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PREFACE

Ta1s book is intended to give an introductory account of the
fascinating subject of the complex variable and conformal
transformation, with some indication of applications to
problems of mathematical physics, aeronautics, and electrical
engineering. It demands from the reader little more in the
way of preliminary equipment than some knowledge of the
calculus (including partial differentiation) and analytical plane
geometry. . ’

The needs of those reading Pure Mathematics for the General
and Special Honours degrees in Arts and Science of the Uni-
versity of London are practically covered by Chapters I-ITI,
while those presenting Advanced Subjects should be helped
by Chapters I-VIL. Candidates in Mathematics at the B.Sc.
(Eng.) will need Chapters I-III and at least part of Chapters
IV and V.

The electrical engineer may read Chapter VIII, on the use of
the complex variable in alternating current problems, im-
mediately after Chapters I and II.

Thanks are due to the University of London for permitting
the inclusion among the exercises of questions set at examina-
tions for Pass, General and Special Honours degrees in Arts,
Science and Engineering.

To Prof. W. J. John, B.Sc., M.I.LE.E., Head of the Elec-
trical Engineering Department at Queen Mary College, I am
indebted for valuable help in connection with Chapter VIII.
To my friend and colleague Mr. R. W. Piper, M.Sc., who has
read the manuscript and proofs and made many helpful
suggestions and criticisms, I offer hearty thanks.

S. L. G.

QurEN MaRY COLLEGE

(University of London)
February, 1939
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THE THEORY AND USE

OF THE

COMPLEX VARIABLE

CHAPTER I
COMPLEX NUMBERS AND THEIR REPRESENTATION

Graphical Representation of Real Numbers. One way of
representing the real numbers graphically is to make use of
points on a straight line X'OX, produced indefinitely far in
both directions (Fig. 1). Taking any fixed point O on the line
to represent zero and choosing a suitable unit of length, we
may represent a positive number 2, by a point P,, on the line
and to the right of O, such that OP, is «, units long, and a

X2 Xy
—_— —_—
X2 . Ly
X’ 'Pz 0 P; X
x;;.x’z
Xy +3C2
- 1 "3 (]
A C B D
Fia. 1

negative number z, by a point P, to the left of O such that
OP, is — z, units long. For example, the number (— 3) is
represented by a point on the left of O and 3 units distant
from it. Then, to every real number, positive or negative,
there corresponds one and only one point on the line and,
conversely, to every point on the line there corresponds one
and only one real number.

Another method is to represent the number by a displacement
along the line, the positive number x;, being represented by a
displacement of z; units from left to right, and the negative

1



2 THE COMPLEX VARIABLE

number z, being represented by a displacement of — z, units
from right to left. Thus the number (— 3) is represented by
a displacement of 3 units from right to left.

The second method leads us to the idea of representing any
real number z by a vector, either parallel to or lying in the line,
the sense of the vector being from left to right for a positive
number and from right to left for a negative number. The
number of units of length of the vector is 4 x according as
x is positive or negative. We shall denote by [«] the vector
which represents z in this way. The modulus of « is defined
to be the number of units of length of the vector and is denoted
by |z|: this number is essentially positive.

Clearly, the vectors [z] and [ — «] differ in sense but not
in length, and so [z] = | — z]|.

To represent the sum and difference of two real numbers
x, (positive) and z, (negative), draw the vector 4B = [z,] and
the vectors BC = [x,] and BD = [— %,]. Then AC = [x; + z,]
and AD = [x, — x,] (Fig. 1). Here 4B denotes the vector
joining 4, B in the sense from 4 to B. .

The product z,z, and the number ; have the same or opposite
signs according as z, is positive or negative. Hence the vectors
[z425] and [z] have the same sense if =, is positive, but are
opposite in sense if z, is negative. The modulus of x2, is
obviously equal to the product of the moduli of 2, and z,, that is

|2a2e| = || X |2]-

In particular, the effect of multiplying a number x by — 1 is
to reverse the direction of the vector [z] without altering its
length. We may therefore think of multiplication by — 1 as
an operation which rotates a vector through two right angles.

Purely Imaginary Numbers. Consider the quadratic equation
22 4+ 1 = 0. No real value of z can satisfy the equation, for the
square of a real number cannot be mnegative. If, then, the
equation is satisfied when z = ¢, the number ¢ cannot be real.
We define ¢ as the smaginary unit.

We shall assume that 4 obeys the laws of ordinary algebra;
so that the equation may be written in the form

22— =0o0r (z—1i)(z+12) =0,
whence it is seen that the equation is also satisfied when

2z = — 4. It follows that, if » is real, the equation 22  n% = 0
is satisfied by z = -+ ns.
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A number of the form =4, where 7 is real, is called a purely
imaginary number.

In introducing a new kind of number in this way we are
following the precedent of the introduction of negative and
fractional numbers in arithmetic, which were found to be
necessary when the processes of subtraction and division were
applied to the so-called natural numbers (positive integers).

For the graphical representation of the purely imaginary
numbers we shall adopt methods which are exactly analogous

4
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to those already used for the real numbers. On an axis Y'0OY,
perpendicular to X'OX, represent y,¢ (where y, is positive) by
a point @,, above O such that 0@, is ¥, units long, and represent
95t (Where y, is negative) by ¢, below O such that 0@, is — ¥,
units in length (Fig. 2).

The vector idea may also be used, and then the number y:
is represented by a vector [y7], either in or parallel to the line
Y'0Y, of length + y units according as y is positive or negative,
the sense being upwards if y is positive and downwards if y
is negative. The length of the vector is called the modulus of yi
and is denoted by |yi|. It follows that |yi| = |y].
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The imaginary unit ¢ will then be represented by a unit
vector in the positive sense.

If P is the point on X’OX which represents the rea_}—_:t_lumber
n, and if @, on Y'OY, represents ni, the vectors OP = [n]
and 0Q = [ni] are equal in length and perpendicular in direc-
tion. The vector [ni] could be obtained by rotating the vector
[n] through a right angle in the counter-clockwise sense, and
this suggests that multiplication by ¢ may be represented by
the operation of turning a vector through a right angle. This
is readily verified, for, if P’ and @’ represent — » and — =4,
respectively,

0P =[—n] = [ni X ¢] and OQ' = [— ni] = [—n X i].

In Fig. 2 it has been assumed that # is positive; the reader
can easily verify that the result holds good when 7 is negative.

Similarly, it may be shown that multiplication by — ¢ is
equivalent to rotation of the vector through a right angle in
the clockwise sense.

It follows that multiplication by 42 or (— ¢)? is equivalent
to rotation through two right angles in either sense, which, as
we have already seen, is the effect of multiplication by — 1.

Vectorial representation is thus consistent with the definition
of 7, viz. ¥ = — 1; for multiplication twice by ¢ is equivalent
to multiplication by — 1. .

Complex Numbers. The roots of the general quadratic
equation

az2 + bz + ¢ =0,

where @, b, ¢, are real numbers, are {—b 4 1/ (b* — 4ac)}/2a.
If the discriminant b2 — 4ac is positive or zero, these are real
numbers and are of no particular interest, but, if the dis-
criminant is negative, the roots are not real numbers. In this
case, we can find a real number » such that b2 — 4ac = — 4a?n?,
and, if we write — bf/2a = m, the roots are m -+ in. Such
numbers are said to be complex.

We shall take = + iy to be the general complex number,
x and y being real: « is defined as the real part and y as the
tmaginary part of the number.

It should be noted that the imaginary part of the number
is itself real and is the coefficient of the imaginary unit 7 in
the expression x 4 y.

Purely real and purely imaginary numbers may be regarded
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as special classes of the more general complex numbers, the
former having zero for the imaginary part and the latter having
zero for the real part. For zero, both real and imaginary parts
vanish.

If x4 4y =0, then « =y = 0; otherwise the imagin-
ary unit would be equal to — zfy, which is a real number, and
this is impossible. It follows that two complex numbers
which are equal are identical; for, if x - iy = z’ + iy’, then

Y
. P(z)
P'?Lz)
2]
x r g
I
2—’7r—9 2]
X’ N Y [4] X M X
PI
2 Fic. 3
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(x—2") + i(y — y’') = 0, and from the above, we have x = '
and y =y'.

The complex numbers = + ¢y, x — iy, which have the same
real parts and equal and opposite imaginary parts, are said to
be conjugate. Their sum (2x) is real, their difference (2iy)
is purely imaginary, and their product

(@ + 1) (x—iy) = 2 — (i) = 2* + ¢*
cannot be negative. The product would be zero only when
xz =y = 0. The conjugate of z is written z.

It will be observed that the roots of the above quadratic are
conjugate complex numbers when the discriminant is negative.

The Argand Diagram. In the plane of the perpendicular
axes X'0OX, Y'OY (Fig. 3), plot the point P whose Cartesian
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co-ordinates referred to these axes are (z, ). Then we can take
this point to represent the complex number x - ¢y. There is
thus one and only one point in the plane which corresponds to
the number. If we are given any point in the plane, we can
find its co-ordinates (z, ¥) and hence construct the corresponding
number x - ¢y. This number is called the affiz of the point.

The diagram in which this representation is carried out is
called the Argand diagram.

It is usual to write 2 for the number x -+ 4y and to refer to
the planc as the z-plane. As before, the real numbers are then
represented by points on the axis X’OX, called the real axis,
and the purely imaginary numbers by points on the axis Y07,
called the imaginary axis. The origin O represents zero.

With O as origin and OX as initial line, let (r, 6) be the polar
co-ordinates of P: then

r= 0P = +/(x* + 3?),
cos 6 = zfr, sin 6 = yfr
and z =« -+ 1y = r(cos 0 + 4 sin ).

The modulus of z (written |z|) is defined to be the length r,
which is essentially positive and unique.

The argument or amplitude of z (arg z or amp z) is defined to
be the angle 6 and is infinitely many-valued since, if 6 is any
one determination of the angle XOP, any other determination
is 6 + 2kw, where k is any integer, positive or negative.

As the argument of z is not unique, we define the principal
value as that determination of the angle XOP which lies
between the limits — 7 and -+ =. The principal value is thus
unique except when z is real and negative, in which case its
principal argument is either — 7 or + 7, or when 2 is zero,
in which case arg z is obviously indeterminate. Unless the
contrary is stated, we shall, in future, take < arg z”’ to mean the
principal value.

Vectorial Representation of a Complex Number. If » and 6
are given, the point P is uniquely determined and we may
represent the number z by a vector of length r in a direction
which makes an angle 0 with the positive direction of the
real axis. In accordance with the notation used in connection
with real numbers we shall denote such a vector by [z]. The
vector need not be drawn from the origin but may be situated
anywhere in the plane provided that it has the proper length
and direction.
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In practice it is convenient to employ both the point and the
vector methods of representing a complex number, and not to
use exclusively the one or the other.

In Fig. 8, the point P with co-ordinates (z, y) represents the
number 2 = x 4 4y, and the vector OP also represents the same
number. The number — z is represented by the point P’ with
co-ordinates (— z, — y), and the corresponding vector is OP’
which is equal in length but opposite in sense to OP.

The number iz = ¢(z + iy) = — y -+ 2z is represented by
P", If PM, P”N are drawn perpendicular to the real axis,
we have OM = NP’ and MP = ON; so that the right-angled
triangles OMP, P"NO are congruent. It follows that the
angle POP" is a right angle. ’

Hence the multiplier — 1 may be regarded as before as an
operator which reverses the direction of a vector, and the
multiplier © as an operator which turns a vector through a
right angle in the positive sense. In neither case is there any
change in the length of the vector.

ExamprE 1. In the Argand diagram, the numbers 1, 1,
— 1, — 1 are represented by the points 4, B, C, D, and
the corresponding vectors are O4, OB, OC, OD, all of unit
length, and their principal arguments are 0, =, + 7, — 3,
respectively. Hence we may write

1= 1(cos 0 + 7 sin 0), 1 = 1(cos 7 - ¢ sin }m),
—1=1(cos 7+ isinw), —¢= 1(cos— }7 -+ ¢sin— i)

The number (1 + 4) is represented by the point £ with
co-ordinates (1, 1). Hence, OF = 4/2 and the angle XOE is
37 : so we have (1 4+ 2) = 4/2(cos }7 + ¢ sin ).

ExamrrLe 2. Consider the locus of a point which represents
a number z which varies so that |z| = ¢, where ¢ is a real
positive constant. The geometrical interpretation of this
condition is that the distance of the point z from the origin is
always equal to ¢. The locus is therefore a circle with its centre
at the origin and radius c.

Exampre 8. If z varies in such a way that arg z is constant,
the locus of the point z is a straight line drawn from the origin.

Examere 4. If a point P represents the number x - iy,
the point @ which represents the conjugate number z — 2y
has co-ordinates (z, — y) and is the image of P in the real
axis.
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Addition and Subtraction. Let P and @ represent z = z - iy
and z' = 2’ + 13', respectively (Fig. 4). Complete the parallel-
ogram OPRQ. Since PR and 0OQ are equal and parallel, their
projections on the axes of co-ordinates are equal, and so the
co-ordinates of R are (x + «’, ¥y + v'). Therefore R represents
the sum of the numbers represented by P and Q.

Vectorially, we have OR = OP + OQ, which is the statement
of the parallelogram law for the addition of two vectors.

In order to represent the difference of the two numbers, we
may apply the above construction to the addition of the

Fic. 4

numbers z + iy and — (z’ + 4y’). Thus, if RP is produced to
8 so that PS = PR in length, the vector PS, which is equal
and opposite to 0Q, represents — (2’ + 4y’). Then

08 =0P + P8

and therefore OS represents (x + iy) — (z' + ).

It is not necessary to make use of the origin in the con-
struction; for, if the vectors AB and BC have the same
lengths and directions as OP and OQ, respectively, the triangles
ABC, OPR are congruent and similarly placed, and therefore the

vectors OF and AC are equivalent, and either may be taken
to represent the sum.
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Since the length of one side of a triangle cannot exceed the
sum of the lengths of the other two sides, it follows that

OP + PR > OR and so |z| + |2'| > |z + 2'|.

This result may be stated : the sum of the moduli of two complex
numbers is greater than or equal to the modulus of their sum.
Equality occurs only when the points O, P, R are collinear
and P lies between O and R, i.e. when arg z = arg 2.
The construction may now be extended to give the sum of
any number of complex terms. If vectors 4B, BC, CD repre-

sent 2y, 2y, 25, respectively (Fig. 5), then AC represents z, + 2,

z,-l'Zz

Fie. 5

and so AD represents z, + 2, + z;. Since the length AD
cannot exceed the sum of the lengths AB, BC, CD, we have

[z] + |2e] + [23] = |21 + 22 + 23]

Similarly, we may deal with the sum of » numbers and deduce
that the sum of their moduli is greater than or equal to the
modulus of their sum.

Exampre 5. The vector which connects the points ¢ and z
in the Argand diagram, in the sense from ¢ to z, represents the
number z— ¢ and its length is |z— ¢|. If ¢ is constant and z
varies in such a way that |z — ¢| is constant, the locus of the
point z is a circle with its centre at the point c.

If ¢’ is another constant and z varies so that

|z—¢] + |z — ¢'| = constant,
the locus of the point z is an ellipse whose foci are the
points ¢, ¢’. ' )
Exampre 6. Let 4BC be any triangle; then the vectors

BC, C4, AB represent three complex numbers whose sum is
zero. A similar result is true for the numbers represented by
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vectors given by the sides of any closed polygon taken in order.
Multiplication and Division. The product and quotient of
any two complex numbers are also complex numbers; for
(@ + ) @ + iy) = a2’ — gy’ + iy’ + 2Y)
s iy _ (@+iy) (@ —iy)
Ty @+ W)@ — )
_zt' +yy i@y —zy)
o x'% + y'?
Notice how, in effecting the division, use is made of the con-
jugate of the denominator in order to obtain a new denominator
which is purely real.
Now consider the same operations from the geometrical
point of view.
Any two complex numbers z, 2’ may be written in the form
2z = r(cos 6 + % sin 6), 2’ = #'(cos 6" + ¢ sin '),
where r = |z|, " = |2/|, 6 = arg 2, 6’ = arg 2.
Hence z X 2" = 77’ (cos 6 + 7 sin 6) (cos §’ + 7 sin ')
= r7'{(cos 0 cos 6’ — sin 6 sin §")
+ #(sin 6 cos §" + cos 6 sin 6')}
= rr'{cos (0 + 0') 4 ¢ sin (6 4 6')}

Therefore [22'| = r' = |z] X ||

and

and one determination of arg 22’ is arg z + arg 2'.

(It will be remembered that arg z is indeterminate to the
extent of an added or subtracted multiple of 2+.)

Apgain

r(cos 6 + ¢ sin 0) (cos 6" — ¢ sin §')

2~ 7'(cos 6’ + 4 sin 6’) (cos 6’ — 5 sin ')

__7{(cos 6 cos 6 4 sin 0 sin 6’) 4 i(sin O cos 6" — sin 0’ cos 0)}

- 7’(cos? 6’ - sin? 6)

= (r[r") {cos (6 — 6') + i sin (6 — 6)}.
Therefore |2fz'| = rfr' = |z|/|2'| and one determination of
arg (zfz') is arg z — arg 2'.

If the vectors which represent z and 2’ are parallel,

arg z— arg 2’

is zero (when the vectors are in the same sense) or 4~ 7 (when
the vectors are opposite in sense): in either event the value of
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the quotient 2/’ is purely real. Conversely, if zfz' is real, the
vectors [2] and [2'] are parallel.

If the vectors [2] and [2] are perpendicular, the arguments of
z and 2’ differ by an odd multiple of ¥ » and the quotient is
purely imaginary. The converse of the result is also true.

Y
R(zz)

P(z)
Qez)
Stz/z)

X’ 0 A7) X

/
Fia. 6

In particular, the reciprocal of z is .
1Jz = (1fr) $cos (— 6) + 4 sin (— 6)}
and so the principal arguments of a number and its reciprocal
are equal in magnitude and opposite in sign.

Geometrical Constructions for the Product and the Quotient
of Two Numbers. In Fig. 6, let the points A4, P, @ respect-
ively represent the numbers 1, z, 2. Construct a triangle OPR
which is directly similar to the triangle OAQ, the correspon-
dence of vertices being in the order of mention.

Then, since OR[OP = OQ[0OA, OR = OP .0Q, as OA is
of unit length. Also L/ AOR = L AOP + /POR

= LAOP+ £ A0Q
= arg z + arg z'.
The point R therefore represents the number zz’.
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Now make the triangle 048 directly similar to the triangle
OQP. Then OS/OA = OP[0Q,

and /A0S = /QOP = arg z— arg 2'.

The point S therefore represents the quotient zfz’.

Examere 7. Consider the constructions for 22 and 1/z.
Taking 2’ in the above equal to 2, the points P, @ coincide and
the point R which represents 22 is found by making the triangle
OPR similar to the triangle O4P. The point § which represents
1/z is found by making the triangle OAS directly similar to
the triangle OPA.

Examere 8. Let P and @ represent z and 2’ respectively
and let any point R on the straight line P@Q represent z".
Since the vectors PR, R, which represent 2’ —z, 2’ — 2",
are in the same line (their senses being the same or opposite
according as R divides QP internally or externally) the quotient
(z"" — 2)/(2" — 2"’) is real and positive or negative according as
R divides PQ internally or externally. _

Hence 2/’ — 2 =k(z' —2”’) and so 2" = (z- k2')J(1 + k)
where the real constant % is positive for internal and negative
for external division. Numerically, ¥ = PR/RQ.

In particular, the middle point of P@Q represents %(z + 2').

Exawrre 9. Suppose that the vertices of a triangle ABC
represent a, b, ¢ respectively. Then the middle point D of BC
represents 4(b + ¢). The centroid G of the triangle divides
ADin theratio 2 : 1 and sorepresents the number }(a + b + ¢).

Examere 10. Two opposite vertices of a square represent
2 4+ 1, 4 4+ 3i. Find the numbers represented by the other
vertices.

If, in Fig. 7, 4, C are the points 2 + ¢, 4 + 3¢, the middle
point B of AC is 3 + 2i (using Example 8 above) and the vector
EC represents (4 + 8¢) — (8 + 2¢) == 1 4~ 4. Since DE = EC
and CED is a right angle, ED represents 4(1 + 1) = — 1 -+ 4.
Therefore D represents (3 + 22) + (— 1 4 2) = 2 -+ 3.

Similarly, BB represents — i(1 4 ¢) = 1 — ¢ and B represents
B4+ 2)+ (1—4) =4+ .

Examere 11. If 2, 2' are such that |z 4 2| = |z—2'|,
prove that izfz' is real and that the straight line joining the
points z and 2’ subtends a right angle at the origin. (U.L.)

If, in Fig. 8, P and @ represent z, 2’ respectively, the point
Q' representing — 2’ is found by producing QO to @' so that
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0Q, 0Q' are equal in length. Then, as QP and QP represent
‘the numbers z 4 2z’ and z— 2/, which have equal moduli,
P@Q = PQ’ and OP is the perpendicular bisector of QQ’. Hence

D(2+3%) C(4+3t)

—1+L )
7+t

£(3+21)

-i

A(2+7) B (#+1)
Fia. 7 Fie. 8

arg izfz' = 4w — LQOP = 0 and therefore iz/z' is real. Also
the angle POQ, subtended by P and @ at the origin, is a right
angle. )

Fic. 9

Exampre 12. In Fig. 9, 4, B are two fixed points on a
circle, P, P’ are variable points on the two arcs 4B. If the
angle APB is o, then the angle AP'Bis 7 — «. Let 4, B, P, P’
represent the numbers a, b, 2, 2’, respectively.



14 THE COMPLEX VARIABLE

Then arg (z— a)/(z— b) = arg (z — a) — arg (z — b)
= o -+ a multiple of 27
and arg (2’ — a)/(z' — b) = arg (2’ — a) — arg (2" — b)
= «— 7 -+ a multiple of 2.

It follows that, if z varies so that arg (z— a)f(z— D) is
constant, the locus of the point z is an arc of a circle which
passes through the points a, b.

ExamprE 13. Suppose that z varies so that
[z—a)[z—b)| = F,

where & is constant. Then the point ¢ which represents z
moves so that AQ : BQ = k and its locus is a circle (unless
k = 1 when the locus is the perpendicular bisector of AB).
For different values of the constant % the circles form a family
of coaxal circles having 4 and B as limiting points. They are
orthogonal to the family of coaxal circles which pass through
the points 4 and B (considered in Example 12 above).

Exavwerr 14. If a, b, ¢, p, ¢, 7, are complex numbers repre-
sented by 4, B, C, P, @, R, respectively, prove that the neces-
sary and sufficient condition for the triangles ABC, PQR to
be directly similar is

a(g—7) + b(r—p) + c(p — ¢) = 0.

Show further that, if L, M, N are taken on AP, BQ, CR,
so that
AL|LP = BM|MQ = CN|NR, .

then the triangle LM N is directly similar to the other two.

If the triangles are directly similar, the angles BAC, QPR
are equal and in the same sense, and also AC{4B = PR[PQ.
These conditions are necessary and sufficient.

Consider the numbers (¢c— a)/(b—a) and (r— p)/(g — p)-
Their moduli are AC/AB and PR[PQ, respectively, and their
arguments are the angles BAC, QPR measured in the same
sense.

If, then, the triangles are directly similar, the above numbers
have equal moduli and arguments and so are identical: con-
versely, if the numbers are equal, the conditions for direct
similarity are satisfied.
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Hence the necessary and sufficient conditions for the triangles
to be directly similar may be written

(c—a)/(b—a) = (r—p)(g— D)
or alg—r)+o(r—p)+clp—q) =0 @)

In the second part of the question, if we write k for the
value of the equal ratios, then, from Example 8, L, M, N
represent (@ + kp)/(L + k), (b + kg)/(L + F), (¢ -+ knj(1 + k),
respectively. It is easily seen that, if these numbers are sub-
stituted for p, ¢, and r, the equation (i) is still satisfied. Conse-
quently the triangle LM N is directly similar to the other two.

ExamrLe 15. Two points P, @, represent the roots of the equa-
tion az2 4 2bz 4+ ¢ = 0 and two other points P’, @’ represent
the roots of p’

a'z? + 26’z +c¢" = 0.
If R is the middle point of &
PQ, show that
/P'RP = /PRQ'
and /RPP' = /RQ'P Q P
if ac’ + ca’ = 2bb’. (U.L.) Fre. 10

We have to show that the triangles PRP’, Q'RP are directly
similar if the condition is satisfied.

Let P, Q, P’, Q' represent p, q, p’, ¢', respectively (Fig. 10).
Then R represents 3(p + ¢) = — bja. From Example 14, it
follows that the triangles PRP’, Q'RP are directly similar if

pl(— bja) — p]— (b/a) (p — ¢') + p'[¢" + (bfa)] = 0.
On multiplying by — a this becomes
ap? + 2bp + b(p’ + ¢') + ap’q’ = 0.
Since ap? + 2bp + ¢ =0, p' + ¢ = —2b'[a’, and p'q’ = c'[a’,
the condition reduces to
¢+ 2b(—b'Ja’) + (ac’fa’) =0 or ac’ 4 ca’ = 2bb".
ExampLE 16. P represents z in the Argand diagram and @
represents 22 If P lies on the circle of unit radius with its centre
at the point -+ 1, show geometrically that|z?2 — z| = [z| and

that arg (z — 1) = arg 22 = % arg (2 — z). Find the polar
equation of the locus of @. (U.L)
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In Fig. 11 let 4 represent + 1 and let arg z = 30. Make
the triangle OPQ directly similar to OAP. Then @ is the

point 22 since

Y
Q(z2
7
2
72 z2-z
-6
P(z)
16/
2756
76 ~7Z .
16 ) 20
0 Aqn R X
Y’
Fia. 11

L X0Q = LAOP + /POQ = 6 and OQ : OP = OP : 0OA,
whence OQ = |22|. .

If P lies on the given circle, AP is of unit length and
the two triangles are isosceles. The vectors OP (= z) and
PQ (= 22— 2) are equal in length, i.e. |22— z| = |z|.
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Also arg (2*—2) = L XRP
' +XAP + L APR
36/2,
whence 6 = arg 22 = (2/3) arg (22 — 2) = arg (z‘— 1).
If 0Q = r, we have
r = |2|% = (2 cos }6)2 = 2(1 4 cos 6);
so the locus of @ is the cardioid given by the polar equation
r = 2(1 -} cos 0).

Exavmere 17. If the vertices of an equilateral triangle
represent a, b, ¢, prove that

a2+ b2 4 ¢2— bc—ca— ab = 0.

The vectors which represent the numbers b — ¢, c—a,a — b
are the sides of the triangle taken in order. These are equal in
length and their arguments may be expressed in the form
0, 6 + 2n/3, 6 + 4x[3, or 6, 6 — 2m[3, 6 — 4=w[3, according to
the sense of description of the triangle.

In either case, (b— ¢)/(c —a) = (¢ — a)f/(a — b), since the
numbers on the left and right of this equation both have unit
modulus and the same argument (4 27/3).

On cross-multiplying, the equation becomes

(b—¢)(@—b) = (c—a),

which reduces to the required condition.
The converse of this proposition is also true and is left as
an exercise for the reader.

EXERCISES
1. Mark on a diagram the points which represent the numbers
2 4 86, 1/(2 + 34), (1 + 9)/(1 — 1), (L 4+ 4)*/(1 — 1),
(L + 20)(5 + Ti) (8 + 44)~ (B8 + i)™

2. Prove that the points ¢ + b, 0, 1/(— a + 4b) lie on a straight line
and that the points a + ib, 1/(— a + ib), — 1, + 1 lie on a circle.

3. 4, B, C are the vertices of an equilateral triangle. If A represents
5 + 7i and the centroid of the triangle represents 1 + 4i, find the
numbers represented by B and C.

4. If z,, 2,, z; are complex numbers such that their representative
points are collinear, prove that they satisfy a relation of the form
az, + bzy; + cz; = 0, where a, b, ¢ are real.

5. Six points are the vertices of a regular hexagon ABCDEF, the
inside of the hexagon being on the left when the perimeter is described

I
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in the order given. If 4 is the origin and C represents 3 + 4¢, find the
numbers represented by B, D, E, F. (U.L.)

6. Two complex numbers are represented by points marked in an
Argand diagram. Construct the point that represents their product.
Carry out the construction for the numbers (5/4) + 3i, — 3 + (55/42.)

(U.L.

7. Three complex numbers u, v, w, such that v? = wu, are represented
by the points P, @, R, respectively. If Ris joined to the origin O and RO
is produced to P’ so that OP’ = OP in length, prove that the circle
which passes through the points R, @, P’ passes also through the point
representing — v. Prove also that P’ represents — w | ufw |. (U.L.) -

8. Show that the straight lines joining the points representing the
numbers a, b and ¢, d are parallel if (@ — b)[(¢c — d) is purely real, and
perpendicular if this fraction is purely imaginary.

Two adjacent vertices of a square are the origin and the point 2 4 3%,
and the figure lies entirely above the real axis. Find the numbers
represented by the remaining vertices.

9. P and @ are two points which represent complex numbers p, g,
respectively. If k is a real constant, show how to find the point which
represents p + k(g — p).

The internal and external bisectors of the angle subtended by P@Q at
the origin meet PQ at the points I, E, respectively, and M is the
mid-point of IE. If

p = cos (7[6) -+ i sin (=[6)

and g = 2 [cos (n[8) + isin (=/3)],
show that I represents (1 + 4/3) (1 + %)/3 and find the number
represented by M. (U.L.)

10. The numbers p, g, » are represented by the vertices P, @, R of
an isosceles triangle, the angles at @ and R being each. (7 — «)f2. Prove
that (r — @) = 4sin2 3« . (r — p) (P — q).

11. Show that the points — 1, + 1, ¢4/8, are the vertices of an
equilateral triangle. By using the result of Example 14, worked on
p- 14, deduce the condition that the triangle, whose vertices are the
points a, b, ¢, should be equilateral.

12. In the plane of the complex variable z, regular hexagons are
described to have for one side the line joining the points — 1, + 1.
Find the values of z represented by the remaining eight vertices.

The whole plane is partitioned into equal cells, each cell being a regular
hexagon, and 2z, 2z, are the numbers represented by two adjacent
vertices of one cell. Prove that, if 2, 2 are the numbers represented by
the points in which two opposite sides of one of the cells are met by a
line perpendicular-to them, then

either 2 =2z 4+ 38 + i14/8) (¢ — 2),
or 2’ =2 4 38— iv8) (2 —7),
or else 2 =2z 4 14/3(2, — 2). (U.L.)

13. Show that, if (2; — 2,)/(Z; — Z,) = (2, — 2;)[(Z; — Z3), the points
215 2y, 23 a0d Zy, Z,, Z, are the vertices of two similar triangles.

Three similar triangles BC.4’, CAB’, ABC’ are drawn on the sides of
a triangle AB(C, the correspondence of vertices being indicated by the
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order of mention, with 4’, B’, ¢’ lying on the sides of BC, CA, 4B
remote from 4, B, C. Show that the triangles A BC, A’B’C’ have the
same centroid. (U.L.)

14. If A, B, C are the vertices of any triangle and BC, CA, AB are
produced to 4’, B’, C’, where AB’ = CA, BC’' = ABR,CA’ = BC, show
that the triangles A’B’C’, ABC cannot be similar (correspondence of
points being in the order here given)unless ABC is equilateral. (U.L.)

15. If a, b are complex constants and z varies so that arg (z — a) (z — b)
is constant, prove that the point z moves on a branch of a rectangular
hyperbola which passes through the points a and 5.

16. O is the origin and U represents + 1. If P represents a variable
number z, prove that PO is perpendicular to PU if the real part of
(2 — 1)/z is zero. Deduce that, if z = 1/(1 -+ if) where ¢ is a variable
real number, then the point representing z describes a circle of unit
diameter. (U.L.)

17. If w = 2%, show in an Argand diagram the path traced out by the
point w as the point 2 describes the rectangle whose vertices are the
points + a, 4+ a + ia, where ¢ is real. (U.L.)

18. Interpret geometrically the following loci—

@ |z+1pP—|z—1=2;
(i) arg{(z — 1)/(z + 1)} = %m. (U.L)

19. Two complex numbers z, w are related by the equation
w(z + 1) = 2(z — 4). BExpress in the form a 4 ib the values of w when
z = 4 and — 2 + 3i. Indicate the positions of the corresponding points
in a diagram.

20. In an Argand diagram the points P, @ represent w and z, where
w(z + 1) = z — 1. Find the locus of @ if P describes a line through the
origin inclined at an angle o to the z-axis and show that if @ describes
a circle of a coaxal system whose limiting points are (1, 0), (— 1, 0), then
P describes a circle whose centre is the origin. (U.L.)

21. Prove that the necessary and sufficient condition that the points
215 %9y 23y 24 TAAY be concyeclic is that (z; — 2,) (23 — 25)[ (23 — 23) (24 — 2;)
should be real.

22. Show that the affix of the centroid of particles m;, my, mz, . . .
placed at the points z;, 25,23, . . . is

(My2y + Mo2p -+ MgZ3 + . . M my + my + mg + . L)
23. If P=(d— a)/(b—c¢), @ =(d—b)(c—a), R=(d—c)f(a— D),

prove that
QR+ RP+ PQ + 1=0.

Taking a, b, ¢, d to be the complex numbers represented by 4, B, C, D
in the Argand diagram, show that, if DA, DB be respectively perpen-
dicular to BC, CA, then DC is perpendicular to AB; and derive from
the above identity the relation

BC.BD.CD + CA.CD.AD + AB.AD .BD = BC.CA . AB,
the triangle ABC being acute angled. (U.L.)

24. ABCD is a rhombus and AC = 2BD. If B, D represent 1 -+ 3i
and — 38 + 4, find the numbers represented by 4 and C. (U.L.)



CHAPTER II
DE MOIVRE’S THEOREM

Theory of Equations. If
f@)=az* + o=t + a2+ . . .+ ay,

where 7 is a positive integer and the coefficients @y, a;, a,,
. @, are real or complex numbers independent of 2, f(z) is
a polynomial and the equation f(2) = 0 is defined as an algebraic
equation of the nth degree. Any value of z which satisfies this
equation is said to be a root of the equation or a zero of the
polynomial f(z). According to the fundamental theorem of
algebra (which will not be proved here), every such equation
has at least one root, which is either real or complex. If we
assume the truth of this theorem, it is easy to show that an
equation of the nth degree has n and only = roots.
Suppose that f(2) vanishes when z = «; where o, is either
real or complex. From the factor theorem of elementary
algebra, it follows that (2 — «,) is a factor of f(z) and we may

write
f) = (z— w)F(2),

where F(z) is a polynomial of degree n — 1, and must itself
vanish for some value of 2, say o, Therefore F(z) must have
(2 — ap) as a factor, the other factor being a polynomial of
degree n — 2.

Continuing in this way, we see that we may write

J@) = ae — o) (2 — ) (2 —ag) - . . (2— ata).

Clearly, f(z) vanishes only when 2z has one of the values
%, . . . oy, and the proposition is proved.

If we write out the product of the factors in the above
expression of the polynomial, we obtain the identity

a2 + a2t "t +at i L+ g,
=gzt — Pzt—1 + Pp—2— . | . 4 (— 1) P2
+. .+ = 10P
where P, denotes the sum of the products r at a time of the
n roots oy, %, . . . Oy
20
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Identifying coefficients, we have

Pl = a‘llao’ P = aa/ao’ ... Po= (— Yra.[a,,
] = (— 1) anlao
The roots ay, ¢, - . . &, of the equation need not be distinct :

if 7 of them are equal to «; and all the others are different from
oy, We say that oy is a multiple root which occurs r times, or
more briefly, «, is an r-ple root. When this is the case

J(2) = ay(z — ay)d(2),
where $(z) is a polynomial of degree m — r which does not
vanish when z = «,.

Differentiating with respect to z and denoting derivatives

by means of dashes, we have
F'(@) = aglz — o) (2 — )¢’ (2) + 7d(2)]-

The expression in square brackets on the right-hand side
does not vanish when z = «;, and so it follows that f'(z) has
a factor (z— oy)"~1. Thus if f(z) has «; as an r-ple root, f'(z)
has &, as an (r — 1)-ple root.

Further, if f(z) = 0 has no repeated root, then its roots are
not among those of the derived equation f'(z) = 0.

We have thus a means of finding out whether or not a given
equation has multiple roots. All we need do is to examine
f(2) and its derived function f'(z) for a common factor: if there
is no common factor which is a function of z, there are no
multiple roots, but, if there is a common factor of the form
(z— a)'~1, then « is an r-ple root.

For example, it can be seen in this way that the binomial
equation z" — ¢ = 0, where ¢ is not zero, has »n distinct roots,
since the derived equation nz*—! = 0 is satisfied only by z =0
and this value of z does not satisfy the given equation.

IF THE COEFFICIENTS ARE REAL, COMPLEX ROOTS OCCUR IN
CONJUGATE PAIRS. The results obtained above are true,
whatever may be the values, real or complex, of the coefficients
Qs @y, - - . a,. If, as is usually the case, these coefficients are
all real, it can be shown that complex roots (if any) occur in
conjugate pairs. '

If we give z a complex value A + ¢u, the polynomial has the
value

F(A + ip) = ag(d + ip)” +_il(/b+ 4. Lot a,
=P+1

where P and @ are real.
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Since even powers of zu are real and odd powers are purely
imaginary, P must contain only even powers of u while @
must contain only odd powers, provided, of course, that the
coefficients @ are all real. Now consider f(A—tu): the real
part of this expression contains only even powers of (— iu)
and so is P, while — @ is the imaginary part, which contains
only odd powers of (— iu).

If 1 4 iu is a root of the equation, P and @ both vanish and
therefore f(A — tu) = 0, i.e. complex roots occur in conjugate
pairs. Consequently, the total number of complex roots of
an equation having real coefficients must be even (or zero).
If the degree of the equation is odd, the number of real roots
must be odd also.

If the polynomial has complex zeros, the factors correspond-
ing to these can be combined to give quadratic factors with
real coefficients, since

(z—A—ip)(z— A 4 tu) = (2— A)2 + p2.

Such a polynomial can be expressed therefore as a product of
linear factors like (z — «), in which « is real, and of quadratic
factors like 22 -~ bz - ¢, in which b and ¢ are real.

Eg. 2—1=(@—1)(+2-+1)
and B4+ 1=(%2+1)(2F— 243+ 1) (22 + 243 + 1).
De Moivre’s Theorem. If 6,, 6, be any two angles, we have,
as on p. 10,
(cos 6, -+ 7 sin 6,) (cos 6, - ¢ sin 6,)

= c0s 0 cos 6, — sin 6, sin 6,
+ 4(sin 6, cos 0, + cos 6; sin 6,)

== c08 (6, + 6,) + 4 sin (6; + 6,).
Multiplying by a third factor of the same type, we have
(cos 6; + ¢ sin 6;) (cos 6, + 4 sin 6,) (cos 6; + < sin 6;)
= [cos (6, + 6,) + ¢ sin (6; + 0,)] [cos 6; + @ sin 6,]
= cos (6; + 0y + 6;) + 4 sin (0, + 6, 4 6,).
Continuing in this way, we obtain the result for » factors
(cos 6; + % sin 6;) (cos 6, + i sin 6,) . . . (cos 6, + i sin 6,)

=008 (0 40y + ...+ 0,) + isin (6, 4 6o+ ...+ 6,).
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If we put 6, =60, =. . .= 0, = 0, this result becomes
(cos 6 4 i sin 6)* = cos nf + % sin 6,

where 7 is a positive integer. .
We shall now show that this result is still true when = is
any rational number, positive or negative.
Assume that o is such that

(cos 6 -+ ¢ sin 6)?/?7 = cos « + ¢ sin «,
where p and ¢ are positive integers.

Then (cos 6 -+ 7 sin 6)? = (cos o + ¢ sin «)?
ie. cos pf + 4 sin pf = cos qo + ¢ sin gu

(from the result above). On equating the real and imaginary
parts, we see that our initial assumption is justified if « = p0/q.
This is not the only possible value of «; the other values will
be considered later (p. 25).

One value of (cos 6 4 ¢ sin 6)?/? is therefore

cos (pf/q) + 4 sin (p6/q)-

Now suppose that m is any negative integer or fraction.
Since

(cos 0 -+ i sin 0) (cos § — 2 sin 0) = cos2 0 + sin2 0 = 1,

we have
(cos § + ¢ sin )™ = (cos § — 4 sin §)—™
= [cos (— 0) + isin (— 6)]—™
= cos mb -+ 7 sin m0,

by application of the above results, since — m is positive.

We may now state de Moivre’s theorem in its general form
thus: one value of (cos 8 + 7 sin 6)” is cos nf + 1 sin nb, where
n 18 any rational real number.

Deductions from de Moivre’s Theorem. Let n be a positive
integer and write ¢, s, ¢ for cos 0, sin 0, tan §. Then, by the
binomial theorem

cos 2n8 + ¢ sin 2n0 = (¢ 4 is)*
= ¢2n + 2ncflc2n—1.i8 + 2"0269"’"_“(7:8)2

+ . )
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Equating real and imaginary parts, we have
cos 2B = ¢t — MOy —2g2 0 —dst — . . . 4 (— &%)
sin 29nf = 2"0162"—18 —_— 2n0362n——353 _I_ 2n0502n-—585
— .. + (__ 1)1:.—1 2“02n_1682"—1.
Similarly,
cos (2n 4+ 1)0 4 ¢sin (2n + 1)0 = (¢ + es)*n+1
= ¢2n+1 - 2n+ 1010271.1: S
+ 2'n+10202n-—1(7:8)2
+ . .. (gg)m+l
and hence
cos (2n -+ 1)f = ¢+l — I+l i —1g2 L 2n+1(] c2n—3gt
: — e (= )20, 8
sin (2"7/ + 1)9 pu— 2n+10162n8__ 2n+10302n—283 + 2"+10502"’_46‘5
R,

By division, we obtain

tan 2n6 ,
2n01t__ 2n03t3 + 2n05t5__ T + (_ ]_)n—-]. ZnOZn_lth—l
= 1— 20,8 + Ot — . . . + (— Ly
tan (2n + 1)6 .
2n+101t_ 2"+103t3 + 2n+105t5_ L. _l_ (_ 1)nt2n+1
=1= WMAIO, R 4 20— . . f (— 1)" 2n+102nt2n' ,

THE n»TH ROOTS OF UNITY. We shall now apply de Moivre’s
theorem to evaluate the nth roots of unity, » being a positive

integer. In other words, we shall solve the equation z* =1
which has been shown (p. 21) to have » distinct roots.
Suppose that the equation is satisfied when

z = r(cos « + % sin «).
Then we must have
r*(cos o -+ 4 8in «)* = r™(cos nx+ ¢ sin na) = 1,

whence r = 1, cos 7 = 1 and sin na = 0. These conditions
are satisfied if ne = 2km, where & is zero or any integer. Taking

k=0,1,2,3,...,n—1 we obtain the » numbers
1, cos (27fn) + ¢ sin (2m[n), cos (47fn) + % sin (47[n),
. ., 008 [(2n — 2)7[n] + i sin [(2n — 2)u[n],
all of which satisfy the equation.
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No two of these numbers are equal because the difference
between any two of the values of the angle « is less than 2.
The numbers are therefore the n distinct values of the nth
roots of unity.

In the Argand diagram, the nth roots of unity are represented
by the vertices of a regular #-gon inscribed in the circle |z| = 1
and having one vertex on the positive branch of the real axis.

If n is even, there are two real nth roots, viz. 1 and — 1,
which are given by taking £ = 0 and }n respectively. The
remaining n — 2 roots are complex. If n is odd, the only real
root is 1.

Putting o = cos (2nfn) + i sin (27/n), we can write the
roots in the form 1, w, w?, . . . w*—L, whence it is seen that
they form a geometric- progression with common ratio .
Their sum is given by the usual formula, viz. (1 — o™)f(1 — w)
and this vanishes since w" = 1. (The same result follows more
simply from the fact that the equation z» — 1 = 0 contains no
term in 2"~ and so the sum of the roots is zero.)

THE #TH ROOTS OF ANY COMPLEX NUMBER. If ¢is any num-
ber, in general complex, its nth roots are the » values of z
which satisfy the equation z» = ¢. If 2; is any one of the roots
of this equation, then 1z, is also a root if A%2% = ¢, and therefore
A = 1, i.e. A is an nth root of unity. Thus we can give
A the n values 1, w, w?, . . . @~ L

In order to find a suitable value of 2,, we express ¢ in the
form |c| (cos 6 + i sin 0) and assume that

2, = R(cos ¢ + i sin ¢).
We then make

Rr(cos n¢ - 1 sin ng) = |c| (cos 6 + 2 sin 6),

and this condition is satisfied when R = [¢|¥" and ¢ = 6/n..
Here |c|Y» denotes the real positive nth root of the positive
number |c|, and 6 may be any determination of arg c, but it is
usually most convenient to take the principal value. The
nth roots of ¢ are thus

2y, w02y, 0%, . . conlz,
where 2 = |c|¥"[cos (6/n) + i sin (6n)].

It will be observed that these numbers form a geometric
progression of which the sum is zero. Inserting the value of w

2—(T.122)
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and using the result on p. 10, we obtain the nth roots by giving
k the values 0, 1, 2, 3, . . . »— 1 in the expression

|e|tn{cos [(8 + 2km)[n] + i sin [(6 -+ 2km)/n]}.

In the Argand diagram these numbers are represented by
the points Qg, @y, @ - - - @u—y on the circle |z| = |¢|!" and
such that the angle X0Q, is (0 + 2kn)[n. The points @ are
thus the vertices of a regular polygon of n sides inscribed in
the circle.

Exampre 1. The cube roots of — 1. We have here

R3(cos 3¢ -+ 28in 3¢) = — 1 = cos = -} ¢ sin =,

whence B = 1 and we can take ¢ = /3.
Also » = cos (2n3) + ¢ sin (27/3) and the cube roots
of — 1 are

cos (m[3) -+ % sin (w[3), w[cos («/3) + % sin (=[3)],
) w?[cos (7[3) + i sin (7/3)]
ie. cos (mf3) + ¢sin (#f3), cos m + i sinew = — 1,
, cos (5w[3) + ¢ sin (5xf3).
The numerical values are (1 + 44/3), — 1, $(1 — 74/8).
Exampre 2. The cube roots of 1 + ¢. On plotting the point
representing the number 1 -+ ¢ in the Argand diagram, it is
seen that |1 + 4| = 4/2 and arg (1 4 7) = =[4. Hence the
three cube roots are
2, = 24%[cos (m[12) + ¢ sin (f12)],
w2z, = 2M8[cos (w[12) -+ ¢ sin (w[12)] [cos (27[3) + 4 sin (27/3)]
= 2Us[cos (3m[4) + ¢ sin (3m[4)].
and
w2 = 2U8[cos (f12) + 4 sin (wf12)] [cos (4mf3) - ¢ sin (47/3)]
= 9Us[cos (17x[12) + 4 sin (17=[12)].
ExavprLE 3. Obtain with the aid of tables the values of
(3 — di)Us,
From the Argand diagram (Fig. 12) it is seen that arg

(83 — 4) = — 0, where 0§ is the positive acute angle such that
sin 6 = 0-8, i.e. 6 = 53° 8’. Hence

8 — 44 = 5[cos (— 0/3) + i sin (— 6/3)]
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and, from four-figure tables, the cube roots are
5Y3[cos (— 6f3) -+ ¢ sin (— 6/3)] = 5Y3(cos 17° 43' — 1 sin 17° 43')
= 1-629 — 0-5204i,
513[cos (120° — 17° 43') + ¢ sin (120° — 17° 43")]
= — 0-3638 | 1-670z
and  5Y%[cos (240° — 17° 43') -+ 4 sin (240° — 17° 43')]
= — 1-265 — 1-150¢.

As a check on the numerical Y
work, we note that the sum of
the three roots is zero.

ExampLE 4. Prove that

cot? (w[7) 4 cot? (2#[7) : ol 3
-+ cot? (3w f7) = 5. ) x
4

The equation tan 76 = 0 is
satisfied if 76 = nw, where » s
is zero or any integer. From (3-41)
the result obtained on p. 24 Fre. 12
we have, ’

tan 70 = (Tt — "Cyt® + "Cgt® — ) J(1 — "Cot? 4+ "C bt — "Cgtb),
where t = tan 6, and from this it follows that tan 76 vanishes
when ¢ = 0 or when ¢ satisfies the equation
T—"0t* + "Cstt — t° = 0,
ie. 18— 21#% - 352 — 7 = 0.

It will be observed that this equation is a cubic for #? and
that the roots of this cubic are the three different values of
tan? 0 (other than zero) for which tan 70 vanishes. Now tan 0
vanishes only when 6 is zero or a multiple of #: so that the
roots of the cubic must be of the form tan? (nwf7), where n is
neither zero nor a multiple of 7. The roots of the cubic are
thus tan? (#/7), tan? (27[7), and tan? (37/7). It is easily verified
that the insertion of any other possible value of n will give
one of these values, e.g. tan? (47[7) = tan® (3#/7).

If we write o, oy, o5 for these roots, we have from the pro-
perties of equations proved on p. 21,

oqoety = T and oog —+ ogay + ooy = 35,
whence (Ifey) 4+ (Lfog) + (1fog) = 5,
Le. cot? (mf7) + cot? (27[7) + cot? (3n[T) = 5.
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Examrre 5. Find all the values of z which satisfy the equa-
tion (2 4 1)® + 25 = 0 and show that their representative
points lie on a straight line parallel to the imaginary a,(x[i]s.L )

Writing the equation in the form [—(z 4- 1)/2]° = 1 we see
that — (z + 1)/z is a fifth root of unity and so the roots of the
equation are given by

— (2 -+ 1)[z = 1 or cos kB + ¢ sin k6,

where 6 = 2[5 and %k takes in turn the values 1, 2, 3, 4.
The real value gives z = — % and the complex values give

z=— 1f(1 + cos k0 + i sin k0)
= — 1/(2 cos® }k0 + 2i sin k0 cos $40)
= — 1/[2 cos $k06 (cos $k0 - ¢ sin 1£6)]
= — (cos 1k0 — ¢ sin 3k6)/(2 cos $406)
= — } + 47 tan 1k0.

All the roots have the same real part and their representative
points lie on the line x = — %, which is parallel to the imaginary
axis. '

EXERCISES

1. Plot on the Argand diagram the roots of the equation 2% 4 1 = 0.

2. Calculate, using tables, all the values of (1 — 4)/3.

3. Find the fifth roots of — 1 in the form a -+ 4b, giving a and b to
four decimals.

Denoting any one of the complex roots by 2, find all the values of
(2 — &)J(1 + &9). (U.L.)

4. Find all the values of (3 + 4i)Y/% and represent them on an Argand
diagram. Hence solve the simultaneous equations '

wt— Bay? + yt =38, ay(a®—y?) =1
for real values of z and y. (U.L.)

5. Prove that the points which represent mw -+ nw?, where w is a
complex cube root of unity and m and n have any zero or positive or
negative integral wvalues, are the points of a network of equilateral
triangles.

6. Prove that every root of the equation

1+ )P + 25=0
has — % for its real part.
7. Prove that (1 + sin¢ + ¢ cos ¢)” (1 4 sin ¢ — ¢ cos ¢)—"
= cos n(3r — ¢) + isinn (3= — ¢). (U.L.)
8. Solve #? — 2ax cos 0 + a® = 0 and show that, if z is either root
of this equation, x** — 2a”az™ cos 6 + a* = 0, where n is a positive
integer. - (U.L.)
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9. Solve completely a® + 422 + 8 =0and 2® — 2* 4+ 1 = 0.
10. If @, + iy, = (1 + i4/8)", show that

Bp1Yn — Tplip—1 = $"71/3,

where n is a positive integer. (U.L.)
11. If w is a complex fifth root of unity, find the equation whose
roots are the different values of (1 + w)>.
12. Expand cos nf in a series of powers of cos 6, when n is even.
Prove that, when 7 is even,

nf2
2 tan?[(2r — 1)nf2n] = In(n — 1).
r=1

13. Find all the values of 6 between — = and -+ = for which
sin 36 = sin 46. Deduce that cos (#/7) is a root of the equation

82® — 4a® — 4o + 1 = 0.
14. If « is a complex root of 213 = 1, prove that
o + of + of 4 ol?

isarootof 22 +22—42+1=0.

15. If f(z) = 2® + 3wz + ¢, show that the condition that f(2) and f(2)
should have a common factor is that 4p® + ¢* = 0.

Deduce the condition that the equation az® 4- 3b22 + 3¢z +d =0
should have two equal roots.

16. Show that [1 4+ cos (2n + 1)0]/(1 + cos §) is the square of a

polynomial of degree n in cos 0, and find this polynomial when n = 3.
: (U.L.)



CHAPTER III

INFINITE SERIES—THE EXPONENTIAL, LOGARITHMIC,
CIRCULAR AND HYPERBOLIC FUNCTIONS

Absolute Convergence of Series of Complex Terms. We shall
now discuss briefly certain infinite series of complex terms,
assuming that the reader is already acquainted with the
elements of the theory of real series. Consider the infinite

series
atmtat. .+t

in which the terms are complex; so that z, =z, 4 ty,.
This series is said to be convergent if the two real series

A Rl 2 s n T a7 niP
and T P S

are convergent.

Denote by Z,, X,, Y,, respectively, the sums of the first »
terms of these three series; then Z, = X, 4+ ¢Y,. If the two
real series converge to the sums X, Y, respectively, then, as
n tends to infinity, Z,, tends to the limit X + 1Y, and this is
called the sum to infinity of the complex series.

The infinite series of positive real terms

2] + |z] + |2zs] + - - - F |zl + - -

is defined as the series of moduls.

It will now be shown that, if the series of moduli is convergent,
the complex series is convergent also. Since z, and ¥, are real,
2] < @2 + 5,92 and Jya] < (2,2 + 22,

Thus, if the series Z |zn[ converges, the series 3 |#,| and

n=1
) |#»| must also converge, for the mth term of either of the

n=1

last two series cannot exceed the corresponding term in the

series of moduli. The real series X z, and X y, are therefore
n=1 n=1

absolutely convergent and the series p> %, has a finite sum to

n=1

infinity. When the series of moduli converges, the series of
complex terms is said to be absolutely convergent.

30
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ExamprLr 1. Consider the series

2—242 + 233 —244 + . . . (— 1))+ . . ..
The series of moduli is

r+r3f2 4+ 33444 +. ..+ (n)+ . . .,
where r = |z].

Apply to this d’Alembert’s ratio test for convergence. The
ratio of the nth to the (n— 1)th term is (1 — 1/n)r and this
tends to the limit » when » tends to infinity. The series con-
verges therefore when r < 1 and so the original series is

absolutely convergent when |z| < 1.
A series of the form

g+ aRr+at+agd+.. . . +az+ ...,

in which the coefficients a are independent of z, is called a
power series in z. A particular case is the series in the above
example.

The Exponential Series. Consider the series

14+ 1)+ @2+ EB)+. . .+ =) +. . .,
where 2 = r(cos 6 4 4 sin ).
The series of moduli is
14 (1Y) + (320) + (33D + . . .+ ) + . . .,

which is convergent for all finite values of r, since the ratio
of the nth to the preceding term is equal to r/n and this tends
to zero as » tends to infinity. The original series converges
therefore for all finite values of z.

It is a well-known result that, when 2 is real, the sum of the
series is e?, where e is the base of natural logarithms and is
defined by the equation

e=1- (1) + (1/21) + (/30 4. . .+ (nl)+. ...

We define e*, when z is complex, to be the sum to infinity of
the above series, viz.

et =14 (2f11) + (21) + @3[3)) +. . .= 3 n)).
. n=20

By multiplying the two series together we may show that
e* X e¥ = ﬁ[(z + 2')?[nl].



32 THE COMPLEX VARIABLE

From the definition above it follows that the sum of the series
on the right-hand side is e!***); whence it is seen that the
index-law for multiplication, used for real indices, still holds
good when the indices are complex,

ie. er X ef = g#+7)

for all values of z and 2’. In particular,
estTW = % X eW.

In order to facilitate printing, exp (z) is often used in place
of e#: this notation is especially useful when zis replaced by a
more complicated function.

The Exponential Values of Circular Functions. Taking
2z = 10, where 0 is real, we have

e? = I (i)
n=10
= (1— 6%[2! 4 G*/4! — 68J6! + . . )
+ (60— 6331 4+ 6551 — 6771 4 . ).

The real and imaginary parts of the series are the well-known
expansions, by Maclaurin’s theorem, of the cosine and sine
functions of 6, and so we have

e = cos 6 + ¢ sin 0.
If the sign of 6 be changed, we have
e~% = cos O — 1 sin O,
and addition and subtraction of these two results give
cos O = (e® -} e—%)[2, sin 6 = (e — e—%)[23.

It will be noted that the last two equations are merely
re-statements of the series for cos 6 and sin §; for e and e—%
are by definition the sums of certain series. It is often conveni-
ent, for the sake of brevity, to make use of the result obtained
above and write the expression r(cos 6 4+ 4 sin 6) in the form
7¢* or r exp (20).

The nth roots of this number can be compactly expressed
as 7Y exp [4(6 + 2km)[n], where £k = 0,1, 2,3, . . . (n— 1).

Stated in the exponential form, de Moivre’s theorem (p. 23)
becomes (e¥)® = e which is the extension to imaginary
indices of a well-known index-law.
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ExampLE 2. Show that
[ + dt)/(L — i#)] + [(L— ét)/(1 + it)] = 2 cos 6,
where ¢ = tan 6.
Since (1 -+ #t)/(1 — t) = (cos 36 + ¢ sin }6)/(cos 30 — 4 sin 40)
= exp (3i6)/exp (— i)
= exp (16),
the expression on the left-hand side reduces to
exp (20) 4 exp (— 20),
which is 2 cos 6.
Examere 3. Show that
32 ¢cost 6 sin2 6 = 2 | cos 260 — 2 cos 40 — cos 66.

Inserting the exponential values of cos § and sin 6, and
writing z for exp (¢6), we have

32 cost Osin? 0 = — ¥(z + 2z~ 1)4(z — 2~ 1)2

= — 3 — 22z 4 272
=—3F—24+27%)(+2+277%)

=— 38+ 276 4 24 4 2—4 — 22— 2-2— 4)
= — co08 60 — 2 cos 46 + cos 26 + 2.

THE FACTORS OF 22 — 1. It was shown on p. 22 that a
polynomial with real coefficients can be resolved into linear
and quadratic factors in which the coefficients are real: we
shall obtain these factors for the above expression, n being a
positive integer.

The roots of the equation 22* = 1 are the values of exp (ikmfn),
where £ =0, 1, 2,. . . 2n— 1 (see p. 24). The roots given by
k = 0 and k = n are real, viz. 1 and — 1, and the others may
be arranged in the conjugate pairs:

exp (sswfn) and exp [i(2n — s)m[n] = exp (— tsm[n),

where s =1,2,3,. . .n— 1.
The conjugate pairs of complex roots give the factors

[z — exp (ssm[n)] [z — exp (— ism[n)] = 2% — 2z cos (s7fn) 4 1

and we may write

22— 1 = (22 — 1)"I_Il[z2—— 2z cos (smfn) + 1].
§=1
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TEE FACTORS OF 227+l — 1. This function vanishes when
z=1 and when z = exp [2ikn[(2n + 1)], where k =1, 2, 3,
. 2n. The 2n complex roots may be arranged in the
conjugate pairs :
exp [2ism[(2n + 1)] and exp [2(2n + 1 — s)7=f(2n - 1)]
= exp [— 2isw[(2n + 1)],

wheres =1,2,3,. . .n.
Hence

2+l 1 = (z— 1) ﬁ {z— exp [2isn[(2n + 1)]}
=t {z — exp [— 2isn[(2n + 1)]}
=(z—1) o {2 — 2z cos [2sr[(2n + 1)] + 1}.
§=1

Application to the Summation of Series. Certain trigono-
metric series may be summed by making use of the fact that
exp (¢6) = cos 0 4 4 sin 0.

Examrrre 4. If

C=1-+rcosf +72cos20 4+ . . .
+ m-1cos (n— 1)

and S=rsinf 4 72sin20 4+ . . . 4 rm—1sin (n — 1)6,
then C +iS=142-4+224+.. .+ 271
where z = r exp (20),

ie. C+iS=A—27)/(1—2)
= [1—r"exp (in6)]/[1 — r exp (20)]
= [1 —rmexp (inb)] [1 — rexp (— i6)]/
[1—rexp (20)] [1 — rexp (— 26)]
_ 1—rexp(—10) —r"exp (ind) + r"+1exp [i{rn— 1)6]
- 1 — rlexp (16) + exp (— i6)] + 72 '
The denominator of the fraction is real, being in fact
1— 2rcos 6 4+ 72. Expressing the exponentials in the numer-

ator in terms of sines and cosines and equating real and imag-
inary parts, we have

C— [1—rcos 6 — 1™ cosnf 4+ r»+1cos (n— 1)6]
[1— 27 cos 6 + 72] ’

_ [rsin@—rmsin nf 4 rm+1sin (n— 1)6]

o [1— 2rcos 6 + 7] ’

and 8
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Exampre 5. Consider the sum to infinity of the series

1 4 7 cos 6 + (72 cos 20)[2' + (3 cos 36)[3! + .
~+ (™ cos n)[n! +

Denote the sum of this series by C and let S stand for the
sum of the corresponding infinite series

rsin 6 + (72 sin 20)/2! + (X3 sin 36)/31 . . .

+ (msinnf)/n! +. . ..

Then C + 48 =1-+2 4+ 222! + 2331 . . .

+2¢nl 4. ..
= exp (2),
where z has the same meaning as in Example 1.
Hence C' 4 i§ = exp (r cos 6 + ir sin 6)

= exp (r cos 0) . exp (¢r sin 6)

= exp (r cos 0) . [cos (r sin 0) + ¢ sin (7 sin 0)],
and therefore C = exp (r cos 0) . cos (r sin §)

8 = exp (r cos ) . sin (r sin 6).

The series which are denoted by C and 8 in the second
example are, of course, convergent for all finite values of 7
since they are the real and imaginary parts of the series exp (z)
which converges for all finite values of z.

Logarithms of a Complex Number. If z is any complex num-
ber and w satisfies the equation z = exp (w), then w is defined
as a logarithm of z lo the base e. As will be shown below, an
infinite number of values of w can be found when z is given
and so every number has an infinite number of logarithms.

Let z be expressed in the form #(cos 6 + 7 sin 6), where r is
the modulus and 6 the principal argument of z. Then, if
w = % -+ v, we have

r(cos 0 + ¢ sin ) = exp (v + )
exp (u). exp (iv)
exp (u). (cos v + 7 sin v),
whence exp (u) = r and v = 0 + 2nm,
where n=0,+1,4+2 +3,....

l

Since w is real it is the ordinary real natural logarithm of the
positive number » which we denote by log, r, and it is unique;
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but v can take an infinite number of values differing by
multiples of 2. The logarithms of z are then given by

log, z = log, r 4 (6 + 2nm),

where 7 is zero or any integer. The value given by taking
n = 0 is defined as the principal logarithm of z; its imaginary
part is the principal argument of 2.

When finding the logarithms
Y of a given complex number, it
A *1 jis advisable to make use of the
Argand diagram in order to
determine the principal argu-
ment of the number. For
0 instance, if the values of the
logarithm of 2 are required, we

Niw
)
N~

K #1 X pote that r = 2 and 6 = 0 and
so the general value is
(log, 2 + 2nim)
Fic. 13 withn=0,+1,+-2,+3,....
Again, — 1 has modulus 1 and principal argument 4 =

(there is an ambiguity here to which reference was made on
p- 6). The general value of log, (— 1) is therefore (2n + 1)iw.
Similarly, the general logarithm of (1 4- ¢) is

[3 log, 2 + (2n + })in]

(Fig. 13) and that of ¢ is (2n + })im.

Since the logarithm is a many-valued function, it is necessary
to take great care in dealing with it, otherwise it is easy to get
into difficulties. Comsider the following argument—

“TIt is well known that log (1/z) = — log . Puttingz = — 1,
we have log (— 1) = — log (— 1), whence log (— 1) = 0 and
so—1=-exp (0) = + 1.”

The fallacy arises from the fact that, in the above argument,
the logarithm is treated as a one-valued function.

Since log [z X (1/x)] = log 1 = 2nim,
log  + log (1/x) = 2nixw
and so log (— 1) + log (— 1) = 2nix,

where # is zero or an integer.
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The last equation simply tells us that the sum of any two
values of log (— 1) is zero or an even multiple of 7z. This is
true, because the general value of log (— 1) is an odd multiple
of i7 (see p. 36).

In the given argument, the first equation asserts that log 1
is zero, which is only one of an infinite number of possible
values: in the deduction from the next equation it is assumed
that the value of the logarithm of — 1 which is on the left is the
same as that on the right. All we are justified in concluding
from the statement log (— 1) = — log (— 1) is that any one
value of the logarithm is equal to minus some other value.
This is true since the values are - 4w, 4+ 3im, =+ 5im, . . .;
but it is untrue to say that any one value is equal to
minus itself.

TaE FUuNcTION 0. If @ and z are any complex numbers, we
define a* by the equation

a® = exp (zlog, a).

Since the logarithm has an infinite number of values, this
function, in general, also has an infinite number of values.
If Ia] = R, if the principal argument of @ is f and if z = z + #y,
then
log, @ = log R + (8 + 2nw)
and, from the definition,
a* = exp {(z + iy)[log B + (8 + 2nm)]}
= exp {x log BR— y(8 + 2nn) + i[y log R + (8 + 2nm)]},
where n can take any of the values 0, 4= 1, =2, 4+ 3,. . . .
As a particular case consider the values of 7%. Since
log s = (2n + })im,
©* = exp [— (2n + 3)7],
wheren =0, += 1, -2, 4+ 3,. . ..
Thus the expression has an infinite number of values all of
which are real.

Geeneralized Circular and Hyperbolic Functions. The circular
functions of any complex number z are defined by the relations
sin z = [exp (¢2) — exp (— 22)]f21,
cos z = [exp (¢z) + exp (— 22)]/2,

tan z = sin zfcos z = 1fcot 2,
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cosec z = lfsin 2,
sec z = 1fcos z,

where exp (i2) is the sum of the power series p! (ez)n[n !
=10

On comparing the above values of sin z and cos z with the
exponential values of sin § and cos 0, where 0 is real, given
on p. 32, we see at once that the definitions hold good when
z is real. We have generalized our trigonometry in such a way
as to include as special cases the results of real trigonometry.

From the equations which define the sine and cosine we
have

cos z 4 % 8in 2 = exp (i2)

and cos z — % 8in z = exp (— 2),

whence (cosz - ¢ sinz) (cos z— ¢ 8inz) = exp (¢2) . exp (— 4z)
= exp (0),

ie. cos?z - sin?z = 1.

If % and v are any two complex numbers,

cos u cos » = }[exp (tu) 4 exp (— 1u)] [exp (¢v) + exp (— iv)]
= Hexp [i(u + v)] + exp [« i(u + v)]
+ exp [i(x — v)} + exp [—i(u —v)]}
= 3[cos (v -+ v) + cos (u— v)],

and
sin % sin v = — }[exp (4u) — exp (— tu)} [exp (iv) — exp (— iv)]

= — Hexp [2(u + )] + exp[—i(u + v)]
— exp [i(u— v)] — exp [— i(u— v)]}
= %{cos (u — v) — cos (v | v)].

Addition and subtraction of these results give
cos (% 4= v) = cos u cos v - sin « sin o,

where both upper or both lower signs are to be taken.
In an exactly similar way it can be shown that

sin (4 4 v) = sin u cos v -+ sin v cos u.
By division it follows that
“tan (u £ ») = (tan % & tan »)/(1 T tan w tan v).
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These formulae are exactly the same as if % and » were real:
in fact, all the addition formulae of elementary real trigono-
metry are valid for complex arguments.

In a similar manner we define the generalized hyperbolic
functions by the relations

sinh z = 3[exp (2) — exp (— 2)],

cosh z = [exp (2) + exp (— 2)],

tanh z = sinh z/cosh z = 1fcoth z,
cosech z = 1/sinh 2,

sech z = 1/cosh =.

From these definitions it follows that

(cosh z 4~ sinh 2) (cosh z — sinh 2) = [exp z] [exp — 2]
= exp (0)
and so cosh? z — sinh?z = 1.
The addition formulae may be obtained in the same way as
for the circular functions and are
cosh (# 4+ v) = cosh u cosh v 4 sinh « sinh v,
sinh (¥ 4 v) = sinh % cosh » + sinh » cosh «,
tanh (u - v} = (tanh % 4 tanh v)/(1 4 tanh « tanh v),
both upper or both lower signs being taken in each instance.
If z is purely imaginary and equal to ¢y, where y is real, we
have from the definitions
sin 1y = [exp (— y) — exp (y)]/2: = isinhy,
cos 1y = [exp (— y) + exp (y(1/2 = cosh y,
sinh iy = }[exp (iy) —exp (— iy)] = isiny,
cosh 7y = 3[exp (ty) -+ exp (— 1y)] = cos y.
Hence we can express the sine, cosine and tangent of z = = + oy
in the form 4 + ¢B. We have
sin (z 4 4y) = sin x cos ¢y -+ cos x sin 1y
= gin x cosh ¥ - ¢ cos z sinh y
cos (xz + 2y) = cos x cos 1y — sin x sin 1y
= cos « cosh ¥ — ¢ sin z sinh y.
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The corresponding result for the tangent may be obtained by
division of these results or, more neatly, thus—
tan (z 4 1y) = 2sin (2 4 1y) cos (x—12y)[2 cos (x + 2y) cos (x— iy)

= (sin 2z -} sin 24y)[(cos 2z -+ cos 2iy)
= (sin 2z -} ¢ sinh 2y)/(cos 2x -+ cosh 2y).

It will be noted that all the circular and hyperbolic functions
have been defined by means of power series in z having real
coefficients. It follows that, if f denotes any one of these
functions and f(z + 1y) = P + (), where P and @ are real, then
f(z—ty) = P — i@, whence

[fl@ + iy)[> = P? + @ = f(z + @) . f(z — iy).
The application of this principle often gives very neatly the
modulus of a function of this type. Thus,
[sin (z + y)|? = sin (z + 1y) . sin (x — 7y)
= %(cos 24y — cos 2z)
= }(cosh 2y — cos 2z)
= cosh? y — cos? z.
Also, [cos (z + 1y)|2 = cos (z + 7y) . cos (x — ©y)
== }(cos 2z } cos 2iy)
= %(cos 2z + cosh 2y)
= cos?x 4 sinh?y
and |tan (z 4 iy) |2 = (cosh 2y — cos 2x)[(cos 2z-+cosh 2y).

The corresponding results for the hyperbolic functions may
be obtained in a similar way, and are left as an exercise for
the reader.

Exampre 6. If cos (@ + 4b).cosh (x + 4y) = 1, where
a, b, z, y are all real, prove that, in general,

tan a tanh b = tanh z tan y. (U.L.)

Expanding each of the factors on the left-hand side of the
given relation, we have

(cos a cosh b — 4 sin @ sinh b) (cosh x cos y -} ¢ sinh z sin y) = 1.
The imaginary part of the product vanishes and so

cos @ cosh b cosh  cos y(tanh = tan y — tan e tanh b) = 0.
Hence tanh x tan y = tan a tanh b,
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unless cos @ or cos y vanishes : neither of the factors cosh b, cosh z
can vanish since the least value that either can have is unity.
Examerr 7. If tanh (u + ) = z + 7y, where u, v, z, y are
real, find 2 and v in terms of » and v. Find the values of »
and v when z =y = 1. (U.L.)
Since
z + sy= tanh (u -} ),
z — 1y = tanh (v — iv)
and =z = } tanh (v + %v) + } tanh (v — iv)
__sinh (u+1v) cosh (x— %) + cosh (u 4 ) sinh (u — )
- 2 cosh (u + i) cosh (u — )
= sinh (v + v + w— )f(cosh 2u. 4 cosh 2¢v)
= ginh 2u/(cosh 2u -+ cos 2v).
Similarly,
1y = % tanh (u 4 iv) — § tanh (v — @)
= sinh (% + % — % -+ w)[(cosh 2w -+ cosh 2¢v)
= sinh 2:v/(cosh 2% + cosh 2iv),
which gives
y = sin 20f(cosh 2u -+ cos 2v).
When z = y = 1, we have
tanh (u -+ 0) = 1 + ¢, and tanh (¥ — ) = 1 — 4.
Therefore tanh 24 = tanh (v + v + u — W)
=[1 4+ Q=1+ A+ 1) 1—1)]

=3

Also tanh 24v = tanh (v + v — u + W)
— L+ D) — A= DY — (1 48 QA — )]
= — 2,

ie. tan 20 = — 2,

whence v = §(nw— tan—1 2),

where n=0,+1,+2,....

Since tanh 2u = 2/3, w and sinh 2u must be positive. From
the identity sech? 2u = 1 — tanh? 2u, we deduce that

cosh 2u = 3f+/5 and sinh 2u = 2/4/5.
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As exp (2u) = sinh 2u + cosh 2u = 4/5, it follows that
u = % log, 5.
Exampre 8. If log [cot (x 4 ¢y)] = u — iv, prove that
coth % = cosh 2y sec 2z and cot v = sin 2z cosech 2y.
Show that, if x lies between — 47 and 4w, v lies in the same
quadrant as arg (x + @y).
From the data,
exp (u — tv) = cot (z + ¢y) and
exp (4 -+ ) = cot (x — 7y),
therefore
exp (2u) = exp (u -+ ) exp (v — 2v)
= cos (z -+ 2y) cos (x — 2y)[sin (z + 1y) sin (z —iy)
= (cos 2z + cosh 2y)/(cosh 2y — cos 2z).
Hence
coth v = [exp (2u) + 1]/[exp (2u) — 1]
= cosh 2y/cos 2z
cosh 2y sec 2.

Again
exp (2iv) = exp (¢ + w)fexp (v — )
= cos (x — ty) sin (x + 2y)[sin (z — iy) cos (z +iy)
= (sin 2z + % sinh 2y)/(sin 2x — ¢ sinh 2y)
and cot 2v = i[exp (2iv) -+ 1]/[exp (2v) — 1]
== 24 sin 2z/(2¢ sinh 2y)
= sin 2z cosech 2y.

We now have to show that, if z is a positive or negative acute
angle, the angles v and arg (x -+ 4y) are in the same quadrant.
Now exp (u — @)

= cos (z - 2y) sin (x — 2y)[sin ( 4+ 2y) sin (x — 7y),
whence exp (u) (cos v — ¢ sin v)

= (sin 2z — ¢ sinh 2y)/(cosh 2y — cos 2x),
and, equating real and imaginary parts, we have

exp () cos v = sin 2z/(cosh 2y — cos 2x)
and exp (u) sin v = sinh 2y/(cosh 2y — cos 2z).
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Now exp (u) is positive, since u is real, and (cosh 2y — cos 2z)
is positive, since cosh 2y cannot be less than 1 and cos 2z
cannot exceed 1. Consequently, cos v has the same sign as
sin 2z, and sin v has the same sign as sinh 2y. There are four
cases to be considered.

Case i. If arg (x + 4y) Hes in the first quadrant, both # and
y are positive; sin 2z is positive because 2x lies between 0
and =; and sinh 2y is positive. Therefore sin v and cos v are
both positive, and the angle v is in the first quadrant.

Case ii. If arg (z + 4y) is in the second quadrant, then 2z
lies between 0 and — 7 and sin 2z is negative, while ¥ is positive.
The angle v then has a negative cosine, a positive sine, and
therefore lies in the second quadrant.

Case iii. When arg (z + ¢y) is in the third quadrant, 2z lies
between 0 and — = and sin 2z is negative, while y and therefore
sinh 2y are mnegative. Since sin » and cos » are now both
negative, v is in the third quadrant.

Case iv. If arg (x + 1y) is in the fourth quadrant then 2z
lies between 0 and =, sin 2x being positive, while sinh 2y is
negative. Therefore cos v is positive and sin v negative; thus
» is in the fourth quadrant.

ExamprE 9. Prove that the most general value of sin—* 4 is
(2m -+ 3)m + i log (4 4+ 4/15), where m is an integer or zero.

(U.L)

If sinz = 4, cos z = - 24/15 and exp (#2) = cos z -+ % sin 2

= (4 4 +/15)2, from which we have

1z = log [(4 4 /15)i]
= log (4 + v/15) + log ¢
— log (4 & +/15) + (2m + B)mi,

because the general value of log ¢ is the principal value plus an
even multiple of .

Since (4 4+ /158) (4 — /15) =1,
log (4 + +/15) = — log (4 — 1/15),

and we may write the result in the form
z = (2m + 37 + 2log (4 + +/15).

Exampre 10. Resolve 22* 4 227 cos n6 -+ 1 into real quadratic
factors, n being a positive integer.
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Hence show that

cosh n¢ + cos nf = 2"*111?I1{cosh ¢ —cos [0 + (2r + L)m/n]}
r=0 (U.L.)

The given expression may be factorized in the form
[2" + exp (in)] [z" + exp (— in6)]

and therefore the zeros of the expression are the roots of the
equations

" = — exp (1nf) = exp i(nb + =)
and " = — exp (— nb) = exp i(— nb — ).

These roots may be obtained by giving » the values 0, 1, 2, 3,
.in expi[0 + (2r + 1)w/n] and expe[— 0 — (2r + 1 w/n]
The product of the two linear factors which correspond to a
given r is

{x— exp [0 + (2r 4+ L)a/n]} {x — expi[ — 6 — (2r 4+ 1)a[n]}
. =2%— 2xcos [0 4 (2r + l)w/n] + 1.

Hence z2* 4 22" cos n6 + 1
= nI_I {2 — 2z cos [0 + (2r 4+ 1)w/n] + 1}.
r=0
Divide by 22", put z = exp (¢) and it follows that

cosh n¢ + cos nf = 27~ -1 1'[ {cosh ¢ — cos [0 + (2r + 1)m[n]}.

EXERCISES
1. Express the following numbers in the form r(cos 8 + i sin §):—
@) (1 4+ i4/3)/(8 — i3) and
(ii) [exp (@ + ib)]/[tan 6 + i].
2. Show that, by a proper choice of 4 and B, Ae%¥® | Be~%# can
be made equal to 5 cos 20 — 7 sin 26.
3. Prove by de Moivre's theorem or otherwise that
cos® 6 1 sind® 6 = (1/64) (cos 80 + 28 cos 46 + 35).
4. Express sin® x cos x in terms of sines of multiples of x. (-£)

5. Find the real quadratic factors of 28 — 42* 4+ 16.
6. Obtain the three real quadratic factors of & + 82® -+ 64.
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n—1
7. Show that sin n6 = 271 sin 6 II [cos § — cos (rmfn)] and that
r=1

n—1
n sin § — cosec nf = E4,./[cos 6 — cos (r=/n)l,

where 4, = (—1)"~1 . sin? (r=fn). (U.L.)
8. Show that

sin (2n + 1)0 = (2n + 1) sin 0 II {1 — sin? 6 cosec? [r=/(2n + 1)}
r=1 (U.L.)

9. Show that the roots of the equation (2® — a?)* = (2az)" are
a{e?miln 4 errifn /(2 cos (2rnfn)1},

where r =0,1,2, . . .n— 1. (U.L.)
10. If a, b, ¢ are real and o® + b® > ¢2, prove that
n—1

IIO[a cos (28wfn) -+ bsin (2swfn) — ¢] = (— })"—1 7 (cos né — cosnh),
8=

wherer = + +/(a? + b%),rcos ¢ = a,rsin¢ = b, r cos 6 = c.
(U.L.)

11. Show that 3 na" -1 cos (n— 1)8
n=1

_ (1 —=xcos6)*— a*sin® 0
(1L — 2z cos 6 + x2)2

when | z| <1.
12. Ifa = cos A + isin A,b = cos B + isin B,¢ = cos C + i sin C,
express X(cos 34 - isin 34)sin (B — C)in terms of @, b, c.
Deduce or otherwise prove that
Y cos84sin(B—C) =4cos (4 + B + C)Ilsin (B— C)
Xsin34sin(B— C) = 4sin(4 + B + C)Ilsin (B — C).
(U.L.)
13. If cosh (u + iv) = tan (a + ib) prove that
cosh 2u + cos 2v = 2(cosh 2b — cos 2a)/(cosh 2b 4 cos 2a).

14. Prove that the logarithms of the ratio of two conjugate numbers
are purely imaginary.
15. Give a definition of a® valid when a and z are any complex
numbers.
Are the following statements consistent with your definition?
3) (1 +4)V2. (1 —3i)vV2 = 2Vv2; () it+i.i"i=—1. (U.L.)

16. Find, in terms of the modulus and argument of a, the moduli
and arguments of a®+%,

Show that all the points which represent the values of a®¥ lie on a
straight line through the origin, and that all the points which represent
the values of a® lie on a circle, @ being complex and z and y being real.

17. Prove that log [sin (z + iy) cosec (x — iy)] = 2itan—* (tanh y cotz).

18. If »p = a + ib and ¢ = a — ib, where a and b are real, show that
(i) pe® + ge? is real; (ii) log (cos ¢ sec p) is wholly imaginary and has
the value i6 such that tan 6 = sin 2a sinh 2b/(1 + cos 2a cosh 2b).

(U.L.)
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19. If # + iy = cos (¥ + i), prove that
(1 + z)? + 92 = (coshv + cos u)?
and (1—2)® + y* = (coshv — cos u)?.
Ifz =cosfandy = sin 0 (0 < 6 < =), find cos v and cosh v in terms
of cos 30 and sin 0, justifying the choice of signs when square roots

are taken. (U.L.)
20. If & + iy = ¢ cosh (6 + i¢), prove that

x2sech? § - y2 cosech? 6 = ¢2, and 22 sec? ¢ — y2 cosec? ¢ = c2.

(U.L.)
21. If cos (u + i) = €8, 4 and v are real and v is positive, show
that u = (2r — })7 and v = log, [2 cos (7/12)]. (U.L.)

22. If sin (1 4+ i) = r(cos 6 + ¢ sin §), find the numerical values of
r and 6.

23. Show that the equation z + a cot z = 0, where a is real and
positive, has no complex roots and only two purely imaginary roots,
and that the modulus of each of these is greater than a.

24. If y sin # = z sinh y, show that z and y cannot both be real and
non-zero.

Show that the equation tan z = kz, where k is real, can have no
complex roots and at most two purely imaginary roots, this occurring
when % lies between 0 and 1. (U.L.)

25. Prove that the equation cot z = k2, where k is real, (i) has
no roots of the form a + ib, where o and b are real and different from
zero, and (ii) that, if % is positive, all its roots are real. (U.L.)

26. Prove that every value of either side of the equation

2i cot™ 1 2 = log,[(z + 4)[(z — )]
is equal to a value of the other side. (U.L.)



CHAPTER IV

FUNCTIONS OF A COMPLEX VARIABLE—CONJUGATE
FUNCTIONS—CAUCHY’S THEOREM—CONTOUR INTEGRALS

The Complex Variable. If z and y are variable real numbers,
then z (= = + iy) is called a complex variable.

The point P, which represents z in the Argand diagram,
varies its position as z and y vary: if both x and y vary con-
tinuously from y, ¥, to 2,, 4, respectively, the point P describes
a continuous curve in the z-plane from Py(the point z, 4 iyp)
to P; (the point z; + #%,).

If both 2 and y are finite, z is said to be finite: if z and y
are not both finite, z is said to be infinite. Clearly the modulus
of a finite number is also finite and the number is represented by
a point which is at a finite dis-
tance from the origin.

Two points Py, P, in the z-plane P!
may be connected by an infinite
number of paths which lie in the P(2)
plane. Consequently, if z varies argz

continuously from z, to z,, it is
necessary to specify the path of
variation, ie. the path along
which its representative point
travels.

If P, coincides with P, the
path becomes a closed curve or
contour. A contour is said to be simple if, like a circle or ellipse,
it has no multiple point. An example of a contour which is
not simple is a figure of eight.

Suppose that a point z (Fig. 14) moves once round a simple
contour €' which does not surround the origin; then it is clear
that |z| and arg z, measured by the angle between the real
axis and the vector z, vary continuously and both return to
their original values. But if z describes once a simple contour (04
which surrounds the origin, || varies continuously, and returns
to its original value, while arg z varies continuously and returns
to its original value - 2m according as the point moves round
the curve in the trigonometrically positive or negative sense.

47

S

Fia. 14
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Let P, which represents z, and P, which represents z +- dz,
be two neighbouring points on any one of the paths which
connect Pyand P;. From the vector equation PP’ = OP’ — OP,
it follows that the vector PP’ represents 6z and the length
of the chord PP’ is equal to |6z|, whence the length of the
infinitesimal element of arc is |6z| and the angle between the
tangent to the path at P and the real axis is arg éz.

Functions of a Complex Variable. Suppose that z(= z -+ 4y)
and w(= u -+ iv) are two complex variables which are so related
that, to every value of 2, there corresponds one and only one
value of w. Then we might say that w is a uniform funection of
z. It will be seen presently that it is advantageous to restrict
the definition of a function of a complex variable to a much
narrower class of relations.

As particular instances we may take

(i) w= 2% or u + tv = a®— y? 4 2ixy;

(i) w = exp (2), or u + v = exp (x) (cos y + ¢ siny);
(iii) w = sin 2, or % + v = sin z cosh y 4 4 cos % sinh y;
(iv) w= |z], or w + W = /(2 + ¥?);

(v) w = the conjugate of 2, or v + w = x — 1.

It will be observed that, in each case, 4 and v are themselves
real functions of the two real variables = and y: when it is
desired to indicate this fact explicitly, we shall write them in
the forms u(z, y) and v(x, y).

We shall assume that both ‘w and » are continuous and
differentiable with respect to =z and y. Consqeuently, if z is
given a small increment &z = dz + idy, the corresponding
increment in w is du + <0v and is also small.

It is convenient to represent z and w by points in two Argand
diagrams which we shall call the 2- and w-planes respec-
tively. The point P (Fig. 15) represents z and @ represents the
corresponding value of w. On the assumption that » and v
are continuous functions of z and v, it follows that, if P describes
a continuous curve in the z-plane between two points Py, P,
then @ describes a continuous curve in the w-plane between
the corresponding points @, @;.

We shall now consider the relation between a small increment
in z and the corresponding increment in w. Suppose first that
only the real part of z is varied; so that z (represented by P)
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becomes z + dx -+ iy (represented by P,) and 6z = éz. In
consequence, w becomes w; (represented by @,) such that

wy; = u(x + oz, y) + tw(xr + oz, y).
The ratio of the increments in w and z is then

(w—w) _ uz+ bz, y) — u(z, y) + il + oz, y) — viz y)]

&= oz Sz
and, when éz tends to zero,
Limit (wy — w)fdéz = (dufdx) + i(vfdx) . . . . (1)

Now suppose that only the imaginary part of z is varied;

so that z becomes z +- 7y 4 idy, represented by P, and w
becomes w,, represented by Q..

Y 7 v
z-FPlane Sy w-Plane
P Sx A1
/<
x . w
Q'z\\/
Q
Fic. 15

Then w, = u(x, y + 0y) + v(x, y + Jy), 2z = idy and the
ratio of the increments is

(wp—w) _ ey + O0y) — ulz, y) | vy + oY) — v y)

0z 18y dy
As oy tends to zero, »
Limit (w, — w)[dz = — i(dufdy) 4 (dvfoy) . . . (2)

In general, the limits (1) and (2) are not equal, the ratio
ow/dz does not approach a unique limit as dz tends to zero,
and it is not possible to extend the idea of a differential coeffi-
cient to perfectly general functions of a complex variable.

It is natural to inquire in what circumstances the two limits
are identical. On equating the real and imaginary parts we
have as the necessary and sufficient conditions

Jufdx = dwfdy and owfdr = — dufdy . . (3)
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We shall now show that, when conditions (3) are satisfied,
the ratio dw/fdz approaches a unique limit as dz approaches
zero by any path whatever.

Suppose that z is given a general increment and becomes

z + 02 = x + Sz + 1y + 0y
and that, in consequence, w becomes

w4 dw = u(x + Oz, y + dy) + w(x + oz, y + Oy)
= u(z, y) + w(z, y) + udr + u,dy 4 w0z 4 iv,dy,

where we have expanded by Taylor’s theorem, retaining only
terms of the first order, and where suffixes denote partial
derivatives (thus u, stands for oufdz).

Hence, as 6z — 0 and dy — 0 independently, the limit of
Swfdz is

[(4e + i02)02 + (0, + i0,)09] (02 + idy)
= [(tg + 10)02 + (— v, 4 Tu,)0y)/(S2 + iby)
= Uy + 2V,
= v, — 1U,, using conditions (3).

Thus when conditions (3) are satisfied, dw/dz tends to a
unique limit as éz tends to zero in any manner: the value of
the limit is defined to be the differential coefficient or derivate
of w with respect to z and is denoted by dw/dz. The function
w is said to be monogenic.

In future, we shall apply the term funciton only to monogenic
functions: for those which are not monogenic are of no par-
ticular interest in connection with the complex variable and
may be adequately treated as a combination of two functions
of the real variables z and y.

Consider the functions enumerated on p. 48. In (i) u = 22— 3?
and v = 2zy, whence u, = 2z = v, and 4, = — 2y = — v,.
The function 22 is therefore monogenic and its derivate is 2z.
Similarly it may be verified that conditions (3) are satisfied by
(i) and (iii). In (iv), w = 4/(2® + %?), v = 0, and the conditions
are not satisfied. Again, in (v) u=2, v=—y, %, = 1, and
v, = — 1. Tt follows that the modulus and the conjugate of
z are not functions of z in the sense defined above.

Conjugate Functions. If w + v = f(x + 4y), where f(z) is a
function of the complex variable 2, in the sense specified above,
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then » and v are real functions of the two real variables z and y
and are called conjugate functions. '

The partial derivates of w and v are connected by the
relations

ou _ v dau_ v
T My T T

from which we have, by partial differentiation,

B0 w Pu . Puw M M
dy T ¢ xdy x yE
It follows that both u and v satisfy the partial differential
equation
% | 2

which is Laplace’s equation in two dimensions.

< This equation occurs constantly in mathematical physics:
for instance, it is satisfied by the potential at a point not
occupied by matter in a two-dimensional gravitational field
and also by the velocity potential and stream function of
two-dimensional irrotational flow of an incompressible invisecid
fluid.

By writing down any function of z and separating out its
real and imaginary parts, we obtain immediately two solutions
of the differential equation. It is obvious then, that the
theory of functions of a complex variable must be an invalu-
able aid towards the solution of two-dimensional problems in
mathematical physics.

Construction of a function which has a given real or
imaginary part. It is possible to construct a function of z, which,
for its real or imaginary part, has a given real function of x
and y, only when that given function is a solution of Laplace’s
equation. Perhaps the neatest way of carrying out the actual
construction is due to Prof. L. M. Milne-Thomson (Math.
Gazette, XXI, 1937, p. 228).

Suppose that

S@) = u=, y) + vz, y).
Then, if z=x—1y
we have x= (2 +2)/]2 and y = (z — 2)[%,
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and we can write f(2) in the form
£&) =l + D2, (— %] + ooz + D)2, G— D)%)
As this is merely an identity, Z may be given any value. Putting ,

Z = en - P
Z = z, we have 7 W’f‘ =

A /) = ulz, 0) + iv(z, 0)
Thus any function of z may be expressed in the form
fl(z) + z:’02(“”)’

where fi(2) and f,(2) are real when z is real.
Now suppose that w(z, y) is given, satisfying Laplace’s
equation. Thenif
f@) = u(z, y) + w(, y),
f'(2) = u, + iv,, since f(2) is monogenic,
= u, — 14, using relations (3) on p. 49.
Writing ¢,(x, y) for u, and ¢,(z, ¥) for »,, we have
I'(2) = i@, y) — iy, y)
= ¢1(Z, 0) - 7:¢2(Z, 0):

where we have made use of the form (5) above.
On integrating we have

&) = f [z, 0) — ighy(2, 0))dz -+ C,

where C is an arbitrary constant. The integration is carried
out just as if z were real.
If the imaginary part v(z,y) is given, the work is similar

and
f,(z) =0, + W,
= 1/)1("”: ?/) + 7:"/’2(7"’ y)

= (2, 0) + ";"/’2(3’ O)r
where 1z, 9) = v, and yy(z, §) = v,

Then  f(z) = f [ya(2, 0) + ival, O)1dz + 4,

where A4 is arbitrary.
Exampre 1. Take u = 2zy which.clearly satisfies equation (4).

Then ¢y(z,y) = 2y and y(x, y) = 2,
giving ¢;(z, 0) = 0 and ¢,(2, 0) = 22.
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Hence f(z) = f— 2iz dz = — i(2® + C), where C is real.

Exawmrre 2. The function v = exp () cos y satisfies La-
place’s equation and, in the above notation,

¥u(®,¥) = v, = —exp (z) siny
and Po(x, ¥) = v, = exp (z) cos ¥,
ie. (2, 0) = 0 and (2, 0) = exp (2).

Therefore JR@)=u+ v = f 1 exp (2) dz = i exp (2) -+ B,
where B is a real constant.

ExampLE 3.
If % — v = [exp (y) — cos & + sin z]/(cosh ¥ — cos z)
and  f(#/2) = (3 — 1)/2, find f(z).

Now if % -+ 10 = f(z), 1w — v = if(2),
and (u— ) + i(u + 2) = (1 + i) f(2).

Hence U = u— v and ¥V = u + v are conjugate functions.
Simplifying the given expression for % — v, we have

U = 1 + [(sinh y - sin z)/(cosh y — cos z)]
from which we get
U, = (cosx cosh y — sin z sinh y — 1)/(cosh y — cos )%= ¢,(x, ¥)
U, = (1 —cos z cosh y — sin z sinh y)[/(cosh y — cos x)2= ¢y(z, y).
Therefore ¢,(z, 0) = — 1/(1 — cos 2) = — } cosec? (2/2)

Ps(2, 0) = 1/(1 — cos z) = } cosec? (2/2)

and (1 + 9)f(z) = — £(1 4 %) cot (2/2) + C.
Hence f(z) = cot (2/2) + B,

where B is a constant whose value may be found by using the
given condition, thus

flaf2)= (3 —4)j2 =1+ B.
The required function is therefore cot (2/2) + (1 — %)/2.
The Curves u# = Constant, v = constant. If
u + v = flx + 2y),

where f(z) is a uniform function of z, the conjugate functions
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are single-valued functions of z and y and therefore, through
a given point z, (= %, + @) in the z-plane will pass one and
only one curve of the family » = constant, and one and only
one curve of the family v = constant, the equations of these
curves being

u(®@, y) = u(@, yo) and v(z, y) = v(Z, Y)-

For example, if u + v = (x + ¢y)? the two curves are the
rectangular hyperbolas 22 — y? = %, — ¥,? and xy = z,y,.

It is convenient to refer to the two families of curves as the
u-system and the v-system.

Suppose that (z, ) and (z + dx, y + Jdy) are the co-ordinates
of two neighbouring points on the curve % = constant. Then

u(x + éx, y + 0y) — u(x,y) = 0

and, retaining only terms of the first order we have, on
expansion,
. w0 + u,0y = 0,

whence it follows that the value of dyfdz-at the point (z, y),
i.e. the gradient of the curve at the point (z, y), is equal to
— Uyp[Uy.

In,the same way, the gradient of the curve of the v-system
through the point (2, y) is — vfv,.

The product of the gradients of the two curves at their
point of intersection (z, y) is therefore

U [U, v, = — 1, since u, = v, and u, = — vy,

and we have the important result that curves of the - and
v-systems intersect at right angles.

In applications to electrostatics and to the theory of gravi-
tational potential, the two systems of curves are the lines of
force and the equipotential lines; in hydrodynamics they are
the stream lines and the velocity potential lines.

Exampre 4. If u + fv =1z = (x— 4y)/(x® + y?), the
u-system is given by 22 + y2 = 2kx and the v-system by
x? + y? = 2k'y, where %k, k" are arbitrary. These are circles
touching Oy at O and Oz at O, respectively. Each circle of the
first family intersects orthogonally every member of the
second family.

ExawpLE 5. Ifu + v = log 2, then . = log 7 and v = arg z.
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The curves u = constant are circles with their centres at the
origin, and » = constant gives the family of straight lines
radiating from the origin and cutting the circles orthogonally.

THE CONDITION THAT A GIVEN FAMILY OF CURVES SHOULD
BE A u%- OR v-SYSTEM. The curves given by the equation
u = constant have the characteristic property that w satisfies
Laplace’s equation in two dimensions. But the equation is
not necessarily the simplest form from which the family may
be determined : for instance, in Example 5 we have the equation
of the circles in the form log » = constant instead of in one
of the simpler and more usual forms r = constant and
22 4 y? = constant, in which the expressions on the left-hand
sides are not solutions of Laplace’s equation.

Let us consider then in what circumstances a family of curves
given by

F(x, y) = constant

is expressible in the form
«w = constant,

where u satisfies Laplace’s equation.

If such a reduction is possible, it is clear that » must be some
function of F(z, y); for, when F(z, y) is constant, # has to be
constant.

Let u = ¢(I).

Then Uy = SAI(F)'FQ:: Upr = ¢,I(F)'Fs:2 + ¢/(F) . F:cz:

and Uy = ¢ (F).Fy, uyy = ¢""(F).F 2 + ¢'(F). Fy-
Since Ugg + Uyy = 0,

we have o'(F) (F,2+ F2) + ¢'(F) (Fpe + Fyy) =0,
Le. Fow + Fu)[(F2 + F2) = — $"(F)[$'(F).

The expression on the right-hand side is a function of Fonly
and so the required condition is that (F,, + F,,)/(F.2 + F,2)
shall be a function of F only. When the condition is satisfied,
¢ can be found by integrating twice.

ExamprLr 6. Take the concentric circles given by F(x, y) =
%24 y2 = 1, where 1 is a variable parameter.

Here (F,, + F,)](F.2+ F2) = 4f4(x® + y2) = 1JF
and & ()¢’ (F) = — 1/F.
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This gives log¢’(F) = C—1log F
or ¢'(F) = A[F
and u=¢(F)= Alog F + B,
We have then u = 4 log (* 4+ y*) + B,

where 4, B are arbitrary constants.

Laplace’s Equation in Polar Co-ordinates. If », 6 are the
polar co-ordinates of a point whose cartesian co-ordinates are
, ¥), z = z + iy = r exp (¢0) and we have

u + iv = f(z) = f(r exp i6),
where %, v are now expressed in terms of », 6. Differentiating
partially with respect to » and 6, we have

u, + v, = f'(z) exp (i6)
and uy + Wy = f'(2)ir exp (10) = wr(u, + v,).
Equating real and imaginary parts we find that
%, = (vp)fr and w, = — rv,.

Since  (3/30)u, = (OIr)uy = U,y
and (3/30)v, = (3[or)ve = vy,
we have (’UM)Ir = = Yy — TVpp, OT Uy, + (’U,.)I’r + (”sa)/"z =0
and - (uee)/”' = Uy + TUpps OT Upp + (ur)lr + (uav)lfz = (6)

Thus  and v satisfy the same partial differential equatlon
which is, in fact, Laplace’s equatlon expressed in polar
co-ordinates.

As before, the curves w = constant, v = constant cut
orthogonally, and we may apply the method used on p. 55 to
find the condition that the equation F(r,0) = 2,in which 1isa
variable parameter, should give a u-system.

We have to find the cond_mon that 4 = ¢(F) satisfies La-
place’s equation.

Now U, = ¢'(F) . F,, uy = ¢'(F) . Fy,

Urp = ¢”(F) . Fr2 + Sbl(F) . Frr:
Ugp = ¢''(F) . Fg? + ¢'(F) . Fp,
and, on substituting in equation (6),

" (F) (F2 + FRr®) + $'(F) (Frp + Folr + Fofr*) = 0.
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The condition may be written

(Frr 4= Fofr + Foor)[(F 2 + FPfr?) = — ¢ (F)[$'(F)
= a function of F only.

When the condition is satisfied, ¢ may be found, as before,
by integrating twice.
ExamprLE 7. Show that the equiangular spirals
r = k exp (0 cot «)

can be a family of stream lines, where « is the same for all the
curves and k is a variable parameter.

Here, we take F' = r exp (— 0 cot o) so that the equation is
written in the standard form F = constant.

Then F,=exp (— 6 cot a) = Ffr
and Fg = —rcot aexp (— 6 cot o) = — F cot «,
whence F.,.=0,
and Foo = r cot? w exp (— 0 cot a) = F cot? a.
Thus [Fyr + (Fofr) + (Foolr®)J[F 2 + (Fof7)’]
= [F + F cot? «]f[F? + F?2 cot? «]
= 1/F,

which shows that ¢(F) can be found so as to satisfy Laplace’s
equation, i.e. the spirals can be a family of stream lines.

‘We have

" (F)|¢'(F) = — 1] F,
whence ¢'(F) = A[F
and ¢(F) = Alog F + B,

where 4 and B are real arbitrary constants.
Thus 1w = ¢(F) = A(logr— 0 cot ) + B.

It is easily seen that u is the real part of the function

w = A logz -+ (14 cot «) logz + C,
where C is a complex constant. The imaginary part of this
function is given by

v= A6 + (A cot «) logr + D,
where D is a real constant. The orthogonal set of curves is
given by v = constant, or, more conveniently, by

exp (v tan «fA) = constant.

These are the equiangular spirals r = k' exp (— 6 tan «).
3—(T.122)
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Level Curves. The locus of a point z which moves in the
plane of the complex variable z so that the modulus of a function
f(2) remains constant is defined as a level curve of f(z). The
equation of such a curve may be written in the form

[fz)| = M,

where M is the constant modulus. By giving M all values from
zero to 4 o we obtain an infinite number of curves. Clearly,
one and only one of these passes through any given point in
the plane.

ExampLe 8. When f(z) = 2z — a, the level curves are circles
having the point z = a as their.common centre.

ExamprLe 9. For the function (z— a)/(z— b), the level
curves are coaxal circles having the points 2 =a, 2 = b as
limiting points. The point-circles of the system are obtained
by giving M the values zero and infinity.

Exampre 10. If f(z) = exp (2), | f(2)| = exp (z) and the level
curves are the straight lines x = log,

ExamprE 11. Taking f(z) = sin 2, we have

|£(2)]2 = sin (& + iy) sin (& — iy)
= (cosh 2y — cos 2x)/2

and the level curves are given by
cosh 2y — cos 22 = 23,

where M ranges from 0 to - o .

Since cosh 2y and cos 2z are both even functions, the curves
are symmetrical about both axes of co-ordinates. Also, since
cos 2z is periodie, it is sufficient to trace the curves which lie
in the strip bounded by the lines ® = 4 =/2. If M does not
exceed unity, the curve meets the x-axis where sinx = + M ;
otherwise the curve does not meet Oz at all. When x vanishes
we have M = [sin iy| == 4 sinh y, according as y is positive
or negative. Thus for all values of M the curve meets Oy in
two points equidistant from the origin.

Consider the curve for which M = 1. Its equation may be
reduced to the form sinh y = 4 cos x.

The eurve passes through the points

(& /2, 0) and (0, & log (1 + +/2) ).

At each of the first two points it has a node, the tangents
at which make angles of rf4 with Oz.
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In Fig. 16 the form of the curves is indicated. When M is
less than unity we have a series of ovals with their centres at
the points (nw, 0), where =0, -1, =2, . . . . When M is
equal to unity we obtain a curve which cuts Ox at the points
where 2 is equal to an odd multiple of =/2. For values of 3/
greater than unity the curve is in two distinct branches above
and below the x-axis.

J|

F1c. 16

Exampre 12. If f(z) = tan z, we have, as on p. 40,
|f(z)|2 = (cosh 2y — cos 2x)/(cosh 2y + cos 2x)
and the level curve |f(z)] = M is given by

cosh 2y = a cos 2z,
where a = (14+ M2[(1— M3).

As in the previous example, the curves are symmetrical
about both axes, periodic with respect to z, and need only
be traced in a strip of width =. We shall take the strip between
the lines x = — =f4 and = 3=/4.

When M is less than unity, a is positive and cos 2x can take
only positive values since cosh 2y is positive for all real values
of y. It follows that x lies between — =4 and + =f4. The
curve meets each of the axes in two points and is easily seen
to be an oval with its centre at the origin. When M = 0,
the oval reduces to a point.



60 THE COMPLEX VARIABLE

If M = 1, the equation reduces to cos 2z = 0, which gives
the straight lines = 4 =4, 4 3n[4, etc.

When M > 1, cos 2z can take only negative values and so
« lies between 7/4 and 3x/4. The equation of the curve can
be written

cosh 2y = a’ cos 2(z — =f2),

where @’ = (1 + M'2)[(1— M"?) and M’ = 1/ M. Th.e curves
are therefore exactly the same in form as those which have

y

1

=7 M<1 M= M>] M

Fie. 17

already been considered. Each has its centre at the point
(7r/2, 0). When M is infinite, M’ is zero and the corresponding
oval reduces to a point.

The plane is thus divided by the lines z = (2n 4 1)n/4
into strips in which [tan 2' is alternately less than and greater
than unity: on the lines, tan z| is equal to unity (Fig. 17).
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The Surface of Moduli. Suppose that, from the point P,
which represents z, PN is drawn perpendicular to and above
the z-plane such that PN = |f(z)|. Then the points N lie on
a surface which may be called the surface of moduli. The level
curves of the function f(z) are contour lines on this surface,
i.e. they are the curves of intersection of the surface by planes
parallel to the z-plane.

For z itself, the surface is a right circular cone of which the
vertical angle is a right angle; for 22 the surface is a paraboloid
of revolution.

The surface for the function tan z has an infinite series of
hollows and peaks. The lowest points of the hollows are at
the points z = n7 on the z-plane, while the peaks, which are
infinitely high, are above the points z = (n + %)=, where z is
an integer or zero.

These surfaces may be used, as in Jahnke and Emde’s Tables,
to give a pictorial representation of the values of the modulus
of a function of a complex variable.

The Condition that a Given Function F(x, y) should be a
Modulus. F(z, y) being a real function of x and y which is
not negative for any real values of x and y, suppose that it is
the modulus of a function f(2).

Then f(z) = F . &%, where « is the argument of the function
and therefore is a real function of z and y.

On taking logarithms we have

log f(2) = log F' + i«
and so log F is the real part of a function of z. From the result
on p. 51 it follows that log F must satisfy La.place’s equation,
ie.
(3)3a? + 33y log F = 0. -+ Adited b i

Conversely, if this condition is satisfied, a functlon o can be
found (by the method given on pp. 51-2) such that log 7' and «
are conjugate functions. Then

log F' + ia = ¢(2), say,
whence F . exp (ix) = exp ¢(2)
and F is the modulus of the function on the right-hand side.

The Condition that a Family of Curves should be Level

Curves. Suppose that the curves given by the equation
Q(z, y) = constant

are the level curves for a function f(2).
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It does not follow that @ is equal to the modulus of f(z);
all that we can assume is that |f(2)| is some function of G so
that, when |f(2)| is constant, G is constant.

Assume that
[fR)] = w(@).

It then follows, by the result of the previous section, that
(322 + 323y log (G) = 0.
Now (3/3z) log (@) = G.'(G)[ (&)
and (9%/222) log w(G) »
= [Goay’(D)[p(@)] + [G2y" (@) p(F)] — [Gay" () p(@) .
Similarly (32/3y?) log (@)
=[G,y (D9 H)] + [G2" (A p(@)] — [Gv" (O (@] -
The condition reduces to
(e + Gu)(G2 + G 2) = [¥' (O] — [ (@' ()]
= — (¢/d@) log [y (W] p(G)]-

It will be noticed that the right-hand side is expressible in
terms of G alone. The curves G = constant are therefore level
curves if (G, + Go)/(G2 + G,%) is a function of G only.
When the condition is satisfied, v may be found by integrating
twice.

It will be observed that level curves form a u-system and
that the corresponding v-system is given by « = constant.

Examerr 13. If G = ay, Gy, + G, vanishes and p is given

by
(@1d@) log [v'(G)[4(G)] = O,
whence ' (@) = 24
and (@) = B exp (24Q)
where 4 and B are arbitrary real constants, the latter being
positive.

In order to determine the function f(z), we have to find
the conjugate of log (@) = 242y + log B. From Example 1,
worked on p. 52, it is easily seen that

log (@) + toe = — 1422 4 C,

where C is an arbitrary constant, in general complex.
The rectangular hyperbolas xy = constant are therefore the
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level curves of the function exp (— 2422 4+ C), where 4 and C
are constants and the former is real.

Holomorphic Functions. If, for the values of 2z which are
represented by all the points of a region § in the z-plane, a
function f(z) is such that (i) it is one-valued, (ii) its values are
finite and continuous, and (iii) it is monogenic, then f(z) is
said to be holomorphic over the region S. The terms regular
and analytic are sometimes used as equivalent to holomorphic.

Clearly the functions 2% sin z, and exp (z) are holomorphic
over any region in the finite part of the plane.

Singularities. The function 1f/(z — a) is holomorphic in any
region which does not contain the point z = a. At the point
z = a, the value of the function is not finite. R
The point is said to be a singular point and
the function is said to have a singularity
there. -+

If the function f(z) is not finite at z = a Q 0 P
but is such that a positive integer » can be
found so that (z — a)f(z) approaches a limit, Fra 18
IG.

other than zero, as z approaches a, the
function f(z) is said to have a pole of order n at the point z = a.

According to this definition, 1f/(z— a) has a pole of order
unity, or a simple pole, at z = a.

Consider the function exp (1/z), which is holomorphic in any
region which does not contain the origin. If P (Fig. 18) repre-
sents a positive real value of z, the corresponding value of the
function is real and positive and, as P approaches the origin
by moving along the real axis, the value of the function in-
creases without limit. If @ represents a negative real value of
z, the corresponding value of 1/z becomes large and negative
as @ moves along the real axis towards O and consequently
exp (1/z) approaches zero. If R is the point iy on the imaginary
axis, the corresponding value of the function is exp (— ify),
which, for all real values of y, has unit modulus. It is clear
then that exp (1fz) tends to no definite limit as z approaches
zero and that no value of n can be found for which 2" exp (1/z)
tends to a limit in like circumstances.

The function exp (1/z) is therefore said to have an essential
singularity at the origin.

Since the two types of singularity are of entirely different
characters, a pole is sometimes referred to as an wccidental
singularity.
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 Curvilinear Integrals. Suppose that x and y are real functions
of a parameter ¢ with continuous derivates dxz/dt, dyfdt. Then,
as ¢ varies continuously through real values from f, to #;,the
point P whose co-ordinates are (z, y) describes a curve in the
ay-plane from the point 4, given by ¢ = {, to B, given by
t =t,. For example, if = a#? and y = 2at, the curve is an
arc of a parabola; if x = @ cos ¢ and y = b sin ¢, the curve is
an arc of an ellipse. In the latter case, the complete curve
is closed and is described once if £, and ¢, differ by 2.

Now let p(z, y) and g(x, y) be continuous functions of x and
y. Then the curvilinear integral

f (p dz + ¢ dy)
AB

is defined as equal to the integral

b dx dy

where the expression in brackets under the integral sign is a
function of #.
From the definition it follows that

f(pdx+qdy)=~f<pdx+qdy).
AB ‘BA

By way of illustration, we may take the ellipse given by
x=acost,y=asint, and put p =—y, ¢ = 2. Then

&
f (p dx + qdy) = f ab(sin? £ 4 cos? t)dt = ab(t, — t,).
4B to

If ¢, = ¢, + 2=, the value of the integral is 277ab, which is twice
the area enclosed by the curve. This is a result which is otherwise
obvious, since (z dy — y dx) is twice the area of the elemental
triangle of which the vertices are the origin and the points
@, ¥), (& + dz, y + dy).

Now suppose that f(z) = » + v is a function of the complex
variable z =  + 2y ; then

f@)dz = (u + ) (dz + idy) = (udx — vdy) + i(vdx + udy)
and the integral —/; o f(2)dz is defined as equivalent to

~/;B(udac — vdy) + iﬁg(vdw + udy).
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The curve 4B is called the path of integration. If the path is
a closed curve C the integral is called a contour integral.

The contour C is described in the positive sense when a
man who walks round it always has the area bounded by C
on his left.

Stokes’ Theorem. Let C (Fig. 19) be a simple contour in
the xy-plane which is met in not more than two points by any
straight line parallel to either of the co-ordinate axes. Suppose
that the ordinate which is at a distance z from the origin meets
C in the points (z, ¥), (2, ¥,) and that the tangents which are
parallel to the y-axis are the lines x = =, * = x,.

y /E\
(xy H 2) B

dn
ds

(2. 4;)

D 4
ol ¢¢r0) (22,0
Fia. 19

Let p(z, y) be a function of z, y which, along with its partial
derivate 9p/dy, is continuous at all points within and on C.
Consider the double integral

[ eprapyety = 1

taken over the area bounded by C.
Integrating with respect to y, we have

I= f " o, 92) — Pl 9

Now let us take the curvilinear integral | p dz, evaluated in
c

the positive sense. Since the contour is made up of the two
parts ADB, BEA,
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/pdx:[ pdx—(—f pdx
¢ ADB BEA

= pdx— f p dx
4DB AEB

— f "o, v) — p(@, yo)lde
= — 7.

Similarly, if ¢ and 9¢fdz are continuous at all points within
and on C, it may be shown that

[aay = [ ooz,

where the double integral is evaluated over the same area.
On adding the two results we have the two-dimensional form

of Stokes’s Theorem

ﬁ (wdo+qdy) = [ | 1©Gaf20)— (@pf2ydady,

where the double integral is evaluated over the area bounded
by C.

If the contour is met in more than two points by lines parallel
to the axes, it may be subdivided into areas bounded by con-
tours of the simpler type considered above. The theorem is
true for each of these contours and, by addition, it follows that
the result is true for the more complicated contour. (A line
which forms a boundary between two adjacent areas will
be described twice—once in each direction—in the contour
integrals, and so contributes nothing to their sum.)

Cauchy’s Theorem. Iet f(z) = « + 1w be a function of z
which is holomorphic at all points within and on a contour C
in the z-plane. Using the result on p. 64 and applying Stokes’s
theorem, we have

~/C:f(z)dzz/Q(ualao—vcly) —{—Aif(vdx-{—udy)

= f f — u,)dzedy + 4 f (uy — w,)dxdy,

where the double integrals are evaluated over the area bounded
by C, and suffixes denote partial derivates,
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Since % and v are the real and imaginary parts of a function
of z, we have u, = v, and u, = — v,. That is to say, both
double integrals vanish and we have the important result,

due to Cauchy, that
f fxdz 0,
¢

i.e. the integral of a function of z taken round any contour in
the z-plane, within and on which the function is holomorphic,
is zero.

Suppose that z, and z, are two points which can be connected
by two paths L and L’ such that, at all points between and on
L and L', f(z) is holomorphic. From the above theorem it
follows that the integral of f(z) from =z, to z, by the path L,
together with the integral from 2; to z, by the path L’, is zero.
Therefore the integrals taken from z, to z; by the two paths

<1

are equal: in other words, the value of the integral [ f(2)dz

is the same for any two paths which do not pass throungh, nor
enclose between them, any singularity of the function f(z).

Rational Functions. A function of the form P(z)/@(z), where
P and @ are polynomials in 2, is said to be a rational function
of z. It may be assumed that the numerator and denominator
have no common factor, otherwise the expression could be
simplified by the cancellation of that factor.

For instance, the functions 322 + 2, 1fz, (228 + 1)}f(z* + 2)
are rational.

Suppose that the polynomials P(z), @(z) are of degrees m, n,
respectively. Then, if m is not less than », we can divide Q(z)
into P(z) and obtain a quotient F(z), which is a polynomial of
degree m — n, and a remainder G/(z), which is a polynomial
of degree less than n. Thus

P(2)[Q(z) = F(z) + [G(2)/Q(2)],

where the fraction on the right-hand side is proper, i.e. the
numerator is of lower degree than the denominator. If m = =,
the quotient F(z) is a mere constant.

The polynomial @(z) may be factorized in the form

Ez— o) (z—BP. . .(z— p),

where & is independent of z, where «, 3, . . . p are the zeros
and where a, b, . . . 7 are positive integers whose sum is equal
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to n, the degree of @(z). If none of the zeros occurs more than

once, the indices @, b, . . . r are each unity.
Clearly, the only finite values of z for which the function is
not finite are «, B, . . . p. If P(z) is of degree m, then if m is

less than 7, the function becomes zero when z becomes infinite ;
if m is equal to », the function approaches a finite limit as 2z
tends to infinity, but, if m exceeds z, the function is infinite
when z is infinite.

Thus the only singularities of the rational function P(z)/Q(z)
in the finite part of the z plane are at the points a, 8, . . . p,
where it has poles of orders @, b, . . . 7, respectively.

Using the ordinary methods of resolution into partial frac-
tions, we may write

P()IQ)
= F@) + Aye— )" F A —o) 2+ 4 A fa— o)
+ Bye—B)t 4 Byz— )" +. .+ Byz— )~

4 Ryz— p) 4 R(z— p) 2 + . « .+ Ryfe— p)=,
where F(z) is zero if P is of lower degree than @ and F(z) is a
polynomial of degree m — n (actually the quotient obtained by
dividing @ into P) if m is not less than .
With centre at the point «, describe a circle C' whose radius
R is less than the distance between « and the nearest of the

points B, y, . . . p. Then, within and on this circle, the
function
¢() = P)[Q()— Ay(z—a) " t—dy(z—o)"2—. . .— A, (2—x)—°

is holomorphic and therefore its integral round the circle
vanishes.

If z is any point on the circle, we have z— «= Rexp (20) and
dz = iR exp (¢6)d0, from which we have

~ 27z
/cAl(z — ) ~lde = f 14,46 — 9mid,

0

and _/; Ay — a)—dz = f 44, R1-sexp (1 — 8)if]d0
0

. [[iAsRl—S/(l — )] [exp (1— s)i()]]:n

0:
where ' , 3, . a.
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Therefore ﬁ P(2)dz = j;[P(z)/Q(z)]dz — 2midy =0
and £ [P(2)/Q#)]dz = 2mid,.

The constant A, is defined as the residue of the function at
the pole «. Note that if o is a simple pole, 4, is the limit of
(z — a)P(2)]Q(z) as z tends to «.

(" is any simple closed contour surrounding the pole o
but not containing any other pole of the function, we can draw
a circle ¢ lying within ¢’ and having
its centre at «. By Cauchy’s theorem,
the integral of the function taken S
round C" is equal to the integral taken
round C and we can conclude that
the integral taken round a contour e
which contains within it one and only e
one pole is equal to 2t multiplied by
the residue at that pole.

Now let § be any closed contour Fra. 20
containing within it any number of
the poles, say, «, f§, . . . 4, at which the residues are A4,
By, . . . Ly. Surround each of these points by a circle which
contains within it no other pole and connect each of these
circles to S by a path which does not meet any of the other
circles or paths, as in Fig. 20.

The function f(z) = P(z)[/Q(z) is holomorphic at all points of
the region between S and the circles and therefore

ff(z)dz =0

when the integral is taken round the complete boundary of
the region as indicated by the arrows. Hach connecting path
is described twice—once in each sense—and so contributes
nothing to the value of the integral.

It follows that
[ ez
S

minus the sum of the integrals taken round the circles in
the positive sense is zero.

Hence ff(z)dz = 27i(d; + B, + . . . + Ly),
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i.e. the integral taken in the positive sense round any contour
is equal to 2m: multiplied by the sum of the residues at the

poles within the contour.
Examrre 14, If P(e)=2—1 and @(z) =z-4 1, then
f(z) = 1 —2(z + 1)~%. The only singularity of f(z) is a simple

pole at 2 = — 1, the residue being — 2. Hence l f(z)dz is zero

if the contour C' does not surround the point z =— 1 but is
equal to — 4w if C encloses this point.

Let C be the circle |2| = 2. Then, on the circle, z = 2 exp 16,
and dz = 2¢(exp ¢0)d0; therefore

ff(z)dz = 2i’/012”{exp 16— 2[(exp ¢0)[(1 + 2exp i0)]}d0
A .
— % f T fexp i0— 2[(exp i6 + 2)/(5 - 4 cos O)]}d6
0

— 9 [ {cos6+isinO— 2[(cos H-isin 6-2)/ (54 cos B)}d6
0
= — 4t

By equating real and imaginary parts, we have
27t
f (cos 6 + 2)[(5 + 4 cos 0)df = =
0
and f " sin 6/(5 + 4 cos 6)df = 0.
0

The value of the second integral is otherwise obvious but that of
the first would be more troublesome to find by more elementary
methods.

ExawprEe 15. Evaluate J‘(1 — 2k cos 6 + k?)—1df, where k

0
is real, positive, and less than unity.
Writing z for exp (¢0), we have cosf = (z 4+ 2—1)/2 and
do = dzfiz.
As 0 varies from 0 to 2z, the point z describes the circle of
radius unity which has its centre at the origin. The given
integral is therefore equal to the contour integral

dz . dz
/z’z(l-—- k2) (1 —kfz) fi(l — k2) (z— k)

taken round the unit circle in the positive sense.
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The integrand is a rational function with simple poles at
z = k and z = 1]k, and of these, only the former lies within the
circle. The residue at z = k is the limit, as z tends to &, of

z—k s . 5
T = which is 1fi(1 — £2?).

Therefore the integral is equal to 27/(1 — £2).

Taylor and Laurent Series for Rational Functions. Let ¢ be
any finite number which is not a zero of @(z). With the point
2z = ¢ as centre and radius equal to the distance between this
point and the nearest zero of (z) describe a circle S. Then the
funection P(z)[/@(z) is holomorphic at all points within (but not
on) S.

If z is any point within §,

=@ =[E—0 + (c— ]
= e~ a)7H1 + [e—o)flc— )]} ~*
= —a) M1+ £4,e—oyl,

where & is any one of the integers 1, 2,3, . . . @ and
A, =—kl—Ek—1)(—k—2). . . (—k—7r+ 1)[ri(c— o).

We have used the binomial expansion, which is valid since
[(z— ¢)[(c — a)] is less than unity.

Similarly, all the other terms containing negative indices
may be expanded as power series in z— ¢. The polynomial
F(z) can be expressed as the sum of a finite number of positive
powers of z — c.

Hence, if the point z lies within the circle S,

P(2)[Q(z) = ri;’:oo,(z —er

The series on the right is called a Taylor series.

We shall now consider the type of series which is obtained
when, instead of an ordinary point ¢, we take one of the poles
of the function, say «.

Let 7, T be two circles which have the point z = « as
common centre, the radius of the outer (7') being equal to the
distance between « and the nearest of the other zeros (8, », - . .)
of @(z). Then the rational function -

P@)IQR)— Ayz— )"t — Aylz— )2 — . . . — Au(z- - @)
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is holomorphic at all points within 7' and therefore can be
expanded in a Taylor series of the form

C.(z— o).
r=20
It follows that, if the point z lies within the annulus bounded
by T and 77,

P@E)QR) = T Az—a)~* + 3 Oz — o
§=1 =

Such a series is known as a Lawurent series. The terms con-
a
taining negative powers of z— o, viz. X A (z— «)~¢, are said

§=1

to form the principal part of the series. It should be noted
that A4, is the residue at the pole «, which is of order a.

Exawmpre 16. For the function f(z) = (22° + 1)/(22 + 2) find
a Taylor series valid in the neighbourhood of the point z = 1
and a Laurent series valid within an annulus of which the
centre is the origin.

By division and the use of partial fractions, we have

fle)=22—2+ 22+ 1[(* +2) = 22— 2+ (1/2) + 1/(z + 1),

from which it is seen that the function has simple poles at the
points z = 0, z = — 1, the residues being unity.

Since the function is finite when z = 1, there is a Taylor
series valid within the circle which has its centre at that point,
the radius being the distance between z = ¢ and the orlgln
which is the nearer of the two poles.

Writing ¢ for z — ¢, we have

J@) =20—2+ 2t 4+ 1/(0 + 1) + /(L + i + ?)
=2—2+42—3 ?()(it)"—{——’f(l——i)f[(i- L)t

as the Taylor series. It is valid within the unit circle which
has its centre at the point z = .

There is a simple pole at the origin and the other pole is at
unit distance from this. Hence there is a Laurent series valid
within the annulus, which has its centre at the origin and outer
radius unity; the inner radius can have any value smaller
than this.

The point z being anywhere within the annulus, |z| < 1 and
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80 1f(z 4+ 1) may be expanded as a geometric series of ascending
powers of z. Thus the required Laurent series is

(1fz)— 2 + 2% + §O(~ 2y

n=

=(1fz)— 1+ =z —l—nEn(— z)".
The principal part of the series is 1/z.

Behaviour of a Rational Function at Infinify. In order to
determine the behaviour of a rational function f(z) = P(2)/Q(z)
when z becomes infinite, we substitute Z for 1/z and consider
how the resulting function of Z behaves when Z becomes zero.
Two different cases arise.

Case i. If the degree of P(z)is not greater than that of @(z),
f(1/Z) is finite when Z = 0 and can be expanded therefore in
a Taylor series. Thus

f]Z) = Ay + A Z + 4,22 + . . .,
when |Z| is sufficiently small, and therefore
J@) = 4o + (4if2) + (4of2%) + . . .

when |z| is sufficiently great.
" Since, in this case, f(z) is finite when z is infinite, the point
at infinity is said to be an ordinary point of the function.
Case ii. If the degree of P(z) is greater than that of Q(z),
f(1/Z) becomes infinite when Z = 0, i.e. it has a pole of order
p, say. Then, if Z lies within an annulus with its centre at the
origin in the Z-plane,

Yz = Bz + $ 0.2
s§=1 r=20

The outer radius (R) of the annulus is fixed and the inner
radius may be made as small as we please.

rd )
Hence, fe)= ZBzg+ X027
§=1 r=0

when |z| > 1/R.

In this case we say that the function has a pole of order p
at infinity, the principal part of the expansion there being
»

X Bgzs.

s§=1
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ExampLeE 17. Consider the function f(z) of Example 16,
p- 72. We have

fQl2) = (2]1Zy—24Z + Z](1 + Z)
=2 —2+Z+ZA—Z+ 22— B+ .. .),

provided that |Z| < 1. It follows that the function has a
simple pole at Z = 0, and therefore the function f(z) has a
simple pole at infinity. Hence

f@)=22—2 4+ 22zt —z2 {273 — ...,

when |z] > 1. The principal part of the expansion is 2z.

Analogous Results for Functions in General. Having con-
sidered in some detail the properties of the rational function,
we now state analogous properties of functions which are not
necessarily rational. No proofs are given here as they are
beyond the scope of this book. They will be found in the more
comprehensive treatises to which reference is made in the
Appendix (p. 135).

I. Taylor's Theorem. A function f(z), which is holomorphic
at all points within a circle of radius r and centre z = a, can
be represented by a series

fe)=fa)+ —afi@)+ . ..+ —a)fula)n! +. . .,

valid when [z—a| <7, where f,(@) denotes the value of
(d[dz)"f(z) when z = a.

II. Laurent's Theorem. If f(z) is holomorphic at all points
within an annulus bounded by two circles, with the point z = a
as common centre, and with radii R, r, such that r may be made
as small as we please, then, if z is any point within the annulus,

for= £a—ar+ £Be—a)n

n =

If B, vanishes when n exceeds s but B, is not zero, it is said
that the point a is a pole of order s and that the residue there
is B;. At a simple pole s is unity and the residue is the limit
of (z— a)f(z) when 2 tends to a.

If an infinite number of the coefficients B are different from
zero, the point a is said to be an essential singularity.

IXI. The Contour Integration Theorem. If f(z) is holomorphic
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at all points on a simple closed contour C, which contains within
it no singularities of f(z) other than poles, then

f fl&)dz = 2xiR,
e}

where R is the sum of the residues at the poles within ¢ and
where the integral is taken in the positive sense with respect
to the area within C.

IV. Behaviour at Infinity. To discuss the behaviour of f(z)
when z becomes infinite, we write z = 1fZ and consider how
f(1/Z) behaves when Z approaches zero.

Examrrr 18. The function f(z) = exp (z) is finite when z is
finite, but is singular in its behaviour when =z becomes infinite.
Thus, if z is increased without limit through positive real values,
[f(2) becomes infinite, whereas, if 2 approaches infinity through
negative real values, f(z) tends to zero.

Putting z = 1/Z, we have

fy2) = £ @z,

the series on the right being a Laurent series which contains
an unlimited number of terms involving negative powers of Z.
The function f(1/Z) therefore has an essential singularity at
Z = 0, and it follows that the function exp (z) has an essential
singularity at infinity.

Exawmprr 19. Consider the function f(z) = exp (z)fz. This is
finite in the z-plane at all points except the origin and at
infinity. When z is finite and not zero,

f@ = 2
= (1f2) + 1+ (/2 + 30 + . . .

Thus the function has a Laurent series valid within an annulus
with the origin as centre, the radius of the inner circular
boundary being as small as we please. Since the only term
which involves a negative power of z is 1/z, the function has a
simple pole at the origin with a residue of unity.

Again, f(1fZ) = Z + 1 + (ZY2!) + (Z~%3!) + . . .

from which it is seen that the function f(1/Z) has an essen-
tial singularity at Z = 0 and therefore exp (2)/z has an essential
singularity at infinity.



76 THE COMPLEX VARIABLE

If we draw any simple contour C which encloses the origin,
the integral of the function round the contour in the _positive
sense is equal to 274, because the residue at the pole is unity.
If C is the circle z = 1, we have z = exp (16) at any point on C
and

27t = ff(z)dz
d
= f“exp {cos O + 4 sin |

=1 / nexp (cos 6) cos (sin 0)df — /: :exp (cos 6) sin (sin 0)d6.
By equating imaginary parts, we deduce that
f :exp (cos 6) cos (sin 0)d0 = 2m,
from which it follows that
/{; nexp (cos 6) cos (sin 6)d0 = m,

because the integrand is an even function of 6.

On equating real parts, we see that the other integral vanishes
—a, result which is otherwise obvious since the integrand is an
odd function of 6.

ExampLE 20. A function f(z) is holomorphic at all points,
except z = a, within a circle | z— a | = R, and (z — a)f(z) tends
to a limit % as z approaches a. If 4 and B are points on the
circle |z — a | = r(<< R) such that the arc AB (described in the
positive sense from 4 to B) subtends an angle ¢ at a, prove

that, as r tends to zero, [ f(z)dz, taken along the arc from 4
to B, approaches the limit ik¢.
First we consider I; = / [k/(z — a)]dz, taken along the arc
AB. When z is on this arc,
z2— a = r exp (10), and dz = ir exp (:60)d0,

and, whatever be the value of 7,

I = z'lcfde = ik
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Since (z — a)f(z) tends to the limit k as z approaches a, we
can choose r so small that, when z is on the arc AB,

(z—a)fz)— k=,

where |n| < e and e is any given positive number no matter
how small.

Hence f(2) — [k(z— a)] = nf(z— )
and -1~ [Tl —andz = i [(nao,
where I stands for f f(z)dz.

Therefore —I| = | f ndd] <e [ a6 = e

By making r sufficiently small, it follows that we can make
|I — I,| as small as we please, i.e. in the limit

I=1I, = ikd.

EXERCISES

1. (i) Show geometrically that z —iy,|z| and arg z are not
monogenic functions of z.

(ii) If w is a monogenic function of z, show that dw/dz is also a
monogenic function of z.

2. Show that log z and tanh z are monogenic functions of z.

8. Using Euler’s theorem that, if % is a function of =z, y which is
homogeneous of degree m, xu, + yu, = mu, show that, if » also
satisfies Laplace’s equation, it is the real part of a function f(z) such that
f(z) = u + (fm) (yu, — wu,).

Determine f(z) when @1i) u = «®— 3ay?; (i) v = y[(@* + ¥?);
(iii) w = az? + 2bxy — ay?; (iv) u = zy/(z* + y*).

4. If u, v are conjugate, show that the following are also conjugate:
(i) au — bv and av -4 bu, where a, b are real constants; (i) w/(u® + v?)
and — vf(u?® + v?).

5. Find a pair of conjugate functions v and v such that

% + v = (x — ¥y) (sin 2z — sinh 2y)/(cos 2z + cosh 2y)

and such that v is zero when y is zero.

6. Show that the curves given by r = A cos nf, where 1 is a variable
parameter, form a u-system only when n = 0 or 1.

7. Show that the parabolas r = A (1 4 cos §) form a u-system and
find the corresponding v-system.

8. In a two-dimensional gravitational field the equipotential lines
are given by the equation 77’ = constant, where » and r’ are the distances
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of a point from two fixed points 4 and B. Prove that the lines of force
are rectangular hyperbolas which pass through 4 and B.

9. Show that the coaxal circles given by «? + y* + 24z + ¢ = 0,
where 1 is a variable parameter and ¢ is the same for all the circles, can
be a family of lines of force (or stream lines) and find the corresponding
equipotentials.

10. A plane curve is determined by the parametric equations & = f(),
y = g(t). Show that the curve is one of the v-system given by the
relation z = f(w) + ig(w).

For the ellipse # = a cos , y = b sin ¢, show that the v-system consists
of the family of confocal ellipses.

Find the u- and v-systems when the curve is the parabola

x = al?, y = 2at.

11. If w + v = log (z— @) — log (2 + a), show that the curves
u = constant and v = constant are two sets of circles which cut
orthogonally.

12. If z = tan w, prove that z(cos 2u 4 cosh 2v) = sin 2w and
y(cos 2w + cosh 2v) = sinh 2v. Hence show that if v is constant and »
varies, z describes, on the Argand diagram, the circle

x? + y® + 2z cot 2u = 1.

13. Express w = 2(z + 4)[(z — %) in. the form a + ib. Determine the
regions of the plane within which the modulus of the function exp (w) is

greater than unity. (U.L.)
14. Sketch the level curves for the functions—
(i) sin z — sin a, where @ is real; (iv) exp (1/2);
(i) exp (2) — 1; (v) log z;
(iii) z exp (2); (vi) exp (z)/z.

15. If f(z) = (2* + 1)/z and =2’ is the inverse point of z with respect
to the unit circle with the origin as centre, prove that | f(z') | = | f(2) |.

Sketch the level curves for f(z). Show that the curve | f(z)| = M
meets the circle in four real points if M < 2, but that, if M > 2, the
curve consists of an oval within the circle and of the inverse of this oval
with respect to the circle.

16. Evaluate the integral f exp (m2)[(22% — i)dz taken separately, in

the positive sense, round each of the four quadrants of the circle
| z| = 1 determined by the axes. . (U.L.)
17. If f(z) is holomorphic at all points within and on a simple contour

C, show that the value of j f(2)/(z — a)dzis zero, if the point a is outside,
c
and 27 f(a), if ¢ is within C.
18. Evaluate f exp [(a + ib)x]dz and deduce that

(a2 -+ bz)fe‘” cos bxdx = e%*(a cos bz + b sin ba)

and (a? + b?) f &% sin badr = e%*(q sin bx — b cos bx).



CHAPTER V
CONFORMAL TRANSFORMATION

Conformal Transformation. Suppose that two complex vari-
ables w=u -+ i and z=x -+ iy are connected by the
relation

w = f(z),

where f(z) is a monogenic function of z.

Corresponding values of z and w will be represented by points
in two planes which we shall call the z- and w-planes respec-
tively. If P, in the former plane, represents a value of z for
which f(z) is finite and its derivate is finite and not zero, P will
be called an ordinary point. The corresponding value of w will

Z-Plane w-Plane
P2 Qz
Aw,
Az /[ x "
r3 o
6 S Q) R
w
Py % " @
Fic. 21

be represented by a point @ at a finite distance from the origin
in the w-plane. Let P, P, (Fig. 21) be ordinary points near to
P representing z + dz, z + Az, respectively, and let @, @,
be the corresponding points in the w-plane representing
w + dw = f(z + 6z) and w + Aw = f(z + Az).

Since w has a unique derivate with respect to z, both dw/éz
and AwfAz approach the same limit dw/dz as PP, and PP,
are diminished to zero. If PP, and PP, are sufficiently small,
we shall have

dwféz = AwfAz
and therefore Azféz = Aw/ow;
ie. (PP,[PP)e” = (QQ:/QQ)¢,
where 0, 0’ are the angles P,PP,, @,QQ, respectively.
79
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It follows that
PP,[PP, = QQ,/Q@, and 6§ = 0".

Thus the two infinitesimal triangles PP, P, QQ@,Q, are
directly similar, their linear dimensions being in the ratio
1:|dw/dz| and their areas in the ratio 1:|dw/dz|®. The factor
|dwfdz| is defined as the magnification. -~

If P, is any point within the triangle PP,P,, the correspond-
ing point @, will be such that the triangles PP P;, @Q,Q); are
directly similar, and, consequently, @; lies within the triangle
Q@,Q,.

'fhe relation transforms the infinitesimal triangle PP,P,
in the z-plane, into a directly similar triangle ©@@,@,, in the
w-plane, and points within the first correspond to points
within the second triangle. A point which moves round the
perimeter of the first triangle in the positive sense is trans-
formed into a point which describes the perimeter of the second
triangle in the same sense.

If a point moves in the z-plane so as to trace a curve, the
locus of the corresponding point in the w-plane is called the
transformed curve. If PP,, PP, are elements of arc of two
curves through P, then QQ,, @@, are the corresponding elements
of arc of the transformed curves, and, as we have seen, the angles
P,PP,, Q,QQ, are equal in both magnitude and sense. The
transformed curves therefore intersect at the same angle as
the original ones. In particular, orthogonal curves transform
into orthogonal curves.

Suppose that C is a simple closed curve in the z-plane such
that all points on and within it are ordinary points for the
transformation. Let D be the corresponding curve in the
w-plane. Then D is also a closed curve since f(z) is assumed to
be one-valued. The area bounded by C may be divided into
infinitesimal triangles which transform into directly similar
triangles in the w-plane and the aggregate of the latter triangles
is the area bounded by D. But the curves C and D are not, in
general, similar, for the magnification is not constant over the
area but varies from point to point.

Since infinitesimal elements of area are unaltered in shape,
the transformation is said to be conformal.

It is important to notice that the above discussion has been
limited to ordinary points: it is to be expected that the
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conformal property will be lacking at points which are not
ordinary but are singular.

ExampLE 1. Consider the curves u=constant, v=—constant
in the z-plane. The corresponding curves in the w-plane are
the two families of straight lines parallel to the »- and u-axes
and these obviously intersect at right angles. The curves
% = constant and v = constant therefore cut orthogonally—a
fact which was seen in the previous chapter.

ExampLr 2. Apply the transformation w = 22 to the area
in the first quadrant of the z-plane bounded by the axes and
the circles [z] =a, |2| =b (@ > b > 0).

If z = re®, then w = 7%%4 and so w = 72 and argw = 26.
The quadrantal arcs AA4’, BB’ therefore become semicircular

Z2-Plane w-Plane
A
B

0O BA Al B o B 4

Fia. 22

arcs of radii a2, b? respectively, while the straight lines 4B,
A’B’ become the parts of the u-axis between the points w = a2,
w=>b%and w=—a?, w = — b2

In Fig. 22, corresponding points in the two planes are indi-
cated by the same letter. The magnification at any point is
given by |dw/dz| = 2|z| and is finite and different from zero
at all points within and on the given boundary. The trans-
formation is therefore conformal; e.g. the anglesat 4, B, 4’, B’
in both figures are right angles. But if  vanishes, so that the
area in the z-plane becomes the quadrant 04 4’, the correspond-
ing area in the w-plane is the semicircle on A4’ as diameter
and the transformation is conformal everywhere except at O,
where the magnification vanishes. The angles at O in the two
planes are not equal, that in the z-plane being =/2 and the
other being =. But the angles at the points 4, A" are still
right angles.

Examrre 3. Consider the transformation w = az, where a
is a complex constant.
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Let a = A exp (ix) and z = 7 exp (¢0).
Then w = Arexp (:0 + ia), |w| =4 2]
and arg w = arg 2z + arg a.

If P, in the z-plane, represents z, th_e point €, in the same
plane, which represents the corresponding value of w, may be
constructed by rotating OP about O through an angle o in the
positive sense and then altering its length in the ratio 4 :1. .In
other words, the transformation is equivalent to a rotation
about a point and a magnification. If P describes a curve, the

locus of @ isa geometrically

Q similar curve turned
> through an angle c.
, Inversion with Respect
/‘ P" to a Circle. If P is any
/] point in the plane of a

circle (Fig. 23), with centre

O and radius k, and P’ is

a point on OP such that P

and P’ are on the same side

of O and OP .OP’' = k2,

Fic. 23 then P and P’ are said to

be inverse points with

respect to the circle. The point O is called the centre of

inversion and % the radius of inversion. Clearly, if P is outside

the circle, P’ is inside the circle ; if P’ is on the circle P coincides
with P.

If Q, @ are any other pair of inverse points with respect to
the same circle, the triangles OP), OQ'P’ are similar because
OPJ0Q = OQ'/OP’ and the angle at O is common to the two
triangles. It follows that the angles OPQ and OQ'P’ are
equal.

If P moves in the plane so as to describe a curve C, its
inverse P’ describes a curve C' which is defined as the inverse
of . Suppose that P and @ are neighbouring points on C so
that PQ is an element of arc of the curve; then P’ and @’ are
neighbouring points on C’. As @ approaches P, the limiting
position of the chord P is the tangent at P to the curve C,
while that of P’Q)’ is the tangent to €’ at the point P’. These
two tangents thus make equal angles with OP (measured in
opposite senses). It easily follows that, if two curves C, D
intersect at an angle 0, their inverses also intersect at an
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angle 6. In particular, the inverses of two orthogonal curves
are also orthogonal.

If O is the origin and P the point z = r exp (26) in the z-plane,
then OP’ = k*J/OP and P’ represents (k%/r) exp (i6). Let P,
be the image of P’ in the real axis; then P; represents

(k3[r) exp (— i0) = k?/=.

If P describes the curve C, the locus of P, is the reflexion of the
inverse curve C’.

Consider the inverse of a circle of radius a with its centre at
the point 4 (Fig. 24). Let P be any point on the circumference

Fia. 24

and let OP meet the circle again at . Draw a line through P’,
the inverse of P, parallel to AQ to meet O4 in B. Then

OBJOA = OP'|OQ = OP . OP'JOP . 0Q = k2[e2,

where ¢ is the length of the tangent drawn from O to the circle.
The ratio OBJOA is therefore constant and B is a fixed point.
Further, BP'JAQ = OBJOA = constant and so BP' is constant
in length. The inverse of the circle with centre 4 and radius
a is thus a circle with centre B and radius k2a/t2.

If the circle passes through the centre of inversion, the
above argument breaks down because the points O and @
coincide. In that case, let D be the point which is diametrically
opposite to O and D’ its inverse (Fig. 25). Then the triangles
OPD, OD'P’ are similar and the angle OD'P’ is a right angle.
The locus of P’ is thus the straight line through D’ which is
perpendicular to the diameter through O.
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The Reciprocal Transformation : the Point at Infinity. Con-
sider the conformal transformation given by the reciprocal
relation -

w= 1z

Instead of regarding corresponding values of z and w as
being represented by points in different planes, it is convenient
to think of the w-plane as superposed upon the z-plane. The
numbers z and 1/z will then be represented by points P, @
respectively, in the same plane. _

From the previous section, it follows that, if P’ is the inverse
of P in the unit circle with its centre at the origin, then @ is

the image of P’ in thereal axis.
p’ Obviously, if P is outside the
circle then @ is inside.

P The relation w = 1/z thus
establishes a one-to-one cor-
respondence between points

0 - p7 inside the circle, with the
D exception of the origin, and
points outside the circle. If z
becomes zero, w becomes in-
finite. Since, to every point
within the circle, other than

: the origin O, there corresponds
one and only one point outside, we assume that the same is true
for the point O and that there is one point—the point at infinity—
to which O corresponds.

Thus, in the theory of functions, which makes use of the
idea of inversion with respect to a circle, we have only one
point at infinity in the z-plane and not a straight line at infinity
as in projective geometry.

When it is desired to discuss the behaviour at infinity of a
function f(z), we apply the reciprocal transformation and
consider the behaviour at the origin of the function f(1/w).

For instance, if f(z) = a + bz, where a, b are constants,
f(1jw) = a 4+ (bJw) and the latter function has a pole of the
first order at w = 0. It is said, then, that f(z) has a pole of the
first order at infinity.

The Bilinear Transformation. A relation of the form

Awz + Bw +Cz+ D =0 . . .
in which 4, B, C, D are constants (generally complex) such

Fia. 25
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that AD ¢ BC, is said to be bilinear. To one value of one of
the variables w or z there corresponds one and only one value
of the other. If AD = BC(C, the relation is of no interest as it
would give z = — B[4 or else w = — C[4.

Such a relation establishes a conformal transformation from

the z-plane to the w-plane and vice versa. We shall think of
the two planes as being superposed.
Solving for w, we have

w = — (Cz + D)[(4z + B)
=—(C[A) +{(BCO— AD)[[A(4dz+ B)l} . (2)
a result which can be expressed in the form
w— a = kf(z—b),

where a, b, & are constants.
Writing z — b = re® and k = %>, we have

|lw—a| = c¥fr
and, if ¢ = arg (w— a),
¢ = 20— 0,

which can be written ¢ — o« = a— 0.

We can now construct geometrically the point representing
w when the point 2 is given.

Draw a circle of radius ¢ with centre B which represents
z = b (Fig. 26). Let P be the point z and P’ its inverse with
respect to the circle; then, if 2’ is the affix of P,

|" — b| = c?r and arg (' — b) = arg (z — b) = 0.
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Draw a line through B making an angle « with the real axis
and let P; be the image of P’ in this line. Then the vector
BP, represents the complex number of which the modulus is
¢2[r and the argument is 2« — 0, i.e. the number w— a. If,
therefore, we draw through the point R (of affix a) the vector
RQ which is equal to BP; in magnitude and direction, the
point @ represents w.

The bilinear transformation is therefore equivalent to an
inversion, a reflexion, and a translation.

Since the inverse of a circle is a circle or a straight line, and
reflexion and translation do not alter the shape of a figure,
circles are transformed into circles or straight lines.

Suppose that, by the bilinear relation, the points 2y, 2, 23, 2z,
are transformed into the points wy, w,, w;, w,, respectively, all
the eight points being at a finite distance from the origin.
Using equation (2), p. 85, we have

w, — wy = — (BC — AD) (2 — 2)[ (42, + B) (42, + B)
along with similar expressions for the differences wy, — w,, etc.

Hence [(wy — wa)[ (wp — wy)]: [(wy, — wy)[(wy— wy)]
= [(z— 23)/ (2 — 23)] : [(2s — 2a)/(22 — 24)],
or (wwywsw,) = (21222%52,)

where (2,2,%37,) stands for the expression on the right-hand side
of the above equation. This expression is known as the general-
ized cross-ratio of the four points 2y, 2,, 23, 2, The cross-ratio is
thus left unaltered by any bilinear transformation.

Further, it follows that the bilinear transformation which
converts three given points z;, 25, 23 into wy, w,, w;, respectively,
can be expressed in the form

(2212925) = (Wi w5wy).

This transformation converts the circle which passes through
2y, %a, 73 into the circle through wwy, w,, ws.

It follows that a bilinear transformation can always be found
so as to transform any given circle in the z-plane into a given
circle in the w-plane; for we can use the above transformation
taking 2, 25, %3 to be points on the first circle and w;, w,, w,
to be points on the second.
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Similarly any given straight line in the z-plane may be
transformed into any given straight line in the w-plane. In
particular, the real axis of z may be transformed into the real
axis of w by giving real values to 2, 25, 25, Wy, Wy, w5

TaE DouBLE PoiNTs. If corresponding values of z and w are
represented by points in the same plane, these points are, in
general, distinet, but they coincide if z satisfies the quadratic

Az2 4+ (B+ Oz + D = 0,
which is obtained from the equation of transformation by

putting w equal to z. Thus there are, in general, two distinet

points which are the self-corresponding or double points. There
are two cases to be considered.

Case 1. Suppose that the above quadratic has two distinct
roots a, f.
Since w=— (Cz+ D)[(4z + B)
and o« = — (Ca + D)/(4a + B),
w— o= (AD— BC) (z— «)][(4Aa + B) (4z + B)];
similarly
w— f = (AD— BO) (:— P)[[(4f + B) (4z + B)].
By division, we have
(w— &) (w — p) = K(z— a)[(z — B),
where K = (48 + B)/(4« + B).
Hence, |(w—w)fw—B)| = |K|.|c—u)fc—B)] . (3)

and arg (w — «) — arg (w — ) = arg K + arg (2 — o)

—arg (z— B) + 2nm . (4)
where # is zero or an integer.

If z moves so that |(z — «)f(z — B)| is constant, its locus is a
circle of the coaxal system which has the double points o and f
as limiting points, and equation (3) shows that the locus of w
is a circle of the same system. Again, if z moves so that
arg (z— «)— arg (z— f) is constant, its locus is a circle of
the coaxal system which passes through the double points
« and 8. From equation (4) it is seen that the locus of w is a
circle of the same system (see Examples 12 and 13 on pp.
13-14).

Case i1. If (B + (€)% = 44D, the double points coincide at
the point z = «, where « = — (B -+ C)[/24. In this case, the
transformation is said to be parabolic.
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Since A« + B = #(B— C) and AD — BC = }(B— C)? the
relation
w— « = (4D — BO) (2— a)[[(Ax + B) (4z + B)]
reduces to
1@ — o) = [1f — )] + [24/(B— O)].
ExamprE 4. Apply the transformation w = (iz + 1)/(z + 1)

to the areas in the z-plane which are respectiygly inside and
outside the unit circle with its centre at the origin.

z2-Flane w—Plane
»
Yy
4 o £1@
L el 2,

Bl [A 1) - B¢l | A+ u

D-i)

Fia. 27

The self-corresponding points 4, B are given by
z=(z + 1)[(z + 1),

ie. , z=-4 1.
Since w—1=(@—1)(z— 1)/(z +2)
and w+1=(0+1) @+ 1)/=+1),

we have (w— 1)f(w + 1) =12(z— 1)[/(z + 1).

Hence, in general, a circle which passes through the points
A, B, at which z = 4 1, is transformed into a circle through
the points w = 4 1 in the w-plane. In particular, the latter
circle may degeneraté into a straight line.

In Fig. 27, the z- and w-planes are shown separately and
corresponding points are indicated by the same letter.

It is at once obvious from the equation of transformation
that w is finite for all values of z except — 7. Hence the point
D(z = — 1) corresponds to the point at infinity in the w-plane.
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Since dwfdz = — 2[(z + ¢)?, the magnification is finite and
not zero at all points except D and the point at infinity in the
z-plane (the latter point corresponds to the point Z at which
w = %). Thus it is only at D and F that the transformation is
not conformal.

When z describes the circle |z| = 1 in the positive sense with
respect to its interior, both arg (z— 1) and arg (z + 1) vary
continuously except when z passes through the points 4, B
at which z= 4- 1. In order to see what happens at these
points we shall make the point z avoid actually passing through
the points of discontinuity by letting it describe circular arcs
of vanishingly small radius about 4 and B. When transforming
the exterior area we shall take these arcs to be outside the
circle as shown in the figure.

While z describes the arc about 4, the angle between the
vector z— 1 and the real axis varies continuously between
values which are mnearly equal to — #f2 and -+ «/2. If the
radius of the arc is diminished to zero, the amount of the
discontinuity is =. Similarly, when z makeés the detour round
B, the angle between the vector z 4 1 and the real axis
varies continuously between values which are ultimately /2
and 37/2.

Let the point z start from D and move, in the counter-clock-
wise sense, round the circle z = 1, making detours round the
points 4 and B. When z is on the quadrant DA, we can take

arg [(z — 1)/(z + 1)] = — =/2

and therefore arg [(w — 1)/(w 4 1)] = args — =2 = 0.

The corresponding point w is then on the positive part of the
real axis and moves from infinity to 4 (w = 1) as z moves
from D to 4.

When z makes the small detour round 4, arg [(z— 1)/(z -+ 1)]
changes from — #/2 to 4+ #/2 and so arg [(w— 1)/(w + 1)]
increases from O to . As z describes the semicircle ACB,
arg [(z= 1)/(z + 1)] is constant and equal to =/2: the corre-
sponding point w moves from 4 to B along the real axis. As
z moves round B, arg [(w— 1)[/(w -+ 1)] decreases from = to 0
and it retains the latter value while z moves along the quadrant
BD. The corresponding point w therefore moves along the real
axis from B to infinity.

Thus, as z describes the circle in the sense DACBD, w moves
in the negative direction along the whole of the real axis in

4—(T.122)
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the w-plane. The area outside the circle in the z-plane is on
the right of an observer who moves in the sense DACBD and
so the corresponding area in the w-plane bears the same
relation to an observer who describes the corresponding path.
Thus the upper half of the w-plane corresponds to the exterior
and the lower half to the interior of the circle.

Examrre 5. Express the relation w = (134z -+ 75)[(3z — 5¢)
in the form (w— a)f(w — b) = k(z— a)[/(z— b), where a, b, k
are constants.

Show that the circle in the z-plane whose centre is z = 0
and whose radius is 5, is transformed into the circle in the

w~Plane

z-Flane

Q) Pla)

Fra. 28

w-plane on the line joining the points w = ¢ and w = b as
diameter, and that points in the z-plane which are exterior to
the former circle are transformed into points in the ew-plane
within the latter circle.
The self-corresponding points are given by the quadratic
2(32z — 51) = 130z -} 75, i.e. (2 — 37)2 = 16,
the roots of which are @ =4 + 3i and b = — 4 + 3i.
Since a = (13ia + 75)[(3a — 5%)
w— a = [(131z + 75)[ (32 — 5¢)] — [(13ta + 75)[ (3¢ — 5%)]
= — 160(z — a)/(3a — 57) (32— 51).
Similarly
w—b = —160(z — b)/(3b — 57) (32— 51)
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and therefore
(w—a)/(w—b) = [(3b— 51)[(3a— 5i)] [(z— a)[(z— b)]
= [(— 4 + 32)/5] [(z — a)/(z— b)].

The points z = @, z = b lie on the circle |z| = 5 and it follows
immediately that this circle is transformed into a circle in the
w-plane passing through the points w = a, w = b.

When z lies on the minor arc PRQ (Fig. 28) of the circle
|2| = 5, where P, @ are the points z = @, 2 = b,

arg (2 —a) —arg (z— b) = 0 = /PRQ
and arg [(— 4 4 32)/5] = argb = ¢ = /. XOQ
Hence arg (w — a) — arg (w—b) = £ X0Q + /PRQ = 3=/2.
‘When z lies on the major arc PSQ,
arg (z—a)—arg (2—b)=60—=
and arg (w— a) — arg (w— b) = =f2.

As z describes the circle |z| = 5, it follows that w describes
the circle on ab as diameter in the w-plane, the upper half of
this circle corresponding to the major are PSQ. The point
2 = 0 corresponds to the point w = — 15¢ and this is obviously
outside the w-circle, the interior of which must therefore
correspond to the exterior of the z-circle.

The Transformation w = z | (k2?/z), where k is real. This
transformation finds many applications, particularly in hydro-
dynamics in connection with two-dimensional flow past a flat
plate, a circular or elliptic cylinder, and an aerofoil.

Since dwfdz = 1 — (k?[22), which is finite at all points except
z = 0 and not zero except at z = -+ k, the transformation is
conformal at all points other than these. As z approaches
infinity, w approaches equality with z and the magnification
|dw[dz| approaches unity. Hence an area at a great distance
from the origin in the z-plane is transformed into an almost
identical area at a great distance from the origin in the
w-plane.

Consider (Fig. 29) the transformation of the circle [zJ = ¢,
where ¢ > k. At any point on this circle we have z = ce®, and
therefore

w = u -+ 1w = ce® + (k2[c)e~?
= a cos 6 + b sin 6,

where @ = (c® + k?)Jc and b = (¢ — k2?)Jc.
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Hence # = a cos 6 and v = b sin 6.

As 6 increases from — =z to -+ =, the point 2z describes the
circle once in the counter-clockwise direction and the point w
moves once in the same sense round the ellipse

(wfa)? + (ofb): = 1.
The area outside the circle is transformed into the area outside

the ellipse.
Z~Flane w-Flane

[z/=F £

e\ s /75X
=% w=-2k W

n
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The foci S, S’ of the ellipse are given by
w= +(a® — b2t = - 2k,

and the corresponding points in the z-plane are z = + k.

If cismade equal to %, the major axis 2a of the ellipse becomes
equal to 4k and the minor axis 2b vanishes. The ellipse then
degenerates into the line SS8’. A point 2z, which moves in the
trigonometrically positive sense round the circle, is transformed
into a point in the w-plane which moves along the real axis
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from S’ to S and then back from S to 8’. The area outside the
circle in the z-plane becomes the area of the whole w-plane
with an internal boundary S8’ which may be regarded as an
impassable barrier (as in hydrodynamics) or as a slit in the
plane. In either case, a point which moves in the plane must
avoid crossing the barrier or slit. For instance, in order to
move from a position P on the upper edge of the slit to the
opposite point @ on the lower edge, the point would have to
describe a path like PR surrounding either S or §’.

To a given point in the z-plane corresponds one and only one
point in the w-plane, but, to one point in the latter plane, there
correspond in general two points in the z-plane which are
given by the roots of the quadratic equation

22— wz + k2 = 0.

The product of the roots of this equation being k2, it follows
that one of the points is inside and the other outside the circle
|z] = k, unless the given value of w is represented by a point
on one of the edges of the slit, in which case both points are on
the circle. There is thus a one-to-one correspondence between
points in the w-plane, slit along the real axis between S and
8’, and points outside the circle in the z-plane.

A CONSTRUCTION FOR CORRESPONDING POINTS. If P is any
point in the z-plane, let P’ be its inverse with respect to the
circle |2| = &, and P, the image of P’ in the real axis. Then if
z is the affix of P, the affix of P, is k?/z (see p. 83). If @ is the
middle point of PP, its affix is $[z + (k%/2)] = }w.

This gives a simple construction for the curve in the w-plane
which corresponds to any given curve ih the z-plane. If the
latter curve is drawn to a scale of twice full size, the locus of
@, which may be readily traced, will be the actual curve which
is required.

Transformation of a Circle into a Circular Are. Apply the
transformation to any circle which passes through the two
points z = -+ k. If zis any point on such a circle, we can take

arg [(z — k)(z + k)] = « or &« — ,

where « is constant, according as z is above or below the real
axis. If z moves round the circle in the counter-clockwise
sense, arg [(z — k)[(z + k)] changes from « — 7 to o when the
point passes through % and from « to «— 7 when it passes
through — %.
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Now since w— 2k = (z— k)?/z
and w -+ 2k = (2 + k)3z,
(w— 2k)[(w + 2k) = [(z— &)[(z + E)I%,

whence
arg (w — 2k) — arg (w + 2k) = 2[arg (z — k) — arg (z + k)]
= 2« or 20 — 27,

according as z is above or below the real axis.

Hence, as z describes the circle, starting at the point k, the
locus of the point w, in the w-plane, is an arc of a circle joining
the points w = -+ 2k, the angle subtended by these two points
at any point of the arc being 2«. As z moves from %k to — k
along the upper arc, the point w moves from 2k to — 2k.
When 2z passes through the point — &, arg [(z — k)/(z + k)]
changes from « to o — 7+ while arg [(w — 2k)/(w + 2k)] changes
from 2« to 2« — 27 and retains this value as w returns to the
point 2k. The arc in the w-plane is thus described twice.

The area outside the circle in the z-plane is transformed into
the whole w-plane bounded internally by the circular are.

THE AEROFOIL. Any circle in the z-plane which passes
through the point z == % and contains within it the point
2z = —k is transformed into a closed curve in the w-plane
which passes through the point w = 2k. As the point z moves
along the circumference through the point %, arg (z— k)
changes suddenly by an amount = while arg (z + k) varies
continuously. It follows that there is a discontinuity of amount
27 in the value of arg [(w — 2k)[(w + 2k)] when w moves along
the curve in the w-plane through the point 2% and so this curve
must have a cusp at that point.

By choosing a suitable centre and radius for the circle, the
corresponding curve in the w-plane may be made to give a
close approximation to the section of an aeroplane wing; a
cylinder which has such a curve as its cross-section is called
a Joukowsks aerofoil.

The Transformation w = log z. If we assume the logarithm
to have its principal value,

w=u + v = log, r + 20,

where 7 is the modulus and 6 the principal argument of z.
If 2z starts at the point — @ and describes the circle |z] =a
once in the counter-clockwise sense, % is constant and » varies
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continuously from — = to #. If 2z continued its motion there
would be a discontinuity in 6 when it crossed the real axis at
—a. To avoid this, we can imagine the plane slit along the
whole of the negative part of the real axis.

Since dw/dz = 1/z, the only singular points are the origin
and the point at infinity. In the portion of the cut plane which
lies between the circles [z| =a, |2] = b (< a), the principal
value of log z is one-valued, finite and continuous.

Suppose (Fig. 30) that the point z moves round the boundary
consisting of the circle ABCDE (|z| = a), the upper edge EF
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of the cut, the circle FGH (|z| = b), and the lower edge HA of
the cut, the direction of motion being indicated by the order
of mention of the letters.

As z describes ABCDE, w moves along the line u = log &
between the points at which v has the values — 7 and -+ =
‘When z moves from F to F, v is constant and equal to =, while
u decreases from log a to log 6. As z moves round FGH,
w moves along the line v = log b between the points at which
v = +4 7. Finally, as z returns to 4 along H4, v is constant at
the value — 7 and w increases from log b to log a.

Thus the rectangle AEFH in the w-plane, with its sides along
the lines « = log @, v = 7, v = log b, v = — =, corresponds to
the boundary in the z-plane and the area within either boundary
is represented conformally on the other.
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If @ is increased without limit and & is diminished to zero,
‘the rectangle in the w-plane becomes the doubly infinite strip
between the lines ¥ = - =, and this corresponds to the whole
of the cut z-plane.

The Transformation w = cosh z. Here

u + 1v = cosh z cos y + sinh z siny

and 4 = cosh z cos y, v = sinh z sin y.
y Z-Plane w-Plane
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If z is constant, the locus of the point w is the ellipse
u2fcosh? z + 22[sinh?2x = 1;
if y is constant, the locus of w is the hyperbola
u?fcos? y — v3fsin?y = 1.

Clearly the two curves are confocal, the common foci being
at the points w = + 1.

The rectangle ABCD (Fig. 31) in the z-plane, with sides
along the lines = «, y = f, ¥ = «’, y = f’, is transformed into
the area ABCD in the w-plane between the corresponding
ellipses and hyperbolas. Actually there are four such areas
but only one of these corresponds to the rectangle ABCD:
the others are obtained from the areas which are the images of
ABCD in the 2- and y-axes. :
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The Transformation z = c tan 3w. Taking ¢ to be real (and
positive), we have
z + 1y = ctan }(u + ), x— iy = c tan L (u—iv)
and so tanw = tan [$(u + ) + (u — )]

= 2cx[(c?— z2— y?) . . . . (5)
and tan 1o = tan [}(w + w) — FH{u— )]
= 2icyf(c® + 22 + y?) . . . . (8)

From (5) and (6) it follows that the lines u = constant and
v = constant in the w-plane correspond to the families of
coaxal circles in the z-plane given by the equations

2% 4+ y2 + 2xc cob u — 2 = 0 (7)
and 2%+ y?— 2yc cothv + 2= 0 (8)

The circle 4 = constant passes through the points 4 (0, ¢)
and B (0, — ¢). Its centre is at (— c cot %, 0) and its radius is
-+ ¢ cosec u according as u is positive or negative.

The circle v = constant has its centre at (0, ¢ coth v) and its
radius is -4 ¢ cosech v according as v is positive or negative.
When v is 4 o, the radius is zero and the centre is at (0, & ¢);
i.e. the points 4 and B are the limiting points of the v-system.

Let P (Fig. 32) be the point which represents z, then the

vectors AP, PB represent z — ic, — z — 1ic, respectively.
Now
(z— 2¢)[(— z2— 2¢) = (12 + ¢)f(— iz + ¢)

= (cos w -+ 7 sin {w)/(cos 3w — % sin $w)

= exp (1w)
= exp (— v + u).
Hence AP[PB = | (z— ic)f(— z — ic) |

and one determination of arg [(z — t¢)/(— 2z — ¢c)] is equal to u.
Now, when P is to the right of the imaginary axis, one
determination of arg [(z — ic)/(— z — %c)] is
XQP + XRB = m— APB,

where XQP, etc., denote the positive measures (between 0 and
«) of the angles.
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When P is on the left of the imaginary axis one value of
arg [(z — t¢)[(— z— ¢)] is
XQ'P— 2r— XR'B)=— R'QP—QRP
= APB — 7.
As P moves about in the right-hand half of the z-plane, the
angle APB varies from 0 (on AY and BY’) to = (on AB).
The corresponding value of arg [(z— ic)/(— z— ic)] ranges

from = to 0.
When P moves in the left-hand half of the plane, APB
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again varies from 0 to 7 and the above argument varies from
— 7 (when Pison 4Y or BY') to O (when P is on AB).

Hence if P is on the right of the imaginary axis we shall take
% to lie between 0 and =, while, if P is on the left of the axis,
we shall take « to lie between — 7 and 0. If P crosses the axis
between the points 4 and B, « varies continuously, but, if
P crosses outside the segment A B, u is discontinuous. The dis-
continuity may be removed by slitting the plane along the
whole of the y-axis outside the segment 4.B.

Since v = log (PBJAP), the values of » range from —
(when P is at B) to + « (when P is at 4). The line v =0
corresponds to the real axis. The whole of the z-plane is thus
represented on the doubly-infinite strip of the w-plane bounded
by the lines u = -+ .

That part of the z-plane which is outside the circles v = a(>0)
and v = b(<<0) corresponds to the interior of the rectangle in
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the w-plane bounded by the lines w= 4 =, v=a, ¢ = b.
(See Fig. 33, in which corresponding points in the two planes
are denoted by the same letter.)

This transformation is used in dealing with two-dimensional
potential problems involving circular cylinders with parallel
axes.

X! X w

u=- w=mT

v
Fie. 33

Successive Transformations. By means of a relation of the

form
Z = f(=)

we may transform conformally a figure in the z-plane into a
figure in the Z-plane, and this again may be transformed
conformally on to the w-plane by a relation

w = F(Z).
Clearly the figure so obtained in the w-plane could have been
obtained by the direct transformation given by
w = F(f(2) ).
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In practice, it is sometimes convenient to treat a fairly
complicated transformation as the resultant of two or more
simpler transformations applied successively.

Exampre 6. Consider the effect of applying the transfor-
mation

w = log coth }z
to the semi-infinite strip on the positive side of the imaginary
axis between the lines y = =+ 7.

z=T B/ y=r ¢
z.oj%-man/ ¢ -
D z=]
== L
z A y=-T D

A
//
A
B

Fia., 34

The given relation is equivalent to the successive substitutions

N Z=e%, (ii) W= (Z + 1)/(Z— 1), (iil) w = log W,
where Z=X+1Y,W=U+4<V.

In Fig. 34, let z start at infinity on CB and move round the
boundary CBAD of the ygiven strip. Here C and D denote
points at an infinite distance from the origin—actually they
are the same point, since, from the point of view of the
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theory of functions, there is only one point at infinity in the
complex plane.

When z is on OB, Z = exp (x + t7) = — exp (z) and so Z in-
creases from — o to — 1. When z moves along B4, Z = exp (iy)
and the point Z describes (in the clockwise direction) the unit
circle with centre at the origin from the point B(Z = — 1) to
the point 4 (where Z has the same value as at B). As z moves
from 4 to D, Z = exp (x — im )= — exp (x) decreases from — 1
to — .

Apparently the lines BC, AD in the z-plane are transformed
into the same line, but, if we cut the Z-plane along the real axis
from — 1 to — o , we can regard the upper and lower edges of the
cut as the lines which correspond to BC and 4D respectively.

The interior of the strip is now represented on the area
outside the circle in the cut Z-plane. To this area we now
apply the bilinear transformation (ii).

As Z moves along OB, W is real and decreases from 1 (when
Z is infinite) to O at B, where Z = — 1. When Z moves on the
upper half of the circle from B to E, arg W is constant and
equal to — 7/2 while W varies from zero at B to an infinite
value at H. Thus the lower half of the imaginary axis in the
W-plane corresponds to the upper semicircle in the Z-plane.

When Z is on the lower half of the circle, arg W = /2 and
W varies from an infinite value at & to zero at 4; therefore
the point W moves down the imaginary axis to the point 4
(where W = 0). Along AD, W is real and varies from 0 at 4
to 1 at D.

The area obtained in the W-plane is that to the right of the
imaginary axis with a slit along the real axis between the points
W = 0, W = 1. This area is now transformed by (iii) in which
we shall give the logarithm its principal value.

We have w = u -+ iv = log R + 1¢, where R = |[W| and
¢ is the principal value of arg W. On FA, v =¢ = =/2 and
u (= log R) varies from -+ o at B to — « at 4: on BE,
¢ = — 7/2 and u varies from — © at Bto + » at . On AD,
v=¢ = 0 and u varies from — » at 4 to zero at D: on
CB,v = ¢ = 0 and u varies from 0 at C to — o at B.

The corresponding area in the w-plane is thus the doubly
infinite strip between the lines v = 4- =/2, there being a cut
along the whole of the negative part of the real axis.

Conformal Mapping of a Spherical Surface on a Plane. Let
SN (Fig. 35) be a fixed diameter of a sphere of radius a and
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centre 0. Draw through S a pair of tangents SX, SY such that
/. X8Y is a right angle.

The position of a variable point P on the surface of the
sphere is clearly determined by the angle ¢ between the planes
PSN, XSN and the angle 6 between OS and OP. These two
angles may be called the spherical co-ordinates of P. The
angle ¢, which is the longitude of P, will be measured positively
in the sense of rotation from SX to 8Y and may be taken to

X

Fra. 35

range from — 7 to 4 . The angle §, which is simply related
to the latitude of P, ranges from 0 to =.

If 6 is kept constant and ¢ varies from — 7 to + =, P des-
cribes a small circle APB on the sphere (a parallel of latitude)
with radius @ sin 6 and centre M, which is the foot of the
perpendicular from P to SN. If ¢ is constant and 6 varies from
0 to 7, P moves from § to N along a great semicircle SPN,
called the meridian of P. Since the planes APB, SPN are
perpendicular, the arcs PB, PN intersect at right angles at P.

Let P and P’ be neighbouring points on a curve drawn on the
surface, the spherical co-ordinates of P’ being (¢ + 8¢, 6 -+ 86).
Then the meridian of P’ meets the parallel of latitude through
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P in P;, such that the arc PP, = a sin 0 . 54, and the parallel
of latitude through P’ meets the meridian of P in P, such that
the arc PP, = adl.

We have thus constructed an element PP, P’P, of the surface
of the sphere, all four angles of the element being right angles.
If 6 and ¢ are sufficiently small, we may treat the bounding
arcs as straight lines, and take the area of the element to be
a?sin 0 . 6446.

The element of length ds on the surface is the length PP’
which is given by

PP'? = PP2 4 PPy,
whence 8s%* = (a® sin? 0) (642 + cosec? 6 . 562).
If we put » = log tan 16, we have
Oy = cosec 0 . 60 and sin 6 = sech y,
from which it follows that

ds? = (a? sech? y) (642 + Sy?)

and that
tan P,PP' = P P’'[PP,
= §0/(sin 6 . d¢)
= 0y[5¢.

If P", with spherical co-ordinates (¢ + A, 8 + AB), is another
point close to P and the arc PP’ = As, we have, in a similar
way, .

As? = (a? sech? p) (Ad? + Ap?)
and tan P,PP" = Ayp[A¢, where Ay = cosec 6 . AS.

Now take ¢ and ¢ to be the rectangular cartesian co-
ordinates of a point in a plane and plot the points @, @', @'
with co-ordinates (¢, %), (¢ + I, v + 6v), (¢ + Ad, v + Ay),
respectively. Then

QQ"? = 0f® + dy?, QQ2 = Ad? 4 Ay?
and the gradients of the straight lines @Q’, @@’ are oy/dd,
Ay[Ag, respectively.

Hence QQ'/QQ" = és[As = PP'[PP"
and the angles @'QQ", P’PP’ are equal.

The elementary triangles QQ’'Q", PP'P" are therefore similar

and the spherical surface is represented conformally on the
é, p-plane.
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The meridians on the sphere become the straight lines
¢ = constant on the plane, the values of the constant ranging
from — = to -~ 7; the parallels of latitude (6 = constant) on
the sphere become the straight lines y = constant in the plane.
As 0 varies from 0 to z, p (= log tan 16) varies from — o
to 4 .

Thus the whole surface of the sphere is represented confor-
mally on the doubly-infinite strip between the lines ¢ = + .
The map so obtained is called Mercator’s Projection.

It will be noticed that any two curves which intersect on
the sphere at an angle « are represented by plane curves
intersecting at an angle o. In particular, since any straight
line in the plane map cuts all the meridian lines at the same
angle, the curve on the sphere, which corresponds to the
straight line, cuts all the meridians at the same angle. Such a
curve is called a rhumb line or loxodrome.

Having constructed one conformal map, we can now derive
an unlimited number. For the figure in the ¢, p-plane may be
represented conformally on the plane of the complex variable
z by an infinite number of relations of the type

z = f(¢ + iy).
Taking z = 2a exp [¢(¢ + 19)],

we obtain the stereographic projection in which the meridians
are the lines arg z = constant and the parallels of latitude are
the circles |z| = constant.

EXERCISES

1. If 220 = 1 and if the point which represents 2z describes a circle of
radius ¢ with its centre at the point a + ib, show that the point w
describes a circle of radius ¢/(a? 4 b2 — ¢?).

If P represents z and @ represents (1/z) — (8/4) — i, find the locus
of @ when P describes the circle | z— 2| = 2.

2. In an Argand diagram the point z moves along the real axis from

z=—1 to 2= -4 1. Find the corresponding motion of the point
(1 — iz)[(z — ). (U.L.)

3. Prove that the relation w = (kz + 1)/(z + %), where % is any real
number other than -+ 1, transforms the circle | z| = 1 into the circle
| w| = 1. Prove also that, if z = exp (i6) and arg (w -+ 1) = ¢, then
(k + 1) tan ¢ = (k — 1) tan 36. (U.L.)

4. Show that, in a bilinear transformation w = (az + b)/(cz + 4),
the ratio [(z; — 2,)[(2; — 23)1: [(#, — 22)/(24 — 2;)] remains invariant.

Find the form of the transformation 7' which leaves z = 1 and 2 = i
unaltered and transforms z = — 1 into w = — i.
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By means of an auxiliary transformation U, which transforms i
into 0 and 1 into o, show that by the transformation 7' any circle
through the two points 4, 1 is transformed into itself. Hence describe
the general character of the transformation 7' (U.L.)

5. Prove that a bilinear transformation transforms any circle into a
circle or a straight line.

Obtain the bilinear transformations which transform the circle

| 2| = 2 into itself, the point 4 into the origin and the circle
| 2| = 1into a line parallel to the imaginary axis. (U.L.)

6. Prove that the necessary and sufficient condition that four points
in the z-plane should be either collinear or concyeclic is that their
cross-ratio should be real.

7. The bilinear relation w = f(z) = (4z + B)[(Cz + D) is such that

i) w—>aasz—> ©;
() z—>basw—> ©;
(iii) there is only one number ¢ such that ¢ = f(c). Find
A, B, C, D in terms of a, b, ¢ and show that 2¢ = a + b.

Show that, if z; does not lie on the straight line A4 joining a and b,
then the set of points

23y 2y = f(zl)s 23 = f(zz)a v e ey By = f(zn)
all lie on a circle which touches 41 at ¢. Provethatz, casn—> «.
(U.L.)
8. Prove that the transformation
w= [(1 + 22)? — i1 — £PYUL + &*)?* + (1 — 2)°]

maps the region | z| < 1, 0 < arg z < =/3 conformally on |w| < 1.
Discuss the correspondence between the boundaries of the two regions.

(U.L.)
9. Examine the transformation 2w = z |+ 1/z and discuss its
singularities.
Show that | w| = 1 corresponds to either
|z—i]|= 2 or |[z24+i|= v2. (U.L.)

10. Show that the equation
(@ —b)yu?— 2zw + (a +b)=0,(a>b>0),

represents the interior of the circle w = 1 on the area in the z-plane
outside the ellipse (z/a)? + (yfb)® = 1.

Discuss the representation in the z-plane of the circles

lw| =r|w|=(a+b)ria—Dd),

and of the line arg w = «.

11. Show that the transformation w(z + )2 = 1 maps the interior of

the circle | z| = 1 in the z-plane on the domain outside the parabola
2R(1 — cos ) = 1 in the w-plane (R, ¢ being polar co-ordinates of a
point in this plane).

Show that the same .transformation effects two mappings on the
z-plane of the domain outside the parabola; the one on the interior of the
circle | z| = 1 and the other on the interior of the circle |z +2i| = 1.

(U.L.)
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12. Prove that the relation w = ¢ sinh 2 maps the semi-infinite
rectangle x > 0, — mf2 < y < =/2 in the z-plane on the upper half of
the w plane. Show that the ratio of the area of the finite part of this
rectangle cut off by the line z = a to the corresponding area in the
w-plane is 4afsinh 2a. (U.L.)

18. A region in the z-plane is bounded by two cuts along the real axis
from 0 to + © and from — 1 to — . Variables w and Z are connected
with z by the equations z = cosh w, Z = sinh w. Find the regions in
the w- and Z-planes which correspond to the above region in the
z-plane. (U.L.)

14. Show that, by the transformation w = a cos (mz/a), the space
above the axis of # and between the lines = + a is transformed
into the whole w-plane. Determine the region in the w-plane which
corresponds to the interior of the square in the z-plane bounded by the
lines

= Falt, ¥y = a,y = 3af2.
(U.L.)

15. Prove that, by the transformation w = tanh 2, the region of the
z-plane, for which

a>x>0, nf2>y>0

(a real and positive), is transformed into that part of the positive quad-
rant in the w-plane which lies outside a certain circle having its centre
on the real axis.

Show also that the part of the z-plane for which

x> a, w2 >y>— af2,

is transformed into the interior of the same circle, cut along the real
axis from the circumference to the point w = 1. (U.L.)
16. Show that the relation. w = 2z/(1 + 2?) maps the region outside
3 straight cut between the points w = 4 1 in the w-plane on the upper
half of the z-plane.
17. Show that z = 4aw cot af(1 + 2w cot « — w?), where

0 <a< wf4,

gives a conformal representation of w when w lies in any finite region
excluding the points w = - 4, cobt }o, — tan %o.

Prove that, when w describes the circle ] w | = 1, z describes an arc
of a circle subtending an angle 4« at the centre.

Show also that, when w describes the real axis from — tan 4« to
cot 3o, 2z describes the whole of the real axis. (U.L.)

18. If w = 2> — 3z and the point z describes an ellipse whose foci
are at the points 2 = -+ 2, prove that the point w describes a confocal
ellipse. (U.L.)

19. If z 4+ iy = coth (u + iv), express « and y in terms of w and v.
Show that the curves in the ay-plane given by v = const. are circles
through the points (1, 0), (— 1,0) and that the curves w = const. are
circles orthogonal to these.

Determine the region in the xy-plane corresponding to the interior
of the rectangle bounded by v =0, u =1, v=0, v = «f4 in the
wv-plane.
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20. Show that the relation w = 2 4 log z maps the upper half of the
z-plane on the upper half of the w-plane with a slit along the line
v=7(u <O0).

21. If w = ¢ cos (k log 2), where ¢ = a® — b® and cosh (k=/2) = afe,
prove that the area in the z-plane given by > 0 and 1 < |z]| < el*
is transformed conformally into the interior of the ellipse

(ufa) + (v[b)* =1
in the w-plane cut along the lines joining (¢, 0) to (a, 0) and (— ¢, 0)
to (— a, 0). (U.L)

22. Discuss the transformation z = tanh %w. In particular, prove
that the curves given by w = const. and v = const. form two sets of
coaxal circles in the z-plane; and that the interior of the unit circle
which falls in the positive quadrant corresponds to the interior of the
infinite rectangle in the w-plane of which the finite sides are given
byu = 0,v = 0,v = =/2. (U.L.)

23. Show that the relation w = ai cot 42z (¢ > 0) maps the semi-
infinite strip in the z-plane for which 2= > 2 > 0, y > 0, upon that
half of the w-plane which lies to the right of the imaginary axis and
which is cut along the real positive axis from z = o to x = -+ «, and
indicate the points at which conformal representation breaks down.

Two circles with real limiting points at (4 a, 0) are drawn in the
cut w-plane whose centres are at the points (pa, 0), (ga, 0), where
p > q¢ > 1. Show that the space between these circles is mapped on
the interior of a rectangle in the z-plane whose area is

log[(@— 1) (¢ + L)/(® + 1) (¢g— 1)] (U.L.)

24. Show that the region on the sphere which is represented in
Mercator’s Projection by a rectangle bounded by the lines

¢=¢,¢=1qoY=y,9 =Y
is of area a?(tanh v, — tanh v,) (¢; — ¢,).

Show also that a great circle on the sphere is represented in the map
by a curve whose equation is of the form

tanh p sin (¢ + «) = &,

where « and % are constants.

25. Show that, if (¢, 6) are the spherical co-ordinates of a point on
a rhumb line, 4¢ + B logtan 6 + C = 0, where 4, B, C are constants.

26. Prove that, in the stereographic projection, a rhumb line is
represented by an equiangular spiral.

27. Show that a stereographic projection of a region on the sphere
may be obtained by conical projection from S on to the tangent plane
to the sphere at N (Fig. 35).

28. Show that the transformation

w = (az + D[z + a),

where ¢ is any real number except +1, transforms the circle |z| = 1
into |w| = 1. If, further, the circle |z — 1| = 1is transformed into
|w 4+ 1] = 1, find the value of a. (U.L.)

29. If w =z — 2i + (1/2), and | z| = 2 show that the point w lies on
an ellipse whose major and minor axes are 5, 3 respectively. (U.L.)



CHAPTER VI
THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Conformal Transformation of a Half-plane into a Polygon. Let
P be the fixed point on the real axis in the z-plane at which
z = a. Then if 2 has a real value greater than a (represented
by S in Fig. 36) the principal value of arg (z— a) is zero.
If the point z describes the semicircular arc SREQ with P as
centre, arg (z — a) increases by . ’
This is still true if the radius of the semicircle is made
infinitesimal. Hence, if 2 is restricted to real values, it may be

R z-Plane.
of # \s |

=a z=b z=c z=k
Fia. 36

said that arg (z — @), which is = when the point z is on the left
of P, decreases to zero when z, moving from left to right along
the real axis, passes through P. '

Suppose that a, b, ¢, . . . k are  real constants arranged in
ascending order, and that

Fl) = (G—a)= (e—B)~F (z— &) . . .(2— k)%,

where o, f, , . . . k are n real constants each lying between
— 1 and -1. Consider how the argument of F(z) varies as z
moves along the real axis from — o to + .
‘When zis on the left of &, the argument of each of the numbers
z—a,z—b,z—c,. . .2—k

Lo
&2

is = and, when z passes through a, the arguments are unaltered
except that of the first, which decreases by =. Consequently,
when z passes through a, the argument of F(z) increases by «.

As z continues its motion between ¢ and b, arg F(z) does
not alter, but, when z passes through b, arg [(z— b)~#] in-
creases by f= and the arguments of the other factors of F(z)
are unaltered.

108
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Hence, when z moves from — « to + o along the real axis,
arg F(z) increases by a total amount (x 4 8 + v + . . . +x)m.
Now suppose that w is a function of z determined by the
differential equation
dwf[dz = LF(z),

where L is a complex constant.

The functional relation between w and z, which would be
obtained by integration, establishes a conformal transformation
from the z- to the w-plane. Our present purpose is to find the
region of the w-plane which is transformed into the upper half
of the z-plane.

We shall assume that, when z=a, b, ¢, . . . k, =, the
corresponding values of w are 4, B, C, » K, U, respectively.
If éw, 6z are correspondinginfinitesimal
increments in the two variables, we
have, from the differential equation,

arg 0w = arg 0z -+ arg F(z) -+ arg L. J

As zmoves from — o up to a, along
the real axis, both arg 6z and arg F(z)
remain constant and therefore wmoves
from U to 4 in such a way that arg dw
is constant. The path of w is therefore
the straight line UA4.

When z passes through a, arg F(z) increases by om and
therefore arg dw increases by the same amount. As z continues
its motion along the segment of the real axis between @ and b,
arg Sw remains constant and therefore the point w moves
along the straight line 4B which makes with U4 an angle
arr measured in the positive sense.

Similarly, when z passes through b, arg dw increases by f=
and, as z moves from b to ¢, the point w moves along the straight
line BC which makes with AB an angle fiz in the positive
sense; and so on. After z has passed through %, w moves along
the straight line KU which makes an angle 7 with JK.

Hence, as z describes the real axis, w describes the complete
perimeter of the (n + 1)-sided polygon ABC . . . KU. Since
the upper half of the z-plane is on the left of an observer moving
with 2, the interior of the polygon is the corresponding area
in the w-plane. It is only at the vertices of the polygon that
the transformation is not conformal; for these are the only
points at which dw/dz becomes zero or infinite.

w- Flane s

Fia. 37
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It will be noted that, in general, one vertex of the polygon
in the w-plane is the point U which corresponds to the point
at infinity in the z-plane. The exterior angle of the polygon
at U is

2r— (e +B+y+. ..+

If, then, a+B+y+...+r=2

the points K, U, A4 are collinear and the half of the z-plane is
transformed into an n-gon ABC . . . K all of whose vertices
correspond to finite values of 2.

In drawing Fig. 87 it has been assumed that «, §, y, . . . «
are all positive. The interior angles of the polygon are (1 — ),
(1— B)w, . . . and are all less than = so that the polygon is

w- Plane.

convex. If o is negative, the interior angle lies between =
and 27 and the polygon has a re-entrant angle as in Fig. 38.

Transformation of the Interior of a Polygon into a Hali-plane.
Now suppose that a given polygon P, of » sides, in the w-plane,
is to be transformed into the upper half of the z-plane. The
figure may be convex or may have one or more re-entrant
angles. In either case no interior angle exceeds 27. Taking
the vertices in the order which corresponds to the positive
sense of describing the perimeter, we can measure the interior
angles (1 — o), (1— B)m, . . . (1 — k)m. The constants «, p,

. k are thus known (their sum being 2).

Suppose first that no vertex of P is to be transformed into
the point at infinity in the z-plane.

Construct the function

Fz)=(@—a)"*=z—Db)"8. . .—k)

where the n constants a, b, . . . k& are real and in ascending
order but their actual values are, as yet, unspecified.
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Taki
axing dw|dz = LF(z),

which is equivalent to the relation

w=1IL f F)dz + M,

where L and M are complex constants, we have a transforma-
tion which, as we have seen in the previous section, converts
the upper half of the z-plane into an n-sided polygon P’ in
the w-plane. The interior angles of P’ are (1 — o), (1 — ),
. . . (1 —«)m, while the positions of the vertices depend on
the values chosen for the constants.

The two polygons P, P’ are thus equiangular but, if »
exceeds 3, they are not necessarily similar. We have to show
that the n real constants @, b, . . . k and the complex constants
L and M may be chosen in such a way that P’ coincides with P.

The two equiangular polygons will be similar if the n— 3
ratios between n — 2 consecutive sides of P are equal to the
corresponding ratios for P’. This gives n — 3 relations between
the constants.

To make the figures coincide, it is now sufficient to make
two vertices of P’ coincide with the two corresponding vertices
of P. This gives four more relations (two for each vertex).

Altogether, we have n + 1 relations to be satisfied by the
n real constants and the real and imaginary parts of L and M,
i.e. there are » -+ 4 constants connected by n <+ 1 relations.
It follows that three of the constants may be chosen arbitrarily
and that the remaining » 4 1 are determinate.

If one vertex of the polygon is transformed into the point at
infinity in the z-plane, the corresponding factor must be
omitted from the expression for F(z); so that the total number
of (real) constants is now # + 3. The argument used above
shows that these are connected by » + 1 relations and therefore
two, and only two, may be chosen arbitrarily.

In practice, it is convenient to give arbitrary values to the
appropriate number of the real constants which correspond to
the vertices.

From any one transformation which converts the w-polygon
into the half z-plane, an infinite number of such transformations
may be derived. As was shown on p. 87, the real axis in the
z-plane may be transformed into the real axis in the plane of
another complex variable Z by the relation

(2212023) = (22,25 Z5),
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where 2, 2, 23, Zy, Zs, Z3 are all real but otherwise arbitrary.
If the points Z,, Z,, Z; occur in the same order as the points
2, 23, %, then the upper halves of the two planes correspond.
We now have two successive transformations, from w to z
and from 2z to Z, by which the w-polygon becomes the upper
half of the Z-plane.

The relation which converts the polygon into the half-plane
is known as the Schwarz-Christoffel Transformation.

ExamprLe 1. A triangle ABC in the w-plane with angles

w-Plane
A=iv) £ z-Plane
T
u=0
R, A B
=0) U=0 C Cq— : Z=—1 z=7 _)0

Fic. 39

(1 — a)m, (1— B)m, (1 — ), is transformed into the upper half
of the z-plane by the relation

dwfdz = L(z — a)~%(z— b)~8(z — ¢)~".

where, since the sum of the angles is 7, « + 8 + p = 2. The
values of the real constants @, b, ¢ may be chosen arbitrarily.
In general, the differential equation is not integrable in terms
of elementary functions.

There is a particular case which is of some importance in
practice, and in which the integration is easy, viz. when
«=pf=4% and y = 1. The triangle then becomes a semi-
infinite strip. By suitable choice of axes we can take it to lie
in the positive quadrant and to be bounded by the lines v = 0,
u =0, v =v;. The vertices 4, B, C (Fig. 39) are then the
points given by w = iy, 0, o, respectively, and we may take
the corresponding points on the real axis of z to be given by
z2=—1, 4+ 1, «, respectively.

The required transformation will be given by

dwldz = L(z + 1)~z — 1)1,

since the factor corresponding to the vertex C, at which z is
to be infinite, must be omitted.
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Integrating, we have ,
w = Lf(zz-—~ 1)-idz + M
= Lcosh—1z 4+ M
= Lloglz + (2 — 1)} + I,

where the logarithm has its principal value.
At B, w =0 and 2z = 1 and therefore M vanishes. At 4,

w =4y, and z = — 1: hence L is determined by the condition
that
toy = Llog [z + (22— 1)}]
whenz = — 1. Now,ifzis on or above the real axis, its principal
w-Flane
Abwr=tvs) D z-FPlane
v=uy i -
: /" \\\
: ! K
- _ D { \ H
U=0 Cw=0) ) 5 3
Z==1 2=0 2z=7
Fia. 40

argument ranges from 0 to w. Consequently the appropriate
value of the logarithm at z = — 1 is i and it follows that

L = v fr.
The equation of the transformation may be written
w = (v [m) cosh—1z
or z = cosh (mwfv,).

If now we apply a bilinear transformation which converts
the upper half of the z-plane into the upper half of a Z-plane, we
obtain a transformation from w to Z which has an effect similar
to that from w to z. For instance, take z = — 1/Z and we

.have

Z = — sech (mw/fv,)

as the relation which converts the strip into the upper half of
the Z-plane in such a manner that the vertices B, C, 4 become
the points Z = — 1, 0, 1, respectively.

Exampre 2. Consider the doubly infinite strip bounded by
the lines v = 0, v = v, (Fig. 40).
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The strip may be regarded as the limiting form of a rhombus
ABCOD (where A and C are the points w == 4v;, w = 0, respec-
tively) when each of the angles at 4 and C is made equal to =«
and those at B and D become zero. With the notation of
p. 110, we have

l—ag=1l—y=1land 1—f=1—36=0,
ie. a=y=0and f=0=1.

The real values of z at B, C, D may be chosen arbitrarily
provided that they are in the proper order: for simplicity
we take them to be 0, 1, o, respectively. The transformation
is then given by

dwldz = Lz~
which gives w=Llogz-+ M.

It will be noted that, since &« = 0, the value of z at 4 does
not occur explicitly in the equation. On inserting the values
at C (w = 0, z = 1) we see that M vanishes.

At any point on BD, z is positive and w is real and therefore
the constant L is purely real. To determine its actual value,
we consider the transformation from the z- to the w-plane of
the semi-circle above the real axis which has unit radius and
centre B. At any point on the arc, z = exp (¢6), where 0 < 6 < =,
and so

w=u + w = I,

from which we have
u =0, and v = L6.

Therefore the semicircle corresponds to the straight line AC
in the w-plane.

As z describes the arc in the clockwise sense, log z decreases
by iw and, as the corresponding point w moves from A to C,
the value of w decreases by v,.

It follows that

w, = Lim

and so the equation of the transformation may be written

w = (v, [7) log 2
or z = exp (mwlv,).
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ExampLE 3. Transform the doubly-infinite strip of the
w-plane between the lines v = 0, v = =, when there is a slit
along the line v = v, from the point w = iv; to the point at
infinity (Fig. 41).

The given figure may be regarded as the limiting form of the
quadrilateral 4BCD when the angle at 4 becomes 27 and all
the other angles become zero. The vertex 4 is at the point
w = v, and all the other vertices are at infinity.

D

Do —=C
V=T

D= Aw=iv)

A ¢ B~ v=u " w-Plane
B v=0 —=C

B
z-Flane Pz)
C< D A B 67 - ¢
Zz=-1 éz zZ=Q Z=]
Fic. 41

The constants are now given by
l—ax=2, 1—f=1—y=1—8=0,
whence xa=—1,=y=6=1.
‘We can take the values of zat D, 4, B,Ctobe— 1,a, 1,0,
respectively, where @, which is yet to be determined, lies

between — 1 and 1. The points are then in the correct order.
The transformation is given by

dwfdz = L(z + 1)~z — a) (z — 1)~

since the factor corresponding to C has to be omitted.
Using partial fractions we may integrate this in the form

w=31L(1— a)log (z— 1) + 3L(1 +a)log (z + 1) + M,

the logarithms having their principal values.

Let a point z move from — « to + « along the real axis
in the z-plane, making small semicircular detours above the
axis about the points D and B in order to avoid the singularities
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of log (z + 1) and log (z— 1). As the point moves round the
semicircle which has D as centre, log (z 4+ 1) decreases by i
while the variation in log (2 — 1) approaches zero when the
radius is diminished to zero. At the same time, the corre-
sponding point in the w-plane moves from a position near
D on OD to a position near D on DA and so w decreases by an
amount i(m — vy).

Equating the discontinuities in w and in the expression on
the right-hand side of the equation of transformation, we have

i(r — ) = 3L(1 + a)im.
Dealing similarly with the point B (z = 1), we deduce that
wy = 3L(1 — a)im,

whence it follows that
L=1 and a =1— (2u/n).

The value of the constant M may be found by using the
values at 4, viz. w = v,, 2 = a.

If the slit is midway between the outer boundary lines,
v, = 7f2 and a vanishes. The constant M also vanishes and
the equation takes the simple form

w=}log (22— 1), or 22 =1 4 e

Exampir 4. Consider the doubly-infinite strip of which the
width changes suddenly from % to k (Fig. 42). We may regard
this figure as the limiting form of a quadrilateral ABCD in
which 4D is along the line v = k, B is the point w = i(k— h),
and C the point w = 0. When the angles at B and C are made
equal to 37/2 and =[2, respectively, the quadrilateral opens out
into the strip, and we have, in the usual notation,

l—a=1—6=0, 1—=23/2, 1—y=1J2
and a=06=1, B=-—1[2, y=1/2.

Taking the values of z at 4, B, C, D to be 0, 1, ¢, o, respec-
tively, where ¢, which exceeds unity, is yet to be found, we
have

dwldz = Lz—1(z — 1)}z — ¢)—*
= L(z— 1)~z — ¢)~}(1 —2-1).
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Hence

w= Lf(z_n-%(z— 6)~tdz— sz~1(z- 1)~Hz—c)~tdz 4+ M
- L/(z— 1)}z — ¢)-¥dz + Lf(l— =41 — ct)-¥t, + M,

where ¢ = 1fz.
Substituting 2 = ¢ cosh? § — sinh? 4,
we have
f (e— 1)}z — ¢)~¥dz = 20 = cosh =1 [(22— c— 1)J(c— 1)].
C A ) v=k ) A
wr=00 4\ w=00
Z=0 )3 Z=co
5?;}(%-}‘:)
A< vekoh w-Flane 8
Cw=0 =0 —>p c
z=C
Z-FPlane
De (AN B ¢ =D
‘Z=0 Zzs] z=
Fia. 42
Again, if

¢t = cosh?¢ — ¢ sinh? ¢,
f(l — )1 —ct) ¥t =— 2%
= — ¢~ cosh=1{[(c + 1)z — 2¢]/[(c— 1)z]}.
The relation between w and z is therefore
w =L cosh~1[(2z— ¢~ 1)[(c — 1)]
— Lo+ oosh=Y[(o 4 1)a— 2c]/[(c— 1)z} + X,
where L, M, and ¢ have to be determined.
Now the above expression for dw/dz in terms of z has a simple
pole at z = 0 and the residue there is Lc~*. When the point

z moves counter-clockwise in a small semicircle about 4(z = 0)
in the z-plane, w increases by i, since the point w moves from
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the line v=~k—h on to v ==k Hence, by equating the
integral of dw[dz round the semicircle in the z-plane to the
known increment of w, we have

miLe~t = ih.

(See Example 20, p. 76.)
Using the values at B (w=14(k —h),z=1)and ¢ (w=0, z=¢)
we find that
ml(l1—c—b) + M =i(k—h)
M=0
and therefore
L = kl=n and ¢ = (kfh)%

The equation of the required transformation is

w = (k[x) cosh~1[(2z2— c — 1)[(c—1)]
— (hfm) cosh—1 {[(c + 1)z— 2¢]/[(¢ — 1)z]}.

EXERCISES

1. The z-plane is slit along the semi-infinite lines 2 = + &, y < 0.
Prove that the region bounded by the edges of the slits can be trans-
formed conformally into the half-plane ¥ > 0 of a complex variable
Z (= X + 1Y) by means of an equation of the form

dz[dZ = 4i(Z? - 1)]Z,
where A is a real constant. Determine the value of A and express z
in terms of Z. (U.L.)

2. Show that the region, in the positive quadrant of the w-plane,
bounded by the liness u =0, v =0, u=1(@w>1),v=1 (> 1), is
transformed into the upper half of the z-plane by the relation

7w = cosh~!z — sin-1 (1/z) + =/2.
3. Show that the relation
w=2a(z + 1}t +log [(z 4+ 1} + 11— log [(z + 1)} — 1] + ix
maps the upper half of the z-plane on the positive quadrant of the
w-plane with a slit along the line v = », w> h, where w = h + in
when z = 1fa, both « and % being real and positive.



CHAPTER VII
-APPLICATION TO POTENTIAL PROBLEMS

Green’s Theorem. On p. 66 we obtained Stokes’s theorem in
its two-dimensional form

/C(pdx+qdy>=f @—p)dady . . (1)

where suffixes denote partial derivatives.

Let (x, y), (x + dx, y ++ dy) be the ends of the arc ds of the
curve C, and let y be the angle between the z-axis and the
inward-drawn normal at a point in ds (Fig. 19, p. 65). Then

dx = cos (y — 4m)ds = sin pds
and dy = sin (y — 4=)ds = — cos pds.

In (1) put p = ¢0, and ¢ = — ¢6,, where ¢ and 6 are any
functions of x and y which, along with their first derivatives,
are finite throughout the area bounded by C. Then

p dz + qdy = $(0,dz — 0.dy)

= ¢(6, cos y + 6, sin y)
= ¢(30/on)ds,

where dn is the element of the inward-drawn normal.
Hence equation (1) may be written

ﬁ $(36/om)ds = — / f [$(01s + B13) + o+ 6,6, 1dady (2)

On interchanging 6 and ¢ and subtracting the result from (2),
we have Green’s theorem in its two-dimensional form

[ uetos72n)— siag/2nnas
— [ [ 16ent )= $l00+ by (3

In particular, if we make 6 = ¢ and assume ¢ to be a real
potential function (i.e. ¢, + ¢, = 0), equation (2) gives

[psons =~ [[@s+pnamy . . @

119
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It follows that, if ¢ = 0 at all points on the curve C, the
double integral on the right-hand side of (4) vanishes. But,
since the sum of two real squares cannot be negative, ¢, and ¢,
must both be zero at all points of the region bounded by C.
The function ¢ is therefore constant and, being zero on C,
must be zero at all points of the region.

Again, if d¢/on vanishes at all points on C, it follows in the
same way that ¢, = ¢, = 0 and that ¢ is constant throughout
the region.

Now suppose that ¢ and ¢’ are two potential functions which
are equal at all points on C. Since ¢ — ¢’ is a potential function
which is zero at all points on C, it vanishes at all points of the
region. It follows that there cannot be more than one potential
function which has prescribed values at all the points of a
simple closed contour.

Further, suppose that two potential functions ¢ and ¢’ have
equal normal derivates at all points on C. Then ¢ — ¢’ is a
potential function such that its normal derivate (3/on) (¢ — ¢') .
vanishes at all points on C. It must therefore be constant
throughout the region. Thus the functions ¢ and ¢’ only differ
by a constant.

As will be seen in the remainder of this chapter, two-dimen-
sional problems in mathematical physics generally reduce to
finding a potential function whose values, or those of its normal
derivate, are prescribed on the boundary.

Hydrodynamics. When fluid moves in two dimensions, i.e.
in such a way that the motion is the same in all planes parallel
to a fixed plane, it is sufficient to consider the motion of a
sheet of fluid in one of the planes, which we can take to be that
of the complex variable z. If the fluid is incompressible and
free from viscosity, irrotational motion (motion without spin)
is determined by a ‘velocity potential ¢ whose value at any
point (z, y) is a function of z, ¥, and, in general, the time.
If ¢ is independent of the time, the motion is steady.

The component velocities in the directions of the axes at
the point (z, y) are — ¢,, —,. The equation of continuity,
which expresses the fact that matter is being neither created
nor destroyed, becomes

‘]Sa:x + ?Sm/ =0,

which is Laplace’s equation in two dimensions.
From p. 51, it follows that, if ¢ satisfies this equation, there
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is a function of the complex variable z = = 4 4y which has
¢ for its real part; thus

w=¢ + iy = flz).

The function y, which is the conjugate of ¢, is called the
stream function and w is called the complex potential.

Since ¢, = y, and ¢, = — p,, the component velocities at
(z, y) are — y,, v, and the differential equation to the stream
lines may be written

— dafy, = dy[y.
or vode + y,dy = 0.

On integrating we have the equation of the stream lines in
the form ¢ = constant. These lines are cut orthogonally by
the equipotential lines ¢ = constant.

Let the velocity of the fluid at the point (x, y) be ¢ in a
direction which makes an angle o« with the positive direction
_of the z-axis. Then

Yy =hp=—gCOSx, Yy =—c¢, =¢gsina
and therefore

dwjdz = b, + iy,
= — ¢(cos o« — ¢ sin o)
= g exp [i(mr— «)].

Hence ¢ = |dw/dz| and = — « = arg (dw/dz).

By taking any function of z as complex potential, we obtain
immediately a possible form of the stream lines in an irrotational
motion in two dimensions.

ExamprE 1. If w=¢ + iy = U(x + iy), where U is real
and positive, the stream lines are the parallel straight lines
y = constant. Since ¢, = U and ¢, = 0, the velocity is every-
where equal to U in the negative direction of the z-axis.

ExampLeE 2. If w = U(x + ty)? the stream lines are the
rectangular hyperbolas xy = constant.

ExampLe 3. Let

w = U(z + a?/z)
= U(r + a?[r) cos 6 + iU(r — a?/r) sin 6,

where z = r exp (26) and U is real and positive.

5—(T.122)
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The stream lines are given by
y = U(r — a?r)sin 6§ = constant

and the line p = 0 reduces to the circle r = @ and the straight
lines § = 0, § = =.

Since a stream line may be made a rigid boundary, we
obtain the complex potential for the flow past a cylinder whose
trace on the zy-plane is the circle r = a.

‘With the notation used above,

— g exp (— ia) = U(1 — a?fz?)
from which it is seen that, at infinity
—gexp (—x) = U.

Thus at an infinite distance from the cylinder, ¢ = U and
o = m, i.e. there is parallel streaming with velocity U in the
negative direction of the real axis.

It should be noticed that the complex potential consists of
two terms: Uz which corresponds to the parallel streaming
and Ua?[z which represents the disturbance produced by the
cylinder.

Writing z¢~%* in place of z, which is equivalent to turning
the axes through an angle 8, we get

w = U(ze~% + a2e[z) (5)

as the complex potential for flow past the cylinder when the
undisturbed velocity of the stream is U inclined at an angle
to the negative direction of the z-axis.

CONFORMAL TRANSFORMATION. Letd + iy = f(z) be the com-
plex potential for the motion of a sheet of fluid in the z-plane.
The boundaries, supposed rigid, will then be curves of the
family p = constant. If we apply a conformal transformation

2= F(2)
from the z- to the Z-plane, where Z = X + <Y, we have
¢ + iy = f(z) = fIF(2)] = G(Z), say.

Thus ¢ and y, considered as functions of X and Y, are the
velocity potential and the stream function for a motion in
the Z-plane, the boundaries being the curves into which the
original boundaries are transformed.
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By applying this principle, it is possible to deduce from a
known motion an unlimited number of others.

ExampLE 4. It was shown on p. 93 that the transformation
Z=z+ a?z

converts the circle |z2| = a into a straight line (a degenerate
ellipse) between the points Z = + 2a.

If we apply this transformation to the result (5) on p. 122,
we obtain the complex potential for flow past a flat plate of
width 4 inclined at an angle B to the general direction of the
stream which, at infinity, has a speed U.

Electrostatics. Suppose that electric charges are so distri-
buted that conditions are the same in all planes parallel to
that of the complex variable z. The electric field is then
two-dimensional and it is sufficient to consider points in the
z-plane.

The potential V at the point 2 is a real function of z and y
which, if the point is free from charge, satisfies the equation

Ve + V,y = 0.

It follows that we can find a function of z which has V for
its imaginary part; thus

W= U+ iV = f(z).

The equipotential lines ¥ = constant are cut orthogonally
by the lines of force U = constant. The equipotential surfaces
are, of course, cylinders of which the curves V' = constant
are the cross-sections. Included among these are the surfaces
of conductors.

The components of electric force at the point z are — V,, — V,
and so the resultant intensity R is given by

RR— V2t V2=U2+ V2= |dW/d

By the conformal transformation z = F(Z), W becomes the
complex potential for a field in the Z-plane in which the equi-
potentials are obtained by transforming the equipotentials in
the z-plane. The values of V are the same at corresponding
points in the two planes.

ExamprLe 5. Consider Example 3 on p. 115, which is illustrated
by Fig. 41.
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If P (with affix z) is any point in the upper half of the z-plane
and 6, = /CBP, 6, = /CDP, then the function

V = (kfm) (6,— 02),
where k is real, is the imaginary part of
(kfm)[log (z — 1) — log (= +- 1)]

and is therefore a potential function.

When P is on BC or CD, V vanishes and, when P is on
DAB, V = k. Hence the function V is the potential when
BC and CD are conductors at zero potential and DAB is a
conductor at potential 4. The equipotential lines are circular
arcs joining B and D.

On transforming the figure in the z-plane by the relation

w=31L(l—a)log(z— 1) + 3L(1 +a)log(z+ 1) + M

given on p. 115, we obtain the form of the potential in the field
due to two parallel plates, at zero potential, when a plate at
potential % is placed between them.

When the third plate is midway between the other two we

have
U+ iV = (k[=)log [(z— 1)](z + 1)],

where 22 =14 e,

Current Flow in a Plane Sheet. Suppose that an electric
current flows in a uniform plane sheet of metal which coincides
with the z-plane. The potential V satisfies Laplace’s equation
in two dimensions and so, as before, we must have a relation of

the type
U+ <V = f(z),

where U may be called the current function. The lines of flow
are given by U = constant, and among these are included the
boundaries of the sheet.

It is easily seen that the conditions are similar to those of
two-dimensional flow of a fluid for which the complex potential
is if(z). Suppose, for instance, that the sheet is infinite in extent,
and that the lines of flow are parallel straight lines. If now a
circular hole is made in the sheet, the conditions are exactly
like those of the flow of fluid past a circular cylinder, a case
which has been considered above (p. 122).
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Just as in hydrodynamics, conformal transformations may
be used to obtain further results from known solutions.

Conduction of Heat. Let heat flow steadily in two dimensions
parallel to the z-plane in material of uniform conductivity K.
If 6 is the temperature at the point z, the flux of heat at that
point in the z-direction is — K6, and the flux in the y-direction
is — K0,. From the fact that there is no net gain or loss of
heat in a rectangle of sides dx, dy with one corner at the point
(z, ¥). it is deduced that

By + 0,y = 0.
Consequently in the theory of heat flow there occurs the
relation
$ + 0 = f(z).

The lines of flow ¢ = constant are cut orthogonally by the
isothermals 6 = constant.

Exampre 6. In Example 1 on p. 112, we transformed the
semi-infinite strip of the w-plane, bounded by v =0, u = 0,
v = v,, into the upper half of the z-plane by means of the
relation

z = cosh (mw[v,).

Suppose that the strip is of uniform thermal conductivity
and that the parallel edges BC and AC (Fig. 39) are kept at
zero temperature, while 4B is kept at a uniform temperature 7'.

In the corresponding figure in the z-plane, we have 6 = T
on AB and 6 = 0 on AC and BC.

Hence ¢+ i0 = (T]=) log [(z— 1)[(z + 1)]
and so, in the w-plane,

¢ + 30 = (T/m) log {[cosh (mwfv,) — 1)f[cosh (mwfe;) + 11}

= (20'[=) log tanh (mw/[2v,).
EXERCISES
1. If ¢ + iy = f(2), show that d¢/ds = dy[on and d4[/on = — dy[3s,

where ds and dn are the elements of the arc and inward normal of the
curve C in Fig. 19, p. 65.

2. Sketch the equipotentials and stream lines when the complex
potential has the values z~2, €%, cos z, 2, tan-1z.

3. Two infinitely long uniform circular cylinders, placed with their
axes parallel, attract according to the Newtonian law. The gravitational
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potential ¥ at a point outside both cylinders and at distances r, r’ from
their axes is given by

V' = constant — 2k log (rr’),

where % is a constant. Prove that the lines of force outside the cylinders
are arcs of rectangular hyperbolas.

4. Find the isothermals and lines of flow in the strip discussed in
Example 6 on p. 125 and show that the resultant flux of heat at the
point (u,v) is (4K Tfv,)/cosh (27ufv,) — cos (2mvfv,).

5. Assuming that the pressure p and the velocity ¢ satisfy Bernoulli’s
equation (p/p) + 3¢®> = constant, show that, in liquid, of uniform density
p which flows steadily, parallel to the z-plane, with complex potential
w, the curves of constant pressure are the level curves of the function
dw]dz.

6. Prove that, if u + iv = f(x + iy),

Vae + Vi = [ F (@ +39) [* Vs + Vo)



CHAPTER VIII

APFLICATION TO THE THEORY OF ALTERNATING
CURRENTS

Notation. Throughout this chapter, which is devoted to a
brief discussion of the application of the complex variable to
the theory of alternating currents, we shall conform to the
customary notation of the electrical engineer by using the
symbol ¢ to denote the current and j for 4/(— 1).

Harmonic Vectors. Let a point P in the Argand diagram
move with uniform angular speed w radians per second in a
circle of radius ¢ which has the
origin as centre (Fig. 43). If at zero g
time the point is at P, on the real £
axis, at time ¢ the angle P,OP
(known as the phase angle) is ot and ot
the rotating vector represents, at

the time f, the complex number 2 o ¥ B =
given by

A = a exp (jot).

If N is the foot of the ordinate
at P, the motion of N is defined Fic. 43
to be stmple harmonic motion. Since
all the characteristics of the motion of N are determinate when
the vector OP is given, we call OP a harmonic vector.

OP completes a revolution, and therefore N completes an
oscillation, in time 2mfw, which is defined as the period. The
number of revolutions of OP (or oscillations of N) per second
is defined as the frequency and is w/2x.

Vector Representation of an Alternating Current. An alter-
nating current is a periodic function of the time. The simplest
type of such a current is that given by

t = ipcos wl . . . . (1)

where 4, is the maximum value of the current. A complete
cycle occurs in the period 27/w, and the frequency is w/2n
cycles per second.

In practice, alternating currents may not always be given

127
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by expressions so simple as this, but since, by Fourier’s
theorem, a function f(£) which has a period 27/w is expressible
in the form

fit) = 3a, + 3 (@, cos nwt + b, sin nwt),
n=1

where the a’s and b’s are constants, it is sufficient for our pur-
pose to consider a single term like ¢, cos wf. Results obtained
for this term will be similar to those obtained for any other
term in the series; and for the majority of circuits all these
results may be superposed to give the result for f(i). A sine
term, of course, is not essentially different from a cosine: for
we may write sin ot as cos (wt -+ 3mf2).

It will be noticed that equation (1) is of exactly the same
form as that which gives the displacement of the point N
considered on p. 127, viz.

ON = o cos wt.

Just as the characteristics of the motion of N may be deduced
from the harmonic vector op which represents A, so we may
discuss the alternating current ¢ by making use of a current
vector which represents a complex number I defined by the
relation

I = iy exp (jot).

The actual value of the current at the instant is then given by
the real part of I.
On differentiating with respect to ¢ we have

dlfdt = jwi, exp (jowt),

from which it is seen that differentiating with respect to ¢ is
equivalent to multiplication by jw.

Impedance of an Imductive Coil. Suppose that the alter-
nating current ¢ is produced in a coil of inductance L and
resistance R, where L and R are both constant and are expressed
in suitable physical units. Then, if v is the potential difference
between the ends of the coil at time £, the well-known equation
for the current in an inductive circuit gives

v = Ri + L(di[dt)
= the real part of (R + jwL)I,

where v is expressed in volts when 1 is in amperes, R in ohms,
and L in henries.
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Hence the potential difference v is the real part of a complex
number ¥V, such that

V=R+jol)=2I . . . (2

where z (= R + jwlL) is a complex constant which is defined
to be the impedance of the coil. The imaginary part of the
impedance is wl and is defined to be the reactance: the real
part of the impedance is seen to be the resistance R.
Writing z in the form Z exp (jé), we have
V=Ziexp(jot+j4) . . . (3)
The voltage vector, which represents T, is therefore of length
Zi, and its phase is in advance of that of I by an acute angle ¢
such that tan ¢ = wL[R. It follows that the voltage vector is
itself harmonic.

It will be noticed that the voltage and current vectors are
in the same phase only when L vanishes, i.e. when the coil is
non-inductive.

The reciprocal of the impedance is called the admittance;
in this instance its value is

(R + joL) = (R— joL)[(B* 4 wL?).

Impedance of a Condenser. Let a condenser of capaci-
tance C farads be included in a circuit in which alternating
current ¢ is flowing. If ¢ is the quantity of electricity (expressed
in coulombs) stored in the condenser and v is the potential
difference (in volts) across the plates at time f,

v = ¢fC and dgfdt = 1.
Hence doldt = ifC
and so JjoV = 1[0,
where V and I are the potential and current vectors.
‘We have therefore
V= (—jloC) = 2I,
where, as before, z is the impedance, which for the condenser
is (— j/wC), a purely imaginary quantity.
Now since
arg (— jfwC) = — =f2
arg V = arg I — =/2,
so that the potential difference vector lags behind the current
vector by a quarter of a period.
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Impedances in Series. Let a number of elements of impedance
21 % - - - 2, be connected in series (Fig. 44). Then, with the
same notation as before, the potential difference is given by

v = the real part of (2, + 2 + . . . + 2,1),
i.e. V=1(3+2+...+2,).
The impedance of the system in series is thus the sum of the

separate impedances.
Zn Impedances in Parallel. Let
AAANA—

%y, %9, - - . %, be the currents in
then parallelsections of imped-
ance 2y, 2, . . . 2, (Fig. 45),
and let 1, I,, . . . I, be the corresponding current vectors.
Then if the potential difference vector is V,
V=al,=2,=...=2,l,
and I=L+1,+...+1,
1 1 1

The admittance of the system of parallel impedances is
therefore the sum of the admittances of the elements of the

-

LR
Fic. 45 Fic. 46

system. The impedance is the reciprocal of the admittance and

is equal to
1/(2(1/z).

Exampre 1. To find the impedance of a condenser and a
coil in parallel (Fig. 46).

The impedance of the condenser is (1/jwC) and that of the
coil is R + jwL. The admittance of the two in parallel is
therefore

joC + (R + joL) = (1— 2CL + joCR)[(R + joL).
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On inverting this we have the impedance
(B + joL)[(1 — w?CL + jwCR)

= [R + jo(L — «*CL? — CRY)][[(1 — 02CL)* + w?C2R2].
The denominator of the expression has been made real by the
usual device of multiplying by the conjugate number.

Impedance of Parallel Wires. Let the ends B and D of
two equal parallel wires be connected and let an alternating

potential difference be maintained between the ends 4 and €
(Fig. 47).

leL&x,z-’RSx
A P Q B .
b <
% 1<————x-—-->ﬁ<;:-| C&x:: 6‘7?:
Y —
¢ P D
Y !
FL8x,3Réx
Fia. 47

The circuit or ““loop ’ has four primary constants:

(i) The resistance R ohms per unit length of the pair of wires.

(ii) Since insulators are never perfect, there is a certain amount
of leakage from wire to wire. If the conductance of the path
of leakage between unit lengths of the two wires be G mbhos,
we may define the leakance to be G per unit length of loop.

(iii) The inductance L henries per unit length of loop.

(iv) The capacitance between wire and wire which we take
to be C farads per unit length of loop.

We shall suppose that, at time £, the current is flowing in
the sense 4B, DC. If P and P’ are points on AB and CD such
that 4P = CP’ = z, the strength of the current ¢ at P is
clearly equal to that at P’, in other words, the current ¢ at
the instant is a function of x only. As usual, we take I to be
the corresponding current vector. Take PQ = P'Q = dx;
then each of the elements PQ, P'Q’ is of resistance }Réz,
inductance {Léx, and impedance }(R + joL)oz.

Suppose that the potential difference between P and P’ is
v, then that between @ and @’ is v + év; the corresponding
vectors are V and V + 6V.
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Now if E, denotes the potential at P,

B, —H,=v
and E,— E, = v+ 0v,
whence E,—E,+EBE,—E, =—0dv . . . (4)

But each of the potential differences (E, — E,), (B, — E,)
is the real part of (B + jwL)dx.I, and so we have, from (4),

— dv = the real part of (R + joL)dz.I.
Therefore — 8V = (B + jwL)bx.1,
which gives, after dividing by — éx and making dz tend to
Zero,
aVldx = — (R + joL)I . . . (5)

Now the flow between PQ and P’Q’ is that due to a condenser
of capacity Céx and a conductance Gdx in parallel. The
resultant conductance is

Géx + joCdx

and the current shunted between the wires is therefore the

real part of
(Géz + jwCox)V.

Since the loss of current in the section is the real part of
— 61, it follows that
8 = — (G + jw0)ox.V
and that dljdx = — (G + jwC)V . . . . (6)
Differentiating (5) with respect to z and using (6), we get
d2V[dx? = — (R + jolL) (dl[dx)

= (R 4+ joL) (G + joC)V . . (D
In a similar way it may be shown that
a?lfdz? = (R + joL) (G + jwC)I . . (8)

so that V and I satisfy the same differential equation
a*ydz® = Ky,
where k? = (R + joL) (G + jwC) . . (9)
The most general value of V which satisfies (7) is given by
V = a exp (kz) + b exp (— kx)
= (@ + b) cosh kz + (@ — b) sinh kz,
where ¢ and b may be determined from the end conditions. In
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this case @ and b, although independent of z, are functions of ¢.
If the potential difference between 4 and C at the instant is
v, cos wt, then the conditions which determine @ and b are that

V =V, = v,exp (jot) when z = 0
and V =0 when z = 4B =1,
Thus @ + b = V, and (@ + b) cosh kl + (@ — b) sinh &l = 0,
from which
V = Vycosh kx- V, coth kI sinh kz
= V, cosech klsinh (kl — kz) . . . . (10)

The value of I may now be obtained from (5), and is
I = — [Y(R + joL))dV/d)
= [(G + joO)[(R + jwL)]* cosech kI cosh (kI — kzx).

EXERCISES

1. An inductive coil is of resistance R ohms and inductance L henries;
a non-inductive coil is of resistance r ohms; and a condenser is of
capacitance C farads. Show that the impedance of

(i) the first coil and the condenser in series is
R + [j(w*CL— 1){oC];
(ii) the second coil and the condenser in parallel is
R(l — joCR)/(1 + w?C3R?);
(iii) the two coils in parallel is
[rR? + Br + 0?L?) + joLr][/[(R 4+ 7)* + L]

Also, find the admittance of each of the above in the form 4 + jB.

2. Show that, if I, and V, are the current and potential differ-
ence vectors at the ends 4, C of the parallel wires (p. 131) and
Z# = (R + joD)[(G + jC),

V = V,cosh ke — I,Z, sinh kx
and I = I, cosh kx — (V,/Z,) sinh kz.
If the length of the loop is made infinite, show that
V = V,exp (— kz) and I = (V[Z,) exp (— kz).
8. If the ends B, D of the parallel wires are not connected, show that
V = V,sech kl cosh (kl — kx)
and I = (V,o/Z,) sech kl sinh (kl — kz).



APPENDIX

SUGGESTIONS FOR FURTHER READING

THE literature of the subject is so vast that some suggestions as to
further reading (in English) may be helpful.

The subjects introduced in the first three chapters of this book are
treated in Hardy’s Course of Pure Mathematics, the whole of which is
indispensable to the intending mathematical specialist; in Hobson’s
Plane Trigonometry; and in Bromwich's Theory of Infinite Series.

In connection with Chapters IV-VI, the reader may consult Titch-
marsh’s Theory of Functions, Harkness and Morley’s Introduction to the
Theory of Analytic Functions, Whitaker and Watson’s Modern Analysis
{especially Chapters V and VI), and Carathéodory’s Conformal Repre-
sentation. Forsyth’s Theory of Functions of ¢ Complex Variable is an
exhaustive treatise on the whole subject.

Full details of the applications to mathematical physics will be found
in the special treatises such as Jeans’ Electricity and Magnetism, Livens’
Theory of Electricity, Lamb's Hydrodynamics, Milne-Thomson’s T'heoreti-
cal Hydrodynamics and Carslaw’s Mathematical Theory of the Conduction
of Heal. An illuminating account of applications to these, as well as
other subjects, is to be found in Bateman’s Partial Differential Equations
of Mathematical Physics.

The engineering student will find plenty to interest him in the
Theory of Functions as opplied to Engineering Problems by Rothe,
Ollendorff, and Pohlhausen (English translation published by the
Technology Press, Massachusetts Institute of Technology). Interesting
applications to aeronautics are given in Glauert’s Aderofoil and Airscrew
Theory. Miles Walker’s Conjugate Functions for Engineers deals with
applications of the Schwarz-Christoffel transformation to potential
problems such as are of importance to the electrical engineer. The
symbolic theory of alternating currents is given in Clayton’s Alternating
Currents and in Telephone and Power Transmission by Bradfield and
John, The latter book contains many fully-worked numerical examples.
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Inversion, 82
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Mercator’s projection, 104
Modulus, 6

de Moivre’s theorem, 22

ORDINARY point, 79

PARABOLIC transformation, 87
Path of integration, 65

Point at infinity, 8¢

Pole, 63

Polynomial, zero of, 20
-Potential function, 119

, complex, 121

Principal argument, 6

REeciprocAL transformation, $4
Regular function, 63

Residue, 69, 74

Rhumb line, 104

Roots of unity, 2¢

-—— of any number, 25

ScHEWARZ-CHRISTOFFEL transforma-
" tion, 112

Self-corresponding points, 87

Singularity, 63
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Stereographic projection, 104 TAYLOR series, 71
Stokes’ theorem, 65 Taylor's theorem, 74
Stream function, line, 121

Successive transformation, 99

Summation of series, 34 - VECTOR, 2

Surface of moduli, 61 » harmonic, 127
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