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PREFACE

THIS book is not intended to be a text on "Practical Mathe-

matics" in the sense of making use of scientific material and of

fundamental notions not already in the possession of the student,

or in the sense of making the principles of mathematics secondary
to its technique. On the contrary, it has been the aim to give

the fundamental truths of elementary analysis as much prominence
as seems possible in a working course for freshmen.

The emphasis of the book is intended to be upon the notion of

functionality. Illustrations from science are freely used to make
this concept prominent. The student should learn early in his

course that an important purpose of mathematics is to express and

to interpret the laws of actual phenomena and not primarily to

secure here and there certain computed results. Mathematics

might well be defined as the science that takes the broadest view of

all of the sciences an epitome of quantitative knowledge. The
introduction of the student to a broad view of mathematics can

hardly begin too early.

The ideas explained above are developed in accordance with a

two-fold plan, as follows:

First, the plan is to group the material of elementary analysis

about the consideration of the three fundamental functions :

1. The Power Function y = axn
(n any number) or the law

"as x changes by a fixed multiple, y changes by a fixed multiple also."

. 2. The Simple Periodic Function y = a sin mx, considered as

fundamental to all periodic phenomena.
3. The Exponential Function, or the law "as x changes by a fixed

increment, y changes by a fixed multiple."

Second, the plan is to enlarge the elementary functions by the

development of the fundamental transformations applicable to
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these and other functions. To avoid the appearance of abstruse-

ness, these transformations are stated with respect to the graphs
of the functions; that is, they are not called transformations, but
" motions "

of the loci. The facts are summarized in several simple
''Theorems on Loci," which explain the translation, rotation, shear,

and elongation or contraction of the graph of any function in the

xy plane.

Combinations of the fundamental functions as they actually

occur in the expression of elementary natural laws are also dis-

cussed and examples are given of a type that should help to explain

their usefulness.

Emphasis is placed upon the use of time as a variable. This

enriches the treatment of the elementary functions and brings

many of the facts of
"
analytic geometry" into close relation to

their application in science. A chapter on waves is intended to

give the student a broad view of the use of the trigonometric func-

tions and an introduction to the application of analysis to peri-

odic phenomena.
It is difficult to understand why it is customary to introduce

the trigonometric functions to students seventeen or eighteen years

of age by means of the restricted definitions applicable only to the

right triangle. Actual test shows that such rudimentary methods

are wasteful of time and actually confirm the student in narrow-

ness of view and in lack of scientific imagination. For that reason,

the definitions, theorems and addition formulas of trigonometry
are kept as general as practicable and the formulas are given

general demonstrations.

The possibilities and responsibilities of character building in the

department of mathematics are kept constantly in mind. It is

accepted as fundamental that a modern working course in mathe-

matics should emphasize proper habits of work as well as proper
methods of thought; that neatness, system, and orderly habits

have a high value to all students of the sciences, and that a text-

book should help the teacher in every known way to develop these

in the student.

Chapters V, VI and VII contain material that is required for

admission to many colleges and universities. The amount of time

devoted to these chapters will depend, of course, upon the local

requirements for admission.
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The present work is a revision and rewriting of a preliminary

form which has been in use for three years at the University of

Wisconsin. During this time the writer has had frequent and

valuable assistance from the instructional force of the department
of mathematics in the revision and betterment of the text. Ac-

knowledgments are due especially to Professors Burgess, Dresden,

Hart and Wolff and to Instructors Fry, Nyberg and Taylor.

Professor Burgess has tested the text in correspondence courses,

and has kindly embraced that opportunity to aid very materially

in the revision. He has been especially successful in shortening

graphical methods and in adapting them to work on squared paper.

Professor Wolff has read all of the final manuscript and made

many suggestions based upon the use of the text in the class room.

Mr. Taylor has read all of the proof and supplied the results to the

exercises.

Professor E. V. Huntington of Harvard University has read the

galley proof and has contributed many important suggestions.

The writer has avoided the introduction of new technical terms,

or terms used in an unusual sense. He has taken the liberty, how-

ever of naming the function axn
,
the "Power Function of x" as a

short name for this important function seems to be an unfortu-

nate lack a lack, which is apparently confined solely to the

English language.

It is with hesitation that the writer acknowledges his indebted-

ness to the movement for the improvement of mathematical in-

struction that has been led by Professor Klein of Gottingen;
not that this is not an attempt to produce a text in harmony with

that movement, but for fear that the interpretation expressed

by the present book is inadequate.

The writer will be glad to receive suggestions from those that

make use of the text in the class room.

CHARLES S. SLIGHTER.

UNIVERSITY OF WISCONSIN

July, 25, 1914
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INTRODUCTION

Any course in mathematics requires the frequent use of

geometrical constructions, and the carrying out of analytical

and numerical computations. In order that this work may
be performed neatly and accurately it is necessary that the

student have a few simple instruments, and a supply of proper
material for doing the work in a systematic and orderly manner.

The indispensible instruments are as follows:

I. Instruments. (1) Two 4# hexagonal drawing pencils; one

sharpened to a fine point for marking points upon paper or

for sketching free hand; the other sharpened to a chisel point

for drawing straight lines. Some prefer to use a single pencil

sharpened at both ends, one end round pointed, the other end

chisel pointed.

(2) A small drawing board 1 of soft wood 10 X 12 inches is

large enough.

(3) A small T-square, same length as the drawing board.

(4) A 60 and a 45 transparent triangle. Five-inch triangles

are large enough, although a larger 60 triangle will be found to

be very convenient.

(5) A protractor for laying off angles.

(6) A triangular boxwood scale, decimally divided.

(7) A pair of 6-inch pencil compasses for drawing circles and

arcs of circles, provided with medium hard lead, sharpened to a

narrow chisel point.

(8) A 10-inch slide rule is required for Chapter VIII, and may
be used earlier at the discretion of the instructor.

1 Drawing boards of this size with T-square and two wood triangles are marketed

by the Milton Bradly Co., Springfield Mass., and by Eugene Dietzgen Co., and
Keuffel and Esser of New York and Chicago, and retail for about 40 cents.

xi
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II. Materials. All mathematical work should be done on one

side of standard size letter paper, 8 X 11 inches. This is the

smallest sheet that permits proper arrangement of mathematical

work. There are required:

(1) A note book cover to hold sheets of the above named size and

a supply of manila paper
"
vertical file folders" for use in submit-

ting work for the examination of the instructor.

(2) A number of different forms of squared paper and computa-
tion paper especially prepared for use with this book. These sheets

will be described from time to time as needed in the work. Form
M2 will be found convenient for problem work and for general

calculation. M2 is a copy of a form used by a number of public

utility and industrial corporations. Colleges usually have their

own sources of supply of squared paper, satisfactory for use with

this book. The forms mentioned in the text, printed on 16 lb.,

St. Regis Bond, cost about 25 cents per pound in 100 lb. lots

(12,000 sheets) from F. C. Blied & Co., Madison, Wis.

(3) Miscellaneous supplies such as thumb tacks, erasers, sand-

paper-pencil-sharpeners, etc.

III. General Directions. All drawings should be done in

pencil, unless the student has had training in the use of the ruling

pen, in which case he may, if he desires, "ink in" the most im-

portant drawings.

All mathematical work, such as the solutions of problems and

exercises, and work in computation should be done in ink. The

student should acquire the habit of working problems with pen

and ink. He will find that this habit will materially aid him in

repressing carelessness and indifference and in acquiring neatness

and system.

TO THE INSTRUCTOR

The usual one and one-half year of secondary school Algebra

including the solution of quadratic equations and a knowledge of

fractional and negative exponents, is required for the work of this

course. In the appendix will be found material for a brief review

of factoring, quadratics, and exponents, upon which a week or ten

days should be spent before beginning the regular work in this

text.
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The instructor cannot insist too emphatically upon the require-

ment that all mathematical work done by the student whether

preliminary work, numerical scratch work, or any other kind

(except drawings) shall be carried out with pen and ink upon

paper of suitable size. This should, of course, include all work

done at home, irrespective of whether it is to be submitted to the

instructor or not. The "
psychological effect" of this requirement

will be found to entrain much more than the acquirement of mere

technique. If properly insisted upon, orderly and systematic

habits of work will lead to orderly and systematic habits of

thought. The final results will be very gratifying to those who

sufficiently persist in this requirement.
At institutions whose requirements for admission include more

than one and one-half units of preparatory algebra, nearly all of

Chapters V, VI, and VII may be omitted from the course.

An asterisk attached to a section number indicates that the

section may be omitted during the first reading of the book.

*

GREEK ALPHABET

Capitals
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MATHEMATICAL SIGNS AND SYMBOLS

read and so on.

read is identical with.

read is not equal to.

read approaches.
=? read is approximately equal to.

> read is greater than.

< read is less than.

read is greater than or equal to.

(a, b) read point whose coordinates are a and b.

\n read factorial n.

nl read factorial n or n admiration.

f(x) read limit of f(x) as x approaches a.
x a

x = oo read x becomes infinite.

\a\ read absolute value of a.

\og ax read logarithm of x to the base a.

Ig x read common logarithm of x.

In # read natural logarithm of x.

n = r

Swn read summation from n = 1 to n = t of u n .



ELEMENTARY
MATHEMATICAL ANALYSIS

CHAPTER I

VARIABLES AND FUNCTIONS OF VARIABLES

1. Scales. If a series of points corresponding in order to the

numbers of any sequence
1 be selected along any curve, the curve

with its points of division is called a scale. Thus in Fig. 1 (a)

the points along the curve OA have been selected and marked in

order with the numbers of the sequence:

0,1/4,1/2, 1,21,3,5,7, 8

Thus primitive man might have made notches along a twig
and then made use of it in making certain measurements of

(a) A Non Uniform Scale

I I I I I I I I I I I I M ( I I I I I I I I I I I I I I I I I I I I I |J I I I I I I I I I I I I I12 3 4 5

(b) A Uniform Arithmetical Scale

| I I I I | I I | I | I I | I | | I I I I I I I I I I I I I I I I I I I M I I I I I I I I I II I I

-5 -4 -8 -2 -1 +1 +2-1-3 -H +5

(c) A Uniform Algebraic- Scale

FIG. 1. Scales of Various Sorts.

interest to him. If such a scale were to become generally used by
others, it would be desirable to make many copies of the original

scale. It would, therefore, be necessary to use a twig whose shape
could be readily duplicated; such, for example, as a straight stick;

and it would also be necessary to attach the same symbols in-

variably to the same divisions.

1 A sequence of numbers here means a set of numbers arranged in order of

magnitude.

1
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Certain advantages are gained (often at the expense of others,

however) if the distances between consecutive points of division

are kept the same; that is, when the intervals are laid off by repe-

tition of the same selected distance.
(?

When this is done, the scale

FIG. 2. An Ammeter Scale.

is called a uniform scale. Primitive man might have selected for

such uniform distance the length of his foot, or sandal, the breadth

of his hand, the distance from elbow to the end of the middle

finger (the cubit), the length of a step in pacing (the yard), the

amount he can stretch with both

arms extended (the fathom), etc.,

etc.

We are familiar with many
scales, such as those seen on a

yardstick, the dial of a clock, a

thermometer, a sun-dial, a steam-

gage, an ammeter or voltmeter,

the arm of a store-keeper's scales,

etc., etc. The scales on a clock, a yardstick, or a steel tape are

uniform. Those on a sun-dial, on an ammeter or on a good
thermometer, are not uniform.

One of the most important advantages of a uniform scale is

the fact that the place of beginning or zero may be taken at any
one of the points of division. This is not true of a non-uniform

1 12

FIG. 3. Sun-dial Scale
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scale. If the needle of an ammeter be bent the instrument cannot

be used. It is always necessary in using such an instrument to

know that the zero is correct; if a sun-dial is not properly oriented,

it is useless. If, however, a yardstick or a steel tape be broken,

it may still be used in measuring. The student may think of

many other advantages gained in using a uniform scale.

2. Formal Definition of a Scale. If points be selected in order

along any curve corresponding, one to one, to the numbers of

any sequence, the curve, with its divisions, is called a scale.

The notion of one to one correspondence, included in this

definition, is frequently used in mathematics.

In mathematics we frequently speak of the arithmetical scale

and of the algebraic scale. The arithmetical scale corresponds to

the numbers of the sequence:

0, 1, 2, 3, 4, 5, ...

and such intermediate numbers as may be desired. It is

usually represented by a uniform scale as in Fig. 1 (6). The

algebraic scale corresponds to the numbers of the sequence:

. . . -6, -5, -4, -3, -2, -1,0, +1, +2, +3, +4, +5, . . .

and such intermediate numbers as may be desired. It is usually

represented by a uniform scale as in Fig. 1 (c). The arithmetical

scale begins at and extends indefinitely in one direction. The

algebraic scale has no point of beginning; the zero is placed at any
desired point and the positive and negative numbers are then

attached to the divisions to the right and the left, respectively, of

the zero so selected. The scale extends indefinitely in both

directions.

Exercises

1. Show that the distance between two points selected anywhern
on the algebraic scale is always found by subtraction.

2. If two algebraic scales intersect at right angles, the commoe
point being the zero of both scales, explain how to find the distance

from any point of one scale to any point of the other scale.

3. What points of the algebraic scale are distant 5 from the

point 3 of that scale? What point of the arithmetical scale is

distant 5 from the point 3 of that scale?
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3. Two Scales in Juxtaposition or Double Scales. The relation

between two magnitudes or quantities, or between two numbers,

may be shown conveniently by placing two scales side by side.

Thus the relation between the number of centimeters and the

number of inches in any length may be shown by placing a centi-

meter scale and a foot-rule side * g

by side with their zeros coin-

ciding as in Fig. 4.

A thermometer is frequent-

ly seen bearing both the

Fahrenheit and the centi-

grade scales (see Fig. 5).

It is obvious that the double

scale of such a thermometer

may be used (within the

limits of its range) for convert-

ing any temperature reading

Fahrenheit into the corres-

ponding centigrade equiva-
lent and vice versa. The con-

struction of scales of this

sort may be made to depend

upon the solution of the fol-

lowing problem in elementary

geometry: To divide a given

line into a given number of equal parts.

To construct a double scale showing the relation between speed

expressed in" miles per hour, and speed expressed in feet per second,
we may proceed as follows: A mile contains 5280 feet; an hour con-

tains 3600 seconds. Hence, one mile per hour equals 5280 /3600
or 22/15 feet per second. On one of two intersecting straight

lines, OA (see Fig. 7), lay off 22 convenient equal intervals (say 1 /4

inch each) . On the second of the intersecting lines, OB, lay off

15 equal intervals (say 1/2 inch each). Join the 15th division

of OB with the 22nd division of OA and draw parallels to the

line AB through each of the 15 divisions of OB. Then the 22 and
the 15 equal subdivisions stand in juxtaposition along OA and
constitute the double scale required. Labelling the first scale

FIG. 7. Method of Construction
of Double Scale showing Relation
between "Miles per Hour" and "Feet
per Second."
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"feet per second" and the second scale "miles per hour/' the

double scale may be used for converting speed expressed in

either unit into speed expressed in ihe other.

By annexing the appropriate number of ciphers to the numbers

of each scale, the range of the double scale may be considered

220 and 150 or 2200 and 1500, etc., respectively.

The lengths of the various units selected for the diagram are, of

course, arbitrary. As, however, the student is expected to prepare

the various constructions and diagrams required for the exercises

in this book on paper of standard letter size (that is, 8| by 11

inches), the various units selected should be such as to permit a

convenient and practical construction upon sheets of that size.

Exercises

The student is expected to carry out the actual construction of only
two of the double or triple scales described in the following exercises.

1. Construct a double scale ten inches long expressing the relation

between fractions of an inch expressed in tenths and fractions of an

inch expressed in sixteenths.

To draw this double scale it is merely necessary to lay off the

intervals directly from suitable foot-rules. On the scale of tenths

indicate the inch and half inch intervals by longer division lines than

the others. On the scale of sixteenths represent the quarter inch inter-

vals by longer division lines than those of the sixteenths, and represent

the half inch and inch intervals by still longer lines, as is usually done

on foot rules.

2. Draw a double scale showing pressure expressed as inches of

mercury and as feet of water, knowing that the density of mercury
is 13.6 times that of water.

These are two of the common ways of expressing pressure. Water

pressure at water power plants, and often for city water service, is

expressed in terms of head in feet. Barometric pressure, and the

vacuum in the suction pipe of a pump and in the exhaust of a con-

densing steam engine are expressed in inches of mercury. The

approximate relations between these units, i.e., I atmosphere = 30

inches of mercury = 32 feet of water = 15 pounds per square inch,

are known to every student of elementary physics. To obtain, in

terms of feet of water, the pressure equivalent of 1 foot of mercury,
the latter must be multiplied by 13.6, the density of mercury. This
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result when divided by 12 gives the pressure equivalent of 1 inch of

mercury, which is 1.13 feet of water.

If we let the scale of inches of mercury range from to 10, then the

scale of feet of water must range from to 11.3. Hence draw a line

OA 10 inches long divided into inches and tenths to represent inches

of mercury. Draw any line OB through O and lay off 11.3 uniform

intervals (inch intervals will be satisfactory) on OB. Connect the

end division on OA with the end division on OB by a line AB. Then
from 1, 2, 3, . . . inches on OB draw parallels to BA, thus forming

adjacent to OA the scale of equivalent feet of water. Each of these

intervals can then be subdivided into 10 equal parts corresponding
to tenths of feet of water.

3. Draw a triple scale showing pressure expressed as feet of water,
as inches of mercury, and as pounds per square inch, knowing that the

density of mercury is 13.6 and that one cubic foot of water weighs
62.5 pounds.
To reduce feet of water to pounds per square inch, the weight of one

cubic foot of water, 62 ..5 pounds, must be divided by 144, the number
of square inches on one face of a cubic foot. This gives 1 foot of

water equivalent to 62.5/144 or 0.434 pounds per square inch. To
obtain the pressure given by 1 fool of mercury, the pressure equiva-
lent of 1 foot of water must be multiplied by 13.6, the density of

mercury. This result when divided by 12 gives the pressure equiva-
lent of 1 inch of mercury, or 0.492 pounds per square inch.

One pound per square inch is equivalent, therefore, to 1/0.434 or

2.30 feet of water or to 1/0.492 or 2.03 inches of mercury. If we let

the scale of pounds range from to 10, we may select 1 inch as the

equivalent of 1 pound per square inch, and divide the scale OA into

inches and tenths to represent this magnitude. Draw two inter-

secting lines OB and OC through 0, and lay off 23 uniform intervals

on OB and lay off 20.3 uniform intervals on OC, 1/2 inch being a

convenient length for each of these parts. Connect the end divisions

of OB and OC with A and through all points of division of OB draw
lines parallel to BA and through all points of division of OC draw lines

parallel to CA, and subdivide into halves the intervals of the scales

last drawn. The range may be extended to any amount desired by
annexing ciphers to the numbers attached to the various scales.

Extending the range by annexing ciphers to the attached numbers
is obviously practicable so long as the various intervals or units are

decimally subdivided. The method is impracticable for scales that

are not decimally subdivided, such as shillings and pence, degrees and

minutes, feet and inches, etc.
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4. Draw a triple scale showing the relations between the cubic foot,

the gallon and the liter, if 1 cubic foot = 1\ gallons = 28$ liters.

Divide the scale of cubic feet into tenths, the scale of gallons into

quarts, and the third scale into liters.

It is obvious, that it is always necessary first to select the range of

the various scales, but it is quite as well in this case to show the equiva-
lents for 1 cubic foot only, as numbers on the various scales can be

multiplied by 10, 100, or 1000, etc., to show the equivalents for larger

amounts.

Select 10 inches = 1 cubic foot for the scale (OA) of cubic feet.

Draw two intersecting lines OB and 0(7. On OB lay off 7$ equal

parts (say, 7$ inches) and on OC lay off 28$ equal parts (say, 28$

quarter inches). Connect the end divisions with A and draw the

parallel lines exactly as with previous examples. The intervals of the

scale of gallons can then be subdivided into the four equal parts to

show quarts.

6. The velocity in feet per second of a falling body is given by the

formula v =
gt, in which g = 32.2 and t is measured in seconds. Draw

a double scale showing the velocity at any time.

It is obvious that the reading 32.2 on the u-scale must be placed

opposite the mark 1 on the Z-scale. First, select the range for the

t-scale, say from 1 to 10 seconds. Then a convenient scale for t is 1

inch equals 1 second, which scale can readily be subdivided to show

1/5 or 1/10 seconds. If the general method be followed, it would be

necessary to lay off 322 equal parts on a line (OB) intersecting the

/-scale (OA). As this is an inconveniently large number, it is better

to lay off 3.22 divisions on the construction line OB. Each of these

divisions may be 2 inches in length, so that 6.44 inches will represent
the terminal or end division on the intersecting line OB. From the

6.44 inch mark on OB draw a line to 10 on the /-scale OA. Then from

2, 4, 6 inches on OB draw parallels to BA, thus locating v = 100,200,

and 300. These intervals can then be subdivided into 10 equal parts
to show v =

10, 20, 30, ... If values of v are wanted for t > 10,

zeros may be annexed to the numbers attached to both scales.

6. Select sections from any of the double scales described above and

discuss the relation of the number of units on one side to the number of

units on the other side. Show that the ratio in different sections of

the number of units on the two sides of the same double scale is not

constant if one scale be a non-uniform scale.

7. If a double scale be drawn on a deformable body, as, for example,
on a rubber band, would the double scale still represent true relations
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when the rubber band is stretched? What if the stretching were

not uniform?

4. Functions. The relation between two magnitudes expressed

graphically by two scales drawn in juxtaposition, as above, may
sometimes be expressed also by means of an equation. Thus,

if y is the number of dollars, and x is the number of pounds sterling

in any amount, then:

y = 4.87 x (1)

also, if F be the reading Fahrenheit, and C the reading centigrade

of any temperature, then:

F =
|C + 32 (2)

also,

U = 13.67/12 = 144TT /62.5 (3)

where U, V, and W are pressures measured, respectively, in feet of

water, inches of mercury, or in pounds per square inch.

NOTE. The letters x, y, F, C, U, V, W in the above equations
stand for numbers; to make this emphatic we sometimes speak of them
as pure or abstract numbers. These numbers are thought of as arising

from the measurement of a magnitude or quantity by the application

of a suitable unit of measure. Thus from the magnitude or quantity
of water, 12 gallons, arises, by use of the unit of measure the gallon, the

abstract number 12.

Algebraic equations express the relation between numbers, and it

should always be understood that the letters used in algebra stand

for numbers and not for quantities or magnitudes.

Quantity or Magnitude is an answer to the question: "How
much?" Number is an answer to the question: "How many?"
An interesting relation is given by the scales in Fig. 6. This

diagram shows the fee charged for money orders of various

amounts; the amount of the order may first be found on the upper
scale and then the amount of the fee may be read from the lower

scale. The relation here exhibited is quite different from those

previously given. For example, note that as the amount of the

order changes from $50.01 to $60 the fee does not change, but

remains fixed at 20 cents. Then as the amount of the order

changes from $60.00 to $60.01, the fee changes abruptly from 20

cents to 25 cents. For an order of any amount there is a cor-



10 ELEMENTARY MATHEMATICAL ANALYSIS [4

responding fee, but for each fee there corresponds not an order of

a single value, but orders of a considerable range in value. This is

quite different from the cases described in Fig. 5. There for

each reading Fahrenheit there corresponds a certain reading

centigrade, and vice versa, and for any change, however small, in one

of the temperature readings a change, also small, takes place in

the other reading. For this reason the latter quantity is said to be

continuous.

The relation between the temperature scales has been expressed

as an algebraic equation. The relation between the value of a

money order and the corresponding fee cannot be expressed by a

similar equation. If we had given only a short piece of the centi-

grade-Fahrenheit double scale, we could, nevertheless, produce it

indefinitely in both directions, and hence find the corresponding

readings for all desired temperatures. But by knowing the fees

for a certain range of money orders one cannot determine the fees

for other amounts. In both of these cases, however, we express

the fact of dependence of one number upon another number by

saying that the first number is a function of the second number.

Definition. Any number, u, is said to be a function of another

number, t, if, when t is given, the value of u is determined. The

number t is often called the argument of the function u.

Illustrations. The length of a rod is a function of its tempera-
ture. The area of a square is a function of the length of a side.

The area of a circle is a function of its radius. The square root

of a number is a function of the number. The strength of an iron

rod is a function of its diameter. The pressure in the ocean is a

function of the depth below the surface. The price of a railroad

ticket is a function of the distance to be travelled.

It is obvious that any mathematical expression is, by the above

definition, a function of the letter or letters that occur in it.

Thus, in the equations:

2+2U ~"

u =

u is in each case a function of t.
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Temperature Fahrenheit is a function of temperature centigrade.

The value of the fee paid for a money order is a function of the

amount of the order.

Goods sent by freight are classified into first, second, third,

fourth, and fifth classes. The amount of freight on a package is

a function of its class. It is also a function of its weight. It is

also a function of the distance carried. Only the second of these

functional relations just named can readily be expressed by an

algebraic equation. It is possible, however, to express all three

graphically by means of parallel scales. The definition of the func-
tion is given (for any particular railroad) by the complete freight

tariff book of the railroad.

The fee charged for a money order is a function of the amount of

the order. The functional relation has been expressed graphically
in Fig. 6. Note that for orders of certain amounts, namely,

$2J, $5, $10, $20, $30, $40, $50, $60, $75, the function is not de-

fined. The graph alone cannot define the function at these

values, as one cannot know whether the higher, the lower, or an

intermediate fee should be demanded. One can, however, define

the function for these values by the supplementary statement (for

example) : "For the critical amounts, always charge the higher fee."

As a matter of fact, however, the lower fee is always charged.
A function having sudden jumps like the one just considered, is

said to be discontinuous.

Exercises

In the following exercises the function described can be represented
by a mathematical expression. The problem is to set up the expres-
sion in each case.

1. One side of a rectangle is 10 feet. Express the area A as a
function of the other side x.

2. One leg of a right triangle is 15 feet. Express the area A as a
function of the other leg x.

3. The base of a triangle is 12 feet. Express the area as a func-
tion of the altitude I.

4. Express the circumference of a circle as a function (1) of its

radius r; (2) of its diameter d.

5. Express the diagonal d of a square as a function of one side x.
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6. One leg of a right triangle is 10. Express the hypotenuse h

as a function of the other leg x,

7. A ship B sails on a course AB perpendicular to OA. If OA = 30

miles, express the distance of the ship from as a function of AB.

8. A circle has a radius 10 units. Express the length of a chord

as a function of its distance from the center.

9. An isosceles triangle has two sides each equal to 15 cm., and

the third side equal to x. Express the area of the triangle as a

function of x.

10. A right cone is inscribed in a sphere of radius 12 inches. Ex-

press the volume of the cone as a function of its altitude I.

11. A right cone is inscribed in a sphere of radius a. Express the

volume of the cone as a function of its altitude I.

12. One dollar is at compound interest for 20 years at r per cent.

Express the amount A as a function of r.

Functional Notation. The following notation is used to ex-

press that one number is a function of another; thus, if u is a

function of t we write:

u =m
Likewise,

-/(*)

means that y is a function of x. Other symbols commonly used to

express functions of x are:

4>(x),X(x) f f
f

(x),F(x),etc.

These may be read the
" <Hunction of x," the "X-functionof x,"

etc., or more briefly, "the < of x," "the X of x," etc.

Expressing the fact that temperature reading Fahrenheit is a

function of temperature reading centigrade, we may write :

F - /(O

This is made specific by writing:

F =
| C + 32

Likewise the fact that the charge for freight is a function of class,

weight, and distance, may be written:

r = f(c, w, d)
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To make this functional symbol explicit, might require that we be

furnished with the complete schedule as printed in the freight tariff

book of the railroad. The dependence of the tariff upon class and

weight can usually be readily expressed, but the dependence upon
distance often contains arbitrary elements that cause it to vary

irregularly, even on different branches of the same railroad. A
complete specification of the functional symbol / would be con-

sidered given in this case when the tariff book of the railroad was in

our hands.

5. Variables and Constants. In elementary algebra, a letter is

always used to stand for a number that preserves the same value

in the same problem or discussion. Such numbers are called

constants. In the discussion above we have used letters to stand

for numbers that are assumed not to preserve the same value but

to change in value; such numbers (and the quantities or magnitudes
which they measure) are called variables.

If r stands for the distance of the center of mass of the earth from

the center of mass of the sun, r is a variable. In the equation
* = 2^ 2

(the law of falling bodies), if t be the elapsed time, s the

distance traversed from rest by the falling body, and g the acceleration

due to gravity, then s and t are variables and g is the constant 32.2

feet per second per second.

The following are constants : Ratio of the diameter to the circumfer-

ence in any circle; the electrical resistance of pure copper at 60 F.;

the combining weight of oxygen; the density of pure iron; the breaking

strength of mild steel rods; the velocity of light in empty space.

The following are variables : the pressure of steam in the cylinder of

an engine; the price of wheat; the electromotive force in an alternating

current; the elevation of groundwater at a given place; the discharge
of a river at a given station. When any of these magnitudes are

assumed to be measured, the numbers resulting are also variables.

The volume of the mercury in a common thermometer is a variable;

the mass of mercury in the thermometer is a constant.

6. Algebraic Functions. An expression that is built up by
operating on x a limited number of times by addition, subtraction,

multiplication, division, involution and evolution only, is called

an algebraic function of x. The following are algebraic functions

of x:
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(1) x 2
. (4) 2x + 5. (7) x 3 - 6x 2 + llx - 6.

x 2
I 3x

(2) * (5) I/*. (8)

(3) 3\/^ (6) z 2 - 5. (9) (x
-

a) (x
-

b) (x
-

c).

The expression x.
2

is an algebraic function of x but 2* is not an

algebraic function of x. The fee charged for a money order is not

an algebraic function of the amount of the order.

It is convenient to divide algebraic functions into classes. Thus

x 2 + 2 is said to be integral; (x + 1) /(2
- x 2

) and 2 + x~ 2 are

said to be fractional; likewise x 2 + 2 and (x + 1) /(2 x2
) are

said to be rational; \A - z and 3 x^ are said to be irrational.

These terms may be formally denned as follows:

An algebraic function of x is said to be rational if in building up
the expression, the operation of evolution is not performed upon

x, or upon a function of x; otherwise the function is irrational.

Thus, expressions (1), (4), (5), (6), (7), (9), above, are. rational

functions of x. Expressions (3) and (8) are irrational. Ex-

pression (2) is rational if n is a whole number; otherwise irrational.

A rational function is said to be integral if in building up the

function the operation of division by x, or by a function of x,

is not performed; otherwise the function is fractional.

Thus expressions (1), (4), (6), (7), (9), above, are integral func-

tions of x. Expressions (1), (4), (6), (7), (9) are both rational

and integral and may therefore be called rational integral

functions of x.

Exercises

Classify the following functions of r, t, or x, answering the following

questions for each function: (A) is the function algebraic or (B) non-

algebraic? If it is algebraic, is it (a) rational or (6) irrational; if it

is rational, is it (1) integral or (2) fractional? The scheme of classifi-

cation is as follows:

A. Algebraic.

f (1) integral
(a) rational < ;

'

f. .

\ (2) fractional

(6) irrational

B. Non-algebraic.

1. IQ.W; Va 2 - z 2
;
Vox"4 ; Va/z~.
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2. ax 3 + bx

3 r* - rr*o. x & .

4. x 3 + -
-f

6. 2x + x*-

' T^! : <

7. mx + A

8.
~Tp|

2;

9. (o-*)(
a - arw

+ ex + d.

_
e); (i +

o 2 -; 3.37s 1 - 86
f
1 - 25

.

a3 z 3 a3 + a^
3

a x a + x'

ax

10.
1 - r

Write an equal integral expression.

7. Graphical Computation. The ordinary operations of arith-

metic, such as multiplication, division, involution and evolution,

Y u
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PROBLEM 1: To compute graphically the product of two

numbers. Let the two numbers whose product is required be a

and b. On any line lay off the unit of measurement, 01, Fig. 8.

On the same line, and, of course, to the same scale, lay off OA
equal to one of the factors a. On any other line passing through
1 lay off a line IB equal to the other factor b. Join OB and

produce it to meet AC drawn parallel to IB. Then AC is the

required product. For, from similar triangles:

AC : IB = OA : 01 (1)

or,

AC = OA X IB (A}

It is obvious that the angle OAC may be of any magnitude.

Hence it may conveniently be taken a right angle, in which case the

work may readily be carried out on ordinary squared paper. Many
prefer, however, to do the work on plain paper, laying off the

required distances by means of a boxwood triangular scale. The

squared paper, form Ml, prepared for use with this book is suitable

for this purpose. On a sheet of this paper, draw the two lines

OX and OF at right angles and the unit line IU, as shown in Fig.

9. Then from the similar triangles 015 and OAC the proportion

(1) and the formula (A) above are true. Hence to compute

graphically the product of two numbers a and b count off (Fig. 9)

OA = a to the OX-scale and IB = b to the OF-scale. Lay a

straight edge or edge of a transparent triangle down to draw OC.

It is not necessary to draw OC, but merely to locate the point C.

Then count off AC to the OF-scale. Then AC = a X b by (A).

The figure as drawn shows the product 4.4 X 1.9 = 8.4.

All numbers can be multiplied graphically on a section of

squared paper 10 units in each dimension by properly reading the

OX and OF scales. Any product ab can be written a 161 X 10n =

Ci X 10n
,
where i and 61 each have one digit before the decimal

point, and Ci ^ 100.

Thus:

440 X 19 = 4.40 X 1.9 X 10 3 = 8.40 X 10 3

also

37 X 73 = 3.7 X 7.3 X 10 2 = 27 X 10 2

To proceed with the product of i X 61, we first determine by
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inspection whether ci > or < 10. If Ci < 10, we read the scales

as they are in Fig. 9 when counting off i, 61 and CL If Ci > 10, we
read the OX scale as it stands when counting off i but read the

OY scale 0, 10, 20, 30, etc., in counting off the numbers &i and GI.

Exercises

In using form Ml for the following exercises take the scale OF at

the left marginal line of the sheet and use 2 cm. as the unit of measure.

Compute graphically the following products : Check results :

1. 2.5 X4.8. 4. 78.5 X 16.5.

2. 4.15 X 6.25. 5. 2.14 X 0.0467.

3. 3.14 X 7.22. 6. 2140 X 0.0467.

PROBLEM 2: To compute graphically the quotient of two

numbers a and b. Formula (A] above can be written:

* -Si w
From this it is seen that the quotient of two numbers a and b can

readily be computed graphically by use of Figs. 8 or 9. In Fig. 9

count off OA =
b, the divisor, to the OX scale, and AC =

a, the

dividend, to the OF scale. Lay the triangle down to draw OC.
Do not draw 0(7, but mark the point B and count off IB to the

OY scale. Then IB = a/b by (B}. Fig. 9 shows the quotient
8.4 -s- 4.4 = 1.9. Any quotient a/b may be written

^ X 10- = Q X 10-

where N, D, Q are each < 10 but > 1. Hence, the OX and 07
scales may always be read as they stand in Fig. 9.

Exercises

Compute graphically the following quotients: Check results:

1. 6.2/2.5. 4. 7.32/1.25.
2. 1.33/6.45. 6. 872/321.
3. 23-1/0.52. 6. 128/937.
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PROBLEM 3: To compute graphically the square root of any
number N. In Fig. 10 count off \A N to the OX scale, and

draw a semicircle on OA as a diameter. Then 1C = \/N to

the OY scale. Another construction is to place the triangle in

the position shown in Fig. 10, so that the two edges pass through
and A and the vertex of the right angle lies on the line 1 U.

Fig. 10 shows the construction for \/7~. The readings on the OX

U

1 5 5678 -1Q

FIQ. 10. Graphical Method of the Extraction of Square Roots,

figure shows \/7 = 2.65.

The

scale may be multiplied by 102n and those on the OY scale by 10n

where n is any integer positive or negative.

State the two theorems in plane geometry on which the proof of

these two constructions depends.
PROBLEM 4: To compute graphically the square of any num-

ber N. This is a special case of Problem 1, when a = b = N.

Exercises

1. Compute the square roots of 2, 3, 5, and 7.

rVmYMi +a +V.Q c-mioi-Q vnn+c, nf Q 7 37 K fl 3

1. Compute the square roots 01 z, d, 5, and 7.

2. Compute the square roots of 3.75, 37.5, 0.375.

3. Compute the squares of 1.23 and 3.45.

4. Compute the squares of 7.75 and 0.895.

6. Show that ?r
2

is nearly 10.
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PROBLEM 5: To compute graphically the reciprocal of any
number N. This is a special case of Problem 2, when a = 1 and

b = N.

PROBLEM 6: To compute graphically the integral powers of

any number N. This problem is solved by the successive applica-

tion of Problem 1 to construct N 2
,
N 3

,
A7

"

4
, etc., and of Problem 2

Q\^&^ r-~1-4 ii i \x

l N 2 3 4

FIG. 11. Graphical Computation of (1.5)
n for n = -4, 3, 2, 1

0, 1, 2, 3, 4, 5.

to construct N~ l

,
N~ z

,
N~ 3

,
etc. This construction is shown for

the powers of 1.5 in Fig. 11.

Exercises

1. Compute the reciprocal of 2.5; of 3.33; of 0.75; of 7.5.

2. Compute (1.2)
3
, (0.85)-

1
, (1.15)

4
.
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3. Show that (1.05)
15

2.08, so that money at 5 percent com-

pound interest more than doubles itself in fifteen years.

NOTE: The work is less if (1.05)
5
is first found and then this result

cubed.

4. From the following outline the student is to produce a complete

method, including proof, of constructing successive powers of any
number.

Let OA (Fig. 12) be a radius of a circle whose center is O. Let

OB be any other radius making an acute angle with OA. From B
drop a perpendicular upon OA, meeting the latter at A\. From A\

drop a perpendicular upon OB meeting OB at A 2 . From A 2 drop a

perpendicular upon OA meeting OA at A 8 ,
and so on indefinitely.

Then, if OA be unity, OA\ is less than unity, and OA Z) OA S ,
OA 4

. . . are, respectively, the square, cube, fourth power, etc., of OAi.

FIG. 12. Graphical Computation of Powers of a Number.

Instead of the above construction, erect a perpendicular to OB meet-

ing OA produced at a : . At ai erect a perpendicular meeting OB pro-
duced at 0,2, and so on indefinitely. Then if OA be unity, i is

greater than unity and a 2 ,
a 3 ,

a 4 ,
. . . are, respectively, the square,

cube, etc., of ai. As an exercise, construct powers of 4/5 and of 2.5.

6. Show that the successive "treads and risers" of the steps of

the "stairways" of Figs. 13 and 14 are proportional to the powers
of r. The figures are from Milaukovitch, Zeilschrift fiir Math,

und Nat. Unterricht, Vol. 40, p. X2U.

8. Double Scales for Several Simple Algebraic Functions. \V<>

may make use of the graphical method of computation explained
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above to construct graphically double scales representing simple

algebraic relations. For example, we may construct a double

scale for determining the square of any desired number.

AD MA
FIG. 13. FIG. 14.

Computation of ar, ar*, a?'
3

,
. . . for r < 1 and for r > 1.

Call OA (see Fig. 15) the scale on which we desire to read the

number; call OB the scale on which we read the square. Let

us agree to lay off OA as a uniform scale, using 01 as the unit of

measure. Since we desire to read opposite 0, 1, 2, 3, of the

FIG. 15. Method of Constructing a Double Scale of Squares or of Square
Roots.

uniform scale, the squares of these numbers, the lengths along the

scale OB must be laid off proportional to the square roots of the num-
bers 0, 1, 2, 3, . .

,
that is, the square root of any length, when



22 ELEMENTARY MATHEMATICAL ANALYSIS

laid off on OB, and marked with the symbol of the original length,

will be opposite the square root of that number on OA.
No difficulty need be experienced in carrying out the actual

construction of double scales representing algebraic relations,

either by use of a table of numerical values of the function or by
means of graphical construction. As a less laborious method of

graphically expressing functional relations will be explained in the

next chapter, the matter of double scales will not be discussed

further at this place.

FIG. 16. The Fahrenheit-centigrade Double Scale Opened about the
32 Mark of the Fahrenheit Scale as Pivot.

9. Functions Represented by Scales not in Juxtaposition. It is

obvious that any double scale used to express the relation between
a function of a variable and the variable itself, may be separated, if

desired, into two distinct scales, provided means be adopted for

connecting corresponding points on the two scales. For example,
one of the two scales may be rotated about any one of its points,

as scissors about their pivot, thereby forming two intersecting

straight lines. Corresponding points may then be connected by
erecting perpendiculars to each scale and joining those that
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proceed from corresponding points, or by any other practical means.

In Fig. 16 the centigrade and Fahrenheit scales are shown opened

about the 32 division of the Fahrenheit scale as pivot. Perpen-

diculars erected at corresponding points of the two scales meet at

the points PI, PZ, PZ,

The line NOM on which these points lie is straight. Why?
The student will write out a proof, making use of any three points

as Pi, P2 ,
P3 ,

and a property of similar triangles. Of course the

angle between OC and OF need not be taken as a right angle.

-40 -30 -20 -

-2CL

FIG. 17. Same as Fig. 16 with the Lengths of the Units on the OC and OF
Scales Made the Same.

It is also obvious that the divisions on both scales may now be

made the same length; that is, OQi, OQ 2 , OQ 3 ,
. . may be

made the same length as ORi, OR Z ,
OR 3 ,

.... This is at

once accomplished if the lines OQi, OQz, OQz, . . .
,
be each

elongated in the ratio of ORi/OQi. The functional relation may
be expressed equally well by marking as before the intersection
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of the perpendiculars erected at corresponding values. The
result is shown in Fig. 17.

In the same manner any of the double scales may be opened
about any point as pivot. If the angle between the scales is

made 90, the relation between the function and its argument is

shown by points on a straight line making an angle of 45 with each

scale. If one of the scales be non-uniform, it may, after it is

turned about the selected pivot, be made a uniform scale, in which

case the straight line just mentioned becomes, in general, a curved

line. We see, therefore, that instead of showing the relation

between a function and its variable by means of two scales in

juxtaposition, we may use two uniform scales intersecting at an

angle, and connect corresponding values of the variable and its

function by perpendiculars erected at these corresponding points.

The pairs of perpendiculars intersect at points which, in general,

lie upon a curve. This curve is obviously characteristic of the

particular functional* relation under discussion. The respresenta-

tion of functional relations in this manner leads to the considera-

tion of so-called coordinate systems, the discussion of which is

begun in the next chapter.



CHAPTER II

RECTANGULAR COORDINATES AND THE POWER
FUNCTION

10. Rectangular Coordinates. Two intersecting algebraic

scales, with their zero points in common, may be used as a system

of latitude and longitude to locate any point in their plane. The

student should be familiar with the rudiments of this method from

the graphical work of elementary algebra. The scheme is illus-
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the horizontal scale. Thus the point P, in Fig. 18, is 2| units to

the right and 3| units above the standard scales. P 2 is 3 units to

the left and 2 units above the standard scales, etc. Of course

these directions are to be given in mathematics by the use of the

signs
" + " and " "

of the algebraic scales, and not by the use

of the words "right" or "left," "up" or "down." The above
scheme corresponds to the location of a place on the earth's

surface by giving its angular distance in degrees of longitude east

or west of the standard meridian, and also by giving its angular
distance in degrees of latitude north or south of the equator.
The sort of latitude and longitude that is set up in the manner

described above is known in mathematics as a system of rectangu-
lar coordinates. It has become customary to letter one of the

scales XX', called the X-axis, and to letter the other YY', called

the Y-axis. In the standard case these are drawn to the right
and left, and up and down, respectively, as shown in Fig. 18.

The distance of any point from the F-axis, measured parallel to

the X-axis, is called the abscissa of the point. The distance of

any point from the X-axis, measured parallel to the F-axis, is

called the ordinate of the point. Collectively, the abscissa and
ordinate are spoken of as the coordinates of the point. Abscissa

corresponds to the longitude and ordinate corresponds to the

latitude of the point, referred to the X-axis as equator, and to

the F-axis as standard meridian. In the standard case, abscissas

measured to the right of YY' are reckoned positive, those to the

left, negative. Ordinates measured up are reckoned positive,

those measured down, negative.

Rectangular coordinates are frequently called Cartesian co-

ordinates, because they were first introduced into mathematics

by Rene" Descartes (1596-1650).

The point of intersection of the axes is lettered and is called

the origin. The four quadrants, XOY, FOX7

, X'OF', F'OX, are

called the first, second, third, and fourth quadrants, respectively.

A point is designated by writing its abscissa and ordinate in a

parenthesis and in this order: Thus, (3, 4) means the point whose

abscissa is 3 and whose ordinate is 4. Likewise ( 3, 4) means the

point whose abscissa is ( 3) and whose ordinate is (+ 4).

Unless the contrary is explicitly stated, the scales of the co-
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ordinate axes are assumed to be straight and uniform and to inter-

sect at right angles. Exceptions to this are not uncommon,

however, of which examples are given in Figs. 19 and 22.

The use of two intersecting algebraic scales to locate individual

points in the plane, as explained above, is capable of immediate

enlargement. It will be explained below that a suitable array, or

set, or locus of such points may be used to exhibit the relation

between two variables laid off on the two scales, or between a

variable laid off on one of the scales and a function of the variable

laid off on the other scale. This fact has already been explained
from another point of view at the close of the preceding chapter.

11. Statistical Graphs. From work in elementary algebra the

student is supposed to be familiar with the construction of statis-

*.
s

. % % % %

s
5<X



28 ELEMENTARY MATHEMATICAL ANALYSIS [11

A. M. Noon * M-
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Fig. 20 is a graphical time-table of certain passenger trains be-

tween Chicago and Minneapolis. The curves are not continuous,

as in the case of the barograph, but contain certain sudden jumps.

What is the meaning of these? What indicates the speed of the

FIG. 22. Upper Curve, Elevation of Water in a Well on Long Island

Lower curve, elevation of water in the nearby ocean.

trains? Where is the fastest track on this railroad? What shows

the meeting point of trains?

// the diagram, Fig. 20, be wrapped around a vertical cylinder of

such size that the two midnight lines just coincide, then each train line

nun/ be traced through continuously from terminus to terminus.
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Functions having this remarkable property are said to be periodic.

In the present case the trains run at the same time every day,
that is, periodically. In mathematical language, the position of

the trains is said to be a periodic function of the time.

Fig. 21 is the graphical time-table of "limited" trains between

Chicago and Los Angeles. The schedule of train No. 1, a very

heavy passenger train, is placed upon the chart for comparison.
The periodic character of this function is brought out very clearly

by using time as the abscissa. The student should discuss the

DU

-50

~
$

HO3
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Fig. 23 represents the functional relation between the amount of

a domestic money order and the fee. Two arithmetical scales

were used in making the diagram, as in ordinary rectangular co-

ordinates, except that the vertical scale is ten-fold the horizontal

scale; that is, lengths that represent dollars on the one scale rep-

resent cents on the other. This is an excellent illustration of a

discontinuous function. On account of the sudden jumps in the

values of the fee, the fee, as explained in the preceding chapter, is

said to be a discontinuous function of the amount of the order.

12. Suggestions on the Construction of Graphs. Two kinds of

rectangular coordinate paper have been prepared for use with this

book. Form Ml is ruled in centimeters and fifths, and permits

two scales of twenty and twenty-five major units respectively to

be laid off horizontally and vertically on a standard sheet of letter

paper 8 X 11 inches. Form M2 is ruled without major divisions

in uniform 1 /5-inch intervals. This form of ruling is desirable for

general computation and for graphing functions for which non-

decimal fractional intervals are used, such as eighths, twelfths,

or sixteenths, which often occur in the measurement of mass

or time.

It is a mistake to assume that more accurate work can be done

on finely ruled than on more coarsely ruled squared paper. Quite
the contrary is the case. Paper ruled to 1 /20-inch intervals does

not permit interpolation within the small intervals while paper
ruled to 1 /10 or 1 /5-inch intervals permits accurate interpolation

to one-tenth of the smallest interval. Form Ml is ruled to

2-mm. intervals, and is fine enough for any work. The centi-

meter unit has the very considerable advantage of permitting

twenty of the units within the width of an ordinary sheet of letter

paper (8| X 11 inohes) while seven is the largest number of inch

units available on such paper.

In order to secure satisfactory results, the student must recognize

that there are several varieties of statistical graphs, and that

each sort requires appropriate treatment.

1. It is possible to make a useful graph when only one variable

is given. Thus the following table gives the ultimate tensile

strength of various materials:
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ULTIMATE TENSILE STRENGTH OF VARIOUS MATERIALS

Material
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be marked by the names of the days of the week or by numbers,
but in either case the horizontal line is a true scale, as it corresponds
to the lapse of the variable time. Sometimes, as in Fig. 25,

graphs of this kind are represented by marking the appropriate

points by dots or circles and then connecting the successive points

by straight lines. These lines have no special meaning in such
a case, but they aid the eye in

following the succession of sepa-

rate points.

If a graph be made of the noon-

day temperatures of each day of

the same month referred to in

Fig. 25, one of the same methods

indicated above would be used

to represent the results; that is,

either rectangles, marked points,

or marked points joined by
lines. Although a smooth curve

drawn through the known points

would have a meaning (if cor-

rect), it is obvious that the noon-

day temperatures alone are not

sufficient for determining its

form. In all such cases a smooth
curve should not be drawn.

Fig. 26 shows the monthly
output and gross earnings of a

power company during its first

months of operation; the fixed
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FIG. 24. Graph Showing Ten-
sile Strength of Certain Structural

Materials.

charges are also shown upon the same diagram. (See also Figs.

24 and 84.)

3. If the data are reasonably sufficient, a smooth curve may,
and often should, be drawn through the known points. Thus if

the temperature be observed every hour of the day and the results

be plotted, a smooth curve drawn carefully through the known

points will probably very accurately represent the unknown

temperatures at intermediate times. The same may safely be

done in exercises (1) and (2) below. In scientific work it is desir-

3
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-10

FIG. 25. Maximum Daily Temperatures, Madison, Wis., February, 1914

$14000

FIG. 26. Graph of Monthly Gross Earnings and-Output of a Power Plant

During Initial Stages of Operation.
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able to mark by circles or dots the values that are actually given

to distinguish them from the intermediate values "guessed" and

represented by the smooth curve.

In addition to the above suggestions, the student should adhere

to the following instructions :

4. Every graph should be marked with suitable numerals along

both numerical scales.

5. Each scale of a statistical graph should bear in words a

description of the magnitude represented and the name of the unit

of measure used. These words should be printed in drafting let-

ters and not written in script.

6. Each graph should bear a suitable title telling exactly what is

represented by the graph.

7. The selection of the units for the scale of abscissas and ordi-

nates is an important practical matter in which common sense must

control. It is obvious that in the first exercise given below 1 cm.
= 1 foot draft for the horizontal scale, and 1 cm. = 100 tons for

the vertical scale will be units suitable for use on form Ml.
Further instruction in practical graphing is given in 33.

Exercises

1. At the following drafts a ship has the displacements stated:

Draft in feet, h
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3. Make a graphical chart of the zone rates of the Parcel Post

Service for the first three zones, using weight of package as abscissa

and cost of postage as ordinate.

4. The average temperature at Madison from records taken at

7 a. m. daily for 30 years is as follows:

Jan. 1, 14.0. F. July 1, 67.5. F.

Feb. 1, 15.1. Aug. 1, 64.0.

Mar. 1, 35.2. Sept. 1, 55.4.

Apr. 1,40.0. Oct. 1,44.1.

May 1, 53.9. Nov. 1, 30.0.

June 1, 63.2. Dec. 1, 18.3.

Make a suitable graph of these results on squared paper.

13. Mathematical, or Non-statistical Graphs. Instead of the

expressions "abscissa of a point," or "ordinate of a point," it has

become usual to speak merely of the "x of a point," or of the "y of

a point," since these distances are conventionally represented by
the letters x and y, respectively. If we impose certain conditions

upon x and y, then it will be found that we have, by that very fact,

restricted the possible points of the plane located by them to a

certain array, or set, or locus of points, and that all other points

of the plane fail to satisfy the conditions or restrictions imposed.
It is obvious that the command, "Find the place whose latitude

equals its longitude," does not restrict or confine a person to a par-

ticular place or point. The places satisfying this condition are

unlimited in number. We indicate all such points by drawing
a line bisecting the angles of the first and third quadrants; at all

points on this line latitude equals longitude. We speak of this

line as the locus of all points satisfying the conditions. We might
describe the same locus by saying "the y of each point of the

locus equals the x," or, with the maximum brevity, simply write

the equation "y = x" This is said to be the equation of the

locus, and the line is called the locus of the equation.

It is of the utmost importance to be able readily to interpret any
condition imposed upon, or, what is the same thing, any relation

between variables, when these are given in words. It will greatly

aid the beginner in mastering the concept of what is meant by the

term function if he will try to think of the meaning in words of the
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relations commonly given by equations, and vice versa. The

very elegance and brevity of the mathematical expression of rela-

tions by means of equations, tends to make work with them formal

and mechanical unless care is taken by the beginner to express in

words the ideas and relations so briefly expressed by the equa-

tions. Unless expressed in words, the ideas are liable not to

be expressed at all.

The equation of a curve is an equation satisfied by the co-

ordinates of every point of the curve and by the coordinates of no

other point.

The graph of an equation is the locus of a point whose coordi-

nates satisfy the equation.

Exercises

1. Draw and discuss the following loci:

The ordinate of any point of a certain locus is twice its ab-

scissa; the x of every point of a certain locus is half its y] the y of

a point is 1/3 of its a;; a point moves in such a way that its lati-

tude is always treble its longitude; the sum of the latitude and

longitude of a point is zero; a point moves so that the difference

in its latitude and longitude is always zero.

2. Draw this locus: Beginning at the point (1, 2), a point moves
so that its gain in latitude is always twice as great as its gain in

longitude.

3. A point moves so that its latitude is always greater by 2 units

than three times its longitude. Write the equation of the locus

and construct.

4. A head of 100 feet of water causes a pressure at the bottom of

43.43 pounds per square inch. Draw a locus showing the relation

between head and pressure, for all heads of water from to 200 feet.

SUGGESTION: There are several ways of proceeding. Let pounds
per square inch be represented by abscissas or x, and feet of water be

represented by ordinates or y. Then we take the point x = 43.43,

y = 100 and other points, as x =
86.86, y = 200, etc., and draw the

line. Otherwise produce the equation first from the proportion

x:y:\ 43.43 : 100, or, 43A3y = WQxoTy = ~ x and then draw the
4o.4o

100
graph from the fact that the latitude is always of the longitude.

43.43
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Be sure that the scales are numbered and labeled in accordance with

suggestions (4), (5) and (6) of 12.

5. A pressure of 1 pound per square inch is equivalent to a column
of 2.042 inches of mercury, or to one of 2.309 feet of water. Draw a

locus showing the relation between pressure expressed in feet of water
and pressure expressed in inches of mercury.
SUGGESTION: Let x = inches of mercury and y = feet of water.

First properly number and label the X-axis to express inches of mer-

cury and number and label the F-axis to express feet ol water. Since

negative numbers are not involved in this exercise, the origin may be

taken at the lower left-hand corner of the squared paper. First locate

the point x =
2.042, y = 2.309 (which are the corresponding values

given by the problem) and draw a line through it and the origin. This

is the required locus since at all points we must have the proportion
x : y :: 2.042 : 2.309, which says that the ordinate of every point ot the

locus is 2309/2042 times the abscissa of that point.

6. A certain mixture of concrete (in fact, the mixture 1 : 2 : 5) con-

tains 1.4 barrels 01 cement in a cubic yard of concrete. Draw a locus

showing the cost oi cement per cubic yard of concrete for a range ot

prices of cement from $0.80 to $2.00 per barrel.

SUGGESTION: Let x be the price per barrel of cement and y be the

cost of the cement in 1 cubic yard of concrete. Number and label

the two scales beginning at the lower left-hand corner as origin. Since

prices between $0.80 and $2.00 only need be considered, the first

division on the X-axis may be marked $0.80 instead of 0. Each
centimeter may represent $0. 10 on each scale. The cost of cement per
cubic yard of concrete must, by the condition of the problem, be 1.4

times the price per barrel of cement. Hence the first point located

on the vertical scale must correspond to 1.4 X $0.80, or to $1.12 cost

per cubic yard. As this is the lowest cost to be entered, it is desirable

not to start the vertical scale at $0.00, but at $1.00. Thus the lower

left-hand corner of the coordinate paper may be taken as the point

(0.80, 1.00) in a system in which the unit of measure is 1 cm. = 10

cents.

7. Draw a locus showing the cost per cubic yard of concrete for

various prices of cement, provided $2.10 per yard must be added to the

results of example 6 to cover cost of sand and crushed stone.

8. Cast iron pipe, class A (for heads under 100 feet), weighs, per
foot of length: 4-inch, 20.0 pounds; 6-inch, 30.8 pounds; 8-inch, 42.9

pounds. For each size of pipe construct upon a single sheet of
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squared paper a locus showing the cost per foot for all variations

in market price between $20.00 and $40.00 per ton.

SUGGESTION: If the horizontal scale be selected to represent

price per ton, the scale may begin at 20 and end at 40, as this covers

the range required by the problem. Therefore let 1 cm. represent

$1.00. Since the range of prices is from 1 cent to 2 cents per pound,
the cost per foot will range from 20 cents to 40 cents for 4-inch

pipe and from 42.9 cents to 85.8 cents for 8-inch pipe. Hence
for the vertical scale 10 cents may be represented by 2 cm. In this

case the vertical scale may quite as well begin at cents instead of

at 20 cents, as there is plenty of room on the paper.

;
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the ordinate y lows. 2 units for an iur.reiise in x equal to 1. The

equation of the line C is obviously y = 2x. Line D, parallel to

line C, also has slope ( 2)

If h be the change in y for an increase of x equal to k, then the

slope m is the ratio h /k.

The technical word slope differs from the word slope or slant in

common language only in the fact that slope, in its technical use,

is always expressed as a ratio. In common language we speak of a

"slope of 1 in 10," or a "grade of 50 feet per mile," etc. In mathe-

matics the equivalents are
"
slope = 1/10,"

"
slope = 50/5280,"

etc.

As already indicated, the definition of slope requires us to speak
in mathematics of positive slope and negative slope. A line of pos-

itive slope extends upward with respect to the standard direction

OX and a line of negative slope extends downward with reference

to OX.
In a similar way we may speak of the slope of any curve at a

given point on the curve, meaning thereby the slope of the tangent

line drawn to the curve at that point.

Exercises

1. Give the slopes of the lines in exercises 1 to 8 of the preceding

set of exercises.

2# x x
2. Draw y = x; y = 2x; y = 3x; y =

3 ; y = -, y =
^;

y = -
2x;

y = -
3x; y = Ox.

3. Prove that y = mx always represents a straight line, no matter

what value m may have.

15. Equation of Any Line. Intercepts. In Fig. 28, the line

MN expresses that the ordinate y is, for all points on the line, always

3 times the abscissa x, or it says that y = 3x. The line HK states

that "y is 2 more than 3x." Thus the line HK has the equation

y = 3x + 2.

In general, since y = mx is always a straight line,
1 then y =

mx H- 6 is a straight line, for the y of this locus is merely, in each

case, the y of the former increased by the constant amount b (which

1 See exercise 3, 14, above.
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may, of course, IK' positive or nr^utivo)- Therefore, y
= nix + b

is a line parallel to y = mx. The distance OB (Fig. 28) is equal

to 6. The distance is called the y-intercept of the locus. The

distance OA is equal to b {m, for it is the value of x when y is

zero. It is called the x-intercept of the locus.

FIG. 28. Intercepts.

Exercises

1. Sketch, from inspection of the equations, the lines given by;

(a) y = x.

(b) y = x + 1.

(c) y = x + 2.

(d)

(e)

x + 3.

3 - 1.

* - 2.
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2. Sketch, from inspection of the equations, the lines given by :

(a) y = \x. (/) y = -
\x.

(6) y = lx. (g) y = - x.

(c) y = x. (h) y = - 2x.

(d) y = 2x. (i) y = - 3X .

(e) y = 3x. 0') y = V2.r.

3. Sketch the lines given by :

(a) x = 3. (d) y = 1. (g) y = 0.

(6) x = 5. (e) y = 5. (A) * - 0.

(c) x = -2. (/) y = -3. (i) x 2 = 4.

4. Sketch from inspection of the equations, the following:

(a) y = x + 1.

(6) y =
fcc + 1.

(c) y = -2z + 4.

(d) y = 5a; + 3.

(e) T/
= -5x - 2.

6. Sketch, from inspection of the equations:

(a) y = x + 4.

(6) y - 2s - 3 = 0.

(c) y + Jx + 1/3 = 0.

(d) ox + fy/
= c.

(e) /o + y/b = 1.

6. The shortest distance between y = mx and y = mx + 6 is not 6.

Show that it equals 6/\/l + m2
.

16. Additive Properties. Sometimes a useful result is obtained

by adding (or subtracting) the corresponding ordinates of two

graphs. Thus in Fig. 26, operating expenses of a power plant

may be added to ordinates representing various rates of divi-

dends, and compared (by subtraction) with monthly revenue.

Sometimes, however, it becomes necessary to determine a result

by adding two functions corresponding to different values of the

variable or argument. Fig. 29 is an excellent illustration of this.

This diagram enables one to find the cost of a cubic yard of
"
1:2:4" concrete (except cost of mixing) by knowing the prices

of the constituent materials. The information necessary to con-
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struct the loci is given in the first line of Table I, p. 44. The

amount of cement in 1 cubic yard of 1:2:4 concrete is seen to be

1.58 barrels. The price per barrel of cement may be considered

a variable changing with the condition of the market and with

the locality where sold.

Calling Xi the price of

cement, the cost y\ of the

cement in 1 cubic yard of

1:2:4 concrete is then, for

all market prices of

cement, expressed by the

equation:

7/!
= 1.58*!

This is graphically repre-

sented in Fig. 29 by the

line of slope 1.58. Note in

this case that the slope

of the line has a "physi-

cal" meaning, namely it is

the cost of the cement in 1

cubic yard when the price

is $1.00 a barrel. In the

same way the cost of the sand and of the crushed stone in 1

cubic yard of concrete for various market prices of these com-

modities is expressed by the lines of Fig. 29 of slopes 0.44 and

0.88 respectively.

EXAMPLE: Let the price Xi of cement be $1.20 per barrel; let

the price x z of stone be $1.75 per cubic yard, and the price x 3 of sand

be $1.10 per cubic yard. Find the cost of the materials necessary

to make 1 cubic yard of 1:2:4 concrete. Then, from Fig. 29:

Xi = $1.20 then y l
= $1.90

z 2
= 1.75 2/2

= 1.54

x 3
= 1.10 2/3

= 0.48

Total, or cost of material for 1

cubic yard of concrete = $3.92

The cost of concrete, y, is a function of three variables, x\, x z ,

Cost of each Ingredient in One
Cubic Yard of 1:2:4 Concrete
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.c 3 ,
all of which, for convenience' sake, have been measured on the

same scale or axis OX. The representation of several variables

on the same scale need not cause any confusion.

Since in this case the prices of the constituents of the concrete

are not the same, the total cost of 1 cubic yard of concrete cannot

be found by adding the ordinates at the same abscissa of the

three graphs, because the abscissas or the various market prices

of the ingredients are not the same.

The second line of the table may be used by the student as the

basis of construction of another diagram similar to that of Fig. 29.

TABLE I

The quantities of material required to make 1 cubic yard of concrete

(based on 33 f percent voids in the sand and 45 percent voids in

the broken stone).

Mixture
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x = cubic yards cement required.

y = cubic yards sand required.
z = cubic yards stone required.

Then, from the given porosities, or percent of voids,

x \y = surplus of cement after filling voids in sand.

(z \y~) + y = volume of mixed sand and cement.

[(% %y} -\-y\- 0.452 = surplus of mixed sand and ce-

ment after filling voids in stone .

z + [(x \y] + y] 0.45z =
1, the total volume,

or,

0.552 + \y + x = 1

MM
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of stone counts as only 0.55-2 cubic yards in the final product. As the

voids in the sand are to be completely filled in the final mixture, the

y cubic yards of sand counts as only l-y cubic yards in the final

product. As there are no voids to be filled in the cement, it counts

as x cubic yards in the final result. Hence the equation

s + ly + 0.552 =
1, etc.

Exercise

From the diagram, Fig. 30, determine and insert in a table like

Table I, the quantity of each sort of material in 1 cubic yard of

1:3:6 concrete.

THE POWER FUNCTION

17. Definition of the Power Function. The algebraic function

consisting of a single power of the variable, such for example as the

functions z 2
,
x 3

,
1 /x, l/x

z
, x%, etc., stand next to the linear

function of a single variable, mx + b, in fundamental impor-
tance. The function xn is known as the power function of x.

18. The Graph of x2
. The variable part of many functions of

practical importance is the square of a given variable. Thus the

area of a circle depends upon the square of the radius; the distance

traversed by a falling body depends upon the square of the elapsed

time; the pressure upon a flat surface exposed directly to the wind

depends upon the square of the velocity of the wind; the heat

generated in an electric current in a given time depends upon the

square of the number of amperes of current, etc., etc. Each of

these relations is expressed by an equation of the form y = ax z
,
in

which x stands for the number of units in one of the variable quan-

tities (radius of the circle, time of fall, velocity of the wind, amperes
of current, respectively, in the above named cases) and in which

y stands for the other variable dependent upon these. The num-

ber a is a constant which has a value suitable to each particular

problem, but in general is not the same constant in different prob-

lems. Thus, if y be taken as the area of a circle, y =
irx*, in which

x is the radius measured in feet or inches, etc., and y is measured in

square feet or square inches, etc.; or if s is the distance in feet

traversed by a falling body, then s = 16.U2
,
where t stands for the
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elapsed time in seconds. In one case the value of the constant a

is 3.1416 and in the other its value is 16.1.

Let us first graph the abstract law or equation y = x 2
,
in which

a concrete meaning is not assumed for the variables x and y but

in which both are thought of as abstract variables. First form a

suitable table of values for x and x2 as follows:

x -3-2-1Q Q.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 3

x* or y 9 4~~ 1 0.04 0.16 0.36 0.64 1.0 1.44 1.96 2.56 3.24 4 9

Here we have a series of pairs of values of x and y which are asso-

ciated by the relation y = x*. Using the x of each pair of values

as abscissa with its corresponding y there can be located as many
points as there are pairs of values in the table, and the array of

points thus marked may be connected by a freely drawn curve.

To draw the curve upon coordinate paper, form Ml, the origin

may be taken at the mid-point of the sheet, and 2 cm. used as the

unit of measure for x and y. If the points given by the pairs of

values are not located fairly close together, it is obvious that a

smooth curve cannot be satisfactorily sketched between the points

until intermediate points are located by using intermediate values

of x in forming the table of values. The student should think of

the curve as extending indefinitely beyond the limits of the sheet of

paper used; the entire locus consists of the part actually drawn and

of the endless portions that must be followed in imagination beyond
the range of the paper. If the graph of y = x z be folded about

the F-axis, OF, it will be noted at once that the left and right

portions of the curve will exactly coincide. The student will

explain the reason for this fact.

19. Parabolic Curves. The equations y =
x, y = x2

, y = x 1
'

t

y = x 3 should be graphed by the student on a single sheet of coor-

dinate paper, using 2 cm. as the unit of measure in each case.

Table II may be used to save numerical computation in the con-

struction of the graphs of these power functions. As in the case

of y = x'2
,
a smooth curve should be sketched free-hand through

the points located by means of the table of values, and intermediate

values of x and y should be computed when doubt exists in the mind
of the student concerning the course of the curve between any two

points.
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FIG. 31. Parabolic Curves.

FIG. 32. Graph of the Power Function for n > (Parabolic Curves)
in the First Quadrant.



19] RECTANGULAR COORDINATES 49

The graphs of the above power functions are observed to be

continuous lines, without breaks or sudden jumps. A formal proof

TABLE II

X



50 ELEMENTARY MATHEMATICAL ANALYSIS [19

TABLE II. (Continued)

X
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are known as curves of the hyperbolic type, and will be discussed

later.

The student should cut patterns of the parabola, the cubical

parabola and the semi-cubical parabola out of heavy paper for

use in drawing these curves when required. Each pattern should

have drawn upon it either the x- or ?/-axis and one of the unit lines

to assist in properly adjusting the pattern upon squared paper.

20. Symmetry. In geometry a distinction is made between two

kinds of symmetry of plane figures symmetry with respect to a

line and symmetry with respect to a point. A plane figure is

symmetrical with respect to a given line if the two parts of the

figure exactly coincide when folded about that line. Thus the let-

ters M and W are each symmetrical with respect to a vertical line

drawn through the vertex of the middle angles. We have already

noted that y = x 2
is symmetrical with respect to OY.

A plane figure is symmetrical with respect to a given point when
the figure remains unchanged if rotated 180 in its own plane about

an axis perpendicular to the plane at the given point. Thus the

letters N and Z are each symmetrical with respect to the mid-point
of their central line. The letters H and are symmetrical both

with respect to lines and with respect to a point. Which sort of

symmetry is possessed by the curve y = x 3 ? Why?
Another definition of symmetry with respect to a point is per-

haps clearer than the one given in above statement : A curve is

said to be symmetrical with respect to a given point when all

lines drawn through the given point and terminated by the curve

are bisected at the point 0.

What kind of symmetry with respect to one of the coordinate

axes or to the origin (as the case may be) does the point (2, 3) bear

,
to the point (-2, 3)? To the point (-2, -3)? To the point

(2, -3)?
Note that symmetry of the first kind means that a plane figure is

unchanged when turned 180 about a certain line in its plane, and
that symmetry of the second kind means that a figure is unchanged
when turned 180 about a certain line perpendicular to its plane.

21. The curves in the diagram, Fig. 31, are sketched from a

limited number of points only, but any number of additional

values of x and y may be tabulated and the accuracy, as well as
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the extent, of the graph be made as great as desired. A num-
ber of graphs of power functions are shown as they appear in the

first quadrant in Figs. 32 and 35. The student should explain how
to draw the portions of the curves lying in the other quadrants
from the part appearing in the first quadrant.

In the exercises in this book to "draw a curve" means to con-

struct the curve as accurately as possible from numerical or other

data. To "sketch a curve" means to produce an approximate or

less accurate representation of the curve, including therein its

characteristic properties, but without the use of extended numer-

ical data.

Exercises

1. On coordinate paper draw the curves y = x 2
, y = x z

, y = x%,

y = x 6
, using 4 cm. as the unit of measure. On the same sheet

draw the lines x =
1, y =

I, y = x.

2. On coordinate paper sketch the curves x =
7/

2
,
x = y

3
,
x = yM*

x = y
6

. Compare with the curves of exercise 1.

3. Sketch and discuss the curves y =
Vrr, y \/x, y = \/x.

Can any of these curves be drawn from patterns made from the

curves of exercise 1? Why? Explain the graphs of the first and

last if the double sign
" " be understood before the radicals, and

compare with the graphs when the positive sign only is to be under-

stood before the radicals.

4. Draw the curve y
z = x*. Compare with the curve y = x 2

.

5. Name in each case the quadrants of the curves of exercises

1-4, and state the reasons why each curve exists in certain quad-
rants and why not in the other quadrants.

22. Discussion of the Parabolic Curves. Draw the straight

lines x =
I, x = l,y=l,y= 1 upon the same sheet upon

which a number of parabolic curves have been drawn. These

lines together with the coordinate axes divide the plane into a

number of rectangular spaces. In Fig. 33 these spaces are shown

divided into two sets, those represented by the cross-hatching,

and those shown plain. The cross-hatched rectangular spaces

contain the lines y = x and y= x and also all curves of the para-

bolic type. No parabolic curve ever enters the rectangular strips

shown plain in Fig. 33.
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The line y x divides the spaces occupied by the parabolic

curves into equal portions. Why does the curve y = x2
(in the

first quadrant) lie below this line in the interval x = to x =
1,

but above it in the interval to the right of x = 1? On the other

hand, why does the curve y = \/x, or y
2 = x (in the first quad-

rant), lie above the line y = x in the interval x= to x = 1 and

below y = x in the interval to the right of x = 1?

One part of the parabolic curve y = xn always lies in the first

quadrant. If n be an even number, another part of the curve lies

FIG. 33. The Regions of the Parabolic and the Hyperbolic Curves.
All parabolic curves lie within the cross-hatched region. All hyperbolic
curves lie within the region shown plain.

in which quadrant? If n be an odd number, the curve lies in which

quadrants?
If the exponent n of any power function be a positive fraction,

may m fr, the equation of the curve may be written y = xm . If

in this case both m and r be odd, the curve lies in which quadrants?
If m be even and r be odd, the curve lies in which quadrants? If

m be odd and r be even, the curve lies in which quadrants? If

both m and r be even the curve lies in which quadrants?
A curve which is symmetrical to another curve with respect to a

line may be spoken of figuratively as the reflection or image of the

>(<( nd curve in a mirror represented by the given line.
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Exercises

Exercises 1-5 refer to curves in the first quadrant only.

1. The expressions x 2
,
x 3//2

,
x 3

,
x 5 are numerically less than x for

values of x between and 1. How is this fact shown in the diagram,

Fig. 31?

2. The expressions x 2
, x^, x*, x 5 are numerically greater than x for

all values of x numerically greater than unity. How is this fact

pictured in the diagram, Fig. 31?

3. For values of x between and 1, x 5 < x 3 < x 2 < x& <x.
For values x > 1, x

5 > x 3 > x 2 >x% > x. Explain how each of these

facts is expressed by the curves of Fig. 32.

4. Show that the graphs y = x%, y = x l/

^, y = x l/

^, y = x^ are the

reflections of y = x3
A, y = x 2

, y = x 5
, y = x 5

,
in the mirror y = x.

5. Sketch without tabulating the numerical values, the following

loci: y = x 10
, y = x - 1

, y = x 100
, y = x- l

.

The following are to be discussed for all quadrants.

6. Sketch, without tabulating numerical values, the following loci

y
z =

x*, y* = X G
, ?/

4 = x 2
, y* = x 5

, y
5 = x 3

.

7. Sketch the following: y = x 101
, y

l0i = x 99
, y

1000 = x 1001
.

8. Sketch the following: y = x 2
, y = x 3

, y
2 = x 3

.

23. Hyperbolic Type. Loci of equations of the form yxn =
1,

or y = 1 fx
n

,
where n is positive, have been called hyperbolic

curves. The fundamental curve xy =
1, or y = 1 /x is called the

rectangular hyperbola. Its graph is given in Figs. 34 and 35,

but the curve should be drawn independently by the student, using

2 cm. as the unit of measure. Its relation to the x- and ?/-axes is

most characteristic. For very small positive values of x, the value

of y is very large, and as x approaches 0, y increases indefinitely.

But the function is not defined for the value x =
0, for the prod-

uct xy cannot equal 1 if x be zero. For numerically small but

negative values of x, y is negative and numerically very large, and

becomes numerically larger as x approaches 0. The locus thus

approaches indefinitely near to the F-axis, as x approaches zero.

Instead of saying that "y increases in value without limit," it

is equally common to say "y becomes infinite;" in fact,
"
infinite"

is merely the Latin equivalent of "no limit." It is often written

y = oo
. This is a mere abbreviation for the longer expressions,
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"y becomes infinite" or "y increases in value without limit."

The student must be cautioned that the symbol does not stand

for a number, and that "y must not be interpreted in the

same way that "y = 5" is interpreted.

As x increases from numerically large negative values to 0,

y continually decreases and becomes negatively infinite (abbre-

viated y =
) . As a: decreases from numerically large positive

Y

-4J4

-1

\\

FIG. 34. Hyperbolic Curves.

values to 0, y continually increases and becomes infinite. Thus,
in the neighborhood of x =

0, y is discontinuous, and, in this case,

the discontinuity is called an infinite discontinuity.

On account of the symmetry in xy =
1, if we look upon x as a

function of y, all of the above statements may be repeated, merely

interchanging x and y wherever they occur. Thus, there is an

infinite discontinuity in x, as y passes through the value 0.

The lines XX' and YY' which these curves approach as near as
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we please, but never meet, are called the asymptotes of the

hyperbola.

All other curves of the hyperbolic family, such as yx- = 1,

xy
z =

1, yW =
1, y*x* = I and the like, approach the X- and

F-axes as asymptotes. The rates at which they approach the
axes depends upon the relative magnitudes of the exponents of the

powers of x and y; the quadrants in which the branches lie depend
upon the oddness or evenness of these exponents.

FIG. 35. Hyperbolic Curves in the
First Quadrant, y = l/a;i- is the
Adiabatic Curve for Air.

FIG. 36. A Hyperbola
Formed by Capillary Action of

Two Converging Plane Plates.

Exercises

1. Draw accurately upon squared paper the loci, xy =
1, xy* = 1,

x 2
y =

1, xy
3 = 1.

2. Show that the curves of the hyperbolic type lie in the rectangular

regions shown plain, or not cross-hatched, in Fig. 33.

3. In what quadrants do the branches of xny 7 = 1 lie?

4. How does the locus of x 2
y
z = 1 differ from that of xy 1 ?

5. Sketch, showing the essential character of each locus, the curves

x z
y* =

1, x l
y =

1, x looo
y = 1.

6. Show that xy = a passes through the point (\/a , \/a ) ;
that

xy = a 2
passes through (a, a) and can be made from xy = 1 by
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"stretching" (if a > 1) both abscissas and ordinates of xy = 1 in the

ratio 1 :a. 1

24. Curves Symmetrical to Each Other. Some of the facts of

symmetry respecting two portions of the same parabola or hyper-

bola may be readily extended by the student to other curves.

First answer the following questions:

How are the points (a, b) and (a, b} related to the 7-axis?

How are the points (a, 6) and (a, b) related to the X-axis?

How are the points (a, b) and (6, a) related to the line y = z?

Prove the result by plane geometry.
The following may then be readily proved by the student:

THEOREMS ON Loci

I. If x be replaced by ( x) in any equation containing x and y,

the new graph is the reflection of the former in the axis YY'.

IT. // y be replaced by (y} in any equation containing x and y,

the new graph is the reflection of the former in the axis XX'.
III. // x and y be interchanged in any equation containing x

and y, the new graph is the reflection of the former one in the line

y = x.

25. The Variation of the Power Function. The symmetry of

the graphs of the power function with respect to certain lines and

points, while of interest geometrically, nevertheless does not con-

stitute the most important fact in connection with these functions.

Of more importance is the law of change of value or the law by which

the function varies. Thus returning to a table of values for the

power function x2 for the first quadrant,

x\Q 1/2 1 3/2 2 5/2 3

z 2

1/4 1 9/4 4 25/4 9

we note that as x changes from to 1/2 the function grows by the

small amount 1/4. As x changes from 1 /2 by another increment of

1/2 to the value 1, the function increases by 3/4 to the value 1.

As x grows by successive steps or increments of 1 /2 unit each, it

is seen that xz
grows by increasingly greater and greater steps,

until finally the change in x z
produced by a small change in x

l To "elongate
"

or "stretch "
in the ratio 2:3 means to change the length

of a line segment so that (original length): (new or stretched length) = 2: 3.
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becomes very large. Thus the step by step increase in the function

is a rapidly augmenting one. Even more rapidly does the func-

tion x 3
gain in value as x grows in value. On the contrary, for posi-

tive values of x the power functions 1 /x, 1 /x
2

,
1 /x

3
, etc., decrease

in value as x grows in value. Referring to the definition of the

slope of a curve given in 14, we see that the parabolic curves

have a positive slope in the first quadrant, while the hyperbolic
curves have always a negative slope in the first quadrant.
The law of the power function is stated in more definite terms

in 34. That section may be read at once, and then studied

a second time in connection with the practical work which

precedes it.

26. Increasing and Decreasing Functions. As a point passes
from left to right along the X-axis, x increases algebraically.

As a point moves up on the F-axis, y increases algebraically and
as it moves down on the F-axis, y decreases algebraically. An
increasing function of x is one such that as x increases algebraically,

y, or the function, also increases algebraically. By a decreasing
function of x is meant one such that as x increases algebraically,

y decreases algebraically. Graphically, an increasing function is

indicated by a rising curve as a point moves along it from left to

right. The power function y = xn (n positive) is an increasing
function of x in the first quadrant. The power function y =
x~ n

( n negative) in the first quadrant is a decreasing function

of z.

The power function y = x 3
is an increasing function for all values

of x while y = x* is a decreasing function in the second quadrant
but an increasing function in the first quadrant. In a case like

y = + x 3/2

,
where y has two values for each positive value of x, it

is seen that one of these values increases with x while the other

decreases with x.

Exercises

1. Consider the function y = + x^ and construct its locus. As x

grows by successive steps of one unit each, does the function grow by
increasingly greater and greater steps or not? Why? Is the slope
of the curve an increasing or a decreasing function of x?
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2. Does the algebraic value of the slope of xy = 1 increase with x

in the first quadrant?

3. As x changes from 5 to +5 does the slope of y = x 2
always

''increase algebraically?

4. Express in the language of mathematics the fact that the

curves y = xn
,
when n is a rational number greater than unity, are

concave upward.
ANSWER: "When n is greater than unity, the slope of the curve

increases as x increases."

Express in a similar way the fact that the curves y = x lfn are

concave downward.

27. The Graph of the Power Function when xn has a Coeffi-

cient. If numerical tables be prepared for the equations

y x 2

and y'
= 3z 2

then for like values of x each ordinate, y', of the second curve

will be three fold the corresponding ordinate, y, of the first curve.

It is obvious that the curve

y'
= ax n

(1)

and the curve

y = x* (2)

are similarly related; the ordinate y' of any point of the first locus

can be made from the corresponding ordinate y (i.e., the ordinate

having the same abscissa) of the second by multiplying the latter

by a. If a be positive and greater than unity, this corresponds to

stretching or elongating all ordinates of (2) in the ratio 1 :a; if a

be positive and less than unity, it corresponds to contracting or

shortening all ordinates of (2) in the ratio 1 : a.

For example, the graph of y'
= axn can be made from the graph

of y = xn if the latter be first drawn upon sheet rubber, and if

then the sheet be uniformly stretched in the y direction in the ratio

1 : a. If the curve be drawn upon sheet rubber which is already
under tension in the y direction and if the rubber be allowed to

contract in the y direction, the resulting curve has the equation

y = axn where a is a proper fraction or a positive number less than

unity.

The above results are best kept in mind when expressed in a
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slightly different from. The equation y'
= a-x n

can, of course, be

written in the from (y'/a) = xn
. Comparing this with the equa-

tion y xn
,
we note that (y'/a) = y or y'

=
ay, therefore we may

conclude generally that substituting (y'/a) for y in the equation of

any curve multiplies all of the ordinates of the curve by a. For

example, after substituting (y'/2) for y in any equation, the new
ordinate y' must be twice as large as the old ordinate y, in order

that the equation remain true for the same value of x.

In the same manner changing the equation y = xn to y =
/x'\(\

,
that is, substituting (x'/a) for x in any equation multiplies

all of the abscissas of the curve by a. Multiplying all of the abscis-

sas of a curve by a elongates or stretches all of the abscissas in

the ratio 1 l:a if a > 1, but contracts or shortens all of the abscis-

sas if a <1. As the above reasoning is true for the equation of

any locus, we may state the results more generally as follows :

THEOREMS ON Loci

IV. Substituting I
jfor

x in the equation of any locus multiplies

all of the abscissas of the curve by a.

V. Substituting (} for y in the equation of any locus multiplies all

of the ordinates of the curve by a.

NOTE: It is not necessary to retain the symbols x' and y' to

indicate new variables, if the change in the variable be otherwise

understood.

Exercises

1. Without actual construction, compare the graphs y = x- and
2 1 2

t/
= 5z 2

; y = x* and y = -~-; y= - and y =
--; y=x* and y = 2x 3

;
j X X

y = x'*2- and y = ~-

2. Without actual construction, compare the graphs y = x z and

</=*3and|=z3; y = a* and y =
(f)

'; </= *' and
f
= **.

footnote, p. 57.
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= X 3

and

3. Compare y
2 = z 3 and y

2 =
(^j ; y

2 = z 3 and (~

/V\ 2 M 3 1 2/1
is)

=
\2J

5 2/
=

X2
and

^
=

-,.

28. Orthographic Projection. In elementary geometry we
learned that the projection of a given point P upon a given line or

plane is the foot of the perpendicular dropped from the given point

upon the given line or plane. Likewise if perpendiculars be

dropped from the end points A and B of any line segment AB upon
a given line or plane, and if the feet of these perpendiculars be

called P and Q, respectively, then the line segment PQ is called the

projection of the line AB. Also, if perpendiculars be dropped
from all points of a given curve AB upon a given plane MN, the

FIG. 37. Orthographic Projection of Line Segments

locus of the feet of all of the perpendiculars so drawn is called the

projection of the given curve upon the plane MN.
To emphasize the fact that the projections were made by using

perpendiculars to the given plane, it is customary to speak of them
as orthogonal or orthographic projections.
The shadow of a hoop upon the ground is not the orthographic

projection of the hoop unless the rays of light from the sun strike

perpendicular to the ground. This would only happen in our lat-

itude upon a non-horizontal surface.

The shortening by a given fractional amount of all of a set of
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parallel line segments of a plane may be brought about geometric-

ally by orthographic projection of all points of the line segments

upon a second plane. For, in Fig. 37, let AB l ,
A 2B 2 ,

A AB Zj

etc., be parallel line segments lying in the plane MN. Let their

projections on any other plane be A'iC'i, A' 2C' 2 , A'aC's, etc.,

respectively. Draw A 2C 2 parallel to A '

2C' 2 and Aid parallel to

A'iC'i, etc. Then since the right triangles AiBiCi, A 2B 2C 2 ,

A 3B zCs, etc., are similar,

A 1B 1 = A 2B 2 = A 3B 3

Aid A 2C 2 A 3C 3

Call this ratio a. It is evident that a>l. Substitute the

equals: A'iC'i = Aid, A' 2C' 2
= A 2d, etc. Then:

A^! A 2B 2 A^g 3 _ _
a

A'jC'i

"
AVT'i

~
A7^ " =

I

The numerators are the original line segments; the denominators

are their projections on the plane MO. The equality of these

fractions shows that the parallel lines have all been shortened in

the ratio a: I.

The above work shows that to produce the curve y = (xfa)
n

,

(a <1), from y = x n by orthographic projection it is merely neces-

sary to project all of the abscissas of y = xn upon a plane passing

through YO Y' making an angle with OX such that unity on OX
projects into a length a on the projection of OX. To produce
the curve y = axn

(a <1) from y = x n by orthographic projection

it is merely necessary to project all of the ordinates of y = x n upon
a plane passing through XOX' making an angle with OF such that

unity on OF projects into the length a on the projection of OF.

To lengthen all ordinates of a given curve in a given ratio,

1 : a, the process must be reversed; that is, erect perpendiculars to

the plane of the given curve at all points of the curve, and cut them

by a plane passing through XOX' making an angle with OF such

that a length a (a >1) measured on the new F-axis projects into

unity on OF of the original plane.

29. Change of Unit. To produce the graph of y = lOz 2 from

that of y = x z
,
the stretching of the ordinates in the ratio 1 : 10

need not actually be performed. If the unit of the vertical scale
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of y = z 2 be taken 1 /10 of that of the horizontal scale, and the

proper numerical values be placed upon the divisions of the

scales, then obviously the graph of y may be used for the

|0.8

0.6

0.4

0.2 /

20 40 80 100 120 140 160 180 200

Xensth. in Cm.

graph of y = 10z 2
. Suitable change in the unit of measure on one

or both of the scales of y = xn is often a very desirable method of

representing the more general curve y = ax n
.

An interesting example is given in Fig. 38. The period of vi-

bration of a simple pendulum is given by the formula T =
ir\/l/g.

When g
= 981 cm. per

second per second (abbre-

viated cm./sec.
2
) this gives

T = 0.1003Vr> which for

many purposes is suffici-

ently accurate when writ-

ten T = O.lOyl. In this

equation T must be in sec-

onds and I in centimeters.

Thus when I = 100 cm., T
= 1 sec., so that the graph

may t>e made by drawing
the parabola y = \/x from

the pattern previously
made and then attaching the proper numbers to the scales, as

shown in Fig. 38.

30. Variation. The relation between y and x expressed by the

equation y = ax n
,
where n is any positive number, is often expressed

by the statement "y varies as the nth power of x," or by the

statement "y is proportional to xn "
Likewise, the relation

y = a/x, where n is positive, is expressed by the statement

"y varies inversely as the nth power of x." The statement "the

elongation of a coil spring is proportional to the weight of the sus-

pended mass" tells us:

y = mx (1)

where y is the elongation (or increase in length from the natural

or unloaded length) of the spring, and x is the weight suspended by
the spring, but it does not give us the value of m. The value of m
may readily be determined if the elongation corresponding to a

given weight be given. Thus if a weight of 10 pounds when sus-

FiG. 38. Relation of Length of a Simple
Pendulum to Period of Vibration.
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pended from the spring produces an elongation of 2 inches in the

length of the coil, then, substituting x = 10 and y = 2 in (1),

2 = mlO
and hence m = 1/5

If this spring be used in the construction of a spring balance, the

length of a division of the uniform scale corresponding to 1 pound
will be 1 /5 inch.

A special symbol, oc
t
is often used to express variation. Thus

y 1/d
2

states that y varies inversely as d 2
. It is equally well expressed by :

k

where A; is a constant called the proportionality factor.

The statements "y varies jointly as u and v," and "y varies

directly as u and inversely as v," mean, respectively:

y = auv

au
If
- '-

v

Thus the area of a rectangle varies jointly as its length and breadth,

or,

A = kLB

If the length and breadth are measured in feet and A in square feet,

k is unity. But, if L and B are measured in feet and A in acres,

then k = 1 /43560. If L and B are measured in rods and A in

acres, then k = 1 /160.

From Ohm's law, we say that the electric current in a circuit

varies directly as the electromotive force and inversely as the

resistance, or:

C * E/R or C = kE/R

The constant multiplier is unity if C be measured in amperes, E
in volts, and R in ohms, so that for these units

C = E/R
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31. Illustrations from Science. Some of the most important
laws of natural science are expressed by means of the power func-

tion 1 or graphically by means of loci of the parabolic or hyperbolic

type.

The linear equation y = mx is, of course, the simplest case of the

power function and its graph, the straight line, may be regarded as

the simplest of the curves of the parabolic type. The following

illustrations will make clear the importance of the power function

in expressing numerous laws of natural phenomena. Later the

student will learn of two additional types of fundamental laws of

science expressible by two functions entirely different from the

power function now being discussed.

The instructor will ask oral questions concerning each of the

following illustrations. The student should have in mind the

general form of the graph in each case, but should remember that

the law of variation, or the law of change of value which the func-

tional relation expresses, is the matter of fundamental importance.
The graph is useful primarily because it aids to form a mental pic-

ture of the, law of variation of the function. The practical graph-

ing of the concrete illustrations given below will not be done at

present, but will be taken up later in 33.

(a) The pressure of a fluid in a vessel may be expressed in either

pounds per square inch or in terms of the height of a column of

mercury possessing the same static pressure. Thus we may write:

p = 0.492/1 (1)

in which p is pressure in pounds per square inch and h is the height
of the column of mercury in inches. The graph is the straight
line through the origin of slope 492 /1000. The constant 0.492 can

be computed from the data that the weight of mercury is 13.6 times

that of an equal volume of water and that 1 cubic foot of water

weighs 62.5 pounds.
In this and the following equations, it must be remembered

that each letter represents a number, and that no equation can
!><> used until all the magnitudes involved are expressed in terms
of the particular units which are specified in connection with

rqiiMlion.

For brevity ax" :is \\dl as** will frequently be called a power function of x.

5
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(6) The velocity of a falling body which has fallen from a state

of rest during the time t, is given by

v = 32 .2* (2)

in which t is th6 time in seconds and v is the velocity in feet

per second. If t is measured in seconds and v is in centimeters per

second, the equation becomes1 v = 98K In either case the

graph is a straight line, but the lines have different slopes.

(c) The space traversed by a falling body is given by

s = ^ 2
(3)

or, in English units (s in feet and t in seconds) :

s = 16.1J 2
(4)

(d) The velocity of the falling body, from the height h is :

v = \/2gh = A/65 (5)

The resistance of the air is not taken into account in formulas

(2) to (5).

The formula equivalent to (5) :

ijnv 2 = mgh (6)

where m is the mass of the body, expresses the equivalence of

%mv
2
,
the kinetic energy of the body, and mgh, the work done

by the force of gravity mg, working through the distance h.

1 A full discussion of the process of changing formulas like the ones in the pres-

ent section into a new set of units should be sought in text-books on physics and
mechanics. The following method is sufficient for elementary purposes. First,

write (for the present example) the formula v = 32.2 t where v is in ft./sec. and
t is in seconds. For any units of measure that may be used, there holds a general

relation v =
ct, where c is a constant. To determine what we may call the

dimensions of c, substitute for all letters in the formula the names ot the units in

which they are expressed, treating the names as though they were algebraic

numbers. From v = ct write, ft./sec. = c sec. Hence (solving for dimensions of c),

c has dimensions ft./sec.
2 Therefore in the given case, we know c = 32.2 ft./sec 2

.

To change to any other units simply substitute equals for equals. Thus 1 ft. =
30.5 cm., hence c = 32.2 X 30.5 cm. /sec. 2 = 981 cm./sec. 2

To change velocity from mi./hr. to ft./sec. in formula (19) below, we have
72 = 0.003 F 2 where R is in Ib./sq. ft. and V is in mi./hr. Write the general

formula R = cF*. The dimensions of c are (Ib. / ft. 2
) + (mi.*/hr.*) or (Ib. / ft. 2

) X
(hr.Vmi.s). In the given case we have the value of c = 0.003 (lb./ft.

2
) X

(hr.
z/im 2

)- To change V to ft./sec., substitute equals for equals, namely 1 hr.=
3600 sec., 1 mi.= 5280 ft., or merely (approximately) mi./hr. =

ij ft./sec.
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(e) The intensity of the attraction exerted on a unit mass by the

sun or by any planet varies inversely as the square of the distance

from the center of mass of the attracting body. If r stand for

that distance and if / be the force exerted on unit mass of the

attracted body, then

f=
7H

J
r* (7)

The constant m is the value of the force when r is unity.

(/) The formula for the horse power transmissible by cold-rolled

shafting is:

*=f
where H is the horse power transmitted, d the diameter of the

shaft in inches, and N the number of revolutions per minute.

The rapid variation of this function (as the cube of the diameter)

accounts for some interesting facts. Thus doubling the size of the

shaft operating at a given speed increases 8-fold the amount of

power that can be transmitted, while the weight of the shaft is

increased but 4-fold.

If H be constant, N varies inversely as d 3
. Thus an old-fash-

ioned 50-h.p. overshot water-wheel making three revolutions per

minute requires al^out a 9-inch shaft, while a DeLaval 50-h.p.

steam turbine making 16,000 revolutions per minute requires a

turbine shaft but little over 1 /2 inch in diameter.

(0) The period of the simple pendulum is

T = 7TVT/0 (9)

where T is the time of one swing in seconds, I the length of the

pendulum in feet and g
= 32.2 ft./sec.,

2
approximately.

(h) The centripetal force on a particle of weight W pounds,

rotating in a circle of radius R feet, at the rate of N revolutions

per second is

F - (10)

or, if = 32.16 ft./sec.
2

,

F = 1.2276WRN* (11)
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where F is measured in pounds. If N be the number of revolutions

per minute, then

_
"36000

= 0.000341 TTflN 2
(13)

(i) An approximate formula for the indicated horse power

required for a steamboat is:

I.H.P.= (14)

where S is speed in knots, D is displacement in tons, and C is a con-

stant appropriate to the size and model of the ship to which it is

applied. The constant ranges in value from about 240, for finely

shaped boats, to 200, for fairly shaped boats.
'

(j) Boyle's law for the expansion of a gas maintained at

constant temperature is

pv = C (15)

where p is the pressure and v the volume of the gas, and C is a con-

stant. Since the density of a gas is inversely proportional to its

volume, the above equation may be written in the form

p = cp (16)

in which p is the density of the gas.

(fc) The flow of water over a trapezoidal weir is given by

q
= 337Ltf* (17)

where q is the quantity in cubic feet per second, L is the length of

the weir 1 in feet and h is the head of water on the weir, in feet.

(I) The physical law holding for the adiabatic expansion of

air, that is, the law of expansion holding when the change of

volume is not accompanied by a gain or loss of heat,
2

is

expressed by

p =
cp

1 - 408
(18)

1 The instructor is expected fully to explain the meaning of the technical terms

here used.
2 Note that when a vessel containing a gas is insulated by a non-conductor of

heat, so that no heat can enter or escape from the vessel, that the temperature of

the gas will rise when it is compressed, or fall when it is expanded. Adiabatic expan-

sion may be thought of, therefore, as taking place in an insulated vessel.
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This is a good illustration of a power function with fractional expo-

nent. The graph is not greatly different from the semi-cubical

parabola

y = *

(m) The pressure or resistance of the air upon a flat surface per-

pendicular to the current is given by the formula

R = 0.003 F 2
(19)

in which V is the velocity of the air in miles per hour and R is the

resulting pressure upon the surface in pounds per square foot.

According to this law, a 20-mile wind would cause a pressure of

about 1.2 pounds per square foot upon the flat surface of a building.

One foot per second is equivalent to about 2 /3 mile per hour, so

that the formula when the velocity is given in feet per second

becomes:

R = 0.0013F 2
(20)

(ri) The power' used to drive an aeroplane may be divided into

two portions. One portion is utilized in overcoming the resistance

of the air to the onward motion. The other part is used to sustain

the aeroplane against the force of gravity. The first portion does

"useless" work work that should be made as small as possible by
the shapes and sizes of the various parts of the machine. The
second part of the power is used to form continuously anew the

wave of compressed air upon which the aeroplane rides. Calling

the total power
1
P, the power required to overcome the resistance

P r
,
and that used to sustain the aeroplane P,, we have

P = Pr + Ps (21)

We learn from the theory of the aeroplane that P r varies as the

culm of the velocity, whileP a varies inversely as F, so that

P r
= cF 3

(22)

and

?=
V (23)

Thus at high velocity less and less power is required to sustain the

aeroplane but more and more is required to meet the frictional

1 Power (
= work done per unit time) is measured by the unit horse power, which is

550 foot-pounds per second.
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resistance of the medium. The law expressed by (23) that less

and less power is required to sustain the aeroplane as the speed is

increased is known as Langley's Law. From this law Langley was
convinced that artificial flight was possible, for the whole matter
seemed to depend primarily upon getting up sufficient speed. It

is really this law that makes the aeroplane possible. An analogous
case is the well-known fact that the faster a person skates, the

thinner the ice necessary to sustain the skater. In this case

Gals. for One Foot Depth

FIG. 39. Capacity of Rectangular and Circular Tanks per Foot of Depth.

part of the energy of the skater is continually forming anew on

the thin ice the wave of depression which sustains the skater,

while the other part overcomes the frictional resistance of the

skates on the ice and the resistance of the air.

(o) The capacity of cast-iron pipe to transmit water is often

given by the formula:

6
(24)
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in which q is the quantity of water discharged in cubic feet per

second, d is the diameter of the pipe in feet and h is the loss of

head measured in feet of water per 1000 linear feet of pipe.

This is a good illustration of the equation of a parabolic curve

with complicated fractional exponents. The curve is very

roughly approximate to the locus of the equation

y =c\/hx3/*
(25)

(p) The contents in gallons of a rectangular tank per foot of

depth, b feet wide and / feet long, is

q
= 7.5bl (26)

The contents in gallons per foot of depth of a cylindrical tank d

feet in diameter is

?
= 7.57rd 2

/4 (27)

Fig. 39 shows the graph of (26) for various values of b and also

shows to the same scale the graph of (27).

32. Rational and Empirical Formulas. A number of the

formulas given above are capable of demonstration by means of

theoretical considerations only. Such for example are equations

(1), (2), (3), (4), (5), (7), (8), (9), (10), etc., although the constant

coefficients in many of these cases were experimentally deter-

mined. Formulas of this kind are known in mathematics as

rational formulas. On the other hand certain of the above for-

mulas, especially equations (14), (17), (19), (22), (23), (24),

including not only the constant coefficients but also the law of

variation of the function itself, are known to be true only as the

result of experiment. Such equations are called empirical
formulas. Such formulas arise in the attempt to express by an

equation the results of a series of laboratory measurements.

For example, the density of water (that is, the mass per cubic

centimeter or the weight per cubic foot) varies with the tem-

perature of the water. A large number of experimenters have

prepared accurate tables of the density of water for wide ranges
of temperature centigrade, and a number of very accurate empirical
formulas have been ingeniously devised to express the results, of

which the following four equations are samples:
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Empirical formulas for the density, d, of water in terms of tem-

perature centigrade, 6.

96(0
-

4)
2

(a) d = 1 - A__

(5) d = ^(ir-J)
1 ' 982

602

_- 360J- 47

0.48503 - 81.302 + 6020 - 1118

10 7

Exercises

1. Among the power functions named in the above illustrations, pick
out examples of increasing functions and of decreasing functions.

2. Under the same difference of head or pressure, show by formula

(24) that an 8-inch pipe will transmit much more than double the

quantity of water per second that can be transmitted by a 4-inch pipe.

3. Wind velocities during exceptionally heavy hurricanes on the

Atlantic coast are sometimes over 140 miles per hour. Show that the

wind pressure on a flat surface during such a storm is about fifty

times the amount experienced during a 20-mile wind.

4. Show that for wind velocities of 10, 20, 40, 80, 160 miles per hour

(varying in geometrical progression with ratio 2), the pressure

exerted on a flat surface is 0.3, 1.2, 4.8, 19.2, 76.8 pounds per

square foot respectively (varying in geometrical progression

with ratio 4).

5. A 300-h.p. DeLaval turbine makes 10,000 revolutions per min-

ute. Find the necessary diameter of the propeller shaft.

6. A railroad switch target bent over by the wind during a tornado

in Minnesota indicated an air pressure due to a wind of 600 miles per

hour. Show that the equivalent pressure on a flat surface would

be 7.5 pounds per square inch.

7. Show that a parachute 50 feet in diameter and weighing 50

pounds will sustain a man weighing 205 pounds when falling at the

rate of 10 feet per second.

SUGGESTION: Use approximate value TT = 22/7 in finding area of

parachute from formula for circle, irr
2 ' and use formula (20) above.

8. Show that empirical formulas (a) and (6) for the density of

water reduce to a power function if the origin be taken at =
4, d = 1.
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33. Practical Graphs of Power Functions. The graphs of

the power function

3
, y =

l/x, y = x-, etc., (1)

can, of course, be made the basis of the laws concretely expressed

by equations (l) to (27) of 31. If, however, the graph of a

scientific formula is to serve as a numerical table of the function

for actual use in practical work, then there is much more labor

in the proper construction of the graph than the mere plotting

of the abstract mathematical function. The size of the unit

to be selected, the range over which the graph should extend,

the permissible course of the curve, become matters of practical

importance.
If the apparent slope

1 of a graph departs too widely from

+ 1 or 1, it is desirable to make an abrupt change of unit in

the vertical or the horizontal scale, so as to bring the curve back

to a desirable course, for it is obvious that numerical readings can

best be taken from a curve when it crosses the rulings of the co-

ordinate paper at apparent slopes differing but little from 1.

The above suggestions in practical graphing are illustrated by
the following examples:

Graph the formula (equation (8), 31), for the horse power
transmissible by cold-rolled shafting

_ rfW (2)

"60"

in which // is the diameter in inches and N is the number of

revolutions per minute. The formula is of interest only for the

ran go of d between and 24 inches, as the dimensions of ordinary

shafting lie well within these limits. Likewise one would not

ordinarily be interested in values of N except those lying between
10 ;md 3000 revolutions per minute. Fig. 40 shows a suitable

graph of this formula for the range I < d < 10 for the fixed

value of N = 100. In order properly to graph this function, three

different scales have been used for the brdinate H, so that the

slope of the curve may not depart too widely from unity.
1 Ot course the real slope of a curve is independent of the scales used. By

apparent slope = 1 is meant that the graph appears to cut the ruling of the

sqinred paper nt about 45.
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If similar graphs be drawn for N = 200, N = 300, N = 400,

etc., a set of parabolas is obtained from which the horse power
of shafting for various speeds of rotation as well as for various

diameters may be obtained at once. A set of curves systematically

constructed in a manner similar to that just described, is often

called a family of curves. Fig. 39 shows a family of straight lines

expressing the capacity of rectangular tanks corresponding to

the various widths of the tanks.

Inasmuch as many of the formulas of science are used only for

positive values of the vari-

ables, it is only necessary in

these cases to graph the

function in the first of the

four quadrants. For such

problems the origin may be

taken at the lower left cor-

ner of the coordinate paper
so that the entire sheet be-

comes available for the

curve in the first quadrant.

The above illustrations

are sufficient to make clear

the importance in science of

the functions now being

discussed. The following

exercises give further prac-

tice in the useful application of the properties of the functions.
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1. Classify the graphs of formulas (1) to (27), 31, as to

parabolic or hyperbolic type.

2. Graph the formula v- =
'2gh, or v = \/2gh = 8.02/t

1

--, if h range

between 1 and 100, the second and foot being the units of measure.

See formula (5), 31.

The following table of values is readily obtained :

h 1 5 10 20 30 40 50 60 70 80 90 100

v 8.02~T7.9~25!3~^5^8~43.9 50.7 56.7 62.1 67.1 71.7 76.0 80.2

Use 2 cm. = 10 feet as the horizontal unit for h, and 2 cm. =10
feet per second as the vertical unit for v. The graph is then readily

constructed without change of unit or other special expedient.

3. Graph the formula q = 3.37L/1
3
'* for L =

1, for h= 0, 0.1, 0.2,

0.3, 0.4, 0.5. See formula (17), 31. Use 4 cm. = 0.1 for hori-

zontal unit for h and 2 cm. =0.1 for vertical unit for q.

4. Draw a curve showing the indicated horse power of a ship

I.H.P. = S SD^/C for C = 200 if the displacement D = 8000 tons, and

for the range of speeds S = 10 to S = 20 knots. See formula (14),

31.

For the vertical unit use 1 cm. = 1000 h.p. and for the horizontal

unit use 2 cm. =1 knot. Call the lower left-hand corner of the paper
the point (S =

10, I.E.P. = 0).

6. From the formula expressing the centripetal force in pounds of a

rotating body,

F = 0.000341WRN 2

draw a curve showing the total centripetal force sustained by a 36-inch

automobile tire weighing 25 pounds, for all speeds from 10 to 40 miles

per hour. See formula (13), 31.

Miles per hour must first be converted into revolutions per minute

by dividing 5280 by the circumference of the tire and then dividing

the result by 60. This gives

1 mile an hour = 9^ revolutions a minute

If V be the speed in miles per hour the formula for F becomes

F = 0.000341(1.5)25(9)
2 7 2 = 1.117*

For horizontal scale let 4 cm. = 10 miles an hour and for the vertical

scale let 1 cm. = 100 pounds.

6. Draw a curve from the formula / = w/r2
showing the accelera-

tion of gravity due to the earth at all points between the surface of
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the earth and a point 240,000 miles (the distance to the moon) from
the center, if / = 32.2 when radius of the earth = 4000 miles.

It is convenient in constructing this graph to take the radius of

the earth as unity, so that the graph will then be required of

/ = 32.2/r
2 from r = 1 to r = 60. In order to construct a suitable

curve several changes of units are desirable. See Fig. 41. One
centimeter represents one radius (4000 miles) from r = to r = 10,

after which the scale is reduced to 1 cm. = lOr. In the vertical direc-

tion the scale is 4 cm. = 10 feet per second for < r < 5, 4 cm. =
1 foot a second for 5 < r < 10, and 4 cm. =0.1 foot a second for

40

30

I 10 >\

020

0-10

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60

Distance from Earth's, Center, Earth's Radius=l

FIG. 41. Gravitational Acceleration at Various Distances from the
Earth's Center. The moon is distant approximately 60 earth's radii from
the center of the earth.

10 < r < 60. Even with these four changes of units just used the

first and third curves are somewhat steep. The student can readily

improve on the scheme of Fig. 41 by a better selection of units.

34. The Law of the Power Functions. Sufficient illustrations

have been given to show the fundamental character of the power
function as an expression of numerous laws of natural phenomena.
How may a functional dependence of this sort be expressed in

words? If a series of measurements are made in the laboratory,

so as to produce a numerical table of data covering certain phe-



34] RECTANGULAR COORDINATES 77

nomena, how can it be determined whether or not a power function

can be written down which will express the law (that is, the

function) defined by the numerical table of laboratory results?

The answers to these questions are readily given. Consider first

the law of the falling body

s = 16.U 2
(1)

Make a table of values for values of t = 1, 2, 4, 8, 16 seconds, as

follows: 124 8 16

16.1 64.4 257.6 1030.4 4121.6

The values of t have been so selected that t increases by a fixed

multiple; that is, each value of t in the sequence is twice the pre-

ceding value. From the corresponding values of s it is observed

that s also increases by a fixed multiple, namely 4.

Similar conclusions obviously hold for any power function.

Take the general case

y = ax (2)

where n is any exponent, positive, negative, integral or fractional.

Let x change from any value Xi to a multiple value mx\ and call

the corresponding values of y, y\ and t/ 2 . Then we have

y\ = axi n
(3)

and

?/2
= a(mxi)

n = am nxi n
(4)

Divide the members of (4) by the members of (3) and we have

|-- (5)

That is, if x in any power function change by the fixed multiple

m, then the value of y will change by a fixed multiple m n
. Thus

the law of the power function may be stated in words in either of

the two following forms :

In any power function, if x change by a fixed multiple, y will

change by a fixed multiple also.

In any power function, if the variable increase by a fixed percent,

the function will increase by a fixed percent also.
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This test may readily be applied to laboratory data to determine

whether or not a power function can be set up to represent as a

formula the data in hand. To apply this test, select at several

places in one column of the laboratory data, pairs of numbers
which change by a selected fixed percent, say 10 percent, or 20

percent, or any convenient percent. Then the corresponding pairs

of numbers in the other column of the table must also be related by
a fixed percent (of course, not in general the same as the first-

named percent), provided the functional relation is expressible by
means of a power function. If this test does not succeed, then

the function in hand is not a power function.

Since the fixed percent for the function is mn if the fixed percent
for the variable be m, the possibility of determining n exists,

since the table of laboratory data must yield the numerical values

of both m and mn
.

35. Simple Modifications of the Parabolic and of the Hyperbolic

Types of Curves. In the study of the motion of objects it is

convenient to divide bodies into two classes: first, bodies which

retain their size and shape unaltered during the motion; second,

bodies which suffer change of size or shape or both during the

motion. The first class of bodies are called rigid bodies; a mov-

ing stone, the reciprocating or rotating parts of a machine, are

illustrations. The second class of bodies are called elastic bodies
;

a piece of rubber during stretching, a spring during elongation or

contraction, a rope or wire while being coiled, the water flowing in

a set of pipes, are all illustrations of this class of bodies.

When a body changes size or shape the motion is called a

strain.

Bodies that preserve their size and shape unchanged may possess

motion of two simple types: (1) Rotation, in which all particles

of the body move in circles whose centers lie in a straight line

called the axis of rotation, which line is perpendicular to the plane

of the circles, and (2) translation, in which each straight line of

the body remains fixed in direction.

We have already noted that the curve

2/1 = x- (1)
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can be made from the curve

y =* n
(2)

by multiplying all the ordinates of (2) by a. The effect is either to

elongate or to contract all of the ordinates, depending upon whether

a > 1 or a < 1 respectively. The substitution of (y\ /a} for y

has therefore produced a motion or strain in the curve y = x n
,
which

in this case is the object whose motion is being studied. Likewise

(3)

can be made from

y = x n
(4)

by multiplying all of the abscissas of (4) by a: The effect is

either to stretch or to contract all of the abscissas, depending

upon whether a > 1, or a < 1 respectively.

In general, if a curve have the equation

y =
/(*) (5)

then

y = /(ziAO (6)

i made from curve (5) by lengthening or stretching the XY-
plane uniformly in the x direction in the ratio 1 : a.

The statement just given is made on the assumption that

a > 1. If a < 1 then the above statements must be changed

by substituting shorten or contract for elongate or stretch.

The reasons for the above conclusions have been previously

stated: substituting (
J everywhere as the equal of x multiplies

all of the abscissas by a. That is, if (} =
x, then x i

=
ax, so that

x\ is a-fold the old x.

We shall now explain how certain other of the motions men-
tioned above may be given to a locus by suitable substitution for

x and y.

36. Translation of Any Locus. If a table of values be prepared
for each of the loci

(1)

3)- (2)
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as follows :

X \
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is the same as the locus y = 3x translated upward the distance 5,

for the first equation is really y 5 = 3x, from which the conclu-

sion is obvious.

Exercises

1. Compare the curves: (1) y = 2x and y = 2(x 1); (2) y = x 3

and y = (x
-

4)
3

; (3) y = x 3 and y - 3 = x 3
', (4) y = x& and

y = (x
- 5)^; (5) y = 5z 2 and y = 5(z + 3)

2
; (6) y = 2x 3 and

y = 2(x - k)
3

; (7) y = 2x 3 and y = 2x 3
-f fc; (8) y + 7 = x 2 and

y = x 2 and T/
- 7 = x 2

; (9) 3y
2 = 5x 3 and 3(y - 6)

2 = 50 -
a)

3
.

2. Compare the curves: (1) y = z 3 and ?/
= 0/2) 3

; (2) T/
= x 3

and ?/ =z 3
/8; (3) y = x 3 and y/2 = z 3

; (4) ?/
= z 3 and ?/

= 2x 3
; (5)

7/
2 = 3z 3 and (y/5)

2 = 3(x/7)
3

; (6) y* = x 3 and y2 = (3z)
3

; (7)

y = x 2 and y = 4x 2
(note: explain in two ways); (8) y x 3 and

2y = x 3 and y = 27z 3
.

3. Translate the locus y = 2x 3
; (1) 3 units to the right; (2) 4 units

down; (3) 5 units to the left.

4. Elongate three-fold in the x direction the loci: (1) y
z = x] (2)

3y = x 3
; (3) 7/

2 = 2x 3
} (4) y = 2x + 7.

5. Multiply by 1/2 the ordinates of the loci named in exercise 4.

6. Show that y = -
^ and y = are hyperbolas.

X ~p X

7. Show that y = 7 is a hyperbola.

NOTE: Divide the numerator by the denominator, obtaining the

equation?/ = 1
x

8. Show that y = ~T is a hyperbola, namely, the curve xy = a b
x ~r o

translated to a new position.

37. Shearing Motion. An important strain of the .XT-plane
occurs if we derive

y = f(x) + mx (1)

from

y'
=

f(x) (2)

Graphically, the curve (1) is seen to be formed by the addition

of the ordinates of the straight line y" = mx to the corresponding
ordinates of y'

=
f(x) . Thus, in Fig. 42, the graph of the func-

(>
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tion x* + x is made by adding the corresponding ordinates of

y' x s and y" = x. Mechanically, this might be done by drawing
the curve on the edge of a pack of cards, and then slipping the

cards over each other uniform amounts. The change of the

shape of a body, or the strain of a body, here illustrated, is

called lamellar motion or shearing motion. It is a form of

motion of very great importance.

FIG. 42. The Shear of the Cubical Parabola y = x* in the line y = x, and
also in the Line y = x.

We shall speak of the locus y = f(x) + mx as the shear of the

curve y = f(x) in the line y = mx.

THEOREMS ON Loci

VIII. The addition of the term mx to the right side of y
=

f(x)

shears the locus y=f(x) in' the line y
= mx.

The locus

y = ax 3 + mx -j- b
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is made from y = a;
3 by a combination of (1) a uniform elongation

a], (2) a shearing motion [m], and (3) a translation [b]. Either

motion may be changed in sense by changing the sign of a, m,
or b, respectively.

The student may easily show that the effect of a shearing motion

upon the straight line y = mx + b is merely a rotation about

the fixed point (0, b). The line is really stretched in the direction

H K

FIG. 43. Shearing Motion Illustrated by the Slipping of the Members of

Pack of Cards.

of its own length, but this does not change the shape of the line

nor does it change the line geometrically. A line segment (that

is, a line of finite length) would bo mollified, however.

The parabola y = x* is transformed under a shearing motion
in a most interesting way. For, after shear, y = .r

2 becomes:

y = .r
2 + -///. (3)
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where, for convenience, the amount of the shearing motion is

represented by 2m instead of by m. Writing this in the form

or,

y = x 2
-f- 2mx + m 2 -

y =
(x + w) 2 - m 2

T/ -f m 2 =
(x + m) 2

(4)

\

\

-2

we see that (4) can be made from the parabola y = x 2
by trans-^ lating the curve to the left

the amount m and down
the amount m z

. (See Fig.

44.)

Shearing motion, there-

fore, rotates the straight

line and translates the pa-
rabola. The effect on other

curves is much more com-

plicated, as is seen from

Figs. 42 and 43.

The parabola y x 2
is

identical in size and shape
with y = x 2 + mx + b.

Likewise, y = ax* + bx + c

is a parabola differing only

in position from y = ax-.

Exercises
FIG. 44. The Shear of y = x2- in the line

y = Q.Qx. 1 Explain how the curve

y = x 3 + 2x may be made
from the curve y = x 3

. How can the curve y = 2x 3 + 3z be made
from the curve y = 2x 3 ?

2. Find the coordinates of the lowest point of y = x 2
4.x',

that is, put this equation in the form y b = (x a )
2

.

3. Compare the curves y = x 3 + 2x and y = x 3 2x. (Do not

draw the curves.)

4. Explain the curve y = 1/x + 2x from a knowledge of y = l/x
and of y = 2x.
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38. Rotation of a Locus. The only simple type of displace-

ment of a locus not yet considered is the rotation of the locus

about the origin 0. This will be taken up in the next chapter

in the discussion of a new system of coordinates known as polar

coordinates. The rotation of any locus about the X-axis or about

the F-axis is readily accomplished, however, as previously ex-

plained. For substituting ( x) for x changes every point that is

to the right of the F-axis to a point to the left thereof, and vice

versa. It is equivalent, therefore, to a rotation of the locus about

the F-axis. Likewise, substituting ( y} for y rotates any locus

180 about the X-axis. It is preferable, however, to speak of the

locus formed in this way as the reflection of the oriiginal curve in

the ?/-axis or in the z-axis, as the case may be.

39. Roots of Functions. The roots or zeros of a function are

the values of the argument for which the corresponding value of

the function is zero. Thus, 2 and 3 are roots of the function

x 2 5x + 6, for substituting either number for x causes the

function to be zero. The roots of x z x 6 are + 3 and 2.

The roots of z 3 - 6x 2
-f llx - 6 are 1, 2, 3.

The word root, used in this sense, has, of course, an entirely

different significance from the same word in "square root," "cube

root," etc. But the roots of the function x 2 5x 6 are also the

roots of the equation x 2 5x 6 = 0.

In the graph of the cubic function y = # 3 x in Fig. 42, the

curve crosses the X-axis at x = 1, x =
0, and x = 1. These are

the values of x that make the function x* x zero, and are, of

course, the roots of the function x s x. No matter what the func-

tion may be, it is obvious that the intercepts on the X-axis, as OA
,

OB, Fig. 42, must represent the roots of the function.

Exercises

1. From the curve y = re
2 sketch the curves y 4 = x 2

; y = 4z 2
;

4i/
= x 2

; y =
(x
-

4)2.

2. Sketch y = x 3
/2; y = x 3 -

1/4; y = x*/2
-

4; y =-~^
'

3. Sketch the curves y =
\/x\ y =

3/x] y= 2VoT; y = Vx^ 2;

>J
- 2 = v> - 2, and //

= %/x - 3.
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4. Sketch the curves ?/
2 = (x

-
3)

3
; (y

-
2)

2 = x 3
,
and (y

-
2)

2

5. Graph yi = x and r/ 2
= ' 3 and thence y = x + a;

3
.

6. Find the roots of x 2- Qx + 8 =
0, from the graph of

y = x 2 - Qx + 8.

7. Find the roots of the functions x 2 a- and x4 a4
.

8. Compare the curves y = re
3
and?/ = x z

',y
= z 2 and y =

x-\

y = 2x + 3 and y = 2x + 3.

9. Graph yi = x and y* = l/x and thence y = x -f l/x.

10. Compare y = l/x, y = l/(x
-

2), y = I/ (a; + 3).

11. Compare y = l/x, y = l/(2x), y = 2/z.

40. *Graphical Construction of Power Functions and of other

Functions. 1 The graphical computation of products and quo-

ffd

/^v

1,1

FIG. 45. Construction of an Ordinate Equal to the Product of Two
Given Ordinates.

tients, etc., explained in 7, may be applied to the construction of

the power functions. For this purpose it is desirable to elaborate

slightly the previous method so as to provide for finding prod-

ucts, etc., of lines that are parallel to each other, instead of at right

angles as OA and IB, Fig. 9.

1 The remainder of this chapter (except the review exercises) may be omitted with-

out loss of continuity.
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The constructions can be carried out on plain paper by first

drawing the axes, the unit lines and the line y =
x, without the

use of scales or measuring device of any sort. The work is more

rapidly done, however, on squared paper, as then the use of a

T-square and triangle may be dispensed with . A unit of measure

equal to 2 inches or 4 cm. will be found convenient for work

on standard letter paper 8 X 11 inches.

Note that the following constructions give both the magnitude
and the proper algebraic sense of the results.

(1) To construct an ordinate

equal to the product of two ordi-

nates: Let XX', YY', Fig. 45, be
the axes, Ui, Uz the unit lines,

and OR the line y x, which

FIG. 46. Construction of an Or- FIG. 47. Construction of an Or-
dinate Equal to the Quotient of dinate Equal to the Square of a

Two Given Ordinates. Given Ordinate.

we shall call the reflector. Let a and b be two ordinates whose

product is required. Move one of the two given ordinates as b

until, in the position ND, its end touches the reflector OR.

Move the second of the two ordinates to the position 1A/ on the

unit line U\. Draw OMP. The point P at which DA7

"

is cut by
OM (produced if necessary) determines DP, which is the prod-
uct a X b. This result follows by similar triangles from the pro-

portion

DP:IM = OD :0l
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Substituting a for 1M and b for OD (= DN =
b) and unity for

01, we obtain

DP : a = b : 1

or

DP = a X b

The same diagram shows the construction of the products c X d

and a X c for cases in which one or both of the factors are negative.

Note that by the above construction the ordinate representing

the product is always located at a particular place, D, at which the

abscissa of the product a X b is either equal to a or to b, depending

upon which of the ordinates was moved to the reflector OR.

A Us

lli

FIG. 48. Construction of the Reciprocal of x.

(2) To construct an ordinate equal to the quotient of two ordi-

nates: This is done by use of the second unit line Uz as shown in

Fig. 46. The ordinate representing the quotient is located at D
where OD equals the dividend b.

(3) The special case of (1) when a = b leads to the construction

of x 2 as shown in Fig. 47. The figure shows the construction of

x* at D where OD = x and of Xi
2 at DI where ODi = xi.

(4) The special case of (2) where 6=1 leads to the construc-

tion of l/x as shown in Fig. 48.

(5) To construct the graph of y = x 2
,
it is merely necessary to

make repeated applications of (3) to the successive ordinates of
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the line y =
x, as shown in Fig. 49. Thus from any point A of

y = x move horizontally to the unit line Ui locating B, then if

OB meets DA at P, P is a point of the curve y = x z
. The figure

shows the construction for a number of points, lettered A\ }
A 2,

A 9 ,
. . .

(6) To construct the graph of y = x 3
,
first cut out a pattern of

y = x z of heavy paper, marking upon it the lines OY and Uz

\\\
\\

/A

^
Az

Y

WV

-gj Di

IG. 49. Construction of the Curve y = x2 from the curve y = x.

Jy means of this pattern draw the curve y = x* upon a fresh sheet

of paper as shown in Fig. 50. Then multiply each ordinate of

y = x z by x by moving it horizontally from any point A of y = x*

to the unit line Ui at B, then locating P on DA by drawing OB
until it cuts DA at P. The result is the cubical parabola

(7) To draw the hyperbola y =
l/x, make repeated application

of (4) above to successive values of x. To draw y= l/x
2
, repeat

division by x to the ordinates of y =
l/x, etc.
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(8) To construct the graph of y = x^\ First, from the pattern

of y = x 2 draw the curve y =
\/.r. From a pattern draw the

curve y = x 3 upon the same axes. Then from any point A\

of y x l/^
proceed horizontally to BI on the reflector; then ver-

tically to Ci on the curve y = x s
,
then horizontally to PI on the

ordinate DAi first taken. Then PI is on the curve y = X A/

~.

For, call DA l
= y^ Hd =

2/ 2 ; DPj, =
y; OD =

x-, OH = x*

Then by construction (Fig. 51)

Y

u\

FIG. 50. Construction of the Curve y = z 3 from the curve y = x*.

OH = DA =
?/i

= X A (1)

(2)

(3)

DP, = y = Hd =
y>2

= x

Hut,

Hence, by (3) and (2):

and by (1)

2/i
3

(5)
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(9) Function of a function: The construction and reasoning

just given applies to a much more general case. Thus if the curve

0.4!, Fig. 51, has the equation

V = /(*)

and if the curve OC\ has the equation

y = F(x)

FIG. 51. Construction of the Semi-cubical Parabola y
x* and y = xW

then the curve OP\ has the equation

y = F[f(x)]

Thus, if OA i be the curve

Iy
= 1 - x*

and OCi the curve

v-*' 5

then OPi is the curve

from y
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For constructions of the function

y = a -f aix + azx* + . . . + a nx n

see
"
Graphical Methods" by Carl Runge, Columbia University

Press, 1912.

Miscellaneous Exercises

1. Define a function. Explain what is meant by a discontinuous

function. Give practical illustrations.

2. Define an algebraic function; rational function; fractional

function. Give practical illustrations in each case.

3. Give an illustration of a rational integral function; of a

rational fractional function.

4. Write a short discussion of the Cartesian method of locating a

point. Explain what is meant by such terms as "axis," "x of a

point," "quadrant," etc.

5. What is meant by the locus of an equation?

6. Write the equations of the lines determined by the following
data:

(a) slope 2 F-intercept 5

(6) slope 2 F-intercept 5

(c) slope 2 F-intercept 5

(d) slope 2 F-intercept 5

(e) slope 2 X-intercept 4

7. Make two suitable graphs upon a single sheet of squared paper
from the following data giving the highest and lowest average clos-

ing price of twenty-five leading stocks listed on the New York Stock

Exchange for the years given in the table :

Year Highest Lowest

1913 94.56 79.58

1912 101.40 91.41

1911 101.76 86.29

1910 111.12 86.32

1909 112.76 93.24

1908 99.04 67.87

1907 109.88 65.04

1906 113.82 93.36

1905 109.05 90.87

1904 97.73 70.66

1903 98.16 68.41

1902 101.88 87.30
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Should smooth curves be drawn through the points plotted from this

table?

8. Define a parabolic curve. What is the equation of the parabola?
Of the cubical parabola? Of the semi-cubical parabola?

9. What is the definition of an hyperbolic curve? Of the rectangu-
lar hyperbola?

10. Draw on a sheet of coordinate paper the lines x =
0, x =

1,

x 1, y =
0, y =

1, y = 1. Shade the regions in which the

hyperbolic curves lie with vertical strokes; and those in which the

parabolic curves lie with horizontal strokes. Write down all that the

resulting figure tells you.

11. Consider the following : y = x 2
, y = x~ 3

, y = $/x*, xy =
I,

y = - x 3
, y* =

x*, y* = x 2
, xy =

1, x* = -
y

2
,
x* = -

y*. Which
are increasing functions of x in the first quadrant? For which
does the slope of the curve increase in the first quadrant? For
which does the slope of the curve decrease in the first quadrant?

12. Which of the curves of exercise 11 pass through (0, 0)?

Through (1, 1)? Through (-1, -1)?

13. Find the vertex of the curve y = x 2 24z + 150.

NOTE: The lowest point of the parabola y = x 2 may be called

the vertex.

SUGGESTION: It is necessary to put the equation in the form y b

= (x a)
2

. This can be done as follows : Add and subtract 144 on
the right side of the equation, obtaining

y = x 2 -.24z + 144 - 144 + 150

or,

y =
(re -12)2 + 6

or,

y - 6 = (X
-

12)
2

Then this is the curve y = x 2 translated 12 units to the right and 6

units up. Since the vertex of y = x 2 is at the origin, the vertex of the

given curve must be at the point (12, 6).

14. Find the vertex of the parabola y = x 2 Qx +11.

16. Find the vertex of y = x 2 + Sx + 1.

16. Find the vertex of 4 + y = x z 7x.

17. Find the vertex of y = Qx 2 + ISx -f 1.

18. Translate y = 4z 2 - I2x + 2 so that the equation may have
the form y = 4x2

.



CHAPTER III

THE CIRCLE AND THE CIRCULAR FUNCTIONS

41. Equation of the Circle. In rectangular coordinates the

abscissa x, and the ordinate y, of any point P (as OD and DP,
Fig. 52) form two sides of a right triangle whose hypotenuse
squared is x 2 + y

z
. If the point P move in such manner that the

length of this hypotenuse remains fixed, the point P describes a

circle whose center is the origin (see Fig. 52). The equation of

this circle is, therefore:

x 2 + y
2 = a 2

(1)

if a stand for OP, Fig. 52, namely
the fixed length of the hypote-

nuse, or the radius of the circle.

It is sometimes convenient to

write the equation of the circle

solved for y in the form

y= I

FIG. 52.-The Definition of the Cir-

cular Functions.

^^ (2)

f r^ Value f *
the two corresponding equal and

opposite ordinates.

To translate the circle of radius a so that its center shall be the

point (h, k), it is merely necessary to write

(x-h) 2 + (y-k) 2 = a 2
(3)

This is the general equation of any circle in the plane xy, for it

locates the center at any desired point and provides for any
desired radius a.

Exercises

1. Write the equations of the circles with center at the origin

having radii 3, 4, 11, V 2 respectively.

94.
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2. Write the equation of each circle described in exercise 1 in

the form y = A/a2 x2
.

3. Which of the following points lie on the circle x~ + y
2 =169

(5, 12), (0, 13), (
-

12, 5), (10, 8), (9, 9), (9, 10)?

4. Which of the following points lie inside and which lie outside

of the circle x* + y* = 100: (7, 7)^ (10, 0), (7, 8), (6, 8), (
-

5, 9),

(
-

7,
-

8), (2, 3), (10, 5), (V40, A/50), (Vl9, 9)?

42. The Equation, x 2 + y
2+ 2gx + 2fy + c = o (1)

may be put in the form (3) . For it may be written

z 2 + 2gx + g* + y* + 2fy + /
2 =

g* + /
2 -

c,

or,

(x + <7)
2 + (y +/) 2 = (\V + /

2 -
c)

2
(2)

which represents a circle of radius \/g* +/2 c whose center is at

the point (0,/). In case g
2
-f-/

2 c < 0, the radical

becomes imaginary, and the locus is not a real circle; that is,

coordinates of no points in the plane xy satisfy the equation. If

the radical be zero, the locus is a single point.

43. Any equation of the second degree, in two variables, lacking

the termxy and having like coefficients in the terms x* andy z
, repre-

sents a circle, real, null or imaginany. The general equation of

the second degree in two variables may be written:

ax* + by* + 2hxy + 2gx + 2fy + c = (3)

for, when only two variables are present,there can be present three

terms of the second degree, two terms of the first degree, and one

term of the zeroth degree. When a = b and h = this reduces

to (1) above on dividing through by a.

Exercises

Find the centers and the radii of the circles given by the following

equations :

1. 2 + y- = 25. Also determine which of the following points
an- ,,,i this irl: (3, 4), (5, 5), (4, 3), (-3, -4), (-3, 4), (5, 0),

('2, >/21).

2. x-2 + if-
= 1C,.

3. z 2 + 7/
2 - 4 = 0.
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4. x z + y*
- 36 = 0.

5. z 2 + 7/
2 + 2x = 0.

6. y = +V169 x2
. Also find the slope of the diameter through

the point (5, 12). Find the slope of the tangent at (5, 12).

7. 9 - x 2 - y
2 = 0.

8. x* + y*
- Qy = 16.

9. x 2 - 2x + y
2 - Qy = 15.

10. (x + a)
2 + (y

-
6)

2 = 50.

11. x 2 + y
2 + Qx - 2y = 10.

12. x 2 + 7/
2 - 4z + 6y = 12.

13. x 2 + y
2 - 4z - 8y + 4 = 0.

14. 3z 2 + 3z/
2 + Qx + I2y - 60 = 0.

16. Is z 2 + 2?/
2 + 3x - 4y - 12 = the equation of a circle?

Why?
16. Is 2z 2 + 2y

z 3x + 4y 8 = the equation of a circle?

Why?
44. Angular Magnitude. By the magnitude of an angle is

meant the amount of rotation of a line about a fixed point. If

a line OA rotate in the plane XY about the fixed point to the

position OP, the line OA is called the initial side and the line OP is

called the terminal side of the angle AOP. The notion of angular

magnitude as introduced in this definition is more general than

that used in elementary geometry. There are two new and very

important consequences that follow therefrom:

(1) Angular magnitude is unlimited in respect to size that is,

it may be of any amount whatsoever. An angular magnitude of

100 right angles, or twenty-five complete rotations is quite as

possible, under the present definition, as an angle of smaller

amount.

(2) Angular magnitude exists, under the definition, in two

opposite senses for rotation may be clockwise or anti-clockwise.

As is usual in mathematics, the two opposite senses are distin-

guished by the terms positive and negative. In Fig. 53, AOPi,
AOP 2, AOP 3, AOP 4 are positive angles. In designating an

angle its initial side is always named first. Thus, in Fig. 53,

AOP i designates a positive angle of initial side OA. PiOA
designates a negative angle of initial side OP\.
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In Cartesian coordinates, OX is usually taken as the initial

line for the generation of angles. If the terminal side of any angle

falls within the second quadrant, it is said to be an "
angle of the

second quadrant," etc.

Two angles which differ by

any multiple of 360 are called

congruent angles. We shall

find that in certain cases con-

gruent angles may be substi-

tuted for each other without

modifying results.

The theorem in elementary

geometry, that angles at the

center of a circle are propor-
tional to the intercepted arcs,

holds obviously for the more FIG. 53. Triangles of Reference

general notion of angular mag- (ODiPi, OD2Pz, etc.) for Angles
., i i -,11 of Various Magnitude,mtude here introduced.

45. Units of Measure. Angular magnitude, like all other

magnitudes, must be measured by the application of a suitable

unit of measure. Four systems are in common use:

(1) Right Angle System. Here the unit of measure is the right

angle, and all angles are given by the number of right angles and

fraction of a right angle therein contained. This unit is familiar

to the student from elementary geometry. A practical illus-

tration is the scale of a mariner's compass, in which the right angles

are divided into halves, quarters and eighths.

(2) The Degree System. Here the unit is the angle corre-

sponding to
-3 J-g- of a complete rotation. This system, with the

sexagesimal sub-divisions (division by GOths) into minutes

and seconds, is familiar to the student. This system dates back

to remote antiquity. It was used by, if it did not originate among,
the Babylonians.

(3) The Hour System. In astronomy, the angular magnitude
about a point is divided into 24 hours, and these into minutes

and seconds. This system is familiar to the student from its

analogous use in measuring time.

(4) The Radian or Circular System. Here the unit of measure
7
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is an angle such that the length of the arc of a circle described about

the vertex as center is equal to the length of the radius of the

circle. This system of angular measure is fundamental in me-

chanics, mathematical physics and pure mathematics. It must

be thoroughly mastered by the student. The unit of measure in

this system is called the radian. Its size is shown in Fig. 54.

O Radius

FIG. 54. Definition of the Radian. The Angle AOP is one Radian.

Inasmuch as the radius is contained 2w times in a circumference,

we have the equivalents:

or,

2?r radians = 360.

1 radian = 57 11' 44".8 = 57 17'.7 = 57.3.

1 degree = 0.01745 radians.

The following equivalents are of special importance:

a straight angle = ir radians.

7T

a right angle = ~- radians.

60 =
Q radians.
o

45 = radians.
4

30
C

radians.

I
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There is no generally adopted scheme for writing angular magni-
tude in radian measure. We shall use the superior Roman letter
" T "

to indicate the measure, as for example, 18 = 0.31416r
.

Since the circumference of a circle is incommensurable with its

diameter, it follows that the number of radians in an angle is

always incommensurable with the number of degrees in the angle.

The speed of rotating parts, or angular velocities, are usually

given either in revolutions per minute (abbreviated "r.p.m.")
or in radians per second.

46. Uniform Circular Motion. Suppose the line OP, Fig. 52,

is revolving counter-clockwise k
r

per second, the angle AOP
in radians is then kt, t being the time required for OP to turn from

the initial position OA. If we call 8 the angle AOP, we have 6 = kt

as the equation denning the motion. The following terms are

in common use:

1. The angular velocity of the uniform circular motion is k

(radians per second).

2. The amplitude of the uniform circular motion is a .

3. The period of the uniform circular motion is the number of

seconds required for one revolution.

4. The frequency of the uniform circular motion is the number
of revolutions per second.

Sometimes the unit of time is taken as one minute. Also the

motion is sometimes clockwise or negative.

Exercises

1. Express each of the following in radians: 135, 330, 225, 15,
150, 75, 120. (Do not work out in decimals; use *).

2. Express each of the following in degrees and minutes: 0.2r
,

W5, |7T
r

, V.
3. How many revolutions per minute is 20 radians per second?
4. The angular velocity, in radians per second, of a 36-inch

automobile tire is required, when the car is making 20 miles per hour.

5. What is the angular velocity in radians per second of a 6-foot

drive-wheel, when the speed of the locomotive is 50 miles per hour?
6. The frequency of a cream separator is 6800 r.p.m. What is

its period, and velocity in radians?
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7. A wheel is revolving uniformly 30r per second. What is its

period, and frequency?
8. The speed of the turbine wheel of a 5-h.p. DeLaval steam turbine

is 30,000 r.p.m. What is the angular velocity in radians per
second?

47. The Circular or Trigonometric Functions. To each point

on the circle x z
-f- y

z = a2 there corresponds not only an abscissa and

an ordinate, but also an angle 6< 360, as shown in Figs. 52 and 53 .

This angle is called the direction angle or vectorial angle of the

point P. When 6 is given, x, y and a are not determined, but the

ratios y /a, x/a, y /x, and their reciprocals, afy, a/x, x/y are de-

termined. Hence these ratios are, by definition, functions of 6.

They are known as the circular or trigonometric functions of 0,

and are named and written as follows:

Function of 6. Name. Written.

y/a. sine of 0. sin 0.

x/a. cosine of 0. cos 0.

y /x. tangent of 0. tan 0.

x /y. cotangent of 0. cot 0.

a/x. secant of 0. sec 0.

a /y. cosecant of 0. esc 6.

The circular functions are visually thought of in the above order :

that is, in such order that the first and last, the middle two, and

those intermediate to these, are reciprocals of each other.

The names of the six ratios must be carefully committed to

memory, They should be committed, using the names of x, y,

and a as follows:

Ratio. Written,

ordinate /radius. sin 0.

abscissa /radius. cos 6.

ordinate /abscissa. tan 0.

abscissa /ordinate. cot 0.

radius /abscissa. sec 0.

radius /ordinate. esc 0.

The right triangle POD of sides x, y and a, whose ratios give the

functions of the angle XOP, is often called the triangle of reference
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for this angle. It is obvious that the size of the triangle of refer-

ence has no effect of itself upon the value of the functions of the

angle. Thus in Fig. 53 either PiODi or Pi'ODi may be taken as

the triangle of reference for the angle B\. Since the triangles are

similar we have.

PiPi P/ZV PiDi Pi'Di'

ODi OZV OPi OPi

etc., which shows that identical ratios or trigonometric functions of

6 are derived from the two triangles of reference.

48. Elaborate means of computing the six functions have been

devised and the values of the functions have been placed in

convenient tables for use. The functions are usually printed

to 3, 4, 5 or 6 decimal places, but tables of 8, 10 and even 14 places

exist. The functions of only a few angles can be computed by

elementary means; these angles, however, are especially important.

(1) The Functions of 30. In Fig. 55a, if angle AOB be 30,

angle ABO must be 60. Therefore, constructing the equilateral

triangle BOB', each angle of triangle BOB' is 60, and

y = AB = -BB' =
J-a

Therefore,

sin 30 = V = ^'a = 1/2
a a

Also:

OA = V~O#- -
.1 IP = Va* -

|a
2 = \a Vs

Therefore,

sin 30 = 1/2.

401130

a 2

1 a V3

csc 30 =
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(2) Functions of 45. In the diagram, Fig. 556, the triangle
OAB is isosceles, so that y =

x, and a 2 = a'
2 + y"

1 = 2x 2
. It

follows that a = x-\/2 =
2/-\/2.

O^xJJO

FIG. 55. Triangles of Reference for Angles of 30, 45 and 00.

Therefore :

y
sin 45 =

cos 45 =

tan 45= - =1

V2
2

V2
2

cot 45
C

1

tan 45
C

1
=
00^45

-

CSC 45 =
5H165 " ^2

(3) Functions of 60. In the diagram, Fig. 55c, construct the

equiangular triangle OBB'-, then it is seen that, as in case (1)

above,

OA = %-OB' = fa
and

Therefore:

y =

sin 60

,
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cos 60 = =1/2

tan60= - = x/3
a

sec 60 =
-t
= 2

cos 60

49. Graphical Computation of Circular Functions. Approximate
determination of the numerical values of the circular functions of

any given angle may be made graphically on ordinary coordinate

paper. Locate the vertex of the angle at the intersection of any
two lines of the squared paper, form Ml. Let the initial side of

the angle coincide with one of the rulings of the squared paper
and lay off the terminal side of the angle by means of a protractor.

If the sine or cosine is desired, describe a circle about the vertex

of the angle as center using a radius appropriate to the scale of

the squared paper for example, a radius of 5 cm. on coordi-

nate paper ruled in centimeters and fifths (form Ml) permits
direct reading to 1/25 of the radius a and, by interpolation, to

1 /100 of the radius a. The abscissa and ordinate of the point
of intersection of the terminal side of the angle and the circle may
then be read and the numerical value of sine and cosine computed

by dividing by the length of the radius.

If the numerical value of the tangent or cotangent be required,

the construction of a circle is not necessary. The angle should

be laid off as above described, and a triangle of reference con-

structed. To avoid long division, the abscissa of the triangle of

reference may be taken equal to 50 or 100 mm. for the determina-

tion of the tangent and the ordinate may be taken equal to 50

or 100 mm. for the determination of the cotangent.
The following table (Table III) contains the trigonometric

functions of acute angles for each 10 of the argument.
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TABLE 111

Natural Trigonometric Functions to Two Decimal Places

6
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8. Which is greater, sin 40 or 2 -sin 20?
9. Does an angle exist whose tangent is 1,000,000? What is its

approximate value?

50. Signs of the Functions. The circular functions have, of

course, the algebraic signs of the ratios that define them. Of

the three numbers entering these ratios, the distance or radius

a may always be taken as positive. It enters the ratios, there-

fore as an always signless, or positive number. The abscissa

and the ordinate, x and y, have the algebraic signs appropriate
to the quadrants in which P falls. The student should deter-

mine the signs of the functions in each quadrant, as follows:

(See Fig. 53.)
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The above scheme associates the signs of the functions with the

coordinates (x, y) of the point P and the slope of the line OP
for each of its four positions in Fig. 53.

51. Triangles of reference, geometrically similar to those in

Fig. 55 for angles of 30, 45, and 60 exist in each of the four

quadrants, namely, when the hypotenuse and a leg of the triangle

of reference in these quadrants are both either paralk-1 or perpen-
dicular to a hypotenuse and leg of the triangle in the first quad-
rant then an acute angle of one must equal an acute angle of

the other and the triangles must be similar. The numerical

values of the functions in the two quadrants are therefore the

same. The algebraic signs are determined by properly taking
account of the signs of the abscissa and the ordinate in that

quadrant. Thus the triangle of reference for 120 is geometri-

cally similar to that for 60. Hence, sin 120 = v
^,

but

cos 120 = -
1/2 and tan 120 = -\/3.

Exercises

1. The student is to fill in the blanks in the following table with

the correct numerical value and the correct sign of each function:

Function
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52. Functions of and 90. In Fig. 52 let the angle AOP
decrease toward zero, the point P remaining on the circumference

of radius a. Then y or PD decreases toward zero. Therefore,

sin = 0. Also, x or OD increases to the value a, so that the

ratio x/a becomes unity, or cos = 1. Likewise the ratio

y jx becomes zero, or tan = 0.

The reciprocals of these functions change as follows: As the angle

AOP becomes zero, the ratio aly increases in value without limit,

or the cosecant becomes infinite. In symbols (see 23)

esc = oo . Likewise, cot =
co, but sec = 1.

In a similar way the functions of 90 may be investigated. The

results are given in the following table:

Angle
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Likewise divide (1) through by x 2
: then

(3)

or,

sec 2 0=1+ tan 2

Also divide (1) through by y
z

: then

or,

Also, since

we obtain,:

and likewise

esc 2 0=1+ cot 2

.

a y

a

tan0 = sin e

cos e

cos e

sm e

sin 1 /esc

(4)

(5)

(6)

cos=l/sec
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by a diagram as in Fig. 56. The simpler or reciprocal relations are

shown by the connecting lines drawn above the functions.

The reciprocal equations and the formulas (2), (3) and (4) are

sufficient to express the absolute or numerical value of any function

of any angle in terms of any other function of that angle. The

algebraic sign to be given the result must be properly selected in

each case according to the quadrant in which the angle lies.

Exercises

All angles in the following exercises are supposed to be less than

ninety degrees.

1. Sin B = 1/5. Find cos 6 and tan 0.

Draw a right triangle whose hypotenuse is 5 and whose altitude is

1 so that the base coincides with OX. In other words, make a = 5

and y = 1 in Fig. 57. Calculate x = V25 - 1 = 2Vli and write

down all of the functions from their definitions.

O x A

FIG. 57. Triangle of Reference for 6 and Complement of 6.

2. Cos 6 = 1/3. Find esc 0.

Take a = 3 and x = 1 in Fig. 57. Find y and then write down the

functions from their definitions.

3. Tan 0=2. Find sin 0.

Take x = 1 and y = 2 in Fig. 57, and calculate a and then write

down the functions from their definitions.

4. Sec = 10. Find esc 0.

Take a = 10 and x = 1 and compute y.

6. Find the values of all functions of if cot = 1.5.

6. Find the functions of if cos = 0.1.

7. Find the values of each of tho romnining circular functions in

each of the following cases :
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(a) sin 6 = 5/13.

(6) cos 6 = 4/5.

(d) tan 6 = 3/4.

(e) sec 6 = 2.

(g) tan = m.

sin = -=

(c) sec = 1.25. (/) tan = 1/3.

Show that the following equalities are correct:

8. Tan 0-cos = sin 0.

9. Sin 0-cot 0-sec = 1.

10. (Sin + cos 0)
2 = 2-sin 0-cos + I.

11. Tan + cot = sec 0-csc 0.

12. Express each trigonometric function in terms of each of the

others; i.e., fill in all blank spaces in the following table:
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P(h,k)

17. If tan e = 5/12 and sec is negative, find the remaining

functions of 6.

18. If sin e = 3/5 and tan e is negative, find the remaining func-

tions of 6.

54. Functions of Comple-

mentary Angles. Complementary

angles are defined as two angles

whose sum is 90 . Supplementary

angles are two angles whose sum
is 180.

Let 8 be an angle of the first

quadrant, and draw the angle

(90- 6) of terminal side OPi, as

shown in Fig. 58. Let P and Pi

lie on a circle of radius a. Let

the coordinates of the point P be

(h, k), then Pi is the point (k, ti).

Hence PiDi/OPi = h/a =

sin (90
-

0). But from the tri-

angle PDO, h /a
= cos 0. Hence

(h,-h) PS

FIG. 58. Triangles of Reference

for 6
,
and 6 combined with an

Odd Number of Right Angles.

Likewise,

sin (90
-

0)
= cos

tan (90
-

0)
= cot

sec (90
-

0)
= esc

These relations explain the meaning of the words cosine, cotangent,

cosecant, which are merely abbreviations for complement's sine,

complement's tangent, etc. Collectively, cosine, cotangent, cosecant

are called the co-functions. Likewise from Fig. 58:

cos (90
-

0)
= sin

cot (90
-

0)
= tan

esc (90
-

0)
= sec

Later it will be shown that the above relations hold for all

values of 0, positive, or negative.

66. Graph of the Sine and Cosine. In rectangular coordinates

we can think of the ordinate y of a point as depending for its value

upon the abscissa or x of that point by means of the equation y =

sin x, provided we think of each value of the abscissa laid off on
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the X-axis as standing for some amount of angular magnitude.
Therefore the equation y = sin x must possess a graph in rectangu-
lar coordinates. In order to produce the graph of y = sin x, it is

best to lay off the angular measure x on the X-axis in such a manner
that it may conveniently be thought of in either radian or degree
measure. If we suppose that a scale of inches and tenths is in the

hands of the reader and that a graph is required upon an ordinary
sheet of unruled paper of letter size (8| X 11 inches), then it will

be convenient to let 1 /5 inch of the horizontal scale of the X-axis

correspond to 10 or to Tr/18 radians of angular measure. To

Y
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proportional to sin OBPi, sin OBP 2 ,
sin OBP 6 ,

. . . or in the

general case, proportional to sin x (for lack of room only a few

of the successive points Pi, P 2 , PS, -
,
of division of the

quadrant OPzP$, are actually lettered in Fig. 59). These are the

successive . ordinates corresponding to the abscissas already

laid off on OL. The curve is then constructed as follows:

First draw vertical lines through the points of division of OX;
these, with the horizontal lines already drawn, divide the

plane into a large number of rectangles. Starting at and

sketching the diagonals (curved to fit the alignment of the points)

of successive "cornering" rectangles, the curve OCNTLis approxi-

mated, which is the graph of y = sin x. This curve is called the

sinusoid or sine curve. The curve is of very great importance for

it is found to be the type form of the fundamental waves of science,

such as sound waves, vibrations of wires, rods, plates and bridge

members, tidal waves in the ocean, and ripples on a water surface.

The ordinary progressive waves of the sea are, however, not of

this shape. Using terms borrowed from the language of waves, we

may call Cthe crest,N the node, and Tthe trough of the sinusoid.

It is obvious that as x increases beyond 2ir
T
,
the curve is re-

peated, and that the pattern OCNTL is repeated again and again

both to the left and the right of the diagram as drawn. Thus it is

seen that the sine is a periodic function of period 27r
r
,
or 360.

The small rectangles lying along the X-axis are nearly squares.

They would be exactly equilateral if the straight line OA\ was equal

to the arc OP\. This equality is approached as near as we please

as the number of corresponding divisions of the circle and of OX is

indefinitely increased. In this way we arrive at the notion of the

slope of a curve in mathematics. In this case we say that the

slope of the sinusoid at is -f 1 and at N is 1, and at L is + 1.

We say that the curve cuts the axis at an angle of 45 at and

at an angle of 315 (or,
- 45 if we prefer) aiN. The slope at C

and at T is zero.

The curve y = a sin x is made from y = sin x by multiplying
all of the ordinates of the latter by a. The number a is called

the amplitude of the s'nusoid.

56. Cosine Curve. If 0' be taken as the origin, the curve CNTL
is the graph of y = cos x. Let the student demonstrate this by
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showing that the distances BDi, BD 2 ,
. . .

,
BD ... in the

semicircle at the left of Fig. 59 go through in reverse order the

same sequence of values as PiDi, P^Dz, . . .
,
and that if the

origin be taken at 0', the successive ordinates of the sinusoid to the

right of O'C are equal to BD
1}
BD 2 ,

. . . respectively, and hence

are proportional to cos x.

It is best to carry out the construction of the sinusoid upon
unruled drawing paper as described above. The curve can readily

be drawn, however, upon form M2, which is already ruled in

1 /5-inch intervals, or upon form Ml if the radius of the circle be

taken as 2.3 cm. and if 2/5 cm. be used on OX to represent

an angle of 10. A much neater result is obtained when
unruled paper is used for the drawing.

67. Complementary Angles. The graph y z
= sin ( x) is

made from yi
= sin x by substituting ( x) for x in the function

FIG. 60. Shows the Relation Between y = sin x and y sin (x) and
Between y = sin (90 x) and y = cos x, etc.

sin x; that is, by changing the signs or reversing the direction of

all of the abscissas of the sinusoid y = sin x; or, in other words,

2/2
= sin( x} is the reflection of y\

= sinz in the F-axis.

This is merely a special case of the general Theorem I on Loci,

24. The former curve has a crest where the latter has

a trough and vice versa, as is shown by the dotted and full

curves in Fig. 60. Now, if the curve y z
= sin ( x) (the dotted

curve in Fig. 60) be translated to the right the distance Tr/2,

the resulting locus is the cosine curve y = cos x. To translate

2/ 2
= sin ( x) to the right the distance ?r/2, the constant Tr/2

must be subtracted from the variable x in the equation of the

curve, as already learned in the last chapter. Performing this

operation we have, for the translated curve,

sin -[-i])
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(Note that Tr/2 is subtracted from x and not from x.) Or,

removing the brackets,

?/2
= sin -

x)

But, as stated above, the.curve in its new position is the same as

the cosine curve

y = cosz

Hence, for all values of x:

sin
(^

~ x
)

= cosx (1)

In the same manner it can be proved that cos (~ x\ = sin x,

and the other results of 54 follow for all values of x.

58. Trigonometric Functions of Negative Arguments. First

compare the curves y\
= sin x and y z

= sin ( x) as has been

done in the preceding section, and as is illustrated by Fig. 60.

The curve ?/ 2
= sin ( x) was described as the reflection of the

sinusoid yi
= sin x in the 7-axis. It is obvious from the figure,

however, that the dotted curve may also be regarded as the

reflection of the original curve in the J^-axis; for the one has a

crest where the other has a trough and the ordinates of the two

curves are everywhere of exactly equal length but opposite in

direction. This means that 2/2.= y\, or,

sin ( x) = sin x (1)

for all values of x.

If the origin be taken at the point 0', Fig. 60, the full curve

is the graph of y = cos x. In this case the crest of the curve lies

above the origin and the curve is symmetrical with respect to the

F-axis. This means that changing x to( z)in the equation

y = cos x does not modify the locus. Hence we conclude that

cos ( x) = cos x (2)

for all values of x. Hence by division

tan (-x) = - tan x (3)

59. Odd and Even Functions. A function that changes sign
but retains the same numerical value when the sign of the variable

is changed is called an odd function. Thus sin x is an odd function

of .r, since sin ( x) = sin x. Likewise .T
3 is an odd function
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of x, as are all odd powers of x. Geometrically, the graph of an

odd function of x is symmetrical with respect to the origin 0;
that is, if P is. a point on the curve, then if the line OP be pro-

duced backward through a distance equal to OP to a point

P', then P f
lies also on the curve. The branches of y = x z in

the first and third quadrants are good illustrations of this

property.

A function of x that remains unaltered (both in sign and

numerical value) when the variable is changed in sign, is called

an even function of x. Examples are cos x, x 2
,
x 2

3x\ . . .

Most functions are neither odd nor even, but mixed, like

x 2 + sin x, x 2
-f x 3

,
x + cos x, . . .

Exercises

1. Show from (1) and (2) 58 and the relations esc x = >

sm oo

- = tan x, etc., that
cos x

(a) esc ( x) = esc x

(6) sec ( x) = sec x

(c) tan ( x) = tan x

(d) cot ( x~)
= cot x.

2. Is sin 2 x an odd or an even function of x? Is tan 3 x an odd or an

even function of x?

3. Is the function sin x + 2 tan x an odd or an even function? Is

sin x + cos x an odd or an even function of x?

60. The Defining Equations cleared of Fractions. The student

should commit to memory the equations defining the trigonometric

functions when cleared of fractions. In this form the equations

are quite as useful as the original ratios. They are written:

y = a sin 6 x = y cot

x = a cos a = x sec

y = x tan a = y esc

As applied to the right angled triangle, they may be stated

words as follows:

Either leg of a right triangle is equal to the hypotenuse multiplic

by the sine of the opposite, or by the cosine of the adjacent, angle.

Either leg of a right triangle is equal to the other leg multiplied by the

tangent of the opposite, or by the cotangent of the adjacent, angle.
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The hypotenuse of a right triangle is equal to either leg multiplied

by the secant of the angle adjacent, or by the cosecant of the angle

opposite that leg.

These statements should be committed to memory.

61. Projections. In Fig. 52 the projection of OP in any of its

positions, such as OPi, OP 2 ,
OP 3,

. . .
,
is OD l} OD 2 ,

OD 3,
. . .

,

or is the abscissa of the point P. Thus for all positions:

x = a cos 6

The sign of x gives the sign, or sense, of the projection. In each

case 6 is said to be the angle of projection.

The above definition of projection is more general in one

respect than that discussed in 28. By the present definition

the projection of a line is negative if 90 < 6 < 270 (read,

"if 6 is greater than 90 but is less than 270"). This con-

cept is important and essential in expressing a component of a

displacement, of a velocity, of an acceleration, or of a force.

The cosine of 6 might have been denned as that proper fraction

by which it is necessary to multiply the length of a line in order to

produce the projection of the line on a line making an angle

with it.

Exercises

1. A stretched guy rope makes an angle of 60 with the horizontal.

What is the projection of the rope on a horizontal plane? What is

the projection of the rope on a vertical plane?
2. Find the lengths of the projections of the line through the origin

and the point (1, \/3) upon the OX and OY axes, if the line is 12

inches long.

3. A force equals 200 dynes. What is its component (projection)
on a line making an angle of 135 with the force? On a line making
an angle of 120 with the force?

4. A velocity of 20 feet per second is represented as the diagonal
of a rectangle the longer side of which makes an angle of 30 with the

diagonal. Find the components of the velocity along each side of the

rectangle.

5. Show that the projections of a fixed line OA upon all other

linos drawn through the point are chords of a circle of diameter OA.
See Fig. 63.

6. Find the projection of the side of a regular hexagon upon the

three diagonals passing through one end of the given side, if the
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p'

numerical value of cos 30 =
0.87, and if each side of the hexagon

is 20 feet.

62. Polar Coordinates. In Fig. 61, the position of the point
P may be assigned either by giving the x and y of the rectangular
coordinate system, or by giving the vectorial angle and the

distance OP measured along the terminal side of 6. Unlike

the distance a used in the preceding work, it is found conven-

ient to give the line OP a sense or direction as well as length ;

such a line is called a vector. In the present case, it is known as

the radius vector of the point P,
and it is usually symbolized by
the letter p. The vectorial or

direction angle 6 and the radius

vector p are together called the

polar coordinates of the point P,
and the method, as a whole, is

known as the system of polar

coordinates. In Fig. 61 the

point P' is located by turning
from the fundamental direction

OX, called the polar axis, through
an angle 8 and then stepping
backward the distance p to the

point P'; this is, then, the point ( p, 6). P' has also the coordi-

nates (p, 2), in which 2
= + 180; likewise Pus (+ p', 0^ and

P'i is ( p', 0i). Thus each point may be located in the polar

system of coordinates in two ways, i.e., with either a positive or a

negative radius vector. If negative values of be used, there

are four ways of locating a point without using values of >
360. In giving a point in polar coordinates, it is usual to name
the radius vector first and then the vectorial angle; thus (5, 40)
means the point of radius vector 5 and vectorial angle 40.

63. Polar Coordinate Paper. Polar coordinate paper (form M3)
is prepared for the construction of loci in the polar system. A re-

duced copy of a sheet of such paper is shown in Fig. 62. This

plate is graduated in degrees, but a scale of radian measure is given

in the margin. The radii proceeding from the pole meet all of

the circles at right angles, just as the two systems of straight lines

FIG. 61. Polar Coordinates.
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meet each other at right angles in rectangular coordinate paper.

For this reason, both the rectangular and the polar systems are

called orthogonal systems of coordinates.

We have learned that the fundamental notion of a function

implies a table of corresponding values for two variables, one called

the argument and the other the function. The notion of a graph

; A

FIG. 62. Polar Cooradinate Squared Paper. (From Af3.)

implies any sort of a scheme for a pictorial representation of this

table of values. There are three common methods in use : the double

scale, the rectangular coordinate paper, and the polar paper. The

polar paper is most convenient in case the argument is an angle

measured in degrees or in radians. Since in a table of values for a

functional relation we need to consider both positive and negative

values for both the argument and the function, it is necessary to

use on the polar paper the convention already explained. The

argument, which is the angle, is measured counter-clockwise if

positive and clockwise if negative from the line numbered 0,
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Fig. 62. The function is measured outward from the center along
the terminal side of the angle for positive functional values and
outward from the center along the terminal side of the angle

produced backward through the center for negative functional values.

In this scheme it appears that four different pairs of values are

represented by the same point. This is made clear by the points

plotted in the figure. The points PI, P 2 ,
P 3,

P 4 are as follows:

Pi : (6.0,40); (6.0,
-

320); (- 6.0,220); (- 6.0,
- 140).

P 2 : (10, 135); (10,
- 225); (- 10, 315); (-10,- 45).

P 3 : (5, 230); (5,
-

130); (- 5, 50); (- 5,
-

310).
P4 : (6.0,330); (6.0,

- 30); (- 6.0, 150); (- 6.0,
- 210).

The angular scale cannot be changed, but the functional scale

can be changed to suit the table of values by multiplying or

dividing it by integral powers of ten.

In case the vectorial angle is given in radians, the point may be

located on the polar paper by means of a straight edge and the

marginal scale on form M3.

Exercises

1. Locate the following points on polar coordinate paper; (1, ?r/2);

(2,x); (3, 60); (4,250); (2J, l.&r).

2. Locate the following points: (0, 0); (1, 10); (2, 20); (3, 30);

(4,40); (5,50); (6, 60) ; (7, 70) ;
. . . (36, 360). Use 1 cm. = 10

units.

3. The equation of a curve in polar coordinates is 6 = 2. Draw
the curve. The equation of a second curve is p =3. Draw the

curve.

Notice that p = a constant is a circle with center at 0, while

6 = a constant is a straight line through 0.

4. Draw the curve p = 6 using 2 cm. as unit for p. Note that the

curve p = 8 is a spiral while the curve y = x is a straight line.

64. Graphs of p = a cos 6 and p = a sin 6. These are two

fundamental graphs in polar coordinates. The equation

p = a cos 6 states that p is the projection of the fixed length a

upon a radial line proceeding from making a direction angle 6

with a, or, in other words, p in all of its positions must be the side

adjacent to the direction angle in a right triangle whose hypote-

nuse is the finite length a. (See 61.) It must be remem-
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bered that the direction angle 6 is always measured from the fixed

direction OA. Hence, to construct the locus p = a cos 6, draw

as many radii vectores as desired, as in Fig. 63. Project on each

of these the fixed distance OA or a. This gives OP, or p, in numer-

ous positions as shown in the diagram. Since P is by construction

the foot of the perpendicular dropped from A upon OP, it is always

at the vertex of a right triangle standing on the fixed hypotenuse a,

and therefore the pointP is on the semicircle AOP; for, from plane

geometry a right triangle is always inscribable in a semicircle.

FIG. 63. The Graph of p

When 6 is in the second quadrant, as 62, Fig. 63, the cosine is

negative and consequently p is also negative. Therefore the point

P 2 is located by measuring backward through 0. Since, however,

p 2 is the projection of a through the angle 2 (see 61), the

angle at P 2 must be a right angle. Thus the semicircle

OP 2A is described as sweeps the second quadrant. When
6 is in the third quadrant, as 63, the cosine is still negative and

p is measured backward to describe the semicircle AP\0 a second

time. As 6 sweeps the fourth quadrant, the semicircle OP 2A is

described the second time. Thus the graph in polar coordinates

of p = a cos 6 is a circle twice drawn as 6 varies from to 360.

Once around the circle corresponds to the distance from crest to

trough of the "wave" y = a cos x, in Fig. 59 (O
r

is origin).

The second time around the circle corresponds to the distance
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from trough to crest of the cosine curve. Trough and crest of all

the successive "wave lengths" fall at the point A. The nodes are

all at 0.

The polar representation of the cosine of a variable by means
of the circle is more useful and important in science than the

Cartesian representation by means of the sinusoid. The ideas

here presented must be thoroughly mastered by the student.

The graph of p = a sin 6 is also a circle, but the diameter is

the line OB making an angle of 90 with OA, as shown in Fig. 64.

Since p = a sin 6, the radius vector,

as 6 increases to 90, must equal
the side lying opposite the angle

in a right triangle of hypotenuse a.

Since angle AOPi = angle OBP lt

the point P may be the vertex of

any right triangle erected on OB or

a as a hypotenuse. The semicircle

BP 2 is described as 6 increases

from 90 to 180. Beyond 180 the

sine is negative, so that the radius

vector p must be laid off backward

for such angles. Thus P3 is the

point corresponding to the angle 3 ,
of the third quadrant. As 6

sweeps the third and fourth quadrants the circle OPiBP^O is

described a second time. Therefore, the graph of p = a sin 6

is the circle twice drawn of diameter a, and tangent to OX at 0.

The first time around the circle corresponds to the crest, the

second time around corresponds to the trough of the wave or

sinusoid drawn in rectangular coordinates. The points corre-

sponding to the nodes of the sinusoid are at and the points

corresponding to the maximum and minimum points are at B.

We have seen that the graph of a function in polar coordinates

is a very different curve from its graph in rectangular coordi-

nates. Thus the cosine of a variable if graphed in rectangular

coordinates is a sinusoid; but if graphed in polar coordi-

nates the graph is a circle (twice drawn). There is in this case

a very great difference in the ease with which these curves can be

constructed; the sinusoid requires an elaborate method, while the

FIG. 64. The Graph of p = a
sin 6.
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circle may be drawn at once with compasses. This is one reason

why the periodic or sinusoidal relation is preferably represented

in the natural sciences by polar coordinates.

65. Graphical Table of Sines and Cosines. The polar graphs
of p = a sin 6 and p = a cos 6 furnish the best means of construct-

ing graphical tables of sines and cosines. The two circles passing

through shown on the polar coordinate paper, form M3, Fig. 62,

are drawn for this purpose. A quantity of this coordinate paper
should be in the hands of the student. If the diameter of the

sine and cosine circles be called 1, then the radius vector of any

point on the lower circle is the cosine of the vectorial angle, and

the radius vector of the corresponding point on the upper circle

is the sine of the vectorial angle. As there are 50 concentric cir-

cles in Form M3, it is easy to read the radius vector of a point

to 1 /100 of the unit. Thus, from the diagram, we read cos

45 = 0.70
;
cos 60 = 0.50

;
cos 30 = 0.866. These results are

nearly correct to the third place.

66. Graphical Table of Tangents and Secants. Referring to

Fig. 62, it is obvious that the numerical values of the tangents of

angles can be read off by use of the uniform scale of centimeters

bordering the polar paper (form M3). The scale referred to

lies just inside of the scale of radian measure, and is numbered

0, 2, 4, . . .

,
at the right of Fig. 62. Thus to get the numerical

value of tan 40 it is merely necessary to call unity the side OA
of the triangle of reference OAP, and then read the side AP = 0.84;

hence tan 40 = 0.84. To the same scale (i.e., OA =
1) the dis-

tance OP =
1.31, but this is the secant of the angle AOP, whence

sec 40 = 1.31. By use of the circles we find sin 40 = 0.64 and

cos 40 = 0.76.

In case we are given an angle greater than 45 (but less than

135) use the horizontal scale through B. Starting from B as

zero the distance measured on the horizontal scale is the cotangent

of the given angle. The tangent is found by taking the reciprocal

of the cotangent.

Exercises

Find the unknown sides and angles in the following right triangles.

The numerical values of the trigonometric functions are tcFbe taken
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from the polar paper. The vertices of the triangles are supposed
to be lettered A, B, C with C at the vertex of the right angle. The
small letters a, b, c represent the sides opposite the angles of the same
name.

By angle of elevation is meant the angle between a horizontal line

and a line to the object, both drawn from the point of observation,
when the object lies above the horizontal line. The similar angle
when the object lies below the observer is called the angle of depression
of the object.

The solution of each of the following problems must be checked.

The easiest check is to draw the triangles accurately to scale on form

Ml and use a protractor.

1. When the altitude of the sun is 40, the length of the shadow cast

by a flag pole on a horizontal plane is 90 feet. Find the height of the

pole.

Outline of Solution. Call height of pole a, and length of shadow b.

Then A = 40 and B = 50. Hence:

a = 6 tan 40

Determining the numerical value of the tangent from the polar paper,

we find:

a = 90 X 0.84 = 75.6 ft.

which result, if checked, is the height of the pole. To check, either

draw a figure to scale, or compute the hypotenuse c, thus:

c = 90 sec 40

From the polar paper find sec 40. Then:

c = 90 X 1.31 = 117.9

Since a2 + 6 2 = c2
,
we have c2 - 6 2 = a 2

,
or (c

-
b) (c + 6)

= a2
.

Hence if the result found be correct,

(117.9
-

90) (117.9 + 90) = 75.6 2

5800 = 5715

These results show that the work is correct to about three figures, for

the sides of the triangle are proportional to the square roots of the

numbers last given.

2. At a point 200 feet from, and on a level with, the base of a tower

the angle of elevation of the top of the tower is observed to be 60.

What is the height of the tower?

3. A ladder 40 feet long stands against a building with the foot of

the ladder 15 feet from the base of the wall. How high does the

ladder reach on the wall?
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4. From the top of a vertical cliff the angle of depression of a point

on the shore 150 feet from the base of the cliff is observed to be 30.

Find the height of the cliff.

5. In walking half a mile up a hill, a man rises 300 feet. Find the

angle at which the hill slopes.

If the hill does not slope uniformly the result is the average slope

of the hill.

6. A line 3.5 inches long makes an angle of 35 with OX. Find the

lengths of its projections upon both OX and OY.

7. A vertical cliff is 425 feet high. From the top of the cliff the

angle of depression of a boat at sea is 16. How far is the boat

from the foot of the cliff?

8. The projection of a line on OX is 7.5 inches, and its projection

on OY is 1.25 inches. Find the length of the line, and the angle

it makes with OX.
9. A battery is placed on a cliff 510 feet high. The angle of depres-

sion of a floating target at sea is 9. Find the range, or the distance

of the target from the battery.

10. From a point A the angle of elevation of the top of a monument
is 25. From the point B, 110 feet farther away from the base of the

monument and in the same horizontal straight line, the angle of eleva-

tion is 15. Find the height of the monument.

11. Find the length of a side of a regular pentagon inscribed in a

circle whose radius is 12 feet.

12. Proceeding south on a north and south road, the direction of a

church tower, as seen from a milestone, is 41 west of south. From
the next milestone the tower is seen at an angle of 65 W. of S.

Find the shortest distance of the tower from the road.

13. A traveler's rule for determining the distance one can see from

a given height above a level surface (such as a plain or the sea) is as

follows :

" To the height in feet add half the height and take the square

root. The result is the distance you can see in miles." Show that

this rule is approximately correct, assuming the earth a sphere of

radius 3960 miles. Show that the drop in 1 mile is 8 inches, and

that the water in the middle of a lake 8 miles in width stands 10 feet

higher than the water at the shores.

14. Observations of the height of a mountain were taken at A and
B on the same horizontal line and in the same vertical plane with the

top of the mountain. The elevation of the top at A is 52 and at B is

36. The distance .A is 3500 feet. Find the height of the mountain.

15. The diagonals of a rhombus are 16 and 20 feet, respectively.

Find the lengths of the sides and the angles of the rhombus.
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FIG. 65. Diagram for

Exercise 17.

16. The equation of a line is y = fx + 10. Compute the short-

est distance of this line from the origin.

17. Find the perimeter and area of ABCD, Fig. 65.

67. The Law of the Circular Functions. It will be emphasized
in this book that the fundamental laws of exact science are three in

number, namely: (1) The power function

expressed by y = axn where n may be

either positive or negative; (2) the har-

monic or periodic law y = a sin nx, which

is fundamental to all periodically occurring

phenomena; and a third law to be dis-

cussed in a subsequent chapter. While

other important laws and functions arise

in the exact sciences, they are secondary
to those expressed by the three funda-

mental relations.

We have stated the law of the power
function in the following words (see 34) :

In any power function, if x change by a fixed multiple, y is

changed by a fixed multiple also. In other words, if x change by
a constant factor, y will change by a constant factor also.

Confining our attention to the fundamental functions, sine

and cosine, in terms of which the other circular functions can

be expressed, we may state their law as follows: 1

The circular functions, sin 6 and cos 6, change periodically in

value proportionally to the periodic change in the ordinate and

abscissa, respectively, of a point moving uniformly on the circle

;C
2 + 2/2

= a z

The use of the periodic law in natural science is, of course,

very different from that of the power function. The student will

find that circular functions similar to y = a sin nx will be required

in order to express properly any phenomena which are recurrent

or periodic in character, such as the motion of vibrating bodies,

all forms of wave motion, such as sound waves, light waves, electric

waves, alternating currents and waves on water surfaces, etc.

Almost every part of a machine, no matter how complicated its

motions, repeats the original positions of all of the parts at

1
Chapter X is devoted to a discussion of these fundamental periodic laws.
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stated intervals and these recurrent positions are expressible in

terms of the circular functions and not otherwise. The student

will obtain a most limited and unprofitable idea of the use of the

circular functions if he deems that their principal use is in numer-

ical work in solving triangles, etc. The importance of the

circular functions lies in the power they possess of expressing

natural laws of a periodic character.

68. Rotation of Any Locus. In 36 we have shown that

any locus y =
f(x) is translated a distance a in the x direction by

substituting (x a) for x in the equation of the locus. Likewise

the substitution of (y b) for y was found to translate the locus

the distance b in the y direction. A discussion of the rotation of

a locus was not considered at that place, because a displacement

of this type is best brought about when the equations are expressed

in polar coordinates.

If a table of values be prepared for each of the loci

p = cos B (1)

p = cos (0i
- 30) (2)

as follows:

d 0_ 30 60 _ 90 120 _J.5(P__
1*0 . . .

p 1 i\/3 1/2 -1/2 - i\/5"

~

-1 - -

0i !
30 60 90 120 150 180 . . .

P
\

1 |v/3 T/2 -1/2 - i\/3 . .

and then if the graph of each be drawn, it will be seen that the

curves differ only in their location and not at all in shape or size.

The reason for this is obvious: The same value of p is given by
0i = 90 in the second case as is given by = 60 in the first

case, and the same value of p is given by 0i = 60 in the second

case as is given by = 30 in the first case, etc. The sets

of values of p in the two cases are identical, but like values corre-

spond to vectorial angles 8 differing by 30. In more general

("mis the reasoning is that if (0! 30) be substituted for 0in any

polar (Munition, then since (0i 30) has been put equal to 0, it

follows that 0i = (0 + 30), or the new vectorial angle 0i is greater

than the original by the amount 30. Since all values of
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\6_-x)

in the new locus are increased by 30, the new locus is the

same as the original locus rotated about (positive rotation)

by the amount 30.

The above reasoning does not depend upon the particular con-

stant angle 30 that happened to be used, but holds just as well

if any other constant angle, say a, be used instead. That is,

substituting (0i a) for does not change the size or shape of

the locus, but merely rotates it through an angle a. in the positive

sense. The same reasoning

applies also to the general

case : If p = /(0) be the polar

equation of any locus, then p

f(&i a) is the equation
of the same locus turned

about the fixed point

through the angle a; for if

(0i a) be everywhere substi-

tuted for the vectorial angle

0, 0i must be a greater than

the old 0. That is, each

point is advanced the angular

amount a, or turned that

amount about the point 0.

The rotation is positive, or

anti-clockwise, if a be posi-

tive thus, substituting (0 30) for in p = a cos turns the

circle p = a cos through 30 in the anti-clockwise sense, as is

shown in Fig. 66, but substituting (0 -f- 30) for in p = a cos

turns the circle p = a cos through 30 in the clockwise direc-

tion of rotation, as shown in the same figure.

The four circles

p = a cos (0 + ) (3)

p = a cos (0 a) (4)

p = a sin (0 -f- a) (5)

p = a sin (0 a) (6)

are shown in Fig. 66. Each has diameter a. The student must

carefully distinguish between the constant angle a and the variable

FIG. 66. Rotation of the Circles p =
a cos 6 and p = a sin 9.
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angle 6, just as he must distinguish between the constant distance

a and the variable vector p.

The above result constitutes another of the

THEOREMS ON Loci

IX. If (6 a] be substituted for 6 throughout the polar equation

of any locus, the curve is rotated through the angle a in the positive

sense.

Note that the substitution is (6 a) for 6 when the required

rotation is through the positive angle a, and that the substitution

is (0 + a) for when the required rotation is through the negative

angle a.

The rotation of any locus through any angle is readily accom-

plished when its equation is given in polar coordinates. Rota-

tions of 180 and 90 are very simple in rectangular coordinates.

Let the student select any point P in rectangular coordinates and

draw the radius vector OP and the abscissa and ordinate OD and

DP; then show that the substitutions x = Xi,y = y\ will turn

OP through 180 about in the plane xy, and that the substitutions

=
2/ij y KI will turn OP through 90 about in the plane xy.

Exercises

Draw the following circles:

1. p = 3 cos (6
- 30). 4. p = 2 sin (6 + 135).

2. p = 3 cos (e + 120). 6. p = 4 cos \8 + ^
3. p = 2 sin (B

- 45). 6. p = 5 sin
(|

-

7. Show that p = a sin is the locus p= a cos 6 rotated 90

counter clockwise.

SOLUTION: Write p = a cos (0-90), then
= a cos (90 -6) by (2) 58, then p= a sin 6 by 57.

69. Polar Equation of the Straight Line. In Fig. 67 let MN be

any straight line in the plane and OT be the perpendicular dropped

upon MN from the origin 0. Let the length of OT be a and let

the direction angle of OT be a, where, for a given straight line,

a and a are constants. Let p be the radius vector of any point
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P on the line MN and let its direction angle be 6. Then, by

definition,

- = cos (9 a)

Therefore the equation of the straight line MN is

a = p cos (6 a) (1)

for it is the equation satisfied by the (p, 6} of every point of the

line. This is the equation of any straight line, for its location is

perfectly general. The
constants defining the line

are the perpendicular dis-

tance a upon the given line

from and the direction

angle a of this perpendic-
ular. The perpendicular

OT or a is called the nor-

mal to the line MN and

the equation (1) is called

the normal equation of the

straight line.

The equation of the cir-

cle shown in the figure is

pi
= a cos (6 a) (2)

in which pi represents the

radius vector of a point Pi
on the circle. From plane geometry OT or a is a mean propor-
tional between the secant OP and the chord OP\, or,

FIG. 67. The Circle p = a cos (0
- a)

and its Inverse, the line MN or a =
p cos (6 ct).

p:a = a :pj

or,

PPi = 2
(3)

This gives the relation between the radius vector of a point on the

line and the corresponding radius vector of a point on the circle.

Now if on the radius vector p = OP, drawn from the fixed origin
a 2

to any curve, we lay off a length OP\ =
pi = (where a is a

constant), then Pi is said to describe the inverse of the given cum
with respect to 0. In this special case the circle is the inverse
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the straight line and vice versa. If a = 1 we note that OPi and

OP are reciprocals of each other.

It is important in mathematics to associate the equation of the

circle and the equation of its inverse with respect to 0, or the line

tangent to it. Thus

p = 10 cos e -

is a circle

10 = p cos Id -
^

is a straight line tangent to it.

70. Relation between Rectangular and Polar Coordinates.

Think of the point P whose rectangular coordinates are (x, y).

If the radius vector OP be called p and the direction angle be

called 6, then the polar coordinates of P are (p, 6). Then x and

y for any position of P are the projections of p through the

angle 0, and the angle (90 0), respectively, or,

x = p cos 6 (1)

y = p sin e (2)

These are the equations of transformation that permit us to express
the equation of a curve in polar coordinates when its equation in

rectangular coordinates is known, and vice versa. Thus the

straight line x = 3 has the equation

p cos 6 = 3

in polar coordinates. The line x -f y = 3 has the polar equation

p cos 6 + p sin 6 = 3.

The circle x 2 + y
2 = a 2 has the equation

p
2 -cos 2 e + p

2 sin 2 e = a*

or,

p
2 = a 2

or,

p = a

etc.
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To solve equations (1) and (2) for 0, we write

6 = the angle whose cosine is
-
P

= the angle whose sine is

P

The verbal expression "the angle whose cosine is," etc., are

abbreviated in mathematics by the notations "cos- 1

," read

'"anti-cosine," and "sin- 1

," read "anti-sine," as follows:

= cos- 1

(x/p) (3)

= sin- 1

(y/p) (4)

Dividing the members of (2) by the members of (1) we obtain

y
tan = '

which, solved for 0, we write
x

= the angle whose tangent is
~

which may be abbreviated

= tan- 1

(y/x) (5)

and read " = the anti-tangent of y/x."
The value of p in terms of x and y is readily written

p = x/x 2 + y 2
(6)

Exercises

1. Write in polar coordinates the equation x 2 + y
2 + Sx = 0.

The result is p
2 + 8p cos 6 =

0, or p = -8 cos 0.

2. Write in polar coordinates the equations (a) x 2 + y
2

4y =
0;

(6) x 2 + y
z Qx 4y =

0; (c) z 2 + y
z - Qy .= 4.

3. Write in polar coordinates the equations (a) +y =
1; (&) z+ 2i/

=
1; (c) x + V7

^ y = 2.

4. Write in rectangular coordinates (a) p cos + p sin 6 =
4; (6)

P cos 3p sin e = 6.

6. Write in polar coordinates x z + 2y
2 - 4x = 0.

71. Identities and Conditional Equations. It is useful to make
a distinction between equalities like

(a
-

x)(a + x) = a 2 - x* (1)

which are true for all values of the variable x and equalities like

x 2 - 2x = 3 (2)
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which are true only for certain particular values of the unknown
number. When two expressions are equal for all values of the

variable for which the expressions are denned, the equality is

known as an identity. When two expressions are equal only for

certain particular values of the unknown number the equality is

spoken of as a conditional equation. The fundamental

formula

sin2
<f> + cos 2 = 1

is an identity.

2 sin A + 3 cos A = 3.55

is a conditional equation. Sometimes the symbol = is used to

distinguish an identity; thus

a 3 - x 3 = (a
-

z)(a
2 + ax + z 2

)

Exercises

The following exercises contain problems both in the establishment

of trigonometric identities and in the finding of the values of the un-

known number from trigonometric conditional equations.

The truth of a trigonometric identity is established by reducing
each side to the same expression. This usually requires the applica-

tion of some of the fundamental identities, equations (1) to (5),

63. Facility in the establishment of trigonometric identities is

largely a matter of skill in recognizing the fundamental forms and of

ingenuity in performing transformations. In verifying the identity

of two trigonometic expressions it is best to reduce each exp ression

separately to its simplest form. Unless the student writes the

work in two separate columns, transforming the left member alone

in one column, and the right member alone in the other column,
he is very liable to get erroneous results. All results should be

checked. The following worked exercises will aid the student.

(a) Prove that

(1 sin u cos w)(sin u + cos u) = sin 3 u -f cos 3 u

The sum of two cubes is divisible by the sum of the numbers them-

selves so that after division we have:

1 sin u cos u = sin2 u sin u cos u -f- cos 2 u

Since sin2 u + cos 2 u =
1, this equation is true and the original iden-

tity is established.

(b) Show that

sec2 x 1 = sec2 x sin 2 x
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Substituting sec2 x ss - on the right side
cos 2

a:

sin 2 x
sec2 x 1 ss == tan 2 x

cos 2
a;

or . sec2 x = 1+tan 2 x

which is a fundamental identity.

Solutions to exercises in trigonometric conditional equations similar

to exercises 1, 4, 5, 9 below must be checked. The necessit}' for a

check is made apparent by the following illustration :

(c) Solve for all angles less than 360

2 sin x + cos x '= 2 (1)

Transposing and squaring we get :

cos2 z = 4-8sinz+4 sin2 x (2)

since sin2 x + cos 2 x = 1.

1 sin2
a; =4 8 sin z + 4 sin 2 x (3)

5 sin2 x 8 sin x + 3 = (4)

sin x =
1, or 0.6 (5)

x = 90, 37, or 143 (6)

Check: 2 sin 90 + cos 90 = 2 + = 2 (7)

Check: 2 sin 37 + cos 37 = 1.2 + 0.8 = 2 (8)

Does 2 sin 143 + cos 143 = 1.2 - 0.8 = 0.4 = 2? (9)

The last value does not check. The reasons for this will be dis-

cussed later in 93 and 94. Therefore the correct solutions are

90 and 37.

1. Solve for all values of < 90 : 6 cos 2 8 + 5 sin 8 = 7.

SUGGESTION: Write 6(1 sin 2
6) + 5 sin 6 = 7 and solve the

quadratic in sin 0.

6 sin 2 6-5 sin 6 + 1=0
or,

(3 sin e 1 ) (2 sin 6 1) =0
i

sin e = 1/3 or 1/2

e = 19 or 30.

The results should be checked.

2. Prove that for all values of (except ?r/2 and 37r/2, for which

the expressions are not denned)

sec4 tan 4 = tan 2 6 + sec2
0.
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3. Show that

sec2 u sin2 u = tan2 u + cos 2
u,

for all values of the variable u except 90 and 270, for which the

expressions are not denned.

4. Find u, if

tan u + cot u = 2.

5. Find sec 0, if

2 cos 6 + sin e = 2.

6. Find the distance of the end of the diameter of

P = 8 cos (6
- 60)

from the line OX.

7. If P! = a cos 0, and p 2
= a sin 9, find pi p 2 when 6 = 60

and a = 5.

8. Find the polar equation of the circle x z + y
2 + Qx = 0.

9. For what value of 6 does p =
3.55, if p = 2 sin 6 + 3 cos 6?

RESULT: 6 = 23 30' and 43 30'.

10. Prove that

sin A _ 1 + cos A
1 cos A sin A

11. Prove that 2 cos 2 u I = cos 4 u sin 4 u.

12. Prove that

1
sec u + tan u

sec u tan

13. Prove that sec2 u + esc2 w = esc2 u sec2 w.

14. Show that (tan a + cot a)
2 = sec2 a esc2 a.

15. Find sin if esc 6 *=

16. A circular arc is 4.81 inches long. The radius is 12 inches.

What angle is subtended by the arc at the center? Give result in

radians and in degrees.

17. Certain lake shore lots are bounded by north and south lines

66 feet apart. How many feet of lake shore to each lot if the shore-

line is straight and runs 77 30' E. of N.?
18. If y = 2 sin A + 3 cos A -

3.55, take A as 20; as 23; as 26.
Find in each case the value of y. From the values 6f y just found

approximate the value of A for which y is just zero. This process is

known as "cut and try."
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19. The line y = (3/2) x is to coincide with the diameter of the

circle :

p = 10 cos (e
-

a)

Find a,

20. The line y = 2x is to coincide with the diameter of the circle :

p = 10 sin (6 + a)

Find a.

21. To measure the width of the slide dovetail shown in Fig. 68,

two carefully ground cylindrical gauges of standard dimensions are

placed in the V's at A and B, as shown, and the distance X carefully

M N

FIG. 68. Diagram to Exercise 21.

taken with a micrometer. The angle of the dovetail is 60. Find

the reading of the micrometer when the piece is planed to the required

dimension MN = 4 inches. Also find the distance Y. (Adapted
from "Machinery," N. Y.)

22. Show that:

p = sin 6 + cos 6

is a circle.

23 Draw the curve:

24 Sketch

and

and then

and discuss.

sin x +- cos x.

x

y = sin x

v-l + sn x



CHAPTER IV

THE ELLIPSE AND HYPERBOLA

72. The Ellipse. If all ordinates of a circle be shortened by
the same fractional amount of their length, the resulting curve

is called an ellipse. For example, in Fig. 69, the middle points

of the positive and negative ordinates of the circle were marked
and a curve drawn through the points so selected. The result

is the ellipse ABA'B'A.
If

is the equation of a circle, then

x 2 + (myY = a* (2)

in which ra is any constant > 1, is the equation of an ellipse; for

substituting my for y divides all

of the ordinates by w, by Theo-

rem V on Loci, 27. The ellipse

may also be looked upon as the

orthographic projection of the

circle. See 28.

It is easy to show, as a con-

sequence of the above, that the

shadow cast on the floor by a

circular disk held at any angle
\

\

FIG. 69. Definition of the Ellipse.

in the path of vertical rays of

light is an ellipse.
v

Y'

The curve made by elongating

by the same fractional amount
of their length all of the abscissas or ordinates of a circle is also

an ellipse, as the following considerations will show.

First let the ordinates of the circle (1) be shortened as before.

The result is

x z
-f (myY = az

(2)

137
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If the abscissas of the same given circle be multiplied by m
to make another curve, the result is

2

+ </
2 = a2

(3)(i)

where m is supposed to be > 1 in both cases. If equation (3)

be multiplied through by m'2 we get:

x 2 + (my}
2 = a zm~ (4)

This shows that the second curve can be made by dividing by m
all of the ordinates of a circle of radius ma- That is, (3) is an

ellipse made from a circle of radius ma in the same manner

that the ellipse (2) is made from a circle of radius a. Hence (3)

is an ellipse whose dimensions are m-fold those of (2).

Thus an ellipse results if all of the ordinates or if all of the ab-

scissas of a circle be multiplied or divided by any given constant m.

It is usual to write the multiplier m in the form a/b, so that

equation (1) may be written:

z 2
-f (ay fb}

2 = a*

or:

x2
/a

2 + y
2
/b

2 = 1 (5)

which is the equation of the ellipse in a symmetrical form. Apply-

ing the principles of 27, the locus (5) may be thought of as

made from the unit circle x 2 + y
2 = 1 by multiplying its abscissas

by a and its ordinates by b.

When written:

y = (b/a) Va*~^~z (6)

y = + Va2 - x z
(7)

the ellipse and circle are placed in a form most useful for many
purposes. It is easy to see that (6) states that its ordinates are

the fractional amount b/a of those of the circle (7).

In Fig. 69 the points A and A' are called the vertices and the

point is called the center of the ellipse. The line AA' is called

the major axis and the line BE' is called the minor axis. It is

obvious that A A' = 2a, and from equation (5) or (6) it follows

BB' = 2b.

The definition of the term function permits us to speak of y as a

function of x, or of x as a function of y, in cases like equation (5)
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above; for when x is given, y is determined. To distinguish this

from the case in which the equation is solved for y, as in (6), y, in

the former case, is said to be an implicit function of x, and in the

latter case y is said to be an explicit function of x.

If a circular cylinder be cut by a plane, the section of the

cylinder is an ellipse. For select any diameter of a cir-

cular section of the cylinder as the o>axis. Let a plane be passed

through this diameter making an angle a with the circular section.

Then if ordinates (or chords perpendicular to the common z-axis)

be drawn in each of the two planes, all ordinates of the section

made by the cutting plane can

be made from the ordinates of

the circular section by multiply-

ing them by sec a. Hence any

plane section of a cylinder is an

ellipse.

73. To Draw the Ellipse. A
method of drawing the ellipse is

shown in Fig. 70. Draw con-

centric circles of radii a and b

respectively, a > b. Draw any
number of radii and from their

intersections with the larger

circle draw vertical lines, and

from their intersections with the smaller circles draw horizontal

lines. The points of intersection of the corresponding horizontal

and vertical lines are points of the ellipse.

Proof. In the figure, let P be one of the points just described.

Then:

P 2D 2 : P,D = P Z : P,0

or, substituting PD for the equal P 2D 2

PD : PiD = P 2 : PiO

Now OP i
= a and OP 2

= b and P\D is the ordinate of the circle

of radius a or is equal to Va2 xz
. Substituting these in the

last proportion and solving for PD we obtain:

FIG. 70. A Construction of the

Ellipse.

PD =y
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This is the equation of an ellipse. Hence the curve APB is an

ellipse.

The two circles are called the major and minor auxiliary circles.

The vectorial angle 6 of PI is called the eccentric angle or the

eccentric anomaly of the point P.

Exercises

1. Draw an ellipse whose semi-axes are 5 and 3, and write its

equation.

2. From what circle can the ellipse y = + |\/9 2 be made by
shortening of its ordinates?

3 Write the equation of the ellipse whose major axis is 7 and minor

axis is 5.

4. Find the major and minor axes of the ellipse x 2
/7 + y-/l7 = 1.

6. What curve is represented by the equation z 2
/9 + 2/

2
/46 = 1?

74. Parametric Equations of the Ellipse. From Fig. 70,

OD and PD, the abscissa and ordinate of any point P of the

ellipse, may be written as follows:

x = a cos (1)

y = b sin 6

for OD is the projection of OPi = a through the angle 6 and DP
is the projection of OP 2

= b through the angle TT /2 6. The

pair of equations (1) is known as the parametric equations of the

ellipse. The angle 6, in this use, is called the parameter. Writ-

ing (1) in the form:

- = cos 6
a

|
= sin 8

squaring, and adding, we eliminate 6 and obtain:

the symmetrical equation of the ellipse.

If the abscissa and ordinate of any point of a curve are ex-

pressed in terms of a third variable, the pair of equations are

called the parametric equations of the curve. Thus :

x = tt
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are the parametric equations of a certain straight line. Its

ordinary equation can be found by eliminating the parameter t

between these equations.

From equations (1) we see that the ellipse might be defined as

follows: Lay off distances on the X-axis proportional to cos 6,

and distances on the F-axis proportional to sin 6. Draw
horizontal and vertical lines through the points of division, thus

dividing the rectangle 2a, 26 into a large number of small rec-

tangles. Starting at the point (a, 0) and drawing the diagonals

of successive cornering rectangles, a line is obtained which ap-

proaches the ellipse as near as we please as the number of small

rectangles is indefinitely increased. The student should draw

this diagram. See Fig. 129.

Exercises

1. Draw the curve whose parametric equations are:

x = cos 6

y = sin 6.

2. Write the equation of the ellipse whose major and minor axes

are 10 and 6, respectively.

3 Find the axes of the ellipse whose equation is :

y = \ V36 - z 2
.

4. Write the parametric equations of the ellipse:

y = fVsi - x\
6. Discuss the curve:

x =

6. Discuss the curves:

4x 2

7. Write the Cartesian equation of the curves whose parametric

equations are:

, . [x = 2 cos 6 ... [x = 6 nos 6 [x = V3 cos 6
(a) U- sine (b) U-28m (c) L-V5.

8. What locus is represented by the parametric equations

x = 2t + 1

y = 3t + 5?
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9. Show that

x = at

y = bt

is a line of slope b/a.

10. Write the equation of an ellipse whose major and minor axes

are 6 and 4 respectively.

11. What curve is represented by the parametric equations:

x = 2 + 6 cos e

y = 5 + 2 sin 0?

12. Show that the curve

x = 3 -f 3 cos

y = 2 + 2 sin

is tangent to the coordinate axes.

13. The sunlight enters a dark room through a circular aperture of

radius 8 inches, in a vertical window and strikes the floor at an angle
of 60. Find the dimensions and the equation of the boundary of

the spot of light on the floor.

14. The ellipse

y = K/9 -z*

is the section of a circular cylinder. Find the angle a made by the

cutting plane and the axis of the cylinder.

75. 1 Other Methods of Constructing an Ellipse. The following

methods of constructing an ellipse of semi-axes a and b may be

explained by the student from the brief outlines given:

1. Move any line whose length is a + b (see Fig. 71) in such a

manner that the ends A and B always lie on the X- and 7-axes,

respectively. The point P describes an ellipse.

2. Mark on the edge of a straight ruler three points P, M, N,

Fig. 72, such that PM = b and PN = a. Then move the ruler

keeping M and N always on AA' and BE' respectively. P
describes an ellipse. The elliptic "trammel" of "ellipsograph" is

constructed on this principle by use of adjustable pins onPMN and

grooves on AA' and BB'.

3. Draw a semicircle of radius a about the center C, Fig. 73,

and produce a radius to such that CTO = a -f b. From C draw

section may be omitted altogether or assigned as problems to various

members of the class.
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any number of lines to the tangent to the circle at T. From
draw lines meeting the tangent at the same points of TN. At the

points where the lines from C cut the semicircle, draw parallels

FIG. 71. Ellipse Traced by FIG. 72. Theory of the Common
a Point P of the Moving Line AB. "Ellipsograph" or Elliptic Trammel.

FIG. 73. A Graphical Construction of an Ellipse.

to CT. The points of meeting of the latter with the lines radiating

from determine point? Oft the ellipse.
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To prove the above, note that OD = a cos 0, PD = OD tan 0',

also that tan 8 : tan 0' : : a : b. Discuss the latter case when b = a

and also when 6 > a.

76. Origin at a Vertex. The equations of the ellipse (5) and (6)

72 and (1) 74 are the most useful forms. It is obvious

that the ellipse may be translated to any position in the plane

by the methods already explained. The ellipse with center

moved to the point (h, k) has the equation:

l
a2 6 2

Of special importance is the equation of the ellipse when the origin

is taken at the left-hand vertex. This form is best obtained from

equation (6), 72, by translating the curve the distance a in

the x direction. Thus:

b
y = -vV -

(x -a) 2

or,

2/2
=

~a
x ~

a 2
*'

or, letting I stand for the coefficient of x,

-
x/2a) (2)

For small values of x, x f2a is very small and the ellipse nearly

coincides with the parabola y
2 = Ix.

77. Any equation of the second degree, lacking the term xy and

having the terms containing x 2 and y
2 both present and with

coefficients of like signs, represents an ellipse with axes parallel to

the coordinate axes. This is readily shown by putting the equation

ax 2 + by
2 + 2gx + 2/y+ c = (1)

in the form (1) of the preceding section. The procedure is as

follows :

a(x* + 2-x) + % 2 + 2
f
y) = - c (2)
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LetM stand for the expression in the right-hand member of (3),

then we get:

i

a b

This shows that (1) is an ellipse whose center is at the point

(_ .

,
_ r ) and which is constructed from the circles whose cen-

a b)

ters are at the same point and whose radii are the square roots of the

denominators in (4). The major axis is parallel to OX or OF ac-

cording as a is less or greater than 6. The cases when the locus

is not real should be noted. Compare 42.

ILLUSTRATION: Find the center and axes of the elllipse

x* + 4y* + Qx - 8y = 23

r
rite the equation in the form

xz + 6z + 4y*
- 8y = 23

Complete the squares

x2 + 6z + 9 + 4y
2 -

Sy + 4 = 36

Rewriting (a; + 3)
2 + 4(y

-
I)

2 = 36

or (z + 3)
2
/36 + (i/

-
1)2/9 = i

This is seen to be an ellipse whose center is at the point ( 3, 1)

and whose semi-axes are a = 6 and 6 = 3.

The rotation of the ellipse through any angle about as a

center will be considered in another place. It should be noted,

however, that the ellipse is turned through 90 by merely inter-

changing x and y.

78. Limiting Lines of an Ellipse. It is obvious from the

equation

,

y = ~
Va2 _ X 2

that x = a and x = a are limiting lines beyond which the curve

cannot extend; that is, x cannot exceed a in numerical value

without y becoming imaginary. The same test may be applied
to equations of the form :

x z
-f 4x + 9?y

2 - Qy -f 4 =
10
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Solving for y in terms of x :

3y = 1 V;T^" (x + 2J
2

The values of y become imaginary when:

(x + 2)
2 > 1

or

or,

These, then, are the limiting lines in the x direction. Finding

the limiting lines in the y direction in the same way, the rectangle

within which the ellipse must lie is determined.

In cases like the above the actual process of finding the limiting

lines and the location of the center of the ellipse is best carried

out by the method of 77.

Exercises

Find the lengths of the semi-axes and the coordinates of the center

for the six following loci and translate the curves so that the terms in

x and y disappear, by the method of 77.

1. 12z 2 - 48x + 3i/
2 + 6y = 13.

2. y*
- Sy + 4z 2 + 6 = 0.

3. x 2 - 6x -f 4?/
2 + Sy = 5.

4. x 2 + 9?/
2 - 12x + 6y = 12.

5. 4x 2 + y
2 - I2x + 2y - 2 = 0.

6. x 2 + 2y*
- x - V2y = 1/2.

7. Show that x 2 + 4x + 9i/
2

Qy = passes through the origin.

8. Show that x 2 4z + 4?/
2 + Sy + 4 = is an ellipse.

9. Discuss the curves:
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10. Discuss the following parabolas:

y = 2px
z

y = - 2px
2

y = *

y = - 2px
2 + 6.

What are the roots of the last function?

11. Write the symmetrical equation of the ellipse if its parametric

equations are:

x = (3/2) cos 6

y = (2/3) sin 9.

12. Discuss the curve y
2 = (18/5)3 -

(9/25)z
2

.

13. Compare the curves y
2 = x x 2 and y

2 = x.

14. Find the center of the curve y
2 = 2x (6

-
x}.

79. Graph of y = tan x. If this graph is to be constructed on a

sheet of ordinary letter paper, 8| inches X 11 inches, it is desirable

to proceed as follows : Draw at the left of the sheet of paper a semi-

circle of radius 1.15 . . . inches, (that is, of radius = 18/57r), so

that the length of the arc of an angle of 10 or Tr/18 radians will be

1 /5 inch. Take for the z-axis a radius COX prolonged, and take for

the y-axis the tangent OY drawn through 0, as in Fig. 74. Divide

the semicircle into eighteen equal parts and draw radii through the

points of division and prolong them to meet OF in points TI, T 2 ,

T 3 ,
T 4 ,

. . . Then on the y-axis there is laid off a scale

YY' in which the distances OTi, OT Z ,
. . . are proportional to

the tangents of the angles OCSi, OCS 2) . . .
;
for the tangents

of these angles are OT^CO, OT 2 /CO, ... and CO is the unit of

measure made use of throughout this diagram. Draw horizontal

lines through the points of division on OF and vertical lines through
the points of division on OX, thus dividing the plane into a large
number of small rectangles. Starting at 0, TT, 2ir, . . . TT,

27r, . . . and sketching the diagonals of consecutive cornering

rectangles, the curve of tangents is approximated. Greater pre-
cision may be obtained by increasing as desired the number of

divisions of the circle and the number of corresponding vertical

and horizontal lines.

It is observed that the graph of the tangent is a series of similar

branches, which are discontinuous for x =
Tr/2, ir/2,.(3/2)ir,
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(3/2)?r, . . . For these values of x the curve has vertical

asymptotes, as shown at AB, A'B', in Fig. 74.

If the number of corresponding vertical and horizontal lines

be increased sufficiently, the slope of the diagonal of any rectangle

gives a close approximation to the true slope of the curve at that

point.

It has already been noted that all of the trigonometric functions

are periodic functions of period 2?r. It is seen in this case, however,

M A M' A

T

X

B N' B' N"
FIG. 74. Graphical Construction of the Curve of Tangents y = tanz.

For lack of room only a few of the points Si, S2 ,
. . . TI, TZ) , . . . are lettered

in the diagram. The dotted curve is y = cot x.

that tan x has also the shorter period IT; for the pattern MN,
M'N', M"N", of Fig. 74 is repeated for each interval TT of the

variable x.

80. Ratio (sin x)/x and (tan x)/x for Small Values of x. Pre-

cisely as in the case of the locus of y = sin x, the rectangles along,

and on both sides of, the re-axis in the graph of y = tan x, are

nearly squares. In Fig. 74, the z-sides of these rectangles are
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1 /5 inch, but the ?/-sides are slightly greater, since OTi is slightly

greater than the arc OSi of the circle. To prove this, note that OT\
is half of one side of a regular 18-sided polygon circumscribed about

the circle; since the perimeter of this polygon is greater than the

circumference of the circle, OT\ > OSi, for these magnitudes are

1 /36 of the perimeter and circumference, respectively, just named.

Likewise in Fig. 59, DSi < OSi, for DSi is one-half of the side of

an 18-sided regular polygon inscribed in the circle and OSi is

1 /36 of the circumscribed circumference.

Hence:

sin x < x < tan x (1)

or dividing by sin x,

I < -^ < sec x (2)
sin x

Now as x approaches 0, the last term of this inequality approaches"

unity. Hence the second term, whose value always lies between

the first and third term of the inequality, must approach the same

value, 1. This fact is expressed in mathematics by the statement

the limit of -' =1 as x approaches

or, in symbols:
lim sin x

x = x

Dividing (1) by tan x
}

cos x < 7- < 1 (4)tan x

Now as x approaches 0, the first term of this inequality approaches

unity. Hence the second term, whose value always lies between

the first and third term of the inequality, must approach the same

value, 1. This fact is expressed by the statement

the limit of -- - = 1 as x approachesx

or, in symbols:
Urn tan x _

x =0 x

Equations (3) and (5) express very useful and important facts.

Geometrically they state that the rectangles along the x-axis in



150 ELEMENTARY MATHEMATICAL ANALYSIS [81

Figs. 59 and 74, approach more and more nearly squares as the

number of intervals in the circle is increased. Each of the ratios

in (2) approaches as near as we please to unity the smaller x is

taken, but the limits of these ratios are unity only when the angles

are measured in radians.

The word "limit" used above stands for the same concept that

arises in elementary geometry. It may be formally denned as

follows :

DEFINITION: A constant, a, is called the limit of a variable,

t, if, as t runs through a sequence of numbers, the difference

(a t} becomes, and remains, numerically smaller than any pre-

assigned number.

81. Graph of cot x. In order to lay off a sequence of values of

cot 6 on a scale, it is convenient to keep the denominator con-

stant in the ratio (abscissa) /(ordinate) which defines the cotangent.

P., p l

D\\ DIQ > 9 > 8 Z> 7 O D$D4 D 3 D 2 D\

FIG. 75. Construction of a Scale of Cotangents.

The denominator may also, for convenience, be taken equal to

unity. Thus, in Fig. 75, the triangles of reference DiOPi, D 2OP 2,

. . . for the various values of 6 shown, have been drawn so that

the ordinates PiDi, P 2D 2 ,
... are equal. If the constant ordi-

nate be also the unit of measure, then the sequence ODi, OD 2 ,
OD Z ,

. . . OD 7 ,
O.D 8 , represents, in magnitude and sign, the cotan-

gents of the various values of the argument 8. Using OD 1} OD 2 ,

... as the successive ordinates and the circular measure of

6 as the successive abscissas, the graph of y = cot x is drawn, as

shown by the dotted curve in Fig. 74.

The sequence ODi, OD 2 ,
. . . Fig. 75 is exactly the same as the

sequence OTi, OT 2,
. . . Fig. 74, but arranged in the reverse

order. Hence, the graph of the cotangent and of the tangent are

alike in general form, but one curve descends as the other ascends,

so that the position, in the plane xy, of the branches of the curve
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are quite different. In fact, if the curve of the tangents be rotated

about OF as axis and then translated to the right the distance

TT /2, the curves would become identical. Therefore, for all values

of z:

tan(?r/2
-

x) = cot x (1)

This is a result previously known.

Y N A N"

\\\

Y' B N' N'

FIG. 76. Graphical Construction of y = sec x.

82. Graph of y = sec x. Since sec 6 is the ratio of the radius

divided by the abscissa of any point on the terminal side of the

angle B, it is desirable, in laying off a scale of a sequence of values

of sec 6, to draw a series of triangles of reference with the abscissas

in all cases the same, as shown in Fig. 76. In this figure the angles
were laid off from CQ as initial line. Thus:

or, if C$5 be unity, the distances like CT6 ,
laid off on CQ, are the
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secants of the angles laid off on the arc QS$0 or laid off on the axis

OX.
The student may describe the manner in which the rectangles

made by drawing horizontal lines through the points of division on

CQ and the vertical lines drawn at equal intervals along OX, may
be used to construct the curve. If the radius of the circle be 1.15

inches, what should be the length of OTT in inches?

The student may construct and discuss the locus of y = esc x.

Compare with the locus

y = sec x

Exercises

1. Discuss from the diagrams, 59, 74, 76, the following statements :

Any number, however large or small, is the tangent of some angle .

The sine or cosine of any angle cannot exceed 1 in numerical value.

The secant or cosecant of any angle is always numerically greater
than 1 (or at least equal to 1).

ft-)
3. If tan sec =

1, show that sin = f (\/5 1) and find

by use of polar coordinate paper, Form M3.
4. Describe fully the following, locating nodes, troughs, crests,

asymptotes, etc.:

y = sin
(x

-
I)

y = cos (x + ~

2. Show that sec I ^ x )
= esc x for all values of x.

y = tan

y = tan (x + 1).

83. Increasing and Decreasing Functions. The meanings of

these terms have been explained in 26. Applying these terms to

the circular functions, we may say that y sin x, y = tan x,

y = sec x are increasing functions for < x < IT /2. The co-

functions, y = cos x, y cot x, y = esc x, are decreasing functions

within the same interval.

Exercises

Discuss the following topics from a consideration of the graphs of

the functions :



84] THE ELLIPSE AND HYPERBOLA 153

1. In which quadrants is the sine an increasing function of the

angle? In which a decreasing function?

2. In which quadrants is the tangent an increasing, and in which a

decreasing, function of its variable?

3. In which quadrants are the cos 6, cot 6, sec 6, esc 6, increasing
and in which are they decreasing functions of el

4. Show that all the co-functions of angles of the first quadrant are

decreasing functions.

/ V
FIG. 77. Construction of the Rectangular Hyperbola.

84. The Rectangular Hyperbola. We have seen that the circle

is the locus of a point whose abscissa is a cos and whose ordinate

is a sin 0. The rectangular, or equilateral, hyperbola may be

defined to be.the locus of a point whose abscissa is a sec and whose

ordinate is a tan 0. To construct the curve, divide the X-axis pro-

portionally to sec 0, and the F-axis proportionally to tan 0, as

shown in Fig. 77. The scale OX of this diagram may be taken

from OF of Fig. 76, and the scale OF may be taken from OF of Fig.
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74. The plane of xy may be divided into a large number of rec-

tangles by passing lines through the points of division perpendicu-
lar to the scales and then, starting from A and A', sketching the

diagonals of the successive cornering rectangles.

The parametric equations of the curve are, by definition:

y = a tan

The Cartesian equation is easily found by squaring each of the

equations and subtracting the second from the first, thus eliminat-

ing 6 by the relation sec 2 6 tan 2 6 = 1 :

X 2 _
yZ = a2(gec

2 _ tan 2
fl)

or,

X 2 - V 2 = a2
(2 )

This is the Cartesian equation of the rectangular hyperbola.

The equation of the rectangular hyperbola may also be written in

the useful form :

y = Vx 2 - a2
(3)

Compare (1) and (3) with the equations of the circle.

The rectangular hyperbola here defined will be shown, in 86,

to be the curve 2xy = a 2 rotated 45 clockwise about the origin.

85. The Asymptotes. Let G'G be the line y =
x, Fig. 77. The

slope of OP 1
is PD /OD or y /x or

a tan 8

o^ecl
- sm *'

The value of 6 corresponding to the point P is AOH. As the point

P moves upward and to the right on the curve, the angle 6, or

AOH, approaches 90 and sin approaches unity. Hence the

line OP approaches OG as a limit, and P approaches as near as we

please to OG. The same reasoning applies to points moving out

on the curve in the other quadrants. The lines GG' and JJ' are

called asymptotes to the hyperbola.

86. The Curves 2xy = a 2 and x 2 - y
2 = a 2

. In. Fig. 78, let

the curve be the locus 2xiyi = a2
,
referred to the axes X\X\ and

Yi'Yi. This curve has already been called the rectangular hyper-

bola. (See 23.) We desire to find the equation of the curve

1 To avoid an excessive number of construction lines, OP is not shown in the

figure.
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referred to the axes XiX'% and F 2y' 2 .

of the projections of z 2 and y 2 on PD\.

45, whose cosine is J\/2. Hence,

Likewise,

and 7/2 on

s

In the figure, y\ is the sum
The angle of projection is

xi) (1)

difference in the projections through 45 of z 2

Or:
-

2/2) (2)

Yl

X,

FIG. 78. Comparison of 2xy = a2

and re
2 -

a/
2 = a2

.

Hence, multiplying the

members of (1) and (2):

2zi7/i
= z 2

2 -
?/ 2

2
(3)

Since by hypothesis 1x\y\
= a 2

,
the equation of the

curve referred to the axes

x 2y 2 is

z 2
2 -

2/2
2 = a 2

(4)

Thus, 2:n/
= a 2

is the

curve x 2
i/

2 = a2 turned

anti-clockwise through an

angle of 45.

By 27, the curve 2xy
= a 2 may be made from

xy = 1 by multiplying
both the abscissas and the ordinates by a/\/2.
Are the curves xy = 1 and x* y* = I of the same size ?

87. Hyperbola of Semi-axes a and b. The curve whose ab-

scissas are proportional to sec 6 and whose ordinates are pro-

portional to tan is called the hyperbola. Its parametric

equations are, therefore:

x = a sec 01

y = b tan 0J

where a and 6 are constants.

To construct the curve, draw two concentric circles of radii a and

b, respectively, as in Fig. 79. Divide both circumferences into

the same number of convenient intervals. Lay off, on XOX',
distances equal to a sec by drawing tangents at the points of

division on the circumference of the a-circle; also lay off distances
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equal to b tan on the vertical tangent to the 6-circle by prolong-

ing the radii of the latter through the points of division of the cir-

cumference. Draw horizontal and vertical lines through the

points of division of MN and XX' respectively, dividing the

plane into a large number of rectangles which are used exactly
as in Fig. 77 for the construction of the curve.

In the above construction, there is no reason why the diameter of

the 6-circle may not exceed that of the a-circle.

FIG. 79. The Hyperbola xz
/a

z - yz
/b

2 = 1.

Writing (1) in the form:
x- = sec
a

tan

and eliminating 6 as before we obtain:

a 2 b 2
(2)
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the Cartesian equation of the hyperbola. This is also called the

symmetrical equation of the hyperbola.

The line AA f = 2a is called the transverse axis, the line BB'

is called the conjugate axis, the points A and A' are called the

vertices, and the point is called the center of the hyperbola.

Let the line G'OG be the line through the origin of slope b /a and let

J'OJ be the line of slope b fa. The slope of the radius vector

OP is:

PD y 6 tan b
TTF; = - = = sm BOD x a sec B a

The limit of this ratio as the point P moves out on the curve away
from Oisb/a; for B approaches 90 asP moves outward, and hence

sin B approaches 1. Hence, the line OP approaches in direction

OG as a limit. Points moving along the curve away from in the

other quadrants likewise approach as near as we please to G'G or

J'J. The lines G'G and J'J are called the asymptotes of the hyper-
bola. The equations of these lines are

y= a* (3)

Solving the equation (2) for y, the equation of the hyperbola may
be written in the useful form

y = *
Vx 2 -a2

(4)

Compare this equation with the equation of the ellipse, (6) 72.

It is easy to show that the vertical distance PG of any point of

the curve from the asymptote G'G can be made as small as we please

by moving P outward on the curve away from 0.

Write the equation of the hyperbola in the form

V,
=
|y*'

- a* (5)

and the equation of the asymptote GG' in the form

y*
=
l* (6)

Then:

PG = y,
-

y, = b

a (x
- Vx* -

a*) (7)

=
a^Tv^=T> (8)
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by multiplying both numerator and denominator in (7) by
x + \/z 2 a2

- Now, as x increases in value without limit the

right side of (8) approaches zero. Whence:

PG = as x = oo

Exercises

1. Write the symmetrical equation of the hyperbola from the

parametric equations x = 5 sec 6, y = 3 tan 6.

2. Find the Cartesian equation of the hyperbola from the relations

x = 7 sec 0, y = 10 tan 0. Note that the graphical construction of

the hyperbola holds if b > a.

3. What curve is represented by the equation

(x - 3)
2

(y + 2)
2

~25~ ~16~
4. What curve is represented by the equation y = \-\/X

L a2 ?

5. Write the equation of a hyperbola having the asymptotes

y = (3/4) x, and transverse axis = 24.

6. Show that the curves

x 2 + 6z -
t/

2 - 4y + 4 =

and

(z+3) 2 '-
(y + 2) = 1

are the same, and show that each is a hyperbola.

7. What curve is represented by the equations

x = h + a sec B

y = k + 6 tan 61

8. Discuss the curve x* 8x 2y
z

12y = 0.

88. Orthographic Projections. When the equation of the

hyperbola is written in the useful form

y =
^Vx*

- a* (1)

it is seen that the hyperbola may be looked upon as generated from

the equilateral hyperbola

y = Vx* - a 2
(2)

by multiplying all of its ordinates by b /a.

89. Conjugate Hyperbolas. Consider the hyperbola
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Interchanging x and y in this equation gives, by Theorem III on

Loci, 24, a new locus which is the reflection of (1) in the line

y = x. The new equation may be written in the form

in which all signs have been changed after interchanging x and y.

Since (2) is the same curve as (1) but in a new position, it is still

a hyperbola; its vertices are located on the F-axis instead of on

the X-axis. The asymptotes of (1) have been found to be

y = b
-x (3)

Therefore the asymptotes of

(2) may be found by reflecting

(3) in the line y =
x; hence

they must be given by :

'

y = ~x (4)

Now, if the constants a

and b in equation (2) be in-

terchanged giving thereby the

equation

x2 y 2

S-P-- 1 <

then the shape of the hyper-

bola (2) will be Changed but FlG " 80 - A Family of Conjugate
v '

. , . , Pairs of Hyperbolas with Common
its position Will be Unaltered, Asymptotes. (An interference pat-

that is, its vertices will Still tern made from a glass plate under

bp Inofltpd on the F-axis compression. From R. Strauble,"S>
"Ueber die Elasticitats-zahlen und

The asymptotes of (5) are moduln des Glases." Wied. Ann.

found, of course, by inter- Bd. 68, 1899, p. 381.)

changing a and b in (4), which

gives an equation exactly like (3). Hence the hyperbola (5) has

the same asymptotes as the original hyperbola (1). When a

hyperbola with vertices on the F-axis has the same asymptotes
as a hyperbola with vertices on the X-axis, and of such size that

the transverse axis of one hyperbola is the conjugate axis of the

other, then the two hyperbolas are said to be conjugate to each
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other. Thus (1) and (5) are two hyperbolas which are conju-

gate to each other. Obviously a hyperbola and its conjugate

completely bound the space about the origin, except the cuts or

lines represented by the common asymptotes.

Fig. 80 shows a family of pairs of conjugate hyperbolas.

Exercises

1. Sketch on the same pair of axes the four following hyperbolas and
their asymptotes:

(1) x 2 -
2/

2 = 25 (3) 25
-

g

2

= 1

(2) z 2 -
?/

2 = - 25 (4)
~ -

|

2

= - 1.

2. Find the axes of the hyperbola y = |Vx ? 64.

3. Compare the curves :

&
_ y

2

_
a2 62

and

?!

a2

4. Compare the curves:

9
"

16

and
/y2 -1.2

16

5. Write the equation of the hyperbola conjugate to

y = i V* 2 - 64.

6. Compare the graphs of :

y = f V* 2 - 64

y = I Vx 2 - 16

y = | x 2 - 4

y = f Vx 2 1

y = I Vo

y = f Vo: 2 - 0.

7. Show that 3x 2 -
4?/

2 7x + 5y + 2 = is a hyperbola. Find

the position of the center and of the vertices. The vertices locate

the so-called "limiting lines" of the hyperbola.
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8. Show that xz - 4x - 4y
z + 4y = 4 is a hyperbola. Find the

limiting lines and center.

9. Discuss the graphs :

z 2 -
i/

2 = 1

and

y*
- z 2 = 1.

10. Discuss the graph 16z 2
y

2 40z Qy =
2, and find the

limiting lines.

11. In Fig. 77, show that DS = PD and, hence, from the triangle

DSO, x 2 - y
2 = a2

.

12. In Fig. 77, show that PK = x -
y, PK r = x + y, and that the

rectangle PK X PK' is constant for all positions of P and equal to the

square on OA.

11



CHAPTER V

SINGLE AND SIMULTANEOUS EQUATIONS

90. The Rational Integral Function of x. The general form of

a polynomial of the nth degree is :

aox + fliz*-
1 + a zxn

~z + . . . + an-ix + an

where the symbols, , fli, a 2 ,
. . .

,
stand for any real constants

whatsoever, positive or negative, integral or fractional, rational or

irrational, and where n is any positive integer: The number of

terms in the rational, integral function of the nth degree is (n -f 1).

91. The Remainder Theorem. // a rational integral function of

x be divided by (x r) the remainder which does not contain x is

obtained by writing, in the given function, r in place of x: This

theorem means, for example that the remainder of the division:

(x
3 - 6z2 + llx - 6) -^ (x

-
4) is 4 3 -

6(4)
2 + 11(4)

- 6 or 6

Also that the remainder of the division:

(ajt
_ 6z2 + llx - 6) * (a; + 1)

(-1) 3 - 6(-l) 2 + ll(-l)-6= - 24

The theorem enables one to write the remainder without actually

performing the division.

To prove the theorem, let

f(x)
= aox* + atf*- 1 + a 2z'

1
-2

-f . . . + a B-iZ + an (1)

and: /(r)
= a rn + airn

~ l + a 2r
n-* + . . . + a n-ir -f a n (2)

then:

/W ~/W =
a<>(x" -r-} + ai(x- 1 - r-) + . . .

+ a-i(x -
r) (3)

The right side of this equation is made up of a series of terms con-

taining differences of like powers of x and r, and, hence, by the

well-known theorem in factoring,
1 each binomial term is exactly

divisible by (x r). The quotient of the right side of (3) by
1 See Appendix.

162
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(x r) maybe written out at length, but it is sufficient to

abbreviate it by the symbol Q(x) and write:

or:

(4)

-
r
- Q(*) + (5)

Now if N be any dividend, D any divisor, and Q the quotient and

R the remainder, then:

N/D = Q + R/D (6)

This form applied to (5) shows that /(r) is the remainder when

f(x) is divided by (x r). Thus the Remainder Theorem is

established.

92. The Factor Theorem. // a rational integral function of

x becomes zero when r is written in the place of x, (x r) is a fac-
tor of the function: This means, for example, that if 3 be substi-

tuted for x in the function x 3 6z 2 + Hz 6 and the result

3 3 -
6(3)

2 + 11(3) -6 =
0, then (x

-
3) is a factor of

x 3 - 6.T
2 + llx - 6.

This theorem is but a corollary to the remainder theorem.

For if the substitution x = r renders the function zero, the

remainder when the function is divided by (x r) is zero, and the

theorem is established.

The value r of the variable x that causes the function to take

on the value zero has already been named a root or a zero of the

function. The factor theorem may, therefore, be stated in the

form: A rational integral function of the variable x is exactly

divisible by (x r) where r is any root of the function.
The familiar method of solving a quadratic equation by factor-

ing is nothing but a special case of the present theorem. Thus if :

x 2 - 5x + 6 =
then:

(x
-

2)(x
-

3) =

and the roots are x = 2 and x = 3. The numbers 2 and 3 are

such that when substituted in x 2 5x + 6 the expression is

zero; and the factors of the expression are x 2 and x 3

by the factor theorem,
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Exercises

1. Tabulating the cubic polynomial x 3 6x 2 + llx 6, we
obtain :

x - 3 - 2 -1-01 1.5 2 2.5 34
fix),

-
120,

-
60,

-
24,

-
6, 0, + 0.375, 0,

-
0.375, 0, 6

What is the remainder when the function is divided by x 4?

By x + 2? By x + 3? By x - 1.5? By x - 3?

Name three factors of the above function.

2. Find the remainder when re
4 5z 3 + I2x 2 + 4z - 8 is divided

by x - 2.

3. Show by the remainder theorem that xn + an is divisible by
x + a when n is an odd integer, but that the remainder is 2an when n
is an even integer.

4. Without actual division, show that x 4 4x z 7x 24 is

divisible by 2 3.

5. Show that a4 + a 2 a6 3 6 2 is divisible by a b.

6. Show that (b
-

c)(6 + c)
2 + (c

- o)(c+ a)
2 + (a

-
6)(a + 6)

2

is divisible by (b c) (c a) (a 6) .

7. Show that (x + l)
2
(x
-

2)
- 4(x -

l)(s
-

5) + 4 is divisible

by x - 1.

8. Show that (b
-

c)
3 + (c a)

3 + (a 6)
3 is divisible by

(6
-

c)(c
-

a) (a
-

6).

9. Show that 6z5 - 3z4 - 5z 3 + 5x 2 - 2x - 3 is divisible by
x + 1.

93. It follows at once from the factor theorem that it is possible

to set up an equation with any roots desired; for example, if we
desire an equation with the roots 1, 2, 3 we have merely to

write :

(x
- 1)0 -

2)(x
-

3)
= (1)

Forming the product:
x* - 6x 2 + llx - 6 =

or transposing the terms in any manner, as :

x 9 + llx = 6z 2 + 6

in no way essentially modifies the equation. If, however, the

equation (1) be multiplied through by any function of x, the

number of roots of the equation may be increased. Thus, mul-

tiplying (1) by (x + 2) introduces a new root x = 2. Likewise,
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dividing equation (1) through by the factor (x 2), leaves an

equation:

(x
-

l)(x
-

3)
=

(2)

which lacks the root x = 2.

By the principles or axioms of algebra, an equation remains

true if we unite the same number to both sides by addition or

subtraction; or if we multiply or divide both members by the

same number, not zero; or if like powers or roots of both

members be taken. But we have given sufficient illustrations to

show that these operations may affect the number of roots of the

equation. This is obvious enough in the cases already cited.

Sometimes, however, the operation that removes or introduces

a root is so natural and its effect is so disguised that the student

is not apt to take due account of its effect. Thus, the roots of:

3(s
-

5)
= x(x

-
5) + x 2 - 25 (3)

are 1 and 5, for either of these when substituted for x will

satisfy the equation. Dividing the equation through by x 5,

the resulting equation is :

3 = x + x + 5 (4)

This equation is not satisfied by x = 5. One root has disappeared
in the transformation. This is easy to keep account of if (3)

be given in the form:

(x
-

5)(x + 1)
=

0, (5)

but the fact that a factor has been removed may be overlooked

when the equation is written in the form first given.

A very important effect upon the roots of an equation results

from squaring both members. The student must always take

proper account of the effect of this common operation. To il-

lustrate, take the equation :

x + 5 = 1 - 2x (6)

It is satisfied only by the value x = 4/3. Now, by squaring
both sides of the equation, we obtain:

z 2 + 10x + 25 = 1 - 4z + 4z2
(7)

which is satisfied by either z = 6orx= 4/3. Here, obviously,

an extraneous solution has been introduced by the operation of

squaring both members.
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It is easy to show that squaring both members of an equation
is equivalent to multiplying both sides by the sum of the left and

right members. Thus, let any equation be represented by:

L(x) = R(x) (8)

in which L(x) represents the given function of x that stands on

the left side of the equation andR (x) represents the given function

of x that stands on the right side of the equation.

Squaring both sides :

[L(z)p = [R(x)]* (9)

Transposing :

(L(x)]*
-

[R(x)]* = (10)

or factoring;

[L(x) + R(x)] [L(x)
-

R(x}} = (11)

But (8) may be written:

L(x) - R(x) =
(12)

Thus, by squaring the members of the equation the factor

L(x) -f R(x) has been introduced.

The sum of the left and right members of (6), above, is 6 x.

Hence, squaring both sides of (6) is equivalent to the introduction

of this factor, or, the operation introduces the root 6, as already

noted.

As another example, suppose that it is required to solve:

sin a cos a = 1/4 (13)

for a < 90. Substituting for cos a:

sin aVl- sin2 a = 1/4 (14)

squaring :

sin2 a (1
- sin 2

a) = 1/16 (15)

completing the square:

sin 4 a - sin2 a + 1 /4
= 3 /16 (16)

Hence:

sin a = Vl/2 + (1/4)V3
= 0.9659 or 0.2588 (17)

Only the positive values satisfy (13); the negative values were

introduced in squaring (14). If, however, the restriction a < 90

be removed, so that the radical in (14) must be written with the double

sign, then no new solutions are introduced by squaring.
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94. Legitimate and Questionable Transformations. If one

equation is derived from another by an operation which has no

effect one way or another on the solution, it is spoken of as a

legitimate transformation; if the operation does have an effect

upon the final result, it is called a questionable transformation,

meaning thereby that the effect of the operation requires ex-

amination.

In performing operations on the members of equations, the

effect on the solution must be noted, and proper allowance

made in the result. It cannot be too strongly emphasized that

the test for any solution of an equation is that it satisfy the original

equation. "No matter how elaborate or ingenious the process

by which the solution has been obtained, if it do not stand this

test it is no solution; and, on the other hand, no matter how simply

obtained, provided it do stand this test, it is a solution." 1

Among the common operations that have no effect on the solu-

tion are multiplication or division by known numbers, or addition

or subtraction of like terms to both members
;
none of these intro-

duce factors containing the unknown number. Taking the

square root of both numbers is legitimate if the double sign be

given to the radical. Clearing of fractions is legitimate if it be done

so as not to introduce a new factor. If the fractions are not in

their lowest terms, or if the equation be multiplied through by an

expression having more factors than the least common multiple

of the denominators, new solutions may appear, for extra factors

are probably thereby introduced. Hence, in clearing of fractions

the multiplier should be the least common denominator and the

fractions should be in their lowest terms. This, however, does not

constitute a sufficient condition, therefore the only certainty lies

in checking all results.

Exercises

SUGGESTIONS: It is important to know that any equation of

the form

ax*n 4- bx n + c =

can be solved as a quadratic by finding the two values of x n
.

Frequently equations of this type appear in the form

dxn -f ex~n = f
1 Chrystal's Algebra.
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Likewise any equation of the form

af(x) + b V/Gcj + c =

can be solved as a quadratic by finding the two values of V/(z)

and then solving the two equations resulting from putting V/(z)

equal to each of them. One of these usually gives extraneous

solutions.

These two types occur in the exercises given below.

Since operations which introduce extraneous solutions are

often used in solving equations, the only sure test for the solution

of any equation is to check the results by substituting them in

the original equation.
Take account of all questionable operations in solving the following

equations:

3x 6 9
-L x-3 z + 3

'

z - 3

2. (x
2 + 5z+6)/0 -

3) + 4x - 7 = - 15.

3. 3(x -
5)(x - l)(x

-
2) = (3

-
5) (re + 2)(z + 3).

NOTE: Divide by (x 5), but take account of its effect.

4. x*/a + ax = z 2
/6 + 6s.

5. ax(cx
-

36) = 5a(36 -
ex).

6. z 2 n 2 = n x.

7. (3
-

4)
3 + (x

-
5)

3 = 3l[(z
-

4)
2 -

(x
-

5)
2
]. Divide by

(x- 4) + ( -5) or 2x - 9.

8.
jj-yE"^ + 2 + ^TI =

- If the fractions be added, multi-

plication is unnecessary. There is only one root.

9. x = 7 - A/a^y
10. Vz + 20 - VaT^ -3=0.
11. V15/4 + x = 3/2 + V~x~.

12. 20z/VlOz - 9 - VlOz - 9 = 18/VlOx -9 + 9.

VaT + Vs- 3 3
13. - - =

^ Consider as a proportion and take
Vx Vx 3 x 6

by composition and division.

14. x& + 5/2 = (13/4)x^.

15. \/x* - 2Vx~+ x =0. Divide by VoT.

16. 2Vz2 - 5 x + 2 x 2 + Sx = 3x 6. Call x z - 5x + 2 = w 2
.
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17. 4z 2 - 4x + 20V2 z2 - 5 x + 6 = 6z + 66.

18. or 2 - 2x~ l = 8.

19. a*fl - 5*Ml +4=0.
20. HOar4 + 1 = 21or 2

.

21. Vx + 4x-K = 5.

22. 8s9* -8ar? * = 63.

23. (x
-

a)
n - 3(x

- a}~
n = 2.

24. 2z^ - 3x^ -f x = 0.

95. Intersection of Loci. Any pair of values of x and y that

satisfies an equation containing x and y locates some point on

the graph of that equation. Consequently, any set of values of

x and y that satisfies both equations of a system of two equations

containing x and y, must locate some point common to the

graphs of the two equations. In other words, the coordinates

of a point of intersection of two graphs is a solution of the equations

of the graphs considered as simultaneous equations.

To find the values of x and y that satisfy two equations, we

solve them as simultaneous equations. Hence, to find the points

of intersection of two loci we must solve the equations of the

two curves. There will be a pair of values or a solution for each

point of intersection.

Thus, the intersection of the lines y = 3x 2 and y = x /2 + 3

is the point (2, 4) and x =
2, y =

4, is the solution of the simul-

taneous equations.

To find the points of intersection of the circle z 2
-f y* = 25

and the straight line x + y = 9 we solve the equations by the

usual method, as follows:

z 2 + </
2 = 25

\ (1)

x +y = 7J (2)

The graphs are a straight line and a circle, as shown in (1),

Fig. 81. Squaring the second equation, the system becomes:

z 2 + y
2 = 25 \ (3)

z 2 + 2xy + y
2 = 49 / (4)

The second equation represents the two straight lines shown in

Fig. 81, (2). The effect of squaring has been to introduce two

extraneous solutions corresponding to the points P 3 and P 4 -



170 ELEMENTARY MATHEMATICAL ANALYSIS [95

Multiplying (3) by 2 and subtracting (4) from it, the last pair

of equations becomes:

x 2 - 2xy + 2/
2 = 11 (6)

x* + 2xy + y
z = 49 / (7)

which gives the four straight lines of Fig. 81, (4). Taking the

square root of each member, but discarding the equation x + y =

7, because it corre-

sponds to the extraneous

solutions introduced by
the questionable operation,

we have:

x - y = + 1 \ (8)

x + y = 7 ! (9)

By addition and subtrac-

tion we obtain the results :

x = 4

(10)

(11)

FIG. 81. Graphic Representation of

the Steps in the Solution of a Certain set

of Simultaneous Equations.

represented by the inter-

sections of the lines parallel

to the axes shown in Fig.

81, (5).

This is a good illustra-

tion of the graphical

changes that take place

during the solution of sim-

ultaneous equations of the

second degree. The ordinary algebraic solution consists, geo-

metrically, in the successive replacement of loci by others of an

entirely different kind, but all passing through the points of in-

tersection (as PI, P 2 , Fig. 81) of the original loci.

Exercises

1. Find the points of intersection of the circle and parabola:

s + y
2 = 5

?/
2 = 4x.
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Note that of the two lines parallel to the y-axis, given by the equation

x 2 + 4x 5 =0, one does not cut the circle: x 2 + y
z = 5.

2. Find the points of intersection of x z + 2/
2 = 5 and the hyperbola

x* - y*
= 3.

3. Solve, by graphical means only, to two decimal places :

y = x z + x 1

xy = l.

4. Solve in like manner:
x 2 + r2 = 16

z 2 - 2xy + 7/
2 = 9.

Reason out what each equation represents before attempting to

graph.
6. Solve in like manner :

x*+y*+x+y = 7

2z 2 + 2i/
2 - 4x + 4y = 8.

These loci should be graphed without tabulating numerical values

of the variables.

6. Solve graphically:

u z + v 2 = 9

u* - v2 = 4.

NOTE. Draw the lines x + y =
9, and x y = 4. The values

of x and y determined by the intersection of these lines are the

values of u 2 and y2
respectively, from which u and v can be computed.

7. Solve the system :

x 2 + y
2 = 10

96. Quadratic Systems.
1 Any linear-quadratic system of

simultaneous equations, such as:

y = mx + k

ax* + V + 2hxy + 2gx + 2fy + c =

can always be solved analytically ;
for y may readily be eliminated

by substituting from the first equation into the second. A
system of two quadratic equations may, however, lead, after

elimination, to an equation of the third or fourth degree; and,

hence, such equations cannot, in general, be solved until the

solutions of the cubic and biquadratic equations have been

explained.

1 A large part of the remainder of this chapter can be omitted if the students

have had a good course in algebra in the secondary school.
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A single illustration will show that an equation of the fourth

degree may result from the elimination of an unknown number
between two quadratics. Thus, let:

X 2 -
y = 5

x* + xy = 10

From the first, y = x z - 5. Substituting this value of y in the

second equation, and performing the indicated operations, we
obtain :

x 4 + x* - 5x + 10 = 0.

While, in general, a bi-quadratic equation results from the

process of elimination from two quadratic equations, there are

special cases of some importance in which the resulting equation
is either a quadratic equation or a higher equation in the quadratic
form. Two of these cases are:

(1) Systems in which the terms containing the unknown num-
bers are homogeneous; that is, systems in which the terms con-

taining the unknown numbers are all of the second degree with

respect to the unknown numbers, such, for example, as:

z 2 -
2xy = 5

3z 2 -
I0y

z = 35

(2) Systems in which both equations are symmetrical; that is,

such that interchanging x and y in every term does not alter the

equations; for example:

x 2 + y
z - x - y = 78

xy + x + y = 39

97. Unknown Terms Homogeneous. The following work

illustrates the reasoning that will lead to a solution when applied

to any quadratic system all of whose terms containing x and y
are of the second degree. Let the system be :

x 2 - xy = 2

2x* + y* = 9 (1)

Divide each through by x 2
(or ?/

2
), then:

1- (y/x) = 2/x*

2 + (W*)
2 = 9/z

2
(2)

Since the left members were homogeneous, dividing by x* renders

them functions of the ratio (y /x} alone
;
call this ratio m. Then
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equations (2) contain only the unknown numbers m and x 2
.

The latter is readily eliminated by subtraction, leaving a quad-

ratic for the determination of m. When m is known, substituting

in (2) determines x, and the relation y = mx determines the

corresponding values of y.

The above illustrates the principles on which the solution is

based. In practice, it is usual to substitute y = mx at once, and

then eliminate x z
by comparison; thus, from the substitution

y = mx in (1), we obtain:

x z - mx* = 2

2z 2 + m2z 2 = 9 (3)

Thence:

z 2 = 2 /(I
- m)

z 2 = 9/(2 + m2
) (4)

Whence :

m 2
) (5)

2m2 + 9m = 5 (6)

Factoring :

(2m - 1) (m + 5)
= (7)

whence :

m = 1 /2 or - 5 (8)

Hence:

x = 2 or + (1/3) v/3

y= lor+ (5/3)x/3 (9)

These solutions should be written as corresponding pairs of values

as follows:

x = 2 x=-2 x= (1

y=l y=-l y=
This system can readily be solved without the use of the mx

'substitution by merely solving the first equation for y and sub-

stituting in the second.

Graphically (see Fig. 82), the above problem is equivalent to

finding the intersections of the curves:

x(x
-

y} = 2

The first is a curve with the two asymptotes x = and x y
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= 0. As a matter of fact, the curve is a hyperbola, although proof
that such is the case cannot be given until the method of rotating

any curve about the origin has been explained. The second curve

is obviously an ellipse generated from a circle of radius 3 by
shortening the abscissas in the ratio \/2":l. The two curves

intersect at the points:

x = 2 - 2 0.557 ... - 0.557 . . .

V = 1 - 1 - 2.887 . + 2.887 .

YIF

FIG. 82. Solutions of a Set of Simultaneous Quadratics .given graph-
ically by the coordinates of the points of Intersection of the Ellipse and
Hyperbola.

The auxiliary lines, y = %x and y =
5x, made use of in the

solution are shown by the dotted lines.

98. Symmetrical Systems. Simultaneous quadratics of this

type are always readily solved analytically by seeking for the values

of the binomials x -f y and x y. The ingenuity of the student
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will usually show many short cuts or special expedients adapted
to the particular problem. The following worked examples

point out some of the more common artifices used.

1. Solve

x + y = 6 (1)

xy = 5 (2)

Squaring (1)

z 2 + 2*y + y
2 = 36 (3)

Subtracting four times (2) from (3) :

z 2 -
2xy + y*

= 16

whence :

x - y = 4

But from (1):

x + y = 6

Therefore :

x = 5 x = 1

V = 1 y = 5

2. Solve

X 2 + j/2
= 34 (1)

sy = 15 (2)

Adding two times (2) to (1):

x 2 + 2xy + ?/
2 = 64 (3)

Subtracting two times (2) from (1):

x 2 -
2z7/ + y* = 4 (4)

Whence, from (3) and (4) :

x + y = 8

x - y = 2

Therefore :

z = 5 x = 3 x = 5

y = 3 2/
= 5 y=-3

The hyperbola and circle represented by (1) and (2) should be

drawn by the student.

3.

x 3 + y
3 = 72 (1)

* +y -f 6 (2)

Cubing (2) :

x 3 + 3x*y + 3xy* + y* = 216 (3)
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Subtracting (1) and dividing by 3:

xy(x + y)
= 48 (4)

whence, since

x + y = 6

we have xy = 8 (5)

From (2) and (5) proceed as in example 1, and find:

x = 4 x = 2

y = 2 y = 4

Otherwise, divide (1) by (2) and proceed by the usual method.

4. Solve

x* + xy = (7/3)(z+-y) (1)

y* + xy = (ll/3)(x + y) (2)

adding (1) and (2):

(x + yY -
6(* + y)

=
(3)

whence:

a; -|- y = or 6 (4)

Now, because x -f y is a factor of both members of (1) and (2),

the original equations are satisfied by the unlimited number of

pairs of values of x and y whose sum is zero, namely, the coor-

dinates of all points on the line x + y 0.

Dividing (1) by (2), we get:

x/y = 7/11

This, and the line x + y =
6, from (4), give the solution:

x = 7/3

y = n/3

Graphically, the equation (1) is the two straight lines:

(x-7/3)(x + y)
=

Equation (2) is the two straight lines :

(y-ll/3)(* + y) =0
These loci intersect in the point (7/3, 11/3) and also intersect

everywhere on the line x + y = 0.

Exercises

1. Show that:

re
2 + y* = 25

x +y = 1
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has a solution, but that there is no real solution of the system:

x* + y* = 25

x +y = 11.

2. Do the curves :

z 2 + 2/
2 = 25

xy = 100, intersect?

Do the curves: x 2 + y
2 = 25

xy =
12, intersect?

3. Solve:

(a* + y
z
)(x + y) =272

x 2 + 2/
2 + x + y = 42.

NOTE: Call z 2 + ?/
2 =

H, and x + y = v.

4. Show that there are four real solutions to :

z 2 + 7/
2 - 12 = x + y

xy + 8 = 2(z + y).

6. Solve: x 2 + ?/
2 + x + y = 18

xy = 6.

99. Graphical Solution of the Cubic Equation. The roots of a

cubic x 3 + ax 2 + bx + c = (where a, b, and c are given known

numbers) may be determined graphically as explained in 39,

or we may proceed as follows: The next highest term in the

cubic may be removed by the substitution x = x\ a/3, as may
readily be shown by trial. Hence, it is merely necessary to con-

sider cubic equations of the form:

x 3 + ax + b = (1)

Consider the system of equations:

y = - ax - b

Graphically, the curves consist of the cubic parabola (Fig. 83)

and a straight line. The intersections of the two graphs give the

solutions of the system. Eliminating y by subtraction, we obtain

x z + ax + b =

which shows that the values of x that satisfy the system (2)

give the roots of equation (1). Hence (1) may be solved by means

of the graph of (2). In this graph the cubic parabola y = x z

is the same for all cubics; IKMKM> if the cubic parabola be once

drawn accurately to scale, then all cubic equations can be solved

12
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by properly drawing the appropriate straight line, or by properly

laying a straight edge across the graph of the cubic parabola.

In drawing the graph of the cubic parabola, it is desirable to

use, for the y-sc&le, one-tenth of the unit used for the z-scale, so as

to bring a greater range of values for y upon an ordinary sheet of

coordinate paper. The cubic parab-
ola graphed to this scale is shown

in Fig. 83. The diagram gives the

solution of x 3 x 1 = 0. The

graphs y = x 3 and y = x -f 1 are

seen to intersect at x = 1.32. This,

then, should be one root of the

cubic correct to two decimal places.

The line y = x -f 1 cuts the cubic

parabola in but one point, which

shows that there is but one real root

of the cubic. To obtain the imagi-

nary roots, divide x 3 x 1 by
x - 1.32. The result of the divi-

sion, retaining but two places

decimals in the coefficients, is:

z 2 + 1.32z + 0.7424 (3

Putting this equal to zero and solv

ing by completing the square, w
find:

FIG. 83. A Graphical
Scheme for the Solution of

Cubic Equations.

x = - 0.66 V- 0.3068

or:

x = - 0.66 + 0.55V" 1 (4

in which, of course, the coefficients are not correct to more than

two places.

The equation:

x s - lOx - 10 = (5

illustrates a case in which the cubic has three real roots. Th

straight line y = 10z -f 10 cuts the cubic parabola (see Fig. 83

at x = -
1.2, x = -

2.4, and x = 3.6. These, then, are th

approximate roots. The product:

(x + 1.2) (x + 2.4)0 - 3.6) = z 3 - 10.08z - 10.37
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should give the original equation (5) . This result checks the work

to about two decimal places.

It is obvious that a similar process will apply to any equation

of the form

x + ax + b =

The z-scale of Fig. 83 extends only from 5 to +5. The
same diagram may, however, be used for any range of values by
suitably changing the unit of measure on the two scales; thus, the

divisions of the z-scale may be marked with numbers 5-fold the

present numbers, in which case the numbers on the ?/-scale must be

marked with numbers 125 times as great as the present numbers.

These results are shown by the auxiliary numbers attached to

the y-scale in Fig. 83. l

Exercises

Solve graphically the following equations checking each result

separately.

1. x 3 - 4z + 10 = 0.

2. x 3 -\2x - 8 = 0.

3. x 3 + x - 3 = 0.

4. x 3 -15.C -5=0.
5. z 3 - 3x + 1 = 0.

6. x 3 - 4x - 2 = 0.

7. 2 sin e + 3 cos 6 = 1.5.

NOTE: Construct on polar paper the circles p = 2 sin 6 and

p = 3 cos 9.

8. 2x + sin z = 0.6.

NOTE: Find the intersection of y = sin x and the line

y = 2 x + 0.6. If 1.15 inches is the amplitude of y = sin x, then

1.15 must be the unit of measure used for the construction of the

line y = - 2x + 0.6.

9. x 3 + x + 1 + l/x = 0.

10. Show that x 3 + ax -f- b = can have but one real root if a > 0.

11. (a) Show that the graph of y = x* + bx is symmetrical with

respect to the origin. (See 37, equation (1).)

1 For other graphical methods of solution of equaitons, see Runge'a
"
Graph-

ical Methods," Columbia University Press, 1912.
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(6) Show that the graph of y = x* + bx + c is symmetrical with

respect to the point (0, c).

(c) If the substitution x = x\ a/3 removes the term ax 2 from the

equation y = x 3 + ax 2 + bx + c, show that the graph of this last

equation must be symmetrical with respect to some point.

12. On polar paper, draw a curve showing the variation of local or

mean solar time with the longitude of points on the earth's surface .

If it be noon by both standard and mean solar (local) time at Green-

wich, longitude 0, construct a graph on polar paper showing standard

time at all other longitudes, if the longitude of a point be represented

by thevectorial angle on polar paper and if time relative to Greenwich

be represented on the radius vector using 1 cm. =2 hours, and also if

it be assumed that the changes of standard time take place exactly at

15 intervals beginning at 7 west longitude.

If it be noon at Greenwich, write an equation which will express the

local time of any point in terms of the longitude of the point. Does the

expression hold for points having negative longitude? Does this

function possess a discontinuity?

Can a similar expression be written giving the standard time at any

point in terms of the longitude of the point?
If t be standard time and longitude, and if the functional relation

by expressed by /, so that :

t = /(*)

is / a continuous or a discontinuous function? Is the function /
denned for 6 = 15, 30, 45, etc., and why?

In actual practice, how is the function / given?

100. Method of Successive Approximations. The graphic

method of solving numerical equations, combined with the method

explained below, is the only method which is universally ap-

plicable. It therefore possesses a practical importance exceeding

that of any other method. An example will illustrate the method.

Suppose that it is required to find to four decimal places one

root of x 3 - x - I = 0. See 99 and Fig. 83. The graphic

method gives x = 1.32. This is the first approximation. A
second approximation is found as follows: Build the table

of values for y = x z x 1

* \v
1.32

1.33
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Now reason as follows: The actual root lies between 1.32 and

1.33, and the zero value 'of y corresponds to it. This zero is

200/426 of the way between the two values of y\ hence if the

curve be nearly straight between x =
1.32, and x 1.33,

the desired value of x is approximately 200/426 of the way
between 1.32 and 1.33 or it is x = 1.324694. This value is

probably correct to the fourth decimal place.

To find a third approximation we build another table of

values:

1.3247 - .0000766

1.3248 + .0003499

0.0001
1

.0004265 Differences.

Reasoning as before, we get x = 1.324718 which is very likely

true to the last decimal place.

The above method is applicable to an equation like exercise

8 above. In fact it is the only numerical method that is

applicable in such cases.



CHAPTER VI

PERMUTATIONS AND COMBINATIONS;
THE BINOMIAL THEOREM

101. Fudamental Principle. // one thing can be done in n

different ways and another thing can be done in r different ways,
then both things can be done together, or in succession, in n X r

different ways. This simple theorem is fundamental to the work
of this chapter. To illustrate, if there be 3 ways of going from

Madison to Chicago and 7 ways of going from Chicago to New
York, then there are 21 ways of going from Madison to New
York.

To prove the general theorem, note that if there be only one

way of doing the first thing, that way could be associated with

each of the r ways of doing the second thing, making r ways
of doing both. That is, for each way of doing the first, there are

r ways of doing both things; hence, for n ways of doing the first

there are n X r ways of doing both.

ILLUSTRATIONS: A penny may fall in 2 ways; a common
die may fall in 6 ways; the two may fall together in 12 ways.

In a society, any one of 9 seniors is eligible for president and any
one o 14 juniors is eligible for vice-president. The number of

tickets possible is, therefore, 9 X 14 or 126.

I can purchase a present at any one of 4 shops. I can give it

away to any one of 7 people. I can, therefore, purchase and give

it away in any one of 28 different ways.

A product of two factors is to be made by selecting the first

factor from the numbers a, b, c, and then selecting the second factor

from the numbers x, y, z, u, v. The number of possible products

is, therefore, 15.

If a first thing can be done in n different ways, a second in r

different ways, and a third in s different ways, the three things

can be done in n X r X s different ways. This follows at once

from the fundamental principle, since we may regard the first

two things as constituting a single thing that can be done in nr

182
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ways, and then associate it with the third, making nr X s ways
of doing the two things, consisting of the first two and the third.

In the same way, if one thing can be done in n different ways, a

second in r different ways, a third in s, a fourth in t, etc., then all

can be done together in n X r X s X t . . . different ways.

Thus, n different presents can be given to x men and a women
in (x + a)

n different ways. For the first of the n presents can

be given away in (x -f- a) different ways, the second can be given

away in (x -f- a) different ways, and the third in (x -\- a) different

ways and so on. Hence, the number of possible ways of giving

away the n presents to (x + a) men and women is:

(x + a)(x + a)(x + a) . . . to n factors, or (x + d)
n

102. Definitions. Every distinct order in which objects

may be placed in a line or row is called a permutation or an

arrangement. Every distinct selection of objects that can be

made, irrespective of the order in which they are placed, is called

a combination or group.

Thus, if we take the letters a, b, c, two at a time, there are six

arrangements, namely: ab, ac, ba, be, ca, cb, but there are only
three groups, namely: ab, ac, be.

If we take the three letters all at a time, there are six arrange-

ments possible, namely: abc, acb, bca, bac, cab, cba, but there is

only one group, namely: abc.

Permutations and combinations are both results of mode of

selection. Permutations are selections made with the understand-

ing that two selections are considered as different even though

they differ in arrangement only; combinations are selections made
with the understanding that two selections are not considered as

different, if they differ in arrangement only.

In the following work, products of the natural numbers like

1X2X3; 1X2X3X4X5; etc.

are of frequent occurrence. These products are abbreviated by
the symbols 3! 5! and read "factorial three," "factorial five"

respectively.

103. Formula for the Number of Permutations of n Different

Things Taken All at a Time. We are required to find how many
possible ways there are of arranging n different things in a line.



184 ELEMENTARY MATHEMATICAL ANALYSIS [104

Lay out a row of n blank spaces, so that each may receive one of

these objects, thus:

|

1
i

!

2
|

3
|

4 5 n

In the first space we may place any one of the n objects; therefore,

that space may be occupied in n different ways. The second

space, after one object has been placed in the first space, may be

occupied in (n 1) different ways; hence, by the fundamental

principle, the two spaces may be occupied in n(n 1) different

ways. In like manner, the third space may be occupied in (n 2)

different ways, and, by the same principle, the first three spaces

may be occupied in n(n 1) (n 2) different ways, and so on.

The next to the last space can be occupied in but two different

ways, since there are but two objects left, and the last space
can be occupied in but one way by placing therein the last re-

maining object. Hence, the total number of different ways of

occupying the n spaces in the row with the n objects is the product:

n(n - 1) (n
-

2) . . .3-2-1

or,

n!

If we use the symbol Pn to stand for the number of permutations .

of n things taken all at a time, then we write:

Pn - n! (1)

104. Formula for the Number of Permutations of n Things
Taken r at a Time. We are required to find how many possible

ways there are of arranging a row consisting of r different things,

when we may select the r things from a larger group of n different

things.

For convenience in reasoning, lay out a row of r blank spaces,

so that each of the spaces may receive one of the objects, thus:

|

1
I

|

2 3
. . |

r-1
|

r
\

In the first space of the row, we may place any one of the n objects;

therefore, that space may be occupied in n different ways. The
second space, after one object has been placed in the first space,

may be occupied in (n 1) different ways; hence, by the fun-

damental principle, the two spaces may be occupied in n(n 1)

different ways. In like manner, the third space may be occupied
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in (n 2) different ways, and hence, the first three may be

occupied in n(n 1) (n 2) different ways, and so on. The

last or rth space can be occupied in as many different ways as there

are objects left. When an object is about to be selected for the

rth space, there have been used (r 1) objects (one for each of

the (r 1) spaces already occupied). Since there were n objects

to begin with, the number of objects left is n (r 1) or

n r + 1, which is the number of different ways in which the

last space in the row may be occupied. Hence, the formula:

Pn>r
= n(n -

l)(n
-

2) . . . (n
- r + 1) (1)

in which P n ,
r stands for the number of permutations of n things

taken r at a time.

The formula, by multiplication and division by \n -r, becomes:

n(n -
1) . . . (n

- r + l)(n
-

r)(n -r-1) . . . 3-2-1

(n-r}(n -r-1) . . . 3-2-1

p.,- -sL (2)
(n-r)!

This formula is more compact than the form (1) above, but the

fraction is not in its lowest terms.

Formula (1) is easily remembered by the fact that there are

just r factors beginning with n and decreasing by one. Thus we
have:

Pio, 7
= 10X9X8X7X6X5X4

Exercises

1. How many permutations can be made of six things taken all at

a time?

2. How many different numbers can be made with the five digits

1, 2, 3, 4, 5, using each digit once and only once to form each number?

3. The number of permutations of four things taken all at a time

bears what ratio to the number of permutations of seven things taken

all at a time?

4. How many arrangements can be made of eight things taken

three at a time?

6. How many arrangements can be made of eight things taken

five at a time?

6. How many four-figure numbers can be formed with the ten

digits 0, 1, 2, . . . 9 without repeating any digit in any number?
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7. How many different ways may the letters of the word algebra
be written, using all of the letters ?

8. How many different signals can be made with seven different

flags, by hoisting them one above another five at a t'me?

9. How many different signals can be made with seven different

flags, by hoisting them one above another any number at a time?

10. How many different arrangements can be made of nine ball

players, supposing only two of them can catch and one pitch?

105. Formula for the number of combinations or groups of n

different things taken r at a time.

It is obvious that the number of combinations or groups con-

sisting of r objects each that can be selected from n objects, is

less than the number of permutations of the same objects taken

r at a time, for each combination or group when selected can be

arranged in a large number of ways. In fact, since there are r

objects in the group, each group can be arranged in exactly r!

different ways. Hence, for each group of r objects, selected from

n objects, there exists r! permutations of r objects each. There-

fore, the number of permutations of n things, taken r at a time, is

r! times the number of combinations of n objects taken r at a

time. Calling the unknown number of combinations x, we have:

(tt-r)!

or, solving for x :

n\
"

rl(n-r)!

This is the number of combinations of n objects taken r at a time,

and may be symbolized:

C
n! (1)

r!(n-r)!

This fraction will always reduce to a whole number. It may be

written in the useful form:

n(n-l)(n-2) . . . (n
- r + 1) (2)

1X2X3 ... r

It is easily remembered in this form, for it has r factors in both

the numerator and the denominator. Thus for the number of
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combinations of ten things taken four at a time we have four

factors in the numerator and denominator, and

_ 10 X 9 X 8 X 7

1X2X3X4
Exercises

1. How many different products of three each can be made with the

five numbers a, b, c, d, e, provided each combination of three factors

gives a different product.

2. How many products can be made from twelve different num-

bers, by taking eight numbers to form each product?

3. How many products can be made from twelve different num-

bers, by taking four numbers to form each product?

4. How many different hands of thirteen cards each can be held

at a game of whist?

6. In how many ways can seven people sit at a round table?

6. In how many ways can a child be named, supposing that there

are 400 different Christian names, without giving it more than three

names?

7. In how many ways can a committee of three be appointed
from six Germans, four Frenchmen, and seven Americans provided
each nationality is represented?

8. There are five straight lines in a plane, no two of which are

parallel; how many intersections are there?

9. There are five points in a plane, no three of which are collinear;

how many lines result from joining each point to every other point?

10. In a plane there are n straight lines, no two of which are parallel;

how many intersections are there?

11. In a plane there are n points, no three of which are collinear;

how many straight lines do they determine?

12. In a plane there are n points, no three of which are collinear,

except r, which are all in the same straight line; find the number of

straight lines whch result from joining them.

13. A Yale lock contains five tumblers (cut pins), each capable of

being placed in ten distinct positions. At a certain arrangement of the

tumblers, the lock is open. How many locks of this kind can be made
so that no two shall have the same key?

14. In how many ways can seven beads of different colors be strung
so as to form a bracelet?
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15. How many different sums of money can be formed from a dime,
a quarter, a half dollar, a dollar, a quarter eagle, a half eagle, and an

eY

106. * The Arithmetical Triangle. In deriving by actual mul-

tiplication, as below, any power of a binomial x -{- a from the

preceding power, it is easy to see that any coefficient in the new

power is the sum of the coefficient of the corresponding term in the

multiplicand and the coefficient preceding it in the multiplicand.
Thus:

z 3 + 3ax2 + 3a 2z + a 3

x + a

3ax 3

ax 3 + 3a2z2 + 3a 3z + a 4

or, erasing coefficients, we have:

1+3+3+1
1 + 1

1+3+3+1
1+3+3+1

1+4+6+4+ 1

from which the law of formation of the coefficients 1, 4, 6, .

is evident. Hence, writing down the coefficients of the powers
of x + a in order, we have:

Powers Coefficients

6 89 10 11

1

2
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In this triangle, each number is the sum of the number above it

and the number to the left of the latter. Thus 84 in the 9th line

equals 56 + 28, etc. The triangle of numbers was used previous

to the time of Isaac Newton for finding the coefficients of any de-

sired power of a binomial. At that time it was little suspected

that the coefficients of any power could ^be made without first

obtaining the ocefficients of the preceding power. Isaac Newton,
while an undergraduate at Cambridge, showed that the coefficients

of any power could be found without knowing the coefficients of

the preceding power; in fact, he showed that the coefficients of

any power n of a binomial were functions of the exponent n.

The above triangle of numbers is known as the arithmetical

triangle or as Pascal's triangle.

107. Distributive Law of Multiplication. The demonstration

of the binomial theorem may be based upon the following law of

multiplication: The product of any number of polynomials is

the aggregate of all the possible partial products which can be made

by taking one term and only one from each of the polynomials.

This statement is merely a definition of what is meant by the

product of two or more polynomials. (See appendix.) Thus:

(x + a)(y + b)(z + c)
=

xyz + ayz + bxz + cxy + abz -+- bcx + cay + abc

Each of the eight partial products contains a letter from each

parenthesis, and never two from the same parenthesis. The
number of terms is the number of different ways in which a letter

can be selected from each of the three parentheses. In the present

case this is, by 101, 2X2X2 = 8.

108. Binomial Formula. It is required to write out the value

of (x -f a)
n

,
where x and a stand for any two numbers and n is a

positive integer. That is, we must consider the product of the. n

parentheses :

(x + a)(x + a)(x + a) . . . (x + a)

by the distributive law stated above.

First. Take an x from each of the parentheses to form one of

the partial products. This gives the term x n of the product.

Second. Take an a from the first parenthesis with an x from

each of the other (n 1) parentheses. This gives axn~ l as
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another partial product. But if we take a from the second paren-

thesis and an x from each of the other (n 1) parentheses, we get

ax n~ l as another partial product. Likewise by taking a from any
of the parentheses and an re from each of the other (n l) paren-

theses, we shall obtain ax n~l as a partial product. Hence, the

final product contains n terms like ax n~ l

,
or nax 11^ is a part

of the product.

Third. We may obtain a partial product like a 2x n~ 2
by taking

an a from any two of the parentheses, together with the x's from

each of the other (n 2) parentheses. Hence, there are as many
partial products like a 2xn~2 as there are ways of selecting two a's

from n parentheses; that is, as many ways as there are groups or

combinations of n things taken two at a time, or:

n(n - 1)

1-2

Hence,
- V. anx n~2 is another part of the product.

1 '

i

Fourth. We may obtain a partial product like a 3x n~3 by taking

an a from any three of the parentheses together with the x's from

each of the other (n 3) parentheses. Hence, there are as many
partial products like a zxn~* as there are ways of selecting three a>s

from n parentheses, that is, as many ways as there are combina-

n(n - l)(n - 2\
tions of n things taken three at a time, or -

t
I'Z'O

Hence, r~o~o~ a*x n~ 3 is another part of the product.
1 'Z'o

In general, we may obtain a partial product like a rx n~r
(where r

is an integer < n) by taking an a from any r of the parentheses

together with the .T'S from each of the other (n r) parentheses.

Hence, there are as many partial products like a rx n~r as there are

ways of selecting r a's from n parentheses; that is, as many ways
as there are combinations of n things taken r at a time, or

r-r-- Hence, r-, TV arx n~r stands for any term
r! (n

-
r)! r! (n

-
r)!

in general in the product (x + )"

Finally, we may obtain one partial product like an by taking an

a from each of the parentheses. Hence, an is the last term in the

product.
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Thus we have shown that:

(x + a)- = x + nax- 1 +"^ 1)
a2x- 2 + . . .

-I arxn ~r 4- 4- a*
r!(n-r)!

a

This is the binomial formula of Isaac Newton. The right side is

called the expansion or development of the power of the binomial.

It is obvious that the expansion of (x a)
n will differ from the

above only in the signs of the alternate terms containing the odd

powers of a, which, of course, will have the negative sign.

109. Binomial Theorem. The binomial expansion is a series,

that is, each term may be derived from the preceding term by a

definite law. This law is made up of two parts which may be

stated as follows:

(1) Law of Exponents. In any power of a binomial, x -{- a, the

exponent of x commences in the first term with the exponent of the

required power, and in the following terms continually decreases by

unity. The exponent of a commences with 1 in the second term and

continually increases by unity.

(2) Law of Coefficients. The coefficient in the first term is 1,

that in the second term is the exponent of the power; and if the

coefficient in any term be multiplied by the exponent of x in that

term and divided by the exponent of a, increased by 1, it will give the

coefficient in the succeeding term.

Exercises

1. Expand (u + 3y)\ Here x = u and a = 3y. By the formula

we get :

w 5 + 5w 4
(3?/) + 10w 3

(3*/)
2 + 10w 2

(3?/)
3 + 5w(3i/)

4

Performing the indicated operations, we obtain :

w 6 + 15w4
y + 90uV + 270uV+ 405wt/

4 + 243</
5

Expand each of the following by the binomial formula:

2. (r
2 -

2)*. 8. (1/2 + x)
5

.

3. (36
-

1/2)
5

. 9. (6
2 - c 2

)
6

.

4. (c + z)
6

. 10. (3o -f 1/2)
6

.

6. (2x
2 - x). 11. (5d - 3</)

5
.

6. (1
-

a)
8

. 12. (3*
3 -

I)
4

.

7. (-x +2a) 7
. 13. (Va + *)

6
.
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14. (X

16. (a

16.

^) 6
. 17. (a + [x +y])*.

Wy^ 18. (a + b -?/) 3
.

- Vab) 6
- 19- (z

2 + 2ax + a 2
)
3

.

110. Binomial Theorem for Fractional and Negative Exponents.
It is proved in the Calculus that:

(lxy =lnx+ n(r^ xt
n(n-l)(n-2 }^

21 3!

is true for fractional and for negative values of n, provided x is

less than 1 in absolute value. The number of terms in the expan-

sion is not finite, but is unlimited, and the series or expansion

converges or approaches a definite limit as the number of terms of

the expansion is increased without limit, provided x\ < 1.

By the above formula, we have:

\/l+x= 1+ (1/2)3
(1/2) (1/2 - 1)

2f
*

(1/2) (1/2 - 1) (1/2 - 2) .

3!
x '

-
(1/8 )z

2 + (l/16)x
3 -

(5/128)x<

If

a; 1/2

this becomes:

V372 = 1 + 1/4
-

1/32 + 1/128
- 5/2048 + . . .

Therefore, using five terms of the expression:

/r^r 2507

2048
= 1.2241

The square root, correct to four figures, is really 1.2247. Thus the

error in this case is less than one-tenth of 1 percent if only five

tejms of the series be used. The degree of accuracy in each case

is dependent both, upon the value of n and upon the value of x.

Obviously, for a given value of n, the series converges for small

values of x more rapidly than for larger values.

As another example, suppose it is required to expand (1 a;)-
1

.

By the binomial theorem:
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'

.. ..

= 1+ a; + z 2 + z 3 + . . .

If five terms of the series be used, the error is 1 /16 for x = 1 /2,

or about 3 percent.

111. Approximate Formulas. If x be very small, the expansion
of:

(1 + a;)-
= 1 + nx + :n̂ ~^ x* + . . .

is approximately:

(1 + *) * 1 + nx (1)

since z 2
,
z 3 and all higher powers of x are much smaller than x.

Thus, using the symbol =? to express "approximately equals," we

have, for example:

(1.01)
3 *? 1.03

for (1 + 1/100)
3 - 1 + 3/100

The true value of (1.01)
3
is 1.030301, so that the approximation is

very good.

Likewise:

(l-x)-l-nx (2)

if x be small.

If x, y, and z be small compared with unity, the following

approximate formulas hold:

(l + x)(l + y) - 1 + x + y (3)

(l + x)/(l + y) -1 + x-y (4)

(1 + x)(l + y)(l + z) =? 1 + x + y + z (5)

The approximation formulas are proved as follows:

(1 + x)(l + y}
= 1 -f x + y + xy =F 1 + x + y, for rn/ is small

compared to x and ?/.

(1 + yj
= ! + x ~ V +

"i"Ty~
* 1 + * - Vi for the Action is

small compared to x and y.

(1 + x) (1 + T/) (1 + 3) ? (1 + x + y) (l + 2)
=?* 1 + x + y + z

13
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112. * The Progressive Mean. In using scientific data it is often

desirable to determine the so-called progressive mean of a highly

fluctuating magnitude. Thus if we wish to determine whether

or not the rainfall at New York has on the average been increasing

or decreasing in the last 100 years, we form an average for each

successive group of five or six or seven or other convenient number

of years, and tabulate and compare these averages. In finding

these averages, however, the various years are weighted as
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Exercises

1. Explain the following approximate formulas, in which
\x\ < 1

_
Vl - x =? 1 - (l/2)x

l - z = 1 - (1/3) z

(1 + xT* =? 1 - (2/3)*

(1 + z 2)^=F 1 + (l/3)z
2

.

2. Compute the numerical value of :

(1.03)** (1.05)**

(1.02) (1.03) 1.02/1.03

3. The formula for the period of a simple pendulum is :

T = *VT7g
For the value of gravity at New York, this reduces to

T- Vl
6.253

in which I, the length of the pendulum, is measured in inches. This

pendulum beats seconds when

I = (6.253)
2 or 39.10 inches.

What is the period of the pendulum if I be lengthened to 39.13 inches?

HINT:

T
6̂.253

VI + h L

6.253
=

6.253
Vl

Take I = 39.10, and h = 0.03

Then:

T' = 1 + 0.03/78.20
= 1.00038.

A day contains 86,400 seconds. The change of length would, there-

to r<>, cause'a loss of "32.8 seconds per day, if the pendulum were attached

to a clock.
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4. On the ocean how far can one see at an elevation of h feet above
its surface?

Call the radius of the earth a(= 3960 miles), and the distance

one can see d, which is along a tangent from the point of observation

to the sphere. Since h is in feet, and a + OOA>O/oU ,
and a are the sides

of a right triangle, we have (a + A/5280)
2 = d 2 + a 2

or: a 2
(l + V5280a) 2 = d 2 + a2

.

FIG. 85. Graphical Representation of the Values of the Binomial
Coefficients in the 999th power of a Binomial. The middle coefficients are

taken equal to 5, for convenience, and the others are expressed to that

scale also. *

Expanding by the approximate formula :

a2
(l + 2/i/5280a) = d 2 + a 2

or:

or:

d 2 = 2a/i/5280
= 2 X 3960/1/5280
= (3/2) h

d = V(3/2)h

where d is expressed in miles and h is in feet. See 66, exercise 13.
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5. How much is the area of a circle altered if its radius of 100 cm-

be changed to 101 cm.?

6. How much is the volume of a sphere, fno, 3
,
altered if the radius

be changed from 100 cm. to 101 cm.?

7. If the formula for the horse power of a ship is I.H.P. =
onn"

where S is speed in knots and D is displacements in tons, what in-

crease in horse power is required in order to increase the speed from

fifteen to sixteen knots, the tonnage remaining constant at 5000?

What increase in horse power is required to maintain the same speed
if the load or tonnage be increased from 5000 to 5500?

113. *
Graphical Representation of the Coefficients of anyPower

of a Binomial. If we erect ordinates at equal intervals on the

x-axis proportional to the coefficients of any power of a binomial,

we find that a curve is approximated, which becomes very striking

as the exponent is taken larger and larger. In Fig. 85, the ordi-

nates are proportional to the coefficients of the 999th power of

(x + a). The drawing is due to Quetelet.

The limit of the broken line at the top of the ordinates in Fig. 85

is, as n is increased indefinitely, a bell-shaped curve, known as

the probability curve; its equation is of the form y = ae~bx2
,
as

is shown in treatises on the Theory of Probability.



CHAPTER VII

PROGRESSIONS

114. An Arithmetical Progression or an Arithmetical Series,

is any succession of terms such that each term differs from that

immediately preceding by a fixed number called the common
difference. The following are arithmetical progressions:

(1) 1, 2, 3, 4, 5.

(2) 4, 6, 8, 10, 12.

(3) 32, 27, 22, 17, 12.

(4) 2J, 3f, 5, 6|, 7i.

(5) (u
-

v), u, (u + v).

(6) a, a + d, a + 2d, a + 3d, . . .

The first and last terms are called the extremes, and the other

terms are called the means.

Where there are but three numbers in the series, the middle

number is called the arithmetical mean of the other two. To find

the arithmetical mean of the two numbers a and 6, proceed as

follows:

Let A stand for the required mean; then, by definition:

A - a = b - A
whence:

A = (a + 6) /2

Thus, the arithmetical mean of 12 and 18 is 15, for 12, 15, 18 is an

arithmetical progression of common difference 3.

By the arithmetical mean or arithmetical average of several

numbers is meant the result of dividing the sum of the numbers by
the number of the numbers. It is, therefore, such a number that

if all numbers of the set were equal to the arithmetical mean, the

sum of the set would be the same.

The general arithmetical progression of n terms is expressed by:

Number of

term: 12 3 4 ... n

Progression: a, (a + d), (a -f 2d), (a + 3d), . . . (a -f [n
-

l]d)

198
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Here a and d may be any algebraic numbers whatsoever, integral

or fractional, rational or irrational, positive or negative, but n
must be a positive integer. If the common difference be negative,
the progression is said to be a decreasing progression; otherwise,

an increasing progression.

From the general progression written above, we see that a for-

mula for deriving the nth term of any progression may be written:

1 = a + (n
-

l)d (1)

in which I stands for the nth term.

115. The Sum of n Terms. If s stands for the sum of n terms

of an arithmetical progression, and if the sum of the terms be

written first in natural order, and again in reverse order, we have:

s = a + (a + d) + (a + 2d) + - - , + (a + [n
-

l]d) (1)

s = / + (i
-

d) 4- (I
-

2d) 4- . - - 4- (I
-

[n
- IV) (2)

Adding (1) and (2), term by term, noting that the positive and

negative common differences nullify one another, we obtain:

2s = (a 4- /) 4- (a 4- Z) + (a + I) + . . . + (a + Z) (3)

or, since the number of terms in the original progression is n, we

may write:

2s = n(a 4- Z)

or: s = n(a+ 0/2 (4)

In the above expression, (a -f- 1)1 2 is the average of the first and

nth terms. The formula (4) states, therefore, that the sum equals
the number of the terms multiplied by the average of the first and

last.

116. An arithmetical progression is a very simple particular in-

stance of a much more general class of expressions known in mathe-

matics as series. A series is any sequence of terms formed accord-

ing to some law, such as:

(x + l) + (x + 2)
2+ (z + 3)

3
,

. . .

cos x + cos 2x 4- cos 3z 4- .

It is only in a very limited number of cases that a short expression

can be found for the sum of n terms of a series. An arithmetical

progression is one of these exceptions.
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117. The formulas (1) and (4) above are illustrated graphically

by Fig. 86. Ordinates proportional to the terms of a progression

^ are laid off at equal intervals on the

line OX. The ends of these lines, be-

cause of the equal increments in the

terms of the series, lie on the straight

line MN. By reversing terms and

adding, the sums lie within the rec-

tangle OK whose altitude is (a + I) .

The sum of an arithmetical pro-

gression is readily constructed. On
OF, lay off the unit of measure 01;

and, to the same scale, n. On OX,
lay off (a + /). From 2 on F draw
a line to (a + I) on OX. From n on

OF draw a parallel to the latter, cut-

ting OX in s, the required sum. This

construction has little value, except

that it illustrates that s, for all

values of a and d, increases indefi-

nitely in absolute value as n increases

without limit, or, using the equiva-

lent terms already explained, that

s becomes infinite as n becomes in-

finite.

118. Formula (1), 114, enables us to obtain the value of any
one of the numbers, I, a, n, d, when three are given. Thus:

(1) Find the 100th term of:

3 + 8 + 13 + . . .

Here: a =
3, d =

5, n = 100

therefore, I = 3 + 99 X 5 = 498

(2) Find the number of terms in the progression:

5 + 7 + 9+... +39
Here: a =

5, d =
2, I = 39

whence: 39 = 5 + (n
-

1)2

Solving for n: n = 18

1
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(3) Find the common difference in a progression of fifteen terms

in which the extremes are 1/2 and 42:

Here: a = 1/2, 1 = 42%, n = 15

whence: 42^ = 1/2 + (15
-

l)d

Solving: d = 3

Formula (4) , 115, enables us to find the value of any one of the

numbers s, n, a, I,
when the values of the other three are given.

Thus:

(5) Find the number of terms in an arithmetical progression in

which the first term is 4, the last term 22, and the sum 91.

Here: a =
4, I = 22, s = 91

whence: 91 = n(4 + 22) /2

solving for n: n = 7

The two formulas, (1) 114 and (4) 115, contain five letters:

hence, if any two of them stand for unknown numbers, and the

values of the others are given, the values of the two unknown
numbers can be found by the solution of a system of two equa-
tions. Thus:

(6) Find the number of terms in a progression whose sum is

1095, if the first term is 38 and the difference is 5.

Here: s = 1095, a =
38, and d = 5

whence: I = 38 + (n
-

1)5 (1)

1095 = w(38 + Z) /2 (2)

From(l): I = 33 + 5n (3)

From (2) : 2190 = 38n + nl (4)

Substituting the value of I from (3) in (4), we get:

2190 = 7 In + 5n 2
(5)

Solving this quadratic, we find:

n =
15, or - 29.2

The second result is inadmissible, since the number of terms

cannot be either negative or fractional.

Exercises

Solve each of the following :

1. Given, a =
7, d =

4, n =
15; find I and s.

2. Given, a =
17, I = 350, d =

9; find n and s.
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3. Given, a =
3, n =

50, s = 3825; find I and d.

4. Given, s = 4784, a =
41, d =

2; find I and n.

5. Given, s = 1008, d =
4, I = 88; find a and n.

6. Find the sum of the first n even numbers.
7. Find the sum of the first n odd numbers.
8. Insert nine arithmetical means between 7/8 and + 7/8.
9. Sum (a + 6)

2 + (a
2 + 6 2

) + (a
-

b)
2 to n terms.

10. Find the sum of the first fifty multiples of 7.

11. Find the amount of $1.00 at simple interest at 5 percent for

1912 years.

12. How long must $1.00 accumulate at 3| percent simple inter-

est until the total amounts to $100?
13. How many terms of the progression 9 + 13 + 17+ .

must be taken in order that the sum may equal 624? How many
terms must be taken in order that the sum may exceed 750?

14. Show that the only right triangle whose sides are in arithmetical

progression is the triangle of sides 3, 4, 5, or a triangle with sides pro-

portional to these numbers.

119. Geometrical Progression. A geometrical progression
is a series of terms such that each term is the product of the

preceding term by a fixed factor called the ratio. The following

are examples:

(1) 3, 6, 12, 24, 48.

(2) 100, -50, 25, -12J.

(3) 1/2, 1/4, 1/8, 1/16, 1/32.

(4) a, ar, ar2
,
ar3

,
ar 4

. . .

The geometrical mean of two numbers, a and 6, is found as

follows: Let G stand for the required mean. Then, by the

definition of a geometrical progression:

G/a = b(G
whence:

or: G 2 = ab _
G =

~

Thus, 4 is the geometrical mean of 2 and 8. The arithmetical

mean of 2 and 8 is 5. The geometrical mean of n positive num-
bers is the value of the nth root of their product. Thus the geo-

metrical mean of:

8, 9 and 24 is 12 = ^8X9 X~24
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120. The nth Term and the Sum of n Terms. If a represents

the first term and r the ratio of any geometrical progression, the

progression may be written:

Number of term: 123 4 ... n In
Progression: a, ar, ar 2

,
ar 3

,
. . . ar n~2

,
ar 71

"1

Therefore, representing the nth term by I, we obtain the simple

formula:

1 = ar-1
(1)

Representing by s the sum of n terms of any geometrical pro-

gression, we have:

s = a + ar + ar 2 + . . . + ar n~2 + ar*"1

Factoring the right member:

s = a(l + r + r 2 + . - . + r~2 + r- 1

)

But, by a fundamental theorem in factoring,
l the expression in the

parenthesis is the quotient of 1 r n by 1 r. Hence:

s = a(l
-

r-) /(I
-

r) (2)

Another form is obtained by introducing / by the substitution:

ar"-1 = I

s = (a
-

rl) /(I
-

r) (3)

121. Formula (1), or (2), enables one to find any one of the four

numbers involved in the equations when three are given. The
two formulas (1) and (2) considered as simultaneous equations

enable one to find any two of the five numbers a, r, n, I, s, when the

other three are given. But if r be one of the unknown numbers, the

equations of the system may be of a high degree, and beyond the

range of Chapter VII, unless solved by graphical means. If n be

an unknown number, an equation of a new type is introduced,

namely, one with the unknown number appearing as an exponent.

Equations of this type, known as exponential equations, will be

treated in the chapter on logarithms. The following examples

illustrate cases in which the resulting single and simultaneous

equations are readily solved.

(1) Insert three geometrical means between 31 and 496.

Here:

a = 31, I = 496, and n = 5
1 See Appendix.
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whence:

496 = 31 X r 4

or:

r 4 = 16

therefore:

r = 2

consequently, the required means are either 62, 124, and 248,

or - 62, + 124, and - 248.

(2) Find the sum of a geometrical progression of five terms,

the extremes being 8 and 10,368.

Here:

a =
8, I = 10,368, and n = 5

whence:

10,368 = 8r 4
(1)

s = (10,368r
-

8) /(r
-

1) (2)

From the first,

r = 6

whence, from the second,

s = 12,440

(3) Find the extremes of a geometrical progression whose sum
is 635, if the ratio be 2 and the number of terms be 7.

Here:

s = 635, r = 2, and n = 7

whence:

I = a-26 (1)

635 =
(21

-
a} /I (2)

Substituting I from (1) in (2), we get:

635 = 128 a - a

whence:

a =
5, hence, I = 320

(4) The fourth term of a geometrical progression is 4, and the

sixth term is 1. What is the tenth term?

Here:

ar 3 = 4 (1)

and:

ar 5 = I (2)
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whence, dividing (2) by (1):

r 2 = 1/4, orr = 1/2

therefore, from (1):

a = 4/r
3 = 32

Then the tenth term is:

+ 32( l/2)
9 = 1/16

Exercises

1. Find the sum of seven terms of 4 + 8 + 16 + . . .

2. Find the sum of - 4 + 8 - 16 + . . . to six terms.

3. Find the tenth term and the sum of ten terms of 4 2 +
1 - ...

4. Find r and s; given a =
2, I = 31,250, n = 7.

6. Insert two geometrical means between 47 and 1269.

6. Insert three geometrical means between 2 and 3.

7. Insert seven geometrical means between a8 and 6 8
.

8. Show that the quotient (a
n bn)/(a 6) is a geometrical

progression.

9. Sum xn
~ l + xn

~ 2
y + xn

~ 3
y* + . . . to n terms.

10. Sum xn
~ l xn

~ 2
y + xn

~ 3
y

z
. . . to n terms.

11. Sum a + ar
~

l + ar
~ 2 + . . . to n terms.

12. If a, b, c,d, . . . are in geometrical progression, then a2 + 6 2
,

b 2 + c 2
,
c 2 + d 2

,
. . . are also in geometrical progression.

13. If any numbers are in geometrical progression, their differences

are also in geometrical progression.

14. A man agreed to pay for the shoeing of his horse as follows:

1 cent for the first nail, 2 cents for the second nail, 4 cents for the third

nail, and so on until the eight nails in each shoe were paid for. What
did the last nail cost? How much did he agree to pay in all?

122. Compound Interest. Just as the amount of principle and

interest of a sum of money at simple interest for n years is ex-

pressed by the (n + l)st term of an arithmetical progression, so,

in the same way, the amount of any sum at compound interest for

n years is represented by the (n + l^t^term of a geometrical pro-

gression. Thus, the amount of $1.00 at compound interest at

4 percent for twenty years is given by the expression:

1(1.04)
20

The amount of d dollars for n years at r percent is:
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The present value of $1.00, due twenty years hence, estimating

compound interest at 4 percent, is:

1/(1.04)
20

The value of $1.00, paid annually at the beginning of each year
into a fund accumulating at 4 percent compound interest, is, at

the end of that period r

(1.04) !+ (1.04)
2 + . . . (1.04)

20

which is the sum of the terms of a geometrical progression of

twenty terms.

Problems of this character in compound interest and in com-

pound discount, and the more complicated problems that proceed

therefrom, are basal to the theory of annuities, life insurance arid

depreciation of machinery and structures. The computation of

the high powers involved necessitates the postponement of such

problems until the subject of logarithms has been explained.

123. Infinite Geometrical Progressions. If the ratio of a

geometrical progression be a proper fraction, the progression is

said to be a decreasing progression. Thus:

1, 1/2, 1/4, 1/8, 1/16, and 1/3, 1/9, 1/27, 1/81

are decreasing progressions. If we increase the number of terms

in the first of these progressions the sums will always be less than 2;

but the difference 2 s will become and remain less than any

preassigned number. By definition, 2 is, therefore, the limit of

this sum. 1 The sum of n terms of this particular progression

should be written down by the student for a number of successive

values for n, thus:

Number of terms:

1, 2, 3, 4, 5, ... 10,

Sum: 1,1 + 1/2,1 + 3/4,1 + 7/8,1+15/16,. . . 1 + 511/512,

The nth term differs from 2 by only 1 /2
n - l

.

It is easy to show that the sum of every decreasing geometrical

progression approaches a fixed limit as the number of terms

becomes infinite. For, write the formula:

a arnT^
1 See definition, 80.
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in the form:

a arn
, ,-

r
-
r^7

If we suppose that r is a proper fraction and that n increases with-

out limit, then r n can be made less than any assigned number, for

the value of any power of a proper fraction decreases as the ex-

ponent of the power increases. As the other parts of the second

fraction in (1) do not change in value as n changes, the fraction

as a whole can be made smaller than any number that can be

assigned. Hence, we write:

lim s=
a

(2)n = oo 1 - r

Exercises

As n = oo
,
find the limit of each of the following :

1. 1/2 - 1/4 + 1/8 - 1/16 + . . .

Here:

a = 1/2, r = -1/2
1/2

whence, the limit s =
j^T /TTT/o)

= */3.

2. 0.3333 . . .

Here: a = 3/10, r = 1/10

whence, the limit: s =
i _~r7iQ =1/3.

3. 9 - 6 +4- . . .

4. 0.272727 . . .

6. 0.279279279 . . .

6. 1/3 - 1/6 + 1/12 - ...
7. 4 + 0.8 + 0.16 + . . .

8. Express the number 8 as the sum of an infinite geometrical

progression whose second term is 2.

124. Graphical representation of the terms and of the sum of a

geometrical progression: If lines proportional to the terms

of an arithmetical progression be erected at equal intervals normal

to any line, the ends of the perpendiculars will lie on a straight

line, as already explained in 117. We shall now explain

a corresponding construction for a geometrical progression.

First, note that all the essentials of a geometrical progression may
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be studied if we assume the first term to be unity, for the number
a occurs only as a single constant multiplier in each term, and
also occurs in the same manner in the formulas for I and s. There-

fore, by taking a-fold these expressions in a geometrical series

whose first term is 1, the results are obtained for the more

general case.

To represent the geometrical series 1 -f r -f r 2 + r 3 + . . . -f

r*~ l

graphically, lay off OM = 1 on OF, OSi = 1 on OX, SiPi =
r on the unit line, and draw MPi. Draw the arc Pi$ 2 and erect

o Si s a s s 84 S&

FIG. 87. Graphical Construction of the Sum of a G. P. r > 1.

Draw the arc P%Sz and erect P^ 3 . Continue this con-

struction until you draw the arc P n-iS n and erect P nS n . The
series of trapezoids OMiPi, SiPiP 2 2 ,

are similar and, since Pi$i = r X OM, it follows
f-Vo4- ~p Cf *v*P Q P Q o*P Q P ^f q*~P ^f

Hence we have:

OM = OSi = 1

PiSi = $i$ 2
= r .'. OiS 2

= 1 + r = sum of 2 terms
= r 2 .'.05 3

= 1 + r + r 2 = sum of 3 terms

'4
= r 3 .'.OS* = l-fr-hr 2 -fr 3 = sum of 4 terms

Pi-uS^-i = S n-iSn = r-V.OSn = 1 + r + r 2 + . . . r-~l =
sum of w terms.

Fig. 87 shows the series whose ratio is r = 1.2. Fig. 88 shows

the series whose ratio is 0.8.

The line MP\ has the slope (r 1) in Fig. 87 and the slope
-

(1 r) in Fig. 88. In both, its F-intercept is 1. Its equation

is, in both cases, y =
(r l)x + 1 or x =

. In both
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figures, when y = PnS n = r n
,
x = OS n . Substituting these values

- rn

for x and ?/, we get for the sum of n terms, S Fig.
1 -r

87 shows that when the number of terms is allowed to increase

without limit, the sum OS n also increases without limit. Fig.

88 shows that when the number of terms is made to increase

without limit, the sum OS n approaches OL as a limit. Now the

value of OL is the value of x when y = 0. Hence the limit

of the sum of the progression, or OL =
^~_^~

'

Consult also 7, problem 6, exercise 5 and Figs. 13, 14.

In Figs. 87 and 88 the ordinates OM, Si Pi, S 2P 2 ,
. . . repre-

senting the successive terms of the geometrical progressions, were

not erected at equal intervals along OX. If the ordinates repre-

senting the successive terms of the progressions be erected at equal

intervals along OX, the line MP^P^Pz . . passing through
the ends of the ordinates will be a curve and not a straight line.

O Si S a S 3 Si SB L

FIG. 88. Graphical Construction of the Sum of a G. P. r < 1.

To construct this curve, a geometrical construction different from

that given above is to be preferred. Near the lower margin of a

sheet of 8| X 11-inch unruled paper lay off a uniform scale of

inches and draw vertical lines through the points of division, as

shown in Fig. 89. Select one of these for the ?/-axis, and on the

unit line lay off the given ratio of the progression IN = r. Then
divide the 2/-axis proportionally to the successive powers of r,

either by the method of problem 6, 7, Fig. 11, or by the

method shown in Fig. 89. Through the points of division on the

?/-axis draw lines parallel to the z-axis, thus dividing the plane
into a large number of rectangles. Starting at the point .V

(0, 1) sketch free hand the diagonals of successive cornering
14
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rectangles, rounding the results into a smooth curve as shown.

Then the relation between ordinate y and abscissa x for the values

of x =
2, 1,0, 1, 2, 3, etc., is given by the equation y = rx .

Fig. 89 is drawn for r = 3 /2 so that the curve is y =
(3 /2)*.

The method used in Fig. 89 may be explained as follows:

Draw the lines y x and y = rx. From the point (1, r)

on y = rx draw a horizontal line to y =
x, thence a vertical line

E
FIG.

3-2-1 1 234 5

>. Graphical Construction of the Successive Terms of a G. P.
In the diagram r = 3/2, and the curve is y = (3/2)*.

to y =
rx, etc., thereby forming the "stairway" of line segments

between y = x and y = rx as shown in the figure. Then the

points, N, P, Q, etc., have the ordinates r, r2
,
r3

, etc., as required,

for, to obtain the ordinate of P, or PD, the value of x used was

OD =
r, hence P is the point on y = rx for x =

r, or y =

PD = r 2 Likewise Q is by construction the point on y = rx

for x = r2
,
hence the y of the point Q = r X r 2 = r 3

,
etc.

The figure shows the process for finding 7
1
,
r~2

,
etc. In

Chapter VIII a method will be explained for locating intermediate

points on the curve.
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The curve generated by the method described above is one of

the most important curves in mathematics. In general, it is seen

that the points located on the curve MN always satisfy an

equation of the form

y = r*

where r is a constant. This is called an exponential equation

and the curve is known as the exponential or compound interest

curve.

Note that the ordinates y to the right of M increase rapidly as x

increases and that the ordinates to the left of M decrease very

slowly as x decreases; that is, the curve rapidly leaves the positive

a: -axis, but slowly approaches the negative x-axis as an asymp-
tote. These results are exactly reversed in case r < 1.

125. * Harmonical Progressions. A series of terms such that

their reciprocals form an arithmetical progression are said to form

an harmonical progression. The following are examples:

(1) 1/2,1/3, 1/4, 1/5.

(2) 1, 1/5, 1/9, 1/13.

(3) l/(x-y), 1/x, l/(z + y).

(4) 1/3,1, -1, -1/3.
(5) 4, 6, 12.

(6) I/a, l/(a + d), l/(a + 2d), . . .

Although harmonical progressions are of such a simple character,

no simple expression has been found for the sum of n terms. Our

knowledge of arithmetical progressions enables us to find the

value of any required term and to insert any required number
of harmonical means between two given extremes, as in the

examples below.

(1) Write six terms of the harmonical progression 6, 3, 2.

We must write six terms of the arithmetical progression,

1/6, 1/3, 1/2. The common difference of the latter is 1/6, so

that the arithmetical progression is 1 /6, 1 /3, 1 /2, 2 /3, 5/6, 1
,
and

the harmonical progression is 6, 3, 2, 1.5, 1.2, 1.

(2) Insert two harmonical means between 4 and 2.

We must insert two arithmetical means between 1/4 and 1/2;

these are 1/3 and 5/12, whence the required harmonical means
are 3 and '2.4.
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126.* Harmonical Mean. The harmonical mean is found as

follows: Let the two numbers be a and 6 and let H stand for the

required mean. Then we have:

1 \E - 1 la = 1 /b
- 1 IE

That is:

2/H = l/o + 1/6 =
(a + b)/ab

whence:

H = 2ab/(a + b) (1)

Thus the harmonical mean of 4 and 12 is 96 /(4 + 12)
= 6.

By the harmonical mean of several numbers is meant the reciprocal

of the arithmetical mean of their reciprocals. Thus the har-

monical mean^of 12, 8 and 48 is 13-=n>

H

FIG. 90. The Relation Between the Arithmetical, Geometrical and Har-
monic Means.

127.* Relation between A, G, and H. As previously found:

A = (a + 6) /2, G = Vo&7# = 2db/(a + b]

whence:

but:

hence:

or:

AH = ab

ab = G*

AH = G*

VAH (i)
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That is to say, the geometrical mean of any two positive numbers

is the same as the geometrical mean of their arithmetical and

harmonical means.

The arithmetical, geometrical and harmonical means may be

constructed graphically as in Fig. 90. Draw the circle of diameter

(a + 6)
= OM + MK. Then the radius is the arithmetical

mean A. Erect a perpendicular at M. Then MG is the geomet-
rical mean. Make 0(7' = MG and draw CG'. Draw G'H perpen-
dicular to CG' . Then OH is the harmonical mean, since

OG' = V0<7 X OH

Now A > G > H] for from the figure, MG < CA. Therefore,
the angle G'CO is less than 45 and also its equal HG'O is less

than 45. Therefore, HO < OG' which establishes the in-

equality.

Exercises

1. Continue the harmonical progression 12, 6, 4.

2. Find the difference: (1.8 + 1.2 + 0,8 + . . . to 8 terms)
-

(1.8 + 1.2 + 0.6 + . . . to 8 terms).

3. If the arithmetical mean between two numbers be 1, show that

the harmonical mean is the square of the geometrical mean.



CHAPTER VIII

THE LOGARITHMIC AND THE EXPONENTIAL
FUNCTIONS

128. Historical Development. The almost miraculous power
of modern calculation is due, in large part, to the invention of

logarithms in the first quarter of the seventeenth century by a

Scotchman, John Napier, Baron of Merchiston. This invention

was founded on the simplest and most obvious of principles, that

had been quite overlooked by mathematicians for many genera-

tions. Napier's invention may be explained as follows :
l Let there

be an arithmetical and a geometrical progression which are to be

associated together, as, for example, the following:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

Now the product of any two numbers of the second line may be

found by adding the two numbers of the first progression above

them, finding this sum in the first line, and finally taking the num-
ber lying under it; this latter number is the product sought. Thus,

suppose the product of 8 by 32 is desired. Over these numbers

of the second line stand the numbers 3 and 5, whose sum is 8.

Under 8 is found 256, the product desired. Now since but a

limited variety of numbers is offered in this table, it would be

useless in the actual practice of multiplication, for the reason

that the particular numbers whose product is desired would

probably not be found in the second line. The overcoming
of this obvious obstacle constitutes the novelty of Napier's inven-

tion. Instead of attempting to accomplish his purpose by ex-

tending the progressions by continuation at their ends, Napier

proposed to insert any number of intermediate terms in each

progression. Thus, instead of the portion

0, 1, 2, 3, 4

1, 2, 4, 8, 16

of the two series we may write:

1 Merely the fundamental principles of the invention, not historical details, are

given in what follows.

214
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0. 1/2, 1, 11, 2, 21, 3, JH,
4

1, \/2, 2, \/8, 4, x/32, 8, %/128, 16

by inserting arithmetical means between the consecutive terms

of the arithmetical series and by inserting geometrical means

between the terms of the geometrical series.
.
Let these be

computed to any desired degree of approximation, say to two

decimal places. Then we have the series

A.P. G.P.

0.0 1.00

0.5 1.41

1.0 2.00

1.5 2.83

2.0 4.00

2.5 5.66

3.0 8.00

Again inserting arithmetical and geometrical means between the

terms of the respective series we have:

A. P. G. P.

0.00 1.00

0.25 1.19

0.50 1.41

0.75 1.69

1.00 2.00

1.25 2.38

1.50 2.83

1.75 3.36

2.00 4.00

2.25 4.76

By continuing this process each consecutive three figure number

may finally be made to appear in the second column, so that, to

this degree of accuracy, the product of any two such numbers

may be found by the process previously explained. The decimal

points of the factors may be ignored in this work, as for example,

the product of 2.38 X 14.1 is the same as that of 238 X 14.1

except in the position of the decimal point. The correct position

of the decimal point can be determined by inspection after the
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significant figures of the product have been obtained. Using
the above table we find 2.38 X 14.1 = 33.6.

The above table, when properly extended, is a table of loga-
rithms. As geometrical and arithmetical progressions different

from those given above might have been used, the number of

possible systems- of logarithms is indefinitely great. The first

column of figures contains the logarithms of the numbers that

stand opposite them in the second column. Napier, by this

process, said he divided the ratio of 1.00 to 2.00 into "100 equal

ratios," by which he referred to the insertion of 100 geometrical
means between 1.00 and 2.00. The "number of the ratio"

he called the logarithm of the number, for example, 0.75 opposite

1.69, is the logarithm of 1.69. The word logarithm is from two

Greek words meaning "The number of the ratios." In order to

pr.oduce a table of logarithms it was merely necessary to compute
numerous geometrical means; that is, no operations except multi-

plication and the extraction of square roots were required. But
the numerical work was carried out by Napier to so many decimal

places that the computation was exceedingly difficult.

The news of the remarkable invention of logarithms induced

Henry Briggs, professor at Gresham College, London, to visit

Napier in 1615. It was on this visit that Briggs suggested the ad-

vantages of a system of logarithms in which the logarithm of

1 should be and the logarithm of 10 should be 1, for then it would

only be necessary to insert a sufficient number of geometrical

means between 1 and 10 to get the logarithm of any desired

number. With the encouragement of Napier, Briggs undertook

the computation, and in 1617, published the logarithms of the

first 1000 numbers and, in 1624, the logarithms of numbers from

1 to 20,000, and from 90,000 to 100,000 to fourteen decimal

places. The gap between 20,000 and 90,000 was filled by a Hol-

lander, Adrian Vlacq, whose table, published in 1628, is the source

from which nearly all the tables since published have been

derived.

129. Graphical Computation of Logarithms. In Fig. 89 the

terms of a geometrical progression of first term 1 and ratio IN = r

are represented as ordinates arranged at equal intervals along OX.

Fig. 89 is drawn to scale for the value of r = 1.5. Fig. 91 is
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a similar figure drawn for r = 2, in which a process is used for

locating intermediate points of the curve, so that the locus may
be sketched with greater accuracy. The lines y = x and y = rx

(in this case y = 2x) are drawn as before, and the "stairway"
constructed as before (see 124). Vertical lines drawn

through x =
2, 1, 0, 1, 2, 3, . . . and horizontal lines drawn

M

N

-2-1012345 X
FIG. 91. Graphical Construction of the Curve y = 2X .

through the horizontal tread of each step of the stairway divides

the plane into a large number of rectangles. Starting at M
and sketching the diagonals of successive cornering rectangles
the smooth curve MNP is drawn. Intermediate points of

the curve are located by doubling the number of vertical lines by
bisecting the distances between each original pair, and then

by increasing the number of horizontal lines in the following man-

ner: Draw the line y = Vrz (in the case of the Fig., y = V2 x).
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At the points where this line cuts the vertical risers of each step
of the

"
stairway" (some of these points are marked A, B, C

in the diagram) draw a new set of horizontal lines. Each of the

original rectangles is thus divided into four smaller rectangles.

Starting at M and sketching a smooth curve along the diagonals
of successive cornering rectangles, the desired graph is obtained.

By the use of the straight line y = Vr x another set of intermedi-

ate points may be located, and so on, and the resulting curve

thus drawn to any degree of accuracy required. In explaining
this process, the student will show that the method of construc-

tion just used consists in the doubling of the number of horizontal

lines of the figure by the successive insertion of geometrical means
between the terms of a geometrical progression, while at the same
time the number of vertical lines is successively doubled by
insertion of arithmetical means between the terms of an arith-

metical series. Thus the graphical work of construction of the

curve corresponds to the successive insertion of geometrical and
arithmetical means in the two series discussed in the preceding
section.

As explained above, the ordinate y of any point of the curve

MNP of Fig. 91 is a term of a geometrical progression, and the

abscissa x of the same point is the corresponding term of an

arithmetical progression. Since, when y is given, the value of x

is determined, we say, by definition, that x is a function of y

(4). This particular functional relation is so important
that it is given a special name: x is called the logarithm of y,

and the statement is abbreviated by writing

x = log y,

but to distinguish from the case in which some other geometrical

progression might have been used, the ratio of the progression

may be written as a subscript, thus:

x = log r y

which is read: "x is the logarithm of y to the base r."

If we assume that the process of locating the successive sets of

intermediate points by the construction of successive geometrical

means will lead, if continued indefinitely, to the generation of
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the curve MNP without breaks or gaps, then we may say that in

the equation:

x = log r y (1)

the logarithm is a function of y defined for all positive values of y

and for all values of x.

As a matter of fact, both the arithmetical and the geometrical

method given above defines the function or the curve only for

rational values of x
;
that is, the only values of x that come into

view in the process explained above are whole numbers and

intermediate rational fractions like 2, 2|, 2|, 2T\, 2|f ,
. . .

It is seen at once from the method of construction used in Fig.

91 that the values of y at x =
1, 2, 3, 4, . . .

,
are respectively

y =
r, r 2

,
r 3

,
r 4

, . . .

,
and the values ofy&tx =

1/2, 3/2, 5/2,

are y = r l/

^, r%
, r**, . . ., respectively, and similarly for other inter-

mediate values of x. In other words, the equation connecting
the two variables x and y may be written

y = r- (2)

Thus, when the values of a variable x run over an arithmetical

progression (of first term 0) while the corresponding values of a

variable y run over a geometrical progression (of first term 1), the

relation between the variables may be written in either of the forms

(1) or (2) above. Equation (2) is called an exponential equation
and y is said to be an exponential function of x, while in (1) x

is said to be a logarithmic function of y. The student has fre-

quently been called upon in mathematics to express relations

between variables in two different or "inverse" forms, analogous
to the two forms y r* and x = log r y. For example, he has

written either

i/
= x 2

or:

x = \/y
and either

y = z /2

x =
2/

2 /

The graph of a function is of course the same whether the equation
be solved for x or solved for y.
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130. The student is required to construct the curves described

in the following exercises by the method of 129. The

inch, or 2 cm., may be adopted as the unit of measure; the curves

should be drawn on plain paper within the interval from x =
- 2 to x = + 2.

If tangents be drawn to the curves at x =
2, 1, 0, 1, 2,

it will be noted, as nearly as can be determined by experiment,
that the several tangents to any one curve cut the ^C-axis at the

same constant distance to the left of the ordinate of the point
of tangency. This distance is greater than unity if r = 2 and less

than unity if r = 3. The value of r for which the distance is exactly

unity is later shown to be a certain irrational or incommensurable

number, approximately 2.7183 . . .
, represented in mathematics

by the letter e, and called the Naperian base. This number, and

the number TT, are two of the most important and fundamental

constants of mathematics. 1

1 It is not easy to locate accurately the tangent to a curve at a given point
of the curve. To test whether or not a tangent is correctly drawn at a point

P, a number of chords parallel to the tangent may be drawn. If the two end

points AB of the chord tend to approach the point of tangency P as the chord
is taken nearer and nearer to P (but always parallel to AB) then the tangent
was correctly drawn. If the two points A and B do not tend to coalesce at the

point P when the chord is moved in the manner described, then the tangent
was incorrectly drawn.

A number of instruments have been designed to assist in drawing tangents to

curves. One of these, called a "Radiator," will be found listed in most catalogs

FIG. 92. Mirrored Ruler for Drawing the Normal (and hence the Tan-

gent) to any Curve.

of drawing instruments. Another instrument consists of a straight edge provided
with a vertical mirror as shown in Fig. 92. When the straight edge is placed

across a curve the reflection of the curve in the mirror and the curve itself can

both be seen and usually the curve and image meet to form a cusp or angle.

The straight edge may be turned, however, until the image forms a smooth

continuation of the given curve. In this position the straight-edge is perpendicu-

lar to the tangent and the tangent can then be accurately drawn. See Gram-

berg, Technische Messungen, 1911.
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Exercises

Draw the following curves on plain paper using 1 inch as the unit

of measure; make the tests referred to in the second paragraph of

130.

1. Construct a curve similar to Fig. 91, representing the equation
x =

loga y, from x = 2 to x = + 2, and draw tangents at x =
1,

x =
0, x =

1, x = 2.

2. Construct the curve whose equation is x = logs?/ from x = 2

to x = + 2, and draw tangents at x =
1, x =

0, x =
1, x = 2.

3. Construct the curve whose equation is x = Iog 2 .v y, and show by
trial or experiment that the tangent to the curve at x = 2 cuts the z-axis

at nearly x =
1, that the tangent at x = 1 cuts the x-axis at nearly

x =
0, that the tangent at x = cuts the z-axis at nearly x =

1,

etc.

4. Draw the curve x =
logo.e y and show that it is the same as the

reflection of x = Iog 2 y in the mirror x = 0.

NOTE : The student must remember that the experimental testing

of the properties of the tangents to the curves called for above does not

constitute mathematical proof of the usual deductive sort familiar to

him. The experimental tests have value, however, in preparing the

student for the rigorous investigation of these same properties when
taken up in the calculus.

131. The Exponential Function. The expression a x
,
where a

is any positive number except 1, has a definite meaning and

value for all positive or negative rational values of x, for the

meaning of numbers affected by positive or negative fractional

exponents has been fully explained in elementary algebra. The

process outlined above likewise defines log r x for all rational

values of x, but the process would not lead to irrational values

of x, such as
-^2, \^5, etc. As a matter of fact the expression a*

has as yet no meaning assigned to it for irrational values of x;

thus 10 has no meaning by the definitions of exponents pre-

viously given, for \/2, is not a whole number, hence lO^2
does

not mean that 10 is repeated as a factor a certain number of

times; also \/2 is not a fraction, so that 10 cannot mean a

power of a root of 10. But if any one of the numbers of the

following sequence

1 1.4 1.41 1.414 1.4142 1.41421
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be used as the exponent of 10, the resulting power can be com-

puted to any desired number of decimal places. For example,
10 1 - 41

is the 141th power of the lOOthroot of 10; to find the 100th

root we may take the square root of 10, find the square root of

this result, then find its 5th root, finally finding the 5th root

of this last result.

If the various powers be thus computed to seven places we find:

10 1 - 4

10 1 - 41

1Q1.414

1Q1.4142

101-41421

1QL414213

1Q1-4142135
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always exists which will satisfy the equation a x =
y, where a

and y are any given positive numbers, then the expression a*

is called the exponential function of re with base a; otherwise a 1 is

defined only for rational values of re.

132. Definitions. In the exponential equation a 1 = y:

The number a is called the base.

The number y is called the exponential function of re to the base

a, and is sometimes written y = exp re.

The number re is called the logarithm of yio the base a, and

is written re = log a ?/. Thus in the equation a x =
y, x may be

called either the exponent of a or the logarithm of y.

The two equations:

y = a*

x = Iog y

express exactly the same relations between re and y; one equation
is solved for re, the other is solved for y. The_graphs

are identical,

just as the graphs of y = re
2 and re = \/y are identical.

See also Anti-logarithm, 142.

133. Common Logarithms. In the equation 10* = y, x is

called the common logarithm of y. It is also called the Brigg's

logarithm of y. Thus, the common logarithm of any number is

the exponent of the power to which 10 must be raised to produce
the given number. Thus 2 is the common logarithm of 100,

since 102 = 100; likewise 1.3010 will be found to be the common

logarithm of 20 correct to 4 decimal places, since 10 1 - 3010

= 20.0000 to 4 decimal places.

134. Systems of Logarithms. If in the exponential equation

y = a x
,
where a is any positive number except 1, different values

be assigned to y and the corresponding values of x be computed
and tabulated, the results constitute a system of logarithms.
The number of different possible systems is unlimited, as already
noted in 128. As a matter of fact, however, only two

systems have been computed and tabulated; the natural or

Naperian or hyperbolic system, whose base is an incommensurable

number, approximately 2.7182818, and the common or Briggs'

system, whose base is 10. The letter e is set aside in mathematics
to stand for the base of the natural system.
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Natural logarithms of all numbers from 1 to 20,000 have

been computed to 17 decimal places. The common logarithms
are usually printed in tables of 4, 5, 6, 7 or 8 decimal places.

It will be found later that the graphs cf all logarithmic functions

of the form x = log a y can be made by stretching or by contract-

ing in the same fixed ratio the ordinates of any one of the logarith-

mic curves. For that reason numerical tables in more than

one system of logarithms are unnecessary.
In the following pages the common logarithm of any number n

will be written log n, and not logic n; that is, the base is supposed
to be 10 unless otherwise designated; In x for log e x and Ig x for

logioz are also used.

Exercises

Write the following in logarithmic notation.

1. 10 3 = 1000.

2. 10- 3 = 0.001.

3. 10 = 1.

4. II 2 = 121.

5. 16- 25 = 2.

6. ex =
y.

7. 10- 25 = 1.7783.

8. 10- 30l = 2.

9. a 1 = a.

10. 10 los
io
" =

y.

Express the following in exponential notation:

11. Iog 10 4 = 0.6021.

12. log 10000 = 4.

13. log 0.0001 = - 4.

14. Iog 2 1024 = 10.

15. loga a = 1 .

16. log^/100 = 2/3.
17. log,, (1/3) = -1/3.
18. logioolO = 1/2.
19. log 1 0.

20. logal 0.

135. Graphical Table. In Fig. 93 is shown the graph of the

function defined by the two progressions whose use was suggested

by Briggs to Napier, and which are referred to in the last para-
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graph of 128. By inserting means three times between

and 1 in the arithmetical progression and between 1 and 10 in the

geometrical progression, we get

A. P. or G. P. or Exponential

Logarithms Numbers Form of G. P.

0.000
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The logarithms of numbers between 1 and 10 may be read directly

from the graph. Thus, logio 7.24 = 0.860. If the logarithm is

between and 1, the number is read directly from the graph.

Thus if the logarithm is 0.273, the number is 1.87.

If we multiply the readings of the ./V-scale by 10
n

,
we must add

n to the readings on the L-scale, for WHN = 10
L + n

.

If we divide the readings on the N-scale by 10
n

,
we must

subtract n from the readings on the L-scale, for N /10
n = 10L

~ n
.

This fact enables us to read the logarithms of all numbers from

the graph, and conversely to find the number corresponding to

any logarithm. Thus we have, log 72.4 = 1.860, log 724 = 2.860,

log 0.724 = 0.860 - 1, log 0.0724 = 0.860 - 2.

If the logarithm is 1.273, the number is 18.7.

If the logarithm is 2.273
;
the number is 187.

If the logarithm is 0.273 1, the number is 0.187.

If the logarithm is 0.273 - 2, the number is 0.0187.

We observe that the computation of a three place table of

logarithms would not involve a large amount of work: such a table

has actually been computed in drawing the curve of Fig. 93.

The original tables of Briggs and Vlacq involved an eDormous

expenditure of labor and extraordinary skill, or even genius in

computation, because the results were given to fourteen places

of decimals.

136. Properties of Logarithms. The following properties of

logarithms follow at once from the general properties or laws of

exponents.

(1) The logarithm of 1 is in all systems. For a =
1, that

is, log 1 = 0. In Fig. 91, note that the curve passes through

(0, 1).

(2) The logarithm of the base itself in any system is 1. For

a 1 =
1, that is, toga a = 1. In Fig. 91, by construction N is always

the point (1, r), where r is the ratio of the first or fundamental

progression; in the present notation, this is the point (1, a).

(3) Negative numbers have no logarithms. This follows at

once from 131, (1). In Figs. 89, 91, and 93, note that the

curves do not extend below the X-axis.

NOTE : While negative numbers have no logarithms, this does not

prevent the computation of expressions containing negative factors
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and divisors. Thus to compute (287) X ( 374), find by logarithms

(287) X (374) and give proper sign to the result.

137. Logarithm of a Product. Let n and r be any two positive

numbers and let:

Iog n = x and logo r = y (1)

Then, by definition of a logarithm:

n = a x and r = a* (2)

Multiplying:

nr = a xa = ax+v

Therefore, by definition of a logarithm 132:

logo nr = x + y

or, by (1)

log a nr = Iog n + log a r (3)

Hence, the logarithm of the product of two numbers is equal to

the sum of the logarithms of those numbers.

In the same way, if log a s =z
,
then:

nrs = ax+ +*

that is,

loga nrs = log a n + Iog r + log a s

Exercises

Find by the formulas and check the results by the curve of Fig. 93.

1. Given log 2 =
0.3010, and log 3 = 0.4771; find log 6; find log 18.

2. Given log 5 = 0.6990 and log 7 = 0.8451; find log 35.

3. Given log 9 = 0.9542, find log 81.

4. Given log 386 = 2.5866 and log 857 = 2.9330; find the logarithm
of the product.

6. Given log llz = 1.888 and log 11 = 1.0414; find log x.

138. Logarithm of a Quotient. Let n and r be any two

positive numbers, and let:

log a tt = x and log a r = y (1)

From (1) by the definition of a logarithm,

n = a x r av

Dividing,

n/r = a 1
-T- a" = a x ~

"
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Therefore by definition of a logarithm,

Iog (n/r) = x - y

or by (1)

Iog (n/r) = log a n - log a r (2)

therefore, the logarithm of the quotient of two numbers equals the

logarithm of the dividend less the logarithm of the divisor.

Exercises

Check the results by reading them off the curve of Fig. 93.

1. Given log 5 = 0.6990 and log 2 = 0.3010; find log (5/2); find

log 0.4.

2. Given log 63 = 1.7993, and log 9 = 0.9542; find log 7.

3. Given log 84 = 1.9243 and log 12 = 1.0792; find log 7.

4. Given log 1776 = 3.2494 and log 1912 = 3.2815; find log

1776/1912; find log 1912/1776.
5. Given log x/12 = 0.4321 and log 12 = 1.0792, find log x.

139. Logarithm of any Power. Let n be any positive number
and let:

Iog n = x (1)

From (1), by the definition of a logarithm,

n a*

Raising both sides to the pih power, where p is any number what-

soever,

n p = ap*

therefore, by definition of a logarithm,

loga(wp) = px
or by (1):

logo(np) = p Iog n (2)

therefore the logarithm of any power of a number equals the logarithm

of the number multiplied by the index of the power.

The above includes as special cases, (1) the finding of the

logarithm of any integral power of a number, since in this case

p is a positive integer, or (2) the finding of the logarithm of any
root of a number, since in this case p is the reciprocal of the index

of the root,
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Exercises

1. Given log 2 = 0.3010; find log 1024; find log V2; find logj/2.

2. Given log 1234 = 3.0913; find log V1234. Find log \/1234.

3. Given log 5 = 0.6990; find log S^find log 5 3/2
.

4. Simplify the expression log 30/V210 .

Express by the principles established in 137-139 the following

logarithms in as simple a form as possible :

5. log (^/9 * V3).
6. log /12 -* V6).
7. log (uP -5- u^}.

8. log (10a
26 8

/a
w 6 2

).

9. Show that log (11/15) + log (490/297)
- 2 log (7/9) = log 2.

10. Find an expression for the value of x from the equation 3* =567.

SOLUTION: Take the logarithm of each side

x log 3 = log 567

But log 567 = log (3
4 X 7) = 4 log 3 + log 7

therefore :

x log 3 = 4 log 3 + log 7

or:

x = 4 + (log 7)/(log 3).

11. Find an expression for x in the equation 5* = 375.

12. Given log 2 = 0.3010 and log 3 = 0.4771, find how many
digits in 6 10

.

13. Find an expression for x from the equation :

3* x 2*+i = v/512.

14. Prove that log (75/16)
- 2 log (5/9) + log (32/243) = log 2.

140. Characteristic and Mantissa. The common logarithm
of a number is always written so that it consists of a positive

decimal part and an integral part which may be either positive

or negative. Thus log 0.02 = log 2 - log 100 = 0.3010 - 2.

Log 0.02 is never written - 1.6990.

When a logarithm of a number is thus arranged, special names
are given to each part. The positive or negative integral part is

called the characteristic of the logarithm. The positive decimal

part is called the mantissa. Thus, in log 200 = 2.3010, 2 is

the characteristic and 3010 is the mantissa. In log 0.02 =
0.3010 2, ( 2) is the characteristic and 3010 is the mantissa.

Since log 1 = and log 10 =
1, every number lying between 1
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and 10 has for its common logarithm a proper fraction that

is, the characteristic is 0. Thus log 2 = 0.3010, log 9.99 =
0.9996, log 1.91 0.281. Starting with the equation:

log 1.91 = 0.2810

we have, by 137,

log 19.1 = log 1.91 + log 10 = 0.2810 + 1

log 191 = log 1.91 + log 100 = 0.2810 + 2

log 1910 = log 1.91 + log 1000 = 0.2810 + 3, etc.

Likewise, by 138,

log 0.191 =
log 1.91 -

log 10 = 0.2810 - 1

log 0.0191 =
log 1.91 - log 100 = 0.2810 - 2

log 0.00191 = log 1.91 - log 1000 = 0.2810 - 3, etc.

Since the characteristic of the common logarithm of any number

having its first significant figure in units place is zero, and since

moving the decimal point to the right or left is equivalent to

multiplying or dividing by a power of 10, or equivalent to adding
an integer to or subtracting an integer from the logarithm,

(135): (1) the value of the characteristic is dependent merely

upon the position of the decimal point in the number; (2) the

value of the mantissa is the same for the logarithms of all

numbers that differ only in the position of the decimal point.

In particular, we derive therefrom the following rule for finding

the characteristic of the common logarithm of any number:

The characteristic of the common logarithm of a number equals

the number of places the first significant figure of the number is

removed from units' place, and is positive if the first significant

figure stands to the left of units' place and is negative if it stands

to the right of units' place.

Thus in log 1910 = 3.2810, the first figure 1 is three places from

units' place and the characteristic is 3. In log 0.0191 = 0.2810

2 the first significant figure 1 is two places to the right of units'

place and the characteristic is 2. A computer in determining

the characteristic of the logarithm of a number first points to

units place and counts zero, then passes to the next place and

counts one and so on until the first significant figure is reached.

Logarithms with negative characteristics, like 0.3010 1,



141] LOGARITHMIC AND EXPONENTIAL FUNCTIONS 231

0.3010 - 2, etc., are frequently written in the equivalent form

9.3010 - 10, 8.3010 - 10, etc.

Exercises

1. What numbers have for the characteristic of their logarithm?

What numbers have for the mantissa of their logarithms?

2. Find the characteristics of the logarithms of the following-

numbers : 1234, 5,678,910, 212, 57.45, 345.543, 7, 7.7, 0.7, 0.00000097,

0.00010097.

3. Given that log 31,416 = 4.4971, find the logarithms of the

following numbers: 314.16, 3.1416, 3,141,600, 0.031416, 0.31416,

0.00031416.

4. Given that log 746 = 2.8727, write the numbers which have the

following logarithms: 4.8727, 1.8727, 0.8727 3, 0.8727 - 1, 3.8727,

0.8727 - 4.

141. Logarithmic Tables. A table of logarithms usually con-

tains only the mantissas of the logarithms of a certain con-

venient sequence of numbers. For example, a four place table

will contain the mantissas of the logarithms of numbers from

100 to 1000; a five place table will usually contain the mantissas of

the logarithms of numbers from 1000 to 10,000, and so on. Of

course it is unnecessary to print decimal points or characteristics.

A table of logarithms should contain means for readily obtaining

the logarithms of numbers intermediate to those tabulated, by
means of tabular differences and proportional parts.

The tabular differences are the differences between successive

mantissas. If any tabular difference be multiplied successively

by the numbers 0.1, 0.2, 0.3, . . .
, 0.8, 0.9, the results are called

the proportional parts. Thus, from a four place table we find

log 263 = 2.4200. The tabular difference is given in the table

as 10. If we wish the logarithm of 263.7, the proportional

part 0.7 X 16 or 11.2 is added to the mantissa, giving, to four

places, log 263.7 = 2.4211. This process is known as interpola-

tion. Corrections of this kind are made with great rapidity after

a little practice. It is obvious that the principle used in the

correction is the equivalent of a geometrical assumption that

the graph of the function is nearly straight between the successive

values of the argument given in the table. The corrections
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should invariably be added mentally and all the work of interpolation

should be done mentally if the finding of the proportional parts

by mental work does not require multiplication beyond the range of

12 X 12. To make interpolations mentally is an essential practice,

if the student is to learn to compute by logarithms with any skill

beyond the most rudimentary requirements.
A good method to follow is as follows: Suppose log 13.78 is

required. First write down the characteristic 1
; then, with the

table at your left, find 137 in the number column and mark the

corresponding mantissa by placing your thumb above it or your
first finger below it. Do not read this mantissa, but read the

tabular difference, 32. From the p. p. table find the correction,

26, for 8. Now return to the mantissa marked by your finger,

and read it increased by 26, i.e., 1393; then place 1393 after

the characteristic 1 previously written down.

The accuracy required for nearly all engineering computations
does not exceed 3 or 4 significant figures. Four figure accuracy
means that the errors permitted do not exceed 1 percent of

1 percent. Only a small portion of the fundamental data

of science is reliable to this degree of accuracy.
1 The usual meas-

urements of the testing laboratory fall far short of it. Only
in certain work in geodesy, and in a few other special fields of

engineering, should more than four place logarithms be used.

142. Anti-logarithms. If we wish to find the number which

has a given logarithm, it is convenient to have a table in which

the logarithm is printed before the number. Such a table is known
as a table of anti-logarithms. It is usually not best to print

tables of anti-logarithms to more than four places; to find a number
when a five place logarithm is given, it is preferable to use the

table of logarithms inversely, as the large number of pages required

for a table of anti-logarithms is a disadvantage that is not com-

pensated for by the additional convenience of such a table.

1 Fundamental constants upon which much of the calculation in applied
science must be based are not often known to four figures. The mechanical

equivalent of heat is hardly known to 1 percent. The specific heat of super-
heated steam is even less accurately known. The tensile, tortional and com-

pressive strength of no structural material would be assumed to be known to a

greater accuracy than the above-named constants. Of course no calculated

result can be more accurate than the least accurate of the measurements upon
which it depends.
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143. Cologarithms. Any computation involving multiplica-

tion, division, evolution and involution may be performed by
the addition of a single column of logarithms. This possibility

is secured by using the cologarithm, instead of the logarithm, of

all divisors. The cologarithm, or complementary logarithm,

of a number n is denned to be (10 log ri) 10. The part

(10 log ri) can be taken from the table just as readily as log n,

by subtracting in order all the figures of the logarithm, including the

characteristic, from 9, except the last figure, which must be taken

from 10. The subtraction should, of course, be done mentally.

Thus log 263 = 2.4200, whence colog 263 = 7.5800 - 10. It

is obvious that the addition of (10 log ri) 10 is the same

as the subtraction of log n.

The convenience arising from this use may be illustrated as

follows:

Suppose it is required to find x from the proportion

37.42 :x ::647 : Vo.582.

We then have

2 log 37.4 = 3.1458

(1/2) log 0.582 = 9.8825 - 10

colog 647 = 7.1891 - 10

log [1.650] = 0.2174

Therefore x = 1.650.

It is a good custom to enclose a computed result in square
brackets.

144. Arrangement of Work. All logarithmic work should be

arranged in a vertical column and should be done with pen and
ink. Study the formula in which numerical values are to be

substituted and decide upon an arrangement of your work in the

vertical column which will make the additions, subtractions, etc.,

of logarithms as systematic and easy as possible. Fill out the

vertical column with the names and values of the data before

turning to the table of logarithms. This is called blocking out

the work. The work is not properly blocked out unless every

entry in the work as laid out is carefully labelled, stating exactly
the name and value of the magnitude whose logarithm is taken,
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and unless the computation sheet bears a formula or statement

fully explaining the purpose of the work.

Computation Sheet, FormM7, is suitable for general logarithmic

computation.

Exercises

1. From a four place table find the logarithms of the following
numbers: 342, 1322, 8000, 872.4, 35.21, 0.00213, 3.301, 325.67,

2f, 3.1416, 0.0186, 250.75, 0.0007, 0.33333.

2. Find the numbers corresponding to each of the following

logarithms: 0.3250, 2.1860, 0.8724, 1.1325, 3.0075, 8.3990 -
10,

9.7481 -
10, 4.0831, 7.0091 -

10, 0.5642.

3. Compute by logarithms the value of the following: 2.56 X 3.11

X 421; 7.04 X 0.21 X 0.0646; 3215 X 12.82 -r- 864.

4. Compute the following by logarithms: 81 3 * 17 4
; 15S\/0.52;

(343/892)3; Vl893 Vl912/446 2
.

5. Compute the following by logarithms: (2.7182)
1 - 40

*; (7.41)-* ;

(8.31)
- 27

.

6. Solve the following equations : 5Z =
10; 3Z ~ X = 4; log* 71 = 1.21

log* 5 =
logio 4.822.

7. Find the amount of $550 in fifteen years at 5 percent com-

pound interest.

8. A corporation is to repay a loan of $200,000 by twenty equal
annual payments. How much will have to be paid each year, if

money be supposed to be worth 5 percent?
Let x be the amount paid each year. As the debt of $200,000 is

owed now, the present value of the twenty equal payments of x dollars

each must add up to the debt or $200,000. The sum of x dollars

to be paid n years hence has a present worth of only

x

(1.05)**

if money be worth 5 percent compound interest. The present value,

then, of x dollars paid one year hence, x dollars paid two years hence,
and so on, is

* *
, *___ .

x

1.05
"*"

(1.05)
2 "*"

(1.05)
3 "* r

(1.05)
20

This is a geometrical progression.
The result in this case is the value of an annuity payable at the

end of each year for twenty years that a present payment of $200,000
will purchase.
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9. It is estimated that a certain power plant costing $220,000 will

become entirely worthless except for a scrap value of $20,000 at the

end of twenty years. What annual sum must be set aside to amount

to the cost of replacement at the end of twenty years, if 5 percent

compound interest is realized on the money in the depreciation

fund?

Let the annual amount set aside be x. In this case the twenty

equal payments are to have a value of $200,000 twenty years hence,

while in the preceding problem the payments were to be worth

$200,000 now. In this case, therefore,

z(1.05)
19 +z(1.05) 18 +z(1.05) ls'+ . . .

+z(1.05) 2 + 3(1.05) + x = $200,000.

The geometrical progression is to be summed and the resulting

equation solved for x.

10. The population of the United States in 1790 was 3,930,000 and

in 1910 it was 93,400,000. What was the average rate percent in-

crease for each decade of this period, assuming that the population
increased in geometrical progression with a uniform ratio for the entire

period.

11. Find the surface and the volume of a sphere whose radius is

7.211.

12. Find the weight of a cone of altitude 9.64 inches, the radius

of the base being 5.35 inches, if the cone is made of steel of specific

gravity 7.93.

13. Find the weight of a sphere of cast iron 14.2 inches in diameter,
if the specific gravity of the iron be 7.30.

14. In twenty-four hours of continuous pumping, a pump discharges

450 gallons per minute; by how much will it raise the level of water in

a reservoir having a surface of 1 acre? (1 acre = 43560 sq. ft.)

145. Trigonometric Computations. Logarithms of the trig-

onometric functions are used for computing the numerical value

of expressions containing trigonometric functions, and in the

solution of triangles. The right triangles previously solved by
use of the natural functions are often more readily solved by
means of logarithms. (See 66.) The tables of logarithmic func-

tions contain adequate explanation of their use, so that de-

tailed instructions need not be given in this place. Two new
matters of great importance are met with in the use of the loga-

rithms of the trigonometric functions that do not arise in the use
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of a table of logarithms of numbers, which, on that account, require

especial attention from the student:

(1) In interpolating in a table of logarithms of trigonometric

functions, the corrections to the logarithms of all co-functions must,

be subtracted and not added. Failure to do this is the cause of

most of the errors made by the beginner.

(2) To secure proper relative accuracy in computation, the

S and T functions must be used in interpolating for the sine and

tangent of small angles.

In the following work, four place tables of logarithms are

supposed to be in the hands of the students.

Exercises

1. A right prism, whose base is a square 17.45 feet on a side, is

cut by a plane making an angle of 27 15' with a face of the prism.
Find the area of the section of the prism made by the cutting plane.

2. The perimeter of a regular decagon is 24 feet. Find the area of

the decagon.
3. To find the distance between two points B and C on opposite

banks of a river, a distance CA is measured 300 feet, perpendicular
to CB. At A the angle CAB is found to be 47 27'. Find the

distance CB.
4. In running a line 18 miles in a direction north, 2 13.2' east,

how far in feet does one depart from a north and south line passing

through the place of beginning?
5. How far is Madison, Wisconsin, latitude 43 5', from the earth's

axis of rotation, assuming that the earth is a sphere of radius 3960

miles?

6. Find the length of the belt required to connect an 8-foot and a

3-foot pulley, their axes being 21 feet apart.

7. A man walking east 7 15' north along a river notices that after

passing opposite a tree across the river he walks 107 paces before he

is in line with the shadow of the tree. Time of day, noon. How far

is it across the river?

8. Solve the right-angled triangle in which one leg = 2 \/3 and the

hypotenuse = 2tr.

9. The moon's radius is 1081 miles. When nearest the earth, the

moon's appa.rent diameter (the angle subtended by the moon's disk as

seen from the position of the earth's center) is 32.79'. When farthest
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from the earth, her apparent diameter is only 28.73'. Find the

nearest and farthest distances of the moon in miles.

10. A pendulum 39 inches long vibrates 3 5' each side of its mean

position. At the end of each swing, how far is the pendulum bob

above its lowest position?

11. If the deviation of the compass be 2 1.14' east, how many feet

does magnetic north depart from true north in a distance of 1 mile

true north?

12. Solve:

x : 1.72 = 427 : V2gh

if g = 32.2 and h = 78.2.

13. The four strings of a violin are tuned in fifths; that is, for two
vibrations of any string there are three vibrations of the next higher

string. If the lowest or G string vibrates 196 times per second, find

the number of vibrations per second of the highest string.

14. A substance containing 20 percent of impurities is to be purified

by crystallization from a mother liquid. Each crystallization reduces

the impurity 88.6 percent. How many crystallizations will produce
a substance 0.9999 pure?

16. Compute the value of (1 ae~ba )
n where a =

15.6, 6 = --
A

X =
10, n =

2, y = 2.5.

16. Find the volume of a cone if the angle at the apex be 15 38'

and the altitude 17.48 inches.

17. The angle subtended by the sun's diameter as seen from the

earth is 32'.06. Find the diameter of the sun in miles, if the distance

from the earth to the sun be 92.8 million miles.

18. Compute by logarithms four values of p from the equation

p = 32.2d 1 - 4
,
for d =

2, 3, 4, 5.

19. Solve 3* = 405 for the value of x.

20. Compute:
23.07 X 0.1354 X V234

13.54

What advantage is there in using the co-logarithm of the denomi-
nator?

146. Logarithmic and Exponential Curves. The graphical
construction of the exponential curve has already been explained.
It was noted that curves whose equations are of the form y = rx

pass through the point (0, 1) and that the slope of the curves

for positive values of x is steeper the larger the value selected for
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the number r. See Fig. 94. In a system of exponential curves

y = r* passing through the point (0, 1) or the point M of Fig.

94, we shall assume that there is one curve passing through M
with slope 1. The equation of this particular curve we shall call

y = ex
, thereby defining the number e as that value of r for which

the curve y = r* passes through the point (0, 1) with slope 1. This
is a second definition of the number e; we shall show in this section

that it is consistent with the first definition of e given in 130.

FIG. 94. Definition of Tangent to a Curve.

The exercises of 130 developed experimentally the charac-

teristic property of the exponential curve to the base e:

The slope of the curve y = ex at any point is equal to the ordinate

of that point. This fact, developed experimentally in 130,

will now be shown to follow necessarily from the definition of e

just given.

Select the point P on the curve y = e x at any point desired.

Draw a line through P cutting the curve at any neighboring

point Q. (Fig. 94.) A line like PQ that cuts a curve at two points

is called a secant line. As the point Q is taken nearer and nearer

to the point P (P remaining fixed), the limiting position ap-
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preached by the secant PQ is called the tangent to the curve at

the point P. This is the general definition of the tangent to any
curve.

The slope of the secant joining P to the neighboring point Q
is HQ/PH. As the point Q approaches P this ratio approaches
the slope of the tangent to y ex at the point P. Let OD
= x and PH =

h; then OE = x + h, also DP = e x and EQ =
ex+h . Since HQ is the y of the point Q minus the y of the

point P, we have:

HQ _ _
PH

"
h

'

h

Now the slope of y = e* at P is the limit of the above expression

as Q approaches P or as h approaches zero. That is:

limit eh 1

slope of e x at P = e x ^ ^ (1)

We now seek to find

limit eh - 1

h = Q h

if such limit exists. Since P is any point, consider the point M
where x = 0. The slope there is :

limit eh 1

h = h

That is, the slope of y = ex at M is:

limit eh 1

A = h~
But by the definition of e, the slope of y = ex at M is 1. Hence
we must conclude that the required limit exists and that

limit e*-l
(}

h = h

Substituting this result in equation (1), we have

Slope at P = e x (3)

This expresses the fact that the slope of y = e x at any point is ex
,

or is the ordinate y of that point, a fact that was first indicated

experimentally in 130. At that same place the approxi-
mate value of e was seen to be 2.7. A more exact value is known
to be 2.7183, as will be computed later.



240 ELEMENTARY MATHEMATICAL ANALYSIS [146

In Fig. 94 the slope of y = e x at P is given by PD measured by
the unit OM. The distance TD, called the subtangent, is

constant for all positions of the point P.

The slope of y = r* at any point is readily found. There

exists a number m such that em = r. Hence y = rx may be

written y =
(e
m
)
x = emx . Now this curve is made from y = ex

by substituting mx for x, or by multiplying all of the abscissas

of the latter by 1 /m. Therefore the side TD of the triangle PDT
in Fig. 94 will be multiplied by 1 /m, the other side DP remaining

FIG. 95. Exponential and Logarithmic Curves to the Natural Base e =
2.7183.

the same. Therefore the slope of the curve, or DP/TD will be

multiplied by w, since the denominator of this fraction is multi-

plied by 1 /m. Hence the slope of y = rx at any point is m times

the ordinate of that point, where m satisfies the equation em = r.

The curve y = e~x is, of course, the curve y = ex reflected in

the F-axis. 1 This curve, as well as the curve y = loge x and its

symmetrical curve, are shown in Fig. 95. Sometimes the curve

y = ex is called the exponential curve and the curve y = loge x

is called the logarithmic curve. This distinction, however, has
1 See 24.
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little utility, as the equation of either locus can be expressed in

either notation.

The notation y = In x is often used to indicate the natural loga-

rithm of x and the notation y =
Ig x or y = log x is used to stand

for the common logarithm of x.

TABLE IV.

The following table of powers of e is useful in sketching exponential
curves.

60.2 =

60.6 =

e =

e s =
e4 =

1.2214

1.4918

1.8221

2.2255

2.7183

7.3891

20.0855

54.5982

= 0.8187
= 0.6703
= 0.5488
= 0.4493
= 0.3679
= 0.1353
= 0.0498
= 0.0183

e^ = 1.6487

e^ = 1.3956

ey* = 1.2840

e
1^ = 1.2214

-2-10 1

FIG. 96. A Family of Exponentials, y = l
mx

.

Exercises

1. Draw the curve y = ex + e~x . Show that y is an even function

of .T, that is, that y does not change when the sign of x is changed.
16
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2. Draw the curve y = ex ~*. Show that this is an odd func-

tion of x, that is, that the function changes sign but not absolute value
when the sign of x is changed.

3. Draw the graphs of y = e*/2
,
and y = ex/2 .

4. Draw the graphs of y = ex/z
,
and y = e~~*/2 .

5. Compare the curves: y = ex/ *, y = ex/2
, y = ex

, y = e 3x
.

6. Sketch the curves y = l x
, y =

2*, y = 3Z
, y =

4*, y = 5X
,

y =
6*, y = 8X

, y =
10*, from x = - 3 to z = + 3.

7. From the graphs of

r-*i
and

y = log iox + 1.8

solve the equation
x 2 -

log x - 1.8 = 0.

8. Solve graphically the equation
5 log x - (1/2)3 +2=0.

9. Solve graphically:

10* = x 2
.

10. Solve graphically:

(1/2)* = log x.

11. Solve graphically:

10* = 5-sin x.

12. Solve graphically:

sin x = x 0.1.

13. Solve graphically:

cos x = x 2
1.

14. Solve analytically:

ex-l = 10*.

147. The Exponential Curve and the Theorems on Loci. It has

already been shown ( 145) that the curve y = a* can be derived

from the curve y = e* (a>e) by multiplying the abscissas of

the latter curve by l/m(m>I), that is, by orthographic projection

of y = e x upon a plane passing through the F-axis. There exists

a number m (m>l) such that a = e m . Hence, y = a* may be

written y = emx and, by 27, the latter curve may be made
from y = ex by multiplying its abscissas by 1 fm. Also note that

the slope of the curve y = e x at any point is equal to the ordinate

of the point, and that the slope of y a* at any point is m
times the ordinate of that point. The number Ifm is called the

modulus of the logarithmic system whose base is a.
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The modulus of the common system is the reciprocal of the value

of m that satisfies em = 10, or it is the value of M that satisfies

gi/M _ ^ or that satisfies e = 10^. That is, the modulus M of

the common system is the logarithm of e to the base 10, or, to four

figures, equals 0.4343. The value of m or l/M = 2.3026. Thus

we have the fundamental formulas:

1Q0.4343 _

g2.3026 _ J

and

log 10Ar = 0.4343 logeN

log eN = 2.
(2)

Another remarkable property of the logarithmic curve ap-

pears from comparing the curves y = ax and y = ax+l
, or, more

generally, the curves y = ax and y = ax+h . The second of these

curves can be derived from y = ax by translating the latter curve

the distance 1 (in the general case the distance h} to the left.

But y = ax+l may be written y = aax
,
and y = ax+h may be

written y = ahax
. From these it can be seen that the new curves

may also be considered as derived from y = ax by multiplying all

ordinates of y = a x by a, or in the general case, by a*.

Translating the exponential curve in the x-direction is the same as

multiplying all ordinates by a certain fixed number, or is equivalent

to a certain orthographic projection of the original curve upon a plane

through the X-axis.

Changing the sign of h changes the sense of the translation and

changes elongation to shortening or vice versa.

The exponential curve might be defined as the locus that

possesses the above-described fundamental property. There are

numerous ways in which this property may be stated. Another

form is this: Any portion of the exponential curve included within

any interval of x, may be made from the portion of the curve

included within any other equal interval of x, by the elongation

(or shortening) of the ordinates in a certain ratio, or, in other

words, by orthographic projection upon a plane passing through
the x-axis. This is illustrated by Fig. 97, which is a graph of an

exponential curve drawn to base 2. If the portions of the curve

P\Pz, PsPs, P*P4, . . . corresponding to equal intervals 1 of x
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be changed by shortening all ordinates of PiP 2 measured above the

height of PI in the ratio 1 /2, by shortening all ordinates of PzP z

measured above P 2 in the ratio 1 /4, by shortening all ordinates of

Pa?4 measured above PS in the ratio 1/8,. . . the results are

the curves PiFi, PJF^ PzFz, . . . which are identical with the

portion P^Pi of the original curve.

10

Fi

-2-10 12 345
Fio.^97. Illustration of an Important Property of the Exponential

Curve.

This is also illustrated by Fig. 93, which is a small portion of the

curve x =
logic y drawn on a large scale, and, for convenience, with

the vertical unit 1/10 the horizontal unit. From this small portion
of the curve we may read the logarithms of all numbers. For the

distances along the x-axis may be designated 0.0, 0.1, 0.2, . . .

or 1.0, 1.1, 1.2, ... or 2.0, 2.1, 2.2, . . ., etc., in which case

we read 1,2, 3, . . . or 10, 20, 30, . . . or 100, 200, 300, . . .

etc., respectively, along the y-axis. This, it will be observed, is

merely a geometrical statement of the fact that a table of man-

tissas for the numbers from 1.000 to 9.999 is sufficient for deter-

mining the logarithms of all four-figure numbers.
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Exercises

1. State the difference between the curves y = ex and y = 10*.

2. Graph y = e~- u where e = 2.7183.

3. Graph the logarithmic spiral p = e e
, being measured in

radians.

NOTE : The radian measure in the margin of Form A/3 should be

used for this purpose.
4. Graph p = e~e

.

5. The pressure of the atmosphere is given in millimeters of mer-

cury by the formula:

y = 760-e-* 800

where the altitude a? is measured in meters above the sea level. Pro-

duce a table of pressure for the altitudes x =
0; 10; 50; 100; 200; 300;

1000; 10,000; 100,000.

6. From the data of the last problem, find the pressure at an alti-

tude of 25,000 feet.

7. Show that the relation of Exercise 5 may be written:

x = 18,421 (log 760 -
log y).

8. Determine the value of the quotient T for the following

values of x: 2, 3, 5, 7.

9. How large is e 01
approximately?

10. What is the approximate value of 10- 001 ?

148. Logarithmic Double Scale. The relation between a num-
ber and its logarithm can be shown by a double scale of the sort

discussed in 3 and 8. In constructing the double scale,

one may select for the uniform scale either the one on which the

numbers are to be read, or the one on which the logarithms are to

be read. A scale having a most remarkable and useful property
results if the logarithms are laid off on a uniform scale and the

corresponding numbers are laid off on a non-uniform scale, as

shown in the double scale of Fig. 98. This scale is constructed

for the base 10. The distances measured on the 5-sca!e, although
it is the scale on which the numbers are read, are proportional to

the common logarithms of the successive numbers; that is, if the

total length of the scale be called unity, the distance on the B
scale from the left end to the mark 2 is 0.3010, the distance to the

mark 3 is 0.4771, etc.; also the distance on this scale from the left

end to the mark 6 is the sum of the distance from the left end to
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the mark 2 and the like distance to the mark 3; also the distance
to 8 is just treble the distance to 2.

Since log Wx 1 + log x, it follows that, if the scales A and B,

3-=i , Fig. 98, were extended another unit to the right,
this second unit would be identical to the first

one, except in the attached numbers. The
3 numbers on the A -scale would be changed from

0.0, 0.1, 0.2, ... 1.0 to 1.0, 1.1, 1.2, . . .,

2.0, while those on the non-uniform, or 5-scale,
would be changed from 1, 2, 3, . . .

,
10 to

10, 20, 30, ... 100.

Passing along this scale an integral number
3 - of unit intervals corresponds thus to change of

CQ characteristic in the logarithms, or to change
3 of decimal point in the numbers.

^
It is not, however, necessary to construct

more than one block of this double scale, since

J we are at liberty to add an integer n to the

g numbers of the uniform scale, provided at the

|>
same time we multiply the numbers of the

>* ^ non-uniform scale by 10 n
. In this way we

oo may obtain any desired portion of the extended

^
scale. Thus, we may change 0.1, 0.2, 0.3, . . .,

. & 1.0 on A to 3.1, 3.2, 3.3, . . ., 4.0, by adding
3 to each number, provided at the same time

^ a we change the numbers on the 5-scale 1, 2, 3,

=^S
I

4
'

' '
'
10 to 1000

'
2000

'
3000

'
4000

'
' ' '

I 10,000 by multiplying them by 103
. If n is

g negative (say 2) we may write, as in the

3 1 case of logarithms, 8.0 - 10, 8.1 - 10, 8.2 -

10, . . .
,
9.0 - 10, or, more simply,

-
2,

-

^ 1.9,
-

1.8,
-

1.7, . . .,
--

1.0, changing the

numbers on the non-uniform scale at the same

time to 0.01, 0.02, 0.03, . . .,0.10.

To produce the scale of distances proportional to the logarithms

of the successive numbers as used above, it is merely necessary to

draw horizontal lines through the points 1, 2, 3, . . . of the

2/-axis in Fig. 99, and then draw vertical lines through the points

s



149] LOGARITHMIC AND EXPONENTIAL FUNCTIONS 247

P 2 , PS, P4 . . . where the horizontal lines meet the curve; the

intercepts on the z-axis are then proportional to log x.

149. The Slide Rule. By far the most important application

of the non-uniform scale ruled proportionally to log x, is the com-

puting device known as the slide rule. The principle upon which

the operation of the slide rule is based is very simple. If we have

10 100 1000

/H

Bt

DID

N

FIG. 99. A Method of Constructing the Logarithmic Scale.

two scales divided proportionally to log x (A and B, Fig. 100),

so arranged that one scale may slide along the other, then by slid-

ing one scale (called the slide) until its left end is opposite any
desired division of the first scale, and, selecting any desired division

of the slide, as at R, Fig. 100, taking the reading of the original

scale beneath this point, as N, the product of the two factors

whose logarithms are proportional to AB and BR can be read

directly from the lower scale at N', for AN is, by construction,

the sum of AB and BR, and since the scales were laid off propor-

tionally to log x, and marked with the numbers of which the dis-

tances are tho logarithms, the process described adds the logarithms

mechanically, but indicates the results in terms of the numbers
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themselves. By this device all of the operations commonly carried

out by use of a logarithmic table may be performed mechanically.
Full description of the use of the slide rule

need not be given in detail at this place, as

complete instructions are found in the pamph-
lets furnished with each slide rule. A very
brief amount of individual instruction given to

the student by the instructor will insure the

rapid acquirement of skill in the use of the

instrument. In what follows, the four scales of

the slide rule are designated from top to bottom

of the rule, A, B, C, D, respectively. The ends

of the scales are called the indices.

3 An ordinary 10-inch slide rule should give

p$ results accurate to three significant figures,

which is accurate enough for most of the pur-
& poses of applied science.

An exaggerated idea sometimes prevails con-

's cerning the degree of accuracy required by work

b in science or in applied science. Many of the

J fundamental constants of science, upon which a

^ large number of other results depend, are known

[2 only to three decimal places. In such cases

I. greater than three figure accuracy is impossible

even if desired. In other cases greater accuracy

^ is of no value even if possible. The real desid-

& eratum in computed results is, first, to know by a

suitable check that the work of computation is correct,

and, second, to know to what order or degree of

accuracy both the data and the result are dependable.

The absurdity of an undue number of decimal

places in computation is illustrated by the orig-

inal tables of logarithms, which if now used

would enable one to compute from the radius

of the earth, the circumference correct to 1 /10,000

part of an inch.

The following matters should be emphasized
in the use of the slide rule:
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(1) All numbers for the purpose of computation should be con-

sidered as given with the first figure in units place. Thus 517

X 1910 X 0.024 should be considered as 5.17 X 1.19 X 2.4 X
102 X 103 X 10~ 2

. The result should then be mentally approxi-

mated (say 24,000) for the purpose of locating the decimal point,

and for checking the work.

(2) A proportion should always be solved by one setting of the

slide.

(3) A combined product and quotient like

a X bXc Xd
rXsXt

should always be solved as follows:

Place runner on a of scale D.

Set r of scale C to a of scale D
;

Runner to b of C;
s of C to runner;

Runner to c of C;
t of C to runner;
at d of C find on D the significant figures of the result.

(4) The runner must be set on the first half of A for square
roots of odd numbered numbers, and on the second half of A for

the square roots of even numbered numbers.

(5) Use judgment so as to compute results in most accurate

manner thus instead of computing 264/233, compute 31 /233 and

hence find 264/233 = 1 + 31/233.
1

(6) Besides checking by mental calculation as suggested in (1)

above, also check by computing several neighboring values and

graphing the results if necessary. Thus check 5.17 X 1.91 X 2.4

by computing both 5.20 X 19.2 X 2.42 and 5.10 X 1.90 X 2.38.

Exercises

Compute the following on the slide rule.

1. 3.12 X 2.24; 1.89 X 4.25; 2.88 X 3.16; 3.1 X 236.

2. 8.72/2.36; 4.58/2.36; 6.23/2.12; 10/3.14.
3. 32.5 X 72.5; 0.000116 X 0.00135; 0.0392/0.00114.
4. 3,967,000 -f- 367,800,000.

6.54 X 42.6. 8.75 X 5.25

"32.5 32.3

1 Show by trial that this gives a more accurate result.
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.
78.5 X 36.6 X 20.8

5.75 X 29.5

6.46 X 57.5 X 8.55

3.26 X 296X0.642
8. Solve the proportion

a;: 1.72: = :4.14

where g = 32.2 and h = 78.2.

10. The following is an approximate formula for the area of a seg-

ment of a circle:

A = h 3
/2c + 2ch/3

where c is the length of the chord and h is the altitude of the segment.
Test this formula for segments of a circle of unit radius, whose arcs

are ir/3, ir/2, and TT radians, respectively.

11. Two steamers start at the same time from the same port; the

first sails at 12 miles an hour due south, and the second sails at 16

miles an hour due east. Find the bearing of the first steamer as seen

from the second (1) after one hour, (2) after two hours, and compute
their distances apart at each time.

The following exercises require the use of the data printed herewith.

An "acre-foot" means the quantity of water that would cover 1

acre 1 foot deep. "Second-foot" means a discharge at the rate of 1

cubic foot of water per second. By the "run-off" of any drainage area

is meant the quantity of water flowing therefrom in its surface stream

or river, during a year or other interval of time.

1 square mile = 640 acres

1 acre = 43,560 square feet.

1 day = 86,400 seconds.

1 second foot = 2 acre feet per day.
1 cubic foot = 7| gallons.

1 cubic foot water = 62| pounds water.

1 h.p. = 550 foot pounds per second.

450 gallons per minute = 1 second foot.

Each of the following problems should behandled on the slide rule as

a continuous piece of computation.
12. A drainage area of 710 square miles has an annual run-off of

120,000 acre feet. The average annual rainfall is 27 inches. Find

what percent of the rainfall appears as run-off.

13. A centrifugal pump discharges 750 gallons per minute against
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a total lift of 28 feet. Find the theoretical horse power required.

Also daily discharge in acre feet if the pump operates fourteen hours

per day.
14. What is the theoretical horse power represented by a stream

discharging 550 second feet if there be a fall of 42 feet?

16. A district containing 25,000 acres of irrigable land is to be sup-

plied with water by means of a canal. The average annual quantity
of water required is 3| feet on each acre. Find the capacity of the

canal in second feet, if the quantity of water required is to be delivered

uniformly during an irrigation season of five months.

16. A municipal supply amounts to 35,000,000 gallons per twenty-
four hours. Find the equivalent in cubic feet per second.

17. A single rainfall of 3.9 inches on a catchment area of 210 square
miles is found to contribute 17,500 acre feet of water to a storage

reservoir. The run-off is what percent of the rainfall in this case?

1.0

.9

.8

.7

.0

.5

.4

.3

.2

.1

a
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sheet is constructed a logarithmic scale LM of the type discussed

in 148, i.e., any number, say 4, on the scale LM stands opposite
the logarithm of that number (in the case named opposite 0.6021)

on the uniform scale ON.
Let us agree always to designate by capital letters distances

measured on the uniform scales, and by lower case letters dis-

tances measured on the logarithmic scale. Thus Y will mean the

ordinate of a point as read on the scale ON, while y will mean the

ordinate of a point as read on the scale LM. In other words, we

agree to plot a function, using logarithms of the values of the

function as ordinates and the natural values of the argument or

variable as abscissas.

Let PQ be any straight line on this paper, and let it be required

to find its equation, referred to the uniform z-scale OL and the

logarithmic ?/-scale LM. We proceed as follows :

The equation of this line, referred to the uniform X-axis OL
and the uniform F-axis ON, where is the origin, is

Y = mX + B

m being the slope of the line, and B its ^-intercept. Now, for the

line PQ, m = 0.742 and B = 0.36, so that the equation of PQ is

Y = 0.742Z + 0.36 (1)

To find the equation of this curve referred to the scales LM and

OL, it is only necessary to notice that

Y = log y

so that we obtain:

log y = 0.742z + 0.36 (2)

The intercept 0.36 was read on the scale ON
}
and is therefore the

logarithm of the number corresponding to it on the scale LM.
That is, 0.36 = log 2.30. Substituting this value in equation (2)

we obtain:

log y = 0.742x -f log 2.30

which may be written

log y - log 2.30 = 0.742*

or,

Io - -742*
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On changing to exponential notation this becomes:

or,

y = 1QO-742*
2.30

y = 2.30(10-
742

*) (3)

i

A L 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0J5

Semi Logarfthmic Paper

FIG. 102. Illustration of Squared Paper, Form M5. The finer rulings of

Form M5 have been omitted in Fig. 102.

In general, if the equation of a straight line referred to the

scales OL and ON is

Y = mX + B (4)

its equation referred to the scales OL and LM may be obtained by
replacing Y by log y and B by log b in the manner described above,

giving

log y = mx + log b (5)
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which, as above, may be reduced to the form

y = blO- (6)

This is the general equation of the exponential curve. Hence:

Any exponential curve can be represented by a straight line, provided

ordinates are read from a suitable logarithmic scale, and abscissas

are read from a uniform scale.

\ \

I

i

\ /

V
\

\

rz
/\

\ /

y

I 6

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 B
Semi Logarithmic Paper

FIG. 103. Exponential Curves on Form M5. The curve ... is

y = i(r 3
*; . is y = KT 2

*; . . is y = 10 3z
.

Fig. 102 represents the same line PQ (y = (2.30) 10-
742

*), as

Fig. 101. The two figures differ only in one respect: in Fig. 101

the rulings of the uniform scale ON are extended across the page,

while in Fig. 102 these rulings are replaced by those of the scale

LM.
Coordinate paper such as that represented by Fig. 102 is known
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as semi-logarithmic paper. It affords a convenient coordinate

system for work with the exponential function.

Every point on PQ (Fig. 102) satisfies the exponential equation

y = 2.30(10
742

*)

Thus, in the case of the point R,

3.98 = 2.30(10-
742

)
0320

= 2.30(10-
238

)

The slope of any line on the semi-logarithmic paper may be read

or determined by means of the uniform scales BC and AB of form

M5. The scale AD of form M5 is the scale of the natural loga-

rithms, so that any equation of the form y = emx can be graphed
at once by the use of this scale. Thus, the line y = ex (Fig.

103) passes through the point A or (0, 1), and a point onBC op_

posite the point marked 1.0 on AD. Note that 1.0 on scale AD
2.718 on the non-uniform scale of the main body of the paper
and 0.4343 on the scale BC all fall together, as they should.

To draw the line y = I0~x
,
the corner D of the plate may be

taken*as the point (0, 1) . On the line drawn once across the sheet

representing y Wmx
, y has a range between 1 and 10 only.

To represent the range of y between 10 and 100, two or more sheets

of form M5 may be pasted together, or, preferably, the continua-

tion of the line may be shown on the same sheet by suitably

changing the numbers attached to the scales AB and BC. Thus

Fig. 103 shows in this manner y = 10 2* and y = 10 3
*.

Remember that the line

y = blO* (7)

passes through the point (0, 6) with slope m. Note that

JL
= 1Qm(x

- o)
(8)

passes through the point (a, 6) with slope m.

Exercises

On semi-logarithmic paper draw the following :

1. y = 10 3
*, y - 10 2

*, y =
10*, y = 10 ~*, y = 10

~ 2
*, y = 10

~ 3*.

2. y e2
*, y = e, y -

e~*, y = e~~21 .

3. 3z = log y, (l/2)x = log y.
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4. y = 10*/ 2
, y = 10*/ 10

.

5. Graph?/ = 2(10)* and |
= 10*

~ 3
-

151. The Compound Interest Law. Logarithmic Increment.

The law expressed by the exponential curve was called by Lord

Kelvin the compound interest law and since that time this name
has been generally used. It is recalled that the exponential curve

was drawn by using ordinates equal to the successive terms of

a geometrical progression which are uniformly spaced along the

a; -axis; since the amount of any sum at compound interest is given

by a term of a geometrical progression, it is obvious that a sum at

compound interest accumulates by the same law of growth as is

indicated by a set of uniformly spaced ordinates of an expo-

nential curve; hence the term "compound interest law," from

this superficial view, is appropriate. The detailed discussion

that follows will make this clear:

Let $1 be loaned at r percent per annum compound interest.

At the end of one year the amount is: (1 + r/100). f

At the end of two years the amount is: (1 -f r/100)
2

and at the end of t years it is: (1 + r/100)'.

If interest be compounded semi-annually, instead of annually,

the amount at the end of t years is: (1 + r/200)
2<

and if compounded monthly the amount at the end of the same

period is: (1 + r/1200)
12 *

or if compounded n times per year y = (1 + r/100n) nt

where t is expressed in years. Now if we find the limit of this

expression as n is increased indefinitely, we will find the amount of

principle and interest on the hypothesis' that the interest was

compounded continuously. For convenience let r/100n=l/w.
Then:

y =
(1 + l/tt)"

r ' /100
(1)

where the limit is to be taken as u or n becomes infinite. Calling

(l + l/w)=/(w) (2)

and expanding by the binomial theorem for any integral value of

u, we obtain:

/(u) = i + wd/tOH-
1^ 1

i +

= 1 + 1 + (1
-

l/w)/2! + (1
-

l/w)(l
-

2/w)/3! + . . . (3)
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In the calculus it is shown that the limit of this series as u becomes

infinite is the limit of the series

1 + 1 + 1/21 + 1/3!+ ... (4)

The limit of this series is easily found; it is, in fact, the Napierian
base e. It is shown in the calculus that the restriction that u

shall be an integer may be removed, so that the limit of (3) may
be found when u is a continuous variable.

It is easy to see that the limit of (4) is > 2^ and < 3. The sum
of the first three terms of the series (4) equals 2|; the rest of the

terms are positive, therefore^ > 2|. The terms of the series (4),

after the first three, are also observed to be less, term for term, than

the terms of the progression:

(1/2)2 +(1/2)3+ /<;. . (5)

But this is a geometrical progression the limit of whose sum is 1/2.

Therefore (3) is always less than 1\ + \ or 3. The value of e is

readily approximated by the following computation of the first

8 terms of (4) :

2.00000 =1 + 1

30.50000 = 1/2!

4|0.
16667 = 1/3!

50.04167 = 1/4!

6|0.
00833 = 1/5?

7|0.
00139 = 1/6!

0.00020 = 1/7J
Sum of 8 terms = 2. 71826

The value of e here found is correct to four decimal places.

Returning to equation (1) above, the amount of $1 at r

percent compound interest compounded continuously is:

y = ert/10Q

Thus $100 at 6 percent compound interest, compounded annually,

amounts, at the end of ten years, to

y = 100(1.06)
10 = $179.10

The amount of $100 compounded continuously for ten years is

y = 100e 6 = $182.20

The difference is thus $3.10.

17
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The compound interest law is one of the important laws of

nature. As previously noted, the slope or rate of increase of the

exponential function

y = aebx

at any point is always proportional to the ordinate or to the value

of the function at that point. Thus when in nature we find any

function or magnitude that increases at a rate proportional to itself

we have a case of the expontential or compound interest law.

The law is also frequently expressed by saying, as has been re-

peatedly stated in this book, that the first of two magnitudes varies

in geometrical progression while a second magnitude varies in arith-

metical progression. A familiar example of this is the increased

friction as a rope is coiled around a post. A few turns of the haw-

sers about the bitts at the wharf is sufficient to hold a large ship,

because as the number of turns increases in arithmetical progres-

sion, the friction increases in geometrical progression. Thus the

following table gives the results of experiments to determine what

weight could be held up by a one-pound weight, when a cord

attached to the first weight passed over a round peg the number

of times shown in the first column of the table :

n = number of
turns of the cord

on the peg
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The equation connecting n and w is of the form

w = 10" /'" or n = m log w

By graphing columns 1 and 3 on squared paper, the value of m is

determined and we find

w = 10 - 45 orn = 2.2 log 2

Another way is to graph columns 1 and 2 on semi-logarithmic

paper.

An interesting example of the compound interest law is Weber's

law in psychology, which states that if stimuli are in geometrical

progression, the sense perceptions are in arithmetical progression.

152. Modulus of Decay, Logarithmic Decrement. In a very

large number of cases in nature the "
compound interest" law

appears as a decreasing function rather than as an increasing

function, so that the equation is of the form

y = ae~ bx
(1)

where b is essentially negative. The following are examples of

this law:

(1) If the thickness of panes of glass increase in arithmetical

progression, the amount of light transmitted decreases in geo-

metrical progression. That is, the relation is of the form

L = ae-ot (2)

where t is the thickness of the glass or other absorbing material

and L is the intensity of the light transmitted. Since when t =
the light transmitted must have its initial intensity, Z/

, (2)

becomes

L = Lve- 1"
(3)

The constant b must be determined from the data of the problem.

Thus, if a pane of glass absorbs 2 percent of the incident light,

Lo =
100, L = 98 for t = 1,

then: 98 = lOOe'6

or log 98 - log 100 = - 6 log e.

Therefore: b = - 0.02

The light transmitted by ten panes of glass is then

L 10
= 100e-10(- 02) =
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or, by the table of 146,

Lio = 100/1.2214 = 82 percent

(2) Variation in atmospheric pressure with the altitude is

usually expressed by Halley's Law:

p = 760e-*/800

where h is the altitude in meters above sea level and p is the at-

mospheric pressure in millimeters of mercury. See 147, Exer-

cises 5, 6, 7.

(3) Newton's law of cooling states that a body surrounded by a

medium of constant temperature loses heat at a rate proportional

to the difference in temperature between it and the surrounding
medium. This, then, is a case of the compound interest law.

If 6 denotes temperature of the cooling body above that of the

surrounding medium at any time t, we must have

e = ae~bt

The constant a must be the value of 6 when t = 0, or the initial

temperature of the body.
Exercises

1. A thermometer bulb initially at temperature 19.3 C. is exposed
to the air and its temperature 6 observed to be 14.2 C. at the end of

twenty seconds. If the law of cooling be given by = 6 e~bt where

t is the time in seconds, find the value of 6 and 6.

SOLUTION: The condition of the problem gives 6 = 19.3 when
I = 0, hence = 19.3. Also, 14.2 = 19.3e~206

. This gives

log 19.3 - 20& log e = log 14.2

from which b can be readily computed.

2 If 1| percent of the incident light is lost when light is directed

through a plate of glass 0.3 cm. thick, how much light would be

lost in penetrating a plate of glass 2 cm. thick?

3. Forty percent of the incident light is lost when passed through
a plate of glass 2 inches thick. Find the value of a in the equation
L = L e

~at where t is thickness of the plate in inches, L is the per-

cent of light transmitted, and Z/ = 100.

4. As I descend a mountain the pressure of the air increases each

foot by the amount due to the weight of the layer of air 1 foot thick.

As the density of this layer is itself proportional to the pressure, show

that the pressure as I descend must increase by the compound interest

law.
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6. Power is transmitted in a clock through a train of gear wheels

n in number. If the loss of power in each pair of gears is 10 percent,

draw a curve showing the loss of power at the nth gear.

NOTE: The graphical method of 124, Figs. 88, 89, may appro-

priately be used.

6. Given that the intensity of light is diminished 2 percent by

passing through one pane of glass, find the intensity I of the light

after passing through n panes.

7. The number of bacteria per cubic centimeter of culture increases

under proper conditions at a rate proportional to the number present .

Find an expression for the number present at the end of time t if there

are 1000 per cubic centimeter present at time zero, and 8000 per

cubic centimeter present at time 10.

8. The temperature of a body cooling according to Newton's law

fell from 30 to 18 in six minutes. Find the equation connecting the

temperature of the body and the time of cooling.

153. Empirical Curves on Semi-logarithmic Coordinate Paper.

One of the most important uses of semi-logarithmic paper is in

determining the functional relation between observed data, when
such data are connected by a relation of the exponential form.

Suppose, for example, that the following are the results of an

experiment to determine the law connecting two variables x and y :

x 0.04 0.18 0.36 0.51 0.685 0.833 0.97

y 5.3 4.4 3.75 3.1 2.6 2.33 1.9

If the equation connecting x and y is of the exponential form, the

points whose coordinates are given by corresponding values of x

and y in the table will lie in a straight line, except for such slight

errors as may be due to inaccuracies in the observations. Plotting

the points on semi-logarithmic coordinate paper, we find that they
lie nearly on the line PQ (Fig. 104). Assuming that, if the data

were exact, the points would lie exactly on this line,
1 we may pro-

1 We would not be at liberty to make such an assumption if the variation of the

points away from the line was of a character similar to that represented by
the dots near the top of Fig. 104. These points, although not departing greatly
from the line shown, depart from it systematically. That is, they lie below it at

each end, and above it in the center, seeming to approximate a curve, (such as the

one shown dotted) more nearly than the line. The points arranged about the line

PQ depart as far from that line as do the points above the higher line, but they
do not depart systematically, as if tending to lie along a smooth curve. When points

arrange themselves as at the top of Fig. 104, one must infer that the relation con-

necting the given data is not exponential in character.
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ceed to determine the equation of this line as approximately repre-

senting the relation between x and y.

It is easy to find the equation of such a line referred to the uni-

form scales AB and BC of form M5. We may imagine that all

rulings are erased and replaced by extensions of the uniform AB
scale, as in Fig. 101. The equation of the line PQ is then

7 = mX + B (1)

2 S 5

A L - 1

FIG. 104. Empirical Equations Determined by Use of Form M5.

0.3 0.4 0.5 0.6 0.7

Semi Logarithmic Paper

where ra is the slope, and B is the ^/-intercept. Now, for PQ,

m = - 0.447 and B = 0.730 = log 5.37. Equation (1) of PQ
becomes, therefore:

Y = - 0.447Z + 0.730
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or, replacing Y by log y and 0.730 by log 5.37, in order to refer

the curve to the scales AB and LM,

log y - log 5.39 = - 0.447z

whence

y = 5.39(10--
447

*) (2)

If it is desired to express the relation to the base e instead of

base 10, we may note 10 = e 2 -3026 (143, equation (1)), or, sub-

stituting in (2),

y = 5.39 (e
2
303)

-0.147*

= 5.39 e-1 - 029-
(3)

The same result might have been obtained directly by use of

the uniform scale AD, at the left of form M5. This scale is so

constructed that the length 1 on AB corresponds to the length

2.3026 on AD. Now, we know that e2 -3026 =
10, hence we may

replace 10 in 10* by e if we make m in 10mx 2.3026 times as

great as before. This is readily done by measuring the slope of

PQ by the use of the uniform scale AD instead of the uniform

scale BC. Computing the slope of PQ by use of the scale AD
we find:

Y of Q = 0.653

7 ofP = 1.681

Difference = - 1.028

Since AB =
1, this is the slope of the line, measured to the scale

AD, and is therefore the value of m in the equation

y = ae mx (4)

Hence the equation of PQ is

y = 5.396-1 - 028*

which agrees with the equation previously obtained.

154. Change of Scale on Semi-logarithmic Paper. A sheet of

semi-logarithmic paper, form M5, is a square. If sheets of this

paper be arranged
"
checker-board fashion" over the plane, then

the vertical non-uniform scale will be a repetition of the scaleLM,
Fig. 104, except that the successive segments of length LM must
be numbered 1, 2, 3, . . .

,
9 for the original LM, then 10, 20,

30, . . ., 90 for the next vertical segment of the checker-board,
then 100, 200, 300, . . .

, 900, for the next, etc. It is obvious,

therefore, that the initial point A of a sheet of semi-logarithmic
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paper may be said to have the ordinate 1, or 10, or 100, etc., or

10"1
,
10~2

, etc., as may be most convenient for the particular

graph under consideration. The horizontal scale being a uniform

scale, any values of x may be plotted to any convenient scale on

it, as when using ordinary squared paper. However, if the hori-

zontal unit of length (the length AB, form M5} be taken as any
value different from unity, then the slope m of the line PQ drawn

on the semi-logarithmic paper can only be found by dividing its

apparent slope by the scale value of the side AB. That is, the

correct value of m in

y = alQmx

is, in all cases,

_ apparent slope of PQ
scale value of AB

The "apparent slope" of PQ is to be measured by applying any
convenient uniform scale of inches, centimeters, etc., to the

horizontal and vertical sides of a right triangle of which PQ is the

hypotenuse.

Exercises

1. A thermometer bulb initially at temperature 19.3 C. is exposed
to the air and its temperature 6 noted at various times t (in seconds)

as follows :

20 40 60 80 100 120

19.3 14.2 10.4 7.6 5.6 4.1 3.0

Plot these results on semi-logarithmic paper and test whether or not

e follows the compound interest law. If so, determine the value of

60 and 6 in the equation 6 = e -**. Note that the last point given

by the table, namely t = 120, e =
3.0, goes into a new square if the

scale AB be called 0100. If the scale AB be called 0200 then all

entries can appear on a single sheet of form M5.

2. Graph the following on semi-logarithmic paper:

n
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6. Graph the following on semi-logarithmic paper, and find the

equation connecting n and w.

n
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Let x change by a constant factor m, so that the new value of x

is mx. Call y' the new value of y. Then

?/ = a(mx) =f(mx) (3)

That is: '

- * (4)

which shows that the ratio of the two y's is independent of the value

of x used, or is constant for constant values of m.

Another statement of the law of the power function is: As x

increases in geometrical progression, y, or the power function, in-

creases in geometrical progression also.

Let m be nearly 1, say 1 + r, where r is the percent change in x

and is small, then we have:

S = f(x,+_0 _ oC^+nO!
y f(x) ax n

by the approximate formula for the binomial theorem (111).

Hence, replacing 1 on the right side of (5) by -^
I and

transposing:

y'~y f(* + rx)-f(x)- =
^c7~~\

= nr (o)
y /(*)

The fraction in the first member is the percent change in y or in f(x) .

The number r is the percent change in the variable x. Therefore

(6) states that for small changes of the variable the percent of

change in the function is n times the percent of change in the variable.

Let the exponential function be represented by

y = ae* = F(x) (7)

As already noted in the preceding sections, increasing x by a con-

stant term increases y or the function by a constant factor. Thus

y'_F(xh)_ ae^^_
y

~

F(x) ae**

which is independent of the value of x or is constant for constant h.

The expression ebh is the factor by which y or the function is in-

creased when x is increased by the term or increment h. See also

147 and Fig. 97.

In other words, as x increases in arithmetical progression, y
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or the exponential function increases in geometrical progression.

The percent of change is:

F(x + h}-F(x)_
F(x}

which is constant for constant increments h added to the variable x.

If x change by a constant percent from x to x(l + r), it will be

found that the percent change in the function is not constant, but

is variable.

The above properties enable one to determine whether measure-

ments taken in the laboratory can be expressed by functions of

either of the types discussed; if the numerical data satisfy the

test that if the argument change by a constant factor the function

also changes by a constant factor, then the relation may be repre-

sented by a power function. If, however, it is found that a change
of the argument by a constant increment changes the function

by a constant factor, then the relation can be expressed by an

equation of the exponential type.

We have already shown how to determine the constants of the

exponential equation by graphing the data upon semi-logarithmic

paper. In case the equation representing the function is of the

form:

y = aeb* + c (10)

then the curve is not a straight line upon semi-logarithmic paper.

If tabulated observations satisfy the condition that the function

less (or plus) a certain constant increases by a constant factor as

the argument increases by a constant term, then the equation of

the type (10) represents the function and the other constants can

readily be determined.

The determination of the equations of curves of the parabolic

and hyperbolic type is best made by plotting the observed data

upon logarithmic coordinate paper as explained in the next

section.

156. Logarithmic Coordinate Paper. If coordinate paper be

prepared on which the uniform x and y scales are both replaced

by non-uniform scales divided proportionately to log x and log y

respectively, then it is possible to show that any curve of the para-
bolic or hyperbolic type when drawn upon such coordinate paper will
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be a straight line. This kind of squared paper is called logarithmic

paper, and is illustrated in Fig. 105.

To find the equation of a line PQ on such paper, we imagine, as

in the case of semi-logarithmic paper, that all rulings are erased

and replaced by continuations of the uniform scales ON and MN,
on which the length ON or MN is taken as unity. Denoting, as

) M 1 2 3 4 5 6 7 8 9 10 JV"
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measured on the scales LM and LO respectively, and 0.219 =

log 1.65. Hence:

log y = 0.505 log x + log 1.65

or,

log y
-

log 1.65 = 0.505 log x

This may be written in the form

whence

y - T 0.505

1.65

or,

y = 1.65 z- 505
(2)

In general, if B = log b, we may write the equation (1) in the

form

y = bx" (3)

If the straight line on logarithmic paper passes through the

point (1, 1) its Cartesian equation is

Y = mX (4)

or, referred to the logarithmic scales,

log y = m log x

or,

y = x. (5)

If the straight line on logarithmic paper passes through the point

(a, b) with slope m, its equation referred to the logarithmic scales is

y - m
b

-

[a\
(6)

On logarithmic paper, form M4, the numbers printed in the lower

and in the left margin refer to the non-uniform scale in the body
of the paper. By calling the left-hand lower corner the point

(1, 10), (10, 10), (10, 1), (10, 100), (1, 100) or (100, 100), . . .,

instead of (1, 1), these numbers may be changed to 10, 20, 30,

. . . or to 100, 200, 300, . . .
,

etc.

In the following exercises the graphs are to be carefully con-

structed upon logarithmic paper, and the values of the various

graduations and all other necessary information indicated on the

paper in terms of the proper concrete units.
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If the range of any variable is to extend beyond any of the single

decimal intervals, 1 10, 10100, 100 1000, . . ., the

"multiple paper," form M6, may be used, or several straight lines

may be drawn across form M4 corresponding to the value of the

function in each decimal interval, 1 10, 10 100, . . ., so

that as many straight lines will be required to represent the func-

tion on the first sheet as there are intervals of the decimal scale to

be represented. However, if the exponent m in y = bx m be a

rational number, say n/r, then the lines required for all decimal

intervals will reduce to r different straight lines.

One of the most important uses of logarithmic paper is the de-

termination of the equation of a curve satisfied by laboratory

data. If such data, when plotted on logarithmic paper, appear
as a straight line, an equation of the parabolic type satisfies the

observations and the equation is readily found. The exponent
m is determined by measuring the slope of the line with an ordi-

nary uniform scale. The equation of the line is best found by

noting the coordinates of any one point (a, 6) and substituting

these and the slope m in the equation

v _ ran
b [a]

Exercises

Draw the following on single or multiple logarithmic paper, forms

M4oT MQ:

1. y =
x, y =

2x, y = 3x, y = 4x, . . .

2. y =
x, y =

x*, y = x 3
, y =

x*, . . .

3. y =
I/a?, y = 1/x

2
, y = 1/x

3
,

. . .

4. y = x ^
, yx^, y = x%

,
. . .

5. A = irr*.

6. p = O.OOSy2
,
where p is the pressure in pounds per square foot

on a flat surface exposed to a wind velocity of v miles per hour.

7. v = c\/rs for c = 110 and r = 1.

8. / = V2gh for g = 32.2.

9. C = E/R where E = 110 volts.

10. s = (l/2)gt* where g = 32.2.

11. T
7 = vV'L/g, where g = 32.2.
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12. P/PQ = (p/po)
1 ' 408

,
where po = 0.075, the weight of 1 cubic

foot of air in pounds at 70 F. and at pressure p of 14.7 pounds per

square inch.

13. H =^, for D =
5000, 10,000, 15,000 20,000, where C =

225, D is displacement in tons and S is speed in knots.

14. H d*N
50 ,

for N = 100, 200, 300, 400, 500, 600, 700, 800,

900, 1000. d is the diameter of cold rolled shafting in inches; the

line should be graphed for values of d between d = 1 and d = 10.

...... ai 0.2 as a4 0.6 as 1.0
0.08 n 5 n 7 0.9

Formula: q = 3.37LH 3
/2
*

Dischar
jr = Length of Crest in.Feet

//=Head on Crest in Feet

y Discharge in Second Feet

46678 910

ge over Trapezoidal Wiei

FIG. 106. A Weir Formula Graphed on Multiple Logarithmic Paper.

16. F = 0.000341WRN2
,
where N is revolutions per minute, R is

radius in feet, W is weight in pounds, and F is centrifugal force in

pounds.

16. q = 3.37LA% for L =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0. See Fig. 106.

0.38F186
17. H =

~^Y^ ,
where V is the velocity of water in feet per

second under the head of H feet per 10,000 feet in clean cast-iron pipe
of diameter d feet. See Fig. 108.

18. The relation between electrical resistance and amount of total

solids in solution for Arkansas River Vajley water at 70 F. is given

by the following table:
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S = total solids in solution as parts per 1,000,000:

1,000, 800, 600, 400, 300, 200

R = resistance in ohms: 215, 260, 340, 480, 615, 860.

Plot the results on form M4 and find from the graph the equation

connecting S and R.

FIG. 107. Capacity in Cubic Feet per Second of Trapezoidal Smooth
Concrete Flumes for Various Gradients (S) and for Various Dimensions (d) _

19. Replot the curves of Fig. 107. On the new diagram draw the

lines corresponding to slopes of 7, 8, and 9 feet per 10,000 respectively.

20. Explain the periodic character of the rulings on Figs. 106

and 108.

157. Sums of Exponential Functions. Functions consisting of

the sum of two different exponential functions are of frequent
occurrence in the application of mathematics, especially in elec-
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trical science. Types of fundamental importance are eu -\-e~
u

and 6M e~u which are so important that the forms (e
u

-\-e~
u
) /2

and (e
u e~u

} /2 have been given special names and tables

of their values have been computed and printed. The first of

Friction Head in Feet per 1000 Ft. of Pipe For open conduits, multiply Hydraulic Radius by 4 to

get Equivalent Diameter. Diagram gives nearly same

^n results as Kutters Tormula with n =.011.
For old or foul pipes multiply required head by 1.45

200 to L63 or ^vide diagram velocity by 1.20 to 1.28 for

n V=t to 5 feet per second. 2

*T3% ? SS I
F"uch pipes H=0.50-^15

Diagram, of Flow in Clean Oast Iron or Wrought Iron Pipes

Based 011 the Formula, H, in Feet per 1000 Feet = 0.33
^"1^-

FIG. 108. A Complicated Example of the Use of Multiple Logarithmic
Paper, Form MQ. From Transactions Am. Soc. C. E. Vol. LI.

these is called the hyperbolic cosine of u and the second is called the

hyperbolic sine of u; they are written in the following notation:

cosh u
is

~) /2, sinh u =
(e

- e~u) /2
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If x = a cosh u and y = a sinh u, then squaring and subtracting

x* y
z = a 2

(cosh
2 u sinh2

w)

2 r*
2u + 2

4
"i

= a

Therefore the hyperbolic functions

x = a cosh w, 2/
=

a,sinh u

FIG. 109. The Curves of the Hyperbolic Sine and Cosine.

appear in the parametric equations of a rectangular hyperbola

7/
= a?

just as the circular functions

x = a cos 0, y = a sin

appear in the parametric equations of the circle

X 2 + 2/2
= a 2

'

The graphs of y = a cosh x and y = a sinh x were called for in

exercises 1, 2, 146. They are shown in Fig. 109. The first

of these curves is formed when a chain is suspended between two

points of support; it is called the catenary. These two curves
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are best drawn by averaging the ordinates of y = ex and y = e~x
,

and the ordinates of y = e* and y = e~x
.

Curves whose equations are of the form y = aemx + benx take

on quite a variety of forms for various values of the constants. A
good idea of certain important types can be had by a comparison of

the curves of Fig. 110 whose equations are:

-5

FIG. 110. Combinations of Two Exponential Curves. After Steinmetz.

y = e

y = e

e-x _ e -'2x

The student should arrange in tabular form the necessary
niimorical work for the construction of these curves.
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If the second exponent be increased in absolute value, the points
of intersection with the y-axis remain the same, but the region of

close approach of the curves to each other is moved along the curve

y = e~x to a point much nearer the y-axis. To show this the fol-

lowing curves have been drawn and shown in Fig. 111.

1.75

1.25

FIG. 111. Combinations of Two Exponential Curves. After Steinmetz.

y = e~x + 0.5e~ 10*

y = e~*

y = e-x - O.le- 10*

= e~* - 0.5e- 10*

e
-x _

158. * Damped Vibrations. If a body vibrates in a medium like

a gas or liquid, the amplitude of the swings are found to get smaller

and smaller, or the motion slowly (or rapidly in some cases) dies

out. In the case of a pendulum vibrating in oil, the rate of
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decay of the amplitude of the swings is rapid, but the ordinary
rate of the decay of such vibrations in air is quite slow. The ratio

between the lengths of the successive amplitudes of vibration is

called the damping factor or the modulus of decay.

The same fact is noted in case the vibrations are the torsional

vibrations of a body suspended by a fine wire or thread. Thus a

viscometer, an instrument used for determining the viscosity of

lubricating oils, provides means for determining the rate of the

decay of the torsional vibration of a disk, or of a circular cylinder

V

0,5

0.5
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the calculus, for the present it will suffice to graph a few examples
of this type. Let the expression be

y = e-'/ b sin t (1)

A table of values of t and y must first be derived. There are three

ways of proceeding : ( 1) Assign successive values to t irrespective

of the period of the sine (see Table V and Fig. 112). (2) Select

for the values of t those values that give aliquot parts of the period
27r of the sine (see Table VI and Fig. 113). (3) Draw the sinu-

soid y = sin t carefully to scale by the method of 55; then draw

upon the same coordinate axes, using the same units of measure

-.5

-i

-1.6

27T 47T

4 26 28

FIG. 113. The Curve y =

adopted for the sinusoid, the exponential curve y = e~ l

1'; finally

multiply together, on the slide rule, corresponding ordinates taken

from the two curves, and locate the points thus determined.

The first method involves very much more work than the second

for two principal reasons: First, tables of the logarithms of the

trigonometric functions with the radian and the decimal divisions

of the radian as argument are not available; for this reason 57.3

must be multiplied by the value of t in each case so that an ordinary

trigonometric table may be used; second, each of the values written
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in column (3) of the table must be separately determined, while

if the periodic character of the sine be taken advantage of, the

numerical values would be the same in each quadrant.

The second method, because of the use of aliquot divisions of

the period of the sine, such as TT /Q or7r/12 oi'Tr/18 or Tr/20, etc.,

possesses the advantage that the values used in column (3) need

be found for one quadrant only and the values required in column

(2) are quite as readily found on the slide rule as in the first

method.
TABLE V

Table of the function y = sin t

1
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TABLE VI

Table of the function &

1



158] LOGARITHMIC AND EXPONENTIAL FUNCTIONS 281

coordinates on plain drawing paper and not on ordinary squared

paper. Rectangular coordinate paper is not adapted to the proper
construction and discussion of the sinusoid, or of curves, like the

present one, that are derived therefrom.

Curves whose equations are of the form y = |e~'/
5 sin t or

y = 3e~</5 sin
t, etc., are readily constructed, since the constants

1/2, 3, etc., merely multiply the ordinates of (1) by 1/2, 3,

etc., as the case may be. Likewise the curve y = e~bx sin ex is

readily drawn since sin ex can be made from sin x by multi-

plying all abscissas of sin x by 1 /c.



CHAPTER IX

TRIGONOMETRIC EQUATIONS AND THE SOLUTION OF
TRIANGLES

A. FURTHER TRIGONOMETRIC IDENTITIES

159. Proof that p = a cos B + b sin 6 is a Circle. /. Geomet-

rical Explanation. We know (64) that pi = a cos 6 is the polar

equation of a circle of diameter a, the diameter coinciding in

direction with the polar axis OX; for example, the circle OA,
Fig. 114. Likewise, p 2

=
b sin 6 is a circle whose dia-

meter is of length b and

makes an angle of }- 90

with the polar axis OX, as

the circle OB, Fig. 114.

Also, p = c cos (6 0i) is

a circle whose diameter c

has the direction angle B\.

See equation (4), 68. We
shall show that if the radii

vectores corresponding to

any value of 6 in the equa-
tions pi = a cos B and p 2

=

b sin B be added together to
FIG. 114.-Combination of the Cir-

cles p = a cos 6 and p = b sin into a

Single Circle P = a cos 6 + 6 sin 0.

a circle (the circle OC, Fig. 114)

other words we shall show that:

p = a cos B + 6 sin (1)

is the equation of a circle.

282

vector

P, then, for all values of 6,

the extremity of p lies on

of diameter /a-~^- IR
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In Fig. 114, pi = a cos 6 will be called the a-circle OA; p 2
=

6 sin 6 will be called the b-circle OB. For any value of the angle

draw radii vectores OM, ON, meeting the a- and fc-circles

respectively at the points M and N. If P be the point of inter-

section of MN produced with the circle whose diameter is the

diagonal OC of the rectangle described on OA and OB, we shall

show that OM + ON = OP, no matter in what direction OP be

drawn.

Let the circle last mentioned be drawn, and project BC on OP.

Since ONE and OPC are right angles, NP is the projection of

BC (= a) upon OP. But OM also is the projection of a (= OA)

upon OP. Hence NP = OM because the projection^ of equal

parallel lines on the same line are equal. Therefore, for all values

of 0, NP = P! and OP = ON + NP = p 2 + PI, which is the fact

that was to be proved.

Designating the angle AOC by 0i, the equation of the circle OC is

by 68

P = VoM^cos (0
-

0i) (2)

The value of 0i is known, for its tangent is -. It should be observed

that there is no restriction on the value of 0. As the point P
moves on the circle OC, the circumference is twice described as

varies from to 360, but the diagram for other positions of the

point P is in no case essentially different from Fig. 114.

The above reasoning and the diagram involve the restriction

that both a and b are positive numbers. While it is possible to

supplement the reasoning to cover the cases in which this restric-

tion is removed, it will be unnecessary as the analytical proof at

the end of this section is applicable for all values of a and b.

EXAMPLE: From the above we know that the equation

P = (} cos + 8 sin is a circle. The diameter of the circle is

Vx 2 + b 2 = v 6 2 + 8 2 =
10? so that the equation of the circle

may also be written in the form p = 10 cos (0 0i), in which d\

is the angle whose tangent is =
fi

= 1.33. From a table of tan-

gents 0i = 53 8', so that the equation of the circle may be

written p = 10 cos (0
- 53 8').

//. Analytical Proof. We shall prove analytically that p =
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a cos 6 + b sin 6 is a circle, without imposing conditions upon the

algebraic signs of a and b. Multiply both members of

p = a cos 6 + 6 sin 6 (4)

by p, and obtain

p
2 = ap cos 6 + bp sin 6 (5)

By 70, the expression p cos is the value in polar co-

ordinates of the Cartesian abscissa x; also p sin 6 is the value in

polar coordinates of the ordinate y. Likewise p
2 = x 2 + y

z
.

After the substitution of these values, (5) becomes

x* + y
z = ax + % (6)

Transposing and completing the squares:

This is the Cartesian equation of a circle with center at the point

~> s| and of radius %\/a 2 + 6 2
. The circle passes through

the origin, since the coordinates (0, 0) satisfy the equation, and

also passes through the point (a, b) since these coordinates

satisfy (6).

Since (4) is now known to represent a circle passing through the

origin, its polar equation can be written in any of the forms (3)-

(6) of 68. Calling 0i the direction angle of the diameter

of (7), (no matter what direction OC actually occupies) we can

write the eqation of the circle in the form

p = \/a2 +& 2 cos (0
-

0i) (8)

in which the direction angle 0i is the angle AOC, Fig. 114, or the

angle whose tangent is 6 -*- a. If a and b are not both positive,

the angle 0i is still easily determined. For example, if a = 1,

and 6 = 1, then 0i = angle of third quadrant whose tangent
is 1, or = 225, so that equation (8) becomes:

p = \/2 cos (0
- 225)

This may also be written

p = \/2 cos (0 + 135)

since the resulting circle may be thought of as p = \/2 cos 9

rotated negatively through 135.
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The equation of the circle OC in any position, that is, for any
values of a and b, positive or negative, may also be written in

the form

P = vV + b 2 sin (0 + 2) (9)

in which 02 is the angle BOC in Fig. 114. See 68, equations

(5) and (6).

It has been emphasized above that 0, 0i, 2 ,
are any angles

that is, angles not restricted in size or sign. The distinction be-

tween them need not be lost sight of, however. is any angle be-

cause it is the variable vectorial angle of any point of the locus, and

ranges positively and negatively from to any value we please.

01 is anj angle (positive or negative) because it is the direction

angle of the diameter OC. It is a constant, but a general, or

unrestricted, angle, but would usually be taken less than 360

in absolute value. By construction, 02 is also any constant

angle.

The result of this section should also be interpreted when the

variables are x and y in rectangular coordinates, and not p and

of polar coordinates. Thus, y = a cos x is a, sinusoid with

highest point or crest at x =
0, 2?r, 4-7T, . . . Likewise, y =

b sin is a sinusoid with crest at x = ~' -^-' ^
'

. . . The
ft ft A

above demonstration shows that the curve

y = a cos x -f b sin x

is identical with the sinusoid

y = Va 2 + 6 2 cos (x
- hj = \/a* + 6 2 sin (x + A 2)

of amplitude \/V + b* and with the crest located at x = h
l} or at

2
h 2 ,

where hi is, in radians, the angle whose tangent is -, and

h z is, in radians, the angle whose tangent is r*

Exercises

1. Put the equation p = 2 cos 6 + 2\/3 sin in the form

(x
-

h)* + (y fc)
2 = A 2 + fc

2
;
also in the form p = a cos (9

- 00
and find the value of 0i. See equation (7) above.

2. Find the value of 0i if p = cos \/3 sin 6.
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3. Put the equation p = 4 cos 6 + ^\/3 sin 6 in the forms

(x
-

h}
2 + (y

-
/c)

2 = h"- + k 2 and p = a cos (0
-

0,).

4. Put the equation p = - 4 cos 6 - 4 sin 6 in the form
(x -

h)
2 + (y

-
k}

2 = h* + /c
2 and find the value of 2 when the

given equation is written in the form p = a sin (6 + 2 ).

5. Put the equation p = 2\/3 cos + 2 sin in the form
(x

- h 2
) + (y

-
k)

2 = h 2 + /c
2

;
also in the form p = a cos (0

- 00.

6. Put the equation p = 3 cos 6 + 4 sin 6 in the form p =
a sin (0 + 02). Put the same equation in the form p = a cos

(0
-

0i). (0! is the angle AOC, Fig. 114.

7. Put the equation p = 5 cos + 12 sin in the form p =
a sin (0 + 2 ); also in the form p = a cos (0

-
00.

8. Put p = 3 cos + 4 sin in the form (x
-

h)
2
-f (y

-
/c)

2 =
A 2 + fc

2
.

9. Put p = 5 cos + 12 sin in the form (x
-

h)
2 + (y

-
k}

2 =
h 2 + /c

2
.

10. Put the equation (x
-

I)
2

-f- (y I)
2 = 2 in the form p =

a sin (0 + ) and determine a and a.

11. Put the equation (x + I)
2 + (y

- A/3)
2 = 4 in the form

P = a sin (0 a) and determine a and a.

12. Put the equation (x + I)
2 + (y + V3) 2 = 4 in the form P =

a sin (0 a) and determine a and a.

13. Put the equation (x + I)
2 + (y + I)

2 = 2 in the form p =
a cos (0 + a) and determine a and a.

14. Put the equation (x + I)
2 + (y + V3) 2 = 4 in the form P =

a cos (0 -\- a) and determine a and a.

16. Find the maximum value of cos V3 sin 0, and determine

the value of for which the expression is a maximum.
SUGGESTION: Call the expression p. The maximum value of p is the

diameter of the circle p = cos V3 sin 0. The direction cosine of

the diameter is the value of a when the equation is put in the form

p = a cos (0 a).

16. Find the value of that renders p = i\3 cos \ sin a

maximum and determine the maximum value of p.

17. Find the maximum value of 3 cos t + 4 sin /.

160. Addition Formulas for the Sine and Cosine. From the

preceding section, equations ( 1 ) , (8) and (9) ,
we know that the equ a-
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tion of the circle OC, Fig. 115, may be written in any one of the

forms :

p = a cos 6 -+- b sin 6 (1)

p = c sin (0
-

2) (2)

p = c cos (e
- 00 (3)

Hence, for all values of 0, 0i, and 2 ,

sin (0
-

2)
= cos + sin

cos. (0
- 00 = - cos +

c
sin

(4)

(5)

In each of these equations c = \/a 2 + The letters a and 6

stand for the coordinates of C irrespective of their signs or of

the position of C.

FIG. 115. The Circle P = c cos (6 61) or p = sin (e 2> ) used in

the Proof of the Addition Formulas. Note that 61 = 90 + 2 which is

also true for negative angles, namely 61 = 90 + 5 2

Since (4) and (5) are true for all values of 0, they are true when
= and when = 90.

First, let = in (4) and (5).

then from (4) : a/c = sin ( 0,) = - sin 2 by 58 (6)

From (5): a/c = cos ( 0,) = cos 0i by 58 (7)
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Second, let = 90 in (4) and (5).

then from (4): b /c = sin (90
-

2)
= cos 2 (8)

From (5) : b/c = cos (90
-

X )
= sin 0i (9)

Substituting (6) and (8) in (4); also (7) and (9) in (5), we have

sin (0 2)
= sin cos 2 cos sin 2 (10)

cos (0
-

0i)
= cos cos 0! + sin sin 0! (11)

Since these are true for all values of 0i and 2 , put 0i =
( ci)

and 2
= (6 2). Then by 58, (10) and (11) become

sin (0 + e 2)
= sin cos e 2 + cos sin e 2 (12)

cos (0 + ei)
= cos cos 1 sin sin ei (13)

To aid in committing these four important formulas to memory,
it is best to designate in each case the angles by a and /3, and

write (12) and (13) in the form

sin (a + /3)
= sin a cos (3 -f cos a sin $ (14)

cos (a + |8)
= cos a cos $ sin a sin |8 (15)

and also write (10) and (11) in the form

sin (a 0) = sin a cos j3 cos a sin |S (16)

cos (a ]8)
= cos a cos )8 + sin a sin |8 (17)

The four formulas (14), (15), (16) and (17) must be committed to

memory. They are called the addition formulas for the sine and

cosine. The above demonstration shows that the addition

formulas are true for all values of a. and |3.

By the above formulas it is possible to compute the sine and cosine

of 75 and 15 from the following data:

sin 30 = 1/2 sin 45 =

cos 30 = |V3 cos 45 =
Thus:

sin 75 = sin (30 + 45) = sin 30 cos 45 + cos 30 sin 45

= HV2 + |V3iV2
= jV2 (V3 + 1)

Likewise:

sin 15 = sin (45 - 30) = iVi (Vs -
1)
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161. Addition Formula for the Tangent. Dividing the

members of (14) 160 by the members of (15) we obtain:

( _i_ R\
s*n ( + ft) _ sin a cos ft + cos a. sin ft

"*" P' ~
COS (a + ft)

~
COS a COS Sin a sin

^ '

Dividing numerator and denominator of the last fraction by
cos a cos )8

sin a cos ft ,
cos a sin ft

COS a COS ft COS a COS ft ,-.tan (a + ft =
cos a cos ^ _ ^T^sm"^
COS a COS ft COS a COS ft

Likewise it can be shown :rom (16) and (17), 160, that:

, tan a tan ft** (a - -
l + tan a tang W

Equations (3) and (4) are the addition formulas for the tangent.

Exercises

1. Compute cos 75 and cos 15.

2. Compute tan 75 and tan 15.

3. Write in simple form the equation of the circle

p = sin 6 + cos 0.

4. Put the equation of the circle p = 3 sin 6 + 4 cos in the form

p = csin (6 + 0i) and find from the tables, or by the slide rule, the

value of 0i.

5. Derive a formula for cot (a + ft).

6. Prove cos (s + cos (s t)
= cos 2 s sin 2

1.

7. Express in the form c cos (a 6) the binomial 3 cos a +
4 sin a.

8. Express in the form c sin (a + 6) the binomial 5 cos a -f- 12 sin a.

9. Find the coordinates of the maximum point or crest of the sinu-

soid y = sin x + "V3 cos x. [First reduce the equation to the form

y = c sin (x + )].

10. Prove the addition foimulas in the following manner: (1)

In cos (0
- 00 = - cos + - sin 0, show that a/c = cos 0i, 6/c =

C

19
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sin 0i, for all values of 0i. (2) Find cos (6 + 2 ) by replacing 61

by (02). (3) Find sin (<f> + 0i) by the substitution in (1) of
=

(u-/2
-

0). (4) Find sin (0 3 ) by replacing 0i by (- 3 ).

162. Functions of Composite Angles. The sine, cosine, or

tangent of the angles (90
-

6), (90 + 6), (180 -
0), (180 -I- 6),

(270 0), (270 -f 0} can be expressed in terms of functions

of alone by means of the addition formulas of 160 and 161.

If be an angle of the first quadrant, it is easy, however, to obtain

all the relations by drawing the triangles of reference for the

various angles and then comparing homologous sides of the similar

A B
FIG. 116. An Angle Combined with an Even Number of Right Angles,

04) and with an Odd Number of Right Angles, (B}.

right triangles of reference. Let the terminal side of the angle B

be OP (Fig. 116 J5), and let P be the point (h, k}. Let the

terminal sides of the angles (90
-

0), (90 -f 0), (270 -
0), etc.,

be cut by the circle of radius a at the points PI, P 2 , PS, ...
Then the coordinates of Pi are (k, h) ;

of P 2 are ( k, h) ;
of P 3 are

(- k, -h ), etc. Hence sin = k/a, cos =
hfa, sin (90 + 0)

=
h /a, cos (90 + 0)

= - k /a, sin (270
-

0)
= - h /a, cos (270

-
0)

= k/a, etc., which lead to the equalities:

sin (90 + 0)
= cos (1)

cos (90 + 0}
= - sin (2)

sin (270
-

0)
= - cos (3)

cos (270 -
0)

= - sin (4)

etc.
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By division of (1) by (2) and (3) by (4),

tan (90 -f 6)
= - cot (5)

tan (270
-

0)
= cot (6)

Also from Fig. 116 A, cos (180 -
0}

= -
h/a, sin (180 + 0)

= -
k/a, cos (180 -f 6)

= -
h/a, sin (- 0)

= -
k/a, cos (- 0)

= h fa, whence there results:

sin (180 -
6)

= sin (7)

cos (180
-

0)
= - cos (8)

and by division

also

tan (180 -
6)

= - tan B (9)

sin (180 + 0)
= - sin 6 (10)

cos (180 + 6)
= - cos (11)

and by division

tan (180 + 0)
= tan (12)

In the above work the angle is drawn as an angle of the first

quadrant. The proof that the results hold for all values of is

best given by means of the addition formulas of 160 and 161.

The method will be outlined in the next section.

The results are brought together in the following table. No
effort should be made to commit these results to memory in this

form. The statements in the form of theorems given below offer a

ready means of remembering all of the results.

TABLE VII

Functions of 6 Coupled with an Even or with an Odd Number of

Right Angles

- B
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classes the composite angles that are made by coupling 6 with

an odd number of right angles, as (90 + 0), (8
-

90), (270
-

6),

(450 + 6), etc., and those composite angles that are made by
coupling 6 with an even number of right angles, as (180 -f- 9),

(180
-

6), (360 -
6}, (

-
0), etc. Note that is an even num-

ber, so that ( 0) or (0 6) falls into this class of composite

angles. We can then make the following statements:

Theorems on Functions of Composite Angles

Think of the original angle 6 as an angle of the first quadrant :

I. Any function of a composite angle made by coupling 6 (by

addition or subtraction) with an even number of right angles, is

equal to the same function of the original angle 6, with an algebraic

sign the same as the sign of the function of the composite angle in

its quadrant.

II. Any function of a composite angle made by coupling 6 (by

addition or subtraction) with an odd number of right angles, is equal

to the co-function of the original angle 6, with an algebraic sign

the same as the sign of the function of the composite angle in its

quadrant.

For example, let the original angle be 6, and the composite angle

be (180 + 0). Then any function of (180 + 0), say
tan (180 -f 0), is equal to + tan 0, the sign + being the sign of the

tangent in the quadrant of the composite angle (180 -f- 0) or

third quadrant. Likewise cot (270 -f 0) must equal the negative

co-function of the original angle, or tan 0, the algebraic sign

being'the sign of the cotangent in the quadrant of the composite

angle (270 + 0), or fourth quadrant. In the above work it has

been assumed that the angle is an angle of the first quadrant.
The results stated in italics are true, however, no matter in

what quadrant may actually lie.

163. Functions of Composite Angles. GENERAL PROOF: All

of the results given by Table VII or by theorems I and II above

can be deduced at once from the addition formulas, with the

especial advantage that the proof holds for all values of the angle

0. Thus, write

sin (a + j3)
= sin a cos /? + cos a. sin /3 (1)

cos (a H- jS)
= cos crcos sin a sin $ (2)
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Put a = 180, and (3
=

0; then (1) and (2) become, re-

spectively :

sin (180 + 6}
= + sin 6

. (3)

cos (180 6)
= - cos 6 (4)

Also in (1) and (2) put a = 90, and =
0, then (1) and (2)

become, respectively:

sin (90 0)
= cos (5)

cos (90 + 0)
= + sin (6)

In a similar manner all of the results given in the table may be

proved to be true.

164. Angle that a Given Line Makes with Another Line. The

slope m of the straight line y = mx + b is the tangent of the

FIG. 117. The Angle <t> that a Line Li makes with Lt.

direction angle, that is,the tangent of the angle that the line makes
with OX. If LI and L 2 are any two lines in the plane, the angle
that LI makes with L 2 is the positive angle through which L 2

must be rotated about their point of intersection in order that L 2

may coincide with LI. Represent the direction angles of two

straight lines

y = mix + bi (1)

y = ra 2 z + 6 2 (2)

by the symbols 0i and 2 . Then, through the intersection of the

lines pass a line parallel to the OX-axis, as shown in Fig. 117.

Call
</> the angle that the line LI makes with L 2 ;

that is, the positive

angle through which L 2 ,
considered as the initial line, must be

turned to coincide with the terminal position given by LI. If
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0i > 02, then = 0i
-

2 ,
but if 2 > 0,, then = 180 -(0 2

-
0i). In either case (by equations (9), 162, and (3), 58):

tan < = tan (0i
-

2) (3)

That is:

tan 0i
- tan 2

or,

mi m 2

The condition that the given lines (1) and (2) are parallel is

obviously that

mi = m 2 (6)

Thus the lines y = 5x + 7 and y = 5x 11 are parallel.

The condition that the given lines (1) and (2) are perpendicular
to each other is that tan shall become infinite; that is, that the

denominator of (5) shall vanish. Hence the condition of perpen-

dicularity is

1 + miW2
=

or,

m,= -A (7)

Therefore, in order that two lines may be perpendicular to each

other
,
the slope of one line must be the negative reciprocal of the slope

of the other line.

Thus the lines y = (2/3)z
- 4 and y = -

(3/2)z + 2 are

perpendicular.

Exercises

1. Find the tangent of the angle that the first line makes with

the second line of each set:

(a) y = 2x + 3, y = x + 2.

(6) y = 3x- 3, y = 2x + 1.

(c) y = 4z + 5, 2/
= 3z - 4.

(d) y = lOz + 1. y = llx -
1,

2. Find the angle that the first line of each pair makes with the

second:
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(a) y = x + 5, y = x + 5.

(6) y = (l/2)x + 6, y = - 2z.

(c) y = 2z + 4, y = z + 1.

(d) 2z + 3y =
1, (2/3)x + y = 1.

(e) 2z + 4y = 3, 3x + 6y = 7.

(/) 2z + 4y =
3, 6x - 3y = 7.

3. Find the angle, in each of the following cases, that the first line

makes with the second:

(a) y = x/\/3 + 4, y = V3 x + 2.

(6) y =z/V'3 + 1, y = V3z - 4.

(c) y = V3 x -
6, y = V3 3 - 3.

4. Find the angle that 2y - Qx + 7 =0 makes with y + 2x +
7 = and also the angle that the second line makes with the first.

165. The Functions of the Double Angle. The addition

formulas for the sine, cosine and tangent reduce to formulas of

great importance for the special case j8
= a.

Thus: sin (+) = sin a cos a + cos a sin a

or: sin 2a = 2 sin a cos a (1)

Also: cos (a + a) = cos a cos a sin a sin a

which can be written in the three forms :

cos 2 a = cos 2 a sin2 a (2)

cos 2 a = 2 cos 2 a - 1 (3)

cos 2 a = 1 2 sin2 a (4)

Forms (3) and (4) are obtained from (2) by substituting,

respectively, sin2 a = 1 cos 2 a and cos 2 a = 1 sin2 a.

Equations (3) and (4) are frequently useful in the forms :

Sin2 a , -_
Again:

tan a -f tan a
tan (a + a) =

,
1 tan a tan a

or:
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166. The Functions of the Half Angle. From (6) and (5) of

165 we obtain, after replacing a by u/2 and extracting the

square root, __
sin (u/2) = V(1 - cosu)/2~ (1)

cos (u/2) = V(l + cos u) /2 (2)

Dividing (1) by (2), we obtain:

- cos u l cos u sin u
= -- ' + (3)

Formulas (1), (2) and (3) have many important applications in

mathematics. As a simple example, note that the functions of 15

may be computed when the functions of 30 are known. Thus:

cos 30 =
(1 /2) \/3

therefore: sin 15 = V(l - cos 30) /2
= Vl/2 -

(1/4) \/3

Also: cos 15 = Vl/2 -f- (1/4) V3~
Likewise by (5) :

tan 15 =!^^= 2 -V3
L/4

Exercises

1. Compute sin 60 from the sine and cosine of 30.

2. Compute sine, cosine, and tangent of 22 .

3. If sin x = 2/5, find the numerical value of sin 2x, and cos 2x

tan 2x, if x be the first quadrant.

4. Show by expanding sin (x + 2z) that sin 3x = 3 sin x

4 sin 3 x.

3 tan x tan 3 x
5. Prove tan 3z =

,
-

5-, ^
-13 tan2 x

6. Show that sin 20/sin cos 20/cos = 2 sec 0.

7. Show that:

(0
0\ 2

siii2
+

COS2J
= 1 +sin 0.

8. Show that: cos 20(1 + tan 20 tan 0)
= 1.

9. If sin A = 3/5, calculate sin (A/2).

10. Prove that tan Or/4 + 0)
=
j

11. Prove that tan (*-/4
-

0)
=

(1
- tan 0)/(l + tan 0).
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12. Show that sec 6 + tan =
cos 6

J
1 + 2 sin a cos a cos a + sin a

13. Show that- = -

14. Show that sec + tan = tan
T^ + |

tan A + tan
15. Show that ~r^ = tan A tan 5.

cot A + cot B
16. Prove that cos (s + t) cos (s t) -\- sin (s + f) sin (s )

=
cos 2J.

167. Sums and Differences of Sines and of Cosines Expressed
as Products. The following formulas, which permit the substi-

stution of a product for a sum of two sines or of two cosines, are

important in many transformations in mathematics, especially in

the calculus. They are immediately derivable from the addition

formulas; thus, by the addition formulas (14) and (16), 160, we
obtain:

sin (a + b] + sin (a b)
= 2 sin a cos b

Likewise by subtraction of the same formulas :

sin (a + 6) sin (a b) =2 cos a sin b

By the addition and subtraction, respectively, of the addition

formulas for the cosine there results :

cos (a + b) + cos (a b) =2 cos a cos 6.

cos (a + b) cos (a b)
= 2 sin a sin b.

Represent (a + 6) by a and (a b) by /?.

Then a =
(a. + 0) /2 and b = (a

-
13) /2

Hence the above formulas become:

sin a + sin = 2 sin^^ cos *-

(1)

sin a - sin = 2 cos sin
a ~ ^

(2)

cos a + cos /3
= 2 cos-~ cos (3)

cos a - cos jS
= - 2 sin

**

^
sin

** ~ *
(4)

The principal use of these formulas is in certain transformations

in the calculus. A minor use is in adapting certain formulas to

logarithmic work by replacing sums and differences by products.
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168. Graph of y = sin 2x, y = sin nx, etc. Since the substi-

tution of nx for x in any equation multiplies the abscissas of the

curve by 1 /n, or (n > 1) shortens or contracts the abscissas of all

points of the curve in the uniform ratio n : 1, the curve y = sin 2x

must have twice as many crests, nodes or troughs in a given

interval of x as the sinusoid y = sin x. The curve y = sin 2x is

therefore readily drawn from Fig. 59 as follows : Divide the axis

OX into twice as many equal intervals as shown in Fig. 59 and

draw vertical lines through the points of division. Then in the

new diagram there are twice as many small rectangles as in the

original. Starting at and sketching the diagonals (curved to

fit the alignment of the points) of successive cornering rectangles,

the curve y = sin 2x is constructed. It is, of course, the ortho-

graphic projection of y = sin x upon a plane passing through
the 2/-axis and making an angle of 60 (the angle whose

cosine is 1/2) with the xy plane. The curve y = cos 2x is simi-

larly constructed. In each of these cases we see that the

period of the function is TT and not 2ir.

169. Graph of p = sin 20, p = cos 20, etc. The curve p = cos

is the circle of diameter unity coinciding in direction with the axis

OX. We have already emphasized that as varies from to

360 the circle is twice drawn, so that the curve consists of two

superimposed circular loops. Now p = cos 20 will be found to

consist of four loops, somewhat analogous to the leaves of a four-

leafed clover, but each loop is described but once as varies from

to 360. The curve p = cos 30 is a three-looped curve, but each

loop is twice drawn as varies from to 360. Also p = cos 110

has eleven loops, each twice drawn, while p = cos120 has

twenty-four loops, each one described but once, as varies from

to 360.

The curves p = cos 20, p = sin 30, p = sin /2 should be drawn

by the student upon polar coordinate paper.

By changing the scale of the vectorial angle, the circle of diame-

ter unity may be used as the graph of the equation p = sin nO.

However if two such equations are to be represented at the same

time, this expedient is not available, for the vectorial angles of the

points of each curve, for the purpose of comparison, must be

drawn to a true scale.
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170. Graph of y = sin 2
x, y = cos 2 x. The graphs y = sin2 x

and y = cos 2 x have important applications in science. The fol-

lowing graphical method offers an easy way of constructing the

curves and it illustrates a number of important properties of the

functions involved. We shall first construct the curve y = cos2 x.

At the left of a sheet of 8^ X 1 1-inch paper, draw a circle of radius
QA

-

(= 2.30) inches, (OA, Fig. 118). Lay off the angles from
ox

OA, Fig. 118, as initial line, corresponding to equal intervals (say

10 each) of the quadrant APE as shown in the figure. Let the

point P mark any one of these equal intervals. Then dropping
the perpendicular AB from A upon OP, the distance OB is the

Y
A
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thus dividing the plane into a large number of small rectangles.

Starting at A and sketching the diagonals of successive cornering

rectangles, the locus ARS of y = cos 2 x is constructed.

From Fig. 118, it is seen that B always lies at the vertex of a

right-angled triangle of hypotenuse OA. Thus as P describes the

circle of radius OA, B describes a circle of radius OA /2. Therefore

the curve ARSX is related to the small circle ABO in the same
manner that the curve of Fig. 59 is related to its circle; conse-

quently the curve ARSX of Fig. 118 is a sinusoid tangent to the

z-axis. Thus the graph y = cos 2 x is a cosine curve of amplitude
1 /2 and wave length or period IT, lying above the z-axis and tangent
to it.

In Fig. 118, OC = OH + OC = OH + HB cos IB =

1/2 + (1/2) cos 20. Therefore the curve ARS has also the

equation:

y = 1/2+ (1/2) cos 2x (1)

Hence we have a geometrical proof that

cos 2 z =1/2+ (1/2) cos2z (2)

which is formula (5) of 165. Note that (1) is the curve y =
cos 2x with its ordinates multiplied by 1/2 then translated 1/2
unit upward.
The curve y = sin2 x is readily drawn in a manner similar to that

above, by laying off the angle 6 from OX as initial line. The curve

is the same as that of Fig. 118, moved the distance j to the right.

B. PLANE TRIANGLES : CONDITIONAL EQUATIONS

171. Law of Sines. The first of the conditional equations per-

taining to the oblique triangle is a proportion connecting the sines

of the three angles of the triangle with the lengths of the respect-

ive sides lying opposite. Call the angles of the triangle A, B, C,

and indicate the opposite sides by the small letters a, b, c, respect-

ively. From the vertex of any angle, drop a perpendicular p

upon the opposite side, meeting the latter (produced if necessary)

at D. Then, from the properties of right triangles, we have, from

either Fig. 119 (1) or 119(2)

p = c sin DAB = a sin C (1)
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But,
sin DAB = sin A Fig. 119 (1)

' = sin (180
- A) Fig. 119 (2)

= sin A

Therefore: p = c sin A = a sin C (2)

Or: a /sin A = c /sin C (3)

In like manner, by dropping a perpendicular from A upon a, we

can prove:
b /sin B = c/sin C (4)

Therefore: a /sin A = b/sin B = c/sin C = 2R (5)

Stated in words, the formula says: In any oblique triangle the

sides are proportional to the sines of the opposite angles.

(i)

FIG. 119. Derivation of the Law of Sines and the Law of Cosines.

GEOMETRICALLY: Calling each of the ratios in (5) 2R, it is seen

from Fig. 119 (2) that R is the radius of the circumscribed circle,

and that c/sin C = 2R can be deduced from the triangle BAE,
Similar construction can be made for the angles B and A.

172. Law of Cosines. From plane geometry we have the theo-

rem: The square of any side opposite an acute angle of an oblique

triangle is equal to the sum of the squares of the other two sides di-

minished by twice the product of one of those sides by the projection

of the other side on it. Thus in Fig. 119 (1) :

a2 = 52 + C2 _ 2bd (1)

Now: d = c cos A
Therefore: a 2 = 6 2 + c 2 - 2bc cos A (2)
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Likewise we learn from geometry that the square of any side oppo-
site an obtuse angle of an oblique triangle is equal to the sum of

the squares of the other two sides increased by twice the product of one

of those sides by the projection of the other on it. Thus in Fig. 119

(2):

a * = b z + c* + 2bd (3)

Now: d = c cos DAB = c cos (180 A} = c cos A
Therefore (3) becomes:

a2 = b 2 + c 2 - 2bc cos A (4)

This is the same as (2), so that the trigonometric form of the geo-

metrical theorem is the same whether the side first named is oppo-
site an acute or opposite an obtuse angle.

In the same way we may show that, in any triangle:

b 2 = c 2 + a 2 - 2ca cos B (5)

c 2 = a 2
-f b 2 - 2ab cos C (6)

Independently of the theorem from plane geometry, we note from

Fig. 119(1):'
a 2 =

(6
_

d)2 + ^2 = (&
_ dy + C 2 _ d 2

= b z + c 2 - 2bd

= 6 2 + c 2 - 26c cos A
From 119 (2) : a 2 =

(6 + d)* + p* =
(b + rf)

2 + c 2 - d 2

= 6 2 + c 2 + 2bd

= b* + c 2 + 2bc cos DAB
= b z + c 2 - 2bc cos A

since DAB = 180 - A and cos (180
- A) = - cos A

SECOND PROOF: Since any side of an oblique triangle is

the sum of the projections of the other two sides upon it, the

angles of projection being the angles of the triangle, we have:

a = b cos C -f c cos B
b = c cos A + a cos C (7)

c = a cos B + b cos A

Multiply the first of these equations by a, the second by b,

the third by c
> and subtract the second and third from the first.

The result is :
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a 2 6 2 c 2 = ab cos C -f ca cos B
be cos A ab cos C
ca cos B be cos A

= 2bc cos A
or: a 2 = b 2

-f c 2 - 26c cos A
173. Law of Tangents. An important relation results if we

take formula (5) 171 by composition and division. First

write the law of sines in the form:

a _ sin_A
6
~

sin B

Then, by composition and division, the sum of the first anteced-

ent and consequent is to their difference as the sum of the second

antecedent and consequent is to their difference; that is:

a + b _ sin A + sin B
a b

~~

sin A sin B

Expressing the sums and difference on the right side of (2) by

products by means of the formulas (1) and (2) of 167, we
obtain:

a + b _ 2 sin \(A + B) cos j(A - B)
a - b

~~

2 cos J(A + B) sin i(A - B)

or simplifying and replacing the ratio of sine to cosine by the

tangent, we obtain:

a + b tanKA + B)

(5)

a - b
~

tan *(A - B)

In like manner it follows that:

b + c _ tan (B + C)

b -c
~

tan KB- C)

c -f a _ tan *(C + A)

c-a~tani(C-A)
Expressed in words: In any triangle, the sum of two sides is to

their difference, as the tangent of half the sum of the angles opposite

is to the tangent of half of their difference.

GEOMETRICAL PROOF: From any vertex of the triangle as

center, say C, draw a circle of radius equal to the shortest of the

two sides of the triangle meeting at C, as in Fig. 120. Let

the circle meet the side a at R and the same side produced at
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E. ~DT&wAE, AR. Call the angles at ,4, a, /?, as shown. Then
BE = a + b and BR = a - b. Also:

and: Z CRA = + B (the external angle of a triangle
7M7? is equal to the sum of the two interior opposite angles),
or a /3

= B.

Therefore:

a = i(A + B)

Draw RS
\\

io EA. Z EAR = Z A#S = 90

By similar triangles:

#/# = AE/SR
_^ ^

~AR '

AR
But BE = a + b and BR = a - b,

while

AE
AR

= tan

V rpi r
a + o tan j(ul +

/ Therefore:
a b tan

FIG. 120. Geometrical Deriva- 174 - The foUowing Special form-
tion of Law of Tangents. ulas are readily deduced from the

sine formulas and are sometimes

useful as check formulas in computation. They are closely re-

lated to the law of tangents. From the proportion:

a:b:c = sin A : sin B : sin C

by composition:
c sin C

a -\-b
~

sin A -\- sin B
Now by 165 (1) and 167 (1) this may be written:

c 2 sin \C cos |C
a + b

~
2 sin |(A + B) cos (A - B}

Since C = 180 - (A + #), therefore:

(7/2 = 90 - J(4 + B), and cos (7/2 = sin J(A +
c sin JC _ cos j(A + B)

a + b
~

cos i(A
- B) cos i(A - B)
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In like manner it can be proved that:

c _ sinMA+B)
a - b

~~

sin $(A - B)

Both (1) and (2) can be readily deduced geometrically from

Fig. 120.

175. The s-formulas. The cosine formula:

a 2 = 62 _|_ C 2 _ 2bc cos A
can be written in the forms:

a* = (b + c)
2 -

26c(l + cos A) (1)

a 2 =
(b
-

c)
2 + 25c(l

- cos A) (2)

by adding (+ 26c) and ( 26c) to the right member in each case

Now we know from 166, (1) and (3), that:

1 + cos A = 2 cos 2
(A /2)

1 - cos A = 2 sin 2
(A /2)

Therefore (1) and (2) above become:

a 2 =
(b + c)

2 - 46c cos 2
(A /2) (3)

a 2 =
(6
_ c)2 _|_ 46C Sin2

(^ /2) (4)

writing these in the form:

46c sin 2
(A /2)

= a 2 -
(6
-

c)
2

(5)

46c cos 2
(A /2)

=
(6 + c)

2 - a 2
(6)

and dividing the members of (5) by the members of (6), we
obtain:

Factoring the numerator and denominator we obtain:

tan2 M /2) - (a + 6 "
c)(q

~ b + c)
f8^~

(6 + c +a)(6 + c-a)
Let the perimeter of the triangle be represented by 2s, that is,

let:

a + b + c = 2s

Hence subtracting 2c, 26, and 2a in turn:

a + b c = 2s 2c (subtracting 2c)

a-6 + c = 2s-26 (subtracting 26)

6 + c a = 2s 2a (subtracting 2a)

Therefore equation (8) becomes:

tanMA/2) =^^ (9)

20
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Let:

then:

or:

Likewise:

(s
-

a) (s
-

b}(s
-

c)/s = r 2

tan 2
(A/2] = r 2

/(s
-

a)
2

tan (A/2) = r/(s
-

a)

tan(B/2) = r/(s
-

b)

tan(C/2) =r/(s-c)

(10)

(11)

(12)

(13)

FIG. 121. Geometrical Derivation of the s-Formulas.

GEOMETRICALLY: These formulas may be found by means
of the diagram Fig. 121. Let the circle be inscribed in the

triangle ABC', its center is located at the intersection of the bi-

sectors of the internal angles of the triangle. Let its radius be r.
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Since AT t
= AT 3 ,

BT 2
= BTS) CTi = CT2 ,

and since 2s =

a -f b + c, it follows that one way of writing the value of s is :

s = BTZ + T2C + ATi
Therefore:

ATi = s - a

Hertce it follows that:

tan(A/2) = r/(s
-

a) (14)

Since this result is the same as (11) above, it proves that the

r of equation (10) is the radius of the inscribed circle, and there-

fore proves that the radius of the inscribed circle may be expressed

by the formula

r =

a fact that is usually proved in text books on plane geometry.

177. * Miscellaneous Formulas for Oblique Triangles. The fol-

lowing formulas are given without proof. They are occasionally

useful for reference, although no use will be made of them in

this book. The following notation is used: The three sides of

the oblique triangle are named a, b, c, and the angles opposite

these A, B, C, respectively. The semi-perimeter of the triangle

is s, or, 2s = a -f- b -f c. The radius of the circumscribed circle

is R, that of the inscribed circle is r, and the radii of the escribed

circles are r a
,
rb ,

rc, tangent, respectively, to the sides a, b, c

of the given triangle. K stands for the area of the triangle.

Then:

s = 4JS cos \A cos \B cos \C (1)

s - c = 4ft sin %A sin %B cos %C (2)

and analogs for s a and s 6.

r = 4# sin %A sin \E sin \C (3)

r c
= 4R cos %A cos %B sin %C (4)

and analogs for r a and r&.

r = s tan A, rb
= s tan %B, r e

= s tan \C (5)

2K = ab sin C = be sin A = ca sin B (6)

flJ)CK = 2R* sin A sin B sin C = ~-
(7)
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K =
Vs(s - a) (s

-
b)(s

-
c) (8)

K = rs = r a (s
-

a) = rb (s
-

6)
= rc (s

-
c) (9)

K z = rr arbr c (10)

K z =
(s
-

a) tan %A =
(s
-

b) tan | =

(s-cHanK? (11)

C. NUMERICAL SOLUTION OF OBLIQUE TRIANGLES

178. An oblique triangle possesses six elements; namely, the

three sides and the three angles. If any three of these six

magnitudes be given (except the three angles), the triangle is

determinate, or may be constructed by the methods explained
in plane geometry; it will also be found that if any three of these

six magnitudes be given, the other three may be computed by the

formulas of trigonometry, provided, in both instances, that the

given parts include at least one side.

It is convenient to divide the solution of triangles into four

cases, as follows:

I. Given two angles and one side.

II. Given two sides and an angle opposite one of them.

III. Given two sides and the included angle.

IV. Given the three sides.

The solution of these cases with appropriate checks will now
be given. The best arrangement of the work of computation

usually consists in writing the data and computed results in the

left margin of a sheet of ruled letter paper (8f inches X 11 inches)

and placing the computation in the body of the sheet. Every

entry should be carefully labeled and computed results should be

enclosed in square brackets. All work should be done on ruled

paper and invariably in ink. Special calculation sheets (forms

M2 and M7) have been prepared for the use of students. Neatness

and systematic arrangement of the work and proper checking

are more important than rapidity of calculation.

179. Computer's Rules. The following computer's rules are

useful to remember in logarithmic work:

LAST DIGIT EVEN: When it becomes necessary to discard a

5 that terminates any decimal, increase by unity the last digit
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retained if it be an odd digit, but leave it unchanged if it be an

even digit; that is, keep the last digit retained even. Thus log TT

= 0.4971; hence write (1/2) log TT = 0.2486. Also log sin

18 5' = 9.4900 + (correction) 19.5 = 9.4920.

Of course if the discarded figure is greater than 5, the last

digit retained is increased by 1, while if the discarded figure is

less than 5, the last digit retained is unchanged.

FUNCTIONS OF ANGLES IN SECOND QUADRANT: In finding

from the table any function of an angle greater than 100 (but

< 180) replace by their sum the first two figures of the number

of degrees in the angle and take the cofunction of the result. The

method is valid because it is equivalent to the subtraction

of 90 from the angle. By 162 this always gives the cor-

rect numerical value of the function. The algebraic sign should

be taken into account separately. Thus: sin 157 32' 7" =

cos 67 32' T'. In case of an angle between 90 and 100>

ignore the first figure and proceed in the same way:

tan 97 57' 42" = - cot 7 57' 42"

180. Case I. Given two angles and one side, as A, B, and c.

1. To find C, use the relation A + B + C = 180.

2. To find a and b, use the law of sines, 171.

3. To check results, apply the check formula (1) or (2) 172.

EXAMPLE: In an oblique triangle, let c = 1492, A = 49

52', B = 27 15'. It is required to compute C, a, b.

The following form of work is self explanatory. This arrange-

ment, while readily intelligible to the beginner, does not conform
to the proper standards of calculation explained above. It

should be noted, however, that the process of work and the meaning
of each number entering the calculation is properly indicated or

labeled in the work.

To find C: C = 180 - (A + B) = 103 53'

To find a:

As sin C (103 53') colog 0.0129
: c (1492) log 3.1738

:: sin A (49 52') log 9.8834

: a [11751 log 3.0701
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To find b:

Check:

As sin C (103 53') colog 0.0129

c (1492) log 3.1738

sin B (27 15') log 9.6608

6 [703.9] log 2.8475

As sin i(A + B) (38 33.50 colog 0.2053

: sin \(A - B) (11 18.5') log 9.2924

: c (1492) log 3.1738

[469.4]: a - b [469.4] log 2.6715

Also a b from first computations = 471.1 which checks 469.4,

as computed, within 1.7.

The above work arranged in compact form appears as follows :

Computation of Triangle

c, A and B given

Data
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of two values, which are supplementary to each other. There

may be, therefore, two solutions to a triangle in Case II. The
solutions are illustrated in Fig. 122.

In case one of the two values of B when added to the given

angle A gives a sum greater than two right angles, this value

of B must be discarded, and but one solution exists. If a be

less than the perpendicular distance from C to c, no solution

is possible.

FIG. 122. Case II of Triangles, for One, Two, and Impossible Solutions-

EXAMPLE: Find all parts of the triangle if a =
345, b = 534,

and A = 25
a

25'.

The solution is readily understood from the following work.

To find B: As

C
To find c:

Check:

a (345)

: b (534)

: : sin A (25 25')

: sin B [41 37']

B' [138 23']

180 - (A + B) = 112 58'

colog

log

log

log

7.4622

2.7275

9.6326

9.8223

As sin A (25 25')

: sin C (112 58')

: : a (345)

: c [740.1]

As c (740.1)

: b - a (189)

: : sin %(B + A) (33 31')

: siu k(B - A) [8 6']

Check!

colog

log

log

log

0.3674

9.9641

2.5378

2.8693

log 2.8693

colog 7.7235

colog 0.2579

log 9.1489

9.9996
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The sum of the logs should be 0. The discrepancy is 4 in the last

decimal place.

To find c': C' = 180 - A - E' = 16 12'

As sin A (25 25') colog 0.3674

:sinC" (16 12') log 9.4456

: : a (345) log 2.5378

:c' [224.3] log 2.3508

To Check:

Asc' (224.3) log 2.3508
: b - a (189) colog 7 . 7235

: : sin $(B
r + A) (81 54') colog 0.0043

: sinKfi' - -A) (56 29') log 9.9210

Check! 9.9996

The following arrangement of the work satisfies the require-

ments of properly arranged computation and is much to be pre-

ferred to the arrangement given above.

Computation of Triangle

a, 6, and A given

Data and T, c j D
results

To find B
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Examples

Compute the unknown parts in each of the following triangles:

1. a = 0.8, 6 = 0.7, B = 40 15'.

2. o = 17.81, b = 11.87, A = 19 9'.

3. 6=81.05, c=98.75, C = 99 19'.

4. c = 50.37, a = 58. 11, C = 78 13'.

5. a = 1213, 6 = 1156, B = 94 15'.

182. Case III. Given two sides and the included angle, as

a, b, C.

1. To find A + B, use A + B = 180 - C.

2. To find A and 5, compute (A B) /2 by the law of tangents,

173, equation (4), then A = (A + B) /2 + (A - B) /2 and
B = (A+B)/2- (A -B)/2.

3. To find c, use law of sines, 171.

4. To check, use the check formula (2) 174.

EXAMPLE: Given a = 1033, b = 635, C = 38 36'

A + B = 180 - 38 36' = 141 24'

To find A and B:

As a + b (1668) colog 6.7778

: a - b (398) log 2.5999

: : tan \(A + B}/ (70 42') log tan 0.4557

: tan \(A - B)/ [34 16'] log tan 9.8334

A = 104 58'

B = 36 26'

To find c:

As sin 4 (104 58') colog 0.0150
: sin C (38 36') log 9.7951

:: a (1033) log 3.0141

: c [667.1] log 2.8242
Check:

As sin \(A - B) (34 16') colog 0.2495
: sin *(A + B) (70 42') log 9.9749
::a-b (398) log 2.5999

: c [667.2] log 2.8243

Check!

An experienced computer would arrange the above work as

follows:



314 ELEMENTARY MATHEMATICAL ANALYSIS [183

Computation of Triangle

a, 6, C given

Data and results To find A - B To find C Check

tan ?(A B) _ a b _ a sin c c _ sin.$(A+B)
tan $(A + B)

~
d+b

C ~
sin A d-b

~
sinJ(A-5)

a = 1033 log 3. 0141

b = 635

a - b = (398) log 2.5999 log 2.5999

a + b = (1668) colog 6.7778

C = 38 35' log sin 9.7951

(A + B)/2 = (70 42') log tan 0.4557 log sin 9.9749

(A - B)/2 = [34 16'] log tan 9.8334 colog sin 0.2495

A = (104 58') colog sin 0.0150

B = (36 26')

c = [667.1] log 2.8242 log 2.8243

Check!

Examples

Compute the unknown parts in each of the following triangles.

La- 78.9, b = 68.7, C = 78 10'.

2. c = 70.16, a =39. 14, B = 16 16'.

3. 6 = 1781, c = 982.7, A = 123 16'.

4. a = TT b =
-ir/2, C = x/3.

183. Case IV. Given the three sides.

1. To find the angles, use the s-formulas, 175, (11), (12)

and (13).

2. To check, use A + B + C = 180.

EXAMPLE: Given a = 455, b = 566, c = 677, find A, B
andC.
The following work is self explanatory. The work is arranged

in final compact form, which, in this case, is as simple as any

other possible arrangement.
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Computation of Triangle

a, b, c given

Data and results To find A, B, C

=
(s a)(s 6)(s c)/s

tan A/2 = r/(s
-

a). . .

a

6

c

2s

s

s a

s c

r 2
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2. The town B lies 15 miles east of A, C lies 10 miles south of A.
X lies on the line BC, and the bearing of AX is S. 46 20' E. Find
the distances from X to the other three towns.

3. To find the length of a lake (Fig. 123), the angle C = 48 10',

the side a = 4382 feet, and the angle B = 62 20' were measured.
Find the length of the lake c, and check.

4. To continue a line past an obstacle

L, Fig. 124, the line BC and the angles
marked at B and C were measured and
found to be 1842 feet, 28 15', and 67

24', respectively. Find the distance CD,
and the angle at D necessary to continue

the line AB'
}
also compute the distance

BD.
5. Find the longer diagonal of a par-

allelogram, two sides being 69.1 and 97.4

and the acute angle being 29 34'.

What is the magnitude of the single
force equivalent to two forces of 69.1 and

97.4 dynes respectively, making an angle of 29 34' with each other?
6. A force of 75.2 dynes acts at an angle of 35 with a force F.

Their resultant is 125 dynes. What is the magnitude of F?
7. The equation of a circle is p = 10 cos 6. The points A and

B on this circle have vectorial angles 31 and 54 respectively. Find
the distance AB, (1) along the chord; (2) along the arc of the circle

FIG. 123. Diagram for

Problem 3.

FIG. 124. Diagram for Problem 4.

8. Find the lengths of the sides of the triangle enclosed by the

straight lines :

6 = 26; = 115; P cos (0
- 45) = 50.

9. A gravel heap has a rectangular base 100 feet long and 30 feet

wide. The sides have a slope of 2 in 5. Find the number of cubic

yards of gravel in the heap.
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10. A point B is invisible and inaccessible from A and it is necessary

to find its distance from A. To do this a straight line is run from A
to P and continued to Q such that B is visible from P and Q. The

following measurements are then taken: AP = 2367 feet; PQ = 2159

feet; APB = 142 37'.3; AQB = 76 13'.8. Find AB.
11. To determine the height of a mountain the angle of elevation

of the top was taken at two stations on a level road and in a direct

line with it, the one 5280 yards nearer the mountain than the other.

The angles of elevation were found to be 2 45' at the further station

and 3 20' at the nearer station. Find the horizontal distance ol the

mountain top from the nearer station and the height of the

mountain above it. Use S and T functions.

12. Explain how to find the distance between two mountain peaks

Mi and Mi, (1) when A and B at which measurements are taken

are in the same vertical plane with M\ and M 2
', (2) when neither A

nor B is in the same vertical plane with M \ and Mz .

13. The sides of a triangular field are 534 yards, 679 yards and
474 yards. The first bears north, and following the sides in the

order here given the field is always to

the left. Find the bearing of the other

two sides and the area.

14. From a triangular field whose sides

are 124 rods, 96 rods, and 104 rods a

strip containing 10 acres is sold. The

strip is of uniform width, having as one
of its parallel sides the longest side of

the field. Find the width of the strip.
- - mi i FIG. 125. Diagram for
15. Three circles are externally mutu- Problem 16

ally tangent. Their radii are 5, 6, 7 feet.

Find the area and perimeter of the three-cornered area enclosed by
the circles and the length of a wire that will enclose the group of

three circles when stretched about them.
16. To find the distance between two inaccessible objects C and D,

Fig. 125, two points A and B are selected from which both objects are

visible. The distance AB is found to be 7572 feet. The following
angles were then taken:

ABD = 122 37'

ABC = 70 12'

BAG = 80 20'

BAD = 27 13'

Find the distance DC and check.



318 ELEMENTARY MATHEMATICAL ANALYSIS [183

17. A circle of radius a has its center at the point (p\, 61). Find
its equation in polar coordinates. (Use law of cosines.)

18. A surveyor desired the distance of an inaccessible object
from A and B, but had no instruments to measure angles. He
measured AA' in the line AO, BB' in the line BO; also AB

} BA', AB'.
How did he find OA and 05?

19. From a point A a distant object C bears N. 32 16' W. with

angle of elevation 8 24'; from B the same object bears N. 50 W.
AB bears N. 10 38' W. The distance AB is 1000 yards. Find the
distance AC.

FIG. 126. Diagram for Problem 20.

20. The angle of elevation of a mountain peak is observed to be
19 30'. The angle of depression of its image reflected in a lake 1250

feet below the observer is found to be 34 5'. Find the height of the

mountain above the observer and the horizontal distance to it. (See

Fig. 126.)

21. One side of a mountain is a smooth eastern slope inclined at an

angle of 26 10' to the horizontal. At a station A a vertical shaft is

sunk to a depth of 300 feet. From the foot of the shaft two horizontal

tunnels are dug, one bearing N. 22 30' E. and the other S. 65 E.

These tunnels emerge at B and at C respectively. Find the lengths
of the tunnels and the lengths of the sides of the triangle ABC.
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22. A rectangular field ABCD has side AB = 40 rods; AD = 80

rods. Locate a point P in the diagonal AC so that the perimeter of

the triangle APB will be 160 rods. (Hint: Express perimeter as a

function of angle at P.)

23. Find the area enclosed by the lines y =
-^ y = \/3 x, and the

circle x 2 10 re + y
2 = 0. (Hint: Change to polar coordinates.)

24. The displacement of a particle from a fixed point is given by

d = 2.5 cos t + 2.5 sin t.

What values of t give maximum and minimum displacements; what
is the maximum displacement?

25. A quarter section of land is enclosed by a tence. A farmer

wishes to make use of this fence and 60 rods of additional fencing in

making a triangular field in one corner of the original tract. Find the

field of greatest possible area. Show that it is also the field of maxi-

mum perimeter, under the conditions given.

26. A force F\ = 100 dynes makes an angle of 6 with the horizontal,

and a second force F 2
= 50 dynes makes an angle of 90 with F\.

Determine 6 so that (1) the sum of the horizontal components of Fi

and Fz shall be a maximum; (2) so that the sum of the vertical com-

ponents shall be zero.

27. Find the area of the largest triangular field that can be enclosed

by 200 rods of fence, if one side is 70 rods in length.
28. Change the equation of the curve xy = 1 to polar coordinates,

rotate through 45 and change back to rectangular coordinates.

29. A particle moves along a straight line so that the distance

varies directly as the sum sin t + cos t. When t = T/4, the distance

is 10; find the equation of motion.

30. From the top of a lighthouse 60 feet high the angle of de-

pression of a ship at anchor was observed to be 4 52', from the

bottom of the lighthouse the angle was 4 2'. Required the horizon-

tal distance from the lighthouse to the ship and the height of the

base of the lighthouse above the sea.

31. A vertical square shaft measuring 3 feet 6 inches on a side

meets a horizontal rectangular tunnel 6 feet 6 inches high by 3 feet

6 inches wide. Find an expression for the length of a line AB
shown in Fig. 127 when the angle 6 is 37.

32. University Hall casts a shadow 324 feet long on the hillside

on which it stands. The slope of the hillside is 15 feet in 100 feet,

and the elevation of the sun is 23 27'. Find the height of the

building.
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33. To determine the distance of a fort A from a place B, a line BC
and the angles ABC and BCA were measured and found to be 3225.5

yards, 60 34', and 56 10' respectively. Find the distance AB.
34. A balloon is directly over a straight level road, and between

two points on the road from which it is observed. The points are

15,847 feet apart, and the angles of elevation are 49 12' and 53 29'.

Find the height.

FIG. 127. Diagram for Problem 31.

35. Two trees are on opposite sides of a pond. Denoting the trees

by A and B, we measure AC = 297.6 feet, BC = 864.4 feet, and the

angle ABC = 87 43'. Find AB.
36. Two mountains are 9 and 13 miles respectively from a town,

and they include at the town an angle of 71 36'. Find the distance

between the mountains.

37. The sides of a triangular field are, in clockwise order, 534

feet, 679 feet, and 474 feet; the first bears north; find the bearings
of the other sides and the area.

38. Under what visual angle is an object 7 feet long seen when
the eye is 15 feet from one end and 18 feet from the other?

39. The shadow of a cloud at noon is cast on a spot 1600 feet

west of an observer, and the cloud bears S., 76 W., elevation 23.

Find its height.



CHAPTER X

WAVES

184. Simple Harmonic Motion. Let P be any point on a circle,

and let D be the projection of P on any straight line in the plane

of the circle. Then if the pointP move uniformly (that is, so that

equal distances are described in equal times) on the circle, the

I
Gi
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vertical motion by suitable guides GiGi. Then, as the wheel

rotates, any point P of the arm of the cross-head describes simple
harmonic motion in a vertical direction. The amplitude of

the S.H.M. is the radius of the circle, or OB', its period is the

time required for one complete revolution of the wheel.

In elementary physics it is explained that the motion of a simple

pendulum is nearly simply harmonic. Also that the motion of

a point of a vibrating violin string, or of a point of a tuning fork, is

S.H.M. S.H.M. is a fundamental mode of motion of the particles

of all elastic substances, and is therefore of great importance.

The motion of the point D 2 can readily be expressed by an equa-

tion, if the value of the angle 8 be expressed in terms of the elapsed

time t. Since the rotation is uniform, =
kt, where k is the angle

described in one second, or the angular velocity of P. Let the

radius OM of the circle be a feet. If be taken as origin, and if

the angle AOM be called 6, then if the point M was at A when

t^= 0, the displacement OD 2
= y is given at any time t by

y = a sin = a sin kt (1)

In a similar way, the point D\ t
the projection of M on OA, de-

scribes a S.H.M., and the displacement ODi = x may be written

x = a cos 6 a cos kt (2)

If the point M was at E when t = 0, the displacements OD 2
= y

and ODi = x are given by

y = a sin (kt
-

e) (3)

x = a cos (kt
-

e) (4)

when e stands for the angle EOA ;
for kt = angle EOM and 6 =

EOM EOA. . In this equation kt e is called the phase angle

and e is called the epoch angle of the S.H.M.

These expressions may also be written in terms of the linear

velocity V of M instead of the angular velocity k of OM. Let

the uniform velocity of M be v feet per second. Since the radius

OM is a feet, OM rotates at the rate of v/a = k radians per second.

This value of k may be substituted in equations (1) to (4).

It is obvious that

y = a cos kt

7T

represents a S.H.M. -

( \

in advance of y = a sin kt, since
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sin (kt + s) = cos kt. A Pau
*

* S.H.M.'s possessing this prop-

erty are said to be in quadrature. (1) and (2), or (3) and (4)

may be said to be in quadrature.

The period of the S.H.M. y = a sin kt is the time T required

for a complete revolution. If t\ be the time at which M is at any

given position, and if fa be the time at which M is next at the

same position, then, since the angular velocity multiplied by
the elapsed time gives the angular displacement, we have,

kfa - ti)
= 2ir

Therefore, since the difference fa t\ = T is the period:

-I
The number of complete periods per unit time is :

tf-.!.-A'

T~2ir
N is called the frequency of the S.H.M.

It is obvious that all points of the moving cross-head, Fig.

128, describe S.H.M., and that (1) may be regarded as the

equation of motion of any point of the cross-head if a suitable

origin be selected. Thus (1) is the equation of motion of P
referred to the origin 1? where Oi is the middle point of the up-
and-down range of motion of P.

185. If P, Fig. 128, be a tracing point attached to the vertical

arm of the cross-head and capable of describing a curve on a uni-

formly translated piece of smoked glass, HK, then when P de-

scribes S.H.M. in the vertical line OP, the curve NiCTNJP traced

on the plate HK is a sinusoid, for the ordinates on HK measured

with respect to the median line 0\N\ are proportional to sin 6 and

by hypothesis the abscissas or horizontal distances vary uniformly.
If the plate HK move with exactly the same speed as the point M,
the undistorted sinusoid of Fig. 59 is described, whose equation is

v y
y = a sin - t = a sin (I)

1

1 The student should note that
^
= sin

^
is of exactly the same shape as y sin x,

for multiplying both ordinates and abscissas of any curve by a is merely constructing

the curve to a different scale. However, ~ = sin is a distorted sinusoid, for the
O

ordinates of y = sin x are multiplied by 3 while the abscissas are multiplied only by 2.
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where a is the abscissa of any point of the sinusoid referred to an

origin (as N) moving with the plate. If, however, the velocity of

the plate be v' instead of v, then the equation of the curve on HK,
referred to axes moving with the plate, is of the form

where v't = x'

v
'

t = a
a

x' = px,

x' . px . .= a sm = a sin hx

A'

B'

(2)
I* U<

and h = p /a. Changing the rela-

tive speed of the wheel and

plate corresponds to stretch-

ing or contracting the sine

curve in the x direction.

186. Composition of Two
S.H.M.'s at Right Angles.

We have shown if a point M,
moving uniformly on a circle,

be projected upon both the

X- and y-axes, two S.H.M.'s

result. The phase angles of

these two motions differ from

each other by
~ or 90. The

converse of this fact, namely
that uniform motion in a cir-

cle may be the resultant of

two S.H.M. in quadrature,

is easily proved, for the two

equations of S.H.M.:

x = a cos kt

y = a sin kt

are obviously the parametric

equations of a circle. Hence

the theorem:

Uniform motion in a circle may be regarded as the resultant of

two S.H.M.'s of equal amplitudes and equal periods and differing

by TT /2 in phase angle.

This important truth is illustrated by Fig. 129. Let the x-

and ?/-axes be divided proportionally to the trigonometric sine,

FIG. 129. The Circle and the Ellipse

Considered as Generated by Two
S.H.M.'s in Quadrature.
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as in Fig. 59. Through the points of division of the two axes

draw lines perpendicular to the axes, thus dividing the plane into

a large number of small rectangles. Starting at the end of one

of the axes, and sketching the diagonals of successive cornering

rectangles, the circle ABA'B' is drawn.

If the same construction be carried out for the case in which

the y-a,xis is divided proportionally to b sin kt and in which the

z-axis is divided proportionally to a sin kt, the ellipse A\BiA'\B
f

\

results. These facts are merely a repetition of the statements

made in 74.

Exercises

1. Draw a curve by starting at the intersection of any two lines of

Fig. 129, and drawing the diagonals of successive cornering rectangles,

and write the parametric equations of the curve.

2. Find the periods of the following S.H.M. :

(a) y = 3 sin 2t.

(6) y = 10sin(l/2X
(c) y = 7 cos 4:t.

(d) y = a sin 2irt.

(e)y = a sin (10*
-

r/3).

(/) y = a sin (2f/3
-

2r/5).

(0) y = a sin (bt + c).

3. Give the amplitudes and epoch angles in each of the instances

given in example 2.

4. The bob of a second's pendulum swings a maximum of 4 cm.

each side of its lowest position. Considering the motion as rectilinear

S.H.M. write its equation of motion. 1

Write the equation of motion of a similar pendulum which was
released from the end of its swing 1/2 second after the first pendulum
was similarly released.

6. A particle moves in a straight line in such a way that its dis-

placement from a fixed point of the line is given by d = 2 cos 2
1.

Show that the particle moves in S.H.M., and find the amplitude
and period of the motion.

6. A particle moves in a vertical circle of radius 2 units with

angular velocity of 20 radians per second. Counting time from the

1 The term period is used differently in the case of a pendulum than in the

case of S.H.M. The time of a awing is the period of a pendulum; the time of

a swing-swang is the period of a S.H.M.
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instant when the particle is at its lowest position, write the equa-
tion of motion of its projection (1) upon the vertical diameter;
(2) upon the horizontal diameter; (3) upon the diameter bisecting
the angle between the horizontal and vertical.

187. Waves. The curve described on the moving plate HK
of Fig. 128, if referred to coordinate axes moving with the plate,

is the sinusoid or sine curve, which for the sake of greater generality
we shall suppose is of the type (185, equation (2))

y = a sin hx (1)

If, however, we consider this curve as referred to the fixed origin

Oi, then the moving sinusoid thus conceived is called a simple

progressive sinusoidal wave or merely a wave. Under the con-

ditions represented in Fig. 128, it is a wave progressing to the

right with the uniform speed of the plate HK. At any single

instant, the equation of the curve is:

y = a sin h(x
- OiN) (2)

where OiN is the distance that the node N has been translated

to the right of the origin Oi. If V be the uniform velocity of

translation of HK, then:

0^ = Vt (3)
1

and the equation of the wave is:

y = a sin h(x Vt)

or,

y = a sin (hx - kt) (4)

if k be put for hV, so that

F-J (5)

Because of the presence of the variable t, this is not the equation

of a fixed sinusoid, but of a moving sinusoid or wave.

Applying the same terms used for S.H.M., the expression

(hx kt) is the phase angle, the expression ( + kt) is the epoch

angle and a is the amplitude of the wave. See Fig. 130a and c.

The expression (hx kt) is a linear function of the variables

1 In what follows, t is not the time elapsed since M, Fig. 128, was at A, as used in

184, but is the elapsed time since N was at Oi. These values of t differ by the time

of half a revolution or by ir/k.



188] WAVES 327

x and t. The sine or cosine of this function is called a simple

harmonic function of x and t.

188. Wave Length. Since the period of the sine is 2?r, if t

remain constant and the expression hx be changed by the amount

s\A / ''''

C X,

FIG. 130. Wave Forms, (a) of Different Amplitude; (6) of Different

Wave Lengths; (c) of Different Phase or Epoch Angles.

27T, the curve (4) is translated to the left or right an amount such

that trough coincides with trough and crest coincides with crest,

and the curve in its second position coincides with the curve in
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its first position. Call x 2 the abscissa of any point of the curve

in its second position whose original abscissa was x\. Then:

hxz hxi = 2ir

or:

#2 xi = 2*jr /h

Calling the distance x z x\ = L, we have:

L = 2ir/h (1)

L is called the wave length. It is the distance from any crest

to the next crest or from any trough to the next trough or from

any node to the second succeeding node, or from any point of

the wave to the next similar point. See Fig. 1306.

The wave length can also be determined in the following manner:

The wave length of

y = sin x (2)

is obviously 27r, the length of the period of the sine. The sine

curve

y = sin hx (3)

can be made from the above by multiplying the abscissas of all

points by r. Therefore the wave length of the latter is -r . The

wave length of

y = sin (hx kt) (4)

must also be the same as that of (3), since the effect of the term

kt is merely to translate the curve as a whole a certain distance

to the right.

189. Period or Periodic Time. If we fix our attention upon

any constant value of x, and if kt in (4) above be permitted to

change by the amount 2ir, then since the period of the sine is

27T, the curves at the two instances of time mentioned must coin-

cide. Calling the two values of t, t\ and 2,
we have by hypothesis

kt z
-

kti = 2w

Writing:

t,
-

t,
= T

we find

T = 27r/k (1)

The expression T is called the periodic time or period of the

wave. It is the length of time required for the wave to move one
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wave length, or the length of time that elapses until trough again

coincides with trough, etc. To contrast wave length and period,

think of a person in a boat anchored at a fixed point in a lake. The

time that the person must wait at that fixed point (x constant)

for crest to follow crest is the periodic time. The wave length

is the distance he observes between crests at a given instant of

time (t constant) .

190. Velocity or Rate of Propagation. The rate of movement
V of the sinusoid on the plate HK, Fig. 128, is shown by equa-

tion (5), 187, to be k/h units of length per second. This is

called the velocity of the wave or the velocity of propagation.

The equation of the wave may be written:

y = a sin h(x Vt)

From equations (1) 188 and (1) 189 we may write

whence
k L
h

'"'

T

Since V = T> we have:

V = ~ (1)

This equation is obvious from general considerations, for the

wave moves forward a wave length L in time T, hence the speed

of the wave must be -

191. Frequency. The number of periods per unit of time is

called the frequency of the wave. Hence, if N represent the

frequency of the wave,

There is no name given to the reciprocal of the wave length.

192. L and T Equation of a Wave. If we solve equations (1)
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188 and (1) 189 for h and k respectively, and substitute

these values of h and k in the equation

y = a sin (hx kt]

we obtain

[I

-
T\

y = asin27r ~
f

From this form it is seen that the argument of the sine increases

by 2ir when either x increases by an amount L or when t increases

by the amount T. By use of (1), 190, the last equation may
also be written:

y = asin~(x-Vt) (2)

193. Phase, Epoch, Lead. Consider the two waves:

27T

y a sin
-j- (x Vt) (1)

y = a sin ~(x - Vt - E) (2)

The amplitudes, the wave lengths and the velocities are the

same in each, but the second wave is in advance of the first by
the amount E (measured in linear units), for the second equation

can be obtained from the first by substituting (x E) for x, which

translates the curve the amountE in the OX direction. In this case

E is called the lead (or the lag if negative) of the second wave

compared with the first.

The lead is a linear magnitude measured in centimeters, inches,

feet, etc. The epoch angle is measured in radians. In the

present case the epoch angle of (2) is 2^(Vt -f- E} /L.

The terms phase and epoch are sometimes used to designate

the time, or, more accurately, the fractional amount of the period

required to describe the phase angle and epoch angle respectively.

In this use, the phase is the fractional part of the period that has

elapsed since the moving point last passed through the middle point

of its simple harmonic motion in the direction reckoned as positive.

See Fig. 130c.

The tidal wave in mid ocean, the ripples on a water surface,

the wave sent along a rope that is rapidly shaken by the hand,

are illustrations of progressive waves of the type discussed above.
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Sound waves also belong to this class if the alternate condensations

and rarefactions of the medium be graphically represented by
ordinates. The ordinary progressive waves observed upon a lake

or the sea are not, however, progressive waves of this type. The
surface of the water in this case is not sinusoidal in form, but

is represented by another class of curves known in mathematics

as trochoids.

Exercises

1. Derive the amplitude, the wave length, the periodic time, the

velocity of propagation of the following waves:

y = a sin (2z 3).

y = 5 sin (0.75z
- 10000-

10 sinin
(I

-
I)

y =
50siny(z

- 3).

y = 100 sin
||(x

- 20* - 4).

y = 100 sin (5x + 4t).

y = 0.025 sin ~(x + 1/3).

2. Write the equation of a progressive sinusoidal wave whose height
is 5 feet, length 40 feet and velocity 4 miles per hour.

3. Write the equation of a wave of wave length 10 meters, height
1 meter and velocity of propagation 3.5 miles per hour. (Note:
1 mile = 1.609 kilometers.)

4. Sound waves of all wave lengths travel in still air at 70 F. with
a velocity of 1130 feet per second. Find the wave length of sound
waves of frequencies 256, 128, 600 per second.

6. The lowest note recognizable as a musical tone was found by
Helmholtz to possess about 40 vibrations per second. The highest
note distinguishable by an ordinary ear possesses about 20,000 vibra-

tions per second. If the velocity of sound in air be 1130 feet per

second, find the wave length in each of these limiting cases, and write

the equation of the waves if the amplitude be represented by the

symbol a.
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194. Stationary Waves. The form of a violin string during its

free vibration is sinusoidal, but the nodes, crests, troughs, etc.,

are stationary and not progressive as in the case of the waves

just discussed, and is therefore called a stationary wave. The
water in a basin or even in a large pond or lake is also capable of

vibrating in this way. Fig. 131 may be used to illustrate the

stationary waves of this type, either of a musical string or of the

water surface of a lake, but in the case of a vibrating string, the

ends must be supposed to be fastened at the points and N.

The shores of the lake may be taken at I and K or at I and H,
etc. As is well known, such bodies are capable of vibrating in

segments so that the number of nodes may be large. This

FIG. 131. A Stationary Wave.

explains the "harmonics" of a vibrating violin string and the

various modes in which stationary waves may exist on a water

surface. A stationary wave on the surface of a lake or pond is

known as a seiche, and was first noted and studied on Lake

Geneva, Switzerland. The amplitudes of seiches are usually

small, and must be studied by means of recording instruments

so set up that the influence of progressive waves is eliminated.

The maximum seiche recorded on Lake Geneva was about 6 feet,

although the ordinary amplitude is only a few centimeters.

The equation of a stationary wave may be found by adding the

ordinates of a progressive wave:

y = a sin (hx kt) (1)

traveling to the right (fc > 0), to the ordinates of a progressive

wave:

y = a sin (hx + kt) (2)

traveling to the left.



194] WAVES 333

Expanding the right members of (1) and (2) by the addition

formula for the sine, and adding:

y = 2a cos kt sin hx (3)

or in terms of L and T

y = 2a cos - sin -

(4)

In Fig. 131, the origin is at and the X-axis is the line of nodes

ONX. If we look upon 2a cos kt as the variable amplitude of

the sinusoid

y = sin hx

we note that the nodes, etc., of the sinusoid remain stationary,

but that the amplitude 2a cos kt changes as time goes on. When
t = 0, the sine curve has amplitude 2a and wave length 2ir /h.

When t = TT /2k or 7
7

/4 the sinusoid is reduced to the straight line

y
= 0. When t = TT /k or T /2 the curve is the sinusoid:

y = 2a sin hx

which has a trough where the initial form had a crest, and vice

versa.

Exercises

In the following exercises the height of the wave means the maxi-

mum rise above the line of nodes. When a seiche is uninodal, the

shores of the lake correspond to the points / and K, Fig. 131. When
a seiche is binodal, the points / and H are at the lake shore.

1. From the equation of a stationary wave in the form y =
2a sin 2wx/L cos 2-n-t/T, show that K, Fig. 131, is at its lowest depth
for t = T/2, 37Y2, 5T/2, . . .

2. Henry observed a fifteen-hour uninodal seiche in Lake Erie, which

was 396 kilometers in length. Write the equation of the principal

or uninodal stationary wave if the amplitude of the seiche was 15 cm.

3. A small pond 111 meters in length was observed by Endros to

have a uninodal seiche of period fourteen seconds. Write the equa-
tion of the stationary wave if the amplitude be a.

4. Forel reports that the uninodal longitudinal seiche of Lake Geneva
has a period of seventy-three minutes and that the binodal seiche has

a period of thirty-five and one-half minutes. The transverse seiche

has a period of ten minutes for the uninodal and five minutes for

the binodal. The longitudinal and transverse axes of the lake are
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45 miles and 5 miles respectively. Write the equation of these

different seiches.

5. A standing wave or uninodal seiche exists on Lake Mendota
of period twenty-two minutes. If the maximum height is 8 inches

and the distance across the lake is 6 miles, write the equation of

the seiche.

195. Compound Harmonic Motion and Compound Waves.
The addition of two or more simple harmonic functions of dif-

ferent periods gives rise to compound harmonic motion. Thus :

y = a sin kt + b sin 3 kt

corresponds to the superposition of a S.H.M. of period 2ir /3k

and amplitude b upon a fundamental S.H.M. of period 2w/k
and amplitude a. To compound motions of this type, there cor-

respond compound waves of various sorts, such as a fundamental

sound wave with overtones, or tidal waves in restricted bays or

harbors. The graphs of the curves:

1
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may be added. For example, to locate the point on the composite
curve corresponding to the abscissa OD, Fig. 132, we must add

DP and DQ. Hence place vertically at P the lower end of the

paper scale just mentioned. The sixth scale division above P
on this scale will then locate the required point M of the composite
scale.

Octave

LXXAXV///
\2

Fifth

\

\ //\\\\//f

X

A3

FIG. 133. The Curves (a) y = sin a; + sin (2x + 27rn/16) and (6) j/
=

sin 2x + sin(3x + 27rn/16), for n = 0, 1, 2, . . . 15. (From Thomson
and Tait.)

In Fig. 133 the curves:

y = sin x -f sin (2x + 27rn/16)

?/
= sin2z + sin (3z + 27TW/16)

are shown for values of n =
0, 1, 2, . . ., 15 in succession

that is, for successive phase differences corresponding to one-six-

teenth of the wave length of the fundamental y = sin x.

Wave forms compounded from the odd harmonics only are

especially important, as alternating-current curves are of this type.

See Fig. 134.
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196. Harmonic Analysis. Fourier showed in 1822 in his
"
Analytical Theory of Heat" that a periodic single-valued

function, say y =
f(x), under certain conditions of continuity,

can be represented by the sum of a series of sines and cosines of

the multiple angles of the form:

y = a + ai cos x + 0,2 cos 2x -f- 0,3 cos 3x -\- . . .

+ bi sin x -f 6 2 sin 2x -f- 63 sin 3x + . . .

This means, for example, that it is always possible to represent

the complex tidal wave in a harbor, by means of the sum of a

50

10 12 14 16 20 22 30 32 34

FIG. 134. An Alternating Current Curve. Only Odd Harmonics are

present.

number of simple waves or harmonics. The term harmonic

analysis is given to the process of determining these sinusoidal

components of a compound periodic curve. In 195 we
have performed the direct operation of finding the compound
curve when the component harmonics are given. The inverse

operation of finding the components when the compound curve

is given is much more difficult, and its discussion must be post-

poned to a later course.

197.* Test for a Sinusoidal Function. Squared paper, known
as semi-sinusoidal paper, has been prepared (see Fig. 135)

with the horizontal scale divided proportionally to sin x and the

vertical scale divided uniformly. The divisions are precisely

the same as those in Fig. 59, except that the number of divisions
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is greatly increased. On this paper, the sine curve is represented

by a straight line drawn diagonally across the paper. Since the

sine curve appears as a straight line on this paper (just as the

logarithmic curve appears as a straight line on semi-logarithmic

paper) it is easy to test whether or not observed periodic data

follow the law expressed by the sine curve. Thus the times of

sunrise at Boston, Massachusetts, for the first day of each month

have been plotted upon the sheet shown in Fig. 135. The points
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2. Determine the length of the day from the data of exercise 1, and

graph the same upon semi-sinusoidal paper.

3. Determine whether the curves of Fig. 136 are sinusoidal or not.

198. Connecting Rod Motion. If one end of a straight line B
be required to move on a circle while the other end of the line A
moves on a straight line passing through the center of the circle,

Max

2P.M

9P.M.

7A.M

Min.

iLii

-2<

\\\

xu

\v\

a
Max.

2P.M.

9P.M.

7A.M.

FIG. 136. Daily Temperatures throughout the Year at Madison, Wis.,

Average of many years.

the resulting motion is known as connecting rod motion. The

connecting rod of a steam engine has this motion, as the end at-

tached to the crank travels in a circle while the end attached to

the piston travels in a straight line. The motion of the end A
of the connecting rod is approximately S.H.M. The approxi-

mation is very close if the connecting rod be very long in compari-

son with the diameter of the circle.

A second approximation to the motion of the point A can be
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shown to introduce the second harmonic or octave of the funda-

mental. In Fig. 13% let the radius of the circle be a and the

length of the connecting rod be I. The length of the stroke MN
is 2a, and the origin may conveniently be taken at the mid point

of the stroke, 0. When B was at H, A was at M and when B
was at K, A was at N. Then MH = NK =

I, and OC = I.

Now
x = CA - CO = CA -

I = CD + DA -
I (1)

But
CD = a cos 6 (2)

and

DA = - BD*

- a 2 sin2

Hence:

x = a cos -f I Vl -
(a

2
/Z

2
) sin2 -

I

(3)

(4)

FIG. 137. Connecting Rod Motion.

Approximating the radical by 111 (Vl x = 1 x/2) we
obtain:

,/., a2 sin 2 0\ , r ,

x = a cos + U 1
2/2 )

~
^ W

But sin2 =
(1
- cos 20) /2, hence:

x = a cos + -j cos 20 -j (6)

which is approximately true as long as I is much greater than a.

It is seen from the above result that the second approximation
to connecting rod motion contains as overtone the octave or

a 2

second harmonic, -^
cos 20, in addition to the first or fundamental

harmonic a cos 0.
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Exercises ,

1. Draw the curve corresponding to equation (5) above if a = 1.15

inches, and I =3 inches.

2. The motion of a slide valve is given by an equation of the form :

y = ai sin (0 + e) + a2 sin (20 + 90).

Draw the curve if i
= 100, a2

=
25, e = 40.

3. Graph:

y = 5 sin (6 + 30) + 2 sin (20 + 90).
4. Graph:

y = sin x + (1/3) sin 3z + (1/5) sin 5x.



CHAPTER XI

COMPLEX NUMBERS

199. Scales of Numbers. To measure any magnitude, we

apply a unit of measure and then express the result in terms of

numbers. Thus, to measure the volume of the liquid in a cask

we may draw off the liquid, a measure full at a time, in a gallon

measure, and conclude, for example, that the number of gallons

is 12J. In this case the number 12| is taken from the arith-

metical scale of numbers, 0, 1, 2, 3, 4, ... If we desire to meas-

ure the height of a stake above the ground, we may apply a

foot-rule and say, for example, that the height in inches above the

ground is 12^, or, if the positive sign indicates height above the

ground, we may say that the height in inches is -+ 12J. In

this latter case the number + 12 has been selected from the

algebraic scale of numbers . . . 4, 3, 2, 1, 0, + 1,

+ 2, + 3, + 4, . . .

The scale of numbers which must be used to express the value of a

magnitude depends entirely upon the nature of the magnitude. The

attempt to express certain magnitudes by means of numbers taken

from the algebraic scale may sometimes lead, as every student of

algebra knows, to meaningless absurdities. Thus a problem involving

the number of sheep in a pen, or the number of marbles in a box, or

the number of gallons in a cask, cannot lead to a negative result, for

the magnitudes just named are arithmetical quantities and their meas-

urement leads to a number taken from the arithmetical scale. The

absurdity that sometimes appears in results to problems concerning

these magnitudes is due to the fact that one attempts to apply the

notion of algebraic number to a magnitude that does not permit of it.

Science deals with a great many different kinds of magnitudes, the

measurement of some of which leads to arithmetical numbers while the

measurement of others leads to algebraic numbers; the remarkable

fact is that two different number scales serve adequately to express

magnitudes of so many different sorts. The magnitudes of science

are so various in kind that one might reasonably expect that the num-
ber of number systems required in the mathematics of these sciences

would be very great.
341
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The arithmetical scale, which includes integral and fractional

numbers, is itself more general than is required for the expression of

some magnitudes. For some magnitudes fractions are absurd quite

as absurd, in fact, as negative values are for other magnitudes. Thus
the number of teeth on a gear wheel cannot be a fraction. The
solution of the following problem illustrates this: "How many teeth

must be cut on a pinion so that when driven by a spur gear wheel

of fifty-two teeth it will revolve exactly five times as fast as the gear
wheel?"

The arithmetical scale is used when we enumerate the number of

gallons in a cask and say: 0, 1, 2, 3, . . . If we observe 3 gal-

lons in the cask, and then remove one, we note those remaining and

say two; we may remove another gallon and say one; we may remove
the last gallon and say zero; but now the magnitude has come to an

end no more liquid may be removed.

Another conception of numerical magnitude is used when we meas-

ure in inches the height of a stake above the ground and say three

We may drive the stake down an inch and say two; we may drive the

stake another inch and say one; we may drive the stake another inch

and say zero, or "level with the ground;" but, unlike the case of the

gallons in the cask, we need not stop but may drive the stake another

inch and say one below the ground, or, for brevity, minus one; and so on

indefinitely, but always prefixing "minus" or "below the ground"
or some expression that will show the relative position with respect to

the zero of the scale. In this case we have made use of the algebraic

scale of numbers.

Likewise, in estimating time, there is no zero in the sense of the

gallons in the cask from which to reckon; we cannot conceive of an

event so far past that no other event preceded it; we therefore select a

standard event, and measure the time of other events with reference

to the lapse before or after that; that is, we measure time by means of

the algebraic scale; the symbols "B.C." or
" A.D." could quite as well

be replaced by the symbols "minus" and "plus" of the algebraic scale.

The zero used is an arbitrary one and the magnitude exists in reference

to it in two opposite senses, future and past, or, as is said in algebra,

positive and negative. We are likewise obliged to recognize quantity

as extending in two opposite senses from zero in the attempt to measure

many other things; in locating points along an east and west line, no

point is so far west that there are no other points west of it, hence the

points could not be located on an arithmetical scale; the same in

measuring force, which may be attractive or repulsive; or motion, which

may be toward or from, or rotation, which may be clockwise or anti-
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clockwise, etc. Because of the necessity of measuring such magni-

tudes, our notion of algebraic number has arisen.

Many of the magnitudes considered in science are completely ex-

pressed by means of arithmetical numbers only; for example, such

magnitudes as density or specific gravity; temperature;
1 electrical re-

sistance; quantity of energy; such as ergs, joules or foot-pounds;

power, such as horse power, kilowatts, etc. All of the magnitudes

just mentioned are scalar, as it is called; that is, they exist in one

sense only not in one s^nse and also in the opposite sense, as do

forces, velocities, distances, as explained above. The arithmetical

scale of numbers is therefore ample for their expression.

The distinction, then, between an algebraic number and an arith-

metical number is the notion of sense which must always be associated

with any algebraic number. Thus an algebraic number not only

answers the question "how many" but also affirms the sense in which

that number is to be understood; thus the algebraic number

+ 12 1, if arising in the measurement of angular magnitude, refers to

an angular magnitude of 12| units (degrees, or radians, etc.) taken

in the sense defined as positive rotation.

Exercises

Of the following magnitudes, state which may and which may not

be represented adequately by an arithmetical number:

1. 10 volts. 16. 10 centigrade.

2. 15 calories. 16. 272 absolute temperature.
3. 25 dynes. 17. 16 feet per second (velocity).

4. 2 kilograms. 18. 32.2 feet per second per sec-

6 20 miles per hour. ond (acceleration).

6. 4 acre-feet. 19. 200 gallons per minute.

7. 180 revolutions per second. 20. 20 pounds per square inch.

8. 6-cyUnder (engine). 21. 50 horse power.
9. 3'atmospheres. 22. 1.15 radians per second.

10. 20 light-years. 23. 30 latitude.

11. 27 visual angle. 24. 14 angle of depression.

12. Atomic weight of oxygen. 25. 18 cents per gallon.

13. 28 amperes. 26. 60 beats per minute.

14. 7 pounds per gallon. 27. 5360 feet above sea level.

28. 312 B.C.

1 Temperature is an arithmetical quantity, since there is an absolute zero of

temperature. Temperature does not exist in two opposite senses, but in a single

sense.
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200. Algebraic Number Not the Most General Sort. Algebraic

numbers, although more general than arithmetical numbers, are

themselves quite restricted. Sir William Hamilton, in order to

emphasize the restricted character of an algebraic number, called

algebra the "science of pure time." That is, algebraic magnitude
exists in the same restricted sense that time exists because if we
fix our attention upon any event, time exists in one sense (future)

and in the exactly opposite sense (past), but in no other sense at all.

Likewise, with the algebraic numbers, each number corresponds to

a point of the algebraic scale (see 1); but for points not on

the scale, or for points sidewise to the same, there corresponds no

algebraic number. This is a way of saying that the algebraic

scale is one-dimensional; Sir William Hamilton desired to emphasize
this restriction by speaking of the "science of pure time," for it

is of the very essence of the notion of time that it has one dimension

and one dimension only. It is thus seen that there is an opportu-

nity of enlarging our conception of number if we can remove the

restriction of one dimension that is, if we can get out of the line

of the algebraic scale and set up a number system such that one

number of the system will correspond, for example, to each point of

a plane, and such that one point of the plane will correspond to

each number of the system. We will seek therefore an exten-

sion or generalization of the number system of algebra that will

enable us to consider, along with the points of the algebraic scale,

those points which lie without it.

201. Numbers as Operators. The extension of the number

system mentioned in the last section may be facilitated by changing

the conception usually associated with symbols of number. The
usual distinction in algebra is between symbols of number and sym-

bols of operation. Thus a symbol which may be looked upon as

answering the question "bow many" is called a number, while a

symbol which tells us to do something is called a symbol of opera-

tion, or, simply, an operator. Thus in the expression \/2, \/ is

a symbol of operation and 2 is a number. A symbol of operation

may always be read as a verb in the imperative mood; thus we

may read \fx\ "Take the square root of x." Likewise log x,

and cos 6 may be read: "Find the logarithm of x," "Take the cosine

of 6," etc. In these expressions "log" and "cos" are symbols of
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operation; they tell us to do something; they do not answer the

question "how many" or "how much" and hence are not numbers.

Here we speak of \/, log, cos, as operators; we speak of x as the

operand, or that which is operated upon.

It is interesting to note that any number may be regarded as a

symbol of operation; by doing so we very greatly enlarge some

original conceptions. Thus, 10 may be regarded not only as ten,

answering the question "how many," but it may quite as well be

regarded as denoting the operation of taking unity, or any other

operand that follows it, ten times; to express this we may write

10-1, in which 10 may be called a tensor (that is, "stretcher"),

or a symbol of the operation of stretching 9 unit until the result

obtained is tenfold the size of the unit itself. In the same way
the symbol 2 may be looked upon as denoting the operation of

doubling unity, or the operand that follows it; likewise the tensor

3 may be looked upon as a trebler, 4 as a quadrupler, etc.

With the usual understanding that any symbol of operation

operates upon that which follows it, we may write compound
operators like 2-2-3-1. Here 3 denotes a trebler and 3-1 denotes

that the unit is to be trebled, 2 denotes that this result is to be

doubled and the next 2 denotes that this result is to be doubled.

Thus representing the unit by a line running to the right, we have

the following representation of the operators:

The unit

3-1 -+-+^
2-3-1 --* >

2-2-3-1 >

Notice the significance that should now be assigned to an expo-
nent attached to these (or other) symbols of operation. The

exponent means to repeat the operation designated by the operator;

that is, the operation designated by the base is to be performed,
and performed again on this result, and so on, the number of opera-

tions being denoted by the exponent. Thus 10 2 means to pfrform

the operation of repeating unity ten times (indicated by 10) and

then to perform the operation of repeating the result ten times,

that is, it means 10 (10-1). Also, 10 3 means 10[10(10-1)]. Like-

wise log
2 30 means log(log 30) which, if the base be 10, equals
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log 1.4771, or finally 0.1694. An apparent exception occurs in

the case of the trigonometric functions. The expression cos 2 x

should mean, in this notation, cos (cos x), but because trigonometry
is historically so much older than the ideas here expressed, the

expression cos 2 x came to be used as an abbreviation for (cos z)
2

,

or (cos 2) X (cos 2).

To be consistent with the notation of elementary mathematics,
the expression \/4, looked upon as a symbol of operation, must

denote an operation which must be performed twice in order

to be equivalent to the operation of quadrupling; that is,

such that (v/4)
2 = 4. Likewise ^/4 denotes an operation which

must be performed three times in succession in order to be

equivalent to quadrupling. But we know that the operation

denoted by 2, if performed twice, is equivalent to quadrupling;
therefore \/4 =

2, etc. Just as 4 2
,
4 3

, etc., may be called stronger

tensors than a single 4, so \/4, VI may be called weaker tensors

than the operator 4.

202. Reversor. The expression ( 1), looked upon as a

symbol of operation, is not a tensor, as it leaves the size unchanged
of that- upon which it operates. If this operator be applied to

any magnitude, it will change the sense in which the magnitude
is then taken to exactly the opposite sense. Thus, if 6 stands

for six hours after, then ( 1)(6) stands for six hours before

a certain event, and ( 1) is the symbol of this operation of

reversing the sense of the magnitude. Also if (6) stands for a

line running six units to the right of a certain point, then

( 1)(6) stands for a line running six units to the left of that

point, so that ( 1} is the symbol which denotes the opera-

tion of turning the straight line through 180. As 2, 3, 4, when
looked upon as symbols of operations, were called tensors, the

operator ( 1) may conveniently be designated a reveisor.

Exercises

Show graphically the effect of the operations indicated in each of

the following exercises. Take as the initial unit-operand a straight

line 1/2 inch long extending to the right of the zero or initial point.

Explain each expression as consisting of the operand unity and sym-
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bols of operation tensors, reversors, etc., which operate upon it

one after the other in a definite order.

1. 2-3-1. 8. (V4) 3
-(-l)-l.

2. 3-3-1. 9. (-l) 3 -2 2 -3-l.

3. -1-3-1. 10. 3-3 2
-l.

4. 23-1. 11. (-1)2-24-1.

5. V3-1. 12. 3-(-l)V2'l.
6. (V2) 2 'l. 13. (V2)-(-l) 10 -l.

7. V9V41. 14. >/10-2-(-l)-l.

16. A tensor, if permitted to operate seven times in succession,
will just double the operand. Symbolize this tensor.

16. A tensor, if permitted to operate five times in succession, will

quadruple the operand. Symbolize this tensor.

203. Versors. The expression \/ 1 cannot consistently,
with the meaning already assigned to \J and ( 1), be looked upon
as answering the question

"how many," and therefore

is not a number in that sense;

yet if we consider \/
1 as

a symbol of operation, it can

be given a meaning consistent

with the operators already
considered. For if 2 is the

operator that doubles, and

\/2 is the operator that when

used twice doubles, then since

( 1) is the operator that

reverses, . the expression

\/ "! should be an operator

which, when used twice, re-

verses. So, as ( 1 ) may be defined as the symbol wh ch

operates to turn a straight line through an angle of 180, in a

similar way we may define the expression -s/~~- I as a symbol
which denotes the operation of turning a straight line through an

angle of 90 in the positive direction. The restriction of positive

rotation is inserted in the definition merely for the sake of

convenience.

/
N
r

j ^

FIG. 138. The Integral Powers of
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The symbols ( 1) and \/ 1 are not tensors. They do not

represent a stretching or contracting of the operand. Their effect

is merely to turn the operand to a new direction; hence these

symbols may be called versors, or
"
turners."

204. Graphic Representation of vx
1. In Fig. 138, let a be

any line. Then a operated upon by \/ I (that is, \/ 1 a) is

turned anti-clockwise through 90, which gives OB. Now, of

course, \/ 1 can operate on V 1 just as well as on a.

Then \/
'

1 (\/ 1 0> or OC, is \/ 1 a turned pcsi-

tively through .90. Similarly, \/ 1 [\/ 1(\/ 1 )] is

\/ 1

Similarly, \/ 1

-H[ a) turned through 90, etc.

As we are at liberty to consider two turns of 90 as equivalent to

one turn of 180, therefore, \/ 1(V 1 )
=

( l)a. Now
OP = (-1) OB, OD=(-1) (V^M); but also OZ) =
V~^- 1 ( a), therefore, ( 1) V'

1 a = v' 1 ( )

Thus the^student may show many like relations.

The operator \/^ 1 is usually represented by the symbol i and
will generally be so represented in what follows

Exercises

Interpret each of the following expressions as a symbol of operation:

1. 2,3,4, -1.

2. 3 2
,2*, 4, (-1)2, (-1)*.

3. V2, V3, V^l, </2, ^/^I.
Select a convenient unit and construct each of the following expres-

sions geometrically, explaining the meaning of each operator:

4. 2-3-5-1. 7. (-l) 2V^Tl.
5. 2'-(-l)-l. 8. 22-(-l)3-(V-~l)'l.

6. 3V^l-2-l. 9. 3V:rT(-l)V^~l-l.

205. Complex Numbers. The explanation of the meaning of

the symbol (a -f- &i) will be given in the following section. It

will be shown in subsequent theorems that any expression made

up of the sum, product, power or quotient of real numbers and

imaginaries may be put in the form a + bi, in which both a and

b are real. The expression a + bi is therefore said to be the

typical form of the imaginary. An expression of the form a -f- bi
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is also called a complex number, since it contains a term taken

from each of the following scales, so that the unit is not single

but double or complex:
-

3, -2, -
1, 0, + 1, + 2, +3, . . .

-
3i,
-

2i,
-

i, 0, + i, + 2i, + 3i, . . .

It is important to note that the only element common to the two

series in this complex scale is 0.

206. Meaning of a Complex Number. Any real number, or

any expression containing only real numbers, may be consid-

ered as locating a point in a line.

Thus, suppose we wish to draw the expression 2 + 5. Let be

the zero point and OX the positive direction. Lay off OA 2 in

the direction OX and at A lay off AB = 5 in the direction OX.
Then the path OA + AB is the geometrical representation of

2 + 5.

A B X

Any complex number may be taken as the representation of the

position of a point in a plane. For, suppose c + di is the complex
number. Let be the zero

point and OX the positive

direction. Lay off A = +c
in the direction OX and at

A erect di in the direction

OY, instead of in the direction

OX as in the last example, o

See Fig. 139. It is agreed

"

to consider the step to the

right, OA, followed by the
F̂IG. 139. The Geometrical Construc-

Step upward, AP, as the tion of a Complex Number, c + di.

meaning of the complex num-
ber c + di. Either the broken path OA + AP or the direct path

OP may be taken as the representation of c + di, and either path

constitutes the definition of the sum of c and di.

In the same manner c di, c di and c + di may be

constructed.

The meaning of some of the laws of algebra as applied to imagi-

naries may now be illustrated. Let us construct c + di + a + bi.
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The first two terms, c + di, give OA + AB, locating B (Fig.

140). The next two terms, a + bi, give BC + CP, locating P.

Hence the entire expression locates the point P with reference to 0.

Now if the original expression be changed in any manner allowed by
the laws of algebra, the result is merely a different path to the same

point. Thus:

c + a + di + bi is the path OA, AD, DC, CP
(c + a) + (d + b)i is the path OD, DP
a + di + c +U is the path OE, EH, HC, CP
a + di + U + c is the path OE, EH, HF, FP, etc.

The student should consider other cases. Are there any method
of locating P with the same four elements, which the figure does not

illustrate?

FIG. 140. Illustration of the Application of the Laws of Algebra to the

Expression c + di + a + bi.

207. Laws. It can be shown by simple geometrical construc-

tion that the operator i, as defined above, obeys the ordinary

laws of algebra. We can then apply all of the elementary laws of

alegbra to the symbol i and work with it just as we do with any

other letter. The following are illustrations of each law:

COMMUTATIVE LAW:

c + di + a -f U = c -f- a + di + bi = di + c + bi + a, etc.

ai = ia, iai = iia = aii, etc.

The equation 10\/^T = \/^l-lQ, or better, lQ\/
r
^l-l =

\/ 1-10-1 may be said to mean that the result of performing the

operation of turning unity through 90 and performing upon the
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result the operation of taking it ten times, is the same as the result

of performing the operation of taking unity ten times and per-

forming upon this result the operation of turning through 90.

ASSOCIATIVE LAW:

(c + di) + (a + bi)
= c + (di + a) + bi, etc.

(ab)i
= a(bi) =

obi, etc.

DISTRIBUTIVE LAW:

(a + b)i
= ai -f- bi, etc.

The expression \/ a, where a is any number of the arith-

metical scale, is defined as equivalent to \/ Taj that is, V a
= i\/a. For example, \/ 4 = 2i, \/ 3 = i\/3, etc. 7n

what follows it is presupposed that the student will reduce expressions

of the form \/ a to the form i \/a before performing algebraic op-

erations. From this it follows that \/ a \/' b = \/ab and

not \/ab.

The relation \/ 4 = 2V 1 may be interpreted as follows: ( 4)

is the operator that quadruples and reverses; then \/ 4 is an operator
which used twice quadruples and reverses. But 2 \/ 1 is an opera-
tor such that two such operators quadruple and reverse. That is,

-V/^4 = 2V^.
208. Powers of i. We shall now interpret the powers of i by

means of the new significance of an exponent and by the commu-

tative, associative and other laws. First:

i or i 1 =
-f- 1 i

& = i*i = i

1
1 or i

1 1 = i i 6 = iH = 1

1
2 = - 1 i

7 = iH = - i

1
3 = iH = - i i* = m =+1

{4 = m* = 4. i etc. etc.

Whence it is seen that all even powers of i are either + 1 or 1
,

and all odd powers are either i or i. The student may reconcile

this with Fig. 138. The zero power of i must be unity, for the

exponent zero can only mean that the operation denoted by the

symbol of operation is not to be performed at all; that is, unity is to

be left unchanged; thus 10 or 10 1 =
1, 2 =

1, log x = x
t

sin x = x
}
etc.
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Exercises

Select as unit a distance 1/2 inch in length extending to the right
and represent graphically each of the following expressions:

1. i + 2i 2 + 3i 3 + 4i 4 + . . .

2. i + i
4 + i

6 + i s + i
9 + . . .

3. i + i4 + i* + i + i + i + . . .

4. i(i + i 4 + i 7 + i* + i9 + ii2 + . . . ).

6. i + i
2 + i

3 + 2i 4 + i 5 + i + i
7 + Si8 + . . .

209. Two complex numbers are said to be conjugate if they
differ only in the sign of the term containing \/ 1. Such are

x + iy and x iy.

Conjugate imaginaries have a real sum and a real product.

For: (x + yi) + (x
-

yi)

= x + yi + x yi, by associative law
= x + x + yi'. yi, by commutative law
= 2x -f- (?A

~
2/^)j by associative law

= 2x + (y y}i, by distributive law

Likewise: (x + 2/0 (x yi)

= x(x yi) + 2/1 (# yi), by distributive law
= x 2

xyi + yix yiyi, by distributive law
= x2 yH2 + xyi xyi, by commutative law
= xz

-f- i/
2 + (#?/ #2/)i', by distributive law and by

substituting i
z = 1

= x 2 + ?/
2

It is well to note that the product of two conjugate complex
numbers is always positive and is the sum of two squares.

This fact is very important and will be frequently used. Thus

(3
-

4i)(3 -f 4i) = 3 2 + 42 = 25; (1 + i)(l
-

i)
= 2

(cos + i sin 0)(cos i' sin 6)
= cos2

-f sin2 =
1, etc.

210. The sum, product, or quotient of two complex numbers is,

in general, a complex number of the typical form a + bi.

Let the two complex numbers be x + yi and u + vi.

(1) Their sum is (x -f- yi) -\- (u -\- vi)

= x + yi + u + vi

= x + u + yi + vi

= (x + w) + (y + )i
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by the laws of algebra. This last expression is in the form a + bi.

(2) Their product is (x + yi} (u + vi)

= x(u -|- vi) -f yi (u + vi)

= xu -f xvi + yiu + yivi

= xu + yvi
2 + xvi -+- yui

= (xu yv) + (zy + yu}i

by the laws of algebra. This last expression is in the form a -f- bi.

(3) Their quotient is

x -f- yi (x + yi)(u vi)

u + vi
~

(u -f- 01) (w vi)

By the preceding, the numerator is of the form a! + b'i. By
209, the denominator equals u 1 + v 2

. Then the quotient equals

a' + b'i _ a' b' .

2 | 9
"""~

2 | 4,2 I A 2 1- 2

by distributive law. This last expression is of the form a + bi.

Exercises

Reduce the following expressions to the typical form a + bi;

the student must change every imaginary of the form V - a to the

form i \/a-

1. V - 25 + V - 49 + V - 121 - V - 64 - 6i

3. (x
-

[2 + 3i])(z
-

[2
-

3i]).

4. (- 5 + 12V- I).
2

. 6. (Vl + i)(Vl -
i),

6. (3 4V I)
2

. 7. (Ve V e)
2

.

a 1

2 1 _ {3

9. ; -7= 13.

10. H. -^.
l-V-7 1+2V-3

1 - i
''

2 + V - 1

a + xi a xi

a xi a + xi

23
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211. Irrational Numbers. A rational number is a number that

can be expressed as the quotient of two integers. All other real

numbers are irrational. Thus \/2, \/5, \/7,7r, e, are irrational

numbers. An irrational number is always intermediate in value

to two rational numbers which differ from each other by a number
as small as we please. Thus

1.414 < \/2 < 1.415

1.4142 < v/2 < 1.4143

1.41421 < V2 < 1.41422, etc.

It is easy to prove that \/2 cannot be expressed as the quotient

of two integers. For, if possible, let

(1)

d r is in its lowest terms. Squa

the members of (1) we have

where a and b are integers and r is in its lowest terms. Squaring

2-g (2)

This cannot be true, since 2 is an integer and a and b are prime
to each other.

An irrational number, when expressed in the decimal scale, is

never a repeating decimal. For if the irrational number could be

expressed in that manner, the repeating decimal could be evalu-

ated by 123 in the fractional form .. _ > which, by definition

of an irrational number, is impossible. On the contrary, every

rational number when expressed in the decimal scale is a repeating

decimal. Thus 1/3 = 0.33 ... and 1/4 = 0.25000. . . .

The proof that IT and e are irrational numbers is not given in

this book.

See Monographs on Modern Mathematics, edited by J. W. A.

Young.
The student should not get the idea that because irrat'onal numbers

are usually approximated by decimal fractions, that the irrational

number itself is not exact. This can be illustrated by the graphical

construction of \/2- Locate the point P whose coordinates are (1,1).

Call the abscissa OD and the ordinate DP. Then OP = V2 and

OD -=
1, DP = 1. It is obvious that the hypotenuse OP must be
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considered just as exact or definite as the legs OD and DP. The
notion that irrational numbers are inexact must be avoided.

The process of counting objects can be carried out by use of the

primitive scale of numbers 0, 1, 2, 3, 4, . . . The other numbers
made use of in mathematics, namely,

(1) positive and negative numbers

(2) integral and fractional numbers

(3) rational and irrational numbers

(4) real and imaginary numbers

may be looked upon as classes of numbers that permit the opera-
tions subtraction, division and evolution, to be carried out under all

circumstances. Thus, in the history of algebra it was found that in

order to carry out subtraction under all circumstances, negative num-
bers were required; to carry out division under all circumstances, frac

tions were required; to carry out evolution of arithmetical numbers
under all circumstances, irrational numbers were required; finally to

carry out evolution of algebraic numbers under all circumstances,

imaginaries were required. It will be found that it will not be neces-

sary to introduce any additional form of number into algebra; that

is, the most general number required is a number of the form a + bi,

where a and 6 are positive or negative, integral or fractional, rational

or irrational. This is the most general number that satisfies the fol-

lowing conditions:

(a) The possibility of performing the operations of algebra and
the inverse operations under all circumstances.

(6) The conservation or permanence of the fundamental laws of

algebra: namely, the commutative, associative, distributive and index

laws.

Further extension of the number system beyond that of complex
numbers leads to operators which do not obey the commutative law in

multiplication; that is, in which the value of a product is dependent

upon the order of the factors, and in which a product does not neces-

sarily vanish when one factor is zero. Numbers of this kind the

student may later study in the introduction to the study of electro-

magnetic theory under the head of "Vector Analysis" or in the

subject of "Quaternions." Such numbers or operators do not belong
to the domain of numbers we are now studying.

212. // a complex number is equal to zero, the imaginary and
real parts are separately equal to zero.

Suppose x + y ^ 1 =

then x = y V 1
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Now it is absurd or impossible that a real number should equal

an imaginary, except they each be zero, since the real and imagi-

nary scales are at right angles to each other and intersect only at

the point zero.

Therefore: x = and y =

// two complex numbers are equal, then the real and the imaginary

parts must be respectively equal.

For if

then

x + yi = u + vi

(x u) + (y v)i
=

Whence, by the above theorem,

x u = and y v =

That is. x = u and y

213. Modulus. Let the complex number x -f yi be constructed,

as in Fig. 141, in which OA = x and AP =
yi. Draw the Jine

OP, and let the angle AOP be called 0.

The numerical length of OP is called the modulus of the complex

number x + yi. It is algebraically represented byVz 2 + y
2
,

or by \x + yi\. Thus, mod (3 + 4i)
= V9 + 16 = 5.

The student can easily see

that two conjugate complex
numbers have the same modu-

lus, which is the positive value

of the square root of their

product.

If y =
0, the mod (x -f yi)

= Vz2 =
\x\, where the

rtical lines indicate that

merely the numerical or

absolute value of x is called for. Thus the modulus of any real

number is the same as what is called the numerical or absolute

value of the number. Thus, mod (5) =5.

214. Amplitude. In Fig. 141 the angle AOP or 6 is called the

argument or amplitude or simply the angle of the complex number

x + yi.

FIG - 141
Nu

d
mb
ArIitudeof
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Putting r = Vz 2 + y*
= mod (x + yi), we have

sin 6 = ~
r

cos 6 =
^

Therefore,

x -{- yi = r cos + zr sin = r(cos + i sin 0)

in which we have expressed the complex number x + yi in terms of

its modulus and amplitude.
To put 3 4i in this form, we have:

mod (3
-

4i) = "N/9 + 16 =
5; sin 6 = = -

|; cos 6 = = 1
r o TO

Therefore,

The amplitude is tan"1

(
c
)

>
and is in thefourth quadrant. Why ?

It is well to plot the complex number in order to be sure of the ampli-
tude 0. It avoids confusion to use positive angles in all cases. For

example, to change 3 V~3~>i to the polar form, plot the point

(3,
- V~3) and find from the triangle that r = 2 Vl5 and = 330.

Hence
3 - ^"3 i = 2VlS (cos 330 + i sin 330)

The amplitude of all positive numbers is 0, and of all negative
numbers is 180. The unit expressed in terms of its modulus and

amplitude is evidently l(cos + i sin 0).

215. Vector. The point P, located by OA + AP or x + yi,

may also be considered as located by the line or radius vector OP;
that is, by a line starting at 0, of length r and making an angle 6

with the direction OX. A directed line, as we are now considering

OP, is called a vector. When thus considered, the two parts of the

compound operator

r (cos + i sin 0) (1)

receive the following interpretation : The operator (cos + i sin 0) ,

which depends upon alone, turns the unit lying along OX
through an angle 0, and may therefore be looked upon as a

versor of rotative power 0. The versor (cos + i sin 0) is often

abbreviated by the convenient symbol cis 0. The operator r

is a tensor, which stretches the turned unit in the ratio r : 1. The
result of these two operations is that the point P is located r units

from in a direction making the angle with OX.
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The operator (1) above is also represented by the notation

(r, 0), for example (5, /30). Expression (1) is called the polar
form of the complex number (x-\- iy).

Thus, the operator (cos 6 + i sin 6} is simply a more general

operator than i, but of the same kind. The operator i turns

a unit through a right angle and the operator (cos + i sin 8)

turns a unit through an angle 6. If 6 be put equal to 90,
cos 6 -f- i sin 9 reduces to i.

For: 6 =
0, cos + i sin 6 reduces to 1

6 = 90, cos Q -\- i sin 9 reduces to i

9 = 180, cos 9 + i sin 9 reduces to - 1

9 = 270, cos 9 + i sin 9 reduces to - i

Since 3 - 4i = 5(| fi) the point located by 3 - 4i may be

reached by turning the unit vector through an angle 9 =
sin-1 (4/5) = cos" 1

3/5 and stretching the result in the

ratio 5:1.

// a complex number vanishes, its modulus vanishes; and con-

versely, if the modulus vanishes, the complex number vanishes.

If x + yi = 0, then x = and y =
0, by 212. Therefore,

Vz2 + 7/
2 = 0. Also, if Vs* + y

2 =
0, then x z + tf = 0, and

since x and y are real, neither z 2 nor y
2

is negative, and so their

sum is not zero unless each be zero.

// two complex numbers are equal, their moduli are equal, but if

two moduli are equal, the complex numbers are not necessarily equal.

If x + yi = u -\- vi, then x u and y = v by 212.

Therefore, Vz2 + y* = Vw* + v*

But if Vx2 + y
2 = Vw2

-f y 2
, obviously z 2 need not equal

u 1 nor y
2 = vz

.

216. Sum of Complex Numbers. Let a given complex number

locate the point A, Fig. 142, and let a second complex number
locate the point B. Then if the first of the complex numbers be

represented by the radius vector OA and if the second complex
number be represented by the radius vector OB, the sum of the two

complex numbers will be represented by the diagonal OC of the

parallelogram constructed on the lines OA and OB. This law of

addition is the well-known law of addition of vectors used in physics

when the resultant of two forces or the resultant of two velocities,
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two accelerations, or two directed magnitudes of any kind, is to be

found.

The proof that the sum of the two complex numbers is repre-

sented by the diagonal OC is very simple. Let the graph of the first

complex number be ODi + DiA and let that of the second be OD 2

-f- D 2B. To add these, at the point A construct AE = OD2 and

EC = D 2B. Then the sum of the two complex numbers is geo-

metrically represented by ODi -f DiA -{- AE + EC, or by the

radius vector OC which joins the end points. Since, by construc-

tion, the triangle AEC is equal to the triangle ODB, therefore AC

FIG. 142. Sum of Two Complex Numbers.

must be equal and parallel to OB, so that the figure OACB is a

parallelogram, and OC, which represents the required sum, is the

diagonal of this parallelogram, which we were required to prove.

Exercises

Find algebraically the sum of the following complex numbers, and
construct the same by means of the law of addition of vectors.

1. (1 + 2t) + (3 + 4i).

2. (1 + i) + (2 + i).

3. (1
-

i) + (1 + 2i).

4. (3
-

4i)
-

(3 + 4i).

6. (- 2 +i) + (0
-

4i).

6. (- 1 + i) + (3 + i) + (2 + 2i).
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7. (2 -i) + (-2 +i) + (1 +<).
8. Find the modulus and amplitude (in degrees and minutes) of

2 (cos 30 + i sin 30) + (cos 45 + i sin 45).
9. By the parallelogram of vectors, show that the sum of two con-

jugate complex numbers is real.

10. If R be the sum of the complex numbers z\ = xi + iy\, z 2
=

2 + iyz, z z
= x 3 + yzij etc., show that R, z if z 2 , t, . . . form the

sides of a closed polygon.

217. Polar Diagrams of Periodic Functions. Three methods of

representing simple periodic phenomena have already been ex-

plained: (1) Crank or clock diagrams as shown in Fig. 128 and

explained in 184; (2) the sine curve or sinusoid in rectangular

coordinates, as shown in Fig. 59 and explained in 55;

(3) polar diagrams, in which the circle (twice drawn) corresponds
to a crest and trough of the sine curve, as shown in Fig. 63 and

explained in 64. As the principal application of these methods
is to phenomena that vary with the time, one of the variables

may conveniently be taken to represent time or a constant multi-

ple of time. Thus the angle 6 in the crank and polar diagrams or

the abscissa in the Cartesian diagram, may be represented by
a constant multiple of t as coZ.

The difference between a clock diagram and a polar diagram
of a simple periodic function may be stated as follows: In a

clock diagram, a rotating vector of fixed length OP is continu-

ously projected upon a fixed line OX', in a polar diagram, a

stationary line of fixed length OA is continuously projected

upon a rotating radius vector OP. See Figs. 52 and 63.

Each of the three methods possesses a peculiar advantage of its

own, but probably the best insight with regard to periodic phe-

nomena is given by the polar diagram. In each, the complete

period of the phenomena is represented by one complete revolution

of the radius vector. The polar method is not only well adapted
to represent simply varying periodic phenomena, in which case the

polar diagram is a circle passing through the origin, but it is

equally well adapted to represent cases in which the periodic

motion is compounded from a number of simple harmonics. In

many important cases in science, especially in the phenomena of

alternating electric currents, only the odd harmonics are commonly

present as components of the resulting motion. The equation of
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compound harmonic motion in rectangular coordinates, in which

only odd harmonics appear, is of the form:

y = a\ sin cot + a 3 sin Scot -f a 5 sin Scot +-.-.. (1)

in which 01, a 3 . . . are any constants and in which cot has re-

placed z. If the epochs
1 of the various harmonics be 1,

Z 3,s,

the proper form of the equation would be:

y = ai sin <t)(t ti) + 3 sin 3co(t 3 ) + ds sin 5co(t t 5)

+ . (2)

A curve of type (1) or (2) must represent a pattern within the inter-

val wt = TT to at = 2ir which is the opposite of the pattern pre-

sented within the interval cot = to cot = TT; for increasing cot

by the amount TT in each of the components:

sin cot, sin 3 cot, sin Scot . . .

of the compound motion has the effect of changing the algebraic

sign of each term, but leaves the absolute value unchanged. This

is because the sine curve, and all of the odd harmonics of the sine

curve, are just reversed in sign by adding a straight angle (180)
or an odd number of straight angles to the original angle. Hence

y has the same sequence of values, but of opposite signs, within

each of the two half-intervals of the period 2ir. Fig. 143 illustrates

this. The curve A is the graph of an alternating current wave

(after Fleming) in rectangular coordinates, while the same func-

tion is shown in polar coordinates by curve B. It is observed that

the second portion of the Cartesian curve is exactly similar to the

first portion, except that its position with reference to the z-axis

is reversed. In the polar diagram this truth is brought out by
the fact that the loop that represents the "trough" of the wave
is identical with the loop that represents the "crest" of the wave,
that is, the curve is twice drawn to represent the interval of a

complete period from cot = to at = 2ir.

If only even harmonics are present, the equation of the curve in

rectangular coordinates is of the form:

y =
o + d z sin 2cot + a 4 sin 4co + . . . (3)

or, if the epochs are not zero,

y = do + a>z sin 2u(t J 2) + 4 sin 4co(Z k) + (4)

1 This expression insteed of "epoch angle" is the proper term in this case as t is

measured in units of time and not in angular measure. The epoch angles are ut i ,

ojfz, etc.
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Because of the factor 2 in each harmonic term, the period of the

function may be considered TT instead of 27r, so that the sequence of

values of y are repeated in each interval to TT, TT to 2ir, etc., and

not reversed in sign as in the case of the odd harmonics.

The fact that the pattern for each interval TT is repeated right

side up and not reversed is illustrated by the graph of

y = I + sin 2co -f sin 4coZ (5)

FIG. 143. Rectangular and Polar Alternating Current Curves. (After

Fleming.)

shown in Fig. 144. The effect of the constant term is, of course,

merely to raise the graph a distance of one unit.'

Inform, curves with only even harmonics present do not differ

from curves with both odd and even, for substituting t' = 2t, the

general case (equation (3)) becomes:

y = aQ + a 2 sin ut
f + a 4 sin 2co' + a 6 sin 3coZ' + . . . (6)

which contains both odd and even harmonics in t'
t
and is of period

27T. The curve (3) is of the same shape as (6) but of period TT.
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A curve made up of both odd and even harmonics may have any
form consistent with its one-valued and continuous character. The

portion of the curve above the z-axis (if any) need not have the

same form as the part below; the only essential is that the curve for

A

Fig. 144. Graph of y = sin 2 wt -f- sin 4 ut.

each successive interval of 2?r be a repetition of the curve in the

preceding interval.

In polar coordinates, a curve made up of only even harmonics

is described but once as 9 varies from to 360. In general such

FIG. 145. Graph of p = sin 20 + sin 40.

curves have more "loops" than curves made up of odd harmonics,
for the loops of the odd harmonics are twice drawn as 6 varies

from to 360. Thus the curves:

p = sin 6, p = sin 3d, p = sin 50, . . .
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have 1, 3, 5, . . . loops respectively each twice drawn. The
curves

p = sin 20, p = sin 40, p = sin 60, ...
have 4, 8, 12, ... loops respectively, each once drawn.

Also the curve:

p = sin 20 + sin 40 (7)

is represented by the heavy curve of Fig. 145 as varies from to

180 and by the dotted curve as varies from 180 to 360. The

,
A A A ^ -t^

Y v: v v

FIG. 146. Curves made up of Odd Harmonics only, of Even
Harmonics only, and of Both.

numbered points 1, 2, 3, 4, . . . of Fig. 145 correspond to the

similarly numbered points in Fig. 144. The curves of Fig. 144

and Fig. 145 correspond, except that the constant term was

omitted from the equation in constructing Fig. 145.

Exercises

1. If / be the frequency of the fundamental harmonic, show that :

y = sin 2wft + sin Qwft + sin IQirft + .

contains odd harmonics only.
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2. Write an expression containing even harmonics only, using the

frequency / as in the last exercise.

3. How many loops has:

p = cos 50', P = sin 60;

P = cos 7
(0
-

^j ;
p = sin 40?

4. In the diagram, Fig. 146, pick out curves made up of odd

harmonics only, of even harmonics only, and those made up of both

odd and even harmonics.

218.* Simple Periodic Variation Represented by a Complex
Number. Fluctuating magnitudes exist that follow the law of

S.H.M. although, strictly speaking, such magnitudes can be said

to be "
simple harmonic motions" in only a figurative sense. For

example we may think of the fluctuations of the voltage or amper-

age in an alternating current as following such a law. Thus if

E represent the electromotive force or pressure of the alternating

current, then the fluctuations are expressed by

E = EQ sin ut

or by
E = EQ sin 2Trft

where / is the frequency of the fluctuation. Instead of S.H.M.

such a variable is more accurately called a sinusoidal varying

magnitude, although for brevity we shall often call it S.H.M.

The graph in rectangular coordinates of such a periodic function

is often called a "wave," although this term should, in exact

language, be reserved for a moving periodic curve, such as y =

a sin (hx kt).

If the polar representation

p = a sin co( 1) (1)

of the sinusoidal varying magnitude be used, then, as noted in the

last section, the graph of (1) is a circle of diameter a inclined the

angular amount cotfi to the left of the axis OY, as is seen at once

by calling u>t = 6 and coi = a in the equation of the circle p =
a sin (8 a) . The circle can be drawn when the length and di-

rection of its diameter are known; that is, the circle is completely

specified when a and the direction of a (told by a) are given.

Therefore the simple harmonic motion is completely symbolized
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by a vector OA of length a drawn from the origin in the direction

given by the angle coiij the direction angle of the vector OA is

,
7T . 7T

a + - or co*! + -.

The circle on the vector OA is located or characterized equally
well if the rectangular coordinates (c, d) of the end of the diameter

of the circle be given. But the complex number c -f di is repre-

sented by a vector which coincides with the diameter a of this

circle. Hence we may represent the circle by the complex num-

ber c -f di. Its modulus is a = Vc 2 + d z and its amplitude is

a +
2

Therefore if in (1) we take a = Vc 2 + d 2
, wt\ = a and

the variable angle ut = 6, we can completely determine the S.H.M.

by the complex number c + id. In the theory of alternating cur-

rents the sinusoidal varying current or voltage can conveniently be

represented by a complex number, and that method of repre-

senting such magnitudes is in common use.

One of the advantages of representing S.H.M. by a vector or by
a complex number is the fact that two or more such motions of

like periods may then be compounded by the law of addition of

vectors. This method of finding the resultant of two sinusoidal

varying magnitudes of like periods possesses remarkable utility

and simplicity.

To summarize, we may say:

(a) A sinusoidal varying magnitude is represented graphically

in polar coordinates by a vector, which by its length denotes the

amplitude and by its direction angle with respect to OY denotes the

epoch angle.

(6) Sinusoidal varying magnitudes of like periods may be

compounded or resolved graphically by the law of parallelogram of

vectors.

If two sinusoidal varying magnitudes of like periods are in

quadrature (that is, if their epoch angles differ by 90), their rela-

tion, neglecting their epochs, can be completely expressed by a sin-

gle complex number. Thus let two S.H.M. in quadrature

E = 113 sin u(t
-

<i) (2)

and

Ec
= 40 cos u(t

-
ti) (3)
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be represented by the circles and by the vectors marked OE and

OEC) Fig. 147. Call the resultant of these E>. Then

Ei = 113 sin w( - h) -f 40 cos (
-

ti) (4)

= V402 + 113 2 sin co(<
-

* 2)

= 120 sin w(*
-

Z 2) (5)

where co 2 is measured as shown in Fig. 148. Instead of represent-

ing (2) and (3) in the polar diagram by OE and OEC and their

FIG. 147. Composition of Two S.H.M. in Quadrature by Law of Addi-
tion of Vectors.

resultant by OE{ ,
we may represent (2), (3) and (4) in the complex

number diagram, Fig. 148, by E
,
iEc and E + iEc, respectively.

Since the modulus and amplitude of E -f- iEc are V# 2
-f E<?

and a, respectively, and since the epoch angle of the resultant in

Fig. 147 is o> 2
= coi a, we can state the resultant as follows:

// we have given two S.H.M.'s in quadrature and take the ampli-
tude of the one possessing the greater epoch angle as c and the

amplitude of the other S.H.M. as d, and construct the complex
number c + di, then this complex number c + di completely

characterizes both of the S.H.M' s. and their resultant. For, we can
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determine the modulus p and the amplitude a of c -f di and then

if uti is the epoch angle of the motion with amplitude c, the epoch

angle of the resultant is otfi a.

If we consider the two harmonic motions:

p =
0,1 sin co( 1)

and

p = a z sin u(t t2)

then if ti be greater than t2 the first S.H.M. reaches its maximum
value after the second reaches its maximum. The first S.H.M. is

therefore said to lag the amount

(ti tz) behind the second

S.H.M. That is, a S.H.M. rep-

resented by a circle located

anticlockwise from a second

circle represents a S.H.M. that
FIG. 148. Complex Number / hphind thp sppnnH

Representation of the facts shown lagS

by Polar Diagram, Fig. 147. 219.* Illustration from Alter-

nating Currents. The steady
current C flowing in a simple electric circuit is determined by
the pressure or electromotive force E and the resistance R ac-

cording to the equation known as Ohm's law:

C E
C =

R
or,

E = CR
E is the pressure or voltage required to make the current C flow

against the resistance R. If the current, instead of being steady,

varies or fluctuates, then the pressure CR required to make the

current C flow over the true resistance is called the ohmic voltage
or ohmic pressure. But a changing or fluctuating current in an

inductive circuit sets up a changing magnetic field around the cir-

cuit, from which there results a counter electromotive force or

choking effect due to the changing of the current strength. This

electromotive force is called the reactive voltage or reactive pres-
sure. The choking effect that it has on the current is known as the

inductive reactance. In case of a periodically changing current it

acts alternately with and against the current. Opposite to the
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reactive voltage there is a component of the impressed voltage

that is consumed by the reactance. See Fig. 149.

The pressure which is at every instant applied to the circuit

from without is called the impressed electromotive force or vol-

tage. Of the three pressures namely, the impressed voltage, the

ohmic voltage (consumed by the resistance) and the reactive vol-

tage consumed by the inductive reactance, any one may always be

regarded as the resultant of the other two. Hence if in a polar

diagram the pressures be represented in magnitude and relative

phase by the sides of a parallelogram, the impressed voltage may
be regarded as the diagonal of a parallelogram of which the other

two pressures are sides. Since, however, the reactance or the

counter inductive pressure depends upon the rate of change of the

current, it lags, in the case of a sinusoidal current, 90 behind the

true or ohmic voltage, which last is always in phase with the

current. The pressure consumed by the counter inductive pres-

sure therefore leads the current by 90. Thus, in the language of

complex numbers

Et = E -f iE c (1)

in which

Ei = impressed pressure

E = ohmic pressure, or pressure consumed by the

resistance

Ec
= counter inductive pressure, or the pressure con-

sumed by reactance

It is found that the counter inductive pressure depends upon a con-

stant of the circuit L called the inductance and upon the angular

velocity or frequency of the alternating impressed pressure, so that:

Ec
= 2irfLC = uLC

Hence (1) may be written:

E t
= RC + itorfLC (2)

= RC + iuLC (3)

The modulus of the complex number on the right of this equation is

C Vfl 2 + co
2L 2

24



370 ELEMENTARY MATHEMATICAL ANALYSIS [219

Considering, then, merely the absolute value \E \
and \C\ of

pressure and current, we may write:

co
2L2

(4)

From the analogy of this to Ohm's law:

the denominator V.R 2 + co
2L2

is thought of as limiting or restrict-

ing the current and is called the impedance of the circuit.

Let there be a condenser in the circuit of an alternator, but let

the circuit be free from inductance. Then besides the pressure

consumed by the resistance, an additional pressure is required at

any instant to hold the charge on the condenser. If K be the ca-

pacity of the condenser, it is found that that part of the pressure
C C

consumed in holding the charge on the condenser is
<> trr or ^

and is in phase position 90 be-

hind the current C. The chok-

KJ ing effect of this on the current

may be called the condensive

reactance. When a condenser

is in the circuit in addition to in-

ductance, the total pressure con-

FIG. 149. Complex Number Dia-

gram of Equation 5, 219
sumed by the reactance has the

form:

1
"

ZirfK

and the complex number that symbolizes the vector is

(5)

(see Fig. 149).

Further illustrations of the applications of complex numbers to

alternating currents is out of place in this book. The illustrations

are merely for the purpose of emphasizing the usefulness of these

numbers in applied science. An interesting application of the use

of complex numbers to the problem of the steam turbine will be

found in Steinmetz's "Engineering Mathematics," page 33.

I
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Exercises

1. Draw the polar diagram and complex number representation
of Ei if R =

5, C =21, / =
60, L = 0.009, K = 0.005.

2. Draw a similar diagram if Ei = 100, E = 90, / = 40, L =

0.008, K = 0.003.

220. Product of Complex Numbers. The product of two or

more complex numbers is a complex number whose modulus is the

product of the moduli and whose

amplitude is the sum of the am-

plitudes of the complex numbers.

Let the complex numbers be:

zi = xi + y\i

= ri (cos 0i + i sin 0i)

z 2
= x 2 + y 2i

= r 2 (cos 2 + i sin 2), etc.

By actual multiplication, we

get:

2lZ2 = r lr l [(COS 0i COS 02

sin 0i sin 02)

+ (sin 0i cos 2 + cos 0i sin0 2)i]

= rir2 [cos (0i + 2)

+ i sin (0i + 2)]

Whence it is seen that r*ir2 is

the modulus of the product and

(0i + 02) is the amplitude.

The above theorem is illustrated

by Fig. 150. If the two given complex numbers be represented

by their vectors OP\ and OP2 ,
their product will be represented

by the vector OP 3 whose direction angle is the sum of the ampli-
tudes of the two given factors, and whose length OP 3 isjfche product
of the lengths OPi and OP 2 .

The figure represents the product (2 + 2i}(\/3 + i). Expressed
in terms of modulus and amplitude these may be written:

V3 + i = 2 (cos 30 + i sin 30)
2 + 2i = 2V2(cos 45 + i sin 45)

Hence ri =2, r 2
= 2V2, 0i = 30, 2

= 45

Therefore: (2 + 2i)(V3 + i)
= 4V2 (cos 75 + i sin 75)

FIG. 150. Product of Two Com-
plex Numbers.
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Exercises

Find the moduli and amplitudes of the following products, and
construct the factors and products graphically. Take a positive angle
for the amplitude in every case.

2. (2 + |V3t)(2 + 2t).

3. (V3+3i)(2-2i).
4. (1 + i).

5. (2 -2V30CV3 +3t).

6. (1
-

t)
4

.

7. (1 + i)
2
(l -;) 2

.

8. 2 (cos 15 + i sin 15) X 3 (cos 25 + i sin 25).
Find numerical result by use of slide rule or trigonometric tables.

9. 2(cos 10 + i sin 10) X (1/3) (cos 12 + i sin 12) X 6(cos 8

+ i sin 8).

10. Find the value of 4V2(cos 75 + i sin 75) -r- (V3 + i).

221. Quotient of Two Complex Numbers. The quotient of

two complex numbers is a complex number whose modulus is the

quotient of the moduli and whose amplitude is the difference of the

amplitudes of the two complex numbers. Let the complex numbers

be:

Zi = xi + y\i
= n (cos 0i + i sin 0i)

z 2
=

2 + 2/2*
= r2 (cos 2 + i sin 2)

We have:

Zi ri(cos 0i + fr'sin 0i)(cos 2 isin 2)

22
~

r 2(cos 02 4- i sin 2) (cos 2 i sin 2)

= rjcos (0!
-

2) + i sin (0i
-

2)]

r2 (cos
2

2 + sin2
2)

= [cos (0i
-

2) + t sin (0!
-

2)]

Whence it is seen that is the modulus of the quotient and

(0i 2) is the amplitude.
In Fig. 151, the complex number represented by the vector OPi

when divided by the complex number represented by OP2 yields

the result represented by OP 3 ,
whose length ri/r a is found by dividing

the length of OPi by the length of OF2 ,
and whose direction angl
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is the difference (0i 2 ) of the amplitudes of OPi and OP 2 . The

figure is drawn to scale for the case:

Exercises

Find the quotient and graph the result in each of the following
exercises. Always take amplitudes as positive angles and if

2 < 0i, take 0i + 360 instead of 0i.

FIG. 151. Quotient of Two Complex Numbers.

1. (1 + V3i) -^ (2 + V2i).

2. ( + \ V3i) + ( V2 -
A/2i).

3. (3 V3 -
3t) -s- (

- 1 + V3 1).

4. (1
- V3 1) -s- t.

5. 2 (cos 36 + i sin 36) 4- 5 (cos 4 + i sin 4).

6. 12 (cos 48 + i sin 48) -5- [2 (cos 15 + i sin 15)

3 (cos 9 + i sin 9)].

[4+

8. Express in terms of a, 6, c, d the amplitude of (a + bi) -J- (c + di).

222. De Moivre's Theorem. As a special case of 220 consider

the expression:

(cos 6 -f i sin 0)
n
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This being the product of n factors like (cos 6 + i sin 6), we write,

by means of 220 :

(cos 6 + i sin 0) (cos -+ i sin 0) . . .

= [cos (6 + 6 + . . . ) + i sin(0 + + . . . )]

or:

(cos -M sin 0) = (cos nd + i sin n6) (I)

which relation is known as De Moivre's theorem.

De Moivre's theorem holds for fractional values of n. For, first

consider the expression:

(cos B + i sin 0)
v '

where the power \/t of cos + i sin is, by definition, an oper-

ator such that its tth power equals cos + i sin 0.

Put =
t4>, so that =

7
t

Then: (cos + i sin 0)
Vt = (cos t<f> + i sin ty)

1
/'

= [(cos + i sin 0)<]
v'

by (1)

= cos (f) -}- i sin

= cos - + i sin -
(2)

o

Next consider the case in which n = -r- We know:

(cos + i sin 0)'
7' = [(cos 6 + i sin. 0)

8
)]
v '

= (cos s0 + i sin s0)
Vt

by (1)

9/9 9/9

= cos -.- + i sin . by (2) (3)

Likewise the theorem may be proved for negative values of n.

The following examples illustrate the application of De Moivre's

theorem.

(1) Find (3 + i V3) 4
.

write: 3 + *V3 = 2 V3(cos 30 + i sin 30)

Then, by De Moivre's theorem:

(3 + i V3) 4 = 144(cos 120 + i sin 120)

= 144 (
- 1/2 +

= -72 + 72 V3i

(2) Find (2 + 2i)".
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Write: 2 + 2i in the form:

2 +2i = 2

(2 + 2i)
u = (2 V2)n (cos 45 + i sin 45) "

= (2 V2)"(cos 495 + i sin 495)

= (2 V2)"(cos 135 + i sin 135)

= (2 V2)"( -
i V2 + V2i)

= 2"(- 1 +i)

Exercises

Evaluate the following by De Moivre's theorem, using trigonometric

table or slide rule when necessary.

1. (8 + 8 VSi')*
12

.

2. 3/27 (cos 75 - i sin 75).

3.

4. [cos 9 + i sin 9] 10
.

6. (3 + V3i)
6

.

6. [1/2 +' (1/2) V3i]
4

.

7. (1 + i)
8

.

8. (-2 +2i)H.

9. [(1/2) V3 -
(l/2)i].

10. Find value of (
- 1 + V - 3)

5 + (
- 1 - V - 3)

5 by De
Moivre's theorem.

11. Find the value of x* - 2x + 2 for x = 1 + i.

12. If jx = - 1/2 + (1/2) V - 3 and jt
= -1/2 -

(1/2) V~^3J
show that j i

3 =
1, jj

3 =
1, ji

2 =
J2, J2

2
=ji, ji

8B = j2" =
1,

ji'"
+1 =

3\.

223. The Roots of Unity. Unity may be written:

1 = cos + i sin

1 = cos 27r -f- i sin 2ir

1 = cos 4?r + i sin 4r

1 = cos 6V + i sin far

and so on. By De Moivre's theorem the cube root of any of these



376 ELEMENTARY MATHEMATICAL ANALYSIS [223

is taken by dividing the amplitudes by 3. Therefore, from the

above expressions in turn there results:

VI = cos + i sin = 1

VI = cos (27T/3) + i sin (2ir/3) = cos 120 + i sin 120

VI = cos (47T /3) + i sin (47r /3)
= cos 240 + i sin 240

_
= -1/2 -

t(l/2)x/3

VI = cos 6?r /3 -f i sin 6?r /3
= same as first, etc.

FIG. 152. The Cube Roots of Unity.

Therefore there are three cube roots of unity. Since these are the

roots of the equation x 3 1 = 0, they might have been found by

factoring, thus:

a:
3 - 1 = (x

-
l)(x* + x + 1)

= (x
-

l)(x + 1/2 + iVSiX* + 1/2
-

i>/3i)

The three roots of unity divide the angular space about the point
into three equal angles, as shown in Fig. 152. In the same

way, it can be shown that there are four fourth roots, five fifth

roots, etc., of unity and that the vectors representing them have

modulus 1 and amplitudes that divide equally the space
about 0.
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To find all of the roots of any complex number, proceed as in the

following illustrative examples.

(1) Find V\/3 + 3i.

Write V3 + 3^ in the form:

V3 + 3^ = 2>/3(cos 60 + i sin 60)

Hence, by De Moivre's theorem:

(V3 + 3i)^ = \/12 (cos 30 + i sin 30)
= </12 [(1/2) V3 + (l/2)i]

= (l/2)\/108 + (l/2)</12 i

A second root can be found by writing:

V3 + 3i = 2\/3[cos (60 + 360) + i sin (60 + 360)]

since adding a multiple of 360 to the amplitude does not change the

value of the sine and cosine. In applying De Moivre's theorem
there results:

(V3 + 3i)>* = Y/12 (cos 210 + i sin 210)

= \/12[ - (1/2)V3 -
(l/2)i]

(2) Find the cube root of "V/2 + V2.
We write:

- V2 + i V2 = 2(cos 135 + i cos 135)
= 2[cos (135 J+ 'n360) + i cos (135 + n360)]

in which n is any integer. Hence:

(- V2 + i V2)^ = i/2[cos (45 + n!20) + i sin (45 + w 120)]^

= ^/2(cos 45 + i sin 45) for n =

= ^/2(cos 165 + i sin 165) for n = 1

= V2(cos 285 + i sin 285) for n =2
These are the three cube roots of the given complex number. For

n = 3 the first root is obtained a second time.

Exercises

Find all the indicated roots of the following :

1. (8 + 8V3'i).

2. \/27(cos75 -i sin 75^

3.
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4. (
- 2

6. (2 +
6. 32 H.

7. \/512.

8. Find to four places one of the imaginary 7th roots of + 1.

NOTE: Cos 51 25.7' + i sin 51 25.7' = 0.6235 + 0.7818 i.

224. Inverse Functions. The exponent ( 1) attached to a sym-
bol of operation signifies the "undoing" of the operation denoted

by the symbol of operation. The number of different operations
in mathematics is an even number; that is, for every operation we

define, we may, and usually do, define the operation that "un-

does" the given operation. Thus if we define addition, we at once

follow it by defining the undoing of addition, or subtraction; if

we define multiplication, we follow it with the concept of

the undoing of multiplication, or division; if we define in-

volution, or the raising to powers, we also define the undoing of this

operation, namely evolution, or the extraction of roots. The
second of each of these pairs of operations is called the inverse

of the first operation, and vice versa.

The exponent ( 1) attached to any symbol of operation is defined

to mean the inverse of the operation called for by the symbol to

which it is attached. Thus 2" 1 is not a doubter; the operation

called for is the "undoing" of doubling, or halving. The symbol

log"
1

x, read the "anti-logarithm of x" calls for the number of

which x is the logarithm. Thus, if the base be 10, log"
1 2 = 100,

log-
1 3 = 1000, log-

1 0.3010 = 2, log-
1 1 = 10, log-

1 0=1, etc.

Since "log-
1 "

is the symbol of undoing the operation indicated

by "log," the double symbol (log-
1
log) must leave the oper-

and unchanged. The operator that leaves an operand unchanged
is unity. Hence a double symbol like (log-

1
log) can always be

replaced by 1; thus log-
1
log 467 = 467; also log log-

1 467 = 467.

Likewise S-^S-l =
1; (VS)-

1-^)-! =
1, etc.

An important use of the present notation is in the symbols sin"1
x,

cos"1
x, tan

- 1

x, etc., used in 70. These are read "anti-sine of

x," "anti-cosine of a," etc., or "the angle whose sine is x," "the

angle whose cosine is x," etc. Thus sin- 1
(1 /2) = 30, tan- 1
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= 45, cos- 1 = TT /2, etc. Note that log-
1 x must be care-

fully distinguished from (log re)"
1

,
which means I/log x; simi-

larly, sin- 1 x must be distinguished from (sin x)- 1
. A notation

like log x~l
is ambiguous, and should never be used.

If we write r = cos 6, y = log x, y = tan x, the same func-

tional relations may be expressed in the inverse notation by
6 = cos- 1

r, x = log"
1
y, x = tan" 1

y. Thus y = ax
,
x = log ay,

y = logo"
1

x, and y =
exp<,x are four ways of expressing the

same relation between x and y.

Any relation expressed by means of the direct functions may also

be expressed in terms of the inverse functions. Thus we know:

log (xy) = log x + log y (I)

Let log x =
a, log y =

b, then it follows that:

x = log-
1
a, y = log"

1 b

Hence (1) becomes:

log (log"
1 a log"

1
6)

= a + b

or:

log'
1 a log'

1 b = log-
1
(a + 6) (2)

Likewise consider:

sin (a + /3)
= sin a cos /3 -f- cos a sin /3 (3)

Let sin a = a and sin /3
= 6

then: a = sin" 1
a, /3

= sin" 1 b

Also since sin a = a

cos a = Vl a 2

Likewise:

cos /3
= Vl 6 2

Hence (3) may be written:

sin (sin-
1 a + sin- 1

6)
= aVl - 6 2 + fcVl - a2

or:

sin" 1 a + sin' 1 b = sin' 1 (aVl - b 2 + 6 Vl - a2
)

Since there are many angles whose sine is equal to a given
number x, it is desirable to specify by definition which angle
is meant. The following conventions are therefore useful:

sin" 1 x means the angle between 90 and -f 90 whose

sine is x.
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cos"1 x means -the angle between and 180 whose

cosine is x.

tan" 1 x means the angle between 90 and + 90 whose

tangent is x.

Exercises

1. Show that sin" 1
(1/2) + sin" 1 Vl/2 = &r/12.

2. Show that sin" 1 x + cos" 1 x + cos" 1 x = x/2.

3. Is there any difference between the graph of y = f(x) and the

graph of x = f~
l
(y)1

4. Prove that tan"^ + tan" 1
(1/x) =

Tr/2.
1

6. Find the value of x in the equation sin" 1 x + sin"1 2x =
ir/3.

6. If/(z) = x\ find/-^).

Let y = f(x) = x 5
. _Then x = J"

1 ^) = \A/- Hence if f-
[
(y) =,

-V/y, then /"'(*) = Vx.
7. If/(x) =e-, find/"

1
^).

8. What is the inverse of /(0) =1-0?
Let y = /(), so that 6 = /"Hy), etc.

9. Show that the function

x + l

y= ^l
is its own inverse.

1 The symbol (
=

) may here be interpreted as meaning "congruent to."



CHAPTER XII

LOCI

225. Parametric Equations. The equation of a plane curve is

ordinarily given by an equation in two variables, as has been amply
illustrated by numerous examples in the preceding chapters. It

is obvious that a curve might also be given by two equations con-

taining three variables, for if the third variable be eliminated from

the two equations, a single equation in two variables results.

When it is desirable to describe a locus by means of two equations
in three variables the equations are known as parametric equations,
as has already been explained in 74. Two of the variables usu-

ally belong to one of the common coordinate systems and the third

is an extra variable called the parameter. In applied science the

variable time frequently occurs as a parameter.
The parametric equations of the circle have already been written.

They are:

x = a cos (1)

y = a sin 6

where the parameter 6 is the direction angle of the radius vector

to the point (x, y). Likewise the parametric equations of the

ellipse have been written:

x = a cos B (2)

y = b sin 6

and those of the hyperbola have been written:

x = a sec (3)

y = b tan

In harmonic motion, the ellipse was seen to be the resultant of

the two S.H.M. in quadrature:

x = a cos a>t (4)

y = b sin ut

Here the parameter t is time.

226. Problems in Loci. It is frequently required to find the

equation of a locus when a description of the process of its genera-
tion is given in words, or when a mechanism by means of which the

381
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curve is generated is fully described. There is only one way to

gain facility in obtaining the equations of curves thus described,

and that is by the solution of numerous problems. Sometimes

it is best to seek the parametric equations of the curve, but

sometimes the ordinary polar or Cartesian equation can be ob-

tained directly. The following problems are illustrative:

(1) A straight line of constant length a + b moves with its ends

always sliding on two fixed lines at right angles to each other. Find

the equation of the curve described by any point of the moving
line. (See 75.)

FIG. 153. Generation of So-called "Elliptic Motion."

In Fig. 153, let AB be the line of fixed length, and let it so move
that A remains on the re-axis and B remains on the y-axis. Let any

point of this line be P whose distance from A is 6 and whose distance

from B is a. If the angle X'AB be called 6, then PD, the ordinate of

P,is:

y = b sin 8

and OD, the abscissa of P, is:

x = a cos 6

Therefore P describes an ellipse of semi-axes a and b.

(2) A circle rolls without slipping within a circle of twice the

diameter. Show that any point attached to the moving circle 1

describes an ellipse.

1 "Circle "is here used in the sense of a "disc" or circular area and not in

the sense of a "circumference."
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Draw the smaller rolling circle in any position within the larger

circle, and call the point of tangency T, as in Fig. 153. Since

the smaller circle is half the size of the larger circle, the smaller

circle always passes through 0, and the line joining the points of

intersection of the small circle with the coordinate axes is, for all

positions, a diameter, since the angle AOB is a right angle.

If we can prove that the arc AT = the arc HT for all positions

of T, then we shall have shown that as the small circle rolls from an

initial position with point of contact at H, the end A of the diameter

AB slides on the line OX. Since B lies on OF and since AB is of

fixed length, this proves by problem (1) that any point of the small

circle lying on the particular diameter AB describes an ellipse.

To prove that arc AT = arc HT, we have that the angle HOT

is measured in radians by - *' The angle AO'T is measured in
uti

radians by ^jp Since Z AO'T = 2^ HOT, we have

arc AT _ arc HT
O'A OH

But, OH = 20'A. Hence arc AT7 = arc HT.

We can now prove that any other point of the rolling circle de-

scribes an ellipse. Let any other point be PI. Through PI draw
the diameter JO'K. The above reasoning applies directly, replacing
A by J and H by N.

It is easy to see that all points equidistant from the center such

as the points P, Pi, of the small circle, describe ellipses of the same
semi-axes a and 6, but with their major axes variously inclined to

OH.

(3) Determine the curve given by the parametric equations:

x = a cos 2o)t (1)

y = a sin ut (2)

To eliminate t, the first equation may be written

x = a (1
- 2 sin 2

o>0 (3)

From the second equation, sin ut = Substituting for sin ut in

(3),

(5)
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This curve is the parabola y
2 = mx, the special location of which the

student should describe.

(4) Construct a graph such that the increase in y varies directly
as x.

If y varied directly as x, then y would equal kx, where k is any
constant. In the given problem the increase in y (and not y itself)

must vary in this manner. Let the initial value of y be represented

by 2/ . Then the gain or increase of y is represented by y y .

Hence, by the problem:

y - y = kx (1)

Since y is a constant, (1) is the equation of the straight line of slope
k and intercept on the y-axis = y 0) which ordinarily would be written

in the form:

y = kx -f ?/o

(5) Express the diagonal of a cube as a function of its edge, and

graph the function.

If the edge of the cube be x, its diagonal is Vx 2 + x*-\- x* or x Vs.

If the diagonal be represented by y, we have y = VSz, which is a

straight line.

(6) A rectangle whose length is twice its breadth is to be in-

scribed in a circle of radius a. Express the area of this rectangle
in terms of the radius of the circle.

Let the rectangle be drawn in a circle whose equation is x z + y* = a 2
.

At a corner of the rectangle we have x = 2y. The area A of the

rectangle is 4xy, or since x = 2y, is By*. From the equation of the

circle we obtain 4y
2 + y

2 = a" or y
2 = a 2

/5. Hence:

A = (8/5)a
2

If A and a be graphed as Cartesian variables, the graph is a parabola.

(7) A rectangle is inscribed in a circle. Express its area as a

function of a half of one side.

Here, as above:

A = 4xy = 4xV a 2 x 2

The student should graph this curve, for which purpose a may be

put equal to unity. First draw the semicircle y = Va 2 x z
.

For re = 1/5 take one-fifth of the ordinate of this semicircle. For

x = 2/5 take two-fifths of the ordinate of the semicircle, and so on.

The curve through these points is y = #Va 2 x z
,
from which

y = 4zVa 2 x 2 can be had by proper change in the vertical unit of

measure.
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Exercises

1. In polar coordinates, draw the curves:

r = 2 cos r = 2 cos + I

r = 2 cos e - 1 r = 2 cos 6 + 3.

2. A curve (polar coordinates) passes through the point (1, 1).

(This means the point whose coordinates are one centimeter, and one

radian.) Starting at this point, a point moves so that the radius

vector of the point is always equal to the vectorial angle. Sketch

the curve. Write the polar equation of the curve.

3. A point moves so that one of its polar coordinates, the radius

vector, varies directly as the other polar coordinate, the vectorial

angle. Write the polar equation of such a curve. Does the curve

go through the point (1, 1)?

4. A polar curve is generated by a point which starts at the point

(1, 2) and moves so that the increase in the radius vector always

equals the increase in the vectorial angle. Write the equation
of the curve.

5. A polar curve is generated by a point which starts at the point

(1, 2) and moves so that the increase in the radius vector varies directly

as the increase in the vectorial angle. Write the equation of the curve.

6. A ball is thrown from a tower with a horizontal velocity of 10

feet per second. It falls at the same time through a variable distance

given by s = 16. It 2
, where t is the elapsed time in seconds and s is

in feet. Find the equation of the curve traced by the ball.

7. The point P divides the line AB, of fixed length, externally in

the ratio a :b, that is, so that PA/PB = a/6. If the line AB move
with its end points always remaining on two fixed lines OX and OY
at right angles to each other, then P describes an ellipse of semi-axes

a and b.

8. If in the last problem the lines OX and OY are not at right

angles to each other, the point P still describes an ellipse.

9. A point moves so as to keep the ratio of its distances from

two fixed lines AC and BD constant. Prove that the locus consists

of four straight lines.

10. A sinusoidal wave of amplitude 6 cm. has a node at + 5 cm.

and an adjacent crest at + 8 cm. Write the equation of the curve.

11. The velocity of a simple wave is 10 meters per second. The

period is two seconds. Find the wave length and the frequency.
12. A polar curve passes through the point (1, 1) and the radius

vector varies inversely as the vectorial angle. Plot the curve and
write its equation, Consider especially the points where the vectorial

25
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angle becomes infinite and where it is zero. Sketch the same func-

tion in rectangular coordinates.

13. Rectangles are inscribed in a circle of radius r. Express by
means of an equation and plot: (a) the area, and (6) the perimeter
of the rectangles as a function of the breadth.

14. Right triangles are constructed on a line of given length h

as hypotenuse. Express and plot: (a) the area, and (6) the per-

imeter as a function of the length of one leg.

16. A conical tent is to be constructed of given volume, V. Express
and graph the amount of canvas required as a function of the radius

of the base.

16. A closed cylindrical tin can is to be constructed of given volume,
V. Plot the amount of tin required as a function of the radius of the

can.

17. A rectangular water-tank lined with lead is to be constructed

to hold 108 cubic feet. It has a square base and open top, Plot

the amount of lead required as a function of the side of the base.

18. An open cylindrical water-tank is to be made of given volume,
V. The cost of the sides per square foot is two-thirds the cost of

the bottom per square foot. Plot the cost as a function of the

diameter.

19. An open box is to be made from a sheet of pasteboard 12 inches

square, by cutting equal squares from the four corners and bending

up the sides. Plot the volume as a function of the side of one of the

squares cut out.

20. The illumination of a plane surface by a luminous point varies

directly as the cosine of the angle of incidence, and inversely as the

square of the perpend
:cular distance from the surface. Plot the

illumination of a point on the floor 10 feet from the wall, as a func-

tion of the height of a gas burner on the wall.

21. Using the vertical distances between corresponding points on

the curves y = sin i and y = sin t as ordinates and the vertical

distances between corresponding points of y = 2t and y = t* as

abscissas, find the equation of the resulting curve.

227. Loci Defined by Focal Radii. A number of important

curves are defined by imposing conditions upon the distances of

any point of the locus from two fixed points, called foci.

(1) A point moves so that the product of its distances from two

fixed points is constant. Find the equation of the path of the particle.

Let the two fixed points FI and Ft , Fig. 154, be taken on the z-axis

the distance a each side of the origin, Call the distances of P from
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the fixed points r\ and r2 . Then the variables r\ and r in terms of x

and y are:

ri
2 = y* + (x

-
a)

2

Hence:

riV2
2 =

\y* + (x
- aYW + (x + a)

2
] (2)

Calling the constant value of nr2
= c 2

,
we have as the Cartesian

equation of the locus :

[y
2 + (x

-
ar}[y"' + (x + a)

2
]
= c 4

(3)

FIG. 154. The Lemniscate.

which may be written:

(y> + z 2 + a 2
)
2 - 4a 2 x 2 = c 4

(4)

(x
2 + i/

2
)
2 + 2a 2* 2 + 2aV + a 4 - 4a 2z 2 = c 4

(5)

(x
2 + ?/

2
)
2 = 2a 2

(x
2 -

y
2
) + c 4 - a 4

(6)

If c = a the curve is called the lemniscate, and the Cartesian equa-
tion reduces to:

(x
2 + i/

2
)
2 = 2a 2

(*
2 -

?/
2
) (7)

For other values of c the curves are known as the Cassinian ovals.

When c < a the curve consists of two separate ovals surrounding the

foci, and for c > a there is but a single oval. The curves are shown
in Fig. 157. These curves give the form of the equipotential surfaces

in a field around two positively or two negatively charged parallel

wires. To construct the curves proceed as follows: In Fig. 155

let the circle have a radius c and in 156 let the circle have the

diameter c.

In Fig. 155 we can use the theorem: "// from a point without a

circle a tangent and secant be drawn, the tangent is a mean proportional
to the entire secant and the part without the circle." In Fig. 156 we can

use the theorem: "// from the vertex of the right angle of any right

triangle a perpendicular be dropped upon the hypotenuse, then either
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leg of the triangle is a mean proportional between the hypotenuse and

the adjacent segment."

Then in either Fig. 155

or 156, SPi X Spi = c 2 and
likewise SP 2 X Sp 2

= c 2
,

etc.

SP 2

Therefore SP
, SPi,

. . are the values

of r-2 that correspond to r\ =

Sp , Spi, Sp 2 ,
. . ., re-

spectively, and the ovals

may be constructed by the

intersection of arcs described

about Fi and F 2 as centers,

using pau*s of these values

as radii.

(2) Construct the curve

such that the ratio of the

distances f any point f

the curve from two fixed

FIG -

points is constant.

Let the two fixed points be A
and B, Fig. 158; let the constant

ratio of the distances of any

point of the curve from the two

fixed points be ri/r 2
= m/n.

To find one point of the locus,

draw circles from A and B as

centers whose radii are in the

ratio m/n. Let these circles in-

tersect at the point P. At P
bisect the angle between PA and
PB internally and externally by
the lines PM and PN respectively.

The line AB is then divided at M
internally in the ratio MA/MB
= m/n and externally at N in

the ratio NA/NB = m/n, because

the bisectors of any angle of a

triangle divide the base into

segments proportional to the adjacent sides. Since the external

and internal bisectors of any angle must be at right angles to each

other, PM is perpendicular to PN for any position of P. Hence

FIG. 156. Construction of the Con-
stant Products SP* X Spn = c 2

.
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the locus of P is a circle, since it is the vertex of a right triangle

described on the fixed hypotenuse MN.

FIG. 157. The Lemniscate and the Cassinian Ovals.

If e stands for the fixed ratio r\/r% and if AB =
2a, the student

should show :

MA =

NA =

MN =

1-M
2ae

I- e

4ae

2ae

T^~e

OC
1 -

The equation of the circle should then be found referred to origin

OorM.

FIG. 158. Construction of the Curve n/r 2 = m/n, or the circle MPN.

If a large number of circles be drawn for different values of e, and
if similar circles be described about B, then these series of circles are

known as the dipolar circles. See Fig. 159. In physics it is found
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that these circles are the equipotential lines about two parallel wires

perpendicular to the plane of the paper at A and B and carrying

electricity of opposite sign.

FIG. 159. The Dipolar Circles, or a Family of Circles made by drawing
n/rz = e for Various Values of e.

Exercises

1. Draw the locus satisfying the condition that the ratio of the

distances of any point from two fixed points ten units apart is 2/3.

2. Draw the two circles which divide a line of length 14 internally

and externally in the ratio 3/4.

228. The Cycloid. The cycloid is the curve traced by a point

on the circumference of a circle, called the generating circle,

B

ODBC
FIG. 160. Definition of the Cycloid.

which rolls without slipping on a fixed line called the base. To
find the equation of the cycloid, let OA, Fig. 160, be the base,P the

tracing point of the generating circle in any one position, and B the

angle between the radius SP and the line SH to the point of con-

tact with the base. SinceP was at when the circle began to roll,

OH = ad
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if a be the radius of the generating circle. Since x = OD and

y = PD, we have:

x = OH - SP sin B = a(0
- sin 6} (1)

y = HS - SP cos 6 = a(l - cos 0) (2)

These are the parametric equations of the curve. For most

purposes these are more useful than the Cartesian equation.

It is readily seen from the definition of the curve, that the locus

consists of an unlimited number of loops above the o>axis, with

points of contact with the x-axis at intervals of lira (the circum-

ference of the generating circle) and with maximum points at

x =
ira, 3ira, etc.

From the second of the parametric equations we may write:

1 - cos 6 = yla (3)

The expression (1 cos 8) is frequently called the versed sine of

B, and is abbreviated vers 6. Hence we have:

6 = vers" 1
y fa (4)

Also from (3) : cos 6 = (a y} fa

Hence: sin0 = \/l - cos2 6 = ~V2ay - y
2

(5)

whence substituting (4) and (5) in the first of the parametric equa-
tions we have:

x = avers- 1

(y/a)
-

>/2ay
- y

2
(6)

which is the Cartesian equation of the cycloid, with the origin

at a cusp of the curve.

229. Graphical Construction of the Cycloid. To construct the

cycloid, Fig. 161, draw a circle of radius 1.15 inches and divide the

circumference into thirty-six equal parts. Draw horizontal lines

through each point of division exactly as in the construction of

the sinusoid, Fig. 59. Lay off uniform intervals of 1 /o inch each

on the x-axis, marked 1, 2, 3, . . . Then from the point of

division of the circle pi lay off the distance 01 to the right.

From p 2 lay off 02 to the right, from p 3 lay off 03 to the right,

etc. The points thus determined lie on the cycloid. The number
of divisions of the circumference is of course immaterial except
that an even number of division is convenient, and except that
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the divisions laid off on the base OA must be the same length as

the arcs laid off on the circle.

Note that by the process of construction above, the vertical

distances from OX to points on the curve are proportional to

(1 cos 0) and that the horizontal distances from OF to points
on the curve are proportional to (6 sin 6.)

m
345 C

FIG. 161. Construction of the Cycloid.

The analogy of the cycloid to the sine curve is brought out by

Fig. 162. A set of horizontal lines are drawn as before and also a

sequence of semicircles spaced at horizontal intervals equal to

the intervals of arc on the circle. The plane is thus divided

into a laTge number of small quadrilaterals having two sides

straight and two sides curved. Starting at and sketching the

\ \ \ ^Siv \\XXXXXXX

I I I I I I

\AA/j X X\x/x xxx

7T 2T

FIG. 162. Analogy of the Cycloid to the Sinusoid.

diagonals of successive cornering quadrilaterals the cycloid is

traced. If, instead of the sequence of circles, uniformly spaced
vertical straight lines had been used, the sinusoid would have been

drawn. The sinusoid on that account is frequently called the

"companion to the cycloid."

230. Epicycloids and Hypocycloids. The curve traced by a

point attached to the circumference of a circle which rolls without
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slipping on the circumference of a fixed circle is called an epi-

cycloid or a hypocycloid according as the rolling circle touches

the outside or inside of the fixed circle. If the tracing point

is not on the circumference of the rolling circle but on a radius

or radius produced, the curve it describes is called a trochoid if

the circle rolls upon a straight line, or an epitrochoid or ahypo-
trochoid if the circle rolls upon another circle. These curves will

be discussed in the calculus.

Exercises

1. Construct a cycloid by dividing a generating circle of radius

1.15 inches into twenty-four equal arcs and dividing the base into

intervals 3/10 inch each.

2. Compare the cycloid of length 2ir and height 1 with a semi-

ellipse of length 2?r and height 1.

3. Write the parametric equations of a cycloid for origin C,

Fig. 160.

4. Write the parametric equations of a cycloid for origin B, Fig. 160.

5. Find the coordinates of the points of intersections of the cycloid

with the horizontal line through the center of the generating circle.

6. Show that the top of a rolling wheel travels through space
twice as fast as the hub of the wheel.

7. By experiment or otherwise show that the tangent to the cycloid
at any point always passes through the highest point of the generating
circle in the instantaneous position of the circle pertaining to that

point.

Exercises for Review

1. Simplify the product:

(x
- 2 - V3)(x- 2 - i V3)(a:

- 2 + V3)(s - 2 + Vi3).

2. Express in the form c cos (a &) the binomial:

30 cos a +' 40 sin o.

3. Find tan by means of the formula for tan (A -f B), if =
tan' 1

1/2 + tan' 1
1/3.

4. Find sin if = sin- 1
1/5 -f sin" 1

1/7.

5. Find the equation of a circle whose center is the origin and
which passes through the point 14, 17.

6. The first of the following tests was made in 1875 with the

automatic air brake on a train composed of cars weighing 30,000
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pounds. The second in 1907 with the "LN" brake on a train

composed of cars weighing 84,000 pounds. Find by use of loga-
rithmic paper the equation connecting the speed and the distance

run after application of the brakes.

Distance run after application of brake Corresponding speed
1875

feet

1907

Ofeet 57.3 miles per hour

56 . miles

55.0 miles

50.0 miles
"

45.0 miles

40 . miles

25.0 miles

15.0 miles

10.0 miles

5.0 miles

0.0 miles

50 feet 70 feet

200 feet 220 feet

350 feet 360 feet

500 feet 500 feet

820 feet 770 feet

950 feet 880 feet

980 feet 922 feet

1,010 feet 940 feet

1,020 feet 954 feet

7. Discuss the curve:

x ad

y = o(l cos 0).

8. Graph on polar paper :

P
2 = a 2 cos 26.

9. A fixed point located on one leg of a carpenter's "square"
traces a curve as the square is moved, the two arms of the square,

however, always passing through two fixed points A and B. Find

the equation of the curve.

10. Find the parametric equations of the oval traced by a point
attached to the connecting rod of a steam engine.

11. The length of the shadow cast by a tower varies inversely as

the tangent of the angle of elevation of the sun. Graph the length

of the shadow for various elevations of the sun.

12. From your knowledge of the equations of the straight line and

circle, graph:

y = ax + Va 2 - x 2
.

(See Shearing Motion, 37.)

13. In the same manner, sketch:

y = a -f x + Va 2 - z 2
.

14. Graph the curve:

y = a/x + 6x 2
.

Has this curve a minimum value for all positive values of a and 6?
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15. Find by use of logarithmic paper the equations of the curves

of Fig. 163. These curves give the amounts in cents per kilowatt-

hour that must be added to price of electric power to meet fixed

charges of certain given annual amounts for various load factors.

16. The angle of elevation of a mountain top seen from a certain

point is 29 4'. The angle of depression of the image of the mountain

0.1 0.2 0.3 0.4 0.5 0.6 0-7 0.8 0.9 1 1-1 1-2 1-3 1.4 1.5

Cents per K.W.Hour

FIG. 163. Annual Fixed Charges of $10, $15 and $20 of an Hydro-
electric Plant, Reduced to Cents per kw-hour for Various Load Factors.

top seen in a lake 230 feet below the observer is 31 20'. Find the

height and horizontal distance of the mountain top, and produce a

single formula for the solution of the problem.
17. Find the points of intersection of the curves :

x 2 + y
2 = 4

y
2 = 4*.

18. Solve HOor 4 + 1 = 21x- 2
.

19. Solve 3(x - 7)(x -
l)(x -

2) = (x + 2)(z - 7)(x + 3).

20. Solve sin x cos x = 1/4.

21. State the remainder theorem and illustrate by an example.
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22. Find the compound interest on $1000 for twenty-five years at

5 per cent. Show how to solve by means of progressions.
23. The curve y

z x* appears in which quadrants? In what

quadrants is y* = z 6 ? Compare the curves x z
y

2 = 1 and x z
y

3 = 1.

24. Which trigonometric functions of 6 increase as 6 increases in

the first quadrant? Which decrease?

26. Given sin 30 = 1/2, cos 45 = Vl/2. Find the following:
sin 150, cos 135, sin 225, cos 300, sin 330, sin (- 30).

26. Which is greater, tan 7 or sin 7, and why? Which is greater,

sec 5 or esc 5, and why?
27. Sketch the curves :

(a) z 2 + 4z + y
2 - 6y = 12

(6) z 2 + 4*/
2 + Qy = 21.

28. From the graph of y = x"- obtain the graph of 4y = x 2 and of

y = 4z 2
.

10

200 400 600 800 1000 m

FIG. 164. Trajectory of a German Army Bullet for a Range of 1000
Meters.

29. Given, cos = 2/5; find sin 8, tan and cot 6.

30. Find the equations of the six straight lines determined by the

intersections of:

x 2
-[- 7/

2 = 25

x* - 7/
2 = 7.

31. In Fig. 164 the full drawn curve is the trajectory of the pro-

jectile of a German Army bullet for a range of 1000 meters. The

dotted curve is the theoretical trajectory that would have been de-

scribed by the bullet if there had been no air resistance. The dotted
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curve is a parabola (of second degree). Find its equation, taking

the necessary numerical data from the diagram.

32. Find the maximum value of p if p = 3 cos 6 4 sin 6.

33. Find the maximum value of y if y = Vs cos x sin x, and

find the value of x for which y is a maximum.
34. In Fig. 165 let ABCO be a square of side o. Show that

for all positions of ON, CM X AN = a 2
,
and hence show how to use

this diagram in the construction of a lemniscate.

B N N N N N

FIG. 165. Construction of a Constant Product CM X AN = AB 2
.



CHAPTER XIII

THE CONIC SECTIONS

231. The Focal Radii of the Ellipse. Draw any ellipse with

major and minor circles of radii a and b respectively, as in Fig.

166. Draw tangents, //' and KK', to the minor circle at the

extremities of the minor axes and complete the rectangle II'KK'.
The points FI and F2,

in which IK and I'K' cut the major axis, are

M

H

FIG. 166. Properties of the Ellipse.

called the foci of the ellipse. From any point on the ellipse draw

the focal radii PFi =
r\. and PF 2

= r z,
as shown in the figure.

Represent the distance OFi or its equal OF 2 by c. Then it follows

from the triangle OIFi that :

a 2 = b 2 + C2
(1)

This is one of the fundamental relations between the constants of

the ellipse.

From the triangles PF\D and PF^D there follows:

V =
(c
- xY + y* (2)

r2
2 =

(c + xY + 2/2 (3)

398
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But the equation of the ellipse is

or

y = --- Va2 - x z

7/
2 = (a

2 - x 2
) (4)

a

Substituting this value of y
2 in (2)

n 2 = c 2 - 2cx + x2 + ^(a
2 - x 2

) (5)

= c2 - 2cx + x z + 6 2 -
-^

x 2

or by (1) = fl2
_ ^ + X2

[\
_

]
(6)

Substituting

1 -
2
= a ' ~

2

62 =
la a a

we obtain

n 2 = a 2 - 2cz + *-

(7)

-[*-"]'

a

<8>

Therefore:

n = a - -*
(9)

Likewise, from (3), by exactly the same substitutions, there

follows:

r, = a + ~ (10)

From (9) and (10) by addition:

r!+r 2
= 2a (11)

Hence in any ellipse the sum of the focal radii is constant and equal

to the major axis.

The converse of this theorem, namely, if the sum of the focal

radii of any locus is constant, the curve is an ellipse, can readily

be proved. It is merely necessary to substitute the values of r v

and r 2 from (2) and (3) in equation (11), and simplify the resulting

equation in x and y; or first square (11) and then substitute n and

r-i from (2) and (3). There results an equation of the second degree

lacking the term xy and having the terms containing x 2 and y'
2 both
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present and with coefficients of like signs. By 77, such an equation

represents an ellipse.

Hence the ellipse might have been defined as the locus of

a point, the sum of the distances of which from two fixed points is

constant.

An ellipse can be drawn by attaching a string of length 2a by
pins at the points F\ and F% and tracing the curve by a pencil so

guided that the string is always kept taut. Or better, take a

string of length 2a -j- 2c and form a loop enclosing the two pins;

the entire curve can then be drawn with one sweep of the

pencil.

The focal radii may also be evaluated in terms of the parametric
or eccentric angle 6. The student may regard the following

demonstration of the truth of equation (11) as simpler than that

given above:

Since x = a cos 8, and y = b sin 6

n 2 = 6 2 sin2 6 + (c
- a cos 0)

2
(12)

= b z sin2 6 + c 2 - 2ac cos 6 + a2 cos2
(13)

To put the right side in the form of a perfect square, write

52 = a 2 - c 2
. Then:

n 2 = a2 sin2 c 2 sin2
-f c 2 - 2ac cos + a 2 cos 2

= a 2 - 2ac cos -f c 2 cos2
(14)

Whence:

T] = a c cos (15)

Likewise:

r 2
= a + c cos (16)

Whence:

ri + r 2
= 2a

232. The Eccentricity. The ratio c /a measures, in terms of a as

unit, the distance of either focus from the center of the ellipse.

This ratio is called the eccentricity of the ellipse. In the triangle

IFiO, the ratio c/a is the cosine of the angle FiOI, represented in

what follows by /?. Calling the eccentricity e, we have:

e = c/a = cos /3 (1)

The ellipse is. made from the major circle by contracting its ordi-
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nates in the ratio m = b fa, or by orthographic projection of the

circle through the angle of projection:

a = cos-1 b /a

Hence, as companion to (1) we may write:

m = b /a
= cos a = sin |8 (2)

233. The Ratio Definition of the Ellipse. In Fig. 166, let the

tangents to the major circle at 7 and I' be drawn. Draw a

perpendicular to the major axis produced at the points cut by
these tangents. These two lines are called the directrices of the

ellipse.

We shall prove that the ratio PFi /PH (or PF 2 /PH') is constant

for all positions of P. From 231, equation (9) or (15),

r\ = a c cos 8 (1)

From the figure, 07V = a sec ION = a sec (3 (2)

But:

cos /3
= c /a

Hence:

ON = a*/c (3)

But
PH = ON - x

Therefore

PH = a2
/c
- acos0 (4)

Hence from (1) and (4):

r, a - c cos

PH
= PFl/PH =

a*/c
- a^cos

c a c cos

a a c cos

or

PFJPH = c/a = e = cos (5)

A similar proof holds for the other focus and directrix. Thus,
for any point on the ellipse the distance to a focus bears a fixed

ratio to the distance to the corresponding directrix. From (5),

the ratio is seen to be less than unity.

Assuming the converse of the above, the ellipse might have been

defined as follows: The ellipse is the locus of a point whose distance

from a fixed point (called the focus) is in a constant ratio less than

ii-niti/ to its distance fro in n jl.rcd line (called the directrix).

26
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If, in any ellipse, c = 0, it follows that b must equal a and the el-

lipse reduces to a circle. If c is nearly equal to a, then from the

equation:

a 2 = 6 2 + c3

it follows that the semi-minor axis b must be very small. That is,

for an eccentricity nearly unity the ellipse is very slender.

If the sun be regarded as fixed in space, then the orbits of the

planets are ellipses, with the sun at one focus. (This is "Kepler's
First Law.") The eccentricity of the earth's orbit is 0.017. The
orbit of Mercury has an eccentricity of about 0.2, which is greater

than that of any other planet.

Exercises

Find the eccentricities and the distance from center to foci of the

following ellipses :

1. z 2
/9 + y

2
/4 = 1. 4. 2y = Vl - z 2

.

2. y = (2/3) V36 - x\ 5. 9z 2 + IQy* = 14.

3. 25z 2 + 4i/
2 = 100. 6. 2x 2 + 3?/

2 = 1.

Find the equation of the ellipse from the following data:

7. e = 1/2, a = 4. Draw this ellipse.

8. c =
4, a = 5.

9. n = 6 -
2x/3, r 2

= 6 + 2z/3.

10. n = 5 4 cos 0, r2
= 5 + 4 cos 0.

Solve the following exercises:

11. Find the eccentricity of the ellipse made by the orthographic

projection of the circle x 2 + y
2 = a 2

through the angle 60.

12. The angle of projection of a circle x*- + y
2 = a 2 by which an

ellipse is formed is a. Show that the eccentricity of the ellipse is

sin a.

13. A circular cylinder of radius 5 is cut by a plane making an

angle 30 with the axis. Find the eccentricity of the elliptic section.

14. If the greatest distance of the earth from the sun is 92,-

500,000 miles, find its least distance. (Eccentricity of earth's orbit

= 0.017.)

15. In the ellipse x 2
/25 + y^/lQ =

1, find the distance between

the two directrices.

16. Write the equation of the ellipse whose foci are (2,0), ( 2, 0),

and whose directrices are x = 5 and x = 5.
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17. Prove equation 11 231 by transposing one radical in:

(z + c)
2 + y* + (*

-
c)

2 + y* = 2a

squaring, and reducing to an identity.

234. The Latus Rectum. The double ordinate through the

focus is called the latus rectum of the ellipse. The value of the

semi-latus rectum is readily formed from the equation

y = (6/a)Va
2"-**

by substituting c for x. If I represents the corresponding value

of?/,

I = (6/a)Va
2 -c 2 = 62

/a (1)

since a 2 c 2 = 6 2
. Hence the entire latus rectum is represented

by:

a -f
Equation (1) may also be written:

I = frVl - c2
/a

2

= &Vl - e 2
(3)

In Fig. 166 the distances AF, AN, ON, OB, OF, FN may
readily be expressed in terms of a and e as follows in equations (4)

to (10). The addition of the formulas (11), (12), (13) brings into

a single table all the important formulas of the ellipse.

AFi = a - c = a(l
-

e) (4)

AN -^ = a(1
- ^

(5)

ON=asec/3=
a

(6)

e = cos j8 (7)

OB = b = a sin (3
= a Vl - e 2

(8)

OFi = c = ae (9)

FiN = ON - c = a(l
- e 2

) /e (10)

1 = b 2
/a

= a(l
- e 2

) (11)

TI = a ex = a x cos jS (12)

r 2
= a + ex = a + x cos /3 (13)
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Exercises

1. Find the value in miles of OF for the case of the earth's orbit.

2. Find the value of for the earth's orbit. (Use the S functions

of the logarithmic table.)

3. In the ellipse y = (2/3) V36 - x 2 find the length of the latus

rectum and the value of e.

4. The eccentricity of an ellipse is 3/5 and the latus rectum is 9

units. Find the equation of the ellipse.

5. In (a) x 2 + 4i/
2 = 4 and (6) 2z 2 + 3?/

2 = 6 find the latus

rectum, the eccentricity and the distances ON and AF.
6. Determine the eccentricities of the ellipses,

(a) y* = 4z -
(l/2)z

2
(6) i/

2 = 4x - 2x 2
.

7. Find the equation of an ellipse whose minor axis is 10 units

and in which the distance between the foci is 10.

8. Find the equation of an ellipse whose latus rectum is 2 units and
minor axis is 2.

9. The distance from the focus to the directrix is 16 units. An
ellipse divides the distance between focus and directrix externally

and internally in the ratio 3/5. Find the equation of the ellipse.

10. The axes of an ellipse are known. Show how to locate

the foci.

11. In an ellipse a = 25 feet, e = 0.96. What are the values of

c and 6?

12. For a certain comet (Tempel's) the semi-major axis of the

elliptic orbit is 3.5, and c = 1.4 on a certain scale. For another

comet (Enke's) a =
2.2, e = 0.85. Sketch the curves, taking

3 cm. or 1 inch as unit of measure.

13. If I = 7.2, e =
0.6, find c, a, 6.

14. An ellipse, with center at the origin and major axis coinciding

with the x-axis, passes through the points (10, 5) (6, 13). Find

the axes of the ellipse.

235. Focal Radii of the Hyperbola. Construct a hyperbola from

auxiliary circles of radii a and b, then the transverse axis of the

hyperbola is 2a and the conjugate axis is 2b. Unlike the case of

the ellipse, 6 may be either greater or less than a. As previously

explained, the asymptotes are the extensions of the diagonals of the

rectangles BTAO, BT'A'O. From the points I, I', in which the

asymptotes cut the a-circle, draw tangents to the a-circle. The

points FI, F 2 in which the tangents cut the axis of the hyper-

bola are called the foci. See Fig. 167.
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The distance OFi or OF 2 is represented by the letter c. Then,
since the triangles FJO and OAT are equal, FJ must equal 6, so

that we have the fundamental relation between the constants of

the hyperbola:
a 2 + b 2 = c 2

(1)

FIG. 167. Properties of the Hyperbola.

From any point on either branch of the hyperbola draw the focal

radii PFi and PF, represented by r*i and r 2 respectively. Then
from the figure:

ri
2 = (x

-
c)

2 + 2/
2

(2)

But from the equation of the hyperbola:

if =
(&

2
/a

2
)(z

2 -a 2
) (3)

hence:

fl
* = (x

-
c)

2 + 6 2
(z

2 - a 2
) /a

2
(4)

- a 26 2
) /a

2
(5)

(6)

(7)

(8)

(9)

a 2c 2

=
(c

2*2 - 2a2cz + a 4
) /a

2

= (ex
- a 2

)
2
/a

2

Hence: n = (c/a)x a

In like manner it may be shown that

r, = (c/a)x + a
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Hence from (8) and (9) it follows:

r 2 ri = 2a (10)

Hence in any hyperbola, the difference between the distances of any

point on it from the foci is constant and equal to the transverse axis.

The above relation may be derived in terms of the parametric

angle 6. Thus, since in any hyperbola x = a sec 6 and y = b tan0,

n 2 = b z tan2 + (a sec 6 - c)
2

= & 2 tan2 + a 2 sec2 - 2ac sec + c 2

To put the right-hand side in the form of a perfect square, write

b 2 = c 2 - a2
. Then

ri
2 = c 2 sec 2 6 - 2ac sec + a 2

Therefore: r x
= c sec 6 - a (11)

and: r 2
= c sec + a (12)

236. The Ratio Definition of the Hyperbola. Through the

points of intersection of the a-circle with the asymptotes, draw

IK, I'K'. These lines are called the directrices of the hyperbola.
It will now be proved that the ratio of the distance of any point of

the hyperbola from a focus to its distance from the corresponding
directrix is constant. Adopt the notation:

c/a = sec/8 = e (1)

Then from the figure:

PFi IPH = ri l(x
- ON) = ri /(a sec - a cos ft (2)

Substituting r\ from (11) above:

PFi /PH =
(c sec -

a) /(a sec - a cos ft (3)

= (a sec j8 sec a) /(a sec a cos /3) (4)

sec |8 sec - 1= -
JT = seep = e = c a (5)

sec )8 cos

which proves the theorem. The constant ratio e is called the

eccentricity of the hyperbola, and, as shown by (5), is always greater

than unity.

Assuming the converse of the above, it is obvious that the hyper-
bola might have been defined as follows: The hyperbola is the

locus of a point whose distance from a fixed point (called the focus)

is in a constant ratio greater than unity to its distance from a fixed

line (called the directrix).
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237. The Latus Rectum. The double ordinate through the focus

is called the latus rectum of the hyperbola. The value of the

semi-latus rectum is readily found from the equation:

y =
(b /a) z2 - az

by substituting c for x. If I represents the corresponding value of

I = (bid} Vc2 - a 2 = b*/a (1)

Hence the entire latus rectum is represented by:

21 = 2b 2
/a (2)

Equation (1) may also be written:

I = b Ve2 - 1 (3)

In Fig. 167 the distances AF l} AN, ON, OB, .OFi, FiN may
readily be expressed in terms of a and e, as follows in equations

(4) to (8). Collecting in a single table the other important for-

mulas for the hyperbola, we have:

AFi = c - a = a(e - 1) (4)

AN = AF l /e
= a(e-l)/e (5)

ON = acos/3 = a/e (6)

e = sec j8 (7)

OB=b = atan/3=a Ve2 - 1 (8)

OFi = c = ae

FiN = c - ON = ae - a/e = a(e
2 -

1) /e (9)

1 = b 2
/a = b e 2 = a(e

2 -
1) (10)

TI = ex - a = x sec (3
- a (11)

r 2
= ex + a = x sec /3 + a (12)

The important properties of the hyperbola are quite similar

to those of the ellipse. It is a good plan to compare them in

parallel columns.
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Ellipse Hyperbola

1. Definition of Foci and Focal

Radii

2. a 2 = b"- + c 2

3. n + r 2
= 2a
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16. Find the equation of the hyperbola whose center is at the

origin and whose transverse axis coincides with the re-axis and which

passes through the points (4.5, 1), (6, 8).

238. The Polar Equation of the Ellipse and Hyperbola. In

mechanics and astronomy the polar equations of the ellipse and

hyperbola are often required with the pole or origin at the right focus

in the case of the ellipse and at the left focus in the case of the hyper-

bola. In these positions the radius vector of any point on the

FIG. 168. Polar Equation of a Conic.

curve will increase with the vectorial angle when 6 < 180. To
obtain the polar equation of the ellipse and hyperbola,' make use of

the ratio property of the curves, namely: that the locus of a point

whose distances from a fixed point (called the focus) is in a constant

ratio e to its distances from a fixed line (called the directrix), is an

ellipse if e < 1 or a hyperbola if e > 1. In Fig. 168 let F be the

fixed point or focus, IK the fixed line or directrix, P the moving

point, and FL = I the semi-latus rectum. Then the problem is

to find the polar equation from the equation
PF
PH (1)
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If e is left unrestricted in value, the work and the result will apply

equally well either to the ellipse or to the hyperbola.
When the point P occupies the position L, Fig. 168, we have

PF = I and PH = FN, whence from (1)

FN =
\ (2)
&

Take the origin of polar coordinates at F
}
and also take FP = p

and the angle AFP = B. Then:

PH = FN - FD (3)

FD = p cos (4)

Hence from (2), (3) and (4)

PH = l

p cos (5)
6

Substituting these values of FP and PH in (1), clearing of frac-

tions and solving for p, we obtain

" =
IT~e~^9 (6)

which is the equation required.

When e < 1, (6) is the equation of an ellipse with pole at the

right-hand focus. When e > 1, (6) is the equation of a hyperbola
with the pole at the left focus; in both cases the origin has been so

selected that p increases as increases.

NOTE: Calling FN (Fig. 168) =
n, equation (1) above may be

written in rectangular coordinates :

-
or,

X 2 + y
2 = 6 2(n _ xy (g)

which may be reduced to the form:

x 4 - (9)~
; V 1. T: V ^

1 - e2
~

(1
- e2 )

2

By 77 and 87 this represents an ellipse if e < 1 or a hyper-
bola if e > 1. Thus starting with the ratio definition (7) we have

proved that the curve is an ellipse or a hyperbola ;
that is, we have

proved the statements in italics at bottom of pp. 401 and 406.
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Exercises

1. Graph on polar paper, form M3, the curve p =
Y~+~ecaa~0

for e =2; also for e = 1/2, also for e = 1.

It will be sufficient in graphing to use = 0, 30, 60, 90, 120,

150, 180, 210, . . ., 360.

2. Write the polar equation of an ellipse whose semi-latus rectum

is 6 feet and whose eccentricity is 1/3.

3. Write the polar equation of an ellipse whose semi-axes are 5

and 3.

4. Discuss equation (6) for the case e = 0.

5. Write the polar equation of a hyperbola if the eccentricity be

V2 and the distance from focus to vertex be 4.

6. Write the polar equations of the asymptotes of

_6
p ~

4 + 5 cos 0'

See 87.

7. Compare the curves p =
7 and P = '

8. Discuss the equation p = ;
,

>.,
in which a is a

L ~r e cos \u a)

constant.

239. Ratio Definition of the Parabola. Among the curves of the

parabolic type previously discussed, the one whose equation is of

the second degree is of paramount importance. On that account

when the term parabola is used without qualification, it is under-

stood that the curve is the parabola of the second order, whose

equation may be written, y
2 = ax or x 2 = ay.

The locus of a point whose distance from a fixed point is always

equal to its distance from a fixed line is a parabola. In Fig.

169, let F be the fixed point and HK the fixed line. Take the ori-

gin at A half way between F and HK. Let P be any point satis-

fying the conditionPF = PH. CallOD =
x,PD =

y, and represent

the given distance FK by 2p. Then, from the right triangle PFD :

if + (x-
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Since PF by definition equals PH or x -f p, we have:

(x + pY = y* + (x- pY (2)

whence :

Y
2 = 4px (3)

which is the equation of the parabola in terms of the focal distance,

OF or p.

The double ordinate through F is called the latus rectum.

The semi-latus rectum can be computed at once from (3) by
placing x =

p, whence:

1 = 2p (4)

where I is the semi-latus rectum. Hence the entire latus rectum is

4p, or the coefficient of x in equation (3).

x'

FIG. 169. Properties of the Parabola y- = 4px.

In Fig. 169, the quadrilateral FLIK is a square since FL and

FK are each equal to 2p.

240. Polar Equation of the Parabola. In accordance with the

ratio definition of the parabola, its polar equation is found at

once from equation (6), 238, by putting e = 1. Hence the polar

equation of the parabola is

1

P = 1 + cos
(1)
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For this equation we may make the following table of values:

90

180

270

P

1/2

I

CO

I

This shows that the parabola has the position shown in Fig. 168.

This is the form in which the polar equation of the parabola is

used in mechanics and astronomy.

241. The Conies. It is now obvious that a single definition

can be given that will include the ellipse, hyperbola and parabola.

These curves taken together are called the conies. The definition

may be worded: A conic is the locus of a point whose distances

from a fixed point (called the focus) and a fixed line (called the

directrix) are in a constant ratio. The unity between the three

curves was shown by their equation in polar coordinates. Moving
the ellipse so that its left vertex passes through the origin, as in

76, and writing the hyperbola with the origin at the right ver-

tex (so that both curves pass through the origin in a comparable

manner), we may compare each with the parabola as follows:

The ellipse: y
z = 2lx - (&

2
/<j

2
)*

2
(1)

The parabola: y
z = 2lx (2)

The hyperbola: ?/ = 2lx + (b* la*)x* (3)

In these equations I stands for the semi-latus rectum of each

of the curves. These equations may also be written:

?/ = 2lx - (l!a)x
2

(4)

tf
= 2lx (5)

if
= 2lx + (l/a)x* (6)

whence it is seen that if I be kept constant while a be increased

without limit, the ellipse and hyperbola each approach the para-

bola as near as we please. Only for large values of x, if a be large,

is there a material difference in the shapes of the curves.
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Exercises

1. Write the equation of the circle in the form (1) above.

2. Write the equation of the equilateral hyperbola in the form (3)

above.

45

FIG. 170. A Hyperbola Translated at an Angle of 45 to OX.

A 10
C, 10 C, B

FIG. 171. A Parabola Translated FIG. 172. Bridge Truss in Form of

at an Angle of 60 to OX. Circular Segment.

3. Describe the curve:

p
1 + COS (6

-
a)

where is a constant.
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4. In Fig. 170 translate the curve xy = 1 by suitable change

in the equation to the position shown by the dotted curve, if the

translation of each point is unity.

5. In Fig. 171 translate the curve y
2 = kpx by suitable change in

the equation to the position shown by the dotted curve, if the

distance each point is moved be 3p.

6. A bridge truss has the form of a circular segment, as shown in

Fig. 172. If the total span be 80 yards and the altitude BS
be 20 yards, find the ordinates CiDi, C2 > 2 erected at uniform intervals

of 10 yards along the chord AAi.

3 6 9 12

C-i Ci C A

Fia. 173. Bridge Truss in the Form of a Parabolic Segment.

7. A bridge truss has the form of a parabolic segment, as shown in

Fig. 173. The span AAi is 24 yards and the altitude OB is 10

yards. Find the length of the ordinates DC, DiCi, . . . erected at

uniform intervals of 3 yards along the line AA\.

242. * The Conies are Conic Sections. The curves now known
as the conies were originally studied by the Greek geometers as the

sections of a circular cone cut by a plane. At first these sections

were made by passing a plane perpendicular to one element of a

right circular cone. If the angle at the apex of the cone was a

right angle, the section was called the section of the right angled

cone. If the angle at the apex of the cone was less than 90, the

section made by the cutting plane was called the section of the

acute angled cone. Likewise a third curve was named the section

of the obtuse angled cone. Thus the curves of three different

types now called the parabola, ellipse, and hyperbola were studied.

The present names were not introduced until much later, and

until it was shown that the three classes of curves could be made

respectively by cutting any cone: (1) by a plane parallel to an

element; (2) by a plane cutting opposite elements of the same nappe
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of the cone; (3) by a plane cutting both nappes of the cone. The
two nappes of a conical surface, it will be remembered, are the

two portions of the surface separated by the apex.

In Fig. 174, let the plane NDN'D', called the cutting plane, cut

the lower nappe of a right circular cone in the curve VPV. We
shall prove that this curve is an ellipse.

Let the plane VAV pass through the axis of the cone. It is

then possible to fit into the cone two spheres which will be tangent
to the elements of the cone and also tangent to the cutting plane.

FIG. 174. Section of a Circular Cone.

For it is merely necessary to locate by plane geometry the circle

inscribed in the triangle AW, and the escribed circle RF'R'
',
and

then to rotate these circles about the axis AB to describe the

required spheres while the line AR describes the conical surface.

Let the points at which the cutting plane touches the two

spheres be called F and Fr
.

From any point P on the curve VPV draw lines PF and PF'

to the points F and F r

. These lines are tangent to the spheres,

since each lies in a tangent plane and passes through the point of

tangency. Through P draw an element of the cone AHPK. The
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lilies PH and PK are also tangents to the upper and lower spheres

respectively. Since all tangents to the same sphere from the same

external point are equal:

PF =PH
PF' = PK

Hence:

PF + PF' = PH + PK
But PH + PK is an element of the frustum SHS' RKR', and hence

preserves the same value for all positions of P. Hence:

PF + PF' = a constant sum

Therefore the section is an ellipse with foci F and F'.

Let the upper and lower circle of tangency of the spheres and

conical surface, namely SHS' and RKR', be produced until they
cut the cutting plane in the straight lines ND and N'D''. DPD'
is a perpendicular at P to the parallel lines ND and N'D' . We
shall show that the parallel lines ND and N'D' are the directrices

of the ellipse.

Since:

PF =PH
we have

PF/PD = PH/PD
The two intersecting lines DD' and HK are cut by the parallel

planes DNS and D'N'R'. Hence we have the proportion:

PH/PD = PKIPD' = HKfDD'
This last ratio, however, has the same value for all positions of

P, since HK is an element of the frustum and since DD' is the

fixed distance between the parallel lines ND and N'D'.

Therefore with respect to the points F and F' and the lines

ND and N'D' the ratio definition of the ellipse applies to the

curve VPV. It is easy to show that the ratio HK/DD is less

than unity.

If the cutting plane be passed parallel to the element AR',
it is easy to prove that the curve of the section satisfies the

ratio definition of the parabola. In case the cutting plane cuts

both nappes, one of the tangent spheres lies above the apex and

it is_easy to show that PK PH is constant,

27
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243. Tangent to the Parabola. Let us investigate the condition

that the line y = mx + b shall be tangent to the parabola y- =

4px. First find the points of intersection of these loci by solving
the two equations for x and y:

y = mx + b (1)

y
2 = px (2)

as simultaneous equations.

Eliminating y by substituting the value of y from (1) in (2)

ra 2z 2 + 2mbx + b z - 4px =
(3)

or

w 2z2 + 2(mb -
2p)x + 6 2 =

(4)

Solving for x (see formula for quadratic, Appendix.

mb - 2p 2\/p - pmb .

}m 2 Si"

Therefore there are in general two values of x or two points of

intersection of the straight line and the parabola. By the defini-

tion of a tangent to a curve ( 146) the line becomes a tan-

gent to the parabola when the two points of intersection be-

come a single point; that is, when the radical in (5) vanishes.

This condition requires that:

p
2 pmb =

or:

b = p/m (6)

Therefore when 6 of equation (1) has this value, the line touches

the parabola at but a single point, or is tangent to it. The

equation of the tangent is therefore:

y = mx + p /m (7)

This line is tangent to the parabola y
z

4px for all values of

m. Substituting in (5) the value of b = p/m, we may find the

abscissa of the point of tangency:

x 1 =p/m 2
(8)

Substituting this value of x in (7) the corresponding ordinate of

this point is found to be:

i
= 2/m (9)
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244. Properties of the Parabola. In Fig. 169, F is the

focus, HK is the directrix, PT is a tangent at any point P.

The perpendicular PN to the tangent at the point of tangency is

called the normal to the parabola. The projection DT of the

tangent PT on the z-axis is called the subtangent and the pro-

jection DN of the normal PN on the z-axis is called the sub-

normal. The line through any point parallel to the axis, &sPR,
is known as a diameter of the parabola.

(a) The subtangent to the parabola at any point is bisected by

the vertex. It is to be,.proved that OT = OD for all positions of P.

Now OD is the abscissa of P, which has been found to be p /ra
2

.

From the equation of the tangent:

y = mx -\- p /m

the intercept OT on the x-axis is found by putting y = and

solving for x. This yields:

x = p/w2

This is numerically the same as OD, hence the vertex bisects

DT.

(6) The subnormal to the parabola at any point is constant and

equal to the semi-latus rectum.

The angle DPN has its sides mutually perpendicular to the

sides of the angle DTP, hence the angles are equal. Since the

tangent of the angle DTP = m, therefore:

tangent DPN = m
From properties of the right triangle PDN:

DN = PD tangent DPN
= PDm
= (2p/m)m = 2p

Since KF also equals 2p, we have

KF = DN
(c) PFTH is a rhombus. By hypothesis PF = PH. To prove

the figure PFTH a rhombus it is merely necessary to show that

FT = PH.

Now:
FT = FO + OT
PH = DK = DO + OK
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But:

OD - OT and OK = FO
therefore:

*T = PH
and the figure is a rhombus.

It follows that the two diagonals of the rhombus intersect at

right angles on the ?/-axis.

(d) The normal to a parabola bisects the angle between the focal

radius and the diameter at the point. We are to show that:

Z NPF = Z NPR
Since FPHT is a rhombus:

Z FPT = Z. TPH
But:

Z TP# = Z #PS

being vertical angles. From the two right angles NPT and NFS
subtract the equal angles last named. There results:

Z FPN = Z NPR
It is because of this property of the parabola that the reflectors

of locomotive or automobile headlights are made parabolic.

The rays from a source of light at F are reflected in lines parallel

to the axis, so that, in the theoretical case, a beam of light is sent

out in parallel lines, or in a beam of undiminishing strength.

245. To Draw a Parabolic Arc. One of the best ways of de-

scribing a parabolic arc is by drawing a large number of tangent
lines by the principle of 244 (c). Since in Fig. 169 the tan-

gent is for all positions perpendicular to the focal line FH at

the point where the latter crosses OF, it is merely necessary to

draw a large number of focal lines, as in Fig. 175, and erect

perpendiculars to them at the points where they cross the ?/-axis.

The equations of the tangent lines in Fig. 175 are of the form:

y = mx -j- p /m (1)

in which p is the constant given by the equation of the parabola,

and in which m takes on in succession a sequence of values appro-

priate to the large number of tangent lines of the figure. These

lines are sajd to constitute a family of lines and are said to envelop
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the curve to which they are tangent. The curve itself is called

the envelope of the family of lines.

The curve of the supporting surface of an aeroplane as well as

FIG. 175. Graphical Construction of a Parabolic Arc "by Tangents."

the curve of the propeller blades is a parabolic arc. The curve of

the cables of a suspension bridge is also parabolic.

Exercises

1. Write the equation of the parabola which the family y =
mx + 7/2m envelops.
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2. Draw an arc of a parabola if p = 3 inches.

3. At what point is y = mx + 3/m tangent to the parabola

4. At what point is y = mx + 11/m tangent to y
2 = 44o;?

6. Draw the family of lines y = mx + l/m for m =
0.4, m = 0.6,

m =
0.8, m =

I, m =
2, m =

4, m = 8.

246. Tangent to the Circle. An equation of a tangent line to

a circle can be found as in the case of the parabola above by finding

the points of intersection of:

y = mx + b (l)

and
2

_f_ y* = fl
2

(2)

and then imposing the condition that the two points of intersection

shall become a single point. The value of b that satisfies this

N

FIG. 176. The Equation of a Line of Given Slope, Tangent to a Given
Circle.

condition when substituted in (1) gives the equation of the re-

quired tangent. It is easier to obtain this result, however, by the

following method. In Fig. 176 let the straight line be drawn

tangent to the circle at T. Let the slope of this line be m.

Then m = tan ONT = tan a, if a be the direction angle of the tan-

gent line. The intercept of the line on the y-axis can be expressed

in terms of a and a:

b = a sec a = aVl + m 2
(3)
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Hence the equation of the tangent to the circle is:

y = mx + aVl + m2

The double sign is written in order to include in a single equation

the two tangents of given slope m, as illustrated in the diagram.

Exercises

1. Find the equations of the tangents to x- + y
2 = 16 making an

angle of 60 with the rr-axis.

2. Find the equations of the tangents to x 2 + y
2 = 25 making an

angle of 45 with the x-axis.

3. Find the equation of tangents to z 2 + y* = 25 parallel to

y = 3x - 2.

4. Find the equation of tangents to x z + y
2 = 16 perpendicular

to y = (1/2)3 + 3.

5. Find the equations of the tangents to (x
-

3)
2 + (y

-
4)

2 = 25

whose slope is 3.

247. Normal Equation of Straight Line. The normal equation

of the straight line was obtained in polar coordinates in 69.

The equation was written:

p cos (6 a) = a (1)

In this equation (p, 0) are the polar coordinates of any point on

the line, a is the distance of the line from the origin and o: is the

direction angle of a perpendicular to the line from the origin.

(See Fig. 177.) Expanding cos (0 a) in (1) we obtain:

p cos cos a + p sin sin a = a (2)

But for any value of p and 0, p cos = x and p sin =
y.

Hence (2) may be written in rectangular coordinates:

x cos a + y sin a = a (3)

This also is called the normal equation of the straight line.

If an equation of any line be given in the form:

ax + by = c (4)

it can readily be reduced to the normal form. For dividing this

equation through by Va2 + 62
:

=L= *+ ^= =y--^ (5)
Va2 + b 2 Va2 + b 2 Va2 + b-

Now a I Va 2 + b 2 and 6/Va2 + 6 2 may be regarded as the cosine
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and sine, respectively, of an angle, for a and 6 are divided by a

number which may be represented by the hypotenuse of a right

triangle of which a and b are legs. Calling this angle a, equation

(5) may be written:

x cos a + y sin a = d (6)

which is of the form (3) above. Inasmuch as the right side of the

equation in the normal form represents the distance of the line

from the origin, it is best to keep the right side of the equation

positive. The value of a and the quadrant in which it lies is

then determined by the signs of cos a and sin a on the left side of

the equation. The angle a may have any value from to 360.

ILLUSTRATIONS:

(1) Put the equation 3x 4y = 10 in the normal form. Here
02 _|_ 52 = 25. Dividing by 5 we obtain:

(3/5)z
-

(4/5)y = 2

The distance of this line from the origin is 2. The angle a is the angle

whose cosine is 3/5 and whose sine is 4/5. Therefore from the

tables :

a = 306 52'

(2) Put the equation 3x + 4y = 20 in the normal form.

Here cos a = 3/5, sin = 4/5, a = 4. Hence a = 126 52'.

(3) What is the distance between the lines (1) and (2)? The lines

are parallel and on opposite sides of the origin. Their distance

apart is therefore 2 + 4 or 6.

Exercises

1. The shortest distance from the origin to a line is 5 and the direc-

tion angle of the perpendicular from the origin to the line is 30.

Write the equation of the line.

2. The perpendicular from the origin upon a straight line makes
an angle of 135 with OX, and its length is 2\/2. Find the equa-

tion of the line.

3. Write the equation of a straight line in the normal form if

a = 60 and a = V3.

248. To Translate Any Point a Given Distance in a Given Direc-

tion. To move any point the distance d to the right we sub-

stitute (xi d) for x. To move the point the distance d in the
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y direction we substitute (y\ d) for y. To move any point

the distance d in the direction a we substitute:

x Xi d cos a

y = yi d sin a (1)

which must give the desired position of the new point. It is

not necessary to use the subscript attached to the new coordinates

if the distinction between the new and old coordinates can be

kept in mind without this device.

The circle x 2 + y
z = a2 moved the distance d in the direction

a. becomes:

(x
- d cos )

2 + (y d sin a) 2 = a 2

which may be simplified to:

x 2 2dx cos a -\- ?/
2

2dy sin a = a 2 d 2

249. Distance of Any Point From Any Line. Let the equation
of the line be represented in the normal form:

x cos a + y sin a = a (1)

and let (x\, y\) be any point P in the plane. (See Fig. 177.)

If the point (xi, y\) is on the same side of the line as the origin,

the point can be moved to the line by translating the point
the proper distance in the a direction. Let the unknown amount
of the required translation be represented by d. To translate

the point P the amount d in the a direction, we must substitute

for Xi and yi the values:

Xi = x d cos a
xgv

7/1
= y d sin a

By hypothesis the point now lies on the line, and therefore the

new coordinates (x, y} of the point must satisfy the equation of

the line. Hence, solving (2) for x and y and substituting their

values in (1) we have:

(zi + d cos a} cos a + (y\ + d sin a) sin a = a (3)

Performing the multiplications and solving for the unknown
number d, we have:

d =
(xi cos a + yi sin a a) (4)

This is the distance of (x\, y\) from the line. Since this distance

would ordinarily be looked upon as a signless or arithmetical
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number, the algebraic sign may be ignored, and only the absolute

value of the expression be used. The negative sign means that

the given point lies on the origin side of the line.

Equation (4) may be interpreted as follows:

To find the distance of any point from a given line, put the equa-
tion of the line in the normal form, transpose all terms to the left

\

FIG. 177. Normal Equation of a Line, and the Distance of Any Point
from a Given Line.

member and substitute the coordinates of the given point for x and

y. The absolute value of the left member is the distance of P from
the line.

If the given point P and the origin of coordinates lie on op-

posite sides of the given line, then the point P (Fig. 177) must

be translated in the direction (180 + a] to reach the line.

Hence the substitutions are

a?!
= x - d cos (180 + a)

y, = y - d sin (180 + a)
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or,

x\ = x -f d cos a

y\ = y + d sin a

Solving these for x and y, substituting in the equation of the line,

and solving for d we obtain:

d = Xi cos a + yi sin a a (6)

The absolute value is of the same form as before. Hence only
the one formula (4) is required. When the result in any problem
comes out negative it merely means the given point lies on the

origin side of the line.

The above facts may be stated in an interesting form as follows:

Let any line be:

x cos a + y sin a a =

If the coordinates of any point on this line be substituted in this

equation, the left member reduces to zero. If the coordinates of

any point not on the line be substituted fora; and y in the equation,

the left member of the equation does not reduce to zero, but

becomes negative if the given point is on the origin side of the line

and positive if the given point is on the non-origin side of the

line. The absolute value of the left member in each case

gives the distance of the given point from the line. Thus every
line may be said to have a

"
positive side" and a "negative

side." The "negative side" is the side toward the origin.

Exercises

1. Find the distance of the point (4, 5) from the line 3x + 4y = 10.

2. Find the distance from the origin to the line x/Z y/ = 1.

3. Find the distance from (3, 4) to:

12(s + 6) = 5(y - 2)

4. Find the distance from (3, 4) to the line re/3 y/4 = 1.

5. Find the distance between the parallel lines y = 2x + 3,

y = 2x + 5.

6. Find the distance between y = 2x -
3, y = 2x + 5.

7. Find the distance from (0, 3) to 4z - 3y = 12.

8. Find the distance from (0, 1) to x + 2 - 2y = 0.

250. Tangent to a Circle at a Given Point. The equation of

the tangent to the circle obtained in 246 is the equatio
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of the tangent line having a given or required slope m. We
shall now find the equation of the line that is tangent to the circle

at a given point (x
, yQ).

The line:

a .
= p cos (9 a} (1)

or its equivalent:

x cos a + y sin a = a (2)

is tangent to the circle of radius a, and the point of tangency is at

the end of the radius whose direction angle is a. The point of

tangency is therefore (a cos a, a sin a). Hence, multiplying (2)

through by a, we obtain:

x(a cos a) + y(a sin a) = a 2
(3)

or:

XQX + y cy = a 2
(4)

which is the equation of the line tangent at the point (x , yo) to

the circle of radius a.

Thus 3x -\- 4y = 25 is tangent to x 2

(3, 4).

2/
2 25 at the point

FIG. 178. Tangent to the Ellipse at a Given Point.

251. Tangent to the Ellipse at a Given Point. It is easy to

draw the tangent to the ellipse at any desired point. In Fig. 178,

let P be the point at which a tangent is desired. Then draw the

major circle, and let Pi of the circle be a point on the same ordinate
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as P . Draw a tangent to the circle at PI and let it meet the z-axis

at T. Then when the circle is projected to form the ellipse, the

straight line PiT is projected to make the tangent to the ellipse.

Since T when projected remains the same point and since P is

the projection of PI, the line through P and T is the tangent to

the ellipse required.

The equation of the tangent P QT is also readily found. The

equation of PiT is:

XXQ + yy\ = a 2
(1)

To project this into the line P T it is merely necessary to multiply
the ordinates y and y'oby b /a; that is, to substitute y = ay jb and

y'o ay Q /b. Whence (1) becomes:

= a2
(2)

or dividing by a 2
,

Xox/a
2 + y y/b

2 = 1 (3)

which is the tangent to:

z 2
/a

2 + ?//&
2 = 1

at the point (ar , 3/0).

Exercises

1. Find the equations of the tangents to the ellipse whose semi-axes

are 4 and 3 at the points for which x = 2.

2. Find the equations of the tangents to x 2
/16 + i/

2
/9 = 1 at the

ends of the left latus rectum.

3. Required the tangents to x 2
/9 + y*/4 = 1 making an angle of

45 with the z-axis.

4. Find the equations of the tangents to z 2
/100 + ?/

2
/25 = 1 at

the points where y = 3.

6. Find the equations of the tangents to x'/36 + y
z
/lQ = 1 at

the points where x =
y.

252. The Tangent, Normal, and Focal Radii of the Ellipse. In
the right triangle P^OT, Fig. 178, the side PiO is a mean propor-
tional between the entire hypotenuse OT and the adjacent

segment OD. That is:

a2 = x QOT
But: F,T = OT - OF l

= a <2

/.r ae
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Likewise: F2T = OT + OF2

= a^/xo + ae

Therefore: F,T /F2T = (a*/x
-

ae)/(a*/x Q + ae}
= (a

- ex^ !(a + ex Q)

But by 231 this last ratio is equal to n/r2 . Therefore we

may write: FT /F 2T = P Fi/PoF 2 .

Hence T, which divides the base F^Fi of the triangle PoF 2Fi

externally at T in the ratio of the two sided PF2 and PFi of the

triangle, lies on the bisector of the external angle FiP Q of the

triangle FzPoFi. This proves the important theorem:

The tangent to the ellipse bisects the external angle between the

focal radii at the point.

This theorem provides a second method of constructing a

tangent at a given point of an ellipse, often more convenient

than that of 251, since the method of 251 often runs the

construction off of the paper.

The normal PoN, being perpendicular to the tangent, must

bisect the internal angle F^PoFi between the focal radii F^Po and

FiP*
Since the angle of reflection equals the angle of incidence for

light, sound, and other wave motions, a source of light or sound at

FI is "brought to a focus" again at F 2 ,
because of the fact that the

normal to the ellipse bisects the angle between the focal radii.

253. Additional Equations of the Straight Line. The equations

of the straight line in the slope form:

y = mx + 6 (1)

and in the normal forms:

p cos (0
-

a) = a (2)

x cos a + y sin a = a (3)

and the general form :

ax + by + c = (4)

have already been used. Two constants and only two are neces-

sary for each of these equations. The constants in the first

equation are m and 6; in the second and third, a and a; in the

fourth a/c and 6/c, or any two of the ratios that result from divid-

ing through by one of the coefficients. Equation (4) appears to

contain three constants, but it is only the relative size of these that
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determines the particular line represented by the equation, since

the line would remain the same when the equation is multiplied

or divided through by any constant (not zero).

These facts are usually summarized by the statement that two

conditions are necessary and sufficient to determine a straight

line. The number of ways in which these conditions may be given

is, of course, unlimited. Thus a straight line is determined if we

say, for example, that the line passes through the vertex of an

angle and bisects that angle, or if we say that the line passes

through the center of a circle and is parallel to another line, or if

we say that the straight line is tangent to two given circles, etc.

An important case is that in which the line is determined by the

requirement that it pass through a given point in a given direc-

tion. The equation of the line adapted to this case is readily

found. Let the given point be (xi, 2/1). The line through the

origin with the required slope is

y = mx

Translate this line so that it passes through (x\, 2/1) and we have

y - yi = m(x - Xl) (5)

Another way of obtaining the same result is: substitute the

coordinates (xi, 2/1) in (1) :

2/i
= mxi + b (6)

Subtract the members of this from (1) above, so as to eliminate

b. There results:

y - 2/i
= (x

-
si) (7)

This is the required equation; the given point is (x\, 2/1) and the

direction of the line through that point is given by the slope m.

Another important case is that in which the straight line is

determined by requiring it to pass through two given points.

Let the second of the given points be (x z , 2/2). Substitute these

coordinates in (5) :

2/2 2/1
= m (x z

-
zi) (8)

To eliminate m, divide the members of (7) by the members of (8) :

V -

Jl

_ JL::L?
(9)
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or, as it is usually written:

X - Xi X 2
- Xi

This is the equation of a line passing through two given points.

Since (10) may be looked upon as a proportion, the equation may
be written in a variety of forms.

254. The Circle Through Three Given Points. In general, the

equation of a circle can be found when three points are given.

Either of the general equations of the circle:

(X - hy + (y - ky = a* (i)

or:

z 2 + ?/
2 + 2gx + 2fy + c = (2)

contains three unknown constants, so that in general three

conditions may be imposed upon them. It is best to illustrate

the general method by a particular example. Let the three

given points be ( 1, 3), (0, 2), and (5, 0). Then since the co-

ordinates of these points must satisfy the equation of the circle,

we obtain from (2) above:

1 + 9- 20 + 6/ + c = (3)

4 + 4/ + c = (4)

25 +lfy + c = (5)

Eliminating c from (3) and (4) and from (4) and (5), we obtain:

6 -
20 + 2/ =

21 + 100
-

4/ =

Eliminating /:

<7= -5i
whence:

/- -8J
and

c = 30

So the equation of the circle is:

z 2 + j/
2 - llx - I7y + 30 =

Exercises

1. Find the equation of the line passing through (2, 3) with

slope 2/3.

2. Find the equation of the line passing through (2, 3), (3, 5).
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3. Find the line passing through (2, 1) making an angle whose

tangent is 2 with the z-axis.

4. Find the line through (2, 3) parallel to y = 7x + 11.

5. A line passes through ( 1, 3) and is perpendicular to

y 1x = 3. Find its equation.

6. Find the line passing through ( 2, 3), ( 3, 1).

7. Find the equation of the line which passes through ( 1, 3),

(
-

2, 4).

8. Find the slope of the line that passes through ( 1, 6), ( 2, 8).

9. Find the equation of the line passing through the left focus and

the upper end of the right latus rectum of x 2
/25 -\- y*/$ = 1.

10. Find the equation of the circle passing through (2,8), (5,7),

and (6, 6).

11. Find the equation of the circle which passes through (1, 2),

(
-

2, 3), and (
-

1,
-

1).

12. Find the equation of the parabola in the form y
2

4px which

passes through the point (2, 4).

255. Change from Polar to Rectangular Coordinates. The
relations between x, y of the Cartesian system and p, 6 of

the polar system have already been explained and use made of

them. The relations are here brought together for reference:

x = p cos 6 (1)

y = p sin 6 (2)

By these we may pass from the Cartesian equation of any locus

to the equivalent polar equation of that locus. Dividing (2)

by (1) and also squaring and adding, we obtain:

B = tan-*y x (3)

P = v7x 2 + y* (4)

These may be used to convert any polar equation into the Cartesian

equivalent.

256. Rotation of Any Locus. It has already been explained
that any locus can be rotated through an angle a by substituting

(0i a) for in the polar equation of the locus. It remains to

determine the substitutions for x and y which will bring about

the rotation of a locus in rectangular coordinates. Let us consider

any point P of a locus before and after rotation through the given

angle a. Call the coordinates of the point before rotation

28
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(x, y) in rectangular coordinates aiid (p, 6) in polar coordinates.

Then, from (1) and (2), 255,

x = p cos 6 (1)

y = p sin 6 (2)

Call the coordinates of the point after rotation (xi, ?/i) and

(pi, 0i), but note that the value .of p is unchanged by the rotation.

Then for the point P', Fig. 179, We may write:

P(P,6) or

( x,y)

FIG. 179. Rotation of Any FIG. 180. Effect of Rotation on the Special

Locus. Forms x 2 + y 2
, 2xy, and x 2 y 2

.

Xi = p COS 0i (3)

2/i
= p sin 0i (4)

Since, however, the rotation requires that

= 0!
- a (5)

equations (1) and (2) become:

x = p cos (0i a) = p cos 0i cos a + p sin 0i sin a (6)

y = p sin (0i a) = p sin 0i cos a p cos 0i sin a (7)

But, from (3) and (4), p cos X and p sin 0i are the new values of

x and y; hence, substituting in (6) and 7) from (3) and (4) we

obtain:

x = Xi cos a + yi sin a

y = yi cos a X L sin a (9)

Hence if the equation of any locus is given in rectangular co-
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ordinates, it is rotated through the positive angle a by the sub-

stitutions

x cos o: -f- y sin a for x

y cos a x sin a for y 0)

in which it is permissible to drop the subscripts, if the context

shows in each case whether we are dealing with the old x and y

or with the new x and y.

If the required rotation is clockwise, or negative, we must

replace a by ( a) in all of the above equations.

Whenever convenient, the equation of a curve should be taken in

the polar form if it is required to rotate the locus.

IMPORTANT FACTS: The following facts should be remembered

by the student:

(1) To rotate a curve through 90, change x to y and y to ( x).

This fact has been noted in 68.

(2) Rotation through any angle leaves the expression x 2 + y
z

(or any function of it) unchanged. This is obvious since the circle

xz + y
2 = a z

is not changed by rotation about (0, 0).

(3) Rotation through -f 45 changes 2xy to y
2 x 2

.

Rotation through 45 changes 2xy to x 2
y

2
.

(4) Rotation through + 45 changes x2
y

2
to 2xy.

Rotation through 45 changes x2
y

2
to 2xy.

Statements (3) and (4) follow at once from consideration of the

equations

x 2 -y2 = a 2
(1)

2xy = a2
(2)

7/
2 - x2 = a2

(3)
- 2xy = a2

(4)

of the four hyperbolas bearing corresponding numbers (1), (2),

(3), (4) in Fig. ]80. The proper change in any case can be

remembered by thinking of the four hyperbolas of this figure.

(5) The degree of an equation of a locus cannot be changed by
a rotation. This follows at once from the fact that the equations
of transformation (8) and (9) are linear.

Exercises

In order to shorten the work, use statements (1) to (4) whenever

possible.



436 ELEMENTARY MATHEMATICAL ANALYSIS [257

1. Turn the locus x*- - y* = 4 through 45.
2. Turn x 2 + y

z = a 2
through 79. Turn 4xy = 1 through 45.

3. Turn x cos a + y sin a a through an angle /3. (Since this locus

is well known in the polar form, transformation formulas (6) and (7)

above may be avoided.)

4. Rotate x ? -
y* = 1 through 90.

6. Rotate x 2 - y
2 = a 2

through - 45.
6. Change the equation (x a)

2 + (y b)
2 = r 2 to the polar

form.

7. Change p cos 20 = 2a, one of a class of curves known as Cote's

spirals, to the Cartesian form.

8. Write the equation of the lemniscate in the polar form.

9. Show that p
2

2ppi cos (6 61} + pi
2 = a 2

is the polar equa-
tion of a circle with center at (pi, 0i) and of radius a.

10. Write the Cartesian equation of the locus p
2 = 16 sin 20.

11. Turn p
2 = 8 sin 20 through an angle of 45.

12. Rotate x* - 2y
z = 1 through 90.

13. Rotate (x
2 + y^K + (x

2 - y^K = 1 through 45.
14. Rotate log (x

2 + y
2
)
= tan (z

2 -
?/

2
) through 45.

257. Ellipse with Major Axis at 45 to the OX Axis. The

ellipse frequently arises in applied science as the resultant of the

projection of the motion of two points moving uniformly on two

circles, as has already been explained in 186. Thus the

parametric equations:

x = a cos t (1)

y = b sin t (2)

define an ellipse which may be considered the resultant of two

S.H.M. in quadrature. We shall prove that the equations:

x = a cos t (3)

y = a sin (t + a) (4)

define an ellipse, with major axis making an angle of 45 with OX.

The graph is readily constructed as in Fig. 181. The Car-

tesian equation of the curve is found by eliminating t between

(3) and (4). Expanding the sin (t + d) in (4) and substituting

from (3) we obtain:

y = a: sin a + v a 2 x 2 cos a (5)

Transposing and squaring:
2

2xy sin a + y'
2 = 2 cos2 a (6)
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By 256 rotate the curve through an angle of ( 45.) We
know that (x

2 + y
2
) is unchanged and that 2xy is to be replaced

by (x
2 -

y
2
}. Therefore (6) becomes:

x 2
(l
- sin a) + y

2
(l + sin a) = a 2 cos2 a (7)

Y

\

\P

FIG. 181. The Ellipse a; = a cos f, y = a sin (< + a).

Replacing cos2 a by 1 sin2
a, and dividing through by the

right member, we obtain:

__ I

y

a 2
(l + sin a) a2

(l sin a)

which may be written:

x 2
y

2

1

= 1

2a2 cos 2 2a2 sin 5

(8)

(9)

9 2

where jS is the complement of a. Equation (8) or (9) proves
that the locus is an ellipse. It is any ellipse, since by properly

choosing a and a the denominators in (8) can be given any desired

values. Hence the pair of parametric equations (3) and (4), or

the Cartesian equation (5) represents an ellipse with its major axis

inclined + 45 to the OX-axis.

258. General Equation of the Second Degree. The general

equation of the second degree in two variables may be written in

the standard form:

ax 2
4- 2hxy + by

2 + 2gx + 2fy + c = (1)
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In the next two sections we shall show that the general

equation of the second degree in two variables represents a conic.

We shall be able to distinguish three cases as follows:

The general equation of the second degree represents:

an ellipse if h2 - ab < (2)

a parabola if h 2 ab = (3)

a hyperbola if h 2 - ab > (4)

To render the above classification true in all cases we must classify

x 2 y2

the "imaginary ellipse,"
-~

2 + =
1, as an ellipse, and other

degenerate cases must be similarly treated. The expression

/i
2 ab is called the quadratic invariant of the equation (1), so

called because its value remains unchanged as the curve is moved
about in the coordinate plane. In other words, as the locus (1)

is translated or rotated to any new position in the plane, and while

of course the coefficients of x2
, xy, and y

2
change to new values, the

function of these coefficients, h2
ab, does not change value, but

remains invariant. This fact is not proved in this book, but it can

readily be proved by comparing the value of h 2 ab before and

after the substitutions :

x cos a -\- y sin a m for x

y cos a x sin a n for y

where m and n indicate the amount of the translation, and a the

angle of rotation.

259.* Conies with Their Axes Parallel to the Coordinate Axes. 1

Let ;us comider the equation

ax 2 + by* + 2gx + 2fy + c = (1)

If we solve this equation for y in terms of x, we get

-
/ V- abx2 -

2bgx
- be + /

2

i/
= -

-j-
1. We saw in completing the squares, 77, that (1) is the

equation of an ellipse when a and b are alike in algebraic signs.

We can now restate this condition by saying that (2) is the equa-

tion of an ellipse when the coefficient of x2 is negative. Note

1 259 and 260 are from the correspondence course prepared by Professor
H. T. Burgess.



260] THE CONIC SECTIONS 439

that the equation of a circle is included as a special case when
= 6.

2. We saw in completing the squares, 87, that (1) is the

equation of a hyperbola when a and b have unlike signs. We
can restate this condition by saying that (2) is the equation of

a hyperbola when the coefficient of xz
is positive.

3. We observe that (1) is the equation of a parabola

when a = 0. We can restate this condition by saying that

(2) is the equation of a parabola when the coefficient of x z
is

zero.

260. * The General Case. Write the quadratic in two variables

in the standard form:

ax z + 2hxy + by* + 2gx + 2fy + c = (1)

I. We have already seen, 43, that when and only when
h = and a = b the locus of (1) is a circle.

II. When h is not equal to zero, we have as yet no knowledge
of the nature of the locus represented by (1), except that it is

not a circle.

Let us rotate this locus clockwise through an angle a and see if

the equation can be simplified so that the character of the locus

represented by (1) can be recognized. Substituting in (1) from

256, we get

a(x cos a y sin a)
2

-f- 2h(x cos a y sin a) (x sin a -\- y cos a)

+ b(x sin a + y cos a)
2 + 2g(x cos y sin a)

+ 2f(x sin a -f y cos a) + c = (2)

If we simplify (2), we find that the coefficient of the term in xy is :

2(6 a) sin a cos a -f 2h(cos
2 a sin2

a) (3)

This term will drop out of (2), if we can find a value for the angle

a that will make (3) zero.

Substituting in (3) from equations (1) and (2), 165, we get:

(b
-

a] sin 2a + 2h cos 2a =
(4)

From this we find :

nr

tan 2a = _ , (5)
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Hence if we choose a as half of the angle whose tangent is --,'

equation (2) will have no term in xy, and it will be of the form :

Ax* + By* + 2Gx + ZFy + C =
(6)

where A, B, G, F, and C stand for long expressions in terms of

the coefficients of equation (1).

Since the loci of equations (1) and (6) are identically the same

curve, we now see from 258 that the locus of (1) must be

an ellipse, hyperbola, or parabola.

III. We can now devise a test by which we can tell immediately
which curve is represented by equation (1). If we solve (1) for

y in terms of x, we get

-
(hx + /) + V(hz -

ab)x
z + 2(hf

-
gb)x +/2 - be

y =
~Y~

Let us now consider the two equations :

* -

~ bc
(9)

It is obvious that the locus of (7), whatever it is, may be obtained

by shearing the. locus of (9) in the line (8). We must consider

the three following cases:

1. When h* < ab the coefficient of x* in (9) is negative and the

locus of (9) is an ellipse. Hence the locus of (7) is a locus made

by shearing an ellipse in a line, and is therefore a closed curve.

The locus of (7) is in this case an ellipse, for it must be either an

ellipse, a hyperbola, or a parabola by II, and it cannot be either

a hyperbola or a parabola since it is a closed curve.

2 . When h 2 > ab the coefficient of x z in (9) is positive and the

locus of (9) is a hyperbola. Hence the locus of (7) is a locus made

by shearing a hyperbola in a line, and is therefore an open curve

with two branches. The locus of (7) is in this case a hyperbola,

for it cannot be an ellipse or a parabola since it has two open
branches.

3. When h z = ab the coefficient of x 2 in (9) is zero and

the locus of (9) is a parabola. Hence the locus of (7) is a

locus made by shearing a parabola in a line, and is therefore an
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open curve with one branch. The locus of (7) is in this case a

parabola, for it cannot be an ellipse or a hyperbola since it has

one open branch.

We now state the results in this form: The locus of the general

equation of the second degree in two variables is for

A 2 < ab an ellipse

/?
2 > ab a hyperbola

h 2 = ab a parabola

If we shear the locus of (7) in any line y = mx -f- b, the form

of the equation is not changed. Hence the following important
facts:

The shear of an ellipse in a line is an ellipse.

The shear of a hyperbola in a line is a hyperbola.

The shear of a parabola in a line is
^ parabola.

If we put (mx) for x and (ny) for y in (7), no change will be

made in the sign of the coefficient of x 2
;
hence the elongation or

contraction (orthographic projection) of an ellipse, hyperbola, or

parabola in any direction is an ellipse, hyperbola, or parabola.

261. Shear of the Circle. The effect of the addition of the term
mx to f(x), in the equation y =

f(x), has been shown in 37 to

FIG. 182. The Ellipse Looked Upon as the Shear of a Circle OA in a Line
M'OM.

be to change the shape of the locus by lamellar or shearing motion

of the xy plane. We usually speak of this proces's as
"
the shear of

the locus y = f(x) in the line y = mx." When applied to the circle
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y Va 2 x 2 the effect is to move vertically the middle point
of each double ordinate of the circle to a position on the line

y = mx. The result of the shearing motion is shown in Fig. 182.

The area bounded by the curve is unchanged by the shear.

The equation after shear is:

y = mx Va 2 z 2
(1)

This is the same form as equation (5) of 257, if we put

m= - - and then multiply all ordinates by cos a. There-
COS Q.

fore the curve of Fig. 182 is an ellipse.

The straight line y = mx passes through the middle points of

the parallel vertical chords of the ellipse

y = mx + Va 2 - x* (2)

The locus of the middle points of parallel chords of any curve is

called a diameter of that curve. We have thus shown that the

diameter of the ellipse is a straight line. Since the same reasoning

applies to

y = mx+ (6/a)Va
2 - z 2

(3)

which may be regarded as any ellipse in any way oriented with

respect to the origin, the proof shows that the mid-points of arbi-

trarily selected parallel chords of an ellipse is always a straight

line.

262. A Second Proof. The generality of the preceding fact

may seem clearer if the ellipse be kept fixed in position while the

direction of the set of parallel chords is arbitrarily selected. Con-

sider first the circle

z 2 + y* = a2
(1)

and draw any set of parallel chords. Let the slope of these chords

be s. Then the equation of the chords is

y = sx + p (2)

in which p is an arbitrary parameter, to various values of which

correspond the different chords of the family of parallel chords.
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The equation of the bisectors of all of the chords is a line through

the origin perpendicular to (2), or:

y=- x

s
(3)

Now if the circle (1) and the chords (2) and the diameter (3) be

changed by orthographic projection upon a plane through the

X-axis, then the circle (1) becomes an ellipse, while the parallel

chords and the line through their mid-points remain straight lines,

but with modified slopes. Let the given orthographic projection

multiply all ordinates of (1), (2) and (3) by Then the equation

of the ellipse is:

T 2 7/ 2

Si
+ p-^ <4>

The parallel chords now have the equation

The equation of the locus of the mid-points of the parallel chords

or the diameter is:

sb

Representing ,
the slope of (5), by m, equation (6) takes the form:

which is the equation of the diameter of (4) that bisects the family
of parallel chords of slope m.

263. Confocal Conies. Fig. 183 shows a number of ellipses

and hyperbolas possessing the same foci A and B. This family
of curves may be represented by the single equation:

in which the parameter k takes on any value lying between

and a 2
,
and in which a > 6. If fc satisfies the inequality:

< k < 6 2

the curves are ellipses. If k satisfies the inequality:

6 2 < k < a 2
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the curves are hyperbolas. The ellipses of Fig. 183 may be

regarded as representing the successive positions of the wave front

of sound waves leaving the sounding body AB; or they may be

regarded as the equipotential lines around the magnet AB, of

which the hyperbolas represent the lines of magnetic force.

Exercises

1. Sketch the curve:

y = 2x + \
;

4 - x*-.

2. Draw the curve:

x = 2 cos 6

y = 2sin(0 + ir/6).

FIG. 183. Confocal Ellipses and Hyperbolas. Note that the curves of

one class cut those of the other class orthogonally.

3. Find the axes of the ellipse:

x = 3 cos 6

y = 3 sin (6 + ir/4).

4. Draw the curve:

y = X V6Z - X 2
.

5. Draw the curve:

y = x Vz 2 - 6z.
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6. Show that :

y = x + "Vox is a parabola.

7. Sketch the curve:

y

8. Sketch the curve:

y = 5x sin 60 + cos 60V25 - x 2
.

9. Discuss the curve:

x 2
/a

2 + 2/V&
2 ~

2(a?y/o6) cos ce = sin 2 a.

Show that the locus is always tangent to the rectangle x

=
a, y =

b, and that the points of contact from a parallelo-

gram of constant perimeter 4V 2
-}- S2 for all values of a.

10. Show that x = a cos (6 a), y = b cos (6 ft) represents an

ellipse for all values of a and ft.

11. Prove from equation (13), 257, that the distance from the

end of the minor to the end of the major axis of the resulting ellipse

remains the same independently of the magnitude of a.

12. Show that the following construction of the hyperbola

xy
2 = o 3 is correct. On the x-axis lay off OC = a. Connect C

with any point A on the y-axis. At C construct a perpendicular to

AC cutting the y-axis in B. At B erect a perpendicular to BC cutting

the + x-axis at D. Through A draw a parallel to the x-axis and

through D draw a parallel to the y-axis. The two lines last drawn
meet at P, a point on the desired curve.

13. Explain the following construction of the cubical parabola

a-y = x 3
. Lay off OB on the y-axis equal to a. From B draw a

line to any point C of the x-axis. At C erect a perpendicular to BC
cutting the y-axis at D. At D erect a perpendicular to CD cutting

the x-axis at E. Lay off OE on the y-axis. Then OE is the ordinate

of a point of the curve for which the abscissa is OC.

14. Explain and prove the following construction of the semi-

cubical parabola, ay
2 = x 3

. Lay off on the x-axis OA = a.

From A draw a parallel to the line y = MX, cutting the y-axis in B.

Erect at B a perpendicular to AB cutting the .r-axis at C, and at C
erect a perpendicular to OC. The point of intersection with //

= ni.r

is a point of the curve.
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Problems for Review

1. Find the approximate equations for the following data:

(a) Steam pressure: v = volume, p = pressure.

(b) Gas-engine mixture: v = volume, p = pressure.

V
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13. Write the inverse functions of the following :

(a) y = axn
, (6) y = sin x, (c) y = ex

, (d) y = loge x.

14. Plot the amount of tin required to make a tomato can to hold

1 quart as a function of the radius of its base. Determine approxi-

mately from the graph the dimensions requiring the least tin.

15. Find the axes of the ellipse whose foci are (2, 0) and ( 2, 0),

and whose directrices are x = 5.

16. Write the polar equation for the ellipse in problem 15.

17. Find the equation of the hyperbola whose foci are (5, 0) and

( 5, 0), and whose directrices are x = 2.

18. Write the equation of the hyperbola in 17 in polar coordinates.

19. Discuss the curve p(l + cos 8}
= 4. Write its equation in

rectangular coordinates.

20. Find the foci of the hyperbola 2xy = a 2
. Also its eccentricity.

21. What property of the parabola is useful in designing automobile

headlights?
22. How do you draw a tangent to an ellipse? To a parabola?
23. Find the equation of a point whose distance from the point

(3, 4) is always twice its distance from the line 3x + 4y = 12. What
is the locus?

24. Give the type of each of the following conies :

(a) 2z 2 + 2y
2 + 3x - 4y + 3 = 0.

(6) x 2 + 4*y + 4i/
2 + x - 3y + 8 = 0.

(c) z 2 + 3xy - 3y* + 3x - 2y - 3 = 0.

(d) x* - 5xy + 7y
2 + 2x + 3y + 28 = 0.

26. Solve each of the equations in problem 24 for y and explain

how the graphs may be constructed by shear.

26. A point moves so that the quotient of its distance from two

fixed points is a constant. Find the equation of the locus ofjthe

point.

27. Evaluate:

log 10 -
Iog 2 8 + log 7 49 2

.

28. Find the maximum and minimum value of (3 sin x 4 cos x).

What values of x give these maximum and minimum values?

29. Find the equation of a circle passing through the points (1, 2),

(-1, 3) and (3, -2).
30. A sinusoidal wave has a wave-length of TT, a period of TT, and an

amplitude of TT. Write its equation.
31. Compute graphically the following:

(1 +i) (1 -t); (1 +i) + (1 -i)j
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T j" I
1

.; 7 cis 47 X 6 cis (
- 14) ;

/ ~T~ Ol

(7 + 6i)
27

;
V7i + 31.

32. Prove by the addition formulas that:

sin (90 r) = COS r

sin (90 + r) = cos r

sin (360 T) = - sin T

tan (r + 270) = - cotr.

33. Sketch the curves:

y

What property of the exponential function do these curves illustrate?

34. Sketch y = 2X and y = 3*.

36. Solve: x 2 + Qx + Vz 2 + 6z + 1 = 1.

36. Find graphically the product of 3 - 2i by - 2 + i.

37. Find all the values of :

(cos 6 + i sin 0)
3
; (cos + i sin 0)H; VI; v'TT

38. Write a short theme on operators, making mention of (a) the

integers; (6) ( 1); (c) V 1; (d) cis 0. Develop the rules for addi-

tion, subtraction, multiplication, and division of vectors, and state

them in systematic form.

39. Show that

sin (o + 6+ c) = sin a cos b cos c + cos a sin 6 cos c

+ cos a cos & sin c sin a sin 6 sin c.

40. Sketch the curves

V = 3-;

y _ 3 .

2
~ 6

>

y = g* +
0-63^

on the same sheet of paper. What property of the exponential func-

tion do these curves illustrate?

41. Draw upon squared paper, using 2 cm. =
1, the curve y

2 = x.

By counting the small squares of the paper find the area bounded by
the curve and the ordinates x = 1/2, 1, H, 2, 2|, 3, 3, 4, . . . By
plotting these points upon some form of coordinate paper, find the

functional relation existing between the x coordinate and the area

under the curve.
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42. The latitude of two towns is 27 31'. They are 7 miles

apart measured on the parallel of latitude. Find their difference in

longitude.

43. Solve 3*
2" 1 = 2X+1 . Be very careful to take account of all

questionable operations . There are two solutions.

44. Find (three problems) the equation connecting :

X
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(a) cos 45 cos (90 x) sin 45 sin (90 x) = cos x.

(b) cos (45 -
x) cos (45 + x)

- sin (45
-

x) sin (45 + x) = cos x.

63. Sketch on Cartesian paper:

y = l x

y = 2* y = Iog2 x

y = 3X
y = logs x

y = 5* i/
= logs x

?/
= 10s

?/
= logic x.

54. Solve 3* + 2x = 1.
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tan (a B) = ? sin = ?

sin 2x = ? cos
2"

= ?

cos 2x = ? cot ~ = ?

65. Change the equations of exercises 33 and 40 to logarithmic

form. What properties of logarithms are illustrated by these

equations?
66. Solve z 4 - x 3 + 7x + 6 = 0.

67. Show that the sum of the two focal radii of the ellipse is constant.

68. y = 3Z 2 + 4 5 and x = 5are the parametric equations of a

curve. Discuss the curve.

69. Show that [r(cos 6 + i sin 0)] [r'Ccos 0' + i sin 0')]
=

rr'tcos (0 + 0') + i sin (0 + 0')].

70. Two S.H.M. have amplitude 6 and period two seconds. The point

executing the first motion is one-fourth of a second in advance of

the point executing the second motion. Write the equations of

motion.

71. Show that:

sin 5x = sin 5 x 10 sin 3 x cos 2x + 5 sin x cos 4 x.

72. Prove that:

tan (45 + r)
- tan (45

-
r) =

73. Show that the difference of the two focal radii for the hyperbola
is constant.

74. Find graphically the quotient of 6 2i by 3 + 75i.

76. Solve by inspection, for y:

sin (90 + \y) cos (90 -
\y) + cos (90 + \y) sin (90

-
\y) = sin y.

76. Write the parametric equations for the circle, the ellipse, the

hyperbola.



CHAPTER XIV

A REVIEW OF SECONDARY SCHOOL ALGEBRA

300. Only the most important topics are included in this

review. From five to ten recitations should be given to this

work before beginning regular work in Chapter I.

With the kind permission of Professor Hart, a number of the

exercises have been taken from the Second Course in Algebra,

by Wells and Hart.

301. Special Products. The following products are fundamental:

(1) The product of the sum and difference of any two numbers:

(x + y) (x y] = x 2
y*

(2) The square of a binomial:

(x + y)
z = z 2

2xy + y
2

If the second term of the binomial has the sign ( ), then the mid-

dle term of the square has the sign- ( ).

(3) The product of two binomials having a common term:

(x + a)(x + 6)
= x 2 + (a + b)x + ab

thus (x + 5}(x
-

11) = x 2 + (5
- ll)x + 5(-ll)

= x* - 6x - 55

(4) The product of two general binomials:

(ax + b)(cx + d) = acx* + (be + ad)x + bd

thus

(3a
-

46) (2a + 76) = (3a)(2a) + (- 8 + 21)o6 + (-46) (76)

= 6a2 + 13a6 - 286 2

Exercises

Find mentally the following products :

1. (5x
- 2y)\ 4. (2m + 3)(m + 4).

2. (a + 116) (a + 36). 5. (y* + 40) (y
2 + 42).

3. (a
- 2)(a + 120). 6. (3zy

-
7)

2
.

452
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7. (3u
2v - 4)(3w

2y + 4).
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the most fundamental cases of factoring are those depending upon
the special products of the preceding section. Thus,

(1) The difference of two squares equals the product of the sum and
the difference of their square roots:

x* -y z = (x -y)(x +y)
Thus

81a8 - b 6 = (9a
4 - 6 3

)(9o
4 + 6 3

)

(2) A trinomial is a perfect square when, and only when, two of its

terms are perfect squares and the remaining term is twice the product of

their square roots.

To find the square root of a trinomial perfect square, take the square
roots of each of its two perfect square terms and connect them by the

sign of the remaining term.

Thus, 9a2 24a6 + 16& 2 is a perfect square, since \/9a? = 3a,

V16P = 46 and 24a& = 2(3a)(46).

Also 9a 2 + 30a + 16 is not a perfect square, for 30a does not equal

2(3a)(4).

(3) Trinomials of the form x 2 + px + q can be factored when two

numbers can be found whose product is q and whose sum is p.

Thus x z - 4x - 77 = (x + 7)(x
-

11), for 7(- 11) = - 77 and

(+7) + (-11) = -4.

(4) Trinomials of the form ax 2 + bx + c, if factorable, may be fac-

tored in accordance with the properties of the special product (4), 301.

In the product

ax + b

ex + d

acx2 + (be + ad)x + bd

the terms acx 2 and bd are called end products and bcx and adx are

called cross products. This most important case of factoring is best

learned from the consideration of actual examples.
Factor 21z 2 + 5x - 4.

From the term 21x 2
,
consider as possible first terms 7x and 3x,

thus (7x )(3z ). For factors of (4), try 2 and 2, with unlike

signs, and signs so arranged that the cross product with larger absolute

value shall be positive; thus (7x
- 2)(3z + 2). This gives middle

term 8x; incorrect. For (4) try 4 and 1, with signs selected as be-

fore; thus, (7x
- l)(3z + 4). Middle term 25z; incorrect. Try

(7x + 4)(3a? 1). Middle term 5x', correct.



SECONDARY SCHOOL ALGEBRA 455

(5) The difference of two cubes: x 3
y

3 = (x y)(x
z + xy + y

z
).

Thus 27z 3 -
7/ = (3z)

3 -
(2/2)3

= (3x
-

?/)(9z
2 + 3z?/

2 + ?/)

(6) The sum of two cubes: x* + y
3 = (x + y)(x

z xy + y
z
).

Thus 125a3 + 6 9 = (5a)
3 + (6

3
)
3

= (5a + & 3
)(25a

2 - 5a& 3 + & 6
)

303. To factor a polynomial completely, first remove any monomial

factor present ;
then factor the resulting expression by any of the type

forms which apply, until prime factors have been obtained throughout.

Thus,

(a) 5a 6 - 56 6 = 5(a
6 - 6 6

)
= 5(a

3 - 6 3
)(a

3 + & 3
)

= 5 (a
- 6)(a

2 + ab + b*)(a + &)(a
2 - ab + 6 2

)

(6) 42ax 2 + Wax - 8a = 2a(21x
2 + 5x -

4)
= 2a(7z +4)(3x -

1)

Exercises

Factor the following expressions:

1- TV*
6 - A 4

. 22. x 2 + 6x - 27.

2. 9z 8 -
4y*. 23. c 3 -64 3

.

3. 25z 4 - 1. 24. 8x 3 - 1.

4. 81 - 4z 2
. 25. 1 - 13* - 68f 2

.

5. 1 - 64a 26 4c 6
. 26. x 4 - Qx 2b - 55& 2

.

6. x 6
?/

8
. 27. aw 2 4awv 45az> 2

.

7. 225 - a 6
. 28. 28a 2 - a - 2.

8. 121x 2 -
144?/

2
. 29. 3s 2 - I7st + 24 2

.

9. 49m 4 - 36zVz 2
. 30. 15r2 - r - 6.

10. 169 fa a*x\ 31. 4?/
2 - 3y - 7.

11. 4z 2 - 20x + 25. 32. 64u 6 - 27x 3
.

12. 9a2 + Qab + 6 2
. 33. Gar - 3as + 4af.

13. a26 2 - 17a6c - 60c2
. 34. a 2 + 2a - 35.

14. r 4 - llr2 + 30. 36. 9z 2 + I2xy -
32y*.

15. 166 2 + 306 + 9. 36. a 2 + 10a& + 25b 2
.

16. 81u 2 + 180uy + lOOv 2
. 37. Q25x 2

y
z - &.

17. 36a2 - 132a + 121. 38. 3cdj/
2 - Qcdy

- 3Qcd.

18. x*y*
- 4xy

z + 4. 39. 4ax 2 -
25cw/

4
.

19. o 26 2 - lab - 35. 40. 3?y
3 +24.

20. M 6
-|- u 3 - 110. 41. 4x 2 - 27z + 45.

21. a 46 2 - 14a 26 + 49. 42. 6x 2 + 7x - 3.
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43. 2T2
2 - I- 68. 2am 2 - 50a.

44. Wx 3
y - 5x 2

y
2 - 5xy 3

. 59. 72 + 7x - 49z 2
.

46. m zn 2 + 7mn - 30. 60. 31z 2 + 23xy - Sy
2

.

46. x 2 - 3xy -
7(ty

2
. 61. 24a 2 + 26a - 5.

47. mz 2 + 7mx - 44m. 62. 1 - Zxy - W8x 2
y
2

.

48. x s - 3z 2 - 108z. 63. x 2 - 14mx + 40m 2
.

49. x 8 -
2/
8

. 64. 26 + 10a& - 28a 2
fc.

50. z 4 - 5z 2
?/
-

24?/
2

. 65. c 3 + 27d 3
.

51. 8n 2 + 18w - 5. 66.

52. 3z 4 - 12. 67.

53. 9m2 - 42m* + 49Z ?
. 68. 49n 4

?/
- 196n 2

2/
3

.

54. 10z 2 - 39a; + 14. 69. x 2 - IQx + 48.

55. 12x 2 + llo: + 2. 70. x 2 + 23z - 50.

56. 36z 2 + 12z - 35. 71. a 4n 4 + 31a 2n 2 + 30.

67. x s -
Sy*. 72.

304. General Distributive Law in Multiplication. From the mean-

ing of a product, we may write

(a + b+c+. . .)(x+3/ + 2+. )
= ax + bx + ex +. . .

+ ay + by + cy + . . .

+ oz + 6z + cz + . . .
,

etc.

Stating this in words : The product of one polynomial by another is the

sum of all the terms found by multiplying each term of one polynomial

by each term of the other polynomial.
To multiply several polynomials together, we continue the above

process. In words we may state the generalized distributive law of

the product of any number of polynomials as follows :

The product of k polynomials is the aggregate of ALL of the possible

partial products which can be made by multiplying together k terms, of

which one and only one must be taken from each polynomial.

Thus,

(a + b+c + . . .)(*+ + *+ .)(u+v + w+. . .)

= axu + axv + . . . + ayu + ayv + . . . + azu + azv + .

+ bxu + bxv + . . . + byu + byv + + bzu + bzv +
+ cxu + cxv + . . .

+ . . .,etc.

// the number of terms in the different polynomials be n, r, s, t . . .

respectively, the total number of terms in the product will be nrst . . .

The student may prove this.
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305. The Fundamental Theorem in the Factoring of xn an .

The expression (x
n an) is always divisible by (x a).

Write xn an xn axn
~

l + ax'1
"

1 an

= xn
~

l
(x a) + a(x

n~ l - an
~

l
)

Now if (x
n~ 1 a71

"
1
) is divisible by (x a), then plainly

xn
~

1
(x a) + a(x

n~ 1 an
~

1
} is also divisible by (x a). But

this last expression equals (x
n an ), as we have shown. Therefore,

if (x a) exactly divides (x
n~ l an

~
1

), it will also exactly divide

(x
n an).

But (x a) will exactly divide (x
z a 3

), therefore it will divide

(x
4 a4

), and since (x a) exactly divides (z
4 a4

) it will exactly

divide (x
5 a 5

), and so on.

Therefore, whatever positive whole number be represented by
n, (x a) will exactly divide (x

n an ).

We see that (x a) is one factor of (x
n an ). The other factor

of (x
n an) is found by actually dividing (x

n an ] by (x a).

Thus

(x
n - an )

= (x
- a)(x

n~ l + axn~* + a*xn
~

3 + . . . + an
~ 2x + a*" 1

)

The student may show that (x + a) divides xn + an if n be odd, and

divides xn an if n be even.

3C6 Quadratic equations are usually solved (a) by factoring, (6)

by completing the square, or (c) by use of a formula.

(a) To solve by factoring, transpose all terms to the left member of

the equation and completely factor. The solution of the equation is

then deduced from the fact that if the value of a product is zero, then

one of the factors must equal zero. Thus

(1) Solve the equation

x 2 + 54 = 15x

Transposing x z I5x + 54 =0
Factoring (x 9)(z -

6) =0
z-9=0ifa; = 9

Hence the roots of the equation are 9 and 6.

CHECK: Does (9)
2 + 54 = 15 X 9?

Does (6)
2 + 54 = 15 X 6?

(6) To solve by completing the square, use the properties of

(x a)
2 = x 2 2ax + a 2

,
as follows:
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(2) Solve x2 - I2x = 13.

Add the square of 1/2 of 12 to each side

x 2 - I2x + 36 = 49

Take the square root of each member

x - 6 = + 7

Hence
x = 6 + 7 = 13

x = 6 - 7 = -1

CHECK: Does (13)
2 - 12 X 13 = 13?

Does (-1) 2 - 12 X (-1) = 13?

Since in general (x a) (x 6) = x 2
(a + b)x + ab, we can check

thus:

Does 13 + (- 1)
= - (- 12)?

Doesl3(- 1) = - 13?

(3) Solve x 2 - 20x + 97 = 0.

Transpose 97 and add the square of 1/2 of 20 to each side :

x 2 - 2Qx + 100 = - 97 + 100 = 3

Take the square root of each number:

x - 10 =
Hence

xi 10

x 2
= 10 \/3

CHECK: Does xi + x z
=

( 20)?

Doesziz 2
= 97?

(c) To solve by use of a formula, first solve

ax 2 + bx + c = (1)

The roots are

-6Vo2 -4ac
,9 v

X = n

For a particular example, substitute the appropriate values of a, 6,

and c. Thus:

(4) Solve 2x 2 - 3x - 5 = 0.

Comparing the equation term by term with (1) we have

a =
2, b = 3, c = -5
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Substitute these values in the formula (2)

- 3P -4(2) (-5)
2(2)

_ 3 7

4

Therefore

xi = 5/2, x z
= - 1

CHECK: Does xi + x 2
= - b/a = 3/2?

Does xix 2
= c/a = - 5/2?

Exercises

Solve the following quadratics in any manner:

1. x 2 + 5x + 6 = 0. 29. 3x 2 - 12ax = 63a 2
.

2. x 2 + 4x = 96. 30. 4x 3 - 12ax = 16a 2
.

3. x 2 = 110 + x. 31. x 2 - x = 6.

4. x 2 + 5x = 0. 32. x* + 7x = - 12.

5. 6x 2 + 7x + 2 = 0. 33. x 2 - 5x = 14.

6. 8x 2 - lOx + 3 = 0. 34. x 2 + x = 12.

7. x 2 + mx - 2m* = 0. 35. x 2 - x = 12.

8. 3< 2 -
*
- 4 = 0. 36. x 2 = 6x - 5.

9. 10r 2 + 7r = 12. 37. x 2 = - 4x + 21.

10. x 2 + 2ax = &. 38. x 2 = - 4x + 5.

11. x 2 + 4x = 5. 39. x 2 + 5x + 6 = 0.

12. x 2
-f 6x = 16. 40. x 2

-f llx = - 30.

13. 2x 2 - 20x = 48. 41. x 2 - 7x + 12 = 0.

14. x 2 + 3x =18. 42. x 2 - 13x = 30.

15. x 2 + 5x = 36. 43. 3x 2 + 4x = 7

16. 3x 2 + 6x = 9. 44. 3x 2 + 6x = 24.

17. 4x 2 - 4x = 8. 46. 4x 2 - 5x = 26.

18. x 2 7x = - 6. 46. 5x 2 - 7x = 24.

19. x 2 - ax = 6a 2
. 47. 2x 2 - 35 = 3x.

20. x 2 - 2ax = 3a 2 48. 3x 2 - 50 = 5x.

21. x 2 - x = 2. 49. 3x 2 - 24 =6x.

22. x 2 + x = a 2 + a. 50. 2x 2 - 3x = 104.

23. x2 - lOx = - 9. 51. 2x 2 + lOx = 300.

24. 2x 2 - 15x = 50. 52. 3x 2 - lOx = 200.

25. x 2 + 8x = -15. 53. 4x 2 - 7x + = 0.

26. 3x 2 + 12x = 36. 54. fx
2 - fx = - f

27. 2x 2 + lOx = 100. 55. 9x 2 + 6x - 43 = 0.

28. x 2 - 5x = - 4. 56. 18x 2 - 3x - 66 = 0.
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57. Jx 2 - 3x + |J = 0. 59. 2x 2 - 22x = - 60.

60. 3x 2 + 7x - 370 = 0.

61. 5x 2 -ix -
T
7 = 0.

62-f-! + ih-
63. x 2 + 2x + 1 = 6x + 6. 69. s 2 = 5s + 6.

64. x 2 - 49 = 10(x - 7). 70. r 2 + 3r = 4.

65. 2x 2 + 60x = - 400. 71. 2s 2 + 4as - c = 0.

66. a 2 + 7a + 7 = 0. 72. x 2 + 6ax - 5 = 0.

67. z 2 = 3z + 2. 73. x 2 - lOax = - 9a 2
.

68. r = r 2 - 3. 74. ex 2 + 2dx + e = 0.

75. 2x 2 + 6x - n = 0.

76. 7/
2 + \y = f . 83. 4x 2 - 3x = 3.

77. x 2 = 5 + fz. 84. 9* 2 + 4* = 6.

78. u 2 - %u - 1 = 0. 85. 5(x
2 -

25) = x - 5'

79. V + \t
=

-f . 86. 9w 2 + 18w + 8 =
80. r 2 - | =

Jr. 87. x 2 + px + q.

81. s 2 -
|s = \5

-. 88. x 4 - 8x 2 + 15 = 0.

82. 3r 2 - 2r = 40. 89. u 4 - 29w 2 + 100 = 0.

90 - 1 = ]

91. 2y + 4

90 1 4-
3
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(2) (a
n
)
r = anr

,
or law for involution.

(3) anbn = (a6)
n

,
or distributive law of exponents.

NOTE: The student must distinguish between a" and ( a)
n

.

Thus - 8** = -
2, and (- 8)** = -

2, but (- 3)
2 = 9 and - 3 2 =

- 9.

Exercises 1

Use the definitions of exponents (1), (2), (3), (4) 307, and the laws

of exponents (1), (2), (3), 308, and find the results of the indicated

operations in the following exercises.

1. x 12x 13
. 9. x 13

-f- x 8
. 17. (a

7
)
3

.

2. a 2 a 3
". 10. x 8 4- x 13

. 18. (a
4
)
6

.

3. x2n+1x". 11. a 3"
-T- an . 19. (- a& 2

)
3

.

4. b zbn+5 . 12. en+5 -f- e 3
. 20. (aV) 5

.

6. m^+'m"- 1
. 13. 102r+3 -^ 10". 21. (&) 2

.

6. an
~ za3+n . 14. nr+6 -r- nr+3 . 22. (- anbr

}
3

.

7. xn-r+lxr
f ]_5. un+r + un~r ^ 23. (a

36 5
)'.

8. m5am-2a
. 16. xn

~r+1 + xr
. 24. (r

wsn)
p

.

>
"'

26. -J
'

26. ^ '

It. L-^

Exercises 2

Write each of the following sixteen expressions, using fractional

exponents in place of radical signs:

1. Va. 5. Va^. 9. V^
2. Va3

- 6. (Va) 6
. 10. (Vx)

3. V 2
. 7. Va^. 11.

4. Va^ 8. (Va) 5
. 12.

Find the numerical value of each of the following sixteen

expressions :

17. 4*.



462 ELEMENTARY MATHEMATICAL ANALYSIS

33. a*. 37. n 3
~. 41. A 45. ai.

34. 1*. 38. 6*. 42. x\ 46. 6~^.

35. m*. 39. e. 43. y '. 47. x^ .

36. z 7
. 40. $. 44. at 48. a~?>

Exercises 3

Perform the indicated operations in each of the following examples

by means of the laws of exponents.

l.
o J

X a*.

2. x% X A 4. zi X A 6. xTn X a^

3. x$ X x^>. 5. cfi X o^. 7. ai X ah.

8. a^ ^ a*.
5- 8. 5_2. li-i* JL_

a 7
-:- a 3 = a* 3 = a21 ^ x = a 21

.

9. fcf 4. ^i. 11.8a66 2 ^ 4o 26^. 13. 6af -5- Sa^.

1 V*T5 1 o o ^" "2 1 A t
n

15. Ca^).

16. (a). 18. (a). 20.

17. (^)^. 19. (a^) 4
. 21.

22. (a^V)^-

23. (o
26 2 ). 25. (36a

4x 2
?/

3). 27.

24. (ad^)*. 26. (a^V) 14
- 28.

29.

i = (ot)i aff.

36. (a* +c^ + l)(a
3 +o -a 3

).



SECONDARY SCHOOL ALGEBRA 463

We arrange the work thus :

a? + a* + 1fi^
'

+ a a 3

a + a + a

a 3 a a 3

a 3 + 2a 3 + a^

37. (x + 2yk +
38. (x* +
39. (a*

-
3 A i 1 i

40. (a
n 2a n

-J- 3o> n
) (2o n a, n ) .

Exercises 4

Find the numerical value of each of the following :

1. 2- 1
. 4. 10-*. 7, 2- 4

. 10. 1024--.

2. 4-2. 5. I' 1 8. 16-". 11. 512- 3
.

3. (-2)- 3
. 6. 2-2. 9. SI-*. 12. 625~*.

13 -

2^1-
16 ' (=V3

- 17 - 19 - ^?'

14. A. 16. . 18. |^. 20.^3-2 8 l 2 i
49-i

Write each of the following expressions without using negative

exponents :

21. or 2
. 25. 5cr 5

. 29. (x + y)~
z

. 33. 2a 3x~ 2
y-^.

22. x 2
?/-

2
. 26. 3cr 26-2. 30. (a;)- 3

. 34. (- o 2
)-3 >

23 -L 27
2a

"2 " ^ " a
~
l6 "

O. _ n
* *f m

24. -^zj- 28. - 32. 36. - _
x _3 _ 6

-

Write each of the following expressions in one line:

37-i' 39 -

C^' 41-P?' 43-^'
38. - 40. J^

1

^?.- 42. ^.'j!.'- 44.
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Exercises 5

Perform the indicated operations in each of the following by means
of the laws of exponents.

1. a 8 X a~ 5
. 4. 8a~ 4 X 3a 2

. 7. mTs X nr%.

2. r 12 X r- 1
". 5. u~ l X tA 8. 6ax~ 6 X |6x

2
.

3. c~ 8 4- c~ 5
. 6. x 5

-T- a;-". 9. a~ 3b~n -r- ab~r
.

10. (-7a- 36~2)(-
11.

12. Tor^c- 3
-r- ;

13. 56x s
z/~

72 4 - 7x~1y~8z~* 24 (x^ y^ )~
12

14. 18a~ 2 ^^c~ 5
-f- Qa*b^c~ 5

. 25.

15. 6x%-* 2 6 + 2arV-*. 26.

18 (a
5
)- 2

.

'



SECONDARY SCHOOL ALGEBRA 465

49. (2a2 - 3os)(3a- + 2

50. (z-t - arty* + ar*y -
yt) 4- (ar* - y).

z-2 - 2^)ar2
- arty* + ar^y - y^(x~

i + y

2

51.

309. Reduction of Surds or Radicals.

1. // any factor of the number under the radical sign is an exact

power of the indicated root, the root of that factor may be extracted and
written as the coefficient of the surd, while the other factors are left

under the radical sign.

(1) Thus,

(2) Also,

(3) Also,

V8 =

VW2
= </27 X 3
= i/27

=3^/3
X2ax

2. The expression under the radical sign of any surd can always be

made integral.

(1) Thus
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3. We may change the index of some surds in the following manner:

(1) Thus, \/4 =

V2
(2) Also, \/1000 =

= vTo_
(3) Also, Y/256c^ = t/V^MW

= \/16co4

A surd is in its simplest form when (1) no factor of the expression

under the radical sign is a perfect power of the required root, (2) the

expression under the radical sign is integral, (3) the index of the surd is

the lowest possible.

Methods of making the different reductions required by this defini-

tion have already been explained. We give a few examples.

(1) Simplify
^gj.

o I r 5 i

a

2b z

26

(2) Simplify X /-P
' '

/20

..,
4
/400

bfy
^1-.

4
/400 = /20

(3) Simplify ^~.
6
/512 = 5 /8

\125 2\5

= Vlo
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In any piece of work it is usually expected that all the surds will

finally be left in their simplest form.

Exercises

Reduce each of the following surds to its simplest form:

81

fe
V2727

9. Simplify V12 +.AV75 + 6V-S-
10. Simplify 1 + V8 + A/2 - A/27 - Vl2 + V75.
11. Simplify 3/21 + 7V2 X 3/21 - 7V2.
12. Find the value of x* - &x + 7 if x =3 - \/3.
13. Find the value when x = \/3 of the expression

2x- I 2x +1
(*- I)

2
~

(z + 1)
2

'

14. Find the value of

(35VIO + 77V2 + 63V3)(VlO + A/2 + V3).

Solve and check each of the following equations :

15. Vx~= 4.
_

16. ^/2x + 6 = 4.

17. VlOx +16 = 5.

18. V2.T+7 = V5x-2.
19. 14

- 3 x -3
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Abscissa, 26

Absolute value of complex num-

ber, 356

Addition formulas for sine and

cosine, 286-288

for tangent, 289

Additive properties of graphs,

42, 273-276

Algebraic function, 13, 14

scale, 3, 342

Alternating current curves, 362

et seq.

represented by complex

numbers, 368

Amplitude of complex number,
356

of S. H. M., 322

of sinusoid, 113

of uniform circular motion,
99

of wave, 326

Angle, 96

depression, 124

direction, 100

eccentric, 140

elevation, 124

epoch, 322, 326

phase, 322, 326

that one line makes with an-

other, 293

vectorial, 100

Angular magnitude, 96

units of measure, 97

velocity, 99, 322

Anti-logarithm, 232

Approximation formulas, 193

Approximations, successive, 180

Argument of function, 10

of complex number, 356

Arithmetical mean, 198

progression, 198-201

triangle, 188

Asymptotes of hyperbola, 154, 157

Auxiliary circles, 140

Axes of ellipse, 138

of hyperbola, 157

Binomial coefficients, graphical

representation of, 196,

197

theorem, 189 et seq.

Briggs, Henry, 216

system of logarithms, 223

Cartesian coordinates, 26

Cassinian ovals, 387, 389

Catenary, 274

Change of base, 242, 243

of unit, 62, 73 et seq., 263

Characteristic, 229, 230

Circle and circular functions,

Chap. III.

Circle, dipolar, 389

equation of, 94, 95

sine and cosine, 120, 121

tangent to, 422, 427

through three points, 433

Circular functions, 100 et seq.

graphical computation of,

103, 111

483
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Circular fundamental relations,

107, 282-297

motion, 99

Cologarithm, 233

Combinations, 183, 186, Chap.
VI.

Common logarithms, 223

Complementary angles, 111, 114

Completing square, 457

Complex numbers, Chap. XI,
341 et seq.

defined, 348

laws of, 350

polar form, 358

typical form, 348

Composite angles, functions of,

290-293

Composition of two S. H. M.'s,

324

Compound harmonic motion, 334

interest, 205, 211

law, 256

Computers rules, 309

Conditional equations, 132, 300-

315

Conies, 413, 415

con-focal, 443

sections, Chap. XIII, 398 et

seq.

Conjugate axis, 157

complex numbers, 352

hyperbola, 158

Connecting rod motion, 338

Constants and variables, 13

Continuous function, 10

compounding of interest, 256

Coordinate paper, 26, 119, 267-

274

Coordinates, Chap. II, 26 et seq.

Cartesian, 26

orthogonal, 119

polar, 118, 433

Coordinates, rectangular, 26, 27

et seq.

relation of polar and rectan-

gular, 131, 433

Cosine, 100

curve, 113, 120

law, 301

Crest of sinusoid, 113

Cubical parabola, 50

Cubic equation, 177 et seq.

"Cut and Try," 135

Cycloid, 390

Damped vibrations, 276

Damping factor, 277

Decreasing function, 58

geometrical series, 206

DeMoivres theorem, 373

Descartes, Rene, 26

Diameter of any curve, 442

of ellipse, 442

of parabola, 419

Direction of ellipse, 401, 413

of hyperbola, 406, 413

of parabola, 411, 413

Discontinuous function, 11, 31, 55

Distance of point from line, 425

Distributive law of multiplica-

tion, 189, 351

general, 456

Double angle, functions of, 295

scale, 5-8, 20, 21, 245-265

of algebraic functions, 20

of logarithmic functions,

245-265

"e," 220, 223, 238, 257

Eccentric angle, 140

Eccentricity of earth's orbit, 402

of ellipse, 400

of hyperbola, 406

of parabola, 411, 413
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Ellipse, 137 et seq.; 398 et seq.

Chaps. IV and XIII.

axes of, 138

construction, 142, 143

directrices, 401, 413

eccentricity, 400

focal radii, 398, 429

foci, 398

latus rectum, 403

parametric equation, 140

polar equation, 409

shear of, 436

symmetrical equation of, 138

tangent to, 428

vertices, 138

Elliptic motion, 325, 382

Empirical curves, 261, 274

formulas, 71

Envelope, 421

Epicycloid and epitrochoid, 393

Epoch angle, 322, 326, 330

Even function, 115

Exponential curves, 237-244

equation, 211, 219

function Chap. VIII, 214 et

seq.

denned, 219, 221, 223

compared with power, 265

Exponents, definition of, 460

irrational, 222

laws of, 460

Factorial number, 183

Factoring, 453-455

fundamental theorem in, 457

Factor theorem, 163

Family of curves, 74

of lines, 420

Focal radii and foci, 386

of ellipse, 398, 429

of hyperbola, 404

radius of parabola, 412

Frequency of S. H. M., 323

of sinusoidal wave, 329

uniform circular motion, 99

Function, of a function, 91

periodic, 30, 113, 360

power, 46 et seq., 265

rational, 14, 162

S. H. M., 327

trigonometric, 100

Functions, 9, 10

algebraic, 13, 14

circular, Chap. Ill, 94 et

seq., 100

continuous, 10

discontinuous, 11, 31, 55

even and odd, 115

explicit and implicit, 139

exponential, 219, 221, 223,

265

increasing and decreasing,

58, 152

integral, 14, 162

General equation of second de-

gree, 437-440

Geometrical mean, 202

progression, 202 et seq.

Graphical computation, 15 et seq.

of integral powers, 19

of logarithms, 217

of product, 16, 388

of quotient, 17, 87, 88

of reciprocals, 89

of sq. roots, 18, 21

of squares, 18, 21, 87

solution of cubic, 177

simultaneous equations,

174 et seq.

Graph of arithmetical series, 200

of binomial coefficients, 196,

197

of complex number, 349
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Graph of cycloid, 392

of ellipse, 142, 143

of equation, 37

of functions of mutilple an-

gles, 298, 299

of geometrical series, 207-

210

of hyperbola, 153-156

of hyperbolic functions, 274

of logarithmic and exponen-
tial curves, 216, 217,

237 et seq.

of parabolic arc, 420

of power function, 46, 48, 59,

73, 86

of sinusoid, 112

of tangent and secant curves,

147-151

Half-angle, functions of, 296

Halley's law, 260

Harmonic analysis, 336

curves, 363, 364

functions, 327

motion, Chap. X, 321 et seq.

compound, 334

Hyperbola, Chap. IV and XIII.

asymptotes, 154, 157

axes, 155, 157

center, 157

conjugate, 158

eccentricity, 406

foci and focal radii, 404

latus, rectum, 407

parametric equations, 154

polar equation, 409

rectangular, 54, 153

symmetrical equation, 151

vertices, 157

Hyperbolic curves, 51, 54

sine and cosine, 273

system of logarithms, 223

Hypocycloid and Hypo-tro-

choid, 393

i = V~l, 348

Identities, 107, 108, 132, 133,

282-297

Image of curve, 53

Increasing function, 58, 152

progression, 199

Increment, logarithmic, 256

Infinite discontinuity, 55

geometrical progression, 206

Infinity, 54, 55

Integral function, 14, 162

Intercepts, 40, 41

Interest, compound, 205, 256

curve, 211

Interpolation, 231

Intersection of loci, 169

Inverse of curve, 130

of straight line and circle,

130

trigonometric functions, 132,

378, 379

Irrational function, 14

numbers, 334

Lamellar motion, 82

Langley's law, 70

Latitude and longitude of a point,

26

Latus rectum of ellipse, 403

of hyperbola, 407

of parabola, 412

Law of circular functions, 126

of complex numbers, 350

of compound interest, 256

of exponential function, 267

of power function, 76

of sines, cosines, and tan-

gents, 301-303

Lead or lag, 330, 368
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Legitimate transformations, 167

Lemniscate, 387, 389

Limit, 150

Limiting lines of ellipse, 146

Loci, Chap. XII, 381 el seq.

defined by focal radii, 386

Theorems on, 57, 60, 80, 129,

242, 292

Locus of points, 36

of equation, 36

Logarithmic and exponential

functions, Chap. VIII,
214 et seq.

coordinate paper, 267-274

curves, 237-244

double scale, 245-265

functions, 219, 223

increment and decrement,

256, 258, 259, 277

tables, 229-233

Logarithm of a number, 216,

223

Logarithms, common, 223

graph, 216-217

properties of, 226-229

systems of, 223

Mantissa, 229

Mean, arithmetical, 198

geometrical, 202

harmonical, 212

progressive, 194

Modulus of complex number,
356

of decay, 259, 277

of logarithmic system, 242

Motion, circular, 99

compound harmonic, 334

connecting rod, 338

elliptic, 325, 382

shearing, 81

S. H. M., 321 et seq.

Naperian base, 220, 223, 228, 257

system of logs., 223

Napier, John, 214

Natural system of logarithms,
223

Negative angle, 96

functions of, 115

Newton's law, 260

Node, 113

Normal, 130

equation of line, 130, 423

to ellipse, 429

to parabola, 419

Oblique triangles, 300-315

Odd functions, 115

Operators, 344

Ordinate of point, 26

Origin, 26

at vertex, 145, 413

Orthogonal systems, 119

Orthographic projection, 61, 117,

137, 158, 243

Paper, logarithmic, 268 et seq.

polar, 118 et seq.

rectangular, 26 et seq.

semi-log, 251, 261 et seq.

Parabola, 50, 411

cubical, 50

polar equation, 412

properties of, 419

semi-cubical, 50

Parabolic curves, 47 et seq. 267

Parameter, 140, 381

Parametric equations, 140, 381

of cycloid, 391

of ellipse, 140

of hyperbola 154, 155

Pascal's triangle, 188, 189

Periodic functions (see trig.-

fens.), 30, 113, 360
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Period of S. H. M., 322

of simple pendulum, 325

of uniform circular motion,
99

of wave, 328

Permutations, 183, 184

and combinations, Chap. VI,
182 et seq.

Phase angle, 322, 326, 330

Plane triangles, 300-315

Polar coordinates, 118, 433

diagrams of periodic func-

tions, 120, 298, 360

equation of ellipse, 409

of hyperbola, 409

of parabola, 412

of straight line, 129

form of complex number, 358

relation to rectangular, 131,

433

Polynomial, 162

Positive and negative angle, 96,

115

coordinates, 26

side of line, 427

Power function, 46 et seq.

compared with exponen-

tial, 265

law of, 76, 77

practical graph, 73

variation of, 57

Probability curve, 197

Products, special, 452

Progressions, Chap. VII, 198 et

seq.

arithmetical, 198-201,215

decreasing, 206

geometrical, 202-210, 215

harmonical, 211, 212

Progressive mean, 194

Projection, orthographic, 61, 117,

137, 158, 243

Proportionality factor, 64

Quadrants, 26

Quadratic equations, 457

systems of equations, 171

Questionable transformations,
167

Radian unit of measure, 97, 98

Radicals, reduction of, 465

Radius vector, 118

Ratio definition of conies, 413

Rational formulas, 71

functions, 14, 162

numbers, 354

P sin x tan x
Ratio of - and - -

148,x x

Rectangular coords, (see Coordi-

nates), Chap. II, 26

et seq.

Reflection of curve, 53

Reflector, 87

Remainder theorem, 162

Reversors, 346

Right angle system, 97

Root of any complex number, 377

of equation, 85

of function, 85, 163

of unity, 376

Rotation of locus, 78

polar coordinates, 127-129

rectangular, 433-435

of rigid body, 78

Scalar numbers, 343

Scale, 1, 3

algebraic, 3, 342

functions, 20

arithmetical, 3, 342

double, 5 et seq.

logarithmic, 245-265

uniform, 2



INDEX 489

Scientific laws and formulas, 65

et seq.

Seiche, 332 et seq.

S-formulas, 305

Semi-cubical parabola, 50

Semi-logarithmic paper, 251-261

Series, (see progressions), '19

Shearing motion, 82 et seq.

Shear of circle, 441

of ellipse, 436, 441

of hyperbola, 441

of parabola, 441

of straight line, 81 'et seq.

Simple harmonic function, 327

motion, Chap. X, 321 et

seq

pendulum, 63, 195, 325

Sine, 100

law, 301

Sinusoid, 112, 113

Sinusoidal varying magnitude,
365

wave, 326

Slide rule, 149 et seq.

Slope of line, 39

of curve, 40, 113

Stationary waves, 332

Statistical graphs, 27

Straight line, 40, 130, 423, 430

Strain, 78

Sub-normal, 419

Sub-tangent, 240, 419

Supplementary angles, 111

Surds, reduction of, 465

Symmetrical equation of ellipse,

138

of hyperbola, 157

systems of equations, 174

Symmetry, 51, 57

with respect to point, 51

to line, 51

to curve, 57

Tables, damped vibrations, 279,

280

logarithms, 231

material in concrete, 44

natural trig, functions, 104,

123

powers, 49, 50

of "e," 241

Tangent, 100

graph, 147

law, 303

to circle, 422, 427

to curve, 239

to ellipse, 428, 429

to parabola, 418

Theorems, binomial, 189 et seq.

factor, 163

remainder, 162

functions of composite an-

gles, 292

on loci, 57, 60, 80, 129, 242,

292

Transformations, legitimate and

questionable, 167

Translation, 78, 79, 424

of any locus, 79, 80

of point, 424

of rigid body, 78

Transverse axis, 157

Triangle of reference, 100, 106

Triangles, solution of, 123, 300-

315

oblique, 300-315

right, 123-125

Trigonometric curves, 112, 120,

147-151, 298

functions, 100 et seq.

Trochoid, 393

Trochoidal wave, 331

Trough of sinusoid, 113

Uniform circular motion, 99
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Unit, change of, 62, 73 et seq., 263

of angular measure, 97

Variables and constants, 13

and functions of variables,

Chap. I

Variation, 63

of power function, 57

Vector, 118, 357

radius, 118

Vectorial angle, 100, 118

Velocity, angular, 99, 322
'

of wave, 329

Versors, 347

Vertices of ellipse, 138

of hyperbola, 157

Vibrations, damped, 276

Waves, Chap. X., 326 et

compound, 334

length of, 327

sinusoidal, 326 et seq.

stationary, 331

trochoidal, 331

Zero of function, 85
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