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1. A type of principal directions for a Riemannian space of N dimen-
sions has been defined by Ricci (Atti R. Ist. Veneto, 63, p. 1233). Four
distinct types are defined in the present paper, of which one is identical
with that of Ricci, although defined in a manner somewhat more simple.
We shall adopt the common convention of summation with respect to

any index occurring twice in a product, except where the index is a capital
letter. The manifold under consideration is of N dimensions; the small
Roman indices imply a range or summation from 1 to N, the small Greek
indices from 1 to N-1. The line element being given by

ds2 = gmndxdxxn,

we define in the usual manner

Gmn,st = k [ -k [t] + gab{[][b]-[s][t] } (1.1)
GS et=gmntG (1.2)
G = ges G,5

The word "surface" will be used to denote any (N- 1)-space immersed
in the given N-space.

2. Directions defined by invariant relations may be termed principal.
Any invariant function of direction will, in general, yield such principal
directions, corresponding to stationary values of the function. The follow-
ing are types of principal directions:-

Type I: Consider the family of surfaces, G = constant. Its orthog-
onal trajectories constitute principal directions; their equations are

-= gst X (s=l,. ..,N) (2.1)
aXS

where the point denotes differentiation with respect to the arc. Now,
for any direction,

bG bG-G -JG dx, dxt
G2 = ;

gst dx, dxt

therefore directions making G2 stationary satisfy

bG OG?x aG dxt = O&I dxt (s = 1. N)
ox, axt
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or
bG. aGGtXI (s=1, ...,N).bxs

But these are of the same form as (2.1), writing 0G = 4, and hence the

type of principal direction defined above is that for which G2, and con-

sequently G, is stationary.
Type II: Consider a point (P) and a geodesic passing through it. Along

tlhis geodesic

IG stm} m]

This quantity is a function of direction at P, and the principal directions,
correPmnding to stationary values, are given by

mG_{st} ] dx1 = Og, dxt (s = 1, ...,N). (2.2)
a,'zJ m bxm

Type III: Th ression Gsxsx5 is invariant for any given direction.
Principal directi responding to stationary values, are given by

6C7 dxt = Ogs1dxt (s = 1, ...,N). (2.3)
EisInhart (Proc. N. A. S., Vol. 8, No. 2, p. 24) has shown that the prin-
cipal-4irections of Ricci (loc. cit.) may be expressed in this form. These
direclbns may also be reached from other considerations. Any direction
at a pant (P) defines a surface consisting of all geodesics passmg through
P and perpendicular to the given direction. The curvature invariant
(G) of this surface at P depends only on the given direction. Those
directions making G stationary are principal directions: they may be
proved to be identical with those considered above.

Type IV: The expression
gSitl gS2e2g sls S3S Gtlt2,tSt3 st (2.4)

is invariant for any given direction. Principal directions, corresponding
to stationary values, are given by

Sit e gS33 G5152,5s Gt2, dx = g5t dxt (s = 1, ...,N). (2.5)
The four types defined above are not intended to be exhaustive of all

types of principal directions. Type II, for example, will give principal
directions if any other invariant function of position is substituted for
G. Let us suppose that the expression (2.4) has the same value for all
directions at any given point, but varies from point to point. The prin-
cipal directions of Type IV are then indeterminate, but (2.4) is an in-
variant function of position and may therefore be substituted in (2.2)
to yield principal directions.
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3. In order to prove certain theorems concerning the principal directions
defined above, we shall require particular co6rdinate systems. A system
of coordinates will be said to be "O.T.(xN)" if the parametric lines of xN
are the orthogonal trajectories of the family of surfaces XN = constant.
The necessary and sufficient conditions for an O.T. (xN) system are easily
seen to be

gNa= (= 1, ...,N-1). (3.1)

A special type of O.T.(XN) system is the "G.O.T.(xN)" system for which
the parametric lines of xN are geodesics. The equations of a geodesic are

X5s+ {r } m n = O (s= 1 ... I N)
s

or

gsG t + [f] XmXn = 0 (s = 1 ... N). (3.2)
s

The coordinate system being O.T.(XN), the parametric lines of XN satisfy
(3.2) if, and only if,

[NN] O (a=l,...,N-1)

and

gNN XN + [ N] N = 0.

The latter equation is always satisfied for the parametric lines of xN, by
virtue of the equation

gNVN XN= 1;

the former are equivalent to

JgNN=
bxa

Hence we have, as necessary and sufficient conditions for a G.O.T.
(XN) system,

gN = 0, 6NN = 0 (u = 1, * . ., N-1). (3.3)
6XV

If we are given an so 1 family of surfaces, we can find an O.T.(xN) system
for which the family is given by XZ = constant. If we are given a single
surface and draw the congruence of geodesics normal to it, it follows from
the Calculus of Variations that this is a normal congruence, and that any
two of the normal surfaces give equal intercepts on all the geodesics.
Taking these geodesics as parametric lines of XN and taking XZ as the dis-
tance measured along these geodesics from the given surface, we have a
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G.O.T.(xN) system for which the given surface has the equation xN = O,
and gNN = 1 throughout the manifold (cf. Bianchi, Vol. I, p. 336).

4. A "plane" surface-the "superficie geodetiche" of Ricci (Atti R.
Acc. Lincei, Ser. 5, Vol. 12, p. 409)-may be defined as one whose geodesics
are also geodesics of the containing manifold. Let us choose an O.T.
(xN) system for which a certain plane surface has the equation XN = 0.
The line element of the surface is given by

ds2 = g9,dx dxv

and the equations of its geodesics are, in the form of- (3.2),

go+[XxJA I0 (4.1)

XN = 0; (4.2)
for such a curve we find, for a = 1, ... ., N-1,

gjt XI + xmXn = gox, +[v]9 X#X, by (4.2),

= 0, by (4.1);
also

gNtXi [+[N]X,n= X[>, by (3.1) and (4.2).

- 1 dxN X;v by (3.1).

From the definition of a plane surface and by (3.2), this latter quantity
must vanish for all arbitrary directions in the surface. Therefore we
-must have, at all points of the surface,

a_ = 0 (A,v = 1, ... ,N-1). (4.3)
)XN

If we are given a plane surface and choose a G.O.T. (XN) system for which
-the equation of the surface is xN = 0, and gNN = 1, then, at any point of
the surface, (3.3) and (4.3) hold. Applying these conditions for the
-reduction of (1.1) and (1.2), we find that at any point of the surface

GNV,Ot = 0 (VN-,t = 1, . . . N-1) (4.4)
GNff =0 (= 1,...,N-1) (4.5)

5. Theorem: The direction of Type I is contained in those of Type II if,
and only if, the lines of Type I are geodesic. In order to establish this
-theorem we shall employ an O.T.(XN) system for which the surface G =
-constant have the equations xN = constant. The principal directions
-of Type I are then given by
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those of Type II by

[)aG at bG] dxt Og,,,a dxt (a=l N-1
xJX62 mfbxm Xt = (5.2>
r82G _ Nti' bG] dxt = 6gNtdXt.aXNbNXt m bxG

Applying the conditions,

g9N=O0, -=0N-1)6XE

to (5.2), we obtain

_ / } aGdxt = 09,, dx, (a N1, .,N1)

2 dxN - N dXt = 0gNNdXN.

It is easily seen that (3.1) imply gNo = 0 (o = 1, . ., N-1); emploving
these equations we find

1 NN JgNN 1 ~1..N1
{ Jdxt = g a dXN - 2 gN a-,dX, (a =1 ,N 1{dN 2 bx 2 JXN

{N~dx1 = N2g dxl.

Hence (5.3) become

1 gNN ?G 6 (

2 JXN ( 6XN ) aG 1 N (5.4)

(2G lgNNbG 6gNN gNN)G d_gNN dx=5N.
4

Nx 2 6JXN 6XN 2 6JXN ?6XT
Since we hypothesize that the Type I direction is determinate,

G O;

JXN
therefore (5.4) are satisfied by (5.1) if, and only if,

agNN 0 N-1).
bxe

But, the co6rdinate system being O.T.(xN), these conditions are necessary
and sufficient that the parametric lines of XN shall be geodesic, by (3.3).
Therefore the theorem is established.

6. Theorem: If there exists a plane surface, its normal direction is a
principal direction of both Type III and Type IV. Let us employ a G.O.T.
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(XN) system for which the equation of the plane surface is XN = 0, and
gNN = 1. Since (3.3) and (4.5) hold at all points of the surface, the equa-
tions (2.3) for the directions of Type III become

GCTdx, = Og.7dx7 (a = 1, ...,N-l) } (6.1)
GNN dXN = 0gNN dXN

These equations are satisfied by dxl = 0 ( = 1, .. .,N-1), which is
the direction normal to the plane surface, and thus the theorem is es-
tablished for Type III. This part of the theorem has also been proved
by Ricci (Atti R. Ist. Ven. Ioc. cit.).
By (3.3) the equations (2.5) for the directions of Type IV become

gSltl gS2t2gS3hS G,132.,,, G11t,,18t dX1 = Ogifdx7 (a = 1, ..., N- 1) (6.2)
gsltl gs2t2 gS3t3 Gsis2,s-N G:2,,1t dxt = 0gNNdXN.(6.3)

Let us consider the surviving terms in the left hand sides of these equa-
tions, the relations effecting reductions being from (3.3),

gNa =0 (c=1, ...N-1);
from the well known properties of the tensor-components,

GNN,St = 0, GSt,NN = 0 (S,t = 1, *.*, N);
while from (4.4) we see that any tensor-component vanishes if one and
only one of its indices is N. In (6.2), if t = N, then either t1 or t2 must
be N. Therefore either si or s2 must be N; therefore S3 must be N. Hence
ts = N, and the second tensor vanishes. Therefore there are no surviving~
terms in (6.2) for which t = N, and (6.2) may be written

A.7dx, = Og0,7dx? (a = 1, ..., N-1). (6.4)

In (6.3) either sj or s2 must be N. Therefore either t1 or t2 must be N;
therefore either t3 or t must be N. But if t3 = N, then ss = N and the
term vanishes. Therefore t3 *t N, and the only surviving term is that
for which t = N. Thus (6.3) may be written

BdXN = 0gNN dXN- (6.5)

But (6.4) and (6.5) are satisfied simultaneously by dx, = 0 (O = 1, ....
N-1) and thus the theorem is proved.

In the case N = 2, the directions of Types III and IV become indeter-
minate, since through any point we can draw a "plane surface" (in this
case a geodesic curve) so that its normal may have any arbitrarily as-
signed direction.
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