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In a number of notes in the Berlin Sitzungsberichte! followed by a revised
account in the Mathematische Annalen,® Einstein has attempted to de-
velop a unified theory of the gravitational and electromagnetic field by in-
troducing into the scheme of Riemann geometry the possibility of distant
parallelism. According to this view, there exists in each point of the un-
derlying continuum of the world of space and time, a local cartesian co-
ordinate system in which the Pythagorican theorem is satisfied. These
local cooérdinate systems are determined by four independent vector fields
with components kf(x) depending on the cobrdinates «* of the continuum.
There is, therefore, associated with each point, a configuration consisting
of four independent vectors; it is assumed that these vector configurations
are in parallel orientation in such a way that the arbitrary orientation of
the configuration at one point determines uniquely the orientation of the
configurations at all points of the continuum. This affords the possibility
of determining whether or not two vectors at different points are parallel,
namely, by comparing their components in the local systems: Two vec-
tors are parallel if the corresponding components are equal when referred
to a local system of codrdinates. It is in the theory of the space of distant
parallelism that Einstein has hoped to find his long-sought unification of
electricity and gravitation.

It is important to determine an exact relation between the coordinates
2* of the local system and the cobrdinates x* of the space of distance parallel-
ism. This problem is solved in the present communication in such a way
that certain requirements specified precisely in Sect. 2 are satisfied. As
so defined there is a certain analogy between the local co6rdinates and the
normal coordinates introduced into the theory of relativity by Birkhoff?
and later discussed by the writer.t The relation between the # and x°
coordinates enables us to construct a set of absolute invariants with respect
to transformations of the x* coordinates sufficient for the complete char-
acterization of the space of distant parallelism. Equations in the local
system, in which the coordinates z* are interpretable as coordinates of
time and space, can be transformed directly into equations of general in-
variantive character. In view of this property we are led to the construc-
tion of a system of wave equations as the equations of the combined gravi-
tational and electromagnetic field. This system is composed of 16 equa-
tions for the determination of the 16 quantities 4§ and is closely analogous
to the system of 10 equations for the determination of the 10 components
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g in the original theory of gravitation. It is an interesting fact that the
covariant components hE of the fundamental vectors, when considered as
electromagnetic potential vectors, satisfy in the local coordinate system
the universally recognized laws of Maxwell for the electromagnetic field
in free space, as a consequence of the field equations. ’

It is my intention to supplement the results of the present paper by a
series of papers devoted to an existence-theoretic treatment of the field
equations and related problems.

1. Let us denote by A (x) for 7 = 1,2,3,4, the components of four con-
travariant vector fields; we observe that the Latin letter ¢ is thus used to
denote the vector, and the Greek letter « to denote the component of the
vector. In general, we shall adopt this convention of Einstein, i.e., we
shall employ a Latin letter for an index which is of invariantive character
with respect to the arbitrary transformations of the «* cobrdinates, and a
Greek letter in all contrary cases. Departures from this rule, as well as
departures from the rule that an index which appears twice in a term is to
be summed over the values of its range, will be such as are easily recognized
on observation. By means of the quantities {(x) we impose on the under-
lying continuum its structure as a space of distant parallelism in accordance
with the following

POSTULATES OF SPACE STRUCTURE

A. In any coérdinate system (x) there exists a unigue set of componenis
Ag., of affine connection, for the determination of the affine properties of the
continuum.

B. Inany codrdinate system (x) there exists a unigque quadratic differential
form g.sdxdx® of signature —2, for the determination of the metric proper-
ties of the continuum.

C. At each point P of the continuum there is determined a configuration
consisting of four orthogonal unit vectors issuing from P.

D. Corresponding vectors in the configurations, determined at two points
P and Q of the continuum, are parallel.

E. The components ki of the vectors determining the configuration at any
point P of the continuum, are analytic functions of the x* coordinates.

The quadratic differential form in Postulate B will be referred to as the
Sfundamental form and its coefficients g,g as the components of the funda-
mental metric tensor. The four unit vectors with components A{(x),
which enter in Postulates C, D and E, will be referred to as the funda-
mental vectors. Since these vectors are orthogonal by Postulate C, the
expression g,gh{hf is equal to zero for ¢ # k; the condition that the
fundamental vectors are unit vectors, likewise specified by Postulate C,
means that for 1 = k, the expression g.ghfhf has the valuet 1. Hence
we can write
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Lghihl = e5f (1.1)

where, following Eisenhart,® the convenient notation ¢; for +1 or —1, is
introduced. The fact that the fundamental form has 51gnature —2 by
Postulate B leads us to take

ee=1,6=e6=e€e=—1;

more precisely, the signature —2 requires that one of the ¢; have the value
+1 and that the remaining ¢; have values —1, the selection of the par-
ticular ¢; to which the value 41 is assigned being an unessential matter of
notation. From (1.1) we see that the product of the determinants [gaﬂl
and |h""|2 is equal to —1. This shows that the determinant |g,| is nega-
tive and leads to the conclusion of the independence of the fundamental
vectors. It is, therefore, possible to deduce from the fundamental vectors
a system of four covariant vectors with components k (x) uniquely defined
by the relations

WeHy = o5, hgh, = 8;

the components 495 will be called the covariant components of the funda-
mental vectors to distinguish them from the contravariant components
h{ of these vectors. In consequence of the above relations, equations (1.1)
can be solved so as to obtain

4

gas = 2 ek (1.2)

i=1

as the equations defining the components of the fundamental metric tensor.
The condition that the fundamental vectors be parallel as demanded by
Postulate D has its analytical expression in the equations

Ok
a "+ K¢ Ag, = 0.
This gives
Ok,
Bgy = i ox” (1.3)

as the equations which define the components Ag, of affine connection.

Let us now suppose the existence of another system of fundamental vec-
tors in the same space of distant parallelism. Let us denote the contra-
variant components of these vectors by *4{(x) in the (x) coérdinate system,
and let us put
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*he = athy; (1.4)

these equations define the quantities af as analytic functions of the x*
coordinates in consequence of Postulate E. Multiplying both members of
(1.4) by *hgh?, we obtain the equations

B = af*hh (1.5)

which represent the transformation induced by (1.4) on the covariant
components k,. On account of the uniqueness of determination of the
components Ag,(x) demanded by Postulate A, we must have

. Ok A

o = e

From (1.4) and these latter equations, it readily follows that the quantities
a¥ are constants. The quantities a¥ are, however, not arbitrary constants,

since they must satisfy a condition of orthogonality, namely,

4

e di ai = e, oF (1.6)
i=1

which is obtained from (1.5) as the direct result of the uniqueness of deter-
mination of the fundamental form specified by Postulate B. Taking the
determinant of both members of (1.6) we find that the detérminant |af|
has the value 1. We can therefore define uniquely a set of quantities
bi, by the equations
a,‘: i=08%, ak b;: = 5%,

Another form of the conditions (1.6) which is sometimes useful, can be de-
rived in the following manner. Multiply both members of (1.6) by b%,
so as to obtain

ema;” = elblmy
or

a’ = eenb.
When we multiply both members of these latter equations through by
eaf and sum of the index I, we find

e afal = e85 |- 1.7

The transformation (1.4) in which the coefficients af are constants satis-
fying (1.6) or (1.7) will be called an orthogonal transformation of the com-
ponents of the fundamental vectors.
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2. The idea of the local coérdinate system (z) is inherent in the idea of
the configuration formed by the four vectors whose components i{ are
subject to the orthogonal transformations (1.4), and, in fact, the construc-
tion of the local system was not carried beyond this stage by Einstein.
Nevertheless a configuration of four vectors is not a coordinate system and
we must face the problem of showing exactly how a system of local co-
ordinates 2’ can be defined. We require of the local system that it satisfy
certain conditions which are stated precisely in the following

POSTULATES OF THE LoCAL SYSTEM

A. With each point P of the space of distant parallelism there is asso-
ciated a local coordinate system (2) having its origin at the point P.

B. The coordinate axes of the local system (z) at the point P are tangent
to the fundamental vectors at P, in such a way that the & axis is tangent to the
vector with components hi and has its positive direction along the direction
of this vector. :

C. The interval ds is given by

ds? = (dz")?—(d2?)? — (d2®)? — (dz%)? (2.1)

at the origin of the local system.
D. The paths® of the space of distant parallelism which pass through the
origin of the local system (z) have the form

7 = £ | (2.2)

where the £ are constants and v is a parameler.

The above postulates give a complete geometrical characterization of the
codrdinates z° of the local system. The paths which enter in Postulate D
are, in general, defined as those curves which are given as solutions of the
invariant system of equations

d*x* di® dx”
— g, — — = 0, 2.3
dy? b dv dv (23)
where
a 1 a a
Agy = ’2' (Aﬂv + A'rﬂ); (2.4)

such curves are generated by continuously displacing a vector parallel to
itself along its own direction and are analogous to the straight lines of
affine Euclidean geometry. If we denote the components of affine con-
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nection A§, by N (2), when referred to the local coérdinate system, we
have in consequence of Postulate D that

Nef € =0

along a path through the origin of the local system. It follows imme-
diately from these latter equations that the equations

Nagd = 0 (2.5)

are satisfied identically in the local system. When we replace the com-
ponents N, in (2.5) by their values in terms of the components A2, we ob-
tain a system of partial differential equations for the determination of the
codrdinates x* in terms of the codrdinates 2, namely,

0% ox? dx )
(az'az* A ST o o = (26)

This system of equations possesses a unique solution x* = ¢%(2) satisfying
~ a set of initial conditions

x* = p* (¢ = 0), 2.7)
O _ pr (& = 0), @y
0z

where p® and p{ are arbitrary constants.” By Postulate A condition (2.7)
is satlsﬁed provided that the constants p* denote the coordinates of the
point P; it remains to determine
k: the values of the constants p§ in
(2.8). For this purpose we consider
the relation, imposed by Postulate
e B, between the local coérdinates
1+ and the fundamental vectors at the
point P; this is illustrated in the
accompanying figure in which we
have indicated only the positive z!
and 2? axes and the corresponding
tangent vectors with components

1 and A2, respectively. In consequence, we see that

ox* «
(_b_z"—)z -0 = ”ihs (p):

where the o; are positive constants. On account of this set of equations
.and the condition imposed by Postulate C, it readily follows that the o;
are equal to *1. Hence o; = 41, since these constants are positive,
and the above set of equations becomes

Z,

2y
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The values £§(p) are therefore to be ascribed to the above constants pf.
By repeated differentiation of (2.6) and use of the initial conditions (2.7)
and (2.9), we determine the successive coefficients H(p) of the power series
expansions

= % + I (p)F — 51—|H°; (p)Fs — %-'Hf‘jk(p)z‘zfz* — ... (210)
Thus we have that
Hg = Mg hihj,
where
1 Ok, . OK
A, = = hBE (=2 + 1), 2.11
Br 7 g <ax7 t o (2.11)
and
H, = Ag.,sh‘,?h}h,f,
where

Agys = % [(bAh + bxj’s + Ohss ) — 2(A% A%s + A%, A% + AZ 8Aﬂv):|
(2.12)

etc. The jacobian of (2.10) does not vanish since it is equal to the deter-
minant II (p)| at the origin of the local system; hence (2.10) possesses a
unique inverse. Either the transformation (2.10), or its inverse, gives a
unique defination of the local coérdinate system.

3. Let us denote by 7' the codrdinates of the local system determined
by the point P and the components of affine connection Aj§,(¥) which
result from the components Ag (xr) by an analytic transformation T
of the x* codrdinates. The relation between the z* and 7 codrdinates
must then be such that

7 :
Z=0@G =0, —_ =5 G =0). (3.1)
o7

Also this relation must be such as to satisfy the system of equations

0% ; 022 O\ iz
_ I \ " E?J . 2
(bg"b%k » o7 oF (8:2)

Hence

g =7 (3.3)
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This follows from the fact that (3.3) satisfies (3.2) and the initial con-
ditions (3.1), and that (3.2) possesses a unique solution which satisfies the
conditions (3.1). We can therefore say that the local coordinates #* remain
unchanged when the underlying coordinates x* undergo an arbitrary analytic
transformation T. In a similar manner we can show that when the funda-
mental vectors undergo an orthogonal transformation (1.4), the local coérdi-
nates 2 associated with any point P Likewise undergo an orthogonal trans-
formation, i.e., a linear homogeneous transformation

7 = aiz': , (3.4

which leaves the form

4

> eds

i=1
invariant. The behavior of the codrdinates z* of the local system (1) under
arbitrary analytic transformations of the x* codrdinates, and (2) under or-
thogonal transformations of the fundamental vectors as described by the
above italicized statements, is of great importance for the development of
the theory of relativity.

4. If we transform the components of a tensor to a system of local co-
ordinates z* and evaluate at the origin of this system, we obtain a set of
quantities which are of the nature of absolute invariants with respect to
transformations of the &* codrdinates. To prove this formally we shall find
it convenient to denote a set of tensor components 15 :-B(x) with respect
to the (x) system, by t:}'g_'.'_j,',,, in the (z) coordinate system, i.e., we shall
adopt the convention that in the (2) coérdinate system, Latin letters when
enclosed by | |, correspond to indices of covariant or contravariant
character. If we put

Tih=1(t {7;'."'.];In|)z =0
then
Tiim(®) = Ti 7w,
in consequence of (3.3). The explicit expressions for these invariants are
obtained by evaluating at 2* = 0 both members of the set of equations

i ox* ox’ 27 oz’
gl =T 2 4.1
k...m| e bz}’ 27" Ox* bx" ( )
This gives
Th i = T3lMs. . Bl . B
Similarly, if we differentiate the components ¢ any number of times and
evaluate at the origin of the (z) system, we obtain a set of quantities, namely,
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. brtli...jl
Tl...Jm = ( |k...m|) ,
Foomdt = \og?, . 0d s =0

each of which is an absolute invariant with respect to analytic transforma-
tions of the x* codrdinates. On account of this invariant property, the
name absolute derivatives will be used to refer to these quantities. To de-
rive the explicit formulae for any absolute derivative T% - ;’n »...q W€
have merely to differentiate (4.1) with respect to 2°...2% and evaluate
at the origin of the (2) system. For example, the first absolute derivative
of the covariant vector with components T, is given by the formula

0T,
= (2 - s
ox”

We next consider the absolute derivatives of the fundamental vectors,
using the covariant components 4, of these vectors as the basis of dis-
cussions. Let us denote these components by Af,-, when referred to the
(2) codrdinate system. Then

; ox”
fao= b, — 4.2
191 2 z" (4.2)
In general, the absolute derivatives are defined by the equations
i asAij )
o = . 4.3
J’k”_' (bzk...bz"' 5=0 (4.3)
We note that
i = Wehi =8; (&8 =0); (4.4)
also that
; 1 | ok, bh‘]
B, == e | papb 4.5
EHE-E -1 =
and
i _ [ o _ om Ok, ¢ A
.kl = ﬂ'r 'l
| 9:Pox” Y Y (4.6)

_ oK,
ox”

Aa - h, aﬂy] h;hgh?

The special formulae (4.5) and (4.6) will be important in our later work.
By (4.3) the absolute derivative 4. ., is symmetric in the indices
k...m. Hence, these quantities satisfy the identities
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h;:,k. .om = h;:,p. ..a | “.7

where p...g denotes any permutation of the indices k...m. To derive
other identities satisfied by the 4, we observe that the equations -

(?;‘) ik =0 (4.8)

which are equivalent to (2.5), are satisfied identically in the (2) codrdinate
system. By repeated differentiation of (4.8) and evaluation at the origin
of the (2) system, we obtain

S (Kr..m)=0 |, (4.9)

where the symbol S is used to stand for the summation of all the terms ob-
tainable from the one in parenthesis by permutating the indices jk...m
cyclically. As special cases of the identities (4.9) let us observe that

K+ =0 (4.10)
and
B + By + hije = 0. 4.11)

The identities (4.7) and (4.9) constitute a complete set of identities of the
absolute derivatives hij ., in the sense that any other identity satis-
fied by these quantities is derivable from these identities.®

When we make an orthogonal transformation (1.4) of the components of
the fundamental vectors, the components A} go over into a set of com-
ponents *A}; referred to the (z+) system, which are related to the Af; by

*Afj o = Afyal; (4.12)

this follows from (1.5), (3.4), and (4.2). Differentiating both members of
(4.12) with respect to 2°...2" and evaluating at the origin of the local
system, we obtain

*Hip..m 08 = hgy. . 1 0f.. .0 (4.13)

We express this result by saying that the absolute derivatives Kir...m
constitute the components of a tensor with respect to orthogonal transforma-
tions of the fundamental vectors. A similar discussion can, of course, be made
on the basis of the contravariants components 7 of the fundamental vec-
tors; also equatlons similar to (4.13) give the transformation of the com-
ponents T} 7, or more generally of the components Th ... iD0-
duced by the transformation (1.4) of the fundamental vectors.?

5. Tt is the sense of the local codrdinate system (z) that the coordinate
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2! is interpretable as the time coordinate and 2%, 23, 2%, as rectangular car-
tesian codrdinates of space. Let us, therefore, put

l=1t32=x,2=1y2"=g3

in accordance with the unusual designations. More precisely, we should
say that 2! has the significance of a time coérdinate and 22, 23, 24, the sig- .
nificance of rectangular cartesian coordinates x, y, 2z at the origin of co-
ordinates, i.e., in the infinitesimal neighborhood of the origin, since the
interval ds has the exact form (2.1) only at the origin of the local system.
In conformity with this interpretation of the codrdinates of the local system,
we now impose on the space of distant parallelism, the following

PoSTULATE oF THE UNIFIED FIELD

The equations

01y | Afy | dAiy _ iy _
21+b21+b21_ il —

dx y 2 or? 0 (5.1)

are satisfied at the origin of the local system.

According to the above postulate, the field equations of the combined
gravitational and electromagnetic field are of the nature of a system of
wave equations—a type of equation which has already shown itself to be of
fundamental importance for the study of gravitational or electromagnetic
phenomena. The relationship of the above system of field equations to
the field equations of the earlier theory of gravitation and to the Maxwell
equations of the electromagnetic field is discussed in the following section.

When (5.1) is expressed in general invariative form, we have

4 .
2 el =0 (5.2)

as the proposed system of field equations for the unified field theory. The
system (5.2) is obviously invariant with respect to transformations of the x*
codrdinates, since the factors which compose the system are themselves
directly invariant; it is also invariant with respect to orthogonal trans-
formations (1.4) of the fundamental vectors. To prove this we observe that

%18 P _ 1D r s
B ma; = hy,aiara

from (4.13). Putting / equal to %k in these equations and multiplying
through by e;, we obtain

4 . 4
( E ek*h;',kk) af = ( E erh‘q,,rr> a?

k=1 r=1
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on making use of (1.7). This proves the assertion of invariance of (5.2)
with respect to orthogonal transformations of the fundamental vectors.

6. If we denote the components of electric force by X, Y, Z and the
components of magnetic force by «, 8, v then Maxwell’s equations for the
electromagnetic field in free space, are

,

oZ oY _ O«

d 2 o

X oz _ _ 28

0z  0x ot

lov ox oy (©.1)
oy o

O , OB , Oy

(o "oy T "

and

(v 28 _ X

oy 2z ot

Oa Oy _ 0¥

«bz % (6.2)
08 Qda _0Z

x oy o

ox  ov 2z _
4be oy 0z ’

where x, y, 2 are rectangular cartesian coérdinates and ¢ is the time. It
is possible to write the above equations in a more contracted form. For
this purpose we define a set of skew-symmetric quantities Fj. as the ele-
ments of the matrix

_ —-Z -8 a 0
and then construct the following two sets of equations

Fipiy+ Fu; + Fjp = 0 (6.3)
and
4

kZI erFirr = 0, (6.4)
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where Fj,; is now used to denote the ordinary partial derivative of Fj
with respect to 2. The expanded forms of (6.3) and (6.4) give equations
(6.1) and (6.2), respectively. Functions ¢; of the cobrdinates x, y, z and
the time ¢ are called electromagnetic potentials if they are such that
Op; _ O¢
F, = X — Xk 6.5
* bzk 0z’ ( )
If the Fj; have the form (6.5), equations (6.3) are satisfied identically.
Now consider the covariant components 4, referred to the local system,
i.e., the components A4}, and put

‘ 0; = A (6.6)

for a fixed value of the index ; also define a set of quantities Fj; by (6.5),
using the ¢; given by (6.6) for that purpose. Then

OA}; dA}
F, = —1i _ 2Lk 6.7
ik Ezk Z K ( )

Differentiating and evaluating at the origin of the local system, we have
Fpy = Bu — hig;

the absolute derivatives Fj,; given by these equations satisfy the first set
of Maxwell’s equations (6.3) in consequence of the identities (4.11). More-
over,
4 4 ) . 3 4 .

2 aFpr = 2 (el — exhi) = 2 2 e B

E=1 E=1 =1
Hence, the second set of Maxwell’s equations (6.4) is satisfied in conse-
quence of the field equations (5.2). In other words, the covariant com-
ponents of the fundamental vectors when considered as electromagnetic po-
tential vectors, satisfy, in the local cordinate system, the universally recognized
laws of Maxwell for the electromagnetic field in free space, as a consequence
of the field equations (5.2). This fact strongly suggests that the components
K, will play the réle of electromagnetic potentials in the present theory.

Taking account of the field equations (5.2) we easily deduce the system
of equations
4

4
kZI ergijrr = 2 “Z Lo e by Hpe (6.8

Or, denoting the components g,; by Bj;; when referred to the local co-
ordinate system, we have
OBy  9°Bjy 4 9°Byy _ 9By _
Ox? oy? 0z? or?

4
— 2 Y ek (6.9)
Ri=1
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at the origin of the local system. Now in the earlier theory of gravitation,
the field equations could be given a form analogous to (6.9) in which the
right members were equal to zero;® since the nature of the solution of (6.8)
is determined by the form of the left members of (6.9) it follows that the
functions g, possess the same general character as in the earlier theory of
gravitation. Moreover, the interpretation of the quantities 4, as electro-
magnetic potentials would lead us to expect that in a purely gravitational
field, i.e., more precisely, in a comparatively inappreciable electromagnetic
field, the square of the %}, would be negligibly small quantities. In this
case the right members of (6.9) vanish approximately and we are left with
the system

0

OBy 4 9By | 9'Byy _ 9By _
oxr | oy | ot o

as a first approximation. It is, therefore, to be expected that the quan-
tities g,g will successfully assume the réle of gravitational potentials as in
the previous theory of gravitation.
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n, is brought into relationship with the local coérdinate system, necessarily depends on
ymmetric connection; for this reason I have rejected the method of Einstein. It
uld be possible also to define covariant or absolute derivatives on the basis of the
ristoffel symbols I“g., derived from the components g2,p and, in fact, this has been ad-
:ated by T. Levi-Civita, ‘“Vereinfachte Herstellung d=r Einsteinschen einheit'ichen
|dgleichungen,”’ Berliner Berichte, 1929. This method for the construction of invari-
ts can be brought into relationship with the local cosérdinates; in fact, it is only neces-
v to replace Postulate D of the Postulates of the Local System by a similar postulate on
: geodesics of the space of distant parallelism. My primary objection to this is that we
2 a good deal of the sjmpliﬁcation inherent in the above theory. For example, in
ce of the quantities h},k given by (4.5) we would have the more complicated set of

-ariants .
LY ;
(55; - r;,gh.’,> Khe
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investigation. Now there is a certain psychological influence exerted by the method
itself upon the investigator. What I mean is that one is naturally led to the construc-
tion of special invariants which, on the basis adopted for the formation of invariants, are
represented by simple analytical expressions. So, for example, the field equations pro-
posed by Einstein? have a very simple analytical form in terms of the covariant deriva-
tives used by him, but these same equations would be considerably more complicated in
form if expressed in terms of the covariant derivatives used by Levi-Civita; also the
simple form (5.1) or (5.2) of the field equations assumed in the above investigation is
peculiar to the method of absolute differentiation which I have adopted. Thus the
different methods of construction of invariants will lead us, in practice, to the assumption
of different systems of field equations; these systems of field equations must, roughly
speaking, be of the same general character but will nevertheless, not be precisely equiva-
lent, considered as systems of partial differential equations.

It is possible to develop a process by which the above methods are brought into re-
lationship with one another and which will, moreover, permit the ready construction of
invariants depending on combinations of these methods. This process has its geo-
metrical foundation in the study of those surfaces x* = f*(u, v) which are defined as
solutions of the system of equations

(b’x”‘ + A oz dxY
| oww T M on ow T
dxB dx7

o
Tg I‘g.,sza‘ =0 (»=0), ()
[ « dxP dxY

L-§+Ap.,-g'$ =0 (u=0),

and so constitutes a generalization of the process of covariant differentiation or exten-
sion, as developed in The Geometry of Paths. In this way we are led to a set of relations
x*% = g% (y, 2) which, for z* = const., denote a transformation to a system of co3rdinates
4%, and which for 5 = const. denote a transformation to a system of cobrdinates 2.
If (y, 2) represents the components of a tensor either in the (y) or (2) coérdinate system,

then
A"y, 2)
(by“...byﬂbz“’...bz‘ y=0z=0

defines, when considered as a function of the x coordinates, the components of a tensor
in the (x) cojrdinate system. As an alternative method of procedure the system (a)
can be replaced by the system

%™ a OxP oxY
2 4 Afy — =) yik =0,
<by’bzk + ey oy’ bzk) Y

0% o« OxB oxY .
2 g, — )i

o « %P ox7\ .
= Agy — — ) 2z = =0).
(azfazk +her 55 bzk> ¥ =0 =0

0 (z=0), (®)

The consideration of system (b) enables us, moreover, by imposing initial conditions corre-
sponding to (2.9), to develop a theory of absolute invariants which is a generalization
of that of the above investigation. The details of this process will not be developed here
as it is not necessary for our work on the theory of relativity.



