VJ(O)]. 

It will be noticed that the right-hand side is expressible in 
terms of G alone. The curves 0 == constant are therefore level 
curves if (G"., + 0"y)/(0",2 + Oi) is a function of G only. 
When the condition is satisfied, '!j1 may be found by integrating 
twice. 

It will be observed that level curves form a u-system and 
that the corresponding v-system is given by ex = constant. 

EXAMPLE 13. If G = xv' Gx", + 0"" vanishes and '!j1 is given 
by 

whenoe 
and 

(d/dG) log ['!j1'(G)/7jJ(O)] = 0, 
7jJ'(G)!VJ(G) = 2A 

7jJ(G) = B exp (2AG) 

where A and B are arbitrary real constants, the latter being 
positive. 

In order to determine the funotion fez), we have to find 
the conjugate of log 7jJ(G) = 2Axy + log B. From Example 1, 
worked on p. 52, it is easily seen that 

log 'IjJ(G) + iex = - iAz2 + 0, 

where C is an arbitrary constant, in general complex. 
The rectangular hyperbolas xy = constant are therefore the 
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level curves of the function exp (- iAz2 + 0), where A and 0 
are constants and the former is real. 

Holomorpbic Functions. If, for the values of z which are 
represented by all the points of a region S in the z-plane, a 
function I(z) is such that (i) it is one-valued, (ii) ita values are 
finite and continuous, and (iii) it is monogenic, then I{z) is 
said to be holomorphic over the region S. The terms regular 
and analytic are sometimes used as equivalent to holomorphic. 

Clearly the functions Z2, sin z, and exp (z) are holomorphic 
over any region in the finite part of the plane. 

Singularities. The function 1/(z - a) is holomorphic in any 
region which does not contain the point z = a. At the point 
z = a, the value of the function is not finite. R 
The point is said to be a singular point and 
the function is said to have a 8ingularity 
there. 

If the function I(z) is not finite at z = a Q 
but is such that a positive integer n can be 
found so that (z - a)"J(z) approaches a limit, 
other than zero, as z approaches a, the 

o 

FIG. 18 

function I(z) is said to have a pole oj order n at the point z = a. 
According to this definition, I/(z - a)· has a pole of order 

unity, or a simple pole, at z = a. 
Consider the function exp (lIz), which is holomorphic in any 

region which does not contain the origin. If P (Fig. 18) repre
sents a positive real value of z, the corresponding value of the 
function is real and positive and, as P approaches the origin 
by moving along the real axis, the value of the function in
creases without limit. If Q represents a negative real value of 
z, the corresponding value of I/z becomes large and negative 
as Q moves along the real axis towards 0 and consequently 
exp (l/z) approaches zero. If R is the point 1'y on the imaginary 
axis, the corresponding value of the function is exp (- ily), 
which, for all real values of y, has unit modulus. It is clear 
then that exp (I/z) tends to no definite limit as z approaches 
zero and that no value of n can be found for which z .. exp (l/z) 
tends to a limit in like circumstances. 

The function exp (lIz) is therefore said to have an essential 
singularity at the origin. 

Since the two types of singularity are of entirely different 
characters, a pole is sometimes referred to as an acc·idental 
singularity. 
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Curvilinear Integrals. Suppose that x and yare real functions 
of a parameter t with continuous derivates dx/dt, dy/dt. Then, 
as t varies continuously through real values from to to ~,the 
point P whose co-ordinates are (x, y) describes a curve in the 
xy-plane from the point .A, given by t = to, to B, given by 
t = tl • For example, if x = at2 and y = 2at, the curve is an 
arc of a parabola; if x =" a cos t and y = b sin t, the curve is 
an arc of an ellipse. In the latter case, the complete curve 
is closed and is described once if to and ~ differ by 27T. 

Now let p(x, y) and q(x, y) be continuous functions of x and 
y. Then the curvilinear integral 

1 (pdx + qdy) 
AB 

is defined as equal to the integral 

1t'( p ~~ + q 7t)dt, 

where the expression in brackets under the integral sign is a 
function of t. 

From the definition it follows that 

1 (p dx + q dy) = - r (p dx + q dy). 
AB JBA 

By way of illustration, we may take the ellipse given by 
x = a cos t, y = a sin t, and put p = - y, q = x. Then 

1 (p dx + q dy) = Itl ab(sin2 t + cos2 t)dt = ab(tl - to) . 
• 1B t, 

If t1 = to + 271, the value of the integral is 27Tab, which is twice 
the area enclosed by the curve. This is a result which is otherwise 
obvious, since (x dy - Y dx) is twice the area of the elemental 
triangle of which the vertices are the origin and the points 
(x, y), (x + dx, y + dy). 

Now suppose that fez) = u + iv is a function of the complex 
variable z = x + iy; then 

J(z)dz = (u + iv) (dx + idyl = (udx - vdy) + i(vdx + udy) 

and the integral 1 J(z)dz is de:ijned as equivalent to 
AB 

1 (udx - vdy) + il (vdx + udy). 
AB AE 
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The curve AB is called the path oj integration. If the path is 
a .closed curve C the integral is called a contour integral. 

The contour 0 is described in the positive sense when a 
man who walks round it always has the area bounded by 0 
on his left. 

Stokes' Theorem. Let C (Fig. 19) be a simple contour in 
the xy-plane which is met in not more than two points by any 
straight line parallel to either of the co-ordinate axes. Suppose 
that the ordinate which is at a distance x from the origin meets 
C in the points (x, Yl)' (x, Y2) and that the tangents which are 
parallel to the y-axis are the lines x = ~, x = x2 • 

y 

B 

o (x,,oJ 
FIG. 19 

Let p(x, y) be a function of x, Y which, along with its partial 
derivate dp/dY, is continuous at all points within and on O. 
Consider the double integral 

f f (dp/dy)dxdy = I 

taken over the area bounded by O. 
Integrating with respect to Y, we have 

Now let us take the curvilinear integrallp dx, evaluated in 

the positive sense. Since the contour is made up of the two 
parts ADB, BEA, 
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{pdx= ( pdx+ r pdx Jo JADE JEEA 
= lDBP dx - lEEP clx 

= lX, [P(x, Yl) - p(x, Y2)]dx 

=-1. 

Similarly, if q and 'iJq/ox are continuous at all points within 
and on 0, it may be shown that 

!aqdy = f fCoq/ox)dxcly, 

where the double integral is evaluated over the same area. 
On adding the two results we have the two-dimensional form 

of Stokes' 8 Theorem 

1 (p dx + q dy) = f f [('iJq/ox) - ('Op/oy)]dxdy, 

where the double integral is evaluated over the area bounded 
by 0. 

If the contour is met in more than two points by lines parallel 
to the axes, it may be subdivided into areas bounded by con
tours of the simpler type considered above. The theorem is 
true for each of these contours and, by addition, it follows that 
the result is true for the more complicated contour. (A line 
which forms a boundary between two adjacent areas will 
be described twice-once in each direction-in the contour 
integrals, and so contributes nothing to their sum.) 

Cauchy's Theorem. I.et f(z) = u + iv be a function of z 
which is holomorphic at all points within and on a contour ° 
in the z-plane. Using the result on p. 64 and applying Stokes's 
theorem, we have 

!af(Z)dZ = !a(UdX- vcly) +.i !a(vdx + ucly) 

= f f (- v., - uIJ)dxcly + iff (u" - vIJ)dxdy, 

where the double integrals are evaluated over the area bounded 
by 0, and suffixes denote parti~l derivates. 
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Since u and '/) are the real and imaginary parts of a function 
of z, we have u'" = '/)1/ and u" = - Va:' That is to say, both 
double integrals vanish and we have the important result, 
due to Oauchy, that 

fJ(Z)dZ 0, 

i.e. the integral of a function of z taken round any contour in 
the z-plane, within and on which the function is holomorphic, 
is zero. 

Suppose that Zo and ZJ. are two points which can be connected 
by two paths Land L' such that, at all points between and on 
Land L', fez) is holomorphic. From the above theorem it 
follows that the integral of fez) from Zo to ZJ. by the path L, 
together with the integral from ZJ. to Zo by the path L', is zero. 
Therefore the integrals taken from Zo to ZJ. by the two paths 

are equal: in other words, the value of the integrallz'j(z)dZ 

is the same for any two paths which do not pass through, nor 
enclose between them, any singularity of the function fez). 

Rational Functions. A function of the form P(z)/Q(z), where 
P and Q are polynomials in z, is said to be a rational function 
of z. It may be assumed that the numerator and denominator 
have no common factor, otherwise the expression could be 
simplified by the cancellation of that factor. 

For instance, the functions 3z2 + 2, lJz, (2z3 + 1)/(z2 + z) 
are rational. 

Suppose that the polynomials P(z), Q(z) are of degrees 111" n, 
respectively. Then, if m is not less than n, we can divide Q(z) 
into P(z) and obtain a quotient F(z), which is a polynomial of 
degree m - n, and a remainder G(z), which is a polynomial 
of degree less than n. Thus 

P(z)/Q(z) = F(z) + [G(z)/Q(z)], 

where the fraction on the right-hand side is proper, i.e. the 
numerator is of lower degree than the denominator. If m = n, 
the quotient F(z) is a mere constant. 

The polynomial Q(z) may be factorized in the form 

k(z- oc)a (Z-fJ)b . .. (z- p)r, 

where k is independent of z, where oc, fJ, . . . p are the zeros 
and where a, b, . . . r are positive integers whose sum is equal 
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to n, the degree of Q(z). If none of the zeros occurs more than 
once, the indices a, b, . . . 'I are each unity. 

Clearly, the only finite values of z for which the function is 
not finite are 0:, p, ... p. If P(z) is of degree m, then if m is 
less than n, the function becomes zero when z becomes infinite; 
if m is equal to n, the function approaches a finite limit as z 
tends to infinity, but, if m exceeds n, the function is infinite 
when z is infinite. 

Thus the only singularities of the rational function P(z)/Q(z) 
in the :finite part of the z plane are at the points a, p, ... p, 
where it has poles of orders a, b, ... 'I, respectively. 

Using the ordinary methods of resolution into partial frac
tions, we may write 

P(z)/Q(z) 
= F(z) + A1(z- 0:)-1 + A 2(z- OC)-2 + . 

+ B1(z- {:J)-1 + B 2(z- (J}-2 + . 
· + A.(z- 0:)-" 
· + Bb(z- (3)-b 

· +R,,(z- p)-", 

where F(z) is zero if P is of lower degree than Q and F(z) is a 
polynomial of degree m - n (actually the quotient obtained by 
dividing Q into P) if m is not less than n. 

With centre at the point 0:, describe a circle 0 whose radius 
R is less than the distance between 0: and the nearest of the 
points P, 'Y, • • • p. Then, within and on this circle, the 
function 
cp(z) = P(z)/Q(z)-A1(z-0:)-1_A2(z-OC)-2_ . • . -A,,(z-o:)-a 

is holomorphic and therefore its integral round the circle 
vanishes. 

If z is any point on the circle, we have z- 0:= Rexp (iO) and 
dz = iR exp (iO)I:lO, from which we have 

J~Al(Z - 0:) -ldz = J:2"'iA1d() = 2'1TiAl 

and 
r r~ . Ja A.(z - 0:) -"dz = Jo iA.,Rl-'[exp (1 - 8)iO]d() 

= [[iA.R1-'/(I- 8)] [exp (1- 8)i()] It 
= 0, 

where t = 2,3, . a. 
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Therefore !ocfo(Z)dz = l[p(Z)/Q(Z)]dZ- 2'ITiAl = 0 

and ia[P(Z)/Q(Z)]dZ = 21TiAI • 

The constant .AI is defined as the residue of the function at 
the pole cx. Note that if cx is a simple pole, .AI is the limit of 
(z - IX)P(Z)/Q{z) as Z tends to IX. 

li 0' is any simple closed contour surrounding the pole IX 

but not containing any other pole of the function, we can draw 
a circle 0 lying within 0' and having 
its centre at IX. By Cauchy's theorem, 
the integral of the function taken 
round 0' is equal to the integral taken 
round 0 and we can conclude that 
the integral taken round a contour 
which contains within it one and only 
one pole is equal to 2m multiplied by 
the residue at that pole. 

Now let S be any closed contour FIG, 20 
containing within it aily number of 
the poles, say, IX, p, ' , . .fl., at which the residues are .AI' 
B1 , ' •• L1, Surround each of these points by a circle which 
contains within it no other pole and connect each of these 
circles to S by a path which does not meet any of the other 
circles or paths, as in :Fig. 20. 

The function fez) = P(z)/Q(z) is holomorphic at all points of 
the region between S and the circles and therefore 

jf(z)dZ = 0 

when the integral is taken round the complete boundary of 
the region as indicated by the arrows. Each connecting path 
is described twice--once in each sense-and so contributes 
nothing to the value of the integral. 

It follows that 

j/(z)dZ 

minus the sum of the integrals taken round the circles in 
the positive sense is zero. 

Hence I f (Z)dZ = 2'ITi(Al + Bl + . . . + L 1), 
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i.e. the integral taken in the positive sense round any contour 
is equal to 211'i multiplied by the sum of the residues at the 
poles "ithin the contour. 

EXAMPLE 14. If F(z) = z - I and Q(z) = z + 1, then 
fez) = 1 - 2(z + 1)-1. The only singularity of fez) is a simple 

pole at z = - 1, the residue being - 2. Hence I f (Z)dZ is zero 

if the contour 0 does not surround the point Z = - I but is 
equal to - 41Ti if 0 encloses this point. 

Let 0 be the circle Izi = 2. Then, on the circle, Z = 2 exp iO, 
and dz = 2i(exp iO)dO; therefore 

j f(Z)dZ = 2i {2"{exp iO- 2[(exp iO)/(1 + 2 exp iO)]}dO 
c Jo . 

= 2iI~"'{exp iO- 2[(exp iO + 2)/(5 + 4 cos O)J}dO 

= 2il2n{COS O+isinO- 2[(cos O+isin 8+ 2)/(5+4 cos O)]}d8 

= - 41Ti. 

:By equating real and imaginary parts, we have 

[2f1«COS 8 + 2)/(5 + 4 cos O)dO = 11' 

and [2"'Sin 0/(5 + 4 cos O)dO = O. 

The value of the second integral is otherwise obvious but that of 
the first would be more troublesome to find by more elementary 
methods. 

EXAMPLE 15. Evaluate 1""(1- 2k cos e + k2) -ldO, where k 

is real, positive, and less than unity. 
Writing z for exp (iO), we have cosO = (z + z-l)/2 and 

dO = dz/iz. 
As 0 varies from 0 to 211', the point Z describes the circle of 

radius unity which has its centre at the origin. The given 
integral is therefore equal to the contour integral 

f dz f dz 
iz(1- kz) (1- k/z) = i(l - lez) (z - k) 

taken round the unit circle in the positive sense. 
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The integrand is a rational function with simple poles at 
z = k and z = 11k, and of these, only the former lies within the 
circle. The residue at z = k is the limit, as z tends to k, of 

. zk) t k)' which is l/'i(l - k2 ). 
~(l- z z-

Th;erefore the integral is equal to 27T/(1 - k 2 ). 

Taylor and Laurent Series for Rational Functions. Let c be 
any finite number 'Which is not a zero of Q(z). With the point 
z = c as centre and radius equal to the distance between this 
point and the nearest zero of Q(z) describe a circle S. Then the 
function P(z)/Q(z) is holomorphic at all points within (but not 
on) S. 

If z is any point within S, 

(z- «)-10 = [(z- c) + (C-IX)]-1o 

= (c- «)-k{I + [(z- C)/(C-IX)]}-k .., 
= (c- IX)-k[l + L Ar(z- cYJ, 

r=1 

where k is anyone of the integers 1, 2, 3,. . . a and 

AT = - k(- k- 1) (- k- 2) ... (- k- r + 1)/r!(c- IX)'". 

We have used the binomial expansion, which is valid since 
I(z- c)/(c- IX)I is less than unity. 

Similarly, all the other terms containing negative indices 
may be expanded as power series in z - c~ The polynomial 
F(z) can be expressed as the sum of a finite number of positive 
powers of z - c. 

Hence, if the point z lies within the circle S, 
.., 

P(z)IQ(z) = L Gr(z - cy. 
r=O 

The series on the right is called a Taylor 8erie8. 
We shall now consider the type of series which is obtained 

when, instead of an ordinary point c, we take one of the poles 
of the function, say «. 

Let T, T' be two circles which have the point z = IX as 
common centre, the radius of the outer (T) being equal to the 
distance between IX and the nearest of the other zeros ({3, 1', ... ) 
of Q(z). Then the rational function . 

P(z)IQ(z) ~ A 1(z - IX) -1 - A 2(z - IX) -2 - .•. - Aa(z, . «)-
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is holomorphic at all points within T and therefore· can be 
expanded in a Taylor series of the form 

~ C .. (z- oc.)r. 
r=O 

It follows that, if the point z lies within the annulus bounded 
by T and T', 

P(z)IQ(z) = i: A.(z - a) -8 + 2: C .. (z - a)". 
8=1 r=O 

Such a series is known as a Laurent series. The terms con-
a, 

taining negative powers of z- a, viz. ~ A.(z- a)-S, are said 
8=1 

to form the principal part of the series. It should be noted 
that Al is the residue at the pole a, which is of order a. 

EXAMPLE 16. For the functionj(z) = (2z3 + 1)/(z2 + z) find 
a Taylor series valid in the neighbourhood of the point z = i 
and a Laurent series valid within an annulus of which the 
centre is the origin. 

By division and the use of partial fractions, we have 

j(z) = 2z- 2 + (2z + 1)/(z2 + z) . 2z- 2 + (lIz) + l/(z + 1), 

from which it is seen that the function has simple poles at the 
points z = 0, z = - 1, the residues being unity. 

Since the function is :finite when z = i, there is a Taylor 
series valid within the circle which has its centre at that point, 
the radius being the distance between z = i and the origin, 
which is the nearer of the two poles. 

Writing t for z - i, we have 

j(z) = 2i - 2 + 2t + I/(i + t) + 1/(1 + i + t) 
= 2i-2+2t-i : (it)"+t(l-i) ~ [(i- l)tJ" 

,0 n=O 

as the Taylor series. It is valid within the unit circle which 
has its centre at the point z = i. 

There is a simple pole at the origin and the other pole is at 
unit distance from this. Hence there is a Laurent series valid 
within the annulus, which has its centre at the origin and outer 
radius unity; the inner radius can have any value smaller 
than this. 

The point z being anywhere within the annulus, /z/ < 1 and 
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so l/(z + 1) may be expanded as a geometric series of ascending 
powers of z. Thus the required Laurent series is 

(l/z)- 2 + 2z + f (- z)" 
»=0 

= (l/z)- 1 + z + f (-z)n.· 
1l.=:! 

The principal part of the series is lIz. 
Behaviour of a Rational Function at Infinity. In order to 

determine the behaviour of a rational functionf(z) = P(z)IQ(z) 
when z becomes infinite, we substitute Z for lIz and consider 
how the resulting function of Z behaves when Z becomes zero. 
Two different cases arise. 

CASE i. If the degree of P(z) is not greater than that of Q(z), 
f(lIZ) is finite when Z = 0 and can be expanded therefore in 
a Taylor series. Thus 

f(lIZ) = Ao + A1Z + A 2Z2 + ... , 
when IZI is sufficiently small, and therefore 

fez) = Ao + (AJz) + (AJz2) + .. 
when Iz I is sufficiently great. 

Since, in this case, fez) is finite when z is infinite, the point 
at infinity is said to be an ordinary point of the funct,ion. 

CASE ii. If the degree of P(z) is greater than that of Q(z), 
f( 11 Z) becomes infinite when Z = 0, i.e. it has a pole of order 
p, say. Then, if Z lies within an annulus with its centre at the 
origin in the Z-plane, 

P ao 
f(I/Z) = ~ BsZ-' + ~ Crzr . 

• =1 7=0 

The outer radius (R) of the annulus is fixed and the inner 
radius may be made as small as we please. 

P 00 

Hence, fez) = ~ B,zs + :E OrZ-r 
8=1 r=O 

when Izl > I/R. 
In this case we say that the function has a pole of order p 

at infinity, the principal part of the expansion there being 
" :E B.zs . 

• = 1 
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EXAMPLE 17. Consider the function feZ) of Example 16, 
p.72. We have 

felIZ) = (2/Z) - 2 + Z + ZI(l + Z) 

= (2/Z)- 2 + Z + Z(l- Z + Z2- za + ... ), 
provided that IZI < 1. It follows that the function has a 
simple pole at Z = 0, and therefore the function fez) has a 
simple pole at infinity. Hence 

fez) = 2z- 2 + 2Z-1- Z-2 + z-s_ . . . , 
when Izi > 1. The principal part of the expansion is 2z. 

AnalOgous Results for Functions in General. Having con
sidered in some detail the properties of the rational function, 
we now state analogous properties of functions which are not 
necessarily rational. No proofs are given here as they are 
beyond the scope of this book. They will be found in the more 
comprehensive treatises to which reference is made in the 
Appendix (p. 135). 

I. Taylor'8 Theorem. A function fez), which is holomorphic 
at all points within a circle of radius T and centre z = a, can 
be represented by a series 

fez) = f(a) + (z - a)fl(a) + ... + (z - a)n.f,.(a)/n! + ... , 
valid when Iz- al < T, where fn(a) denotes the value of 
(dldz)nf(z) when z = a. 

II. Laurent's Theorem. If fez) is holomorphic at all points 
within an annulus bounded by two circles, with the point z = a 
as common centre, and with radii R, r, such that r may be made 
as small as we please, then, if z is any point within the annulus, 

'" 00 fez) = ~ A,.(z - a)n + ~ Bn(z - a)-no 
n=O n==-l 

If Bn vanishes when n exceeds s but B. is not zero, it is said 
that the point a is a pole of order s and that the residue there 
is B1• At a simple pole 8 is unity and the residue is the limit 
of (z - a)f(z) when z tends to a. 

If an infinite number of the coefficients B are different from 
zero, the point a is said to be an essential singularity. 

III. The Oontour Integration Theorem. Iff(z) is holomorphic 
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at all points on a simple closed contour 0, which contains within 
it no singularities of f(z) other than poles, then 

(f(z)dz = 27TiR, Jd 
where R is the sum of the residues at the poles \vithin 0 and 
where the integral is taken in the positive sense with respect 
to the area within O. 

IV. Behaviour at Infinity. To discuss the behaviour of fez) 
when z becomes infinite, we write z = liZ and consider how 
f(l/Z) behaves when Z approaches zero. 

EX.A.:M1'LE 18. The function f(z) = exp (z) is finite when z is 
finite, but is singular in its behaviour when z becomes infinite. 
Thus, if z is increased without limit through positive real values, 
f(z) becomes infinite, whereas, if z approaches infinity through 
negative real values, fez) tends to zero. 

Putting z = lIZ, we have 
co 

f(IIZ) = ~ (Z-nln 1), 
,,=0 

the series on the right being a Laurent series which contains 
an unlimited number of terms involving negative powers of Z. 
The function J(l/Z) therefore has an essential singularity at 
Z = 0, and it follows that the function exp (Z) has an essential 
singularity at infinity. 

EX.A.:M1'LE 19. Consider the functionJ(z) = exp (z)lz. This is 
finite in the z-plane at all points except the origin and at 
infinity. When z is finite and not zero, 

'" J(z) = ~ z,,-l/n 1 
1!.= 0 

= (liz) + 1 + (z/2 1) + (z2/3 1) + . 
Thus the function has a Laurent series valid within an annulus 
with the origin as centre, the radius of the inner circular 
boundary being as small as we please. Since the only term 
which involves a negative power of z is lIz, the function has a 
simple pole at the origin with a residue of unity. 

Again, f(l/Z) = Z + 1 + (Z-1/2!) + (Z-2/3 !) + ... 
from which it is seen that the function f(l/Z) has an essen
tial singularity at Z = ° and therefore exp (z)lz has an essential 
singularity at infinity. 
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If we draw any simple contour a which encloses the origin, 
~he integral of the function round the contour in the positive 
sense is equal to 21T'i, because the residue at the pole is unity. 
If a is the circle z = 1, we have z = exp (iO) at any point on a 
and 

2?Ti = j;(z)dZ 

= l:exp (cos () + i sin I 

= iJ,."'exp (cos 0) cos (sin (})d() - l:exp (cos ()) sin (sin O)d(). 

By equating imaginary parts, we deduce that 

l:e7Cp (cos 0) cos (sin (}}d() = 21T, 

from which it follows that 

l"'exp (cos ()) cos (sin O)d(} = 1T, 

because the integrand is an even function of (). 
On equating real parts, we see that the other integral vanishes 

-a result which is otherwise obvious since the integrand is an 
odd function of (). 

EXAMPLE 20. A function f(z) is holomorphic at all points, 
except z = a, within a circle I Z - a I = E, and (z - a)f(z) tends 
to a limit k as z approaches a. If A and B are points on the 
circle I z - a I = r( < E) such that the arc AB (described in the 
positive sense from A to B) subtends an angle 4> at a, prove 

that, as r tends to zero, f f(z)dz, taken along the arc from A 

to B, approaches the limit ik4. 

First we consider 11 = f [k/(z - a)]dz, taken along the arc 

AB. "When z is on this arc, 

z- a = r exp (i(}), and dz = ir exp (iO)dO, 

and, whatever be the value of r, 

11 = ikJ d() = ikcf;. 
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Since (z - a)f(z) tends to the limit k as z approaches a, we 
can choose r so small that, when z is on the arc AB, 

(z - a)f(z) - k = 'YJ, 

where I'YJ I < 8 and 8 is any given positive number no matter 
how small. 

Hence f(z) - [k/(z - a)] = 'l}/(z - a) 

and I - II = f[r;/(Z- a)]dz = if 'YJd8, 

where I stands for f f(z)dz. 

Therefore 11- Id = If r;dOI < 8f dO = et/>. 

By making r sufficiently small, it follows that we can make 
II - III as small as we please, i.e. in the limit 

I = II = ik¢. 

EXERCISES 
1. (il Show geometrically that m - iy, I z I and arg z are not 

monogenic functions of z. 
(ii) If w is a monogenic function of z, show that dwldz is also a. 

monogenic function of z. 
2. Show that log z and tanh z are monogenic functions of z. 
S. Using Euler's theorem that, if u is a function of m, y which is 

homogeneous of degree m, xu", + YUII = mu, show that, if u also 
satisfies Laplace's equation, it is the real part of a functionj(z) such that 
fez) = u + (i/m) (yu", - mUt/)' 

Determine fez) when (i) u = :r;8 - 3xy2; (ii) v = yl(m! + yS); 
(iii) u = amI + 2bmy - ay9; (iv) u = a;y1(m4 + y4). 

4. If u, v are conjugate, show that the following are also conjugate: 
(i) au - bv and av + bu, where a, b are real constants; (ii) ul(uS + v 2 ) 

and - vl(u2 + v2 ). 

5. Find a pair of conjugate functions u and v such that 

u + v = (m - y) (sin 2m - sinh 2y)/(cos 2m + cosh 2y) 

and such that v is zero when y is zero. 
6. Show that the curves given by r = .:t cos nil, where .:t is a variable 

parameter, form a u-system only when n = 0 or 1. 
7. Show that the parabolas r = .:t (1 + cos Il) form a u-system and 

find the corresponding v-system. 
8. In a two-dimensional gravitational field the equipotential lines 

are given by the equation '1'1" = constant, where rand r' are the distances 
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of a point from two fixed points A and B. Prove that the lines of force 
are rectangular hyperbolas which pass through A and B. 

9. Show that the coaxal circles given by w2 + y2 + 2A.x + c = 0, 
where ,1. is a variable parameter and c is the same for all the circles, can 
be a family oflines of force (or stream lines) and find the cOITesponding 
equipotentials. 

10. A plane curve is determined by the parametric equations w = f(t), 
y = get). Show that the curve is one of the v-system given by the 
relation z = few) + ig(w). 

For the ellipse w = a cos t, y = b sin t, show that the v-system oonsists 
of the family of confooal ellipses. 

Find the u- and v-systems when the curve is the parabola 

w = at2 , y = 2at. 

11. If 'U + iv = log (z - a) - log (z + a), show that the curves 
'1.£ = constant and v = constant are two sets of circles which cut 
orthogonally. 

12. If z = tan w, prove that w(cos 2u + cosh 2v) = sin 2'1.£ and 
y(cos 2u + cosh 2v) = sinh 2v. Hence show that ifu is constant and v 
varies, z describes, on the Argand diagram, the circle 

WI + y2 + 2w cot 2u = 1. 

IS. Express w = 13(13 + i)/(z - i) in the form a + ib. Determine the 
regions of the plane within which the modulus of the function exp (w) is 
greater than unity. (U.L.) 

14. Sketch the level curves for the functions-

(i) sin 13 - sin a" where a is real; (iv) exp (liz); 
(li) exp (z) - 1; (v) log 13; 

(iii) z exp (z) ; (vi) exp (z)/z. 

15. If fez) = (Zl + l)/z and z' is the inverse point of z with respect 
to the unit circle with the origin as centre, prove that 1 fez') 1 = I fez) I. 

Sketch the level curves for fez). Show that the curve I fez) = M 
meets the circle in four real points if M < 2, but that, if M > 2, the 
curve consists of an oval within the circle and of the inverse of this oval 
with respect to the circle. 

16. Evaluate the integral fexp (1Tz)/(2z2 - i)dz taken separately, in 

the positive sense, round each of the four quadrants of the cirole 
I z 1 = 1 determined by the axes. ,,( U .L.) 

17. If fez) is holomorphic at all points within and on a simple oontour 

C, show that the value of Jo f(z)/(z - a)dz is zero, if the point a is outside, 

and 2TTij(a), if a is within C. 

18. Evaluate fexp [(a + ib)w]tk and deduce that 

(as + b2)Jea", cos bxdw = ea"'(a cos bx + b sin bw) 

and (as + b2)Jea.. sin b:t,dw = ea"'(a sin bw - b cos bx). 



CHAPTER V 

CONFORMAL TRANSFORMATION 

Conformal Transformation. Suppose that two complex vari
ables w = u + iv and z = x + iy are connected by the 
relation 

w = f(z) , 
where f(z) is a monogenic function of z. 

Corresponding values of z and w will be represented by points 
in two planes which we shall call the z- and w-planes respec
tively. If P, in the former plane, represents a value of z for 
whichf(z) is finite and its derivate is finite and not zero, P will 
be called an ordinary point. The corresponding value of w will 

Z-Pla.n.e 
P2 

FIG. 21 

w:.Plane 

be represented by a point Q at a finite distance from the origin 
in the w-plane. Let PI' P2 (Fig. 21) be ordinary points near to 
P representing z + I5z, Z + ~z, respectively, and let QI' Q2 

be the corresponding points in the w-plane representing 
w + !5w = f(z + I5z) and w + !:iw = f(z + ~). 

Since w has a unique derivate with respect to z, both lJw/lJz 
and ~w/!:iz approach the same limit dw/dz as PPI and PP2 

are diminished to zero. If PPI and PP2 are sufficiently small. 
we shall have 

lJw/lJz = ~w/!:iz 
and therefore !:i.zflJz = !:J..wflJw ; 
i.e. (PP2/PP1)ei9 = (QQiQQl)e i9', 

where (), Of are the angles PIPP2, Q1QQ2 respectively. 
79 
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It follows that 

PPJPP1 = QQJQQl and f) = f)'. 

Thus the two infinitesimal triangles PP1P9, QQ1Q2 are 
directly similar, their linear dimensions being in the ratio 
1 :Idwldz/ and their areas in the ratio I :ldwJdzI2. The factor 
Idwldz I is defined as the magnification. .".. '. 
If Ps is any point within the triangle PP1P2 , the correspond

ing point Qa will be such that the triangles PP1P3, QQIQa are 
directly similar, and, consequently, Qa lies within the triangle 
QQIQ9' 

The relation transforms the infinitesimal triangle PP1P2 

in the z-plane, into a directly similar triangle QQIQ2' in the 
w-plane, and points within the first correspond to points 
within the second triangle. A point which moves round the 
perimeter of the first triangle in the positive sense is trans
formed into a point which describes the perimeter of the second 
triangle in the same sense. 

If a point moves in the z-plane so as to trace a curve, the 
locus of the corresponding point in the w-plane is called the 
transformed curve. If PP1 , PP2 are elements of arc of two 
curves through P, then QQl' QQg are the corresponding elements 
of arc of the transformed curves, and, as we have seen, the angles 
P1PP2 , Q1QQ2 are equal in both magnitude and sense. The 
transformed curves therefore intersect at the same angle as 
the original ones. In particular, orthogonal curves transform 
into orthogonal curves. 

Suppose that 0 is a simple closed curve in the z-plane such 
that all points on and within it are ordinary points for the 
transformation. Let D be the corresponding curve in the 
w-plane. Then D is also a closed curve since f(z) is assumed to 
be one-valued. The area bounded by 0 may be divided into 
infinitesimal triangles which transform into directly similar 
triangles in the w-plane and the aggregate of the latter triangles 
is the area bounded by D. But the curves 0 and D are not, in 
general, similar, for the magnification is not constant over the 
area but varies from point to point. 

Since infinitesimal elements of area are unaltered in shape, 
the transformation is said to be conformal. 

It is important to notice that the above discussion has been 
limited to ordinary points: it is to be expected that the 
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conformal property will be lacking at points which are not 
ordinary but are singular. 

EXAMPLE 1. Consider the curves u=constant, v=constant 
in the z-plane. The corresponding curves in the w-plane are 
the two families of straight lines parallel to the v- and u-axes 
and these obviously intersect at right angles. The curves 
u = constant and v = constant therefore cut orthogonally-a 
fact which was seen in the previous chapter. 

EXAMPLE 2. Apply the transformation w = Z2 to the area 
in the first quadrant of the z-plane bounded by the axes and 
the circles Izl = a, Izl = b (a> b> 0). 

If z = reiB, then w = r2e2i8 and so w = r2 and argw = 20. 
The quadrantal arcs AA', BB' therefore become semicircular 

Z-Plan.e 

o BA 
FIG. 22 

arcs of radii all, b2 respectively, while the straight lines AB, 
A'B' become the parts of the u-axis between the points w = all, 
w = b2 and w = - all, w = - b2• 

In Fig. 22, corresponding points in the two planes are indi
cated by the same letter. The magnification at any point is 
given by Idw/dzl = 21z1 and is finite and different from zero 
at all points within and on the given boundary. The trans
formation is therefore conformal; e.g. the angles at A, B, A', B' 
in both figures are right angles. But if b vanishes, so that the 
area in the z-plane becomes the quadrant OAA', the correspond
ing area in the w-plane is the semicircle on AA' as diameter 
and the transformation is conformal everywhere except at 0, 
where the magnification vanishes. The angles at 0 in the two 
planes are not equal, that in the z-plane being 7T/2 and the 
other being 7T. But the angles at the points A, A' are still 
right angles. 

EXAMPLE 3. Consider the transformation w = az, where a 
is a complex constant. 
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Let a = A exp (ilX) and z = r exp (iO). 

Then w = Arexp (if) +ilX), Iw/ = Aizi 
and arg w = arg z + arg a. 

If P, in the z-plane, represents z, the point Q, in the same 
plane, which represents the corresponding value of w, m~y be 
constructed by rotating OP about 0 throu~h an ang;le IX 111 the 
positive sense and then altering itsJengt~ 111 the ratIO A :1. .In 
other words. the transformation IS eqmvalent to a rotatIOn 
about a pom:t and a magnification. If P describes a curve, the 

locus of Q is a geometrically 
0.' similar curve turned 

through an angle oc. 
Inversion with Respect 

P' f to a Circle. I P is any 
point in the plane of a 
circle (Fig. 23), with centre 
o and radius k, and P' is 
a point on OP such that P 
and P' are on the same side 
of 0 and OP. OP' = k2, 

FIG. 23 then P and P' are said to 
be inverse points with 

respect to the circle. The point a is called the centre of 
inversion and k the radius of inversion. Clearly, if P is outside 
the circle, P' is inside the circle; if P' is on the circle P coincides 
with P. 

If Q, Q' are any other pair of inverse points with respect to 
the same circle, the triangles OPQ, OQ'P' are similar because 
OPIOQ = OQ'jOP' and the angle at a is common to the two 
triangles. It follows that the angles OPQ and OQ'P' are 
equal. 

If P moves in the plane so as to describe a curve 0, its 
inverse P' describes a curve 0' which is defined as the inverse 
of 0. Suppose that P and Q are neighbouring points on 0 so 
that PQ is an element of arc of the curve; then P' and Q' are 
neighbouring points on 0'. As Q approaches P, the limiting 
position of the chord PQ is the tangent at P to the curve 0, 
while that of P'Q' is the tangent to 0' at the point P'. These 
two tangents thus make equal angles with OP (measured in 
opposite senses). It easily follows that, if two curves 0, D 
intersect at an angle e, their inverses also intersect at an 
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angle O. In particular, the inverses of two orthogonal curves 
are also orthogonal. 

If 0 is the origin and Pthe point z = rexp (iO) in the z-plane, 
then OP' = k2/OP and P' represents (J..:2/r) exp (iO). Let P l 

be the image of P' in the real axis; then P l represents 

(k2/r) exp (- iO) = k2/z. 

If P describes the curve C, the locus of P l is the refiexion of the 
inverse curve 0'. 

Consider the inverse of a circle of radius a with its centre at 
the point A (Fig. 24). Let P be any point on the circumference 

o 

FIG. 24 

and let OP meet the circle again at Q. Draw a line through P', 
the inverse of P, parallel to AQ to meet OA in B. Then 

OB/OA = OP'/OQ = OP. OP'/OP . OQ = k2/t2, 

where t is the length of the tangent drawn from 0 to the circle. 
The ratio OB/OA is therefore constant and B is a fixed point. 
Further, BP'/AQ = OB/OA = constant and so BP' is constant 
in length. The inverse of the circle with centre A and radius 
a is thus a circle with centre B and radius k2a/t2. 

If the circle passes through the centre of inversion, the 
above argument breaks down because the points 0 and Q 
coincide. In that case, let D be the point which is diametrically 
opposite to 0 and D' its inverse (Fig. 25). Then the triangles 
OPD, OD'P' are similar and the angle OD'P' is a right angle. 
The locus of P' is thus the straight line through D' which is 
perpendicular to the diameter through O. 
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The Reciprocal Transformation: the Point at Infinity. Con
sider the conformal transformation given by the reciprocal 
relation . 

w = lIz. 
Instead of regarding corresponding values of z and w as 

being represented by points in different planes, it is convenient 
to think of the w-plane as superposed upon the z-plane. The 
numbers z and lIz will then be represented by points P, Q 
respectively, in the same plane. . 

From the previous section, it follows that, if P' is the inverse 
of P in the unit circle with its centre at the origin, then Q is 

the image of P' in the real axis. 
pI Obviously, if P is outside the 

circle then Q is inside. 
The relation w = lIz thus 

establishes a one-to-one cor
respondence between points 

o ~-----.....:t----..L.I Dr inside the circle, with the 
exception of the origin, and 
points outside the circle. If z 
becomes zero, w becomes in
finite. Since, to every point 
within the circle, other than FIG. 25 

the origin 0, there corresponds 
one and only one point outside, we assume that the same is true 
for the point 0 and that there is one point-the point at infinity
to which 0 corresponds. 

Thus, in the theory of functions, which makes use of the 
idea of inversion with respect to a circle, we have only one 
point at infinity in the z-plane and not a straight line at infinity 
as in proj ective geometry. 

When it is desired to discuss the behaviour at infinity of a 
function f(z), we apply the reciprocal transformation and 
consider the behaviour at the origin of the function f(lJw). 

For instance, if f(z) = a + bz, where a, b are constants, 
f(lfw) = a + (blw) and the latter function has a pole of the 
first order at w = o. It is said, then, that f(z) has a pole of the 
first order at infinity. 

The Bilinear Transformation. A relation of the form 
Awz + Bw + Oz D = 0 . (1) 

in which A, B, 0, D are constants (generally complex) such 



CONFORMAL TRANSFORMATION 85 

that AD '" BO, is said to be bilinear. To one value of one of 
the variables w or z there corresponds one and only one value 
of the other. If AD = BO, the relation is of no interest as it 
would give z = - B/A or else w = - O/A. 

Such a relation establishes a conformal transformation from 

p' 

o 
FIG. 26 

Q.(w) 

x 

the z-plane to the w-plane and vice versa. We shall think of 
the two planes as being superposed. 

Solving for w, we have 

w = - (Oz + D)/(Az + B) 
= - (O/A) + {(BO - AD)/[A(Az + B)]} . (2) 

a result which can be expressed in the form 

w- a = k/(z- b), 

where a, b, lc are constants. 
Writing z - b = re18 and lc = c2e2icx, we have 

and, if 
Iw- al = c2/r 

cfo = arg (w- a), 

4> = 20t - e, 
which can be written cfo- I)(. = 1)(.- e. 

We can now construct geometrically the point representing 
w when the point z is given. 

Draw a circle of radius c with centre B which represents 
z = b (Fig. 26). Let P be the point z and P' its inverse with 
respect to the circle; then; if z' is the affix of P', 

Iz' - bl = c2/r and arg (z' - b) = arg (z - b) = O. 
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Draw a line through B making an angle oc with the real axis 
and let PI be the image of P' in this line. Then the vector 
BPt represents the complex number of which the modulus is 
c2lr and the argument is 20c - e, i.e. the number W - a. If, 
therefore, we draw through the point R (of affix a) the vector 
RQ which is equal to BPl in magnitude and direction, the 
point Q represents w. 

The bilinear transformation is therefore equivalent to an 
inversion, a reflexion, and a translation. 

Since the inverse of a circle is a circle or a straight line, and 
reflexion and translation do not alter the shape of a figure, 
circles are transformed into circles or straight lines. 

Suppose that, by the bilinear relation, the points Z:t, Z2' Za, Z4' 
are transformed into the points Wl' W 2' Wa' w4 ' respectively, all 
the eight points being at a finite distance from the origin. 
Using equation (2), p. 85, we have 

WI - wa = - (BO -AD) (Z:t - Za)/(Azt + B) (Aza + B) 

along with similar expressions for the differences WI - w4,' etc. 

Hence 

or 

[(Wl - Wa)/(W2 - Wa)]: [(WI - W4)/(W2 - W4)] 

= [(Z:t - Za)/(Z2 - Za)] : [(z,. - Z4)/(~ - '<:4,)], 

(WIW 2W aW 4) = (Z:t~4) 

where (z,.Z2ZaZ4) stands for the expression on the right-hand side 
of the above equation. This expression is known as the general
ized cross-ratio of the four points z,., Z2' Z3' Z4. The cross-ratio is 
thus left unaltered by any bilinear transformation. 

Further, it follows that the bilinear transformation which 
converts three given points z,., Z2' Za into WI' W 2 , Wa, respectively, 
can be expressed in the form 

(Z2tZ2za) = (WWIW 2W a)· 

This transformation converts the circle which passes through 
z,., Z2' Za into the circle through WI' W 2' W a• 

It follows that a bilinear transformation can always be found 
so as to transform any given circle in the z-plane into a given 
circle in the w-plane; for we can use the above transformation 
taking z,., Z2' Za to be points on the first circle and WI' W2, W3 
to be points on the second. 
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Similarly any given straight line in the z-plane may be 
transformed into any given straight line in the w-plane. In 
particular, the real axis of z may be transformed into the real 
axis of w by giving real values to ZI' Z2' Z3' WI' U'2' ~L'3' 

THE DOUBLE POINTS. If corresponding values of z and w are 
represented by points in the same plane, these points are, in 
general, distinct, but they coincide if z satisfies the quadratic 

AZ2 + (B + O)z + D = 0, 

which is obtained from the equation of transformation by 
putting w equal to z. Thus there are, in general, two distinct 
points which are the self-corresponding or dou.ble points. There 
are two cases to be considered. 

Oase i. Suppose that the above quadratic has two distinct 
roots ex, {3. 

Since 
and 

w = - (Oz + D)/(Az + B) 
ex = - (Oa + D)/(Aex + B), 

w - ex = (AD - BO) (z - ex)/[(Aex + B) (Az + B)] ; 

similarly 
w - {3 = (AD - BO) (z - {3)/[(A{3 + B) (Az + B)]. 

By division, we have 
(w - a)/(w - {3) = K(z - a)/(z - {3), 

where K = (A{3 + B)/(Aex + B). 
Hence, lew - ex)!(w- ,8)1 = IKI·I(z-IX)/(z- {3)1 • (3) 

and arg (w - ex) - arg (w - {3) = arg K + arg (z - a) 
- arg (z- (3) + 2n7T • (4) 

where n is zero or an integer. 
If z moves so that I (z - rJ.)/(z - ,8) I is constant, its locus is a 

circle of the coaxal system which has the double points ex and {3 
as limiting points, and equation (3) shows that the locus of w 
is a cll-cle of the same system. Again, if z moves so that 
arg (z - rJ.) - arg (z - (3) is constant, its locus is a circle of 
the coaxal system which passes through the double points 
ex and {3. From equation (4) it is seen that the locus of w is a 
circle of the same system (see Examples 12 and 13 on pp. 
13-14). 

Oase ii. If (B + 0)2 = 4AD, the double points coincide at 
the point z = rJ., where ex = - (B + 0)!2A. In this case, the 
transformation is said to be parabolic. 
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Since Aex + B = i(B - 0) and AD - BO = t(B - 0)2, the 
relation 

w - II. = (AD - BO) (z - oc)/[(AII. + B) (Az + B)] 

reduces to 
1/(w - 11.) = [1/(z - ex)] + [2A/(B - 0)]. 

EXA.MPLE 4. Apply the transformation w = (iz + 1)/(z + i) 
to the areas in the z-plane which are respectively inside and 
outside the unit circle with its centre at the origin. 

z-Plane to_Plane 

V-
II 

C E (i) 

D 
C - . B(-I} A(+1) 

FIG. 27 

The self-corresponding points A, B are given by 

z = (iz + 1)/(z + i), 
Z= ± 1. i.e. 

Since 
and 

w- 1 = (i- 1) (z- 1)/(z + i) 
w + 1 = (i + 1) (z + 1)/(z + i), 

we have (w- 1)/(w + 1) = i(z- 1)/(z + 1). 

[) -lot 

Hence, in general, a circle which passes through the points 
A, B, at which z = ± 1, is transformed into a circle through 
the points w = ± 1 in the w-plane. In particular, the latter 
circle may degeneraM into a straight line. 

In Fig. 27, the z- and w-planes are shown separately and 
corresponding points are indicated by the same letter. 

It is at once obvious from the equation of transformation 
that w is finite for all values of z except - i. Hence the point 
D(z = - i) corresponds to the point at infinity in the w-plane. 
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Since dwldz = - 2/(z + i)2, the magnification is finite and 
not zero at all points except D and the point at infinity in the 
z-plane (the latter point corresponds to the point E at which 
w = i). Thus it is only at D and E that the transformation is 
not conformal. 

When z describes the circle Izl = 1 in the positive sense with 
respect to its interior, both arg (z - 1) and arg (z + 1) vary 
continuously except when z passes through the points A, B 
at which z = ± 1. In order to see what happens at these 
points we shall make the point z avoid actually passing through 
the points of discontinuity by letting it describe circular arcs 
of vanishingly small radius about A and B. When transforming 
the exterior area we shall take these arcs to be outside the 
circle as shown in the figure. 

While z describes the arc about A, the angle between the 
vector z - 1 and the real axis varies continuously between 
values which are nearly equal to - 'lT12 and + 'lT/2. If the 
radius of the arc is diminished to zero, the amount of the 
discontinuity is 'IT. Similarly, when z makes the detour round 
B, the angle between the vector z + 1 and the real axis 
varies continuously between values which are ultimately 'fT/2 
and 3'IT/2. 

Let the point z start from D and move, in the counter-clock
wise sense, round the circle z = I, making detours round the 
points A and B. When z is on the quadrant DA, we can take 

arg [(z - 1)/(z + I)] = - 'lT/2 

and therefore arg [(w - 1)/(w + I)] = arg i - 'lT/2 = O. 
The corresponding point w is then on the positive part of the 
real axis and moves from infinity to A (w = I) as z moves 
fromD to A. 

When z makes the small detour round A, arg [(z - I )/(z + I)] 
changes from - 'lT1'!, to + 'lT/2 and so arg [(w - 1)/(w + I)] 
increases from 0 to 'IT. As z describes the semicircle AGB, 
arg [(z".. 1)/(z + I)] is constant and equal to 'lT/2: the corre
sponding point w moves from A to B along the real axis. As 
z moves round B, arg [(w - 1)/(w + 1)] decreases from 'IT to 0 
and it retains the latter value while z moves along the quadrant 
BD. The corresponding point w therefore moves along the real 
axis from B to infinity. 

Thus, as z describes the circle in the sense DAGBD, w moves 
in the negative direction along the whole of the real axis in 

4-(T·I22) 
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the w-plane. The area outside the circle in the z-plane is on 
the right of an observer who moves in the sense DAOBD and 
so the corresponding area in the w-plane bears the same 
relation to an observer who describes the corresponding path. 
Thus the upper half of the w-plane corresponds to the exterior 
and the lower half to the interior of the circle. 

EXAMPLE 5. Express the relation w = (13iz + 75)/(3z- 5i) 
in the form (w-a)/(w-b)=k(z~a)/(z-b), where a, b, k 
are constants. 

Show that the circle in the z-plane whose centre is z = 0 
and whose radius is 5, is transformed into the circle in the 

z-Plane 
R 

x 

FIG. 28 

ur-Plane 

Pea) 

w-plane on the line joining the points w = a and w = b as 
diameter, and that points in the z-plane which are exterior to 
the former circle are transformed into points in the w-plane 
within the latter circle. 

The self-corresponding points are given by the quadratic 

z(3z - 5i) = 13iz + 75, i.e. (z - 3i)2 = 16, 

the roots of which are a = 4 + 3i and b = - 4 + 3i. 

Since a = (13ia + 75)/(3a - 5i) 

w - a = [(13iz + 75)/(3z - 5i)] - [(13ia + 75)/(3a - 5i)] 
= -160(z- a)J(3a- 5i) (3z- 5i). 

Similarly 

w- b = -160(z- b)J(3b- 5i) (3z- 5i) 
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and therefore 
(w- a)/(w- b) = [(3b- 5i)/(3a- 5i)] [(z- a)/(z- b)] 

= [(- 4 + 3i)/5] [(z- a)/(z- b)). 
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The points z = a, Z = b lie on the circle Iz I = 5 and it follows 
immediately that this circle is transformed into a circle in the 
w-plane passing through the points w = a, w = b. 

When z lies on the minor arc PRQ (Fig. 28) of the circle 
Izi = 5, where P, Q are the points z = a, z = b, 

arg (z- a) - arg (z- b) = (J = LPRQ 
and arg [(- 4 + 3i)/5] = arg b = tP = LXOQ 
Hence arg (w - a) - arg (w - b) = LXOQ + LPRQ = 37T/2. 

When z lies on the major arc PSQ, 
arg (z- a)- arg (z- b) = (}-TT 

and arg (w- a) - arg (w- b) = TT/2. 

As z describes the circle I z I = 5, it follows that w describes 
the circle on ab as diameter in the w-plane, the upper half of 
this circle corresponding to the major arc PSQ. The point 
z = 0 corresponds to the point w = - 15i and this is obviously 
outside the w-circle, the interior of which must therefore 
correspond to the exterior of the z-circle. 

The Transformation w = z + (k2/z), where k is real. This 
transformation finds many applications, particularly in hydro
dynamics in connection with two-dimensional flow past a flat 
plate, a circular or elliptic cylinder, and an aerofoil. 

Since dwldz = 1- (k2Iz2), which is finite at all points except 
z = 0 and not zero except at z = ±k, the transformation is 
conformal at all points other than these. As z approaches 
infinity, w approaches equality with z and the magnification 
Idwldzl approaches unity. Hence J1n area at a great distance 
from the origin in the z-plane is transformed into an almost 
identical area at a great distance from the origin in the 
w-plane. 

Consider (Fig. 29) the transformation of the circle IzJ = c, 
where c> k. At any point on this circle we have z = cei , and 
therefore 

w = u + iv = cei8 + (k2Jc)e-i9 

= a cos e + ib sin e, 
where a = (c2 + k2)Jc and b = (c2 - k2)Jc. 
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Hence u = a cos () and v = b sin (J. 
As () increases from - n to + n, the point z describes the 

circle once in the counter-clockwise direction and the point w 
moves once in the same sense round the ellipse 

(u/a)2 + (v/b)2 = l. 
The area outside the circle is transformed into the area outside 
the ellipse. 

Z-Plane ur-P/ane 

Sf 

Z-PJane ur-Plane 

/z/:::c 
FIG. 29 

The foci S, S' of the ellipse are given by 

w = ±(a2 - b2)i = ± 2k, 

and the corresponding points in the z-plane are z = ± k. 
If c is made equal to k, the major axis 2a ofthe ellipse becomes 

equal to 4k and the minor axis 2b vanishes. The ellipse then 
degenerates into the line S8'. A point z, which moves in the 
trigonometrically positive sense round the circle, is transformed 
into a point in the w-plane which moves along the real axis 
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from S' to 8 and then back from 8 to 8'. The area outside the 
circle in the z-plane becomes the area of the whole w-plane 
with an internal boundary 88' which may be regarded as an 
impassable barrier (as in hydrodynamics) or as a slit in the 
plane. In either case, a point which moves in the plane must 
avoid crossing the barrier or slit. For instance, in order to 
move from a position P on the upper edge of the slit to the 
opposite point Q on the lower edge, the point would have to 
describe a path like PRQ surrounding either 8 or S'. 

To a given point in the z-plane corresponds one and only one 
point in the w-plane, but, to one point in the latter plane, there 
correspond in general two points in the z-plane which are 
given by the roots of the quadratic equation 

Z2 - wz + k 2 = O. 

The product of the roots of this equation being k2 , it follows 
that one of the points is inside and the other outside the circle 
Izl = k, unless the given value of w is represented by a point 
on one of the edges of the slit, in which case both points are on 
the circle. There is thus a one-to-one correspondence between 
points in the w-plane, slit along the real axis between 8 and 
8', and points outside the circle in the z-plane. 

A OONSTRUCTION FOR OORRESPONDING POINTS. If P is any 
point in the z-plane, let P' be its inverse with respect to the 
circle Izi = k, and PI the image of P' in the real axis. Then if 
z is the affix of P, the affix of Pl is k2/Z (see p. 83). If Q is the 
middle point of PPl its affix is Hz + (k2/Z)] = tWo 

This gives a simple construction for the curve in the w-plane 
which corresponds to any given curve ib. the z-plane. If the 
latter curve is drawn to a scale of twice full size, the locus of 
Q, which may be readily traced, will be the actual curve which 
is required. 

Transformation of a Circle into a Circular Arc. Apply the 
transformation to any circle which passes through the two 
points z = ± k. If z is any point on such a circle, we can take 

arg [(z - k)/(z + k)] = oc. or oc. - TT, 

where <X is constant, according as z is above or below the real 
axis. If z moves round the circle in the counter-clockwise 
sense, arg [(z - k)/(z + k)] changes from ex - 7T to oc. when the 
point passes through k and from ex to ex - 7T when it passes 
through- k. 
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Now since 
and 
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w- 2k = (z- k)2/Z 
w + 2k = (z + k)2/Z, 

(w - 2k)/(w + 2k) = (z - k)/(z + k)]2, 
whence 

arg (w - 2k) - arg (w + 2k) = 2[arg (z - k) - arg (z + k)] 
= 2~ or 2~- 217, 

according as z is above or below the real axis. 
Hence, as z describes the circle, starting at the point k, the 

locus of the point w, in the w-plane, is an arc of a circle joining 
the points w = ± 2k, the angle subtended by these two points 
at any point of the arc being 2ot. As z moves from k to - k 
along the upper are, the point w moves from 2k to - 2k. 
When z passes through the point - k, arg (z - k)/(z + k)] 
changes from ~ to ~ - 17 while arg [(w - 2k)/(w + 2k)] changes 
from 20t to 20t - 2?T and retains this value as w returns to the 
point 2k. The arc in the w-plane is thus described twice. 

The area outside the circle in the z-plane is transformed into 
the whole w-plane bounded internally by the circular arc. 

THE AEROFOIL. Any circle in the z-plane which passes 
through the point z = k and contains within it the point 
Z = - k is transformed into a closed curve in the w-plane 
which passes through the point w = 2k. As the point z moves 
along the circumference through the point k, arg (z - k) 
changes suddenly by an amount 7T while arg (z + k) varies 
continuously. It follows that there is a discontinuity of amount 
27T in the value of arg [(w - 2k)/(w + 2k)] when w moves along 
the curve in the w-plane through the point 2k and so this curve 
must have a cusp at that point. 

By choosing a suitable centre and radius for the circle, the 
corresponding curve in the w-plane may be made to give a 
close approximation to the section of an aeroplane wing; a 
cylinder which has such a curve as its cross-section is called 
a J oukowski aerofoil. 

The Transformation w = log z. If we assume the logarithm 
to have its principal value, 

w = u + iv = logsr + if), 
where r is the modulus and f) the principal argument of z. 

If z starts at the point - a and describes the circle Izl = a 
once in the counter-clockwise sense, u is constant and v varies 
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continuously from - 7T to 7T. If z continued its motion there 
would be a discontinuity in () when it crossed the real axis at 
- a. To avoid this, we can imagine the plane slit along the 
whole of the negative part of the real axis. 

Since dwldz = lIz, the only singular points are the origin 
and the point at infinity. In the portion of the cut plane which 
lies between the circles Izl = a, Izl = b « a), the principal 
value of log z is one-valued, finite and continuous. 

Suppose (Fig. 30) that the point z moves round the boundary 
consisting of the circle ABODE (izi = a), the upper edge EF 

z-Plane 
!j 
D Iz/==a 

13 

c 

FIG. 30 

w-Pla.ne 

v 

--~~~~~~rr~U 

u=/oga 

of the cut, the circle FGH <Izl = b), and the lower edge HA of 
the cut, the direction of motion being indicated by the order 
of mention of the letters. 

As z describes ABODE, w moves along the line u = log a 
between the points at which v has the values - 7T and + 7T. 

When z moves from E to F, v is constant and equal to 7T, while 
u decreases from log a to log b. As z moves round FGH, 
w moves along the line u = log b between the points at which 
v = ± 7T. Finally, as z returns to A along HA, v is constant at 
the value - 7T and u increases from log b to log a. 

Thus the rectangle AEFH in the w-plane, with its sides along 
the lines u = log a, v = 7T, U = log b, v = - 7T, corresponds to 
the boundary in the z-plane and the area within either boundary 
is represented conformally on the other. 
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If a is increased without limit and b is diminished to zero, 
the rectangle in the w-plane becomes the doubly infinite strip 
between the lines'/) = ± 7T, and this corresponds to the whole 
of the cut z-plane. 

The Transformation w = cosh z. Here 
u + iv = cosh x cos y + sinh'x sin y 

and u = cosh x cos y, v = sinh x sin y. 

o 

Z-P/ane W"-PJane 

x 

FIG. 31 

If x is constant, the locus of the point w is the ellipse 

u2Jcosh2 x + '/)2/sinh2 X = 1; 

if y is constant, the locus of w is the hyperbola 

U 2JCOS2 y - '/)2/sin2 Y = l. 

Clearly the two curves are confocal, the common foci being 
at the points w = ± l. 

The rectangle ABOD (Fig. 31) in the z-plane, with sides 
along the lines x = oc, y = f3, x = oc', y = f3', is transformed into 
the area ABOD in the w-plane between the corresponding 
ellipses and hyperbolas. Actually there are four such areas 
but only one of these corresponds to the rectangle ABOD: 
the others are obtained from the areas which are the images of 
ABOD in the x- and y-axes. 
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The Transformation z = c tan iw. Taking c to be real (and 
positive), we have 

x + iy = c tanl(u + iv), x- iy = ctan !(u- iv) 
and so tan u = tan [f(u + iv) + !(u - iv)] 

= 2cx/(e2- x 2- y2) (5) 
and tan iv = tan [f(u + iv) - l(u - iv)] 

=U~~+~+~ W 
From (5) and (6) it follows that the lines u = constant and 

v = constant in the w-plane correspond to the families of 
coaxal circles in the z-plane given by the equations 

x 2 + y2 + 2xe cot u - 02 = ° (7) 
and x2 + y2 - 2ye coth v + e2 = ° (8) 

The circle u = oonstant passes through the points A (0, c) 
and B (0, - c). Its centre is at (- coot u, 0) and its radius is 
± c cosec u according as u is positive or negative. 

The circle v = oonstant has its centre at (0, e ooth v) and its 
radius is ± c oosech v acoording as v is positive or negative. 
When v is ± 00 ,the radius is zero and the centre is at (0, ± c); 
i.e. the points A and B are the limiting points of the v-system. 

Let P (Fig. 32) be the point which represents z, then the 
veotors AP, P B represent z - ie, - z - ie, respeotively. 

Now 

(z- ic)/(- z- ie) = (iz + c)/(- iz + c) 
= (cos tw + i sin iw)/(oos !w- i sin !w) 
= exp (iw) 
= exp (- v + iu). 

Hence AP/PB = I (z- ic)/(- z- ie) I 
= exp (- v), 

and one determination of arg [(z - ic)/(- z - io)] is equal to u. 
Now, when P is to the right of the imaginary axis, one 

determination of arg [(z - ic)/(- z - ie)] is 

XQP + XRB = 7T- APB, 

where XQP, eto., denote the positive measures (between 0 and 
7T) of the angles. 
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When P is on the left of the imaginary axis one value of 
arg [(z - ic)/(- z - ic)] is 

XQ'P- (27T-XR'B) = - R'Q'P- Q'R'P 
= APB-7T. 

As P moves about in the right-hand half of the z-plane, the 
angle APB varies from 0 (on AY and BY') to 7T (on AB). 
The corresponding value of arg [(z - ic)J(- z - ic)] ranges 
from 7T to O. 

When P moves in the left-hand half of the plane, AP B 

B (-ic) 

y' 

x 

FIG. 32 

p(Z) 

B(-ic) 

yf 

again varies from 0 to 7T and the above argument varies from 
-7T (when P is on AY or BY') to 0 (when P is on AB). 

Hence if P is on the right of the imaginary axis we shall take 
u to lie between 0 and 'fT, while, if P is on the left of the axis, 
we shall take u to lie between - 'fT and O. If P crosses the axis 
between the points A and B, u varies continuously, but, if 
P crosses outside the segment AB, u is discontinuous. The dis
continuity may be removed by slitting the plane along the 
whole of the y-axis outside the segment AB. 

Since v = log (PBIAP), the values of 1J range from - 00 

(when P is at B) to + 00 (when P is at A). The line v = 0 
corresponds to the real axis. The whole of the z-plane is thus 
represented on the doubly-infinite strip of the w-plane bounded 
by the lines u = ± 'fT. 

That part of the z-plane which is outside the circles 1J = a(>O) 
and 1J = b( <0) corresponds to the interior of the rectangle in 
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the w-plane bounded by the lines u = ± 1T, ~'= a~ V ~ b. 
(See Fig. 33, in which corresponding points in the two planes 
are denoted by the same letter.) 

This transformation is used in dealing with two-dimensional 
potential problems involving circular cylinders with parallel 
axes. 

y 

CE 

C D E 

X' x X, X 

F G If 
u.=-~ u.=7r 

y' 
FIG. 33 

Successive Transformations. By means of a relation of the 
form 

Z = f(z) 

we may transform conformally a figure in the z-plane into a 
figure in the Z-plane, and this again may be transformed 
conformally on to the w-plane by a relation 

w = F(Z). 

Clearly the figure so obtained in the w-plane could have been 
obtained by the direct transformation given by 

w = F(f(z) ). 
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In practice, it is sometimes convenient to treat a fairly 
complicated transformation as the resultant of two or more 
simpler transformations applied successively. 

EXAMPLE 6. Consider the effect of applying the transfor
mation 

w = log coth ~z 

to the semi-infinite strip on the positive side of the imaginary 
axis between the lines y = ± 7T. 

Z=TT B y=rr C 

z.o~ 
z~-rr~~ _______________ ~~~~~~~~~ 

A y=-rr D 

c 
J) 

B 

FIG. 34 

B 
A 
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Z=l 

The given relation is equivalent to the successive substitutions 

(i) Z = e", (ii) W = (Z + l)/(Z - 1), (iii) w = log W, 

where Z = X + iY, W = U + iV. 

In Fig. 34, let z start at infinity on OB and move round the 
boundary OBAD of the given strip. Here 0 and D denote 
points at an infinite distance from the origin-actually they 
are the same point, since, from the point of view of the 
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theory of functions, there is only one point at infinity in the 
complex plane. 

When z is on OB, Z = exp (x + ilT) = - exp (x) and so Z in
creases from- 00 to - 1. When z movesalongBA,Z = exp (iy) 
and the point Z describes (in the clockwise direction) the unit 
circle with centre at the origin from the point B(Z = - 1) to 
the point A (where Z has the same value as at B). As z moves 
from A to D, Z = exp (x- ilT)= - exp (X) decreases from - 1 
to-oo. 

Apparently the lines BO, AD in the z-plane are transformed 
into the same line, but, ifwe cut the Z-plane along the real axis 
from - 1 to - 00 , we can regard the upper and lower edges of the 
cut as the lines which correspond to BO and AD respectively. 

The interior of the strip is now represented on the area 
outside the circle in the cut Z-plane. To this area we now 
apply the bilinear transformation (ii). 

As Z moves along OB, W is real and decreases from 1 (when 
Z is infinite) to 0 at B, where Z = - 1. When Z moves on the 
upper half of the circle from B to E, arg W is constant and 
equal to - 71"/2 while W varies from zero at B to an infinite 
value at E. Thus the lower half of the imaginary axis in the 
W-plane corresponds to the upper semicircle in the Z-plane. 

When Z is on the lower half of the circle, arg W = 17/2 and 
W varies from an infinite value at E to zero at A; therefore 
the point W moves down the imaginary axis to the point A 
(where W = 0) . .Along AD, W is real and varies from 0 at A 
to I at D. 

The area obtained in the W-plane is that to the right of the 
imaginary axis with a slit along the real axis between the points 
W = 0, W = 1. This area is now transformed by (iii) in which 
we shall give the logarithm its principal value. 

We have w=u+iv=logR+up, where R=IWI and 
ep is the principal value of arg W. On EA, v = ep = 17/2 and 
u (= log R) varies from + 00 at E to - 00 at A: on BE, 
ep = - 17/2 and u varies from - 00 at B to + 00 at E. On AD, 
v = ep = 0 and u varies from - 00 at A to zero at D: on 
OB, v = ep = 0 and u varies from 0 at 0 to - 00 at B. 

The corresponding area in the w-plane is thus the doubly 
infinite strip between the lines v = ± 17/2, there being a cut 
along the whole of the negative part of the real axis. 

Conformal Mapping of a Spherical Surface on a Plane. Let 
SN (Fig. 35) be a fixed diameter of a sphere of radius a and 
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centre O. Draw through S a pair of tangents SX, SY such that 
L XSY is a right angle. 

The position of a variable point P on the surface of the 
sphere is clearly determined by the angle 4> between the planes 
PSN, XSN and the angle 8 between OS and OP. These two 
angles may be called the spherical co-ordinates of P. The 
angle 4>, which is the longitude of P, will be measured positively 
in the sense of rotation from SX to SY and may be taken to 

N 

~~-=-------------y 

F:IG.35 

range from - 77 to + 77. The angle 8, whioh is simply related 
to the latitude of P, ranges from 0 to 77. 

If () is kept constant and 4> varies from - 77 to + 77, P des
cribes a small circle .APB on the sphere (a parallel of latitude) 
with radius a sin () and centre M, which is the foot of the 
perpendicular from P to SN. If 4> is oonstant and e varies from 
o to 77, P moves from S to N along a great semicirole SPN, 
called the meridian of P. Sinoe the planes APE, SPN are 
perpendicular, the arcs PE, PN intersect at right angles at P. 

Let P and pi be neighbouring points on a curve drawn on the 
surface, the spherical co-ordinates of pi being (4) + fJ4>, e + ~f). 
Then the meridian of pi meets the parallel of latitude through 
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P in PI' such that the arc PP1 = a sin 8. &p, and the parallel 
of latitude through P' meets the meridian of P in P2 such that 
the arc PPa = a68. 

We have thus constructed an element PPIP 'P 2 of the surface 
of the sphere, all four angles of the element being right angles. 
If 8 and 4> are sufficiently small, we may treat the bounding 
arcs as straight lines, and take the area of the element to be 
a2 sin e • &pfJe. 

The element of length (}s on the surface is the length P P' 
which is given by 

PP'2 = PP12 + PPl', 
whence fJs2 = (a2 sin2 8) (&P2 + cosec2 0 • (J02). 

If we put 1jJ = log tan ie, we have 

(j1jJ = cosec 0 , dO and sin () = sech 1jJ, 

from which it follows that 
ds2 = (a2 sech2 1jJ) (&P2 + c51jJ2) 

and that 
tanP1PP' = P1P'/PP1 

= fJO/(sin 8 , c54» 
= fJ1jJ/&p. 

IfP", with spherical co-ordinates (4) + fl.4>, 0 + fl.e), is another 
point close to P and the arc PP" = fl.s, we have, in a similar 
way, 

fl.s2 = (a2 sechs 1jJ) (fl.tfo2 + fl.",,2) 
and tan P1PP" = fl.1jJ/fl.rp, where fl.1jJ = cosec () . fl.e, 

Now take 4> and "" to be the rectangular cartesian co
ordinates of a point in a plane and plot the points Q, Q', Q" 
with co-ordinates (4), 1jJ), (4) + &p, 1jJ + d1jJ), (4) + !1tfo, 1jJ + A 'II') , 
respectively. Then 

QQ'2 = lJ4>2 + d",,2, QQ'.'2 = fl.4>2 + !11jJ2 

and the gradients of the straight lines QQ', QQ" are 6'ff'/c54>, 
A1jJ/!1rp, respectively. 

Hence QQ'/QQ" = fJs/fl.s = PP'IPP" 
and the angles Q'QQ", P'PP" are equal. 

The elementary triangles QQ'Q", PP'P" are therefore similar 
and the spherical surface is represented conformally on the 
rp, ",,-plane. 
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The meridians on the sphere become the straight lines 
cfo = constant on the plane, the values of the constant ranging 
from - 'fT to + 'fT; the parallels of latitude (0 = constant) on 
the sphere become the straight lines 1p = constant in the plane. 
As () varies from 0 to :Jt, 1p (= log tan to) varies from - 00 

to+ oo • 
Thus the whole surface of the sphere is represented confor

mally on the doubly-infinite strip between the lines cfo = ± 'fT. 

The map so obtained is called M e'l'cato'l" s Projection. 
It will be noticed that any two curves which intersect on 

the sphere at an angle « are represented by plane curves 
intersecting at an angle «. In particular, since any straight 
line in the plane map cuts all the meridian lines at the same 
angle, the curve on the sphere, which corresponds to the 
straight line, cuts all the meridians at the same angle. Such a 
curve is called a rhumb line or loxodrome. 

Having constructed one conformal map, we can now derive 
an unlimited number. For the figure in the cfo, 'Ip-plane may be 
represented conformally on the plane of the complex variable 
z by an infinite number of relations of the type 

z =f(cfo + i'lp). 
Taking z = 2a exp [i(cfo + i'lp)], 

we obtain the· stereog'l'aphic projection in which the meridians 
are the lines arg z = constant and the parallels of latitude are 
the circles lzl = constant. 

EXERCISES 
1. If zw = 1 and if the point which represents z describes a circle of 

radiua e with its centJ;'e at the point a + ib, show that the point 1.0 

describes a circle of radiua a/(al + bB - el). 
If P represents z and Q represents (liz) - (3/4) - i, find the locua 

of Q when P describes the circle I z - 2 I = 2. 
2. In an Axgand diagram the point z moves along the real axis from 

z = - 1 to z = + 1. Find the cOl'l.'esponding motion of the point 
(1 - iz)/(z - i). (U.L.) 

3. Prove that the relation 1.0 = (kz + 1)/(z + k), where k is any real 
number other than ± 1, transforms the circle I z I = 1 into the circle 
I 1.0 I = 1. Prove also that, if z = exp (ie) and arg (w + 1) = q" then 
(k + 1) tan .p = (k - 1) tan te. (U.L.) 

4. Show that, in a bilinear transformation w = (az + b)/(cz + d), 
the ratio [(Zl - ZS)/(Zl - zs)]: [(z, - z2>/(z" - Z8)] remains invariant. 

Find the form of the transformation T which leaves z = 1 and z = i 
unaltered and transforms z = - 1 into 1.0 = - i. 
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By means of an auxiliary transformation U, which transforms i 
into 0 and 1 into 00, show that by the transformation T any circle 
through the two points i, 1 is transformed into itself. Hence describe 
the general character of the transformation T. (U.L.) 

5. Prove that a bilinear transformation transforms any circle into a 
circle or a straight line. 

Obtain th~ bilinear transformations which transform the circle 

I z I = 2 into itself, the point 4 into the origin and the circle 
I z I = 1 into a line parallel to the imaginary axis. (U.L.) 

6. Prove that the necessary and sufficient, condition that four points 
in the z-plane should be either collinear or concyclic is that their 
cross-ratio should be real. 

7. The bilinear relation w = fez) = (Az + B)/(Cz + D) is such that 
(i) w -+ a as z -+ 00 ; 

(n) z -+ b as w -+ 00 ; 

(ill) there is only one number c such that c = fCc). Find 
A, B, C, D in terms of a, b, c and show that 2c = a + b. 

Show that, if Z1 does not lie on the straight line A joining a and b, 
then the set of points 

Z1' Z2 = f(z1)' Z3 = f(z2)' ••• , Z,,+1 = fez,,) 

all lie on a circle which touches A at c. Prove that z~ c as n -+ 00. 

(U.L.) 
8. Prove that the transformation 

w = [(1 + z2)2 - i(l- z2)2]f[(1 + z2)2 + i(l - z3)2] 

maps the region I z I < 1, 0 < arg z < ."./3 conformally on I w I < 1. 
Discuss the correspondence between the boundaries of the two regions. 

(U.L.) 
9. Examine the transformation 2w = z + lIz and discuss its 

singularities. 
Show that I w I = 1 corresponds to either 

Iz-il = y'2 or Iz+il = y'2. (U.L.) 

10. Show that the equation 
(a - b)w2 - 2zw + (a + b) = 0, (a > b> 0), 

represents the interior of the circle w = 1 on the area in the z-plane 
outside the ellipse (x/a)2 + (Ylb)2 = 1. 

Discuss the representation in the z-plane of the circles 
I wi = r, I wi = (a + b)/r(a - b), 

and of the line arg w = IX.. 
11. Show that the transformation w(z + i)2 = 1 maps the interior of 

the circle I z I = 1 in the z-plane on the domain outside the parabola 
2R(1 - cos cf» = 1 in the w-plane (R, cf> being polar co-ordinates of a 
point in this plane). 

Show that the same, transformation effects two mappings on the 
z-plane of the domain outside the parabola; the one on the interior of the 
circle I z I = 1 and the other on the interior of the circle I z + 2i I = 1. 

(U.L.) 
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12. Prove that the relation w = i sinh z maps the semi-inflnite 
rectangle Q;;;;' 0, - '1T/2";: 11 ..;: '1T/2 in the z-plane on the upper half of 
the w plane. Show that the ratio of the area of the finite part of this 
rectangle cut off by the line a: = a to the corresponding area in the 
w-plane is 4a/sinh 2a. (U.L.) 

13. A region in the z-plane is bounded by two cuts along the l'eal axis 
from 0 to + co and from - 1 to - 00. Variables w and Z ax-e connected 
with z by the equations z = cosh w, Z = sinh w. Find the regions in 
the w- and Z-planes which correspond to the above l'egion in the 
z-plane. (U.L.) 

14. Show that, by the transform.ation w = a cos ('1Tz/a), the space 
above the axis of a: and between the lines a: = ± a is tl'ansformed 
into the whole w-plane. Determ.ine the l'egion in the w-plane which 
corresponds to the intel'iol' of the sqUal'e in the z-plane bounded by the 
lines 

a: = ±a/4, y = a,lI = Sa/2. 
(U.L.) 

15. Prove that, by the transformation w = tanh z, the region of the 
z-plane, for which 

a ;;;. Q; ;;> 0, 'tr/2;;> 'II;;> 0 

(a real and positive), is transform.ed into that part of the positive quad
rant in the w-plane which lies outside a certain circle having its centre 
on the real axis. 

Show also that the part of the z-plane fol' which 

a:;;;' a, '1T/2 ;;;. 'II ;;> - '1T/2, 

is transformed into the interiol' of the same circle, cut along the real 
axis from the circumference to the point w = 1. (U.L.) 

16. Show that the relation w = 2z/(I + Z2) maps the l'egion outside 
a straight cut between the points 'W = ± 1 in the w-plane on the upper 
half of the z-plane. 

17. Show that z = 4aw cot oc/(! + 2w cot oe - Wi), whel'e 

° < IX < '1T/4, 

gives a conformal representation of w when w lies in any finite region 
excluding the points w = ± i, cot toc, - tan la.. 

Prove that, when w describes the circle I wi = 1, z descl'ibes an al'C 
of a circle subtending an angle 4a. at the centre. 

Show also that, when w describes the real axis from - tan tlX to 
cot toe, z describes the whole of the real axis. (U.L.) 

18. If w = z8 - 3z and the point z describes an ellipse whose foci 
are at the points z = ± 2, prove that the point w describes a confocal 
ellipse. (U.L.) 

19. If a: + iy = coth (u + iv), express Q; and 11 in term.s of u and v. 
Show that the curves in the roy-plane given by v = const. ax-e circles 
through the points (1,0), (- 1,0) and that the curves u = const. are 
circles orthogonal to these. 

Determine the region in the roy-plane corresponding to the interior 
of the rectangle bounded by u = 0, u = 1, v = 0, v = ,,/4 in the 
uv-plane. 
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20. Show that the relation w = z + log z maps the upper half oft-he 
z-plane on the upper half of the w-plane with a slit along the line 
'11= '1l'(u < 0). 

21. If w = 0 cos (k log z), where 0 2 = 0.2 - bl and cosh (k,,/2) = ale, 
prove that the area in the z-plane given by:!: > 0 and 1 < I z I < 6"lk 
is transformed conformally into the interior of the ellipse 

(uja)S + ('IIjb)2 = 1 

in the w-plane cut along the lines joining (c, 0) to (a, 0) and (- c,O) 
to (- a, 0). (U.L.) 

22. Discuss the transformation z = tanh ltD. In particular, prove 
that the curves given by u = const. and 11 = const. form two sets of 
coaxal circles in the z-pIane; and that the interior of the unit circle 
which falls in the positive quadrant corresponds to the interior of the 
infinite rectangle in the w-pIane of which the finite sides are given 
by u = 0,11 = 0,1) = '1l'/2. (U.L.) 

23. Show that the relation w = ai cot 1-Z (a> 0) maps the semi
infinite strip in the z-plane for which 2'1l';> ill ;> 0, y;> 0, upon that 
half of the w-plane which lies to the right of the imaginary axis and 
which is cut along the real positive axis from:!: = a to a; = + a:>, and 
indicate the points at which conformal representation breaks down. 

Two circles with real limiting points at (± a, 0) are drawn in the 
cut w-pIane whose centres are at the points (pa, 0), (qa, 0), where 
p > q > 1. Show that the space between these circles is mapped on 
the interior of a rectangle in the z-plane whose area is 

log r(p - 1) (q + 1)/(p + 1) (q - 1)] (U.L.) 

24. Show that the region on the sphere which is represented in 
Mercator's Projection by a rectangle bounded by the lines 

cJ> = ,p1' ,p = +2' 1J! = 1J!1' 1J! = 1J!s, 

is of area a 2(tanh 1J!1 - tanh 1J!2) (+1 - +a)· 
Show also that a great circle on the sphere is represented in the map 

by a curve whose equation is of the form 
tanh 'P sin (if> + ex) = k, 

where ex and k are constants. 
25. Show that, if (,p, 8) are the spherical co-ordinates of a point on 

a rhumb line, .4+ + B log tan iO + C = 0, where .4, B, C are constants. 
26. Prove that, in the stereo graphic projection, a rhumb line is 

represented by an equiangular spiral. 
27. Show that a stereographic projection of a region on the sphere 

may be obtained by conical projection from S on to the tangent pIane 
to the sphere at N (Fig. 35). 

28. Show that the transformation 

w = (az + 1)/(z + a), 

where a is any real number except ±1, transforms the circle I z I = 1 
into I w I = 1. If, further, the circle I z - 1 I = 1 is transformed int.o 
I w + 11 = I, find the value of a. (U.L.) 

29. If w = z - 2i + (l/z), and I z 1= 2 show that t.he point w lies on 
an ellipse whose major and minor axes are 5, 3 respectively. (U.L.) 



CHAPTER VI 

THE SCHWARZ-CHRISTOFFEL TRANSFORMATION 

Conformal Transformation of a. Half-plane into a. Polygon. Let 
P be the fixed point on the real axis in the z-plane at which 
z = a. Then if z has a real value greater than a (represented 
by S in Fig. 36) the principal value of arg (z- a) is zero. 
If the point z describes the semicircular arc SEQ with P as 
centre, arg (z- a) increases by '17. . 

This is still true if the radius of the semicircle is made 
infinitesimal. Hence, if z is restricted to real values, it may be 

{?\R z-P/a:ne. 

Q P S 
., I ~ I 

z=a z=b z=c 
7Jo I 

z=k 
FIG. 36 

said that arg (z - a), which is '17 when the point z is on the left 
of P, decreases to zero when z, moving from left to right along 
the real axis, passes through P. 

Suppose that a, b, c, . . . lc are n real constants arranged in 
ascending order, and that 

F(z) = (~- a)-at (z- b)-/l (z- c)-Y ... (z- k)-IC, 

where ex, {3, y, ... K are n real constants each lying between 
- ~ and·1. Consider how the argument of F(z) varies as z 
moves along the real axis from - 00 to + 00 • 

When z is on the left of a, the argument of each of the numbers 

z- a, z- b, z- C, • •• z- k 
,tt:!' 

is 'T/' and, when z passes through a, the arguments are unaltered 
except that of the first, which decreases by '17. Consequently, 
when z passes through a, the argument of F(z) increases by r:t.'17. 

As z continues its motion between a and b, arg F(z) does 
not alter, but, when z passes through b, arg [(z- b)-Il] in
creases by P'17 and the arguments of the other factors of F(z) 
are unaltered. 

108 
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Hence, when z moves from - 00 to + 00 along the real axis 
arg F(z) increases by a t~tal amo~t (IX + {3 + y + ... +K)7T: 

Now suppose that w IS a functIOn of z determined by the 
differential equation 

dw/dz = LF(z), 
where L is a complex constant. 

The functional relation between w and z, which would be 
obtained by integration, establishes a conformal transformation 
from the z- to the w-plane. Our present purpose is to find the 
region of the w-plane which is transformed into the upper half 
of the z-plane. 

We shall assume that, when z = a, b, c, ... k, 00, the 
corresponding values of ware A, B, 0, , K, U, respectively. 
If mo, I5z are corresponding infinitesimal 
increments in the two variables, we w-?Ia.ne 
have, from the differential equation, j) 

arg ~w = arg I5z + arg F(z) + arg L. J 

As z moves from - 0() up to a, along 
the real axis, both arg ~z and arg F(z) 
remain constant and therefore wmoves 
from U to A in such a way that arg I5w 
is constant. The path of w is therefore 
the straight line UA. 

(J 

FIG. 37 

When z passes through a, arg F(z) increases by 1X7T and 
therefore arg I5w increases by the same amount. As z continues 
its motion along the segment of the real axis beii,ween a and b, 
arg I5w remains constant and therefore the point w moves 
along the straight line AB which makes with UA an angle 
1X7T measured in the positive sense. 

Siniilarly, when z passes through b, arg I5w increases by {37T 
and, as z moves from b to c, the point w moves along the straight 
line BO which makes with AB an angle {37T in the positive 
sense; and so on. After z has passed through k, w moves along 
the straight line KU which makes an angle J<7T with JK. 

Hence, as z describes the real axis, w describes the complete 
perimeter of the (n + I)-sided polygon ABO . .. KU. Since 
the upper half of the z-plane is on the left of an observer moving 
with z, the interior of the polygon is the corresponding area 
in the w-plane. It is only at the vertices of the polygon that 
the transformation is not conformal; for these are the only 
points at which dw/dz becomes zero or infinite. 
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It will be noted that, in general, one vertex of the polygon 
in the w-plane is the point U which corresponds to the point 
at infinity in the z-plane. The exterior angle of the polygon 
at U is 

21T - (IX + fJ + y + ... + K)1T. 
If, then, IX + fJ + y + . . . + K = 2, 
the points E, U, .A are collinear and the half of the z-plane is 
transformed into an n-gon ABO. . . E all of whose vertices 
correspond to finite values of z. 

In drawing Fig. 37 it has been assumed that IX, p, y, ... K 

are all positive. The interior angles of the polygon are (1- OC)1T, 
(1 - {3)1T, ••• and are all less than 7T so that the polygon is 

w-Plo.ne. 

K 

FIG. 38 

convex. If IX is negative, the interior angle lies between 1T 
and 21T and the polygon has a re-entrant angle as in Fig. 38. 

Transformation of the Interior of a Polygon into a Half-plane. 
Now suppose that a given polygon P, of n sides, in the w-plane, 
is to be transformed into the upper half of the z-plane. The 
figure may be convex or may have one or more re-entrant 
angles. In either case no interior angle exceeds 21T. Taking 
the vertices in the ordFlr which corresponds to the positive 
sense of describing the perimeter, we can measure the interior 
angles (1 - 1X}1T, (1 - fJ)1T, ••• (1 - IC)1T. The constants oc:, p, 
••• K are thus known (their sum being 2). 

Suppose first that no vertex of P is to be transformed into 
the point at infinity in the z-plane. 

Construct the function 
F(z) = (z- a)-"(z- b)-~ . .. (z- k)-"', 

where the n constants a, b, . . . k are real and in ascending 
order but their actual values are, as yet, unspecified. 
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Taking 
dw/dz = LF(z), 

which is equivalent to the relation 

w = L f F(z)dz + ]}[, 
where Land M are complex constants, we have a transforma
tion which, as we have seen in the previous section, converts 
the upper half of the z-plane into an n-sided polygon P' in 
the w-plane. The interior angles of P' are (1 - a;)'IT, (1- (3)'IT, 
. . . (I - /c)'IT, while the positions of the vertices depend on 
the values chosen for the constants. 

The two polygons P, P' are thus equiangular but, if n 
exceeds 3, they are not necessarily similar. We have to show 
that the n real constants a, b,. . . k and the complex constants 
Land M may be chosen in such a way that P' coincides with P. 

The two equiangular polygons will be similar if the n - 3 
ratios between n - 2 consecutive sides of P are equal to the 
corresponding ratios for P'. This gives n - 3 relations between 
the constants. 

To make the figures coincide, it is now sufficient to make 
two vertices of pI coincide with the two corresponding vertices 
of P. This gives four more relations (two for each vertex). 

Altogether, we have n + I relations to be satisfied by the 
n real constants and the real and imaginary parts of Land M, 
i.e. there are n + 4 constants connected by n + I relations. 
It follows that three of the constants may be chosen arbitrarily 
and that the remaining n + 1 are determinate. 

If one vertex of the polygon is transformed into the point at 
infinity in the z-plane, the corresponding factor must be 
omitted from the expression for F(z); so that the total number 
of (real) constants is now n + 3. The argument used above 
shows that these are connected by n + I relations and therefore 
two, and only two, may be chosen arbitrarily. 

In practice, it is convenient to give arbitrary values to the 
appropriate number of the real constants which correspond to 
the vertices. 

From anyone transformation which converts the w-polygon 
into the half z-plane, an infinite number of such transformations 
may be derived. As was shown on p. 87, the real axis in the 
z-plane may be transformed into the real axis in the plane of 
another complex variable Z by the relation 

(Z~Z~3) = (ZZlZ2Z3) , 
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where Z:t, ~, zs, Zl' Zg, Zs are all real but otherwise arbitrary. 
If the points Zl' Z2' Zs occur in the same order as the points 
~, ~, Za, then the upper halves of the two planes correspond. 
We now have two successive transformations, from w to z 
and from z to Z, by which the w-polygon becomes the upper 
half of the Z-plane. 

The relation which converts the polygon into the half-plane 
is known as the Schwarz-Ohristoffel Transformation. 

EXAMPLE 1. A triangle .ABO in the w-plane with angles 

U/"-Plane 

AVu=ilJ",) c 

C-' 
FIG. 39 

z-Plane. 

A 13 
J I 

Z--1 Z-f 

(1- ex)7T, (1- {J)7T, (1- 'Y)1T, is transformed into the upper half 
of the z-plane by the relation 

dw/dz = L(z- a)-"'(z- b)-Il(z- c)-Y, 

where, slnce the sum of the angles is 7T, ex + {J + 'Y = 2. The 
values of the real constants a, b, c may be chosen arbitrarily. 
In general, the differential equation is not integrable in terms 
of elementary functions. 

There is a particular case which is of some importance in 
practice, and in which the integration is easy, viz. when 
ex = {J = t and 'Y = 1. The triangle then becomes a semi
infinite strip. By suitable choice of axes we can take it to lie 
in the positive quadrant and to be bounded by the lines v = 0, 
u = 0, v = VI. The vertices A, B, a (Fig. 39) are then the 
points given by w = iv1, 0, 00 , respectively, and we may take 
the corresponding points on the real axis of z to be given by 
z = - 1, + 1, 00 , respectively. 

The required transformation will be given by 

dw/dz = L(z + I)-*(z - I)-i, 

since the factor corresponding to the vertex 0, at which z is 
to be infinite, must be omitted. 
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Integrating, we have 

w = L !('1,2_1)-idz + M 

= Lcosh-1'1, + M 
= L log['1, + ('1,2 - l)i] + M, 

where the logarithm has its principal value. 
At B, w = ° and '1, = 1 and therefore M vanishes. At A, 

w = iV1 and '1, = - 1: . hence L is determined by the condition 
that 

iV1 = L log ['1, + ('1,2_ 1)*] 
when '1, = - 1. Now, if'1, is on or above the real axis, its principal 

ur-Plane 

.4(W=iv;) D z-Plane 
v=tI) I 

I 
I 
I 

",' -- .... , .. , 
I I 

, 
I 

:0 I 
, . 

. lJ"=O ~=o) I . . 
A 13 C 

Z=-T z=o Z=1 
FIG. 40 

argument ranges from 0 to 71'. Consequently the appropriate 
value of the logarithm at '1, = - 1 is iTT and it follows that 

L = vl/1T. 
The equation of the transformation may be written 

w = (VJTT) cosh-lz, 
or '1, = cosh (1TWlv1). 

If now we apply a bilinear transformation which converts 
the upper half ofthe'1,-plane into the upper half ofa Z-plane, we 
obtain a transformation from w to Z which has an effect similar 
to that from w to '1,. For instance, take z = - lIZ and we 

. have 
Z = - sech (1TWlv1 ) 

as the relation which converts the strip into the upper half of 
the Z-plane in such a manner that the vertices B, C, A become 
the points Z = - I, 0, 1, respectively. 

EXAMPLE 2. Consider the doubly infinite strip bounded by 
the lines v = 0, v = V1 (Fig. 40). 
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The strip may be regarded as the limiting form of a rhombus 
ABCD (where A and C are the points w = iv1, W = 0, respec
tively) when each of the angles at A and C is made equal to n 
and those at Band D become zero. With the notation of 
p. 110, we have 

1 - IX. = 1 - Y = 1 and 1 - fJ = 1 - () = 0, 
i.e. oc = y = 0 and fJ = () = 1. 

The real values of z at B, 0, D may be chosen arbitrarily 
provided that they are in the proper order: for simplicity 
we take them to be 0, 1, 00, respectively. The transformation 
is then given by 

dw/dz = Lz-l 
which gives w= Llogz + M. 

It will be noted that, since oc = 0, the value of z at A does 
not occur explicitly in the equation. On inserting the values 
at C (w = 0, z = 1) we see that M vanishes. 

At any point on BD, z is positive and w is real and therefore 
the constant L is purely real. To determine its actual value, 
we consider the transformation from the z- to the w-plane of 
the semi-circle above the real axis which has unit radius and 
centre B. At any point on the arc, z = exp (iB), where ° ..;; () ..;; n, 
and so 

w = u + iv = LiB, 

from which we have 

u = 0, and v = LB. 

Therefore the semicircle corresponds to the straight line AO 
in the w-plane. 

As z describes the arc in the clockwise sense, log z decreases 
by in and, as the corresponding point w moves from A to 0, 
the value of w decreases by iv1 • 

It follows that 
iVl = £iTT 

and so the equation of the transformation may be written 

w = (vdn) log z 
or z = exp (1TW/V1). 
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EXAMPLE 3. Transform the doubly-infinite strip of the 
w-plane between the lines v = 0, v = Tr, when there is a slit 
along the line v = VI from the point w = iVI to the point at 
infinity (Fig. 41). 

The given figure may be regarded as the limiting form of the 
quadrilateral ABOD when the angle at A becomes 21T and all 
the other angles become zero. The vertex A is at the point 
w = iVI and all the other vertices are at infinity. 

D 

B 

D_ 

D--
c 08.... V-=lJi 

~W-=il/"l) 

_C 
v--rr 

w-?Iane 

B- '(/'=0 -c 

z-Pfune p~) 

c- ~~c 
Z=-l z=a Z=I 

FIG. 41 

The constants are now given by 

1 - IX = 2, 1 - fJ = 1 - 'Y = 1 - c5 = 0, 
whence IX = - 1, f3 = 'Y = c5 = l. 

We can take the values of z at D, A, B, 0 to be - I, a, 1,00 , 
respectively, where a, which is yet to be determined, lies 
between - 1 and 1. The points are then in the correct order. 

The transformation is given by 

dwldz = L(z + l)-I(Z- a) (z- 1)-1, 

since the factor corresponding to 0 has to be omitted. 
Using partial fractions we may integrate this in the form 

w = iL(l - a) log (z - I) + iL(l + a) log (z + 1) + M, 

the logarithms having their principal values. 
Let a point z move from - 00 to + 00 along the real axis 

in the z-plane, making small semicircular detours above the 
axis about the points D and B in order to avoid the singularities 
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of log (z + 1) and log (z - 1). As the point moves round the 
semicircle which has D as centre, log (z + 1) decreases by in 
while the variation in log (z - 1) approaches zero when the 
radius is diminished to zero. At the same time, the corre
sponding point in the w-plane moves from a position near 
D on CD to a position near D on DA and so w decreases by an 
amount i(n - VI)' 

Equating the discontinuities in wand in the expression on 
the right-hand side of the equation of transformation, we have 

i(n - VI) = iL(l + a)i7T. 

Dealing similarly with the point B (z = 1), we deduce that 

iVI = iL(l - a)i7T, 

whence it follows that 

L = I and a = 1 - (2V1/7T). 

The value of the constant M may be found by using the 
values at A, -viz. w = ivl , Z = a. 

If the slit is midway between the outer boundary lines, 
VI = n/2 and a vanishes. The constant M also vanishes and 
the equation takes the simple form 

w = t log (Z2 - I), or Z2 = I + e2w 

EUMI'LE 4. Consider the doubly:infinite strip of which the 
width changes suddenly from h to k (Fig. 42). We may regard 
this :figure as the limiting form of a quadrilateral ABCD in 
which AD is along the line v = k, B is the point w = i(k- h), 
and 0 the point w = O. When the angles at Band 0 are made 
equal to 3,"/2 and 7T/2, respectively, the quadrilateral opens out 
into the strip, and we have, in the usual notation, 

1 - ex = I - <5 = 0, 1- f3 = 3/2, 1 - Y = 1/2 
and ex = <5 = I, f3 = - 1/2, Y = 1/2. 

Taking the values of z at A, B, 0, D to be 0, I, c, OCJ, respec
tively, where c, which exceeds unity, is yet to be found, we 
have 

dw/dz = LZ-l(Z - l)i(z - c)-i 
= L(z - l)-i(z - c) -t(l - Z-l). 
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Hence 

w = L j(Z-1)-i(Z- c)-idz- L f z-1(z-I)-i(z-c)-ldz +M 

=L j(Z-I)-i(Z- e)-idz + Lj(I-t)-l(I- et)-idt, + N, 

where t = lIz. 

Substituting z = e cosh2 0 - sinh2 0, 
we have 

j(Z- I)-i(z- c)-ldz = 20 = cosh -1 [(2z- c- l)/(c - I)]. 

'A- u-=" ~D A 
w=oo ~ 

f 
w=oo ~---------------,,~ 

z=o 

A...-

h Z=oo 
g·w ... i., (J.c-h) 

1J- ... k,-h z =/ k w-Plane 

c w=o 
z=c 

'v-=o ~D 

D_ 

Again, if 

z-Plane 

B 
I 

C 
I 

'Z"O Z=7 z=c 
FIG. 42 

c 

-D 

ct = cosh!! q, - C sinh2 q" 

j (1- t)-i(l- et)-tdt = - 2c- iq, 
= - c- i cosh-1 {[(e + I)z- 2c]/[(c-l)z]}. 

The relation between wand z is therefore 

w = L 008h- 1 [(2z- c-I)/(c -1)] 
- £o-l cosh -1f[(e + l)z- 2c]/[(c- l)z]} + N, 

where L, N, and c have to be determined. 
Now the above expression for dwldz in terms of z has a simple 

pole at z = 0 and the residue there is £o-i. When the point 
z moves counter-clockwise in a small semicircle about A(z = 0) 
in the z-plane, w increases by ih, since the point w moves from 
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the line v = k - h on to v = k. Hence, by equating the 
integral of dwldz round the semioircle in the z-plane to the 
known increment of w, we have 

niLc- i = ih. 

(See Example 20, p. 76.) 
Using the values at B (w=i(k -h),z= 1) and G (w= 0, z=c) 

we find that 
mL(I- c- i) + M = i(lc- h) 

M=O 
and therefore 

L = kltT and c = (k/h)2. 

The equation of the required transformation is 

w = (k/7T) oosh-1 [(2z- c- l)/(c-l)] 
- (h/7T) COSh-l{[(C + 1)z- 2c]/[(c-1)z]}. 

EXERCISES 
1. The z-plane is slit along the semi-infinite lines x = ± h, 'U < o. 

Prove that the region bounded by the edges of the slits can be trans
formed confol'lll.ally into the half-plane Y > 0 of a complex variable 
Z (= X + iY) by means of an equation of the form 

dz/dZ = Ai(za - 1)/Z, 

where A is a real constant. Determine the value of A. and express z 
in terms of Z. (U.L.) 

2. Show that the region, in the positive quadrant of the w-plane, 
bounded by the lines u = 0, 1) = 0, U = 1 (1) > 1), 1) = 1 (u> 1), is 
transformed into the upper half of the z-plane by the relation 

'ITW = cosh -1 z - sin -1 (lIz) + 1T/2. 
3. Show that the relation 

w = 2a(z + l)t + log [(z + l)t + 1] - log [(z + l)l - 1] + i1l' 

maps the upper half of the z-plane on the positive quadrant of the 
w-plane with a slit along the line 1) = 'Ir, u;;;' h, where w = h + i'IT 
when z = lla, both a and h being real and positive. 



CHAPTER VII 

. APPLICATION TO POTENTIAL PROBLEMS 

Green's Theorem. On p. 66 we obtained Stokes's theorem in 
its two-dimensional form 

1 (p dx + q dy) = J J(q", - p,Jdxdy. • (1) 

where suffixes denote partial derivatives. 
Let (x, y), (x + dx, y + ay) be the ends of the arc ds of the 

curve 0, and let y be the angle between the x-axis and the 
inward-drawn normal at a point in d8 (Fig. 19, p. 65). Then 

ax = cos (y - t'7T)d8 = sin yds 
and ay = sin (y - i'7T)ds = - cos yds. 

In (1) put p = cpO¥ and q = - cpOa:, where cp and () are any 
functions of x and y which, along with their :first derivatives, 
are finite throughout the area bounded by O. Then 

p dx + q dy = cp(01Jax - Oa:dy) 
= cp(Oa: cos Y + OS! sin y) 
= cp(oO/,an)ds, 

where dn is the element of the inward-drawn normal. 
Hence equation (1) may be written 

iacp(;HJfdn)ds = - J J [cp(Oa::t + ()gg) + CP:t0a: + cpli1J]dxdy (2) 

On interchanging 0 and cp and subtracting the result from (2), 
we have Green's theorem in its two-dimensional form 

1 [cp(a()/dn) - O(dcpl'dn)]ds 

= J f[()(cpa:a: + CPVII)-CP(Oa:IIJ + Ogy)]dxay (3) 

In particular, if we make e = cP and assume cp to be a real 
potential function (i.e. cPJJl/J + CP'l/!I = 0), equation (2) gives 

.£ cp(acfolon)d8 = - f J(cfollJ2 + CPl/2)dxdy . (4) 

119 
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It follows that, if cp = 0 at all points on the curve G, the 
double integral on the right-hand side of (4) vanishes. But, 
since the sum of two real squares cannot be negative, cp", and Cp" 
must both be zero at all points of the region bounded by G. 
The function cp is therefore constant and, being zero on G, 
must be zero at all points of the region. 

Again, if ()4>jdn vanishes at all points on G, it follows in the 
same way that cp", = Cp" = 0 and that cp is constant throughout 
the region. 

Now suppose iihat 4> and 4>' are two potential functions which 
are equal at all points on G. Since 4> - <fo' is a potential function 
which is zero at all points on 0, it vanishes at all points of the 
region. It follows that there cannot be more than one potential 
function which has prescribed values at all the points of a 
simple closed contour. 

Further, suppose that two potential functions <fo and cp' have 
equal normal derivates at all points on O. Then 4> - <fo' is a 
potential function such that its normal derivate (alan) (<fo - 4>') . 
vanishes at all points on G. It must therefore be constant 
throughout the region. Thus the functions cp and cp' only differ 
by a constant. 

As will be seen in the remainder of this chapter, two-dimen
sional problems in mathematical physics generally reduce to 
:finding a potential function whose values, or those of its normal 
derivate, are prescribed on the boundary. 

Hydrodynamics. When fluid moves in two dimensions, i.e. 
in such a way that the motion is the same in all planes parallel 
to a fixed plane, it is sufficient to consider the motion of a 
sheet of fluid in one of the planes, which we can take to be that 
of the complex variable z. If the fluid is incompressible and 
free from viscosity, motational motion (motion without spin) 
is determined by a 'velocity potential 4> whose value at any 
point (x, y) is a function of x, y, and, in general, the time. 
If <fo is independent of the time, the motion is 8teady. 

The component velocities in the directions of the axes at 
the point (x, y) are - 4>"" - Cp", The equation of continuity, 
which expresses the fact that matter is being neither created 
nor destroyed, becomes 

4>",,,, + 4>1111 = 0, 

which is Laplace's equation in two dimensions. 
From p. 51, it follows that, if <fo satisfies this equation, there 
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is a function of the complex: variable z = x + iy which has 
cP for its real part; thus 

w = cP + itp =/(z). 

The function tp, which is the conjugate of cP, is called the 
8tream function and w is called the complex potential. 

Since cP., = "PII and cP" = - tp." the component velocities at 
(x, y) are - tp", "Pre and the differential equation to the stream 
lines may be written 

or 
"- dX/tpll = dy/tp., 

"Pr.dx + tp"dy = o. 
On integrating we have the equation of the stream lines in 

the form "P = constant. These lines are cut orthogonally by 
the equipotential lines rp = constant. 

Let the velocity of the fluid at the point (x, y) be q in a 
direction which makes an angle (X with the positive direction 
of the x-axis. Then 

tp" = CPa; = - q cos (X, tp., = - CPII = q sin (X 

and therefore 

dw/dz = CPr. + i"P", 
= - q(cos (X- i sin (X) 

= q exp [i(11' - (X)]. 

Hence q = Idw/dz I and 11' - (X = arg (dw/dz). 
By taking any fUllction of z as complex: potential, we obtain 

immediately a possible form of the stream lines in an irrotational 
motion in two dimensions. 

EXAMPLE 1. If w = cP + i1p = U(x + iy), where U is real 
and positive, the stream lines are the parallel straight lines 
y = constant. Since rp., = U and rp" = 0, the velocity is every
where equal to U in the negative direction of the x-axis. 

EXAMPLE 2. If w = U(x + iy)2 the stream lines are the 
rectangular hyperbolas xy = constant. 

EXAMPLE 3. Let 

w = U(z + a2/z) 
= U(r + a2/r) cos (j + iU(r - a2Jr) sin 0, 

where z = r exp (iB) and U is real and positive. 
5-(T·I.') 
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The stream lines are given by 

"P = U(r - a2/r) sin e = constant 

and the line "P = 0 reduces to the circle r = a and the straight 
lines 0 = 0, 0 = TT. 

Since a stream line may be made a rigid boundary, we 
obtain the complex potential for the flow past a cylinder whose 
trace on the xy-plane is the circle r = a. 

With the notation used above, 

- q exp (- ioc) = U(l - a2/z2 ) 

from which it is seen that, at infinity 

- q exp (- ioc) = U. 

Thus at an infinite distance from the cylinder, q = U and 
oc = 71', i.e. there is parallel streaming with velocity U in the 
negative direction of the real axis. 

It should be noticed that the complex potential consists of 
two terms: Uz which corresponds to the parallel streaming 
and Ua2/z which represents the disturbance produced by the 
cylinder. 

Writing ze -if] in place of z, which is equivalent to turning 
the axes through an angle (3, we get 

(5) 

as the complex potential for flow past the cylinder when the 
undisturbed velocity of the stream is U inclined at an angle {3 
to the negative direction of the x-axis. 

CONFORMAL TRANSFORMATION. Let</> + i"P =f(z) be the com
plex potential for the motion of a sheet of fluid in the z-plane. 
The boundaries, supposed rigid, will then be curves of the 
family "P = constant. If we apply a conformal transformation 

z = F(Z) 

from the z- to the Z-plane, where Z = X + iY, we have 

</> + i"P = f(z) = j[F(Z)] = G(Z), say. 

Thus cP and "P, considered as functions of X and Y, are the 
velocity potential and the stream function for a motion in 
the Z-plane, the boundaries being the curves into which the 
original boundaries are transformed. 



APPLICATION TO POTENTIAL PROBLEMS 123 

By applying this principle, it is possible to deduce from a. 
known motion an unlimited number of others. 

EXAMPLE 4. It was shown on p. 93 that the transformation 

Z = z + a2/z 

converts the circle Izi = a into a straight line (a degenerate 
ellipse) between the points Z = ± 2a. 

If we apply this transformation to the result (5) on p. 122, 
we obtain the complex potential for flow past a flat plate of 
width 4a inclined at an angle (3 to the general direction of the 
stream which, at infinity, has a speed U. 

Electrostatics. Suppose that electric charges are so distri
buted that conditions are the same in all planes parallel to 
that of the complex variable z.' The electric field is then 
two-dimensional and it is sufficient to consider points in the 
z-plane. 

The potential V at the point z is a real function of x and y 
which, if the point is free from charge, satisfies the equation 

Vll)"'+ V yV = O. 

It follows that we can find a function of z which has V for 
its imaginary part; thus 

W = U + iV = f(z). 

The equipotential lines V = constant are cut orthogonally 
by the lines of force U = constant. The equipotential surfaces 
are, of course, cylinders of which the curves V = constant 
are the cross-sections. Included among these are the surfaces 
of conductors. 

The components of electric force at the point z are - V." - V Y 

and so the resultant intensity R is given by 

R2 = V",,2 + V y 2 = Urr,2 + V",2 = Id Wldz 12• 

By the conformal transformation z = F(Z), W becomes the 
complex potential for a field in the Z-plane in which the equi
potentials are obtained by transforming the equipotentials in 
the z-plane. The values of V are the same at corresponding 
points in the two planes. 

EXAMPLE 5. Consider Example 3 on p. 115, which is illustrated 
by Fig. 41. 
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H P (with affix z) is any point in the upper half of the z-plane 
and 81 = LOBP, 82 = LODP, then the function 

V = (klrr) (81 - ( 2 ), 

where k is real, is the imaginary part of 

(k/'TT)[log (z- I)-log (z + 1)] 

and is therefore a potential function. 
When P is on BO or OD, V vanishes and, when P is on 

DAB, V = k. Hence the function V is the potential when 
BO and OD are conductors at zero potential and DAB is a 
conductor at potential k. The equipotential lines are circular 
arcs joining Band D. 

On transforming the figure in the z-plane by the relation 

w = iL(1 - a) log (z - 1) + tL(I + a) log (z + 1) + M 

given on p. 115, we obtain the form of the potential in the field 
due to two parallel plates, at zero potential, when a plate at 
potential k is placed between them. 

When the third plate is midway between the other two we 
have . 

where 
U + iV = (klrr) log [(z - I)/(z + 1)], 

Z2 = 1 + eilw• 

Current Flow in a Plane Sheet. Suppose that an electric 
current flows in a uniform plane sheet of metal which coincides 
with the z-plane. The potential V satisfies Laplace's equation 
in two dimensions and so, as before, we must have a relation of 
the type 

U + iV =f(z), 

where U may be called the current function. The lines of flow 
are given by U = constant, and among these are included the 
boundaries of the sheet. 

It is easily seen that the conditions are similar to those of 
two-dimensional flow of a fluid for which the complex potential 
is if(z). Suppose, for instance, that the sheet is infinite in extent, 
and that the lines of flow are parallel straight lines. If now a 
circular hole is made in the sheet, the conditions are exactly 
like those of the flow of fluid past a circular cylinder, a case 
which has been considered above (p. 122). 



APl'LICATION TO POTENTIAL PROBLEMS 125 

Just as in hydrodynamics, conformal transformations may 
be used to obtain further results from known solutions. 

Conduction of Heat. Let heat flow steadily in two dimensions 
parallel to the z-plane in material of uniform conductivity K. 
If 6 is the temperature at the point z, the flux of heat at that 
point in the x-direction is - KO II and the flux in the y-direction 
is - K6",. From the fact that there is no net gain or loss of 
heat in a rectangle of sides dx, dy with one corner at the point 
(x, y), it is deduced that 

'0.,,,,+0 1111 =0. 

Consequently in the theory of heat flow there occurs the 
relation 

cp + iO = j(z). 

The lines of :flow cp = constant are cut orthogonally by the 
isothermals 0 = constant. 

EXAMPLE 6. In Example 1 on p. 112, we transformed the 
semi-infinite strip of the w-plane, bounded by v = 0, U = 0, 
v = Vl' into the upper half of the z-plane by means of the 
relation 

z = cosh (7TW/Vl ). 

Suppose that the strip is of uniform thermal conductivity 
and that the parallel edges BO and AO (Fig. 39) are kept at 
zero temperature, while AB is kept at a uniform temperature T. 

In the corresponding figure in the z-plane, we have () = T 
on.AB and 0 = 0 on AO and BO. 

Hence cp + iO = (T/7T) log [(z - l)/(z + 1)] 

and so, in the w-plane, 

cp + iO = (T/7T) log {[cosh (7TW/V1)- I]/[cosh (7TW/Vl ) + I]} 
= (2T/7T) log tanh (7TW/2v1). 

EXERCISES 
1. If '" + i1fl = j(z), show that A"" 08 = 0'P/ on a;nd ocp/ an = - alP/ as, 

where ds a;nd dn are the elements of the arc a;nd inward normal of the 
curve C in Fig. 19, p. 65. 

2. Sketch the equipotentials a;nd stream lines when the complex 
pot,ential has the values Z-2, eO, cos z, zi, tan -1 z. 

3. Two infinitely long uniform circular cylinders, placed with their 
axes parallel, attract according to the Newtonian law. The gravitational 
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potential V at a point outside both cylindel's and at distances r, r' from 
their axes is given by 

v = constant - 2k log (rr'), 

where k is a constant. Prove that the lines of force outside the cylinders 
are arcs of rectangular hyperbolas. 

4. Find the isothermals and lines of flow in the strip discussed in 
Example 6 on p. 125 and show that the resultant flux of heat at the 
point (u, v) is (4KT/v1)/cosh (211U/V1) - cos (2'1'r'l'/v1). 

5. Assuming that the pl'essure p and the velocity q satisfy Bernoulli's 
equation (pIp) + tq2 = constant, show that, in liquid, ofuciform density 
p which flows steadily, parallel to the z-plane, with complex potential 
w, the curves of constant pressure are the level curves of the function 
dw/dz. 

6. Prove that, if u + iv = f(x + iy), 

V",,,, + 171/1/ = If' (x + iy) 12 (Vuu + V",,). 



CHAPTER VIII 

APPLICATION TO THE THEORY OF ALTERNATING 
CURRENTS 

Nota,tion. Throughout this chapter, which is devoted to a 
brief discussion of the application of the complex variable to 
the theory of alternating currents, we shall conform to the 
customary notation of the electrical engineer by using the 
symbol i to denote the current and j for V(- I). 

Harm?nic v~ctors. Let a point P in the Argand diagram 
move WIth umform angular speed w radians per second in a 
circle of radius a which has the 
origin as centre (Fig. 43). If at zero 
time the point is at Po on the real 
axis, at time t the angle PoOP 
(known as the phase angle) is wt and 
the rotating vector represents, at 
the time t, the complex number A 
given by 

A = a exp (jwt). 

If N is the foot of the ordinate 

!J 

at P, the motion of N is defined FIG. 43 

to be simple harmonic motion. Since 
all the characteristics of the motion of N are determinate when 
the vector OP is given, we call OP a harmonic vector. 

OP completes a revolution, and therefore N completes an 
oscillation, in time 217/W, which is defined as the period. The 
number of revolutions of OP (or oscillations of N) per second 
is defined as the frequency and is W/217. 

Vector Representation of an Alternating Current. An alter
nating current is a periodic function of the time. The simplest 
type of such a current is that given by 

i=iocoswt . (1) 

where io is the maximum value of the current. A complete 
cycle occurs in the period 27T/W, and the frequency is w/2r. 
cycles per second. 

In practice, alternating currents may not always be given 
127 
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by expressi(;ms so simple as this, but since, by Fourier's 
theorem, a function jet) which has a period 27T/W is expressible 
in the form 

"" jet) = tao + ~ (an cos nwt + bn sin nwt), 
n-l 

where the a's and b's are constants, it is sufficient for our pur
pose to consider a single term like io cos wt. Results obtained 
for this term will be similar to those obtained for any other 
term in the series; and for the majority of circuits all these 
results may be superposed to give the result for jet). A sine 
term, of course, is not essentially different from a cosine: for 
we may write sin wt as cos (wt + 37T/2) . 

.It will be noticed that equation (1) is of exactly the same 
form as that which gives the displacement of the point N 
considered on p. 127, viz. 

ON = a coswt. 

Just as the characteristics of the motion of N may be deduced 
from the harmonic vector op which represents A, so we may 
discuss the alternating current i by making use of a current 
vector which represents a complex number I defined by the 
relation 

1 = io exp (jwt). 

The actual value of the current at the instant is then given by 
the real part of I. 

On differentiating with respect to t we have 

dl/dt = jwio exp (jwt), 

from which it is seen that differentiating with respect to t is 
equivalent to multiplication by jw. 

Impedance of an Inductive Coil. Suppose that the alter
nating . current i is produced in a coil of inductance Land 
resistance R, where Land R are both constant and are expressed 
in suitable physical units. Then, if v is the potential difference 
between the ends of the coil at time t, the well-known equation 
for the current in an inductive circuit gives 

v = Ri + L(di/dt) 
= the real part of (R + jwL)I, 

where v is expressed in volts when i is in amperes, R in ohms, 
and L in henries. 
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Hence the potential difference v is the real part of a complex 
number V, such that 

V = (R + jwL)1 = zl . (2) 

where z (= R + jwL) is a complex constant which is defined 
to be the impedance of the coil. The imaginary part of the 
impedance is wL and is defined to be the reactance: the real 
part of the impedance is seen to be the resistance R. 

·Writing z in the form Z exp (j</;), we have 

V = Zio exp (jwt + jcP) • (3) 

The voltage vector, which represents r, is therefore of length 
Zio and its phase is in advance of that of I by an acute angle cP 
such that tan cP = wL/R. It follows that the voltage vector is 
itself harmonic. 

It will be noticed that the voltage and current vectors are 
in the same phase only when L vanishes, i.e. when the coil is 
non -inductive. 

The reciprocal of the impedance is called the admittance; 
in this instance its value is 

l/(R + jwL) = (R- jwL)/(W + w2L2). 

Impedance of a Condenser. Let a condenser of capaci
tance 0 farads be included in a circuit in which alternating 
current i is flowing. If q is the quantity of electricity (expressed 
in coulombs) stored in the condenser and v is the potential 
difference (in volts) across the plates at time t, 

Hence 
and so 

v = q/O and dq/dt = i. 
dv/dt = i/O 
jwV = I/O, 

where V and I are the potential and current vectors. 
'Ve have therefore 

V = (- j/wO)I = zl, 

where, as before, z is the impedance, which for the condenser 
is (- j/wO), a purely imaginary quantity. 

Now since 
arg (- j/wO) = - 7T/2 

arg V = arg I - 7T/2, 

so that the potential difference vector lags behind the current 
vector by a quarter of a period. 
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Impedances in Series. Let a number of elements of impedance 
Z:!, Z2' ••• Zn be connected in series (Fig. 44). Then, with the 
same notation as before, the potential difference is given by 

v = Hle real part of (zlI + z2I + ... + znI), 
i.e. V = (ZI + Z2 + ... + zn)I. 

The impedance of the system in series is thus the sum of the 
separate impeda,nces. 

Zn Impedances in Parallel. Let 
.A.NvVvv- iI' i2 , • •• in be the currents in 

then parallel sections of imp ed
ance Z:!, Z2' ••• Zn (Fig. 45), 

and let II' 12 , ••• In be the corresponding current vectors. 
Then if the potential difference vector is V, 

V = Z:!Il = Zzl2 = ... = z.,J" 
and I = II + 12 + ... + In 

= [.!. + !.. + ... + ~I ] V = [}:;(l/z)] V. 
Z:! Z2 "'-n 

The admittance of the system of parallel impedances is 
therefore the sum of the admittances of the elements of the 

Z, 

Z2 L, 

LZ 

i 

Zn 
in 

FIG. 45 

c 

L,.R 

FIG. 46 

l. 

system. The impedance is the reciprocal of the admittance and 
is equal to 

l/(}:;(l/z). 

EXAMPLE 1. To find the impedance of a condenser and a 
coil in parallel (Fig. 46). 

The impedance of the condenser is (l/jwC) and that of the 
coil is R + jwL. The admittance of the two in parallel is 
therefore 

jwC + l/(R + jwL) = (1 - w2CL + jwCR)/(R + jwL). 
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On inverting this we have the impedance 

(R + jwL)/(1 - w2CL + jwCR) 

= [R + jw(L - w20L2 - CR2)]f[(1 - w 20L)2 + W 2C2R2]. 
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The denominator of the expression has been made real by the 
usual device of multiplying by the conjugate number. . 

Impedance of Parallel Wires. Let the ends Band D of 
two equal parallel wires be connected and let an alternating 
potential difference be maintained between the ends A and a 
(Fig. 47). 

A P Q. B 

P( ~-'--------X-------~!-.s-;+-: -----.-.;, 
C pI 0. ' D 

Cox £]~lL8"'!"'~ 
GS:x: 

p' 0.' i L5x.jRSx: 
FIG. 47 

The circuit or " loop" has four primary constants: 
(i) The resistance R ohms per unit length of the pair of wires. 
(ii) Since insulators are never perfect, there is a certain amount 

of leakage from wire to wire. If the conductance of the path 
of leakage between unit lengths of the two wires be G mhos, 
we may define the leakance to be G per unit length of loop. 

(iii) The inductance L henries per unit length of loop. 
(iv) The capacitance between wire and wire which we take 

to be 0 farads per unit length of loop. 
We shall suppose that, at time t, the current is flowing in 

the sense AB, DO. If P and P' are points on AB and CD such 
that AP = OF' = x, the strength of the current i at P is 
clearly equal to that at P', in other words, the current i at 
the instant is a function of x only. As usual, we take I to be 
the corresponding current vector. Take PQ = P'Q' = ox; 
then each of the elements PQ, P'Q' is of resistance tRox, 
inductance fLax, and impedance t(R + jwL)ox. 

Suppose that the potential difference between P and P' is 
v, then that between Q and Q' is v + av; the corresponding 
vectors are V and V + 0 V. 
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Now if Ep denotes the potential at P, 
Ep-Ep' = v 

and EQ- E Q• = v + 6v, 
whence Ep - EQ + E Q, - Ep. = - ov • (4) 

But each of the potential differences (Ep- EQ)' (E Q,- E p') 
is the real part of t(R + jwL)ox.l, and so we have, from (4), 

- ov = the real part of (R + jwL)6x.I. 
Therefore - oV = (R + jwL)6x.l, 

which gives, aft·er dividing by - ox and making 6x tend to 
zero, 

dV/dx = - (R + jwL)I • (5) 

Now the flow between PQ and P'Q' is that due to·a condenser 
of capacity Oox and a conductance G6x in parallel. The 
resultant conductance is 

Gox+jwOox 

and the current shunted between the wires is therefore the 
real part of 

(Gox + jwOox) V. 

Since the loss of current in the section is the real part of 
- OJ, it follows that 

OJ = -(G + jwO)ox. V 
and that dlldx = - (G + jwO) V . . (6) 

Differentiating (5) with respect to x and using (6), we get 
d2V/dx2 = - (R + jwL) (dlldx) 

= (R + jwL) (G + jwO) V (7) 

In a similar way it may be shown that 
d2Jldx2 = (R + jwL) (G + jwO)l (8) 

so that V and I satisfy the same differential equation 
d2y/dx2 = k2y, 

where k2 = (R + jwL) (G + jwO) . (9) 

The most general value of V which satisfies (7) is given by 
V = a exp (kx) + b exp (- kx) 

= (a + b) cosh kx + (a- b) sinh kx, 
where a and b may be determined from the end conditions. In 
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this case a and b, although independent of x, are functions of t. 
If the potential difference between A and 0 at the instant is 
Vo cos wt, then the conditions which d~termine a and b are that 

V = Vo = Vo exp (jwt) when x = 0 
and V = 0 when x = AB = 1. 

Thus a + b = Vo and (a + b) cosh kl + (a- b) sinh kl = 0, 
from which 

V = Vo cosh kx· Vn coth kl sinh kx 
= Vo cosech kl sinh (k1- kx) 

The value of I may now be obtained from (5), and is 

1=- [1/(R + jwL)J(dVJdx) 

• (10) 

= [(G + jwO)/(R + jwL)]t cosech kl cosh (kl- kx). 

EXERCISES 
1. An inductive coil is of resistance R ohms and inductance L henries; 

a non-inductive coil is of resistance r ohms; and a condenser is of 
capacitance C farads. Show that the impedance of 

(i) the :first coil and the condenser in series is 
R + [j(coIOL- 1)/coO]; 

(ti) the second coil and the condenser in pa.rallel is 
R(l - jwCR)/(1 + C020 IRI); 

(iii) the two coils in parallel is 
[r(RI + Br + w2LI) + jooLr]/[(R + r)2 + coILS]. 

Also,:find the admittance of each of the above in the form A. + jB. 
2. Show that, if 10 and Vo are the current and potential differ

ence vectors at the ends A, C of the parallel wires (p. 181) and 
Z02 = (R + jcoL)/(G + joo<;]), 

V = Vo cosh lex -loZo sinh lex 
and 1 = 10 cosh lex - (Vo/Zo) sinh lex. 

If the length of the loop is inade infinite, show that 
V = Vo exp (- lex) and I = (Vo/Zo) exp (- lex). 

8. If the ends B, lJ of the parallel wires are not connected, show that 
V = Vo sech kl cosh (kl- lex) 

and 1 = (Vo/Zo) sech kl sinh (kl- lex). 



A.PPENDIX 

SUGGESTIONS FOR FURTHER READING 
THE litera.ture of the subject is so vast that some suggestions as to 
further reading (in English) may be helpful. 

The subjects introduced in the first three chapters of this book are 
treated in Hardy's Course of Pure Mathematics, the whole of which is 
indispensable to the intending mathematical specialist; in Hobson's 
Plane Trigonometry; and in Bromwich's Theory of Infinite Series. 

In connection with Chapters IV-VI, the reader may consult Titch
marsh's Theory of Functions, Harkness and Morley's Introduction to the 
Theory of Analytic Functions, Whitaker and Watson's Modern Analysis 
(especially Chapters V and VI), and Caratheodory's Conforrrw.l Repre
sentation. Forsyth's Theory of Functions of a Complex Variable is an 
exhaustive treatise on the whole subject. 

Full details of the applications to mathematical physics will be found 
in the special treatises such as Jeans' Electricity and Magnetism, Livens' 
Theory of Electricity, Lamb's Hydrodynamics, Milne-Thomson's Theoreti
cal Hydrodynamics and Carslaw's Mathematical Theory of the Conduction 
of Heat. An illuminating account of applications to these, as well as 
other subjects, is to be found in Bateman's Partial Differential Equations 
of Mathematical Physics. 

The engineering student will find plenty to interest him in the 
Theory of Functions as applied to Engineering Problems by Rothe, 
Ollendorff, and Pohlhausen (English translation published by the 
Technology Press, Massachusetts Institute of Technology). Interesting 
applications to aeronautics are given in Glauert's Aerofoil and Airscrew 
Theory. Miles Walker's Conjugate Functions for Engineers deals with 
applications of the Schwarz-Ohristoffel transformation to potential 
problems such as are of importance to the electrical engineer. The 
symbolic theory of alternating currents is given in Clayton's Alternating 
Currents and in Telephone and Power Transmission by Bradfield and 
J' ohn .. The latter book contains many fully-worked numerical examples. 
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