198 MATHEMATICS: J. L. SYNGE Proc. N. A. S.

PRINCIPAL DIRECTIONS IN A RIEMANNIAN SPACE

By J. L. SYNGE
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO
Communicated, May 23, 1922

1. A type of principal directions for a Riemannian space of N dimen-
sions has been defined by Ricci (Atti R. Ist. Veneto, 63, p. 1233). Four
distinct types are defined in the present paper, of which one is identical
with that of Ricci, although defined in a manner somewhat more simple.

We shall adopt the common convention of summation with respect to
any index occurring twice in a product, except where the index is a capital
letter. The manifold under consideration is of N dimensions; the small
Roman indices imply a range or summation from 1 to N, the small Greek
indices from 1 to N—1. The line element being given by

ds2 = gmndxmdxm

we define in the usual manner

O [ms O [mt s ( [mt[ns ms[nt
Gyt = — - g - L1
St 1 A W R (W e
Gas = gmt Gmn,st ) (1'2)
G =g”ans-

The word “surface” will be used to denote any (N —1)-space immersed
in the given N-space.

2. Directions defined by invariant relations may be termed principal.
Any invariant function of direction will, in general, yield such principal
directions, corresponding to stationary values of the function. The follow-
ing are types of principal directions:—

Type I: Consider the family of surfaces, G = constant. Its orthog-
onal trajectories comstitute principal directions; their equations are

a—G' = ogst &t (S=1,...,N) (2.1)
Ox;

where the point denotes differentiation with respect to the arc. Now,
for any direction,

b—g b_G dx dx,
G = Ox, Ox; :
gs dxs dx,
therefore directions making G? stationary satisfy
gGideg = ¢gst dx‘ (S = 1, ey N)

Ox; Ox;
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or

g—z(; gy %, s=1,...,N).
But these are of the same form as (2.1), writing 0G = ¢, and hence the
type of principal direction defined above is that for which G?, and con-
sequently G, is stationary.

Type II: Consider a point (P) and a geodesic passing through it. Along

this geodesic
oG st} oG
= - xsxt
[bxsbx, {m¢ bxm]

This quantity is a function of direction at P, and the principal directions,
corresﬁmdmg to stat1onary values, are given by

[ ’C _ {S‘} ﬁ] de = 6ggde, (s=1,...,N). (22

m§ Ox,,

‘,ression Gyxs%, is invariant for any given direction.
rresponding to stationary values, are given by

Gy dx, = 0g,dx, (s=1,...,N). (2.3)

Els&nhart (Proc. N. A. S., Vol. 8, No. 2, p. 24) has shown that the prin-
c1pal\ rections of Ricci (loc. ¢it.) may be expressed in this form. These
dired%ﬁs may also be reached from other considerations. Any direction
at a pbint (P) defines a surface consisting of all geodesics passing through
P and perpendicular to the given direction. The curvature invariant
(G) of this surface at P depends only on the given direction. Those
directions making G stationary are principal directions: they may be
proved to be identical with those considered above.
Type IV: The expression

gs't' soke sm Gsm S35 sz,tal xsxt (2°4)

is invariant for any given direction. Principal directions, corresponding
to stationary values, are given by

gsm sa2 gsata Gisrysas Gt @51 = 0gqdx, (s = 1, ., N). (2.5)

The four types defined above are not intended to be exhaustive of all
types of principal directions. Type II, for example, will give principal
directions if any other invariant function of position is substituted for
G. Let us suppose that the expression (2.4) has the same value for all
directions at any given point, but varies from point to point. The prin-
cipal directions of Type IV are then indeterminate, but (2.4) is an in-
variant function of position and may therefore be substituted in (2.2)
to yield principal directions.
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3. In order to prove certain theorems concerning the principal directions
defined above, we shall require particular codrdinate systems. A system
of codrdinates will be said to be “O.T.(xy)” if the parametric lines of xy
are the orthogonal trajectories of the family of surfaces xy = constant.
The necessary and sufficient conditionsfor an O.T.(xy) system are easily
seen to be

gne = 0 @=1,...,N=1). 3.1)

A special type of O.T.(xy) system is the “G.O.T.(xy)” system for which
the parametriclines of xy are geodesics. The equations of a geodesic are

aes+‘{mn}5‘"‘5‘"=°~ G=1,..,N)
S .
or

g+ [’Zn] X 2y =0 s=1,...,N). (8.2

The cobrdinate system being O.T.(ry), the parametric lines of xy satisfy

(3.2) if, and only if,
[NN]=0 (e=1, ..., N=1)
¢

and

. NN1T .
gNNxzv+[N]x13=0-

The latter equation is always satisfied for the parametric lines of xy, by
virtue of the equation

gvn iy = 1;
the former are equivalent to

%y _ (@=1,...,N=1).
) Oxo
Hence we have, as necessary and sufficient conditions for a G.O.T.
(xy) system, '

ve=0 BW_0 (g=1,..,N-1). (33)
ox,

If we are given an oo ! family of surfaces, we can find an O.T.(xy) system
for which the family is given by x5 = constant. If we are given a single
surface and draw the congruence of geodesics normal to it, it follows from
the Calculus of Variations that this.is a normal congruence, and that any
two of the normal surfaces give equal intercepts on all the geodesics.
Taking these geodesics as parametric lines of ¥y and taking xy as the dis-
tance measured along these geodesics from the given surface, we have a
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G.O.T.(xy) system for which the given surface has the equation xy = 0,
and gyy = 1 throughout the manifold (cf. Bianchi, Vol. I, p. 336).

4. A “plane” surface—the “superficie geodetiche” of Ricci (At R.
Acc. Linces, Ser. 5, Vol. 12, p. 409)—may be defined as one whose geodesics
are also geodesics of the containing manifold. ILet us choose an O.T.
(xy) system for which a certain plane surface has the equation xy = 0.
“The line element of the surface is given by

ds® = g, dx,dx,
and the equations of its geodesics are, in the form of (3.2),

0. %, +[‘“’] %,% =0 4.1)
o
xy = 0; 4.2)
for such a curve we find, fore =1, ..., N—1,
gati+ | im i = gor %, +['"'] X,%, by (4.2),
| o T
=0, by (4.1);
also - v
. Fon - . wl . . )
gni % + _NJ Ty Xy = [N] %,%, by (3.1) and (4.2).
bg .o )
= 2 X, %,, by (3.1).
2 be # y ( )

From the definition of a plane surface and by (3.2), this latter quantity
must vanish for all arbitrary directions in the surface. Therefore we
must have, at all points of the surface,

%w _ 0  (ay=1.. ,N=1) (4.3)
be
If we are given a plane surface and choose a G.O.T'.(xy) system for which
‘the equation of the surfaceis xy = 0, and gyy = 1, then, at any point of
the surface, (3.3) and (4.3) hold. Applying these conditions for the
‘reduction of (1.1) and (1.2), we find that at any point of the surface

GNv,dI =0 ) (V,O',t = ly e ey N—l) (4.4)

Gy, =0 (e=1...,N-1) (4.5)
5. Theorem: The direction of Type I is contained in those of Type II 1f,
.and only if, the lines of Type I are geodesic. In order to establish this
‘theorem we shall employ an O.T.(xy) system for which the surface G =

<constant have the equations xy = constant. The principal directions
of Type I are then given by

dx, = 0 (e=1,...,N=-1); (5.1)
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those of Type II by
2,
[ - B {at‘l E:I dxy, = 0gudx, (6 =1,...,N—1)

)
0x,0% m) Ox, [
D2G[ N{‘ oG d boe d yo(5.2)
[0~ Lo o 4 = oot
Applying the conditions,
gne = 0, ég=0 (e=1,...,N=-1)
ox,
to (5.2), we obtain
- "’} C 4, = g,.dx, (@=1,...,N—1)
OC ey — IV 80 gy — ggundx '
ok N N f oy t NN OXN-

It is easily seen that (3.1) imply g% = 0 (¢ = 1, ..., N—1); employing
these equations we find
I dx,=lgNNdeN——1gNNb—gl’dx, (¢=1...,,N=-1)
N 2 ox, 2 Oxn
Nt 1 v Ognw 1 ~nOgyw
dx, = - = dx - === dx,.
{N} ‘T8 oxy vt o8 ox,

Hence (5.3) become

_1 Fakd b—G (Eng_v_z_v de_bg" dx,) =0g,,dx, (c=1,...,N—1)

2 Oxy \ Ox, Oxy (5.4)
\ .
g _ 1 wn OG Ognw dry — 1 & oG Ognn dx, = Bgyy dxy.
E)xN 2 be be 2 be bx,
Since we hypothesize that the Type I direction is determinate,
oG
be :.:

therefore (5.4) are satisfied by (5.1) if, and only if,

%% _ g (p=1,...,N=1).
ox,
But, the codrdinate system being O.T.(xy), these conditions are necessary
and sufficient that the parametric lines of xp shall be geodesic, by (3.3).
Therefore the theorem is established.
6. Theorem: If there exists a plane surface, its normal direction is a
principal direction of both Type III and Type IV. Let us employ a G.O.T .
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(xn) system for which the equation of the plane surface is xy = 0, and
gvy = 1. Since (3.3) and (4.5) hold at all points of the surface, the equa-
tions (2.3) for the directions of Type III become

G, .dx, = 0g,,dx, (@ =1,...,N—1) }

(6.1)
Gyndxy = Ogyydxy

These equations are satisfied by dx, = 0 (¢ = 1, ..., N—1), which is
the direction normal to the plane surface, and thus the theorem is es-
tablished for Type III. This part of the theorem has also been proved
by Ricci (Atts R. Ist. Ven. loc. cit.).

By (3.3) the equations (2.5) for the directions of Type IV become

gsltl gI ztz gs‘h Gma.sw Glxlg,hi dxt = ogardxr (6 = 1; ce ey N _1) (6-2)
£ 8" £ Gomutt Gt 3% = 0gnndxy. (6.3)

Let us consider the surviving terms in the left hand sides of these equa-
tions, the relations eﬁecting reductions being from (3.3),

=0 (¢ = .., N=-1);
from the well known properties of the tensor-components,
Guns =0, Gunn =0 (st =1,...,N);

while from (4.4) we see that any tensor-component vanishes if one and
only one of its indices is N. In (6.2), if ¢ = N, then either ¢, or & must
be N. Therefore either s; or s; must be N ; therefore s; must be N. Hence
3 = N, and the second tensor vanishes. Therefore there are no surviving’
terms in (6.2) for which ¢ = N, and (6.2) may be written

A, dx, = 0g,,dx, (6 =1,...,N-1). (6.4)

In (6.3) either s; or s, must be N. Therefore either # or # must be N :
therefore either # or ¢ must be N. But if & = N, then s3 = N and the
térm vanishes. Therefore # & N, and the only surwvmg term is that
for which ¢t = N. Thus (6.3) may be written

deN = GgNN de. (6.5)

But (6.4) and (6.5) are satisfied simultaneously by dx, =0 (¢ = 1, ...,
N —1) and thus the theorem is proved.

In the case N = 2, the directions of Types III and IV become indeter-
minate, since through any point we can draw a ‘“‘plane surface” (in this
case a geodesic curve) so that its normal may have any arbitrarily as-
signed direction.



